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ABSTRACT

The current philosophy of earthquake resistant design is that
a structure should be able to withstand an extremely strong motion
earthquake without collapsing, even though a certain amount of
damage is incurred. To make such a design requires a knowledge of
the dynamic behavior of structures under large amplitude vibrations.
The objective of the work reported here was to investigate the
dynamic frequency response characteristics of a mild steel structure
vibrating in the plastic range. Comparisons were made of the static,
the dynamic, and the theoretical responses of the yielding structure.

The behavior of single-story structures having structural steel
columns was investigated experimentally by means of horizontally
applied forces generated by a shaking machine. The experimentally
determined dynamic response showed the decrease in resonant
frequency for increases in deflection amplitude which is character-
istic of a "softening spring' type of nonlinearity. Ultraharmonic
response was also observed. Under steady-state oscillations thc
fraction of equivalent viscous damping varied from 0. 0016 at small,
elastic deflections to 0. 089 at large, plastic deflections. Structural
deterioration was observed in both the static and dynamic experiments
with a recovery of strength occurring between tests. A completely
stable hysteretic loop was not attained at large deflection amplitudes,
and the hysteresis loop did not become completely stable until the
deflection amplitude was reduced to almost the initial yield value.

However, the change in the hysteretic loop per cycle for the large
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deflections was small enough to permit assuming that a steady -state
dynamic condition existed over a limited number of cycles.

Discrepancies between the theoretical and the experimental
virgin force-deflection curves were found and these are shown to be
the result of simplifying approximations introduced in the structural
analysis. It was found that the resonant vibrational amplitude of the
structure can be predicted within 20%, and the resonant natural
frequency within 2-1/2%, on the basis of the static virgin force-
deflection curve. For large, plastic deflections at an excitation
frequency of 3 cps, it was found that the differences between the
dynamic and the static hysteresis loops were less than the changes
in the static loops resulting from the deterioration caused by

repeated cycles of loading.
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I. INTRODUCTION

Analysis of the stresses and deformations developed in a
structure bjr externally generated oscillations is an iﬁportant
problem for the engineer ‘and one which has received extensive
research and investigation. The response of a structure whose base
is subjected terarthq_uake motion is a special case of the general
structural dynamics problem. The relationship of the earthquake
vibration problem to the general vibration problem is discussed in
detail in Chapter II.

The ground motion of an earthquake is caused by compressional
and shear waves generated from a rupture of stressed rock and slip
along an earthquake fault. For a strong motion earthquake, which is
of interest for the design of engineering structures, the time history
of the acceleration of the ground appears to be a random function over
the ''strong motion'" portion of the earthquake, which may be some 30
seconds in duration for very large earthquakes.

A logical approach to the analysis and design of earthquake

(1-4)%

resistant structures is the response spectrum technique. By
this method the maximum response of a linear, viscously damped
single-degree-of-freedom oscillator is determined by an analog or

digital computer for a given earthquake. The response spectrum

presents the maximum response expressed as a function of the

“The superscripts refer to the list of references near the end of the
thesis,



natural period and the fraction of critical damping. Since no two
earthquakes are identical, any future earthquake cannot be expected
to duplicate the response spectrum of a previous earthquake. For

(5)

this reason, Housner has determined the average velocity
spectrum for the normalized spectra for eight components of the
four strongest ground motions yet recorded (1959). The average
velocity spectra consist of a set of normalized curves which can be
used to estimate the response of a single-degree-of-freedom
structure. Using normal mode analysis as described in reference
(5), the velocity spectrum approach can also be applied to multistory
buildings.

Employing the current ultimate strength design methods, it is
expected that the response of a structure to small or moderate
earthquakes will remain within the elastic range. For an extremely
large earthquake, the structure is expected to yield, but not c.ollapse.
Therefore, for large earthquakes the nonlinearities associated with
yielding must be considered. Since the response spectrum
approach has been developed for linear structures, a nonlinear
structure is usually transformed to an equivalent linear system

before the method is used. Housner, (5.6,7) Blume,(g) (9)
(10) (11)

Berg,

Veletsos and Newmark, Hudson, and others have examined
the vyielding structure problem by approximate and exact analyses.
The exact analyses are notin aformwhich can be applied at the
present time in a structural design and the approximate approaches

must be applied conservatively because of the lack of sufficient



data on the cyclic static and dynamic characteristics of engineering
materials loaded into yielding.

The material requirements for a structure normally subjected
to reversed loading cycles, e. g., a machine or airplane, differ from
thosé required by a building subject to earthquake excitation. The
number of reversed loading cycles for a machine in its design life-
time may be more than a million, but for an earthquake excited
structure designed according to the above philosophy the number of
high stress cycles might range from zero to a few hundred.

For a low number of loading cycles, a high design stress can be
used without anticipating a fatigue failure even though at these high
stress levels the material characteristics change during the loading
cycles. A knowledge of the nature of these changes is important
because fhey imply that the experimental results cannot be duplicated
with the same structure. Because of the importance of this point in
outlining an experimental program, it will be discussed in more
detail.

The changes in the hysteretic force-deflection relationship
caused by successive cycles of testing can be described by the
changes in two independent parameters. These parameters, defined
in figure 1.1, are the area of the hysteresis loop, A, and the slope of
the major axis, 0. Benharh and Ford(lz) have presented a compre-
hensive study of these two parameters for reversed and repeated
load cycling and strain cycling of axially loaded mild steel specimens.

Although cycling between fixed loads and cycling between fixed strains



e cme o it v e e

B
/ DEFLECTION

tangent 8 = %

FIG. 1.1 HYSTERESIS LOOP PARAMETERS

high stress or strain loading

>

\ hardenin
ening
\

\\

/<softening

CYCLES

FIG. 1.2 VARIATION OF 0 WITH THE NUMBER OF
REPEATED CYCLES



produce different numerical values of 0 as a function of the number of
cycles, the general character is similar. During load cycling the
load limits are held constant, and a tendency for the metal to harden
or soften is shown by the variation of the deflection limits. When
the material softens the total deflection-range increases and vice
versa when material hardening occurs. Prominent changes occur
rapidly in the loop during the first 10 to 20 percent of the life and
thereafter 0 remains relatively stable until the approach of failure
when 0 increases rapidly. At high strains or loads the stable region
is very short or non-existent. These properties are indicated in
figure 1. 2 with A having characteristics similar to 0 for load limited
cycling and 1/ A having characteristics similar to 0 for strain limited
cycling. It should be noted that the experimental results reported by

(12)

Benham and Ford were obtained at frequencies of 5 to 15 cycles

per minute. Also, the tests were continuous from the initial éycle
until failure. The material strain ageing which would occur with
intermittent testing would influence the results. Other experimenters
have tested low cycle fatigue for stress or strain conditions such as

(13) (14)

rotating bending, plain bending, and axial or shear with

bending. (15)
A number 6f static tests into the yielding range of full-scale
mild steel frames and beams have been made. In most of these
tests the load was increased until failure of the structure, or the
load was applied alternatingly, but very few reversed cyclic tests

(16)

have been made. The Commentary on Plastic Design in Steel




gives some of these test results and has references to many of the

(17)

others. Jacobsen reviews thirteen references dealing with
reversed cyclic loading beyond the normal elastic conditions of joints,
wood frames, built-up beams, and concrete frames which are not
concerned with the number of cycles to failure. Medearis and

Young 10)

have reported tests of nailed plywood panels subjected to
reversed static cyclic loads. Again the number of cycles to failure
have not been reported. The plywood panels were designed té be
equivalent to partition shear walls currently being used in single-

(17)

story school buildings. The above work has considered the
possible energy absorption of joints in steel but has not considered
the energy absorption by yielding of the main steel members. A
much more difficult problem is presented by the post-elastic
response of reinforced concrete structures. C. P. Siess at the
University of Illinois has been supervising work on static bending
tests of reinforced concrete members to failure which has included
some reversed loading tests. These test reports have been published
in the Civil Engineering Studies, Structural Research Series of the
University of Illinois.

The purpose of the research reported in this thesis was three-
fold. First, to determine the actual dynamic response of a yielding
structure. To date the dynamic structural response had only been
predicted analytically by assuming various hysteretic force-
deflection relationships, e. g., elasto-plastic and bilinear. Second,

to compare dynamic response with corresponding static measurements



to determine the validity of using static measurements to predict

dynamic response. Third, to determine the energy absorbed by the

mild steel frame vibrating in the plastic range because of its

significance in earthquake resistant design of buildings.
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II. GENERAIL VIBRATION PROBLEM

The purpose of this chapter is to estab‘lish the relationships
between linear and nonlinear vibration response so that the nonlinear
system can be approximated by an appropriate linear system. The
vibrational analysis presented will make clear the nature of the
linear earthquake response problems and will indicate some of the
special features of nonlinear vibrations that are pertinent to the
nonlinear earthquake response problem.

First, linear vibrational analysis will be reviewed for a general
forcing function, and then the response will be given for sinusoidal,
random, and earthquake forcing functions. From this the relationship
between earthquake excitation analysis and the usual vibrational
analysis can be seen.

Second, the nonlinear problem will be discussed with a
description of some nonlinear phenomena. A definition of an
appropriate equivalent linear system for earthquake resistant
design procedurés will conclude the chapter.

A. Linear Problem

l. General Forcing Function

la. Single-degree-of-freedom system. The equation of

motion of the single-degree-of-freedom viscously damped linear
structure shown in figure 2.1 is
mx+cx+kx=F (2. 1)

where the dot indicates differentiation with respect to time, t, and
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where m, c and k are constant with respect to time -and F is expressed
as a function of time. As is well known, the complete solution to
equation 2.1 consists of the superposition of the homogeneous solution

and the particular solution:

~-nw t
x(t) = e n{Asin wyt+ B cos wt]

d
t -n wn(t- T)
+IF‘T)6 sin w.(t-T) dT (2. 2)
m w d
d
0
. . . . C 2 k
where n is the fraction of critical damping, n=————m—m , W =—
5 2N km n m
and W, = l-n w . w is the undamped natural frequency of the

system shown in figure 2.1 and the constants A and B are evaluated

from the conditions att = 0.

For the undamped case, n = ¢ = 0, equation 2. 2 reduces to

t
. ' T) .
x%(t) = Asin w t+ B cos w t+ sin w (t-T)dT (2. 3)
n n m w n
0 n
Since undamped motion is difficult to realize in a building, the
damped motion will be used as the general case.
Another common forcing function is caused by an acceleration,
'y, of the basc of the structure. The equation of motion for this case
is ‘
m(x+y)+ cx+ kx=0 (2. 4)

or
mx+ckx+kx=-my (2. 5)

By comparing equations 2.1 and 2. 5, the solution of equation 2. 5 is

seen to be given by equation 2. 2 with the substitution of ~-m y(T)



_11-

for F(T).

1b. Multiple—degree—of—freedom'syste‘m. In this section the

discussion will be limited to passive systems possessing distinct
natural frerquencie s, which insures that the set of equations of motion
can be transformed into a symmetrical set of equations. Analysis of
the more general problem has been discussed by Caughey and
O'Kelly. (19, 20)
Using the notation of figure 2. 2, where the displacements X,

are measured relative to the base, in matrix notation the equation of

 motion comparable to equation 2.1 is

b (5)  fe) (5]« [ () = (=) @@

The mass matrix ‘:M:\ is a diagonal matrix with positive real
elements. Since the dashpots and stiffnesses are real linear
elements, c.. = ¢., and k.. = k.., or in other words, [C] and [K]

ij ji ij ji
are symmetric. As an aid to understanding equation 2.6 the equation
of motion for the ith mass will be expanded from the ith row of
equation 2. 6.

m, %X.+c. X% +...+c..x +...
i1 i171 ij 7J

+c. ¥ +k.x+ ... +k x =F, (2. 7)
in n il 1 , in n i

The mode shapes and undamped natural frequencies are found

from the classical homogeneous problem

b (<) + [ (<) -0 e

Let
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-1/2
) = B () (2.9
s s -1/2 .
Then substituting and premultiplying by [M] , equation 2. 8

becomes

‘:1\/[]_1/2[1\/1] [M]-l/z (f) N [M]—l/z [K] [M] -1/2 (§) . (2. 10)
[I] (£)+ [K"} (E) =0 (2.11)

It can be shown that [K*] is symmetric and therefore, a unique

or

orthogonal transformation matrix exists which will diagonalize [K*]

provided that the eigenvalues are distinct. Let this matrix be [O]
such that [Q]T [e] - [1] (2.12)

and '
€)= [ 219
Applying this relation to equation 2. 11 and premultiplying by [Q]T,

there results

(&) [ (] 6] -
[1](e)+ [\wi:l (e) =0 (2. 14)

Since the columns of [O] are the eigenvectors of the system of

or

equation 2.11, the eigenvectors of the original problem, equation 2. 8,

are found to be

¥ - (972 [3

The columns of [\I/] are the normal modes of the original system.

It can be shown that

(q/i)T [M] (\pj) =0 oy (2.16)
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IE W o

% W7 B Y -
A [v) -
(19)

It has been shown that if [C] and [K] are to be simultaneous-
ly reduced to diagonal form by the same transformation, then the
necessary and sufficient condition is that [c*] [K] = [K] [c*] where
72 [ 7% oo B2 [ B 6
aséuming the commutability of [C*] and [K*] , equation 2. 6 can be
completely uncoupled by the transformation [\I’] . Let

<) - [9) (¢

Substituting this expression into equation 2. 6 and premultiplying by

[\If] T yields
" M (2] -+ (91" [le]« 41 [l o] - (" (1] oo
(1)« Plle) + [<2) (¢) =[] =[¥]" (¥) (220

where [D] is a diagonal matrix. The equation of motion for the ith

row of equation 2. 20 in expanded form becomes

€. +d é.+ wle =P, (2.21)
1 1 1 1 1 1

The solution for each of the ei's is the same as described for the
single-degree-of-freedom system. For example, if the steady-state

solution of equation 2. 6 for a periodic forcing function is desired where
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P3 = F(t)
(2. 22)
Pi:O for alli £ 3

and x(t) is the response of the single-degree-of-freedom system to

F(t), equations 2. 2 and 2. 21, then
| o
(x): [\I/] ;‘23 - (4,3] x(t) (2. 23)
o

which is a pure normal mode. For any other forcing function the
approach is the same except in the general case (x) becomes a
weighted sum of all the normal modes where the ei's as calculated
from equation 2. 21 are the weighting functions. Account must be
taken of the phase angle of the mode response since the chance that
all the phase angles are the same is remote.

For a base acceleration, 'y, equation 2. 6 becomes

M [ e B ) B 1) e
where (y) equals Yy times a vector whose elements are all unity.

Substituting equation 2.18 and premultlplylng by (t[/ ) , equation 2. 24

W) BB () I (4 - ) ML
) M[5) 229

Applying the conditions of equations 2. 16 and 2.17 and similar results

for [C] , equation 2. 25 reduces to
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N
€ +d € + w e :Z \I{jr'}'rm. (2. 26)

from which together with equation 2. 2 for zero initial conditions yields

_1

t 5 dr(t-T) N
~ e . T..
€. = f—z)——d————- sin wrd(t- T) Z 1[{] 'y(T)mj dr (2.27)
0 * j=1

or

. T .
v(T)e sin wrd(t T)dT

N
g
4% ft RS- TRCRY
0

where w . is the damped natural frequency of the rth mode.

rd
The final solution (x) can be found from equation 2. 18 when all the

er 's are known.

2. Sinusoidal Force

One of the most important response conditions in practice is the
steady-state motion of a mass caused by a harmonic forcing function,
F(t) = Fosinwt. The steady-state solution to equations 2.1 or 2.2 in

this case is

F /k
x(t) = 2 sin(w t- §) (2. 28)
w 2,2 2w 21
1] =t
wn | mn
where @ is defined by
' 2n W
w, _
tan ¢ = - 3 (& 29)
- )
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It can be seen that the amplitude of the motion of the mass is
dependent upon the ratio of the forced frequency to the natural
frequency ‘and upon the fraction of critical damping.

The restoring force or the force transmitted by the spring and

damper is

R(x) =F(t) -m X =ckx+ kx (2. 30)
Letting the amplitude of equation 2. 28 equal A, the restoring force

becomes

R(x) = 2n w mw A cos(w t-@ ) + kA sin(wt-#) (2. 31)

with x = A sin{wt- @ ). The ellipse shown in figure 2. 3 is the result
of plotting equation 2. 31 versus x. The force width at zero displace-
ment equals 4n{w / wn)A k or 2cw A.

Similarly for the periodic forcing function P u)2 sin wt, equation

2. 28 becomes

2
x(t) = Pw/k - 'sin( wt- ¢) (2. 32)

V) ) )’

Wy

where & is defined by equation 2.29. A majof difference between
equations 2. 28 and 2.32 is that for increasing damping the maximum
response according to equation 2. 28 occurs at decreasing values of
w/ w, less than unify while the maximum response according to
equation 2. 32 occurs at increasing values of wy w, greater than

~ unity.



-18-

R(x)

RESTORING
FORCE

A
DEFLECTION

FIG. 2.3 RESTORING FORCE vs. DEFLECTION FOR
VISCOUS DAMPING '



-19-

3. Random Forcc

Recently many vibration problems have arisen in which the
excitation is a random function. Two examples of such random
excitation are the rough burning of the rockets of a ballistic missile
and the ground motion of earthquakes.

Since a random vibration is not deterministic (i. e., repeated
experiments do not produce identical results), a statistical deécription
of the vibration records must be made. The theory of random pro-
cesses has been available in the literature for over 15 years. (21, 22)
Some of the important properti‘es of the response of linear systems
are: i) if the excitation is a stationary random process, then the
response is also a stationary random process; 1ii) if the excitation
has a zero mean value, then the response also has a zero mean value;
and iii) if the excitation is ergodic, then the response is also ergodic.

Definitions of some of the common terms of random vibration
theory will first be presented and then the number of response cycles
of x exceeding a certain level % will be determined for a specified
random excitation. If the first order probability density is defined
as p(x), the mean or expected value of xis

(0]

E [x] = f x p(x) dx (2. 33)

-0

and the mean square value of x is

. ,
E [xz] = _O;,[ <% p(x) dx » (2. 34)
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An important statistical parameter is the variance of x; mathemati-

cally it is
o - E [(X—E [x] )2] - E [XZ] - (E [X] 2 (2. 35)

It follows from equation 2. 35 that for the special case where the
mean of x is zero, the variance of x is equal to the mean square
value of x. For a stationary random process, the autocorrelation

function, Rft), is a function only of the time difference as

R(T)=E [x(t) x(t- r)] (2. 36)

The power spectral density, S(w), of a stationary random process is

ool
S(‘"):‘Zl?r f R(T) e *¥Tar (2. 37)

-00
The power spectral density of a real process is an even nonnegative

function of w whose area is equal to the mean square value of x, i.e.,

E [x&] - f)s,(w) dw (2. 38)
-

The first order probability density function p(x) of a normal

or Gaussian process is described by
1 | (x-E [X])Z
p{x) = —~—— exp| - ——5—— (2. 39)
O N 2n 2 0'2

where ¢ is defined by equation 2. 35. It is assumed that 'y is a
zero mean stationary random base acceleration of the structure in

figure 2.1 with an ideal white noise spectrum, i.e., uniform power
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spectral density So' Then the mean square value of the response x

can be shown(zn to be
S
2 _ 2 . (¢} 2. 40
n O)n

In addition, if the response is a normal or Gaussian process, then

the number of peaks per unit time in which the absolute value of the

(22)

response x exceeds a given absolute value response x; is given by
2
w
=2 L 2. 41)
M_ = exp - (2.

An estimate of the damage to a structure can be made from equations

2. 40 and 2. 41 if the damage-deflection relationship of the structure is
known and an estimate of the excitation time is made. This solution
is not exact because usually the actual conditions do not meet all of

the characteristics of the assumed ideal excitation.

4. Earthquake Excitation

The difficulty‘in applying the above analysis lies in determining
the random characteristics of earthquake ground acceleration. Some
of these complications have been avoided in the past by approaching
the analysis in a different manner.

The most accurate method of computing the response of a
structure to an earthquake excitation is to make an analog or digital
computation. In this case, each structure in question is subjected to
the base acceleration caused by the earthquake and the particuiar

response characteristics of the structure are computed.
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The velocity response spectrum is a convenient and informative
method of characterizing the earthquake ground motion, and some of
its basic principles will now be presented. The maximum velocity

response spectrum, SV,' is defined as:

& S wnlt-T)

S,= f‘y(-r) e sin w (t- T )dT (2. 42)
v Lo max

For a single-degree-of-freedom system, figure 2.1 and equation 2. 2,

with zero initial conditions and assuming N l—n2 = 1, it has been
(23)

shown that SV very closely describes thé maximum of the envelope

of the relative velocity response. In dynamic problems where the
excitation differs widely from earthquakes, the accuracy of the
approximations in arriving at Sv should be checked.

Having SV, the maximum relative velocity of the structure
during the earthquake, the maximum relative deflection and
maximum absolute acceleration of the structure during the earthquake

are given approximately by

relative Deflection, Sd -1 S
(l)n v

and

(2. 43)

absolute Acceleration, S_ = w. S
a nwv

An interesting property of SV is that, on the average, the
maximum energy per unit mass is equal to% SVZ.
The Fourier transform of the base acceleration is

| T
Flw) = f‘;‘r(r)e'i“’r aT (2. 44)
0
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where T is taken as the duration of the earthquake. The Fourier
amplitude spectrum is given by the square root of the sum of the
squares of the real and imaginary parts of F(w ). Evaluation of
equation 2. 44, to give the Fourier amplitude spectrum, shows that
it is equal to the amplitude of the relative velocity at time T for the
case of zero damping. Thus, as a function of w, the undamped
velocity response at the end of the earthquake is equal to the Fourier
amplitude of the earthquake acceleration.

The maximum velocity response spectrum values for an earth-
quake record are determined and plotted for the ¢/m and the k/m
values of interest either by analog or digital methods. Since it is not
expected that a future earthquake will duplicate a past earthquake,

(24)

Housner and Jennings have developed eight pseudo-earthquake
accelerograms which are samples of stationary, Gaussian, random
processes with the same power spectral density found from the
average of the undamped velocity spectra of recorded ground
accelerations. These pseudo-earthquake accelerograms can be used
for analysis and design of structures. A length of record of 30
seconds was arbitrarily selected.

Applying the velocity response spectrum techniques to
multistory buildings requires the determination of the characteristic
frequencies, the corresponding mode shapes of the system, and the
damping in each mode. Thus, equation 2. 27 is evaluated for each

value of r using the established velocity response spectrum curves.

The solution from equation 2. 18 in this case assumes that each
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vibration mode reaches its maximum value at the same time, which

{25)

is improbable. Merchant investigated this problem for various

methods of mode combination.

B. Nonlinear Problem

Although many structures can be adequately described by
linear analysis, in certain cases nonlinear equations are required
to describe the physical situation accurately. Most nonlinear
equations in structural analysis cannot be solved exactly; however,
two examples of nonlinear systems which do have exact solutions
aré the pendulum moving with large motions and the piece-wise-
linear stiffness systems. The primary functions of this section will
be to give a brief description of some nonlinear phenomena which are
not observed in the linear case and to establish an equivalent linear
system to approximate the nonlinear response.

One method of attacking a specific nonlinear vibration problem
is to first determine an approximate analytical solution. From the
approximate solution the important variables of the problem can be
determined, and a solution can be made with the aid of an analog or
digital computer. The analog solution could be important in that
certain nonlinear phenomena may be observed which were obscured
by the approximate analytiéal technique. Important points brought out
by analog analysis then can be examined in more detail using the
digital computer.

An important difference between linear and nonlinear analysis
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exists. For the linear case, when a particular motion satisfies the
equation of motion, . this is a sufficient condition that this motion can
exist. However, for the nonlinear case, the stability of the particular
motion muvst be established before it can be said that the motion can
exist. Periodic solutions of the nonlinear problem are usually

assumed.

Nonlinear Phenomena

For a viscously damped system where the nonlinearity only
occurs in the stiffness, frequency response curves similar to those
shown in figure 2. 4 can be expected. As was mentioned above, the
mathematically possible responses must be checked to insure
stability. In figure 2. 4 the regions of unstable response are marked
to indicate that any response in these regions cannot be sustained; so
the actual response must be either on the upper or lower branch of
the response curve. It can be seen, therefore, that response 'jumps
can occur for very small changes in the excitation frequency.

