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Abstract

Incompressible, viscous flows in the spherical gap between a rotating inner-sphere and
a stationary outer-shell, Spherical Couette Flows (SCF), are studied via direct numerical
simulations. The investigation covers both “small-gap” and “large-gap” geometries, and is
concerned primarily with the first occurrence of transition in those flows. Strong emphasis

is put on the physical understanding of the basic flows and their transition mechanisms.

An alias-free spectral method, based on divergence-free vector expansions for the 3-D
velocity field in spherical coordinates, is developed. The vector expansions are constructed
with Chebyshev polynomials in the radial direction and Vector Spherical Harmonics for
the two angular directions. Accuracy and spectral convergence of the resulting initial-value
code are thoroughly tested. Three-dimensional transitional flows in both narrow-gaps and

large-gaps as well as axisymmetric transitions in moderate-gaps are simulated.

For small-gap SCF’s, this study shows that the formation of Taylor-vortices at tran-
sition is a deterministic process and not the result of the instability of initial perturbations.
The formation process involves the sub-critical appearance of a saddle-stagnation point
within the meridional circulation cell in each hemisphere. A minimum length-scale ratio is
shown necessary, and for a given inner-sphere radius, this leads to a theoretical prediction

of the largest gap-width in which Taylor-vortices may form.

This investigation confirms that the first transition in large-gap SCF’s is caused by a
3-D instability of a linear nature. It is found that the process is characterized by very small
growth-rates of the disturbance and by the absence of a “jump” in the friction torque.
The supercritical flow is a complex-structured, laminar, time-periodic flow that exhibits
traveling azimuthal-waves. The physical mechanism responsible for the large-gap
transition is shown to be related to a shear instability of the “radial-azimuthal jet” that
develops at the equator of the basic flow. A physical model is proposed in which that
jet is viewed as a sequence of adjacent “fan-spreading quasi-2-D plane jets”. Predictions
from the model are presented and verified from the computed unstable disturbance field.
Extension of the model to the transition toward waviness in the Taylor-Couette flow, the

Gortler-vortex flow and the Dean-vortex flow is proposed.
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CHAPTER 1
INTRODUCTION

This thesis is concerned with the study, via numerical simulations, of viscous incom-
pressible flows in spherical-gap geometries. Such flows occur in the gap between concentric
spherical shells in differential rotation. Various phenomena encountered in those flows are
of fundamental relevance for the understanding of global processes in the atmospheres of
planets as well as in the envelopes and cores of rotating stars (Yavorskaya et al. 1980). The
study of the flow in spherical-gap is also of basic importance in the field of hydrodynamic
stability since it is a natural generalization of its more simple and classical analoges: plane

and circular Couette flows and the flow between rotating disks.

The present investigation focusses on the spherical-gap flows for which the inner sphere
is rotating while the outer shell is stationary. The flow in that geometry and with those
boundary conditions will be referred to as the “Spherical Couette Flow” in the present
study. Two dimensionless parameters completely define the flow: the Reynolds number
Re=V;d/v and the gap-size ratio §=d/R;, where V; is the inner-sphere velocity at the
equator, d is the gap-width, and R; is the inner-sphere radius.

We are primarily interested in the transition of the spherical Couette flow in large-gap
geometries. The original motivation for this work is two-fold. First, there is an obvious
and disproportionate lack of information in the literature (as shall be seen in Chapter 6)
about the basic SCF and its stability in large-gaps, and that from both theoretical and
experimental approaches. Secondly, from the few experimental works on the transition of
that flow, significant discrepancies in the reports are noticed. Values of the critical Reynolds
number for the first occurence of transition as well as its effects on the friction torque do
not agree. One major goal of the present investigation is, therefore, to clarify that situation

and provide some reliable quantitative data.

On a more global front, the basic flow and the transition in small-gap geometries are
also of relevance in this investigation, and will thus be considered as well. The relevance
of the small-gap flow becomes clear when one realizes that the classification of “large-gap”
is indeed made in reference to the transition mechanism in “small-gaps.” In the latter,
Taylor-type vortices appear in the equatorial region of the flow at transition while in the
former they do not. Although there is no “official” quantitative value for the limit gap-

size between “large” and “small” gaps, the sum of the evidence from all sources tends to
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indicate a value of §220.24 for the upper limit of the small-gap class, while gap-sizes with

§>0.40 are unequivocally part of the large-gap family.

Chapter 2 of the thesis presents our numerical method as far as spatial discretization
is concerned. It should be noted that, for the sake of generality, our numerical approach
will be set in the framework of spherical-gap flows, i.e., for almost any set of steady and
unsteady boundary conditions on the spheres. Except for the case of a rotating outer-
sphere in presence of a stationary inner-sphere, used in our validation tests, that generality
of boundary conditions will not be used later in this work. Section< 2.2 discusses our
present choice of a spectral approach based on divergence-free velocity vector expansions.
The remaining of Chapter 2 introduces the foundations of our spectral method and
then details its development for the present three-dimensional flow geometry. Chebyshev
polynomials for the radial direction and Vector Spherical Harmonics for the two angular

directions form the bases of our vector expansions.

Chapter 3 is concerned with the technical aspects of the implementation of the spec-
tral method discussed in Chapter 2. The target computer environment for our initial
value code “SCF3D” is that of the CRAY computers. The time discretization, based
on standard second-order integration schemes, is introduced as well as the crucial three-
dimensional vector transforms associated with our velocity expansions. A fully dealiased
collocation approach is presented for the computation of the nonlinear terms in physical
space. Operation counts for the critical parts of the code are provided, and important

optimization-vectorization aspects are pointed out.

Chapter 4 that follows is a multi-purpose chapter. Indeed, its basic function is to vali-
date our numerical method and implementation, but also through the validation examples
presented, to begin our physical investigation of spherical Couette flows. In particular,
Section 4.3 presents a simple argument to illustrate the mechanism by which meridional
circulation is always induced by the primary azimuthal rotation in spherical-gap geome-
tries. Section 4.4 then provides crucial results concerning the SCF in small-gaps. Based
on those basic, axisymmetric flow solutions, an important discussion on the formation of
“pinched-streamlines” and Taylor-vortices in spherical-gaps is presented in Section 4.4.3.
From the vorticity argument in that section, a semi-theoretical criterion for the limit gap-
size between “large” and “small” gaps is proposed. The last section of Chapter 4 discusses
the results of the first three-dimensional simulation of Taylor-Gértler spiral-vortex flow in
narrow-gaps. Through all the “bench-mark flows” presented in this chapter, accuracy and

spectral convergence of our numerical method are asserted.

Chapter 5 is concerned with the physical study of large-gap SCF. The basic axisymmet-

ric solution in large-gap is thoroughly described and analysed. Fundamental distinctions
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between the large and small-gap basic flows are emphasized. Three different large gap-sizes

are considered. The basic flow is verified to be stable to axisymmetric perturbations.

Chapter 6 then tackles the problem of the 3-D transition in large-gap geometries. A
survey of the literature about that subject is first presented. Then we discuss our strategy
of investigation in the search for the onset of instability. Large-gap flow transitions are
successfully uncovered and simulated. Critical Reynolds numbers and unstable azimuthal
wavenumbers are presented for three gap-sizes together with all the available experimental
data on the critical values at transition. Qur results provide a solid grdound to help clarify
the discrepancies between the experimental observations. The unstable 3-D eigenmode is
described and used as supporting evidence for the presentation of our physical-mechanism
model for the source of the observed instability. The model is described and successfully
tested. Its highly possible applicability to other important basic flows is also mentioned.
Finally, the results from supercritical flows at equilibrium (periodic state) are presented

and briefly discussed.

At last, Chapter 7 outlines the present investigation, its results and conclusions, and

recommends some needed and potentially significant future studies related to this thesis.



CHAPTER 2

NUMERICAL METHOD

The precise and complete definition of the physical problem is undérstandably the first
essential step towards its numerical resolution. The Spherical Couette Flow, of interest here,
was described in Chapter 1, but as it was also pointed out, the present numerical scheme
for transitional flow studies has been designed in a slightly more general framework. In the
context of this chapter, the target problem will mainly be referred to as the spherical-gap
flow. 1t encompasses all possible sets of boundary conditions for the incompressible flow in
a closed, constant radii, spherical annulus. The only restriction currently imposed concerns
the plane formed by the inner and outer axis of rotation. It is assumed to remain stationary
for all time. This limitation, which comes about from our use of governing equations written

for a fixed, inertial frame of reference, could be removed relatively easily.

The following section formally presents the coordinate system, the appropriate bound-
ary conditions, and the dimensionless parameters involved. The remainder of the chapter
is devoted to the choice and the description of the numerical method for the spatial dis-
cretization. Ultimately, the continuous Navier-Stokes equations will be transformed into
systems of ordinary differential equations (ODEs) for the time evolution. The semi-discrete
equations as well as the major results of the chapter are summarized in the last section

(Section 2.5).

2.1 Coordinates, Boundary Conditions and Parameters

Without loss of generality, a fixed cartesian system of coordinates (z,y,z) is considered
with the z-direction aligned with the axis of rotation of the inner sphere, and furthermore
positioned so that the axis of rotation of the outer shell lies entirely in the z-2z plane, as
depicted on Fi1G. 1. Introducing standard polar spherical coordinates (r,6,¢) with radial,

polar and azimuthal directions, and unit vectors (é,,&y,&4), defined by

z = rsinfcoso
y = rsinfsing (2.1.1)

z = rcosf



and
€x sinflcos¢ cosfcos¢p ~—sing é,
é, | = | sinfsing cosfsing cos¢ & | , (2.1.2)
é, cos § —siné 0 &y

it is a simple matter to determine explicitly the respective Dirichlet-type boundary condi-

tions (i = 2 x %) :

~ o 0 é,
ﬁ(F:RiaH’qS) = R, 0 €y
sinf &4
(2.1.3)
B 0 e,
W(f=R,,0,¢) = Q.R, — sin o, sin ¢ &
cos a, sin f — sina, cosfcosp €4

where R;, R,, Q; and Q, are respectively the inner and outer radius and angular velocity,
and «, is the polar angle (@-direction) between the vertical z-direction (also the ;-
axis) and the §,-axis. Throughout this thesis, the bar superscript “~” is used to identify

dimensional quantities.

One notes that while the velocity on the inner sphere can only be azimuthal, the velocity
on the outer shell always involves both polar and azimuthal components except for the
particular case of Spherical Couette Flows for which the two axes coincide, and therefore
a, = 0. Furthermore, for the sake of generality, one must also allow for €;, €, and a, all

to be arbitrary, but known functions of time.

It will be convenient for future reference to define the following:

d=R, - R; gap width,

6 = d/R; relative gap size,

~ o (2.1.4)
Vi= Qi R; maximum inner wall speed,
Vo, = QoR, maximum outer wall speed.
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Furthermore, in order to express all physical variables and quantities in dimensionless
form, a reference length, L,.s, and velocity, Vyey, must be chosen (the reference time
thus being t,.5 = I:Tef/f/}ef). One would wish to select the most relevant length scale
and velocity scale of the flow under consideration. However, as it is often the case, this

knowledge is not granted a priori. In the present context, the following has been selected:

Zref = J
(2.1.5)

Vref =V, or V,

where the maximum value of V; or V, (if time-dependent) would be picked according to

the specific problem. The usual definition of the Reynolds number,

Vrefjfref

v

Re = (2.1.6)

is obtained through the standard process of nondimensionalizing the Navier-Stokes equa-

tions.

In summary, for the most general case with time-dependent boundary conditions, one
needs to specify five parameters to completely define the problem: one geometric parameter,
§; one equation parameter, Re; and three boundary condition parameters, a,(t) , and
dimensionless V;(t) and V,(t). This reduces to only two for the Spherical Couette Flow

with stationary outer shell and constant ; : § and Re = V,-(Z/I?.

2.2 Choice of the Numerical Approach

For the past two decades or so, in the realm of “Computational Fluid Dynamics” (CFD),
a great number of numerical approaches have been introduced and tested, and no one, even
the most reluctant experimentalist, can deny the immense progress and spectacular suc-
cesses observed so far. In all types of problems in fluid mechanics, significant contributions
to the understanding, the prediction and the control of the physics of flows have been ob-
tained through numerical simulations. However, the question of selecting a given numerical
method for a given task is still of great relevance. Basically, the choice should depend
on (1) the particular fluid flow problem, that is, its geometry, boundary conditions and
and flow characteristics, on (2) the specific objectives of the work, and on (3) the com-
puting resources available. In the context of the present research, the choice is essentially

self-evident.
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The spherical-gap flow has a simple, well defined, finite 3-D geometry in which the
flow is incompressible and continuous everywhere. However, transitional flows are well
known for their long evolution time-scale and their widening of relevant spatial-scales.
Therefore, the major challenge here comes from an accuracy-vs-cost concern and an overall
efficiency requirement. Regardless of the availability of a state-of-the-art supercomputer!,
the physics of three-dimensional transition thus imposes on the numerics the following two
constraints: (1) high rate of convergence with wide-band spatial resolution is required to
treat economically and accurately the whole 3-D spectrum of scales, and (2) a simple and
inexpensive time-marching procedure must be devised in order to allow for the large number

of timesteps necessary (several thousands typically) in such transition processes.

Spectral methods are undoubtedly the candidates of choice in response to the first
constraint above. They have been shown to be superior to classical space-discretizations
(e.g., Orszag 1971), such as finite elements and finite differences, as long as the actual
solution is infinitely continuous (as it must be for viscous, incompressible flows) and exhibits
a wide range of motion scales (as it does for transitional and turbulent flows). For the most
part, the success of spectral methods comes from the exponential convergence rate property
associated with the expansion series used to approximate the unknown solution (e.g., Orszag
1980). Increasing the number of terms retained in the expansion series, once a minimum
level of discretization has been attained, makes the error of approximation go to zero faster
than any finite-order algebraic convergence, thus the reference to infinite-order convergence
or spectral convergence. The monograph by Gottlieb & Orszag (1977) may be consulted

for more details and formal proofs.

The second constraint concerning the simplicity of the timestepping process may now
be considered. Conceptually, at least four classes of the spectral approach exist for the
simulation of viscous, incompressible flows (see Moser et al. 1983, and the review paper
by Hussaini & Zang 1987). Their fundamental distinction resides in the way the continuity
equation and the boundary conditions are dealt with. In all classes but one, the pressure
field is an intrinsic part of the computation in which it plays an active and crucial role
in enforcing the divergence-free constraint. Clever but rather complex strategies are thus
required to simultaneously solve the resulting equations while properly imposing the in-
compressibility and no-slip conditions (e.g., fractional timestepping, Orszag & Kells 1980,
Patera & Orszag 1981). Unfortunately, these methods, although using simple and general
expansion functions, have all experienced serious difficulties in extending to problems with
non-cartesian coordinates (e.g., loss of simple matrix topology, Moin & Kim 1980; accu-
racy and stability problems, Marcus 1984). The other and only remaining class of spectral

approach, which trivially fixes all of the above drawbacks, was first introduced by Leonard

I CRAY Y/MP of the San Diego Supercomputer Center in the present case.
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(1981), and is based on the use of divergence-free vector expansions that also inherently
satisfy the boundary conditions. This approach, by moving the essence of the challenge
from a numerical to an analytical exercise, offers many attractive advantages in terms of
accuracy and implementation, among which the straightforward use of single-step, standard

time-integration schemes.

It can be guessed at once that in Leonard’s method, the “price to pay” for the exact
treatment of both the continuity equation and the boundary conditions, has to do with
the analytical labor necessary to develop those everything-built-in vector expansions. Not
only do they have to form a complete set in the appropriate divergence-free vector space
(with given endpoint conditions), but they must also be as “tightly quasi-orthogonal” as
possible (in an integral sense) in order to yield a reasonably small bandwidth in the re-
sulting discrete systems of equations. Although demanding, this task is obviously feasible
for any simple geometry for which only one direction is non-homogeneous (the remaining
one or two directions being periodic). Such flow situations include the highly successful
simulations of Leonard & Wray (1982) for the pipe flow, Moser et al. (1983) for straight
and curved channels, Spalart (1984) for boundary layer flows, and Stanaway et al. (1988)

for unbounded, spherically axisymmetric domains.

The geometry and the boundary conditions for the flow in a spherical annulus, as seen in
the previous section, have naturally imposed the use of spherical polar coordinates (7,6, )
for which clearly two directions are non-homogeneous (r,6) while only the azimuthal one
(¢) is periodic. By itself, in the framework of Leonard’s approach, this makes of the
spherical-gap flow the first member of a new and challenging class of applications with two

non-periodic directions.

In the divergence-free expansions method, two major factors will mostly affect the global
numerical efficiency: (1) the orthogonality property of the vector expansions in each of the
three directions, and (2) the availability or not, again in each direction, of fast transform
algorithms to go back and forth between spectral and physical spaces. Assuming that the
two points above get satisfactory answers, then the resulting, highly specialized, Navier-
Stokes solver may be viewed as “the top of the line” numerical approach for the given
unsteady flow. This assertion is supported by the following, general characteristics (and
advantages) of the method: (i) exhibits spectral convergence; (ii) exact treatment of the
continuity equation and boundary conditions; (iii) the pressure is eliminated as an explicit
variable; (iv) the three degrees of freedom from the components of velocity are reduced to
two; (v) simple and standard time-marching procedure; (vi) implicit treatment of viscous

term comes at no extra cost.

In view of the above discussion and of the awareness of the Vector Spherical Harmonics

existence and properties, it is therefore believed that the best possible numerical approach
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for the problem at hand is a divergence-free spectral method in the spirit of Leonard’s

(1981).

2.3 Weighted-Residual Method

Taking the Navier-Stokes equations as the valid mathematical model for the incompress-
ible flow of a viscous fluid (Schlichting 1979, Chapter 3), then the dimensionless governing

equations consist of the momentum relation,

Ju 1,
E%—u-Vn = —Vp+ —I—Z—EV u (2.3.1)
and the continuity equation,
V-ou=0. (2.3.2)
Using the identity,
u-Vu = V(ju|*/2) —uxw (2.3.3)
Eq. (2.3.1) is rewritten,
Ju 1 .,
= = _YpPL——V? F
ot VPt Rev ut
(2.3.4)

where P=p+|u|?/2,and F = ux w. Here, u is the velocity vector, w = V X u is

the vorticity vector, p is the kinematic pressure, and Re is the Reynolds number.

In that form, Eq. (2.3.4) can be viewed as a forced Stokes equation where F represents
a forcing term. In the present case, this term corresponds only to the nonlinear product
u X w, but in a more general context, it could also include any particular forcing of the
momentum flux such as that associated with the body forces due to gravity. Setting the
Navier-Stokes equation into a forced Stokes problem helps to relate the numerical method
with some important results of functional analysis, most of them obtained for the Stokes
equation (e.g., Temam 1979, Pasquerelli et al. 1987). Furthermore, as long as an explicit
time integration of the forcing term is considered, any scheme for solving Eq. (2.3.4) can

be extended to the Navier-Stokes problem, given a technique to compute u x w.
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In all spectral methods, the dependent variables are expressed in terms of a linear
combination of known, smooth, global functions referred to as basis functions. Furthermore,
the momentum equation is satisfied in a weighted-residual or integral sense. Different
choices of weight functions, referred to as test functions, correspond to different types of
method (Gottlieb & Orszag 1977). One classical choice is the Galerkin-type approach
for which the basis and test functions are the same. Technically, the weighted-residual
method is simple. It consists of taking the dot product of Eq. (2.3.4) with specified test

vector-functions ¥; and integrating over the volume. One obtains,

9 1
- > = - < ¥, VP> + oo <TLVIu> 4 <ULF> (2.3.5)

<‘IJj,?3——

where < a,b > stands for the integral over the volume of the dot product of the vectors
a and b. The first term on the right-hand side of Eq. (2.3.5) deserves special attention.
With the general identity

V,.VP = V.(P¥;)- P(V-¥),) (2.3.6)

and the Gauss’ Theorem
/(v.a) Qv = /(a-n) ds | (2.3.7)
1% s

in which § defines a closed region having a volume V' and a unit, outward, normal vector

n, the “pressure” term can be written as

<W, VP> = /P(‘Ilj-n) dS-/ P(V-,)dV . (2.3.8)
S 14

This form makes it clear that if the test functions are divergence-free,

V.¥, =0, (2.3.9)

and if they satisfy on the boundaries of the domain the no-through flow condition

¥,on =0, (2.3.10)

then < W; VP > becomes identically zero.

This result is of fundamental importance in Leonard’s method. Plainly, it says that
if both conditions (2.3.9) and (2.3.10) are satisfied by an appropriate choice of the test

functions, then the pressure term altogether “drops out.”
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The resulting working equation thus becomes

) 1
S — <, Vius + <UL F >

<‘I’j’~5t— Re

(2.3.11)

where the multidimensional index j varies over the same index-space as the spectral coef-

ficients to be introduced in the next section.

The general relation above has been derived without regard to any geometric considera-
tions (semi-infinite or infinite domains being included, see for example Spalart 1984) and is
therefore independent of the given flow problem. However, the next step which consists of
constructing the appropriate basis and test functionals is intimately related to the particu-
larities of the problem, such as for example, the system of coordinates used, the boundary

conditions, and the expected flow regions where higher resolution might be necessary.

2.4 Basis and Test Functions
A couple of points of formal importance deserve mentioning in preamble.

Firstly, it can be shown with a certain amount of straightforward labor, that the bound-
ary conditions (2.1.3), the Navier-Stokes equation (2.3.1), and the continuity constraint
(2.3.2) all allow for the solution vector field u(r, 8, $,t) to be expressed in terms of functions
that are separable in the primitive variables. The three-dimensional vector basis and test
functions (time-independent) can therefore be constructed as products of one-dimensional

spatial functions. Symbolically, one writes

u(r,0,4,t) = Y cil(t) Wi(r,6,9) (2.4.1)

k

where the basis vectors W, can take the generic form

Ri(r) ©1(0) 1(0) &-
Wi(r,0,¢) = ¢ + Ra(r) 02(0) 22(¢) & ; (2.4.2)
+ Rs(r) ©3(0) 23(8) &4 |,

and similarly for the vector test functions ¥ ;(r,8,¢).
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The second point concerns the mathematical conditions that must be satisfied by the
basis and test functions. Essentially, both sets must be complete in their own respec-
tive functional space. The basis space {Wy} has obviously to encompass all possible
divergence-free vectors that satisfy the boundary conditions (2.1.3). On the other hand,
the conditions on the test space {¥;} are somewhat more elusive since no precise inner-
product space has yet been defined. Once done however (Section 2.4.2), a more precise

Y

statement will be possible concerning the functional form “W¥;/w,” where w is the weight
function of the inner-product space. For the moment though, it suffices to recall that each
¥; has to satisfy at least the constraints (2.3.9) and (2.3.10), i.e., to be divergence-free

with zero wall-normal component.

2.4.1 Spherical Directions

The directions § and ¢, taken together, define a two-dimensional surface corresponding
to a spherical shell. On that surface, the threesome family of “Vector Spherical Harmon-
»

ics,” VSHs (APPENDIX A), form a complete set of orthonormal vector functions and can

therefore be used to expand any arbitrary 3-D vector field. In general,

o Hi(r, ) Xim(8,9)
u(r,8,6,8) = > Y+ HL(rt) Vim(8,¢) (2.4.3)
S HE () Wm(6,0)

where X;.n, Vim and W, ,, are the three independent VSHs. Using the orthogonality

relation

2 pw
/ / Clm . [Dum:]* smedﬁdd) = ‘SCD 6111 5mm/ 9 (2.4.4)
0 0

where * denotes the complex conjugate, and the vectors C and D being any of X, ,,
Vim or W, , one easily gets explicit expressions for any of the complex-valued coefficient

functions. For example,

27 k.S
HE (r,1) :/0 /0 u(r,8,¢,t) - X;,.(0,¢) sinfdfdg . (2.4.5)

It can be shown that the truncated version of (2.4.3) exhibits spectral convergence when
the finite limit L is increased (0 < { < L), and as long as the vector field is infinitely
differentiable.
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APPENDIX A presents some foundations for the VSHs as well as an exhaustive list of
their most useful properties. Besides their crucial orthogonality, several other characteris-
tics bring support to the argument that they are the most natural and probably the best
possible choice of bases in the spherical directions. Among others, their uniform resolution
over the whole surface and their appropriate built-in behavior near the poles (8 — 0 or =)
are two major examples. The VSHs are basically constituted by Fourier exponentials and
Associated Legendre Functions. In terms of numerical implementation, they thus suffer
from the lack of a known fast transform algorithm in the non-periodic §-direction (Section
3.4). Although of significant consequences for the numerical efficiency, this should not be
viewed as a serious drawback, for it is admittedly a fair price to pay to enjoy all the ad-
vantages of the (unchallenged) VSHs. It is of particular interest here to stress that the
vector X, has no radial component &,, Eq. (A.2.1), and that it is divergence-free, Eq.
(A.2.17).

Following Stanaway et al. (1986), and applying the general expansion (2.4.3) to an
incompressible velocity field, one can use the divergence relation (2.3.2) and the relations

of APPENDIX A to show that HY (r,t) and H/¥ (r,t) must be related, and can be expressed

y (L N remb (1
Hp,(r,t) = 1 (—21-}—1) T HY (7,1)

as

(2.4.6)

I+1 )‘/2 [aﬂlm(r ),

w o +
Hi(r,t) = 4 (——————21+1 5 H,m(r,t)]

in terms of a common function H,;' (r,t). With this relation and Eq. (A.2.20) for the curl
of “R(r)Xi,m,” one sees that any arbitrary divergence-free field can be approximated by

(the approximation coming merely from the truncation)

u(r,0,6,t) = Z Z { Hi (1) Xim(0,6) + }

=0 m=-I [Hlfn(r?t) Xl,m(97¢)]

(2.4.7)

where the number of independent basis functions has now been reduced from three to two.
Consequently, this effective use of the continuity constraint also reduces the number of
degrees of freedom by a factor 2/3. It is emphasized here that the divergence-free expansion
(2.4.7) is equivalent to the standard expansion (2.4.3) under the constraints (2.4.6) and
H (r,t) = HY (r,1) .
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Leaving the radial functions arbitrary for now, the time and radial dependences are

separated by

N
Hip(r,t) = ) am(t) hy(r)

N (2.4.8)
Hf(rt) = Y af, (1) hi(r).
n=0
Using
N
Hi(rt) = Y ab, () B (r)
";" (2.4.9)
Hip(r,) = ) af, () BEY (),
n=0
and Eq. (2.4.6), this yields
I N\Y? [drr 1
+V — . Zm ot
i (T)—Z(Ql—i—l) { dr Th":]
(2.4.10)

L1+ N\Y? [drt [+1
+W — —_ —_—n MLy A
it (T)'"z<21+1> T

One should pay special attention here to the parametric dependences of the radial

functions. It is understood that the actual velocity field can always be decomposed as

u = up + upe (2.4.11)

where u, is a velocity field that satisfies homogeneous boundary conditions (zero velocity)
on the r = R; and R, walls, while u,, is one that satisfies the actual boundary conditions
on those walls. The latter should be viewed as a known divergence-free vector function.
It will be presented in Section 2.4.4 along with its contribution to the weighted-residual
equation (2.3.11). It will be shown there that u,. only involves the basis vector X, with
=1 and |m| < 1. The problem at hand is therefore one of finding the appropri-
ate sets of functions for the unknown, homogeneous part of the solution. The
zero-valued boundaries make that no index ! nor m are needed for the h* functions of the
decomposition (2.4.8) since each of those functions, irrespective of [ and m, must lead to

the same zero end-conditions.
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For the time-independent test functions, one can similarly choose two distinct classes of
vectors that together span the whole space of divergence-free vectors on a sphere of radius

r,i.e.,

‘Il;:’l’m’('r’97¢) = g;,(?") X?’,m'(07¢) (2412)

TEe(1,0,8) = VX [gh(r) X i(6,9))] (2.4.13)

where 0 < n' < N, 0<I' <L and |m'| <!'. Here, the complex conjugate of X, is

used purely for convenience. Using again Eq. (A.2.20), the “4” class of test functions is

rewritten
\Il:,l,m,(r’ﬂ, d)) = g:’Y'(T) V?’,m’(g’ ¢) + g;-‘:"l/’v("‘) W?’,m’(& ¢) (2'4'14)
where
+V s U 12 dgy, _ _l_'_ +
gn'l'(r) — ! 2[,+1 dr r gn'
(2.4.15)
wwon L PHIN Tdgh U4
gn‘l' (T) - t ! + 1 dr + r gn’ ‘

It is now possible to evaluate the spherical contributions (“sin 6 df d¢”) to the volume
integrals (“r? sin 6 df d¢™) forming the weighted-residual equation (2.3.11). The task is
made quite simple by the uncoupling of the = and * classes from the orthogonality (2.4.4),
and by the exceedingly simple relations (A.2.23) to (A.2.26) for the Laplacian operator.
Substituting in the velocity expansion (2.4.7), and each of the functionals (2.4.12) and
(2.4.14) for ¥;, one gets for every pair (I,m):

N
da Ro
Z { ——%"-/ hy g, ridr —

n=0 R;

1 R, R,
Re ar_um/ Li(hy) g rldr p = / FX(r) 9o r2dr
€ R R.

1 4

(2.4.16)
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for the ~ class, and

N da"’, Fo V4V W 4w 2
Z ;tm -/I; (h;‘;l gn'l + hnl gr_‘;’l ) ridr —

n=0 4

1 Ro
e i [ (1o 089) 2+ 1622 o2 | e | -
€ R;

R,
L[t + 70 gt ] st

.

(2.4.17)
for the t class.

In the above relations, the index n' takes all integer values on [0, N], and the scalar
differential operator I, is defined by
d? 2 d I(I+1)

Lo = dr2+—r—.(§7—'_ 72

(2.4.18)

Furthermore, the following general approximation (but exact representation in the appro-
priate truncated vector space) has been assumed for the forcing vector F = u x w =
(up + upe) X (Wh + Wie):

L £ Xim(6,4)
F(r,0,0) = > 3 {4 fYr) Via6,6) V. (2.4.19)
SO+ Y0) Wen(6,9)

This representation and the way to compute the right-hand sides of the above weighted-
residual equations will be discussed in the next chapter along with other implementation

aspects.

Assuming at this point that the right-hand sides of (2.4.16) and (2.4.17) are known,
then for each pair (I,m), these relations represent two uncoupled systems of “N 417
The level of

coupling between the equations in each class depends entirely on the level of orthogonality

ordinary differential equations (ODE’s) for the unknown coefficients a.
between the radial functionals involved in each integral term. However, the implementation
global efficiency of the numerical method depends only marginally on that level of coupling,
typically about 15% of the computing effort, as long as the bandwidths of the resulting
matrices remain relatively small. Some attention should nevertheless be paid to that issue

in the next sections where the radial functions must then be constructed.
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2.4.2 Radial Direction — Some Background

There is much freedom in this last step of construction. One would want the radial
basis functions h; (r) and h}(r) to:

o satisfy the homogeneous boundary conditions u(r=R;) = u(r=R,) = 0, i.e.,
i hy(Ri) =h;(Ro) =0,
ii. RV (R:) = k(R = YV (R,) = IV (R,) = 0, which implies
iii. At (R:) = hi(R,) = Lhi(R:)=%<ht(R,)=0 by Eq. (2.4.10);

dr''n dr'‘n
o form complete sets in their respective function space;

e result in a numerically efficient method, i.e.,

i. to require a minimum number of terms to represent accurately a typical solu-

tion, which is expected to exhibit boundary layer behavior near the walls,

ii. to yield reasonably small bandwidths for the resulting matrices, that is, to

offer high level of quasi-orthogonality,

iii. to allow for the design of efficient algorithms for the transform between physical

and spectral spaces.

Orthogonal polynomials such as Jacobi, Legendre and Chebyshev polynomials (Abra-
mowitz & Stegun 1972) are the perfect candidates to form the basic constituents of the
radial functions. They all form complete sets of orthogonal functions defined on a finite
interval (usually —1 < ¢ < 1), and each one of them spans the whole general space of
continuous functions with arbitrary end-points conditions. Furthermore, as eigenfunctions
of singular Sturm-Louiville problems, they all exhibit spectral convergence for the approx-
imation of infinitely smooth fields, as shown in Section 3 of Gottlieb & Orszag (1977).
Finally, if one takes as a collocation grid the locus of the zeroes (or the extrema) of the
higher order polynomial used, they all offer a clustering of the points near the boundaries,

and thus a superior resolution of those regions.

Although all spectrally converging, these polynomials lead to different truncation errors.
It can easily be tested that for the same truncation, say “N,” in most general instances, the
smallest error will usually be obtained with Chebyshev polynomials. In fact, Gottlieb &
Orszag (1977) have shown that the maximum pointwise error of the truncated Chebyshev
expansion is extremely close to the smallest theoretical one obtained with the so-called
minimax polynomials. Fox & Parker (1968) may be consulted for a formal proof that the
Chebyshev polynomials expansion minimizes both a discrete and a continuous least-square

erTor 1norm.
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A further and more significant advantage of the Chebyshev polynomials over other or-
thogonal bases comes from their relation to Fourier series. With the appropriate change
of variable (£ = cos¥), it is a simple matter to show that the Chebyshev expansion can
be viewed as a special cosine series, and that the Fast Fourier Transform algorithm can
therefore be applied straightforwardly to the design of a Fast Chebyshev Transform with
an operations count of order 0(N logN) (Section 3.4). No such fast algorithms are yet
available (nor probably possible) for the other families of polynomials, which consequently
require Gauss-quadrature-type transforms with O(N?) operations counts. Once imple-
mented, a significant difference in computing time is always observed between a fast and a

standard algorithm even at moderate truncations such as N ~ 64.

The orthogonal polynomials also differ fundamentally with respect to the weight func-

tion w(¢) used in the definition of their respective inner-product space. With the inner-
product (f,g) defined by

1
o = [ wl€) ) 9(6) de (2.4.20)

one has for example that w(£) =1 for the Legendre polynomials, while w(£) = (1-£2)~1/2

for the Chebyshev polynomials. Since in the present context, this weight function must
somehow be included in the basis and/or test functions in order to take advantage of the
orthogonality of the set, it has been argued by Spalart (1986) that the singular character
of the Chebyshev weight function is enough of a drawback to discard their use. On the

ground of numerical experiments and theoretical analysis, this argument is refuted here.

Moser et al. (1983) developed and implemented a divergence-free spectral method
based on the same concepts as those presented here in Section 2.3. They used Chebyshev
polynomials to build their non-periodic functions, and showed by numerical testings the
spectral convergence and stability of their method. They reported no spurious behaviors
nor any unexpected accuracy problems in all of their simulations (Moser & Moin 1984). The
interested reader is encouraged to consult this latter reference for an instructive discussion

of Leonard’s method viewed as a projection operation.

The author himself, in 1987-1988, implemented and tested a similar Chebyshev method
for the 2-D flow between concentric rotating cylinders. Still unpublished, the results how-
ever confirm those of Moser et al. as far as convergence, stability and accuracy are con-
cerned. That 2-D code was recently used to compute time-evolving mixing layers bounded
by almost plane, parallel walls. The simulation results were found to be in good agreement

with some Monte-Carlo computations of the same flow (Goldstein 1990).

More solid theoretical ground was finally laid a few years after the work of Moser, Moin
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and Leonard (1983), when Pasquerelli et al. (1987) performed an analysis of the form-
ers’ numerical scheme, that they referred to as the “MML method.” Uniqueness, spectral
accuracy and stability of the method were discussed, and proved by a generalized variational

principle. A consistent strategy for recovering the pressure field was also presented.

The major innovation and important contribution of the analysis by Pasquerelli et
al. was its use of a non-uniformly weighted inner-product space (the Chebyshev’s in that
particular case), i.e., w# 1. This constitutes a generalization of more classical analyses,
such as Temam (1979), in allowing for the introduction of an arbitrary weight function
w, distinct from the test functions ¥;. This also permits to reconcile Leray’s formulation
(Moser et al. 1983, Spalart 1986) with Leonard’s in the discussion of Spalart (1986).

In our notation, one would thus generalize the inner-product < a,b >, introduced in

Section 2.3, as

<a,b> = / w a-b dV (2.4.21)
v

where w is a scalar function of the spatial variable in the non-periodic direction. It must
be understood here that in reason of our original definition, it has, up to now, been implicit

that the test function W; includes the desirable weight function w. We thus write

U(r,0,4) = w(r) \P?(T,G,qﬁ) (2.4.22)

in order to unambiguously state the following:

In addition to the previous results on W¥;, the constraints (2.3.9)
and (2.3.10), one can now apply in perfect harmony with all available
analyses, the theoretical conclusion that the basis functions Wy in
(2.4.2) and the test functions W% above, should both span the same
vector-function space, that is, the divergence-free space with zero

wall-velocities.

In the present context, opting for the Chebyshev polynomials with w(¢) = (1—¢£2)71/2,

one finds that all of the necessary conditions are fulfilled if the radial test functions g%,

which include w, satisfy:

g (R)=g.(R,)=0,

ii. g:,Y(Ri) = g+W(R,~) = g:,V(RO) = g+W(Ro) =0, implying

n'l n'l
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iii. gl (R)=gh(Ro) = Lgt(Ri) =49t (R,)=0 by Eq. (2.4.15).

2.4.3 Radial Direction — Expansions

The Chebyshev polynomials 7, () are defined on the interval [—1,1] where they satisfy
the orthogonality relation

1
/ (- : =gz (&) Im(€) dE = = cnbum (2.4.23)

in which ¢ =2, and ¢, =1 for n > 0. The references of APPENDIX B as well
as the textbook by Fox & Parker (1968) should be consulted for more information on
this widely-used family of polynomials. Not only do they offer an impressive number
of attractive and simple properties, but most of these lend themselves to highly efficient
numerical implementations. This is more so with the Chebyshev family than with any

other orthogonal polynomials.

Before going any further, one must first transform the dimensionless coordinate r into

the dummy coordinate £:

Ri<r<R, — -1<¢<1.
It is recalled from Section 2.1 (the superscript “ ~ ” indicating dimensional quantity) that
r = 7/d
d =R, —R;i =1 (2.4.24)

6 = (Z/R, = 1/Ri .

Introducing now for convenience a second geometric parameter I, redundant with é but

nonetheless useful,
2+6

K = —— = R+ R = 2Rnean (2.4.25)

one easily gets the following linear transformation:

(r) = 2r - K <= 1) = —;—(guf)

(2.4.26)



21

and of course,

1
dr:;df,

—d-:Z—d— (2.4.27)
dr e’ -
2 d?

dr? ~ O det

Since the set of Chebyshev polynomials {7,}§° is complete for continuous functions
with arbitrary end-points conditions, it is always a possible task to construct from them a
complete set for a subspace with given end-conditions. We are specifically interested here
in single-zero and double-zero radial spaces. The former includes all smooth functions with
zero value at £ = 41, while the latter adds to that condition the zero value of the first

derivative as well. Such subspaces can systematically be formed by
{ subspace set } = { space restrictor } x { general set } ,

where the product of the space restrictor with the general set must lead to a polynomial
representation. We therefore choose a polynomial function for the space restrictor. It is no

challenge to convince oneself that

(1- 52) «—— Single—Zero Restrictor

2.4.28
(1 - {2)2 «— Double—Zero Restrictor ( )

are the lowest order polynomials to enforce exactly the appropriate restrictions.

Another method for constructing a subspace set should also be considered. This ap-
proach, referred to as the linear combination approach, is more general than the space
restrictor method since it is not limited to zero end-conditions. By forming the appropriate

linear combinations of polynomials, based on the Chebyshev property

dr pol o2 g2
— T = ntp R 2.4.29
L = e 1558 24.9)

where p> 0, any function set can be obtained. For example, consider the set of {g,}§°
that is to span the double-zero space. Four homogeneous conditions defined that space,

plus a fifth arbitrary condition to achieve a non-trivial result. One would thus write

2

gn(8) = Y a; Turi(6) - (2.4.30)

j=—2
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Using Eq. (2.4.29), the following conditions must hold:

2
ga{2)=0 = Yo @E)Hae; =0

j==2
2 , (2.4.31)
(=0 = S @E)H (a4 ) a; = 0
j==2
and we choose, ag = —2 .

