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APPENDIX 

A.1 General Experimental Methods 

Materials: All solutions were diluted with water obtained from a Millipore deionized (DI) 

water system, having a resistivity of 18.2 MΩ·cm. Fumasep FAAM-15 and NafionTM 117 

were obtained from Fuel Cell Store. Sulfuric Acid (TraceMetal Grade) and potassium 

hydroxide (99.99%, semiconductor grade) was were purchased from Fisher. Ammonium 

hydroxide (28 – 30 %) was purchased from JT Baker and hydrogen peroxide (ACS reagent, 

30%) was obtained from Macron. Buffered oxide etchant (6:1 (v/v) 40% NH4F to 49% HF) 

was obtained from Transene. Cobalt(II) chloride hexahydrate (CoCl2, >99.9%) and 

gallium-indium eutectic (GaIn, 99.99%, metals basis) were obtained from Alfa Aesar.  

Cleaning: In general Si samples were cleaned in a Radio Corporation of America, RCA, 

“Standard Clean 1” SC1 bath (5:1:1 H2O/NH4OH/H2O2, 80 °C for >10 min), buffered 

oxide etchant (10 s for planar samples and 5 min for wire samples at 20 °C), and an RCA 

“Standard Clean 2” SC2 bath (6:1:1 H2O/HCl/H2O2, 70 °C for >10 min) to remove SiO2, 

Al2O3 and trace metal impurities. 

Homojunction preparation: Immediately after cleaning of the samples followed by oxide 

removal in HF(aq), n+ doping of silicon chips was performed in a quartz tube under 10 

liters per minute N2 flow at 850°C with two PH-900 PDS wafers (Saint Gobain) serving as 

the P source. The P2O5 glass formed during the doping procedure was removed from the 

Si surface via buffered oxide etchant for > 60 s. 

Preparation of Si Microwire Arrays: Si was degreased with acetone and isopropyl 

alcohol and was then spin coated at 4000 rpm for 30 s with Shipley 1813 photoresist. A 

square array of circles was defined using UV exposure through a chrome mask.  The pattern 
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was developed with MF-319 developer, and the resist was hard-baked at 115 °C for 10 

min. Al2O3 masks, 125 nm in thickness, were deposited via e-beam evaporation at 1 Å×s-1 

into the exposed hole array and the resist was removed via sonication in Remover-PG 

(MicroChem) at 50 °C. Si was structured into 30 µm tall microwire arrays via deep reactive 

ion etching (RIE) in a SF6/O2 plasma controlled by an Oxford Plasmalab System 100 

at -130 °C. An inductively coupled plasma power of 900 W produced etching rates of 1 

µm min-1, while a low capacitively coupled plasma power of 3-7 W minimized sidewall 

damage and mask removal.  

Physical Characterization: Scanning-electron micrographs (SEMs) were obtained with a 

FEI Nova NanoSEM 450 at an accelerating voltage of 5.0-15.0 kV and a working distance 

of 5.0 mm using an Everhart-Thornley secondary electron detector.  

A.2 Supporting Information for Chapter 2 

Materials: 100mm P-type Si <100> wafers with a thickness of 525 µm and resistivity of 

10-20 Ω-cm were obtained from Addison Engineering. All chemicals were commercially 

available and used as received. Sodium hypophosphite monohydrate (NaPO2H2), boric acid 

(H3BO3, >99.5%), concentrated ammonium hydroxide (NH4OH, ACS reagent 28%-30%) 

and potassium hydroxide (KOH, 99.99%) were obtained from Sigma-Aldrich. Buffered 

oxide etchant (6:1 (v/v) 40% NH4F to 49% HF) was obtained from Transene Inc. Sodium 

chloride (NaCl, 99%) was obtained from Macron Chemicals.  

