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ABSTRACT

The processing of signals defined on graphs has been of interest for many years, and
finds applications in a diverse set of fields such as sensor networks, social and eco-
nomic networks, and biological networks. In graph signal processing applications,
signals are not defined as functions on a uniform time-domain grid but they are
defined as vectors indexed by the vertices of a graph, where the underlying graph is
assumed to model the irregular signal domain. Although analysis of such networked
models is not new (it can be traced back to the consensus problem studied more
than four decades ago), such models are studied recently from the view-point of
signal processing, in which the analysis is based on the “graph operator” whose
eigenvectors serve as a Fourier basis for the graph of interest. With the help of
graph Fourier basis, a number of topics from classical signal processing (such as
sampling, reconstruction, filtering, etc.) are extended to the case of graphs.

The main contribution of this thesis is to provide new directions in the field of
graph signal processing and provide further extensions of topics in classical signal
processing. The first part of this thesis focuses on a random and asynchronous
variant of “graph shift,” i.e., localized communication between neighboring nodes.
Since the dynamical behavior of randomized asynchronous updates is very dif-
ferent from standard graph shift (i.e., state-space models), this part of the thesis
focuses on the convergence and stability behavior of such random asynchronous re-
cursions. Although non-random variants of asynchronous state recursions (possibly
with non-linear updates) are well-studied problems with early results dating back to
the late 60’s, this thesis considers the convergence (and stability) in the statistical
mean-squared sense and presents the precise conditions for the stability by drawing
parallels with switching systems. It is also shown that systems exhibit unexpected
behavior under randomized asynchronicity: an unstable system (in the synchronous
world) may be stabilized simply by the use of randomized asynchronicity. Moreover,
randomized asynchronicity may result in a lower total computational complexity in
certain parameter settings. The thesis presents applications of the random asyn-
chronous model in the context of graph signal processing including an autonomous
clustering of network of agents, and a node-asynchronous communication protocol
that implements a given rational filter on the graph.

The second part of the thesis focuses on extensions of the following topics in classical
signal processing to the case of graph: multirate processing and filter banks, discrete
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uncertainty principles, and energy compaction filters for optimal filter design. The
thesis also considers an application to the heat diffusion over networks.

Multirate systems and filter banks findmany applications in signal processing theory
and implementations. Despite the possibility of extending 2-channel filter banks
to bipartite graphs, this thesis shows that this relation cannot be generalized to "-
channel systems on"-partite graphs. As a result, the extension of classical multirate
theory to graphs is nontrivial, and such extensions cannot be obtainedwithout certain
mathematical restrictions on the graph. The thesis provides the necessary conditions
on the graph such that fundamental building blocks of multirate processing remain
valid in the graph domain. In particular, it is shown that when the underlying graph
satisfies a condition called "-block cyclic property, classical multirate theory can
be extended to the graphs.

The uncertainty principle is an essential mathematical concept in science and en-
gineering, and uncertainty principles generally state that a signal cannot have an
arbitrarily “short” description in the original basis and in the Fourier basis simulta-
neously. Based on the fact that graph signal processing proposes two different bases
(i.e., vertex and the graph Fourier domains) to represent graph signals, this thesis
shows that the total number of nonzero elements of a graph signal and its represen-
tation in the graph Fourier domain is lower bounded by a quantity depending on the
underlying graph. The thesis also presents the necessary and sufficient condition
for the existence of 2-sparse and 3-sparse eigenvectors of a connected graph. When
such eigenvectors exist, the uncertainty bound is very low, tight, and independent of
the global structure of the graph.

The thesis also considers the classical spectral concentration problem. In the context
of polynomial graph filters, the problem reduces to the polynomial concentration
problem studiedmore generally by Slepian in the 70’s. The thesis studies the asymp-
totic behavior of the optimal solution in the case of narrow bandwidth. Different
examples of graphs are also compared in order to show that the maximum energy
compaction and the optimal filter depends heavily on the graph spectrum.

In the last part, the thesis considers the estimation of the starting time of a heat
diffusion process from its noisy measurements when there is a single point source
located on a known vertex of a graph with unknown starting time. In particular, the
Cramér-Rao lower bound for the estimation problem is derived, and it is shown that
for graphs with higher connectivity the problem has a larger lower bound making
the estimation problem more difficult.
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C h a p t e r 1

INTRODUCTION

With the availability of various type of sensors and the increased level of connec-
tivity, we live in a world where it is very easy to collect and store almost every
detail in daily life, from hourly blood pressure levels (through wearable devices) to
social interactions (through various types of social networks). In most cases, such
kind of data are interrelated with each other, and they present complex dependency
structures. Since time-series analysis is no longer applicable to such data combi-
nations, researchers have been studying different scientific approaches in order to
incorporate the underlying dependencies into the analysis of such data.

Recent years havewitnessed an elevated interest in datamodels where the underlying
dependencies are represented via graphs. This is a very broad model that can be
found in a variety of different contexts such as social, economic, and biological
networks, among others [134, 90]. Although analysis of such networked models
is not new (it can be traced back to the consensus problem studied more than
four decades ago [48]), such models are studied recently from the view-point of
signal processing, in which the analysis is based on the “graph operator” whose
eigenvectors serve as a Fourier basis for the graph of interest [160, 151, 153, 152].
Examples of graph operators include the Laplacian matrices [160], the adjacency
matrix [151], or a signal covariance matrix [114]. With the help of graph Fourier
basis, a number of topics such as sampling and reconstruction, multirate filter banks,
and uncertainty principles have been extended to the case of graphs in [113, 129,
126, 172, 173, 207, 2, 187]. Studies in [147, 146, 203] also use the graph operator
for regression and learning over graphs.

Due to their rich structure, graphs present very interesting theoretical challenges
and insights when analyzing data defined on them. This thesis aims at revealing
fundamental limitations as well as opportunities brought by the underlying graph
structure in the context of data and signal processing. In particular, this thesis has
shown how the randomized asynchronicity of the interactions between nodes on
graphs opens up new dimensions in our understanding of linear systems. The main
contributions of this thesis can be summed up as follows:
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1. Random node-asynchronous computations: The first part of this thesis fo-
cuses on asynchronous communications between network of agents. The
thesis has modeled such communications as random asynchronous fixed point
iterations, where the signal on the graph (data held by the agents) is expected
to converge to a fixed point of the model. By carefully designing the update
scheme, convergence of the signal opens up successful applications such as
autonomous clustering of networks, asynchronous implementation of graph
filters, and more. This thesis has analyzed the underlying model rigorously
and provided the necessary and sufficient conditions for the mean-squared
convergence under different scenarios depending on the input signal. In par-
ticular, it is proven that conditions for the mean-squared convergence is more
relaxed than the condition for the convergence of synchronous updates. Such
updates are also considered from linear system theory view-point, and it is
proven that some unstable systems can get stabilized simply by randomly
and asynchronously updating the state variables. These will be described in
Chapters 2, 3, 4, and 5 of the thesis.

2. Multirate processing of graph signals: In this part, we have considered the ex-
tension of classical multirate processing ideas (downsampling, interpolation,
analysis/synthesis filter banks, and so on) to the case of graphs. It is shown
that the extension of classical multirate theory to graphs is nontrivial, and
requires certain mathematical restrictions on the graph. The thesis provides
the necessary conditions on the graph such that these ideas remain valid in
the graph domain. In particular, it is shown that when the underlying graph
satisfies a condition called "-block cyclic property, classical multirate theory
can be extended to the graphs. These will be described in Chapter 6.

3. Uncertainty principles on graphs: This part of the thesis has presented a
new way to formulate the uncertainty principle for signals and their Fourier
transforms defined over graphs, by using a nonlocal measure based on the
notion of sparsity. It is shown that the total number of nonzero elements of a
graph signal and its graph Fourier transform is lower bounded by a quantity
that depends on the underlying graph. It is also shown that graphs can have
sparse eigenvectors, in which case the uncertainty bound is very low, tight,
and independent of the global structure of the graph. These will be described
in Chapter 7.

4. Other problems in graph signal processing: In this part of the thesis we
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consider two additional problems in the context of graph signal processing.
The first one considers the spectral concentration problem for polynomial
graph filters. This is a graph extension of a well-studied problem for the
optimal design of FIR filters, whose solution is known as the prolate sequence.
This will be presented in Chapter 8. The second problem considers the heat
diffusion process over the graph. In particular, we will assume that there
is a point heat source that starts to diffuse at a known location but at an
unknown time. We sample the heat distribution over the graph and consider
the estimation of the starting time of the diffusion process when there is
additive noise. This will be presented in Chapter 9.

The chapter outline is as follows. Section 1.1 defines the notation used in this thesis.
Section 1.2 briefly reviews the area of graph signal processing and describes the
basic notions, then Section 1.3 gives the outline and the scope of this thesis.

1.1 Notations
We will use C# and R# to denote #-dimensional complex and real vector spaces,
respectively. Similarly, we will use C#×" and R#×" to denote the space of matrices
of size # ×" with complex and real entries, respectively. Vectors and matrices are
denoted by lower-case letters in bold face (such as x) and upper-case letters in bold
face (such as X), respectively.

We will use I to denote the identity matrix; we will use 0 denote the all-zeros vector,
or matrix; we will use 1 to denote all-ones vector; we will use e

8
to denote the 8Cℎ

standard vector that has 1 at the 8Cℎ index and 0 elsewhere. Dimensions of these
vectors and matrices should follow from the context.

For a given (possibly complex valued) matrix X, we will use XT to denote its
transpose, we will use XH to denote its conjugate-transpose, and we will use X∗ to
denote its element-wise conjugate.

For a matrixX, we will use -8, 9 , or (X)8, 9 to denote the (8, 9)Cℎ element of the matrix.
The 8Cℎ column of the matrix will be denoted as x8, and the 8Cℎ row of the matrix will
be denoted as x(8) .

Wewill use T to denote a subset of {1, · · · , #}. Given a subset T , its corresponding
index-selection matrix will be denoted as DT ∈ R#×# , which is a diagonal matrix
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that has value 1 only at the indices specified by the set T . That is,

DT =
∑
8∈T

e8 e
H
8 , and tr(DT ) = |T |, (1.1)

where |T | denotes the size of T .

We will use � and � to denote the positive definite (PD) and the positive semi-
definite (PSD) ordering, respectively. Namely, X � Y and X � Y imply X − Y is
positive semi-definite and positive definite, respectively.

1.1.1 Norms
For a vectorxwewill use ‖x‖? to denote its ℓ?-norm. Namely, ‖x‖? =

( ∑
8 |G8 |?

) (1/?) .
In particular, ‖x‖∞ denotes the largest element of x in absolute sense. We will use
‖x‖0 to denote the number of non-zero elements of the vector x. Note that ‖x‖0 is
not a norm.

For a matrix X (possibly with complex entries), we will use fmin(X) and fmax(X)
to denote its the smallest and the largest singular values, respectively. When X is
a Hermitian matrix (i.e., XH = X), we will use _min(X) and _max(X) to denote its
the smallest and the largest eigenvalues, respectively. We will use ‖X‖2 to denote
the spectral norm, i.e., the largest singular value. So, ‖X‖2 = fmax(X). We will use
‖X‖F to denote the Frobenius norm; we will use ‖X‖∞ to denote the largest absolute
row-sum; we will use ‖X‖max to denote the largest element magnitude-wise; we will
use tr(X) to denote the trace; we will use d(X) to denote the spectral radius (the
largest eigenvalue in magnitude) of the matrix X.

1.1.2 Operations and Products
We will use P[·] and E[·] to denote the probability and expectation, respectively.

For a given matrix X, we will use |X| to denote the matrix obtained by replacing the
elements of X by their absolute values. Namely, ( |X|)8, 9 = |-8, 9 |.

For a matrix X ∈ C"×# , we will use vec(X) ∈ C"# to denote the vector obtained
by stacking the columns of X. Namely,

vec(X) =


x1
...

x#

 . (1.2)

We will use vec−1(·) to denote the inverse of the vectorization operator, where the
dimensions follow from the context. Thus, vec−1 (

vec(X)
)
= X.



5

For a vector x ∈ C# , we will use diag(x) ∈ C#×# to denote the diagonal matrix with
the 8Cℎ diagonal entry being the 8Cℎ index of the vector x.

For a matrix X ∈ C#×# , we will use diag(X) ∈ C#×# to denote the diagonal
masking of X, that is, (diag(X))8,8 = -8,8 and (diag(X))8, 9 = 0 for 8 ≠ 9 . In other
words, diag(X) = X � I, where � denotes the Hadamard product described below.

Given two matrices X ∈ C#×" and Y ∈ C#×" , we will use X � Y to denote the
Hadamard product of the matrices. Namely, (X � Y)8, 9 = -8, 9 .8, 9 .

We will use ⊗ to denote the Kronecker product with the following definition:

X ⊗ Y =


-1,1 Y · · · -1," Y
...

. . .
...

-#,1 Y · · · -#," Y

 ∈ C
(#%)×("&) , (1.3)

where X ∈ C#×" and Y ∈ C%×& . We also note that the Kronecker product has the
following mixed-product property for matrices A,B,X,Y with conforming sizes:

(A ⊗ B) (X ⊗ Y) = (AX) ⊗ (BY). (1.4)

1.1.3 Graph Related Notation
For a given graph with # nodes, we will assume that A ∈ C#×# is an operator on
the graph. We consider A to be a local operator, that is, �8, 9 = 0 when the nodes 8
and 9 are not neighbors. In particular, �8, 9 denotes the weight of the edge from the
9 Cℎ node to the 8Cℎ node. We allow �8,8 to be non-zero. Hence, the operator A can
be the adjacency matrix, the Laplacian, the normalized Laplacian, and so on. We
will use Nin(8) and Nout(8) to denote the incoming and outgoing neighbors of the
8Cℎ node. More precisely we have

Nin(8) = { 9 | �8, 9 ≠ 0}, Nout(8) = { 9 | � 9 ,8 ≠ 0}. (1.5)

When the graph operator A is a diagonalizable matrix, we consider its eigenvalue
decomposition as follows:

A = V�V−1, (1.6)

where V is a matrix consisting of eigenvectors of A, and � is the diagonal matrix
with the eigenvalues, which may be complex in general. Given a signal x, its graph
Fourier transform (GFT), x̂, on the operator A is defined as

x̂ = V−1 x, or, x =
#∑
8=1

Ĝ8 v8, (1.7)
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where v8’s are the eigenvectors of A. If the graph operator A is nondiagonalizable,
we consider its Jordan decomposition and use its generalized eigenvectors as the
graph Fourier basis.

1.2 A Brief Review of Graph Signal Processing
In this section we will present some of the fundamental concepts in graph signal
processing. We will start from the notion of frequency in the graph setting and
describe how the eigenvectors of the graph can be interpreted as a Fourier basis.
Based on this interpretation, we will describe the notion of filtering. In particular,
we will explain polynomial graph filters by drawing parallels to the FIR filters in
the classical signal processing. Then, we will describe how the notion of “graph
shift” plays a central role in the theoretical understanding as well as in distributed
processing applications. This section is intended to be a brief overview, and we
refer to [160, 151, 138] for more detailed introduction to the field.

In order to present the main ideas concisely in this section, we will assume that
graphs have undirected edges with non-negative edge weights.

1.2.1 Basic Graph Definitions
For a given graph with # nodes, we will use �8, 9 ≥ 0 to denote the weight of the
edge between the node 8 and the node 9 . When �8, 9 = 0, it implies that the nodes 8
and 9 are not connected (i.e., there is no edge between them). We use the adjacency
matrix, denoted with A ∈ R#×# , to represent the connectivity structure of the graph
in amatrix form. Namely, the (8, 9)Cℎ entry of thematrixA is given by �8, 9 . Since the
graph is assumed to be undirected (i.e., edges are bi-directional) we have �8, 9 = � 9 ,8
so that A is a symmetric matrix.

The degree of a node is the total weight of the edges connected to that node. Notice
that when the graph is unweighted (i.e., edge weights are either 0 or 1), the degree
of a node is the number of edges connected to that node. More precisely, the degree
of the node 8 is defined as follows:

38 =

#∑
9=1

�8, 9 . (1.8)

Then, the degree matrix is defined as a diagonal matrix with the 8Cℎ diagonal entry
being the degree of the node 8. More precisely,

D = diag
(
[31 32 · · · 3# ]

)
∈ R#×# . (1.9)
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Based on the adjacent matrix and the degree matrix, the graph Laplacian matrix is
defined as follows:

L = D − A. (1.10)

Then, the normalized graph Laplacian has the following definition:

L = D−1/2 L D−1/2 = I − D−1/2 A D−1/2. (1.11)

Graph Laplacians possess many interesting properties. In fact, their spectral prop-
erties are tightly connected to the algebraic structure of the underlying graph. This
is part of a well-studied field known as spectral graph theory [39].

As a final note, we would like to mention that both Laplacians are positive semi-
definite matrices, whose eigenvalues can be bounded as follows:

0 � L � 2
(

max
8
38

)
I, 0 � L � 2 I. (1.12)

1.2.2 Quadratic Variation
For a given graph with # nodes, let G8 ∈ C denote the value associated with the 8Cℎ

node of the graph. Then, the corresponding signal on the graph is a vector of length
# consisting of the values associated to the nodes. More precisely,

x =


G1

G2
...

G#


∈ C# . (1.13)

So, when we say x is a signal on the graph, it means that the 8Cℎ element of x is the
value held by the 8Cℎ node.

For a given graph and a signal on the graph, the (normalized) quadratic variation of
the signal on the graph is given as follows:

B(x) = 1
‖x‖22

∑
8≥ 9

�8, 9 |G8 − G 9 |2, (1.14)

where the normalization with ‖x‖22 is included to make sure that the variation of
a signal is not increased simply by scaling the signal. Thus, B(Ux) = B(x) for any
U ≠ 0. In words, the quadratic variation is the sum of all the squared differences
in the values of adjacent nodes weighted by the edge connecting the nodes. If the
adjacent nodes have similar values, then corresponding graph signal has a smaller
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quadratic variation. Non-adjacent nodes having different values does not contribute
to the variation. As a result, the variation of a signal is tightly connected to the
underlying graph structure.

Simple rearrangement of the terms in (1.14) reveals that the quadratic variation can
be equivalently represented as follows:

B(x) = xH L x
xH x

≥ 0, (1.15)

which is known as the Rayleigh quotient. We note that the all ones vector 1 belongs
to the null-space of the graph Laplacian, i.e., L 1 = 0. So, a signal x has a zero
variation over the network when x = 21 for some nonzero 2, i.e., all the nodes have
the same value 2.

It is also worth noting that 1 is not an eigenvector of the normalized Laplacian
matrix in general. Instead, the normalized Laplacian satisfies L d = 0, where the
8Cℎ element of the vector d is the square-root of the degree of the 8Cℎ node. That is,
(d)8 =

√
38. If the graph is regular (i.e., all the nodes have the same degree), then

the normalized Laplacian satisfies L 1 = 0.

1.2.3 Notion of Frequency
Given the definition of the quadratic variation in (1.14), it is natural to look for the
signals that have the largest (or, the smallest) amount of variation over the network.
In this regard, we can consider the following optimization problem:

max
x

B(x), (1.16)

whose solution is given as the largest eigenvalue of the graph Laplacian L.

For a given graph Laplacian, we consider its eigenvalue decomposition as follows:

L = V�VH =
#∑
8=1

_8 v8 v
H
8 , where vH8 v 9 = X(8 − 9), (1.17)

where it is assumed that eigenvalues are in increasing order:

0 = _1 ≤ _2 ≤ · · · ≤ _# . (1.18)

Then, the maximum value and the maximizer of the problem (1.16) are as follows:

_# = max
x

B(x), v# = arg max
x

B(x). (1.19)
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Moreover, the quadratic variation of an eigenvector of the graph Laplacian is equiv-
alent to the corresponding eigenvalue of the eigenvector. Namely,

B(v8) = _8 . (1.20)

So, an eigenvector has a larger amount of variation over the graph when its corre-
sponding eigenvalue is larger. We will illustrate this point in Figure 1.1 next.

(a) (b) (c) (d)

Figure 1.1: Visualization of some of the eigenvectors of the graph Laplacian on the
graph. Colors black and pink represent positive and negative values, respectively.
Intensity of a color represents the magnitude. (a) v1, (b) v2, (c) v10, (d) v50.

Figure 1.1 provides an example of a random geometric graph on # = 150 nodes,
in which nodes are distributed over the region [0 1] × [0 1] uniformly at random.
Two nodes are connected to each other if the distance between them is less than
0.15, and the graph is undirected. There are 650 unweighted edges on the graph.
In Figures 1.1a, 1.1b, 1.1c, 1.1d, we visualize the eigenvectors v1, v2, v10, v50,
respectively, of the graph Laplacian. The figure visually shows that the variation of
an eigenvector increases as its eigenvalue increases.

In addition to the clear relationship between the quadratic variation of an eigenvector
and its corresponding eigenvalue as given in (1.20), the eigenvalues are tightly
connected to different definitions of variations as well. In order to demonstrate this
point, we consider the following two quantities:

I(x) =
∑
8≥ 9

1{ G8 G 9 < 0 }, B1(x) =
1
‖x‖1

∑
8≥ 9

�8, 9 |G8 − G 9 |, (1.21)

where B1(x) considers the absolute difference between the values of the adjacent
nodes, and I(x) counts the number of “zero crossings” in the signal x ∈ R# . Here,
a zero-crossing is defined as two adjacent nodes having values with opposite signs.

Figure 1.2 presents variations of the eigenvectors (of the graph in Figure 1.1) quanti-
fied as in (1.21). In particular, Figure 1.2a shows the number of zero-crossings of an
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Figure 1.2: For a given eigenvalue-eigenvector pair, (a) number of zero-crossings,
(b) absolute difference based variation of eigenvectors of the graph in Figure 1.1.

eigenvector as a function its eigenvalue, and Figure 1.2b shows the sum of absolute
differences in an eigenvector (normalized with the ℓ1-norm of the vector) as a func-
tion its eigenvalue. For a given eigenpair (v, _) (of the graph Laplacian) the figure
shows that the relationship between I(v), B1(v) and _ is not monotonic. Namely, a
larger eigenvalue does not necessarily imply that the corresponding eigenvector has
a larger number of zero crossings (or, larger absolute differences). Nevertheless, the
figure clearly shows that there is a very strong correlation between how much an
eigenvector varies over the graph and its corresponding eigenvalue.

Based on the relation in (1.20) and the observations in Figure 1.2, it is possible to
interpret an eigenvalue as the frequency of the corresponding eigenvector. Thus,
eigenvectors with large eigenvalues correspond to high-frequency components, and
eigenvectors with small eigenvalues correspond to low-frequency (slowly varying)
components. This interpretation is also consistent with the fact that the smallest
eigenvalue of a graph Laplacian is _1 = 0with the corresponding eigenvector v1 = 1.
Since v1 does not vary over a graph, it is meaningful to interpret v1 to have zero
frequency. Based on this notion it is possible to construct a Fourier transform on
the graph, as we shall elaborate next.

1.2.4 Eigenvectors as a Fourier Basis on the Graph
The Fourier transform is one of the most fundamental tools used in the area of signal
processing with vastly different application areas. Origins of the Fourier transform
go back to partial differential equations describing the diffusion of heat. In order to
solve the heat equation for an arbitrary function, Fourier’s intention was to represent
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the given function as a linear combination of sines and cosines, as sine and cosine
were known to be “simple” solutions of the heat equation [53].

More precisely, consider the the following differential equation:

d2

d C2
5 (C) = −l2 5 (C), (1.22)

where a second-order differential operator is known as the Laplace operator. We
note that the Laplace operator appears in many mathematical models describing
physical phenomena such as heat diffusion. The solution to (1.22) can be obtained
as follows:

5 (C) = 21 4
9lC + 22 4

− 9lC , (1.23)

which shows that complex exponentials in the form of 4 9lC are eigenfunctions of the
Laplace operator with the corresponding eigenvalue −l2. So, the Fourier transform
corresponds to the representation of a signal G(C) in terms of the eigenfunctions of
the Laplace operator. Namely,

G(C) =
∫

Ĝ(l) 4 9lC dl, where Ĝ(l) =
∫

4− 9lC G(C) d C. (1.24)

We now note that the graph Laplacian matrix defined in (1.10) can be considered as
a discretized version of a differential operator over the graph. Namely,(

L x
)
8
=

∑
9

�8, 9 (G8 − G 9 ). (1.25)

Thus, signals that remain “invariant” under the operator L satisfy the following
difference equation: ∑

9

�8, 9 (G8 − G 9 ) = _ G8 ∀8, (1.26)

whose solutions correspond to the eigenvectors of the graph Laplacian matrix L.

Drawing parallels to the original intention of Fourier transform, a given graph signal
x can be represented in terms of the eigenvectors of the graph Laplacian matrix:

x =
#∑
8=1

Ĝ8 v8 = V x̂, where Ĝ8 = vH8 x, (1.27)

where x̂ = VH x is said to be the graph Fourier transform (GFT) of x on the graph.

We note that the graph Fourier coefficient Ĝ8 is an inner product between the 8Cℎ

eigenvector v8 and the graph signal x in a way similar to the Fourier transform Ĝ(l)
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being an inner product between the eigenfunction 4 9lC and the signal G(C). Since
the graph Laplacian is a PSD matrix, it has an orthonormal set of eigenvectors that
span the entire C# . Therefore, graph Fourier transform exists for any signal x.

We also note that the frequency interpretation of eigenvalues discussed in Sec-
tion 1.2.3 is consistent with the definition of the graph Fourier transform. It is clear
from (1.22) that the eigenvalue of the eigenfunction 4 9lC of the Laplace operator is
related to the frequency of the eigenfunction. So, it ismeaningful to treat eigenvalues
of the graph Laplacian as the frequency of the corresponding eigenvectors.

Although the definition of the graph Fourier transform in (1.27) is consistent with
the classical notion of Fourier transform, we will mention three points that require
some attention:

1) Eigenvectors have a sign (or, phase) ambiguity due to their definition. It is even
possible for graphs to have repeated eigenvalues so that eigenspaces have dimension
more than one. Therefore, a graph may have multiple sets of eigenvectors resulting
in multiple choices for the graph Fourier transform. When discussing the graph
Fourier transform, it is generally assumed that the set of eigenvectors is fixed and
the GFT is defined with respect to that fixed set of eigenvectors. More generally, it
is possible to extend the definition of graph Fourier transform using projections on
invariant subspaces of the graph Laplacian matrix [49].

2) Although the discussion in this section is based on the graph Laplacian, similar
arguments and interpretations hold true for the normalized graph Laplacian and the
adjacency matrix. In Figures 1.3a and 1.3b, we demonstrate the number of zero
crossings of the eigenvectors of the normalized graph Laplacian and the adjacency
matrix, respectively, for the graph in Figure 1.1. It is clear from the figure that eigen-
values strongly correlate with the “variations” of the corresponding eigenvectors.
For a given graph, the choice of graph matrix (adjacency, Laplacian, normalized
Lapacian, etc.), and the choice of a specific set of eigenvectors, is usually guided by
the application at hand [160, 151, 138].

3) It is, so far, assumed that the underlying graph has undirected edges, which in
turn implies that the graph matrices are symmetric. So, eigenvectors can be selected
to be orthonormal, and they span the entire C# . When the graph has directed edges,
its matrix representation is no longer symmetric. If the matrix representation has a
linearly independent set of eigenvectors (i.e., diagonalizable), then its eigenvectors
can still be used as a Fourier basis on the graph. However, in the extreme case
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Figure 1.3: Number of zero crossings of the eigenvectors of (a) the normalized graph
Laplacian, (b) the adjacency matrix as a function of their corresponding eigenvalues
of the graph in Figure 1.1.

of nondiagonalizable graph matrices, the use of generalized eigenvectors (i.e., the
Jordan form) has been proposed [153].

1.2.5 Notion of Filtering Over Graphs
Given the definition of the graph Fourier transform in (1.27), it is readily shown
that the quadratic variation of a graph signal x can be written in terms of its graph
Fourier transform as follows:

B(x) =
( #∑
8=1

_8 |Ĝ8 |2
) / ( #∑

8=1
|Ĝ8 |2

)
. (1.28)

Here, the quantity |Ĝ8 |2 denotes how much energy the signal x has on the 8Cℎ graph
Fourier basis component, and _8 denotes the variation of the 8Cℎ basis component.
When the energy of a signal x is confined in “low-frequency” components of the
graph Fourier basis, the signal has a lower amount of variation on the graph. Based
on this observation, it is possible to “smooth” a graph signal in a way similar to
low-pass filtering. This can be achieved if a given graph signal is “filtered” in such
a way that it has less energy on the high-frequency components.

More precisely, given a graph signal x consider the signal y constructed as follows:

Ĥ8 =


Ĝ8, 8 ≤ ",

0, 8 > ",
(1.29)

where " can be considered as the “cut-off” point. Then, it is readily verified that
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the signal y is smoother on the graph than the signal x. That is,

B(y) =
( "∑
8=1

_8 |Ĝ8 |2
) / ( "∑

8=1
|Ĝ8 |2

)
≤ B(x). (1.30)

One can also show that the residual x − y has a higher amount of variation than the
signal x, that is, B(x − y) ≥ B(x) under the assumption that x ≠ y.

The relation between y and x defined in (1.29) can also be represented as follows:

y = H x, where H = V D" VH, (1.31)

and D" denotes a diagonal matrix with only the first " diagonal entries being one,
and the rest being zero. Drawing parallels to classical signal processing, the matrix
H can be considered as an ideal low-pass filter on the graph, and the signal y can
be considered as a low-pass filtered version of the signal x.

The effect of low-pass filtering is presented in Figure 1.4, where we visualize a graph
signal x in Figure 1.4a, and the output of the ideal low-pass filters in Figures 1.4b
and 1.4c with the cut-off " = 40 and " = 5, respectively. It is clear that as the
cut-off point decreases, the filtered signal becomes smoother on the graph.

(a) (b) (c)

Figure 1.4: (a) A graph signal x on the graph with # = 150 nodes. Output of the
ideal low-pass filtering with the cut-off (b) " = 40, (c) " = 5.

1.2.6 Polynomial Filters and the Graph Shift
Although the ideal low-pass graph filter defined in (1.31) is well motivated, it has
some limitations in terms of practical implementations. This is due to the fact that
eigenvectors of the graph Laplacianmatrix need to be computed in order to construct
the matrix H. When the graph consists of too many nodes (i.e., # is very large), the
computation of eigenvectors becomes infeasible. Furthermore, the overall filtering
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operation requires a centralized (or, off-line) computation, and the filter matrix H
may not be sparse even when the graph Laplacian is.

The main approach in addressing these problems is to use a polynomial approxima-
tion of the ideal-filter. That is, a set of coefficients are selected in such a way that a
polynomial (of order  ) of the graph Laplacian is a good approximation of the ideal
filter. More precisely,

� (L) =
 ∑
==0

ℎ= L= ≈ H. (1.32)

In the graph Fourier domain (i.e., the spectral domain) the polynomial approximation
can be described as follows:

� (_8) ≈


1, 8 ≤ ",

0, 8 > ".
(1.33)

Here, � (_8) can be considered as the “response” of the polynomial filter, as it scales
the 8Cℎ component of graph Fourier transform. Namely, � (L) x = ∑

8 � (_8) Ĝ8 v8.
So, the coefficients {ℎ0, · · · , ℎ } are selected in such a way that the response of
the polynomial filter approximates the ideal response. This is indeed very similar
to the design of FIR filters in classical signal processing. The only difference is
that frequencies correspond to the unit circle in classical signal processing, whereas
frequencies lie on the real line in the graph case.

Figure 1.5: The graph shift is equivalent to a node collecting information from its
neighbors.

The main motivation for polynomial filtering follows from its localized and dis-
tributed implementation over a graph. Namely, consider the term L x. Here, the
multiplication with the matrix L is said to be “graph shift,” where the notion of
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“shift” is equivalent to the adjacent nodes communicating with each other, as the
shifted signal Lx can be written explicitly as in (1.25). See Figure 1.5 for an illus-
trative example. So, the quantity Lx has a distributed implementation requiring a
communication between only the adjacent nodes.

Since a polynomial filtering of a signal x can be written as follows:

� (L) x = ℎ0 x + ℎ1 L x + ℎ2 L2 x + · · · + ℎ L x, (1.34)

an order  polynomial filter is equivalent to  successive communications between
the adjacent nodes (i.e., the graph shift) and computing aweighted average according
to the coefficients of the filter. The shift-and-add structure of polynomial graph filters
resembles the direct form implementation of FIR digital filters in classical signal
processing [200]. So, polynomial graph filters can be thought of as an extension
of digital FIR filters to the case of graphs. We will discuss more about polynomial
filters later in Section 6.3 of Chapter 6.

1.2.7 An Asynchronous Graph Shift
Although the graph shift translates as a localized communication between neighbor-
ing nodes, the graph shift forces all nodes to communicate simultaneously. When
consecutive graph shifts are required (which is the key point in polynomial graph
filtering), these localized communications need to be synchronized, which causes a
delay in large networks, or it may not be even possible in the case of autonomous
networks. In order to eliminate this limitation, an asynchronous variant of the graph
shift is considered as follows [181, 176]:

(y)8 =

(L x)8, 8 ∈ T ,

(x)8, 8 ∉ T ,
(1.35)

which is very similar to the synchronous graph shift, i.e., y = L x, except for the
fact that only the nodes indexed by the set T update their values, and the remaining
ones stay unchanged. So, consecutive asynchronous shifts still have a distributed
implementation on the graph, but no synchronization is required among the nodes.
Furthermore, these type of updates are equivalent to the nodes communicating with
their neighbors repetitively at random time instances when the update set T is
selected randomly.

Although asynchronous graph shift appears to be very similar to the synchronous
one, the dynamical behavior of randomized asynchronous updates is, in fact, very
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different, and classical results from synchronous linear system theory no longer
apply. In order to demonstrate this point consider an eigenpair of the graph Laplacian
matrix, i.e., Lv = _ v, and observe the following:

v
synchronous
−−−−−−−−−→



_ E1

_ E2

_ E3
...

_ E#

︸ ︷︷ ︸
an eigenvector

, v
asynchronous
−−−−−−−−−→



E1

_ E2

E3
...

E#

︸︷︷︸
not an eigenvector

, (1.36)

where the asynchronous shift updates only the second index of the vector.

When an eigenvector is shifted synchronously, it remains as the eigenvector by
definition. On the contrary, the output of an asynchronous shift is no longer an
eigenvector even when the input is. Thus, asynchronous updates do not respect
eigenvectors of the matrix L. This behavior has a profound effect on stability of
the random asynchronous updates. Chapters 2, 3, and 4 of this thesis focus on a
randomized and asynchronous graph variant of the graph shift, study its statistical
behavior, and present applications in the context of graph signal processing.

1.3 Outline and Scope of the Thesis
This thesis studies various aspects of signal processing techniques in network set-
tings. The first part of the thesis (Chapters 2, 3, 4, and 5) focuses on randomized and
asynchronous variants of state recursions and studies their behavior in a statistical
sense. The main theoretical finding of these sections is that random asynchronous
implementations can stabilize systems that are otherwise unstable. The second part
of the thesis studies extensions (and re-interpretation) of classical signal processing
techniques to the case of graphs. Namely, Chapter 6 considers multirate signal
processing techniques (and filter banks) for the graph case. Chapter 7 visits un-
certainty principles and shows that time-frequency localization phenomena does
not always extend to the case of graphs. Chapter 8 studies the optimal polynomial
filter design problem (that maximizes the bass-band energy) for the case of graphs.
Finally, Chapter 9 considers the heat-diffusion process over networks, and studies
the estimation of the starting time of a diffusion. In this section, the scope of each
chapter will be briefly outlined.
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1.3.1 Random Node-Asynchronous Updates (Chapter 2)
This chapter introduces a node-asynchronous communication protocol in which an
agent in a network wakes up randomly and independently, collects states of its
neighbors, updates its own state, and then broadcasts back to its neighbors. This
protocol differs from consensus algorithms and it allows distributed computation of
an arbitrary eigenvector of the network, in which communication between agents
is allowed to be directed. In order to analyze the scheme, this chapter studies a
random asynchronous variant of the power iteration where the update matrix is
selected to be the graph operator of interest. Under this random asynchronous
model, an initial signal is proven to converge to an eigenvector of eigenvalue 1 (a
fixed point) even in the case of operator having spectral radius larger than unity.
In particular, the convergence region for the eigenvalues gets larger as the updates
get less synchronous. The rate of convergence is shown to depend not only on the
eigenvalue gap but also on the eigenspace geometry of the operator as well as the
amount of asynchronicity of the updates. In particular, the rate of convergence is
affected by the phase of the eigenvalues, and the randomized updates favor negative
eigenvalues over positive ones. Random asynchronous updates are also interpreted
from the graph signal perspective, and it is shown that a non-smooth signal on the
graph converges to the smoothest signal under the random model. Polynomials
of the operator are used to achieve convergence to an arbitrary eigenvector of the
operator. When the eigenvalues are real, second order polynomials are shown to
be sufficient for this. Using second order polynomials in the randomized update
model, the chapter formalizes the node-asynchronous communication model whose
convergence is readily proven. As an application, the protocol is used to compute
the Fiedler vector of a network to achieve autonomous clustering. As another
application, this chapter considers a reformulation of the component-wise updates
revealing a randomized algorithm that is proven to converge to the dominant left and
right singular vectors of a normalized data matrix. The algorithm is also extended to
handle large-scale distributed data when computing an arbitrary rank approximation
of an arbitrary data matrix. Numerical simulations verify the convergence of the
proposed algorithms under different parameter settings.

1.3.2 IIR Filtering with Random Node-Asynchronous Updates (Chapter 3)
This chapter proposes a node-asynchronous implementation of rational filters on
arbitrary graphs. In the proposed algorithm nodes follow a randomized collect-
compute-broadcast scheme: if a node is in the passive stage it collects the data
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sent by its incoming neighbors and stores only the most recent data. When a
node gets into the active stage at a random time instance, it does the necessary
filtering computations locally, and broadcasts a state vector to its outgoing neighbors.
For the analysis of the algorithm, this chapter first considers a general case of
randomized asynchronous state recursions and presents a sufficiency condition for
its convergence. Based on this result, the proposed algorithm is proven to converge
to the filter output in the mean-squared sense when the filter, the graph operator and
the update rate of the nodes satisfy a certain condition. The proposed algorithm is
simulated using rational and polynomial filters, and its convergence is demonstrated
for various different cases, which also shows the robustness of the algorithm to
random communication failures.

1.3.3 Random Asynchronous Linear Systems (Chapter 4)
This chapter extends the random asynchronous state recursions studied in Chap-
ters 2 and 3 to a setting where the input is time-dependent, such as complex si-
nusoids. It is based on a randomized asynchronous variant of linear discrete-time
state-space models, in which each state variable gets updated with a non-zero prob-
ability independently (and asynchronously) in every iteration. This chapter shows
that such randomized systems behave very similar to the synchronous non-random
counterpart in a statistical sense. In particular, the output of the randomized system
with a sinusoidal input is still a sinusoid in expectation with the same frequency.
So, it is possible to consider the “frequency response” of such systems. This chapter
also presents the necessary and sufficient condition for the mean-squared stability
of the randomized system. It is shown that stability of the underlying state transi-
tion matrix is neither necessary nor sufficient for the mean-squared stability of the
randomized asynchronous recursions. However, randomization introduces an error
depending on the update probabilities and the amount of variation (frequency) in
the input signal. It is also shown that eigenvectors (and not just eigenvalues) of the
state transition matrix are important in determining the stability of the randomized
system, i.e., stability (or instability) property can be altered with a similarity trans-
form. The chapter also revisits the special case of constant input, in which case the
randomized system becomes randomized fixed-point iterations studied in Chapter 3
and stability conditions are less restrictive than in the non-random case.
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1.3.4 Randomized Algorithms as Switching Systems (Chapter 5)
This chapter considers the randomasynchronous updatemodel studied inChapters 2,
3, and 4 from the viewpoint of switching systems and shows that convergence
(and stability) properties of these models follow directly from the stability theory
already developed for switching systems. The chapter further shows that randomized
versions of Kaczmarz’s method, Gauss-Seidel iterations, and asynchronous fixed-
point iterations can be represented as specific instances of randomly switching
systems. Then, the chapter presents alternative proofs for the mean-squared and
almost sure convergence of randomized Kaczmarz and Gauss-Seidel methods. The
necessary and sufficient condition for the mean-squared convergence of random
asynchronous fixed-point iterations is also provided.

1.3.5 Extending Classical Multirate Signal Processing Theory (Chapter 6)
This chapter extends classical multirate signal processing ideas to graphs and revisits
ideas such as noble identities, aliasing, and polyphase decompositions in graph
multirate systems. It is shown that the extension of classical multirate theory to
graphs is nontrivial, and requires certain mathematical restrictions on the graph.
For example, classical noble identities cannot be taken for granted. Similarly, one
cannot claim that the so-called delay chain system is a perfect reconstruction system
(as in classical filter banks). It will also be shown that "-partite extensions of
the bipartite filter bank results will not work for "-channel filter banks, but a
more restrictive condition called "-block cyclic property should be imposed. Such
graphs are studied in detail. Building upon the basic theory of multirate systems
for graph signals, "-channel polynomial filter banks on graphs are studied. The
behavior of such graph filter banks differs from that of classical filter banks in many
ways, the precise details depending on the eigenstructure of the adjacency matrix.
If the adjacency matrix is actually "-block cyclic then perfect-reconstruction (PR)
filter banks become practical, i.e., arbitrary filter polynomial orders are possible,
and there are robustness advantages. In this case the PR condition is identical to PR
in classical filter banks – any classical PR example can be converted to a graph PR
filter bank on an "-block cyclic graph. Polyphase representations are developed for
graph filter banks and utilized to develop alternate conditions for alias cancellation
and perfect reconstruction, again for graphs with specific eigenstructures. It is then
shown that the eigenvector condition on the graph can be relaxed by using similarity
transforms.
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1.3.6 Uncertainty Principles and Sparse Eigenvectors (Chapter 7)
This chapter advances a new way to formulate the uncertainty principle for signals
defined over graphs, by using a non-local measure based on the notion of sparsity.
To be specific, the total number of nonzero elements of a graph signal and its
corresponding graph Fourier transform (GFT) is considered. A theoretical lower
bound for this total number is derived, and it is shown that a nonzero graph signal and
its GFT cannot be arbitrarily sparse simultaneously. When the graph has repeated
eigenvalues, the graph Fourier basis (GFB) is not unique. Since the derived lower
bound depends on the selected GFB, a method that constructs a GFB with the
minimal uncertainty bound is provided. In order to find signals that achieve the
derived lower bound (i.e. the most compact on the graph and in the GFB), sparse
eigenvectors of the graph are investigated. It is shown that a connected graph has
a 2-sparse eigenvector (of the graph Laplacian) when there exist two nodes with
the same neighbors. In this case the uncertainty bound is very low, tight, and
independent of the global structure of the graph. For several examples of classical
and real-world graphs it is shown that 2-sparse eigenvectors, in fact, exist.

1.3.7 Energy Compaction Filters (Chapter 8)
In classical signal processing spectral concentration is an important problem that
was first formulated and analyzed by Slepian. The solution to this problem gives
the optimal FIR filter that can confine the largest amount of energy in a specific
bandwidth for a given filter order. The solution is also known as the prolate
sequence. This chapter investigates the same problem for polynomial graph filters.
The problem is formulated in both graph-free and graph-dependent fashions. The
graph-free formulation assumes a continuous graph spectrum, in which case it
becomes the polynomial concentration problem. This formulation has a universal
approach that provides a theoretical reference point. However, in reality graphs have
discrete spectrum. The graph-dependent formulation assumes that the eigenvalues
of the graph are known and formulates the energy compaction problem accordingly.
When the eigenvalues of the graph have a uniform distribution, the graph-dependent
formulation is shown to be asymptotically equivalent to the graph-free formulation.
However, in reality eigenvalues of a graph tend to have different densities across the
spectrum. Thus, the optimal filter depends on the underlying graph operator, and a
filter cannot be universally optimal for every graph.
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1.3.8 Time Estimation for Heat Diffusion (Chapter 9)
This chapter studies the estimation of the starting time of a diffusion process from
its noisy measurements when there is a single point source located on a known
vertex of a graph with unknown starting time. The diffusion process is assumed
to be governed by the heat equation. In particular, the Cramér-Rao lower bound
(CRLB) for the problem is derived. It is shown that the problem has a larger CRLB
for graphs with higher connectivity. Closed form expression of the bound is derived
for some graphs. The Maximum Likelihood estimator is numerically verified to be
unbiased, and achieves the CRLB for some graphs.
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C h a p t e r 2

RANDOM NODE-ASYNCHRONOUS UPDATES ON GRAPHS

2.1 Introduction
The main goal of this chapter is to construct a communication protocol under
which an arbitrary eigenvector of the underlying graph operator can be found by the
agents. In this protocol, agents communicate with each other in an asynchronous
manner. More precisely, we consider the following collect-compute-broadcast sce-
nario: states of the agents as a whole will be considered as a graph signal. At a
random time instance, an agent wakes up independently and collects states of its
neighbors. Then, the agent updates its own state as a linear combination of the
received data, which is assumed to be described precisely by the graph operator.
Then, the agent broadcasts the amount of change in its state to its neighbors. It is
important to emphasize three points regarding this scenario: 1) The signal over the
network is driven only by the initial conditions (and the graph operator). Agents do
not take measurements, they only exchange data (their states) between each other. 2)
This is an iterative scheme, and the graph signal converges to the desired eigenvec-
tor through repeated communications. 3) Unlike an edge-asynchronous protocol, in
which only a connected pair of agents communicates with each other, the scenario
we consider here is node-asynchronous where an agent wakes up randomly and
communicates with all of its neighbors.

2.1.1 Assumptions on the Graph Operator
In this chapter we will not require the graph operator to be a symmetric matrix,
that is, edges in the network are allowed to be directed, possibly with unequal
edge weights. Self-loops are also allowed. However, we do require the operator
to be a normal matrix (equivalently, a unitary-diagonalizable matrix). We note
that symmetric (Hermitian) matrices are necessarily normal. Thus, results here are
applicable to any graph with undirected edges. On the contrary, an arbitrary directed
graph may not have a normal graph operator; it may even be non-diagonalizable
(like the cases studied in [49]).

We assume that the graph operator (hence, the underlying network) is not time
dependent. Only the node behaviors are time-varying (in a random fashion), but not
their connectivity structure. We also assume that each node knows its neighbors.
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2.1.2 Connections with Asynchronous Fixed Point Iterations
In this chapter we will study the described node-asynchronous network model from
a fixed point iteration view-point, in which the notion of graph shift (discussed in
Section 1.2) will be considered as the update step. In this approach, successively
graph shifted signals can be examined as a sequence generated by a fixed point
algorithm similar to the well-known power method. However, the traditional notion
of graph shift is not directly applicable to the node-asynchronous model considered
here since a graph shift requires all the nodes to communicate at the same time
instance, which contradicts with the asynchronicity assumption. In order to tackle
this problem, we will focus on an asynchronous variant, in which only a subset of
indices are updated in each iteration.

We note that asynchronous fixed point iterations arewell-studied problems [20]. The
papers in [19, 14] presented important convergence results for general non-linear
updatemodels. In fact, the first analysis of the problemcan be traced back to the study
in [32] (and references therein) under the name “chaotic relaxation,” inwhich a linear
model with an input was investigated. In these studies the convergence is guaranteed
mainly under two assumptions: 1) The update step is a contraction. 2) The indices
are updated frequently enough. (See [14, 19, 32] for precise descriptions of these
assumptions.)

In this chapter, we will consider linear updates without an input (power method on
the graph operator) in a probabilistic setting in which a random subset of indices is
updated in each iteration. In this setting, we prove that iterations converge to a fixed
point of the graph operator in the mean-squared sense even in the case of the graph
operator not being a contraction. More precise conditions will be spelled out later.

It is also important to note that the random asynchronous variant of the powermethod
studied here can be thought of as a special case of coordinate descent algorithms
[210]. In particular, coordinate-wise (or, asynchronous as we refer here) power
iteration was studied recently in [106, 206]. Both techniques are demonstrated to
perform well on data sets when computing the dominant eigenvectors, however they
are not directly applicable to the autonomous network model we consider here.
Furthermore, our results show that iterations do not necessarily converge to the
dominant eigenvector, but they converge to an eigenvector of the unit eigenvalue (a
fixed point) even if there are other eigenvalues with magnitudes greater than unity.
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2.1.3 Connections with Gossip Algorithms and Consensus
The most common form of gossip protocols assumes that an adjacent pair of nodes
share their current states with each other at random time instances and update
their states by an averaging [52]. Due to their versatility, gossip-like algorithms
have been studied extensively for distributed parameter estimation and optimization
problems [52, 24, 91, 137, 167, 27, 96, 97, 98]. Further examples include push-sum
[193, 102] and subgradient-push [131] (where the updates are synchronous, but the
network is time-varying.) We refer the reader to [194, 130, 89, 22] for more general
distributed/asynchronous optimization problems.

Although gossip protocols allow asynchronous communications, the canonical ex-
amples have edge-asynchronous (or, random link) behavior in which an edge gets
activated randomly and a pair of nodes, linked by the edge, communicate with each
other. See [88] for a treatment in random filtering in the context of graph signal
processing. On the contrary, the model we consider here is node-asynchronous, that
is, a node wakes up randomly and communicates with all of its neighbors. Thus,
our analysis here deviates from the known results on gossip protocols.

More importantly, gossip protocols are designed in such a way that nodes reach
a consensus. Depending on the problem formulation, the value of the consensus
may be the estimated parameter(s), or the optimal solution of the objective function
in general. For the consensus, graph operators, e.g., average connectivity matrix,
the averaging matrix etc., have the property that the constant vector is the unique
fixed point of the operator (assuming the graph is connected [52]). A signal over a
network operating under a gossip protocol converges to the constant vector, which
means that nodes reach a consensus. For example, the study in [211] searches for
the optimal graph operator (for the fastest distributed averaging) under the constraint
that the operator has constant vector as an eigenvector of eigenvalue 1. Differently in
this study, we assume that the given graph operator has a fixed point, i.e., eigenvalue
1 exists, and show that randomized node-asynchronous updates converge to an
eigenvector of eigenvalue 1 (a fixed point). However, the eigenvector need not be a
constant vector. Thus, nodes may not reach a consensus. We will also show how to
use polynomial filters in order to obtain convergence to an arbitrary eigenvector of
the given graph operator. From this perspective, the problem we consider is more
general than the consensus. In fact, the consensus can be considered as a particular
instance of the problem studied here, in which the graph operator has the constant
vector as an eigenvector.
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2.1.4 Outline of the Chapter and Contributions
In Section 2.2 we first define the deterministic asynchronous update. This scheme
is like the synchronous power iteration but values of only a subset of indices are
updated. Afterwards, we consider the case where the update sets are selected at
random. We impose a statistical model on the asynchronous updates, and derive,
for later use, the expected value of the random update mechanism (Lemma 2.1). In
Section 2.3 we consider cascades of random updates, and first analyze the expected
signal in terms of the eigenvectors of the operator (Theorem 2.1). In order to
prove the convergence of the updates, we consider the residual signal and bound its
expected squared ℓ2-norm (Theorem 2.2). Using this result we provide a sufficient
condition (Corollary 2.2) and a necessary condition (Corollary 2.4) on the operator
such that the signal is guaranteed to converge to an eigenvector of the unit eigenvalue
through randomupdates in themean-squared sense. We also show that asynchronous
updates are better than the synchronous ones in terms of the convergence region of
the eigenvalues (Corollary 2.3). In Section 2.4 we demonstrate how the eigenspace
geometry of the operator plays a role in the convergence of the random asynchronous
updates. In Section 2.5 we consider the problem from the graph signal processing
point of view (Theorem 2.3). Since an arbitrary nonzero signal is proven to converge
to the steady state, the signal in this state is said to be a “typical graph signal.” We
can interpret the typical signal as the smoothest signal on the graph (with respect to
the graph operator). In Section 2.6 we consider polynomials of the graph operator in
order to make the iteration converge to other eigenvectors (corresponding to non unit
eigenvalues) (Theorem 2.4). By an explicit construction, we prove that second order
polynomials are sufficient to achieve this purpose in the case of real eigenvalues
(Theorem 2.5). Then, in Section 2.6.5, we formally present the node-asynchronous
communication protocol (Algorithm 1) that implements a second order polynomial
of the graph operator. In Section 2.7 we use the proposed algorithm to compute
the Fiedler vector of a network in order to achieve an autonomous clustering via
localized communication. In Section 2.8 we consider a reformulation of the power
method and propose an algorithm that is proven to converge to the left and right
dominant singular vectors of a normalized data matrix (Algorithm 2). Then, we
extend the proposed algorithm in order to obtain an arbitrary rank approximation
of an arbitrary data matrix (Algorithm 3), and we leverage the component-wise and
asynchronous nature of the proposed algorithm in order to compute the singular
vectors of distributed data with distributed computations (Algorithm 4).

The content of this chapter is mainly drawn from [181], and parts of it have been
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presented in [184, 179, 185, 168].

2.1.5 Preliminaries and Notation
In this chapter, we always assume that A is a normal matrix, i.e., A AH = AH A.

We will use T to denote a subset of {1, · · · , #}, and its size is denoted as C = |T |.
We will use the notation

∑
T to denote the summation over all subsets of {1, · · · , #}

of a fixed size C where the value of C should follow from the context. The index
selection matrix of the set DT satisfies the following identities for a given size C:∑

T
DT =

(
#−1
C−1

)
I, (2.1)

1(#
C

) ∑
T

DT A DT =
C (# − C) diag(A) + C (C − 1) A

# (# − 1) , (2.2)

which will be used in the subsequent proofs.

2.2 Asynchronous Power Iteration
Given a matrix of interest A and an initial signal x0 the conventional power iteration
has the following form:

x: = A x:-1, so that x: = A: x0, (2.3)

where the updates here are considered without normalizing the signal at each itera-
tion. Normalization is avoided here intentionally to preserve the local nature of the
updates as will be elaborated next.

In the context of graph signal processing, the matrix A is assumed to be a local
graph operator (shift matrix) and the signal Ax is referred to as the shifted version
of x on the graph (See Section 1.2). From this perspective x: in (2.3) is the graph
shifted version of x:-1. Since A is assumed to be a local operator a single shift can
be implemented on the graph as a data exchange between the neighboring nodes.
That is,

(x: )8 =
∑

9∈Nin (8)
�8, 9 (x:-1) 9 ∀ 8. (2.4)

Notice that a norm of the signal depends on values of all of the nodes in the graph.
Therefore, a norm cannot be known locally in the graph setting, which is why we
have avoided normalization in (2.3).

Although a “graph shift” can be performed locally, the model in (2.3) forces all
the nodes to send and receive data at the same time. Therefore, the graph shift
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does not have an autonomous implementation since it requires a centralized timing
mechanism (synchronization) over the underlying graph.

In this study we will consider a variation of the power iteration, in which not all but a
subset of indices, denoted by T , are updated simultaneously and the remaining ones
stay unchanged. More precisely, given an update set T we consider the following
asynchronous (coordinate-wise) power iteration:

H8 =


(Ax)8, 8 ∈ T ,

G8, 8 ∉ T ,
(2.5)

where x is the vector before update, and y is the vector after the update. In words,
this update computes the multiplication Ax, but it only updates the values of the
elements indexed by the set T , and keeps the remaining elements the same. In short,
(2.3) is a “synchronous” update, whereas (2.5) is asynchronous. Both (2.3) and (2.5)
are also referred to as state recursions, where the graph signal x is regarded as the
state of a system. The model in (2.5) was also studied in [14, 19, 32] with slight
differences. Furthermore, (2.5) is reminiscent of the Hopfield neural network [84],
with the difference that there is no nonlinearity in (2.5). (Studies in [14, 19] have
non-linearity.)

The asynchronous update defined in (2.5) can be written as a matrix-vector multi-
plication as follows:

y =
∑
8∉T

e8 e
H
8 x +

∑
8∈T

e8 e
H
8 A x = Q(T ) x, (2.6)

where Q(T ) is the matrix representing the asynchronous update on a set T , and it
can be written as follows:

Q(T ) = I + DT (A − I). (2.7)

In the next few sections, where we perform a convergence analysis, A can be treated
as a generic matrix without considering specific relations to graphs. The relation
to graph signals will be considered in Section 2.5. When the model in (2.5) is
implemented on a graph (i.e., A is a graph operator), only the nodes in the update
set T need to be synchronized. If the update set is selected as T = {1, · · · , #},
then Q(T ) = A. That is, the asynchronous update in (2.5) reduces to the classical
synchronous update (graph shift) in (2.3). On the other extreme, if a single node
is updated, |T |=1, then no synchronization is required at all and the nodes are
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allowed to behave autonomously. We would like to note that the relation in (2.4)
appears as if a node collects states of its neighbors, update its own state, and sits
still. However, as we shall describe later in Section 2.6, we will consider the
updates on a polynomial of the given graph operator, which will require the nodes
to follow a collect-compute-broadcast scheme. These details will be elaborated in
Section 2.6.5.

2.2.1 Randomized Asynchronous Updates
In this chapter we will study the behavior of a cascade of asynchronous updates
where the update set T is assumed to be selected at random in each iteration. More
precisely, we assume that the : Cℎ iteration has the following form:

x: = Q x:-1, (2.8)

where x: denotes the signal at the : Cℎ iteration, and Q is a random matrix due to the
fact that the underlying update set is selected at random.

It should be noted that Q and Q(T ) are different from each other. The matrix Q(T )
in (2.7) is a deterministic matrix. Given an update set T , Q(T ) represents the
asynchronous update of (2.5). On the other hand, Q in (2.8) is a random variable
whose outcomes are in the form of Q(T ). More precisely, we consider the following
probabilistic model:

P[Q = Q(T ) ] = ?C
(
#

C

)−1
, where C = |T |, (2.9)

where ?C denotes the probability of T having size C, that is,

?C = P
[
|T | = C

]
, (2.10)

and
∑#
C=1 ?C = 1.

According to the model in (2.9), subsets of equal size are selected with equal
probabilities. Therefore, the update scheme does not have any bias toward any
node(s). To put differently, all the nodes are treated equally in the network. When
?# = 1, the model in (2.9) reduces to the regular power iteration in (2.3). When
?1 = 1, only one node is selected uniformly at random, which corresponds to the
autonomous network model of interest.

The number of nodes to be updated, T = |T |, is a discrete random variable whose
distribution will be shown to determine the behavior of the asynchronous updates.
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We will see later in Section 2.3.2 that the following definition is very useful in our
quantitative analysis:

XT =
E[ T (# − T) ]
E[ T (# − 1) ] =

# − `T − f2
)
/`T

# − 1
, (2.11)

where `T and f2
)
denote the mean and the variance of the random quantity T,

respectively. It can be verified that 0 ≤ XT ≤ 1 with XT = 0 if and only if all the
nodes are updated in each iteration (synchronous power iteration), and XT = 1 if and
only if exactly one node is updated in each iteration. As a result of this, XT will be
referred to as the amount of asynchronicity of iterations in the rest of the chapter.

We now prove:

Lemma 2.1. Expectation of the random matrix Q in (2.9) is

E[Q] = `T

#
A +

(
1 − `T

#

)
I. (2.12)

Proof. The expectation of Q can be written as

E[Q] = E
[
E[Q|T]

]
, (2.13)

where the outer expectation is with respect to T (size of the sets), and the inner
expectation is with respect to the content of the subsets of size T. Using (2.9) we
have that

E[Q | T] =
∑
T
P[Q = Q(T ) | T ] Q(T ) =

∑
T

1(#
T
) (

I + DT (A − I)
)
, (2.14)

where
∑
T denotes a summation over subsets of size T. Then,

E[Q | T] = 1(#
T
) ∑
T

I + 1(#
T
) ∑
T

DT (A − I) = I + 1(#
T
) (#-1T-1

)
I (A − I), (2.15)

= T/# A + (1 − T/#) I, (2.16)

where (2.15) follows from (2.1). Due to (2.13), we have

E[Q] = E[ T/# A + (1 − T/#) I ] = `T/# A + (1 − `T/#) I, (2.17)

which gives the result in (2.12). �

Notice that E[Q] is a convex combination of the operator A and the identity matrix.
The quantity `T/# is the average fraction of the nodes that are updated simultane-
ously per iteration, and it appears as the weight of the operator A in E[Q]. The
case of `T = # results in E[Q] = A, which corresponds to the case of synchronous
power iteration.
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2.3 Cascade of Asynchronous Updates
For the most practical scenarios we are interested in studying a sequence of random
updates and the effect of the underlyingmatrixA on the convergence of the iterations.
In the case of the synchronous (unnormalized) power iteration in (2.3), it is well
known that an arbitrary nonzero initial signal x0 converges to a nonzero x if and only
if x satisfies Ax = x (i.e., 1 is an eigenvalue of A), and the remaining eigenvalues of
A satisfy |_ | < 1. If there is another eigenvalue satisfying |_ | = 1, then the signal x:
may fall into limit cycles, and if |_ | > 1, the signal grows in an unbounded manner
through the iterations.

The random asynchronous update in (2.8) has very different convergence properties
as we shall see. Iteratively using (2.8), the signal at the : Cℎ iteration can be written
as

x: = Q: Q:-1 · · · Q2 Q1 x0, (2.18)

where x0 denotes the initial signal, and Q8’s are independent and identically dis-
tributed copies of the random matrix Q in (2.9). It should be noted that x: is a
random vector due to the fact that Q8’s are random variables.

2.3.1 Expected Amount of Projection onto the Eigenvectors
In order to characterize the behavior of x: , we first define the following quantity:

Ĝ:, 9 = vH9 x: , (2.19)

which is the amount of projection on the 9 Cℎ eigenvector (or, the 9 Cℎ graph Fourier
coefficient) of x: at the : Cℎ iteration. Due to the randomness of the updates, Ĝ:, 9 are
random quantities as well. The following theorem gives the expected value of these
coefficients:

Theorem 2.1. Let v 9 and _ 9 be an eigenpair of A. Then,

E[Ĝ:, 9 ] =
(
1 + `T

#
(_ 9 − 1)

) :
Ĝ0, 9 . (2.20)

Proof. From (2.18) and (2.19) we have

E[Ĝ:, 9 ] = vH9 E[Q: x:-1] = vH9 E[Q] E[x:-1], (2.21)

where the last equality follows from the fact thatQ: ’s are independent and identically
distributed random variables. Using the spectral decomposition of A in (1.6), E[Q]
in (2.12) can be written as

E[Q] = V
(
`T

#
� +

(
1 − `T

#

)
I
)

VH. (2.22)
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Therefore, (2.21) results in the following:

E[Ĝ:, 9 ] = vH9 V
(
`T

#
� +

(
1 − `T

#

)
I
)

VH E[x:-1],

=
(
1 + `T/# (_ 9 − 1)

)
E[Ĝ:-1, 9 ] . (2.23)

Iterative use of (2.23) gives the result in (2.20). �

Theorem 2.1 shows that expected value of the graph Fourier coefficients depends not
only on the corresponding eigenvalues but on the average number of nodes updated
in each iteration as well. An immediate corollary is as follows:

Corollary 2.1. Let v 9 and _ 9 be an eigenpair of A. If���1 + `T

#
(_ 9 − 1)

��� < 1. (2.24)

Then,
lim
:→∞
E[Ĝ:, 9 ] = 0. (2.25)

Proof. This follows from Theorem 2.1 and (2.19). �

In the case of synchronous updates `T = # , hence the relation in (2.20) reduces to
E[Ĝ:, 9 ] = Ĝ:, 9 = _:9 Ĝ0, 9 as expected. Furthermore, (2.24) reduces to |_ | < 1, which
is the well-known condition for the convergence of the power iteration of (2.3).

When the updates are asynchronous we have `T < # , and the region of convergence
(2.24) in the complex eigenvalue plane is larger. In particular, one can readily verify
the following:

|_ 9 | ≤ 1
_ 9 ≠ 1 =⇒

���1 + `T

#
(_ 9 − 1)

��� < 1, (2.26)

which implies that E[Ĝ:, 9 ] converges to zero even if _ 9 is on the unit circle, except
when_ 9 = 1. This is verymuch unlike to the synchronous casewhere the coefficients
corresponding to unit magnitude eigenvalues do not die out through the iterations.

The unit eigenvalue _ 9 = 1 deserves a specific attention since it has E[Ĝ:, 9 ] = Ĝ0, 9

irrespective of the value of `T. If the initial signal x0 has a nonzero projection onto
the eigenspace of the unit eigenvalue, then E[x: ] always has a nonzero projection
onto the eigenspace of the unit eigenvalue. Furthermore, the following lemma shows
that a signal is invariant to the random asynchronous updates if and only if the signal
lies in the eigenspace of the unit eigenvalue.



33

Lemma 2.2. A signal x is invariant under all asynchronous updates if and only if it
is invariant under the synchronous update. That is,

Ax = x ⇐⇒ Q(T ) x = x ∀T . (2.27)

Proof. (⇐) Assume that Q(T ) x − x = 0 for all T . Since it is true for any subset
T , it should hold true for all subsets of a fixed size C as well. Then,

0 =
∑
T

Q(T ) x − x =
∑
T

DT (A − I) x =
(
# − 1
C − 1

)
(A − I) x, (2.28)

which proves that Ax = x.

The converse (⇒) simply follows from (2.7). �

Lemma 2.2 shows that if the random signal x: ever reaches a steady-state point x
through iterations, then x should be in the eigenspace of the unit eigenvalue. The
result of Corollary 2.1 supports this claim as well. This is not a surprising result
as the eigenspace of eigenvalue 1 consists of non-zero fixed points of the operator.
However, neither Lemma 2.2 nor Corollary 2.1 says anything about the convergence
of the random asynchronous iteration as : increases. In the following section, we
will prove that x: indeed converges to an eigenvector of the unit eigenvalue (a fixed
point) as : goes to infinity.

2.3.2 Convergence in Mean-Squared Sense
In the followingwewill assume thatA has a unit eigenvaluewithmultiplicity" ≥ 1.
This assumption ensures that the asynchronous update equation has a fixed point
(Lemma 2.2). Without loss of generality we will order the eigenvalues of A such
that _ 9 ≠ 1 for 1 ≤ 9 ≤ #-" . Notice that non-unit eigenvalues are allowed to be
complex in general, and complex eigenvalues on or outside the unit circle are not
ruled out. Then, the eigenvalue decomposition of A can be written as

A = [U V1] diag
(
[_1 · · · _#-" 1 · · · 1]

)
[U V1]

H, (2.29)

where V1 ∈ C#×" is an orthonormal basis for the eigenspace of the unit eigenvalue,
and U ∈ C#×(#-") corresponds to the eigenvectors of the non-unit eigenvalues.
Since A is assumed to be a normal matrix, we have UH V1 = 0, and UH U = I.

We now define the following quantities:

d = _max
(
UH diag(U UH) U

)
, (2.30)

d̄ = _min
(
UH diag(U UH) U

)
, (2.31)
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which will play a crucial role in the analysis of convergence. Notice that d and d̄ do
not depend on the particular selection of the basis matrix U. Just the column space
of U determines their values. More importantly, we have the following property:

Lemma 2.3. The following holds true for any U ∈ C#×(#-") with UH U = I:
1
#

I � UH diag
(
U UH)

U � I. (2.32)

Proof. We note that U ∈ C#×(#-<) has orthonormal columns, i.e., UH U = I and
prove the upper bound in (2.32) first. Note that U UH � I. Then we can write the
following:

(U UH)8,8 = eH8 U UH e8 ≤ 1 =⇒ diag
(
U UH)

� I =⇒ UH diag
(
U UH)

U � I,
(2.33)

where e8 denotes the 8Cℎ column of the identity matrix of dimension # .

We now prove the lower bound in (2.32). Let u(8) denote the 8Cℎ row of U, then it is
clear that (U UH)8, 9 = u(8) u

H
(8) . Let x ∈ C# be an arbitrary vector. Then,

xH U UH x =
��xH U UH x

�� = ����� #∑
8=1

#∑
9=1
G∗8 (U UH)8, 9 G 9

����� =
����� #∑
8=1

#∑
9=1
G∗8 u(8) u

H
( 9) G 9

�����
≤

#∑
8=1

#∑
9=1
|G8 |

��u(8) uH
( 9)

�� |G 9 | ≤ #∑
8=1

#∑
9=1
|G8 | ‖u(8) ‖2 ‖u( 9) ‖2 |G 9 |

=

(
#∑
8=1
|G8 | ‖u(8) ‖2

)2

≤ #
#∑
8=1
|G8 |2 ‖u(8) ‖22 = # xH diag

(
U UH)

x.

(2.34)

Then, the inequity (2.34) implies that

U UH � # diag
(
U UH)

=⇒ UHU UH U � # UH diag
(
U UH)

U, (2.35)

which proves the lower bound due to the fact that UH U = I. �

So, Lemma 2.3 implies the following inequality regarding the quantities d̄ and d:

1
#
≤ d̄ ≤ d ≤ 1. (2.36)

For an arbitrary x: , let r: denote the residual from the projection of x: onto the
column space of V1. That is,

r: = x: − V1 VH
1 x: = U UH x: . (2.37)
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Then, the convergence of x: to an eigenvector of the unit eigenvalue is equivalent
to the convergence of r: to zero. The following theorem, whose proof is presented
in Appendix 2.10.2, provides bounds for r: as follows:

Theorem 2.2. The expected squared ℓ2-norm of the residual at the : Cℎ iteration is
bounded as follows:

k: ‖r0‖22 ≤ E
[
‖r: ‖22

]
≤ Ψ: ‖r0‖22, (2.38)

where

Ψ = max
1≤ 9≤#-"

2 (_ 9 ), k = min
1≤ 9≤#-"

2̄ (_ 9 ), (2.39)

2 (_) = 1 + `T

#

(
|_ |2 − 1 + XT (d − 1) |_ − 1|2

)
, (2.40)

2̄ (_) = 1 + `T

#

(
|_ |2 − 1 + XT ( d̄ − 1) |_ − 1|2

)
.

The importance of Theorem 2.2 is twofold: First, it reveals the effect of the eigen-
values (_ 9 ), the eigenspace geometry (d, d̄), and the amount of asynchronicity of
the updates (XT) on the rate of convergence. In the synchronous case XT = 0 and
`T = # , hence we have Ψ = max1≤ 9≤#-" |_ 9 |2. This result is consistent with the
well-known fact that the rate of convergence of the power iteration is determined by
the second largest eigenvalue. However, in the asynchronous case (XT > 0), not just
the eigenvalues but the eigenspace geometry of A has an effect. As a result, similar
matrices may have different convergence rates due to their different eigenspaces.
This point will be elaborated in Section 2.4. Furthermore, in order to guarantee
that E[‖r: ‖22] ≤ Y ‖r0‖22 for a given error threshold Y, inequalities in (2.38) show
that it is necessary to have at least blog(Y)/log(k)c iterations, and sufficient to have
dlog(Y)/log(Ψ)e iterations.

Secondly, Theorem 2.2 reveals a region for the eigenvalues such that the residual
error through asynchronous updates is guaranteed to convergence to zero in the
mean-squared sense. The following corollary presents this result formally.

Corollary 2.2. Assume that all non-unit eigenvalues of A satisfy the following
condition: ���_ − U

U + 1

��� < 1
U + 1

, (2.41)
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where
U = XT (d − 1). (2.42)

Then,
lim
:→∞

E
[
‖r: ‖22

]
= 0. (2.43)

Proof. From (2.39) it is clear that Ψ < 1 if and only if

|_ |2 − 1 + U |_ − 1|2 < 0, (2.44)

for all non-unit eigenvalues _. The inequality in (2.44) can be equivalently written
as in (2.41). Since it implies that Ψ < 1, Theorem 2.2 guarantees the convergence
of E[‖r: ‖22] to zero as the number of updates, : , goes to infinity. �

An important remark is as follows: Corollary 2.2 provides a condition under which
r: is guaranteed to converge to a point (zero) as : goes to infinity. On the other
hand, x: itself only converges to a random variable defined over the eigenspace
of the unit eigenvalue. This is illustrated in Figure 2.1 where the eigenspace of
the unit eigenvalue is spanned by the vector [1 1]H, and x0 = [-1 1]H. In the
synchronous case the signal converges to a point through a deterministic trajectory
as shown in Figure 2.1a. For the random asynchronous case, Figure 2.1b illustrates
the trajectories of the signals for different realizations. Convergence of r: to zero
implies that the limit of x: always lie in the eigenspace of the unit eigenvalue (with
a random orientation). Since any point in the eigenspace is an eigenvector, we can
safely say that x: converges to an eigenvector of the unit eigenvalue.

Notice that the convergence region for the eigenvalues defined in (2.41) is parametrized
by U, and it is a disk on the complex plane with radius 1/(U + 1) centered at
U/(U + 1). This region is visualized in Figure 2.2. Notice that 0 ≤ XT ≤ 1 and
0 < d ≤ 1 always hold true. As a result U satisfies −1 < U ≤ 0. The key observa-
tion is that the region in (2.41) grows as U approaches −1, and it is the smallest (and
corresponds to the unit disk) when U = 0. The quantity V and the large circle in
Figure 2.2 will be explained after Corollary 2.4.

Corollary 2.2 reveals the combined effect of the eigenspace geometry ofA (quantified
with d) and the amount of asynchronicity (quantified with XT) on the convergence of
the iterations. In the case of XT = 0 the region reduces to the unit disk, which is the
well-known condition on the eigenvalues for the synchronous updates to converge.
This is an expected result since the case of XT = 0 corresponds to the synchronous
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(a) (b)

Figure 2.1: Some realizations of the trajectories of the signal through updates for
(a) the non-random synchronous case, (a) the random asynchronous case.

update itself. More importantly, the synchronous updates imply U = 0 independent
of the eigenspace geometry of A. Therefore, the convergence is determined entirely
by the eigenvalues of A in the synchronous case.

On the other hand, the case of asynchronous updates results in a larger convergence
region for the eigenvalues. First of all, it should be noted that asynchronous updates
increase the convergence region if the eigenspace geometry of A permits. If d = 1
then U = 0, and the region of convergence is not improved by asynchronous itera-
tions. However, if d < 1 (which is the case in most practical applications), then it is
possible to enlarge the region of convergence using asynchronous iterations. As XT

gets larger (less number of nodes are updated concurrently), U gets smaller, hence
the convergence region gets larger. Even if one index is left unchanged in some
iterations, we have XT > 0, and the residual r: can converge to zero, even when non-
unit eigenvalues outside the unit circle might exist. This is a remarkable property
of the asynchronous updates since the residual (hence the signal itself) would blow
up in the case of synchronous updates. Notice that in the extreme case of XT = 1,
the region of convergence is the largest possible. That is to say, updating exactly
one node in each iteration maximizes the region of convergence of the eigenvalues.
On the other extreme, the synchronous update is the most restrictive case, which is
formally stated in the following corollary:

Corollary 2.3. If the synchronous updates on A converge, then

lim
:→∞

E
[
‖r: ‖22

]
= 0, (2.45)
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for random updates on A with any amount of asynchronicity.

Proof. If the synchronous updates converge, then all non-unit eigenvalues of A
satisfy |_ | < 1. Hence, they also satisfy (2.41) for any value of U. Therefore,
Corollary 2.2 ensures the convergence of the updates irrespective of the value of
XT. �

It should be clear that converse of Corollary 2.3 is not true. Thus consider a scenario
in which a signal over a network of nodes with autonomous (asynchronous) behavior
stays in the steady-state. If the nodes start to operate synchronously, then it is possible
for the signal to blow up. This happens if some of the eigenvalues fall outside of the
reduced convergence region due to the reduction in the amount of asynchronicity.
In fact, the study in [142] claims that large-scale synchronization of neurons is an
underlying mechanism of epileptic seizures. Similarly, the study in [196] presents
the relation between increased neural synchrony and epilepsy as well as Parkinson’s
disease. It should be noted that neural networks follow nonlinear models whereas
the model we consider here is linear. Thus, results presented here do not apply
to brain networks. Nevertheless, these neurobiological observations are consistent
with the implications of Corollary 2.2 and Corollary 2.3 from a conceptual point of
view.

Apart from the convergence of the iterations, Theorem 2.2 is also useful to charac-
terize the case of non-converging iterations. In this regard, the following corollary
presents a region for the eigenvalues such that asynchronous updates are guaranteed
not to converge.

Corollary 2.4. Assume that all non-unit eigenvalues of A satisfy the following:����_ − V

V + 1

���� ≥ 1
V + 1

, (2.46)

where
V = XT ( d̄ − 1). (2.47)

Then,
E
[
‖r: ‖22

]
≥ ‖r0‖22. (2.48)

Furthermore, if (2.46) is satisfied with strict inequality, then E[‖r: ‖22] grows un-
boundedly as : goes to infinity.
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𝑅𝑅𝑅𝑅(λ)

𝐼𝐼𝐼𝐼(λ)

𝟏𝟏−𝟏𝟏𝜶𝜶− 𝟏𝟏
𝜶𝜶 + 𝟏𝟏

𝜷𝜷 − 𝟏𝟏
𝜷𝜷 + 𝟏𝟏

Convergence region, 
synchronous.

Convergence region, 
random asynchronous.

Both (2.41) and (2.46) are violated. 
Convergence inconclusive.

Region of no convergence,
random asynchronous.

Figure 2.2: Regions (given in (2.41) and (2.46)) for the eigenvalues such that random
asynchronous updates are guaranteed to converge and diverge, respectively.

Proof. From (2.39) it is clear that k ≥ 1 if and only if

|_ |2 − 1 + V |_ − 1|2 ≥ 0, (2.49)

for all non-unit eigenvalues _. The inequality in (2.49) can be equivalently written
as in (2.46). Since (2.46) implies that k ≥ 1, Theorem 2.2 indicates that E[‖r: ‖22]
is lower bounded by ‖r0‖22. If (2.46) is satisfied strictly, then k > 1. As a result,
E[‖r: ‖22] grows unboundedly as : goes to infinity. �

From the definitions in (2.42) and (2.47) note that U ≥ V is always true due to the fact
that d ≥ d̄. Therefore, the conditions in (2.41) and (2.46) describe disjoint regions
on the complex plane. See Figure 2.2. Corollary 2.4 also shows that the condition
|_ − V/(V + 1) | < 1/(V + 1) is necessary for the iterations to converge, whereas the
condition in (2.41) is sufficient for the convergence (both in the mean square sense).
If there exists an eigenvalue that violates both (2.41) and (2.46), then convergence
is inconclusive. This region is also indicated in Figure 2.2.

At this point it is important to compare the implications of Corollary 2.2 with the
classical result presented in [14, 32]. Under the mild assumption that all the indices
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are selected sufficiently often (see [32] for precise definition), the study [32] showed
that the linear asynchronous model in (2.5) converges for any index sequence if and
only if the spectral radius of |A| is strictly less than unity, where |A| denotes a matrix
with element-wise absolute values ofA. On the other hand, our Corollary 2.2 allows
eigenvalues with magnitudes grater than unity. Although these two results appear
to be contradictory (when A consists of non-negative elements), the key difference
is the notion of convergence. As an example, consider the matrix A2 defined in
(2.55). Its spectral radius is exactly 1, and [32] proved that there exists a sequence of
indices under which iterations on A2 do not converge. For example, assuming # is
odd, consider the index sequence generated as 8 = (2: − 1) (mod #) + 1. However,
Corollary 2.2 proves the convergence in a statistical mean-square averaged sense.
(See Figure 2.5.) In short, when compared with [32], Corollary 2.2 requires a
weaker condition on A and guarantees a convergence in a weaker (and probabilistic)
sense.

