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ABSTRACT

This thesis focuses on the solution of causal, time-dependent wave propagation and
scattering problems, in two- and three-dimensional spatial domains. This important
and long-lasting problem has attracted a great deal of interest reflecting not only its
use as a model problem but also the prevalence of wave phenomena in diverse areas
ofmodern science, technology and engineering. Essentially all priormethods rely on
“time-stepping” in one form or another, which involves local-in-time approximation
of the evolution of the solution of the partial differential equation (PDE) based on the
immediate time history and temporal finite-difference approximation. In addition
to the need to manage the accumulation of (dispersion) error and the burdensome
increase in computational cost over time, there are additionally difficult issues of
stability, time-domain boundary conditions, and absorbing boundary conditions
which often need to be addressed.

To sidestep many of these problems, this thesis develops a novel highly-efficient ap-
proach for time-dependent wave scattering problems employing the global-in-time
techniques of Fourier transformation and leading to a frequency/time hybrid method
for the time-dependent wave equation. Thus, relying on Fourier Transformation in
time and utilizing a fixed (time-independent) number of frequency-domain solutions,
the method evaluates the desired time-domain evolution with errors that both, decay
faster than any negative power of the temporal sampling rate, and that, for a given
sampling rate, are additionally uniform in time for all time. The fast error decay guar-
antees that high accuracies can be attained on the basis of relatively coarse temporal
and frequency discretizations. The uniformity of the error for all timewith fixed sam-
pling rate, a property known as dispersionlessness, plays a crucial role, together with
other properties of the Fourier transform, in enabling the evaluation of solutions for
long times at O(1) cost. In particular, this thesis demonstrates the significant advan-
tages enjoyed by the proposed methods over alternative approaches based on volu-
metric discretizations, time-domain integral equations, and convolution-quadrature.

The approach relies on two main elements, namely, 1) A smooth time-windowing
methodology that enables accurate band-limited representations for arbitrarily-long
time signals, and 2) A novel Fourier transform approach which, in a time-parallel
manner and without causing spurious periodicity effects, delivers numerically dis-
persionless spectrally-accurate solutions. A similar hybrid technique can be obtained
on the basis of Laplace transforms instead of Fourier transforms, but we do not con-
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sider in detail the Laplace-based method, and only briefly point out its essential
features and associated challenges.

The proposed frequency/time Fourier-transform methods for obstacle scattering
problems are easily generalizable to any linear partial differential equation in the
time domain for which frequency-domain solutions can readily be obtained, in-
cluding e.g. the time-domain Maxwell equations, the linear elasticity equations,
inhomogeneous and/or frequency-dependent dispersive media, etc. Further, the
proposed approach can tackle complex physical structures, it enables parallelization
in time in a straightforward manner, and it allows for time leaping—that is, solution
sampling at any given time ) at O(1)-bounded sampling cost, for arbitrarily large
values of ) , and without requirement of evaluation of the solution at intermediate
times. In particular, effective algorithms are introduced that, relying on use of time-
asymptotics, compute two-dimensional solutions at O(1) cost despite the very slow
time-decay that takes place in the two-dimensional case.

A significant portion of this thesis is devoted to a theoretical study of the validity
of a certain stopping criterion used by the algorithm, which guarantees that certain
field contributions can safely be neglected after certain stopping times. Roughly
speaking, the theoretical results guarantee that, after the incident field is turned
off, the magnitude of the future scattering density (and thus the magnitudes of the
fields) can be estimated by the magnitude of the integral density over a time period
comparable to the time required by a wave to travel a distance equal to the diameter
of the scatterer. The criterion, which is crucial in ensuring the O(1) computational
cost of the algorithm, is closely related to thewell-known scattering theory developed
in the 1960s and ’70s by Lax, Morawetz, Phillips, Strauss and others. Our approach
to the decay problem is based on use of frequency-domain estimates (developed
previously in the context of numerical analysis of frequency-domain problems) on
integral operators in the high-frequency regime for obstacles of various trapping
classes. In particular, our theory yields, for the first time, decay estimates for a class
of connected trapping obstacles: all previous estimates of scattered-field decay for
connected obstacles are restricted to nontrapping structures.

In all, the proposed approach leverages the power of the Fourier transformation
together with a range of newly developed spectrally convergent numerical methods
in both the frequency and time domain and a variety of novel theoretical results in
the general area of scattering theory to produce a radically-new framework for the
solution of time-dependent wave propagation and scattering problems.
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C h a p t e r 1

INTRODUCTION

“Sound is nought but air y-broken”

—Geoffrey Chaucer (c. 1380, see also [72])

Overview
This chapter provides in Section 1 a brief introduction to the physical context of
this thesis and the broad applicability of research in waves; introduces in Section 2
long-standing mathematical formulations for questions of wave scattering in the
form of partial differential equations boundary-value problems, both in time- and
frequency-domain and both in volumetric regions and in terms of integral equations
posed on the boundary of obstacles; and finally in Section 3 gives a thorough
overview of the predominant methods used to numerically approximate the solution
of time-dependent wave propagation and scattering problems while contrasting each
of these methods with the methodology proposed in this thesis.

1 Background on wave propagation, acoustics, and electromagnetics
A wave is a deviation of a scalar or vector field from an equilibrium, and occurs
when there are forces pulling a perturbed system toward that equilibrium. They can
be categorized broadly into standing and traveling waves, the former referring to
those waves which remain in a stationary physical position while the latter describes
waves where the relative amplitudes of the deviation from equilibrium at distinct
physical locations may change as time progresses. Many physical media are capable
of supporting waves of various types and at disparate physical length scales; for
example, fluids can support gravity waves in the ocean at the scale of meters,
acoustic sound waves in quiescent or convected air (audible to humans at the scale of
centimeters to several meters) or more generally any compressible fluid, and seismic

[1] T. G. Anderson, O. P. Bruno, and M. Lyon. “High-order, Dispersion-
less “Fast-Hybrid” Wave Equation Solver. Part I: O(1) Sampling Cost via
Incident-FieldWindowing and Recentering”. In: SIAM Journal on Scientific
Computing 42.2 (Apr. 2020), A1348–A1379. doi: 10.1137/19m1251953.

https://doi.org/10.1137/19m1251953
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waves in the Earth’s crust. Indeed, consideration of electromagnetic radiation leads
to the conclusion that waves can even travel in a vacuum. Owing to the wide variety
of settings inwhichwave theory is applicable and the transferability of understanding
across these settings, the study of waves leads to fundamental understanding and
development of technology in application areas as diverse as telecommunications
and computing, imaging, seismic prediction and resilience, and acoustics.

A brief overview of the history and setting of acoustic and electromagnetic wave phe-
nomena is provided in what follows. Firstly, acoustics (a term coined by the French
mathematician Sauveur who worked in the area), the study of vibrations propagating
in a background medium, has a suitably long history befitting its import. Dating at
least to Pythagoras who studied the production of sound due to standing waves on
stretched strings, it attracted such familiar names as Hooke (the eponymous creator
of certain laws of elasticity and vibration), D’Alembert (who indeed formulated the
first description of wave motion as obeying a partial differential equation), Poisson
(who studied compressional waves in fluids in three dimensions), Helmholtz, and
Lord Rayleigh. Indeed Rayleigh published widely in acoustics throughout his life
and in 1877 published an expansive two-volume work, The Theory of Sound [106].
Rayleigh points out that the propagation of sound has long been known to not be
instantaneous, but rather instead to proceed at a finite speed 2, and that in fact this
speed in still air at standard conditions had been first accurately measured (with a
measured value of 2 = 337 m/s versus a true value of 2 ≈ 332 m/s) by the French
Academy using time-retarded reports of the firing of cannons at measured distances.
Acoustic waves of a small amplitude are understood to obey the acoustic wave equa-
tion, a time-dependent linear partial differential equation which in three dimensions
carries this time-retarded character. Secondly, electromagnetics as a discipline is
usually attributed to Ampere, Faraday andMaxwell, and is concerned with the prop-
agation of electromagnetic radiation, including light and radio waves. The Maxwell
equations are a model for the physics of electromagneticism; in certain situations
in the absence of charges and currents they can be reduced to homogeneous wave
equations for the electric and magnetic vector field quantities. The acoustic wave
equation is thus not only of interest in its own right for describing the physics of
acoustic waves, but, as we shall see, serves also as an avenue to understanding
more complex wave phenomena in electromagnetism. Development of numerical
simulation techniques for the former is typically fruitful for the latter.
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1.1 The acoustic wave equation
The acoustic wave equation was earlier mentioned to describe the propagation of
disturbances of small amplitude. We show here a commonly-given brief derivation
of the equation from first physical principles, though much more detailed discussion
can be found in the comprehensive review [89]. The equations for the disturbance
of any scale of a compressible inviscid fluid follow from conservation of mass and
linear momentum. Conservation of mass gives the continuity equation which can
be written using the convective (or total) derivative �

�C
= m

mC
+ v · ∇ as

1
d

�d

�C
= −∇ · v,

with ∇ · v giving the change in fluid density of a infinitesimal fluid particle with
fluid density d and fluid velocity E. In differential form, we have

md

mC
+ ∇ · (dv) = 0, (1.1)

and we see that at rest, that is, when v = 0, the fluid density is time-invariant. The
momentum equation or inviscid Euler equation is

d
�v
�C

= −∇?,

or in differential form,
d
mv
mC
+ d(v · ∇)v + ∇? = 0, (1.2)

and describes linear momentum conservation in an infinitesimal spatial region with
pressure ?. When the fluid is at rest, the momentum equation implies that the
pressure is constant. The system is completed through an equation of state ? = ?(d)
for the fluid medium. A small-parameter perturbation analysis about steady state
(v = 0) substitutes the expansions ? = ?0 + Y?1 + O(Y2), d = d0 + Yd1 + O(Y2),
v = Yv1 +O(Y2), into Equations (1.1)–(1.2) and yields a partial differential equation
relating the fluid density deviation d1 to the pressure deviation ?1,

m2d1

mC2
= ∇2?1.

These quantities are already related through the equation of state, whose linearization
(about the equilibrium d = d0) gives the approximation ?1 =

(
d?
dd (d0)

)
d1 C 22d1,

from which it follows that the acoustic pressure deviation obeys the acoustic wave
equation

m2?1

mC2
= 22∇2?1. (1.3)

The quantity 2 is the acoustic sound speed in the fluid. It can also be shown that the
velocity v is the gradient of a potential D, which also obeys Equation (1.3).
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1.2 Maxwell’s and electromagnetic wave equations
Electromagnetic fields are understood to be physically caused by a spatial density
of electric current and charge. Maxwell’s equations [75]

∇ × � + mB
mC

= 0, (1.4a)

∇ × � − mD
mC

= J, (1.4b)

∇ · D = r, (1.4c)

∇ · B = 0, (1.4d)

are a hyperbolic system of PDEs in three dimensions that describe the dynamics of
vector field quantities E, the electric intensity, B, the magnetic flux density, D, the
electric flux density, and H, the magnetic intensity. Physically, the instantaneous
electric intensity field E and magnetic flux density B due to a point charge&1 result
in a force on the particle & moving at velocity v in the amount of &E + &v ∧ �.
Maxwell’s equations govern how the field quantities evolve in response to time-
dependent electric and magnetic fields.

Under the conditions of a linear homogeneous and isotropic medium (with electric
and magnetic permeability constants n and `, respectively), in which case the
constitutive relations

D = nE, B = `H,

hold, Jones [75] lays out an argument whereby the vector potential A and scalar
potential + solving the wave equations

∇2A − `n m
2A
mC2

= −`J, (1.5a)

∇2+ − `n m
2+

mC2
= −r/n, (1.5b)

yield an expression for the electric field E by

E = −mA
mC
− ∇+.

Each of the (four!) time-dependent partial differential equations in Equation (1.5)
can be easily identified as forced wave equations with sources J and r. In the
absence of sources, they are the familiar homogeneous wave equations encountered
before in the acoustic case, motivating a study of time-dependent wave phenomena
generally and in particular identifying the wave equation as a worthy problem of
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study. Equation (1.5) is not the only means of formulating Maxwell’s equations
as vector wave equations; indeed reference [71] formulates Maxwell’s equations as
wave equations for the E and H fields (for which boundary conditions typically are
more readily posed).

2 Time- and frequency-dependent PDEs and scattering problems
This thesis is primarily concerned with the solution of wave scattering problems
posed in complex geometries, problemswhich describe the interaction of an incident
traveling wave with an obstacle with physically-informed boundary conditions; the
boundary values of the incident wave become the boundary data for the PDE. Much
of this thesis focuses on the initial boundary value problem

m2D

mC2
(r, C) − 22ΔD(r, C) = 0, r ∈ Ω, (1.6a)

D(r, 0) = mD
mC
(r, 0) = 0, r ∈ Ω, (1.6b)

D(r, C) = 1(r, C) for (r, C) ∈ Γ × [0, ) inc], (1.6c)

Figure 1.1: A schematic of a
typical time-domain surface
scattering configuration.

for the time domain wave equation in the exterior do-
mainΩ ⊂ R3 (the complement of a bounded set) for
3 = 2, 3. The boundary of Ω, which we will denote
by Γ, is an arbitrary Lipschitz surface for which an
adequate frequency domain integral-equation solver
on Γ, or some alternative frequency-domain method
in the exterior of Γ, can be used to solve the re-
quired frequency domain problems in the domainΩ.
For definiteness, throughout this thesis we assume a
boundary condition of the form (1.6c), but similar
treatments apply in presence of boundary conditions
of other types. Given an incident field Dinc, the selec-
tion 1 = −Dinc corresponds to a sound-soft boundary
condition for the total field D + Dinc on the boundary
of the scatterer,

Dtot(r, C) = Dinc(r, C) + D(r, C) = 0, r ∈ Γ,

which expresses the physical requirement of zero pressure deviation (see Section 1.1)
at a material boundary. The Fourier transforms (see (1.23) below) *C and �C of the
solutions D and 1 of the wave equation (1.6) satisfy the Helmholtz problem with
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linear dispersion relation ^ = ^(l) = l/2,

Δ*C (r, l) + ^2(l)*C (r, l) = 0, r ∈ Ω (1.7a)

*C (r, l) = �C (r, l), r ∈ Γ. (1.7b)

This is the fundamental relationship underpinning the proposals in this thesis.

Remark 1. For definiteness, in Chapter 2 we restrict most of our discussion to
one of the most common incident-field functions 1 = 1(r, C) arising in applications,
namely, incident fields impinging along a single direction p:

1(r, C) = 1
2c

∫ ∞

−∞
�C (l)ei l

2
(p·r−2C) dl and �C (l) =

∫ ∞

−∞
0(C)eilC dC, (1.8)

for some compactly supported function 0(C) (consistent with the time interval of
interest in (1.6c)). Note that in particular, 1(r, C) = −Dinc(r, C) = 0(C − p · r/2).
In order to ensure the re-usability of the required set of frequency-domain so-
lutions (see Section 5.2), arbitrary-incidence fields could either be treated by
means of source- or scatterer-centered spherical expansions; or synthesis rely-
ing on principal-component analysis, etc. Such methodologies are proposed in
Chapter 3, though see also Section 9.2 for asymptotic cost comparisons with other
methods.

Remark 2. The super-index C in �C (l) (Equation (1.8)), indicates that the variable
l in this function’s argument is the Fourier variable corresponding to C. In general,
for any given function 5 (r, C) (resp. 5 (C)), � C (r, l) (resp. � C (l)) will be used to
denote the partial (resp. full) temporal Fourier transform of 5 with respect to C, as
indicated e.g. in Equation (1.34). Although only partial Fourier transforms in time
are used in Chapter 2, the notation is adopted here to preserve consistency with
Chapter 3—in which partial- or full-transforms with respect to both temporal and
spatial variables are considered.

2.1 Integral equation methods for scattering problems
Much of this thesis involves the treatment of surface scattering problems using
integral equation techniques. We collect here some relevant facts concerning the
acoustic wave and Helmholtz equations. The Green’s function for Equation (1.6a)
is

� (r, C; r′, C′) =


� (2(C−C ′)−|r−r′ |)
2c
√
22 (C−C ′)2−|r−r′ |2

for 3 = 2 and

X(2(C−C ′)−|r−r′ |)
4c |r−r′ | for 3 = 3,

(1.9)
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which gives the fundamental response at position r, time C induced by an impulse at
position r′, time C′, while the Green’s function for Equation (1.7a) is

�l (r, r′) =


i
4�
(1)
0 (

l
2
|r − r′|) for 3 = 2 and

ei l2 |r−r′ |

4c |r−r′ | for 3 = 3.
(1.10)

and gives the fundamental response at position r induced by amonochromatic (time-
harmonic) source of frequency l/2 at position r′. It is crucial to observe that just
as the Fourier transform of the wave equation (1.6) is the Helmholtz equation (1.7),
so too the fundamental solutions are related, with the temporal Fourier transform
of (1.9) equalling (1.10). This observation is the theoretical underpinning of the
numerical methods proposed in this thesis and the efforts tomake numerical versions
of such global-in-time transformations efficient.

It will be useful to introduce some integral operators making use of these Green’s
functions. The time-domain single-layer operator

((`) (r, C) =
∫ C

−∞

∫
Γ

� (r, C; r′, C′)`(r′, C′) df(r′) dC′, (1.11)

is useful in time-domain integral equations, as it can be observed that the single-
layer potential D(r, C) = ((`) (r, C) is a solution to the wave equation (1.6a) for each
“density” `. In the frequency-domain, it will be useful to refer to the single-layer
operator

((l`) (r) =
∫
Γ

�l (r, r′)`(r′) df(r′), (1.12)

and we note that as a superposition of fundamental responses due to the continuous
density ` the single-layer potential D(r) = ((l`) (r) is a solution to the Helmholtz
equation (1.7a). It is also useful to introduce the double-layer operator

( l`) (r) =
∫
Γ

m�l (r, r′)
m=(r′) `(r′) df(r′), (1.13)

and the adjoint double-layer operator

( ∗l`) (r) =
∫
Γ

m�l (r, r′)
m=(r) `(r′) df(r′), r ∈ Γ. (1.14)

Green’s third identity in the time-domain leads to Kirchhoff’s formula for the sound-
soft scattering problem (1.6),

D(r, C) = ((k) (r, C) (1.15)
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where k = mDtot

mn and by use of the jump relations in the time-domain, results in the
time-domain single-layer integral equation

((k) (r, C) = 1(r, C) for (r, C) ∈ Γ × [0, )] . (1.16)

Use of the Green’s function �l and Green’s third identity yields the frequency
domain field representation

*C (r, l) =
∫
Γ

kC (r′, l)�l (r, r′) df(r′), r ∈ R ⊂ Ω, (1.17)

where kC , which equals the boundary values of the normal derivative of the total
field (kC (r, l) = m*C ,tot (r,l)

mn ), may be obtained as the solution of the direct integral
equation

((lkC) (r, l) = �C (r, l), r ∈ Γ. (1.18)

Note that the time- and frequency-domain integral equations (1.16) and (1.18) and
representation formulas (1.15) and (1.17) are Fourier transforms of each other.
Further discussion of the connections between hybrid frequency/time formulations
and time-domain integral representations will be presented in Chapter 3.

Unfortunately, equation (1.18) is not uniquely solvable for certain values of l and
in any case would result in linear systems that are poorly-conditioned. Making use
of the auxiliary adjoint double-layer operator, we obtain the uniquely solvable direct
combined field integral equation formulation (see e.g. [38]):

1
2
kC (r, l) + ( ∗lkC) (r, l) − i[((lkC) (r, l) =

m�C (r, l)
m=(r) − i[�C (r, l), r ∈ Γ,

(1.19)
which is a Fredholm integral equation of the second kind. An alternative approach
in the frequency-domain that may in some cases prove useful proceeds via the
representation formula

*C (r, l) =
(
 li

C − 8[(liC
)
(r, l), r ∈ R ⊂ Ω, (1.20)

for which the density iC can be found as the solution of the (indirect) boundary
integral equation (see [25])

1
2
iC (r, l) + ( liC) (r, l) − i[((liC) (r, l) = �C (r, l), r ∈ Γ. (1.21)

A wide literature exists for the numerical solution of boundary integral equations of
the form (1.19) and (1.21). This thesis uses Nyströmmethods to discretize and solve
the integral equations (1.19) for all desired frequencies. Unless stated otherwise,
in the case 3 = 2 (resp. 3 = 3) the Nyström method described in [45, §3.5] (resp.
in [30]) is used.
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2.2 Notation for Fourier transforms
We outline here the notation we use in this thesis for Fourier transformation. In
all cases, unless otherwise stated, functions with upper-case symbols indicate a
transform. To facilitate transformations in only a single variable for functions of
several variables, “partial transforms,” we use super-index notation for the original
time variable (C ∈ R) and sub-index notation for the original spatial variable (r ∈ R3)
in which the partial (or, indeed, complete) transform is performed. The word “slow”
appearing in a super-index also indicates a temporal transform, of a quantity shifted
in time through the time partitioning strategy outlined in Chapter 2. In general, for
any given function E(r, C) (resp. E(C)),+ C (r, l) (resp. + C (l)) will be used to denote
the partial (resp. full) temporal Fourier transform of E with respect to C, as indicated
e.g. in Equation (1.23). For a transform in all variables, we use the pair

E(r, C) = 1
(2c)3+1

∫ ∞

−∞

∫
R3
+ C,r(p, l)ei(p·r−lC) dp dl (1.22a)

+ C,r(p, l) =
∫ ∞

−∞

∫
R3
E(r, C)e−i(r·p−lC) dr dC (1.22b)

Transformation in only one variable is possible, with the following pair resulting
from partial transformation in the time C variable,

E(r, C) = 1
2c

∫ ∞

−∞
+ C (r, l)e−ilC 3l, + C (r, l) =

∫ ∞

−∞
E(r, C)eilC dC, (1.23)

and the pair for partial transform in the spatial coordinate

E(r, C) = 1
(2c)3

∫
R3
+r(p, C)eip·r 3p, +r(p, C) =

∫
R3
E(r, C)e−ip·r dr. (1.24)

For a solution E to the wave equation (1.6a), we have the plane-wave representation
form [51, 121]

E(r, C) = 1
(2c)3+1

∫ ∞

−∞

∫
(3−1

_C (p, l)ei(^(l)p·r−lC) dp 3l, (1.25)

in terms of the directional intensity _. If propagation exist in only a single direction
p, then (1.25) takes the simpler form

Ep(r, C) =
1

2c

∫ ∞

−∞
_Cp(l)ei(^(l)p·r−lC) dl. (1.26)

3 Numerical Methods for linear time-dependent PDEs
This thesis proposes a fast hybrid frequency-time method for the solution of the
time domain acoustic wave equation in two- and three-dimensional spatial domains;



10

typically, frequency-domain scattering problems are treated with integral equation
formulations of the corresponding Helmholtz equations, though this is not strictly
required by the methodology.

A wide literature exists, of course, for the treatment of the classical wave equation
problem. Among the many approaches utilized in this context, we find finite-
difference and finite-element time domain methods [84, 113] (FDTD and FETD,
respectively), retarded potential boundary integral equationmethods [8, 55, 57, 123],
Huygens-preserving treatments for odd-dimensional spatial domains [102], and,
most closely related to the present work, two hybrid frequency-time methodologies,
namely, the Laplace-transform/finite-difference convolution quadrature method [9–
13, 20, 87], and the Fourier-transform/operator-expansion method [91]. A brief
discussion of the character of these methodologies is presented in what follows.

3.1 Volumetric finite-difference-in-time methods
The FDTD approach and related finite-difference methods underlie most of the
wave-equation solvers used in practice. In these approaches, the solution on the en-
tire spatial domain is obtained via finite difference discretization of the PDE in both
space and time. It should be noted that finite-difference time-marching schemes
are more general than many of the other methods discussed or proposed in this
thesis, in that they can be applied to nonlinear problems (that is, partial differential
equations that are nonlinear in the dependent variable, denoted D in this thesis) with
ease; we do not discuss such problems in this thesis, and we restrict our attention
to linear wave-type scattering problems. (Note that certain problems in media with
nonlinear frequency-response properties can also be straightforwardly-treated with
the proposed methodology.) For the ubiquitous exterior-domain problems, volu-
metric methods require use of absorbing boundary conditions to render the problem
computationally feasible—which has in fact been an important and challenging
problem in itself [17, 18, 56, 69]. Most importantly, however, finite-difference
methods suffer from numerical dispersion, and they therefore require the use of fine
spatial meshes (and, thus, fine temporal meshes, for stability) to produce accurate
solutions. Numerical dispersion errors therefore present a significant obstacle for
high frequency and/or long time simulations via methods based on finite-difference
spatial discretizations. FETD methods provide an additional element of geometric
generality, but they require creation of high-quality finite element meshes (which
can be challenging for complex three-dimensional structures). Further, like FDTD
methods, they entail use of absorbing boundary conditions, and they also gener-
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ally give rise to detrimental dispersion errors (also called “pollution errors” in this
context [5]).

In order to present the essential character of finite-difference time-domain methods,
we consider a one-dimensional version of the problem (1.6) on the computational
domain Ω = [0, 1],

m2D

mC2
(G, C) − 22 m

2D

mG2 (G, C) = 0, G ∈ Ω, (1.27a)

D(G, 0) = mD
mC
(G, 0) = 0, G ∈ Ω, (1.27b)

D(G, C) = 1(G, C) for (G, C) ∈ {0} × [0, ) inc], (1.27c)

leaving aside challenging issues of the treatment of complex geometry and enforce-
ment of absorbing boundary conditions in multiple dimensions. Exact solutions to
Equation (1.27a) take the form

D(G, C) = ei(lC−^(l)G) , ^(l) = ±l/2. (1.28)

The function ^(l) is known as the dispersion relation, and the error a numerical
method commits in propagating a monochromatic wave with frequency l is called
dispersion error [116].

