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STABILITY AND DYNAMICS OF SPHERICALLY SYMMETRIC

MASSES IN GENERAL RETLATIVITY

by James Maxwell Bardeen

Abstract

The Einsteln equations for a sphericélly symmetric distri-
buticn of matter are recast in comcving (Iagrangian) coordinates in
a form similar to that of the classical hydrodynamic equations, thus
facilitating the physical interpretation of the equations. The Jump
conditions for a shock wave in an ideal fluid are found in these
coordinates. The equation of radiative transfer in general relativity
ig derived, and analyzed with respect to the non-gravitational inter-
action of the radiation and the matter as roflceted in the cquations
arising from the zero covariant divergence of the energy-momentum
tenscr. The radiative transfer equation is solved assuming the radia-
tion ig in local thermodynamic cquilibrium with the matter.

We present some examples of numerical calculations of the
equilibrium, stability, and dynamics near equilibrium cf spherically
symmetric masses for a simple, although physically reasonable, typs
of equation of state, in which the thermal energy density is given
solely in terms of the pressure and an adiabatic index I7 +that is
independent of density and pressure. One numerical method follows

the growtn of instabilities to all orders in the fractional change in



radius away from equilibrium. Our formulation of the Iirstein
equaticns ig applied to the analytical study of the stabllity, and

we prove that, regardless of the equation of state, a maximum or
rminimum of the binding energy as a function of central density along

a sequence of masses in hydrostatic and convective equiliorium with
congtant number of baryons and constant rest mass per barycn implies
some mode of radial oscillation has zero frequency there. As a re-
sult of this theorem, the stability properties of models in convective
equilibrium can ve read cff a plot of fractional birding energy against
the ratio of gravitational radius to radius. One exemple is presented
of a numerical difference equation calculation of the collapse of a

large mass inside the gravitaticnal radius.
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Introduction

Developrments in astronomy, in particular the discovery
and investigation of the quasi-stellar radio sources or quasars (l),
have led to a renewal of interest in the application of general
relativity to astrophysics on a loecal, rather than cosmological,
scale. EBoyle and Fowler (2, 3) have proposed models of quasars in
which, because of the predominance of radiation pressure, general
relstivity plays an important role due to its effect or stability,
even though the effect on the structure may be small. The apparent
need for the sudden release of tremendous amounts of energy in the
Formgtion of the extended double radio sources (4) associated with
some large elliptical galaxies has stirred speculation (5) that
gravitational collapse to near the gravitationsl radius GM/c2
might be a mearns of providiag this cecnergy. An entirely different
arealin which general relativity may be important is in the collapse
of supernovae cores (6).

Our purpcse in tals paper is not <o analyze in detail any
particular vhysical model, but rather to iay the groundwork for numeri-
cal calculations based on the exact equations of general relativity.
What calculations we do present are for the most part based on a
gimple ansatz for the equation of state in terms of the adiabatic
index relating pressure and specific volume at constant entropy-

For certain values of the adiabatic index this may be a good approxi-

mgtion to a particular vdhysical model, but we wish to analyzec the



effects of general relativity, not those of some peculiarity of the
equatior of state-

The foundaticn of our work i1z a refcrmulaticn of the
Finstein eguations for a spherically symmetric distribution of
matter. We neglect rctation because cf the great complicaticn
it produces in the equations of general relativity, even though
it may be very important in astrophysical applications. Our
reformulation is particularly sulted to comoving coordinates,
and +the resulting equations bear a close resemblence to those of
Newhonian ILegrangian hydrodynamics if the energy-momentum tensor
ig *hat of a perfect Cluild. We loox upon the freedom of coordinate
transformation in gereral relativity not as a reason to maintain
a covariant form cf “he equations but as a license to find that
coordinate system which puts the equations in the form whkich has
the simplest and most direct physical interpretation. Comoving
coordinates have the advantage trkat it is for an observer moviag
with the matter that the local properties of the matter, as described
by the energy-momentum tensor, are the simplest. It is also possible
<0 make o conslstent assigmment of the "potential energy" of the
gravitational field in terms of a factor multiplying the local
energy density of the matter which also contalns the +"kinetic
energy" of the matter relative to the origin. This localization
of the energy is possible in a spherically symmetric problenm
because cf an unambiguous geometrical radius which measures the
cireumfercrnce of a circle or the area of a sphere centered at

the origin.
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The precise definition of comoving coordinates and
how the metric is related to the thérmodynamic Pproperties of
the matter is treated with some care in Chapters IT and III.

We accept a hydrodynamic description of the matter, golng to
kinetic theory only for the discussion of radiative transfer

in Chapter IV. The equation of radiative transfer 1s derived

for arbitrary coordinates, and in the case of spherical symmetry
and comoving coordinates used to interpret physically the equa-
tionsg arising from the zero covariant divergence of the energy-
momentum tensor. The equation is solved assuming the radiation

is in local thermodynamic equilibrium with the matter, obtaining
resulte in agreement with those of Misner and Sharp (T), who
congider the process of thermal diffusion in general relativity
directly- Re. W. Lindquist (8) in independent unpublished work

has formulated the problem of radiative transfer in a way simllar
to ours. An elaborate formalism for treating kinetic theory in
general relativity has been constructed by Tauber and Weinberg (9);
however, our approach, which emphasizes the role of an observer
comoving with the matter, has a more direct physical interpretation
and takes advantage of the loecal flatness of gpace-time.

" The hydrodynamic eéuations are used to study intensively
the stability of a mass in equilibrium and the growth of instabili-
tieg. An important result is a proof that a maximum or minimum of
the binding energy as a function of central density, keeping the

number of nucleons constant, in a sequence of equilibrium models,
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cach in convective equilibrium, irplies some mode of radial ogell-
lation is in neutral equilibrium there. We discuss a mumerical
method which finds how the kinetic energy changes assuming a certain
shape for the velocity ag a Tunction of radius. One application is
to investigate the stablility under secord order pertubatlions when
tke fundaments’ mode of radial oscillation is in neutral equilibrium
with respect to first order pertubations of the equilibrium equation.

Only a single example 1s Dresented of a nmumerical soluticn
0f the hydrodynamic equationg using a difference cquation method, but
we discuss in a general way the advantages and disadvantages of alter-
native formulations of the difference equations. A difference scheme
which is accurate when the size of the body is much larger than its
gravitational radius might not be suitable when the body contracte
inside 1ts gravitational radius. An asymptotic solution, under
certair assumptions about the variation of presgsure with density,
iz obtained analytically for the 1imit that the radius of a mass
she_1l goes to zero.

In the final chapter we discuss our numerical and analy-
tical resulss and their implications for models of quasars. We
conclude that if a quasar is to be a single coherent mass, a mass
large enough to meet the energy requirements cannot be stabilized
at cenlral temperstures high enough for nuclear reactions unless
rotaticn 1g invoked. A crude estimate of the effects of rotation
is made by treating both the general relativity and the rotaition

as pertubaticns on a spherically symmelric classical model. The
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question of the reversibility of gravitational collapse near and
insgide the gravitational radius also receives attention.

Other investigators have pursued lines of research paral-
lel’ to some of those reported here. In particular, Podurets (lO)
and Misner and Sharp (ll) have made use of essentially the same
reformulation of the Eingtein equations and at least in the case
of Misner and Sharp have interpreted them in a similar way.
Chandrasekhar (12 5 13) hag derived the equations governing radial
oscillations and stability, and he and others have applied them to
various physical models. Difference equation numerical integrations
of gravitational collapse inglde the gravitational radius have been
made by White and May (lh)~ Since we have developed an independent
approsch to the Interpretation and appllicatlion of the hydrodynamic
equations we will not refer to parallel work in the body of the
thesls exéept to compare results.

It should be realized that the only general relativistic
corrections to the Newtonian theory tested by experiment are first
order in the ratio of gravitational radius to radius. Thus the
post-Newtonlan analyses of Chandrasekhar (13) for the stability of
akclass of polytropes and of Fowler (5) for the properties of large
mgsses have some experimentai foundation. The agpplication of general
relativity when the radius is close to the gravitational radius is a
considerable theoretical extrapolation, but it is the best theory we

have-



I. The Einstein Equations

The gssumption of spherical symmetry allows drastic simpli=-
fications to be made in the metric tensor and in the energy-momentium
tensor. The detalled arguments justifying the simplifications may
be found in Synge (15), and will not be repeated here. The result for
the metric tensor is that coordinatés can be found so the only non-zero
components are g, = ag, &1, =—b2, 8op = -Rg, and g33k= -R?singe,

1

. g, b, and R arc

w N
1]

) 0
where x =t, x =r, x =29, and x
functions of r and t only. Yhe line element is

4s” = a° at® - v ar- - K (de2 + 51n°0 dq?) . (1.01)

We use throughout thig paper units in which the gravitatlonal constant
and the speed of light are unity.

When formal use of subscripts and superscripts is convenient,
we will follow The usual summation convention for repeated indices, with
Igtin indices running from zero to three and Greek indices from one to

three. If F 1g a function of r and %, let

. . | SF ¢ _ {oF
F - a_t) ) F (6_‘:') .
ir t

Letting Y = 1/e and X = 1/b, the proper *ime derivative is FY and

the proper radial derivative is F'X.
The coordinate system is not yet completely specified in that
for any r¥ = r¥ (r,t) we may find a t¥% = t* (r,t) suach that the line

element still has the form (1.01). Of course, there is also invariance
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of form under independent scale transformations of r» and 4, with
% =% {(r) and t¥ = t¥ (t). Independent of all “hese transforma-
tions R 1nas the definite geometric significance that Mﬂﬁg is the
area, Of a sphere centered at the origin. The variable » has no
direct gecmetrical significance, aglihough it is possible to choose
coocrdinates in which = = R.

The spherical symmeblry restricls lhe non-zero components

1 0
of tke ecnergy-momentum tensor to TO Tl. ™ T T2

o Ty To Tv and

2)

which is equal to T2 « The symmetry of the ccntravariant

s
2

3)
form of the cnergy-momentum tensor allows us to define a quantity

K such thas

™ b¥ = - TolaX = K . (1.02)

C 1
We will work with T 0’ T 17

TEE, and K, since they are independent
of scale trgnsformgticns of r and *t.

Requiring invariance under scale transformations is a useful
guide to physically relevant forms of the equations, since the physilcs
cannot depend on the units chosen to measure the time coordinate and

the radial cocrdinate. The physically important derivatives of the

components of the metric tensor will be the scale invariant quantities

Z = RlX E} (l'o3>
U= RY , (1.0L)

¢ YI
f=2%x= -3X , (1.05)

(1.06)

O
"
olo'
o
I
1
>4
K
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Although the Riemann-Christoffel symbols associated with
the metric (l.Ol) are well-known and may be found, for instance, in
Synge (lh), we list the non-zero ones in Appendix I. In tems of
the scale invariant quantities defined above, the Riemann tensor has

the non-zero components

0 .
R101=f'x+f2-qY-q , (1.07)
20 _ .30 _ _UY | Z
302-303 -F *tEf (1.08)
s
2L _ 31 . zX _ U
B, =837 7R R4 (1.09)
2.
R3223=—(1+U2—Z)/R2 , (1.10)
{
12 13 _ %2y _ U._. UX_1z
bY R, = bY R 30 = 5t = = a - (1.11)
The Ricci tensor is defined by R;j = lejm
The Einstein equations,
R -3 R = g (1.12)
J J Tk j 7’
which may be found in somewhat different notation in lendau and
Iifschitz (16), are
Az ! ' R
gr® = 22X 4 241+ - 22)R (1.13)
0 R R
gt = 20 L 2Z .4 (14 ? - A2)R (1.11)
1 R R
M 7.
= ¢ 2 v - §2 Uy g . zX _ Z.
8ﬂI22—qY+q—fX £ =t fa = Rr,(1.15)

8mK = % (U'x - zq) = % (zy - ur) . (1.16)
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These cquations are not yet in a form convenient for
physical interpretation. We can simplify them as follows. From
equation (1.16)

2U _ 2uu'x 87KU
R ¢ 7R 7

Using +this equaticn (1.13) becomes
2,0 U2 Dy =
BrR=(T 2+ Ku)b = [R (1 + - 7). . (1.17)
Similarly, we may rewrite equation (1.1&) as
BE(T U - e = (R (L+ T -25)] . (1.18)

Equations (1.17) and (1.18) sugges: that we define a quantity M such

that
o
72 = 1+ - 2M/R - (1.19)
Then
/ 2, 0 . }
MX = 4RE(T &t XU) , (1.20)
and . P
MY = LmR“(T“1 U - Kz) . (1.21)

I7 the geometry 1s to be locally Euclidean at R = 0, we
must have 2 = 1 there to insure that the ratio of circumference to
proper radius of a small circle about the origin ig 2T. Other boundary
corditions which follow from this are that U =0 ard M =0 at R = 0.
We will now consider the eftect of coordinate transformations

of r and t which maintain the form of the metric (l.Ol) in order to
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explore the non-trivial degree of freedon left in our cholce of
coordinate system. Obviously R is invariant under these trans-

formations, and we will show that M 1s also invariant. Let.

érl
v = bl I Y, (L.22)
2 T, =
Then . atj
. = [—— . .23
(1 ++v°) *1\5%, T, (1.23)

S

v is the "momentum per unit mass” of a particle at rest in coordinate
system 2 relative to coordinate system 1.

From equation (1.19)

dR 2 b
2, = 5 K = (1 + U, - EM]/R)Z , (1.24)
Ny .
and
OR 2 %
Z, = e X, = (1 + U, - EME/R)Z . (1.25)

An immediate consequence of (1-22) and. (1-23) is

- 21k f
U, = Ul(l +v=)% 4+ v (~.26)

and this together with (1.2L4) gives
(L+02 - /R)%= 2. (1L++)%+ U (1.27)
2 1 1 1o :

The transformation equations for the metric tensor can be used to show

‘arl D\%
b ls==] %, = (L+v7)° (1.28)
L 1 2
21t
2
Btl
8 or, |, XQ = v o (1-29)
2/t

2
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Thus

= 2y%
Zyy Zl(l + =)+ Uy (1.30)

Using equation (1.30) to compare (1.25) and (1.27), we see that M, =M
that is, the quantity M 1s invariart under transformations which pre-
serve the diagonar form ¢f the metric.

Equations (1.26) and (1.30) are identical to those of a
covariant transformation in special relativity. U corresponds to the
time component and Z to the space component of the gradient of the
invariant R. The proper time and radial derivatives of any other
invariant transform in the same way as U and Z4.

The transformation from Schwarzschild coordinates, in which
r=R, U=0C, and 7 = (l—EM/R)%, is of particular interest. Let
v be the momentum per unit mass of a particle at constant r measured
by an observer at ccnstant R. U and Z in the "comoving" coordinates

are related to v by

v o= U/(l-BM/R)% s (1.31)
(1 + VE)% = z/(].-gM/R)l/2 . (.32)

The transformation becomes singular when 2M/R =1, or (U] > Z. This
is due to the well-known fact that if 2M/R > 1, the line R,8, con-
stant in svace-time is gpace-like and thug cannot be the world line of
a particle or the vime axis of a coordinate system.

The quantity M can be interpreted as the total amount of
cnergy inside the radius » at time +, as will become clearer in the

next chapter.
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II. Comoving Coordinates

We want to apply the equations of Chapter I to calculations
of the dynamicg of matter in a goherically symmetric gravitational
field. Tais implies a particular choice of coordinate system. The
one which is most convenient for our purposes and which allows the
most direct physical interpretation of the equations is the comoving
ccordinate system. The variavle r becomes the label of a given mass
shell in a Laegrangian form of hydrodynamics.

An important advantage of comoving coordinates is that the
metric does not become singular unless the components of the energy-
momentum Tensor in the rest frame of the matter have become singular.
The equations behave perfectly smoothly when QM/R becomes greater
than one; the Schwarzschild coordinate system, with r = R, breaks
down there.

The definition of the ccmoving coordinate system is unam-
biguous only when the matter is made up of just one kind of particle,
+he number of particles being conserved. In general, however, there
are several different kinds of particles Dresent whose masses and
numbers may change. The definition of the comoving coordinate system
may be made precise in one of the following ways:

1) such that the amount of some quantity known to be exactly
conserved, such asg baryon number, inside a given r be independent
of t;

») such thas the energy flux K in this coordinate system be

zerc, or equivalently that the time-like eigenvector of the esnergy-
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momentum tensor poirnt in the direction of the t-axis;
3) such that the "pressure” be isotropic; that is, Tll = T22

The mcest convenient definition in that the resulting
equations are most directly related to the lhermodynamics of the
matter is the first. We shall define our comoving coordinates,
then, so “hat the number of baryons ir the mass shell between =
ard r + dr 1s independent of the time, t-

We may define a set of local observers by intrcducing
an orthonormal tetrad of vectors K(a)i at each point in space-
time. One member of +the tbetrad, K<O)i, ig time-like and equal
+0 the four-velocity of the local observer. The other three are
unit vectors along three matually perpendicular axes in the lceally
Fuclidean three-space normal to K(O)i- The orojection of a tensor
or vector on the tetrad gives the values of the camponents of the
tensor or vector as measured Dy a local observer. A full discussion
of the construction of a local frame of reference may be found in
synge (17).

The tetrad index may be raised and lowered by the special
relativistic metric tensor ﬂ(a)(b) with signature -2. The ortho-

normality conditions are

K(a)i x(b)i = é(a (v) (2.01)

and coanversely,

- i (a) . . ~ In]
Ma) A 5 & ;o (2.02)
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The projections of a given vector at a given point 1n space-time
on two different tetrads at that point are related by a Lorentz

transformation.