(26)

It can be shown that the structure will respond at its natural

frequency when excited at a frequency of 1/3, 1/5, 1/17, , of its
natural frequency. This is te rmed ultraharmonic or superharrﬁonic
response. Also, if the initial conditions of the motion are properly
established, a natural frequency response can be observed when the
excitation frequency is 3, 5, 7, ..., times the natural frequency.
This is termed subharmonic response.

The frequency respbnse relationship for a viscously damped

system with the nonlinearity only in the stiffness was given in
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figure 2. 4. The frequency response for an elasto-plastic hysteretic
force-deflection relation and no viscous damping, as determined by

(27)

Caughey, is given in figure 2. 5. A similar curve for a more

complex hysteretic force-deflection relation established by
Jenriings(ZS) is given in figure 2. 6. The curves of figures 2. 5 and

2. 6 bear a remarkable resemblance to the curves of figure 2. 4 with
the exception that the instability regions do not normally exist for the

(27) I‘wan(zg)

hysteretic force-deflection type of nonlinearity. has

shown, however, a specific case of a hysteretic force-deflection
system which does havé an instability region. Substitution of an
equivalent viscous damping and a nonlinear spring stiffness for either
of the hysteretic systems gives good steady-state response results

as long as the discussion is restricted to frequencies where the
béhavior is predominantly fundamental. (30)

The linear viscous damving system's force-deflection curve
was given in figure 2. 3 and twotypes of hysteretic force-deflection
curves are shown in figures 2.5 and 2. 6. The hysteretic force-
deflection curves are theoretical approximations to the actual curves
for structures. These theoretical curves and the corresponding
frequency response curves are based on the assumption that the
force-deflection relationship for the structure is continually retraced
.during steady-state motion. It is not convenient to consider time
Variation of the force-deflection relationship in the present
theoretical approximations of the hysteretic structural behavior

although it is known to exist. It is a purpose of this research to
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determine the relationship between the static and dynamic force-
deflection curves to assist in the theoretical prediction of the
dynamic response of structures.

Most nonlinear analytical solutions are limited to periodic
respbnses which are dependent upon relatively small nonlinearities.
It is fortunate (or unfortunate depending on your point of view) that
the nonlinear phenomena also occur for small nonlinearities.

An appropriate linear system to approximate the nonlinear
system will be established by two important properties of the
frequency response curve. The two properties are the resonant
amplitude and the excitation frequency at resonance. These two
important characteristics of the response curve will be treated
separately. The equivalent linear system will be defined as:

mx+tck+tkx=F (2. 45)
where k/m = wnZ and ¢ is considered as a function of the amplitude
of motion only. The resonant frequency of the nonlinear system

wp/ w , is also a function only of the amplitude of motion. The

advantages of this formulation of the equivalent linear system for

earthquake analysis and design have been expressed by Hudson. (1)
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III. EXPERIMENTAL STRUCTURE

A. Introduction

This chapter reviews the design process evolving from the basic
objectives of the investigation and the design limitations to the final
structural design. Designs of one- and two-story structures were
made, but only the details of the single-story structures used in the
experiments are presented.

A restatement of the three basic objectives in studying a
yielding structure follows: First, measurements of the dynamic
response characteristics are desired. Second, a comparison of the
dynamic, static, and theoretical results is needed to determine the
probable success in predicting dynamic response. Finally, the
energy absorbed by the experimental structure is wanted for possible
application to earthquake resistant design of buildings.

Testing of actual buildings into the yielding range might give
results directly applicable to earthquake resistant building design.
However, controllable forces large enough to excite the structure into
this range is a necessary requirement which currently cannot be met
for most multistory buildings. In actual buildings the source of the
damping and stiffnesses cannot be accurately identified because of the
interaction of the structural and nonstructural components. Initial
damaging test cycles may eliminate a majority of the nonstructural
components' participation in the following cycles or at the very least
will modify the nature of their participation. The effect of these

nonstructural components on the building's response to a strong
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motion earthquake would have to be resolved in order to interpret
the test results. These experimental investigations could only be
made with buildings to be demolished since the tests by necessity
would make the buildings unusable.

In a full-scale experimental building the effect of the non-
structural components could be controlled or eliminated. However,
even if the nonstructural components are eliminated, the analysis of
the structure is still complicated by the nature of the joints of the
structure and a precise analysis of the experimental results would be
extremely difficult. Furthermore, the problem of supplying the
large forces for this test is still not solved.

A laboratory scale building has several advantages over a full-
scale structure; the most important being that the available static
forces are almost limitless and only the type and magnitude of the
dynamic forces would be a limit on the design of the structurc. Four

(31, 32)

new force generators have been recently developed which

produce a sinusoidal force in any horizontal direction. " To generate
the horizontal force, two equal eccentric weights are counter-rotated

in a horizontal plane at a fixed frequency. This type of force

generation is not new, but the amplidyne control system is much more

The force generators are owned by the State of California, Division
of Architecture, and have been used for testing several full-scale
structures such as steel frame and reinforced concrete frame build-
ings, earth dams, concrete towers, and rocket test stands.



-33-

accurate than the controls of previous systems. The frequency of
the rotating eccentric weighfs can be controlled to within 1/300 cps.
Also, the four force generators can be operated simultaneously
from one control panel at any desired phase relationship between the
generators. Obviously, the two most commonly used relationships
are with the generators in phase (i. e., sinusoidal forces in the same
direction) or 180 degrees out of phase (i. e., forces in opposite
directions which will give a pure torsional force). The generators
have an effective frequency range from slightly below one c¢ps to
about nine cps. Each generator can produce a force amplitude of
800 lbs. at one cps and is limited to 5000 lbs. maximum. Each unit
is driven with a 1-1/2 horsepower D.C. motor. In addition to the
obvious limitation upon energy absorption that this power source
imposes (it must also provide for friction, wind losses and
efficiency), there is also the limitation of the torque capacity of the
moteor. The required torque is dependent upon the motion of the
structure and because of this instability may be introduced. Because
the experiments reported here provided the first opportunity to
investigate the effect of the torque limitation upon the stability of the
frequency control, the problem of torque limitation is discussed in

Appendix I

B. General Description

1. Design Limitations and Considerations

The final designs of the experimental structures were governed

by a number of independent objectives and limitations, some of which
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are important in obtaining a proper perspective of the final structure.
Since dynamic investigations of the type reported here have not been

made previously, there was no background of experience to assist in

designing the experiment. The theoretical analysis developed by

(28)

Jenﬁings (see Chapter V of this thesis) was used as a guideline in
the design to anticipate dynamic response amplitudes and energy
absorption of the structure. The reason for using this approach was
that previous work done in the area of dynamic hysteresis response
(reported in Chapter I) showed that this assumed hysteresis force-
deflection relationship most nearly fitted the expected for ce-deflection
relationship of the experimental structure.

Tests of full size elements or structures have a great advantage
over tests of scale model structures, because they eliminate the
problem of scale effects. Any results obtained from full-scale tests
can be applied in practice almost directly, whereas, scale model
tests possibly have different scaling factors for different applications
of interest. On this basis it was hoped to use full size elements
under known loading conditions. A single-degree-of-freedom system
with material yielding sections was selected for the experimental
investigation, because it is the simplest nonlinear system to analyze.

Since the available static forces were almost limitless, the
type and magnitude of the available dynamic force was the only limit
upon the design of the structure. Using the force generators
described above, the horizontally directed force led to a structural

design consisting of a rigid mass supporting one or two force
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generators on four columns. The columns acting as the spring of the
single-degree-of-freedom system were the sections to be investigated.
The design of these columns was restricted by the frequency range of
the force generators, the energy available from the 1-1/2 horsepower
nnotbrs, the torque capacity of the force generators, a limit on the
maximum weight of the structure, and a specified test deflection of
two to four times the initial yield deflection.

Using theoretical dynamic constants of ¢= 0.10 and r = 7
{see Chapter V) for design purposes, various rolled structural steel
sections were analyzed for a maximum deflection of four times the
yield deflection. Since the maximum power available from two force
generators at an assumed efficiency of 50 percent eliminated all
structural sections that are used as columns in normal building
construction, a special model column had to be designed. Attempting
to keep the structural analysis as simple as possible, it was decided
that the effect of the end connections should be minimized as much
as possible. This meant that the high stresses should occur at a
relatively simple section located away from the connection. Dynamic
tests of various types of structural connections, such as bolted,
welded and riveted, are important but they were considered an extra
complication to be avoided in this investigation.

The smallest rigid floor area which would support two force
generators _and still permit continuation of the columns for
additional story heights was selected. The floors were made

extrerﬁely rigid relative to the columns so that the floor could be
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considered as a rigid mass without jbint rotations, see figure 3.1 for
the dimensions of the floor. All nonstructural components were
eliminated from the experimental structure.

Equation 2.1 expresses the equation of motion for a single-story
structure for small vibrations within the elastic range. Since the
hysteresis type of nonlinearity produces frequency response relation-
ships similar to the ""softening spring' without the unstable region,
shown in figure 2. 6, the undamped natural frequency at small
vibrations was established slightly higher than the desired test
resonant frequency.

The limited maximum weight of this small rigid floor, the
available frequency range of the dynamic force, and a limit on the
maximum deflection of the structure (torque limit of the force
generators) limited the column stiffness within a specified range.
This, together with the problem of making the end connections so that
the columns would be tested and not the connections, led to a non-
uniform column section which utilized a hot rolled structural steel
test section.

Since a two-story structure was ultimately desired, the
clearances required to place a force generator on the lower floor
established a minimum second-story column height. The analytical
development for the column stiffnesses and the natural frequencies
follows.

The single-story structure has three independent natural

frequencies and vibration motions which are translation about the
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two principle axes and torsion. For a two-story structure the
number of independent motions is raised to six.

If the two masses of the structure are set equal, then [M] and

[K] become
[M] - I:l I’:l (3. 1)
_ k) Ky
%] - -k, (kK (5-2)

where kl and k., are the stiffness values as indicated in figure 3. 2.

2
Both kl and k2 are nonlinear for large displacements. Letting
wlz = kl/m1 and K =(1+ (kz/kl) ), substitution of equations 3.1

and 3. 2 into equation 2. 8 gives for small displacements

1 0|/%x 1 -1f/x ,
L), wlz L (3. 3)
0 1 X5 -1 K X,
The roots of the characteristic equation obtained by setting x = Ae At
are X, =iy w; and )\2:18w1 (3. 4)
where
> 1
) —\/ 1+ K K-2K+5
v o= 2 )
and (3.5)

'
s - —\/IK . KZ-2K 45
- 5 Koires

A 1 and A , are the small vibration undamped natural frequencies

of the first and second modes respectively. >\2/ >\1 =8/y gives
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the ratio of the free small vibration natural frequcncies in the two
modes of vibration. vy , 8 and &/y are plotted with respect to
kz/k1 in figure 3. 3. The mode shapes associated with these

frequencies are

and {3. 6)

() = | 1)) e 2.18)
SN ICHCHCIC RO R BEE

(2. 19)
It should be remembered that the coefficient of (é) is a diagonal
matrix for the conditions described in Chapter II.
For small nonlinearities, the mode shapes may be expected to
be similar to the linear case; but the similarity may not hold if only

one of the story heights has a nonlinear stiffness relationship.

2. Description

The experimental structure was erected on its own reinforced
concrete foundation (7' - 6" x 6'- 6'' x 1'- 0") placed on virgin soil
about 16 feet below original ground level. Details of the foundation

and anchorage of the one inch steel base plates are given in figure 3. 4.
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This foundation is isolated from the existing floor-on-grade by
asphalt impregnated expansion strips. The mass of the foundation
and the stiffness of the underlying soil were sufficiently great
compared to the mass and stiffness of the test structure so that the
foundation could be treated as immovable.

A two ton capacity overhead traveling crane simplified the
erection of the structure and the handling of the equipment. A clear
overhead space of 13 feet is currently available for the structure
with a maxzimum of 20 feet if an existing steel stair is temporarily
removed. With the steel stair removed, a second two ton capacity
overhead crane could be utilized. With this overhead clearance a

multistory experimental structure could be erected easily.

C. Details of Structures Investigated

The experimental structures were all single-story with
structural differences occurring only in the columns. The first
column design (long column) was established so that the structure
could be forced in either, or both, of its major directions and in
torsion. Figure 3.5 shows the column. The detail dimensions are
given in Table III-1 together with the dimensions of the other columns.
While experimenting with this set of columns in the strong (N-S)
direction, it was observed that the structure did not move purely in
translation. It was suspected that the major reasons for this were
the closeness of the natural frequencies in the weak, strong, and

torsional directions together with the natural tendency of the
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Table HI-1
Calumn Dimensions
{inches)
Column a b c a b c Length
COLUMN LI ! ! 2 2 2
NE Top 0.496 0.497 0.496 1.002 1.001 1.001 30. 06
Bottom 0.496 0.497 0.500 1.001 1.001 1.001l ’
SE Top 0.497 0.499 0.496 1.001 0.999 0.996 30. 06
Bottom  0.497 0.499 0.497 1.004 1.002 1.000 )
SW Top 0.496 0.496 0.496 1.004 1.003 1.001 30. 06
Bottom 0.498 0.497 0.498 1.001 1.000 1.000 )
NW Top 0.496 0.498 0.496 1.005 1.005 1.003 30. 06
Bottom  0.496 0.496 0.496 1.003 1.002 0.999 ’
COLUMN SI
NE Top 0.497 0.496 0.496 4.568 4.573 4. 588 24. 88
Bottom 0.498 0.497 0.495 4.561 4.559 4. 566 :
SE Top 0.497 0.495 0.495 4.534 4.528 4. 526 24. 93
Bottom 0.499 0.497 0.496 4.524 4.516 4.514 ’
SW Top 0.499 0.498 0.498 4.499 4.493 4.490 24. 91
Bottom  0.499 0.498 0.498 4.491 4.488 4.488 ’
NW Top 0.496 0.496 0.496 4.530 4.530 4.533 24. 88
Bottom  0.498 0.498 0.497 4.425 4.428 4. 435 :
COLUMN SI1
NE Top 0.498 0.498 0.497 4.517 4.520 4.528 24 93'
Bottom 0.490 0.487 0.488 4.491 4.491 4.488 '
SE Top 0.497 0.496 0.496 4.554 4.549 4. 543 24.93
Bottom  0.489 0.487 0.487 4.499 4.497 4.494 ’
SW Top 0.498 0.498 0.496 4.503 4.503 4.503 24. 91
Bottom 0.488 0.489 0.489 4.507 4.502 4.498 )
NW Top 0.496 0.496 0.496 4.517 4.520 4.519 24. 93
Bottom 0.488 0.486 0.487 4.510 4.512 4. 505 '
COLUMN S1IE
NE Top 0.498 0.496 0.497 4.569 4.562 4.557 24. 88
Bottom  0.498 0.498 0.496 4.509 4.507 4. 506 :
SE Top 0.498 0.498 0.498 4.501 4.493 4. 494 24. 88
Bottom 0.490 0.488 0.488 4.507 4.503 4,501 )
SW Top 0.498 0.497 0.496 4.510 4.511 4.513 24. 88
Bottom 0.499 0.498 0.497 4.508 4.510 4.515 :
NW Top 0.490 0.487 0.487 4.508 4.510 4.512
Bottom  0.489 0.487 0.489 4.481 4.481 4.485 24.88
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structure to move in the direction of the least resistance. To
eliminate these effects, the second design (short column) was
established so that the natural frequencies were well separated with
only the weak (E-W) direction frequency falling into the frequency
range of the force generators. This column is also shown in figure
3. 5 and its dimensions are given in Table III-1.

The largest possible range in natural frequencies with a given
column section was obtained by allowing for a large change in the
mass of the rigid floor of the structure. This was done by leaving
the entire center panels of the floor open for the lowest mass and by
filling these panels with lead weights to increase the mass. The
weight of the floor frame was 786 pounds and the maximum amount
of lead which could be added between the flanges of the frame was
9560 pounds. Figure 3.1 shows this rigid floor frame which was
made of 10 WF 29 steel sections with full penetration butt welds at
all junctions. The top and bottom surfaces of the completed floor
were milled so that the two surfaces were plane and parallel. This
permits continuing the columns for the next story height from the top
of the floor. The webs of thé 10 WF 29 beams were braced at each
column position with four 3/8 inch web stiffener plates.

The objectives of the design were met satisfactorily. The end
conditions were very favorable in that the material under high stress
did not occur directly at the connection, in fact, the effect of the

connections on the experimental results was minimal. Using
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columns which were not truly full-scale columns as used in building
construction was unavoidable. However, the test sections were
standard rolled sections of the same material used in building
construction, which lead to the minimization of any scaling factors
as far as material effects were concerned.

The structure as investigated had a total weight of 3238 pounds
independent of the weight of the force generators. The sources of
this weight are listed in Table III-2. In addition to this weight the

rigid floor supported either none, one, or two force generators plus

Table III-2
Rigid Floor Weight
. weight

item (pounds)
Rigid Frame 786
1/3 of column weight 23
Lead Pigs 2310
Lead Support System 119
Total 3238

eccentric weights depending upon the test conditions. Force
generator No. 1 weighs 800 pounds and force generator No. 4 weighs
645 pounds. The maximum total weight of the structure was 4683
pounds exclusive of the eccentric weights. The lead weight consisted .
of lead pigs varying in weight between 69 and 115 pounds each. The
lead pigs were wedged together and against the rigid frame in order
to eliminate any translation or rotation of the weights.

The columns were connected to the rigid frame and base plate
with four 1/2 inch diameter high-strength steel bolts. The proof load

of the bolts is 12, 050 pounds and beveled washers were used because
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of the sloping flange of the 51 14. 75 column end sections. The
column to frame bolts were torque tightened to 65 foot-pounds and
the column to base plate bolts to 50 foot-pounds. The suggested
torque to develop the ASTM 325 proof load is 100 foot-pounds.

The material of the 51 14. 75 beam used for column sets SI, SII,
and SIII was chemically and mechanically analyzed. These tests and
their results are reported in Appendix II.

All the column end sections were covered with a brittle lacquer
to give a visual indication of maximum strain regions of the columns
during the experiments. The brittle lacquer was used for an
overall qualitative indication of strain while a pair of post-elastic
strain gages were used on each column set to give quantitative strain

values.
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IV. EXPERIMENTAL INVESTIGATION

The experiments performed on the structures described in
Chapter III and the results of these investigations are reported in this
chapter. Although the column sets LI, SI, SII, and SIII were studied in
sequence with a new column set started after failure of the previous set,
the results are generally not reported in chronological sequence. The
chronological summary of the experiments is reported in Appendix III.

The results are divided into three groups; dynamic response,
static results, and dynamic hysteresis curves. The dynamic response
group has many types of results reported, e.g., frequency response,
free vibrations, equivalent viscous damping, ultraharmonics, etc.

Some of the results are presentcd in several ways to facilitate
comparison. However, the overall discussion of these comparisons

is reserved to Chapter V.

A. Experimental Procedure

Several different variations of the following procedures were
actually used in the program, but these variations were only small
changes of the basic procedures given here. The instruments used

and their accuracy are described in Appendix L.

1. Dynamic Procedure

The basic data recorded for each test were three accelerations,
one displacement, one strain measurement, and the phase pulse of
the generated force. The accelerometers were given a static+ 1l g

calibration by rotating the accelerometer through plus and minus 90



degrees from the balanced position and recording the output. The
accelerometers were boited to milled steel blocks, figure 4.1, which
simplified this accurate calibration. The displaéement was measured
by a linear variable differential transformer (LVDT) which was
calibrated by moving the core through several measured deflections.
These calibration deflections were measured with a dial indicator
connected to the core rod and were measured to £ 0. 0003 inch. The
calibration of the strain gages was established by the t'calibrate
button of the amplifier or by a known external change in resistance
applied to the strain gage bridge.

The deflection of the frame was measured at the center of a side
by placing the LVDT ecither at the top or bottom flange of the rigid
floor. The positions of the accelerometers were varied somewhat
from test to test, but one accelerometer was usually placed over each
column on the static forcing side of the structure (i. e., the north side
or the west side of the structure). The third accelerometer usually
was placed at approximately midspan of a side or over one of the
other columns.

While using one force generator, the force pulse occurred when
~the top bucket of the force generator was east of center. For East-
West excitation, the force pulse corresponds to a maximum force
amplitude in the easterly direction. For North-South excitation, the
force pulse corresponds to the zero force amplitude preceding a
force in the northerly direction. While using two force generators,

the force pulse occurred when the top bucket of the force generators
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were west of center. Therefore, the East-West excitation force
pulse corresponds to a maximum force amplitude in the westerly
direction for two the force generators.

The experimental sequence for a given force amplitude consisted
of a one hour warm-up for the equipment, initial calibration, data
taking and final calibration. From the initial tests, it was observed
that the structure changed rapidly during the early experiments.
Therefore, in several tests, the structure was excited near its
resonant frequency for approximately 800 cycles before taking data.
Typical test data were obtained as follows. Starting at the lowest
frequency which generated a reasonable response level, the frequency
was incrcascd in steps through the resonance of the structure until a
minimum response was reached. The frequency steps were not of
constant size, but varied in order to obtain most efficiently the
maximum amount of significant data. At each data point the frlequency
was held constant until the structure reached a steady state condition. ¥
After the minimum response condition was reached, the frequency was
decreased in steps until the initial frequency was reached. This
double tracing of the frequency response curve of the structure
completed a set of data. A check of the transducer calibration

completed the experiment.

POy
=

The importance of maintaining a steady-state condition is well
documented in the literature, e.g., references 33, 34 and 35.
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The double tracing of the frequency response curve described
above was carried out only for small deflections of column LI because
the properties of the structure changed during testing and the peak
response changed. This was observed even in the case of small
deflections.

Some of the experiments for dynamic hysteresis data consisted

of only a few data points at preselected frequencies.

2. Static Procedure

The calibration of the load cell in terms of the number of lines
at a given db setting corresponding to a given number of pounds was
established for a particular amplifier and galvanometer by applying
a known load to the cell. A corresponding reading of the '"calibrate
deflection was also noted, so that future checks of the load cell did
not require a full recalibration. The known load calibration was
performed several times during the year of experimenting to ir.lsure a
stable load cell calibration. The calibration did not change during
this time.

The dial indicators were located at each column of the loading
side and were positioned at the Bottom flange of the rigid floor. Initial
dial readings were taken. The balanced and calibrated load cell was
connected between the forcing system and the structure at center span.
In some of the static tests the column strain was measured by the
same strain gage bridge used in dynamic tests and was recorded

simultaneocusly with the imposed load.
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Data were taken while the structure was forced through several
cycles of predetermined deflection ranges. At each data point, the
two dial indicators were read and the load cell and strain gage readings
were recorded. Data were usually taken for two equal maximum
deflection cycles before changing to a different deflection range. While
taking data from a test cycle, the zero load position was recorded
periodically in order to monitor the drift of the zero position. As was
noted in the discussion on accuracy, this drift decreases with time;
but since the time intervals between measurements are relatively
short and the drift small, a linear change in drift between the two
check values was assumed on the basis that the time between data
points was constant. These assumptions are sufficiently accurate.
After completing the tests of two or three successive different de-
flection series, the load cell was freed from the structure and

t'calibrated”, and the final deflection and strain readings were taken.

B. Test Results

As will be seen in the following section, the previous testing
history of the structure has an effect upon the results of a particular
experiment. Therefore, a complete chronological list of all the
structural experiments is given in Appendix III for which the reference
notation is A3. aa where the A3 refers to Appendix III and the aa to the
number of the test listed. It should be noted that the static and
dynamic tests were run alternatively even though the results are

reported in groups.
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l. Dynamic Response Tests

la. Evidence of structural damage. First, the frequency-

response curves have an altered shape with successive testing, all
other factors being held constant. Second, a structural failure of the
columns occurred within a limited number of test cycles which
indicates an early deterioration consistent with the endurance
properties of the material. This will be discussed further in the
section on fatigue in Chapter V.

