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ABSTRACT 

Solar fuels devices produce hydrogen fuel from water and sunlight and address a critical 

societal need for inexpensive, long-duration energy storage. Such devices are prepared 

from combinations of light-absorbing semiconductors and catalysts to sunlight to drive 

thermodynamically uphill reactions. This dissertation puts forth strategies for controlling 

the three-dimensional structure of semiconductors, electrocatalysts, and the film of gas 

bubbles evolved on the top and bottom of a solar fuels device. High-aspect ratio features 

led to unexpected effects in semiconductor/electrocatalyst assemblies. Optical losses were 

decoupled from the mass-loading of cobalt phosphide and copper electrocatalysts 

integrated onto silicon microwire photocathodes for the photoelectrochemical generation 

of hydrogen and hydrocarbons, respectively. Anti-reflective silicon microcone arrays were 

patterned with continuous films of Pt or CoP particles with minimal reflection losses due 

to the catalyst films. Transparent metal films were prepared from nanostructured metal 

phosphides, a class of earth-abundant hydrogen evolution catalysts. Silicon microwire 

array (photo)electrode surfaces were used to force bubbles away from electrocatalyst 

surfaces, even when oriented against gravity, leading to sustained operation in the absence 

of external convection.   
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