A convenient choice for the tetrad of an ooscerver at

Tixed r in our comoving coordinates is

i _ i i _ i
k(o) = Y6 0 X(l) = X6 5
(2.03)
i L i i X i
= =0 A = o
>‘(2) R 2 7 (3) R sinb 3
The prcjection of the chnergy-momentum tensor on this tetrad is
o(0)(0) _ P, A0N1) o o= %,
(2.0L)

L 2@ o | 7,

l )

The local flatness of sgpace-time gllows some results of
clasgical cor special relativistic thermcdynamics, statistical mechan-
ics, and kinetic theory to be applied to the calculation of local
broperties of the matter, such as the local projections of the energy-
momentum tensor, if the mean free path of the watter particles is small
compared to the scale on which the graviiatlonal fields change. Of
course, it must be remembered that in general the comoving system is
not an inertial system; a local observer feels an acceleration.

The magnitude of this acceleration is the same ag *the accel-
erasion of g test particle falling from rest in the comoving cocrdinate
system and being acted upon only by gravitational forces. That is, the

test particle rfollows a time-like geodesic. If s 1is the proper time
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the test particle its four-velocity is

O_—d-E =..d‘_zl
Vo= 5 v is

The other components are zero since the acceleration rmust be in the

radial direction. The momentum per unit mass seea by a local observer

., dr,

is v = D a5’

[N

W© = (1 + +2) (1) _

There is only one iadependent geodesic equation in the case of purely

radial moticon, which can be written as

2 2\%
= o (1+v)-qv(d+v)

In the limit v=- 0,

av
.._=..f
ds
Thus -~ f 1is the acceleration, or "gravitational force per unit mass’,

Telt by a local observer. By Newton's third law f mwust be the sum of
the ron-gravitational forces acting on the local observer ver unit mass.
An exact description of the behavior of the matter involves
some Torm of kinetic theory, such as that of Tauber and Weinberg (9).
However, an often valid approach is ©o assume that the particles collide
often enough s0 that we may define a local temperature which is the same
for the difTerent kinds of particles making up the matter. Deviations
from thermsl equilibrium can stiil be treated by kinetic theory, as we
do for electromagnetic radiation in Chapter IV. The effect of the non-

inertiality of the matter rest frame on the energy-momentum tensor will
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be small if the fractional change ir veloclity of a particie in oae
mean free path is much less than one. Sometimes 7t may be a gocd
approximation to completely neglect all deviations from adiabatic
loecal thermodynamic equilibrium, in whick case the energy flux K
ig zero and the pressure is isotropic for the comoving observer.
Thig is asually called the ideal fluid approximation.

The ideal fluid, or adiabatic, approximation will be our
point of departure in discussions of the energy-momentum tensor.

L L, and K tc denote the temms

We will use the symbols LO’ 17 5

in the energy-monentum tensor due to deviations from an ildeal fluid
or to the effecss of non-thermgl forms of energy such as a neutrino
flux. E wil: be the thermal energy density, including the rest

masses of the particles, and P will be tke isotroplc thermal pres-

sure. Thus the components of the energy-momentum tenscr will be
0
™ = E+L. , o= -?-L

0 0
g

(2.05)

3 = _p-
» = T, P-1 K

The only deviation from an ideal fluid completely comsistent with locaZ
thermodynamic egquilibriur is an ernergy flux K, as will be seen Zrom our
discuggicn of radiative fransfer.

Using the energy-momentum tensor in the form (2-05) we may
arrange the Einstein equations as foilows. With

72 = 1+ - M/R (2.06)
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we have
M’ = 4Eb (m2 + Lf + KU) , (_2-07)
M= - LR (PR + (1,0 + k2)al (2.08)
7. = fR+ LiKRa (2.09)
q= %Y = U'x/7 - WKR/Z (2.10)
Oy = zr - M/ - 4m(P + LR (2.11)

Only four of <he equationsg are independent, since we have not used the
n

T, Enstein equation. Equations (2.09) and (2.10) are just different
[y .

1 .
arrangements of the T . Einstein equation, and equatiors (2.08) and

O
(2.11) are both based less directly on the Tll Eingtein equation. We
Tind it ccnvenient to complete our set of equations with those arising
frcm the zero ccvariant divergence of the energy-momentum tensor. These
twe equations are intimately connected with the properties of matter,
gnd theilr discussion will be postponed until we have a better Foundasislion
for interpreting them.

Comovirg coordinates allow a semi-Newtonlan interpretation
wiiich views gravitation as a force rather than a property of the geome-
try of space-time. R 1g the geometrical radius of a mass shell, anc U
corresponds to a special relativistic momentum per unit mass since it is
the rate of change of R with proper time Zor a mass shell. U is not
the actual momentum seen by an observer at constant R, however, it

remaine finite and real when oM/R Z L.
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FEquation (2.11) locks like the Newtonian force egquation, and
it is natural to call UY the acceleration of a mass shell. Strictly
speaking, since T 1g the true non-gravitaiiongl force per unit mass,
ﬁY/Z should be called the acceleration. However, we will call Uy
the acceleration and call Zf the effective non-gravitationsl force
per unit mass. The "gravitational force" per uni® mass is then tkre
usual M/R? term plus a force due to the radial stress at Tthe mass
shell which is related to the deflection of light passing near the sun
being twice the Newtonian value.

An immediate result of equaticn (2.06) is that as long as
2M/R is greater then one U cannot change sign, since Z would be
imaginary if U were equal tc zero. This is taken care of in tThe
equation for the rate of change of U by tae factor 4 in front of
. If T 1is a large repulsive force and U < 0, by equation (2.09)
7  decreases and as Z-=->0 the effect of £ on ﬁY goes to zero.

As will be discussed further in the last two chapters of this paper,
if £ 1is large enough Z may become less than zero, in which case
g positive (repulsive) T actually causes an acceleration toward

R = 0, incregsing the absoiube value of U.

The guantity 2, which is geometrically the ratio of the
change in R Dbetweer two mass snells tc the proper radial distance
between them at a given time +t, also has the interpretation, from
equation (2.06) clearly valid in the Newtonian Iimit, of being the
sum of the mass, kinetic, and gravitational potential energy per unit

magg of the fluid or of an observer moving with the fluld. This inter-
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pretation is born out by equation (2.07), which says that except for

a term involving K the contribution of a mass shell to the total
energy M 1s given by the internal energy of the mass shell times Z.
The energy flux term may be understood as a correction due to the fact
thkat our comoving coordinate system is not really comoving with respect
to the local energy density if K % 0. Note that if Z <0 a positive
internal energy density makes a negative contribution to the total
energy »

The rate of change ¢f Z is related by equation {(2.09) to
the work done by <The non-gravitational force, again except for a term
involving K. This energy flux term ig necessary if there is to be no
gravitational force assoclated with the direct convection of energy
from one mass shell to another. Energy can also be transferred through
the work done by the radial stress, as is seen ’n eguation (2.08).

The semi-Newlonlan interpretation is useful in that it allows
many of the concepts of classical hydrodynamics to be carried over into
genefal relativity with only siight mcdification. However, it is difri-
cult to see how 1t can be éarried over 1nto non-spherically symmetric
systems since a mass element can no longer be located in a simple way
geometrically.

The amount of proper volume between two spherical shells st
and » + dr at a certain time +t 1is MﬂRgb dr. TFor any quantity the
amount of which inside r 1is a function only of the aumber of baryons
inside r we may define a sgpecilic volume V such Lhat V  times the
amount of the quantity between r and r + dr is the proper volume

between r and r + dr. The important property of V is that
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+ %li . (2.12)

<l<i-
!
oo

Such a gquansity might be the mass of a proton times the baryon number.
As long as the total nmumber of particles of eack kind associated with
a given number of baryons is independent of t we can, in particular,
define V so0 it is the amount of proper voliume occuplied by a unit
amount of "rest mass", defined as the sum of the rest mass energies of
all the particles present. We will call the mass assoclated with V
the invariant mass. The total smount of invariant mass inside a given
r, denoted by Mo’ is by definition independent of time. The invariant
mass density is  1/V.

We could take r = MO, but this 1s awkward near the origin.
Ususa’ly we will taxe = = Ro’ the initial value of R at the mass

shell. Then
dMO

dr

LR Zb /V
-0 o @]

WRB/Y (2.13)

Baquivalently, we have for a given Mo(r) the equation

9 hﬂR3 ;
V7, = - |— . (2‘_!_)_1_)
QMO 3 +

Using V in the equations arising from the zero covariant

divergence of the energy-momentum tensor, we can write them as

[(EV)y + PVY)/V = - (L(')V)Y/V - L, %Y - L, %—5

- (FRa) %/ (FPa®) (2-15)
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wnd (BPHL AL ) £ = - PX - T. X - €&(1, - 1)
e ) Tt T RY1LIT 2
} R )
- KY - 2K (b+R):r . (z2.16)

The first ecuation gives the rate of change of tae internal energy per
unit irvariant mass, or sgoeclific internal energy, and the second cqua-
tion can be used to determine the non-gravitational force per unlit mass
f as 1t depenas cn She energy-momentum tensor. I'rom f the quantity
a = l/Y can be obtained by integration. That the results are what cne
would expect Zrom the viewpoint cf a local observer using specia’ rela-
tivity cen be checxed for various assumptions about the physics of the
energy-momentun tensgor. I'or the case of an ideal fluid the fcrce per
unlt mass is consistent with the force ver unit volume being given by
the pressure gradisnt 1f the inertial mass per unit vclume is taken to
be E+P. The pressure contributes $o0 the lnertial mass becguse 0f the
transfer of energy assoclated with the work dcne by the pressure. In
the chapter on radigtive transfer we will analyze these squaticns as

they relste to tae local interaction of the radiation with the matter.
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III. Thermodynamics and Hydrodynamics of an Ideal Fluid

We now concentrate our attention on the general relativistic
hydrodynamic equations for an ideal fluid, occasionally introducing
aon-adiabaticity in the form of a small energy flux K. This model is
valid if all forms of energy not bound up in the matter are in local
thermodynamic equilibrium with one another.

Except at extremely high temperatures when all particles are
relativistic it is convenient to separate the internal energy density
E into a rest mass density A/V and a thermal energy density W/V.

We write

BV= A+W . (3.01)

The precise way the energy is split up is not of critical importance;
however, the irreversible changes in muclear masses associated with
non-thermal nuclear reactions should be associgted with A. At rela-
tiveiy low temﬁeraturcs A might include the rest masses of all the
particles present, while at high temperatures such that, say, electron-
positron pairs are being produced, it may be more coﬁvenient to include
the rest masses of the pairs in the thermal energy. W is the usual
thérmodynamic specific internal energy. Nuclear energy generation will
tend to decrease A and incréase W; din the absence of nuclear reac-
tions A will be independent of time. At one particular time it is
possible to normalize V so A =1 at all mass shells. At subsequent
times 1 - A willl be the fraction of the initial rest mass energy

Tturned to heat by nuclear reactions.
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The total rest mass is equal to IA dMO. However, what we
will call the binding energy is the quantity MO - M, what may or
may not actually correspond to the amount of energy needed to disperse
the mass to infinity. In all the numerical calculations in this paper
A is 2ero and A 1is normalized to unity; so, Mo 1s the total rest
mass energy. Mb has the useful property of being an invariant of the
motion for a given mass shell, and thus the change in Mo - M is always
equal to the negative of the change in M.

According to the tirst law of thermodynamics

W+ PV = uﬁ-+§%ﬁi , (3.02)

where T 1is the femperature and S +the specific entropy. The chemi-
cal potentlial terms will be lumped with A in what follows. Equation

(2.15), with L, =L, =L, =0, becomes
1 9

(A +T8)Yy = - = 5
&a O

]

Qv (WRKa®) . (3.03)
Q 1s the rate at which heat is being added to the mass shell, per
unit invariant mass. The gradient of a assoclated with the diver-
gence of the energy flux is due to the gravitational red shift of the
energy being transported.

In equation (2.08) we may define

M, = - WRKza (3.0L)

to be the non—adiabatic rate of change of the total energy inside a

mass =hell. Bubstituting in equation (3.03),

.o [ M
O T \va) (3.05)
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Inverting the equation,

Bquation (2-07) for the total energy can be written

M= [(a+W)z . (3.07)

assuming that K << P gand that U is much less than the speed of
sound sO the term involving K in (2-07) can be neglected in what
follows. We call (A + W)Z +the local energy per unit invariant
mass. Equation (3.06) may now be- Interpreted as saying that in a
quasl-static situation the effect of a non-adiabatic change In local
energy, %QZ, at radius 1 on the total energy inside a larger
radius 2 1is reduced by a factor (YZ>2/(YZ)1' The ordinary gravi-
tational red shift for local observers is just Y2/Yi- The factor
Z includes the red shift to infinity, where in effect the total
energy is measured.

For an ideal fluid, with XK = 0, +the non-gravitational

force per unit mass. £ is glven by

- PX
f - - P+E 2 (3'08)
and
¥ P
? - P+E . (3‘09)
If
= -t (3.10)

we may obtain an explicit expression for Y,

Y= (PHE)V , | (3.11)
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within a secale transformation of the time.

‘Equation (3.10) is equivalent to
A"+ T8 = 0 (3.12)

if V is normalized so the invariant mass per baryon is independent of
“radius. If 8 and A are independent of radius in thig normalization,
we say that the mass is isentropic. If A=0 everywhere this isen-
tropic condition continues to hold as long as no shock waves arise, and
Y is given by equation (3.11).

In our discussion of the hydrodynamics of the ideal fluid it

is convenient to define

2—5) ) (3.13)
S

ﬁ)s . (3.14)

For either a completely non-relativistic or a completely relativistic
perfect gas, [ = I5.

Teking U and V as the basic dependent variables, we can
write the hydrodynamic equations, which are a hyperbolic system of
partial differential equations, in a form which displays the charac-

teristics. We use

s

P'= -TypY

7S’
vt (Iy - 1) s (3.15)

This equation is only valid if V changes radially the same way it
does in time; the amount of invariant mass per baryon must be inde-
pendent of radius. If the rest mass per baryon varies with radius,

A" will not be zero. After some manipulation, we obtain
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= - 7(Is - l)(%%ﬁ%ﬁ ¥ 70 %g - M/F - MER , (3.16)

and.

A+T8= 0 . (3.17)

Usually the adigbaticity of the ideal fluid approximation will also
involve taking A = 0. The quantity C, which is the velocity at

which weak low frequency disturbances propagate through the fluid as
measured by an observer comoving with the fluld, the speed of sound,
ig given by

1i

o = (%—g) . (3.18)

Thig must be less than one to avoid confliet with causality.

A general feature of solutions of the hydrodynamic equations
1s that there may exist surfaces across which some of the components
of the energy-momentim tensor are discontinuous. There are two types
of discontinuity surfaces possible in classical hydrodynamics, the con-
tact discontinuity and the shock wave. The contact discontinuity is
stationary with respect to the matter and the pressure is the same on
both sides. The shock wave is characterized by discontinuities in the
pressure and veloclity 6f flow. The surface of a gtar not losing mass
would be a contact discontinuity on a scale of analysis which neglects
the structure of the atmosphere, and the Jump conditions’for going from
just inside the surface of the star to essentially empty space deter-
mine the outer boundary conditions on a solution of the hydrodynamic

equations inslde the star.
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In comoving coordinates in general relativity the basic
difference betweern the two tyves of discontinalty is the behavior
of the metric tensor in the region of the discontinulty, which Zs
considered a hypersurface in space-time. We can require that the
coordinates r and 1t be continuous across the discontinuity.
The continulty of r 1s related to the assumption that no baryons
can be created oOr destroyed, which we have used in the definition
cf comoving ccordinates. The continulty of +t 1s assured by the
freedom of cholece of coordinate time scale. However, i1t is clear
Tron the time dilaticn of speclal relativity that 1T the veloclity
cf fluid flow is disconiinucus, the proper time rates and therefore
a and Y are discontinuous. Thus for a shock wave &g 1s discon-
tinuous, while for a contact discontinuity a 1s conitinucus.

Synge (18) discusses Jump conditions which continue a
goluticn acroses a hypersurface of discontinuity on the basis of
the concept of admissable coordinatecs. It is ascoumed that therce
always exlsts some coordinate system, the admissable coordinates,
in which the components of the metric tensor and thelr first deriva-
tives are continuous across the hypersurface, although second
derivatives may be discontinuous. Let g(xi) = 0 be the equation
of the hypersurface of discontinuity. Then 1f admissaple coordinates
exist, in any coordinate system in which the comoonents of the metric

tensor are continuous the set of quantities

7K %8 (3.19)
i 5}3&

are continuous across the hypersurface.
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The function g can be written in comoving coordinates as

0]

(z,4) = = - rs(t) = 0 . (3.20)
rs(t) ig the position of the discontinulsy as a function of time.
Since r and 1t are cortinuocus, drs/dt is the same on both sides-.
The jump conditiong (3-19) can be applied only if a 1g continuvous
and drs/dt = 0; +then the scale of r can be chosen or the 1wo sides
of +the discontinuity to make b continvous even though V ig not.
The Jjump conditions becone, in the vresence of radiation, that

K (3.21)

and

P4+ L

be continuous-

Of particular interest is the boundary condition at the
gurface of a mags. Outside the mags we have E =P = 0, but Ll and
K will not be zero if the mass is emitting radiation. If the amount
of thls radiation is negligible, or if the transport ¢f the radiation
near the surface is such that 1. as well as X 1s continucus across
the surface, the boundary condition at the surface becomes simply
P = 0. Tae energy density E wmay be discontinuous at the surface.