The altered shape of the frequency-response curve can be best
illustrated by actual data. Figures 4.2 and 4. 3 show typical frequency-
response curves for LI (N-S) by forces with increasing frequency steps
followed immediately thereafter with decreasing frequency steps.
Again, the A3. aa numbers refer to specific experiments as listed
chronologically in Appendix III. Another example showing this
change in the structure caused by progressive testing is given in
figure 4. 4. In this figure, both frequency response curves are
determined with increasing frequency steps of the same force ampli-
tude. The only cause for the difference between these two curves is
the structural changes effected by the experimentation which occurred
between the tests for the curves. By using the test identification
numbers for each curve, Appendix IIT will give the experiments
which occurred between the tests plotted in figure 4. 4.

1b. Recorded data. Although three acceleration readings,

a strain reading, and for small deflections a LVDT reading were

taken simultaneously, only one of the acceleration readings was used
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FIG. 4.4 FREQUENCY RESPONSE OF LI (N-S)
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for data reduction unless the strain data were also wanted for a
specific reason. There was a periodic cross checking between the
accelerometers to be sure that any one of the readings would be
representative of all readings. The greatest discrepancy in this
approach occurred when testing columns LI in the North-South (strong)
direction. In this case the east columns had a deflection about 20%
greater than the west columns and, therefore, the average of the east
and west accelerations was used and compared with the LVDT reading
at midspan. The average accelerations reduced to deflections agreed
within the predicted error with the LVDT readings. In this case, the
motion was not purely translational as assumed, but there was also a
torsional component. In analyzing the motion of the floor as a rigid
body with the translational acceleration

'x = ';'cosin wt
and the torsional acceleration

8 =0 sin(wt+g),
it was found for a specific case that the resulting force per column in
the weak (E-W) direction amounted to about 11 pounds compared to
about 200 pounds in the strong (N-S) direction. The resulting
eccentricity of the gravity center of the mass of the frame relative
to the column resistance centroid was about 1. 5 inches. The effect
of this small eccentricity is pronounced because the resulting forces
required to maintain equilibrium acted in the most flexible direction,
normal to the direction desired. It was primarily this action which

dictated that the subsequent column design should act in only one
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direction. In this manner, the weakest direction could be tested and
the secondary effects caused by eccentricities and other factors
would be minimized.

lc. Normalization of the data. The data has been normalized

before presentation so that the several different tests can be compared.
The peak to peak acceleration is divided by 2 wz, where w is the
circular frequency of the forced motion in radians per second. This
normalized "acceleration'' has units of deflection in inches. It
approximates, but is not exactly equal to the maximum deflection of
the structure because the acceleration is not purely sinusoidal. How-
ever, since the acceleration is not very different from a sinusoid at
any time, the normalized "acceleration' can be taken as the maximum
deflections of the structure for all practical purposes and will hence-
forth be used in that way.

The frequency scale is normalized by dividing the excitation
frequency by the natural fr\equency of the virgin structure determined
by the original free vibrations.

The amplitude in pounds of the sinusoidal force is identified by
H. The determination of the force amplitude is as follows. The

force amplitude

2
F_ = Bf (4. 1)

where B is defined in Appendix I with values given in Appendix III
for each test and f is the excitation frequency in cps. The natural
frequency of the structure as defined in the preceding paragraph is fn.

Then
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2 2 2
~ 21f ) _ iy _ w
F_ = Bf_ (T_) - H -f——) = H —5—) (4. 2)
n n n
where 2
H=Bf . (4. 3)
n
ld. Free vibrations. The natural frequencies listed in

Table IV-1 are used in the normalized frequency determination by
the relation

f =1 —— (4. 4)

where fnt is the natural frequency to be used for normalization of that
test, fn and Wn are the natural frequency and effective weight of the
structure given in Table IV-1 and W is the effective weight of the
structure under test conditions.

The free vibration data for 1.I and SIII were taken with the
Sanborn recorder which has a one second time pulse based on the
60 cps line current. Thus, the accuracy of the measured frequency is
determined by the measuring error which was less than + 0.1%. The

TABLE IV-1

Free Vibration Natural Frequencies

Column Test Experimental | W (lbs.)| Theoretical
fn(cps) h Eqn. 5. 32 (cps)

LI (E-W) A3. 2 1. 56 3238 --

LI (N-5) A3.2 3. 16 3238 3.19

SI (E-W) A3. 34 3. 78 4038 3. 79

SII (E-W) A3, 45 3. 68 4220 3. 70

SIII {(E-W) A3. 55 3. 525 4683 3.51

free vibration data for SI and SII were taken with the light beam
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recording oscillograph in which the time spacing of the time lines is a
variable function of the temperature of the oscillograph. In this case,
the time base was established by checking the time line spacing with
the force generator speed as measured by a 0.1% digital counter

durihg the following forced vibration test.

le. Frequency-response results. All the frequency-response

test curves will be given, with the exception of the few tests of SII
with one force generator, for which the force generator torque
limitation was reached.

For column LI, figure 4. 5(a) shows the result of the initial
dynamic tests and gives the relative position of the torsional natural
frequency to the N-S natural frequency. In figure 4. 5(b), an enlarged
scale of the response peak is given to show the changes in the response
of the structure with additional testing even at this low stress level.

It can be seen that the response seems to reach a relatively stable
relationship at a maximl;.m deflection (x/ wZ) amplitude of 0.195 inch.
Figures 4. 6 and 4. 7 show the differences in structural response as the
horizontal force increments are increased and decreased respectively.
There are two important items to note:

i) Response amplitudes in the latter tests are substantially
below those of the original tests for equal horizontal forces, with the
exception of the response to the largest force amplitude;

ii} The pronounced changes in response with repeated testing
at the same for ce amplitude shown in figure 4. 6 has almost completely

disappeared for the results in figure 4. 7.
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FIG. 4.7 FREQUENCY RESPONSE OF LI (N-S)
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Two additional response curves are given in figure 4. 8 in which
the first curve, A3.24, repeats a previously used force amplitude
and the second corresponds to a slightly larger force. Figure 4.9
completes the response curves obtained from column LI (N-S). These
curves were obtained from increasing force amplitudes, therefore,
they correspond to figure 4. 6 rather than figure 4. 7. As expected,
the decrease in frequency associated with the peak response is
characteristic of a softening spring type of non-linear system.

The response curv.es for columns SI and SII are given in figure
4.10. Retracing of the response curves was not done because of the
relatively short expected endurance life. The changes in the response
of the structure becausc of testing will be illustrated for the sc columns
in the sections on static and dynamic hysteresis curves. Again, the

softening spring type of non-linearity occurred as expected.

1f. Dynamic response at failure. A detailed study of the

structural response in the regions approaching, during and after
failure is of interest as a possible means of investigating structural
damage in real structures.

Column LI failure was noticed while testing in the N-S direction
by observing an increasing tor sional component of the structure's
motion. Upon inspection of the columns, a crack through the brittle
lacquer coating was observed at the bottom fillet of the northeast
column. This crack was not believed to be across the entire cross-
section. Since all the dynamic tests until this time were in the N-S

direction and because the stability of the force generators under
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FIG. 4.8 FREQUENCY RESPONSE OF LI (N-S)
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large deflections was unknown, it was decided to test this failed
column set in the E-W direction. The E-W direction was the weak
direction of the structure and it was found that torsion was not a
serious problem in exciting translational motion in the weak direction
even with one column less stiff than the other three. At this point it
was decided that the next test columns would be designed to be tested
in only the weak direction. Figure 4.1l gives the response curves for
the tests in the weak direction of LI. The characteristic of the
response curves crossing other response curves at lower force
amplitudes indicates that the stiffness of the structure has decreased
due to continual weakening of the cracked section. The final break
occurred at a frequency of about one cycle per second and the entire
frame slowly and smoothly collapsed until it was supported by the
emergency timber cribbing below. Figure 4.12(a) and (b) show the
structure in its timber supported position. It seems that the surest
method to determine if a structure has been damaged is to check the
existing natural frequencies with the original frequencies and if no
observable change occurs, to determine any change in the position of
the centroid of the structural stiffness.

Because restoring the collapsed structure to testing condition
involved a considerable effort and because little could be learned
from a complete collapse, all further tests were halted before
complete collapse. Figure 4.13 shows the last two tests of column SI.
In this case, the column failure in the test A3. 43 was not realized

by observation of the columns or by plotting the acceleration response
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FIG. 4.11 FREQUENCY RESPONSE OF LI (E-W) BROKEN

EXCITATION FREQUENCY, w/‘"n

H=252

© p2 N
o o I o)

08

seyou; *3gnLindwy (¢%) NOILD3N43a



-72-

(a) Elevation Looking North

(b) Plan (North % )

FIG. 4.12 COLLAPSED LI STRUCTURE
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curve. The failure became obvious in tesf A3. 44 because of a very
rapid decrease in acceleration and defleclion response with an
increase in frequency. The cause of the rapid decrease in the
response is the decrease in the natural frequency of the structure,
ive., w/ wn increases without change in .

The failure was less discernable in column SII, in fact, the last
test, A3.54, was continued until completion even though the failure
was suspected. The original acceleration data is included with the
deflection (¥ / wz) in figure 4. 14 to show the type of acceleration
response obtained and also to show the data reduction of the non-
constant frequency of test A3.53. This changing frequency was

eliminated by a slight adjustment of the force generator control.

lg. Equivalent viscous damping; Forced vibration definition.

Many methods of obtaining the equivalent viscous damping of a structure

with their specific advantages have been ably presented elsewhere(ll’ 36,

37). The development of the approach felt most suitable for the current
discussion is based on the equivalent linearization of the equation by
specifying that the energy dissipated by the original and the linearized
systems near resonance is the same per cycle for the same
maximum deflections. This can be done using the equivalent linear
system of equation 2.45.

Since the structural responée is a steady-state motion, the

deflection is periodic in ( and can be expressed by the Fourier

expansion
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0o
x(t) = ZAms:Ln(mwt— cf)m) (4. 5)
m-=1
where A__ is the amplitude and ¢ is the phase angle of the _—
m m

term of the series. The energy input per cycle to the structure by

the sinusoidal force can be exprcssed by

2n/w

2 oo
Sngdt = j B (2%) sin wt [ Z Am(mw Jcos(m w t- ¢m§]dt (4. 6)

0 m=1

where the force amplitude is defined in equation 4.1. The interchange
“of the summeation and integration operations is valid in this case so
equation 4. 6 can be evaluated using the orthogonality of the trigono-

metric functions to obtain

| 2
Energy Input = B (Zirr) TA;sin ¢ (4.7)

Since the deflections are almost sinusoidal, A1 will be taken as
approximately equal to the deflection ( x/ wz) amplitude, A. The

energy dissipated per cycle by the equivalent viscous damping for

sinusoidal motion at resonancc is
.. -2
Energy Dissipated = c A~ = w (4. 8)

where A is the amplitude of the sinusoidal deflection and ¢ is the
equivalent viscous damping. Critical viscous damping will be defined

as

c =2NRm =2 /X (4. 9)
c g

where K is the column stiffness of the structure for small



-77-

deflections and m is the mass of the structure. C(A) will be defined

as

C(A) = ( wp) (4. 10)

Wy
where wp is the frequency at the maximum response of the nonlinear
structure and w is the small deflection natural frequency. Equating

the energy dissipated to the energy input yields
w 2
Bl v sy

c
— =1 (4. 11)
c eq
c A 21T w 2 / KW
1 n g
Remembering that
1\ [EBe ~
w = W : (4.12)
and using g = 386 inches/second&, equation 4.1l becomes
2
_ B)| sin® | w
B = 4 88 =) =5 (—;; (4. 13)

- where B is defined by equation Al. 8 in Appendix I, W is in pounds,
A1=A is in inches, and 4)1 = ¢> . In order to calculate the experi-
mental fraction of critical damping by equation 4.13, sin 4) must be
calculated from the experimentally determined ¢ . Since the
frequency response curves have a different shape for the linear and
nonlinear cases, the equivalent viscous damping as defined by

equation 4. 13 is meaningful only near the peak response.

Free vibration definition. For free vibration studies, the '

equivalent viscous damping is calculated from the decrease in

acceleration amplitude over a given number of cycles. Because the
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damping is small, the fraction of critical damping can be taken as

n =i 2Fmean or L [Zmean (4.14)
eq  2m | 2w *mean .
mean

The fraction of critical damping values for the peak displacements
and the free vibration tests can be found in the chronological record
of Appendix IIl.

Determination of the fraction of critical damping. For forced

vibration experiments the error in the fraction of critical damping is
proportional to the error in ¢ . The importance of phase shift
~accuracy made it necessary to make a special study of the phase
shifts in the instrumentation system, as reported in Appéndix 1.

The calculated values of 1'16(’1 for the maximum deflections of the
tests of LI (N-S) are plotted in figure 4.15. The neq values for SI, SII,
and SIII are plotted in figure 4.16. The Deg values plotted in figures
"4.15 and 4.16 were calculated from data taken near the resonance of
the structure. This satisfied the condition of nonlinear-linear
equivalence, and also minimized the error associated with ¢ because
the phase lag at resonance was approximately 90 degrees.

~ The area of the force-deflection hysteresis loop is equal to the
amount of energy absorbed by the structure. This fact can be used
as one method of comparing the static and dynamic response. The
dynamic energy dissipated per cycle near resonance has been |
calculated for columns SI, SII, and SIII by means of equation 4. 7 and

are plotted in figure 4.17.
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lh. Ultraharmonic response of the experimental structure. The

existence of ultraharmonic response of this nonlinear system was not
unexpe cted. 'The existence of higher frequency components super -
imposed upon the basic response at the excitation frequency was
occasionally encountered, and such test runs called for special
interpretation. The experiments in which this action was most
noticeable were with columns SII and SIII. The reason for this was
that the two force generators were arranged so the force from each
was almost three feet on each side of the center of the column stiff-
ness. Thus, any mismatch of forces from the two generators would
~produce a large torque on the structure. The ultraharmonics of the
torsional natural frequency are in the range of the translational
testing frequencies.

Figure 4.18 shows the ultraharmonic torsional response super-
imposed upon the translational response at the excitation frequency
Aof 2. 867 cps for test A3.51. The data recorded in figure 4. 18 for
motion in the east-west direction are: (channels from left to right),
(a) the floor acceleration at the mid-span east edge of the floor,
(b) floor acceleration at the northwest column, (c) floor acceleration
at the southwest column, (d) strain in the northwest column top, (see
Table III-1 for column SII) and (e) the force pulse from force
generator No. 1. The acceleration traces are all recorded at
approximately the same calibration condition so that they may be
compared directly.

The single amplitude translational acceleration is about
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FIG. 4.18 TRACING OF ORIGINAL RECORD
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3.72 inches/seCOndZ calculated from the mid-east accelerometer and
the average single amplitude torsional acceleration superimposed on
the translational acceleration is about 0. 11 radians/secondz calculated
from the southwest and northwest column accelerometers.

The important thing to note in figure 4. 18 is that the torsional
motion has exactly five cycles for every one cycle of translational
motion or force generation. It was expected that the ultraharmonics

would occur at 1/3, 1/5, 1/7, ... of the torsional natural frequency.

li. Structural '"demagnetization''. It was noted that the

residual deflection after a static test was substantially reduced by the
following dynamic test. The two cases for which data were taken are
static test A3. 58 which gave a residual deflection of 0.052 inch east
and dynamic test A3. 59 resulted in a change in equilibrium position of
about 0. 050 inch west. Also, static test A3. 60 had a residual de-
flection of 0. 078 inch west while dynamic tests A3. 63 and A3. 64
resulted in an equilibrium position change of 0. 063 inch west. The
greater portion of the remaining 0. 015 inch of the second example was
probably recovered in dynamic test A3. 62 in which the shift in

equilibrium position was not measured.

2. Static Results

The static experiments are reported in chronological sequence
without mentioning the occurrence of any intervening dynamic or free
vibration studies. After all of the static tests are reported, various

significant cycles will be replotted in a single figure to facilitate



~85-

comparison. The basic static data was obtained by a strain gage type

load cell.

2a. Column LI. The static force data in the east-west

direction of column set LI were taken with a low capacity laboratory
developed force gage and a SR4 strain indicator. The characteristics
of this gage can be judged by the hysteresis curve for a tension
calibration given in Appendix I. For test A3.1 all the data points lie
within the estimated error of a straight line whose slope gives a
stiffness of 795 pounds per inch. The result of test A3. 3 plotted in
figure 4.19 shows the beginning of a definite hysteresis force-deflection
relationship for the structure. Figure 4. 20 has tests A3. 4 and A3. 8
plotted where the zero deflection of test A3. 8 was shifted to the east
0. 112 inch to account for the residual deflection of test A3. 4. Test
A3.10 plotted in figure 4. 21 completes the static experiments of column
LI (E-W). Because of the hysteresis of the force gage the area of the
force~-deflection diagrams plotted in figures 4.19 to 4. 21 is larger
than the true area for the structure but the difference is not a very
large percentage of the total area for the larger loops. The static
tests in the east-west direction were cycled by equal force levels,
whereas, all the following static studies were cycled at equal deflec-
tion values.

At this stage of the investigation, a more accurate and more
convenient load cell was obtained. The first static study of LI (N-S)
was A3. 21 and the result is progressively plotted in figures 4. 22,

4. 23 and 4. 24. Figure 4. 22 gives the first one and three quarters
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cycles and figure 4. 23 continues where figure 4. 22 ends for an
additional one and one quarter cycle. Figure 4. 24 repeats about one
half of the last quarter cycle given in figure 4. 23 and then continues
for slightly more than one cycle. The dashed line indicates the
repeated section of data. The structure was deflected to the next
data point beyond the last plotted point when a fuse in the recorder
blew out. At this point the experiment was discontinued until two days
later when test A3. 22 data were taken. Again the data from one test,
A3. 22, are plotted progressively in two figures, figures 4. 25 and
4.26. The final static experiment of column LI, A3. 31, was preceded
by two cycles of 0. 320 inch static deflections and one cycle of 0. 400
inch static deflection before beginning to take data at 0. 320 inch. The
data taken for this test are plotted in figure 4. 27. The column set LI
failed during the dynamic response test A3. 32, reaching a maximum

dynamic deflection amplitude of about 0. 383 inch.

2b. Column SI. The first static experiment on column set

SI, A3.35, was an attempt to obtain the virgin force-deflection curve
for the structure. Difficulties developed during the testing primarily
because the required forces were substantially in excess of the forces
previously used. The larger forces caused a failure of the existing
three inch concrete floor slab-on-grade near the slab to foundation
isolation joint. Temporary repair of the static loading frame per-
mitted taking data in two subsequent tests but not at full load. The

three static experiments of SI are plotted in figure 4. 28.
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Zc., Column SIII. The static loading system was permanently

repaired by bolting the frame to the foundation of the structure rather
than to the ‘existing laboratory floor. With this new arrangement all
the static experiments of column SIII were run ‘Without the difficulty

of the moving forcing frame. Test A3.56 of the virgin SIII columns

is given in figure 4. 29 and test A3. 58 is plotted progressively in
figures 4. 30 and 4. 31. Because the static tests were usually
alternated with dynamic tests, it was assumed that each static test

of column set SIII began with the structure in its original equilibrium
position. This was found to be approximately true regardless of the
magnitude of the residual static deflection, see section li of this
chapter. Test A3. 60 is also separated into two figures, figures

4. 32 and 4. 33, for clarity of the results. Test A3.66 consists of a
decreasing size of cyclic deflection, Whefeas, the previous experi-
ments have all had increasing cyclic deflections. This test is divided
into the three figures 4. 34, 4. 35 and 4. 36. The dashed lines in figure
4. 34 have a meaning opposite to that used in all other figures, i.e.,
the dashed lines in figure 4. 34 show the results of subsequent data of
the same test. Test A3.68 is.plt)tted in figure 4. 37.

A few general comments will be made before regrouping some
of this data. Structural deterioration with successive loading cycles
is especially obvious in figufe 4. 37. The relationship of this
chéracteristic of deterioration to the characteristic shown in the
~dynamic frequency-response studies, figures 4.2 and 4. 3, will be

investigated in the next chapter.
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Figure 4. 38 shows specific data cycles taken from figures 4. 33,
4.34 and 4.37. As can be seen from Appendix III, test A3. 60 curve
was obtained on June 30 as the final static loop of that experiment.
Neglecting the effect of small free vibration tests, only three
vibration tests were made before test A3. 66 curve was obtained. The
first two forced vibration tests had a maximum response amplitude of
0.120 inch and 0. 592 inch respectively. The final forced vibration
test was made July 7 and had a maximum response amplitudevof
0. 816 inch. On July 8 the test A3. 66 curve was obtained as the first
cycles of the test. Thus, the difference between test A3. 60 curve
and test A3. 66 curve of figure 4. 38 is attributed to the dynamic tests
and the rest periods which occurred between them. The structure was
not tested further until August 17 when test A3. 68 curve was obtained.
Thus the difference between test A3. 66 curve and test A3. 68 curve
must have been caused by the rest period of 42 days between the
successive static tests. The only test between these two was the free
vibration test preceding the static test on August 17 which should not
have altered the structure. In summary, the effect of dynamic tests
of an amplitude up to 0. 816 inch was to modify the static structural
response from curve A3.60 to curve A3. 66 and after 42 days of rest
the structure recovered to curve A3. 68 as shown in figure 4. 38.
This same action is believed to exist in a lesser degree at smaller

amplitudes also.
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3. Dynamic Hysteresis Loops

Since static test results have often been assumed to give
conservative results when used to predict dynamic response, an
actual comparison of the dynamic and static response of the structure
will be made in this section. This comparison will, of course, only
be valid for the dynamic strain rates occurring in the experiments.
The range of validity of the comparison could possibly be extended by
using test results at various strain rates obtained by other investi-
gators, as will be indicated in Chapter V.

3a. Introduction. The differential equation of motion for the

structure is

mx+ R(x) = F (4. 15)
where R(x) may be a function of the deflection and velocity as
illustrated by the linear viscously damped case, e. g., equation 2. 30.
Rearranging equation 4. 15 gives

Ri{x) = F-mX (4. 16)
and the resulting force-deflection curve was obtained by plotting R(x)
and x at corresponding successive instants in time. A linear,
viscously damped single—deg.fee—of—freedom system excited by a
sinuscidal force produces a restoring force R{x) whose component

amplitudes at resonance can be shown to be in the ratio

I E2 N, (4. 17)
where n is the fraction of critical damping. Thus, for a system

with 0.10 fraction of critical damping, the amplitude of the acceler-

ation term will be five times the amplitude of the force term. Since
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lmx‘ is considerably larger than !Fl , the value of R(x) was
expected to be more sensitive to errors in the acceleration than
errors in the force. The force was assumed to be sinusoidal. This
is a reasonable assumption because any change from the average
circular frequency must have had its positive and negative variations
during a half cycle of motion. If there was any variation of the
excitation frequency from the average, it must have been small and
in the following it is neglected.

In order to obtain the data to plot the dynamic force-deflection
curves the simplest.approach appeared to be to record the acceler-
ation, deflection and force phase simultaneously on one record. Since
each amplifier, transducer and recording system has its individual
phase lag which can be determined within a certain range of accuracy,
say £ 1 degree, the possible phase error between the acceleration and
deflection could be two degrees. A lin.ear viscously damped s;lrstem
will be used to estimate the expected error in R(x) that would be
introduced by this phase shift error between acceleration and
deflection. Let

F

F_sin( wt+ )

X = - wzxosin( wt+ ) (4. 18)

x = x_Ssin wt
(e}

where ¢ is the phase angle by which the force leads the deflection
and Y is the measuring phase error between acceleration and de-
flection. The energy dissipated per cycle is equal to the area of the

hysteresis loop, i.e.,
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Energy Dissipated = —¢R(x) dx (4. 19)

This integral evaluated over one cycle using equations 4. 16 and 4. 18
yields

. 2 2
Energy Dissipated = wonosinqS+ mmx - w siny (4. 20)

Using equation 4.17, the ratio of equation 4. 20 evaluated at Y = 2°

to that evaluated at Y= 0° is plotted in figure 4. 39 for various values
of ¢ and n. It can be seen from figure 4. 39 that the error in the
dynamic force-deflection curve is sensitive to the fraction of critical
damping and that the minimum expected error should be about 17
percent. This error was too large to be tolerated so an alternate
approach to the determination of the deflection was made by integrating
the measured acceleration data. This method eliminated the phase
error between deflection and acceleration so that the only available
phase error was relative to the exciting force. As was mentioned
above, the exciting force term is the least significant term of the
restoring force, R(x). The amount of error in R(x) caused by an

error in the exciting phase is dependent on sin cl) .