2.3.3 Rate of Convergence
Although the region of convergence can only be expanded by random component-
wise updates as explained in the previous subsection, the rate of convergence has
a more intricate behavior that requires a detailed discussion. In the regular power
method, the rate of convergence is determined by the eigenvalue gap, which is
the difference between the magnitudes of the two largest eigenvalues of the matrix
A. Thus, the sign (or, the phase in the complex case) of the eigenvalues are not
important. Unlike the regular power method, sign of the eigenvalues do matter in
the random component-wise updates. As a result, the eigenvalue spectrum has an
asymmetric impact on the rate of convergence.

In order to explain the difference between the random component-wise and regular
power methods in terms of the rate of convergence, we will first present a numerical
example that summarizes our key observations. Then, we will explain the effect of
the asynchronicity on the rate of convergence theoretically..

Numerical Observations

In this simulation, random component-wise updates select exactly one index per
iteration (XT = 1), in which case a single inner product is computed per iteration.
On the contrary, the regular power method computes # inner products per iteration.
For a fair comparison between the two, we fix the total number of inner product,
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which will be denoted by  . Thus, the regular power method will run d /#e
iterations, whereas the component-wise variant will run  iterations.

For the numerical experimentwe consider three symmetricmatrices of size # = 100.
All three matrices are constructed such that _# = 1 is an eigenvalue withmultiplicity
" = 1, and the remaining #-1 eigenvalues are selected to be |_8 | < 1 so that the
power method (hence any random variant) is guaranteed to converge to an eigen-
vector of the eigenvalue _# = 1. (See Corollary 2.2.) In the first two examples we
consider a pair of simultaneously diagonalizable matrices. The non-unit eigenvalues
of the first matrix are selected to be positive (visualized in Figure 2.3a), and the
non-unit eigenvalues of the second matrix are selected to be the negative of those of
the first matrix (visualized in Figure 2.3b). In the third example we take a random
symmetric matrix with non-unit eigenvalues satisfying −0.5 < _8 < 0.5 (visualized
in Figure 2.3c). Figures 2.3d, 2.3e and 2.3f show the value of E[‖r ‖22]/‖r0‖22 as a
function of  for the three matrices described above.
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Figure 2.3: Non-unit eigenvalues of the (a) first, (b) second, and (c) third examples.
Eigenvalue gap is defined as the difference between 1 and the magnitude of the
largest non-unit eigenvalue. Normalized residual errors in the (d) first, (e) second,
and (f) third examples. Since the regular power method requires # inner products
per iteration, the residual error appears only at integer multiples of # = 100. Results
are obtained by averaging over 104 independent runs.

We first compare the results in Figures 2.3d and 2.3e. Since the eigenvalues have
the same magnitudes, the regular power method behaves the same in both cases.
Although the eigenvalue gap is the same in both cases, the random component-
wise method converges significantly faster when the second dominant eigenvalue is
negative. When the second dominant eigenvalue is positive, both the regular and



42

the component-wise updates behave similarly. In the third example, Figure 2.3f,
the matrix has a large eigenvalue gap, in which case the random component-wise
updates do not converge as fast as the regular power method.

Theoretical Justification

In order to explain the behavior in Figure 2.3, in this sectionwewill assume a slightly
simplified stochastic model for the selection of the update sets in (2.5). Namely, we
will assume that the scheme (2.5) updates exactly `T indices per iteration. Thus, the
randomvariableT (which denotes the size of the update sets) becomes a deterministic
quantity, and f2

T = 0. So, the parameter XT (the amount of asynchronicity) reduces
to the following form:

XT =
# − `T

# − 1
. (2.50)

In this setting we note that an update in the form of (2.5) requires `T inner products
per iteration. So, the cost of a single power iteration, which requires # inner
products, is equivalent to the cost of #/`T asynchronous iterations in which `T

indices are updates simultaneously. Since the associated cost of an eigenvalue
defined in (2.40) disregards the cost of an iteration, we consider the following
quantity instead:

A
(
_; `T, d

)
=

(
1 + `T

#

(
|_ |2 − 1 + XT (d − 1) |_ − 1|2

))#/`T

, (2.51)

which results in a fair comparison among the component-wise updates with different
amount of asynchronicity. The quantity A

(
_; `T, d

)
can be interpreted as the amount

of reduction in the residual error when eigenvalue _ is present in the matrix A with
the eigenspace parameter d, and the model (2.5) updates `T indices simultaneously.
Thus, smaller values of A

(
_; `T, d

)
indicate a better (faster) convergence of the

randomized scheme in (2.5).

We first note that the quantity A
(
_; `T, d

)
can be equivalently re-written as follows:

A
(
_; `T, d

)
=

(
1 + `T

#
(U + 1)

(���_ − U

U + 1

���2 − 1
(U + 1)2

))#/`T

, (2.52)

where U = XT (d − 1) as in Corollary 2.2. Then, it is clear that the point _★ =
U/(U+1) minimizes A

(
_; `T, d

)
over the variable _, and A

(
_; `T, d

)
(as a function

of _) is circularly symmetric with respect to the point _★. In addition, the inequality
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(2.36) ensures that A
(
_; `T, d

)
≥ 0. In order to demonstrate its behavior, we evaluate

A
(
_; `T, d) numerically over the unit disk (as a function of _) for different values

of `T and d. These computations are visualized in Figure 2.4.
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Figure 2.4: Numerical evaluation of A
(
_, `T

)
for various different values of `T and

d. The value of # is set to be # = 100.

In the case of synchronous updates we have `T = # , thus U = 0, and the quantity
defined in (2.51) reduces to A

(
_; #, d

)
= |_ |2 irrespective of the value of d, which

can be seen clearly from Figure 2.4a. Thus, as |_ | approaches 1, the value of
A
(
_; #, d

)
approaches 1 irrespective of the phase of _. So, only the magnitude of

an eigenvalue affects the convergence rate of the regular power iteration, which is a
well-known result.

In the case of asynchronous updates we have `T < # , and we will assume d < 1
(which is the case in most practical applications). Thus, we have U < 0, and
the phase of an eigenvalue becomes important since A

(
_; `T, d

)
is no longer a
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circularly symmetric function of _ with respect to the origin. Figures 2.4b, 2.4c and
2.4d visualize this behavior clearly. In particular, note that as _ approaches 1, the
quantity A

(
_; `T, d

)
approaches 1 as well. On the other hand, as _ approaches −1,

the quantity A
(
_; `T, d

)
stays bounded away from 1. More precisely,

A
(
1; `T, d

)
= 1, A

(
−1; `T, d

)
=

(
1 + `T

#
4U

)#/`T

. (2.53)

So, eigenvalues that are close to 1 result in a slower convergence, whereas eigen-
values can be arbitrarily close to −1, yet the convergence does not necessarily slow
down. Therefore, in light of (2.53) and Figure 2.4 we can conclude that the random
component-wise updates favor negative eigenvalues over positive ones. This con-
clusion is consistent with the numerical observations made in Figures 2.3d and 2.3e:
when the second dominant eigenvalue is close to 1, both the random component-
wise updates and the regular power iteration converge slowly. On the contrary, when
the second dominant eigenvalue is close to −1, the random component-wise updates
converge faster than the synchronous (regular) counter-part. In fact, it is possible to
construct a matrix A (by placing the second dominant eigenvalue sufficiently close
to −1) such that the randomized updates converge arbitrarily faster than the regular
power iteration.

Although random component-wise updates converge faster when the second domi-
nant eigenvalue is close to −1, Figure 2.3f shows that randomized updates are not
always faster than the synchronous counter-part. In order to explain the behavior
observed in Figure 2.3f, we consider A

(
_; `T, d

)
evaluated at _ = 0. More precisely,

A
(
0; `T, d

)
=

(
1 + `T

#

(
XT (d − 1) − 1

))#/`T

≥
(
1 − `T

#

)2#/`T

, (2.54)

where the lower bound follows from (2.36). As long as the updates are randomized
(the case of `T < #), it is clear from (2.54) that A

(
0; `T, d

)
is bounded away from

zero. Figures 2.4b, 2.4c and 2.4d visualize this behavior as well. Then, we can
conclude that in the case of random component-wise updates the associated cost
of an eigenvalue is bounded away from zero even when the eigenvalue itself is
close to zero. This conclusion is consistent with the simulation results presented in
Figure 2.3f. When the non-unit eigenvalues are close to zero, regular power iteration
converges faster than its randomized variant.

As a concluding remark, we note that the results presented in this section are
valid when A is a normal matrix, i.e, A is unitarily diagonalizable. The results of
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this section may not hold true when A is an arbitrary matrix. Nevertheless, the
normality condition is not a loss of generality when dealing with undirected graphs
as in Section 2.7, or if our goal is to construct a random component-wise method
that can compute the singular vectors of an arbitrary matrix as in Section 2.8.

2.4 The Importance of the Eigenspace Geometry
Corollary 2.2 presented in the previous section showed that the signal converges
to an eigenvector of the unit eigenvalue via random asynchronous updates even in
the case of A having other eigenvalues with magnitudes larger than one. Thus,
asynchronous updates can enlarge the convergence region of the eigenvalues if
the eigenspace geometry of A permits. In this section we will consider a simple
example to demonstrate the effect of the eigenspace geometry on the convergence of
the asynchronous updates. For this purpose we will consider the following matrices
of size #:

A1 =


�1

. . .

�#

 , A2 =


1

1
. . .

1


, (2.55)

where the diagonal entries of A1 are �= = 4 92c=/# , and A2 is the cyclic permutation
matrix. Note that A1 and A2 are related by a similarity, so they have identical
eigenvalues. In particular they have eigenvalue 1 with multiplicity" = 1. However,
they have different eigenspace geometries that affect the behavior of asynchronous
iterations as demonstrated next.

Notice that an update with A1 corresponds to element-wise multiplication with
complex exponentials that does not change the magnitude of the entries. As a result,
iterations with A1 do not converge or blow up, whether the updates are synchronous
or asynchronous. Indeed in this case d = d̄ = 1 and V = 0, which lead to the same
conclusion by Corollary 2.4.

Next, A2 is circulant matrix, and the normalized DFT matrix diagonalizes it. In
this case d = d̄ = 1 − 1/# . In the synchronous case XT = 0, hence V = 0, and
Corollary 2.4 shows that the residual error is bounded below. In fact, the power
iteration on A2 neither converges nor blows up since it corresponds to the cyclic
shift of the vector, and the initial signal repeats itself after every # iterations. In the
asynchronous case,A2 hasU = −XT/# , hence any nonzero amount of asynchronicity
impliesU < 0, inwhich case the convergence region in (2.41) contains the unit closed
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disk. Thus, the initial signal converges to an eigenvector of the unit eigenvalue. As
an example consider the case of updating exactly one index in each iteration. This is
equivalent to randomly selecting an index and assigning its value to the next one. As
random updates are applied repeatedly the signal will have more and more duplicate
elements until all the elements are the same. The final vector is [ 1 where [ is a
random variable. Thus, the initial signal converges to a constant vector, which is the
eigenvector of A2 with the unit eigenvalue. (See Figure 2.1b.) Theorem 2.2 verifies
this convergence in the mean-squared sense with the following bounds on the rate:

Ψ = max
1≤=≤#-1

1 − 1
#

1
#

��4 92c=/# − 1
��2 ≈ 1 − 4c2/#4, (2.56)

and

k = min
1≤=≤#-1

1 − 1
#

1
#

��4 92c=/# − 1
��2 ≈ 1 − 4/#2. (2.57)

In order to compare the bounds in (2.56) and (2.57) with the actual rate of con-
vergence, asynchronous iterations with XT = 1 are simulated on A2 of size # = 32.
Figure 2.5 visualizes the expected squared ℓ2-norm of the residual as a function
of the iteration index as well as the bounds given by Theorem 2.2. The result is
obtained by averaging over 107 independent runs.
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Figure 2.5: Simulated convergence of random asynchronous updates on the cyclic
shift matrix of size # = 32 together with the bounds provided by Theorem 2.2.

Simulations show that the bounds suggested by Theorem 2.2 are off by an order of
magnitude in this specific example. Since the random updates converge faster than
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the upper bound given by Theorem 2.2, i.e., (2.56), tighter bounds on the rate of
convergence may be possible to obtain.

2.5 Interpretation in the Context of Graph Signal Processing
In Sections 2.2 and 2.3 we defined and studied the random asynchronous updates
from a linear algebraic point of view where the results (Theorems 2.1, 2.2, and their
corollaries) are general enough to apply them to an arbitrary normal matrix. WhenA
is assumed to be a graph operator, the asynchronous iterations offer an insightful way
to interpret a “typical” graph signal. Consider a network of fully autonomous nodes
(agents) and assume that a node updates its value via retrieving information from
its neighbors. This update scheme can be modeled with (2.5) where the update set
T has only one element (XT = 1). In this model, the local graph operator A models
the way nodes update their values. If a node computes the sum of its neighbors,
then A is the adjacency matrix; if a node computes the sum of differences with its
neighbors, then A is the graph Laplacian; if a node computes a weighted average
of its neighbors, then A is a weighted adjacency matrix. Therefore, the matrix A
describes what the nodes compute, the update scheme in (2.5) describes the time
dynamics of the nodes, and the values held by the nodes are considered as a signal
on the graph (with respect to the operator A). In the following, we will interpret
random asynchronous updates in this context and argue that a “typical signal” on a
graph is necessarily a “smooth signal” with respect to the graph operator. For this
purpose first notice that the GFT of Ax − x is given by (� − I) x̂. Then, we define a
notion of smoothness accordingly as follows:

Definition 2.1 (Smoothness Set). A graph signal x belongs to the set Sn if its graph
Fourier transform x̂ = VH x satisfies

|Ĝ8 | |_8 − 1| ≤ n ∀ 8, (2.58)

for the given graph operator A.

A signal x belongs to Sn if the differences between the graph Fourier coefficients
of x and Ax are not larger than n in absolute sense. That is, small values of n
implies that x and Ax are similar to each other. Hence, we can interpret n as a
scale of the smoothness of the signal x with respect to the operator A. Here, the
smoothness is quantified according to the total variation (TV) of the eigenvectors,
TV(v8) = |_8 − 1|, as introduced in [153]. For a given value of n , the setSn describes
the signals with |Ĝ8 | ≤ n / |_8 − 1|. So, for a smooth signal, the Fourier coefficient Ĝ8
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should be smaller for those _8 whose v8 has large total variation. The condition in
(2.58) is equivalent to bounding a weighted max-norm of the GFT of x, that is,

x ∈ Sn ⇐⇒ ‖ (� − I) x̂ ‖∞ ≤ n, (2.59)

where the weight matrix is selected as |� − I|. The setSn depends on the underlying
graph operator. A signal that is smooth on one graph may not be smooth on another
graph.

In the following we will consider the effect of a single asynchronous update on the
smoothness of the signal. For this purpose let x be the initial signal and y be the
signal after an update. According to (2.7) they are related as y = Q(T ) x, which can
be equivalently written in the graph Fourier domain as follows:

ŷ = VH Q(T ) V x̂ = x̂ +
∑
8∈T

VHe8 e
H
8 V (� − I) x̂. (2.60)

The following theorem reveals a relation between smooth graph signals and a single
asynchronous update of (2.5).

Theorem 2.3. Assume that the signal x belongs to Sn of a graph with operator A.
Then, the signal y computed as in (2.5) satisfies the following:

‖ŷ − x̂‖∞ ≤ n |T | ‖V‖max ‖V‖∞. (2.61)

Proof. Assume that x ∈ Sn . Then, we can write the following set of inequalities for
a fixed index 9 :

| Ĥ 9 − Ĝ 9 | =
�����eH9 ∑

8∈T
VHe8 eH8 V (� − I) x̂

����� , (2.62)

≤
∑
8∈T

���eH9 VHe8
��� ��eH8 V (� − I) x̂

�� , (2.63)

≤ ‖V‖max
∑
8∈T

��eH8 V (� − I) x̂
�� , (2.64)

≤ ‖V‖max
∑
8∈T

VH e8


1

(� − I) x̂

∞ , (2.65)

≤ ‖V‖max |T | ‖V‖∞ n, (2.66)

where (2.62) follows from (2.60), (2.63) follows from the triangle inequality, (2.64)
follows from the definition of ‖V‖max, (2.65) follows from the Hölder inequality,
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and (2.66) follows from the fact that ‖V‖∞ is the largest ℓ1-norm of the rows of V.
Then, we have the following:

‖ŷ − x̂‖∞ = max
9
| Ĥ 9 − Ĝ 9 | ≤ n |T | ‖V‖max ‖V‖∞, (2.67)

where the inequality follows from the fact that the bound in (2.66) is valid for any
index 9 . �

If the underlying graph is circulant, then V is the normalized DFT matrix, and
Theorem 2.3 reduces to the following simple form as a corollary: ‖ŷ − x̂‖∞ ≤ n |T |
[184].

The bound given by Theorem 2.3 is not tight in general. Nevertheless, it provides
a useful interpretation: if the initial signal is smooth on the graph (belongs to Sn
with n being small), then the amount of change in each GFT coefficient is also
small, hence a smooth signal remains to be (relatively) smooth on the graph after a
single asynchronous update. If the initial signal is not smooth (n is large), then the
right-hand-side of (2.61) is a large quantity, and thus we cannot reach a conclusion
regarding the effect of an asynchronous update.

We will say that a signal x is typical to the graph (with respect to the operator A) if
it satisfies Ax = x. This definition is motivated by the following three observations.
First of all Lemma 2.2 shows that a typical signal is invariant (stationary) under any
asynchronous update. Secondly, a signal is typical if and only if it is the smoothest
signal (w.r.t. Definition 2.1):

x ∈ S0 ⇐⇒ A x = x. (2.68)

This is consistent with the studies in [152, 160, 113] that consider typical signals to
be smooth on the graph. Thirdly, and most importantly, Corollary 2.2 proves that
when the nodes communicate autonomously for a sufficiently long time, the signal
becomes typical to the graph irrespective of the starting point. Once the signal
gets typical it stays the same over the network. Therefore, a steady signal over an
autonomous network is necessary typical with respect to the operator A.

The equivalence given in (2.68) also shows the smoothing effect of the asynchronous
updates. An arbitrary initial signal is not expected to be smooth over a graph, but
Corollary 2.2 proves that the signal over an autonomous network eventually becomes
typical, hence the smoothest. However, it should be noted that the smoothing
(convergence) does not happen monotonically unlike the power iteration of (2.3).
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Some updates might be adversarial that increase the variation of the signal over the
graph. See Figure 1 of [184] for an illustrative example. Nevertheless, some other
updates cancel them out in the long run as proven by Theorem 2.2.

2.6 Asynchronous Polynomial Filters on Graphs
Lemma 2.2 of Section 2.3 showed that there exists a signal invariant under an
asynchronous update if and only if A has an eigenvalue 1. In this case, according to
Corollary 2.2, an arbitrary nonzero initial signal converges to an eigenvector with
eigenvalue 1. These results show that asynchronous updates on A can only converge
to the eigenspace of A with the unit eigenvalue. In this section we will challenge
this limitation: what if we want asynchronous updates to converge to an eigenspace
of A with eigenvalue other than 1? In order to approach this problem we will start
with an !Cℎ order polynomial of the given operator, that is,

ℎ(A) =
!∑
==0

ℎ= A=, (2.69)

for some set of coefficients ℎ=’s, and consider asynchronous updates on ℎ(A) that
are defined as follows:

( x:+1 )8 =

(
ℎ(A) x:

)
8
, 8 ∈ T ,

( x: )8, 8 ∉ T .
(2.70)

Polynomials of a graph operator are useful to consider because of the following two
reasons. Firstly, they are localized. Computation of (ℎ(A) x)8 requires the 8Cℎ node
to retrieve information only from its !-hop neighbors. If the polynomial is of low
order (! has a small value), then ℎ(A) x can be computed locally, which is crucial
to the autonomous model we consider in this study. Secondly, A and ℎ(A) have the
same eigenvectors, that is,

ℎ(A) = V ℎ(�) VH. (2.71)

Therefore, a carefully constructed polynomial can manipulate the eigenvalues of A
in such a way that asynchronous iterations on ℎ(A) can be guaranteed to converge
to a desired eigenspace of A even though iterations on A itself fail to do so. This
idea is formally presented in the following theorem.

Theorem 2.4. Let _8 denote the eigenvalues of a given graph operator A. For a
specific target eigenvalue _ 9 , assume that a polynomial ℎ(·) satisfies the following
conditions:

ℎ(_ 9 ) = 1 and |ℎ(_8) | < 1 ∀ _8 ≠ _ 9 . (2.72)
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Then, random updates on ℎ(A) as in (2.70) converge to an eigenvector of A with
eigenvalue _ 9 for any amount of asynchronicity 0 ≤ XT ≤ 1.

Proof. Since ℎ(·) is assumed to satisfy (2.72), ℎ(A) has a unit eigenvalue, and the
non-unit eigenvalues are strictly less than one in magnitude. Hence, Corollary 2.2
ensures that the updates converge to a point in the eigenspace of ℎ(A) with the
eigenvalue 1, which is equivalent to the eigenspace of A with the eigenvalue _ 9 due
to the property in (2.72). �

Polynomial filters play an important role in the area of graph signal processing.
Starting from the early works [153, 151, 160], polynomial filters are designed to
achieve a desired frequency response on the graph. On the contrary, the condition
(2.72) disregards the overall response of the filter since its objective is to isolate
a single eigenvector. Thus, the design procedure and the properties of the poly-
nomials (to be presented in the subsequent sections) differ from the polynomial
approximation ideas considered in [153, 151, 160].

Theorem 2.4 tells that an arbitrary eigenvector of the graph can be computed in
a decentralized manner if a low order polynomial satisfying (2.72) is constructed.
In this regard the updates on polynomial filters resemble the beam steering in
antenna arrays [202]: assume that the order of the polynomial, !, is fixed. Then,
the communication pattern between the nodes is completely determined by the
operator A and the order ! (See Algorithm 1). Once the nodes start to update
their values randomly and asynchronously, the behavior of the signal is controlled
by the polynomial coefficients. By changing the coefficients in the light of (2.72),
one can steer the signal over the graph to desired “directions,” which happen to be
the eigenvectors of the operator. Here, ! corresponds to the number of elements
(sensors) in the array, and the filter coefficients serve the purpose of steering in both
cases.

Note that the condition in (2.72) is not necessary in general for the convergence of
random updates with a fixed amount of asynchronicity. (See Section 2.4.) However,
(2.72) is necessary to guarantee the convergence for all levels of asynchronicity
including the most restrictive case of power iteration.

Notice that if the operator A is the graph Laplacian, and the target eigenvalue is
_ 9 = 0, then the corresponding eigenvector is the constant vector. In this case the
problem reduces to the consensus problem, and the condition in (2.72) becomes a
relaxed version of the polynomial considered in [150].
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In the following sections we will assume that eigenvalues ofA are real valued, which
is the case for undirected graphs, and assume that ℎ= ∈ R. Although the complex
case can also be considered in this framework, as we shall see, some of the results
do not extend to the complex case.

2.6.1 The Optimal Polynomial
In this section we consider the construction of the polynomial that has the largest gap
between the unit eigenvalue and the rest. In order to represent the condition (2.72) in
the matrix-vector form we will use a vector of length ! + 1 to denote the polynomial
in (2.69), that is, h = [ℎ0 · · · ℎ!]T. In addition, let � be a Vandermonde matrix
constructed with the eigenvalues of A in the following form:

� =


1 _1 _2

1 · · · _!1
1 _2 _2

2 · · · _!2
...

...
... · · · ...

1 _
#

_2
#
· · · _!

#


∈ R#×(!+1) . (2.73)

In the case of repeated eigenvalues, we assume that the repeated rows of the matrix
� are removed. Letφ( 9) denote the row of� corresponding to the target eigenvalue
_ 9 , and let �̄ 9 denote the remaining rows of �.

In order to find the optimal !Cℎ order polynomial satisfying (2.72), we consider the
following optimization problem:

max
2, h

2 s.t.
φ( 9) h = 1,���̄ 9 h
�� ≤ (1 − 2) 1.

(2.74)

First of all notice that the constraints in (2.74) are linear due to the fact that � and
h are real valued. The objective function is linear as well. Hence, (2.74) is a linear
programming that can be solved efficiently given the eigenvalue matrix �.

The constraints of (2.74) enforce the polynomial to satisfy the desired condition
in (2.72) while the objective function maximizes the distance between the unit and
non-unit eigenvalues of ℎ(A). Therefore, the formulation in (2.74) searches for the
polynomial that yields the fastest rate of convergence on ℎ(A) among all polynomials
of order ! satisfying (2.72). Hence, we will refer to the solution of (2.74) as the
optimal polynomial.

It should be noted that the solution of (2.74) is optimal with respect to the worst
case scenario of the synchronous updates. In general, the polynomial generated
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via (2.74) may not give the fastest rate of convergence for an arbitrary amount of
asynchronicity.

2.6.2 Sufficiency of Second Order Polynomials
In order to make use of the construction in (2.74), the order of the polynomial,
!, should be selected appropriately so that the problem is feasible and admits a
solution. One way to guarantee the feasibility is to select ! = # − 1, in which case
a solution always exists due to the invertibility of the Vandermonde matrix � (by
disregarding the multiplicity of eigenvalues). In this case, however, updates are no
longer localized, which prevents the asynchronous model of (2.5) from being useful.
At the other extreme, the case of ! = 1 is insufficient to ensure the condition (2.72)
in general. Therefore, nonlocal updates are required for the sake of flexibility in the
eigenvectors. Nevertheless, the locality of the updates needs only to be compromised
marginally, as the following theorem shows that ! = 2 is in fact sufficient to satisfy
(2.72).

Theorem 2.5. Assume that the operator A has real eigenvalues _8 ∈ R. For a given
target eigenvalue _ 9 , the condition in (2.72) is satisfied by the following second
order polynomial:

ℎ(_) = 1 − 2 n (_ − _ 9 )2/B2
9 , (2.75)

for any n in 0 < n < 1 and B 9 satisfying the following:

B 9 ≥ max
1≤8≤#

|_8 − _ 9 |. (2.76)

Proof. It is clear that ℎ(_ 9 ) = 1. In the following we will show that −1 < ℎ(_8) < 1
for all _8 ≠ _ 9 . For the upper bound note that (_8 − _ 9 )2 > 0 for all _8 ≠ _ 9 . There-
fore,

1 − ℎ(_8) = 2 n (_8 − _ 9 )2/B2
9 > 0, (2.77)

which proves that ℎ(_8) < 1 for all _8 ≠ _ 9 . For the lower bound notice that we have
B2
9
≥ (_8 − _ 9 )2 for all _8 by the condition in (2.76). Therefore we have

ℎ(_8) = 1 − 2 n (_8 − _ 9 )2/B2
9 ≥ 1 − 2n > −1, (2.78)

for all _8. �

Notice that n in (2.75) is a free parameter which can be tuned to increase the gap
between the eigenvalues. Thus, the polynomial given in (2.75) is not guaranteed to
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be optimal in general. It merely shows that a second order polynomial satisfying
(2.72) always exists, which also implies the feasibility of (2.74) in the case of ! = 2,
or larger.

An important remark is as follows: the sufficiency of second order polynomials does
not extend to the complex case in general. To see this consider the following set
of # complex numbers: _= = 4 92c=/(#-1) for 1 ≤ = ≤ #-1 and _# = 0. As shown
in the supplementary document, no polynomial of order ! ≤ #-2 (possibly with
complex coefficients) can satisfy |ℎ(_=) | < 1 for 1 ≤ = ≤ #-1 and ℎ(_# ) = 1. This
adversarial example shows not only that second order polynomials are insufficient,
but also that a polynomial of order #-1 is in fact necessary in the complex case
in general. Although no guarantee can be provided, low order polynomials might
still exist in the complex case depending on the values of the eigenvalues of a given
operator A.

2.6.3 Spectrum-Blind Construction of Suboptimal Polynomials
Although the solution of (2.74) provides the optimal polynomial, it requires the
knowledge of all the eigenvalues of A. Such information is not available and
difficult to obtain in general. By compromising the optimality, we will discuss a
way of constructing second order polynomials satisfying (2.72) without using the
knowledge of all eigenvalues of A, except the target eigenvalue _ 9 .

First of all notice that a value for the coefficient B 9 used in (2.75) can be found
using only the minimum and the maximum eigenvalues of the operator. That is, the
following selection

B 9 = max{_max − _ 9 , _ 9 − _min}, (2.79)

satisfies (2.76). Therefore, the minimum, the maximum and the target eigenvalues
suffice to construct the polynomial (2.75).

In fact (2.76) can be satisfied by using an appropriate upper bound for _max and
lower bound for _min. For example if A is the adjacency matrix or Laplacian, we
can use the largest degree 3max of the graph to select B 9 as follows:

The Laplacian

In this case the eigenvalues are bounded as 0 ≤ _8 ≤ 2 3max. Hence,

B 9 = 3max + |_ 9 − 3max |. (2.80)
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The Adjacency

In this case the eigenvalues are bounded as −3max ≤ _8 ≤ 3max. Hence,

B 9 = 3max + |_ 9 |. (2.81)

The Normalized Laplacian

In this case the eigenvalues are bounded as 0 ≤ _8 ≤ 2. Hence,

B 9 = 1 + |_ 9 − 1|. (2.82)

Since the selections in (2.80), (2.81), and (2.82) do not use the eigenvalues of the
(corresponding) operator A, the polynomial in (2.75) can be constructed using only
the target eigenvalue _ 9 .

Aforementioned constructions also provide a trade-off between the available infor-
mation and the rate of convergence. This point will be elaborated in Section 2.7.

2.6.4 Inexact Spectral Information and The Use of Nonlinearity
In this subsection, we will focus on the construction of a second order polynomial
when the target eigenvalue _ 9 is not known exactly. In this regard, we first assume
that we are given an interval [0 1] to which only the eigenvalue _ 9 belongs. More
precisely, we assume the following:

_ 9-1 < 0 ≤ _ 9 ≤ 1 < _ 9+1, (2.83)

where we consider only the distinct eigenvalues indexed in ascending order, and
assume that eigenvalues are real. Then, we consider the following polynomial:

ℎ(_)=1 − 2n
(_ − 0) (_ − 1)(

max{_upp − 1, 0 − _low} + (1 − 0)/2
)2 (2.84)

for some n in 0 < n < 1. It should be noted that when the target eigenvalue _ 9
is known exactly, we can take 0 = 1 = _ 9 , in which case the polynomial in (2.84)
reduces to the one in (2.75) with B 9 selected as in (2.79). In the case of 0 ≠ 1, one
can observe that the polynomial in (2.84) maps the eigenvalues of the operator A as
follows:

ℎ(_ 9 ) > 1 and |ℎ(_8) | < 1 ∀ _8 ≠ _ 9 , (2.85)

which shows that ℎ(A) does not have a unit eigenvalue, thus the asynchronous
updates running on ℎ(A) do not converge. In fact, the signal would diverge due
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to the dominant eigenvalue, ℎ(_ 9 ), being strictly larger than 1. (See Figure 2.2).
In order to prevent the signal from diverging, we consider the following saturated
update model:

(
x:

)
8
=


5

( (
ℎ(A) x:-1

)
8

)
, 8 ∈ T: ,(

x:-1
)
8
, 8 ∉ T: ,

(2.86)

where 5 (·) is the “saturation nonlinearity” defined as follows:

5 (G) = sign(G) ·min{|G |, 1}, (2.87)

which is visualized in Figure 2.6.
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x
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0

1

f
(x
)

Figure 2.6: Visualization of the saturation nonlinearity defined in (2.87).

Notice that the boundedness of the function 5 (·) ensures that the signal x: in (2.86)
does not diverge. In fact, it is numerically observed that randomized asynchronous
updates in (2.86) indeed converge to the fixed point of the model. That is, x:
converges to x̂, where x̂ satisfies the following equation:

5
(
ℎ(A) x̂

)
= x̂, (2.88)

where 5 (·) is assumed to operate element-wise on a vector.

The key observation regarding the solution of (2.88) is the following: when the
interval [0 1] in (2.83) is small, then x̂ is a good approximation of the target
eigenvector v 9 . That is,

x̂ ≈ W v 9 (2.89)

for some scale factor W ∈ R. In fact, when the target eigenvalue is known exactly,
i.e., 0 = 1 = _ 9 , then the approximation in (2.89) becomes equality. Therefore, we
conclude that the asynchronous saturated update scheme in (2.86) allows us to find
an arbitrary eigenvector approximately when the corresponding eigenvalue is not
known exactly. Furthermore, as we have a better approximation of the eigenvalue,
we get a better approximation of the corresponding eigenvector. Section 2.7 will
make use of this observation to obtain an autonomous clustering of a network.
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2.6.5 Implementation of Second Order Polynomials
In Section 2.6.2 graph signals are shown to converge to an arbitrary eigenvector
of the underlying graph operator A through random asynchronous updates running
on an appropriate second order polynomial filter. In this section, we will show
that asynchronous updates on a second order polynomial can be implemented as
a node-asynchronous communication protocol in which nodes follow a collect-
compute-broadcast scheme independently from each other. For this purpose, we
first write a second polynomial of A explicitly as follows:

ℎ(A) = ℎ0 I + ℎ1 A + ℎ2 A2, (2.90)

where the filter coefficients ℎ0, ℎ1, ℎ2 are assumed to be pre-determined such that
(2.72) is satisfied for the eigenvalue of the target eigenvector. Then, we define an
auxiliary variable y as:

y = A x, (2.91)

where x denotes the signal on the graph, and y is the “graph shifted” signal. We
will assume that the 8Cℎ node stores G8 and H8 simultaneously. Thus, (G8, H8) can be
considered as the state of the 8Cℎ node. Then, we can write the following:

(ℎ(A) x)8 = ℎ0 G8 + ℎ1 H8 + ℎ2 (A y)8 . (2.92)

Using (2.92), asynchronous updates with XT = 1 (only one node is updated per
iteration) running on ℎ(A) can be equivalently written in the following three steps:

D ← (ℎ0 − 1) G8 + ℎ1 H8 + ℎ2 A[8,:] y, (2.93)

G8 ← G8 + D, (2.94)

y← y + A[:,8] D, (2.95)

where A[8,:] and A[:,8] denote the 8Cℎ row and column of A, respectively.

It is important to note that equations in (2.93)-(2.95) are in the form of a collect-
compute-broadcast scheme. In (2.93), the termA[8,:] y requires the 8Cℎ node to collect
H 9 ’s from all 9 ∈ Nin(8). In (2.94), the node simply updates its own signal. In (2.95),
the term A[:,8] D requires the 8Cℎ node to broadcast D to all 9 ∈ Nout(8). These three
steps can be converted into a node-asynchronous communication protocol as in
Algorithm 1.

Algorithm 1 consists of three procedures: initialization, active stage, and passive
stage. In the initialization, the 8Cℎ node assigns a random value to its own signal
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Algorithm 1 Node-Asynchronous Communication Protocol
procedure Initialization(8)

Initialize G8 randomly.
Collect G 9 from nodes 9 ∈ Nin(8).
H8 ←

∑
9∈Nin (8) �8, 9 G 9 .

procedure Passive Stage(8)
if a broadcast D is received from the node 9 then

H8 ← H8 + �8, 9 D.
if the node 9 sends a request then

Send H8 to node 9 .
procedure Active Stage(8)

Collect H 9 from nodes 9 ∈ Nin(8).
D ← (ℎ0 − 1) G8 + ℎ1 H8 + ℎ2

∑
9∈Nin (8) �8, 9 H 9 .

G8 ← G8 + D.
Broadcast D to all nodes 9 ∈ Nout(8).

G8, then it constructs the auxiliary variable H8 by collecting G 9 from its neighbors.
Once the initialization is completed, the 8Cℎ node waits in the passive stage, in which
the graph signal G8 is not updated. However, its neighbors can request H8, or send
a broadcast. When a broadcast is received, the 8Cℎ node updates only its auxiliary
variable H8. When the 8Cℎ node wakes up randomly, it gets into the active stage, in
which it collects the auxiliary variable H 9 from its neighbors, updates its signal G8,
and then broadcasts the amount of update to its neighbors. Then, the node goes
back to the passive stage.

Five comments are in order: 1) The random update model in (2.9) implies that
all nodes have the same probability of going into the active stage. 2) As the
signal x converges to the target eigenvector of A, the ratio H8/G8 converges to the
corresponding eigenvalue of A (assuming G8 is non-zero), thus ℎ(H8/G8) converges
to 1 due to (2.72). 3) In the active stage, the broadcast (the step in (2.95)) is essential
to ensure that x and y satisfy (2.91). 4) The amount of update for G8 is computed by
the 8Cℎ node itself. The amount of update for H8 is dictated by the neighbors of the
8Cℎ node. Thus, H8 can also be considered as a buffer. 5) Since edges are allowed to
be directed, a node may collect data from the 9 Cℎ node in the active stage, but may
not send data back to the 9 Cℎ node.

As a final remarkwe note that Algorithm 1 assumes reliable communication between
the nodes, i.e., no link failures. In this case Algorithm 1 is exactly equivalent to the
model in (2.5) running on ℎ(A). As long as the polynomial coefficients are selected
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properly (see Theorem 2.4), the signal x in Algorithm 1 is guaranteed to converge to
the eigenvector targeted by the polynomial. In the case of link failures, Algorithm 1
deviates from the model in (2.5), thus the convergence guarantees presented here
are not applicable. Nevertheless, we have numerically observed that Algorithm 1
converges even in the case of random link failures. This case will be studied in
future.

2.7 An Application: Autonomous Clustering
In this section we will consider the problem of clustering in autonomous (ad-hoc)
networks [212, 13, 105]. For this purpose we will combine the well-known spectral
clustering [135] with the polynomial filtering proposed in the preceding section.

Given a network, the second smallest eigenvalue of its graph Laplacian, _2, is known
as the algebraic connectivity of the graph [63]. Roughly speaking graphs with larger
_2 tend to be more “connected” than the others. Furthermore, the corresponding
eigenvector v2, also known as the Fiedler vector, can be utilized to cluster the graph
into two partitions. The signal x computed as

x = sign(v2), (2.96)

indicates the corresponding cluster of the nodes. Similar spectral ideas are used in
[5] to obtain approximate graph coloring and in Section 6.7 to identify the hidden
"-Block cyclic structure from noisy measurements under random permutations.

In the following we will consider the idea of asynchronous polynomial filtering in
order to compute the eigenvector v2 of the Laplacian. For this purpose _2 will be
selected as the target eigenvalue. As a result, nodes will be able to identify the cluster
they belong to in an autonomous manner. Such a behavior can be considered as
swarm intelligence as well: independent simple computation by individual agents
(nodes) can obtain a global information regarding the whole community (graph)
[25].

For the graph visualized in Figure 2.7a, the result of the spectral clustering based
on (2.96) is demonstrated in Figure 2.7b where the clusters are represented with
different colors. In the remaining, labels found by (2.96) will be referred to as the
correct labels. The autonomous clustering on this network is simulated using the
following four different polynomial filters:

1. The optimal third order filter via (2.74).
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(a) (b)

Figure 2.7: (a) A graph on # = 100 nodes with 2 clusters. The graph has undirected
edges with binary weights. (b) The result of the spectral clustering based on (2.96)
with colors representing the clusters.

2. The optimal second order filter via (2.74).

3. A second order filter of (2.75) by selecting B2 as in (2.79) using _2, _max, and
setting _min = 0.

4. A second order filter of (2.75) by selecting B2 as in (2.80) using _2 and 3max.

5. The filter in (2.84) and setting 0 = 0.3, 1 = 1.5, _low = 0 _upp = 2 3max.

In the simulations all the nodes are initialized randomly, and the random asyn-
chronous iterations run on the constructed polynomials of the Laplacian. We use
XT = 1, i.e., one node is randomly chosen and updated at every iteration. The label
of a node is the sign of its most recent value as in (2.96). The average fraction of
incorrect labels versus number of iterations is presented in Figure 2.8 for five filters
mentioned above.

Figure 2.8 shows that the number of incorrect labels go down to zero as iterations
progress, which is proven to be the case by Corollary 2.2 due to the construction
of the filters in Section 2.6. For filter #5, the saturated model does not converge to
v2 exactly as explained in Section 2.6.4. Nevertheless, the approximation in (2.89)
is good enough so that the sign pattern of the fixed point of the updates, defined in
(2.88), matches the correct labels.
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Figure 2.8: Results of the autonomous clustering experiment, which are obtained
by averaging over 104 independent experiments.

The figure also illustrates the trade-off between the complexity, the amount of spec-
tral information used and the rate of convergence. Although filters #1 and #2 are
constructed using all the eigenvalues of the Laplacian, filter #1 yields a faster con-
vergence due to its higher order (complexity). Filters #2, #3, and #4 have the same
order, but their constructions use lesser and lesser amounts of spectral information.
As a result, they yield lower and lower rates of convergence. Interestingly, filter #5
converges faster than filter #4 although it uses the least amount of spectral informa-
tion. This is an interesting consequence of the fact that the filter in (2.84) results in
a larger spectral gap than the one in (2.75) for the amount of spectral information
used.

2.8 An Application: Randomized Computation of Singular Vectors
In most of the data related applications A happens to be a rectangular matrix, and
procedures such as principal component analysis (PCA) require the singular vectors
of the matrix A ∈ C"×# . Due to the importance of the singular vectors, many
efforts have been made to develop fast algorithms, especially randomized ones [78,
155, 156, 208, 121]. Although the random component-wise update considered in
(2.5) is not directly applicable to rectangular matrices, a reformulation allows us to
compute the dominant singular vectors with random component-wise updates. In
this regard, we start by assuming that " ≤ # without loss of generality, and then
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consider the Hermitian dilation of the given matrix A, which is defined as follows:

Ā =

[
0 A

AH 0

]
∈ C("+#)×("+#) . (2.97)

It is clear that Ā is an Hermitian matrix, i.e., ĀH = Ā. More importantly, the eigen-
value decomposition of Ā is closely related to the singular value decomposition ofA.
More precisely, letA have the following reduced form singular value decomposition:

A = Ũ� ṼH where Ũ ∈ C"×" , � ∈ R"×" , Ṽ ∈ C#×" (2.98)

where Ũ and Ṽ are the matrices consisting of the left and right singular vectors of
A, respectively, and � is the diagonal matrix consisting of the singular values of A,
i.e., Σ8,8 = f8. We assume that the singular values are in the descending order, i.e.,
f1 ≥ · · · ≥ f" . Then, the eigenvalue decomposition of Ā is as follows:

Ā = Q � QH, (2.99)

where

Q =
1
√

2

[
Ũ Ũ
Ṽ −Ṽ

]
∈ C("+#)×2" , � =

[
� 0
0 −�

]
∈ R2"×2" . (2.100)

IfA is a rank-A matrix, then it is clear from (2.100) that Ā has 2A non-zero eigenvalues
that come in positive and negative pairs corresponding to the non-zero singular
values of A, and Ā has # + " − 2A zero eigenvalues. Furthermore, the eigenvectors
of Ā clearly reveal the left and right singular vectors of A by inspection. As a result,
if the eigenvalue decomposition of Ā given in (2.100) is obtained numerically, then
the singular value decomposition of A is readily available.

In order to obtain the dominant eigenvector of Ā (which correspond to the dominant
left and right singular vectors of A), we will consider the random component-wise
updates of (2.5) running on the matrix Ā:

(x̄: )8 =

(Ā x̄:-1)8, 8 ∈ T: ,

(x̄:-1)8, 8 ∉ T: ,
(2.101)

where we assume that only one index is updated per iteration, i.e., |T: | = 1, for the
sake of simplicity. The case of updating more than one index is a straightforward
generalization of the approach considered here.
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Let the iterand x̄: ∈ C"+# in (2.101) be partitioned as follows:

x̄: =
[
u:
v:

]
, where u: ∈ C" , v: ∈ C# . (2.102)

Then, the update scheme (2.101) can be expressed equivalently using the matrix A
itself and the partitions u: and v: . More precisely, we have the following:

If 8 ≤ ", (x̄: )8 = (u: )8, and (Ā x̄: )8 = A[8, :] v: ,

If 8 > ", (x̄: )8 = (v: )8-" , and (Ā x̄: )8 = (A[:, 8-"])H u: . (2.103)

Due to (2.103) and the assumption that only one index is updated per iteration, the
: Cℎ iteration of (2.101) can be described as follows: select an index 8 randomly
uniformly from the set {1 , · · · , "+#}. If the index corresponds to a row, i.e.,
8 ≤ " , then the 8Cℎ index of u:-1 is updated as the inner product between the 8Cℎ row
of A and the vector v:-1. If the index corresponds to a column, i.e., 8 > " , then
the (8 − ")Cℎ index of v:-1 is updated as the inner product between the (8 − ")Cℎ

column of A and the vector u:-1. These updates are described as a pseudo-code in
Algorithm 2.

Algorithm 2 Dominant Singular
Vector without a Normalization Step
1: Assume ‖A‖2 = 1.
2: Initialize u ∈ R" , v ∈ R# .
3: while convergence do
4: 8 ∼ U{1, · · · , " + #}
5: if 8 ≤ " then
6: D8 ← A[8, :] v
7: else
8: 8 ← (8 − ")
9: E8 ←

(
A[:, 8]

)H u
10: return u and v

Algorithm 3 Dominant A Singular Vectors
with a Normalization Step
1: Initialize C,U ∈ R"×A , V ∈ R#×A .
2: while convergence do
3: 8 ∼ U{1, · · · , " + #}
4: if 8 ≤ " then
5: C[8, :] ← A[8, :] V
6: Set U as C = U T with )8,8 ≥ 0.
7: else
8: 8 ← (8 − ")
9: V[8, :] ←

(
A[:, 8]

)H U
10: return U and V

Since Ā is a normal matrix irrespective of the value of A and Algorithm 2 is
equivalent to the update scheme (2.101), we can use Theorem 2.2 to study the
convergence of the algorithm. The following theorem shows that Algorithm 2
indeed converges to the left and right dominant singular vectors of the matrix A.

Theorem 2.6. Assume that the matrix A ∈ C"×# has ‖A‖2 = 1, i.e. the maximum
singular value is unity. Assume further that the eigenspace parameter d of the
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matrix Ā satisfies d < 1. Then, u and v in Algorithm 2 converge to the left and right
dominant singular vectors of A, respectively.

Proof. We start by noting that Algorithm 2 is equivalent to the update scheme of
(2.101) due to the equivalence in (2.103). Thus, the convergence of (2.101) is
equivalent to the convergence of the algorithm.

Let f8 denote the 8Cℎ largest singular value of A. Since ‖A‖2 = 1, we have
1 = f1 ≥ f2 ≥ · · ·f" ≥ 0. From (2.100) we have that Ā is an Hermitian matrix
with eigenvalues _(Ā) = ±f(A) with additional # − " zero eigenvalues. Thus, Ā
has a unit eigenvalue, and its non-unit eigenvalues satisfy -1 ≤ _8 < 1.

Due to random component-wise nature of the update scheme in (2.101), we have
XT > 0. In addition, we assume that the eigenspace parameter of Ā satisfies d < 1.
Thus, Corollary 2.2 shows that the convergence region given in (2.41) contains
the interval [-1 1) due to the fact that U = XT (d − 1) < 0. Since all non-unit
eigenvalues of Ā satisfy -1 ≤ _8 < 1, Corollary 2.2 guarantees that the iterand x̄:
in (2.101) converges to an eigenvector of Ā with the eigenvalue 1. Then, it is clear
from (2.100) that the partitions of x̄: defined in (2.102) converge to the left and right
singular vectors of A corresponding to the singular value 1. That is, u: converges to
the left dominant singular vector A, and v: converges to the right dominant singular
vector of A. �

The convergence guarantee provided by Theorem 2.6 is based on two assumptions.
The first one, ‖A‖2 = 1, is in fact a necessary condition for the convergence of
the updates in (2.101). Existence of a singular value 1 implies the existence of a
fixed point of the component-wise updates. The second one, which requires the
eigenspace parameter to satisfy d < 1, is a technical assumption that is needed to
prove the convergence precisely. It is not a necessary condition, and it is in fact
satisfied in many practical applications. It is also important to note that Theorem 2.6
does not assume realness of the matrix A. The algorithm is guaranteed to converge
even when A is a complex matrix, in which case dominant singular vectors are
complex as well.

2.8.1 Rank-A Approximation of an Arbitrary Matrix
Although the assumption ‖A‖2 = 1 required by Algorithm 2 can be satisfied easily
by normalizing the data matrix A with its largest singular value, the computation
of the largest singular value itself may not be very practical especially when A is
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large in dimensions. It is, in fact, possible to remove this assumption by introducing
a normalization step into the algorithm. Furthermore, it is also possible to extend
Algorithm 2 in such a way that it converges to the dominant A singular vectors of
A together with the top-A singular values for an arbitrary value of A. The extended
version of the algorithm is presented in Algorithm 3.

Algorithm 3 differs from Algorithm 2 in three ways: Firstly, the vector variables
u and v in Algorithm 2 are extended to be matrices with A columns. Secondly,
Algorithm 3 uses an auxiliary variable C. Thirdly, and the most importantly,
Algorithm 3 uses aQR decomposition (Line 6) that serves as the normalization step.
More precisely, instead of updating the variable U directly, Algorithm 3 first updates
the auxiliary variable C (Line 5), and then updates U as the unitary part of the QR
decomposition of C. We note that the matrix T in Line 6 of the algorithm denotes
the upper-triangular part of the QR decomposition of C. Without loss of generality,
it is assumed that T has non-negative diagonal entries, and its diagonal entries are
in the descending order.

Although the convergence of Algorithm 2 is ensured by Theorem 2.6, we do not
provide an explicit proof for the convergence of Algorithm 3. Nevertheless, by the
virtue of Theorem 2.6 we can argue for the convergence of Algorithm 3 since it is a
natural extension of Algorithm 2 with an additional normalization step. We observe
that the variables of Algorithm 3 converge as follows:

U→ ŨA , T→ �2
A , V→ ṼA �A , (2.104)

where ŨA and ṼA are the first A columns of Ũ and Ṽ, respectively, and �A is the
top-left A × A block of �. Thus, the product U VH converges to AA , which is the best
rank-A approximation of A, i.e, AA = ŨA �A ṼH

A .

In order to verify its convergence, we simulate Algorithm 3 on the test matrix
MEDLINE [188], which is a full-rank and sparse matrix of size 1033 × 5735.
We measure the convergence of the algorithm in terms of the squared Frobenius
norm of the difference between AA and the product U VH. Since the update index
is selected randomly (Line 3) in every iteration of Algorithm 3, the error term,
i.e, ‖AA − U VH‖2F, is a random variable as well. So, we compute the expected
error by averaging over 103 independent runs of the algorithm. These results are
presented in Figure 2.9a for the cases of A ∈ {1, 2, 3, 10}, which numerically verify
the convergence of the algorithm. Note that the algorithm requires more iterations
to converge as the value of A gets larger.
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Figure 2.9: (a) Convergence of Algorithm 3 for various different values of A . (b)
Convergence of Algorithm 3 for the case A = 3when the normalization step in Line 6
is executed with probability W. Here : indicates the number of iterations.

We note that Line 5 of Algorithm 3 updates only a row of the auxiliary variable C
in every iteration. Since the matrix C is not expected to change significantly during
an iteration, the normalization step in Line 6 can be skipped in some iterations in
order to reduce the overall computational complexity of the algorithm. In order to
verify this claim, we modify the implementation of the algorithm in such a way that
Line 6 is executed with probability W. So, the modified implementation reduces to
Algorithm 3 when W = 1. For the case of A = 3, we compute the expected error of
the modified implementation by averaging over 103 independent runs. These results
are presented in Figure 2.9b for the values of W ∈ {1, 10-2, 10-3, 10-4}, which shows
that the modified implementation keeps converging for wide range of values of W.
More interestingly, the rate of convergence remains visually the same even when the
normalization step is executed with probability as low as W = 10-2. Moreover, the
rate of convergence decreases marginally when W = 10-3 ≈ 1/" . This is consistent
with the fact that an iteration of Algorithm 3 updates only one row of C that has
" rows in total. Nevertheless, when W has a very small value, e.g., W = 10-4, the
algorithm indeed gets significantly slower.

Regarding the computational complexity of the algorithm, note that the cost of
Line 5, Line 6 and Line 9 are O(#A), O("A2), and O("A), respectively. However,
the algorithm gets to Lines 5 and 6 with probability "/("+#), and it gets to Line 9
with probability #/("+#). When we further assume that Line 6 is executed with
probability W, the average cost of an iteration of Algorithm 3 can be found as follows:

E[computatinal cost per iteration] = O
(
"#A + W "2 A2

" + #

)
≈ O

(
"#A

" + #

)
, (2.105)
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where the approximation is valid when W ≤ #/("A), which is acceptable in prac-
tice as suggested by Figure 2.9b. On the other hand, the synchronous form of
(2.101) requires O("#A) multiplications per iteration. In order to compensate the
additional factor of "+# , the iteration index : is normalized by "+# in both
Figures 2.9a and 2.9b.

Relevance of Algorithm 3 follows from its applicability for asynchronous and dis-
tributed implementation. Since a single iteration of the algorithm requires a partial
information of the matrix A, (i.e., a single column or row) multiple processors can
operate on the same matrix A simultaneously without requiring any ordering among
them. More importantly, it is possible to extend Algorithm 3 in such a way that the
data matrix A is partitioned into multiple smaller pieces, and each piece is stored in
a different processing core as we discuss next.

2.8.2 Distributed Implementation with Partial Data Storage
In this section we will assume that the matrix A ∈ C"×# represents a collection of
data points where each column of the matrix is a data point in the "-dimensional
feature space, and A has # data points in total. In some of the applications the
number of the data points, # , can be too large for A to be stored in a single core.
Thus, the data needs to be partitioned into smaller collections and stored in different
cores. It could also be the case that the data is already located in different places
and may not be available directly due to privacy concerns. The asynchronous
(component-wise) nature of Algorithm 3 makes it suitable to compute the dominant
singular vectors of A in these scenarios. Although Algorithm 3 is not directly
applicable, it can be modified to handle these scenarios as well. For this purpose
assume that the matrix A is partitioned into % blocks as follows:

A = [A(1) A(2) · · · A(%)], (2.106)

whereA(?) ∈ C"×#? denotes the ?Cℎ partition holding corresponding#? data points,
so

∑%
?=1 #? = # .

When Algorithm 3 is utilized on the partitioned data, the column selection phase
can be done in a straightforward manner since columns of A are assumed to be the
individual data points. On the contrary, the row selection phase of Algorithm 3
(Line 5) requires to access the same row of all the partitions. Due to the distributed
nature of the data it may not be possible for a processor to access all the partitions
simultaneously. Nevertheless, the required inner product can be written as a sum of
partial inner products, which then can be computed locally. For this purpose, we
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first partition the variable V ∈ C#×A in Algorithm 3 with respect to the partitions
given in (2.106). More precisely, assume that the ?Cℎ core holds a local variable
V(?) ∈ C#?×A . Then, the inner product involving the rows of A can be written as
follows:

A[8,:] V =

%∑
?=1

A(?)[8,:] V(?) . (2.107)

Notice that the quantity A(?)[8,:] V(?) can be computed in the ?Cℎ core locally. Once
it is obtained, it can be sent to a fusion center in order to update the value of the
variable U. Based on this observation, we propose Algorithm 4 for the computation
of the dominant singular vectors for the case of distributed data.

Algorithm 4 Distributed Computation of Dominant A Singular Vectors
1: Initialize C ∈ R"×A×%, U ∈ R"×A , V(1) ∈ R#1×A , · · · ,V(%) ∈ R#%×A randomly.
2: while convergence do
3: ? ∼ U{1, · · · , %} ⊲ Select a partition randomly
4: 8 ∼ U{1, · · · , " + #?} ⊲ Select an index randomly
5: if 8 ≤ " then
6: C[8, :, ?] ← A(?)[8, :] V(?) ⊲ Partial inner product

7: Compute Ĉ as �̂8, 9 =
%∑
?=1

�8, 9 , ? ⊲ Data fusion

8: Set U as Ĉ = U T with )8,8 ≥ 0. ⊲ QR decomposition
9: else
10: 8 ← (8 − ")
11: V(?)[8, :] ←

(
A(?)[:, 8]

)H U ⊲ Update the local variable

It is important to note that Algorithm 4 can be implemented in a distributed manner
with the help of a data fusion center and a shared memory. In such implementation
the variableC corresponds to the data collected by the fusion center, and the variable
U is assumed to be in a sharedmemory. On the contrary, the data matrixA(?) and the
variable V(?) are stored in the ?Cℎ processor locally. Then, Algorithm 4 proceeds as
follows: it first selects the ?Cℎ partition randomly uniformly among all % partitions
(Line 3). Then, the processor randomly selects and performs either one of the
following two actions: 1) It uses the local variable V(?) , computes a partial inner
product, and sends it to the fusion center (Line 6). 2) It uses the global shared
variable U in order to update the local variable V(?) (Line 11). In the mean-time,
whenever the fusion center is updated, it first computes the full inner products
(Line 7), and then updates the global variable U via QR decomposition (Line 8).



69

We also note that in the case of a single partition, i.e., % = 1, Algorithm 4 reduces
to Algorithm 3.

Algorithm 4 has two major benefits. First, the ?Cℎ processor uses the ?Cℎ data
partition only, thus all the computations can be done locally on a processor. More
importantly, the data itself is never shared: a summary of the data (in the form an
inner product) is sent to the fusion center. Only shared information is the variable
U, which converges to the dominant A left singular vectors of the whole data matrix
A. Secondly, due to the randomized nature of the algorithm, a synchronization
between the processors is not required. The processors are allowed to interact with
the fusion center independently at any order.
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Figure 2.10: (a) Convergence of Algorithm 4 for the case of A = 3, i.e., rank-3
approximation, for different numbers of % data partitions. (b) Convergence of
Algorithm 4 for the case A = 3 with % = 5 partitions when the normalization step in
Line 8 is executed with probability W. Here : indicates the number of iterations.

Similar to Algorithm 3, the variable U of Algorithm 4 converges to ŨA , and the
variables V(?) converge to the corresponding partitions of ṼA �A similar to (2.104).
In order to verify the convergence of Algorithm 4 numerically, we use the test matrix
MEDLINE [188] and divide it into % blocks as in (2.106), where each partition has
size (approximately) #/%. We consider the case of A = 3, i.e., rank-3 approximation,
and the error is computed as the expected value of ‖A3 − U VH‖2F where V denotes
the matrix constructed by cascading the local variables V(?) . The expected error is
computed by averaging over 103 independent runs of the algorithm, and the results
are presented in Figure 2.10a for the cases of % ∈ {1, 2, 3, 5, 10}, which verify the
convergence numerically.

In order to demonstrate the robustness of Algorithm 4 to stale data in the case
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of distributed implementation, we modify the algorithm in such a way that the
normalization step in Line 8 is executed with probability W. Thus, the processors
do not always use the value of U that corresponds to the most recent value of C;
rather, they use an outdated value of U. The modified implementation is simulated
for the case of A = 3 with % = 5 partitions, and the error is computed as before
by averaging over 103 independent runs. The simulation results are presented in
Figure 2.10b for the values of W ∈ {1, 10-3, 10-4}. It is clear from the figure that
even when the shared memory (the variable U) is updated with probability as low
as W = 10−3 ≈ 1/" , the modified implementation continues to converge as fast as
Algorithm 4 itself, which indicates the robustness of the algorithm to the use of stale
data.

2.9 Concluding Remarks
In this chapter, we proposed a node-asynchronous communication protocol in which
nodes follow a collect-compute-broadcast scheme randomly and independently from
each other. Different than the consensus, this protocol can converge to an arbitrary
eigenvector of the graph operator of interest. In order to analyze the convergence
behavior, we introduced a randomized asynchronous variant of the power iteration,
which performs the regular power iteration (or, the graph shift) but only a ran-
dom subset of the indices are updated. Assuming that the underlying operator has
eigenvalue 1, we proved that repetition of such randomized updates converges to an
eigenvector of the eigenvalue 1 (a fixed point) even in the case of operator having
other eigenvalues with magnitudes larger than one. We also showed that not only the
eigenvalue gap but also the eigenspace geometry of the operator affects the behavior
of the convergence. Moreover, we showed that as the updates get more asynchronous
the convergence region for the eigenvalues gets larger. We also demonstrated and
discussed how the sign (or, the phase when complex) of an eigenvalue affects the rate
of convergence of random component-wise updates. In order to make the updates
converge to an arbitrary eigenvector, we considered polynomials of the operator. In
particular, we showed that second order polynomials are sufficient to achieve such
a convergence. By combining the asynchronous iterations and second order poly-
nomials, we formally presented the node-asynchronous communication protocol.
As an application, we used the proposed algorithm to compute the Fiedler vector
of a network in order to achieve autonomous clustering. Simulations verified that
the algorithm indeed clusters the network successfully. As another application, we
reformulated the component-wise power iteration in order to compute the dominant
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singular vectors of a given data matrix. The proposed approach is proven to con-
verge when computing the rank-1 approximation of a normalized data matrix, and
its convergence is verified numerically for an arbitrary rank approximation of an
arbitrary data matrix. The proposed algorithm is extended in order to handle large-
scale distributed data with distributed asynchronous computation. The convergence
of the extended algorithm is verified numerically for various different numbers of
data partitions.

2.10 Appendices
2.10.1 A Useful Inequality
Lemma 2.4. Let U ∈ C#×" and X � 0. Then,

tr
(
UH diag(U X UH) U

)
≤ tr(X) _max

(
UH diag(U UH) U

)
, (2.108)

and

tr
(
UH diag(U X UH) U

)
≥ tr(X) _min

(
UH diag(U UH) U

)
. (2.109)

Proof. Consider the following problem

max
X�0

tr
(
UH diag(U X UH) U

)
s.t. tr(X) = 1. (2.110)

Using the eigenvalue decomposition X = V diag(λ)VH, and the fact that X has unit
trace, we can write the problem as

max
V, λ

tr
(
QH diag(Q diag(λ)QH)Q

)
s.t.


Q = U V,
VH V = I,
1Hλ = 1,
λ ≥ 0.

(2.111)

Notice that the objective function can be written as

tr
(
QH diag(Q diag(λ)QH)Q

)
= 1H ZH Z λ, (2.112)

where the matrix Z ∈ R#×" is defined as /8, 9 = |&8, 9 |2.

Now, consider the problem of maximization over λ

max
λ

1H ZH Z λ s.t. 1Hλ = 1, λ ≥ 0. (2.113)

Since the vector λ is constrained to be nonnegative and sum to 1, the objective
function of (2.113) is the convex combination of the elements of the vector ZH Z 1,
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whose elements are nonnegative as well. Since a convex combination is maximized
when the largest element is selected, the solution of (2.113) is ‖ZHZ 1‖∞. This can
also be seen from the fact that the problem in (2.113) is in the form of the dual-norm
formulation of the ℓ1 norm.

Notice that

‖ZHZ 1‖∞ = max
1≤8≤"

(
QH diag(QQH)Q

)
8,8
, (2.114)

= max
1≤8≤"

(
VHUH diag(UUH)U V

)
8,8
, (2.115)

= max
1≤8≤"

vH8 UH diag(UUH) U v8, (2.116)

where we use Q = UV from the conditions in (2.111), and the fact that V is unitary.
Hence, the maximization over V can then be written as

max
v8

vH8 UH diag(UUH) U v8 s.t. vH8 v 9 = X8, 9 , (2.117)

which can be simplified to

max
v

vH UH diag(UUH) U v s.t. ‖v‖22 = 1, (2.118)

whose solution is simply the largest eigenvalue of the matrix UH diag(UUH) U.
Therefore for any X � 0 we have

tr
(
UH diag(UXUH)U

)
≤ tr(X) _max

(
UH diag(UUH)U

)
. (2.119)

For the inequality in (2.109), the maximization in (2.113) is replaced with the
minimization. Since the minimum of the objective function is achieved when the
minimum element of ZH Z 1 is selected, maximization in (2.114) (hence the one
in (2.118)) is replaced with minimization, which yields the minimum eigenvalue
problem in (2.118). This validates the inequality in (2.109). �

2.10.2 Proof of Theorem 2.2
Consider the following covariance matrix:

C: = E[UH x: xH: U], (2.120)

which gives tr(C: ) = E
[
‖UH x

:
‖22

]
= E[ ‖r

:
‖22 ]. We can write C: as follows:

C: = E[UH Q: I x:-1 xH:-1 I QH
: U] . (2.121)
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Notice that we have I = V1VH
1 + UUH. Furthermore, Q V1 = V1 is valid for any

outcome of the random matrix Q in (2.7). We note that VH
1 Q ≠ VH

1 in general.
Further using the fact that VH

1 U = 0, we can write (2.121) as follows:

C: = E[UH Q: U UH x:-1 xH:-1 U UH QH
: U], (2.122)

= E
[
UH Q: U E[UH x:-1 xH:-1 U] UH QH

: U
]
, (2.123)

= E
[
UH Q: U C:-1 UH QH

: U
]
, (2.124)

where (2.123) follows from the fact that each update is independent of the previous
ones.

In order to compute the expectation in (2.124), in the following we will first find the
conditional expectation (conditioned on T) as

C̄: = E
[
UH Q U C:-1 UH QH U

�� T
]
. (2.125)

Then, C: will be found as C: = E[ C̄: ] where the expectation is with respect to T.

Since A is assumed to be normal matrix, its eigenspaces are orthonormal to each
other. Therefore, the matrix U corresponds to the eigenvectors of A with non-unit
eigenvalues. Furthermore, the normality implies also that the left and the right
eigenvectors of A are conjugate transpose of each other. That is, VH

1 (A − I) = 0,
andUH (A − I) = �UH, where� ∈ C(#-")×(#-") is a diagonal matrix with diagonal
entries {f1, · · · , f#-"} where f8 = _8 − 1. Thus, the normality of A implies the
following equality:

UH Q(T ) U = I + UH DT U �. (2.126)

Using (2.126) in (2.125), the expectation can be written as:

C̄: =
1(#
T
) ∑
T

(
I + UH DT U�

)
C:-1

(
I + �H UH DT U

)
,

= C:-1 +
T
#

(
�C:-1 + C:-1 �

H
)
+ T(T − 1)
# (# − 1)�C:-1 �

H

+ T(# − T)
# (# − 1) UH diag

(
U�C:-1 �

H UH)
U, (2.127)

where the last step follows from (2.1) and (2.2).

By taking the trace of both sides of (2.127) and using (2.108) from Lemma 2.4 we
obtain the following:

tr(C̄: ) ≤ tr

(
C:-1

[
I + T

#

(
� + �H + �H �

)
+ T(# − T)
# (# − 1) (d − 1) �H �

] )
, (2.128)
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where d is defined as in (2.30). By taking the expectation of both sides in (2.128)
with respect to T, we get the following:

tr(C: ) ≤ tr

(
C:-1

[
I + `T

#

(
� + �H + �H�

)
+ `T

#
XT (d − 1) �H�

] )
, (2.129)

=

#−"∑
8=1
(C:-1)8,8 Ψ8 ≤ Ψ tr(C:-1), (2.130)

where Ψ8’s are defined as

Ψ8 = 1 + `T

#

(
|_8 |2 − 1

)
+ `T

#
XT (d − 1) |_8 − 1|2, (2.131)

and Ψ is defined as Ψ = max8 Ψ8. Iterative use of the inequality in (2.130) gives the
upper bound in (2.38).

For the lower bound in (2.38), we consider the trace of both sides of (2.127), use
(2.109) from Lemma 2.4, and take the expectation with respect to T. This will
provide a lower bound for tr(C: ) similar to (2.129) where d is replaced with d̄ from
(2.31). Hence, we get

tr(C: ) ≥
#−"∑
8=1
(C:-1)8,8 k8 ≥ k tr(C:-1), (2.132)

where k8’s are defined as

k8 = 1 + `T

#

(
|_8 |2 − 1

)
+ `T

#
XT ( d̄ − 1) |_8 − 1|2, (2.133)

and k is defied as k = min8 k8. Iterative use of the inequality in (2.132) gives the
lower bound in (2.38).

2.10.3 A Counter-Example
Consider the following set of # complex numbers: _= = 4 92c=/(#-1) for 1 ≤ = ≤ #-1
and _# = 0. Assume that there exists a polynomial of order ! ≤ #-2 such that it
satisfies the following mapping:��ℎ(_=)�� < 1 for 1 ≤ = ≤ #-1, (2.134)

ℎ(_# ) = 1. (2.135)

When the polynomial is written explicitly as ℎ(_) = ∑!
:=0 ℎ: _

: , the condition in
(2.134) can be written as����� !∑

:=0
ℎ: 4

9 2 c = :/(#-1)

�����2 = !∑
:,B=0

ℎ: ℎ
∗
B 4

9 2 c = (:-B)/(#-1) < 1. (2.136)
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Notice that the inequality in (2.136) holds true for all = in 1 ≤ = ≤ #-1. Therefore,
the following also holds true:

# − 1 >
#-1∑
==1

!∑
:,B=0

ℎ: ℎ
∗
B 4

9 2 c = (:-B)/(#-1) =
!∑

:,B=0
ℎ: ℎ

∗
B

#-1∑
==1

4 9 2 c = (:-B)/(#-1) .

(2.137)

Note that 0 ≤ :, B ≤ ! ≤ #-2. As a result, the inner summation in (2.137) is nonzero
if and only if : = B. That is,

#-1∑
==1

4 9 2 c = (:-B)/(#-1) = (#-1) X:,B, (2.138)

where X:,B stands for the Dirac delta function. Then, the inequality in (2.137)
becomes

1 >
!∑

:,B=0
ℎ: ℎ

∗
B X:,B =

!∑
:=0
|ℎ: |2. (2.139)

Notice that the condition in (2.135) implies that ℎ0 = 1. Therefore, (2.139) can be
written as

1 >
!∑
:=0
|ℎ: |2 = 1 +

!∑
:=1
|ℎ: |2, (2.140)

which implies 0 >
∑!
:=1 |ℎ: |2, which is a contradiction. Hence, no polynomial

(possibly with complex coefficients) of order ! ≤ #-2 can satisfy the conditions in
(2.134) and (2.135). Therefore, a polynomial of order #-1 is in fact necessary in
the complex case in general.
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C h a p t e r 3

IIR FILTERING ON GRAPHS WITH RANDOM
NODE-ASYNCHRONOUS UPDATES

3.1 Introduction
One important aspect of graph signal processing is the use of graph filters, which
can be utilized in order to smooth out graph signals (low-pass filters), or detect
anomalies (high-pass filters) [153]. Similar to the classical signal processing, graph
filters can be constructed in two different forms: finite impulse response (FIR), or
infinite impulse response (IIR). The FIR case corresponds to a matrix polynomial
of the given graph operator [151, 160, 172]. It is well-known that a polynomial
graph filter of order ! is localized on the graph, that is, nodes are required to
communicate only with their !-hop neighbors in order to implement the filter.
For this reason it is very natural to think of polynomial graph filtering as a way
of distributed signal processing, in which the low-order polynomials are favored to
keep the communications localized. The papers [158, 149, 150, 154] (and references
therein) made explicit connections between polynomial graph filters and distributed
computation, and studied various problems including smoothing, regularization,
and consensus.

In the IIR case, the graph filter is constructedwith respect to a rational function rather
than a polynomial. It should be noted that an IIR graph filter can be equivalently
represented as an FIR graph filter (possibly with a very high order) due to the finite
spectrum of the graph operator. Nevertheless, IIR filters are still useful to consider
since they can provide better approximations for a given filter specifications. When
extended to the case of graphs, an IIR filter of order ! can be implemented via
iterative procedures that preserve the locality of the communications. The studies
in [157, 87, 88, 108, 109] analyzed the convergence behavior of such filters and
showed successful applications on graph signals with distributed processing.

Although both polynomial and rational graph filters can be implemented in a dis-
tributed fashion, aforementioned implementations are based on successive graph
shifts (multiplication with the graph operator). Although the graph shift can be
implemented via data exchange with the neighboring nodes, it requires all the nodes
to communicate simultaneously. That is, all the nodes should send and receive data
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at the same time instance, or nodes should wait until all the communications are
terminated before proceeding to the next iteration (shift). Synchronization becomes
an important limitation when the size of the network, # , is large, e.g. distributed
large-scale graph processing frameworks [71, 163, 51, 10], or the network has
autonomous behavior without a centralized control.

In order to eliminate the need for synchronization, this chapter proposes a node-
asynchronous implementation of an arbitrary rational filter (including FIR) on an
arbitrary graph. In the proposed algorithm neighboring nodes send and receive
a vector variable (state vector) whose size is determined by the order of the filter,
and the nodes follow a collect-compute-broadcast framework. More precisely, the
algorithm consists of two main stages: passive and active. In the passive stage, a
node receives and stores the data (local state vectors) sent by its incoming neighbors.
When a node gets into the active stage at a random time instance, it completes the
necessary filtering calculations (local state recursions), and then broadcasts its most
recent state vector to its outgoing neighbors. Thus, nodes behave asynchronously
on the network. By carefully designing the computation scheme, the proposed
algorithm is proven to converge to the desired filtered signal in the mean-squared
sense under mild stability conditions.

3.1.1 Relations with Asynchronous Fixed Point Iterations
In this chapter, the analysis of the algorithmwill be based on the convergence proper-
ties of randomized asynchronous linear fixed point iterations (state recursions). We
note that non-random asynchronous fixed point iterations are well studied problems
in the literature [32, 14, 19, 20], which considered more general non-linear update
models. For the linear model (which is the case in this chapter), the earliest analysis
can be traced back to the study in [32] that provided the necessary and sufficient con-
dition under which the asynchronous iterations are guaranteed to converge for any
index sequence. More recently, studies in [9, 141] (and references therein) studied
the randomized variations of asynchronous iterations, in which indices are assumed
to be selected with equal probabilities, and they provided sufficiency conditions
for the convergence. Asynchronous iterations are considered also in the context of
semi-supervised learning on graphs [6, 7].

In the case considered in this chapter, the indices are allowed to be selected with
non-equal probabilities during the asynchronous recursions. More importantly, the
possibility of updating different number of indices in each iteration (which can be
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considered as partial synchrony) is also not ruled out. In fact, convergence analysis
of a similar setting is studied in Chapter 2 for the case of zero-input, in which the
system is assumed to have a unit eigenvalue, and the iterand is proven to converge
to a point in the eigenspace of the unit eigenvalue when all the indices are updated
with equal probabilities. On the contrary, the model considered here starts with the
assumption that the system does not have a unit eigenvalue, and it further assumes
that the input is a nonzero constant, so there is a unique nonzero fixed point. This
chapter also considers the effect of the input noise. For this setting, we prove that
the Schur diagonal stability of the system matrix (which is more relaxed than the
condition given in [32, 141]) is sufficient for the convergence of the randomized
asynchronous iterations in the mean-squared sense.

3.1.2 Outline and Contributions of This Chapter
This chapter consists of two main parts. The first part (Section 3.2) considers the
analysis of the randomized asynchronous state recursions in arbitrary linear systems,
of which synchronous non-random recursions are special-cases and all results con-
tinue to be applicable. The second part (Sections 3.3 and 3.4) focuses on the specific
case of graphs and considers a node-asynchronous implementation of rational graph
filters. More precisely, in Section 3.2, we introduce the randomized asynchronous
model for the state recursions and present the first main result (Theorem 3.1) that
provides upper and lower bounds for the mean-squared error of the randomized
iterations. Based on this result, we provide a sufficient condition (Corollary 3.1)
that ensures the convergence of the iterations. Then, we prove that the presented
condition is more relaxed than the well-known necessary condition for the con-
vergence of the non-random asynchronous iterations (Lemma 3.1). The special
case of uniform index-selection probabilities is also considered (Corollary 3.2). In
Section 3.3, we propose a node-asynchronous implementation of a graph filter (Al-
gorithm 5) and describe its behavior. Then, in Section 3.4 we prove the convergence
of the proposed algorithm to the desired filtered signal in the mean-squared sense
for both synchronous and asynchronous cases (Theorems 3.2 and 3.3). Finally in
Section 3.5, we simulate the proposed algorithm for various different graph filters
(including rational and polynomial) and demonstrate the convergence behavior of
the algorithm numerically.

We note that results presented in this chapter allow the graph to have directed edges
possibly with a non-diagonalizable operator. It is also important to point out that
this chapter does not consider the design of graph filters. The main focus here is a
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node-asynchronous implementation of a given graph filter.

The content of this chapter is mainly drawn from [176], and parts of it have been
presented in [178, 179].

3.2 Asynchronous State Recursions
Given a matrix A ∈ C#×# and a constant input signal u ∈ C# , we will consider the
following type of recursion on the state vector x: ∈ C# :

x: = A x:-1 + u:-1, (3.1)

where x0 denotes the initial value of the state vector, and u: denotes the noisy input
signal. That is,

u: = u + w: , (3.2)

where w: is the noise term with the following statistics:

E[w: ] = 0, E
[
w: wH

B

]
= X(: − B) �, (3.3)

where X(·) denotes the discrete Dirac delta function, and � is allowed to be non-
diagonal.

In the noise-free case, i.e., � = 0, the fixed point of the recursion in (3.1) is given as
follows:

x★ = (I − A)-1 u, (3.4)

which requires A not to have eigenvalue 1 so that I − A is invertible. In order
to analyze the convergence behavior, we first define the residual (error) vector as
follows:

r: = x: − x★. (3.5)

By substituting (3.5) into the state recursion in (3.1), the residual r: can be written
explicitly as follows:

r: = A: r0 +
:−1∑
==0

A= w:-1-=. (3.6)

Due to the fact that w: ’s are uncorrelated in different iterations and have zero-mean,
the expected squared ℓ2-norm of the residual r: can be written as follows:

E
[
‖r: ‖22

]
=

A: r0
2

2 + tr

(
:−1∑
==0

A= � (A=)H
)
. (3.7)
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It is clear from (3.7) that when A is a stable matrix, i.e., when the following holds
true:

d(A) < 1, (3.8)

the error term in (3.7) approaches an error floor. More precisely,

lim
:→∞
E[r: ] = 0, and lim

:→∞
E
[
‖r: ‖22

]
= tr(��), (3.9)

where � is given as follows:

� = I +
∞∑
==1
(A=)H A=, (3.10)

which converges due to (3.8). (See [95, Appendix D].)

In the noise-free case (� = 0), the limit in (3.9) implies the convergence of x: to x★.
On the other hand, in the case of an unstable transition matrix A, i.e., d(A) ≥ 1,
the mean-squared error is bounded away from zero even in the noise-free case.
Therefore, the condition in (3.8) is both sufficient and necessary for the convergence
of the state recursions in (3.1). This is, in fact, a well-known result from the linear
system theory [95].

In the context of graph signal processing [152, 153, 151, 160], the matrix A is
assumed to be a local graph operator (shift matrix) on the graph of interest. Thus,
an iteration in the form of (3.1) can be implemented on the graph as a data exchange
between the neighboring nodes. That is, (3.1) can be written as follows:

(x: )8 =
∑
9

�8, 9 (x:-1) 9 + (u:-1)8, (3.11)

for all nodes 8 in 1 ≤ 8 ≤ # . In this setting, u is considered as a signal defined on
the graph, where the nodes will be the “domain" analogous to time. The index :
will denote the round of communication, so the graph signal u does not depend on
the iteration index : . Note that the noisy measurement u: = u + w: depends on : .

