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ABSTRACT

This thesis presents a mathematical framework to model trading of financial assets on

an exchange. The interaction between agents on the exchange is modeled as the Nash

equilibrium of a demand schedule auction. The submission of demand schedules in

the auction is meant to proxy for the submission of limit and market orders on an

exchange. Chapter 1 considers this auction in a one-period setting, highlighting the

importance of noisy flow for obtaining a unique Nash equilibrium.

Chapter 2 is the core of the thesis and considers the auction in a continuous time

setting. Here the agents trading on the exchange have quadratic-type preferences,

and in equilibrium they must clear an exogenously specified stream of market orders.

Chapter 3 considers alternative and more realistic dynamics for the exogenous market

orders. Chapter 4 endogenizes the market orders by considering an agent executing

orders on behalf of noisy clients.. Chapter 5 considers the same model as in Chapter

2, except with a consumption based utility function for each agent.
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RELATED LITERATURE

The contents of this thesis relate to three strands of existing academic literature. The

first is the theoretical economics literature on market microstructure. The second is

the mathematical finance literature on optimal execution. The third is the finance

literature on asset pricing.

The literature on market microstructure is fairly classical and considers various

one-period equilibrium auction models. Thorough reviews are given in [OHa11]

and [FPR13]. The demand schedule auction used in this thesis was first introduced

in [Wil79]. [Kyl89] uses the demand schedule auction to study price impact as a

consequence of adverse selection. The contents of Chapter 1 are similar to these

papers, though the specific theorems proven are new. One major way in which

Chapter 1 (and the rest of the thesis) deviates from [Kyl89] is that price impact is not

a consequence of adverse selection. Instead, price impact compensates agents on

the exchange for absorbing short term imbalances. This is in line with the idea of

liquidity as the price of immediacy, as introduced in [GM88].

The literature on optimal execution considers dynamic partial equilibrium problems

for an individual agent trading against a price impact function. This literature was

pioneered in [AC01] and has since been extended in a variety of directions, as

reviewed in [CJP15] and [Gué16]. The optimal response problems for the models in

Chapters 2-5 are very much analogous to the optimization problems in this literature.

However, this literature always takes the market price impact function as exogenously

given, whereas in this thesis the price impact function is endogenous.

Asset pricing is the standard framework used in the academic finance community to

model market prices. Thorough introductions to the subject are given in [Coc05]

and [Bac17]. This literature does not explicitly model auctions, as the market

microstructure literature does, but instead uses a general equilibrium approach.

Furthermore, trading costs are usually ignored in these models. [GP16] and

[Bou+18] do consider trading costs in asset pricing settings, but these costs are
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exogenously specified. Also, the trading costs in these models are not in the form of

market price impact, but instead are transaction costs paid on top of market prices.

Many of the modeling techniques in this thesis are inspired by these papers, and also

by the continuous time CARA-Normal frameworks used in [CK93] and [Bar+15]

This thesis presents a dynamic auction based equilibrium framework to model asset

prices. In particular, the endogenous level of prices consists of a price impact

component that reflects the quantity being cleared on the exchange. When solving

their individual optimization problems, all agents take in to account the market

impact of their trades. This allows for a rich asset pricing model with microstructure

details and with optimal execution problems for individuals. As such it bridges

together the three strands of literature above.

Only two other papers in the literature consider dynamic models similar to the ones

in this thesis, and both have a markedly different focus. The first is [SS16], which

focuses on heterogenous agents and front running. One section of the paper considers

a model of price impact between a large trader and a competitive fringe, which is

similar to the model in Chapter 4. However, the model in Chapter 4 features multiple

large traders (market makers) and considers an explicit optimization problem for the

fringe (liquidity traders trading on behalf of clients). The second paper is [KOW18],

which is focused on using private information and overconfidence to get around the

classic no-trade theorem in finance.
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C h a p t e r 1

ONE PERIOD MODELS

This chapter formulates and discusses some one period models of auctions for shares1.

The type of auction considered is typically referred to as a conditional uniform price

auction, or as the demand schedule game. At the beginning of the auction, each agent

submits a demand schedule D : R→ R, which is a commitment to purchase D(p)

shares if the price per share is p. The auctioneer then observes all the schedules,

aggregates them into a total demand schedule, and chooses a price such that the

auction clears. Agents receive shares based on their individual demand schedules,

and finally they derive utility from the payoff associated to each share.

This type of auction is interesting because it’s a good way to model agents trading

through a limit order book. At a very high level, the decision to place market and

limit orders amounts to deciding how aggressively to trade. A trader with a great

sense of urgency might submit a large market order, which executes immediately,

but is subject to walking the book. On the other hand, a more patient trader might

scatter a few limit orders throughout the book, which may or may not execute, but

will do so at a good price if they do. Finally, note then when an order executes it

must, by definition, execute against another order placed by another agent. Thus

agents are not just deciding how aggressively to push their own trading agendas, but

also how aggressively to absorb the order flow of other traders.

Returning to the auction, note that selecting a demand schedule also amounts to

deciding how aggressively to trade. A vertical demand schedule is equivalent to

submitting a market order, as it demands a fixed quantity regardless of the price

received. Tilting the slope of the demand schedule downwards is much like placing

limit orders. It gives the agent the opportunity to trade at a good price, but this is not

a guarantee because there must be another agent willing to accept the other side of
1For our purposes a share is simply a unit of an infinitely divisible good.



4

this trade. Finally, from a game theoretic point of view, when an agent takes others’

schedules as given he is a monopsonist facing a supply curve. The suppliers are

of course the other agents in the game, so forming an optimal response involves

pushing ones own trading agenda while also deciding how much of others’ order

flow to absorb.

Hence the decision-making process of an agent in the demand schedule game captures

many features of trading on a limit order book. An interesting property of the demand

schedule game is that it features multiple equilibria when there is no uncertainty in

the quantity to be cleared at the auction. From our point of view this is a realistic

feature, as the quantity to be cleared on the exchange at any instant is uncertain. This

first section below formulates and discusses this result. The second section presents

a version of the model where agents have initial inventories, thereby formulating it

as a Bayesian game. This version of the model connects better with the dynamic

models to follow.

1.1 The Auction Model

There are N ≥ 2 agents bidding for a total of S outstanding shares. Each share will,

after the auction, provide a random payoff of µ̃ ∼ N(µ, σ2). Agents are assumed

to have CARA preferences over payoffs, with risk aversion parameter γ > 0. Thus

if an agent purchase q shares in the auction for a price of p per share, his expected

utility is E[−e−γq(µ̃−p)]. We will assume that agents can only submit affine and

decreasing demand schedules2. So a demand schedule is characterized by a pair

(a, b) ∈ R × (0,∞), corresponding to the commitment to purchase a − bp shares

when the price per share is p.3

In addition to the N agents there are noise traders who have a random perfectly
2The affine assumption is not strictly necessary, as an optimal response to a profile of affine

schedules is also given by an affine schedule.
3b = ∞ corresponds to placing an order that specifies a price but no quantity. Such an order is

not possible on an exchange, and thus is not allowed here. Technically we should allow b = 0, since it
corresponds to placing a market order. However, we only consider symmetric equilibria below, and
b = 0 can trivially never be such an equilibrium. Thus for the sake of exposition b = 0 is omitted
from the outset.
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inelastic demand for −ũ shares. Thus the total number of shares the N agents must

clear in the auction is S + ũ. By adjusting the mean of ũ we can simply assume that

the total number of shares being auctioned is random and equal to ũ. We assume

that ũ is independent of µ̃, but make no other assumptions about its distribution.

Given demand schedules (a1, b1), · · · , (aN, bN ), the auction price p and the shares

q1, · · · , qN bought by each agent are implicitly given by

an − bnp = qn (1.1)

q1 + · · · + qN = ũ. (1.2)

This describes a game in normal form, and we now proceed to study its Nash

equilibria. We will focus only on symmetric equilibria, that is on equilibria where all

agents submit the same demand schedule. Note that in a symmetric equilibrium all

agents purchase the same number of shares in the auction, i.e. q1 = · · · = qN = ũ
N .

Theorem 1.1.1. Fix exogenous parameters N ≥ 2, γ, σ > 0 and µ ∈ R.

If ũ is degenerate, i.e. ũ = u ∈ R a.s., then there is a one-to-one correspondence

between symmetric equilibria and λ > 0. In equilibrium the price is

p = µ −
γσ2

N
u −

λ

N
u. (1.3)

If ũ is non-degenerate and N ≥ 3, then there is a unique symmetric equilibrium with

price

p = µ −
γσ2

N
ũ −

γσ2

N(N − 2)
ũ. (1.4)

If ũ is non-degenerate and N = 2 then a symmetric equilibrium does not exist.

Proof. Fix a strategy (a, b) ∈ R × (0,∞) to be played by all but one agent, and

consider the optimal response problem faced by the remaining agent. If this agent

plays strategy (α, β) ∈ R × (0,∞), then his expected utility will be E[−e−γq(µ̃−p)]

with p and q given implicitly by

q = α − βp (1.5)
ũ − q
N − 1

= a − bp. (1.6)
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Rearranging we obtain

p = F − λũ + λq (1.7)

q =
[

α

1 + λβ
−

β

1 + λβ
F
]
+

λβ

1 + λβ
ũ, (1.8)

where F := a
b and λ := 1

b(N−1) .

We note a few things about these equations. Firstly, the parameters F and λ

characterize the symmetric profile given by (a, b) and are independent of the

remaining agent’s demand schedule. Secondly, equation (7) tells us that the price the

remaining agent receives is uniquely determined by the number of shares he receives.

Thus the agent is indifferent between schedules that lead to the same quantity of

shares. Thirdly, from equation (8) we see that choosing (α, β) ∈ R × (0,∞) amounts

to choosing to receive the quantity q ∈ V where

V := {A + Bũ : (A, B) ∈ R × (0, 1)}. (1.9)

Fourthly, if the agent submits the schedule (a, b) then he receives the quantity q = ũ
N .

All this goes to show that in forming an optimal response, the remaining agent can

maximize directly over q ∈ V , with the price given by (7), and in equilibrium the

maximum must be attained at ũ
N . Thus symmetric equilibria correspond to F ∈ R

and λ > 0 such that

ũ
N
∈ arg max

q∈V
E

[
− e−γq

(
µ̃−F+λũ−λq

) ]
, (1.10)

and in equilibrium the price is

p = F −
N − 1

N
λũ. (1.11)

Now, note that ũ is independent of µ̃ and every q ∈ V is ũ measurable. Since the

MGF of µ̃ is E[et µ̃] = eµt+σ2
2 t2 , we can compute the expectation in (10) for any q ∈ V

as

E

[
− e
−γq

(
µ−F+λũ−(λ+γσ2

2 )q

) ]
. (1.12)
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For any F ∈ R and λ > 0, the function of q in (12) is strictly concave over the convex

set V . Thus the argmax in (10) consists of at most one point. Furthermore, for any

F ∈ R, λ > 0 and u ∈ R, the much relaxed problem of maximizing the exponent in

(12)

max
q∈R

q(µ − F + λu −
(
λ +

γσ2

2

)
q)

has unique solution q̂ = µ−F
2λ+γσ2 +

λ
2λ+γσ2 u.

It follows that (10) holds if and only if

ũ
N
=

µ − F
2λ + γσ2 +

λ

2λ + γσ2 ũ. (1.13)

Thus symmetric equilibria correspond to F ∈ R and λ > 0 satisfying (13), and in

equilibrium the price is given by (11).

Now, if ũ is degenerate and equal to u ∈ R a.s., then (13) simply reads

F = µ −
γσ2

N
u +

N − 2
N

λu. (1.14)

Thus there a one-to-one correspondence between symmetric equilibria and λ > 0,

with F given by (14). The first statement in the theorem follows by using (14) to

substitute for F in (11).

Next suppose that ũ is non-degenerate. Then (14) holds if and only if F = µ and

λ > 0 satisfies

(N − 2)λ = γσ2. (1.15)

If N = 2 then no λ > 0 can satisfy (15), so a symmetric equilibrium does not

exist, proving the last statement in the theorem. If N ≥ 3 then the unique λ > 0

satisfying (15) is λ = γσ2

N−2 , and so there is a unique symmetric equilibrium. The

second statement in the theorem now follows by plugging in F = µ and λ = γσ2

N−2 in

(11). �

Discussion

The idea in the proof is to characterize symmetric profiles in terms of the parameters

F and λ of the induced the optimal response problem. The optimal response problem
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is to choose an expected utility maximizing quantity on the linear supply curve (7),

which has intercept F −λũ and slope λ > 0. This is a concave maximization problem

with a unique solution. The symmetric equilibrium condition on F and λ is that this

solution is ũ
N . In the non-degenerate case this condition uniquely determines F and

λ whereas in the degenerate case it only specifies F as a function of λ.

What happens in the degenerate case is that the agents are able to form an agreement

to misprice the asset and then take equal shares of the profit. Consider for example

the case when ũ = 1, so a unit share is being cleared at the auction. Then (3) states

that the equilibrium price can take on any value below µ −
γσ2

N , which is the price

the asset would trade at in a competitive equilibrium. Thus we see that the asset is

being priced relatively low, and since each agent takes 1
N shares, they split the profits

equally.

Since the game is non-cooperative, in order to form an agreement the agents must

have a way to prevent others from taking more than an equal share of the profits. The

key point is that all agents submit entire demand schedules, which specify what the

price must be contingent on the quantity the agent receives. So if one agent were to

take more than 1
N shares, some other agents would receive less than 1

N shares, and

this would cause the price to move, thus dissuading any one agent from trying to

take extra shares in the first place.

The amount by which the price would move if an agent took more then 1
N shares is

governed by the parameter λ, which corresponds to the quantity elasticity b of the

equilibrium demand schedule. The lower the equilibrium price p, the more of an

incentive an agent has to acquire more than 1
N shares, and thus the higher λ needs to

be to prevent the agent from doing so. (3) says exactly that low equilibrium prices

correspond to high values of λ.

The problem in the degenerate case is that agents suffer no cost from being quantity

elastic, since there will be no surprise trades in equilibrium. Hence λ can take on any

positive value in equilibrium. In the non-degenerate case, agents suffer costs from

being quantity elastic in equilibrium, because there is uncertainty in the quantity to
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be cleared. These costs manifest in how the parameter λ effects the uncertainty of

equilibrium prices. Since agents care about the uncertainty of prices, this pins down

the unique equilibrium value of λ as γσ2

N−2 .

The coefficient of ũ in (4) is N−1
N(N−2)γσ

2, which is the price impact of the noise traders’

order. If the noise traders sell ε more shares, so the realization of ũ is ε higher, then

the equilibrium price is N−1
N(N−2)γσ

2ε lower. Thus orders walk the book: the larger an

order, the lower the transaction price.

The decomposition of price impact into the two terms is motivated by considering the

competitive limit as N →∞ and γ
N is held fixed. In the limit the second term vanishes

and only the first remains. Thus µ − γσ2

N ũ is the competitive benchmark, and the

second term is the deviation due to imperfect competition. As in the competitive case,

the term γσ2 ũ
N is the risk compensation each agent requires to take the equilibrium

exposure of ũ
N .

The interpretation is that price impact arises for two reasons in the model. Firstly

to make sure agents are appropriately compensated for bearing risk, and secondly

because agents have market power. The first reason persists even in the competitive

limit, and as result price impact does not vanish in the limit. This will be a recurring

theme throughout the thesis.

1.2 The Auction Model with Inventories

The continuous time models considered in the subsequent chapters essentially consist

of the auction above at each instant, with the addition of certain state variables

that need to be carried from instant to instant. The state variables are the existing

inventories of shares that agents have accumulated from trading in the past. This

section introduces these state variables in a static setting as types, thus generalizing

the model above to a Bayesian game.

In addition to forming a tighter connection with the continuous time models to follow,

the rephrased model in this section has two other appealing features. Firstly, in the
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previous section the total number of outstanding shares plays no distinct role4 from

the noise traders’ order. This is perhaps counterintuitive, as the noise traders’ order

should have price impact, whereas the total number of outstanding shares should be

a fixed component of the price. In this section the total number of outstanding shares

will show up as a fixed component of the price. Secondly, in the previous section

all agents purchased the same number of shares in equilibrium. In this section their

purchases will be heterogenous.

The model is exactly as before except that each of the N agents starts out with an

existing inventory of Xn ∈ R shares. Thus if agent n purchases qn shares in the

auction for a price of p per share, then his expected utility is

E
[
− e−γ

(
(Xn+qn)µ̃−pqn

) ]
. (1.16)

The noise traders start out with zero shares, and the total number of outstanding

shares is S, so
∑N

n=1 Xn = S.

More formally, we work on a probability space with a single objective probability

measure. There are N + 2 real-valued random variables defined on this probability

space: µ̃, ũ, and X1, · · · , XN . There are exogenous constants µ, S ∈ R and σ > 0

such that µ̃ ∼ N(µ, σ2) and
∑N

n=1 Xn = S. Furthermore, µ̃ and ũ are independent of

each other as well as X1, · · · , XN .