3b. Integration procedure. The acceleration data were taken

at equal time intervals either at every time line on the oscillograph
record or at both the time and the mid-time line positions. Figure
4. 40 exemplifies the dynamic data record used for the integration
and is approximately 0. 8 of the original record size. The force
pulses, (a).and (f), of force generators No. 1 and No. 4 respectively

together with the three accelerations, (b), (c) and (d), and the strain,
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FIG. 4.40 PHOTOGRAPH OF A3.69 DATA RECORD
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{e), are marked in figure 4.40. Acceleration records (b) and (c)
and the strain (e) were rec;orded with 100 cps galvanometers and
acceleration (d) was recorded with a 20 cps galvanometer. The
difference in recording phase shift is obvious in this figure.
Numerical integration of the acceleration data and additional
numerical calculations were made on the Burroughs 220 Datatron
digital computer owned by the California Institute of Technology. The
integration formula
t1+A.t
x(T)dT = 23- [9 % (tl) + 19 '}'{(tl+At)— 5% (t

4 1

+ 2At)+ '}':(t1+ 3At)]

(4. 21)
was used successively along the entire length of the record. This is
a starting type of numerical integration procedure since it uses
future data points to evaluate the integral through the first step. The

(38) is -19/ 720 times the

principal correction term for this formula
fourth differ ence of the integrand. Since the fourth differences of a
sine are small, the numerical error accumulating from this
calculation was expected to be Small. The typical record consisted of
from 3-1/4 cycles to 6-1/4 cyclés of data which contained 80 or 40
data points per cycle depending upon whether data were reduced at the
1/2 time line positions or not.

Since steady-state motion was assumed when the data record
was taken, a logical condition on the integration procedure was to

require that the initial velocity and final velocity an integral number

of cycles later must be the same. A linear correction to the velocity
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was made and the corresponding parallel shift of the acceleration
axis was also made. This procedure was repeated to determine and
correct the deflection. The zero axis of the deflection was obtained
by applying the above condition to the integral of the deflection.
This integration procedure was tested for accuracy with six cycles
of tabulated sine data rounded off to three figures. Forty data points
per cycle were used which corresponds to the largest steps taken with
actual data. The resulting deflection appeared to be sinusoidal with
a positive amplitude of 1.13633 inch and a negative amplitude of
1.13652 inch when the correct amplitude should have been 1. 13633 inch.
This corresponds to less than 0. 02 percent error in the deflection.

The restoring force R(x) was calculated according to equation
4.16 with the initial phase angle of the assumed sinusoidal force
determined from the acceleration record. The energy dissipated per
cycle was determined by evaluating equation 4. 19 assuming the curve
linear between points. A check on this integration procedure was
made by evaluating the amount of energy input per cycle to the
system in linear steps, i.e.,

Energy Inbut = 565‘ X dt (4. 22)

This can be shown to be only an integration check by considering
equation 4.15. Multiplying equation 4. 15 by k and integrating over

one cycle gives

éFX dt =§R(x) dx dt/dt + ém'}'c % dt
52 |T (4. 23)
:ﬁR(x) dx+ mx /2

0
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Since the velocity should be equal at points one cycle apart, the
second term of equation 4. 23 is zero. For the program check data
described above and a force-deflection phase angle of 88. 5 degrees,
the program result of equation 4. 19 was 2825. 6 inch-pounds and of
equation 4. 22 was 2837. 3 inch-pounds. The correct value was
2829. 7 inch-pounds which results in errors of about -0.15 and +0. 27
percent respectively.

Since the errors associated with the numerical calculation are
sufficiently small, 6-1/4 cycles of dynamic test data with about 41
data points per cycle were calculated by the above program. The
resulting deflection when plotted had the general appearance shown
in figure 4. 41. By checking back to the strain record taken simul-
taneously with the acceleration record it was determined that the
structure did not shift its center of vibration a measurable amount
over the given six cycles. In an attempt to evaluate the effect of a
possible data reduction error, the previous program test data
ordinates were given a randomly distributed error of £ 2%, * 1% or
0% of the maximum amplitude. This maximum magnitude of error
overestimates peak data errors and underestimates mid-amplitude
data errors. The resulting peak deflections for 12 individual
integrations are given in Table IV-2 and integration 10 is plotted in
figure 4. 41. The similarity between figure 4. 41 and the deflection
calculated from data showed that random reading errors could be
responsible for the curvature of the deflection envelope.

By imposing the steady-state condition at the end of each cycle
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FIG. 4. 41 DEFLECTION BY DOUBLE INTEGRATION,
2% RANDOM ERROR
(INTEGRATION 10, TABLE IV-2)
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and limiting the number of data cycles to 3-1/4, the problem of the
drifting center of deflection was eliminated. The final integration
procedure consisted of integrating the acceleration data according to
equation 4. 21 and correcting the resulting velocity by linear
corrections to each of the three cycles separately and using the
average slope of these three corrections to adjust the base line of
the acceleration. This procedure was continued as before until the
base line of the deflection had been adjusted. The other sections of
the program were not changed. Checking the new program with the
program test data, answers identical to those given above were
obtained. Dynamic test data were used and seemed to give physically
significant results. The remainder of this section will give the
results of applying the above numerical calculations to specific

dynamic tests.

3c. Results. Since data recording galvanometers of both 100

cps and 20 cps natural frequencies had been used in the testing
program, it was of interest to determine the effect of the recording
galvanometer frequency upon the dynamic results. This has been done
in test A3. 69 where data weré taken simultaneously with 100 cps and 20 -
cps galvanometers connected to accelerometers located next to each
other. The data were reduced at the same time and mid-time marks
of the record. The relatiohship of the force position as indicated by
the force pulses and the starting time line of the data had to be
determined individually since the phase lag of the 20 cps and 100 cps

galvanometer recording systems were significantly different (see the
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discussion in Appendix I and figure 4.40). The resulting dynamic
hysteresis loop as calculated from the 20 cps record, record {d) in
figure 4. 40, is plotted in figure 4.42. The 100 cps record, record
(c) in figure 4. 40, produces the points plotted in figure 4.43 and the
line i.ndicates the 20 cps record curve traced from figure 4.42. As
can be seen from figure 4. 43, no significant difference between the
results was obtained by using the 100 cps or the 20 cps recording
galvanometers. On this basis, reference to the particular galvano-
meter used to obtain specific data will not be included.

Test A3.57 is plotted in figure 4.44 and test A3.63 in figure
4,45, These figures give the dynamic force-deflection curves for
different deflections and will be utilized later in comparisons with
static force~-deflection curves. Test A3.64, figure 4.46, has approxi-
mately the same maximum deflection as test A3.69. The comparison
of figures 4.42 and 4. 46 given in figure 4.47 shows that structural
deterioration has taken place which overcomes the strength recovered
during the 42 days of rest. This will be discussed in more detail in
the next chapter.

Another check of the iﬁtegration procedure was made by
satisfying the steady-state condition at the end of one and two cycles |
simultaneously by means of a parabolic correction of the integrated
data. The proper linear corrections and constant corrections were
made to the acceleration and velocity data. This procedure did not
seem to be as accurate in placing the origin of the deflection as the

previous integration procedure. The data of test A3.64 was used in
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this program and the result is plotted in figure 4. 48. Since the mean
deflection of the new integrated deflection was not zero, the original
test A3. 64 dynamic curve,‘ figure 4. 46, had to be shifted by 0. 018 inch
before tracing on figure 4. 48 as the line. It can be seen by figure 4. 48
that the type and solution of the integration procedure does not seem to
alter the character of the dynamic force-deflection relationship. The
area of the dynamic force-deflection curves together with some other

properties are summarized in Table IV-3.

3d. Comparison of dynamic and static hysteresis curves. All

of the comparisons made in this section are for column set SIII,
thereby eliminating any differences between the column sets. The
areas enclosed by the hysteresis loops are summarized in Table IV-4
together with the average maximum deflections.

Figure 4. 49 combines the results of test A3. 56 (figure 4. 29),
test A3. 57 (figure 4. 44) and test A3. 58 (figurc 4. 31). Because of the
large change in response caused by progressive experimentation, no
specific comparison of static and dynamic response can be made. It
should be mentioned that the _sti'ucture had not been tested at deflections
larger than those in figure 4. 49 when those tests were made.

The portion of test A3. 60 (figure 4. 32) given in figure 4. 50
preceded a deflection of the structure to -0. 825 inch while test A3. 66
(figure 4. 35) followed a dyhamic study at 0. 810 inch amplitude and was
a portion of the descending amplitude static experiment from 0. 815
inch. A shift in the force axis of 170 pounds was made when replotting

test A3. 66. The dynamic test A3. 63 is taken from figure 4.45. In
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TABLE IV-4

Summary of Energy Dissipation per Cycle at Maximum

Deflection
in-pounds inch Ref.
Test Tvype E.D.per cycle Max. X figure
A3. 56 static 598 0. 635
A3. 57 dynamic 850 0. 635 4. 49
A3. 58 static 934 0. 640
Theoretical 859 0. 635 5. 17
A3. 60 static 230 0. 420
A3. 63 dynamic 158 0. 420 4. 50
A3. 66 static 262 0. 420
Theoretical ot 0. 420 5.17
A3. 60 static 1951 0. 825
A3. 64 dynamic 1983 0. 810 4. 38
A3. 66 static 2026 0. 815 4. 47
A. 368 static 1860 0. 815 4. 51
A3. 69 dynamic 1960 0. 792
2756 0. 810 5. 17

Theoretical
1
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0.4

DEFLECTION, EAST, inches

STATIC TEST A356 —
DYNAMIC TEST A3.57 ———

STATIC TEST A3.58 ——

FIG. 4.49 DYNAMIC-STATIC COMPARISON OF FORCE-
DEFLECTION CURVES
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TEST A3.66 Shifted
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STATIC TEST A3.60 ——

DYNAMIC TEST A363-—-—

- STATIC TEST A3.66 —-—

2000

FIG. 4.50 DYNAMIC-STATIC COMPARISON OF FORCE-
DEFLECTION CURVES
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this case, the dynamic response indicates a larger restoring force
and a sm‘allexl- amount of energy dissipated per cycle.

Static tests A3. 60 (figure 4. 33) and A3. 66 (figure 4. 34) are com-
pared with the dynamic test A3. 64 (figure 4. 46) in figure 4. 51. The
static comparison made in figure 4. 38 and the dynamic comparison
made in figure 4. 47 shall be used in conjunction with figure 4. 51 in
the following discussion. Figure 4. 51 does not yield a valid basis of
comparing static and dynamic force-deflection curves, again because
of the large changes in the curves based on experimental history.

This column had not been studied at deflections greater than + 0. 825
inch at that time.

An estimate of the strain rate of loading for the various dynamic
curves will be given in the next chapter, where the properties of the
deflection-maximum strain relationship are discussed. An interpre-
tation of the test results presented and compared here will also be

made in the following chapter.
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STATIC TEST A360 ——
DYNAMIC TEST A3.64 ———-
STATIC TEST A3.66 —-—

|

-

FIG. 4.51 DYNAMIC-STATIC COMPARISON OF FORCE-
DEFLECTION CURVES
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V. ANALYSIS AND INTERPRETATION OF THE EXPERIMENTAL
' RESULTS

The comparison of theoretical and experimental results is
always useful because it permits an evaluation of the theoretical
approach and may suggest modifications which will improve the
theoretical analysis. The theoretical analysis may also be used as
an aid in understanding the experimental results. This is true both
for static and dynamic conditions.

In this chapter a simplified theoretical analysis will be made
of the structure described in Chapter III for comparison with the
experimental results reported in Chapter IV. Additional theoretical
analyses for use in interpreting the results will also be given in
this chapter.

A. Theoretical Analyses

1. Plastic Hinge

A post-elastic analysis of a rectangular section and of the
5114. 75 end sections will now be made for use in determining the
force-deflection relationship for the structure. A number of
simplifying assumptions are necessary for this analysis. It will
be assumed that the stress-strain relationship for flexure is the
same as that established in the tension tests reported in Appendix II.

Second, it will be assumed that during flexure plane sections remain

03
K

plane even for large plastic deformations. For a rectangular cross

k (39)

For example: Freudenthal.
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section, see figure 5.1, the static moment of the stresses with

respect to the neutral axis is given by

C
M = f(Tyb dy (5. 1)
-C

where Ms is the moment at the section, 0 is the normal stress, b is
the width of the rectangular section, and y is the distance from the
neutral axis. The effect of the shearing stress

= (®y (5. 2)

o]

Gy ©
is assumed to be small and will be neglected in the following develop-
ment. P is the force acting in the y direction and I is the moment of
inertia of thc cross éection.

For the linear elastic condition, the change in slope per unit

length (curvature) is equal to
e = MS/EI (5. 3)

and the maximum fiber strain is equal to
Msc
€ g7 (5. 4)
where € is the strain. Therefore, the curvature can be defined as
0=—= (5. 5)
The assumption that plane sections remain plane implies that
equation 5. 5 is valid for all strain values, even when equations 5. 3

and 5. 4 are no longer valid. Using equations 5.1 and 5. 5 and the

material stress-strain properties given in Appendix II, the moment-
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vy

FIG. 5.1 RECTANGULAR SECTION
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curvature relationship can be established for all 6. Dividing the
stress-strain relationship into the three parts indicated in figure 5. 2,

the moment at the section can be evaluated according to equation 5. 1.

For case I. Elastic

o =yE© with €. = ee£ (5. 6)

where € 9 is the initial yield strain occurring at Y=Yy S€€ figures

5.1 and 5. 2.
c

2
M = bEQ fy dy = OEI (5. 7)

~C

For case 1I: Elastic~Plastic

o = yE®@ for y= Ve
(5. 8)
— -
o= 9%, for v, =Y =4y,
Yeﬂ c
M_ = Zf yEO ybdy + 2 f Vo, EO yb dy
0 Vey
2 1 2
= yeﬂEQb [c -3 yezil
Y
3 es}2,. 3 1_.2, 3
"7E9(”—)3bC“EEO‘§byeﬂ (5. 9)
3
3 Yes 1 Yoy
_EEQI( . )-EEQI( c
Since
M_,= EI0_,, 1:bc3§ and gg ) €| -(-< (5. 10)
e e el et Veu

equation 5.9 can be rearranged to give
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0 1
Y ) v s (5. 11)
el 3. S
M

For case III: Area of Strain Hardening

The strain hardening case will be determined by including the
additional terms resulting from the strain hardening to the extended
results of Case II. The actual stress-strain relationship given in
Appendix II will be approximated by the segmentally linear relation-
ship given in figure 5. 3.

For the region Ayel =y = Bye

Y/
O-SHA = GQE(Y—Ayez) (5. 12)
and
Ms = MSII+ MSHA {5. 13)
where O-sHA = (0 - o-el) and MSII is the solution for case II from

equation 5.9 or 5.1l without the upper limit on y. From equations

5.12 and 5. 1,
C
M_iqa = j GOE(y-Ay,_,)y dy + 0
AY ey (5. 14)
3 ;
c 1 2 1 3
=GE9b[3—ZCAy£+-€Aye£]

With the aid of equation 5.10, this equation reduces to

E
4

0 0
1 3 el 3 el
_)Me,(l _Z_—ZA{_G + — A - (5. 15)
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For the region y 2 BYe,e

O yp = (G-H)OE(y-By,,) (5. 16)
and
My = Mot Moga™Moup (5. 17)
where 3
M 0 0
_ 0| Ves 3 ed) 13| et
Mepp™ (O H g =2 |"2P |0 " 2P o (5 18)

The resulting moment-curvature or moment-maximum strain ratio is
given in figure 5. 4. The strain hardening region has been approxi-
mated using G = 0.014, A =10, B = 34, and H = 0. 0024 (see Appendix
II, figure AZ.2).

The significance of the curvature or maximum strain ratio in
terms of yielding material can be investigated by considering the

maximum strain ratio, e.g., 20. From equation 5.10,

Yoy = c/20 (5. 19)

This means that only 5 percent of the material at that section is
acting elastically for a curvature 20 times the elastic curvaturre.

The thickness or core of elastic material surrounding the neutral
axis of the section is a function of the bending moment at that section.

For a linear change in moment increasing from Me and neglecting

£

strain hardening effects, the equation for Yoy 2R be determined from

equations 5.10 and 5.1l to be

Yoy =+ N 3-2v ! (5. 20)

where MS = VMe and v varies linearly from 1. 0 to 1. 5. The result

£
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of equation 5. 20 and the moment are plotted in figure 5. 5.

To illustrate the yielding areas of the 51 14. 75 column and
sections, it will be assumed that the only effect of the flange fillets
is to increase the depth of the section. In other words, the stress
and strain modifications caused by the curved surface will be assumed
to be second order effects and will be neglected. As will be shown in
the following sections, a satisfactory approximation to the actual
column bending diagram is to have equal and opposite maximum
moments at the column ends with a linear distribution between them,
see figure 5.9(c). Specifically taking column SII NE which has an
overall length of 24. 94 inches and with maximum end moments of

1. 58 Me where Me is the calculated maximum elastic moment in

L’ 1
the web of the 5 I 14. 75 section, the material yield distribution
similar to figure 5. 5(b) will be determined. Selecting the origin of

the z axis at one column end, the moment at any section is

M_ =158 Mez(l—z/lz. 47) (5. 21)

For sections with a depth greater than the web thickness, the
corrected maximum elastic moment is

B = sk 3
M¥, = (c*/c) M, (5. 22)

2
The critical z which terminates the possible yielding sections is
determined from equation 5. 21 to be z = 4. 59 and 20. 35 inches. The
theoretical material yield distribution for the 51 14. 75 end sectioh
is drawn at full scale in figure 5. 6. The section of the 51 14. 75

enclosed in the dashed lines was cut from the top section of column
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FIG. 5.6 MATERIAL YIELD DISTRIBUTION FOR
5114.75 COLUMN ENDS
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SII NE, and was treated and etched to show the areas of metal yield. *
This operation was performed after the SII column set had failed with
the top section of two other columns in the set cracked completely
across the section and the third easily broken by hand. A photograph
of the processed and etched section is given as figure 5.7 where the
darker areas indicate yielding of the metal. The process was not a
complete success in that only the areas of massive yielding appear
dark. This can be seen by noting that the hardness test marks at the
top and bottom ends of the specimen do not indicate the small sfielding
known to exist. The extremely dark portion near the fillet was caused
by the etching acid in the crack and is not evidence of extreme yielding.
A second photograph, figure 5.8, of the same specimen is given to
show the fracture. Because of the lighting of the specimen, the
yielding areas of figlire 5.8 appear to be lighter than the elastic areas.
Comparison of figures 5.7 and 5.8 with figure 5.6 indicates that the
actual moments existing at the column ends must have been larger

than the moments assumed for figure 5. 6.

2. Force-Deflection Relationship for the Structures

The column dimensioné and details were given in figure 3.5
and in Table III-1. As was shown in the preceding analysis, all
of the material yielding occurred in the end 51 14.75 sections with
the majority of the yielding restricted to the rectangular sections of

these column ends. Because the yielding in the columns occurred at

>'<The writer wishes to acknowledge the time and effort expended by
Mr. Dan Krause in performing this operation.
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FIG. 5.7 ETCHED END SECTION SHOWING
AREAS OF MASSIVE YIELDING



-148-

FIG. 5.8 ETCHED END SECTION SHOWING
FATIGUE FRACTURE
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rectangular sections, the theoretical calculations were simplified.
First, the elastic properties of the columns were evaluated so that
the stiffneés and natural frequencies of the structure could be
calculated. Then using the material properties as approximated in
the preceding section, the theoretical force-deflection skeleton curve
and the ’theoretical maximum strain-deflection relationship for the
structure were calculated.

For the preliminary theoretical analysis of the column stiff-
nesses, several simplifying assumptions were made. First, it was
assumed that the ends of the columns were rigidly fixed 3/8 inch
below the floor frame and 3/8 inch above the base plate, see figure
5.6. The moment-area theorem of structural analysis states that
the deflection of any point on the axis of a beam from a tangent through
any other point equals the moment about the first point of the M/EI
diagram between the two points. This can be used to determine the
deflection of the floor frame relative to the base plates because the
column axis tangent at the base plate is always vertical. It should
be mentioned here that M is the bending moment, E is Young's
Modulus of Elasticity and I is the static moment of inertia of the
section. Since the columns are symmetrical with respect to mid-
length, the moments at the top and bottom ends are equal. If the
‘axial loads in the columns due to the weight of the supported
structure and due to the horizontal load are neglected in calculating
the bending moment, a simple calculation determines the stiffness of

the column. This approximation gives easily corrected results, as
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will be shown later. The relationship between the end moments I\/Il
and the horizontal load P of each column is

Ml =PL/2 (5. 23)
For the cases to be considered here, L equals the column height
minﬁs 3/4 inch. Figure 5.9 gives the idealized column section and
moment diagram together with the notation used in the following
development.
Elastic

The deflection of point B relative to the tangent at point A is

equal to

B
| _ M
X = f———EI zdz (5. 24)
A

Using the idealized column sectinn and moment diagram, figure 5.9,

equation 5. 24 can be evaluated to be

M £ M 4 . ‘
1 1 2,2 2 1 2 2, 2 )

Xz | —— 124 4.+ 5 2.7+ 24 +————(—— [—i ] (5. 25)

,Ell £1+1'.2)[ 271 »3 1 2] EI2 £1+22 372
With
' ' ZMl M1

L/2 = 4L, and - T =P = 21”2 (5. 26)
equation 5. 25 becomes

_ P 2,2 2 P (2, 3

Equation 5. 27 can be used to calculate the stiffness when the

stiffness is defined as
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P
K =% (5. 28)

For a numerical example, the values for the short columns
(E-W) will be used. The column height is approximately 24. 91 inches
therefore, L = 24.16 inches with £;= 4. 25 and £,= 7. 83 inches. The
moments of inertia are Ilz 0.0463 in. 4 and I,= 1. 530 in. 4 with
E=29.1x 106 psi from the results of the tensile tests reported in

Appendix II. Thus, the stiffness of one column can be evaluated to be

6
K, = 29.1x10° 3 = 1561 pounds/in. (5. 29)
18. 64 x 10
or for all four columns
K = 6244 lbs. /in. (5. 30)

Assuming a yielding stress of 40, 000 psi as determined in the tensile
tests, the deflection of the structure at initial yielding of the column
section can be determined. Using

M . = O %: 7450 in. -1bs.

el el

with equation 2. 53,

Pe,(l 616 1bs. per column (5.31)

1

Xe,e 0.394 inch

for initial yield. The undamped natural frequency can be calculated
assuming the structure acts as a single-degree-of-freedom

oscillator to be w

n 1 K
R . 552

where fn is the undamped natural frequency in cps, W, is the
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circular frequency in radians per second, K is the stiffness of the
structure in lbs.’/in.y , and W is the entire effective weight supported

by the columns.

Post Elastic

In calculating the deflection of the structure in the non-elastic
range, two distinct column regions were considered. They were the
region which was always elastic, 12, and the region which could
yield, I The column regions were assumed symmetrical. Using
the notation as defined in figure 5.10, it can be seen that the deflection

of the structure is equal to
X =2 [1 Zs1n(91+ 92)—Y‘2 cos(@l-l— 02) + Yl ] (5. 33)

91 and Y1 were the only terms which were affected by yielding.

Assuming the bending moment distribution as shown in figure 5. 9(c),

YZ. and OZ can be calculated

B
_ M
A
B
_ M
and Y2 = f =7 Z dz (5. 35)
A

where z is measured from A in figure 5. 10. Ol is equal to the sum

of all elemental curvatures occurring from B to C or

C

0, = fg(z)dz : (5. 36)
B
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and again similar to equation 5. 35

C
Y1 = j 0(z) z dz (5. 37)
B
where z is measured from B in figure 5.10. Applying these results
to Case I was trivial and gave results identical to those previously

obt ained for the elastic deflection.

