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ABSTRACT

Typical optical systems are designed to be implemented in free space or clean
media. However, the presence of optical scattering media scrambles light waves and
becomes a problem in light field control, optical imaging, and sensing.

To address the problem caused by optical scattering media, we discuss two types
of solutions in this thesis. One type of solution is active control, where active
modulators are used to modulate the light wave to compensate the wave distortion
caused by optical scattering. The other type of solution is computational optics,
where physical and mathematical models are built to computationally reconstruct
the information from the measured distorted wavefront.

In the part of active control, we first demonstrate coherent light focusing through
scattering media by transmission matrix inversion. The transmission matrix in-
version approach can realize coherent light control through scattering media with
higher fidelity compared to conventional transmission matrix approaches. Then,
by combining the pre-designed scattering metasurface with wavefront shaping, we
demonstrate a beam steering system with large angular and high angular resolution.
Next, we present optical-channel-based intensity streaming (OCIS), which uses only
intensity information of light fields to realize light control through scattering me-
dia. This solution can be used to control spatially incoherent light propagating
through scattering media. In the part of computational optics, we first demonstrate
the idea of interferometric speckle visibility spectroscopy (ISVS) to measure the
information cerebral blood flow. In ISVS, a camera records the speckle frames of
diffused light from the human subject interferometrically, and the speckle statistics
is used to calculate the speckle decorrelation time and consequently the blood flow
index. Then, we compare the two methods of decorrelation time measurements
- temporal sampling methods and spatial ensemble methods - and derive unified
mathematical expressions for them in terms of measurement accuracy. Based on
current technology of camera sensors and single detectors, our results indicate that
spatial ensemblemethods can have higher decorrelation timemeasurement accuracy
compared to commonly used temporal sampling methods.
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C h a p t e r 1

INTRODUCTION

Optics have accompanied human beings for a long time. From copper mirrors
thousands of years ago, to simple lenses and prisms a few hundred years ago, until
microscopy, photography, and lithography systems nowadays, optical systems have
experienced a great evolution. Most of the abovementioned systems are designed for
free space or clear media. In other words, typically there is no scatterer in between
the optical system and the target, and light travels along straight lines between them.

However, as optical systems are implemented in broader areas, the presence of
scattering media breaks the free space or clear media assumption. For instance,
when driving in a foggy day, the object from far away cannot be seen clearly. This is
because the light is scattered by the fog particles in between our eyes and the object,
and no longer follows the straight line propagation in certain levels. In fact, the fog
particle here is a type of scattering medium that prevents the optical system from
imaging the object correctly. This light scattering problem actually exists in many
research and engineering areas, such as deep tissue imaging, remote sensing, and
astronomy.

In this chapter, we will discuss the physics of light, the phenomena of optical scat-
tering, the mathematical models, as well as the engineering approaches to overcome
the problems caused by optical scattering media.

We first discuss the physics of light in two perspectives: classical Maxwell’s equa-
tions and quantum optics. The Maxwell’s equations describe the light propagation,
while the quantum optics describe the quantum nature of photons. We then dis-
cuss the temporal coherence and spatial coherence of light. Next, we discuss the
interaction between light and scattering media in two manners, absorption and scat-
tering. The scattered light consequently generates the scattered light patterns with
certain statistical properties, termed speckle patterns. After that, we introduce the
transmission matrix theory for modeling the input-output relation of light propagat-
ing through scattering media. Based on the transmission matrix, optical wavefront
shaping can be used to control light propagation through or inside scattering media.
Light propagation inside scattering media can also be modeled by the diffusion
equation, and it has broad applications especially when transmission matrix char-
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acterization is not applicable. Finally, we discuss the case where the scattering
medium is dynamic and introduce corresponding models to describe the dynamic
case.

1.1 Maxwell’s equations
Maxwell’s equations are a set of partial differential equations that provide a mathe-
matical model for electromagnetic fields. For the elctromagnetic waves in free space
or clear media, the space-time coupled equation set has the following expressions
[1]:

r � E = 0�

r � B = 0�

r � E = �mB
mC
�

r � B = �‘n mE
mC
�

(1.1)

where C is the time variable, E is the electric field, B is the magnetic field, and n and
‘ are the permittivity and permeability of the media.

By using the curl of curl identity r � „r � E” = r„r � E” � r2E, we can obtain the
wave equation for the electrical field:

r2E = ‘n
m2E
mC2

=
1
E2
m2E
mC2

� (1.2)

where E = 1p
‘n

is the propagation speed of the wave. Similarly, the magnetic field
also follows the same wave equation. Without loosing generality, here we use the
electric field to represent the electromagnetic waves.

Since the different components of E (i.e. �G � �H, and �I) are not coupled, the wave
equations can be expressed by a complex scalar function k„r� C” which represents
the components of E:

r2k„r� C” = 1
E2
m2k„r� C”
mC2

� (1.3)

Assuming that the wave function k„r� C” is time-harmonic, we have k„r� C” =
�„r”48lC , where �„r” is the amplitude of the wave function, and l is the frequency
of the wave function. Then, we obtain the Helmholtz equation:

r2�„r” ‚ :2�„r” = 0� (1.4)

where : = l�E. From the structure of the Helmholtz equation, we can easily obtain
the eigen solution (plane wave solution) of Eq. 1.3:

k„r� C” = �k4
8„lC�k�r” � (1.5)
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where k is the wave vector of the plane wave and it follows jkj = : , and �k is
the amplitude of the plane wave. The amplitude �k is determined by the initial
values and the boundary condition of the physical system. Therefore, given the
initial values and boundary condition of a physical system, we can decompose the
electromagnetic wave into the plane wave basis, and the wave evolution can be
described analytically by propagating the different plane wave basis independently.

