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ABSTRACT 

Rhodium metalloinsertors are octahedral complexes developed to selectively target the 

mismatches and insertions/deletions (indels) that result from mismatch repair (MMR) deficient 

cancers. By incorporating particularly wide, aromatic, inserting ligands, these complexes are able 

to detect thermodynamically destabilized mismatch sites via a binding mode known as 

metalloinsertion, in which the inserting ligand binds DNA via the minor groove and results in 

ejection of the destabilized mismatched base pair. In vitro analyses of metalloinsertors have 

found that these complexes are selectively cytotoxic towards MMR-deficient cancer cells 

compared to MMR-proficient cells. Furthermore, the newest family of Rh-O metalloinsertors, 

which includes [Rh(phen)(chrysi)(PPO)]2+ (Rh-PPO), displays preferential cytotoxicities in the 

nanomolar range, which is significantly more potent than first generation metalloinsertors and 

many standard of care chemotherapeutics. Given the high level of potency and selectivity of Rh-

O metalloinsertors, further clinical development of these complexes has been pursued.   

Here, we present the first preclinical mouse evaluation of a rhodium metalloinsertor as an 

anticancer agent. The Rh-O metalloinsertor Rh-PPO was evaluated in the HCT116 colorectal 

cancer xenograft tumor model alongside saline and oxaliplatin controls. Intraperitoneal studies 

with Rh-PPO showed significant decreases in tumor volumes over time and final tumor weights, 

indicating Rh-PPO has notable anticancer activity. Additionally, Rh-PPO treatment resulted in a 

noteworthy increase in the length of mouse survival that was on par with the FDA approved 

chemotherapeutic oxaliplatin. Pharmacokinetic analyses revealed rapid absorption of Rh-PPO in 

plasma with notable accumulation in the liver compared to tumors. Importantly, intratumoral 

metalloinsertor administration resulted in enhanced anticancer effects, which points to a need for 

more selective delivery methods in order to further metalloinsertor development.  
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In order to target cancerous cells with still higher selectivity, routes to metalloinsertor 

antibody drug conjugate (ADC) designs were explored. By attaching Rh-O metalloinsertors to an 

antibody specific to cancer-associated antigens, our complexes may become even more 

specifically directed to induce selective cytotoxicity in diseased cells. Three ADC drug linkers 

that incorporate maleimide groups into the N^O coordinating ligand of a Rh-O metalloinsertor 

were designed, synthesized, and characterized. These complexes were evaluated for their cellular 

potency and selectivity toward MMR-deficient cancer cells. Studies revealed that 

functionalization of the hydroxyl-containing ancillary ligand resulted in decreased potency and 

abolished preferential cytotoxicity, contrary to previous studies that assessed modifications of 

this ligand.  

Liposomal formulations of Rh-PPO were also explored to further target metalloinsertors 

to malignant cells. Liposomal drug encapsulations have a demonstrated ability to decrease 

systemic toxicity and increase tumor drug uptake; therefore, the biological activity of Rh-PPO 

liposomal formulations was explored. Four distinct Rh-PPO liposome formation methods were 

developed and the resulting liposomes were assessed for their encapsulation efficiency, cellular 

toxicity, and stability. Remote loaded Rh-PPO liposomes were found to display the most 

promising chemical and biological characteristics, although additional optimization of 

encapsulation procedures is necessary for further preclinical evaluation of this metalloinsertor 

drug delivery approach. 

As metalloinsertors continue preclinical assessment and development, a greater 

understanding of their mechanism of action is imperative. Biological studies with Rh-PPO and 

the fluorescent analogue RhPPO-Cy3 have shown that DNA damage from metalloinsertor 

treatment involves the formation of DNA double strand breaks near metalloinsertor-mismatch 
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binding sites.  Furthermore, the DNA damage response, including recruitment of pH2AX and 

Rad51 proteins, becomes activated in response to Rh-PPO treatment. In order to further elucidate 

the unique mechanism of action of Rh-O metalloinsertors, which involves both metalloinsertor 

enantiomers binding to DNA mismatches and displaying biological activity, structural studies are 

ongoing. X-ray crystallography and microelectron diffraction (microED) techniques have been 

used in attempts to obtain a high resolution structure of Rh-O metalloinsertors bound to DNA 

mismatch sites. Gaining these structural insights will be critical to understanding the increased 

cytotoxic selectivity and uniquely high potency of these second generation metalloinsertor 

complexes. 

The experiments detailed in this thesis have advanced the preclinical development of 

rhodium metalloinsertors. The ability of Rh-O metalloinsertors to decrease tumor growth in vivo 

has been established. Additionally, liposomal and ADC metalloinsertor drug formulations have 

been pursued as drug delivery systems, and the biological mechanisms relevant to 

metalloinsertor activity have been analyzed. Additional efforts to study rhodium metalloinsertors 

will continue to advance these promising chemotherapeutics as novel, targeted treatments for 

MMR-deficient cancers. 
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Chapter 1 

 
INTRODUCTION  

 

1.1  Overview of Chemotherapeutics Targeting DNA   

1.1.1 Role of DNA Repair in Maintaining Genome Fidelity  

Cancer remains the second leading cause of death in the United States with 

approximately 600,000 deaths and 1.7 million new cases each year. With a 20 percent increase in 

the number of new cases annually, cancer is expected to soon surpass heart disease as the most 

fatal illness.1 Cancerous cells result from the uncontrolled replication and division of cells. 

Research has revealed that a combination of mutational events, both exogenous and endogenous, 

alongside downregulation of DNA damage surveillance and repair mechanisms, results in the 

progression of this deadly disease.2 Multiple DNA repair pathways are responsible for 

maintaining the integrity of the genome. For example, nucleotide excision repair (NER) includes 

proteins responsible for removing bulky DNA lesions, such as those formed by UV light damage 

and environmental mutagens.2,3 Additionally DNA mismatch repair (MMR) proteins, such as 

MLH1 and MSH2, are responsible for identifying and repairing the DNA mismatches that result 

from improper pairing of DNA base pairs during replication.4,5  While healthy cells typically 

utilize these DNA damage response (DDR) processes to maintain genomic integrity and stability, 

they can become malignant when oncogenes are activated and cells proliferate in an uncontrolled 

manner.  

1.1.2 Cancer Types Associated with Malfunctions in DNA Repair  

Numerous studies have revealed the role of mutations, especially those involving DNA 

damage response proteins, in the development of cancer. Studies show that mutations in  
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components of the NER pathway result in an inability to remove UV-induced, helix-distorting 

photodimers from DNA, ultimately causing predisposition to a very specific type of skin cancer, 

xeroderma pigmentosum (XP).6 Similarly, patients with Lynch syndrome (also called hereditary 

non-polyposis colorectal cancer; HNPCC) were found to possess mutations in MLH1, MSH2, 

MSH6, or PMS2, which are proteins involved in the MMR pathway responsible for processing 

DNA mismatch errors.7,8 This particular genetic disease, as well as MMR deficiencies generally, 

are reported to account for 15% of all colorectal cancer cases, which is the second most deadly 

form of cancer.9,10  Ultimately, mutations within DNA repair proteins can result in persistent 

point mutations within DNA that eventually lead to the activation of oncogenes or disruption of 

tumor suppressors and the eventual development of cancer. Altogether, these findings support 

the hypothesis that patients with a hereditary predisposition for mutated DNA repair genes can 

be highly susceptible to the development of cancer, and our understanding of the connection 

between carcinogenesis and mutagenesis has continued to grow as research of DNA and DNA 

repair pathways has advanced.2  

1.1.3 Development of Chemotherapeutics Targeted to DNA 

  1.1.3.1 Non-metal Therapeutics 

 Given the established relationship between genomic instability and carcinogenesis, DNA 

has remained a key target for chemotherapeutic drugs. Discovered in the 1940s, the first DNA-

targeting compounds were nitrogen mustards and antifolate drugs (Figure 1.1), which were 

found to effectively treat Hodgkin’s disease, leukemia, and lymphosarcoma. These compounds 

are still prescribed to cancer patients,11,12 and studies with these molecules have shown that they 

induce the formation of DNA crosslinks that prevent DNA replication and cellular proliferation. 

In particular, nitrogen mustards form reactive cyclic aminium ions via intramolecular 
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displacement of the chloride by the amine nitrogen, and then alkylation of the N7 nucleophilic 

center of guanine DNA bases can occur; this covalent DNA binding eventually results in cell 

death.13  

Doxorubicin is another common, small molecule, anticancer agent used for a variety of 

cancer types ranging from breast cancer to neuroblastomas (Figure 1.1). It has been found to be 

especially effective against solid tumors. This anthracycline antibiotic is believed to induce 

cytotoxicity by topoisomerase II inhibition and free radical generation.14,15 Topoisomerase II is a 

nuclear enzyme that makes transient strand breaks within DNA in order to manage its 

topological state during replication and transcription.15,16 Doxorubicin in particular is proposed to 

affect cancerous cells by intercalating into DNA and stabilizing the DNA-topoisomerase II 

complex, which inhibits the enzyme from catalyzing re-ligation reactions that are essential to 

DNA replication.17 DNA double strand breaks occur as a consequence and ultimately cell death 

via apoptosis or mitotic catastrophe is induced.18  

Another important DNA-targeting strategy involves the use of nucleobase analogues.  

The fluoropyrimidine 5-fluorouracil (5-FU) has remained a standard of care chemotherapy for 

patients with various types of cancer, especially advanced colorectal cancer, since its discovery 

in 1957.19,20 This nucleobase analogue, shown in Figure 1.1, is a genotoxic agent that achieves 

cytotoxicity through a few known mechanisms. First, 5-FU inhibits thymidylate synthase (TS), 

an essential enzyme for nucleotide synthesis, which is believed to obstruct DNA replication and 

ultimately cause the formation of abasic sites that require repair by base excision repair (BER) 

proteins.21 Additionally, the depletion of thymidine triphosphates (TPP) that is caused by TS 

inhibition results in the misincorporation of UTP and FdUTP into DNA creating base pair 

mismatches that must be recognized and repaired by the MMR pathway, particularly the hMutSα 
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complex (hMSH2–hMSH6).22,23,24 Additionally, 5-FU treatment results in the misincorporation 

of nucleotides into RNA. Altogether, these disruptions of DNA replication and transcription 

result in significant genotoxicity that induces apoptosis. Furthermore, due to the broad 

effectiveness of 5-FU, a number of 5-FU prodrugs and other nucleoside analogues with similar 

mechanisms of action, including capecitabine and 5’-deoxy-5-fluorouridine (5’DFUR), have 

become clinically approved chemotherapeutics.19,21,24  

  1.1.3.2 Metal-based Therapeutics  

Metallodrugs are a significant chemotherapeutic treatment option, and many of these 

complexes target and bind DNA. Metal complexes have unique photophysical and 

photochemical properties, as well as high modularity and relatively facile syntheses, which make 

them ideal scaffolds for therapeutic applications. Cisplatin, also called cis-

diamminedichloroplatinum (II), is one of the most widely prescribed chemotherapy medications 

(Figure 1.1). It first gained recognition as a potent cytotoxic compound in the 1960s when 

electrolysis experiments showed that the complex had the ability to inhibit cell division within 

Escherichia coli cells. Clinical studies with cisplatin have shown that it can effectively treat a 

range of cancers including soft tissue, blood, muscle, and bone cancers.25 The wide-ranging 

effectiveness of cisplatin has prompted countless studies that have led to a detailed 

understanding of this platinum drug’s mechanism of action.26 Studies have found that cisplatin 

uptake is mediated by the copper transporter Ctr1 in yeast and mammals. Upon entrance into the 

cell, the chloride atoms on cisplatin become replaced by water molecules. The hydrolyzed 

cisplatin product is a strong electrophile that can readily react with nucleophilic compounds 

within the cell, including nitrogen atoms within nucleic acids and thiols within proteins. Within 

DNA, cisplatin binds to the N7 nucleophilic groups of guanines and adenosines creating intra-
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strand and inter-strand crosslinks to DNA. Mono-functional adducts and protein-DNA crosslinks 

have also been associated with cisplatin toxicity.27 Importantly, as displayed in Figure 1.2, 

structural studies with cisplatin revealed that the formation of major cisplatin-DNA adducts 

results in a widened minor grove, as well as kinking of the DNA helix, ultimately causing 

significant distortions to the local DNA structure.28,29 In cells, this DNA damage blocks cell 

division and results in apoptotic cell death.  

While cisplatin has proven very effective at killing a variety of cancer cells, it also has a 

number of clinical side effects, including nephrotoxicity, cardiotoxicity, and hepatotoxicity, and 

its long-term efficacy can be hindered due to the development of drug resistance pathways.  Due 

to these limitations, thousands of platinum analogues, including oxaliplatin, carboplatin, and 

ormaplatin, have been synthesized and assessed for their biological and clinical properties.  

Carboplatin is among these platinum-based compounds and it differs from cisplatin in that it 

contains a bidentate dicarboxylate (CBDCA) ligand instead of two chloride groups. This 

exchange of leaving groups reduces the reactivity and slows the DNA binding kinetics of the 

complex, and clinically results in a decrease in the number of overall side effects. Importantly, 

carboplatin generates the same reaction products in vitro as cisplatin, but appears to result in 

cytotoxicity through unique mechanisms.26 The approach of using platinum-based drugs that 

target DNA in cancer treatment remains essential, with up to half of all cancer patients receiving 

platinum-based antineoplastic drugs.27,30 

While platinum compounds have been the focus of the bulk of inorganic medicinal 

chemistry research, ruthenium complexes, such as NAMI-A (Figure 1.1) and KP1019, have also 

been transition metal drugs of interest.31 Ruthenium compounds have been found to bind DNA  

 



 7 

 

 

Figure 1.2 Structure of DNA-cisplatin complex showing the kink and distortions of DNA that 

result from cisplatin intra-strand crosslink formation. Adapted from Reference 29.29 
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with high selectivity and induce cellular toxicity within cancerous cells, though the clinical 

viability of these ruthenium complexes has yet to be established. 

Importantly, while DNA targeting chemotherapeutics are among some of the first 

discovered and most effective cancer drugs, due to their low degree of selectivity and general 

targeting of rapidly dividing and proliferating cells, healthy cells also experience notable damage 

and death as a result of treatment with these complexes. As described with cisplatin, this results 

in a litany of side effects and dose limitations with these therapies; therefore, more recent 

research efforts have focused on developing chemotherapeutics targeted to bind cancer-specific 

biomarkers.  

1.2 Mismatch Repair Protein Pathway  

The human genome is approximately three billion base pairs in length. During the 

essential process of DNA replication, DNA polymerases efficiently copy nascent DNA strands 

with high but imperfect fidelity. The mismatch repair (MMR) machinery is a crucial protein 

network, shown in Figure 1.3, that maintains genomic stability by repairing DNA base pair 

mismatches, as well as insertion/deletion mispairs (IDLs), that are generated during DNA 

replication and recombination.32 These MMR corrections result in 100- to 1000-fold increases in 

DNA fidelity, ultimately decreasing the overall genetic mutation frequency to one error per 1010 

bases.  

MMR corrections follow a multistep process that is initiated by MutSα (MSH2-MSH6 

complex) or MutSβ (MSH2-MSH3 complex) binding to the DNA site of interest that contains 

the mismatch or IDL.32 Importantly, MutSα is capable of identifying any of the eight possible 

DNA base pair mismatches, as well as small IDLs (1-2 bases), while MutSβ is only effective at 

identifying IDLs.33,34 Subsequent to mispair recognition, MutSα is believed to participate in an  
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Figure 1.3 Graphic representing the role of eukaryotic mismatch repair (MMR) machinery in 

identifying and correcting DNA mismatches. The first iteration of replication (green) results in 

the formation of an AC mismatch (red). This error can be processed and repaired by MMR 

proteins, including MSH2, MSH6, MLH1, and PMS2. However, if the mismatch remains 

unchanged, upon the second iteration of replication (blue), a mutation (orange) will result. In this 

case, an AT base pair becomes GC mutation. Adapted from Reference 30.30 
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ATP-dependent conformational change that promotes MutLα (MLH1-PMS2 complex) binding. 

Studies have indicated that MutLα, when activated by PCNA, recognizes and nicks the nascent 

DNA strand, which commences the removal of the mismatch or IDL site; the exact mechanism 

of mispair removal remains to be elucidated, however, numerous models exist.35 Lastly, 

synthesis of complimentary DNA followed by ligation allows for the completion of the MMR 

correction.32–34 

MMR proteins represent an essential DNA repair pathway that prevents the propagation 

of DNA mismatches into mutations (Figure 1.3). Lack of function within one or multiple MMR 

proteins, especially MutSα and MutLα, can result in MMR deficiencies. Without the ability to 

properly survey recently synthesized DNA for mismatches and IDLs, there is a sharp decrease in 

DNA fidelity that can result in genomic instability and eventually cancer. In particular,  

Hereditary Nonpolyposis Colorectal Cancer (HNPCC), also known as Lynch Syndrome, is a 

disease commonly associated with MMR deficiencies, and 90% of HNPCC exhibit high 

microsatellite instability or MMR deficiencies.36  Furthermore, MMR deficiencies are associated 

with 15-20% of all solid tumors and approximately 15% of colorectal cancer cases, and 

importantly, MMR-deficient cancer cells are often resistant to standard of care 

chemotherapeutics.  

For example, several studies have shown MMR-deficient tumors to be less responsive to 

5-FU and nucleobase analogue treatments generally. Specifically, a study conducted by 

Carethers et. al. showed that cellular proliferation is significantly reduced in MMR-proficient 

cells incubated with varying concentrations of 5-FU, while MMR deficient cell lines display 

minimal response to 5-FU treatment, as shown in Figure 1.4.23 Moreover, analyses of clinical  
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Figure 1.4 Colony forming assays in MMR-proficient and deficient colon and ovarian cancer 

cell lines treated with 5-fluorouracil (5-FU). The MMR-proficient cells tested, HCT116+ch3 and 

SW480, show reduced clonal survival with 5-FU treatment. Conversely, the results from the 

MMR-deficient cell lines, HCT116, HCT116+ch2, LoVo, and 2774, display 5-FU does not 

significantly reduce cellular proliferation in these cells. Adapted from Reference 23.23 
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trials with 5-FU have shown that advanced CRC patients with MMR deficiencies do not display 

improved survival when given the nucleobase as adjuvant chemotherapy.23,37 This insensitivity to 

standard chemotherapies also applies to cisplatin and other alkylating agents,38 which ultimately 

creates a significant need for novel, targeted therapeutics for MMR-deficient cancers. 

1.2.1 FDA-Approved MMR-Deficient Targeted Chemotherapeutics 

Two main strategies for selectively targeting MMR-deficient cancers have been 

developed. First, therapeutics have been designed to take advantage of the neoantigens that result 

from the high mutational load of MMR-deficient cancer cells.39 These mutated biomolecules are 

presented on the surface of malignant cells and typically recognized by immune regulatory T-

cells. Within non-cancerous tissues, the identification of neoantigens on foreign or diseased cells 

results in the secretion of cytokines and activation of the immune response. 40 This type of 

immune surveillance, as well as prevention of auto-immune responses against healthy cells, is 

tightly regulated by various mechanisms, including interactions between programmed cell death 

protein 1 (PD-1) and its ligands, programed cell death ligand 1 (PD-L1) and 2 (PD-L2). 

However, many cancerous cells upregulate the PD-L1 and PD-L2 inhibitory ligands in order to 

prevent immune response activation.41 Understanding of this cancer immune evasion pathway 

has resulted in the development of therapeutics that target the PD-1 receptor, such as the FDA-

approved Pembrolizumab.  

Pembrolizumab is a highly selective, humanized monoclonal IgG4-kappa isotype 

antibody against PD-1. Initial clinical studies with advanced melanoma and non-small cell lung 

cancer patients have shown that Pembrolizumab has high tumor response rates with long lasting 

effects. Clinical trials with this antibody treatment in other MMR-deficient patient populations 

are ongoing.42 While the development of PD-1 inhibitors has significantly advanced efforts to 
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treat MMR-deficient cancers, these therapies can be prohibitively expensive and the overall 

response rate is still only approximately 50%.40 Therefore, alternative approaches to selectively 

target MMR-deficient cancers are still needed; in particular, small molecule therapeutics 

designed to target the DNA base pair mismatches and IDLs that result from MMR deficiencies. 

Currently, there are no clinically approved drugs with this mechanism of action, and the 

development of such therapeutics will be essential to advancing treatment of MMR-deficient 

cancers. 

1.3  Rhodium Metalloinsertors: Development of DNA Mismatch Targeted Therapeutics  

 1.3.1 Metalloinsertor Design: Targeting Thermodynamically Destabilized DNA Sites 

Our laboratory has worked for several years to develop rhodium metalloinsertors, 

octahedral complexes designed to specifically locate and bind mismatched DNA sites.43  These 

complexes capitalize on the thermodynamic instability of DNA mismatch sites compared to 

well-matched base pairs, which results from imperfect hydrogen bonding and π-stacking of 

improperly paired DNA bases.44,45 Metalloinsertors are distinct from DNA binding intercalators 

and achieve selective binding to thermodynamically destabilized sites by incorporating 

particularly wide, aromatic, inserting ligands, such as chrysi (5,6-chrysenequinone diimine) and 

phzi (benzo[a] phenazine-5,6-quinone diimine). These ligands are designed to be slightly larger 

than Watson-Crick paired DNA bases. For example, the chrysi ligand is 0.45 Å larger than a 

well-matched base pair (11.3 Å compared to 10.85 Å, respectively; see Figure 1.5); this design 

is intended to significantly reduce the ligand’s ability to indiscriminately intercalate between 

well-matched bases.46 In addition to a wide inserting ligand, metalloinsertors coordinate bulky 

ancillary ligands, including phen (1,10-phenanthroline) and HDPA (2,2′- dipyridylamine), that 

are also intended to limit complex intercalation through steric clashes. Importantly, a rhodium 
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metal center was chosen due to its photophysical properties, as DNA binding rhodium complexes 

are known to cleave DNA strands upon photoactivation.47 Additionally, rhodium is known to be 

chemically inert to ligand substitution; therefore, the complex should remain intact under 

physiologically relevant conditions.     

1.3.2 Selective Binding of Rhodium Metalloinsertors to DNA Lesions  

Initial studies of metalloinsertors explored their ability to specifically bind to mismatch 

sites over well-matched sites by utilizing photocleavage studies with first generation 

metalloinsertor [Rh(bpy)2(chrysi)]3+ (Figure 1.5). This complex was found to selectively bind to 

DNA base pair mismatches and cleave DNA binding sites upon photoactivation. In particular, 

studies comparing photocleavage within 2725 base pair linearized plasmids containing either a 

single CC mismatch or completely well-matched DNA found that cleavage from 

[Rh(bpy)2(chrysi)]3+ was observed specifically at the lone CC mismatch site (Figure 1.5). No 

photocleavage was detected in the Watson-Crick paired control plasmid.48 These experiments 

indicated over 1000-fold selective binding to mismatches over well-matched sites.49,48 

Additionally, this first generation metalloinsertor displayed the ability to target 80% of all DNA 

mismatches.49,48  

Additional studies found that [Rh(bpy)2(chrysi)]3+ binds to abasic sites (1- 4 x 106 M-1) 

and single base bulges (105 M-1) with high affinity and selectivity, similar to mismatch sites (3 x 

105 M-1), showcasing the versatility of these complexes to bind common DNA replication defects 

that are thermodynamically unstable.50 Importantly, complex binding affinity to DNA sites 

correlated with the thermodynamic destabilization of each DNA lesion (KB: abasic sites > 

mismatched base pair > single base bulge >> well matched base pair) regardless of sequence  
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Figure 1.5 Rhodium metalloinsertor design and DNA mismatch binding specificity. (Left) 

Chrysi ligand (10.85 Å) is approximately 0.45 Å wider than a well matched AT base pair (11.3 

Å), which decreases the favorability of complex intercalation. (Middle) Structure of first 

generation metalloinsertor [Rh(bpy)2(chrysi)]3+. The inserting chrysi ligand is shown in red. 

(Right) Photocleavage experiment with [Rh(bpy)2(chrysi)]3+ and a 2725-base pair linearized 

plasmid containing one CC mismatch. The arrow identifies site-selective DNA cleavage at the 

mismatch site. The Watson-Crick base paired equivalent plasmid does not experience cleavage, 

indicating a lack of complex binding to well-matched DNA sites.  
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Figure 1.6  Crystal structure of first generation metalloinsertor Δ-Rh(bpy)2(chrysi)3+ bound to 

DNA mismatch. X-ray crystallography structure of Δ-Rh(bpy)2(chrysi)3+ (red) bound via 

metalloinsertion to two AA mismatches (blue and green) in the oligonucleotide 5′- 

CGGAAATTACCG-3′ (gray), where the mismatch site is underlined. Importantly, the 

mismatched bases are ejected from the DNA helix. Structure from Reference 53.53 



 17 

context.50–52 Notably, only the right-handed enantiomer of these metalloinsertors was found to 

bind to DNA. 

1.3.3 Structural Studies of Rhodium Metalloinsertors Bound to DNA Mismatches 

In order to further understand the activity of first generation metalloinsertors, structural 

studies were conducted with these complexes. In particular, X-ray crystallography and NMR 

experiments involving [Rh(bpy)2(chrysi)]3+ and DNA oligomers containing various mismatches 

revealed that metalloinsertor complexes interact with DNA via a completely novel binding mode  

called metalloinsertion (Figure 1.6).53 The NMR study utilized NOESEY and COSY techniques 

to investigate Δ-Rh(bpy)2(chrysi)3+ binding to a nine base pair oligonucleotide containing one 

CC mismatch. This analysis found that Δ-Rh(bpy)2(chrysi)3+ deeply inserts into the DNA helix at 

the mismatch site from the minor grove side and ejects both mismatched cytosine DNA base 

pairs from the helix.54 This ejection of bases allows the chrysi inserting ligand to form favorable 

pi stacking interactions within the helix. The complex is further stabilized by its bpy ligands 

interactions with the DNA backbone. Importantly, insertion of the complex at the binding site 

does not significantly distort the local DNA conformation and no increase in base pair rise was 

observed. The metalloinsertor binding mode was also observed in X-ray crystallography 

experiments, in which high resolution (ex. 1.1-Å) crystal structures of  Δ-Rh(bpy)2(chrysi)3+ 

bound to AA and AC mismatches via the metalloinsertion binding mode were solved.46,53,55 Note 

that similar to photocleavage binding experiments, only the Δ-Rh(bpy)2(chrysi)3+ enantiomer 

was found to display metalloinsertion binding. Lastly, the ejection of base pairs from the DNA 

helix that is characteristic of metalloinsertor binding supports the hypothesis that the rhodium 

complexes may not be able to target guanine containing mismatches due to their high 

thermodynamic stability.  
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1.3.4 Biological Activity of Rhodium Metalloinsertors 

Given the ability of first generation metalloinsertors, particularly Δ- Rh(bpy)2(chrysi)]3+, 

to selectively bind DNA mismatches, the biological activity of these complexes was explored. In 

order to determine the selective cytotoxicity of the complexes towards MMR-deficient cancer 

cells, isogenic cell lines were used. The parent cell line HCT116, which is deficient in the MMR 

protein MLH1, was used to generate two daughter cell lines. HCT116O cells were transfected 

with human chromosome 2, which leaves the cell line MMR deficient, and HCT116N cells were 

transfected with human chromosome 3, which encodes for a functional MLH1 protein, ultimately 

making the cell line MMR proficient.56 ELISA cellular proliferation assays were used to assess 

the ability of metalloinsertors  [Rh(bpy)2(chrysi)]3+ and [Rh(bpy)2(phzi)]3+ to selectively inhibit 

cellular proliferation, and the study found that both complexes display preferential biological 

effects towards the HCT116O MMR-deficient cell line. Notably, the selective inhibition of cell 

growth was specific to the right handed enantiomer, which is consistent with structural and 

photocleavage studies of Δ-Rh(bpy)2(chrysi)3+ selectively binding to DNA mismatches.57,58  

The impact of metalloinsertor ancillary ligands on biological activity was also 

explored. [Rh(DPAE)2(chrysi)]3+ and [Rh(PrDPA)2(chrysi)]3+ (DPAE = 2-(di(pyridin-2-

yl)amino)ethanol, PrDPA =N-propyl-N- (pyridin-2-yl)pyridin-2-amine) are metalloinsertors with 

similar binding affinities (KB = 6.8 × 106 M−1 and 2.5 × 106 M−1, respectively). In order to better 

understand the mechanism for metalloinsertors generally displaying preferential potency towards 

MMR-deficient cells, these complexes were analyzed for their cellular uptake and subcellular 

localization.59 This study revealed that [Rh(DPAE)2(chrysi)]3+ selectively inhibits cellular 

proliferation, while [Rh(PrDPA)2(chrysi)]3+ indiscriminately hinders cell growth in both 

HCT116N and HCT116O cells (Figure 1.7). Substitution of the terminal alcohol group on the 
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ancillary group with methyl groups resulted in elimination of differential biological activity. 

Further analysis revealed that differences in subcellular localization are critical to preferential 

potency in MMR-deficient cells. Specifically, [Rh(DPAE)2(chrysi)]3+ was found to be mainly 

localized to the nucleus, while [Rh(PrDPA)2(chrysi)]3+ displayed enhanced whole cell uptake 

with significant mitochondrial accumulation relative to the nucleus.59 Ultimately, evaluation of 

ancillary ligands in first generation metalloinsertors suggests that complexes with enhanced 

lipophilicity are likely to accumulate in the mitochondria and lack biological selectivity.58–60 

1.4  Current Rh-O Metalloinsertor Design and Activity  

The most recent family of rhodium metalloinsertors is based 

on [Rh(DPE)(chrysi)(phen)]2+ (DPE=1,1-di(pyridine-2-yl)ethan-1-ol) and contains an 

unexpected Rh-O axial coordination (Figure 1.8). Assessment of the biological activity of these 

Rh-O metalloinsertors has shown that they display enhanced potency, as much as two orders of 

magnitude greater than first generation complexes, within colorectal cancer  (CRC) cell lines. 

For instance, the most promising metalloinsertor to date, [Rh(chrysi)(phen)(PPO)]2+ (Rh-PPO), 

was found to be on average five times more potent than the FDA-approved chemotherapeutic 

cisplatin with mean IC50 values (50% inhibitory concentration) of 2.9 µM and 13.2 µM, 

respectively, across 27 CRC cell lines.61 Furthermore, Rh-O metalloinsertors display preferential 

cytotoxicity towards MMR-deficient HCT116O CRC cells compared to the isogenically matched 

MMR-proficient HCT116N cell line.62 In addition to showing enhanced potency and selectivity, 

these Rh-O metalloinsertors have displayed high tolerance to functionalization of the N^O 

coordinating ligand. Unlike the previous generation of metalloinsertors, which was sensitive to 

ancillary ligand lipophilicity, studies with Rh-O metalloinsertors have shown that chemical  
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Figure 1.7 Biological activity of structurally similar first generation metalloinsertors with 

distinct lipophilicities. (Left) Structures of the metalloinsertors [Rh(DPAE)2(chrysi)]3+ and 

[Rh(PrDPA)2(chrysi)]3+, which contain slight differences in their ancillary ligands. (Right) 

Cellular proliferation studies of each metalloinsertor. HCT116N (MMR-proficient, closed 

squares) and HCT116O (MMR-deficient, open circles) cells were used in the displayed ELISA 

experiments. The hydrophilic complex [Rh(DPAE)2(chrysi)]3+ displays selective inhibition of 

cell growth toward MMR-deficient cells, while the lipophilic complex 

[Rh(PrDPA)2(chrysi)]3+exhibits non-selective inhibition of cellular proliferation, despite higher 

cellular uptake. Subcellular localization studies reveal that the lack of selectivity observed from 

[Rh(PrDPA)2(chrysi)]3+ is a result of significant complex accumulation in the mitochondria.  
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Figure 1.8 Chemical structures and cytotoxic selectivity of Rh-O metalloinsertors. Chemical 

structure of (top left) [Rh(chrysi)(phen)(DPE)]2+ (Rh-DPE) and (top right) 

[Rh(chrysi)(phen)(PPO)]2+ (Rh-PPO), second generation Rh-O metalloinsertors. MTT cell 

viability assays of cells treated with (bottom left) Rh-DPE and (bottom right) Rh-PPO. 