Although the individual nodes can perform the updates of (3.11) locally, such an
implementation requires a synchronization mechanism among the nodes. That is,
all the nodes should send and receive data at the same time instance, or nodes
should wait until all the communications are terminated before proceeding to the
next iteration. Synchronization becomes an important limitation when the size of
the network, # , is large, or the network has autonomous behavior, in which case
there is no centralized control over the network.
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In order to overcome the need for synchronization, in this chapter we will consider
a randomized asynchronous variation of the state recursion in (3.1), in which only
a random subset of indices are updated simultaneously and the remaining ones stay
unchanged. More precisely, we consider the following update model:

(x: )8 =

(A x:-1)8 + (u:-1)8, 8 ∈ T: ,

(x:-1)8, 8 ∉ T: ,
(3.12)

where T: denotes the set of indices updated at the : Cℎ iteration.

For non-random variants of the model in (3.12), the study [32] assumed that only
one index is updated per iteration and allowed the use of the past values of the iterant,
that is, x: may depend on {x:-1, · · · , x:-B} for some fixed B. Thus, a noise-free and
non-random version of (3.12) with |T: | = 1 corresponds to the model considered in
[32] with B = 1, for which the following condition is shown to be both necessary
and sufficient for the convergence of the iterations (see [32, Section 5] and [14,
Section 3.2]):

d( |A|) < 1. (3.13)

In words, if (3.13) is satisfied, the iterations converge for any index sequence in
which no index is left out. On the contrary, if (3.13) is violated, then there exists an
index sequence for which the iterations do not convergence.

The case of randomized index-selection was also studied more recently in [141, 9]
for the solution of # linear equations with # unknowns. These studies focused also
on the case of |T: | = 1 (updating only one index per iteration) and showed that the
following condition:

‖A‖2 < 1, (3.14)

is sufficient (with some additional assumptions on A) to ensure the convergence of
the iterations. We refer to [9, Lemma 3.1] and [141, Section 2.1] for the precise
details.

In the randomized asynchronous model considered in this chapter, we allow the
case of updating more than one index per iteration possibly with indices having
non-uniform selection probabilities. In the next subsection, we will elaborate on
the statistical properties of the index-selection model and define the average index-
selection matrix, which will play an important role in the convergence analysis of
the iterations.
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3.2.1 Random Selection of the Update Sets
In the asynchronous model we consider in (3.12), the update set T: is assumed to
be selected randomly and independently among all possible 2# different subsets of
{1, · · · , #} in every iteration of (3.12). However, we would like to emphasize that
the independent selection of the update sets do not necessarily imply independent
selection of the indices. Thus, the model considered here allows correlated index-
selection schemes. We also note that both the content and the size of T: are random
variables. We do not assume that T: ’s have identical distributions at every iteration
: . Nevertheless, we do assume that the distribution of T: is first-order stationary in
the following sense: expectation of the index-selection matrix DT: does not depend
on : . More precisely,

E
[
DT:

]
= P ∀ :. (3.15)

In the rest of the chapter, thematrixP ∈ R#×# will be referred to as the average index
(node) selection matrix, which is a deterministic and diagonal matrix satisfying the
following:

0 ≺ P � I, (3.16)

where the positive definiteness follows from the fact that no index is left out (on aver-
age) in the update scheme of (3.12). We also note that tr(P) = E[ |T: | ] corresponds
to the average number of indices updated per iteration.

3.2.2 Convergence in the Mean-Squared Sense
It is easily verified that the fixed point of the randomized model (3.12) continues to
be x★ given in (3.4). Therefore, the vector r: defined in (3.5) represents the residual
for the randomized asynchronous model as well. Thus, the convergence of r: to
zero implies the convergence of x: to the fixed point x★. However, r: is a random
variable in the asynchronous case due to the random selection of the indices. The
following theorem, whose proof is presented in Section 3.7.1, provides bounds on
the mean-squared error as follows:

Theorem 3.1. In the randomized asynchronous model (3.12), the mean-squared
error can be bounded as follows:

k: ‖r0‖22 +
1 − k:
1 − k tr(P�) ≤ E

[
‖r: ‖22

]
≤ Ψ: ‖r0‖22 +

1 −Ψ:
1 −Ψ tr(P�), (3.17)

where

k = _min
(
I + AH P A − P

)
, Ψ = _max

(
I + AH P A − P

)
. (3.18)
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Regarding the bounds in (3.17) we first note that the inequality in (3.16) implies
k ≥ 0, henceΨ ≥ 0, irrespective of the values ofA andP. As a result the expressions
on both sides of (3.17) are positive and finite. However, Theorem 3.1 by itself does
not ensure the convergence of the iterations as the values of k and Ψ can be larger
than or equal to 1 for some values of A and P. The following corollary presents a
sufficiency condition that ensures the convergence of the randomized iterations of
(3.12) in the mean-squared sense up to an error floor depending on the amount of
input noise:

Corollary 3.1. If the state transition matrix A and the average index-selection
matrix P satisfy the following:

AH P A ≺ P, (3.19)

then, the limit of the mean squared error of the asynchronous model in (3.12) is
bounded as follows:

tr(P�)
_max

(
P − AH P A

) ≤ lim
:→∞
E
[
‖r: ‖22

]
≤ tr(P�)

_min
(
P − AH P A

) . (3.20)

Proof. The assumption (3.19) implies that k and Ψ defined in (3.18) satisfy the
inequality 0 ≤ k ≤ Ψ < 1. Then, the bounds in (3.20) follow directly from Theo-
rem 3.1. �

A number of remarks are in order:

1)Update probabilities and convergence: The convergence of the iterations depends
on the matrix A as well as the average index-selection matrix P. Thus, the random
asynchronous iterations running on a given matrix A may not converge for an
arbitrary set of update probabilities, yet the convergence can still be achieved for
specific sets of probabilities. The question of whether there exists a P satisfying
(3.19) or not for a given A will be discussed in the next section.

2) Error floor: The lower bound in (3.20) reveals an error floor: no matter howmany
iterations are used, the expected residual error is always bounded away from zero
in the presence of noise (� ≠ 0), which is also the case in synchronous iterations as
seen in (3.9). Nevertheless, (3.20) shows that the error floor is bounded linearly by
the noise covariance matrix.

3) Convergence rate and index selection: It should be noted from Theorem 3.1
that the rate of convergence as well as the error floor depend on the average index-
selection matrix P. That is to say, some set of index-selection probabilities may
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yield a faster rate of convergence or a lower error floor, for which we provide a
numerical evidence in Section 3.5 (See Figures 3.5, 3.8). However, their theoretical
analysis will be considered in a later study.

4) Sufficiency: It is important to emphasize that the condition (3.19) is only suffi-
cient but not necessary to ensure the convergence of the randomized asynchronous
iterations. When (3.19) does not hold true, it merely means that the upper bound
dictated by Theorem 3.1 diverges in the limit, which makes the theorem incon-
clusive regarding the convergence. The non-necessity of the condition (3.19) will
be numerically verified later in Section 3.5.3. Nevertheless, the importance of the
sufficient condition (3.19) follows from the fact that it does not have any additional
assumption on the matrix A: it may have complex values, may be non-Hermitian,
and it may even be non-diagonalizable. When the graph operators are considered in
Sections 3.3 and 3.4, this will be very important to ensure the convergence of filters
on an arbitrary directed graph.

In the following Sections 3.2.3 and 3.2.4, we will elaborate on the condition (3.19)
as well as the implications of Corollary 3.1. If desired, the reader can skip these
two subsections and jump to Section 3.3 directly, where we present an asynchronous
implementation of IIR graph filters.

3.2.3 On The Schur Diagonal Stability
In addition to the convergence results presented here for the randomized asyn-
chronous state recursions, the mathematical condition (3.19) appears in various
different contexts. For example, an implementation of a digital filter is guaranteed
to be free from limit cycles (overflow oscillation) when the transition matrix A
of its realization satisfies (3.19) for some P [120, 197]. (In fact, [197] requires
AH P A � P only.) Moreover, the study in [100] showed that a condition in the form
of (3.19) is sufficient to ensure the convergence of time-varying block asynchronous
iterations.

Due to its importance in various different application, the condition (3.19) and its
variations have been studied extensively in the literature. In fact, the condition was
first referred to as diagonal stability in [21]. Later in [101], the term was revised
as Schur diagonal stability in order to distinguish the discrete and the continuous
counterparts. (See [101, Definitions 2.1.3 and 2.5.2].) More precisely:

Definition 3.1. A matrix A ∈ C#×# is said to be Schur diagonally stable (alterna-
tively, A ∈ Dd) if and only if there exists a positive diagonal matrix P such that
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AH P A − P ≺ 0.

Unlike the stability condition (3.8) that depends only on the eigenvalues of a matrix,
the Schur diagonal stability of a matrix cannot be decided just by its eigenvalues
in the sense that among two similar matrices one may be Schur diagonally stable
and the other may not [197, 101]. Furthermore, Schur diagonal stability is more
restrictive than stability, but more relaxed than (3.13) as shown by the following
lemma (whose proof is provided in Section 3.7.2):

Lemma 3.1. The following hold true for any A ∈ C#×# :

d( |A|) < 1 =⇒ A ∈ Dd =⇒ d(A) < 1. (3.21)

Furthermore,
‖A‖2 < 1 =⇒ A ∈ Dd. (3.22)

We also note that the converse of the implications in (3.21) and (3.22) do not hold
in general. We refer to [101, Section 2] (and references therein) for an elaborate
compilation of properties of the diagonal stability.

Two remarks are in order:

1) Random vs Non-random iterations: We would like to point out that Corollary 3.1
together with Lemma 3.1 does not contradict the well-known result of [32] that
showed the necessity of the condition d( |A|) < 1 for the convergence of non-random
asynchronous iterations. The key difference between Corollary 3.1 and [32] is the
notion of convergence. The study [32] ensures the convergence of the iterations
for any index sequence, whereas Corollary 3.1 considers the convergence in the
mean-squared sense. When d( |A|) ≥ 1, there exists an index sequence for which
iterations do not converge, yet the iterations do converge in the mean-squared sense
if the indices can be updated with appropriate probabilities, i.e., the condition (3.19)
of Corollary 3.1 is satisfied.

2) Numerical search: Schur diagonal stability of a given matrix can be verified via
the following semi-definite program:

min
2, p 2 s.t. 2 I � AH diag(p) A − diag(p),

1 ≥ p ≥ 0,
(3.23)

where 1 denotes the vector with all ones. More precisely, it can be shown that
the optimal value of (3.23) satisfies 2★ < 0 if and only if the matrix A is Schur
diagonally stable. Thus, the strict negativity of the numerical solution of (3.23) for
a given matrix A determines the Schur diagonal stability of A.
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3.2.4 The Case of Uniform Probabilities
The sufficiency condition given by Corollary 3.1 involves both the matrix A and the
average index-selection matrix P. In many practical scenarios, the indices (or the
update sets) are selected with uniform probabilities, in which case implications of
Theorem 3.1 can be simplified further as we discuss next.

When the indices are equally likely to be updated in each iteration of (3.12), the
average index-selection matrix becomes a scaled identity matrix. More precisely,

P = ? I, where 0 < ? ≤ 1. (3.24)

In general, it is possible to use different stochastic models for the selection of the
update sets whose average index-selection matrix is in the form of (3.24). For
example, when a subset of size ) is selected uniformly randomly among all possible(#
)

)
different subsets, the average index-selection matrix becomes P = ()/#) I.

Notice that the case of) = 1 corresponds to the selection of only one index uniformly
randomly per iteration. It is also possible to select subsets of different sizes, which
is considered in Chapter 2 of this thesis (See Section 2.2.1).

When the matrix P has the form in (3.24), the rate parameters in (3.18) given by
Theorem 3.1 reduce to the following form:

k = ? f2
min(A) + 1 − ?, Ψ = ? f2

max(A) + 1 − ?, (3.25)

which shows that the singular values of the matrix A bound the rate of convergence
of the iterations of (3.12). As a result, the matrix A having a bounded spectral norm
is sufficient to ensure the convergence of the randomized asynchronous iterations,
which is formally presented in the following corollary:

Corollary 3.2. If ‖A‖2 < 1 and the indices are updated with equal probabilities in
the random asynchronous model of (3.12), then the limit of the mean squared error
is bounded as follows:

tr(�)
1 − f2

min(A)
≤ lim

:→∞
E
[
‖r: ‖22

]
≤ tr(�)

1 − f2
max(A)

. (3.26)

Proof. If the indices are updatedwith equal probabilities, the average index-selection
matrix P is in the form of (3.24), thus the condition (3.19) of Corollary 3.1 reduces
to AH A ≺ I, which is readily satisfied due to the assumption ‖A‖2 < 1. Then, we
can apply Corollary 3.1. The use of (3.25) in Theorem 3.1 gives the bounds in
(3.26). �
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Some remarks are in order:

1) Convergence irrespective of the update probability: Unlike the condition pre-
sented by Corollary 3.1, when the indices are updated with equal probabilities, the
sufficiency condition given by Corollary 3.2 involves only the matrix A. Therefore,
if the condition (bounded spectral norm) is met, the convergence is ensured irre-
spective of the actual value of the average index-selection matrix P. However, the
rate of convergence does depend on P in general as suggested by (3.25), which will
be verified numerically as well in Section 3.5.

2) Noise amplification: When the indices are equally likely to be selected in the
random asynchronous iterations, there is an amplification to the input noise. This
observation follows simply from the assumption ‖A‖2 < 1 that implies 1/(1 −
f2
min(A)) ≥ 1. Thus, the lower bound in (3.26) can be further lower bounded with

tr(�) = E[‖w: ‖22], which shows that the error floor is always larger than the amount
of input noise. This behavior of the random asynchronous iterations is consistent
with the synchronous counterpart. The error floor of the synchronous iterations
given in (3.9) can be lower bounded as tr(��) ≥ tr(�) since the matrix � in (3.10)
satisfies � � I.

3) Nonstationary noise covariance: We note that the input noise need not have a
stationary distribution for Theorem 3.1, Corollary 3.1, and Corollary 3.2 to be valid.
As long as the noise covariance matrix is upper bounded as E[w

:
wH
:
] � � for all : ,

the corresponding upper bounds remain valid. Similarly, the corresponding lower
bounds are valid as long as the covariancematrix is lower bounded asE[w

:
wH
:
] � �

for all : .

3.3 Asynchronous Rational Filters on Graphs
In this section, we will consider a node-asynchronous implementation of a rational
graph filter that is specified as follows:

ℎ(G) = ?(G) / @(G), (3.27)

where the polynomials ?(G) and @(G) are of degree (at most) !, and they are assumed
to be in the following form:

?(G) =
!∑
==0

?= G
=, @(G) = 1 +

!∑
==1

@= G
=. (3.28)
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The coefficients are allowed to be complex in general, i.e., ?=, @= ∈ C. In particular,
polynomial graph filters, which corresponds to the case of @1 = · · · = @! = 0, are
not excluded.

3.3.1 Rational Graph Filters
In the following we will use G ∈ C#×# to denote a graph operator for the graph
with # nodes. Here �8, 9 denotes the weight of the edge from node 9 to node 8. In
particular, �8, 9 = 0 when nodes 8 and 9 are not neighbors. Examples of such local
graph operators include the adjacency matrix, the graph Laplacian, etc. The graph
is allowed to be directed possibly with a non-diagonalizable adjacency matrix.

For a given graph operator G ∈ C#×# , the rational graph filter corresponding to
(3.27) has the following form:

ℎ(G) = ?(G) @(G)-1, (3.29)

where we implicitly assume that @(G) is an invertible matrix.

When u ∈ C# is a signal on the graph, we will use ũ to denote the filtered version
of u with the filter ℎ(G). That is,

ũ = ℎ(G) u, (3.30)

where u is the given signal on the graph.

A special case of rational graph filtering corresponds to Laplacian smoothing [158,
214, 8]. More precisely, given an undirected graph with the Laplacian matrix L and
a signal u on the graph, the Laplacian smoothing is obtained as the solution of the
following regularized least-squares problem:

ũ = arg min
/
‖u − /‖22 + W /H L /, W ≥ 0, (3.31)

whose closed form solution can be obtained as follows:

ũ = ℎ(L) u, where ℎ(G) = 1 / (1 + W G). (3.32)

Thus, a rational graph filter can be considered as an extension to the Laplacian
smoothing, in which the filter can have an arbitrary response in the graph frequency
rather than (3.32) [158].
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3.3.2 Node-Asynchronous Implementation
Unlike the classical digital filters, a rational graph filter can be represented as an
FIR (polynomial) graph filter of order at most #-1. (See [86, Theorem 6.2.9].)
Thus, one way to implement (3.30) is to compute #-1 graph shifts and take an
appropriate linear combination. However, for large graphs (# is large) this is not
practical because of its complexity. Furthermore, as discussed in Chapter 2, the
graph shift (multiplication with G) forces all nodes to communicate at the same
time, which requires a synchronization among the nodes of the network. In a large
network synchronization introduces delays, or it may not be even possible in the
case of autonomous networks. In order to overcome this limitation, this section will
introduce a randomized node-asynchronous implementation of the rational graph
filtering in (3.30).

In the proposed implementation, the 8Cℎ node is assumed to have the following four
local variables:

• an input signal: D8 ∈ C,

• a state-vector: x8 ∈ C! ,

• an output variable: H8 ∈ C,

• a buffer of size ! |Nin(8) |,

where only the input signal D8 is constant, and the value of the remaining quantities
are changing over time in a random manner. In fact, the output variable H8 will be
proven to converge to the corresponding element of the filtered signal D̃8 in the mean
square sense in the proposed approach under some (realistic and practical) conditions
on the filter, the graph operator, and the update statistics. (See Theorem 3.3.)

An overview of our approach (which is illustrated in Figure 3.1) is as follows: while a
node is not doing updates, it stays in the “passive" stage in which it only receives and
stores the state vectors in its buffer sent by its incoming neighbors. See Figure 3.1b.
When the node 8 “wakes up" at a random time instance (asynchronously with respect
to other nodes), it follows a two-step update procedure (see Figure 3.1c):

1. Graph shift step: using the values held in its buffer, the state vector x8 is
updated based on its neighbors according to the graph operator G.
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Figure 3.1: Visual illustration of the proposed asynchronous implementation of a
given graph filter. Edges can be directed in the network. (a) The node 8 waits and
listens in the passive stage. (b) When the node 8 receives a message, it updates its
buffer. (c) When the node 8 gets into the active stage at a random time instance,
it first updates its state vector. (d) After the update, the node 8 broadcasts its state
vector to its outgoing neighbors.

2. Filtering step: the state vector x8 is updated once more using the input signal
and state recursions imposed by the underlying graph filter in (3.29).

Once the graph filtering stage is completed, the node 8 broadcasts its most recent
state vector x8 to its outgoing neighbors, who can use its value to update themselves
at random asynchronous times in future, in a similar manner. See Figure 3.1d. In
the mean time, the local output variable H8 also gets updated using the state vector
x8 and the input signal D8.
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3.3.3 Implementation Details
In this section, we will present the precise details of the proposed asynchronous
update mechanism, which was outlined in the previously section. Then, we will
present the proposed method formally in Algorithm 5.

We first consider the graph shift step. In order to incorporate the underlying graph
structure into the filtering operation, the graph shift step updates the local state
vector as the linear combination of the state vectors of the incoming neighbors.
More precisely, when the 8Cℎ node is updating its state vector, the node does the
following computation first:

x′8 ←
∑

9∈Nin (8)
�8, 9 x 9 , (3.33)

where x′
8
∈ C! denotes the “graph shifted version" of the state vector x8. It is impor-

tant to note that the computation in (3.33) can be done locally and asynchronously
by the 8Cℎ node, as the node is assumed to have all the state vectors of its incoming
neighbors already available in its buffer.

In the filtering step, we use the graph shifted state vector x′
8
to carry out a state

recursion corresponding to the underlying filter. In this regard, consider the scalar
IIR digital filter, ℎd(I), whose transfer function is given as follows:

ℎd(I) = ?(I-1) / @(I-1) =
∞∑
==0

ℎ= I
-=, (3.34)

where ?(I) and @(I) are as in (3.28), and ℎ=’s correspond to the coefficients of the
impulse response of the digital filter. Furthermore, we assume that the digital filter
(3.34) has the following state-space description:

A = T-1 Â T, b = T-1 b̂, c = ĉ T, 3 = 3̂, (3.35)

where the quadruple (Â, b̂, ĉ, 3̂) corresponds to the direct form description of the
filter in (3.34) (see [200, Section 13.4]):

Â =



0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
-@! -@!-1 · · · · · · -@1


, b̂ =



0
0
...

0
1


, 3̂ = ?0,

ĉ = [?! − ?0 @! ?!-1 − ?0 @!-1 · · · ?1 − ?0 @1] , (3.36)
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and T ∈ C!×! is an arbitrary invertible matrix.

Although the response of the filter in (3.34) does not depend on the particular
selection of the matrix T, the convergence properties of the node-asynchronous im-
plementation of the filter on the graph does depend on the similarity transformation.
We will elaborate on this in Section 3.4.1, but the optimal choice of T is not known
at this time.

Using the state-space description of the underlying filter in (3.35), the 8Cℎ node
executes the following updates locally in the filtering step:

H8 ← c x′8 + 3 (D8 + F8),
x8 ← A x′8 + b (D8 + F8), (3.37)

where F8 denotes the additive input noise measured by the node 8 during an update.
We note that the value of D8 remains the same, but the value of F8 is different in
each update due to it being random. If the nodes do not take measurements, one can
easily assume that the measurements are noise-free and set F8 = 0 so that the noise
covariance is � = 0.

The random node-asynchronous implementation of the IIR graph filter (3.29) is
summarized in Algorithm 5. In the next section we will prove that this algorithm is
indeed a valid implementation of (3.29) under some conditions to be stated.

Algorithm 5 Node-Asynchronous Rational Graph Filtering
1: procedure Initialization(8)
2: Initialize the state vector x8 ∈ C! as x8 = 0.
3: procedure Passive Stage(8)
4: if x 9 is received from the node 9 ∈ Nin(8) then
5: Store the most recent value of x 9 .
6: procedure Active Stage(8)
7: x′

8
← ∑

9∈Nin (8) �8, 9 x 9 . ⊲ graph shift
8: E8 ← D8 + F8. ⊲ noisy sample
9: H8 ← c x′

8
+ 3 E8. ⊲ filtering

10: x8 ← A x′
8
+ b E8. ⊲ filtering

11: Broadcast x8 to all 9 ∈ Nout(8).

Except the initialization stage, which is executed only once, Algorithm 5 consists
of two main states: passive and active, both of which are triggered asynchronously.
More precisely, the active stage is triggered randomly by a node-specific timer, or
condition, and the passive stage is triggered when a node receives a state vector from
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its incoming neighbors. It is also assumed that a node stores only the most recent
received data.

When the node 8 gets into the active stage at a random time instance, the node first
computes its graph shifted state vector x′

8
in Line 7 using the values that are available

in its buffer. Then, the node takes a noisy measurement of the underlying graph
signal D8. When the filtering recursions in Lines 9 and 10 are completed, the node
broadcasts its own local state vector to its outgoing neighbors, and gets back into
the passive stage.

In the presented algorithm we emphasize that a node getting into the active stage
is independent of the values in its buffer. In general, a node does not wait until it
receives state vectors from all of its neighbors. In between two activations (i.e., in
the passive stage), some values in the buffer may be updated more than once, and
some may not be updated at all. Nodes use the most recent update only.

Since nodes are assumed to store the most recent data of its incoming neighbors in
the presented form of the algorithm, the node 8 requires a buffer of size ! · |Nin(8) |.
In fact, Algorithm 5 can be implemented in such a way that each node uses a buffer
of size 2! only. One can show that this is achieved when each node broadcasts
the difference in its state vector rather than the state vector itself, and the variable
x′
8
accumulates all the received differences in the passive stage. However, such

an implementation may not be robust under communication failures, whereas the
current form of the algorithm is shown to be robust to communication failures. (See
Section 3.5.2.) Moreover, the current form of the algorithm is easier to model and
analyze mathematically as we shall elaborate in the next section.

Due to its random asynchronous nature, Algorithm 5 appears similar to filtering
over time varying graphs, which is studied extensively in [88]. However, random
asynchronous communications differ from randomly varying graph topologies in
two ways: 1) Expected value of the signal depends on the “expected graph" in
randomly varying graph topologies [88, Theorem 1], whereas the fixed point does
not depend on the update probabilities in the case of asynchronous communications.
2) The graph signal converges in themean-squared sense in the case of asynchronous
communications (see Section 3.4), whereas the signal has a nonzero variance in the
case of randomly varying graph topologies [88, Theorem 3].

We also note that the study in [74] proposed a similar algorithm, in which nodes
retrieve and aggregate information from a subset of neighbors of fixed size selected
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uniformly randomly. However, the computational stage of [74] consists of a linear
mapping followed by a sigmoidal function, whereas Algorithm 5 uses a linear update
model. More importantly, aggregations are done synchronously in [74], that is, all
nodes are required to complete the necessary computations before proceeding to the
next level of aggregation. On the contrary, nodes aggregate information repetitively
and asynchronously without waiting for each other in Algorithm 5.

3.4 Convergence of the Proposed Algorithm
For convenience of analysis we define

X(:) = [x1 x2 · · · x#-1 x# ] ∈ C!×# ,

y(:) =


H1
...

H#

 , w(:) =


F1
...

F#

 , u =


D1
...

D#

 . (3.38)

Here, X(:) will be called the augmented state variable matrix, and y(:) ∈ C# is the
output vector after : iterations of the algorithm. Also w(:) ∈ C# is the noise vector
at the : Cℎ iteration, and u ∈ C# is the graph input signal as before.

We note that the index : is a global counter that we use to enumerate the iterations. In
general, nodes are unaware of the value of : , which is why the augmented variables
in (3.38) are indexed with : in parenthesis, but the variables corresponding to
individual nodes are not indexed by : at all. Whenever a node completes the
execution of the active stage of Algorithm 5, we assume that an iteration has passed.
Thus, (3.38) denotes the variables at the end of the : Cℎ iteration. Furthermore, we
will use T: to denote the set of nodes that get into the active stage simultaneously at
the : Cℎ iteration.

Algorithm 5 allows the nodes to update their values with different frequencies.
Similar to (4.16), we will use the diagonal matrix P ∈ R#×# to denote the average
node (index) selection matrix in the algorithm. In particular, P = ? I corresponds
to the case of all the nodes having the same rate of getting into the active stage.

In order to analyze the evolution of the state variables in the algorithm, we first note
that the state vector of a node 8 at the beginning of the : Cℎ iteration can be written
as follows:

x8 = X(:-1) e8, 1 ≤ 8 ≤ #. (3.39)

Thus, if the node 8 gets into the active stage at the : Cℎ iteration, i.e., 8 ∈ T: , then its
graph shifted state vector (computed in Line 7 of the algorithm) can be written as
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follows:

x′8 =
∑

9∈Nin (8)
�8, 9 x 9 =

∑
9

X(:-1) e 9 eT9 GT e8 = X(:-1) GT e8 . (3.40)

Therefore, the next value for its state vector is given as follows:

X(:) e8 =
(
A X(:-1)GT + b (u + w(:-1))T

)
e8, 8 ∈ T: . (3.41)

On the other hand, if the node 8 does not get into the active stage at the : Cℎ iteration,
i.e., 8 ∉ T: , its state vector remains unchanged. Thus, we can write the following:

X(:) e8 = X(:-1) e8, 8 ∉ T: . (3.42)

Since both (3.41) and (3.42) are linear in the augmented state variable matrix X(:) ,
we can transpose, and then vectorize both equations and represent them as follows:

(x̄: )8 =

(Ā x̄:-1)8 + (ū:-1)8, 8 ∈ T̄: ,

(x̄:-1)8, 8 ∉ T̄: ,
(3.43)

where the variables of the vectorized model are as follows:

x̄: = vec
(
XT
(:)

)
, Ā = A ⊗ G,

ū = b ⊗ u, w̄: = b ⊗ w(:) , (3.44)

and ū: is defined similar to (3.2) as ū: = ū + w̄: . Furthermore, the update set T̄: of
the vectorized model is defined as follows:

T̄: =
{
8 + 9# | 8 ∈ T: , 0 ≤ 9 < !

}
, (3.45)

which follows from the fact that when a node gets into the active stage, it updates
all elements of its own state vector simultaneously according to Line 10 of the
algorithm.

We note that the mathematical model in (3.43) appears as a pull-like algorithm, in
which nodes retrieve data from their incoming neighbors. However, with the use
of a buffer, the model (3.43) can be implemented in a collect-compute-broadcast
scheme as proposed in Algorithm 5. See also Figure 3.1.

When the algorithm is implemented in a synchronous manner, the state recursions
of (3.43) reduce to the following form:

x̄: = Ā x̄:-1 + ū:-1, (3.46)

and the following theorem (whose proof is provided in Section 3.7.3) presents the
mean-squared error of the algorithm:
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Theorem 3.2. In Algorithm 5, assume that all the nodes on the graph get into the
active stage synchronously, and the matrix Ā does not have an eigenvalue equal to
1. Then,

E
[y(:) − ũ

2
2
]
=

(c ⊗ G
)

Ā:-1 (
x̄0 − x̄★

)2

2
+
:−1∑
==0
|ℎ= |2 tr

(
G= � (G=)H

)
, (3.47)

where x̄★ is the fixed point of (3.46), and ℎ=’s are the coefficients of the impulse
response of the digital filter as in (3.34).

In (3.47) it is clear that as long as

d(Ā) < 1, (3.48)

the first term of (3.47) converges to zero irrespective of the initial vector x̄0, as the
iteration progresses. So, from Theorem 3.2 the residual error approaches an error
floor:

lim
:→∞
E
[y(:) − ũ

2
2
]
= tr(H�), (3.49)

where

H =

∞∑
==0
|ℎ= |2 (G=)H G=. (3.50)

Thus, the error floor in the synchronous case depends on the impulse response of the
underlying digital filter as well as the graph operator, but the similarity transform
T does not affect the error floor. In short, the similarity transform does not affect
either the convergence or the error floor in the synchronous case. Note that the
stability condition in (3.48) ensures the convergence of (3.50). Note also that
d(Ā) = d(A) d(G) in view of (3.44).

Next consider the asynchronous case. The equivalent model of the algorithm in
(3.43) is in the form of (3.12), thus the results presented in Section 3.2 (Corollary 3.1
in particular) can be used to study the convergence of the algorithm. In this regard,
we present the following theorem, whose complete proof is given in Section 3.7.4:

Theorem 3.3. In Algorithm 5, let P denote the average node selection matrix and �
the covariance matrix of the measurement noise. If the state transition matrix A of
the filter, and the operator G of the graph satisfy the following:

‖A‖22 GH P G ≺ P, (3.51)

then
lim
:→∞

E
[
‖y(:) − ũ‖22

]
≤ tr(R�), (3.52)
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where

R =
‖b‖22 ‖c‖

2
2 ‖G‖

2
2

_min

(
P − ‖A‖22 GH P G

) P + |3 |2 I. (3.53)

Theorem 3.3 presents an upper bound on the mean-squared error. In the noise-free
case (� = 0), the right-hand-side of (3.52) becomes zero, and the condition (3.51)
ensures the convergence of the output signal to the desired filtered signal in the
mean-squared sense. We note also that the right-hand-side of (3.52) is linear in
the noise covariance matrix, which implies that the error floor of the algorithm
increases at most linearly with the input noise. This will be numerically verified
later in Section 3.5.1. (See Figure 3.4b.) In fact, it is possible to integrate stochastic
averaging techniques studied in [6, 7] into Algorithm 5 in order to overcome the
error due to noise at expense of a reduced convergence rate.

We conclude by noting that graph filtering implementations considered in [158, 149,
150, 154, 157, 87, 88, 108, 109] are likely to tolerate asynchronicity up to a certain
degree. In fact, [109] presented numerical evidences in this regard. This is not
surprising because linear asynchronous fixed-point iterations are known to converge
under some conditions [32, 14]. The main difference of Algorithm 5 studied in
this chapter is due to its proven convergence under some mild and interpretable
conditions with the assumed random asynchronous model (Theorem 3.3).

3.4.1 Selection of the Similarity Transform
In addition to the dependency on the graph operator and the average node selection
matrix, the sufficiency condition (3.51) depends also on the realization of the filter of
interest. Thus, in the asynchronous case, both the condition for convergence and the
error bound depend on the similarity transform. Since the condition becomes more
relaxed as the state transition matrix A has a smaller spectral norm, it is important
to select the similarity transform T in (3.35) in such a way that A has the minimum
spectral norm.

Due to their robustness, minimum-norm realizations of digital filters have been
studied extensively in signal processing [12, 120, 198]. A minimum-norm imple-
mentation corresponds to an appropriate selection of the similarity transform T in
(3.35) due to the following inequality:

‖A‖2 ≥ d(A) = d(Â). (3.54)
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The lower bound d(Â) depends only on the coefficients of the polynomial @(G) due
to the definition of Â in (3.36).

The lower bound in (3.54) may not be achieved with equality in general, and we will
consider one such example in the next section. Nevertheless, it is known that the
companion matrix Â is diagonalizable if and only if the digital filter in (3.34) has !
distinct poles [85]. That is to say, when there are ! distinct nonzero I=’s such that
@(I-1= ) = 0, we can write the following eigenvalue decomposition:

Â = VÂ �Â V-1
Â
, (3.55)

where �Â is a diagonal matrix with I-1= ’s on the diagonal, and VÂ is a Vandermonde
matrix corresponding to I-1= ’s. If the similarity transform T is selected according to
(3.55), then the bound in (3.54) is indeed achieved. More precisely,

T = VÂ =⇒ A = �Â =⇒ ‖A‖2 = d(Â). (3.56)

Thus, the most relaxed version of the sufficiency condition of Theorem 3.3 is
obtained when the updates of Algorithm 5 are implemented using the similarity
transform given in (3.56).

When the filter (3.34) has repeated poles, the companion matrix Â is not diago-
nalizable, hence an implementation achieving the bound (3.54) does not exist [12].
Nevertheless, the study [12] discussed that for any n > 0, there exists a realization
with a state transition matrix A such that

‖A‖2 ≤ d(Â) + n . (3.57)

Therefore, it is always possible to obtain “almost minimum" realizations with the
spectral norm arbitrarily close to the lower bound in (3.54). As a particular example,
the case of FIR graph filters will be considered in the next section.

3.4.2 The Case of Polynomial Filters
Polynomial (FIR) graph filters can be considered as a special case of the rational
graph filter (3.29), in which the denominator is selected as @(G) = 1 so that @(G) = I,
and the filtered signal in (3.30) reduces to ũ = ?(G) u. In this case, the companion
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matrix Â (direct form implementation) has the following form:

Â =



0 1 0 · · · 0
0 0 1 · · · 0
...
...

...
. . .

...

0 0 0 · · · 1
0 0 · · · · · · 0


∈ R!×! , (3.58)

which has all eigenvalues equal to zero, so that d(Â) = 0. As a result, no realization
of a polynomial filter can achieve the lower bound (3.54) since ‖A‖2 = 0 implies
A = 0. However, the spectral norm of a realization can be made arbitrarily small.
In particular, consider the following similarity transform:

T = diag
(
[1 n n2 · · · n !-1]

)
, (3.59)

where n is an arbitrary nonzero complex number. Then, the corresponding realiza-
tion A can be found as follows:

A = T-1 Â T = n Â =⇒ ‖A‖2 = |n |. (3.60)

Thus, it is possible to select a value for n (with a sufficiently small magnitude) in
order to satisfy the condition (3.51). (See [101, Fact 2.5.4].) Such a selection is not
unique in general, and one can easily find a value for n satisfying the following:

|n | <
(
‖G‖2

√
‖P


2

P-1


2

) -1
, (3.61)

which ensures that the condition (3.51) is met.

As a result, for any graph operator G and average node selection matrix P, it is
always possible to implement any polynomial filter in a random node-asynchronous
manner that is guaranteed to converge in the mean-squared sense. However, we note
that T given in (3.59) may not be the optimal similarity transform in general.

We also note that when a polynomial filter is implemented in a synchronous manner,
Theorem 3.2 shows that the algorithm reaches the error floor after ! iterations since
Â in (3.58) is a nil-potent matrix and Â= = A= = 0 for = ≥ !. This convergence
behavior will be verified numerically later in Section 3.5.4. The error bound still
depends on T because of ‖A‖2.
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3.5 Numerical Simulations
We now simulate the proposed algorithm on the graph visualized in Figure 3.2. This
is a random geometric graph on # = 150 nodes, in which nodes are distributed over
the region [0 1] × [0 1] uniformly at random. Two nodes are connected to each
other if the distance between them is less than 0.15, and the graph is undirected.
The graph operator, the matrixG ∈ R#×# , is selected as the Laplacian matrix whose
eigenvalues can be sorted as follows:

0 = _1 < _2 ≤ · · · ≤ _# = d(G) = ‖G‖2 = 16.8891, (3.62)

where the spectral norm of G is computed numerically, and the equality between the
spectral radius and the spectral norm follows from the fact that G is a real symmetric
matrix.

(a) (b)

Figure 3.2: Visualization of the signals on the graph. Colors black and pink
represent positive and negative values, respectively. Intensity of a color represents
the magnitude. (a) The graph signal u that has nonzero values on 30 nodes. (b) The
filtered signal ũ on the graph with the filter in (3.67).

For the numerical simulations we consider the following smoothing problem: as-
sume that we are given the graph signal u ∈ R# that has only 30 nonzero entries,
which is visualized in Figure 3.2a. It is clear that the signal u is not smooth on
the graph. In order to obtain a smoothed version of u, which will be denoted by
ũ ∈ R# , we will apply a low-pass graph filter to the signal u. In this regard, we will
consider examples of rational (IIR) graph filters in Sections 3.5.1, 3.5.2, and 3.5.3,
and consider a polynomial (FIR) filter in Section 3.5.4.
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Throughout the simulations we will consider a particular stochastic model for the
selection of the nodes. That is, in each iteration of Algorithm 5 we will select a
subset of size ` uniformly randomly among all subsets of size `. For this particular
model, the average node selection matrix becomes:

P = `

#
I. (3.63)

We note that the case of ` = # corresponds to the synchronous implementation of
the algorithm. With P as in (3.63), we note that the sufficiency condition (3.51),
which ensures the convergence of Algorithm 5, reduces to the following form:

‖A‖2 ‖G‖2 < 1, (3.64)

which does not depend on `. Furthermore, the bound on the noise floor given by
(3.52) reduces to the following form:

lim
:→∞

E
[
‖y(:) − ũ‖22

]
≤ tr(�)

(
‖b‖22 ‖c‖

2
2 ‖G‖

2
2

1 − ‖A‖22 ‖G‖
2
2
+ |3 |2

)
. (3.65)

For the sake of simplicity we will assume that the covariance matrix of the measure-
ment noise is as follows:

� = f2 I, (3.66)

where f2 will denote the variance of input noise.

3.5.1 An Example of a Rational Graph Filter
In this section we will consider a rational filter (3.27) constructed with the following
polynomials of order ! = 3:

?(G) = (1 − W G)3, @(G) = 1 +
3∑
==1

W= G=, W = 0.055, (3.67)

where the value of W is selected in such a way that it normalizes the spectrum of G,
that is, |W | ‖G‖2 < 1 is satisfied.

The frequency response of the filter in (3.67) on the graph is visualized in Figure 3.3a,
which shows that the filter has low-pass characteristics on the graph. When compared
with the input signal u, the filtered signal ũ has a lower amount of projection on
the eigenvectors with larger eigenvalues as shown in Figure 3.3b. Since ũ mainly
contains low frequency components (eigenvectors with small eigenvalues [160]), ũ
is smoother on the graph as visualized in Figure 3.2b.
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ũ|

(b)

Figure 3.3: (a) Response of the rational filter ℎ(_) constructed with (3.67). (b)
Magnitude of the graph Fourier transforms of u and ũ where (_8, v8) denotes an
eigenpair of G.

We now consider the implementation of the filter (3.67) using Algorithm 5. In
this regard, we first construct the direct form implementation of the corresponding
digital filter as in (3.36):

Â =


0 1 0
0 0 1
-W3 -W2 -W

 , b̂ =


0
0
1

 , ĉT =


-2W3

2W2

-4W

 , 3̂ = 1. (3.68)

It is readily verified that the matrix Â in (3.68) has ! = 3 distinct eigenvalues that
are given as {-W, 9W, - 9W}. Thus, the similarity transform T can be selected as
the eigenvectors of Â as in (3.56), which corresponds to the Vandermonde matrix
constructed with {-W, 9W, - 9W}. As a result, the corresponding realization of the
filter according to (3.35) is given as follows:

A = W


-1 0 0
0 9 0
0 0 - 9

 , b = -1
4W2


-2

1+ 9
1- 9

 , cT = W3


-8

2+2 9
2-2 9

 . (3.69)

Since ‖A‖2 = d(A) = |W |, we note that (3.64) is satisfied for the value of W in
(3.67), thus Algorithm 5 converges in the mean-squared sense when no input noise
is present, and when there is noise, it reaches an error floor upper bounded as in
(3.65).

In the first set of simulations of Algorithm 5 we consider the case of ` = 1, i.e.,
only one randomly selected node is updated per iteration. In order to verify the
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convergence numerically, we simulated independent runs of Algorithm 5 with the
filter realization in (3.69) and computed the mean-squared error by averaging over
104 independent runs. In order to present the effect of the measurement noise,
we consider the case of f2 = 10-16 as well as the noise-free case. Figure 3.4a
presents the corresponding mean-squared errors together with the error in the noise-
free case for 100 different realizations. Due to the random selection of the nodes,
the residual itself is a random quantity, which does not decrease monotonically
as seen in Figure 3.4a. Nevertheless, the expectation of the error norm decreases
monotonically until it reaches the error floor. We note that the error floor in the
noise-free case corresponds to the numerical precision of the numerical environment
(MATLAB).

In order to present the effect of the noise variance on the error floor, we run
Algorithm 5 for different values of f2 for :max = 4 · 104 iterations (which ensures
that the algorithm reaches an error floor as seen in Figure 3.4a) while selecting only
` = 1 node per iteration. The error floor corresponding to different values of f2

together with the upper bound in (3.65) are presented in Figure 3.4b. In addition to
the upper bound (3.65) scaling linearly with the noise variance, Figure 3.4b shows
that the error floor itself scales almost linearly with the noise variance as well.
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Figure 3.4: (a) Squared error norm in 100 different independent realizations together
with the mean squared error of Algorithm 5 with the implementation in (3.69). (b)
Error floor of the algorithm as a function of the input noise together with the bound
in (3.65).

We note that the filter realization in (3.69) ensures the convergence of the algorithm
irrespective of the value of `. However, the convergence rate of the algorithm does
depend on the value of ` in general. This point will be demonstrated in the following
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set of simulations, in which we use the filter realization in (3.69) and set the noise
variance as f2 = 10-16. In order to obtain a fair comparison between different
values of `, we fix the total number of updates to be 25000, so the algorithm gets
d25000/`e iterations. We run the algorithm independently 105 times for each value
of ` = {1, · · · , #} and present the corresponding mean-squared errors as a function
of the number of updated nodes in Figure 3.5.
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Figure 3.5: The mean squared error of Algorithm 5 when more than one node is
updated simultaneously with noise variance f2 = 10-16. The first row in the figure
corresponds to Figure 3.4a.

We first point out that Figure 3.5 verifies the convergence of the algorithm for all
possible values of `. More interestingly, the figure shows also that the algorithm
gets faster as it gets more asynchronous (small `). Equivalently, for a given fixed
amount of computational budget (total number of nodes to be updated), having
nodes updated randomly and asynchronously results in a smaller error than having
synchronous updates. However, it is important to emphasize that the behavior
shown in Figure 3.5 is not typical for the algorithm; rather, it depends on the
underlying filter. Indeed we will find a similar behavior in Section 3.5.3, but an
opposite behavior later in Section 3.5.4. We also note that for the case of zero-
input, Section 2.3.3 of this thesis theoretically discussed the conditions under which
randomized asynchronicity results in a faster convergence.

3.5.2 Updates with Failing Broadcasts
Algorithm 5 assumes that when a node broadcasts the most recent value of its
state vector to its outgoing neighbors (Line 11 of Algorithm 5), all the recipient
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nodes reliably receive the message. However, in a more realistic scenario the
broadcasted message may not be received by some of the recipients due to unreliable
communication between the nodes. In the case of such communication failures,
the theoretical analysis presented in Section 3.4 (Theorems 3.2 and 3.3) becomes
inconclusive regarding the convergence of the algorithm. Nevertheless, in this
section we will numerically verify that the proposed algorithm is robust to such
communication failures.

Similar to the previous section, in this set of simulations we use the filter realization
in (3.69) (with W selected as in (3.67)) and set the noise variance as f2 = 10-16.
However, we modify the implementation in such a way that when a node broadcasts
its state vector, a recipient node is assumed to receive the message with probability
U independent of the other nodes. Thus, U = 1 corresponds to the case where
convergence is guaranteed by Theorem 3.3.

We consider two cases, namely ` = 1 (one node is activated randomly in each
iteration) and ` = # (all nodes are activated synchronously). In both cases the
broadcasted messages are delivered with probability U. The mean squared errors
for these two cases are given in Figures 3.6a and 3.6b, respectively.

Both Figures 3.6a and 3.6b verify the convergence of the algorithm even in the case
of unreliable communication. In the case of ` = 1, Figure 3.6a suggests that the
convergence rate of the algorithm decreases as the communications become more
unreliable (the value of U gets smaller). However, for the case of ` = # , Figure 3.6b
presents an unexpected behavior. The case of reliable communications (U = 1) does
not result in the fastest rate of convergence. When the communications failwith some
probability, the algorithm may converge faster. While the behavior is surprising, it
is consistent with Figure 3.5 in the sense that fully synchronous iterations are slower
than asynchronous counterparts for the specific filter in (3.69). Even when the nodes
get updated synchronously, failed broadcasts break the overall synchrony over the
network, hence the algorithm converges faster. However, when the communications
fail with high probability (e.g., the case of U = 0.25 in Figure 3.6b), the convergence
is indeed slower. We also note that the behaviors demonstrated in Figure 3.6a and
Figure 3.6b remain the same even for the noise-free (f2 = 0) case.

3.5.3 A Case of Convergence Only with Asynchronous Iterations
The results in Section 3.5.1 (namely Figure 3.5) showed that the proposed algorithm
may converge faster as the iterations get more asynchronous (i.e., the value of ` gets
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Figure 3.6: The mean-squared error of the algorithm with (a) ` = 1, (b) ` = # ,
when the broadcasted messages are delivered successfully with probability U.

smaller). In this section we will demonstrate an even more interesting behavior,
where the algorithm converges only if the iterations are sufficiently asynchronous
(` is smaller than a threshold).

In this subsection, we will use the same filter realization as in (3.69), but use the
following value for the parameter W:

W = 0.065, (3.70)

which results in a slight change in the response of the filter as presented in Figure 3.3a.
More importantly, for the value of W in (3.70), the sufficiency condition in (3.64)
is not satisfied, thus Theorem 3.3 is inconclusive regarding the convergence of the
algorithmwith asynchronous iterations. In fact, Theorem 3.2 tells that the algorithm
diverges in the synchronous case since the matrix Ā is unstable for the value of W in
(3.70):

d(Ā) = d(A ⊗ G) = d(A) d(G) = |W | d(G) ≈ 1.0978. (3.71)
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In order to examine the convergence behavior of the algorithm, we repeat the
simulations done in Section 3.5.1 with the value of W set as in (3.70). That is, the
noise variance is set to be f2 = 10-16, and the algorithm is simulated independently
104 times for each value of ` = {1, · · · , #}. The corresponding mean-squared
errors are presented in Figure 3.7.
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Figure 3.7: The mean-squared error of Algorithm 5 for a case of an unstable
augmented state transition matrix Ā. Input noise variance is f2 = 10-16.

For the specific filter considered in this simulations, Figure 3.7 shows that the
convergence of the algorithm displays an obvious phase-transition in terms of the
amount of asynchronicity. That is to say, the algorithm convergences only if the
number of simultaneously updated nodes satisfies ` ≤ 66, and the algorithmdiverges
otherwise. Therefore, a specific amount of asynchronicity is in fact required for the
convergence in this example.

Although the theoretical analysis of the algorithm presented in Section 3.4 does
not explain the phenomena observed here, for the zero-input case Chapter 2 of this
thesis proved that the convergence can be achieved for some unstable systems as
long as the iterations are sufficiently asynchronous. Simulation results presented in
Figure 3.7 shows that a similar behavior exists even when the input is nonzero. See
Chapter 4 for further details.
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3.5.4 An Example of a Polynomial Graph Filter
Now consider the implementation of a polynomial (FIR) graph filter with the pro-
posed algorithm. In particular, we consider the following filter of order ! = 3:

?(G) = (1 − W G)3, @(G) = 1, W = 0.055, (3.72)

which has low-pass characteristics on the graph as visualized in Figure 3.3a. In
the implementation of the filter we use the following similarity transformation
T = diag( [1 W W2]) so that the realization of the filter has the following form:

A = W


0 1 0
0 0 1
0 0 0

 , b = 1
W2


0
0
1

 , cT = W3


-1
3
-3

 , 3 = 1, (3.73)

which satisfies ‖A‖2 ‖G‖2 = |W | ‖G‖2 < 1 for the value of W in (3.72), thus Theo-
rem 3.3 ensures the convergence of the algorithm irrespective of the value of `. For
the particular case of synchronous iterations, ` = # = 150, Theorem 3.2 shows that
the algorithm converges after ! = 3 iterations, i.e., the algorithm reaches the error
floor in (3.49) when :` ≥ 600.

In order to examine the convergence behavior of the algorithm with a polynomial
filter, we repeat the simulations done in Sections 3.5.1 and 3.5.3 with the filter
realization in (3.73). That is, the noise variance is set to be f2 = 10-16, and the
algorithm is simulated for each value of ` = {1, · · · , #}. The corresponding mean-
squared errors are presented in Figure 3.8.

We note that the convergence behavior of the algorithm with the polynomial filter
in (3.73) differs from that of the filter considered in Section 3.5.1. In particular, the
algorithm reaches the error floor after :` ≥ 600 in the synchronous case (which is
proven by Theorem 3.2), and the algorithm gets slower as it gets more asynchronous.
When the results presented in Figure 3.5 and Figure 3.8 are considered together, a
definite conclusion cannot be drawn regarding the effect of the asynchronicity on
the convergence rate. Depending on the underlying graph filter, the asynchronicity
may result in a faster or a slower convergence of the proposed algorithm.

3.6 Conclusions
In this chapter, we proposed a node-asynchronous implementation of rational graph
filters, in which nodes on the graph follow a collect-compute-broadcast scheme in a
randomized manner: in the passive stage a node only collects data, and when it gets
activated randomly it runs a local state recursion for the filter, and then broadcasts
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Figure 3.8: The mean-squared error of Algorithm 5 for the case of the polynomial
(FIR) filter described in (3.72) with the input noise variance f2 = 10-16.

its most recent value. In order to analyze the proposed method, we first studied
a more general case of randomized asynchronous state recursions and presented
a sufficiency condition that ensures the convergence in the mean-squared sense.
Based on these results, we proved the convergence of the proposed algorithm in the
mean-squared sense when the graph operator, the average update rate of the nodes
and the filter of interest satisfy a certain condition. We simulated the proposed
algorithm under different conditions and verified its convergence numerically.

Simulation results indicated that the presented sufficient condition is not necessary
for the convergence of the algorithm. Moreover, the algorithm was observed to be
robust to the communication failures between the nodes. It was observed also that
the asynchronicity may increase the rate of convergence. Furthermore, simulations
revealed that the proposed algorithm can converge even with an unstable filter if the
nodes behave sufficiently asynchronously. Deeper theoretical analysis of some of
these experimental observations is left for the future. For future studies, it would be
interesting to consider the randomized asynchronous scenario in which nodes get
updated depending on the values they have.
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3.7 Appendices
3.7.1 Proof of Theorem 3.1
The update model (3.12) can be written as follows:

x: =
∑
8∉T:

e8 e
H
8 x:-1 +

∑
8∈T:

e8 e
H
8

(
A x:-1 + u + w:-1

)
, (3.74)

= x:-1 + DT:
(
(A − I) x:-1 + u + w:-1

)
, (3.75)

which can be re-written in terms of the residual vector r: defined in (3.5) as follows:

r: =
(
I + DT: (A − I)

)
r:-1 + DT: w:-1. (3.76)

Using the assumption that the residual vector r:-1, the index-selection matrix DT:
and the noise term w:-1 are uncorrelated with each other, and the assumption that
w:-1 has a zero mean, the expected residual norm r: conditioned on the previous
residual r:-1 can be written as follows:

E
[
‖r: ‖22 | r:-1

]
= E

[(I + DT: (A − I)
)
r:-1

2
2

]
+ E

[
‖DT: w:-1‖22

]
. (3.77)

The first term on the right-hand-side of (3.77) can be written as follows:

E
[
rH:-1

(
I+ (AH− I) DT:

) (
I+DT: (A− I)

)
r:-1

]
= rH:-1

(
I+AH P A−P

)
r:-1, (3.78)

which can be upper and lower bounded as Ψ ‖r:-1‖22 and k ‖r:-1‖22, respectively,
where Ψ and k are defined as in (3.18).

The second term on the right-hand-side of (3.77) can be written as follows:

E
[
wH
:-1 DT: w:-1

]
= tr

(
E
[
DT: w:-1 wH

:-1
] )
= tr(P�), (3.79)

where we use the fact that DH
T: DT: = DT: , and the assumption that the noise and the

index-selection are uncorrelated.

Thus, the conditional expected residual norm can be upper and lower bounded as
follows:

k ‖r:-1‖22 ≤ E
[
‖r: ‖22 | r:-1

]
− tr(P�) ≤ Ψ ‖r:-1‖22. (3.80)

By taking expectation of (3.80) with respect to the previous residual r:-1, we obtain
the following:

k E
[
‖r:-1‖22

]
≤ E

[
‖r: ‖22

]
− tr(P�) ≤ Ψ E

[
‖r:-1‖22

]
. (3.81)

The iterative use of the inequalities in (3.81) yields the results given in (3.17).
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3.7.2 Proof of Lemma 3.1
We first note that by left and right multiplying with P-1/2, the condition (3.19) can
be equivalently written as:

AH P A ≺ P ⇐⇒
 P1/2 A P-1/2 

2 < 1, (3.82)

which proves the implication in (3.22). (Consider P = ? I.)

We now prove the first implication of (3.21): Lemma 2.7.25 of [101] shows that
d( |A|) < 1 if and only if |A| ∈ Dd. Since |A| is Schur diagonally stable, there exits
a positive diagonal P such that ‖P1/2 |A|P-1/2‖2 < 1 due to (3.82). Then,P1/2 |A|P-1/2

2 =
 |P1/2AP-1/2 |


2 ≥

P1/2AP-1/2
2, (3.83)

where the equality follows from the fact that P is a positive diagonal matrix, and
the inequality follows from the fact that ‖ |X| ‖2 ≥ ‖X‖2 holds true for any matrix
X [116]. Then, we have that ‖P1/2AP-1/2‖2 < 1, which implies A ∈ Dd due to the
equivalence in (3.82).

We now prove the second implication of (3.21): assume that A ∈ Dd and further
assume that there exists an eigenpair (_, v) of A such that |_ | ≥ 1. Then,

vH
(
AH P A − P

)
v = ( |_ |2 − 1) vH P v ≥ 0, (3.84)

which contradicts with the assumption that AH P A − P is negative definite. Thus,
d(A) < 1 must hold true.

3.7.3 Proof of Theorem 3.2
In what follows I< denotes the < × < identity matrix. Since the state variables
evolves according to (3.46) in the synchronous case, we can write the following due
to (3.6):

E
[
r̄: r̄H:

]
= Ā: r̄0 r̄H0 (Ā

: )H +
:−1∑
==0

Ā= �̄ (Ā=)H, (3.85)

where we define r̄: = x̄: − x̄★ similar to (3.5). Here x̄★ denotes the fixed point of the
vectorized model in (3.46) (which exists since Ā is assumed to not have eigenvalue
1), and it can be written as follows:

x̄★ =
(
I!# − Ā

) -1 ū =
(
I!# − (A ⊗ G)

) -1 (b ⊗ u)
= (T-1 ⊗ I# ) (I!# − Â ⊗ G)-1 (b̂ ⊗ u) (3.86)

= (T-1 ⊗ I# ) vec
( [

G!-1 z · · · G z z
] )
, (3.87)
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where the vector z ∈ C# is defined as follows:

z = @(G)-1 u. (3.88)

We note that the equivalence between (3.86) and (3.87) follows from the following
identity:

I −G 0 · · · 0
0 I −G · · · 0
...

...
...

. . .
...

0 0 0 · · · −G
@!G @!-1G · · · @2G I+@1G





G!-1 z
G!-2 z
...

G z
z


=



0
0
...

0
@(G) z


(3.89)

which can be written as follows:

(I!# − Â ⊗ G) vec
( [

G!-1 z · · · G z z
] )
= b̂ ⊗ u, (3.90)

where we use the fact that @(G) z = u.

Line 9 of the algorithm together with the result of (3.40) shows that the output vector
y(:) defined in (3.38) is related to the vectorized state variables as follows:

y(:) = G XT
(:-1)c

T + 3 u(:) = (c ⊗ G) x̄:-1 + 3 u + 3 w(:) . (3.91)

Furthermore, the fixed point of the vectorized model given in (3.87) satisfies the
following equality:

(c ⊗ G) x̄★ + 3 u = (̂c ⊗ G)


G!-1 z
...

G z
z


+ 3 u

=

!∑
==1
(?= − ?0 @=)G= z + ?0 @(G) z =

!∑
==0

?= G= z

= ?(G) z = ?(G) @(G)-1 u = ũ. (3.92)

Combining (3.91) and (3.92), we can write the following:

y(:) − ũ = (c ⊗ G) (x̄:-1 − x̄★) + 3 w(:) . (3.93)
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Then,

E
[
‖y(:) − ũ‖22

]
= tr

(
(c ⊗ G) E

[
r̄:-1 r̄H:-1

]
(c ⊗ G)H

)
+ |3 |2 tr(�), (3.94)

=
(c ⊗ G) Ā:-1 r̄0

2
2 + |3 |

2 tr(�) +
:−2∑
==0

tr
(
(c ⊗ G)Ā= �̄ (Ā=)H (c ⊗ G)H

)
,

where we use the result in (3.85).

Due to (3.44), we note that Ā= = (A ⊗ G)= = A= ⊗ G=. Furthermore, the augmented
noise covariance matrix �̄ can be written explicitly from (3.44) as follows:

�̄ = E
[
w̄: w̄H

:

]
= E

[
(b ⊗ w: ) (b ⊗ w: )H

]
= bbH ⊗ �. (3.95)

Thus,
(c ⊗ G)Ā= �̄ (Ā=)H(c ⊗ G)H = |c A= b|2 G=+1 � (G=+1)H. (3.96)

We also note that the coefficients of the impulse response of the underlying digital
filter is given as follows [200, Eq. (13.4.13)]:

ℎ= =


3, = = 0,

c A=-1 b, = > 0.
(3.97)

Using (3.97) in (3.96), we can re-write (3.94) as follows:

E
[
‖y(:) − ũ‖22

]
=

(c ⊗G) Ā:-1 r̄0
2

2 + |ℎ0 |2 tr(�) +
:-2∑
==0
|ℎ=+1 |2 tr

(
G=+1 � (G=+1)H

)
,

(3.98)
which is equivalent to the result in (3.47).

3.7.4 Proof of Theorem 3.3
Let P̄ ∈ R!#×!# denote the average index-selection matrix for the vectorized model
in (3.43). Then, the structure of the update sets in (3.45) imply the following:

P̄ = I! ⊗ P, (3.99)

where I! denotes the identity matrix of size !.

We now show that the following holds true:

ĀH P̄ Ā ≺ P̄, (3.100)
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which also ensures that Ā is a stable matrix, hence the fixed point x̄★ computed in
(3.87) exists. In this regard, using (3.44), (3.99), and the mixed-product property in
(1.4), we can write (3.100) explicitly as follows:

(AH A) ⊗ (GH P G) ≺ (I! ⊗ P). (3.101)

Let V denote the eigenvectors of AHA. By left-multiplying with VH ⊗ I# and
right-multiplying with V ⊗ I# , the condition (3.101) can be written equivalently as
follows:

�2
A ⊗ (G

H P G) ≺ (I! ⊗ P), (3.102)

where �A is a diagonal matrix consisting of the singular values of the matrix A.
Since both sides of (3.102) are block diagonal matrices, the condition (3.102) holds
true if and only if all of the individual blocks satisfy the inequality, that is,

f2
8 (A) GH P G ≺ P (3.103)

for all singular values, f8 (A), of the matrix A, which can be expressed explicitly as
follows:

f2
min(A) GH P G � · · · � f2

max(A) GH P G ≺ P. (3.104)

Since (3.51) is both necessary and sufficient to satisfy (3.104), we conclude that
(3.51) is equivalent to the condition in (3.100).

Since the assumption (3.51) ensures that (3.100) is satisfied, we can apply Corol-
lary 3.1 to the model in (3.43) and conclude that

lim
:→∞

E
[
‖x̄: − x̄★‖22

]
≤ tr(P̄ �̄)

_min

(
P̄ − ĀH P̄ Ā

) . (3.105)

Using the equality (3.93) from Section 3.7.3:

‖y(:) − ũ‖22 ≤ ‖c‖
2
2 ‖G‖

2
2 ‖x̄:-1 − x̄★‖22 + ‖3 w(:) ‖22, (3.106)

which results in the following:

lim
:→∞

E
[
‖y(:) − ũ‖22

]
≤
‖c‖22 ‖G‖

2
2 tr(P̄ �̄)

_min

(
P̄ − ĀH P̄ Ā

) + |3 |2 tr(�). (3.107)

We have the following due to (3.95) of Section 3.7.3 and (3.99):

tr(P̄ �̄) = tr
(
bbH ⊗ P�

)
= ‖b‖22 tr(P�). (3.108)
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We also note that (3.101) and (3.104) implies the following:

_min

(
P̄ − ĀH P̄ Ā

)
= _min

(
P − ‖A‖22 GH P G

)
. (3.109)

The use of (3.108) and (3.109) in (3.107) gives the desired result.
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C h a p t e r 4

RANDOM ASYNCHRONOUS LINEAR SYSTEMS:
FREQUENCY RESPONSE AND MEAN-SQUARED STABILITY

4.1 Introduction
Linear time-invariant discrete-time systems are well studied mathematical models
that find applications in wide range of different areas ranging from mathematical
finance to implementation of digital filters [94, 33, 213, 200, 95]. Although such
models are especially useful for analyzing (and controlling) dynamical systems that
evolve in time, the mathematical models are useful in numerical linear algebra
problems as well. An example is the “power method” that can extract the dominant
eigenvector of the transition matrix, whose notable application is the PageRank
algorithm used in search engines for ranking web pages [139].

State-space models are studied also in the field of graph signal processing [160,
151], in which the state transition matrix is assumed to model the underlying graph
structure and the state variables are interpreted as the signals held by the nodes of
the graph. In this setting an iteration of the state-space model is equivalent to the
nodes communicating with their neighbors. With this formalism, state recursions
are utilized for distributed implementation of polynomial (FIR) graph filters [158,
149, 150, 154, 172, 173] as well as rational (IIR) graph filters [157, 87, 88, 108].

4.1.1 Contributions of the Chapter
Different from Chapters 2 and 3, this chapter explores the behavior of random asyn-
chronous state-space models when the input is nonzero and time dependent, such as
exponentials and sinusoids. This is done without any a priori assumptions on the
state transition matrix (such as symmetry, normalcy, and so forth), or on the update
probabilities. In particular, this chapter investigates the notion of “frequency re-
sponse” by showing that exponentials continue to be eigenfunctions of linear random
asynchronous systems in a statistical sense. So, a random asynchronous system can
be treated as a time-invariant system in an average sense, despite its randomly time-
varying behavior. The mean-squared stability of random asynchronous systems is
also studied in detail, and it is shown that an unstable system (in the synchronous
world) may get stable with randomized asynchronicity. However, randomized asyn-
chronicity introduces an error into the state variables depending on the amount of
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variation in the input signal as well as the update probabilities. This chapter also
draws parallels between random asynchronous systems and Markov jump linear
systems, which were studied rigorously in [42].

This chapter studies random asynchronous recursions from a linear system theory
viewpoint. Although the focus here is not on any specific application, random
asynchronous recursions have a number of applications, especially in the area of
graph signal processing. For example, in the implementation of graph filters (which
requires nodes to communicate only with their neighbors), nodes can also interact
with their neighbors asynchronously and still obtain convergence to the desired fil-
tering output under mild assumptions (see Section 3.3). Another network related
application studies asynchronous state recursions for the computation of the Fiedler
vector of the graph in order to obtain spectral clustering with asynchronous com-
putations (see Section 2.7). Since the results presented here consider time-varying
input signals, it is possible to construct asynchronous graph filters that achieve spa-
tial (over the network) filtering and time-domain filtering simultaneously. Finally,
random asynchronous recursions can also be viewed as a randomized component-
wise power method, which can be re-formulated to compute the singular vectors of
a given data matrix (see Section 2.8).

4.1.2 Outline
Section 4.2.1 introduces the randomized model considered in this chapter, and Sec-
tion 4.2.2 presents the expected behavior of the randomized system (Theorem 4.1).
The “frequency response or transfer function in the mean” is introduced here. Sec-
tion 4.3.1 describes how the second order statistics of the state vector evolve (The-
orem 4.2), and Section 4.3.2 provides the necessary and sufficient condition for
the mean-squared stability of the randomized recursions (Corollary 4.2). Such sta-
bility is essential in order for the “frequency response in the mean” to be useful
in practice. Section 4.3.3 considers the random asynchronous updates from the
viewpoint of Markov jump systems, and Section 4.3.4 provides a simple sufficiency
condition for the mean-squared stability (Corollary 4.3). Section 4.4 shows that
stability conditions in the synchronous and asynchronous settings do not imply each
other in general (Lemma 4.4), and the stability in the asynchronous case cannot be
determined from the eigenvalues of the state transition matrix alone (Lemma 4.5).
Section 4.5 compares the conditions for the convergence of the random and non-
random asynchronous fixed-point iterations with constant input. Further insights
and discussions are given in Section 4.6.
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The content of this chapter is mainly drawn from [180], and parts of it have been
presented in [182].

4.2 Asynchronous Linear Systems with Exponential Inputs
Consider a discrete time-invariant system with ' inputs, % outputs, and # state
variables, whose state-space description is given as follows:

x:+1 = A x: + B u: + w: , (4.1)

y: = C x: + D u: , (4.2)

where x0 ∈ C# is the initial state vector (initial condition), and w: ∈ C# is the noise
term with the following statistics:

E[w: ] = 0, E
[
w: wH

B

]
= X(: − B) �, (4.3)

where X(·) denotes the discrete Dirac delta function, and � is allowed to be non-
diagonal.

The matrices in the state-space model in (4.1) have the following dimensions:

A ∈ C#×# , B ∈ C#×', C ∈ C%×# , D ∈ C%×', (4.4)

where A is referred to as the state-transition matrix, and the columns of the matrices
B and D will be denoted as follows:

B = [B1 · · · B'], D = [D1 · · · D'] . (4.5)

We further assume that the input signal u: consists of ' exponential signals in the
following form:

u: =
[
U:1 · · · U:'

]T
, (4.6)

where U8’s are assumed to be distinct without loss of generality. Furthermore, we
always assume that

|U8 | ≤ 1, ∀1 ≤ 8 ≤ ', (4.7)

so that u: stays bounded throughout the iterations. While exponential inputs may
seem restrictive, they form the basis for more general practical signals, making this
study useful.

In the noise free case, i.e., � = 0, it is well-known from linear system theory that the
output vector y: ∈ C% in (4.2) can be written as follows:

y: = yss: + ytr: , (4.8)
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where yss
:
denotes the steady-state component, and ytr

:
denotes the transient compo-

nent that are given as follows:

yss: =
'∑
8=1

H8 (U8) U:8 , ytr: = C A:
(
x0 − xss0

)
. (4.9)

whereH8 (I) ∈ C% denotes the transfer function that relates the 8Cℎ input to the output,
which is given as follows:

H8 (I) = D8 + C
(
I I − A

) -1 B8 . (4.10)

We also note that the term xss0 in (4.9) is given as follows:

xss0 =
'∑
8=1

(
U8 I − A

) -1 B8 . (4.11)

It is clear from (4.9) that when the state-transition matrix A is a stable matrix, i.e.,
the following holds true:

d(A) < 1, (4.12)

then the transient component ytr
:
converges to zero as the iterations progress leaving

only the steady-state component yss
:
in the output signal. In fact, stability of A is also

necessary for the transient part to converge to zero, which is a well-known result
from linear system theory [95, 200].

In this chapter we consider the following randomized model:

(x:+1)8 =

(
A x: + B u: + w:

)
8
, 8 ∈ T:+1,

(x: )8, 8 ∉ T:+1,
(4.13)

y: = C x: + D u: , (4.14)

where T: denotes the set of indices updated at the : Cℎ iteration. The model (4.13)
is very similar to the standard synchronous recursions in (4.2) except the fact that
only a random subset of indices (denoted by T: ) are updated in every iteration, and
the remaining indices stay the same. The specific stochastic model regarding the
selection of the indices will be elaborated next.

4.2.1 Random Selection of the Update Sets
In the asynchronous model considered in (4.13), we assume that the 8Cℎ index (state
variable) is updated independently with probability ?8 in every iteration. That is,

P[8 ∈ T: ] = ?8 ∀:, (4.15)
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where ?8 will be referred to as the update probability of the 8Cℎ index. We will use P
to denote the diagonal matrix consisting of the index selection probabilities. More
precisely,

P = diag
(
[?1 ?2 · · · ?# ]

)
. (4.16)

It is assumed that P satisfies 0 ≺ P � I, where the positive definiteness follows from
the fact that no index should be left out permanently during the updates of (4.13).
See Section 4.4 for further details. Additionally, tr(P) = E[|T: |] denotes the number
of indices updated per iteration on average.

4.2.2 Frequency Response in the Mean
Due to the random updates of the state variables it is clear from (4.13) that the
state vector x: is a random vector. So, the state vector will not have an exponential
behavior exactly even when the input is a simple exponential (' = 1 in (4.6)).
Nevertheless, we will show that x: still behaves like a sum of exponential signals in
a statistical sense:

Theorem 4.1. Assume that the randomized asynchronous state recursions in (4.13)
are initialized independently and randomly. Then, the expectation of the state vector
in (4.13) is as follows:

E[x: ] = xss: + xtr: , (4.17)

where

xss: =
'∑
8=1
(U8 I − Ā)−1 B̄8 U:8 , xtr: = Ā:

(
E[x0] − xss0

)
, (4.18)

and
Ā = I + P (A − I), B̄8 = P B8 . (4.19)

Proof. See Section 4.8.2. �

Here, Ā will be referred to as the average state-transition matrix, and B̄ the average
input matrix. We can also represent xss

:
in (4.18) as follows:

xss: =
'∑
8=1

xss0,8 U
:
8 where xss0,8 = (U8 I − Ā)−1 B̄8, (4.20)

which will be useful later in the chapter.

As an immediate corollary to Theorem 4.1, we present the following result regarding
the expected behavior of the output:
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Corollary 4.1. Assume that the randomized asynchronous state recursions in (4.13)
are initialized independently and randomly. Then, the expectation of the output in
(4.14) is as follows:

E[y: ] = yss: + ytr: , (4.21)

where

yss: =
'∑
8=1

H̄8 (U8) U:8 , ytr: = C Ā:
(
E[x0] − xss0

)
, (4.22)

and
H̄8 (I) = D8 + C

(
I I − Ā

) -1 B̄8 . (4.23)

This can, therefore, be regarded as the “transfer function in the mean” from the 8Cℎ

input node to the output.

Proof. Due to (4.6), (4.14), and Theorem 4.1, the expectation of y: can be written
as follows:

E[y: ] = CE[x: ] +
'∑
8=1

D8 U
:
8 = yss: + ytr: , (4.24)

where yss
:
and ytr

:
are as in (4.22). �

Regarding the form in (4.21) we first note that the terms yss
:
and ytr

:
are deterministic

quantities, and the expectation is with respect to the random selection of the indices,
the input noise, and the random selection of the initial condition.

Corollary 4.1 shows that the random output vector y: behaves the same as its
deterministic counterpart (4.8) in expectation. That is, E[y: ] can be decomposed
into steady-state and transient parts similar to (4.8). Therefore, the quantity H̄8 (I)
given in (4.23) can be regarded as the “transfer function” from the 8Cℎ input to the
output in the expectation sense.

It is clear from (4.22) that as long as the average state transition matrix Ā is stable,
i.e., the following holds true:

d(Ā) < 1, (4.25)

the component ytr
:
converges to zero irrespective of the observation matrix C and

the statistics of the initial condition. Thus, the condition (4.25) is both necessary
and sufficient for E[y: ] to behave like a sum of exponentials, that is,

lim
:→∞
E
[
y: − yss:

]
= 0. (4.26)

This shows that when (4.25) is satisfied an exponential input results in an exponential
output in expectation even with the randomized asynchronous state recursions.
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4.2.3 A Running Numerical Example
In order to demonstrate the behavior of the random vector y: , we consider the
following state-space model with # = 4 state variables, ' = 1 input, and % = 1
output:

A =
1

10


-4 -1 2 -6
4 -6 -5 3
2 -2 7 2
5 9 -3 1


, B =


1
4
2
3


, C =


1
1
1
1



T

, D = 0, (4.27)

where we point out that the matrix A is not stable since d(A) ≈ 1.0441. As we
shall discuss later in Section 4.3, stability of the randomized asynchronous state
recursions does not require stability of the state-transition matrix in general.

In the following numerical example we assume that P = ? I, i.e., all nodes have the
update probability ? and assume that � = 0. Furthermore, we assume that the input
signal has the following complex exponential form:

U = 4 92c/100 =⇒ u: = 4 92c:/100. (4.28)

In Figure 4.1 we visualize a realization of the output signal y: together with the
steady-state component yss

:
as well as the input signal D: for three different update

probabilities, namely, ? ∈ {0.1, 0.3, 0.6}. The figure shows only the real part of
the signals for convenience.

From Figure 4.1 it is clear that the random vector y: is not a complex exponential in a
strict sense, yet it “behaves like” one. We also note that y: has the same “frequency”
as the input signal irrespective of the update probabilities.

Figure 4.1 shows also that the response of the random asynchronous system depends
on the update probabilities, which is also apparent from the expression in (4.23). In
fact, the response of the random asynchronous updates running on a system denoted
with (A,B,C,D) can be represented in an average sense as the response of a syn-
chronous system (Ā, B̄,C,D). As a result, even when a single state variable updates
its value with a different probability, the response of the overall system changes. In
short, different update probabilities result in different “frequency responses” while
leaving the output frequency unchanged.

4.3 Second Order Stability of the State Variables
Corollary 4.1 together with Figure 4.1 show that the random vector y: behaves like
yss
:
in expectation. However, in order to interpret the response of the randomized
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Figure 4.1: A realization of the output signal with the state-space model in (4.27),
the frequency in (4.28), and the probabilities (a) ?=0.1, (b) ?=0.3, and (c) ?=0.6.
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asynchronous system meaningfully, the random variable y: must be ensured to have
a “finite amount of deviation” from yss

:
. In this regard we consider the following

quantities:
r: = y: − yss: , q: = x: − xss: , (4.29)

where r: will be referred to as the error in the output, and q: will be referred to as
the error in the state variables. It is readily verified that the error terms in (4.29) are
related with each other through the output matrix C as follows:

r: = C q: . (4.30)

In the rest of this section we will focus on the term q: , i.e., study the internal stability
of the random asynchronous system. More precisely, we consider the error (auto)
correlation matrix of the state variables defined as follows:

Q: = E
[
q: qH

:

]
∈ C#×# . (4.31)

At this point it is very important to emphasize that the error correlation matrix Q:

does not converge to zero in general even when no noise present in the system. More
interestingly, Q: may not converge to a point at all; rather, it shows an oscillatory
behavior. This is an inherent side effect of the randomized asynchronicity, which
will be discussed in detail. As a result, we will consider the conditions under which
Q: stays bounded (or, equivalently q: stays bounded in the mean-squared sense).
Here, “second order stability” is synonymous to “boundedness of the matrix Q: .”

We also note that stability of the matrix Ā merely ensures the first order stability of
the error term. That is,

d(Ā) < 1 ⇐⇒ lim
:→∞
E[q: ] = 0. (4.32)

On the other hand, stability of Ā is not sufficient to ensure the second order stability
of q: . (See Lemma 4.3 in Section 4.4.1).

In what follows, we will first study how the error correlation matrix Q: evolves
throughout the iterations (Theorem 4.2). Based on this result, we will consider
the necessary and sufficient condition for the boundedness of the error correlation
matrix (Corollary 4.2). Later, we will consider the updates from the Markovian
jump system view point, and then we will provide a sufficiency condition for the
second order stability.
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4.3.1 Evolution of the Error Correlation Matrix
We start by consider the following matrix valued function:

i(X) = Ā X ĀH +
(
(A − I) X (AH − I)

)
�

(
P − P2) , (4.33)

where Ā is as in (4.19), and � denotes the Hadamard product.

Note that the function i(·) is defined through the state-transition matrix A as well
as the update probabilities P. More importantly, i(·) is a positive linear map. So,
the following is readily verified to hold true (for any A and P):

X � 0 =⇒ i(X) � 0. (4.34)

The importance of the function i(·) follows from the fact that it governs the evolution
of the error correlation matrix through the iterations. This is presented precisely as
follows:

Theorem 4.2. The error correlation matrix of the state variables evolves according
to the following recursion:

Q:+1 = i(Q: )+P�P+��
(
P−P2)+<{(

δ: +2 (Ā−I) xtr:
)
δH:

}
�

(
P−1−I

)
, (4.35)

where <{·} denotes the real part of its argument, and the deterministic vector
δ: ∈ C# is defined as follows:

δ: = xss:+1 − xss: =
'∑
8=1
(U8 I − Ā)−1 B̄8 U:8 (U8 − 1). (4.36)

Proof. See Section 4.8.3. �

In order to study the behavior of the recursion in (4.35), we first represent the linear
map i(·) as a matrix-vector product by vectorizing (4.33). That is,

i(X) = vec-1
(
� vec(X)

)
, (4.37)

and the matrix � ∈ C#2×#2 is as follows:

� = Ā∗ ⊗ Ā +
(
(I − P) ⊗ P

)
J
(
(A∗ − I) ⊗ (A − I)

)
, (4.38)

where A∗ denotes the element-wise conjugate (not conjugate transpose) of the
matrix, and J is a diagonal matrix as follows:

J =
#∑
8=1
(e8 eH8 ) ⊗ (e8 eH8 ) ∈ R#

2×#2
. (4.39)
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Since the error correlation matrix evolves according to i(·) and� is the matrix rep-
resentation of the linear map, spectral properties of the matrix� are very important
in the behavior of the error correlation matrix Q: . In this regard, we first note that
� has complex eigenvalues in general. Secondly, the matrix � always has a real
nonnegative eigenvalue that is equal to its spectral radius, and the corresponding
eigenvector is the vectorized version of a positive semi-define matrix. More pre-
cisely, it is always possible to find a nonzero X � 0 such that the following holds
true:

i(X) = d(�) X, (4.40)

which follows from the extensions of the Perron-Frobenius theorem to positive maps
in more general settings. We refer to [99, Theorem 5], or [61, Theorem 2.5] for the
precise details.