Now, a second-order accurate approximation to (1.27a) is defined on a spatial grid
with " + 1 points (ΔG = 1

"
) and a temporal grid with # points (ΔC = )

#−1 ) defined
by G 9 = 9ΔG, C= = =ΔC, and is given by the iteration scheme

E=+19 = (2ΔC)2
(
E=
9+1 − 2E=

9
+ E=

9−1

(ΔG)2

)
+ 2E=9 − E=−1

9 , 1 ≤ 9 ≤ " − 1 (1.29)

where E=
9
≈ D(G 9 , C=). This is the FDTD method in 1D [113], and 1.29 demonstrates

the local-in-time nature of approximation, whereby approximations to future time-
levels C= are made on the basis of previous approximations. Note that at every
time-step, the solution at all points in the computational domain must be computed
and updated, a requirement that can carry significant costs in large computational
domains and in multiple dimensions. A boundary condition at G = G"−1 = 1 is
required for completeness of the scheme, and for illustrative purposes, one such
condition is

E=+1" = E="−1 +
2ΔC − ΔG
2ΔC + ΔG

(
E=+1"−1 − E

=
"

)
,

which is a discretization of the 1-way wave equation and is known as the Mur
perfectly-absorbing boundary condition [97]. We ignore, however, the absorbing
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layer in what follows, and focus on the effect of the finite difference approximation
in (1.29), in the interior of the domain.

Motivated by the exact plane-wave solution Equation (1.28), we consider the nu-
merical propagation of such a wave, E=

9
= ei(l=ΔC−^∗ 9ΔG) , and substitution of this

expression into (1.27a) yields [113, Ch. 2] the expression for ^∗,

^∗ =
1
ΔG

arccos
(
1 +

(
ΔG

2ΔC

)
(cos(lΔC) − 1)

)
, (1.30)

known as the numerical dispersion relation for the finite-difference time-domain nu-
merical method, and which is clearly not generically equal to the correct dispersion
relation ^(l). Dispersion relations such as this are typical with any finite-difference-
in-time approximation to a PDE, and carry important information concerning the er-
ror committed in propagating waves over distances of several wavelengths _ = 2c/^
since they show that there is error in the speed of propagation of the wave. As it is
required that ΔC ∝ ΔG for stability reasons, the numerical dispersion relation shows
that for a desired limited level of error in the speed of propagation of a wave with
frequencyl, the time- and space-steps must both be kept correspondingly small, in-
creasing the computational burden. Clearly, as longer- and longer-propagation times
are required, this burden can become prohibitive. Higher-order finite-difference
methods do reduce this burden, but the overall feature of error increasing with prop-
agation distance remains. One motivation of this thesis is to design methods for
time-dependent wave propagation without this limitation.

3.2 Time-domain retarded-potential integral equation methods
Time domain integral-equation (TDIE) formulations for surface scattering prob-
lems based on direct discretization of the time-domain retarded-potential Green’s
function (1.9) require treatment of the Dirac delta function and thus give rise to
integration domains given by the intersection of the light cone with the overall scat-
tering surface [8, 55]. (Loosely related to this class of methods is recent work on
discretizations which are Huygens-preserving—that is, treatments of the retarded
potential operators with the advantage that they do not entail an increasing amount
of computational work for increasing time, at least in odd dimensions [102].) These
approaches generally result in relatively complex overall schemes for which it has
proven rather challenging to ensure stability [57, 60] (let alone proof guarantees
thereof), and which have typically been implemented in low-order accuracy setups
and, thus, with significant numerical dispersion error. Accelerated versions of these
methods have also been proposed [123]. Motivated by the work in [57], temporally
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and spatially high-order time domain integral equation schemes have recently been
proposed [14].

A popular formulation involves the single-layer representation formula, which, given
a density `(r, C) defined on Γ×R+ uses the time-domain single-layer operator (1.11)
to yield

D(r, C) = ((`) (r, C), (1.31)

a solution to the wave equation (1.6a). Ensuring the boundary condition (1.6c) is
satisfied leads, via jump relations for the single-layer operator, to the TDIE (1.16)

((`) (r, C) = 1(r, C) for (r, C) ∈ Γ × [0, )] .

The methods with well-established stability theory are the space-time Galerkin
methods [8]. Such TDIE methods proceed by use of a quadrature method for the
integrals arising from a weak formulation for (1.16), for which, as mentioned pre-
viously, care must be taken due to the role the Dirac delta plays in determining
the quadrature domain, a non-polytopal subset of Γ × Γ × [0, )], compounded by
the need to approximate singular integrals over this region. Collocation methods
are simpler to implement, but for the most part lack a rigorous underlying stability
theory [50]. See also, though, the recent work on convolution-splines [48, 49]). All
of these methods are based on local-in-time marching and so, like the volumetric
FDTD/FETD methods, these methods do incur dispersion error, errors most sig-
nificant in the low-order implementations which have characterized most reported
stable solvers.

3.3 Hybrid frequency-time methods
Hybrid time-frequency methods rely on transform techniques to evaluate time do-
main solutions by synthesis from sets of frequency domain solutions; clearly the
necessary solutions of (decoupled) frequency-domain problems can be obtained via
parallel computation. The Convolution Quadrature (CQ) method [87] is a promi-
nent example of this class of approaches. This method relies on the combination
of a finite-difference time discretization and a Laplace transformation to effectively
reduce the time domain wave equation to a set of modified Helmholtz equations over
a range of frequencies. There has additionally been some interest in the direct use
of Fourier transformations in time [53, 91] to decouple the time-domain problem
into frequency-domain sub-problems. In detail, assuming a Gaussian-modulated
incident time-pulse, the approach [91] evaluates Fourier integrals on the basis of
a Gauss-Hermite quadrature rule, and it obtains the necessary frequency-domain
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solutions by means of a certain “operator expansion method”; earlier efforts in a
single spatial dimension [53] recognized the advantages of hybrid methods for sim-
ulating wave phenomena in complex, and specifically attenuating media, but relied
on a low-order accurate midpoint quadrature rule for Fourier integrals. In all cases,
however, the number of frequency-domain solutions required, and hence the asso-
ciated computing and memory costs, grow linearly with the number # of time steps
used to evolve the solution to a given final time ) . (A more detailed discussion of
previous hybrid methods, including CQ and direct-transform methods, is presented
in Sections 3.3.1 and 3.3.2.)

As mentioned before, two hybrid time-domain methods (i.e., methods that rely on
transformation of the time variable by means of Fourier or Laplace transforms) have
previously been proposed, namely, the Convolution Quadrature method [9–13, 20,
87] and the direct Fourier transform method [91]. The Convolution Quadrature
method employs a discrete convolution that is obtained as temporal finite-difference
schemes are solved by transformmethods. Like the method introduced in this thesis,
in turn, the direct Fourier transform method is based on direct Fourier synthesis of
time-harmonic solutions. The following two sections briefly review these two
methodologies.

3.3.1 Previous hybrid methods: convolution quadrature [87]

The CQ algorithms result as the /-transform is applied to the forward recurrence
relation arising from finite-difference temporal semi-discretizations of the prob-
lem (1.6). A key point is that the resulting time domain solution is itself an approx-
imation of the chosen temporal finite-difference approximation of the solution. In
brief, utilizing the /-transform, a finite-difference time discretization of the wave
equation can be reformulated as a set of modified Helmholtz problems. The discrete
time domain solution is then obtained by evaluation of the inverse /-transform of
the frequency domain solutions by means of trapezoidal-rule quadrature. (Refer-
ences [20, 87] provide further elaboration on the connections of the CQ method to
/-transforms and convolutions, respectively.) As a result, the solutions produced by
this method accumulate temporal and spatial discretizations errors at each timestep
as well as overall inversion errors arising from the approximate quadrature used in
the inversion of the /-transform. The reliance of the CQ algorithm on a certain
“infinite-tail” in the time-history presents certain difficulties also. Furthermore, ap-
proximation errors in FFT-accelerated evaluation of the Cauchy integral formula for
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required weights in the /-transform inversion typically imply [13, §3.3] a maximum
achievable overall accuracy of√Ymach ≈ 10−8, where Ymach denotes double precision
machine epsilon. Finally, reduction of order of temporal convergence is observed
at points in the near-field as an observation point approaches the scatterer [12]. A
more detailed discussion of the character of CQ numerical methods is presented in
what follows.

The characteristics of a particular implementation of the CQ algorithm are de-
termined by the choice made for time-domain finite-difference discretization, the
spectral character of the discrete frequency-domain solver used [20], and the meth-
ods utilized for numerical inversion of the /-transform. Existing CQ approaches
have primarily utilized the second-order accurate BDF2 time discretization [10], but
recent work [9] proposes the use of higher-order <-stage Runge-Kutta schemes. In
all cases, the number of required frequency-domain solutions (which equals # 5 for
single-stage methods and <# 5 for <-stage methods, where # 5 denotes the number
of frequencies used to invert the /-transform) grows in a roughly linear fashion with
the size of the time interval for which the solution is to be produced. Thus, the cost
of the <-stage CQ approaches is O(<#C), where #C denotes the number of time-
steps taken. Stability and accuracy considerations presented in [20] further suggest
that the stability of the CQ algorithm may be linked to certain “scattering poles”
of the spatial solution operator which depend on both the geometry of the spatial
domain and the choice of the frequency-domain formulation used. Reference [20]
further suggests that the error of the contour integral discretization in the CQmethod
(which is typically effected via the trapezoidal rule) can dominate the error in the
overall CQ time-stepping algorithm (even under the well established # 5 = #C setup),
and that this difficulty can be mitigated by over-resolving the problem in frequency
domain—that is, using # 5 > #C . This is elaborated on and justified in what follows,
following the presentation in [20] to demonstrate these important characteristics and
to discuss their implications.

As pointed out above, there are two main sources of error in CQ methods; follow-
ing [20], here we only consider errors of the first kind, namely the errors solely
due to /-transform-inversion. For these purposes, it suffices to consider as exact
the discrete finite-difference time-stepped solutions D3 (r, C=) ≈ D(r, C=), forming the
sequence {D3 (r, C=}∞==0. The /-transform of this sequence is

*3 (r, I) =
∞∑
==0

D3 (r, C=)I=.
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If the quantity *3 could be determined for adequate I, then an inversion would
yield the desired time-marching values D3; the details can be found in [20] and
are beyond the present scope. However, it suffices to note that *3 are solutions of
certain modified Helmholtz problems, for a certain choice of a certain parameter
_ ∈ R (typically _ < 1), at certain complex frequencies related to the time-stepping
scheme used. A /-transform inversion can be achieved by evaluating the contour
integral

D3 (r, C=) =
1

2ci

∫
|I |=_

*3 (r, I)
I=+1

dI, = = 0, . . . , #C ,

and the CQ method prescribes an approximation of this integral via a trapezoidal
rule quadrature with # 5 points. Letting _* be the maximum radius of analyticity of
*3 , it follows that use of the contour |I | = _ requires _ < _* . Further, analysis of
the CQ method shows that the approximate solution D# 5

3
using # 5 frequency points

satisfies

D
# 5

3
(r, C=) − D3 (r, C=) =

∞∑
:=1

_:# 5 D3 (r, C=+:# 5 ), (1.32)

and, for all Y > 0,

|D# 5
3
(r, C=) − D3 (r, C=) | = O

((
_*

_
− Y

)−# 5 )
, # 5 →∞. (1.33)

Each of these results carries important consequences for the convergence rate and
accuracy guarantees of the CQ method. The estimate (1.32) is an aliasing-like
result, and carries the unfortunate implication that accuracy is dependent on the
magnitude of the solution in the future, that is, on the solution beyond the final
time #C (C=+1 − C=) sought. This is certainly a challenge in the context of multiple
scattering, which may slow the rate of decay of the scattered field. Turning to the
estimate (1.33), the convergence rate is impacted by the proximity of the maximum
radius _* of analyticity to the contour _, which is generally not known and which
does depend in a complex manner on the a variety of poles, including scattering
poles [114] associated with the scattering geometry under consideration, as well as
poles inherent in the incident signal, the time-marching algorithm, and the specific
choice used of integral equation formulation or other frequency-domain solution
methodologies. Indeed, experiments in [20, Fig. 12] demonstrate the significant
role that these poles play in determining accuracy of the overall scheme, by testing
the use of a variety of frequency-domain integral equation formulations and showing
that the errors specifically from inversion in some cases exceed the error from the
underlying time-marching method. What is more, to achieve certain benefits in
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the pole distributions, some of the more successful CQ methods utilize first-kind
formulations, typically requiring use of frequency-domain algorithms which can be
significantly less efficient than their second-kind counterparts.

In light of the uncertainty just described, it may be tempting to choose _ � 1
(moving the integration contour away from the |I | = _* contour as much as possible)
to increase the convergence rate, but, unfortunately, numerical truncation error
dictates that _ cannot be chosen too small or instability will result [13]. Clearly, the
inversion errors described above can be mitigated by the additional computational
cost of choosing # 5 larger, as suggested earlier. In practice, however, it may be
unknown and difficult to quantify and disentangle the precise magnitude of error
introduced by the time-stepping error |D(r, C=) − D3 (r, C=) | versus inversion error
|D3 (r, C=) − D

# 5

3
(r, C=) |, leaving the practitioner in a difficult position when targeting

a precise error level. Even still, virtually all results in the literature do operate under
the (computationally taxing, yet still inaccurate) # 5 = #C regime.

In addition to /-transform-inversion errors, the numerical dissipation and dispersion
introduced by the underlying time-domain finite difference discretizations present
an additional important source of error in the CQ approach [13, 40], as discussed
previously in the context of other time-marching algorithms. These errors can, as
always in time-marching contexts, be managed by utilizing a number of timesteps
which varies super-linearly with frequency [13, §4.3] (that is, faster than the number
of sampling points required for uniformly accurate interpolation), but the computa-
tional cost associated with such procedures can be significant.

The memory requirements of the CQ method can be significantly impacted by its
reliance on a certain “infinite time-tail,” which is described in [107, Ch. 5]:

The sequence of problems [ . . . ] presents the serious disadvantage of
having an infinite tail. In other words, the passage through the Laplace
domain introduces a regularization of the wave equation that elimi-
nates the Huygens’ principle that so clearly appears in the time domain
retarded operators and potentials.

The infinite tail impacts the computing costs of the CQ method in two different
ways, namely: 1) as the CQ time-step tends to zero for a fixed final time ) ; and
2) as the final time ) grows for a fixed time-step. While the growth in point 1)
can be slowed to a certain extent by appealing to Laplace-domain decay rates of
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compactly-supported, smooth incident data [10] (whose /-transform counterpart
generally decays much faster than the error arising from the time-stepping scheme
utilized, and can thus be broadly neglected up to the prescribed error tolerance), the
infinite-tail growth in point 2) has remained untreated, and it does give rise to linear
growth in the overall CQ computing and memory cost per time-step as ) →∞.

3.3.2 Previous hybrid methods: direct Fourier transform in time [91]

Without reliance on finite difference approximations, the direct Fourier transform
method proposed in [91] proceeds by Fourier transformation of the time domain
wave equation followed by solution of the resulting Helmholtz equations for a range
of frequencies and inverse transformation to the time-domain using the transform
pair

*C (r, l) =
∫ ∞

−∞
D(r, C)eilC dC, D(r, C) = 1

2c

∫ ∞

−∞
*C (r, l)e−ilC dl (1.34)

(see Remark 2). In detail, for general boundary values 1 = 1(r, C) (Equation (1.6)),
reference [91] uses a plane wave representation of the form

�C (r, l) = 1
(2c)3

∫
(3−1

�r,C (p, l)ei^(l)p·r dp, (1.35)

so that full solution *C can be reconstructed on the basis of the solutions *C = *Cp
of Helmholtz problems (1.7), where ^ = ^(l) = l/2, and where the sound-soft
boundary values are given by the plane wave ei^(l)p·r in the direction of the vector
p. The numerical examples in [91] assume overall boundary data of this form for a
single incidence vector p—that is, a uni-directional incident wave field.

Importantly, the resulting direct Fourier method does not suffer from dispersion
errors in the time variable. In the contribution [91], the needed Helmholtz solutions
are obtained by means of a certain “operator-expansion” technique, and assumes
the incident field is given by a plane wave modulated by a Gaussian envelope in
frequency domain in order that the needed Fourier integrals are approximated using
the classical Gauss-Hermite quadrature rule.

Except for simple geometries, the use of the operator-expansion method limits the
overall accuracy to the point that in many cases, it is difficult to discern conver-
gence. This difficulty could be addressed by switching to a modern, more effective,
frequency-domain technique. Most importantly, however, the use of any generic
numerical integration procedure for the evaluation of the necessary inverse Fourier
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transforms for large C, including the highly accurate Gauss-Hermite rule used in [91],
does lead to difficulties—in view of the highly-oscillatory character, with respect to
l, of the exponential factor in the right-hand expression in (1.34) for large values of
C. Indeed, evaluation of the aforementioned inverse Fourier transform for required
time sample values up to the final time) on the basis of such procedures requires use
of a number # of frequency discretization points (and hence a number of required
frequency-domain solutions) which is proportional to ) . Calling % the average cost
of these frequency-domain solutions, and including the overallO()2) computational
cost required by the evaluation of the O())-cost Gauss-Hermite inverse transform
for each C= ≤ ) , the overall cost of the algorithm [91] can be estimated as

)% + )2. (1.36)

This estimate must be contrasted with the cost required by classical finite-difference
methods—which is proportional to the first power of ) . More significant, however,
is the linear increase in the number of frequency-domain solutions required, since
the average cost % of each of these is the dominant cost of the algorithm.

3.4 Accuracy and computational costs
Estimates on the accuracy of hybrid methods follow fromwell-established results on
convergence of the associated frequency-domain solution techniques together with
corresponding accuracy estimates on the underlying treatment of frequency/time dis-
cretizations. The CQ method (Section 3.3.1) has typically used low-order Galerkin
spatial discretizations [11], although the recent contribution [80] does incorporate a
high-order frequency-domain solver. From an implementation perspective, retaining
full accuracy with CQ methods is challenging when using commonly-implemented
Nyström methods making use of Martensen-Kussmaul kernel-splitting quadrature
rules due to significant cancellation errors arising for complex frequencies with
a large imaginary part [117], so mildly more complicated alternative frequency-
domain discretization methods are necessitated. Frequency/time discretization er-
rors in the CQ method, on the other hand, arise from the time-stepping scheme used
and the numerical discretization selected of a certain complex contour integral.
Typically, BDF2 is chosen as the underlying CQ time-stepping scheme, yielding
second order accuracy in time—but see also [9] for use of higher-order temporal CQ
discretizations and their associated computing costs. Concerning the CQ complex-
contour quadrature, on the other hand, the trapezoidal quadrature rule that is used
most often in this context can be an important source of numerical error (see [20] and



20

the previous discussion in Section 3.3.1). The direct Fourier Transformmethod [91]
(Section 3.3.2), in turn, exhibits high-order Gauss-Hermite convergence in time, but
generally poor spatial convergence for the frequency-domain problems (but see Sec-
tion 3.3.2 in these regards). The fast hybrid method proposed in this thesis, finally,
relies on well-known Nyström frequency-domain methods, which generally exhibit
superalgebraically-fast convergence (that is, convergence faster than any power of
the discretization mesh), together with exponentially convergent methods for evalu-
ating frequency/time transforms (except, in the 2D cases with low-frequency content
for which arbitrarily high but not exponential convergence is obtained). In sum, the
accuracy of the CQ methods is mostly limited by the errors arising in the time-
stepping evolution scheme if the necessary complex integrations are performed with
sufficient accuracy. The direct Fourier method [91] and the fast hybrid method
proposed in this thesis, in turn, enjoy highly favorable convergence properties as
discretizations are refined.

The total computational costs required by the various hybrid algorithms under
consideration will be quantified in terms of the number # of time-points C= (1 ≤ = ≤
#) at which the solution is desired, as well as the average computing cost % required
by each one of the necessary frequency-domain solutions. Roughly speaking (up to
logarithmic factors), the CQ methods entail a computing cost proportional to #%—
that is, the method requires a number of frequency-domain solutions that grows
linearly with time. In more detail, for example, reference [10, Sec. 4] proposes a
CQ algorithm for which it reports a computing cost of O(# log2(#)%) operations.
According to Section 3.3.2, in turn, the Direct Fourier Transform method requires
O(#2) + O(#%) operations.

4 Contributions in and outline of this thesis
The purpose of this thesis is to propose a radically-new approach to efficient nu-
merical solution of these time-dependent wave propagation problems. As described
in the preceding sections, all previous methods, hybrid or otherwise, incur total
simulation costs which grow linearly with final simulation time. These costs arise
directly in time stepping methods (including the convolution quadrature class of
time stepping methods) from the fact that the cost per time step is constant. One
goal of this thesis is to show that these costs are asymptotically suboptimal, and that
indeed a constant amount of computational work and memory requirement suffices
to solve the problem at arbitrarily large times. The approach is to exploit the linear
time-invariance (LTI) properties of these physical problems. Time-invariance is the



21

property that a system’s output (e.g. the scattering wave solution D(r, C)), while truly
a time-dependent function, is only indirectly dependent on time through the time-
dependence of the input (e.g. the incident wave Dinc(r, C)); that is, there is no intrinsic
time-variability of the physical system. In the context of ordinary differential equa-
tions, this is known as an autonomous system, with a popular method for solving
such systems being phase-space descriptions. In our context of a physical system de-
scribed by a PDE, we have that since the PDE is linear, the solution is the result of the
convolution of its Green function with with data. Further, since it is time-invariant,
the same fixed set of frequency-domain impulse responses might be expected to be
sufficient to produce solutions for all time. This idea is mathematically-expressed as
a certain “windowing-and-recentering” procedure for the Fourier transform so that
determination of the time-domain response for one time-period can be re-used for
different time-dependent forcing. This is the intuition that the thesis more rigorously
develops, and the hope that it seeks to show is realizable.

Certain difficulties arise in the efficient solution of wave scattering problems by
frequency/time hybrid methods related to approximation of quantities in forward
and inverse transforms, and strategies for numerical resolution of these difficulties
are presented in this thesis. For incident pulses of arbitrary duration, the pro-
posed approach employs a smoothly time-windowed Fourier transformation tech-
nique (detailed in Chapter 2), which, without resorting to use of refined frequency
discretizations, re-centers both the incident field and the scattering solution in time
and thus effectively handles the fast oscillations that occur in the scattering solution
as a function of the Fourier-transform variable l. On the other hand, for inverse
Fourier transforms, special quadrature techniques are needed to produce accurate
solutions at arbitrarily large times without an associated increasing computational
burden. Therefore, in contrast to the CQ and the direct-transform methods, the new
approach can be applied in the presence of arbitrary incident fields on the basis of a
fixed set of frequency-domain solutions. Favorable properties of the method include
its time-parallel character, its time-leaping abilities and O(1) cost of evaluation at
any given time, however large, and, therefore, its O(#) cost for a total full # time-
step history of the solution. The algorithm remains uniformly (spectrally) accurate
in time for arbitrarily long times, with complete absence of temporal dispersion
errors.

The proposed hybrid method relies on the use of a sequence of smooth windowing
functions (the sum of all of which equals unity) to smoothly partition time into a
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sequence of windowed time-intervals. The claimed overall O(#) time cost with
uniform-accuracy for arbitrarily large times can be achieved for any given incident
field through use of time partitions of relatively large but fixedwidth, leading to fixed
computational cost per partition for arbitrarily long times. In order to achieve such
large-time uniform accuracy at fixed cost per window, in turn, a new quadrature
method for the evaluation of windowed Fourier transform integrals is introduced
which does not require use of finer and finer discretizations for large times—despite
the increasingly oscillatory character, as time grows, of a certain complex expo-
nential factor in the transform integrands. The time evaluation procedure requires
computation of certain “scaled convolutions” (with a sinc function kernel) which
can be additionally accelerated on the basis of the Fractional Fourier Transform [7].

The hybrid methodology described in this thesis lends itself naturally, in a number of
ways, to high-performance load-balanced parallel computing. While full develop-
ment of such efficient parallelization strategies will be left for future work, here we
present some considerations in these regards. The simplest, and perhapsmost impor-
tant, parallel acceleration strategy in the context of the proposed method concerns
the set of frequency domain solutions it requires, which can clearly be produced in
an embarrassingly parallel fashion—whereby frequency-domain problems are dis-
tributed among the available computing cores. The evaluation of near fields, on the
other hand, also presents significant opportunities for parallel acceleration. Indeed,
the time-trace calculations on a prescribed region R in space could be handled by
distributing subsets of R among various core groupings, or by relying on frequency
parallelization for evaluation of the necessary frequency-domain near fields, or a
combination of the two—depending on 1) the parallelization method used (if any)
for the frequency-domain problems themselves [22, 30, 31, 44], 2) the physical ex-
tent of the region R, and 3) the number of frequencies that need to be considered for
a given problem. Time parallelism, finally, can easily be achieved as a by-product of
the smooth time-partitioning approach. The multiple levels of parallelism inherent
in the algorithm should provide significant flexibility for parallel implementations
that exploit the differing capabilities of various computer architectures.

In terms of computational costs: as shown in Chapter 2, the proposed fast hybrid
method requires A% + O(#) operations to evaluate the solution at # time points
(where A is the number, independent of # , of frequency-domain solutions each of
average cost % required by the method to reach a given accuracy for arbitrarily
long time). Note that while the previous hybrid methods require the solution of an



23

increasing number of Helmholtz problems as time grows, the proposed fast hybrid
method does not—a fact which lies at the heart of the method’s claimed O(1)-
in-time sampling cost for arbitrarily large times C. In terms of memory storage,
the fast hybrid method requires A+ memory units for sampling at arbitrarily large
times, where + denotes the average value of the storage needed for each one of the
necessary frequency-domain solutions. Of course, storage of the entire time history
on a given set of spatial points, which may or may not be desired, does require a
total of O(#) memory units.