HCT116N (MMR-proficient, green squares) and HCT116O (MMR-deficient, red circles) cells 

were used to determine preferential toxicity of complexes towards MMR-deficient cells.   

 

 

Rh

N

O
NH

N

N
H N

H3C CH3

Rh-PPO

2+

Rh

N

O
NH

N

N
H N

CH3

2+

N

Rh-DPE

Rh

N

O
NH

N

N
H N

H3C CH3

Rh-PPO

2+

Rh

N

O
NH

N

N
H N

CH3

2+

N

Rh-DPE



 22 

groups ranging from hydrophilic pyridines to hydrophobic hexyl chains can been incorporated 

into the N^O ligand, and the selective cytotoxic properties of these metalloinsertors have 

remained intact. Importantly, both enantiomers of Rh-O metalloinsertors display selective 

mismatch binding (KB ~ 106 M−1) and preferential toxicity towards MMR-deficient cancer cells.  

Notable differences between Rh-O metalloinsertors and previous complex designs 

involve the 2+ charge that results from the N^O coordination and the significant changes in pKa 

of the chrysi imine protons. Due to the higher pKa of complexes like Rh-PPO, the chrysi ligand 

is protonated at physiological pH, which results in a buckled ligand conformation.62 While the 

exact impact of this conformational change on DNA binding remains unknown, metalloinsertion 

at mismatch sites is still believed to be the binding mode that affords differential toxicity toward 

MMR-deficient cancer cells in these complexes. Importantly, the DNA lesion generated by Rh-O 

metalloinsertors must be unique from first generation complexes because both the Δ and Λ 

enantiomers are able to selectively kill MMR-deficient cells at nanomolar concentrations.62,63 

Structural and mechanistic studies will be essential to clarifying the unique biological activity of 

Rh-O metalloinsertors.   

1.5  Conclusions 

Development of chemotherapeutics has shifted towards designing compounds with 

specific biological targets that are characteristic of cancer cells. This approach aims to minimize 

the side effects and dose limitations associated with traditional chemotherapeutics, such as 

cisplatin and doxorubicin, by limiting cytotoxicity within healthy cells. Metal compounds have 

particular promise for targeted therapeutic development due to their distinct photophysical 

properties, unique reactivity, and tunable coordination geometries. Here, we present 
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advancements in the preclinical development of rhodium metalloinsertors, octahedral complexes 

targeted toward the DNA mismatches that result from MMR-deficient cancers. 
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Chapter 2 

 
IN VIVO ANTICANCER ACTIVITY OF A RHODIUM METALLOINSERTOR 

IN THE HCT116 XENOGRAFT TUMOR MODEL* 

S.D.T. participated in designing the project, synthesized complex for the studies, performed and analyzed 
experiments, and participated in composing the manuscript. 

2.1  Introduction 
 
 

Metal complexes have long been used to target DNA in order to achieve efficient 

cytotoxicity in cancerous cells.1–4 Several of the leading chemotherapeutic drugs, such as 

cisplatin and oxaliplatin, are metal complexes that irreversibly bind DNA and inhibit DNA 

replication. Due to the efficacy of these therapeutics, 10-20% of all cancer patients are prescribed 

platinum-based drugs.5 While these platinum complexes successfully cause cell death within 

cancerous tissues, they also result in toxicity towards healthy, often rapidly dividing cells, 

leading to side effects that include gastrointestinal toxicity and nephrotoxicity. 6,7 Additionally, 

the majority of patients treated with these classic DNA-targeted chemotherapeutics develop 

resistance, which causes these therapies to lose effectiveness.8,9,10 As a result, much research has 

shifted focus towards developing chemotherapeutics with improved selectivity for killing tumor 

cells.11  

Our laboratory has designed transition metal complexes that specifically target DNA base 

pair mismatches, such as those that result from polymerase errors during DNA replication. While 

in healthy, normal cells these mismatches are repaired by the mismatch repair (MMR) protein 

machinery, certain cancerous tissues have malfunctioning MMR, which causes mismatch sites 

 

 

 

*Adapted from Threatt, S. D.; Synold, T. W.; Wu, J.; Barton, J.K. In Vivo Anticancer 
Activity of a Rhodium Metalloinsertor in the HCT116 Xenograft Tumor Model. Proc. 
Natl. Acad. Sci. USA. 2020, 117, 17535-17542.  DOI: 10.1073/pnas.2006569117 
 Dr. Nathan Dalleska assisted in optimizing the ICP-MS experiments to detect rhodium 
and platinum content in tissues. 
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to persist, ultimately yielding increased mutations and enhanced cancerous transformations.12 

MMR deficiencies are a hallmark for approximately 15% of colorectal cancer cases and up to 

20% of all solid tumors.  Colorectal cancer patients often undergo genetic screens, including for 

MMR mutations and microsatellite instability, which help to guide clinical treatment 

decisions.13,14 Low responsiveness is often apparent with traditional chemotherapeutics, such as 

fluoropyrimidines and platinum therapy, particularly leading to the build-up of resistance. Recent 

reports have found that microsatellite instability high (MSI-H) and MMR-deficient patients have 

been particularly responsive to anti-PD-1/PD-L1 immunotherapies with overall response rates of 

40%. While developments with immunotherapies have been promising for treating MMR-

deficient cancers, there is still a strong need for additional therapeutic options. 15 

Designing metal complexes capable of selectively targeting the DNA mismatches that are 

associated with MMR-deficient cancers and exploring their biological activity has been an 

objective of our group and others.16,17 We have developed transition metal complexes, 

specifically rhodium compounds, that bind to thermodynamically destabilized DNA mismatch 

sites via a binding mode termed metalloinsertion.  In this binding mode, the metal complex 

inserts at the site of the mismatched base pair via its planar and sterically expansive inserting 

ligand, chrysi (5,6-chrysenequinone diimine), resulting in the ejection of the destabilized 

mismatch base pair from the DNA helix.18 19   

Early generation metalloinsertor complexes, such as [Rh(bpy)2(chrysi)]3+ were 

characterized by an all N^N coordination environment and initial studies with these 

metalloinsertors revealed highly selective binding to mismatch sites. Remarkably, the in vitro 

mismatch binding of metalloinsertors translated into selective cellular properties, in which 

preferential inhibition of cellular proliferation was observed for MMR-deficient cells over 
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MMR-proficient cells. However, observing selective cellular inhibition required micromolar 

concentrations of these first-generation compounds. Additionally, complexes studied that 

contained lipophilic ligands to enhance cellular uptake showed a loss of selective cellular 

toxicity.20,21 Second generation complexes containing an N^O coordination and lower overall 

charge yielded compounds that are selectively cytotoxic towards MMR-deficient cells at 

nanomolar concentrations. Currently, our leading rhodium metalloinsertor complex, 

[Rh(chrysi)(phen)(PPO)]Cl2  (Rh-PPO), where phen = 1,10-phenanthroline and PPO = 2-

(pyridine-2-yl)propan-2-ol, displays highly potent and selective cytotoxicity towards the MMR-

deficient human colorectal cancer (CRC) cell line HCT116O compared to HCT116N cells, the 

matched MMR-proficient cell line.22       

Furthermore, a study assessing the cytotoxicity of Rh-PPO in 27 CRC cell lines spanning 

the four subtypes of CRC, as well as both MMR-deficient and MMR-proficient phenotypes, 

provided additional support to the hypothesis that the targets of Rh-PPO are DNA base pair 

mismatches.23,24 Rh-PPO was found to be on average five times more potent than the FDA-

approved chemotherapeutic cisplatin with mean IC50 values (50% inhibitory concentration) of 

2.9 µM and 13.2 µM, respectively across CRC cell lines. Specifically for HCT116O MMR-

deficient cells, Rh-PPO displays a half maximal inhibitory concentration (IC50) of 250 nM 

compared to 27.5 µM for oxaliplatin, the comparator used in this study. Figure 2.1 shows 

structures from both generations of metalloinsertors along with oxaliplatin.  
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Given the demonstrated significant and selective toxicity towards MMR-deficient cancer 

cells, and the high cellular potency observed with Rh-PPO, we have continued to explore the 

potential application of this rhodium metalloinsertor as a targeted chemotherapeutic. Here, we 

report in vivo pharmacokinetic and efficacy studies evaluating Rh-PPO in an HCT116 xenograft 

tumor model.  The results presented demonstrate that Rh-PPO displays significant anticancer 

effects and potency in vivo, highlighting the therapeutic potential of this class of metal 

complexes targeted to bind DNA mismatches.  

2.2  Experimental Methods 

2.2.1 Materials  

All chemicals, reagents, and solvents used for synthesis were commercially available, 

unless otherwise noted, and used as received. Organic solvents were purchased from Sigma 

Aldrich unless otherwise noted (St. Louis, MO). Water was purified using the Millipore Milli-Q 

system (Milford, MA, USA). Oxaliplatin was purchased from Alfa Aesar (Haverhill, MA).  

HPLC-grade acetonitrile (ACN) and methanol were purchased from Fisher Scientific (Fair 

Lawn, NJ, USA). Formic acid (99% pure) was purchased from Acros organic (New Jersey, 

USA). Analytical standards for Rh, Pt, and transition metals were purchased from Analytical 

West, Ultra Scientific, and Sigma Aldrich. Redistillation purified nitric acid was purchased from 

Sigma Aldrich and used for all ICP-MS experiments.  

 Sep-Pak C18 solid-phase extraction (SPE) cartridges were acquired from Waters 

Chemical Co (Milford, MA). All HPLC metal complex purifications were carried out on a 

Hewlett-Packard 1100 HPLC. All UV-Visible spectroscopic experiments were performed on a 

Cary 100 spectrometer. Cell culture media and supplements were purchased from Life 
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Technologies (Carlsbad, CA). Cell lines used in the experiment were purchased from ATCC 

(Manassas, VA). Tissue culture flasks and plates were obtained from Corning (Corning, NY). 

2.2.2 Synthesis and Purification of Rhodium Metalloinsertor Compounds  

 [Rh(chrysi)(phen)( 2-(pyridine-2-yl)propan-2-ol]Cl2 (Rh-PPO) and [Rh(chrysi)(phen)(1-

Phenyl-1-(pyridine-2-yl)ethan-1-ol]Cl2 (Rh-PPE) were synthesized following published 

methodology.22 The purification of Rh-PPO and Rh-PPE was modified from the literature 

preparations as follows: the crude reaction mixture of Rh-PPO or Rh-PPE was loaded onto a C18 

SPE cartridge equilibrated with 15% acetonitrile in 0.1% TFA(aq). The concentration of 

acetonitrile was gradually increased and the complex eluted from the SPE cartridge with 25% 

acetonitrile in 0.1% TFA(aq), then dried in vacuo. The SPE purified complex was then dissolved 

in minimal acetonitrile before HPLC purification and filtered. Rh-PPO was purified by HPLC 

using an isocratic method of 25:75 MeCN:H2O + 0.1% TFA over 60 min. Rh-PPE was purified 

by HPLC using  a gradient elution from 85:15 to 5:95 H2O + 0.1% TFA:ACN over 30 minutes. 

Peaks corresponding to the desired products were verified using ESI-MS and were collected 

using an automatic fraction collector or by hand. The chloride salts were obtained from a 

Sephadex QAE anion exchange column equilibrated with 0.1 M MgCl2 and complex structure 

was verified using NMR. Before drug solution preparation, Rh-PPO was precipitated by 

dissolving in minimal EtOH, then generous addition of diethyl either. The resulting red 

precipitate was filtered using a fine glass frit and thoroughly dried on the lyophilizer. 

2.2.3 Concentration Determination of Rhodium Complexes  

A stock solution of each rhodium metalloinsertor was made in MilliQ water and a UV-

Vis trace was recorded. The concentration of stock solution was then determined by using the 

Cary UV-Vis instrument, as well as molar absorptivity values from the literature.21 The 
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following molar absorptivity values were used to estimate the concentration of Rh-PPO in water: 

UV−vis (H2O, pH 7.0): 270 nm (122,400 M−1 cm−1), 300 nm (41,600 M−1 cm−1), 430 nm (12,300 

M−1 cm−1). The following molar absorptivity values were used to estimate the concentration of 

Rh-PPE in water: UV−vis (H2O, pH 7.0): 270 nm (165,800 M−1 cm−1), 300 nm (56,300 M−1 

cm−1), 430 nm (16,100 M−1 cm−1).  

2.2.4 Cell Culture  

HCT116 cells were grown and maintained using McCoy’s 5A (modified) media 

supplemented with 10% fetal bovine serum (FBS) and 100 units/mL penicillin and streptomycin. 

The cells were incubated in tissue culture flasks at 37°C in a 5% CO2 atmosphere. Standard 

procedures for entering and exiting cryostorage were followed, as well as methods for 

subculturing HCT116 cells. Cell solutions of 2.5 x 106 cells/100 µL media were made for tumor 

inoculation using only McCoy’s 5A (modified) media supplemented with 10% FBS.  

2.2.5 Mice Preclinical Assessment Studies 

All animal experiments were done in accordance with protocols approved by the 

Institutional Animal Care and Use Committees at City of Hope. All experiments were performed 

in accordance with the City of Hope policies on the care, welfare, and treatment of laboratory 

animals. For all experiments, strain NOD-scid IL2Rgammanull (NSG) mice from City of Hope 

Animal Resources Center were used (Duarte, CA). Each cage contained up to four mice and 

animals were offered standard diet and water. All animal studies were performed with the 

chloride salt of the metalloinsertor. Rh-PPO and Rh-PPE concentrations were determined by 

UV-Vis using the extinction coefficients of the complex.22 
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2.2.6 Maximum Tolerated Dose (MTD) Studies  

NSG mice were weighed then received intraperitoneal injections of Rh-PPO dissolved in 

saline at concentrations of 1, 2, 5, or 15 mg drug per kg mouse (mpk). Intraperitoneal injections 

were administered once daily for 10 consecutive days. Clinical observations were made daily and 

mouse body weights were recorded. At the end of the study, surviving animals were euthanized 

using carbon dioxide.  

2.2.7 In Vivo Tumor Growth Inhibition and Survival Rate  

NSG mice, weighing 23-34 g, were injected subcutaneously in the right flank with 100 

µL HCT116 cells (2.5 x 106 cells) suspended in McCoy’s media. Tumors were allowed to grow 

until they reached ~100 mm3, 11-12 days after tumor inoculation. Tumor volumes (TV) were 

estimated by measuring the width (W) and length (L) of the tumor using a digital caliper and 

calculated based on the following formula: TV = W2L/2.25  

2.2.8 In vivo Intraperitoneal Efficacy Experiments 

Mice were randomly assigned to each treatment group, such that each group had 10-13 

mice and an average tumor volume of ~100 mm3. Mice were allocated to the following treatment 

groups: vehicle (0.9% NaCl), Rh-PPO at 0.5 mpk, Rh-PPO at 1 mpk, and oxaliplatin at 7.5 mpk. 

Rh-PPO was dissolved in saline at the MTD (1 mpk) and MTD/2 (0.5 mpk) and administered 

intraperitoneally 3-4 times per week. Saline was administered intraperitoneally to the control 

group 3-4 times per week. Clinical grade oxaliplatin (Alfa Aesar) was dissolved in 5% dextrose 

using sonication and administered intraperitoneally two times per week, as reported in previous 

studies.26 Two in vivo, intraperitoneal efficacy experiments were conducted, and the specific 

dosing schedules for each study and treatment group are outlined in Figure 2.2. Mouse body 

weights and tumor volumes were measured twice per week over the course of each study. 
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2.2.8.1 Efficacy Experiment #1 

This study contained the following number of mice per dosing group: saline (n=13), Rh-

PPO at 0.5 mpk (n=10), Rh-PPO at 1 mpk (n=10), and oxaliplatin at 7.5 mpk (n=11). As 

described in Figure 2.2, mice in all treatment groups in Efficacy Experiment #1 received 2 mL 

bolus, subcutaneous injections of saline twice per week in order to increase drug tolerability 

(Day 18, 20, 25, 27, and 32). The specific dosing schedule for each treatment group in Efficacy 

Experiment #1 is outlined in Figure 2.2.  

2.2.8.2 Efficacy Experiment #2  

This study contained 10 mice in each treatment group. The specific dosing schedule for 

each treatment group in Efficacy Experiment #2 is outlined in Figure 2.2. Note that the drug 

dosing schedule was altered after Day 14 to increase tolerability of Rh-PPO. 

2.2.8.3 Survival Rate Studies  

Survival rate was determined by comparing the number of animals alive at different time 

points during the study to the total number of animals at the start of the study. Mice were 

removed from the study if: found dead in their cage, declining health necessitated euthanasia, or 

tumor diameter exceeded 15 mm. These parameters were used to construct a Kaplan-Meier 

survival curve. Increase in life span (ILS) was calculated based on the following equation: ILS = 

(DaysT – DaysC) / DaysC, where DaysC = days survived by control group mice and DaysT = days 

survived by treatment group mice.  
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ILS was determined to compare the survival rates of the different treatment groups. Each 

treatment group started with 10-13 mice. After treatment completion, mice were euthanized 

using carbon dioxide, and tumors were dissected and weighed. In three mice per treatment group 

in Efficacy Experiment #1, major organs (spleen, kidneys, liver, heart, skeletal muscle, lungs, 

small intestine, colon, stomach, cecum, testes, epididymis, tumor, tibia/femur and brain) were 

harvested, cut in half, and one half fixed in 10% formalin and the other half frozen on dry ice for 

further analysis.  

2.2.8.4 Tumor Weight Analysis  

In Efficacy Experiment #2, 18 days after starting treatment, all mice were euthanized 

using carbon dioxide and HCT116 xenograft tumors were dissected, weighed, and frozen on dry 

ice. Tumor weights were analyzed using the Anova test to determine the significance of the 

results. In three mice per treatment group in Efficacy Experiment #2, major organs (spleen, 

kidneys, liver, heart, skeletal muscle, lungs, small intestine, colon, stomach, cecum, testes, 

epididymis, tumor, Tibia/Femur and brain) were harvested, cut in half, and one half fixed in 10% 

formalin and the other half frozen on dry ice for further analysis.  

2.2.9 Tumor Volume and Final Tumor Weights Analysis for Intratumoral Efficacy 

Experiment  

Female NSG mice (28-37 g) were injected subcutaneously with HCT116 cells (2.5 x 106) 

suspended in McCoy’s media; 100 µL injections into the right flank. Tumors were allowed to 

grow until they reached ~90 mm3 (11 days). Mice were then randomly assigned to each treatment 

group with 5 or 10 mice in each, so each group had an average tumor volume of 80-90 mm3. 

Mice were assigned to the following treatment groups: saline (n=5) and Rh-PPO at 1 mpk 

(n=10). Rh-PPO was dissolved in saline at the MTD (1 mpk) and administered intratumorally 
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based on the schedule outlined in Figure 2.9. Saline was administered intratumorally to the 

control group based on the same schedule. Mouse body weights and tumor volumes were 

measured twice per week over the course of the study, and tumors were excised and weighed on 

day 18 of the study. Tumor volumes (TV) were estimated by measuring the width (W) and 

length (L) of the tumor using a digital caliper and calculated based on the following formula: TV 

= W2L/2. 

2.2.10 Pharmacokinetic Studies for Intraperitoneal Mouse Experiments 

2.2.10.1 Determination of Rh-PPO in vivo Biodistribution 

In Efficacy Experiment #1, after the final Rh-PPO drug dose was administered, blood 

was collected via cardiac puncture using a syringe and immediately transferred to heparinized 

blood collection vials on ice at time intervals of 0.5, 1, 2, 4, and 8 hr post administration (three 

mice per Rh-PPO treatment group per time point). The blood samples were centrifuged at 15,000 

g at RT for 5 min, and the supernatant plasma was transferred to 1.5 mL microcentrifuge tubes 

and maintained at -80oC until analysis. Plasma samples were prepared for LC-MS/MS analysis 

by mixing 20 µl mouse plasma sample with 10 µl 50% acetonitrile in water in a 0.5 mL low 

retention microcentrifuge tube. Then, 100 µl of 500ng/mL Rh-PPE internal standard (INS) in 

acetonitrile was added to the sample tube and the solution was vortexed for 3 min. The sample 

was then centrifuged at 14,800 g for 5 min at 4°C and 20 µl of the resulting supernatant was 

mixed with 180 µl 25% acetonitrile in 10mM NH₄OAC buffer (pH 3.2). Finally, 2 µl of the 

resulting sample was analyzed via LC-MS/MS.  

2.2.10.1.1 LC-MS/MS Analysis of Plasma Samples  

Standard Rh-PPO and internal standard (INS) Rh-PPE solutions were made as needed 

and concentration determined via UV-Vis. Mouse plasma for preparation of standards and 
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quality controls (QC) were obtained from BioChemed Services. LC-MS/MS analysis was 

performed using a Waters Acquity UPLC system (Milford, MA, USA) interfaced with a Waters 

Quattro Premier XE Mass Spectrometer. HPLC separation was achieved using a Luna 3µ  

Phenyl-Hexyl 100 x 2 mm column (Phenomenex, Torrance, CA, USA) proceeded by a 

Phenomenex Phenyl guard column (Torrance, CA, USA). The column temperature was 

maintained at 40°C. The mobile phase consisted of A (0.1% formic acid, 10% ACN in water) 

and B (0.1% formic acid in acetonitrile). The following gradient program was used: 0% B (0min, 

0.3 ml/min), 8% B (3.2 min, 0.3ml/min), 60% B (4.0 min, 0.3ml/min), 85% B (5.5 min, 0.3 

ml/min), 0% B (5.6 min, 0.3ml/min), 0% B (8.5 min, 0.3ml/min). The total run time was 8.5 

minutes. The auto-injector temperature was maintained at 5oC. The strong needle wash solution 

was 0.1% formic acid in 50% ACN and 50% water and the weak needle wash solution was 0.1 % 

formic acid and 10% ACN in water. The electrospray ionization source of the mass spectrometer 

was operated in positive ion mode with a cone gas flow of 25 L/hr and a desolvation gas flow of 

900 L/hr. The capillary voltage was set to 0.7 kV for both Rh-PPO and INS (Rh-PPE), and the 

cone voltages were optimized to 45 V for Rh-PPO and 51 V for INS, respectively. The collision 

voltages were set to 48 V for both Rh-PPO and Rh-PPE. The source temperature was 125oC and 

the desolvation temperature was 480°C. A solvent delay program was used from 0 to 3.8 minutes 

and from 5.2 to 8.5 minutes for Rh-PPO and INS, to minimize mobile phase to flow to the 

source. MassLynx version 4.1 software was used for data acquiring and processing. 

2.2.10.2 Chicken Liver Test Digestion  

A Rh/Pt solution with 100 ppm rhodium and 100 ppb platinum was made using 2% nitric 

acid and ICP-MS standards. Approximately 1 gram of purchased chicken liver was manually 

homogenized. Then, chicken liver was separated into three 50 mL digitubes. 3 mL conc. HNO3 
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(aq) was added to each tube. Each digitube sample underwent a digestion protocol in which tubes 

were covered with a watch glass and heated to 100oC on a DigiPREP block digestion system for 

1.75 hr (Champlain, N.Y.). Tube A had no metal standard added. Tube B had 100 µL Rh/Pt 

solution added before the digestion procedure. Tube C had the Rh/Pt solution added after the 

digestion procedure. After digestion was complete, samples were evaporated using gentle 

heating at 63oC for ~2hr. Next, 2% HNO3 (aq) was added to make a final volume of 25 mL, then 

samples were analyzed by ICP-MS for Rh103 and Pt195 content. Experiment was performed in 

quadruplicate.   

2.2.10.3 Tissue Digestion Analysis 

Mice from Efficacy Experiment #2 bearing HCT116 xenografts that were treated with 

Rh-PPO and oxaliplatin were used for the following analyses. The chicken liver test described 

above was performed to assess the accuracy of the nitric acid digestion protocol in detecting 

rhodium and platinum using ICP-MS. 

2.2.10.3.1 Tumor digestion analysis 

Tumors were collected, weighed, frozen at -80°C overnight, then dried using the 

lyophilizer for over 3 days. Lyophilized tumor samples were then immediately manually 

homogenized using a metal spatula, and reweighed. The homogenized tumors were transferred to 

50 mL Digitubes and 2 mL of 25% HNO3 was added to each sample. The sample was then 

covered with a watch glass and heated to 100oC on a DigiPREP block digestion system for 24 hr 

(Champlain, N.Y.). The digested tumor samples were centrifuged for 5 min at 1,000 rpm. 

Supernatant (200 µL) was transferred to new 15 mL falcon tubes containing 4.8 mL H2O. The 

diluted sample (1% HNO3) was centrifuged for 5 min at 1,500 rpm and analyzed by ICP-MS for 

Rh103 and Pt195. 
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2.2.10.3.2 Organ Digestion Analysis 

The collected organs were weighed and transferred to 50 mL Digitubes, to which 2-5 mL 

of concentrated HNO3 (68%) was added. The tubes were then covered with a watch glass and 

heated to 100oC on a DigiPREP block until the sample was fully digested (2-8 hr). The digested 

tissue samples were evaporated using gentle heating at 65 oC until ~1 mL of sample remained. 

Then a 2% HNO3 (aq) solution was added to each sample to reach a final volume of 25 mL. The 

resulting samples were analyzed by ICP-MS for Rh103 and Pt195. 

2.2.11 Rh-PPO Continuous Infusion Pharmacokinetic Studies  

Initial in vivo studies with Rh-PPO utilized Alzet osmotic pumps (Cupertino, CA) to 

achieve continuous infusion of the drug. In these studies, osmotic pumps were filled with Rh-

PPO at 1 mpk and implanted subcutaneously in four mice. Importantly, Mouse#1 and Mouse#2 

received 2 mL, daily, subcutaneous infusions of saline for hydration. Mice were assessed for Rh-

PPO plasma concentration by performing tail vein blood draws every 24 hr. After blood was 

collected, it was immediately transferred to heparinized blood collection vials on ice at time 

intervals of 24, 48, and 72 hr. The blood samples were centrifuged at 15,000 g at RT for 5 min, 

and the plasma supernatant was transferred to 1.5 mL microcentrifuge tubes and maintained at -

80oC until analysis. Plasma samples were analyzed for Rh-PPO concentration using LC-MS/MS. 

2.2.12 Immunohistochemistry Analysis of Tissues and Tumors Treated with Rh-

PPO  

At the completion of the intraperitoneal study, all major organs were collected (spleen, 

kidneys, liver, heart, skeletal muscle, lungs, small intestine, colon, stomach, cecum, testes, 

epididymis, tumor, tibia/femur and brain) via necropsy, then fixed in 10% formalin for more than 
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48 hrs. Tissues were then trimmed and embedded in paraffin. Tissues were then examined using 

hematoxylin and eosin staining and immunohistochemistry experiments. 

2.2.12.1 Immunohistochemistry Procedures 

Embedded tissues were deparaffinized using xylene and rehydrated in a series of 

descending concentrations of ethanol. Then, antigens were retrieved using a Decloaker 

(DC2012-220V) for 15 min at 110oC. Endogenous peroxidase was blocked for 15 min at room 

temperature (RT), then protein blocking was performed for 10 min at RT, and finally the primary 

antibody (anti-BrdU (BU1/75 (ICR,  RatIgG2a); cleaved caspase-3(Asp175); anti-pH2AX 

(Ser139) (20E3) (RbIgG); anti-HMGB1 ([EPR3507], RbIgG) or isotype control antibody (Rat 

IgG2a, κ Isotype Ctrl Antibody, Biolegend, Cat B242904; Rabbit IgG(EPR25A), Abcam, Cat 

ab172730) was applied for 60 minutes at RT. Wash buffer was used on tissues for 3 min (3x). 

Then, secondary antibody (Rabbit Anti-Rat IgG H&L (HRP), Abcam, Cat ab6734, 

EnVision+System-HRP Labelled polymer anti-Rabbit, Dako, Cat K4003) used for 30 minutes at 

RT. Then, Wash buffer was applied for 3 min (3x). Tissues were visualized with Chromogen, 

washed with Wash buffer for 3 min (3x), then CounterStained, dehydrated, and mounted with 

mounting medium. Stained slides were scanned at 20x using an Aperio Scanscope AT2 scanner. 

Image quantification was done by using Halo image analysis software. Data analysis was 

performed using GraphPad Prism 7.04. Note that the above procedures were performed by 

Barton lab collaborators at Amgen. 
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2.3 Results 
 

2.3.1 Evaluation of the Maximum Tolerated Dose (MTD) for Metalloinsertor Rh-

PPO 

In order to determine the in vivo anticancer effects of Rh-PPO, the MTD of Rh-PPO was 

assessed in NOD-scid IL2Rgammanull (NSG) mice. Mice were treated intraperitoneally with Rh-

PPO at 1, 2, 5, and 15 mg drug per kg mouse body weight for up to 10 consecutive days and 

observed for adverse clinical side effects. During this experiment, the highest dose evaluated, 15 

mg/kg/day (mpk), was found to be lethal within minutes of administration. Mice in the saline 

group maintained their activity throughout the 10-day study. Mice receiving Rh-PPO at 2 mpk 

and 5 mpk began displaying notable symptoms of distress and inactivity, such as becoming 

lethargic, scruffy, and hunched, starting on day 4 and day 2 of the study, respectively; these mice 

had to be euthanized before the 10-day study ended. Conversely, mice receiving Rh-PPO at 1 

mpk displayed only mild symptoms of distress, including becoming slightly hunched after 6 days 

of consecutive treatment. Throughout the MTD study, mice in all treatment groups lost body 

weight in a dose dependent manner. The MTD for Rh-PPO was determined to be 1 mpk (1.34 

micromol/kg); the mice in this dosing group displayed minimal symptoms of distress or 

inactivity and survived until the end of the study (10 consecutive days of treatment). Given the 

results of the MTD study, we chose the Rh-PPO dose of 1 mpk given three to four times per 

week to conduct the subsequent in vivo trial. Rh-PPO is compared to oxaliplatin at 7.5 mpk given 

twice per week, which is a treatment that has been shown to have notable anti-cancer effects in 

HCT116 xenograft tumors.26 
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2.3.2 Impact of Rh-PPO on in vivo Tumor Growth Rate   

Two distinct intraperitoneal efficacy experiments with HCT116 xenograft tumors were 

performed. As outlined in Figure 2.2, mice in Efficacy Experiment #1 and #2 received 

intraperitoneal doses of metalloinsertor treatments with or without additional saline hydration to 

assist with drug tolerability, respectively.  