A.3 Supporting Information for Chapter 3 

Materials: Isopropyl alcohol, acetone, hydrochloric acid (36.5 - 38.0 %), and nitric acid 

(67 - 70 %, TraceMetal Grade) were purchased from Millipore, and CuSO4 was purchased 

from Flinn Scientific. K2SO4 (99 %), and potassium bicarbonate (99.995 %) were 
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purchased from Sigma-Aldrich. Methanol was purchased from VWR Chemical.  Buffered 

oxide etchant (6:1 NH4F/HF) was purchased from Transene. Boron doped, P-type silicon 

wafers with a resistivity of 10 - 20 W×cm were purchased from Addison Engineering.  

Platinum foil (99.99 %) was purchased from Alfa Aesar, and copper foil (99.999 %) was 

obtained from Sigma Aldrich. CO2 (99.999 %, <1.0 ppm Ar+O2+CO, <1.0 ppm THC, 

<3.0 ppm H2O, <5.0 ppm N2) was purchased from Airgas. 

 (Photo)electrodepositions of Catalyst: Prior to electrodeposition of Cu, electrodes were 

rinsed sequentially with acetone, isopropyl alcohol, methanol, and deionized water and 

then dipped into buffered oxide etchant for 60 s. Electrodepositions were controlled with a 

BioLogic SP-200 potentiostat. The Cu-plating bath was continuously purged with Ar(g) 

and contained 0.10 M CuSO4(aq), 5.0 mM H2SO4(aq), and 0.10 M K2SO4(aq), at a pH of 

~3. A saturated calomel electrode (SCE, CH Instruments) was used as a reference and the 

counter electrode was a high-purity graphite rod (Alfa Aesar, 5N) (Figure 3.1A). The 

illumination source was an array of narrowband light-emitting diodes (Luxeon Rebel Blue 

SMD, FWHM 22 nm) with a peak intensity at 465 nm. The illumination wavelength was 

selected to maximize transmission of light through the colored electrolyte. Cu was 

deposited potentiostatically at 0.0 V vs. SCE until the desired charge density had passed, 

normalized to the projected area of the electrode.  

Photoelectrochemical CO2 Reduction Testing: The electrochemical setup was operated 

in a continuous flow mode. Carbon dioxide was provided to the electrochemical cell at a 

flow rate of 5 sccm as controlled by an Alicat flow controller. The carbon dioxide stream 

was supplied as humidified CO2 with a gas bubbler placed between the cell and flow 

controller. The exhaust gases went through a liquid trap, then an Alicat flow meter, and 
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finally to a gas chromatograph (SRI-8610) using a Hayesep D column and a Molsieve 5A 

column with N2 as the carrier gas. The gaseous products were detected using a thermal 

conductivity detector (TCD) and a flame ionization detector (FID) equipped with a 

methanizer. Quantitative analysis of gaseous products was based on calibrations with 

several gas standards over many orders of magnitude in concentration.  The calibrations 

were used to calculate the partial current density, j, towards products of the CO2R and 

hydrogen evolution reaction. To measure liquid products, the electrolyte on the anode and 

cathode sides of the cell was sampled at the end of the run and was analyzed by high-

performance liquid chromatography (HPLC, Thermo Scientific Ultimate 3000). Products 

were not quantified in Faradaic efficiency calculations because continuous purging of the 

catholyte with CO2 expelled accumulated products. Moreover, crossover of products to the 

anolyte was observed and oxidation at the anode could potentially occur. An Oriel 

Instruments 75 W Solar Simulator supplied 100 mW×cm-2 of AM 1.5 illumination. The 

light intensity was calibrated using the measured photocurrent at a calibrated (350 to 1100 

nm, 1 cm2) NIST traceable Si photodiode (Thorlabs FDS1010-CAL) mounted within the 

testing cell prior to the addition of the electrolyte. 