The type (or private information) of agent n is Xn. A strategy is a measurable function

mapping the realization of an agent’s type to a choice of demand schedule. As before

demand schedules are restricted to be affine and strictly decreasing, so a strategy for

agent n is a measurable mapping (an, bn) : R → R × (0,∞), X 7→ (an(X), bn(X)).

Given a strategy profile and a realization of (X1, · · · , XN ), prices and quantities are

determined from (1) and (2) with an = an(Xn) and bn = bn(Xn).

This completes the description of the model as a Bayesian game. Wewill be interested

in identifying Bayesian Nash equilibria5 in this game, but we will focus on equilibria

that have a very specific structure.
4In the previous section, the total number of outstanding shares was absorbed into the mean of ũ.
5What we call a Bayesian Nash equilibrium is sometimes called a strong Bayesian Nash
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Definition 1.2.1. A strategy s : R → R × (0,∞) is called linear if there exist

constants a, ξ ∈ R and b ∈ (0,∞) such that

s(X) =
(
aX + ξ, b

) ∀X ∈ R.

Our focus will be on linear symmetric equilibria, that is on equilibria where all agents

play the same linear strategy.

Theorem 1.2.2. Fix exogenous parameters N ≥ 3, γ, σ > 0 and µ, S ∈ R.

If ũ is non-degenerate then there is a unique linear symmetric equilibrium. In

equilibrium, the price is

p = µ −
γσ2

N
S −

N − 1
N(N − 2)

γσ2ũ (1.17)

and the quantities purchased by each agent are

qn = −
N − 2
N − 1

(Xn −
S
N
) +

ũ
N
. (1.18)

Proof. Fix a linear strategy given by a, ξ ∈ R and b ∈ (0,∞) to be played by all but

one agent, and consider the optimal response problem faced by the remaining agent.

Suppose the remaining agent plays the strategy R→ R × (0,∞), x 7→ (α(x), β(x)).

If the agent’s initial inventory is X , then his expected utility is E[−e−γ((X+q)µ̃−pq)],

where p and q are given implicitly by

a
N − 1

(S − X) + ξ − bp =
ũ − q
N − 1

(1.19)

α(X) − β(X)p = q. (1.20)

Rearranging we obtain

p = F + C(S − X) − λũ + λq (1.21)

q =
[

α(X)
1 + λβ(X)

−
β(X)

1 + λβ(X)

(
F + C(S − X)

)]
+

λβ(X)
1 + λβ(X)

ũ, (1.22)

equilibrium. We require agent n to choose a strategy that maximizes (16) conditional on Xn for
every realization of Xn. This is in contrast to the weaker requirement of choosing a strategy that just
maximizes (16), which averages over realizations of Xn.
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where F := ξ
b , C := a

b(N−1) and λ := 1
b(N−1) .

We note a few things about theses equations. Firstly, the parameters F, C and λ

characterize the symmetric profile given by a, ξ and b, and they are independent

of the remaining agent’s demand schedule. Secondly, equation (21) tells us that if

we hold the remaining agent’s initial inventory fixed, then the price the remaining

agent receives is uniquely determined by the quantity he trades. Thus the agent

is indifferent between demand schedules that lead to the same quantity of shares.

Thirdly, from equation (22) we see that choosing a strategy (α, β) amounts to choosing

functions A : R → R and B : R → (0, 1) such that the agent’s traded quantity is

q = A(X) + B(X)ũ. Fourthly, if the agent uses the linear strategy (aX + ξ, b) then

his traded quantity is q = C
λ

(
X − S

N

)
+ ũ

N .

All this goes to show that linear symmetric equilibria correspond to F,C ∈ R and

λ > 0 such that

C
λ

(
x −

S
N

)
+

ũ
N
∈ arg max

q∈V
E

[
− e
−γ

(
x µ̃+q

(
µ̃−F−C(S−x)+λũ−λq

) ) ]
∀x ∈ R, (1.23)

where V is as in (9). In equilibrium the price is

p = F +
N − 1

N
CS −

N − 1
N

λũ, (1.24)

and agents’ trades are

qn =
C
λ

(
Xn −

S
N

)
+

ũ
N
. (1.25)

Now, note that ũ is independent of µ̃ and every q ∈ V is ũ measurable. Since the

MGF of µ̃ is E[et µ̃] = eµt+σ2
2 t2 , we can compute the expectation in (23) for any q ∈ V

and x ∈ R as

e−γµxE

[
− e
−γ

(
q
(
µ−F−C(S−x)+λũ−λq

)
−
γσ2

2 (x+q)2
) ]
. (1.26)

For any F,C, x ∈ R and λ > 0, the function of q in (26) is strictly concave over the

convex set V . Thus the argmax in (23) consists of at most one point. Furthermore,

for any F,C, x ∈ R, λ > 0 and u ∈ R, the much relaxed problem of maximizing the
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exponent inside the expectation in (26)

max
q∈R

q
(
µ − F − C(S − x) + λũ − λq

)
−
γσ2

2
(x + q)2

has unique solution q̂ = µ−F−CS
2λ+γσ2 +

C−γσ2

2λ+γσ2 x + λ
2λ+γσ2 u.

It follows that (23) holds if and only if

C
λ

(
x −

S
N

)
+

ũ
N
=
µ − F − CS
2λ + γσ2 +

C − γσ2

2λ + γσ2 x +
λ

2λ + γσ2 ũ ∀x ∈ R. (1.27)

Since ũ is non-degenerate, (27) holds if and only if F = µ,C = − γσ
2

N−1 , and λ =
γσ2

N−2 .

The theorem now follows by plugging these values is (24) and (25). �

Discussion

The proof is similar to the one in the previous section, with the idea being to

characterize symmetric profiles in terms of the parameters F, C and λ of the induced

optimal response problem. The additional parameter C governs how the intercept of

the supply curve in the optimal response problem depends on the optimizing agent’s

initial inventory. More specifically, C captures the dependence of the intercept on

the sum of all other agents’ inventories, which the optimizing agent can compute

by subtracting his own inventory from the total number of outstanding shares, i.e.

S − X .

The supply curve represents the prices at which the other agents are willing to clear

the joint order of the noise traders and the optimizing agent. These prices must

depend on the preexisting exposures of the remaining agents, hence the presence of

the parameter C. For symmetric profiles, the others’ exposure can be aggregated

instead of considering individual exposures, which greatly simplifies the problem.

The constant term in the equilibrium price is µ − γσ2

N S, as opposed to just µ in

the previous theorem. Thus there is a constant discount in the price reflecting the

total number of outstanding shares. Intuitively this discount appears here because

the agents are already in possession of S shares prior to the auction, whereas in

the previous section they initially posses no shares. The coefficient of ũ in the

equilibrium price is N−1
N(N−2)γσ

2, exactly as in the previous section.
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A unified way to write the equilibrium price in the two theorems is in terms of

the aggregate inventory of the agents after the auction, denoted Spost . In the first

section’s model we have Spost = ũ and in the second section we have Spost = S + ũ.

In both sections, the equilibrium price is

p = µ −
γσ2

N
Spost −

γσ2

N(N − 2)
ũ. (1.28)

The first two terms here are the competitive benchmark, and the last term is the

deviation due to imperfect competition.

At first glance it might seem surprising and counterintuitive that the deviation due

to imperfect competition depends on ũ and not Spost . For example, if Spost > 0 and

ũ < 0, then the agents are in aggregate long the asset, but the price is high relative

to the competitive benchmark. The deviation due to imperfect competition should

always favor the agents, so one might expect it to make the price low when they are

going long and high when they are going short. However this reasoning is flawed

because the price in (28) is not the price at which the agents enter their aggregate

position of Spost . It is merely the price at which the agents shift their aggregate

position from S to Spost . Said another way, (28) is not the denominator in the agents’

aggregate return, and as such the low/high long/short reasoning does not apply.

The logic behind (28) is that the price is low when the noise traders are selling, ũ > 0,

and high when they are buying, ũ < 0. Thus, roughly speaking, the noise traders are

always "getting ripped off." This can be made more precise by recalling the analogy

between the auction and a limit order book. Based on this analogy, the price in (17)

can be interpreted as saying that the mid-price is µ− γσ2

N S, and orders walk the book

at a rate of γσ2

N(N−2) per share.

Now, suppose the auction is repeated an instant later (prior to the realization of

payoffs). Since the aggregate inventory of the agents will be Spost an instant later,

the mid-price will be µ − γσ2

N Spost . So, (28) says that if the agents buy in the first

auction, ũ > 0, then they do so at a price lower than the mid-price in the second

auction. Similarly if they sell in the first auction, ũ < 0, then they do so at a price
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higher than the mid-price in the second auction. Thus agents always trade in the first

auction at prices that are favorable relative to the mid-price in the second auction. In

particular, if an agent were to unwind the position acquired in the first auction with

a limit order6 in the second auction, then the roundtrip trade would earn positive

profits. This is the sense in which the deviation due to imperfect competition always

favors the agents. This logic will reappear more clearly in future chapters, where we

look at dynamic models and the auction truly is repeated instant after instant.

From (18) we see that the agents trade heterogenous quantities of shares in the

auction, unlike in the previous section where they all traded ũ
N . Since the agents

must clear ũ in the auction, it follow that the average number of shares bought by

each agent is ũ
N , but some agents might buy more and some less. The total initial

inventory of the agents is S, so the average inventory held by each agent is S
N . (18)

says that the agents with above average inventories buy less, and those with below

average inventories buy more.

A more precise way to understand the traded quantities is in terms of the Pareto

optimality of the inventory distribution before and after the auction. Since all

agents are identical, it would be Pareto optimal for them to hold S
N shares before

the auction and Spost
N after the auction. Individual inventories after the auction are

Xn
post := Xn + qn and from (18) it follows that

Xn
post −

Spost

N
=

1
N − 1

(Xn −
S
N
). (1.29)

Thus (29) says that trading in the auction moves inventories closer to efficiency by a

factor of 1
N−1 . When N takes its smallest value of 3, the agents only move halfway

towards efficiency, whereas they move entirely towards efficiency in the limit as
6Technically a market order could also work in the second auction if it does not suffer too much

price impact. The point is to unwind the position in the second auction at a favorable price relative
to (28). Since the mid-price in the second auction will be µ − γσ2

N Spost , the price will always be
favorable if using a limit order, and for a market order it depends on the price impact. In the dynamic
model, equilibrium price impact will be constant over time and using market orders will not work
for the agents. However noise trader flow will mean revert, so the agents will eventually be able to
unwind their positions using limit orders, and this will earn positive profits.
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N → ∞. Thus imperfect competition among the agents results in imperfect risk

sharing.
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C h a p t e r 2

CONTINUOUS TIME MODEL

This chapter presents a continuous time model of trading on an exchange. The model

is set on an infinite horizon, and each instant in time consists of the auction from

chapter one. Traders hold cash and shares, and these fluctuate over time based on the

outcomes of the auctions. As in Chapter 1 there are two types of traders: market

makers, endogenous, and liquidity traders, exogenous.

In this chapter the exogenous dynamics of the liquidity traders orders are taken to be

as simple as possible: an Ornstein-Uhlenbeck process. This allows us to focus on the

mechanics of solving the model in a relatively simple setting. These liquidity trader

dynamics have some drawbacks, however. In particular, there is no mean reversion

in the liquidity traders’ shareholdings, and thus there is also no clear notion of round

trip trades by the market makers. Chapter 3 considers alternative dynamics to deal

with these issues.

The first section of the chapter formulates the model as a stochastic differential game

and defines the equilibrium concept to be considered. The second section phrases

the optimal response problem for an individual as a standard stochastic control

problem. The third section provides a complete closed-form characterization of

equilibrium by solving this problem. The last section discusses the economics behind

the endogenous price and trading processes that arise in the models equilibrium.

2.1 The Model

Fix a filtered probability space (Ω, F , {Ft}, P) equipped with two independent

Brownian motions, {BD
t } and {BNt }, and satisfying the usual conditions. We

consider a market on an infinite horizon where shares of a zero net supply risky asset

are traded for cash. Cash is in infinitely elastic supply, earns no interest, and is the

numeraire. The market is populated by two types of traders: N ∈ N market makers
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and a collection of liquidity traders. Each market maker starts out at time 0 holding

Xn
0 shares of the asset, n = 1, · · · , N . The liquidity traders start out with a collective

shareholding of −S0, which must satisfy S0 = X1
0 + · · ·+ XN

0 since the asset is in zero

net supply.

At each instant in time the traders transact with one another at a uniform price pt .

Trading occurs smoothly, meaning that each trader has a trading rate, which is the

time derivative of his current shareholdings.1 Trading rates and the trading price

at each instant in time are determined by a demand schedule auction between the

traders. Thus at time t each trader submits an affine2 demand schedule of the form

q = ut−vt p. This is a commitment to trade at rate ut−vt p at time t if the trading price

is p. We denote this demand schedule by (ut, vt). The process {(ut, vt)} is required

to be progressively measurable, though we will place more stringent conditions on it

below.

The liquidity traders’ collective demand schedule at time t is exogenously give as

(−Nt, 0), where

dNt = −ψNt dt + σNdBNt (2.1)

and ψ, σN > 0. Thus the liquidty traders’ demand schedule is a vertical line through

the point −Nt , which we interpret as a market order to sell Nt dt shares over the time

interval [t, t + dt]. The liquidity traders’ motives to trade are not modeled; it is simply

assumed that they results in the trajectory of market order trading rates {−Nt}.

The market makers, on the other hand, submit demand schedules in order to maximize

certain objectives. Denote the market makers’ trading rates by qn
t , so that their

inventories evolve according to

dXn
t = qn

t dt . (2.2)
1Shareholdings will also be referred to as inventories in what follows.
2It is actually not necessary to assume that agents can only submit affine schedules, as we will

see below. For the class of equilibria we consider, when forming an optimal response an agent can
achieve any trading rate via an affine demand schedule. Thus even if agents could submit arbitrary
schedules, there would still be an equilibrium where they all submit affine schedules. Of course, there
may also be other equilibria where agents submit more exotic schedules.
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If the market makers submit the demand schedule processes {(α
n
t

βnt
, 1
βnt
)}, then their

trading rates qn
t and the trading price pt are determined implicitly by

αn
t − β

n
t qn

t = pt ∀n = 1, · · · , N (2.3)

q1
t + · · · + qN

t = Nt . (2.4)

Note that the price, trading rate, and inventory processes all depend on the choice of

demand schedule processes. This dependence is suppressed in the notation.

Each market maker has cash holding Mn
t which evolve as a result of trading according

to dMn
t = −qn

t pt dt. The market makers are also assumed at time t to have a common

exogenous valuation of the asset as Dt , where

dDt = µdt + σDdBD
t (2.5)

and µ, σD > 0 are fixed constants. Thus each marker maker values his book,

consisting of joint holdings in cash and the asset, as Wn
t = Xn

t Dt + Mn
t . This is the

market maker’s wealth, computed by valuing shareholdings at Dt .

Each market maker chooses his demand schedule to maximize the objective

E

[ ∫ ∞

0
e−ρt

(
dWn

t −
γ

2
d〈Wn〉t

)]
, (2.6)

where ρ, γ > 0. Here 〈Wn〉t is the quadratic variation of the market makers

wealth, and so d〈Wn〉t can be thought of as the variance of instantaneous wealth

changes. Thus the integrand in (6) can be interpreted as a mean-variance utility flow

from instantaneous returns, which means that (6) embodies myopic3 mean-variance

preferences over returns.

One can compute the objective function in (6) as

E

[ ∫ ∞

0
e−ρt

(
− qn

t (pt − Dt) + µXn
t −

γσ2
D

2
(Xn

t )
2
)
dt

]
. (2.7)

Thus the market makers want to buy, qn
t > 0, when the price is below their valuation,

pt − Dt < 0, and vice versa. Furthermore, they enjoy holding inventory to the extent
3Myopic because the utility flow comes from instantaneous returns.
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that valuations grow on average, µ > 0, and they are averse to holding inventory to

the extent that valuations are volatile, σ2
D > 0.

Barring technicalities, this completes the description of the model as a stochastic

differential game between the N market makers. Indeed, the control process4 of each

market maker is {(αn
t , β

n
t )} and the controlled dynamics are described by (1) - (5).

The coupled objectives of the market makers are given by (7), the coupling being

induced by (3) and (4). The initial conditions for the game are the initial conditions

for equations (1), (2), and (5). We are interested in studying the Nash equilibria of

this game.

What remains is to formally specify the equilibrium concept that we will consider

for this game. This includes any measurability and integrability conditions that the

admissible controls must satisfy, as well as any restrictions on the class of equilibria

that will be studied. This is carried out in the subsection below. The rest of the

chapter is dedicated to characterizing and analyzing the model’s equilibrium.

Equilibrium Concept

We begin by specifying the admissibility conditions that the market makers’ demand

schedules must satisfy. Firstly, we need to make sure that the system (3) - (4)

can be solved uniquely to define progressively measurable trading rates and prices.

Secondly, prices and trading rates must be sufficiently well-behaved so that the

(implicit) integrals in (2) and the double integral in (7) converge absolutely. Finally,

we will want to place some measurability restrictions on the demand schedule

processes in order to reflect the type of information that market makers have access

to. This gives rise to the definition of admissible profiles of demand schedules.