1.2 Quantum nature of light
In many experiments, lasers are used as light sources. The light field from lasers
can be described as coherent states. A coherent state jUi is defined as the eigenstate
of the annihilation operator 0̂ with the corresponding eigenvalue U. The coherent
state can be expressed as [2, 3]:

jUi = 4� 1
2 jU j

2
1Õ
==0

U=
p
=!
j=i � (1.6)

with U a complex number. Here, j=i is the energy eigenstate of the Hamiltonian
� = \l„0̂y0̂ ‚ 1

2 ”, where \ is the reduced Planck constant, y denotes the Hermitian
transpose, and l is the angular frequency of the photon. Therefore, the probabil-
ity of finding a certain photon numbers in the coherent state jUi follows Poisson
distribution:

%„=” = j h=jUi j2 = 4�jU j2 jU j
2=

=!
� (1.7)

The average photon number h=i in a coherent state is

h=i = h0̂y0̂i = jU j2� (1.8)

and the variance „�=”2 is

„�=”2 = h0̂y0̂0̂y0̂i � h0̂y0̂i2 = jU j2� (1.9)

The �= term sometimes is termed shot noise. It describes the statistical uncertainty
of the number of photons in a coherent state. For a given coherent state with the
average photon number h=i, the ideal measurement signal-to-noise ratio (SNR) of
the average number of photons is

(#’ =
h=ip
„�=”2

=
p
h=i� (1.10)

This implies that the measurement SNR is scaling up with the average number of
photons in a square root relationship. A larger average number of photons can yield
a higher measurement SNR of the average number of photons.



4

1.3 Temporal coherence and spatial coherence
In practice, light waves may not be strictly monochromatic, and the phase difference
at different locations may not be a constant. Hence temporal coherence and spatial
coherence are introduced to quantify the properties of light waves.

In optics, the degree of coherence is typically quantified by the correlation coefficient
� of two electric fields, which is defined as

� =
h�1�

�
2ip

hj�1 j2i hj�2 j2i
� (1.11)

where �1 and �2 are the electric fields, and h�i is the expected value operator. Tem-
poral coherence and spatial coherence investigate Eq. 1.11 from two perspectives -
time domain and spatial domain.

Temporal coherence can be described by the autocorrelation function �„g” of an
optical wave � „C” with respect to time delay �C, i.e.,

�„�C” = h� „C”� „C ‚ �C”�ip
hj� „C” j2i hj� „C ‚ �C” j2i

=
h� „C”� „C ‚ �C”�i
hj� „C” j2i

� (1.12)

where �1 and �2 in Eq. 1.11 are replaced by � „C” and � „C ‚�C”. �„�C” usually has
a shape similar to a bell shaped curve, with �„0” = 1 and gradually decreasing to 0
as j�C j increases. Coherence time g2 is defined as the time delay over which �„�C”
drops below a specific value, such as 1�4. In practice, coherence length ;2 = 2g2
is more commonly used. From a physics perspective, ;2 gives an intuitive sense of
how long the wave packet is. If the wave packets have relative delays less than ;2,
they can interfere with each other and provide high contrast interference fringes.

Similarly, spatial coherence can be described by the autocorrelation function �„g”
of an optical wave � „C” with respect to spatial shift �A, i.e.,

�„�A” = h� „A”� „A ‚ �A”
�i

hj� „A” j2i
� (1.13)

where �1 and �2 in Eq. 1.11 are replaced by � „A” and � „A ‚ �A”. Typically,
in a common optical system, �„�A” decreases from 1 to 0 as �A increases from
0 to 1. The coherence area � is an empirical notation within which �„�A” is
larger than a specific threshold. From a physics perspective, coherence area �
means that if points in the light field are located within the area �, they have static
phase difference. Light emitting from these points can interfere with each other
and provide high contrast interference fringes. The spatial coherence can vary as
the light field propagates. Van Cittert–Zernike theorem [4, 5, 6] provides detailed
analysis on the propagation of spatial coherence.
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1.4 Light absorption
Light absorption occurs when the photon energy matches the energy spacing be-
tween different energy levels of electron-atom systems. The absorption of a bulky
macroscopic material can be characterized by a coefficient termed absorption co-
efficient (‘0). The light intensity � along the light propagation direction I can be
quantified as [7]

� „I ‚ 3I” � � „I” = �‘03I� (1.14)

After mathematical derivation, Eq. 1.14 can be written as

� „I” = �04�‘0I� (1.15)

where �0 denotes the light intensity at the location of I = 0. Equation 1.15 is
called the Beer-Lambert-Bouguer law. It indicates that the light intensity during the
propagation in a loss medium follows exponential decay.