For Case II:
1 M 22
0. = (5. 38)
2 "2(L 7 1,)ET
My £,
2 3 £1+£2 EIZ
'el
Fel Ml £2+z j 1 |
olzf (!HZ ol dz + o, e 4z (5. 40)
g o2l #h - 5.0 2 %
el £1+1 M
el
and ” ﬁl
fMl £,z ) m
Y17 |17 *iﬁ“)Zdz+_[ et iz M, 29
gz 1 Z 30|22 ) 1
ef £l+£2 Me,(l
(5. 41)

In addition to illustrating the application of the preceding formulae, a
numerical example will give the theoretical deflection skeleton curve
to compare with an experimental skeleton curve. Column set SI
(E-W) will be used again, with the additional numerical values of
€.~ 0. 0014, Oy = 40, 000 psi, Meﬂz 7450 in. -1bs. and X =0. 394

inch. First, consider the limiting ranges of Case II: Lower limit, i.e.,
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the elastic case. Z g = 1’.1, M1=Me£,

£2=7; 83, IZ=1. 530, 11:0. 0463. From equations 5. 38 through 5. 41,

(£+2,)= 12. 08, £ =4.25,

(-)2 = 0.00042, Y2 = 0. 00221 inch
; : (5. 42)
91 = 0. 01934, Y1 = 0. 04401 inch
Substitution into equation 5. 33 yields
X = X, = 0.394 inch (5. 43)

The material is not perfectly elastic up to yield. Therefore, an
average value of the yield strain will be used to determine a new E

for section L, On this basis

€ =0.00142
el

6 (5. 44)
E = 28.6 x 107 psi
and
E2 =29.1x 106 psi (5. 45)
This gives a new deflection at yield equal to
X = Xe,@ = 0. 406 inch (5. 46)

which should be more realistic.

The other limiting con_diﬁon for case II is €. = 10 €y and

Yey = c/10. This gives

M1 =1.495 Me£

(5. 47)
z_,=0.25 inch
el
From equations 5. 38 through 5. 41,
91 = 0. 04291 Y, = 0. 11606
(5. 48)

92 = 0.00064 Y‘2 = 0.00333
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Substitution of equation 5. 48 into equation 5. 33 yields

X = 0.906 inch (5. 49)
The horizontal force P reciuired on the structure is four times that
required for one column. Thus, from equation 5. 23, the horizontal
load P of thé structure is

P :SMl/L (5. 50)
For a deflection of 0. 906 inch, P = 3690 pounds. Other values of X
and P are calculated in a similar way. The skeleton curve will be
plotted later.

From the calculations made above, a plot of the structural
deflection versus the ratio of the maximum strain to yield strain
can be made. This plot is given in figure 5. 11 for the short columns
(E-W) and the long columns (N-S) both with and without including the
effect of strain hardening. It can be seen from figure 5. 11 that the
effect of the strain hardening is to decrease the maximum strain
associated with a given deflection below the maximum strain which
would exist without strain hardening. This effect is caused by a
shift of the yielding rotation section from the ends toward the center
of the column. In other words, -the effect of the strain hardening is
to produce more yielding material without significant increases in the
applied force. The kdecrease in the maximum strain, for a given
deflection, is an important factor when considering the fatigue life
of the member.

No apparent differen;:es in the theoretical force-deflection

curves of the structure with and without strain hardening can be
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noted at the deflections used.

Checking the Assumptions

The major assumptions used in the simplified theory should be
checked with the actual conditions in order to estimate the accuracy
of the calculated numerical values. Consider the conditions indicated
by figure 5. 12(a) where all four columns are identical and symmetrical
about the center line of their height, I.. Due to this symmetry, the
moments at the top and bottom must be equal in magnitude. Ijsing
the free body diagrams shown in figures 5.12(b) and 5. 12(c),

P(a+ L)—4M1-2VS + WX =0 (5.51)

Pa+ 4M1-ZVS =0 (5. 52)

Subtracting equation 5. 52 from 5. 51 results in

8M, = PL+ WX (5.53)

which is the moment at each column end, and for small deflections,
it is the same as equation 5. 50. By adding equations 5. 51 and 5. 52

4VS =P(2a+ L) + WX (5. 54)
in which V is the vertical column load due to the deflection and the
horizontai force P. Measuring the column horizontal displacement,
%, from the fixed column position at the base plate, the general
moment in the column is found to be

M =M,.-Pz/4+ P(2a+ L) x/45-Wx/4 (5. 55)

1

The above expression is valid for any one column. However, since
all four columns must have the same deflection X and this deflection

specifies the value of M,, the effect of the + term in the expression

1’
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for M is to distribute the horizontal force P in unequal proportions
to the columns. This can be stated mathematically as

P*L/8 + P*X(2a+ L)/8S = PL/8 (5. 56)

where P* is a portion of the total horizontal force P which goes to
that particular column. Using equations 5. 56 and 5. 53 to determine
P* and Ml’ equation 5. 55 can be used for the general moment when
P replaces P.

The displacement of the column is not linear with height, but
rather has a characteristic as indicated in figure 5.13(a). For this
reason the correction terms of the general moment are not linear
with height. However, since the correction terms are second order
effects, they will be approximated by a linear function such that

x=X z/L (5. 57)
With this linear approximation of the correction terms, the only
moments needed to be calculated are the end moments given By
equation 5. 53.
The total horizontal force determined by this linearized

correction is

P'= (8M1-WX)/L (5. 58)
In terms of the previously determined value P,

P'=P-WX/L (5. 59)
The column stiffness must also be corrected to be

K'=P/X-W/L = K-W/L (5. 60)

It was also assumed that the stress-strain relationship

derived from the tension tests could be applied directly to the
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conditions of this test. Since normal and shear stresses are acting
at the column section in addition to the flexural stresses, it is
important to check the magnitudes of these stresses and to determine
their effect upon the previous calculations. Among the factors
Nea1(40) discusses which affect the full plastic moment, neglecting
strain hardening, are the normal stress and the shear stress. Using
the formulae presented there for normal stress, the ratio of the

corrected plastic moment to the original plastic moment is

- 2
MN/MP = 1—(N/Np) (5. 61)

for a rectangular section, where N is the normal force and NP is the
area of the section times the yield stress. Similarly for the shear
stress factor for a rectangular section,
)2

MF/MP =1-0. 44 (F/Fp (5. 62)

for F/Fp =< 0.79, where Fp is the one half the area of the section
times the yield stress and F is the shear force. Using the same

numerical constants for the short columns as previously determined,

N_ = 89, 700 1bs.
P
F_ = 44, 850 lbs.
p (5. 63)
N = W/4 = 1200 lbs.
and
F =P/4 = 940 lbs.
This gives
N/N_ =0.0134
p (5. 64)

(N/Np)2 = 0. 00018

which corresponds to a change in the plastic moment of less than

0.02 percent due to normal stresses. For the shear stresses,
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F/F =0.021
p

> (5. 65)

(F/F ) = 0.000194

which also corresponds to a change of less than 0. 02 percent.
Therefore, the assumption to neglect the effects of the normal and
shear stresses upon the plastification of the column section is valid.
An alternate method of determining the combined effect of the
normal and shear stresses upon the yield stress of the column
section is as follows: The second stress invariant expressed in

terms of the distortional stresses only is

1 2 1 2 1 2
Il == - O {0 - O -(0O - O
2 3(O-X y) +3( v z) +3( Z x)
1 2 1 -2 1 2
=T =T =T ,
3 Xy+ 3 yz+ 3 zx (5. 66)
where O’X, Gy, O'z are normal stresses in the x, y, z directions
and T_ T, T _ are shearing stresses. The Hencky-Mises
Xy vz zZX :

yield condition equates this second stress invariant to a constant
which can be evaluated from the tension tests. The resulting flexural
stress for the yield condition will be determined.

For axial tension tests, b‘x = 0 at yield and

O =0 =T =T =T =0, The stress invariant constant for
vy z Xy VZ ZX

the yield condition can be evaluated from equation 5. 66 to be

2 2
- ==
IZ = constant = 3 (o}

¥ (5. 67)

Using the directions indicated in figure 5.1 where the moment acts

about the x axis and the shear load acts in the y direction, the

(41)

resulting stresses can be determined when b is large compared
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with ¢ to be

o =0 =T_=0
x 'y Xy

o =Py(L-z)/1+ N/AS

(5. 68)

Tyz = P(cz—yz)/ZI 1+ v)

T . =Pxyv /T(1+v)
where P is the shear force, N is the axial force, AS is the cross

sectional area, ‘and v is Poisson's ratio. Let
o = Py(L-z)/I (5. 69)

The maximum shear stress from elementary theory is 3P/ZAS-

(41)

Timoshenko and Goodier have developed appropriate magnification
factors to use for various values of b/c. First, consider column LI

at initial yield

. N _ . 3 P _ )
compression AS = 2400 psi, > —A—; = 1500 psi
and ! ‘ :
b/c = > (5. 70)

The magnification factors result in

_ 3 P : _ 3 P

T, =Ll 3 = and T =0.10 3 i (5. 71)
Substituting these results into equations 5. 66 and 5. 67 yields

2 2 1 2 1 2 2

2 (o + 2400)° + 1 (1650)% + 3 (150) “'3‘°lez
or > : > , (5. 72)

op 2400 1{1650 1{150

v tal e tzle, 7!

Cet et Ot i

Since- o, = 40,000 psi
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2

.1650) ~ 0.00085 (5. 73a)

Ocy

o —

2
150 ) ~7x10° (5. 73b)
Ueﬁ

and
2400
Ce g

)zo. 060 (5. 73c)

The values of 5. 73(a) and 5. 73(b) can be neglected which means that
the effect of the shear stress on yielding is negligible. The
flexural stress required to initiate yielding in compression can be
seen from 5. 73(c) and 5. 72 to be about 6 percent below the tensile
yvield value. The effect on the full plastic moment for a rectangular
section assuming an elasto-plastic stress-strain relationship can be
shown to be the same as equation 5. 65.

The corresponding values of equation 5. 70 for SI are

. N _ . 3 P .
compress;lon-—z—s— = 535 psi, 2 A, = 430 psi
and
b/c =18 (5.74)
The magnification factors result in
_ 3 P _ 3 P
TYZ = 3.7 > ‘XS— and TXZ =3.2 5 As (5. 75)
Substituting these results into equations 5. 66 and 5. 67 yields
2 2.1 2 1 nem?2 2 2
5 (0 + 535)% + (1600)" + 5 (1380)" = 3 0, (5. 76)

Results similar to those for LI are obtained with the exception that

the initial yielding stress in compression will be about 1. 3 percent
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below the tensile yield value.

The last assumption to be checked is that the column ends
are rigidly fixed 3/8 inch from the ends of the column, see figure
5.14(a). Since the ASTM 325 proof load is developed with a suggested
torqﬁe of 100 foot-pounds and the bolts for the structure had torques
of 65 and 50 foot-pounds applied to the column top and bottom bolts
respectively, it will be assumed that the 1/2 inch diameter bolts are
initially tensioned to one-half their proof load of 12,050 lbs. This
results in an initial load at the column ends of 24,100 lbs., and
which corresponds to a uniformly distributed load across the ends,
neglecting the bolt holes, of

End strcss = %—4—’5%%9-2?) = 1650 psi (5. 77)

If the end sections remained plane, the maximum moment capacity
of this end plane without reaching zero stress is .

M = 13,100 inch pounds | (5. 78)
The maximum moment to be expected at this section, considering

strain hardening, was for column SI

NI:[ L3}1L203=H”5mindkpmmds (5. 79)
L- 2>

4
Therefor e, the column ends have zero rotation. Figures 5. 14(b) and
(c) eshow the actual moments and M/EI diagrams for the end section.
Using the idealized M/EI as shown in figure 5. 14(d) with a moment
equal to 12, 000 in. -1bs., the rotation of the tangent at B relative to

the tangent at A is
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0, =4 [930(. 375) + 42, 870 (—22—0—5-)]= 0.000163 radians (5. 80)

where E equals 29.1 x 106 psi. This corresponds to an additional

deflection of

(L- %) 0, = 0.004 inch (5. 81)

which compared to the previously calculated deflection of about
1. 000 inch is less than 1/2%.

Therefore, the assumptions made for this theoretical analysis
appear to be justified because of the relatively small errors intro-
duced when the weight of the structure is not neglected. The virgin
force-deflection curve of column SI is plotted in figure 5.16 both
Witrh and without considering the effect of strain hardening by using
equations 5. 25, 5. 33, 5.38 to 5. 41, 5.58, 5.13 and 5.14. The values
obtained for a sample calculation are included here for illustration
while the actual numerical calculations were made with the Burroughs
220 Datatron digital computer.

The constants required for column SI calculations are

W = 4038 pounds I, = 0.0463 inch*
L = 24.16 inches I, = 1530 inch?
,21 = 4, 25 inches EIl =1, 3057 x 106 lbs—inchz
£, = 1.83 inches EI, = 44.37 x10% Ibs-inch? (5. 82)
e, = 000142 o, = 40,000 psi
M . = 7450 inch-lbs. O _ =0.00570 1/inch
el el

By letting the point to be calculated be associated with €/ €., 7 13

with strain hardening



-170-

M, = 1.505 M _, z_, = 0.197

6, = 0.0006407 (5. 38) Y, = 0.003345 (5. 39)
0, = 0.04791 (5. 40) Y, = 0.13660 (5. 41)
X = 1. 0266 (5. 33) Pt = 3538 (5. 58)

Using equation 5. 60 to calculate the column stiffness, equation
5. 32 gives the theoretical free vibration natural frequencies listed

in Table IV-1.

3. Theoretical Hysteresis Relationship

It will be shown here that the theoretical cyclic hysteresis
curves based on column moments can be described by a function
equal to two times the virgin force-deflection function with only a
shift of the origin and possible change in sign. It is assumed that
when the direction of the loading increment is changed, the original
stress-strain relationship is valid. This assumption is illustrated
in figure 5.15 where the stress énd strain conditions at the final
virgin curve point are given in figure 5.15(a). If in addition to the
conditions given in figure 5.15(a) a new moment M, in the opposite
direction is applied, figure 5. 15(b), then the resulting stress and
strain condition is given in figure 5.15(c). From this it can be seen
that the stresses and strains are directly additive algebraically.

Since the stress associated with M, is to be added algebraically to

2
the stress associated with Mmax’ it can be seen from figure 5.15

that the M, stress limit has to be twice the yield stress in order to

produce a resulting reversed limit stress equal to the yield stress.
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(a) END OF VIRGIN

CURVE Mmox , xmox

(b) ADDITIONAL
MOMENT APPLIED

{c) NEW CONDITION
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The limit of the cyclic hysteresis curve is associated with _Mmax

or in other words, M, = -Z2M . This condition can only be
. 2 . max

achieved when € = € hax €, =" € . This means that the elastic

ax max

portions of the structure at M__ continue to be elastic throughout
the entire cycle. Selecting the new moment and deflecfion origin at

M X with axes M, and X

s , the problem reduces to the
max max 2 2

determination of X,.
Since the elastic portions of X, are equal to M, /M times
2 2" "max
the corresponding elastic value of Xmax’ only the nonlinear portions

of the deflection have to be considered in detail. . From figure 5. 15(a)

2
€ct

€Il.’Ilc’:l.X

M ERV 1-_1_'('

(5. 83)

max 2 el 3

As was mentioned above, the new stress limit for yielding is 2 Oéﬂ
and similarly the new strain is 2 €.y when considering MZ. There-

fore, ) >

o ' 4
M, =3M ,I1-3

6e.(Z
-é_—; ) {5. 84)

or in general Mz(z) = M2 (£ St z/£1+£2) for the column and

€ - 2 (5. 85)

With equations 5.10 and the second terms of equations 5. 36 and 5. 37,

there results
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£

1
29, (for M (z))=f 0 2 dz (5. 86)
1 2 ef 1
) M {4z
Mg, V1745
and
6o
ZYl(for M, () =f o, 2zdz (5. 87)
€ M, (£ 4z \'
Zet 3.2 2 —3—-—)
M, (4L,

which can be compared with the second terms of equations 5. 40 and

5.41. If M, = ZMmax is substituted into equations 5. 86 and 5. 87 and

2

into the elastic terms, then it is found that

X. =2X ' (5. 88)

2 max
Thus, it has been shown that the hysteresis curve is just twice as
large as the virgin curve based oﬁ column moments.

Since equation 5. 58 contaiﬁs the term X which is not independent
of the selected origin, the above discussion is not valid for the force-
deflection curves. However, the correction associated with the
Weight term is easily determined and has been made for all plotted
theoretical force-deflection éurves.

In addition to the theoretical virgin force-deflection curve and
a section of the hysteresis curve, figure 5.16 also includes the
- experimental virgin curve for column SI taken from figure 4. 28.
Strain hardening theoretical data were used. However, it should be
mentioned again that at this deflection no visible differ ences between

the theoretical force-deflection curves with and without strain
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hardening occurred. The theoretical and experimental curves have
the same general appearance but the theoretical curve overestimates
the horizonfal force.

Assuming the above column properties are equally valid for
column set SIII, the theoretical force-deflection hysteresis curves
were calculated for the maximum deflections of 0. 420, 0. 635 and
0. 810 inch with the effective weight of the structure for these
calculations taken as 4731 pounds. These curves are plotted in
figure 5.17 together with the results of the dynamic tests A3.57,

A3. 63 and A3. 64. The areas of the theoretical curves are given in
Table IV-4 with the areas of the static and dynamic experimental
curves. Figures 4.49, 4.50 and 4. 51 can be used in conjunction with
figure 5.17 to compare other experimental static or dynamic curves
with the theoretical curves.

The two major discrepancies in the theoretical force-deflection
relationship are the overes:tirnation of the force required for a specific
deflection and the corresponding errors in the theoretical area of the
hysteresis curve. The reasons for these deficiencies will be ex-

plored in Part B of this chapter.

(28)

4. Theoretical Dynamic Response According to Jennings

4a. Introduction. The analysis of the theoretical dynamic

response of a yielding structure must be based upon a specification
of the force-deflection relations for an arbitrary sequence of imposed

deflections. A general formula is presented for virgin force-
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deflection (skeleton) curves of the softening type which are symmetric
about the origin, and which can be considered linear for small de-
flections. The skeleton curves of the general force deflection

relationship presented here are described by the equation

r
— =-P—+a-P—) (5. 89)
Py Py

y

where x is the displacement of the structure, x_is a characteristic
displacement, p is the restoring force, Py is a characteristic force,
eais a positive constant, and r is a positive odd integer greater than
one. If only real numbers are considered, there is always a one-to-
one correspondence between force and displacement in equation 5. 89.

Some of the curves described by equation 5. 89 are shown in
figure 5.18; in view of the symmetry about the origin only the positive
portions of the curves are given. From the figure and from equation
5. 89 it is seen that a wide range of softening systems can be
represented by this relationship. In particular, a linear character-
istic is described by a=0 and an elastic-plastic characteristic is
approached as r tends to co. Examination of equation 5. 89 shows that
this tendency to an elastic-plastic characteristic for large r occurs
for all values of a greater than zero.

To find the values of r and athat give the best fit between
- equation 5. 89 and experimental data, a logarithmic plot may be made
of the departure from linearity of the deflection versus the applied
force. From equation 5. 89 it is seen that the logarithm of the

depar'ture from linearity is loga+ r 1og(p/py)- Thus, cand r are



-178-

e
pY
r a
fegead S -
2 y y y 05
.10
.15
.20
.25
b= -
I r=7
: QC varying .
]
: | ] ] X
o} 1 2 3 4 Xy
p L
- 3
y o Lr
. S + (I
X P, P,
2 y y y 5
7
9
I
1) 00
: r  varying
! C=.i0
I
! 1 ! L X
0 | 2 3 ¢ Yy

FIG. 5.18 EXAMPLES OF SKELETON CURVES DESCRIBED
BY EQUATION 5. 89

JENNINGS



~179-

the interccpt and the slope of the straight line which fits best the
data of this logafithmic plot.

The hysteretic behavior of the structure with a skeleton curve
given by equation 5. 89 is described by

r

(5.90)

2x_ 2p ZpY

X-X, P-P. P-P.:
i i, a( i 1)
Yy b

where the point (Xi/xy’ pi/py) is the most recent point at which the
direction of the loading has been reversed. Applying this equation

to a hysteresis loop describing cyclic loading between (Xo/xy’ po/py)

and (—xo/xy, -po/py) gives for the ascending branch of the loop

r
x+x0 _ p-l-pO

+ a
Z 2
XV P

ptp
0) (5.91)

Zp

y y

where, in the region where equation 5. 91 applies, x+ Xo and p + p

are never negative. The descending branch of the hysteresis loop is

given by
Ir
X=X P-P P-p )
(o) O (o]
= — + a (5.92)
2x 2 2
y Py Py

and in the region of application x-x_ and P-P are never positive.

o
The general hysteresis loop described by equations 5. 91 and 5. 92

and the skeleton curve of equation 5. 89 are shown in figure 5.19.

4b. Amplitude of Steady-State Response. When steady-state

response is achieved, the energy dissipated per cycle must equal the

amount of energy input per cycle and it follows that(zs)
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r+1
4a z-l -]?—9-
X, _ r+1 ]_oy (5. 9%
X F )
y mgsin gbl T{?‘)
y

By use of equation 5. 89 this result can be expressed in terms of the

restoring force amplitude:

r
4q X1 39_
r+l | p
° = ’ 5.94
P, WENEE (5.94)
Y wq sin 4)1 Ha|—
L Py

where Fo is the sinusoidal force amplitude, q is the ratio of the first
coefficient of the Fourier series expansion of the displacement to X
and ¢1 is the phase angle in the Fourier series associated with the
preceding coefficient.

Equation 5. 94 relates the force level of the excitation to.the
amplitude of steady state vibrations of the structure. If the phase
angle between the excitation and the response could be determined,
this equation would define response curves for the family of nonlinear

structures.

4c. Equations of the Response Curves. The equation of

motion of the general structure in response to sinusoidal excitation is

mx + p(x) = Focos wt (5.95)

Introducing the following dimensionless parameters:
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2 1S

.
n X m
Yy
n= @ w (5. 96)

where W is the natural frequency of small vibrations. Then the

equation for the response curve is found to be(zg)
2 1
w : Fo Xy : 2
—] =C{x ) £ — ——) -S™(x ) (5.97)
w, o Py X o

The response curves can be constructed from equation 5.97 as shown
in figure 5. 20 where it is seen that C(Xo) describes the resonant
frequency as a function of amplitude. This is equal to C(A) of
equation 4. 10.

It follows that
S(Xo)
tang = — (5.98)
Clx,)-m .
The maximum amplitude of the response curves given by equation
5.97 occurs when the radical is zero; at this point ')7a = C(Xo). It

can be shown that S(xo) is negative so it follows that resonance

occurs when
tan ¢ = -oo0, ¢ =-nw/2 (5. 99)

From equation 5. 97 and figure 5. 20, it is seen that the maximum

amplitude is determined from

Fo *o 2 -
o) o(22) s¥xy) (5.100)
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Since
w. 2 ZX T X
C(x ) = (——ﬁ =7 f __P__(__Q_ cos O) cos 0 40
o w,, LEN ) x
0 y Y
and {5.101)
2x T X
S(X)=~—i IB— ('—9 cos 9) sin 0 do
o ™ P x
°c 5y y
there results
/
8 -'?iy- Z po Pv N XO - 1 dY
Clx ) =—|3 ) f (ytay )L;{-— - (y+dy )] (5.102)
o' 9 v
and r+l
-4a r-1 E.C_’
m  r+l p_y
S(xo) = > (5.103)
=
>
Yy

The integral for C(xo) was evaluated on the digital computer for
r=23,5179 and 11 and for e = 0.05, 0.10, 0.15, 0. 20 and 0. 25 by
Jennings. Figure 5. 2l gives an example of the frequency response

curves obtained.

4d. Equivalent Viscous Damping. An equivalent viscous

damping coefficient for the general structure can be found by making
an energy balance. For a linear, viscously damped structure at

resonance under sinusoidal excitation the energy dissipated per cycle

is obtained as

‘ X
= 4n1 (X._) (5.104)
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where n is the fraction of critical damping. If the energy dissipated
by a linear structure, as given by this equation, is equated to that of
the general structure, an equivalent viscous damping coefficient can

be determined with the help of equation 5. 89:

r-1
2z r-11%
™ r+ll\p
n_ = Yz (5. 105)
€q r-1
P
1+a]-;-)—9)
v

where neq is the fraction of critical damping of the linear structure
which at resonance will dissipate the same energy as a function of
amplitude as the general structure. At resonance of the nonlinear
structure, ( wp/ wn)2 = C(xo) as given by equation 5.101, The
foregoing analysis is substantially that developed by Jennings, and
its suitability for estimating the dynamic characteristics of a

structure from static test data will now be examined.