Definition 2.1.1. Given initial conditions (®x, η, d) ∈ RN×R×R for (X1
0 , · · · , XN

0 ), N0,

and D0, we say that the profile of progressively measurable demand schedules

{(α1
t , β

1
t )}, · · · , {(α

N
t , β

N
t )} is admissible starting from (®x, η, d) if:

4We take as controls the parameters of the inverse demand as opposed to the demand. This
simplifies much of the algebra below. We will continue to refer to the controls as demand schedules.
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1. βn
t > 0 ∀t ≥ 0, ∀n = 1, · · · , N almost surely

2.
∫ T
0 |q

n
t |dt < ∞ ∀T ≥ 0, ∀n = 1, · · · , N almost surely

3. The double integral (7) converges absolutely

4. αn
t , β

n
t ∈ σ

(
{Ds}0≤s≤t, {ps}0≤s<t, {Xn

s }0≤s≤t, S0

)
∀t ≥ 0, ∀n = 1, · · · N .

The first condition says that market makers may only submit strictly decreasing

demand schedules, and it guarantees that the system (3) - (4) can be solved uniquely

to define progressively measurable trading rates and prices. The second and third

conditions ensure that the integrals in (2) and (7) converge. The fourth condition

states that the information a market maker has access to at any moment in time

consists of the history of valuations, the history of prices, the history of his own

shareholdings, and the initial level of the liquidity traders’ shareholdings. This is

essentially the information that exchanges provide to traders in reality.

We are interested in identifying admissible profiles of demand schedules that are Nash

equilibria. Given a profile of demand schedules {(α1
t , β

1
t )}, · · · , {(α

N
t , β

N
t )} that’s

admissible starting from (®x, η, d), denote by Jn (®x, η, d, {(α1
t , β

1
t )}, · · · , {(α

N
t , β

N
t )}

)
the value of the double integral (7). This is the payoff that market maker n receives

when everyone’s strategies are {(α1
t , β

1
t )}, · · · , {(α

N
t , β

N
t )} and the initial conditions

are (X1
0 , · · · , XN

0 ) = ®x, N0 = η, and D0 = d.

Definition 2.1.2. Given initial conditions (®x, η, d), we say that a profile of demand

schedules {(α1
t , β

1
t )}, · · · , {(α

N
t , β

N
t )} is aNash Equilibrium starting from (®x, η, d)

if:

1. The profile is admissible starting from (®x, η, d)

2. For any n = 1, · · · , N , and for any demand schedule process {(αt, βt)} such

that

{(α1
t , β

1
t )}, · · · , {(α

n−1
t , βn−1

t )}, {(αt, βt)}, {(α
n+1
t , βn+1

t )}, · · · , {(α
N
t , β

N
t )}

)
is ad-
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missible starting from (®x, η, d), we have that

Jn (®x, η, d, {(α1
t , β

1
t )}, · · · , {(α

N
t , β

N
t )}

)
≥

Jn (®x, η, d, {(α1
t , β

1
t )}, · · · , {(α

n−1
t , βn−1

t )}, {(αt, βt)}, {(α
n+1
t , βn+1

t )},

· · · , {(αN
t , β

N
t )}

)
.

The second condition is the standard condition for a Nash equilibrium. It states

that when all the market makers but market maker n play their equilibrium demand

schedules, the maximum payoff the nth market maker can earn is if he also plays

his equilibrium demand schedule. In other words, when considering the optimal

response problem against a profile of equilibrium demand schedules, each market

maker finds it optimal to also use his equilibrium demand schedule.

Unfortunately, identifying all the Nash equilibria in this model is intractable and

beyond the scope of this thesis. Instead we will focus on a special class of equilibria

where all the market makers’ demand schedules have a linear and symmetric structure.

While this is fairly restrictive, the equilibria seem quite realistic and exhibit interesting

dynamics.

Denote by −St the collective share holdings of the liquidity traders at time t. Since

the asset is in zero net supply, St must satisfy

St = X1
t + · · ·+ XN

t = X1
0 +

∫ t

0
q1

s ds + · · ·+ XN
0 +

∫ t

0
qN

s ds = S0 +

∫ t

0
Nsds (2.8)

∀t ≥ 0. We will only consider equilibria where all market makers use demand

schedules with the same constant slope and with an intercept that is the same linear

function of individual state variables. The individual state variables will be Dt, Xn
t ,

and St . The precise formulation is given in the next definitions.

Definition 2.1.3. A profile of demand schedules {(α1
t , β

1
t )}, · · · , {(α

N
t , β

N
t )} is said

to be linear symmetric if ∃ a, λ, b, c, ξ ∈ R s.t.

αn
t = aXn

t + bDt + cSt + ξ (2.9)

βn
t = λ (2.10)
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∀t ≥ 0, ∀n = 1, · · · , N .

Definition 2.1.4. We say that a, λ, b, c, ξ ∈ R are a linear symmetric Nash equilib-

rium if the linear symmetric profile defined by (9) and (10) is a Nash equilibrium

starting from any set of initial conditions.

For the rest of the chapter we focus only on linear symmetric Nash equilibria. Our

goal will be to classify all such equilibria and to study the dynamics of prices and

trading rates in these equilibria. Before proceeding we prove the following lemma,

which states the for linear symmetric profiles the admissibility5 conditions manifest

in simple constraints on the parameters a and λ. One of the key points of the lemma

is that under a linear symmetric profile market makers can infer St from the history

of prices and valuations. The market makers are thus able to implement the demand

schedules (9) and (10) given their individual information sets.

Lemma 2.1.5. A linear symmetric profile is admissible if and only if λ > 0 and
a
λ <

ρ
2 .

Proof. Fix a linear symmetric profile given by a, λ, b, c, ξ ∈ R as in (9) and (10). We

need to show that the four conditions for admissibility in Definition 1.1 are satisfied

if and only if λ > 0 and a
λ <

ρ
2 . Clearly the first condition holds if and only if λ > 0.

Next we will show that a profile satisfying (9) and (10) always satisfies the second

and fourth conditions. Finally we will show that the third condition holds if and only

if 2a
λ < ρ, thus completing the proof of the lemma.

Note that by combining equations (9) and (10) with equations (2), (3) and (4) we can

conclude that prices, trading rates, and inventories under a linear symmetric profile
5Admissibility for a linear symmetric profile means that (9) and (10) are admissible given any

initial conditions.
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must satisfy

pt =
( a

N
+ c

)
St + bDt + ξ −

λ

N
Nt (2.11)

Xn
t = e

a
λ t

(
Xn

0 −
S0

N

)
+

St

N
(2.12)

qn
t =

a
λ

(
Xn

t −
St

N

)
+

1
N
Nt (2.13)

∀t ≥ 0 and ∀n = 1, · · · , N . These formulas imply that trading rates are almost surely

continuous and thus the second condition holds.

To prove the fourth condition it suffices to prove that St ∈ σ
(
{Ds}0≤s≤t, {ps}0≤s<t, S0

)
∀t ≥ 0. Equation (11) implies that the following ODE holds path by path for the

process {St}:
dSt

dt
=

N
λ

( a
N
+ c

)
St +At,

where the process {At} is defined by

At =
N
λ
(bDt + ξ − pt).

It’s clear from this definition that {As}0≤s<t ∈ σ
(
{Ds}0≤s≤t, {ps}0≤s<t, S0

)
∀t ≥ 0.

Furthermore the ODE above implies that

St = e
N
λ

(
a
N +c

)
t
S0 +

∫ t

0
e

N
λ

(
a
N +c

)
(t−s)
Asds

from which it follows that St ∈ σ
(
{Ds}0≤s≤t, {ps}0≤s<t, S0

)
∀t ≥ 0.

Turning to the third condition for admissibility, note that (11) - (13) imply that under

a linear symmetric profile the integrand in (7) is of the form e−ρtQ(Xn
t ,Dt,Nt, St),

where Q is a second order polynomial with an (Xn
t )

2 coefficient of −γσ
2
D

2 , 0 . Thus

∃ constants M0, M1, M2, M3, M4 > 0 such that

|Q(Xn
t ,Dt,Nt, St)| ≤ M0 + M1

(
(Xn

t )
2 + D2

t +N
2
t + S2

t
)

(Xn
t )

2 ≤ M2 + M3 |Q(Xn
t ,Dt,Nt, St)| + M4(D2

t +N
2
t + S2

t )

∀t ≥ 0 almost surely. Equations (1), (5), and (8) imply that e−ρt D2
t , e−ρtN2

t , and

e−ρtS2
t are integrable for any initial conditions. Thus from these bounds it follows
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that (7) converges absolutely for any initial conditions and for any n = 1, · · · , N if

and only if e−ρt(Xn
t )

2 is integrable for any initial conditions and for any n = 1, · · · , N .

From (12) it follows that this latter condition holds if and only if a
λ <

ρ
2 . �

2.2 The Optimal Response Problem

This section formulates the optimal response problem for an individual market

maker as a standard stochastic control problem. A key point is that in forming an

optimal response, a market maker can optimize directly over his trading rate. This is

analogous to the idea in Chapter 1 of formulating the optimal response problem as

maximization against a linear supply curve.

Proposition 2.2.1. a, λ, b, c, ξ ∈ R are a linear symmetric Nash equilibrium if and

only if λ > 0, a
λ <

ρ
2 , and for any initial conditions we have that

a
λ

(
Xt−

St

N

)
+
Nt

N
∈ arg max

{qt }
E

[ ∫ ∞

0
e−ρt

(
−qt(pt−Dt)+µXt−

γσ2
D

2
(Xt)

2
)
dt

]
, (2.14)

where pt is given by equation (15) below, the relevant dynamics are

dXt = qt dt

dDt = µdt + σDdBD
t

dNt = −ψNt dt + σNdBNt

dSt = Nt dt

and the optimization is constrained to those processes {qt} such that

1.
∫ T
0 |qt |dt < ∞ ∀T ≥ 0

2. The double integral in (14) converges absolutely

3. qt ∈ σ({Du}0≤u≤t, {Su}0≤u≤t, {Xu}0≤u≤t, {Nu}0≤u≤t) ∀t ≥ 0.

Proof. To have a Nash equilibrium we must have a profile that satisfies the admissi-

bility and optimality conditions in Definition 1.2. Lemma 1.5 states that for a linearly

symmetric profile the admissibility condition holds if and only if λ > 0 and a
λ <

ρ
2 .
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Thus to prove the proposition we need only show that the optimality condition holds

if and only if (14) holds.

Consider the optimal response problem of an individual market maker when facing

a linear symmetric profile of demand schedules given by a, λ, b, c, ξ ∈ R. Denote

the inventory process and trading rate process for the remaining market maker by

{Xt} and {qt}. If the remaining market maker chooses the demand schedule process

{(αt, βt)}, then his trading rate and the price process {pt} are given implicitly by

pt =
( a

N − 1
+ c

)
St + bDt + ξ −

λ

N − 1
Nt −

a
N − 1

Xt +
λ

N − 1
qt (2.15)

pt = αt − βtqt . (2.16)

The optimal response problem for the remaining market maker is to choose the

demand schedule process {(αt, βt)} such that the profile of all agents’ schedules

is admissible6, and the objective in (14) is maximized over all such processes. In

computing the objective the relevant equations are (15), (16), and the differential

equations in the statement of the proposition. The optimality condition for Nash

equilibrium is satisfied if and only if for any set of initial conditions a maximizing

choice of demand schedule process is (αt, βt) = (aXt + bDt + cSt + ξ, λ). We now

make three points regarding this optimal response problem.

The first point is that the remaining market maker will be indifferent between any two

demand schedule processes leading to the same trading rate. Indeed for fixed initial

conditions, the objective in (14) depends on the choice of demand schedule process

only through the trading rate and price processes. Furthermore, from (15) we see

that the price process depends on the demand schedule processes only through the

trading rate process. Hence the objective is constant over demand schedule processes

leading to the same trading rate process.

The second point is that by choosing an appropriate admissible demand schedule, the

remaining market maker can achieve any trading rate satisfying the three conditions
6In the rest of the proof we will say that the remaining market maker’s demand schedule process

is admissible if the corresponding profile of all market makers’ demand schedules is admissible.
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in the proposition. To prove this it suffice to show that

St, Nt ∈ σ
(
{Ds}0≤s≤t, {ps}0≤s<t, {Xs}0≤s≤t, {qs}0≤s<t, S0

)
∀t ≥ 0 (2.17)

for any choice of the remaining market maker’s demand schedule. If this is the case,

then for any {q̃t} satisfying the three conditions in the proposition we have that the

demand schedule process{(( a
N − 1

+ c
)
St + bDt + ξ −

λ

N − 1
Nt −

a
N − 1

Xt +
(
1 +

λ

N − 1

)
q̃t, 1

)}
is admissible, and by (15) and (16) it gives the remaining market maker the trading

rate process {qt} = {q̃t}.

To prove (17) it suffices to prove that

{Su}0≤u≤t ∈ σ
(
{Ds}0≤s≤t, {ps}0≤s<t, {Xs}0≤s≤t, {qs}0≤s<t, S0

)
∀t ≥ 0 (2.18)

for any choice of the remaining market maker’s demand schedule. This is because

by differentiating {Su}0≤u≤t we can recover {N}0≤u≤t . To prove (18) note that (15)

implies that for any choice of the remaining market maker’s demand schedule we

have

dSt

dt
=

N − 1
λ

( a
N − 1

+ c
)
St +At

At =
N − 1
λ

(
bDt + ξ −

a
N − 1

Xt +
λ

N − 1
qt − pt

)
.

From this (18) follows exactly as in Lemma 1.5.

The final point is that if the remaining market maker chooses the demand schedule

process (αt, βt) = (aXt + bDt + cSt + ξ, λ), then his trading rate is

qt =
a
λ

(
Xt −

St

N

)
+
Nt

N
(2.19)

∀t ≥ 0. Indeed (19) follows simply by plugging (αt, βt) in (15) - (16) and solving for

qt .

This third point shows that if the remainingmarket maker follows the linear symmetric

profile, then his trading rate is the maximizer in (14). The first two points imply
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that solving the optimal response problem against a linear symmetric profile is the

same as solving the constrained optimization problem in the proposition. Hence the

proposition follows. �

This proposition associates to each linear symmetric profile a, λ, b, c, ξ ∈ R an

optimization problem, as well as a candidate solution of the problem. The parameters

provide an equilibrium if and only if the candidate is truly a solution. In the next

section we will use the theory of stochastic control to derive first order conditions for

the optimization problem. Using these we will demonstrate that there is a unique

profile for which the candidate is a true solution, and thus there is a unique linear

symmetric equilibrium.

Before proceeding, we establish some notation relevant to the proposition and it’s use

below. Given a set of parameters a, λ, b, c, ξ ∈ R, the optimization in the proposition

is a standard stochastic control problem on an infinite horizon, with state space

(x, d, η, s) ∈ R4 and control space q ∈ R. Denote the covariables for the problem by

y = (yx, yd, yη, ys) ∈ R
4 and

z =

©«

zxx zxd zxη zxs

zdx zdd zdη zds

zηx zηd zηη zηs

zsx zsd zsη zss

ª®®®®®®®¬
∈ R4×4.

The Hamiltonian for the problem is H : R4 × R4 × R4×4 × R→ R given by

H(x, d, η, s, y, z, q) = qyx + µyd − ψηyη + ηys +
σ2

D

2
zdd +

σ2
N

2
zηη + µx

−
γσ2

D

2
x2 − q

(
P(x, d, η, s, q) − d

)
, (2.20)

where P : R4 × R→ R is the function specifying prices as a function of state and

control from (15) above, i.e.

P(x, d, η, s, q) =
( a

N − 1
+ c

)
s + bd + ξ −

λ

N − 1
η −

a
N − 1

x +
λ

N − 1
q. (2.21)
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Also denote by Q : R4 → R the mapping corresponding to the Markov control in

(14), i.e.

Q(x, d, η, s) =
a
λ

(
x −

s
N
) +

η

N
. (2.22)

H and P describe the optimization problem, and Q is the candidate solution. The

functions H, P, and Q all depend on the parameters a, λ, b, c, and ξ, but this

dependence is suppressed in the notation.

2.3 Equilibrium Characterization

Theorem 2.3.1. Fix exogenous parameters N ≥ 3, ρ, γ, σD, σN, ψ > 0, and µ ∈ R.

There is a uique linear symmetric Nash equilibrium with price

pt = Dt +
µ

ρ
−

1
ρ

γ

N
σ2

DSt −
γ

N
N − 1

2
σ2

D

δ(δ −
ρ
2 )
Nt

and trading rates

qn
t = −(δ −

ρ

2
)

(
Xn

t −
St

N

)
+

1
N
Nt,

where

δ :=
1
2

√
ρ2 + 2ρ(ρ + ψ)(N − 2).