This thesis is organized as follows. Chapter 2 introduces the main ingredients of
new hybrid frequency/time methods, utilizing continuous-time Fourier transforma-
tion. The focus of Chapter 2 is on decoupling the number of frequencies at which
Helmholtz problems are required to be solved for accurate solutions from the final
solution time, but commits simplifying assumptions about the nature of the incident
fields under consideration: that they, for instance, be a plane-wave propagating in
a single direction, or some other simple source. Chapter 3 generalizes the meth-
ods, leading to methods for incident fields of a fully arbitrary nature which retain
the efficiency already developed. Chapter 3 introduces algorithms in two spatial
dimensions relying on known time-asymptotics to retain O(1) computational cost
despite the slow time-decay exhibited for such problems. Chapter 4 develops a stop-
ping criterion algorithm which allows that certain field contributions can be omitted
without sacrificing accuracy, and in order to establish the theoretical validity of such
a criterion, an extensive foray into time-dependent scattering theory is made. The
theoretically-justified algorithms having been established, the overall O(1) cost to
sample the solution at arbitrarily-large times is achieved. In view of its spectral time
accuracy, absence of stability constraints, fast algorithmic implementations, easy
use in conjunction with any existing frequency-domain solver, and highly compet-
itive computational and memory requirements compared to available alternatives,
the proposed method should prove attractive in a number of contexts in science and
engineering. Conversely, on the theory side, the new types of time-dependent decay
estimates are of both numerical relevance and are intrinsically of theoretical interest.
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C h a p t e r 2

A NOVEL FOURIER FREQUENCY–TIME METHOD FOR
ACOUSTIC WAVE SCATTERING

Overview
This chapter proposes a frequency/time hybrid integral-equation method for the
time-dependent wave equation, and is demonstrated in two and three-dimensional
spatial domains. Relying on Fourier Transformation in time, the method utilizes a
fixed (time-independent) number of frequency-domain integral-equation solutions
to evaluate, with errors that are superalgebraically-small, time domain solutions for
arbitrarily long times. The approach relies on twomain elements, namely 1) a smooth
time-windowingmethodology that enables accurate band-limited representations for
arbitrarily-long time signals, and 2) a novel Fourier transform approach which, in
a time-parallel manner and without causing spurious periodicity effects, delivers
numerically dispersionless spectrally-accurate solutions.

In practice, the proposed methodology enjoys a number of attractive properties,
including high accuracy without numerical dispersion error; an ability to effectively
leverage existing frequency-domain scattering solvers for arbitrary, potentially com-
plex spatial domains; an ability to treat dispersive media (i.e., background media
with temporally-varying wave-speeds in accordance with the frequency content of
incident waves—see also Appendix A) as well as media with spatially-varying
wave-speeds; dimensional reduction (if integral equation methods are used as the
frequency domain solver component); natural parallel decoupling of the associated
frequency-domain components; and, most notably, time-leaping, time parallelism,
and O(1) cost for solution sampling at arbitrarily-large times without requirement

[1] T. G. Anderson, O. P. Bruno, and M. Lyon. “High-order, Dispersion-
less “Fast-Hybrid” Wave Equation Solver. Part I: O(1) Sampling Cost via
Incident-FieldWindowing and Recentering”. In: SIAM Journal on Scientific
Computing 42.2 (Apr. 2020), A1348–A1379. doi: 10.1137/19m1251953.

[2] T. G. Anderson, O. P. Bruno, and M. Lyon. High-order, Dispersionless
“Fast-Hybrid” Wave Equation Solver. Part II: Window Tracking, Spatio-
Temporal Parallelism, General Incident Fields. 2020, in preparation.

https://doi.org/10.1137/19m1251953
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of intermediate time evaluation. A similar hybrid technique can be obtained on the
basis of Laplace transforms instead of Fourier transforms. Use of the Laplace-based
technique would be advantageous for treatment of certain types of initial/boundary-
value problems with non-vanishing initial conditions, but we do not consider a
Laplace-based approach in any detail here. The proposed frequency-time hybridiza-
tion strategy, which generalizes to any linear partial differential equation in the time
domain for which frequency-domain solutions can be obtained (including e.g. the
time-domain Maxwell equations), and which is applicable in a wide range of scien-
tific and engineering contexts, provides significant advantages over other available
alternatives such as volumetric discretization, time-domain integral equations, and
convolution-quadrature approaches.

The theoretical discussions in the first sections of the present chapter are restricted
to configurations for which the time-dependent excitations propagate along a single
incidence direction—which is, in fact, one of the most common incident fields
arising in applications—but our numerical results section includes examples that
incorporate incident fields of other (generic) types ( Table 2.4 and Figure 2.7). The
development of algorithms for treatment of the general-incidence case on the basis
of precomputation strategies that utilize plane waves or other bases of incident fields
will be left for Section 9 of this chapter.

The layout of this chapter is as follows. Section 5 introduces the smooth time-
partitioning technique that underlies the proposed accelerated treatment of signals
of arbitrary long duration, while Section 6 puts forth a new quadrature rule for the
fast spectral evaluation of Fourier transform integrals, with high-order accuracy and
O(1) large-time sampling costs. An overall algorithmic description is presented
in Section 7, and a variety of numerical results are presented in Section 8. Then,
finally, methods for the efficient solution of problems for arbitrary incident fields
are presented in Section 9, and numerical demonstrations are given.

5 Smooth time-partitioning Fourier-transformation strategy
An efficient smooth time-partitioning “windowing-and-recentering” solution algo-
rithm is proposed in this section which is based on a number of novel methodologies.
The algorithm first expresses the solution D of (1.6), for arbitrary large times ) , in
terms of solutions D: arising from incident fields that are compactly supported in
time: D(r, C) = ∑ 

:=1 D: (r, C) ( = O())). Assuming the incident fields can be
represented with a given error tolerance Y within a time-frequency bandwidth , ,
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the re-centering component of the strategy presented in Section 5.2 produces all of
the functions D: in terms of a certain fixed finite set F = {kCp(·, l 9 ), (1 ≤ 9 ≤ �)} of
frequency-domain solutions appropriate for the assumed temporal bandwidth, (cf.
equations (2.13) and (2.16)). The re-utilization of a fixed set of boundary integral
densities

{
kCp

}
(and hence the requirement of a fixed number � of solutions of the

integral equation (1.19) for evaluation of D(r, C) for arbitrarily long times C), is a key
element leading to the effectiveness of the proposed algorithm for incident signals
of arbitrarily-long duration.

5.1 Time partitioning, windowing and re-centering, and the Fourier trans-
form

Motivated by Equation (1.34), let ( 5 , �) denote a Fourier Transform pair

� (l) =
∫ )

0
5 (C)eilC dC, 5 (C) = 1

2c

∫ ∞

−∞
� (l)e−ilC dl, (2.1)

for a (finitely or infinitely) smooth compactly supported function 5 (C), assumed zero
except for C ∈ [0, )] () > 0) (as there arise, e.g., in the smooth time-partitioning
strategy described in Section 5.2). In this case, the Fourier transform on the left-hand
side of (2.1) is an integral over a finite (but potentially large) time interval.

In the context of our problem, it is useful to consider the dependence of the oscillation
rate of the function � (l) on the parameter ) . Figure 2.1 demonstrates the situation
for a representative “large-)” chirped function 5 depicted in the left-hand image,
in the figure: the Fourier transform � (l), depicted on the right-hand image is
clearly highly oscillatory. Loosely speaking, the highly-oscillatory character of the
function � (l) stems from corresponding fast oscillation in the factor eilC contained
in the left-hand integrand in Equation (2.1) for each fixed large value of C. The
consequence is that a very fine discretization mesh l 9 , containing O()) elements,
would be required to obtain 5 (C) from � (l) on the basis of the right-hand expression
in (2.1). In the context of a hybrid frequency-time solver, this would entail use of
a number O()) of applications of the most expensive part of the overall algorithm:
the boundary integral equations solver—which would make the overall time-domain
algorithm unacceptably slow for long-time simulations. This section describes a
new Fourier transform algorithm that produces 5 (C) (left image in Figure 2.1) within
a prescribed accuracy tolerance, and for any value of ) , however large, by means
of a )-independent (small) set of discrete frequency values l 9 (−, ≤ l 9 ≤ , ,
9 = 0, . . . , �).
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Figure 2.1: Left: Smooth, long duration time signal 5 (C) as given in (2.34), win-
dowed to have support in the interval 20 ≤ C ≤ 180. Right: Real part of the
Fourier Transform � (l) of 5 (C). The Fourier transform � (l) is highly oscillatory
on account of the large C values contained in the left-hand integrand in (2.1).

The proposed strategy for the large-) Fourier transform problem is based on use
of a partition-of-unity (POU) set P = {F: (C) | : = 1, . . . ,  } of “well-spaced”
windowing functions, where F: is supported in a neighborhood of the point B = B:
for certain “support centers” B: ∈ [0, )] (1 ≤ : ≤  ) satisfying, for some constants
�1, �2 > 0, the minimum-spacing property B:+1− B: ≥ �1, as well as the maximum
width condition F: (C) = 0 for |C − B: | > �2 and the partition-of-unity relation∑ 
:=1 F: = 1. Setting � = �1 = �2 in our test cases we use POU sets based on the

following parameter selections:

a) B:+1 − B: = 3�/2,

b) F: (C) = 1 in a neighborhood |C − B: | < �/2,

c) F: (C) = 0 for |C − B: | > �, and

d)
∑ 
:=1 F: (C) = 1 for all C ∈ [0, )].

Note that, since � is (or, more generally �1 and �2 are) )-independent, the integer
 is necessarily an O()) quantity. In practice, we use the prescription F: (C) =
F(C − B: ), with partition centers and window function given by B: = 3(: − 1)�/2
(the parameter choice � = 10 was used in all cases in this thesis unless stated
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Figure 2.2: Fourier Transform of two windowed partitions of the long duration
signal shown in Figure 2.1, each with partition width � = 10. With reference to
the text, the left and right figures depict the transform corresponding, respectively,
to partition centers at B: = 35 (: = 4) and B: = 155 (: = 16). In each case, the
solid and dashed traces depict the real and imaginary parts of the Fourier Transform,
respectively. The transforms are both less than 10−4 outside the plotted region.

otherwise) and

F(C) =



1 − [( C+�
�/2 ), −� ≤ C ≤ −�/2

1, −�/2 < C < �/2

[( C−�/2
�/2 ), �/2 ≤ C ≤ �

0, |C | > �,

(2.2)

respectively, where we use the smoothwindowing function [ ∈ �∞2 ( [−1, 1]), [(D) =
exp( 2e−1/D

D−1 ).

Using the partition of unity P and letting 5: (C) = F: (C) 5 (C), for l ∈ [−,,,] we
obtain the expression

� (l) =
 ∑
:=1

�: (l), where �: (l) =
∫ B:+�2

B:−�2

5: (C)eilC dC, (2.3)

which resembles the type of integrals used in connection with the windowed Fourier
transform [67]. Now, centering the integration interval around the origin, we obtain

�: (l) =
∫ �2

−�2

5: (C + B: )eil(C+B: ) dC = eilB:�slow
: (l) (2.4)

where

�slow
: (l) =

∫ �2

−�2

5: (C + B: )eilC dC. (2.5)

The “slow” superscript refers to the fact that, since C in (2.5) is “small” (it satisfies
−�2 ≤ C ≤ �2), it follows that the integrand (2.5) only contains slowly oscillating
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exponential functions of l, and thus �slow
:
(l) is itself slowly oscillatory. Thus (2.4)

expresses �: (l) as product of two terms: the (generically) highly oscillatory expo-
nential term e8lB: (which arises for signals whose support center is away from the
origin in time), on one hand, and the slowly oscillatory term �slow

:
(l), on the other.

Figure 2.2 displays the real and imaginary parts of �slow
:

for two values of : , namely
: = 4 and : = 16. Note that despite the differing centers in time, the functions are
similarly oscillatory and both are much less oscillatory than the Fourier transform
depicted in Figure 2.1.

Remark 3. Since 5 is smooth and compactly supported, iterated integration by parts
in the integral expressions that define � (l), �: (l), and �slow

:
(l) (equations (2.1),

(2.4), and (2.5)), and associated expressions for the derivatives of these functions of
any positive order, shows that these functions and their derivatives decay as 1/l=

as l→ ±∞ for all = > 1 for which 5 ∈ �=. In other words, for smooth functions 5 ,
these three functions, along with each one of their derivatives with respect to l (of
any order), decay superalgebraically fast asl→ ±∞. Additionally, in the two latter
cases, the superalgebraically-fast decay (for each fixed order of differentiation) is
uniform in : .

Remark 4. Let � : R → C, � = � (l), denote a function that decays super-
algebraically fast, along with each one of its derivatives, as l → ∞. Then,
repeated use of integration by parts on the inverse Fourier transform expression
6(C) = 1

2c

∫ ∞
−∞� (l)e

−ilC dl shows that the error in the approximation

6(C) ≈ 1
2c

∫ ,

−,
� (l)e−ilC dl

decays super-algebraically fast as, →∞.

Remark 5. Let � = � (l) denote a superalgebraically-decaying function, as in
Remark 4. Then, repeated use of integration by parts in the integral expressions for
the Fourier coefficients 6= shows that the expansion of � as a 2,-periodic Fourier
series

� (l) ≈
∞∑

==−∞
6=ei=cl/, , −, ≤ l ≤ ,,

together with all of its derivatives, converge to � (l) and its respective deriva-
tives uniformly and super-algebraically fast, as , → ∞, throughout the interval
[−,,,].
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5.2 Windowed and re-centered wave equation and solutions with slow l de-
pendence

In order to evaluate numerically the solution of the problem (1.6), we apply the
smooth time partitioning strategy developed in Section 5.1 to the boundary-condition
function 1(r, C) in (1.6c) (as a function of C for each fixed value of r). Thus, using the
window functions F: (C) described in the previous section, we define two different
types of windowed boundary-condition functions 1: = 1: (r, C), namely 1) The
function

1: (r, C) = F: (C)1(r, C), (2.6)

which can be used for general incident fields 1(r, C), as well as, 2) Specifically for
incident fields of the form (1.8), the function

1: (r, C) =
1

2c

∫ ∞

−∞
�C: (l)e

i(^(l)p·r−lC) dl with ^(l) = l/2, (2.7)

where, letting
0: (C) = F: (C)0(C) (2.8)

we have set

�C: (l) =
∫ ∞

−∞
0: (C)eilC dC =

∫ ∞

−∞
F: (C)0(C)eilC dC. (2.9)

Note that both definitions of 1: (r, C) imply
∑ 
:=1 1: (r, C) = 1(r, C). In view of

Remark 1, most of the present chapter (except Section 9) uses the boundary condition
function (2.7).

Remark 6. Note that the function 1: (r, C) as results from Equation (2.7) (which is
used throughout this thesis with only a few exceptions) is a solution to the wave
equation, but that the function 1: (r, C) from Equation (2.6) is not. Section 9 is
devoted to numerical treatment along the lines of this thesis for wave problems with
boundary values that arise from Equation (2.6).

Letting D: (r, C) (1 ≤ : ≤  ) denote the solution to (1.6) with boundary-condition
function 1(r, C) substituted by 1: (r, C), we clearly have

D(r, C) =
 ∑
:=1

D: (r, C). (2.10)

This expression is the basis of the time-domain solver proposed in this thesis.
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Remark 7. As discussed extensively in Chapter 4, in view of Huygens’ principle in
three dimensions, and a certain windowing reallocation strategy in two dimensions,
a fixed, geometry-dependent, number " (independent of  = O())) of solutions D:
need to be included for any space-time evaluation region, irrespective of the time
duration ) for which the solution is evaluated. The geometry-dependence of the
parameter " relates closely to the trapping character [93, 96] of the underlying
scattering geometry; while " may grow large for slowly-decaying scattered fields,
the finite-duration character of the incident field is guaranteed by this theory to yield
an overall-bounded number of active partitions. This is the basis of tracking strate-
gies for identifying the “active” time-partition solutions, which will be presented
elsewhere. Figure 2.5, which displays the computed functions D: for : = 1, 2, 3,
and in which the solution for each partition is only plotted if it exceeds a certain
tolerance anywhere in the entire domain of interest, illustrates, in a rudimentary
fashion, some of the principles inherent in those strategies.

Accurate numerical approximations of the solutions D: can be produced as indi-
cated in what follows. Considering the boundary condition function 1: (r, C) in
Equation (2.7), Equations (2.3) and (2.5) yield

�C (l) =
 ∑
:=1

�C: (l), and �C: (l) = eilB:�slow
: (l). (2.11)

Thus, denoting by *C
:
(r, l) and *slow

:
(r, l) the frequency domain solutions of the

problem (1.7) with �C replaced by �C
:
(l)ei^(l)p·r and �slow

:
(l)ei^(l)p·r, respectively,

we obtain the representations

D: (r, C) =
1

2c

∫ ∞

−∞
*C: (r, l)e

−ilC dl =
1

2c

∫ ∞

−∞
*slow
: (r, l)e−il(C−B: ) dl. (2.12)

Since *slow
:

is approximately band-limited (because �slow
:

is, see Remark 3), it
follows from (2.12) and Remark 4 that D: (r, C) can be approximated by the strictly
band-limited function D,

:
:

D: (r, C) ≈ D,: (r, C) =
1

2c

∫ ,

−,
*slow
: (r, l)e−il(C−B: ) dl (2.13)

with superalgebraically small errors (uniform in C and :) as the bandwidth, grows.

Section 6 presents a quadrature algorithm that, on the basis of a finite set of fre-
quencies F = {l 9 : 9 = 1, . . . , �}, approximates, with errors uniform-in-C and
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decaying rapidly as � increases, the highly-oscillatory integral (2.13), and thus pro-
duces the numerical approximation D,,�

:
≈ D,

:
, by means of spectral interpolation

of the slowly-varying quantity *slow
:
(·, l) with respect to l. The quantity *slow

:
,

in turn, is dependent on frequency-domain incident data �slow
:

obtained (via use
of the numerical transform techniques introduced in Section 6.1 for the function
0: = F:0) from the relation

�slow
: (l) =

∫ �

−�
0: (C + B: )eilC dC, (2.14)

and boundary integral “scattering” densities kCp, where kCp are solutions of Equa-
tion (1.19) with �C replaced by ei^(l)p·r. Specifically, defining

kslow
: (r′, l) = �slow

: (l)k
C
p(r′, l), (2.15)

for the time-partition-specific boundary density, we have

*slow
: (r, l) =

∫
Γ

kslow
: (r′, l)�l (r, r′) df(r′)

= �slow
: (l)

∫
Γ

kCp(r′, l)�l (r, r′) df(r′).
(2.16)

Indeed, in view of Remark 6 the windowed incident field 1: is also a solution to
the wave equation, and its Fourier transform at a frequency l is a plane wave, so
that transient scattering can be entirely characterized by Helmholtz solutions with
plane-wave incidence. It follows that for a given bandwidth , , all the needed
function values *slow

:
(r, l 9 ) can be produced in terms of the fixed (:-independent,

,-dependent) finite set Ψ = {kCp(·, l 9 ) : 9 = 1, . . . , �} of boundary integral
densities. The re-utilization of the fixed (:-independent) set Ψ of “expensive”
integral densities is a crucial element leading to the efficiency of the overall hybrid
algorithm.

6 FFT-based O(1)-cost Fourier transform at large times
This section presents an effective algorithm for the numerical evaluation of truncated
Fourier integrals of the form

� (l) =
∫ �

−�
5 (C)eilC dC and 5 (C) = 1

2c

∫ ,

−,
� (l)e−ilC dl (2.17)

(cf. Equations (2.5) and (2.13)), at arbitrarily large evaluation arguments C and
l. Here, it is assumed that 5 is a smooth function of time C ∈ R which vanishes
outside the interval [−�, �]. Similarly, with the possible exception of an inverse-
logarithmic singularity of � (l) at l = 0 for certain two-dimensional applications
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(see Section 6.2), � is an infinitely smooth function for all frequencies l—which
is additionally superalgebraically small outside the interval [−,,,]. The case in
which a singularity exists in Equation (2.17) at l = 0 is handled in Section 6.2 by
utilizing a decomposition of the form

5 (C) =
(∫ −F2

−,
+
∫ F2

−F2
+
∫ ,

F2

)
� (l)e−ilC dl, (2.18)

together with a specialized quadrature rule for the middle integral; the function �
is smooth (though not necessarily periodic) in the integration intervals [−,,−l2]
and [l2,,].

Use of trapezoidal rule integration might appear advantageous in these contexts,
since, for such boundary-vanishing integrands, the trapezoidal quadrature rule ex-
hibits superalgebraically-fast convergence (at least in the smooth � case), and, im-
portantly, unlike the Gauss-Hermite rule used in [91], it can be efficiently evaluated
by means of FFTs. However, as the evaluation arguments C or l grow, the inte-
grands in (2.17) become more and more oscillatory. Both the Gauss-Hermite and
the trapezoidal rule (and, indeed, any quadrature rule based on standard interpola-
tion techniques) require use of finer and finer meshes to avoid completely inaccurate
approximations as the evaluation argument increases (see Section 5.1). Failure to
resolve this difficulty would lead to a fundamental breakdown in the algorithm—as
it would be necessary for the scheme to produce an increasing number of (expen-
sive) boundary integral equation solutions, leading to rapidly increasing costs, as
evaluation times grow.

Remark 8. For definiteness, the presentation in this section is restricted to the
right-hand integral in (2.17); the corresponding algorithm for the left-hand integral
is entirely analogous.

Remark 9. A direct examination of the trapezoidal approximation

5 (C) = 1
2c

∫ ,

−,
� (l)e−iCl dl ≈ ,

2c<

<−1∑
:=0

� (l: )e−iCl: (l: = −, + : Δl)

(2.19)
shows that, as is well known, quadrature errors in the trapezoidal quadrature rule
for “large” C manifest themselves as “aliasing,” that is, spurious periodicity in the
C variable [6, 59, 66, 86].

The method proposed in the present Section 6 resolves the difficulties mentioned
in the last paragraph: it eliminates aliasing errors without recourse to frequency
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mesh refinement, and it evaluates (on the basis of FFTs) the time-domain solution
in constant computing time per temporal evaluation point—so that, as in finite-
difference time-marching algorithms, the overall cost per time-step of the time
propagation algorithm does not grow as time increases.

6.1 Smooth � (l): FFT-based reduction to “scaled convolution”
This section considers the problem of evaluation of Fourier integrals similar to those
in (2.17) (or, in 2D contexts, the integrals with smooth integrands in Equation (2.18))
under the assumption that the functions 5 and � are infinitely smooth in the domain
of integration. In the context of Equation (2.13) in dimension 3 = 3, the smoothness
assumption on � is always satisfied, as it is for dimension 3 = 2 provided that, e.g.,
� (l) = *slow

:
(r, l)eilB: vanishes in a neighborhood of l = 0. The singular 3 = 2

case is tackled in Section 6.2.

The proposed smooth-� approach proceeds by trigonometric-series expansion of
the integrand function � followed by use of certain “scaled convolutions” introduced
in Section 6.1.1; a fast FFT-based algorithm for evaluation of such convolution-like
quantities is then described in Section 6.1.2.

6.1.1 Transform approximation via Fourier series expansion

In this section, we develop a quadrature rule for the general transform integral

�10 [�] (C) =
∫ 1

0

� (l)e−ilC dl, (2.20)

or, equivalently,

�10 [�] (C) = e−iXC
∫ �

−�
� (X + l)e−ilC dl, where � =

1 − 0
2

and X =
1 + 0

2
.

(2.21)
Although � (X + l) may not be a periodic function of l in the integration inter-
val [−�, �], for a prescribed positive even integer " we utilize a trigonometric
polynomial of the form

� (X + l) ≈
"/2−1∑
<=−"/2

2<ei 2c
%
<l (2.22)

of a certain periodicity %, that closely approximates � (X + l) for l ∈ [−�, �].

Remark 10. As indicated below, in the context of this thesis, � (X + l) is most
often a smoothly periodic function in [−�, �] (with � equal to the bandlimit,); in



35

such cases, we take % = 2�, and (2.22) is obtained as a regular Discrete Fourier
Transform (DFT) in [−�, �]. Exceptions do arise in certain two-dimensional
situations (Section 6.2) where � (X+l) is smooth but not periodic in [−�, �] (cf. the
first and last integrals in (2.18)); in such cases an accurate Fourier approximation of
a certain period % ≠ 2� is obtained in our algorithm on the basis of the FC(Gram)
Fourier Continuation method [2, 32]. In the periodic case, the errors inherent
in the approximation (2.22) tend to zero super-algebraically fast (faster than any
negative power of " [3, Lemma 7.3.3], cf. also Remark 5), while the errors arising
from the Fourier Continuation method used in the non-periodic case decay as a
user-prescribed negative power of " .

Substituting (2.22) into (2.21) and integrating term-wise yields the approximation

�10 [�] (C) ≈ e−iXC
"/2−1∑
<=−"/2

2<

∫ �

−�
e−i 2c

%
(UC−<)l dl

= e−iXC
"/2−1∑
<=−"/2

2<
%

c(UC − <) sin
(
c

2�
%
(UC − <)

)
,

(2.23)

where we have set U = %
2c . In view of (2.23), for a given user-prescribed (!)

equi-spaced time-evaluation grid {C= = =ΔC}#2
==#1

, we may write, letting V = UΔC,

�10 [�] (C=) ≈ e−iXC=
"/2−1∑
<=−"/2

2<1V=−<, where 1@ B 2� sinc
(
2�
%
@

)
. (2.24)

Note that, paralleling the fast Fourier series convergence in the periodic case, equa-
tions (2.23) and (2.24) provide super-algebraically close approximations of �10 [�] (C).
In the non-periodic case, these equations provide a user-prescribed algebraic order
of accuracy. In either case, the errors in (2.23) and (2.24) are uniform in C and =,
respectively: for a given error tolerance Y, there exists an integer "0 (independent
of C and C=) such that, for all " ≥ "0, the approximation errors in (2.23) and (2.24)
are less than Y for all C ∈ R and all relevant values C=, respectively.

Remark 11. It is useful to note that the aforementioned C- and C=-independent errors
in (2.23) and (2.24) stem solely from corresponding errors in the expansion (2.22)—
and thus, can be achieved on the basis of values of the function � (X + l) on a fixed
(C-independent) finite set F smooth of frequency mesh points, cf. Section 7.

Since generically V ≠ 1 (indeed, V ∉ Z generically), the quantity
∑
< 2<1V=−<

in (2.24) is not a discrete convolution, but it is, rather, a “discrete scaled convolu-
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tion” [100]. Like regular discrete convolutions, scaled convolutions can accurately
be produced by means of FFTs [100]—although the algorithm for scaled convolu-
tions is somewhat more complicated than the standard FFT convolution approach.
Still, the fast scaled convolution algorithm is a useful tool: it runs in O(! log !)
operations (where ! = max(#2 − #1, ")), and it produces highly accurate results;
details are presented in Section 6.1.2.