The absorption coefficient is wavelength dependent. In typical applications of biol-
ogy, the absorption mostly comes from the major components of biological tissue,
such as water and hemoglobin. The 650–950 nm optical window has relatively
low absorption from biological tissue, and therefore enables light to penetrate tissue
with less loss. Therefore, in most biomedical applications and implementations,
this optical window is chosen to acquire more scattered signal light.

1.5 Light scattering – a single particle
Light scattering for a single particle can be strictly solved by Maxwell’s equations.
Depending on the single particle size (3) and the lightwavelength (_), light scattering
can be classified in three regimes: geometrical scattering, Mie scattering, and
Rayleigh scattering.

Geometrical scattering is the regime where the particle size is much greater than
the light wavelength (3 ¡¡ _). In this case, geometrical light rays (reflection,
refraction, and deflection) can be used to approximate the light wave function.

Mie scattering is the regime where the particle size is comparable to the light
wavelength (3 � _). In this regime, Maxwell’s equations have to be introduced
and the analytical solution usually has a form of series summation, where the series
basis can be Bessel functions, Hankel functions, or other functions depending on
the boundary conditions. Typically, the Mie scattering light energy is proportional
to the square of the particle diameter. It should be noted that Mie theory is referred
to a collection of solutions, rather than a specific analytical form.
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Rayleigh scattering is the regime where the particle size is much smaller than the
light wavelength (3 �� _). In this situation, there is a closed form solution to the
angular light intensity distribution � „A� \” [7, 8]:

� „A� \” = �0
1 ‚ cos2 \

2A2 „2c
_
”4„

=2
B � =2

<

=2
B ‚ 2=2

<

”206� (1.16)

where „A� \” is coordinate of the field position, �0 is the light intensity of the incident
plane wave, _ is the wavelength of the light, 0 is the radius of the scatterer, and
=B and =< are the refractive indices of the scatterer and the background medium,
respectively. The inverse dependency on _4 indicates preferential scattering of
shorter wavelengths.

One important quantity in single particle scattering is the scattering aniostropy factor
6, which is defined as [7]

6 =

„ c

0
?„\”2c sin„\”3\ � cos„\” = hcos„\”i � (1.17)

Here, ?„\” is the density distribution of the scattering field with respect to scattering
angle \. Intuitively speaking, 6 is the weighted average of cos„\” with the density
distribution function ?„\”. For instance, in the single particle Rayleigh scattering
regime, ?„\” can take the form of Eq. 1.16 with appropriate normalization.

1.6 Light scattering – a collection of particles
In real situations, light typically interacts with scattering media, e.g., light scattering
happens with a collection of particles. In this case, we need to use statistical models
to model the interaction between the light and the scattering media. Assuming that
the light absorption is negligible, a simplified model, which contains the scattering
mean free path ;B [mm] and the scattering anisotropy factor 6, can be used to
describe a collection of particles. Scattering mean free path ;B, or the inverse of
the scattering coefficient ;B = 1�‘B, is defined as the average distance travelled by
a photon between successive scattering events. By using this model, when light
travels inside the scattering media along the direction I, the intensity of the light
field � „I” that is not scattered (called ballistic light) experiences the exponential
decay [7]:

� „I” = �04�‘BI� (1.18)

where �0 is the intensity of the incident light.

However, Eq. 1.18 only models how much of the light is not scattered, but it does
not depict how much of the light still follows the original direction or trajectory. For
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instance, if the scattering anisotropy factor 6 � 1, even if the scattering happens,
but it almost does not affect the propagation direction of the light. In this case, it
"seems" no scattering happened. By incorporating the scattering anisotropy factor 6
into the scattering model, typically we use reduced scattering coefficient ‘0B [mm-1]
or transport mean free path ; 0B [mm] to describe the scattering media [7, 9]:

‘
0
B = „1 � 6”‘B� (1.19a)

;
0
=

1
‘
0
B

� (1.19b)

Equation 1.19 uses a lumped property ‘0B, which incorporates ‘B and 6, to describe
the light scattering. This equation includes the cases where photons have expe-
rience multiple scattering events, but still retain some memory of their original
directionality[7].

1.7 Speckles
When monochromatic light interacts with scattering media, the scattered light field
is termed speckle field. Consider a point % in the speckle field. The complex field
� is the phasor summation of the exit plane of the scattering media (Fig. 1.1),
according to Huygens’ principle [10]:

� =
1
p
#

#Õ
==1

0=4
8q= � (1.20)

Here, # denotes the number of phasor components in the phasor summation, and
0= and 48q= denotes the amplitude and phase terms of the =-th component phasor on
the exit plane, respectively. The scaling factor 1p

#
is introduced to preserve finite

second moments of the sum even when # approaches infinity. Typically, 0=48q= and
0<4

8q< are independent provided = < <. Therefore, if we assume that the phasor in
the exit plane follows a specific distribution, the complex field � is the summation of
these random variables 0=48q=’s. The central limit theorem predicts that � follows
complex normal distribution if = is large. The probablity density function ?’�� „’� �”
of the real and imaginary parts (’ and �) of the complex field � has the form of [10]

?’�� „’� �” =
1

2cf2 4
� ’2‚�2

2f2 � (1.21)

where f is the standard deviation.