Proof. We will prove that a, λ, b, c, ξ ∈ R are a linear symmetric Nash equilibrium if

and only if

a = −
N − 1
δ

γσ2
D (2.23)

λ =
N − 1
N − 2

γσ2
D

ρ + ψ

(1
δ
+

1
ρ

)
(2.24)

b = 1 (2.25)

c = −
1
ρ

γσ2
D

N
+

N − 1
δ

γσ2
D

N
(2.26)

ξ =
µ

ρ
(2.27)

Equilibrium prices and trading rates are given by (11) - (13), and plugging in these

values gives the formulas in the statement of the theorem.
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We begin by proving the only if part of the statement. To this end, suppose the

parameters a, λ, b, c, ξ ∈ R are a linear symmetric Nash equilibrium. Denote by

V(x, d, η, s) the value function of the optimization problem in Proposition 2.1, i.e.

the value of the supremum in (14) when the initial conditions are (X0,D0,N0, S0) =

(x, d, η, s).

Note that the value function is smooth. Indeed because the parameters provide an

equilibrium, (14) must hold, and thereforeV(x, d, η, s) can be computed by evaluating

the objective in (14) along the control process a
λ

(
Xt −

St
N

)
+
Nt

N . This provides us

with an explicit expression for V , and by direct inspection it follows that V is smooth.

It follows that V satisfies the following HJB equation:

ρV(x, d, η, s) = sup
q∈R

H(x, d, η, s,∇V,∇2V, q) ∀(x, d, η, s) ∈ R4. (2.28)

Furthermore, since Q is an optimal Markov control, it also follows that

Q(x, d, η, s) ∈ arg max
q∈R

H(x, d, η, s,∇V,∇2V, q) ∀(x, d, η, s) ∈ R4. (2.29)

(28) is the classical result that if the value function is smooth then it satisfies the HJB

equation [Tou13]. When an optimal Markov control is known to exist, one way to

prove (28) is to first prove (29) [Car16]. A lemma explicitly proving (29) is included

in the appendix to this chapter for completeness.

The first order condition for (29) is

Vx(x, d, η, s) = P
(
x, d, η, s,Q(x, d, η, s)

)
− d+

λ

N − 1
Q(x, d, η, s) ∀(x, d, η, s) ∈ R4.

(2.30)

Anti-differentiating (30) it follows that ∃ a smooth function w : R3 → R such that

V(x, d, η, s) =
1
2

a
N − 1

x2+(b−1)xd−
( N − 2

N(N − 1)
λ
)
xη+

( N − 2
N(N − 1)

a+c
)
xs+ξx

+ w(d, η, s) (2.31)

∀(x, d, η, s) ∈ R4.
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In summary, we’ve shown that if a, λ, b, c, ξ ∈ R are a linear symmetric Nash

equilibrium then (28) - (31) hold. Combining these equations, we conclude that ∃ a

smooth function w : R3 → R such that

ρ

2
a

N − 1
x2+ρ(b−1)xd−ρ

N − 2
N(N − 1)

λxη+ρ
( N − 2

N(N − 1)
a+c

)
xs+ρξx+ρw(d, η, s)

=
( a2

λ(N − 1)
−
γσ2

D

2

)
x2 +

( a
N − 1

+
N − 2

N(N − 1)
ψλ + c

)
xη −

2a2

N(N − 1)λ
xs + µbx

+ µwd − ψηwη + ηws +
σ2

D

2
wdd +

σ2
N

2
wηη +

λ

(N − 1)N2

(
η −

a
λ

s
)2

(2.32)

∀(x, d, η, s) ∈ R4.

It remains to be shown that (32) implies (23) - (27). Note that since the function w

is independent of x, the coefficients of x2, xd, xη, xs, and x must be equal on the

left and right hand sides of (32). Equating the coefficients of xd and x immediately

gives (25) and (27). Equating the remaining coefficients yields the algebraic system

ρ

2
a

N − 1
=

a2

λ(N − 1)
−
γσ2

D

2
(2.33)

−ρ
N − 2

N(N − 1)
λ =

a
N − 1

+
N − 2

N(N − 1)
ψλ + c (2.34)

ρ
( N − 2

N(N − 1)
a + c

)
= −

2a2

N(N − 1)λ
. (2.35)

Using equations (33) and (35) we can solve for c in terms of a to get c = − a
N −

1
ρ
γ
Nσ

2
D.

From this equation it follows that if (23) and (24) hold then so too does (26).

Next we plug this expression for c into (34) and solve for λ in terms of a to get

λ = − 1
ρ+ψ

(
a

N−2 −
N−1
N−2

γσ2
D

ρ

)
. From this equation it follows that if (23) holds then

so too does (24). Hence it only remains to prove that (23) holds. Plugging this

expression for λ into (33), we see that a must satisfy a2 =
(N−1)2γ2σ4

D

δ2 . Now, because

the parameters provide an equilibrium, the constraint 2a
λ < ρmust hold. The positive

root for a violates the constraint and the negative root satisfies it, so it follows that

(23) holds.

We now prove the if part of the statement. To this end, suppose that a, b, c, ξ, and λ

are given by equations (23) - (27). We need to show (14) holds, i.e. that the mapping
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Q in (22) provides an optimal Markov control for the stochastic control problem in

Proposition 2.1. This will be done by by using the verification theorem for the HJB

equation [Pha09].

Given a set of initial conditions, denote by {q̂t} and {X̂t} the trading rate and

inventory processes arising from using the Markov control given by Q, i.e. dX̂t =

Q(X̂t,Dt,Nt, St)dt and q̂t = Q(X̂t,Dt,Nt, St). These processes depend on the choice

of initial conditions, but this is suppressed in the notation. We need to show that ∃ a

smooth function V(x, d, η, s) such that

1. (28) holds

2. (29) holds

3. e−ρtE[V(X̂t,Dt,Nt, St)] → 0 as t →∞ for any choice of initial conditions

4. {q̂t} satisfies the the constraints in Proposition 3.1 for any choice of initial

conditions.

If this can be done then it follows by the verification theorem that Q is an optimal

Markov control for the stochastic control problem in Proposition 2.1.

Note that we can find a second order polynomial w(d, η, s) that satisfies the equation

ρw = µwd − ψηwη + ηws +
σ2

D

2
wdd +

σ2
N

2
wηη +

λ

(N − 1)N2

(
η −

a
λ

s
)2

on all of R3. Now define the functionV(x, d, η, s) by equation (31). Then the function

V is smooth and by construction equations (30) and (32) hold. Notice that as a

function of q the Hamiltonian is a quadratic polynomial with leading coefficient

− λ
N−1 . Since λ > 0 it follows that (30) is not only a necessary condition for (29) but

also a sufficient one. Thus (29) holds. This implies that the equation (28) is precisely

the equation (32), and so (28) also holds.

SinceV is a second order polynomial, in order to prove the third condition it suffices to

show that E[e−ρt X̂2
t ], E[e−ρt D2

t ], E[e−ρtN2
t ], and E[e−ρtS2

t ] converge to 0 as t →∞

for any set of initial conditions. This follows from the fact that 2a
λ < ρ and ψ > 0.
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Finally, we need to check that {q̂t} satisfies the constraints in Proposition 3.1. The

third constraint is trivial since q̂t = Q(X̂t,Dt,Nt, St). This formula also implies {q̂t}

is almost surely continuous, and thus the first condition holds. Lastly, the second

condition holds because 2a
λ < ρ and ψ > 0. �

2.4 Equilibrium Analysis

Price Analysis

Consider the equilibrium price process given in Theorem 3.1. The four terms admit

intuitive economic interpretations. The first term Dt is simply the market makers’

current valuation for the asset. The second term µ
ρ is a premium for expected valuation

growth. µ is the drift of valuations, so on average valuations increase by µ(T − t)

over a time interval [t,T]. As this is common knowledge among the market makers,

this must be reflected in the price at time t. Otherwise, a profitable deviation from

equilibrium would be to buy the asset at time t and sell it at time T . Since market

makers discount payoffs from time T to time t by e−ρ(T−t), the appropriate premium

in the price to prevent this deviation is µ
ρ . Said another way, we have7

µ

ρ
= Et

[ ∫ ∞

t
e−ρ(T−t)dDT

]
.

Thus the second term is the (risk-neutral) present value of expected future changes in

the asset’s value.

Since the market makers are not risk neutral, they also require risk compensations to

take exposures to the asset. This is the role of the third term in the price − 1
ρ

γσ2
D

N St .

When the market makers are in aggregate long the asset, so St is positive, this term

is negative and thus the asset is trading at a relatively low price. Because the asset

is trading at a low price, market makers don’t find it profitable to deviate from

equilibrium by selling the asset to reduce their exposures. Similarly, when the market

makers are in aggregate short the asset, this term causes the asset to trade at a high

price, and thus market makers don’t find it profitable to buy the asset to reduce their

exposures.
7The notation here and below is Et [·] := E[·|Ft ].
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The magnitude of the compensation per unit of exposure is given by 1
ρ

γσ2
D

N . σ2
D

is the volatility of valuations, so this is the amount of risk per unit of exposure

to the asset. γ
N is the aggregate risk aversion of the market makers, so this is the

dollar compensation they require to hold a unit of risk. Thus γσ2
D

N is the dollar

compensation the market makers require to hold a unit of exposure to the asset.

The presence of 1
ρ suggests a discounted present value interpretation, but it is not

straightforward to write this term as a discounted present value like the second term.

This is partly because this term is not the full risk compensation market makers

require, as discussed a few paragraphs below.

The final term in the price process is − γ
N

N−1
2

σ2
D

δ(δ−
ρ
2 )
Nt , which is the price impact the

liquidity traders face on their trades, or equivalently the slope of the supply curve

they face when trading. The liquidity traders submit market orders to trade at rate

−Nt , so they are buying when Nt < 0 and selling when Nt > 0. When the liquidity

traders are buying, price impact causes the trading price to be high, and when the

liquidity traders are selling, price impact causes the trading price to be low. This

is the model’s analogue of liquidity traders’ market orders walking the book. As

suggested by Kyle, we define liquidity in the model as the reciprocal of price impact

and study it’s comparative statics.

Definition 2.4.1. Price Impact := γ
N

N−1
2

σ2
D

δ(δ−
ρ
2 )

Definition 2.4.2. Liquidity := 1
Price Impact

Proposition 2.4.3. 1. ∂
∂γ Liquidity < 0.

Liquidity is decreasing in market makers’ risk aversion.

2. ∂
∂σD

Liquidity < 0.

Liquidity is decreasing in fundamental volatility.

3. If γ
N is held fixed then ∂

∂N Liquidity > 0.

Liquidity is increasing in market maker competition.
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4. ∂
∂ψ Liquidity > 0.

Liquidity is decreasing in order flow uncertainty.

To understand the fourth point, recall that the liquidity traders’ order flow is given

by {Nt}, which is an Ornstein-Uhlenbeck process whose stationary distribution

has variance σ2
N

2ψ . Thus as ψ increases, the liquidity traders’ orders arrive with less

uncertainty.

These comparative statics agree with real word intuition about liquidity, and thus

they justify the theoretical definition of liquidity. Put simply, liquidity should reflect

market makers’ willingness to absorb temporary flow. Market makers are less willing

to absorb temporary flow when they are more risk averse, when the asset is riskier,

when there are not many of them, or when order flow is more uncertain. By the

proposition, liquidity is also lower in the model in these situations.

Next we study what happens to price impact in the competitive limit of the model.

This is the limit when N →∞ and γ
N → γ0. Essentially one considers the sequence

of models with N market makers each having risk aversion γN := Nγ0. Thus for any

model in the sequence, the aggregate risk aversion of the market makers is γN
N = γ0.

Hence the sequence considers increasingly competitive market making sectors that

in aggregate have the same risk bearing capacity. Taking the limit of the sequence

provides a perfectly competitive benchmark for the model.

Proposition 2.4.4. In the competitive limit, we have that

Price Impact →
γ0

ρ

σ2
D

ρ + ψ

and

pt → Dt +
µ

ρ
− Et

[ ∫ ∞

t
e−ρ(T−t)γ0σ

2
DST dT

]
∀(t, ω) ∈ [0,∞) ×Ω

That price impact does not vanish in the competitive limit is somewhat surprising.

Naive intuition would suggest that market makers exercise their market power by

charging price impact. So in the competitive limit, when individual market makers
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no longer have market power, price impact should vanish. The reason this intuition

does not hold is given by the limiting value of the equilibrium price.

In the competitive limit, market makers have an aggregate risk aversion of γ0 > 0,

so the equilibrium price should consist of a risk neutral present value as well as a

discount based on the market makers’ aggregate exposure. The first two terms in the

limiting price, Dt +
µ
ρ , are a risk neutral present value as discussed above. Thus the

third term −Et

[ ∫ ∞
t e−ρ(T−t)γ0σ

2
DST dT

]
should be the appropriate risk discount.

As discussed above, ST is the aggregate exposure of the market makers at time

T , and −γ0σ
2
DST is the dollar compensation they require in order to maintain this

exposure. However, because ST evolves with T , this is only the exposure over the

infinitesimal time interval [T,T + dt]. Furthermore, standing at time t, market

makers require a compensation for the entire path of exposures they will be taking

over [t,∞). The appropriate compensation for the exposure over [T,T + dt] is

γ0σ
2
DST , and market makers discount payoffs from time T to time t by e−ρ(T−t),

so the appropriate compensation for the entire path of exposures over [t,∞) is

−Et

[ ∫ ∞
t e−ρ(T−t)γ0σ

2
DST dT

]
.

Said another way, the third term is exactly what is needed to prevent market makers

deviating from equilibrium by pursuing a strategy that buys/sells based on the current

level of the aggregate exposure. If ST does not evolve with T and has a constant

value equal to S, then this term reads − 1
ργ0σ

2
DS. This is exactly the risk discount a

representative CARA investor with risk aversion γ0 and time discount rate ρ would

require to hold S shares of an asset with volatility σ2
D.

Based on this analysis, we can conclude, as suggested previously, that − 1
ρ

γσ2
D

N St is

not the full risk compensation component of the equilibrium price, but instead that

−Et

[ ∫ ∞
t e−ρ(T−t)γ0σ

2
DST dT

]
is. Thus part of the price impact component of prices

compensates market makers for risk, and so it does not vanish in the competitive limit.

The rest of the price impact component of prices is a manifestation of market makers’

market power, and so it does vanish in the competitive limit. The interpretation is

that market makers charge price impact for (at least) two reasons. The first reason is
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simply because they can, since they have market power, and doing so is profitable.

The second reason is that incoming trades change the entire path of exposures that

market makers will be taking going forward. In order for the market makers to find it

utility maximizing to clear the incoming trade, this must be reflected in the trading

price.

Inventory Analysis

Next consider the equilibrium trading rates given in Theorem 3.1. The two terms

encode two important properties of the market makers’ equilibrium trading behavior.

The first is that in aggregate the market makers must buy at rateNt , or equivalently the

average trading rate of the market makers must be 1
NNt . This is simply a consequence

of market clearing, since the liquidity traders are selling at rate Nt . That this is

indeed the case is guaranteed by the second term in the formula for trading rates; the

first terms all cancel out when aggregating/averaging.

The first term in the trading rates dictates which market makers buy more/less than

the average. Note that δ > ρ
2 , so the market makers with inventories larger than

St
N buy less, and vice versa. This brings us to the second important property of

the market makers’ trading behavior: they are continually moving towards a Pareto

optimal allocation amongst themselves. The market makers must in aggregate hold

St shares, simply by market clearing. Since they are all identical, it would be Pareto

optimal for everyone to hold St
N shares. However, this certainly can’t hold at time 0,

as initial inventories are exogenous and arbitrary. Beyond time 0 efficiency of the

allocations depends on endogenous trading behavior.

Using the formula for trading rates, we can compute that in equilibrium the trajectory

of each market maker’s inventory is

Xn
t = e−(δ−

ρ
2 )t(Xn

0 −
S0

N
) +

St

N
.

Thus each market maker deviates from the efficient allocation by the first term. This

term is non-zero if and only if Xn
0 ,

S0
N , and in this case it converges monotonically

towards 0 over time. Thus the market makers take as given the inefficiency in their
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initial allocations, and then trade amongst themselves to make allocations more

efficient. Allocations are inefficient at time t is because they were inefficient at time

0; the endogenous trading behavior of the market makers does not in any way create

allocational inefficiencies.

But the market makers’ trading behavior also does not perfectly remove the initial

inefficiency in allocations. Indeed, inventories converge to efficiency at an exponential

rate of δ − ρ
2 , and this rate is not infinite. Based on the formula for δ, we see that the

two main drivers of this rate are ψ, governing the uncertainty in order flow, and N ,

governing the degree of competition. As ψ →∞, so order flow uncertainty vanishes,

or as N →∞, so the market is perfectly competitive, this rate of convergence goes

to infinity.

The story here is essentially one of individual market makers behaving strategically

in an attempt to earn profits. Note that the price in the absence of liquidity trades

(Nt = 0), interpreted as the mid-price, is Dt +
µ
ρ −

1
ρ
γ
Nσ

2
DSt . Any market maker

holding more than St
N shares should find this price high relative to his exposure and

should want to sell, and vice versa. However, market makers take into account price

impact, so they know they can’t actually trade to St
N at this price. The market makers

also know that at any moment a random liquidity trade might come in and move

their exposure in the right direction, but now without price impact8. Thus instead

of trading all the way to St
N , market makers only move partially and take the chance

that the liquidity traders’ flow will move them the rest of the way. In the absence of

order flow uncertainty, or under perfect competition, the market makers no longer go

through this calculation and simply trade all the way to St
N , converging instantly to

efficiency (i.e. at an infinite rate).