First, mice were inoculated with HCT116 human colorectal carcinoma cells. Once tumors 

were palpable at ~100 mm3 in volume, mice were randomly assigned to each treatment group 

and drug administration commenced. Mice in Efficacy Experiment #1 and #2 received the 

following treatment doses intraperitoneally (i.p.): Rh-PPO at 0.5 mpk and 1 mpk, oxaliplatin at 

7.5 mpk, and vehicle (0.9% NaCl). The doses were administered based on the schedule outlined 

in Figure 2.2. In Efficacy Experiment #1 mice, subcutaneous administration of 2 mL saline was 

initiated on the off-treatment days to mitigate the weight loss observed in the first several days of 

treatment.  

As can be seen in Figure 2.3, treatment with Rh-PPO yielded a significant decrease in 

tumor size. In the groups treated with Rh-PPO in Efficacy Experiment #1, we observed a 

significant decrease in tumor growth rate compared to the vehicle control group. By day 21 of 

the study, the Rh-PPO treatment groups exhibited a 25 ± 2.7 % reduction in tumor volume 

relative to the vehicle treatment group (Figure 2.3). This statistically significant reduction in 

tumor growth rate occurred after mice received 4 doses of Rh-PPO.   

Similar decreases in tumor growth were observed in both Rh-PPO treatment groups. 

Notably this decrease in tumor volume compared to the control group was sustained for the 

duration of the study. By the conclusion of the study on day 28, the Rh-PPO and oxaliplatin  
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treated groups had statistically similar tumor volumes with oxaliplatin being administered at a 

7.5-fold higher dose than Rh-PPO. 

  Additionally, in the Efficacy Experiment #2 study, where tumors from each treatment 

group were all excised on day 28, significant reduction in the final tumor weights was observed 

(Figure 2.3). Specifically, the average tumor weight of the Rh-PPO treatment groups was 24 ± 

9.7% lower than the vehicle group, and Anova analyses of the final tumor weights showed that 

the reduction was statistically significant (p-value = 0.03); this decrease in tumor weight was on 

par with the reduction observed in oxaliplatin treated animals. Importantly, neither treatment 

schedule resulted in significant mouse weight loss (more than 15% of original body weight lost) 

in the Rh-PPO treatment groups, as shown in Figure 2.4, which indicates that the metalloinsertor 

was minimally toxic over the duration of treatment.27  

2.3.3 Rh-PPO Treatment Influence on Survival Rate of Mice Bearing HCT116 

Xenograft Tumors 

In order to investigate further the in vivo anticancer efficacy and tolerability of Rh-PPO, 

we analyzed the survival rates and classified the reason for death of mice in Efficacy Experiment 

#1 (Figure 2.5). As described, Efficacy Experiment #2 instead focused on a tumor weight 

analysis. Each Efficacy Experiment #1 treatment group began with 10-13 NSG mice bearing 

HCT116 xenograft tumors. Over the course of the 39-day study, their level of activity and 

overall health status was monitored. Based on these data, a Kaplan Meier survival curve (Figure 

2.5) was constructed for each treatment group from the study (vehicle with 0.9% NaCl, Rh-PPO 

at 0.5 mpk and 1 mpk, and oxaliplatin at 7.5 mpk). Note the difference in doses for Rh-PPO 

versus oxaliplatin based on their distinct tolerability and potency.  
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Figure 2.4 Rh-PPO tolerability in vivo throughout intraperitoneal efficacy study. Efficacy 

Experiment #1 average mouse body weights over time after drug treatment commenced (n=8 to 

11 mice). Error bars represent standard error of the mean.  
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Mice receiving the Rh-PPO treatment displayed an increase in life span (ILS) of 12% 

relative to the vehicle control groups (Figure 2.5). Additionally, mice in the control group began 

dying 7 days before those in the Rh-PPO group with three mice in the vehicle group found dead 

on day 13 after tumor inoculation, as shown in Figure 2.5.  Furthermore, classification of the 

cause of death revealed that 45.5% of saline mouse deaths resulted from mice either being found 

dead in their cages or euthanized due to poor health and inactivity (Figure 2.5). Conversely, 90% 

of mice in both Rh-PPO treatment groups died due to their tumors reaching the maximum 

allowable size (15 mm in diameter). Note that mice in the vehicle group found dead in their cage 

are assumed to have succumbed to the physical stress of their HCT116 xenograft tumors, while 

mice in the Rh-PPO and oxaliplatin groups found dead are assumed to have perished due to the 

combined physical stress of their HCT116 xenograft tumors and the drug treatment. Also, mice 

euthanized due to poor health displayed signs of distress, such as having scruffy fur or being 

hunched, for multiple consecutive days before they were sacrificed.  

Importantly, the FDA-approved chemotherapeutic oxaliplatin displayed the same 

increase in life span of 12% as Rh-PPO, but was associated with more toxicity; 45.5% and 

18.2% of oxaliplatin mouse deaths resulted from mice being found dead in their cages and mice 

being euthanized due to poor health and inactivity, respectively. It should be noted that the death 

classification analysis was conducted based on mice from Efficacy Experiment #1 only.  Overall, 

these findings show that Rh-PPO prolongs the survival of mice bearing HCT116 xenograft 

tumors to a similar extent as oxaliplatin, while also being better tolerated than the platinum 

complex at their respective MTDs. 
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2.3.4 Pharmacokinetic Profile of Rh-PPO  

Mice from Efficacy Experiment #1 were further examined to assess the pharmacokinetic 

profile of Rh-PPO in NSG mice. Figure 2.6 summarizes the plasma concentration of the 

metalloinsertor drug over time during this in vivo analysis. This experiment reveals that the 

average plasma concentration and bioavailability of Rh-PPO is very similar for both doses tested, 

which may explain the comparable anti-tumor effects observed at 0.5 and 1 mpk Rh-PPO. The 

variation in compound detected at the first time point could indicate the need to take earlier time 

points in future studies or potentially reflects the variability in clearance rates or drug 

administration of the different animals evaluated. As shown in the graph, the peak plasma 

concentration was reached within 30 min of dosing and Rh-PPO was eliminated quickly with 

elimination half-lives (t1/2) of 1.79 hr and 1.11 hr for the Rh-PPO 1 mpk and Rh-PPO 0.5 mpk 

dosing groups, respectively. For comparison, the half-life of oxaliplatin is 14.1 minutes.28 A 

maximum plasma concentration (Cmax) of 650 nM for the Rh-PPO 1 mpk cohort was observed, 

which indicates that the exposure level of Rh-PPO in vivo for this dose is ~2.5-fold greater than 

the in vitro cell IC50 value of 250 nM for HCT116 cells.23 Additionally, the area under the curve 

(AUC0-8 hr) value was calculated based on the plasma concentration curve as summarized in 

Table 2.1. Importantly, Rh-PPO concentration was determined by LC-MS/MS; therefore, the 

measured drug levels represent detection of the intact Rh-PPO complex.  
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Figure 2.6 Pharmacokinetic profile of Rh-PPO after intraperitoneal drug administration. 

Concentration of Rh-PPO in mouse plasma of Efficacy Experiment #1 animals (n=2 to 3) dosed 

intraperitoneal with Rh-PPO at 0.5 mpk and 1 mpk. Amount of intact Rh-PPO detected in mouse 

plasma was analyzed via LC-MS/MS at various time points up to 4 hours after a single, 

intraperitoneal bolus dose was administered. 
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At the conclusion of each efficacy study, the tumors along with various organs were 

collected and analyzed for rhodium and platinum content (Figure 2.7) using inductively coupled 

plasma mass spectrometry (ICP-MS); this high sensitivity technique allows for the detection of 

low concentrations of metal-based drugs (less than 1 ng/ml) and as a result, background levels of 

rhodium and platinum can be detected in the saline treatment group. 29 

In order to assess the ability of the nitric acid digestion protocol to accurately determine 

rhodium and platinum concentrations within tissues, initial tests were performed using chicken 

liver. Within these experiments, diluted ICP-MS standards were added to the chicken liver 

digestion tubes before and after the nitric acid digestion, and the samples were analyzed by ICP-

MS. Because a known concentration of rhodium and platinum was added to each sample, the 

detected metal concentrations were compared to the known concentration of metal added (400 

ppb Rh and 0.4 ppb Pt). The results of these chicken liver experiments confirmed that the 

outlined nitric acid digestion protocols allowed for accurate and precise detection of Rh103 and 

Pt195 concentrations. 

Importantly, the tumor and organ samples underwent distinct nitric acid digestion 

protocols (see Experimental Section), and therefore metal content in the tumors and organs 

cannot be directly compared. Nonetheless, the results collected from ICP-MS studies indicate 

that a significant amount of both drugs, Rh-PPO and oxaliplatin, became distributed to various 

organs as opposed to being directed selectively to the site of the tumors. Notably, when 

comparing the tumor to normal tissue ratio for both drugs, a higher proportion of platinum was 

localized to tumors in the oxaliplatin treated mice. Additionally, dose-dependent accumulation of 

rhodium was detected in the analyzed intraperitoneal treated tumors.  It should be noted that for 

the intraperitoneal efficacy studies, 9-fold less rhodium was present in Rh-PPO tumors compared  
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Table 2.1 Pharmacokinetic parameters of Rh-PPO after intraperitoneal drug administration.  
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to platinum levels in oxaliplatin treated mice, despite similar anticancer effects being observed 

for the two drugs; this result reflects the higher potency of the rhodium complex. Furthermore, 

the tissue analysis of oxaliplatin-treated animals showed that platinum was distributed evenly 

(within the standard error) for all organs analyzed. 

Additionally, Rh content (Figure 2.7) and histological analyses of the tissues collected 

showed normal organ morphology in Rh-PPO treated mice with accumulation of rhodium most 

significantly in the liver (1 ng [Rh]/mg tissue = 9.718 x 10-9 mol [Rh]/kg tissue). This tissue 

analysis gives insight into the potential mechanisms of Rh-PPO clearance and currently suggests 

that Rh-PPO is most readily cleared through the liver and the incorporation of saline hydrating 

doses likely decreased the overall rhodium concentration in the kidneys. Additionally, the 

histopathology evaluations using hematoxylin and eosin (H&E) staining of collected tissues 

revealed slight single cell necrosis/apoptosis of the cryptical epithelial cells within multiple 

oxaliplatin treated mice. Furthermore, immunohistochemistry experiments showed slight 

decreases in cleaved caspase-3 protein expression, which is an indication of apoptosis, in Rh-

PPO treated tumors, and minor increases in phosphorylated H2AX (Figure 2.8), a marker for 

DNA double strand breaks, were detected in all drug treated tumors; though importantly none of 

the observed trends were statistically significant. Overall, these findings support our analysis that 

Rh-PPO was sufficiently tolerated throughout the study and displays an expected 

pharmacokinetic profile.30 However, increased efficacy will require more selective delivery of 

Rh-PPO to the tumor versus healthy organs. 
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2.3.5 Impact of Intratumoral Rh-PPO Treatment on in vivo Tumor Growth 

In addition to the two efficacy studies detailed above, in which Rh-PPO was administered 

intraperitoneally, we also explored the anti-tumor effects observed with Rh-PPO intratumoral 

treatment. The Intratumoral Efficacy Experiment gave insight into the antiproliferative potential 

of Rh-PPO if the complex is specifically targeted to the site of the tumor. As shown in Figure 2.9, 

intratumoral doses of Rh-PPO at 1 mpk resulted in a 40% reduction in tumor volume, as well as 

49% lower average tumor weights (P=0.002), compared to the saline control after only 7 days of 

treatment (0.142 mg Rh-PPO total administered). These results indicate that reductions to tumor 

growth can be doubled in one-third of the time frame when the treatment is administered directly 

to the tumor compared to intraperitoneal injections. Additionally, this increased level of anticancer 

activity was strongly correlated with enhanced levels of rhodium in tumors detected by ICP-MS, 

specifically tumors from intratumorally treated mice had 50-fold higher rhodium concentrations 

at the tumor site compared to the intraperitoneal treatment groups (Figure 2.10). It should be noted 

that intratumoral doses were only given for 7 days because this administration route resulted in 

significant systemic toxicity, including mouse inactivity and notable weight loss. 

 
2.4 Discussion  

Platinum complexes have been extensively studied and utilized as chemotherapeutics,31 

where these compounds aim to target DNA within rapidly dividing malignant cells. However, 

these complexes are associated with adverse effects and patients frequently develop resistance to 

these treatments.8,9,10 As a result, we have focused on the development of targeted 

chemotherapeutics for DNA with improved selectivity for cancerous cells, specifically for 

MMR-deficient cancers, which have underdeveloped treatment options currently.  
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We have designed and characterized rhodium metalloinsertors which bind specifically to 

DNA mismatches, and as a result, induce selective toxicity within MMR-deficient cancer cell 

lines.16,22,23,32–34 In addition, various ruthenium complexes have been designed and synthesized 

as chemotherapeutics, although with different biological targets.21,35–37 The high potency and 

demonstrated biological selectivity of Rh-PPO for DNA mismatches and MMR-deficient cells 

distinguish it from most other metal chemotherapeutics.  

2.4.1 Preliminary Experiments Support the Preclinical Analysis of Rh-PPO in Vivo   

Given the cell-selective cytotoxicity and potency of the Rh-PPO metalloinsertor, the in 

vivo anticancer activity of the complex was evaluated in NSG mice with human colorectal 

carcinoma HCT116 xenograft tumors. Initial experiments showcased the high aqueous solubility 

of the complex and stability of Rh-PPO in rat plasma and rat liver microsomes for up to four 

hours. Furthermore, plasma protein binding studies indicated 1-3% free Rh-PPO with the 

remainder of the compound bound to plasma or inactive. Additionally, screenings of Rh-PPO in 

the Ambit kinase and CEREP receptor panels to assess selectivity of the compound showed that 

Rh-PPO did not inhibit any of the kinases tested and only had moderate activity against a few of 

the CEREP receptors, including the muscarinic M1 receptor and Serotonin 5-HT1a receptor. 

Altogether, these initial studies supported the transition toward preclinical evaluation of Rh-PPO 

as a chemotherapeutic drug.  

Our first mouse experiments aimed to explore the administration route (oral, intravenous, 

subcutaneous, intraperitoneal, etc.) best suited for achieving tolerable, systemic 

chemotherapeutic effects with the metalloinsertor complex. These studies showed that Rh-PPO 
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Figure 2.10 Significant accumulation of rhodium in tumors occurs after intratumoral Rh-PPO 

treatment. Rhodium uptake in HCT116 xenograft tumors from Efficacy Experiment # 3 mice 

receiving intratumoral injections. Rhodium accumulation in tumors was determined using ICP-

MS analysis of tumors digested in nitric acid and normalized to initial tumor weight. The 

rhodium concentration of tumors from saline (n=5) and Rh-PPO at 1 mpk (n=10) treated mice 

was averaged with error shown as the standard error of the mean. Statistically significant 

difference between Rh-PPO and saline treatment group detected rhodium content was found 

using Anova test; #P<0.005. 
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effectively had zero oral bioavailability and intravenous administration of the metalloinsertor at 

20 mpk was not well tolerated; therefore, alternative administration routes and drug 

concentrations were explored. The MTD study described in this work revealed that bolus, 

intraperitoneal injections of Rh-PPO at 1 mpk are tolerated over a 10-day period with minor 

indications of systemic toxicity. Additionally, initial pharmacokinetic studies using continuous 

subcutaneous infusions (Figure 2.11) suggested that supplemental injections of saline promoted 

the clearance of Rh-PPO and increased overall tolerability of the drug; therefore, supplemental 

saline hydration was incorporated into the in vivo study design, as described in Figure 2.2. With 

the MTD and dose administration conditions for Rh-PPO determined, we continued with the 

preclinical evaluation of this metalloinsertor compound as a targeted chemotherapeutic. 

2.4.2 Rh-PPO in Vivo Preclinical Evaluation  

The described study evaluates the in vivo tolerability, cytotoxic tumor effects, and 

pharmacokinetic properties of the metalloinsertor Rh-PPO. Analysis of tumor growth in the two 

intraperitoneal, efficacy experiments demonstrates statistically significant differences in tumor 

volume and final tumor mass between the intraperitoneal vehicle and Rh-PPO treatment groups. 

Specifically, an Anova test of the final tumor weights obtained from Efficacy Experiment #2 

mice reveal a decrease in average tumor weights of 24 ± 9.7% for both Rh-PPO treatment groups 

(p-value = 0.03), which is comparable to the decrease in HCT116 tumor weight observed in mice 

treated with oxaliplatin. Importantly, while platinum complexes are generally less effective in 

MMR-deficient cells, our in vivo experiments with Rh-PPO were conducted alongside 

oxaliplatin because previous studies have demonstrated that this compound has anti-proliferative 

effects in HCT116 xenograft tumors and colon cancer cells generally.26 

 



 68 

 

 

 

 

 

Figure 2.11 Plasma accumulation of Rh-PPO administered via continuous infusion is dependent 

on mouse hydration. Concentration of Rh-PPO in mouse plasma of NSG mice given continuous 

infusion doses of Rh-PPO at 1 mpk for 72 hr. Importantly, Mouse#1 and Mouse#2 received 2 

mL, daily, subcutaneous infusions of saline. Amount of intact Rh-PPO detected in mouse plasma 

was analyzed via LC-MS/MS every 24 hr for 72 hr total. Continuous infusion was accomplished 

using an osmotic pump.  
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Reduction in tumor growth from Rh-PPO administration was also evident based on the 

tumor volume analysis conducted in Efficacy Experiment #1, which clearly showed a decrease in 

tumor growth rate starting on day 21 of the study. In particular, Rh-PPO treated tumors were 25 

± 2.7% smaller than the control group mean tumor volume. Additionally, analysis of the survival 

rates in the first efficacy experiment showed a 12% increase in life span for metalloinsertor 

treated animals compared to the vehicle treated group. Furthermore, Rh-PPO was found to be 

less systemically toxic than oxaliplatin, as 10% and 45% of Rh-PPO (1 mpk) and oxaliplatin 

treated animals had to be euthanized due to poor health and inactivity, respectively. Moreover, 

Rh-PPO was shown to be significantly more potent than oxaliplatin in vivo, as 9-fold lower metal 

concentrations were necessary, as shown by ICP-MS analysis of tumors, to cause similar 

anticancer effects with the two drugs (Figure 2.7). Additionally, we assessed the tumor growth 

effects when Rh-PPO was administered through intratumoral injection and found greater than 

40% reductions in tumor volume and weight after only 7 days of treatment. The intratumoral 

route of administration was also found to be unacceptably toxic, most likely due to rapid 

increases in systemic Rh-PPO concentrations similar to those achieved with intravenous dosing. 

Importantly, this experiment clearly indicates that when more complex becomes specifically 

localized to the tumor site in vivo, significantly greater anti-cancer effects are observed. 

In order to assess further the preclinical potential of Rh-PPO, pharmacokinetic analyses 

of plasma samples collected from mice receiving intraperitoneal doses of Rh-PPO were 

conducted. These experiments revealed that the half-life of the compound is in the range 

expected for a chemotherapeutic (1.11 hr to 1.79 hr depending on the dose). Additionally, the 

pharmacokinetic curve obtained demonstrates a concentration max (Cmax) that is above the IC50 

of Rh-PPO (250 nM in HCT116 cells) for both doses assessed, consistent with the anti-tumor 
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efficacy observed in vivo.23 Tumor and tissue analyses revealed a dose dependent accumulation 

of rhodium within the tumors of Rh-PPO-treated mice; however, a higher distribution of rhodium 

to the liver compared to the tumor and other organs was observed. The rhodium liver 

accumulation detected could be indicative of Rh-PPO undergoing hepatic drug clearance. This 

differs greatly from oxaliplatin which showcased equal distribution of platinum in the different 

organs analyzed, with the exception of the brain, which is consistent with reports of oxaliplatin 

being cleared by a combination of tissue binding and renal clearance.38,39 Comparing the 

concentrations of rhodium/platinum measured within tumors and tissues revealed that significant 

amounts of drug are becoming absorbed within healthy tissues, which underscores the need for 

Rh-PPO to be further targeted to the site of tumors for its full chemotherapeutic potential to be 

achieved.   

In summary, we report that significant antiproliferative effects in colorectal carcinoma 

HCT116 xenograft tumors are observed when Rh-PPO is administered via intraperitoneal 

injection, and these anti-tumor effects are on par with oxaliplatin treatment. Tumor growth in 

Rh-PPO-treated mice is notably slowed in the described efficacy experiments. However, tumor 

cell proliferation is ultimately not eliminated. Furthermore, while the intraperitoneal 

administration route did not result in detrimental systemic toxicity during the outlined treatment 

period, accumulation of rhodium in organs is likely to cause long-term, toxic side effects. Results 

from the intratumoral Rh-PPO study indicate that higher localization of compound to the site of 

the tumor should result in even greater anticancer effects. In order to mitigate the systemic 

toxicity of Rh-PPO observed at higher concentrations and increase cytotoxic effects at the tumor 

site, it will be important to explore different approaches to drug delivery that may further target 

metalloinsertor complexes to tumors more efficiently. This study reports the first in vivo analysis 
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of DNA mismatch-targeted rhodium metalloinsertors, and the anti-cancer effects observed 

validate these compounds as potential chemotherapeutic agents that warrant further 

investigation.    

2.5  Conclusions and Implications for Future Metalloinsertor Studies  

In summation, we have demonstrated the potential of Rh-PPO, a water-soluble, rhodium 

complex that specifically binds to mismatched DNA base pairs, as an anticancer therapeutic 

targeted towards mismatch repair (MMR) deficient cancers. Previous work from our laboratory 

has demonstrated the specific binding of Rh-PPO to DNA mismatches over other cellular targets, 

as well as its selective cytotoxic effects in MMR-deficient cancer cell lines.22,23 The in vivo pre-

clinical studies presented herein showcase the efficacy of Rh-PPO on human colorectal 

carcinoma HCT116 xenograft tumors grown in NSG mice. Significant reductions in final tumor 

weight and volume compared to the saline control of 24 ± 9.7% and 25 ± 2.7 % were observed in 

Rh-PPO treatment groups, respectively. Also, Rh-PPO displayed a notable increase in survival of 

12% compared to the saline control. Additionally, the impacts on tumor growth and survival 

reported for Rh-PPO are on par with the chemotherapeutic oxaliplatin and fewer health side 

effects were observed in mice treated with the rhodium complex. Analysis of plasma samples 

collected after Rh-PPO administration at 1 mpk showed that the drug is rapidly cleared with a 

half-life of 1.79 hr. The promising anticancer activity observed with Rh-PPO in vivo further 

supports the continued assessment of this rhodium complex and the strategy of targeting DNA 

mismatches. Ongoing research in our lab is aimed towards enhancing the efficacy of rhodium 

metalloinsertors with antibody drug conjugates and liposomal formulations, as well as better 

understanding of the biological mechanism of action. 
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Chapter 3 

 
DEVELOPMENT AND CHARACTERIZATION OF LIPOSOMAL 

FORMULATIONS OF METALLOINSERTOR RH-PPO§ 

 
 

3.1  Introduction 

Colorectal cancer (CRC) is the third most diagnosed cancer in the world with an 

estimated 700,000 deaths worldwide each year.1 Most patients diagnosed with the disease still 

localized to the site of origin have good prognoses with 70-80% of newly diagnosed patients 

being eligible for curative surgical resection and adjuvant chemotherapy; however, once the 

cancer has metastasized, patients have much poorer prognoses with a median overall survival of 

5 months.1,2 Various therapeutics, including 5-fluorouracil, oxaliplatin, and irinotecan, are 

currently prescribed to metastatic colorectal cancer (mCRC) patients. While these drugs often 

effectively cause cytotoxicity in malignant cells by directly or indirectly inducing DNA damage, 

these compounds are also toxic towards healthy, often rapidly dividing cells, which results in 

numerous side effects ranging from gastrointestinal toxicity to nephrotoxicity. Importantly, non-

selective, covalent modification is the DNA binding mode (Figure 3.1) common to platinum-

based chemotherapeutics, which are prescribed to more than 50% of cancer patients.27,30 

Ultimately, in order to mitigate the undesired side effects, toxicity, and resistance to traditional, 

non-targeted chemotherapeutics, there is a need to develop therapies that specifically target 

biological markers unique to cancerous cells; in particular, drugs effective against cancers 

resistant to our current leading chemotherapeutics.  

 

 
§Daniel Peng, a Caltech Undergraduate, assisted with assessment of the liposome lysis 
procedure and with attempts to optimize Rh-PPO encapsulation. Dr. Levi Ekanger 
participated in discussions about the Rh-PPO liposome design and advised on the manual 
extrusion method.  
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Figure 3.1 Structures of DNA binding modes represented in classic and novel 

chemotherapeutics. (Left) Representative covalent binding structure based on PDB 1AIO, 

(middle) intercalation structure based on PDB 454D, and (right) metalloinsertion structure based 

on data from Reference 3.3 
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Mismatch repair (MMR) deficiencies are a hallmark for 16% of all solid tumors and 80% 

of hereditary nonpolyposis colon (Lynch syndrome) cancers, and many patients with these types 

of malignancies are resistant to current oncology treatments.4 Developing compounds able to 

selectively target the mismatch base pairs that result from MMR-deficient colorectal cancers has 

been a research objective for several years.  As shown in Figure 3.1, research in our group has 

pursued the development of transition metal complexes that bind to DNA via modes of 

intercalation (binding between the planar bases of DNA) and metalloinsertion (insertion into the 

minor groove and ejection of base pairs).3  

Rhodium metalloinsertors have been shown to selectively bind to mismatched over well-

matched DNA sites. Through the incorporation of planar, sterically expansive inserting ligands, 

such as chrysi (5,6-chrysenequinone diamine) and phzi (benzo[a] phenazine-5,6-quinone 

diimine), our rhodium metalloinsertor complexes are able to detect and bind to 

thermodynamically destabilized mismatches. We attribute the selective binding of these 

complexes to the incorporation of these expansive inserting ligands; for example, the chrysi 

ligand is slightly larger than a well-matched base pair (11.3 Å compared to 10.85 Å, 

respectively), which significantly reduces the ligand’s ability to indiscriminately intercalate 

between well-matched bases.3 Once mismatch sites are identified, the rhodium molecules insert 

from the minor groove and eject the mismatched bases from the DNA pi stack (Figure 3.1).3  

The latest family of metalloinsertors (Rh-O metalloinsertors) are octahedral complexes 

that contain an N^O coordinating ligand and chrysi as the inserting ligand. These complexes 

display high selectivity and potency (ranging from 300 nm to 3 µM) towards MMR-deficient 

cancer cell lines based on cell viability and cellular proliferation activity assays.5  Studies have 

found that alterations to the hydroxyl-containing ancillary ligand of these metalloinsertor has 
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little effect on the biological activity of these complexes. Additionally, the formation of the N^O 

coordination resulted in these metalloinsertors having higher pKa values than previous 

generations, which caused a buckling of the inserting chrysi ligand at physiological pH.5 Recent 

studies have supported our hypothesis that Rh-O metalloinsertors induce necrotic cell death by 

generating lesions and DNA double strand breaks that are recognized by DNA repair 

machinery.6  

These new Rh-O metalloinsertor complexes have significant potential as 

chemotherapeutics, and our most potent and selective compound, [Rh(chrysi)(phen)(PPO]Cl2 

(Rh-PPO), where phen = 1,10-phenanthroline, and PPO = 2-(pyridine-2-yl)propan-2-ol), has 

undergone preclinical evaluation in mice studies to assess its efficacy, pharmacokinetic 

characteristics, and systemic toxicity. As detailed in Chapter 2, Rh-PPO shows significant 

promise as a chemotherapeutic for MMR-deficient cancers. Xenograft studies with HCT116 

colorectal carcinoma cells showed significant reductions in tumor weight and volume after Rh-

PPO was administered intraperitoneally, as well as an increase in overall survival as a result of 

treatment. However, pharmacokinetic studies revealed notable accumulation of rhodium in a 

number of the collected organs, especially the liver, which indicates that systemic toxicity is 

likely to occur after prolonged treatment with the metalloinsertor. Additionally, intratumoral 

studies with Rh-PPO found that even greater anti-tumor effects can be achieved if the drug is 

administered directly to the tumor site. Altogether, these findings suggest that increased targeting 

of Rh-PPO to the tumor site will be necessary to maximize the drug’s cancer killing abilities, 

while minimizing systemic toxicity.   

In particular, liposomes have been explored as a therapeutic carrier for Rh-PPO to reduce 

the systemic toxicity of the metalloinsertor and increase targeting to the tumor site. Liposomes   
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Figure 3.2 The EPR effect and passive targeting of nanoparticles, including liposomes, to the 

tumor microenvironment. Briefly, due to uncontrolled angiogenesis at the site of tumors, 

endothelial vasculature produced from tumors is “leaky.” This results in nanoparticles between 

100 and 700 nm in diameter being accumulated at the site of tumors, allowing for passive 

targeting of nanoparticles to the tumor microenvironment. Adapted from Reference 31.  
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are nanoparticles that consist of a phospholipid bilayer. These biocompatible, low-toxicity drug 

delivery systems can enclose hydrophilic and hydrophobic compounds either inside or within 

their lipid bilayer.8 In the case of chemotherapeutics, liposomes, especially small unilamellar 

vesicles (SUVs), are thought to achieve increased drug efficacy and exhibit lower systemic 

toxicity compared with the free drug by utilizing the enhanced permeability and retention (EPR) 

effect. Specifically, the EPR effect allows for accumulation of nanoparticles in the tumor 

microenvironment through leaky tumor-associated blood vessels (Figure 3.2).7,31 Several 

promising chemotherapeutic liposomal drug formulations have been developed and undergone 

clinical trials. For instance, Lipoplatin is a cisplatin-loaded liposomal formulation with 

PEGylated phospholipids that has shown substantially reduced renal toxicity, myelotoxicity, and 

other dose limiting side effects compared to the free platinum drug.8,9,10  

Due to the systemic toxicity of the free drug, a Rh-PPO liposomal formulation was 

designed, generated, and assessed in vitro. The procedures for synthesizing and characterizing 

the nanoparticle were optimized, and ultimately resulted in the establishment of procedures for a 

liposomal formulation of metalloinsertors that may allow for these compounds to continue 

preclinical development as chemotherapeutic treatments for MMR-deficient cancers. 

 

3.2  Experimental Methods 

 3.2.1 Materials 

All materials were commercially available and used as received, unless otherwise noted. 

Organic solvents were purchased from Sigma Aldrich unless otherwise noted. Sep-Pak C18 

solid-phase extraction (SPE) cartridges were acquired from Waters Chemical Co (Milford, MA). 

