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SUMMARY

Chapter I:

The eguations of equiliﬁrium in £erms of the displacement
components for an axially symmetric aeolotropic medium are
deveioped from the strain-energy function of the medium, Then
follows a discussion of the literature of the subject; and an
outline of the scope of the present thesis,

Chapter II:

The solution is carried through using Fourier Integral

technique for the two dimensional plane strain case, Stresses

and displacements are obtained for a concentrated line load.

Chapter III:
The results of Chapter II are applied to determine the

surface settlements, vertical pressures, and shears for a
symmetrically loaded strip called Mthe unit strip" of width
two units, The following special load distributions are
investigated: Concentrated, uniform, parabolic, invérted'para-
bolic, hollow wall, gnd rigid wall, Extension is then made to
& strip of any arbitrary width 2a, and settlements are obtained
by means of influence factors, (Graph I), An examination is
made of the influence of the type of load distribution,
demonstrating St, Venant's prineiple of equipollent loads,

Chapter 1V:
The equations of Chapter I are solved for an axially



symmetric loading by transforming to polar co-ordinates and
using Fourier=-Bessel Integral technique, The solution is
carried through for the concentrated load case, and the results
check those giveﬁ by Mitchell (6).

bcha r V:

An investigation similar to that made in Chapter III is
made for a léﬁded circular area of unit radius, The results
afe then extended to a circle of any arbitrary width a, Surface
settlements are obtained quickly by means of influence factors
(Graph II), In the latter part of the Chapter series expan-
sions are obtained for the stresses and displacements at any
point in the mass, and application is made to some of the more
practical load distributions,

Chapter VI:

Corresponding results for an elastic isotropic medium, to
those given in above Chapters, are obtained by the application
of a limiting technique to above results., The ease with which
the results are obtained is striking, A discussion is given |
of the infinite surface displacements that are usually obtained
in two-dimensional problems
Chapter VII:

In this Chapter a review is made of the literature of the
three constant medium, The physical significance of the assump-
tions and the measure of fulfillment of these assumptions by

" some types of wood, and by some crystals, is examined, Some



errors are noted, and corrected, Finally all are shown to be
just particular cases of the medium of Chapter II, without hav-
ing the redeeming feature of simplicity over the more general
theory.

Chapter VIII:

Results for Orthotropic plates are deduced from those
given in Chapter ITI by a change of constants,
Chapter IX:

Typical problems in soil mechanics connected with a loaded
column, and with a loaded wall, are worked out in detail,

Graph iII shows for a particular case the effect aeolotropy may
have on thef§ertical stress distributions in a loaded soil, A
~ brief outline is made of some other problems in an aeolotropic
medium capable of solution by the methods of this thesis,
Appendix F:

Practical methods are given for the determination of the
required constants, The value of skew samples is shown,

The results obtained in this thesis for an aeolotropic
medium, apart‘from the concentrated case given by Mitche11(6),
are new, A good test of the accuracy of the work is provided
by the known isotropic elastic results obtained by a limiting
procedure in Chapter VI, Ase {far as the author is aware, some
of the results of Chapter VI are new also, The direct applica=-
tion df Fourier Integral technique to the displacement equations

of equilibrium is very rare in elastic problems, This thesis



illustrates the power and simplicity of such an approach,
Finally, as shown in Chapter IX the results are very readily

adapted to practical use,
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INTRODUCTION

Engineers have long felt the need for a satisfactory mathe-
matical theory for a loaded soil medium, Apart from the works of
Wo1fL and Weiskople little attempt has been made to depart funda-
mentally from the classical methods of isotropic elasticity, That
most soils depart widely from this latter theory is recognized by
all,

Many uniform soils may be regarded as having identical elastic
properties in all horizontal planes, and hence may be said to have
elastic symmetry about a vertical axis, The elastic isotropic case
is reached in the limit, when the elastic properties on all planes
are the same, This thesis presents a mathematical analysis of such
aeolotropic systems, It necessitates the introduction of five inde-
pendent elastic constants, which makes it more general than the corre-
sponding elastic isotropic theory, Yet the end results are surprising-
ly simple, and are very easily adapted to ﬁractice.

However, this thesis does not allow for the possible variation
of the elastic constants with depth, Such an analysis is practically
mathematically impossible, Hence, this thesis is not the complete
answer to all soil problems. However, since practical methods are
given for measuring the cohstants involved, this thesis should have
very useful application where the magnitude of the strueture warrents
the extra testing required to establish the necessary constants,

NOTATION

The notation employed is generally that used by LovéB)in his



"Mathematical Theory of Elastieity". The correspondence between

(
this notation and that used by Timoshenﬁg? #Theory of Elasticity",

is as follows:

Stresses
;é{:dx ﬁzdy ﬁzdz
ﬁ:"&yz 23;-.- 'sz ﬁ:t}q’,
Strains
exx = x eyy e’y €2z %
eyz = Yyz Cegx = Yax exy = Jxy

é%imilar expresSions hold in cylindrical coordinates where (r,éa )
replace (x, ¥, z). An index of notation is given in Appendix H, 1In
the coordinate systems used, z is always taken as verticel with the

positive direction downwards into the medium,



CHAPTER I,
DEVELOPMENT OF AN AXIALLY SYMMETRIC AEOLOTROPIC MEDIUM
WITH A DISCUSSION OF ITS LITERATURE
Consider a meterial that possesses a vertical axis of symmetry
in the sense that all rays at right angles to this axis are equiva-
lent, Taking the axis of symmetry as the axis of z, the strain-

energy-functiop) becomes (Love 1944 Seec, 110)

2 W = eyt eyy) + Cedy + 2 Fleyy + oxylesy

+ 2(A-2N)eyyeyy * L(e2yz + el,y) + Ne2xy .2
from which
X = Aeyy + (A~2N)eyy + Fe,,
77 = (A=2N)eyy + Reyy + Fe,, (1.11)
g% = Fe ., + Feyy + Ce,,
72 = ley,
&% = Lle
Xy = Neyy

By solving the above for strains in terms of stresses, the five con-
stants A CF L and N can be expressed in terms of the better known

moduli E; ,0; ,M3; (i =1, 2, 3) where from symmetry

Ey = Ez, V‘l = }"'2 (1.12)

Writing Hooke's Law in terms of Ei"ji and t*i we obtain on noting

the equivalence of the x and the y directions



e TR -G -G B
B K By
eyz=;p_c Z
ey = ¥ =0 xx - O3 2% $A (1,13)
vy Eq El Eq exz = 1. Xz )
“3 .
exy = L. X
ey, = 0 (Br+yy) +1 22 d s
By 3

The physical interpretation of the constants Ey , 0 and A
(i =1, 2, 3) is evident from above equations,

and since

40 = BW i.e. 0Cxx =0€z3

Dk 03z Ofndtk Dz O
o e g = 0, : (1.14)
B3 B

On solving above equations for %k and %%, and on comparing results

with those in (1.11), we obtain

G E '
F=_ %% ; ¢ = (1-0)E
- 1-63-200, ’ ..___Oé_.B.. (1.15)
3 1-61-20,0,
A=(1-°;®El H N=E1 N M
G)(1-6,- a, =
(1+ &) (1-6,-2 6,4) m !

L= s

where 2 is modulus of rigidity of horizontal samples, and
/U-3 is modulus of rigidity of vertieal samples,

 In the case of an elastic isotropic body Ey= E3= E say,
G‘l‘ = (fz = O;:. o .



Therefore,
L=N=E
2i1+35

¢ = E(1- F=_0&E
(l+6§ (1-20) (1+0) (1-20)

Alternatively, we can express above in terms of A and [ where /)

(1,16)

-3
il

is lame's elastic constant:

A=C= N+ 2
L=N=
H (1.17)
F= N ,
G=L+F =N+

We shall use above form of the constants in Chapter 6, in de-
ducing the elastic isotropic case by a limiting procedure,

The stress on any plane with normal V (1,m,n) are given by

F, = (X Ty » Zy)

where X, = & + m&y + nxy
Y, = 1xy + mfy * nfz (1.18)
Z, = 1X2 + myZ + n23

General Derivation of the Equilibrium Equations
Let x y z represent a curvilinear orthogonal set of axes in an

seolotropic body, The normal stress on any plane YV is F, as

given in (1,18),



4.

Consider the motion of the material

within a closed surface S enclosing

<M

a volume V surrounding a point
(x, ¥, 3) in the strained medium,
= @Q,Y, Z% denote the bbdy
forces per unit volume and
= (&4 v, w) be the displacement
at the point (x, y, z) Considering

motion in the x direction, we obtain on resclving

fxav+ de (1.19)
\'A

But
f (1% + miy + miz) d 8 = (xx,xy,xz) vds
S S
=Jdiv (Xx, 5y, xz8) 4 V
Vv
(5)

on applying the Divergence theorem,

Hence, from (1.19)

e‘bu- - PX - div (ﬁc,:’q‘y,fz)] dvV=0
dt*
But this must'hold for every volume V surrounding the point (x,y,z),

therefore

e 'DM- pX + div (%%, %y, %2)
2t
Similarly
_ >
e 'atl-
2mr
6 2t*

1]

ey + aiv (7, ¥¥, ¥2) (1.20)

ez +div (&, 73, £2).

Note in the above expressions the proper curvilinear expressions

for div must be used, The above equations are the stress equations
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of motion; for the equilibrium case put

‘az/bL. = -S-'\f = _b:-ﬁrz 0
2t DR dt?

The solution of the system of equations (1,20) satisfying the
appropriate boundary conditions must also satisfy the requirement
that the displacements be single-valued, This is expressed by the
compatibility equations connecting the second derivatives of the
strain components, These are not nearly as simple for the aeclo~-
tropic case as for the isotropic case, Hence, a more direct
approach to the problem will be made in this thesis by formulating
the equilibrium equations in terms of the displacements, The author
thinks this appf§ach has been used all too sparingly in isotropie
elasticity,
Mitchell's Solution to the Three Dimensional Case

Mitchelié)IQOO (a) transforms equations (1.20) into equations
in terms of the displacements, and then expresses the latter in
terms of the three ﬁariables:

(i) € =3div s =04+ JV + W
2x vy Oz

(11) 2'W= 24 - 2V
2y 0x

and (iii) Qamr
D3z
The solution is then made to depend on the solution of the three

simultaneous equations



where

0z
Vy =€+ qp W

Oz
VB;-;'_(&)’

and ki, 95 Qp depend on the elastic constants of the medium,
The boundary conditions are likewise expressed in terms of the
values of Vj on the boundary, Hence, the éroblem is brought
within the scope of the potential theory, and the results are given
in terms of functions representing the potentials of plane distri-
butions at external points, The problem is carried through in
detail for a point load, and the well known Bousinesque result is
obtained by a limiting procedure, However, it is very difficult
to obtain results in a practical form from his equations,
Scope of Present Thesis
The present work is concerned with
a) two dimensional systems
b) three dimensional systems with a vertical axis
of symmetry, and loaded symmetrically about
this axis,
Both these cases will be derived from a Fourier Integral solution of
the displacement equations‘of equiiibrium. As far as the author is
aware, this direct approach has not hitherto been used on elastic

problems, The elastic isotropic ase is obtained by a limiting
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process from the aeolotropic ecase,
Green and Tazloé7k1939) have developed two dimensional aeolotropic
systems somewhat, using techniques analogous‘to the complex variable
methods used in elastic isotropic case§92 This leads to a sclution
for an isolated force in an infinite plane, thé two dimensional
analogue of Kelvin's problem, However, no displacements are calcu-
lated, The technique for their calculation is similar to that used
in Cokev and Filon, though the'labour is inereased greatly,
Q‘_@S)(BBC)) deals with generalized plane stress systems in an
infinite aeclotropic strip and also in a semi-infinite plate bounded
by a straight edge, The method of sclution is similar to that used
by Howlanle)(l929) for the corresponding problems in an isotropie
material. It consists in obtaining a Fourier Integral representation
for the stress function, Expressibns are given for the stresses
when a force acts on the boundary of a semi-infinite plate, However,
no displacements are obtained and their caleculation requires much
additional labour,

This thesis obtains the displacements in a simple direct manner,
and so should have many applications to éoil mechanics where dis-
placements are of paramount importance. No reference to part b) of
the thesis could be traced, Bioé113(1935) solves the analogous
problem for an isotropic medium by a Fourier Integral expression

for the stress function; again no displacements are calculated,
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CHAPTER 11,

TWO DIMENSIONAL PLANE STRAIN

i

v
>

v,

¥

For simplicity, consider a loading symmetrieal about oy,
and extend in either direction from O a considerable distance along
the y axis, say fromy = 41 to y = di; At regions, not close to

y = ii: the state of strain is approximately plane: 1, €,

eyy = exy = Oyg = 0 (2.1)
Note that ¥¥ is not necessarily zero, as assumed by Weiskopf and
discussed in Chapter 7, In soil mechanies, this corresponds te &
long footing, or a loaded rectangle whose length (215 is much
greater than its width, By a slight adjustment of constants, the
problem cah be treated as one of generalized plane stress and then
furnishes a solution to the problem of a semi-infinite plate lcaded

along its boundary,

The sirain-energy function now becomes

W = AeRyy + Ce2zz + 2Wepge,, + Lo, (2.11)
From whiéh

£ = Beyy + Fe,,

7% = Feyy + Ceyy | (2,12)

%2 = leg,
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\gu‘bstituting above values in equations (1.20) with 'y = Dw =0

242 P
we obtain in terms of the strain components,
PX +A4TV€,+ F28&, + L23%&; =0
X 2x 22 (2.13)
ez+1'_,3_€_x2+ FOE€ + C2€2z =0
oXx 22 32
Finally s:’mce3
exx:m ezzzn exz=m +M
ox 2% Z X

we obtain the eguilibrium equations in terms of the displacements

with no body forces:

Ay + L2u + GDw =0
D2 V2P X2
(2,14)
2 2
cBw + L2y + GDu =0
22 D=2 XIZ
where
G=L+F (2,15)

As a useful practical case, consider loading symmetrically
distributed with respeect to both x and y axes, This requires that u
be an odd function of x, and w an even funcition of x, hence type

solutions are

u = U(z) sinmx (2.16)
w = W(z) cos mx
Let
Dy =0 D3 =2 Di3=_-0:_
22X dZ 2X2IZ
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Then on eliminating w from (2,14}, we obtain

2 2 -
A D% + 105 G D, u=0
2
G D3 0% + cnf
i.e, [} Lok + (12 +4C - 3D +CL D%] =0
Hence, on substituting u = U sinmx and Dy =D =4
dz.
[D4 - (2 + a0 - a2 AC G2)meDR + A m] U=0 (2.17)
[

and the same equation holds also for W, The solutions to the above

equations that tend to zero as 2z —» 00 are easily seen to béﬂﬁ

i

i

Re~S10Z 4 gg~S2M2 (2,18)

and W Rqe™S112 + Sléfsﬁmz

H

where R , S, Ry and 59 are arbitrary constants connected by
relations arising from the fact that (2.18) are solutions of the
simultaneous equations (2,14). These constants may be functions of
m, and si and S% are the roots of the equation

sh-12 +ac -0% 82+
cL

4 =0 | (2.19)
c

These are both positive provided
IR +AC Y G2 = (L + F)?
‘i, AC > 2LF + F?
This inequality holds for all known materials, On using

values (1,17) we easily obtain I2 + AC - G2 = 2,
CL '
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And hence, S‘% = S% = 1 in the isotropic case. (2.20)

Relation Beiween Constants

Substituting the values (2,16) in the equations (2,14), and

equating to zero the coefficients of e °17% and ¢”™°2™ we obtain
Ry =R [A-15% |
G5y
81 =8 (A-Isﬁ >= hoS
GSo
where
hy = A-IS% hy = A-IS3 (2.22)
GSy """"""Gsz

Boundary Conditions

On Z = 0, assume no sheer stress, and a given normal stress:

~ (2.23)
0 = xz =0%u +QW
2=0 ¥z Ox
z=0
£(x) =22 = Fexy + Ce,, =F2u +C2u (2.24)
ox Dz
z=0
Consider the solution obtained by the superpesition of simple
solutions(u):
o
u = J[ R, e SN2 + g e-s2mz] ginmxdn (2.25)
o o
w = j[thm e~S1MZ + hoSp e'SszJ cos mxdm (2.26)
(]

where Ry and Sp are functions of m to be determined from the

boundary conditions (2,23) and (2.24).
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From (2.12) the shear stress is given by

z = - L/m[Bm (8y+hy) €% ™% + §(sg+hy) %215 (2.27)
() sinmx dm

applying (2.23) we obtain
od
0= jm[Rm (s1+hy) + Sy (sp+hy) ] sinmx dm

(o]

Clearly & sufficient condition for this is that

m[am (s1+h1) + Sy (szhp)] = 0 (2.28)

Stresses and Displacements in Terms of Ry
Again from (2.,12) and (2 28)

X

+ 8 (F-Chosyp) e-s,_mzj cos mx dm

og

.*. z2(spthy) = j;n Rm[sye"sl mz sue'slmz] cosm x dm (2.29)

0

also

M
N
]

od .
= -8 M2 -8, M2
L (s1+h1)jm R, [-» g ! +e :] sinmx dm (2.30)

and % = A U+ F 3441’- j [Rm(A.-Fhlsl) e—S, m2

B + Sp(A-Fhysy) e szmz] cosmx dm
Hence, o8
Tx (spths) = Jm Rm[s5e"s'mz - sse"’ssz] cosmx dm (2.31)
o
Similarly.
u (spthp) = me [(82+h2) e™% 0% _ (s1+h) e'szmﬂ (2.32)
| sinmx dm
o0

w (sz+h,) =[P§n spe~ 12 Sae'szsz cos wx dm.
(]
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Where the new constants introduced above are given by

s3 = (F - Chysy)(sp+hy), sy = (F- Chpsp)(sy+hy) (2.34)
s5 = (& - Fnysy)(sp+hp), sg = (& - Fhpspy)(sy+hy)
87 = hy(sp+hy) » sg= hp (s1+h)

Evaluation of By

Applying (2.24) to (2.29) we obtain

(so+hp)f(x) = j(m Ry (53 - s,) cosmx dm (2,35)
o

This is an integral equation for R;, and can be solved by the

Fourier Integrai theoreéiBE or its equivalent, the method of the
(14)

Fourier transform™ .  Henecs, =
% (2.36)

where
oD

Up = //;(x) cos wx dm. (2.37)
(o]
and
59"'2. S24h2
T s3-sy

A sufficient conditioélZ)for validity of above transform is

that m By be of the class 12 (0, %)
o0

2
i.e., J/’/ m Ry 1 am < o0 in the Lebesque

(14)
sense, Using Parseval's formula, this relation becomes

(s 2]

J/i/ Bm dm - s;.J}a/ f£(x) IZ' ix < oo (2.38)
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In the examples considered in this thesis, f(x) =0, /x] > a
{.2., the loading is over & finite strip only. Hence, condition
(2.38) is always satisfied, except in the case of a concentrated
load.