4e. Evaluation of the constants. The theory developed above

requires the evaluation of the four constants x , p_, eand r. Once
the values of XY and py are obtained the method of making a 1og.ar—
ithmic plot of the departure from linearity of the deflection versus
the applied force may be used. The only condition on the constants
x, and pY is that pY/XY = K, a constant equal to the initial stiffness of
the structure. The absolute values of p‘y and Xy_ are not restricted.
Since XV and p_y were introduced into the theoretical analysis only as
a mathematical convenience and do not necessarily have physical

significance in the general case, the resulting formulae of interest
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here will he reformulated.

The data from the static hysteresis loop of test A3. 22 has been
used as an example of the type of results obtained by using arbitrarily
selected Xy and py values. The values of X and P for test A3. 22 are
listed in Table V-1. By selecting the initial values of XY: Xe.@ =0. 259
inch and pY: peﬂz 870 pounds, the curve (a) in figures 5. 22 and 5. 23

was obtained. The resulting constants are

a=0.20
. = 3 (5.106)
TABLE V-1 The equivalent fraction of critical
Test A3, 22 damping shown by curve (a) of

Reduced Hysteretic Data figure 5. 24 results from substituting

X, P.

L . equation 5. 106 into equation 5.105.

0 0
0. 0375 125 Similarly, using x_ = 0.194 inch and
0. 0578 190. 5 4
0. 0680 225 p.. = 652 pounds, curve (b) of
0. 0795 258. 5 y
0.0928 301. 5 figures 5. 22, 5. 23 and 5. 24 results
0. 1075 346. 5
0. 1180 380 with
0. 1358 429 a= 0.12
0. 1490 466 r=3 (5.107)
0.1618 504
0. 1770 546. 5 The ratio of p_ to x_ is the same
0. 1850 568. 5 LA
0. 2028 615, 5 constant for both curves (a) and (b)
0. 2215 663
0. 2302 687. 5 and is equal to the initial stiffness of
0.2438 719
0. 2535 748 the structure. Although the choice
0. 2600 761

of Py and xy did not significantly
affect the theoretical force-deflection curve, figure 5.23, it did give

substantially different values of the predicted equivalent viscous
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damping, figure 5.24. Comparison of the theoretical force-
deflection curves to the experimental data, figure 5. 23, did not
permit selecting curve (a) or curve (b) as being the most appropriate
approximation. Therefore, the ambiguity of selecting pY and xy
musf be eliminated before using this theory.

A reformulation of the equations of interest will now be made
to eliminate the necessity of selecting Xy and py. Equation 5. 89 when

multiplied by Xy_ becomes

X X a
x=|2|P+ .Vr P’ (5.108)
y Py
By letting
X
d= Y
Py
and
X «a R
e = ‘fr (5.109)
Py
equation 5.108 becomes
x = dP + eP” (5. 110)

Now three constants d, e and r must be determined. As before, d
is just the reciprocal of the initial stiffness of the skeleton curve.
The best method for determining e and r would be to make a
least squares fit of the data, but this is impractical for the poly-
nomial as given in equation 5. 110. Since the values of r are limited
to odd integers by the theory outlined above and since the value of r
is not sensitive to Xy and py, as can be seen from figure 5. 22, the

value of r can be determined by the method used in figure 5.22.
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Using the determined values of d and r, the least squares method will
evaluate the remaining constant e.

The least squares formulation will now be made. Since xis a
given function of P, equation 5.110, the differences between the
theo'retical curve and data will be made in terms of the deflections.
Letting %, and Pi be the corresponding ith data terms, the general

least squares expression is
5 2
= Z(X(Pi, e)—xi) - 0 (5. 111)
i
With the use of equation 5. 110, equation 5. 11l reduces to
Z(dP. + eP.r-x.)P.r =0 (5. 112)
i i Ti)i

i

or Ir
L (x;-dP Py
1

i 2
e

e

Therefore, given d and r, the value of e can be determined from

equation 5. 112 for any set of data x; and P.. This calculation has

been programmed for the Burroughs 220 Datatron digital compﬁter.
Applying the constants defined in equations 5.109 and 5. 110 to

equation 5. 94, the steady-state excitation force becomes

4 r-1 r+1 4 r-1
_ r+l Py _ r+l 1-d Po
= : e = : p {1-d-2 (5. 113)
o mqsin ¢, X Tq snl?ﬁl o X

At resonance ¢1 is assumed to equal w/2 and q &= 1. The equivalent

fraction of critical damping near resonance, equation 5.105 becomes
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T d = (l—d X_") (5. 114)

Comparing equations 5. 113 and 5. 114 near resonance shows that

2x
F =—=2n (5. 115)

o d Teq
is valid.

The resonant excitation frequency as defined by C(xo), see
figure 5. 20 and equation 5.102, cannot be expressed in the terms of
equation 5.110. Therefore, equation 5. 109 will be used to determine
afor an appropriate choice> of Xy or py with the established.constants
d, e, and r. With this ¢ and r, the theoretical values of C(Xo) may be
interpolated from the numerical values determined by Jennings. (42)

Sensitivity of C(xo) with variation of the selected x_y or py was found

to be negligible for reasonable values of XY or py.

4f, Comparing the predicted and the experimental response.

Three alternate static structural responses can be used as bases for
determining an approximate polynomial force-deflection relationship.
These are the experimental static virgin force-deflection curve, the
experimental static hysteretic force-deflection curve, and the
theoretically predicted static virgin force-deflection curve. Using the
results developed above, the predicted dynamic response character-
istics, such as, excitation force-resonant amplitude, shift in
resonant frequency with amplitude, fraction of critical viscous
damping as a function of amplitude, and the energy absorption per

cycle as a function of amplitude, will be compared with experimental
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dynamic results.

Since an experimental virgin force-deflection curve for column
LI (N-S) was not obtained, a prediction of its dynamic response will
be made by using two of its static hysteresis curves, A3. 22 and A3. 31.
The polynomial expression of equation 5. 110, determined by the least
squares method outlined above, is plotted with the A3. 31 data used in
figure 5. 25, Using the calculated constants d, e, and r, equations
5.113 and 5. 114 give the predicted force amplitude and fraction of
equivalent viscous damping as functions of the resonant amplitude.
These results are plotted in figures 5. 26 and 5. 27 together with the
experimental dynamic results taken from figures 4. 6, 4.9 and 4. 15.
The excitation frequency at resonance divided by the small, free
vibration natural frequency, is predicted by the square root of C(xo),
figure 5. 20. Using the method outlined above, the preydicted
frequency shift is given in figure 5. 28 together with the experimental
dynamic frequency response peaks of figure 4.9. It can be seen
from figures 5. 25 through 5. 28 that even though the static hysteretic
curve is well matched with the polynomial, the predicted dynamic
response is only a rough approximation of the experimental dynamic
response.

In an attempt to obtain better predicted dynamic response
results for LI (N-S), the theoretical static skeleton curve was used
as an alternate basis for determining the appropriate polynomial.
The polynomial was calculated by the least squares method for

values r = 3,5,7,9 and 11. The data used and the resulting poly-
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nomials for r = 3,7, and 11 are plotted in figure 5. 29. The predicted
and experimental dynamic steady-state force amplitude and resonant

frequency shift, as functions of the deflection amplitude, are given

in figure 5. 30 and 5. 31 respectively. These results will be discussed
after considering other results based on experimental static skeleton
curves.

Test A3. 35 (SI) gave the virgin for ce-deflection curve for the
short columns. For test A3. 35, the logarithmic plot of the departure
from linearity of the deflection versus the applied force is made in
figure 5. 32 for arbitrarily selected values x, = 0. 406 inch and
pY = 2399 pounds. In this case, a large number of selected r values
seem equally appropriate. Therefore, the least squares determination
of e for given r and d values of test A3. 35 was made with r=11,9, 7 and
5. The resulting polynomial force-deflection curves are plotted in
figure 5. 33, together with the test A3. 35 data. Again, the best
theoretical curve to select is not obvious since it will depend upon the
range of deflections of interest, but r=11 has smaller differences
over the entire range than the other r values plotted. From figure
5. 33 it would be expected thc;tt larger r values would produce a better
fit to the virgin static curve. The predicted sinusocidal force ampli-
tude, as a function of the resonant amplitude, is plotted in figure 5. 34
together with the experimental results from figure 4.10. It can be
seen that r=7 predicts the resonant response amplitude better than
the other two values for deflection, up to 0. 6 inches. At the largest

experimental deflection point, the r=1l curve underestimates the
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actual deflection by 20 per cent. The predicted shift in the excitation
frequency at resonance, together with the experimental frequency
response peaks from figure 4. 10, are given in figure 5. 35. Again,

r=7 seems to be the most appropriate, although, any r value seems

to give a reasonable prediction of the shift. The predicted fraction of
critical damping, together with the experimental results of figure 4. 16,
are given in figure 5. 36. The energy dissipated per cycle, i.e.,the
area of the hysteresis loop, is included as an additional method of
comparing the experimental and predicted results, figure 5. 37.

The predicted dynamic response based on a polynomial approxi-
mation of the experimental virgin force-deflection curve, will be
discussed first. The shift of resonant frequency with increasing
amplitude can be predicted with acceptable accuracy without having
the polynomial match the experimental curve exactly. The resonant
deflection, as a function of the selected force, can be predicted
within approximately 20 % with the experimental deflection exceeding
the predicted. This accuracy is not too bad when it is remembered
that the resonant deflection deéreases with additional testing. Figure
4. 4 illustrates a case where the resonant deflection has been de-
creased by about 20% due to the experimentation occurring between
the two plotted results.

The attempts at predicting dynamic response, based on an
experimental static hysteresis loop and a theoretical static skeleton
curve were disappointing. It should be noted that the resonant

deflection for a given force based on the static hysteresis loops, are
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accurate within 5% near the same deflection amplitude as the loop,
i.e., A3.3l about 0. 40 inches and A3. 22 about 0. 26 inches. However,
this accuracy does not extend to the prediction of the shift in frequency
at resonance.

| The problem of predicting dynamic response will be considered

again, near the end of this chapter, utilizing the following discussion.

B. Interpretation of Test Results

1. Static Skeleton

The disagree?nent between the theoretical virgin force-deflection
relationship determined from tensile test data and the virgin force-
deflection test curve could be anticipated from previous tests in the
yielding range of mild steel. The two outstanding characteristic
differences are first, that the actual test yield point occurs before
the theoretical yield point and second, that the maximum theoretical
yield load is not achieved for the actual test. Both of these character-
istics arbe commonly known and expected.

The first characteristic has been explained and documented by

(43)

Yang, et al. for the case of WF continuous beams. The reason
for early yielding in the test results lies in the initial residual
stresses in the beam after being hot rolled and cooled to air tempera-
ture. If the beam is annealed befor e testing, the test results lie
much closer to the theoretically determined values. This substan-

tiates that the residual stresses initiate yielding before the

theoretical, initial zero stress, yielding begins. The normal stress
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on the section caused by the weight of the structure also contributes
to this effect. However, these stresses will cause only a minimal
decrease in the full plastic moment; usually less than a one percent
decrease.

The reason that the static experimental moment at yielding does
not reach the theoretical full plastic moment for mild steel is that the
tensile test determination of the yield stress was made at a specific
strain rate of loading; whereas, the static skeleton curve data was
taken at effectively zero strain rate. The increase in strain rate
has the effect of raising the yielding stress. Extrapolation of the

(44)

results presented by Parkes to the strain rate used in the tension
tests reported in Appendix II, about 1. 5 x 10_5 per second, determines
that the full plastic moment based on the tension test should be about
1. 05 times the static full plastic moment. This is approximately

the difference shown in figure 5.16. Additional evidence of the

theoretical overestimation of the yield load can be found in the

ale

literature.  The expected fluctuation of the load during this yielding
process is shown for the tensile tests in figure AZ. 2 and for the virgin

force-deflection curve in figure 4. 28.

2. Static Hysteresis

If the experimental skeleton curve is used to predict the
hysteresis portion of the force-deflection relationship by doubling

the ordinates, it will be found that the test data give smaller resulting

* 1. (43)

For example: Yang, et a
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forces for equal deflections. This phenomena has been noted in the

(45)

literature. The magnitude of the difference between the anticipated
hysteretic force-deflection curve and the experimental data could
dépend upon the material, temperature, load rate, and other factors
whic>h prohibit its prediction. Currently there is not a commonly
accepted explanation of the effect. (46) For this reason, any

properties of the hysteresis loop based upon the virgin force-deflection

curve must be used with caution.

3. Strain Ageing and Deterioration

If a metal is loaded beyond its yield point with a limited amount
of plastic deformation occurring before the load is removed, then
when the metal is reloaded after a time of no load, the metal will
exhibit a higher yield point than before. This is called strain ageing.
Examples of this can be seen in figure 4. 28 where the material of
test A3. 37 exhibits an initial yield stress higher than the yield stress
at the end of test A3. 35 and similarly with test A3. 38 initial yield
exceeding the yield stress of test A3.37.

Material deterioration was observed from the earliest small
vibration tests, figures 4. 2 and 4.3, to the much larger deterioration
occurring during the dynamic test A3. 57 as illustrated by the static
tests A3.56 and A3. 58 given in figure 4. 49.

The intermittent testing as carried out here has had the effect
of alternatively causing structural deterioration and strain ageing.
The effect of intermittent testing upon fatigue life or low endurance

life of the material is not known. However, a more rapid
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deterioration occurs after large strain ageing strength increases.
This is indicated by comparing the rate of deterioration during the
first static test cycles at £ 0. 80" inch deflection relative to the
strain ageing preceding these tests, see tests A3.66 and A3.68 in
figurés 4.34 and 4. 37. The initial static test at this deflection
range, A3.60, exhibits a much slower rate of deterioration, figure
4.33. This seems to indicate that the number of cycles required to
reach a previous level of deterioration after strain ageing is sub-
stantially smaller than the original number of cycles required to
reach this level.

Fatigue Life. It would be of great value to be able to predict

when failure would occur in a real structure. Since much work has
been done in the area of fatigue life and cumulative fatigue damage,
an attempt will be made to compare the life of the experimental
specimens to the expected life as predicted by fatigue theory.

Since the sections are stressed‘primarily in bending, a fatigue
S-N curve will be established for the material described in Appendix
II. It should be noted here that all the columns except LI were made
of this material. However, the material of LI is not eﬁpected to be
substantially different because of the sim:ilarity of the hardness test
results. The procedure used to establish this theoretical S-N curve
is that as described in reference (47). According to this procedure,
the upper stress limit at 1()3 cycles should be 0. 9 times the ultimate
stress, and in this case it is about 57, 000 psi. The lower limit,

which is the endurance limit, at 106 cycles can be estimated from
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figure 11-12 on page 110 of reference (47) knowing that the test section
is hot rolled and has a BHN of 134. Applying the size correction
factor of 0.95 to the previoﬁsly obtained endurance limit, the
endurance stress for the experimental section is about 21, 000 psi.
The S—N curve is assumed linear between these two limits when
plotted on logarithmic paper and is horizontal at 21, 000 psi for all
cycles greater thén 106.

The number of cycles at each deflection was not recorded and
can only be estimated by assuming that a certain number of cycles
were required to obtain the experimental data. A lower time limit
required to obtain each data point would be about 1/2 minute, since
this is about the length of time required to obtain a steady-state
motion assuming 1% of critical damping. Also, the data would be
taken as rapidly as possible after the steady-state condition had been
reached. Since the force generators require a finite time to reach a
new forcing frequency, an estimate of the maximum average time per
data point would be about 2 minutes. For the long columns tested in
the north-south direction, the number of cycles per data point is
- about 200 cycles for an averége time of four thirds minutes. For the
short columns tested, 240 cycles per data point results for an average
time of four thirds minutes.

The data taken is divided into six strain ranges which can be
identified as: the strain associated with the endurance limit of
21, 000 psi is 0. 00073, the initial yield strain associated with the

yield stress of 40, 000 psi is 0. 0014, and the strain which initiated
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strain hardening is 0. 014. Table V-2 gives the number of data points
and the estimated number of cycles in each strain range and the total
Figure 5. 11 with strain hardening is used to translate deflection to
strain for this determination. The mean maximum stress in the
strﬁin range 0. 00073 to 0. 0010 is 24,000 psi and in the strain range
0. 0010 to 0. 0014 is 34,000 psi. For strains between 0. 0014 and

0. 0140, the maximum stress is 40, 000 psi. The mean maximum
stress for strains above 0. 0140 is 50, 000 psi.

(48)

One cumulative fatigue damage theory states that the sum
of the number of cycles at each stress level divided by the number of
cycles allowed at that stress level should be equal to one for failure.

In mathematical notation

n o _
Z_N_ -1 (5. 116)

where n is the actual number of cycles at a given stress level and N
is the predicted number of cycles required for failure at that stress
level. The values of N as obtained by using the mean maximum
stresses previously noted and the numerical values of equation 5. 116
are also included in Table V-2. As can be seen from Table V-2,

the Z n/N results for the short columns arc rcasonable and the
differences may be partially explained by the variance of the actual
number of cycles to the assumed average per data point. The effect
of strain ageing on fatigue life may be a possible explanation for the
larger difference of the LI column result. It should be noted that the

intermittent dynamic experiments were performed over 110, 8, and
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16 day intervals for the LI, SI, and SII columns respectively.

4. Strain Rates for Static-Dynamic Comparisons.

Numerous investigators have considered the problem of
determining the material properties of tensile loading at various
rates and temperatures. In general, most investigators have de-
termined that at room temperature for mild steel, the yield stress

(49) Wood and Clark(5®

increases with increasing loading rates.
have determined that the delay time between the initiation of plastic
deformation and the application of stress decreases with increasing
stresses in an exponential manner. The lower limit for this approach
appears to be the upper yield stress determined in static tensile tests.

(51)

Nadai and Manjoine have found for a low-carbon steel at room

temperatur e that the ultimate tensile stress remains practically
constant over a range of change of strain rate from 10_5 to 10-1 sec‘l.
An increase in the yield point of the material will have the
effect of increasing the restoring force component of the force-
deflection curves for the same deflections. A strain rate increase in
yield stress does occur in these tests as can be seen in figure 4. 50
where the structure has reached a relatively stable deteriorated
position, static tests A3. 60 and 3. 66, and the dynamic test A3. 63
results in a larger restoring force for approximately the same
maximum deflections. A less positive demonstration of the strain

rate increase in the yield stress caused by the dynamic tests can be

seen in figures 4. 49 and 4. 51. In these cases the structure has not
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reached a stable deterioration position relative to the test deflections
used. However, the dynamic test results do indicate an increase in the
restoring force above the expected static test result corresponding to
the same testing history.

Table IV-4 shows that a decrease in the area of the hysteresis
loop accompanies the increase in restoring force level caused by the
increase in strain rate for these cases. Again, this is much more
obvious in the case of results plotted in figure 4. 50 than in the other
two cases. Table IV-4 also shows that the area of the hysteresis loop
increases with deterioration.

Since the published strain rate results have dealt primarily with
tension and with a few compression tests, the application of the strain
rates for predicting increases in yield stress in bending cannot be
made accurately. By using the dynamic test frequencies and deflection
points as plotted in figures 4. 42 to 4. 46 and the maximum strdin-
deflection relationship given in figure 5.1, an estimate of the maximum

strain rates for the various tests could be made.

5. Dynamic Theoretical Prediction

It was noted previously that the experimental static skeleton
curve could be used to predict dynamic response within a reasonable
degree of accuracy. Figures 5..34, 5. 36 and 5. 37 indicate that
appropriate values of r to use for dynamic prediction, are r=5 and 7.
However, it was noted from figure 5. 33 that the higher r values, i.e.,

r=11, 13, etc., would give a better polynomial approximation to the
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experimental static skeleton data. A reasonable explanation of this
characteristic lies basically in two different phenomena. First, the
hysteresis effect tends to eliminate the prominent yield point and
produces a smoother force-deflection curve in the lower yield
deflection range. Second, the strain rate effect tends to increase the
restoring force above the static restoring force for equal deflections
and is more pronounced in the larger yield deflection range. Thus,
considering figure 5. 33, the cyclic dynamic force-deflection relation-
ship can be expected to be more closely approximated by r=5 or 7,
than by r=11 or 13.

In order to predict the dynamic response of a full scale
structure, the recommended approach would be as follows. If the
static virgin for ce-deflection curve for the structure was given, the
problem would be to determine the magnitudes of the hysteresis effect
and of the strain rate effect required to adjust r. Hopefully these
effects could be determined from appropriate material specimens
from the full scale structure. Then, using the adjusted r value, the
dynamic response could be predicted as above.

This analysis does not take into consideration the structural
deterioration. The rcason for this is based primarily on comparing
the dynamic peak response results, figures 4. 49, 4. 50 and 4. 51, with
the initial virgin force-deflection curve of figure 4. 28.

In order to use a theoretical static skeleton curve to predict
dynamic response, the theoretical analysis would have to be refined

to account for its differences with the experimental skeleton curve.
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Once this is accomplished, the procedure outlined above for using
the experimental skeleton curve may be utilized with the adjusted

theoretical curve.
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VI. CONCLUSIONS

The following conclusions were reached on the basis of the
experimental dynai*nic and static results of this investigation and by
utilizing existing theoretical analyses.

1. It was shown in the comparisons of figllz.r es 4.49, 4.50, and
4. 51 that the differences between the dynamic and static hysteretic
force-deflection curves were, in general, smaller than changes in the
static curves caused by deterioration of the material. The major
difference between static and dynamic hysteresis results occurred
when the response amplitude was close to the initial yield deflection
amplitude. This occurred after the material had reached a relatively
stable force-deflection cyclic condition. For the frequencies, about
3 cps, and deflections, up to 2 times the initial yield deflection, of
the experimental results presented here, the dynamic hysteresis
curves may be assumed to be the same as the static hysteresis curves
for most purposes.

2. The softening spring type of nonlinearity and ultraharmonic
response associated with a nonlinear system occurred in the dynamic
‘response of the yielding structure. Since the basic shape of the
experimental and predicted frequency response curves were similar,
only two fundamental characteristics of these curves were compared.
The dynamic resonant response amplitude and the shift in resonant
frequency with amplitude were compared with analytically predicted

results based on a polynomial, equation 5. 110, approximation of the
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experimental static virgin for ce-deflection curve. The predicted
resonant frequency matched the experimental resonant frequency with
sufficient accuracy, + 2-1/2%, for all the polynomial approximations
tried. The resonant deflection amplitude for a given sinusoidal force
Wasvnot predicted as accurately. The best polynomial-skeleton curve
approximation, r=1l, produced the worst estimate of the resonant
amplitude for large yielding. For this case at the largest experimental
deflection, the predicted deflection was about 20% too small. Lower
power polynomials produced a less satisfactory static skeleton curve
approximation, but they gave a better estimate of the dynamic
resonant amplitude.

3. The reason that the lower power polynomial-skeleton curve
approximations gave better dynamic results can be explained by the
nature of the hysteresis effect of the material which tends to change
the sharp yield knee of the virgin structure to a much smoother
force-deflection relationship for subsequent cycles.

4. The dynamic response characteristics were also compared
with results predicted on the basis of polynomial approximations to
static hysteresis loops and a theoretical static force-deflection curve.
Both methods were found to give unsatisfactory dynamic predictions.
The hysteresis loop method gave a good force-response amplitude
prediction only at deflections close to the amplitude of the hysteresis
loop. Thus, the force-response amplitude prediction could be made
step wise with a selected series of static hysteresis loops of various

amplitudes.
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5. The energy absorbed per cycle and the equivalent viscous
damping were determined because of their significance in the earth-
quake resistant design of buildings. The maximum fraction of
equivalent viscous damping was found from the dynamic experiments
to be> 0. 089 at a deflection of over 2-1/4 times the initial yield
deflection.