The solution of this 5 x 5 system yields the desired functions:

(n+1) (n—1)

n

0w = 2] 100 - 20 + [ e (2.4.32)

which span the whole double-zero space as it can easily be verified (a similar procedure can
be applied to construct the basis functions for any other subspace). On the other hand,

the corresponding functions obtained by the space restrictor approach are given by:

ga(€) = (1 =€) Tu(é) =
dn—4 ] n—4 -+ (En—2 - 2dn-—~2) Tn~2 +

o (2.4.33)
T (cn+cn—2+En )]n +

Cn(En - 2) Tryo + cn Thga

from Eq. (B.23), and where the coefficients ¢,,, d, and E, are defined in APPENDIX B.
Both approaches therefore lead to functions expressible in terms of linear combinations of
orthogonal polynomials, hence the generic name of quasi-orthogonal functions. One should
realize however that in general, the linear combination approach, contrary to the space
restrictor method, does not yield functions representable in the form of a useful product.
The required derivatives of the functions may then pose serious problems in terms of analytic

representation and resulting bandwidth.

In addition to the completeness in the appropriate subspace, one must also consider the

following points:

a. each velocity component should have a compact (small number of terms) polynomial

representation, i.e., h, h:lv , and h“:lw ;

b. the differential operator L; in (2.4.16) and (2.4.17), or more precisely “r%L;,”
acting on each of the three functions above, must also yield compact polynomial
representations (to allow for the use of the Chebyshev orthogonality in evaluating

those radial integrals);
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c. the resulting matrices should be easy to construct analytically and to compute

numerically;

d. the maximum bandwidth of those matrices should be as low as possible.

In the present work, point (b) above prohibits the use of the linear combination ap-
proach for forming the radial basis functions since full triangular matrices would result.

We therefore construct them as follows: .

hy (r(€)) = (1-€%) Ta(6) (2.4.34)

and

RE(r(€) = (1-€) rTu(6), (2.4.35)

which translates by Eq. (2.4.10) into

1/ _ _2y2
! ) 2{ Q-0 [0 =€) Tu©)] +} (2.4.36)

+V P =1
hhY (7(€)) (21+1 (E+EK) [1-)P2Tu0)]

e (LY @D [ €2 T©)] +
ot (r(8)) = (2“_1) {(€+K) G-erne] | (2.4.37)

where the '’

indicates derivative with respect to ¢. Using the definition (2.4.18) for L,
the relations of APPENDIX B, and a fair amount of patience, it is possible to verify that
points (a) and (b) above are satisfied (the factor “r” in (2.4.35) being necessary in relation

to point (a)), as well as all other requirements for the radial basis functions.

The radial test functions (including the Chebyshev weight function) may now be con-
structed. They are subjected to a similar condition as point (a) above, but that now reads
+V

n'l »

the foorm “ w(§¢) x [compact polynomial representation].”

+W

e. each component of the vector test functions, so ¢, , ¢ and g, ,should have

Furthermore, points (c) and (d) must now be fully considered. Putting more emphasis on
(c¢) than on (d), it has been decided here to form the test functions to the image of the

basis functions. We thus obtain

e (=€) Tul© (2.4.38)

g;,(’l’(f)) = (
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and

1 7 (1=8) rTw(), (2.4.39)

gt (r(8) = A

which also translates by Eq. (2.4.15) into

I 1/2 1 (1—-1) [(1_52)2 Tn'(f)] +
ghy (r(6)) = —i (21+ 1) A= e)n EE+E) [(1-6)Tu(8)] + (2.4.40)
(€4 K) [(1-€) Tu(®)]'

N (+2) [(1- )P Tu(®)] +
gt (r() = i (211 1) IE EE+E)[1-€) Tu(®)] + ; (2.4.41)
(€+K) [(1- € Tw(®)]

which here again can be verified to satisfy all necessary conditions.

Plugging the radial basis and test functions into the weighted-residual equations (2.4.16)
and (2.4.17), one can now evaluate the required integrals and form the consequent matrices
(Section 3.3). Due to the necessary presence of the Chebyshev weight function in the radial
test functions, those matrices are non-symmetric with respect to their principal diagonal?.
Their topology is, however, regular and banded. For the two ¥ class matrices, it is found
in Section 3.3 that the half-bandwidths are 10 and 8, while they are 6 and 4 for the ~ class.
These values compare very favorably with other similar spectral implementations. The two
systems of ODEs will be presented again in the summary Section 2.5, where they will be

written in concise, symbolic form.

A last note deserves to be mentioned before closing the present section. Since no
derivatives of the test functions g;t, appear in the working equations, it would have been
possible to form those functionals using the linear combination approach. As made clear
by comparing (2.4.32) and (2.4.33), this could eventually have led to a thinning of 2 on the
half-bandwidth of the * class matrices, and of 1 for the ~ class (although likely, this has
not yet been confirmed by careful analysis). This was the “optimal” approach adopted by
Moser et al. (1983). Recalling that a banded matrix solver has an operation-count scaling
with the square of the bandwidth, it can be estimated that about 30% of the operations

for this step could thus be saved. However, since about 10% of the total computing effort

2 Non-symmetrical matrices would also result even if a weak formulation of the diffusive term (obtained
through integration by parts of < \Ilj,VQu >) were employed to balance the order of the derivatives
on both the basis and test functions.



25

goes into that step for the present implementation, an actual final saving of 3% at the
most should be expected. Although not sufficient to justify the important amount of work
involved in modifying the present implementation, this saving should nonetheless be kept

in mind in the development of future similar spectral methods.

2.4.4 Boundary-Condition Terms

In this section, the boundary condition part of the velocity decomposition (2.4.11) is
chosen, and its contribution to the weighted-residual equation (2.3.11) is discussed. It is
recalled that u,. must be a divergence-free vector field that satisfies the solid-body rotation

conditions on the two walls, conditions (2.1.3).

From the definition (A.2.6) of APPENDIX A, or more easily by consulting the explicit
expressions given in Appendix B of Hill (1953), it can be verified that the vector spherical
harmonic X;,,, with I=1 and |m|<1, provides exactly the right 6—¢ functional form
to describe solid-body rotation of spherical shells. For a given shell with arbitrary axis of

rotation, this condition is written as

unr(0,¢0) = (Kising)ég + (K;sind 4+ Ky cosf cos¢) &, (2.4.42)

where K; and K5 are two constants.

A radial function must now be chosen to build the wy. field. Any radial form with two
free parameters could be selected. However, one would want to be able to represent it
exactly by an as-short-as-possible Chebyshev series in order to facilitate the recomposition
u=uptu. when desired. This excludes among other things the physically relevant function

2»

“ai7+ ey /r* 7 associated with the Stokes solution. The simplest choice is probably a pure

linear variation. One writes

1

e (r(€),6,8) = S [Cn (1-6) + Do (14+6)] X1 m(6,6) (2.4.43)

m=-—1

Introducing the actual (possibly time-dependent) boundary conditions (2.1.3), and express-

ing the result in terms of Chebyshev polynomials, one obtains

1

we(r(),0.6,0) = 3 [AADTo(E) + ALOTIO] Xiwm(0,6).  (24.49)

m=-—1
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where the known, dimensionless boundary functions are given by

o\ 1/2
A1) = ——z(%—-) V(1) cos(ao(t) + Vi(1)]

2\ 1/2
Ay(t) = —1 (%—) [Vo(t) cos(ao(t)) — Vi(1)] (2.4.45)

AYN() = i (-g-)” " Vt) sin(a(t)) -

The contribution of the non-homogeneous field into the weighted-residual equation (2.3.11)
can easily be written. The nonlinear term, as mentioned before, will be treated directly
in terms of the complete velocity field u, and is therefore not to be considered here. Due
to the VSHs orthogonality property, the only non-zero contributions come from the dot
products with the ~ class of test functions (2.4.12) when [ = 1.

One has for the inertia term

{rw) - /R N (49,0 To(&) + AL(®) Ti(©)] g(r) r*ar (2.4.46)

i
and for the viscous term,

R,
{Vbc(t)} = 2 [KAL(t) - ?n(t)]/R 9o (r) dr (2.4.47)

o

where the superscript “ " ” indicates the derivative with respect to time. In the above,

e m takes the three values -1, 0 and 1;

e 7' ranges from 0 to N;

e T, and T are respectively the zero®® and first degree Chebyshev polynomials
(To=1,T1i=¢).

Using the Chebyshev orthogonality property (2.4.23), it is straightforward to evaluate
those radial integrals, and thus to construct the necessary T%¢ and V,2° one-dimensional
arrays of size N+1 (in which most of the components are zero). These arrays will then
be added appropriately to the “I=1” system of ODEs of the ~ class, as indicated in the

next section (see footnote 12 in Section 3.6).
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2.5 Spatial Discretization Summary
VELOCITY EXPANSION (divergence-free)

N L 1 i (1) 1 (1) X (8, )
u(r,0,4,t) = Z Z Z +at, (1) h;tlv(r) Vin(6,6)

n=0 =0 m=-1
+ ah () hE (1) Wi (6,9)
1

+ 3 [AL() To(€) + ALQ) Ti(€)] Xim(8,9)

m= -1

(2.5.1)

SEMI-DISCRETE SYSTEMS (two “IN+1D)x (N+1)” systems for each pair “I,m”)

(2.5.2)

Il

R, R,
where Anin / hy, g ridr B, = / Li(hy) g7 v2dr
R,

R;

Ro
-+ _ +V +V +W 4+ W 2
AL —/ {nl Guni +h‘nl gn’l]rdr

R,
B = [ e 08) ot + L () o8] s

R,
" / fX(r) G r2dr

1

¥
(l

R,
7= [0+ 0 6]

T : Eq. (24.46), V5% : Eq. (2.4.47)

d? 2 d I+
L= 2 22 _
! dr? + r dr r2
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with

+
1+ 1\ [dnt 141
+W _ n h+
Pl (r) = 4 21+1> [ o T n}
1 \Yrdgt, 1,
gui(r) = (EITI) [ & 7 ]
T(r) = L+ rdgh 141
g"" 20+ 1 dr T In!

o hy(r(6) = (1-€)Tu(©)

BE((©) = (=€) 1 Tu(g)

9 (r(8)) = (—52)17 (1-€%) Tw(f)
g (r(8)) = ﬁ“:%g“)m(l—ﬁz)z r Twi (€)

o ({=2r—-K T:—;—(ﬁ—i—lf)

o fXVW(r): Eq.(24.19)

A%EL(4) 1 Eq. (2.4.45)

o T.(¢): n'" degree Chebyshev polynomial

Xi,m(0,8), Vin(6,¢), Wi ,.(6,¢): VSHs of degree [ and order m .
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CHAPTER 3

IMPLEMENTATION

The numerical method of Chapter 2 has been implemented as the FORTRAN code
“SCF3D” on both the former (CRAY X/MP) and the current (CRAY Y/MP) supercom-
puter of the San-Diego Supercomputer Center. Besides a 50% increase in speed over the
CRAY X/MP, the Y/MP comes with a central memory capacity eight times greater (the
maximum problem size now allowed at SDSC is 32 MWords). For the present application,
this has alleviated completely the problem of memory management first encountered on the
X/MP for which a “two-passes algorithm” strategy using a secondary storage device was
necessary (see Moser & Moin (1984) for a description of a similar algorithm). Apart from
that difference, both implementations are the same, and most simulations of this work were
performed on the Y/MP.

This chapter, supplemented with APPENDICES A, B, C and D, presents all the details
pertaining to the actual implementation of this Navier-Stokes solver. Some of the aspects
covered are admittedly not new to experienced numericists, but are nonetheless included for
the sake of completeness and rigor. It is hoped that despite the austerity of the material, the
treatment of the subject will sustain the interest of the reader at least until the following,
more physics-oriented chapters. Particular attention should be paid to Sections 3.2, 3.4
and 3.6 where respectively the time-discretization, the VSH-Chebyshev transforms and the

collocation approach are presented.

3.1 Some Saving-Oriented Facts

One can use the indicial symmetries of the VSHs, Eq. (A.2.18) in APPENDIX A,
together with the reality of the velocity vector field u(r,6,¢,t) to show that the complex
spectral coefficients in Eq. (2.5.1) must satisfy:

*
Opm = (O™ [a7,]

at (1" [af ]

n,d,—m

(3.1.1)

f
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where “ ™ 7 denotes complex conjugate. Therefore, only the coefficients with positive index
“m” (m >0) need to be marched in time. A reduction close to a factor two in the

computing effort is gained here.

It can also be verified easily from their definitions (Section 2.5) that all the matrices
involved in the semi-discrete equations (2.5.2) are real. Furthermore, they are all inde-
pendent of the index “m.” Therefore, for a given value of [, the matrix equations can
be constructed with up to “M +1” (I,m)-dependent right-hand sides, all of which can be

solved simultaneously with only one matrix inversion.

Finally, as shown in APPENDIX A, the “ 8-¢” functional dependence of the VSHs can be
separated, Eq. (A.2.6), and the ¢ contribution simply results in the complex exponential
function with wavenumber m. This clearly can be interpreted as Fourier expansions in
the azimuthal direction. For a truncation L, the maximum azimuthal wavenumber, say
M, cannot be larger than L (Orszag 1974). “M = L” represents the complete set of basis
Junctions up to degree L on the surface of a sphere. However, one may wish in a given
simulation to restrict M to a value smaller than L (generally for economy purposes in
a fully 3-D calculation, or for the case of axisymmetric flows where M = 0). Following
Eq. (A.2.17), one can readily rewrite the velocity expansion (2.5.1) with inversion of the [

and m summations as:
Qi (1) 1y (1) X (6, 6)
N M L
u(r8,¢,8) = > Y Y8+ @k, () A (1) Vim(6,9)
n=0 m=—-M l=|m|
+ azlm(t) hilw(r) Wl,m(6)¢) (312)

+ Y [AL() To(€) + AL Ti()] Xim(6,9)

me=-—1

where M < L. That form makes it clear that the three truncation parameters N, M and

L can be chosen separately and optimally to achieve a desired level of resolution.

3.2 Time-Integration

In CHAPTER 2, the initial-boundary-value problem governed by the continuous partial-
differential equations of the Navier-Stokes model has been transformed into a simpler initial-
value problem described by the systems of ODEs (2.5.2). Given initial conditions, those
semi-discrete equations for the unknown spectral coeflicients can be solved directly by
numerical time-integration. Standard time-marching procedures (Ferziger 1981) are used
to that effect. The simple algorithm adopted in this study consists of a mixed (explicit-

implicit) finite-difference-type method.
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The viscous term is treated by an implicit scheme in order to insure stability without
a stringent, unbearable constraint on the size of the timestep (Gottlieb & Orszag 1977).
Since inversion of the inertia matrix A in Eq. (2.5.2) is clearly unavoidable, and since A
has a larger bandwidth than B, one realizes that the implicit treatment of the viscous
term can rightly be described as a no-extra-cost, best possible choice. The second-order
Crank-Nicolson scheme (unconditionally stable for diffusion problems) is selected here. It

is associated with the “trapezoidal rule” of integration, and for the model problem

= f(tva) )

it corresponds to
altl — g7

At

[f(#,a7) + fF(t7F1,a7F1)] (3.2.1)

t\blr——t

where a’ = a(t?), and the index “j” denotes the timestep number.

The nonlinear term on the other hand must be treated explicitly in the context of
spectral methods (Orszag 1971). The second-order Adams-Bashforth scheme, which is

given by
it g

At

t\?[»—*

Bf(¥al) - f(#F 1 a 1], (3.2.2)

has been chosen for its simplicity (single-step) and its competitive performance in terms of
the ratio accuracy/cost. However, its stability for transport problems requires the presence
of some viscous dissipation to yield a conditionally stable procedure. In practice, this

condition is expressed with the aid of a “CFL number” (Ferziger 1981) which is evaluated

el ) e

here as:

where the MAX is taken over the whole domain, Ar is the local radial spacing between

the collocation points of the “de-aliased grid ” (discussed in Sections 3.5-3.6), and

A0 = 7[Ly4 with Ldz—g—(l)+1)+1 ,
(3.2.4)
A’

[l

W/Ald with M, = 'g—M +1.

It is important to note here that the actual clustering of the azimuthal collocation points
towards the poles (A¢ ~ sin @) does not appear in the CFL definition. This is due to the
uniform resolution of the spherical harmonics over the sphere (Orszag 1974), and it should

be viewed, as mentioned before, as one major intrinsic advantage of the VSHs.
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In most of the computations of this work, the timestep increment At was automatically
chosen to yield a CFL number of “0.70.” It was numerically verified that both stability
and adequate accuracy were obtained with that CFL value with the only exception of very
low Reynolds number simulations (Re < 1). For those diffusion-dominated flows (where
stability is granted), in accordance with numerical analysis results, a significant reduction
of the timestep size was found necessary in order to achieve accuracy. Finally, it is also
expected that for higher Reynolds numbers than those of this study (Re > 1000), lower

values of CFL may become necessary to maintain stability.

Using Egs. (3.2.1) and (3.2.2) to integrate the systems of ODEs (2.5.2), one obtains two

discretized systems of algebraic equations (the * and the ~ class) for each pair “I,m .”

Symbolically,

At i+l At J
+_ | ) R e | ) o+
[A 2Re © ] {“} [A TR b ] {} *

3AL [V At L)V
e ) T

(3.2.5)

with
Rt = F*
1 (3.2.6)
Re

&
I
I

F~ =T &1 + Vb 64

where the matrices A and B of size (N+1)X(N+1), and the vectors F, T® and V¢
of size (N +41) are all defined in Section 2.5. No stability problem was expected nor has
been detected with the explicit treatment of the boundary-condition terms 7" and V along

with the convective term F.

For the first timestep, where j =0, the forward Euler scheme (first-order) is used in
place of Adams-Bashforth, such that no estimate of the “;—1” solution is required in order
to start the time-marching procedure. For j=0 then, the last term on the right-hand side
of (3.2.5) disappears and the “3/2” factor is replaced by “1.”

The above time-integration scheme is globally second-order accurate. This was con-
firmed numerically by halving the timestep size of a bench-mark simulation and verifying
that the new integration error was thus reduced by a factor four when compared to the

original error.
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One may sensibly wonder at this point why bother with sophisticated space-discretiza-
tions exhibiting spectral convergence when the time-discretization is still limited to standard
second-order convergence. First, one has to recall that convergence rates and level of
accuracy, although related, are two distinct realities. It is common knowledge among
computational fluid dynamicists that, for most unsteady flow simulations, the total error
in the numerical solution comes primarily and dominantly from the error associated with
the spatial resolution. The time-discretization error always appears to be well below the
latter! as long as the timestepping size is kept under the limit dictated by the stability
condition. Despite the fact that most of the evidence sustaining the argument have been
obtained from “classical” space-discretizations (finite-differences and finite-elements), it
appears sensible to expect a similar distribution of error in today’s spectral simulations
where marginal space-resolution is often the best one can afford. Indeed, it seems that
the difficulty level of the problems treated has been increasing at least as fast as our new
resolution capabilities. Therefore, in this state of affairs, there is apparently no pressing
need to improve on standard time-integration schemes. The interested reader may consult
the monograph by Gottlieb & Orszag (1977) for further discussion on this fundamental

issue.

Based on the system of equations (3.2.5), the essential tasks to be performed at each

timestep can be outlined by the following list:

o

a. Compute the nonlinear product “uxw ” in physical space from the velocity and

vorticity at step j (Section 3.6).
b. For each class, and every pair (I,m) such that 0<m<M and m<I<L:

b.1. Compute “ R’ " save it, and add « 3—2417€j ? to ¢ (.A + zé}.‘feB) al — %Rj“] ”
saved from the previous timestep;

b.2. Form the matrices (.A + 5%;3) ” and “ (.A - —2—%8) ” (Section 3.3);

b.3. Solve Eq. (3.2.5) for “ a?*! ” (Section 3.7);

b.4. Compute “ (A + 5EB) a’+! ” and add it to “ —41R7 ” saved in (b.1).

c. Compute the new velocity and vorticity fields from “ a?*! ” (Sections 3.4 and 3.5).

For the sake of completeness, a detailed algorithm of the timestepping operations is

given in APPENDIX C with reference to Fig. 2.

1 The dominance of the space-error over the time-error has been in fact the major original incentive to
develop new, super-performing spatial discretizations such as spectral methods. With those, a better
balance between the two sources of error is usually achieved when the truncation level reasonably
matches the demands of the spatial field.
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3.3 Inertia and Diffusion Matrices

The discrete systems of equations (3.2.5) require the construction of inertia matrices
A* and viscous diffusion matrices B*, all of size “(N+1)X(N+1).” Those matrices
were defined in the summary section 2.5, and as previously mentioned, they are all band-
structured and independent of the index m. Their construction involves the evaluation of

radial integrals (“r2 dr”) composed of the product of Chebyshev-based radial functions.

Thanks to the results of APPENDIX B, it is straightforward to express each and every

one of those integrals in the general form:

310 [ b (@) T ©) e (33.1)

where C; and Cj represent some “linear combination operators.” For example,

1
C(Tn) = _Z [dn—Z Tn—2 + Fn Th + ¢ Tn+2]

would be the combination operator corresponding to “(1 — £¢2)7,,” from (B.13). The
n-dependent coefficients? d,, F, and ¢, are defined in APPENDIX B. Recall that both
the indices n' and n (the “row index” and the “column index” respectively) ranges from
0to V.

Integrals like (3.3.1) are easily and exactly computed through a systematic use of the
orthogonality property (2.4.23) of the Chebyshev polynomials. The bandwidths of the
resulting matrices depend entirely on the “breadth” of the combination operators involved,
where the breadth of C(T3) is defined as the difference between the degree n and the
maximum polynomial degree of the representation. In the example given above, the breadth
of C(T,) would be (n+2)—n =2, and for an operator like (B.35), it would equal 5. As
a general rule, one observes that multiplication by 7 (or equivalently by ) increases the
breadth by one, while differentiation decreases it by one. The half-bandwidth of the matrix
associated with the integral (3.3.1) is then simply the sum of the breadths of the respective

C1 and C, operators (in which the r? factor has of course been included). It is thus a

2 The special “switches” cn and dy defined by (B.3) and (B.4) are implemented as Fortran functions
using the property “ 70 =1, ie,

d(n) = zer **(abs(n)—-n) — zer **(abs(n—N—l) - ‘n+N+l)

c(n) = [1.0 + zer ** abs(n)] * ZET ** (abs(n)—n)

where zer = 10799 is a “numerical-zero” used on the CRAY machines.
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simple matter to verify that in the present case, one obtains

Matrix Half — Bandwidth
A~ 6
B~ 4
At 10
Bt 8

which yields the very competitive total bandwidths of 13 and 21 re§pectively for the ~
and * systems of (3.2.5).

The four /-dependent matrices A%, A=, BY and B~ can all be decomposed into sums
of several constant, basic matrices (independent of !) with some known functions of [ as
coefficients. A total of 14 such basic matrices are required (3 for A%, 1 for A~ 8 for Bt
and 2 for B™). They are computed once and stored in central memory to be used at each
timestep to construct the matrices involved in the systems (3.2.5) (see ArPENDIX C for
the detailed timestepping algorithm). Only the non-zero terms of each matrix are actually

stored and dealt with.

3.4 Standard VSH-Chebyshev Representation and Transforms

The time-integration procedure described in Section 3.2 allows the forward marching of
the solution in spectral space. All required derivatives and integrals in the systems (3.2.5)
as well as in any other part of the code are exactly evaluated in that space. For reasons of
efficiency, however, the nonlinear products associated with the convective-transport term
(terms F%) need to be computed in real physical space (Section 3.6). In other words,
one has to be able to transform the information back and forth between the two spaces,
and this, in a minimum number of operations. In terms of global numerical efficiency, this

transform capability is a requirement of crucial importance (Orszag 1980).

It is first necessary to introduce a standardized, generic “VSH-Chebyshev” vector rep-
resentation valid for any 3-D vector field. Taking the velocity vector as an example, that

1s written as:

N My Antm Tn(€) X1,m (6, ¢)

(T(f g d) Z Z + Bnlm Tn(&) Vl,m(99 ¢)
n=0 m=-My I=|m] + C'n.l'm. Tn({) Wl,m(ead))

(3.4.1)
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With the result (A.2.6) of APPENDIX A, this general VSH-Chebyshev expansion can be

slightly rearranged in an even more revealing form:

Anlm Xl,m(g)

Ny My Lg
u(r(€),8,¢) = > Tal€) > €™ > ¢ + Bum Vim(0) 3, (3.4.2)
R e M = Gt Wi (9)

where the polar vectors X ,,(0), Vi n(6), and W, ,(8) are given explicitly by (A.2.7)
to (A.2.10) in terms of the polar function ©]*(8), which in turn is given by (A.1.6) in
terms of the Associated Legendre Function P/"(cos @) defined by (A.1.7). Recall that the
restriction My < L, always applies. Furthermore, for real physical vector fields, one must
have that

An,l,—m = (_1)m+1 "

n,d,m

Bn,l,——m = (wl)m ,’;,[’m (343)

Copymm = (1) C},

n,d,m

from the VSH property (A.2.16).

The operation of “converting” the finite set of spectral information—consisting in the
complex spectral coefficients Anim, Bnim and Crin—into a set of physical information—
consisting in the real values of the vector field components on a grid of collocation points—is
referred to as “direct,” “forward,” or “analysis” transform. The opposite operation that
“converts” the physical collocation values into the spectral coefficients is referred to as

Y

“inverse,” “backward,” or “synthesis” transform.

As far as the spherical directions (8- ¢) are concerned, the approach adopted in this work
is an extension of the transform method proposed by Orszag (1974) for the scalar spherical
harmonics (SSH). To the author’s knowledge, the present implementation represents the
first large-scale application requiring the transform of Hill’s vector spherical harmonics (Hill
1953).

The three-dimensional transform is performed as a sequence of one-dimensional trans-
forms. Moreover, because only the polar direction € involves vectorial expansions, it be-
comes possible to treat the other two directions as simple, one-dimensional scalar directions
(for each of the three vector components). Standard Fourier transforms and Chebyshev

transforms are therefore used in the azimuthal and radial direction respectively.



37

3.4.1 Fourier and Chebyshev Transforms

Consider the one-dimensional discrete Fourier expansion associated with (3.4.2):

Mi+1

f@) = D amem™. (3.4.4)

m=—My

Note that the “M4+41” mode is included here purely for algorithmic reasons since it does
not actually appear in the expansion (3.4.2). The identity aps,4+1 =0 is implicit in what

follows. Using the discrete orthogonality property of the Fourier expansion,

2Ma+1 ] )
Z (e™9i) (e7"%) = 2(Mg+1) Spmn , (3.4.5)

i=0

it is a simple matter to show that the inverse transform (—Myz<m < My+1) is given by

1 2Mg+1

— . —ime;
= T X T ¢ . (3.4.6)

The direct transform takes the obvious form

Mg+1

f(#5) = D ame™ (3.4.7)
m=-—My
where the collocation points are defined as

T

My+1

o =7 for 7=0,1, .., 2M;+1. (3.4.8)

As given by (3.4.6) and (3.4.7), the direct and inverse processes would each require of
order (4M3?) operations to perform the complete transformation. This estimate as well
as the relations themselves are very similar to those associated with Gaussian quadrature

transforms (see APPENDIX D) to which they are closely related.

However, it has been well known since the mid-1960s that there exists a much more
efficient way to implement that transform. The Fast Fourier Transform algorithm (FFT; see
Cooley & Tukey 1965) by its clever organization of the calculations® leads to a significant
improvement of the scaling. For the complete transforms (3.4.6) and (3.4.7), one gets

0(2M4log M4) operations each way.

3 Using basic properties of the complex exponential and the numerous symmetries present.
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In “SCF3D,” the highly optimized and fully vectorized complex FFT routine “CFFT2”
is used (available from the CRAY Y/MP’s local public library at SDSC). Performances
close to 100 MFlops have been observed. However, CFFT2 requires that the size of the
transform be an exact power of 2. This implies that M, must satisfy “ My+1 = 2% ” with

o an integer larger than 2.

Consider now the one-dimensional discrete Chebyshev expansion associated with the

general expansion (3.4.2):

Ny ”
O =Y an Tule) . (3.4.9)

The following discrete orthogonality relation (Deville 1984)

Ny

N
> Ei Ta(€) Tw(&) = =5 & buun (3.4.10)

j=0

holds with éy=¢én, =2 and ¢,=1 for 1<n<Ng—1, and for the collocation points

& = cos (1-1%) with j=0,1, .., Ng, (3.4.11)

corresponding to the extrema of the Chebyshev polynomial Tw,. Again, using this or-
thogonality, it is a simple matter to show that the inverse transform (0<n < Ng) is given
by

12 &1
ap, = A j}; 'E'; (&) Tw(€5) (3.4.12)
while the direct transform simply reads
Ny
f(&) = D an Ta(&)) - (3.4.13)
n=0

A simple way to obtain or verify the above Chebyshev relations (particularly the discrete
orthogonality property) consists of using well-known Fourier results on the “cosine” form

of the Chebyshev expansion. Indeed, from the definition of the Chebyshev polynomial,

T.(€) = cos(n arccosé) (3.4.14)

one readily sees that, letting “ £ = cos3,” the Chebyshev polynomial can be rewritten as

Ta(cosB) = cos(nf) = %[e""ﬁqte"'"ﬁ] . (3.4.15)
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The Chebyshev expansion (3.4.9) can therefore be interpreted as a cosine Fourier expansion
on the “Ny+1” actual points, Eq. (3.4.11), plus “Ny—1” fictitious ones, the ensemble
given by

B; = j-]-v-; for j=0,1,..,2Ng=1. (3.4.16)

In practice, this allows for the use of the FFT algorithm when computing the Chebyshev
transforms (3.4.12) or (3.4.13). Consequently, the operation-count scales like 0(2Nglog Ng),
and one may refer to the procedure as a “Fast Chebyshev Transform” (FCT). It involves
an even reflection of the Ny real physical informations which yields important operation-
saving symmetries of the complex data. For more information on efficient algorithms for
the FCT, the reader is referred to Deville (1984) (for multi-dimensional FCTs, see Deville
& Labrosse 1982). In “SCF3D,” the same optimized FFT routine is used for both the
Fourier and the Chebyshev transforms. The size of the latter must therefore satisfy the

condition “ Ny = 27 ” with v an integer larger than 2.

It should be noted that the inverse Chebyshev transform (3.4.12) could as well have
been obtained through a Gauss-Lobatto-Chebyshev quadrature for the numerical integra-
tion of the continuous orthogonality relation (2.4.23), in the same manner as described in
AprPENDIX D. Use of the standard ‘Gauss-Chebyshev quadrature would also lead to similar
transforms, but on a different collocation grid (the zero’s of T'n, 41, & = cos(g(llg—";l—l—)-w),
that do not include the boundary points +1). It is easy to show that any Chebyshev grid,
such as the one used here and given by (3.4.11), exhibits an “NZ-clustering” of its points
near the two boundaries (like any other singular Sturm-Louiville polynomials). This char-
acteristic is partly responsible for the well-known, high resolution of Chebyshev expansions

for boundary-layer problems.

3.4.2 Polar Vector Transform

Consider now the last but not the least basic ingredient of the general vector field

representation (3.4.2), the following polar vector expansion:

Ly
wn(®) = 3 [ @ Xim(6) + b Vim(8) + a Win(0) | (3.4.17)

l=m

where m, a given azimuthal mode, can be any integer in 0<m <M, with My<Lg. The
spectral coefficients in (3.4.17) are sought by a discrete inverse transform based on Gauss

quadrature (see APPENDIX D for a description of that approach on purely polynomial
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expansions). From the continuous orthogonality property of the polar vectors, Eq. (A.2.15)
of APPENDIX A, it is straightforward to derive the spectral relation:

ay ” Xltm(g)

by = 2r / wn(6)-{ V5. (6) § sinddo (3.4.18)
0

] mtm(g)

where it should be understood that the dot-product applies separately between u,, and
each of the three polar vectors to yield the respective three coefficients (these as well as
the components of u,, are in general complex-valued while the components of the polar
vectors are either real or pure imaginary). The problem now is one of finding a numerical

scheme to evaluate this integral.

It is shown in APPENDIX A that each component (&,, & and &4) of the polar vectors
(with indices [ and m) can be expressed in terms of real-valued polar functions “©%(6)”

such that

[< p <141
} with k<p. (3.4.19)
m—1< k <m+l1
Here,
2+ 1)(p— k)2
kg) = ( P¥(cosb 3.4.2
0,(8) ar (o + B! » (cost) ( 0)

with the Associated Legendre Function ¢ P;(cos 6)” given in terms of the Legendre poly-

nomial “P,(n)” by
dk
Prn) = (=D (=) 2z Poln) (3.4.21)

where
p = cosé. (3.4.22)

It readily follows that the functional form with respect to 6 of any polar vector component,

say “PVC,” is given by:
PVC[*(8) ~ (sin6)* POLY,_x(cos ) (3.4.23)

with p and k¥ from (3.4.19). Here, “POLY,_” stands for a polynomial of degree “p—k”

in cosé.

The numerical integration problem associated with (3.4.18) can therefore, in essence,

be reformulated by the symbolic integral (written here in a scalar form for simplicity)

1
d = [1 fm(0) [(sin@)* POLY,_x(cos8)] d(cos6) (3.4.24)
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where d; represents a typical contribution to the actual coefficients a;, b and ¢, and

fm(8) stands for the #-functional of a component of the vector u,,.

Within the fixed approximation space of the numerical method, all vector fields have an
exact discrete representation like (3.4.1) and, therefore, u, must have components f,,

of the form
Lg +1 m+1

fn(8) ~ >0 3 N e (sin8)F POLY,_p(cosf) . (3.4.25)

l=m p'=l k'=m~1 4

It follows that the integrand in the model integral (3.4.24) can be expressed as
Integrand ~ (sin 9)k+k' POLYp_k4p'—kt(cos @) , (3.4.26)

in which the two sets of indices range independently according to (3.4.19). However, it

can be verified with the surface-harmonics orthogonality property (A.1.10) that not all

combinations of indices provide a contribution to the integral (3.4.24). In fact, only the
(S

cases for which both “k’ = k” and “p’ = p” have non-zero contributions. Therefore, the

effective integrand form corresponds to

(sin 8)2F POLY3(p—k)(cosf) ~ POLYyp(cosh) , (3.4.27)

i.e., a polynomial of degree 2p.

Since “ppqy = I4+1,” and that ! ranges from m to Ly, one obtains the following important

result:

All contributions to the spectral coefficients in (3.4.18) involve integrals of
purely polynomial terms with maximum degree “2(L;+1)” in cos@. They
all share the common form

[ poLv(w dw) .

-1

The exact numerical evaluation of such integrals is easily obtained by a standard Gauss-

Legendre quadrature as described in APPENDIX D*. “L 442" collocation points pj=cosf;

4 If the present inverse transform was to be used as a discretization tool, and thus applied on a continuous
analytical vector field, in general not exactly represented by the discrete expansion (3.4.1), then the
numerical integration by Gauss-Legendre quadrature would not be an exact operation. Therefore, not
only would the resulting spectral coefficients not be exact, but also the “expansion-computed” colloca-
tion values. This latter error never exists for purely polynomial expansions even when the computed
coefficients are in error themselves (see Appendix D). This is particular of non-polynomial expansions,
such as the present one based on surface-harmonics, since Gaussian quadratures make implicit use of an
Hermite polynomial interpolation approach. However, both the error on the coefficients and the error
at the collocation points would vanish spectrally fast with increasing truncation.
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are required for the present integrands of maximum degree 2(Lg+1). The p;’s correspond
to the zeroes of the Legendre polynomial Pr,42(p). Unfortunately, no simple explicit
expression is available for the location of those zeroes nor for the necessary “ L4+2” Gaussian
weights w;. In SCF3D, the routine “GAULEG?” listed in Press et al. (1986) is used. It is
called once in the pre-processing phase of the calculation and the resulting two arrays are
stored in central memory. Accuracy better than 12 digits is easily obtained with GAULEG.
It is of interest to note that the Legendre collocation points are almost uniformly distributed
along the polar direction 0< 8 < 7, but without any points exactly falling on the limits
0=0 and 7.

Applying the above Gauss-Legendre quadrature to the integral relation (3.4.18), one
gets the desired inverse transform, which takes the expected form (m <I<Lg)

a; Lat1 Xltm(ej)
bip =21 Y wium(8)-S Vi(8;) ¢ - (3.4.28)
] =0 Wlfm(ej)

Evaluation of Eq. (3.4.17) at the collocation points yields the forward, direct transform
(0<F<Lat1):

Ly
Un(@5) = 3 [ @ Xim(8) + b Vim(85) + & Wim(85)] - (3.4.29)

l=m

In this work, the above transforms are referred to as “Polar Transforms.” Together with
Yourier transforms in the azimuthal direction, they constitute the foundations of both the

backward and the forward VSH transforms.

The efficient implementation of (3.4.28) and (3.4.29) should not be lightly considered. Its
very own vectorial nature necessitates large numbers of operations on complex quantities.
More than 70% of the whole effort on the VSH-Chebyshev transforms may easily be spent

on the polar transforms alone. This is especially true for the backward process.

In developing the algorithm, it was therefore decided to put the emphasis on achieving
vectorization of the “j-loop” (over the collocation points®) for both transforms. This
implied that the polar vectors X, .., Vi, and W, ,,, evaluated at the collocation points,
had to be pre-computed beforehand, and stored either in central memory (CRAY Y/MP)

5 It was expected then, and confirmed later on, that the polar direction {(with its “uniform resolution”)
would require the highest truncation level of the three directions. Indeed, for spherical Couette flow
transitions, a typical L ;=129 , more than twice as much as M, and Nj, has been required.
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or on disk (CRAY X/MP). The total size of the required real array is given by

8 vector components,
X (La+2) collocation points,
X (Mg+1)[(La+1)— My/2] modes 0<m< My, m<I<Lg4,

4(Lg+2)(Mg+1)(2Lg—Mg+2) real words.

For a typical discretization of Ly = 129 and M, = 31, this represents 2.2 MWords of
memory. Each of the eight components of the polar vectors is evaluated by the relations
of APPENDIX A wusing the recurrence routine “PLGNDR” (Press et al. 1986) for the

calculation of the Associated Legendre Functions.

Given “m,” the operation-count of the polar transforms (3.4.28) or (3.4.29) scales like
(La+2)(La+1—m) ~ 0(L%), a typical estimate for standard, “slow” transforms®. The
total count for all Fourier modes is therefore given by 0[(Lq + 2)(My+ 1)(2Ly — Mg)] .

3.4.3 General Comments and Summary

Before summarizing the global algorithm of VSH-Chebyshev transforms associated with
the general vector field expansion (3.4.1), it is of interest to compare the number of physical
collocation values and spectral coefficients. From (3.4.1) and (3.4.3), it is easy to determine
that a total of

3(Na+1)(Mg+1)(2La — Mg+ 2)/2 independent complex coefficients

are involved in the vector representation. On the other hand, one finds that a total number

of
3 vector components,

X (Ng+1) Chebyshev points, r;, Eq. (3.4.11),
X 2(Mg+1) Fourier points, ¢;, Eq. (3.4.8),
X (Lq+2) Legendre points, 6;,

3(Ng+1)2(Mg+1)(Lg+2) real physical values

are used for the inverse transform (3.4.28), or obtained from the direct process (3.4.29).

6 An alternative approach wholly based on FFT’s has been proposed by Dilts (1985) in the case of Scalar
Spherical Harmonics. Although interesting, his method has yet to be extended to the VSH case.
Furthermore, in a recent note by Elowitz et al. (1989), the approach was shown to be impracticable in
terms of efficiency for large-scale implementations like the present one.
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Taking into account that each complex coefficient actually corresponds to two real data,

the ratio of the number of physical over spectral variables is given by

Q(Ld + 2)

. 4.
i ! (3.4.30)

ratio =

This ratio varies from close to one for My=0 to close to two for My= L,. That the ratio
between the two spaces does not “balance” is simply a consequence of the present transform
approach. The use of fixed-size Fourier transforms (2My+ 2) do not augomatically include
the implicit modal restriction “|m|<!” satisfied by all actual physical fields on the spherical
surface (Orszag 1974). That modal restriction is at the heart of the reason why any VSH-
based vector field (thus with the restriction inherently built-in) can be viewed as uniformly
resolved, and does not consequently suffer in its related CFL condition (Section 3.2) from

the “extra grid points” associated with < My.