Electrochemical measurements of photoelectrochemical CO2R: A PEEK compression 

cell was used as the vessel for the measurement with an anode chamber volume of 2 mL 

and a cathode chamber volume of 4 mL. The anode, cathode electrode and membrane area 

were each 1 cm2 as constrained by the design of the compression cell. CO2 saturated 

0.10 M potassium bicarbonate (KHCO3, pH 6.8) was used as the electrolyte. A Pt foil 

anode was used behind a Selemion anion exchange membrane. A leakless Ag/AgCl 

electrode was used as a reference. All electrochemical measurements were performed using 
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a Biologic VSP-300 potentiostat. Scan rates were set to 50 mV×s-1. Cu foil (99.999 %, 

Sigma Aldrich) was mechanically polished (Struers LabPol-5) using 0.050 µm alumina 

suspension (MasterPrep) and then was electropolished for 5 min in 85% H3PO4 at +2.1 V 

vs. a carbon counter electrode. 

Comparison of Catalyst Loadings: The mass loadings of catalyst were compared 

assuming a Faradaic efficiency of ~100 % towards metal plating. Equation S1 can be used 

to calculate the mass loading density, Mcat (mg×cm-2), from the cathodic charge density, -Q 

(C×cm-2) and molar mass of the catalyst. For Cu (ma = 63.55 g×cm-2), Mcat was 0.329 and 

0.0487 mg×cm-2 for -Q = 1 and 0.148 C×cm-2, respectively. 

     ŒœaN =
:–q£

+Ö
     (S1) 

Explanation of Resistance Measurement and iRs Correction: The resistance (Rs) was 

determined by electrochemical impedance spectroscopy (EIS) at the open-circuit potential. 

During the experiment, iRs was corrected by 85% and the remaining 15 % was corrected 

for after the experiment. 

Measurements of Pt Crossover during Stability Testing The rate of Pt dissolution in 

0.10 M KHCO3(aq) and crossover through Selemion were measured via a galvanostatic 

experiment at 10 mA using a Pt anode and a graphite cathode. The volumes of the anolyte 

and catholyte were each 13 mL. ICP-MS measurements confirmed the presence of 

dissolved Pt in both the anolyte and catholyte.  

Predicted j-E behavior: Illuminated j-E behavior was predicted by shifting the fitted Tafel 

behavior of the polished Cu foil towards positive potentials by Vph + b log10(Rµ). This 

calculation assumes a comparable microstructured area of Cu islands and Si and similar 

[H+(aq)] and [CO2(aq)] at the surface of the two electrodes. Simulated j-E behaviors in 
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Figure 4b were produced by summing the implicit values for η and Vph, calculated form 

Equations 1 and 2, as a function of Rµ and b. Arbitrary values for Jo = 1 ⨉ 10-10 A cm-2 and 

I = 1 ⨉ 10-7 A cm-2 were selected; these parameters do not affect the potential shift 

resulting from a change in Rµ but affect the total Vph and η observed. 

 
Figure A.3.1: Plot of Eoc vs. the ln of the light-limited photocurrent density (A×cm-2) in a 

Cu plating bath for planar and µW n+p-Si. The illumination source was a narrow band LED 

with a peak intensity at 630 nm. The illumination wavelength was selected to maximize 

transmission through the Cu film. The ideality factor was calculated from the slope of the 

linear fit in range of photocurrent densities relevant to operation under 100 mW×cm-2 of 

simulated sunlight. 

 

A.4 Supporting Information for Chapter 4 

Fabrication of n+p-Si µ-cone photocathodes with Pt: Czochralski-grown p-type Si 

wafers with a <100> orientation and a resistivity of 0.60-0.80 ohm-cm (Addison 

Engineering, Inc.) were photolithographically patterned with a square grid of Al2O3 circles 
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that were 3 µm in diameter with a 7 µm pitch. The Al2O3 was deposited to a thickness of 

200 nm via electron-beam evaporation. The µ-cones were etched from the masked p-Si 

wafer using an Oxford Dielectric System 100 ICP/RIE following a procedure described 

previously.119 A capacitively coupled power of 7 W, and an inductively coupled power of 