Of equal interest are the statistics of the amplitude � and phase \ of the complex
field � . The joint distribution of � and \ can be derived from the theory of variable
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Figure 1.1: Light propagation through a scattering medium.

transformation

� =
p
’2 ‚ �2� (1.22a)

\ = arctan„ �
’
”� (1.22b)

and

’ = � cos \� (1.23a)

� = � sin \� (1.23b)

The joint distribution of � and \ then follows8>><>>:
?� „�” = �

2f2 4
� �

2f2 � � � 0�

?\ „\” = 1
2c � 0 � \ � 2c�

(1.24)

If � and \ do not fall in the range in the above equation, the probability density is
zero.

1.8 Transmission matrix
SinceMaxwell’s equations are linear equations with respect to electric and magnetic
fields, if the boundary conditions are also linear (n and ‘ in Eq. 1.1 are not dependent
on E and B), the interaction between light and scattering media will be a linear
process. Therefore, a scattering medium is a linear system that transforms the input
light field to the output light field. For a given deterministic linear system (scattering
medium in this case), we can model it by using a matrix. Here, the matrix is termed
transmission matrix ) , which builds the mapping between the input light field (�8=)
and output light field (�>DC).
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In Fig. 1.2, suppose the incident light field �0 located at plane 0 can be decomposed
into = modes (the modes can be in spatial domain, spatial frequency domain, etc),
and the output light field �1 located at plane 1 can be decomposed into < modes.
The transmission matrix )01 is then an < � = matrix, and it relates �0 and �1 as
follows [11, 12, 13]:

�1 = )01�0� (1.25)2666666664
�1�1

�1�2

���

�1�<

3777777775
=

2666664
C11 C12 ��� C1=

��� ���

C<1 C<2 ��� C<=

3777775
2666666664
�0�1

�0�2

���

�0�=

3777777775
� (1.26)

Equation 1.26 is the detailed expression of Eq. 1.25.

Figure 1.2: The schematic of Plane a and Plane b at the two sides of the scattering
medium.

It is of similar importance to know the transmission matrix )10 if the incident light
field is at plane 1 and the output light field is at plane 0. The principle of optical
reciprocity ensures that )10 = ))01, where „�”

) denotes the matrix transpose.

If the scattering medium is lossless, both transmission matrices )01 and )10 are
unitary, i.e.,

)
y
01
)01 = �=� (1.27a)

)
y
10
)10 = �< � (1.27b)

Here, �= denotes an = � = identity matrix, and „�”y denotes the Hermitian transpose.
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If we use the reciprocity property )10 = ))01 together with unitary condition in Eq.
1.27, we will have

)�10)01 = �=� (1.28)

where „�”� denotes the conjugate operator. Equation 1.28 is actually the principle of
time reversal in electromagnetic waves. A more intuitive explanation can be seen as
follows. Assume that an incident field �0 on plane 0 is illuminating the scattering
medium, then ��0 is the phase conjugated field of �0. Multiplying �0 on both sides
of Eq. 1.28, and taking phase conjugate of both sides, we have

„)�10)01�0”
� = „�=�0”��

, )10)
�
01�

�
0 = �

�
0�

, )10�
�
1 = �

�
0 �

(1.29)

The last line in Eq. 1.29 shows that a phase conjugated field �1 will result in the
phase conjugated field �0 after the light field is reversely propagating through the
scattering medium.

The above derivation assumes that we have full access to both of the incident field �0
and the output field �1. Practically, we can only have access to part of the modes of
the incident field �0 and the output field �1. The part of modes that is not accessible
can be treated as loss. In this case, the unitary assumption of transmission matrices
does not hold, and the time reversal relation in Eq. 1.28 should not be valid either.
However, when light propagates through scattering media and some modes are lost,
interestingly, the time reversal still approximately holds, i.e.,

)�10)01 � U�=� (1.30)

where U is a normalization constant. This relation can be derived only based on the
optical reciprocity and the statistical distribution of the matrix entries, without the
unitary assumption.

The derivation of Eq. 1.30 can be seen as follows. Equation 1.21 indicates that
the real and imaginary parts of the output field of the light that is scattered by
scattering media follows Gaussian distribution, therefore the entries in each column
of transmission matrices (Eq. 1.26) follow complex Gaussian distribution [10].
Hence, all the entries in transmissionmatrices follow complexGaussian distribution.
If we define the matrix $ as $ = )�

10
)01, the 8� 9-th entry of $ is equal to

>8 9 =

<Õ
:=1

C�:8C: 9 � (1.31)
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Since C:8 and C: 9 follow complex Gaussian distribution, only when 8 = 9 , >8 9 has
a positive expected value; if 8 < 9 , the expected value of >8 9 is 0. Therefore, the
diagonal entries of $ have positive expected values, and the off diagonal entries
have expected values of 0. This implies that $ = )�

10
)01 � U�=.

1.9 Optical wavefront shaping
Optical wavefront shaping is an approach to control the light propagation through
or inside scattering media. Based on the transmission matrix according to the
scattering medium, corresponding wavefront can be calculated for creating specific
patterns through or inside the scattering medium. Optical wavefront shaping can
be realized by spatial light modulators (SLM). SLM can impose spatially varying
modulation on the incident wave, where the modulation can act on amplitude,
phase, and polarization. Typical SLM devices include liquid crystal cell arrays,
digital micromirror devices (DMD), and deformable mirrors. In this section, we
will focus more on liquid crystal cell arrays for phase modulation and DMD for
amplitude modulation.