It is much more difficult to show that the conditions on the
Fourier Integra114 are satisfied. It can be done in a manner

similar to that adopted for the FPourier-Bessel Integral in‘Chapter 4,

Convergence of Inteesrsls (2.29) - (2.33)

Integrals (2.29) - (2.33) are convergent for z > 0 provided
m Ry isogoundeéléx On 2z = 0 the integrals are convergent pro-
vided‘j;bﬁéfbﬁbis convergent. These requirements are satisfied
for alf cases discussed, except the concentrated load. Equations
(2.32) and (2.33) are convergent at infinity, but they need investi-
'gation at m = 0. Integral (2.32) is convergent under sbove con-
ditions since Ry sinmx is of order m Ry as m —0, and this is
bounded‘in the cases considered.

Howevzf, in (2.33) R, cosmx—>0 (l% and hence is divergent
unless .){f(x) dx = 0 i.e., unless themapplied loading has zero
resultantoon plane z = 2; Mathematically this latter condition
means that w-—a»éﬁb_l:ﬁm [§7e-5.mz - sSeﬁsLmz] cos mx dm
This integral enables us to calculate relative displacements at
points close to and in the loaded area when R, is given by
formula (2.36) where f(x) is teken as due to the loading on the
finite part of the plane only. The equilibrating load at infinity
does not affect the stresses in the finite part of the pléne. and

it makes w finite by superposing en infinite displacement in the
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opposite direction to that produced by the load in the finite part
of the plane. This question is dealt with mathematically in
Chepter 6. for the case of an isotropic body, and clearly the same
reasoning applies to the aeolotropic case.

Surface Settlemen ws)

Prom (2.33) and (2.37) we obtain

od
we = _ 2 Lt Up [sne=S122 - g067%2™2 [ cos mx dm
* Teyem) 200 Jo L7 °
ns3-8y o ) m
v o0
ot Wg I Sy3 T _ Lt Up e ™V cos mx dm (2'39)
2 U0 I

where 813 = - 83 = 8)
87 - 88

Normal Vertical Pressgure

~

P = - 22

x=0

Hence, from (22.9)

)
2= 2 U [336"3' M2 _ ge™%2 M2 am
"(53"84) A v

o)
2 8y fUm [_T_L__ S BZ | 1 "2 dm
81 52
o

Shear Stress on Plane x = 0

(2.40)

li

From (2.30) we note that xz = 0 when x = 0, and, therefore,
2z and XX are principal stresses at every point on this plane.

Hence, the meximum shear stress in the materiel ( CM) is given by

Lo
ZM =} (f3-xx) = 1 Uﬁ [(33-s5)e'sl mz _ (sq—sé)e"szmz am
’ rleze) ) (2




Concentrated load at the Origin
Consider a load P uniformly distributed over width 2€ where

€ —> 0.

Then on z=0 f(x) =-P_ , ¢x[ & €
2e

=0 | x| 7 €
Hence from (2.36) formally we obtain

€

mBy=-s9P Lt 1 cos mx dm = - sgP/2 (2.42)
<" &v &

(o]
It is rather difficult to Jjustify the limiting process by which
m Ry, was derived. following Carslaw and Jaegeél72 the simplest
procedure is td/show that the stresses and strains obtained do
actually satisfy the béundary and equilibrium conditions for a
concentrated line load. This is easily shown.
Evaluation of (2.29) - (2.

The integrals involved is evaluating expressions (2.29) - (2.33)

in the sbove case, can be calculated by replacing z by s1z or sz

in the appropriate integrals in Appendix A. Let

SZE oo
} , = fé_smtcos mx dm
- () - (2.43)
T = [ ésmzsin mx dm
2 °
r% = x% + (512)2 ; tan 9{= 842 1=1, 2

Hence from (2.29)

Z’?Z (Sz+h2) =

[
4
n
g
|
w
S
l.
/2]
{Hm
| S

"
s
]
o, )
g
[
—
(/]
AWY)
w
‘...l
1
[/
=
o
14V
—_1
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.'.?z=—310£_z_[;—;] (2.448)

gince from Appendix C-2 8183 = 8,8,

Similarly Xz = s Px[1 -1 (2.45)
2 12
1 2

where as proved in Appendix C-4

- L (Sl"'h1> 39 = 823452 = Slo (20}4’6)
E’ 2(32+h2)

Similarly

£ (sy#hp) = - sgPs [ 8185 _ sz%]

2 2
2 rl r2

!

.*e XX = - Pz [slsz(szsz-slsé)zz + (sy85 ~ sps6) x2]
m :
(s3- sy) r§rs

X = 871 Px2z  on using C-5 snd C-6 (2.47)
2.2
7Tr1r2
Displacements o
u(sp+hs) = - 8P f[(szﬁlz)e’sl mnz _ (slml)enszmﬂ sin mx dm
2 % n
SZ - Sz
= - 8P [ (sgh,) L = (sy%n;) Iz]
2 .
= - &P [% (sgthyms1-hy) - (sp*hp) O + (sl+h1>92_]~
. 2 ‘;ﬁ‘;’:‘v v ‘
Ceuw = ggP [11_ (815-1) = 895 92_ + é,] (2.48)
< L2 |
where 892 = §1 + Iy

EJ) + hz
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S,z -
and SZ___ -l Y- I]
W(52+h2) —P - Sg_g [87811 - 8&_[—,
—> = sgP E:onstant - 85 log r1 + sg log rz]
2

v 3 sgP [:constant + hy log ry - hpsyz log rZJ(2.49)
2

On the surface 2z = 0 above result becomes

LIS E [ constant - log x] (2.50)

TTS13

Stress on Plane Z = Constant

The stress is given by its components zz and xz (2.43 and
(2.44). Clearly the resultant of these is slways directed away

from the orlgin and is of & magnitude

Fz = 810 Pr [L- Lé_]
2

The well known result Fg = - 2P 32/13 for the elastic isotropic

L&
AV 13V]

=

case follows easily from above on using the limiting procedure

developed in Chapter 6.
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CHAPTEZR III,

LOADED INFINITE STRIP

Lnit Strip
_m £ = - £(x) X &1
2 0 B > X = 0 | x| 2|
¥
2

Consider loading on an infinite strip of width 2 units hereafter
called the unit strip. We shall calculate the surface displace-
ments, and vertical pressures for the following special cases of

practical importence.

Concentrated Loa-d[_A_] (3- I)
Uniforn Loed Distribution[B]
z") == x| ¢ [T 3( 5. 11)
z=0 - 6
= Q Ix| >

«*s P =2 p, per unit length of strip
Parsbolic Losd Distribution[C]
B 5w B IXIEL i, e
= % Cooaxi> T 1 (2.12)

e%e P=2 PO (l"‘xz)dx 4 PO
o g z

Inverted Parabolic Load Distribution [1_)]

| =-px®  [XI 4 TR Jﬂm&m)

=0 5 [ x] >

= ] .
o'e P =2 Po j Xz ix = 2 PO
o ED



Hollow Wall L@]

1}

”2’ P, J-e<Ixl <) , €70
z= 2€

=0 2ll other values of x

| Rigid Wall[F|

w’ = Conste =wy [x] T
z=0
£ =0 Ix]>1
2=0
Case A

This case is worked in detail (2.44) and (2.49).
are
wg T 813 =P [const. - log x]
s
end 22| =-s92 |L = L1 (_=-8pZ _];1
)x:O 0 z [E‘ s:]" z | &4
s
2
Case B

00 ' i
U, ff(x) cos mx dm = = fpo cos mx dx
0 [+

= -P sinn
2 m

]

Then from (2.39) on substituting
od

wsﬂslz=P2fsinmcosmx@
3

m2

1+x -2 l"'_ls____-_
P

2

[t}

s——= 12

=P [(x~1)loglx—ll-(x-l-l)loglx-i—ll + const.]
.2

i ,
+ :] Using A°12
z=0

(3.14)

(3.15)

The results

(3.18)

(3.17)

Note that this expression is finite everywhers on the surface,

provided the constent is taken as finite, since Lt tlogt = 0

t—0
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Also from (2.40) we obtain

FZ| =- j sinm[sse S W2 . ghe” szJ dm
X=0 ﬂ(s5—34) ;

Sz -/
= [ -9 I] on using A8
Tf(Sg-M_) (5.19)
3. 18
= - E________' [s;;tan'l _]s-_;_z_ - s4ta.n‘l _]é_z]
W(Sz-84) 2

i, S
S, P [& tor gz

The results for the remaining cases may be esteblished in a
similéur menner. The integrals necessary for their calculation

are given in Appendix A. However, it is somewhat simpler to obtain
them by integration of the concentrated load case as follows:

Cass C

f)

A —
gTXJ

The deflection at any point P due to the elemental loading f(t)at

at the point t is, on using (2.50), given by

f(t)at [ C - log 1:.]

T 513



22

Hence on summing up for parabolic loading
X-€

Wp - PO L { _ _ _ 5 _
?1-5—13 et_w f)c log(x ti}(l t°)dt + ﬂ‘/ -log (% x)}

X+E

(l-tz)dt

Both of these improper integrals are convergent. They can
be evaluated by integration by parts, provided we evaluate as a
principal value, Hence we obtain

2 (3.19)
wns1z = P [const,—- ¥ + (x+1)°(%-2)1logfx+1}
4

- (x-1) 2( x4 2) logf x—l]]

Normal Verticsl Sitiress

The normal verticel stress at any point R on the z axis due |

to the elemental loading f(t)At at t, on using (2.44), is given

by
Azdg = = 810 f(t)at z | 1 - 1
t*4s* 2 tP 48 2
] 2
.'. on integrating for perabolic loading
7z =-2310pozf[ -1 - %7 dat
x=0 2*i-s to4s] 2z
2. -1
= - 2 lePO l+s tan~ _1.‘..._. - l+sa z tan .1‘.....:
ZEE S, 2 S z
sl ! SZ z
= - s
==~ 3P 819 [1_‘_8222 tan"l 1 ] 1 (3. 20)
o Y 8%
S2
Case D

This can be obtained by combihing[B]and[C] i.e, 3@] - 2@]
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Hence

wTsiz=P [Const. +2x° - (x3+l)log[l+1| + (x%-1)log [x—l|]
2 ‘

(3.21)
and
-] Sl
73| =+ 3 sy P 27 I:s ten - (3.22)
x=0 52_|g
2
Case E

Using results for a concentrated load at the origin, we

easily obtaizi

Wg T s1z = Conste =~ P log ng - ll (3.23)
. 2
and
sl
] =-sPz |1
x=0 l+s% 2~ s
2.
Cage T

Consider o rigid wall of width 2 with boundary conditions
as given in (3.15). Hence from (2.29) and (2. 23), provided the
integrals can be shown to exist in a physical sense, we require:

o0
0 =J<:m R, cos(mx) am [ x| > 1 (3.25)

and wo = 57 - 88 Lt f ™V R, cos(mx) dm , [X[< [ (3.26)

From Watsonl® "B.F." we obtain ( 13+42)
o0
fJo(m) cos mx dm = 1 or zero, /X/ 1>~ I (3-27)
(.} ,/ ]l - %2
Hence by comparison with (3.25)

By = 0 Jo(m) , provided this also satisfies

m
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(3.26) We note in passing that m R, setisfies conditions (3.23).

The pressure distribution under the wall is from (2.29)

é\Z/= 83 = 84 C
2=0$2+h2 V1i-zx?

If the pressure at the center line is p, then

Po=-© 25 5 (3. 28)

So o+ hg
and hence the contact pressure is

f/:-Po - - p X[ < | (3. 29)

where

’n/po: total load per unit length.

+d
|
M
;Ja
M
i1

Surface Settlement

From (2.33)

oo
wgz T s33 =P Lt ‘(éhv Jo(m) cos mx dm
o

-0
m
ol
—> P on(m) cos mx dm  where 870
n
[

This latter integral is divergent due to singularity at m = O.
However as in previous examples we may celculate relative dis-

placements by bounding m away from Zero as snown

Since Ké on(m) cos mx dm = - IJ (m){f sin mx dx | dm
jU Jo(m)sin mx dm] >0
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And from Watson'sas) "B,Fts" 1342 we have

ol
J[Jo(m) sinmx d&m =0 or 1 according as [X | % |
o x2-1

Above operations are permissible since K5 is wniformly con-
o0 -0

vercent §70, and fJo(m) sin mx dm — Jo(m) gin mx dm as
o
5
d—>0 . Therefore
X
Ky —> ¢ or - dx according as IX’ < |
x2—1
o'»o KS - C

- 2.
’Ql log, (=+ Jx2-1)

since K is continuous at x = 1 . Cp=¢C
Hence we obtain
ws T 833 =P C (3,30}
=P [C + =loge(x + J;Z.E)]
where C 1is arbitrary, since above procedure gives only relative
deflsctions
The vertical pressure at points along z axis is given by

(2.29) on substituting value of m R :

o0
z’%[ = - P on(m) [s;;e“s:mz - S4e"'s?-mz] am
x=0 Tisz-s4) ,

il

- P 83 - 52 from B*3 with n=0
Ti(sg-54) ‘{1+s," 7 J1+s: z*

(3. 321)

S‘ .
-s10P | 1 ___
S/l-i-s"zz s
2
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Summery

A11 solutions obtained in sbove cases are arbitrary to the
extent of an 2dditive constant. A value must be assigned to this
constant to compare results obtained, Results obtained later in
the case of the loaded circular disc indicate that the load distri-
bution is unimportant at points distant more than two diameters
from the center of the loaded area. This result was to be expected
from St. Venant's principle, The settlement at a point distant
two dismeters from the centre is found to be about 12%% of that
produced at the load centre by & wniform load., Clearly the super-
position principle indicates that above results hold even more
strongly in the two dimensional case. Hence it will be safe to
assume that at x=4, the settlement is only 12%% of that produced
by & uniform load along its lo2d axis. The arbitrary constanis

will now be evaluated on the above basis. This gives when x=4

Wg 813 = Q-108

B (3.32)
Approximete Surface Settlements 1x1 < 4
Concentrated(A]
"s £15 =1 [1.726 - 1ogelxl] (3.33)
P

Uniform‘B]

Vs S13 _

L
P 2m

[ 5040 - (xviytog fwna] (1) log [ x-11]
(3.34)
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Parabolic(c|
w s
s 13 _ 1 [
=1 | lze212 - 2x° 2(x-2)10z
- i x< 4+ (2+1)<(x 2)10%\31-&1{

(3.35)
- (x-1)2(x+2)log 11 |

Invertsd Parabolaig]

s %13 = lz?i [4-078 + 2%° - (x3+1)10%[ ¥+1] + (xz—l)lo%]x-ll]

P
(3.36)
Eollow WelllE |
We B
e 13 1 [3'38’? - logebcz—ll] (3.37)
" 2n
Rigid Well[7 |
| s 813
= 1 [2'403 - log (x [ -1) , [x| 2|
P m ©
= 2403 > Ix1 &

i

Note: All logarithms above are to the natural base e.
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TABLE I.

Settlement Influence Factors WgSiz = N(x)

P
X
Loading 0 25 «50 o 75 1 2 4
Concentrated 0.990 0.771 0.642 0.550 0.330 0,108
Uniform 0.865 0.854 0,822 0.764 0.645 0.340 0,108
Parabolic 0,972 0.946 0,860 0.73L 0.593 0.336 0,108

Inverted Parabola 0.650 0.668 0,753 0,827 0.746 0.348 0.108
Hollow Wall 0.539 0,550 0,585 0.671 0.364 0.108

Rigid Wall 0.764 0,764 0.754 0.764 0,764 0,348 0,108

Effect of Arbitrary Width of Strip

Stresses
Consider a strip of width 2a, carrying a load P per unit width
with a distribution 2% = - £(x)

From (2.29) and (2.36)

o

2| = | f{f?f‘(t)cos mt dt} {s;:,e‘snmz - (3.39)
x,z T(s3z-s4)

0 [+
sqe” 5212 cog m%}dm.

If we introduce dimensionless coordinates given by x = x'a ¥y = z'a
t = t'a m = m'/a, the surface distribution becomes 2y = - a f(x'a) =
- f1(x') say

Then from (3.39)

oo
a_
g = 1. 2 f{ff(t‘)co's m't dt'j {sge’s»m'z'
X,z a ﬂ(53—54) o = 0

~g4e"520" Zi} am' = 1 A1y (349)
a x!, z!
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where z'%' is o stress component 2t the dimensionless point (xgz').
Or if in addition we take P! = 1 in dimensionless system, and denote

s e o~ .
corresponding stresses by z'z' , X'x' etc., then

~ o
zZ, =P z'z!
X,% & xt, !

Similar results follow for the other stress components. From this

(3.41)

we see that under a given form of load distribution, corrssponding

stress components are directly proportional to the total load per

unit lensth of wall and inversely proportional to its width. Or since

P/a is proportional %o p, the intensity of loading on the surface, 1t

follows that corregponding stress components are proportional to the

intensity of loading on the surface. (3.42)

Displacements

From (2.33) and (2.37) we obtein for the settlement

ad a
w/ = 2 //%Ll];(t)cos mt dt] {'s7e—s,mz - SSe"szm%] dm
x,z  Tsz=84) ) “J

On introducing dimensionless coordinates as above, we obltain

o I/
W} = 2 m‘[f £f1(t')cos m't! dt’][
X,Z TT(SS“S4) 0 0

- m’ 7
576.5' ‘_ sze"szm'z'} am! = Pw

(3:43)

x!, !