It should be noted that the only way to design a VSH transform with a balanced
information-ratio would be through a 2-D numerical integration of the continuous spectral
relations of the form (2.4.5) without separation a priori of the Fourier contribution. How-
ever, with an appropriate Gaussian-type quadrature on “(My+1)(2Lg—My4+2) — (Lg+1)”
points over the sphere (same as the total number of VSH modes), the operation-count of

such a transform would go like
0{ [(Ma+1)(2La = Ma+2) = (La+ D]} ~ O(M3L3).

As long as non-axisymmetric fields are considered (Mg > 0), this estimate is clearly not

competitive with the present VSH transform scaling that reads

O[(Ld +2)(Md+ l)(?Ld—Md+2) + (Ld +2)2Md10gMd] ~
O(LiMy) .

By putting together all the pieces of information of the present section 3.4, one can

now easily construct the VSH-Chebyshev vector transforms?. The necessary steps are

summarized below.

7 For scalar fields, a general SSH-Chebyshev expansion and related transforms (see Appendix A for details
on the Scalar Spherical Harmonics) can similarly be constructed. The single scalar polar function @;”(9)
replaces the three polar vectors, and only “Lg + 1” Gauss-Legendre points are necessary for the exact
numerical integration in that direction. The other parts of the transforms are identical to the present
vector formulation.
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DiregcT VSH-CHEBYSHEV TRANSFORM

Starting with the complex coefficients Apim, Buim and Chpn with 0<n< Ny,
1§lSLd, OSmSlSMd, and MdSLd :
e For each modal pair (I,m): Forward Chebyshev transform (FCT) of size Ny+1.

o For each radius 7, and mode m: Forward Polar Vector transform of order m and

degrees m<I< L, on Ly+2 points.

o Complete filling-up the three component-arrays for the negative modes m <0 by

taking complex-conjugates of the m >0 part of the arrays.

o For each collocation coordinates (r,,6;): Forward Fourier transform (FFT) of size

INVERSE VSH-CHEBYSHEV TRANSFORM

Starting with the real u(r,,0;,¢,) with 0<n< Ny, 1<I<Li+2,
0<m<2My+1,and Mu<Lp:

e For each collocation coordinates (r,,6;): Backward Fourier transform (FFT) of
size 2(My4+1).

o For each radius r, and positive mode m: Backward Polar Vector transform of

order m and degrees m<I<Ly on L4+2 points.

o For each modal pair (I,m): Backward Chebyshev transform (FCT) of size Ng+1.

OPERATION-COUNT SCALING

o 0 NaLaMy | Lq+2log(MuN,)] b
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3.5 Velocity and Vorticity Conversion Matrices

The velocity vector expansion (3.1.2), with built-in divergence-free and boundary con-
ditions properties, clearly corresponds to a specialized form of the general discrete VSH-
Chebyshev space expressed by (3.4.1) or (3.4.2). In order to transform the variables be-
tween the spectral and physical spaces according to the procedure described in the previous
section, it is first necessary to rewrite (3.1.2) into an equivalent representation in the frame-
work of a general VSH-Chebyshev expansion such as (3.4.1). The problem is thus one of
converting the basic coeficients @, and at,  of (3.1.2) into the new coefficients Antm s

nlm
Brim and Chpyyy, of (34.1).

Using the definitions (2.4.34) to (2.4.37) of CHAPTER 2 together with the relations of

APPENDIX B, one can readily write down the desired answer in the form

() = (o, o), + (oo
{Bn}l’m - i:CB:l {at, }z,m : (3.5.1)
{Cn}z,m =1 :CC:I {ai, }z,m ’

where [ ]{ } represents a matrix-vector multiply. The conversion matrices are real-valued
and band-structured. Their content can be simply and entirely determined by the relations
(B.13), (B.23) and (B.33) from which one sees that

Matrix Half —bandwidth Size
[CA] 2 (N+3)(N+1)
[CB] 4 (N+5)(N+1)
[CC] 4 (N+5)(N+1).

The “extra boundary-condition vector” appearing in (3.5.1) is defined by
{oc} = {A%, AL, 0,0, .., 0} (3.5.2)

where the components A’s are given by (2.4.45) in terms of the actual dimensionless bound-

ary conditions.

The operation of conversion (3.5.1) is therefore implemented as a sequence of banded
matrix-vector products, each one with 0(XN) multiplications. It is a simple matter to
construct the conversion matrices (non-zero terms only) from a basic set of three “(I,m)-
independent” matrices pre-computed and stored in central memory. For a given value of
theindex [ (1<I< L), the conversion process is executed on a whole “vertical plane” of the

spectral coeflicients array (see F1G. 2) as a vectorized loop over the index m (0<m< M).
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For consistency, the truncation limits in the generic expansion (3.4.1) must be subjected

to the following conditions:
Ng > (N+4), My > M, Ly > L. (3.5.3)

If any truncation limit is set to a larger value than the minimum condition, when convert-
ing the expansion (3.1.2) to (3.4.1), then (3.5.3) implies that all “exceeding coefficients”

identically assume the value zero.

In a similar way, the vorticity vector expansion coefficients are efficiently ob-
tained by a direct conversion of the basic spectral coeflicients. One generates the vorticity
expansion by taking the curl of the velocity expansion (3.1.2). In order to obtain exact rep-
resentations of the radial functions in terms of Chebyshev polynomials, one has to convert
to the vector “rw?” rather than w, where r=(£+XK)/2 from the transformation (2.4.26).
This choice also turns out to be of some convenience when computing the contribution of

the nonlinear term (Section 3.6).

Using the VSHs properties (A.2.22) to (A.2.24) for the curl operator®, one gets from
the appropriate Chebyshev relations of APPENDIX B:

Nd My Ld Dnlm Tn(é) Xl’m(g’(zs)

rw(r(©),0,6) = D D D+ Batm Tald) Vim(9,6) ¢, (354)
n=0 m=-Ma i=im] + Fnlm Tn(é) Wl,m(ey ¢)

where -
{Dn}lm = [op], {a"'}zm’

{En}lm - zCEl {a;,}l,m + i{be}mal,,, (3.5.5)

(82, = iler] o), + ofor)

Again, the conversion matrices are real and banded with

Matrix Half —bandwidth Size
[CD] 4 (N+5)(N+1)
[CE] 2 (N+3)(N+1)
[CF] 2 (N+3)(N+1),
8 Or alternatively,
VxV X(h;t: xl,'m) = _Vz(h—'rt~ Xl,m) )

together with property (A.2.25).
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and the “vorticity boundary-condition vectors” are defined by

{be}m
{6/},

(1/3) 2 {(K AL, =A%), 0, 0, ..., 0}

i

(3.5.6)
(2/3) % {(K AL +2A%), 3AL , 0, ..., 0}7 .

Hl

The conversion (3.5.5) is implemented the same way as the velocity conversion. Here,
four basic matrices, “({,m)-independent,” need to be pre-computed and stored for the
efficient recovery of the non-zero terms of the conversion matrices. The whole procedure is

here again entirely vectorized over the index m.

3.6 Nonlinear Term and Aliasing

Recall from CHAPTER 2 that the nonlinear transport terms F¥ in the discrete systems
(3.2.5) were the result of the inner product < ¥;,uxw> , where the vector test functions
W, are given by (2.4.12) and (2.4.14). It was also assumed that the spherical functional
form of the nonlinear vector F = uxw could be expressed, up to degree L, by the VSH
expansion (2.4.19). The radial dependency in that representation was left arbitrary and
led to expressions for F* in terms of radial integrals, Eq. (2.5.2). The arbitrariness of the

radial functions is removed in what follows.

First, a standard VSH-Chebyshev representation for “r?F” is sought®. This implies
that the radial functions in (2.4.19) are simply considered as regular Chebyshev expan-
sions, the coeflicients of which can be expressed in terms of intricate and implementally
intractable convolution sums. The most computationally efficient way to obtain the spec-
tral coefficients associated with the standard representation is by means of the well-known

collocation method'® (Orszag 1981). The following steps are involved:
1. Obtain the VSH-Chebyshev coefficients for u and rw up to truncation levels Ny,
M, and Ly from the conversion of the basic coeflicients a:,m and a_,, . .
2. Forward transform both vector fields into physical space.
3. Compute the vector product “r (u x rw)” at each collocation points.

4. Backward transform the resulting vector field.

9 The r? factor in the radial integrals is hereafter included in the vector representation.

10 Spectral methods using the collocation approach are sometimes referred to as “pseudo-spectral” to
emphasize the fact that some part of the calculation is actually carried out in physical space rather
than uniquely in spectral space. However, since the term also usually implies that aliasing errors are
not removed, it is not appropriate for the present, aliase-free method (fully spectral).
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The coefficients obtained from the last step form the desired standard spectral representa-

tion of the product vector F. It is written as

Ne M P Ta(E(r)) Xim(6,9)
(r6.9) = > > + 2 Tal6() Vim(6,6) ¢, (36.1)
n=0 m=~My Il=|m]| + p}?{m Tn(f('f‘)) W[)m(g,qS)

where as always My < Ly. With that representation in hand, the 1-D arrays F* are
given by (0 < n' < N):

1 !
DY I GENGR (362
n=0

Ny
Fho= =S v [ T et @ de v % [ T gtV deb . (3.63)
Qz{p/ © 5@ de + ol [ TuO AT @ e}

The accuracy of the above collocation approach should now be considered.

From the orthogonality property between the vector test functions and the basis func-
tions of the standard VSH-Chebyshev space, and since the W; functions involve only the
Fourier modes —M < m < M , the vector polar modes 1 < ! < L, and the Chebyshev
modes!! 0 < n' < N+4, it is clear that as long as the representation (3.6.1) is exact up
to truncations M, L and N-+4, the inner product < ¥;,uxw> can also be evaluated
exactly. This can be achieved by the proper choice of the truncation limits My, Ly and
Ng4. The representation (3.6.1) is then said to be de-aliased in the discrete VSH-Chebyshev
space truncated at M, L and N +4.

Aliasing errors are related to the fact that the nonlinear interaction of two discrete
functions with truncation J produces modes of higher order than J that cannot be in-
terpreted exactly on a physical grid with only J points. Orszag (1971) was among the
first researchers to discuss the problem of aliasing. His conclusion was rather ambiguous as
far as the negative effect of aliasing was concerned. More recently, Moser et al. (1983) as
well as Spalart (1986) concluded after numerical testing that for unsteady transitional and
turbulent flows, aliasing errors should be completely removed to avoid degradation of the
accuracy of a calculation. Their conclusion is of course especially strong in computations
with marginal resolution. Complete de-aliasing has therefore been chosen as the safest

stand for all the simulations of the present work.

1 Once the radial test functions [ g:,‘l/ and g:,‘;v (excluding the weight function (1 —52)"1/2 ) have

been expanded and expressed in terms of linear combinations of Chebyshev polynomials.
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It is a simple matter to determine the minimum truncation limits to be used in order
to eliminate aliasing. One must realize that the collocation approach basically comes down
to the use of a Gaussian-type quadrature for the evaluation of the integral <¥;,uxw> .

This interpretation leads to the following table where the minimum number of collocation

points for exact integration is given:

Contribution to integrand from Required number of
Direction E’J_ r?(ux w) Max. order quadrature points
¢ M 2M 3M SM+1
¢ L+1 2(L+1) 3(L+1) 2(L+1)+1
T N 44 24 (2N +7) 3N + 13 (N +4)+1

This corresponds to the so-called “3/2-rule” for aliasing removal, i.e., the number of points

in each direction should be 3/2 times the number of modes in that direction.

For all the numerical simulations in this study, the following de-aliased collocation trunca-

tions are used:

3
Ny = 5(N+4)+1

3
My = —M+1

2

3
Ly = 3(L+1)+1.

(3.6.4)

The above values obviously satisfy the minimum conditions (3.5.3) and My < L4 as long
as M < L. Furthermore, as mentioned before, the present use of an optimal FFT routine
imposes that both “N;” and “My + 1” be exact powers of 2.

In “SCF3D,” the construction of the arrays F* given by (3.6.2) and (3.6.3) is imple-
mented in a similar way as the conversion process of the previous section, i.e., by banded

matrix-vector multiply:

iy = 0 o}

’ ' (3.6.5)
{7, = il o]+ i o),

' ]
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where the real-valued matrices are analytically computed (in much the same way as for
the inertia and viscous matrices of Section 3.3) by using the orthogonality property of the
Chebyshev polynomials. To do so, the radial test functions gff, given by (2.4.38)-(2.4.41)
are first expressed in terms of linear combinations of Chebyshev polynomials!? thanks to

the results of APPENDIX B. From this, one readily finds that

Matrix Half — bandwidth Size
[NLx] 2 (N+1)(N+3).
[NLv] 4 (N+1)(N+5)
[NLw] 4 (N+1)(N+5).

A total of 5 matrices, independent of the index “I,” are precomputed and stored in central
memory. At each timestep and for each value of 1 <! < L, they are used to form the

nonlinear matrices and then proceed with the “0(N)” matrix multiply.

3.7 Algebraic Equations Solver

Given a value of “{” (1 < [ < L), and the inertia and diffusion matrices A% and
B* from Section 3.3, the real banded system of linear equations “ [.A" - 2‘};83‘} ? and
« [A“" - 5%-6-84(] ” can easily be formed with respective bandwidths 13 and 21. As men-
tioned in Section 3.1 and made clear in the timestepping algorithm of AppENDIX C, for

each value of “m,” 0 < m < min(l, M), there corresponds a different complex right-hand
side. All of these systems of equations (with a common matrix) are solved simultaneously

with only one “matrix inversion.”

In “SCF3D,” the specialized solvers “SOLB13” and “SOLB21” have been designed and
optimized for that task. They are based on classical Gauss elimination without pivoting,
and are fully vectorized over the “m” loop. Their operation-count scales like O(N M,)
where N and M, are the number of equations and of right-hand sides respectively. For a
typical discretization used in this investigation, it has been determined that less than 15%

of the computing effort per timestep was spent on the solving task.

12 A similar approach is used to determine analytically the transient boundary condition term {Tbc“ } ,

Eq. (2.4.46), and the viscous boundary condition term {Vbc- } , Eq. (2.4.47), to be added to {T‘ }1-1
according to (3.2.6).
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CHAPTER 4

VALIDATION AND SMALL-GAP TRANSITION

This chapter presents some of the numerous tests performed on the spectral code
“SCF3D” as well as some physics-oriented discussions of important flow structures that
will be of fundamental relevance later on in this thesis. In particular, Section 4.4.3 contains
a theoretical analysis of pinch formation in basic SCF that yields an important predictive
criterion concerning the largest possible gap size in which spherical Taylor-Couette flows

may be expected to exist.

All of the major computational tasks described in CHAPTER 3 were thoroughly and
independently checked for consistency as well as accuracy. This included the crucial routines
for the construction of the matrices, the spectral-physical transforms and the band-matrix
solvers. Strong confidence in the basic constituents of the whole was thus gained. Still, it
remained to validate in a formal way the overall implementation depicted by the algorithm

of ApreEnDIX C.

Probably the most commonly used and accepted validation tools consist of direct com-
parisons of bench-mark numerical results with (a) analytic solutions, (b) other numerical
solutions, or (c¢) experimental results. Some testing results from all three categories are
presented here. This was necessary due to the limitation of the available data for compar-
ison types (a) and (b). Indeed, there is no known analytical solutions of the Navier-Stokes
equations for non-zero Reynolds number flows in the spherical gap. Furthermore, all pre-
vious numerical simulations of spherical-gap flows have been restricted to axisymmetric
solutions. Detailed quantitative comparisons for a fully 3-D flow must therefore rely solely
on experimental observations and measurements. However, as long as testing is concerned,
an exhaustive validation of the axisymmetric part of the code (M =0) has been carried
out and should be viewed as strong positive evidence for the validity of the whole 3-D

implementation?.

1 Besides the Fourier transforms associated with the azimuthal direction, all routines are used the same
way for both axisymmetric and non-axisymmetric problems. The truncation index M simply acts as a
free parameter in the code.
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For the sake of simplicity (and our own!), we limit this presentation to problems with
boundary conditions similar to the ones used later on for our spherical Couette flow tran-
sition study. We consider only steady-state boundary conditions with both axes of
rotation aligned with the vertical z-direction (o, =0). Furthermore, in all cases
treated here, either the inner or the outer sphere is stationary (V;=1 and V,=0, or V;=0
and V,=1). The gap width ratio, § = d/R; = 1/R;, together with the Reynolds number,

Re = Vd/v where V=V; or V,, complete the parametric description of all our flows.

In addition to the usual torque measurements, we analyse and compare our solutions
primarily by plotting their meridional circulations, angular velocities, azimuthal vorticities
and energy spectra. In the first section that follows, those quantities are formally introduced
and defined. The rest of the chapter is devoted to a selection of validation tests carefully

chosen such as

i. to establish unambiguously the validity and accuracy of the present numerical

method,

ii. to represent physically interesting flow fields and phenomena, possibly stimulating

further studies,

iii. to cover a variety of spherical-gap flows that will serve through their fundamental
properties as references in the description and the understanding? of our main

study-case of large-gap spherical Couette flow.

4.1 Torque, Meridional Streamfunction and Energy Spectra

TorQUE—In transient flow fields, the rate of change in the total angular momentum of
the fluid with respect to the vertical z-axis (% [rsinf uy dv) is due to the difference
between the inner and outer torque, 7; and 7, respectively, exerted on the fluid by the
solid spherical shells. The torque coeflicient is defined by

7
=R — (4.1.1)

erZef d3’
where the dimensional torque 7 comes from the contributions over the entire spherical

surface of all the infinitesimal moments of force (about 2 ) due to the local azimuthal

d7 = [—ﬂ(%ﬁ—%) d.§} 7 sind .

shearing stress, i.e.,

2 See, in particular, Section 4.4 introducing spherical Taylor-Couette flows and discussing Taylor-vortex
formation.
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The torque coeflicient is thus obtained as

2w
r o= "RIZ/O /0 rsino[%‘;‘é-ﬂ] r2 sin 0 d6 d¢ (4.1.2)

T

where 7; and 7, are evaluated at r = R; and r = R, respectively. For general 3-D
flows, only the “m = 0” part of the solution contributes to the azimuthal integral in
(4.1.2). So, considering only the axisymmetric part of a 3-D field (modes with m =0 of the

inverse Fourier-transformed field) or an actual axisymmetric solution, the torque coefficient

2703 1 Jug  ug
T = = [_131110[-5;——;—} du (4.1.3)

is computed as

with g =cosf, and where the radial gradient is exactly evaluated in spectral Chebyshev
space while the integral is carried out on the Gauss-Legendre polar collocation points.
Finally, to facilitate comparison with some other studies, we also introduce the dimen-

sionless torque “ T ” given by

Y= —"—— = Rer. (4.1.4)

STREAMFUNCTION—AIIl our spherical-gap flows are composed in their basic axisymmetric,
subcritical form of a primary azimuthal motion—viscously entrained by the differential
rotation of the spheres—and of a secondary meridional circulation induced by centrifugal
effects in the pole regions (“Ekman pumping,” Greenspan 1968). The primary motion is
easily visualized by radial profiles of azimuthal velocity, or more globally, by iso-contours
of angular velocity plotted in a meridional plane (¢ =constant) where the angular velocity

is given by

Uy
= . 4.1.
@ T sin 8 ( 5)

The secondary motion on the other hand is usually represented by streamlines correspond-
ing essentially to meridional projections of 3-D streamsurfaces. For axisymmetric cases,
or equivalently for the “m =0 part” of a three-dimensional flow field, one defines a scalar
function @ such that

u, = V[P &) (4.1.6)

is the divergence-free meridional velocity vector.
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The streamfunction V¥ is then obtained as
¥ = rsinf ¢, (4.1.7)

with the meridional components given by

__1 ov

Ur = r2sinf 96
(4.1.8)

_ 1o

" rsin® Or

The value of the streamfunction is computed at each collocation point in the ¢-constant

plane by performing the radial integral

U(r,0) = —sinG/ rug(r,0) dr i (4.1.9)

in Chebyshev spectral space for each discrete value of .

ENERGY SPECTRA—The total kinetic energy of the flow, per unit volume, is defined as

1 u-u”
P — d 4.1.10
P (4.1.10)

where v = 4n(R2 — R?)/3, dv=r%drsin6dfdé, and u is the real velocity field. Using
our general velocity vector expansion introduced in CHAPTER 3, one writes the VSH-

transformed vector field as

M I Alm(’r) Xl,m(gv ¢) +
u(r,0,6) = > Y S Bim(r) Vim(6,6) + ¢ - (4.1.11)
mETM I Ci () Wim (6, 0)

Plugging this representation in (4.1.10) and using the orthogonality property (A.2.13) of
the VSH, one obtains

E =Y > E(lm) (4.1.12)
m !

where the energy content E(I,m) of the spherical mode “I,m?” is given by

R, * * *
E(l,m) = i/ A A + B’mQB'm t CunCinl (2g, (4.1.13)

v

which, again, is integrated exactly in spectral space.
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“FE(l,m)” is the vector spherical harmonic, discrete energy spectrum of the flow, and it
is basically a two-dimensional spectrum. In most cases however, it will be sufficient to
consider the one-dimensional spectra E(l) and E(m), referred to here as the “Legendre
total energy spectrum” and the “Fourier total energy spectrum?” respectively. They

are defined as

EQ) = > E(,m) — E=)Y EQU,, (4.1.14)
m ]
and .
E(m) = Y E(l,m) — E =Y E(m). (4.1.15)
1

m

In the special case of axisymmetric flow for which M =0 in the expansion (4.1.11), it
can be verified from APPENDIX A or directly from Hill (1953) that the vector harmonic
X0(0) has only an azimuthal component while the vector harmonics V() and W, ()
have no azimuthal components at all. This implies that the axisymmetric velocity field

reduces to azimuthal and meridional components corresponding to

L
ug(r,0) &5 = Y Ai(r) Xio(0) , (4.1.16)
=1
L
un(r,6) = > Bi(r) Vig(8) + Ci(r) Wio(6). (4.1.17)

=1

It is therefore straightforward to decompose the total kinetic energy of such flows into

azimuthal and meridional contributions. One writes

E = Ey + Ep (4.1.18)
with
L L 1 R, A2
Eg = Y Eyl) = Y, -v-/ -5'— ridr | (4.1.19)
=1 =1 i
and L
1 R, B2+C2
E, = En(l) = — / [—'———’] ridr . (4.1.20)
; ; v R; 2

In this work, the discrete spectra E4(I) and E,,(I) are simply referred to as the “azimuthal
energy spectrum” and the “meridional energy spectrum” respectively. One finally
notes that for reflection-symmetric flows about the equator—the case of all our computed
steady-state basic solutions—contributions to E4(!) come only from the ! =odd modes

while those to F,,(l) come solely from the ! =even modes (see for example FIG. 14).
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4.2 Stokes Solution

The Stokes flow is the time-independent solution to the Navier-Stokes equations (2.3.1)-
(2.3.2) in the limit Re — 0. It represents the only known analytical solution in the

spherical-gap geometry, and it is easily found to be given by

UStokes = (C!T + '1‘%) sinf &y, (421)

where a and § are two constants that depend on the boundary conditions and the gap size.
This solution is obviously axisymmetric, and exclusively azimuthal in direction (u,, = 0).
It should be noted that the corresponding angular velocity Q = uy/rsiné is not a function

of # so that the iso-Q contours are all concentric spherical shells.

Several Stokes solutions have been calculated with “SCF3D” for different sets of param-
eters and different initial conditions. Those were obtained by turning off (via a numerical
switch) the computation of the nonlinear convective terms in an otherwise normal time-
marched simulation at low, but non-zero Reynolds number. Once the steady-state solution
was reached (or reasonably close to be), pointwise comparisons between the computed
and the analytical azimuthal velocity fields were performed. Agreement better than six
significant digits were always observed and could furthermore be improved by letting the
simulated flow field evolve for a longer time toward steadiness. Similarly excellent results
have also been recorded when torques were compared. These seemingly trivial tests in fact
partially validate important parts of the code such as the treatment of the viscous term,
the construction and assemblage of the matrices, and the implementation of the special

boundary condition terms.

By way of an example, and to introduce the next series of comparisons, FiG. 3 presents
the angular velocity contours of the computed Stokes solution for the case of a large spherical

gap (6 = 1.0) with the outer sphere rotating and the inner one at rest.

4.3 Stationary Inner Sphere, Large-Gap Axisymmetric Solutions

For all real spherical-gap flows, nonlinear effects always lead to the generation of a
meridional circulation. This can be verified by the following simple analysis of the nonlinear

interaction of the Stokes flow with itself.
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Consider the time t = 0% at which, hypothetically, the Reynolds number has just
jumped from 0 to any finite value. The flow conditions are still those of the Stokes solution,
ie., u, = ug = 0 and wy = 0. If any meridional circulation is indeed generated, some
azimuthal vorticity w, has to be produced. The azimuthal component of the vorticity

vector equation
ow 1 _,
-57+U'VW——W'VU+‘RZVW (4.3.1)

reduces at t = 0t to

() w2 s
Plugging in the meridional vorticity components given by (for axisymmetric flow)
== siln 5 —8% (sinfuy) and wy = ——i— —Ba_r (rug) , (4.3.3)
(4.3.2) gives
Using the Stokes solution (4.2.1) for u,, one thus obtains
%U—{@ = 2 %’2 cos @ (—%g—) . (4.3.5)

It is easy to establish that B = [R2R3/(R3 — R3)](V; —V,) and, therefore, independently
of the gap size,
8 <0 for Vi=0,V,=1
and 5>0 for Vi=1,V,=0.

For an inner sphere at rest, for example, this yields

9wy
ot

i.e., production of positive azimuthal vorticity corresponding to clockwise circulation in

>0 at t = 0% in the upper hemisphere,

that region of the meridional plane ¢ = 0. This is of course consistent, even intuitively,
with the direction of Ekman pumping expected to take place in such a case®. Of course,
the quantitative determination of the final vorticity field comes from a balance between the

viscous and nonlinear terms as described in the next section.

3 Locally, the flow field in the pole region near the surface of the rotating sphere must be similar to the
flow near a free rotating disk, for which, far-field fluid is drawn toward the disk center and then expelled
outward along the disk surface (Ekman layer) in a spiral motion.
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In the laminar subcritical regime, all finite Reynolds number flows are thus the com-
bination, as mentioned before, of a primary azimuthal motion and a secondary meridional
circulation. The particle paths resulting from the superposition of these two motions are
helices, as confirmed experimentally by the flow visualizations of Munson & Menguturk
(1975) and Waked & Munson (1978). Despite being three-dimensional, the basic flow is
axisymmetric (—3% =0), i.e., axisymmetric with swirl. Its details, however, are found to be
highly dependent on all the parameters involved, i.e., the set of boundary conditions, the
gap width and the Reynolds number. Part 2 of the paper by Yavorskaya et al. (1980) may

be consulted for a brief overview of some basic flow structures.

Our spectral code “SCF3D” is used here to compute steady-state, axisymmetric solu-
tions in the case of a large-gap geometry for which é = 1.0 (R; =1 and R, = 2) under
the conditions of a stationary inner sphere and a rotating outer shell (V; = 0, V, = 1).
Relevant results concerning this first bench-mark problem are presented in FIG. 4 to FIG. 8.
The flow fields for Re = V,d/v = 50, 250 and 500 are shown in FIG. 4 and FIG. 5
by means of meridional iso-contours of angular velocity and streamfunction respectively.
For all these simulations, the truncation limits were set to N = 16, L = 42 and M = 0,
yielding a timing efficiency of 0.22 CPU sec/timestep on a single processor of the CRAY
Y/MP (less than 3 min. total CPU per case).

The above truncation levels were checked post priori and were found to be amply suf-
ficient to resolve all the significant scales of the flow. Indeed, from FriG. 8 which presents
the discrete meridional energy spectra E,,(I) for both Re=250 and 500, a drop of more
than 12 decades in energy content is registered between the largest and the smallest scales
taken into account. No significant improvement of the meridional solution can therefore be

expected by increasing the present discretization.

It is observed from our numerical flow fields that even at a Reynolds number as low as
50, the meridional circulation, FIG. 5a, has developed strongly enough to affect significantly
the distribution of angular momentum between the spheres?, as shown by the Q-contours
of FIG. 4a, where the departure from the Stokes solution (FIG. 3) is clearly visible. With
increasing Re, the secondary flow intensity “ Re ¥,,,,” (formally introduced in the next

chapter) increases®

, meridional boundary layers form (those are nicely emphasized on the
wy contour-plot of FIG. 7), and the circulation center moves closer and closer to the inner
sphere while preserving its polar latitude. Small spatial scales also develop significantly as

seen from the energy spectra of FiG. 8.

4 In terms of energy, however, the meridional contribution remains quite marginal for all Re considered.
For example, Ep/E =14.5x10"% at Re=50, and Em/E = 6.36x10™4 at Re=500.

5 Unless otherwise specified, the “level maz.” and “level min.” indicated in the contour-plots of this
thesis correspond to the actual maximum and minimum values in the entire field.
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There appears to be a general tendency for the meridional circulation, FIG. 5b and
5c, to confine itself within a cylindrical envelope of radius approaching R;. Outside that
envelope, there exists a region of essentially constant angular velocity (solid body rotation
at almost §,, FIG. 4b-4c) as well as an intriguing counter-circulation cell of weak intensity,
the details of which are also shown in FIG. 5. One finally notes the appearance of some
sort of a plateau in the radial distribution of angular velocity at the poles. This interesting
phenomenon will be discussed later in CHAPTER 5 in connection with the basic solutions

of our large-gap spherical Couette flows.

Over the past two decades, a number of researchers have reported numerical results for
the same problem. Among those are Pearson (1967), Munson & Joseph (1971), Greenspan
(1975), Schultz & Greenspan (1979), Dennis & Quartapelle (1984), Yang (1987), Schwen-
gels et al. (1989), and Gagliardi et al. (1990). Although the numerical approaches used
in those works differ in important respects, they can all be described as either finite dif-
ference methods or perturbation methods with resolution ranging from low to moderate.
Furthermore, in all cases, the solution field was explicitly assumed axisymmetric as well as

reflection-symmetric about the equator.

FiGg. 6 shows the relevant contour-plots reproduced directly from some of the above
references®. These are to be compared with the present numerical results of F1G. 4 and FIG.
5. First, it is observed that all of the flow features found in our numerical solutions, and
previously mentioned, are qualitatively confirmed by the ensemble of those investigations.
In particular, attention should be paid to the directly comparable streamlines of FIG. 5¢
and 6b-e-h at Re=500. Except for an additional weak recirculation cell in Greenspan’s,
the general agreement is quite acceptable. Detailed comparisons of the angular velocity
contours (a specially sensitive quantity in the pole regions) bring even more support to
the present validation. Indeed, remarkable agreement is found between our (2 field at
Re=250 and Dennis & Quartapelle’s, FIG. 4b vs FIG. 6g, as well as between our contours
at Re = 500 and those of Pearson, FIG. 4c vs FIG. 6¢c (e.g., compare the trace of the
©2=0.25 contour).

Quantitative comparisons have also been performed when possible. Among other things,
the location as well as the magnitude of ¥,,,, have been compared. Again, except for
Greenspan’s results, the agreement is quite satisfactory. Actually, it is found to be sur-
prisingly good even when the oldest available results, Pearson (1967), are considered. For
example, at Re = 50, Pearson obtained ¥,,,, =~ 0.014 while ours is 0.0144, and for
Re=500, his ¥,q0; ~ 0.0074 matches very well our own value of 0.00737.

6 Caution is recommended in interpreting those contours since they are not provided with constant
increment between levels.
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Finally, a comparison of the steady-state, dimensionless torque is provided in TABLE 1
below for Re=507 (Y=T;=T, if truly steady-state). The overall agreement is once again
quite favorable. It should be noted that other investigators’ results have been appropriately
standardized according to (4.1.4), and are given here with the provided accuracy. When
both inner and outer torques were available (and found different), the average torque was
selected for TABLE 1. As far as our own simulations are concerned, the difference between
T; and T, was actually used as a steadiness criterion. Our time integration was pursued

until the relative difference was less than 10~

INVESTIGATOR TORQUE T
Present 16.7015
Gagliardi et al. (1990) 16.29
Yang (1987) 16.72
Dennis & Quartapelle (1984) 16.99
Dennis & Singh (1978) 16.76
Munson & Joseph (1971) 16.65

TaBLE 1. Comparison of dimensionless torque T at Re=150 for §=1.0, V;=0 and V,=1.

This completes our first series of validation tests. Most of “SCF3D” has now been
successfully checked, including the nonlinear term treatment. It is of interest to note that
besides what has just been presented here, virtually nothing is known about those large-gap
flows with stationary inner sphere. The physics of the basic flow as well as its stability and
transition mechanisms (most likely 3-D) are still to be explored, described and analysed.
Some general (but rather superficial) experimental observations concerning the transition
of the narrow-gap flow with similar boundary conditions can be found in Yavorskaya et al.
(1980).

In the next section, further axisymmetric testings are performed. Both steady-state
and transient solutions in a moderate-gap geometry are compared with the numerical sim-
ulations of Tuckerman (1983), based on a high-resolution pseudo-spectral method. The
correctness and accuracy of our time-marching procedure as well as the spatial convergence

properties of our vector expansions will then be asserted.

7 For reference: Y (Stokes)=14.361, T(Re=250)=23.970, and Y(Re=500)=28.895.
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4.4 Rotating Inner Sphere, Moderate-Gap Axisymmetric Solutions

By far and large, the most studied flows in the spherical-gap geometry are the basic
and transitional Spherical Couette Flows occurring in medium-sized gaps® with a rotating

inner sphere and a stationary outer shell.

An abundant experimental, theoretical and numerical literature exists on the stability
problem associated with this basic flow and its centrifugally induced, axisymmetric tran-
sition states. These states, usually time-independent flows with Taylor-type vortices in
the equatorial region, have been shown to be non-unique solutions with a large variety of
interesting transitions among them. In several ways, these flows resemble the celebrated
Taylor-Couette flows between differentially rotating cylinders. This, together with the ro-
tational symmetry of the transition process and the relative simplicity of the secondary
flow topology —making analytical, numerical and visualization works much easier—are
probably responsible in most part for the overwhelming popularity of this moderate-gap

spherical Couette flow over its large-gap counterpart.

It is not our present purpose to systematically review the narrow- nor the medium-sized
spherical gap literature. Some reference to them will be made here and there in connection
with our own investigation of the large-gap flows. The reader is rather referred to the
excellent reviews by Wimmer (1988) and Tuckerman (1983), as well as to the recent works
of Schrauf (1986), Marcus & Tuckerman (1987), and Biihler (1990) among others.

In the present section, our code “SCF3D” is used to reproduce two of the high-resolution,
numerical simulations reported by Marcus & Tuckerman (1987) from the doctoral work of
Tuckerman (1983). Their axisymmetric initial-value code is based on a pseudospectral
numerical method (“aliased” spectral method) which employs Chebyshev polynomials and
sine functions for the radial and the polar expansions respectively. Their truncation levels
were set at N, =16 and Ny =128 after careful numerical testing on the accuracy of their
solutions. As for our own truncations, we set them at N =16, L =84 and M =0, on a
corresponding de-aliased grid with Ny =32 and L;= 129 (see Section 3.6). Both flows
under consideration occur in a medium-sized gap of § = 0.18 with V; =1 and V, =0,
for which centrifugal instabilities® in the equatorial region are expected to yield “spherical
Taylor-Couette flows” for large enough values of the Reynolds number ( Re = V;d/v). For
brevity, most of the description and analysis of those flows is left herein to the excellent

care of Marcus & Tuckerman’s paper.

& 0.12 < 6§ < 0.24 according to the approximate classification of Marcus & Tuckerman 1987.

9 From Rayleigh’s circulation criterion, Drazin & Reid (1981).
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A third subsection is also included to present a crucial argument concerning the forma-
tion mechanism of “pinched streamlines” and eventually Taylor vortices in basic spherical
Couette flows. The discussion leads to the establishment of a criterion to formally define

what is empirically known as “large-gap” spherical Couette geometry.

4.4.1 Steady-State Pinched Flow in Subcritical Regime

The first of our two bench-mark simulations corresponds to the steady-state, pinched
0-vortex flow which exists at Reynolds numbers just less than the critical value for the
onset of Taylor vortices. Our numerical solution at Re=117 is presented in FIG. 9 while
FIG. 10 shows M&T’s. It should be noted that the width of the gap in the iso-contour plots
presented has been enlarged several times for clarity—the tick marks on the outer sphere
are circumferentially spaced one gap width apart for reference—and that no particular

effort has been made to match the values of the contour levels between the two figures.

The qualitative agreement between the streamlines of F1G. 9a and 10a, as well as between
the angular velocity distributions of F1G. 9b and 10b is remarkable. For example, the
locations of the meridional critical points where u,, = 0, i.e., the two centers and the
saddle in each hemisphere, match extremely well between the two calculations (see Perry &
Chong 1987, and Chong et al. 1990 for critical-point concepts). It is unfortunate, however,
that neither Tuckerman (1983) nor Marcus & Tuckerman (1987) provided their numerical
value for the maximum of the streamfunction. This simple, but yet significant information
is directly related to the flowrate entrained in the basic meridional recirculation cells, and
can certainly be viewed as one of the ideal candidates—together with torque calculation'?

and total kinetic energy ! —for global quantitative comparisons.

Although not using vector spherical harmonics for their expansions, M&T do provide,
however, azimuthal and meridional energy spectra based on VSH and thus quite equivalent
to our own spectra given by (4.1.19) and (4.1.20). FiG. 9d and 10c present the discrete
spectra E4(l) and E,, (1) from ours and their simulation respectively. Since the normaliza-
tions and the vertical log-scales are different, direct quantitative comparisons are difficult.
However, the shape of the spectra is really the essence of the comparison here and, as far as
that is concerned, the agreement is once again striking. Both numerical simulations have
captured all significant motion scales (more than 7 decades in the ratio of energy contents

between the local maximum and the highest wavenumber) and exhibit exponential decay

10 Estimating Marcus & Tuckerman’s torque coefficient from their figure 2, one gets 7 o 18.97 which
compares very well with our own value of 7 = 18.95 for the pinched flow at Re=117.

11 For later reference: Em/E = T7.6x 103 from our computation.
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of the high-wavenumber energy. The local maximum at around [/~ 23 corresponds to the
length-scale of the pinch, i.e., about “0.9d” as seen on FIG. 9a ([~(7wR,)/(0.9d)).

FiG. 9c shows the azimuthal vorticity field and is quite interesting in several respects.
First, it offers a unique view on the extents and thicknesses of the meridional boundary
layers that have formed. Secondly, it provides an alternate means by which to analyse
the critical points mentioned above, including the presence of the pinch with its local
maximum pressure at the stagnation point (Perry & Chong 1987). In their paper, Marcus
& Tuckerman describe at length the present pinched-flow, indicating that it first appears
just before transition at Re=~ 113, and stressing its fundamental distinctions with Taylor
vortex flows. However, in their conclusion of Part 1, they raise the interesting (unanswered)
question of the exact dynamics leading to the formation of the stagnation point responsible
for the pinch. With the aid of our next bench-mark simulation, illustrating summarily
the role of the pinched flow in the process of Taylor-vortex formation, the answer to that

question will be presented in an independent subsection (§§4.4.3).