Typical architectures of liquid crystal cell arrays used in optical wavefront shaping
adopt smectic liquid crystals [14]. In such arrangement, the orientation of liquid
crystal molecules can be driven by external electric fields. If the liquid crystal
molecules are uniaxial crystals or biaxial crystals, this property can be used to
control the phase retardance of the transmitted light. More specifically, assume that
the liquid crystal molecules are uniaxial and the incident light has the polarization
aligning with the long axis of the molecules. If the external electric is applied to
rotate the orientation of the molecules, and the final state of the molecules have
short axis aligning with the polarization of the light, then the optical path length of
the transmitted light is changed by „=; � =B”3, where =; is the refractive index of
the long axis, =B is the refractive index of the short axis and 3 is the thickness of
the crystal cell. The liquid crystal cells can be designed to let the molecules have
continuous rotating angles, therefore the phase retardance can be designed to range
from 0 to 2c. A 2D array of such cells can be aggregated to form a phase-modulated
spatial light modulator.

DMD is fully integrated and monolithically fabricated on a mature SRAM CMOS
address circuitry [15]. It consists of a 2D array of micromirrors, where each
micromirror is attached to the torsional hinge aligned along the diagonal of the
mirror. After applying electrostatic forces, each micromirror has two static tilted
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angles (typically +10� and -10�). If the DMD is aligned accordingly in the optical
system, the two static tilted angles of each micromirror can correspond to ON and
OFF states. Therefore, DMD can be used as an amplitude modulation SLM. Since
it is an MEMS device and each micromirror has small inertia, the refresh speed of
DMD can achieve 23 kHz [16], which is significantly faster than conventional liquid
crystal SLM.

1.10 Light diffusion in scattering media
The characterization of transmission matrix for scattering media requires access to
both the input plane and output plane. This access is not always allowed in practice.
For instance, when doing in vivo biomedical experiments (the scattering medium
is biomedical tissue), we typically cannot access the plane inside the biomedical
tissue. Estimating the light intensity distribution inside scattering media is of
essence in such applications. Therefore, it is important to know how light diffuses
into scattering media.

The diffusion equation, which is derived from the radiative transfer function, can be
used to describe light diffusion in scattering media [7]:

m�„r� C”
2mC

‚ ‘0�„r� C” � �r2�„r� C” = („r� C”� (1.32)

where�„r� C” denotes the fluence rate (intensity) at location r and time C, ‘0 denotes
the absorption coefficient of the medium, („r� C” denotes the isotropic source of
photons at location r and time C, and � denotes the diffusion coefficient with
� = 1�„3‘0 ‚ 3‘0B”. Here, ‘0B is the reduced scattering coefficient mentioned in
section 1.6, with ‘0B = ‘B�„1 � 6”, where 6 is the scattering aniostropy factor.

For an infinitely short point source („r� C” = X„r� C”, the impulse response of Eq.
1.32 is

�„r� C” = 2

„4c�2C”3�2
exp„� A2

4�2C
� ‘02C”� C ¡ 0� (1.33)

If the source is time-independent, the term m�„r�C”
2mC

in Eq. 1.32 is zero. Equation 1.32
then degenerates to the time-independent form:

�„r” � 1
‘2
eff
r2�„r” = („r”� (1.34)

where ‘eff =
p
‘0�� =

p
3‘0 „‘0 ‚ ‘

0
B” denotes the effective attenuation coefficient.

For a time-independent source („r” = X„r”, the impulse response of 1.34 is

�„r” = 1
4c�A

exp„�‘eff A”� (1.35)
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Since both time-dependent and time-independent diffusion equations 1.32 and 1.34
are linear with respect to �, and the medium is shift-invariant, the Green function
approach can be used to calculate the response of more complicated sources. For
the time-dependent Eq. 1.32, the Green function has the form of

�„r� C; r0� C 0” = 2

»4c�2„C � C 0”…3�2
exp»� jr � r0 j2

4�2„C � C 0” � ‘02„C � C
0”…� C ¡ C 0 � (1.36)

Therefore, for any arbitrary source in space and time („r0� C 0”, the fluence distribution
has the following expression:

�„r� C” =
„ C

0

„ 1

0
�„r� C; r0� C 0”(„r0� C 0”3r03C 0 � (1.37)

For the time-independent Eq. 1.34, the Green function has the form of

�„r; r0” = 1
4c� jr � r0 j exp„�‘eff jr � r0 j”� (1.38)

For any arbitrary source in space („r0”, the fluence distribution has the following
expression:

�„r” =
„ 1

0
�„r; r0”(„r0”3r0 � (1.39)