A similar result holds for u.
From this we see that under a given form of load distribution,

corresponding displecements are directly proportional to the (3,44)

‘total lo2d or they are Jjointly proportional to the intensity of

loading on the surface, and the width of the sirip. These results
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are in accord with the elastic theorfig}

Practical Calculation of Settlements

Result (2,42) furnishes a very rapid method for calculating settle~
menis in terms of the settlement influence factor N(x') of Table I
appropriate to the distribution. On rewriting (3.43) becomes

Wsl =P N(X") (3. 45)
X Sls

Normel Vertical Stress 72 under losded Strip 2a

Too meny varisbles are involved in the expression for 5%/
0,2
to permit tzbulation., Hence it appears desirable to write out com-

plete expressions for é%/ . This is easily done with the aid of
’ 0,z
pJ

(3.41) and the equations (3.18), (3.20), (3.22), (3.24) and (3.21)
Hence we obtain

Concentrated Loadﬁé]

~ . S'
g7 - Slo f_ ['l"i'] (3.46)
0,2 zZ | 8" s,
Uniform Loadingﬁﬁ]
sl
2 =- 819 P [1 tanl! _a__] (3.47)
0,% a ls sz ig
Parabolic[g}
S
) = - Z - '
zz/o . 510 P [ .2452,2 tanl 5 (3.48)
’ 5ad | T LT
S?_.
Inveried Parabolaﬁg]
A
. I
24 =+ 3 810 Pz° [s ten™t & (2.49)
0,2 “;3 sz s
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Hollow Wall[E |
S
r;z! ==~ 85Pz[ 1 ‘ (3.50)
O, z a,2+3222 S
2.

Rigid WalllF |
S

z’é/ == 510 P|_1 '

2.

Stresses for Lerge 2

As a good check on the above results, we shall find the stresses

for large values of z by expanding in powers of 1. As expected the
' b4
results approach that for the concentrated load (3.46), providing an

(2)

exemple of St. Venents principle® of equipollent load systems. The

results obtained from the Binomizl theorem and the expansiv¢gl

lw=w,-_];w3+lw5—. . o are:

3 5

tan”

Concentrated Load [A )

~~ 1 s'
* /o,z TR0 lJz' [';2]57_ (3.52)
Uniform Loading[@_] S
z'*, =-s10_13[;_ (1—;a2 +1at —...)]| (3.53)
0,2 z | 2 B 42,2 B 44 s,
Parsbolic [_Q ] s

[J
#| =-soB (L (-122_+3 e -...)] (3.54)
0,% g2 5

o3

Inverted Parabole [_ZQ]

I
0,2 Z 5 7 S
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Hollow Wall [E_]

4 S
g‘z/ =-spoR L (1-22_+e -)} (2.56)
0,2 2

Rigid Wall
z’.‘z{ =-s50F (L (Q-422_+3 a4 )] (8.57
0,2 z | 2 2.2 16 g4, i

Maximum Shear Stress at Points on x =0

From (2.41)

Ty= [(33-55):.7-: - (54‘56) I ]

TT( 83—84)

On using reqults G-"’ and C*5 this becomes
‘S/
z£.
y =T {514 [s Is]s +s0 [ 5 ISL (3.58)
Z 2

where

s
"6 = 7 2 2
M) 51(33"34
(3.59)
and

s10 = X 5482
_ ™ Sz~S4
The value of ﬁ cen easily be obtained when Is is known. Noting
from (2.40) that
= 2 810 [ Z_T-— ] (3.60)
we can readily write down the appropriate values of Is by com-

paring (3.60) with results (3.46) - (3.51). This yields for strip

of width Za
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Concentrated [_A_]
z
Lo = % ()
Uniform(B ]
z -
Is = e PE; tan . :z

o :’5Parabolic [g_]

z ‘ o 1
Z = - 3P (a+s22°) ten™* &
23 1% Sz

4a $%

Inverted Parabola [_Z_Q]

z 2
= 3Pz~ 8% tan~t afsz -
T, -z /

Hollow WallL@]

Rigid Well[F]

z
T, --=

5 a4glg2

(3.61)

(3.62)

The values of ZM can readily be obtained from (3'58) using above

z
values for _—_Z:S .
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CHAPTER IV,

THREE DIMENSIONAL SYMMETRIC CASE

When the loading is symmetrical with respect to a vertical axis,
the problem is most easily treated by the use of cylindrical co-
ordinates r,Q)zm If the displacements along these coordinate axes

are u, v, w, then from symmetry

v =0 and 2K =W =0 (4.00)
26 00
The strains ard4)
ery = 4 e, = 1
N 66 r
€,y = OW e = e =0 {4,01)
2z > 5 né 62
epy = 04 + 04
°Z o
and the dilatation € = epp + ey, *+ &, =+ y + W,
L r 0%

With no body forces, the stress equations of equilibrium become

from (1,20)

DN + DR + 73 -0 = o (4.02)
2L 9z . T

’an%c 4 32’7:‘. + ﬁ = 0
M 02 T

where from (1,11)

T = A epp + (4=2N) ey, + Feyy
Z’% = F erln + F eeé + Cezz ) (4—003)
66 = (A-2N) e,n + Ae,, + Feyy

66
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@:‘:Lerz

Hence on substituting in (4.02), the strain equations of equilibrium are:

ARE + (F-A) 255+ L 084z =0
2 '

on ¥

(4,04}
F2E + (C-F) 2€s3+ L 8€pz+ Lep, = O
2L DZ o r

and on using (4.01) these become

A(z”,u, +1

oy +L D) ¢ () DM = 0
20 T L R 4 DE*

(4.05)
(@) Ddac + m>

Moz r 02
Iry for solutions of the type

u

&2 (r)

w

[{]

@”)%W(r)

(4.06)
Substituting in (4.05) we obtain

A(U"+Q}_wﬂ§+L7\"U)w(G)7\W? = 0
r r A

(4.,07)
(@) (U* +U/fr) +LOE +W/r +CHW = 0
L

where the dashes denote differentiation with respect to r .&.

" = &2 ulr)
drl

The pattern of the Bessel equation is evident in the combinations
of Uand W in (4,07). Substitute in (4.07)
i

i

By J]_(m')

(4.09)
W =Ry Jo(ar)
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/
where Ry, and R j are arbitrary functions of m., After some simplifi-
cation we obiain

Ry A(-r2 + LA") J1(mz) + R (F+L) mAJy(maz) = O
A (4.10)

<Ry A m (F+L) Jp(mz) + R/m L{-n? + %7&2—) Jo (mz) =0

! ,
Hence for z > O on eliminating Ry and R p from above equations after

removal of their respective factors Jy(mz), Jo(mz) we obtain

“Am? + LN 2am(F+L) =0
=pm (F+L) =IMR + O
At — R rac - AN +Anr =0 (4.11)
oL o ,

This is the same as equation (2,19) in the two dimensional case, and

so its roots are

2 , (4.12)
7\, = m2s12 7\‘ = mSl , 7\3 z"ﬁlSl '
or 81, 89 > 0
7\2; = mgsg A= mss A, = -msy
and elearly the relationship between the constants is
/ 2
Rj. = Aani Rj_:hiRi > i=1, 23 3, 4
Gss , (4‘/3)
A _ ) _ 2
where R ; =R , and Ry _‘Rm and hy = A - Ls 4
Gsy
Hence type solutions are
2 N2
u = %‘ R; 7 7 Jy(umr)
&£ .
w = 2 hiRs e“’h‘:ZJo(mr) <4'/4')

=/

o
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and by superpos tioa of such solutions, we obtain

u = f i Az Jl(mr)dm
nZE (4./5}
w = f ih,—lﬁl e” 7 Jolmr)dm

provided Ry is such as to make the integrals uniformly convergent

and continuous in the whole range, and 2z ) O,

Boundary Conditions on Semi-Infinite Body Bounded by 2 = 0

A, Stresses and strains tend to zero as z tends to infinity, This

obviously requires

0 sinece 7\3 < 0 h) >\4 <0 (4'/6)

R3 =R4

B, Assume z = 0 is free from tengential stress, and so has only

i

a normal traction, This requires

0- A% -i(24+2
z =0 Z O] =0

~
= £(r) = Fepp + Ceoy, + Fe
% | z=0 (417
PR CT Ty
on °Z r |2=0
Now rz = OU + oW
L 'bZM'GIL

"

-j m[Rl(sl'ﬂ%-hl)e"Sl mz 4 R2(32+h2)e"’szm7'] J1(mr)dm (#/8)
(o]

Applying boundary condition (4.17) ,
?zjz=o =0-= f m[Rl(sl‘rhl) + Rg(sz+h2)] J1 (mr)dm
[¢]

A sufficient condition for this is that
Ry(sp*hy) *+ Ba (sp*hg) = O (419)

We now write out the stresses and displacements in terms of Ry=Ry,
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Using equations (4.15), (4.16), (4.19) and (4.01) we obtain:

Stresses and Displacements

7z =F OU 4+ C QW + F u., Using the result J (t)-H.J (t) = TCt)
2 27 r

o
o*e  zz(Sgthg) = /’mRm sge”S1 B2 g, 67822 | g (mr)dm (4.20)

= L(s1+hy) j m Bm[ e~S Mz , ¢~ S22 Jg(mr)dm (4421)

end rr = A(QU) + F (OW) + (A-2N) u from (4.03)

o 02 w r

.* Trr(soths) = fom Bm[sse"sl nz . sse'slmﬂ (4.22)

‘ J(mr)dm 2N u (sg-rhg)

also o4 ‘ ' ' :
u(s,+h,) = [Rm [(sz_+hL)e"sl BZ - (s1+hy) e'szmﬂ (4.28)
J1(mr)dnm

w(sotho) = fﬁm s7e “8 W2 . gge~%2M2 [ Jo(mr) dm. (4.24)

The similarity between above formulae and the corresponding two
dimensional ones (2.29)-(2.33) is striking. The constants are as
defined in Appendix G.

Determination of Rp

Boundary condition ‘So 4,17) requires that

(s 40 )f (r) = Jm B, (s3-s4) Jo(mr) dm
This integfal equationocanbe solved for Rm by the Pourier-Bessel
Integral Theorem(ls). This gives o0

By = Saaba | ¢ £(1) Jo(tm) dt.
sz~e4 a
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provided Ry 'i%tisfies the following sufficient conditions:
(1) /‘:J'_ri Ry dm exists and is absolutely convergent (4. 25)
‘(ii) Ry hes bounded variation for all m. (4.26)
Any sectionally contimuous function of m, for which left and right

hand derivatives exist at m) 0 satisfies this requirement.

Then oa .
R, =T/2 sg [ t £(t) Jo(tm) dt = m/2 sg Uy (4.27)
0
where 0
U, = |t £(t) Jo(mt) at (4.270)

0

Consider a load uniformly distributed over 2 unit circle

£(t) ==~p, , |2 &
=0 , |l 2 '
Then from (4.27) |
== 11/2 sg Po ,/t Jo(tm) at = - /2 sgp, :I}_(fl (4.2701)
0 # om

This function is continuous and has 2 continuous differential
coefficient, and therefore satisfies (4.26). However, it does not

satisfy (4.25), since as m —¥ °° 'Jl(m)f =01
m

e o
and ..
/ﬁ' Ry l dm =0 dm is divergent.
m, w,

However, the above analysis may be modified as follows:

Let %2 =CP( r,z) and then physical conditions demend ZLE gp( r,2

—> f(r)uwniformly



40,

o4
From. 4:20 (sz+h2)c}>(r, z) = [m Rm[sze'sf mz . s4e"‘5:_m2] Jo(mr) dm 250
g;ts)

This gives on invertin

m By [.s e~=I1BZ L g e-—sz_m{] f 4)(’0 z)J (tm) dt. (4—’2702->

52+h2

Taking the limit of both sides as z->0

mEm(sz-'szl-: /cp(tz)J(tm)dt.
82+ h2 2—?0

The limiting cen be taken inside the integral sign since gb(r, z)-7f(r)
wifomly as z->0, and for the cases considered f(r) =0 )//L/ 7/
Hence as before, on proceeding to the limit under the integral sigm,

R, =7/2 sg Uy
The velidity conditions now depend on (4,2702), and are on the function

R(m,2z) = By (sge"slmz - gqe~S2M2)

This expression is clearly continuous and has contimious differential
coefficients in the uniform load case., Also (4.25) is now satisfied
for z )0 provided Jm B; is bounded.

All functions considered in this thesis satisfy above conditions.

Surface Deflection (wg)

From (4,24) and (4.27), on noting ™ sg - 1
2(sovhy)  S3-S4

we obtain ' e
wg = _ 1 Lt Uy [s7e_s’ nz . sse"ssz] J,(mr) dm
sg=sq4 220 J,
o0 (4.28)
JooWg 8, = = Lt /;Jm eV Jo(mr) dm

v-> 0/
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Normel Axisl Stress (p = - Z3
r=0)
Similarly from (4.20)
oQ
g?z/ =+ _1 fm Um[sge's'mz - s4e-s,_mz] dm (4.29)
r=0 8384

Meximum Axial Shear Stress (%’

From (4.21) we note that f2 =0 and w=0 when r =0,
Hence at any point on r =0 , %z and Tr are principal stresses, and
therefore the meximum shear stress is at m/4 to the vertical and is

given by -
Za =% (%2 + rr)

=

Hence from (4.20) and (4.22)

. = 1 fm Uy [(szd-ss) e S/BZ o (s pbsg) (4, 20)
A 2(sz-s4)
e"Ssz] dm

Concentrated lLoad at Origzin

Consider a concentrated load P as being uniformly distributed over

a2 smell area of radius € , hence

fR)=-p_ , [N[<€E
ne*
= 0 , [ E e >0

Therefore from (4.27)
&

Bn==85PF 14 1 |Jdo(m)tas
2 €30 &* P

since Jy(tm) =1 + O( tm)

t-=>0
S R o=-sgP Lt L _e_a’“+o(e3)J
3 €30 E*[2



42.

Evaluvations

The required integrsl are obtained by substituting for z the

values s,z Or soz in the appropriate results in Appendix B.

Definitions
Riz = re + (siz)z i=12
tan Q; =852 ten & = z/x

amcu—

X

Hence we obtain from (4.20) and Be?7

2(sgthy) = - sg Pz [sgsy - s4sp
R R %
R3

o

As shown in Appendix C, s3sy = syS, and sgsgsp = 1 5452
. wm Tews
therefore,
s2=-8 Pz [ 1 -1
2 LR E ]
Also
rz == L(sy+hy) sg Pr [ 1 =1
R B
= 5, B [;3 - }_3] from Appendix Be7
2 LB R
Similarly
R = igf_ [(sn_-l) + 8, sinaz- sin 9,]
4r
W= - 87 - 8g

P
ani(s5-24) [.ﬁi By

rr = - Pz [sls5 s
- w5 = 8286 |- 2 Nu

So

(4.311)

(4. 312)

(4,313)

(4.314)

(4,315)
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Here, as in the two dimensional case, the resultent stress on
any plane z = constent is from (4.311) and (4.312) always directed

away from the origin and is of magnitude

Fz=m = s PR[l -1] (4.216)
1o =% =

This corresponds to the elastic isotropic case where the resul=-
tant stress on any plane z = constent is always directed towards the
origin and is of magnitudé5)

FZ-:‘_Z;_E g
2n BE

This latter result cen easily be obtained from (4,216) by 2 limiting
process as illustrated in Chepter 6.

It is very difficult to Jjustify mathematically the process by
which Rm was obtained in the case of a concentrated load, duve to the
limiAting process involved in the definition of a concentrated load.
The method used by Carslaw and Jaege1(17) for similar problems dealing
with impulsive forces can be resorted to here, i.e., show that the
solutions obtained do actually satisfy all conditions of the problem.
The boundary conditions involved now become

Donz=0 #2=0, #2=0 t£0

o0 (4.317)

2) zy 0 fﬁ onr du= - P

It is a simploe exercise to show that solutions obtained above, do
setisfy (4.317), and the differential equations (4.05). Above results
for w and F, check those given by Mitchelfs) 1900(1), obtained as

described in Chapter I.
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CHAPTER 7,

A IOADED CIRCULAR AREA

Surface Settlement of Unit Circle

Assume
72 = £f(r), r ¢ 1
=0 ,r2>1
Then from (4.270)
U, = Jt/ £(8) 3, (mt) at (5.01)
and hence fr;m (4.2%& 1
Wy 8= = fjt £(t) J, (mt) Jo (mr) dt dm (8.02)
o -0

If £f(t) satigfies conditions necessary for inverting the order of

integration, then we obtain

! = - '
Wy S5 == jt (%) [fJo (mt) Jo (mr) dm] at. (5.,03)
> )

o0

Let Iy = on (mt) Jo (mr) am (5.14)

Using result 2 (13.4) Watsorl®

T,= 140 G 551, w38 [t

ct

(5.05)

=1 B L YD), b

The above hypergeometric functions can be expressed as complete
elliptic functions of the first kind(zc)
‘ Hence

If% K%z) Skl >l te s> (5.06)

=2 KK ,[k|] <1 te tr
r .
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where k2 = t2/r2 and K(k2) = / A6

p [1-k2sin2d

Hence substituting for Lin (5.03) we obtain
{

n-€,
= . 2
w_’g 53 ’G,Ifo [ft/r Ft)K(k) at + Jf(t)K%g) dt] e

€,»0 ° n+€,

Provided f(t) is finite and continuous in neighborhood of t=r, then we

can easily show that both above limits exist separately. Hence,

n /
T s £ £(£)K(K") dat + jf(t)K(l ) at rgl
z '3 jor h K° ’ (5.07)

w
i}

i

r

{
j_t_ f(t)K(k2) at , T>1
(o]

More suitable integrals for evaluation are obiained by using the

substitutions x = k° = t2/r° and X = = r2/t% respectively is above

1
P

integrals, These gi)re ;

whs, =I jf(rﬁi)K(x)dx +£jx‘3/2f ;_)K(x) ax 0g¢rgl
2 A hy =

2
(5.,08)

AV D Ly ]

’/If'
ff(r x)K(x) dx , T2l
o

Y]

Z
where K(x) = a

O\/ 1-x sinzg '

EIvalustions can be made by use of recurrence formula(zl)

<2n+1>BIm - 4n21;_l= 2x* | E - (2n+l)(l-x)K] (5.09)
where In = |K(x)x? dx , and x = k°
E is the complete elliptic function of the second kind. Above formula
holds for ail velues of n, positive negative, integral and fractional

except n = ";lg, provided the integrals involved are convergent.
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Reduction of Integrals in (5-08) by Recurrence

The reduction of integrals in (5,08) by means of recurrence
formula (5.,09), depends on the limits involved:
(1) Limits O to 1

Recurrence relation now becomes
142 - =1
(n+5) :[;, n? :Z;V, 2
After s applications of above (s> 2) we obtain

2T - WIM(%__%)Z#( ?;":%7‘\

2
+/n . n=1 ..., n=si2 . D=1 ...p=s+2 n-s+l
(;:§ n-37 n-s+37\> n=3/2 n=s+3/2 ';{]

(5.11)

(5.10)

(11) Limits X2 to 1 (P < 1)

Recurrence relation now becomes

wh? L, -2 L, =4-rn [22 - a2 o) k()]

= s(r,n) (5.12)
Hence after & applications we obtain

W[s(r,n) +( ) s(r,n=1) (‘:;' 2:% X S(r,n=2)
. +(§;} . _3-_-_;75 %ﬁ s(r,neg+1)

n_ .nl_ ... n-s¥2 \ (BFS+1)f] (5.13)
‘*;;;(33%' n-37 n-r+37
(i11) Limite 0 to 1/x¥*  (r2 > 1)

Then (5.09) becomes
/’n

w2 T - L - 1 [204D) - (1-1/22) (ae}K(1/e2)|

= Sl (l,n) =‘% - 5(,1_-,9 n) (5’14’)
r r
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Hence after s applications we obtein

F4 3 .
Lo e | 2 G ) Gy B R

(5.15)
+( 1 . n"‘lo n-2 s 00 n‘s“'g)zsg n‘s.'l)""%‘ .n"‘l oeon‘”s+2 2
n-; n-3 n-5 n-s+3 n~3 n-s+3
2 2

(n~s+1) ]

Above reduction formulae are useful when f(r), the normel loading on
the surface is a finite polynomial. The numerical work becomes in-

creasingly tedious as the degree of the polynomial increases. For
other forms of f(r) we can approximate by a finite polynomial, or
alternatively use graphical or mumerical integration to evaluate (5.07).
In practice it is not possible to teke more than a relativeiy small
number of pressure measurements under the loaded area, and a polynomial
éan easily be fitted to these measursments.