900 W, was used for etching.  Etching was performed in three steps, in which the ratio of 

SF6 to O2 gas was varied stepwise from 70 sccm : 6 sccm to 70 sccm : 7 sccm by increasing 

the rate of O2 flow by 0.5 sccm every 30 min. The chamber temperature and pressure were 

maintained at -130 °C and 10 mTorr, respectively. After etching, samples were cleaned via 

a modified RCA standard clean 1 (5:1:1 (vol) H2O:NH4OH:H2O2 at 70 °C) followed by an 

RCA standard clean 2 (6:1:1 (vol) H2O:HCl:H2O2 at 70 °C).  The samples were dipped in 

HF between the cleaning steps, which also resulted in removal of the Al2O3 etch mask. 

After cleaning, the samples were dipped in ~ 6.5 M HF(aq) for 1 min before thermal P 

diffusion using a Saint-Gobain PH-900 PDS diffusion-doping source at 850 oC for 15 min 

under a N2(g) ambient, to yield an n+p homojunction.  To reduce thermal stresses, the 

samples were inserted into, and removed from, the doping furnace over the course of 1 

min. The Si µ-cones were then heated to 150 °C on a hot plate, and mounting wax 

(Quickstick 135, South Bay Tech) was melted into the array as a mask. Excess wax was 

removed by reactive-ion etching using an O2 plasma at a forward power of 400 W and 300 

mTorr operating pressure.  The wax was etched until 6-9 µm of the tips of the µ-cones were 

exposed.  The samples were then dipped in ~ 6.5 M HF for ~1 min to remove the native 

oxide over the Si µ-cones, and Ti and/or Pt were sputtered onto the samples. The 

reproducible sputtering rate of the system allowed for the thickness to be controlled by the 

sputtering time and was referenced to a planar control wafer. Metal thicknesses on planar 



 144 

samples were measured with a DektakXT Profilometer.  The samples were then immersed 

in acetone and sonicated for 15 min to completely remove the wax, resulting in Si µ-cones 

with metal selectively deposited over the tips of the µ-cones. Samples were cleaved with 

a carbide scribe into ~10 mm2 chips and electrodes were fabricated as described above 

(A.1) 

Fabrication of p-Si µ-cone photocathodes with Co-P: p-Si µ-cone arrays were 

fabricated via the above etching and cleaning procedures but were not doped with an n+ 

emitter layer. Bottom-facing electrodes were made from the p-Si µ-cones as described in 

the previous section, and Co/Co-P was photoelectrochemically deposited onto the surface 

of the p-Si µ-cones using illumination from a narrowband light-emitting diode (LED) 

(Thorlabs) with an intensity-averaged wavelength of 625 nm. The light intensity at the 

surface of the sample was ~200 mW cm-2. The Co/Co-P plating bath has been described 

elsewhere,26 and was purged vigorously with Ar(g) prior to and during the deposition, with 

a gas stream in close proximity to the sample to drive local convection. 

Fabrication of membrane-embedded p-Si µ-cone photocathodes with Co-P: p-Si µ-

cones were embedded in PDMS by spin coating a 10:10:1 (vol) solution of toluene, PDMS 

elastomer, and curing agent (Dow SylgardTM 184) at 3000 rpm, leaving the top ~15 µm of 

the µ-cones exposed.  The samples were cured on a hot plate at 150 oC for ~ 30 min. The 

µ-cones were peeled off of the substrate using a razor blade. The flexible polymer 

membrane was held on its edges sandwiched between Kapton tape and a glass slide, with 

the back side of the µ-cones facing up. The thickness of the tape ensured that the tips of the 

µ-cones were not damaged. 500 nm of Au was deposited via electron-beam evaporation 

onto the backs of the µ-cones. Electrodes were made using these flexible substrates with 
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Ag ink connecting the Au back contact to a Cu-Sn wire that was fed through 6 mm outer 

diameter borosilicate glass tubing which was 1 mm thick.  Electrodes were fabricated as 

described above (A.1) 

Stability testing: Extended stability testing of n+p-Si/Ti/Pt and p-Si/Co-P µ-cone arrays 

was performed under nominally identical conditions as those used for 

photoelectrochemical testing, but with a Pt mesh electrode counter electrode behind a 

Nafion membrane (Fuel Cell Store). H2 was bubbled through the electrolyte for the 

duration of the stability tests to maintain a dissolved concentration of H2 in equilibrium 

with 1 atmosphere of H2(g). 