Based on the diffusion equation, diffuse optical tomography (DOT) has been imple-
mented in optical imaging for biomedical tissue [17, 18]. A typical schematic of
DOT is shown in Fig. 1.3. A source-detector pair is placed on the surface of the
tissue. The light from the source first diffuses into the tissue and then is scattering
back to the detector. Based on the light signal collected by the detector, forward
models or inverse models are built to recover the tissue properties (absorption and
scattering coefficients). Then, an array of such source-detector pairs are used to
build a spatial map of tissue properties at different locations. The spatial resolution
of such architecture is determined by the volume of the "banana shape" along which
photons travel from the source to the detector. Mathematically, the point spread
function (PSF) of such structure is the multiplication of the illumination PSF and
the detection PSF. The detailed expression of the illumination PSF (detection PSF
only has a lateral shift) can be found in Ref. [19]. Figure 1.3 gives an exam-
ple of architecture with the source-detector separation of 22<, ‘0 = 0�0252<�1,
‘
0
B = 102<�1, and tissue refractive index = = 1�33. As a rule of thumb, the spatial

resolution of DOT is about 20% of the light penetration depth X (X = 1�‘0) [7]. The
mean photon-visited depth is about

p
dX�2, where d is the source-detector separa-

tion [20]. Experimentally, the penetration depth of photons can reach centimeters
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[7], but the spatial resolution is rather modest. Despite the relatively modest spatial
resolution, the inherent non-invasive, radiation free, and portable properties make
it useful in biomedical areas such as brain imaging [21] and tumor imaging [22].

Figure 1.3: A typical configuration of a DOT setup.

1.11 Decorrelation
The preceding discussions assume that the scattering medium is static. In practice,
many scattering media are dynamic, such as blood flow in tissue, particles in fluids
with Brownian motions, etc. In such cases, if the illumination light on the scattering
sample is coherent, the output light field will be a dynamic speckle field. The
change of the output speckle field can be described as a decorrelation process, and
this process can be quantified by complex field correlation function �1„C” [23]:

�1„C” = h� „0”� „C”�i � (1.40)

where h�i denotes the expected value. Since common photo detectors measure the
light intensity (/ j� j2) instead of the light field, the intensity correlation function
�2„C” is

�2„C” = h� „0”� „C”i � (1.41)

The Siegert relation can be used to relate �1„C” and �2„C”, if the dynamic output
light field at each point follows complex Gaussian distribution. The Siegert relation
has the form [23, 24] of

�2„C” = h�i ‚ V j�1„C” j2� (1.42)

where V is a parameter which depends on the number of speckles detected and the
coherence length and stability of the laser. In the ideal case, V = 1.

The normalized correlation functions are more common in experimental conditions,
since they remove the information of the absolute light intensity and only leave
the relative change. The normalized field correlation function 61„C” and intensity
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correlation function 62„C” are defined as

61„C” =
h� „0”� „C”�i
hj� „0” j2i

(1.43)

and
62„C” =

h� „0”� „C”i
h� „0”i2

� (1.44)

Similarly, the Siegert relation of the normalized correlation functions reads as

62„C” = 1 ‚ V j61„C” j2� (1.45)

For ideal cases, 61„0” = 1 and 61„1” = 0, while 62„0” = 2 and 62„1” = 1. The
time scale of the decorrelation can be quantified by decorrelation time, which is
defined as the time instant where the correlation function 61„C” drops to a specific
value.

Decorrelation plays a subtle role in light control and imaging with scattering media.
Sometimes it hinders applications, while sometimes it is helpful for applications. In
light field control, we use transmission matrix to describe the scattering medium,
and we typically first characterize the transmission matrix and then use the informa-
tion of the matrix to realize light field control. In this case, decorrelation raises the
requirement of running speed of transmission matrix characterization and light field
control, since within the decorrelation time the characterized transmission matrix
should still be valid for light control. In optical imaging and sensing through scat-
tering media, the decorrelation time itself is an indicator of the dynamic scattering
media. For instance, in dynamic light scattering, people use the decorrelation time
to infer the information of blood flow [25] and air turbulence [26].

Outline of this thesis
This thesis discusses light control and light detection through scattering media.
In Chapter 2, we investigate the transmission matrix inversion approach to realize
coherent light control through scattering media. In Chapter 3, we use a pre-designed
scattering medium - scattering metasurface - to realize large angular range and high
resolution beam steering. InChapter 4, we investigate themethod of optical-channel-
based intensity streaming (OCIS), which can be used for incoherent light control
through scattering media. In Chapter 5, we present a method termed interferometric
speckle visibility spectroscopy (ISVS) to quantify the decorrelation time of dynamic
scattered light, and we implement the ISVS method to measure the human cerebral
blood flow. In Chapter 6, we perform unified analysis of two methods that are
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traditionally used to quantify the decorrelation time of dynamic scattered light, and
demonstrate their equivalence in terms of the measurement accuracy.
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C h a p t e r 2

FOCUSING LIGHT THROUGH SCATTERING MEDIA BY
TRANSMISSION MATRIX INVERSION

Focusing light through scattering media has broad applications in optical imaging,
manipulation, and therapy. The contrast of the focus can be quantified by peak-to-
background intensity ratio (PBR). Here, we theoretically and numerically show that
by using a transmissionmatrix inversionmethod to achieve focusing, within a limited
field of view and under a low noise condition in transmission matrix measurements,
the PBR of the focus can be higher than that achieved by conventional methods such
as optical phase conjugation or feedback-based wavefront shaping. Experimentally,
using a phase-modulation spatial light modulator, we increase the PBR by 66% over
that achieved by conventional methods based on phase conjugation. In addition,
we demonstrate that, within a limited field of view and under a low noise condition
in transmission matrix measurements, our matrix inversion method enables light
focusing to multiple foci with greater fidelity than those of conventional methods.