Evaluation of Surface Settlement (5.08)

Continued application of above developed reduction formulae, makes
the value of (5.08), when f(t) is & polynomial, depend on one of the

following integrals:

I I
IO = K(X)d-x £X B(X)/ = 2 (5016)
I,, = f_j_). dx = 2] K(k?)dk = 4G = 3.6639
X

where G is Catalan's constant

I} = 1,4160 from Appendix D
2. .
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I
fx-3/2 K(x)dx = - 2 B(x) l'
l,'z-

vx | r2

A
/ K(x) dx — tabulated in Appendix D
N~ x

H
e
|

[E(.r_z_l —] (5.17)

o
H
i

i

/
¢
/E'I 5 L ;ﬁ K(x)dx —tsbulated in Appendix D
’LL
oL [o K(x)ax = 2x B(x) | = 2/r2 B(1/72) (5.18)

-0

1/1—
fgj’_/ = j "% K(x)dx — tabulated in Appendix D
‘ z o .

it

Some of the above integrals are given in JrHuke- EMDE@]‘). The re-
meinder are calculated and tabulated in Eppendix D.

Special Csses

Concentrated Load[é]
Let a —>0, and so w —> o0 under the load. However at some

distance from load when a2f/r2—>0 I/~ 520

Wss’3 = g » _:L ° E = E__ ° _]_-_ (5.21)
m r 4 on r

This checks with result found previously (4.314)

Uniform Loed Distribution[]

Let f(r) = - p, where po is the loading intensity. Then from

(5.08) P = mp, = Total Load.
/

rs1l : f
wg /2 s, Do L [ JK(X)&X + fx"zlg K(x)dx
2 o N
{
P Wg S = r -+ 2 B _]_.
s 83 = Po p [Ia ,{I:-s/k: p -8 (rg)

Or if the load P is distributed uniformly over the circle r = 2, then

on applying scale factor to above results we obtain

réa ‘ (5.20)
We ;72% E (r2/a®) .

S,3
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ry e
as r — © B(a2/r%) — B(o) =1
4
r->a B(a,z/rz) — B(1) =1

Parzbolic Load Distribution C

£(r) = -py(1-r?)

!
T .*. Total Load P = [f(r)2rrd
il i S——n g

2

VLZ )
From (5.08) we obtain

. /
Wy S, = __2% T [ fo(l-rzx)K(x)dx + jn(x'z/z—rzx’s/z) K(x) dx}

i3 10 P
J r<l
/n_l.
=2P r [ j (l-rzx)K(x)de Ll
e o ?
Using évaluations given in Appendix D, and in (5.16) above becomes
s B3= g [E(rz)(4—2r2) - (l~r2)K(r2)J r< 1
P gme
, (5.22)
= 4r [(L_-4)B(L)-21E1)+ (-1)k(0
5 [@ 97 ) 1) T L
n>|

Inverted Parabolic Load D

£(r) = -rp,

/
- e’e P:pOJande'= o
MD\ ’m 1/",0 a _-é-.
A il ] //.L

Z
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Prom (5.08) we obtain
2 (! '
Wy S,y = 2Pr[r fx K(x)dx + rgf x~5/2 K(x)dx]
e ° nr

Y
= gpp® )?K(x)dx r> 1
T ()

Results can be written down from those of[B] and[C] or directly from

re¢ 1l

the evaluation of the above integrals. Hence

Vg S5 = '37;3}2 [E(rg) 1+4r?  + z(lmrB)K(rgﬂ r>1
P
(5.23)
=4r {481 )+ 1E1) - (1-1/r2)K(1/r°) rel
n"z['s' (?2) '9'(?2) L"le(/J

Hollow column[gj ,

Consider f(r) == _PB_ , /-& ¢ N ¢ | :
ane (5.231)

= 0 for a2ll other values of r,

From (5,01) .

R, ==-Tsg Lt Pt J,(mt)at
2 €»0 J 2rre
1-€
= - PSQ Jo(m)
4

Therefore from (4.24) surface settlement is given by

3
- me Jo(mr)dn
S7—$8 @
oo

e Wy s, =_F on(m) Jo(mr) dm
&N %

i

Ws ( Sz‘i'hz)

]
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and therefore from (5,06)

JU 5|

-— ‘
i
o
]
——
L
AV )
NSt

= _2 K(rd) , U<
m
te Wy S, =1272K(r2) <
=P K(L) , >l
mer ‘e

Rizid DiscfF |
Congider a2 rigid dise of radius 1, with boundary conditions

7z = 0 : IRJ?/

’

v =W, , ] €1 vhere w, is constant.

Hence from (4.20) 2nd (4.24), provided the integrals exist, we require

o0

0= j;anJo(mr)dm , v >
o 0
end wo = S7-S8 me Jo(mr) dm ) <
52+h2 (o)

From Watson 8)(1.’35. 42) we obtain
V)

/Jo(mr) ginmdm = 1 or 0, vl OR 7|/
[e]

o v 1-r2

fJo(mr) sigmdm = mf2 or sin"l//L , L </ R >
0

Hence by comparison

Bp=Csinm
m

and .*. W, = 57-S8 /2 C r<l
>
Sz‘l"hz
The pressure distribution is given by

g2 = S53-54 ¢

sgthz -t
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If the pressure at the centre is P,

]

- 0 53-54
spthp

and hence 3% = - Do
\;l-rz
/

.. Total oad P =p, | 2nzr dl =on p,

\;1- 3

[

then p,

Hence we obtain for the surface settlement

Wg 8,5 =B, /2 =§ ) n o< | (5.25)
= P, sin"! 1/r =P _ sin~t é/r , >
’ 2n

The contact pressure is given by

d=-p, =-__P no< (5.26)
iee AT
Normal Stress Along Axis
From {4.20) od
zz == Po sin m [Sse-s,mz - 549“57.‘“5 dm
r=0 S3-84 J,

]
H
V)

53 - 84 from A1
on(sz-s4) | 14s222 1«%-5322
(5.27)
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TABLE 11
Settlement Influence Factors wg s = N(r)
P
T
Concentrated co 0,636 0,318 0.213 0.159 ,0795 ,0398
Uniform © 0.318 0,312 0,296 0.266 0,202 .0826 .0400
Parabolic 0.424 0,403 0,348 0.265 0,18 ,0804 ,03%99

Inverted Parabola 0,212 0.220 0.244 0.267 0.224 .0849 ,0404
Hollow Wall 0.159 0,162 0.171 0.193 o L0852 ,0405

Rigid Wall / 0.250 0.250 0.280 0,250 0,260 .0833 L0402

i

Stresses at Points on Axig

In practice the only stresses likely to require investigation are

those along the axis of symmetry r = O. Hence from (5,14) we obtain

i H

2'2(53 - 34)= /m [ft £(t) Jo(mt) dﬂ[836°s’mz-34e‘szmz am
° 0

(5.28)

z = ] :
ZE.T IS = /m e-smz[ft f(t) Jo(mt) d.t] dm (5.29)

Since the infinite integral is absolutely and uniformly convergent
for z > 0, 2nd the finite integral is everywhere continuous and

finite we can invert the order of integration. Hence
Z_

I} ]
_LS = [t £{t) [fn e~"8Z g (mt) 6111] dt.
. (7] o

From Appendix B :

od
-Shy, . '
ne J.(mt) dm =P gcoséz = 0
0 1
jo R
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where

cos &

sz/R

R2 = s2z”+t2 ton 0 = sz/t Pl(cosg)

]

Hence

ZIS

/ _
ft £(t) Py(cosd) at (5..30)

0 g2z24 t2

f [5222%% ¢

Evaluation
A If f£f(t) is an even polynomial in t as it is in the cases considered
in this thesis, then (5.30) can be evaluated by the substitution
T = 8222 + §2
and therefore f(t) = f(@;z) is a polynomiel in (T-s?z%)

Hence (5.30) becomes

|+SZ
Z
[ ==z f( T-g2z2) 4t and can eesily be (5.31)
s 2 . T3/2
STZE

evaluated,
B If f(t) is any polynomial in t, other than an even one, then the

evaluation is more tediocus.

Z
We note [ = [ t £(%
‘ S s ’a% | [s2z<+t2 /‘L-

Substituting t = sz sinh §  sinfx= 1 we obtain

ZI = - _l_ /‘:z sink O £ (3111?(65 ab. (5.22)

S - S

The differentiation can be performed .first(lS) giving

27— = fsin(é‘ f(sinfé)céfé‘ 2 sinAX £(sinAW iy
(4]

?Z
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since Q¥ = - 1 and sinA«= 1l we obtain
2Z z;;sgzg-bl sz
MPELS
p
I; - sind § £(sickhad + 1 (5.33)

0 §Z|/S2‘22ﬂkl

Assuming £f(t) is continuous, as it will ve in practice, then the
o(
above integral involves only integrals of the type f sink 94(9 ’
(]

where n is an integer. Two methods can be used for integrating this

integral o
(1) If  Jp = fm/f"é’dé
0

then eassgily by using integration by perts, we czn establish the recur-

rence formulas

J, = sinf2 M coshX - n-1 Jp_p (5.24)
n n '

The final result is thus obtzined in powers of sinﬁo( and cosﬂo(, and
these can very easily be expressed in terms of z.
(ii) If the value of the integral is desired for some given numerical

value of z, an alternative to the above procedure is obitained by using

Sin'ﬂ—zw =1 [ cosfonf -m(lcosf\( 211-—2)& +27L§—cos/1 (5.35)

2211—1
(2n-0)0
F ogeee (=)B 2ngn

Sinfx.zm'lé =1 sinf (2n+1) é) - 2n+lclsin%( on-1)8 ...

ocn
(=) 2n+10 sin% (9] ‘
n

m -
where C n [ . The integrals now involved are simply
r/2n-r /
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/sin/l r8al = coshro~ 1

r
X

ﬁos’/\ré ad = sind r<
0 r

Hence their numerical values can easily be obtained

Finally from (5. "8)

C s L -

72
r=0 sz - “4
Z
= [ £ I ~£ f ] since
- S48p = S3S]
’ Z‘..____ 7 fI‘Om C.
- [ el
s, (5.36)
Wuere i
s, <
S = 4= 27>
/o a S, — S,
where s, = 1 S48p
T 83-84
s, ‘
and Et’(s)] = f(s1) - f(so) 2s in the integral calculus (5.361)
S’l—

Maximum Axial Shear Stress (ie. TFor points on r=0)

From (4.3D)
Zﬁ

[ (sg-55) I - (S4-s5>I ]

2( 83—54)

Using results in Appendix C, C.2, and C.& !

e G, __,-% {5,4 [5 ISLL » /o[ I] } (5.362)

85

s, =-1__5% _
# - T si(sz-sq)

Special Cases

Z
We now proceed to svaluate I s in the cases for which surface

displacements have been obtained in (5.20) to (5.26).
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Concentrated load [é]

From (5.30) and (5.36), or directly from (4.3ll) we obtain

~~

Z = - s, P -1 ):—s@P ] (5.37)
lr:O —3_ s 2z [sojs

2-

Uniform load [g]

f(r)=—po)r$l P = mp,

= 0 6 N>

)

Then from (5.30)

2z / |
- 1 [ = 2p f t_dt =~ 8F7D
3 s 0 [”2"2""0:[37'2 0
s A acfgdte rs'z_z'z."' tz

!

/ I
zp, | L. -1
[ sz \’ sgzz'}-l]o

.*s from (5.36)

~N

z (5.371)

= - P s

-z
r=0 fo g s jsz 2,,_1]5

Parabolic Load(C]

= 2
f(r) = - po(l—r ) , T ¥l
= 0 , >l P =15,
2
From (5.30)
Z
-1 ] = (1-t22 at Let T = §°2°442
s [s2z2+t2 %
I'f'SZ-
=z P, 1+sPg2-T 4T
Z . T mlZ
2 s
|
= 7pg [2 sz+1 = 2,‘szz2+]J
sz s

2
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Hence from (5.36)

Sl
Z’.\'Z/ = - 2P S, 2 25z + 1 « 2 ’s"z"-l—l? (5.328)
r=0 S

82

Inverted Parabolic Load[p_]

'f(r)=-rzpo , r¢l P =1 po
=0 - rpl
Then directly from (5.30) and (5,36), or alternatively by combining
2[13]- [G]we easily obtain

S,

- i

é?.z/ ==~ 2Ps, z [2. l+s222- 1 - Zsz] (5.39)

O 0
1+5222 S,

Hollow Coluun [@J ‘

f(r) = -2 _ 1-€ <r<l

2aneE

0 for 2ll other values of r.

i

Then from (5.30) |

z
-1 T =pz Lt 1 [ tat
s s €20 € | [42,247] %
~-&

Y

= Pz 1 5 ‘
2 [s 222+]_] 7

and from (5.36)

S
zy| =-s Pz 1 !
/r=0 72 [[s222+1]3/’- j & 40)

As a check on the accuracy of above results, we cen find the value

in each case of Z3 / when z is large by expanding in powers of 1.
r=0 z
This gives for the various distributions treated above

-~ S
A = - P /1
[ ] ZZ/I‘:O ;zz (53]5

2
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(3] #3] = = sP (1 (1-3 +_ 5+ 1>
/1"‘“0 2z« [;3 45222  8s4zt :‘LI_
(o] ( . s, (5.41)
E‘Z - SIQ P [l l nd o+ 5 ™~ so0ves
{1"-‘0 2z s% 2572  16s%z4 s,
~ s,
[D] ZZI = - 8 P [_1_3 (l Lod 1 * 15 ~ sesesn !
r=0 277 s s2z2  16s44 S,
s
[E] ﬁ' = =- g P [1 (l"‘ 3 + 15 - .o-.o] !
r=0 222 | s3 26252 Belgd s,
[7] fz:-gg_f_[}_n (Lm L+ _ 1 =-) ]s,
n=o 22*[ 89 g252  g4,4 s,

Clearly we see that all distributions approach the value for the con-
centrated load as z becomes large. This is in accordance with St Venant's
principle, and provides a good check on the derivations (5.37) to (5.40)

Maximum Axial Shear Stress

This can readily be obteined in the a2bove cases by substituting in the
= I, = s,

formula (5,362) the appropriate values of [3 Is:La,nd [":’s‘ IS]s
— 2.

. z
The values of I < are from previous work.

z
[4]Concentrated I = P 1
S 2mg2 | s°

[ BJuniforn ?Is-_- - 200 [;_ - s ]

z sp ]l
[Q_}Parabolic 215 = = ZPo [ 2sz° + 1- 25,/ 52224-1}
z

[ _]_)_] Inverted Parabola

Z .
——LS':"SZPO[EML 1

-2 sz}
\] l+sgzz

(5.41)
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[g] Hollow Column

*T. =-52

1
o (s2ze+1)3/2

(F]Rigid Colum

.ZI .——..--Eme 1

S 2on l-i-sgzg

Loaded Circular Area of Any Radius

Consider loading distributed according to law é%kf(r), the
Z=0
total load being P.

From (4.20) and (4.2720

o
7% 1 nz{JQf(t)J (mt)d?} sse7slm2-54e‘~tm%} J.(mr) dm
/r, z s9-g2 [ A ° { °

As in the two dimensional case, if we introduce dimensionless co-

i

ordinates z = z'a , r=rla t = t'a m=nl/a, the surfece distri-
bution becomes z'%' = - azf(r)'a) =~ f1(r') say
Then from above we obtain

g I
3 = .];2 1 m{ ﬁ'f'(t' Yo (m!t? )dt'} {sze‘wm' z'-s4e-s,_m' 23
r,z &% s5z-S4 o [4

Jo(mir!)dm!

-5
8~ rl ,Z‘

where z'/\z' is stress component at the dimensionless point (r}z‘). Or
take P' = 1 in the dimensionless system, and denote the corresponding

. ~ .
influence stresses by z/'\z', r'r', ete.,, then

73 =P gty (B.42)
I’,'Z -a’? r' ,Z'

Hence, corresponding stress components are directly proporticnal

to the totel load, and inversely proportional to the square of )
5.43
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“the radiusg of the loaded area. Or since P/a"’3 is proporticnal to the

surface stress, we conclude as in the two dimensional case corresponding

stress components are proportional to the intensity of lozding on the

surface. (5.44)
A similar consideration of the surface displacements (4. 24) and

(4.27) leads to the result

(5.45)
]
w = P 'v?/
T,z a r!, 2!
Hence, we havé
ws/ = P N(x') (5.46)
r a SB

where N(r') is the appropriate influence factor for the distribution,

and is tabulated in Teble II. Since P/a is proportional to 2 p,, we

conclude from (5.46) that corresponding displecements (i.e. at point

r' = rfa) are directly proportional to_ the radius of the loaded area,

and the intensity of the spplied surface loading.

Normal Stress Along Axis

Expressions for the normal stress along the axis due to a load P
distributed in a given manner over a circle of radius 2 are easily
obtained on applying result (5.42) to equations (5.37) (5.40)

This gives:

[§]Uniform Load

S

s

Z’% = «P 8 '_]_._ - z! = - P g, _]; - z !
/o,z a? [s Jszizfl]s Y [s :]sgzzaﬁ]s
= 2.