Water was purified using the Millipore Milli-Q system (Milford, MA, USA). All HPLC metal 
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complex purifications were carried out on a Hewlett-Packard 1100 HPLC. All UV-Visible 

experiments were performed on a Cary 100 spectrometer. NMR experiments were carried out on 

Varian 300 and 500MHz instruments, as indicated. 18:0 PC (DSPC) 1,2-distearoyl-sn-glycero-3-

phosphocholine, DSPE-PEG(2000) Maleimide 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-

N-[maleimide(polyethylene glycol)-2000] (ammonium salt), and cholesterol were ordered from 

Avanti Polar Lipids (Alabaster, AL).  

3.2.2 Synthesis and Purification of Rhodium Metalloinsertor Compounds  

[Rh(chrysi)(phen)( 2-(pyridine-2-yl)propan-2-ol]Cl2 (Rh-PPO) was synthesized following 

published methodology.5 The purification of Rh-PPO was modified from the literature as 

described in Chapter 2.  

3.2.3 Literature Analysis to Determine Liposome Lipid Composition  

In order to determine which lipids should be used to compose the Rh-PPO liposomes, a 

thorough literature analysis was conducted. A number of FDA approved liposomal drugs, as well 

as ones undergoing clinical trials, were researched, and the identity and molar percentage of each 

lipid was evaluated.9,11,12 This information was utilized to determine the lipids and molar 

percentages of each that were evaluated in the Rh-PPO liposome studies.  

3.2.4 Liposome Preparation Procedures 

3.2.4.1 Passive Loading 

Lipid thin films were generated in 4 mL glass vials by measuring lipids (ex. 30 mg total 

Cholesterol:DSPE-PEG:DSPC; 40:5:55 mol%), dissolving the lipids in chloroform (1-2 mL), 

then evaporating in vacuo (chloroform lipid solution was first cooled in an ice bath to prevent 

bumping on the rotovap). Lipids were further dried under vacuum overnight. A solution of 

[Rh(phen)(chrysi)(PPO)]Cl2 (Rh-PPO) in MilliQ water was generated (0.1 to 2 mM Rh-PPO) 
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and transferred to the vial containing dried lipids. The vial was sonicated for 1 min, then the Rh-

lipid solution was mixed at 60oC for 1 hr. The resulting mixture was then extruded as described 

in detail below with 200 nm, then 100 nm filters, and free Rh-PPO was removed by following 

the centrifugation procedure.  

3.2.4.2 Thin film 

Lipids were weighed out (ex. 30 mg total lipid with Cholesterol:DSPE-PEG:DSPC; 

40:5:55 mol%), and dissolved the lipids in 1 – 2 mL chloroform (30 mg lipid per mL CHCl3). 

Rh-PPO was weighed out (ex. ~ 0.75 mg), then dissolved in 1mL solvent, either methanol, 

isopropanol, or acetonitrile. Metalloinsertor solution was heated and sonicated if necessary. 

Then, made 1:1 solution by mixing lipid solution and Rh-PPO solution and subsequently 

evaporated in vacuo. Mixture was further dried under vacuum overnight. 1 mL aqueous solvent 

was added to the Rh-lipid thin film, then the mixture was stirred at 60oC for 1-6 hr. The resulting 

mixture was then extruded as described below with 200 nm, then 100 nm filters, and free Rh-

PPO was removed by following the centrifugation procedure.  

3.2.4.3 Remote Loading  

Lipid thin films were generated in 4 mL glass vials by measuring lipids (ex. 

Cholesterol:DSPE-PEG:DSPC; 40:5:55 mol%), dissolving the lipids in 1-2 mL chloroform (30 

mg lipid per mL CHCl3), then evaporating in vacuo. Lipids were further dried under vacuum 

overnight. The lipid thin film was then hydrated with 1 mL of 250 mM ammonium sulfate (pH 

~5.5) and mixed at 60oC for 1 hr – 6 hr. The resulting liposome mixture was then extruded as 

described below with 200 nm, then 100 nm filters. Buffer exchange, removal of unencapsulated 

ammonium sulfate, and concentration of liposomes were performed using Amicon Ultra 

Centrifugal filters. Note that the filters can only hold a volume of 450 µL, so the liposome 



 86 

solution was iteratively added to the filters to concentrate all of the liposomes. Briefly, the 

liposomes were spun down in the filter for 30 min at 16.1 rfc at RT. Then, 450 µL MilliQ water 

was used to resuspend the liposome pellet and the buffer procedure was repeated twice more. 

Next, the concentrated liposome solution was transferred to a new tube. A Rh-PPO solution was 

made using MilliQ water or saline (0.1 to 2 mM Rh-PPO) and the concentration was determined 

by UV-Visible spectrum analysis. The pH of the rhodium metalloinsertor solution was adjusted 

to ~pH 8 using dilute NaOH. The Rh-PPO solution was then added to the tube containing 

concentrated liposome, then transferred to a 4 mL glass vial and mixed for 1 hr at 65oC, 

subsequently the resulting mixture was extruded as described below with 200 nm, followed by 

the 100 nm filters, and lastly free Rh-PPO was removed by following the centrifugation 

procedure. Because the Rh-PPO complex is bright red in color, additional loading of the 

compound with this method was visually detectable based on the darkness of the resulting 

liposome pellet.  The above remote loading procedure was adapted from Reference 13.13  

3.2.4.4 Freeze Thaw 

Lipid thin films were generated in 4 mL glass vials by measuring lipids (ex. 

Cholesterol:DSPE-PEG:DSPC; 40:5:55 mol%), dissolving the lipids in chloroform (1-2 mL), 

then evaporating in vacuo. Lipids were further dried under vacuum overnight. Thin film was then 

hydrated with 1 mL of Phosphate Buffered Saline (PBS, 1X, pH 7.4) and mixed at 60oC for 2 hr. 

The resulting liposome mixture was then extruded as described below with 200 nm, then 100 nm 

filters and concentrated using Amicon Ultra Centrifugal filters. Note that the filters can only hold 

a volume of 450 µL, so the liposome solution was iteratively added to the filters to concentrate 

all of the liposomes. Briefly, the liposomes were spun down in the filter for 30 min at 16.1 rfc at 

RT. Then, the concentrated liposome solution was transferred to a new tube. A Rh-PPO solution 
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was made using MilliQ water or saline (0.1 to 2 mM Rh-PPO) and the concentration was 

determined by UV-Visible spectrum analysis. The Rh-PPO solution was then added to the tube 

containing liposomes. The Eppendorf tube cap was secured, then the Rh-PPO/liposome mixture 

was frozen using LN2 (−196°C) for 5 min. The mixture was then thawed in water bath at 63°C 

(above the phase transition temperature of the lipids) for 5 min. This freeze-thaw procedure was 

repeated 5 to 8 times total (more cycles result in more uniform liposome particles). The physical 

characteristics of the liposomes were then analyzed by DLS as described below. If the 

polydispersity index was found to be above 0.4, the extrusion procedure was repeated on the Rh-

PPO liposomes. Free Rh-PPO was removed via centrifugation as described, and the resulting Rh-

PPO liposome pellets were combined and resuspended. 

3.2.4.5 Extrusion Procedure  

Extruder holder and heating block were set up using filter supports and a 200 nm filter, 

and maintained at a temperature of 55-60oC on a hot plate. The Rh-PPO/lipid mixture was 

transferred to the extrusion syringe and inserted into the holder. The lipid mixture was allowed to 

equilibrate for 5 minutes. The solution was then extruded through the 200 nm filter at least 7 

times, then switched to 100 nm filter and extruded 11+ times. Extrusion should be performed an 

odd number of times such that final extruded lipid solution is not in the syringe that was initially 

loaded. Note that a wrench should be used for slight additional tightening of the metal 

component of the extruder to ensure minimal leakage during the extrusion procedure, and 

additional care should be taken not to touch the middle of filter when positioning it in the metal 

component. Additionally, syringes should be washed with warmed buffer between extrusion 

procedures and immediately following the final extrusion. The syringes and metal component of 

the extruder should be disassembled and washed with warmed MilliQ water, then isopropyl 
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alcohol and allowed to dry before reassembling. Generally 20 - 30 mg total of lipid was used in 

each liposome procedure.  

3.2.4.6 Removal of Free Rh-PPO via Centrifugation  

 Following extrusion, Rh-PPO liposome mixtures were spun down in a cold room at ~21K 

rcf for 90 min, then the supernatant was removed and transferred to a labeled Eppendorf tube. 

Aqueous solvent (ex. MilliQ water, buffer, or saline) was added to the liposome pellet to 

resuspend the mixture, and then was spun down again. This procedure was repeated at least 3 

times until the supernatant was light orange or clear. The resulting liposome pellet was then 

resuspended in aqueous media to achieve the desired final liposome/Rh-PPO concentration. Note 

that the supernatant was also centrifuged multiple times and all of the resulting Rh-PPO 

liposome pellets were ultimately combined.  

3.2.5 Liposome Stability Studies   

Three solutions were made by mixing 250 µL of concentrated Rh-PPO liposome solution 

with 5 mL HCT116N/O media in a falcon tube. Tube A was placed at 4oC, Tube B was placed at 

25oC, and Tube C was placed at 37oC. 500 µL of the liposome/media solution was removed 

immediately from each tube, and transferred to labeled Eppendorf tubes. Additional 250 µL 

samples were taken at the following time points: 20 min, 40 min. 1 hr, 20 hr, 45 hr, 72 hr, 120 hr, 

31 days. Immediately after each sample was collected, the tube was centrifuged at 20k+ rcf for 

30 min at 4oC, then 200 µL supernatant was removed and transferred to labeled tubes. Samples 

were stored at 4oC until analyzed. Once all samples were collected, each 200 µL sample was 

mixed with 200 µL 10% HNO3 (aq.) and vortexed for 5 min in order to lyse the liposomes. 

Samples were diluted to 1% HNO3(aq) by mixing 1.8 mL H2O and 200 µL lysed sample. The 

1% HNO3 samples were then centrifuged for 5 min at 2K rcf. The resulting solutions were 
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analyzed via ICP-MS for rhodium content. Percent Rh-PPO retained was calculated with the 

following equation:  

Rh-PPO retained (%) = RhX / Rhinitial x 100 

where Rhx is the detected rhodium content at any given timepoint and Rhinitial is the detected 

rhodium content at timepoint 0 min. These stability experiments were repeated in triplicate with 

newly generated remote loaded Rh-PPO liposomes for each study.  

3.2.6 Lipid concentration assay 

  3.2.6.1 Standard Curve Determination  

A standard curve of liposomal lipids was made to quantify the amount of lipids based on 

OD560 values. Cholesterol:DSPE-PEG:DSPC lipid solution with 40:5:55 mol% (20 mg lipid/ml 

in 250 mM ammonium sulfate) was generated following the passive loading procedures 

described above. Then, serial dilutions of extruded lipid were made in order to have the 

following concentrations: 0 mg/ml, 4 mg/ml. 8 mg/ml, 12 mg/ml, 16 mg/ml, and 20 mg/ml. 

Dilutions were made using 250 mM ammonium sulfate. Two wells of each concentration were 

added to a 96-well plate. Absorbance at OD560 was collected and used to generate a best fit 

equation for determining lipid concentration. The following polynomial equation was found to 

best fit the lipid standard curve: 

y= 32.847x2 + 26.441x - 0.93, where x is the OD560 values. Note that the data displayed 

has an R2 value of 0.9996. 

3.2.6.2 Rh-PPO Lipid Concentration determination   

 The Rh-PPO liposome solution was diluted to make 200 µL samples of the following 

approximate lipid concentrations: 1 mg/mL, 2 mg/mL, and 4 mg/mL. Two wells of each 

concentration were added to a 96-well plate (100 µL each). Absorbance at OD560 and OD590 was 
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collected and averaged for each concentration. The standard curve equation determined above 

was used to estimate the lipid concentration. Note that background from wells filled with buffer 

only were subtracted from the collected absorbances.  

3.2.7 Liposome Physical Characterization Analysis 

The particle size of the liposomes was characterized by dynamic light scattering (DLS). 

Particle size radius and polydispersity index (PDI) were determined using a DLS instrument and 

analyzed using Dynamics software (Santa Barbra, CA). Note, the concentrated Rh-PPO liposome 

solution had to be diluted at least 30-fold in order to accurately detect the liposome size and PDI. 

Typically duplicate 30X, 60X, and 120X dilutions were made for each liposome solution and 

measurements were averaged. Note that dilutions were thoroughly mixed using pipetting before 

the sample was analyzed.  

3.2.8 Determination of Extinction Coefficients for Rh-PPO in MeOH 

Two aqueous solutions of Rh-PPO with different concentrations were made, and a UV-

Visible spectrum was taken for each. The concentration of Rh-PPO was determined based on 

molar absorptivity values reported in the literature.5 The solutions were then transferred to 

Eppendorf tubes and the solvent was removed using a speed vacuum. Rh-PPO was re-dissolved 

in an equivalent volume of MeOH and a UV-Visible spectrum was taken. The major UV-Visible 

spectrum peaks from the complex were identified as 270 nm, 319 nm, and 386 nm. The molar 

extinction coefficients for each wavelength were then determined using Beer’s law (A = εlc), as 

the concentration of Rh-PPO (c) had been determined in water initially and the absorbance 

values (A) were based on the spectra collected for the MeOH Rh-PPO solutions. The calculated 

molar coefficients for the two Rh-PPO samples were averaged.  
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3.2.9 Concentration Determination of Rh-PPO  

3.2.9.1 Rh-PPO H2O UV-Visible Analysis 

A solution of Rh-PPO metalloinsertor was made in MilliQ water and a UV-Vis spectrum 

was recorded. The concentration of Rh-PPO stock solution was then determined by using the 

Cary UV-Vis instrument absorbance values, as well as molar absorptivity values from the 

literature.5 The following molar absorptivity values were used to estimate the concentration of 

Rh-PPO in water: UV−vis (H2O, pH 7.0): 270 nm (122,400 M−1 cm−1), 300 nm (41,600 M−1 

cm−1), 430 nm (12,300 M−1 cm−1).  

3.2.9.2 Rh-PPO MeOH UV-Visible Analysis 

A solution of Rh-PPO metalloinsertor or lysed Rh-PPO liposome was made in MeOH 

and a UV-Vis spectrum was recorded. The concentration of Rh-PPO was then determined by 

using the Cary UV-Vis instrument, as well as molar absorptivity values calculated for Rh-PPO in 

methanol. The following molar absorptivity values were used to estimate the concentration of 

Rh-PPO in MeOH: UV−vis (MeOH): 270 nm (93,800 M−1 cm−1), 319 nm (31,430 M−1 cm−1), 

386 nm (11,390 M−1 cm−1).  

3.2.10 Encapsulation Efficiency Determination 

3.2.10.1 Methanol Lysis 

The liposomes were lysed using methanol to determine the amount of Rh-PPO drug 

encapsulated. Briefly, 20 µL of Rh-PPO liposomal suspension was added to 530 µL of methanol 

and heated at 60oC for 5 minutes, then vortexed for 5 min (cycle completed 3X) to facilitate full 

lysis of the liposomes. The liposome samples were then analyzed by UV-Vis to determine Rh-
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PPO concentration.  

 3.2.10.2 Triton X-100 lysis 

The liposomes were lysed using 1% Triton X-100 (10% Triton X had too large of a 

background UV-Vis absorption) to determine the amount of Rh-PPO encapsulated in the 

liposome. Briefly, 25 µL of liposomal suspension was added to 975 µL of 1% Triton X-100 (or 

12.5 µL Liposome added to 487.5 µL 1% Triton-x) and heated at 60oC for 3 min, then vortexed 

for 3 min (cycle completed 3X) to facilitate lysis of the liposomes. Sample was centrifuged for 

10 min at 16.1K rcf. The supernatant was then used to make three different dilution samples (ex. 

2X dilution, 3X dilution, 4X dilution) and UV-Vis analysis was conducted. Note that various 

concentrations of Triton-X buffer were first assessed for their UV-Vis absorption to determine 

which detergent concentration had low signals at the relevant wavelengths.  

3.2.10.3 Encapsulation Efficiency Calculations (EE%) 

   3.2.10.3.1 Direct EE%  

Calculations were performed to determine the total moles of Rh-PPO added to lipids to 

generate liposomes (Rhtot), and total moles of Rh-PPO encapsulated in liposomes (Rhlip) was 

determined by performing the MeOH lysis procedure. The following calculation was then 

performed:  

Direct EE% = Rhlip / Rhtot 

3.2.10.3.2 Indirect EE% 

The molar concentration of the initial Rh-PPO supernatant (Rhsup), which resulted from 

the first centrifugation of Rh-PPO liposomes to remove free Rh, was determined using UV-Vis. 

Additionally, the molar concentration of Rh-PPO in the Rh-PPO/liposome solution (still 
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containing free Rh-PPO) was determined by performing the MeOH lysis procedure (Rhlip+free) 

The following calculation was then performed:  Indirect EE% = (Rhlip+free - Rhsup) / Rhlip+free 

 3.2.11 Cell Culture 

The cells were incubated in tissue culture flasks at 37oC in a 5% CO2 atmosphere. 

Standard procedures for entering and exiting cryostorage were followed, as well as methods for 

subculturing HCT116 cells. HCT116N and HCT116O cells were grown and maintained using 

RPMI (Roswell Park Memorial Institute) 1640 media supplemented with 10% FBS (fetal bovine 

serum), 2mM L-glutamine, 0.1 mM non-essential amino acids, 1 mM sodium pyruvate, 100 

units/mL penicillin, streptomycin, and 100 µg/mL geneticin (G418). 

3.2.11.1 MTT Cell Viability Assay  

MTT experiments were performed in HCT116N and HCT116O cells as detailed in the 

literature.5 Briefly, approximately 50,000 HCT116N or HCT116O cells in 100 µL of media were 

plated per well into a 96-well plate. 40 wells were filled with each cell line. Varying 

concentrations of free Rh-PPO or Rh-PPO liposome solutions (ex. 0-10 µM) were added to the 

wells and the cells were allowed to incubate at 37oC for 72 hours. After incubation, MTT (2-

(4,5-dimethylthiazol-2-yl)-2,5-diphenultatrazolium bromide) was added. Metabolically active 

cells were given 4 hours to convert the MTT reagent to insoluble formazan. The reaction was 

then stopped and solubilized using a solubilizing reagent. The quantity of formazan was 

determined colorimetrically by absorbance at 570 nm (background subtracted at 690 nm). 

Viability was determined by comparing absorbance for treated and untreated cells.   
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Figure 3.3 Chemical structures of lipids used in the Rh-PPO liposomal studies. Chemical 

structure of (top) Cholesterol (Chol), a steriod used as a structural stabilizer for liposomes, 

(middle) 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), a saturated, neutral phospholipid 

with a high transition temperature that is used in two clinically approved liposomal 

chemotherapeutics, and (bottom) 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-

[maleimide(polyethylene glycol)-2000] ammonium salt (DSPE-PEG), a PEGylated lipid with a 

maleimide functionalization that should allow for increased circulation in vivo and potential 

chemical conjugation.  
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3.3  Results  

 3.3.1 Rh-PPO Liposome Lipid Selection  

After a thorough literature analysis, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), 

1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethylene glycol)-2000] 

ammonium salt (DSPE-PEG), and cholesterol (Chol) were the lipids selected to compose the Rh-

PPO liposomes (Figure 3.3). The DSPC lipid was chosen because it is used in at least 2 FDA 

approved, chemotherapeutic liposomal drugs.12 It is a saturated, neutral phospholipid; therefore, 

it will be relatively stable and less prone to oxidation compared to other phospholipids. 

Cholesterol is expected to stabilize the local packing order of the lipid bilayer, and cholesterol 

content can significantly influence the phase transition temperature and liposomal membrane 

fluidity, elasticity, and permeability.9,14 Ultimately, the molar content of cholesterol can be 

modulated to optimize drug release from the liposome once it reaches and accumulates at the site 

of target tumor cells. Importantly, cholesterol has also been reported to reduce drug 

incorporation efficiency, so the cholesterol content in a liposome must be carefully optomized.14 

Lastly, the DSPE-PEG lipid was chosen to be incorporated into the liposome because 

studies have shown that non-PEGylated liposomes experience rapid clearance due to the 

mononuclear phagocyte system (MPS),15 predominantly in the liver and spleen. Incorporation of 

PEGylated phospholipids into the liposomes allows the nanoparticle to evade MPS clearance, 

and ultimately have longer circulation in vivo and less toxicity within the liver and spleen. 

Additionally, the DSPE-PEG lipid is functionalized with a maleimide chemical group which can 

be used to conjugate peptides and other macromolecules to the liposome.  
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3.3.2 Initial Liposome Preparation and Characterization 

Liposomes were initially generated using the standard passive loading protocol described 

above with MilliQ water as the hydrating solution. The procedure was developed for the selected 

lipids with the following molar ratio: Cholesterol:DSPE-PEG:DSPC at 40:5:55 mol%. For 

example, the phase transition temperature for the lipid combination is expected to be ~ 55°C, 

mainly due to the saturated chains of DSPC, and as a result, all hydration and extrusion 

procedures were performed at temperatures greater than 55°C (typically 60°C to 65°C). The 

40:5:55 molar ratio was initially selected to balance liposome stability and drug release with 

increased in vivo circulation.14 The resulting liposome underwent physical and biological 

characterization. Note that these liposomes with no Rh-PPO encapsulated are referred to as 

Chol:DSPE-PEG:DSPC liposomes. 

 3.3.2.1 Physical Characterization 

Dynamic light scattering (DLS) was utilized to assess the radius/diameter of the 

Chol:DSPE-PEG:DSPC liposomes., as well as the size distribution of the nanoparticles. The 

liposome solution was diluted (30X) and measured in triplicate for these studies. These 

experiments revealed a mean liposome diameter of 146.9 nm and polydispersity index (PDI) of 

0.277 (Figure 3.4). The PDI is lower than 0.4, which indicates that the liposome preparation and 

extrusion resulted in acceptable dispersion homogeneity.16 Furthermore, the diameter 

measurements show that the generated liposomes are a size compatible with the EPR effect 

(between 100 and 700 nm), which can allow for passive accumulation of nanoparticles at tumor 

cell sites through leaky vasculature.7 
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Sample 
Number 

Mean 
Radius (nm) 

Diameter 
(calculated) 

Sample 
Standard 
Deviation (s) 

Sample 
Variance (s2) 

Polydispersity 
Index (PDI) 

1 74.499 148.9998 1.029 1.059 0.248  
2 74.109 148.218 1.426 2.033 0.303  
3 71.731 143.462 1.140 1.300 0.251 

 
Figure 3.4 Biological and physical characterization of liposomes without Rh-PPO encapsulated. 

(Top) MTT cell viability assay of the Chol:DSPE-PEG:DSPC liposome (Cholesterol:DSPE-

PEG:DSPC at 40:5:55 mol%) with HCT116N (MMR-proficient, blue) and HCT116O (MMR-

deficient, red) cell lines. (Bottom) Table containing physical characterization measurements of 

the Chol:DSPE-PEG:DSPC liposomes including radius, diameter, standard deviation, variance, 

and polydispersity index (PDI).   
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3.3.2.2 Biological Characterization 

 MTT cell viability assays were used to determine the cytotoxicity of the empty 

Chol:DSPE-PEG:DSPC liposomes (Cholesterol:DSPE-PEG:DSPC at 40:5:55 mol%) towards 

the MMR-deficient human colorectal cancer cell line HCT116O, as well as HCT116N cells, the 

matched MMR-proficient cell line (Figure 3.4). These cell lines have consistently been used to 

characterize the potency and selectivity of rhodium metalloinsertors, including Rh-PPO, towards 

MMR-deficient cells; therefore, initial toxicity experiments focused on the liposomes without 

Rh-PPO encapsulated (Chol:DSPE-PEG:DSPC liposomes) to determine the cytotoxicity of the 

liposomes alone. This experiment found that the Chol:DSPE-PEG:DSPC liposomes have 

significant cytotoxicity at low millimolar concentrations. Furthermore, as expected, there is 

minimal cytotoxic selectivity based on MMR status with half maximal inhibitory concentrations 

(IC50) of 1.44 mM and 1.55 mM for HCT116N and HCT116O cells, respectively. These findings 

indicate that achieving high encapsulation efficiency of Rh-PPO will be important for limiting 

the cytotoxicity of the liposome lipids alone and ensuring that toxicity mainly occurs as a result 

of metalloinsertor cellular activity.  

 3.3.3 Optimization of Rh-PPO Liposome Preparation  

Rh-PPO liposomes were first generated using the same passive loading procedure utilized 

to generate the empty Chol:DSPE-PEG:DSPC liposomes. During this liposomal preparation, 

drug loading and liposomal formation occur concurrently. Due to the cytotoxicity of the empty 

Chol:DSPE-PEG:DSPC liposomes at high lipid concentrations, the encapsulation of Rh-PPO 

into the liposomes was thoroughly examined by developing lysis procedures for the purified Rh-

PPO liposomes and determining the metalloinsertor concentration using UV-Visible absorbance 
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measurements. Note that UV-Visible absorbance measurements are the method typically utilized 

to determine metalloinsertor concentration due to the complexes being hygroscopic. 

  3.3.3.1 Rh-PPO Liposome Lysis Protocol Development 

 Initial Rh-PPO liposome lysis protocols used the nonionic detergent Triton X-100, which 

is known to disrupt the phospholipid bilayer and cause release of encapsulated molecules.17 The 

background UV-Vis spectrum of Triton X-100 was taken for concentrations ranging from 1% to 

10% Triton X-100. Higher concentrations of Triton-X-100 had absorbance at wavelengths of 350 

nm and lower; therefore, 1% Triton X-100 was used for the lysis studies with this detergent. The 

1% Triton X-100 solution did not efficiently lyse the liposomes (as determined by DLS) and the 

background absorbance of the detergent made it difficult to accurately determine low Rh-PPO 

concentrations in liposomes. As a result, the use of methanol to lyse the Rh-PPO liposomes was 

explored. 

First, the molar absorptivity values for Rh-PPO in methanol were determined to be as 

follows: UV−vis (MeOH): 270 nm (93,800 M−1 cm−1), 319 nm (31,430 M−1 cm−1), 386 nm 

(11,390 M−1 cm−1). Figure 3.5 shows the structure of Rh-PPO alongside the data used to 

determine the molar absorptivity values, specifically the UV-Visible spectra for Rh-PPO in water 

compared to methanol. Next, the methanol lysis procedure was developed. First, the ratio of 

methanol-to-liposome necessary to efficiently lyse the liposomes was determined to be greater 

than 25:1; then a series of vortexing and heating steps were incorporated to further promote 

liposome lysis. Full lysis was confirmed by lack of pellet formation after centrifugation and DLS 

measurements. In Figure 3.6, the metalloinsertor sample that resulted from MeOH lysis of the 

Rh-PPO liposomes can be seen to have a similar UV-Visible spectra to a solution of only 
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Figure 3.6 UV-Visible spectrum of [Rh(chrysi)(phen)(PPO)]2+ (Rh-PPO) in MeOH and Rh-PPO 

liposome MeOH lysis sample.  
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Rh-PPO in MeOH; a finding that supports the use of this methanol lysis method to determine the 

concentration of Rh-PPO encapsulated into liposomes. 

3.3.3.2 Characterization of Passively Loaded Rh-PPO Liposomes  

Passively loaded Rh-PPO liposomes were generated with two lipid molar ratios: 

Cholesterol:DSPE-PEG:DSPC at 40:5:55 mol% (Rh-PPO Lip P40) and Cholesterol:DSPE-

PEG:DSPC at 20:5:75 mol% (Rh-PPO Lip P20). Only a small percentage (ex. 5%) of PEGylated 

lipid is needed to achieve decreased blood clearance of the liposomes, so the molar percentage of 

DSPE-PEG was kept consistent. Varying the ratio of Cholesterol and DSPC lipid allows 

phospholipid membrane parameters such as fluidity, elasticity, and permeability to be 

modulated; therefore, physical and biological characterization of these liposomes was conducted. 

Note that the literature suggests cholesterol mol% should not surpass 50% because higher Chol 

molar lipid composition percentages often result in crystal formation.18 

Both Rh-PPO liposomes were characterized using DLS. As shown in Figure 3.7, Rh-

PPO Lip P20 was found to have a PDI of 0.43, while Rh-PPO Lip P40 samples had a PDI of 

0.24. Additionally, Rh-PPO Lip P20 and Rh-PPO Lip P40 had diameters of 240 nm and 155 nm, 

respectively. Methanol lysis of the liposomes revealed an encapsulation efficiency (EE%) of 

30.2±4% for Rh-PPO Lip P20 and 17.7±3% for Rh-PPO Lip P40.  

Lastly, MTT cell viability assays tested if the passively loaded liposomes retained the 

high selectivity and potency of the free Rh-PPO metalloinsertor (Figure 3.7 and Figure 3.8).  

Given the particle uniformity, cytotoxic selectivity for MMR-deficient HCT116O cells, and low 

PDI, Rh-PPO Lip 40 appears to have superior characteristics; however, both Rh-PPO liposome 

compositions have drug encapsulation efficiencies lower than 50%. As a result, alternative  
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Figure 3.8 MTT cell viability assay comparing passively loaded Rh-PPO liposomes and free Rh-

PPO metalloinsertor. HCT116N (MMR-proficient, blue squares) and HCT116O (MMR-

deficient, red circles) cells were treated with passively loaded Rh-PPO liposomes (top left) Rh-

PPO Lip P20 and (top right) Rh-PPO Lip P40, as well as (bottom) free 

[Rh(phen)(chrysi)(PPO)]Cl2 (Rh-PPO). Cells were incubated with each liposome solution at the 

Rh-PPO concentrations indicated for 72 hr, then cells were treated with the MTT reagent for 4 

hr. The resulting formazan crystals were solubilized with acidified SDS. Percent viable cells is 

defined as the percentage of formazan normalized to that of untreated cells. Error is shown as 

standard deviation calculated from 5 replicates.  
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liposome formulation and drug encapsulation methods were explored.    

3.3.3.3 Characterization of Remote Loaded Rh-PPO Liposomes  

Remote loaded Rh-PPO liposomes were generated by first hydrating the lipid thin film 

with ammonium sulfate (pH ~5.5) and forming large, unilamellar vesicles through extrusion. The 

resulting liposomes were then loaded with a slightly basic solution of Rh-PPO. The pH and 

phosphate gradient generated is reported to result in remote loading of drugs into the 

liposomes.13 Methanol lysis studies revealed that this method resulted in encapsulation 

efficiencies of 40% to 80% depending on the lipid composition and the pH of the Rh-PPO 

solution used. Encapsulation efficiency studies with remote loaded Rh-PPO Lip R20 and Rh-

PPO Lip R40 samples showed an increase in Rh-PPO encapsulation most notably with Rh-PPO 

Lip 40 nanoparticles. Additionally, the Rh-PPO Lip R40 samples retained the selectivity and 

potency of the free metalloinsertor complex with optimal differential activity of 0.537 at 1 µM, 

as seen in Figure 3.9.  