4.4.2 Time-evolution of a 0— 2 Transition

Our second set of comparisons with the results of Marcus & Tuckerman (1987) is based
on the simulation of a 0— 2 transition. Starting with the Stokes flow (no meridional
circulation), the Reynolds number is suddenly increased to Re=144, and the flow solution
is marched in time for 5 inner-sphere revolutions 7; (7T;=27/8;=34.9 in our dimensionless
units). Although the flow field is not yet steady after that time, it is close enough for all
important processes to have occurred as can be verified from M&T’s simulation that ran
for 20 inner revolutions. The evolution of the meridional circulation is shown on FiG. 11
as a time-sequence of ¥-contours plotted with actual-size gap width. The corresponding
solutions of Marcus & Tuckerman (which are drawn with the opposite convention for full
and dashed streamlines) are also provided. To maintain some clarity in our contour-plots,
they are shown here with an increment between levels about twice as large as the one used

by M&T. The agreement is found to be quite satisfactory for all times.

FIG. 12 shows our computed Q and w, fields after one and five inner-sphere rotations.
Those contours will be used in the next section in connection with our pinch-formation

argument.

The time-evolutions of both the inner torque coefficient “7;” and the difference “1; —7,”
are presented in FIG. 13. The symbols on our curves correspond to the discrete time-
sampling used to measure and plot the quantities. A comparison with the equivalent

results of M&T, encased within each plot, is readily available. Every feature of the time-
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evolution curves is unequivocally confirmed by the two simulations (as well as by some
experimental evidence from Wimmer 1988). Quantitative comparisons at specific times
(using the conversion indicated in the caption of FIG. 13) are also found to be in perfect
agreement, at least to the accuracy of the plots. By itself, this test brings very strong,

positive support in establishing the validity of both our spatial and temporal resolutions.

Finally, FIG. 14 presents the instantaneous azimuthal and meridional energy spectra
at the end of our computation, ¢t=>5T;. Qualitatively, these compare very favorably with
similar spectra by M&T for a steady-state 2-vortex mode at Re =162 as can be seen from
their encased figure. The double-scallop appearance of the spectra in both computations
is due to the presence of the two Taylor-vortex pairs near the equator, as pointed out in
Marcus & Tuckerman’s paper (see also their very nice analysis of the scallop-shape spectra
associated with the 1-vortex flow). As an indicator for the level of resolution, FiG. 14
basically confirmed that our current de-aliased truncations offer sufficient (slightly better
than marginal) resolution since the energy content of the highest sub-harmonics captured
(1 ~ 80) is seen to be about 5 decades smaller than the energy content of the primary
modes excited ({~20). Although not significant as far as the accuracy of that particular
solution is concerned, it is nevertheless noted that the effects of aliasing on M&T’s spectra
are clearly visible, specially on their meridional energy spectrum (dotted curve), over the

last 20 modes or so.

4.4.3 Pinched-Flow and Taylor-Vortex Formation

Pinches in the meridional streamlines of narrow and medium gap-size spherical Couette
flows1? are frequently observed in numerical solutions, both with and without the presence
of Taylor vortices (e.g., Biihler 1990, Bartels 1982). The term “pinch,” originally intro-
duced by Bonnet & Roquefort 1976, is used to refer to the presence of a secondary, closed
recirculation cell of the same sign as and within the basic recirculation cell. The experi-
mental observation of such pinches (FIG. 9a or 11b) is, however, very difficult due to the
fact that they are indeed hidden within the large basic recirculation cells (F1G. 11a), the
existence and formation of which was discussed in Section 4.3. No radial boundary inflow
or outflow extending from the inner to the outer sphere and characteristic of Taylor vortices
(e.g., FIG. 1le) is in fact associated with the pinched flow, thus rendering its observation
from the outside a tricky task. It is nonetheless quite clear that the creation of pinches is of

the utmost importance in the process of Taylor-vortex formation in basic spherical Couette

12 Marcus & Tuckerman (1987) also refer to the observation of pinches in the numerical simulations of
finite-aspect ratio, cylindrical Taylor-Couette flows. No such observation however has ever been made
in the case of infinitely long cylinders which will be seen to be consistent with the present argument.
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flow. The following presentation demonstrates that point through a vorticity generation
argument that allows us to conclude that the radial outflow region (at the equator for the
basic subcritical flow)—due partly to its “tilting effect” on the -contours and partly to
its self interaction with the basic local vorticity—is one of two essential ingredients in pinch

creation and, thus ultimately, in spherical Taylor-vortex formation.

The existence of a pinch in the basic recirculation cell depends entirely on the existence,
in the first place, of a stagnation point that appears as a saddle point in the meridional
streamfunction contours, as can be guessed from F1G. 11b despite the fact that the exact
contour meeting at the saddle point is not explicitly shown. The question of pinch formation
should therefore be reformulated into the more fundamental question of the saddle point
formation, necessary precursor to the pinch itself. One thus wants to answer first: What is

the mechanism by which the saddle-stagnation point forms?

We present our answer in terms of normal-to-the-plane vorticity (azimuthal component).
To avoid any ambiguity, we will focus our attention in what follows solely on the upper
hemisphere of the meridional plane where the basic azimuthal vorticity field (e.g., F1G. 12b)
leads to a negative circulation (counter-clockwise motion) in the large basic cell. Moreover,
the mental picture mainly used consists of that of a moderate-gap flow evolution typically

depicted by the time-sequence of FI1G. 11.

One may be tempted, intuitively, to look first for some local production of positive
vorticity since any Taylor vortex immediately adjacent to a large basic cell must obviously
have the opposite circulation, i.e., positive vorticity in the present case. Unfortunately, no
such positive source of azimuthal vorticity can be obtained from the basic flow structure as
noted below. That is to say, there is no mechanism by which the adjacent Taylor vortex, or
any Taylor vortex for that matter, can be generated directly from the unperturbed, basic
0-vortex flow without pinches. We shall see that, from the basic subcritical flow, Taylor
vortices (also commonly referred to as Taylor-Gortler vortices, especially in narrower gaps)
can only appear through the process of pinch-detachment. The latter is shown to be a
natural evolution of the flow, at least in the case for which transient-term effects can be
neglected, and, in that sense, Taylor vortices in spherical-gaps should not be considered

the manifestation of an instability.

We show that the saddle-stagnation point actually occurs due to the local generation of
additional negative vorticity just above the radial outflow boundary. The significant radial
velocity that exits there is in effect a very efficient angular momentum carrier, pushing the

high angular velocity near the inner sphere toward the outer stationary boundary. This



67

transport of angular momentum by radial outflow (or inflow) boundaries is well known!?,
and is directly noticeable from the wiggle-shaped Q-contours of FIG. 12a, for example. Just
above the equator in the basic 0-vortex flow, this outward transport leads to a positive polar
gradient of angular velocity, 8Q2/96. This term together with the positive radial velocity
itself are entirely responsible for the local generation and amplification of extra negative

vorticity.

One can verify the above statement from the azimuthal component of the vorticity

vector equation (4.3.1), that reads in its axisymmetric form

8w¢ 0w¢ Ug 8w¢
ot + U ar r 06

) cosf duy 1 Juy L ow cos0_u_a+1r_ + L iscous term
r \sinf Or r 06 *\sinf r T Re -

(4.4.1)

Note that the term “ =% (gf;’gw + w,) ” on the left-hand side of (4.3.1) has been combined
with the right-hand side terms ¢ % + e -8—119 ” to form the first double-term on the RHS

of (4.4.1).

The viscous term needs not be analysed in detail since it cannot contribute in the creation
of a local extremum, but only to its diffusion. It is, however, a crucial term in determining
an exact equilibrium solution, for it is the only term that can lead to a balance of the
equation. We simplify the reasoning by placing ourselves in the middle region of the gap
(r~(R:;+R,)/2) where all of the important physics takes place. From FiG. 11 and FIG.

12, it can readily be observed that, at our mid-gap location, one always has:

9wy

5 = 0 and ug ~ 0. (4.4.2)

Eq. (4.4.1) therefore reduces with “uy=Q7sin8” to:

2
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13 gee for example Marcus (1984). Radial and azimuthal components of the velocity are indeed observed
to be very well correlated. Both the meridional and azimuthal velocity are similarly affected by the
radial boundaries as it is suggested by the E4(I) and Emn(l) spectra of Fig. 14 where the primary

maxima of the two spectra occur at the same place.
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At very low Reynolds numbers, the basic SCF solution is essentially a small meridional
perturbation added to the purely azimuthal Stokes solution (4.2.1), in which Q=8(r). In
(4.4.3), the first term on the RHS is largely the dominant (negative) source-term that must

be balanced at equilibrium by viscous diffusion, that is,

. o0 1.
0 = 2rsinfcosd Q-—a—; + e Viscous term (4.4.4)

where the source-term—the same as in Eq. (4.3.4) and appropriately described as the
basic source term—has its maximum value at § = 7 /4. The corresponding local maximum
of vorticity that forms is thus obversed at the mid-latitudes for low Re. We refer to
the location of that maximum as “C,,.” A negative circulation region must therefore
develop and manifest itself by closed meridional streamlines. The local maximum in the
meridional streamfunction—the center of the large basic recirculation cell which is referred
to as “Cype "—is always found at slightly lower latitudes. A formal demonstration of this

empirical observation still remains to be done.

At larger but still moderate values of Re %, the region near the Cp., where u,~0 and
0§2/08 ~ 0, can only react to the reduction of diffusion by slightly decreasing the radial
gradient 9§1/0r, thus by flattening the radial angular velocity profile at the mid-gap and
mid-latitudes (formation of boundary layers, Wimmer 1988). On the other hand, in the
lower latitudes where both «,>0 and d9/06 >0 (FIG. 1la and FIG. 12a), one gets two
extra terms contributing in forming additional negative vorticity—the second and the third
term on the RHS of (4.4.3) which may be thought of as “source-term” and “amplifier-term”
respectively!®. The net result of this “somewhat spread-out” extra negative vorticity, at
least in the first stages of the process, is an augmentation of the outward radial velocity
in the lowest latitudes and a reduction of the outward radial velocity in the lower-mid
latitudes. This is also accompanied by a consequent, slight lowering of both the Cj. and
the Cy, (8¢, ~7/3 for the basic cell of F1G. 11a).

The process of pinch formation is at that point invariably started if the following con-
dition is satisfied: the length-scale corresponding to the distance from the C,, to

” must be larger than a critical minimum value expressed in

the equator, “L¢, ,
terms of gap-widths. If the C,, is too close to the equator, the tendency to create a local

extremum of vorticity in the low latitudes will manifest itself by bringing down the already

14 1t is noted that the present argument would benefit, in its final version, by being written in terms of
inner-sphere acceleration (stepwise increases in ;) rather than Reynolds number increases.

15 The exact physical interpretations and mechanisms of these two vorticity-contributing terms which
appear intimately related to the spherical coordinates used here, present much interest and should be
the object in a future report of a formal discussion.
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existing negative maximum at the C,,—the two regions simply occupy too much of each
other’s space and thus never really acquire independent individualities. A second, isolated
extremum of wy will never form then, and neither will the corresponding saddle-stagnation

point.

On the other hand, if at that point of the Re-evolution, “L¢, ” is large enough compared
to the gap-width, which is the geometry-imposed, approximate length-scale of the pinch
(and of the Taylor-vortices at transition, Wimmer 1988), then the local increase—just
above the equator—of outward radial velocity and polar gradient of angular velocity will
continue to enhance the negative source-terms of wg, which in turn will amplify its sources.
The process continues until the radial velocity at some distance above the equator—about
“1.5d,” as can be inferred from some earlier stages of FIG. 9c or 11b—induced by both
the large basic cell (outward radial velocity) and the local extra negative vorticity just
above the equator (inward radial velocity), exactly vanishes. The saddle-stagnation point
is thereby created, and therefore, so is the pinch. Any further increase in Re would simply
continue to reinforce the now existing local negative extremum of vorticity until it becomes
so strong that it can only detach!® or disconnect from the main basic recirculation cell.
The use of “disconnect” rather than “detach” may be viewed as more adequate since there
is no actual moving apart from the two cells. This sequence of events is particularly well
illustrated on riG. 11.

It is important to notice however that given a time-history of Re, the actual evolution
and final state of the SCF may vary according to that history (Wimmer 1988). Although the
above presentation deliberately ignores the transient effects!”, its essence is still generally
valid as far as the mechanism of Taylor-vortex formation from the basic 0-vortex flow is
concerned. This assertion is very well supported by all available evidence from the numerical
simulations of the several basic flow transitions in SCF (see for example Biihler 1990).
Transitions from flow regimes already including some Taylor vortices can undoubtedly be
successfully analysed by the same line of reasoning—the reader may try it himself on the
interesting 1 — 2 transition on figure 17 of Biihler (1990), which involves a radial inflow

boundary at the equator between two adjacent, but distant, Taylor vortices.

16 In addition to the mechanical argument which would predict that the local maximum in pressure
associated with the saddle-stagnation point ultimately hinders the flow connection between the two
circulation cells, the detachment itself can also be explained from the vorticity equation (4.4.3). Indeed,
the strong inward radial velocity at the upper part of the pinch leads to positive contributions
from both the second and third term on the RHS of (4.4.3). This comes to balance the basic negative
source of the first RHS term. When that happens, two regions of negative vorticity exist side by side
separated by a thin radial band of zero-vorticity that, obviously, no closed streamlines can cross. The
two circulation cells therefore cease to share some common streamlines and simply disconnect.

17 The exact influence of the inner sphere acceleration history should be analysed in terms of its effects

on the transient term of the vorticity equation, and the role of that latter contribution in the balance
between source-terms and viscous diffusion in (4.4.3).
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The formation process described here furthermore implies that the creation of Taylor
vortices in the equatorial region of the medium-gap SCF (or more generally, in the region
adjacent to a basic recirculation cell) is a natural consequence in the evolution of the lam-
inar flow as Re increases. It needs no external perturbation (or laboratory imperfection)
to take place. In that sense, one may wonder if one should talk about “instability” when
discussing the transition® from the basic structure of SCF. This appears to be a fundamen-
tal distinction from the circular Couette flow where the basic mechanism of Taylor-vortex
formation—which can be described easily from the circumferential vorticity equation—is

in essence one of external perturbation growth (Coles 1967).

We now come back to the above-mentioned, minimum condition for the appropriate
length-scales ratio, our “second necessary ingredient,” the first being the presence of the
outward radial velocity (radial outflow boundary). The notion of a required minimum
distance “D,;,” between the outward-radial-velocity region and the central part
of the basic vorticity cell is crucial to the formation mechanism as explained above.
Indirect evidence supporting that fact comes from the empirical realization (from numerical
simulations) that no pinches have ever been observed within the closed streamlines of a
Taylor-vortex in the spherical gap, and this, despite the radial outflow boundary that
exists between the Taylor vortices forming a pair (first necessary condition satisfied). The
extra vorticity actually generated on each side of the outflow boundary simply acts like an
attractor, bringing the two centers of circulation closer to one another while intensifying
the outward radial velocity at the boundary. The reason is obviously related to the original

distance between the Taylor-cell centers and the outflow region!®.

Using the following scales shown on the sketch of r1G. 15 (a),

o the gap-width “d” as a characteristic size for the outward-radial-velocity

region above the equator (d=1 in our dimensionless units),

e the gap-width “d” as a characteristic size for the central region of basic

vorticity, and

e Lc, = Lc, /d ~ 5T Ryean/24 as the dimensionless distance from C,, to
the equator thus locating C,, midway between its exact initial position at

low Re (§=n/4) and the observed pre-transition position of Cy, (0=17/3),

18 «Tyansition” is, however, quite appropriate since there is indeed an obvious change in the flow structure
as well as in the dependences on the Reynolds number of global flow characteristics. For example, in
the basic 0-vortex flow regime r~ Re~1 while in the 1- or 2-vortex regime T~ Re~1/2 (Wimmer
1988).

19 14 may be possible, at larger Re and/or in the circular Taylor-Couette flow, to get elongated Taylor
vortices. Then, if that exists, it might become possible to form pinches in Taylor cells.
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one gets that the distance between the two regions can be estimated as

57 (246 3
which has been plotted as a function of § in FiG. 15 (b). .

Now, D must certainly be larger than zero to allow for the saddle-stagnation-point region
to exist. A reasonable choice, based on the expectation of the eventual Taylor-vortex of

positive circulation in between the two negative cells, is to assume that

Dpin ~ d = 1. (4.4.6)

From (4.4.5), this estimate yields the following semi-analytical criterion

6 < 0.30

(4.4.7)

for the mere possibility of developing a pinch in the basic cell, and ultimately Taylor vortices
in the spherical Couette flow. For larger gap-sizes, there is simply no space available to
allow for the formation process to occur. In that case, the same phenomenon that occurs
for a Taylor-vortex pair with increasing Re will take place, that is, the large basic cells
become stronger and move closer together on each side of the outflow boundary as we shall

see in details in the next chapter.

To the author’s knowledge, this estimate is the first of its kind. It sets a theoretically
sound, approximate minimum value for the gap size § corresponding to what is known as
“large-gap” spherical Couette flow, which has been defined empirically from experimental
and numerical observations as being a SCF with no detectable “Taylor instability.” Several
values have been proposed (or simply implied) in the literature for that minimum bound,

and although not all gap-sizes have been tested, it is safe to say the following:
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a. The gap size § = 0.241 is the largest gap-flow reported as exhibiting Taylor vortices

for a monotonic acceleration of the inner sphere;

b. The gap size § = 0.304 is the largest gap-flow, all categories, reported as exhibit-
ing Taylor vortices (special disturbances involving outer sphere accelerations were

necessary to induce the transition).

c. The gap size § = 0.398 is the smallest gap reported to be clearly part of the
“large-gap” class, i.e., exhibiting a complex 3-D transition, unrelated to Taylor

vortices.

The results above were obtained from experiments by Yavorskaya et al. (1980) and Munson
& Mengurturk (1975). The numerical work of Schrauf (1986) would also tend to favor the
gap-size 6 =0.24 in the case of monotonic, slow inner-sphere acceleration. The agreement
of our own estimate (4.4.7) with those results is very good, bringing even more support
to the formal pinch-formation mechanism presented in this section and to its fundamental

importance in connection with Taylor-vortex existence in spherical Couette flows.

4.5 Narrow-Gap SCF with 3-D Spiral Taylor-Gortler Vortices

The purpose of our last validation test is to verify the whole implementation “SCF3D,”
according to APPENDIX C, for a three-dimensional computation. The only fully described
and quantitatively documented 3-D flow in spherical-gaps is the narrow-gap spherical Cou-
ette flow after its first transition. Nakabayashi (1983) reports his thorough experimental
investigation of that transition, and among other flow regimes, he describes in detail one
known as the spiral Taylor-Gértler-vortex flow (see also Nakabayashi 1978, and Ziere &
Sawatzki 1970). This super-critical flow is simulated here, for the first time ever to our

knowledge, via our spectral code.

We select our parameters to match one of Nakabayashi’s laboratory cases. The gap-
width used is §=0.06 (R;=16.667, R,=17.667) with the boundary conditions V;=1 and
V,=0. The critical Reynolds number for that gap, at which Taylor-Gortler vortices in the
equatorial region first appear, has been determined by flow visualizations and is reported
by Nakabayashi as Re. ~ 166, in good agreement with infinitely-thin-gap theories and
cylindrical Couette flow. At Re=195 (Re/Re.~1.17), the supercritical flow has evolved
into a periodic flow exhibiting Taylor vortices whose axes are slightly tilted with respect
to the azimuthal direction, hence the appellation “spiral vortices.” These vortices can be
observed over a ~40°region centered at the equator, and are travelling in the azimuthal
direction at about 47% of Q; (i.e., in that rotating frame, the flow would nearly become

steady). Six spiral cells per hemisphere (3 of each vorticity sign) can be identified.
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As far as the addition of gradients in the third dimension (azimuthal gradients) into
the numerical endeavor is concerned, the above problem presents itself as a very “gentle
one” in the sense that the flow does not deviate too much from an axisymmetric flow,
due to the very mild inclination-angle of the spiral vortices. This implies that only a few
azimuthal Fourier modes are actually necessary to capture the global features of this 3-D
flow?2°. On the other hand, the relatively small size of the gap-width, and therefore of the
vortex cells, makes it very demanding to resolve sub-gap-width scales in the polar direction.
Indeed, the length-scale “d” corresponds in the present case to a polar wavenumber “I”
given by lg~7R,/d = 55. A polar truncation at that level would barely allow to capture
the existence of the vortex cells and would not at all resolve them. A minimum truncation
level for that direction can therefore be set at L > 110 (scales d/2) in order to get any
kind of meaningful, reliable results. Unfortunately, the polar direction in 3-D spherical
coordinates, due to pole conditions, requires special expansion functions that lead, in the

present numerical method, to proportionally expensive “slow transforms” in 6 (see Section
3.4).

An attempt to circumvent the requirement that the “slow” direction be highly resolved
by rotating the coordinate system with respect to the axis of rotation, unfortunately does
not work because of the constraint that M < L. One would then need both angular
domains to be highly resolved! It is believed that this conclusion is not restricted only
to VSH expansions since whatever expansions one may use in spherical coordinates, the
necessity to have the appropriate built-in pole-behavior would most likely yield the same

result.

Despite the actual flow scalings mentioned before, and because the present purpose is
mainly one of “testing the machinery” rather than making any serious physical study, we
choose for the present numerical simulation the following truncations: N =16, L = 84
and M =9 with a physical collocation grid of 33 x130x 32 points. FiG. 16 provides a
3-D view illustrating some parts of the grid. The required CPU-time corresponding to this
discretization is a quite bearable 12 CPU-sec/timestep on a CRAY Y/MP.

The initial condition for our numerical simulation was a previously computed subcritical
basic solution at Re=160 to which some very low 3-D random noise was added (velocity
disturbances less than 1071% in amplitude). Starting with a sudden drop in viscosity
leading to Re=195 at t=0%, the flow field was marched in time for about 6 inner-sphere
revolutions. At that time, the torque is found to be almost constant ( T = 4.81x10° which

agrees well with narrow-gaps torque measurements by Wimmer 1976), and the flow has

20 For detailed resolution of local phenomena such as the connection of vortex-cells, or “vortex-branch”
as it is referred to later, many more azimuthal modes may then be required. For example, to resolve
up to a length-scale “d” in the azimuthal direction, M ~ 55 has to be selected.
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nearly reached its periodic final state. Fic. 17 shows some three-dimensional views of the
azimuthal vorticity field?! in several meridional cross-sections. Up to 12 distinct vortex

cores can be identified, and it is easily seen that the equator is no longer a symmetry plane.

Qualitatively speaking, our spiral-vortex flow is in very good agreement with the exper-
imental flow of Nakabayashi. FiG. 18 shows a numerically produced visualization of the
radial sources and sinks associated with the outflow and inflow boundaries, respectively,
between the vortices. The thin pale bands correspond to the axes of the Taylor-Gortler
cells. The spiral character of those cells is made clearly visible, and it can be measured that
the inclination-angle with respect to the azimuthal direction, «, varies from nearly 0° at
the equator to about 2.7° further away. This agrees very well with Nakabayashi’s measure-
ments given in Table 3 of his paper. FiG. 18b reproduces the laboratory flow picture for
what is claimed in the paper to be the same geometry and very similar Re number. Since
direct comparison between the numerical and experimental visualizations did not agree
as well as the quantitative comparisons, the author’s suspicion was raised. It is actually
possible from the experimental picture itself to measure the gap-size and the outer radius.
This leads to an actual gap-ratio of §=0.138 which is indeed another gap-size studied by
Nakabayashi. Furthermore, the spiral angle o measured directly from the picture gives
about 8° which is actually the numerical value given in his Table 3 for § =0.138. The
caption of Nakabayashi’s Fig. 4 should be corrected.

The number of spiral vortices in our numerical computation and in Nakabayashi exper-
iment also agrees very well. In both cases, 6 spiral cells with 3 corresponding “starting
points” are found in each hemisphere, as can be seen on FIG. 19b. Quite possibly what
Nakabayashi calls “starting points” are really “ending points,” if one considers that the
formation of Taylor vortices takes place at the low-latitude-edge of the basic recirculation
cells, as described in our Section 4.4.3 . We prefer for now to call Nakabayashi’s starting

»

points “vortex-branches.” A nice 3-D view of such a vortex-branch is shown in rFiG. 19a.

Other quantitative comparisons with the experimental flow field also led to surprisingly
good agreements considering the marginal resolution of the present simulation. Among
other things, the angular velocity of the spiral vortices, ,, was computed from the Fourier-
transformed of the velocity field at two consecutive times. From the phase shift calculated,
we obtained $,/Q; = 0.47. Nakabayashi reports a measured-value of 0.466 at our
Reynolds number. This implies that the period of the flow is given by T = 27/Q, =
2.14T; (T; being the inner-sphere period of revolution) which appears well confirmed by

an extrapolation of our computed point-wise velocity traces. An interesting question related

21 The axes of the Taylor-Gortler vortices being nearly aligned with the azimuthal direction, wgy contours
should approximate well the actual vortex-cells boundaries. The further away from the equator, the
less accurate this becomes due to the increase in inclination-angle of the spiral vortices.
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to the above is whether or not the vortex-branches stay fixed and unaltered in the rotating
frame of reference. The answer to that question would require more investigation with

better discretization, which unfortunately falls outside the scope of the present section.

The energy spectra associated with our 3-D spiral Taylor-Gortler-vortex flow are pro-
vided in F1G. 20. The Legendre spectrum E(I) clearly shows a strong local maximum
at [~ 63 corresponding to the length-scale 0.88d of the spiral vortices present in the
flow. Our numerical resolution in 6 should be termed marginal in that only 2 decades
of decay in energy content is observed between the local maximum and the tail of the
spectrum. The Fourier spectrum FE(m), FIG. 20b, indicates that 9 complex modes were
indeed sufficient to capture the global features in the azimuthal direction. The weak local
maximum at m=23 corresponds to the presence of three sets of spiral cells per hemisphere
(r1Gg. 19b). Other secondary and low-energy-content maxima may, however, exist in the

real flow further down the spectrum at higher wavenumbers.

Fic. 21 (a) and (b) finally presents a comparison between the meridional streamlines
of the axisymmetric part of the actual 3-D spiral flow (Fourier mode “m=0") versus the
axisymmetrically computed flow (with M =0 and the same discretization in the other two
directions) for the same geometry and the same Reynolds number. The latter is found to
be a slowly varying periodic flow that exhibits 8 to 12 Taylor vortices in agreement with
the axisymmetric computations of Bartels (1982). It is shown here at a time just after
the disappearance of the two extreme vortex-pairs. One observes from FIG. 21(a) that no
clearly defined axisymmetric Taylor-Gortler vortices are actually present in our 3-D spiral
flow. This, together with our previous flow visualizations, raises some doubts as to know if
a pair of toroidal vortices actually exists at the equator as reported by Nakabayashi. It may
be possible that the inclination angle near the equator is too small for reliable experimental
determination??. A well resolved numerical simulation may be the only way to clarify that

point for certain.

Interestingly enough, in accordance with the pinch-formation argument presented in
Section 4.4.3, it is seen that more than one pinch per basic recirculation cell can exist at
the same time if the length-scales of the geometry are different enough so as to satisfy the

minimum condition more than once, as it is obviously the case here as seen on FIG. 21(b).

22 On Nakabayashi’s picture, reproduced in Fig. 18(b), one can draw the equator line by first determining
the center of the spheres with the use of a compass. Doing so, one finds that the equator does not appear
parallel to the bottom edge of the picture, and that, consequently, all vortices seem indeed tilted with
respect to the actual equator.
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This completes this chapter on the validation of the spectral code “SCF3D.” All aspects
of the computation have been successfully tested, and doing so, important insights into the
physics of spherical Couette flows have been gained. For the remaining of this thesis,
the attention will be focussed on both the basic, large-gap spherical Couette flow and its

non-axisymmetric transition.
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CHAPTER 5

LARGE-GAP SPHERICAL COUETTE FLOW :
BASIC FLOW

As mentioned previously in Section 4.4, large-gap flows have truly been the poor rel-
atives of the spherical Couette flow family—and of all Couette flows for that matter—as
far as the number of relevant investigations is concerned. A general description of large-
gap SCF (with V;=1 and V, =0 by convention here) that includes the effects of its two
defining parameters, § and Re, is still virtually non-existent in today’s fluid mechanics
literature. One of the purposes of this chapter is to contribute in filling in this gap of
information (on the large-gap!) as well as to establish a modest, but nonetheless a first,
quantitative database for future theoretical work. Our primary goal, however, is to set the
proper ground for our transition-mechanism study of next chapter. A thorough description
and understanding of the basic flow field and of its physics is thus necessary and will be

provided in this chapter.

Large-gap SCF is mostly described here through a series of axisymmetric solutions
computed for a relatively wide range of Reynolds numbers (1 < Re < 1200) and for a
gap-size ratio §=d/R;=1.27 ! in agreement with the few experimental data available on
large-gap transition, and to be discussed in next chapter. In the entire Re-range considered,
time-independent solutions that exhibit reflection-symmetry with respect to the equator
(in addition to the axisymmetry about the axis of rotation) were always found to exist.
Those asymptotically steady-state flows were obtained with the use of our initial-value code
without any restriction imposed other than the axisymmetry. They will be referred to as
“basic SCF solutions.” The effects of Re on the basic flow topology and on flow quantities
such as the torque, the meridional flowrate and the total kinetic energy are presented and

discussed.

Some insight into the effects of the gap-size ratio § is gained furthermore through a
similar, but less extensive, series of axisymmetric simulations for two other geometries, i.e.,
6=1.00 and 6§ =0.54. All of the main features of the basic flow at § = 1.27 are also

found for the two other gap-size ratios. Global as well as local comparisons concurred to

1 In this thesis, 6=1.27 is used for short in place of the more exact value used in the computations, i.e.,
§=1.272727 , which corresponds to a radii ratio of R;/R,=0.44. The other gap-sizes § reported in
this work are essentially exact values at a two-digit representation.
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that effect. It thus appears safe to claim that our detailed study of the SCF at § =1.27
is indeed meaningful and representative of all large-gap spherical Couette flows, i.e., SCFs
with gap-sizes larger than &~ 0.3 (Section 4.4.3), at least up to some upper limit (still
to be determined) at which the flow essentially behaves as in the case of a single rotating

sphere in an infinite mediumn.

It is of great interest to note that no indication of transition in large-gap SCF has been
observed for the whole parametric space (6, Re) covered by our axisymmetric simulations.
This is not only consistent with the experimental evidence that large-gap SCFs do not
transition axisymmetrically (Chapter 6), but it constitutes by itself a formal verification
that the flow is indeed linearly stable to axisymmetric disturbances. Moreover, it
is most likely, although not formally verified, that the SCF in large-gaps is also stable to
any finite-size axisymmetric perturbations since, for a given Re, the initial condition used
for our numerical simulation may be viewed as an arbitrary, large finite disturbance of the

actual steady-state solution at that Re.

The next chapter is in fact devoted entirely to the 3-D transition mechanism taking place
in large-gap SCF. When necessary, the critical Reynolds numbers reported in Chapter 6
for our three values of § are also included here. This is done to emphasize the maximum
Reynolds number up to which the axisymmetric flow should actually exist in the laboratory.
Therefore, up to Re., it is expected that experimental measurements would confirm the
present axisymmetric results?. Numerically, the ability to effectively restrain the flow to
axisymmetry has permitted the computation of steady-state, equilibrium solutions (though

3-D unstable) at much higher Re than the critical value as we shall see in what follows.

For our primary gap-size of § =1.27, three sets of truncation limits have been employed
(each with “M =07 of course): (1) N =16 and L =42 for Re <195 ; (2) N =38
and L =84 for 195< Re<550 ; (3) N =38 and L =120 for 550 < Re < 1200. In
all cases, the collocation grid “Nyx Lq” was selected large enough, according to (3.6.4),
to completely remove the aliasing error. Similar truncations were used for § = 1.00 and
6=0.54 except that the discretization refinements had to be made at somewhat lower Re
according to each geometry. For reference, the dimensionless length-scale “d = 1" (gap-

“l”

width) corresponds to a polar wavenumber ranging from about 5 to 9 for our largest

and smallest § respectively.

The first section that follows provides some useful relations concerning the Stokes so-
lutions associated with our three gap-sizes. This information will be used in subsequent

sections for comparison and normalization purposes.

2 This is assuming that special care has been taken in the design of the experimental set-up to minimize
the intrusive effects of the inner-sphere driving shaft.
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5.1 Stokes Flow and Related Quantities

One recalls from the previous chapter that the Stokes flow, i.e., in the limit Re— 0, is
the only analytical solution available for the spherical-gap geometry. The velocity vector

field is then purely azimuthal and is given by
_ B\ . ..
Ustokes = | ar+ 3 sinf &g, (5.1.1)

or, in terms of the angular velocity “Q=u4/(r sin8),” by

Qstokes = (a + ‘%) (512)

where clearly the constant a corresponds to some solid-body rotation contribution to the
solution. Introducing the boundary conditions V;=1 and V,=0 at the dimensionless radii
R; and R,, it is a simple matter to obtain explicit relations in terms of § for the two

constants « and f in (5.1.1), i.e.,

6 (6418

Q = m ) ﬂ = (6+1)3_1 (513)

for the spherical Couette flow in the Stokes regime and in a gap-size d/R;=§.

From the definition (4.1.4) and the relations (4.1.3) and (5.1.1), the dimensionless torque
T associated with the Stokes flow is found to be given by

o (01178

Tstokes = 87 =
tok ﬂ (5+1)3—1

(5.1.4)

from which it is seen, as expected, that no contribution to the torque comes from the

solid-body rotation term associated with «.

It is also a simple exercise to evaluate the total kinetic energy per unit volume corresponding
to the Stokes flow. Using the definition (4.1.10) for E, one finds

1 1
Estokes = "; [} "2"U§, dv

(6 + 1)5 [6-4/5+1/(6+1)}] —1/5 (5.1.5)

[(5 +1)° - 1]3

In order to get a better feel for the Stokes solution and to facilitate future references to
the above quantities, results (5.1.3) for a and f, as well as relations (5.1.4) and (5.1.5) for

T stokes and Fgores are plotted on the next page as functions of §.
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Stokes solution for spherical Couette flow.

It is interesting to note that « is always a negative constant although the angular velocity
is everywhere positive in the gap (dimensionless §; is actually equal to ¢ since ; =
Qi/(Vi/d) = Q;/(R:Q;/d) = d/R; = §). Furthermore, it is noticed that the larger the gap-
size & is, the smaller the torque T gores and the lower the total kinetic energy of the flow

per unit volume F become.

A word of caution seems appropriate here if one is seeking the asymptotic behaviors
and asymptotic values of dimensionless physical quantities when é — 0 or é§ — oo. The
normalization used should always be kept present in mind when doing so. For example,
our current use of the gap-width d as the reference length becomes quite meaningless
as § — oo (single sphere rotating in infinite medium). In that case, R; is clearly the
appropriate choice for reference length. Following the definition (4.1.4) for T, this would
yield a dimensionless torque defined as Y*=7/(pvV;R?)=T §?, and thus T*(6—o00)— 87
rather than T(6— 00)— 0. This value of T* is indeed well verified by low- Re experiments
on the rotating sphere as reported by Sawatzki (1970). Similar notes of caution concerning

the physical interpretation of dimensionless quantities will be made throughout this chapter.
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5.2 Meridional Recirculation — § = 1.27

It was established earlier in Section 4.3 that any finite-Reynolds-number spherical-gap
flow develops reflection-symmetric recirculation cells on each side of the equator. For the
SCF, the rotation of the inner sphere produces the Ekman pumping that acts as the driving
force responsible for the meridional flow. The fluid is therefore seen, in meridional planes,
to be flowing along the inner-sphere surface from the poles toward the equator. This motion
consequently leads to negative and positive recirculation in the upper and lower hemisphere
respectively (the sign being defined according to the azimuthal unit-vector &4). An effective
way to observe the structure and characteristics of the meridional recirculation is provided
by the plotting of iso-contours of the streamfunction ¥, computed by Eq. (4.1.9). Of

course, these contours are usually referred to as meridional streamlines.

Before presenting the streamlines results, however, two remarks seem appropriate in
the present context. First, one has to keep in mind that the basic SCF, despite being ax-
isymmetric, has a fully three-dimensional velocity field. As pointed out before, it is formed
by the superposition of meridional circulation and primary azimuthal rotation about the
vertical axis. The meridional streamlines are thus, in essence, planar projections of three-
dimensional stream-surfaces whose shapes may be globally described as more or less toroidal
as we shall see below. Secondly, it is important to realize that the physical interpretation
of the streamfunction field is slightly complicated here due to the non-uniform “depth” of
the third dimension. Indeed, contrary to the standard 2-D case, the present azimuthal di-
rection has a depth given by “27 r sin §” which varies along both meridional coordinates?.
Therefore, some caution is recommended if one is trying to deduce the velocity field simply
from the meridional streamlines. The contours of iso-streamfunction properly provide (1)
the direction of the meridional velocity vector, and (2) a measure of the meridional flowrate
(not velocity) between contours?.

FiG. 22 shows the meridional streamlines corresponding to steady-state solutions at
Re=Vid/v = 10, 95, 245 and 550. Before discussing these results, we first recall the

3 The non-uniform azimuthal dimension manifests itself in the definition of ¥ which, from (4.1.6) and
(4.1.7), is given as: um = Vx [\Il/(r sin 9) é¢] .

4 The proportionality between the streamfunction and the flowrate is easily seen from the following:
ov ov
dV = — dr + — df = —rsinfug dr + rsinf ur df
ar 06
= rsinf (—ug dr + u, rdf)
= rsind d¢g = dQ/2x

where “dg” is recognized as the volumetric flowrate per unit depth crossing the segment [dr, rd6], while
“dQ” is the corresponding total flowrate. Iso-contours of ¥, the streamlines, are therefore also contours
of constant meridional flowrate since dQ = 27 d¥.
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abbreviation “Cy.” introduced previously in Section 4.4.3 for the center of the basic recir-
culation cell in the upper hemisphere, and also note that the maximum value of ¥ over all
collocation points corresponds to the “Level Max.” value provided with each contour-plot.

We define the dimensionless recirculation intensity or strength “I,,7 as

‘I]max

‘Ilma:r‘/i _—
T T ol (5.2.1)

Clearly, I, is simply a differently normalized maximum value of streamfunction. The
rationale behind this operation comes from its easier physical interpretz;tion‘ In the labora-
tory, the Reynolds number is usually increased through an increase of speed with constant
geometry and viscosity. Therefore, in order to get the same Re effect as the laboratory’s,
one needs to use v and d, the constant laboratory parameters, to normalize the dimensional

quantity’ .
The evolution of the meridional flow as Re increases can now be outlined as follows:

i. At Re = 10, weak counter-rotating recirculation cells are formed on each side of
the equator. The streamlines pattern has an almost symmetrical polar distribution
about its center. The (. is located slightly below and inside the mid-gap~mid-
latitude point, i.e., at a polar angle about 35° above the equator and a radial
position of 0.42 from the inner sphere. The outward radial flowrate at the equator
is weak and widely spread in the polar direction over a length comparable to the

gap-width d.

ii. At Re=095, a dramatic change is observed. Not only the recirculation strength has
intensified by a factor of nearly 70, but the topology of the flow has profoundly
been altered. The streamlines pattern has lost its polar symmetry about the C,.
The latter has considerably moved down toward the equator and slightly toward
the middle of the gap. The C). is now located at a polar angle of about 19° above
the equator and at a radial position close to 0.46. The outward radial flowrate at
the equator is now much stronger and concentrated nearby over a length of about
0.45d.

ili. At Re=245, the qualitative picture of the meridional flow has changed very little.
I, has continued to increase but much more moderately; a factor of 3 is observed.
The streamlines pattern has remained very similar in shape and extent. The C),
has continued the previously noticed tendency, i.e., it has moved down to about
14° above the equator, and moved more significantly outward to reach a radial

position now past the mid-gap location at about 0.55. The strong outward radial

5 This is not of course a necessary condition, and the forbearance of the readers not as simple-minded as
the author is appreciated.
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flowrate at the equator is much concentrated over a polar thickness of about 0.34 d.
Streamlines in that vicinity appear much flatter and parallel to the equatorial plane.
By now, there clearly exists a “radial jet” that impinges at the equator of the outer
wall.

iv. At Re = 550, several significant changes in the tendencies mentioned above can
be seen. First, although the intensity I,, has continued to increase, more than
doubled, the maximum of streamfunction has started decreasing. Secondly, the
streamline pattern appears now more elongated and extends up to higher latitudes
bringing more flowrate in the pole region. Finally, although the Cj. has continued
to move toward the outer sphere and is now located at 0.62, it has stopped moving
down and appears stabilized at about 14° above the equator. The very strong
outward radial flowrate at the equator has stayed similarly concentrated over a
polar thickness of 0.33d. Flat streamlines over a significant part of the gap-width
are observed in the equatorial region. High local curvature of the streamlines on
both sides of the “radial-jet-impingement point” is a clear indicator of the intense

forces at play in that vicinity.