(5447)
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[Q] Parabolic Load

S
' (
72 = - 2 Ps%f z [Esz + 22 - 2,/s2z2+a2] (5.48)
/o, g a 82 S,

[D]Inverted Parabola
s

- ]
zz/ == 2 Pslg 7 [2‘/;5;2:;5- a? - gsﬂ (5.481)
0,z a S.

J s252402

=
(2)Hollow Golumn
S
z’%/ = -5, Bz 1 J ‘ (5.49)
O) Z 2 [_5222'!‘&2] % s,
(P]Rigid Disc
-~ ) SI
Z / = « P§o [ 1 ‘]
0,2 2 s(s2z%+a?) s, (5.50)

Moximum Axial Shear Stress (Z)

Zz
Similarly transforming the factors I.s’ vesed in equation

(5.362) for the calculation of Zy, by means of result (5.42), we

obtein
Z
A Concentrated __L_ =-_P 1
s 2nze s
F4
B Uniform [ =-2 [1- sz ]
s e V5272402

£
G Parabolic IS = =2 Pg [2s2z + 282 - 2s ,} s222+a2]

D Inverted Parabola (5.51)

z N
Is= - 2Pzs [2‘/s222+a2 - _a? - 2sz]
2
\/- a

e vV £22%
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E.Hollow Column

|

i @

LI 3
2 [ngvg’l-agj/?—

=-2 ___1
o (slge+al)
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Stresses and Displacements at Any Point in lass

The previous analysis, using Eliptic integraels, ie limited to
a determination of the surface displacements. No closed form can be
obtained for calculation of the stresses and displacements at an
arvitrary point of the mass. However, the desired quantities can e
obtained as infinite series in the following manner:

Substituting value of Uy from (5.01) into (4.20), we obtain
7 (sp+ho) -r_@gf [ft £(4) Jo(mt) at”sge (5.52)

—slmz] Jo (mr)dm

with similar expressions for the other stresses and displacements.

Clearly the evaluation depends on the evaluation of

Z

L [m [ftl £(t) Jo (mt)dt][e"smz o (mI'?]dm (5.53)
‘ 9

and this depends on the form of f(t). Physicel conditions demand

L}

that in any contact process f£(t) should be finite and continuous and
so have a Taylor expansion around the origin
oQ
£(t) =35 ep tB (5.54)
A=0
Another form that suggests itself when f(t) is an even function
is
M .
£(t) = 7%0 by (1-2)" (5.55)

Assuming that we can invert the order of integration in (5.53)

we obtain
I jt £(t) [/ Zn g, (mt) Jo(mr)dmj at
On substituting the exnan51on<éQ)Jo(mt) (=)7F Q%)zr

=0 ( r_l)2
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in the above integral, we note that the infinite series under the
integral sign is uniformly convergent for all finite m and t. Hence
term by term integration can be used over the infinite range 0 to
for m, provided the resulting series is absolutely convergent(zg\

On using results in Appendix B, we obtain

I Z( )T (EI‘-FD/ Pg 1(00591:) tzm_l

2r+2

£(t)dt

=0 2 ( L_.)

o /

:Ei( )r r+3 2) Py glcosl) [ +Fla()at.
=0 Ri?.-r’i'z >

?\m

(5.56)
where
2 2 -
Ri = 1+ (s“.‘z) cos Q{_
R4

Clearly the rth term in this series is of order _]_._2* end so is uniformly

Ry

convergent when | R} > |
ond so derivation of (5.56) is valid in this range. When the form of
f£(t) is known the evaluation can be carried out quite resdily. The

series is in effect an asymptotic series,

*Since /Pzr-*-l( COSé{) !

‘and { ]
- }-j(t2r+lf(t)dt / < J/yf(t)/ dt = Totel Load P.
° 0
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Cese | Bi[<1.

Here the only course is to first evaluate
0, = f t £(t) Jo (mt) dt in terms of Bessel fumctions.
0]
If in (5.54) £(t) is given as a finite series (as it will be in practice)

then the result is obtained by application of the reduction formula.

g = Jum + (2-1) Jo(m) - (n=1)2  Tp_o (5.57)
n
m m? m?
when /
n .
T, = f 1’J, (ut) at. This cen readily be esteblished
(o

by integrating by parts.
A much neater result is obteined on using form (5.55) for £(%).
Then

/
Uy =Z'bnft (1-t2)2  J, (mt) at
0

On putting t = sin@

l
Up = Z'ﬁ’%ja'o(m sin®) sin b cos®*Y ad

(5.58)

i

Z oy 2% ﬁn+l) Ipe1(m) (Watson (18)) 12.11)

mo+l

where n 7 - 1 for convergence. Heving evaluated R, in terms of Bessel
Functions (5.15) can now be evaluated for )RL[(I by expanding Jo(mr)
in series, and integrating term by term.

Using (5.58) for Up we obtain o)

i ~saz m -'U‘ nr o
I Zobn o2n F(n-\-l) e~ SR \131;_& ) Z %ﬁ?}’-(‘é) am

<
0 , mt U-o

Z 2 (_)’U' by zn-ZlfLE rZ’U' é-smzl+l(m)m—n+2v'dm

%0 o =y,

i
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From Appendix Be3

00 = (n+1)
7’(,+R‘U' [-’ Q CoO 6
f 2T omy lewn L 1)
0 Nt (1+51 22) 5
_((,L.,_)

AT L A A e (e08) 7

" —7112 U‘+l

S m=0 U=0 (L’i)z (1+S*2>
(5.59)
if (5.55) is a finite series then (5.59) is convergent
2 2. 2.
1 v R. 1+ 282
1+s T+g gt =< / l[ <

The other stress and displacement components may be similarly obtained.

Evaluation of Vertical Pressure at Any Point
B Uniform load

s

2r+2

Hence for [R| »1 from (5.56) we obtain

ZI 2 N OL Jora Par+1 (cos &) (5.60)

S =0 92T ( L)Z (20+2) R2T+2

From (5,59) for jR,(l + 2857

s/
ZIS = Po 2 (-)T Lavez EI (cos 63) £V (5.61)
V=0

22V (Ll)‘)z (1_'_3:.22.)\7-;15_

Therefore from (5.52)

, 2 E 2 S,
43 = SBI _— I L= - 77’8/0 [“’3‘ IS] (5.62)
-3 S2..

4 .
Z
where [ I] éTZI;-—JgLIS ' (5.63)
{ 2.
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C Parabolic load

£(t) = - Po(l‘tz) Ne only b exists
I an+i [ 2
- (fHoar = - 5, [ sa-tDas (£-1)
= )’f (1-%) da% = po B(r+1,2)
= Po F(‘I"*'l) = Dy
Plr+3) 2(r+2) (r+1)

Hence [ R{ >1 from (5.56)

(5.64)
T, - )T Y
(=)F [2r+l Popyy(cos R
iz,=o 22r+1! L -"E-ér—“;é"“‘—
and )R/ Z_1 from (5.59), n = 1 is only term in n summation
7 v (27
/ = p, = 2% P —oppy (COS 9)
s M=o (L)L

(1+5222)" (5.56)

and 72 can be obtained from (5.62) with above values for Is
D Inverted Parsbolic load

- Py 7 | t] <1

= 0 [t]>1 e P o= T

:[tzr*lf(t)dt = p,/2r+s @

Hence from equation (5.56) for IE l7 1

Zz : o
I& By 2 ) Z-_—l P2r+l(c°sé) (5.68)
R=0 2RT(r)2(pres) T RBTE | |

£(t)

i




69.
However it ié the region ]R| £ 1 in which we are essentially interested,
because for outside of this region Saint Venant's principle can be
employed, permitting the loading to be taken as concentrated.
For /R[ <1 £(t) being an even function can be expressed in form '

(5.55) since

£(t) = py r2 = D, Ll - (1-r2):)
Hence the solution can be written down from (5.59), noting that n takes
only two values o and 1., In the present case, it 1s easier to use super-
position of [A] and [Bj
Hence

ey = ' L) - Y
2z 2 2%33 strib. 22 arabolic. (5.67)

E Hollow Column

With f(r) defined as in (5.231)

[
:
_ftzwlf(t)dt_., LT thI“"l_li___dt = P/on
0 E>0 -, me

Hence from equation (5.56) for fR ( > 1 we obtain

Fa o0 I (5.68)
To=r > ) B2 r(eesd)
S 2rt =0 221‘(&) b 32r+2
Ang for lRf {1 from (5.01)
U, = B Jy(m)
21
Therefore d
Z B
z $= P% e~z n g, (m) Jo(zpr) dm (5.69)

(@)
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This can be expressed in cloged form by Watson(ls) <l3- 22)

fe M2 Jo (m)Jo(mr)dm = Q E szzz-!-rzd»l)

Hence differentlating partially WeTo bo (sz)

ZIS =g @ <R2+l>

since

"
!

=%
2] S
R
= __s_z_,3 E( 2r (Magnus(gcg)
Lo P {Rz—l 'lj
T
.*. As in (5.62)

241 Sa

52 = - S0 2 E or

8 S {324-1 '-1} (5.71)
2r
87_.

where B2 = r° + s222 . Note this expression does not hold when r = O,
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CHAPTER VI,

ELASTIC ISOTROPIC CASE

In the elastic isotropic case Ej =Eg=218 =0

! FR

= O;—:_.:O", and
the constents L, N, A, C, F are given by equations (1.34) and (1.35).
The roots of the characteristic equation are s; = sp = 1. However for
these values all the results become indeterminate and so must be evalu-
ated by 2 limiting procedure. We could take s1 =1 + 6, , sg = 1+ 5?_
end take limits as 5,—->O , end & —> 0. However, noting that all results

are determinate for s =1 So + 1, we can approach the elastic

2

isotropic case more easily by teking s; = 1 and sp =1 + d where $—>0.,

Limits Required

For the constants defined in Appendix G, when s1=1and sp =1+,

to the first order in & we obtain

sp=8 +8 shA-L=2+k =1
G A+
o 2 (6.01)
hy = A - Ls§ 1+§_0 A - Ls
3 23
Gsz G‘52 SL={
= 1- 8(A+L =1~ 6(A+3PL>
G A+ fa
sy +h; = 2
52 + h2 —-? 2 bl 8 2 E" o.o A(82+h2) = - 6 2&: (6.02)
At M ‘ A+ pA_
sg = ('E-C)(sz-l-hz) —_ - 2/&&[2 -S24
: At A

hosg —>1 - § 2 /A

Ad fA— ‘
s, =2 \P=Chase |—> 2] - 2+§ 2 Q4200 (&
4 1 22] L A TERTY



(6,03)

S4 =~ 83 —76(4,") = A sy
(8 - D) (sprg) —> (40 [ 2 =526
s
2AM

2 A—thSg]——}2[75 +M +57\+t&

Sg = S5 —> 82%;’:73:%‘ =A S5

sgth, —>2 - 52/
N Ffas

2hy —» 2=~ 652 O+ 3K
At s
(6.05)

sg - 8y —> =520+ 20 —Asy
At
s 2§ 2-g2H -1 (6.06)
9—>TT[_____”87>+ —> TS
- 4pms
(6,07)

0
)]
1

0
[e2}
0

(6,04)

Sy

S8

- Su8
Slo = 452 > 1
T‘I(ss—s4) ms

-2 (Limit only required)
(6.09)

= 2 _sl+s_ M =1+4s,

s =
2. —een
’ sotho A+
(6,090)

S5 = - $3-84 = 2u(A+M
Sp~8g A+2 (A

(6,08)

£11

i

= . 2 - 2

To preserve symmetry in calculating limits regquired, it is
desirable to set & = AS, , and so sy =s] +A s; where sy = 1
Two Dimensional Elastic Isotropic Case

Tor the loading treated in Chapter II, we have from (2. 36)

m]E'km=ngm



where od

= | f(x) ecos mx dx. (6.10)
0

Hence from (2.29) with sy =1 55 =1 +&, and noting that

T

59 = 2 , we obtain
sothy  Ti(sg~s,)

o4
52 = L,’t 2 T (ége—mz - S4e-s?_mz cos mx 4m (6.11)
520 7 ”
(o L s S4

3.—

This last integral is uniformly convergent and a continuous function
of m for Ty continuous and z > 0, and so the operations of proceeding
to the limit and of integrating mey be intercharged provided the resulting

integral is convergent. This is always the case for z > 0, since the resultin
& &

integrals are all majorized by the factor e %
w1} — y - - '+,AS mz
And [t SgeTRZ _ sge”SaMZ . /4 83670 _(s34/83)e (1459
5>0 Sz = §4 $>0 - Asg
45 20
3
= Z_‘{: Asge~BZ _ As) pg sze~RE
AS20 Asg o
= e™™Z (l4mg) (6.12)
5 AS = -l
since 532‘;;‘ _8_.(__.&1 =-1 from (6.,03) .
) (ap)
Hence from (6.11‘,)°
7z = 2 j(l + mz) e 2 7;bcos mx dm
T
Similarly it can be shown that
X2 =2 mze’mz7;bsinmxdm
p .
° (6.13)

] .
ﬁc:gj(l-mz) e"mz7;bcosmxd.m

0

a
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Also from ( 2. 32)

u = (s h)erzu (s +h1)e s,mz
5—>o Tr T Z . sin mx dm
53~ %4
= 2 -7;b /4 sg+h2)e' + 2mz A\sg e 2 sin mx dm
e I
o " 870 - Asg (6.14
=1 1_.l-z |[eM2T sinmxdm
i At om M
0
\Slmilarly od
w = -1 A+ N 1 +z [ eZ T, cos mx dm
i pAdp) m P
(o

Tn, is finite for an applied load that is finite per unit length of wall

and if applied load has a non-zero resultent, then Tmzié 0 when m = Q,

Hence all integrals in (6.13) and (6.14) are uniformly convergent z> 0
excepting the integral for w. The remarks on the w integral in the
seolotropic case, epply here with equal force, and so the integral may

be used to obtain relative deflections at short distences from the origin.
This seme difficulty is encountered in the treatment of the above problem

by the method of singularities (see Love('sg "Theory of Elasticity", Page 211).
Later in this chapter the infinity is removed by placing en equilibrating

load at a2 great distance from the origin to secure zerc resultent on the

plane Z = Oo

Concentpated Line Load
The stresses znd displacements due to a concentrated line load may

be obtained directly from equations (6.13) and (6.14), However, for the
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purpose of the present thesis, it serves as a check on results (2.44)
- (2,49), to deduce the corresponding elastic isotropicvresults by 2
limiting procedure.
Stresges

From (2.44) on using result (6.07) ne obtain
ﬁ:éf-?z L [l - 1 -Asl?__(lg
>0 TTASl ] —I‘-f -I-'f ?~S/ 1‘2

~
e zZ = 2P 25

e
(6.15)
Similarly
%2 =~ 2P x 2° 3 = =~ 2P X%z
ki 1‘; it :l:‘g
Displacements

In (2.49) place constant = O, as we only need relative velues. On

using results (6.06) and (6.09) we easily obtain

e [T 1_ [A (hg s, log ry)
w > A 550 A 51 %

P Lt 1 [ log r{A hs +A sn_} + A{log rgﬂ

5 -2_‘_'7/-'\- §50 A8y

(6.186)
~ - P(A"!“gﬁk) + E__ Zz
2 o+ A M. T
Similarly
u = Lt 1 [T_BT as, - A(s/z(z):' (6417)
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All sbove results check with those given Dby Lovg?)Page 211 "Theory of
Elasgticity! except (6,16). This letter agrees with Loves's expression
if we teke the constant in the problem = - 1. Hence the above example
provides a very fine check on the sccuracy of the resultsn(2. 44) -
(2.49) |

Evaluation of Uniform Load Case Directly From Integrals

Consider a load w, per unit area distributed over |x| ¢« a

e T(x) = - W, [x] ¢ =
= 0 ) Ix] > a

And from (6.10)

o a_
T = ff(x) cos mx 4x = - wojcos nx dx
o ‘ ()
= w,sin me
: n

Substituting in equations (6.13) and (6.14) we obtain

X = 2w, (-1+mz) e~BZ gin ma cos mx dm
T J , m

o0

(6.18)

Xz = - 2%g e BZ gin ma sin mx dm
™y

Zy = - zwo (l+mz)e BZ gin me cos mx dm
m

= Wo z -1 1 e ™% gin me sin mx dm
7\+}1_ m m
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(6.19)

w=gpf[7‘+2&_ __J_._+_z_] e"2Z% gin ma cos mx dm
p(A+pJ n R m

As discussed previously all the sbove integrals are convergent
except the integral for w. In this latter case relative deflections can
be obtained by bounding m away from zero. The eveluations are easily
performed by mesns of the integrsls obtained in Appendix A,

EBvaluations

Bon [2 LTy [oag) - o) - O 8]

T

2

N
xz=—_vg‘,_zI = - W 3z 1 -1 (6.20)
s T m e [

- i

72 = W, inzs —f—I;l =w [z x+a) - z(x-a) + 6,- 51.
TI T r5 rs

o
i

Ve | 2 ~‘__L - w 2Rz x _ 6 9
2,.,),11: N‘/*IJ "én[nx e T R j
(6.21)
w (e TRz |=x -z (4,-6) +Arape
zrr[{:(rmﬂ)sIg +?f:—13_] zn[;m /4_()‘-1'/1}(

- x log'rg + a log rlrz)]
1

]
i

+ const,.

Equilibrating Load at Great Distance from Qrigin

Integral (6.,14) for w is finite at m = 0 if jf(x)dx =0 t.€
()
if the applied loading on z = O has zero resultant. One way in which
this result cen be produced is by placing uniform strip lozds of

intensity -w as shows in following sketch.
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~ My - Ay - A
[T O T IO, x
a.

‘ (x.2)
Z
hecordingly
f(x) = -w, | [x] <« =
= W, , Na > lx| 2 (W+l)a
= 0 , for all other values of X
and from (6.10)
o0
Ty = d/ﬁf(x) cos mx dx = - W [sin me+sin Nam (6.22)
(] m m

- sin§N+l)ma-]
m .