In order to obtain the jump conditions for a shock wave in
comoving coordinates, we ghall prove tha® the conditions (3~l9) apply
in Schwarzaschild coordinates and then transform back to comoving cocr-
dinases separately on the two sides of the shock. We will denote the

Schwarzschild time and radius coordinates by T and R, and let
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800 " A, &1 = —BE, Eoo = -R~. In these coordinates
-
B=1/7 = (L - 2M/R)" % . (3-23)

The intrinsic geometry of the hypersurface of discontinuity

ig specified completely by the first and second fundamental forms,
' i k
o = * :
811 dx™ dx (3.24)

and

¢ = n, aaxs . (3.25)

The disgplacements are constrained to lie in the hypersurface, and ni
is the unit four-vector normal to the hypersurface. The requirement
that the intrinsic geometry of the hypersurface be the same viewed
from either side, or that @l and @2 be continuousg across the shock
for arbitrary displacements in the hypersurface, is equivalent to
requiring the existence of a coordinate system in which the metric
tengor components and their first derivatives are continuous (19).

In Schwarzschild coordinates the first fundamental form 1s,

with RS the radius of the shock as a function of time,

dR 12
8

8, = 22 ar - F OB ar - B (a6° + sin0 art) . (3.26)
Tet
dR
_ s B
VeT am 1 | (5-27)

the proper velocity of the shock front as seen by a local observer at

constant R. dT, db6, and d¢ are independent; s0, we obtaln the Jjump
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conditions that

- (3-28)

and 5

R (3.29)

be continuous. We have used the freedom of seale transformations in
time to make 4T +the same on both sides of the shock. From (3-29)
the circumferential radius R is the same on both sldes of the shock.

The unit normal to the shock hypersurface has the non-zero

components
n, = Awé/(l - vse)é ) (3-30)
n o= -3 -v7)7 . (3.31)

We only need the continuity of @2 for a displacement in the ©
direction:

- By
ny, = mg (L= ) (3-32)

Combining this with (3.28) we get that A/B 1is continuous, which
Implies that vy is continuous across the shock and thus that A

and B are separately continuous. We have now shown that we may
apply the jump conditions (3519) in Schwarzschild coordinates. Also,
from the equation (3-23) for B we see that M 1is continuous across
the shock. The relaxing of the requirement on admissable coordinates
to allow discontinuity of the Tirst derivatives of the metric tensor
in maximally continuous coordinates would be necessary to obtain infin-

ite energy density and finite change in M 1n the shock, as discussed
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in general terms by Papapetrou and Treder (20). However, this is not
physically reasonable in a hydrodynamic shock.

We will write the shock wave Jjump conditions assuming the
energy-momentum tensor is that of an ideal fluid. If v 1is the
momentum per unit mass of the fluid in the Schwarzschild coordinates,

from (3.19) the expressions

E+(P+m$hs—@+Ehu+v%% (3-33)
and .
(P + B)v(1 + VE)/ZVS- P - (P +EW (3.34)

are continuous acrogss the shock.
The transformation to comoving coordinates is discusgsed in
Chapter I. The velocity of the shock according to an observer comoving

with the matter is
dr

v, = Y= . (3.35)

The time scales are chosen so drs/dt is the same on both sides of the
shock. Trom the transformation equations (1.22), (1.23), (1.28), and

(1.29),
U+ zZv
C

YT TEOv, (3-36)

Since v is continuous one jump condition is that
s

U+ Zv,
E{;ﬁﬁ;; (3.37)

be continuous. When (3.36) is substituted into (3.33) and (3.34) some
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algebra gives jump conditions requiring the continulity of

v - PU

_2_:-7]? (3.38)
and

EUVC - PZ

"Erqfﬁng (3-39)

The jump condition (3.37) can be rewritten in terms of

-1 1
(l - vsg) E or VS/(l - VS2)2 to obtain the equivalent conditions

that

Z + Uv
R (3-40)
2% .

(1 -v7)

U+ Zv
(&}

(1 -+ 2)% (3.41)

be continucus. The continuity of R and t implies the continuity of

dR dr

s ¢ Ts
= = R+R R a (U + Zvc) . (3.42)

combining (3.41) and (3.42) we obtain

a (1 - vcg)% , (3.43)

which within continuous factors is identical to the Jump condition that

Y
(1-v")

o Lo

be continuous. Condition (3-hh) is related to the conservation of mass

in the classical limit-.
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If nuclear reactions take place at a finite rate in the
shock, A ig continuous, and we can use (3.hl) to eliminate the
rest mass energy from (3.38). Our firal forms for the Jump condi-
tions corresgponding to comnservation of energy and momentum are, vy

way of (3.40),
2(z - 1)vC + v WV - PU

(1-v ;)} (S.MS)
(¢}
and
e ~ (5.16)
(1 - v 5)°

Four indeperdent Jump conditions which determine the coatinuation of
the hydrcdyramic equations across a shock and remain non-singular when
OM/R > 1 are (3.h1), (3.44), (3.45), and (3.46).

The jump condition {3.43) can be used to show that if a is
centinuous either drsdt =0 or b ig also continuous. The first
altefnative is a contact discontinuity; the second implies no discon-
tinuity exists.

From (3.42) if 2M/R > 1 1in collapse, so - U > Z, the
geometrical radius of even an outward moving shock decreases in time.
The absoluse valuve cf v, must be legs than one from causality.

In nurerical calculation the only use of the Jump conditions
would be to check the results of an artificial viscosity, since direct
ase of the Jump conditions is very awkward in a difference equation

framework .
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IV. Radiative Transfer

The kinetic theory of matter in general relativity has
been investigated in some detail by Tauber and Weinberg (9).
However, thelr treatment is based on a phase gpace density function
defined.in the rest frame of each group of particles. When the
particles are massless and travel on null ragther than time-like
geodesics this formulation is not convenlent. Another more recent
approach to transport problems hag been that of Misner and Sharp
(7), who have considered thermsl diffusion in general relgtivity
from the point of view of thermodynamics. Our treatment of
radistive transfer isg designed to make the description of the
interaction of radiation with metter as simple and direct as
possible. The radiative transfer equation we derive 1s applied
in different gpproximations to the transport of neutrinocs and
electromagnetic radiation in spherically symmetric masscs. In
the case of local thermodynemic equilibrium we reproduce the
results of Misner and Sharp.

The physical assumptions underlying our discussion of
radiative transfer are that a large part of the energy present 1s
in the form of "matter" whose particles have short mean free paths
compared to those of the radiation particles. In our applications
the mattér will be treated as an ideal fluid. The radiation is
composed of "particles” which may interact with matter by means of

short range lLorces, bubt whose interactions with each other and long
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range interactions with the matter are limited <o the smooth
averaged effects of graviitational fields, as determined by a
macroscopic energy-momentumn tensor. That 1s, the particles of
the radiation travel along geodeslics, null geodesics for mass-
less particles, belween scatterings. The scattering or absorp-
tion of a particle of radiaticn by the matter takes place in a
region of space-time ianfinitesimal on the scale of the overall
dynamics of the matter and radiation and can be represented by
abgorption and differential scattering cross-sections. Coherent
scattering effects are assumed t0 be negligible; the "index of
refraction” of the matter is taken tc be unity. This picture
of radiative transfer corresponds to the usual classical one,
and is adequate for the treatment of photong and neutrinog in
many astrophysical applicaticns.

The presence of the matter means that one has a natural
frame of reference in radiative transfer, that of obgervers comoving
with the matter. It is for these oObservers that the description of
the interaction between radiation and matter is simplest. We repre-
gsent a comoving oObserver vy an Orthonormal tetrad asg defined in
Chgpter II. The time-like component of the tetrad, ?\(O)i, is
the velocity four-vector of the matter, vi. Since each mass
element has an orthonormsl tetrad assoclated with it, the X(a)i
comprise a set of four vector fields, which are taken to be con-

tinuous functions of positica.
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If pi is the momentum four-vector of g particie of
radiation, ité projection on the tetrad of a comoving oObgcrver
gives the energy
p(0) = p1al0) o gt (1.01)

V.
1 P 1

and momentum
p(q‘) = plk(a)- (l’.og)

1

of the particle as seen by thé local obgerver. If m is the rest

mgss of the particle, assumed tc be constant between scatterings,

p'p, = p<azp(a) = u’ . (4.03)

(o)

For a photon the energy P is proportional to the frequency.

We describe the radiation by a number density of particles
in phase space. Because of the role ¢f the comoving observer there
is no need to define a covariant eight~dimensional Dhase space, as
has been done by Tauber and Weinberg (9). We define our phase space
to have a volume element which is the product of a volume element As
in the three-space normal to the velcclty four-vector o the matter,

i . .
v, and a volure element in the momentum space of the comoving

observer,

bp = apMapl@le (30 (3.00)

nGt, o My ag (1.05)

be the number of radiation particles of a given type in the three-

volume element A4S about Xl and in the momentum range O&p about
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(a)

p* ', Each type of radiation particle (neutrino, photon, etc.)
should bé treated independently by a separate N. This is con-
éistent with our assumption that the radigtion interacts only
with the matter, not with itself or other types of radlation.
The contribution of the radiation to the energy-
momentum tensor may be expressed in terms of N(xi, p(d)) using
the construction of Synge (21)'based on the particle flux four-
vector Ni defined by requiring NiviAS to be the number of
world lines crossing the hypersurface element A8 with unit
normal vi. Ni is independent of the direction of vi and
is given by

(1), (2)..(3)
N, = Juop, ap dp(o)dp . (%.06)
b

0 . . R

Ap/p( ) ig invariant under lorentz transformationg of the refer-
ence tetrad, and thus N dis an invariant description of the
radlation. The flux of a quantlty across the hypersurface element

AS if each particle carries an amount q is given by inlAS,

Q = Ju i qé%j , (k.07)
b

i1f all particles cross the hypersurface in the same direction (going
forward in time)- In particular, if q 1is the momentum four-vector
pi of the particle we obtain the energy-momentim tensor

bAY
P O (1.08)

b
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of the radiation. The energy-momentum tensor projected on the

tetrad of the local obgerver ig

T(a) (b) - jN'p(aZp(b) _%%7 s (4.09)
P

().

and can be evaluated it N 1s known as function of p

The propagation of waveé in curved sgpace is discussed
by Synge (22) and the propagation of massless elementary particles
by Pagels (23). From each point of view as long as coherent scat-
tering is unimportant photons and neutrinos tmvel along null
geodesics. The momentum vector pi of a particle is tangent to
the geodesic it is following, and the parameter u along the geo~
desic can be normalized such that

i dxi

p= . (4.10)

The equation of the geodesic 1g that the absolute derivative of the

momentum four-vector is zero;

i . k

éB = p % = O . 1

P sk du (2 l)
In deriving the radiative transfer equation we will not

insist on complete rigor and generality of the argument in order to

discuss from the viewpoint of a local obgerver the behavior of the

"particles in Phase space.

R i, . . , .
At a point x in space-time conslider a Ppencil of radiation

i
which intersecte the hypcrsurface normal to the four-velocity v of
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the local observer in the threc-vclume eliecment A4S and which has a

p(a)

range of momentum p  about a threc-momentum as measured by

the local obgerver. The particles occupy the volume element ASAp in
vhase space and the number of particles 1s NASAp. The volume element
irn momentum gpace is given by (M.OL). We will explicltly construct the

' - . .- 1
three-volume element OS as a rectangular solid witn corners at %,

X+ AX(I)X(W)i: x + AK<Q)K ST &X(s)l 1

(2) (3) 7
. . s .
%+ &x(l)k(l)l + Ax(“)K(E)l, cte. The numerical value of A4S,

. \ i - . . . .
gsince the A(a) arc three muitually perpendicular directions in

1 o] 2
the locally Euclidean hypersurface rormal to v, is Ax(l)ﬁx(g)&x(J).

We set the parameter u of the geodesics of the particles
cqual to zero when the particles' world lines intersect 43. The

pencil of radiation defined above intersects the hypersurface normal
. . 1
. i ( .
uo) at the pcint x~ + ax U, in space-

to the Tour-vector ﬂl(xl + ™

du
time, forming a three-volume element A8, and the particles have a

a
. dap
() ag™™’

s
new range of momenta AS° about the threc-momentum p au o

The number of particles intersecting 48’ in the momentum range Ap !
is .
, i {a)
. €1 adx (G.) _C_i_l)_ ‘ I3
L 9X , + u ) Ag A . L.

N(x~ + & Uy D Tu C.) s’ fp (b.12)
Iet the net rate of aadition, due tTo scattering, emiszsion,
and absorption, of particles to the three-volume element AS  about

(o)

i L . . .
x~  in the nomentum range &p about P be

alx®, p*y ug ap (4.13)
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per unit proper time of the lcecal observer whose four-velocity is the
normal to AS. The source function § under our assumptions depends
only on local properties of the matter ard radiation and can be taken
over directly from classical radiative transfer theory.

The difference ir proper time between two approximately paral-
lel hyversurfaces at u =0 and u = u, is the ?omponent of the
displacement in space-time along The geodesic, %ﬁluo, along the
normsl to the hypersurfaces, vi. Thus the net rumber of particles

added to the pencil oi radiation between u = 0 and ER i1s approxi-

mately
i

dx
AS K - 1 .
@ 45 fp Vi du Llo

This is equal tc the difference between (4.12) and (4.05), and ir the

limit that U, is very small we cbtain

an |, . A5’ - Ag bp' - by ax”
du o uOAS t N uOAp = Q Vi qu ? (h.1%)
where ( )
3 i 3 oo
g—ﬂ = —Mi -3% + J(a) %ﬁ ) (h.15)
Ox 3p

Equation (4.14) is the equation of transfer; we now need to
evaluate the rate of dispersion of the vencil in phase space. This
will be broken into two parts. First consider (487 - AS)/uOAS, using
our explicit construction of &S as a rectangular solid. The volume
element A8’ in the new aypersurface is calculated assuming that all

(a)

the particics have the same momentum p . The new position of the
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refercnee corncr is

1 d)" i 5
X =l = X l .j
v du ( ) o . ’ ( ' )

and of the ath neighboring corner,
1 (a)w i dxi i (a) i
+ A + = + , .
x < () 1o (x Ix X(a) ua) 5 (h.17)

ax

a= La3 g

depends on the 1anitial position of the particle
because of tlhe dependence of the tetrad vector filelds on wvosition.

Uy is determined by requirirg the new digplacements betweer corners,

(a), i (@), = o [at
A A -+ s ) e
BMa) T T Ne) Flaw ) (1,2,3)
:
o ) &X
2 (uC(. - u-o) au b ()‘1"18)
to be orthogonal to The new value of Vi
dv, .k
v, +—s & . (4.19)

When the new displacement of the ath corner is projected on the Bth
. i
space~like member of the tetrad at xl + ax uo, g three by three

du.
matrix is formecd whose determinant is the value of the new volume sle-

ment As’. Using the ortkonormality relations for the tetrads and the

o x (a)
reiations between =— , D, and 7P b

- ased on (4.10) and (4.11),

we can simplify the result to

As’ - as . (a), k
_ugﬁ_ = p )\_(a‘) ;K . ()—I--QO)

Similarly, the rate of dlspersion in momentur space can be
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calculated assuming the initial momendtum space volume element is a
"rectangular solid" with one corner at the reference momentum p(a).
All the particles are assumred to start at the same point in space-
time Xi, but because of their different momenta they will intersect
the new hypersurface at different gpace-time points. Reaquiring the
new hypersurface to be orthogonal to the new vi of the reference
particle determineg the values of the geodesic parameters at the new

hypersurface Tor the "corners" of the volume element in momentum space.-

We obtain at first

Spf - by 3 QE(&)_ 1 QE(O} . (h.21)

A 1 ’
U_O D ap((l) du (O) du
asing

. (=) -

ap _ .inla) ok )

o RS (4.22)

(0)

J O

az(oc) B p(a)/P( ) ’ (-23)
and rearranging terms,

bp' -ty (a), x |
uoﬁp ® X(a) 3k ) (k.2L)

Te result Is, then, that the dispersion in ordinary space is

canceled by the dispersion in momentum space; S0,

an _ ox
du. 4 Vi au ’ (4.25)

If there is no scattering of the radiation particles the volume in

phase space occupled by a given group of particles remalns constant
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as the particles move along geodesics in a gravitational field.
General relativity obeys Iiouville's theorem; gravitation in general
relativity is a "conservative" field.

We wish to apply equation (4.25) to the study of radiative
transfer in a spherically symmetric mass. Because of the gpherical
symmetry a local observer can only distinguish one spatial direction,
the radial difection. The phase space distribution function can only

depend on the coordinates t and r, the magnitude of the momentum,

p= (- p(a)p(a))% , (4.26)

and the angle the momentum mekes with the radial direction as measured
by a local observer, Sp- In comoving coordinates the tetrad dcscribing
the local comoving observers as a function of r and t is most con-

venliently chosen as in (2.03). Then

tp(l)/'p = cos 8 . (k.27)

The symmetry in momcntum spacc makcg 1t desirable to change the momen-

(a)

tum space coordinates from the p to D, Xp = cos © and @

p’ P
ig the azimuthal angle about the radial direction. The volume element

bccomes o .
bp = p~ dp de 5 (4.28)

after integrating over q% the solid angle element is

Q = ; . .
a X o dxp (4.29)

The types of radiation we will be discussing, neutrinos and

photons, are characterized by massless particles; so, from now on we
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asgsumne o - P(O) . (4'30)

To conform with the usual conventions of radiative transfer we will

define, using (4.30),

F(t,r,\),xp) = h P3 N(t)I‘)P)Xp) . (4'3]—)

For massless particles, F 4V de is the amount of energy per unit
volume due to radiation directed in golid angle de with frequency
Vo= p/h in the range dV. To be consistent we also will redefine our

source function Q as

L= h P3 Q(t:r,P;xp) 5 ()4'32)

80, % will be the amount of energy emitted per unit volume per unit
g0lid angle per unit frequency range Pper unit proper time.
The transfer equation in terms of F and 2 is

OF . ldv | dby
w TV Tt (4-33)

The geodesic equations

_i(dxi) , o

7o \au i o - O (. 3%)

may be rewritten in terms of V and Xp using, for massless particles,

a

du

at p 7

o |

[(R LR+ (r sin 0 %@)2]/2 = (1- %) . (ke35)
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The result is

v v '
SET Ex tax®rp@-x)f, (4.36)
dx
Y T (1 Xp ) [R + R XP f - q Xp} . (4.37)

£ and g are given by (1.05) and (1.06). The terms in equation
(L.36) for the rate of change of frequency along a geodesic arise
from the gravitational energy shift between neighboring mass shells
( fxp ), the Doppler shift due to radial expansion ( quQ ), and
the Doppler shift due to the divergence of mass elements following
different radial lines ( %(l - sz) ).