4.3.2 The Necessary and Sufficient Condition
As a corollary to Theorem 4.2, we present the following result regarding the long
term behavior of the error correlation matrix:

Corollary 4.2. If the following holds true:

d(�) < 1, (4.41)

where the matrix� is as in (4.38), then the following holds true regarding the error
correlation matrix of the state variables:

lim
:→∞

(
Q: −Qn −Qr

:

)
= 0, (4.42)

where the matrices Qn, Qr
:
∈ C#×# are given as the solution of the following linear

matrix equations:

Qn = i(Qn) + P�P + � �
(
P − P2) . (4.43)

Qr
:+1 = i(Q

r
: ) +

(
δ: δ

H
:

)
�

(
P−1 − I

)
. (4.44)

Conversely, if the condition (4.41) is violated, then Q: increases unboundedly as :
goes to infinity.

Proof. See Section 4.8.4. �

Regarding the limit in (4.42) it is important to note that the error correlation matrix
Q: does not converge to a point in general. So, lim:→∞Q: may not exist. How-
ever, as long as the stability condition (4.41) is met, Corollary 4.2 shows that Q:
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approaches the sum Qn +Qr
:
, where Qn is the error due to the input noise and Qr

:

is the error due to the randomized asynchronicity. In what follows we will discuss
these terms.

Error due to the noise

The input noise affects the error correlation matrix through the term Qn defined by
the equation (4.43). By vectorizing both sides of (4.43), a numerical solution to Qn

can be obtained as follows:

vec(Qn) =
(
I −�

)−1 vec
(
P�P + � �

(
P − P2) ) . (4.45)

We point out that Qn satisfies Qn � 0 as long as � � 0 (see Corollary 4.2 in Sec-
tion 4.3.3), and it does not have any dependency on the iteration index : . So, the
effect of the input noise remains the same throughout the iterations (which is not
the case for Qr

:
). Furthermore, it is clear from (4.45) that Qn depends linearly on

the noise covariance matrix �. However, the error due to the noise is always larger
than the noise itself, which is stated more precisely in the following lemma:

Lemma 4.1. For any given A and P satisfying the stability condition (4.41), the
following holds true:

(Qn)8,8 ≥ (�)8,8 ∀1 ≤ 8 ≤ #, (4.46)

where Qn is the solution of the linear matrix equation in (4.43).

Proof. See Section 4.8.5. �

In words, Lemma 4.1 states that the error variance due to the noise in a state variable
is always larger than the variance of the noise at the input term of the state recursion.
The relation between Qn and the matrices A and P are quiet intricate. In fact,
one can search for a set of probabilities that minimize tr(Qn) for a given A and �.
However, the optimal choice for P is not known at this time.

Randomization Error

Due to the randomized nature of the updates in (4.13) there is an inherent error
in the state vector that is given precisely by the term Qr

:
in (4.44). An important

observation is that Qr
:
does depend on the iteration index : in general (unlike the
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error due to the noise). More precisely, the solution to (4.44) can bewritten explicitly
as follows:

Qr
: =

'∑
8=1

'∑
9=1

Q8, 9

(
U8 U

∗
9

) :
, (4.47)

where U8’s denote the base of the exponential input signals as in (4.6), and the
matrices Q8, 9 ’s are as follows:

vec(Q8, 9 ) = (1−U8) (1−U∗9 )
(
U8 U

∗
9 I−�

)−1 vec
(
(xss0,8 (x

ss
0, 9 )

H) � (P-1−I)
)
, (4.48)

and xss0,8 is as in (4.20).

The solution in (4.47) shows that decaying components of the input signal, i.e.,|U8 | <
1, affect the error correlation matrix initially only. Their effect fade away as the
iterations progress. On the other hand, the components with |U8 | = 1 (i.e., complex
sinusoids) have a sustaining effect on the error correlation.

The long term behavior

The expression in (4.47) shows that the randomization error (hence, the error cor-
relation itself) has an oscillatory behavior in general. We refer to Figure 4.3 for a
numerical example. Furthermore, whenl8 denotes the frequency of the 8Cℎ complex
exponential input, (4.47) shows that the error correlation matrix has a component
with frequency l8 − l 9 for all 1 ≤ 8, 9 ≤ '. So, difference frequencies are also
important in the behavior of the error correlation matrix. We will re-visit this point
later in Section 4.6.1.

The case of single input

When the input signal consists of only one complex exponential, i.e., ' = 1 and
D: = 4

9l: , the expression for the randomization error in (4.47) reduces to the fol-
lowing simpler form:

vec(Qr
: ) = 4 sin2(l/2)

(
I −�

) -1 vec
(
(xss0 (x

ss
0 )

H) � (P-1 − I)
)
, (4.49)

where it is important to note that the right-hand side is free from the iteration index
: . So, when there is only one complex exponential input, the randomization error
Qr
:
does not vary throughout the iterations despite the time-varying nature of the

input signal. As a result, the error correlation matrix Q: converges to a point as
long as the condition (4.41) is met.
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Although the randomization error stays the same throughout the iterations in the
case of single complex exponential input, the actual value of the error depends on
the input frequency l as well as the update probabilities P. Generally speaking, the
randomization error tends to be smaller when the input signal varies slowly. It is also
generally true that randomization error tends to be larger as the update probabilities
gets smaller. We will elaborate more on this topic later in Section 4.6.2.

4.3.3 Markov Jump Linear System Viewpoint
We would like to point out that the random asynchronous model in (4.13) can be
viewed as a particular instance of a Markov jump linear system, which has the
following model:

x:+1 = A8: x: + B8: u: , (4.50)

where 8: denotes the state of the underlying Markov chain at the iteration : , and the
Markov chain has finite number of states. So, the state vector x: is updated with a
different state transition matrix in every iteration (as determined by the state of the
Markov chain). This is a well-studied model, and we refer to [42] for a rigorous
treatment of the topic.

It is possible to represent the random asynchronous model (4.13) as a Markov
jump system with the underlying Markov chain having 2# states since there are 2#

different ways of selecting an update set in every iteration of the model. So, a direct
application of [42, Corollary 3.26] to the random asynchronous model (4.13) gives
the following result:

Lemma 4.2. The following statements are equivalent:

• Random asynchronous model in (4.13) is stable in the mean-squared sense,

• d(�) < 1,

• There exists X � 0 such that X � i(X),

• For any given Y � 0, there exists a unique X � 0 such that X = i(X) + Y,

where i(·) is as in (4.33), and the matrix � is as in (4.38).

Proof. See Section 4.8.6. �
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Although Lemma 4.2 endorses the importance of the matrix� in the stability of the
random asynchronous model, it is important to note that the viewpoint of switching
systems provides a more general framework for randomized linear techniques (see
Chapter 4 of this thesis). In the case of random asynchronous updates, underlying
state transition matrices (i.e., states of the Markov chain) are related to the matrix A
in a very specific way. So, the analysis presented in this chapter is tailored for the
model in (4.13), and its mean-squared stability is shown to be determined precisely
by the spectral radius of the matrix �.

4.3.4 A Sufficient Condition
In addition to the necessary and sufficient condition given by Corollary 4.2, it is also
possible to ensure the stability of the recursions with a stronger condition based on
a simple linear matrix inequality. In this regard, we present the following result as
a corollary to Theorem 4.2:

Corollary 4.3. If the state-transition matrix A and the update probabilities P satisfy
the following:

AH P A ≺ P, (4.51)

then, the trace of the error correlation matrix of the state variables can be bounded
as follows:

lim sup
:→∞

tr(Q: ) ≤
tr(P�) + �2 ‖P−1 − I‖2
_min(P − AH P A)

, (4.52)

where � is an arbitrary number satisfying the following:

‖δ: ‖2 ≤ � ∀ :. (4.53)

Proof. See Section 4.8.7. �

A number of remarks regarding Corollary 4.3 are in order:

1) Convergence of the error correlation: When the input signal consists of multiple
exponential signal, i.e., ' > 1, the error correlation matrix shows an oscillatory
behavior as described in (4.47). As a result, tr(Q: ) does not converge in general.
Nevertheless, (4.52) provides an upper bound on the error term as the iterations
progress (: goes to infinity).

2) Difference in the state variables: As long as the state variables have a finite
steady-state component, it is always possible to select a finite value for �. Generally
speaking, when the input signal u: varies slowly, the vector δ: tends to be smaller.
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So, the upper bound (as well as the error term itself) gets smaller. We will elaborate
more on this topic later in Section 4.6.2.

3) Equal probabilities: When all the indices are updated with equal probabilities,
i.e., P = ? I for some ?, the condition (4.51) reduces to ‖A‖2 < 1. So, the error
correlation matrix stays bounded as long as the state variables are updated with
equal probabilities (no matter what the probability is) and A has a bounded spectral
norm. However, the probability does affect the actual value of the error correlation
matrix.

4.4 Synchronous v.s. Asynchronous Stability: Comparisons
In previous sections we studied stability of the randomized state recursions from
two different perspectives, namely expected behavior and the second order statistics
of the error term. In this section, we will discuss the relations between stability of
the state-transition matrix A and the matrices Ā and �. In particular, we will show
that stability in the synchronous world and stability in the asynchronous world do
not imply each other in general. Furthermore, stability in the asynchronous world
depends on the update probabilities P as well as the eigenvector structure of the
matrix A.

Recall from Section 4.3 that when a randomized asynchronous system is said to be
stable, it means that the error correlationmatrixQ: stays bounded as the randomized
iterations progress. In general, the error correlation matrix does not converge to zero
even when no noise is present in the system. In fact, the amount of error depends
on the amount of variation in the input signal as well as the update probabilities.

Two remarks are in order:

The Synchronous Case

Results given by Theorem 4.1 and Corollary 4.2 are consistent with the synchronous
case. That is,

P = I =⇒ Ā = A, � = A∗ ⊗ A, (4.54)

which shows that stability of A, Ā and� are equivalent to each other in the case of
synchronous updates. In this case we also note that the randomization error (4.44)
becomes Qr

:
= 0. So, as long as A is a stable matrix, the error correlation matrix

converges to Qn whose value depends only on the noise statistics � and the matrix
A.
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Strict Positivity of the Update Probabilities

Stability of the matrix� implicitly ensures the strict positivity of the update proba-
bilities. More precisely,

d(�) < 1 =⇒ P � 0, (4.55)

which can be verified by observing that when there exists an index 8 such that ?8 = 0
the matrix � has a left eigenvector e8 ⊗ e8 with eigenvalue 1. So, the stability
condition requires no state variable to be left out permanently during the updates.

4.4.1 Mean v.s. Mean-Squared Error
Since having a finite variance is more restrictive than having a finite mean for a
random variable, it is reasonable to expect that stability of the matrix � is more
restrictive than stability of the matrix Ā. This is, indeed, the case:

Lemma 4.3. Stability of the matrix � implies stability of the matrix Ā, that is,

d(�) < 1 =⇒ d(Ā) < 1. (4.56)

Proof. From the definition of i(·) in (4.33), we have i(X) � Ā X ĀH for anyX � 0.

From Lemma 4.2, the condition d(�) < 1 implies that there exist X � 0 such that
the following holds true:

X � i(X) � Ā X ĀH =⇒ X � Ā X ĀH, (4.57)

which implies that d(Ā) < 1 due to the stability properties of the discrete Lyapunov
equation. �

The importance of Lemma 4.3 follows from the fact that there is no need to consider
matrices Ā and � separately. As long as � is stable, it is guaranteed that E[q: ]
converges to zero and E[‖q: ‖22] remains bounded as the iterations progress. Since
the converse of (4.56) does not hold true in general (see Figure 4.2), we will focus
on stability of � in the rest of this section.

4.4.2 Stability in Synchronous v.s. Asynchronous Case
The most important observation regarding stability of the randomized asynchronous
state recursions is that a stable synchronous system may get unstable with random-
ized asynchronicity, and conversely an unstable system (in the synchronous world)
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may be stabilized simply by the use of randomized asynchronicity. This is a re-
markable property of the randomized asynchronous updates, which is observed also
in Chapter 2 for the case of A being a normal matrix. We state this observation
formally with the following lemma:

Lemma 4.4. In general, stability of A is neither necessary nor sufficient for stability
of Ā and stability of �.

Proof. Consider the following examples of size # = 2:

A1 =

[
-0.9 0.8
0.8 -0.3

]
, A2 =

[
1.25 0.25
-6.25 -1.25

]
, (4.58)

which can be verified to satisfy d(A1) > 1 and d(A2) = 0. Then, we construct
the matrices Ā and � as in (4.19) and (4.38), respectively for both A1 and A2 for
all possible values of P = diag( [?1 ?2]). Figure 4.2 presents the regions of P for
which Ā is stable, or � is stable. This proves the claim. �

(a) (b)

Figure 4.2: The set of probabilities that ensures the stability of the randomized
asynchronous updates for the matrices (a) A1, (b) A2 defined in (4.58). The top-
right corner indicates P = I, which corresponds to the synchronous case.

We would like to note that the sufficiency condition given by Corollary 4.3 does
require A to be a stable matrix. So, Corollary 4.3 fails to explain why unstable
synchronous systems may get stable with the randomized asynchronicity. The
importance of Corollary 4.3 follows from the fact that condition (4.51) is easy to
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check, or satisfy, in practical applications (see Theorem 3.3 in Chapter 3 of this
thesis).

4.4.3 The Set of Probabilities Ensuring Stability
Although Figure 4.2a shows that some unstable systems (in the synchronous world)
can get stable with the use of randomized asynchronicity, it should be noted that not
every unstable synchronous system can get stable with randomized asynchronicity.
Therefore, it is important to check whether or not there exists a set of update
probabilities for which randomized asynchronous recursions are stable. In this
regard, we consider the following definition:

Definition 4.1 (The stability set). For a given matrix A, we will use S(A) to denote
the set of probabilities such that the matrix � is stable. More precisely,

S(A) =
{
P | d(�) < 1, 0 � P � I}, (4.59)

where P is diagonal, and the matrix � is as in (4.38).

As a numerical example, consider thematricesA1 andA2 in (4.58). The blue regions
in Figures 4.2a and 4.2b denote the stability sets S(A1) and S(A2), respectively.

Some remarks are in order regarding Definition 4.1:

1) If the set S(A) is empty for a given matrix A, then the system cannot be stable
whether the updates are synchronous, or asynchronous.

2) When the matrix A itself is stable, i.e., d(A) < 1, the stability set S(A) is not
empty since I ∈ S(A).

3) The stability set S(A) is not convex in general. That is, a random asynchronous
system can be stable with probabilities P1 or P2, but it may get unstable with
g P1 + (1 − g) P2 where 0 < g < 1. See Figure 4.2a as an example, in which the
stability set (indicated with color blue) is visibly non-convex.

4) The sufficiency condition given by Corollary 4.3 describes a convex subset of the
stability set. More precisely,

AH P A ≺ P =⇒ P ∈ S(A), (4.60)

and it is readily verified that the set of probabilities satisfying the condition (4.51)
is convex. However, it should be noted that when A is not a stable matrix, the set of
probabilities described by the condition AH P A ≺ P is empty, whereas the stability
set S(A) may or may not be empty.
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4.4.4 Importance of the Similarity Transform
In discrete-time, linear, time-invariant systems (i.e., the case of synchronous state
recursions), it is well-known that stability is determined by the poles of the system
(i.e., eigenvalues of A), and stability is not affected by a similarity transform. More
precisely, for a given invertible matrix T ∈ C#×# , we have

d(A) = d
(
T-1 A T

)
. (4.61)

So, as long as all the eigenvalues of A are inside the open unit disk the system is
stable irrespective of the similarity transform T. Nevertheless, we point out that
similarity transforms play a role in some other aspects, such as the suppression of
the overflow oscillations in fixed point digital filters [120, 197, 123].

On the contrary, eigenvectors of the matrix A (in addition to eigenvalues) affect the
mean-squared stability of random asynchronous recursions, and in general,

S(A) ≠ S
(
T-1 A T

)
. (4.62)

In order to point out the importance of a similarity transform more rigorously, we
present the following lemma:

Lemma 4.5. LetA ∈ C#×# be a triangular matrix with �8,8 denoting the 8Cℎ diagonal
element of A. Then,

d(�) = 1 + max
1≤8≤#

?8
(
|�8,8 |2 − 1

)
. (4.63)

In addition, the following holds true for a triangular matrix A irrespective of the
index update probabilities:

d(A) < 1 ⇐⇒ d(�) < 1. (4.64)

Proof. See Section 4.8.8. �

The significance of Lemma 4.5 follows from the fact any square matrixA is unitarily
triangularizable (i.e., the Schur decomposition [85, Section 2.3]):

A = T U T-1, (4.65)

where U is upper triangular and T is unitary. Thus, a linear system with stable poles
can always be realized in a triangular form that is guaranteed to be stable under the
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random asynchronous model irrespective of the update probabilities. In the non-
triangular case, a realization of a systemwith stable poles is not guaranteed to remain
stable under the randomized asynchronous model in general. (See Lemma 4.4.)

An interesting special case of the discussion above is the finite impulse response
(FIR) system. In this regard, consider the example A2 from (4.58) together with the
direct form description of an FIR system of size # = 2:

A2 =

[
1.25 0.25
-6.25 -1.25

]
, A3 =

[
0 1
0 0

]
, (4.66)

whereA2 andA3 are similar to each other (i.e., there exists aT such thatA2 = T-1A3T).
Although a randomized systemwithA3 is stable for any set of probabilities (Lemma4.5),
a randomized systemwithA2 may get unstable for some set of probabilities as shown
in Figure 4.2b.

Finally, we note that the optimal similarity transform is not known at this point, and
it is left as a future research direction.

4.5 The Constant Input: Fixed-Point Iterations
In this section we will consider the random asynchronous model with a constant
input, that is, the input signal will be assumed to be in the form of u: = u for all
: . Although this is a special case of what we studied in the previous sections,
the constant input case gives more perspective from the viewpoint of fixed-point
iterations. It allows us to relate these results to some known classical results for
asynchronous updates [32, 14, 19, 20]. It also reveals connections to eigenspace
estimation, singular vector estimation, and principal component analysis in the
random asynchronous context.

We start by noting that when the input is constant, it suffices to consider the case of
' = 1 with U = 1 in the model (4.6) since a linear combination of constant inputs
can be equivalently considered as a single constant input. In particular, we will
consider the following type of updates:

(x:+1)8 =

(A x: )8 + (B + w: )8, 8 ∈ T:+1,

(x: )8, 8 ∉ T:+1,
(4.67)

where the noise term w: follows the statistics in (4.3) as before.

Regarding the expected value of the state variables in (4.67), Theorem 4.1 gives the
following

xss: =
(
I − Ā

) -1 B̄ =
(
I − A

) -1 B = x★, (4.68)
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which shows that the steady-state component xss
:
depends neither on the update

probabilities nor on the iteration index : . In fact, xss
:
= x★ corresponds to the

fixed-point of the asynchronous iterations in (4.67), i.e., x★ = A x★ + B.

Although the fixed-point is determined solely by the pair (A,B), the convergence of
the randomvector x: to the fixed-point x★ is still affected by the update probabilitiesP
(as well as thematrixA). In particular, Corollary 4.2 shows that the condition (4.41),
i.e., stability of the matrix�, is both necessary and sufficient for the convergence of
x: to x★ in the mean-squared sense when no noise is present. When there is noise,
the error correlation matrix converges to Qn as given in (4.43).

Additionally, in the case of a constant input it is clear that the vector defined in
(4.36) becomes δ: = 0. So, we can select � = 0 in (4.53), and Corollary 4.3 shows
that whenever AH P A ≺ P is satisfied, we have the following:

lim
:→∞
E
[
‖x: − x★‖22

]
≤ tr(P�)
_min(P − AH P A)

, (4.69)

where limit supremum from (4.52) is replaced with limit since the error correlation
matrix indeed converges to Qn. We note that the bound in (4.69) was first presented
in Corollary 3.1 together with a lower bound on the limit of the error term.

4.5.1 Comparison with the Classical Results
Asynchronous (non-random) fixed-point iterations are well studied problems in the
literature. Theoretical analysis of the linear case can be traced back to the studies in
[32, 14], which assume that only one index is updated per iteration and allow the use
of the past values of the iterant. The study [32] showed that the following condition
is both necessary and sufficient for the convergence of the asynchronous updates:

d( |A|) < 1, (4.70)

where |A| is the matrix obtained by replacing the elements of A by their absolute
values. In the non-random setting considered in [32, 14], the condition (4.70) is
necessary in the sense that when (4.70) is violated there exists an index sequence
for which asynchronous iterations do not converge.

It can be shown that the condition (4.70) is more restrictive than the stability of
the matrix A. It is even more restrictive than the sufficient condition given by
Corollary 4.3. That is, the following holds true (Lemma 3.1):

d( |A|) < 1 =⇒ ∃P s.t. AH P A ≺ P. (4.71)
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So, if A is unstable, there exists an index sequence for which iterations do not
converge. On the other hand, Corollary 4.2 shows that the convergence may be
achieved even when A is unstable. Although these results appear to be contradic-
tory, the difference is the notion of convergence: the condition (4.70) is necessary
and sufficient for the convergence of any index sequence (as in sure convergence),
whereas the condition (4.41) is necessary and sufficient for the mean-squared con-
vergence. In addition, the result in [42, Corollary 3.46] implies that the condition
(4.41) is sufficient for almost sure convergence as well.

As a result, we conclude that the asynchronous case is more restrictive than the
synchronous case when the worst case behavior is considered. On the other hand,
the asynchronous case may be less restrictive than the synchronous case when the
statistical behavior is considered.

4.5.2 The Case of Zero Input
The asynchronous model (4.13) shows an interesting behavior when the input signal
is identically zero, i.e., u: = 0 for all : , which can be equivalently represented as
taking B = 0. In this case the state recursions reduce to the following form:

(x:+1)8 =

(A x: )8 + (w: )8, 8 ∈ T:+1,

(x: )8, 8 ∉ T:+1,
(4.72)

and the fixed-point becomes x★ = 0. So, under the stability condition (4.41) the
state variables converge to zero in the mean-squared sense (or, reach an error floor
determined by Qn).

It is important to note that the existence of the fixed-point x★ in (4.68) requires A
not to have an eigenvalue equal to 1 so that I − A is invertible. This requirement
is satisfied implicitly by the stability condition (4.41) since A having an eigenvalue
equal to 1 implies d(Ā) ≥ 1, thus d(�) ≥ 1.

When the matrix A has an eigenvalue equal to 1, there are infinitely many fixed-
points (as opposed to the unique one in (4.68)), and they correspond to the eigenspace
of A with the eigenvalue 1. Nevertheless, recursions in (4.72) can still be stable, and
the random vector x: can convergence to a point in the eigenspace (an eigenvector).
This convergence behavior is studied in Chapter 2, where random asynchronous re-
cursions are used for obtaining spectral clustering in autonomous networks. Further-
more, Section 2.8 used the model (4.72) for distributed asynchronous computation
of dominant singular vectors of a given data matrix.
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4.6 Further Discussions
In this section we make further observations regarding the behavior of random
asynchronous recursions. These bring further insights into the behavior of such
systems.

4.6.1 Real Sinusoidal v.s. Complex Exponential Input
First we will compare the behavior of the error correlation matrix for the following
two cases of inputs:

D: = 4
9l: , D: = cos(l:). (4.73)

Both input signals oscillate at frequency l, however the error correlation matrix
Q: converges to a point in the case of 4 9l: , but Q: oscillates with frequency 2l in
the case of cos(l:). This is due to cos(l:) = (4 9l: + 4- 9l: )/2, so the difference
frequencies are {-2l, 0, 2l}. Thus, the randomization error in (4.47) has terms
oscillating at frequency 2l, and so does the error correlationQ: as : goes to infinity.

We demonstrate this behavior in Figure 4.3, in which we use the numerical example
in (4.27). When the second rows of Figure 4.3a and Figure 4.3b are compared,
it is clear that error correlation shows an oscillatory behavior in the case of a
real sinusoid, whereas it converges to a constant value in the case of a complex
exponential as given in (4.49).

4.6.2 Signal-to-Randomization Error Ratio (SRR)
Corollary 4.2 shows that state variables always contain a randomization error even
when no noise is present in the input. So, the state vector can be decomposed as
follows:

x: = xss: + q: , (4.74)

where xss
:

denotes the expected behavior of the state variables as the iterations
progress (see Theorem 4.1), and q: denotes the randomization error that has a zero
mean and a finite variance under the stability condition given by Corollary 4.2.
Therefore, it is important to consider a signal-to-randomization error ratio (SRR)
when studying the behavior of the state vector x: in a random asynchronous system.
In this regard, we consider the following quantity:

SRR: = ‖xss: ‖
2
2 / tr(Qr

: ). (4.75)

In general, the quantity in (4.75) varies with : since both xss
:
and tr(Qr

:
) are functions

of : as described in Theorem 4.1 and Corollary 4.2, respectively. For the sake of
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Figure 4.3: Comparison between inputs (a) D: = 4 9l: , and (b) D: = cos(l:) with
frequency l = 2c/100. The first row shows the input signal, and the second row
shows the trace of the error correlation matrix, which is obtained by averaging over
106 independent runs.

simplicity, in the rest of this section we assume that the input signal is D: = 4 9l: . So,
we have ‖xss

:
‖ = ‖(4 9l I − Ā)-1 B̄‖, and the randomization error is given in (4.49).

Thus, SRR: remains constant as a function of the iterations. However, the value
of SRR: depends on the input frequency l as well as the update probabilities P.
In order to demonstrate this point, we compute SRR numerically for the system in
(4.27) for different values of l and ?. These results are presented in Figure 4.4.

Generally speaking, SRR tends to be larger as the input signal varies more or the
state variables are updated less frequently.

We first note that the matrix A given in (4.27) has d(A) > 1. However, for the case
of P = ? I, we have numerically verified that the stability condition (4.41) is satisfied
for 0 < ? ≤ 0.9542. This is why the case of ? > 0.9542 is excluded in Figure 4.4.

Heuristically speaking, Figure 4.4 shows that state variables in the randomized case
are trying to “keep up with the input signal.” As the input signal varies faster
(larger values ofl), or the state variables are updated slower (small values of ?), the
randomization error tends to be larger. However, SRR: is notmonotonic in terms of
the input frequency l and the update probabilities P in general. This complicated
behavior follows from the fact that signal power and randomization error change
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Figure 4.4: SRR of the example in (4.27) for different values of the input frequency
l and P = ? I. The plot is in dB scale, i.e., 10 log10(SRR) is plotted. Dotted black
curve corresponds to the case of 0 dB.

simultaneously with the input frequency and the update probabilities.

4.6.3 The Distribution of the Random Variables
Due to random selection of the indices, the state vector x: in the asynchronous
model (4.13) is a discrete random vector with at most 2#: distinct values, as there
are 2# different ways of selecting an update set in any iteration. We note that the
first and the second order statistics of x: are described previously in Theorem 4.1
and Corollary 4.2, respectively. In this section, we will consider the distribution of
the random vector x: (as well as the output y: ).

One can consider approximating x: with a multivariate complex Gaussian random
vector with mean xss

:
and covariance Q: due to the independent selection of the

indices and the central limit theorem. Contrary to the anticipation, we have numer-
ically observed that the random vector x: does not have a Gaussian distribution in
general as we demonstrate next.

In this regard, we consider the system in (4.27) with the input D: = cos(2c:/100),
and we take P = ? I and � = 0. Since the output is a scalar real random variable in
this case, we will focus on y: for the sake of simplicity. In particular, we present
the empirical distribution of y: for several different values of : for the probabilities
? = {0.3, 0.6, 0.9} in Figure 4.5.
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Figure 4.5: Empirical distributions of the output random variable for the update
probabilities (a) ? = 0.3, (b) ? = 0.6, (c) ? = 0.9. Dotted lines denote the mean of
the corresponding random variables. Distributions are obtained via 109 independent
samples of the random variables.

Numerical results in Figure 4.5 show that the distributions are not necessarily
symmetric with respect to their means, and they can be multimodal. So, it is clear
that the random variable y: does not have a Gaussian distribution in general.

In addition to the mean and the variance being a function of the iteration index
: (see Theorem 4.1 and Corollary 4.2), Figure 4.5 shows that overall “shape”
of the distributions also change with iterations. In particular, Figures 4.5b and
4.5c show that the distributions can be multimodal or unimodal depending on : .
Similarly, update probabilities also affect the distributions. As discussed previously
in Section 4.6.2, distributions tend to be “narrower” as the update probabilities get
larger. However, the precise relationship between the update probabilities and the
distributions is not know at this point.
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4.6.4 Effect of the Stochastic Model
Although linear systems show an unexpected behavior under randomized asyn-
chronicity, precise details of the stochastic model are also important in determining
the mean-squared stability. The results presented in this chapter are valid only for
the stochastic index selection model described in Section 4.2.1, and the stability con-
dition can be different under different models. In this section we will demonstrate
this point.

We start by considering the model in Section 4.2.1 with all the indices being updated
with probability `/# , so that ` uniformly randomly selected indices are updated
per iteration on average, that is, E[|T: |] = ` for all : . More precisely,

P = `

#
I =⇒ Ā = I + `

#

(
A − I

)
. (4.76)

In this case, the matrix � in (4.38) has the following form:

� = Ā∗ ⊗ Ā + `(# − `)
#2 J

(
(A∗ − I) ⊗ (A − I)

)
. (4.77)

We now consider a slightly different model where we update exactly ` indices
per iteration. So, we have |T: | = ` for all : , and the set T: is selected uniformly
randomly among all possible

(#
`

)
subsets of size `. In this case the average state

transition matrix Ā still has the form in (4.76). However, it can be shown (using the
identity (2.2)) that the error correlation matrix evolves according to the following
function:

i′(X) = Ā X ĀH − `(# − `)
#2(# − 1)

(A − I) X (AH − I)

+ `(# − `)
# (# − 1)

(
(A − I) X (AH − I)

)
� I. (4.78)

By vectorizing both sides of (4.78), matrix representation of the function i′(·) can
be found as follows:

�′ = Ā∗ ⊗ Ā + `(# − `)
# (# − 1)

(
J − 1

#
I
) (
(A∗ − I) ⊗ (A − I)

)
. (4.79)

It is clear that� and�′ are different from each other although the difference� −�′

approaches zero as# gets larger. More importantly, there is no clear relation between
d(�) and d(�′). Thus, random asynchronous updates may be stable under one
stochastic model, but the iterations may get unstable under the other model although
both models update ` uniformly selected random indices per iteration on average.
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4.7 Concluding Remarks
In this chapter, we studied a randomized asynchronous variant of the discrete time-
invariant state-spacemodels, inwhich a state variable is updatedwith some probabil-
ity independently and asynchronously (with respect to the others) in each iteration.
We showed that the randomized model can be treated as a linear time-invariant
system (with a frequency response in the expectation sense) despite its randomly
time-varying behavior. We presented the necessary and sufficient condition for the
mean-squared stability of the randomized state recursions and showed that stability
of the underlying state transition matrix is neither necessary nor sufficient for the
mean-squared stability. So, an unstable system (in the synchronous world) may get
stable with randomized asynchronicity. We showed that the mean-squared stability
of a randomized system can be altered by a similarity transformation.

We showed that the randomization error depends on the amount of variation in
the input signal as well as the update probabilities. We showed that random state
variables do not follow a Gaussian distribution in general. Precise analysis of
these observations will be considered in future work. For future studies, it is also
interesting to study the probabilities that are optimal in terms ofminimizing the effect
of the randomization error, the input noise, or the rate of convergence. In addition,
similarity transforms that enable the mean-square stability in the randomized setting
are worth studying in future.

4.8 Appendices
4.8.1 A Result on The Random Index Selections
Lemma 4.6. For an arbitrary matrix X ∈ C#×# , the following identities hold true:

E
[
DT: X

]
= P X, (4.80)

E
[
DT: X DT:

]
= P X P + X �

(
P − P2) , (4.81)

where the expectations are taken with respect to the random subset T: under the
stochastic model in (4.15), and � denotes the Hadamard (element-wise) product.

Proof. The identity in (4.80) follows directly from the linearity of the expectation
and the definition of P in (4.16).

For the identity (4.81), we first write the following:

(
DT: X DT:

)
8, 9
=


-8, 9 , 8 ∈ T: , 9 ∈ T: ,

0, otherwise.
(4.82)
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Thus, we can write the following due to the binary nature of the index selections:

E
[ (

DT: X DT:
)
8, 9

]
= -8, 9 P[8 ∈ T: , 9 ∈ T: ] . (4.83)

Regarding the probabilities in (4.83), we have the following for the non-diagonal
(8 ≠ 9) entries:

P[8 ∈ T: , 9 ∈ T: ] = P[8 ∈ T: ] P[ 9 ∈ T: ] = ?8 ? 9 , (4.84)

which follows from the fact that indices get updated independently from each other.
On the other hand, we have the following for the diagonal (8 = 9) entries:

P[8 ∈ T: , 9 ∈ T: ] = P[8 ∈ T: ] = ?8, (4.85)

which follows simply from the fact that 8 ∈ T: if and only if 9 ∈ T: when 8 = 9 .

Thus, we can write the following:(
E
[
DT: X DT:

] )
8, 9
=


?8 ? 9 -8, 9 8 ≠ 9 ,

?8 -8,8, 8 = 9 ,
(4.86)

which is equivalent to the identity (4.81). �

4.8.2 Proof of Theorem 4.1
Due to asynchronous updates described in (4.13), state vector x: can be written as
follows:

x: = (I − DT: ) x:-1 + DT:
(
A x:-1 +

'∑
8=1

B8 U:-18 + w:-1
)

=
(
I + DT: (A − I)

)
x:-1 + DT:

(
'∑
8=1

B8 U:-18 + w:-1

)
. (4.87)

Taking expectation of (4.87) and using the facts that updated indices are selected
independently, the input noise has zero mean, and the noise is uncorrelated with the
index selections, we have the following:

E[x: ] = ĀE[x:-1] +
'∑
8=1

B̄8 U:-18 = Ā: E[x0] +
:−1∑
==0

Ā=

'∑
8=1

B̄8 U:-1-=8 (4.88)

=

'∑
8=1
(U8I − Ā)-1B̄8 U:8 + Ā:

(
E[x0] −

'∑
8=1
(U8I − Ā)-1B̄8

)
,

= xss: + Ā:
(
E[x0] − xss0

)
= xss: + xtr: (4.89)

where Ā and B̄ are as in (4.19).
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4.8.3 Proof of Theorem 4.2
Using the definition of the error term in (4.29) and substituting x: = q: + xss

:
into

(4.87), we have the following:

q:+1 + xss:+1 =
(
I+DT:+1 (A− I)

)
(q: + xss: ) +DT:+1 w: +DT:+1P-1

'∑
8=1

B̄8 U:8 , (4.90)

which can be written as follows by rearranging the terms:

q:+1 =
(
I + DT:+1 (A − I)

)
q: + DT:+1 w: +

(
DT:+1P-1 − I

)
δ: , (4.91)

where the deterministic vector δ: is defined as in (4.36).

Using (4.91), we can express the outer product q
:+1 qH

:+1 recursively in terms of
q
:

qH
:
as follows:

q:+1 qH
:+1 =

(
I + DT:+1 (A − I)

)
q:qH

:

(
(AH − I)DT:+1 + I

)
+ DT:+1 w: wH

: DT:+1

+
(
DT:+1 P-1 − I

)
δ: δ

H
:

(
P-1 DT:+1 − I

)
+

(
I + DT:+1 (A − I)

)
q: δH:

(
P-1 DT:+1 − I

)
+

(
DT:+1P-1 − I

)
δ: qH

:

(
I + (AH − I) DT:+1

)
, (4.92)

where the cross terms including w: are left-out intentionally because these terms
will disappear when we take the expectation since w: has a zero mean and it is
uncorrelated with the index selections.

We now take the expectation of both sides of (4.92) and use the identities given by
Lemma 4.6, and the independence assumption regarding the index selections, input
noise and the initial condition. Then, we obtain the following:

Q:+1 = i(Q: ) + P�P + � �
(
P − P2) + (

δ: δ
H
:

)
�

(
P-1 − I

)
+

(
(Ā − I) xtr: δ

H
:

)
�

(
P-1 − I

)
+

(
δ: (xtr: )

H (ĀH − I)
)
�

(
P-1 − I

)
, (4.93)

where the function i(·) is defined in (4.33). We also note that E[q: ] = xtr
:
as given

in (4.35).

Although X + XH ≠ 2<{X} in general, we note that the following equality holds
true for any X ∈ C#×# :(

X + XH
)
�

(
P-1 − I

)
= 2<

{
X
}
�

(
P-1 − I

)
, (4.94)

where <{·} denotes the real part of its argument. So, using the identity (4.94) in
(4.93) gives the result in (4.35).
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4.8.4 Proof of Corollary 4.2
We first define the following:

Z: = Q: −Qr
: −Qn, (4.95)

where Qr
:
and Qn are given as the solutions of (4.44) and (4.43), respectively.

Substituting (4.95) into the recursion (4.35), we get

Z:+1 +Qr
:+1 +Qn = i(Z: ) + i(Qr

: ) + i(Q
n) (4.96)

+ P�P + � �
(
P − P2) + <{

δ:δ
H
:

}
�

(
P−1 − I

)
+ <

{
2 (Ā − I) xtr: δ

H
:

}
�

(
P−1 − I

)
,

which can be simplified as follows due to the defining equations in (4.44) and (4.43):

Z:+1 = i(Z: ) + <
{
2 (Ā − I) xtr: δ

H
:

}
�

(
P−1 − I

)
. (4.97)

Due to the stability assumption (4.41) and Lemma 4.3 we have d(Ā) < 1, so
lim:→∞ xtr

:
= 0. As a result,

lim
:→∞

Z: = 0, (4.98)

which gives the desired result.

Necessity of the condition (4.41) follows from (4.40). That is, when d(�) ≥ 1
there exists a nonzero positive semi-definite matrix X that cannot be reduced by the
function i(·).

4.8.5 Proof of Lemma 4.1
Assume that the stability condition (4.41) is met, and solution to (4.43) exists. Let e8
denote the 8Cℎ standard basis vector. It is readily verified that the following identity
holds true for any X ∈ C#×# and any index 1 ≤ 8 ≤ #:

eH8 i(X) e8 = (1 − ?8) eH8 X e8 + ?8 eH8 A X AH e8 . (4.99)

Furthermore, we have the following:

eH8
(
P � P + � �

(
P − P2) ) e8 = ?8 eH8 � e8 . (4.100)

So, by left and right multiplying (4.43) with eH
8
and e8 respectively, we get the

following:
eH8

(
Qn − �

)
e8 ?8 = ?8 eH8 A Qn AH e8 ≥ 0, (4.101)

where the inequality follows from Qn � 0, and the desired result follows from the
fact that ?8 > 0 for all 8.
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4.8.6 Proof of Lemma 4.2
Enumerate all possible index update sets. Namely, let T9 denote the 9 Cℎ update set,
and let W 9 denote the probability of selecting the set T9 for 1 ≤ 9 ≤ 2# . So, the
system is equivalent to the following state transition matrix:

A 9 = I + DT9 (A − I) (4.102)

which now depends on the index 9 . This has probability W 9 in model (4.50), where
the probability is given as follows (due to the stochastic model in (4.15)):

W 9 =

(∏
8∈T9

?8

) (∏
8∉T9
(1 − ?8)

)
. (4.103)

Then, for a given X ∈ C#×# we have the following:
2#∑
9=1
W 9 A 9 X AH

9 =

2#∑
9=1
W 9

(
I + DT9 (A − I)

)
X

(
I + (AH − I) DT9

)
= E

[(
I + DT9 (A − I)

)
X

(
I + (AH − I) DT9

)]
= X + P (A − I) X + X (AH − I) P + E

[
DT9 (A − I) X (AH − I) DT9

]
(4.104)

= X + P (A − I) X + X (AH − I) P + P (A − I) X (AH − I) P

+
(
(A − I) X (AH − I)

)
� (P − P2)

=

(
I + P (A − I)

)
X

(
I + (AH − I) P

)
+

(
(A − I) X (AH − I)

)
� (P − P2)

= i(X),

where we use the identity (4.81) in (4.104). Thus, the statement of the corollary
follows directly from [42, Corollary 3.26].

4.8.7 Proof of Corollary 4.3
Using the recursive definition of the error correlation matrix in (4.35), we have the
following regarding the trace of the error correlation matrix:

tr(Q:+1) = tr(i(Q: )) + tr(P�) + tr
( (
δ: δ

H
:

) (
P−1 − I

) )
+ tr

(
<

{
2 (Ā − I) xtr: δ

H
:

} (
P−1 − I

) )
, (4.105)

where we use the fact that tr(X�D) = tr(XD) holds true for any diagonal matrix D.

Next, we will provide bounds for individual elements on the right-hand-side of
(4.105). We first get the following trace equality by summing (4.99) over all indices:

tr
(
i(X)

)
= tr

(
X

(
I + AH P A − P

) )
. (4.106)
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Now define Ψ as follows:

Ψ = _max
(
I + AH P A − P

)
. (4.107)

Then we have the following:

Ψ I � I + AH P A − P = ĀH Ā + (AH − I) (P − P2) (A − I) � ĀH Ā, (4.108)

which implies the following:

‖Ā‖2 ≤ Ψ1/2 and tr
(
i(X)

)
≤ Ψ tr(X). (4.109)

Using the bound in (4.53), we can write the following:

tr
( (
δ: δ

H
:

) (
P−1 − I

) )
= δH:

(
P−1 − I

)
δ: ≤ �2 P−1 − I


2. (4.110)

For the last term on the right-hand-side of (4.105), we can write the following
inequalities:

tr
(
<

{
2 (Ā − I) xtr: δ

H
:

} (
P−1 − I

) )
= <

{
2 δH: (P

-1 − I) (Ā − I) xtr:
}

≤
���2 δH: (I − P) (A − I) Ā: (E[x0] − xss0 )

��� ≤ 2Ψ:/2, (4.111)

where (4.111) follows from the definition of xtr
:
in (4.18), and the constant 2 in

(4.111) is given as follows:

2 = 2 �
(I − P) (A − I)


2

E[x0] − xss0


2, (4.112)

where we use the bounds from (4.53) and (4.109).

Using the bounds in (4.109), (4.110), and (4.111) in the equality (4.105), we get the
following:

tr(Q:+1) ≤ Ψ tr(Q: ) + tr(P�) + �2 ‖P−1 − I‖2 + 2 Ψ:/2. (4.113)

Using the inequality (4.113) recursively, we get the following:

tr(Q: ) ≤ Ψ: tr(Q0) + 2
(
Ψ:/2 −Ψ:

)
/
(
Ψ1/2 −Ψ

)
+ 1 −Ψ:

1 −Ψ

(
tr(P�) + �2 ‖P−1 − I‖2

)
. (4.114)

In the final step we use the assumption AH P A ≺ P in (4.51), and conclude from
(4.107) that Ψ < 1. So, the upper bound in (4.114) gives the following result:

lim sup
:→∞

tr(Q: ) ≤
tr(P�) + �2 ‖P−1 − I‖2

1 −Ψ , (4.115)

which is equivalent to (4.52) since 1 −Ψ = _min(P − AH P A).
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4.8.8 Proof of Lemma 4.5
Assume that A ∈ C#×# is a triangular matrix with �8,8 being the 8Cℎ diagonal entry.
Then, we first note that both Ā and� are triangular matrices, which follows simply
from the fact that P and J are diagonal matrices, and the Kronecker product of
triangular matrices is a triangular matrix. In particular, we note that the 8Cℎ diagonal
entry of Ā is as follows:

�̄8,8 =

(
1 + ?8 (�8,8 − 1)

)
. (4.116)

Then, it is straightforward to verify that the : Cℎ diagonal entry of� is as follows for
: = 8 + ( 9 − 1) # with 1 ≤ 8, 9 ≤ #:

(:,: = �̄
∗
9 , 9 �̄8,8 + X8, 9 (?8 − ?2

8 ) |�8,8 − 1|2, (4.117)

where X8, 9 = 1 if and only if 8 = 9 .

Since� is triangular, the diagonal entries of� correspond to the eigenvalues of�.
Thus,

d(�) = max
1≤:≤#2

|(:,: | = max
1≤8, 9≤#

����̄∗9 , 9 �̄8,8 + X8, 9 (?8 − ?2
8 ) |�8,8 − 1|2

��� (4.118)

= max
1≤8≤#

| �̄8,8 |2 + (?8 − ?2
8 ) |�8,8 − 1|2 = max

1≤8≤#
1 + ?8

(
|�8,8 |2 − 1

)
. (4.119)

We now prove the equivalence in (4.64). Assume that A is a stable matrix. Since A
is a triangular matrix, its diagonal entries are the eigenvalues. Thus,

d(A) < 1 =⇒ |�8,8 | < 1 ∀ 8 =⇒ d(�) < 1, (4.120)

where the last implication follows from (4.119).

For the converse direction,

d(A) ≥ 1 =⇒ ∃ 8 s.t. |�8,8 | ≥ 1 =⇒ d(�) ≥ 1, (4.121)

where the last implication follows from (4.119).
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C h a p t e r 5

RANDOMIZED ALGORITHMS AS SWITCHING SYSTEMS

5.1 Introduction
Solving linear systems of equations is an important task in numerical analysis, and it
finds application in almost every field of science and engineering. Recent years have
witnessed an elevated interest in randomized methods that iterate over the given data
randomly in order to obtain the desired solution. Examples include the randomized
variants of the Kaczmarz’s method [165], Gauss-Seidel iterations [107], fixed-point
iterations [9], and many others [141, 72, 55, 115]. These type of methods are better
suited for distributed processing of large scaled data, and they may perform better
than their non-random counter-parts in certain settings (see Chapter 2).

Control theory has a rich literature regarding systems whose dynamics change over
time. One way to model such a behavior is to assume that the system “switches”
between different operational modes. Compared to the standard state-space formu-
lations, this model offers a great flexibility due to its rich and complex dynamics, and
there are well-studied problems in the random and non-random switching settings
[166, 42, 92].

Although solving linear system of equations and control of dynamical systems ap-
pear to be different problems, the purpose of this chapter is to show that randomized
iterative algorithms can be regarded as randomly switching systems. So, one can
utilize the already available stability theory of switching systems in order to study
such randomized techniques. As an example, we will reformulate the Kaczmarz
method, Gauss-Seidel iterations and asynchronous fixed-point iterations as switch-
ing systems, and then provide “simple” proofs for their convergence. We will also
discuss the convergence of randomized asynchronous fixed-point iterations, which
has been of interest in recent years for graph signal processing applications (see
Chapters 2 and 3 of this thesis). While the convergence of these randomized tech-
niques are already known, the main contribution of this chapter is to show that
seemingly different randomized techniques can be unified under the viewpoint of
switching systems.
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5.1.1 Scope and Outline
In Section 5.2 we will briefly review discrete-time switching systems by showing
their expected behavior (Lemma 5.1), mean-squared stability (Lemma 5.2), and
alternative characterizations for the stability (Lemma 5.3). We will discuss ran-
domized Kaczmarz method, Gauss-Seidel method, and asynchronous fixed-point
iterations from the viewpoint of switching systems in Sections 5.3.1, 5.3.2, and
5.3.3, respectively. In these sections, we will also provide alternative proofs for the
convergence of the randomized Kaczmarz (Corollary 5.1) and randomized Gauss-
Seidel (Corollary 5.2) methods.

5.2 Discrete-Time Randomly Switching Systems
Assume that we are given a set of ! state-transition matrices and input signals,
denoted by A andU, respectively:

A = {A1, · · · , A!}, U = {u1, · · · , u!}, (5.1)

where A 9 ∈ C#×# and u 9 ∈ C# for all 1 ≤ 9 ≤ !. We consider the following
switching model:

x:+1 = A8: x: + u8: + w: . (5.2)

So, the vector x: ∈ C# is updated with a different pair of state-transition matrix and
input signal in every iteration, and 8: denotes the index of the state-transition matrix
and the input signal used in the : Cℎ iteration. So, 1 ≤ 8: ≤ !. The term w: ∈ C#

denotes noise with the following statistics:

E[w: ] = 0, E
[
w: wH

B

]
= X(: − B) �, (5.3)

where X(·) denotes the discrete Dirac delta function, and � is allowed to be non-
diagonal.

In this chapter, we consider the model (5.2) in a randomized setting where the index
8: is selected randomly and independently in each iteration. That is, the vector x: is
updated with the pair (A 9 , u 9 ) with probability ? 9 for all : . More precisely,

P
[
8: = 9

]
= ? 9 ∀ : ≥ 0, 1 ≤ 9 ≤ !. (5.4)

It is possible to extend the randomly switching model to a setting in which the index
8: is determined by a Markov chain. This is a well-studied model, but we will not
review the details of the Markovian extension in this short chapter. We refer to [42]
for a rigorous treatment of the topic.

We first establish the expected behavior in the model (5.2):
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Lemma 5.1. Expectation of the random vector x: in the randomly switching model
(5.2) is as follows:

E[x: ] = x̄ + Ā:
(
E[x0] − x̄

)
, (5.5)

where

Ā =

!∑
9=1

? 9 A 9 , ū =
!∑
9=1

? 9 u 9 , x̄ = (I − Ā)-1 ū. (5.6)

Proof. We first write the expectation of the random vector x: conditioned on the
previous vector x:-1:

E[x: | x:-1] =
!∑
9=1

? 9
(
A 9 x:-1 + u 9

)
= Ā x:-1 + ū, (5.7)

where we use E[w: ] = 0, and the fact that pair (A 9 , u 9 ) is selected independently
with probability ? 9 . Then, by taking one more expectation over the random vector
x:-1 we get:

E[x: ] = ĀE[x:-1] + ū = Ā: E[x0] +
:-1∑
==0

Ā= ū

= Ā: E[x0] + (I − Ā: ) (I − Ā)-1 ū, (5.8)

= (I − Ā)-1 ū + Ā:
(
E[x0] − (I − Ā)-1 ū

)
, (5.9)

which is equivalent to (5.5). �

Here, Ā will be referred to as the average state-transition matrix, and ū the average
input signal. Thus, x̄ will be the fixed-point of the average system, i.e., x̄ = Ā x̄ + ū.

From Lemma 5.1 it is clear that stability of the average state-transition matrix Ā is
both necessary and sufficient for the expectation of x: to converge to x̄. That is,

lim
:→∞
E[x: ] = x̄ ⇐⇒ d

(
Ā
)
< 1. (5.10)

Unlike its expectation, the random vector x: itself may not converge to the point x̄
in general. This is because the fixed-point of the average system x̄ is not necessarily
the fixed-point for all the individual systems. Namely, x̄ = A 9 x̄ + u 9 may not hold
true for all 1 ≤ 9 ≤ !. When this happens, the random vector x: “wanders around”
the point x̄ as long as some stability conditions (to be stated next) are met. In order
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to describe this behavior more rigorously, we define the following error term and its
(auto)-correlation matrix:

r: = x: − x̄, R: = E
[
r: rH:

]
. (5.11)

The following lemma describes the limiting behavior of the error correlation matrix:

Lemma 5.2. The error correlation matrix converges to R, i.e.,

lim
:→∞

R: = R (5.12)

if the following condition holds true:

d(�) < 1 where � =

!∑
9=1

? 9 A∗9 ⊗ A 9 . (5.13)

Furthermore, the limit point R is given as follows:

vec(R) = (I −�)-1 vec(Z + �), (5.14)

where � is the noise correlation matrix, and Z is as follows:

Z =

!∑
9=1

? 9 z 9 zH9 , where z 9 = x̄ −
(
A 9 x̄ + u 9

)
. (5.15)

If the condition in (5.13) is violated, then R: increases unboundedly as : goes to
infinity, that is, R is not bounded.

Proof. See Section 5.5.1. �

The convergence of R: means that the random vector x: continues to have a finite
mean-squared ℓ2-distance to the point x̄ as the iterations progress. Thus, the condi-
tion in (5.13) is equivalent to the mean-squared stability of the switching system. In
particular, if R: converges to zero (i.e., R = 0), then x: converges to x̄ in the mean-
squared sense. In fact, mean-squared convergence implies almost sure convergence
as well in this setting [42, Corollary 3.46].

The matrix Z in (5.15) quantifies the mismatch between the individual systems
(A 9 , u 9 ) and the average system (Ā, ū). That is, Z = 0 if and only if the fixed-point
of the average system x̄ is also the fixed point of all the individual systems.
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The condition in (5.13) precisely describes the mean-squared stability of the ran-
domly switching system. Thus, the stability of a given system can be determined
by checking the eigenvalues of the matrix � ∈ C#2×#2 . Despite its numerical sim-
plicity, this approach may not be feasible when analytically proving the stability
of a randomized system. In this regard, the following lemma provides alternative
characterizations of the mean-squared stability of a randomly switching system:

Lemma 5.3 (See [42, Corollary 3.26]). The following statements are equivalent:

• The model in (5.2) is stable in the mean-squared sense,

• d(�) < 1,

• There exists a X � 0 such that X �
!∑
9=1

? 9 A 9 X AH
9 ,

• For any Y � 0, there exists a unique X � 0 such that X =

!∑
9=1

? 9 A 9 X AH
9 +Y.

In fact, we will use Lemma 5.3 in Section 5.3 when proving the convergence of the
randomized Gauss-Seidel method.

5.2.1 Non-Random Case
The switching model in (5.2) can also be considered from a non-random viewpoint,
in which the convergence is ensured for any sequence of index selection, which can
be thought of as the sure convergence in the randomized setting.

In the non-random setting, the switching model converges if and only if the joint
spectral radius of the set A is strictly less than unity [92, Corollary 1.1]. Note that
the joint spectral radius of a set of matrices A is first defined in [148] as follows:

d(A) = lim
:→∞

max
f∈{1, ··· , !}:

Af:
· · · Af2 Af1

1/:
, (5.16)

where ‖ · ‖ is an arbitrary matrix norm.

In words, the joint spectral radius considers the worst-case behavior among all
possible index sequences. When the setA consists of a single matrix, i.e.,A = {A},
the joint spectral radius becomes d(A) = d(A). Namely,

d(A) = lim
:→∞

A:
1/:

. (5.17)
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So, it is a natural extension of the spectral radius of a matrix to a set of matrices.

Although the joint spectral radius characterizes the stability of switching systems
in the non-random setting, the computation of the joint spectral radius is NP-hard.
Thus, there is no tractable way of determining the stability for a given arbitrary A.
We refer to [92] for an excellent review of the joint spectral radius. On the contrary,
stability of switching systems in the randomized setting can be verified in tractable
ways as described in Lemma 5.3. In fact, we will use these results to ensure the
convergence of some randomized algorithms in the next section.

5.3 Randomized Kaczmarz and Gauss-Seidel Algorithms
Given a complex matrix A ∈ C"×# and a complex vector u ∈ C" , we will consider
the following linear system:

A x = u, (5.18)

where we assume that " ≥ # , i.e., the system is overdetermined, and the matrix A
has full column rank. When the system is consistent we will use x★ to denote the
solution of the system. When the system is inconsistent, we will use xLS to denote
the least-squares solution, that is,

xLS = arg min
/
‖A/ − u‖22 = (A

H A)-1 AH u. (5.19)

5.3.1 Randomized Kaczmarz Algorithm
In order to solve the linear system of equations in (5.18), the Kaczmarz algorithm
[93] considers the following iterative updates on the solution vector x: :

x:+1 = x: +
D8: − aH(8: ) x:
‖a(8: ) ‖22

a(8: ) , (5.20)

where aH( 9) denotes the 9
Cℎ row of the matrix A, and 8: denotes the index selected at

the : Cℎ iteration of the algorithm. In words, the Kaczmarz algorithm selects a row
from the matrix A, and then updates the solution x: accordingly.

In the randomized variant of the algorithm, the 9 Cℎ row is selected randomly and
independently with probability ? 9 [81, 165]. In this case, the Kaczmarz algorithm
can be represented as a randomly switching system, where the setsA andU consist
of the following elements for 1 ≤ 9 ≤ ":

A 9 = I − 1
‖a( 9) ‖22

a( 9) aH( 9) , u 9 =
D 9

‖a( 9) ‖22
a( 9) . (5.21)
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Note that A 9 ’s are orthogonal projections, thus the Kaczmarz algorithm “switches
between orthogonal projections.”

When the formalism of the switching systems is applied to the Kaczmarz algorithm,
we get the following average state-transition matrix and the average input signal:

Ā = I − AH P W-2A, ū = AH P W-2 u, (5.22)

where P and W are diagonal matrices of size " with 9 Cℎ diagonal entry being ? 9
and ‖a( 9) ‖2, respectively. Thus, the fixed-point of the average system can be found
as follows:

x̄ = (AH P W-2 A)-1 AH P W-2 u. (5.23)

So, the fixed-point of the average system depends on the update probabilities in
general. Nevertheless, when the probabilities are selected as ? 9 = ‖a( 9) ‖22/‖A‖

2
F

(i.e., P = W2/‖A‖2F), the fixed-point of the average system becomes x̄ = xLS.

When the linear system of equations in (5.18) is inconsistent, the fixed-point of
the average system does not satisfy the individual systems in (5.21). Namely,
x̄ = A 9 x̄ + u 9 does not hold true for all 1 ≤ 9 ≤ " . Thus, the random vector x:
does not converge to x̄ even when x̄ corresponds to xLS. As a result, Kaczmarz
iterations cannot obtain the least-squares solution.

When the linear system of equations in (5.18) is consistent, i.e., there exists x★ such
that Ax★ = u, the fixed-point of the average system becomes x̄ = x★ irrespective of
the update probabilities. Furthermore, x̄ = A 9 x̄ + u 9 holds true for all 1 ≤ 9 ≤ " .
Thus, the random vector x: converges to the solution of the linear system x★ as
long as the condition given by Lemma 5.2 is met. In fact, the convergence of the
randomized Kaczmarz algorithm can be guaranteed for any set of probabilities.
More precisely, we have the following:

Corollary 5.1. When the linear system in (5.18) is consistent, randomized Kaczmarz
algorithm converges to the unique solution of (5.18) in the mean-squared sense (and
almost surely) for any set of nonzero probabilities.

Proof. We note the following inequalities:

� =

"∑
9=1

? 9 A∗9 ⊗ A 9 �
"∑
9=1

? 9 I# ⊗ A 9 = I# ⊗ Ā (5.24)

= I#2 −
(
I# ⊗

(
AH P W-2A

) )
≺ I#2 , (5.25)
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where I# denotes the identity matrix of size # . The inequality in (5.24) follows from
the fact that 0 � A 9 � I. The strict inequality in (5.25) follows from the assumption
that the matrix A has full column rank, and the probabilities satisfy ? 9 > 0. The
fact that � � 0 and the inequality (5.25) imply that d(�) < 1. Then, Lemma 5.2
proves the claimed convergence. �

We note that the mean-squared convergence of the randomized Kaczmarz algorithm
was first proved explicitly in [165] for the probabilities ? 9 = ‖a( 9) ‖22/‖A‖

2
F. The

almost sure convergence of the algorithm was shown in [36]. The study [46]
considered the optimal set of probabilities that minimizes the upper bound in (5.24),
and [3] considered the optimal set of probabilities that minimizes d(�) itself.
Since � is a positive semi-definite matrix by construction in the case of Kaczmarz
algorithm, the optimal selection of the probabilities was based on semi-definite
programming in both [46] and [3].

Although the first convergence proof of the randomized Kaczmarz algorithm is
attributed to the study in [165], it is also possible to find convergence proofs for
the algorithm in control theory literature. In particular, the study [23] considered
the updates in (5.21) as an “adaptive filtering” (see [23, Eq. (20)]) and proved the
almost sure convergence of the iterations (see [23, Theorem 7]). In addition, the
book [42] considered the same update scheme as an application of its results (see
[42, Section 3.6.2]) and proved the almost sure convergence for the more general
case of indices being selected according to an ergodic Markov chain. We note that
the original form of the Kaczmarz algorithm [93] considers the use of consecutive
indices, which is, in fact, equivalent to a Markov chain on a directed cycle graph.
So, [42, Lemma 3.53] proves the convergence of the original Kaczmarz algorithm
as well as its randomized variant from the viewpoint of switching systems.

Although the random vector x: in Kaczmarz algorithm does not converge to the
least squares solution xLS in the case of inconsistent system of equations, it is in fact
possible to obtain the solution xLS using a sample averaging. In this regard, we first
define the sample average (of the first  iterations) y as follows:

y =
1
 

 ∑
:=1

x: . (5.26)

We now note that E[x: ] is the ensemble average of the random vector x: , and as the
iterations progress the ensemble average converges to x̄. See (5.10). This is due to
the stability of the matrix Ā proven in Corollary 5.1. Since the independent selection
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of the indices forms an ergodic Markov chain, the sample average converges to the
ensemble average as more samples are used. More precisely,

lim
 →∞

‖y − x̄‖22 = 0, (5.27)

which follows from the stability of the matrix �. Thus, the random vector y 
converges to x̄ in (5.23) in the mean-squared sense whether the system of equations
are consistent or not. Although this convergence behavior holds true for any set of
index selection probabilities, the fixed-point of the average system x̄ becomes the
least-squares solution only when the probabilities are selected as P = W2/‖A‖2F.
With this particular selection of the probabilities, we can claim for the following:

? 9 = ‖a( 9) ‖22 / ‖A‖
2
F =⇒ lim

 →∞
‖y − xLS‖22 = 0, (5.28)

which shows that the sample average y converges to the least-squares solution in
the mean-squared sense.

5.3.2 Randomized Gauss-Seidel Algorithm
Another approach for solving the system of equations in (5.18) is the Gauss-Seidel
algorithm, which updates the solution vector x: iteratively according to the following
scheme:

x:+1 = x: +
aH
8:

(
u − A x: )
‖a8: ‖22

e8: , (5.29)

where a 9 and e 9 denote the 9 Cℎ column of the matrix A and the identity matrix I,
respectively. The index selected at the : Cℎ iteration is denoted by 8: . In words, the
Gauss-Seidel algorithm selects a column from the matrix A, and then updates only
the corresponding entry of the solution vector. In the randomized variant, the 9 Cℎ

column is selected randomly and independently with probability ? 9 [107]. So, the
algorithm can be represented as a randomly switching system, where the setsA and
U consist of the following elements for 1 ≤ 9 ≤ #:

A 9 = I − 1
‖a 9 ‖22

e 9 aH9 A, u 9 = e 9
aH
9

u
‖a 9 ‖22

. (5.30)

We note that A 9 ’s defined in (5.30) satisfy A2
9
= A

9
, but they are not Hermitian, i.e.,

AH
9
≠ A 9 , in general. Thus, the Gauss-Seidel algorithm “switches between oblique

projections.”

When the formalism of the switching systems is applied to the Gauss-Seidel algo-
rithm, we get the following average state-transition matrix and the average input
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signal:
Ā = I − P W-2 AH A, ū = P W-2 AH u, (5.31)

where P and W are diagonal matrices of size # with 9 Cℎ diagonal entry being ? 9
and ‖a 9 ‖2, respectively. So, the fixed-point of the average system becomes x̄ = xLS
irrespective of the update probabilities. More importantly, unlike the Kaczmarz
method, the point x̄ satisfies x̄ = A 9 x̄ + u 9 for all 1 ≤ 9 ≤ # whether the set of linear
equations (5.18) is consistent or not. Thus, the random vector x: indeed converges to
the least-squares solution in the mean-squared sense as long as the condition given
by Lemma 5.2 is met. In fact, the convergence of the randomized Gauss-Seidel
algorithm can be guaranteed for any set of probabilities. More precisely, we have
the following:

Corollary 5.2. The randomized Gauss-Seidel method converges to the least-squares
solution of (5.18) in the mean-squared sense (and almost surely) for any set of
nonzero probabilities.

Proof. We will show that the third statement in Lemma 5.3 holds, which in turn
implies the convergence of the iterations. In this regard take X = (AHA)-1, and note
that X � 0. Then,

X −
#∑
9=1

? 9 A 9 X AH
9 = P W-2 � 0, (5.32)

where the positive-definiteness follows from the fact that all the probabilities are
nonzero. This proves the claim. �

We note that the mean-squared convergence of the randomized Gauss-Seidel al-
gorithm was first proved explicitly in [107] for the probabilities ? 9 = ‖a 9 ‖22/‖A‖

2
F.

We refer to [132, 80, 110, 122] (and references therein) for more results involving
randomized Kaczmarz and Gauss-Seidel algorithms and their extensions.

5.3.3 Randomized Asynchronous Fixed-Point Iterations
When the system in (5.18) is “square,” i.e., " = # , fixed-point iterations provide an
alternative approach for obtaining numerical solutions to linear systems of equations
[30, 31, 190]. Asynchronous variants of fixed-point iterations are also studied in
detail in non-random [32, 14, 19, 20] and random settings [9]. We have also
studied random asynchronous fixed-point iterations are studied in the context of
graph signal processing for distributed and asynchronous implementation of graph
filters in Chapters 4 and 3.
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For a given matrixA ∈ C#×# and an input signal u ∈ C# , in this section we consider
the following random asynchronous fixed-point iterations:

(x:+1)8 =

(A x: )8 + D8, w.p. ?8,

(x: )8, w.p. 1 − ?8,
(5.33)

where the 8Cℎ index of the vector x: is updated with probability ?8 independently in
every iteration. So, there are 2# different ways of updating the vector x: in every
iteration, and the updates in (5.33) can be written as a randomly switching system
with the sets A andU consisting of 2# elements.

More precisely, first enumerate all subsets of {1, · · · , #}, and let T9 denote the 9 Cℎ

subset. Then, the 9 Cℎ element of the sets A and U can be written as follows for
1 ≤ 9 ≤ 2# :

A 9 = I − DT9
(
I − A

)
, u 9 = DT9 u, (5.34)

where DT9 is a diagonal matrix that has 1’s at the indices belonging to the set T9 and
0 elsewhere. Furthermore, the probability @ 9 of switching to A 9 can be written as
follows:

@ 9 =

(∏
8∈T9

?8

) (∏
8∉T9
(1 − ?8)

)
. (5.35)

When the formalism of the switching systems is applied to the model (5.33), we get
the following average state-transition matrix and the average input signal:

Ā = I − P (I − A), ū = P u, (5.36)

where P = diag( [?1 ?2 · · · ?# ]) is a diagonal matrix consisting of the update
probabilities of the model (5.33). So, the fixed point of the average system is the
same as the fixed point of the pair (A, u), namely, x̄ = (I − A)-1 u irrespective of
the update probabilities. Furthermore, the point x̄ satisfies x̄ = A 9 x̄ + u 9 for all
1 ≤ 9 ≤ 2# . Thus, the random vector x: converges to x̄ as long as the condition
(5.13) is met.

Unlike the randomized Kaczmarz and Gauss-Seidel algorithms, random asyn-
chronous fixed-point iterations may not converge for an arbitrary set of probabilities.
Nevertheless, the convergence of the updates can be verified via stability of the ma-
trix� defined in (5.13). With the matrices in (5.34) and probabilities in (5.35), the
matrix� can be written explicitly as follows in the case of asynchronous fixed-point
iterations (See Corollary 4.2 and the proof in Section 4.8.6):

� = Ā∗ ⊗ Ā +
(
(I − P) ⊗ P

)
J
(
(A∗ − I) ⊗ (A − I)

)
, (5.37)
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where J is a diagonal matrix of size #2 with diagonal entries being equal to the
vectorized identity matrix of size # . See (4.39).

We know that stability of A, i.e., d(A) < 1, is both necessary and sufficient for
synchronous fixed-point iterations to converge. However, the most important ob-
servation regarding (5.37) is that stability of the matrices � and A do not imply
each other. So, an unstable system (in the synchronous world) may converge with
randomized asynchronicity. Furthermore, eigenvectors (and not just eigenvalues)
of the matrix A are also important in determining the convergence in the random
asynchronous case (see Section 4.4.4). We also note that the condition AH P A ≺ P
is shown to be sufficient for the convergence of the updates in Corollary 3.1 and
Corollary 4.3, and it is more relaxed than the necessary condition in the non-random
setting [32, 14] (see Lemma 3.1).

The randomized model (5.33) can also be extended to have time-varying input
signals, where the vector u changes as the iterations progress. In this case, the
updates become a randomized and asynchronous variant of the discrete-time state-
space model, and it is possible to study the “frequency response” of such systems in
a statistical sense. This aspect is studied in Chapter 4.

5.4 Concluding Remarks
This chapter showed that randomized versions of Kaczmarz’s method, Gauss-Seidel
iterations, and asynchronous fixed-point iterations can be represented as specific
instances of randomly switching systems. So, convergence properties of these
randomized algorithms follow directly from the stability properties of randomly
switching systems, which are well studied in the control theory literature. Thus, this
chapter shows that randomized iterative algorithms can be studied with the tools
already available in control theory.

5.5 Appendices
5.5.1 Proof of Lemma 5.2
When the error vector r: defined in (5.11) is substituted into the switching model
(5.2), we get the following:

r:+1 + x̄ = A8: (r: + x̄) + u8: + w: , (5.38)

which can be written equivalently as

r:+1 = A8: r: − z8: + w: , (5.39)
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where z 9 is defined as follows for 1 ≤ 9 ≤ !:

z 9 = x̄ −
(
A 9 x̄ + u 9

)
. (5.40)

We now consider the following conditional expectation:

E[r:+1rH:+1 | r: ] =
!∑
9=1

? 9

(
A 9 r: rH: AH

9 + z 9 zH9
)
+ � −

!∑
9=1

? 9

(
A 9 r: zH9 + z 9 rH: AH

9

)
,

(5.41)
where we use the fact that systems are selected independently with probability ? 9
in each iteration, and the noise w: has zero-mean and it is uncorrelated with the
random selections.

Then, taking one more expectation with respect to r: , we get the following:

R:+1 =
!∑
9=1

? 9

(
A 9 R: AH

9

)
+ � + Z (5.42)

−
!∑
9=1

? 9

(
A 9 Ā: E[r0] zH9 + z 9 E[r0]H Ā:H AH

9

)
, (5.43)

where Z is defined as in (5.15).

We now vectorize both sides of (5.42) and obtain the following:

vec(R:+1) = � vec(R: ) + vec(Z + �) + c: , (5.44)

where c: is the vectorized version of the quantity in (5.43), and the matrix � is as
in (5.13).

It is clear from the linear recursion in (5.44) that when d(�) ≥ 1, the vector vec(R: )
diverges as : goes to infinity.

When d(�) < 1, we first note that the vector c: converges to zero. This is due to
[42, Proposition 3.6], which states that convergence of the second moment implies
the convergence of the first moment. Namely, d(�) < 1 implies d(Ā) < 1. Fur-
thermore, d(�) < 1 implies that the vector vec(R: ) converges as well. By taking
limits of both sides of (5.44), we get the following:

vec(R) = � vec(R) + vec(Z + �), (5.45)

where R denotes the limit of R: as : goes to infinity.

The solution to (5.45) is given as follows:

vec(R) = (I −�)-1 vec(Z + �), (5.46)

which completes the proof.



164

C h a p t e r 6

EXTENDING CLASSICAL MULTIRATE SIGNAL PROCESSING
THEORY TO GRAPHS

6.1 Introduction
Multirate analysis for graph signals has been of interest since the introduction of
the field of graph signal processing. The first set of papers, pioneered by Narang
and Ortega [129, 127, 125, 4, 66, 160] showed how two-channel filter banks can be
constructed on graphs, and went on to develop elegant techniques for the design of
down-sampled, two-channel perfect reconstruction filter banks on bipartitie graphs.
These results were developed for graphs that have a real, symmetric adjacency
matrix, and all results were based on the graph Laplacian. Studies in [57, 56,
58] mainly focus on circulant graphs and analyze two-channel decomposition of
graph signals. Multirate decomposition can be achieved by iterative application of
2-channel systems. The study in [192] proposes to combine decimators and filters
for construction of a filter bank on a graph. Motivated by Haar filter banks in the
classical theory, a graph filter bank is developed using the partitions of the graph.

Inspired by the pioneering contributions of [152] and [129], this chapter extends
many of the basic concepts of classical multirate signal processing and filter bank
theory to graphs. We first develop the equivalent of fundamental ideas such as
noble identities, aliasing, and polyphase decompositions in graph multirate systems.
Then, a detailed general theory for "-channel filter banks is developed. The graphs
are assumed to be very general as in [152], with a possibly non-symmetric and
complex adjacency matrix.

In the context of graph signal processing a linear filter is just a square matrix. By a
cascade of such matrices one can trivially construct a graph filter bank. Problems
with this approach and reasons why we focus on polynomial filters are detailed in
in Section 6.3. We will see in this chapter that the extension of classical multirate
signal processing theory to graphs is nontrivial, and requires certain mathematical
restrictions on the graph adjacency matrix A. While some of the results of classical
filter bank theory extend easily, some of the deeper results unfold a lot of surprises –
some extend and some do not extend to the case of graphs. For example, the classical
noble identities [200] cannot be taken for granted, and require some restrictions on
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the graph matrix A. Similarly, one cannot take it for granted that the delay chain
system [200] is a perfect reconstruction filter bank (an easily proved result in the
case of classical filter banks). It will also be shown that "-partite extensions of the
bipartite results in [129] will not in general work for " channel filter banks, but a
more restrictive condition called "-block cyclic property should be imposed on the
graph. While a number of results in this chapter require this property, there are ways
to relax it as explained in Section 6.15, and also in specific theorem statements.

While dealing with graphs, we often make comparisons with conventional multirate
systems and filter banks defined in the time domain [200, 199, 204, 164, 43, 79].
On rare occasions we also make comparisons with systems defined in the cyclic
(periodic) time domain that is equivalent to a graph with a specific cyclic adjacency
matrix (Eq. (12) in [153]). These systems defined in the time-domain (or cyclical
time domain on occasions) will be referred to as “classical” systems, “classical”
filter banks, and so forth.

6.1.1 Scope and Outline of This Chapter
After introducing the canonical downsampling and upsampling operators on graphs,
we begin with a study of noble identities. These identities are known to be important
in theoretical developments and practical implementations of classical multirate
systems [200, 43]. For the case of graphs we will show in Section 6.2.2 that
the noble identities make sense only for graphs with a certain specific structure
on the adjacency matrix (Theorems 6.1 and 6.2). We then show in Section 6.2.3
that the delay chain filter bank (or the lazy filter bank) does not in general have
perfect reconstruction property for arbitrary graphs. We introduce Type-1 and
Type-2 polyphase representation of polynomial filters in Section 6.2.4. Section 6.3
discusses how one can trivially construct a graph filter bank, and motivates the
use of polynomial filters. In order to extend the results for bipartite graphs on 2-
channel systems to"-channels, onemay propose to use"-partite graphs rather than
bipartite graphs. In Section 6.4 we briefly discuss that such a generalization is not
useful. Section 6.5 introduces "-block cyclic graphs that are important for many of
the later developments in this chapter. The eigenstructure of "-block cyclic graphs,
which forms the foundation for many of these results, is developed in Section 6.6
(Theorem 6.9). Many of the results developed in this thesis are therefore valid only
for graphs that satisfy either the"-block cyclic property or the eigenvector structure
of "-block cyclic graphs. In Section 6.15 we also discuss how this restriction can
be removed, and what the price paid is.
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The concepts of spectrum folding and aliasing are developed in Section 6.8 for
graphs that have an eigenvector structure similar to those of "-block cyclic graphs.
These will be used later to develop perfect reconstruction filter banks.

Section 6.9 embarks on a study of three related properties of linear systems on
graphs: namely the polynomial property, the shift invariance property, and the so-
called alias-free property. While these properties are identical in classical signal
processing theory, such is not the case on graphs. Some of these interrelations
were developed in [152], but Section 6.9 goes deeper and establishes the complete
picture. This will be useful for obtaining a deeper understanding of alias-free
maximally decimated "-channel graph filter banks to be studied in this chapter.

With the graph adjacency matrix regarded as a shift operator [152, 153], it will be
shown in Section 6.10.1 that the graph filter bank is a shift-variant system, although
it is in general not periodically shift-variant as in classical time domain filter banks.
We then establish the conditions on the adjacency matrix A for the periodically
shift-varying property and show that it is exactly identical to the conditions for the
existence of graph noble identities (Theorem 6.17).

Then in Section 6.11we consider graphs that satisfy the specific eigenvector structure
(i.e., 
-graphs). These graphs are more general than "-block cyclic graphs, which
satisfy both the eigenvalue and eigenvector conditions. For such graphs we define
band-limited graph signals and polynomial perfect interpolation filters for decimated
versions of such signals. This allows us to develop a class of perfect reconstruction
filter banks for 
-graphs (Theorem 6.19), similar to ideal brickwall filter banks of
classical sub-band coding theory. Such graph filter bank designs are usually not
practical because the polynomial filters have order #-1 (where the graph has #
vertices and # can be very large). Furthermore these specific filters for perfect
reconstruction are very sensitive to our knowledge of the graph eigenvalues.

In Section 6.12 we develop graph filter banks on "-block cyclic graphs (defined
and studied in Section 6.5). For such graphs the eigenvalues and eigenvectors are
both constrained as in (6.56), (6.57). We show that for such graphs the condition
for perfect reconstruction is very similar to the PR condition in classical filter banks
(Theorem 6.21). For such graphs, it is therefore possible to design PR filter banks
by starting from any classical PR system. In particular it is possible to obtain PR
systems with arbitrarily small orders (independent of the size of the graph) for the
polynomial filters. Furthermore the PR solutions {�: (A), �: (A)} are not sensitive
to graph eigenvalues.
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In Section 6.13 we consider polyphase representations for graph filter banks. This is
useful to obtain alternative theoretical representations, as well as implementations.
Unlike classical filter banks, these polyphase representations are not always valid.
They are valid only for those graphs that satisfy the noble identity requirements
(Theorem 6.3). For such graphs, the PR condition and the alias cancellation con-
dition can further be expressed in terms of the analysis and synthesis polyphase
matrices if the graphs also satisfy the "-block cyclic property (Theorems 6.25 and
6.26). Interestingly these alias cancellation conditions are somewhat similar to the
pseudo-circulant property developed for classical filter banks in [200].

In Section 6.14 we consider frequency responses of graph filter banks inspired by
similar ideas in [153, 160]. We will see that this concept can be meaningfully
developed for filter banks on "-cyclic graphs with all eigenvalues on the unit circle,
but not for arbitrary graphs.

Finally in Section 6.15 we show that the eigenvector structure in (6.57) (
-structure)
can be relaxed simply by considering a transformed graph based on similarity
transformations. This generalization therefore extends many of the results in this
chapter to more general graphs. In short, all results that we developed for
-graphs
(e.g., Theorems 6.18 and 6.19) generalize to arbitrary graphs. Similarly all results
which we developed for "-block cyclic graphs (e.g., Theorems 6.20 and 6.21)
generalize to graphs that are subject only to the eigenvalue constraint (6.56) and not
the eigenvector constraint (6.57).

Section 6.17 concludes the chapter. Sections 6.18.1 - 6.18.4 provide supplementary
theorems and detailed proofs of some theorems presented in this chapter

The content of this chapter is mainly drawn from [172, 173], and parts of it have
been presented in [174, 175, 171, 177].

6.1.2 Notation
Given a graph, A represents the adjacency matrix of the graph. We often refer to
a graph with adjacency matrix A as “graph A” for convenience. Throughout the
chapter, # denotes the size of the graph and length of the signal and " denotes the
decimation ratio or the number of filters in a graph filter bank, according to context.
Hence, A ∈ C#×# . In this chapter, the (8, 9)Cℎ block of the adjacency matrix A is
denoted by (A)8, 9 and (v)8 denotes the (8)Cℎ block of the vector v. Throughout the
chapter, when it is not indicated, it should be clear that (A)8, 9 ∈ C(#/")×(#/") and
(v)8 ∈ C#/" . Otherwise, they are clearly indicated to have the specified sizes. The
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cyclic permutation matrix of size # is denoted by C# , and it is defined as:

C# =



0 0 · · · 0 1
1 0 · · · 0 0

0 . . .
. . .