2.5 Appendix: A Stochastic Control Lemma

Fix a filtered probability space (Ω, F , {Ft}, P) equipped with a d-dimensional Brow-

nian motion {Bt} and satisfying the usual conditions. Consider a standard infinite
8More specifically, price impact favors the market maker in this situation, as his limit order is

getting hit by an incoming liquidity trader market order. If the market maker was insistent on moving
to St

N , then he would have to place a market order, so price impact would go against him.
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horizon stochastic control problem with state space RS, control space RA, and

randomness coming from {Bt}. Thus we take as given mappings b : RS × RA → RS,

σ : RS ×RA → RS×d , and f : RS ×RA → R. We assume that b and σ are uniformly

Lipschitz in their first variables and that f is Borel measurable. Also fix a constant

β > 0.

Denote byA the set of progressively measurable RA valued processes α = {αt} such

that

E

[ ∫ T

0
|b(0, αt)

2 + |σ(0, αt)|
2dt

]
∀T > 0.

Given x ∈ RS and α = {αt} ∈ A, denote by X x,α = {X x,α
t } the unique strong

solution9 to the SDE

dXt = b(Xt, αt)dt + σ(Xt, αt)dBt

X0 = x.

For each x ∈ RS denote by A(x) the subset of α = {αt} ∈ A such that

E

[ ∫ ∞

0
e−βt | f (X x,α

t , αt)|dt
]
< ∞

and assume that A(x) is nonempty ∀x ∈ RS.

For x ∈ RS and α = {αt} ∈ A(x) define the cost functional by

J(x, α) = E
[ ∫ ∞

0
e−βt f (X x,α

t , αt)dt
]
.

The value function is defined for x ∈ RS by

V(x) = sup
α∈A(x)

J(x, α).

We also define the Hamiltonian H : RS × RS × RS×S × RA → R by

H(x, y, z, a) = b(x, a) · y +
1
2

trace
(
σ(x, a))σT (x, a)z

)
+ f (x, a).

9The assumptions on b and σ and the definition of A were made precisely so that this equation
admits a unique strong solution [Pha09].
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The significance of the Hamiltonian is that it describes how functions of a controlled

state process evolve over time. That is, by Ito’s formula, for any α = {αt} ∈ A,

h > 0 and g ∈ C1,2 ([0,∞) × RS) we have that
g(t + h, X x,α

t+h) − g(t, X x,α
t ) =

∫ t+h

t

∂g

∂t
(s, X x,α

s ) + H
(
X x,α

s ,∇g(s, X x,α
s ),∇

2g(s, X x,α
s ), αs

)
− f (X x,α

s , αs) ds + Martingale.

Definition 2.5.1. We say that a : RS → RA is an optimal Markov control if

∀x ∈ RS, ∃α̂x = {α̂x
t } ∈ arg maxα∈A(x) J(x, α) such that α̂x

t = a
(
X x,α̂x

t
) ∀t ≥ 0

almost surely.

Lemma 2.5.2. Suppose that V ∈ C2(RS) and H is continuous. If a : RS → RA is

continuous and provides an optimal Markov control then

a(x) ∈ arg max
ã∈RA

H(x,∇V(x),∇2V(x), ã) ∀x ∈ RS .

Proof. We proceed by contradiction. Suppose that the conclusion of the theorem

does not hold. Then ∃x0 ∈ R
S, ã0 ∈ R

A and ε > 0 such that

H(x0,∇V(x0),∇
2V(x0), a(x0)) < H(x0,∇V(x0),∇

2V(x0), ã0) − 4ε .

By continuity of a, H and V it follows that ∃ a neighborhood U1 of x0 such that

H(x,∇V(x),∇2V(x), a(x)) < H(x,∇V(x),∇2V(x), ã0) − 3ε ∀x ∈ U1. (2.36)

Let {Xt} be the unique strong solution to the SDE

dXt = b(Xt, a(Xt))dt + σ(Xt, a(Xt))dBt

X0 = x0

and let {X̃t} be the unique strong solution to the SDE

dX̃t = b(X̃t, ã0)dt + σ(X̃t, ã0)dBt

X̃0 = x0.
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Note that by smoothness of V and continuity of H we can find neighborhoods U2

and U3 of x0 such that

|V(x) − V(y)| <
ε

β
∀x, y ∈ U2 (2.37)

|H(x,∇V(x),∇2V(x), ã0) − H(y,∇V(y),∇2V(y), ã0)| < ε ∀x, y ∈ U3. (2.38)

Define the stopping time τ = inf{t ≥ 0 : (Xt, X̃t) < U1 ∩U2 ∩U3 ×U1 ∩U2 ∩U3}.

Since the processes {Xt} and {X̃t} have a.s. continuous paths it follows that

τ > 0 (2.39)

almost surely.

Now, we can estimate

V(x0) = E

[ ∫ τ

0
e−βt f (Xt, a(Xt))dt + e−βτV(Xτ)

]
= V(x0) + E

[ ∫ τ

0
e−βt

(
H

(
Xt,∇V(Xt),∇

2V(Xt), a(Xt)
)
− βV(Xt)

)
dt

]
≤ V(x0) + E

[ ∫ τ

0
e−βt

(
H

(
Xt,∇V(Xt),∇

2V(Xt), ã0
)
− 3ε − βV(Xt)

)
dt

]
≤ V(x0) + E

[ ∫ τ

0
e−βt

(
H

(
X̃t,∇V(X̃t),∇

2V(X̃t), ã0
)
+ ε − 3ε − βV(X̃t) + ε

)
dt

]
= E

[ ∫ τ

0
e−βt f (X̃t, ã0)dt + e−βτV(X̃τ)

]
−
ε

β
E[1 − e−βτ]

≤ V(x0) −
ε

β
E[1 − e−βτ].

The first equality uses the dynamic programing principle [Pha09] and the optimality

of the Markov control given by a. The second and last equality use Ito’s lemma.

The last inequality uses the dynamic programming principle. The inequalities in the

middle follow from the definition of τ and inequalities (36) - (38). Since ε
β > 0, it

follows from this estimate that E[e−βτ] ≥ 1. However, this contradicts (39). �
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C h a p t e r 3

MEAN REVERTING LIQUIDITY TRADERS

In this chapter we consider the same model as in chapter two, but we modify the

dynamics of the liquidity traders’ market orders so that their inventories mean revert

about zero. As before, market makers submit demand schedules at each instant in

time, and then their trading rates and the trading price are determined by

αn
t − β

n
t qn

t = pt ∀n = 1, · · · , N

q1
t + · · · + qN

t = Nt .

Here −Nt is the current trading rate of the liquidity traders, interpreted as a market

order to sell Nt dt shares over the time interval [t, t + dt]. The liquidity traders’ time

t inventory is then −St , where St = S0 +
∫ t
0 Nsds and −S0 is their initial inventory.

Since the asset is in zero net supply, {St} is the supply process faced by the market

making sector, i.e. St = X1
t + · · · + XN

t ∀t ≥ 0, where Xn
t is the time t inventory of

each market maker.

In chapter two we took {Nt} to be an Ornstein-Uhlenbeck process, which meant that

the long run expectation of {St}, conditional on the present, was not necessarily zero.

Here we instead take

Nt = −φ(St − S̃t)

dS̃t = −ψS̃t dt + σS̃dBS̃
t ,

where φ, ψ, σS̃ > 0.

The interpretation is that −S̃t is the current inventory target of the liquidity traders,

and φ governs the speed with which they trade towards their target. Thus when their

current inventory is above the target, −St > −S̃t , the liquidity traders submit market

orders to sell, Nt > 0, and vice versa. If φ is large, the liquidity traders are impatient

and submit large market orders to quickly reach their target. If φ is small, the liquidity
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traders are patient, submit smaller market orders, and only move slowly towards their

target. One can think of −S̃t as the inventory the liquidity traders would want to hold

if markets were perfectly liquid. Due to illiquidity they cannot instantly acquire this

inventory, and instead do so gradually. Note that since {S̃t} mean reverts about zero,

so too does {St}, i.e. we have E[ST |St, S̃t] → 0 as T →∞ almost surely ∀t ≥ 0.

The rest of the model is exactly as before. We work on a filtered probability space

equipped with two independent Brownian motions, one driving the inventory target

process, {BS̃
t }, and the other driving the valuation process, {BD

t }. Valuations follow

an arithmetic Brownian motion, market makers’ trading rates are the time derivatives

of their inventories, and market makers’ objectives are exactly as before. The initial

conditions for the game are X1
0 , · · · , XN

0 , D0 and S̃0. The definitions of admissible

profiles, Nash equilibrium, linear symmetric profiles, and linear symmetric Nash

equilibrium are precisely as before.

Lemma 1.5. carries through verbatim and the analogue to the optimal response

proposition is below. The proofs are omitted as they are essentially identical to those

in chapter two. The rest of the chapter is dedicated to characterizing and analyzing

linear symmetric Nash equilibria of the model.

Proposition 3.0.1. a, λ, b, c, ξ ∈ R are a linear symmetric Nash equilibrium if and

only if λ > 0, a
λ <

ρ
2 , and for any initial conditions we have that

a
λ

(
Xt−

St

N

)
−
φ

N
(St− S̃t) ∈ arg max

{qt }
E

[ ∫ ∞

0
e−ρt

(
−qt(pt−Dt)+µXt−

γσ2
D

2
(Xt)

2
)
dt

]
,

(3.1)

where

pt =
( a

N − 1
+ c +

λφ

N − 1

)
St + bDt + ξ −

λφ

N − 1
S̃t −

a
N − 1

Xt +
λ

N − 1
qt .
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The relevant dynamics are

dXt = qt dt

dDt = µdt + σDdBD
t

dS̃t = −ψS̃t dt + σS̃dBS̃
t

dSt = −φ(St − S̃t)t dt

and the optimization is constrained to those processes {qt} such that

1.
∫ T
0 |qt |dt < ∞ ∀T ≥ 0

2. The double integral on the right side of (1) converges absolutely

3. qt ∈ σ({Du}0≤u≤t, {Su}0≤u≤t, {Xu}0≤u≤t, {S̃u}0≤u≤t) ∀t ≥ 0.

3.1 Equilibrium Characterization

Theorem 3.1.1. Fix exogenous parameters N ≥ 3, ρ, γ, σD, φ, ψ, σS̃ > 0 and µ ∈ R.

There is a unique linear symmetric Nash equilibrium with price

pt = Dt +
µ

ρ
− θ

γσ2
D

N
St −

γ

N
N − 1
N − 2

ρσ2
D

(ρ + ψ)(ρ + φ)

(1
δ
+

1
ρ

)
Nt

and trading rates

qn
t = −κ

(
Xn

t −
St

N

)
+

1
N
Nt,

where

κ := ρ(N − 2)
ρ + ψ

ρ + δ

δ :=
√
ρ2 + 2(N − 2)(ρ + ψ)(ρ + φ)

θ :=
(ρ + ψ + φ)δ − ψφ

(ρ + ψ)(ρ + φ)
.

Proof. The proof uses Proposition 1 and stochastic control theory analogously to

the proof in Chapter 2. The state space for the optimization in Proposition 1 is
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(x, d, s̃, s) ∈ R4, the control space is q ∈ R and the Hamiltonian is

H(x, d, s̃, s, y, z, q) = qyx + µyd − ψ s̃ys̃ − φ(s − s̃)ys +
σ2

D

2
zdd +

σ2
S̃

2
zs̃s̃ + µx

−
γσ2

D

2
x2 − q

(
P(x, d, s̃, s, q) − d

)
.

Here P : R4 × R→ R is given by

P(x, d, s̃, s, q) =
( a

N − 1
+ c +

λφ

N − 1

)
s + bd + ξ −

λφ

N − 1
s̃ −

a
N − 1

x +
λ

N − 1
q.

Denote by Q : R4 → R the candidate optimal Markov control given in in the

proposition, i.e.

Q(x, d, s̃, s) =
a
λ

(
x −

s
N
) −

φ

N
(s − s̃).

We will prove that a, λ, b, c, ξ ∈ R are a linear symmetric Nash equilibrium if and

only if

a = −
N − 1
δ

γσ2
D (3.2)

λ =
N − 1
N − 2

ργσ2
D

(ρ + ψ)(ρ + φ)

(1
δ
+

1
ρ

)
(3.3)

b = 1 (3.4)

c = −
ρ(ρ + ψ + φ)

(ρ + ψ)(ρ + φ)

γσ2
D

N

(1
δ
+

1
ρ

)
+
γσ2

D

δ
(3.5)

ξ =
µ

ρ
. (3.6)

The equations from Chapter 2 relating equilibrium prices and trading rates to

equilibrium values of a, λ, b, c, ξ continue to hold. Plugging in (2)-(6) gives the

formulas in the theorem.

Beginning with the if part of the statement, suppose the parameters a, λ, b, c, ξ ∈ R

are a linear symmetric Nash equilibrium. As in chapter two, it follows that the

Hamiltonian H, the optimal Markov control Q and the value function V are related

by

ρV(x, d, s̃, s) = sup
q∈R

H(x, d, s̃, s,∇V,∇2V, q) ∀(x, d, s̃, s) ∈ R4 (3.7)
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and

Q(x, d, s̃, s) ∈ arg max
q∈R

H(x, d, s̃, s,∇V,∇2V, q) ∀(x, d, s̃, s) ∈ R4. (3.8)

As before, we can anti-differentiate the first order condition for (8) to obtain an

expression for the value function in terms of an auxiliary smooth function w(d, s̃, s).

Once again we feed this expression for V back in to the HJB (7) and equate like

terms, using the fact that w is independent of x. This immediately gives (4) and (6),

as well as the following system for a, λ and c:

ρ

2
a

N − 1
=

a2

λ(N − 1)
−
γσ2

D

2
(3.9)

−ρ
N − 2

N(N − 1)
λ =

a
N − 1

+
N − 2

N(N − 1)
(ψ + φ)λ + c (3.10)

ρ
( N − 2

N(N − 1)
(a + λφ) + c

)
= −

2a2

N(N − 1)λ
−

N − 2
N(N − 1)

φ2λ − φ
( a

N − 1
+ c

)
.

(3.11)

This system can be solved for a, λ and c by following the exact same procedure used

in the proof of Chapter 2. This yields two possible values for a, but only the one

given in (2) satisfies the constraint a
λ <

ρ
2 . This proves the if portion of the statement.

Turning to the only if part of the statement, suppose that a, b, c, ξ, and λ are given by

equations (2) - (6). As in chapter 2, we will use the verification theorem to show that

(1) holds. Note that we can find a second order polynomial w(d, s̃, s) that satisfies

the equation

ρw = µwd−ψ s̃ws̃−φ(s−s̃)ws+
σ2

D

2
wdd+

σ2
S̃

2
ws̃s̃+

(
φ

N

√
λ

N − 1
(s−s̃)+

a
N

1√
λ(N − 1)

s

)2

on all of R3. Consider the expression for the value function derived in the if portion

of the proof above. Insert this w as the auxiliary function there, and then define V

using that expression. Then by constructionV satisfies (7) and (8), with the first order

condition for (8) being sufficient because λ > 0. The admissibility and transversality

conditions hold because a
λ <

ρ
2 . Thus (1) follows by the verification theorem. �

Below is a simple corollary that will be used in the next chapter.
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Corollary 3.1.2. Suppose that we instead take Nt = −φ(St − πS̃t) for some π , 0.

Then the characterization of linear symmetric Nash equilibria is unchanged.

Proof. Define ˜̃St := πS̃t . Then we have

Nt = −φ(St −
˜̃St)

d ˜̃St = −ψ
˜̃St + πσS̃dBS̃

t .

Thus the model is exactly as above except with σS̃ replaced with πσS̃. Since the

equilibrium parameters found in the theorem above don’t depend on σS̃, it follows

that the characterization of linear symmetric equilibria is unchanged. �
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C h a p t e r 4

ENDOGENOUS LIQUIDITY TRADERS

In this chapter we endogenize the liquidity traders’ market order process and derive

it as the result of an optimization problem. As in Chapters 2 and 3, the central

equations determining the trading price and trading rates at each instant in time are

αn
t − β

n
t qn

t = pt ∀n = 1, · · · , N

q1
t + · · · + qN

t = Nt .

The demand schedules {(αn
t , β

n
t )} are the control processes of each market maker,

and are chosen to maximize

E

[ ∫ ∞

0
e−ρt

(
− qn

t (pt − Dt) −
γσ2

D

2
(Xn

t )
2
)
dt

]
. (4.1)

The market orders to sell {Nt} are the control process of the liquidity traders, and

are chosen to maximize

E

[ ∫ ∞

0
e−ρt

(
Nt(pt − Dt) −

θσ2
D

2
(St − S̃t)

2
)
dt

]
. (4.2)

Here Xn
t is the inventory of each market maker and −St is the inventory of the

liquidity traders, which evolve according to

dXn
t = qn

t dt (4.3)

dSt = Nt dt . (4.4)

Dt is the exogenous valuation of the asset shared by all agents, and it evolves

according to1

dDt = σDdBD
t . (4.5)

S̃t is an exogenous component of the liquidity traders’ inventory, and it evolves

according to

dS̃t = −ψS̃t dt + σS̃dBS̃
t . (4.6)

1In this chapter we set the drift of the valuation, µ, equal to 0 for simplicity. Including the drift
does not have a material effect on the results.
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{BD
t } and {BS̃

t } are independent Brownian motions.