6. The theoretical static force-deflection relationship based on
actual material properties and assumed plane bending predicts larger
forces than obtained in the experimental static force-deflection
relationship. The discrepancy lies in two regions. First, the experi-
mental structur e initiates yielding before the theoretical curve
prediction. The cause for this was determined to be initial residual
stresses in the experimental structure and the neglect of the axial
stresses in the analysis. Second, the theoretical fully plastic moment
was not attained in the experiment. This resulted from the fact that
the theoretical yield stress was determined from tension tests per-
formed at a higher strain rate than existed during the static skeleton
curve experiment.

7. Structural deterioration and recovery caused by testing and
rest periods, respectively, were observed. The deterioration
continued at a decreasing rate until a relatively stable hysteretic
force-deflection relationship was established. (This corresponds to
strain softening in figure 1. 2.) If the recovery time was long enough,
the structure recovered to a strength greater than its initial strength.

However, when resuming the experiments after recovery, the number
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of cycles necessary to return the structure to its stable relationship
was substantially reduced. . The area of the static deflection limited
hysteretic force-deflection curve increased with testing.

8. Up to a 20% decrease in the dynamic resonant response was
caused by the structural deterioration during the experimentation.

9. When the deflection is caused by flexural yielding of a
column, the effect of strain hardening is to distribute the yielding
section to more material. The result in the experiments presented
here was that the desired deflections were obtained with lower
maximum strains than would be predicted by neglecting strain
hardening.

10. Omne means of investigating structural damage is to compare
the existing natural frequencies with the original frequencies and to
determine any change in the position of the center of stiffness of the
structural system. Only small changes in the natural frequency can
be expected but these may indicate significant damage. The change in
position of the center of stiffness will indicate the location of the
damage.

1l1. The determination §f 'd?namic hysteresis force-deflection
curves requires a very close analysis of possible errors in order to
obtain valid results.

12. The work presented here points out the need for more
information in the following areas: (a) Comparison of static and
dynamic hysteresis loops should be extended to additional excitation

frequencies, strain ranges, and materials. (b) A method of selecting
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the most appropriate theoretical force-deflection relationship will
have to be developed before the predicted dynamic results can be
accepted with confidence. (c) The work started here should be
extended to the experimentation of multistory yielding structures.
(d)‘ The effect of intermittent loading on material characteristics

such as the low endurance fatigue life and the ener gy absorption

should be investigated.
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APP’ENDIX I. INSTRUMENTATION AND FORCE
GENERATORS

In réportingvthe results of any experimental study, it is
important to give a detailed description of the experimental subject
and fhe instrumentation used. This is, of course, so that the reader
may be able to judge the accuracy, reliability and applicability of the
results for his purpose based on his own experience. |

Fémiliarity with the experiment and instruments is reqxiired for
the experimenter, but this familiarity also encourages omission of
common details necessary for the reader to receive the proper per-
spective. Since a favorable judgement of the reliability of the results
is necessary for the results to be acceptable, the writer will make a
special effort to give enough information for this judgement to be
made.

A. Instrumentation for Dynamic Experiments

It has been the good fortune of the writer that much effort has
previously been made by the Faculty and students at the California
Institute of Technology to establish a dynamic measurement system
for the dynamic response of full-scale civil engineering structures.
This eliminated the time-consuming task of gathering the needed
equipment together and checking the suitability of the composite
measurement system to the specific measurement problems encoun-
tered. However, in order to meet individual requirements and
desires, the given measurement systems had to be modified and

supplemented.
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1. Accelerometers

Two completely independeht measurement systems were tried
before selecting and adapting the system used for most of the experi-
mental dynamic measurements. The accelerometers used with both
systéms were Statham + 2g accelerometers type A5-2-350, serial
numbers 12133, 12134 and 12122. These accelerometebrs have an
undamped natural frequency of 100 cps with a liquid damping of
0.7+ 0.1 fraction of critical damping and, therefore, are efféctively
linear at least up to 30 cps. The accelerometers were not frequency
calibrated by the writer absolutely, but were cross calibrated in the
frequency range used with a maximum disagreement of about 2 per-
cent at an acceleration of 0.165 gravity. The static + 1g method of
calibration was used before and after each test. At an excitation
frequency of 5 cps, the possible error in the phase of the acceleration
caused by the 0.7 + 0.1 damping range is + 0. 6 degrees. For a

frequency of 2 cps, it is £ 0. 24 degrees.

2. Linear Variable Differential Transformer

The deflection was measﬁred with a Shaevitz LVDT typc
1000-SL which has a range of £ ‘one inch. When a calibration cﬁrve
for this LVDT was made, it was found that the linear range was :i:%
inch and that near the deflection of 0.9 inch there was almost no
increase in output voltage for an increase in deflection. For this
reason and because of the critical need for the exact phase relation-

ship between acceleration and deflection, the LVDT was only used

for small deflections as a check of the acceleration results. The
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accuracy of the deflection was about £ 0. 002 inch in the range of
0. 200 to 0. 300 inch deflections. The acceleration and deflection

results agreed within the stated accuracy.

3. Strain Gages

Two similar strain gates were mounted on opposite sides of
one of the column end sections 1. 88 inches from the column end and
were connected in the adjoining legs of a resistance bridge so that
the sum of the flexural strains would be recorded. Two different
types of post-elastic strain gages were used. The first was a
Baldwin-Lima-Hamilton SR4 Type PA-3 gage with a gage factor of
1. 95 and a resistance of 120 ohms. The second was a minia ture
Micro-Measurements precision strain gage Type EP-03-125CA-120
which had a gage factor of 2. 0l and a resistance of 120 ohms. The
other two legs of the resistance bridge consisted of one 120 ohm
resistor and an84 ohm resistor in series with a variable resistor of
54 ohms maximum resistance. The variable resistor was needed to
balance the bridge because the balance resistor of the Miller carrier-
amplifier did not have a large enough resistance range. The strain
was calibrated by either connecting a known amplifier resistance in
parallel across one leg of the bridge or by externally adding a known

resistance in parallel across one of the strain gage legs.

4. Amplifiers and Recorders

The first system used consisted of two Sanborn dual channel

carrier-amplifier recorders, Model No. 321-406368, for recording
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three accelerations and one strain. The Brush Universal Amplifier,
Model No. RD-5612-11, together with a Brush Pen Motor Recording
Oscillograph, Model No. RD-2321-00, was used for deflection
records, The recading error for the Sanborn and the Brush systems
was i/4 mm. in 20 mm. or 1-1/4 per cent. This system has been used
extensively for the dynamic testing of multistory reinforced concrete
and structural steel buildings with excellent results. One of the major
advantages, in addition to its easy transportability, is that the records
obtained withstand a great deal of rough handling without ahy impair-
ment and also the records can be easily reproduced. Some of the
disadvantages for using this system for these experiments are:

i) three separate paper records were required for one set of data,
thus, requiring an accurate method of establishing an identical time
base for each record; ii) the natural frequency of the amplifier-
recorder was high enough to transmit the noise generated by the chain
driven force generators. This made any low acceleration readings
very hard to use and relatively inaccurate; and the major reason for
not using this system, iii) the time or external event marker uses a
60 cps carrier frequency, which is inadequate when the phase angle
between deflection and force is desired. For example, if the force
generator is operating at 3 cps, the phase could be determined within
‘app'roximately + 18 degrees. Rather than modifying the internal
electrical system of the Sanborn carrier-amplifier recorder, a
different system was tried.

The second system which was used for a majority of the
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experimental work was originally used for testing a reinforced
concrete reservoir intake tower. Because of the low amplifier noise
generation, it was also used with more sensitive accelerometers for
dynamic testing of earth dams. This system consisted of the William
Miller Type C-3 carrier-amplifiers with the Consolidated Electro-
dynamics Recording Oscillograph, Model 5-124. The amplifier
provides a 3000 cps carrier bridge excitation adjustable up to 10 volts.
The accelerometers and LVDT were balanced very easily with this
amplifier, but the resistance balance range was not large enough to
balance the strain gage bridge without adding a variable resistor as one
of the legs of the bridge. Six carrier-amplifiers with one power
supply were in one unit, which was sufficient for this experiment. The
amplifiers were remarkably stable for long periods of time.

The Brush Universal Amplifiers have also been used occasionly
by replacing one or two of the Miller channels with satisfactory
results. The advantage of using a group of amplifiers tied to the same
time base and recording simultaneously on one sheet of paper is
obvious. Also by putting the phase pulse directly into a galvanometer,
a possible phase lag caused By the carrier frequency is eliminated
and the time response of the pulse is dependent only upon the rise
time of the galvanometer and the time of the pulse.

The CEC Recording Oscillograph is a light beam galvanometer
type which records on light sensitive paper. The 7-351 type galvano-
meters, 20 cps natural frequency, were used for most of the data

recording with 7-341 type, 100 cps natural frequency, and 7-315 type,
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150 cps natural frequency, galvanometers used for some data and
the external force pulse.

Phase Shift. The need for an accurate determination of the
phase difference between force and deflection has been noted previous-
ly. .Since the force pulse was recorded instantaneously, the accuracy
of the measured phase difference was dependent upon an accurate
determination of the phase shift of the recorded acceleration. Re-
member that the deflection was obtained by numerical integrdtion of
the acceleration. The time lag (phase shift) between the occurrence
and the recording of a sinusoidal motion is a characteristic of the
recording system and the frequency of the motion. This characteristic
is dependent primarily on the damping and natural frequency of the
instrumentation, see equation 2. 29.

Since the natural frequencies of the instruments are recorded
above, the following discussion will be restricted to a consideration
of the damping. The damping of each amplifier -galvanometer system
was deter mined by measuring the overshoot of a step function
generated by an instantaneous change in a resistance of the bridge.
After the amplifier was balanced with the standard bridge in the
position normally occupied by the transducer, the oscillograph was
started and a series of steps, 8 or more, were recorded.

The equation of the resulting deflection of a viscously damped
single-degree-of-freedom system

m=%+cx+kx=F (Al. 1)

to a constant force F step function is
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where w = N K/m and the fraction of critical damping is

n = C/Cc = ¢/2N Km' . The overshoot ratio is equal to

-nw t -
-e Bl cosN 1—n2 wnt+ 2 sin '\fl—n& wnt ) (Al. 3)

1—n‘Z

divided by one when equation Al. 3 reaches its first positive maximum
value.

The mean damping value and the range of values for the series
of step functions for each amplifier-galvanometer were obtained from
equation Al. 3. The phase shifts for the amplifier-recorder system
used for most of the data reduction is plotted in figure Al.1l. The
experimentally determined damping for this 20 cps system was
0. 705 £ 0.010. The phase shifts of the accelerometers are also
plotted in figure Al.1l. The 100 cps amplifier-recorder system has a
phase shift relation almost identical with the accelerometer. At an
excitation frequency of 3 cps, the phase shift of the 20 cps recorder
and 100 cps accelerometer would total about 15 degrees. Similarly,
for the 100 cps recorder and 100 cps accelerometer, it would total 5
degrees. The maximum error associated with the changes in the
damping factor is less than * 1 degree. The galvanometer output is
linear within one percent for the recording deflection range of + 20

lines from the balanced position.
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The major disadvantage of this system is that the records are
taken on light sensitive paper which requires special handling to
preserve the results while analyzing them. This éroblem is not quite
as serious working indoors under artificial light as it is in sunlight.
The records are also very difficult to reproduce.

Errors. Since the second system was used for recording
almost all the dynamic data, only this system will be considered
further. The maximum reading error of the oscillograph records was
+ 0.1 line in 20 lines or & —;: percent of the reading. For example, a
0.200 g acceleration would have a maximum reading error of £ 0. 001 g.
The concern with the drift of the zero position expressed for the static
mcasuring system was not necessary for the dynamic system unless a
specific base line was desired. Thus, for all dynamic measurements
an arbitrary base line was used.

The static £ 1 g calibration of the accelerometers consisted of
balancing the amplifier with the accelerometer mounted in its record-
ing position and then rotating 90 degrees in the sensitive direction for
al g reading and back 180 degrees for a minus 1 g reading. Since the
amplitudes measured for each 1 g calibration are not exactly equal, the
average of the double amplitude or 2 g reading was used. The acceler-
ometers are mounted in milled rectangular steel blocks to simplify the
calibration process. The reason for the difference in calibration in
the + 1 g and -1 g directions can be accounted for by a slight slope
from the horizontal of the accelerometer in its balanced position of

about _;- degree. Whether this was the slope of the local top flange of
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the rigid floor or an error in placing the accelerometer in its steel
block is not important because it does not affect the resulting
dynamic output of the accelerometer.

The amount of error associated with assuming that the deflection
ampiitude X equals minus one-half of the acceleration double
amplitude divided by the circular frequency w sguared, i.e.,

2%
x = - 2° (Al 4)

has been determined for several of the acceleration records varying
the most from sinusoids by numerical integration of the actual
acceleration with the Burroughs 220 Datatron digital computer. For
dynamic test A3. 64 the deflection calculated from equation Al. 4 was
0. 816 inch and the deflection by double integration of the acceleration
was 0. 810 inch. Similarly for A3. 69 (100 cps), the deflection values
were 0. 791 and 0. 790 inch respectively. The deflection differénces
caused by the approximate calculation, equation Al. 4, will be neglected.
In certain instances the 2g calibration of an accelerometer had
changed during the time requiréd to run the test as much as 0. 4 line
in 40 lines, but the usual change was less than 0. 2 line in 40. The
maximum possible error associated with using the average calibration
value is % % percent. Adding this calibration error to the reading
error gives a maximum error due to these two causes of £ 1 percent.
It is reasonable from this analysis to expect that the accelerations
are valid within + 2 percent for the rmaximum combination of errors.

For example, this would amount to a maximum error of + 0. 004 g for
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an acceleration reading of 0. 200 g.

5., Force Pulse

The force pulse was generated by fixing a small bolt on the top
rim of the upper basket of the force generator and locating an
induction pickup so that the induction pickup and the bolt were together
when the force reached either a maximum or a zero amplitude. The
current induced as the bolt passed the pickup at a constant velocity
was read directly by a galvanometer in the CEC recording oscillo-
graph. The maximum total length of the recorded pulse for the
frequency range used in the tests was about 4 degrees of rotation.

By using the center of the pulse for measurements, the probable

error in the force-phase pulse was = 1 degree. Including possible
reading errors of the location of the acceleration record, the maximum
~error in the measured phase position should be expected to be in the

range of + 3 degrees.

B. Instrumentation for Static Experiments

Static force-deflection curves for the structure were obtained by
measuring the force required to impose a prescribed deflection of the
structure. A frame bolted to the foundation supported a gear system
which drove a threaded rod horizontally. The force gage was
connected between the experimental structure and the threaded rod.
One revolution of the extermnal drive of the gear system corresponded
to 0. 025 inch of horizontal motion of the structure. The advantage of

this system was that very small increments of deflection could be
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imposed on the structure.

The deflections were measured with Starrett® dial indicators
having a maximum travel of one inch and marked subdivisions of
0. 00.1 inch. The dial indicators could have been read within 0.1 of the
smallest subdivisivon, i.e., £ 0.0001 inch, but this accuracy was not
required so the dial indicators were usually read to the nearest
0.001 inch. Two dial indicators were placed symmetrically with
respect to the center line of the structure about mid-height of the
rigid floor. The average deflection was rounded to the nearest
0. 001 inch for plotting. *

For the preliminary static studies in the weak direction (East-
West) of column LI, a low capacity force gage with noticeable non-
linearities (see figure Al 2 for the tension calibration curve) was
used in conne ction with a Baldwin SR4 Dial Indicator. After these
few preliminary curves were obtaincd, a ncw load cell, Allegény
Instrument Company, Model No. 35-133-BCF, Serial No. 27149, with
a 3000 pound tension-compression capacity was obtained for this
work. The maximum combined error of this load cell is 2.1 pounds.
The Brush Universal Amplifier Was originally intended for use with
this load cell, but the D. C. drift could not be eliminated or sufficient-
ly diminished. Therefore, the Miller Type C-3 Amplifier was used
with the Consolidated Electrodynamics, Model No. 5-124, recording

oscillograph with a 7. 351 type galvanometer. A dead load calibration

*In the original loading system a slight eccentricity in the gear system
caused a cork screw type of deflection of the structure. The two de-
flections varied by a maximum of 0. 016 inch when the distance between
the dial indicators was 64. 25 inches, or about 0.00025 radians of
rotation.
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FIG. Al. 2 CALIBRATION OF OLD FORCE GAGE
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of the load cell with the Miller amplifier, channel no. 76, and CEC
recorder was made in approximately 100 pound increments to 488.1
pounds. A full range factory calibration was furnished with the load
cell. The maximum expected error of about + 0. 4 percent is
associated with reading accuracies of the recorder and assumes that
the small amount of drift, which is basically a drift in zero position
with the Miller amplifier, was linear between positions of drift check.
This drift check was obtained simply by turning the amplifier to zero
gain and recording the drifted position of the base line. Although the
amount of the drift (about 1/15 of the unreduced reading per hour) was
small compared with the Brush amplifier, it could correspond to
approximately 15 times the maximum reading error if neglected.

Measurements of the strain at the specific sections noted
previously were taken simultaneously with the load and deflection in
most of the static studies.

Summarizing the possible maximum errors in the static experi-
ments by neglecting any rotation of the rigid floor, they are: + 0. 0005

inch for deflections and £ 1 percent for forces.

C. Possible Errors in Dynamic Hysteresis Loops

Assuming that no errors are accumulated in the integration
procedures, thatthe effective structural weight was 4200 pounds, and
that the accelerometer calibration was about 20 lines per gravity, the
possible range in error in R(x) caused by + 0.1 line reading error of

data taken at a frequency of 3 cps with the same amplifier gain as
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with the calibration can be found from the m X term of R(x) to be

m% =+ -O—"a-é- (4200) = + 21 pounds (Al 5)

In certain cases where the slope of the acceleration record is great,

the error may be twice the amount given in equation Al. 5.

(31)

D. The Force Generators

1. General

The mechanical generator itself consists of a pair of counter-
rotating eccentric counter-balanced baskets located on a common
vertical shaft and driven in opposite directions by a chain drive
system. When the baskets have equally distributed additional weights,
a rectilinear sinusoidally varying horizontal inertia force is generated.
The direction of the sinusoidal force is not limited by the mounting
position of the force generator. The weights for normal full-scale
structural testing have been made of lead, but for the work reborted
here wood, aluminum and steel weights have also been used.

The force amplitude generated is

Inertia force (pounds) = F,= 0.102 wR fz (Al. 6)

where w is the weight added to the baskets in pounds, R is the
distance from the centroid of the weights to the axis of rotation in
inches and f is the excitation frequency in cps. Using only the small

size weight, equation Al. 6 reduces to
F_=B £ (AL 7)

where - '
B =1.02w (Al 8)
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because R = 10 inches. In equation Al. 8 w is the total weight added
to both baskets. The maximum value of FO is 5000 pounds per
generator which is the limit based on the mechanical strength of the
g enerator s.

The chain drive system is driven by a 1-1/2 horsepower D. C.
motor through a timing belt which has a 3:1 speed reduction. The
drive motor and the tachometer assembly can be disconnected from
the generator for easier handling, transportation and installation.

The requirements of the electrical drive-control system are
particularly stringent because of the variable torques imposed on the
system and the necessity of insuring the stability of the whole
vibrating system when operating near the resonance of lightly damped
structures. The ability to hold an accurate speed control at and
near the resonance peak requires that the speed-torque curve of the
drive system be unusually steep with essentially a constant spéed
maintained at relatively large torque variations. The requirements
of speed control also require a speed variation over a relatively
large speed range {up to 10 eps). The 1-1/2 H. P. D. C. motor with a
servo-controlled electronic amplidyne system was used to meet these

requirements.

2. Torque Limitation

The torque limitation of the force generator was observed
while testing columns SII. Since this was the first time that this
opportunity has occurred, an analysis of this limitation is presented.

The shunt wound D. C. motor is rated at 1-1/2 horsepower at
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1750 rpm which corresponds to a rated motor torque of 54 pound-
inches. Since the motor speed is varied by changing the impressed
voltage and the air gap flux is relatively constant, the motor torque
is proportional to the armature current. This means that the motor
drawé enough current to overcome the resisting torques and is
independent of the motor speed. Therefore, with the 3:1 gear
reduction, the rated force generator torque for all test speeds is
162 pound-inches.

The torque requirements due to all factors other than motion of
the for ce generator will be initially disregarded in this discussion
although they are not negligible. The experiment in which a torque
limit was reached is reported in Appendix III as test A3. 46, With
the notation as given in Chapter II and figure Al. 3, the resisting
torque due to a sinusoidal displacement of the force generator

X =X sin( wt- ¢) (Al 9)
is 2. .
Torque = -2m w X sinfwt-¢) R cos wt (Al.10)
where ¢ is the phase lag of the deflection relative to the exciting
force, m is the eccentric mass and R is the radius to the eccentric

mass. The average torque required is
2m
1 2 .
Ave. Torque = 2;_[ -2mw XOR sin( wt-cf;)cos wt dlwt)
0
1

|

2 2 .
- (2m w XOR) —211 311195 (Al. 11)

N

2 .
=meX051n¢
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FIG. Al.3 COUNTER ROTATING ECCENTRIC WEIGHTS
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From test A3. 46, mR = 403.7/g, wzx(): 0.715 g and ¢ = 60 degrees
at 3 cps. Substitution into-equation Al. 1l gives the average torque to
be 250 pound inches.

|  If it is now assumed that the torque requirements for friction
and wind losses increase as the square of the speed to the rated
torque limit at 10 cps with no base motion, then the sum of the actual
torque available from the motor (friction and wind and motion) is 265

pound-inches. This is 164 percent of the rated torque supplied.
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APPENDIX II: MATERIAL PROPERTIES

Intr oduction

In order for the dynamic and static experimental results
reported in this paper to have maximum significance, it is necessary
that the material be identified more specifically than "a mild
structural steel''. The easiest way to establish the material classifi-
cation, without knowledge of its manufacturing history, is to determine
its hardness and mechanical properties by a standard tensile test. A
chemical determination and a metallographic examination are also
included.

Since it is the material of the column end "I sections which is
of interest, the question arises of where the appropriate sample
specimen should be taken. In the dynamic and static experiments
the web of the ""I'* section is in a state of flexure in the flange to flange
direction, thus, the appropriate specimen would seem to be a section
of the web Wi'{;h tensile loads applied at the opposite flanges. The
possibility of taking a longitudinal specimen of the web rather than a
short transverse specimen was considered, but since the cost of the
two types of specimen were the same, the transverse specimen was
selected.

The question of different material properties in different
directions due to rolling effects does not occur in translating these
results for use in the structural analysis because the material
properties being tested are the same as desired for the dynamic and

static tests.
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Material Tested

The short column sets 1, 2 and 3 were made at the same time
with material from two 51 14. 75 beams believed to be of the same
heat. A short section of each beam was taken for testing. Rockwell
Hardﬁess Tests were run on each piece, numbered #1 and # 2,
after one tensile specimen, No. 1, was taken from piece #1 and two
tensile specimens, No. 2 and No. 3, were taken from piece # 2.
Figure A2.1 shows the tensile specimen in relation to the "Im |
section. The material was believed to be a mild structural steel.

The material of column set LI has no direct relation to the
material of the other columns and this material was subjected to only
the Rockwell Hardness Test. This specimen has been designated as

# L.

Rockwell Hardness Test

The standard Rockwell B100 Test with a 1/16 inch diameter ball
was used. The testing machine calibration was checked with a
standard block of 37. 7+ 1. 5 hardness with the B100 test. The value
obtained was 36. 7, which is 'witilin the tolerance, so the hardness test
values were accepted as read.

With the web surfaces prepared only by polishing with a steel
wire brush, the resulting hardness values are given in Table AII-1.
After carefully hand grinding the surface of piece #2, the hardness
values changed to those also given in Table AII-1. Converting the
average value of the Rockwell Hardness Number (RHN) to a correspond-

ing Brinell Hardness Number (BHN) by
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TABLE AII-1

Rockwell Hardness Numbers

Specimen No. of Ave. Value | Mean Range
Readings Value
# 1 Wire Brushed Surface

Side 1 7 74. 9 75 -3, +2
Side 2 8 77. 6 78 -8, +6

# 2
Side 1 9 72. 8 72. 5 -2.5, +4.5
Side 2 4 78. 2 78 -1, +2

# 2 Hand Ground Surface
Side 1 13 75.9 76.0 -1.8, +2.0
Side 2 10 79.0 79.0 -1. 4, + 1. 8

# L
Side 1 10 76. 7 76. 5 -2.2,+2.0
Side 2 10 75.1 75. 2 -1.7,+41. 3
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7300

BHN = T30-(RON) (A2. 1)

which is valid for 40 = RHN = 100. The estimated ultimate tensile
strength in psi is found by
fu = 515(BHN) (AZ. 2)

for BHN = 175, see reference (52). Equation (A2. 2) gives the ultimate

tensile strength to be about 69, 000 psi.