6.1.2 FFT-accelerated evaluation of scaled discrete convolutions

The quadrature method introduced in Section 6.1.1 reduces the evaluation of the
right-hand transform in (2.17) for values C = C= (for a given range 0 ≤ =−=0 ≤ # −1
with =0 ∈ Z and # ∈ N) to evaluation of scaled convolutions of the form

3= =

"/2−1∑
<=−"/2

2<1V<−W=, 0 ≤ = − =0 ≤ # − 1, (2.25)

where the coefficients 2< are complex numbers that make up a certain “input vector”
®2 = (2−"/2, . . . , 2−"/2−1), and where the “convolution kernel” 1 is a function of
its real-valued sub-index @: 1@ = 1(@). (Compare (2.24) and (2.25) and note the
specific scaled convolution kernel 1@ and parameter value W = 1 used in the former
equation.) This section presents an algorithm which evaluates the sum (2.25) for all
required values of = at FFT speeds.

To describe the algorithm, let ! denote a certain positive even integer, to be de-
fined below, which is larger than or equal to the maximum of # and " . The
convolution input vector ®2 is symmetrically zero-padded to form a new vector
®2 = (2−!/2, 2−!/2+1, . . . , 2!/2−1) of length !. New elements are also added to the
list of evaluation indices in (2.25) so that the overall list contains the ! elements
in the indicial vector ®= = (=0 − !/2, =0 − !/2 + 1, . . . , =0 + !/2 − 1). Follow-
ing [100], for technical reasons, the length ! is determined by the relation ! ≥ !0,
where !0 denotes the smallest even integer for which the kernel index parameter
@ = V< − W= lies in the range −!0/2 ≤ @ ≤ !0/2 − 1 for −"/2 ≤ < ≤ "/2 − 1,
0 ≤ = − =0 ≤ # − 1. (As pointed out below, selections satisfying ! > !0 are
occasionally necessary to achieve a prescribed error tolerance.) In view of these
selections, the scaled convolution expression (2.25) is embedded in the analogous
but more favorably structured convolution expression

3= =

!/2−1∑
<=−!/2

2<1V<−W=, −!/2 ≤ = − =0 ≤ !/2 − 1, (2.26)



37

" Direct (s) Fast (s) YFast

101 5.6 · 10−2 8.3 · 10−3 6.6 · 10−3

102 8.3 · 10−2 7.9 · 10−3 1.9 · 10−7

103 1.8 · 10−1 7.8 · 10−3 1.6 · 10−8

104 1.4 · 100 8.2 · 10−3 7.9 · 10−7

# Direct (s) Fast (s) YFast

101 1.5 · 10−3 1.1 · 10−2 6.2 · 10−6

102 1.2 · 10−2 7.5 · 10−3 5.8 · 10−6

103 8.8 · 10−2 8.1 · 10−3 4.7 · 10−6

104 7.1 · 10−1 8.0 · 10−3 2.6 · 10−7

105 7.5 · 100 9.3 · 10−2 2.1 · 10−9

106 9.4 · 101 1.5 · 100 2.6 · 10−10

107 2.8 · 103 2.3 · 101 5.5 · 10−9

Table 2.1: Computing times required for evaluation of the size-" scaled convo-
lution (2.24) by means of the Direct and Fast algorithms described in the text at
a number # of time points C=, and errors YFast associated with the Fast algorithm.
(By definition, the Direct algorithm provides the exact convolution results, up to
roundoff.) Left: # = 104. Right: " = 5000.

Using the W-fractional discrete Fourier transform �
(W)
? (that is to say, the fractional

Fourier transform based on roots of unity parameter W as in [7]) together with the
discrete Fourier transform �?,

�
(W)
? =

!/2−1∑
<=−!/2

2<e−i 2cW<?
! , �? =

!/2−1∑
<=−!/2

1<e−i 2c<?
! ,

an application of the convolution theorem yields [100]

3= =

!/2−1∑
<=−!/2

2<1V<−W= ≈
1
!

!/2−1∑
?=−!/2

�
(W)
? �?ei 2cV=?

! , −!/2 ≤ = − =0 ≤ !/2 − 1,

(2.27)
reducing, in particular, the (approximate) evaluation of the desired values 3= in (2.25)
to evaluation of a discrete Fourier transform and a W-fractional discrete Fourier
transform, both of size !, followed by evaluation of the !-term inverse V-fractional
Fourier transform on the right-hand side of (2.27). The necessary discrete Fourier
transform can of course be evaluated by means of the FFT algorithm. The fractional
Fourier transforms (FRFTs) can also be accelerated on the basis of the FFT-based
fractional Fourier transform algorithms, at an O(! log !) cost of approximately four
times that of an !-point FFT; see [7]. The error inherent in the approximation (2.27)
is a quantity of order O(!−2), which, in our applications, generally yields any
desired accuracy in very fast computing times by selecting appropriate values of the
parameter !.

To demonstrate the accelerated scaled-convolution algorithm, we evaluate the trans-
form (2.25) for several values of # , with certain coefficients 2< (−"/2 ≤ < ≤
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"/2− 1) and with 1@ as in (2.24). (The particular selection of the coefficients 2< is
immaterial in the context of the present demonstration, but, for reference, we men-
tion that the coefficients used in the example were obtained as the coefficients of the
"-term FC expansion (2.22) with � (l) = e−

1
4 (l−10)2e−i8l in the interval [8, 15].

This specific scaled convolution arises as the method in Section 6.1.1 is applied to
the evaluation of (2.20) on [0, )], with ) = #ΔC and ΔC = 0.2.) Letting 3̃= denote
the approximation of 3= produced by the fast algorithm, Table 2.1 displays the ℓ∞

error YFast = max= |3=− 3̃= | as well as the time required by the fast method to produce
the "-coefficient sum at the required # evaluation points. The computations were
performed in MATLAB on an Intel Core i7-8650U CPU.

6.2 Non-smooth � (l): singular quadrature for 2D low frequency scattering
This section concerns the evaluation of the inverse transform in (2.17) for cases
in which � contains an (integrable) singularity at l = 0. In the context of the
proposed wave equation solver, this occurs in the evaluation of (2.13) in the 3 = 2
case (where for each spatial point r we have � (l) = *slow

:
(r, l)eilB: ) since, as is

known [88, 119], in two dimensions the solutions to the Helmholtz equation vary as
an integrable function of logl which vanishes at l = 0. (Special treatments are not
necessary in the 3 = 3 case, where, given incident fields with smoothl-dependence,
the Helmholtz solutions vary smoothly with l for all real values of l [77, 120].)

To design our quadrature rule in the non-smooth case, we recall the decomposi-
tion (2.18),

5 (Cℓ) =
(∫ −F2

−,
+
∫ F2

−F2
+
∫ ,

F2

)
� (l)e−ilCℓ dl C �−(Cℓ) + �0(Cℓ) + �+(Cℓ), (2.28)

where using the notation introduced in (2.20), �−(Cℓ) = �
−F2
−, [�] (Cℓ) and �+(Cℓ) =

�,F2 [�] (Cℓ) can be treated effectively by means of the Fourier-based quadrature
method developed in Section 6.1. Unfortunately, an application of that approach to
�0(Cℓ) = �F2−F2 [�] (Cℓ) would not give rise to high-order accuracy, in view of the slow
convergence of the Fourier expansion of � in the interval [−F2, F2]—that arises
from the singularity of � at l = 0. We therefore develop a special quadrature rule
for evaluation of the half-interval integral

�
l2
0 [�] (C) =

∫ l2

0
� (l)e−iCl dl (2.29)

that retains the main attractive features of the integration methods developed in the
previous section: high-order quadrature at fixed cost for evaluation at arbitrarily
large times C.
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Remark 12. As in Section 6.1, the aforementioned C-independent errors can be
achieved on the basis of fixed (C-independent) finite set, which will be denoted by
F sing in the present context, of frequency mesh points. The procedure used here,
however, does not rely on Fourier approximation of �, cf. Remark 11.

In order to evaluate the Fourier integral �0(Cℓ) at fixed cost for arbitrarily large
times Cℓ, despite the presence of increasingly oscillatory behavior of the transform
kernel, we rely on a certain modified “Filon-Clenshaw-Curtis” high-order quadra-
ture approach [52] for non-smooth � (l). The classical Filon-Clenshaw-Curtis
method [108], which assumes a smooth function �, involves replacement of � by
its polynomial interpolant &N� at the Clenshaw-Curtis points followed by exact
computation of certain associated “modified moments” (which are given by inte-
grals of the Chebyshev polynomials multiplied by the oscillatory Fourier kernel).
Importantly, this classical procedure eliminates the need to interpolate the target
transform function at large numbers of frequency points as time increases. Addi-
tionally, on account of the selection of Clenshaw-Curtis interpolation points, the
polynomial interpolants coincide with rapidly convergent Chebyshev approxima-
tions, and, therefore, the integration procedure converges with high-order accuracy.
The accuracy resulting from use of a Chebyshev-based approach, which is very high
for any value of C, actually improves as time increases: as shown in [52], the error
in the method [108] asymptotically decreases to zero as C →∞.

Themodified Filon-Clenshaw-Curtis method [52] we use in the present non-smooth-
� case (where � is singular at l = 0 only) proceeds on the basis of a graded set

ΠM,@ B

{
` 9 B l2

(
9

M

)@
: 9 = 1, . . . ,M

}
, (2.30)

of points in (0, l2] which are used to form subintervals (` 9 , ` 9+1) (1 ≤ 9 ≤ M−1).
For a givenmeshsizeN, each one of these subintervals is then discretized bymeans of
a Clenshaw-Curtis mesh containingN points, and all of these meshes are combined
in a single mesh set F sing (which contains a total of |F sing | = 2(M−1)N points) that
is to be used for evaluation of the integral �0. Using this mesh, the Clenshaw-Curtis
quadrature rule is applied to the evaluation of �` 9+1` 9 [�] (C) (see Equation (2.20)).
The integral �l20 [�] (C) is finally approximated by a composite quadrature rule that
mirrors the exact relation

�
l2
0 [�] (C) =

M∑
9=2

�
` 9
` 9−1 [�] (C). (2.31)
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The error introduced by this quadrature rule is discussed extensively in [52], and
is of course dependent on the strength of the singularity. Briefly, in our context,
and assuming @ > N + 1, the convergence order as N → ∞ is determined by the
number M of integration subintervals used: letting �N ≈ � denote the approximate
value produced by the composite quadrature rule using N Clenshaw-Curtis points
per subinterval, we find the error in �N satisfies [52, Thm. 3.6]

|� [�] − �N [�] | = O(M−(1+N)) as N→∞.

Whenever necessary (i.e. for two-dimensional problems containing nonzero content
at zero-frequency), the numerical results presented in Section 8 were produced
using the values M = 4, N = 8, and @ = 9.1 > N + 1. Of course, two-dimensional
problems whose frequency spectrum is bounded away from the origin, and three-
dimensional problems (which always enjoy a smooth frequency dependence even
around l = 0), do not require the use of the quadrature rule described above. The
computational cost of this algorithm does not grow with increasing evaluation time
C, consistent with the O(1) large time sampling cost for the overall hybrid method.

7 Fast-hybrid wave equation solver: overall algorithm description
Utilizing a number of concepts presented in the previous sections and additional
notations, including:

– An incident field 1 of the form (1.8) for a given direction p;

– A set F = {l1, . . . , l�} of frequencies (n.b. F = F smooth ∪ F sing in the 2D
case, and F = F smooth in the 3D case, cf. Remark 11 and Remark 12)) used
to discretize both the slow �-windowed Fourier transform �slow

:
(cf. (2.14))

and the corresponding slow frequency scattered fields*slow
:

(cf. (2.16));

– A set C (of cardinality #Γ) of scattering-boundary discretization points;

– Sets R (of cardinality #r) and T = {Cℓ : 1 ≤ ℓ ≤ #C}) (of cardinality #C) of
discrete spatial and temporal observation points at which the scattered field is
to be produced;

the single-incidence (see Remark 1)) time-domain algorithm introduced in this
chapter is summarized in the following prescriptions.
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F1 Evaluate numerically the windowed incident-field signal functions F: (C)0(C),
in (2.8) (: = 1, . . . ,  ), over a temporal mesh adequate for evaluation of the
Fourier transforms mentioned in Step [F2].

F2 Obtain the boundary condition functions �slow
:
(l) at frequency mesh values

l = l 9 ∈ F (1 ≤ 9 ≤ �) by Fourier transformation of the windowed signals
in [F1], in accordance to (2.14).

F3 Solve a total of � integral equations (1.19) under plane-wave incidence with
incidence vector p (see Remark 1) at the frequencies l 9 ∈ F , to produce, for
each 9 , boundary integral densities kC = kCp(r′, l 9 ), r′ ∈ C.

F4 For each partition index : = 1, . . . ,  , produce the frequency-domain scatter-
ing boundary integral density kslow

:
with support in [−,,,] on the basis of

the densities kCp via an application of Equation (2.15).

F5 Complete the frequency domain portion of the algorithm by evaluating, at each
point r ∈ R, the frequency-domain solution *slow

:
(r, l 9 ) in Equation (2.16)

by numerical evaluation of the layer potential integral in that equation, using
the density values kslow

:
(r′, l 9 ) at boundary points r′ ∈ C.

In order to evaluate the solution D for all points in the set R, and for all times in the
set T , the algorithm proceeds by transforming each windowed solution back to the
time domain using the quadrature methods presented in Section 6. The following
prescriptions thus complete the overall hybrid solver.

T0 For : = 1 to  and for each r ∈ R do:

T1 a) (3D case) Obtain the coefficients 2< = 2< (r) of the Fourier series
expansions of the form (2.22) for the functions � (l) = *slow

:
(r, l) in

the interval l ∈ [−,,,].

b) (2D case) Obtain the coefficients 2(1)< = 2
(1)
< (r) and 2(2)< = 2

(2)
< (r) of the

Fourier series expansions of the form (2.22) for the functions � (l) =
*slow
:
(r, l) in the domains [−,,−l2] and [l2,,], respectively. (n.b.

F smooth is a discretization of the set [−,,−l2] ∪ [l2,,].)

T2 a) (3D case) Evaluate the discrete scaled convolution using the fast algo-
rithms described in Section 6.1.2 with coefficients 2< = 2< (r) obtained
in (T1a) which, on account of Equations (2.13) and (2.20), yields D: (r, C)
for C ∈ T .
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b) (2D case) Evaluate two discrete scaled convolutions using the fast al-
gorithms described in Section 6.1.2 with coefficients 2< = 2(1)< (r) and
2< = 2

(2)
< (r) to produce, for all C ∈ T , �− = �−(C) and �+ = �+(C) for

� = *slow
:

as in Section 6.2.

c) (2D case continued) Evaluate the singular integral approximation �0

using the methods in Section 6.2 with the frequency points in F sing.

d) (2D case continued) Evaluate D: (r, C) = �−(C) + �0(C) + �+(C) for C ∈ T
(cf. (2.28)).

T4 End do

T5 Evaluate D =
∑ 
:=1 D: (r, C) (cf. Equation (2.10), (2.32)).

T6 End

Remark 13. Calling D,,�
:

the numerical approximations to the functions D: pro-
duced under the finite bandwidth , and on the basis of the � quadrature points in
F , the equation in algorithm step [T5] can more precisely be expressed in the form

D(r, C) ≈
 ∑
:=1

D
,,�

:
(r, C). (2.32)

The errors 4 = 4(,, �) inherent in this approximation decay superalgebraically fast
uniformly in r and C as, grows (see Remark 4). The frequency-quadrature errors
resulting from the methodology described in Section 6 for the integral in (2.13), fur-
ther, decay superalgebraically fast (or, in the two-dimensional case, with prescribed
high-order) as � increases, uniformly in C (see Section 6.1.1 and Section 6.2 for a
full discussion of frequency-quadrature errors). Solutions with quadrature errors
uniform in r can be obtained either on the basis of the time-domain single layer po-
tential for (1.6) (Kirchhoff formula) for the time-dependent density k: , or by means
of an adequate treatment of the high-frequency oscillations in frequency-domain
space that, in accordance with Equation (2.16), arise for large values of |r|.

8 Numerical results
After a brief demonstration of the proposed quadrature rule in a simple context
(Section 8.1), this section demonstrates the convergence of the overall algorithm
(Section 8.2) and it presents solutions produced by the solver in the two- and three-
dimensional contexts (Sections 8.3 to 8.4). In particular, Section 8.3 presents a
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few spatial screenshots of long-time propagation experiments (enabled by the time-
partitioning methodology described in Section 5, see Figure 2.5), as well as, in Fig-
ure 2.6, results for a configurationwhich gives rise to significant numbers ofmultiple-
scattering events. Section 8.4, finally, presents a variety of three-dimensional exam-
ples, including accuracy as well as computational- and memory-cost comparisons
with results produced by means of recently introduced convolution-quadrature and
time-domain integral-equation algorithms. Section 8.4 also illustrates the applica-
bility of the methods introduced in this thesis to a scattering surface provided in the
form of a CAD description (Computer Aided Design).

8.1 Fourier transform quadrature demonstration

Figure 2.3: Error 4∞
"
resulting from the DFT-based (left) and 10th-order FC(Gram)-

based (right) FRFT-accelerated Fourier Transform methods (cf. Remark 10) as a
function of Δl. The right figure also includes a 10th-order slope, for reference.

Figure 2.3 presents results of an application (to the function � (l) = e−
1
4l

2ei10l) of
two main components of the Fourier-transform algorithms described in Section 6.1,
namely the algorithms that evaluate trigonometric expansions (2.22) by means of
DFT on one hand, and on the basis of the FC(Gram) algorithm of accuracy order
10, on the other (cf. Remark 10). (FC expansions of order other than 10 can of
course be used, but order-10 expansions were found perfectly satisfactory in our
contexts.) Noting that |� (−12) | = |� (12) | ≈ Ymach (where Ymach denotes machine
precision), the left (resp. right) portion of Figure 2.3 displays the accuracy of the
Fourier-series based (resp. the FC(Gram)-based) algorithm presented in Section 6.1
for evaluation of Fourier integrals of the form (2.20) in interval [−12, 12] (resp. in
the interval [0, 12]). The fast (high-order) convergence of the quadrature method as
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Δl→ 0 that is demonstrated in the present simple example has a significant impact
on the efficiency of the algorithm—which requires solution of an expensive integral
equation (1.19) for each frequency discretization point l 9 ∈ F smooth, l 9+1 − l 9 =

Δl, for 9 = 2, . . . , |F smooth | = " (cf. Remark 11).

8.2 Solution convergence
This section presents solution of a problem of scattering under incident radiation
Dinc(r, C) given by the Fourier transform of the function

*inc(r, l) = e−
(l−l0)2

f2 eilk̂inc·r (2.33)

with respect to l, with l0 = 12, f = 2 and, letting k = eG + 1
2eH, k̂inc =

k
‖k‖ .

The scatterer is a two-dimensional kite-shaped structure (A1(C), A2(C)) = (cos(C) +
0.65 cos(2C) − 0.65, 1.5 sin(C)), (0 ≤ C ≤ 2c) which is also used in the subsequent
example (cf. Figure 2.5). Figure 2.4 presents the time trace of the scattered field
displayed in the left image at the observation point (2, 2), which lies at a distance
of approximately 1.9 spatial units from the scattering boundary. The right image in
Figure 2.4 displays the error 4 in the center image as a function of Δl. (For sim-
plicity, the fixed numerical bandwidth value, = 24 together with a sufficiently fine
fixed spatial discretization were used in all cases to ensure frequency domain solu-
tion errors of the order of machine precision.) The right image clearly demonstrates
the superalgebraically-fast convergence of the algorithm (relative to a converged ref-
erence solution computed with Δl = 0.12) as the frequency-domain discretization
is refined.

Figure 2.4: Scattered field (left), time trace at point r = (2, 2) exterior to the
scatterer (center) and maximum all-time error 4∞

Δl
at r = (2, 2) as a function of

the frequency-domain discretization Δl (right) resulting from an application of the
overall fast hybrid method to the problem considered in Section 8.2.
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8.3 Full solver demonstration: 2D examples
This section presents results produced by the proposed methodology for two 2D
problems of sound-soft scattering—each of which demonstrates a significant aspect
of the proposed approach.

Figure 2.5: 2D active-partition tracking demonstration. Each of the four large panels
show the solution at increasing times, left to right.

Figure 2.6: Total fields in the “Whispering Gallery” experiment mentioned in the
text. Note the multiple reflections that take place at the elliptical surfaces which,
over long propagation times, give rise to a significant number of scattering events.
The time sequence starts left-to-right on the first row, and then continues left-to-right
on the second row.

Results for incident wave-trains of longer duration, which include a time-domain
chirp of the form

Dinc(r, C) = −0(C − r · k̂inc), with

0(C) = sin(6(C) + 1
4000

62(C)),

6(C) = 4C + 6 cos( C
√

12
),

(2.34)
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and k̂inc as in Section 8.2, are presented in Figure 2.5, which demonstrates the
time partitioning strategy (2.7) in conjunction with the active partition-tracking
method mentioned in Remark 7. The four large panels in this figure display results
corresponding to four subsequent time snapshots. In each one of the panels, the
top-left subfigure presents the total field Dtot(r, C) at the time represented by the
panel. The remaining subfigures in each panel show the contribution to Dtot(r, C)
from each one of the three corresponding time-windowed partitions used in this
example. As indicated in Remark 7, blank subfigures in Figure 2.5 indicate that the
corresponding partition does not contribute to Dtot at the time snapshot represented
by the panel. Using an adequate number of timewindows (of windowwidth� = 10)
as well as a total of 200 frequency domain solutions (with bandlimit, = 15), time
domain solutions at any required time can be obtained.

Figure 2.6 demonstrates the ability of the proposed method to account for complex
multiple-scattering effects over long periods of time. The upper left image in
this figure displays an incident wave impinging on a “whispering gallery” geometry;
subsequent images to the right and in the lower sections of the figure present solution
snapshots at a variety of representative times.

8.4 Full solver demonstration: 3D examples and comparisons
This section demonstrates the character of the proposed algorithm for 3D problems
of sound-soft scattering, and it provides performance comparisons with two solvers
introduced recently. All numerical experiments in this section were obtained by
means of aModern Fortran implementation of the proposed approach, using the Intel
Fortran compiler version 17.0, on a 24-core system containing two 12-core Xeon
E5-2670 CPUs 1. The first example concerns a problem of scattering by a sphere of
physical radius 1.6 (whose choice facilitates certain comparisons) illuminated under
plane-wave incidence given by Dinc(r, C) = −0(C − k̂ · r), where the signal function 0
is given by 0(C) = 5e−(C−6)2/2. The frequency domain was truncated to the interval
[−,,,] with numerical bandwidth, = 6.5, and the problem was then discretized
with respect to frequency on the basis of 41 (� = 80) equi-spaced frequencies l in
the interval [0,,]. Approximate solutions to the integral equation (1.19) for each
one of these frequencies were obtained bymeans of the linear system solver GMRES
with a relative residual tolerance of 10−8. Table 2.2 (left) lists the frequency domain
spatial discretization parameters used. The row labeled “This work” in Table 2.3

1Thanks are due to Emmanuel Garza for facilitating the use of the existing 3D frequency-domain
codes [30].
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Parameter selection, comparison with [14].

l # #V #split Y

[5.5, 6.5] 20 150 3 9.0 · 10−8

[4.5, 5.5] 22 150 2 6.7 · 10−9

[3.5, 4.5] 21 150 2 1.3 · 10−8

[2.5, 3.5] 21 130 2 3.1 · 10−8

[1.5, 2.5] 21 120 2 2.7 · 10−8

[0.0, 1.5] 20 100 2 5.1 · 10−8

Parameter selection, comparison with [9].
l # #V #split Y

[25, 45] 20 90 3 1.2 · 10−4

[20, 25] 18 90 3 1.4 · 10−4

[10, 20] 15 90 3 2.8 · 10−4

[5.0, 10] 12 90 2 1.8 · 10−4

[0.0, 5.0] 10 90 2 1.9 · 10−5

Table 2.2: Spatial discretizations used for the frequency-domain solver [30] in
connection with comparisons with references [14] and [9] and associated numerical
errors, for the l-ranges as listed in the first column of each table. In particular,
the tables demonstrate that, as expected, finer discretizations need to be used, for
a given desired accuracy, as the acoustical-size of the problems treated grows. In
these tables, #2 and #2

split denote the number of points per patch and the number of
patch subdivisions of the original 6-patch geometry used, respectively, so that the
total number of degrees of freedom is 6#2#2

split. (For the definition and significance
of the parameter #V, see [30].) The quantity Y, finally, equals the numerical error
at the spatial point r = r0 with r0 as indicated in the text in each comparison case,
for the solution at frequency equal to the upper limit of the frequency interval. Mie
series solutions were used in all cases as references for determination of the solution
errors Y.

presents the maximum solution error resulting from an application of the proposed
solver together with the corresponding walltime and memory usage. We see that a
computing time of approximately four minutes and a memory allocation of 1.2 GB
suffice to produce the solution with an absolute maximum error (measured relative
to an exact solution obtained via a Mie series representation) of the order of 10−7 at
the observation point r = (−1.8, 0, 0), or 0.2 units away from the scatterer.