When (L4.36) and (4.37) are substituted into (4.33) we

obtain the useful form of the radiative transfer equation,

. y OF 2 .U 2
FY +x FX - V55 [fxp"‘C_{Xp +R(l-x,p)] ,
+.§E(1_ 2) ."é_;.g -f -
A X@ R R Xp qxp
p -
W 2 g - 2 =
+ 3F [fxp et =(1 %, 1= 2 . (4.38)

The contribution of the radigtion to the energy-momentum

tensor in terms of F is

] !l ‘

L, f: av j_l 2de_xp F o, (4.39)
™ n 2

L o= [, av I e, x" F (4.10)
= [ 2 51 - x 2 .

L, = jo av [7 emax 5(1 %, )F o, (4.41)
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K= Joav I orax, x T - (L.42)
Ir ﬁe define

g = IOS 2 av (4-43)

to be the net energy emitted from the matter per unit proper time per
unit volume Pper unit solid angle, we may write the integral of equa-

tion (4.38) over all energies and angles as

. 2U. L 20
LOY+ qLO-I-RLO'I—qu FRLE

‘ L, _ :
+ KX + 2fK + 2K = [ o all (. 0ly)
uging the identity that

Ly= I, T2h, . (4.45)

If equation (L4.38) 1s multiplied by % before integration the result

is
2 -] —_— -+ o g.._ - g_z_
KY + 2K(g + g) PLX E?Ll =L,
= 4 Q - -
+ fLO + le 'J" o) /{pda (4.46)

Now I 0 dgp is just the net rate per unit volume that the matter is
loging energy. Since c¢ =1 in our units, f o) Xpdgp is equal to the
net rate per unit volume at which momentum 1s being emitted by the mat-
ter as measured by a local comoving observer. Thus 1t 1is. the negative
of the force per unit volume on the matter due to radiation reaction,
or radiation pressure. When (4.Lk) is combined with equation (2.15)

for the covariant divergence of the energy-momentum tensor of an ideal
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fluid plus radiation, we obtain

[@yx + 2] jv= - [oaq . (k.17)

Equations (h-h6) and (2.16) give

P/X i I a xpd_Qp
P+ E P+ R

f=- . | (4.48)

The result (4.LT7) just says that energy put into the radiation field
is lost from the matter in a way consistent with the thermodynamics
of an ideal fluid. Equation (L.L8) confirms the identification of
P+ E asg the inertial mass per unit volume of the ideal fluid. The
combined result of the two equations is to demonstrate that the loegl
energetice and the local acceleration of the matter as measured by a
comoving observer are affected by the presence of the radiation only
if the radiation is scaﬁtered, emitted, or absorbed by the matter.
Speclal relativistic calculations in the frame of the comoving observer
are édequate to describe the local interaction of the radiation with the
’matter-

The usual assumption of classical radiative transfer theory
" is that the unstimulated emission of radiation from a mass element of
loéally igotropic matter is isotropic. The rates of absorption and
stimulated emission have no éngular dependence other than that of the
flux F incldent on the mass element. The rale ol scallering ol Llhe
radiatioh will in general depend on the angle between the 1ncident ray
and the scattered ray but will also be proporticnal to the inecident flux.

All of these consilderations are as valid in gecneral rclativity as they
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are classically. The usual convention (2h) is to write
Z o= (3y - wFNV . (4.49)

jv is the emigsion coefficient and %v is the absorption coefficient.
Both are normalized per unit invariant mass since usually the rate of
anission and gbsorption will be proporticnal to the number of particles

of the mattcr. In general, and n, are functions of the frequen-

Jy
cy and the internal properties of the matter; they are isotropic i1f the
matter 1s locally isotropic and in the presence of scattering or stimu-
lated emission if the radiation field is algo isotropic.

Even approximate solution of the equation of radiative transfer
is in general a very complicated numerical problem, esgpecially in the
dynamic situations likely when general relativistic effects are important.
We address ourselves only to two special cases: The radlation is not
scattered or absorbed after being emitted, as for neutrinos at all
except very high densities of the matter; the radiation is in local
thermodynamic equilibrium with the matter-

When scattering of the radiation can be neglected (%V = 0)
the invariance of the phase space particle density function along a
geodesic means that if the geodesics are known the problem is solved in
principle. However, it i1s not likely to be practical to keep track of
all the geodesics passing through each point in space-time. A simple
approximation which crudely follows the escape of the radiation from
the mass while treating the non-gravitational interaction of the radia-
tion with the matter exactly is to assume the radiation field is the

sum of an isotropic component G and a purely radial outgoing component
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- 1 = %
G+EK I = GHE I, = 3

H and requiring f O:gpdgp = 0 (isotropic

K such that LO G, and X = K.

Tetting I o dﬁg

emission) gives the two equations

aradedy e e Heh wa (3-50)
(K)y/v + (Fxa?) %/ (Fa?) = - Haa") Wzt (4.51)

Energy is first injected into the igotropic part of the radiation field
and then converted into outwsrd moving radiation gt the rate

- -:’-3"(&3,4)lX/a,)+ per unit volume. The boundary conditions on the equa-
tions are G = O outside the neutrino producing region and K =0 at
R = 0. The component G is propagated inward at one-third the speed
of light; the component KX is propagated outward just at the speed of
light. The approximation can be generalized by considering additional
components of the radigtion field having the angular dependence of the
first, second, third, etec. Legendre polynomials in Xp' Ag 1t stands
it can be used in numerical calculatién of gravitational collapse to
treat the gravitational effects of neutrino loss 1n a crude way-.

If the radiation scatters many times over a distance in which
the pressure and therefore the tempersture vary only slightly, one might
expect some sort of loecal themmal equilibrium to be set up between the
radiation and the matter. The precise statement of what is meant by
. local thermodynamic equilibrium is that the ratio of the emission coef-
ficient to absorption coefficient, B, be a function only of the

frequency and temperature,
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K\) .
£= = Bv,1)-7] . (h.52)

For photons B(v,T) is the Planck function. The only properties of

B(V,T) relevant to our discussion are

JB 3B _ e
T+ Vyw = 3B (k.53)
fm B4V = b ; ),

o = T /hm ; (4e54)

a 18 here the Stefan-Boltzmana constant.

The equation of transfer can be written

e (E3' © -3t (- 55)
V V AY) v
where we have modified "y o include stimulated emisgion, as diliscussed

in Chandrasekhar (24). The solution of this equation proceeds in exact-
Ly the sarme manner as the sclution of the classical egquation of transfer.

If we define the parameter 71 along a geodesic by

d - Y, 4 =
an nVY at ’ (k-56)
The solution of (4.55) can be written in the form
- o =TT
L) = [0 [Bl-n)/v(-n)3Te ° an . (4.57)
V30 s

It n, is large encugh go the integrand is cut off by the exponential

before B and V have changed very much, we may evaluate the integral

by expanding B/\)3 in a Taylor series and integrating term by term. If
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ﬂo is zero, to first order in n,

B _ B 17 |3B(EL 20} L 3B Y av:
J(-n) = =(0) - 2 o Ta"T'(Y"LX X) YNV at

ny Yav 2
+ 33, 3BTt o(r") . (4.58)

_ 3B ¥ 2., U o
F = B-tﬂa—T—%vEfxp+qx +R(l—x, )]
»BX i Et
- T5s " {TY -+ X5 T X} . (4.59)

When this i1s integrated over frequency and angle it is useful to define

what is called the Rogseland mean oOpacity, Ko’ by
T 3B - L =3B, ok |
I Bws iR atim) . (1-60)

From equations (4.39) - (L.Lk2) the energy-momentum tensor to first

order in V/%O is then

_ kY ol Lo

LO— aT -%O [(a‘l" )Y+§aT VY} R (h.6l)
= 1, _16v _ 4 U

Ll = 3 LO = KOaT (q R) s (k.62)
_ 1 8V M U .

L, = 3LO+45naT(q R) , (4.63)

AN |
- V (af_ by b
K—-%O( )X-Snan . (L.64)



_52_

V/KO in distance 1g an average mean free path for the
radiation, and in time is the time for the radiation to go one mean
free path. The expansion in V/%O is in elther time or distance an
expansion in the ratio of the mean free path to the interval over
- which the temperature and density change by a sgizeable fraction.

To zeroth order in V/%O the energy-momentum tensor of

the radiation is that of a perfect fluld. If we let ER = aTLF
1
and P_ = -aik be the equilibrium energy density and pressure of

R 3

the radiation, denoting the energy density and pressure of the mat-

ter by E, and P

G ¢4
L v
Joad = (BVY/v+ P ¥ = oy (4.65)
and ,
[o x,dd = £ (B, + Bp) + P X (L4.66)

to zeroth order in V'/%O° When (4.66) is substituted into (4.48) we

obtain the expected resull for I,

] ,(PG -+ PR) X
(EG+PG+ER+PR)F

(4.67)

When this expression is substituted into equation (4-64) for the energy

flux K, . ,
(EG + PG)(ER + PR) PR X ] Py X (1.68)
(EG+PG+ERTPR) ER+PR EG+PG

4

The radigtion pressure gradient term dominates the gas pressure gradient

— ‘ v
B X ”
O

term as long as the gas particles are non-relativigtie, PG < EG'
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However, in the limit that the particles of the gas become relativ-
istic, implying Py %EG, the two terms cancel if the ratio PR/PG
is independent of radius, and the energy flux due to the radiation in
the comoving system goes to zero.

The existence of a thermal diffusion energy flux K as
found above is consistent with the concépt of local thermodynamic
equilibrium at least as long as K << Pye Even 1f Pr >> Py as 1t
is in massive stars (2,3) one can imagine local thermal equilibrium
being set up when the matter is statle. However, the validity of
this assumptlion when the density and temperalure are varying in time
is much more than doubtful.

The expressions (4.61) - (4.63) for the diagonal components
of the energy-monentum tensor are essentially special relativistic in
character since they only involve Doppler shifts due to the relative
veloclity of neighboring mass elements in the expanding or contracting
gas. The special relativistic corrections to the thermal equilibrium
values for LO’ Ll’ and Ié Ffirst order in V/%O have been discussed
by a number of authors (25, 26) under the heading of radiative viscosity.
Howcver, if we try to interpret these corrections in the context of

local thermodynamic equilibrium we run into inconsistencies. For

example, we may write

L = aT - go oY (1.69)

The local energy density of the radiation is less than the thermal
equilibrium value by an amount equal to the energy transferred from

the matter to the radiation in the time for the radiation to go one
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mean free path. It 1s as 1f energy lost by the matter is withheld
from the‘thermal radiation field for one mean free path time, although
there is no place in which this energy can be, consistent with the
idea of local thermodynamic equilibrium. Our conclusion is that the
so-called radiative viscosity terms are indications of the degree of
breakdown of the local thermodynamic equilibrium assumption, but that
their inclusion in any calculation without the inclusion of other devi-
ations from local thermal equilibrium, in particular those due to B
being an explicit function of time not exactly equal to the Planck
function, is not Justified. A necegsary condlitlion for the wvalldily of
local thermodynamic equilibrium is that the fractional change in the
energy density of the radiation in one mean free path time be much less
than one.

The gravitational effects of the radiation on the matter have
been considered by us only in so far as the radiation contributes to the
overall energy-momentum tensor. The radiatlon conlribules to the total
energy M through LO and K and to the radial stress gravitational
force through Ii' Misner (27) considers the gravitational effects of
a purely radial flux of radiafion (neutrinos), for which LO =L =K,

L

and calls the attractive force due to Ll an "induction" force associ-

ated with the rate of change of M due to the energy flux K. However,

if the radiation is not purely radial Ll does not equal K and the

interpretation breaks down. The term involving K in equation (2.09)

for 7 is associated by Misner with the gravitational force due to Ll’

while, as is discussed in Chapter IT, Llhis bterm is more precisely con-

nected with the absence of a gravitational force due to- K. Misner
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(27) and Lindquist and Schwartz (28) also discuss in some detail the
exterior solution for a radiating star and the transport of the
energy to infinity, which we have done in this paper only for the

quasi-static case (see Chapter IIT).
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V. Equilibrium and Stability

The construction of a model of a sgpherically symmetric mass
in equilibrium in general relativity involves a pressure P, g speci-
. fic thermsl energy W, a specific volume V (the inverse of the
invariant mass density), an invariant mass Mo’ g total energy M,
and the circumferential radius R. There will also be a specific rest
mass A depending on the normglizagtion of V. At times we will gllow
the presence of g smgll energy flux K, K << P, to study evolutionary
development along a sequence of quasi-static equilibrium models. Any
deviations from an ideal fluld in the energy-momentum tensor will be
assumed to have a completely negligible effect on the hydrostatic equi-
librium.

The equilibrium equation is obtained from equation (2.11) by
letting U and ﬁ go to zero. Inserting £ as given by (3.08) for

an ideal Tluld and using Mo as the 1ndependent variable,

. MWRQZ oP

_ _ATRTZ op . 2 _ s
W = - They 3 M/R® - 4mPR = o, (5.01)

7= (1-a0/R)%= % , (5.02)
if r = R.

The symbol @ will be used as a shorthand for the alge-
braic form of (5.01) when e study pertubations away from the
hydrostatic equilibrium. A convenient equation for M, exact if
K =0 and within the quasi-static ;pproximation if K # 0, is

equation (3.07),



W= [(a+W)au - (5.03)

An equation of state connects W, P, and V and may depend
on how V is‘normalized- The proper thermodynamic normalization is
such that the number of baryons per unit invariant mass 1s constant.

A computationally convenient normslization is such that A =1. In
the models we calculate the two normalizations are equivalent. .

Another relation between the thermodynamic variables as a
function of radius 1s in geheral needed 0 gpecify a model. This second
relation determines how the specific entropy varles as function of
radius. The usual classical stellar models are characterized by a
balance between energy generation and luminosity; one requires that
the flux of energy across a spherical shell equal the rate of energy
generagtion by nuclear reactions inside this shell. The energy trans-
port is due to radlation 1f the temperature gradient 1s less than the

adiabatic one,

-=s=<1I (5.04)

Convection becomes dominant if the opacity’is too high for radigtion
to do the Jjob at sub-adiabatic tempersture gradients. If convection
is efficlent the temperature gradient is equal to the adiabatic one
and the entropy is conétant fhroughout the convective region. However,
if convection cannot, because of low matter density or th high a
required‘energy Tlux, transport the energy, the temperature gradient
will become super-adigbatic and radiative transfer may again be impor-

tant. The turbulent velocities assoclated with convection must be much
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less than the thermal velocities (velocity of sound) of the gas if
the convection is to be efficient and the presence of convection is
not to disturb the hydrostatic equilibrium (29).

In general relativity convection is different from thermal
Cdiffusion in that it is not a local phenomenon; the distances over
which mass elements move in convection are usually not small compared
with the distances over which the gravitational potential energy
changes significantly. However, if the turbulent pressure is a negli-
gible fraction of the thermal pressure, in a quasi-static situation
the energy flux due to the convection may be handled in. the same way
as the energy flux due to thermal diffusion. The effect of the turbu-
lent pressure and energy density compared to that of the energy flux
in the energy transfer equation (2.15) goes as the ragtio of turbulent
pressure to thermal pressure or the ratio of the ﬁroduct of the turbu-
lent velocity and the overall velocity of the matter to the square of
the speed of light, whichever is larger. . -

Exact treatment of the radigtive equilibrium of s star causes
computational difficulties and introduces physical complications into
models which we wigh Lo keep as simple as possible in order to be able
to understand the effects of general relativity on thelr structure.
Also, for models in quasi-static equllibrium undergoing Kelvin-
Helmholtz contraction the precise distribution of entropy as a function
of radius depends on the past history of energy loss since there is no
longer a steady state in energy flux at a glven mass shell. Thus the

models we calculate will be one or both of the following types:
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entropy Per baryon constant as a function of radius or a polytrdpe

v | B
P= P (—C) .o (5.05)
' c \V

of index‘ n with

If constant entropy is interpreted to mean the Ppresence of convection
the reéultant mixing will keep A independent of radius and thus
normglizable to A = 1 through fhe whole mass. In this sense con-
stant entropy is equivalent to isentropy as defined in Chapter IIT.
If I1 is independent of radius an isentropic model will be a poly-

trope of the type (5.05) with

I‘l Fomem—— . (5-06)

Isentropic models have an additional importance besides thelr associa-
tion with convection in that a close relation between binding energy
and stability exists for them.

Once the equation of state and the variation of entropy with
radius or polytropic index are specified the integration of the hydro-
gtatic equilibrium equation (5.01) may be started at the center with
given values of the central invarisnt mass density (l/V)C and the
central ratio of pressure to invariant mass density (PV)C and contin-
ued until P drops to zero. Other parameters characterizing a model
are the total energy M, the total invariant mass MO, equal to the
total rest mass if A =1, and the radius R of the surface. Of
‘ particular interest are the dimensionless combinations of these paras-
meters: (PV) ; the ratio of the gravitational radius to radius, 2M/R;

and the fractional binding energy, (MOAM)/MO .
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At zero temperature (degenerate matter) only one of these
parametere is independent, and might be taken to be MO, or the
total number of baryons. Such models have been calculated recently
by Misner and Zapolsky (30) and Harrison (31) as well as in the
~clgssic paper of Oppenheimer and Volkowv (32)- Note that zero tempera-
ture Implies zerc entropy and thus constant entropy as a function of
radius. At non-zero temperatures a one~parameter sequehce of models
may be constructed by letting (l/V)c vary monotonically but keeping
the total number of baryons (or MO) congtant. Of course, the entropy
distribution must be specified for each model. It is the latter type
of sequence that we discuss in this pgper. If A 1is kept constant
such a sequence might correspond t0 a mass undergoing a generalized
Kelvin-Helmholtz contractlion in quasi-static equilibrium in which
increase as well as decrease of total energy is allowedg An incresse
of the total energy is unphysical, of course, but there is a close
relationship between a sequence wilh increasing M and constant A
and a sequence with constant M and uniformly decreasing A due to,
say, nuclear energy generation, i1f the fractional binding energy is
much leges than onc.