3.3.3.4 Characterization of Thin Film Method Rh-PPO Liposomes  

Thin film liposome formation methods were assessed in which the Rh-PPO 

metalloinsertor and lipid components (Cholesterol:DSPE-PEG:DSPC at 40:5:55 mol%) were 

mixed using various solvents to generate a thin film; this allows the complex and lipids to mix 

thoroughly before bilayer formation. Water or buffer was then used to hydrate the mixture and 

generate Rh-PPO liposomes. The solvent mixture using isopropanol and chloroform to form the 

thin film resulted in the most promising liposomes with a Rh-PPO encapsulation efficiency of 

52%. Cytotoxicity assays were used to compare the biological activity of the resulting thin film 

liposome (Rh-PPO Lip TF40) and the previously discussed remote loaded Rh-PPO liposomes as  
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Figure 3.9 MTT cell viability assays comparing different concentration ranges of remote loaded 

Rh-PPO liposomes. HCT116N (MMR-proficient, blue squares) and HCT116O (MMR-deficient, 

red circles) cells were treated with remote loaded Rh-PPO liposomes (left) Rh-PPO Lip R20 and 

(right) Rh-PPO Lip R40. Cells were incubated with each liposome solution at the Rh-PPO 

concentrations indicated for 72 hr, then cells were treated with the MTT reagent for 4 hr. The 

resulting formazan crystals were solubilized with acidified SDS. Percent viable cells is defined 

as the percentage of formazan normalized to that of untreated cells. Error is shown as standard 

deviation calculated from 5 replicates.  
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Figure 3.10 MTT cell viability assays comparing remote loaded and thin film Rh-PPO 

liposomes. HCT116N (MMR-proficient, blue squares) and HCT116O (MMR-deficient, red 

circles) cells were treated with remote loaded Rh-PPO liposomes (top left) Rh-PPO Lip R20 and 

(top right) Rh-PPO Lip R40, as well as thin film generated liposomes (bottom) Rh-PPO Lip 

TF40. Cells were incubated with each liposome solution at the Rh-PPO concentrations indicated 

for 72 hr, then cells were treated with the MTT reagent for 4 hr. The resulting formazan crystals 

were solubilized with acidified SDS. Percent viable cells is defined as the percentage of 

formazan normalized to that of untreated cells. Error is shown as standard deviation calculated 

from 5 replicates. 
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shown in Figure 3.10. These experiments revealed that the thin film Rh-PPO liposomes had 

promising biological selectivity; however, the remote loaded liposomes had similar selective 

cytotoxicity toward MMR-deficient cells with even greater encapsulation efficiency of Rh-PPO. 

Note that thin film liposomes made with methanol and acetonitrile solutions of Rh-PPO 

aggregated or did not maintain a stable phospholipid bilayer, so further studies with these 

samples were not pursued.  

3.3.4 Rh-PPO Liposome Stability Studies  

After displaying the most promising physical and biological characteristics, the remote 

loaded Rh-PPO liposomes with Cholesterol:DSPE-PEG:DSPC at 40:5:55 mol% underwent a  

final assessment to determine their long-term stability and drug leakage over time. The 

liposomes were diluted in HCT116N/O cell culture media, incubated at various temperatures 

(4°C, 25°C, and 37°C), and evaluated for drug leakage by collecting the supernatant at various 

timepoints over a 31-day time period. Inductively coupled plasma mass spectrometry (ICP-MS), 

a high sensitivity technique that allows for the detection of low concentrations of metal-based 

drugs (less than 1 ng/ml),19 was used to assess the collected samples for rhodium content, and the 

results are displayed in Figure 3.11. These stability experiments indicate that minimal drug 

leakage occurred over 31 days. Notable Rh-PPO drug leakage was only detected in the 37°C 

samples with 87% of the original metalloinsertor concentration retained in the liposomes after 31 

days of incubation. Based on these ICP-MS studies, the metalloinsertor appears to remain 

encapsulated within the remote loaded Rh-PPO liposomes at 4°C and 25°C throughout the 31-

day analysis, as well as at 37°C for 120 hr, which indicates that the cytotoxic activity observed 

with the liposomes does not result from premature drug release. 
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3.4 Discussion  

A range of chemotherapeutics with different mechanisms of action have been developed 

for the treatment of colorectal cancer (CRC). For example, cisplatin and other platinum based 

derivatives induce cytotoxicity through the formation of intrastrand crosslinks between purines 

in DNA,20 while the anthracycline doxorubicin is believed to intercalate into DNA and cause 

topoisomerase II inhibition and DNA double strand break formation.20 There have been 

numerous meaningful developments in treatment options for CRC patients; however, the median 

overall survival for advanced CRC patients remains only 5 months and MMR-deficient patients 

in particular have low response rates towards standard of care CRC therapeutics, such as 5-

fluorouracil.1,21  

Metalloinsertors are a promising, novel class of targeted chemotherapeutics able to 

specifically locate and bind mismatched DNA sites and ultimately induce cellular necrosis.22 

Initially designed to selectively target the mismatches that result from MMR-deficient CRCs, 

these complexes contain particularly wide, aromatic, ancillary ligands that allow the rhodium 

compounds to detect thermodynamically destabilized DNA mismatch sites. These transition 

metal complexes are capable of a unique binding mode known as metalloinsertion, in which the 

inserting ligand binds DNA via the minor groove resulting in ejection of the destabilized 

mismatched base pairs (Figure 3.1).23 The newest family of metalloinsertors, which contain 

rhodium-oxygen bond coordinations, consistently displays increased potency in the nanomolar 

range, and notable selective cytotoxicity towards MMR-deficient cell lines.5 Recent studies into 

the mechanism of action of the most potent metalloinsertor, Rh-PPO, have shown enhanced  
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Figure 3.11 Stability of remote loaded Rh-PPO liposomes over time. Rh-PPO Lip R40 

liposomes were diluted in cell culture media and incubated at 4°C, 25°C, and 37°C. The percent 

Rh-PPO retained in the liposomes was assessed over a 31-day time period. Samples were 

assessed for rhodium content using ICP-MS. Values represent the percent Rh-PPO retained in 

the liposome compared to the initial liposome solution. Error bars represent standard deviation 

calculated from three replicate experiments.  

 

0

20

40

60

80

100

120

0 min 20 min 40 min 60 min 20 hr 45 hr 72 hr 120 hr 31 days

R
h-

PP
O

 R
et

ai
ne

d 
(%

)

Time

4°C 25°C 37°C



 111 

phosphorylation of histone H2AX and checkpoint protein kinase Chk1, which together indicates 

the formation of DNA double-strand breaks (DSBs) and activation of the DNA damage response 

(DDR) as a result of Rh-PPO treatment. Furthermore, the synthesis of a fluorescent Rh-PPO 

analogue (RhPPO-Cy3) has allowed for studies that revealed colocalization between RhPPO-

Cy3 and DDR proteins, Rad51 and pH2AX, suggesting that DNA DSBs occur specifically at 

DNA mismatch sites and undergo initial resection.6,24,25  

Preclinical assessment of the in vivo anti-cancer properties of Rh-O metalloinsertors, 

specifically Rh-PPO, in a subcutaneous, xenograft CRC model has shown that significant 

reductions in tumor growth rate occur in response to intraperitoneal Rh-PPO treatment at 0.5 and 

1 mg/kg. Additionally, intratumoral Rh-PPO studies show that markedly higher reductions in 

tumor growth can be achieved when more metalloinsertor accumulates at the tumor site. 

However, these studies have also indicated that Rh-PPO is systemically toxic at higher 

concentrations, which limits the doses of metalloinsertor that can be administered. Therefore, the 

use of strategic delivery systems, such liposomal formulations, is a promising route for further 

development of these targeted chemotherapeutics.  

Liposomal formulations of a number of cytotoxic compounds have been explored to 

reduce systemic toxicity and increase tumor cell targeting. Doxil and SCL-DOX are doxorubicin 

loaded liposomal formulations that have shown increased in vivo efficacy and tolerability 

compared to the free anthracycline.11,26 Additionally, Lipoplatin and Lipoxal are FDA approved 

liposomes containing cisplatin and oxaliplatin, respectively.9,27 While chemotherapeutic 

liposomes have proven to be a promising drug formulation approach, the development of these 
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drugs has also revealed the importance of lipid identity and composition, liposome stability and 

drug release, as well as liposome formation technique and encapsulation efficiency.  

In order to increase the tolerability of the metalloinsertor and enhance the in vivo anti-

cancer effects, Rh-PPO liposomes were generated. Multiple liposome synthesis techniques were 

explored to increase encapsulation efficiency of the metalloinsertor, while retaining the drug’s 

potency and selectivity towards MMR-deficient cells in cellulo. Furthermore, protocols were 

developed to quantify Rh-PPO content within the liposomes and the stability of the nanoparticle 

over time. Overall, this investigation allowed for the exploration of a stable, novel 

metalloinsertor drug delivery system that has promise for future metalloinsertor therapeutic 

development.  

3.4.1 Formation and Characterization of Chol:DSPE-PEG:DSPC Liposomes 

The biological properties of liposomal drugs are significantly influenced by the identity 

and molar ratio of the lipids used to compose the nanoparticle, as well as the chemical properties 

of the drug encapsulated. Therefore, a comprehensive literature search was conducted in order to 

select the lipids used for the Rh-PPO metalloinsertor liposome. The acyl chain length, charge, 

and chemical functionality of each lipid significantly influence the stability of the liposomes, 

drug release mechanism, and encapsulation of the drug. DSPC, DSPE-PEG, and Cholesterol 

were each chosen to compose the Rh-PPO liposomes in order to achieve physical and chemical 

properties to enhance Rh-PPO’s chemotherapeutic effects and tolerability. DSPC is a neutral, 

saturated phospholipid that is the main component of numerous therapeutic liposomal 

formulations, including DaunoXome and Onivyde. This high transition temperature lipid allows 

for liposomal stability and diminished reticuloendothelial system (RES) uptake.12 DSPE-PEG is 
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expected to enhance the circulation time of the liposomes in vivo (Rh-PPO at 1 mpk currently 

has a half-life of 1.79 hr) and assist in faster lysolipid induced permeability once the liposome 

reaches the tumor cell site.28 Lastly, cholesterol was incorporated to allow for modulation of 

membrane fluidity, elasticity, and permeability, which ultimately impacts complex encapsulation 

and drug release properties. These chosen lipids were used for all of the outlined Rh-PPO 

liposomal studies; however, different lipids could be explored in future studies. 

3.4.2 Biological Activity of Rh-PPO Liposomes  

Biological activity studies with DSPC, DSPE-PEG, and Cholesterol liposomes aimed to 

determine if the potency and selectivity of free Rh-PPO could be maintained with the liposomal 

formulation. Liposomes were assessed using MTT assays in two cell lines, HCT116N and 

HCT116O. The cell lines originate from the same HCT116 colorectal carcinoma cells; however, 

they differ in their MMR deficiency status. Specifically, HCT116N cells are MMR proficient 

and HCT116O cells are MMR deficient. As a result, HCT116O cells have a higher abundance of 

DNA base pair mismatches compared to the HCT116N cell line, which should make the 

HCT116O cells more sensitive to mismatch-targeting by metalloinsertors.28   

Liposomes without Rh-PPO encapsulated (Chol:DSPE-PEG:DSPC liposomes; 40:5:55 

mol%) were tested first to determine their physical properties and the cytotoxicity of the lipids 

composing the nanoparticle. Physical characterization of these liposomes revealed a mean 

diameter of 146.9 nm and polydispersity index of 0.277. These dynamic light scattering (DLS) 

measurements showed that passively loaded Chol:DSPE-PEG:DSPC liposomes have 

monodisperse size distribution and appropriate size for tumor site accumulation via the EPR 

effect. Furthermore, results from MTT studies indicate that millimolar concentrations of lipid 
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result in non-selective cytotoxicity within HCT116N and HCT116O cell lines (IC50 value of 1.44 

mM and 1.55 mM, respectively). This finding suggests that efficient metalloinsertor 

encapsulation will be necessary to ensure that Rh-PPO cellular activity is the main mode of cell 

death. 

Various liposomal drug encapsulation techniques, including passive loading, remote 

loading, and thin film formation, were explored to achieve stable, potent, and selective Rh-PPO 

liposomes. Each of these methods was used to produce liposomes with two lipid composition 

molar ratios: Chol:DSPE-PEG:DSPC at 40:5:55 mol% and 20:5:75 mol%. As described above, 

the ratio of Chol-to-DSPC greatly influences the membrane fluidity and permeability of the 

liposome, while DSPE-PEG is included consistently at 5% moles, a low molar ratio known to 

increase in vivo nanoparticle circulation by reducing antigenicity and immunogenicity in the 

recipient’s immune system.12 Note that 50% moles of cholesterol is the maximum amount 

reported to be incorporated into reconstituted bilayers.14  

 MTT cell viability studies with the described nanoparticles consistently showed that Rh-

PPO liposomes with Chol:DSPE-PEG:DSPC at 40:5:55 mol% had the highest selectivity 

towards the HCT116O MMR-deficient cell line. For example, Figure 3.8 displays that the 

passively loaded Rh-PPO Lip P40 has a maximum differential cytotoxicity (MDC) of 41.3 % at 

1 µM, while free Rh-PPO metalloinsertor has a MDC of 12% at 1 µM and Rh-PPO Lip P20 

displayed a MDC of 18.2% at 1 µM. Additionally, the potency for the two membrane 

compositions was very similar. In particular, IC50 values for remote loaded Rh-PPO Lip R20 and 

Rh-PPO Lip R40 based on Figure 3.9 were approximately 200 nM and 400 nM, respectively. 

Importantly, the remote loading method allowed for the highest encapsulation efficiencies with 
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up to 80% of Rh-PPO becoming encapsulated and the resulting liposomes had the desired 

diameter and PDI values (ex. 155 nm and 0.24, respectively). Ultimately, due to the focus on 

increasing tolerability and potency, the remote loaded Rh-PPO Lip R40 was chosen as the focus 

for the remaining liposomal studies.  

3.4.3 Characterization of Remote Loaded Rh-PPO Lip R40 Liposomes  

The remote loaded Rh-PPO Lip R40 liposomes were further characterized to determine 

their suitability for in vivo studies. Stability assays in which supernatant samples were analyzed 

for rhodium content using ICP-MS showed that the liposomal drug formulation retained the 

metalloinsertor when incubated at 4°C and 25°C with 105.6 ± 4.7% and 98.5 ± 5.4% of drug 

retained, respectively, for up to 31 days (Figure 3.11). In addition to exhibiting that this 

liposomal formulation is sufficiently stable for in vivo investigation, these ICP-MS studies 

confirmed that premature release of the Rh-PPO metalloinsertor from the liposome was not 

responsible for the cytotoxicity observed in the detailed MTT cell viability assays. Liposomal 

Rh-PPO may have been internalized into the cells through endocytosis or membrane fusion.29 

Subsequently, studies to determine the drug-to-lipid ratio were conducted by comparing 

liposomal lipid and Rh-PPO concentrations. These experiments and calculations found a 

maximum Rh-PPO per lipid concentration of 0.0108 mM Rh-PPO/mg lipid * mL. Unfortunately, 

this limitation to the amount of Rh-PPO encapsulated into liposomes in addition to the toxicity of 

the empty liposomes did not allow for a maximum tolerable dose (MTD) study with Rh-PPO 

liposomes to be conducted (Rh-PPO liposome concentrations ranging from 1 mg Rh-PPO/kg to 

10 mg Rh-PPO/kg would have been assessed in the MTD study). Note that a freeze-thaw drug 

encapsulation protocol was also attempted to increase the drug-to-lipid ratio; however, drug 
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encapsulation did not significantly change. While Rh-PPO liposomes have yet to be evaluated in 

vivo, this work serves as a basis for future metalloinsertor studies with nanoparticle delivery 

systems. 

3.5  Conclusion and Implications for Future Drug Delivery Approaches 

The Rh-PPO liposomal formulations described herein are the first attempts to utilize 

nanocarriers to increase the in vivo tolerability and anti-cancer efficacy of the metalloinsertor 

complex Rh-PPO. Various liposome formation techniques and lipid compositions were explored 

to produce stable, selective, and potent Rh-PPO liposomes. Ultimately, remote loaded Rh-PPO 

Lip R40 liposomes were found to have the best maximal differential cytotoxicity, minimal drug 

release over 31 days at various temperatures, and nanomolar potency. While this liposomal 

formulation showed much promise, the low drug-to-lipid ratio ultimately did not allow for an in 

vivo maximum tolerable dose study to be conducted. Cholesterol, DSPC, and DSPE-PEG were 

the lipids chosen for this study; however, the exploration of different lipid combinations may 

allow for the drug-to-lipid ratio to be increased. Future studies with nanoparticle delivery 

systems may focus on exploring different liposome membrane compositions, as well as active 

targeting of liposomes to tumors through the use of chemical functionalizations and targeting 

ligands, such as antibodies and peptides.30  
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Chapter 4 

DESIGN, SYNTHESIS, AND CHARACTERIZATION OF RH-O 
METALLOINSERTORS FUNCTIONALIZED FOR CONJUGATION TO 

ANTIBODIES 
 

 
4.1  Introduction 

Recent chemotherapeutic development efforts have focused on designing selective, as 

well as potent, drugs that have a specific biological target known to be characteristic of 

malignant cells.1,2 Mismatch repair (MMR) deficiencies are a hallmark for 16% of all solid 

tumors and 80% of hereditary nonpolyposis colon cancers, and many patients with these types of 

malignancies are resistant to current oncology treatments. MMR repair is typically responsible 

for identifying and addressing the formation of mismatches and indels within newly synthesized 

DNA stands; however, when one or more of the MMR repair proteins does not function 

properly, DNA mismatches and eventually mutations result.3  

A couple of strategies for selectively targeting these MMR-deficient cancers have been 

developed. First, therapeutics have been designed to take advantage of the neoantigens that result 

from the high mutation load of MMR-deficient cells. These mutated biomolecules are presented 

on the surface of malignant cells and recognized by immune regulatory T-cells. Within non-

cancerous tissues, the identification of neoantigens on foreign or diseased cells results in the 

secretion of cytokines and activation of the immune response; however, many cancerous cells 

upregulate inhibitory ligands, such as PD-L1 and PD-L2, which bind the PD-1 on T-cells and 

prevent immune response activation.4 Monoclonal antibodies that target the PD-1 receptor, such 

as the FDA-approved Pembrolizumab, have been developed and shown to block programed cell 

death ligand-receptor interactions, ultimately allowing for MMR-deficient tumors to be properly 
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identified and attacked by the immune system.5 It should be noted that monoclonal antibodies 

have increasingly become chemotherapeutics of interest due to their enlistment of the natural 

immune system to fight cancers.6,7  

Alternatively, small molecule therapeutics have been designed to target the DNA base 

pair mismatches that result from MMR-deficient cancers. In particular, our laboratory has 

worked to develop rhodium metalloinsertors, octahedral complexes able to specifically locate 

and bind mismatched DNA sites and ultimately induce cellular necrosis.8  These transition metal 

complexes are capable of a unique binding mode known as metalloinsertion, in which the 

inserting ligand binds DNA via the minor groove resulting in ejection of the destabilized 

mismatched base pairs. Studies with first generation metalloinsertors, such as 

[Rh(bpy)2(chrysi)]3+ (Figure 4.1), revealed over 1000-fold selective binding to mismatches over 

well-matched sites, as well as an ability to target 80% of all DNA mismatches.9,10 The most 

recent family of rhodium metalloinsertors contains an unexpected Rh-O axial coordination 

(Figure 4.1), and biological studies with Rh-O metalloinsertors display enhanced potency (IC50 

value of 300 nM in HCT116O cells) and preferential cytotoxicity towards MMR-deficient CRC 

cells.2,11 

In addition to showing enhanced potency and selectivity, these Rh-O metalloinsertors 

have displayed high functional group tolerance when functionalizing the N^O coordinating 

ligand. Chemical groups ranging from hydrophilic pyridines to hydrophobic hexyl chains have 

been incorporated into the N^O ligand, and the selective cytotoxic properties of these 

metalloinsertors has remained impressively intact. As a result, these metalloinsertors have been 

used as a scaffold for conjugate design. Previous conjugation efforts have focused on generating 

[Rh(chrysi)(phen)(DPE-Pt(NH3)2Cl)]3+ (Figure 4.1), a bifunctional complex that aimed to  
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combine the DNA mismatch targeting capabilities of Rh-O metalloinsertors with the cytotoxic 

effects of a cis-platinum (II) anticancer compound. Biological studies with 

[Rh(chrysi)(phen)(DPE-Pt(NH3)2Cl)]3+ showed enhanced potency compared to cisplatin; 

however, the selectivity of the complex for MMR-deficient cells was lost. We hypothesize that 

this  nonselective activity was due to the platinum component dominating the cellular activity 

and inducing apoptotic cell death.  

Current efforts to develop metalloinsertor drug conjugates have focused on utilizing the 

Rh-O metalloinsertor scaffold and monoclonal antibodies to achieve even greater cytotoxic 

selectivity for MMR deficient cancer cells. While Rh-O metalloinsertors, such as Rh-PPO, 

consistently display preferential killing of MMR-deficient cells at nanomolar and low 

micromolar ranges, at higher concentrations, the selectivity of these complexes greatly 

diminishes. This loss of selectivity became especially evident during in vivo mouse studies with 

Rh-PPO in which the complex displayed considerable systemic toxicity at concentrations greater 

than 1 mg/kg Rh-PPO. In order to target metalloinsertors to cancerous cells with still higher 

selectivity, we have explored the preparation of antibody drug conjugates (ADCs).12–14 These 

drug carriers are capable of further discerning between healthy and malignant cells by targeting 

cytotoxic payloads to malignant cells using tumor-associated antibodies, as shown in Figure 4.2.  

In the case of metalloinsertors, by attaching an antibody unique and specific to cancer-

associated antigens and MMR deficiencies, our rhodium complexes may become even more 

specifically directed to induce cell death within diseased MMR-deficient cells. Herein, we 

describe the efforts to design and characterize metalloinsertor ADC drug linker scaffolds 

containing a Rh-O metalloinsertor complex and stabile maleimide ADC linkers with the  

 



 126 

 

 
 
Figure 4.2 General pathway outlining the mechanism of action of antibody drug conjugates 

(ADCs). Briefly, the ADC will bind to surface-expressed, tumor-associated antigens. The 

complex is then taken into the cell via receptor-mediated endocytosis and the ADC drug 

component is released either due to changes in chemical environment once inside the cell or 

processing by endosomes and lysosomes. The freed, lethal drug cargo then acts independently 

within the cell. From Reference 15.15  
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ultimate goal of generating a metalloinsertor ADC that specifically targets MMR-deficient, 

cancerous tumors. 

4.2  Experimental Methods 

 4.2.1 Materials  

All chemicals, reagents, and solvents used for synthesis were commercially available, 

unless otherwise noted, and used as received. Organic reagents were purchased from Sigma 

Aldrich unless otherwise noted (St. Louis, MO). RhCl3 reagent was purchased from Pressure 

Chemical Co. (Pittsburgh, PA). Water was purified using the Millipore Milli-Q system (Milford, 

MA, USA). HPLC-grade acetonitrile (ACN) and methanol were purchased from Fisher 

Scientific (Fair Lawn, NJ, USA). Sep-Pak C18 solid-phase extraction (SPE) cartridges were 

acquired from Waters Chemical Co. (Milford, MA). All HPLC metal complex purifications were 

carried out on a Hewlett-Packard 1100 HPLC. All UV-Visible spectroscopic experiments were 

performed on a Cary 100 spectrometer. Cell culture media and supplements were purchased from 

Life Technologies (Carlsbad, CA). Cell lines used in the experiment were purchased from ATCC 

(Manassas,VA). Tissue culture flasks and plates were obtained from Corning (Corning, NY). 

Colorimetric cell viability MTT assay kits were purchased from Roche Life Sciences (Penzberg, 

Upper Bavaria, Germany). 

4.2.2 Ligand Synthesis  

The ancillary ligands methyl 3-hydroxy-3-(pyridin-2-yl) butanoate (MHPB, 4b), (S)-N-

(2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)ethyl)-3-hydroxy-3-(pyridin-2-yl) butanamide 

(Lmaleimide, 6), and 2-(Pyridine-2-yl)propan-2-ol (PPO, 8) were synthesized from 2-acetyl pyridine 

(1) according to Scheme 1. The ancillary ligand 4-((2,5-dioxo-2,5-dihydro-1H-pyrrol-1-

yl)methyl)-N-(2-hydroxy-2-(pyridin-2-yl)propyl)cyclohexane-1-carboxamide (HMNPC, 13) was 
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synthesized from 2-acetyl pyridine (1) according to Scheme 2. Ancillary ligands PPO-alkyne 

(15), 11-azido (18a), and 4-azido (18b) were synthesized from 2-acetyl pyridine (1) according to 

Scheme 4.3. Ancillary ligand N-(2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)ethyl)-4-(4-(1-

hydroxy-1-(pyridin-2-yl)ethyl)-1H-1,2,3-triazol-1-yl)benzamide (NDDH, 20) was synthesized 

from ligand 4-azido (18b) according to Scheme 4.4.  

4.2.2.1 Synthesis and Characterization of 2-(pyridin-2-yl)pent-4-en-2-ol (3) 

2-(pyridin-2-yl)pent-4-en-2-ol (3) was prepared according to a modified procedure 

originally established by Dr. Alexis Komor. 2-acetyl pyridine (1) (1.08 mg, 8.92 mmol, 1 equiv.) 

and 100 mL anhydrous diethyl ether were combined. The solution was degassed, and the flask 

cooled to -78°C using dry ice/acetone bath. Allyl magnesium bromide (2) (3.239 g, 22.3 mmol, 

2.5 equiv.) was then added dropwise over ~15 min, and the reaction was stirred for 1 hr at -78°C. 

The reaction mixture was quenched using saturated NH4Cl(aq) then extracted with ethyl acetate 

(3 x 50 mL). The EtOAc fractions were combined, washed with brine and dried over magnesium 

sulfate. Solvent was removed by rotary evaporation. The product was isolated using flash 

chromatography (SiO2, 1:1 EtOAc:Hexanes/1%MeOH/1%NH4OH) to give a clear-yellow oil. 

Yield: 1.02g (70%). 1H NMR (300 MHz, Chloroform-d) δ 8.51 (ddd, J = 4.9, 1.8, 1.0 Hz, 1H), 

7.73 – 7.64 (m, 1H), 7.34 (dt, J = 8.0, 1.1 Hz, 1H), 7.21 – 7.14 (m, 1H), 5.76 – 5.58 (m, 1H), 

5.05 – 4.94 (m, 3H), 2.56 (ddt, J = 7.4, 2.4, 1.2 Hz, 2H), 1.52 (s, 3H). ESI-MS (cation): 164 m/z 

(M + H+) obsd, 164.10 calcd.  

4.2.2.2 Synthesis and Characterization of 3-hydroxy-3-(pyridin-2-yl)butanoic 

acid (LCOOH , 4a) 

(3-hydroxy-3 (pyridin-2-yl)butanoic acid (4a)  was prepared according to procedures 

adapted from Dr. Alyson Weidmann’s procedures. 2-(pyridin-2-yl) pent-4-en-2-ol (3) (250 mg, 
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1.533 mmol, 1 equiv.), NaIO4 (3.28 g, 15.33 mmol, 10 equiv.), and RuCl3.H2O (47.6 mg. 0.2299 

mmol, 0.15 equiv.) were suspended in a mixture of H2O/MeOH/CHCl3 (15 mL/ 10 mL/ 10mL) 

in a 50 mL RB flask. The flask was sealed and stirred for 16-18 hours at RT. Solids from the 

reaction were removed using filter paper and the organic and aqueous layers separated and dried 

in vacuo. Ether was added to the dried aqueous layer and the mixture was filtered through a 

medium course glass frit. The precipitate on the frit was washed with ethanol. The dark red 

filtrate that resulted was dried in vacuo and further purified using flash chromatography (SiO2, 

equilibrated in DCM with 5% MeOH and eluting with DCM/13% MeOH/1% acetic acid) to give 

red solid. Yield: 220mg (80%). 1H NMR (500 MHz, Deuterium Oxide) δ 8.52 (d, J = 5.1 Hz, 

1H), 8.19 (t, J = 7.8 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.61 (t, J = 6.4 Hz, 1H), 2.98 – 2.71 (m, 

2H), 1.56 (s, 3H). ESI-MS (cation): 182 m/z (M + H+) obsd, 182.08 calcd.  

4.2.2.3 Synthesis and Characterization of Methyl 3-hydroxy-3-(pyridin-2-

yl)butanoate (MHPB, 4b) 

3-hydroxy-3-(pyridin-2-yl)butanoic acid (4a) (300 mg, 1.65 mmol), ~30 mL methanol, 

and sulfuric acid (914 mg, 9.33 mmol)  were combined, stirred, then refluxed at ~ 85°C for 1.5 

hr. Heating was stopped and ~50 mL diethyl ether was added to the reaction. The resulting 

cloudy mixture was dried in vacuo, then 50 mL of anhydrous ether was added and 5% aqueous 

NaHCO3 (3 x 50 ml) was used to extract the organic layer. Aqueous fractions were then extracted 

with dicholoromethane, dried with magnesium sulfate, and solvent removed using rotary 

evaporation. The product was isolated using flash chromatography (SiO2, Hexanes: Ethyl 

Acetate = 9:1). Yield: 205 mg (65%). 1H NMR (500 MHz, Chloroform-d) δ 8.53 (ddd, J = 4.9, 

1.8, 1.0 Hz, 1H), 7.75 (ddd, J = 8.1, 7.4, 1.8 Hz, 1H), 7.65 (dt, J = 8.0, 1.1 Hz, 1H), 7.21 (ddd, J  



 130 

= 7.4, 4.8, 1.2 Hz, 1H), 3.65 (s, 3H), 3.07 (dd, J = 189.0, 15.8 Hz, 2H), 1.60 (s, 3H). ESI-MS 

(cation): 196 m/z (M + H+) obsd, 196.1 calcd. 