2.1 Introduction
Focusing light through scattering media has broad applications in areas such as
biomedical imaging [1, 2, 3, 4], cell cytometry [5], optogenetics [6, 7], and photo-
dynamic therapy [8]. However, because of the refractive index inhomogeneity, light
is scattered when propagating through scattering media. To focus light through such
turbidmedia, researchers have developed a number of wavefront shaping techniques,
including feedback-based methods [9, 10], optical phase conjugation [11, 12, 13,
14], and transmission matrix methods [15, 16, 17, 18]. Feedback-based methods
employ a spatial light modulator (SLM) to continuously shape the wavefront of
the incident light while monitoring the feedback signal from a guidestar which is
proportional to the light intensity at a target location. In this way, an optimum
wavefront can be obtained to maximize the light intensity at the target location to
form an optical focus. Optical phase conjugation methods achieve light focusing
by phase conjugating the scattering light field emitted from a guidestar [19] located
at the target location. Traditionally, transmission matrix methods first measure the
scattered light fields corresponding to different incident light fields (i.e. measure the
transmission matrix), and then realize focusing by sending an appropriate incident
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field which is proportional to the linear combination of the columns of the transpose
conjugation of the measured transmission matrix.

To focus light through scattering media, wavefront shaping methods typically use
an SLM to increase the light intensity at the target location. This strategy is
fundamentally tied to the concept of phase conjugation, i.e., using the finite elements
of the SLM to align the phase of the incident wavefront to increase the intensity at
the target location. Typically, the number of optical modes of the scattered light
field is larger than the number of controllable elements on the SLM. Therefore, one
can only partially conjugate the correct wavefront solution, which leads to a non-
zero background surrounding the focus. The contrast of the focus can be quantified
by a peak-background ratio (PBR), which is the ratio between the intensity of the
focus and the average intensity of the background surrounding the focus. We note
that our definition of PBR is different from the conventional wavefront shaping
definition of PBR, which is the ratio between the focus intensity and the average
intensity before wavefront shaping [9]. We chose to use our definition, since in
most applications such as point-scanning microscopy and photolithography, the
contrast of a focus in a single light pattern is an important parameter. In theory,
the PBR of the focus is proportional to the number of degrees of freedom (pixels
or super-pixels) of the SLM [9]. This conclusion is intuitive because we can only
increase the intensity at the target location by a limited amount, given that we have
only a limited number of degrees of freedom. However, in a noise-free or very
low noise situation, if we take the strategy to increase the intensity at the target
location while darkening the background near the target location, we can achieve
a focus with a higher PBR than that achieved by conventional methods in a given
field of view (FOV). We will refer to this method as transmission matrix inversion,
because mathematically it takes the pseudoinverse of the transmission matrix to
realize it. Popoff et al. have demonstrated that using the inverse of the transmission
matrix one can recover an image through scattering media with greater fidelity
than that using the phase conjugation method [20]. The method we demonstrate
here shares the same theoretical foundation with the transmission matrix inversion
method they reported in [20]. In this work, we compare the transmission matrix
inversion method and the phase conjugation method based on the optical focus (foci)
directly measured (without reconstruction) after transmission through the scattering
medium and find that the transmission matrix inversion method is able to focus light
with higher contrast and fidelity under a noise-free or low noise condition. This
high-contrast light focus (foci) formed directly after transmission through scattering
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media has a number of important applications, including point-scanningmicroscopy
and photolithography.

2.2 Principle and simulation
Mathematically, we use a transmission matrix T to relate the optical fields before
(�8=) and after (�>DC) transmitting through a scattering medium:

Eout =

2666666664
�>DC�1

�>DC�2

���

�>DC�<

3777777775
=

2666664
C11 C12 ��� C1=

��� ���

C<1 C<2 ��� C<=

3777775
2666666664
�8=�1

�8=�2

���

�8=�=

3777777775
= TEout� < � =� (2.1)

Here, the scatteringmedium is described by a transmissionmatrixT, whose elements
C8 9 follow a complex Gaussian distribution [21, 22, 23] with a zero mean and a
variance f2, i.e., C8 9 � �# „0� f2” . The incident field Ein is described by an = × 1
vector and the output field Eout is described by an < × 1 vector. Here, < means that
there are < modes in our interested FOV, but does not mean that the total number of
output optical modes is < after light propagates through the scattering medium. We
assume < � =, which is the condition for theoretically realizing a zero background,
as will be discussed in the following subsection Focusing light to one target location.