Iben (33) has calculated both isentropic and non-isentropic
equilibrium models based on aﬁ equation of state which is that of a
non-relgtivistic gas plus radiation in local thermodynsmic equilibrium.

"His non-isentropic models are polytropes defined in the same way as ours-
In a sequence of isentropic modele with constant MO he found a maximum

of binding energy which was at progressively lower central temperatures
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as M was increased from 102M to lO9M
o) ® (O]
Todper (34) constructs polytrope models which differ from
ours in that it is the logarithmic derivative of pressure with res-
pect to total energy density instead of specific volume which is

held constant,
n-+1

N (5.07)

c

The difference between the polytropes (5.07) and (5.06) is small when
PV << 1, but is very significant when PV = 1. Tooper's models are
physically unrealistic when the ratio P/E approaches and exceeds
unity. If Iy > 1, we see from equation (3.18) that the speed of
sound becomes greater than the speed of light in the limit P/E - ©,
Another serious difficulty is that one expects an internal energy den-
sity of the same order of magnitude as the pressure, and as P/E'* @
this can be true only if the rest mass density A/V"becomes less than
zero, which is nonsense. The usual 1limit that is put on P/E is
P/E < 1/3.

No such difficulties arise with our polytropes (5.06) since
even as PV = > g sultable equation of state for E can keep P/E
finite and the gpeed of sound less than the speed of light. Of course,
the need for specifying an equation of state in addition to the poly-
trope 1s an increase in arbitrariness in the model over Tooper, although
a necessary one i1f a binding energy 1s to be calculated.

A characteristic feature of both zero temperature and finite
temperature sequences of models is the existence of oscillations in the

binding energy as a function of céntral dengity in the region (PVX}Z,I.
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The interpretation of these osclllations for finite temperature lsen-
tropic models in terms of stability is one of the main results of <his
chapter.

We are interested in the general properties of equilibrium
models, not the details associated with a particular equation of state.
Therefore, our calculations have been made with cquations of state of

the type

PV
-1 7

W= (5.08

in whick I3 1is the adiabatic index defined by (3.13) and is a con-
stant for a given seguence cf nodels. V 1is normalized so A = 1.

An example of s Physical system for which this type of equa-
tion of state is a good gpproximeticn in a range of pressures and
dengities for which general relativistic effects are of interest is
an isentropic large mass in which radiaticn pressure is much larger
than the gas pressure (9,3,33). If B8 dis the ratio of gas pressure

0 total pressure,

W= 31 - %8)EY (5.09)
and
~ _ L BL - 3B ' 5
Iy = 3 + 3 5 76 . ().10)
When # << 1,
el IR TR (5.11)

Along an adiabat

vV {oB) _ B/8
E(ETI)S‘ T 58 (5.12)
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Thus the fractional change of B while V changes by many orders of
magnitude is much less than one if B << 1. To first order in B,
which is important for stability although not for the structure of an

isentropic mass, W is given by (5.08) and

L B
L=+ . .
1 3 6 (5 13)
The quantity of critical importance for stability is

for these models of large masses.

We shall call our models calculated with eqyation of state
(5.08) "constant Iy" models. The I3 = 14/3 model is the limiting
model one expects when all particles are relativistic (PV >> 1) or
when all of the pressure and thermal energy are due to zero mass parti~
cleg. Note that the Iy = M/S model gatisfies P = %E in the limit
PV »> 1. As long as Ii1 =2 +the speed of sound does not exceed the
speed of light as PV -*®. An isentropic constant I3 model is a
member of the class of polytropes defined by (5.05).

The equation of state (5.08) has the important computational
advantage that 1t depends only on dimensionless quantities; since the
equilibrium equation is also independent of the scale of mass, which
determines the scale of length and time, the structure of a constant

N model depends on (PV)C, but 1s independent of the precise value

of (l/V)C- There is an adjustable scale factor o relating masses in
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in the ratio o, radii in the ratio &, densities and pressures

in the ratio o 2, and specific volumes in the ratio . Thig

greatly simplifies the numerical computation of a sequence of models
with the same MO gince an initial guess at the central density for

a given (PV)c can be corrected by such a scale factor. Dimension-
less quantities such as PV, (MO - M)/Mo, and 2M/R are independent
of the scale factor and thus independent of the mags of fhe model.

The resulté of the numerical integration are most striking-

1y presented as a plot of the fractional binding energy against the
surface value of EM/R- Figure 1 1s such a plot for g sequenée of
isentropic models with I3 = Eﬁi = 2 and 1s typical of such sequences
with Iy > 4/3- The binding energy rises to a maximum and then'beéomes
negative, spiralling in toward a limit polnt as the central denslty and
pressure become infinite. A similar plot is given in Figure 2 and 3 for
= E%l = 4/3. Classically the binding energy is zero for a 11 = L/3
model and a post-Newtonian analysis such as that made by Fowler (5)
shows that as long as oM/R << 1 the fractional binding energy should
be negative and proportional to (EM/R)Q. The log-log plot of Migure 2
compares the exact curve with the straight line of the post-Newtonian
theory, with the result that the post-Newtonian approximation is quite
good up to (PV)C =1=-2x 10_2, corresponding to M/R =2 - L x 1072,
The spiral which iskformed when (PV)C 21 is displayed in Figure 3.
The behavior of a sequence of non-isentrdpic models can be quite differ-
n+l
ol

ent; in Figure b4, with £I1 = 1.3 and f = 1.0, the spiral curves

in the opposite direction and the binding energy remains positive as
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(PV)C becomes large.

'me internal structure of all the models when (PV)C > 1
1s characterized by a very rapid decrease of the density and pres-
gure away from the origin, as is necessary if» EM/R is not to
become grea Ler than cne inslde the mass. In lfacl, the maximum
value of 2M/R inside the models calculated is about one-half.

The small high density core is surrounded by a comparati&ely tenu—
oug envelope which actually containg mogt of the mass. An intcrest-
ing feature of the core is that the value of 2M/R may oOscillate
several times near its maximum value before decreasing monotonically
in the envelope to its value at the surface. As (PV)C becomes
infinite a limiting model is approached which has infinite density
and pressure at the center; only a small region near the center
differs from this limiting model when (PV)c >> 1.

The stability of an equilibrium model in general relativity
may be studied either by varying the hydrostatic equilibrium equation,
as done by Chandrasekhar (12,13) and independently by the author, or by
taking the second order adiabatic variation of the total energy under
virtual displacements, as done by Dyson (35) for Newtonian gravitation.
Our main interest is in the relation between a stationary point in the
total energy along a sequence of equilibrium models and the stability
of the radial modes of oscillalion as a Ffunclion of poslition along the
sequence. We will find that in a sequence of isentropic models some
radial mode of oscillation ig in neutral equilibrium precisely at a

staticnary point in energy- From just a plot of (MO - M)/MO againegt
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QM/R for such a sequence 1t 1g possible to say for a given model
which modes of oscillation are stable and which unstable. Thus it
will later be profitable to discuss in more detail the behavior of
sequences of equilibrium models as displayed in Figures 1, 2, 3,
and kL.
The radial modes of oscillation and their stability may
be determined by considering adiabatic perturbations of the equilib-
rium equation (5.01) first order in the change in radius, 6R;
of a mass shell. To understand the relation of stablility to binding
energy it is helpful to consider first order non-adiabatic perturba-
tions such ag might be involved in quasi~static evolution along a
sequence of equilibrium models. We will also need the second order
adlabatic perturbaltions of certain quantities to relate the stabllity
to virtual changes in the total energy under adiabatic perturbations.
The perturbations of such quantities as M, Z, kW; P, and
V must be Ffound in terms of the ILagrangian perturbation in R, OR.
In general OR will be a function both of radius r and time t. It
igs convenient to let r for & mass shell be the value of R for this
mass -shell in the unperturbed equilibrium model. The first order per-

turbation of a quantity F will be denoted by

61F =

3
5%)r SR (5.15)

and the second order perturbation by

Fl (sr)> . (5.16)
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The unperturbed value of the quantity will not be represented by a
distinguishing subgeript. Thus to second order in 5R(r,t) a quantity
F will have the value F(R) + 8,F(r,t) + 8,F(r,t).

The non=-adiabaticity in the first order perturbations will be
introduced by an energy flux K in the form of the non-adiabatic change

in total energy interior to a mass shell,

[}

£
M - |7 ymEKza at

K

R

T
- 4TRZa [ K at (5.17)

(see equation (3-04) )- In a general process of energy transfer there
may be non-thermal contributions to the diagonal components of the
energy-mamentum tensor the same order of magnitﬁde ag K. As long as
the time scale of the transfer of energy is sufficiently long, however,
these terms will be negligible compared to the thermal energies and
pressures, and in equation (2.15) have an effect down by a factor of
the velocity of the matter over the speed of light compared to that of
K. Thus the discussion in Chapter IIT of non-adiabatic energyAtransfer
may be applied in all quasi-static situations.

We have, then, from equation (2.08),

— 2 -
éiM = - LTPROR + AL, . (5.18)
Using (5.02) for 7,
8,7%/7 = (M/R + LTPR)OR/Z° - GWK/(ZgR)
Y o
= -3 0R- @ﬂK/(Z R) . (5.19)
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Thermodynamics gives

v
1 788
61P = - LIiP v + (Ix - 1) = (5.20)

where 0S8 is the change in the specific entropy. Another thermodynam-

ic . result required is

i

al(w+13v) 788 + VélP

6lv ,
- IypV <t T8 . (5.21)

If there are nuclear reactions taking place, there will be a change
8A in the specific rest mass. Since Mo is invariant under the

pertubation,

Q@K = Y7 j‘ﬁéé_§_2§§l dMo (5.22)

from equation (3.06). TFinally, an expression for 61V/V' in terms of
8R may be extracted from equation (2.1L),
6
e
v

il

(RPsR) /R - 8,2/7

]

(FveR) /(&) + G/ (z°R) (5-23)

We will first study sinusoidal adiabatic perturbations in
order to obtain an equation for the radial modes of oscillation. Thus
we neglect all terms in (5.18) - (5.23) involving &ﬂK, 83, or OA,
and use the resulting equations to find the first order pertubation of

the equilibrium equation (5.01) with

8R(r,t) = 5R(J{')eiwt . (5.24)
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The sirusoidal time dependence ig in terms of the coordinate time t
instead of the proper time I a dt because of the "red" and "bluec"
shifts of the outward and inward traveling sound waves, the superposi-
ticn of which forms the standing wave of a rormal mwode. The pericd of
oscillation of a normal mode measured in the proper time of a local
observer is different in different places in the mass.

To First order in R,

Oy = - 6PvRer(x)et™ . (5.25)

The pertuwbation of the equilibrium equation, omitting the factor of

Twg
= 5 5.7 ’
R =10 e Al S5 rPé—l-Y
P+E | R 7 PR VJ PHE |7 Y
5.V
+ g¥ SR + LR P — (5.26)
Ré R v
Using the fact that
(v2)'/(vz) = - Wm(P+E)R/Z° (5.27)

and the zeroth order equilibrium equation we can write the equation for

the radial modes of cselllation as

o |DPagl  |wE 1R’y S1EE| BB
Al | 43, b 9 ¥ b 9 7 | 13z
_ (e | _mm .
= - § 3 = g = T—S———é' @ » (5-:8)
¥7° (F Y- 7° R

in which the eigenfunction g = RgYéR(R) and (= R3/3. The boundary

conditions to be imposed on g are g/{) finite at R =0 and g
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finite at the surface, where P = 0. This is not quite the standard
Sturm-Liouville problem, but equation (5.28) is mathematically similar
to the corresponding classical equation, for which it has been shown
(36) that if P TDehaves reasonably smoothly near the surface the eigen-
values and eigenfunctions have the usual Sturm-Liouville properties.
There 18- a discrete set of eigenvalues; Ugg, with a lowest eigen-
value ugg; the corresponding eigenfunctions gi(R) aré mutually

2
Q
orthogonal with respect to the weight function Lﬁiﬂlﬁ d. . The
YZ3 P dR

eigenfunction of the fundamental mode, 8.7 has no nodes, and the
eigenfunction corresponding to the nth elgenvalue above the funda-
mental has n nodes. Any reasonably smooth function of the radius
between R = O and the surface obeying the proper boundary conditions
may be expanded as an infinite sum over the elgenfunctions, which form
a conplete sete. |

An immediate result of equation (5.28) is that

: E.*.EELE(@EQ LRLq o B @2@2()2
Jag {P-I-E dQ)+ 5y L-%2F )+5 35 8

£ - 73z Z
1 (PHE)E (g
Jang=7% (%)

(5.29)

is stationary with respect to variations of' g about an eigenfunction

and is an absolute minimum when g = &7 giving of = ugg‘ Thug (5.29)
is a variational tesgt for stability. If the minimum of (5.29) with res-
pect to variation of parameters in a triagl function for g 1s less than
zero, the mass is unstable in that the amplitude of the fundamental mode

in the expansion for an arbitrary perturbation of equilibrium will grow
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exponentially with time, since W is imaginary in (5.2L4).

The sign of &?, which gives the stability, is the same as
the sign of.the integral in the numerator o the variational expression
(5-29), since the denominator integral ig always positive and Jjust
normalizes the trial function. A necessary and sufficient condition

for dynamic stability of a mass, then, is that the integral
orr [ an BELE (-d-% g LRI GREY) @352(5)2 (5.30)
3, [PFE lad 9 Y Y 5 2 Ja 23

be greater than zero for all functions g(R) satisfying the usual
boundary conditions. In the clasgical limit this integral is just
the second order virtual change in total energy under a virtual sdia-
batic perturtation away from equilibrium, and it is interesting to see
how this integral may be obtained in general relativity by similar
considerations.

The natural procedure to calculate the virtual change of the
total energy, virtual meaning that the velocity U is kept zero, under
an adiabatic perturbation is to use the equation (5.03) for M at the
surface (r = rs) to write the change in M, &, as

ar
M = J S[élw 7 + (14W) 8,% + 60 Z + bW 6,7
O

+ () ozl an (5.31)

MO and A are constant in the perturbation, and we have normglized A

+t0 one.

7 is given by (5.01) to all orders. To find 62Z we need

6fﬂ, the actual first order adiabatic change in M at a mass shell
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from equation (5.18) with M, =0, and GéM, the actual second order

adiabatic change in M,

L3, > o _ 2 2 5
s = % 5=(- 47R") (8R)" = - WMPR(ER)” - oTROR 6P . (5.32)

By thermodynamics

s
= - POV+ ELEV|I) . (5.33)

In the first term of (5.33), &V 6,V + 8V, and

_ 4 o
ZOVH 67 8V + V87 = B [hrR(8R)™] . (5.34)
In terms of 61V and 52V,
6,V
S W= - PV-% (5.35)
2

: 5.V

= . p.L 2 L L

Z 8 W P a, [bmr(6R)] + 2VZT1P( = )

+POVOZ+PVOZ . (5.36)

Substituting into (5.31) and rearranging terms,

T 5,V 8.z
M = Jo - PVZ —RF-+ EVZ —= -

O
8,7 6,V -
+ (PrE)VZ —- + 3Pl lan . (5.37)

p & [Lm(6r)?]

We will denote the integrand of (5.37) by OL(1+W)Z]. After considerable
integration by parts, ete., using equations (5-18) - (5-20) and (5.23)
for 6fﬂ, 51P, 612, and élV' with the non-adigbatic terms set

equal to zero, the integrand can be written in the form
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0 [T
s[(14w)z] = é& [o + 6] + gn-%ﬁ-yz gl - f% E%E.%%
o e} Y7
y o
E B_ - %Ez + §E R PtE
(9 Y 5 ) 5 2 ) BL 2] (5.38)

Since 5iM and 5éM are the actual first and second order
changes in M at a given mass shell, the first term in (5-38) is the
gctual adiabatic change in (14W)Z in the pertubation and integrates
to zero, since M = 0 gt the surface. The second term is the virtual
change in (14W)Z, 6VE(1+w)z], and is second order in OR. Because
of the extra factor of YZ relative to the integrand of (5.30), the
integral of 5v[(l+W)Z] over MO is not positive definite for a
stable equilibrium model. The factor YZ means that if g is expanded
as a sum over normal mode eigenfunctions the cross terms in (5.38) do
not integrate to zero and (5.31) contains terms first order in the
deviation of g from the eigenfunction of a mode of radial oscillaj
tion.

The proper evaluation of the virtual change in the total

energy seems to be

Fg 8 [(1+w)z] '
oM = (¥z) fo L (5.39)

O

since it is this integral which is the stability integral (5.30). The
integral (5.39) has the same form as the integral (3.06) which gives

the change in the total energy due to a non-adiabatic change in "local
energy" per unit invariant mass, including the gravitational red shift

in the transport of the energy to infinity. Thus one may interpret
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(5.39) as saying that it is the sum of the virtual changes in local
energy after they are carried to infinity, including the gravitational
red shift, that determines the stablility of a mass.