...
...

...
. . .

. . . 0 0
0 · · · 0 1 0


∈ C#×# . (6.1)

6.1.3 Review of DSP on Graphs
In DSP on graphs, the adjacency matrix of the graph of interest is considered to be
the unit shift operator for a signal on the graph [152]. Namely, let x be a signal on a
graph with the adjacency matrix A. Then the signal y computed as

y = A x, (6.2)

is called as the unit shifted version of x. We also would like to indicate that the
adjacency matrix is not the only choice for the shift operator in general. The study
in [68] proposes alternative definitions for the shift operator. Nevertheless, for
simplicity, we will stick with the adjacency matrix as done in [152, 153].

In general, any square matrix of size # , H ∈ C#×# , is considered as a linear graph
filter on the graph. When we have y = H x, we call y as the filtered version of the
signal x. In this study, we are interested in a special type of linear filters, namely
polynomial filters, which are defined as follows.

Definition 6.1 (Polynomial filters [152, 126]). A linear system H on a graph A is
said to be a polynomial filter if

H = � (A) =
!∑
:=0

ℎ: A: , (6.3)

for a set of ℎ: ∈ C. Here ! is called the order of the filter.

We can assume without loss of generality that ! < # . This is because, according
to Cayley-Hamiltion theorem, powers �: for : ≥ # can be expressed as linear
combinations of smaller powers [85].1

For a graph with the adjacency matrix A, let the following denote the Jordan
decomposition [85, 152] of the adjacency matrix

A = V J V-1, (6.4)
1Also see Theorem 3 of [152].
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where V is composed of the (generalized) eigenvectors of the adjacency matrix and
J is the Jordan normal form of A. When A is diagonalizable, (6.4) reduces to the
following form

A = V�V-1, (6.5)

for some diagonal� consisting of the eigenvalues and some invertible square matrix
V consisting of the eigenvectors of the adjacency matrix. When A has distinct
eigenvalues, it is necessarily diagonalizable, but not vice versa.

Using the Jordan decomposition in (6.4), we then have the following definitions.

Definition 6.2 (Graph Fourier transform [152, 153]). Let x be a signal on a graph
with the adjacency matrix A. Then the graph Fourier transform of x on the graph A
is given by

x̂ = V-1 x, (6.6)

where V has the (generalized) eigenvectors of A as in (6.4).

Definition 6.3 (Frequency domain operation). Let H be a linear filter on a graph
with the adjacency matrix A. Then the frequency domain operator corresponding
to H is defined by

Ĥ = V-1 H V, (6.7)

where V has the (generalized) eigenvectors of A as in (6.4).

Definiton 6.3 does not imply that V diagonalizes the filter H, that is, Ĥ is not
diagonal in general.

Notice that Definitions 6.2 and 6.3 are consistent with each other, that is, for a graph
signal x and a linear filter H, we have y = Hx if and only if ŷ = Ĥ x̂. As explained in
Section 6.8 (and Definition 6.7) later, Ĥ will be referred to as the frequency response
of H only when Ĥ is a diagonal matrix.

6.2 Building Blocks for Multirate Processing on Graphs
6.2.1 Downsampling and Upsampling Operations
One of the most essential building blocks for multirate signal processing is the
decimation operation [200]. In the graph signal processing, we will assume that this
operator retains #/" samples of the original graph signal x that has # samples. It
will be assumed that " is a divisor of # . Since the numbering of the graph vertices
is flexible [152, 45], we will assume, without loss of generality, that the first #/"
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samples of x are retained by the decimator. Thus the graph decimation operator is
defined as:

Definition 6.4 (Canonical Decimator). The "-fold graph decimation operator is
defined by the matrix

D =

[
I#/" 0#/" · · · 0#/"

]
∈ C(#/")×# . (6.8)

Given a graph signal x, decimated graph signal is then denoted as D x.

We refer to D as canonical decimator with decimation ratio " . This is a mapping
from # dimensional complex space to #/" dimensional complex space. Similar
definitions for the decimator operator have been introduced in the literature [129,
136, 35, 127].

Next, the upsampling operationU ∈ C#×(#/") is amapping from #/" dimensional
complex space to # dimensional complex space. Once we define the downsampling,
we cannot arbitrarly select the upsampling operator, they should be consistent with
each other. In general, downsample-then-upsample is a lossy operation. Contrary to
that, upsample-then-downsample operator is expected to be equal to identity. That
is to say

D U = I#/" . (6.9)

For a given D, the right inverse U is not unique. When we look for the minimum
norm solution, we get

U = DH (
D DH)−1

, (6.10)

assuming that D has full row rank. This result reduces to

U = DT =


I#/"
0#/"
...

0#/"


∈ C#×(#/") . (6.11)

for the decimator operator defined in (6.8). Hence, the corresponding uniform
upsampler with expansion ratio " is defined by the matrix DT. This operation
merely inserts blocks of zeros, analogous to conventional expanders [200, 199].

With this selection of the upsampler, we have the following equalities for upsample-
then-downsample and downsample-then-upsample operations:

D DT = I#/" , DT D =

[
I#/" 0

0 0

]
∈ R#×# , (6.12)
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respectively, where zero blocks have appropriate sizes.

In the following, our result will be based on the simple canonical D defined in (6.8).
More generally, decimator can be selected as an arbitrary (#/") × # matrix with
full row-rank. Such a definition provides an extension to the results presented in the
following sections and allows us to remove some of the restrictions on the adjacency
matrix. These details are elaborated in Section 6.15.

6.2.2 The Noble Identities
In classical signal processing, we have the first noble identity described in Fig-
ure 6.1a, where � (I) denotes the transfer function of an LTI filter [200]. For graph
signals, it is possible to obtain a similar result under some conditions on the graph.
The result is given in Figure 6.1b and requires some explanation.

In the classical case, the unit delay I-1 has the samemeaning for both the original and
the decimated signals. But for graph signals, the elementary shift operator should
match size of the signal. Since the decimated signal has length #/" , we need to
define a different shift operator for the decimated signal. The matrix Ā in the figure
denotes this adjusted shift operator.
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Figure 6.1: The first noble identity (a) for classical multirate signal processing where
↓" denotes decimator operation, (b) for graph signals on the adjacency matrix A.

With the adjusted shift operator for the decimated signal, we have the following
form of the first noble identity for graph signals:

D � (A") = � (Ā) D. (6.13)

This is shown schematically in Figure 6.1b. It is important to notice that the required
adjusted shift operator Ā that satisfies the noble identity in (6.13) may not exist in
general. In the following we will provide the sufficient and necessary condition on
A so that an adjusted shift operator exists and satisfies (6.13).
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Theorem 6.1 (The first noble identity). Let the decimator D be as in (6.8). If the
noble identity (6.13) is satisfied by a graph A for all polynomial filters � (·) for some
Ā, then A" has to have the form

A" =

[
(A")1,1 0
(A")2,1 (A")2,2

]
, (6.14)

where (A")1,1 ∈ C(#/")×(#/") , and furthermore

Ā = D A" DT, (6.15)

i.e., Ā = (A")1,1. Conversely if A" and Ā have the above form, then noble identity
(6.13) holds for all polynomial filters. In short, (6.13) holds for all polynomial filters
if and only if both (6.14) and (6.15) are true.

Proof. First assume (6.13) holds for all polynomials � (·), i.e., D
∑
: ℎ: A": =∑

: ℎ: Ā: D for all {ℎ: }. Then

D A": = Ā: D (6.16)

for all : ≥ 0. Now express A" in partitioned form

A" =

[
(A")1,1 (A")1,2
(A")2,1 (A")2,2

]
, (6.17)

where (A")1,1 ∈ C(#/")×(#/") . For : = 1, (6.16) yields D A" = Ā D. Using (6.8)
this becomes [

(A")1,1 (A")1,2
]
=

[
Ā 0",(#-#/")

]
, (6.18)

which proves Ā = (A")1,1 and (A")1,2 = 0 indeed. Thus (6.13) implies (6.14) and
(6.15).

Conversely assume the form (6.14) and the relation (6.15) are true. First observe
that when (6.14) holds, we have (A": )1,1 = ((A")1,1): . Since (6.15) also holds, it
follows that

(A": )1,1 = Ā: (6.19)

for all : ≥ 0. This is equivalent to (6.16), as seen by substituting from (6.14) and
(6.8). Thus (6.14) and the relation (6.15) imply the noble identity (6.13) indeed. �

The second noble identity in classical signal processing [200] is described schemat-
ically in Figure 6.2a. For graph signals, the analogous identity would be as in
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Figure 6.2b, where input and output are called as lower and higher rate signal, re-
spectively. Let Ã denote the adjusted shift operator for the lower rate signal in the
second noble identity. We have the following form of the second noble identity for
graph signals.

� (A") DT = DT � (Ã). (6.20)
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Figure 6.2: The second noble identity for (a) classical multirate signal processing
where ↑" denotes expander operation, (b) graph signals on the adjacency matrix A.

Theorem 6.2 (The second noble identity). If the noble identity (6.20) is satisfied by
a graph A for all polynomial filters � (·) for some Ã, then A" has to have the form

A" =

[
(A")1,1 (A")1,2

0 (A")2,2

]
, (6.21)

where (A")1,1 ∈ C(#/")×(#/") , and furthermore

Ã = D A" DT, (6.22)

i.e., Ã = (A")1,1. Conversely if A" and Ã have the above form, then noble identity
(6.20) holds for all polynomial filters. In short, (6.20) holds for all polynomial filters
if and only if both (6.21) and (6.22) are true.

Proof. First assume there exists an Ã such that (6.20) is true for all polynomial
filters � (·). This implies in particular

A": DT = DT Ã: (6.23)

for all : ≥ 0. Now consider the partitioned form in (6.17). Setting : = 1 in (6.23)
and using the form of DT in (6.11), we get[

Ã
0(#-#/"),"

]
=

[
(A")1,1
(A")2,1

]
, (6.24)



174

which shows that if (6.20) has to be true for all polynomial filters, then Ã = (A")1,1
and (A")2,1 = 0.

Conversely, suppose the form (6.21)) and the relation (6.22) are true. Then
(A": )1,1 = ((A")1,1): = Ã: . But this is equivalent to (6.23) as seen by substi-
tuting from (6.21) and (6.8). So (6.20) holds for all polynomials � (·) indeed. �

Combining the preceding two theorems we get

Theorem 6.3 (The noble identities). For a graph A, the two noble identities

D � (A") = � (Ā) D, (6.25)

� (A") DT = DT � (Ā), (6.26)

are simultaneously satisfied for all polynomial filters� (·) if and only if the following
two equations are satisfied: A" has the form

A" =

[
(A")1,1 0

0 (A")2,2

]
(6.27)

and
Ā = D A" DT ∈ C(#/")×(#/") , (6.28)

where (A")1,1 ∈ C(#/")×(#/") .

It is clear that an arbitrary graph may not satisfy the condition in (6.27). Specific
examples of graphs that meet, or do not meet, the condition of Theorem 6.3 will be
presented in Sections 6.4 and 6.5.

6.2.3 Lazy Graph Filter Banks
An important theoretical example of a maximally decimated filter bank in classical
signal processing is the "-channel delay-chain filter bank, also known as the lazy
filter bank, shown in Figure 6.3a. This is a perfect reconstruction system [200], and
serves as a starting point for developing more useful filter bank systems. Such a
development is typically based on the use of polyphase representations and noble
identities [200]. We have already developed noble identities for graph signals above.
In the following subsection we will develop polyphase representations for graph fil-
ters and in Section 6.13we shall develop graph filter banks. In the present subsection
we consider the graph equivalent of the lazy filter bank shown in Figure 6.3b. In this
system the graph signal x ∈ C# is passed through a chain of graph shift operators
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A: , 0 ≤ : ≤ "-1 and each shifted version is passed through the downsampler D
and upsampler DT. The resulting " signals are then graph-shifted again and added.
It is clear that the system is linear with the input-output relation y = ) (A) x where

) (A) =
"-1∑
:=0

A"-1-: DT D A: . (6.29)

For the classical lazy filter bank we have . (I) = I-("-1)- (I), and it is a perfect
reconstruction system. Similarly, we say that the lazy graph filter bank has perfect
reconstruction (PR) if ) (A) = A"-1, that is,

"-1∑
:=0

A"-1-: DT D A: = A"-1. (6.30)

This will be referred to as the lazy FB PR condition. We will return to more general
filter banks on graphs, along with the theory of perfect reconstruction and alias
cancellation in Sections 6.10 - 6.13.
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(b)

Figure 6.3: (a) "-channel lazy filter bank in classical multirate signal processing,
(b) "-channel lazy filter bank on a graph with adjacency matrix A. The decimation
matrix D is as in (6.8) with decimation ratio " .

6.2.4 Polyphase Implementation of Decimation and Interpolation Filters
A useful tool in multirate signal processing is the polyphase representation of linear
time-invariant filters [200, 199, 43]. Similar to the classical case, for a given
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polynomial graph filter, we can write Type-1 polyphase decomposition of the filter
as follows:

� (A) =
"-1∑
:=0

A: �: (A"), (6.31)

and Type-2 polyphase decomposition as follows:

� (A) =
"-1∑
:=0

A"-1-: ': (A"). (6.32)

Notice that there is no assumption on the structure of the adjacency matrix, hence
any polynomial filter on any graph has a polyphase representation. As in the
classical theory [200], Type-1 and Type-2 polyphase components are related as
': (A) = �"-1-: (A).

Figure 6.4a shows a graph filter followed by a graph decimator on A. This is
called a decimation filter, in analogy with classical theory. Similarly the system in
Figure 6.5a is called an interpolation filter. For graphs that satisfy the conditions of
the noble identities (6.27), these filters can be implemented in simplified form using
the polyphase representation as shown next.

Let ) (A) denote the overall response of the system in Figure 6.4a. Then we can
write it as:

) (A) = D� (A) = D
"-1∑
:=0

A: �: (A") =
"-1∑
:=0

D �: (A") A: =

"-1∑
:=0

�: (Ā) D A: ,

(6.33)
where we use the fact that �: (A") and A commute since �: is a polynomial in A,
hence it is shift invariant (see Section 6.9). We then utilize the noble identity in
(6.25) to get the final result. The adjusted shift operator given in (6.28) is denoted
by Ā. Figure 6.4b and Figure 6.4c schematically show the steps in (6.33).

Complementary to (6.33), upsampling followed by a filtering operation can be
implemented via Type-2 polyphase decomposition of the filter. Namely, let ) (A)
denote the overall response of the system in Figure 6.5a. Then we can write it as:

) (A) = � (A) DT =
"-1∑
:=0

A"-1-: ': (A") DT =
"-1∑
:=0

A"-1-: DT ': (Ā). (6.34)

where we use the fact that ': (A") and A commute since ': is a polynomial in A,
hence it is shift invariant (see Section 6.9). We then utilize the noble identity in
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Figure 6.4: (a) Polynomial filtering then decimation operation on a graph with the
adjacency matrix A. (b) Polyphase implementation of (a). (c) Simplification of (b)
using the first noble identity (6.25). The decimation matrix D is as in (6.8) with
decimation ratio " . Implementation in (b) exists without any restriction on the
adjacency matrix. However, A should satisfy (6.14) in order to utilize the first noble
identity for the implementation in (c).
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(c)

Figure 6.5: (a) Expansion then polynomial filtering on a graph with the adjacency
matrix A. (b) Polyphase implementation of (a). (c) Simplification of (b) using
the second noble identity (6.26). The expansion matrix DT with expansion ratio
" is transpose of D, which is in (6.8). Implementation in (b) exists without any
restriction on the adjacency matrix. However, A should satisfy (6.21) in order to
utilize the second noble identity for the implementation in (c).
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(6.26) to get the final result. Figure 6.5b and Figure 6.5c schematically show the
steps in (6.34).

We will use polyphase implementation of decimation and interpolation filters when
we develop polyphase implementation of filter banks in Section 6.13.

6.3 Graph Filter Banks and Polynomial Filters
The ultimate goal in this thesis is to develop a theory of analysis/synthesis filter
banks for graphs with properties such as perfect reconstruction, alias cancellation,
and so forth. Figure 6.6 shows such a filter bank for a signal x ∈ C# defined on the
graph A. Here each analysis filter H: is an # × # matrix, and the decimator D is as
defined in Section 6.2. Since there are " analysis filters and each decimator retains
#/" samples, this constitutes amaximally decimated analysis bank. The expanders
DT (defined as in Section 6.2.1) are followed by synthesis filters F: , which are also
# × # matrices.
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Figure 6.6: A maximally decimated graph filter bank where the filters H: and F:
are arbitrary matrices (i.e., not necessarily polynomials in A).

When the filters and decimators are cascaded, the maximally decimated analysis
bank can clearly be defined by the " matrices {D H0, D H1, . . . , D H"-1} where
DH: ∈ C(#/")×# . Similarly, the expander and the synthesis filters can be lumped
into one matrix F: DT ∈ C#×(#/") . Therefore, the entire analysis bank, Hanl, and
the synthesis bank, Fsyn, are just # × # matrices as follows:

Fsyn =
[

F0 DT · · · F"-1DT
]
, Hanl =


D H0
...

D H"-1

 (6.35)

Thus, perfect reconstruction property is equivalent to having FsynHanl = I, so that
as long as Hanl has full rank, we can find synthesis filters for perfect reconstruc-
tion. But there are practical difficulties in taking this “brute force” approach with
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“unconstrained” filter matrices. The complexity of the analysis bank (including
decimators) is #2 multiplications, and so is the complexity of the synthesis bank.
For large graphs (large #), this complexity can be impractical.
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Figure 6.7: Implementation of the polynomial graph filter �: (A) =
∑!
==0 ℎ: (=)A=.

When the graph is sparse and has simple edge weights this system requires only !#
multiplications for its implementation, compared to #2 in the brute force method of
Figure 6.6.

In Section 6.2.2 we showed that if we use graph filters that are polynomials in A, and
insist on the existence of noble identities with canonical decimators and expanders,
then some restrictions are imposed on the graph A. So it is necessary here to explain
the motivation for using polynomial filters, and reasons for looking into classical
tools such as noble identities and so forth, in the graph context. “After all,” the astute
reader may argue, “we can surely build filters and filter banks for graphs without
building these parallels to classical tools.” Sure enough, this is a correct statement
as we shall now elaborate. But then, there are also some advantages if we build
parallels to classical tools, as we shall also explain here. The price paid for the
reliance on classical parallels is that the graph A is restricted in some ways (as we
saw in Theorem 6.3, and shall again see in Section 6.4.2). In Section 6.15 we will
show how these restrictions can, to some extent, be removed.

The ultimate goal in this thesis is to develop the theory of analysis/synthesis filter
banks for graphs with properties such as perfect reconstruction, alias cancellation,
and so forth. Figure 6.6 shows such a filter bank for a signal x ∈ C# defined on
the graph A. Here each analysis filter H: is an # × # matrix, and the decimator D
is as defined in Section 6.2. Since there are " analysis filters and each decimator
retains #/" samples, this constitutes a maximally decimated analysis bank. The
expanders DT (defined as in Section 6.2.1) are followed by synthesis filters F: which
are also # × # matrices.

The maximally decimated analysis bank can clearly be defined by the " matrices
{DH0, DH1, . . . , DH"-1}, and represented as shown in Figure 6.8 on the left.
Similarly, with the expander DT and the synthesis filters F: lumped into one matrix
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Figure 6.8: The maximally decimated graph filter bank redrawn. See text.

F: DT, the synthesis bank can be drawn as shown on the right in Figure 6.8. Notice
from the figure that the entire analysis bank is just an # × # matrix Hanal and the
synthesis bank is another # × # matrix Fsyn as follows:

Fsyn =
[

F0 DT · · · F"-1 DT
]
, Hanal =


D H0
...

D H"-1

 . (6.36)

Thus perfect reconstruction is equivalent to Fsyn Hanal = I, so that as long as Hanal

has full rank # , we can find synthesis filters for perfect reconstruction. In short the
design of maximally decimated PR filter banks for graphs appears to be a trivial
matrix-inversion problem, deserving no deeper attention. But there are practical
difficulties in taking this “brute force” approachwith “unconstrained” filter matrices.
The complexity of the analysis bank (including decimators) is #2 multiplications,
and so is the complexity of the synthesis bank. For large graphs (large #), this
complexity can be impractical. From a conceptual point of view, the number of
graph vertices # is analogous to the extent of time domain in classical case, and the
of extent time domain is usually assumed to be infinite, i.e., −∞ < = < ∞. So, the
unconstrained system of Fig. 6.8 (where filters are not polynomials) is “analogous”
to infinite-order filters (e.g., ideal filters) in the classical time domain case.

There are other ways to design maximally decimated graph filter banks with much
lower complexity. One of these is to constrain the filters to be polynomials in the
graph adjacency matrix A. That is, we take the : Cℎ analysis filter to be of the form

H: = ℎ: (0) I + ℎ: (1) A + ℎ: (2) A2 + . . . + ℎ: (!) A! , (6.37)
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and similarly for the synthesis filters, where the filter order ! is a flexible design
parameter. This is in analogy with FIR filters �: (I) =

∑!
==0 ℎ: (=) I-= used in

classical filter bank designs. The advantage is that the graph filters can now be
implemented as in Figure 6.7 where the scalars ℎ: (=) are the coefficients of the : Cℎ

filter. The cascade ofAmatrices, called theA-chain (analogous to the classical delay
chain), is common to all the analysis filters and can be shared. This implementation
is especially attractive when A is sparse and has simple entries like 0, 1, -1, etc.,
as in many practical graphs (e.g., the Minnesotta traffic graph in [129, 128]). In
this case the implementation of the matrix multipliers A has negligible complexity.
Each multiplier ℎ: (=)I is a diagonal matrix requiring # multipliers. But since the
decimator keeps only #/" samples, only #/" multipliers in ℎ: (=)I are needed
before we add the signals in the bottom of Figure 6.7. So there are about !#/"
multiplications per channel. So the entire maximally decimated analysis bank
requires only !# multiplications, compared to the #2 multipliers in the case of
unconstrained filters. This is a significant saving when ! � # .

As mentioned earlier, the number of graph vertices # is analogous to the extent
of time domain in the classical time domain case, which is usually assumed to be
infinite. The unconstrained system of Figure 6.8 (where filters are not polynomials)
is analogous to infinite order filters (ideal filters) in the classical time domain. The
polynomial graph filter bank (filters as in Figure 6.7) is analogous to FIR filter banks
in the classical case. In the classical case short FIR filters can approximate the ideal
infinite-order filter quite well. In the same way, we expect that short polynomial
graph filters can approximate arbitrary # × # matrix filters “well enough.” We
realize that at this point the idea is rather in its infancy. But since the design of such
graph filters is itself likely to be a major topic, it is not elaborated further here.

The next question is, how do we design such polynomial filter banks and how do we
achieve properties similar to perfect reconstruction, freedom from aliasing, and so
forth. Since the filters are polynomials, one approach would be to draw a parallel
with classical filter banks and develop an analogy for the most basic tools used
therein such as noble identities, polyphase representations, and so forth. This may
or may not be the best approach, but it is certainly of interest to explore this avenue,
and find conditions under which this will work. This is the viewpoint we take. We
will find that developing such a parallel to classical tools imposes some restrictions
on the graph (Section 6.2 and Section 6.4.2). We will also show how some of these
restrictions can be removed (Section 6.15).
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In the next section we return to a deeper study of the properties of graphs which
allow such parallels to be built. A detailed study of graph filter banks and polyphase
matrices will be given in Sections 6.10 - 6.13, where the advantage of polyphase
matrices in the context of graph filter banks will also be explained. As a minor
point, it should also be noticed that once the advantage of polynomial filters and
other parallels to classicalmultirate systems is established, it is really not “necessary”
(although aesthetically satisfying) to look for a “physical” meaning for the graph
shift operator A [152, 153]. The real benefit comes from polynomial filters, and the
ability to use classical tools.

6.4 Relations to "-Partite Graphs
From Theorem 6.1 and 6.2, it is clear that some structure on the adjacency matrix
is required in order to generalize the basic concepts in the classical multirate signal
processing theory to graph signals. In this section we consider a number of examples
of graphs (especially "-partite graphs) and examine whether some or all of these
conditions are satisfied.

6.4.1 Some Important Examples
We begin with the example where A is an arbitrary diagonal matrix of size # . In
this case, it is clear that the noble identity condition (6.27) is satisfied for any "
that divides # . However, consider the overall response of the lazy filter bank in
Figure 6.3:

) (A) =
"-1∑
:=0

A"-1-: DT D A: =

[
X 0
0 0

]
, (6.38)

where X is a diagonal matrix of size #/" and zero blocks have appropriate sizes.
This ) (A) cannot be written as the ("-1)Cℎ power of the adjacency matrix unless A
has zeros on the diagonal except for the first #/" place. Therefore, the lazy filter
bank is not a PR system even for the simple example where the graph adjacency
matrix is diagonal! The main point of this example is that some of the “obvious”
results of classical multirate theory can fail in the case of some graphs. The fact
that the diagonal matrix A is not a useful graph is secondary to this discussion.

For the next example, consider bipartite graphs. In [129], bipartite graphs are shown
to be useful for 2-channel filter banks where the development was based on the graph
Laplacian. We now claim the following:

Theorem 6.4 (Bipartite graphs and filter banks). Let A be the adjacency matrix of
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a directed or undirected, bipartite graph in the following form

A =

[
0 A2

A1 0

]
, (6.39)

where A1,A2 ∈ C(#/2)×(#/2) . Then, noble identity condition in (6.27) and the lazy
filter bank perfect reconstruction condition in (6.30) are both satisfied for " = 2.

Proof. If the adjacency matrix of A has the form in (6.39), then we have

A2 =

[
A2 A1 0

0 A1 A2

]
. (6.40)

Since A" = A2 satisfies the necessary structure given by Theorem 6.3, the no-
ble identities (6.25) and (6.26) are satisfied with the adjusted shift operator Ā =

D A2 DT = A2 A1 for any polynomial filter � (·).

Next, for the lazy filter bank notice that

A1 DT D A0 =

[
0 0

A1 0

]
, A0 DT D A1 =

[
0 A2

0 0

]
. (6.41)

Therefore, ) (A) = ∑1
:=0 A1-: DT D A: = A, hence the lazy filter bank provides per-

fect reconstruction. �

Even though Theorem 6.4 is stated for bipartite graphs with equal sized partitions,
it extends to arbitrary bipartite graphs with a proper update on the size of the
decimation operator. More importantly, we also have the following result:

Theorem 6.5. If a graph with the adjacency matrix A provides PR in the 2-channel
lazy filter bank, then the graph is necessarily bi-partite.

Proof. Let A be partitioned as

A =

[
(A)1,1 (A)1,2
(A)2,1 (A)2,2

]
, (6.42)

where (A)1,1 ∈ C(#/2)×(#/2) . For " = 2, the lazy FB PR condition in (6.30)
becomes A DT D + DT D A = A. When (6.12) and (6.42) are considered, the lazy
FB PR condition results in (A)1,1 = 0 and (A)2,2 = 0. SinceA has the form in (6.39),
the graph is bi-partite. �
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6.4.2 "-partite graphs
An "-partite graph is one whose vertex set can be partitioned into " subsets so
that no edge has both ends in any one subset [26]. Under suitable labelling of the
vertices, the adjacency matrix of an "-partite graph can be written as follows:

A =


0 (A)1,2 · · · (A)1,"
(A)2,1 0 . . .

...
...

. . .
. . . (A)"-1,"

(A)",1 · · · (A)","-1 0


(6.43)

where (A)8, 9 ’s have arbitrary but appropriate sizes. In particular, the diagonal blocks
of the adjacencymatrix of an arbitrary"-partite graph are zero. An"-partite graph
is balanced when each vertex set has the same size, that is, (A)8, 9 ∈ C(#/")×(#/") .

Even though bipartite graphs are in conformity with the 2-channel systems as shown
in Theorem 6.4 and 6.5, this relation cannot be generalized to "-channel systems
on "-partite graphs due to following result.

Theorem 6.6 (Noble identities and "-partite graphs). For " > 2, the "-partite
property (6.43) is neither necessary nor sufficient for validity of the noble identity
condition in (6.27).

Proof. We already know that any diagonal matrix A (which is clearly not"-partite)
satisfies the noble identity condition, so the "-partite property is not necessary. To
prove it is not sufficient, we construct a counter example: let A be as in (6.43) and
assume all the elements in all the non diagonal blocks (A)8, 9 are strictly positive.
Now consider the product A2. Its (8, 9)Cℎ block has the form

(A2)8, 9 =
"∑
:=1
(A)8,: (A):, 9 . (6.44)

Since " > 2 it follows that there is at least one term (A)8,: (A):, 9 such that : ≠ 8
and : ≠ 9 . And since every element of the matrix (A)<,= is strictly positive unless
< = =, it follows that every element of (A)8,: (A):, 9 is strictly positive. Thus every
element of A2 is strictly positive. Repeating this argument, it follows that every
element of A" is strictly positive. So the noble identity condition (6.27) can never
be satisfied by this "-partite example! �

Moreover, an arbitrary"-partite graph does not satisfy the lazy filter bank condition.
We state this observation as the following theorem.
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Theorem 6.7 (Lazy filter banks and "-partite graphs). For " > 2, the "-partite
property of the graph is in general not sufficient to ensure perfect reconstruction
property of the lazy filter bank of Figure 6.3b.

Proof. We will provide a counter-example to disprove the sufficiency. Let A be the
adjacency matrix of a balanced "-partite graph. Therefore it can be written as in
(6.43). Let (A)8, 9 = I#/" for all 8 ≠ 9 . Therefore A can be written as

A = (11T − I") ⊗ I#/" ,

where 1 ∈ C" is a column vector with all 1 entries. Then we have the following
equation for the powers of A:

A: = (−1):
(
U: 11T + I"

)
⊗ I#/" , (6.45)

where
U: =

(1-"): -1
"

.

To see this, first observe that A0 and A1 satisfy (6.45) with U0 = 0 and U1 = -1. Now
assume that (6.45) is correct for A: . Then we have the following for A:+1:

A:+1 = A: A = (−1):
(
U: 11T + I"

)
(1 1T − I") ⊗ I#/" ,

= (−1):
(
1 1T(U:" − U: + 1) − I"

)
⊗ I#/" ,

= (−1):+1
(
11T(−U:" + U: − 1) + I"

)
⊗ I#/" .

Hence, we have the form in (6.45) also for A:+1 with

U:+1 = U: (1-") − 1.

When we expand the recursive relation above, we get

U: =

(
U:-2(1-")-1

)
(1-")-1 = · · · = -

:−1∑
;=0
(1-"); = (1-")

: -1
"

.

Notice that this satisfies, U0 = 0 and U1 = -1.

From (6.12), we have that DT D =
(
e1 eT1

)
⊗ I#/" where e1 is the first vector of the

standard basis for C" . Remember that overall response of the lazy filter bank is
given in (6.29). When we substitute (6.45) into (6.29), we get

) (A) = (-1)"-1
"-1∑
:=0

(
U"-1-: 1 + e1

) (
U: 1 + e1

)T
⊗ I#/"

= (-1)"-1
(
21 1 1T + 22

(
1 eT1 + e1 1T

)
+ " e1 eT1

)
⊗ I#/" ,
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where 22 is given as

22 =
"-1∑
:=0

U: =

"-1∑
:=0

(1 − "): − 1
"

= −
(
(1 − ")" − 1

"2 + 1

)
and 21 is given as

21 =
"-1∑
:=0

U"-1-: U: =
(1-") ("-1) − 2 22 − 1

"
.

Now consider the matrix A: from (6.45). For the (1, 1)Cℎ block we have (A: )1,1 =
(-1): (U:+1) I#/" whereaswe have (A: )1,2 = (-1): (U: ) I#/" for the (1, 2)Cℎ block.
Hence, we have

(A: )1,1 − (A: )1,2 = (-1): I#/"

for all : . When we look at ) (A), we have(
) (A)

)
1,1 −

(
) (A)

)
1,2 = (-1)

"-1 (22 + ") I#/" .

In order to have ) (A) in the form of (6.45), we therefore need 22 + " = ±1, which
in turn implies

" ± 1 =
(1-")" − 1

"2 + 1.

Notice that the above equation (either plus or minus case) is satisfied only for
" = {1, 2} for an integer " . For " > 2, we conclude that ) (A) does not have the
form in (6.45), hence it is not a power of A. �

6.5 "-block cyclic graphs
Contrary to intuition, the two channel filter bank results on bipartite graphs do not
extend to "-channel filter banks on "-partite graphs, as discussed in Section 6.4.
In the following, we will show that, with more restrictive conditions on the graph, it
is possible to generalize the classical multirate theory to graph signals for arbitrary
" . For this purpose we define the following graph.

Definition 6.5 ("-block cyclic graphs). A graph is said to be "-block cyclic if the
adjacency matrix of the graph has the following form:
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A =



0 0 0 · · · 0 A"

A1 0 0 · · · 0 0
0 A2 0 · · · 0 0
0 0 A3

. . .
...

...
...

...
...

. . . 0 0
0 0 0 · · · A"-1 0


∈ C#×# , (6.46)

where each A 9 has arbitrary but appropriate sizes. Furthermore, such a graph
is said to be balanced "-block cyclic, when A 9 ’s have the same size, that is
A 9 ∈ C(#/")×(#/") . In this case, we can write the adjacency matrix as

(A)8, 9 = A 9 X( 9-8+1), (6.47)

where (·)8, 9 denotes the (8, 9)Cℎ block of the adjacency matrix and X(·) is the "-
periodic discrete Dirac function, that is X(" 9) = 1 for all integer 9 and zero other-
wise.

In the rest of the chapter, when we refer to "-block cyclic graphs, we always mean
balanced "-block cyclic graphs. Some of the results presented in this study can
be generalized to unbalanced "-block cyclic graphs also. However, the adjacency
matrix of an unbalanced "-block cyclic graph can be shown to be non-invertible
and non-diagonalizable. Such a case requires a careful treatment that falls outside
of the scope of this study and will be elaborated elsewhere.

For the visual representation of "-block cyclic graphs, see Figure 6.10a for a
balanced 5-block cyclic graph of size 20. Also consider Figure 6.9 to see the
relation between the cyclic shift matrix in (6.1) and "-block cyclic matrices. We
now state some properties of "-block cyclic graphs that can be readily verified:

Fact 6.1. If a graph is "-block cyclic, then it is "-partite, but not vice-versa.

Fact 6.2. A graph is 2-block cyclic if and only if it is bi-partite.

Fact 6.3. An "-block cyclic graph is necessarily a directed graph for " > 2, hence
its adjacency matrix does not have any symmetry property in terms of edge weights.

Fact 6.4. A cyclic graph of size # , C# , is an "-block cyclic graph for all " that
divides # . See Figure 6.9.
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(a) C12 as 12-block cyclic (b) C12 as 6-block cyclic (c) C12 as 4-block cyclic (d) C12 as 3-block cyclic

Figure 6.9: Under suitable permutation of the vertices, cyclic graph of size # can
be represented as an "-block cyclic graph of size # where " divides # . Notice
that cyclic graph of size # is equivalent to #-block cyclic graph of size # . All the
edges are directed clock-wise as indicated by the arrow.

Some other properties of the adjacency matrix of an "-block cyclic graph are
presented in Section 6.18.1.

Even though arbitrary "-partite graphs are not suitable for "-channel systems as
discussed in Section 6.4, imposing more restrictions and having "-block cyclic
structure in (6.46) provides much more freedom in terms of multirate processing on
graphs, which is formally stated in the following theorem.

Theorem 6.8 ("-block cyclic graphs, noble identities, and lazy filter banks). Let A
be the adjacency matrix of a balanced "-block cyclic graph. Then, noble identity
condition in Theorem 6.3 and lazy FB PR condition in (6.30) are satisfied.

Proof. According to Corollary 6.4 in Section 6.18.1, A" is a block diagonal matrix
with blocks of size C(#/")×(#/") , which satisfies the condition in Theorem 6.3.
Therefore, noble identities hold true with the adjusted shift operator

Ā = D A" DT = A" · · ·A1. (6.48)

For the lazy filter bank condition, consider Corollary 6.6 and 6.7 in Section 6.18.1.
Since A-:DT is a block-column vector and DA: is a block-row vector, we have(

A-: DT D A:
)
8, 9
= (A-:DT)8 (DA: ) 9 = I#/" X(8-1+:) X( 9-1+:).

Therefore, (
"-1∑
:=0

A-: DT D A:

)
8, 9

= I#/" X(8- 9),
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that is
∑"-1
:=0 A-: DT D A: = I# . Hence, ) (A) = A"-1, that is, "-channel lazy filter

bank provides perfect reconstruction due to condition in (6.30). Notice that this
proof implicitly assumes that A is invertible. However, the result still holds true
even if the adjacency matrix is not invertible as long as it is "-block cyclic. We
omit these details for brevity. �

6.6 Eigen-properties of "-block cyclic graphs
"-block cyclic graphs have an important eigenvalue-eigenvector structure that will
play a key role in the development of graph filter banks. This property is as follows.

Theorem 6.9 (Eigen-families of "-block cyclic graphs). Eigenvalues and eigen-
vectors of the adjacency matrix of an "-block cyclic graph come as families
of size " . That is, if (_, v) is an eigenpair of "-block cyclic graph, then
{(_, v), (F_,
v), (F2_,
2v), · · · (F"-1_,
"-1v)} are all eigenpairs of the
same graph, where

F = 4− 92c/" , (6.49)


 = diag
( [

1 F-1 F-2 · · · F-("-1)] ) ⊗ I#/" . (6.50)

Proof. Let (_, v) be an eigenpair of a balanced "-block cyclic graph. Assume that
we have the following partitions for the eigenvector

v =
[
(v)H1 (v)H2 · · · (v)H"

]H
, (6.51)

where (v)8 ∈ C#/" for all 1 ≤ 8 ≤ " . Then,

Av =


A" (v)"
A1 (v)1

...

A"-1 (v)"-1


= _v =


_ (v)1
_ (v)2
...

_ (v)"


, (6.52)

that is,
A8 (v)8 = _ (v)8+1. (6.53)

When both sides of (6.53) are multiplied by F1-8, we get

A8

(
F1-8 (v)8

)
=

(
F_

) (
F-8 (v)8+1

)
. (6.54)

Therefore F_ is also an eigenvalue with the corresponding eigenvector

v′ =
[
F0 (v)T1 F-1 (v)T2 · · · F-("-1) (v)T"

]T
.
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Due to definition of 
 in (6.50), we have the following:[
F0 (v)T1 F

-1 (v)T2 · · · F
-("-1) (v)T"

]T
= 
 v, (6.55)

hence, (F_,
v) is also an eigen-pair.

Iterating this argument : times, we get (F:_, 
:v) as an eigenpair. However
notice that F"+: = F: and 
"+: = 
: . Therefore, starting from an eigenpair and
iteratively using (6.54), we can produce at most "-1 distinct eigenpairs. As a result,
if (_, v) is an eigenpair, (F:_,
:v) is also an eigenpair for 0 ≤ : ≤ "-1. �

This eigenvalue relation of block cyclic matrices has also been observed in earlier
studies [209, 64, 119, 45].

(a)
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Figure 6.10: (a) 5-block cyclic graph of size 20, (b) eigenvalues of the graph.
Notice that all the edges are directed along with the clock-wise direction and they
have complex valued weights. As given in Theorem 6.9, eigenvalues of a balanced
"-block cyclic graph come as families of size " . Eigenvalues belonging to the
same family are equally spaced on a circle in the complex plane. Actual values of
the eigenvalues depend on the weight of the edges.

Figure 6.10b visualizes the relation between the eigenvalues of an "-block cyclic
graph. There are #/" concentric circles centered at the origin. Each circle has "
eigenvalues equispaced in angle. The circles need not have distinct radii.

One immediate consequence of this eigenfamily structure of the "-block cyclic
graph is that eigenvalues can be real only for " = 2. We formally state this property
as follows.
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Corollary 6.1 (Complex eigenvalues of "-block cyclic). For " > 2, if an "-block
cyclic graph has a non-zero eigenvalue, then it has at least one complex valued
eigenvalue.

Proof. Let _ be a non-zero eigenvalue of an "-block cyclic graph. Then F:_ is
also eigenvalue for 0 ≤ : ≤ "-1 due to Theorem 6.9. Therefore for " > 2, there
exists a : such that F:_ is complex valued. �

It should be clear that Theorem 6.9 gives information about only one eigen-family
and does not imply diagonalizability of the adjacency matrix in general. When A
is not diagonalizable, Theorem 6.9 still applies to its proper eigenvectors, whereas
we cannot say too much for the generalized eigenvectors coming from the Jordan
chain. However, we note that a randomly generated balanced "-block cyclic matrix
is diagonalizable with probability 1.

Assuming that the adjacency matrix is diagonalizable, we will use double indexing
to represent the eigenvalues and the eigenvectors of "-block cyclic graphs, since
they come as families of size " . That is, the eigenpair (_8, 9 , v8, 9 ) will denote the
9 Cℎ eigenpair of the 8Cℎ family, where 1 ≤ 8 ≤ #/" and 1 ≤ 9 ≤ " . Using this
indexing scheme, with the use of Theorem 6.9, we have the following form:

_8, 9+: = F
: _8, 9 , (6.56)

v8, 9+: = 
: v8, 9 . (6.57)

It is important to state that this indexing scheme has a circular structure. Even
though we do not explicitly indicate this fact in the notation, it should be clear that
_8, 9+" = _8, 9 and v8, 9+" = v8, 9 for all 8 and 9 . This property comes from the fact that
F" = 1 and 
" = I.

With this specific family structure of the eigenvalues of an "-block cyclic graph,
when we talk about the eigenvalue decomposition of the adjacency matrix,

A = V�V-1, (6.58)

we will assume that eigenvalues and the eigenvectors are ordered as follows:

� = diag
(
[_1,1 · · · _1," · · · _#/",1 · · · _#/","]

)
, (6.59)

V =

[
v1,1 · · · v1," · · · v#/",1 · · · v#/","

]
. (6.60)
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It is also important to notice that the eigenfamily structure described in (6.56) and
(6.57) is unique to "-block cyclic graphs. This fact is stated in the following
theorem whose proof is given in Section 6.18.2.

Theorem 6.10 (Eigen-structure of "-block cyclic graphs). Let V be an invertible
matrix indexed as in (6.60) with columns that have the property in (6.57). Let � be
a diagonal matrix indexed as in (6.59) with diagonal entries that have the property
in (6.56). Then A = V�V-1 is diagonalizable "-block cyclic graph. Conversely
the adjacency matrix of a diagonalizable "-block cyclic graph always has the form
A = V�V-1 where V and � are as described above.

In order to enhance our motivation for "-block cyclic graphs, we would like to
consider a specific case where " = 2. Due to Fact 6.2 in Section 6.5, this is
equivalent to bipartite graphs.

For bipartite graphs, we now present Theorem 6.11 given below. In [129], 2-channel
filter banks on bipartite graphs are developed using this result from the spectral graph
theory. Note here that the Laplacian of a graph is given asL = D − A, whereD is the
diagonal degree matrix and the normalized Laplacian is given as L = D-1/2 L D-1/2.

Theorem 6.11 (Lemma 1.8 in [39] or Lemma 1 in [129]). The following statements
are equivalent for an undirected graph with real non-negative edge weights:

1. A is bipartite.

2. The spectrum of L is symmetric about 1 and the minimum and maximum
eigenvalues of L are 0 and 2, respectively.

3. If v = [(v)T1 (v)
T
2 ]

T is an eigenvector ofL with eigenvalue_, then the deformed
vector v̂ = [(v)T1 -(v)T2 ]

T is also an eigenvector of L with eigenvalue 2-_.

Notice that Theorem 6.11 is valid for the normalized Laplacian of the graph. Since
we work directly on the adjacency matrix rather than the Laplacian, we will not
utilize this result in our development. Interestingly, Theorem 6.9 provides a very
similar statement for the adjacency matrix of the graph when " = 2. To see this,
observe the following corollary.

Corollary 6.2 (Bipartite as 2-block cyclic). If_ is an eigenvalue of the adjacencyma-
trix of an arbitrary balanced bipartite graph with the eigenvector v = [(v)T1 (v)

T
2 ]

T,
then -_will be an eigenvalue of the samegraphwith the eigenvectorv′ = [(v)T1 -(v)T2 ]

T.
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Proof. Set " = 2 in Theorem 6.9. Then F = -1. �

When the graph is bipartite, L and A have the same eigenvector structure even
though they may have different eigenvectors. However, due to normalization by
the degree matrix

(
L = I − D-1/2AD-1/2) , symmetric eigenvalues of L add up to 2,

whereas symmetric eigenvalues ofA add up to 0, which agreeswith the fact that trace
ofA is zero when it is"-block cyclic. Notice that Corollary 6.2 is valid for arbitrary
bipartite graphs with complex edge values whereas Theorem 6.11 is constrained to
undirected graphs with non-negative edge weights. From this comparison we can
conclude that use of A as the unit shift operator rather than L allows more general
class of bipartite graphs. Furthermore, Theorem 6.9 generalizes this property of
2-channel systems on arbitrary bipartite graphs to "-channel systems on "-block
cyclic graphs.

Due to Theorem 6.8 and 6.9, we conclude that "-block cyclic graphs defined in
(6.46) have all the necessary properties to generalize the classical multirate theory
to the graph signals.

At this point it is interesting to notice the connection to circulant graphs discussed
in [57, 56, 58]. Circulant graphs do satisfy the eigenvector condition in (6.57).
This result follows from the fact that DFT matrix diagonalizes any circulant matrix.
Further, with proper permutations (relabelling of the nodes), DFT matrix satisfies
the condition in (6.57). An example of such a permutation will be demonstrated on
the directed cyclic graph, which is a circulant graph, in the following paragraph. This
is very interesting because some of our theorems (Theorems 6.12, 6.18 and 6.19)
that only require the eigenvector condition are now applicable to circulant graphs.
However, the eigenvalue condition of an"-block cyclic graph, (6.56), is not satisfied
by the circulant graphs in general.

The connection to the classical cyclic graph (Section II-C of [153]) is also important
to understand. For the classical cyclic shift matrix, the classical time domain
decimator retains every " Cℎ sample (rather than the first #/" samples). But our
convention for graphs is that the first #/" samples are retained. To match with
our convention, we permute the vertices (i.e., change the numbering convention).
This converts the classical cyclic shift matrix into an "-block cyclic matrix. For
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example, suppose # = 4 and " = 2. The classical cyclic shift matrix, C4, is
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


, (6.61)

where rows and columns are numbered as 0, 1, 2, and 3. The classical decimator
retains samples 0 and 2 whereas our canonical decimator, by convention, retains 0
and 1. So we simply exchange columns 1 and 2 and also exchange rows 1 and 2.
The resulting matrix is 

0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0


, (6.62)

which satisfies the requirements of Theorem 6.1, 6.2, and 6.3 (for " = 2). In fact
the above matrix is a 2-block cyclic matrix. As stated in Fact 6.4, this permutation is
possible for any (#, ") pair where" divides # . For a visual example with # = 12,
please see Figure 6.9.

6.7 Identification of the "-Block Structure from a Noisy Permuted Version
Although many results from classical multirate theory can be extended to graphs
with the help of "-Block cyclic graphs, the main limitation of these results is the
restrictive nature of this condition. Unfortunately, most of the real world examples
of graphs fail to satisfy this condition. The "-Block cyclic structure in (6.46)
can be equivalently expressed in terms of the eigenvalue and eigenvector structure
as given by Theorem 6.9. Therefore, "-Block cyclic structure can be considered
as constraints on both the eigenvalues and the eigenvectors. Using the idea of
similarity transform it is possible to remove the constraint on the eigenvectors
(see Section 6.15). Nevertheless, the condition on the eigenvalues is still necessary.
Therefore, the results overviewed here are not applicable to all graphs. In some cases
a given graph might be close to being an "-Block cyclic graph, but not exactly so.
In this case it is necessary to identify the hidden "-Block cyclic structure in the
graph, which can be considered as an approximation of a graph with an "-Block
cyclic graph.

Another subtle point with "-Block cyclic graphs is that Definition 6.5 implicitly
assumes a proper labeling of the nodes such that the adjacency matrix can be written
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in the form of (6.46). However, the adjacency information of the graph might be
provided without the required labeling of the nodes. In such a case the adjacency
matrix cannot be written in the form of (6.46), hence the simple decimator and
expander defined in (6.8) and (6.11) cannot be used directly.

Due to above mentioned points, this section considers an identification problem.
Consider an unweighted "-Block cyclic graph where each of the nonzero blocks in
A has the form 11T (i.e., these blocks are complete subgraphs). This is demonstrated
in Figure 6.11a. Instead of being given the exact adjacency matrix in Figure 6.11a
(demonstrated for " = 5), imagine we are given a modified version with the follow-
ing modifications:

1. Some of the existing edges are removed randomly and independently with
probability @ resulting in Figure 6.11b.

2. Some new edges are inserted randomly and independently with probability ?
resulting in Figure 6.11c.

3. The # nodes are randomly relabeled resulting in Figure 6.11d.

Given the adjacency matrix corresponding to Figure 6.11d, is it possible to recover
the structure of the original "-Block cyclic graph? That is, invert the permutation
that converted Figure 6.11c to Figure 6.11d? Once this is done, we can remove the
randomly inserted edges to obtain Figure 6.11b, which is an "-Block cyclic graph
with proper labeling of nodes. Of course we can never recover Figure 6.11a because
of the randomly removed edges from the dark blocks. The main goal therefore is
to identify the correct permutation of the labeling of the vertices so that we can go
back from Figure 6.11d to Figure 6.11c.

(a) (b) (c) (d)

Figure 6.11: (a) The adjacency matrix of a 5-Block cyclic graph of size 300, (b)
existing edges are removed with probability @ = 0.2, (c) noisy edges are added with
probability ? = 0.3, (d) random re-labeling of the nodes.

In the case of @ = 0 and ? = 0 (no missing edges and noisy edges) a simple search
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can solve the labeling problem: start from a node. Outgoing edges reveals a block.
Select a node from the identified block and repeat this procedure " times. Since
this simple technique implicitly assumes that the underlying graph is exactly "-
Block cyclic, in the presence of missing and noisy edges such a procedure will fail.
However, it is observed that the unique eigenvalue-eigenvector structure of"-Block
cyclic matrices (given in Theorem 6.9) are robust to the missing and noisy edges,
which can be used to identify the hidden blocks. In the following we will elaborate
on this.

We will first consider the "-Block cyclic matrix whose adjacency matrix is visual-
ized in Figure 6.11a. Since all the edges are assumed to have unit weights, A can be
written in the following close form:

A = C" ⊗ (11T), (6.63)

where C" is defined in (6.1) and 1 ∈ R#/" is the vector of all ones. Eigenvalues
of the adjacency matrix A are then obtained as _(A) = _(C") _(11T). Therefore
_(A) = { #

"
, l #

"
, l2 #

"
, · · · , l"-1 #

"
, 0, · · · , 0} where l is given in (6.49). The

adjacency matrix A has " non-zero eigenvalues equally-spaced on a circle with
radius #/" . The remaining #-" eigenvalues are all zeros. These eigenvalues are
visualized in Figure 6.12a for " = 5 and # = 300. When some of existing edges
are removed, the adjacency matrix is no longer in the form of (6.63). Hence, the
eigenvalues of the matrix in Figure 6.11b are different than Figure 6.12a. Since
the removal of the edges does not disturb the "-Block cyclic property, all the
eigenvalues still come as families of size " due to Theorem 6.9. In addition, "
dominant eigenvalues continue to existwhile the remaining ones are clustered around
zero. Even though the magnitude of the dominant eigenvalues is a random variable
(due to random removal of the edges), one can use Perron-Frobenius theorem for
irreducible matrices[85] to argue that the magnitude can be well approximated
by (1-@) #/" . The eigenvalues of the matrix in Figure 6.11b are visualized in
Figure 6.12b. In this figure notice that @ is selected to be @ = 0.2.

In the presence of noisy edges "-Block cyclic structure no longer exist in the
adjacency matrix. As a result, eigenvalues lose the family structure. However, it
is interesting to observe that random addition of edges does not affect the structure
of the dominant eigenvalues significantly. " dominant eigenvalues (except for the
one on the real line) continue to exist equally spaced on a circle (approximately)
while the remaining ones are clustered around zero. The eigenvalues of the matrix
in Figure 6.11c are visualized in Figure 6.12c.
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Figure 6.12: Eigenvalues of the matrices in (a) Figure 6.11a, (b) Figure 6.11b and
(c) Figures 6.11c and 6.11d.

Due to stability of the eigenvalues one can hope to recover the underlying "-
Block cyclic structure in the presence of noisy and missing edges. Based on this
observation and inspired by the spectral graph coloring approach [5], we propose
a 3-step routine to identify the blocks of the underlying graph, which is outlined in
Algorithm 6.

Algorithm 6 Identification of the "-Block cyclic structure
1: Given the adjacency matrix A, compute its eigenvalue decomposition as

A = V�V-1 where eigenvalues are assumed to be ordered in the absolute
sense, that is, |_1 | ≥ · · · |_" | ≥ · · · |_# |. Let {v1, · · · , v"} be the eigenvec-
tors that correspond to the largest (in the absolute sense) " eigenvalues.

2: Stack the eigenvectors into a matrix as S = [v1 v2 · · · v"], and compute
the following C = S SH.

3: Cluster the rows of C into " equal size partitions.

In this procedure the last step is not defined precisely. Various different techniques
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can be implemented. In our implementation we use a simple greedy technique to
avoid the computational complexity: we start with the first row of the matrix C. We
find the indices of the elements of the vector with the largest #/" values and assign
these indices to a block. Then, we consider the smallest un-assigned index and
repeat this procedure " times. The rationale behind this greedy technique comes
from the eigenvectors structure of the "-Block cyclic matrices (Theorem 6.9). In
the case of ? = 0, the matrix S has the following structure:

S =


u1 u1 l

0 u1 l
0 · · · u1 l

0

u2 u2 l
-1 u2 l

-2 · · · u2 l
-("-1)

...
...

...
. . .

...

u" u" l-("-1) u" l-2("-1) · · · u" l-("-1) ("-1)


, (6.64)

where u8 ∈ R#/" are the partitions of the eigenvector v1. As a result, the matrix C
has the following block diagonal form:

C = "


u1 uH

1
. . .

u
"

uH
"

 , (6.65)

In the case of ? > 0, the adjacency matrix is no longer "-Block cyclic. However, as
suggested by Figure 6.12, the eigenvalue structure is not lost completely. Similarly,
we have observed that the matrix C is “very close” to a block diagonal matrix. As
a result, even a simple thresholding (finding the indices of the maximum values) is
sufficient to identify the blocks of the hidden structure under a random re-labeling
of the nodes.

When the proposed scheme is applied to the matrix in Figure 6.11d, it finds a
permutation (re-labeling of the nodes) that results in the adjacency matrix given in
Figure 6.13 from which it is apparent that the algorithm successfully reveals the
hidden "-Block cyclic structure. When carefully observed, one can realize that
the matrices in Figures 6.11d and 6.13 are not equal to each other. There are two
reasons for this mismatch: 1) The main purpose of the algorithm is to identify the
blocks. The labeling of the nodes within a block is arbitrary. 2) Once the blocks are
identified, numbering of the blocks (from 1 to ") is arbitrary. Nevertheless, from
the multirate processing perspective Figure 6.11c and Figure 6.13 are equivalent to
each other. The noisy edges can be removed, and previously discussed multirate
techniques can be applied accordingly.
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Figure 6.13: The algorithm proposed in Algorithm 6 finds a permutation that
converts Figure 6.11d to the above form.

We have tested the proposed scheme (Algorithm 6) with various different values of
? and @. In order to evaluate the recovery performance we consider the fraction
of the nodes that are labeled correctly. In the worst case scenario (the adjacency
matrix does not have an "-Block cyclic structure) the routine randomly assigns the
nodes to the blocks. Since there are " blocks, the fraction can be at least 1/"
on the average. The recovery performance of the proposed technique is provided
in Figure 6.14. The number of blocks is selected to be " = 5, and the number of
nodes are selected to be # = 100, 300 and 500 in Figures 6.14a-6.14c, respectively.

It is important to note the trade-off between the parameters ? and @. The recovery
performance of the proposed approach depends on the density of the edges in the
regions. The average edge density between the consecutive blocks is 1-@ (since
edges are removed with probability @), and the density in the remaining parts is ?.
Figure 6.11c visually describes the difference between the densities for the case of
@ = 0.2 and ? = 0.3. In fact this difference keeps the structure on the eigenvalues
intact. When 1 − @ ≈ ?, the regions are no different from each other. Hence, the
underlying blocks are not expected to be identified correctly. Figure 6.14 follows
this expectation. Notice that the algorithm behaves poorly around the line ? + @ = 1.
In the vicinity of this region the fraction of correctly labeled nodes is 1/" , which
corresponds to the random assignments of the nodes. Figures 6.14a-6.14c also
suggest that larger number of nodes allows correct identification of the blocks for a
larger set of values of ? and @.
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Figure 6.14: Recovery performance of the proposed technique for " = 5. The
fraction of the nodes that are labeled correctly is color coded. Number of nodes
are (a) # = 100, (b) # = 300, and (c) # = 500. Fractions are averaged over 350
experiments.

As a final note, in the proposed algorithm the value of " is assumed to be known,
which may not be available in some cases. However, as Figure 6.12 suggests, even
a visual analysis of the eigenvalues is enough to identify the value of " . If we were
given only the Figure 6.12c, then it would be straightforward to conclude that the
eigenvalues belong to a 5-Block cyclic adjacency matrix. Hence, we can conclude
that knowledge about " is a very mild assumption.

6.8 Concept of Spectrum Folding and Aliasing
In order to talk about alias-free and perfect reconstruction graph filter banks, we need
to first define what aliasing is in graph signals. For this purpose we now revisit the
downsample-then-upsample (DU) operation. According to our canonical definition
of decimator in (6.8), DU operator is given in (6.12). Since DU replaces samples
with zeros, it is a lossy operation and the erased samples cannot be reconstructed
back from the remaining data in general. We now analyze the effect of the DU
operator from the frequency domain viewpoint, and explain the spectrum folding or
aliasing effect. A similar approach is presented for two-channel systems in [129],
where graph signal processing is based on the graph Laplacian. In our development
the graph A is allowed to have complex edge weights and can be directed.

Using the canonical definition of the decimator in (6.8) and eigenvector-shift operator

 in (6.50), the DU operator can be written as a sum of powers of 
. That is,

DT D =
1
"

"-1∑
:=0


: . (6.66)
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Now consider the DU version of a graph signal x, namely

y = DT D x. (6.67)

Remember that graph Fourier transform of a graph signal x is given in Definition 6.2.
Let x̂ and ŷ denote the graph Fourier transform of the input and output signal of the
DU system. Let G denote the frequency domain operation of the DU operator. That
is, ŷ = G x̂. Due to Definition 6.3 we have

G = V-1DT D V. (6.68)

Using (6.66), we can write G as follows:

G =
1
"

"-1∑
:=0

V-1
: V. (6.69)

In the following, we will not constrain ourselves to "-block cyclic graphs and
assume that A is diagonalizable and only the eigenvectors of A satisfy (6.57) and
let eigenvalues be arbitrary. In Section 6.15 we will discuss how this assumption on
the eigenvectors can be removed by appropriately generalizing the definition of the
decimator D.

Now notice that 
 is the eigenvector-shift operator for the eigenvectors satisfying
(6.57). Therefore, 
: V will be the column permuted version of V. Due to (6.57),

: will circularly shift each vector of an eigen-family to the left by : times. Due to
our ordering convention on the eigenvectors in (6.60), we have the following:


:V =

[
v1,1+: · · · v1,"+: · · · v#/",1+: · · · v#/","+:

]
. (6.70)

Notice that this permutation of the columns of V can also be written with a column
permutation matrix. Therefore we have


: V = V �: , (6.71)

where

�: = I#/" ⊗ C:
" =


C:
"
· · · 0

0 . . . 0
0 · · · C:

"

 , (6.72)

where C" is the size " cyclic matrix defined in (6.1). Using (6.71) and (6.72), the
frequency domain operation G in (6.68) can be written as

G = I#/" ⊗
1
"

"-1∑
:=0

C:
" . (6.73)
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Since the first " powers of cyclic matrix of size " add up to matrix with all 1
entries, this response further simplifies to

G = I#/" ⊗
1
"

1" 1H" , (6.74)

where 1" denotes the column vector of size " with all 1 entries.

To be consistent with double indexing of the eigenvectors, we will stick to that
scheme for the frequency components of a graph signal. That is to say,

x̂ = [Ĝ1,1 · · · Ĝ1," · · · Ĝ#/",1 · · · Ĝ#/","]T. (6.75)

Due to (6.74), we have the following relation between the graph Fourier transform
of the original signal and the graph Fourier transform of the downsampled-then-
upsampled signal

Ĥ8,1 = Ĥ8,2 = · · · = Ĥ8," =
1
"

"∑
9=1
Ĝ8, 9 , (6.76)

for all 1 ≤ 8 ≤ #/" . We state this result in the following theorem.

Theorem 6.12 (Spectrum folding in graph signals). Let A be the adjacency matrix
of a graph. Assume that A is diagonalizable and has the eigenvector structure in
(6.57) as indexed in (6.60) with arbitrary eigenvalues. Let x be a signal on the
graph and y = DT Dx where D is as in (6.8). Then, the graph Fourier transforms of
x and y are related as:

ŷ = 1
"

(
I#/" ⊗ 1" 1T"

)
x̂. (6.77)

Thus the DU operation results in the phenomenon described by (6.76) in the fre-
quency domain. This is similar to aliasing or spectral folding because multiple
frequency components of the input overlap into the same frequency component of
the output. This is similar to the effect of decimation in classical signal processing
[200]. From the folded spectrum (6.76) we cannot in general recover the original sig-
nal, which is consistent with the fact that decimation is in general a information-lossy
operation. It should be remembered however that the expression (6.76) has been
derived only for graphs A for which the eigenvectors have the restricted structure
(6.57).



203

6.9 Linear Systems on Graphs: Interconnection Between Shift Invariance,
Alias-Free Property, and Polynomial Property

The above notion of aliasing or spectrum folding due to the DU operator on a
graph can be generalized. Thus consider any system S defined on a diagonalizable
graph A, producing output y = S(x) in response to an input x. Let x̂ and ŷ denote
the graph Fourier transforms of x and y. We say that the system S is alias-free
if each component of ŷ is determined by the corresponding component of x̂, i.e.,
Ĥ8 = 68 (Ĝ8). In other words, there is no interference between Fourier components.
For the special case of linear systems on the graph A, this reduces to Ĥ8 = U8 Ĝ8,
where U8 is analogous to frequency response.

In classical signal processing, it is well known that linear shift invariant systems
are automatically alias-free. For the case of graph signals this equivalence is not
always true as we shall elaborate. It was proved in [152] that shift invariance of a
linear system on a graph A is equivalent to the statement that the system H be a
polynomial (under some conditions, see Theorem 6.13 below). In this section we
will see that the shift invariance, alias-free property, and polynomial property do not
imply each other in general. Their inter relationship depends on whether the graph
A has distinct eigenvalues or not. These results are elaborated in Theorems 6.14 and
6.15, which we shall prove in this section. For clarity we begin with the following
formal definitions.

Definition 6.6 (Shift-invariant filters [152]). Let A be the adjacency matrix of a
graph. Let H be a linear system on the graph. It is said that H is shift-invariant if it
commutes with A, that is, AH = HA.

Definition 6.7 (Alias-free filters). Let the graph be such that A is diagonalizable,
i.e., A = V�V-1 for some diagonal � and invertible V. Let H be a linear system on
A with frequency domain operation Ĥ = V-1HV. We say H is a alias-free filter on
graph A if Ĥ is a diagonal matrix. In this case Ĥ is called the frequency response
of the filter H.

A polynomial filter is always shift invariant because

HA =

(
#-1∑
:=0

U: A:

)
A = A

(
#-1∑
:=0

U: A:

)
= AH. (6.78)

But in general the converse is not true. The following result was proved in [152]:
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Theorem 6.13 (Polynomial and shift-invariant graph filters, Theorem 1 in [152]).
Let A be the graph adjacency matrix and assume that its characteristic and minimal
polynomials are equal. Then a graph filter H is linear and shift-invariant if and
only if H is a polynomial on the graph shift A.

We now state and prove the following results.

Theorem 6.14 (Linear systems on diagonalizable graphs). Let H be a linear system
on the graph A. Assume A is diagonalizable. Then the following are true:

1. If H is a polynomial in A then it is alias free.

2. If H is alias-free then it is shift invariant.

Proof. 1) Let A = V�V-1 be the eigenvalue decomposition of A. Since H is poly-
nomial in A we have H = � (A) where � (·) is a polynomial. Then H = V� (�)V-1,
where � is the diagonal matrix consisting of the eigenvalues of A. Notice that
� (�) = V-1HV is the frequency domain operation of the system, which is a poly-
nomial of a diagonal matrix. Therefore the overall frequency domain operation is a
diagonal matrix, hence it is alias-free.

2) Let A = V�V-1 be the eigenvalue decomposition of A. Assume that H is alias-
free. Then it can be written as H = VZV-1 for a diagonal Z due to Definition 6.7.
Then, we have HA = VZ�V-1 = V�ZV-1 = AH since diagonal matrices commute.
Hence, H is shift-invariant. �

Theorem 6.15 (Linear systems on graphs with distinct eigenvalues). Let H be a
linear system on the graph A. Assume A has distinct eigenvalues (so that it is, in
particular, diagonalizable). Then the following statements are equivalent:

1. H is a polynomial in A.

2. H is alias-free.

3. H is shift invariant.

Proof. Since A is diagonalizable, it follows from Theorem 6.14 that (1) implies (2)
and (2) implies (3).
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We now prove that (3) implies (2): Assume H is shift invariant, that is, AH = HA.
Since A has distinct eigenvalues, this implies the following: H is also diagonaliz-
able; A and H are simultaneously diagonalizable. (These two claims follows from
Problem 13 on page 56 of [85]). But since A has distinct eigenvalues, V is its
only diagonalizing matrix (up to a permutation and scaling of columns). So, V in
particular, diagonalizes H, which (by Definition 6.7) shows that H is alias-free.

We finally prove that (2) implies (1): Assume H is alias-free, that is, V-1HV = Z is
a diagonal matrix with # diagonal elements I8. Since the eigenvalues _8, 1 ≤ 8 ≤ #
of A are distinct, we can always find a set of # numbers ℎ8 such that the following
holds: 

1 _1 · · · _#-11
1 _2 · · · _#-12
...

...
...

...

1 _# · · · _#-1
#



ℎ0

ℎ1
...

ℎ#-1


=


I1

I2
...

I#


. (6.79)

This is because the matrix on the left, being Vandermonde with distinct _8, is
invertible. Thus, there exists a polynomial � (_) = ∑#-1

:=0 ℎ: _
: such that � (_8) = I8.

In matrix notation we can rewrite this as � (�) = Z, or

#-1∑
:=0

ℎ: �
: = Z, i.e., V

#-1∑
:=0

ℎ: �
: V-1 = H, (6.80)

or equivalently
∑#-1
:=0 ℎ: A: = H, which proves that H is a polynomial in A. �

According toDefinition 6.1 and 6.6, we can talk about polynomial and shift-invariant
filters on a graph with an arbitrary adjacency matrix. However, the definition of
alias-free filters is exclusive to graphs with diagonalizable adjacency matrices. We
intentionally exclude the graphs with non-diagonalizable adjacency matrices due to
following reasons. In [153], authors use total variation to quantify the notion of
frequency in the graph signals. When the adjacency matrix is not diagonalizable,
total variation of a generalized eigenvector inherently depends on the next general-
ized eigenvector in the Jordan chain that makes it difficult to interpret. Furthermore,
when the adjacencymatrix is not diagonalizable, even the unit shift element,A, has a
non-diagonal frequency domain operation. Hence, relation between the polynomial
filtering and aliasing in the case of non-diagonalizable adjacency matrices is out of
the scope of this work and deserves an independent study.
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In the following we will provide three examples to demonstrate the necessity of
distinct eigenvalues for the equivalence of the above mentioned three properties.
Let A = V�V-1 be the eigenvalue decomposition of the graph as in (6.5).

1. Let H be an alias-free filter: H = VZV-1 where Z is a diagonal matrix with
distinct diagonal entries I8 such that I8 ≠ I 9 for 8 ≠ 9 . Let _ be a repeated
eigenvalue of A with algebraic multiplicity 2. In order to represent H as
a polynomial, we need to find a polynomial � (·) such that � (_) = I8 and
� (_) = I 9 for some 8 ≠ 9 . Since I8’s are distinct, such a function does not
exist. Hence, H is alias-free but not polynomial in A.

2. Let _ be an eigenvalue of A with algebraic multiplicity < [85]. Assume
< > 1. Hence, A has repeated eigenvalues. Then we can write � as follows
(by ordering the eigenvectors):

� =

[
_ I< 0

0 �′

]
, Z =

[
Z1 0
0 Z2

]
. (6.81)

Let H be such that H = VZV-1 with Z is as in (6.81) where Z2 is a diagonal
but Z1 is a non-diagonalizable square matrix of size <. Notice that � and Z
commute. Hence, A and H commute, that is, H is shift invariant on the graph.
But Z, which is the frequency domain operation of H, is not diagonal since
< > 1 and Z1 is non-diagonalizable. As a result, H is shift-invariant but not
alias-free.

3. Consider the construction in the previous example (6.81). Since � is a diag-
onal matrix, any polynomial of � will be diagonal. That is, no polynomial of
� is equal to non-diagonal Z. Hence, H is shift-invariant but not polynomial.

Notice that Theorem 6.13 applies to any graph whether its adjacency matrix is diag-
onalizable or not. In the case of diagonalizable matrices, the minimal polynomial
is equal to characteristic polynomial if and only if the matrix has distinct eigen-
values [85]. Figure 6.15 schematically shows the relation between shift-invariance,
alias-free property, and polynomial property of a linear system on a graph.

When the adjacency matrix is the directed cycle C# , graph signal processing re-
duces to the classical theory [152]. Since C# has distinct eigenvalues in the form
of 4− 92c:/# for 0 ≤ : ≤ #-1, polynomial, alias-free and time-invariant filters are
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Fig. 9.

Polynomial

Alias Free Shift Invariant

Fig. 10.Figure 6.15: Relations between the alias-free, shift invariant and polynomial graph
filters. Implications shown with solid lines exist for diagonalizable adjacency ma-
trices whereas broken lines further require all eigenvalues to be distinct. In fact,
polynomial filters imply shift invariance even if the adjacency matrix is not diago-
nalizable.

equivalent to each other. Therefore, relations in Figure 6.15 are consistent with clas-
sical signal processing theory but show that our understanding of these properties
do not extend to graph case trivially.

6.10 Graph Filter Banks
In previous sections, we found that multirate building blocks defined on graphs
satisfy identities similar to classicalmultirate identities only under certain conditions
on the adjacency matrix A. In the case of filter banks, even the simplest maximally
decimated filter bank (the lazy filter bank of Figure 6.3) may or may not satisfy
perfect reconstruction (unlike in the classical case). These were elaborated in
Section 6.2.

In this section we consider filter banks in greater detail. Figure 6.16 shows a
maximally decimated graph filter bank where the analysis filters �: (A) and the
synthesis filters �: (A) are polynomials in A, and D is as in (6.8). In the classical
case, a maximally decimated filter bank is known to be a periodically time-varying
system unless aliasing is completely canceled, in which case it becomes a time-
invariant system. It is possible to get a somewhat analogous property for filter
banks on graphs, but only under some conditions. In this section we first develop
these results. We then study a class of filter banks that are analogous to ideal
brickwall filters (bandlimited filter banks in the classical case) and show that perfect
reconstruction can be achieved under some constraints on the eigen-structure of the
graph A.
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circulant property developed for classical filter banks in [?].
In Sec. VI we consider frequency responses of graph filter

banks inspired by similar ideas in [?], [?]. We will see that
this concept can be meaningfully developed for filter banks on
M -cyclic graphs with all eigenvalues on the unit circle, but
not for arbitrary graphs.

Finally in Sec. VII we show that the eigenvector structure
in (10) (Ω-structure) can be relaxed simply by considering
a transformed graph based on similarity transformations. This
generalization therefore extends many of the results in this and
the companion paper [?] to more general graphs. In short, all
results that we developed for Ω-graphs (e.g., Theorems 3 and
4) generalize to arbitrary graphs. Similarly all results which we
developed for M -block cyclic graphs (e.g., Theorems 5 and
6) generalize to graphs that are subject only to the eigenvalue
constraint (9) and not the eigenvector constraint (10).

Section IX concludes the paper. This paper follows the
notation described in the companion paper [?].

B. Review from [?]

We defined M -fold graph decimation operator by the matrix

D � �
IN{M 0N{M � � � 0N{M

� P CpN{Mq�N . (1)

We then showed that the following noble identities

D HpAM q � HpsAq D, (2)
HpAM q DT � DT HpsAq, (3)

are simultaneously satisfied for all polynomial filters Hp�q if
and only if the following two equations are satisfied: A being
the adjacency matrix of the graph, AM has the form

AM �
� pAM q1,1 0

0 pAM q2,2

�
, (4)

and sA � DAM DT P MN{M , (5)

where pAM q1,1 P MN{M . We noted that the condition in (4)
is not trivial in the sense that even very simple graphs can
fail to satisfy it. We also showed that M -block cyclic graphs
satisfy the noble identity condition (4). We called a graph
(balanced) M -block cyclic when it had the form

A �

����������

0 0 0 � � � 0 AM

A1 0 0 � � � 0 0
0 A2 0 � � � 0 0

0 0 A3
. . .

...
...

...
...

...
. . . 0 0

0 0 0 � � � AM -1 0

����������
P MN , (6)

where each Aj P MN{M . For the eigenvalue decomposition
of the adjacency matrix A � V ΛV -1, when we have the
following double indexing scheme

Λ � diag
�
rλ1,1 � � �λ1,M � � � λN{M,1 � � �λN{M,M s

	
, (7)

V �
�
v1,1 � � �v1,M � � � vN{M,1 � � �vN{M,M

�
, (8)

we showed that eigenvalues and eigenvectors of M -block
cyclic graphs have the following relation

λi,j+k � wk λi,j , (9)

vi,j+k � Ωk vi,j , (10)

where
w � e�j2π{M , (11)

Ω � diag
��

1 w-1 w-2 � � � w-pM -1q�	 b IN{M . (12)

In the rest of the paper the eigenvector structure in (10) will
be referred to as the Ω-structure. A graph with eigenvectors
satisfying the condition in (10) will be referred to as an Ω-
graph. Notice that an Ω-graph can have arbitrary eigenvalues.
An M -block cyclic graph is also an Ω-graph since its eigen-
vectors have the Ω-structure. Furthermore, any circulant graph
is an Ω-graph since columns of the properly permuted DFT
matrix have the structure in (10).

II. GRAPH FILTER BANKS

In the companion paper [?], we found that multirate building
blocks defined on graphs satisfy identities similar to classical
multirate identities only under certain conditions on the adja-
cency matrix A. In the case of filter banks, even the simplest
maximally decimated filter bank (the lazy filter bank of Fig. ??
of [?]) may or may not satisfy perfect reconstruction (unlike
in the classical case). These were elaborated in Sec. ?? of [?].

In this section we consider filter banks in greater detail.
Fig. 1 shows a maximally decimated graph filter bank where
the analysis filters HkpAq and the synthesis filters FkpAq are
polynomials in A, and D is as in (1). In the classical case, a
maximally decimated filter bank is known to be a periodically
time-varying system unless aliasing is completely canceled, in
which case it becomes a time-invariant system. It is possible to
get a somewhat analogous property for filter banks on graphs,
but only under some conditions. In this section we first develop
these results. We then study a class of filter banks that are
analogous to ideal brickwall filters (bandlimited filter banks
in the classical case) and show that perfect reconstruction can
be achieved under some constraints on the eigen-structure of
the graph A.

x H0pAq D DT F0pAq
...

...
...

...
HM -1pAq D DT FM -1pAq

� y

Fig. 1. An M -channel maximally decimated filter bank on a graph with
adjacency matrix A. Here HkpAq and FkpAq are polynomials in A (so
they are linear shift-invariant systems [?]). The decimation matrix D is as in
(1) with decimation ratio M . Overall response of the filter bank is denoted
as T pAq, that is, y � T pAqx.

A. Graph Filter Banks as Periodically Shift-Varying Systems

In classical filter banks where the filters are polynomials
in the shift operator z-1, the maximally decimated anal-
ysis/synthesis system is a linear periodically shift-variant

Figure 6.16: An "-channel maximally decimated filter bank on a graph with
adjacencymatrixA. Here�: (A) and �: (A) are polynomials inA (so they are linear
shift-invariant systems). The decimation matrix D is as in (6.8) with decimation
ratio " . Overall response of the filter bank is denoted as ) (A), that is, y = ) (A) x.

6.10.1 Graph Filter Banks as Periodically Shift-Varying Systems
In classical filter banks where the filters are polynomials in the shift operator I-1, the
maximally decimated analysis/synthesis system is a linear periodically shift-variant
(LPSV(")) system (i.e., the system from x to y in Figure 6.16 is LPSV). This is
always true regardless of what the filter coefficients are. In particular, if the filter
coefficients are such that this LPSV(") system reduces to an LTI system, then the
system can be shown to be alias-free (and vice versa) [200]. Furthermore if this
LTI system is a pure delay 2 I-=0 then the system has the perfect reconstruction (PR)
property. Since our main goal is to get insights into a parallel theory for graph filter
banks, we now discuss the role of the periodically shift-varying property for graph
filter banks with polynomial filters.

For the filter bank in Figure 6.16, let ): (A) denote the response of the : Cℎ channel.
Therefore we have,

): (A) = �: (A) DT D �: (A), (6.82)

and the overall response from x to y is

) (A) =
"-1∑
:=0

): (A) =
"-1∑
:=0

�: (A) DT D�: (A). (6.83)

Notice that ): (A) is a linear operator. However, the DU operator, DTD, does not
commute with A in general, hence response of the : Cℎ channel is shift-varying. That
is to say,

): (A) A ≠ A ): (A), (6.84)

for arbitrary analysis and synthesis filters. Therefore we have proved:

Theorem 6.16 (Graph filter banks are shift-varying). An arbitrary maximally dec-
imated "-channel filter bank on an arbitrary graph is in general a linear but
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shift-varying system (i.e., the mapping from x to y in Figure 6.16 is linear and
shift-varying).

This is similar to classical multirate theory where an arbitrary filter bank is a time-
varying system [200]. In fact, filter banks in the classical theory are periodically
time-varying systems with period " . This leads to the question: is the filter bank
on a graph periodically shift-varying?

In classical theory, when a system relates the input G(=) to the output H(=) in
the following way H(=) = ∑

: 0= (:) G(=-:), a linear and periodically time-varying
system with period " is defined by the defining equation 0=+" (:) = 0= (:) in [200].
It can be shown that a linear system satisfies this relation if and only if the following
is true: if G(=) produces output H(=), then G(=+") produces output H(=+").
Motivated by this, we present the following definition.