This example can be related to a test case considered in [14], which introduces a tem-
porally and spatially high-order time-domain integral equation solver, implemented
in Matlab, which relies on the built-in sparse matrix-vector multiplication function
for time-stepping and a precompiled Fortran function for assembly of the system
matrix. A scattering configuration including a physically realizable incident field is
considered in [14, Sec. 4.3] which presents computing times but reports errors in the
median. For comparison purposes, however, it seems more appropriate to quantify
errors in some adequate norm—and, thus, we chose to provide a comparison with
results presented in Sec. 4.2 of that paper—where a “cruller” scattering surface of
diameter 3.2 is used, which is illuminated by an artificial (not physically realizable
but commonly used as a test case) point source emanating from a point interior to
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the surface. In lieu of solving for the specialized cruller geometry, we compare those
results to the sphere results provided above. Noting that, with the same diameter,
the sphere has a larger surface area (32.2 square units) than the cruller geometry
(23.5 square units), the sphere problem may be considered to be a somewhat more
challenging test case in regard to memory usage and computing cost. Errors for the
test case in [14, Sec. 4.2] can be read from the second contour plot provided for the
cruller geometry in [14, Fig. 8], which displays an error of approximately 10−7 for
ℎ = ΔC ≈ 0.0367. The memory usage and computing time required by that test can
be deduced from [14, Sec. 4.3], and they amount to 290 GB of memory and 101.75
minutes of computing time. (The 101.75 = 23 + 30

8 × 21 minute computing time
estimate was obtained as the sum of precomputation and time-stepping times, as
reported in [14, Sec. 4.3], but accounting for a simulation over 30 time units, instead
of the 8 time units reported in that section.) In view of Table 2.3, we suggest that,
even for short propagation times, the proposedmethod compares very favorably with
the approach [14] in terms of both computational time and memory requirements.

— | |4 | |∞ Time Mem.
This work 1.6 · 10−7 4.1 1.2
Ref. [14] ≈ 10−7 101.75 290

Table 2.3: Comparison with results
in [14]. “This work” data corresponds to
runs on a 24-core computer with Sandy
Bridge microarchitecture, while refer-
ence [14] reports use of a 28-core com-
puter with the more recent Broadwell
microarchitecture. The columns “Time”
and “Mem.” list the required wall times
(in minutes) and the memory usage (in
GB).

— | |4 | |∞ Time Mem.
This work 2.2 · 10−4 4.3 1.6
Ref. [9] 2.1 · 10−3 40.1 56.8

Table 2.4: Comparison with results
in [9]. As in that reference, the compu-
tational times are reported in CPU core-
hours. The columns “Time” and “Mem.”
list the required CPU core-hours and the
memory usage (in GB). The results in [9]
(accelerated) correspond to runs on Santa
Rosa Opteron CPUs, while the results
in “This work” (unaccelerated) were ob-
tained on the more recent Intel Sandy
Bridge CPUs.

The next example in this section concerns the scattering of a wide-band signal of
the form Dinc(r, C) = −0.33

∑3
8=1 exp

[
(C−e8 ·r−6f−1)2

f2

]
from the unit sphere, where

we have set e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1), and f = 0.1. We solve
this problem to an absolute error level of 2.2 · 10−4 (evaluated by comparison with
the exact solution obtained via a multi-incidence Mie series representation) at the
observation point r = r0 = (2.5, 0, 0). The frequency domain was truncated to the
interval [−,,,] with numerical bandwidth , = 45, and the problem was then
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discretized with respect to frequency on the basis of 91 (� = 180) equi-spaced
frequencies l in the interval [0,,]. Approximate solutions to the integral equation
(1.19) for each one of these frequencies were obtained by means of the linear system
solver GMRES with a relative residual tolerance of 10−4. Table 2.2 (right) lists
the frequency domain spatial discretization parameters used. Figure 2.7 displays a
time-trace of our solution, and Table 2.4 presents relevant performance indicators;
the core time listed for our solver was calculated as 24 times the wall time required by
the parallelized frequency-domain solver to solve all 91 frequency-domain problems
in the 24-core system used, followed by a single core run that evaluates the time
trace. Each frequency domain problem was run, in parallel, on all 24 cores.

Figure 2.7: Scattering of a wide-band signal from the unit sphere. This figure
presents the time traces of the exact and numerical scattered field computed (on the
basis of 91 frequency-domain solutions) by the proposed hybrid method. Corre-
sponding results produced by a novel convolution-quadrature implementation can
be found in [9, Figure 5].

This wide-band sphere-scattering example was previously considered in the most
recent high-performance implementation [9], including fast multipole andH -matrix
acceleration, of the convolution quadrature method. The accuracies produced and
the computational costs required by both the present solver (for which frequency-
domain solutions were computed without use of acceleration methods) and the one
introduced in [9] are presented in Table 2.4, including CPU core-hours and memory
storage. We see that, even without the significant benefits that would arise from
frequency-domain operator acceleration in the present context, the proposed solver
requires significantly shorter computing times and lower memory allocations, by
factors of approximately ten and thirty-five, respectively, when compared with those



50

required by the solver [9]. (Note: the contribution [9] does not directly report the
solution error, but it does provide graphical evidence by comparing the time-traces
of the solutions obtained, at the observation point r = r0 = (2.5, 0, 0), by means
of two different spatio-temporal discretizations, for which it was reported that “on
this scale [the scale of the graph] the solutions are practically indistinguishable.”
A direct comparison of the dataset values (which was kindly provided to us by the
authors [76]) to the exact Mie solution allowed us to determine a maximum error
of 2.1 · 10−3 in the wide-band sphere test in [9]. Our solution is also graphically
indistinguishable from the time-domain response calculated by means of a Mie
series, and we report a numerical-solution error of 2.2 · 10−4.)

Finally, Figure 2.8 presents results of an application of the proposed algorithm to
a 3D scatterer (represented by the multi-patch CAD description displayed in the
figure), for the Gaussian-modulated incident field

*inc(r, l) = e−
(l−l0)2

f2 eilk̂inc·r

with l0 = 15, f = 2 and k̂inc = eI. (This figure was prepared using the VisIt
visualization tool [42].) A total of 250 frequency domain integral-equation solutions
of Equation (1.19) for frequencies below the numerical bandlimit , = 25, which
were produced by themethodology and software described in [30], suffice to produce
the solution for all times.

Figure 2.8: Field scattered by a 3D glider structure.

8.5 Long-time 3D numerical demonstration
This section demonstrates the capability of the proposedmethodology for the simula-
tion of long-time scattering. We use the identical glider geometry to that introduced
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Figure 2.9: A snapshot of the total field (from all  = 12 time windows), near the
beginning of the 3D scattering of the long-duration impinging wave.

in the previous subsection. The incident field used was generated by the chirp signal

D8=2 (r, C) = 5 (C − r · k̂inc), with

5 (C) = sin(6(C) + 1
4000

62(C)),

6(C) = 4C + 6 cos( C
√

12
),

(2.35)

in the direction k̂inc = (0, 0, 1).

The simulation was run on a machine with 2x 12-core Intel Xeon CPUs running at
2.30 GHz, with 128 GB of memory. Using a numerical bandwidth of , = 15 for
this problem, a total of 81 (� = 160) integral equations were solved. The solution
was computed on a 250x250 grid with 1600 time samples covering C ∈ [0, 200]; see
Figure 2.9 and Figure 2.10. Some timings required to produce the final solution are
given in Table 2.5.

9 General incident fields and boundary values
This section provides an extension of the hybrid scattering-solver methodology
proposed elsewhere in the present Chapter 2 that enables treatment of arbitrary
Dirichlet boundary values—not necessarily given (as they are in the setting of
scattering problems) by the boundary values of an “incident-field” solution of the
wave equation. In particular, this section concerns the use of the hybrid method
to treat the scattering of generic incident fields (i.e., arbitrary solutions to the wave
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Figure 2.10: Array figure showing solutions from the first 6 (of  = 12) time
windows, which demonstrates the many wavelengths of (dispersion-error free) 3D
wave scattering simulated in the proposed methodology.

Solution step Time
Freq. Int. Eq. Setup 38 [min.]
Freq. Int. Eq. Solve 28 [min.]
Freq. Field Eval. 11 [min.]

Transient Field Eval. 140 [sec.]
Total CPU time 81 [min.]

Table 2.5: Required computing times to produce the total field for the scattering of
the chirp incident field from a glider geometry. In particular, 1.4 billion evaluations
of D: were required for the transient field evaluation step; while the cost of all other
solution steps are independent of both desired solution time and ) inc, the transient
field evaluation costs do grow with time in the absence of the methods introduced
in Chapter 4.
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equation Equation (1.6) in free space rather than the sum of a few sources or plane
waves). It is easy to see that this is a more challenging problem than the problems
treated earlier in this chapter, by considering e.g. an incident plane wave (or source)
whose direction of propagation (resp. location) varies over time, as demonstrated
in Figure 2.12. This chapter proposes a hybrid frequency-time method that still
delivers an O(1) cost for arbitrarily-large-time solution evaluation.

In the case of arbitrary boundary data, windowing of the form (2.7) used so far
throughout this chapter is not applicable, and indeed the windowed boundary data
for the wave equation introduced in Chapter 2 for this context was (see (2.6))

1: (r, C) = F: (C)1(r, C), 1 ≤ : ≤  , (2.36)

where 1 is the incident field and F: is the compactly-supported temporal window
function, centered at C = B: . Inspection of Equation (2.36) shows that 1: (r, C) no
longer satisfies the wave equation (cf. the boundary condition windowing Equa-
tion (2.7) which remains a solution).

The approach, outlined in what follows, is to solve, for each required discrete fre-
quency l, a number of frequency-domain problems (of identical frequency l) with
varying boundary incidence, where the set of boundary values forms an approximat-
ing basis for the windowed boundary data. Indeed, in order to facilitate the re-use
of integral equation solutions across time windows where the spatial variation of
incidence could be significantly different, we note that it is essential to represent an
arbitrary incident field in some compatible basis, so that such basis elements can
be re-used across time partitions. Discussion of the growth of the number of these
problems and their associated cost as the acoustical size of the problem increases is
presented in Section 9.2. We note that the use of an iterative solver such as GMRES
to solve the linear algebra problem arising from discretization of the integral equa-
tion (e.g. (1.21)) may be prohibitively expensive because no use can be made of the
fact that the same linear operator (i.e., a discretization of the Helmholtz equation at
a given frequency l) is used in each problem. We thus propose to utilize a direct
solver (e.g. any of the fast direct solvers mentioned in Section 9.2) to rapidly solve,
for each frequency, these multiple right-hand side problems. Then, the desired
boundary density function is synthesized as a combination of these auxiliary bound-
ary integral equation solutions. Crucially, none of the frequency-domain problems
need to be re-solved for each new time partition : , as the problems, e.g. the inte-
gral equations, to be solved are independent of time-domain information—thereby
preserving the O(1) claimed required Helmholtz solves.
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9.1 Boundary value approximation via spectral boundary basis
At the highest-level, the proposed approach to the treatment of long-duration inci-
dent fields of a fully general nature relies on accurate approximations of arbitrary
Dirichlet data by a certain limited basis. The method proposed in this subsec-
tion is applicable in three dimensions, and is included for completeness, while the
method demonstrated in all experiments in two dimensions is given in the following
subsection.

The procedure begins by first Fourier transforming the windowed time-domain
boundary data for each r ∈ Γ,

�B;>F: (r, l) =
∫ �

−�
1: (r, C + B: )eilC dC,

which produces for each r ∈ Γ the frequency-domain boundary data �C
:
(r, l)

through the relation �C
:
(r, l) = eilB:�B;>F

:
(r, l) (see (2.11)).

The problem then becomes one of approximation of, for each l ∈ F , the on-
surface functions �B;>F

:
(r, l). An elementary strategy proceeds by considering

a decomposition of the surface Γ into a union of #W non-overlapping “logically-
quadrilateral” parametrized patches as introduced in [30] (the presentation here
closely follows the presentation there). More specifically, given #W parametrization
functions jℓ

jℓ : [−1, 1]2 → R3, ℓ = 1, . . . , #W,

that cover the surface Γ,

Γ =

#W⋃
ℓ=1

{
jℓ (G, H) | (G, H) ∈ [−1, 1]2

}
.

Letting Γℓ be the subset of Γ covered by jℓ, the mapping jℓ thus maps coordinates
(G, H) on the logical unit square onto the points r ∈ Γℓ ⊂ Γ. It is known that
Chebyshev functions possess excellent approximation properties on the unit square.
Thus, an effective basis in which to express arbitrary incident data is the set of #2

B

product-Chebyshev functions

�B;>F: (jℓ (G, H), l) =
#B∑
<=0

#B∑
==0

0ℓ<=)< (G))= (H).

Thus, define the basis set

B = {Vℓ<= (r) : Vℓ<= ≡ 0 for r ∉ Γℓ; Vℓ<= (jℓ (G, H)) = )< (G))= (H) for r ∈ Γℓ}.
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Define the solution set Z(l) = {Zℓ<= (r, l) : ℓ = 1, . . . , #W; <, = = 1, . . . , #B}
as the solution of the Helmholtz boundary integral equation at frequency l with
boundary data Vℓ<=. (Note that, despite the discontinuous nature of the basis
elements in B at the boundary of the patches Γℓ, smooth solutions k: can in fact
still be represented in this basis.) An effective approximation then becomes

kslow
: (r, l) =

#W∑
ℓ=1

#B∑
<=0

#B∑
==0

0ℓ<=Zℓ<= (r, l), r ∈ Γ. (2.37)

Use of fast direct solvers can be effective for the efficient solution, for each l ∈ F ,
of each of the integral equations with right-hand sides taken from the set B (with
#W#

2
B
elements). The general boundary data problem in three dimensions requires

use of adequately efficient direct solvers for surface scattering problems (see also
Section 9.2 for more details, including cost estimates and asymptotics) which we
have not as yet implemented, and which have been left for future work. Instead, we
shift focus to the two-dimensional problem which is more computationally tractable
at the present time.

9.1.1 Boundary value Fourier series expansion method

In two dimensions, the number of required degrees of freedom is often small enough
to use direct solvers. We restrict our presentation now to two-dimensional problems,
and consider the boundary of the obstacle to be parametrized by the smoothly
periodic function r = r(g), with g ∈ [0, 2c], implying it can be expanded in a
trigonometric series:

r(g) ≈
#/2−1∑
==−#/2

2=e−i=g,

with error decaying rapidly as# →∞. (Note that in the case of amultiply-connected
scatterer, the strategy described requires modification since the parametrization
is no longer smoothly periodic, a case discussed later in this section.) First, as
in the previous section, we Fourier transform the windowed boundary functions
1: (r, C), (1 ≤ : ≤  ), producing frequency-domain boundary incidence functions
�B;>F
:
(r, l). Next, expanding these functions into Fourier series, we have

�B;>F: (r(g), l) =
#/2−1∑
==−#/2

I=e−i=g, (2.38)

with a cost of O(# log(#)) to find the coefficients {I=}. We solve boundary integral
equations for each basis element inB = {e−i=g, (−#/2 ≤ = ≤ #/2−1)} of boundary
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conditions; using the indirect formulation (1.21), we solve

1
2
Z= (r, l) + ( lZ=) (r, l) − i[((lZ=) (r, l) = e−i=g(r) , r ∈ Γ. (2.39)

which yields the solution set Z = {Z= (r(g), l), (−#/2 ≤ = ≤ #/2 − 1)}. It is
important to observe that solution of Equation (2.39) for each element ofB involves
the same systemmatrix, and therefore the strategy we propose makes use of this fact,
utilizing direct solvers in order to re-use a factorization across each of the solves for
the elements of B. Thus, while the factorization stage needed for an initial solve
may cost, for each l, O(#3

dof) [62] (as would be required for solution even with a
simple source or incident field), the cost a solve for each of the elements of B is
only O(#dof), making the cost of solving a generic scattering problem with a direct
solver a minor additional expense as compared to many of the problems discussed
in Section 9.2. The boundary density is reconstructed via linearity as

iB;>F: (r(g), l) =
#/2−1∑
==−#/2

I=Z= (r(g), l).

With the boundary density corresponding to the appropriate right-hand side having
been found, solution can proceed via evaluation of Equation (1.20), and application
of the hybrid methodology for obtaining the desired time-domain scattering solution
can proceed.

Remark 14. While it is true that the cardinality # of B corresponding to twice
the maximum Fourier harmonic used is not explicitly dependent on the numerical
bandlimit, , the required # for accuracy considerations is indeed implicitly related,
since a minimum number of points per wavelength is required to resolve arbitrary
functions with bandlimit, .

So far in this section, it has been assumed that the parametrization function r = r(g)
is smoothly-periodic, so that the density can be represented as a Fourier series
expansion in the parametrization variable g. If the domain is multiply-connected,
however, the parametrization will be discontinuous, as the parametrization jumps to
another element of the domain, and the lack of smoothness would cripple conver-
gence of the approximating harmonic series. In what follows, it is explained how
the method can be fully generalized.
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LetΓ = ∪#Γ
8=1Γ8 with eachΓ8 a closed curve bounding the regionΩ8. Letting r8 = r8 (g)

be a smooth parametrization of Γ8 with inverse g8, define the function

V8,= (r) =


e−i=g8 (r) , r ∈ Γ8,

0, r ∉ Γ8 .

The boundary data corresponds to solving the Dirichlet Helmholtz problem
Δ*C + ^2(l)*C = 0, r ∈ Ω,
*C = e−i=g8 (r) , r ∈ Γ8,
*C = 0, r ∈ Γ \ Γ8 .

(2.40)

The basis set equals B = {V8,= : 8 = 1, . . . , #Γ; = = −#/2, . . . , #/2 − 1}, and
following solution of (1.21) for each �C = V8,=, we have the density reconstructed
via

iB;>F: (r, l) =
#Γ∑
8=1

#/2−1∑
==−#/2

I8,=Z8,= (r, l)

9.2 General boundary data: cost estimates and comparisons
As indicated in Remark 1, this section briefly discusses extensions of the proposed
hybrid method that enable solution of problem (1.6) for arbitrary incidence-field
functions 1(r, C) on the basis of a fixed finite set of precomputed frequency-domain
solutions that can be obtained in a reasonable computing time. As suggested by that
remark, the approach could proceed via expansion of a given incident field in source-
or scatterer-centered spherical-harmonic expansions; or scattering-boundary-based
synthesis relying on principal-component analysis, etc. (For reference, note that,
letting the maximum frequency and scatterer’s physical size be denoted by, and 0,
respectively, so that, · 0 equals the acoustical size of the scatterer at the maximum
frequency, D = O((,0)3−1) (3 = 2, 3) denotes the number of frequency do-
main solutions required [54] by the general-incidence hybrid method at the highest
frequency—which is also a bound on the number of frequency domain solutions re-
quired, per frequency, for each relevant frequency.) The resulting general-incidence
method should prove advantageous. Discretization methods based on time-stepping
may bemore efficient than the hybrid method for small propagation times, since they
do not require precomputations. However, the asymptotic cost estimates presented
in what follows and the benefits arising from frequency-domain integral-equation
acceleration, as opposed to the more complex time-domain integral-equation accel-
eration, indicate that significant advantages may result, even in the general incidence
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case, for scattering problems for which waves traverse the computational domain
at least once. Of course, the advantages of the hybrid method are much more sig-
nificant in the most commonly considered single-incidence case—which requires a
much more limited set of precomputed frequency-domain solutions. An efficient
implementation of the proposed hybrid method for general right-hand sides requires
use of frequency-domain solvers which can rapidly produce multiple-incidence so-
lutions, for each given frequency, on the basis of some precomputed direct matrix
inverse or LU factorization, etc. For sufficiently small problems, a direct LU factor-
ization can be used for this purpose, while, for large problems, fast direct solvers [23,
26, 33, 61, 63, 101] could be utilized: after a generally-significant setup cost, the
latter methods can produce, for each relevant frequency, all solutions required by
the proposed hybrid method at minimal additional cost. To estimate the costs in-
herent in the use of fast direct methods in the context of the hybrid solver under
general incidence, restricting attention to surface scattering problems considered
in this thesis, and letting Õ(-) = O(- log(-)), the H -matrix setup cost for each
one of the O(,0) required frequencies is a quantity of the order of Õ((,0)3−1).
Consideration of numerical experiments presented in [24, Tables 7 & 8] and [26,
Table 6] suggests that, if computed by means of a H -matrix approach, the cost to
obtain allD frequency-domain solutions required by the hybrid method, for a given
frequency, is itself a quantity of order Õ((,0)3−1). Thus, the cost required for the
evaluation of all necessary frequency domain solutions for all O(,0) frequencies
may be estimated as a quantity of the order of Õ((,0)3). Volumetric time stepping
methods (based, say, on finite-differences or finite-elements) over a domain of acous-
tical size ,0, on the other hand, require at least a spatio-temporal discretization,
and thus a computing cost, of order O((,0)3+1) (for simulations long enough that
a single crest can traverse the complete computational domain) if a fixed number of
points per wavelength are used. Even larger discretizations would be required, in
addition, if dispersion is compensated for by decreasing the time-step ΔC faster than
the frequency grows. In any case, a clearly higher operation count results for volu-
metric solvers than the one presented above for the hybrid method with H -matrix
frequency-domain precomputation. If appropriately-accelerated time-domain inte-
gral equations are used instead [8, 14, 55], finally, a cost of Õ((,0)3) would result
that is asymptotically comparable to the fast-hybrid/direct-solver approach described
above—and the relative advantages would depend on other specific characteristics of
the methods used, including, in particular, accuracy order and dispersion in time, as
well as the quality of the respective acceleration methods used. A comparison of the
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unaccelerated hybrid method to a recent unaccelerated time-domain integral equa-
tion solver is presented in Section 8.4. For most problems arising in applications,
however, the incident fields can be represented by a small number of sources, and,
in such cases, an accelerated version of the hybrid method proposed in this thesis
already provides clear significant advantages, including improved cost asymptotics,
over other methodologies considered in this section.

9.3 Numerical demonstrations
This section demonstrates techniques allowing the solution of wave scattering prob-
lems with arbitrary incident fields. We consider the scattering of fields due to a
point source off a kite-shaped obstacle in two dimensions, with the incident field
given by

�C (r, l) = e−
(l−l0)2

f2
i
4
�
(1)
0 (l|r − r0 |), (2.41)

where f = 2, l0 = 12, and r0 = (−3,−3). While this is a simple enough incident
field that we could use the incident field itself as the integral equation right-hand-
side, to demonstrate the efficacy of harmonic boundary expansion, we follow the
methodology in Section 9. We expand the incident field with # = 80 Fourier
harmonics and solve the integral equation Equation (1.21), for each l ∈ F , with
�C (r(g), l) = ei=g, (−#/2 ≤ = ≤ #/2 − 1). The LU factorization of the integral
equation system for (1.21) at a particular l was re-used for all of the required
boundary incidences; the solution of the # = 80 integral equations per frequency
thus only resulted in a 2.5% increase in total solve time. The solution is shown in
Figure 2.11.

Figure 2.11: Total field resulting due to a point incident source using the generic
boundary incidence strategy proposed.
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Figure 2.12: Generic incident field demonstration: the total field resulting due to an
incident field arising from a moving point source that travels in a circular trajectory
around a kite-shaped obstacle. Time increases left to right and from top to bottom.

Figure 2.12 demonstrates the solver for the scattering of a moving and oscillating
point source, a fully arbitrary incident field, while Figure 2.13 provides, in turn,
a demonstration of the proposed algorithm for a multiply-connected obstacle, also
illuminated by a moving point source.

Conclusion
This chapter presented the first efficient algorithm for evaluation of time-domain so-
lutions, in two- and three-dimensional space, on the basis of Fourier transformation
of frequency domain solutions. The algorithm enjoys superalgebraically-fast spec-
tral convergence in both space and time, it runs in O(#C) operations for evaluation
of the solution at #C points in time, and it can produce arbitrarily-large time eval-
uation of scattered fields at O(1) cost. The method is additionally embarrassingly
parallelizable in time and space, and it is amenable to implementations involving a
variety of acceleration techniques based on high performance computing.
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Figure 2.13: Total field resulting from the scattering of an incident field that is
induced by a moving point source which travels in a circular trajectory around the
left-most circular obstacle, demonstrating proposed wave equation solver in a setting
with an arbitrary incident fields and with multiply-connected scattering geometries.
Time increases left to right and from top to bottom.
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C h a p t e r 3

TWO-DIMENSIONAL LONG-TIME ASYMPTOTICS

“Good thing we live in three dimensions, or else you’d be hearing this class forever.”

—Paul Garabedian (paraphr.)

Overview
This chapter further develops the methodology proposed in Chapter 2, in a direc-
tion specific to two-dimensional scattering, wherein the incident wave even resulting
from an instantaneous impulse is of infinite duration (decaying slowly in amplitude),
and the number of windows  in the previously-proposed methodology is therefore
typically significant. We propose a method in Section 10 that manages the costs
incurred by our method by the known slow decay of scattered fields in two dimen-
sions and yields a highly efficient algorithm even for solution over vast stretches of
simulation time. Demonstration of this method on problems of scattering, including
for trapping geometries, is then presented in Section 11.

10 Long-time asymptotics in two spatial dimensions: theory and numerics
This section is concerned with addressing some intrinsic differences between two-
and three-dimensional wave propagation, differences that bear important implica-
tions for numerical methods. As is well-known (see also (1.9) in Section 2.1), the
Green’s function

� (r, C; r′, C′) =


� (2(C−C ′)−|r−r′ |)
2c
√
22 (C−C ′)2−|r−r′ |2

for 3 = 2 and

X(2(C−C ′)−|r−r′ |)
4c |r−r′ | for 3 = 3,

(3.1)

for the acoustic wave equation gives the fundamental (free-space) impulse response
at location r and time C to a disturbance located at r′ that occurred at time C′. It
is important to note that, while both Green’s functions vanish for times C such that
C−C′ < |r−r′|/2 (exhibiting the principle of causality), the 3 = 2 and 3 = 3 functions

[1] T. G. Anderson, O. P. Bruno, and M. Lyon. High-order, Dispersionless
“Fast-Hybrid” Wave Equation Solver. Part II: Window Tracking, Spatio-
Temporal Parallelism, General Incident Fields. 2020, in preparation.
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differ in that for times C such that C − C′ > |r − r′|/2 the three-dimensional Green’s
function vanishes and the two-dimensional Green’s function does not. Indeed, the
two-dimensional Green’s function in that region is a slowly-decreasing function of
time C, a fact that follows from Hadamard’s classical method of descent [68, §29]
for the wave equation, whereby the wave equation in two dimensions is viewed as a
solution to the three-dimensional wave equation that is constant with respect to one
spatial variable. As remarked in the above epigraph, voices from the past are heard
infinitely far into the future.