A varigtional test for stability may be obtained directly
from (5.39), following the method of Dyson (35) for the Newtonian case

The equation

. . 2
d |LiPdg|_ PE 10 ay L BY 5 om PR
SIREE- v 580 - ) + 3 (5.30)
as 37 afl 37 (P Y gl Y 3 52

with the boundary conditions g/Q Tinite at R =0 and g finite at
P=0 is g Stum-liouville problem with a lowest eigenvalue Y = YO-
A necessary and sufficient condition that (5.30) be positive definite
is that YO > h/3- A variational estimate of Yo can be obtained from

the fact that Y igs the minimum over all g of
20 LB (igf - JaaBE|ay, R, em PR B . )
Y3Z ant | Y af vy 3,2 Q .« O

However, the direct varigtional estimate of ugg using (5-29).13

easier to evaluate accurately numerically, especiaglly if I3 is only
slightly greater than h/3, the clagsical dividing point between stability
and ingtability.

Our numerical cslculations of the stability have used both the

variagtional principle (5-29) with a trial Cfuncition of the Lform
- gy 2 =
g = YL+ CR) , (5.k2)

and direct integration of equation (5-28), guessing at a number for the
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elgenvalue until the integration of (5-28) reaches the surface with
g finite. The trial function (5-#2) seems to give slightly better
results for constant TN models near the instability point of the
fundamental mode than Similar)trial functions in which the factor Y

is replaced by YZ, YB/Q:

or unity. If the constant C 1s set
equal to zero instead of being varied to make (5.29) a minimum, a
factor of Y3/2 seems to give the best value of &gg for these
models.

The most accurate method of determining the stability of
a model is to integrate equation (5.28) with o set equal to zero,
starting with g/Q = 1.0, say, at the center. If in the course of
the integration g goes through zero, the model is unstable; g
with UF = 0 is trying to be s mixture of the fundsmentsl and higher
modes, SO &62 < 0. If g remains pogitive and becomesg indefinitely

2 > O.

large as the surface is approached, the model is stable, &g
This integration is also the starting point of a method for obtaining
both the eigenfrequency and eigenfunction of any mode of radial oscil-
lation to any desired accuracy. For the nth mode, if g goes through
zero ntl times before the integration reaches the surflface, @hg < 0.
Ir g blows‘up before going through zero ntl times, uhg -~ 0. A
previous estimate of the absolute value of u£2’ perhaps oObtained from
the variational method, is given the appropriate sign and used in (5.28)
for the second trigl integration. Whether the true value of wn2 is
greater than or less than the trial value of uhg is determined in the
2

same way as the sign of @a If the absolute value of ﬂhg is greater
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than that of the second trial value, a new triagl value is obtained
by multiplying the old trial wvalue by a factor such as 1.5. This
process is repeated until one has a trial value greater in absolute
value than the true value of &ge. Then one can begin a process of
interpolation between the last trial &hg and the closest previocus
trigl &hg below or above it as indicated by the behavior of g in
the last integration. We cut off each integration when the absolute
value of o= { é%(%) becomes greater than a limit such as 2.0 for
the fundamental mode, with higher limits for higher modes. The value
of Vé/V‘ at the cutoff point is stored and used as a welghting fac~
tor in interpolating between trial values of &%2. We have only
calculated models for which l/V ag well as P dis zero at the sur-
face. With the cutoff @ it must be noted that if QVg at cutoft
is less than zero, g would go through zero once more before going
to infinity. Thus ©/g < O at cutoff is equivalent to g going
through zero wtl times. The limit on ©® must be set high enough
s0 ® does not exceed it prematurely.

If a reasonable estimate is made of the absolute value of
u£2; .ten integrations usually suffice to obtaln &£2 to three or
four significant figures. Using the density ratic to weight the
~interpolation helps mainly in correcting for a rather poor initial
guess of uhg or in taking advantage of a particularly lucky trisl
value.

The variational method for determining the eigenvalue of the

fundsmental mode is accurate only if a reasonably good guess can be
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made of the shape of the eigenfunction. Classically the elgenfunction
of the fundasmental mode when it becomes unstable is 8, = Q ifr Iy is
congtant throughout the mass. This 1s the motivation for the choice
(5.42), which should give good results for constant I1 models near
the instability point if (V) <<1 and éM/R << 1 there. The exact
go/Q decreases away from the origin when ugg = 0. In any case, the
varigtional method result for &62 ig sufficiently good‘to use s an
estimate of its magnitude in the trial eigenvalue method. The value
of CR? at the surface obtained in the variastional method is an indi-
cation of the correctness of the trial function and thus of the accuracy
obtained for &gg- The calculations both of stability and equilibrium
were made on an IBM TO9L computer using a subroutine which integrates
simultgneous first order differential equations by a Runge-Kutta method,
adjusting the step size to give g specified accuracys

Before discussing the results of our stabllity analysis, we
will analyze whal we should expect in the way of correlation of binding
energy with stability. We consider two neighboring models in a sequéhce
of equilibrium models with constant number of baryons and constant Mo'
The invariant mass per baryon at corresponding mass shells is the same.
Define a displacement OR(r) between mass shells in the two models
v having the same nmumber of baryons inside them. Both models satisfy
equation (5.01), and thus the differcnce of @ ‘between corresponding
mass shells in the two models is O - O = 0. In the 1limit that the two
models approach each other along the sequence, 6R(r) goes to zero,

thig difference of ¢ can be written in termg of the first order pertur-
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bations of the quantities contained in ¢. These ?erturbations are
given by equations (5.18) - (5.23), including the non-adisbatic terms.
If all the non-adiabatic terms happen to be zero, 8%
between the two models is the same as 02 in the adiabatic perturbation
of a single model, and since 8% = O +the function OR(r) between the
two models is an eigenfunction of equation (5.28) with elgenvalue of = 0.
That is, OR(r) has the shape of one of the normai modes of oscillation,
and this normal mode of oscillation is in neutral equilibrium.
At a maximum or minimum in the binding energy along a sedquence
of equilibrium models, since Mb is by definition constant, the first

order change in the total energy of the mass, 6MT, between neighbor-

ing models is zero. From equation (5.22) and the fact that &MT equals
aMK evaluatéd at the surface of the mass,
Ts
T8 .
&M = | San :
My = (Y2) o T O (5.43)

If 0Q has the same sign at every mass shell, 6MT can be zero only
if 8Q 1is zero at every mass shell. One case in which 0Q = 8A -+ T8S
does have the same sign everywhere is if 0A 1is zero and if the specif-
ic entropy is independent or radius in each model, so for any pair of
models 08 has a constant value throughout the mass. Theh ﬁMT = 0
implies 0Q = T8S = 0 at every mass point and the perturbation between
models at a maximum or minimum in binding energy are completely adiabat-
ic. As discussed above, this means that for a series of isentropic

models some mode of radial oscillation is in neutral equilibrium at a

stationary polnt in the binding energy as a function of central density.
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When an even mode, which has an even numbér of nodes, 1s in
neutral equilibrium, the fact that OR between models has the same
shape as the eigenfunction of the mode implies that the radius of the
mass decreases ag the central density increases. Near the point where
an odd mode 1g in neutral equilibrium the radius of the mass increases
as the central density lncreages. If at successive maxima and minims
of the binding energy progressively higher modes of radial oscillation
become unstable the result is a spiral in the plot of binding energy
against the surface value of QM/R, as is observed for the isentropic
constant I3 models. This spiral should be typical of all sequences
of isentropic models for which I3 1is more or less constant or mono-
tonically decreasing as the density and temperabture increase. If I}
lncreases sharply at some Value of the density, the highest unstable
mode might become stable again, in which case the curve would oscillate
before resuming the spiral.

A plot of binding energy against oM/R for a sequence of
isentropic models starting from zero central density, where the binding
energy is zero, can be used to read off the stability of the modes of
radial oscillation. If the binding energy increases from zero the fun-
damental mode is stable initially; if it decreases from zero, as is the
case Tor Iy = 14/3, the fundamental mode is unstable initially. As
(l/V)C and (PV)C increasge a clockwlse (right-hand) curvature at amax-
imum or minimum in the binding energy means the lowest stable mode has
become unstable. A counter-clockwise (left-hand) curvature means the

highest unslable mode has become stable. The relevant Sturm~-Ilouville
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Property is the strict increase of the eigenvalues with the number of
nodes in the corresponding eigenfunctions.

The requirement ©A = O 1is a necessary one if the above
properties are to hold, because otherwise even if 8Q were zero
everywhere, 083 vwould not be zero and &P would not be adiabatic.

A maximum in binding energy may coincide with the instability point
of the fundamental mode in g sequence of non-~isentropic mbdels,'but
the specific entropy must be g minimum at every mass shell if OR

is to have the shape of the fundgmental mode there. Tor the purposes
of this sectlion of the paper lsentropy need only imply s’ = 0; A
need not equal zero, as in a model with constant entropy per baryon
but varying rest mass per baryon as a function of radius. For any

particular equilibrium model it is possible to normalize V  so

s

5 =0, but V may only be normalized once in a segquence Qf models.
S’ must equal zero in all models near s stationary point in the bind-
ing energy 1f the above arguments are to go through.

In constructing a sequence of non-isentropic models one may
vary either (PV)C or the gtructure, represented by-the index n in
polytropic models. Perhaps the most natural type of sequence is one in
which n is held constant and (PV)C varied. Calculations with con-
stant [1 polytropes show that if EEE < Iy, corresponding to a sub-
adiabatic temperature gradient, the value of (PV)C at which the
fundamental mode becomes unstable is less than that at which a sequence

+1

with EE— = I1 becomes unstable. There is a strong tendency for a

maximum in binding energy to occur very cloge to the instability point,
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but comparing P Vri, a function only of the entropy, at the center
of the models one finds that the entropy there is not g minimum at
the maximum of the binding energy.
Our most extensive calculations have been made with models

in which EIi = 1l.3. A sequence with -ﬁ E§;== 1.3 (isentrdpic case)
becomes unstable when (PV)C = 0.1836 at a maximum fractional binding
energy of 5.2608 x 1072, A sequence with E-Egé = 1.25 becomes
unstable when (PV)C = 0.1808, still to the accuracy of the calcula-
tion at the same point as the maximum binding energy, (MO-M)/MO =
5.0643 x 1072, TFor E% = 1.0 the instability point et (BV) = 0.165
is glightly past the binding energy maximm of 5.237L x 10_2 at
(PV)c = 0.1635. An interesting feature of the last sequence, displayed
in Figure L4, is that OM/R reaches its maximum before the maximum in
binding energy. Thus 5R(r) between models actually has a node when
the fundamental mode becomes unstable, emphasizing the non-adiagbatic
nature of the displacement.

| A different type of sequence is one with constant (PV)c
and varying n. Increasing n or decreasing Egl corresponds to
incréasing central dengity. Such a sequence with (PV)C = 0.184,
starting from a just slightly unstable isentropic model, has a fraction-
al binding energy maximm of 5.2653 x 1072 at 'E EEL = 1.18 Tbefore

- +
decreasing to 5.2023 x 1072 gt ﬁ?—n—l— = 1.0. A sequence with (BV)_ =

- +
0.170 starts with (MO—M)/MO = 5.2L46Lh x 10 2 a4 %Qn—l = 1.3, has a

- +
maximum (MoéM)/Mo = 5.273L x 10 2 at % otl 1.09, and decreases to
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(M )/ = 5.2335 x 1077 at %%]—'- = 1.0. All of the modes of the
first sequence are unstable; the second becomes unstable slightly past
the maximum in binding energy.

These calculations show that one may construct sequences of
non~igentropic models with monotonically increasing central density in
which the maximum in binding energy occurs either before or after the
instability point of the fundsmental mode. In most cases the two points
are quite cloge to each other, however. It is always posgsible to con-
struct a sequence of non-igentropic models which has adlabatlic displace-
ments near the ingtability point of the fundamentsal mode, but thig is
only one among an infinite number of equally possible sequences.

Wright (37), working in the post-Newtonian approximation,
assumes that displacements between neighboring models are adiabatic at
the instability point of the fundamental mode and shows that as a conse-
quence the binding energy has a stationary point. However, as we have
Jjust seen, his assumption that displacements between neighboring models
ére adiabatic is not valid in general.

In Table I we glve the values of (PV)_, 24/R, and (M_-M)MM
at the ingtabllity point of the fundamentsal mode for certain isentropic
constant I3 models. The parameter o = ffi - 1 is the convenient
representation of I3 in referring to stgbility properties, particul-

arly when o << 1. ¥ = %TR‘g/MO'
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Table I

o Wy, (/e (@R (A0
0.001 53.28 0.5072 1.187 1.770
0.01 46.08 0.5131 1.1975 1.692
0.10 16.46 0.5589 1.204 1.135
0.30 5.55 0.6120 1.029 0.58L5
0.50 3.30 0.636 0.8576 0.3588

Chandrasekhar (13) has found the instability point in the
post-Newtonian approximation, valid when (PV)c << 1, for several
of Tooper's polytropes. The n = 3 polytrope corresponds 1o an
isentropic constant I3 model in the limit o << 1. The instability
point is at (FV) = 0.5065 &, consistent with our results.

The behavior of the binding energy as a function of central
temperature for n = 3 polytrope models of large masses has been
analyzed in the post-Newtonian approximation by Fowler (5). It is
posgible to compare his results with ours with the aid of the follow-
ing conversion factors. If in our natural units the unit mass is taken
to be A solar masses, 1.985 x 1033 gm, the unit length is
1.47 x 10° X am, the unit time is .90 x 107C A sec, and the unit
 density is 6.26 x 10t 472 gm/cm—s. These units, plus a unit tempera-

1L

ture of one degree Celsius, give a gas constant R = 9.2L x 10~ and
a Stefan-Boltzmann constant a = 1.34 x 1072t 272,
We have discussed some agpects of the gas plus radiation

pressure equatlion of state earlier; equation (5.14) gives the relation
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between ® and B, the ratio of gas pressure to total pressure,
when B << 1. For the classical n = 3 polytrope the mass M ig

a function only of B and the molecular weight W,

WA, = 18.3/(uB)° . (5.44)

Taking M = %, the value for a pure hydrogen composition,
M/MC)= 1147 072 (5.45)

Since the fractional binding energy at the ilnsgtability point is
proportional to ag when o << 1, +the maximumn binding energy ofl
isentropic models of large masses 1s, as noted by Tben (33) and ex-
plained in the post-Newtonlan approximation by Fowler (38), independent
off Qa and thus of ‘the mags. Uging (5-h5) and the fractional binding
energy for o = 0.00l. we obtsin a binding energy of ‘2-03 MCY which
checks clogely with the result of Fowler (38)- The central tempersture
at the instability point is, according to Fowler, TC = 1.25 x 1013

M
® .
Mf-/u °K. This mgy be correlsgted with our value for (PV)C by

(Bv)_ = 9.2k x 1071k T /(HB) (5.46)

= -13 M
(PV)C/a 0.40h x 10 W T (5.17)

The post-Newtonian gpproximation works very well when o = 0.001, Dbut
gome deviation is apparent when <« = 0.0L

The most important result of this chapter is the correlation
of binding energy and stability for isentropic models. Fowler (38) nas

made a rough argument that a mass should be stable before a maximum in
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the binding energy and unstable after. When the total energy is
decreasging as the radius of the equilibrium models decreases, an
adiabatic pertubation inward gives more internal energy and there-
fore more pressure than the corresponding equilibrium model, causing
a reexpansion. An adiabatic expansion outward gives too little pres-
sure, and the mass is stable. When the total energy is increasing

as the radius increases, an adiabatic pertubation inward gives too
little internal energy and pressure for equilibrium, and the collapse
accelerates. Thig argument fails for the higher maxima and minima of
the binding energy because the pertubation between neighboring equili-
brium models no longer has a shape like that of the fundamental mode,

and it is the fundamental mode that determines the stability.
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VI. Dynamics Negr Equilibrium

Our study of equilibrium models and their stability provides
a foundation for the study of the dynamics of spherically symmetric
masses. We work with the hydrodynamic equations of an idesl fluid as
discussed in Chapters II and III. In general, a difference equation
gpproximation to the general relativistic hydrodynamic equatiéns is
necessary, and we will discuss possible ways of setting up such equa-
tions for numerical integratidn on a high speed computer and the
results for a particular example later in this chapter. However, near
equilibrium small errors in the difference approximstion to P’ in
equation (3-09) for the non-gravitational force can introduce large
errors in the value obtained for the acceleration Yﬁ due to the
almost total cancellation of f and the gravitational force. Another
problem with difference equation methods is that typically the +time

step Ot is limited by the Courant condition (39),
M S Ybbr/e (6.01)

where c 1is the speed of sound, given by (3.18). IFf fluid velocities
are much less than the speed of sound, as they are near equilibrium, this
condition means that a large amount of computing time is used to calcul-
ate small changes in the Ppressure, density, radius, ete. An implicit

difference equation method can avoid the latter difficulty, but we have
explored a different approach which avoids difference approximations to

gradients completely and allows arbitrarily large time steDPs in
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calculating the initial stages of adiabatic collapse or expansion.

Instead of calculating from the hydrodynamic equations the
new values of all the physical variables after a given time step, we
assume we know-beforehand how the change in R, &R, in the time
step varies as a function of r = RO, the value of R at the mass
shell in the equilibrium model. The new value of R can be found by
requiring that the total energy of the mass be coustant during the
adiabatic collapse or expansion. The magnitude 0t of the time
step corresponding to éR(r) can be estimated from the average of
the initial and final velocities.

The method is only as good as the choice of the shape of
0R(r). Referring to our normal mode analysis of the equilibrium
model, if &62 < 0 +the fundamental mode is unstable and the compon-
ent of the initial pertubation having the shape of g, Brows expon-
entially with time constant (—mgg)_%. Particularly if the higher
modes are stable, the shape of the pertubation will tend to that of
the fundamental mode as the deviation from the equilibrium model
grows. FEven if &62 = 0 it may be of interest to Find out how much
initial kinetic energy it takes to surmount the energy barrier block-
ing collapse; the energy barrier should be lowest for displacements
having more or less the shape of the fundamental mode.