The justification for the liquidity traders’ objective function is as follows. Firstly,

the liquidity traders’ inventory is −St and it’s derivative, the trading rate of the

liquidity traders, is −Nt . Thus Nt is the selling rate of the liquidity traders, as it’s

the negative derivative of their inventory. This is why the first term in the liquidity

traders’ objective function, Nt(pt − Dt), corresponding to costs from trading, does

not have a minus sign like the corresponding term in (1). In contrast, qn
t is the buying

rate of the market makers, as it’s the positive derivative of their inventories.

Secondly, we assume that in addition to the inventory built from trading on the

exchange, the liquidity traders also have another inventory of S̃t , perhaps from trading

with clients. Thus the aggregate inventory of the liquidity traders is −St + S̃t , and so

their quadratic inventory holding costs are (−St + S̃t)
2 = (St − S̃t)

2. The risk aversion

parameter of the liquidity traders is θ, giving rise to the second term in their objective

function.

This sets up the model as a stochastic differential game between the N market

makers and the liquidity traders. The initial conditions for the game are the initial

conditions for equations (3), (5) and (6). Since the asset is in zero net supply, the

initial conditions for (3) also provide an initial condition for (4): S0 = X1
0 + · · · X

N
0 .

We are interested in studying the Nash equilibria of this game.

As before, it’s necessary to specify admissibility conditions for the agents’ controls,

and also to place restrictions on the class of equilibria that will be studied. This

is all fairly analogous to chapter two, but the definitions are included below for

completeness. After this, the next section characterizes equilibria in terms of the zeros

of a quartic polynomial. The following section analyzes properties of equilibrium.

Definition 4.0.1. Given initial conditions (®x, s̃, d) ∈ RN×R×R for (X1
0 , · · · , XN

0 ), S̃0,

and D0, we say that the profile of progressively measurable demand schedules

{(α1
t , β

1
t )}, · · · , {(α

N
t , β

N
t )} and liquidity trader selling rates {Nt} is admissible

starting from (®x, s̃, d) if:
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1. βn
t > 0 ∀t ≥ 0, ∀n = 1, · · · , N almost surely

2.
∫ T
0 |q

n
t |dt < ∞ ∀T ≥ 0, ∀n = 1, · · · , N almost surely

3. The double integral (1) converges absolutely

4. αn
t , β

n
t ∈ σ

(
{Ds}0≤s≤t, {ps}0≤s<t, {Xn

s }0≤s≤t, S0

)
∀t ≥ 0, ∀n = 1, · · · N

5.
∫ T
0 |Nt |dt < ∞ ∀T ≥ 0 almost surely

6. The double integral (2) converges absolutely

7. Nt ∈ σ
(
{Ds}0≤s≤t, {ps}0≤s<t, {Ss}0≤s≤t, {S̃s}0≤s≤t

)
∀t ≥ 0.

Given a profile {(α1
t , β

1
t )}, · · · , {(α

N
t , β

N
t )}, {Nt} that’s admissible starting from

(®x, s̃, d), denote by Jn (®x, s̃, d, {(α1
t , β

1
t )}, · · · , {(α

N
t , β

N
t )}, {Nt}

)
the value of the dou-

ble integral (1) and by JLT (
®x, s̃, d, {(α1

t , β
1
t )}, · · · , {(α

N
t , β

N
t )}, {Nt}

)
the value of the

double integral (2). These are the payoffs the market makers and liquidity traders

receive when everyone’s strategies are {(α1
t , β

1
t )}, · · · , {(α

N
t , β

N
t )}, {Nt} and the

initial conditions are (X1
0 , · · · , XN

0 ) = ®x, S̃0 = s̃, and D0 = d.

Definition 4.0.2. Given initial conditions (®x, s̃, d), we say that a profile {(α1
t , β

1
t )}, · · · ,

{(αN
t , β

N
t )}, {Nt} is a Nash Equilibrium starting from (®x, s̃, d) if:

1. The profile is admissible starting from (®x, s̃, d)

2. For any n = 1, · · · , N , and for any demand schedule process {(αt, βt)} such

that

{(α1
t , β

1
t )}, · · · , {(α

n−1
t , βn−1

t )}, {(αt, βt)}, {(α
n+1
t , βn+1

t )}, · · · , {(α
N
t , β

N
t )}

)
, {Nt}

is admissible starting from (®x, s̃, d), we have that

Jn (®x, η, d, {(α1
t , β

1
t )}, · · · , {(α

N
t , β

N
t )}, {Nt}

)
≥

Jn (®x, η, d, {(α1
t , β

1
t )}, · · · , {(α

n−1
t , βn−1

t )}, {(αt, βt)}, {(α
n+1
t , βn+1

t )}, · · · , {(α
N
t , β

N
t )}, {Nt}

)
.

3. For any liquidity trader selling process {N ′t } such that

{(α1
t , β

1
t )}, · · · , {(α

N
t , β

N
t )}, {N

′
t } is admissible starting from (®x, s̃, d), we have
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that

JLT (
®x, s̃, d, {(α1

t , β
1
t )}, · · · , {(α

N
t , β

N
t )}, {Nt}

)
≥

JLT (
®x, s̃, d, {(α1

t , β
1
t )}, · · · , {(α

N
t , β

N
t )}, {N

′
t }

)
.

Definition 4.0.3. A profile {(α1
t , β

1
t )}, · · · , {(α

N
t , β

N
t )}, {Nt} is said to be linear

symmetric if ∃ a, b, c, λ, φ, M ∈ R s.t.

αn
t = aXn

t + bDt + cSt (4.7)

βn
t = λ (4.8)

Nt = −φSt + MS̃t (4.9)

∀t ≥ 0, ∀n = 1, · · · , N .

Definition 4.0.4. We say that a, b, c, λ, φ, M ∈ R are a linear symmetric Nash

equilibrium if the profile defined by (7), (8), and (9) is a Nash equilibrium starting

from any set of initial conditions.

4.1 Equilibrium Characterization

Theorem 4.1.1. Fix exogenous parameters N ≥ 3 and ρ, γ, θ, σD, ψ, σS̃ > 0.

There is a one to one correspondence between linear symmetric Nash equilibria and

κ > −
ρ
2 +

1
2

√
ρ2 + ρ(ρ + ψ)(N − 2) that satisfy the quartic equation (29).

In equilibrium the trading price is

pt = Dt − ΓSt − ΛNt, (4.10)

the LTs selling rate is

Nt = −φ(St − πS̃t) (4.11)

and the MMs trading rates are

qn
t = −κ(X

n
t −

St

N
) +
Nt

N
. (4.12)
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The endogenous parameters Γ,Λ, φ and π are given in terms of κ by

φ =
2κ2

(N − 2)(ρ + ψ)
+

2ρκ
(N − 2)(ρ + ψ)

− ρ (4.13)

π =
θσ2

D

2Λ(ρ + ψ + φ)φ
(4.14)

Λ =
γσ2

D

N
N − 1

2κ2 + ρκ
(4.15)

Γ =
(
ρ + ψ + φ −

κ

N − 2

) N − 2
N − 1

Λ. (4.16)

Proof. For the first half of the proof we need to show that any linear symmetric Nash

equilibrium satisfies all the properties in the statement of the theorem. To this end,

fix parameters a, b, c, λ, φ, M ∈ R and suppose that they provide a linear symmetric

Nash equilibrium. Thus for any initial conditions the strategy profile given by (7)-(9)

satisfies the admissibility and optimality conditions in Definition 1 and Definition 2.

The optimality condition for the LTs strategy implies that for any initial conditions

−φSt + MS̃t ∈ arg max
{Nt }

E

[ ∫ ∞

0
e−ρt

(
Nt(pt − Dt) −

θσ2
D

2
(St − S̃t)

2
)
dt

]
, (4.17)

where

pt = bDt − ΓSt − ΛNt (4.18)

with Γ := −( a
N + c) and Λ := λ

N . The relevant dynamics are given by (4), (5), and (6)

and the optimization is constrained to those {Nt} for which the profile with (7) and

(8) satisfies the conditions in Definition 1.

Denote by V(d, s, s̃) the value function for the optimization (17), i.e. the value of the

supremum when the initial conditions are D0 = d, S0 = s, S̃0 = s̃. The Hamiltonian

for the optimization is

H(d, s, s̃, η, y, z) := ηys−ψ s̃ys̃+
σ2

S̃

2
zs̃s̃+

σ2
D

2
zdd+

(
(b−1)d−Γs−Λη

)
η−

θσ2
D

2
(s− s̃)2.

(4.19)
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As in Chapter 2 we have that the value function and Hamiltonian are smooth, and so

the following hold:

−φs + Ms̃ ∈ arg max
η

H(d, s, s̃,∇V,∇2V) (4.20)

ρV = sup
η

H(d, s, s̃,∇V,∇2V). (4.21)

Antidifferentiating the first order condition for (20) implies that ∃ a smooth function

w : R2 → R such that

V(d, s, s̃) =
(
Γ

2
− Λφ

)
s2 + 2ΛMss̃ − (b − 1)sd + w(d, s̃). (4.22)

As in Chapter 2, combining this with equations (20) and (21), and equating like

terms, we obtain the following equilibrium consistency conditions for the parameters:

b = 1 (4.23)

ρ(Γ − 2Λφ) = −θσ2
D + 2Λφ2 (4.24)

(ρ + ψ)M =
θσ2

D

2Λ
− φM . (4.25)

An immediate consequence of equation (25) is that M , 0 because θσ2
D > 0. Next

we show, by contradiction, that (24) implies φ , 0. If φ = 0, then by (24) we have

Γ = −
θσ2

D

ρ < 0. On the other hand, if φ = 0 then Nt = MS̃t . Since M , 0, it follows

that {Nt} is an Ornstein-Uhlenbeck process with mean reversion parameter ψ > 0,

exactly as in Chapter 2. Thus repeating the argument from the Theorem 1 in Chapter

2, the optimality conditions for the MMs imply that Γ = −( a
N + c) = 1

ρ

γσ2
D

N > 0,

which is a contradiction. Hence becasue of (24) it must be that φ , 0.

We can now define π := M
φ , 0. Then the LTs selling rate is as in (11) and equation

(25) implies that (14) holds. Also, admissibility of the MMs strategies impies λ > 0,

so we can define κ := − a
λ . Then the MMs trading rates are as in (12). Next we

will derive the quartic equation for κ and show that the relations (13), (15) and (16)

hold. This will be done by looking at the optimality conditions satisfied by the MMs

strategies.
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As we saw in Corollary 1.2 of Chapter 3, the presence of the non-zero parameter π

in the LTs selling rate (11) has no effect on the market makers’ optimal strategies.

Hence, the argument from Theorem 1.1 in Chapter 3 carries through verbatim2, and

we obtain the following equilibrium consistency conditions for the parameters:

−
ρ

2
κ

N − 1
=

κ2

N − 1
−
γσ2

D

2N
1
Λ

(4.26)

−(ρ + ψ + φ)
N − 2
N − 1

Λ = −Γ −
κΛ

N − 1
(4.27)

ρ
( N − 2

N − 1
φΛ − Γ +

κΛ

N − 1

)
= −

2κ2Λ

N − 1
−

N − 2
N − 1

φ2
Λ + φ

( κΛ

N − 1
+ Γ

)
. (4.28)

These are simply the equations (8) - (10) derived in the proof of Theorem 1.1 in

Chapter 3, but they are written in terms of κ, Γ and Λ instead of a, c and λ.

Rearranging (26) and (27) gives (15) and (16). Using (27) to substitute for Γ in (28)

and rearranging gives (13). Finally, inserting (13), (15), and (16) into the remaining

equilibrium relation (24) gives the following quartic equation for κ:

8
(N − 2)2(ρ + ψ)2

κ4 +
16ρ

(N − 2)2(ρ + ψ)2
κ3

+

(
8ρ2

(N − 2)2(ρ + ψ)2
−

2ρ(3N − 4)
(N − 1)(N − 2)(ρ + ψ)

−
Nθ
γ

2
N − 1

)
κ2 (4.29)

+

(
ρ

N − 1
−

2ρ2(3N − 4)
(N − 1)(N − 2)(ρ + ψ)

−
Nθ
γ

ρ

N − 1

)
κ −

N − 2
N − 1

ρψ = 0.

To finish the first half of the proof, it remains to be shown that κ satisfies the inequality

constraint in the statement of the theorem. It will be shown momentarily below

that the admissibility conditions satisfied by the LTs and MMs strategies imply

φ, κ > −
ρ
2 . The inequality for φ combined with the relation (13) implies that either

κ > −
ρ
2 +

1
2

√
ρ2 + ρ(ρ + ψ)(N − 2) or κ < − ρ2 −

1
2

√
ρ2 + ρ(ρ + ψ)(N − 2). Since

κ > −
ρ
2 , the first inequality must hold, as in the statement of theorem.

Next we show that the admissibility conditions imply φ, κ > − ρ2 . First note that the

bound on φ implies the bound on κ. Indeed, the bound on φ implies that e−ρtS2
t is

2In Chapter 3 we assumed φ > 0, which we have not yet shown. However, this assumption was
not used when deriving equilibrium consistency relations between the parameters from the MMs
optimality conditions, and that is the part of the argument used here.
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integrable for any initial conditions, and admissibility of the MMs strategies implies

that the double integral (1) converges absolutely. We can now apply the argument3

from Lemma 1.5 in Chapter 2 to conclude that e−ρt(Xn
t )

2 is integrable for any initial

conditions, and thus κ > − ρ2 . Hence we need only prove the bound on φ.

Now, the admissibility conditions for the LTs strategy imply that the double integral

in (2) converges absolutely. The integrand is of the form e−ρtQ(St, S̃t) for a quadratic

polynomial Q. The coefficient of S2
t in Q is Γφ − Λφ2 −

θσ2
D

2 . We will need to deal

separately with the cases where this coefficient is and isn’t zero. If the coefficient is

non-zero, then we can apply the argument from Lemma 1.5 in Chapter 2 to conclude

that e−ρtS2
t is integrable for any initial conditions, and thus φ > − ρ2 .

In the case where the coefficient is 0 we have that

φ(Γ − Λφ) =
θσ2

D

2
> 0. (4.30)

We consider two sub-cases, φ ≥ 0 and φ < 0. Obviously in the first sub-case we have

φ > −
ρ
2 , so we only need to deal with the second sub-case. In the second sub-case

we must have by (30) that Γ −Λφ < 0. The MMs admissibility conditions imply that

Λ > 0, and the relation (16) implies that Γ − Λφ = 1
N−1Λ

(
(N − 2)(ρ + ψ) − φ − κ

)
.

Thus it follows that κ > (N − 2)(ρ + ψ) − φ > 0, and so e−ρt(Xn
t )

2 is integrable for

any initial conditions.

Now, consider the double integral (1), which converges absolutely by the MMs

admissibility conditions. The integrand is of the form e−ρtQ(St, S̃t, Xn
t ) for a quadratic

polynomial Q with an S2
t coefficient of 1

N (κ − φ)(Γ − Λφ). This coefficient must be

non-zero because κ > 0, φ < 0 and Γ−Λφ > 0. Since we just showed that e−ρt(Xn
t )

2

is integrable for any initial conditions, it follows by the argument from Lemma 1.5 in

Chapter 2 that e−ρtS2
t is integrable for any initial conditions, and so φ > − ρ2 .

We now turn to the second half of the proof, which requires us to show that if

κ > −
ρ
2 +

1
2

√
ρ2 + ρ(ρ + ψ)(N − 2) satisfies (29) then there is a linear symmetric

3See the last paragraph of the proof of Lemma 1.5 in Chapter 2. The same argument is used here
and twice more below.
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Nash equilibrium of the form given in the theorem. To this end, take κ as such

and define Γ,Λ, φ and π by (13) - (16), Also define b = 1, λ = NΛ, a = −NκΛ,

c = −Γ + κΛ and M = πφ. We need to show that a, b, c, λ, φ, M ∈ R are a linear

symmetric Nash equilibrium.

The bound on κ implies that λ > 0, κ > 0 and φ > − ρ2 , so the profile given by (7) -

(9) is admissible. The MMs optimality condition follows by repeating the proof of

Theorem 1.1 in Chapter 3. The LTs optimality condition also follow similarly. The

argument is outlined here for completeness.

We can find a second order polynomial w(d, s̃) satisfying the equation

ρw = −ψ s̃ws̃ +
σ2

S̃

2
ws̃s̃ +

σ2
D

2
wdd + (ΛM2 −

θσ2
D

2
)s̃2 (4.31)

on all of R2. Now define the function V using formula (22), so that by construction

(20) and (21) hold. The first order condition for (20) is sufficent because λ > 0. The

transversality condition for V is satisfied because ψ > 0, κ > 0 and φ > − ρ2 . Hence

(17) follows by the verification theorem. �

4.2 Equilibrium Analysis

Finding the zeros of (29) is straightforward using any standard numerical software.