4.2.2.4 Synthesis and Characterization of ((S)-N-(2-(2,5-dioxo-2,5-dihydro-

1H-pyrrol-1-yl)ethyl)-3-hydroxy-3-(pyridin-2-yl)butanamide)    (Lmaleimide, 6) 

Dried 3-hydroxy-3-(pyridin-2-yl)butanoic acid (4a) (135mg, 0.745 mmol, 1 equiv.) was 

added to a 100 mL Schlenk flask. N-Hydroxysuccinimide (90mg, 0.745 mmol, 1 equiv.) and 

N,N'-Dicyclohexylcarbodiimide (160mg, 0.745mmol, 1 equiv.) were put in the same flask with a 

stir bar. The flask was placed on ice and put under argon. 5 mL anhydrous DMF, then 3 mL dry 

DCM was added to the reaction. DIEA (130 µL, 0.82 mmol, 1.1 equiv.) was carefully added to 

the mixture under argon. The reaction was allowed to stir at 0oC for 1.5hr. 2-amino ethyl 

maleimide TFA salt (5) (200mg, 0.82 mmol, 1.1 equiv.) was then added to a separate Schlenk 

flask and put under argon. 2 mL anhydrous DMF was added to the flask under argon. The 

solution was then transferred to the reaction flask. The reaction was stirred on ice for additional 2 

hr., then filtered using celite. The resulting solution was poured into 125 mL sep funnel. 20 mL 

water was added. The organic layer was collected and the water layer was extracted with DCM 

(3 x 30mL). The organic layers were pooled, dried with sodium sulfate, then dried using rotary 

evaporation. The crude product was isolated using flash chromatography (SiO2, DCM with 2% 

MeOH). Yield: 60 mg (27%). 1H NMR (300 MHz, Chloroform-d) δ 8.45 (ddt, J = 4.9, 1.8, 0.9 

Hz, 1H), 7.69 (tdd, J = 7.4, 1.8, 0.8 Hz, 1H), 7.55 (dq, J = 8.0, 1.0 Hz, 1H), 7.16 (ddt, J = 7.2, 

4.9, 1.0 Hz, 1H), 6.67 (d, J = 0.8 Hz, 3H), 3.60 – 3.51 (m, 2H), 3.45 – 3.23 (m, 2H), 2.92 – 2.60 

(m, 2H), 1.47 (s, 3H). ESI-MS (cation): 304 m/z (M + H+) obsd, 304.12 calcd.  
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Scheme 4.1 Synthesis of ancillary ligands methyl 3-hydroxy-3-(pyridin-2-yl) butanoate (MHPB, 

4b), (S)-N-(2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)ethyl)-3-hydroxy-3-(pyridin-2-yl) 

butanamide (Lmaleimide, 6) and 2-(Pyridine-2-yl)propan-2-ol (PPO, 8) from 2-acetyl pyridine (1). 
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4.2.2.5 Synthesis and Characterization of 2-(Pyridine-2-yl)propan-2-ol (PPO, 

8)  

2-(Pyridine-2-yl)propan-2-ol (8) was synthesized according to published procedures.2 2-

acetyl pyridine (1) (1 mL, 8.9 mmol, 1 equiv.) was added to a dried 50 mL Schlenk flask. 1 was 

degassed, then 100 mL anhydrous diethyl ether was added under argon. The reaction was cooled 

to -78°C, then methyl lithium (8) (18 mL, 22.2 mmol, 2.5 equiv.) was added dropwise over 15 

min. The reaction was stirred for 1 hr at 78°C, then warmed to room temperature. The reaction 

was quenched by adding saturated NH4Cl(aq), then extracted with EtOAc (3 x 50 mL). The 

EtOAc fractions were combined, washed with brine, and dried over sodium sulfate. Solvent was 

removed in vacuo. The product was isolated using flash chromatography (SiO2, 1:1 

EtOAc:CH2Cl2) to give a yellow oil. Yield: 610 mg (50%) 1H NMR (CDCl3, 300 MHz): δ 8.52 

(d of m, J = 4.8 Hz, 1 H); 7.71 (t of m, J = 7.8 Hz, 1 H); 7.38 (d of m, J = 8.1 Hz, 1H); 7.21 (t of 

m, J = 6.2 Hz, 1H); 5.08 (s, 1H); 1.54 (s, 6H). ESI-MS (cation): 138 m/z (M + H+) obsd, 138.08 

calcd.  

4.2.2.6 Synthesis and Characterization of 1-nitro-2-(pyridin-2-yl)propan-2-ol 

(10) 

Procedure was adapted from protocol published in Reference 16.16 20 mL 0.5 N NaOH 

was added to flask, then 2-acetyl pyridine (1) (3 g, 24.76 mmol, 1 equiv.) and nitromethane (9) 

(7.56 g, 123.8 mmol, 5 equiv.). The mixture was stirred at RT for 2 hr. Note that the reaction was 

yellow in color. The reaction was then saturated with NaCl and let stir for 10 min, then extracted 

gently with ethyl acetate (3 x 50 mL). Organic fractions were combined, washed with brine and, 

dried over magnesium sulfate. Solvent was removed by rotary evaporation. The product was 

isolated using flash chromatography (SiO2, 1:9 EtoAc:Petroleum ether) resulting in a clear/beige 
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oil. 1H NMR (300 MHz, Chloroform-d) δ 8.51 (ddt, J = 5.0, 1.7, 0.8 Hz, 1H), 7.85 – 7.62 (m, 

1H), 7.54 (dq, J = 8.0, 0.9 Hz, 1H), 7.24 (ddt, J = 7.6, 4.9, 0.9 Hz, 1H), 4.83 (ddd, J = 74.4, 12.3, 

0.6 Hz, 2H), 1.61 (d, J = 0.6 Hz, 3H). ESI-MS (cation): 181 m/z (M + H+) obsd, 181.07 calcd.  

4.2.2.7 Synthesis of 1-amino-2-(pyridin-2-yl)propan-2-ol (11) 

1-nitro-2-(pyridin-2-yl)propan-2-ol (10) (120mg, 0.659 mmol, 2 equiv.) and nickel (II) 

chloride (NiCl2-6H2O, 78 mg, 0.329 mmol, 1 equiv.) were combined. Then, 10 mL anhydrous 

MeOH was added to the reaction and stirred for 10 min. Next, sodium borohydride (140 mg, 4 

mmol, 12 equiv.) was added to the reaction and stirred on ice for 45 min. The reaction was then 

filtered using medium glass frit to afford the product. Compound was used without further 

purification.  

4.2.2.8 Attempted Synthesis of 4-((2,5-dioxo-2,5-dihydro-1H-pyrrol-1-

yl)methyl)-N-(2-hydroxy-2-(pyridin-2-yl)propyl)cyclohexane-1-carboxamide 

(HMNPC, 13) 

1-amino-2-(pyridin-2-yl)propan-2-ol (11) (40 mg, 0.25 mmol, 2 equiv.) was dried in flask 

and put under argon. Then succinimidyl 4-(N-maleimidomethyl)cyclohexan-1-carboxylate (12) 

(SMCC, 43 mg, 0.129 mmol, 1 equiv.) was added to the reaction and placed into an ice bath. 3 

mL dry DMF was used to solubilize the reactants. Reaction was stirred on ice for 2 hours, then 

extracted with EtOAc (3 x 50 mL).  Organic fractions were combined, washed with brine, and 

dried over magnesium sulfate. Solvent was removed by rotary evaporation. The main product 

was isolated using flash chromatography (SiO2, 1:9:1 EtoAc:Petroleum ether:MeOH) resulting in 

a brown oil. Product identity could not be confirmed using NMR or ESI-MS.  
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4.2.2.9 Synthesis and Characterization of 2-(pyridin-2-yl)but-3-yn-2-ol (PPO-

alkyne, 15)  

2-(pyridin-2-yl)but-3-yn-2-ol (PPO-alkyne, 15) was synthesized by adapting the PPO 

synthesis and purification.  2-acetyl pyridine (1) (2 mL, 17.84 mmol, 1 equiv.) was added to a 

dried 50 mL Schlenk flask. 1 was degassed, then 100 mL anhydrous diethyl ether was added 

under argon. The reaction was cooled to -78°C, then 0.5 M ethynylmagnesium bromide (9) (89 

mL, 44.6 mmol, 2.5 equiv.) was added dropwise over 15 min. The reaction was stirred for 1.5 hr 

at 78°C, then warmed to room temperature. The reaction was quenched by adding saturated 

NH4Cl(aq), then extracted with EtOAc (3 x 50 mL). The EtOAc fractions were combined, 

washed with brine, and dried over sodium sulfate. Solvent was removed by rotary evaporation. 

The product was isolated using flash chromatography (SiO2, 3:1 Petroleum ether/ethyl acetate w/ 

1% MeOH 1%NH4OH) to give an off-white powder. 1H NMR (300 MHz, Chloroform-d) δ 8.52 

(ddd, J = 4.9, 1.7, 1.0 Hz, 1H), 7.76 (ddd, J = 8.0, 7.4, 1.7 Hz, 1H), 7.61 (dt, J = 8.0, 1.1 Hz, 1H), 

7.26 (ddd, J = 7.4, 4.9, 1.1 Hz, 1H), 5.50 (s, 1H), 2.54 (s, 1H), 1.78 (s, 4H). ESI-MS (cation): 

148 m/z (M + H+) obsd, 148.07 calcd.  

4.2.2.10 Synthesis and Characterization of 1-(1-(2-(2-(2-(2-

aminoethoxy)ethoxy)ethoxy)ethyl)-1H-1,2,3-triazol-4-yl)-1-(pyridin-2-

yl)ethan-1-ol (11-azido, 18a) 

2-(pyridin-2-yl)but-3-yn-2-ol (PPO-alkyne, 15) (300 mg, 2.04 mmol, 1 equiv.) and 11-

azido-3,6,9-trioxaundecan-1-amine (16) (445 µL, 2.245 mmol, 1.1 equiv.) were dissolved in 14 

mL of a 1:1 H2O:CH2Cl2 solvent mixture. Then, CuSO4.5H2O (26 mg, 0.102mmol, 0.05 equiv.) 

and sodium ascorbate (61 mg, 0.036 mmol, 0.02 equiv.) were added to the reaction. The reaction 

was stirred at RT for 3 hr. Solvent was removed from the reaction in vacuo and the product was  
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Scheme 4.2 Synthesis of ancillary ligand 4-((2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)methyl)-N-

(2-hydroxy-2-(pyridin-2-yl)propyl)cyclohexane-1-carboxamide (HMNPC, 13) from 2-acetyl 

pyridine (1).  
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Scheme 4.3 Synthesis of ancillary ligands 2-(pyridin-2-yl)but-3-yn-2-ol (PPO-alkyne, 15), 1-(1-

(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-1H-1,2,3-triazol-4-yl)-1-(pyridin-2-yl)ethan-1-ol 

(11-azido, 18a), and 4-(4-(1-hydroxy-1-(pyridin-2-yl)ethyl)-1H-1,2,3-triazol-1-yl)benzoic acid 

(4-azido, 18b) from 2-acetyl pyridine (1).  
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isolated using flash chromatography (SiO2, ethyl acetate w/ 5% MeOH and 

1%NH4OH/triethylamine). Product is an orange-brown oil. 1H NMR (300 MHz, Methanol-d4) δ 

8.48 (ddd, J = 4.9, 1.8, 1.0 Hz, 1H), 7.89 – 7.67 (m, 3H), 7.29 (ddd, J = 7.4, 4.9, 1.3 Hz, 1H), 

4.54 (dd, J = 5.5, 4.5 Hz, 2H), 3.93 – 3.80 (m, 2H), 3.71 – 3.62 (m, 2H), 3.61 – 3.48 (m, 8H), 

3.38 – 3.23 (m, 5H), 1.95 (s, 4H). ESI-MS (cation): 366 m/z (M + H+) obsd, 366.2 calcd. 

4.2.2.11 Synthesis and Characterization of 4-(4-(1-hydroxy-1-(pyridin-2-

yl)ethyl)-1H-1,2,3-triazol-1-yl)benzoic acid (4-azido, 18b) 

  2-(pyridin-2-yl)but-3-yn-2-ol (PPO-alkyne, 15) (105 mg, 0.71 mmol, 1 equiv.) and 4-

azido benzoic acid (17) (130 mg, 0.78 mmol, 1.1 equiv.) were dissolved in 14 mL of a 1:1 

H2O:CH2Cl2 solvent mixture. Then CuSO4.5H2O (9 mg, 0.036mmol) and sodium ascorbate (21 

mg, 0.107 mmol) were added to the reaction. The reaction was stirred at RT for 4 hr. Solvent was 

removed from the reaction in vacuo and the product was isolated using flash chromatography 

(SiO2, ethyl acetate w/ 10% MeOH). Yield ~27% Product is oil. 1H NMR (300 MHz, Methanol-

d4) δ 8.49 (dt, J = 5.0, 1.1 Hz, 1H), 8.45 (s, 1H), 8.15 – 8.08 (m, 2H), 7.89 – 7.77 (m, 4H), 7.30 

(ddd, J = 6.8, 4.9, 1.7 Hz, 1H), 2.02 (s, 3H). ESI-MS (cation): 311 m/z (M + H+) obsd, 311.11 

calcd.  

4.2.2.12 Synthesis and Characterization of N-(2-(2,5-dioxo-2,5-dihydro-1H-

pyrrol-1-yl)ethyl)-4-(4-(1-hydroxy-1-(pyridin-2-yl)ethyl)-1H-1,2,3-triazol-1-

yl)benzamide (NDDH, 20) 

 4-(4-(1-hydroxy-1-(pyridin-2-yl)ethyl)-1H-1,2,3-triazol-1-yl)benzoic acid (4-azido, 18b) 

(90 mg, 0.29 mmol, 1 equiv.) and HBTU (143 mg, 0.377 mmol, 1.3 equiv.) were dried in the 

same RB flask. Then 2-amino ethyl maleimide TFA salt (19) (88 mg, 0.35 mmol, 1.2 equiv.) was  
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Scheme 4.4 Synthesis of ancillary ligand N-(2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)ethyl)-4-

(4-(1-hydroxy-1-(pyridin-2-yl)ethyl)-1H-1,2,3-triazol-1-yl)benzamide (NDDH, 20) from ligand 

4-azido (18b). 

 

 

 

 

 

 

 

 

N

N
NN

HO

HO
O

+
N

H2N
O

O

N

N
NN

HO

O

N

N
H

O

O

18b 19 20

HBTU, DIEA
DMF



 139 

added to a different flask and dried in vacuo. 3 mL dry DMF was used to solubilize reagents in 

both flasks then DIEA (60 µL, 0.66 mmol) was added to each flask. Reaction flask with 18b was 

put on ice, then mixture from second flask was added to reaction. Reaction stirred on ice for 2 hr, 

then at RT for 1 hr. Reaction was diluted with EtOAc, washed once with water, twice with 

NaHCO3 (aq), and once with brine. Then EtOAc layer was dried with sodium sulfate and solvent 

removed in vacuo. The product was isolated using flash chromatography (SiO2, DCM w 5% 

MeOH and 1% acetic acid). 1H NMR (300 MHz, Chloroform-d) δ 8.50 (ddt, J = 5.0, 1.7, 0.8 Hz, 

1H), 8.05 (d, J = 0.7 Hz, 1H), 7.93 – 7.68 (m, 6H), 6.84 (d, J = 6.1 Hz, 1H), 6.75 (d, J = 0.7 Hz, 

2H), 3.90 – 3.58 (m, 5H), 2.01 (s, 3H). ESI-MS (cation): 433 m/z (M + H+) obsd, 433.15 calcd.  

 4.2.3 Metal Complex Synthesis  

[Rh(chrysi)(phen)(2-(pyridine-2-yl)propan-2-ol]Cl2 (Rh-PPO) and 

[Rh(phen)(chrysi)(NH3)2]3+ were synthesized following published methodology.2 Novel rhodium 

complexes were synthesized by adapting published procedures.2,17,18  Full synthetic details for 

each complex, including specific amounts (masses, volumes, and moles), are described below, as 

well as in Schemes 4.5 through 4.10.  

4.2.3.1 Synthesis and Characterization of [Rh(phen)(chrysi)(LCOOH)]2+  (22a)  

[Rh(phen)(chrysi)(NH3)2]TFA3 (21) (30mg, 0.0327 mmol, 1 equiv.) and 3-hydroxy-3-

(pyridin-2-yl)butanoic acid (LCOOH , 4a) (12mg, 0.0655mmol, 2 equiv.) were added to a 100 mL 

RB flask. 40 mL of 12:1 mixture of EtOH:H2O was added to the flask. The reaction was refluxed 

at 98°C for ~18 hours. Solvent was removed in vacuo, and the crude product was purified by 

HPLC, then ion exchanged for the chloride salt. 1H NMR (300 MHz, Deuterium Oxide) δ 9.28 

(d, J = 5.3 Hz, 0H), 8.90 – 8.47 (m, 6H), 8.28 – 7.25 (m, 23H), 3.24 – 3.16 (m, 1H), 3.13 (s, 1H),  
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Scheme 4.5 Synthesis of rac-[Rh(chrysi)(phen)(L)]2+, where L = 3-hydroxy-3-(pyridin-2-

yl)butanoic acid (LCOOH , 4a) or methyl 3-hydroxy-3-(pyridin-2-yl) butanoate (MHPB, 4b). 
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2.95 (s, 1H), 2.92 – 2.75 (m, 1H), 2.72 – 2.53 (m, 1H), 1.82 (d, J = 26.9 Hz, 1H). ESI-MS 

(cation): 717.9 m/z (M + H+) obsd, 718 calcd. 

4.2.3.2 Synthesis and Characterization of [Rh(phen)(chrysi)(MHPB)]2+ (22b) 

 [Rh(phen)(chrysi)(NH3)2]TFA3 (21) (30mg, 0.0327 mmol, 1 equiv.) and methyl 3- 

hydroxy-3-(pyridin-2-yl)butanoate (MHPB, 4b) (10mg, 0.0512mmol, 1.6 equiv.) were added to a 

100 mL RB flask. 40 ml of 10:1 mixture of EtOH:H2O was added to the flask. The reaction was 

refluxed at 98°C for ~18 hours. Solvent was removed in vacuo, and the crude product was 

purified by HPLC, then ion exchanged for the chloride salt. Note that limited product formation 

did not allow for NMR characterization of the complex. ESI-MS (cation): 732 m/z (M + H+) 

obsd, 732.2 calcd. 

4.2.3.3 Synthesis Route for [Rh(phen)(chrysi)(Lmaleimide)]2+ (23) Procedure #1  

[Rh(phen)(chrysi)(LCOOH)](TFA)2 (22a) (17.4 mg, 0.0242 mmol, 1 equiv.) was dried in 

vacuo in a 20 mL scintillation vial.  N-Hydroxysuccinimide (3mg, 0.0242 mmol, 1 equiv.) and 

N,N'-Dicyclohexylcarbodiimide (5mg, 0.0242 mmol, 1 equiv.) were put in the same vial with a 

stir bar. The reaction vial was cooled to 0oC and placed under argon. 3 mL anhydrous DMF was 

added followed by one drop DIEA. The reaction was allowed to stir at 0oC for 1.5 hr. Then 2-

amino ethyl maleimide TFA salt (19) in 250 µL dry DMF was added to the reaction under argon. 

The reaction was stirred for an addition 3 hours at 0oC, then the vial was allowed to reach room 

temperature and the solvent removed in vacuo. Note that limited product formation did not allow 

for NMR characterization of the complex; therefore, additional UV-Visible spectrum 

characterization was performed. ESI-MS (cation): 840.2 m/z (M + H+) obsd, 840.19 calcd.  
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Scheme 4.6 Two attempted synthesis routes for metal complex [Rh(phen)(chrysi)(Lmaleimide)]2+ 

(23) starting from 2-amino ethyl maleimide TFA salt (19) or Lmaleimide (6). 
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4.2.3.4 Synthesis Route for [Rh(phen)(chrysi)(Lmaleimide)]2+ (23) Procedure #2 

 [Rh(phen)(chrysi)(NH3)2]TFA2 (21) (30mg, 0.0327 mmol, 1 equiv.) and ((S)-N-(2-(2,5-

dioxo-2,5-dihydro-1H-pyrrol-1-yl)ethyl)-3-hydroxy-3-(pyridin-2-yl)butanamide) (Lmaleimide, 6) 

(10mg, 0.0512mmol, 1.6 equiv.) were added to a 100 mL RB flask. 40 ml of 10:1 mixture of 

EtOH:H2O was added to the flask. The reaction was refluxed at 98°C for ~18 hours. Solvent was 

removed in vacuo and the reaction analyzed by HPLC and ESI-MS. Note that this reaction was 

repeated with different solvents, including ACN, 1:1 ACN/H2O, and 1:1 EtOH/H2O. All 

reactions resulted in a product with a saturated maleimide double bond, as determined by mass 

spectrometry; therefore, product 23 was never isolated using the described reaction procedures. 

Note that limited product formation did not allow for NMR characterization of the reaction 

product. ESI-MS (cation): 842.2 m/z (M + H+) obsd, 840.19 calcd.   

4.2.3.5 Synthesis and Characterization of [Rh(phen)(chrysi)(PPO-alkyne)]2+ 

(24)  

[Rh(phen)(chrysi)(NH3)2]TFA3 (21) (120mg, 0.131 mmol, 1 equiv.) and 2-(pyridin-2-

yl)but-3-yn-2-ol (15) (30mg, 0.197mmol. 1.5 equiv.) were added to a 100 mL RB flask. 26 ml of 

12:1 mixture of EtOH:H2O was added to the flask. Then DIEA (34 µL, 0.197 mmol) was added 

to reaction and the reaction was refluxed at 98°C for 4 to 11 hours. Solvent was removed in 

vacuo, and the crude product was purified by HPLC. 1H NMR (300 MHz, Methanol-d4) δ 9.94 – 

9.81 (m, 1H), 9.09 – 8.84 (m, 3H), 8.68 (dd, J = 19.4, 8.2 Hz, 1H), 8.56 – 8.21 (m, 7H), 8.18 – 

7.70 (m, 7H), 7.61 – 7.50 (m, 2H), 7.38 – 7.18 (m, 2H), 2.05 – 1.85 (m, 5H), 1.65 (dd, J = 7.0, 

0.9 Hz, 1H). ESI-MS (cation): 684.1m/z (M + H+) obsd, 684 calcd. 
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Scheme 4.8 Synthesis of metal complex [Rh(phen)(chrysi)(11-azido)]2+ (26) from 

[Rh(phen)(chrysi)(NH3)2]TFA3 (21) and 1-(1-(2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)-1H-

1,2,3-triazol-4-yl)-1-(pyridin-2-yl)ethan-1-ol (11-azido, 18a). 
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4.2.3.6 Synthesis and Characterization of [Rh(phen)(chrysi)(11-azido)]2+ (26) 

Procedure #1  

[Rh(phen)(chrysi)(NH3)2]TFA3 (21) (24mg, 0.026 mmol, 1 equiv.) and 1-(1-(2-(2-(2-(2-

aminoethoxy)ethoxy)ethoxy)ethyl)-1H-1,2,3-triazol-4-yl)-1-(pyridin-2-yl)ethan-1-ol (11-azido, 

18a) (12mg, 0.0329mmol, 1.26 equiv.) were added to a 50 mL RB flask. 13 ml of 12:1 mixture 

of EtOH:H2O was added to the flask. Then DIEA (30 µL, .165 mmol) was added to reaction and 

the reaction was refluxed at 98°C for 1.75 hours. Solvent was removed in vacuo, and the crude 

product was purified by HPLC. 1H NMR (300 MHz, Deuterium Oxide) δ 8.86 (ddd, J = 12.7, 

7.1, 1.6 Hz, 3H), 8.67 – 8.57 (m, 1H), 8.47 (s, 1H), 8.35 – 8.05 (m, 7H), 8.01 – 7.90 (m, 2H), 

7.88 – 7.48 (m, 4H), 7.36 (s, 1H), 4.51 (d, J = 2.3 Hz, 0H), 4.02 (t, J = 4.9 Hz, 2H), 3.62 – 2.79 

(m, 13H), 2.55 (s, 0H), 2.34 (s, 4H). ESI-MS (cation): 902.1m/z (M + H+) obsd, 902 calcd. 

4.2.3.7 Synthesis and Characterization of [Rh(phen)(chrysi)(11-azido)]2+ (26) 

Procedure #2   

[Rh(phen)(chrysi)(PPO-alkyne)]TFA3 (24) (30 mg, 0.033 mmol, 1 equiv.) was dissolved 

in 1 mL of 2:1 t-BuOH/H2O. Then 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethan-1-amine (25) (8 

µL, 0.0395 mmol, 1.2 equiv.) was added to a separate flask and dissolved in 1 mL of 1:1 H2O/t-

BuOH. Then 25 was moved to the reaction vial and CuSO4.5H2O (1 mg, 0.0036mmol, 0.11 

equiv.) and sodium ascorbate (2 mg, 0.01 mmol, 0.3 equiv.) were added to the reaction. Reaction 

was stirred at RT for 16 hr. No formation of product was detected. 

4.2.3.8 Synthesis and Characterization of Rh(phen)(chrysi)(SMCC)]2+ (27) 

[Rh(phen)(chrysi)(11-azido)]TFA2  (26) (3 mg, 0.0026 mmol, 1 equiv.) was thoroughly 

dried and 600 µL dry DMF was used to solubilize the complex. SMCC (12) (1.1 mg, 0.0033 

mmol, 1.26 equiv.)  was then added followed by DIEA (1 µL, 0.0053 mmol, 2 equiv.). Reaction 
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was stirred at RT for 4 hr. Solvent was removed using 5 g SepPak, and the crude product was 

purified by HPLC. 1H NMR (300 MHz, Deuterium Oxide) δ 10.31 (d, J = 8.9 Hz, 1H), 8.90 (dtt, 

J = 40.5, 15.9, 8.4 Hz, 4H), 8.57 – 7.18 (m, 19H), 6.80 (s, 1H), 6.54 (s, 1H), 6.37 (s, 1H), 3.98 (s, 

1H), 3.75 – 3.01 (m, 18H), 2.87 (s, 1H), 2.43 (s, 1H), 2.28 (s, 1H), 1.76 (s, 1H). ESI-MS (cation): 

1121.1m/z (M + H+) and 561 (M2+) obsd, 1121 calcd. 

4.2.3.9 Attempted Synthesis of [Rh(phen)(chrysi)(4-azido-maleimide)]2+ (28) 

 [Rh(phen)(chrysi)(NH3)2]TFA3 (21) (13mg, 0.0138 mmol, 1 equiv.) and N-(2-(2,5-dioxo-

2,5-dihydro-1H-pyrrol-1-yl)ethyl)-4-(4-(1-hydroxy-1-(pyridin-2-yl)ethyl)-1H-1,2,3-triazol-1-

yl)benzamide (NDDH, 20) (9mg, 0.208mmol, 15 equiv.) were added to a 50 mL RB flask. 13 ml 

of 12:1 mixture of EtOH:H2O was added to the flask. Then DIEA (3.6 µL, 0.21 mmol, 15 equiv.) 

was added to the reaction and the reaction was refluxed at 98°C for 6+ hours. No formation of 

product was detected. 

 4.2.3.10 Metal Complex Purification and Anion Exchange 

The purification of [Rh(chrysi)(phen)(PPO]Cl2 (Rh-PPO) was modified from the 

literature preparations as described in Chapter 2. All other rhodium complexes were purified 

using the following procedure: the crude reaction mixture of metalloinsertor was loaded onto a 

C18 SPE cartridge equilibrated with 15% acetonitrile in 0.1% TFA(aq). The concentration of 

acetonitrile was gradually increased and the complex eluted from the SPE cartridge with 25% to 

30% acetonitrile in 0.1% TFA(aq), then dried in vacuo. The SPE purified complex was then 

dissolved in minimal acetonitrile before HPLC purification, and filtered. Complexes were further 

purified following either a gradient or isocratic HPLC method. The initial HPLC method tested 

involved a gradient elution from 85:15 to 5:95 H2O + 0.1% TFA:ACN over 30 to 90 min. If this 

procedure did not result in sufficient separation between the products, isocratic methods ranging 
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Scheme 4.9 Synthesis of metal complex [Rh(phen)(chrysi)(SMCC)]2+ (27) from 

Rh(phen)(chrysi)(11-azido)]2+ (26) and succinimidyl 4-(N-maleimidomethyl)cyclohexan-1-

carboxylate (SMCC, 12).  
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Scheme 4.10 Attempted synthesis of metal complex [Rh(phen)(chrysi)(4-azido-maleimide)]2+ 

(28) from NDDH (20). 
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from 85:15 H2O + 0.1% TFA:ACN to 65:35 H2O + 0.1% TFA:ACN over 90 min were explored.  

Peaks corresponding to the desired products were verified using ESI-MS and were 

collected using an automatic fraction collector or by hand. The chloride salts were obtained from 

a Sephadex QAE anion exchange column equilibrated with 0.1 M MgCl2. Briefly, a Sephadex  

QAE column was prepped with 100mL 1M MgCl2 (aq.) and washed with 1 L of H2O to remove 

excess salts. Purified complex was dissolved in minimal water, loaded onto the column, and 

eluted with H2O. 

4.2.4 Concentration Determination of Rhodium Complexes     

 A stock solution of each Rh metalloinsertor was made in MilliQ water and a UV-Vis 

trace was recorded. The concentration of stock solution was then determined by using the Cary 

UV-Vis instrument, as well as molar absorptivity values from the literature.2 The following 

molar absorptivity values were used to estimate the concentration of each complex synthesized: 

UV−vis (H2O, pH 7): 270 nm (122,400 M−1 cm−1), 300 nm (41,600 M−1 cm−1), 430 nm (12,300 

M−1 cm−1). 

4.2.5 Cell Culture 

The cells were incubated in tissue culture flasks at 37oC in a 5% CO2 atmosphere. 

Standard procedures for entering and exiting cryostorage were followed, as well as methods for 

subculturing HCT116 cells. HCT116N and HCT116O cells were grown and maintained using 

RPMI (Roswell Park Memorial Institute) 1640 media supplemented with 10% FBS (fetal bovine 

serum), 2mM L-glutamine, 0.1 mM non- essential amino acids, 1 mM sodium pyruvate, 100 

units/mL penicillin, streptomycin, and 100 µg/mL geneticin (G418). 
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4.2.5.1 MTT Cell Viability Assay  

MTT experiments were performed in HCT116N and HCT116O cells as detailed in the 

literature.2 Briefly, approximately 50,000 HCT116N or HCT116O cells in 100 µL of media were 

plated per well into a 96-well plate. 40 wells were filled with each cell line. Varying 

concentrations of free Rh-PPO or Rh-PPO liposome solutions (ex. 0-10 µM) were added to the 

wells and the cells were allowed to incubate at 37oC for 72 hours. After incubation, MTT (2-

(4,5-dimethylthiazol-2-yl)-2,5-diphenultatrazolium bromide) was added. Metabolically active 

cells were given 4 hours to convert the MTT reagent to insoluble formazan. The reaction was 

then stopped and solubilized using a solubilizing reagent. The quantity of formazan was 

determined colorimetrically by absorbance at 570 nm (background subtracted at 690 nm). 

Viability was determined by comparing absorbance for treated and untreated cells.  

 4.2.6 Literature Analysis to Determine Rh-O Metalloinsertor ADC Design 

 A literature search was conducted in order to determine the synthetic design of the three 

main components of the Rh-O metalloinsertor antibody drug conjugate (ADC): the drug, the 

linker, and the antibody. An antibody specific to tumor-associated antigens, as well as common 

in MMR-deficient cells, was thoroughly researched and selected for the ADC. Additionally, 

three Rh-O metalloinsertor drug-linkers were explored throughout this study: 

[Rh(phen)(chrysi)(Lmaleimide)]2+, [Rh(phen)(chrysi)(SMCC)]2+, and [Rh(phen)(chrysi)(4-azido-

maleimide)]2+, as described below. 
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Figure 4.3 MTT cell viability assay comparing [Rh(phen)(chrysi)(PPO)]2+, 

[Rh(phen)(chrysi)(LCOOH )]2+, and [Rh(phen)(chrysi)(MHPB )]2+. HCT116N (MMR-proficient, 

blue squares) and HCT116O (MMR-deficient, red circles) cells were treated with Rh-O 

metalloinsertors (top left) [Rh(phen)(chrysi)(PPO)]2+, (top right) [Rh(phen)(chrysi)(LCOOH )]2+, 

and (bottom middle) [Rh(phen)(chrysi)(MHPB )]2+. Cells were incubated with each 

metalloinsertor solution at the concentrations indicated for 72 hr, then cells were treated with the 

MTT reagent for 4 hr. The resulting formazan crystals were solubilized with acidified SDS. 