The shape of the displacement from equilibrium would be
expected to begin to deviate from the shape of the fundamental mode

in any actual collapse once GR/R becomes larger than a few per cent.

This puts a limit on how far a choice of &R based on the fundamental
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mode of the equilibrium model may legitimately be ex®ended, although
g rcugh idea of the growth of the kinetic energy can be obtainced cut
to larger GR/R._ For an unstable model the kinetic energy should
grow initiglly as (6R)2. For a model in neutral equilibrium under
first order pertubstions of the equilibrium equation having the shape
of the fundamental mode, we expect R ~ (5R)2, giving a growth of
kinetic energy in one direction (collapse) proporiional to (6R)3

out stability in the other dircction (expansion).

In detail, our method consists of assuming that the shape of
v = R'5R (6.02)

as a Tunction of the initial radius RO is maintained. n 1is a para-
meter which determines how the initial shape of OR 1s modified away
from equilibrium, to the extent that OR is not simply proportional
to R_. As one would expect from tae fact that g ~KOR, n=2 or
3 seems 30 give the best results. We store at a large number of points
cqually spaced in R, the values of R, V, Z, M, R, plus ¥ ané

its radial derivative in the form

v = w22 (H%R) . (6.03)
]

Initially ¢ and ¢ are given by

U = Rﬁ'ggo/y , (6.0k4)
dg g
o= VZ [Eﬁf +n-2+ ié(M/R.+ TR ) ] %-;;1 , (6.05)
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where g can be calculated to arbitrary accuracy by the trial eigen-
value method of the last chapter- | and @ arc normalized by a
common overall fgctor such that © = GR/R i1s some given small frac-
tion of unity near the center of the mass.

To g0 a step in time from R = Rl to R = R, we calculate

2
at each storage point

R = WR™ ~ (6.06)
o= OR/R (6.07)
R, = R+ SR . (6.08)

In order to calculate Vé, from which we can obtain the other

thermodynamic quantities, we need to know Z,. The calculation is con-~

siderably simplified if we can estimate Yé and M2 from Yl and

M, directly. An estimate of M, can be obtained from equation (2.08),

expanding &M as a power series in OR/R. To third order in OR/R,

assuming I1 is constant along the adiabat,

)
5P LTP. R 5. P
= - 2 T S S 11 1L
M, M, unPlRl R {1 + (L + 5D + 3I1 5 oo+ % 5 )
1 Zq 1
1, 2.1 a0 o 1. [%Z .
- (% - - = = .= —_—
(G -32) o+ 2h(r 72 )7 - 50 7] | (6.09)
in which
5.1 6.V
—%- = -0 -%r , (6.10)
1 1
; 2-n
5. v R 6.2
_1 o - s g 6.11
1 0
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2-n
do- —_— Id
Riaﬁl = - (n+tl)o + E; V2.9 (6.12)
8.7
17 . 2 2 ,
—ZI = (Ml/Rl b 4TR R )s/zl . (6.13)

In computing (6.09) and (6.13) we assume that U2<‘< oM/R  and that the
acceleration YU is much less than the free fall acceleration; that is,
in computing the pertubaticas of Z we assume that Z = (1-2M/R)%.

It is only in the first few steps away from equilibrivm that the higher
order terms in (6.09) involving pertubaticns of Z are important, and
here the assumptica is certalnly justified. (6-09) 1s accurate only if
GH/R in a step is kept fairly small.

The difference of Y2 from Yl in what follows is not impor-
tant at least as long as PV << 1, since it is cnly a small percentage
ccrreclbion Lo the change in kinetic energy. For an Isenlropic model
Y is related to V by (3.11) and the equation of state; in general
Yl must be found by integrating (3.09) at each time step.

Denoting by Za the vaiue of Z obtained assuming R

remging constant,

2. 2 % )
= -+ - . .
z, (1 ¥R ¢M2/RE) , (6.14)
22 is approximately given by
-
. C a1 YéL- 2 -2
Z, = Za(l + 0K) = Z |t ;5(32 - RN . (6.15)
a

8% 1is a parameter which can be used 1o adjust the magnitude of R2

and thus the change in the total kinetic energy to keep the total energy
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of the mass constant. The actual time for the displacement to take
place is equal to 0t only if the acceleration is approximately con-
stant during the time step, which it is not in the first few steps
avay from equilibrium. The actual time fTor the first step is infinite
1T one gtarts in equilibrium with zero velocity.

Frem equation (2.14) we can obtain an equation for Vé in
terms of ¥ and ©, avolding a difference approximation to BR/BMO.

We have R 2-n

(1+0)° V.2, (1-00) + o ﬁl 7, (6.17)
O

<
i

Vé(l - 8K)

to first order in 6K. Va is known cxplicitly and can be used to
calculate the correspording prcssure Pa and specific thermal cnergy

W, - For our constant I3 model,

V-—l
= 9
P = P |7 , (6.18)
_ /(T .
W= PaVé/(Il 1) . (6.19)
To first order in 6K,
W, = wa[l + (Iy - 1)8k] . (6.20)

The equation (3.07) for the total energy of the mass is used
with (6.15) and (6.20) to apply the conditiorn that the total energy be
constant in the adiabatic collapse. In terms of &%,

o

R. %R

T,
(66)2 - 2 E—2— (86)F (6.21)

o o
¥, (6R)
2

Z Z
a a

K = 2
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and with the specific rest mass A = 1,
f[za - %) *tWZ - wizl] M
Y R, OR
2 1 . -1
-2 = (1 4 IﬁWé)dMO (8t)
a
Y22(6R)Q
v B
2 7

a

(1+ D da (66)° = o,  (6.22)

-1 . , .
an cgquation for (6t) . The first integral in (6-22) is the critical
one t0 evaluate accurately; classically 1t i1s minus the change in kine-
tic energy of the mass, - 0T. If initially R = 0, we will call the
2

running sum of the 0T, corrected to replace Yégﬁl in 6K by

Ylgélg, the total kinetic energy T-

The integrations in (6-22) are done by'Simpson's rule, with
severél hundred radial points sufficient to give reasonable accuracy-
The integrand of the integral for OT in the first step away from
equilibrium is given to second order in OR/R by equation (5.38). The
integrand has terms first order in GR/R which should integrate. to zero.
The numerical integration must be sufficiently accurate that the error
in integrating this part of the integrand does not exceed the result
one is looking for, especially starting from neutral equilibrium when
this is the order of (I3 - 4/3)(8R/R)° times the integral of the abso-
Iute value of the integrand. It may be necessary to extrapolate back to
R - Ro = 0 to obtain the behavior or thg kinetic energy there. One
must also be careful to calculate the shape of the fundamental mode

accurately. As discussed in Chapter V a deviation from the fundamental

mode appears to first order in the terms proportionsl to (6R/R)2, and
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even a rather small deviation can make a gignificant difference 1f T
should vary initially as (R - RO)S-

These numericasl problems arise only in the first few time
steps. As the kinetic cnergy grows the changes in kinetic energy
are evaluated more accurately, so that runs with different numbers
of radial points, different fractional changes in R per step, ete.,
converge rapidly to a commor numerical solution.

The best “est we have Tound of the bagic assumbtion of the
method, that the digplacements have in some sense the shape of the
fundamental mode of the initial equilibrium mcdel, is to compare ad
interior mass shells the binding energy calculated from the initial
binding energy and the change in M according to (6.09) with the
binding erergy calculated by direct integration of equation (3.07).
The two values will be equal at every mass ooint if and only if the
ckange in U = Yﬁ hags been consistent with acceleration equation
(2.11) at every mass shell. If the difference of the two values at
egach mass shell is a srall fraction of the kinetic energy inside the
mase shell, cne can certainly trust the value obtalned for the totaZ
xinetic energy. This is a very sensitive test, especlally neaxr the
center of the mass where the kinetic energy ig only a small fraction
of the change in MOfM frem the inltial model.

The most interesting spplication of cur method is Lo the
calculation of the initia’l collapse of a‘mass from neutral equilibrium.
As one would expect from the positive binding energy, we find that a

mass at the maximum in binding energy of an lsentropic sequence is
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is unstable to collapse and stable to expansion. To present our
results, consider the expansion of the kinetic energy T as a power
series in x = (R—RO)/RO evaluated for a mass shell near the center.
For our constant I3 models the ratio T/(MoéM) ig independent of
o = (3/)T1-1 in the limit « << 1, and thus is a funetion only
of x. Both the kinetic energy at a given x and the maximum bind-
ing energy are proportional to the first order general rélativistic
corrections to the potential energy, or to a?, as waé noted by
Fowler (38) from his post-Newtonian analysis. We have calculated

the coefficients a

3

and alL in the expansion

3

7/ ) = ax’ + auxu e (6.23)

3

using an extrapolation to x = 0 based on the change in the kinetic
energy in a step rather than the total kinetic energy since the latter
is affected by errors in calculating the change in kinetic energy in
the first one or two steps.

The time scale associated with the collapse can be found by

integrating the equation

1
2

M -M
O x3/2 H (6.24)

.=é
xR

the time for x +to go from X <<1 +to a value of x such that

xo/x << 1 1is, according to (6.24),

2R 1
N i o -3
t " a x . (6.25)
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The dimensionl‘ess constant A depends only on the structure of

the mass and the sghape of the fundamental mode,
A= Ry |G/R) [z ) (6.26)

RT denotes the total radius of the equilibrium model. ZFor a classical

n = 3 polytrope and 8, = Q, A=Lk.o. Let
- % % ‘
e = (V /6m)*(u /m) (6.27)

be g sort of "free fall" time for the center of the mass. The quantity

1
e

M -M
0
3 M

65, e = Ha/RYAT/V ) (6-28)

o
¢ o]

ig given along with a3 and a), in Table IT as a measure of the degree
of instability to collapse of several constant Iy isentropic models

at the maximum in binding energy. As in Teble I o = i—l‘l - 1.

Table IT
a a3 8“4 tcxol/z/ T -
0.00L - 0.35 0.7 £30.
0.01 - 0.359 0.8 T1.L
0.10 - 0.580 1.4 ol.6
0.30 - 1.266 3.2 T-T5

There is somec uncertainty in the last digit of most of these numbers.
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In the limit o “< 1 we agaln make contact with the gas plus

-

= _1
radiation model of large masses. nxoz/tf varies as O 2 in this
. %
limit, and thus from (5.45) as (M/M@) - The free fall time +t. may
be found from the expression for B in the limit B << 1,
R -3 -1
P> 3 A Tc Vc (6.29)

The +time scale of adlabatic collapse from the instability point of a

v

large mass is then

o+
el
]

1.76 % 1077 \° (M/MQ)E seconds

I

0.57 ug OM/lOéMCQE years . (6.30)

The higher order terms in (6.23) tend to accelerate the collapse.

A large mass loses energy by radiation at the rate, as worked
out by Hoyle and Fowler (2,3), of 2 x 1038 M/Mc)erg Sec-l- This gives
a Kelvin-Helmkoltz contractior time to the instability point of 580
(lOQQjﬁM) years if M = %. The mass will actually start collapsing
before the adlabatic instability pcint is reached becguse the binding
cnergy will not be able to supply the energy loss near its maximum as
a function of central density. 'The relative Importance of (6.30) ana
+he energy loss in debermining lhe Uime gcale of collapse can be esti-
mated very roughly by saylrg the acceleration due to the energy loss
ig the Fractional change in the initial pressure due t0 the energy loss
in the time tc given by (6.30) times the free fall acceleration. The
time scale asgsociated with +this energy 10ss acceleration must be much

greater than tc- When the numbers are put in, the condition that tne
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collapse, except very near equilibrium, be approximately adiabatic is
that M << 10°° M. Fowler (38) has shown that because of the low cen-
tral temperature and density at the instability point nuclear energy
generation cannot stop the collapse for M much greater than 1O6 MCY
Thus (6530) is an adequate description of the time scale of spherically
symmetric gravitational collapse when M 1s in the range 106 - 109 M®.
(6.30) may be compared with Fowler's treatment (38) of the same problem,
which considers only the center of the mass in the post;Newtonian approx -
imation. When formulated in The same way as (6.30), Towler's result is
tcxo% = 0.24 p? (M/106M®)2 years, a little less than half our value.
The behavior of the dynamics near equilibrium is now considered
in more detail for constant Ii models with o = 0.001l. This value of
@ is equivalent to a mass of 106 Mt) in the gas plus radiation type
of model, and this value of the mass is used to convert the time units
to seconds. The fractional binding energy and elgenfrequency of the
fundamental mode are glven for equillbrium models near the lnstabllity
point in Figure 5. Equilibrium models with (PV)c > 0.5072 x 10_3 are

unstable to both expansion and collapse. The growth of the kinetic

energy away from equilibrium according to the pertubation analysis of

2
. )
Chapter V is o 2,%(_w02) f Xgﬁgﬁl_ . (6.31
ZL

Iet

a, = (/M )/[(R - RO)/RO]i = (-wog)RT? AT? (6.32)

where A is defined by (6.26). The equilibrium model at (PV)C =

0.6 x 1075 has uggRI? - - 6.72x 100, and thue a, = 3.8x 1077,
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at (R-R)/R_ =+ 0.0k, a, = 3.4 x 1077, and at (R-R )/R, = - 0.0k,
an = h.6 x 1077, Ir. both cases extrapolation to R—RO =0 ig consis-
tent with the value of a, from the pertubation anglysis. One expects
rapid deviation from parabolic behavior of the kinetic energy as a func-
tion of (R—RO)/RO starting from an equilibrium model near +the insta-
bility point.

In Figure 6 we present the kinetic energy T as a function of
the logaritim of the radius of the mass starting from (Pv)c= 0.507 x 10'3,
(PV)C= 0.7 x 10—3, and (PV)C= 0.85 x 10_3- The first model is unstable
only <o collapse, for the second we have plotted just the expansion, and
for the third both expansion and collapse. The expansion cannot contin-
ue indefinitely because of *the positive binding energy cof these models,
but the precise point at which the expansion stops is not given accurate-
ly by our method since cur ansatz for the shape of the velocity as a
function of » will not remain valid so Tar from equilibrium. The times
given in Figure 6 are roagh estimates of those needed to come from near
equilibrium to the points indicated.

A stable model may be made to collgpse by giving it enough
kinetic energy c¢f motion in an inward direction. By our methcd, an
equilibrium model at (PV)C= 0.4 x 1073 with (MO-M)/MO= 1.663 x 1076
needs a kinetic energy per unit mass I%MO = 2.66 x 10-8 to top the
barrier preventing collapse. ' The kinetic energy reaches 1ts minimum
value at (R—RO)/RO = =~ 0.37. For the séme reason as before, these

aurbers are not expected to be extremely accurate.
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In any actual calculation of the calculation of the collapse
from equilibrium, the fundamental mode method is useful in starting the
numerical solution, but in order to continue the solution beyond the
point where the fluid velocities are becoming comparable the speed of
sound, to include non-adiabatic effects such as energy geheration and
shock waves, or to consider other initial conditions than an unstable
equilibrium model, it is necessary to go to a difference equation
approximgtion to the full get of hydrodynamic equations. We have not
conducted any extensive program of calculation and have not exhaust-
ively tested any particular way of setting up the difference equations.
Our feeling has been that this would be worthwhile only in the context
of a particular physical model believed to be relevant to some parti-
cular astrophysical situation, where general relativity will not
necessarily dominate the dynamics.

Non-adiabatic effects such as heat flow by radiative diffusion
and neutrino loss will not be considered explicitly in our discussion
of the difference equations. The direct effect on the thermodynamics
of the matter and on the non-gravitational Fforce of energy braﬁsfer by
radiation is discussed in Chapter IV, where it is shown that these
effects, within factors relating proper times and radii to coordinate
times and radii, can be treated much as they are classically. In most
cases the gravitational effects of non-adiabatic terms in the energy-
momentum tensor will be negligible. Energy generation can be handled
trivially by noting that - YA is the function of temperature and
density which is the local rate of energy generation per unit invariant

mass-
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An artificial viscosity, which can be introduced as a
contribution Q to Ll’ allows shock waves to be handled without
’the difference equations breaking down- Except perhaps in the ultra-
relativistic limit as R » 0 a form for Q similar to that of
Richtmeyer (39, P- 216) should be satisfactory, although we have made
no calculations requiring it. Having @Q in LlJ but not in Ib’ is
probably most suitable for spherically symmetric collapsé (40).

Three possiblé groupings of the hydrodynamicé equations

deserve attention as bases of difference equations. Common to them

all are
M= M+ .jo [(atw)z - 1] a (6-33
‘ 2 1,2
WA SV 63
WA+ PT = - VQ;% - (YA)a + H | (6.35)

where il represents the net non-adlabatic transfer of energy into the
mass shell as given in (2-15). Of course, an equation of state relat-
ing W, P, and V 1is necessary. The first group of equations

consists of o
L7 3(R Q)/aMO

U = ATTREZ ~§--:'E -
al " BV aMO (P+EHQ)V
- M/ - 2+TT(P+Q,)R} s (6.36)
R= Us , , (6.37)

_ 12 [ .
T AL (6.38)
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7= (1+W - au/Rr)* (6.39)
au
b= V=2 /() . (6.40)

The second group ccnsists of (6.36) and (6.39), out

b/b = UXZ (6.11)
R = JT) W dr (6-42)
Py O .
V= L&D ;o (6.43)

The third group is more radically differcent:

O.M ;
. oo AW 7o 2l / 3
b = a(:Z + 55 = - Mo/R S (6.44)
, oy .0
- Px+ (§Q)X/R "
Z= = P+FE+ Q Us b (6 15)
U= - (22 -1+a/r)? |, (6.46)

plus (6.L42) and (6.43) for R and V.