As might be expected, differences of this nature persist in wave scattering prob-
lems. Indeed, while for many three-dimensional scattering problems the scattering
solutions decay rapidly (for much more discussion of known decay rates in three
dimensions, see Section 13.2 of Chapter 4), the solution of the two-dimensional
Dirichlet problem, for example, can decay as slowly as 1/(C log2(C)) [98]. (The
asymptotics for the Neumann problem were first established in reference [4] and
are included along with asymptotics for the Robin and impedance problems in [98,
Thm. 6].) Furthermore, the difference in scattering character between the two-
and three-dimensional problems is clearly evidenced by a certain result on the
solution asymptotics presented in reference [98, Thm. 8], establishing that if a two-
dimensional wave equation solution decays superalgebraically fast, it is identically
zero (cf. the discussion in regards to three-dimensional decay rates in Section 13.2
showing superalgebraic or exponential decay rates for many classes of obstacle ge-
ometries). In our context, the relevant long-time asymptotics to a solution D of (1.6)
in 3 = 2 dimensions are given by [98, Thm. 6]

D(r, C) ∼ 1
C

∞∑
9=2

20, 9 (r)
log 9 (C)

+
∞∑
@=1

1
C2@+1

∞∑
9=1−@
9≠1

2@, 9 (r)
log 9 (C)

, C →∞. (3.2)

This asymptotic expression carries important implications for the computational
methodology proposed in this thesis. Indeed, in the proposed methodology, the
solution D is expressed (see (2.10)) as the sum

D(r, C) =
 ∑
:=1

D: (r, C), (3.3)

where the functions D: are solutions to the wave equation (1.6) with Dirichlet data
1 substituted by a windowed section 1: (supported in [B: − �, B: + �]) of the
overall given incident field. The slow asymptotic decay of solutions D: implies
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that many of the  = O() inc) windows are important for solution accuracy at
large times C. Indeed, due to the slow time-decay of solutions D: resulting from
incident fields separated by � in time, truncation of the sum in (3.3) to a number
of terms independent of  would result in unacceptably large error for large C
as  → ∞—since the series of general term

∑
: 1/((C − B: ) log2(C − B: )), while

convergent, converges extremely slowly. Therefore, in order to avoid large errors
as ) inc and C grow, a number of terms proportional to ) inc must be kept in the
sum, in stark contrast with the 3 = 3 case for which often a finite and bounded
number of terms accurately represent the solution for arbitrarily large values of C
and) inc. An interesting conclusion follows, that the “time-leaping” capability of the
hybrid method to produce the full solution D is only applicable in three-dimensional
contexts, since, in two dimensions, solutions D: from incident fields in the distant
past contribute in a significant manner to the overall solution D over vast stretches
of time.

If the final solution time ) is proportional to the duration of the incident field,
) ∝ ) inc, then since the number of windows  = O() inc), the evaluation of D at time
sample points of fixed spacing throughout [0, )] will require O() ) evaluations of
solution components D: , precisely) for each 1 ≤ : ≤  . Indeed, while the methods
of Chapter 2 may ensure that the cost to evaluate the field contribution D: from any
single window with arbitrary : (1 ≤ : ≤  ) at a single point in time is only O(1)
with respect to ) , the fact that field contributions may be relevant for a long time is
as yet unaddressed. This section proposes an algorithm to efficiently and accurately
evaluate the total field D over vast stretches of time while needing only to complete
a total of O()) evaluations of any of the D: solutions across all of 1 ≤ : ≤  .

First, let C: > B: be a time at which the solution D: has been identified to enter
the asymptotic regime of (3.2) (recall from Chapter 2 that B: is the time-center
of partition :). The algorithm then fits a polynomial to D: on [C: ,∞) (see also
Remark 15), and, in service of this, wemake certain manipulations to the asymptotic
expansion to render it more amenable for fitting on an infinite interval. Thus,
considering the change of variables I: (C) = 1/log(C − B: ), the asymptotic expansion
of D: (Equation (3.2) with D = D: ) becomes

D: (r, e1/I: + B: ) ∼
∞∑
9=2
20, 9 (r)I 9:e

−1/I: +
∞∑
@=1

∞∑
9=1−@
9≠1

2@, 9 (r)I 9:e
−(2@+1)/I: . (3.4)

It is easy to see from the asymptotics that this is a smooth function of I: that can be
easily fit with polynomials on the bounded interval [0, I: (C: )]. Before doing this,
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for all : , D: is multiplied by e1/I: (a procedure that further smooths the function,
as can be seen by consideration of (3.4)). Then, for : = 1, at each spatial point r,
a polynomial %r

:
(I) = %r

1(I) with zero constant term (%r
1(0) = 0) is obtained such

that %r
1(I: (C)) fits e1/I1D1(r, e1/I1 + B1), in the least-squares sense, over an =B-point

equidistant mesh in the interval [0, I1(E1)]. The zero-vanishing assumption on the
least-squares polynomial %r

1(I) embodies the D1 → 0 behavior as C → +∞, which
itself corresponds to I1(C) → 0+.

The algorithm then proceeds iteratively through the window indices : , so that for
each : > 1 and for a given spatial point r, %r

:
(I) approximates

∑:
ℓ=1 Dℓ. More

precisely, for : > 1 and for each point r in a selected spatial evaluation set R (cf.
Section 7 in Chapter 2), the polynomial %r

:
(I) with zero constant term (%r

:
(0) = 0)

is obtained that fits e1/I:D: (r, B: + e1/I: (C)) + %r
:−1(I) in a least squares sense over

the =B-point equidistant mesh in the interval [0, I: (C: )]. Therefore, for C > C: , the
approximation

:∑
ℓ=1

Dℓ ≈ %r
: (I: (C))

holds, for C > C: , up to the accuracy of the least squares fit and the discretization error
underlying the numerical evaluation of the solutions D: . The overall solution can thus
be efficiently obtained for all time by completing this procedure for : = 1, . . . ,  .
Clearly, the entire methodology is enabled by the capability to evaluate D: on
arbitrary time grids without reliance on preceding time values.

Remark 15. For simplicity, the description of the proposed asymptotic polynomial
representation assumes use of a single asymptotic-matching polynomial. But use of
multiple matching polynomials in the interval [0, I: (C: )], one corresponding to an
unbounded time interval the rest corresponding to bounded time intervals, may be
advantageous in practice. For example, for the numerical experiments in Section 11
two polynomials of degree five were used for asymptotic approximation within the
interval [0, I: (C: )].

11 Numerical illustrations
This section demonstrates the effectiveness of the algorithm introduced in this
chapter and also presents a variety of examples demonstrating two-dimensional
scattering in trapping domains. The first example in this section treats the scattering
of a unidirectional plane-wave from a kite-shaped geometry. The kite-shaped region
is in fact star-shaped, and thus, due to the lack of multiple scattering, the asymptotic
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regime is quickly reached. More specifically, the incident field in this experiment is
given by the function Dinc(r, C) = 0(C − kinc · r) in the direction kinc = (1, 1) using
with signal function

0(C) = sin
(
c

5

(
2(C + 32) − 40

c
sin

( c
40
(C + 32)

)))
. (3.5)

The duration of the incident field was taken to be) inc = 3232, so that with a window-
width � = 32, there resulted a number of windows  = 100. The frequency-domain
was discretized with 491 frequencies in the l-range [0, 8], with 191 of those in the
range from [0, 0.25], so that discretization error was not significant relative to the
approximations performed in this section.

Themethodology proposed in this sectionwas followed to produce an approximation
D̃ ≈ ∑ 

:=1 D: . The function D: (r, C) was evaluated at =B = 31 sample points I: (C=),
1 ≤ = ≤ =B, equispaced from I: = 0.25 to I: = 0.07. Two degree-5 polynomial fits
were made, the first for the 16 sample points in [0.16, 0.25] and the second for the
16 sample points in [0.07, 0.16] (the latter polynomial with the requirement that it
is additionally 0 when I: = 0). The asymptotic behavior for this experiment onset
at C: = B: + 55, and the polynomial fit was performed on the interval [C: , C: + �]. It
should be noted that there were no sample points for I: < 0.07, since, under the I:
change of variables, the value of sample points in the C variable becomes infinitely
large with the result that the size of D may be smaller than the numerical discretiza-
tion error from the hybrid methodology presented in Chapter 2—a fact that could
otherwise lead to poor interpolation results. In Figure 3.1 the solution D obtained
from the full summation Equation (3.3) is compared with the approximation D̃ using
the proposed asymptotic fitting methodology. The method produces high-quality
approximations that are uniformly-accurate for long times ( = 100 windows).

The numerical test was implemented in MATLAB in a single core on workstation
with an Intel Xeon E31230 v5 3.4 GHz CPU. The full evaluation of this long-time
simulation required 1/10 seconds per spatial observation point (a figure arrived at by
averaging the required time for many spatial observation points). This computation
involves evaluate a significant number of Hankel function evaluations, evaluations
which can be reused for each window. In order to evaluate the Hankel functions
efficiently, certain addition theorems of the Hankel function were utilized, which
split the Hankel function into a smooth function and a product of a smooth and of
a explicitly-known singular function. In our experiments, this splitting reduced the
time to evaluate the required Hankel functions by a factor of seven.
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Figure 3.1: Long-time two-dimensional numerical experiment demonstrating the
proposed asymptotic-fitting method. Left: Snapshot of representative near-field
solution. Right: Error |D − D̃ | between the true solution D and the result of the
asymptotic-fitting strategy D̃. The error is measured at the marked observation point
on the left plot, (−2

√
2,−2

√
2).

Figure 3.2: Long-time two-dimensional numerical experiment in a trapping region.
Left: Snapshot of representative near-field solution. Right: One of the solution
components D: at the spatial location marked on the left plot, computed over more
than 1000 time units.
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Figure 3.3: Scattering in a two-dimensional trapping geometry, with the intensities
being that of the total field. The time sequence starts left-to-right on the first row,
and then continues left-to-right on the second row.

A second demonstration focuses on a more strongly-trapping geometry, where an
incident plane wave field propagating in the direction (−1, 0) with signal function

0(C) = sin
(
c

2.5

(
2(C + 32) − 40

c
sin

( c
40
(C + 32)

)))
,

impinges on the obstacle pictured in the left-side of Figure 3.2. The observation
point is located at (0, 0.5), a point in the opening of the cavity. The slow time-decay
of the solution is clearly observable, but so also is the eventual slow asymptotic rate
of decay.

To conclude this section, we include some further simulations of this trapping
geometry in higher-frequency contexts, with Figure 3.3 and Figure 3.4 showing
more clearly the trapping nature of this geometry.
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Figure 3.4: Higher-frequency scattering in a two-dimensional trapping geometry,
with the intensities being that of the total field. The time sequence starts left-to-right
on the first row, and then continues left-to-right on the second row.
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C h a p t e r 4

TRACKING ACTIVE TIME WINDOWS VIA NOVEL
BOUNDARY-DECAY THEORY

“Men make their own history, but they do not make it as they please; [they make it] under
circumstances existing already, given and transmitted from the past”

—Karl Marx (1852)

Overview
This chapter proposes techniques to accelerate further the algorithms for compu-
tation of solutions to wave scattering problems outlined in Chapter 2 in a three-
dimensional (note that 3 = 3 is assumed throughout this chapter) context, through
truncation of the sum D =

∑ 
:=1 D: that produces the solution D. While the overall

solution D is nominally the sum of of many contributions D: , since the number of
terms  = O() inc), the focus of this chapter is on identifying a stopping criterion
which readily identifies the elements of this sum that can be safely ignored on a given
space-time evaluation region. With such a stopping criterion in hand, the overall
solution D can be evaluated on such a space-time region by a sum of appropriate D:
terms, with the number of terms independent of  . Thus, owing to the lack of a
need to compute terms omitted from the sum, the overall computation can be greatly
reduced. In order to perform this truncation with rigorous accuracy guarantees, a
theory is developed to bound the size of future values of boundary integral densities
for the wave equation based on the size of the historical values of the density. Addi-
tionally, estimates are required and given for the rate of temporal decay that can be
assured. In both cases, only a finite measurement history (roughly equal to the time
it takes a transmitted wave to traverse a distance equal to the obstacle diameter) is

[1] T. G. Anderson and O. P. Bruno. On the decay of time-dependent solutions
to the wave equation and finite-time analysis of their boundary integral
densities. 2020, in preparation.

[2] T. G. Anderson, O. P. Bruno, and M. Lyon. High-order, Dispersionless
“Fast-Hybrid” Wave Equation Solver. Part II: Window Tracking, Spatio-
Temporal Parallelism, General Incident Fields. 2020, in preparation.
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required to make rigorous estimates on the future size of the density. Therefore, an
algorithm can make a decision to drop contributions from a solution component D:
by monitoring the size of the associated boundary integral density k: on an interval
of precisely this length. A brief description of ideas and formulas already developed
is recalled as needed to motivate the discussion in and provide a concrete setting for
this chapter, but the reader is referred to Chapter 2 for further elaboration.

First, recall that a partition of unity of time is set down for the time interval of
incidence [0, ) inc], which we define using a set of  = O() inc) time-centers B:
(: = 1, . . . ,  ) and window functions F: (C) ∈ �∞2 ( [B: − �, B: + �]), with window
functions defined so that

∑ 
:=1 F: (C) = 1 for C ∈ [0, ) inc]. The restricted class of

boundary data (1.6c) treated in Chapter 2 was assumed to be the boundary values
of an incident field propagating in only a few directions or owing to one or perhaps
only a few sources, with incident fields thus taking the unidirectional exemplary
form

1(r, C) = 1
2c

∫ ∞

−∞
�C (l)ei(^(l)p·r−lC) dl, with ^(l) = l/2, (4.1)

where the function �C is defined for a given compactly supported function 0(C) as

�C (l) =
∫ ∞

−∞
0(C)eilC dC. (4.2)

Windowed boundary data for this class of incident field were defined as

1: (r, C) =
1

2c

∫ ∞

−∞
�C: (l)e

i(^(l)p·r−lC) dl with ^(l) = l/2, (4.3)

with
�C: (l) =

∫ ∞

−∞
0: (C)eilC dC where 0: (C) = F: (C)0(C). (4.4)

Remark 16. This chapter assumes, per the discussion in Remark 6, that the win-
dowed incident field 1: (r, C) is also a solution to the wave equation. In our context,
temporal windowing of this kind leads to efficient numerical methods when the
incident field propagates in only a few directions (or is induced by a limited num-
ber of sources), and can otherwise be windowed through a signal function 0: (C)
as in Equation (4.4). The assumption that the wave equation boundary values
are those of a solution to the wave equation allows the use of a “direct” integral
equation formulation for the physical density k: =

mDC>C
:

mn , which in frequency do-
main satisfies Equation (1.19). The main theorems of this chapter, Theorem 4 and
Theorem 5, can be adapted without difficulty to the general incidence case where
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the frequency-domain (non-physical) boundary integral density i: satisfies the in-
tegral equation (1.21) of Brakhage and Werner [25], though see also Remark 17
immediately below.

Remark 17. A major reason that a direct integral equation formulation is preferred
throughout this thesis is that the resulting physical density k: =

mDC>C
:

mn is guaranteed
to decay at the same rate as the fields DC>C

:
, while in contrast such a property does

not hold if an indirect formulation for the density i: is used. Indeed, note that,
as recognized in the literature, the rate of decay with an indirect formulation may
be lower than the true decay of the solution to the wave equation, which may thus
lead to catastrophic error cancellation in the production of the field D from the
density i (cf. the indirect representation formula Equation (1.20) which features a
difference of two layer operators) at a certain error level [11, 20, 57]. In addition
to avoiding such cancellation errors, a direct formulation ensures the success of
the window tracking algorithm through an equivalence between the smallness of the
density and the field at appropriate (time-lagged) points in time and space, see e.g.
Theorem 1. In certain cases, however, the use of physical densities is not possible—
since physical equations can only be derived in presence of a “scattering problem”,
that is, a problem for the wave equation for which the boundary conditions are
expressed in terms of boundary data corresponding to an incident field which is
itself a solution of the wave equation in a neighborhood of the obstacle.

We note first the method proposed in Chapter 2 and utilized previously in this
thesis to obtain the solution D: , which first proceeds by near-field evaluation in the
frequency-domain,

*B;>F
: (r, l) =

∫
Γ

kB;>F: (r′, l)�l (r, r′) df(r′), (4.5)

followed by inverse Fourier transformation:

D: (r, C) =
1

2c

∫ ∞

−∞
*B;>F
: (r, l)e−il(C−B: ) dl. (4.6)

This chapter proposes use of an alternative approach, using inverse Fourier trans-
formation of the density k: ,

k: (r′, C) =
1

2c

∫ ∞

−∞
kB;>F: (r′, l)e−il(C−B: ) dl, (4.7)

followed by the use of the Kirchhoff formula (1.15),

D: (r, C) =
∫
Γ

k: (r′, C − |r − r′|/2)
4c |r − r′| df(r′), r ∈ Ω, (4.8)
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where as in (1.15) the time-dependent density k = k: is a physical quantity:

k: (r, C) = mnD
C>C
: (r, C). (4.9)

Use of the Kirchhoff representation formula is attractive since the stopping criterion
for computing the scattered field solutions on arbitrary volumetric regions is thereby
dependent on norms of the boundary density, which, being defined on the (3 − 1)-
dimensional (and thus two-dimensional in the 3 = 3 setting of this chapter) surface,
is computationally efficient to measure.

In any case, the time-domain scattered field response is evaluated as the sum of
solutions D: to (1.6) with boundary data 1: ,

D(r, C) =
 ∑
:=1

D: (r, C), (4.10)

although, as discussed in Remark 7, for a rather general class of scattering obstacles,
only a bounded number of terms in this sum must actually be included for a given
accuracy, even as  = O() inc) → ∞.

The focus of this chapter is on developing an analytical framework to identify
the subset of elements of this sum that are required for an accurate solution D on
a given region R × T of spacetime. Thus, Section 12 provides straightforward
theorems linking the size of the scattered fields to the size of the densities through
standard representation formulas, while Section 13 proves novel estimates on the
norms of future temporal evolution of the boundary integral density. In that section,
Section 13.1 shows that the density at future times can be bounded by its norm
on a finite, identifiable time interval, and Section 13.2 goes further to show that
indeed the density decays (superalgebraically fast) relative to the norm’s value taken
over this time interval. Finally, while Section 8.5 in Chapter 2 included numerical
demonstrations of long-time three-dimensional scattering, showing the need for the
theory and methodology proposed in this chapter, in Section 14 some tests are
presented showing (at unit wave speed) the decay of boundary densities and the
relevance of solution contributions when the associated density is small on lengths
of time equal to the diameter of the obstacle.

12 Decay rates of scattering problems and connections to boundary integral
densities

As suggested in Remark 7 of Chapter 2 (cf. also the review above), the algorithm
exploits the rapid decay enjoyed by exterior scattering solutions for a vast class



74

of nontrapping (or, more precisely, non-strongly-trapping) domains Ω2, to evaluate
the field D, within a prescribed tolerance Ytol, on the basis of a truncation of the
sum (4.10) using no more than " terms (namely, the terms D: that have not decayed
below the error tolerance at the given time C), at all given (possibly distant) space
positions, and as time (and thus  ) grow without bound. This section presents an
algorithm that determines the required range of " indices that need to be kept in
the sum (4.10) in order to meet the tolerance Ytol at a given point r ∈ Ω and for
a given time C. For computational efficiency, we utilize a somewhat more general
strategy, in which we seek an " term truncation of (4.10) which is valid, within the
error tolerance Ytol for all spatio-temporal points in a given Cartesian subset R × T
within the required overall spatio-temporal evaluation domain.

In order to present our algorithm, we consider the representation formula (4.8), that
yields the scattered field D: in terms of the density k: = m+nDC>C: (Equation (4.9)),
and we define Amin = minr∈R,r′∈Γ |r − r′|, and Amax = maxr∈R,r′∈Γ |r − r′|. In view
of Equation (4.8), we see that if k: (r′, C) = 0 for C > )

5

:
and for all r′ ∈ Γ, then

D: (r, C) must vanish for all (r, C) ∈ R × () 5

:
+ Amax/2,∞). Importantly, further, we

note that, as it follows, in particular, from Theorem 4 Equation (4.29), if the density
k: vanishes for a sufficiently long time interval � after 1: permanently vanishes
everywhere on Γ, then k: will vanish throughout Γ for all times subsequent to �—a
fact that can be visualized physically by considering the portions of the time history
of sources and fields that could potentially lead to non-vanishing illumination at a
time subsequent to the interval �.

This suggests that, provided k: is “small” on the time interval �, then D: ought
to be “permanently small” throughout R for all times after an appropriate (R-
dependent) time delay subsequent to the end of the time interval �. This fact can
be established rigorously under various norms (for obstacles that are in some sense
“weakly-nontrapping”) on the basis of Equations (4.13)–(4.14) and (4.17)–(4.18),
and in view of the density estimates provided by themain Theorem 4 and Theorem 5.
(Non-trapping obstaclesΩ2 are those for which a billiard-ball trajectory inΩ, which
bounces off the wall Γ in accordance with the law of specular reflection, always
escapes a region of finite radius encircling the obstacle after traveling a finite total
distance [92]; more details concerning the weaker versions of nontrapping concepts
mentioned above are provided in Remark 21.)

We present next the first result in this section, which links (in the most immediate
manner) the smallness of the density k: to that of the solution D: , and which
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also indicates explicitly (Equation (4.11)) the error variation that may occur in the
evaluation of the near field from the boundary density—which, like the single-layer
potential factor on the right-hand side of the inequality, is uniformly bounded as
r → Γ. The simple result is illustrative of the type of guarantees on the smallness
of D: that are desired, yet also motivates certain additional estimates through its
primary weakness—that it requires knowledge of the size of the density k: for all
future time.

Proposition 1. Let Ytol > 0 and a bounded set R ⊂ Ω be given, let

(max = max
r∈Γ
((01) (r)

where (0 denotes the single-layer operator (1.12) with frequencyl = 0, and assume
‖k: (·, C)‖!∞ (Γ) < Ytol/(max for all C > )

5

:
. Then |D: (r, C) | ≤ Ytol for all C >

)
5

:
+ Amax/2 and for all r ∈ R.

Proof. In view of (4.8), we obtain

|D: (r, C) | ≤
1

4c
©­« sup
g>)

5

:

‖k: (·, g)‖!∞ (Γ)
ª®¬
∫
Γ

3f(r′)
|r − r′| , (4.11)

from which the result follows directly from the maximum principle for the Laplace
equation. �

Note that (4.11) shows that D: (r, C) is small for large C if k: (·, g) is small along
Γ for all g > )

5

:
, and functions as a truncation-error estimate as it provides a

guarantee on the error committed when the field D: is ignored—when it is truncated
from the sum in Equation (4.10). The main results of this chapter, Theorem 4
and Theorem 5, show that k: need only be small on a bounded time interval � of
length approximately equal to diam(Γ)/2 in order that the density k: be small for
all subsequent times—where the smallness of densities and fields is predicated in
the sense of various norms used. In particular, for an obstacle that satisfies a certain
“@-growth condition” related to the trapping strength of an obstacle, Theorem 4
provides !2 temporal bounds on the density over all times after the end of the
interval � in terms of the �@+1 temporal norm of the density over the interval �,
and, further, gives uniform bounds in time in terms of �@+2 temporal norms of
the density, once again over the interval �; in all cases, !2(Γ) spatial norms are
used. From these results for the density k: , !2 and uniform temporal estimates are
provided in Theorems 1 to 2 for the fields D: at all times after an Amax-associated
time lag beyond the end of time interval �.
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Remark 18. The truncation-error estimates mentioned above provide a methodol-
ogy for identification of the times beyond which the scattered field D: (arising from
the single incident wave packet 1: ) is smaller than a desired tolerance YC>; . It follows
that the contribution of the scattered field D: to the overall scattered field D decays
with time in a manner that can easily be detected by inspection of the integral density
k: . More precisely, together with the rapid decay of densities and scattered fields for
incident fields of compact support (for nontrapping obstacles by reference [96], and
for certain weakly-trapping obstacles by Theorem 5 in Section 13.2 of this thesis),
the results discussed above suggest that the decomposition (4.10) may be truncated
to

D(r, C) ≈
" 5 −1∑
:="8

D: (r, C), (4.12)

for certain integers "8 and " 5 , which, while only accounting for a total " =

" 5 − "8 of “active windows” 1: , yields the total scattered field D(r, C) with an
error of the order of YC>; , in various norms, and throughout the prescribed region
of spacetime R × T . (This argument is made fully rigorous in Theorem 3.) Thus,
without significant accuracy loss, the truncated-approximation approach embodied
in Equation (4.12) provides significant gains in terms of computing cost, and it gives
rise to the overall O(1) method announced in Chapter 2 (see also Remark 7).

Theorem 1. Consider a given region of interest R ⊂ Ω at a positive distance from
the boundary Γ. Then for every r ∈ R,

‖D: (r, ·)‖!2 ( [Amax/2,∞)) ≤ V(R) ‖k: ‖!2 (R+; !2 (Γ)) , (4.13)

and
sup

C>Amax/2
|D: (r, C) | ≤ V(R) sup

C>0
‖k: (·, C)‖!2 (Γ) , (4.14)

where V2(R) = maxr∈R,r′∈Γ
∫
Γ

1
|r−r′ |2 df(r′).

Proof. Applying theCauchy-Schwarz inequality to the representation formula (1.15)
we have

|D: (r, C) | =
����∫
Γ

k: (r′, C − |r − r′|/2)
|r − r′| df(r′)

����
≤

(∫
Γ

1
|r − r′|2

df(r′)
)1/2 (∫

Γ

|k: (r′, C − |r − r′|/2) |2 df(r′)
)1/2

.
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Integrating this equation in time we find,

‖D: (r,·)‖2!2 ( [Amax/2,∞)) =

∫ ∞

Amax/2
|D: (r, C) |2 dC

≤ V2(R)
∫ ∞

0

∫
Γ

|k: (r′, C′) |2 df(r′) dC′ ≤ V2(R) ‖k: ‖2!2 (R+; !2 (Γ)) ,

(4.15)

or instead maximizing,

|D: (r, C) | ≤ V(R) sup
C ′>0
‖k: (·, C′)‖!2 (Γ) . (4.16)

�

It should be noted that as the region of interest R approaches the boundary Γ, the
estimate in Theorem 1 deteriorates since V → ∞ as Amin → 0+ (cf. the result of
Proposition 1 which does not suffer this property). This result can be immediately
strengthened for r arbitrarily close to Γ (recovering Proposition 1) if�0,U frequency-
explicit operator norm bounds can be established; such estimates would be used in
the proof of Theorem 4 rather than the !2-estimates that were utilized. At present,
a similar result, Theorem 2, can be shown which demonstrates that the norm of
the field in !2 in a spatial evaluation region R is independent of the proximity of
the region R to the boundary Γ (and, as before, is bounded above by the boundary
density norm).