A.5 Supporting Information for Chapter 5 

Materials: All chemicals were commercially available and used as received. Sodium 

hypophosphite monohydrate (NaPO2H2), boric acid (H3BO3, >99.5%), concentrated 

ammonium hydroxide (NH4OH, ACS reagent 28%-30%), potassium hydroxide (KOH, 

99.99%), and TraceCERT® standards for phosphorus (P 1000 mg/mL) and cobalt (Co 10 

mg/mL) were obtained from Sigma-Aldrich. Hydrochloric acid (HCl, ACS grade 36.5-

38%) was obtained from Millipore. P-type Si wafers with a resistivity of 10-20 Ω-cm and 

n-type Si wafers with a resistivity of <0.005 Ω-cm, both with diameters of 100 mm, 

thicknesses of 525 µm, and <100> orientation, were obtained from Addison Engineering. 

Fluorine-doped tin oxide (FTO, NSG TECTM 15) with dimensions of 25 x 100 x 2 mm and 

a sheet resistance of 14 Ω/� was obtained from Pilkington. PH-900 PDS diffusion dopant 

source wafers were purchased from Saint-Gobain. 

Metallization: Metallization occurred in an AJA high-vacuum magnetron sputtering unit 

under a constant flow of Ar at 20 standard cubic centimeters per minute, with the chamber 
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pressure maintained at 5 mtorr. Ti was deposited via radio-frequency (RF) sputtering at 

130 W for 90 s whereas Co was deposited via RF sputtering for 90 s at 150 W. 

Fabrication of Electrodes: Silicon electrodes were prepared from individual 5-20 mm2 

chips of metallized n+-Si and n+p-Si samples. Ohmic contacts were formed via scratching 

In-Ga into the backside of the chips. FTO electrodes were prepared from 20-30 mm2 chips 

of metallized FTO samples. An adhesive Ag paint having a grain size < 1.0 µm (PELCO, 

Ted Pella) was used to affix the chips to a Cu-Sn wire that had been fed through 6 mm 

outer diameter borosilicate glass tubing that was 1 mm thick. Photoactive n+p-Si chips and 

FTO samples were sealed onto the end of the glass tubing using an opaque, insulating 

epoxy (Hysol 9460), whereas n+-Si samples used for ellipsometry were fixed to the tubing 

using clear nail polish, which facilitated removal of the samples from the electrode 

assembly prior to ellipsometric measurements.  

(Photo)electrochemical Measurements: (Photo)electrochemical depositions and 

hydrogen-evolution testing were performed using a Biologic SP-200 potentiostat. Single-

compartment glass cells were used for both deposition and testing, with a saturated calomel 

electrode serving as the reference electrode and a high-purity graphite rod (Alfa Aesar) 

serving as the counter electrode. The illumination source for depositions was a Thorlabs 

narrow-band light-emitting diode with a nominal wavelength of 625 nm. The performance 

of photocathodes for photoelectrochemical hydrogen evolution was measured in H2-purged 

0.50 M H2SO4(aq) under 100 mW cm-2 of simulated AM1.5 illumination produced by a 

filtered Hg (Xe) lamp powered at 290 W.  In-situ transmittance spectra of CoP were 

recorded using a Biologic VMP3 Multichannel potentiostat connected to a calibrated 

reference diode (Thorlabs FDS100-CAL) and lock-in amplifier.  The illumination source 
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was a Xe lamp powered at 150 W.  The illumination was passed through a monochromator 

controlled via LabView, and chopped at 10-15 Hz. Light was passed through catalyst films 

deposited on FTO and collected at the reference diode during electrochemical 

characterization. Transmittance data were calculated relative to the signal collected through 

a bare FTO electrode in the cell. 