Tensile Tests .

A standard tensile test was performed with a Tinius Olsen
Testing Machine on three specimens as shown infigure A2.1. The
round specimens conform to ASTM (E8-57T) specifications. Two post
yield strain gages applied with Eastman 910 cement on opposite sides
of the specimen were used to determine small strain values and a
dial gage measuring the testing machine head movement was used to
determine the average large strain values. The strain gages were
used for strains up to 0. 012 in/in. The strain was continuously re-
corded with the Sanborn amplifier-recorder system and the load was
read directly from the Olsen Testing machine. At the instant the load
was read, a pulse was recorded on the strain record. The strain rate
of loading was about 1.5 x 10—5 per second.

The results of the three tests are summarized in Table AII-2,
where the yield stress for specimen No. 3 is omitted because the
specimen had an accidental initial loading beyond its yield point. The

residual strain after this accidental load was recorded so that the
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subsequent tensile test could be strain related to the zero strain

condition. Figure AZ.Z2(a) shows the typical stress-small strain

relationship for the tensile specimens and figure AZ2. 2(b) shows the
stress-large strain curves for all three specimens. The similarity
of the stress-strain curves indicates that the results are valid.

TABLE II-2

Tensile Test Results

Specimen Min. Yield Tensile Elongation
Diameter Stress | Stress To
inch psi psi
No. 1 0. 3482 40, 000 63, 500 31
No. 2 0. 348 41,300 63, 600 28
No. 3 0. 3474 -- 60, 600 28
Note: The gage length for elongation was 1. 400 inch.

The average values for use in the structural yielding analysis
will be E = 28.6 x 10° psi, the yield stress equal to 40, 000 psi which
results in a yield strain of 0.00142 inch/inch and the strain which
initiates strain hardening will be taken as 0. 0142 inch/inch. The
average ultimate tensile stress is taken as 63, 400 psi.

The linear yield strain projection is 0. 00138 inch/inch but as
can be seen from figure A2. 2 the actual yield strain is 0. 00146 inch/

inch. Therefore, the above values are averages.

Metallographic and Chemical Analysis

A% x —é— x 5 inch transverse piece of the same "I'" beam section

as was used for tensile specimens No. 2 and No. 3 was sent to an
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independent testing laboratory for a chemical analysis and a metallo-
graphic examination. The section of the web just below the fillet
was marked as the area for examination. The entire report of the

laboratory analysis follows:

""Chemical Determinations

Carbon (C) - = = = = = = = = = - - - - - 0.22%
Manganese (Mn) - - - = = = = - - - - - 0.47%
Silicon (Si) - - - ~ = =~ ~ = = = = = = = - 0.018%
Sulfur (S) - = = = = = = = = = = = = = = - 0.049%
Phosphorus (P)- - - - = = = = - - - - - 0.02%
Copper (Cu) - - - = = = = = = = - - = - 0.30%

Metallographic Examination’

The Microstructure indicated a fine grained
ferrite and pearlite with areas of severe

cold working. The cold working bands appeared
most prominent in the area leading to the flange
as indicated by the curvature of the bands.

Grain Size, ASTM E 112-63 - - - - - - No. 8 _3
Average grain diameter - - - - - - - - 0.834 x 10 inches

Respectfully submitted,
SMITH-EMERY COMPANY"
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APPENDIX IiI: EXPERIMENT AL HISTORY

During this investigation, it was found that the structure was in
a continual process of change. Primarily this consisted of damage
during testing and recovery during periods of rest. Therefore, it is
important to know the past history of the structure for each experi-
ment when attempting to compare or contrast several results. The
static and dynamic studies did not follow a rigidly prescribed-
sequence, but followed a general testing plan which could be modified
at will., For this reason, the history will be described in chronological
order and numbered so that the data presented can be referred directly
to this account.

The experimentation started with long column set 1, LI, and
then went to short column sets 1, 2 and 3, SI, SII, and SIII, respective-
ly. The reference number in the test of this paper shall be indicated,
for example, by A3.10 for item 10 in the following list. The type of
test and the date the test was made plus other pertinent information
will be included. All deflections are given in inches with all initial
free deflections assumed to be zero. Static deflections are assumed
positive in the East and North directions. The force amplitude F | in
pounds equals B fz, where f is the excitation frequency in cps.

The notation used here is: W is the effective weight of the
structure for that test, n is the fraction of critical damping according
to equation 4.13 or 4.14, u is the frequency ratio wp/ w and qS is

the me asured phase lag in degrees.



-258-

Long column set 1, LIL

1.

10.

East-West static test Sept. 4, 1963. Deflections 0 to -0. 228 to

0.228 to -0. 036 with a residual deflection of 0.012; W = 3238;

‘Free vibration test in both directions Sept. 5, 1963. W = 323§;

E-W, n=.00072 at x=0. 029; E-W, n=. 00104 at x=0. 177; N-S,

n=0. 0013 at x=0. 044,

E-W static test Sept. 9, 1963. W= 3238; Deflections 0 to 0. 477

to -0. 483 to 0. 472 to -0. 085 with a residual deflection of 0. 018;

E-W static test Sept. 10, 1963. W=3238; Deflections 0 to -0. 701

to 0. 702 to 0. 061 with a residual deflection of 0. 112;

Free vibration test Sept. 11, 1963. W=3238; E-W, n=0. 0017 at
x=0.126; N-S, n=0.0019 at x=0.027;

Free vibration test Sept. 12, 1963. W=4220; E-W, n=0.0019 at

x=0.131; N-S, n=0. 0013 at x=0. 032;

Free vibration test Sept. 16, 1963. W=4220; N-S, n=0.0013 at

x=0. 034;

E-W static test Sept. 17, 1963. W=4220; Deflections 0 to -0. 799

to 0. 701 to ~0. 790 to -0.172 which is the residual deflection;

Free vibration test Sept. 17, 1963. W=4220; E-W, n=0. 0018 at

x=0.075; N-S, n=0. 0013 at x=0. 029;

E-W static test Sept. 25, 1963. W=4220; Deflections 0 to 0. 856
to -0. 667 to 0. 858 to -0.676 to -0. 038 which is the residual

deflection;



11.

12.

13.

14.

15,

16.

17.

18.

19.
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N-S forced vibration test Sept. 26, 1963. W=4220; B=0; A run
down test with no force other than the slight error in the counter

balance of vibration generator No. 1;

*N-S for ced vibration test Sept. 27, 1963. W=4221; B=1. 39,

Increasing frequency only with a maximum displacement about

0. 234;

N-S forced vibration test Sept. 29, 1963. W=4221; B=1. 38; In-
creasing frequency only and then rerun resonant range with in-

creasing and decreasing frequency; max. x=0.210;

N-S forced vibration test Oct. 1, 1963. W=4223; B=2. 73; In-

creasing and decreasing frequency; max. x=0.224;

N-S forced vibration test Oct. 5, 1963. W=4224; B=4.11; In-

creasing and decreasing frequency; max. x=0.232;

N-S forced vibration test Oct. 11, 1963. W=4225; B=5. 46; In-

creasing and decreasing frequency; max. x=0. 248;

N-S forced vibration test Oct. 17, 1963. W=4225; B=5.46; In-
creasing, decreasing and increasing frequency primarily in the

resonant range; max. x=0, 244;

N-S forced vibration test Oct. 17, 1963. W=4224; B=4.1];
Resonant range, increasing and decreasing frequency; max.

x=0. 217;

N-S forced vibration test Oct. 17, 1963. W=4223; B=2. 73;

Resonant range, increasing frequency only; max. x=0196;
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N-S forced vibration test Oct. 17, 1963. W=4221; B=1. 39;

Resonant range, increasing frequency only; max. x=0. 164;

All following static tests use the Alinco Load Cell and all forced

dynamic tests use the Miller system.

21.

22.

23.

24.

25.

26.

N-S static test Oct. 22, 1963. W=4220; Deflections 0 to 0. 164
to -0. 164 to 0.163 to -0. 196 to 0.196 to -0.196 to 0. 215 to -0. 215

to 0. 091;

N-S static test Oct. 24, 1963. W=4220; Deflections -0. 002 to

0. 240 to -0. 240 to 0. 241 to -0. 261 to 0. 260 to -0. 260 to -0.028;

N-S forced vibration test Nov. 1, 1963. W=4225; B=5. 46; De-
creasing frequency sweep for possible comparison with steady

state tests.

N-S forced vibration test Nov. 2, 1963. W=4225; B=5. 46; Data
taken after exciting the structure at resonance. Increasing freq.

with several checks with decreasing freq. max. x=0. 244;

u=0.956, x=0. 244, qS = 86, n=0. 024;

N-S forced vibration test Nov. 10, 1963. W=4227; B=7.04; In-
creasing and decreasing frequency; max. x=0.253; u=0. 946,

x=0. 252, ¢ = 86, n=0.029;

N-S forced vibration test Dec. 9, 1963. W=4224; B=4.09; Three
hysteresis loop data points were taken before and after exciting
the structure for 10,000 cycles near resonance; the 10, 000 cycles

gave approximately a 3% decrease in the acceleration amplitude.
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28.

29.

30.

31.

32.

33,
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max. x=0.226;

N-S forced vibration test Jan. 6, 1964. W=4225; B=5. 45; De-
crease and increase frequency; u=0. 957, max. x=0.244; x=0. 244,

gb = 88, n=0.024; “’/wp: 1. 008, x=0.242, ¢ =104, n=0.023;

N-S forced vibration test Jan. 6, 1964. W=4229; B=9. 34; In-
crease and decrease freq.; max. x=0. 281, u=0. 939, x=0. 281,

® = 95, n=0.035;

N-S forced vibration test Jan. 7, 1964. W=4232; B=12, 70; After
about 800 cycles at 0. 282 inch, increase and decrease freq. ;

max. x=0.299, u=0.930, x=0. 299, ¢ =100, n=0. 042;

N-S forced vibration test Jan. 8, 1964. W=4238; B=18, 07; After
about 800 cycles at 0. 310 inch, increase and decrease freq. ;
max. x=0.326, inc. u=0.906, x=0.326, ¢ =92, n=0.052; dec.

u=0.908, x=0.319, ¢ =95, n=0.054;

N-S static test Jan. 11, 1964. W=4238; Deflections + 0. 320, +0. 320

+0. 400 before data taken as 0. 002 to -0. 320 to 0. 320 to -0. 400 to

0. 400 to -0. 400 to -0. 084 which is thc residual deflection;

N-S forced vibration test Jan. 13, 1964. W=4250; B=30. 80; After
about 1200 cycles at 0. 357 inch, increase freq. until fatigue
fracture at bottom of the northeast column; max. x=0. 383;

u=0. 874, x=0. 383, c'bz 103, n=0.069;

E-W forced vibration test Jan. 18, 1964. B=l. 39, 5.46, 9. 34,

12.73, 18.07, 36.09, 46.29, 88. 60 and 134.95. Since the
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structure failed during the previous test, this test was used to
check the stability of the vibration generator during large
motions and to note the characteristics of the structure as it

collapsed ; max. x=0. 895;

Short column set 1, SI: The testing direction is East-West unless

otherwise noted.

34. Free vibration test for damping, March 7, 1964. W=4038;

n=0. 0020 at x=0. 049;

35. Static test March 7, 1964. W=4038; Deflections 0 to 0. 343 to
0.007 to 0.997 to 0. 206 with a residual deflection of 0. 355;

gives the skeleton curve;

36. Free vibration test for damping March 7, 1964, W=4038;

n=0. 0016 at x=0.052;

37. Static test March 9, 1964, W=4038; Deflections 0. 355 to -~0. 353

to 0. 498 to -0, 375 to 0. 138 which is the residual deflection;

38. Static test March 10, 1964. W=4038; Deflections 0. 138 to -0. 494

to 0. 084 which is the residual deflection;

39. Forced vibration test March 11, 1964. W=4229; B=9. 34; The
Floor mass was not wedged properly, therefore, the results of

this test are not reported except in the fatigue considerations;
40, Forced vibration test March 12, 1964, W=4229; B=9. 34; in-

creasing freq.; max. x=0.444; u=0. 990, x=0. 444, ¢ =86,
n=0. 024;
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Forced vibration test March 14, 1964. W=4238; B=18. 07;

resonance range, increase freq.; max. x=0.505; u=0.975,

. Forced vibration test March 14, 1964. W=4255; B=36. 08;

resonance range, increase freq.; max. x=0.595; u=0. 928,

Forced vibration test March 15, 1964. W=4220; B=46. 23;
resonance range, increase freq.; max. x=0. 631; Damaged;
u=0.909, x=0.630, ¢ =90, n=0.069;

Forced vibration test March 16, 1964. W=4238; B=64. 33; in-

crease freq.; the bottom of NE column fractured and the top

of NW column had a crack; max. x=0.699; u=0. 846, x=0. 699,

column set 2, SIL The testing direction is East-West unless

Free vibration test March 20, 1964, W=4220; n=0. 0016 at

Forced vibration test March 20, 1964. W=4255; B=82. 34; torque
limit of vibration generator # 1 was reached before the complete

test could be run; max. x=0. 715;

41.

x=0. 505, qb =92, n=0,039;
42.

x=0. 595, ¢ =84, n=0.059;
43,
44

¢ =86 ;

Short

otherwise noted.
45,

x=0.027;
46.
47.

Forced vibration test March 20, 1964. W=4220; B=46. 26; to

investigate the torque limitation, no limitation at this level;
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49.
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Forced vibration test March 20, 1964. W=4238; B=64. 33; no

torque limitation; max. x=0.737;

Free vibration test March 20, 1964. W=4238; n=0. 0032 at

‘ x=0.032;

50.

Forced vibration test April 8, 1964. W=4041; B=2. 75; increase

freq.; max. x=0.37L;

The following forced vibration tests were made with two force

generators.

51.

52.

53.

54.

Short

Forced vibration test April 25, 1964. W=4686; B=2. 76; increase

freq.; max. x=0.366; u=0.998, x=0. 366, ¢ =99; n=0.0077;
Free vibration test May 4, 1964. W=4683; n=0. 0027 at x=0. 048;

Forced vibration test May 4, 1964. W=4774; B=92. 40; increase

freq. ; max. x=0. 835; u=0. 854, x=0. 835, ¢ =89, n=0. 083;

Forced vibration test May 6, 1964. W=4809; B=128. 5; increase
freq.; max. x=0, 919; this test fractured the SW and SE column
tops, almost cracked through the NW column top, and started

the crack in NE column top; u=0. 791, x=0.910, ¢ =93, n=0.089;

column set 3, SIII: All tests are in the East-West direction

55.

56.

unless noted otherwise.

Free vibration test June 22, 1964. W=4683; n=0. 0012 at
x=0. 0056;

Static test June 22, 1964. W=4683; Deflections 0 to 0. 631 to



57.

58.

59.

60.

61.

62.

63.

64.

65.
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-0. 631 to 0. 629 to -0.604 to 0. 609 to 0.072 which is the

residual deflection;

Forced vibration test for hysteresis determination only, June 23,

-1964 W=4725; B=42. 68; Deflections about 0. 640;

Static test June 25, 1964. W=4683; Deflections 0 to -0. 450 to
0. 450 to -0. 450 to 0. 451 to -0, 641 to 0. 644 to -0. 640 to 0. 490

to 0. 052 which is the residual deflection;

Forced vibration test for hysteresis determination only, June

30, 1964, W=4694; B=10. 88; Ten data points taken with deflections

about 0. 420;

Static test June 30, 1964. W=4683; Deflections 0 to 0. 450 to
-0.420 to 0. 420 to -0.421to 0. 824 to -0. 825 to 0. 824 to -0. 592

to -0. 078 which is the residual deflection;
Free vibration test July 2, 1964. W=4683; n=0.0020;

Forced vibration test for hysteresis determination only, July 6,

1964. W=4684; B=1. 39; one data point with x=0. 120;

Forced vibration test for hysteresis determination only, July 7,

1964. W=4694; B=10. 88; one data point with x=0. 420;

Forced vibration test for hysteresis determination only, July 7

2

1964. W=4774; B=92. 41; six data points with x about 0. 816;

‘Free vibration test July 7, 1964, W=4683; n=0. 0020 at x=0. 011;
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67.

68.

69.

70.
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Static test July 8, 1964. W=4683; Deflections 0 to 0. 812 to
-0. 815 to 0. 815 to -0, 420 to 0. 419 to -0. 421 to 0.120 to -0. 120

to 0.120 to 0. 00 with a residual deflection of 0. 006;

- Free vibration test August 17, 1964. W=4683; n=0. 0015 at

x=0. 016;

Static test August 17, 1964. W=4683; Deflections 0 to 0. 814 to
-0. 815 to 0. 815 to -0. 815 to 0. 815 to -0. 416 to 0. 007 which is

the residual deflection;

Forced vibration test for hysteresis determination, August 18,

1964. W=4774; B=92. 41; one data point with x=0. 794;

Free vibration test August 18, 1964. W=4683; n=0. 0016 at

x=0. 019;
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Appendix IV: Notation

The symbols used in this thesis are defined as follows for

Chapter 1I:
A, B |
(<]

<]

constants of deflection amplitude

viscous damping matrix

B[] B

viscous damping coefficient of a single degree of
freedom system

linearized viscous damping

= [\I/]T [C] [\I/] , diagonal matrix

major diagonal element of the it row of [D]

mean or expected value of x

mean square value of x

base of the Napierian logarithm

force applied to the mass as a function of time
vector of the forces acting on the masses

Fourier transform

matrix with all zeros except for unit values elements
along the major diagonal

stiffness matrix

_ [M]—l/‘z [K] [M] -1/2

spring stiffness of a single degree of freedom system
mass matrix for multiple-degree-of-freedom system

mass of a single-degree-of-freedom system
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c . .o . .
= ———— , fraction of critical viscous damping

2N km
element of the ith row of [\I/]T (F)

first order probability density

restoring force

autocorrelation function

uniform power spectral density

maximum velocity response spectrum (equation 2.42)
power spectral density

time in seconds

deflection, velocity, and acceleration of the mass
relative to the base of the system, respectively
deflection of the ith mass relative to the base
displacement of the base

acceleration of the base times a vector whose elements
are all unity |
element of the ith row of ( é‘)

defined by equation 2.13

orthogonal transférmation matrix

defined by equation. 2.9

variance of x defined by equation 2. 35
deflection-force phase lag defined by equation 2. 29
defined by equation 2.15

i*™® column of [\I/]

excitation circular frequency

2
I-n W damped natural frequency of vibration
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row of (square of

~

undamped natural frequency of vibration

resonant frequency of the nonlinear system

damped natural frequency of the rth

mode

and for Chapter III where different from above:

dimensions of the experimental section

dimensions of the experimental section

long column set No. 1 structure

short column set No.
short column set No.
short column set No.

defined by equation 3.

= 1+ k,/k))

characteristic complex frequency

1 structure
2 structure

3 structure

5

and for Chapter IV where different than above:

. t
constant, amplitude of the m h

constant defined by equation Al 8

equivalent viscous damping

Fast-West direction

term of expansion

= (wp/ wn)& shift of nonlinear resonant frequency

sinusoidal force amplitude, pounds

excitation frequency in cps
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undamped natural frequency of the structure in cps
undamped natural frequency of structure to be used

for normalization, equation 4.4

acceleration of gravity, 386 inches per second squared
constant defined by equation 4. 3

small deflection stiffness of the structure

variable integer coefficient; mass of the structure
North-South direction

fraction of viscous damping

fraction of equivalent viscous damping

time interval between data points

effective weight of the structure during the experiments,
pounds

effective weight of the structure when fn was determined,
pounds

deflection amplitude of linear system

peak deflection of experimental structure

change in the deﬂéction amplitude between two points
phase lag of the nrlth term of the expansion

measuring phase error between acceleration and
deflection

initial small vibration natural frequency

frequency at which Xp occurs
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and for Chapter V:

A

T o

constant to define location of initial strain hardening;
point of reference

cross sectional area of the beam

distance defined by figure 5. 12

constant to define location of a change in rate of strain
hardening; point of reference

width of the rectangular beam

defined by equation 5.101, equals C(A) of Chapter IV
distance from neutral axis to extreme fiber

half the depth of a variable depth section

see equation 5.110

Young's modulus of elasticity
average Young's modulus of elasticity used for column

sections I1 and 12 respectively

see equation 5.110

shear force on the‘ section

amplitude of sinusdidal force

area of the section times one half the yield stress
undamped natural frequency of the structure, cps
strain hardening slope factor, see figure 5.3
acceleration of gravity

strain hardening slope factor, see figure 5.3

moment of inertia of the cross section
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Il’ IZ column moments of inertia, see figure 5.9

I‘2 second stress invariant expressed in terms of distortional
stresses only

K . stiffness of the structure; initial stiffness of the structure

K stiffness of the structure corrected for the effect of the
weight of the structure

Kl stiffness of onc column of the structure

L effective length of the column

‘0'1’ .22 column dimensions, see figure 5.9

M static bending moment

Meﬂ » static moment at a section where the extreme fibers
start to yield

M*ei increased maximum elastic moment due to variable
depth section

MF fully plastic yield moment corrected for shear stress
effects

MN fully plastic yield moment corrected for normal stress
effects

Mmax maximum value of M1

Mp fully plastic yield moment

M, static bending moment at a section

MSHA increase in moment due to strain hardening

MSHB decreasing in moment due to decrease in strain

hardening rate
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moment at the section for elasto-plastic stress-strain
only

bending moment at the column ends

reverse bending moment

normal force on the section; predicted number of cycles
required for failure at a given stress level

area of section times the yield stress

number of cycles at a given stress level

fraction of equivalent viscous damping

concentrated load acting along the y axis; horizontal load
portion of total P which is resisted by a particular
column

horizontal for ce corrected for the effect of the weight
of the structure

horizontal force required to initiate yielding

data force and deflection terms

restoring force

maximum hysteretic force

characteristic force

ratio of the first coefficient of the Fourier series
expansion of the displacement to Xs

positive odd integer, see equation 5. 89

column spacing in the direction of P

defined by equation 5. 101
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vertical column load due to deflection and horizontal
load P

linear value from 1.0 to 1. 5

effective weight of the structure

deflection of rigid floor relative to the base
deflection at which yielding begins

maximum deflection

deflection associated with MZ

axes along which distances are measured; also these
distances

maximum hysteretic displacement
characteristic displacement

deflections of the column between two sections
distance from the neutral axis

distance to initial yield strain position

distance from origin to section with M=Mel
positive constant, see equation 5. 89

strain

strain at the extreme fiber, i.e. at y=c

the elastic strain limit, initiates plastic yielding
maximum strgin associated with Mmax

strain associated with M2

w / W,

change in slope per unit length curvature

curvature at which the extreme fibers begin to yield
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91, GZ, 03 rotations of the column between two sections

v Poisson's ratio

(o normal stress at a section

O—el . yield stress, begins at eel

Og1ia strain hardening stress increase = (O - O’el)
Osup decrease in strain hardening stress = (O - O—SHA)
O, 0, O normal stresses

X Z

T, , T shearing stresses

x ZX

phase angle of the first term in the Fourier series
undamped natural frequency of the structure = erfn

P
2. Y small vibration natural frequency squared

and for Appendix I, the same as Chapter II with the addition of:

B constant defined by equation Al 8

F, sinusoidal for ce amplitude

f excitation frequency in cps

£ undamped natural frequency in cps

m mass of eccentric'weight of for ce generator for equations

AL 10 and Al 11 only

R radius from the eccentric weight center to the axis of
rotation

X deflection amplitude

W total eccentric weight added to force generator baskets,
pounds

and for Appendix III, the same as Chapter IV with the addition of:
u mw/ w
P n