Hence the corresponding stresses and displacements can be written
down from results (6.21)

Influence of Eouilibrating Loading on Stresses and Displacements Near

Origin
Stresses

Consider & region in the neighbourhood of the loaded grez, and take
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Yo large compared with either x or z. Then from (6.20) we obtain as

the contribution to X say :8;1 made by the terms [sin sz - sin(Ml}am]
m

is (6.22):
~ . a=a N+] Q.
X%, = ¥ z§x+Na’2 - zéx—l»&laig Q
T || 2R (xile) 2 et (W ld) 2 -+
4 Nac

d=-a
From above disgram, we easily see that

[ W
8 * _2ab

Ka

i

is of the order 1 when Na is large compared with either x or z

1
N
Hence

%) is at least of order 1 <.e. O(1)
N N

Similarly we can show

z'%l , ﬁl are also 0(L)
N

Hence the contributions made to the stresses in the region near the
origin by the equilibrating forces on z = 0 may be neglected.

Displacements

u:  From (6.21)
el I

| r=a_ N+l a
U =W A+ 2 2z log zgﬂxﬂaf!? . L X Q
on 2;&(7\+f4.) 2 o+ ( x+N%1le) ) A |y
= -a a

We have already shown

= 240 o)
Na _ ¥

/ﬁa

2 ——r—
and log z2+(x+la) =log |\l - aé oxt okl 2) ]
: 2 +(X‘*'N+l-‘=‘~)2 2 (XL a)°
- a §2x+2ﬁ-ﬁ. a) 0(1)
— 7ot (XL a) - N
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when M is large with respect to either x or z. Therefore wp = O(1)
N
and so contribution to u may be neglected.
w. The integral is now uniformly convergent, and can be evaluated
from Appendix A and result (6.21)as follows:
a 2 Na .2 Nta o
>0 /*(k*‘l"-) ] 3 $ 3 b — 3
Z a -1 Na. -/ Nt a -1
B s s s
=l L, -1

The sbove limit now exists since the integral for w is uniformly con-

vergent. The equilibrating loading superposes an infinite displacement
to neutralize the infinite displacement due to the loading on jxl€ a
Hence 2 finite displaced is produced at the origin. Moreover as in
previous examples the finite contritution of the equilibrating loading
to the displacement in the neighbourhood of the origin is 0(1l) 2nd so
can be neglected. Thus an analytical explanation is obtaineg for our

procedure both in the zeolotropic and in the isotropic case of bounding

the varizble of integration m away from zero .. m 2 8> 0.

Results From Loaded Strip

As noted in the aeolotropic cese the displacements depend only on
the settlement constant S3 * Hence the surface settlements in Dboth
the aeolotropic and the isotropic ceses are similar in form, and have the
magnitude ratio

seolotropic : isotropic = U+ 3113 (6.23)
N2

This may account for the observed fact that the actual deflections

are less thaon those cslculated by the isotropic theory. This is the case
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if

b 7 2 zglu)

However the axial pressures, and the axial shear stress patterns are
dissimilar in the two cases. This dissimilarity could also affect the
surface displacements considerably in the case of a multi-layered soil
of dissimilar materizls. The above remarks apply to an aeolotropic
axially symmetric soil medium under all conditions of loading. It may
be useful to calculate the normal vertical stresses for a loaded iso-
tropic strip by a limiting procedure.

Loaded Isotropic Strip - Normal Vertical Stresses Along Axis

From equations (3.52) - (3.58) on applying the limiting procedure
developed in this chapter we obtain
[_.e}] Concentrated Load

3 =+ [T P .jg__(l) Asy =~ 2P (6.24)
0,2 §20 TIAs;z  0S se/ | s=1 Tz

[13] Uniform Load

&l =+p2 lt1_ 1 ten ™t 8 (6.25)

0,2 e, $%04s; s |s s% Dsy

=1
-1 ‘
=-=P_ [ + tan " a2+ a2z
Ta, z 8% + z°
[_Q]Parabolic Load

72 =3P [T 1 [a2+3222 tanta | As (6.25)

0,7 2na,3 >0 Asl ?2s s sz

s=1

38

[(az-zz) tan~t a + az:l
z
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[ Q] Inverted Parabole

~ -1
22 =-3Pz° [t 1 B |[stan " 2 DSy
/o,z T ad 8§30 Asy S sz}
g=1 (6.27)
: = = 3 Pz ta.n"l_@—az .
P 2 84zl
[EJ HOLLOW \/\/RLL
: N
2 =Pz [l 2O 1 As1 (6.28)
/o,z ™ 820 Asy r X [a?:l-sgzz] .
s=1
= - 2 st
{2 B2) 2
[ F] Rigid Wall
i‘zl =P [t 1L © 1 As1 (6.29)
0,z T $%0 ODsy s s |8.2+8222
g=1
== P 1 + 22
T | [oPra2 (a2+2°)3/2
/B/ Three Dimensional - Axially Symmetric
For the loading treated in Chapter IV , and
Ry =T/2 sg Uy = S2¢h2 Ty
53‘84
(6.20)
where *°
Uy = | £(%) Jp(tm) t dt.
[o]
we have from (4.22)
. o
7z = /_‘tfn Uy [s;;e"mz - S4e—s,_mz} Jo(mr) dm
$>0
' 6 sz - S4
= fm(lﬂnz) e "% Uy Jy(nr) dm
(-]

on using result (6.12)
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Similarly it can be shown that

(72
Tz = Zijzz e B2 Uy Jp (mr) dm (6.322)
and
w=2 [t f [ e~BZ | ¢ s,_mz} J1 (mr) dm
>0 .
=2 fU J1 (mr) L_t[mzAs-—As e ™2 dm
&0 - Asg
f[ - mz e™®2 Uy J; (mr) dm (6.23)
A+
Sinilarly oo
w = [ Lf [576 - see‘szmz] Jo (mr) dm
S 83 = S4
o0
= ij Lt | sgnzos) e~ As_,e"mzj Jo(mr) dm
§>0
..ASS
od
==-11/] A+ 2M +mg | €% Jo(mr) dm (6.34)
2) T pbry R

end finally from (4.22)

390

T = —é—_ m Uy Lt sEe - sge~S2 0% ] Jo(mr) dm - 2f‘3-2~.
/) Sz = S4 Y

Since

T il ( s1~485) & 2
~t . S[;-S SgMzZAS1~ASS
-633
= [-' h’l’& mg + A+ZLK ]
» MU 2+ M)
= ~J;,\U Exepm =2 +pm mz] e®Z Jo(ur)dm - ZUu (6.25)
EE S r

Above results check with these given in a little known paper by Lamb (23)
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Surface Deflection (wg)

Clearly from (6.34)

oQ

w, ==Aeape [T U e 2 Jo(mr) dm (6.36)

Zlu(hﬂ&) Zr0 )

and the Axisl Pressure p is obtained from (6.31)

£

ol
D=~ 53 = jm Up (1+mz)e™@Z dm (6.37)
r=0 fe)

Axial Shear Stress

From (4.273) §4 —> 83t AS3 sg ->85 *+ Ass

so—71 + O8]

Zﬁ =% It fmU [A{(saﬂ.a)e s*“‘?}] dm .

end Lt A{(§3+35le'szmz} Lt e™z D(sztsg) - mz(sztsg)As
S0 A sz 520 TRy

i

il

- g7HZ +7\—ék+)—¢4_mz
2 At

Hence

Ameu [(h-y) » (rofhpa] &7 (6.38)

Concentrated Load

The Bousinesgue solution for the case of a load P acting perpen-
dicular to the plane boundary of a semi-infinite body can easily be
obtained directly from equations (6.30) - (6.35).

However, as a check on corresponding results for an aeolotropic
body, we shall now obtain the isotropic elastic case by a limiting

procedure from equations (4,211) - (4.315)
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From (4.311)

2=1
== 3P zS
21 RO
This is the well known Bousinesque result.
Similarly
f2 =3P r 52 (6.40)
poix) RS
Also from (4.314)
woHPm L€ -1 hos,
TR 520 4As S (EF
Ro
e o we=PB Lt 1) las, +L1Aby vARL
i 570 Asy | R~ R (Rz‘)
> -B_ [; (- zz]
m L R\ rr/ B3
(6.40)
ote wWw=P _ 22 + PA+2M . 1
e B ampan) R
on using results (6.091), (6.01, (6,09).
In 2 like menner we can show that
. =psind [ cosl - _& 1 (6.41)
4mUR N+ l+cos B

where cos 9 = z/R sin B = r/R
All above results check those given by Lovéz) Page 191,

Loaded Isotropic Circular Area - Normal Vertical Stress Along AXis

From equations (5.47)-(5.51) on applying a 1limiting procedure we

obtain:
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A Concentrated Load

22 =B __ LT L_;g(l AS s (6.42)
0,2 2nze $%0 Asy 98 9
=1
= - ZP
Brrzz

B Uniform Lozd

72 =P [t 1_ 2 [1 - _z A S1 (6.43)
0,2 1?675 S0 Asl 0s s ,[32Z2+a2
s=1

C Parabolic Ioad

?z/ =gpz /T 1 @ [2sz+£nz,I52z2+aﬂ Asy
0,% N

T 2% $90 Asy Os 82 s=1
(6.44)
)
= - 24[-221'&2 + _ 24"
na z v 22+ 22
D Inverted Parzbola
7% =2 P% [t1l "2 BJ §27242° - 82 - 25% Asy
0,2 T a‘ g5 Asy 0s { sgzg+a2 =1
= - gPz° Jiz . - 22y -2z (6.45)
Tt (6242972 . [ 22442
E Hollow Column
zZ =-Pz [t 1 [<S222,+ag)-3/2 A S
0,2 on  §90Asy 0s s=1
==3P z (6.46)
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F Rigid Disc

s =R [tl1 L Asy (6.47)
zz/o’z 21 §%0 4s; Os [s(szzzag) .

i

-P_ 1+ _ _27°
2 | a%+ze  (a%+z2)@
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CHAPTER VII.

ANALYSIS OF THREE CONSTANT MEDIUMS

Beginning with Wolfi)(lQBG) several papers have appeared attempting
to simplify for use in seils, in woods,‘and in crystals the two dimension-
al axially—s?mmetric aeolotropic theory. To evaluate the physical meanings
of the assumptions on which these simplifications are based, we need ex-
pressions for E and PL-associated with any arbitrary directions in the

medium.

e

— X

)(/

Z' 'z

Consider a two dimensicnal medium, with the orthogonal pair of axes

ox!, oz' making an angle 69 with ox and oz respectively.

Expression for EG
Consider pure tension along the arbitrary direction 0 X'. Referred

to the axes ox', oz' the stress condition is then specified by

N

x'x! =T (a constant) (7.1)
T =0 3 =0

and the strain along ox' is specified by eyi1x1. The above siress system
mey be referred to the axes ox, oy by the well-known equationéZ)for trans-
formation ofrstress.

These give

& =42 %% = n°T %3 = AaT (7.11)
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where ox! hags the direction cosines (/ﬁ)n) = (cosé, sing). Also the
equations for transformation of strain give

erigl = {,2 exx * n? €,y + ’fn xy (7.12)
The relations between strain and stress for two dimensional plane sitress,
or generalized plane stress are given by (1.13) with y/'} = 0. These may
bé presented in a notation more suitable to the present needs in a notation

introduced by Voigt.

7~ ~
Oxx = S11XX * 8,522
€zp = 8,3 XX + S, 4% (7.13)
~N
Oy = S, oKz
where
s =1 i s3=3% = T 5s,=1 (7.14)
s, =1
6o | =
Ha

Substituting velues (7.13) in (7.12), and using (7.11) we obtain

1 =%x'x' =5, f,4 + (2s, + s, )'{_Qng-b s. n4, (7.
Ee ——E—— ! 13 6 a3

Expression for /-Le

Consider pure shear along the two perpendicular directions ox', oz'.

Referred to these axes the stress condition is then specified by

21z! =5 (2 constent) (7.16)
£x! =0 zr‘\z' =0

Trensforming to axes ox, oy we obtain

= = 211, S £% = 2on, § %% = (ln1+13n)S (7.17)

where oz, has the direction cosines (11,n1)=(-sin9,cose)

The egquation for the transformation of shear strairgs) gives
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extyt = 2 11 egy + 2 mmye,, + (1o + 11n)exy (7.18)
substituting in 2bove from (7.16) end using {?.17) we obtain

1Lo=Sxyl =45, (117)% + 4 s,,(om)? (7.19)
fo 8
+ 8 s, (113mn3) + s, (1ng + 11n)?

On substituting for direction cosines in terms of 9, above becomes

1 s + g - 28 - s‘é) sin® 26+ 8 (7.20)

erz ( H 33 13
This shows that attains a2 maximum or a minimum ate =1 according as
4

s, + S1a lor > 2 S5 * S When the material is isotropic then

6

"
Bl = Ep and /U-Q is’ 2 constent. This requires s + 83, 2 8.7% 8¢

On using (7.14) this gives the familiar relation

o= 2
2(1+0)
We now proceed to 2 brief review of the literature on three constant

mediums,

(1) Wolf's PapedD (1935)

Wolf in hie paper assumes that

M= Ey Eg (7.21)

E+Ez(1+20°)

He does not discuss the physical implication of this assumption, having
adopted it entirely for mathematical expediency. He presents & plane
strain treatment suitable for an aeolotropic soil medium. By & rather
laborious process that follows closely the stress function pattern of
two dimensional isotropic elasticity he obitains solutions for the con-

centrated load, and the uniformly distributed loed. He then considers



91.

the case of & uniform lozd distributed over a circular area, but in
addition to the assumption (7.21), he sets 0,= 0,= 0. No settlements
are obtained, nor is any technique given for their derivation.
We Can easily show that assumption (7.21) is equivalent to
S, + 8a3 =28, * 8, (7.21)
From (7.20) we see that this implies that the material is everywhere
isotropic with regard to shear, however as seen from (7.15) it is not

isotropic with regard to direct stress.

(1i) Sen's Pspede® (1939)

Sen in his paper gives an erroneous derivation of (7.21) by con-
sidering the deformation of a rectengle with sides parallel to axes.
This paper is an extension to the seolotropic two-dimensional case of
his ?revious work in isotropic elasticity. The assumption (7.21) is
mathematically necessary in his treétment, in order that the solution

may depend on that of the harmonic eguation

b"+'a">=o
“'752"-“’1773;19

where 321 = ‘E:!._ z and @= J?x'!'z(;.
Ea

His method, based on analytic functions, is mathematically very elegant,
and leads to the direct determination of stresses. The displacements

are then obtained, but the method is rather laborious. Application is
made to an infinitely large plate with a horigzontal straight boundary.
The moduli sre different in the horigzontal and vertiéal directions, What

the material is, he does not specify..
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(11i) Okubo's(25)Paper (1939)

Obubo bases his treatment on the system proposed by Wolf for the
solution of stress problems in crystal plates when Eiy —>Ez. To evaluate
hig system it is best to revert to the general equation for the two
dimensional aeolotropic stress - funciion X as given by Hube1(26)

Vs x T (3”-»0( i >X= 0 (7.22)
X2 UREY ox* 22"

where o(o( sy and oL, + o( = g +2 83
Saq 533

(1938)

Okubo's fundamental equ,ation is

D +1 2" (7.23)
(’axz k oz )Xd

where kP = $§a3
8,

This latter equation is derived from (7.22) by the use of assunption
(7.21) together with k—>1., For his examples the latter requirement
obtains, but he makes no investigation of how closely requirement (7.21)
is satisfied,

Let Wy = Wp = g, + 8 , then (7.21) demands (7.24)
1,3 28,5 + S,

that WI?:]" It is instructive to compare values of k and Wp for some

crystals that have k —> 1. Using data given by Voig‘t(g'?) (Page 761), we

find:
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TABLE 3
CRYSTALS
Crystal 106 s, -108 Sia 106 Saq Wi k
106 s,, -108 s, 108 s
108 s, -106 s,y 108 s,
mn?Llce | Ky e | sy
Barytes 161, 3 18.8 823 v _
185,7 88.0 342 1.10 1,07
104, 2 24,6 353
Aragonit 68.4 -4,2 238 :
120 29.8 382 1.35 1.04
120 23.3 230
Topaz 43,4 8.4 2l
34,6 13.5 74 1.17 1,045
7.7 6.5 75

Trom sbove it cen be concluded that Wolfe's assumption is not very well
satisfied for crystals, and this is a serious defect in Okubo's otherwise
excellent paper. Note that the approximation is much worse than would be
suspected from the deviation of k from unity. This is due to the fact
that many crystals are definitely not isotropic with regard to shear,

It is instructive to calculate Wp factors for planks of boardé, as &
measure of the applicability of Wolf's and Sen's results to wooden plates.
The y eaxes is takeﬁ perpendicular to the radial rings of the wood, and
the x and 2z axes are respectively tangentisl and radial to the rings.
Accordingly plenks may be cut in the planes ¥ x and y z. We shall in
the following table calculate Wga and “&25 corresponding to above
plenks for different types of wood. The values of the stress coefficients

s are taken from Horié%).

ij
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TABLE 4,
WOoOD
Type Sy =-S5 S44 WFz,
S,. -8, Ses _
s -3q See WF
mék/kg mmz/kg gm%/kg 23
Qak 10,15 3.00 7.60 1.07
1,72 0.87 25,0 —_
4, 57 0.55 1i2.8 0.97
12.2 4,90 731 1.19
0062 004-6 3603 -
Ash 6045 0.48 11.0 1,11
_ 15,9 6+40 8s36 1,61
Birch 0. 600 0.26 52.7 -
8,88 0,29 10.8 1,22
10.9 4,5 8,35 1,11
Oregzon Pine 0,599 0,23 123 —_
7.55 0.22 10,8 1,03
15.5 5. 17 15,7 1.4%
Spruce 0,587 0,33 279 -—
12,1 0.22 11.5 0.83

The results zbove indicate that assumption (7.21) may be used
for oak and Oregon pine but certainly not for the cther types. However
2s shown in next chapter, the results obtained for two dimensional plane
strain may very easily be exfended to orthotropic two dimensicnal
generalized plane stress problems. Henée this treatment should super-
sede the works of Wolf and of Sen discussed above,

Weiskopf'éb)Paper

In this paper a soil system is developed based on three independent

elastic constants E R o and f* . This is just a particular case of the
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gsystem in Chapter II by putting
By = Bp (7.25)
WeiskoPf justifies this assumption from the observed fact that in a
sandy medium, due to the slipping of the grgnules on each other the re—-
sistance to shear is much less than in a solid. This means that /\Lis
less than its value in an elastic solid. __JZ.:_‘T_E)_ » The physical implica-
201+

tions of sbove assumption can be seen from equations (7.15) and (7.19) on

putting s, = s,, and noting that 7 E i.e. 8, = 2(s, - s,,)
| e ¢ i /3
2(1+0)

Hence both EG and [u.eare seen to be non-isotropic, attaining extreme
values when é = T » Physically this is rather an unlikely s0il medium,
since we should eipect an extreme value of E only at 9: T, if the value
of B varies with the angle 9 . °

His equation for the two-dimensional stress function is somewhat
in error, due to an error in equations (4) of his paper. Plane strain is
the only tenable assumption for a two dimensional soil medium, as such
things as soil plates are nebulous. Yet in equations (4) he tacitly vputs

‘}%\,‘—'0% = 0, In other words he assumes that plane strain and plane stress can

exist simulteneously in a body. If we correct equations (4) we obtain

exx = [fx-d’(y’ﬁrd- 'z"z)]

0 =ey.y=_EI[._ [y",}\r-o’(x?c'i- z“z)]

ezz=%[z'§—d(m+yy)]

b i

From the second of which

7y =(+ )0
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Accordingly on substituting above values into compatibility egquation

2z%* 2x* Ix0V¢z
with
~ > —~ —a"’ -~ ’b"
XX == O ; fz=2®P, xz=-~ P
3z 2 x* DXz

we obtain as the correct form for his equetion (6) governing QZ7

4
OQ+_1 [BE-20- 20 2% + 2% - o (7.25)
ox* -0 M xRt oz4

This alters somewhat the velue of the soil constant C introduced by him.