Percent viable cells is defined as the percentage of formazan normalized to that of untreated 

cells. Error is shown as standard deviation calculated from 5 replicates.  
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4.3  Results  

 4.3.1 [Rh(phen)(chrysi)(Lmaleimide)]2+ ADC Design, Synthesis, and Evaluation 

  4.3.1.1 Rh-O Metalloinsertor Initial Design Evaluation 

A former labmate, Dr. Alyson Weidmann, previously synthesized and assessed the cell 

viability of Rh-O metalloinsertor [Rh(phen)(chrysi)(LCOOH)]2+ (22a). The carboxylic acid 

contained in this complex was viewed as a promising chemical group for potential 

functionalization. However, the MTT assay of [Rh(phen)(chrysi)(LCOOH)]2+ (Rh-LCOOH) revealed 

the complex to be significantly less potent than Rh-PPO, as shown in Figure 4.3, with an IC50 

value of 15 µM in HCT116O cells; this is 50-fold less potent than Rh-PPO (IC50 value of 300 nM 

in HCT116O cells). One hypothesis for this decrease in cellular potency involved the anionic 

carboxylic acid group of the metalloinsertor interfering with DNA binding due to repulsion with 

the DNA backbone. To test this hypothesis, the methyl ester complex 

[Rh(phen)(chrysi)(MHPB)]2+ (22b) was synthesized and evaluated. Cell viability studies showed 

that this complex has increased cellular potency (IC50 value of 3.3 µM in HCT116O cells) 

compared to Rh-LCOOH and retains preferential cytotoxicity towards MMR-deficient cells. These 

results supported the aforementioned hypothesis; therefore, ADC designs utilizing the LCOOH 

ligand were pursued. Note, complete cell death (0% Viable Cells) was not observed for 

[Rh(phen)(chrysi)(MHPB)]2+ within the concentration range tested; a decrease in viability as low 

as 56% was observed. 

 4.3.1.2 Rh-O Metalloinsertor ADC Linker: Maleimide Functional Group 

The literature analysis revealed that five of the eight FDA approved ADCs utilize 

maleimide groups to link the antibody and cytotoxic drug components of the ADC, including 

Trastuzumab deruxtecan and Brentuximab vedotin.19,20 Furthermore, several ADCs undergoing 
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clinical development utilize this functional group. Cysteine residues within antibodies are used to 

form relatively stable and highly selective thiosuccinimide bonds to therapeutic 

compounds.13,21,22 Additionally, thiol-maleimide reactions are particularly favorable for ADC 

linkers due to their rapid reaction kinetics and compatibility with aqueous reaction conditions, 

which are necessary for antibody stability.23 ADCs that utilize maleimide linkers are reported to 

release drugs due to retro-Michael reactions with thiol containing molecules in the cell or 

degradation of the antibody itself if hydrolysis of the thiosuccinimide ring occurs.24 

Due to the biological selectivity and potency of [Rh(phen)(chrysi)(MHPB)]2+, a 

metalloinsertor ADC design using the LCOOH ligand to incorporate a maleimide functional group 

was pursued. Ultimately, two synthetic routes for synthesizing [Rh(phen)(chrysi)(Lmaleimide)]2+ 

(23) were explored. The first approach involved the conjugation of 2-amino ethyl maleimide 

with [Rh(phen)(chrysi)(LCOOH)]2+ through peptide bond formation. Secondly, synthesis of 

[Rh(phen)(chrysi)(Lmaleimide)]2+ was attempted by coordinating the Lmaleimide ligand with 

[Rh(phen)(chrysi)(NH3)2]3+ (Scheme 4.6). Unfortunately, the high temperatures needed to 

coordinate the Lmaleimide ligand also resulted in saturation of the maleimide double bond, 

eliminating the functional group necessary to conjugate an antibody; therefore, the first synthetic 

approach was further investigated. Note, multiple reaction conditions, including solvent, 

temperature, and use of base, were varied for the reaction between Lmaleimide ligand and 

[Rh(phen)(chrysi)(NH3)2]3+. 

The peptide coupling reaction between [Rh(phen)(chrysi)(LCOOH)]2+ and 2-amino ethyl 

maleimide was purified by HPLC, as described; however, very low yields of the 

[Rh(phen)(chrysi)(Lmaleimide)]2+ product were collected due to difficulty separating 

[Rh(phen)(chrysi)(LCOOH)]2+ and [Rh(phen)(chrysi)(Lmaleimide)]2+ metalloinsertors. Note that a 
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number of gradient and isocratic HPLC methods were attempted. [Rh(phen)(chrysi)(Lmaleimide)]2+ 

that was isolated was further characterized using UV-Visible spectrum data. As shown in Figure 

4.4, [Rh(phen)(chrysi)(Lmaleimide)]2+ has a UV-Vis spectra very similar to 

[Rh(phen)(chrysi)(PPO)]2+ with a large peak at 270, a shoulder peak at 323, and a broad peak at 

385 nm. The broad and shoulder peaks of [Rh(phen)(chrysi)(Lmaleimide)]2+ are shifted compared to 

[Rh(phen)(chrysi)(PPO)]2+  likely due to the compound being in more basic conditions (similar to 

[Rh(phen)(chrysi)(DPE)]2+/1+ pH titration experiments).2 Importantly, in addition to the listed 

peaks, [Rh(phen)(chrysi)(Lmaleimide)]2+ has a more pronounced peak at 225 nm (20% higher) 

compared to [Rh(phen)(chrysi)(PPO)]2+, which corresponds to the maleimide absorption 

wavelength, as seen in the 2-aminethyl maleimide TFA UV-Vis spectrum. These data provide 

further evidence of [Rh(phen)(chrysi)(Lmaleimide)]2+ isolation. 

As shown in Figure 4.5, the MTT cell viability assay with [Rh(phen)(chrysi)(Lmaleimide)]2+ 

showed minimal cytotoxicity over a 10 µM concentration range (81.5% viable cells at 10 µM in 

HCT116O cells) with some selective cytotoxicity (maximal differential cytotoxicity of 22% at 2 

µM). This low biological activity may be due to hydrolysis of the peptide bond and formation of 

[Rh(phen)(chrysi)(LCOOH)]2+; therefore, alternative Rh-O metalloinsertor ADC designs were 

explored. 

4.3.2 [Rh(phen)(chrysi)(SMCC)]2+ ADC Design, Synthesis, and Evaluation 

 4.3.2.1 Rh-O Metalloinsertor ADC Linker: SMCC Functional Group 

Due to the limited activity and purification challenges of [Rh(phen)(chrysi)(Lmaleimide)]2+, 

additional literature analyses was conducted. N- succinimidyl 4-(N-maleimidomethyl- 

cyclohexan-1-carboxylate (SMCC) is a hetero-bifunctional linker that contains a maleimide 

group and an N-hydroxysuccinimide (NHS) ester that allows for conjugation of thiol- and amine-  
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Figure 4.4 UV–Visible spectrum of [Rh(chrysi)(phen)(PPO)]2+ (Rh-PPO), 

[Rh(chrysi)(phen)(Lmaleimide)]2+ (Rh-L mal), and 2-aminoethyl maleimide TFA in H2O. 
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Figure 4.5 MTT cell viability assay for [Rh(phen)(chrysi)(Lmaleimide )]2+. HCT116N (MMR-

proficient, blue squares) and HCT116O (MMR-deficient, red circles) cells were treated with Rh-

O metalloinsertor [Rh(phen)(chrysi)(Lmaleimide )]2+. Cells were incubated with the metalloinsertor 

solution at the concentrations indicated for 72 hr, then cells were treated with the MTT reagent 

for 4 hr. The resulting formazan crystals were solubilized with acidified SDS. Percent viable 

cells is defined as the percentage of formazan normalized to that of untreated cells. Error is 

shown as standard deviation calculated from 5 replicates.  
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Figure 4.6 MTT cell viability assay for [Rh(phen)(chrysi)(11-azido)]2+ and 

[Rh(phen)(chrysi)(SMCC)]2+. HCT116N (MMR-proficient, blue squares) and HCT116O 

(MMR-deficient, red circles) cells were treated with Rh-O metalloinsertor (left) 

[Rh(phen)(chrysi)(11-azido )]2+ and (right) [Rh(phen)(chrysi)(SMCC)]2+ . Cells were incubated 

with the metalloinsertor solution at the concentrations indicated for 72hr, then cells were treated 

with the MTT reagent for 4 hr. The resulting formazan crystals were solubilized with acidified 

SDS. Percent viable cells is defined as the percentage of formazan normalized to that of 

untreated cells. Error is shown as standard deviation calculated from 5 replicates.  
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containing compounds, respectively. This crosslinker has been used in the FDA approved ADC 

Trastuzumab emtansine in order to connect the cytotoxic drug DM1 with the anti-HER2 

antibody trastuzumab through a non-cleavable, maleimidomethyl cyclohexane-1-carboxylate 

(MCC) thioether linker.25  

A novel design for the Rh-O metalloinsertor linker was explored that utilized the SMCC 

compound to incorporate a maleimide functional group into the oxygen-coordinating ligand of 

the metalloinsertor. In order to react with the NHS ester of SMCC, a synthesis route that 

incorporated a stable primary amine was devised. In particular, the use of an azide alkyne 

Huisgen cycloaddition was employed (see Scheme 4.3). Specifically, 1-(1-(2-(2-(2-(2-  

aminoethoxy)ethoxy)ethoxy)ethyl)-1H-1,2,3-triazol-4-yl)-1-(pyridin-2-yl)ethan-1-ol (11-azido, 

18a) was synthesized, and a 1,2,3-triazole group was used in place of a peptide bond in order to 

afford a stable linker structure that would not be prone to hydrolysis. Additionally, a PEG chain 

was incorporated due to its hydrophilicity, low immunogenicity, and non-toxicity.  PEGylated 

linkers are also reported to reduce aggregation and increase complex solutility.13,26 In order to 

incorporate the maleimide group, the resulting metalloinsertor containing the 11-azido ligand, 

([Rh(phen)(chrysi)(11-azido)]2+), could then be reacted with SMCC to ultimately form 

[Rh(phen)(chrysi)(SMCC)]2+ (27). 

Two synthesis routes were explored to generate [Rh(phen)(chrysi)(11-azido)]2+. In the 

first synthetic route, as shown in Scheme 4.7, PPO alkyne (15) was complexed with 

[Rh(phen)(chrysi)(NH3)2]3+, then an azide alkyne Huisgen cycloaddition was attempted. 

Unfortunately, production of [Rh(phen)(chrysi)(11-azido)]2+ was never detected by ESI-MS; 

therefore, a second approach involving the complexation of 11-azido (18a) with 

[Rh(phen)(chrysi)(NH3)2]3+ (Scheme 4.8) was explored. This approach was successful, and after 
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isolation and purification of [Rh(phen)(chrysi)(11-azido)]2+, the complex was assessed in cell 

viability assays. These experiments revealed that the complex retained selective killing of MMR-

deficient HCT116O cells and displayed decent potency (IC50 value of 3.5 µM in HCT116O cells; 

Figure 4.6).  

Next, [Rh(phen)(chrysi)(11-azido)]2+ was reacted with SMCC to afford 

[Rh(phen)(chrysi)(SMCC)]2+ (Scheme 4.9). Cell viability assays with the purified 

[Rh(phen)(chrysi)(SMCC)]2+ compound were performed and showed very minimal cytotoxic 

activity (Figure 4.6). Specifically,10 µM [Rh(phen)(chrysi)(SMCC)]2+ only caused a 11.7% 

reduction in cell viability. Note that an HPLC method using a gradient elution from 85:15 to 5:95 

H2O + 0.1% TFA:ACN over 50 minutes resulted in the desired purification of 

[Rh(phen)(chrysi)(SMCC)]2+. Note that all MTT experiments were performed with the chloride 

salt of the isolated complexes.  

4.4  Discussion 

The mismatch repair (MMR) protein machinery is an essential pathway for identifying 

and repairing mismatched DNA base pairs and other types of DNA lesions. Mutations within the 

MMR pathway result in significant increases in mutation load, as well as microsatellite 

instability (MSI), which often leads to an increased cancer risk.27,28 In particular, these MMR 

deficiencies can result in the development of Lynch syndrome and colorectal cancer (CRC). 

Unfortunately, patients with these malignancies are often less responsive to standard care 

therapeutics, such as cisplatin and 5-fluorouracil.29 As a result, various alternative therapeutic 

approaches have been developed to treat MMR-deficient cancers.  

Within recent years, the use of immunotherapeutics has become a promising 

chemotherapeutic strategy, especially for advanced, metastatic cancers. These monoclonal 
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antibody-based drugs have been shown to induce significant and impressively long-lasting 

responses, and due to the increased mutation rate and prevalence of neoantigens within MMR-

deficient cancers, immunotherapies have proven to be especially effective for this patient 

population.28 Pembrolizumab, a highly selective, humanized monoclonal antibody against the 

programmed cell death-1 (PD-1) receptor, has been approved for treating MMR-deficient and 

MSI-high solid tumors. Importantly, while MMR-deficient patients responsive to PD-1/PD-L1 

inhibitors tend to have long-term, uniquely immunotherapy-related responses, these therapies 

only have overall response rates of 40%.28  

An alternative approach for treating MMR-deficient cancers involves the use of 

molecules specifically targeted to the DNA lesions that result from MMR protein deficiencies. 

Rhodium metalloinsertors are octahedral complexes that bind specifically to DNA mismatches 

and other thermodynamically destabilized DNA sites.8 This selective binding also corresponds to 

preferential cytotoxicity towards MMR-deficient cancer cells, and the most recent family of 

complexes, Rh-O metalloinsertors, displays high potency (ex. Rh-PPO IC50 value is 300 nM in 

HCT116O cells) and notable selective cellular toxicity.2 However, as indicated in Figure 4.3,  

the range of cytotoxic selectivity within cells and in vivo is narrow for the most potent 

metalloinsertors (ex. Rh-PPO), which may hinder the development of these complexes as 

targeted chemotherapeutics.  

In order to further increase the tumor selectivity and tolerable dose range of these 

complexes, metalloinsertor antibody drug conjugates (ADCs) were designed and explored. 

ADC’s capitalize on the advancement of monoclonal antibody-based therapies in order to target 

cytotoxic payloads to tumor-associated antigen expressing cells.22 Due to the reported functional 

group tolerability of the oxygen-coordinating, axial ligand, modifications to this ligand were 
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explored and various Rh-O metalloinsertors were designed and synthesized to incorporate 

maleimide functional groups. These complexes were assessed using MTT cell viability assays to 

determine their biological potency and selectivity with the ultimate aim of generating a stable, 

potent, and selective Rh-O metalloinsertor ADC.  

4.4.1 Rh-O Metalloinsertor ADC Design, Synthesis, and Evaluation 

 4.4.1.1 Metalloinsertor ADC Design and Proposed Mechanism of Action 

There are three main components of ADCs: the monoclonal antibody, the linker, and the 

drug. Selection of each ADC fragment is imperative to the generation of stable, selective, and 

effective ADC drugs. In the case of the metalloinsertor ADC, a Rh-O metalloinsertor was used 

as the cytotoxic agent due to the high potency (IC50 values ranging from 300 nM to 2 µM in 

HCT116O cells) and preferential toxicity toward MMR-deficient cells.2,30 Furthermore, studies 

with the oxygen-containing ligand of the complex have displayed a tolerance to 

functionalization. The linker of the ADC was designed to incorporate a maleimide group because 

this chemical group has successfully been used to conjugate drugs to antibodies in numerous 

clinically-approved ADCs.31–34 The free thiols generated from reducing disulfide bonds within 

the hinge region of antibodies can be reacted with the maleimide group within the drug to form 

stable succinimidyl thioether bonds.34 Lastly, anti-mesothelin (MSLN) monoclonal antibodies 

were selected for the metalloinsertor ADC due to the high expression of MSLN in several MMR-

deficient cell lines, including SKOV3 and HCT116 cells, and previous incorporation into 

successful ADCs.35,36 
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Figure 4.7 Chemical structures of ADC metalloinsertor drug-linker designs with maleimide 

groups incorporated on the oxygen-containing ligand. Chemical structure of (left) 

[Rh(phen)(chrysi)(Lmaleimide)]2+, (bottom middle) [Rh(phen)(chrysi)(SMCC)]2+, and (right) 

[Rh(phen)(chrysi)(4-azido-maleimide)]2+, as well as (top middle) the general structure for the 

full Rh-O metalloinsertor ADC design.  
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A successful metalloinsertor ADC would be expected to achieve selective cytotoxicity by 

first binding to the cell surface expressed mesothelin antigen and then entering the cell via 

endocytosis, upon which there will be an increase in glutathione levels, which should cause an  

exchange of thiols and release of the drug. Note that the succinimidyl thioether can also undergo 

hydrolysis, which results in irreversible ring opening and inhibits drug release; however, 

proteolytic degradation of the irreversibly bound metalloinsertor ADC can also result in drug 

release.13 

4.4.1.2 Characterization of Maleimide Containing Rh-O Metalloinsertors 

Three designs of Rh-O metalloinsertors with maleimide groups were explored 

synthetically, and the general schematic for generating the full metalloinsertor ADC is shown in 

Figure 4.7. In particular, [Rh(phen)(chrysi)(Lmaleimide)]2+ and [Rh(phen)(chrysi)(SMCC)]2+ were  

synthesized and evaluated for their biological activity. Unfortunately, [Rh(phen)(chrysi)(4-azido-

maleimide)]2+ was never isolated.  

In the case of [Rh(phen)(chrysi)(Lmaleimide)]2+, initial experiments with the methyl ester 

[Rh(phen)(chrysi)(MHPB)]2+ suggested that the LCOOH ligand was a suitable building block for 

incorporating a maleimide group through peptidic coupling reactions. Synthesis of a 

metalloinsertor containing Lmaleimide was explored due to the LCOOH ligand’s previous use in 

amide coupling reactions, as well as the resulting compound’s (Lmaleimide) predicted stability due 

to the two carbon spacing between the maleimide group and the amide bond; these additional 

carbons were expected to reduce the electron-withdrawing effects of the peptide bond and 

therefore attenuate the rate of irreversible hydrolysis at the maleimide group.24 However, 

separation of [Rh(phen)(chrysi)(Lmaleimide)]2+  and [Rh(phen)(chrysi)(LCOOH)]2+ proved 



 165 

significantly difficult, and ultimately [Rh(phen)(chrysi)(Lmaleimide)]2+  displayed minimal potency 

(81.5% viable cells at 10 µM in HCT116O cells) and biological selectivity within MTT assays. 

Therefore, synthesis of [Rh(phen)(chrysi)(SMCC)]2+ was pursued. SMCC is a hetero-

bifunctional compound containing a maleimide group and an NHS ester. The synthetic route 

explored for this complex involved the isolation of Rh(phen)(chrysi)(11-azido)]2+, which 

contains a primary amine attached to a PEG chain within the oxygen-containing ligand, followed 

by NHS ester crosslinking to incorporate the maleimide group from the SMCC compound. While 

[Rh(phen)(chrysi)(11-azido)]2+ displayed decent potency (IC50 value of 3.5 µM in HCT116O 

cells; Figure 4.6) and differential cytotoxicity, the final [Rh(phen)(chrysi)(SMCC)]2+ complex 

showed very minimal potency with 89.3% of HCT116N and HCT116O cells still viable at 10 

µM. The lack of cytotoxicity observed with the [Rh(phen)(chrysi)(SMCC)]2+ complex may 

reflect lower uptake of the compound or decreased binding to DNA lesions; however, additional 

experiments would need to be conducted to clarify these results. Ultimately, none of the 

synthetic pathways for incorporating a maleimide functional group were successful, and these 

experiments revealed that the oxygen-containing ligand of Rh-O metalloinsertors may be less 

tolerant to modification than originally observed. Additionally, the reaction conditions (98oC, 

12:1 EtOH:H2O, DIEA) necessary for successful complexation of oxygen-containing ligands 

with Rh(phen)(chrysi)(NH3)2]2+ were not compatible with incorporation of antibody-reactive 

functional groups (ex. saturation of the maleimide double bond occurred under various Lmaleimide 

complexation reaction conditions); therefore, future metalloinsertor ADC studies should focus on 

functionalization of a different ancillary ligand.  
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Figure 4.8 Chemical structures relevant to potential ADC metalloinsertor designs. Chemical 

structure of (left) RhPPOCy-3, a fluorescent conjugate containing a Rh-O metalloinsertor and 

cyanine 3 fluorophore, and (right) RhPPO-SMCC, a Rh-O metalloinsertor containing an MCC 

linked maleimide on the HDPA ancillary ligand.   
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4.4.1.3 Recommendations for Future Metalloinsertor ADC Studies  

 Various metalloinsertor ADC designs warrant exploration. In particular, the focus of 

these studies should be aimed towards using a different ancillary ligand to incorporate chemical 

groups that readily react with antibodies. Recently, a Rh-O metalloinsertor conjugated to a 

cyanine 3 fluorescent probe (RhPPO-Cy3) was synthesized and used to perform localization 

studies in cellulo.18 Within the RhPPO-Cy3 complex, the 2,2′-dipyridylamine (HDPA) ancillary  

ligand was functionalized to contain the Cy3 fluorophore (Figure 4.8). Importantly, biological 

studies with RhPPO-Cy3 showed an IC50 value of 1 µM and preferential cytotoxicity within 

HCT116O cells.18 Additionally, a metalloinsertor family of the form [Rh(L)(chrysi)(PPO)]2+ was 

synthesized and each complex analyzed was found to exhibit selective cytotoxic activity toward 

the HCT116O MMR-deficient cells line.17 Ultimately, these analyses indicate that 

functionalization of the HDPA ligand may allow for the synthesis of Rh-O metalloinsertors with 

ADC linkers that retain their potency and selectivity. 

As such, RhPPO-SMCC, shown in Figure 4.8, was designed. Similar to 

[Rh(phen)(chrysi)(SMCC)]2+, RhPPO-SMCC contains a maleimide group that can be used to 

conjugate the drug to a monoclonal antibody, ultimately with the potential of generating a stable 

and effective Rh-O metalloinsertor ADC. 

 A second suggested approach follows procedures outlined in Reference 37,37 which 

reports achieving chemo- and regio-selective chemical conjugation of synthetic compounds to 

proteins using native lysines. This method involves the use of sulfonyl acrylate to modify the 

most reactive lysine within a given antibody. An aza-michael addition can then proceed between 

the type 2 alkene of the protein and a nucleophilic drug containing a primary amine, as outlined 

in Figure 4.9.37 [Rh(chrysi)(PPO)(HDPA-amine)]2+ was designed to evaluate this promising 
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ADC approach, and as shown in Figure 4.9, the metalloinsertor linker for this method uses 

functionalization of the HDPA ancillary ligand, which may allow the biological potency and 

selectivity of the complex to be maintained. Furthermore, conjugation of a metalloinsertor to the 

one, most reactive lysine in the protein would allow for the production of significantly more 

homogenous metalloinsertor ADCs. This is a very promising route for metalloinsertor ADC 

synthesis, and notably, Dr. Adela Nano has been pursuing the synthesis and characterization of 

[Rh(chrysi)(PPO)(HDPA-amine)]2+-based metalloinsertor ADCs. 

4.5  Conclusions 

The development of Rh-O metalloinsertors has led to a family of DNA mismatch targeted 

complexes with significant potency and cytotoxic selectivity towards MMR-deficient cells. 

Uniquely, these metalloinsertors contain an oxygen-coordinating ligand,2,17 and studies with 

these complexes have found that alterations to this ancillary ligand, including methyl (PPO), 

hexyl (PyOctanol), and pyridyl (DPE) group substitutions, have minimal effects on their 

biological activity.2 This study outlines the use of Rh-O metalloinsertors as a scaffold to design a 

metalloinsertor ADC. Three synthetic designs were explored to incorporate thiol-reactive 

maleimide groups into the hydroxyl, ancillary ligand: [Rh(phen)(chrysi)(Lmaleimide)]2+, 

[Rh(phen)(chrysi)(SMCC)]2+, and [Rh(phen)(chrysi)(4-azido-maleimide)]2+. Unfortunately, all of 

the isolated and evaluated complexes displayed a loss of biological potency and selectivity. 

Future efforts to generate a Rh-O metalloinsertor ADC should focus on the functionalization of 

the HDPA ancillary ligand, similar to RhPPO-Cy3. The production of a successful 

metalloinsertor ADC would undoubtedly further increase the selectivity and tolerable dose range 

of metalloinsertor compounds, thereby advancing their development as DNA mismatch targeted 

chemotherapeutics.   
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Chapter 5 

 
ATTEMPTS TO ELUCIDATE THE STRUCTURE OF RH-O METALLOINSERTORS 

BOUND TO A DNA MISMATCH* 

 
5.1  Introduction  

Numerous biological studies have been conducted with metalloinsertors to better 

understand their cellular activity and mechanism of action. Originally designed to bind to 

thermodynamically destabilized mismatch sites that result from mismatch repair (MMR) 

deficient cancers, metalloinsertors have planar, sterically expansive inserting ligands, such as 

chrysi (5,6-chrysenequinone diamine), that are slightly wider than well matched DNA base 

pairs.1,2 Studies with first generation metalloinsertors, including [Rh(NH3)4(chrysi)]3+ and 

[Rh(bpy)2(chrysi)]3+, found that these complexes selectively bind to DNA mismatches with high 

affinity ([Rh(bpy)2(chrysi)]3+ KB (CC) = 3.4 x 107 M-1). Furthermore, complex binding affinity 

(KB) to mismatches and DNA lesions generally was found to correlate with thermodynamic 

destabilization, with the following relative binding affinities: abasic sites > mismatched base pair 

> single base bulge >> well matched base pair.3–5Additionally, these metalloinsertors, which 

contain an all N^N coordination environment, show preferential inhibition of cellular 

proliferation toward the MMR-deficient HCT116O cell line compared to the MMR-proficient 

HCT116N cells.6  

In order to further understand the activity of first generation metalloinsertors, structural 

studies were conducted with these complexes. In particular, X-ray crystallography experiments 

involving [Rh(bpy)2(chrysi)]3+ and a 12 base pair oligomer containing two AA mismatches 

revealed that metalloinsertor complexes interact with DNA via a completely novel binding mode  

 

 
 * Most crystallography trays were set up with the assistance of Dr. Kelsey Boyle, and Dr. Jens 
Kaiser helped with screening samples sent to the SLAC beamline. All microED experiments 
were performed alongside Dr. Byung-Kuk Yoo, and microED data was solved by Dr. Kaiser 
and Dr. Yoo. 
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Figure 5.1 Crystal structure of first generation metalloinsertor bound to DNA mismatch. 

Structure of Δ-Rh(bpy)2(chrysi)3+ (red) bound via metalloinsertion to two AA mismatches (cyan) 

in the oligonucleotide 5′-CGGAAATTACCG-3′ (green), where the mismatch site is underlined. 

Importantly, the mismatched adenosines (cyan) are ejected from the DNA helix. Structure from 

Reference 7 and PDB 3GSK.7   
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termed metalloinsertion (Figure 5.1).7 The metalloinsertor crystal structure shows the complex 

inserting into the mismatched DNA site from the minor grove side and ejecting the mismatched 

DNA base pairs from the helix.7,8,9 This allows the inserting ligand of the metalloinsertor to form 

favorable pi stacking interactions within the helix. Structural changes to the DNA helix were 

localized to the binding site and no increase in base pair rise was observed, differing significantly 

from intercalation and covalent DNA binding modes.,11 Importantly, only the Δ- 

Rh(bpy)2(chrysi)]3+ enantiomer was found to bind via metalloinsertion, which is consistent with 

other studies that show that DNA lesion recognition is enantiospecific for the right-handed 

isomer of this family of metalloinsertors.  

The most recent family of Rh-O metalloinsertors, which includes 

[Rh(chrysi)(phen)(PPO)]2+ (Rh-PPO) and [Rh(chrysi)(phen)(DPE)]2+ (Rh-DPE), contains an 

unusual N^O coordination, which results in a number of unique chemical properties compared to 

first generation metalloinsertors (Figure 5.2). These complexes have an overall 2+ charge 

compared to the 3+ charge of the original metalloinsertor family (Rh-N metalloinsertors) at 

cellular pH. Additionally, the chrysi inserting ligand of these Rh-O metalloinsertors retains both 

immine protons when binding to mismatched DNA, while the first generation 

metalloinsertor [Rh(HDPA)2(chrysi)]3+ appears to bind with a mixture of protonated and 

deprotonated species. Binding competition titration studies with second generation 

metalloinsertors also revealed that these complexes do not photocleave DNA upon irradiation, 

and each of these complexes displays very similar binding affinities, varying from 2.6 to 5.5 × 

106 M−1.11,12 Importantly, these results reflect the selective binding of racemic mixtures of Rh-O 

metalloinsertor complexes because both enantiomers have very similar affinities for mismatched 

DNA. For example, the Δ and Λ enantiomers of Rh-DPE have the following binding affinities to  
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Figure 5.2 Chemical structures of compounds relevant to the Rh-O metalloinsertor structural 

studies. Chemical structure of second generation metalloinsertors (left) 

[Rh(chrysi)(phen)(PPO)]2+ (Rh-PPO) and (right) [Rh(chrysi)(phen)(DPE)]2+ (Rh-DPE). The 

inserting chrysi ligand is shown in red and the axial, oxygen-containing ligands, PPO and DPE, 

are displayed in blue.  
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CC mismatches: 6.0 × 106 and 5.7 × 106 M−1, respectively.11 Ultimately, these findings indicate 

that Rh-O metalloinsertors have distinct binding interactions with thermodynamically 

destabilized DNA sites compared to Rh-N metalloinsertors.  

In addition to displaying various unique chemical properties, Rh-O metalloinsertors 

possess distinctively promising biological activity. Cell viability and proliferation studies show 

preferential cytotoxicity and inhibition of DNA replication towards the MMR-deficient 

HCT116O cell line to an even greater extent than Rh-N metalloinsertors. Furthermore, these 

complexes have increased cellular potency, with Rh-PPO having an IC50 value of 300 nM in 

HCT116O cells.11,12 Also, colocalization studies with Rh-PPO and the fluorescent Rh-O 

metalloinsertor conjugate RhPPO-Cy3 that aimed to better understand these compound’s 

mechanism of action found that these complexes activate the DNA damage response (DDR) and 

specifically target DNA mismatches within cells.12,13 Most recently, in vivo studies with Rh-PPO 

revealed that the complex has significant anti-tumor effects; however, higher concentrations of 

the drug result in systemic toxicity, limiting the potential efficacy of these compounds.  

Altogether, while Rh-O metalloinsertors have been thoroughly studied to better 

understand their unique chemical and biological properties, the exact nature of the DNA binding 

interactions that result in these characteristics remains elusive. Structural analyses with Rh-O 

metalloinsertors would further elucidate the unique cellular activity of these complexes, as well 

as potentially help direct future metalloinsertor development, as has been the case for numerous 

DNA targeting chemotherapeutic drugs.14 Research within our group has continued to focus on 

crystallizing a Rh-O metalloinsertor, specifically Rh-PPO or Rh-DPE, bound to a DNA 

mismatch. Though a structure has yet to be obtained, this chapter outlines the recent efforts to 
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gain structural insights into the interactions between Rh-O metalloinsertors and mismatched 

DNA sites using X-ray crystallography and microcrystal electron diffraction (microED).  