As benchmark exogenous parameters we take N = 10, ρ = γ = θ = σ2
D = ψ = 1.

Extensive numerical simulations, both near and far from these benchmarks, always

find a unique zero satisfying the constraint. This suggests that there always exists a

unique equilibrium.

There are five endogenous parameters that describe the equilibrium: π, φ, κ, Γ and

Λ. The parameters κ, Γ, and Λ are familiar from Chapters 2 and 3; they describe

equilibrium between the market makers taking as given the behavior of the liquidity

traders. κ is the rate of convergence to efficiency between the market makers, Γ

captures a risk premium, and Λ is the price impact the liquidity traders face when

trading. These parameters behave almost identically to the ones in Chapter 2, so for

brevity we don’t repeat their analysis here.
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The endogenous parameters π and φ are new in this model, and they describe the

trading behavior of the liquidity traders taking as given the pricing function (10)

generated by the market makers. These parameters do show up in the model in

Chapter 3, but they are exogenous there. Below we study the economic properties

of equilibrium between the liquidity traders and market makers by looking at

comparative statics of π and φ.

Instead of varying each market makers risk aversion γ directly, we will instead vary

their aggregate risk aversion γ0 := γ
N . The benchmark value for γ0 is γ0 = 0.1.

Varying N while leaving γ0 fixed allows us to focus on the effects of competition

among the market makers without changing their aggregate risk bearing capacity.

Conversely for varying γ0 while leaving N fixed.

In the plots that follow, unless a parameter is being explicitly varied it’s set equal to

its benchmark value.

π: The steady state allocation between the LTs and the MMs

Recall that the LTs have an inventory of S̃t − St . The first term comes from trading

with clients, and the second term come from selling on the exchange to the market

makers. The clients exogenously want to hold −S̃t shares of the zero net supply asset,

so they trade with the LTs, giving the LTs an inventory of S̃t . The LTs then turn to

the exchange to unload some of this inventory on to the market makers, specifically

St . Thus the LTs hold S̃t − St shares and the market makers in aggregate hold St

shares.

Together the LTs and MMs always have a net shareholding of S̃t , which is the

offsetting position to the exogenous clients. Trading between the LTs and the MMs

occurs in order to determine how they share the exposure of S̃t between themselves.

We should expect there to be a steady state, at which the LTs and MMs have reached

an allocation from which they find it optimal not to trade with each other. This is

indeed the case, and it’s the role of the endogenous parameter π.

Consider the formula for the LTs selling rate in Theorem 1. We see that the LTs
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stop trading on the exchange (Nt = 0) when St = πS̃t . St is the number of shares

held by the MMs in aggregate, so they stop trading with the LTs when they hold a

fraction π of the clients’ offsetting position. We refer to the allocation of πS̃t shares

to the MMs and (1 − π)S̃t shares to the LTs as the steady state allocation.

Note that no strategy profile can perfectly implement the steady state allocation at all

times. This is because the steady state allocation to the market makers πS̃t evolves

as a diffusion in time, whereas the true allocation to the market makers St evolves

smoothly in time. Instead, in equilibrium allocations are continually hit with shocks,

coming from the clients’ orders, and trading always moves allocations closer to the

steady state. This is discussed in more detail in the next subsection.

What might one expect π to be? At the very least we should expect π ∈ [0, 1], so that

the LTs and MMs always have positions in the same direction, opposite to the clients.

The numerics certainly always give this. More specifically, we might expect π to be
θ

θ+γ0
. To arrive at this, note that the aggregate risk tolerance of the LTs and the MMs

together is 1
γ0
+ 1

θ , and the proportion of this coming from the MMs is
1
γ0

1
γ0
+ 1

θ

= θ
θ+γ0

.

Thus a steady state allocation of θ
θ+γ0

S̃t would be one that is proportional to risk

bearing capacity, which tends to be typical in equilibrium models. This is not quite

the case though, as the next plot shows.

This plot shows that when ψ = 0 it’s true that π = θ
θ+γ0

, but in general we have
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π < θ
θ+γ0

, with π decreasing as ψ increases. This means that in general the LTs

hold more in the steady state than is proportional to their risk bearing capacity. The

reason is that ψ govern the mean reversion in the clients position. Suppose ψ > 0

and S̃t > 0. Then going forward, in the absence of subsequent shocks, one should

expect S̃t to decrease towards 0. Thus the LTs are happy holding slightly more than

their risk bearing capacity, because they expect to shortly be able to reduce their

exposure by trading with clients, and this is better than trading on the exchange now

and suffering price impact.

Comparing the colored lines in the plot above also shows that π increases as θ

increases. This is because the larger θ is, the more risk averse the LTs are, so they

hold less in the steady state, and thus the MMs hold more, meaning π is larger.

The next plot below shows that as N increases π increases, so the LTs steady state

allocation is going down. This is because as MM competition increases, price impact

decreases, and price impact is the reason that LTs choose to hold a larger than risk

bearing capacity allocation. The effect is more pronounced when ψ is large. This

is because the alternative to suffering price impact is waiting for client positions to

revert to 0, so changes in price impact are more relevant when the mean reversion is

stronger, i.e. changes in N matter more when ψ is large.
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φ: The rate of reversion to the steady state

The parameter φ governs the rate at which equilibrium allocations revert to steady

state allocation. The numerics always yield φ > 0, so from (10) it follows that the

liquidity traders sell on the exchange, Nt > 0, when they hold more than the steady

state allocation, St < πS̃t , and vice versa. Thus the steady state is attractive, as one

would expect, and φ governs the the strength of this attraction. The larger φ is, the

more aggressively the liquidity traders sell on the exchange when they are above the

steady state allocation.

As mentioned before, the steady state cannot be implemented by any strategy profile,

which is why we refer to φ as a reversion rate as opposed to a convergence rate. One

way to think about this is in terms of the equilibrium dynamics of the distance of the

system from the steady state. Define Et := πS̃t − St , which is the inventory in excess

to the steady state held by the liquidity traders. When Et > 0, the liquidity traders

would need to sell Et to the market makers in order to reach the steady state, and

when Et < 0 they would need to buy Et .

Using equations (4) and (11) we can solve for the equilibrium dynamics of {Et}.

Assuming the system starts at the steady state, i.e. E0 = 0, we have that

Et =

∫ t

0
e−φ(t−u)dS̃u. (4.32)

dS̃u should be thought of as the random quantity sold by the clients to the liquidity

traders at time u. Hence (32) gives Et as a weighted average of the history of

clients’ random orders. The random arrival of client orders is what keeps moving

the system away from the steady state, and trading between the liquidity traders and

market makers attempts to move it back. One can intuitively think of {Et} as an

Ornstein-Uhlenbeck process with mean reversion parameter φ. This is not quite true

because {S̃t} is not a Brownian motion but is itself an Ornstein-Uhlenbeck process.

Nonetheless, φ governs the amount of mean reversion in {Et}.

So why don’t we have φ = ∞? The logic is analogous to the one given in Chapter 2

for why market maker allocations don’t converge to efficiency arbitrarily fast. The
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larger φ is, the faster the liquidity traders’ inventory reverts to the steady state, but

the larger the price impact the liquidity traders suffer. On the other hand, a fortuitous

realization of subsequent client orders could automatically move the liquidity traders

closer to the steady state. Thus the liquidity traders weight the chances of fortuitous

client orders against the costs of price impact in order to pin down a finite value of φ.

This is illustrated in the plot below.

This plot shows that as ψ increases, φ increases, with φ → ∞ as ψ → ∞. The

reason is that ψ governs the randomness in client orders. This can be seen from (6),

where the larger ψ is the the stronger the deterministic first term is, and the weaker

the stochastic second term is. Said another way, the stationary distribution of {S̃t}

has variance σS̃

2ψ , which is decreasing in ψ. Thus the larger ψ is, the less likely are

fortuitous client orders, and so the liquidity traders trade faster, i.e. φ is larger. In

the limit when ψ →∞, there is no randomness in client orders, and so there is no

reason not to trade arbitrarily fast, i.e. φ→∞.

The plot also shows that φ increases as N increases. This is because price impact is

decreasing in N , and so the downside to trading fast is reduced as N is increased.

Looking at the next plot below, we note that φ 6→ ∞ as N → ∞. This is because

in the competitive limit price impact does not vanish, and there is still randomness

in the clients’ orders. In fact, the reason price impact does not vanish is precisely
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because there is still randomness in client orders. Price impact is the mechanism

through which trading prices reflect realizations of clients’ order shocks. Thus even

in the competitive limit the liquidity traders make a decision between guaranteed

trades for price impact with the market makers, or random trades for free with clients.

This trade-off pins down a finite value for φ.
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C h a p t e r 5

CONSUMPTION BASED MODEL

This chapter recasts the model from Chapter 2 into a consumption based setting with

a dividend paying asset. This is the standard setting for most asset pricing models in

the literature. The point of this chapter is to show that working in a consumption

based setting does not significantly alter the results presented earlier in the thesis.

As we will see below, the consumption based model is not as analytically tractable,

which is why it wasn’t used in previous chapters.

The first section lays out the model along the lines of Chapter 2, but with appropriate

modifications to accommodate for dividends and consumption. The second section

characterizes equilibrium in terms of the zeros of a polynomial system. Some details

of the proof are in the appendix to this chapter. The last section analyzes the models

equilibrium, showing that the economic properties of the equilibrium in Chapter 2

continue to hold here.

5.1 The Model

Fix a filtered probability space (Ω, F , {Ft}, P) equipped with two independent

Brownian motions, {BD
t } and {BNt }, and satisfying the usual conditions. We

consider a market on an infinite horizon where shares of a zero net supply risky asset

are traded for cash (the risk-free asset). Cash is in infinite elastic supply, earns an

interest rate1 of r > 0 and is the numeraire. The risky asset is a claim to the dividend
1Cash earns no interest in the model in Chapter 2, though it is straightforward to incorporate an

interest rate there. In the consumption based setting here it is necessary to include a positive interest
otherwise the model is ill-posed [CK93]. We will see below that r in this model plays the role of ρ in
Chapter 2’s model.
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stream2 {Dt} which evolves according to

dDt = µdt + σDdBD
t , (5.1)

where µ ∈ R and σD > 0.

There are two types of traders in the model, N ∈ N market makers and a collection

of liquidity traders. Trading occurs through a demand schedule auction. At each

instant the market makers submit demand schedules (αn
t , β

n
t ) and then their trading

rates qn
t and the trading price pt are determined by

αn
t − β

n
t qn

t = pt ∀n = 1, · · · , N (5.2)

q1
t + · · · + qN

t = Nt . (5.3)

Here −Nt is the current trading rate of the liquidity traders, interpreted as a market

order (vertical line demand schedule) to sell Nt dt shares over the time interval

[t, t + dt].

As in Chapter 2, the liquidity traders’ market orders to sell are exogenously given by

an Ornstein-Uhlenbeck process

dNt = −ψNt dt + σNdBNt , (5.4)

where ψ, σN > 0. The liquidity traders’ time t inventory is denoted −St , which

evolves as a result of trading according to

dSt = Nt dt . (5.5)

The markets makers’ time t inventories are denoted by Xn
t , and they evolve as a result

of trading according to

dXn
t = qn

t dt . (5.6)

The initial conditions for (6) are the market makers’ inventories at the start of the

model, X1
0 , · · · , XN

0 . Since the asset is in zero net supply, this also determines
2The zero net supply asset should be though of as a futures contract that is perpetually rolled

over. The dividends should be thought of as payments to/from a margin account. It’s no issue to work
with a finite supply asset, thought of as a stock, which is the standard setting for consumption based
models. However, the motivation for the thesis is trading of standardized derivatives contracts on
exchanges, so we work in the zero net supply setting.
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the initial inventory of the liquidity traders, which is the initial condition for (5):

S0 = X1
0 + · · · X

N
0 . Of course we also have St = X1

t + · · · X
N
t ∀t > 0, which follows

from (3), (5) and (6). Thus St is the supply faced by the market makers at time t.

In addition to demand schedules, market makers also choose at each instant a cash

consumption rate Cn
t , which is their ultimate source of utility. Each market maker’s

maximization objective is

E

[
−

∫ ∞

0
e−ρte−γC

n
t dt

]
, (5.7)

where ρ, γ > 0. The amount of cash held by each market maker at time t is denoted

by Mn
t , and it evolves according to

dMn
t = r Mn

t dt + Xn
t Dt − ptqn

t dt − Cn
t dt . (5.8)

Here the first term comes from the interest rate on cash, the second term comes from

dividends on the risky asset, the third term comes from trading and the fourth term

comes from consumption.

This sets up the model as a stochastic differential game between the N market makers.

Below we formulate the equilibrium concept analogously to Chapter 2. At first

glance one might be surprised that the market makers’ objectives (7) depend only on

their choice of consumption streams, and not on any other state variables. However,

when formulating the equilibrium concept below we include a No-Ponzi condition,

as is typical in the literature [Bac17] [KOW18]. This condition ties the other state

variables into the choice of an optimal consumption stream.

Equilibrium Concept

Definition 5.1.1. Given initial conditions (®x, η, d) ∈ RN×R×R for (X1
0 , · · · , XN

0 ), N0,

and D0, we say that the profile of progressively measurable demand schedules

{(α1
t , β

1
t )}, · · · , {(α

N
t , β

N
t )} and consumption streams {C1

t }, · · · , {C
N
t } is admissible

starting from (®x, η, d) if:

1. βn
t > 0 ∀t ≥ 0, ∀n = 1, · · · , N almost surely
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2.
∫ T
0 |q

n
t |dt < ∞ ∀T ≥ 0, ∀n = 1, · · · , N almost surely

3. E
[
−

∫ ∞
0 e−ρte−γC

n
t dt

]
> −∞ ∀n = 1, · · · , N

4. αn
t , β

n
t ,C

n
t ∈ σ

(
{Ds}0≤s≤t, {ps}0≤s<t, {Xn

s }0≤s≤t, {Mn
s }0≤s≤t, S0

)
∀t ≥ 0, ∀n =

1, · · · N

5. lim infT→∞ Et
[
e−r(T−t)Mn

T +
∫ ∞

T e−r(u−t)Xn
u Dudu

]
≥ 0 ∀t ≥ 0, ∀n = 1, · · · , N .

Nash equilibrium is defined as usual. The admissibility requirement is given by the

definition above. Optimality is required for both the choice of consumption streams

and the choice of demand schedules. As before we will only by concerned with

equilibria where the market makers submit demand schedules that have a linear and

symmetric structure. We don’t place any explicit restrictions on the nature of the

consumption streams in equilibrium.

Definition 5.1.2. Demand schedules {(α1
t , β

1
t )}, · · · , {(α

N
t , β

N
t )} are said to be linear

symmetric if ∃ a, λ, b, c, ξ ∈ R s.t.

αn
t = aXn

t + bDt + cSt + ξ (5.9)

βn
t = λ (5.10)

∀t ≥ 0, ∀n = 1, · · · , N .

Definition 5.1.3. We say that a, λ, b, c, ξ ∈ R are a linear symmetric Nash equilib-

rium if for any initial conditions there exist consumption streams that when used

with the linear symmetric demand schedules (9)-(10) give a Nash equilibrium.

In previous chapters we saw that focusing on linear symmetric equilibria allows us

to formulate the equilibrium conditions in terms of a single optimization problem

over a trading rate. An analogue of this continues to hold here, as stated in the next

proposition. The proof is omitted because it’s identical to the one in Chapter 2.

The presence of the consumption streams does not change anything; only the linear

symmetric structure of the demand schedules is of relevance.
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Proposition 5.1.4. a, λ, b, c, ξ ∈ R are a linear symmetric Nash equilibrium if and

only if λ > 0 and for any initial conditions ∃{Ĉt} such that

a
λ

(
Xt −

St

N

)
+
Nt

N
, {Ĉt} ∈ arg max

{qt },{Ct }
E

[
−

∫ ∞

0
e−ρte−γCt dt

]
,

where

pt =
( a

N − 1
+ c

)
St + bDt + ξ −

λ

N − 1
Nt −

a
N − 1

Xt +
λ

N − 1
qt

the relevant dynamics are

dXt = qt dt

dDt = µdt + σDdBD
t

dNt = −ψNt dt + σNdBNt

dSt = Nt dt

dMt = r Mt dt + Xt Dt dt − ptqt dt − Ct dt

and the optimization is constrained to those processes {qt}, {Ct} such that

1.
∫ T
0 |qt |dt < ∞ ∀T ≥ 0 almost surely

2. E
[
−

∫ ∞
0 e−ρte−γCt dt

]
> −∞

3. qt,Ct ∈ σ
(
{Du}0≤u≤t, {Xu}0≤u≤t, {Mu}0≤u≤t, {Su}0≤u≤t, {Nu}0≤u≤t

)
∀t ≥ 0

4. lim infT→∞ Et
[
e−r(T−t)MT +

∫ ∞
T e−r(u−t)XuDudu

]
≥ 0 ∀t ≥ 0.

5.2 Equilibrium Characterization

Theorem 5.2.1. Fix exogenous parameters N ≥ 3, ρ, γ, r, σD, ψ, σN > 0 and µ ∈ R.