In three dimensions his assumptions are even more drastic, and less

likely, with B, =E, = Bz 5 o, = 4= 0; , M= Ma,
fb = & . The assumption on f@3is actually a necessity in the
2(1+0)

axially symmetric theory as presented in Chapter I.

Westegardegégéper

Westegardels assumes that the soil medium, an elastic isotropic,
medium is reinforced horigontally by inextensible membranes uniformly
distributed, yet volumetrically infinitesimal. He then assumes that the
membranes prevent all horizontal movement of the soil.: Physical conditions
show that above will yield conservative estimates for the normal stress,
tut it is likely to underestimate the surface settlement. It represents
the extreme case of the stratified condition that exists frequently in
sedimentary s§ils. But then such soils are readily treated by the methods
of this thesis. Tayloékmbpresents a practical adaptation of Westergerde's
work, He also gives an excellent discussion of the applicability of elastic

theory to soils, in which he points out that the most important
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requirement is the proportionality between stress and strain,
Conclusions |

All the above systems arose from mathematical expediency, and not
from any deep physical reasons. They cen all be derived as particulsr
cases of the general axially symmetric - four constant - systen developed
in this thesis by mere mumerical substitution. Therefore, it seems point-
less to use them, when they have not even the merit of numerical simplifi-

cation over the more general theory.
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CHAPTER VIII.

ORTHOTROPIC PLATES

An orthotropic medium possesses at each point three planes of
symmetry at right angles to each other. Many types of crystaels possess
this type of symmetry (LovézkfllO). The directions of the planes of
symmetry need not be invarient, e.g. a circular tree trunk if we assume
all rings have equal strength. This latter type is called curvilinear
aeolotrppy. Two dimensional plane strain problems are identical in the
above medium, and in the medium discussed in Chapters II and III., Assum~

ing plane strain the strain-energy function becomes from Lovézkayllo)
2W=he2 4062 +20exxe,, + M ey, (8.1)

This is ideﬁtical with (1.1) where F replaces G and N replaces M. 4, C,
G and M can easily be found in terms of s, s, s, S5 S5 and s, , the
constants introduced by Voigt. These in turn can easily e determined
practically.

Orthotropic plates form an imﬁortant two dimensionsl application of
the above medium. Approximations have been discussed in the previocus
chapter. Now & complete solution will be deduced for the case of generaliged
plene stress, the system usually used in plate problems,

Generalized Plane Stress

The assumptions made in this type of stress are,for a plate bounded by

¥y = % ht -
: yy =0 throughout the plane
£ =0 (8,11)
vz =0 only on edges y = ¢ h.
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Average displacements, strains, and stresses are defined as follows:

A A
w=_1 b gv—=_l,JM}'5
2h g ¢ 2h 24, 7
A A
‘e?cx:__l., €XK6 ?zz'—'_.l.fé §
2h_¢L 2 ‘?‘ >h _x'iﬁf ;P
Bxy = _L (8.12)
X7 = j&ﬂ"‘z S‘J/
: A
and X\i' = -—-]é XA\( § ~ IL/"
2h Jg ?f zz = _1 ZZ Sbﬁ
2 2L
~/ ~
Xz =_1 |[x2§
2 [R5y
24 4
Now £ A
1 0 XYy 54& = 1 [;?y =0 from (8.,11) (8.13)
2h oy 2h 2,

ZA

similarly-

A

1 [y

2h J 4 Y

0

'The stress equilibrium equations (1.20) when integrated with respect to

y between y = £ h, on

/Bl\éli L FBJE% =
X oz
2%z + Diz =
o2x e}

using (8.13) and definitions (8.12) become:

0
(8.14)

Note that 2ll the average quentities are independent of y from their

definitions.

The stress-strain relations for an orthotropic medium are

obtained from its strain-energy function,

2W =4 e’ +B

+ 2 H exxCyy 4+ L

2 2 :
e vy + C e . +2F e + 2 Ge,_.e

vy°z2 Z2% XX

efy, + M ey + N %y -

(8.15)



100.

These are
Xx = A €xx + H eyy + G ®,0
ﬁ:Hexx+B eyy“‘Fezz
- ﬂ (8.18)
zz2 = G exx + ¥ eyy + C e,
N L Lo~ a7 ~ ..
¥z = L ey, X = M eyy xy = N exy
Since ¥ = 0  from (8.,11)
thersfore from (8.16)
= “x = %32z
w5 ¥ 3

. . - . - L .
Hence on substituting for e_. in expressions for XX and z¥, we obtain

vy

~~ p
XX =P ey + Q &,,

(8.18)
X =Qexy tRe,,
where
P=A- B Q=06-FE
B B
R=0-F° (8.19)
B

P, Q and R may be caslled Plate Stress Constants. These are similar to

thé two plate stress constants introduced by Coker and Filor@), to deal
with similar problems in isotropic elasticity.
Integrating equations (8.18) with respect to y between y = + h, we obtain
using (8,12)

X =P egy *Qe,, (8.20)

S 5,
zx = M e,x

o’ .
22 =Q exx + R e,

Accordingly generalized plane stress solution of any plate problem

requires the solution of equations (8.14) and (8.20) subject to the
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appropriate boundary conditions., But these equations are exactly
'similar to those for the plane strain problems discussed in Chapter II,
where A B ¢ and L are replaced by P Q R and M respectively. Hence
solutions to generalized plane stress problems can be deduced immediately
from the corresponding solutions for plane strain obtained in Chapter II.
This solves the problems discussed by Sen and Wolf in a relatively simple
manner. Besides no unwarranted assumptions are necesssry. Of course the
sbove problems are all connected with a semi~infinite plate, bounded by
one straight edge under a specified loading. However, the techniques
developed are capable of extension to an infinite elastic strip, and
possiblg.to circular plates. The author plans to return to these problems
at an early date. It should have an important bearing on aircraft

structural analysis for wcoden, or plywood members.
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APPLICATIONS TO SOIL MECHANICS

This thesls presents in Chapters III and V relatively simple
methods for calculating the surface settlements and the vertical
pressures for a loaded wall, or for a loaded circular foundation,
The laboratory tests necegsary to establish the required constants
- are diécussed in Appéhdix:fl
Examples will now be worked to illustrate the procedure:

Experimentael Data

Suppose that tests on a soll have furnished the following values

for the required constants:

El = 18,000 p.s.iO E3 = 22’000 p. S’ io (9.1)
/’L' = 4, 50O po Se io Og = On 38
S = 0.35

Consider the following problems:

Problem 1.

rFind the relative settlement of a long wall of width 6 ft., carry-
ing & load P = 15 tons per foot length of wall, Also what is the maxi-
mum vertical pressure 10' below the ground level.

Problem 2.

A circular column 5' in diameter supports a load of 100 tons. Find

the relative settlement of the column, a2nd the vertical pressure 5'
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below ground level., What is maximum shear in the material &' below
ground level?

Using equations (1.14) and (1,15), we obtain

0, = .38 18 = .Zl
2

/—.0;*20;.0:3 = l'—-35“'124 = .4.1

A = (,28)(18,000) = 28,600 p.s.i.
(1.35). 41)
¢ = (.65)(22,000) = 34,900 p.s.i.
.41
F = (.39)(8,000) = 16,700 p.s.1i. (9.11)
41
N = 18,000 = 6,700 M.S.T.
2.7
L = 4,500 -fv.StC. G = L+ F=21,200 /A8t
Therefore
L24AG-G2 = 4. 5°4(28.6)(34,9)=01,2° = 3.62
L (34.9) (4.5)
and A = 28.6 = 0.822

C 34.9

Hence on using G*°l the cherscteristic equation becomes

y2 = 3,62y + 0,822 = O (9.12)
solving this on the slide rule we obtain

2=y, = 3.3 , s& =y = 0.243

| (9.13)

s, = l.84 s, = 0.493
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From G2
n, = 28.6 - (4.5)(3.38) = 0.345
(21.2)(1.84)
hy = 28,6 - (4.5)(0.243) = =2.63
(21.2)(0.493)
Hence
h’ S‘ = Ow635 hzsz. = 1030

Checks on the accuracy of our computations are
C+2 and (-5 in Appendix C.
S, 83

S, 85

Therefore

s, 83

sccordance wi

il

expressions Ge3 we easily obtain

-17.0 x 103 s =
56.6 x 103 S¢ =
l. 09 SS =

= 17.1 x 108 S, 8¢
= 27.9 x 109 s, Sg
= 8,84 and S, 84

th results C+2 and C«3

Using values in (9.14) we obtain

s; - 84 = 46.0x 105

s.,—Sg

= = 4,66

and hence substituting in Ge4, G5 and Ge6:

S0

83

I

i

-1 62.0 x 0,493 = = 0.675

™ 48,0 i
46,0 x 103 = 9,860
4,66
- 1 56,8 = - 0,670
1 (1.84)(46.0) n

-

i}

63,0 x 103
15,1 x 109

5,75

17.1 x 10°%

27.8 x 103

S, 8¢ in

(9.14)

provided by resulis

These are easily seen to be satisfied:

(S.15)
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Approximate Corresponding Elastic Isotropic Medium

To compare results from the aeolotropic theory with the isotropic
theory, we might teke for E and O the respective mezn values of these

quantities in the soil medium. This gives

G = 0.35 B = 2x18,000 + 22,000 = (9,16)
3
19,3x103 f.S. 1,
A = 30,7 x 109
Hence .
- _E = 19,300 = 7,150 fvS-t.
2(1+0) 2.7

and from G5

s, = 2(7.15(23.85) = 11,000

‘ 3047 (9.17)
Heving calculated the necessary constants for the soil medium we can
now proceed to the proposed problems.
Problem I
a) Settlement:

Using the results of Chapter V, we note from the calculated
velues of s, end gé , that the actual settlement in the aeolotropic
theory is 90% of that given by the isotropic theory, This also applies
to the column of Problem 2. It is independent of the type of pressure

distribution thet exists under the wall, Assume a parabolic pressure

distribution, then from Graph I or Table I with x' = x/a we have for
x=0 , x =0 N(x') = 0.972
x=3 , x' =1 W(x') = 0.593

On using (3.45) i.e. wg = BN(x') . we have

313
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x=0 (wg) = 1Bx2000x.972 = 2,96
x=0 9,860

x =3 (ws) = 15x2000 x 593 = 1,78"
X=3 9,860

Hence the relative settlement is 1.18%, Other distributions can be
investigated in a similar manner,
1) Pressure:
Again assuming parsbolic pressure distribution under the

wall, the required pressure may be obtained from 3.48 i.e.

S
2 =-38pP 22+5222 ten-1 gL{} '
&
0,2 28, s Sz Sz
Let
£(s) — 22 + 222 tan~l a_ T a =3, 2z=10
s SZ
Then ‘ 1
f£(s, ) = £(1.84) = 94100(1.84)% ten” (_§_2>= %0.6
, 1.84 18,

i

f(s,) = £(0.493) = 36.8

Hence from (3.48)

~
zZZ

+ 3x,675x30x10% (,80.6~36-8)
0,10 2 3°
(9.18)

"

- 2, 210 po s;jo
Note that on the surface 72 at r=0 is one and a half times the average
value of zz on the surface.

Hence

x 30,000 = - 7,500 p.s.f.
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Problem II
Assume a parabolic distribution of pressure wnder the column.
a) Settlement

Using Greph II or Table II, with r' = r/a. we obtain:

r=20 rt =0 N(r') = 0.424

r=5/2 = =1 N(r') = 0.180
On using (5.46) i.e. wg = P N(r') we have

asy
r=0 g = 2x10° x 0,424 = 3,440
r=0 5/2x9, 860
T = 5/2 Ws = 3;44X_J;8__Q = 1046"
r=5/2 424

Hence the relative settlement is 1.98"
b) Pressure:

This may be obtained from (5.48) i.e.

S
]
5%/ == 2P s % LESz-l-a2 -2/ a2+s222]
0,z S,
Let =
f(s) = 2sz + 82 - 23 8245222
S%Z
with z =25, &= 5/2
oo f(s,) = £(1.84) = 0.027
£(s,) = £(0.498) = 0.468
Hence from (5.48)
ia/ = - 4x105%5%.675 x 0.441 = - 4,880 ps.f. (9.19)
0,5 (s5/2)4=w
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- 5 ~ . . ) ~
Note that on the surface %% is twice the average value of zz on

the surface. Hence

£ =-4x10 =20,400 p.s.f.
0,0 m(5/2)2

¢) Shear Stress Using (5.51) [_C]

-2Pzs f(s) =- 2x10°x10 s f(s)

Z
IS T a2 n(5/2)%

- 16.35 x 102 s f (s)

e o z

{

P A
IS = = J700

2-
Hence from (5.362)

z S, s
Ty = %{ S [S LLL ¥ S £—éZA:E‘S]SLI }
{.670 [2760 - lBZé] + o875 [815 - 7525]}

[625 - 4500] = - 1,987 p.s.f.

i
ol e

Hence

1<, = 195 pos.f (9.20)

Corresponding results for vertical pressures along the axis of a

loaded circular area when the distribution is parsbolic may be ob-

tained using (6.44) viz,

ﬁ} =-2Pz[—zz+§_§ + 227
0,2 ‘I‘Ta4 % ’a2+22
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We note that this and the results for the other distributions (6,42)-
(6.47) are independent of the elastic constants of the medium. In

Problem II when 2 = b

~

zz/ = -2x106 [- 10 + 1.25 + 50
0,5 T95/2)% 31.25

(9.21)
= - 3,200 p.s.fu
We shall now celculate the vertical pressure distribution for the
column in Problem II. The seolotropic results are obtained from
(5.48), while the isotropic results are from (B.44). The results
are:
TABIE V.

Colunn diameter 5!

Depth in Ft. Pressure, 10° p.s.i. Pressure, 103 p.s.i.
(Aeolotropic) (Isotropic)
0 20,40 20.40
1 17.25 16.35
2 12.48 10.67
3 8.92 6.83
4 6.46 4,53
5 4,88 3. 20
6 3.65 2,40
7 2.84 1.68
8 2.21 . : 1.47
9 1.85 1,30 -

10 1.46 .82
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A study of azbove results shows that the isotropic theory seriously
underestimates the pressures under the column. This is especially
importent, where weak layers occur in the s0il medium as these may be
subject to pressures for greater then those predicted by the isotropic
theory. Of course, & rigorous investigation of this case would require
the analysis of a’layered system. Burmister(gi)has given such an
. analysis for two énd three layered isotropic systems. The Author plans
at an early date to give a corresponding snalysis for aeolotropic
systems. The only significant deviation from isotropy ig the hypothetical

@

figures 9.1 is in shear. Weiskopf * indicates that such deviations do
occur. The resuits are represented graphicslly in Graph III,

Conclusion

This thesis is merely an introduction to the subject of aeolotropic
axially éymmetric systems. It is doubtful if such progress coculd have
been made without the use of the Fourier Integral, a tcol that appears
eminently suitable for the further exploration of the subject. Mindlin‘ésﬁ)
problem of a force within a2 semi-infinite mass, and Kelvin's(g) problem
of a force in 2n infinite mass, can be solved quite easily for aeoclotropic
systems by the methods of this thesis. Simileriy vibrationscm@, end
layered systems(él)can be investigated, and the corresponding isotropic
elastic cases cen be obtained by a2 limiting procedure as in Chapter Vi,
0f coufse, it is highly desirable that considerable experimental research
be done on fhe result§ given in this thesis. The Author is confident

that equipment now being developed in the Soil Mechanics Laboratory of

the California Institute of Technology, will prove adequate and convenient
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for obtaining the necessary soil constants. The Author hopes to pursue
this fascinating subject further at University College Cork, Ireland,
where he has been appointed to a position in Applied Mathematics and

Soil Mechanics.,
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APPENDIX A

Intecrals required in Two Dimensional Case

Let
_f, = f:;—mz cos mx dm
]
ya = |e ™% sin nx dm
2 0
therefore

6
L+iL, = fem(u’Z)dm = 1

ix-g
N I; = zfr?

and ’
L = x/x2

2-

Intesrals asg Derivatives of Lor Ig_

* k
Let I/ = | n~S™Z cos mx dm where k is any integer
' 0

o0

R

= j i (&™®%)cos mx dm
0

dzk o
‘ %
= (=) kafémz cos mx dm
dz
3

k> 0.

(As2)

Interchange of the orders of differentiation and integretion is permis-

-1
sible, since I’ ig uniformly convergent in for z >0, and :Z:; is con-

vergent z > O.

Similarly A l/jo '
k _~mz o4
= n" & sin mx dm
L =

k
= N d_k
O S

(2+3)
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We require integrals of the type

z__R ~
SI/ = m~K e~MZ cog mx dm 570
s
Z "k— 9 (A. 4.")
s l = fm"k e M2 gin mx dm
2
)
These cen be reduced by repeated integration by parts to one of the
integrals
v,
Z -{
5 l:l = fe"mz cos mx dm
Z ~f
! = e~BZ sin mx dm
] 2 m

All the integrals involved are uniformly and absolutely convergent
for = > 0; also all the integrands are continuous in z, x, and m,

Eence by Abel's theorem

. C ~04
0 o LT f -mz
= e~ cos mx dm

{ 5 m
with similer results for the integrals in (A.4)

Evaluation of (A.B) Integrals

Omitting z superscript, since there is no danger of ambiguity,

we have o0

-1 - -l .
. o~m(z=ix) gp
S A S

) 1,2 m
This integral is uwniformly convergent =z > O, $>0, is continuous in

z, x and m, and hence we can differentiate under the integral sign.