Each of these groupings has the proverty that no two guanti-
ties, one of which can be determined in terms of the other at a given
tinme, are calculated ilndependently by time derivatives. This is impor
tant for Lhe accuracy and stability of the difference equations -

The first two groupings are suitable for use outside the
gravitational radius, 2M/R <1, since Z cannot change sign there.
The first set of equations corresponds to the usual classical formula-

tion of the lagrangian difference equationsas given by Richtmeyer
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(39, p. 200). There are centering problems with the general relativistic
factors; in particular we must calculate U(It%, M%) and R(I+s, N+1)
before we can find V(I, N+1) and thus a(I+s, N+1l), which is needed
to center a in (6.37). I denotes the Ith radial point and N the
Nth time step. These centering problems are not critical as long as
a~1l. When a % 1 it may be necessary to reiterate each time step to
keep (6.37) centered.

The third set is the one to use when EM/R > 1. There U
cannot change sign, but shock waves may create steep enough pressure
‘gradients to make Z < 0, and when Z = O some of the equations in the
first two sets become singular. The natural centering is to calculate
b and the thermodynamics quantities at (I, N) and Z at (I+h, N+%).
However, U must be known both at (I+%, N) and (I, N+%).

The one example we present of a numerical difference equation
solution is the collapse of a mass of 1.09 x lO8Mty relative to an
explicit gas plus radiation equation of state with H = 1.33 and
B=2.67Tx lO-A. The collapse is started from a highly unstable equili-
brium model with a central temperature Tc = 1O8°K. The binding energy
is négative, (MO—M)/MO = - 3.9x 10—3; and the time constant for the
growth of the fundamental mode is (-wog)’l/2 = 172 in natural units with
unit mass of lOSMQ. However, all other modes of radial oscillation are
stable. The time unit is about 490 sec and the distance unit about one
astronomical unit. This choice of equilibrium model to start the col-

lapse was made so as to be able to reach the gravitational radius in a

reasonable number of steps. The initial equilibrium is necessary to
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avold trouble with shock waves in the collapse, since we did not include
an artificial viscosity in our difference equations.

The difference equations are based on the second set of hydro-
dynamic equations; the close relation of their form of the equation to
the form displaying the characteristics (equations (3.16) ) allowed the
introduction of stabilizing terms in the difference equations related
to gpproximate integration along the characteristics of the equations
(3.16). These stabilizing terms, which tend = +to refplé,ce U(1+%, N-%)
vy slu(z-%, N-%) + U(I+g-, N-%)] in calculating U(I+%, %), are |
necessary near the center of the mass when a relalively large number of
radial points are used.

Our sample integration calculates ,U ‘at 51 /radial points
and V at 53 radial points. The radial points are spaced evenly in
the initial radius out to RO = 30.0 at 0.981 of the total invariant
mass Mo’ and then at even intervals in Mo to the surface of the mass
at R = Lh.3 in order to save computing time. With only about 8 paints
in V and U +to cover one-third of the radius, the dynamics of this
part of the mass will only be very sketchily represented by the differ-
ence'equations,but due to the small fraction of the mass involved errors
here should not significantly affect the dynamics of the interior. The
time step was chosen to be one-half of the Courant condition (6.01), or
if necessary, small enough to keep the fracticnal change in radius per
step less than two per cent.

In Figure 7 we show U and R for every fourth (I+k) as

a function of time in the initial stages of collapse. Some of the
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polnts are labelled at + = 0 with the fractional invariant mass inside
them. The collapse is started by giving the core only an initial inward
velocity. Because only the fundamental mode is unstable the core cannot
start collapsing until a rarefaction wave, travelling at the speed of
sound, reaches the surface of the mass. By + = 311.8 the shape of the
velocity as a function of Ro has become that of the fundamental mode,
represented by the solid curve, except near the surface,‘thus‘tending to
confirm the assumptions of the fundamental mode methodv of this chapter.

Iater stages of the collapse are shown in Figure 8for the
central region of the star. At t 2x 500, with the maximum wvalue of
2M/R = 0.2, the matter inside the position of this maximum value starts
collapsing increasingly Tfaster than the outer part of the mass. At
t o~ 560, EM/R Tirst becomes greater than one at a fractional invariant
mass of 0.15. The velocity is very sharply peaked around the position
of the maximum value of EM/R- It is likely that this behavior is
typical of spherically symmetric gravitational collapse from equilibrium.
Near the center Z decreases to the point where the pressure gradient
term in (6.36) can no longer keep up with the M/R? term. However,
this "collapsing core" does not separale Crom Lhe outer part of the
mass; the density is increasing everywhere. As is shown in Figure 9,
the density Jjust increases Taster in the core.

Whitc and May (14) have studied in some detail the collapse
of masses inside the gravitational radiué-’ An interesting result of
theirs is that a collapse starting not too far outside the Schwarzs-

child radius from an initigl condition far from hydrostatic equilibrium
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generates shock waves which do indeed make Z < O in the vicinity of

g Tinite value of 1. The specific volume and presgure remgin finite.
Z <0 then implies R* < 0; so, a local minimun develops in the func-
tion R(r)- The fact that the circumferential radius of a mass she-l

is less than that of some mass shells inside it does not mean that the
matter has interpenetrated. The proper radius £ = JZbdr ig still s
monotonically increasing function of r. Rather, the space has become

bent back upon itself. In fact, an analysis of the asymptotic solution

as R =0 of equations (6.14) - (6.46), assuming P < (l/V)A/S, shows

that
%
b<R * |
1/v <= R’g s
7 < R? . (6.47)

Since R’ = bZ is constant in the 1imit R -0 the shape of R(r) 1is
maintained. I7 it has a local minimum, the mass shell at this minimum
will reach R = O before the mass shells ingide it do. The matter
ingide this mass shell is pinched off. At R = O both Lhe energy-
morentum tensor and the geometry are singular and the solution cannot
be continued-.

Of ccurse, all of these effects are not accessible to an
cusside observor since they take place well inside the gravitational
radius. Communication is even cut off between neighboring mass shells
since in the limit R-*0 b and thues the proper distance between them

becomes infinite.
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VII. Conclusion

We have set up the hydrodynamic equations of general rela-
tivity in a form, convenlers for numerical computaiion, which allows
cilassical concepts of energy and force to be applied in their intér—
pretation. This Iagrangian, or comoving form of the equations is
particularly ccnvenlent in studyilng the role of the internal properties
of the matter in determining its motion. We have not tried to investi-
gate in detall the consequences of any paritlicular physical model for
the matter, using in our numerical calculations simple mathemabical
forms for the equation of state and polytropic structure. However,
cur constant 11 polytropes are, for some values of 13, physically
reasonable in the whole range cof values of PV, in coatrast to the
models cof Tooper (3&), ana are more easlily interpreted in terms of
gpecific physical condlitions than those of Gratton (41) and those
cf Harrison in (42). Our models are not limited “o constant entropy
(isentropy) or zero temperature, and this accounts for the difference
between our analysis of the relation of stability to virtual changes
in the total energy and that of Thorne in (ME), which depends on
equation (3.11) being valid for Y. The analysis of the relation
petween binding energy and stability of isentroplc equilibrium models
is 1ndependent of the equation of slate, allhough it does depend on

the matter being approximately describable as an ideal fluid.
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We have tried to study the effects of genéral relativity, as
opposed to peculiarities of the internal properties of the matter.
Succeggively higher modes of radial ogcillation tend to become unstable
as the centfal pressure increases, and at the neutral point of the
fundamental mode the mass 1g unstable to collapse, as opposed to
expansion. The point at which the Instabilities arise and the sub-
sequent behavior of the collapse, such as whether it can be stopped,
depend, of course, upon the properties of the matter as much ag on
general relativity. The study of any except vacuum solutions of the
Einsteln equations brings in the rest of physics 1n the energy-momentum
tensor. General relativity is not self-contained.

Only in the chapter on radiative transfer do we conglder a
specific kinetic theory model for a portion of the energy present.
However, the main intention i1s to demonstrate the advantage of formu-
lating kinetic theory in terms of a comoving observor, and‘to generate
gpecific examples of how the equatione arising from the zmero covariant
divergence of the energy-momentum tensor may be interpreted as govern-
ing the 1oéal transfer of energy and momentum if P + E is taken as
the 1lnertial mass per unit volume.

In a typical dynamical situation with velocities the order of
magnitude of the speed of sound the general relativistic terms in the
equations will only be important near the gravitational radius, where
EM/R ~ 1 and P/E ~ 1. If the mass is not to collapse immediately
ingide the gravitational radius, where it can no longer affect the

outside universe, the matter must be "stife" enough to provide a more
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or less stable equilibrium with oM/R ~ 1. We havé seen from our
equilibrium models that this is only possible if Iy is signifi-
cantly greater than four-thirds when P/E is not too much less
than one. This 1s the cage for nuclear matter, as found in a
neutron star or a supernovae core. Thus, one area of application
of the general relativistic hydrodynamic equations is to the
calculation of the "bounce" of supernovae cores (6) or to the con-
struction of neutron star models. However, a serlous difficuity is
that the equation of state of the matter is not at all well-known
for denslties higher than nuclear densities.

A situation where the equation of state of the matter is
much better known is in large masses supported by gas and radiation
pressure. Here general relativity can be important even when
2M/R << 1, if the mass is very near hydrostatic equilibrium. Since
f I - 1 <<1, small general relativistic terms can seriously affect
the stability of the almost neutral classgical equilibrium, as was
pointed out by Feynman (43). This extended importance of general
relativity near equilibrium is why we have done most of our numer-
ical work there. Of course, when 2M/R << 1 the post-Newtonian
approximation can be used. Thus, our numerical results for equili-
brium.models can be used to justify and to show the limitations on
the use of this approximation. The implications of these results
for equilibrium models of quasars have been extensively discussed
in the papers of Fowler (5,38,Lh4). ‘Another astronomical applica-

tion of the stabllity analysis when ZM/R << 1 1is the derivation of
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a minimum radius for white dwarf stars much greater than the gravita-
tional radius, since as the degenerate electrons become relativistic,
> /3 (Ls).

Thé asgumption of complete spherical symmetry is not a real-~
istic one in that any actual astronomical object is expected to have
some rotation. If f It =1 << 1 a very small amount of rotation
can have an important effect on the stability of the mass and signifi-
cantly modify the conclusions as to the central temperature at the
instability point. for a given gize mass. Without rotation, our
discussion of Chapter V and that of Fowler (5,4L) shows that the
largest mass which is dynamically stable when the central temperature
is high enough for a significant rate of nuclear energy generation is

about lO5

MO' Only nuclear energy seems able to give a Steady supply
of energy over the lifetime of a quasar, lO3 - 106 years, in a model
which can explain the gpparent regular fluctuations in brightness
noted by Smith and Hofflecit (46). We may analyze the effect of a small
rotation by congidering the rotation and general relativity as small
independent first order pertubations on & spherically symmetric classi-
cal polytrope. The effect of the rotation on the frequency of the

fundamental mode is treated by Chandrasekhar and ILebovitz (47). If

a = f Iy - 1, the unperturbed term in the expansion of ugg/qﬂpc, Oc
the central density, is proportional to @ and independent of the
radius or central temperature. We are interested ih the case o << 1;

then the first order general relativistic term, proportional to l/R,

and the first order rotational term, algo proportional to l/R if
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angular momentum is conserved, can be larger thanvthe zeroth order
term while only perturbing the structure of the mass slightly. The
general relativistic term is negative, and the rotational term is
positive. If the rotational term is larger initially in a sequence
of models with the same polytropic index it will remain larger, and
the mass will be stable until the first order pertubation analysis
breaks down. The ultimate limit on the amount of rotation is that
the centrifugal acceleration be less than the gravitational accel-
eration at the surface of the mass. For uniform rotation of a n = 3
polytrope there is only a very slight increase in the size of the
mass that can be kept stable until nuclear burning temperatures are
‘regched. However, Fowler (MS) has found that with non-uniform rota-
tion the mass limit may be raised from a few times 105 Mt),to 108 N%Y
which is the right order of magnitude for a model of a quasar. To
treat the rotation even in the post-Newtonian approximation is a
complex mathematical problem, although Chandrasekhar (49) has formu-
lated the basic equations. The exact solution of the equations of
general relativity in the presence of rotation, which is necessary to
understand what goes on near the gravitational radius, 1s much more
difficult and little progress has been made thus far.

The extended ektra—galactic radio sources (4) seem to involve
the explosive release of very large amounts of energy, and it has been
proposed (3,5,50,51,52,53) as one explanation that gravitational col-
lapse to near the gravitational radius may release a gizeable fraction

of the gravitational potential energy, which is there thc scame order
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of magnitude as the total rest mass energy. MEchénisms departing in an
esgential way from spherical symmetry, such as gravitational radiation,
are outside the scope of this paper and will not be discussed here, nor
will more eiotic general relativistic models such as ones with singular
initial conditions or negative energy fields. However, we would like
to analyze critically the possibility of releasing energy in spheri-
cally symmetric collapse.

In order to obtain the relativistic electrons of the’radio
gource, there must be ejection of particles and fadiation:from The mass
or reversal of the collapse of some part of the mass. If EM/R > 1, it
is clear from (6.41) that there can be no reversal of the overall hydro-
dynamic collapse. Since the forward light cone lies completely in the
direction of decreaging R, no radiation cah escape. As R decreases
to the gravitational radius, the red shift ol radiation escaping to a
distant observer becomesg greater and greater, decreasing the amount of
energy released. Furthermore, radiation emitted near the center of the
mass must pass each mass shell before EM/R becomes greater than one
at the mass shell. For large masses, where high temperatures are
attained only near the gravitational radius, this time delay cute the
amount of neutrino emission drastically (5&), even agsuming the neu-
trino energy can be converted into relativistic electrons. Light,
which must diffuse outward through the mass, is Just swept in with the
matter. Michel (55) has proposed a mechahism for releasing the intern-
al energy of the envelope of a mass whose core 1g collapsing. He

suggests that if alarge fraction of themass of the core canbe emitted as
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neutrinos, the resultant reduction of the gravitational force on the
cnvelope will allow it to explode. The argument fails for two reasons.
First, due to the red shift and the short time scale of the collapse

in comovinglcoordinates, the fractional change in the mass of the core
will be very small. Second, the effect of any change in the mass of
the core is blanketed by the amount of matter reached by the rarefaction
wave proceeding outward in the envelope before the neutrinos pass by.
One cannot expect a really sharp separation between the core and the
envelope.

Release of a sizeable amount of energy in the collapse 1s only
possible if the collapse of the core, at least, can be stopped. In
masses of greater than 106 Mt> the temperatures and densities are too
low for generation of nuclear energy to do the job, and there 1s no
degenerate pressure or hard core as in the case of collapsing supernovae
cores.

It is interesting to consider from our point of view the rever-
gibility of the collapse once 2M/R has become greater than one at a
mass shell. A large repulsive non-gravitational force just bends the
gpace around (makes 7 < O) g0 the mass shell is accelersted toward
R =0, as is clear from equations (2.09) and (2.11). The boundary
conditions at the origin keep Z -~ O for small R as long as the
geometry remains non-singular. From equation (2-06) Tthe only way U
can go through zero at a mass shell is if 2M/R becomes lese than one
again. Since R 1is decreasing, a way must be found to decrease M.

It might be thought that an ocutward flux of radiation would do this.
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However, a radial flux of neutrinos has Ll = K and from equatiorn
(2.08), when 2M/R > 1 (-U > Z) M actually increases.

To have a chance of stopping the collapse we must turn to a
repulsive éravitational force, such as that caused by a negative stress,
Ll < 0, or a negative total energy M. The basic requirement is Ll< O
since IL. < O, besides being a repulsive force in (2.11), decreases M

1

in (2.08). A radial electrostatic ficld has L, <0, and in fact if
ore sclves the Eingtein equations for the colilapse of a charged dust

(P = O) one findas, following a particulasr mass shell with fixed charge
and rest mass iluside it, that the collapse 1s indeed reversed. The non-
gravitational electrostatic force is strong enough to meke Z < O, thus
turning it into an effective attractive force, vut the repulsive force
from Ll dominates. The problem is thet a mass shell cannot reexpand
without crossing (in r) other mass shells. This crossing is assoclated
with the density becoming infinite in a continuum model for the matter,
and thus by any reasonable equation of state with tke pressure becoming
infinite. The infinite pressure is a positive radial stress which can-
cels the negative stress cf the electrostatic field, thus allowing the
collapse to continue until the metric becomes gingular at R = C.
Allowing the matter to interpenetrate means the charge and rest mass
ingide a mass shell ig no longer comnstant. If the collapsc could oe
reversed in this way, causality would be violated. A negative energy
field with negative stress, such as the C-field or Hoyle and Narkikar

(55), can stop the collapse without these difficulties, but is nct con-

sistent with what we know of the rest of pkysics.
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Our conclusion is that within the context of ordinary positive
energy density classical physics, it i1s impossible to stop the collapse
short of the singularity that develops when the density and pressure
become infihite at R = 0, once EM/R has become greater than one. 'Uhis
has been proved in greater generality by Penrose (57). It is possible
that a quantum theory of gravity may in some way avoid this singularity,
as discussed by Wheeler (58), but so far this is just speculation.

If indeed the extended extra-galactic radio sources are the
result of gravitational collapse near the gravitational radius, which
mey not bc thce case at all, the collapse must invelve rotation in an
essential way. The question of whether some of the simplicities. of
interpretation of the gpherically symmetric Einstein equations can be
extended to rotating masses is still an open one. Unfortunately, the
key to the’spherically symmetric equations is the identification of the
spatial location of a mass point by a coordinate R with invariant
geometrical significance. The lack of such coordinates in the rotation-
al problem plus the many new degrees of freedom opened up makes Progress
likely to 5@ very slow in understanding any process of energy release

in which general relativity is important.
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Appendix T

The Riemann-Christoffel symbols are evaluated for the

metric (l.Ol), ) 5
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