Activation of Electrodeposited CoP: As deposited CoP films were activated via exposure 

to 10 mL 0.50 M H2SO4 (aq) at room temperature under a standard atmosphere. after a 

specified exposure time. Samples were rinsed with deionized water and dried under a N2(g) 

stream to prevent further etching of the film. 

Physical characterization: Atomic-force micrographs were recorded with a Bruker 

Dimension Icon using Peak Force Tapping mode. The Peak Force amplitude and frequency 

were set to 150 nm and 2 kHz, respectively.  For each tapping cycle, a force versus distance 

curve was recorded by the instrument and a feedback signal was based on the maximum 

force between the probe and sample.  ScanAsyst-Air probes (Bruker) had a nominal tip 

radius of 2 nm.   

Optical characterization: Optical constants were investigated by use of a variable-angle 

spectroscopic ellipsometer with a rotating analyzer (J.A. Woolam Co., Inc.). Measurements 

were recorded at an angle of incidence of 70º in 5 nm increments in wavelength over a 

range from 300 to 1100 nm. A model consisting of a Si substrate, a 1 nm Ti interlayer, and 

a user-defined “effective medium approximation”, EMA, layer composed of CoP and void 

regions was used to analyze the optical properties of the films as a function of thickness 

and time immersed in 0.50 M H2SO4(aq). A fixed set of optical constants was assumed for 

the metal fraction of the film, based on the average set of n and k values measured for CoP 
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films characterized prior to exposure to 0.50 M H2SO4(aq). Only the void fraction and 

depolarization factor were allowed to vary within an individual set of measurements, 

whereas the thickness was selected as a constant value that produced the lowest mean-

square error (MSE) value across the individual measurements.  Allowing for a graded index 

of refraction within the EMA layer improved the fit (lowered the MSE) but could not be 

independently verified and was therefore excluded from the model. Allowing the optical 

properties of the metal fractions to vary would have similarly improved the fit by providing 

additional degrees of freedom, but no independent measurements could be performed on 

continuous CoP films after exposure to acid.  Hence, in the absence of direct physical data, 

the optical properties were assumed to be best approximated by those of the “as-deposited” 

film composition. 

Measurement of corrosion products: Dissolved Co and P in 0.50 M H2SO4(aq) were 

quantified via inductively coupled plasma mass spectrometry, ICP-MS, as a function of 

time spent in acid under galvanostatic control at -10 mA cm-2. The volume of the electrolyte 

was 50 mL. Samples were recorded by withdrawing 0.500 mL of electrolyte at specified 

time intervals, which were diluted to a volume of 5.00 mL with deionized water for 

analysis. To avoid interference from sulfur in the electrolyte, phosphorus was quantified in 

mass-shift mode by forming a PO+ species detected at a mass to charge ratio of 47. 

Concentrations were calculated by comparing ion counts to calibration curves prepared 

from certified standard solutions. 
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Figure A.5.1: Real (n) and imaginary (k) components of the complex index of refraction, 

measured via spectroscopic ellipsometry in air, for as-deposited CoP films deposited to a 

thickness of 87 ± 12 nm, represented as open circles. Error bars represent one standard 

deviation between three independent samples. For comparison, n and k values for an 80 

nm Co film are plotted as dashed lines.137 

 

Figure A.5.2: Spectroscopic ellipsometry of n+-Si/Ti/Co/CoP samples at metal loadings 

of 400 (red circles), 800 (blue squares) and 1200 (black triangles) mC cm-2. Measured data 

points are shown as individual markers, simulated data are represented as continuous lines 

(a) Real components and (b) Imaginary components of the dielectric functions of as 

deposited CoP films (filled markers) and films activated after 10 minutes of activation in 