The above description of the evolution of the meridional flow is typical of large-gap SCF.
The “dramatic change” noted in part (ii) is the essence of the distinction between small and
large gaps, and is entirely consistent with the theoretical prediction from our analysis of
Section 4.4.3 on the Taylor-vortex formation. Due to the small distance from the equator to
the mid-latitudes compared to the gap-width, the additional same-sign vorticity generated
in the outflow region cannot evolve individually and separately from the basic vorticity
cell and, therefore, only tends to displace the local vorticity maximum toward the equator
as discussed further in Section 5.4. The net effect of the above mechanism is of course
the observed motion of the two Cp.’s toward one another. This motion by itself further
reduces the available space in the polar direction between the maximum of vorticity and the
outflow region, thus irreversibly suppressing any possibility to create pinched-streamlines

(see Section 4.4) and, therefore, Taylor-vortices.

In previous experimental works on SCF, investigators such as Zierep & Sawatzki (1970)
and Belyaev et al. (1978) have proposed that the mechanism responsible for suppressing
the so-called “Taylor instability” was due to a redistribution of angular momentum by the
effect of the meridional flow in such a way as to hinder the potential centrifugal instability
predicted by the inviscid Rayleigh’s circulation criterion®. As we shall see in the next

section from the angular velocity contours, the effects of the meridional flow on the angular

6 Rayleigh’s circulation criterion states that a necessary and sufficient condition for stability to axisym-
metric disturbances is that the square of the circulation (about the axis of rotation) does not decrease
anywhere. This is obviously not satisfied for our SCF, and therefore centrifugal instability may occur
(Drazin & Reid 1981).
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momentum distribution is never such as to satisfy the Rayleigh stability criterion, at least
up to Re of a few hundred. From the evidence presented so far, we know that the redistri-
bution of angular velocity, through 89§/88 , plays a much more subtle role in the process,
helping to generate local additional azimuthal vorticity. The essential keyword in our view,
and missing in previous discussions, is “length-scale,” and for large-gap geometries, the

situation seems quite clear as previously described.

However, there is also the interesting case of moderate-gap SCF’s which exhibit the
basic 0-vortex flow structure at very large Re, and that have been observed to be stable to
“Taylor instability” in Re-ranges much higher than the critical value. Observations of such
flows are reported in the above mentioned works and in Wimmer (1988). Experimentally,
those flows were obtained through very large accelerations of the inner sphere. The details
of how the transient term has affected the evolution of the meridional circulation and
prohibited the formation of pinches and Taylor vortices is still to be considered, as was
mentioned in Section 4.4.3. We are concerned here with the steady-states at those super-
critical Re’s. Recent numerical simulations by Biihler (1990)—see his figure 9.—bring
evidence to what our “suppression mechanism” predicts, i.e., in presence of the radial
outflow, the only way that Taylor-vortex formation is hindered is by a lack of sufficient
space to take place. That means that the center of basic vorticity, C,,, and therefore Cy,,
must be close to the equatorial outflow region. That is indeed what can be inferred from
Biihler’s results: a moderate-gap flow that looks very much like our large-gap flows, i.e.,
with its two centers of circulation close to one another on both sides of the equator. Thus
the transition mechanism that shall be described in the next chapter for large-gap SCF is

likely to be observed also in those particular moderate-gap flows.

Further numerical simulations, up to Re = 1200, have also been performed for the
same gap-size geometry (6=1.27). No surprising qualitative differences are noticed in the
streamlines patterns of those moderately high-Re flows compared to the Re = 550 case.
The expected strengthening of the gradients and a slight increase in the polar extent of the
circulation loops are observed. The circulation intensity I, continues to increase, but at
an ever slower rate. Near Re= 1200, one can estimate that I,, ~ Re®® in comparison to
I, ~Rel% around Re=245. The location of the Cp. moves very little from the Re=>550
position. Finally, it is noted that the “radial jet” with its flat, parallel streamlines slightly
thins in the polar direction and slightly elongates in radial extent. More details will be

presented in the next chapter.

F1G. 23 presents the evolution with Reynolds number of the dimensionless total merid-
ional flowrate per hemisphere, “Q,,,” which is defined as

Qm = 27 VYnas (522)

and corresponds to the total flowrate circulating around each Cj..
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From Fi1G. 23, the following observations are made:

a. In thelow Re-range, Re <40, the linear relation “ §),,, ~ Re ” is valid and consistent
with what we refer to as the Stokes-regime behavior. Indeed, in the core of the flow,
the meridional circulation must be proportional to the local azimuthal vorticity
which, at very low Re and in the mid-gap region, satisfies the relation (4.4.4), i.e.,

D(wg) =~ Re [27‘ sin @ COSOQ%%] ,

where D is the diffusion operator in spherical coordinates (linear operator). The
term in brackets on the RHS of the above relation is expected to remain practically
unchanged for low Re (weak influence of the meridional recirculation on the angular
velocity distribution) where it should closely match the Stokes’ contribution (e.g.,
compare FIG. 24a with the Stokes solution (5.1.2) for some empirical evidence).
Therefore, one must have that wy~ Re in that range, and correspondingly, @, ~
Re .

b. The meridional flowrate @Q,, reaches a maximum value around Re = 245, then
starts slowly decreasing for higher Re’s. Near Re = 1200, it is observed that
Qm NRe-O.Z .

c. From results for the rotating sphere in an infinite medium, reported by Sawatzki
(1970), it is seen that Qm ~ Re™*/? for that flow in the laminar boundary-layer
regime (Sawatzki’s eq. (3.10)). It is furthermore reasonable that in our case, for
ever higher Re, the relative effect due to the presence of the outer sphere should
decline (but not completely vanish however). From observation (a) and the above,
power-law exponents ranging from “1.0” to possibly as low as “-0.5” are sensibly

expected.

d. Comparing the dimensional viscous-length L, = (v/Q)'/? = d/(Re6)'/* to the
gap-width d, one gets that if Re'/26'/2>>1 , then the direct effect of the outer wall
on the inner-sphere azimuthal boundary-layer should be negligible. An estimate
to quantify this criterion can be inferred from Sawatzki’s radial profiles of velocity.
From those, it is seen that for “ 7— R; > 9(v/;)!/? ,” essentially no more velocity
gradients exist. In the present context, assuming that the boundary-layers are
permitted to extend to a maximum of d/2, this information is easily converted to

the approximate criterion
Re!/? §1/% > 18, (5.2.3)

which should be satisfied for any chance of qualitative similitude between the SCF
and the flow about the rotating-sphere in an infinite medium. Criterion (5.2.3)
leads to Re > 255 for § =1.27, which coincides well with the beginning of the

present negative power-law region.
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Simulations with our two other gap-sizes have confirmed that the above description of
the @Q,(Re)-curve is also quite typical, qualitatively, of large-gap SCF in general. However,
we note that, for experimental purposes, a more meaningful dimensionless flowrate would
be defined as “ Q,, Re.” It is therefore apparent that the laboratory “Q},,” never actually
decreases with Re, but rather simply slows down its rate of increase as Re gets larger

through the acceleration of the inner-sphere.

5.3 Angular Velocity Distributions — § = 1.27

Fi1c. 24 provides the angular velocity contours ) corresponding to the same four
Reynolds numbers whose meridional streamlines, given in Fi1G. 22, were described in the
previous section. Recall that our dimensionless §2; is equal to 6. The constant increment

between our contour-values is 0.1157 in all four cases.

The following remarks summarize the essential features of the meridional distribution of

angular velocity as well as the effects of the Re on the primary azimuthal flow:

i. In the low Re-range, up to about Re=40, the ) distribution remains practically
unaltered, and corresponds very closely to the Stokes-flow solution given by (5.1.2).
This is illustrated by FiG. 24a for Re =10 in which the contours are essentially
concentric circles, 9Q2/90=0, with the Stokes radial distribution.

ii. As the Reynolds number is increased, two combined effects are observed. ¥irst, an
azimuthal boundary-layer forms on the surface of the inner-sphere yielding large,
negative 0 /0r in that region. Secondly, because the meridional circulation in-
tensifies as we have seen, it starts affecting the -distribution through convective
transport, thus leading to the appearance of non-zero 9Q/98 or a loss of circu-
larity of the contours of constant €} and the emergence of a new contribution in
the azimuthal vorticity balance as we discussed before. Both effects are clearly
apparent on the contour-plot for Re=95. A boundary-layer with a dimensionless
thickness of roughly 0.25 in mid-latitudes is seen as well as the manifestation of
transport effects that effectively “push inward” on the contours in the pole regions

and “pull outward” on them at the equator.

iii. The two effects just mentioned become more pronounced as Re increases and lead
to the distribution of FIG. 24c at Re =245. The azimuthal boundary-layer has
further thinned to a thickness of about 0.14 in mid-latitudes while most of the flow

region now exhibits only weak gradients of angular velocity. The “radial jet” at the
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equator strongly manifests its presence through vigorous, but localized transport
of angular momentum toward the outer sphere. Both radial and azimuthal velocity
components are found to be very well correlated in the equatorial region. The
thickness of the jet and the polar extent over which strong deviation of the -

contours is observed correspond very well.

iv. At Re = 550, F1G. 24d, a new phenomenon is visible in addition to the contin-
ued intensification of the two effects discussed above. Indeed, a local maximum
of angular velocity is clearly seen to have developed on the rotation axis in each
hemisphere. The mechanism responsible for this new feature will be discussed be-
low. The azimuthal boundary-layer thickness is now of about 0.09 in mid-latitudes

1/2 in first approximation

which matches well with an expected scaling of Re™
(neglecting curvature effects) for laminar boundary-layers (Schlichting 1979). The
deviation of the Q-contours by the outward transport of the equatorial jet exhibits
strong concentration in polar extent, and can be observed to be sustained almost

throughout the entire width of the gap.

We now come back to the local maximum of angular velocity observed in the pole
region (remark (iv) above). The physical mechanism responsible for that phenomenon is
illustrated on FiG. 25 from the flow solution at Re= 515, and is demonstrated in what

follows.

First, one must realize that the rotation about the vertical axis z imposed on the inner-
sphere, §;, is associated with some w, vorticity? which corresponds on the pole axis
(6=0) to radial vorticity w,. The local maximum of Q on that axis is therefore also a
local maximum of radial vorticity. One can therefore infer that (1) the axis of rotation
is necessarily a vortex line with a vorticity value of 2{); on the inner-sphere surface and
0 on the outer-sphere, and (2) from Fi1G. 24d, there is a local maximum of vorticity

occurring along that radial distribution.

The second aspect to consider is that although the flowrate in the pole region is relatively
low (see F1G. 22), the velocities there need not be weak nor uniform. This means that it
is possible to develop a significant straining field associated with the meridional flow even
in the pole region. These two ingredients, vorticity and straining fields, interact together
through the first term on the RHS of the vorticity vector equation (4.3.1), i.e., through
“w - Vu.” One of the mechanisms of action of this term is the well-known vorticity

stretching phenomenon that can, for example, amplify considerably the vorticity contained

7 The vorticity vector being equal to twice the local angular velocity vector of the fluid, i.e., w=2Q .
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in a constant-circulation vortex-tube undergoing axial stretching and lateral compression.
It is shown below that the vorticity stretching mechanism, through the action of the term
“wy, Ou,/Or” is unequivocally responsible for the generation of the observed @ maximum

at the pole.

F1G. 25a provides the iso-contours of radial velocity u, from which it is observed
that inward velocity varying from “0” up to about “0.12” indeed exists along the axis of
rotation with du,/dr >0 in the outer part of the gap and Ou,/0r <0 in the inner part.
FiG. 25b presents the contours of constant circulation about the z-axis, I', = ug T sinf ,
which of course are also contours of constant angular momentum. We are interested here

by the near-zero contour in the pole region which corresponds to an w, vortex-tube.

Finally, F1G. 25¢ shows a superposition on the same plot of (1) the meridional velocity
vectors and (2) three contours of I'; passing through the pole region. A zoom on the
upper hemisphere is also provided on the right-hand side figure. The stretching of the
vortex-tube—consider for example the fatter contour in its portion away from the two
walls—is quite apparent. Since the z-circulation is constant everywhere along the tube,
the smaller cross-section area of the tube in the mid-gap region implies a larger and local
maximum value of w, there, and thus, a larger and local maximum value of  as well®.
This completes our analysis of the interesting, and at first-sight surprising, observation of

local maximum of angular velocity on the rotation axis.

Now turning our attention back to the equatorial region of Fi1G. 25a and 25b, two points
should be emphasized. First, from the u,-contours, one observes that the radial velocity
involved in the equatorial jet, at Re=>515, reaches a value as high as “0.29,” i.e., 29% of
the maximum azimuthal velocity. This is clearly a feature that makes the secondary merid-
tonal flow in large-gap spherical geometry hardly a contribution of “secondary” importance.
This is a significant difference between large- and small-gap SCF that makes the large-gap
problem so challenging for any analytical investigation of stability (more details in Chapter
6). Now from the T, contour-plot, one notices that the angular momentum just above and
below the equator is almost constant radially outside the inner and outer boundary-layers.
The Rayleigh’s stability criterion in that region of maximum centrifugal forces appears to
be almost satisfied. Sensibly, no centrifugal instability of the primary azimuthal flow may
be expected to occur at the present Reynolds number. The powerful transport of angular

momentum by the equatorial jet is of course responsible for that redistribution of I',. The

8 The actual radial profile of € in the central part of the gap and on the axis of rotation, or equivalently
the radial profile of wr, can be expected to look qualitatively very much like the radial velocity profile
u, since the radial vorticity equation on the axis simplifies to “ ur dwys/0r = wy u,/dr ” if one assumes
the viscous term to be negligible away from the two walls. This implies that the local pole maxima of
Q , wyr and u, should all three occur at very similar radial locations. This simple prediction has been
verified and indeed confirmed (e.g., see Fig. 31).
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above conclusion about centrifugal stability is therefore believed to apply as soon as the

“radial jet” has really formed, thus around Re~245 from our evidence.

Once again, it is pointed out that the discussion of this section on the angular velocity
distribution in SCF is valid for our three gap-sizes, and is therefore confidently assumed to

be relevant for any large-gap SCF in general.

5.4 Distributions of Vorticity wy, w, and wg — § = 1.27

To help in interpreting the vorticity field and relate it to the velocity distribution in
the flow, it is first recalled that the vorticity vector, w = V x u, has axisymmetric

components given by:

1 g, . 1 Oug cosd 00
Wy = m *55(81118U¢) =7 -50-’ + o d Uy = sin 6 Y, + 2cos8$2 (541)
_ 1 0 _ 8u¢ Ug _ . o0
Y= T or (rug) = - or  r sin [T or * 20] (542)
1 d 1 9 . Jug Uug 1 Ou,
wo =T g (rue) = T gglu) = FE T - T - (G439

Fic. 26, 27 and 28, respectively, present meridional iso-contours of the azimuthal
component of vorticity wg , the radial component w, , and the polar component wy .
The same four flow solutions as those of FIG. 22 and FIG. 24 are provided for each
component. One should note that the constant increment between contour-levels varies
from plot to plot. Twelve contour-values that spread from the minimum to the maximum

value in the entire field are always plotted.

The description and brief analysis of the salient features of the vorticity fields is given

in what follows:

i. The azimuthal vorticity component wg on FIG. 26 has a field with two main
regions of interest: near the spherical boundaries and away from them in the core

of the domain.

ii. Near the inner-sphere wall, w, expressed by (5.4.3) is associated primarily with
the meridional flow boundary-layer ( dug/dr ). The thickness of the well-defined

~1/2 35 could be expected in

inner boundary-layer is observed to scale with Re
first approximation for large enough Re. In accordance with the meridional flow
that has been depicted earlier, this boundary-layer is known to separate and leave
the surface of the inner-sphere before reaching the equator plane. This manifests

itself by the wy-contours that close back on the surface before the equator.
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ili. In the core of the flow, wy contours are closely related to the meridional streamlines
except that the location of the local maximum is shifted because interference from
the large polar-gradient of radial velocity in the “equatorial layer” strongly affects
the patterns of the core-contours. At low Re, the local extremum of wy is found
near 6 = r/4 as predicted previously. As Re increases, the local extremum is
observed to move down toward the equator, somewhat “attracted” by the additional
vorticity generated in the outflow region. This is of course consistent with our

discussions of Section 4.4.3 and Section 5.2.

iv. The radial vorticity w, on FIG. 27 is formed by two contributions as given by
the RHS of (5.4.1). In the pole regions, and up to Re = 245, the distribution
of w, corresponds mainly to “2cos8,” i.e., from the imposed rotation of the

inner-sphere.

v. In the equatorial region on the other hand, w, mainly corresponds to the “non-
circularity” of the angular velocity distribution through the term “9Q/08.” It
is therefore a good indicator for the parts of the flow undergoing localized radial

transport of angular momentum.

vi. At Re=2550, the contours of w, are remarkably eloquent on essential characteris-
tics of large-gap SCF. The presence of the strong “radial jet” and its transport of
(1 is clearly felt at the equator where two opposite-sign, adjacent concentrations of
w; can be seen. This feature lends itself to the introduction of the crucial notion
of “azimuthal jet” as shall be discussed in Chapter 6. In the pole regions, local
extrema of radial vorticity, directly related to the local maxima of  analysed in

last section, are observed on the axis of rotation.

vii. The polar vorticity wg on FiG. 28 is primarily connected with the azimuthal
boundary-layers whose evolution on the inner-sphere surface was briefly commented
on in the previous section. The salient feature is the behavior of the contours in
the vicinity of the equator. One of the effects of the “radial jet” is to decrease
the magnitude of the gradient 9Q/dr on the inner-sphere by pushing outward the
angular momentum. This is reflected here by the closing-back on the inner-sphere

of some contours before reaching the equator plane.

From FIG. 26 to 28, one could reasonably infer that, at large Re, in most of the flow
domain—outside the wall boundary-layers and outside some equatorial layer—the flow is

th_order approximation. Despite being an acceptable working

nearly irrotational as a zero
assumption, it should nonetheless be emphasized that vorticity structures do exist in the

core of the flow. To illustrate that comment, FiG. 29 presents the vorticity-components
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fields for the solution at Re=650. Both the actual, global fields and the near-zero-contour
fields are provided. Interesting and surprisingly complex vorticity structures, especially
for the azimuthal component wg, can be observed in an overall “quite aesthetic” physical

arrangement.

5.5 Radial Profiles — § = 1.27

For the sake of completeness, and to provide some additional quantitative information
about the flow solutions discussed so far, F1G. 30 presents the radial profiles, at Re =245,
for the three velocity and the three vorticity components. Three different polar angles
in the lower hemisphere are selected—a polar-station just below the equator: the square
symbols; a polar-station at mid-latitude: the circle symbols; and a polar-station near the
south-pole: the triangle symbols. For comparison, riG. 31 shows the corresponding profiles
at Re=>550.

Some of the main features of the radial profiles are briefly reported below.

a. Near the south-pole at station §=3.12 rad :

i. The only significant velocity component is radial. At Re=245, the maximum

of wu, reaches ¢

“~0.06” at about a quarter-gap from the inner-sphere. At
Re = 550, the maximum goes up to about “—0.125” close to the mid-gap,

leading to a much more symmetrical profile.

ii. Similarly for the vorticity, the only significant component is radial. Its mag-
nitude on the inner-sphere is verified to correspond with the imposed angular
velocity, i.e., w,(R;)=28; =2.54. At Re = 550, both the radial vorticity
and the radial velocity are observed to be distributed similarly away from the

boundaries.

b. Near the mid-latitude at station 6=2.35 rad :

i. The presence of boundary-layers is clearly seen. The thickness of the azimuthal
boundary-layer on the inner-sphere ( ug-profile) is seen to be larger than its

meridional counterpart on the wug-profile.

ii. The “wall-jet” character of the meridional flow is well shown by the polar
velocity profile. The upward wall-jet on the inner-surface (lower hemisphere)
is seen to be much stronger and thinner than the downward jet along the
outer-surface. The two of them come into contact slightly inside the mid-gap

location.
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iii. Qutside the boundary-layers, relatively little vorticity is found at that latitude.

c. Just below the equator at station 6=1.62 rad :

i. Significant radial velocity over an important part of the gap is noticed.

ii. The azimuthal boundary-layer ( ug-profile) can be seen to extend almost over

the entire width of the gap.

iii. Strong radial vorticity with a maximum close to the inner-sphere followed by

a monotonic decay over more than 60% of the gap-width is observed.

iv. Qutside the boundary-layers, slowly varying azimuthal vorticity of the basic-

circulation sign is noted.

5.6 Kinetic Energy and Friction Torque — § = 1.27

So far in this chapter, the basic SCF in large-gap has been mostly described and analysed
through its velocity and vorticity fields. The only global quantity discussed at this point
has been the total meridional flowrate @, of Fig. 23. In this section, a few more global
characteristics will be utilized to complete our description and further improve our general

understanding of the basic flow.

In Section 4.1, it was shown that the total kinetic energy of the axisymmetric flow
“E” (per unit volume) could be decomposed into azimuthal and meridional contributions,
“FEe” and “F,,,” and both are straightforward to compute from the spectral coeflicients of
our numerical solutions. FiG. 32 shows the discrete spectra associated with each of those
contributions, E4(l) and FE,(l) from relations (4.1.19) and (4.1.20), for the steady-state,

axisymmetric solutions at Re=245 and Re=1550.

The most salient feature of both spectra, at both Re’s, is the monotonic, almost un-
perturbed, exponential decay of the energy with increasing polar wavenumber “I.” There
is very little structure discernible in the spectra® at Re=245. Some weak “activity” at
low wavenumbers can be noted on the spectra at Re = 550, especially on the azimuthal
spectrum. The wavenumbers affected, “5<1<11,” correspond to length-scales of order
“df2” to “d” for the present gap-size. The local maxima of angular velocity on the axis
of rotation, that have been shown to exist at Re =550 but not at 245, are possibly re-
sponsible for this “activity.” One furthermore notices that the rate of energy decay with
wavenumber has significantly decreased between the two Re’s considered. Indeed, the en-
ergy content at Re=245 drops by about 3 decades per increment of 20 in wavenumbers,

while at Re =550, the corresponding drop is only of about 1.6 decade.

9 1t is recalled that the spectra E4(l) and Em(l) are integrated radially and are thus unable to distin-
guish between boundary-layer and core-flow characteristics.
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We now turn our attention to the more interesting, and more revealing, global quantities
“E”and “FE,, ) i.e., the total kinetic energy (E= FE4+E,,) and the meridional kinetic
energy. FiG. 33 shows those quantities plotted on semi-log scale as functions of Re. Both
quantities E and E,, have been normalized with the Stokes-flow energy 10 “ E o5 ” given
by (5.1.5).

In the low Re-range, off to the left of the vertical axis of FIG. 33, standard dimensional-
analysis arguments readily yield that E~ Re®, i.e., the total energy is roughly constant
and equal to F,okes. For the meridional energy in the same range, one obtains the scaling
E,, ~ Re? since it has already been shown in Section 5.2 that @,, ~ Re, and since
clearly E,, ~Q?, in that regime. Both of these scalings have indeed been confirmed by
our computations. As discussed earlier in regard to the quantity @, (FIG. 23), no further

indication of “power-law behavior” has been found in the range of Re investigated.

As Re increases beyond the Stokes regime, boundary-layers form and expectedly, if
one admits that most of the total energy is contributed by the primary azimuthal motion,
E starts decreasing since more and more of the high-velocity fluid is confined in an ever
thinner region. It is remarkable that at Re~1000, the total energy is only about 53% of
its initial value. As for the meridional energy, it is no surprise that it is found to increase as
the meridional circulation picks-up in intensity. However, one observes that E,, continues
to increase even after the meridional flowrate @,, has reached its maximum value at
around Re = 245. The meridional energy is seen to continue increasing until Re >~ 515
before decreasing for higher Re. One can understand the “ Re-lag” between the occurrence
of the maximum of E,, and Q,, if one recalls the evolution of the meridional flow from
Re=245 to Re=515 as will be demonstrated in the next Section 5.7.

The ratio “ E,,/E which can be inferred from Fi1G. 33 also appears quite characteristic
of large-gap SCF. It is seen to be as high as 10% at Re~100,and 21% at Re~500. This
is remarkably distinct from other spherical-gap flows. For example, footnote 4 of Section
4.3 reports a value for that ratio of 0.06% at Re=>500 in the case of a large-gap 6=1.0
with outer-sphere rotating, while footnote 11 in Section 4.4.1 reports a value of 0.8%
for a SCF in a moderate-gap 6=0.18 at Re=117.

The torque exerted on the inner-sphere and necessary to maintain the steady-state ro-

tation at a given Reynolds number is probably the most common laboratory measurements

10 The reader should realize that the normalization with the Stokes energy does not eliminate the effects
of the non-dimensionalization as far as laboratory interpretation is concerned. Assuming that Re
is increased through acceleration of the inner-sphere, the more representative dimensionless energy,
scaled on the constant viscosity and gap-width, should be defined as E* = Re? E . With this new
dimensionless quantity, it would be observed, as with the dimensional laboratory energy, that both the
total and the meridional energies always increase with Re.



94

on SCF. Fi1G. 34 presents the dimensionless friction torque Y , defined by (4.1.4), as
a function of Re. The torque has been normalized here with the Stokes-solution torque

Y stokes as given by (5.1.4).

Again, standard dimensional arguments yield the low Re-range relation T ~ Re°
observed on FIG. 34 to be a good representation up to about Re ~10. After undergoing
a “transition period” during which azimuthal boundary-layers develop, the torque is found

0-387 ' which was obtained by

to obey very well a new power-law given by T = 4.40 Re
an RMS-error best fit of the numerical data. For reference, in narrow and moderate-gap
SCF’s, Wimmer (1989) reports that the dimensionless torque T scales for the subcritical
flow—without Taylor vortices—Ilike Re® , while for the laminar supercritical flow—with
Taylor vortices—it is apparently well approximated by Re!/?. More detailed empirical
results for T in small-gap SCF’s can be found in Nakabayashi (1978). For the rotating
sphere in an infinite-medium, Sawatzki (1970) reports experimental torque measurements
suggesting a scaling well represented by T ~ Re!/? in the laminar boundary-layer regime

before transition (axisymmetric flow).

5.7 Dimensional Arguments for Q,, and E,, — 6§ = 1.27

Below Re =245, it is seen on FIG. 23 that an increase in Re leads to an increased
meridional flowrate Q,,. This can be thought of in terms of a balance between the driving-
force responsible for the meridional motion—FEkman pumping, i.e., centrifugal force acting
on the rotating, viscously entrained fluid layer—and the friction-force acting on the merid-
ional flow. Some rough estimates on the scalings of those forces (total contribution) are

now presented:

” must be function of (1)

e The total contribution of the driving-force, say “Dp,,
V2/R;, (2) the thickness of the entrained layer, say “é4,” and (3) the surface
over which the entrained layer lies and over which the centrifugal force may act
upon, say “S,.” Dimensional analysis yields that D, has to be directly pro-
portional to each of these three variables; thus, our dimensionless driving-force has
the form D, ~ (V2/R;)64S, .

@ ”

e The total contribution of the friction-force, say 'm,” must be function of (1)
the viscosity, (2) a characteristic meridional velocity gradient, say “ Upn/dm ,”
and (3) the surface of shearing associated with the meridional circulation stream-
surfaces, say “S,,.” Again, dimensional analysis yields that F), has to be directly
proportional to each of these three variables; thus, our dimensionless friction-force
goes like Fp, ~ Re YUy /dm)Sm -
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For the driving-force D, , the scalings are easily determined and more or less independent
of Re. In our “dimensionless world,” V; and the geometry (d, R;) are constant for all Re,
and clearly S4, which must be proportional to the inner-sphere surface, is also constant.
Furthermore, it has been determined earlier that &4 ~ Re~'/2. For the friction-force F,
on the other hand, estimates are slightly more difficult. One can reasonably argue that S,
as well as d,,, are essentially geometric parameters (see FIG. 22b versus 22c) that can be
taken as constant over the range 95 < Re <245 —a good estimate for d,, would be half
the distance from the C,, to the walls, d,, ~ d/4. As for the characteristic meridional
velocity, it is obviously related to the meridional flowrate, and will be taken here as directly

proportional to Q,,, i.e., Un~Qm .

To reach a new equilibrium when Re is changed, the Re dependency in our two force

estimates must yield a ratio independent of Re. We thus write:

Dy, (V2/R:) 6y S Re=1/?
7.~ e (U [do) 5o ~ constant ~ R 1oL (5.7.1)
and therefore,
Qm ~ Re'?, (5.7.2)

which confirms our observation that indeed @, increases with Re in that range. Note that

the power “1/2” is not meaningful in itself, but simply indicative of the growth tendency

of Q.

At Re=245, the centers of two recirculation cells have been seen to reach some polar
equilibrium positions in their centrifugally-driven migration toward the equator. Corre-
spondingly, the dimensionless @, reaches a maximum value at that point. In the frame-
work of the above argument, D, preserves the same scaling, but now, the friction-force
can no longer be considered more or less uniformly distributed in the recirculation cells.
Strong gradients of meridional velocity exist on the walls and in the equatorial region. This
basically changes the scaling of d,, . Preserving Up, ~ @ , one can write a more appro-

” since at

priate estimate for d,, by using the meridional boundary-layer thickness “ 6.,
Re =245, most of the shearing gradients contributing to the friction-force arelocated in that
layer. From the contours of azimuthal vorticity, it was noted previously that é,, ~ Re™1/2 .

Using dp, ~ 65 in the equilibrium ratio (5.7.1), one now finds
Qm ~ Re (5.7.3)

in agreement with the behavior of (J,, observed near Re=245.
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Finally, the last part of the @, (Re)-curve, where the meridional flowrate gradually
decreases as Re increases, can be understood from the observation of the meridional flows
of Fi1G. 22¢ and 22d. One realizes from those flow pictures that, since the two recirculation
cells cannot migrate any closer to the equator, an increase in Re translates, among other
things, into an increase of the polar extent of the cell!l, bringing some additional flowrate,
and thus stronger velocities, in the pole region. One of the effects of that “enlargement
of the cells” is the creation of a sufficient straining field at the pole that can stretch the
vorticity field in that region such as to generate the local maxima of angular velocity as
we described earlier. Another effect of the enlarged recirculation cells comes into play in
the present argument through the quantity S,,. It can no longer be considered that the
surface associated with the meridional velocity gradients is independent of Re. It must be
an increasing function with the Reynolds number —meridional boundary-layers existing on
a larger area along the walls— and, therefore, everything else remaining the same in our
equilibrium ratio, one finds that @, must become a decreasing function of Re as indeed

observed.

All the features of the relation @,,- Re, as shown on FIG. 23, have been covered by
the above dimensional arguments. One should finally note that, clearly, the increase of
Sm used in the last part of our argument cannot go on indefinitely being limited by the
geometry itself. Therefore, this suggests that there should exist an asymptotic power-law

for the curve @Q,,(Re) as Re increases beyond the limits of this investigation.

As for the meridional energy FE,, of FiG. 33, the tendencies observed are clearly related
and consistent with those of @,,. The Re-lag between the occurrence of the maximum
in E,, ( Re~515) and the maximum in @Q,, ( Re~ 245) can be understood from the
evolution of the meridional flow between the two Re’s. Referring to the upper hemisphere,
this evolution consists essentially, from the viewpoint of the recirculation cell, in strength-
ening its support on the equator plane allowing for the “pushing upward” required to bring
additional flowrate in the pole region. The cell basically “sits-down more comfortably on
the equator.” Doing so, the outward radial velocity at the equator increases slightly, but
more importantly, spreads more uniformly across the width of the gap as can be seen on
FIG. 31 vs FIG. 30. The radial extent of the “jet” reaches over 60% of the width as
Re=>550. This, and the significant additional velocity induced in the pole regions, trans-
lates in terms of meridional energy in the increase that is noticed on FIG. 33 between
Re=245 and Re=515. After this latter Re, no more significant radial-growth of the jet
extent nor any more important increase in the polar extent of the cell can be realized due
to the obvious limitations imposed by the geometry itself and, therefore, the decrease of

Qm with Re inevitably forces the meridional energy to follow the same trend.

Il This is by no means the only important effect of an increase of Re in that range. The crucial formation
of a strong “radial-azimuthal jet” will be discussed in next chapter.
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5.8 Different Gap-Width Ratios

To bring support to the claim of generality of the present chapter, i.e., that our detailed
study of the basic SCF in a gap-size of § = 1.27 is well representative of any large-gap
SCF in general1? | we present in this section some of the evidence from computations with
gap-sizes of § =1.00 and é=0.54. Some more decisive support in connection with the

transition mechanism will be presented in next chapter.

Fic. 35 shows the flow solutions for the gap-width §=1.00 at Re=10 and 100.
Meridional streamlines, angular velocity contours and azimuthal vorticity contours are pro-
vided. Fi1G. 36 presents the corresponding solutions for a gap-size ratio of §=0.54. All
meridional planes are shown in actual-size with tick-marks on the outer-sphere spaced one

gap-width apart.

One of the essential distinctive features of large-gap SCF, i.e., the migration of the
recirculation cells toward the equator as Re increases, can be observed for both gap-sizes.
Once this character is established, there is no more possibility for the basic flow to ever
develop Taylor-vortices in the equatorial region—as typical of small-gap SCF’s—as we have

shown and analysed before.

F1G. 37 presents the dimensionless torque T as function of the Reynolds number for
the same two gap-sizes. The features observed and discussed for §=1.27 | FIG. 34, can all
be noted here also. The best-fit-power-laws obtained for our three cases, and which predict
the computed torques with excellent accuracy in the appropriate Re-ranges, are given here

for comparison:

§=1.27 — T = 4.40 Re®3%7
8 =1.00 — T = 7.08 Re% 02

§=0.54 — T = 21.9 Re452

It can be noted that the narrower the gap, the larger the torque is and the closer to “0.5”

the power becomes.

Finally, for the sake of completeness and to remind the reader about the three-dimen-
sional character of the basic, axisymmetric spherical Couette flow, riG. 38 presents 3-D
views of particle traces and vortex lines on a spherical shell very close to the outer-sphere
surface. The solution for § = 1.27 at Re = 525 as well as the solution for § = 0.54

1Z 1t is understood here that the classification “large-gap” is associated to SCF’s exhibiting a similar
transition process as the one discussed in next chapter.
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at Re =606 are provided. At that radius location, the particle traces are appropriately
referred to as “wall-streamlines” and are seen to form an orthogonal set with respect to the
vortex lines as could be expected. Qualitatively, both gap-size flows appear indeed quite
similar. F1G. 39 shows similar particle and vortex traces for the same two solutions but
now on a spherical shell about 38% inside the gap from the outer-sphere. The radial
component and its radial gradient in the two vector fields do not vanish at that radius
and, therefore, the two sets of patterns are no more orthogonal. The “equatorial stripe”
noticeable in the vortex-line pattern corresponds more or less to the radial-outflow region
(refer to F1G. 29 for the details of the vorticity field, and FiG. 22 for the meridional flow

picture).
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CHAPTER 6

LARGE-GAP SPHERICAL COUETTE FLOW :
TRANSITION

The previous chapter has described and analysed the basic laminar solution for large-
gap spherical Couette flow. Steady-state flow fields which are axisymmetric and reflection-
symmetric about the equator were found to exist over a wide range of Reynolds numbers.
With increasing Re, the solution and its properties evolve smoothly without any indication
of sudden transition neither in spatial structures nor in global characteristics. We thus
conclude that the basic flow is stable to axisymmetric disturbances, at least up to Re=1200

for a gap-size §=1.27.

In the present chapter, we are concerned with the three-dimensional stability of the ba-
sic SCF in large-gaps. Prior to this investigation, it was known from experimental evidence
that the large-gap flow undergoes transition through some three-dimensional instabilities.
The critical Reynolds number, Re., at which the transition occurs, and the nature of the
resulting supercritical flow were, however, the object of some contradictory reports. One
of our present goals is to clarify that situation and to contribute, along with existing ex-
perimental data, in providing a few reliable transition-points in (6, Re) parameter-space’ .
Our main purpose, however, is to develop a basic understanding of the physical mechanism
at the heart of the transition instability. Besides being of fundamental value in the field
of fluid-flow stability, the understanding of basic transition mechanisms appears to the au-
thor as an essential tool in interpreting, and possibly predicting, the results of the various

“transition-to-chaos” experiments frequently reported nowadays.

In the first section, the limited literature on large-gap SCF is reviewed. Then, some
basic, global results from the 3-D numerical computations are reported, followed by the
presentation of our proposed physical mechanism responsible for the transition. The evi-
dence used to support our argument is based, as shall be seen, on both the basic critical
flows and the 3-D unstable disturbances. We attempt next to draft a first global, descrip-
tive picture of the rather complex supercritical laminar flow and its main characteristics
for Reynolds numbers close to Re.. Finally, possible promising extensions of the present
transition mechanism to some other important basic flows, such as the Taylor-Couette flow,

are discussed.

I The same three gap-sizes as those of Chapter 5, ie., §=1.27, 1.00, and 0.54, are also considered
in the present chapter. The reader is referred to the footnote 1 on the first page of Chapter 5.
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6.1 Survey of the Literature

STABILITY ANALYSES

We first present in this section the results from the stability analyses that have been
carried out over the past 30 years. The task may seem quite imposing judging by the lapse
of time, but on the contrary, as we shall quickly see, there have been very few investigations
of that nature. The major difficulty associated with the stability analysis of the SCF, for a
given large-gap size, comes from the strong dependence of the basic solution on Re , as was
shown in Chapter 5. The situation is considerably simpler in small-gaps SCF due to both
a weaker Re-dependence, and a much lower critical Reynolds number. In other classical
flows, the Re dependence is usually completely absent or very simple and, furthermore,
for most, the flows are essentially one-dimensional (e.g., circular Couette flow, pipe flow,

jets, ...).

Bratukhin (1961) was the first investigator to obtain an approximate linear stability
limit for a large-gap SCF. Using axisymmetric perturbations and the Stokes flow solution
as the basic flow, he predicted Re,~ 100 for a gap-size § = 1.00. The next prediction
published ten years later by Munson & Joseph (1971) was based on the energy theory of
hydrodynamic stability. They used seven spherical harmonic expansions for their spherical
representation of the basic flow, and allowing for three-dimensional perturbations, they
obtained a minimum critical value—under which the flow should be stable to any-size,
any-type disturbances—given by Re.= 90 for §=1.00. Their most unstable disturbance
was stationary by assumption, and found to be of azimuthal mode m =1 with flow across
both the equator and the poles. They described it as two complex swirl-type patterns near

the equator and opposite each other longitudinally.

The last and most recent stability analysis, to our knowledge, was undertaken by Mun-
son & Menguturk (1975). Performing a linear 3-D stability calculation on a basic flow
represented by seven spherical harmonic terms, they found that the most unstable, sta-
tionary disturbance was axisymmetric, but not reflection-symmetric with respect to the
equator. In their result, the disturbance flow was different from the basic flow in that there

2. By extrapolation, since

was a distinct flow between the upper and lower hemispheres
their approach failed to provide any basic solution at Re>225 , they obtained Re,~325

for 6=1.00.

2 See Biihler (1990) for numerical and experimental evidence of equatorially asymmetric steady-state,
axisymmetric solutions in moderate-gap SCF.
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A common characteristic of the above stability investigations is clearly their use of very
limited numbers of expansion-terms to represent the approximate basic flow. This is a
specially sensitive issue in the 6-direction. From the polar energy spectra of FriG. 32,
one can estimate that a “1% accurate representation” of the basic flow—assuming two
decades of decay in the expansion coefficients, and therefore a corresponding four decades
in the energy content—would require at least 25 modes in the polar direction at Re =245,
and at least 40 modes at Re=550. This, together with the Re-dependence and the 3-D
character of the perturbed flow field, is still apparently a major obstacle to the prediction
of any reliable stability limit, as we shall see below from the available experimental results

and the present numerical computations.