 
5.2  Experimental Methods  

 5.2.1 Materials  

All chemicals, reagents, and solvents used were commercially available and used as 

received, unless otherwise noted. Organic reagents were purchased from Sigma Aldrich, unless 

otherwise noted (St. Louis, MO). Water was purified using the Millipore Milli-Q system 

(Milford, MA, USA). HPLC-grade acetonitrile (ACN) was purchased from Fisher Scientific 

(Fair Lawn, NJ, USA). Sep-Pak C18 solid-phase extraction (SPE) cartridges were acquired from 

Waters Chemical Co. (Milford, MA). All HPLC metal complex purifications were carried out on 

a Hewlett-Packard 1100 HPLC. Oligonucleotides were purchased from IDT DNA with standard 

desalting (Coralville, IA). Crystallography kits and reagents were purchased from Hampton 

Research (Aliso Viejo, CA). All UV-Visible experiments were performed on a Cary 100 

spectrometer. 

5.2.2 Purification of DNA Sequences  

Twelve base pair DNA oligonucleotides containing AA and AC mismatches were 

purchased from IDT and ordered as 1 to 2 µmol quantities.  The oligonucleotides were dissolved 

in 400 µL of MilliQ water, then purified using HPLC on a C18 reverse-phase column. The 

following gradient elution method was employed: 2:98 to 17:83 ACN:50 mM NH4CH3CO2 (aq.) 

over 30 min. The purification efficiency of this method was initially assessed using analytical 

runs (<0.1 µmol) to determine the elution time of the desired oligonucleotide. After confirming 

efficiency of the HPLC purification method, preparatory runs were performed on the HPLC (0.2 
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to 0.5 µmol per run) and the middle of the desired peak was collected in 15 mL falcon tubes. The 

samples were then dried using a lyophilizer and desalted by ethanol precipitation, as outlined 

below. 

5.2.2.1 Ethanol Precipitation of DNA for Structural Experiments  

Pure EtOH, 3 M NaCl (aq.) and 70% EtOH (aq.) were cooled on dry ice (in a cold room) 

for one hour. Then, 200 µL of MilliQ water was added to the lyophilized DNA oligonucleotide 

samples (2 µmol). The samples were then vortexed to dissolve the DNA in the water and 

centrifuged. Next, 5 µL of each sample was removed for MALDI-TOF experiments and placed 

in PCR tubes. The remaining sample was transferred to 1.5mL eppendorf tubes (100 µL per tube) 

and 1 mL cold ethanol was added to each sample. The samples were then vortexed. Note that at 

this step, some cloudiness was visible in certain tubes. Next, 50 µL of cold 3M NaCl (aq.) was 

added to each sample and vortexed again. Samples were frozen for 30 minutes (-20°C freezer 

was used). Then, samples were centrifuged at 16,000 rcf for 30 minutes at 4oC. Supernatant of 

the sample was carefully removed from the DNA pellet using pipette. Then, the DNA pellet was 

rinsed with 1 mL of cold 70% EtOH (aq.) and vortexed. The sample was centrifuged again at 

16,000 rcf for 5 minutes at 4°C and the supernatant again removed. The resulting DNA samples 

were dried on the speedvac overnight (note that only 20 minutes on the speedvac is necessary). 

Dried samples were re-dissolved in a minimal amount of H2O (~200 µL total) with 50 µL added 

at a time and mixing was achieved by pipetting and vortexing. Finally, a UV-Visible spectrum of 

the precipitated DNA sample was taken to quantify the concentration of DNA. Beer’s law (A = 

εlc) was used to perform these calculations, where ε is the extinction coefficient for the DNA 

(provided by IDT), A is the absorbance of the sample, and l is the path length of the solution. 

After concentrations were determined, DNA samples were either diluted (with MilliQ water) or 
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concentrated (by speedvac) and redissolved in MilliQ water in order to achieve the desired 

concentration (ex. 2 mM) of the detailed crystallographic and microcrystal electron diffraction 

studies.  

5.2.3 Enantiomeric Separation of Metalloinsertors 

  5.2.3.1 Synthesis and Initial Purification of Metalloinsertors  

[Rh(chrysi)(phen)( 2-(pyridine-2-yl)propan-2-ol]2+ (Rh-PPO) and [Rh(chrysi)(phen)(1,1-

Di(pyridine-2-yl)ethan-1-ol))]2+ (Rh-DPE) were synthesized following published methodology.11 

Note that DIEA (>2 equiv.) was added to promote the final reaction step (complexation of DPE 

or PPO to [Rh(phen)(chrysi)(NH3)2]3+). 

After synthesis of Rh-PPO and Rh-DPE, each complex underwent a SepPak purification 

followed by an initial HPLC purification using a C18 reverse-phase column. Rh-PPO was 

initially HPLC purified using the methods described in Chapter 2, while Rh-DPE was purified 

using methods developed by Dr. Kelsey Boyle. Briefly, the Rh-DPE method involved a gradient 

elution from 15:85 to 25:75 ACN:H2O + 0.1% TFA over 5 min, then conditions were held at 

25:75 for 5 min, subsequently increased to 50:50 over the next 40 min. This method was efficient 

at removing undesired impurities and separating the two diastereomers of Rh-DPE. Importantly, 

metalloinsertors are enantiomeric at the metal center and overall the complexes are 

diastereomers.  

 5.2.3.2 Enantiomeric and Diastereomeric Purification of Metalloinsertors  

Enantiomeric separation studies were performed in collaboration with Dr. Kelsey Boyle, 

and an efficient method for separating the Λ and Δ enantiomers of each complex was 
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accomplished with the assistance of Dr. Scott Virgil.  

In the case of Rh-PPO, HPLC purified [Rh(phen)(chrysi)(PPO)]TFA2 was dissolved in 

1:1 ethanol:water. This solution was purified on an Astec CYCLOBOND chiral column using an 

isocratic elution method of 60:40 KPF6 (aq.) at 0.1M:ACN for 37 minutes. After each method, a 

4-minute wash cycle of 60:40 H2O:ACN was run to rinse the column of accumulating KPF6, and 

after every fifth run a 30-minute wash sequence was performed in which the solvent was 

switched from 60:40 H2O:ACN to 5:95 over 10 minutes, held for 10 minutes at 95% acetonitrile, 

and returned to 60:40 H2O:ACN over the final 10 minutes. Additionally, an IC column with an 

isocratic method of 60:40 ACN:0.1M KPF6 (aq.) was used for further purification of the 

enantiomers. The Λ and Δ enantiomers were collected separately and ion exchanged following 

the procedure described in Chapter 2.  

For Rh-DPE, enantiomers were separated using methods developed by Dr. Kelsey Boyle. 

Briefly, the second eluted diastereomer of Rh-DPE (Rh-DPE-2) was purified using an Asec 

Cyclobond column. Specifically, an isocratic method of 42.5:57.5 ACN: 0.1 M KPF6 (aq) was 

able to separate the enantiomers of Rh-DPE-2. The Rh-DPE-1 diastereomer was purified using a 

ChiralPak IC column with the following isocratic method: 50:50 ACN: 0.1 M KPF6 (aq). 

Purity of each enantiomer was confirmed using the ChiralPak IC column and circular 

dichroism experiments. The chloride salts of each complex were obtained from a Sephadex QAE 

anion exchange column equilibrated with 0.1 M MgCl2 and used in the following crystallography 

experiments. 
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 5.2.4 Crystallographic Methods 

  5.2.4.1 Setting Up Crystallography Trays 

 A 24-well plate format was used to set up crystal trays. The Hampton Research Mini 

Nucleic Acid Screen kit was used for these experiments. The kit contains 24 unique buffers with 

different properties, including various monovalent and divalent ions, pH ranges, and polyamines. 

See Table 5.1 for details about each buffer. Crystallography experiments were set up by first 

adding 1 mL 35% MPD solution to the bottom well in each 24-well plate. Next, 2 µL kit buffer 

followed by 1 µL metalloinsertor and 1 µL DNA solution were combined on the sitting drop 

platform of each well. Note that no pipetting was performed to mix the final solution. Lastly, 

plates were sealed using clear packing tape and stored at room temperature in the dark. 

Crystallography plates were periodically checked for crystal growth using a light microscope.  

  5.2.4.2 Harvesting Crystals  

 In order to harvest promising, viable crystals that were identified with light microscopy, 

the following general procedure was followed. First, a razor blade was used to remove the clear 

packing tape (a circle was cut around the well of interest) and a piece of new tape that could 

easily be opened was placed over the well. Next, crystals were scooped out of the well using a 

crystal loop that was attached to a magnetic crystal wand. Note that loops of the appropriate size 

(ex. size 2 or 3) were used to ensure that the crystal was securely looped. Immediately after 

looping the crystal, it was plunged into liquid nitrogen and transferred to cryo-vials. These vials 

were placed into cryo-racks and stored in liquid nitrogen in the X-ray crystallography facility 

until beamtime on the SSRL became available. Once beamtime was acquired, the sample vials 

were transferred to SSRL large cassettes and screened using automated NoMachine software. 
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Crystal screenings were often done with the help of Dr. Jens Kaiser, and before looping and 

analyzing metalloinsertor samples, lysozyme crystals were grown in order to become 

familiarized with the sample collection and processing methods. Importantly, no additional cryo-

protectant had to be added to metalloinsertor/DNA samples before freezing because of the 

presence of MPD in the buffers.  

  5.2.5 Microcrystal Electron Diffraction (MicroED) Experiments  

  5.2.5.1 Sample Selection 

 Initially samples with small dot patterns were chosen for microED experiments. Later 

experiments focused on samples with a few larger, uniform crystals, as well as crystal clusters 

and needles. Finally, we attempted to analyze samples from the crystal tray that produced the 

initial promising diffraction data.   

  5.2.5.2 Vitrobot Sample Preparation # 1 

 Quantifoil 200 or 300 mesh R2/2 copper EM grids (Electron Microscopy Services) were 

glow discharged for 1 minute (in some cases 30 seconds on each side) using the PELCO 

easiGlow Glow Discharge System (Ted Pella). Grid was placed into the Vitrobot instrument, 

then 3 µL of sample was applied to the secured grid. The EM grid was then blotted with filter 

paper before being immediately plunge-frozen using a Vitrobot Mark IV (Thermo Fisher). 

Different variations of this procedure were explored including: applying sample to the frontside 

and backside of the grid, as well as varying the blot force, blot time, vortexing and pipetting 

sample before applying to grid, and the volume of sample applied to the grid.  
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  5.2.5.3 Vitrobot Sample Preparation # 2 

Quantifoil 200 mesh R2/2 copper EM grids (Electron Microscopy Services) were glow 

discharged for 30 sec on each side using the PELCO easiGlow Glow Discharge System (Ted 

Pella). Grid was placed on PTFE polymer, then 3-5 µL of sample was applied to the grid, 

covered, and incubated (time varied). The grid was secured in the Vitrobot, then 1.5 µL of 

sample was applied to the backside of the secured grid. The EM grid was then blotted with filter 

paper and immediately plunge-frozen using a Vitrobot Mark IV (Thermo Fisher). Different 

variations of this procedure were explored including: applying sample to the frontside and 

backside of the grid, varying the blot force and blot time, vortexing and pipetting sample before 

applying to grid, sample incubation time (1 min to 3 hr), and the volume of sample applied to the 

grid.  

  5.2.5.4 Manual Sample Preparation #1 

Lacey carbon, continuous carbon, 300 mesh, gold EM grids (Electron Microscopy 

Services) were glow discharged on both sides for 1 minute using the PELCO easiGlow Glow 

Discharge System (Ted Pella). Selected crystal sample was mixed by pipetting (5x), then added 

to grid (1-4 µL) on the gold side. The sample was incubated for 20 sec, then the grid was turned 

over and blotted on filter paper for 20-30 sec. Finally, the grid was clipped at room temperature, 

then transferred to LN2 right before putting in the EM cassette. Note that sample was taken from 

the edge of the well.  

5.2.5.5 Manual Sample Preparation #2 

Lacey carbon, continuous carbon, 300 mesh, gold EM grids (Electron Microscopy 

Services) were glow discharged on both sides for 1 minute using the PELCO easiGlow Glow 
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Discharge System (Ted Pella). Grid was stabilized on filter paper using tweezers (this allows 

sample to diffuse through grid and onto filter paper). Selected crystal sample was mixed by 

pipetting (5x), then added to grid (1 µL) on the gold side. Lastly, the grid was clipped at -196oC 

(with clip set up covered to minimize ice contamination), then transferred to EM cassette or 

cryostorage.  

  5.2.5.6 Electron Microscopy Instrument Parameters  

All data were collected on a Thermo-Fisher Talos Artica electron cryo-microscope 

operating at an acceleration voltage of 200keV, corresponding to a wavelength of ~0.025079 Å. 

Screening of MicroED data and collection was performed in rolling shutter using a Thermo-

Fischer Ceta CMOS camera. Images were collected as a movie as the crystal was continuously 

rotated in the electron beam. Typical data collection was performed using a constant tilt rate of 

~0.6 ° per sec over an angular wedge of ~60° between the minimum and maximum tilt ranges of 

-72° to +72° degrees, respectively. During continuous rotation, the camera integrated frames 

continuously at a rate of 1-3 sec per frame. The dose rate was calibrated to <0.03 e- Å-2 s-1. 

Crystals selected for data collection were isolated by a selected area aperture to reduce the 

background noise contributions and calibrated to eucentric height to keep the crystal in the 

aperture over the entire tilt range.  

Diffraction movies saved as SER files were converted to SMV format using in-house 

software developed by Dr. Byung-Kuk Yoo. Frames were indexed and integrated in XDS 

(http://xds.mpimf-heidelberg.mpg.de/html_doc/references.html). Note that all microED 

experiments were performed in collaboration with Dr. Byung-Kuk Yoo.   
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5.3. Results and Discussion  

5.3.1 Attempts to Characterize the Structural Interaction Between Rh-O 

Metalloinsertors and Mismatched DNA  

 Detailed below are the X-ray crystallography and microcrystal electron diffraction 

(microED) experiments explored with Rh-O metalloinsertors and oligomers containing 

mismatched DNA. Attempts to optimize sample preparation, relevant takeaways, and 

suggestions for how to proceed with the project are discussed.  

5.3.1.1 X-ray Crystallography Experiments 

 X-ray crystallography has long remained the primary method for resolving the three-

dimensional structure of chemical and biological species of interest.15 These structural 

determinations have been imperative to advancements in the drug discovery process, as well as 

understanding the mechanism of action of various therapeutics.16 For instance, the crystal 

structure of cisplatin crosslinked to double-stranded DNA revealed the formation of notable 

adducts that unwind and bend the DNA duplex. These findings, alongside the atomic structure of 

cisplatin alone, assisted in the development of numerous platinum-based drugs, including 

oxaliplatin and carboplatin.17 Additionally, X-ray crystallography studies elucidated important 

protein binding targets of platinum compounds, including the lysozyme protein.17  

In order to continue the drug development of metalloinsertors and better understand their 

biological activity, the use of X-ray crystallography was explored to gain structural insights into 

the interaction between Rh-O metalloinsertors and their target DNA sites. Various approaches to 

crystallizing Rh-O metalloinsertors bound to DNA have been attempted since this family of 

complexes was developed. Before graduating, Dr. Kelsey Boyle focused on varying oligomer 

sequences and length, the ratio of DNA to metalloinsertor, and screening buffer conditions.  
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The crystallography trays set up in collaboration with Dr. Boyle involved the following 

self-complementary oligomeric sequences: 5’- CGG AAA TTA CCG -3’ (contains two AA 

mismatches) and 5’- CGG AAA TTC CCG -3’ (contains two AC mismatches), where the 

mismatch sites are bold and underlined. Trays contained a combination of precipitant buffer, 

DNA, and Rh-O metalloinsertor enantiomers. These DNA sequences were chosen because they 

were used in previously successful X-ray crystallography experiments with the Rh-N 

metalloinsertors [Rh(bpy)2(chrysi)]3+ and [Ru(bpy)2(dppz)]2+; 7,18,19 and these oligomers 

facilitated the formation of uniform, sizeable crystals. Furthermore, crystallography studies 

performed by Dr. Boyle found that DNA sequences containing two mismatches are more likely 

to form crystalline-type products. The described crystal trays, as well as all Rh-O 

metalloinsertor/DNA trays set up by previous lab members, were regularly examined for crystal 

formation.  

5.3.1.1.1 Crystal Selection and Processing  

 Large, uniform crystals (typically >50 µm in length) are necessary for successful X-ray 

crystallography structural determination studies. Truly crystalline samples produce evenly 

spaced, regularly repeating diffraction spots of varying intensities that extend toward the edge of 

the diffraction pattern (spots further from the center indicate higher resolution data).  Rh-O 

metalloinsertor samples with intriguing morphologies, including orange hexagons and red 

amorphous/rectangular crystals (Figure 5.3), were collected and analyzed using the synchrotron. 

Note that rhodium metalloinsertors are a vibrant red color; therefore, crystals that are orange or  
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Figure 5.3 Representative morphologies observed and analyzed during crystallography 

experiments. Examples of (left) hexagon and (right) amorphous/rectangular crystal morphologies 

that were observed in Rh-O metalloinsertor crystallography trays. Note, various different 

crystalline samples were visualized during crystal tray analyses. While these samples were 

colored and appeared to have interesting, crystalline morphologies, suitable diffraction data 

could not be obtained. 
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Figure 5.4 Example of a promising sample morphology and diffraction pattern that resulted from 

X-ray crystallography experiments. (Left) Light microscopy images of sample well with red 

clustered crystals and surrounding red oil-like dots. (Right) X-ray diffraction pattern that resulted 

from analysis of the sample. Sample was collected from Plate 2M Well D5 and contains a 

combination of the Rh-DPE 2.2 enantiomer, kit buffer 17, and the oligomer 5’- CGG TAA TTC 

CCG-3’.  
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red in color are hypothesized to be more likely to contain metalloinsertor complexes; though, the 

complex could be contained within solvent channels of the crystal or bound to DNA.  

The most promising diffraction pattern observed resulted from the combination of Rh-

DPE 2.2 enantiomer, kit buffer 17, and the TC mismatch containing oligomer 5’- CGG TAA 

TTC CCG-3’ (Plate 2M Well D5), where the mismatch sites are bold and underlined. As shown 

in Figure 5.4, this crystal well contained red dots (perhaps oil) and clustered, red crystals based 

on light microscopy observations. Multiple samples from this well were looped, and the resulting 

diffraction pattern contained smeared diffraction spots with a slightly regular pattern. The 

smeared line in the top left may indicate base stacking of the DNA helix. Unfortunately, most of 

the patterns were not two-dimensional and the irregularities within the diffraction pattern 

indicate that the sample may contain multiple crystals that are diffracting simultaneously. 

Overall, these X-ray crystallography experiments did not produce promising diffraction patterns 

or structural data, and they may indicate that the Rh-O metalloinsertor/DNA interaction is 

incompatible with the crystallography conditions tested; however, it is possible that uniform 

microcrystals with Rh-PPO or Rh-DPE bound to mismatched DNA may be forming under the 

explored experimental conditions. As a result, microED structural studies with these samples 

were conducted. 

  5.3.1.2 Microcrystal Electron Diffraction (MicroED) Experiments 

   5.3.1.2.1 Use of MicroED for Rh-O Metalloinsertor Structural Studies  

 While X-ray crystallography is a seminal structural technique that has facilitated atomic 

resolution structural determinations of molecules ranging from DNA to the ribosome, large, 

well-ordered crystals (typically >50 µm in length) are imperative for accurate structural  
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determination; this is a major limitation that hinders the use of X-ray crystallography for 

particularly complex and difficult targets.20 MicroED is a novel structural technique that involves 

collecting electron diffraction data from extremely small three-dimensional crystals (< 2 µm) in 

order to solve structures of biological and chemical samples.20,21 Typically, microcrystals are 

frozen on an electron microscopy (EM) grid and then diffraction data is collected by 

continuously tilting the EM grid platform at angle increments of 0.1 – 1°. The electron 

diffraction data is then used for structural determination using processing techniques similar to 

those in X-ray crystallography. See Figure 5.5 for a graphic representation outlining the 

microED data collection and analysis process. Note that data from multiple crystals are often 

needed to determine complete, high-resolution structures and crystals must be very thin due to 

the strong interaction between electrons and matter. Thus far, this technique has been used to 

solve mainly protein structures (ex. lysozyme and catalase);22 however, this method has 

significant promise for samples that do not readily form large, uniform crystals. 

   5.3.1.2.2 MicroED Initial Sample Preparation and Analysis  

 Due to the lack of successful crystal formation with Rh-O metalloinsertors bound to 

DNA mismatches, microED was explored with samples originally intended for X-ray 

crystallography experiments. Samples from crystallography trays that displayed faint dot patterns 

were used in the initial microED experiments. The studies were carried out by following the 

standard Vitrobot procedure in which the crystal sample was pipetted onto a secured EM grid, 

blotted, and then plunged into liquid ethane. This vitrification process was enacted to preserve 

sample integrity by minimizing the formation of ice crystals.23  

These initial studies allowed for the identification of one crystal with particularly 

promising diffraction data (~2 Å). As shown in Figure 5.6, the sample came from Plate 3A Well  
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D2. Light microscopy of the well revealed a faint dot pattern, and the promising microcrystal 

sample appeared as jagged and triangular in the brightfield EM image. Note that the EM sample 

was prepared on a 300 mesh, lacey carbon with continuous carbon, Cu grid using the standard 

Vitrobot procedure (5 sec blot time), and diffraction movies were collected from 0o to 60o at 

0.03o /sec. While the diffraction pattern produced was not ideal, processing of the collected 

diffraction movie was 45% complete and allowed for determination of unit cell parameters, 

including the following lengths of cell edges and angles between them: a = 41.265Å, b = 

24.737Å, c = 20.991Å and α = 90.000°, β = 92.562°, γ = 90.000°, respectively. Additionally, the 

space group was found to be C2 (analysis was performed by Dr. Jens Kaiser). These results 

indicate that there is one single strand of DNA in the asymmetric unit, and the full molecule 

would need to be resolved by using crystallographic symmetry. Furthermore, the R-merges were 

below 20% and no similar cells (a/b/c +/-10%, beta +/- 2.5o) were found in the Protein Data 

Bank (PDB), indicating that it is likely a unique atomic structure. Importantly, this crystal 

sample originated from Plate 3A Well D2, which contained Rh-DPE and a 12 base pair DNA 

oligomer. 

While the standard grid preparation process did result in thin films of sample on the EM 

grid and diffraction data from one particularly promising crystal, significant ice contamination 

(Figure 5.7) made it difficult to properly identify other promising crystals. Notably ice crystals 

often had spear-like morphologies with at least one straight side, which made distinguishing 

between ice and sample crystals based brightfield images quite challenging. Additionally, as 

shown in Figure 5.8, ice was found to contaminate promising crystal samples as well. Various 

parameters of the Vitrobot preparation, including blot time, blot force, humidity, and the side of 

the EM grid to which sample was applied, were altered to optimize sample crystal identification;  
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Figure 5.8 Example of brightfield image and diffraction pattern from potential Rh-O 

metalloinsertor/DNA sample contaminated with ice. (Left) Representative brightfield image of 

promising rod-like crystal that is contaminated with ice. (Right) Diffraction pattern that resulted 

from sample contaminated with ice. Importantly, brightest spots within the diffraction pattern 

correspond with ice contamination, while other spots may correspond to desired sample. Note 

that structures with mixtures of sample and ice cannot be resolved.  
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Figure 5.9 Example of brightfield images of Quantifoil EM grid after 3 hr incubation with 

metalloinsertor/DNA sample. (Left) Zoomed out image of degraded EM grid and (right) zoomed 

in brightfield image of sample on grid. Note the various shades of opaque gray on the image 

(right), which indicate the formation of uneven and thick ice.   
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however, the Vitrobot method consistently resulted in ice contaminated grids with very low 

sample density. As a result, alternative grid preparation protocols were explored. 

5.3.1.2.3 MicroED Sample Preparation Optimization 

 Specifically, manual EM grid preparation methods were explored and factors such as 

sample incubation time and blotting method were varied. By preparing the grids manually, the 

sample could be incubated on the EM grid for different amounts of time with the goal of 

increasing sample concentration. By allowing time for the sample to diffuse onto the grid, we 

hypothesized that sample crystal density could be increased. In particular, crystal well samples 

were added to the frontside of EM grids (placed on PTFE polymer wells) and incubated for times 

ranging from 1 min to 3 hr, then frozen and prepared for electron microscopy using the Vitrobot 

technique. Importantly, the three-hour incubation time resulted in discoloration of the crystal 

solution (changed from orange to blue/green), as well as degradation of the carbon layer of the 

EM grid (Figure 5.9). Additionally, intact portions of the grid had thick and uneven deposition 

of sample, which complicates processing of any collected diffraction data. Results from these 

studies indicated that less than two minutes of sample incubation was necessary for maintaining 

the integrity of the EM grid and limiting thick ice formation. Ultimately, this method did not 

result in uniform deposition of sample.  

 Next, the blotting technique used for sample preparation was explored. In collaboration 

with Dr. Yoo, as shown in Figure 5.10, a novel procedure for blotting microED samples was 

developed. In order to both increase sample crystal density and create uniform, thin films of 

sample on EM grids, we explored the removal of excess solvent by allowing the liquid to diffuse 

through the grid and onto filter paper (secured together using tweezers). First, the grid was 

secured to a filter paper using tweezers. Then, sample was pipetted onto the copper or gold  
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Figure 5.10 Manual blotting technique developed for microED studies with Rh-O 

metalloinsertors. (Top) Schematic outlining the manual blotting method where sample is applied 

to the EM grid, incubated for a short period of time, and then allowed to diffuse through the grid 

onto filter paper. (Bottom left) Representative brightfield image of EM grid and samples 

prepared using manual blotting technique compared to (right) image of EM grid prepared using 

Vitrobot method. Figure made with the assistance of Dr. Byung-Kuk Yoo. 
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(front) side of the EM grid. After a brief incubation (<10 sec), the solvent diffused through the 

grid and onto the filter paper. Then, the grid was prepared for EM experiments, as described 

above. While this novel technique did result in the detection of more promising samples, such as 

the rod-like sample shown in Figure 5.10, more uniform thin films were produced using the 

Vitrobot vitrification method. Notably, a variety of crystallography samples were used in the 

described sample preparations, and a range of crystal morphologies, including dots patterns, 

crystal clusters, and needle clusters, were examined.  

Ultimately, a variety of sample wells and microED sample preparation procedures were 

investigated and developed; however, complete diffraction data from microcrystal samples was 

never collected and an atomic structure of Rh-O metalloinsertors bound to DNA mismatches was 

never resolved. MicroED remains a promising technique for probing the structural interactions 

between metalloinsertors and DNA that result in Rh-O metalloinsertors’ unique chemical and 

biological properties. Given that a 45% complete structure with unique crystal properties was 

obtained, future studies should focus on setting up crystal trays with similar crystallization 

conditions in order to complete this structure.    

5.5  Conclusions 

 X-ray crystallography and MicroED structural techniques were used to explore the 

unique atomic interaction between Rh-O metalloinsertors and mismatched DNA sites. The most 

promising results came from microED analysis of samples originally intended for X-ray 

crystallography. This study allowed for the development of novel microED sample preparation 

techniques that can be employed for future metalloinsertor studies, as well as other biological 

samples. Future experiments may aim to supplement the partial electron diffraction data 

discussed in order to obtain a complete atomic structure. This microED structure would be 
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especially exciting given that it would be the first DNA-drug interaction resolved using 

microED, and importantly, the results would increase our understanding of the uniquely potent 

and selective biological properties of the Rh-O metalloinsertor family.  
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Chapter 6 

CONCLUSIONS AND FUTHRE OUTLOOKS 

 

Mismatch repair (MMR) deficient cancers continue to need novel therapeutic approaches 

due to their resistance to standard of care chemotherapeutic treatments. These cancers often 

result from deficiencies in MMR proteins, which cause DNA mismatches and indels to 

accumulate. An important strategy for treating these MMR-deficient cancers, including 

colorectal and breast cancers, involves the development of complexes that selectively target the 

DNA lesions that result from these MMR protein deficiencies. Specifically, over the last couple 

of decades, our laboratory has focused on developing rhodium metalloinsertors that selectively 

target and kill MMR-deficient cancer cells.  

Metalloinsertor complexes are capable of selectively binding thermodynamically 

destabilized DNA lesions, including mismatches, indels, and abasic sites. These DNA binding 

interactions have been shown to result in the selective killing of MMR-deficient cancer cells. 

Our most recent family of Rh-O metallinsertors contains an N^O coordinating, axial ligand, and 

biological studies have revealed this family of metallinsertors displays nanomolar potency with 

highly selective toxicity towards MMR-deficient cancer cells. Within this thesis, efforts to 

explore the in vivo properties of the most potent Rh-O metalloinsertor, Rh-PPO, are described, as 

well as studies to further develop metalloinsertor drugs as targeted chemotherapeutics. 

 The in vivo studies presented here represent the first preclinical mouse evaluations of a 

rhodium metalloinsertor as a chemotherapeutic. Intraperitoneal studies with Rh-PPO revealed a 

notable increase in mouse survival compared to the FDA approved oxaliplatin, as well as 

significant decreases in mouse final tumor weights and tumor volumes. Together, these results 
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indicate that Rh-PPO has noteworthy anticancer activity within an HCT116 colorectal cancer 

xenograft tumor model. Notably, intratumoral studies with Rh-PPO showed that significantly 

enhanced anticancer effects can be achieved when the drug is administered specifically to the site 

of the tumor, suggesting that more selective delivery methods need to be explored in order for 

further development of metalloinsertors.  

 Liposomal and antibody drug conjugate (ADC) metalloinsertor drug formulations were 

explored in order to achieve increased targeting of MMR-deficient malignant cells. Within the 

liposomal studies, four distinct Rh-PPO liposome formulation methods were developed, and the 

resulting liposomes were analyzed for their cytotoxicity, encapsulation efficiency, and stability. 

Rh-PPO liposomes prepared with the remote loading procedure were found to show the most 

promising biological and chemical features; however, further development of this nanoparticle 

drug delivery approach is needed. The described metalloinsertor ADC studies involved the 

design of three ADC drug linkers that incorporate maleimide conjugation groups into the N^O 

coordinating metalloinsertor ligand. Each of these complexes was synthesized and characterized 

for their cytotoxic selectivity towards MMR-deficient cancer cells, as well as their cellular 

potency. Overall, these studies have been important attempts to develop novel drug formulations 

for rhodium metalloinsertors and further exploration is warranted.  

 The experiments outlined in this thesis showcase the promise of metalloinsertors as 

targeted therapeutics for MMR-deficient cancers. The presented in vivo studies show that the 

rhodium metalloinsertor Rh-PPO has significant anticancer activity that has potential for further 

optimization. The exact reason for the observed in vivo  potency of metalloinsertors remains 

unknown; therefore, structural studies involving X-ray crystallography and microcrystal electron 

diffraction remain underway. Additionally, the use of drug delivery strategies, such as ADCs and 
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liposomal formulations, will likely be crucial to the further development of metalloinsertors as 

therapeutics. Ultimately, our group will use the results of these studies to continue progressing 

metalloinsertors towards clinical relevance.      

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 