0.50 M H2SO4(aq) (open markers). (c) Comparison of simulated and measured values for 

parameter Psi. (d) Comparison of simulated and measured values for parameter Delta. 
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A.6 Supporting Information for Chapter 6 

Materials: All chemicals were commercially available and used as received. Fe(II) sulfate 

heptahydrate (ACS Reagent, >99%), Fe(III) sulfate hydrate (97%) and 1,10-phenanthroline 

(>99%) were obtained from Sigma-Aldrich, gallium-indium eutectic (GaIn, 99.99%, 

metals basis) was obtained from Alfa Aesar, and concentrated ammonium hydroxide 

(NH4OH, 28%-30%) was obtained from JT Baker.  Hydrochloric acid (HCl, ACS grade 

36.5-38%), acetone, and isopropyl alcohol were obtained from Millipore. Hydroxylamine 

sulfate (>98%) was obtained from TCI America. N-type Si wafers with a resistivity < 0.005 

Ω-cm and diameters of 100 mm, thicknesses of 525 µm, and <100> orientation, were 

obtained from Addison Engineering.  

Mass transport measurements: The thickness of the diffusion layer was measured via 

spectrophotometric determination of Fe2+ in a Shimadzu Solid Spec 3700 ultraviolet-

visible spectrometer, following complexation with 1,10-phenanthroline in 0.50 M 

H2SO4(aq) and mixing the solution with 2.3 mL of 0.2 M sodium acetate (aq) to bring the 

pH to 4-4.5.166 The testing cell was set up in a nominally identical manner to the cell used 

for HER testing, with the addition of 8.80 mL of 0.100 M Fe3+(aq), as Fe(III) sulfate, in 

0.50 M H2SO4(aq) to the 50 mL electrolyte prior to testing to an initial äÖL—“
∗ = 0.0150 M. 

The precise concentration of the ferric sulfate stock solution was determined via 

spectrophotometry, following reduction with hydroxylamine, and assuming a molar 

extinction for tris(1,10-phenanthroline)iron(II) of 1.10 x 104 M-1 cm-1.1,2 A diffusion 

coefficient of Fe3+(aq) of 5.5 x 10-6 cm2 s-1 was assumed in calculating boundary layer 

thicknesses, assuming planar diffusion (Equation 5.1). The value of äÖL—“
∗  was adjusted to 
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be the last recorded concentration of Fe2+(aq), with the concentration of Fe2+(aq) not 

changing by more than 4% during an individual electrolysis.  

Calculations of Growth Coefficients: Radius versus time data for individual bubbles 

measured via high-speed microscopy were fit to a model for diffusive growth of a gas 

bubble in a supersaturated medium (Equation A.6.1). 

F(Ç) = DÉ;ÑyzÇ>
3/(

    (A.6.1) 

where Ñyz = 4.5	 × 10:Z cm-2 s-1 is the diffusivity of H2 in solution and DÉ is the 

dimensionless growth coefficient. When the driving force for bubble growth is small, the 

effects of advection at the growing surface can be ignored, such that analytical expressions 

can be derived relating DÉ to äyz(a/). A self-consistent requirement for neglecting the effects 

of advection is that the Péclet number, which expresses the ratio of advective and diffusive 

growth, is < 1. For DÉ > 1 this condition does not hold and growth coefficients were thus not 

directly related to äyz(a/). 

Calculation of Weighted Mean Bubble Diameter: The thickness of the gas bubble layer 

was variable in time and with position on the electrode surface. The mean bubble diameter, 

d, weighted by the fraction of surface obscured by an individual bubble, was calculated as 

an approximation of the instantaneous gas bubble layer thickness (Equation A.6.2). 
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Where A is the geometric surface area of the electrode, the surface is assumed to be 

obscured by the projected area of the bubble, and the contact angle is assumed to be large 

such that the height of the bubble is approximately equal to the diameter. 

 



 152 

 

 

Figure A.6.1: Image sequence at 200 frames s-1 and 5-times magnification of an upward-

facing µW 6|28 electrode passing 25 mA cm-2 of current density for hydrogen evolution. 