Definition 6.8 (Periodically shift-varying system). A linear system H on a graph A
is said to be periodically shift-varying with period " , LPSV("), if A" H = H A" .
This reduces to shift-invariance when " = 1.

Using this definition, we state the following result for the periodically shift-varying
response of a maximally decimated "-channel filter bank on graphs.

Theorem 6.17 (Periodically shift-varying filter banks). The graph FB in Figure 6.16
is LPSV(") for all choices of the polynomial filters {�: (A), �: (A)}, if and only if
the adjacency matrix of the graph satisfies the noble identity condition in (6.27).

Proof. The LPSV(") property, by Definition 6.8, is equivalent to

"-1∑
:=0

): (A) A" = A"

"-1∑
:=0

): (A). (6.85)

Since ): (A) is as in (6.82), this is true for all polynomial filters �: (A) and �: (A)
if and only if

DT D A" = A" DT D. (6.86)

Partition A" as in (6.17), and substitute into (6.86). Then the result is (A")1,2 = 0
and (A")2,1 = 0, which is the same as the condition (6.27). Conversely, if (6.27)
holds it is obvious that (6.86) holds (because DT D is as in (6.12)), so the LPSV(")
property (6.85) follows. �
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6.11 Graph Filter Banks on 
-Graphs
In this section we will construct maximally decimated "-channel filter banks with
perfect reconstruction (PR) property on
-graphs. These filter banks are ideal in the
sense that each channel has a particular sub-band and there is no overlap between
different channels. The key point here is that this construction uses analysis and
synthesis filters that are both alias-free (diagonal matrices in the frequency domain
according to Definition 6.7). If the filters do not have to satisfy this restriction, then
the problem of constructing PR filter banks becomes rather trivial. (See Section 6.3.)
In fact, one can find low order polynomial filters by first designing unconstrained
filters (or, polynomial filters with high degree as in [129, 76]) with PR property, then
computing their low order polynomial approximations. This approach results in a
filter bankwith approximate PRproperty, with a trade-off between the approximation
error and the degree of the filters. However, our approach here is to directly design
alias-free filters. Later in Section 6.12 we will study how we can design low order
polynomial filters directly.

Remember that 
-graphs do not have any constraints on eigenvalues, however, the
eigenvectors of 
-graphs satisfy the 
-structure given in (6.57). In Section 6.15,
we will show how this constraint on eigenvectors can be removed by generalizing
the definition of the decimator D.

Remember from (6.76) that DU operation, DT D, results in aliasing for an arbitrary
graph signal. Nonetheless, we can still recover the input signal from the output of
DT D if the input signal has zeros in its graph Fourier transform. To discuss this
further, we define band-limited signals on graphs as follows:

Definition 6.9 (Band-limited graph signals on 
-graphs). Let A be the adjacency
matrix of an 
-graph with the following eigenvalue decomposition A = V�V-1.
A signal x on this 
-graph said to be : Cℎ-band-limited when its graph Fourier
transform, x̂ = V-1x, has zeros in the following way:

Ĝ8, 9 = 0, 1 ≤ 9 ≤ ", 9 ≠ :, 1 ≤ 8 ≤ #/", (6.87)

where we used the double indexing scheme similar to (6.59) and (6.60) to denote
the graph Fourier coefficients Ĝ8, 9 .

In the literature, there are different notions and definitions for band-limited graph
signals [35, 34, 125, 4, 66]. Under an appropriate re-indexing of the eigenvalues
(and the eigenvectors), our notion of : Cℎ-band-limited signal is similar to the one
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in [35] with bandwidth #/" . This is consistent with our purpose of constructing
"-channel graph filter banks.

When a graph signal is : Cℎ-band-limited according to Definition 6.9, due to (6.76),
the output spectrum of DU operation becomes as follows:

Ĥ8,1 = Ĥ8,2 = · · · = Ĥ8," =
1
"
Ĝ8,: . (6.88)

In this case we can recover the input signal from the output of the DU operator since
only one of the aliasing frequency components is non-zero. For this purpose, let F
be a linear filter with frequency response V-1FV = I#/" ⊗ " e

:
eT
:
, where e: is the

: Cℎ element of the standard basis for C" . Then, consider the following system:

z = F DT D x. (6.89)

Due to (6.74) and the construction of F above, in the graph Fourier domain (6.89)
translates to the following:

ẑ =
(
I#/" ⊗ " e: eT:

) (
I#/" ⊗

1
"

11T
)

x̂ =
(
I#/" ⊗ e: 1T

)
x̂. (6.90)

Since x̂ is assumed to be : Cℎ-band-limited according to Definition 6.9, we get ẑ = x̂.
That is, we can reconstruct the original signal from its decimated version using the
linear reconstruction filter F.

Notice that the frequency response of F is a diagonal matrix by its definition.
Therefore F is an alias-free filter due to Definition 6.7. Furthermore, when the
graph is assumed to have distinct eigenvalues, F can be realized as a polynomial
filter due to Theorem 6.15. We have therefore proved the following theorem.

Theorem 6.18 (Polynomial interpolation filters for 
-graphs). Let A be the adja-
cency matrix of an
-graph. Let x be a : Cℎ-band-limited signal on the graph. Then,
there exists an interpolation filter F that recovers x from Dx. When the eigenvalues
are distinct, F can be a polynomial in A, that is, F = � (A).

The recovery ofmissing samples in graph signals is also discussed in various settings
[207, 35, 113].

In the following, we will discuss how we can write an arbitrary full-band signal as a
sum of : Cℎ-band-limited signals. For this purpose, consider the following identity,

I# =
"∑
:=1

I#/" ⊗
(
e: eT:

)
. (6.91)
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Then we can write x̂ =
∑"
:=1 x̂: , where

x̂: =
(
I#/" ⊗ e: eT:

)
x̂. (6.92)

With the construction in (6.92), x̂: is a : Cℎ-band-limited signal. Notice that (6.92)
is a frequency domain relation. In the graph signal domain, consider a linear filter
H:-1 with frequency response

Ĥ:-1 = V-1 H:-1 V = I#/" ⊗
(
e: eT:

)
. (6.93)

Then, we have x =
∑"
:=1 x: , where x: = H:-1 x. Since x: is a : Cℎ-band-limited graph

signal, we can reconstruct it from its decimated version using the interpolation filter
discussed in Theorem 6.18. For this purpose, letF:-1 be a linear filter with frequency
response V-1F:-1V = I#/" ⊗ " e:eT: . We will then have:

x: = F:-1 DT D x: = F:-1 DT D H:-1 x. (6.94)

So we have proved the following theorem.

Theorem 6.19 (PR filter banks on 
-graphs). Let A be the adjacency matrix of an

-graph with the following eigenvalue decomposition A = V�V-1. Now consider
the maximally decimated filter bank of Figure 6.16 with analysis and synthesis filters
as follows:

H:-1=V
(
I#/" ⊗ e: eT:

)
V-1, F:-1=" H:-1 (6.95)

for 1 ≤ : ≤ " . This is a perfect reconstruction system, that is, ) (A) x = x for
all graph signals x. When the eigenvalues are distinct, H: ’s can be designed to be
polynomials in A, that is, H:-1 = �:-1(A).

Notice that the frequency response of each filter, (6.95), has #/" nonzero values.
These are similar to “ideal” band-limited filters (with bandwidth 2c/") in classical
theory. In classical filter bank theory it is well known that an "-channel maximally
decimated filter bank has perfect reconstruction if the filters are ideal “brickwall”
filters chosen as

�: (4 9l) =


1, 2c:/" ≤ l ≤ 2c(:+1)/",

0, otherwise,
(6.96)

and �: (4 9l) = " �: (4 9l). The result of Theorem 6.19 for graph filter banks is
analogous to that classical result. Notice that in classical theory, ideal filters have
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infinite duration impulse responses, whereas the graph filters are polynomials in A
with at most # taps.

Figure 6.17a shows the details of one channel of the brickwall analysis bank, and
Figure 6.17b shows the corresponding channel of the synthesis bank. The analysis
filters have the form H: = V S:V-1 where V-1 is the graph Fourier transform matrix
and S: = I#/" ⊗ e

:
e)
:
is a diagonal matrix (band selector) which retains #/"

outputs of V-1 and sets the rest to zero. For example if # = 6 and " = 3 the three
selector matrices are

S1 =



1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, S2 =



0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0


, S3 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1


, (6.97)
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Figure 6.17: (a) The : Cℎ channel of a graph filter bank, and (b) details of this channel
when the filters are brickwall filters as defined in Theorem 6.19.

Once the appropriate outputs of the : Cℎ band have been selected, the matrix V
in H: is used to convert the subband signal back to the “graph vertex domain.”
(This is similar to implementing the filtering operation in the frequency domain and
taking inverse Fourier transform to come back to time domain.) This graph domain
subband signal is then decimated by D. For reconstruction, the synthesis filter F: is
similarly used. Thus, the implementation of the brick wall filter bank is not merely
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a matter of using the graph Fourier operator V-1, it also involves band selection,
inverse transformation, and decimation. Since V-1 is common to all analysis filters,
it contributes to a complexity of #2 multiplications. The band selector S: , and the
matrices V and D can be combined and implemented with (#/")2 multiplications
for each : , so there is a total of #2/" multiplications for this part. So the decimated
analysis bank has complexity of about #2 + #2/" which is $ (#2). Once again,
by approximating these brickwall filters with polynomial filters with order ! we can
reduce the complexity to #!. (See Figure 6.7.)

The perfect reconstruction result in Theorem6.19 is restricted to
-graphs. However
this restriction can be removed by applying a similarity transformation to the graph
as described later in Section 6.15.

As a final remark, filters in (6.95) are not unique in the sense that we can design
different filters and still have ) (A) = I in the filter bank.

6.12 Graph Filter Banks on "-Block Cyclic Graphs
In Theorem 6.19 aliasing was totally suppressed in each channel by the use of ideal
filters (6.95), which explains why the filter polynomials had order #-1. But if we
resort to cancellation of aliasing among different channels, it is less restrictive on the
filters. While this idea is not easy to develop for arbitrary graphs, the theory can be
developed under some further assumptions on the graph, namely that A be "-block
cyclic as we shall see. We will see that such filter banks have many advantages
compared to those given by Theorem 6.19, which does not use the "-block cyclic
assumption and applies to more general class of 
-graphs.

As shown in Theorem 6.8,"-block cyclic graphs satisfy the noble identity condition
in (6.27). Therefore, Theorem 6.17 shows that a maximally decimated "-channel
filter bank on an "-block cyclic graph is a periodically shift-varying system with
period " . This can be interpreted as aliasing when the graph A is diagonalizable
(Theorem 6.15 and Figure 6.15). As in the classical case, it is possible to cancel
out aliasing components arising from different channels, and in fact, achieve perfect
reconstruction, that is, ) (A) = A= for some integer = as we shall see. 2 We begin
by proving the following result:

Theorem 6.20 (PR filter banks on "-block cyclic graphs). Consider the graph
2In analogy with classical filter banks where ) (I) = I-= signifies the PR property, we take

) (A) = A= to be the PR property. But this makes practical sense only in situations where A is
invertible so that the distortion A= can be canceled.
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filter bank of Figure 6.16 and assume that the adjacency matrix of the graph is
diagonalizable "-block cyclic. With no further restrictions on the graph, the system
has perfect reconstruction if and only if

"-1∑
:=0

�: (_) �: (F; _) = " _= X(;), (6.98)

for some =, for all _ ∈ C, and for all ; in 0 ≤ ; ≤ "-1, where X(·) is the discrete
Dirac function.

Proof. The overall response of the system in Figure 6.16 can be written as

) (A) =
"-1∑
:=0

�: (A) DT D�: (A) =
1
"

"-1∑
;=0

"-1∑
:=0

�: (A) 
; �: (A), (6.99)

where we have used (6.66). For simplicity, define

(; (A) =
"-1∑
:=0

�: (A) 
; �: (A). (6.100)

Therefore, the response of the system is

) (A) = 1
"

(
(0(A)︸︷︷︸

Polynomial

+ (1(A) + · · · + ("-1(A)︸                       ︷︷                       ︸
Alias components

)
. (6.101)

Notice that (0(A) is the sum of products of polynomials in A, therefore it is also
a polynomial in A, hence it is alias-free since A is assumed to be diagonalizable.
However, for ; ≥ 1, there exists 
; term in each (; (A) in (6.100), which does not
commute with A in general. As a result (; (A) is not shift-invariant and results
in aliasing (Theorem 6.15). Perfect reconstruction ) (A) = A= can be achieved by
imposing

(0(A) = " A=,

"-1∑
;=1

(; (A) = 0. (6.102)

The second equation above is the alias cancellation condition. Using the eigenvalue
decomposition of the adjacency matrix, A = V�V-1, the first condition in (6.102)
reduces to

V
(
"-1∑
:=0

�: (�) �: (�)
)
V-1 = " V�=V-1. (6.103)

Since� is a diagonal matrix consisting of eigenvalues, this can be further simplified
to

"-1∑
:=0

�: (_8, 9 ) �: (_8, 9 ) = " _=8, 9 , (6.104)
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for all eigenvalues, _8, 9 , of the adjacency matrix A.

Now consider the second condition in (6.102). With the eigenvalue decomposition,
it reduces to

"-1∑
;=1

"-1∑
:=0

�: (�) V-1 
; V �: (�) = 0. (6.105)

Since A is "-block cyclic, it satisfies the eigenvector structure in (6.57). So we can
use (6.71) and re-write (6.105) as

"-1∑
;=1

"-1∑
:=0

�: (�) �; �: (�) = 0. (6.106)

Notice that the permutation matrix �; is defined as the ;Cℎ power of the cyclic
matrix of size " ((6.72)). Since the supports of C;1

"
and C;2

"
have no common

index for different ;1 and ;2, supports of �;1 and �;2 will also have no common
index. Furthermore, due to � being a diagonal matrix, the support of the term
�: (�)�; �: (�) will be the same as the support of�; . Combining both arguments,
we can say that (6.106) holds if and only if the inner sum is zero for each ;, that is,

"-1∑
:=0

�: (�) �; �: (�) = 0, ∀ ; ∈ {1, · · · , "-1}. (6.107)

Since� is a diagonal matrix with the ordering scheme in (6.59), the permutation�;

circularly shifts each eigenvalue of an eigenfamily. Hence, (6.107) is equivalent to

"-1∑
:=0

�: (_8, 9+;) �: (_8, 9 ) = 0, (6.108)

for all 1 ≤ ; ≤ "-1. Since A is "-block cyclic, eigenvalues of A satisfy (6.56).
Then (6.108) can be written as

"-1∑
:=0

�: (_8, 9+;) �: (F"-; _8, 9+;) = 0. (6.109)

By changing the index variables, (6.109) can be simplified as follows:

"-1∑
:=0

�: (_8, 9 ) �: (F; _8, 9 ) = 0, (6.110)

for all 1 ≤ ; ≤ "-1 and for all eigenvalues, _8, 9 , of the adjacency matrix A. Com-
bining (6.104) and (6.110), if the filter bank in Figure 6.16 provides PR, (6.98)
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should be satisfied for all eigenvalues of A. Since we want PR independent of the
graph, (6.98) should be satisfied for all _ ∈ C. Hence, it is a necessary condition.

Conversely, assume that the filters satisfy (6.98), hence (6.104) and (6.110) are
satisfied. Since the graph is assumed to be diagonalizable "-block cyclic, (6.104)
and (6.110) are equivalent to (6.102). Therefore, the overall response of the filter
bank is A=, where = satisfies (6.104). So the filter bank has the PR property. �

It is quite interesting to observe that the condition (6.98) on the graph filters is the
same as the PR condition in classical multirate theory. We state this equivalence in
the following theorem.

Theorem 6.21 (PR condition equivalence). A set of polynomials, {�: (_), �: (_)},
provides PR in maximally decimated "-channel FB on all "-block cyclic graphs
with diagonalizable adjacency matrix if and only if {�: (I), �: (I)} provides PR in
the classical maximally decimated "-channel FB.

Proof. The PR condition (6.98) is the same as the PR condition for the classical
maximally decimated "-channel filter bank [200]. �

At themoment of thiswriting, we do not have examples of graphs other than"-block
cyclic for which such results can be developed. At the expense of restraining the
eigenvalues of the adjacency matrix to have the structure in (6.56), Theorem 6.20
offers three significant benefits compared to construction of PR filter banks on

-graphs discussed in Section 6.11.

First of all, (6.98) puts a condition on the filter coefficients independent of the graph
as long as the graph is "-block cyclic with diagonalizable adjacency matrix. A
change in the adjacency matrix does not affect the PR property. As a result, the
response of the overall graph filter bank is robust to ambiguities in the adjacency
matrix.

Secondly, eigenvalues of the adjacency matrix A do not need to be distinct since the
condition solely depends on the filter coefficients.

Lastly, filter banks on "-block cyclic graphs are legitimate generalization of the
classical multirate theory to graph signals due to Theorem 6.21. In order to design
PR filter banks on an "-block cyclic graph, we can use any algorithm developed in
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the classical multirate theory [200, 199]. As an example, consider the following set
of polynomials,

�0(_) = 5 + 2_ + _3 + 2_4 + _5, �0(_) = 3_3-2_4 + _5, (6.111)

�1(_) = 2 + _ + 2_3 + 4_4 + 2_5, �1(_) = -8_3 + 5_4-2_5,

�2(_) = _3 + 2_4 + _5, �2(_) = 1 + 13_3-8_4 + 3_5.

In classical theory, this is a 3-channel PR filter bank [200]. Notice that these
polynomials satisfy (6.98) with = = 5. Therefore, overall response of the filter bank
constructed with the polynomials in (6.111) on any 3-block cyclic graph will be
) (A) = A5.

For a randomly generated adjacency matrix of a 3-block cyclic graph, channel
responses of the filter bank utilizing the filters in (6.111) are shown in Figure 6.18.
Response of each channel has non-zero blocks with large values in it (relative to
the overall response of the FB), which results in large alias terms. Notice that some
blocks of the channel responses cancel out each other exactly so that overall response,
) (A), is equal to A5 (up to numerical precision) as seen from Figure 6.18(f).

6.13 Polyphase Representations
For the polyphase implementation of the filter bank in Figure 6.16, we decompose
the analysis filters using Type-1 polyphase structure in (6.31) and synthesis filters
with Type-2 decomposition in (6.32). Then we have

�: (A)=
"-1∑
;=0

A; �:,; (A"), �: (A)=
"-1∑
;=0

A"-1-; ';,: (A"). (6.112)

Using the polyphase implementation of decimation and interpolation filters given
in (6.33) and (6.34) (they are described schematically in Figure 6.4 and Figure 6.5,
respectively), we can define the polyphase component matrices as follows:(

E(Ā)
)
8, 9
=�8-1, 9-1(Ā),

(
R(Ā)

)
8, 9
='8-1, 9-1(Ā), (6.113)

for 1 ≤ 8, 9 ≤ " whereE(Ā) ∈ C#×# is the polyphase matrix for the analysis filters,
R(Ā) ∈ C#×# is the polyphase matrix for the synthesis filters, and Ā is the adjusted
shift operator given in (6.28). Notice that each block (E(Ā))8, 9 and (R(Ā))8, 9 is
a polynomial in Ā, whereas overall polyphase matrices E(Ā) and R(Ā) are not
polynomials in Ā.
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Figure 6.18: (a) Adjacency matrix of a 3-block cyclic graph of size 210 with
randomly generated complex edge weights. Response of (b) the zeroth channel, (c)
the first channel, (d) the second channel of 3-channel FB in Figure 6.16 on graph
given in (a). (e) is the overall response of the FB. (f) is the difference between ) (A)
and A5. All figures show the element-wise absolute values of the matrices.
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where Ekp�q’s and Rkp�q’s are polynomials.
For the polyphase implementation of the filter bank in

Fig. 1, we decompose the analysis filters using Type-1
polyphase structure in (43) and synthesis filters with Type-2
decomposition in (44). Then we have,

HkpAq�
M -1̧

l�0

AlEk,lpAM q, FkpAq�
M -1̧

l�0

AM -1-lRl,kpAM q.
(45)

Using the polyphase implementation of decimation and inter-
polation filters given in Eq. (??) and Eq. (??) of [1] (they
are described schematically in Fig. ?? and Fig. ?? of [1],
respectively), we can define the polyphase component matrices
as follows:�

EpsAq�
i,j
�Ei-1,j-1psAq, �

RpsAq�
i,j
�Ri-1,j-1psAq, (46)

for 1 ¤ i, j ¤M where EpsAq P MN is the polyphase matrix
for the analysis filters, RpsAq P MN is the polyphase matrix
for the synthesis filters, and sA is the adjusted shift operator
given in (5). Notice that each block pEpsAqqi,j and pRpsAqqi,j
is a polynomial in sA, whereas overall polyphase matrices
EpsAq and RpsAq are not polynomials in sA.

Using the polyphase matrices defined in (46), we can
implement the filter bank in Fig. 1 as in Fig. 4(a). This can
be redrawn as in Fig. 4(b) where P psAq � RpsAqEpsAq. Due
to partitioning of the polyphase component matrices in (46),
we have the following result for the partitions of P psAq:

pP psAqqi,j �
M -1̧

k�0

Ri-1,kpsAq Ek,j-1psAq. (47)

Notice that polyphase transfer matrix provides the polyphase
implementation of the filter bank in Fig. 1, only if the graph
satisfies the noble identity condition in (4). Summarizing, we
have proved:

Theorem 7 (Polyphase implementation of a filter bank). On a
graph with the adjacency matrix satisfying the noble identity
condition (4), the maximally decimated M -channel FB given

x D

EpsAq RpsAq

DT

...
...

D DT

A

A

�

�

A

A

y

(a)

x D

P psAq

DT

...
...

D DT

A

A

�

�

A

A

y

(b)
Fig. 4. (a) Polyphase representation of the maximally decimated M -channel
filter bank in Fig. 1 on a graph with the adjacency matrix A that satisfies the
noble identity condition (4). (b) Combined representation of the polyphase
matrices. The decimation matrix D is as in (1) and the polyphase transfer
matrix is given in (47). sA is as in (5).

in Fig. 1 has the polyphase implementation given in Fig. 4(a)-
(b) where polyphase transfer matrix, P psAq, is as in (47), andsA is the adjusted shift operator given in (5). ♦

Since M -block cyclic matrices satisfy the noble identity
condition (4), the polyphase representation of Fig. 4 is valid
for graph filter banks on M -block cyclic graphs. However, M -
block cyclic property is not necessary for this. The condition
(4) is enough.

In Sec. III, we showed that it is possible to construct PR
filter banks on Ω-graphs. In order to talk about polyphase
implementation of such filter banks, we need to characterize
the set of graph matrices A that satisfy both the noble identity
condition in (4) and have the Ω-structure in (10). From
Theorem ?? and Theorem ?? of [1], we know that M -block
cyclic graphs with diagonalizable adjacency matrices belong
to that set. It is interesting to observe that any matrix that
belongs to this set is similar to an M -block cyclic graph. We
state this fact in the following theorem whose proof is given
in Sec. ?? of the supplementary document [24].

Theorem 8 (The noble identity condition and the eigenvector
structure). Let A have distinct eigenvalues with the eigenvalue
decomposition A � V ΛV -1. If A satisfies the noble identity
condition in (4) and has the Ω-structure in (10), then A is
similar to an M -block cyclic matrix. More precisely, there
exists a permutation matrix Π such that

�
V Π

�
Λ
�
V Π

�-1
is

M -block cyclic. ♦

A. Alias-free and PR Property for M -Block Cyclic Graphs

Returning to Fig. 4 for the polyphase representation of a
graph filter bank, we now provide a sufficient condition on
P psAq for the PR property on M -block cyclic graphs. This is
an extension of a similar condition (P pzq � I) that guarantees
PR in classical filter banks [4].
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where Ekp�q’s and Rkp�q’s are polynomials.
For the polyphase implementation of the filter bank in

Fig. 1, we decompose the analysis filters using Type-1
polyphase structure in (43) and synthesis filters with Type-2
decomposition in (44). Then we have,

HkpAq�
M -1̧

l�0

AlEk,lpAM q, FkpAq�
M -1̧

l�0

AM -1-lRl,kpAM q.
(45)

Using the polyphase implementation of decimation and inter-
polation filters given in Eq. (??) and Eq. (??) of [1] (they
are described schematically in Fig. ?? and Fig. ?? of [1],
respectively), we can define the polyphase component matrices
as follows:�

EpsAq�
i,j
�Ei-1,j-1psAq, �

RpsAq�
i,j
�Ri-1,j-1psAq, (46)

for 1 ¤ i, j ¤M where EpsAq P MN is the polyphase matrix
for the analysis filters, RpsAq P MN is the polyphase matrix
for the synthesis filters, and sA is the adjusted shift operator
given in (5). Notice that each block pEpsAqqi,j and pRpsAqqi,j
is a polynomial in sA, whereas overall polyphase matrices
EpsAq and RpsAq are not polynomials in sA.

Using the polyphase matrices defined in (46), we can
implement the filter bank in Fig. 1 as in Fig. 4(a). This can
be redrawn as in Fig. 4(b) where P psAq � RpsAqEpsAq. Due
to partitioning of the polyphase component matrices in (46),
we have the following result for the partitions of P psAq:

pP psAqqi,j �
M -1̧

k�0

Ri-1,kpsAq Ek,j-1psAq. (47)

Notice that polyphase transfer matrix provides the polyphase
implementation of the filter bank in Fig. 1, only if the graph
satisfies the noble identity condition in (4). Summarizing, we
have proved:

Theorem 7 (Polyphase implementation of a filter bank). On a
graph with the adjacency matrix satisfying the noble identity
condition (4), the maximally decimated M -channel FB given
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Fig. 4. (a) Polyphase representation of the maximally decimated M -channel
filter bank in Fig. 1 on a graph with the adjacency matrix A that satisfies the
noble identity condition (4). (b) Combined representation of the polyphase
matrices. The decimation matrix D is as in (1) and the polyphase transfer
matrix is given in (47). sA is as in (5).

in Fig. 1 has the polyphase implementation given in Fig. 4(a)-
(b) where polyphase transfer matrix, P psAq, is as in (47), andsA is the adjusted shift operator given in (5). ♦

Since M -block cyclic matrices satisfy the noble identity
condition (4), the polyphase representation of Fig. 4 is valid
for graph filter banks on M -block cyclic graphs. However, M -
block cyclic property is not necessary for this. The condition
(4) is enough.

In Sec. III, we showed that it is possible to construct PR
filter banks on Ω-graphs. In order to talk about polyphase
implementation of such filter banks, we need to characterize
the set of graph matrices A that satisfy both the noble identity
condition in (4) and have the Ω-structure in (10). From
Theorem ?? and Theorem ?? of [1], we know that M -block
cyclic graphs with diagonalizable adjacency matrices belong
to that set. It is interesting to observe that any matrix that
belongs to this set is similar to an M -block cyclic graph. We
state this fact in the following theorem whose proof is given
in Sec. ?? of the supplementary document [24].

Theorem 8 (The noble identity condition and the eigenvector
structure). Let A have distinct eigenvalues with the eigenvalue
decomposition A � V ΛV -1. If A satisfies the noble identity
condition in (4) and has the Ω-structure in (10), then A is
similar to an M -block cyclic matrix. More precisely, there
exists a permutation matrix Π such that

�
V Π

�
Λ
�
V Π

�-1
is

M -block cyclic. ♦

A. Alias-free and PR Property for M -Block Cyclic Graphs

Returning to Fig. 4 for the polyphase representation of a
graph filter bank, we now provide a sufficient condition on
P psAq for the PR property on M -block cyclic graphs. This is
an extension of a similar condition (P pzq � I) that guarantees
PR in classical filter banks [4].

(b)

Figure 6.19: (a) Polyphase representation of the maximally decimated "-channel
filter bank in Figure 6.16 on a graph with the adjacency matrix A that satisfies
the noble identity condition (6.27). (b) Combined representation of the polyphase
matrices. The decimation matrix D is as in (6.8) and the polyphase transfer matrix
is given in (6.114). Ā is as in (6.28).
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Using the polyphase matrices defined in (6.113), we can implement the filter bank
in Figure 6.16 as in Figure 6.19a. This can be redrawn as in Figure 6.19b where
P(Ā) = R(Ā) E(Ā). Due to partitioning of the polyphase component matrices in
(6.113), we have the following result for the partitions of P(Ā):

(P(Ā))8, 9 =
"-1∑
:=0

'8-1,: (Ā) �:, 9-1(Ā). (6.114)

Notice that polyphase transfer matrix provides the polyphase implementation of the
filter bank in Figure 6.16, only if the graph satisfies the noble identity condition in
(6.27). Summarizing, we have proved:

Theorem 6.22 (Polyphase implementation of a filter bank). On a graph with the
adjacency matrix satisfying the noble identity condition (6.27), the maximally deci-
mated "-channel FB given in Figure 6.16 has the polyphase implementation given
in Figure 6.19 where polyphase transfer matrix, P(Ā), is as in (6.114), and Ā is the
adjusted shift operator given in (6.28).

Since "-block cyclic matrices satisfy the noble identity condition (6.27), the
polyphase representation of Figure 6.19 is valid for graph filter banks on "-block
cyclic graphs. However, "-block cyclic property is not necessary for this. The
condition (6.27) is enough.

In Section 6.11, we showed that it is possible to construct PR filter banks on 
-
graphs. In order to talk about polyphase implementation of such filter banks, we
need to characterize the set of graph matrices A that satisfy both the noble identity
condition in (6.27) and have the 
-structure in (6.57). From Theorem 6.8 and
Theorem 6.9, we know that "-block cyclic graphs with diagonalizable adjacency
matrices belong to that set. It is interesting to observe that any matrix that belongs
to this set is similar to an "-block cyclic graph. We state this fact in the following
theorem whose proof is given in Section 6.18.3.

Theorem 6.23 (The noble identity condition and the eigenvector structure). Let
A have distinct eigenvalues with the eigenvalue decomposition A = V�V-1. If A
satisfies the noble identity condition in (6.27) and has the
-structure in (6.57), then
A is similar to an "-block cyclic matrix. More precisely, there exists a permutation
matrix � such that

(
V�

)
�

(
V�

) -1 is "-block cyclic.
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6.13.1 Alias-free and PR Property for "-Block Cyclic Graphs
Returning to Figure 6.19 for the polyphase representation of a graph filter bank, we
now provide a sufficient condition on %(Ā) for the PR property on "-block cyclic
graphs. This is an extension of a similar condition (P(I) = I) that guarantees PR in
classical filter banks [200].

Theorem 6.24 (Sufficiency condition for PR in polyphase filter banks on "-block
cyclic graphs). Consider the polyphase implementation of a maximally decimated
"-channel filter bank in Figure 6.19b, and assume that the adjacency matrix of the
graph, A, is "-block cyclic. The system has PR property if the polyphase transfer
matrix has the following form:

P(Ā) = I" ⊗ Ā<, (6.115)

for some non-negative integer <, and Ā is as in (6.28).

Proof. Assume that P(Ā) has the form in (6.115). Then, overall response of the
filter bank in Figure 6.19b is written as

) (A) =
"-1∑
:=0

A"-1-: DT Ā< D A: =

"-1∑
:=0

A"-1-: DT D A"< A: , (6.116)

=

(
"-1∑
:=0

A"-1-: DT D A:

)
A"< = A"-1+"<, (6.117)

where we use the first noble identity (6.25) in (6.116) and the lazy FB PR property
(6.30) in (6.117), since "-block cyclic matrices satisfy both of these properties. �

Notice that when we let < = 0 in Theorem 6.24, we get P(Ā) = I# which corre-
sponds to the lazy filter bank structure given in Figure 6.3b. This observation agrees
with the result given by Theorem 6.8 for "-block cyclic graphs.

For themost complete characterization of the PR property on"-block cyclic graphs,
we provide the following result, whose proof is provided in Section 6.18.4.

Theorem 6.25 (PR polyphase filter banks on "-block cyclic graphs). Consider
the polyphase implementation of a maximally decimated "-channel filter bank in
Figure 6.19b, and assume that the adjacency matrix of the graph, A, is an invertible
"-block cyclic matrix. The system has PR property if and only if the polyphase
transfer matrix has the following form:

P(Ā) =
(
I" ⊗ Ā<

) [
0 I"-= ⊗ I#/"

I= ⊗ Ā 0

]
, (6.118)



222

for some integers <, = with 0 ≤ = ≤ "-1. Ā is as in (6.28).

Whenwewaive the perfect reconstruction property and ask for an alias-free response,
we get a more relaxed condition on the polyphase transfer matrix. The following
theorem states the necessary condition for this case. This is a generalization of the
classical pseudocirculant condition for alias cancellation [200] to graph filter banks.

Theorem 6.26 (Alias-free polyphase filter banks on "-block cyclic graphs). Con-
sider the polyphase implementation of a maximally decimated"-channel filter bank
in Figure 6.19b, and assume that the adjacency matrix of the graph, A, is "-block
cyclic with distinct eigenvalues. The system has alias-free property if and only if the
polyphase transfer matrix has the following pseudo-block-circulant form:

P(Ā) =


%0(Ā) %1(Ā) · · · %"-1(Ā)

Ā %"-1(Ā) %0(Ā) · · · %"-2(Ā)
...

. . .
. . .

...

Ā %1(Ā) Ā %2(Ā) · · · %0(Ā)


. (6.119)

Proof. Assume that the overall response of the filter bank is alias-free, and the
graph has distinct eigenvalues. Then, due to Theorem 6.15, the response of the filter
bank is a polynomial filter. By re-indexing the coefficients, we can decompose the
polynomial response as follows:

) (A) =
#/"-1∑
<=0

"-1∑
:=0

U<,: A"-1+"<+: . (6.120)

Since ) (A) is a linear combination of PR systems, using Theorem 6.25 and linear-
ity, we can write the polyphase transfer matrix that corresponds to (6.120) in the
following way:

P(Ā) =
#/"-1∑
<=0

"-1∑
:=0

U<,:

[
0 I"-: ⊗ Ā<

I: ⊗ Ā<+1 0

]
︸                              ︷︷                              ︸

pseudo-block-circulant

. (6.121)

By inspection, we can see that the block-matrix in (6.121) is a pseudo-block-circulant
matrix. Since a linear combination of pseudo-block-circulant matrices is also a
pseudo-block-circulant, the polyphase transfer matrix has the form in (6.119) for
some polynomials.
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Conversely, if the matrix P(Ā) has the form in (6.119), then we can decompose
it as in (6.121) for some set of U<,: . Therefore, due to Theorem 6.25, the overall
response of the filter bank is a linear combination of perfect reconstruction systems.
It is therefore alias-free. �

6.13.2 Importance of Polyphase Representations for Graph Filter Banks
We know that the polyphase implementation in Figure 6.19 is valid as long as the
conditions (6.27) and (6.28) for noble identities are satisfied. Here each polyphase
component �:,; (Ā) ∈ C(#/")×(#/") is a polynomial in the matrix Ā:

�:,; (Ā) = 4:,; (0) I + 4:,; (1) Ā + · · · + 4:,; ( ) Ā , (6.122)

where Ā = DA"DT as in (6.28), and  ≈ !/" . (! is the order of the filters in
Fig 6.16.) Assuming that Ā is sparse and can be implemented with negligible
overhead, the complexity for �:,; (Ā) (implemented similar to Figure 6.7) is about
(!/") (#/") so that the entire polyphase matrix with "2 such submatrices has
complexity !# , identical to the non polyphase implementation of polynomial filter
banks (with each filter implemented as in Figure 6.7). In fact even if A is sparse,
the matrix Ā = DA"DT is in general not. So the polyphase implementation may
even have higher complexity than direct implementation of polynomial filters as
in Figure 6.7. Thus, while in classical filter banks the polyphase implementation
reduces the number of multiplications per unit time, there is no such advantage in
graph filter banks.

Then the question is, what is the advantage of the polyphase representation of Fig-
ure 6.19 for graph filter banks? The answer lies in the design phase rather than the
complexity of implementation. To explain, suppose we want to optimize the poly-
nomial analysis filters to achieve certain properties of the decimated subband signals
{x0, x1, . . .} (e.g., sparsity), by using some apriori information on the statistics of
the graph signal x. If we do this directly by optimizing the multipliers ℎ: (=) in
the structure of Figure 6.7 then it is not easy to constraint these coefficients (during
optimization) such that there will exist a perfect reconstruction polynomial synthesis
filter bank {�: (A)}. But if we optimize the coefficients 4:,; (=) of the polynomials
(6.122), then it can be shown that as long as the equivalent classical polynomial
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matrix

E(I) =


�0,0(I) �0,1(I) . . . �0,"-1(I)
�1,0(I) �1,1(I) . . . �1,"-1(I)
...

...
. . .

...

�"-1,0(I) �"-1,1(I) . . . �"-1,"-1(I)


(6.123)

has a polynomial inverse R(I) (i.e., FIR inverse), there will exist a polynomial graph
synthesis bank {�: (A)} with perfect reconstruction property. Now, the construction
of classical polynomialmatricesE(I)with polynomial inversesR(I) is awell studied
problem in filter bank theory and includes special families such as FIR paraunitary
matrices, FIR unimodular matrices and so forth [200]. So, we can take advantage
of the results from classical literature to design optimal graph filter banks that suit
specific signal statistics, if we use the polyphase representation of Figure 6.19 in the
design process. The implementation of each filter in the bank could later be done
directly using Figure 6.7, which is more economical.

6.14 Frequency Domain Analysis
In order to quantitatively interpret the amount of fluctuation of a signal, the total
variation of the signal x on a graph with the adjacency matrix A is defined as [153]:

S(x) = ‖x − Ax‖1, (6.124)

where it is assumed that the adjacency matrix is normalized such that the maximum
eigenvalue has a unit magnitude [153]. With the definition in (6.124), the frequency
of an eigenvector v with the corresponding eigenvalue _ becomes

S(v) = |1 − _ |, (6.125)

where all the eigenvectors are assumed to be scaled such that they have unit ℓ1 norm.

When the eigenvalues are real, from (6.125) it is clear that two eigenvectors with
distinct eigenvalues cannot have the same amount of total variation. Hence, distinct
eigenvalues imply distinct total variations, and vice versa. However, for complex
eigenvalues this implication does not hold. As a simple example consider two
distinct complex eigenvalues _1 = (

√
2-1)/

√
2 and _2 = 1/2+ 9/2. Clearly _1 ≠ _2,

yet we have S(v1) = S(v2).

The problem with complex eigenvalues arises when we want to describe the fre-
quency domain behavior of a polynomial filter, � (_). How the filter suppresses
or amplifies eigenvectors according to their total variation determines the charac-
teristics. When there are complex eigenvalues, a filter may respond differently
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to eigenvectors with the same total variation. More precisely, we may have
|� (_1) | ≠ |� (_2) | even when S(v1) = S(v2). As a result, we may not even be
able to define the behavior of the filter (low-pass, high-pass etc.). Therefore, fil-
ters cannot be designed independent of the graph spectrum when the spectrum has
complex values.

The question we ask here is as follows: under what conditions can we design filters
with meaningful behavior for all graphs that satisfy such conditions? One obvious
answer is the case of real eigenvalues since S(v1) = S(v2) implies _1 = _2, hence
|� (_1) | = |� (_2) |. As a result, a filter behaves in the same way for all graphs with
real eigenvalues.

For the complex case, we cannot answer the question in the general sense for the
time being. Nonetheless, when we constrain the eigenvalues to be on the unit circle,
we have the following result.

Theorem 6.27 (Magnitude response of a polynomial filter, and unit-modulus eigen-
values). Let � (_) be a polynomial filter with real coefficients. Then � (_) has
a well-defined magnitude response w.r.t. the total variation for all graphs with
diagonalizable adjacency matrices with unit modulus eigenvalues.

Proof. Let eigenvalues of the adjacency matrix be on the unit circle. Then we have
_ = 4− 9 \ for some 0 ≤ \ < 2c. Then, the total variation in (6.125) reduces to

S(v) = |1 − 4− 9 \ | = 2 | sin(\/2) |. (6.126)

Due to symmetry of (6.126), eigenvectors will have the same total variation if and
only if the corresponding eigenvalues are conjugate pairs. Assume that � (_) is a
polynomial filter with real coefficients. Then, its magnitude response will have the
conjugate symmetry, which is to say |� (_) | = |� (_∗) |, for all |_ | = 1. As a result,
even though the same total variation may correspond to a conjugate eigenvalue
pair, those eigenvalues will be mapped to the same magnitude. Hence, magnitude
response of the filter with respect to the total variation will be well-defined and
remain the same for all graphs with unit modulus eigenvalues. �

A drawback of (6.126) is the non-linearity of it in terms of the phase angle. We
will demonstrate this in the following example. Consider the filter bank coefficients
provided in Table 6.5.1 on page 318 of [200]. These analysis filters are optimized for
perfect reconstruction in 3-channel filter banks in the classical multirate theory with
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synthesis filters having the following coefficients 5:,; = ℎ:,14-; [200]. Furthermore,
they are designed such that each filter allows only one uniform sub-band to pass.
That is, �: (I) passes frequencies in the range |l| ∈ [c:/3 c(:+1)/3]. Their
magnitude responses are shown in Figure 6.20a. When all the eigenvalues of A
are on the unit circle, we can quantify the magnitude response of each analysis
filter w.r.t. the total variation due to Theorem 6.27. However, the pass bands of
�0(A), �1(A), and �2(A) in the total variation are [0, 1], [1,

√
3], and [

√
3, 2],

respectively. They are visualized in Figure 6.20b.
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Figure 6.20: Magnitude response of the filters given in Table 6.5.1 of [200]. (a) is
the magnitude response in the classical theory. (b) is the magnitude response w.r.t.
the total variation in (6.125).

It is important to notice that magnitude responses of the graph filters shown in
Figure 6.20b do not explicitly depend on the eigenvalues of the graph as long as
they are on the unit circle. Even repeated eigenvalues are tolerated. Furthermore,
magnitude response and the length of the filters are unrelated with the size of the
graph. This makes the system robust to ambiguities in the graph. Remember that for
a given specific graph with distinct eigenvalues, we can always construct polynomial
filters with the desired magnitude response using (6.79). However, those filters are
unique to that specific graph and quite sensitive to imperfections in the eigenvalues.

Notice that for a maximally decimated filter bank as in Figure 6.16, having the PR
property and having a well-defined magnitude response are two different concepts,
and they do not imply each other. To see this, consider the polynomials in (6.111).
When the adjacency matrix is diagonalizable "-block cyclic, those polynomials
provide PR on the filter bank. Yet, they may have a different frequency behavior
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w.r.t. the total variation for different "-block cyclic graphs. Conversely, we
may select the filters with real coefficients. Then, for graphs with unit modulus
eigenvalues, we have a graph independent characteristics due to Theorem 6.27. Yet,
we cannot expect them to provide the PR property. Therefore, we reach the following
conclusion: even if we assume unit-magnitude eigenvalues in the adjacency matrix,
filters given in Table 6.5.1 of [200] do not provide perfect reconstruction on the filter
bank. When we further assume that the graph is 3-block cyclic, only then 3-channel
filter bank on the graph provides perfect reconstruction with each channel allowing
only a sub-band of the total variation spectrum. Moreover, the characteristics of
the graph filter bank, PR and magnitude response, will be independent of the actual
values of the eigenvalues and the size of the graph, provided that they satisfy the
conditions.

The above results show that we can have robust filter banks with practical use for
signals on "-block cyclic graphs with eigenvalues having unit magnitude. More
importantly, design of such multirate graph systems is not an issue. Due to Theo-
rem 6.21 and Theorem 6.27, any algorithm developed for classical signal processing
will serve the purpose. We summarize this observation in the following theorem.

Theorem 6.28 (PR graph filter banks with well-defined magnitude response). Con-
sider the graph filter bank of Figure 6.16, and assume that the adjacency matrix of
the graph is diagonalizable "-block cyclic with unit magnitude eigenvalues. If the
analysis and the synthesis filters satisfy (6.98)with real polynomial coefficients, then,
the filter bank provides perfect reconstruction, and each channel has a well-defined
magnitude response w.r.t. total variation spectra.

As an application of Theorem 6.28, consider the cyclic graph C# . Due to Fact 6.4,
C# is an "-block cyclic graph. Furthermore, its eigenvalues are in the form of
_: = 4

− 92c:/# for 0 ≤ : ≤ #-1, hence |_: | = 1. As a result, Theorem 6.28 applies
to C# . Remember that, when the adjacency matrix is C# , graph signal processing
reduces to the classical theory [152]. This observation shows that Theorem 6.28
agrees with the classical multirate theory and generalizes it to the graph case with
some restrictions on the graph.

6.15 Removing the Need for 
-Structure
In previous sections, we started with the canonical definition of the decimator as in
(6.8) and extended the classical multirate signal processing theory to graphs. Even
though we were able to generalize a number of concepts from classical theory to
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graph signals, many of the results requireA to be an
-graph. In this section we will
show that this requirement can be relaxed completely under the mild assumption
that A be diagonalizable. The basic idea is to work with a similarity-transformed
graph matrix Ã = Q A Q-1 where Q is chosen such that Ã has the 
-structure as
in (6.57). We will see that this is always possible. However such a transformation
changes the underlying Fourier basis. Therefore, the matrix Q should be selected
carefully, as we will do throughout this section. Given the original graph signal x
we will then define a modified signal

x̃ = Q x, (6.127)

and use the modified filter bank {�: (Ã), �: (Ã)} with canonical decimator (6.8) to
process it (see Figure 6.21a). Then the filter bank output ỹ is transformed back to
y = Q-1ỹ.

The filter bank {�: (Ã), �: (Ã)} sandwiched between Q and Q-1 operates on the
modified graph Ã, which satisfies the eigenvector structure (6.57). Also, it uses the
standard canonical decimator. So, many of the results developed in earlier sections
are applicable. We will show that the complete system from x to y in Figure 6.21a
is equivalent to the graph filter bank system shown in Figure 6.21b, which operates
on the original graph. Notice carefully that the canonical decimator and expander
have been replaced in this system by a new decimator and expander (to be defined
below in (6.130)).

The most important point is that the new filter bank {�: (Ã), �: (Â)} that transforms
x̃ to ỹ and the original filter bank that transforms x to y have the following close
relationship, as we shall show:

1. The filters {�: (Ã), �: (Ã)} are polynomials in Ã if and only if the original
filters {�: (A), �: (A)} are polynomials in A.

2. The filter bank {�: (Ã), �: (Ã)} is a perfect reconstruction system on the
graph Ã if and only if the original filter bank {�: (A), �: (A)} is a perfect
reconstruction system on the graph A.

3. Assuming that the diagonalizable graph A has distinct eigenvalues, the filter
bank {�: (Ã), �: (Ã)} is alias-free on the graph Ã if and only if the original
filter bank {�: (A), �: (A)} is alias-free on the graph A.
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4. With the input-output map of the filter bank with generalized decimator and
expander denoted as)� (A) and the transformed map as) (Ã), they are related
as in Figure 6.21c-6.21d, that is,

)� (A) = Q-1 ) (Ã) Q. (6.128)

Notice that relations in 1, 2, and 3 follow from the following identity, which holds
true for any invertible Q and for any polynomial � (·) (Theorem 6.2.9 of [86]):

� (A) = Q-1 � (Ã)Q. (6.129)

Here Ã = QA Q-1.

The relation in 4 follows from the following theorem.

Theorem 6.29 (Generalized filter banks). Let A be a diagonalizable adjacency
matrix with the eigenvalue decomposition A = V�V-1. Let E be an invertible
matrix with the 
-structure (6.57) on its columns. Set the similarity transform
as Q = EV-1. Hence Ã = QAQ-1. Define the generalized decimator D̃ and the
generalized expander Ũ as

D̃ = D Q = D E V-1, Ũ = Q-1 DT = V E-1 DT. (6.130)

Then, a FB {�: (Ã), �: (Ã)} on Ã that uses the canonical decimator and expander,
Figure 6.21a, is equivalent to the generalized FB {�: (A), �: (A)} on A that uses
generalized decimator and expander, Figure 6.21b. Here the term “equivalent”
means that the input-output behaviors are related as in (6.128).

Proof. Let {�: (A), �: (A)} be the generalized FB on A that uses the generalized
decimator and expander. Then

)� (A) =
"-1∑
:=0

�: (A) Ũ D̃�: (A) =
"-1∑
:=0

Q-1 Q �: (A)Q-1 DT D Q�: (A)Q-1 Q,

= Q-1
"-1∑
:=0

�: (Ã) DT D�: (Ã)Q = Q-1 ) (Ã)Q, (6.131)

where we use (6.129) in (6.131). Notice that the generalized FB implicitly operates
on Ã, which is an 
-graph since Ã = Q A Q-1 = E�E-1. Hence, the eigenvector
condition (6.57) on A is implicitly satisfied on the generalized FB. �
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3) Assuming that the diagonalizable graph A has distinct
eigenvalues, the filter bank tHkprAq, FkprAqu is alias-free
on the graph rA if and only if the original filter bank
tHkpAq, FkpAqu is alias-free on the graph A.

4) With the input-output map of the filter bank with gener-
alized decimator and expander denoted as TGpAq and the
transformed map as T prAq, they are related as in Fig. 6(c)-
6(d), that is,

TGpAq � Q-1 T prAq Q. (61)

Notice that relations in 1, 2, and 3 follow from the following
identity, which holds true for any invertible Q and for any
polynomial Hp�q (Theorem 6.2.9 of [25]):

HpAq � Q-1HprAqQ. (62)

Here rA � QAQ-1.
The relation in 4 follows from the following theorem.

Theorem 14 (Generalized filter banks). Let A be a diago-
nalizable adjacency matrix with the eigenvalue decomposition
A � V ΛV -1. Let E be an invertible matrix with the Ω-
structure (10) on its columns. Set the similarity transform
as Q � EV -1. Hence rA � QAQ-1. Define the generalized
decimator rD and the generalized expander rU asrD � DQ � DEV -1, rU � Q-1DT � V E-1DT . (63)

Then, a FB tHkprAq, FkprAqu on rA that uses the canoni-
cal decimator and expander, Fig. 6(a), is equivalent to the
generalized FB tHkpAq, FkpAqu on A that uses generalized
decimator and expander, Fig. 6(b). Here the term “equivalent”
means that the input-output behaviors are related as in (61).
♦

Proof: Let tHkpAq, FkpAqu be the generalized FB on A
that uses the generalized decimator and expander. Then

TGpAq �
M -1̧

k�0

FkpAq rU rDHkpAq, (64)

�
M -1̧

k�0

Q-1QFkpAqQ-1DTDQHkpAqQ-1Q, (65)

� Q-1
M -1̧

k�0

FkprAqDT DHkprAqQ, (66)

� Q-1 T prAqQ, (67)

where we use (62) in (66). Notice that the generalized
FB implicitly operates on rA, which is an Ω-graph sincerA � QAQ-1 � EΛE-1. Hence, the eigenvector condition
(10) on A is implicitly satisfied on the generalized FB.

The identity in (62) basically says that instead of working
on the given adjacency matrix, we can use the similarity-
transformed adjacency matrix as long as the input graph signal
is also transformed accordingly. As an example, consider the
generalized FB. The matrix Q transforms the graph signal x
into rx as shown in Fig. 6(a). Special cases of this can be
found in [9] where a permutation matrix is used and in [7]
where a diagonal matrix is used. Here we use it for a different
purpose, namely to create a hypothetical system (the system

x Q H0prAq D DT F0prAq
...

...
...

...

HM -1prAq D DT FM -1prAq

� Q-1 yrx ry

(a)

x H0pAq rD rU F0pAq
...

...
...

...

HM -1pAq rD rU FM -1pAq

� y

(b)

x TGpAq y

(c)

x Q T prAq Q-1 yrx ry
(d)

Fig. 6. (a) A FB on the similarity-transformed adjacency matrix rA sand-
wiched between Q and Q-1. (b) The FB with generalized decimator and
expander on the original adjacency matrix A. (c) and (d) are input-output
equivalent of the systems in terms of A and rA, respectively. Q is the
similarity transform. D is as in (1). �D and rU are as in (63). All four systems
shown above are equivalent to each other in terms of input-output relations.

flanked by Q and Q-1 in Fig. 6(a)) that satisfies the eigenvector
condition (10). This Ω-structure is sufficient (though possibly
not necessary) to be able to use some of the filter banks we
developed, e.g., the brickwall filter bank of Theorem 4, and
alias free filter banks of Sec. II. Thus the similarity transform
Q merely sets the stage for that. As long as the similarity
transform Q is selected properly, A can be treated as if it
is an Ω-graph even if it is not. For example, consider the
spectrum folding phenomena described in Sec. ?? of [1]. When
the decimator and the expander are selected as in (63), we can
remove the condition on the eigenvectors of the adjacency
matrix. We state this result as follows.

Theorem 15 (Spectrum folding and generalized decimation).
Let A be the adjacency matrix of a graph with the following
eigenvalue decomposition A � V ΛV -1. Let E be an invert-
ible matrix with the Ω-structure (10) on its columns. Define
the generalized decimator and expander as in (63). Let x be
a signal on the graph A and y be the DU version of x, that
is, y � rU rDx. Then, graph Fourier transform of x and y are
related as py � 1

M

�
IN{M b 1M1

T
M

	 px, (68)

which is nothing but the spectrum folding phenomena. ♦
Proof: The graph Fourier transforms of x and y are given

as px � V -1x and py � V -1y, respectively. Therefore we have

V py � rU rDV px, (69)

that is,

py � V -1 V E-1 DT DEV -1 V px,
� E-1 DT DE px
� 1{M

�
IN{M b 1M1

T
M

	 px, (70)

(a)
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3) Assuming that the diagonalizable graph A has distinct
eigenvalues, the filter bank tHkprAq, FkprAqu is alias-free
on the graph rA if and only if the original filter bank
tHkpAq, FkpAqu is alias-free on the graph A.

4) With the input-output map of the filter bank with gener-
alized decimator and expander denoted as TGpAq and the
transformed map as T prAq, they are related as in Fig. 6(c)-
6(d), that is,

TGpAq � Q-1 T prAq Q. (61)

Notice that relations in 1, 2, and 3 follow from the following
identity, which holds true for any invertible Q and for any
polynomial Hp�q (Theorem 6.2.9 of [25]):

HpAq � Q-1HprAqQ. (62)

Here rA � QAQ-1.
The relation in 4 follows from the following theorem.

Theorem 14 (Generalized filter banks). Let A be a diago-
nalizable adjacency matrix with the eigenvalue decomposition
A � V ΛV -1. Let E be an invertible matrix with the Ω-
structure (10) on its columns. Set the similarity transform
as Q � EV -1. Hence rA � QAQ-1. Define the generalized
decimator rD and the generalized expander rU asrD � DQ � DEV -1, rU � Q-1DT � V E-1DT . (63)

Then, a FB tHkprAq, FkprAqu on rA that uses the canoni-
cal decimator and expander, Fig. 6(a), is equivalent to the
generalized FB tHkpAq, FkpAqu on A that uses generalized
decimator and expander, Fig. 6(b). Here the term “equivalent”
means that the input-output behaviors are related as in (61).
♦

Proof: Let tHkpAq, FkpAqu be the generalized FB on A
that uses the generalized decimator and expander. Then

TGpAq �
M -1̧

k�0

FkpAq rU rDHkpAq, (64)

�
M -1̧

k�0

Q-1QFkpAqQ-1DTDQHkpAqQ-1Q, (65)

� Q-1
M -1̧

k�0

FkprAqDT DHkprAqQ, (66)

� Q-1 T prAqQ, (67)

where we use (62) in (66). Notice that the generalized
FB implicitly operates on rA, which is an Ω-graph sincerA � QAQ-1 � EΛE-1. Hence, the eigenvector condition
(10) on A is implicitly satisfied on the generalized FB.

The identity in (62) basically says that instead of working
on the given adjacency matrix, we can use the similarity-
transformed adjacency matrix as long as the input graph signal
is also transformed accordingly. As an example, consider the
generalized FB. The matrix Q transforms the graph signal x
into rx as shown in Fig. 6(a). Special cases of this can be
found in [9] where a permutation matrix is used and in [7]
where a diagonal matrix is used. Here we use it for a different
purpose, namely to create a hypothetical system (the system
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Fig. 6. (a) A FB on the similarity-transformed adjacency matrix rA sand-
wiched between Q and Q-1. (b) The FB with generalized decimator and
expander on the original adjacency matrix A. (c) and (d) are input-output
equivalent of the systems in terms of A and rA, respectively. Q is the
similarity transform. D is as in (1). �D and rU are as in (63). All four systems
shown above are equivalent to each other in terms of input-output relations.

flanked by Q and Q-1 in Fig. 6(a)) that satisfies the eigenvector
condition (10). This Ω-structure is sufficient (though possibly
not necessary) to be able to use some of the filter banks we
developed, e.g., the brickwall filter bank of Theorem 4, and
alias free filter banks of Sec. II. Thus the similarity transform
Q merely sets the stage for that. As long as the similarity
transform Q is selected properly, A can be treated as if it
is an Ω-graph even if it is not. For example, consider the
spectrum folding phenomena described in Sec. ?? of [1]. When
the decimator and the expander are selected as in (63), we can
remove the condition on the eigenvectors of the adjacency
matrix. We state this result as follows.

Theorem 15 (Spectrum folding and generalized decimation).
Let A be the adjacency matrix of a graph with the following
eigenvalue decomposition A � V ΛV -1. Let E be an invert-
ible matrix with the Ω-structure (10) on its columns. Define
the generalized decimator and expander as in (63). Let x be
a signal on the graph A and y be the DU version of x, that
is, y � rU rDx. Then, graph Fourier transform of x and y are
related as py � 1

M

�
IN{M b 1M1

T
M

	 px, (68)

which is nothing but the spectrum folding phenomena. ♦
Proof: The graph Fourier transforms of x and y are given

as px � V -1x and py � V -1y, respectively. Therefore we have

V py � rU rDV px, (69)

that is,

py � V -1 V E-1 DT DEV -1 V px,
� E-1 DT DE px
� 1{M

�
IN{M b 1M1

T
M

	 px, (70)
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3) Assuming that the diagonalizable graph A has distinct
eigenvalues, the filter bank tHkprAq, FkprAqu is alias-free
on the graph rA if and only if the original filter bank
tHkpAq, FkpAqu is alias-free on the graph A.

4) With the input-output map of the filter bank with gener-
alized decimator and expander denoted as TGpAq and the
transformed map as T prAq, they are related as in Fig. 6(c)-
6(d), that is,

TGpAq � Q-1 T prAq Q. (61)

Notice that relations in 1, 2, and 3 follow from the following
identity, which holds true for any invertible Q and for any
polynomial Hp�q (Theorem 6.2.9 of [25]):

HpAq � Q-1HprAqQ. (62)

Here rA � QAQ-1.
The relation in 4 follows from the following theorem.

Theorem 14 (Generalized filter banks). Let A be a diago-
nalizable adjacency matrix with the eigenvalue decomposition
A � V ΛV -1. Let E be an invertible matrix with the Ω-
structure (10) on its columns. Set the similarity transform
as Q � EV -1. Hence rA � QAQ-1. Define the generalized
decimator rD and the generalized expander rU asrD � DQ � DEV -1, rU � Q-1DT � V E-1DT . (63)

Then, a FB tHkprAq, FkprAqu on rA that uses the canoni-
cal decimator and expander, Fig. 6(a), is equivalent to the
generalized FB tHkpAq, FkpAqu on A that uses generalized
decimator and expander, Fig. 6(b). Here the term “equivalent”
means that the input-output behaviors are related as in (61).
♦

Proof: Let tHkpAq, FkpAqu be the generalized FB on A
that uses the generalized decimator and expander. Then

TGpAq �
M -1̧

k�0

FkpAq rU rDHkpAq, (64)

�
M -1̧

k�0

Q-1QFkpAqQ-1DTDQHkpAqQ-1Q, (65)

� Q-1
M -1̧

k�0

FkprAqDT DHkprAqQ, (66)

� Q-1 T prAqQ, (67)

where we use (62) in (66). Notice that the generalized
FB implicitly operates on rA, which is an Ω-graph sincerA � QAQ-1 � EΛE-1. Hence, the eigenvector condition
(10) on A is implicitly satisfied on the generalized FB.

The identity in (62) basically says that instead of working
on the given adjacency matrix, we can use the similarity-
transformed adjacency matrix as long as the input graph signal
is also transformed accordingly. As an example, consider the
generalized FB. The matrix Q transforms the graph signal x
into rx as shown in Fig. 6(a). Special cases of this can be
found in [9] where a permutation matrix is used and in [7]
where a diagonal matrix is used. Here we use it for a different
purpose, namely to create a hypothetical system (the system
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Fig. 6. (a) A FB on the similarity-transformed adjacency matrix rA sand-
wiched between Q and Q-1. (b) The FB with generalized decimator and
expander on the original adjacency matrix A. (c) and (d) are input-output
equivalent of the systems in terms of A and rA, respectively. Q is the
similarity transform. D is as in (1). �D and rU are as in (63). All four systems
shown above are equivalent to each other in terms of input-output relations.

flanked by Q and Q-1 in Fig. 6(a)) that satisfies the eigenvector
condition (10). This Ω-structure is sufficient (though possibly
not necessary) to be able to use some of the filter banks we
developed, e.g., the brickwall filter bank of Theorem 4, and
alias free filter banks of Sec. II. Thus the similarity transform
Q merely sets the stage for that. As long as the similarity
transform Q is selected properly, A can be treated as if it
is an Ω-graph even if it is not. For example, consider the
spectrum folding phenomena described in Sec. ?? of [1]. When
the decimator and the expander are selected as in (63), we can
remove the condition on the eigenvectors of the adjacency
matrix. We state this result as follows.

Theorem 15 (Spectrum folding and generalized decimation).
Let A be the adjacency matrix of a graph with the following
eigenvalue decomposition A � V ΛV -1. Let E be an invert-
ible matrix with the Ω-structure (10) on its columns. Define
the generalized decimator and expander as in (63). Let x be
a signal on the graph A and y be the DU version of x, that
is, y � rU rDx. Then, graph Fourier transform of x and y are
related as py � 1

M

�
IN{M b 1M1

T
M

	 px, (68)

which is nothing but the spectrum folding phenomena. ♦
Proof: The graph Fourier transforms of x and y are given

as px � V -1x and py � V -1y, respectively. Therefore we have

V py � rU rDV px, (69)

that is,

py � V -1 V E-1 DT DEV -1 V px,
� E-1 DT DE px
� 1{M

�
IN{M b 1M1

T
M

	 px, (70)

(c)
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3) Assuming that the diagonalizable graph A has distinct
eigenvalues, the filter bank tHkprAq, FkprAqu is alias-free
on the graph rA if and only if the original filter bank
tHkpAq, FkpAqu is alias-free on the graph A.

4) With the input-output map of the filter bank with gener-
alized decimator and expander denoted as TGpAq and the
transformed map as T prAq, they are related as in Fig. 6(c)-
6(d), that is,

TGpAq � Q-1 T prAq Q. (61)

Notice that relations in 1, 2, and 3 follow from the following
identity, which holds true for any invertible Q and for any
polynomial Hp�q (Theorem 6.2.9 of [25]):

HpAq � Q-1HprAqQ. (62)

Here rA � QAQ-1.
The relation in 4 follows from the following theorem.

Theorem 14 (Generalized filter banks). Let A be a diago-
nalizable adjacency matrix with the eigenvalue decomposition
A � V ΛV -1. Let E be an invertible matrix with the Ω-
structure (10) on its columns. Set the similarity transform
as Q � EV -1. Hence rA � QAQ-1. Define the generalized
decimator rD and the generalized expander rU asrD � DQ � DEV -1, rU � Q-1DT � V E-1DT . (63)

Then, a FB tHkprAq, FkprAqu on rA that uses the canoni-
cal decimator and expander, Fig. 6(a), is equivalent to the
generalized FB tHkpAq, FkpAqu on A that uses generalized
decimator and expander, Fig. 6(b). Here the term “equivalent”
means that the input-output behaviors are related as in (61).
♦

Proof: Let tHkpAq, FkpAqu be the generalized FB on A
that uses the generalized decimator and expander. Then

TGpAq �
M -1̧

k�0

FkpAq rU rDHkpAq, (64)

�
M -1̧

k�0

Q-1QFkpAqQ-1DTDQHkpAqQ-1Q, (65)

� Q-1
M -1̧

k�0

FkprAqDT DHkprAqQ, (66)

� Q-1 T prAqQ, (67)

where we use (62) in (66). Notice that the generalized
FB implicitly operates on rA, which is an Ω-graph sincerA � QAQ-1 � EΛE-1. Hence, the eigenvector condition
(10) on A is implicitly satisfied on the generalized FB.

The identity in (62) basically says that instead of working
on the given adjacency matrix, we can use the similarity-
transformed adjacency matrix as long as the input graph signal
is also transformed accordingly. As an example, consider the
generalized FB. The matrix Q transforms the graph signal x
into rx as shown in Fig. 6(a). Special cases of this can be
found in [9] where a permutation matrix is used and in [7]
where a diagonal matrix is used. Here we use it for a different
purpose, namely to create a hypothetical system (the system

x Q H0prAq D DT F0prAq
...

...
...

...

HM -1prAq D DT FM -1prAq

� Q-1 yrx ry

(a)

x H0pAq rD rU F0pAq
...

...
...

...

HM -1pAq rD rU FM -1pAq

� y

(b)

x TGpAq y

(c)

x Q T prAq Q-1 yrx ry
(d)

Fig. 6. (a) A FB on the similarity-transformed adjacency matrix rA sand-
wiched between Q and Q-1. (b) The FB with generalized decimator and
expander on the original adjacency matrix A. (c) and (d) are input-output
equivalent of the systems in terms of A and rA, respectively. Q is the
similarity transform. D is as in (1). �D and rU are as in (63). All four systems
shown above are equivalent to each other in terms of input-output relations.

flanked by Q and Q-1 in Fig. 6(a)) that satisfies the eigenvector
condition (10). This Ω-structure is sufficient (though possibly
not necessary) to be able to use some of the filter banks we
developed, e.g., the brickwall filter bank of Theorem 4, and
alias free filter banks of Sec. II. Thus the similarity transform
Q merely sets the stage for that. As long as the similarity
transform Q is selected properly, A can be treated as if it
is an Ω-graph even if it is not. For example, consider the
spectrum folding phenomena described in Sec. ?? of [1]. When
the decimator and the expander are selected as in (63), we can
remove the condition on the eigenvectors of the adjacency
matrix. We state this result as follows.

Theorem 15 (Spectrum folding and generalized decimation).
Let A be the adjacency matrix of a graph with the following
eigenvalue decomposition A � V ΛV -1. Let E be an invert-
ible matrix with the Ω-structure (10) on its columns. Define
the generalized decimator and expander as in (63). Let x be
a signal on the graph A and y be the DU version of x, that
is, y � rU rDx. Then, graph Fourier transform of x and y are
related as py � 1

M

�
IN{M b 1M1

T
M

	 px, (68)

which is nothing but the spectrum folding phenomena. ♦
Proof: The graph Fourier transforms of x and y are given

as px � V -1x and py � V -1y, respectively. Therefore we have

V py � rU rDV px, (69)

that is,

py � V -1 V E-1 DT DEV -1 V px,
� E-1 DT DE px
� 1{M

�
IN{M b 1M1

T
M

	 px, (70)

(d)

Figure 6.21: (a) A FB on the similarity-transformed adjacencymatrix Ã sandwiched
between Q and Q-1. (b) The FB with generalized decimator and expander on the
original adjacency matrix A. (c) and (d) are input-output equivalent of the systems
in terms of A and Ã, respectively. Q is the similarity transform. D is as in (6.8). D̃
and Ũ are as in (6.130). All four systems shown above are equivalent to each other
in terms of input-output relations.

The identity in (6.129) basically says that instead of working on the given adjacency
matrix, we can use the similarity-transformed adjacency matrix as long as the
input graph signal is also transformed accordingly. As an example, consider the
generalized FB. The matrix Q transforms the graph signal x into x̃ as shown in
Figure 6.21a. Special cases of this can be found in [152] where a permutation
matrix is used and in [126] where a diagonal matrix is used. Here we use it for
a different purpose, namely to create a hypothetical system (the system flanked by
Q and Q-1 in Figure 6.21a) that satisfies the eigenvector condition (6.57). This

-structure is sufficient (though possibly not necessary) to be able to use some of
the filter banks we developed, e.g., the brickwall filter bank of Theorem 6.19, and
alias free filter banks of Section 6.10. Thus the similarity transform Q merely sets
the stage for that. As long as the similarity transform Q is selected properly, A can
be treated as if it is an
-graph even if it is not. For example, consider the spectrum
folding phenomena described in Section 6.8. When the decimator and the expander
are selected as in (6.130), we can remove the condition on the eigenvectors of the
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adjacency matrix. We state this result as follows.

Theorem 6.30 (Spectrum folding and generalized decimation). Let A be the adja-
cency matrix of a graph with the following eigenvalue decomposition A = V�V-1.
Let E be an invertible matrix with the
-structure (6.57) on its columns. Define the
generalized decimator and expander as in (6.130). Let x be a signal on the graph
A and y be the DU version of x, that is, y = ŨD̃x. Then, graph Fourier transform of
x and y are related as

ŷ = 1
"

(
I#/" ⊗ 1" 1T"

)
x̂, (6.132)

which is nothing but the spectrum folding phenomena.

Proof. The graph Fourier transforms of x and y are given as x̂ = V-1x and ŷ = V-1y,
respectively. Therefore we have

V ŷ = Ũ D̃ V x̂, (6.133)

that is,

ŷ = V-1 V E-1 DT D E V-1 V x̂ = E-1 DT D E x̂ = 1/"
(
I#/" ⊗ 1"1T"

)
x̂, (6.134)

which follows from (6.68)-(6.74) since E has the 
-structure. �

Even though results of Theorem 6.12 and Theorem 6.30 appear to be similar,
the difference is that Theorem 6.12 applies to diagonalizable 
-graphs, whereas
Theorem 6.30 applies to any graph with diagonalizable adjacency matrix. Notice
that Theorem 6.30 includes Theorem 6.12: when the eigenvectors of A have the

-structure, simply select E = V, the decimator and the expander then reduce to
canonical form D̃ = D and Ũ = DT.

The application of a similarity transform QAQ-1 is therefore useful whenever the

-structure is necessary. For arbitrary eigenvectors, we need to use a similarity
matrix Q to adjust them to the form (6.57), which, in turn, affects the choice of
decimation matrix: namely the non-canonical form (6.130) that depends on Q has
to be used. On the other hand, this technique does not alter the eigenvalues of
A. Remember from (6.79) that coefficients of a polynomial filter and its frequency
response are related through the eigenvalues of the graph. Therefore, whateverQwe
choose, a polynomial filter on A, � (A), and the same polynomial filter on Ã, � (Ã),
have the same frequency response in their corresponding graph Fourier domains.
In summary, for the desired multirate graph signal processing, the coefficients of
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polynomial filters should be designed according to the graph spectrum (eigenvalues
of A); the decimator and the expander should be designed according to eigenvectors
of the graph.

The generalized decimator and expander in (6.130) have two important properties.
Firstly, given a graph, they are not unique: we can select E arbitrarily as long as its
columns have the 
-property, and it is invertible. In fact, E can be selected as a
properly permuted version of the inverse DFT matrix of size # . This follows from
the fact that C# is an "-block cyclic matrix for any " that divides # . Secondly,
the generalized decimator does depend on the eigenspaces of the adjacency matrix
due to presence of V in (6.130). Therefore, we cannot talk about a “universal”
decimator, and expander, which can remove the eigenvector constraint in (6.57) for
all graphs.

It might appear that the use of Q and Q-1 involves additional complexity of the order
of #2 in Figure 6.21a (where # is the size of the graph). This can be avoided if
we implement Figure 6.21b which is equivalent. In this implementation the simple
decimator D is replaced with D̃. Now, D̃ is an (#/") ×# matrix with possibly non-
zero entries everywhere, and there are " such matrices in the figure. This gives the
impression that there is additional computational overhead of #2 multiplications.
But note that D̃ is not unique; it is defined as D̃ = D E V-1 where E is an arbitrary
matrix with the 
-structure. The degrees of freedom in E can be exploited to
make D̃ relatively sparse to reduce the complexity. In fact D̃ can have the form
D̃ = [I#/" X] as shown next.

Assume that E has the 
-structure on its columns. Then it can be written as

E =


E1 (I#/" ⊗ fH1 )

...

E" (I#/" ⊗ fH
"
)

 , (6.135)

for some E: where E: ∈ C(#/")×(#/") and f: is the : Cℎ column of the DFT matrix
of size " . Let R = V-1 and write it as

R = [R1 · · · R"], (6.136)

where R: ∈ C#×#/" . Then we have the following for the generalized decimator

D̃ = D E R = E1 (I#/" ⊗ fH1 ) R = [E1 (I#/" ⊗ fH1 )R1 · · · E1 (I#/" ⊗ fH1 )R"] .
(6.137)
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Then, select E1 as follows:

E1 =
( (

I#/" ⊗ fH1
)
R1

) -1
. (6.138)

As a result we get the decimator in the form of D̃ = [I#/" X] where X depends on
R: ’s. This proves the claim. In this construction the decimator and expander have
the form

D̃ = E1
(
I#/" ⊗ fH1

)
V-1. (6.139)

Ũ = V
(
I#/" ⊗ f1

)
E-1

1 . (6.140)

At the time of this writing, we do not know how to reduce the complexities of both
D̃ and Ũ simultaneously.

The similarity transform in (6.129) changes the eigenvectors, and hence the graph
Fourier basis that supports the filter bank. So the transform matrix Q should
be selected carefully, otherwise the new Fourier basis may be of no use. Notice
that Figure 6.21a and 6.21b are equivalent, hence the similarity transform can be
integrated into the decimator and the expander. At this point, notice the proposed
decimator in (6.139) and the expander in (6.140). They explicitly depend on the
Fourier basis of the original graph. As a result, the idea of a similarity transform
reduces to a carefully designed decimator, where the decimator in (6.139) takes the
Fourier basis of the original graph into account and decimates the signal accordingly.
The same interpretation is valid for the expander in (6.140) as well. Moreover, the
filters in Figure 6.21b are still polynomials in the original graph, hence the original
graph Fourier basis can still be used to diagonalize the filter responses.

6.16 Examples
In this section, we will implement a 3-channel brickwall filter bank for the famous
Minnesota road graph [76, 129, 126]. With due thanks to the authors of [129] and
[76], we use the data publicly available in [128, 75]. This graph has 2642 nodes in
total where 2 nodes are disconnected to the rest of the graph. Since a road graph
is expected to be connected, we disregard those two nodes. See Figure 6.22 for the
visual representation of the graph. The adjacency matrix is extremely sparse with
only 0.1% non-zero entries. Since the edges are represented with 1’s, the unit shift,
Ax, merely requires addition and no multiplication at all.

It is clear from Figure 6.22 that the graph is not 3-block cyclic. Therefore, we cannot
apply Theorem 6.19 directly. However, we can use the generalized decimator and
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Figure 6.22: Minnesota traffic graph which has # = 2640 nodes, and 3302 undi-
rected unweighted edges (courtesy of [129, 76]).

expander as explained in Section 6.15. Furthermore, we select the graph Laplacian
to be the unit shift element and find the graph Fourier basis, V, as the eigenvectors
of the graph Laplacian. This selection (the Laplacian but not the adjacency matrix)
is consistent with the development, since we do not put any specific meaning to
the unit shift operator. We precisely use (6.139) and (6.140) to construct the
generalized decimator and expander, respectively. We construct the analysis and
synthesis filters as in (6.95). We denote the reconstructed output of the : Cℎ channel
as y: = F: Ũ D̃ H: x for 0 ≤ : ≤ 2. (These are indicated in Figure 6.17b).

In the first example, we consider the signal used in [129, 126] as the filter bank input.
A visual representation of this signal is given in Figure 6.23a. The reconstructed
outputs from subbands, y0, y1, y2, are given in Figure 6.23b, 6.23c, and 6.23d,
respectively. We observe that y0 is a smooth approximation of the original signal
since it is the output of the low-pass channel. The remaining two channels give
information about nodes where the discontinuity (high-frequency content) in the
signal occurs.

In the second example, we select a smoother signal defined as G8 = exp(-0.5 32
8
)

where 38 denotes the geographic distance between the 8Cℎ node and the point
[-93.5 45]. This signal, which is used as the filter bank input, is visualized in
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Figure 6.23: (a) Signal consisting of only 1’s and -1’s as given in [126], output of
(b) channel-0, (c) channel-1, (d) channel-2.

Figure 6.24a. The reconstructed outputs from the channels y0, y1, and y2 are given
in Figure 6.24b, 6.24c, and 6.24d, respectively. Similar to the previous example,
the low-pass channel captures most of the energy. Even though the remaining two
channels identify the nodes where change in the signal is located, outputs are not as
strong as the previous example. This is due to smoother character of the signal.

The Laplacian of theMinnesota traffic graph has repeated eigenvalues. Furthermore,
the distinct eigenvalues are closely spaced. As a result, we cannot implement
{H: }’s as polynomials, as low order polynomial approximations result in poor
performance. Hence, each filtering operation requires #2 ≈ 7 · 107 multiplications.
In the following, in order to obtain filters with low complexity, we will replace the
brick-wall filters, {H: }, with their hard-thresholded counter-parts, {H′

:
}, that are

constructed as follows:

(H′: )8, 9 =

(H: )8, 9 , | (H: )8, 9 | ≥ W

0, otherwise
(6.141)

for some threshold W. It is clear that this non-linear operation on the filters com-
promises the PR property of the filter bank. However, it is interesting to investigate
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Figure 6.24: (a) Signal with exponential decay due to geographic distance, output
of (b) channel-0, (c) channel-1, (d) channel-2.

the trade-off between the reconstruction error and the efficiency of the thresholded
filters. For this purpose, we define the average fraction of non-zero elements of
the filters as 1

" #2
∑"-1
:=0

H′
:


0 where ‖ · ‖0 counts the number of non-zeros and

define the reconstruction error as ‖x − x′‖22/‖x‖
2
2 where x′ is the output of the filter

bank with filters in (6.141). By sweeping over different thresholds, W, we obtain
the result in Figure 6.25. Here x0 denotes the signal in Figure 6.23a, x1 denotes
the signal in Figure 6.24a, and x2 is a signal with i.i.d. Gaussian entries. These
are the inputs to the filter bank in the three cases. It is very interesting to observe
that when we tolerate 1% error in the reconstruction, we can sparsify the filters
significantly: we only need 7.6%, 12.8% and 3.5% of the non-zero values of the
actual filters, respectively. This is a huge saving, due to #2 being very large. We do
not expect hard-thresholding to be optimal, and we are not suggesting this as a filter
design approach. This example merely shows that by replacing the PR property
with near-PR property, very efficient filters can be designed for "-channels.
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Figure 6.25: Trade-off between the efficiency of the filters and the reconstruction
error. Trade-off depends on the input signal under consideration.

6.17 Concluding Remarks
In this chapter we first developed fundamental building blocks for multirate signal
processing on graphs by drawing a parallel with classical multirate systems. We
started with the canonical definition of the decimator and identified the correspond-
ing expander. We then defined noble identities for graph multirate DSP. Contrary
to the classical case, we showed that a certain structure needs to be imposed on the
graph to establish these identities. We then studied some graphs that satisfy the
conditions and defined "-block cyclic graphs in this context. The unique eigen-
structure of such graphs was also shown, and the concept of spectrum folding in
such graphs was thereby established. Finally we showed that alias-free systems,
polynomial systems, and shift-invariant systems on graphs do not imply each other
for arbitrary graphs, and established conditions under which these three concepts
are equivalent.