EXPERIMENTAL RESULTS

Much more significant information, although still quite incomplete, on the stability of
large-gap SCF has been gained through the experimental approach. It may be worth men-
tioning here a fact that has somewhat puzzled the author since he became interested in
this problem. In all the laboratory set-ups that he is aware of, investigators have selected
to “break” the north-south symmetry of the geometry and boundary conditions by pass-
ing the inner-sphere driving-shaft only through one pole®, the upper one. Moreover, it
seems that vibrations could further be reduced in a symmetrical arrangement. In any case,

experimental results are available, and are described below.

Sorokin et al. (1966) were the first group which attempted to verify Bratukhin’s
prediction (1961) for 6 = 1.00. They failed to observe any sign of transition indicating
instability in the range of Re predicted by Bratukhin. Two years later, Khlebutin (1968)
was also unable to detect any evidence of instability for the two large-gaps § =0.44 and
6=1.52 over a much wider range of Re than the previous attempt. It is much later that
two independent groups finally reported, almost simultaneously, that transitional instability
had been detected in large-gap SCF. Munson & Menguturk (1975), complementing their
linear stability analysis, investigated gap-sizes in the range 0.135 <§<2.29, in a rather
small apparatus of outer-radius R,=6.5 cm. Yavorskaya et al. (1975), on the other hand,
limited their preliminary investigation to a single gap-size § =0.54 , but in a more imposing

apparatus with R,=17.2 cm.

Munson & Menguturk, after verifying that they could reproduce the known small-gap
results (Zierep & Sawatzki 1970) for §=0.135, went on to investigate the §=1.27 case

(Ri/R, = 0.44). They reported results on flow visualizations and torque measurements,

3 Although a numericist, the author understands the practical need for such a shaft... It is the asymmetry
that tickles. Is the flow in the non-intruded hemisphere really more “reasonable”?
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but unfortunately, did not provide any picture of the flow. One can summarize their

observations for §=1.27 as follows:

e Four break-points in T(Re)-curve manifesting themselves as small jumps (a few

percent) and slight changes of slope on linear scales.
e Re.,, =71, Re,, =133, Re,, =222, and Re., = 517.
e Repeatable, free of hysteresis.

e Small spots or puffs of turbulence observed for Re > Re., in the mid-gap region

and traveling azimuthally at the local angular speed of the basic flow.
e Slight waviness and unsteadiness observed at the equator for Re > Re,, .
o The flow suddenly became completely turbulent at Re = Re., .

o They inferred that the first transition of large-gap SCF is caused by a 3-D, sub-

critical instability. No physical mechanism for the instability was proposed.

For their third and last gap-size, § =2.29 , Munson & Menguturk indicated that no interme-
diate transitions in the torque were detected until the flow became turbulent at Re, = 973 .

To our knowledge, no more recent reports by that group have been published.

On the other hand, the paper by Yavorskaya et al., published the same year, reported
quite different observations for the §=0.54 case. Although the gap-sizes were not the same
between the two studies, it appears that the contradictory facts reported incited Yavorskaya
and her group to build a new apparatus—slightly smaller this time with R,=15.0 cm—
and to go on to investigate more gap-sizes, including one reasonably close to Munson &
Menguturk’s (§ = 1.33 vs 6 = 1.27). Their new results were reported in Belyaev et
al. (1978) and clearly brought additional support to their previous observations and
conclusions. Several papers by that group followed in the next years—all under the names
of Belyaev or Yavorskaya in our list of references—covering the range 0.398 < § < 1.33,
and all concurred to the following general description of large-gap SCF transition, that we
present here? for the case §=1.33 in order to emphasize the differences and the similarities

with Munson & Menguturk’s results at §=1.27:

o No break-points of any sort observed in the T(Re)-curve.

o No transition detected until Re = Re, = 540 where flow visualizations and the
time-trace of a velocity probe at the equator showed significant changes. The value

of Re, was verified to be free of hysteresis.

4 The entirety of the transition results by that group—quantitative results—will be presented in the next
section. The reader is cautioned that some inconsistencies have been found between the papers of that
group. Furthermore, a few serious inaccuracies have also been noticed in some of their reports of other
investigation’s results. Some of them, relevant to our discussion, will be mentioned in this chapter.
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e The supercritical flow was described as a complex 3-D, laminar periodic flow with

traveling waves in the azimuthal direction.

e Three “blobs of vorticity” in each hemisphere—also referred to as “eddies” and
“yortices”—were seen and photographed at Re.. These traveling eddies appeared
equally spaced in the azimuthal direction, but in an out-of-phase arrangement with

respect to the other hemisphere’s eddies.
e Some sinusoidal disturbance was also noted at the equator.

¢ The number of “blobs” per hemisphere was seen to decrease at larger Re, but
strong hysteresis was also observed. The supercritical flow thus exhibited non-

uniqueness of the periodic Navier-Stokes solution for a given Re.

o The angular velocity of the “eddies” was found to be a weakly decreasing function

of Re, but basically independent on the actual number of “eddies.”

o They concluded that Munson & Menguturk misinterpreted the transition to the
complex, laminar unsteady flow as the appearance of turbulence, suggesting that

their Re., isindeed Re..

o As for the physical mechanism, they suggested that some inviscid Rayleigh insta-
bility associated with inflection points in the azimuthal velocity profile might be at

the origin of the transition.

The most recent reports from that group and relevant to SCF—Belyaev & Yavorskaya
(1983), and Belyaev et al. (1984)—concentrated on the post-transition evolution of the
supercritical flow toward chaos and turbulence in a gap-size §=1.006 (Re.=463). They
reported that stochasticity in that large-gap geometry happened after six Hopf bifurcations,

and that strong decay of the autocorrelation function of the time signal began at Re=930 .

To our best knowledge, the above overview covers all that was known about large-
gap SCF transition prior to the present investigation. The conflicting reports of 1975
between the only two groups of experimentalists who have actually obtained indications
of transition in large-gap geometries, was a primary initial incentive for us to undertake
this study. The main essential fact that seemed to make unanimity among all investigators,
from the experimental standpoint, is that the transition is not axisymmetric, but of a rather
complex 3-D nature leading to azimuthally traveling waves. None of the previous stability
analyses discussed above had the capability, due to their intrinsic limitations, to predict

such a traveling instability.

In the next section, we present our numerical results concerning the critical Reynolds

numbers for the three large-gap geometries that have been considered in this work. The
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new evidence gained from those results will be the basis of the argument in our effort to

clarify the ambiguous experimental evidence.

6.2 Instability Investigations and Critical Reynolds Numbers

The first step of our investigation on the transition of large-gap SCF consists of a
systematic search through specific regions of the parameter-space (4, ﬁe) for indication
of three-dimensional instability. The full 3-D capability of our spectral code SCF3D is

obviously essential for this endeavor.

We first assume that the instability is of a linear nature, i.e., simple random noise
of very small amplitude should be sufficient to excite the appropriate unstable modes if
Re > Re.. This assumption is supported by the experimental evidence of both groups
of investigators—Munson & Menguturk (1975) and Yavorskaya et al. (1975)—since no
hysteresis effects could be detected on the value of Re, at the first appearance of transition.
This is a typical characteristic of linear processes. Secondly, in the preliminary phase of
the search and to minimize the computing expenses, it is also assumed that only a small
number of azimuthal modes (Fourier-mode components of our vector spherical harmonic
expansions) is necessary in order to detect the early signs of the instability. Again, this
is supported by the experimental observations of Belyaev et al. (1978) who reported a
maximum number of 5 “similar turbulent eddies” per hemisphere and distributed equally
along the azimuthal direction. Omne can infer from that information that the primary,

unstable azimuthal mode is at most 5 for gap-sizes ranging in the interval 0.40<§<1.33.

For a given 6 and a given Re , indication of instability during a numerical simulation
was sought through periodic verification of the evolution of the Fourier total energy spec-
trum, E(m), defined by (4.1.15). If one or several of the components of that spectrum,
with m > 1, showed continuous increases for a minimum time interval, then a tentative
diagnosis of instability was made, and the simulation stopped for further “human analysis.”
In the present context of uncertainty concerning the exact nature and manifestation of the
instability, the energy diagnosis based on the “Fourier spectrum” appeared as the safest
possible approach in opposition to other diagnoses based, for example, on torque measure-
ments or some monitoring of local quantities. Assuming that the numerical simulation is
run for a long enough time, it is not possible to miss an onset of 3-D instability—if it can
occur at all at the given Re and among the finite number of modes considered—with the

energy diagnosis.

The question of “how long a simulation is long enough,” or in other words, “how long

does one need to watch the components FE(m) decay before confidently concluding that
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the flow is stable or rise to conclude that the flow is unstable,” is clearly the biggest
unknown of the above approach—and of any other approach for that matter. The answer
depends on the growth-rate of the instability, since, assuming it occurs, it necessarily takes
a certain time for the appropriate disturbance to grow big enough, in comparison to the
spectral distribution of the initial noise, to distinctly affect the energy spectrum. There is
no means to produce an estimate of the growth-rate in the present context, since there is no
applicable stability analysis, no proper description of the nature of the instability, and no
experimental report on how long it took between consecutive increments of Re,near Re,,
to observe some sign of transition in the laboratory. Numerical experiments and patience

are the only “allies left” to rely on in the present context.
The general strategy used to determine Re, , for a given §, is outlined below:

> Pick a Re.

> Using the axisymmetric basic solution at that Re, introduce some random noise
in all 3-D modes—all spectral coefficients for which m > 1. The corresponding
velocity perturbations introduced were typically of order 10~% in dimensionless
units, and were added to the natural truncation noise to accelerate the growing

phase of the instability.

> Run the 3-D code in time using this initial condition, and monitor the Fourier
energy spectrum. Typical truncations for preliminary search-runs were as follows:
N=38, L=84 and M =9. A collocation grid large enough to completely

dealiase the computation, according to (3.6.4), was always used?®.

> If no instability is detected after several inner-sphere revolutions—the precise num-

ber still to be determined—increment the Reynolds number and start all over again.

> If positive sign of instability is detected and confirmed—continuous growth of one
or more of E(m) components—decrement Re, and run again. Continue decre-

menting Re until all the unstable modes show indication of decay®.

> When Re. has been “bracketed down” from above and below in a smaller than

+5 Re-range, the final determination of the critical value was made through a

5 With that discretization, 3.1 MWords and 13 CPU sec/timestep on a single processor of the CRAY
Y /MP were required. For a typical number of 165 timesteps per inner-sphere revolution (period T}),
this means about 35 CPU min per T; .

To somewhat accelerate the process, one can use, in superposition to the random noise, an approximate
spectrum of the unstable disturbance. One may try to obtain that approximate eigenmode by using
a significantly higher Re than the expected critical value. Since larger growth-rates are expected for
larger Re, this initial step may permit to obtain the desired approximation at a smaller expense, and
then to significantly accelerate the development phase of the actual eigenmode at the Re considered.
This technique has been successfully used in the present investigation.
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linear interpolation of the measured growth-rates of E(m.), where “m.” corre-

sponds to the primary most-unstable azimuthal wavenumber, with the understand-
ing that more than one independent azimuthal modes can be unstable, and that,

inevitably, subharmonics are also eventually excited and grow.

Introducing “ o4, ” to designate the growth-rate of E(m,.) , one obviously has for the
two Reynolds numbers of our bracket that o, < 0 for Re < Re., and o, >0 for
Re > Re,, with both values close to zero. Re. is thus linearly estimated as being the
Reynolds number at which o, =0. Accuracy better than +2 on Re. is believed to be

achieved that way, and was considered quite satisfactory in the present context’.

Using the above approach, we have successfully located three critical points in the
parameter-space (6, Re). These results together with the corresponding m.’s detected in
the early stages of the instability are presented in TABLE 2 on next page. Also included in
that table are all the available experimental data (known to us) for the critical conditions

in large-gap SCF.

Several comments on the results shown in TABLE 2 and their implications are given in

the list below and in what follows:

i. Very good agreement with the data of both groups of experimentalists is obtained
if one considers, as suggested by Belyaev et al. (1978), that what Munson &
Menguturk (1975) referred to as the “onset of turbulence” is indeed the onset of

the present laminar transition.

ii. The largest difference observed between the present Re.’s and the experimental
values is about 5% for § =1.00. The two other values have a better than 0.4%

agreement with their experimental counterparts.

ili. The number of “turbulent eddies,” per hemisphere, visualized in the experiments

matches the values of m, observed in our computations for all gap-sizes.

iv. For é =1.27 and é = 0.54, a single primary azimuthal mode was found to be

unstable at the onset of transition.

v. For §=1.00, two independent primary modes, m=4 and m=3, got excited and
amplified. However, the growth-rate of FE(m =4), o4, was slightly larger than
the corresponding o3 . Therefore, four eddies could be expected to be found in the

laboratory, and indeed were.

7 This method avoids the large computing expense associated with a fine determination of Re. through
smaller increments of Re in the 3-D simulations.
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vi. One may predict, based on the presence of a secondary unstable mode, that those
four eddies in the 6§ =1.00 gap may appear somewhat less regular than the three
or five vortices respectively observed for §=1.27 and §=0.54. Although no such
observation is reported from the experimental flow visualizations, some evidence
supporting that prediction can be found in the velocity-trace spectrum of Belyaev
& Yavorskaya (1983) at Re=500 (Figure 4.3a in their paper).

Present Experimental
Computations Results
6 Re, M, Re, W mg @
2.29 — — 973 ¥ —
1.33 — — 540 ¥ 3
1.27 515 3 517 ¥ —
1.00 489 4,37 463 4
0.54 606 5 605 5
0.40 — — 760 5

(1) Converted to the present definition of Re = Vid/v .

(2) Number of “vorticity spots” per hemisphere from flow viz.

®) Munson & Menguturk (1975); their “onset of turbulence.”

() Belyaev et al. (1978).

() Both modes unstable at the onset of instability, with o4 > 03 .
(6) Belyaev et al. (1984).

(M Yavorskaya et al. (1975).

(®) Belyaev et al. (1978); from curve at 6=0.398.

TABLE 2. Critical Reynolds numbers and primary, unstable azimuthal modes

at the first transition in large-gap SCF.

The new numerical evidence, presented above and further in this chapter, clearly brings
strong support to the essential features reported by Belyaev and Yavorskaya. Apparently,
Munson & Menguturk (1975) had some “repeatable” sources of error in their experimen-

tal set-up, possibly due to the size of their apparatus, some vibration problems and/or
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some intrinsic inaccuracy at low rotation rates in the way they measured and recorded the
frictional torque. Their value of Re, = 973 for the first signs of transition in § = 2.29
is consistent with the general trend of the other data. Interestingly enough, a minimum
in Re. occurs for a gap-size between 0.54 and 1.27. No simple power-law relation of the
form Re.~ 67 therefore exists throughout the large-gap range. This invalidates the pro-
posed value of p=—1/2 of Belyaev et al. (1978). More information about the actual
transitional flow at equilibrium——effect on torque, phase velocity of the propagating wave,

general description—will be presented in Section 6.4.

All the evidence from our numerical simulations indicates unequivocally that the first
transition in large-gap SCF is three-dimensional, apparently free of hysteresis

and caused by a linear instability mechanism that will be discussed in next section.

An important characteristic of the present three-dimensional instability is emphasized
here. It concerns the growth-rate of the unstable disturbance, which, in the early stages of
transition during the “linear regime,” may be referred to as the unstable eigenmode. A few
values of the dimensionless growth-rate o, , associated with the Fourier energy component
E(m), are listed below in TABLE 3. They correspond to an exponential growth of the

form?8

E(m) ~ e°mt | (6.2.1)

and have been normalized by the dimensionless angular velocity of the inner-sphere Q; . It
is recalled that the energy component FE(m) is an integral quantity that includes all the

radial and polar modes contributing to form the unstable disturbance.

) Re [ Re, m O [
1.27 1.019 3 0.00563
0.54 1.023 5 0.00722
0.54 1.073 5 0.02076
1.00 1.104 3 0.02380
1.00 1.104 4 0.02450

TABLE 3. Growth-rate o, of the Fourier energy component E(m) in
the linear stage of the 3-D instability of large-gap SCF.

8 Equivalent growth-rates of the velocity or vorticity perturbations are given by o /2.
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One observes that the growth-rates in that range of super-critical Re’s are very small,
but do increase with increase in Re. One also notices the slightly larger growth-rate of
E(m=4) compared to the one for E(m=3) in the case 6=1.00. A detailed study and
analysis of the effects of the parameters on the growth-rates of the unstable eigenmodes
could most likely provide important evidence pertinent to the instability mechanism that
is presented in the next section. Unfortunately, such a study could not be carried out in

the realm of the present thesis and is thus left for future investigations.

The strikingly small growth-rates reported in TABLE 3, together with the relatively
high values of Re. in comparison with those for small-gap SCF’s, provide the explanation

as to why the early experimental investigations failed to detect the large-gap transition.

To impress on the reader the practical implication of such growth-rates, let us consider
the laboratory apparatus described in Belyaev et al. (1978) for §=1.27 . With R,=0.150
m and R; =0.066 m, and assuming a kinematic viscosity of 2x 107> m? /sec, one finds

that the period of revolution of the inner-sphere, T, relates to Re as

- 1750
T,' o~
Re

sec . (6.2.2)

At Re =525, one gets T; = 3.33 sec. At that same Re, we find from TABLE 3 that
the dimensionless growth-rate, in terms of velocity perturbation, is about “0.0036”. From
this, one can easily estimate the time necessary for an initial perturbation-level to grow
by a factor of, say 100, and hopefully become detectable at that point®. This gives a
dimensionless growth period of about 1279 units of time, or equivalently, 259 inner-sphere
periods. This translates in the above apparatus to a physical lapse of time of 14.4
min ! Clearly, one therefore needs to use very viscous fluids in order to reduce the waiting
time between Re increments. Patience and high-viscosity fluids may be thought of as the

missing assets of the early experimentalists.

9 The factor “100” is mentioned in Belyaev et al. (1978) as the signal amplification observed at transition
between the original noise level and the recorded velocity readings.
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6.3 Instability Mechanism and the Radial-Azimuthal Jet

With the knowledge of Re. for a given gap-size, one can determine from the results of
an axisymmetric computation the exact state of the basic flow at the critical condition. The
basic critical flows corresponding to our three geometries have been thoroughly investigated
and analysed in our search to uncover the instability mechanism. Local as well as global
quantities from the critical flows were studied and correlated in the hope to find some
relevant scalings of the parameters. The limited number of critical points (three) was of
course a serious drawback in establishing reliable correlations. FIG. 40 to 42 show the
critical basic flows for §=1.27 and §=0.54, our largest and smallest gap-sizes, through
several contour-plots in the meridional plane. For later reference, FiG. 43 presents the

corresponding contours for a subcritical flow ( Re=245 |, §=1.27).

Unfortunately, little help could be gained at first from the study of the unstable eigen-
mode fields due to their intricate three-dimensional structures, as shall be seen further (the
reader who feels curious may have a peek through FIGURES 52 to 57 at this point). The
important conclusion that one eventually draws from the disturbance fields, however, is
that although structures are present in the entire spherical domain, there is a significant
concentration of “activity” in the lower-latitude region. Consequently, focussing our atten-
tion on the equatorial region of the basic flows, we came to reduce the number of possible

candidates for the instability mechanism to the three types below:
i. A Gortler-type instability in the meridional boundary-layer on the concave surface
of the outer-sphere ;

il. A secondary, centrifugal instabilities associated with the high curvature of the

meridional streamlines near the impingement point of the “outward radial jet”;

ili. A shear instability in the equatorial layer of high velocity gradients.

After much work spent at testing those ideas, the actual instability mechanism!® finally
emerged as a fundamentally simple process considering the complexity of what it produces.

We present this mechanism and some of the evidence supporting it in what follows.

We claim here that the three-dimensional instability of large-gap SCF’s corresponds in
fact to the simpler quasi-two-dimensional instability of the radial-azimuthal jet

that forms at the equator of the basic flows.

This mechanism is thus connected with candidate (iii) above, and to some extent, to

10 To show the actuality of the proposed mechanism is the central issue of this section. Skepticism,
therefore, is still quite understandable at this point of the presentation.
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the suggestion by Belyaev et al. (1978) about a relation between the instability and the
presence of inflection points in the azimuthal velocity profile. This last connection will

become clearer as we proceed with the presentation of our argument.

First, one needs to define what is meant by radial-azimuthal jet in the present
context. In the previous chapter, we introduced the notion of “radial jet” (see Comment iii,
Section 5.2) for the radial outflow region at the equator that develops early at low Re,
and then at higher Re, is seen to thin its polar extent and flatten out its streamlines (FIG.
22b , ¢ and d). The radial velocity contours of FIGURES 41a and 423 clearly emphasize

the existence of that “jet.”

However, there is also in the same region what might be termed an “azimuthal jet,”
which existence solely depends on the existence of the “radial jet” since it is due to the
localized outward transport of azimuthal velocity associated with the radial outflow. From
the contours of azimuthal velocity, F1G. 41c and 42c, the existence of some “azimuthal
jet” can be inferred if one considers the polar profile of u, at some fixed radius in
the equatorial region. It is noticed that the surrounding azimuthal velocity around the

“azimuthal jet” is not zero, but some finite, more or less uniform velocity.

We thus define the radial-azimuthal jet as the combined contributions of both the
“radial jet” and the “azimuthal jet.” The reader can now understand the consistent use
of quotation marks by the author when referring to each contribution separately since they
do not actually exist separately per se. The contours of the magnitude of both velocity
components, “ |u, &.+uy€4| 7, are plotted in FI1G. 41d and 42d. One distinctly sees the
presence of the radial-azimuthal jet at the equator consisting of a thin, flat layer of radially
varying polar gradients essentially extending across the whole gap-width outside the two
boundary-layers. With it, we have the characteristic presence of inflection points in the
velocity profile ( ?Uje:/8602=0). It is those inflection points, not those associated with
ug alone, that may lead to instability according to Rayleigh’s inflection point theorem 1!
(the jet profile also satisfies the necessary condition for instability given by the Fjgrtoft’s

theorem; Drazin & Reid 1981).

One would like to visualize the radial-azimuthal jet and its trajectory. From merid-
ional contours of velocity, it is quite challenging to recreate mentally the three-dimensional
picture of the flow, but fortunately, computer-generated particle trajectories come to our

rescue.

FI1G. 44 to 46 present such particles traces for both material particles—velocity lines—

11 Rayleigh’s Inflection Point Theorem : A necessary condition for instability is that the basic velocity
profile should have an inflection point.
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and “vorticity particles”—vortex lines. Two different view-points (observer’s positions) are
provided for each set of traces. The spheres are also included, but are drawn in thin dotted
lines in order to be more or less transparent. Two critical flows (6 = 1.27 and § = 0.54)
and a subcritical flow (6§ =1.27, Re=245) are provided with similar traces. Furthermore,
FIG. 47 presents particle trajectories and vortex lines in an azimuthal plane just above the
equator in which the traces fade when they “enter the boundary-layers” near the surface
of each sphere. We define the “edge of the boundary-layers” as being where the polar
vorticity wg reaches about ten percent of its maximum value in the same plane on the
walls. The full dark lines in FIG. 47 are thus the “effective portion” of what we call
the radial-azimuthal jet.

The crucial points that need be made from the sum of all the evidence contained in the

above figures are listed below:

a. There exists a radial-azimuthal jet reasonably flat and parallel to the equator. The
jet originates near the surface of the inner-sphere and ultimately impinges at the

equator on the outer-sphere.

b. The vorticity lines originate from the inner-sphere surface. Those which cross the
equatorial plane away from the outer sphere are also reasonably flat and parallel

to the equator. We refer to those lines as the “jet vortex lines.”

c. The polar thickness associated with the jet vortex lines is in direct proportion with
the “jet velocity thickness,” which is referred to as “ dje¢,” observed in FIG. 41d,
42d, and 43d. We take dj.; here as being half of the total thickness of the jet.

d. The radial-azimuthal jet, as seen by a single particle trajectory, exists over a definite
length outside the boundary-layers of the walls. We refer to that length as “ Lje,”

and it is measured from figures similar to those of FIG. 47a, 47c and 47d 2.

e. The length Ljc; spans a corresponding azimuthal angle referred to as “ ¢j¢;,” and
which is measured from the azimuthal span of one vortex line as given by figures

similar to FIG. 47b.

f. Compared to the subcritical jet, the critical jet is thinner and longer. Symbolically,
we write: Re T = djee | and Ljee T .

g. The jet trajectories (also streamlines) and the jet vortex lines form essentially two

orthogonal sets of lines outside the boundary-layers of the walls.

12 Similarly to all impinging jets, the present radial-azimuthal jet has two relevant length-scales, i.e.,
its thickness and its length. Both are of great significance, in particular their ratio as shall be seen
further, as far as the stability of the impinging jet is concerned.
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The above facts strongly suggest the possibility of a shear instability of the radial-azimuthal
jet. Based on “ dj.; ” and on the velocity difference “ Uje; ” between the centerline velocity
and the uniform surrounding velocity (both of which are measured around the mid-gap
shell on figures similar to F1G. 41d, 42d, and 43d, but with more contours), we have found

from our numerical simulations that the Reynolds number of the jet,

Rejet = _(‘_Z_J_'_gf;/_qlgf_ = djet Ujet Re , (6.3.1)
is only a very weak function of Re in the subcritical regime once the jet has formed.
Some quantitative data are provided in TABLE 4 and will be discussed at that point.
Since nothing is actually known about the stability of the radial-azimuthal jet per se 13,
one could be tempted to leave the argument as it is, i.e., a strong possibility for the
instability mechanism, and then to proceed to examine the disturbance field to try to find

some support.

There is, however, one further step one could take before doing that, and that is to
make an analogy with the standard 2-d jet. It can be argued that, from the standpoint of a
fluid particle, it looks somewhat as if the “shearing environment” is, at least qualitatively,

one of a special type of “plane laboratory jet,” as we describe below.
p ¥p p

Imagine the actual laboratory setting destined to produce a plane jet, including the
finite but high aspect-ratio of the slot in the wall from which the jet originates. Now
instead of the regular flat wall, consider a curved wall as illustrated in the sketch of FIG.
48. The vorticity lines of this “fan-spreading quasi-2-D plane jet” are expected to be
closed loops of correspondingly high aspect-ratio, rectangular shapes. Viewed from above,
the particles trajectories and the vortex lines form two sets of more or less perpendicular
lines. This qualitative picture is clearly not without similarity with the particle traces and
the vortex lines of FIG. 44 to 47 ignoring the thin region near the two spheres. Intuitively,
one can easily anticipate the gross features associated with the instability of the peculiar,
but reasonable “plane jet” of FiG. 48. This physical intuition, supported by the common

knowledge about plane jet flows, is at the heart of the present reasoning.

The above analogy, based solely on the basic flow solution, will now be pushed one
step further. Supporting evidence from the unstable disturbance field will be presented
further below. We introduce the concept of “fictive originating-slots” in the context of the
present radial-azimuthal jet. This could have been deduced directly from the vortex lines
of FIG. 46¢c, but is probably best illustrated by FiG. 49 which shows both vortex and
trajectory lines in the same three-dimensional view. The similarity with the “fan-spreading

quasi-2-D plane jet” appears clearly in that figure. It is recalled that although the basic

13 Valuable contributions could be made by studying the stability of a free radial jet with swirl.
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flow is axisymmetric, and therefore any of the vortex line in FIG. 49 does exist for all
azimuthal angles, there is no means for a given fluid particle to “know” or “realize” that
it is actually part of an axisymmetric radial-azimuthal jet rather than some conceptually
simpler “fan-spreading quasi-2-D plane jet.” Therefore, as indicated in FIG. 49, one can
imagine that the particular quasi-2-D plane jet shown originates from a “fictive
wall-slot” formed by the first and smallest of those vortex lines. Admitting this, one could
consequently associate to the basic radial-azimuthal jet a finite number of such “fan-like

spreading jets” around the circumference of the equatorial plane.

The above argument has two important practical consequences. First, it gives some
support to using qualitatively our basic knowledge of the stability of plane jets, and sec-
ondly, as mentioned above, it implies a finite number of such entities—quasi-2-D plane
jets—distributed along the azimuthal direction. That number will be related in a crucial

way to the unstable azimuthal wavenumber m, further below.

F1G. 50 recalls schematically some basic facts about plane 2-D jets, and also includes
a plot of its curves of marginal stability. The reference-length and reference-velocity for
the plane jet are similarly defined as ours above. The Reynolds number “ R” used on
the plot of marginal stability in FiG. 50 is the same as the one defined in (6.3.1). The
dimensionless frequency of the plane jet disturbance “ @ ” on that plot is given by
27

a = & = odiu, (6.3.2)

where a™ is the same frequency, but in the dimensionless units of the present study.

The important points to notice from the plane-jet stability results are (1) the general
shape of the left-most curve of marginal stability, (2) the order of Rej.; for o in the
range of about 0.2 to 1.5, (3) the fact that the most unstable vorticity perturbations
correspond to even modes as sketched in FiG. 50, and (4) for both the basic and the

perturbation fields, vortex lines and trajectory lines form perpendicular sets of lines.

The basic flow results presented so far together with the above discussion provide a phys-
ical model from which one could now infer the essential qualitative features of the expected
unstable disturbance field. In particular, using the fact that each quasi-2-D plane jet in
the azimuthal sequence has a finite length Lje; , one can determine the wavelength A* for
which every single “fan-spreading impinging jet” should first become unstable. Appreciat-
ing that smaller wavelengths lead to higher critical Reynolds numbers if one is considering
only the upper part of the curve of marginal stability in FiG. 50, then clearly, a finite-
length jet will be first unstable to perturbations for which A* = Lj.; , i.e., with only one

disturbance wave along the length of the jet. This translates in terms of the frequency «
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as

2
e = = djer . (6.3.3)
Ljet

TABLE 4 below provides some crucial information necessary to verify the above instability

model. Data from our three basic critical flows as well as one subcritical flow are included.

] Re djet Ujet Rejet Ljet 0t=27fdjet /Ljet ¢jet
1.27 | 245 | 0.23 0.25 14.0 1.0 1.45 60°
1.27 | 515 | 0.13 0.19 12.7 1.2 0.68 62°
1.00 | 489 | 0.12 0.19 11.1 1.3 0.58 49°
0.54 606 | 0.09 0.20 10.9 1.6 0.35 35°

TABLE 4. Radial-Azimuthal Jet Data from Basic Flow Computations.

Some of the most important conclusions and observations derived from TABLE 4 are listed

here:

¢ The general trend of our three marginal-stability points in the (a, Re) plane
appears in good agreement with the one observed for the plane-jet flow in FIG.
50. Note that no exact quantitative agreement is expected since, obviously, the

plane-jet flow and the radial-azimuthal-jet flow have fundamental differences.

e The above observation thus suggests that the actual curve of marginal stability for

radial-azimuthal jets shoud look qualitatively similar to the one for plane-jet flows.

o The jet velocities Uje; are seen to be basically the same at critical conditions.

However, the jet thicknesses dj.; appear to increase with larger gap-sizes.

¢ The major difference between a subcritical flow—with the radial-azimuthal jet
formed—and a critical one is not so much the Reynolds number associated with

the jet, but more importantly, the ratio “djes/Ljes.”

o The dimensionless length of the jet L;.;, at critical condition, is seen to increase
with narrower gaps, and even much more so if L. is normalized, as it should be,
with the jet thickness dje;.
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The azimuthal angles ¢je¢, sustained by each quasi-2-D plane jet associated with
the radial-azimuthal jets, correspond very well with the critical azimuthal wavenum-
bers m. observed at transition (see TABLE 2) : ¢je; determines the number of
quasi-2-D plane jets that can “fit” around the circumference of the equator, and

Y

that number should basically correspond to “ 2m,.,” as indeed it is observed.

The particular case of § = 1.00 for which two unstable azimuthal wavenumbers
had been noted in the computations, can now be understood. ¢;.;=49° yields a
possible number of quasi-2-D jets of 7.3 which falls in between 6 and 8, therefore,
between m,=3 and m.=4. The two other gap-sizes yield numbers much closer

to even integers, and thus lead to single unstable azimuthal wavenumbers.

The final checks of the proposed instability mechanism can now be performed through

examination of the unstable disturbance field. Among other things, our instability model

would predict that

i.

ii.

iii.

the unstable 3-D disturbance should exhibit the “jet-like character” that corre-

sponds to having perpendicular trajectory and vorticity lines,

the radial and azimuthal vorticity of the disturbance should more or less correspond
to the most-unstable vorticity mode of the plane jet, i.e., be even modes with
respect to the equator and composed of three extrema (see FIG. 50 for the plane

case illustration), and

a single perturbation wave should be observed along the length of a particle tra-

jectory in the radial-azimuthal jet.

Fic. 51 provides a clear verification of prediction (i) above for a gap-size é§ = 1.27.

Both the particle traces and the vortex lines form very nearly perpendicular sets of lines in

the core of each of the six azimuthal sectors. Furthermore, the appearance of those traces

clearly resembles the general outlook of the corresponding basic-flow traces of FIG. 47a

and 47b. This is consistent with what one would expect of a basically 2-D flow instability.

Prediction (ii) is remarkably verified as well. Fig. 53d and 53f, plotted near the

outer-sphere, and FIG. 54d and 54f, plotted near the mid-gap shell provide the supporting

evidence. Both w, and w, are clearly exhibiting the predicted “even character” with

three extrema, and moreover, both are seen to be in phase with one another as expected

of normal-to-the-trajectory vorticity disturbances.

Finally, F1G. 52a and 52c provide very strong evidence in support of prediction (iii).
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Using F1G. 49 illustrating one of the six “fan-spreading jets,” it is seen that indeed
one could nicely superpose the vorticity perturbation field to the basic jet flow and obtain
essentially one wave along each of the six jets. Furthermore, at the orign of each “fan-
spreading jet,” near the inner-sphere, the velocity is mainly azimuthal and the jet-area
very restricted (FIG. 49). Both of these facts are clearly noticeable from the disturbance
field as well, where the radial vorticity (FIG. 52a), much confined, dominates over the

azimuthal vorticity component near the origns of the six jets.

This completes our presentation of the instability mechanism for la;ge—gap SCF. It has
been shown to be, in essence, a shear instability!? associated with the radial-azimuthal
jet which forms at the equator of the basic flow. Its mechanism was seen to be basically
of a two-dimensional nature with close analogy with the plane jet instability and its fan-
spreading counterpart. Several aspects and implications of this instability mechanism still
remain to be investigated. However, in the author’s opinion, the evidence provided and the
argument presented constitute a very strong basis for the proposed model. It is hoped that
this view is equally shared by the reader, and that sufficient interest has been aroused to

stimulate further and related investigations.

6.4 Unstable Disturbance Field and the Supercritical Flow

In this section, the three-dimensional vector field of the unstable disturbance and the
resulting supercritical flow are briefly described. Some basic, global characteristics of the
periodic supercritical flows in different gap-sizes and at Reynolds numbers just slightly

above the critical values are also discussed.

Fi1G. 51 to 56 illustrate the 3-D disturbance field in the early stages of growth for a
gap-size §=1.27 at Re=525 ( Re/Re.=1.0194). In that early phase of the instability
process, the most unstable disturbance field has grown well above the initial noise level, but
is still quite small in comparison to the basic flow. At that point, it essentially corresponds
to the most unstable 3-D eigenmode which, in this case, is wholly composed of spherical
harmonics with m = 3. Although, in our computation, the subharmonics with m = 6
have started appearing through the interactions of the primary mode on itself and are
already detectable, they are still quite negligible. The largest, dimensionless, 3-D velocity

perturbation in the flow field at the time shown in the above figures is of the order 107%.

14 Sometimes referred to as an inflectional instability due to its connection with the presence of inflection
points in the velocity profile.
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We summarize the information obtained from FiG. 51 to 56 in what follows.

il.

iil.

iv.

vi.

vii.

. The most unstable disturbance for é = 1.27 is an infinitesimal three-dimensional

perturbation of azimuthal mode m=3, topologically symmetrical about the equa-
tor but with flow through the equatorial plane. Of course, there can be no flow

through the poles since there is no m=1 contribution into the disturbance field.

The unstable eigenmode in the equatorial region is seen to be consistent in every
respect with the “fan-spreading, quasi-plane jets” model described in the last

section.

The “one-wave perturbation” along the length of each “quasi-plane jet,” as pro-

posed in our model, is well shown by the w,-contours of FIG 52a.

The connecting regions in between the six “quasi-plane jets” are seen to be com-
posed mainly of polar vorticity, FI1G. 52b, suggesting the turning upward or down-
ward of the vortex lines in order to form a complex pattern of “vortex loops”

connecting the quasi-plane jets together.

. Strong boundary-layer vorticity on the outer-sphere, wy and wjy, is associated

with the perturbation field as seen on FIG. 52. Laboratory flow visualizations may
be affected by that boundary-layer vorticity and, thus, not reflect quite properly the

structures in the core of the flow.

The strongest velocity and vorticity features of the disturbance are observed in the
equatorial region. However, especially in the core of the flow, significant perturba-

tions with structures of local extrema can be observed at much higher latitudes.

The wall-streamlines and vortex lines on the surface of the outer-sphere, F1G. 55,
form two orthogonal sets of lines, as they should in that spherical plane. Several
critical points and critical lines can be seen. Even more so on the “quite artistic”

traces in the meridional planes of riG. 56.

The equatorial symmetry of the unstable 3-D eigenmode described above, is not pre-

served throughout the growth of the instability. Before saturation is reached, the now finite

disturbance field—not equivalent anymore to the linearly unstable eigenmode—exhibits a

distinct waviness at the equator. This is illustrated in FIG. 57 where the wall-streamlines

and the vortex lines on the outer-sphere are shown at a much later stage of the instability

growth. The basic flow structure associated with the initial eigenmode is still essentially

the same, however. This equatorial waviness, of the same azimuthal mode as the primary

unstable mode, is consistent with the experimental observations of Belyaev et al. (1978)
and Munson & Menguturk (1975).
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After a long and slow growth period that takes place over several hundred inner-sphere
revolutions, the level of the disturbance field finally saturates, and the equilibrium, periodic
state of the supercritical flow sets in. We now discuss some basic features of the supercritical

flows in large-gap spherical Couette geometries.

Fi1G. 58 presents the Legendre and Fourier energy spectra, E(I) and E(m), as well
as the energy spectrum E(I;m =3) for the supercritical flow at Re =525 in a gap-size
§ =1.27. The flow field is clearly well resolved by our numerical simulation according to
those spectra. The Fourier spectrum has contributions only in the axisymmetric mode
m=0 (basic flow) and the primary unstable mode m=3 together with its harmonics. The
exponential convergence rate of the energy in the Fourier modes is remarkably high and,
therefore, M =9 appears a sufficient truncation level in that direction. The Legendre spec-
trum of the primary disturbance mode E(l/;m=3) shows a short plateau at wavenumbers
6<1<8, which corresponds to length-scales of about 0.75d. Similar observations can be
made from the spectra of FiG. 59 for the supercritical flow at Re = 620 in a gap-size
8 = 0.54. The Legendre spectrum of the primary disturbance mode E(l;m=25) shows a

clear local maximum around /=10 associated with length-scales of about 0.94d.

Typical time-traces of the velocity components at a mid-gap point are shown in FiG. 60
for the same two supercritical flows. Periodicity of the signal is quite obvious. Each
trace is clearly composed of a single time-frequency in agreement with the experimental
measurements of Belyaev & Yavorskaya (1983) at Re just above Re, in a gap-size §=1.00.
From such time-signals, the period of the flow “T” can be obtained, and multiplying by the

»

number of waves in the azimuthal direction “m,,,” one can easily determine the angular

” Such phase angular velocity measurements together

velocity of the traveling waves “(,, .’
with the dimensionless torques T are presented in TABLE 5 below for four supercritical
flows. The wave angular velocities have been normalized with the angular velocity of the
inner-sphere €; ( ;=4 in our dimensionless units), and the torques corresponding to the

axisymmetric flows at the same conditions, Y.; , have been included for reference.