Theorem 2. Let R ⊂ Ω ∩ {|r| < '}, where the Lipschitz obstacle Ω2 is centered at
the origin. Then there exists a � (', Γ) > 0 such that,

‖D: ‖!2 ( [Amax/2,∞));!2 (R)) ≤ � (', Γ) ‖k: ‖!2 (R+; !2 (Γ)) , (4.17)

and
sup

C>Amax/2
‖D: (·, C)‖!2 (R) ≤ � (', Γ) sup

C>0
‖k: (·, C)‖!2 (Γ) . (4.18)

Proof. Assume (without loss of generality since the obstacle is Lipschitz) that the
boundary Γ is locally planar; that is, we assume it to be a truncated planar surface
in R3. We have,

D: (r, C) =
∫
Γ

k: (r′, C − |r − r′|/2)
4c |r − r′| df(r′).

Now, integrating the solution over the volume R and applying Cauchy-Schwarz,

‖D: (·, C)‖2!2 (R) =

∫
R
|D: (r, C) |2 d+ (r)

≤ 1
16c2

∫
R

(∫
Γ

k2
: (r
′, C − |r − r′|/2) df(r′)

) (∫
Γ

df(r′)
|r − r′|2

)
d+ (r)

(4.19)
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For a given integration point r ∈ R, we define the point r0 as the orthogonal
projection of r on Γ, and let I = |r − r0 |. We first integrate on Γ in two pieces: one
set Γfar defined as the r′ ∈ Γ for which |r − r′| > 1, and the other Γnear defined as
the r′ ∈ Γ for which |r − r′| < 1. In the former case, the integral in the integrand
of (4.19) is always bounded, while the latter case is more delicate but still results in
a finite ‖·‖!2 (R) norm. Indeed,∫

Γnear

df(r′)
|r − r′|2

=

∫
Γnear

3G′3H′

I2 + G′2 + H′2
=

∫ 1

0
dd

∫ 2c

0
d\

d

I2 + d2

= c

∫ 1

0

dE
I2 + E

= c log
(
I2 + 1
I2

)
,

and per Equation (4.19) by integrating this quantity over R along rays r−r0, we find

1
16c2

∫ Imax

Imin

∫
Γnear

df(r′)
|r − r′|2

dI =
1

16c

∫ Imax

Imin

log
(
I2 + 1
I2

)
dI.

It is clear that as Imin → 0, this integral remains finite, so, for arbitrary compact
sets, we have shown

1
16c2

∫
R

(∫
Γ

df(r′)
|r − r′|2

)
d+ (r) ≤ � (', Γ).

where � (', Γ) is independent of Amin.

Returning focus to (4.19) and considering C > Amax/2, we find that by integrating in
time,

‖D: ‖2!2 ( [Amax/2,∞); !2 (R)) ≤ � (', Γ) ‖k: ‖
2
!2 (R+; !2 (Γ)) ,

or instead maximizing,

sup
C>Amax/2

‖D: (·, C)‖2!2 (R) ≤ � (', Γ) sup
C ′>0
‖k: (·, C′)‖2!2 (Γ) .

�

The final theorem ties Theorem 1, bounds on the scattered field values D: in terms of
the density k: , to the theory, developed in the following sections and culminating in
Theorem 5, that provides bounds and decay rates on the density k: . In this manner,
a stopping criterion is thus determined for each window, identifying a time at which
to truncate its inclusion in the sum (4.12). The density bounds and decay results
are proven only for non-strongly-trapping obstacles, those obstacles said to satisfy a
certain @-growth condition given in Definition 2 of the next section.
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Theorem 3. Assume that the Lipschitz obstacle Ω2 satisfies a @-growth condi-
tion. Assume the incident wave with boundary values W+1 ∈ �∞(R;�1(Γ))
and W+mn1 ∈ �∞(R; !2(Γ)) is normalized so that ‖W+mn1‖� ? (R;!2 (Γ)) ≤ 1 and
‖W+1‖� ?+1 (R;!2 (Γ)) ≤ 1 for a certain ? > 0. For given real numbers �r > 0 and
�C > 0, and a given error tolerance YC>; , there exists an integer " such that for any
set R ⊂ Ω of diameter no larger than �r and for any time interval T of length no
larger than �C , there exist integers "8 and " 5 satisfying " 5 − "8 = " , and such
that truncation of the sum (4.10) to the range "8 ≤ : ≤ " 5 − 1 in the sum (4.12)
produces the value D(r, C) within an error tolerance of the order of Ytol throughout
R × T .

Proof. Let T1 = min{C ∈ T } and T2 = max{C ∈ T } be the starting and ending times
of the time evaluation region T that satisfies T2−T1 < �C , and recall the definitions
Amin = minr∈R,r′∈Γ |r − r′|, Amax = maxr∈R,r′∈Γ |r − r′|.

First, by causality there will be no contributions from scattering solutions that are
the result of incident fields that have not yet impinged on the obstacle. Choosing
" 5 as the smallest positive integer such that B" 5

−� + Amin/2 > T2 ensures that for
C ∈ T solutions D: for all : ≥ " 5 can be excluded from the sum in Equation (4.10)
with zero error. Indeed, this follows since the incident field W+1: is zero on the
obstacle for C < B" 5

− � for all : ≥ " 5 ,

Next, we estimate the remaining solution contributions through their boundary
integral densities. Letting = be a positive integer = > 2, letting 1 ≤ : ≤ " 5 − 1,
and using )∗ and g as in the setting of Section 13, consider the time interval
�: = [) 5

:
− )∗ − 2g − Amax/2, ) 5

:
− Amax/2) for some ) 5

:
> B: + � + )∗ + 2g as an

interval �: (see point 1 in Remark 20) on which the bound

k∗:

�=(@+1)+1 (�: ; !2 (Γ)) ≤ Y
tol (4.20)

holds, where k∗
:
is defined as

k∗: (r, C) = F+(C − )
5

:
+ )∗ + 2g + Amax/2)F−(C − ) 5

:
+ Amax/2)k: (r, C).

Indeed, we can establish that k∗
:
∈ �=(@+1)+1(R; !2(Γ)) by Lemma 1 since the

incident data is smooth. Furthermore, it follows that there exists an interval �: on
which the bound (4.20) holds by using Theorem 5 applied to the density k: on
the interval I: laying temporally immediately after the incident field vanishes on
Ω2. In more detail, on this interval I: the density k: can be bounded above by the
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initial data 1: through the Lemma 1 estimate Equation (4.31). Then, taking ) large
in the estimate from Theorem 5 guarantees the existence of the interval �: . Now,
it is assumed that ‖W+mn1‖�=(@+1)+2 (R; !2 (Γ)) ≤ 1 and ‖W+1‖�=(@+1)+1 (R; !2 (Γ)) ≤ 1, it
follows from Theorem 5 (and Lemma 2) that ) 5

:
= B: + ) 5 for some ) 5 > 0, and

so an "8 exists independent of the incident field. Define "8 as the smallest integer
such that Equation (4.20) holds for ) 5

:
> T1, with ) 5 chosen as small as possible

while maintaining the validity of (4.20).

Then, by use of Theorem 5 again, we have

sup
C>)

5

:
−Amax/2+)

‖k: (·, C)‖!2 (Γ) ≤ �)1−= 

k∗:

�=(@+1)+1 (�: ; !2 (Γ)) ≤ �Y
tol)1−=. (4.21)

Next, using Theorem 1 and the bound (4.21) we have for all r ∈ R the bound

sup
C>)

5

:
+)
|D: (r, C) | ≤ �V(R))1−=Ytol.

The temporal partitions satisfy a certain well-spaced property B:+1 − B: ≥ � (see
Section 5.1), a property which, together with the fact noted earlier that ) 5

:
= B: +) 5 ,

implies that for C > ) 5

"8
+ ) , the bound

sup
C>)

5

"8
+)
|D: (r, C) | ≤ �V(R)() + ("8 − :)�)1−=YC>;

holds for all : < "8 and all r ∈ R. Therefore it is possible to estimate the error
committed by the truncation of the sum (4.10) as

sup
C∈T
r∈R

������D(r, C) −
" 5 −1∑
:="8

D: (r, C)

������ ≤ sup
C∈T
r∈R

©­«
"8−1∑
:=1
|D: (r, C) | +

 ∑
:=" 5

|D: (r, C) |
ª®¬

= sup
C∈T
r∈R

"8−1∑
:=1
|D: (r, C) |

≤ �1V(R)YC>;
"8−1∑
:=1
(("8 − :)�)1−=

≤ �1V(R)YC>;
∞∑
:=1
(("8 − :)�)1−= = �V(R)YC>; ,

where the constant � is independent of the incident field 1 and its duration ) inc

(and thus of  ). Thus only " = " 5 − "8 solution components D: are required to
approximate the solution D by the truncation in (4.12) with errors that are uniformly-
bounded for all time. �
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The proof of Theorem 3 was constructive, immediately leading to an algorithm for
the identification of "8 and " 5 (cf. Remark 19). The essential estimates on the
boundary densities used above in the proof are the subject of the following section.

Remark 19. Theorem 3 guarantees that a  -independent subset of the solution
components D: (scattering solutions due to incident field 1: , 1 ≤ : ≤  ) are
required to produce the solution on any bounded space-time region of interest. In
conjunction with the methods of Chapter 2 that require only O(1) Helmholtz solves
to accurately sample the solution at any time, this theorem justifies the claim of an
overall O(1) cost to the method, since the number of solution components D: that
must be computed on any given region of space-time is independent of ) 8=2.

Another proof approachwould be to argue that each individual timewindow stopping
time ) 5

:
can be determined from direct observation of k∗

:
on finite time intervals.

Indeed, in practice it may be more efficient to determine the required solution
components by direct inspection of the norm of the boundary densities k: on finite
intervals of time in conjunction with Theorem 5; see also the numerical results in
Section 14 of this chapter.

13 Finite-time-history estimates on boundary densities for scattering prob-
lems

13.1 Finite-time-history boundary density estimates uniform over R+

Asmentioned above, this section develops estimates for the future size of the density.
To the author’s knowledge no estimates of a similar or related character are reported
in the literature. Certain definitions and assumptions are required to provide a setting
for the statement of Theorem 4.

Definition 1. For a given l0 > 0 and a given Γ = mΩ, the boundary of a Lipschitz
domain, define the operator

�l =
1
2
� +  ∗l − i[(l, with [ =


1, if 0 < l < l0

l, if l ≥ l0.
(4.22)

Assumptions and definitions for lemmas and theorems. It is assumed that

1. A choice is made of window width g and window functions F+, F− ∈ �∞

satisfying F− + F+ = 1, with

F−(C) =


1 for C < −g

0 for C ≥ 0
, F+(C) =


0 for C < −g

1 for C ≥ 0,
(4.23)
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2. For all time, the compactly-supported incident field 1: (r, C) is a solution to
the wave equation in the interior region Ω2 ∪ Γ and in a subset-of-Ω strip
surrounding Γ,

3. The temporal support of 1: (in Ω2 ∪ Γ) lies before the time interval

� = [−)∗ − 2g, 0), (4.24)

where )∗ B diam(Γ)/2, and

4. The densityk: solves (in !2(Γ)) Equation (1.16) for an incident field 1: , and in
terms of this densityk: define the auxiliary densitiesk−(r, C) = F−(C)k: (r, C),
k+(r, C) = F+(C)k: (r, C), and

k∗(r, C) = F+(C + )∗ + g)F−(C)k: (r, C), (4.25)

the latter clearly having temporal support in the time interval �.

Remark 20. 1. The arguments that follow, in this section and the next, present
estimates, in the form of upper bounds, on the density for C > 0 in terms of
norms of the density over an interval � that immediately precedes C = 0. The
choice of C = 0 for the temporal location to make this argument is entirely
without loss of generality and, in fact, all results hold for the density k:
following any time period of the length of � (in terms of norms over that
interval) occurring after 1: vanishes.

2. In a slight abuse of notation, we have dropped the subscript : in the definitions
of the density functionsk−, k+, andk∗, even though such quantities are clearly
dependent on the time partition index : . All analysis in this section as well
as the following one considers a fixed time partition, and the convention
of dropping the subscript index is done for notational simplicity. We also
emphasize here the purpose of the functions F− and F+ is so that the partition
of unity of the density

k: (·, C) = k−(·, C) + k+(·, C),

holds for all time C.

3. We observe that the temporal supports “supp” of the functions k− and k+
satisfy suppk− ⊂ (−∞, 0) and suppk+ ⊂ [−g,∞) on Γ. We wish to bound
k: in the !2(R+; !2(Γ)) norm, and as an upper bound on that we bound k+ in



83

!2 in the slightly larger time interval [−g,∞). In order to do so, we identify
the density k+ as satisfying a scattering problem posed with small data—a
certain relevant portion of the density history k−. (More precisely, the density
k∗ is measured in the finite time interval � defined in (4.24).)

The frequency-domain boundary integral equation density kC
:
is a physical quantity

(see Equation (4.9)), independent of the choice of coupling parameter [ (cf. Defi-
nition 1), a fact which allows flexibility in the choice of coupling parameter as l
varies. This is important since bounds on



�−1
l




!2 (Γ)→!2 (Γ) are generally established

for high-enough frequencies (indeed, at the present time, investigation of such esti-
mates forms a highly-active research area with intended application in the numerical
analysis of frequency-domain boundary element methods). In the low-frequency
limit, a different coupling parameter (see the right-hand side of (4.22)) is required
for the operator �−1

l in order to have uniformly-in-l bounded norms (which are
additionally independent of the trapping character of the obstacle) as l→ 0+. Such
high-frequency trapping estimates are coupled with low-frequency estimates in the
following definition.

Definition 2. For nonnegative integer @, we say that a Lipschitz obstacle satisfies a
@-growth condition if, for the integral equation operator �l (c.f. Definition 1), the
bound

‖�−1
l ‖!2 (Γ)→!2 (Γ) ≤ � (1 + l2)@/2, � = � (Γ) > 0 (4.26)

holds, or, equivalently, that for �1 = �1(Γ) > 0 and �2 = �2(Γ) > 0, the bound



�−1
l




!2 (Γ)→!2 (Γ) ≤


�1, if l ≤ l0

�2l
@, if l > l0,

(4.27)

holds for all real l ≥ 0.

Remark 21. It is known that Definition 2 is satisfied with @ = 0, @ = 1, @ = 2
and @ = 3 for various classes of obstacles. For example, reference [15, Thm. 1.13]
shows that a smooth nontrapping obstacle (in which, according to [15, Def. 1.1],
each billiard ball trajectory escapes from a ball of finite radius after finitely many
bounces) satisfies (4.26) with @ = 0. A related @ = 0 result is presented in [39] for
merely Lipschitz domains, but under the stronger assumption that the obstacle is
star-shaped. Reference [37] shows that for “hyperbolic” trapping regions (in which
all periodic billiard ball trajectories are unstable), a merely logarithmic growth
in l results, while for certain “parabolic” trapping regions, stronger (@ = 2 or
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@ = 3) growth takes place. It is also known that much more strongly-trapping
obstacles exist, including obstacles for which exponentially-large inverse operator
norms



�−1
l




!2 (Γ)→!2 (Γ) occur [19, 35, 81] (and which, therefore, do not satisfy the

@-growth condition for any @).

Additionally, it is known [19, Thm. 2.10] that for all Lipschitz obstacles, the integral
equation operator �l satisfies the low-frequency estimate in Equation (4.27) (and
inherent in Equation (4.26))—rendering the @-growth condition truly one about
high-frequency asymptotic behavior.

Remark 22. An interesting fact to note is that the result of reference [74], showing,
for the first time, temporal rates of decay (indeed, an exponential rate) for wave
scattering from a trapping obstacle (in that case, the trapping structure was a union
of two disjoint convex obstacles), answered in the negative a conjecture by Lax and
Phillips [83, p. 158] that all trapping obstacles have a sequence of resonances _ 9
such that Im_ 9 → 0− and

��Re_ 9
��→∞ as 9 →∞. (For more details see also [110].

See also [104] for results that show the challenge of establishing localized energy
decay rates for trapping obstacles.) The results were later [73] generalized to
arbitrary unions of strictly-convex obstacles that together satisfy both (1) a certain
separation criterion and (2) that each connected piece is not contained in the convex
hull of any two other pieces; such obstacles correspond to the @ = 1 “hyperbolic”
trapping region case mentioned above, and a numerical example of wave scattering
from a closely-related obstacle is given in Section 14.

Remark 23. It can be seen that there exist connected trapping obstacles, including
some which possess cavities, that satisfy the @-growth condition of Definition 2 for
some value of @. Let

Ω1 = {r = (A1, A2, A3) : −1/2 ≤ A1 ≤ 1/2,−1/2 ≤ A2 ≤ 1/2, 0 ≤ A3 ≤ 1}.

Then Ω2 = {r : |A 9 | ≤ 1} \ Ω1 is an ('0, '1, 0) parallel trapping obstacle in the
sense of [37, Def. 1.9], for '1 > e1/4'0, '0 ≥

√
3/2, and 0 = 1. Note that Ω2 is a

cube with a smaller cuboid removed from one of its faces and can be visualized in
Figure 4.1.

Since Ω2 is Lipschitz, by [37, Cor. 1.14 and Rem. 1.16] it follows that Ω2 satisfies a
@-growth condition with @ = 3. Smoothing of the corners of this obstacle results in
a connected trapping obstacle that satisfies a @-growth condition with @ = 2.
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Definition 3. We denote by W+ and W− the well-known trace operators for functions
inΩ andΩ2, respectively, onto Γ, which, for a Lipschitz obstacle, each have a unique
extension to a bounded linear operator

W+ : �B (Ω) → �B−1/2(Γ),

and
W− : �B (Ω2) → �B−1/2(Γ),

for 1/2 < B ≤ 1 [90].

Theorem4. Let @ denote a nonnegative integer, and assumeΩ2 satisfies the @-growth
condition (Definition 2). For a given nonnegative integer ?, if the incident field 1:
satisfies W+1: ∈ �?+@+2(R;�1(Γ)) and W+mn1: ∈ �?+@+1(R; !2(Γ)), the density at
future times (relative to the time interval �) can be bounded in the �? (R+; !2(Γ))
norm as

‖k: ‖� ? (R+; !2 (Γ)) ≤ � (Γ, g, ?) ‖k∗‖� ?+@+1 (�; !2 (Γ)) . (4.28)

The choice of ? = 1, additionally, allows the uniform estimate in time of

sup
C>0
‖k: (·, C)‖!2 (Γ) ≤ � (Γ, g) ‖k∗‖�@+2 (�; !2 (Γ)) . (4.29)

Aproof outline of the results leading toTheorem4 is sketched briefly inwhat follows.
After the incident field has completely passed the obstacle (considered without loss
of generality to be C > 0 for simplicity), scattering from the surface itself is the sole
source of radiation for other points on the obstacle, and so the boundary density
encodes all information about future scattering events. The relationship expressed
in a certain time-dependent single-layer integral equation, of the density at future
times to its state at past times can be understood itself as a scattering problem, though
only of the energy that will be relevant to future scattering events and not that share
of the energy radiating to infinity. Bounds on the scattering operator’s inverse leads
to a conclusion that the future density is small, in !2(Γ) and in various temporal
norms. More specifically, a Fourier transform is taken and recent [15, 36, 37, 39, 70,
109] wavenumber-explicit bounds for the integral operators are used to bound the
!2(Γ)-norm of the density as a function of time, that is, in ‖·‖!2 (R+; !2 (Γ)) . A similar
approach is followed for the time-derivative of the incident field data, leading to a
bound on the future density in the ‖·‖�1 (R+; !2 (Γ)) norm, and finally, via the Sobolev
lemma, to uniform bounds in time. The proof approach intertwines frequency
and time domain to leverage both frequency-domain and time-domain estimates;
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thus, the proof of Theorem 4 proceeds by an excursion into time domain to exploit
Huygens’ principle (see the computations leading to (4.60) and the estimate leading
to (4.67)) as well as sharp frequency-domain boundary integral operator estimates
discussed in Definition 2.

The proof of Theorem 4 relies on the results presented in Lemmas 1 through 6 and
is delayed in the presentation until these lemmas have been stated and proved. The
first two of these lemmas establish the regularity of the temporal density k: for all
time C (Lemma 1) and on finite time intervals (Lemma 2); see also Remark 26.

Remark 24. Without loss of generality, the incident field 1(r, C) is assumed to
be real-valued. It follows that the density k(r, C) which solves Equation (1.16) is
real-valued, which implies that its Fourier transform kC (r, l) obeys the Hermitian
symmetry relation

kC (r,−l) = kC (r, l). (4.30)

Therefore, our studies of frequency-domain operator norms are therefore restricted
to the l > 0 case, as is often done in mathematical frequency-domain scattering
theory [15, 19, 37]. The same symmetry relations apply for quantities such as k: ,
ℎ(r, C), k±(r, C), k∗(r, C), etc. that are defined in terms of the real-valued k.

Lemma 1. For an obstacle satisfying a @-growth condition, assume that the incident
field 1: satisfies W+1: ∈ �?+@+1(R; !2(Γ)) and W+mn1: ∈ �?+@ (R; !2(Γ)). Then
the scattering density k: satisfies k: ∈ �? (R; !2(Γ)). In particular, the density
satisfies

‖k: ‖� ? (R; !2 (Γ)) ≤ �1(Γ)


W+mn1:




� ?+@ (R; !2 (Γ)) + �2(Γ)



W+1:

� ?+@+1 (R; !2 (Γ)) .

(4.31)
Additionally, if both W+1: ∈ �?+@+2(R; !2(Γ)) and W+mn1: ∈ �?+@+1(R; !2(Γ))
are satisfied, then the density k: ∈ � ? (R; !2(Γ)).

Proof. The frequency domain integral equation (1.19) is satisfied with kC = kC
:
and

�C = �C
:
, and is written again below as

�lk
C
: = W

+mn�
C
: − i[W+�C: .

Clearly,
(1 + l2)?/2kC: = (1 + l

2)?/2�−1
l

(
W+mn�

C
: − i[W+�C:

)
.
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In view of Definition 2 for a bound on the norm of �−1
l , and since by Definition 1

the coupling parameter [ satisfies |[ | ≤ (1 + l2)1/2 we find,

(1 + l2)?


kC: (·, l)

2

!2 (Γ) ≤� (1 + l
2)?+@

(

W+mn�
C
: (·, l)



2
!2 (Γ)

+ |[ |2


W+�C: (·, l)

2

!2 (Γ)

)
≤ � (1 + l2)?+@



W+mn�
C
: (·, l)



2
!2 (Γ) + � (1 + l

2)?+@+1


W+�C: (·, l)

2

!2 (Γ) ,

and then integrating,

‖k: ‖2� ? (R; !2 (Γ)) ≤ �1

∫ ∞

−∞
(1 + l2)?+@



W+mn�
C
: (·, l)



2
!2 (Γ) dl

+ �2

∫ ∞

−∞
(1 + l2)?+@+1



W+�C: (·, l)

2
!2 (Γ) dl

= �1


W+mn1:



2
� ?+@ (R; !2 (Γ)) + �2



W+1:

2
� ?+@+1 (R; !2 (Γ)) < ∞.

Therefore, k: ∈ �? (R; !2(Γ)). The claim k: ∈ � ? (R; !2(Γ)) follows from
application of the first claim with ? substituted with ? +1 and the use of the Sobolev
lemma [58, Lemma 6.5]. �

Definition 4 (Laplace transform and Laplace-domain operators). Let B = f + il,
with f, l ∈ R. We recall the familiar definition of the Laplace transform of a
function 5 (C), C ≥ 0,

� (B) = L{ 5 }(B) =
∫ ∞

0
5 (C)e−BC dC. (4.32)

As is known, the inverse Laplace transform of a function � (B), with all singularities
of � having real part less than f0 > 0, is defined via the Bromwich contour integral
on the line Re(B) = f ≥ f0,

5 (C) = L−1{�}(C) = lim
l→∞

1
2ci

∫ f+il

f−il
� (B)eBC 3B. (4.33)

It will be useful to recall also the Laplace-domain boundary integral operators

((B`) (r) =
∫
Γ

�B (r, r′)`(r′) df(r′), r ∈ Γ, (4.34)

(
 ∗B `

)
(r) =

∫
Γ

m�B (r, r′)
mn(r) `(r′) df(r′), r ∈ Γ, (4.35)

and
�B =

1
2
� +  ∗B + B(B, (4.36)

where �B (r, r′) = e−B |r−r′ |/(4c |r − r′|) is the Green’s function of the modified
Helmholtz equation (i.e. the wave equation in Laplace domain).
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Lemma 2. Assume that the incident field 1: satisfies W+1: ∈ �?+1(R; !2(Γ)) and
W+mn1: ∈ �? (R; !2(Γ)), and further assume that the incident field 1: and its
derivatives m8C 1: , 1 ≤ 8 ≤ ?, are supported in the time interval [)8, )8 + )] on Γ, for
some finite ) > 0. Then the restriction of the boundary density k: to [)8, )8 +)] for
satisfies k: ∈ �? ( [)8, )8 + )]; !2(Γ)).