We also extended the theory of "-channel maximally decimated filter banks, from
classical time domain to the domain of graphs. There are several important aspects
in which these filter banks differ from classical filter banks. We found that perfect
reconstruction (PR) can be achieved with polynomial filters for graphs which satisfy
certain eigenstructure conditions. Furthermore for "-block cyclic graphs, PR filter
banks can be built by starting from any classical filter bank. We also developed
polyphase representations for such filter banks. Even though many of the results
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were developed for graphs with a certain eigenstructure, it was shown in Section 6.15
that the eigenvector structure (6.57) can be relaxed, and only the eigenvalue structure
(6.56) remains to be satisfied.

This also brings up some practical questions which we have not been able to address
here: what are practical examples of graphswhich satisfy the eigenvalue constraints?
How do these filter banks perform for practical graph signals, and how do they
compare with alternative ways of processing these graph signals? For example,
imagine we build a compression system (akin to a subband coder) based on the PR
graph filter bank with a certain order for the polynomial filters {�: (A), �: (A)}.
How does this compare with a brute-force compression system that performs a large
DFT or a graph Fourier transform on the entire graph signal x, performs optimal
bit allocation, and reconstructs with the inverse transform? Many such practical
questions remain to be addressed. In this theoretically intense chapter it has not
been possible to address these important practical issues, but we plan to explore
these aspects in future work.

6.18 Appendices
6.18.1 Supplementary Theorems
Wenowpresent theorems that reveal block-wise properties of"-block cyclic graphs.
These theorems provide familiarity with "-block cyclic graphs.

Remember that using block-wise representation, the"-block cyclicmatrix iswritten
as

(A)8, 9 = A 9 X( 9-8+1). (6.142)

For the sake of simplicity, we assume the following index convention

A"+ 9 = A 9 (6.143)

for the blocks of an "-block cyclic matrix. Then we have the following properties.

Theorem6.31. LetA be an"-block cyclicmatrix. Then, (AA)8, 9 = A 9+A-1 · · ·A 9 X( 9-8+A).

Proof. Write the second power as

(A2)8, 9 =
"∑
:=1
(A)8,: (A):, 9 =

"∑
:=1

A: X(:-8+1) A 9 X( 9-:+1) = A 9+1 A 9 X( 9-8+2).



239

Then, write the third power as

(A3)8, 9 =
"∑
:=1
(A)8,: (A2):, 9 =

"∑
:=1

A: X(:-8+1) A 9+1A 9 X( 9-:+2)

= A 9+2 A 9+1 A 9 X( 9-8+3). (6.144)

Iterating the above steps A times, the claimed property is proved. �

Theorem 6.32. Let A be an invertible "-block cyclic matrix. Then, (A-A)8, 9 =(
A8+A-1 · · ·A8

) -1
X(8- 9+A).

Proof.

(I# )8, 9 =
"∑
:=1
(AA)8,: (A-A):, 9 =

"∑
:=1

A:+A-1 · · ·A:X(:-8+A)
(
A:+A-1 · · ·A:

) -1
X(:- 9+A)

= A8-1 · · ·A8-A
(
A 9-1 · · ·A 9-A

) -1 "∑
:=1

X(:-8+A)X(:- 9+A)

= A8-1 · · ·A8-A
(
A 9-1 · · ·A 9-A

) -1
X( 9-8) = I#/" X( 9-8). (6.145)

�

Theorem 6.33. Let V ∈ C#×# and have the structure in (6.57) in its columns. V is
invertible if and only if [

(v1,1) 9 · · · (v#/",1) 9
]
∈ M#/" (6.146)

is invertible for all 1 ≤ 9 ≤ " , where (·) 9 denotes the 9 Cℎ block of size #/" .

Proof. Using the indexing scheme in (6.60) and relation in (6.57), we can write V
as follows:

V = [v1,1 · · · 
"-1v1,1 · · · v#/",1 · · · 
"-1v#/",1] . (6.147)

Let α ∈ C# be a vector indexed as

α = [U1,1 · · · U1," · · · U#/",1 · · · U#/","]T. (6.148)

Assume V has a null-space. Then Vα = 0 for some α ≠ 0. Notice that due to
definition of 
 in (6.50), we have the following relation:


 v =
[
F0 (v)T1 F-1 (v)T2 · · · F-("-1) (v)T"

]T
, (6.149)
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where (v)8 denotes the 8Cℎ block of v of size #/" . Using the block relation given
in (6.149) and indexing in (6.148), we can write Vα as follows:

Vα =



#/"∑
;=1
(v;,1)1

"∑
==1

U;,= F
-0(=-1)

#/"∑
;=1
(v;,1)2

"∑
==1

U;,= F
-(=-1)

...
#/"∑
;=1
(v;,1)"

"∑
==1

U;,= F
-("-1) (=-1)


= 0" . (6.150)

Define 5; (:) =
∑"
==1 U;,= F

-(:-1) (=-1) , that is, 5; (:) is the : Cℎ value of inverse DFT of
the sequence [U;,1 · · · U;,"]. Then we have the following:[

(v1,1) 9 · · · (v#/",1) 9
] [

51( 9) · · · 5#/" ( 9)
]T
= 0#/" , (6.151)

for all 1 ≤ 9 ≤ " . Due to the DFT relation, not all 5; (:) are zero since α ≠ 0.
Therefore, there exists 9 such that [ 51( 9) · · · 5#/" ( 9)] ≠ 0 but (6.151) is zero.
Hence, [(v1,1) 9 · · · (v#/",1) 9 ] has a null-space.

Conversely, assume that [(v1,1) 9 · · · (v#/",1) 9 ] has a null-space for some 9 . There-
fore we have [ 51( 9) · · · 5#/" ( 9)] ≠ 0 but (6.151) is satisfied. By selecting remain-
ing 5; (:) to be zero, we have Vα = 0 but α ≠ 0, that is V has a null-space.

Therefore, V has a null space if and only if (6.146) has a null space for some
1 ≤ 9 ≤ " . That is to say, V does not have a null space if and only if (6.146) does
not have a null space for all 1 ≤ 9 ≤ " , which is equivalent to the statement of the
theorem. �

Corollary 6.3. Let A be an "-block cyclic matrix. A is invertible if and only if A 9

are invertible for 1 ≤ 9 ≤ " .

Proof. Let A = 1 in Theorem 6.32. Therefore, inverse of A consists of inverse of
A 9 ’s as blocks. Existence of inverse of A implies existence of inverses of A 9 ’s and
vice versa. �

Corollary 6.4. Let A be an "-block cyclic matrix. Then, A" is a block diagonal
matrix.

Proof. Let A = " in Theorem 6.31. Then, (A")8, 9 = A 9+"-1 · · ·A 9 X( 9-8+").
Therefore (A")8, 9 = 0 when 8 ≠ 9 since X(·) is periodic with " . �
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Corollary 6.5. Let A be an "-block cyclic matrix. Then adjusted shift operator
Ā = D A" DT has the form Ā = A" · · ·A1.

Proof. Remember from Theorems 6.1 and 6.2, the adjusted shift operator is defined
as Ā = (A")1,1. In Theorem 6.31, set A = " , 8 = 1 and 9 = 1. Then we have
Ā = A" · · ·A1. �

Corollary 6.6. Let A be an "-block cyclic matrix. Then, A-A DT is a block-
column vector with only one non-zero block at index "+1-A. More precisely,
(A-A DT)8 =

(
A" · · ·A"+1-A

) -1
X(8-1+A) for 1 ≤ 8 ≤ " and A ≥ 0.

Proof. Remember that (DT): = I#/" X(:-1). Therefore,

(A-A DT)8 =
"∑
:=1
(A-A)8,: (DT): =

"∑
:=1

(
A8+A-1 · · ·A8

) -1
X(8-:+A) I#/" X(:-1)

=
(
A" · · ·A"+1-A

) -1
X(8-1+A) (6.152)

�

Corollary 6.7. Let A be an "-block cyclic matrix. Then, D AA is a block-row
vector with only one non-zero block at index "+1-A. More precisely, (D AA)8 =
A" · · ·A"+1-A X(8-1+A) for 1 ≤ 8 ≤ " and A ≥ 0.

Proof. Remember that (D): = I#/" X(:-1). Therefore,

(D AA)8 =
"∑
:=1
(D): (AA):,8 =

"∑
:=1

I#/" X(:-1)A8+A-1 · · · A8 X(8-:+A)

= A" · · ·A"+1-A X(8-1+A) (6.153)

�

6.18.2 Proof of Theorem 6.10
Before starting to prove Theorem 6.10, we state the following lemma, which will be
useful in the proof.

Lemma 6.1. Let A be written as:

A =

"-1∑
:=0

F: 
: v u
-: , (6.154)

where F is in (6.49) and
 is in (6.50). Then A is a balanced "-block cyclic matrix
for any column vector v and row vector u.
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Proof. Let v = [(v)T1 · · · (v)
T
"
]T and u = [(u)1 · · · (u)"], where (v)8 and (u)8 are

the 8Cℎ block of size #/" of v and u, respectively. Then we have

(A);,B =
"-1∑
:=0

F: F-(;-1): v; uB F (B-1): = v; uB
"-1∑
:=0

F (B-;+1): = v; uB " X(B-;+1).

(6.155)
Hence we have (A);,B = v; uB " X(B-;+1), which is the definition of a balanced
"-block cyclic matrix due to (6.47). �

Theorem 6.9 proves that structure in (6.56) and (6.57) of exist if the matrix is
diagonalizable and "-block cyclic.

For the reverse direction, assume that structure in (6.56) and (6.57) exists with
the indexing scheme in (6.59) and (6.60). To be consistent with this indexing, let
r8, 9 ∈ C1×# denote the rows of V-1. That is,

V-1 =



r1,1

r1,"
...

r#/","
r#/","


. (6.156)

Then, we have the following relation between the rows of V-1

r8, 9+: = r8, 9 
-: (6.157)

for all 1 ≤ 8 ≤ #/" and 1 ≤ 9 ≤ " . To see this, remember V-1V = I. That
is r8,1 v 9 ,0 = X( 9-8)X(0-1), or we can say that r8,1 
0-1v 9 ,1 = X( 9-8)X(0-1). Letting
0 = :-;+1, we have r8,1
-;+1 
:-1v 9 ,1 = X( 9-8)X(:-;). When we assume that (6.157)
is correct, we get r8,; v 9 ,: = X( 9-8)X(:-;), which also means V-1V = I. Since inverse
of a matrix is unique, rows of V-1 satisfy (6.157).

Since V�V-1 gives the matrix A, we have the following decomposition for A:

A =

#/"∑
;=1

"∑
:=1

_;,: v;,: r;,: =
#/"∑
;=1

_;,1

"-1∑
:=0

F: 
: v;,1 r;,1 
-: . (6.158)

Due to Lemma 6.1 from above, inner summation over : produces an "-block cyclic
matrix. Therefore A is a weighted sum of "-block cyclic matrices, which is also
an "-block cyclic matrix.
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6.18.3 Proof of Theorem 6.23
Let A = V�V-1 be the eigenvalue decomposition of the matrix A. Assume that
eigenvectors in V are indexed as in (6.60) and eigenvalues in � are indexed as in
(6.59). Assume V has the structure in (6.57) and let eigenvalues be arbitrary but
distinct. Let r8, 9 ∈ C1×# denote the rows of V-1. That is,

V-1 =



r1,1

r1,"
...

r#/","
r#/","


. (6.159)

Then, we have the following relation between the rows of V-1

r8, 9+: = r8, 9 
-: (6.160)

for all 1 ≤ 8 ≤ #/" and 1 ≤ 9 ≤ " . To see this, remember V-1V = I. That
is r8,1 v 9 ,0 = X( 9-8)X(0-1), or we can say that r8,1 
0-1v 9 ,1 = X( 9-8)X(0-1). Letting
0 = :-;+1, we have r8,1
-;+1 
:-1v 9 ,1 = X( 9-8)X(:-;). When we assume that (6.160)
is correct, we get r8,; v 9 ,: = X( 9-8)X(:-;), which also means V-1V = I. Since inverse
of a matrix is unique, rows of V-1 satisfy (6.159).

The " Cℎ power of A can be written as A" = V�" V-1. Therefore, we can expand
A" as follows:

A" =

#/"∑
;=1

"∑
:=1

_";,: v;,: r;,: =
#/"∑
;=1

"∑
:=1

_";,: 

:-1 v;,1 r;,1 
-:+1, (6.161)

where r;,: ’s denote the rows of V-1, are indexed as in (6.159) and have the property
in (6.160). With this decomposition, (8, 9)Cℎ block of A" can be written as

(A")8, 9 =
#/"∑
;=1

"∑
:=1

_";,: F
-(8-1) (:-1) (v;,1)8 (r;,1) 9 F ( 9-1) (:-1) ,

=

#/"∑
;=1
(v;,1)8 (r;,1) 9

"∑
:=1

_";,: F
-(8- 9) (:-1) . (6.162)

Further assume that A" satisfies (6.27). Then we have (A")1, 9 = (A")8,1 = 0 for
all 2 ≤ 8, 9 ≤ " . Therefore, our purpose is to find _;,: such that (6.162) satisfies
the following:

(A")1, 9 =
#/"∑
;=1
(v;,1)1 (r;,1) 9

"∑
:=1

_";,: F
( 9-1) (:-1) = 0, (6.163)
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for 2 ≤ 9 ≤ " . Define 5; ( 9) as follows:

5; ( 9) =
"∑
:=1

_";,: F
( 9-1) (:-1) . (6.164)

Notice that 5; ( 9) corresponds to 9 Cℎ value of theDFTof the sequence [_"
;,1 · · · _

"
;,"
].

Then we can write (6.163) as

[(v1,1)1 · · · (v#/",1)1]


51( 9)

. . .

5#/" ( 9)



(r1,1) 9
...

(r#/",1) 9

 = 0,

for 2 ≤ 9 ≤ " . Since the inverse of V exists by its definition, above matrices do
not have null-spaces due to Theorem 6.33 in Section 6.18.1. Therefore, the only
solution to the above equation is 5; ( 9) = 0 for 2 ≤ 9 ≤ " and for all 1 ≤ ; ≤ #/" .
Furthermore, we can solve for _"

;,:
by taking inverse DFT of 5; ( 9). Since 5; (1) is

allowed to have an arbitrary value, we get the following solution:

_";,: = 2; , (6.165)

for some 2; ∈ C for 1 ≤ : ≤ " . Notice that (6.165) also yields (A")8,1 = 0 for
2 ≤ 8 ≤ " . Since eigenvalues are assumed to be distinct, we get the following
solution set:

_;,: = 2; F
((:) , (6.166)

where ((:) ∈ {1, · · · , "} and ((:1) ≠ ((:2) for :1 ≠ :2 for some 2; . Notice that
when ((:) = : , we get the eigenvalue structure in (6.56), yet this is not the only
solution. Therefore the eigenvalue structure of an "-block cyclic matrix in (6.56)
implies (6.166), whereas (6.166) does not imply (6.56) since the later one requires a
particular ordering in the eigenvalues. More precisely, the only difference between
A and an "-block cyclic matrix is the order of the eigenvalues associated with the
eigenvectors. Using a permutation matrix �, we can re-order the eigenvalues in
the following way ���-1. Since we can select � to satisfy the specific ordering
required by (6.56), we can construct an "-block cyclic matrix as V���-1V-1.

As a result, A = V�V-1 may not be an "-block cyclic matrix, but V���-1V-1 is.
Hence, we conclude that A is similar to an "-block cyclic matrix.

6.18.4 Proof of Theorem 6.25
For the sake of simplicity, in the following we will use P8, 9 to denote the (8, 9)Cℎ

block of the matrix P(Ā). That is, P8, 9 = (P(Ā))8, 9 ∈ C(#/")×(#/") .
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Assuming that A is invertible, overall response of the filter bank in Figure 6.19b is
written as

) (A) =
"∑
8, 9=1

A"-8 DT P8, 9 D A 9-1 = A"-1 ) ′(A), (6.167)

where we define

) ′(A) =
"∑
8, 9=1

A-(8-1) DT P8, 9 D A 9-1. (6.168)

Now consider the (B, :)Cℎ block of both sides of (6.167) where 1 ≤ B, : ≤ " . We
have(
) ′(A)

)
B,:
=

(
"∑
8, 9=1

A-(8-1) DT P8, 9 D A 9-1

)
B,:

=

"∑
8, 9=1

(
A-(8-1) DT P8, 9 D A 9-1

)
B,:

=

"∑
8, 9 ,;,A=1

(
A-(8-1) )

B,;

(
DT P8, 9 D

)
;,A

(
A 9-1)

A,:
. (6.169)

Due to definition of D from (6.8), we have(
DT P8, 9 D

)
;,A
= P8, 9 X(;-1) X(A-1), (6.170)

that is, only the (1, 1)Cℎ block of DT P8, 9 D is non-zero. Therefore we can simplify
(6.169) as follows: (

) ′(A)
)
B,:
=

"∑
8, 9=1

(
A-(8-1) )

B,1 P8, 9
(
A 9-1)

1,: . (6.171)

Now assume that the filter bank provides perfect reconstruction, that is, overall
response of the filter bank is

) (A) = A"-1+"<+=, (6.172)

for some integer 0 ≤ = ≤ "-1 and integer <. Then we have

) ′(A) = A"<+=. (6.173)

Using Theorem 6.31, left hand side of (6.171) can be expanded as follows:(
) ′(A)

)
B,:
=

(
A:+"<+=-1 · · ·A:

)
X(:-B+=). (6.174)

Using Theorem 6.31 and 6.32, right hand side of (6.171) can be expanded as follows:
"∑
8, 9=1
(AB+8-2 · · ·AB)-1 X(B+8-2) P8, 9 (A:+ 9-2 · · ·A: ) X(:+ 9-2). (6.175)
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In order to have a perfect reconstruction system, we need (6.174) and (6.175) to be
equal to each other. In (6.175) notice that, for a given (B, :), there is only one (8, 9)
pair that have a non-zero contribution due to presence of X(·) terms. For a given
(B, :), we need to consider 4 different cases.

Case 1: B = 1, : = 1. In this case, only non-zero term in (6.175) is when 8 = 1 and
9 = 1. When we equate (6.174) and (6.175), we get(

A"<+= · · ·A1

)
X(=) = P1,1. (6.176)

This is equivalent to have
P1,1 = Ā< X(=), (6.177)

where we used the fact that Ā = D A DT = A" · · ·A1 for "-block cyclic matrix and
A"+ 9 = A 9 for any 9 for the blocks of an "-block cyclic matrix as in (6.143).

Case 2: B ≥ 2, : = 1. In this case, only non-zero term in (6.175) is when 8 = "+2-B
and 9 = 1. When we equate (6.174) and (6.175), we get(

A"<+= · · ·A1

)
X(1-B+=) =

(
A" · · ·AB

) -1
P"+2-B,1. (6.178)

In (6.178), the only non-zero solution happens when B = =+1. However, = = 0
results in B = 1 which falls outside of the scope of this case. Hence we get the
following for = ≥ 1:

P"+1-=,1 = (A" · · ·A=+1)
(
A"<+= · · ·A1

)
= (A"<+" · · ·A"<+=+1)

(
A"<+= · · ·A1

)
=

(
A" (<+1) · · ·A1

)
= Ā<+1.

Hence we have
P"+1-=,1 = Ā<+1, "-1 ≥ = ≥ 1. (6.179)

Case 3: B = 1, : ≥ 2. In this case, only non-zero term in (6.175) is when 8 = 1 and
9 = "+2-: . When we equate (6.174) and (6.175), we get(

A:+"<+=-1 · · ·A:

)
X(:-1+=) = P1,"+2-: (A" · · ·A: ). (6.180)

In (6.180), the only non-zero solution happens when : = "+1-=. However, = = 0
results in : = "+1 which falls outside of the range of : . Hence we get the following
for = ≥ 1:

P1,=+1 =

(
A" (<+1) · · ·A"+1-=

)
(A" · · ·A"+1-=)-1

=

(
A" (<+1) · · ·A"+1

)
=

(
A"< · · ·A1

)
= Ā< . (6.181)
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Even though this case excludes = = 0, from Case 1, we have P1,1 = Ā< for = = 0.
Therefore we can assume that (6.181) is valid for all =. Hence we have,

P1,1+= = Ā<, "-1 ≥ = ≥ 0. (6.182)

Case 4: B ≥ 2, : ≥ 2. In this case, only non-zero term in (6.175) is when 8 = "+2-B
and 9 = "+2-: . When we equate (6.174) and (6.175), we get(

A:+"<+=-1 · · ·A:

)
X(:-B+=) =

(
A" · · ·AB

) -1 P"+2-B,"+2-:
(
A" · · ·A:

)
.

(6.183)
In (6.183), notice that the index B and the index : are inter-related unlike the previous
cases. Therefore, we need to consider two special sub-cases:

Case 4.1: B ≥ 2, "-= ≥ : ≥ 2. In (6.183), the only non-zero solution happens
when B = :+=. Hence we get

P"+2-:-=,"+2-: = (A" · · ·A:+=)
(
A:+"<+=-1 · · ·A:

)
(A" · · ·A: )-1

= (A"<+" · · ·A"<+:+=)
(
A:+"<+=-1 · · ·A:

)
(A" · · ·A: )-1

= (A" (<+1) · · ·A"+1) = Ā< . (6.184)

With a proper change of index variables we have

P:,:+= = Ā<, 2 ≤ : ≤ "-=. (6.185)

Case 4.2: B ≥ 2, " ≥ : ≥ "-=+2. In (6.183), the only non-zero solution happens
when B = :+=-" . Notice that in this case we exclude : = "-=+1 since it results in
B = 1 and it has already been investigated in Case 1 and 3. Hence we get

P2"+2-:-=,"+2-: = (A" · · ·A:+=-")
(
A:+"<+=-1 · · ·A:

)
(A" · · ·A: )-1

= (A" (<+2) · · ·A"<+:+=)
(
A:+"<+=-1 · · ·A:

)
(A" · · ·A: )-1

= (A" (<+2) · · ·A"+1) = Ā<+1. (6.186)

With a proper change of index variables we have

P:,:+=-" = Ā<+1, "-=+2 ≤ : ≤ ". (6.187)

When we combine Case 4.1 in (6.185) with Case 3 in (6.182) and combine Case 4.2
in (6.187) with Case 2 in (6.179), we get the following relation for the blocks of the
polyphase transfer matrix

P:, :+= = Ā<, 1 ≤ : ≤ "-=, (6.188)

P:, :+=-" = Ā<+1, "-=+1 ≤ : ≤ ".
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Notice that (6.188) gives all the non-zero blocks of the polyphase transfer matrix.
Blocks that are not specified in (6.188) are zero. As a result, we can represent
(6.188) in a compact manner as follows:

%(Ā) =
[

0 I"-= ⊗ Ā<

I= ⊗ Ā<+1 0

]
. (6.189)

The given form of %(Ā) in (6.118) is achieved when the Kronecker product with
Ā< in (6.189) is carried out. As a result, for an invertible "-block cyclic A, when
the overall response of the filter bank is A"-1+"<+= for some integer < and integer
0 ≤ = ≤ "-1, then %(Ā) necessarily have the form in (6.118).

For the converse direction, assume that the polyphase transfer matrix has the form
in (6.118), which is equivalent to having (6.188). Then, we can write the overall
response of the filter bank as

) (A) =
"∑
8, 9=1

A"-8 DT P8, 9 D A 9-1,

=

"-=∑
8=1

A"-8 DT Ā< D A8+=-1 +
"∑

8="-=+1
A"-8 DT Ā<+1 D A8+=-"-1, (6.190)

=

"-=∑
8=1

A"-8 DT D A"< A8+=-1 +
"∑

8="-=+1
A"-8 DT D A" (<+1) A8+=-"-1, (6.191)

=

"∑
8=1

A"-8 DT D A8-1A"<+= = A"-1+"<+=, (6.192)

where we use (6.188) in (6.190), and the first noble identity (6.25) in (6.191). The
last equation (6.192) follows from the fact that "-block cyclic matrices provide
perfect reconstruction in lazy filter banks. Hence, the polyphase matrix in (6.189)
implies perfect reconstruction.
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C h a p t e r 7

UNCERTAINTY PRINCIPLES AND SPARSE EIGENVECTORS
OF GRAPHS

7.1 Introduction
An essential concept in signal analysis is the uncertainty principle, which states that a
signal cannot be arbitrarily localized in both time and frequency simultaneously [65].
In classical signal processing, the uncertainty principle is useful to design filters that
are maximally localized in time for a given frequency spread, or vice versa. Due
to its importance, some authors extended this principle to signals defined on graphs
[2, 195, 104, 143]. Details of these approaches are elaborated in Section 7.1.3.

Similar to [2, 195, 104, 143], this chapter studies the concept of uncertainty for
graph signals. However, unlike earlier methods, and motivated by [54, 59, 60], we
introduce a non-local measure for uncertainty, based on the notion of sparsity of the
signal in the graph domain and frequency domain. We show that a nonzero graph
signal and its corresponding GFT cannot be arbitrarily sparse simultaneously, and
we provide a lower bound for the total number of nonzero elements. We further
provide the optimal selection of the GFB (that minimizes the uncertainty bound)
when the graph operator has repeated eigenvalues. In order to find signals that
achieve the derived lower bound, we consider sparse eigenvectors of the graph
operator. A detailed outline and the contributions of this chapter are given below.

7.1.1 Outline and Contributions of This Chapter
Broadly speaking, results presented in this chapter can be divided into three main
parts. In the first part (Sections 7.2 and 7.3), we propose discrete and non-local
uncertainty principles that depend on the max-norm of the graph Fourier basis.
These results follow from more general theory of sparse representations studied in
[54, 59, 60]. We consider the identity matrix and the GFB as a pair of bases to
represent a graph signal and interpret the methodologies in [60] in the context of
graph signal processing. Subsequently, the study in [143] has obtained very similar
interpretations based on the same theory. Apart from the overlapping results [143]
generalizes these results to the case of frames. Then, it focuses on local uncertainty
principles where bounds depend on a particular portion of the graph. More detailed
comparison with [143] is provided in Section 7.1.3.
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Our main contributions are presented in the remaining sections: in the second part
of our results (Section 7.4) we discuss that given a graph, max-norm of the graph
Fourier basis is not unique in the presence of the repeated eigenvalues of the selected
graph operator. Since this non-uniqueness greatly affects the interpretation of the
relations between the graph structure and the uncertainty, we formulate a problem
to select eigenvectors (GFB) such that the max-norm of the graph Fourier basis
is maximized (or, equivalently the uncertainty bounds considered in Section 7.2
are minimized). We solve this problem analytically (Theorem 7.6) and provide an
algorithmic routine to obtain a set of eigenvectors that gives a graph Fourier basis
with the maximum possible max-norm.

In the third part of our results (Section 7.5) we focus on the sparse eigenvectors of
graphs in order to find signals that achieve the proposed uncertainty bounds. We
study the relation between sparsity of eigenvectors and graph topology, and their
effects on the max-norm of the GFB. We provide the necessary and sufficient condi-
tions for the existence of 1-sparse and 2-sparse eigenvectors of the graph Laplacian
(Theorems 7.7 and 7.8). We then show that existence of a 2-sparse eigenvector
implies very low and attainable uncertainty bounds (Theorem 7.11). Finally in Sec-
tion 7.7 we apply our results to real world graph examples. Interestingly, uncertainty
bounds for these graphs are very low. We precisely explain why this is the case, and
find the signals that achieve these bounds.

The content of this chapter is mainly drawn from [187], and parts of it have been
presented in [169, 183].

7.1.2 Notation
In this chapter, the definition of the graph Fourier basis is not fixed. Eigenvectors
of either the graph Laplacian or the adjacency matrix itself can be set to be the
graph Fourier domain. We will use V� and V! to explicitly denote the eigenvectors
of the adjacency matrix and the graph Laplacian, respectively. Assuming A is
diagonalizable, we precisely have

A = V� �� V-1
� , L = V! �! V-1

! , (7.1)

where �� and �! are diagonal eigenvalue matrices. We will always assume that
eigenvectors are normalized to have a unit ℓ2-norm. When the graph is undirected
V� and V! can be selected to be unitary.

For a matrix A and two index sets S and K, A denotes the matrix with columns of
A indexed by S and AK,S denotes the matrix with columns indexed by ( and rows
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indexed by  . For a vector x, elements of x indexed byS will be denoted by xS . The
index set S̄ is defined as S̄ = {1, . . . , #} \ S, where \ stands for the set difference
operator. We will use ⊗ to denote Kronecker product of matrices. Dimension of the
right null space of a matrix A is denoted by nullity(A).

7.1.3 Related Work
To the best to our knowledge, there are mainly four studies that consider uncertainty
principles for signals defined over graphs [2, 195, 104, 143]. The main theme in
these studies (including this one) is to define a “measure” of the signal in the vertex
domain and the graph Fourier domain. In particular, the study in [2] considers the
following for unweighted graphs:

Δ2
6,D0 (x) =

xH P2
D0 x

‖x‖22
, Δ2

B (x) =
xH L x
‖x‖22

, (7.2)

where Δ2
6,D0 (x) is referred to as the vertex spread (with PD0 being the diagonal

distance matrix with respect to the node D0), and Δ2
B (x) is referred to as the spectral

spread of the signal x. This approach is extended to weighted graphs in [140]. The
study in [195] works on an alternative definition and focuses on the following:

U = ‖D( x‖2 / ‖x‖2, V = ‖B� x‖2 / ‖x‖2, (7.3)

where U2 and V2 represent the amount of energy confined in the vertex set ( and
the frequency set � (with D( and B� being corresponding projection matrices),
respectively. The study in [17, 104] considers the smoothness of the signal in both
domains: using the difference operator on the graph, DA , the interplay between
‖DA x‖22 and ‖DA x̂‖22 is studied.

The main observation of these studies is that measures in both domains cannot
be arbitrarily small simultaneously: a signal “limited” in one domain cannot be
“limited” in the other domain. These trade-offs are then considered as uncertainty
principles. Depending on their corresponding definitions, they characterize these
uncertainty curves theoretically and study the signals that achieve themwith equality.

More recently, the study in [143] takes a non-local perspective where vertex and
spectral measures are defined with ℓ? norms. Using the fact that the identity matrix
and the GFB form a pair of bases to represent graph signals, [143] proposes some
uncertainty principles where the results are based on theory of sparse representations
studied in [60, 59, 54, 145]. These results show that the “graph Fourier coherence”
is a fundamental quantity for the uncertainty principles of interest. Notice that we
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specifically consider the case of ℓ0 and ℓ1 in this chapter and obtain very similar
results where we use the term “max-norm of GFB” instead of coherence. This
overlap is a direct consequence of the influence of the sparse representation theory
in [54, 59, 60]. In the rest, [143] focuses on the representation of graph signals
using frames and proposes some uncertainty results based on these representations.
It later considers local uncertainty principles where bounds depend on a region of
the graph.

In order to find signals that achieve the proposed uncertainty bounds we consider
sparse eigenvectors (2-sparse in particular) of the graph Laplacian. In this context,
the study in [11] reveals a specific graph structure (referred to as motif-doubling)
that results in sparse eigenvectors of both the adjacency matrix and the graph
Laplacian. The structure of motif-doubling gives rise to sparse eigenvectors with
even number of non-zero entries. However, this structure is only sufficient to have
sparse eigenvectors, whereas our condition on 2-sparse eigenvectors is necessary
and sufficient. A detailed comparison with [11] will be provided in Section 7.5.2.

7.2 Discrete Non-Local Spreads
Inspired by [54, 59, 60], we will study the concept of uncertainty from a discrete
and non-local perspective. We will consider graph spread of a signal as the total
number of nonzero elements in the signal. Similarly, spectral spread of a signal will
be defined as the number of nonzero elements in the GFT of the signal. Hence, we
have the following definitions:

Definition 7.1 (ℓ0-based spread on vertex domain). Given a nonzero signal x on a
graph with GFT F, the “spread” of the signal on vertex domain is defined as ‖x‖0.

Definition 7.2 (ℓ0-based spread on Fourier domain). Given a nonzero signal x on a
graph with GFT F, the “spread” of the signal in the Fourier domain is defined as
‖Fx‖0.

The definition of the spectral spread depends on the selected GFT F. Whether it is
based on the adjacency matrix, the graph Laplacian, or something else, for a given
graph, the GFB V, hence F = V-1, may not be unique. This is due to the fact that
the selected graph operator may have repeated eigenvalues. In such a case, one can
select different bases to span the corresponding eigenspaces resulting in different
GFB matrices. In order to avoid this ambiguity we assume that, not just the graph
itself, but also the associated GFT is given in Definition 7.2. It should be noted that
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in the case of repeated eigenvalues selection of the GFB is not a simple task and
it requires attention. We will address this problem in Sections 7.4 and 7.5, where
we discuss optimal selection of the GFB in order to minimize the spectral spread of
signals.

For a nonzero graph signal notice that its vertex domain spread and spectral spread
have to be at least 1, however, they may not achieve this bound simultaneously. As
a simple motivational example, consider the directed cyclic graph of # vertices,
whose graph Fourier Transform corresponds to DFT of size # [152]. If the signal
x is an impulse, then ‖x‖0 = 1, but ‖Fx‖0 = # . On the contrary, if the signal is a
constant, then ‖x‖0 = # , but ‖Fx‖0 = 1. As a result we ask the following question:
Given the GFT F, what is the minimum total number of nonzero elements in a graph
signal and its corresponding Fourier Transform? For this purpose, we consider the
following two definitions of uncertainty:

B0(x) =
(
‖x‖0 + ‖Fx‖0

)
/2, ?0(x) =

√
‖x‖0 ‖Fx‖0, (7.4)

where B0(x) and ?0(x) are referred to as additive and multiplicative uncertainty of
the signal x, respectively. The definitions in (7.4) have the following two important
properties: 1) They are scale invariant, that is B0(U x) = B0(x) and ?0(U x) = ?0(x)
for all U ≠ 0. This is a useful property since uncertainty of a signal is expected to be
scale-invariant. 2) Both can take only a discrete, finite set of values, namely, B0(x)
takes half integer values (i.e., :/2 for integer :) and ?0(x) takes values in the form
of ?0(x) =

√
: for some integer : ≥ 1. As a final remark, notice that the AM-GM

inequality dictates the following relation:

B0(x) ≥ ?0(x), ∀x ∈ C# , (7.5)

with equality if and only if ‖x‖0 = ‖Fx‖0.

The main purpose of this section is to find the lowest value that B0(x) can attain.
More precisely the following problem will be considered:

B★0 = min
x≠0

B0(x), (7.6)

where B★0 is called as the uncertainty bound since a signal and its correspond-
ing graph Fourier Transform cannot be arbitrarily sparse simultaneously, that is,
B0(x) ≥ B★0 ∀x ≠ 0.

Due to the combinatoric nature of the problem in (7.6), no closed form solution for
B★0 is available for an arbitrary F. Nevertheless, the theory of sparse representations
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provides useful bounds for the problem. Motivated by Theorem 2.1 in [60], the
following theorem (whose proof is presented in Appendix 7.9.1) provides a lower
bound for ?0(x):

Theorem 7.1 (Multiplicative uncertainty principle). For a graph with GFT F, the
multiplicative uncertainty of a nonzero signal x is lower bounded as follows:

?0(x) ≥
(
‖F−1‖2 ‖F‖max

)−1
, (7.7)

where ‖ · ‖2 and ‖ · ‖max are described in Section 1.1.

Corollary 7.1 (Additive uncertainty principle). For a graphwithGFTF, the additive
uncertainty of a nonzero signal x is lower bounded as follows:

B0(x) ≥
(
‖F-1‖2 ‖F‖max

) -1
, (7.8)

where ‖ · ‖2 and ‖ · ‖max are described in Section 1.1.

Proof. From (7.5) we have B0(x) ≥ ?0(x). Therefore, any lower bound for ?0(x) is
also a lower bound for B0(x). �

When the GFT of interest is unitary, Theorem 7.1 and Corollary 7.1 reduce to the
following corollaries:

Corollary 7.2 (Weak ℓ0 uncertainty). For any graph with unitary graph Fourier
basis V, the following holds true:

?0(x) ≥ ‖V‖−1
max. (7.9)

Proof. Let V be unitary in Theorem 7.1. Then we have F = VH, hence ‖F‖max =

‖V‖max. Furthermore, ‖V‖2 = ‖F-1‖2 = 1. �

This corollary is important since for undirected graphs, the adjacency matrix and
the graph Laplacian are symmetric which result in a unitary graph Fourier basis.
The corollary also implies the following (from AM-GM inequality).

Corollary 7.3 (Strong ℓ0 uncertainty). For any graph with unitary graph Fourier
basis V, the following holds true:

B0(x) ≥ ‖V‖-1max. (7.10)
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In Section 7.7, we will provide graph examples on which the inequality in (7.10) is
satisfied with equality.

Even though (7.10) is a lower bound for the uncertainty, it does not say anything
about the signal that achieves the bound. Furthermore, it does not say whether there
is a signal that achieves the lower bound or not. In order to understand the existence
of such signals, we provide the following result.

Theorem 7.2 (Existence of signals). Let V be a unitary Fourier basis of the graph.
There exists a signal x on the graph that achieves the strong ℓ0 uncertainty bound
(satisfies (7.10) with equality) if and only if there exist index sets K and S with
|K | = |S| = ‖V‖-1max such that nullity

(
(VS,K̄)H

)
> 0. Furthermore, a signal that

achieves the bound is given as

xS ∈ null
(
(VS, ̄)H

)
, xS̄ = 0. (7.11)

Proof. Assume that x achieves the strong ℓ0 bound, that is,

B0(x) =
‖x‖0 + ‖Fx‖0

2
= ‖V‖−1

max. (7.12)

Then we have B0(x) = ?0(x), which implies

‖x‖0 = ‖Fx‖0 = ‖V‖−1
max, (7.13)

since B0(x) = ?0(x) if and only if ‖x‖0 = ‖Fx‖0 due to AM-GM inequality. Let
( denote the support of x and  denote the support of x̂. Then Fx = F( x(.
Since x̂ is zero outside of its support we have F ̄,( x( = 0, which means that
=D;;8CH(F ̄,() = =D;;8CH

(
(V(, ̄)H

)
> 0 for some ( and  with with |( | = | | =

‖V‖−1
max.

Conversely, assume that nullity
(
(VS,K̄)H

)
> 0 for some S and K with |S| = |K | =

‖V‖-1max. Then select xS as xS ∈ null
(
(VS,K̄)H

)
and xS̄ to be 0. Hence, ‖x‖0 = |S|.

Since S is the support of x, we have FS xS = F x. Furthermore,

‖FS xS ‖0 = ‖FK,S xS ‖0 + ‖FK̄,S xS ‖0 = | |, (7.14)

since xS ∈ null(FK̄,S). As a result, B0(x) = ‖V‖−1
max. �

It should be noted that ‖V‖−1
max may not be an integer in general. In this case, we

cannot find index sets of size ‖V‖−1
max since the size of an index set is an integer.
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In this case, Theorem 7.2 tells us that there is no signal that achieves the bound in
(7.10) with equality.

As an immediate example, the normalized inverse DFT matrix is a unitary graph
Fourier basis for circulant graphs [56, 58]. Notice that the normalizedDFTmatrix of
size # has ‖V‖-1max =

√
# . Thus, circulant graphs have the following two results. 1)

From Corollary 7.2, we have ?0(x) ≥
√
# . This is a well-known uncertainty result

given in [54], and the bound is known to be tight for all # . 2) From Corollary 7.3,
we have B0(x) ≥

√
# . When # is a perfect square “picket fence” signal is known to

achieve this bound [60]. Details of these results will be elaborated in Section 7.7.1.

Even though Theorem 7.2 is useful to characterize signals that achieve the bound
in (7.10), it has a major drawback in terms of practical usability. Finding the index
sets requires a combinatorial search over all possible sets of size ‖V‖-1max, which is
not computationally efficient.

7.3 Uncertainty Based on ℓ1 Norm
In the previous section, we defined the spread of a signal as the total number of
nonzero elements in the signal. (see Definitions 7.1 and 7.2.) In this section we will
consider a “smoother” measure by replacing the ℓ0 with ℓ1 norm.

Imitating (7.4), we can define an ℓ1 based additive uncertainty as B1(x) =
(
‖x‖1 +

‖Fx‖1
)
/2. With this definition we have B1(U x) = |U |B1(x), that is, B1(x) is not

scale invariant. The problem is that a nonzero signal can have arbitrarily small
uncertainty, which is an undesired property. One way to impose the scale invariance
is to use a normalization as follows:

B1(x) =
‖x‖1 + ‖Fx‖1

2 ‖x‖?
. (7.15)

For any nonzero ?, B1(x) in (7.15) has the property of B1(Ux) = B1(x) for U ≠ 0,
hence it can be used as an uncertainty measure. However, it should be noted that
characteristics of B1(x) depend on the selected ℓ? norm. In the following, we will
consider the case of ? = 2, and define the ℓ1 based uncertainty measures as follows:

B1(x) =
‖x‖1 + ‖Fx‖1

2 ‖x‖2
, ?1(x) =

√
‖x‖1 ‖Fx‖1
‖x‖2

, (7.16)

where B1(x) and ?1(x) are referred to as ℓ1 based additive and multiplicative uncer-
tainty of the signal x, respectively.
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The main reason for considering the case of ? = 2 is that such a selection has strong
connections with the ℓ0 based uncertainty measures discussed in Section 7.2. These
relations will be elaborated at the end of this section (see Theorem 7.4).

As done in Section 7.2, motivated by Theorem 2.1 in [60], a lower bound for ?1(x)
can be obtained as follows (whose proof is presented in Appendix 7.9.2):

Theorem 7.3. For a graph with GFT F, ℓ1-based multiplicative uncertainty of a
nonzero signal x is lower bounded as follows:

?1(x) ≥
(
‖F-1‖2 ‖F‖1/2max

) -1
, (7.17)

where ‖ · ‖2 and ‖ · ‖max are described in Section 1.1.

The reader should carefully notice the presence of the square root in (7.17), which
was not there in (7.7).

When the GFT of interest is unitary Theorem 7.3 reduces to the following corollary.

Corollary 7.4 (Weak ℓ1 uncertainty). For any graph with unitary Fourier basis V,

?1(x) ≥ ‖V‖-1/2max . (7.18)

Proof. In Theorem 7.3, when V is unitary, we have ‖V‖2 = ‖F-1‖2 = 1. Further-
more, F = VH, hence ‖F‖max = ‖V‖max. �

We can finally provide a lower bound for the ℓ1-based additive uncertainty as follows:

B1(x) ≥ ‖V‖-1/2max , (7.19)

where the inequality follows from B1(x) ≥ ?1(x) (AM-GM inequality). Hence, any
lower bound for ?1(x) (Corollary 7.4) is a lower bound for B1(x).

It is quite interesting to observe that the term ‖V‖max appears in the lower bound
for both ℓ0-based and ℓ1-based uncertainty definitions. It should be noted that
1/
√
# ≤ ‖V‖max ≤ 1 for any matrix V since V is assumed to have columns with

unit ℓ2 norm. Therefore, ‖V‖-1max ≥ ‖V‖
-1/2
max always holds true. This shows that the

lower bound given by (7.19) is always less than the bound in (7.10). In fact, not
just the bounds but ℓ0 and ℓ1 based uncertainties are also related with each other.
The following theorem (whose proof is presented in Appendix 7.9.3) establishes
this relation.
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Theorem 7.4. Assume that graph of interest has a unitary GFB V. Then, we have
the following inequality

?0(x) ≥
(
?1(x)

)2
, (7.20)

for all signals defined on the graph.

Combining the result of Theorem 7.4, Corollary 7.4 and (7.5), we have the following
relations between the aforementioned uncertainty definitions

B0(x) ≥ ?0(x) ≥
(
?1(x)

)2
≥ ‖V‖-1max (7.21)

for a unitary graph Fourier basis. It should be noted that ℓ0-based additive uncer-
tainty has the strongest result. Namely, if a signal achieves the ℓ0-based additive
uncertainty bound (B0(x) = ‖V‖-1max), then the signal also achieves the bounds given
in Corollaries 7.2 and 7.4. (This is due to (7.21).) However, the converse is not true.
For this reason, in the rest of the chapter, we will focus on B0(x) as the uncertainty
measure.

7.4 Case of Repeated Eigenvalues
Definitions 7.1 and 7.2 are generic in the sense that one can choose any suitable
graph Fourier basis. Most common selections are eigenvectors of the adjacency
matrix [152], the graph Laplacian and normalized Laplacian [160]. Even after
one decides on which of these should be used, there still is a significant point that
requires attention: the possibility of repeated eigenvalues. This is mostly the case
for unweighted graphs or graphs with integer edge weights (see Section 7.7). The
relation between eigenvalue multiplicity of a graph and the topology of the graph is
an interesting problem. Interested reader may refer to [118] for some results. More
on this topic can be found in [73, 16, 44, 124].

In the following we will use eigenvectors of the graph Laplacian as the graph
Fourier basis. However, the discussion is also valid for the adjacency matrix and
the normalized graph Laplacian. Further, we assume that the graph Laplacian, the
adjacency matrix and the normalized graph Laplacian are diagonalizable matrices.
Hence, geometric and algebraic multiplicity of an eigenvalue are the same. This
justifies the use of the term “multiplicity” without specifying which one.

Let _8 be an eigenvalue of the graph Laplacian with multiplicity #8. The corre-
sponding eigenspace S8 is then defined as S8 = null(L − _8I), where S8 is an #8
dimensional sub-space of C# . When _8 is a repeated eigenvalue (#8 > 1), any vec-
tor in S8 is an eigenvector with eigenvalue _8. Therefore, by selecting different set
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of eigenvectors, one can come up with a different graph Fourier basis. Hence, the
graph Fourier basis for the graph Laplacian is not unique.

Selection of the graph Fourier basis may affect the proposed uncertainty principles
significantly. For example, consider the complete graph of # nodes. It is possible
to select V such that either ‖V‖-1max =

√
#/(#-1), or ‖V‖-1max =

√
# . The former

decreases with # and approaches unity for large # , whereas the latter increases
with # unboundedly. Therefore, interpretations of the proposed uncertainty bounds
differ greatly depending on the selected basis. It should be noted that the complete
graph of size # is an extreme example since it has an #-1 dimensional eigenspace
corresponding to eigenvalue# . Nevertheless it shows the importance of the selection
of the graph Fourier basis.

Since our definition of uncertainty depends on the selected graph Fourier basis, in
the following, we will mainly discuss two different approaches for the selection of
the eigenvectors. This section (Section 7.4) will study the first approach where we
select the GFB in a way that the lower bound in Corollary 7.3 is minimized. In the
next section (Section 7.5), we will consider the second approach where we look for
the sparsest eigenvectors. We will also relate these two approaches in Section 7.5.

7.4.1 Minimizing the Lower Bound
In Corollary 7.3, we showed that the average number of nonzero elements in a
graph signal and its graph Fourier transform is lower bounded by ‖V‖-1max where V
is assumed to be unitary. When the graph of interest has repeated eigenvalues, one
can select different set of eigenvectors which results in different values for ‖V‖-1max.
In this section, our purpose is to select eigenvectors of the given graph Laplacian
L such that lower bound in Corollary 7.3 is minimized (or equivalently ‖V‖max is
maximized). We precisely define this problem as follows:

max
V
‖V‖max s.t. L = V�! VH, (7.22)

where �! is a diagonal matrix of eigenvalues of L.

As a result of the graph Laplacian being a symmetric matrix, eigenspaces, S8, of L
are orthogonal to each other. Hence, (7.22) is a decoupled problem in the sense that
we can focus on individual eigenspaces rather than finding all eigenvectors of L. To
be more precise, assume that the graph Laplacian has  distinct eigenvalues with
the corresponding eigenspaces S8 for 1 ≤ 8 ≤  . Then, we can write V as follows:

V = [V1 V2 · · · V ], (7.23)
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where each V8 has the dimension V8 ∈ C#×#8 (#8 is the multiplicity of the corre-
sponding eigenvalue), spans the eigenspace S8, and it is unitary VH

8
V
8
= I#8

for
1 ≤ 8 ≤  . We also have VH

8
V
9
= 0 for 8 ≠ 9 (orthogonality of eigenspaces), and

‖V‖max = max
1≤8≤ 

‖V8‖max. Hence, we can write (7.22) as

max
1≤8≤ 

max
V8

‖V8‖max s.t.
S8 = null(L − _8I),
span(V8) = S8,
VH
8

V
8
= I#8

,

(7.24)

where _8 is the 8Cℎ distinct eigenvalue of L.

It is important to notice that inner maximization in (7.24) can be solved indepen-
dently for each eigenspace. For this purpose, we have the following definition:

Definition 7.3 (Max-max normof a subspace). LetS be an"-dimensional subspace
of C# . The max-max norm of S, <(S), is defined as

<(S) = max
U∈C#×"

‖U‖max s.t. span(U) = S, UH U = I.

That is, <(S) is the maximum of max-norm of matrices with orthonormal columns
that span the given sub-space S.

Notice that any element of any unitary basis that spansS is always less than (or equal
to) <(S) in absolute sense. In the following theorem (whose proof is presented in
Appendix 7.9.4), we will provide a closed form solution for the max-max norm of
a sub-space.

Theorem 7.5. Let S be a "-dimensional subspace of C# . Let U ∈ C#×" be any
matrix with span(U) = S, and UH U = I. Then max-max norm of sub-space S is

<(() = max
1≤ 9≤#

√(
U UH

)
9 , 9
, (7.25)

where (·) 9 , 9 denotes the 9 Cℎ diagonal entry.

Finally, we state the maximized objective function value in (7.22) in the following
theorem.

Theorem 7.6 (MaximumMax-Norm of GFB). Assume the graph Laplacian, L, has
 distinct eigenvalues. Let #8 denote the multiplicity, and S8 denote the eigenspace
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of the eigenvalue _8 for 1 ≤ 8 ≤  . Let U8 ∈ C#×#8 be any matrix with UH
8

U8 = I
and B?0=(U8) = S8. Then we have the following:

max
1≤ 9≤#
1≤8≤ 

√(
U8 UH

8

)
9 , 9
= max

V
‖V‖max s.t. L = V�!VH,

where �! is a diagonal matrix of eigenvalues of L.

Proof. Follows from equivalence between (7.22) and (7.24), Definition 7.3 and
Theorem 7.5. �

Theorem 7.6 only provides the value of the maximized objective function in (7.22),
which is useful to find the minimum lower bound given by Corollary 7.3. In fact,
we can explicitly construct the set of eigenvectors that result in the maximum max-
norm. For this purpose, consider again the proof of Theorem 7.5. Notice that it is a
constructive proof, which can be translated into an algorithm as follows. Given the
graph Laplacian, one can take the eigenvalue decomposition and obtainL = V�!VH

with a proper ordering of eigenvectors such that V = [V1 · · ·V ] and columns of
each V8 ∈ C#×#8 belong to the same eigenspace. Then, we utilize the following
three steps for each V8:

1. Let vH
8, 9

denote the 9 Cℎ row ofV8, and let 9★ be such that 9★ = arg max
1≤ 9≤#

‖vH8, 9 ‖2.

2. LetX8 = [x8,1 x8,2 · · · x8,#8
] ∈ C#8×#8 , and select x8,1 = v8, 9★/‖v8, 9★‖2. Re-

maining columns of X8 can be selected arbitrarily such that XH
8

X
8
= I#8

holds
true.

3. Compute V★
8
= V8 X8.

Then, the set of eigenvectors that has the maximum max-norm can be constructed
as V★ = [V★

1 · · · V★
 
].

Notice that V★
8
is just a different unitary basis for the eigenspace spanned by V8.

However, unlike ‖V8‖max, ‖V★
8
‖max is guaranteed to achieve the max-max norm of

the corresponding eigenspace (Theorem 7.5). As a result, V★ is a solution to (7.22)
since it has the largest max-norm among all possible selections of the eigenvector
matrices.
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7.4.2 Numerical Problems
Even though Theorem 7.6 provides an efficient way to select the eigenvectors such
that lower bound in Corollary 7.3, ‖V‖-1max, is minimized, there is an important
numerical issue. In order to utilize Theorem 7.6, we need to group the eigenvectors
that belong to the same eigenspace, which requires a equality check between the
corresponding eigenvalues. However, it is not possible to distinguish two values if
they are closer than the precision of the numerical system. As a particular example
consider a (undirected, unweighted) path graph of size # . Eigenvalues of the
adjacency matrix of this graph are given as _: = 2 cos(c:/(#+1)) for 1 ≤ : ≤ #
[29]. One can show that |_1-_2 | ≤ n , when the size of the graph is # ≥

√
3 c n -1/2.

Hence, for any numerical precision n , there exists a graph of size # such that _1

and _2 cannot be distinguished from each other. Study in [50] has observed similar
numerical problems as well.

7.5 Sparse Eigenvectors of Graphs
After the definition of additive uncertainty given in (7.4), the ultimate purpose of
this chapter is to find a solution to (7.6) in order to find signals that are sparse both in
the vertex domain and the Fourier domain of a given graph. Unfortunately, solution
to (7.6) is not straightforward due to its combinatorial nature. We have provided
lower bounds for the solution to (7.6) in Corollaries 7.1 and 7.3. In Section 7.4 we
studied the optimal selection of the graph Fourier basis in order to minimize the
lower bound given by Corollary 7.3. However, these approaches have two downsides
1) Even though there are examples where the bound given by Corollary 7.3 is tight
(see Sec 7.7), it may not be the case for an arbitrary graph. 2) Even if the solution
to (7.6) is known, aforementioned results are unable to find the signals that achieve
the minima (except for Theorem 7.2, which requires an exhaustive search to find a
bound achieving signal). In this section, in order to overcome these downsides, we
will consider additive uncertainty of graph Fourier basis elements.

Without losing any generality we will use orthogonal eigenvectors of the graph
Laplacian as the graph Fourier basis. That is, V is the GFB where L = V�!VH.
Then, assuming a predefined ordering of eigenvectors, the 8Cℎ column of V, denoted
by v8, will be the 8Cℎ element of GFB. Since GFT is defined as F = V−1, we have
‖Fv8‖0 = 1. Then, the additive uncertainty of a graph signal that is an element of
GFB is given as

B0(v8) =
(
‖v8‖0 + 1

)
/2. (7.26)
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Notice that quantity in (7.26) is directly related to the sparsity of the GFB element. If
v8 itself is a sparse vector, then we have a direct evidence of a signal that is sparse in
the vertex domain and graph Fourier domain simultaneously. Furthermore, additive
uncertainty of sparse eigenvectors may achieve (or, come close to) the bound given
in Corollary 7.3. Therefore, our aim in this section, is to find sparse eigenvectors
of graphs. However, it should be noted that a signal that achieves the minima
of the additive uncertainty may not be an element of the GFB. Therefore, if the
GFB elements, v8, are dense, we cannot reach any conclusion using (7.26). In
Section 7.7.1 we will provide examples in this regard.

7.5.1 Sparse Vectors in an Eigenspace
When the graph Laplacian has repeated eigenvalues, eigenvectors are not unique
and they form a sub-space. In Section 7.4.1, we discussed how eigenvectors can be
selected so that the lower bound for B0(x) is minimized. In this section we will try
to select eigenvectors such that B0(v8) in (7.26) is minimized. To be more precise,
assume that L has  ( ≤ #) distinct eigenvalues with corresponding eigenspaces
S8 for 1 ≤ 8 ≤  . Then we consider the following problem:

min
v
‖v‖0 s.t. v ∈ S8, ‖v‖2 = 1 (7.27)

for each eigenspace of L.

The problem in (7.27) is precisely defined as “The Null Space Problem” in [40], and
shown to be NP-Hard. Interested reader is referred to [41, 18, 70] for computational
approaches to solution of (7.27). Apart from these, the study in [144] proposes an
iterative algorithm in order to find an approximate solution to (7.27) via ℓ1 relaxation.

Unlike the case of minimizing the lower bound in Corollary 7.3 (see Theorem 7.6),
selection of the sparsest eigenvector is not computationally tractable due to NP
completeness of the problem in (7.27). However, it is quite interesting that the
max-max norm of a subspace (given in Definition 7.3) provides a lower bound for
the problem in (7.27). In the following we will precisely establish this relation.

Let x ∈ C# be a vector with unit ℓ2 norm, ‖x‖2 = 1. Then the infinity norm of x can
be bounded as 1 ≥ ‖x‖∞ ≥ 1/

√
# . In fact, if we further know that x has ! nonzero

elements (! ≤ #), we can improve the lower bound as ‖x‖∞ ≥ 1/
√
!. Therefore,

we have the following inequality:

‖x‖0 ≥ ‖x‖-2∞ ∀x s.t ‖x‖2 = 1, (7.28)
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where equality is achieved when |G8 | = 1/
√
! for all 8’s in the support of x.

Using the inequality in (7.28) we can obtain a lower bound for (7.27) as follows:

min
x∈S
‖x‖2=1

‖x‖0 ≥ min
x∈S
‖x‖2=1

‖x‖-2∞ =
(

max
x∈S
‖x‖2=1

‖x‖∞

) -2
, (7.29)

where we use the fact that ‖x‖∞ is strictly positive, finite, and bounded away from
zero so that ‖x‖−1

∞ is finite.

In the following we will show that the maximization problem in the right hand side
of (7.29) is equivalent to definition of max-max norm of the subspaceS. Remember
from Definition 7.3 that max-max norm is defined as

<(S) = max
U∈C#×"

‖U‖max s.t. span(U) = S, UH U = I. (7.30)

Assume that U★ = [u★1 · · · u
★
"
] is a solution to the problem in (7.30). Then we have

<(S) = ‖U★‖max = max8 ‖u★8 ‖∞. Further, u★
8
∈ S, and ‖u★

8
‖2 = 1. Hence we have

<(S) ≤ maxx ‖x‖∞, x ∈ S, ‖x‖2 = 1.

Now assume that x★ is a solution to right hand side of (7.29). Then consider the
matrix U = [x★ u2 · · · u"] by selecting u8’s such that UH U = I and span(U) = S.
HenceU is in the feasible set of the problem in (7.30). Therefore,<(S) ≥ ‖U‖max ≥
‖x★‖∞ = maxx ‖x‖∞, x ∈ S, ‖x‖2 = 1.

As a result, we conclude that maximization on the right-hand side of (7.29) is
equivalent to <(S), and provide the following lower bound for the solution of the
problem in (7.27)(

<(S)
) -2
≤ min

x
‖x‖0 s.t. x ∈ S, ‖x‖2 = 1. (7.31)

The two main points of this section can be summarized as follows:

1) The search for a sparse eigenvector in a specific eigenspace is an inherently
difficult problem. Even though numerical techniques that approximate the solution
exist [144], closed form solutions are not available in general. In this aspect,
computation of sparse eigenvectors differs from the max-norm approach discussed
in Section 7.4, where we provided closed form solutions by focusing on individual
eigenspaces.

2) Although we do not have a closed form solution for the sparsest vector in a given
eigenspace, we can provide a lower bound for the total number of nonzero elements
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as in (7.31). The inequality in (7.31) is especially useful when we want to show
that an eigenspace does not have sparse vectors. We will use this inequality in
Section 7.7.1 to formally show that an undirected cycle graph does not have sparse
eigenvectors.

7.5.2 Algebraic Characterization of Sparse Eigenvectors
In the previous sectionwementioned that finding the sparsest vector in an eigenspace
is a difficult problem. Therefore, when looking for sparse eigenvectors, we should
consider the graph (Laplacian) as a whole rather than focusing on each eigenspace
individually. Furthermore, in Section 7.4.2 we mentioned that characterization of
eigenspaces of graphs suffers from numerical precision when the graph is large
(relative to the numerical precision of the system). This is a significant problem
especially when a large-scale real-world data is of interest. Therefore, we need a way
to characterize the sparse eigenvectors of graphswithout using numerical techniques.
The purpose of this section is to find these sparse eigenvectors algebraically.

In the case of disconnected graphs we have a straightforward result. Assume that
the graph is undirected but non-negatively weighted and consists of � disconnected
components with sizes �8. Then the adjacency matrix and the graph Laplacian can
be written in the following form

A =


A1

. . .

A�

 , L =


L1

. . .

L�

 , (7.32)

where A8 ∈ R�8×�8 and L8 ∈ R�8×�8 are the adjacency matrix and the graph Lapla-
cian of the 8Cℎ component, respectively. Due to block-diagonal form of A and L,
corresponding eigenvectors can be selected to be block sparse. Therefore, there
exists an eigenvector that has at most �8 nonzero elements for each 1 ≤ 8 ≤ �. It
is important to note that the converse of this result is not true: if a graph has a
sparse eigenvector, it does not imply that the graph is disconnected. As a counter
example consider Theorem 7.8, which proves that a connected graph can have a
sparse eigenvector. Examples of such graphs will be provided at the end of this
section. However, 1-sparse eigenvectors are exemption in this regard. That is, a
graph has a 1-sparse eigenvector if and only if it has an isolated node. This result
(whose proof is presented in Appendix 7.9.5) is stated as follows.

Theorem 7.7 (Isolated nodes of a graph). Assume that the graph of interest is undi-
rected but non-negatively weighted. Then, the following statements are equivalent:
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1) The graph has an isolated node.

2) The graph Laplacian has a 1-sparse eigenvector.

3) The GFB can be selected such that there exists a nonzero signal that achieves
B0(x) = 1, i.e., ‖x‖0 = ‖Fx‖0 = 1.

Now we provide the characterization theorem for 2-sparse eigenvectors of graphs,
whose proof is provided in Appendix 7.9.6. Recall that a graph is said to be
connected if there is a path between any pair of nodes.

Theorem 7.8 (2-sparse eigenvectors of a connected graph). Let A denote the adja-
cency matrix of an undirected and connected graph with 08, 9 ≥ 0 being the weight
of the edge between nodes 8 and 9 . Then, there exist nodes 8 and 9 such that

08,: = 0 9 ,: ∀ : ∈ {1, · · · , #} \ {8, 9}, (7.33)

if and only if the graph Laplacian, L, has a 2-sparse eigenvector with nonzero
eigenvalue _ = 38 + 08, 9 . When the graph is unweighted, (7.33) can be stated as

N(8) \ { 9} = N( 9) \ {8}, (7.34)

where N(8) is the set of nodes that are adjacent to node 8.

Note that a 2-sparse eigenvector can be assumed to have values 1 and -1 on the
nodes with the property (7.33). (See the proof in Appendix 7.9.6.) This result is
especially useful for Theorem 7.11.

As a historical note we would like to mention that existence of a 2-sparse eigenvector
was first presented in [62, Theorem 5.10] for the case of unweighted graphs. We
also note that the study [62] had a different motivation, and it did not explore the
connections between sparse eigenvectors and uncertainty bounds on graphs. Later,
the study in [117] mentioned the specific structure of 2-sparse eigenvectors (see
[117, Example 3.7]) without focusing on its sparsity, and the study called such an
eigenvector as a Faria vector in reference to the author of the paper in [62]. In short,
2-sparse eigenvectors are also known as Faria vectors in graph theory.

Similar to Theorem 7.8, the study in [11] also reveals a specific graph structure that
results in sparse eigenvectors of both the adjacency matrix and the graph Laplacian.
In particular, it considers the case when a graph has two copies of the same sub-
graph (referred to as “motif doubling” in [11]). That is, there are two disjoint subsets
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(of size  ) of nodes, (1 and (2, such that the induced sub-graphs on (1 and (2 are
the same, there is no edge between (1 and (2, and (2 is connected to the rest of
the graph in the same way (1 is. In this case the adjacency matrix (and the graph
Laplacian) can be shown to have (2 )-sparse eigenvectors (Theorem 2.2 of [11]).
In the case of  = 1 (each subset has only one node), this motif doubling property
reduces to the condition in (7.34) with 08, 9 = 0.

However, it is important to note that the condition in Theorem 7.8 is more general
than the one in [11] due to the following two reasons: 1) the construction in [11]
provides only a sufficient condition, whereas Theorem 7.8 gives the necessary and
sufficient condition to have a 2-sparse eigenvector. 2) The motif doubling idea in
[11] specifically considers the casewhen 08, 9 = 0, whereas Theorem 7.8 is applicable
to the case of 08, 9 ≠ 0 as well. In the general case of  , it is straightforward to find
sufficient conditions for a  -sparse eigenvector to exist: the motif doubling in [11]
and “the same neighborhood structure” (to be discussed after Theorem 7.9) are two
such examples. On the other hand, it is difficult to reveal the necessary conditions
for  -sparse eigenvectors to exist.

Now we provide the characterization theorem for 3-sparse eigenvectors of un-
weighted graphs, whose proof is presented in Appendix 7.9.7. We later show
the connection between 3 and 2-sparse eigenvectors of unweighted graphs.

Theorem 7.9 (3-sparse eigenvectors of a connected graph). Let A denote the adja-
cency matrix of an undirected, unweighted, and connected graph. There exist nodes
8, 9 , and : such that

N(8) \ { 9 , :} = N( 9) \ {8, :} = N(:) \ {8, 9}, (7.35)

if and only if the graph Laplacian, L, has a 3-sparse eigenvector with non-zero
eigenvalue.

There are two remarks regarding Theorems 7.8 and 7.9. 1) The existence of sparse
eigenvectors does not depend on the size and the global structure of the graph.
Existence of nodes with the properties in (7.33) or (7.35) directly implies the claimed
results. 2) The sparse eigenvectors are localized on the graph. If the nodes have the
properties in (7.33) or (7.35), they must have at least one common neighbor. (This
follows from the fact that the graph is connected). Hence, non-zero elements of the
eigenvector are at most 2 hops away from each other.
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Similarity between the conditions (7.34) and (7.35) encourages us to pursue a more
general condition on a (connected) graph so that an eigenvector with an arbitrary
number of non-zero elements exists. In fact, such a generalization is possible only as
a sufficient condition. However, finding a necessary condition is not easy. The main
reason is that it is possible to combine sparser eigenvectors in a given eigenspace
in order to achieve less sparse ones. To see this, let  be an arbitrary sparsity
 ≥ 4. It can be written as  = 2< + 3= for some integer < and =. Hence, if
there exist < 2-sparse and = 3-sparse eigenvectors (with the same eigenvalue and
disjoint supports), a linear combination of these 2 and 3-sparse eigenvectors yields a
 -sparse eigenvector. Furthermore, < and = are not unique for a given  in general.
In short, a  -sparse eigenvector might exist for various different reasons, which
makes it difficult to find a necessary condition for a  -sparse eigenvector to exist. In
particular, consider the Minnesota road graph (to be studied in Section 7.7.4). It has
four orthogonal 2-sparse eigenvectors with eigenvalue 1. (See Figure 7.3a-7.3d.)
Since these 2-sparse eigenvectors are in the same eigenspace, any linear combination
of these is also an eigenvector. Furthermore, it is apparent from Figure 7.3a-7.3d
that these 2-sparse eigenvectors have disjoint supports. As a result, one can find
a 6-sparse eigenvector via a linear combination of three 2-sparse eigenvectors.
However, a 6-sparse eigenvector could have been the result of a combination of two
3-sparse eigenvectors (with the same eigenvalue and disjoint supports) as well. This
empirically shows that a necessary condition is not easy to obtain for an arbitrary
sparsity. Also notice that one can find 4, 6, and 8-sparse eigenvectors via linear
combinations of the 2-sparse eigenvectors of Figure 7.3a-7.3d. Unlike the 2-sparse
ones, these 4, 6, and 8-sparse eigenvectors are not localized (in terms of number
of hops) on the graph. Hence, a  -sparse eigenvector may not be localized on the
graph.

It is interesting to observe that the condition for 3-sparse eigenvectors is more strict
than the condition for 2-sparse eigenvectors for unweighted graphs. We formally
state this result as follows (whose proof is presented in Appendix 7.9.8):

Theorem 7.10 (3-sparse implies 2-sparse). If the Laplacian of an undirected, un-
weighted and connected graph has a 3-sparse eigenvector, then it has a 2-sparse
eigenvector.

It is important to note that the result of Theorem 7.10 is specific to 2 and 3-sparse
eigenvectors and cannot be generalized to arbitrary sparsity. As a simple counter-
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example, consider the Minnesota road graph (Section 7.7.4). It has 2-sparse and
4-sparse eigenvectors, but it does not have a 3-sparse eigenvector.

7.6 Sparse Eigenvectors and Uncertainty Bounds
As discussed in Section 7.2, the additive uncertainty of a signal x in (7.4) can take
only half integer values for nonzero signals, that is B0(x) ∈ {1, 3/2, 2, · · · , #}. It
should be noted that Theorem 7.7 precisely characterizes the case when B0(x) takes
its possible minimum value. A nonzero signal has B0(x) = 1 if and only if the graph
has an isolated node. This result is especially useful to conclude that a nonzero
signal on a connected graph, which does not have any isolated node, cannot achieve
B0(x) = 1. Therefore, we consider the next attainable case for connected graphs,
that is, B0(x) = 3/2. This happens under two circumstances

1. ‖x‖0 = 1, ‖Fx‖0 = 2: the signal x is an impulse on the vertex domain, and it
has a 2-sparse GFT.

2. ‖x‖0 = 2, ‖Fx‖0 = 1: the signal x is a 2-sparse eigenvector of the graph
Laplacian.

We note that Theorem 7.8 precisely characterizes the second case. Therefore, given
a connected graph, existence of a pair of nodes that satisfy (7.33) implies that
B0(x) ≥ 3/2 for all nonzero signals on the graph. Furthermore, the bound is tight,
and the signal that achieves the bound is known. This result is formally stated as
follows.

Theorem 7.11 (Uncertainty bound for connected graphs). For an undirected, con-
nected, and non-negatively weighted graph, assume that there exist nodes 8 and 9
satisfying the condition in (7.33). Then, the GFBwith respect to the graph Laplacian
can be selected such that

B0(x) ≥ 3/2 ∀x ≠ 0. (7.36)

Furthermore, the signal achieving this bound, B0(x★) = 3/2, is given as G★
8
= -G★

9
= 1

and zero everywhere else.

Proof. For a simple and connected graph, Theorem 7.7 says that there is no signal
such that B0(x) = 1. Since B0(x) can take only half integers in [1, #], B0(x) ≠ 1
implies that B0(x) ≥ 3/2 for any nonzero signal x.
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Furthermore, if there is a pair of nodes satisfying (7.33), Theorem 7.8 says that the
graph Laplacian has a 2-sparse eigenvector. Let v denote this eigenvector. Then we
have E8 = -E 9 = 1 and zero everywhere else. Notice that GFB with respect to the
graph Laplacian can be selected such that v is an element of GFB. In this case we
have ‖v‖0 = 2 and ‖Fv‖0 = 1, hence B0(v) = 3/2. This shows that the lower bound
in (7.36) is tight and attainable. �

There are four remarks regarding Theorem 7.11.

1) The tightness of the bound given in (7.36) does not depend on the size and the
global structure of the graph. Existence of a pair of nodes with (7.33) directly
implies this result.

2) The signal that achieves the bound is localized on the graph. Notice that if two
nodes have the property in (7.33), they must have at least one common neighbor.
(This follows from the fact that the graph is connected.) As a result, nonzero
elements of the signal that achieves the bound in (7.36) are at most 2 hops away
from each other. However, localization property is unique to 2-sparse eigenvectors.
An eigenvector with an arbitrary level of sparsity may not be localized on the graph.

3) Due to Corollary 7.3, the inequality B0(x) ≥ ‖V‖-1max is always true. When
3/2 is the smallest attainable value for B0(x), we have 3/2 ≥ ‖V‖-1max. Therefore,
existence of a pair of nodes with (7.33) proves that there exists a GFB V such that
‖V‖max ≥ 2/3. In fact, using Corollary 7.2 this result can be slightly improved to
‖V‖max ≥ 1/

√
2.

4) In the case of repeated eigenvalues of the graph Laplacian, the GFB is not unique.
However, uncertainty bounds depend on the selection of the GFB. When there are
repeated eigenvalues GFB should be selected properly (sparse eigenvector should
be an element of GFB) in order to have (7.36). This point will be numerically
demonstrated in Section 7.7.1.

In the following we will provide three classical graph examples that satisfy, or do
not satisfy, the condition in (7.34). Notice that these graphs are simple (undirected,
unweighted, free from self-loops) and connected.

Complete Graph,  #

A complete graph on # nodes has an edge between any two nodes. Figure 7.1a
provides a visual representation of  8. Let 8, 9 and : be three arbitrary nodes of a
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complete graph. Then, we have

N(8) \ { 9 , :} = N( 9) \ {8, :} = N(:) \ {8, 9} = {1, · · · , #} \ {8, 9 , :}, (7.37)

which shows that an unweighted complete graph of an arbitrary size (# ≥ 3) has a
3-sparse eigenvector, which in particular implies that it has a 2-sparse eigenvector
as well (Theorem 7.10).

Complete Bi-Partite Graph,  #,"

A complete bi-partite graph of size # +" is a bi-partite graph (one color having #
nodes, and other color having " nodes) such that every node of a color is connected
to every node of the other color. Figure 7.1b provides a visual representation of
 4,5. Let 8, 9 , and : be three nodes that belong to the same color. Then we have that

N(8) \ { 9 , :} = N( 9) \ {8, :} = N(:) \ {8, 9} = Nodes of the other color, (7.38)

which shows that an unweighted complete bi-partite graph of an arbitrary size (given
that a color has at least 3 nodes) has a 3-sparse eigenvector, which in particular
implies that it has a 2-sparse eigenvector as well.

Star Graph, (#

A star graph of size # is a complete bi-partite graph  1,#-1. In particular, it has a
center node that is connected to any other node, and all the nodes are connected only
to the center node. Figure 7.1c provides a visual representation of (9. Assume that
the center node is labeled as 1. Let 8, 9 and : be three nodes other than the center
node. Then we have N(8) = N( 9) = N(:) = {1}. Therefore,

N(8) \ { 9 , :} = N( 9) \ {8, :} = N(:) \ {8, 9} = {1}, (7.39)

which shows that an unweighted star graph of an arbitrary size (# ≥ 3) has a 3-
sparse eigenvector, which in particular implies that it has a 2-sparse eigenvector as
well (Theorem 7.10).

Cycle Graph, �#

A cycle graph of size # contains a single cycle through all nodes. Figure 7.1d
provides a visual representation of �8. Notice that �2 =  2, �3 =  3, �4 =  2,2,
hence they have 2-sparse eigenvectors as shown above. For # ≥ 5, �# does not
have a pair of nodes that satisfy (7.34). Therefore, a cycle graph for # ≥ 5 does
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not have a 2-sparse eigenvector, which, in particular, implies that it does not have
a 3-sparse eigenvector as well (Theorem 7.10). In fact, it can be formally shown
that an eigenvector of a cycle graph of size # has at least #/2 non-zero values (see
Section 7.7.1).

(a) (b) (c) (d)

Figure 7.1: a)  8, complete graph of size 8, b) (9, star graph of size 9, c) �8, cycle
graph of size of 8.

Above examples are carefully selected to point out an important observation: spar-
sity of the graph and existence of sparse eigenvectors do not imply each other. This
follows from the following three facts:

1) A complete graph is dense, yet it has a sparse eigenvector.

2) A cycle graph is sparse, yet it does not have a sparse eigenvector.

3) A star graph is sparse, and it has a sparse eigenvector.

One can also use Theorem 7.8 to find a sparse GFB of a given graph. Existence of a
pair of nodes that satisfy (7.34) guarantees the existence of a 2-sparse eigenvector.
When there is more than one pair, it is possible to find various 2-sparse eigenvectors.
Even though those eigenvectors may not be orthonormal to each other they provide
a sparse GFB. In fact, #-1 eigenvectors of the graph Laplacian of a complete
graph of size # can be selected to be 2-sparse. These eigenvectors will be linearly
independent, but not orthonormal. In this case, GFB has only 3#-2 nonzero entries.
Details of these will not be elaborated here, and deserve an independent study.

It is important to notice that the condition in (7.33) is purely algebraic, and does
not require any numerical computation. Therefore, Theorems 7.8 and 7.11 are not
subject to the problems discussed in Section 7.4.2. In order to find a pair of nodes
with the property in (7.33), one can check every pair in a brute-force manner, which
results in

(#
2
)
tests in total. Therefore, the complexity of verifying that a graph has
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a pair of nodes with the property (7.33) is at most$ (#2). However, there may exist
more efficient search algorithms for this purpose.

7.7 Examples of Uncertainty Bounds
7.7.1 Standard Examples from Graph Theory
Circulant Graphs

A graph is said to be circulant when its adjacency matrix is a circulant matrix under
suitable permutation of the node numbering [56]. This is a broad family including
cyclic graphs (directed or undirected), complete graphs, complete bi-partite graphs,
and more. The directed cyclic graph of size # , whose adjacency matrix is given as

C# =


1

1
. . .

1


∈ R# , (7.40)

is particularly important since it relates the graph signal processing to classical
signal processing [152, 151].

The adjacency matrix of a circulant graph is a circulant matrix (with suitable per-
mutation of vertices), and can be diagonalized by the DFT matrix:

A = WH
# � W# , (7.41)

for some diagonal �, where W# is the normalized DFT matrix of size # . Hence,
the graph Fourier transform based on the adjacency matrix is F = W# , and we have
‖V‖-1max =

√
# . As a result, the strong uncertainty principle for circulant graphs of

size # is B0(x) ≥
√
# .

As shown in [60], this is a tight bound when # is a perfect square. Consider
the “picket fence” signal which has support ( = {1, 1+

√
#, 1+2

√
#, · · · , 1+#-

√
#}

with
x( = 1, x(̄ = 0. (7.42)

Then we have x̂ = Fx = x. Notice that |( | =
√
# . As a result we have B0(x) =

√
# =

‖V‖-1max, that is, strong ℓ0 uncertainty is achieved (Corollary 7.3).

For the weak uncertainty we have ?0(x) ≥
√
# , that is, ‖x‖0 ‖x̂‖0 ≥ # , where x̂

corresponds to DFT of x. This is a well-known uncertainty result given in [54].
Unlike the strong uncertainty, weak uncertainty bound can be achieved for any # .
Let x be an impulse, then x̂ will have no zero elements, resulting in ‖x‖0 ‖x̂‖0 = # .
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If the graph is unweighted, then circulant graphs are regular (each node has the same
degree). In this case the graph Laplacian can be written as L = 3I − A, where 3 is
the degree of each node. Therefore, L is also a circulant matrix, and diagonalizable
by W# . As a result, strong uncertainty bound based on the graph Laplacian is also
tight.

Cycle Graph

In this part we will focus on the undirected cyclic graph as visually shown in
Figure 7.1d. Eigenvalues of the Laplacian of a cyclic graph are given as _: = 2 −
2 cos(2c:/#) for 0 ≤ : ≤ #-1 [29]. Notice that _0 = 0 is not a repeated eigenvalue.
However, other eigenvalues have the property _: = _#-: for : ≥ 1. Therefore, the
Laplacian of a cycle graph has 2-dimensional eigenspaces. Let S: denote the 2-
dimensional eigenspace of the Laplacian corresponding to eigenvalue _: . Let w:

denote the : Cℎ column ofWH
#
. ThenU: = [w: w#-: ] spans the eigenspaceS: since

the Laplacian is diagonalized by W# . Notice that | (W# )8, 9 | = 1/
√
# for all pairs of

(8, 9). As a result, each row of U: has ℓ2 norm of
√

2/# . Then, Theorem 7.5 gives
that <(S: ) =

√
2/# . Using (7.31) we conclude that the total number of nonzero

elements of an eigenvector in S: can be at least (<(S: ))-2 = #/2. Since this is true
for any eigenspace, any eigenvector of the Laplacian of a cycle graph (of size #)
has at least #/2 nonzero values.