§ Re My Q[ T Taxi
1.27 525 3 0.115 49.77 49.68
1.27 550 3 0.108 50.65 50.58
1.00 500 4 0.155 86.20 86.10
0.54 620 5 0.246 401.4 400.5

TABLE 5. Supercritical flows at or near equilibrium :

Phase Angular Velocity £, and Dimensionless Torque T .
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From a comparison between the actual 3-D flow torques YT and their axisymmetric
counterparts, it is seen that differences less than 0.2% are obtained in all cases. We thus
conclude that there is no “jump” in the torque at transition. Therefore, torque measure-
ments cannot be used to detect transition in large-gap SCF’s. This observation is consistent
with all the evidence we have presented so far. As we have seen, the transition does not
directly involve the primary azimuthal motion, at least not outside the equatorial region,
and, furthermore, it does not introduce in the flow any new significant structures capable

of efficiently carrying, in the radial direction, much angular momentum.

The angular velocities of the traveling waves reported in TABLE 5 are in good agreement
with the available experimental values at transition'®. Yavorskaya et al. (1975) reports
a value of 0.24 for 6 = 0.54, while from the time-frequency reported by Belyaev &
Yavorskaya (1983) for 6=1.00, one finds a value of 0.153. Furthermore, it is seen from
our two results for 6 = 1.27 that €, decreases with Re in agreement with the trend
observed by Belyaev et al. (1978).

FiG. 61 presents the wall-streamlines and the vortex lines on the outer-sphere for the
flow at Re =525 with §=1.27. Those traces should be compared with the ones for the
basic flow at the same conditions and provided in FIG. 38a and 38b. Besides a small
waviness at the equator, the traces for the supercritical flow are practically the same as for
the corresponding axisymmetric flow, indicating the small relative contribution of the 3-D

disturbance field into the much stronger basic flow.

Finally, F1G. 62 and 63 show the velocity and vorticity components of the same su-
percritical flow, plotted with iso-contours on two spherical shells, one in the outer-wall
boundary-layer and one near the mid-gap, respectively. One salient feature of the two fig-
ures is that much more three-dimensionality (in opposition to axisymmetry) and structures
are present in the core of the flow rather than near the outer-sphere where mostly some
waviness can be seen. For qualitative comparison, the flow visualizations of Belyaev et al.
(1978) are reproduced in FIG. 64. So far, no clear interpretation of those pictures in

relation to the vorticity field of our computed flow has been established.

15 Figure 4 of Belyaev et al. (1978) has several quantitative inconsistencies with other values that their
own group reported in other papers. However, the trends shown by that figure are in agreement with
our numerical results.
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6.5 Possible Extensions of the Present Instability Mechanism

The author would like to add this short note to mention the possible applicability of
the large-gap SCF instability mechanism to some other basic flows.

Obvious similarities exist between the present large-gap SCF in the equatorial region and
several other flows!® such as the Taylor-Couette flow (Coles 1967, Marcus 1984, Vastano
& Moser 1990) and the Dean-vortex flow in a curved channel (Finlay et al. 1987). Both of
those flows are known to transition through a 3-D instability leading respectively to “wavy

Taylor vortices” and “undulating and twisting Dean vortices.”

Although the idea of some shear instability associated with the “outflow jet” between
the vortices in those flows is not new, no one has truly considered yet the “radial-azimuthal
jet” that also exists in those cases and its analogy with a sequence of adjacent “quasi-2-D
plane jets.” The concept of a finite-length jet and the inter-connection between that length
and the thickness of the jet could be tentatively applied to those flows. The first step should

be the production of actual jet trajectories and the corresponding vortex lines.

Although the author is not familiar with the relative strengths of the radial flow versus
the azimuthal flow in the above cases, it is likely that the jet trajectories be significantly
more azimuthal than radial and, therefore, the question of wavenumber selection in con-

nection with the finite number of “quasi-plane jets” might have to be adapted.

16 The Géortler vortex flow in the boundary-layer on a concave wall should also be added to the list (e.g.,
Park D. 1990).
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CHAPTER 7
SUMMARY AND CONCLUSIONS

The incompressible, viscous, laminar flows in the gap between two concentric spher-
ical shells in differential rotation about a common axis have been studied via numerical
simulations. Most of the investigation has focussed on the particular case for which the
inner-sphere is rotating and the outer-shell is at rest. This flow has been referred to as
the Spherical Couette Flow (SCF) in the present work. Two dimensionless parameters
define the flow: the Reynolds number Re=V;d/v and the gap-size ratio § =d/R; , where
Vi is the inner-sphere velocity at the equator, d is the gap-width, and R; is the inner-
sphere radius. Laminar transitions of the SCF have been simulated and analysed for both

small—narrow and moderate—and large-gap geometries.

A spectral method, based on divergence-free vector expansions for the three-dimensional
velocity field in spherical coordinates, has been developed. In a spirit of generality, most
steady and unsteady boundary conditions, including distinct axes of rotation, have been
considered. Chebyshev polynomials are used in the radial direction, and Vector Spheri-
cal Harmonics (VSH) are used for the angular directions. For given truncation levels, the
resolution is thus radially concentrated near the solid walls, and uniform over spherical
shells. VSH-transforms have been devised, and combined with the fast Chebyshev al-
gorithm to transform the velocity field back and forth between the spectral and physical
spaces. The resulting, highly specialized, numerical method has been implemented in the
Fortran, initial-value code “SCF3D.” The code has been fully vectorized and optimized

to be run on CRAY computers.

Aliasing errors associated with the computation of the nonlinear terms in physical space
are completely removed in our simulations through the use of the “3/2 rule.” Our code
SCF3D has been thoroughly validated via self-consistency tests and detailed comparisons
with the results of other investigations. Accuracy and spectral convergence have been
verified and established.

The basic flow and its transition in small-gap geometries are well documented in the
literature. In those cases, the transition of the basic solution results in flows exhibiting
Taylor-type vortices on both sides of the equator in a more or less localized band. In
narrow-gaps, the number of vortices observed is large, and they do not form close toroidal

vortex-rings parallel to the equator. They are seen to be tilted with respect to the equatorial
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plane, and to spiral toward the poles. On the other-hand, in moderate-gaps, the flow
remains axisymmetric after transition and the number of Taylor-vortices in each hemisphere
is small (less than four typically). In both of these types of small-gap flows, the transition
is usually described as being the result of some centrifugal instability, in much the same

way as for the well-known circular Couette flow.

Both the narrow and the moderate-gap flow transitions have been successfully simulated
here. To our knowledge, this is the first time that a numerical simulation of the Taylor-
Gortler spiral-vortex flow in narrow spherical-gap is performed. Very good agreement
with the experimental results is obtained. Some significant insight into the basic spherical
Couette flows has been gained through those simulations. The crucial importance of the
formation of “pinched meridional streamlines” in the basic flow is discussed and shown
to be a necessary condition that must precede the appearance of Taylor-vortices at Re..
The mechanism of formation of the “pinches” is analysed and described by a vorticity
argument. Two important, new results follow from that argument: (1) it leads to a
theoretical prediction that for § > 0.3, no Taylor-vortices can form in the SCF, and
(2) the formation of Taylor-vortices in the flow (at least at Re= Re.), although a clear
transition from the structure of the basic solution, can be viewed as a natural evolution of
the flow that does not require some initial perturbations to appear. This observation sets

a fundamental distinction between the spherical and the circular Couette flows.

Large-gap spherical Couette flows, classified as such from the experimental evidence
that they do not transition through the appearance of Taylor-vortices, have been much
less studied that their small-gap counterparts. A thorough description of the basic, ax-
isymmetric large-gap SCF over a wide range of Re’s is presented and discussed. It is
shown that the meridional recirculation flow observed in large-gaps is much stronger than
in small-gaps, and that the center of the recirculation cell in each hemisphere is much more
displaced toward the equator at comparable Re. The distribution of angular momentum
across the large gap is significantly affected by the meridional flow. At Re as low as
~ 30, the primary azimuthal flow cannot be accurately approximated by the Stokes-flow
solution. With increasing Re, the large-gap SCF develops a strong radial outflow region,
very localized at the equator. In turn, this produces a significant outward transport of
azimuthal velocity. The contributions of both, together at the equator, constitute what we

have termed a “radial-azimuthal jet.”

From our axisymmetric simulations, we establish that the large-gap SCF is stable to
axisymmetric perturbations. This fact is consistent with the experimental evidence which
indicates that the flow in large-gaps is unstable to three-dimensional perturbations. It is
shown in our survey of the literature on the stability of large-gap SCF that there exist

some conflicting reports between the few experimental observations available. However,
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there seems to be agreement on the fact that the surpercritical flow is essentially composed
of azimuthally traveling waves superposed to the basic flow. We use our spectral code to

investigate the 3-D transition of the SCF in three different large-gaps.

The comparisons of our results with the experimental ones show good overall agreement,
and permits clarification of the ambiguity that existed. We find that the general description
given by the group of Belyaev and Yavorskaya is consistent with our observations. It is
established that the transition is caused by a linear, three-dimensional instability. The
growth-rates of the unstable disturbances, at Re close to Re,, are found to be very small.
It may take several hundred inner-sphere revolutions for the disturbance to grow enough to
be detectable. That fact may be partly responsible for the failure of some early experimental
attempts to detect laminar transition in large gaps. From the computed friction torques
of both supercritical flows and corresponding axisymmetric flows, we show that there is
no “jump” in that quantity at transition. The angular velocity of the traveling waves is

reported for four supercritical flows at equilibrium in their periodic state.

The physical mechanism behind the 3-D transition of the large-gap SCF is investi-
gated. It is shown that a shear instability of the “radial-azimuthal jet” in the equatorial
region is responsible for the transition. Moreover, a careful study of the flow in that region—
especially through the inspection of three-dimensional views of particle traces and vortex
lines—has revealed that the radial-azimuthal jet introduces two length-scales of great sig-
nificance in the flow. Those scales correspond to (1) the thickness of the jet, and (2) the
finite length over which the jet exists from the standpoint of a fluid particle. That last
notion of a finite length has profound consequences. Among others, it permits to concep-
tually consider the radial-azimuthal jet as being, in some sense, an azimuthal sequence of

? The number of such jets that can fit around

adjacent “fan-spreading quasi-2-D plane jets.
the circumference of the equatorial plane is shown to correspond to twice the wavenumber
of the most unstable azimuthal mode obtained at transition. Several other predictions from
our instability model are also discussed and found to be remarkably verified when tested
against the actual field of the most unstable eigenmode obtained from our simulations.
Finally, the author suggests that physical ideas similar to those inherent to the present
instability model could be successfully applied to the transition of several other basic flows

of importance such as the Taylor-Couette flow at its transition toward waviness.
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Recommendations for Future Investigations

e As far as the large-gap spherical Couette flow is concerned:

i

ii.

iii.

v.

vi.

vii.

viii.

More critical points in the (6, Re)-space need to be determined.

The basic solution and the transition in larger gap geometries should also be
considered.

More curves should be added to the plot of Fig. 65 which could be used as a
basis of description for all gap-sizes SCF’s. .

Further work on the proposed instability model is necessary to refine its demon-

stration.

. Theoretical work on the stability of free and impinging radial-azimuthal jets

is greatly needed.

Similar ideas, as far as the instability mechanism goes, should be tried on the
Taylor-Couette flow, the Dean-vortex flow and the Gértler-vortex flow at their

transitions to waviness.

The 3-D stability of the supercritical, 0-vortex flow in small-gaps could be
investigated, and possibly found unstable in a similar way.

More experimental data and visualizations on the large-gap transition are

needed.

e As far as other spherical-gap flows are concerned:

i

il.

iii.

A more systematic study of the axisymmetric flow in large-gaps when the
outer-sphere alone is rotating would be of fundamental interest. The stability

of that flow could also be investigated.

Well resolved 3-D simulations of the “Taylor-Gortler spiral-vortex flow” in
narrow-gaps have much potential for interesting physical studies. The intrigu-
ing regions that we have called “vortex-branches” deserve further investigation
as well as the region where both the spiraling vortices and the basic recircula-
tion cell meet.

A study of the exact effects of the unsteady terms, through the acceleration of
the inner-sphere, is needed in connection with our argument on Taylor-vortex

formation in small-gap SCF’s.

o As far as all spherical-gap flows are concerned:

i

Effects of the rotation of the outer-spheres on the basic flow, and its transition

in both small and large-gaps should be studied.
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ii. All other combinations of steady and unsteady boundary conditions, including

different axes of rotation, could also be considered for future investigations.

In terms of the numerics, the most important contribution concerns the develop-
ment of fast transform algorithms for the Vector Spherical Harmonics. This could
lead to a significant reduction of the computing time and permit one to “transform”

more of the above recommendations into reality.
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APPENDIX A

Spherical Harmonics

A.1 Scalar Spherical Harmonics

The most comprehensive account of the history and development of the spherical har-
monic functions (scalar) can be found in the book by MacRobert (1948). One observes that
spherical harmonics have been intimately related to the Potential Theory, and therefore to

the Laplace equation
ViV =0, (A.1.1)

which, in spherical coordinates, takes the form

r

otrv 1 6( 8V) 1 0*V

o T me00 \""96) T snTo 04

5 = 0. (A.1.2)

One defines a SoLID SURFACE HARMONIC of degree ! as being a solution of Laplace

equation with the particular functional form

W(T’67¢) =r U1(0,¢) (A13)

where U(6,¢) is referred to as a SURFACE SPHERICAL HARMONIC of degree [. Also, for
every Vi(r,0,¢), there corresponds another Solid Spherical Harmonic of degree —(I + 1)
generated by

V_o(y(r,0,8) = =DV (r,0,4) . (A.1.4)

SCALAR SPHERICAL HARMONICS, Y;™(0,¢), are surface spherical harmonics of degree !
obtained by separation of the variables § and ¢. The ¢-direction is of course periodic over
27 and, not surprisingly, sine and cosine functions form the azimuthal part of the solution.

The order m of Y;"(0, ¢) corresponds to the wavenumber of this azimuthal wave.



134

The SSH (scalar spherical harmonic) is formally defined as

Y™(6,4) = O*() ™ (A.15)
. (204 1) (1 - m)"\'/?
o) = ( I U+ ) ) P (cos8) (A.1.6)

where |m| < 1. Here P/™(cos#) is the ASSOCIATED LEGENDRE FUNCTION, defined in
terms of the ordinary Legendre polynomials (Press et al. 1986, §§4.5, 5.4 and 6.6) by

PP) = (1)1 = i i) (A.17)

with p = cosf and m > 0. Negative order SSHs can always be related to positive ones
by using the property
Y,7™(0,¢) = (=)™ [Y™(8,8)] (A.1.8)

where the asterisk denotes complex conjugate. Also, due to the reality of O*(6), this
implies that
0;,™@) = (-1)™Or() . (A.1.9)

Furthermore and most importantly, the SSHs satisfy the following orthogonality prop-
erty

/“ / Y(0,0) [V (0,9)] sin0d0ds = Subrm (A.1.10)
[¢] 0

This property together with the completeness of their functional set (MacRobert 1948)
make of the SSHs the most natural and appropriate choice of expansion bases for any
arbitrary scalar field F(6,¢), i.e.,

F8,¢) = >, Y. fim Y"(6,0) (A.L.11)

1=0 |m|<i

where the complex coefficients fi,,, must satisfy [fim]* = (—=1)™ fi,—m for real F'.
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The excellent paper by Orszag (1974) discusses and establishes proofs for most of the
fundamental characteristics and advantages of using the SSHs in the context of numerical

computation. Among other things, it is shown that

i. for truncation L large enough, the series expansion (A.1.11) exhibits spectral con-

vergence;

ii. the behavior of the expansion at the poles (§ =0 or ) is the correct one for any

smooth field (the m** azimuthal modes have (at least) m'" order zeroes there);

iii. the resolution of the SSHs is uniform over the whole spherical surface, thus avoiding

any particular time-integration stability problem near the poles.

Moreover, by satisfying

VIV (0,4) = —I(1+1) ¥Y"(0,) (A.1.12)

the SSHs are obviously eigenfunctions of the Laplace operator on the sphere, and thus lead
to attractively simple forms for the treatment of any diffusion term such as the viscous

term in the present work.

The only difficulty associated with the numerical implementation of the SSHs concerns
the nonexistence of a fast transform algorithm for the 8-part of the expansion (Fast Fourier
Transforms being used for the ¢-part). A Legendre Functions Transform must be designed
for the task and its operation-count scales like 0(L3) for a truncation at L. This point,
perhaps overly emphasized by Orszag, has led him to propose an alternate set of expansions
wholly constructed by Fourier series (Orszag 1974). Although interesting, his approach of
0(L?log L) operations lacks simplicity and is prone to serious, unresolved pole problems.
It is therefore discarded here. Furthermore, it has been verified post priori that for practical
truncation levels, the actual operation-count for an efficiently implemented SSHs transform

actually scales somewhere in between 0(L?log L) and 0(L?).

The SSHs are understandably very difficult to picture physically. However, some useful
insight may be gained by looking at the location of their zeroes on a spherical shell. Doing
so, one distinguishes three types of harmonics: zonal harmonics when m = 0, tesseral
harmonics when 0<|m| <!, and sectorial harmonics when m =1 (e.g., MacRobert 1948).
Each type characterizes different wave patterns on the sphere, and may thus be used to

describe and interpret the physical solution field.
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A.2 Vector Spherical Harmonics

When vector rather than scalar fields are of interest, one has to turn toward vector
expansions that form a complete set on the surface of the sphere. In general, three inde-
pendent vector bases are required to describe an arbitrary 3-D vector space. They can be

constructed using the very advantageous SSHs of the previous section.

Several sets of vector expansions were developed that way, especially around the 1940’s
under the pressing demand of the particle physicists. Since then many different fields of
research, although mostly connected with theoretical physics, have benefited from spherical
vector expansions. In his brief but very useful paper, Hill (1953) presents a most interesting
family of such vector expansions as well as a list of some of their properties. Despite Hill’s
contribution, for some unclear reasons, a number of researchers have continued to develop
their own specialized vector bases, such as Glatzmaier (1984), who recently applied them

to the problem of stellar, thermal convection.

In this work, Hill’s vectors are used to construct our spectral, divergence-free basis
and test functions. They are referred to as VECTOR SPHERICAL HARMONICS, VSHs, and
are the object of the present section. A conscious effort for completeness and practical

usefulness has been applied to what follows.

The three independent types of VSHs have been defined in terms of the S5Hs as

X[ym(g,(ﬁ) = I}—(Tf“;—)'}—l/—z [ér X ('r VYI"?-)]
Vim(0,9) = T (211+1)]1/2 [rvy,m - (z+1)y,mér} (A.2.1)

1
HCEDRE

Win(0,9) = [rovm + v, ]

where Y™ = Y"(8,¢), and from which it is readily seen that V; ,, and W, lie together
in a plane with X; ., perpendicular to it. The VSHs are related to the vector Laplacian

operator by
V[ Xim(0,9)] = 0

V[ VinL(8,4)] = 0 (A.2.2)
V2 [Tt Wim(8,9)] = 0,

and are thus eigenvectors of the vectorial operator “ r?V? ” on the surface of a sphere of

radius r,
PV X = 1 +1) Xim
ViV, = —(+2)(+1) Vi (A.2.3)
PVEW, . o= —l(1-1) Wi
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Using Hill’s expressions for the VSHs and the following two results from Appendix B
of Hill & Landshoff (1938),

1
oYy ™ —2-[(l+m)(l~—m+1)]l/2 Ym -1 1¢’+
a0 i | (A2.4)
;2-[(1”m)(l+m+1)]‘/2 Yt et
1 (2z+1 172 y
2 \21+3
m mo
g {[(l+m+2)(1+m+1)]1/2 Y e 4 (o (A.2.5)

(= m+2) (= m+ ) Yt e

one can write explicitly the VHSs in their most appropriate computational form as

Xim(8,9) = Xim(0) €™
Vl,m(07¢) - Vf,m((’) eim¢ (A26)
Wim(8,6) = W, ,.(0) ™ .

The complex-valued polar vectors are given by

@m«}—l + bm @m 1 &
Xim(0) = ,[ - “‘il] ¥ (A.2.7)
i[O + A O] &
[e* ©*] &
Vim(0) = { + [flOr! + g7 0]t & (A.2.8)
+i [A" @71:{‘ + i O] &
(5" 0*] &
Win(8) = { + [k 077" + pr 0]t ] & (A.2.9)
+i[q" OfY + O] &
with @ = ©7*(0) defined by (A.1.6), and with the real coefficients defined below:
. 1 '(2z+1)(z+2+m)(1+1+m)}‘/2
al - oy
2 1(1+1)(20+3)
o _ L ’(21+1)(1—;—2—m)(1+1—m)}1/2
moo -
2 I(1+1)(20+3
i (G+1)¢ +1)2 (A.2.10)
m 1 [+m)A+1-m) Y
Cl = by
2 l(l+1)
oo L [U=m(r1ym) )
) I(1+1)
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EERRES
‘= "_Tﬁ]
oo L '(1+m)(1+1—m)]1”
T2 | @D+
-7 1/2
g L [Uom+lym) (A.2.11)
2 | @+00+1)
| '(l+2~l~m)(l+1+m)]”2
T2 (2 +3)(1+41)
oo 1 '(1+2—m>(1+1—m>}"2
T2 Q+3)(I+1)
g 1/2
= _21+1]
. 1 [(+m)I+1-m) ]
kl =
2 1(20+ 1)
o 1/2
o = 1L (-m)(l+1+m) (A.2.12)
2 121+ 1)
mo_ L [+24m)(I+1+m) ]
W=y 1(21+3)
o 1 [+2-m)(I+1-m) "
T Ty 12+ 3) ‘
Similarly to the SSHs, the VSHs satisfy the following orthogonality property
27 ™
| [ Con IDuw)” sinbd8ds = bcn b by (A.2.13)
0 0

where the vectors C and D can be any of X; ,(0,9), Vin(0,¢) or W, ,(0,¢4). Using

the well known orthogonality of the complex exponentials (Fourier functions)

/027r e'me (eimld’)* dé = 21 b (A.2.14)

(A.2.13) implies

" - 1
Clm . [Dl'm’] sinfdf = — 6CD (511: 6mml (A.2.15)
o 2

where now C and D can be any of the polar vectors X n(0), Vim(8) or W, ., (6).

Taken together, the three types of VSHs form a complete set of vectors on the spherical

surface, and can therefore be used to expand any arbitrary vector field (6, ¢). In general,
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F0,6)=> Y fE&Xim + S Vi + F% Wi (A.2.16)
1=0 |m|<

where the ( )’s are the complex expansion coefficients. Each of them is obtained

R
explicitly by taking the dot-product of (A.2.16) with the appropriate complex-conjugate
VSH and by using the orthogonality relation (A.2.13). Although more demanding than for
the SSHs, it is possible here again to show that the truncated series (0 < I < L) converges
spectrally for L large enough. To do so, one can express each of the three contributions
to the dot-product in terms of SSHs by using relations (A.2.6) to (A.2.12), and then, by
direct analogy, one can refer to Orszag (1974) and use the exact same procedure (as for the

SSHs) to complete the proof.

The most suitable form of the above expansion, for the purpose of computer implemen-

tation, can now be written as

M L fix, Xim(9) +
F0,¢) = > €™ > fY Via(0)+ (A.2.17)
mEmM =R w0

where M < L must be satisfied. The complete set, up to order L, is obtained with M = L,
but it may be convenient and more economical in some particular applications to limit the

maximum azimuthal wavenumber M such that M < L.
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The following list of properties comprises most (one hopes all) of the remaining, neces-

sary relations needed in the context of the present work.

Xiom = (1) [Xim]”
Vl,—m (_1)m [Vl,m]’*
Wim = (-1)™ [Win]

Il

DIVERGENCE OPERATOR

V- [R(rXim] =0

! V2rar  1+2
V[ R(r) Vim] = ) [ Mk
{

+1
204+ 1
)

+1

dr r

[N

dr T

-
vmmwmwzbwqwfﬁ_tgﬂxm

CURL OPERATOR

R | v

1/2
7 ____.I__.. .@i — _I_R V1m+
2041 dr T ’
v x LR X ] = I+1 V2 [dr  1+1
) + +
ST o Wi
’(21+1> [dr+ r R] .
. I \Y*[d 1+2
VX[R(r)Vim] = 2(’él+—1> [E;—l- - ]Xl,m
S 1+1\*[dr  1-1
VX[R(’I’)W[,m] = 1 (m) [——T— - - ] Xl,m

LAPLACIAN OPERATOR

VER(r) Xijm ] = Li(R) Xim
VE[R(r) Vim] = Liyi(R) Vim
VIR Win] = Liy(R) Wi
vith a2 2d I(l+1)

h=@mtie o

(A.2.18)

(A.2.19)

(A.2.20)

(A.2.21)

(A.2.22)

(A.2.23)

(A.2.24)

(A.2.25)
(A.2.26)
(A.2.27)

(A.2.28)
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APPENDIX B~

Some Useful Chebyshev Relations

< The Chebyshev polynomial of degree n, T, = Ty(£), is defined on the interval [-1,1] by
Tn(cosd¥) = cosnd . (B.1)

It satisfies the orthogonality relation

[ IO Tn©) = )7 bt = Fenbin (B2)

-1

where ¢ =2, and ¢, =1 for n > 0. For more information on some of the fundamen-
tal properties of the Chebyshev polynomials, the reader is referred to the Appendiz A in
Gottlieb and Orszag (1977), and to Clenshaw (1962).

For the purpose of the present section, K is taken as a real constant, and the following

definitions are introduced:

0, ifn<O0;
n = {2, if n = 0; (B.3)
1, ifn>0.
o= {T 5o 3.0
En = e+ et — 4dy (B.5)
Fp = n(n+1) (B.6)
G, = 1l.—n/4. (B.7)
P, = ¢ (3. + Fr1/4.)+ 2n (B.8)
Qn = dn-2(3.—2n+ F,/4) (B.9)
R, = ¢,(3.— Fp1/4) + cn-1(3. = 2n) + 2n — 4. — d, o F /4. (B.10)

Using the above definitions, and the convention that [---]' indicates the derivative with

respect to £, one can establish the following relations valid for all » > 0 :

. dn—-l Tn——l +
2% T, = {Cn o (B.11)



2(1 - &%) [Tal'
—4(1 - €%) Ty

206 + K) Ty
[(1-¢%)" Ta]”

~4(1 - €°)* [Tu]"

8(1 - €2)? [T,
~8(1- ) T,
BE(1 - €2)F [T,
8(1 - €2)° [Ta]"
236~ 1) [Ta]

2[(1~-€)" Tal
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dn-—-2 Tn~—2 +

E, Ta +

Cn Tot2

dn-1 Ta-1 +

2K T, +

Cn Tat1

Qn Tn—2 +

R, T, +

Pn Tn+2

"dn-—2Fn Tn—-z +

(ann-—l + dn—2Fn) Tn +
—cnFhq Tat2

—nd,_3 Thn-3 +
’Il(l - En——l) Tao1 +
~n(2+ cp-1) Tapr +

n Tats

dn—3 Tn—3 +

(dn-—lEn + cn—-?) Thp-1 +

cn(l + En) Tn+1 +

Cn Tha+ts

dn—-BFn Tn—-3 +

((Cn—Z - dn—2)Fn - dn—-an—l) Tn—l +
(cn(1 - Cn)Fn-—l - dn—2Fn) Tn+1 +

CnFn—l Tn+3
dn——3nFn+1 Tn-—3 +
"'dn-—B((n + Q)Fn—Z + (27‘1, - 2)Fn+1) Thuo1 +
dn-3((2n + 2)Fpn_gs + (n—2)Fry1) Tayr +
—dp_3nFy,_o Tays
ndn_;; Tn-—3 +

W Epi+3dn_1—4/3) Tu_1 +

n(cn—l —Cn+ 1/3) Tn+1 +

—n Tn+3

dpn—3Gr Tn-3 +
(cn——2 + dn-—lEn + (1 - En—l)n/4-) Tn—l +
(Cn + cn by — (2 + cn—l)n/4-) Thyr +
(Cn + 72/4) Tn+3

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)

(B.20)

(B.21)

(B.22)



16(1 - €2 Ty =

2l +K) Ty

464+ K)* T,

41~ E)E+ K) [Ta]’

~8(&+ K)(1 - €*) Ty

~16£(6+ K)(1 - €*) Ty

—
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( dn—-4 Tn—4 +
(En—2 - 2dn—-2) Tn——2 +
(Cn + €nwa + Enz) Ta +
Cn(En - 2) Thy2 +

\ Cp, Tn+4

{ dn~2 Tn~2 +
2Kdn-1 Tn~1 +
(Cn + Cn-—l) Ty +
ZKCn Tn+1 +
Cn Tn+2

( dn—?. Tn—2 +
4I(dn-1 Tn—-l +
(Cn + Cn—1 + 41{2) Tn +
4Kc, Tn+1 -+
Cn Thay2
nd'n.——2 Tn—-2 +
2nkK Ta-1 +
nen1—1) Ta +
—-2nK Tn+1 +

\ —7 Tn+2

( dn~—3 Tn—3 +
2Kd,_» Tn-2 +
(dnolEn + Cn—?) Tn-1 +
2K E, T, +
Cn(l + En) Tn+1 +
2K e, Tn+2 -+
Cn Tn+3

r dn——4
2Kd, 3
(dn-—-2En + Cp-2 + Cn——3)
2I((dn——l E, + Cn——2)

(Cn(1 + En) + Cn——lEn + Cn--2)
2K cn(1+ Ey)
cn(2+ Ey)
2Kc,
\ Cp,

Tn—-4 +
Tn—-s +
Tn—2 +
Tn—~1 +
T, +
T +
Tay2 +
Tn+3 +
Tn+4

(B.23)

(B.24)

(B.25)

(B.26)

(B.27)

(B.28)



8¢t K
FEFE) (6 =3) Tu =

144

dn—4

4Kd, 3

(4I(2dn—2 +Cn—2 + C'n.—-3)
41((cn——1 + cp—2 — dn-—l)

(¢n + cn-2 — 8K+

(Cn + Cn—l)(cn +cn-1 + 4K? - 2))
4Kc,(3+ E,)

Cn(cn + Cp1+ 4K2)

41Ke,

~16(6 + K)(1 - € [Ta] =

\ Cn,

( ndy_4 Ta_ga +
2nKd,_3 Ta-3 +
n(cn-2 + Cp-3 — 4dn——2) Th 2 +
272'1((671-—1 + Cp—2 — 5) Tn——l +

—166(6+ K)*(1 - &%) [Ta)' =

16(6 + K)*(1 - )2 [Ta]" =

n(cn—-lEn—l + 2) Th +
2nK (24 ¢n-1) Tay1 +
n(l + Cn—l) Tuy2 +
—2nkK Tn+3 +
-7 Tn+4

r "'ndn—4 Tn—4
~4ann-3 Tn_.3
n(dn—2(1 = cnoq1 — 4K?)~
Cn—2 — Cn-—3) Tn-—2
4nI((dn—1 —Cp—-1 — cn—2) Tn—-l

n(l —cp—g+ (1 —cn-1)
(41{2 + e+ cn—l)) Ty
477,1((1 + Cn(l — Cn—l)) Tnt1

72(2 + 4K? + Cn(l — Cn-—l)) Thnyz

4nK Tn+3

n Tn+4
r dn-—4Fn

4Kd, _3Fy,

Fn—ldn—Z)

41((Fn(cn—2 - dn—-Z) - Fn-ldn~1)
(Fn(cn..z - an_z(l + 21(2))-*—
Fro1cn(1 —4K? — ¢ — cpn-1))
41((Fn—~lcn(1 - Cn) - fndn--2)
(Fr—1¢n(24+4K? ~ ¢,) — Fod,,_2)
4K F,_qcq

Fo_1cn

(Fn(cn-—2 + Cn-3 -+ dn'—2(4[(2 - 1))_

Tn——4 +
Tn——3 +

Tn-—2 +
Tn—-l +

Ta +
Toy1 +
Toy2 +
Toys +
Tn+4

(B.29)

(B.30)

(B.31)

(B.32)
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f dn—~4Gn Tn—-4 +
2I(dn_3Gn Tn——3 +
(Gn(cn—Z + Cn—-3) + dn—~2(n - 2)) Ta-2 +

21((071.-2 +dn1En + (1 - En—-l)n/4-) Tn:l +
(ca(1+ En) = (2+ cno1)nf4.+

' 252 !

e+ =P Ta) = {0 o T ) Ta 4 (B.33)
2I((Cn(1 + En) - (2 + cn-l)n/4.) Tn+1 +
(cn(En +2) = (1 + cn_y)n/4.) Tays +
2K (cn + n/4.) Tays +

\ (Cn + n/4) Tn+4

dn—-4Qn/4- Tn~4 +
I(dn——BQn Th3 +
(Rndn—Z + Qn(cn—2 + Cn—B + 41{2))/4' Tn—2 +
I((Rndn—l + ann—2) Tao1 +

(E+ K1 = D)2 Ta]" = { (Pr+ Qnen—z+ Rulcn +cnor +4K%))/4. Ta +  (B.34)
I((Pn + Rncn) Tat1 +
(Po(K? +1/2) + Rycn/4.) Tay2 +
KP, Tats +
P, /4. Thia
dn—«s Tn——s +
zﬁrdn-—zl Tn-4 +
(dn-3(cn-3 — 5) + Cn—4) Tuo3 +
21((1871—2 - 2dn——-2) Tn—2 +
(dn——l(cn + Cp—2 + En2)+

O R A Y (B35
cn(QCn +en-1+Cnz — 6 + Enz) Tn+1 +
2K cn(En — 2) Tayz +
cn(En - 1) Tass +
QI(C,—L Tn+4 -+
\ Cp, Tn+5
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( dn——-S

4Kd, 4

(d'n,—3(1 + 4K*? + En) + Cn-3+ Cn—4)
4I((dn—2 E,+cna+ Cn—-B)

(dn—l(l + (1 + 4—[(2)En) + cn—lEn+
Cn-—2(l + 4K2 + En + Cneo + Cn-—3))
4K(Cn + Ccp-2 + (Cn + Cn-1 )En)

Cn(2 + 4K2 + ¢ + Cn~2+

(1 + 4K? +E,+cn2+ Cn—B)En)
4Kcn(En +2)

en(En + 3+ 4K?)
4Kc,

\ Cn,
dn——SGn
I(dn_4(4 - n)
(dn-3(n - 2)+

(dn——B(l + 41(2) +Cn-3 + Cn-—4)Gn)
4I((Gn(cn—2 + Cn——3) + dn-—Z(n - 2))
(Gn(cn-—3 + Cn———22 + Cn-—~1+
Cn—2(n—2)—do1(2+n/2.)+

(Cn—-l + 41(2)(671-2 + Cn1—

3dn.__1 + (5 - Cp—-1 Cn..g)n/4.))
4K’(Cn—l(cn-lGn +n - 2)+

cnlcn — 3) + en2Gpn — n/2.)

(CnQ(Cn + 2cn-l -2+ 41(2) +cn-1
(cn-1+cn—g— Ep_1nf4. — 3+ 4K?%)—
cn(2+ /2. 4+ 12K?) - ¢y
(1+4K*)n/4.— (14 8K%)n/4.)

4K (cn(En +2) = (14 cn—1)n/4.)

(1 + 4K (cn +n/4.) + cn(En + 2)—
(14 cp-1)n/4.)

K(4c, + n)

(en +n/4.)

Tn——5 +
Tn——4 +
Tn—-3 +
Tn—-2 +

Tn—-»l -+
T +

Tag1 +
Tn+2 +
Tn+3 +
Toyqa +
Tn+5

Tn—5 +
Tn—~4 +

Tn——3 +
Tn—z +

Tn-l +

Toy1 +
Tn+2 +

Tn+3 +
Toya +
Tn+5

(B.36)

(B.37)
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APPENDIX C

Details of the Timestepping Algorithm

NOTATION
u : Velocity vector u(r,8,¢,t) [ Qi=o = 0 ]
w : Vorticity vector w(r,8,¢,t) [ Wi=o =0 ]
P7¥ : Nonlinear product “(ru) x (rw)” [Pr™(i=0)=0]
s : Fourier transformed quantity — fet (r,6; m) [ ¢ direction ]
® : VSH transformed quantity — fet (731, m) [ (6,9) directions ]
.

: VSH-Chebyshev transformed quantity — fct (n,l{,m).

COMPLEX MEMORY ARRAYS

- “UW” ofsize {6(M +1),(Na+1),L} (see Fic. 2)
- AR “AR) “Fr, “Fp ) each of size {(N + 1)(M + 1)}
- “AY “B “CY “D, “E,” “F” each of size
max {2(Ng+ 1)(Mg+1); 2(Lg+ 1)(Mg+1)}
- “G1” of size {(Ng+1)(La+1)}
- “G2” of size {(Na+1)(M +2)}
_ “G3” ofsize {(Na+1)(L+2)}

REAL MEMORY ARRAYS

2

- “[Tband]*,” “[NL]’,” “conversion matrices,” and the required 16 other sub-

matrices occupy a series of arrays of total size less than {300(N+1)+51(N +5)}.



148

EACH TIMESTEP

PASS A [“Vertical Planes” (n,m) ]
DO for 1<I<L:

1. Transfer 13”” from 3-D array UW to plane-arrays D,E,F for 0<m< min(l, M).

2. Backward Chebyshev Transform PT“’ — P’"“’ for 0<m< min(l, M).

3. Retrieve and load forcing vectors Fp, and F, from disk.

4. Ay, « {bound. cond. vector-terms}.

5. Ay, « { nonlinear vector-term = [NL]{PT%} }.

6. Am — Ap+ { nonlinear vector-term = [NL]{PT%} }.

7. Fm = Fo+3tAn 5 Fp « Fp + 3204,

A:i: Ot B:i:)

8. [Tband]* ST

(
9. Solve: [Tband]*{F,} = {F,}, and [Tband] {Fun} = {Fu}.
— (A

+ 2Re ) :
11. A, « [Tband]*{F,} - AEA, and An — [Tband] {Fm} — AL A,

10. [Tband]*

12. Compute u and 7w using conversion matriceson Fp, and F,, and store
in plane-arrays A,B,C, D,E,F (including zero-coefficients for {<m< M).

13. Forward Chebyshev Transform of u, rw — U, #w for 0<m< min({,M).

14. Transfer U, 7w from plane-arrays A,B,C, D.EF to UW for 0<m<M.

15. If desired, save current solution on disk from Fy, and F,.

16. Fry «~ Ay 5 Fp « Ay

17. Unload Fy,, Fp on disk.

PASS B [“Horizontal Planes” (m,1) ]
DO for 0<n< Ny :

1. Transfer u and rw from UW to arrays A,B,C, D,EF for 0<m < M, and
1<I< L (set to zero all coefficients with =0, L<I<Ly,and M <m<My).

2. Forward “Polar Transform” of 4, 7w — W, TW .

3. If desired, save the m =0 row of %y in plane-array G1 for computation of torques.
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4. Forward Fourier Transform of W, W — u, rw .

5. If desired, CFL computations.

6. Computation of nonlinear product PL¥ = ru X rw, store in arrays D,E,F.
7. If desired, Energy-Spectra work in plane-arrays G2, G3.

8. Backward VSH Transform of PLY — 13::’," .

9. Transfer I/S:;" from arrays D,E,F to UW for 1<I<L and 0<m < min({,M).

ENDING of TIMESTEP [ Plane-Arrays G1,G2,G3 ]

1. If array G1 filled, then compute torques 7;, 7,.
2. If CFL information cumulated, then compute new At.

3. If arrays G2 and G3 filled, then compute Energy Spectra.
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APPENDIX D

Discrete Inverse Transform by Gaussian Quadrature

Consider the following approximation of the continuous function f(z):

L
f@) = fu(@) = Y @ () (D.1)
=0

where the a;’s are the coefficients of the truncated expansion. The basis functions ®;(z)
can be any suitable orthogonal polynomials that satisfy a continuous orthogonality relation

of the general form

b
/ w(z) ®i(z) Pp(z) dz = Cpbiq (D.2)

with w(z) being the proper weight-function corresponding to the polynomial family ®,(z),

and C,, a known function of the index n.