If κ,Λ > 0 and F1 ∈ R satisfy equations (33) - (35) in the appendix, then there is a

linear symmetric equilibrium with trading price

pt =
1
r

Dt +
µ

r2 − ΓSt − ΛNt (5.11)

and trading rates

qn
t = −κ

(
Xn

t −
St

N
)
+
Nt

N
. (5.12)
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A formula for the parameter Γ in terms of κ,Λ and F1 is given in equation (32) in the

appendix.

Proof. Consider the optimization problem in Proposition 1.4 associated to a linear

symmetric profile with parameters a, b, c, ξ and λ > 0. The is a standard Markovian

stochastic control problem on an infinite horizon with state space (m, d, s, η, x) ∈ R5

and control space (q, c) ∈ R2. The Hamiltonian for the problem is

H(m, d, s, η, x, y, z, q, c) = − e−γc + rmym − cym + xdym − qP(d, s, η, x, q)ym

+ qyx + µyd +
σ2

D

2
zdd + ηys − ψηyη +

σ2
N

2
zηη .

Here P : R5 → R is the the function specifying prices in terms of state and control

in Proposition 1.4, i.e.

P(d, s, η, x, q) =
( a

N − 1
+ c

)
s + bd + ξ −

λ

N − 1
η −

a
N − 1

x +
λ

N − 1
q.

Also denote by Q : R3 → R the function specifying the optimal trading rate in

feedback form in Proposition 1.4, i.e.

Q(s, η, x) =
a
λ

(
x −

s
N

)
+
η

N
.

By the verification theorem, to show that the optimality condition in Proposition

1.4 is satisfied, it suffices to find a smooth function V(m, d, s, η, x) and a measurable

function Ĉ(m, d, s, η, x) such that

ρV(m, d, s, η, x) = sup
q,c∈R

H(m, d, s, η, x,∇V,∇2V, q, c) (5.13)

Q(s, η, x), Ĉ(m, d, s, η, x) ∈ arg max
q,c∈R

H(m, d, s, η, x,∇V,∇2V, q, c) (5.14)

∀(m, d, s, η, x) ∈ R5. Furthermore, the transversality condition for V and the

admissibility conditions for the Markov controls given by Q and Ĉ must hold.

Now, to demonstrate that (13) and (14) hold, it suffices to find a function smooth

function w(d, s, η, x) such that

rw = µwd + ηws − ψηwη +
σ2

D

2
(
wdd − rγ(wd)

2) + σN
2

(
wηη − rγ(wη)2

)
+ xd +

ρ

rγ
+

log r
γ
−

1
γ
+

λ

N − 1

(a
λ
(x −

s
N
) +

η

N

)2
(5.15)
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wx(d, s, η, x) = bd + ξ +
( N − 2

N(N − 1)
a + c

)
s −

N − 2
N(N − 1)

λη +
a

N − 1
x (5.16)

∀(d, s, η, x) ∈ R4. Indeed then we can take

V(m, d, s, η, x) = −e−rγ
(
m+w(d,s,η,x)

)
Ĉ(m, d, s, η, x) = −

log r
γ
+ rm + rw(d, s, η, x)

to satisfy (13) and (14). For (14) we use the first order conditions, which are sufficient

because γ > 0 and λ > 0.

Furthermore, if w is a second order polynomial and a
λ < 0, then the admissibility

and transversality conditions hold. Also, antidifferentiating shows that to satisfy (16)

w must be of the form

w(d, s, η, x) = bxd+ξx+
( N − 2

N(N − 1)
a+c

)
xs−

( N − 2
N(N − 1)

λ
)
xη+

1
2

a
N − 1

x2+h(d, s, η)

(5.17)

for some function h : R3 → R.

Combining the arguments in the last two paragraphs we have proven the following

statement. If a < 0, λ > 0, and b, c, ξ ∈ R are such that there exists a second order

polynomial h that satisfies (15) and (17), then a, b, c, ξ, λ are a linear symmetric

equilibrium.

In the appendix we show that if κ,Λ > 0 and F1 ∈ R satisfy equations (33)-(35), Γ is

defined as in (32), and

a = −NκΛ (5.18)

b =
1
r

(5.19)

c = κΛ − Γ (5.20)

ξ =
µ

r2 (5.21)

λ = NΛ (5.22)

then such a second order polynomial h can be found. Thus the parameters above give

a linear symmetric equilibrium, and the formulas in the theorem follow by computing

equilibrium prices and trading rates using (2), (3), (9) and (10).
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5.3 Equilibrium Analysis

The equilibrium equations are in the form of a system of multivariate polynomial

equations. There does not appear to be a way to reduce these equations down to a

single one-dimensional polynomial equation. In general, solving such systems is

not particularly tractable, but there are a variety of numerical methods that tend to

work. Here we use the Homotopy Continuation Method, implemented with the open

source software PHCpack [Ver14].

This method works by starting with a proxy polynomial system that is easy to solve,

forming a homotopy between the coefficients of the proxy system and the actual

system of interest, and then tracking the solutions over the course of the homotopy.

The software automatically chooses the proxy system, but one can also choose

one manually. A natural choice for a proxy polynomial system would be the one

derived in Chapter 2, which we were able to solve explicitly. Using this as the initial

proxy gives the same results as allowing the software to choose its own initial proxy.

However, the software works slightly faster when allowed to choose its own proxy,

so that was the methodology used.

As benchmark parameters we take r = .01, N = 10 and γ = ψ = σ2
D = σ

2
N
= 1.

Extensive numerical simulations, both near and far from these benchmarks, always

find a unique solution satisfying the constraint. This suggests that there always

exists an equilibrium of the form stated in the theorem. Close to the benchmarks the

software finds the solution very fast, and the results are very stable over repeated

runs with same parameters. When very far from these benchmarks the software can

be slow, taking sometimes a couple of minutes to solve a thousand systems. There is

also slight numerical instability when very far from the benchmarks. Roughy 1 in

every 100 runs of the software on the same parameters fails to find any solutions.

The remaining runs always give the same solution.

In the plots that follow, unless a parameter is being explicitly varied it’s set equal to
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its benchmark value. Instead of varying each market maker’s risk aversion γ directly,

we will instead vary their aggregate risk aversion γ0 := γ
N . The benchmark value for

γ0 is γ0 = 0.1. Varying N while leaving γ0 fixed allows us to focus on the effects of

competition among the market makers without changing their aggregate risk bearing

capacity. Conversely for varying γ0 while leaving N fixed.

The first result is that price impact is increasing in the market makers’ risk aversion,

as can be seen in the first plot above. The second result is that price impact is

increasing in fundamental volatility, as can be seen in the second plot above.



72

The next two results are more interesting and are shown in the two plots below.

The first plot shows that price impact is decreasing in ψ. Here ψ is thought of as

governing the uncertainty in the liquidity traders’ orders. When ψ is large there is

very little uncertainty, and when ψ is small there is a lot of uncertainty. The second

plot shows that price impact is decreasing in market maker competition.3

The two plots above also show that the limiting behavior of price impact discussed

in Chapter 2 continues to hold. From the second plot we see that price impact does

not vanish in the competitive limit. The reason is that ψ , ∞, and thus there is
3In this plot we don’t use the benchmark value of γ0 but instead take γ0 = 1. This is purely for

visualization purposes. When γ0 = .1 and we vary ψ the lines all look flat due to the scale of the
y-axis. The pattern of decreasing to a non-zero limit holds regardless of what parameters are chosen.
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uncertainty in the liquidity traders’ orders. In the first plot we see that price impact

vanishes in the limit as ψ →∞.

We next turn to the rate of convergence to efficiency between the market makers.

Comparative statics and limiting behavior can be seen in the two plots below.

Three key properties that were seen in Chapter 2 continue to hold here. Firstly, the

rate of convergence goes to infinity as N or ψ go to infinity. Secondly, the rate of

convergence is concave as a function of N and as a function of ψ. In Chapter 2 the

concavity was specifically of the square root form. Finally, the rate of convergence
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depends, for the most part, only on the parameters N , ψ and r. Indeed the plots

show the dependence on these parameters. We verified that there is essentially no

change in these plots when varying other parameters; the graphs all sit right on top

of each other and are indiscernible visually. The actual numerical values do depend

ever so slightly on other parameters. This is analogous to the formula for the rate of

convergence in Chapter 2, which only features N , ψ and r .

5.4 Appendix: Equilibrium Equations

We will show that a second order polynomial of the form h(d, s, η) = F1η
2 + F2ηs +

F3s2 + F4 can satisfy equations (15) and (17) for certain values of a, b, c, ξ and λ.

Inserting this functional form for h into equations (15) and (17) yields an equality

between two second order polynomials in (d, s, η, x). Equating coefficients of the

polynomials gives the following system of nine equations.

rb = 1 (5.23)

rξ = µb (5.24)

r
( N − 2

N(N − 1)
a + c

)
= rγσ2

N

N − 2
N(N − 1)

λF2 −
2

N(N − 1)
a2

λ
(5.25)

−r
N − 2

N(N − 1)
λ =

1
N − 1

a + c + ψ
N − 2

N(N − 1)
λ + 2rγσ2

N

N − 2
N(N − 1)

λF1 (5.26)

r
2

a
N − 1

= −
σ2

D

2
rγb2 −

σ2
N

2
rγ

( N − 2
N(N − 1)

)2
λ2 +

1
N − 1

a2

λ
(5.27)

rF1 = F2 − 2ψF1 − 2rγσ2
NF2

1 +
1

N2(N − 1)
λ (5.28)

rF2 = 2F3 − ψF2 − 2rγσ2
NF1F2 −

2
N2(N − 1)

a (5.29)

rF3 = −
rγσ2

N

2
F2

2 +
1

N2(N − 1)
a2

λ
(5.30)

rF4 =
ρ

rγ
+

log r
γ
−

1
γ
+ σ2
NF1 (5.31)

Equations (23) and (24) are equivalent to (19) and (21). Equations (28), (30) and

(31) specify F2, F3 and F4 in terms of F1, a and λ. Next we change variables from

a, λ and c to κ, Λ and Γ using (18), (20) and (22). Then equation (25) gives Γ in
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terms of κ, Λ and F1 as

Γ =
2

r(N − 1)
κ2
Λ+

1
N − 1

κΛ−γσ2
N

N − 2
N − 1

Λ

(
(r+2ψ)F1+2rγσ2

NF2
1 −

1
N(N − 1)

Λ

)
.

(5.32)

Finally, we are left with the following system for κ, Λ and F1.

−
r
2

N
N − 1

κΛ +
σ2

D

2
γ

r
+
σ2
N

2
rγ

( N − 2
N − 1

)2
Λ

2 −
N

N − 1
κ2
Λ = 0 (5.33)

−
2

r(N − 1)
κ2
Λ−

2
N − 1

κΛ+σ2
Nγ

N − 2
N − 1

F2Λ+2rσ2
Nγ

N − 2
N − 1

F1Λ+(r+ψ)γ
N − 2
N − 1

Λ = 0

(5.34)

−γσ2
NF2

2 +
2

rN(N − 1)
κ2
Λ − (ψ + r)F2 − 2rγσ2

NF1F2 +
2

N(N − 1)
Λ = 0. (5.35)

In this system one needs to plug in F2 as

F2 = (r + 2ψ)F1 + 2rγσ2
NF2

1 −
1

N(N − 1)
Λ.
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DIRECTIONS FOR FUTURE RESEARCH

This thesis leaves open numerous directions for future research. Firstly, the model in

Chapter 4 features clients whose flow the liquidity traders clear at the theoretical

value. This is inspired by the practice of traders buying flow from clients, though

typically this flow is not cleared at a theoretical value, but at the prevailing mid-price

on the exchange. It should be straightforward to consider such an extension of the

model. Secondly, it would be interesting to explicitly model the buying of flow from

brokers/clients. It’s probably difficult to obtain an equilibrium model where traders

pay a positive price for broker flow, which is what occurs in reality.

More generally, there has been an interesting evolution in market microstructure

that could potentially be modeled using the techniques in this thesis. It used to

be the case that market makers traded on the exchange, and certain broker-traders

executed orders on the exchange on behalf of clients. This is roughly the setting

modeled in this thesis, with the liquidity traders playing the role of the broker-traders.

However, nowadays these broker-traders are just brokers, and they sell their clients’

flow directly to market makers. The bulk of trading on the exchange now takes place

between market makers, after they have netted the various flows they have purchased

from brokers. There are also some sophisticated clients, typically hedge funds, who

no longer use brokers and instead trade directly on the exchange with market makers.

This is arguably the result of specialization. The brokers have specialized in client

services, and the market makers have specialized in trading technology. This has

probably raised broker fees to the point where hedge funds prefer to also invest in

trading technology. It would be interesting to model this evolution by extending

the models in this thesis, perhaps by allowing agents to invest in trading and client

service technologies. One place to start looking for ideas to build a model such as

this could be [BFM15].



77

BIBLIOGRAPHY

[AC01] Robert Almgren and Neil Chriss. “Optimal Execution of Portfolio
Transactions”. The Journal of Risk 3.2 (Jan. 2001), pp. 5–39.

[Bac17] Kerry Back. Asset Pricing and Portfolio Choice Theory. Second edition.
Financial Management Association Survey and Synthesis Series. Oxford
; New York: Oxford University Press, 2017. 722 pp. isbn: 978-0-19-
024114-8.

[Bar+15] Nicholas Barberis et al. “X-CAPM: An Extrapolative Capital Asset
Pricing Model”. Journal of Financial Economics 115.1 (Jan. 1, 2015),
pp. 1–24.

[BFM15] Bruno Biais, Thierry Foucault, and Sophie Moinas. “Equilibrium Fast
Trading”. Journal of Financial Economics 116.2 (May 1, 2015), pp. 292–
313.

[Bou+18] Bruno Bouchard et al. “Equilibrium Returns with Transaction Costs”.
Finance and Stochastics 22.3 (July 1, 2018), pp. 569–601.

[Car16] R. Carmona. Lectures on BSDEs, Stochastic Control, and Stochastic
Differential Games with Financial Applications. Philadelphia: Society
for Industrial and Applied Mathematics, 2016. 265 pp. isbn: 978-1-
61197-423-2.

[CJP15] Álvaro Cartea, Sebastian Jaimungal, and José Penalva. Algorithmic
and High-Frequency Trading. Cambridge, United Kingdom: Cambridge
University Press, 2015. 343 pp. isbn: 978-1-107-09114-6.

[CK93] John Y. Campbell and Albert S. Kyle. “Smart Money, Noise Trading and
Stock Price Behaviour”. The Review of Economic Studies 60.1 (Jan. 1,
1993), pp. 1–34.

[Coc05] John H. Cochrane. Asset Pricing. Rev. ed. Princeton, N.J: Princeton
University Press, 2005. 533 pp. isbn: 978-0-691-12137-6.

[FPR13] Thierry Foucault, Marco Pagano, and Ailsa Röell. Market Liquidity:
Theory, Evidence, and Policy. Oxford ; New York: Oxford University
Press, 2013. 424 pp. isbn: 978-0-19-993624-3.

[GM88] Sanford J. Grossman and Merton H. Miller. “Liquidity and Market
Structure”. The Journal of Finance 43.3 (1988), pp. 617–633.

[GP16] Nicolae Gârleanu and Lasse Heje Pedersen. “Dynamic Portfolio Choice
with Frictions”. Journal of Economic Theory 165 (Sept. 1, 2016),
pp. 487–516.



78

[Gué16] Olivier Guéant. The Financial Mathematics of Market Liquidity: From
Optimal Execution to Market Making. Chapman & Hall/CRC Financial
Mathematics Series. Boca Raton: CRC Press, Taylor & Francis Group,
2016. 278 pp. isbn: 978-1-4987-2547-7.

[KOW18] Albert S. Kyle, Anna A. Obizhaeva, and Yajun Wang. “Smooth Trading
with Overconfidence and Market Power”. The Review of Economic
Studies 85.1 (Jan. 1, 2018), pp. 611–662.

[Kyl89] Albert S. Kyle. “Informed Speculation with Imperfect Competition”.
The Review of Economic Studies 56.3 (1989), pp. 317–355.

[OHa11] Maureen O’Hara. Market Microstructure Theory. repr. Malden, Mass.:
Blackwell, 2011. 290 pp. isbn: 978-0-631-20761-0.

[Pha09] Huyên Pham.Continuous-Time Stochastic Control andOptimizationwith
Financial Applications. Stochastic Modelling and Applied Probability
61. Berlin: Springer, 2009. 232 pp. isbn: 978-3-540-89499-5.

[SS16] Yuliy Sannikov and Andrzej Skrzypacz. “Dynamic Trading: Price Inertia
and Front-Running”. Working Paper (2016).

[Tou13] Nizar Touzi. Optimal Stochastic Control, Stochastic Target Problems,
and Backward SDE. Fields Institute Monographs v. 29. New York:
Springer, 2013. 214 pp. isbn: 978-1-4614-4286-8.

[Ver14] Jan Verschelde. “Modernizing PHCpack through Phcpy” (Apr. 29, 2014).
arXiv: 1310.0056 [cs, math].

[Wil79] Robert Wilson. “Auctions of Shares”. The Quarterly Journal of Eco-
nomics 93.4 (1979), pp. 675–689.