As discussed in the previous sub-section, we have B0(x) ≥
√
# for all nonzero

signals on a cycle graph when GFB selected as WH
#
. When we consider the additive

uncertainty of elements of GFB, as in (7.26), we get B0(v8) ≥ (#+2)/4 since each
eigenvector has at least #/2 nonzeros. As a result, elements of GFB are not
useful candidates to achieve the bound B0(x) ≥

√
# with equality. This is because

eigenvectors of the cycle graph are not sparse.

Complete Graph

Being a circulant graph, GFB of a complete graph can be selected as WH
#
. With this

selection, the additive uncertainty bound is given as B0(x) ≥
√
# . It should be noted

that the Laplacian of a complete graph (of size #) has only two distinct eigenvalues:
0 with multiplicity 1, # with multiplicity # − 1. One can select different set of
vectors to span the #-1 dimensional eigenspace. In fact, as discussed in Section 7.6,
one of these vectors can be selected to be 2-sparse. With such a selection, by
virtue of Theorem 7.11, the uncertainty bound is given as B0(x) ≥ 3/2, which is
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significantly different from the one when WH
#
is used as GFB. At this point we are

not favoring one selection of GFB over another. The sole purpose of this example is
to show that selection of the GFB is an important issue in the presence of repeated
eigenvalues.

7.7.2 "-Block Cyclic Graphs
In Chapter 6, it is shown that "-Block cyclic graphs play an important role in the
development of multirate processing of graph signals. When we assume that all the
edges have unit weights, the adjacency matrix of an "-Block cyclic graph of size #
can bewritten as: A = C" ⊗

(
1
#/" 1T

#/"
)
, whereC" is given in (7.40) and 1# is a

vector of size # with all 1 entries. Notice that both C" and 1
#/" 1T

#/" are circulant
matrices, hence they are diagonalizable by normalized DFT matrices of respective
sizes. As a result, GFT based on the adjacency matrix (and the graph Laplacian
since all the nodes have the same degree) can be selected as F = W" ⊗W#/" .
Notice that V = FH is unitary and ‖V‖−1

max =
√
# .

As an example consider the case # = 9 and " = 3, and consider the following
signal x = [1 1 1]T ⊗ [1 0 0]T. The GFT of this signal, x̂, is given as

x̂ = W3 [1 1 1]T ⊗ W3 [1 0 0]T = [1 0 0]T ⊗ [1 1 1]T. (7.43)

Hence, we have ‖x‖0 = ‖x̂‖0 = 3, and B0(x) = 3 = ‖V‖-1max. Therefore, strong un-
certainty bound is achieved. In general, let # be a perfect square and " =

√
# .

Then for any "-Block cyclic graph of size # with unit weights, we can find a signal
that achieves the strong uncertainty bound.

7.7.3 Erdős-Rényi Graphs
An Erdős-Rényi graph� (#, ?) is a simple graph of # nodes where an edge between
a pair of nodes appears randomly and independently with probability ? [134, 83].
In Figure 7.2a we empirically compute the probability of a � (#, ?) having a pair
of nodes satisfying the condition in (7.34). Notice that if a graph has such a pair
of nodes then the same pair satisfies (7.34) on the complement of the graph as
well. This is due to the equality condition in (7.34) that remains satisfied when
all the edges are complemented. Further notice that complement of a � (#, ?) is a
� (#, 1-?) graph. As a result � (#, ?) and � (#, 1-?) have the same probability of
having a pair of nodes satisfying (7.34). This explains the symmetry of Figure 7.2a
around ? = 1/2.

It is important to note that Theorem 7.8 specifically considers the case of connected
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graphs since it is trivial to find sparse eigenvectors in disconnected graphs (see
(7.32)). However, a � (#, ?) tends to be disconnected when ? is small. In fact
? < ;>6(#)/# results in (almost surely) isolated vertices, and ? > ;>6(#)/# guar-
antees (almost surely)� (#, ?) to be connected [83]. In order to get rid of the trivial
cases we need to consider the probability of � (#, ?) having a pair of nodes with
(7.34) and being connected. Experimental computation of this probability is given
in Figure 7.2b. Notice that connectivity is not preserved under complementation,
hence Figure 7.2b is not symmetric around ? = 1/2.
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Figure 7.2: Probability of � (#, ?) a) having a pair of nodes satisfying (7.34), b)
being connected and having a pair of nodes satisfying (7.34). Probabilities are
obtained via averaging over 104 experiments, hence the lowest observed probability
is 10-4.

Figure 7.2b shows the existence of connected Erdős-Rényi graphs with 2-sparse
eigenvectors. Figure 7.2b also suggests that as # gets larger it is less likely to
find such graphs, which can be explained as follows. The study in [191] states
that the ℓ∞-norm of any unit eigenvector of � (#, ?) is almost surely >(1) for
? = l(;>6(#)/#), where >(·) and l(·) denotes little-o and little-omega nota-
tions, respectively. That is, as # →∞ we have ‖v‖∞ → 0 for all v. Therefore,
‖V‖max → 0, hence, ‖V‖-1max →∞. Since the uncertainty bound in (7.10) goes to
infinity we do not expect to find 2-sparse eigenvectors in connected Erdős-Rényi
graphs for large values of # .

7.7.4 Real World Examples
In the following we will use the term _(:) to denote that the eigenvalue _ has
multiplicity : .
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Minnesota Road Graph

In this part, we will consider the Minnesota road graph visualized in Figure 6.22.
We use the data publicly available in [128]. This graph has 2642 nodes in total where
2 nodes are disconnected to the rest of the graph. Since a road graph is expected to
be connected, we disregard those two nodes. Here each node is an intersection, and
08, 9 = 1 if there is a road connecting the intersections, otherwise 08, 9 = 0. There are
total of 3302 undirected unweighted edges. The graph is simple and connected, A
and L are symmetric matrices (in particular, diagonalizable), hence V� and V! can
be selected to be unitary.

For the Minnesota road graph, both A and L have repeated eigenvalues. As a result,
V� and V! are not unique. In fact, the adjacency matrix has repeated eigenvalues of
-1(15) , 0(44) , and 1(13) . The graph Laplacian has repeated eigenvalues of 0.3820(2) ,
1(10) , 2(7) , 2.6180(2) , and 3(6) . In order to minimize the uncertainty bound given
by Corollary 7.3, we can select V� and V! such that ‖V�‖max and ‖V! ‖max are
maximized. This idea is discussed in Section 7.4, and the closed-form solution
for such a selection is provided by Theorem 7.6. Via numerical evaluation of
Theorem 7.6 on the Minnesota road graph, we obtain the following:

0.7071 = max
V
‖V‖max s.t. A = V��VH, (7.44)

0.8343 = max
V
‖V‖max s.t. L = V�!VH. (7.45)

Due to Corollaries 7.2 and 7.3, when V� is selected to be the GFB, (7.44) gives
the following uncertainty bounds B0(x) ≥ ?0(x) ≥ ‖V�‖-1max = 1.4142. When V!
is selected to be the GFB, (7.45) gives the following uncertainty bounds B0(x) ≥
?0(x) ≥ ‖V! ‖-1max = 1.1987.

It is important to remember that B0(x) can have values only on a discrete set, namely,
B0(x) = :/2 for some integer : ≥ 2. As a result, for both selection of GFB, signals
on the Minnesota road graph cannot attain the uncertainty bound in Corollary 7.3
in a strict sense. However, by rounding-off the value of both ‖V�‖-1max and ‖V! ‖-1max

to the next attainable value of B0(x), we get

B0(x) ≥ 3/2, (7.46)

for the strong uncertainty bound for both selection of GFB.

Even though (7.46) is a valid bound, Corollary 7.3 and Theorem 7.6 gives no further
information about existence and characterization of a signal that achieves the bound.
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At this point it is quite interesting to observe that the bound in (7.46) is the same as
the bound provided by Theorem 7.11 (for V! as GFB), which requires existence of
a pair of nodes with the property in (7.34). In fact, the Minnesota road graph does
have 6 different pairs of nodes with the property in (7.34). These pairs are visualized
in Figure 7.3. As a result, the bound in (7.46) is tight, and the signals that achieve
the bound are defined by the pairs of nodes in Figure 7.3 (see Theorem 7.11). It
should be noted that tightness of (7.46) is valid when V! is selected to include at
least one 2-sparse eigenvector generated by the pairs in Figure 7.3.
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Figure 7.3: Pair of nodes inMinnesota road graph that result in 2-sparse eigenvectors.
Axes represent the geographical coordinates. The pairs that satisfy the condition in
(7.33) are colored in blue. Notice that the pairs in (a)-(d) generate eigenvectors with
eigenvalue 1, and the pairs in (e)-(f) generate eigenvectors with eigenvalue 2. Axes
represent the geographical location of the intersections. (See Theorem 7.8.)

By using a brute-force search over the graph, we have found that the graph does
not have a triplet of nodes with the property in (7.35), hence the graph does not
have a 3-sparse eigenvector. However, it does have 6 different pairs of nodes with
the property in (7.34). Hence, the graph has 2-sparse eigenvectors. Notice that the
eigenvectors generated by the nodes in Figure 7.3a-7.3d are orthogonal to each other
and have eigenvalue 1. Using linear combinations of 2-sparse eigenvectors, we can
verify that the graph has 4, 6, and 8-sparse eigenvectors as well.
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Co-appearance Network

In this example, we will consider the co-appearance network of characters in the
famous novel Les Misérables by Victor Hugo [103]. Data is publicly available in
[133]. This is an undirected butweighted graph, where two characters are connected
if they appear in the same scene, and the weight of an edge is the total number of
co-appearances through the novel. See Figure 7.4 for a visual illustration.

Figure 7.4: Co-appearance network of characters in the famous novel LesMisérables
by Victor Hugo. In this example 2-sparse eigenvector implies the existence of
characters (of the novel) appearing together throughout the scenes.

The graph has 77 nodes and 254 (weighted) edges in total. The Laplacian of the
graph has repeated eigenvalues of 1(9) , 13(2) , and 28(2) . As a result, GFB with
respect to the graph Laplacian, V! , is not unique. In order to minimize the bound
given in Corollary 7.3, we use Theorem 7.6 and obtain the following result:

0.9398 = max
V
‖V‖max s.t. L = V�! VH. (7.47)

When V! is selected to be the GFB, (7.47) gives the following uncertainty bounds
(Corollaries 7.2 and 7.3) B0(x) ≥ ?0(x) ≥ ‖V! ‖−1

max = 1.0641. Due to discrete na-
ture of B0(x) it is clear that this bound cannot be satisfied with equality. When
‖V! ‖−1

max is rounded-off to the next attainable value of B0(x), we get the same
bounds as in (7.46). At this point we can use Theorem 7.11 to find signals (if there
is any) that achieve the bound in (7.46).
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In a co-appearance graph, pair of nodes with the condition in (7.33) has ameaningful
interpretation. If two characters always appear simultaneously, they will have the
same number of co-appearanceswith other characters, which implies the condition in
(7.33) mathematically. As an example, consider characters “Brevet”, “Chenildieu”,
and “Cochepaille” of the novel Les Misérables. They are three witnesses in Champ-
mathieu’s trial, and appear simultaneously through the court scenes. Nodes (of the
graph) that correspond to any two of these three characters satisfy the condition
in (7.33), which implies that the graph Laplacian has a 2-sparse eigenvector, and
B0(x) ≥ 3/2 is a tight uncertainty bound when V! is selected as GFB.

7.8 Concluding Remarks
In this chapter, we studied the concept of uncertainty principle for signals defined
over graphs. Unlike existing studies we took a non-local and discrete approach,
where the vertex and the spectral domain spreads of a signal are defined as the
number of nonzero elements of the signal and its GFT, respectively. We derived
a lower bound for the total number of nonzero elements in both domains (on the
graph and in the GFB) and showed that a signal and its corresponding GFT cannot
be arbitrarily sparse simultaneously. Based on this, we obtained a new form of
uncertainty principle for graph signals. When the graph has repeated eigenvalues
we explained that GFB is not unique, and the derived lower bound can have different
values depending on the selected GFB. We provided a constructive method to find
a GFB that yields the smallest uncertainty bound. In order to find the signals that
achieve the derived lower bound we considered sparse eigenvectors of the graph.
We showed that the graph Laplacian has a 2-sparse eigenvector (which is also known
as a Faria vector) if and only if there exists a pair of nodes with the same neighbors.
When this happens, the uncertainty bound is very low and the 2-sparse eigenvectors
achieve this bound. In addition, we provided the necessary and sufficient condition
for the existence of 3-sparse eigenvectors. We further showed that, for unweighted
graphs, the existence of a 3-sparse eigenvector implies the existence of a 2-sparse
eigenvector. We also provided counter-examples to show that this result does not
extend to arbitrary sparsity. We presented examples of both classical and real-world
graphs with 2 and 3-sparse eigenvectors. We also discussed that, in some examples,
the neighborhood structure has a meaningful interpretation.
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7.9 Appendices
7.9.1 Proof of Theorem 7.1
First notice that x =

∑#
8=1 G8 e8 where e8 is the 8Cℎ vector of the canonical basis, and

G8 is the 8Cℎ element of x. Let fH
9
denote the 9 Cℎ row of F. For the 9 Cℎ element of the

GFT of x we have
|Ĝ 9 | = |fH9 x| =

����∑
8∈S

G8 fH9 e8
����, (7.48)

where S denotes the support (set of nonzero indices) of the signal x. Notice that
|S| = ‖x‖0. We can upper bound |Ĝ 9 | as

|Ĝ 9 | =
����∑
8∈S

G8 fH9 e8
���� ≤∑

8∈S

��G8 fH9 e8
��, (7.49)

using the triangular inequality. UsingCauchy-Schwarz inequality, this can be further
bounded as

|Ĝ 9 | ≤
(∑
8∈S
|G8 |2

)1/2 (∑
8∈S
|fH9 e8 |2

)1/2
, (7.50)

≤ ‖x‖2
(
|S| ‖F‖2max

)1/2
= ‖x‖2 ‖x‖1/20 ‖F‖max, (7.51)

where we use the fact that fH
9

e8 is the ( 9 , 8)Cℎ element of F whose magnitude is upper
bounded by ‖F‖max. Now consider the ℓ2 norm of x̂ = Fx:

‖x̂‖22 =
∑
9∈ 
|Ĝ 9 |2 ≤ ‖x̂‖0 ‖x‖22 ‖x‖0 ‖F‖

2
max, (7.52)

where  denotes the support of x̂, ‖x̂‖0 = | |. Hence we have,

1
‖x̂‖0 ‖x‖0

≤
(
‖F‖max

‖x‖2
‖x̂‖2

)2
. (7.53)

Notice that maxx ‖x‖2/‖x̂‖2 = maxy ‖F-1y‖2/‖y‖2 = ‖F-1‖2. Therefore,

1
‖x̂‖0 ‖x‖0

≤
(
‖F‖max

‖x‖2
‖x̂‖2

)2
≤

(
‖F‖max ‖F-1‖2

)2
(7.54)

which implies
√
‖x‖0 ‖Fx‖0 ≥

(
‖F-1‖2 ‖F‖max

) -1
.

7.9.2 Proof of Theorem 7.3
Notice thatF is an invertiblematrix, therefore ‖x̂‖2/‖x‖2 is lower and upper bounded
as follows:

‖F-1‖-22 ≤
‖x̂‖22
‖x‖22

≤ ‖F‖22. (7.55)
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Therefore we have

‖F-1‖-22 ‖x‖
2
2 ≤ ‖x̂‖

2
2 = x̂H F x =

∑
8, 9

Ĝ∗8 �8, 9 G 9 , (7.56)

≤
∑
8, 9

�� Ĝ∗8 �8, 9 G 9 �� ≤∑
8, 9

|Ĝ8 | ‖F‖max |G 9 |, (7.57)

= ‖x̂‖1 ‖x‖1 ‖F‖max, (7.58)

where we use the fact that |�8, 9 | ≤ ‖F‖max for all (8, 9) in (7.57). Notice that taking
square-root of both sides and re-arranging the terms in (7.58) give the result in
(7.17).

7.9.3 Proof of Theorem 7.4
We start with the following change of variables,(

?1(x)
)2
=
‖x‖1 ‖F x‖1
‖x‖22

= ‖x̄‖1 ‖F x̄‖1, (7.59)

where we define x̄ = x/‖x‖2.

Given any two vectors x and y with ‖x‖2 = ‖y‖2 = 1, we have the following relation
(page 20 of [60]):

‖x‖1 ‖y‖1 ≤
√
‖x‖0 ‖y‖0. (7.60)

Notice that we have ‖x̄‖2 = 1. Since we have assumed that the GFB is unitary, we
further have ‖F x̄‖2 = 1. Then (7.60) gives the following:

‖x̄‖1 ‖F x̄‖1 ≤
√
‖x̄‖0 ‖F x̄‖0. (7.61)

Notice that left-hand-side of (7.61) is equal to (?1(x))2 due to (7.59). Remember
that ?0(x) is scale-invariant. As a result we have

√
‖x̄‖0 ‖F x̄‖0 =

√
‖x‖0 ‖F x‖0,

which shows that right-hand-side of (7.61) is equal ?0(x). Hence, we conclude that
(?1(x))2 ≤ ?0(x).

7.9.4 Proof of Theorem 7.5
Let U and Q be two matrices with orthonormal columns such that B?0=(U) =
B?0=(Q) = S. Since both span the same sub-space, we can write Q = U X for some
unitary matrix X of size " . Then we can write <(S) as

<(S) = max
X∈C"×"

‖UX‖max s.t. XH X = I, (7.62)
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where U is an arbitrary matrix with orthonormal columns that span S. Let x8 be the
8Cℎ column of X, and uH

9
be the 9 Cℎ row of U. Then we can write (7.62) as

<(S) = max
1≤ 9≤#
1≤8≤"

x8

���uH
9 x8

��� s.t. xH8 x 9 = X8, 9 (7.63)

= max
1≤ 9≤#

x1

���uH
9 x1

��� s.t. ‖x1‖2 = 1 (7.64)

= max
1≤ 9≤#

‖uH
9 ‖2 = max

1≤ 9≤#

√(
U UH

)
9 , 9
, (7.65)

where we assume (w.l.o.g.) in (7.63) that x1 is the vector that achieves themaximum.
Furthermore, other x8’s will have the additional constraint of being orthonormal to
x1. As a result, x8’s for 2 ≤ 8 ≤ " cannot produce a larger inner product. Further,
once the optimal x1 is selected, the remaining x8’s can be selected arbitrarily as long
as they are orthonormal to each other. This can be done via Gram-Schmidt process.
In (7.64) we use the fact that inner product is maximizedwhen the vectors are aligned
with each other. Equality in (7.65) follows from the fact that ℓ2-norm-square of a
row is the corresponding diagonal entry of the outer product.

7.9.5 Proof of Theorem 7.7
We prove (1) implies (2): Assume that the graph has an isolated node. According
to (7.32), there exists a 1-sparse eigenvector of the graph Laplacian.

We nowprove that (2) implies (1): Let v be the 1-sparse eigenvector. Without loss of
generality assume that the first index is nonzero E1 = 1 and the rest is zero. Therefore
Lv is equivalent to the first column of L. That is, Lv = [31 -aT

A,1]
T = _[1 0T]T,

where aA,1 ∈ R#-1 is the vector that denotes the adjacency of node 1, and 31 = ‖aA,1‖1
is the degree of node 1. Therefore we have aA,1 = 0, hence 31 = 0. Since edge
weights are non-negative, node 1 is an isolated node.

Next we will prove that (2) implies (3): Let v be a 1-sparse eigenvector of the
graph Laplacian. Then, v can be selected to be an element of the GFT. In this case,
‖v‖0 = ‖F v‖0 = 1, hence B0(v) = 1.

Finally, we prove (3) implies (2): Let B0(x) = 1 for some x ≠ 0. Since ‖x‖0 ≥ 1
for any nonzero signal, we must have ‖x‖0 = ‖F x‖0 = 1. ‖F x‖0 = 1 implies that
x is an eigenvector of the graph Laplacian and ‖x‖0 = 1 implies that x is 1-sparse.
Hence the graph Laplacian has a 1-sparse eigenvector.
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7.9.6 Proof of Theorem 7.8
Assume that the graph Laplacian of a connected graph has a two-sparse eigenvector v
with nonzero eigenvalue. Due to permutation invariance of the node labels, without
loss of any generality assume that the first two indices are nonzero, that is, E1 ≠ 0
and E2 ≠ 0, but E8 = 0 for 8 ≥ 3.

For a connected graph, notice that the all-1 vector is the only eigenvector of the graph
Laplacian with the zero eigenvalue. Since the graph Laplacian is a symmetric matrix
the eigenspaces are orthogonal to each other. Therefore the 2-sparse eigenvector
(with nonzero eigenvalue) v is orthogonal to the all-1 vector, which implies that
E1 + E2 = 0. Then, we can select E1 = -E2 = 1 without loss of any generality.

Let A denote the adjacency matrix of the graph. We have

A =


0 01,2 aT

A,1
02,1 0 aT

A,2
aA,1 aA,2 AA

 , L =


31 -01,2 -aT

A,1
-02,1 32 -aT

A,2
-aA,1 -aA,2 LA

 , (7.66)

where AA ∈ C(#-2)×(#-2) and LA ∈ C(#-2)×(#-2) are the partitions of the adjacency
matrix and the graph Laplacian, respectively. aA,1 ∈ R#-2 is the vector that denotes
the adjacency of node 1 except node 2. aA,2 is the same for node 2. Notice that
31 = 02,1 + ‖aA,1‖1 and 32 = 01,2 + ‖aA,2‖1. Then, consider the following:

Lv =


31 + 01,2

-(02,1 + 32)
-aA,1 + aA,2

 = _ v = _


1
-1
0

 . (7.67)

ThereforewehaveaA,1 = aA,2, which in particular implies that 31 = 32 since 01,2 = 02,1

(graph is undirected). Furthermore the corresponding eigenvalue is _ = 31+01,2.
Since the graph is connected 31 > 0, _ is nonzero. Notice that the condition
aA,1 = aA,2 is the same as the condition in (7.33).

Conversely, assume that there exist two nodes with the property in (7.33). Without
loss of generality, assume 8 = 1 and 9 = 2, and let v be a 2-sparse vector with
E1 = -E2 = 1. Then partition the graph Laplacian as in (7.66). Due to (7.33), we
have aA,1 = aA,2, and 31 = 32. Then we have Lv = _v with _ = 31 + 0A,1. Therefore,
v is a 2-sparse eigenvector of L. Further, the graph is connected 31 > 0, hence
_ > 0.
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7.9.7 Proof of Theorem 7.9
Assume that the graph Laplacian of a connected graph has a three-sparse eigenvector
vwith nonzero eigenvalue. Due to permutation invariance of the node labels, without
loss of generality assume that E1 ≠ 0, E2 ≠ 0, E3 ≠ 0 but E8 = 0 for 8 ≥ 4.

For a connected graph, the all-1 vector is the only eigenvector of the graph Laplacian
with the zero eigenvalue. Since the 3-sparse eigenvector (with nonzero eigenvalue) v
is orthogonal to the all-1 vector we have E1 + E2 + E3 = 0. By scaling the eigenvector,
without loss of any generality, we can select E1 = 1, E2 = W, and E3 = -1-W for some
W, where W ≠ 0 and W ≠ -1 since the eigenvector v is exactly 3-sparse.

Similar to (7.66), the graph Laplacian can be partitioned as follows:

L =


31 -01,2 -01,3 -aT

',1
-02,1 32 -02,3 -aT

',2
-03,1 -03,2 33 -aT

',3
-a',1 -a',2 -a',3 L'


, (7.68)

where L' ∈ R(#-3)×(#-3) is the partition of the Laplacian, and for 1 ≤ 8 ≤ 3,
a',8 ∈ R#-3 is the vector that denotes the adjacency of node 8 with the nodes
{4, · · · , #}. Since v is an eigenvector, it should satisfy the following eigenvalue
equation:

L v =


31 − W 01,2 + (1+W) 01,3

−02,1 + W 32 + (1+W) 02,3

−03,1 − W 03,2 − (1+W) 33

−a',1 − W a',2 + (1+W) a',3


= _v = _


1
W

-(1+W)
0


. (7.69)

This implies that a',1 + W a',2 − (1+W) a',3 = 0. This vector equation holds true if
and only if it is satisfied element-wise. That is

0A,1 − 0A,3 = W (0A,3 − 0A,2) ∀ A ∈ {4, · · · , #}. (7.70)

Remember that the graph is assumed to be unweighted, therefore, 0A,1, 0A,2, and 0A,3
are either 1 or 0. Hence, (7.70) can appear in 23 = 8 different variations, each of
which results in a different value for W. The following table considers each case
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separately and provides the solution(s) for W.

0A,1 0A,2 0A,3 W Validness
0 0 0 R X

0 0 1 -1 7

0 1 0 0 7

0 1 1 -∞ 7

1 0 0 ∞ 7

1 0 1 0 7

1 1 0 -1 7

1 1 1 R X

In the table, R means that any real number is a solution. Remember that W ≠ 0
and W ≠ -1 since the eigenvector v is assumed to be exactly 3-sparse. As a result,
a solution to (7.70) exists only if 0A,1 = 0A,2 = 0A,3. Since this is necessary for all
A ∈ {4, · · · , #}, we get a',1 = a',2 = a',3. This condition is the same as (7.35).

Conversely, assume that the condition (7.35) holds. Without loss of generality
assume that 8 = 1, 9 = 2, and : = 3. Then we have a',1 = a',2 = a',3, where a',8
is the same as in (7.68). Define B = ‖a',1‖1 = | N (8) \ { 9 , :}|. Notice that B > 0,
since B = 0 implies that the first three nodes are disconnected from the rest of the
graph. Now consider the following eigenvalue equation:

01,2+01,3 -01,2 -01,3

-01,2 01,2+02,3 -02,3

-01,3 -02,3 01,3+02,3




1
W

-(1+W)

 = (_-B)


1
W

-(1+W)

 . (7.71)

Notice that the matrix on the left-hand side is the Laplacian of the subgraph on
the first three nodes. Since the graph is unweighted, this matrix can have 23 = 8
different forms. By exhaustively considering each case, one can show that (7.71) can
always be solved for _ and W with W ≠ 0 and W ≠ -1. However, values of both _ and
W depend on the matrix. Eigenvalues of a graph Laplacian are always non-negative,
therefore _-B ≥ 0. As a result _ ≥ B > 0.

Notice that 31 = B + 01,2 + 01,3, 32 = B + 01,2 + 02,3, and 33 = B + 01,3 + 02,3. There-
fore, a pair of (_, W) that satisfies (7.71) also satisfies (7.69). Hence, using W solved
from (7.71), a 3-sparse vector v constructed as E1 = 1, E2 = W, E3 = -(1+W), and
E8 = 0 for 8 ≥ 4 is an eigenvector of the graph Laplacian L. Furthermore, the
corresponding eigenvalue _ (computed via (7.71)) is nonzero.
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7.9.8 Proof of Theorem 7.10
Assume that the Laplacian of an undirected, unweighted and connected graph has
a 3-sparse eigenvector. Then, due to Theorem 7.9, there exist nodes 8, 9 , : with the
condition in (7.35). Let S = N(8) \ { 9 , :} = N( 9) \ {8, :} = N(:) \ {8, 9}. The
relations in-between the nodes 8, 9 , : can have 4 different forms. This follows from
the fact that there are 4 non-isomorphic simple graphs on 3 nodes (page 4 of [77]).
These cases are illustrated Figure 7.5. In the following table, we consider all 4 cases

k

i

j
(a)

k

i

j
(b)

k

i

j
(c)

k

i

j
(d)

Figure 7.5: All four non-isomorphic graphs on 3 nodes.

separately and show that there exists a pair of nodes 8, 9 withN(8) \{ 9} = N( 9) \{8}.

Case N(8) N ( 9) N (8) \ { 9} N ( 9) \ {8}
Figure 7.5a S S S S
Figure 7.5b S ∪ { 9 , :} S ∪ {8, :} S ∪ {:} S ∪ {:}
Figure 7.5c S ∪ { 9} S ∪ {8} S S
Figure 7.5d S ∪ {:} S ∪ {:} S ∪ {:} S ∪ {:}

As a result, due to Theorem 7.8, the graph Laplacian has a 2-sparse eigenvector
independent of the relation between the nodes 8, 9 , : .
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C h a p t e r 8

ENERGY COMPACTION FILTERS ON GRAPHS

8.1 Introduction
In the study of graph signals, polynomial filters play an important role. Their
significance follows from their localization property: when implemented on a graph,
a polynomial filter of order ! requires a node to communicate only with its !-hop
neighbors. Moreover, polynomial graph filters are analogous to finite impulse
response (FIR) filters of classical signal processing. Elements of the graph Fourier
basis can be amplified or suppressed according to the behavior of the filter. Thus,
the design of such polynomials in the context of graphs is an important problem.

The spectral concentration problem in classical signal processing searches for the
optimal FIR filter (of fixed order) that confines the largest amount of energy into a
specific bandwidth. The problem was first formulated and analyzed by Slepian in
his seminal works [162, 161]. The solution to the problem is known as the prolate
sequence, and it provides the optimal (in the least squares sense) window for the
filter design problem [200].

In this chapter, we consider the spectral concentration problem for polynomial graph
filters. Given a filter order ! and a bandwidthf, we consider the optimal selection of
the coefficients such that the energy confined in the band (of the graph) ismaximized.
This problem is analogous to the classical spectral concentration problem [162, 161,
200]. The difference lies in the definition of the spectrum: in the classical case the
spectrum is defined with respect to the unit circle, whereas in the case of graphs
the spectrum is an interval on the real line. In spite of their conceptual similarity,
the analysis in the graph case differs from the classical one, and requires additional
attention.

For the energy compaction problem on graphs, we take two approaches. In the
first one, we assume that the spectrum of the graph is continuous. In this case the
problem reduces to the polynomial concentration problem studied more generally
by Slepian in [69]. We re-visit the problem, compare it with the classical case and
present its asymptotic behavior in the case of narrow bandwidth. Although the
continuous approach provides a theoretical and graph-free reference point, it is not
applicable to graphs directly as graphs have discrete spectrum of finite size. In the
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second approach, we define the problem with respect to the spectrum of the graph.
Thus, the optimal filter becomes specific to the underlying graph. We consider
different examples of graphs, and compare the behavior of the maximum energy
compaction as well as the optimal filter.

We would like to note that the studies in [195, 205] and Chapter 7 focus on the
concentration and localization properties of graph signals. In particular, [195, 205]
extend the classical time-frequency concentration problem to the case of graphs.
Different from [195, 205] and Chapter 7, this chapter focuses on the energy con-
centration properties of polynomial graph filters. Thus, results here do not involve
vertex domain properties.

In Section 8.2 we provide a quick overview of the classical spectral concentration
problem. In Section 8.3 we define the energy compaction problem for the contin-
uous case and study the behavior of the solution. In Section 8.4 we consider the
discrete graph-dependent counter-part of the problem and investigate the effect of
the spectrum of the graph on the optimal filter.

The content of this chapter is drawn from [170].

8.2 The Energy Compaction Problem
Let � (4 9l) denote the frequency response of a causal FIR filter of order ! that is
defined as follows:

� (4 9l) =
!∑
:=0

ℎ: 4
− 9l: , (8.1)

where ℎ: ∈ R denote the coefficients of the filter. The problemof energy compaction
(or, spectral concentration) searches for the filter whose energy is maximized in the
specified passband. This can be described precisely with the following optimization
problem:

q(f) = max
ℎ:

cf∫
0

��� (4 9l)��2 dl
c

s.t.
c∫

0

��� (4 9l)��2 dl
c
=1, (8.2)

where 0 < f < 1 denotes the (normalized) bandwidth of the passband, and q(f)
denotes the maximum amount of energy that can be confined in the band [0 f]. As
described clearly in Chapter 3.2.2 of [200], when the coefficients of an FIR filter are
represented as a vector h = [ℎ0 · · · ℎ!]T, the problem in (8.2) can be reformulated
as the following Rayleigh quotient:

ĥ = arg max
h

hH P h s.t. ‖h‖22 = 1, (8.3)
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where the kernel matrix P ∈ R(!+1)×(!+1) is given as follows:

(P)<,= = f sinc
(
f (< − =)

)
, 1 ≤ <, = ≤ !+1, (8.4)

where sinc(G) = sin(c G)/(c G). Then, the optimal filter, ĥ, and its energy com-
paction, q(f), can be found as the dominant eigenvector-eigenvalue pair of the
positive-definite and Toeplitz matrix P. The solution, ĥ, is also known as the prolate
sequence. Many other properties of the eigenvectors and the eigenvalues of the
matrix P were studied by Slepian in [161].

8.3 Graph Independent Continuous Spectrum
Given a graph operator A, a polynomial graph filter of order ! (or FIR graph filter)
is defined as follows:

� (A) =
!∑
:=0

ℎ: A: . (8.5)

SinceA and� (A) are simultaneously diagonalizable, the filter scales a graph Fourier
component corresponding to an eigenvalue _ with � (_). Thus, the frequency
response of a polynomial filter can be written as follows:

� (_) =
!∑
:=0

ℎ: _
: . (8.6)

At the core of most practical applications lie low-pass filters, which can be described
conceptually as follows:

��� (_)�� ≈ 
1, if _ ≤ f,

0, if _ > f,
(8.7)

where 0 < f < 1, and f denotes the cut-off frequency of the filter. Depending
on the design criteria one can construct different filters to achieve the behavior in
(8.7). Motivated by the results in [200, 162, 161], we consider here the energy
compaction filter similar to the one in (8.2). More specifically we consider the
following problem, which was first addressed in [69]:

W(f) = max
ℎ:

f∫
0

|� (_) |2 d_ s.t.
1∫

0

|� (_) |2 d_ = 1. (8.8)

It should be noted that we treat _ ∈ R (spectrum of the graph) as a continuous
parameter in (8.8), which is contrary to the fact that a spectrum of a graph is discrete
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and has at most # eigenvalues (# being the size of graph). More importantly,
eigenvalues of a graph are not spaced uniformly, they may be concentrated (or,
clustered) around some specific intervals. (See Figure 8.4 later.) Nevertheless, the
problem in (8.8) has two theoretical advantages: 1) The formulation is graph-free.
Therefore, it considers a unified approach to the filter design problem. 2) It provides
a theoretical reference point and allows us to answer the following question: can
we ignore the underlying graph structure and design filters universally? As we shall
discuss in Secion 8.4, the answer is no: the graph spectrum matters.

In order to convert the problem (8.8) into matrix-vector equations we first define the
following vector variables:

λ =


1
_
...

_!


∈ R!+1, h =


ℎ0

ℎ1
...

ℎ!


∈ C!+1. (8.9)

Since λ ∈ R!+1 we have

� (_) = λH h, |� (_) |2 = hH λ λH h. (8.10)

Then, the objective function (as well as the constraint) in (8.8) can be written as
follows:

f∫
0

|� (_) |2 d_ =
f∫

0

hH λλH h d_ = hH Q(f) h, (8.11)

where the matrix Q(f) consists of the following terms:(
Q(f)

)
<,=

=

f∫
0

_<+=−2 d_ =
f<+=−1

< + = − 1
. (8.12)

So, the matrix Q(f) has the following form:

Q(f) =



f
f2

2
· · · f!+1

!+1

f2

2
f3

3
· · · f!+2

!+2

...
...

. . .
...

f!+1

!+1
f!+2

!+2
· · · f2!+1

2!+1



. (8.13)
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Using (8.11), the problem in (8.8) can be written as follows:

W(f) = max
h

hH Q(f) h s.t. hH Q(1) h = 1. (8.14)

Thus, the optimal energy compaction problem on graphs can be formulated as
a generalized Rayleigh quotient problem. Before elaborating on the solution of
(8.14), we first present the following lemma:

Lemma 8.1. Q(f) is a symmetric matrix with the Hankel structure. Moreover, it
satisfies the following ordering for 0 < f1 < f2 ≤ 1:

0 ≺ Q(f1) ≺ Q(f2) � f2 c I. (8.15)

Proof. For a given arbitrary complex vector h ≠ 0, (8.11) gives the following:

hH
(
Q(f2) −Q(f1)

)
h =

f2∫
0

|� (_) |2 d_ −
f1∫

0

|� (_) |2 d_ =
f2∫

f1

|� (_) |2 d_ > 0,

where the strict positivity follows from the fact that the right-hand-side is an integral
of a non-negative polynomial over an interval and the polynomial only has finite
number of zeros. Thus, Q(f2) � Q(f1) for any f2 > f1. In particular note that
Q(0) = 0, so Q(f) � 0 for any f > 0.

For the last inequality in (8.15), we will use the Hilbert’s inequality given in the
following form [112]: ∑

8=0

∑
9=0

G8 G 9

8 + 9 + 1
≤ c

∑
8=0

G2
8 . (8.16)

Let x denote the eigenvector of Q(f) corresponding to the largest eigenvalue. Since
Q(f) has positive values, we know that x has positive values as well (This is due to
Perron-Frobenius theorem). Then,

xH Q(f) x =
∑
8=1

∑
9=1

G8 G 9 f
8+ 9−1

8 + 9 − 1
= f

∑
8=0

∑
9=0

G8+1 f
8 G 9+1 f

9

8 + 9 + 1
(8.17)

≤ f c
∑
8=0

(
G8+1 f

8
)2
≤ f c

∑
8=0

G2
8+1 = f c ‖x‖

2
2, (8.18)

where we first use the Hilbert’s inequality, then we use the assumption that f ≤ 1
in (8.18). This proves the last inequality in (8.15). �
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SinceQ(f) does not have a null-space and is bounded, the problem in (8.14) is well-
defined. Moreover, it can be converted into a standard Rayleigh quotient problem.
For this purpose, consider the Cholesky decomposition of Q(1):

Q(1) = C CH, (8.19)

where we assume that C is a lower triangular matrix with strictly positive diagonal
entries, hence C is unique and invertible. Then, the problem in (8.14) can be
equivalently written as follows:

W(f) = maxv vH C−1 Q(f) C−H v s.t. vH v = 1 (8.20)

= ‖C−1 Q(f) C−H‖2. (8.21)

Furthermore, the optimal filter that achieves the maximum energy compaction can
be found as follows:

ĥ = C−H v, (8.22)

where v is the dominant eigenvector of the symmetric matrix in (8.21).

It should be noted that the matrix Q(1) corresponds to a Hilbert matrix of size !+1
[82], which has been used extensively in the study of polynomial approximations.
A Hilbert matrix has many interesting properties and challenges, among which lies
the condition number. A Hilbert matrix is positive definite for any size as shown
by Lemma 8.1. However, the condition number grows like (1 +

√
2)4=/

√
= for the

size = Hilbert matrix [15] making the matrix so ill-conditioned that MATLAB
fails to compute the Cholesky decomposition in (8.19) for ! ≥ 13. Nevertheless,
researchers have obtained closed form expressions for the matrices that are related
to a Hilbert matrix. For example, the study in [37] shows that the inverse of the
Cholesky factor in (8.19) has the following entries:(

C−1)
<,=

= (-1)<+=
√

2< − 1
(
< + = − 2
= − 1

) (
< − 1
= − 1

)
, < ≥ =, (8.23)

which allows the direct computation of the matrix in (8.21). It is important to note
that entries in C−1 grow exponentially with its size !. Thus, direct computation of
the matrix in (8.21) is still prone to the numerical problems for large values of !.

It is well-known that (8.14) can be converted into the following generalized eigen-
value problem with the use of Lagrange multiplier:

Q(f) h = W Q(1) h, (8.24)
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whose dominant eigenvalue-eigenvector pair provides the maximum amount of
energy compaction and the corresponding filter that achieves it. Although the
formulation in (8.24) is easier to implement in numerical environments, it still
suffers from numerical precision even for moderate values of !.

8.3.1 The Optimal Filter and the Maximum Energy Compaction
Although closed form solution for the dominant eigenpair of (8.24) is not available,
a numerical solution is possible to obtain for small values of !. In Figure 8.1 we
present the maximum energy compaction, W(f), as a function of the bandwidth
f for different values of !. For a fixed order !, notice that W(f) is an increasing
function of f, that is, larger amount of energy can be confined in a larger bandwidth.
Moreover, for a fixed bandwidth f, the amount of energy compaction increases as
the filter order ! gets larger. This shows a trade-off between the locality of the graph
filter and better (close to the ideal) low-pass characteristics.
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Figure 8.1: Dominant eigenvalue of (8.24) in (a) linear-scale (b) log-scale.

The optimal filters that achieve the maximum energy compaction are presented in
Figure 8.2 in which the bandwidth is selected as f = 0.2, and filters with different
orders are considered. As seen in Figure 8.2b the filters have zeros in the interval
[0.2 1]. In fact, numerical observations suggests that the optimal filter of order !
for the bandwidth f has exactly ! zeros in the interval (f 1]. This is an expected
result since the problem in (8.8) minimizes the energy confined in (f 1]. Thus, all
the zeros are located in this interval.
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Figure 8.2: The optimal filter responses for f = 0.2 and different values of !. Filter
responses in (a) linear-scale, (b) log-scale.

8.3.2 Narrow Bandwidth Behavior
Although a closed form solution for the dominant eigenpair of (8.24) does not exist,
for small values of f, Figure 8.1b suggests that the amount of energy compaction
depends linearly on the bandwidth. The following theorem shows that this is in fact
the case:

Theorem 8.1. For small f, the maximum amount of energy concentration of an
order ! filter is approximated as follows:

W(f) ≈ f (! + 1)2. (8.25)

Moreover, the coefficients of the optimal filter can be approximated as

ℎ: = (−1): (! + : + 1)!
(! − :)! :! (: + 1)! , 0 ≤ : ≤ !. (8.26)

Proof. Assume that f is small. Then, the entires of the matrix Q(f) vanish (except
the top-left one) since they have powers of f. Then, we have

Q(f) ≈


f 0 · · · 0
0 0 · · · 0
...

... · · · ...

0 0 · · · 0


= f e1 eH1 , (8.27)

where e1 ∈ R!+1 and e1 = [1 0 · · · 0]H. Using (8.27), we approximate (8.21) as
follows:

W(f) ≈ f
C−1 e1 eH1 C−H


2

(8.28)
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Since C−1 e1 eH1 C−H is a rank-1 and positive semi-definite matrix, we haveC−1 e1 eH1 C−H


2
= tr

(
C−1 e1 eH1 C−H

)
(8.29)

= tr
(
eH1 eH1 C−H C−1

)
= tr

(
e1 eH1 Q(1)−1

)
(8.30)

= tr
(
eH1 Q(1)−1 e1

)
= eH1 Q(1)−1 e1. (8.31)

Remember that Q(1) is the Hilbert matrix of size !+1, and the inverse of a size #
Hilbert matrix can be written explicitly as follows [37]:(

Q(1)-1
)
8, 9
= (-1)8+ 9 (8 + 9 − 1)

(
# + 8 − 1
# − 9

) (
# + 9 − 1
# − 8

) (
8 + 9 − 2
8 − 1

)2
. (8.32)

Then, by selecting 8 = 9 = 1 and # = ! + 1 in (8.32), we get the following:

eH1 Q(1)−1 e1 =
(
Q(1)−1)

1,1 = (! + 1)2 (8.33)

which proves (8.25) due to (8.28).

In (8.22) the optimal filter is give as ĥ = C−H v where v is the dominant eigenvector
of C−1 Q(f) C−H. According to the approximation in (8.27), we have that

C−1 Q(f) C−H ≈ f C−1 e1 eH1 C−H. (8.34)

Since the right-hand-side of the above equation is in the form of a single outer
product, the vector that forms the outer product is the dominant (and the only)
eigenvector. Therefore,

v ≈ 1
!+1

C−1 e1, (8.35)

where the scale factor 1/(!+1) is selected such that ‖v‖2 = 1:

‖v‖22 =
1

(!+1)2
tr

(
C−1 e1 eH1 C−H

)
= 1, (8.36)

which follows from (8.29) and (8.33). Then we have:

ĥ = C−H v ≈ 1
!+1

C−H C−1 e1 =
1
!+1

Q(1)−1 e1. (8.37)

Notice that Q(1)−1 e1 is the first column of the inverse of the Hilbert matrix of size
! + 1 whose elements can be found explicitly by using (8.32) with 8 = :+1, 9 = 1,
and # = ! + 1:

ℎ: =
1
!+1

(−1):+2 (: + 1)
(
! + : + 1

!

) (
! + 1
! − :

) (
:

:

)2
(8.38)

= (−1): : + 1
! + 1

(! + : + 1)!
!! (: + 1)!

(! + 1)!
(! − :)! (: + 1)! , (8.39)

which is equivalent to (8.26). �
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The asymptotic behavior of the energy compaction of polynomial filters resembles
that of the classical FIR filters. Eq. (64) of [161] approximated the solution of the
energy compaction problem in (8.2) as q(f) ≈ f (! + 1) for small values of f. Al-
though both q(f) and W(f) depend linearly on the bandwidth, q(f) depends on the
order linearly, whereas W(f) has a quadratic dependence resulting in W(f) ≥ q(f)
in the case of narrow bandwidth. In fact, as observed in Figure 8.3a, W(f) ≥ q(f)
for all values of f. Thus, polynomial filters (graph filters) can confine more energy.

It is also interesting to see that the approximation of the optimum filter given in
(8.26) has integer valued coefficients with alternating signs. In the case of ! = 3,
which is illustrated in Figure 8.3b, these coefficients can be found as follows:

ℎ0 = 4, ℎ1 = −30, ℎ2 = 60, ℎ3 = −35. (8.40)

As Figure 8.3b shows, (8.26) approximates the optimal filter very well, and the
approximation gets better as f decreases.
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Figure 8.3: (a)Comparison of themaximumenergy compaction achieved in classical
and graph filters. (b) Magnitude response of the optimal filter for ! = 3 for different
values of f. Response of the approximation (8.40) is also shown.

8.4 Graph Dependent Discrete Spectrum
In the previous section analysis of the energy compaction is based on the continuous
spectrum. Although such an analysis is theoretically important, its practical impor-
tance is limited since graphs have finite number of eigenvalues. In this section, we
take the eigenvalues of the graph into account and formulate the discrete counterpart
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of the problem in (8.8) as follows:

d( ) = max
ℎ:

1
#

 ∑
8=1
|� (_8) |2 s.t.

1
#

#∑
8=1
|� (_8) |2 = 1, (8.41)

where  < # determines the pass band “width” of the filter.

Following the formulation in Section 8.3, (8.41) can be reformulated as the following
generalized Rayleigh quotient problem:

max
h

hH S( ) h s.t. hH S(#) h = 1, (8.42)

where (
S( )

)
<,=

=
1
#

 ∑
8=1

_<+=−2
8 . (8.43)

Then, the optimum filter and the maximum amount of energy compaction can be
found as the dominant eigenpair of the following generalized eigenvalue problem:

S( ) h = d S(#) h. (8.44)

Although the problems in (8.14) and (8.42) have the same form, their characteristics
differ from each other in two respects. Firstly,  in (8.42) is a discrete parameter as
opposed to f in (8.14) being a continuous. Nevertheless, they can be conceptually
related as f =  /# , which denotes the fraction of eigenvalues in the baseband of
the graph spectrum. Secondly, and more importantly, the spectrum of a graph has
a finite number of possibly repeated eigenvalues. Thus, the matrix S(#) in (8.42)
may have a null-space unlike Q(1). More precisely, we have the following lemma:

Lemma 8.2. Let #̄ denote the number of distinct eigenvalues of the graph operator.
If ! < #̄ , then S(#) � 0; if otherwise, S(#) has a null-space, hence positive semi-
definite.

When the matrix S(#) has a null-space it can be shown that the problem in (8.42)
does not have a unique maximizer. Thus, the optimal energy compaction filter is
not unique. This means that the order of the polynomial filter is larger than what is
necessary, and a lower order filter can obtain the same amount of energy compaction.
In most applications low orders are preferred in order to have filters that are localized
on the graph. So, the condition in Lemma 8.2 is almost always satisfied in practice
yielding a positive definite S(#). Moreover, when the order of the filter satisfies



299

! ≥ #̄-1 any frequency response can be realized with a polynomial [153]. Thus,
the maximum energy compaction becomes d( ) = 1 for all values of  .

Since S(#) depends on the eigenvalues of the underlying graph operator, a closed
form expression for it does not exist in general. Nevertheless, it is possible to obtain
closed forms in some specific cases. For example, if the graph is an undirected cycle
of size # and its graph Laplacian is used as the operator, Lemma 9.2 of this thesis
reveals that S(#) has the following closed form(

S(#)
)
<,=

=

(
2< + 2= − 4
< + = − 2

)
(8.45)

as long as the order of the filter satisfies ! < #/2.

It is also important to note thatQ(f) and S( ) are asymptotically identical when the
underlying eigenvalues are uniformly separated. That is, if _8 = 8/# for 1 ≤ 8 ≤ # ,
then

lim
#→∞

S(f#) = Q(f). (8.46)

Thus, the problems in (8.14) and (8.42) are also asymptotically equivalent when
the eigenvalues are separated uniformly. However, the spectrum of a graph is
almost never distributed uniformly [159]. So, the solution to the energy compaction
problem in (8.42) depends heavily on the underlying graph operator as we shall
demonstrate next.

Figure 8.4 shows the histogram of the eigenvalues of the Laplacian of different
examples of graphs including Erdős-Rényi (ER), random regular (RR) and the
undirected cycle graph. We also consider the case of uniform eigenvalue separation
(which does not correspond to a graph) as a reference. The size of the graphs is set
to be # = 104, and the eigenvalues are scaled such that 0 ≤ _8 ≤ 1 since the scaling
does not affect the generality of the results.

Figure 8.5 visualizes the numerical solution of (8.42) for the graphs considered
above for filter order ! = 2. In Figure 8.5a we consider the maximum amount of
energy compaction with respect to f =  /# . In Figure 8.5b we show the response
of the optimum filters for f = 0.1. As seen clearly from the figures, both the
maximum energy compaction and the optimal filter are affected by the distribution
of the eigenvalues. Among all considered examples, the compaction filter for the
ER graph with ? = 0.005 has the most “concentrated” spectrum, and Figure 8.5a
shows that the optimum filter for the ER graph can confine more energy in a band
compared to the other graphs. Similarly, Figure 8.5b shows that the zeros of the
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(a) Uniform (b) ER, ? = 0.001 (c) ER, ? = 0.005

(d) Undirected cycle (e) RR, 3 = 3 (f) RR, 3 = 4

Figure 8.4: Histogram of the eigenvalues of (a) the uniform case, (b) Erdős-Rényi
(ER) graph with ? = 0.001, (c) ER graph with ? = 0.005, (d) undirected cycle
graph, (e) random regular (RR) graph with degree 3 = 3, and (f) RR graph with
degree 3 = 4.

optimum polynomial are located where the eigenvalues are denser. On the other
hand, the undirected cycle graph has the most “spread-out” spectrum with two
different peaks. Figure 8.5a shows that the optimal filter on the undirected cycle
graph has the least amount of energy confinement. Correspondingly, zeros of the
optimum polynomial are also spread-out from each other in order to accommodate
the spread-out in the spectrum.

10
-3

10
-2

10
-1

10
0

σ

10
-2

10
-1

10
0

ρ(σN)

Uniform

ER, p=0.001

ER, p=0.005

Cycle

RR, d=3

RR, d=4

(a)

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9   1

λ

10
-8

10
-6

10
-4

10
-2

10
0

10
2

|H(λ)|2

Uniform

ER, p=0.001

ER, p=0.005

Cycle

RR, d=3

RR, d=4

(b)

Figure 8.5: (a) Comparison of energy compaction on different graphs, (b) the
optimal filters on different graphs for f = 0.1.
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8.5 Concluding Remarks
In this chapter we investigated the spectral concentration problem for polynomial
graph filters and considered two approaches. In the first one, we assumed that the
graph spectrum is continuous, in which case it reduced to the polynomial concen-
tration problem studied by Slepian. We re-visited the problem and compared its
solution with the classical spectral concentration problem. In the second approach,
we took the discrete graph spectrum into consideration and formulated the problem
accordingly. We showed that the maximum amount of energy compaction and the
optimum filter depend on the spectrum of the underlying graph.
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C h a p t e r 9

TIME ESTIMATION FOR HEAT DIFFUSION ON GRAPHS

9.1 Introduction
In this chapter we will consider signals that diffuse over the graph through time.
Specifically, we will examine the heat diffusion process, which has been shown to be
applicable for various problems [38, 111]. In particular, we will assume that there
is a point heat source that starts to diffuse at a known location but at an unknown
time. We sample the heat distribution over the graph and consider the estimation of
the starting time of the diffusion process when there is additive noise.

Section 9.2 will provide themathematical formulation of the problem. In Section 9.3
we will derive the Cramér-Rao lower bound for the time estimation problem. We
will also analyze the relation between the bound and the underlying graph structure.
In particular we will show that the estimation problem is more difficult on graphs
with higher connectivity. In Section 9.4 we will derive closed form expressions of
the lower bound for the case of cycle graphs, complete graphs and star graphs. In
Section 9.5 we will consider the Maximum-Likelihood (ML) estimator. We will
numerically verify that the ML estimator is unbiased and achieves the Cramér-Rao
lower bound for various values of the time parameter.

We would like to note that the study in [189] considers the same heat diffusion
model in a different setting where the problem is to estimate the graph itself from
the observed data.

The content of this chapter is drawn from [186].

9.2 Problem Statement
In this study we consider graph signals that are evolving through time. We will
assume that the evolution process of a signal is governed by the following differential
equation:

m x(C)
m C

= −L x(C), s.t. x(0) = x0, (9.1)

where L is the Laplacian of the graph on which the signal x(C) resides. The model
in (9.1) is known to be the heat equation, and it describes how an initial heat
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distribution diffuses over a geometry [39]. The solution of (9.1) is given as [39]

x(C) = exp(-L C) x0, C ≥ 0, (9.2)

where exp(·) denotes the matrix exponential, and the signal x(C) gives the distri-
bution of the heat over the graph L after time C when the initial distribution is
x0.

Starting with the diffusionmodel in (9.2) we consider the following inverse problem:
assume that there is a unit point source located at node =, that is, the input distribution
is e=. This point source starts to diffuse at time C̃ over a known graph with the
Laplacian L. We observe the heat signal over the graph at time ) ≥ C̃ with an
additive i.i.d. Gaussian noise with variance f2. Thus, we can write the observed
signal as

y = exp
(
-L () − C̃)

)
e= + w, (9.3)

where w is the i.i.d. Gaussian noise. Given the observation vector y, our task is to
estimate the starting time C̃ and the location = of the point source. Notice that the
observation vector can be written as

y = exp(-L C) e= + w, (9.4)

where C denotes the relative time with respect to the sampling time ) . Since the
observation time ) is known, it suffices to find C. The actual starting time can be
found easily as C̃ = ) − C. Hence, our main problem is to estimate C and = from
the vector y given in (9.4). Note that C is a (non-negative) continuous parameter,
whereas = is an integer ranging from 1 to # .

In the rest of the chapter we will consider a simpler case where the location of the
point source, =, is assumed to be known and study the problem of estimation of the
time parameter C.

9.3 The Cramér-Rao Lower Bound
Given an observation vector y, let Ĉ (y) be an unbiased estimator of the parameter C,
that is, � [ Ĉ (y) ] = C. The variance of an unbiased estimator is lower bounded as

var
(
Ĉ (y)

)
≥ �=,C , (9.5)

where �=,C is the Cramér-Rao lower bound (CRLB).

Due to the datamodel in (9.4), the observation vector y has the followingmultivariate
Gaussian distribution:

y ∼ N
(
exp(-L C) e=, f2I

)
. (9.6)
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Then, the CRLB is given as [201]

�=,C = f
2 / I=,C , (9.7)

where

I=,C =
d3dC exp(−L C) e=

2
=

 exp(−L C) L e=
2
= eH= exp(−2 L C) L2 e=. (9.8)

From now on we will refer to I=,C as the heat information of the node = at time C.
Notice that I=,C is intrinsic to the graph structure and does not depend on the noise
level f.

Using the eigenvalue decomposition of L, the heat information can be equivalently
written as

I=,C = eH=

(
#∑
:=1

4-2_: C_2
: v:vH:

)
e= =

#∑
:=1

4-2_: C _2
: |+=,: |

2, (9.9)

where +=,: = eH= v: denotes the (=, :)Cℎ entry of the eigenvector matrix V.

One immediate observation regarding the heat information is that it converges to
zero for large values of C. That is,

lim
C→∞
I=,C = 0. (9.10)

This asymptotic behavior is the same for all the nodes no matter what the underlying
graph is. The behavior in (9.10) is consistent with the intuition behind the heat
dynamics in (9.1): large values of C mean that the initial source is already diffused
all over the graph, hence it is not possible to estimate its location and time even if
no noise is present.

Apart from its asymptotic behavior the heat information is tightly connected to the
underlying graph structure. As a motivating example consider the star graph and a
modified star graph in Figure 9.1a and 9.1b, respectively.

The heat information of the center node (labeled as node 1) in a star graph is as
follows (from Corollary 9.1):

I1,C = # (# − 1) 4−2 # C , (9.11)

where # is the total number of nodes in the graph. When the graph in Figure 9.1a is
modified into the one in Figure 9.1b by moving only one edge, the heat information
of the center node becomes

I1,C = U1 4
−2 B1 C + U2 4

−2 B2 C + U3 4
−2 B3 C , (9.12)
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(a) (b)

Figure 9.1: (a) Star graph on # = 9 nodes, (b) modified star graph.

for some constant U8’s, which possibly depend on # . Here B8’s are the roots of the
following polynomial ?(B) = B3 − (# + 2) B2 + (3# − 2) B − # . These roots can be
well approximated as follows:

B1 ≈ # − 1, B2 ≈
3 +
√

5
2

, B3 ≈
3 −
√

5
2

. (9.13)

The mere purpose of this example is to show the tight connection between the graph
structure and the heat information of the nodes. Motivated with this example in the
following sub-sections we will analyze the relation between the heat information
and the underlying graph structure.

9.3.1 Average Heat Information over the Graph
In order to understand the general characteristics of the heat information in (9.8),
we shall first consider the average heat information over all the nodes. Hence, we
define the following:

IC :=
1
#

#∑
==1
I=,C . (9.14)

When we substitute (9.9) into the definition in (9.14) we obtain the following:

IC =
1
#

#∑
==1

#∑
:=1

4-2_: C _2
: |+=,: |

2 =
1
#

#∑
:=1

4-2_: C _2
: , (9.15)

where we use the fact
∑#
==1 |+=,: |2 = ‖v: ‖2 = 1. Notice that the average heat in-

formation in (9.15) depends only on the spectrum, _: ’s, of the graph, but not the
eigenvectors.
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When the nodes of a graph have similar neighborhood structures IC is expected
to reflect the average behavior of the heat information on individual nodes. Note
that nodes with peculiar structures (e.g. center node of a star graph) may behave
differently than IC . Nevertheless, IC is useful to understand the characteristics of the
heat diffusion over a given graph. In particular, an upper bound on IC is provided in
the following theorem:

Theorem 9.1 (Effect of the Connectivity). Let _2 be the smallest non-zero eigen-
value of the Laplacian of a simple and connected graph. Then, the average heat
information is bounded as

IC ≤ 4-2_2 C I0, (9.16)

where I0 is the average heat information at time C = 0.

Proof. Observe the following:

IC =
1
#

#∑
:=2

4-2_: C_2
: ≤

1
#

#∑
:=2

4-2_2C_2
: = 4

-2_2C
1
#

#∑
:=2

_2
: , (9.17)

where we use the fact that _1 = 0 and _2 ≤ _: for : ≥ 2. Also notice that I0 is given
as I0 = 1/# ∑#

:=1 _
2
:
. �

We would like to note that the average heat information at time C = 0 is related to
the graph Laplacian as follow:

I0 =
1
#

#∑
:=1

_2
: =

1
#
CA (L2) = 1

#
‖L‖2� . (9.18)

The second smallest eigenvalue, _2, of the graph Laplacian is known as the algebraic
connectivity of the graph [63]. Roughly speaking graphs with larger _2 tend to be
more “connected” than the others: a complete graph has _2 = #; a star graph has
_2 = 1; a cycle graph has _2 = 2 − 2 cos(2c/#) ≈ 4c2/#2 (for large values of #),
and _2 = 0 for graphs with disconnected components. Many more results on _2 and
connectivity of a graph can be found in [47].

From the connectivity perspective the inequality in (9.16) states the following: a
graph with higher connectivity is expected to have smaller average heat information
at any given C. This statement agrees with the dynamics of the heat equation in
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(9.1). If a graph has higher connectivity a point source is expected to diffuse easily
on the graph, hence, the estimation of its location and time becomes a more difficult
problem.

Even though the bound in Theorem 9.1 is tight for some graphs (see Section 9.4.2),
it is not tight in general. Nevertheless, it is useful to provide some qualitative
understanding of the difficulty of the problem in hand.

9.3.2 Power Series Representation
The expression in (9.9) describes the heat information in terms of the spectral
characterization of the graph Laplacian. In the following we will describe the heat
information in terms of algebraic properties of the graph. For this purpose we start
with the Taylor series expansion of 4C at C = 0, that is,

exp(C) =
∞∑
:=0

C:

:!
. (9.19)

Using the expansion (9.19) in (9.8), we obtain the following:

I=,C = eH=

( ∞∑
:=0

(-2L C):
:

L2

)
e= =

∞∑
:=0

(-2C):
:

3=, :+2, (9.20)

where we define 3=,: as the =Cℎ diagonal term of the : Cℎ power of L, that is,

3=,: := eH= L: e= =
(
L:

)
=,=
. (9.21)

It is important to notice that 3=,: ’s are local parameters of the node = in the sense
that 3=,: depends only on the connectivity of the :-hop neighborhood of the node
=. In particular 3=,1 = 3= is the degree of the node =. Furthermore we have the
following:

3=,2 = 3
2
= + 3=, 3=,3 = 3

3
= + 232

= + F=,2 − 2=,3. (9.22)

where F=,2 and 2=,3 are the number of walks of length 2 and the number of closed
walks of length 3, starting at the node =, respectively.

Given a graph, 3=,: ’s are simple to compute numerically. However, closed form
expression of 3=,: in terms of the neighborhood structure is not available for an
arbitrary graph. Nevertheless, closed form expression of 3=,: can be derived for
some specific cases. Our first result is as follows:

Lemma 9.1. LetL be the graph Laplacian of an arbitrary simple graph on # nodes.
Assume that the =Cℎ node is connected to every other node, that is, 3= = #-1. Then,

3=,: =
(
L:

)
=,=
= (#-1) # :-1. (9.23)
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Proof. Without loss of any generality assume that = = 1. Given an arbitrary graph
with a fully connected node, we can write its adjacency matrix as follows:

A =

[
0 1T

1 Ā

]
, (9.24)

where Ā ∈ R(#-1)×(#-1) represents the adjacency matrix of the induced graph on the
nodes 2, · · · , # . Then, the Laplacian of this graph can be written as

L =

[
#-1 -1T

-1 L̄ + I

]
, (9.25)

where L̄ denotes the Laplacian of the induced graph on the nodes 2, · · · , # , and 1 is
the all-1 vector of size #-1. We postulate that the : Cℎ power of L has the following
form:

L: =

[
0: -1: 1T

-1: 1 2: 11T + (L̄ + I):

]
. (9.26)

Notice that this holds true for : = 1 with 01 = #-1, 11 = 1 and 21 = 0. We will now
assume that (9.26) is true for an arbitrary :-1 and validate it for : . Using the fact
that L: = L:-1 L we obtain the following:

L: =

[
0:-1 -1:-1 1T

-1:-1 1 2:-1 11T + (L̄ + I):-1

] [
#-1 - 1T

- 1 L̄ + I

]
(9.27)

=

[
(0:-1+1:-1) (#-1) -(0:-1+1:-1) 1T

-(0:-1+1:-1) 1 (1:-1 + 2:-1) 11T+(L̄ + I):

]
, (9.28)

where we use the fact 1T L̄ = 0. Notice that the form in (9.28) is the same as the
form in (9.26), which proves (by recursion) that (9.26) is in fact correct. The result
in (9.28) further reveals that the coefficients in (9.26) can be found recursively as
follows:

0: = (#-1) (0:-1 + 1:-1), 1: = 0:-1 + 1:-1, 2: = 1:-1 + 2:-1,

which in particular shows that 0: = (#-1) 1: . Therefore,

0: = (#-1)
(
0:-1 +

0:-1
#-1

)
= # 0:-1, 1: = # 1:-1. (9.29)

Remember that 01 = #-1, 11 = 1 and 21 = 0. Hence,

0: = (#-1) # :-1, 1: = #
:-1. (9.30)
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Furthermore notice that

2: = 21 +
:-1∑
;=1

1; =

:-2∑
;=0

# ; =
# :-1 − 1
# − 1

. (9.31)

As a result,
31,: = eH1 L: e1 = 0: = (#-1) # :-1, (9.32)

which proves the result in (9.23). �

An immediate result of Lemma 9.1 is as follows:

Corollary 9.1. Let L be the graph Laplacian of an arbitrary simple graph on #
nodes. Assume that the =Cℎ node has 3= = #-1. Then, the heat information for the
=Cℎ node is

I=,C = # (#-1) 4- 2#C . (9.33)

Proof. Using (9.23) in (9.20) we get

I=,C =
∞∑
:=0

(-2C):
:
(#-1) # :+1 = (#-1) #

∞∑
:=0

(-2C#):
:

= # (#-1) 4- 2#C . (9.34)

�

Corollary 9.1 states that the heat information of a fully connected node does not
depend on the remaining graph structure (except for the size of the graph). This
result will be useful to analyze some examples of graphs (see Section 9.4.2 and
9.4.3).

Closed form expression of 3=,: is obtained for cycle graphs as follows:

Lemma 9.2. For the cycle graph of size # , we have

3=,: =
(
L:

)
=,=
=

(
2:
:

)
=
(2:)!
:! :!

for : < #/2. (9.35)

Proof. Assume : < #/2. For the adjacency matrix of a cycle graph we have
A = C + C-1, where C is the circular shift matrix. Therefore A2 = 2I + C2 + C-2.
Hence,

eH= A2: e= =
∑

:1+:2+:3=:

(
:

:1, :2, :3

)
2:1 eH= C2(:2-:3) e=, (9.36)

=
∑

:1+:2+:3=:
:2=:3

(
:

:1, :2, :3

)
2:1 , (9.37)
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where the last equality follows from the fact that eH= C2(:2-:3)e= = X(:2 − :3) for
:2, :3 < #/2.

Also note that the Laplacian of a cycle graph can be written as L = 2I − C − C-1.
Hence,

eH= L: e= =
∑

:1+:2+:3=:

(
:

:1, :2, :3

)
2:1 eH= (-C) (:2-:3) e= (9.38)

=
∑

:1+:2+:3=:
:2=:3

(
:

:1, :2, :3

)
2:1 . (9.39)

As a result we get eH= A2: e= = eH= L: e= = 3=,: for : < #/2. Furthermore notice
that eH= A2:e= is the number of closed walks of length 2: on the cycle graph of size
# > 2: . In order to have a closed walk of length 2: we need : left-shifts and :
right-shifts in total. However they can be in any order. Therefore, the total number
of such walks is given as (2:)!/(:! :!). This proves (9.35). �

Wewant to note that Lemma9.2 is proved for : < #/2, howeverwe have numerically
verified that (9.35) holds true for : < # as well.

9.3.3 Short-Time Approximations
Power series representation of the heat information is especially useful to understand
the behavior of I=,C for small values of C, in which case I=,C is expected to depend
only on the local properties of the =Cℎ node. In the following we will show that this
is in fact the case.

Using only the first three terms of (9.20), the heat information for small values of C
can be approximated as follows:

I=,C ≈ 3=,2 − 2 C 3=,3 + 2 C2 3=,4, (9.40)

which depends only on 4-hop neighborhood of the node =. Moreover, in the limit,
the heat information has the following:

lim
C→0+

I=,C = eH= L2 e= = 3=,2 = 32
= + 3=, (9.41)

which depends only on the degree (1-hop neighbors) of the node =.

9.4 Closed Form Expressions of the Heat Information for Some Graphs
In this section we will present closed form expressions of the heat information for
cycle, complete and star graphs. See Figure 9.2 for visual representations of these
graphs.
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(a) (b) (c)

Figure 9.2: Visualizations of a (a) cycle graph, (b) complete graph, and (c) star
graph.

9.4.1 Cycle Graphs
Using the expression in (9.9), the heat information of the =Cℎ node on the cycle graph
can be written as

I=,C =
#∑
:=1

4-2_: C _2
: |+=,: |

2 =
1
#

#∑
:=1

4-2_: C _2
: , (9.42)

where we use the fact that a cycle graph is a circulant graph, hence the graph
Laplacian can be diagonalized by the unitary DFT matrix of size # . Therefore
|+=,: |2 = 1/# for all (=, :).

It is important to note that I=,C does not depend on the node =. As a result, the heat
information is equivalent to the average: I=,C = IC . In fact this equivalence holds
true for any circulant graph.

It is known that theLaplacian spectrumof a cycle graph is_: = 2 (1- cos(2c(:-1)/#))
for 1 ≤ : ≤ # [29]. Therefore,

I=,C =
4 4-4C

#

#-1∑
:=0

44C cos(2c:/#) (
1- cos(2c:/#)

)2
. (9.43)

We can consider the expression in (9.43) as an approximation in the form of a
Riemann sum. Therefore, for sufficiently large values of # , the heat information
can be well approximated with the following integral:

I=,C ≈ 4 4-4C
1∫

0

44C cos(2cD) (
1 − cos(2cD)

)2 dD, (9.44)

whose closed form solution is given by

I=,C ≈ 4-4C
(
6 �0(4C) − 8 �1(4C) + 2 �2(4C)

)
, (9.45)
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where �a (C) denotes the modified Bessel function of the first kind of order a of C.

Using the asymptotic approximation of modified Bessel functions of the first kind
(see Eq. (9.7.1) of [1]), the heat information in (9.45) can be further approximated
as

I=,C ≈
3

32
√

2c
C - 5/2 (9.46)

for large values of C. On the other hand, for small values of C, (9.40) gives an
approximation of the heat information as follows:

I=,C ≈ 3=,2 − 2 C 3=,3 + 2 C2 3=,4 = 6 − 40 C + 140 C2, (9.47)

where we use the fact that 3=,: =
(2:
:

)
from Lemma 9.2.

The heat information in (9.43) together with the approximations in (9.46) and (9.47)
are provided in Figure 9.3 for various different values of # . It is clear that the short-
time approximation is valid regardless of # , whereas the long-time approximation
is valid for sufficiently large values of # .
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Figure 9.3: The heat information on cycle graphs for various values of # together
with the short-time and the long-time approximations.

9.4.2 Complete Graphs
Similar to cycle graphs, a complete graph is a circulant graph as well. Hence, the
heat information can be written as in (9.42). For the complete graph of size # it is
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well known that _1 = 0 and _: = # for : ≥ 2. As a result, the heat information can
be found as

I=,C =
1
#

#∑
:=2

4-2 # C #2 = # (#-1) 4-2 # C . (9.48)

We would like to note that this result is consistent with Corollary 9.1 since any node
of a complete graph is connected to every other node. Hence, (9.48) and (9.33) are
the same. Furthermore, for the average heat information we have IC/I0 = 4-2#C for
complete graphs. Since _2 = # , the bound in Theorem 9.1 is achieved with equality
for complete graphs.

9.4.3 Star Graphs
For the star graph of size # , let’s assume that the center node is labeled as 1.
Since the center node is connected to every other node of the graph, we can apply
Corollary 9.1 and obtain that I1,C = # (#-1) 4-2#C . For the remaining nodes of the
star graph we have the following:

3=,: =
# :-1 + # − 2

# − 1
for = ≥ 2. (9.49)

The result in (9.49) can be seen from the proof of Lemma 9.1 by letting L̄ = 0 and
observing that 3=,: = 2:+1 where 2: is given by (9.31). The use of (9.49) in (9.20)
results in the following:

I=,C =
∞∑
:=0

(-2C):
:!

# :+1+#-2
#-1

=
# 4-2#C + (#-2) 4-2C

#-1
. (9.50)

These examples of graphs justify the interpretation of Theorem 9.1. The cycle graph
(having the least connectivity among three) has the largest heat information: I=,C
decays with the 2.5Cℎ power of C. The complete graph has the highest connectivity,
and I=,C decays exponentially with both C and the size of the graph. The star graph
lies in the middle: the center node behaves the same as the nodes of a complete
graph (see Corollary 9.1). For the remaining nodes I=,C decays exponentially with
C, but it is not affected by the size of the graph (asymptotically).

9.5 The Maximum-Likelihood Estimator
The observation vector y has the distribution given in (9.6). As a result, the
Maximum-Likelihood (ML) estimator of the parameter C can be derived as follows:

ĈML(y) = arg min
C≥0

y − exp(-L C) e=
2
, (9.51)
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where the location of the source, =, is assumed to be known.

In general, ML estimators are not guaranteed to be unbiased, and they may not
achieve the Cramér-Rao lower bound. In the following, we will numerically verify
that the ML estimator in (9.51) is in fact unbiased and achieves the Cramér-Rao
lower bound for various different values of the parameter C.

In the following experiment we consider the cycle graph of size # = 150 and take
the observation noise level to be f = 10-3. We select a node and fix it for the
whole experiment. We generate data according to the model in (9.4) for various
different values of C and estimate the time parameter according to (9.51) using a
dense grid search. We repeat this procedure 105 times. The variance and the mean
of the simulated estimation results together with the theoretical bounds are given in
Figure 9.4a and Figure 9.4b, respectively.
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Figure 9.4: Performance of the ML estimator in (9.51): (a) variance, (b) mean.

As discussed in [67], the quantity �=,C / C2 provides intuitive interpretations for the
sensitivity and the normalized mean-squared-error of the estimation problem. In
the case of �=,C ≥ C2, we do not expect the ML estimator to achieve the CRLB.
According to (9.41) we have �=,C ≈ f2(32

= + 3=)-1 for small values of C. Hence, the
ML estimator is not expected to meet the CRLB when

C ≤ f (32
= + 3=)-1/2 ≤ f/3=, (9.52)

assuming that f is small enough (high SNR regime).

For the case of cycle graphs we have 3= = 2. Hence, (9.52) becomes C ≤ 5 · 10-4

in our experimental setting. This cut-off point can be seen clearly from Figure 9.4,
before which the ML estimator is biased, and its variance is lower than the CRLB.
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9.6 Concluding Remarks
In this chapter we assumed that there is a point source at a known vertex of a given
graph. This source starts to diffuse according to the heat equation at an unknown
time. We studied the estimation of the starting time from a noisy measurement of
the signal over the graph. In particular we derived the Cramér-Rao lower bound for
the problem. We showed that for graphs with higher connectivity the problem has
a larger lower bound making the estimation problem more difficult. We simulated
the performance of the ML estimator and showed that it is unbiased and achieves
the CRLB for a wide range of parameters. We also characterized the case where the
variance of the ML estimator deviates from the CRLB.

In future work, we will consider the case of unknown source location. We will
develop convex optimization based techniques for simultaneous estimation of the
time and the location of a point source. Furthermore, we will study the case when
there are multiple sources. We will analyze the change in the CRLB in the presence
of multiple sources, and develop techniques for the estimation of source parameters.
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C h a p t e r 10

CONCLUSIONS AND FUTURE DIRECTIONS

In this thesis, we studied various aspects of graph signal processing. In Chapter 2, we
presented a randomized and asynchronous version of the graph shift. In Chapter 3
we studied an asynchronous implementation of graph filters. In Chapter 4, we
extended the randomized model to include time-varying input signal, and studied
its behavior from a linear system theory viewpoint. Then, in Chapter 5 we showed
that switching system viewpoint provides a useful tool set for the analysis of random
asynchronous model and randomized Kaczmarz and Gauss-Seidel algorithms. In
Chapter 6, we studied an extension of multirate signal processing and filter banks to
the case of graph. In Chapter 7, we studied discrete uncertainty principles on graphs
and presented the existence of sparse eigenvectors. In Chapter 8, we studied energy
compaction filters on graphs for optimal polynomial filter design, and in Chapter 9
we studied estimation of the starting time of a diffusion over a graph.

In addition to the results presented in this thesis we believe that there are many
interesting research problems for future studies, which will be described next:

Further Aspects of Randomized Asynchronous Models: In the work presented
in Chapters 2 and 3 nodes are assumed to communicate with each other asyn-
chronously but reliably. However, in a more realistic scenario randomly broad-
casted messages may not be received by some of the recipients due to unreliable
communication between the nodes, in which case the theoretical analysis becomes
inconclusive. Nevertheless, initial numerical findings showed that convergence can
be achieved even in the case of unreliable communications. Therefore, it is possible
to incorporate unreliable communications into the asynchronous model and provide
rigorous results on convergence properties. Since unreliable communications can be
interpreted as time-varying networks, it is possible to consider such results further
for asynchronous communications on time-varying networks.

The results presented in Chapters 2, 3, 4, and 5 have considered the convergence
(or stability) of randomized asynchronous updates on a given system with a given
set of update probabilities. Since the necessary and sufficient conditions for the
convergence (and stability) depend on the systemmatrix (graph) and the index (node)
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update probabilities, it is very natural to consider the design of such randomized
systems. This is an interesting and challenging task due to the conditions being
nonlinear (even non-convex) in terms of the underlying parameters. In this regard,
it is possible to study the optimal probabilities as well as the design of the network
itself for different objectives, including, but not limited to, maximizing the rate of
convergence, minimizing the effect of the input noise, and obtaining robustness to
ambiguities in system parameters. Each such problem requires a careful attention
and is expected to open up even more interesting research questions.

Nonlinear Updates: Recurrent Neural Networks: In addition to the applica-
tions in graph signal processing, the randomized asynchronous update model stud-
ied in this thesis can also be interpreted as single layer linear recurrent neural
networks [84], where the underlying graph determines the type of network (e.g.,
edges with weights ±1 correspond to a Hopfield network). Therefore, it is possible
to consider extensions of these results to the case of nonlinear updates, where the
nonlinearity corresponds to the activation function of neural networks. Considering
the elevated interest in neural networks in recent years, we believe that analysis
of recurrent neural networks from the viewpoint of system theory carries a sig-
nificant potential for further developments. It is also possible to study extensions
of the randomized asynchronous model to the emerging field of geometric deep
learning (graphical neural networks), which aims to extend the neural networks to
non-Euclidean domains such as graphs [28].

Arbitrarily SparseEigenvectors andSparseGraphFourierBasis: Chapter 7 of
this thesis considered the existence of sparse eigenvectors from the uncertainty view-
point, and the main focus was to find the most sparse eigenvector, namely 2-sparse
case. Although the chapter have provided the necessary and sufficient condition
for the existence of 2-sparse and 3-sparse eigenvectors, necessary conditions for the
existence of an arbitrary -sparse eigenvector remains unknown. More interestingly,
2-sparse and 3-sparse eigenvectors are necessarily localized on the graph, whereas
an arbitrary  -sparse eigenvector need not be localized. Therefore, it would be
interesting to reveal the intricate relation between the sparsity and the locality
properties of the eigenvectors of graphs. In addition, earlier results on this problem
considered the existence of a single sparse eigenvector while the Fourier transform
on a graph depends on all of the eigenvectors. So, it would also be interesting to
study sparse graph Fourier basis in detail.
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