»

From an arbitrary set of “L+41” distinct values of z, one could construct an “(L+1)
system of algebraic equations for the unknown coeflicients a,. However, such an approach
would yield a prohibitive operation-count of order 0(L3) for the solution of the system.
This estimate sky-rises to an intractable 0(L®) operations for a similar approach applied
to a three-dimensional expansion with an L X L X L truncation. The Gaussian quadrature

method that follows brings those estimates down to 0(L?) and 0(L®) respectively.

Applying the orthogonality relation to the expansion (D.1), one easily finds that the coef-

ficients are given by

1 [t
a = Gl w(z) f(z) ®i(z) dz . (D.3)

In practice, this integral must be evaluated numerically in order to determine each of the

coefficients @;. This is accomplished by means of an appropriate Gauss quadrature.

First, one assumes that the “ f(z) ®;(z)” part of the integrand in (D.3) can be adequately
approximated by an Hermite interpolation (Ferziger 1981) of the form:

L L
9(z) = f(@) Bu(z) ~ Y Ui(z)g(ze) + D Valz) g'(2x) (DA4)
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where
Uk(z) = [1-2(s—2x) Li(zk)] Li(2)
. (D.5)
Vi(z) = (z—=x) Li(z)
with
Li(z) = b (ff‘il) , (D.6)
and
F(z) = (z—z9)(z—21) ... (x—2L) . (D.7)

Here, the by’s are Lagrange constants while the functions Lx(z)’s are polynomials of degree
“L” since F(z) is a polynomial of degree “L+1.” The standard Hermite interpolation
(D.4) uses “L+17 points (with the actual abscissas z’s still unknown) and can therefore

interpolate exactly polynomials up to degree “2L+1” in g¢(z).

One now looks at the following integral of (D.4):

b b
/ w(z) g(z) dz = / w(z) f(z) ®i(z) dz

L L (D.8)
~ Z uk g(zk) + Z vk g'(zk)
k=0 k=0
where
b
up = / w(z) Uk(z) dz (D.9)
and
b
v = / w(z) Ve(z) do - (D.10)
To obtain the desired quadrature, one requires that
v = 0 for k=0,1, ..., L (D.11)

which yields for each &k the fundamental condition

b
/ w(z) F(z) Ly(z)dz = 0. (D.12)
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Recall that F(z) is a polynomial of degree “L+1” with all its zeroes coinciding with the
“L+1” =z, and the Li(z) are polynomials of degree “L.” Furthermore, if the z;’s
are all different, the polynomials Li(z) are linearly independent. Since there can be no
more than “L41” linearly independent polynomials of degree “L,” the Li(z)’s form a
complete set. F(z) can therefore be interpreted as being a polynomial of degree “L+1”
that is orthogonal in the space with weight-function w(z) to any polynomial of degree
less or equal to “L.” This polynomial is unique and can always be constructed (Press et
al. 1986). The condition (D.11) thus fixes the choice of the abscissas zx’s as being the
zeroes of that polynomial. One usually refers to those points as the collocation points of

the transform or the quadrature.

Of great practical importance are the cases for which w(z)=1 and w(z)=(1-22)"1/2
with a=—1 and b=1. In the former case, F(z) = Pp41 is the Legendre polynomial of
degree “L+1,” whilein the latter, F(z)= Tp41 is the Chebyshev polynomial of the same
degree. Those two cases yield integration methods that are referred to as Gauss-Legendre

and Gauss-Chebyshev quadrature respectively.

With the appropriate set of z;’s, the integral (D.8) leads to the quadrature formula
L

b
/ w(z) g(z) de ~ Z ur g(zk) (D.13)

k=0

where the “weights” wuy , given by (D.9), can be computed by a variety of methods dis-
cussed in Press et al. (1981). Tabulated abscissas and weights for most of the cases of
interest can be found in Ferziger (1986) and Abramowitz & Stegun (1972).

Applying the quadrature formula (D.13) to the integral of (D.3), one gets the desired

“inverse transform” relation (0<I<L):

L
a ~ 61'7 I;) ug f(ze) ®i(z)

(D.14)

This standard inverse transform (often qualified as “slow transform” in opposition to the
“fast algorithm” of Fourier transforms) requires a total of 0(L?) operations to evaluate all
the expansion coefficients in (D.1). Memory requirements are also of order (L?) if the “ L+1”
basis functions ®; are pre-computed for each of the “L+41” values of z;. Alternatively,
recurrence relations may sometimes be used efficiently to evaluate those functions, thus

reducing to 0(L) the memory requirement.
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DISCRETE ORTHOGONALITY

Applying the algebraic operator “Z,l—; Y i uk ®;(xx)” on both sides of the discrete expansion
(D.1) evaluated at z =1y yields:
1 L L L
E Z Uk f(:l:k) (I)j(fl?k) = ZZ '5“ U ay <I>]-(xk) @I(zk) . (D.15)

J k=0 k=0 1=0 7

From (D.14), the left-hand side is simply a;. Inverting the summations on the right-hand

side, one gets

L L
1
a; = 2 al -6; kio Uk <I)j(:ck) ‘I’l(l'k) ’ (D'16)

where clearly, for the equality to hold, one must require that

L
Z U <I>j(xk) Ql(xk) = C]’ 61',1 . (D17)
k=0

This is the discrete version of the continuous orthogonality relation (D.2). If known a
priori, the discrete orthogonality relation can be used directly on the truncated expansion
(D.1) to generate the inverse transform (D.14) (as described in Section 3.4 for Chebyshev
expansions). Unfortunately, for most polynomials (e.g., Legendre polynomials), no explicit

and simple relations exist for the necessary Gaussian weights uy .

EXACTNESS ISSUE

In general, the approximation (D.1) for f(z) is not an exact representation. All other
approximation signs appearing in the rest of the development are merely consequences of
that single initial truncation error. This implies that the computed expansion coefficients
a; are not exact in the sense that for different truncation levels L, slightly different values
would be obtained. However, since in most cases the expansion (D.1) exhibits spectral
convergence, so do the computed a;’s. Furthermore, one always has fr(zx)= f(zx) (no
error at the collocation points) when the coefficients given by (D.14) are used to compute
the approximation fr(z). The method is therefore totally self-consistent for any given

truncation level.

Moreover, in the present context of application, f(z) has an exact truncated representa-
tion (whether it is velocity, vorticity or nonlinear product) since the whole computation is
limited to a finite-dimensional, discretized space of functions. Therefore, an identity sign
would replace each and every approximation sign in this appendix. The inverse transform
procedure as well as the computed spectral coeflicients are thus “exact” in this implemen-

tation.
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FIGURES
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Spherical-gap flow geometry and coordinates.
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Ficure 2. Conceptual topology of the memory array associated with each of the three
components of a VSH-Chebyshev transformed vector field with truncation
limits N, M and L.
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)

Level Max. = 0.500E+00
Level Min. = 0.000E+00
Increment = 0.500E-01

F1Gure 3. Angular velocity contours €1 for the Stokes solution (Re = 0) in the case
6=10,Vi=0and V, = 1.
The circumferential distance between the tick marks on the outer sphere is
the dimensionless gap width d (d=1).

Level Max. = 0.500E+00
Level Min. = 0.000E+00
ncrement = 0.500E-01

FiGure 4. Angular velocity contours Q of the steady state axisymmetric solutions at
Re=V,dfv = (a) 50, (b) 250, and (c) 500.
Parameters: § =1.0, V;=0,V, = 1.
Truncations: N =16, L =42, M = 0.
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Jrom = e

Level Max. = 0.144E-01
Level Min. = -0.144E-01

Increment = 0.192E-02 (a) Re =50

i I

! i

i i

1 t

t b

i 1
Level Max, = 0.970E-02 Level Max. = 0.129E-03
Level Min. = -0.970E-02 Level Min. = -0.129E-03
Increment = 0.129E-02 (b) Re = 250 increment = 0.516E-04

Level Max. = 0.737E-02 Level Max. « 0.200E-03
Level Min, = -0.737E-02 Level Min. = -0.200E-03
increment = 0.982E-03 (C) Re = 500 Increment = 0.364E-04

5. Streamlines ¥ for the same solutions as FiG. 4. The meridional solutions in

the lower hemisphere are antireflection-symmetric with respect to the equa-
torial plane. Iigures on the right show the details of the near-zero levels.
Full contours correspond to positive values (clockwise circulation here) while
dashed contours are used for negative values.
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FiGurReE 6. Streamfunction and angular velocity contours. Comparison with other pub-
lished works for the flow problems of Fic. 4 and Fig. 5.
Contributions from
o Pearson C.E. (1967) : (a) ¥*, Re=50; (b) ¥*, Re=500; (c) Q~,

Re = 500;

e Greenspan D. (1975) : (d) ¥*, Re =50; (e) U*, Re = 500;
e Dennis & Quartapelle (1984) : (f) ¥*, Re = 250; (g) Q*, Re = 250;
o Schwengels et al. (1989) : (h) U™, Re = 500; (i) 7%sin6 Q*, Re = 500.
Note that the above contour plots are not provided with constant increment
between levels. Conversion : ¥ = 4x10-4¢* ; 1= 0.50%.
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Level Max. = 0.203E+01
Level Min. = -0.203E+01
Increment = 0.271E+00

F1GurE 7. Azimuthal vorticity contours wg for the flow shown in Figs. 4 and 5 at
Re = 500.
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FiGurg 8. Meridional energy spectra E,,(l) for the solutions at Re = 250 and 500.
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Level Max. = 0.110E+00 Level Max. = 0.180E+00 Level Max. = 0.107E£+01
(a) tLevel Min. = -0.110E+00 (b) Level Min. - -0.663E-16 (¢)  LevelMin. = -0.107E+01
Increment = 0.147E-01 Increment = 0.120E-01 Increment =~ 0.143E+00

2 T T T ¥

FIGURE

o Azimuthal energy
-—-—a--—-—  Meridional energy

. logyg Ep

logyp E¢

(d)

0 20 40 60 B0 100
Polar Wavenumber "1*

9. Steady-state axisymmetric solution at Re = Vid/v = 117 for § = 0.18,
Vi=1,and V, = 0. Truncations: N =16, L = 84, M = 0. Shown are the
(a) streamfunction ¥, (b) angular velocity ©, (c) azimuthal vorticity w,,
(d) azimuthal and meridional energy spectra Eg(l) and E,,(I). Note that
for clarity the gap width on the contour plots has been amplified 4 times.
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Ficure 10. (a) Streamlines, (b) angular velocity, and (c) energy spectra of a numerical
solution from Marcus & Tuckerman (1987) for the same flow conditions as
those of F1a. 9. The gap width in (a) and (b) is amplified by a factor of
about 3.3, and full streamlines are associated there with counter-clockwise
circulation.
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Ficure 11. Time-evolution of the streamfunction ¥ for an axisymmetric “0— 2 transi-
tion” ina ¢ = 0.18 gap with V; =1 and V, = 0. Centrifugal instabilities
lead to the formation of two Taylor-type vortices on each side of the equator.
Truncations are N = 16, L = 84 and M = 0. Bottom figures correspond
to the numerical results of Marcus & Tuckerman (1987) for the same tran-
sition. At ¢ = 0%, the Reynolds number is suddenly increased from Re = 0
to Re = 144. Shown are the streamlines for times approximately equal to
(a) Ty, (b) 2T:, (¢) 3Ty, (d) 4T;. (e) 5T;, where T; = 2 /Q; = 34.9
is the dimensionless period of revolution of the inner sphere.
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Time = 34.95 Time = 174.60

Level Max. = 0,180E+0C
Level Min. = 0.000E+00
Increment = 0.360E-01

Level Max. = 0.180E+00
Level Min. = 0.000E+00
Increment = 0.360E-01

/~Time = 174.60

Level Max. =~ 0.129E+01
Level Min, = -0.129E+01

Level Max. = C.128E+Q1
Level Min. = -0.128E+01

' """" . Increment = 0.258E+00 increment = 0.256E+00

12. (a) Angular velocity §, and (b) azimuthal vorticity wg for t = T; and 57;
in the “0—2 transition” flow of F1G. 11.
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Ficure 13. (a) Time-evolution of the inner torque coefficient 7; during the “0— 2 transi-
tion” of F1G. 11. (b) Difference between the inner and outer torques (7;—7,)
during the same traunsition.

Corresponding results of Marcus & Tuckerman (1987) are encased within
each figure for comparison. Use of different reference quantities yields the
conversion 7; = 11/8 and 7, = 17,/8°.
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3 T i T ¥

——e—— Azimuthal energy

-——a-—— Meridional energy
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Polar Wavenumber "1"

FIGURE 14. Azimuthal and meridional energy spectra E4(l) and E,,(I) at ¢t = 5T} for
the “0—2 transition” flow of F1G. 11. Encased for qualitative reference only
are the spectra for the steady-state, 2-vortex flow at Re = 162 from Marcus
& Tuckerman (1987).
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PI3
Radial
Outflow
Region
PY2
@ : Basic Vorticity D=5u/24 [(§+2)/28] - 3/2
(a) &

@ > Additional  Vorticity

p)
1
0 B
0o 1 2 3 4 5 &
5
(b)

FIGURE 15. (a) Schematic model illustrating the various quantities involved in the es-
timate of “D7”, the distance between the center of the basic vorticity cell
(assumed centered at fc, = 7r/24) and the equatorial, outward-radial-
velocity region — Section 4.4.3.
(b) The estimate “D”as a function of the gap-width ratio ¢ =d/R; , from
eq. (4.4.5).
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GR1D

Fia. 16. Collocation grid “33x130x32”
(Nyg=32, Lg=129, My=15)
used for our §=0.06-calculation -
of a spiral Taylor-Gortler-vortex
flow, and plotted here on the
surface of the inner sphere and
in a meridional plane (only 1/4
of the radial points are shown). 7
Here and on all other related fig-
ures, the gap-width has been en-
larged 3.2 times.

X
LSRR
RS
SRS

Narrow-Gap Spherical Couctte Flow - F2D3 ( (b)
i AZIMUTHAL VORTICITY Wp a’)

FIGURE 17. (a) Iso-contours and (b) colored-surfaces of azimuthal vorticity w, in merid-
lonal planes. Negative vorticity is shown as pale dotted lines or clear gray
surfaces while full lines or black surfaces are used for positive vorticity.

Note the non-axisymmetric character of the solution.
Flow parameters: §=0.06, V;=1, V,=0, Re=195.

Numerical truncations: N=16, L =84, M =9.
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Ficure 18. Visualization of the numerical solution versus the laboratory visualization of
a spiral Taylor-Gortler-vortex flow in a narrow spherical gap. Same numerical
simulation as F1G. 17.

(a) Radial velocity u, on a spherical shell at r~R; +0.3 (R,=R;+1) and
on the meridional plane ¢=0. Nonzero velocity appears as dark bands corre-
sponding to radial inflow or outflow regions (sink- or source-regions) located
in between adjacent Taylor-Gortler vortices. Pale bands, for which w,.~0,
correspond to the centers of the vortices.

(b) Visualization of a similar flow in a larger-gap geometry, & = 0.138, us-
ing aluminium-flake method with both front lighting and slit illumination.
Reproduced from Nakabayashi (1983).
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E(1} ~—— & = 0.06 , Re = 195

: i
g W\N
(a) &\
-7
-9
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Polar wavenumber “1"
» E{m}) ——- & = 0.06 , Re = 195
...2\
-3
E
i \ A
o FTYTR
-5
\b\\
% \\
-7
0 2 4 6 8 10

Azimuthal wavenumber “m"

Ficure 20. Energy spectra for the spiral Taylor-Gortler-vortex flow at Re = 195 in a
gap-size 6=0.06 (see also caption of F1G. 17).
(a) Legendre-total-energy spectrum FE(1).
(b) Fourier-total-energy spectrum E(m).
The local maximum in E(l) at [~63 corresponds to a length-scale of about

“0.9d” (scale~ 7 R, /1), i.e., the characteristic size of the Taylor-Gortler vor-
tices.
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(a) (b)

Ficure 21. Meridional streamlines of (a) the axisymmetric part (Fourier mode “m=0")
of the 3-D Taylor-Gértler-vortex flow solution (see FIG. 17 to 20), and of
(b) the axisymmetric, periodic flow computed for the same conditions and
shown here at ¢=1800 (6=0.06, Re=195).
The width of the gap is shown above in actual-size. Note the presence of more
than one pinch per basic recirculation cells in (b).
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Level Max. = 0.657E-02
Level MIn. = -0.657E-02
Increment = 0.119E-02

Level Max. =~ 0.467E-01
Level Min. = -0.467E-01
Increment = 0.848E-02

J— (¢c) Re=245 (d) Re=550

Level Max. = 0.544E-01
Level Min. = -0.544E-01
Increment = 0.988E-02

Level Max. = 0.512E-01
Level Min. = -0.512E-01
Increment = 0.930E-02

Ficure 22. Meridional streamlines ¥ for §=1.27. Steady-state, axisymmetric solutions
at Re = Vid/v = (a) 10, (b) 95, (¢) 245, and (d) 550. Full and
dashed contours correspond to clockwise and counter-clockwise circulation
respectively.
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Meridional Flowrate
".3 T T T T T

—e——  Axisym. computations

1.0 1.5 2.0 2.5 3.0 3.5

Ficure 23. Dimensionless meridional flowrate @., as a function of Reynolds number for
0=1.27. The circles represent steady-state, axisymmetric solutions.
The total flowrate of each of the basic recirculation cells is related to the
maximum value of the streamfunction by Qn = Qn/(Vid®) = 27V ..
Notice the Stokes-regime behavior “Q),, ~ Re” at low Reynolds numbers,
and the presence of a maximum occurring near Re ~ 245 (log245 = 2.39).
The dotted vertical line indicates the location of Re =515 at which the flow
becomes unstable to 3-D disturbances if not restrained to axisymmetry (see

Chapter 6).
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(a) Re=10 (b) Re=95

__—{,._

Level Max. « 0.127E+01
Level Min. = -0.314E-14
Increment = 0.116E+00

Level Max. = 0.127E+01
Level Min, = -0.497E-17
Increment = 0.116E+00

)

(¢) Re=245 (d) Re=550

Level Max. = 0.127E+01
Level Min. = -0.330E-14
Increment = 0.116E+00

Level Max. « 0,127E+01
Level Min, = -0.299E-14
increment = 0.116E+00

F1GURE 24. Angular velocity contours  for the solutions corresponding to the meridional
circulations of F1G. 22.
6=127; Re = (a) 10, (b) 95, (c¢) 245, and (d) 550.
Notice the strong outward transport of angular momentum in the outflow
region at the equator as well as the formation of an azimuthal boundary-layer
and of local maxima at the poles.
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(a) ur (b) T,

Level Max. « 0.290E+00
Level Min. = -0.116E+00
Increment = 0.406E-01

Level Max. = 0.786E+00
Level Min, = -0.486E-14
Increment = 0.785E-01

- e e

S i -

Ficure 25. Illustration of the vorticity stretching mechanism responsible for the forma-

tion of a local maximum of angular velocity € at the pole. Example taken
from the steady-state, axisymmetric solution at Re=>515, §=1.27.

Shown here are (a) iso-contours of the radial velocity w, (b) iso-contours
of the angular momentum T, = ugrsin @ (also proportional to the circula-
tion about z); (c) superposition of the meridional velocity vectors and some
pole-region T',-contours. The fat contour in (c) may be viewed as delimiting
a constant-circulation vortex tube being stretched by the straining action of
the meridional velocity field.
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|
. (a) Re=10 (b) Re=95
|
|

Level Max. = 0.630E+00
Level Min. = -0.630E+00
Increment = 0.114E+00

Level Max. = 0.426E+01
Level Min, = -0.426E+01
increment = 0.654E4+00

(c) Re=245 (d) Re=550

|
|

Level Max. = 0.665E+01
Level Min. = -0.665E+01

Level Max, = 0.946E+01
Level Min. = -0.946E+01

Increment = 0.102E+01 Increment = 0.145E+01

FIGURE 26. Azimuthal vorticity contours wy corresponding to the same solutions as those
of riG. 22 and 24.
§=127; Re = (a) 10, (b) 95, (¢) 245, and (d) 550.
As always in the present work, full and dashed contours correspond to positive
and negative values respectively.
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(a) Re=10

Level Max. = 0.254E+01
Level Min. = -0.264E+01
increment = 0.461E+00

(c) Re=245

Level Max. = 0.255E+01
Level Min. = -0.255E+01
increment = 0.381E+00

Ficure 27. Radial vorticity contours w, corresponding to the same solutions as those of

FiG. 22, 24 and 26.

(b) Re=95

Level Max. = 0.254E+01
Level Min, = -0.254E+01
Increment = 0.391E+00

(d) Re=550

Level Max. = 0.350E+01
Level Min. = -0.350E+01
Increrment = 0.538E+00

Py N
v Mol Lt
'\ ——

Y

§=1.27; Re = f(a) 10, (b) 95, (¢) 245, and (d) 550.
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(a) Re=10 (b) Re=95

Level Max. = 0.161E+01
Level Min. = 0.240E-01
Increment = 0.144E+00

Level Max. = 0.407E+01
Level Min. » -0.210E-01
Increment = 0.314E+00

(¢c) Re=245 ! (d) Re=550
|

Level Max. = 0.683E+01
Level Min. = -0.236E+00
Increment = 0.551E+00

Level Max. = 0,105E+02
Level Min. = -0.406 E+00
Increment = 0.836E+00

Ficure 28. Polar vorticity contours ws corresponding to the same solutions as those of
FIG. 22, 24, 26 and 27.
6=127; Re = (a) 10, (b) 95, (¢) 245, and (d) 550.
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(a) w, (b) Near-zero w,

Level Max. = 0.404E+01
Level Min. = -0.404E+01
Increment = 0.735E+.00

Leve! Max. ~ 0.143E+01
Level Min. = -0.142E4+01
increment « 0,150E+00

(c) we (d) Near-zero wy

Level Max. = 0.113E+02
tevel Min. = -0.431E+00
Increment = 0.107E+01

Level Max, ~ 0.143E+01
Leve! Min. = -0.142E+01
Increment = 0.150E+00

FicurE 29. See caption on next page.
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(e) wy

Level Max, = 0.143E+01
tevel Min. = -0.142E+01
Increment = 0.150E£+00

Level Max. = 0.101E+02
Level Min. = -0.101E+02
Increment = 0.184E+01

Ficure 29. Components of vorticity for § =1.27 at Re =650. Contour-plots (a), (c)
and (e) show the global fields for w,, we and wy respectively. On their right,
contour-plots (b), (d) and (f) show the near-zero contours, and thus the details
of the vorticity fields in the bulk of the flow. Notice the complexity of the
vorticity distributions outside the walls boundary-layers and the equatorial
layer.
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Radiol Profile — Re=245 Radial Profile — Re=245
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
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Radiol Profile ~ Re=245 Radiol Profile — Re=245
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Raodiol Profile — Re=245 Radiol Profile — Re=245
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o 1 ¥=3.12 ; - 0 =235 » : 92163 40 U=312 ; ¢ 8=235; « : 9=1.63

FIGURE 30. Radial profiles of (a) u, , (b) ug , (¢) ug , (d) w, , (e) wy , and (f) wy at
three different polar angles 6 =3.12 (near south pole), #=12.35 (southern
mid-latitude), and 6=1.63 (just below the equator). §=1.27 ; Re=245.
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Radial Profile — Re=550 Radiol Profile — Re=550
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Ficure 31. Radial profiles at higher Re for the same polar stations as those of Fig. 30
(see caption of F1G. 30). §=1.27 ; Re=550.
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ENERGY SPECTRA — Re=245
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Ficure 32. Meridional and azimuthal energy spectra, En(l) and E4(l), for the steady-
state, axisymmetric solutions at (a) Re =245 and (b) Re =550 for
6=1.27. Notice the different vertical log-limits between the two figures.
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Total and Meridional Energy
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FiGure 33. Meridional and total kinetic energy, E,, and E, as functions of Reynolds
number for the axisymmetric solutions with §=1.27. Both F,, and E are
normalized with the Stokes-flow total energy FEjiores. The vertical scale is
linear while the horizontal is logarithmic. In the low Re-range (outside the
figure on the left), E~ Re® and FE,, ~ Re?. Notice the maximum in E,,
occurring around Re = 515 (10*7!), which also coincides with the critical
Reynolds number for 3-D instability (Chapter 6).
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Dimensionless Friction Torque
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FiGure 34. Dimensionless friction torque T as a function of Reynolds number for the
steady-state, axisymmetric solutions with § =1.27. 7T is normalized with
the Stokes-flow torque Ygiopes. The full line represents the best power-law
fit of the computed values. Notice that in the low Re-trange, T ~ ReC.
The dotted vertical line indicates the location of Re=>515 at which the flow
becomes unstable to 3-D disturbances if not restrained to axisymmetry (see
Chapter 6).
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Time = 100.31

Phy = 0.00

Lovael Max. « 0.626E+00
Levet Min. « -0.526E..00
increment = 0.856E-01

Level Max. = 0.757E-02 Level Max. = 0.100E+01
Levet Min. « -0.767E-02
Increment - 0.137E-02

Level Min, « 0.122E-14
Increment « 0.908E-01

Re =100

Time = 106.02

Phy = 0.00

Level Max. « 0.604E-01
Levei Min. = -0.604E-01
increment « 0.110E-01

Time = 106.02
Phy = 0.00
Level Max, « 0.100E+01

Time - 106.02

Phy « 0.00

Leve! Max. = 0.377E+01
Level Min. « -0,377E+01
fncrement « 0.684E+00

Levei Min, « -0.156E-14
increment = 0.908€-01

Ficure 35. Steady-state, axisymmetric solutions for a gap-size ratio §=1.00. The
meridional streamlines ¥, the angular velocity contours €, and the az-
imuthal vorticity contours wg are shown for Re =10 (top figures) and for
Re=100 (bottom figures).
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Level Max. w 0.302E+00
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Re = 100

Time » 125.13

Phy = 0.00

Level Max. ~ 0.937E-01
Level Min. «» -0.837E-01
increment = 0.170E-01

Time = 12513

Fhy « 0.00

Level Max. = 0.540E+00
Level Min. « -0, 144E-14

Time - 125.13

Pry = 0.00

Levei Max. = 0.238E+01
Levei Min. = -0.238E+01
Increment w G.432E+00

Increment = 0.480E-01

FIGURE 36. Steady-state, axisymmetric solutions for a gap-size ratio §=0.54. The
meridional streamlines ¥, the angular velocity contours €, and the az-
imuthal vorticity contours wy are shown for Re =10 (top figures) and for
Re=100 (bottom figures).
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Ficure 37. Dimensionless friction torque T as a function of Reynolds number for the
steady-state, axisymmetric solutions with (a) §=1.00 , and (b) 6=0.54.
The computed torques are normalized with the respective Stokes-flow torques
Tstokes- In each figure, the full line represents the best power-law fit of the
Notice that in the low Re-range, Y ~ Re®. The dotted
vertical line in each case indicates the location of the critical Reynolds number
at which the flow becomes unstable to 3-D disturbances if not restrained to

computed values.

109, {T/T5tokes)

109,.(T/Tstokes)
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Dimensionless Friction Torque

o Axisymmetric computations

T = 7.08Re
- Re, = 489

§=1.00

(Tstokes = 28.723)

0.402

T

T

3.5

.................. O —— -
5 1.0 1.5 2.0 2.5 3.0
logl‘(Re)

Dimensionless Friction Torque
o Axisymmetric computations
0.452 7
T = 21.9Re

............ . Rec P 808

(Tgtokes = 118.63)
e D e A

5 1.0 1.5 2.0 2.5 3.0
logxo(Re)

axisymmetry (see Chapter 6).
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PARTICLE TRACES VORTEX LINES
S.C.F. - Axisymmetric Solution - Q2/axi S.C.F. - Axisymmetric Solution -~ Q2/axi
X delta = 1.27 .- Re = 528 N delia = 1.27 .- Re = 525

PARTICLE TRACES VORTEX LINES
S.C.F. - Axisymmetric Solution - V2/axi S.C.F. - Axisymmetric Solution - V2/axi
detta = 0.54 -- Re = 606 delte = 0.54 .. Re = 606

Ficure 38. Wall-streamlines, (a)-(c), and vortex lines, (b)—(d), on the surface of the outer
sphere. The steady-state, axisymmetric solutions shown here correspond to

(a)~(b) ¢=1.27, Re=525; and (c)-(d) §=0.54, Re=606 .
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PARTICLE TRACES VYORTEX LINES
5,C.F. - Axisymmetsic Solution - Q2/=xi 8.C.F, - Axisymmetlric Solution ~ Q2/axi
detta = 1.27 -+ Re = 52% " delta = 1.27 -- Re = 525

PARTICLE TRACES VORTEX LINES
S.C.F. - Axisymmetric Solution - V2/axi S.C.F. - Axisymmetric Selution - V2/axi
delta = 0.54 .. Re = 606 delia = 0.54 -. Re » 606

FIGURE 39. (a)—(c) Intersection of stream-surfaces with the spherical shell of dimensionless
radius r= R;40.6215. (b)—(d) Projection of three-dimensional vortex lines
on the surface of the above spherical shell. Same solutions as those of FIG. 38,
ie., (a)-(b) 6=1.27, Re=525; and (c)-(d) 6=0.54, Re=0606 .
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Pl

v

»,

\,

(a) ¥
Level Max. = 0.518E-01

Level Min. = -0.618E-01
iIncrement = 0.941E-02

(¢) ¥

Level Max. = 0.110E+00
Level Min. = -0.110E+00
Increment = 0.200E-01

= T

¥
§
(b) Q
]
] Level Max. = 0.127E+01
:> Level Min. = -0.185E-14

‘ increment = 0.116E+00

(d)

Level Max. « 0.540E+00
Level Min, = -0.346E-14
Increment = 0.490E-01

FIGUurRE 40. Basic Spherical Couette Flow at critical condition, Re= Re, ,in large-gap

geometries — Meridional Streamlines and Angular Velocity.

(a)-(b): 6 =1.27, Re =515
(c)(d): 6§ =054, Re=606.
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(a) u

Level Max. = 0.290E+00
Level Min. = -0, 116E+00
----- Increment = 0.451E-01

Level Max. = 0.191E+00
Level Min. = -0.181E+00
Increment = 0.424E-0O1

(c) ug (d) Jur &r+ug ol

Level Max. = 0.100E+01
Level Min. = -0.280E-14
Increment = 0.111E+00

Level Max. = 0.100E+01
Level Min. « 0.000E+00
increment = 0.111E+00

Ficure 41. Basic Spherical Couette Flow at critical condition, Re= Re. , in large-gap
geometry — Velocity components and |u, é,.+uy €y .
6 =1.27, Re=515.



194

(a) u,
Level Max. = 0.282E+00

Level Min. = -0.776E-01
Increment = 0.399E-01

(€) ug
Level Max. = 0.100E+01

Level Min. = -0.295E-14

Increment = 0.111E+00

(b) wug
Level Max. = 0.194E+00

Level Min. = -0.194E+00
increment = 0.431E-01

(d) |uré,+ugpéyl
Level Max. = 0.10CE+01

Level Min. = 0.893E-15

Increment = 0.111E+00

F1GurE 42. Basic Spherical Couette Flow at critical condition, Re= Re. , in large-gap

geometry — Velocity components and |u, é.+uy 4] .

¢ =0.54, Re==606.
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(b) ug

Level Max. « 0.197E+00
Level Min. = -0.197E+00
Incrament = 0.437E-C1

(a) u,
Level Max. « 0,.276E+00

Level Min. = -0.577E-01
Increment = 0.370E-01

(c) ug (d) lurértug &yl
Level Max. « 0.100E+01
Level Min. =~ -0.499E-14

Level Max. = 0.100E+01
Level Min. = 0.171E-14

Increment = 0.111E+00 Increment = 0.111E+00

FIGURE 43. Basic Spherical Couette Flow at subcritical condition, Re< Re. , in large-
gap geometry — Velocity components and |u, &, +uy €y .
§ =127, Re=245.
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PARTICLE TRACES VORTEX LINES COLORED BY omega z
S.C.F. - Axisymmetric Solution - XQ2/axi S.C.F. - Axisymmetric Solution - XQ2/axi
Impinging Radial-Azimuthal Jet RADIAL-AZIMUTHAL JET REGION

;si s
N

Rl
ﬁ\\\%’%& é

/|
=

(b) (d)

FIGurRE 44. Radial-Azimuthal Jet of the Basic Spherical Couette Flow at critical con-
dition, Re=Re,=515, in the large-gap geometry 6=1.27 .
(a)~(b) : Trajectory of a particle originating near the inner-sphere surface
Jjust above the equator.
(c)=(d) : Three-dimensional vortex lines passing through the equatorial plane.

In (a) and (c), the observer looks down at the north-pole ; in (b) and (d).
the observer sits on the equatorial plane. "
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VORTEX LINES

- Axisymmetric Solution
delta

-~ V2/axi
0.54 ~ Re = 606

Ficure 45. Radial-Azimuthal Jet of the Basic Spherical Couette Flow at critical con-
dition, Re= Re.=606, in the large-gap geometry 6=0.54 .

See caption of FIG. 44.
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VORTEX LINES
PARTICLE TRACES

. S.C.F. - Axisymmetric Solution - R i
S.C.F. - Axisymmetric Selution - Rif Xisy T uti 1/axi

delta = 1.27 -- Re = 24
Impinging Radial-Azimuthal Jet e ! e = 245

o
S

1
|
=

S

o
<

0

(b) (d)

Ficure 46. Radial-Azimuthal Jet of the Basic Spherical Couette Flow at subcritical
condition, Re= Re.=245, in the large-gap geometry §=1.27 .
See caption of FiG. 44 to which the present figure should be compared.
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(c) §=1.27 Re = 245 (d) 6=0.54 Re = 606

Ficure 47. Length and azimuthal extent of the radial-azimuthal jet of the basic flow
as seen in an azimuthal plane just above the equator.
(a), (¢), (d) : Radial-azimuthal jet trajectories at critical and subcritical con-
ditions. The trajectory lines fade when they enter the azimuthal boundary-
layers on the walls. The points of entrance are defined by a value of 10% of
wy maximum on the walls.
(b) : Vortex lines plotted without the contribution of wg . The vortex lines
are seen to form an almost orthogonal set of lines with the corresponding jet
trajectories in (a).
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Vortex Lines

3-D VIEW

AlaandSn s a s

y

N

yo)

“FAN-SPREADING QUASI-2-D PLANE JET”

FIGURE 48. Schematic of the concept of “fan-spreading quasi-2-D plane jet” used in con-
nection with the present argument on the transition mechanism of large-gap
SCF’s. The shear instability of the radial-azimuthal jet at the equator is as-
sociated with the inflectional instability of an azimuthal sequence of adjacent
“fan-spreading jets” impinging on the outer sphere.
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Fig. 4.26. The curves of marginal stability for the Bickley jet. (After
Silcock 1975.)

FIGURE 50. Schematic of the Plane Jet Flow and its stability characteristics. The diagram
of marginal stability for the Bickley jet is reproduced from Drazin & Reid
(1981), page 235, and originates from the Ph.D. thesis of Silcock (1975).
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(a) Particle traces

(b) Vortex lines

FiGUurRE 51. Velocity and vorticity traces of the unstable disturbance field in the early
stages of growth, as seen in an azimuthal plane just above the equator at
6~86° . Notice the “jet-like” character of the traces—compare with FiG. 48
(a) and (b)—in each of the six azimuthal sectors.
§=1.27 , Re=525.
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FIGURE 52. Contours of the vorticity components of the unstable disturbance field
in the early stages of growth, as seen in an azimuthal plane just above the
equator at 6~86° .
6 =127, Re=525.
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(a) ur

(e) wg

(c) ug

Ficure 53. Contours of the velocity and vorticity components of the unstable distur-
bance field in the early stages of growth, as seen on a spherical shell just
inside the outer-sphere.

6 =127, Re=525.
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FIGURE 54. Contours of the velocity and vorticity components of the unstable distur-
bance field in the early stages of growth, as seen on a spherical shell just
outside the mid-gap surface.

60 =127 | Re=525.



207

(a) Particle traces

(b) Vortex lines

FiGURE 55. Velocity and vorticity traces of the unstable disturbance field in the early
stages of growth, plotted on a spherical shell just inside the outer-sphere.
Figure (a) corresponds to the instantenous “wall-streamlines”.
§ =127 , Re =525
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(a) Particle traces

(b) Vortex lines

FIGURE 56. Velocity and vorticity traces of the unstable disturbance field in the early
stages of growth, plotted in two co-planar meridional planes cutting through
extrema of w, and wg from Fi1G. 50. Note that the two meridional planes
are 1.5 wavelengths apart since the instability is of mode m = 3, therefore
the two fields are the same but of opposite signs.

§ =127, Re =525
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(a) Particle traces

(b) Vortex lines

FIGURE 57. Velocity and vorticity traces of the unstable disturbance field in the near-
saturation stage, plotted on a spherical shell just inside the outer-sphere.

Again, figure (a) corresponds to the instantenous “wall-streamlines”.
§ =127 , Re =650,
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Legendre Energy Spectra
§=1.27 ; Re=525 ; t=320 ; Run F2/XG9

"2 T Y T T T T Y T
———- | egendre Total Energy Spectrum
=Bt PR Legendre Spectrum E(1:m=3)

logio(E(1))

-3(1))

logxo(Em

(2)

_1 1 L H S 1
0 10 20 30 40 50 60 70 80 30

Polar Wavenumber “1*

Fourier Energy Spectrum
6=1.27 ; Re=525 ; t=320 ; Run F2/XQ9

~1 ~ T u v T ¥ '

~4 H p

-5 p

10gse{ E(m) )

- J S T VT W S L " s L -

0 1 2 3 4 5 & 7 8 9 10
Azimuthal Wavenumber “m”

FicurE 58. Energy Spectra associated with the 3-D transitional flow after saturation of
the instability. The equilibrium flow is periodic through azimuthally traveling
waves, 0 = 1.27 , Re = 525 .



211

L.egendre Energy Spectra
§=0.54 ; Re=620 ; t=150 ; Run F1/A2d
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FIGURE 59. Similar energy spectra as those of F1G. 56 for a different gap-size and
Reynolds number. 8 = 0.54 , Re = 620 .
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Velocity Trace at Probe 1
§=1.27 ; Re=525 ; Run F2/XG3
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FIGURE 60. Time-traces of all three velocity components at a point located close to the
mid-gap just below the equator. (a) 6 = 1.27, Re = 525 : (b) é6=0.04,
Re =620 .
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(a) Particle traces

(b) Vortex lines

FIGURE 61. Velocity and vorticity traces of the periodic supercritical flow at equilib-
rium, plotted on a spherical shell just inside the outer-sphere. Compare with
FIG. 38 (a) and (b), and notice the slight, but detectable waviness at the
equator.
§=1.27 , Re=525.
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(¢) ug

FiGurE 62. Contours of the velocity and vorticity components of the periodic super-
critical flow at equilibrium, plotted on a spherical shell just inside the outer-
sphere.

6 =127 , Re =525
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FIGURE 63. Contours of the velocity and vorticity components of the periodic super-
critical flow at equilibrium, plotted on a spherical shell just outside the
mid-gap surface.

§=127 , Re=525.
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FIGURE 64. Visualization of the supercritical 3-D flow in the laboratory.
(a) 6=1.00 , Re=600 ; (b) 6§=0.54 , Re=750.
Reproduced from Belyaev et al. (1978).
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Spherical Couette Flow
Meridional Flowrate

.5 T
=} 3-D Transition
A Axisym. Transition
............... §=0.06

§=0.06 : Reg = 165
§=0.54 : Reg =606
§=1.00 : Reg =489

§=1.27 : Reg =515

FiGURE 65. Meridional Flowrate Q,, as a function of Re in Spherical Couette Flows of
several gap-sizes. Critical points obtained by this study are included.