Time stamps are referenced to the first frame and are in seconds. Inset image shows a ~30 

µm bubble nucleus forming between microwires. Loss of focus at the bubble surface 

occurred due to the release from the electrode.   

 

A.7 Supporting Information for Chapter 7 

Materials: All chemicals were commercially available and used as received. Conductive 

Ni and Ag paint were obtained from Ted Pella.  Hydrochloric acid (HCl, ACS grade 36.5-

38%), acetone, and isopropyl alcohol were obtained from Millipore. Buffered oxide etchant 

(6:1 (v/v) 40% NH4F to 49% HF) was obtained from Transene Inc and hydrogen peroxide 

(H2O2, ACS grade 30%) was obtained from Macron Chemicals. Sulfuric acid (H2SO4, 

TraceMetal grade) and potassium hydroxide (KOH, Semiconductor Grade) were obtained 

from Fisher Scientific. Concentrated ammonium hydroxide (NH4OH, 28%-30%) was 

obtained from JT Baker. N-type Si wafers with a resistivity of 0.4 Ω-cm and p-type Si 

wafers with a resistivity of 10–20 Ω-cm, having diameters of 100 mm, thicknesses of 525 

µm, and <100> orientation, were obtained from Addison Engineering. Potassium 
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hexacyanoferrate(II) trihydrate (K4[Fe(CN)6]·3H2O, >99%) cyanide was obtained from 

Sigma-Aldrich.  

Mass-transport velocity measurements: The current derived from oxidation of 

Fe(CN)64– was calculated based on the change in absorptivity of the electrolyte in the cell 

before vs after a bulk electrolysis. The electrolyte was not stirred during testing but was 

vigorously stirred by a magnetically-powered Teflon stir bar prior to sampling the 

electrolyte. A calibration was performed at a large area Ni coil held potentiostatically at 

1.3 V vs RHE. At this potential, the current associated with oxygen evolution was 

negligible and the current derived from Fe(CN)64– oxidation was limited by mass transport. 

Figure A.7.2 presents the change in absorptivity at 420 nm as a function of charge passed 

for a series of such experiments. The concentration of Fe(CN)63– in the cell was calculated 

as Q / nFV where Q is the total charge passed at 1.3 V vs. RHE, n is the number of electrons 

required for the oxidation (1), F is Faraday’s constant (96485 C mol-1) and V is the volume 

of electrolyte in the cell during oxidation (0.097 L or 0.047 L for cells incorporating the 

upward-facing and downward-facing electrodes, respectively). The extinction coefficient 

of 1059 M-1 cm-1 was calculated from a linear regression of the measured absorbances and 

calculated concentrations. 

Image processing: Images of downward-facing photoelectrodes were processed in 

MATLAB. The manually defined electrode area restricted the pixel area for data collection, 

and was used to calibrate the pixels per mm2 scale at the electrode surface. The location 

and diameter of bubbles were recorded for each image, and the fractional coverage was 

calculated relative to the geometric electrode area. Manual quantification of bubbles was 

supplemented by automatic detection of similarly sized bubbles using a Hough transform. 
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Figure A.7.1: (A) Cyclic voltammogram of a polished, 0.5 mm diameter Ni wire embedded 

in epoxy in 1.0 M KOH(aq). The scan rate is specified in mV s-1. (B) Cyclic voltammogram 

of 10 mM Fe(CN)64– in 1.0 M KOH(aq) at a polished, 0.5 mm diameter Ni wire embedded 

in epoxy. (C) Cyclic voltammogram of 10 mM Fe(CN)64– in 1.0 M KOH(aq) at a Au wire 

embedded in borosilicate glass tubing. 

 

Figure A.7.2: Electrolyte absorbance at 420 nm versus [Fe(CN)63–] as measured via the 

anodic charge passed at a Ni wire in a solution of 10 mM Fe(CN)64– in 1.0 M KOH(aq). 
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