Focusing light to one target location
To focus light through scattering media by conventional methods such as phase
conjugation, we obtain the appropriate incident light field by Econj

in = T� � Eout

[15]. Here, T� denotes the conjugate transpose of T. If we want to focus light to
one target location, without losing generality, we can set the desired output field
Eout =

h
1 0 ��� 0

i C
, where »�…C denotes matrix transpose. Thus, Econj

in is the first

column of T� , i.e., Econj
in = T� �

h
1 0 ��� 0

i C
, and the output field achieved by

the phase conjugation method can be calculated by

Econj
out = T � T� �

2666666664
1
0
���

0

3777777775
� (2.2)
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Because of the statistical property of the elements of T, T � T� � UI , where I

Iconj
out = jE
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out j
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���
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Since the elements C8 9 of T follow the complex Gaussian distribution, the probability
theory shows that the expected value of �2>= 9

>DC�1 (peak intensity) is = times higher than
that of �2>= 9

>DC�:
(: < 1, background intensity) [9]. Therefore, the PBR is limited by

the number of independent incident optical modes =, which depends on the pixel
number of the SLM. In this case, we use all the degrees of freedom to enhance only
one specific output mode while doing nothing about the background (the rest of the
modes). Moreover, the theory only predicts the intensity enhancement statistically
based on the distribution of the elements of T; the exact enhancement should be
measured experimentally, or calculated based on the known transmission matrix T.
However, if we take thematrix inversion, the enhancement is no longer limited by the
pixel number on the SLM. Here, we choose the first column of the pseudoinverse of
T as the input field Einv

in , i.e., Einv
in = T‚ �

h
1 0 ��� 0

i C
, where T‚ = T�„TT�”�1

denotes the Moore–Penrose pseudoinverse [24] of T and it has the property of
T � T‚ = I . Then, the output light field can be calculated by

Einv
out = T � Einv

in = T � T‚ �

2666666664
1
0
���

0

3777777775
=

2666666664
1
0
���

0

3777777775
� (2.4)

Here, the Moore-Penrose pseudoinverse requires the condition of < � = as men-
tioned in Eq. 2.1. The result in Eq. 2.4 shows that theoretically the background can
be suppressed down to zero; thus the PBR can be increased to infinity. We should
note that the phase conjugation is a special case of the Moore-Penrose pseudoin-
verse. When there is only one output mode (i.e., the transmission matrix is 1 by =),
T� is the same as T‚ except by a normalization factor. When there are more than
one output modes, the transmission matrix inversion method not only increases the
intensity of the focus, but also allocates some degrees of freedom to suppress the
background intensity.

Figure 2.1 illustrates the difference between the foci achieved by the transmission
matrix inversion method and the phase conjugation method for light focusing. In a
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given FOV (denoted by the red boxes in Fig. 2.1 (a)), the transmission matrix inver-
sion method has a higher PBR than that of the phase conjugation method, because
the background can theoretically be suppressed to zero. For locations outside the
FOV, the background intensity for both methods are similiar. Energy conservation is
still satisfied because we only re-distribute the energy so as to improve the contrast
inside the FOV, but not break the unitarity of the total transmission matrix.

Figure 2.1: Illustration of focusing light to a target location by (a) the transmission
matrix inversion method, and (b) the phase conjugation method. The red box in (a)
denotes the selected field of view.

Simulation results are shown in Fig. 2.2. We generated a transmission matrix with
a dimension of 49×100, and used both the phase conjugation and the transmission
matrix inversion methods to focus light to a single mode inside a FOV of 49 optical
modes. The PBR of the focus achieved by the phase conjugation method (Fig.
2.2(a)) is 51. In comparision, the PRB of the focus achieved by the transmission
matrix inversion method reaches infinity, since the background within the FOV is
suppressed to zero (Fig. 2.2(b)). From Fig. 2.2, it can be seen that the tradeoff of
our matrix inversion method is that the peak intensity is lower than that of the phase
conjugation method, because some degrees of freedom are assigned to suppress the
background.

In practice, the noise in the measurement of transmission matrix reduces the PBR,
so the PBR cannot reach infinity. Based on the derivations in the Appendix, we
theoretically prove that the PBR of the transmission matrix inversion method is
determined by the ratio of the difference between the number of degrees of freedom
to control light (=) and the number of modes in the FOV (<) to the normalized
noise level (quantified by variance f2

= , normalized by f2) in transmission matrix
measurement:

%�’ =
= � <
f2
=

� (2.5)
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Figure 2.2: Two-dimentional simulations of focusing light through a scattering
medium to a target location by (a) phase conjugation, and (b) transmission matrix
inversion.

If we fix = and rewrite Eq. 2.5, then %�’ = 1�V
f2
=
=, where V = <

=
. If 1�V

f2
=
¡ 1 , PBR

can be higher than =, which is the theoretical limit of the PBR in phase conjugation.
Elaborations on Eq. 2.5 will be discussed in section 2.4.

Focusing light to multiple target locations
Here, we demonstrate that our matrix inversion method enables light focusing to
multiple foci with higher fidelity than those of conventional methods based on phase
conjugation [15]. We use an example of focusing light to two target locations to
explain the principle (Fig. 2.3). Since the phase conjugation method simply adds
the fields of two focus light fields together (Fig. 2.3(a)), the peak of one focus
interferes with the background associated with the other focus. Therefore, the peak
intensity of the two foci is no longer equal due to the interference, even if they are
equal when achieved individually by phase conjugation.

When the PBR of the focus is low, the amplitude of the peak is close to the amplitude
of the background, so this low fidelity problem becomes even more severe for the
phase conjugation method. In contrast, if we suppress the background associated
with one focus at the position of the peak of the other focus, the peak intensities
of the two foci would be equal (Fig. 2.3(b)). The matrix inversion method enables
us to achieve this scheme. We first select the positions of the foci with equal focal
light intensity, then at each focus position, the background associated with the other
focus is automatically set to zero.

Figure 2.4 shows the simulation results of focusing light to two locations through