_I , ad i
~ ~h(Z- (2K
. g [I ]:‘: _jzh(z M(O)M’\."?_‘fewz 'Lo)ém as 520
o 22 L% L2 5 A
' L
/ —_— - 2"’(/K (A'B)
e /)7—'—> - log(z-ix) + g’(x) for & small
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Similerly
od . ’
Lol < [ e %n =
— A
ENE 5 - 2o
(A.7)
)
St g B log (z-ix) + Jc(y)
where g, (x) and j:, (y) are arbitrary functions of integration. OCn com-
paring the two results we obtain
g, (x) = £, (v) = Constant = K(5)
As g8 I 77 0, hence K is an infinite constant of the type
log R + O(_]s._). ' However, we cen drop an arbitrary constent from the ex~
pressions for u snd w without affecting the stresses, or relative dis-
placements., This is merely equivalent to superposing a rigid body dis-

placement. Hence

-/
SI —> - log (z~ix) = - log r + i('rr/z-é)
H2.
Taking real and imaginary parts we obtain

y (A.8)

S—I/ =~ logr
sj-:/ = - ten™> X/

Intesrals (A.4) Regquired for Special Cases.

The integrals reguired are
-2. -3 -4

Applying in’cegre.tion by parts, we obtain for z> 0

od od

/ om(z-1%) gp = e-m(z—iX)[ ~(z-1x) f o-m(z-1%) gn
I,L m 8 S T

(£.9)

—> iz + (z-ix) log (z-ix) + O('!g‘)
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Also
-3 = °d og
° b2 T 4 T me 2.m2 5 2 A me
(4.10)
—>  -ix (gz-ix) + gz—ix) log (z-ix) + O l)
2 2 &
and - 00
_q(z—lx) dn = - e-m(z—-ix)[ - (z-ix) je-—m( z-1%) gp
3 , 3
S . 3m 5 3 ks m
(A.11)

5
ix (z=1ix)2 - (g=ix)  log (z-ix) + o(;
% 6 6 >

Taking real and imaginary parts of above, we obtain the following regquired
integrals.

From (A,9)

S [ L —> z log v + x tan~1 X/z r? = x4y

- tand = z/x (A.12)
5 2 L —> x - xlogr + z tan"1(%/z)

From (A.10)

,:2:13 .
) / —> .Zi.? + gzz-éxg} log r - xz tan"lX/Z

2
(A.13)
z - xz - xz log r -~ (22-x2) tan ~1ix
S 2-—”9 -2-m & ,__.2,____ /é
and from (A.11)
z ‘4___9 + x%g - (2%-32x2) log r - (322z-x°)tan” 1X/Z
S 3 6 6 (A.14)

I"‘f” %(22-x2) + (32°%-3°) log r - (2°=32%°) tan"'l}?'
= " p=4
S . o 6 6
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APPENDIX B

Bvaluation of Intezrals Involving Bessel Functions

ol
i -mz
Let K' = je jo_(mn)w(f"atm , 270 (B.D)
o

T

On substituting z =R coe® , r=Rsinf, t = m§ c3d >0
T

3,(7M) =1 elqmqbdqs

we obtain T

o0
Kxx: = 1 1 ftn e—tcosé[[e_;t sinGCosﬁquJ at
gatl 2nm J, -

The order of integration may be interchanged since both integrasls are

uniformly convergent and continuvous for cos 4 70. Hence
. hig o4
n n _t (cab+ dimbenagp
—
K = | [ [T % ag
- (-

Also from the definition of the Gema Function by 2 slight substitution

it follows that

“n ot 7 (es1)
ftne Cat Al x50 oy
0 o(n-l-l >

lso since —
A [/]

P, (cos 9) = 1 f e
2 _W[cosé +sin coscp]n+1

Hence from (B.2) on using above results,

A T
B = [Ane1) j i

gan+l 7 [cosé-a-sino COS¢] n+l . (B' 3)

= [Tw1) 2, (cosd)

Rt
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od

Also | /
2 [K?] = eBZ g, (mr)mB*l am
DT o
= /
= - -mz n+l ; .
J;e Jq (mr)m dm since Jo(p)— J @)
(B.4)
= - K?'l by definition
Hence it follows from (B.3) that
(B.5)

Kl;l_'l'l =- 23 Kfl] =Rn+2) T Pn(cose) +Rn+l) re Pxi(cose)
or go+3 g4

Substituting for ;PI'l (cos 9) its value from the recurrence formulaze for

Legendre functions

2 (cos®@) = = n cos O P, (c0s8) + n B-1 (cos )

éing é

we obtain

K2n+l = n! ~n22+(n+l) r< Pn(cosé) + 0z Py (cosé)]
Rn‘+2 TR r (Boﬁ)

Jahnke Emde "Tables of Functions" Page 124 gives tebles both of
Pn(cos é) and Plé(cos 9), hence it is slightly less numerical work to
use the first fomm (B.5) for K2n+l

Special Cases

!
Kl-

1_Pi(cosd) = 00269 =

Z
R RS

—~—

(B.7)

P
bdd-s
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APPENDIX C,

Relations Between the Constants in Solution

From (Z.22)

U

(A-Lss) (A-LsT)
stlsz

i

[A2-AL(s™4s) + L 55 s> |}
L GBS:‘Lsg J

Applying the theory of equations to (2.19) we obtain

2

s + s = L2a0-6° s
CL

and hence on substitution

by b, = Jasc = 818, - (c.1)

In the isotropic elestic case the coefficients of %Xz and Z2 are equal
numerically, and a2 limiting procedure suggests it should hold for the

aeolotropic case. Alsc this requires proving that

S,8 = 88
42 251
2 (C.2)

== L(sy+hy) (C.3)

Now on substituting for s4 and sy in 0.2 we obtain

$.5,~ 838, = 8, (P-0h,s,)(s, +h)) - 5 (F-Chys, ) (s, +h,)
. — 2 e
o*e s.8,-8s = Flh~h, =-0(hs-hs)-C(s-5s")
S A AR A R ,
sl Sl

|

(s =s* ) |¥C + CL - C =0
» T T
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on substituting for h,, h, and s:' . s:_' . Hence (C.2) follows.
To prove (C.3) consider - substituting for Sy4
Sz(F-ChQSE) + L(Sz‘l‘hg)
Substimting for hg and simplifying we obtain
oL s¢ + s2 [12 + 4C - 62] + AL
This is gero since s, is a root of equation (2.19)
Hence result (C.3) follows:

Evalustion of s,nt The Stress Consiant

By the definition of sy in Appendix &,

- 28, = Lis +h ) sg = 2 L(s,+ly ) (s, +hy)
' (&) 83--84
= - £ 84Sz on using (C.3)
T SS_;S“I
e (C.4)
T 83=S,

s,8c = 8§, 5 (C.5)
Also a reduction required in the concentrated load cese for &% is
S,8s=8a8e¢ = S¢ S-S :]
$37% S, =S (sl +s, )

- s, by definition (C.6)
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APPENDIX D

Integrals Required for Loaded Circular Area

Consider the integrals

U_;(x) = f_lg_:_c)_ dx x £ 0 for convergence (D.1)
x

1
Tu(x) =) x2 ¥(x)ax D,11
() (x) - ) (D.11)

Now K(x) =m/2 2/;(-12-—, 51, x) =3 E [F%l_l):’ %1
1
=0 r
On substituting the series for K(x) in (D.1), 2nd on integrating term

by term, over a2 range in which the series under the integral is uni-

formly convergent, we obtain 00

‘ 2
U .{x) =n/2 logx+¢1—2[ﬂi+n ] =
-t [ l+n) n (D, 12)

since L‘[’_‘ /_‘ d4m) o 1

N6 F(kn)

the above series is of order x_, and so is convergent [ xlg 1. How-
n
ever as X ->l- the convergence is rather slow for computation, A

more rapidly convergent series can be obtalned as follows:

since E(x) =m/2 ZE( ~5grl,x) = - lz[f‘ «t—n\:} xn /X/4

1+n)

7(:.-
therefore

(D.13)
1(X) + 2B(x) =71/2 log x+m- 12 F_l_ ]
: [ T i+n
nw={

The ebove infinite series has convergence of order _:gS s and so is much

[n]

better for computetion than (D,12)
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o0 2
Define Vi(x)= ;EE [9j%%:n§ x? s (D.14)
n n—k

Similerly from (D. 1.1)

e 2.
Ui(x) = [ §f n xn+“/° x (L1
c %o[ﬁ%l n0+3/2 T

and therefore

o

2
U 1(x) + ox3/ 2 B(x) = - Z [ +3/2 (D.15)
r (l+n) (n+3/2) (n=1) |
Define e 2 {D.18)
Vo(x) = —Z ["(L4n) ] A3/2
o [(1+n) (n+3/2) (n=3)

V1(x) and VE(X) Wére cbtained with the aid of a calculating machine,
for 0 € x €1, These results are believed accurate to four places of
decimals, as six places were used in all calculations., The results
aée given in Table III,

for intervals of 0.2 in x and \fE . Other values may be ob-

tained by graphical or arithmeticel interpolation.
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TABIE TII

Jx x V(x) Volx)

0 0 0 0
0.2 0. 0631 0.0333
0.4 0. 2553 0. 2615
0.2 0.2204 0. 3631
0.6 0, 5868 0.8532
0.4 0. 6499 0.9927
0.6 1.0075 1,7536
0.8 ' 1.0806 1,9158
0.8 1.3842 2. 5824
1 1 1.8009 3,4162

Hence the integrals required in (5.16) and (5.17) can be obtained

as follows from (D,13

:Zj JL .il_ [~2E&)+ﬂ-lvﬁ@]
% 7

= 2 Egrg) - 1] - % [&1(1} - vl(rEEI ~tilog r

/

)LL

(D.17)
= =2,4502 + 2 E(r?3) + l V1(re) -~ mlog r
= G S
[
Z = j X2 K(x)dx = [ zxg/"’E(x)-i-V(x)]
i 2
% : o
= v(1)Y-2 E((1 2> 1 (D.18
Al - = e )
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Also 2 l b - OI}L - OI& (D.19)
On putting n = —é— in (5.10), 2nd on substituting for I;from (5.18),
2-
we obtain
[, =1 L +i= l.ae0 (D. 20)
4. 7 A

4 Lp
Table IV gives values of n’;j.; . end ai’/z for 0 € r2 €1, in inter-

vals of 0.2, Intermediate values can be obtained by interpolation.

IABLE IV
r.l/r : IL"',I~ { ’Z:I’/g n;'I?,_
o} o0 0 1.4162
0.2 2.8715 0.0084 1.4078
0.4 1.8754 0.0687 1.3475
0.6 1.2205 0. 2406 1.1756
0.8 0.6770 0.6089 0.8073
1 0 1,4162 0

Integraels Heguired for the Parsbolic (ose

!
I EJ;K(X) dx=gI+ 2 = 10 (5—/o,n=:)
0 9 ©° g

/

9 (D.21)
> In* Y
T = [xxx ax=2 [ +2Si1/r1)
0~ A 9¢ 9 g .
= 4 + 2 E(1/rR) - 3(1-1/r2) K(1 rg:) D.2
£ Lo+ 2, [ 50/e® - s0-1/x3) x/r?) (D. 22)

On using (5.14) with. =1
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{ *
N j w52 K(x) ax = 4 ['I -.S(r,~3/2ﬂ
"S/-z Rz_ 9 n—’“ —%_

= [E(rﬂ)(z-t-__l_z) -g-»; K ()| AT I~ (D 28)

* On using (5.12) with n = - 3/2
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APPENDIX E

Practical Determination of the Consients

Prom results (1.15) we see that the determination of the con-
stents A4, C, P, L and ¥ for an 2eclotropic axislly symmetric medium
depends on the values of Ey Bz &, ffs and fA, or O . We need
an expression for Young's Modulus Eg at a direction @ to the axis

of symmetry, say along ox! in the following figure:

o > X

axis of symmetry.

Y 2 X'
Consider when state of stress in body is due to & stress £'x' in the
direction ox'. Take oy' and ogz' to form sn orthogonel set of axes
with ox!,

Referred to original x y z axes the direction-cosines of ox!' are
(siné, 0, cos@), since due to the axizl symmetry of the medium ox!
can be teken in pleame of x Q z without any loss of generality. Using

2)

the well kmown relations for the transformations of stress and straing

we have
%2 = sin2 8 £x v =0
53 = co'sgé X x! ¥z =0 (E.1)
Xz = cos esiné £ x! :’q\r =0
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Also

e = sin28 exy + cosg@ezz + cos Osind exp (E.2)

xix! &

where
&yx» €50 €xy 2TE given by /- /3. S

On substituting these values in (E.2), and then on substituting values

(E.1) for X2 etc., we easily obtain

g, 3)
1 = _Sx'x'= 1 sint8 +(1_ - 20, cosggsin26+ 1 cosg‘é
EG X‘T\X' El '3 El Es

The constents may now be obtained as follows:
(i) A trisxial test on a sample taken parallel to axis of symmetry
yields values for Ez and &,
(11) An unconfined compression test on & sample taken perpendiculer
tolthe axis of symmetry yields value of El. A triaxial test on such
e sample is of little value as Poisson's ratio is different at all
points on the perimeter of the sample.
(iii) Result (E.3) enables us to find fAsby taking an unconfined com-
pressioé test (or 2 compression test at constant lateral pressure) on
an obliqué sample.
(iv) It remains to determine /Aﬂ, or 07 . This cen be done by a tor—
sion test on a sample tsken parsllel to the axis of symmeiry as in (i).
This semple alone shears in a plane, the xy plane, where all directions
have the same Poisson's Ratio (J)).

Since the above procedure is rather difficult to carry out success-

fully an alternative is got by considering the cubical dilatation €.,
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Now -
e = dy i.e. increase in Volume per unit volume
v
= +6_+4e
xx - yy 7z

Hence if we take & soil sample subject to 2 uniform pressure P, we

have
~&=p 20-0-0G) +1(1-24) (E.4)
v By Bz

The quentity = 4V can be measured, and then O, cen be obtained
v
from above equation, since all the other quantities are known.
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APPENDIX G

Constants Introduced

s,z . s92‘_ are the roots of the quadratic egquation (2,19):
y2 = L2 + AC - G?*y,-i- AfC =0 (G.1)
CL
by =A =Ly ho =A-Lsy ; G=I+F (G.2
G s, ‘ Gsp

sz = (P-Chisy)(sg+h,)
84 = (F-Chgsz)(sl+hl)

o5 = (A - Fuysp)(sghy) (6. 3)

sy = hi(sg+h2)

"sg = ho(sy+hy) s, = %56 (sl+sg)
$3
T 83=84
S5 = s14+03
Stress Constant
s, =1 35452 from (C.4) (G.4)
T Sz=S4
Settlement Constant
sg = = 2854 (6.5)
Sp=gg
= 2MA+M) = 2N(a-N) = s! in isotropic cese
T ,3
A+2 A
54 =-1 S5 - (6.6)

i Sl(83-54)



129,




130,

- j:a-ln’w

NELUENCE FACTORS




131,




1.

S

e

(o1}

(O]
.

7

11,

12.
13.
14,
15.
16.
17.
18.

19,

132
REFERENCES
Wolf YAnsbreitung der Kraft in der Halbebene und in Halbraum bei
anisotropem Material", Zeit. Angew. Math und Mech (1935).

Weiskopf "Stresses in Soils Under a Foundationt, Joﬁrnal Franklin
Institute, 239 (1945) 445-465.

Love MMathematical Theory of Elasticity".
Timoshenko "Theory of Elasticity".

Phillip's "Vector Analysis, (Page 67)

Mitchell "Stress in an Aeolotropic Elastic Solid with an Infinite

Plene Boundary", Proc. London Math. Soc. (1900) (a), (b) Vol. 32.

Green end Teylor, "Stress Systems in Aeolotropic Plates" I, Proc.
Roy. Soc. lLondon, Vol. 173 (1939).

Green "Stress Systems in Aeolotropic Plates" II, Proc. Roy Soc.
London, Vol. 173 (1939).

Coker and Filon "A Treatise on Photoelasticityh.

Howlaend "Stresses in an Elastic Strip", Proc. Roy. Soc., London,
A 124 (1929).

Bict "Effect of Certsin Discontinuities on the Pressure Distribution
in a Loaded Soil", Physics (1935) Vol. 6.

Sololnikoff "Mathematical Theory of Elasticity.

Bateman "Partisl Differential Equations of Mathematical Physics'.
Jeffrey's “Methods of Mathematical Physics".

Titchmarsh "Theory of Fourier Integral's Theorem 50,

Whitteker and Watson "Modern Analysis",

Carslaw and Jaeger "Operational Methods in Applied Mathematics".
Watson "Bessel Functions".

Terzaghi and Peck "Practical Seil Mechenics®,



20.

21.

22,

27,

28.

29

30,

31,

32

33,

133.

Magnus/Oberhettinger "Formeln und.Satze fur die spegziellen
Fonktionem der Physik",

Jahnke-Emde "Tables of Funectionsh,

Bromwitch YInfinite Series" § 176.

Lemb "On Bousinesque's Problem", Proc. London Math. Soc. Vol, 34

(1902).

Sen B. "Problems of non-isotropic Material® Phil, Mag. 27 (1939)
596.

Okubo H., "The Stress Distribution in an Aeolotropic Circular Disch
Phil, Mag. 27 (1939) 508.

Huber "Zur Elastizitaltheorie der Anorthoiropen Plattent
Timoshenko Amniversary Volume (1938) 89,

Voigt "Kristallphysik", 761,

Horig Y"Anwendung der Elastigitatstheorie Anisotroper Kooper auf
Messungen an Holz" Ingenieur-Archiv. Vol., 6 (1935) 8,

Westergeerd "Soft Material Reinforced by Numerous Horigzontal Sheets",
Timoshenko Anniversary Volume (1938) 268.

Taylor "Fundsmentals of Soil Mechanics",

Burmister "General Theory of Stresses and Displacements in Layered
Soil Systems", Journal of Applied Physics (1945) Vol, 16.

Mindlin (1936) "Forces at a point in the interior of a semi-infinite
solid", Vol. 7 Physics (195-202).

Reissner (1936) "Stationare, axizlsymmetrische durch eime schuttelnde
Masse erreghte Schwingungen eines homogenen elastichen Halbraumes",
Ing. Archiv, Vol. 7, pp. 381-3926.