Proof. First, define the time-shifted density k̃(r, C) = k: (r, C−)8) and incident field
1̃(r, C) = 1: (r, C −)8), in order to align with the domain of definition of the Laplace
transform (4.32). We therefore need to prove that the restriction of k̃ to [0, )]
satisfies k̃ ∈ �? ( [0, )]; !2(Γ)). As a compactly supported function, the incident
field data 1̃ has a well-defined Laplace transform that has no poles in the complex
plane to the right of some real line Re(B) = f0 > 0, and we denote the Laplace
transform as B(r, B) = L{1̃(r, ·)}(B), and therefore mnB(r, B) = L{mn1̃(r, ·)}(B).
We show that the density k̃ ∈ �? ( [0, )]; !2(Γ)) by first establishing bounds for the
Laplace-domain density Ψ̃(r, B) = L{k̃(r, ·)}(B).

As is well-established, Ψ̃ satisfies the Laplace-domain combined-field integral equa-
tion (cf. Equation (1.19))(

�BΨ̃

)
(r, B) = W+mnB(r, B) + BW+B(r, B), (4.37)

where �B is as defined in (4.36). The inverse of the operator �B is uniformly
bounded [41, Thm. 4.2] in the Laplace variable B, i.e. for all Re(B) > f0

�−1

B




!2 (Γ)→!2 (Γ) ≤ �, � > 0 and independent of B, (4.38)

which, used in conjunction with (4.37), yields the estimate


Ψ̃(·, B)



!2 (Γ)

≤


�−1

B




!2 (Γ→!2 (Γ)

(

W+mnB(·, B)



!2 (Γ) + |B |



W+B(·, B)


!2 (Γ)

)
≤ �



W+mnB(·, B)



!2 (Γ) + � |B |



W+B(·, B)


!2 (Γ) , Re(B) ≥ f0 > 0.

Applying Parseval’s formula yields the desired conclusion k̃ ∈ �? ( [0, )]; !2(Γ)),
by a well-established argument due to Lubich [87, Lemma 2.1] based on Laplace-
domain boundary integral density estimates of precisely this form. �

Recalling the definitions and assumptions made at the beginning of this section (in
particular, the definitions of k−, k+, and k∗, as well as the trace operators W± on Γ
from Definition 3), Lemmas 3 to 6 below provide estimates related to the density
k+ as well as operator bounds in the frequency domain that are used in the proof of
Theorem 4.
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Lemma 3 (Direct second-kind integral equations for the Fourier transform of k+.).
Assume W+1: ∈ �@+1(R;�1(Γ)) and W+mn1: ∈ �@ (R; !2(Γ)). For each fixed
l ≥ 0 the Fourier-transformed densitykC+ satisfies the second-kind integral equation(

�lk
C
+
)
(r, l) = W−mn�

C (r, l) − i[W+�C (r, l), r ∈ Γ, (4.39)

where �l = 1
2 � +  

∗
l − i[(l, and

�C (r, l) = �C: (r, l) −
(
(lk

C
−
)
(r, l). (4.40)

Proof. Consider the single layer time domain integral equation (1.16) satisfied by
k: :∫ C

−∞

∫
Γ

X (C − C′ − |r − r′|/2) k: (r′, C′)
4c |r − r′| df(r′) dC′ = W+1: (r, C), −∞ < C < ∞,

(4.41)
where by Lemma 1 (applied with ? = 0) the density satisfies k: ∈ !2(R; !2(Γ)).
Rewriting this equation as∫

Γ

k: (r′, C − |r − r′|/2)
4c |r − r′| df(r′) = W+1: (r, C),

and Fourier transforming gives the equation

((lkC: ) (r, l) = W
+�C: (r, l), r ∈ Γ.

Since by assumption W+�C
:
(·, l) ∈ �1(Γ), in view of reference [38, Thm. 2.25] we

know this equation admits a unique solution kC
:
(·, l) ∈ !2(Γ) for almost every l.

Using the partition of unity decomposition

k: = (F− + F+)k: = k− + k+, (4.42)

which follows from Equation (4.23), Equation (4.41) may be re-expressed in the
form ∫ C

−∞

∫
Γ

X (C − C′ − |r − r′|/2) k+(r′, C′)
4c |r − r′| df(r′) dC′ = W+ℎ(r, C), (4.43)

where
ℎ(r, C) = 1: (r, C) − D−(r, C), (4.44)

and
D−(r, C) :=

∫ C

−∞

∫
Γ

X (C − C′ − |r − r′|/2) k−(r′, C′)
4c |r − r′| df(r′) dC′.
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Note in particular that k+ (resp. k−), and thus its Fourier transform kC+ (resp. kC−), is
an element of !2(Γ).

Fourier transforming (4.43) yields the frequency-domain single-layer integral equa-
tion

((lkC+) (r, l) = W+�C (r, l), r ∈ Γ. (4.45)

for kC+, the Fourier transform of k+, where �C is the Fourier transform of ℎ given
in (4.44),

�C (r, C) = �C: (r, l) −
(
(lk

C
−
)
(r, l).

Next, we consider the Dirichlet problems ΔE± + ^2(l)E± = 0, ^(l) = l/2, for the
homogeneous Helmholtz equation in the domainsΩ andΩ2, with E+ and E− defined
in Ω in Ω2, respectively, and with Dirichlet data W+E+ = W−E− = −W+�C . Of course,
since �C is a solution of the Helmholtz equation in Ω2, it follows that E− = −�C .
Reference [46, Lemma 3.4] provides the representation formulas

E+(r, l) = −〈W+mnE
+ − W−mnE

−, �l (r, ·)〉, r ∈ Ω, (4.46)

and
E−(r, l) = −〈W+mnE

+ − W−mnE
−, �l (r, ·)〉, r ∈ Ω2, (4.47)

where 〈·, ·〉 denotes the duality pairing of the Sobolev spaces �B (Γ) and �−B (Γ).
But, in view of [38, Cor. 2.28] we have W+mnE

+ ∈ !2(Γ) and W−mnE
− ∈ !2(Γ), so

Equation (4.46) and Equation (4.47) may be re-expressed in the form

E+(r, l) = −
∫
Γ

(
W+mnE

+ − W−mnE
−) �l (r, r′) df(r′), r ∈ Ω, (4.48)

and

E−(r, l) = −
∫
Γ

(
W+mnE

+ − W−mnE
−) �l (r, r′) df(r′), r ∈ Ω2 . (4.49)

Since the single-layer operator (l (cf. (1.12)) applied to an !2(Γ) density is contin-
uous throughout R3 [90, Thm. 6.11], taking the interior trace W− of Equation (4.49)
yields the integral equation ((l_) = W+�C . But (4.45) tells us that _ = kC+ is also a
solution of this equation and therefore, by uniqueness of !2(Γ) solutions [38, Thm.
2.25], we have

kC+ = W
+mnE

+ + W−mn�
C . (4.50)

In view of this equation, we may re-express (4.48) in the form

E+(r, l) = −
∫
Γ

kC+(r′, l)�l (r, r′) df(r′), r ∈ Ω. (4.51)
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In order to obtain an integral equation which, unlike Equation (4.45), is uniquely
solvable at all frequencies, we follow [34] and combine Equation (4.45) with the
equation

W+mnE
+(r, l) = −

∫
Γ

kC+(r′, l)mn(r)�l (r, r′) df(r′) +
1
2
kC+, for r ∈ Γ. (4.52)

that results as the outer normal derivative operator on Γ is applied to the represen-
tation formula (4.51). In detail, Equation (4.52) follows from the well-known jump
relations [90, p. 219] that

lim
Y→0+

n(r) · ∇
∫
Γ

`(r′)�l (r+ Yn(r), r′) df(r′) =
(
−1

2
� +  ∗l

)
`(r), r ∈ Γ, (4.53)

for the operator equal to the normal derivative on Γ of the single-layer potential
with density ` in the space !2(Γ) (cf. [46, Thm. 1]). Using (4.50) to rewrite the
left-hand-side of (4.52) gives the second-kind integral equation for kC+,

1
2
kC+(r, l) +

(
 ∗lk

C
+
)
(r, l) = W−mn�

C (r, l). (4.54)

posed for kC+ ∈ !2(Γ) [46, Thm. 1(iv)]. Finally, a linear combination of (4.45)
and (4.54) yields the combined field integral equation(

�lk
C
+
)
(r, l) = W−mn�

C (r, l) − i[W+�C (r, l), r ∈ Γ, (4.55)

where �l = 1
2 � +  

∗
l − i[(l. This equation is uniquely solvable [38, Thm. 2.27],

and its solution is the previously-defined Fourier transform kC+(·, l) ∈ !2(Γ) of the
time-domain solution k+.

�

Remark 25. The direct second-kind integral equation (4.39) we have derived is
atypical in that the density and the right-hand-side involve interior data, the quantity
W−mn�

C . This nontrivial choice is essential to the proof’s success, since we need to
jointly satisfy two requirements, namely (1) that the density satisfies (4.45), and (2)
that the resulting combined field integral operator (the one in (4.39)) has available
frequency-explicit norm bounds. Its appropriateness for use in numerical methods
is not at issue since the specific choice of integral equation for the physical density
k: , while relevant to the proof of the theorem statement, is not in any way used in
the numerical solution methods.
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Lemma 4 (Frequency-explicit stability bounds for the solution of the frequency-do-
main equation (4.39)). For an obstacle satisfying a @-growth condition, the density
k+ satisfies

kC+

2

!2 (R; !2 (Γ)) ≤�1

∫
|l|>l0

l2@ 

W−mn�
C (·, l) − ilW+�C (·.l)



2
!2 (Γ) dl

+ �2

∫ 0

−l0



W−mn�
C (·, l) + iW+�C (·, l)



2
!2 (Γ) dl

+ �2

∫ l0

0



W−mn�
C (·, l) − iW+�C (·, l)



2
!2 (Γ) dl.

(4.56)

Proof. It is known that �l is invertible for every l ∈ R for Re([) ≠ 0, so that the
solution of (4.39) iskC+ = �−1

l

(
m−n �

C − i[�C
)
. We therefore have the frequency-wise

bound in terms of its operator norm,

‖kC+(·, l)‖!2 (Γ) ≤ ‖�−1
l ‖!2 (Γ)→!2 (Γ)



W−mn�
C (·, l) − i[W+�C (·, l)




!2 (Γ) ,

for all l ≥ 0.

Since, by assumption, the obstacle satisfies a @-growth condition, in view of Equa-
tion (4.27) we find that for l > l0,

‖kC+(·, l)‖!2 (Γ) ≤ �1l
2@ 

W−mn�

C (·, l) − ilW+�C (·, l)



!2 (Γ) , (4.57)

and we find that for 0 ≤ l < l0,

‖kC+(·, l)‖!2 (Γ) ≤ �2


W−mn�

C (·, l) − iW+�C (·, l)



!2 (Γ) . (4.58)

For l < 0 (see Equation (4.30)), it is noted that


kC+(·, l)

!2 (Γ) =



kC+(·, |l|)

!2 (Γ) ,
and so by Hermitian symmetry for l < −l0,

‖kC+(·, l)‖!2 (Γ) ≤ �1l
2@ 

W−mn�

C (·, |l|) − i|l|W+�C (·, |l |)



!2 (Γ)

= �1l
2@ 

W−mn�

C (·, l) − ilW+�C (·, l)



!2 (Γ) .

Similarly, for −l0 < l < 0,

‖kC+(·, l)‖!2 (Γ) ≤ �2


W−mn�

C (·, |l |) − iW+�C (·, |l|)



!2 (Γ)

= �2


W−mn�

C (·, l) + iW+�C (·, l)



!2 (Γ) .
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We can then bound in !2 of frequency using the estimate

kC+

2
!2 (R; !2 (Γ)) =

∫
Γ

∫ ∞

−∞
|kC+(r, l) |2 dl df(r) =

∫ ∞

−∞



kC+(·, l)

2
!2 (Γ) dl

≤�1

∫
|l|>l0

l2@ 

W−mn�
C (·, l) − ilW+�C (·, l)



2
!2 (Γ) dl

+ �2

∫ 0

−l0



W−mn�
C (·, l) + iW+�C (·, l)



2
!2 (Γ) dl

+ �2

∫ l0

0



W−mn�
C (·, l) − iW+�C (·, l)



2
!2 (Γ) dl,

(4.59)
as was to be shown. �

Lemma 5 (Relating the incident field ℎ to a limited time history density.). With
D∗ denoting the time-domain single-layer potential with density k∗, the function ℎ
satisfies

ℎ(r, C) =
{
−D∗(r, C), C ≥ −g

0, C < −g
for r ∈ Ω2 ∪ Γ, (4.60)

and has bounded temporal support for r ∈ Ω2 ∪ Γ,

supp ℎ(r, ·) ⊂ [−g, )∗] . (4.61)

Proof. By assumption, the incident field 1: (r, C) vanishes for (r, C) ∈ (Ω2 ∪ Γ) ×
[−)∗ − 2g,∞). Considering specifically the time region C > −g, we see then
that ℎ(r, C) = −D−(r, C) for all r ∈ Ω2 ∪ Γ. Recalling the definition of )∗ from
Section 13.1, )∗ = maxr,r′∈Γ |r − r′|/2, we find that, for C > −g and C′ < −)∗ − g
we have C − C′ − |r − r′|/2 > 0. Because this is the quantity in the delta function in
the Green’s function the density at these time values does not contribute, so, for all
r ∈ Ω2 ∪ Γ and for all C > −g, we have a restriction in the integration region to the
finite space-time region Γ × [−)∗ − g, C],

ℎ(r, C) = −D−(r, C) = −
∫ C

−)∗−g

∫
Γ

X (C − C′ − |r − r′|/2) F−(C′)k(r′, C′)
4c |r − r′| df(r′) dC′

= −
∫ C

−)∗−g

∫
Γ

X (C − C′ − |r − r′|/2) F+(C′ + )∗ + g)F−(C′)k(r′, C′)
4c |r − r′| df(r′) dC′

= −
∫ C

−)∗−g

∫
Γ

X (C − C′ − |r − r′|/2) k∗(r′, C′)
4c |r − r′| df(r′) dC′,

where the last equality is the definition of k, Equation (4.25). It is useful to define
the time-domain single layer potential

D∗(r, C) =
∫ C

−∞

∫
Γ

X (C − C′ − |r − r′|/2) k∗(r′, C′)
4c |r − r′| df(r′) dC′, (4.62)
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so that ℎ(r, C) = −D∗(r, C) for (r, C) ∈ (Ω2 ∪ Γ)×[−g,∞). Now, becausek+(r, C) ≡ 0
for all C < −g, it follows from (4.43) that ℎ(r, C) = 0 for (r, C) ∈ (Ω2 ∪ Γ)×(−∞,−g),
and so

ℎ(r, C) =
{
−D∗(r, C), C ≥ −g

0, C < −g
for r ∈ Ω2 ∪ Γ, (4.63)

showing (4.60).

It remains to show the bounded support of ℎ. Recall from the definition of k∗ that
suppk∗(r, ·) ⊂ � = [−)∗ − 2g, 0), for all r ∈ Γ. Therefore, rewriting (4.62)

D∗(r, C) =
∫
Γ

k∗(r′, C − |r − r′|/2)
4c |r − r′| df(r′),

and noting that |r − r′|/2 < )∗ for all r, r′ ∈ Ω2 ∪ Γ, it follows that ℎ(r, C) = 0
for (r, C) ∈ (Ω2 ∪ Γ) × [)∗,∞). Notice that the function ℎ(r, C) = 1: − D− (whose
trace is the boundary data for the integral equation (4.43) with solution k+) thus has
bounded temporal support on Ω2 ∪Γ, even at certain times for which scattering due
to the incident field 1 is occurring. �

Lemma 6. For all l ≥ 0, the operator norm bounds

‖(W−mn − il) (l‖!2 (Γ)→!2 (Γ) ≤ �1(1 + l2)1/2, (4.64)

and
‖(W−mn ± i) (l‖!2 (Γ)→!2 (Γ) ≤ �2(1 + l2)1/2, (4.65)

hold with �1 = �1(Γ) > 0 and �2 = �2(Γ) > 0.

Proof. Let ` ∈ !2(Γ) and define the potential* (r) = ((l`) (r). Jump properties of
the derivative of the single layer give that for r ∈ Γ, W−mn* (r) = 1

2`(r) +
(
 ∗l`

)
(r).

The references [36, Thms. 3.3 and 3.5] and [70, Thm. A.1 by J. Galkowski] establish
that there exist constants �1, �2, �3 > 0 such that for all l,

‖(l‖!2 (Γ)→!2 (Γ) ≤ �1, and


 ∗l

!2 (Γ)→!2 (Γ) ≤ �2l

1/6 logl + �3,

and, moreover, these estimates are sharp (modulo the logarithmic factors in the
latter). Therefore,

‖(W−mn − il)*‖!2 (Γ) ≤




1
2
� +  ∗l − il(l






!2 (Γ)→!2 (Γ)

‖`‖!2 (Γ)

≤ (�̃1 + �̃2l) ‖`‖!2 (Γ)

≤ �1(1 + l2)1/2 ‖`‖!2 (Γ) .
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Similarly,

‖(W−mn ± i)*‖!2 (Γ) ≤ �2(1 + l2)1/2 ‖`‖!2 (Γ) .

�

The necessary lemmas having been established, the proof of Theorem 4 can now be
presented.

Proof of Theorem 4. Step I: !2-in-time bounds on k+ in terms of a small-data
limited time history density.

We want to show that the space-time norms of k+ can be bounded in terms
of ‖k∗‖�B (�; !2 (Γ)) for some B. Since the incident field data satisfies W+1: ∈
�?+@+1(R;�1(Γ)) and W+mn1: ∈ �?+@ (R; !2(Γ)), the conditions of Lemma 3
are met. Then, applying Lemma 3 and Lemma 4, we find ourselves with the
bound (4.56) for the density k+ which we restate below,

kC+

2

!2 (R; !2 (Γ)) ≤�1

∫
|l|>l0

l2@ 

W−mn�
C (·, l) − ilW+�C (·.l)



2
!2 (Γ) dl

+ �2

∫ 0

−l0



W−mn�
C (·, l) + iW+�C (·, l)



2
!2 (Γ) dl

+ �2

∫ l0

0



W−mn�
C (·, l) − iW+�C (·, l)



2
!2 (Γ) dl.

(4.66)

Based on the expressions in the above integrands, define the differential operators S
and T± by

S(·) (r, C) =
(
i
m

mC

)@ (
W−mn +

m

mC
W+

)
, and T±(·) (r, C) =

(
W−mn ± iW+

)
,

which have the Fourier symbols,

Ŝ(·) (r, l) B l@
(
W−mn − ilW+

)
, and T̂±(·) (r, l) B

(
W−mn ± iW+

)
.

Continuing on the estimate (4.56) and using the compact temporal support of ℎ
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proved in Lemma 5,

kC+

2
!2 (R; !2 (Γ)) ≤

∫
|l|>l0

�1




Ŝ�C (·, l)


2

!2 (Γ)
dl +

∫ 0

−l0

�2




T̂+�C (·, l)


2

!2 (Γ)
dl

+
∫ l0

0
�2




T̂−�C (·, l)


2

!2 (Γ)
dl

≤ �1

∫
Γ

∫ ∞

−∞

���Ŝ�C (r, l)���2 dl df(r) + �2

∫
Γ

∫ ∞

−∞

���T̂+�C (r, l)���2 dl df(r)

+ �2

∫
Γ

∫ ∞

−∞

���T̂−�C (r, l)���2 dl df(r)

= �1

∫
Γ

∫ ∞

−∞
|Sℎ(r, C) |2 dC df(r) + �2

∫
Γ

∫ ∞

−∞
|T+ℎ(r, C) |2 dC df(r)

+ �2

∫
Γ

∫ ∞

−∞
|T−ℎ(r, C) |2 dC df(r)

= �1

∫
Γ

∫ ∞

−g
|SD∗(r, C) |2 dC df(r) + �2

∫
Γ

∫ ∞

−g
|T−D∗(r, C) |2 dC df(r)

+ �2

∫
Γ

∫ ∞

−g
|T+D∗(r, C) |2 dC df(r)

where we used (4.60) to recast the bounds in terms of D∗ in time-domain. Finally,
we thus have

kC+

2

!2 (R; !2 (Γ)) ≤ �1

∫
Γ

∫ ∞

−∞
|SD∗(r, C) |2 dC df(r)

+ �2

∫
Γ

∫ ∞

−∞
|T+D∗(r, C) |2 dC df(r) + �2

∫
Γ

∫ ∞

−∞
|T−D∗(r, C) |2 dC df(r),

(4.67)

Note that it is critical that S and T are temporally-local differential operators so that
for C < −g the fact that ℎ = 0 implies also Sℎ = 0 and Tℎ = 0. Using Plancherel’s
theorem again,

kC+

2

!2 (R; !2 (Γ)) ≤�1

∫ ∞

−∞




Ŝ*C∗(·, l)


2

!2 (Γ)
dl + �2

∫ ∞

−∞




T̂+*C∗(·, l)


2

!2 (Γ)
dl

+ �2

∫ ∞

−∞




T̂−*C∗(·, l)


2

!2 (Γ)
dl.

(4.68)

Since D∗ is a time-domain single-layer potential with density k∗, the quantities


Ŝ*C∗(·, l)



!2 (Γ)

and



T̂±*C∗(·, l)




!2 (Γ)
in (4.68) can be bounded frequency-wise

using Lemma 6. Using (4.64) and (4.65) as well as the fact that l2@ ≤ (1 + l2)@
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and merging all previous constants into the constant �,

‖k+‖2!2 (R+; !2 (Γ)) ≤ ‖k+‖
2
!2 (R; !2 (Γ)) =



kC+

2
!2 (Γ)×!2 (R; !2 (Γ))

≤ �1

∫ ∞

−∞
l2@

(
1 + l2

) 

kC∗(·, l)

2
!2 (Γ) dl

+ �2

∫ ∞

−∞

(
1 + l2

) 

kC∗(·, l)

2
!2 (Γ) dl

≤ �
∫ ∞

−∞

(
1 + l2

)@+1 

kC∗(·, l)

2
!2 (Γ) dl < ∞.

Indeed, since the incident field boundary values satisfy W+1: ∈ �@+2(R; !2(Γ)) and
W+mn1: ∈ �@+1(R; !2(Γ)), by Lemma 2 it follows that k∗ ∈ �@+1(�; !2(Γ)), and
we have therefore shown

‖k+‖!2 (R+; !2 (Γ)) ≤ � ‖k∗‖�@+1 (�; !2 (Γ)) , � = � (Γ, g, ?), (4.69)

which is Equation (4.28) in the ? = 0 case.

Step II: �?- and uniform-in-time bounds. In order to develop uniform-in-time
bounds, we will utilize Sobolev embedding theorems by proving bounds in time in
�? (R+; !2(Γ)). When the incident field is a sufficiently smooth function of time, we
define m?k: = m ?

mC ?
k: (r, C) for ? > 0, which is the quantity we seek to bound. Indeed,

by Lemma 1 given W+1: ∈ �?+@+2(R; !2(Γ)) and W+mn1: ∈ �?+@+1(R; !2(Γ))
the density k: solving (4.43) is in � ? (R; !2(Γ)) and thus by mapping properties
of the single-layer [46, Thm. 1] the function ℎ ∈ � ? (R;�1(Γ)). Considering
Equation (4.43), we have∫

Γ

k+(r′, C − |r − r′|/2)
4c |r − r′| df(r′) = −W+ℎ(r, C),

Differentiating this equation as a function of time and rewriting as a convolution
with the time-domain Green’s function we have∫ C

−∞

∫
Γ

X (C − C′ − |r − r′|/2) m?k+(r′, C′)
4c |r − r′| df(r′) dC′ = −m?W+ℎ(r, C),

This equation for the evolution of m?k+ is precisely Equation (4.43), with ?-times
temporally-differentiated data. Repeating Lemmas 3 to 5 and Step I of this proof
again, then, with m?ℎ(r, C) on the right-hand side of (4.43) instead will yield bounds
on m?k+.

Thus, with routine applications of the Leibniz formula and triangle inequalities, we
find that we have the analogue of (4.69) for ?-differentiated data

‖m?k+‖!2 (R+; !2 (Γ)) ≤ � ‖k∗‖� ?+1 (�; !2 (Γ)) < ∞, � = � (Γ, g, ?), (4.70)
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and, in conjunction with (4.69), we have thus shown (4.28),

‖k+‖� ? (R+; !2 (Γ)) ≤ � (Γ, g, ?) ‖k∗‖� ?+@+1 (�; !2 (Γ)) < ∞.

Indeed, k∗ ∈ �?+@+1(�; !2(Γ)) by virtue of Lemma 2 since the incident field data
1: ∈ �?+@+2(R; !2(Γ)) and mn1: ∈ �?+@+1(R; !2(Γ)).

Applying this resultwith ? = 1 togetherwith the one-dimensional Sobolev lemma [58,
Lemma 6.5] yields

sup
C>0
‖k(·, C)‖!2 (Γ) ≤ �̃ ‖k‖�@+1 (R+; !2 (Γ)) = �̃ ‖k+‖�@+1 (R+; !2 (Γ))

≤ � (Γ, g) ‖k∗‖�@+2 (�; !2 (Γ)) ,
(4.71)

which is (4.29), that which was to be shown. �

Remark 26. The bound (4.70) (or (4.69) in the ? = 0 case) estimates the norm
of k+ ∈ �? (R+; !2(Γ)) in terms of the norm of k∗ ∈ �?+@+1(�; !2(Γ)). To ac-
tually establish that k∗ is in �?+@+1(�; !2(Γ))—that is, is sufficiently smooth on
a bounded time interval—we used the Laplace-domain result Lemma 2, which
required only that W+1: ∈ �?+@+2(R; !2(Γ)) and W+mn1: ∈ �?+@+1(R; !2(Γ)).
Note that the Laplace-domain estimate Lemma 2 is independent of the trapping
character, as it only provides bounds on finite time intervals and thus is not infor-
mative of (nor, fortunately for the purposes of Theorem 4, hampered by the need
to account for) the decay properties of the solution affected by multiple scatter-
ing. It is interesting to note that the argument of Theorem 4 still goes through
without reliance on Lemma 2 through use of Lemma 1 with the additional regu-
larity assumption W+1: ∈ �?+2@+2(R; !2(Γ)) and W+mn1: ∈ �?+2@+1(R; !2(Γ)),
ensuring k: and therefore also k∗(·, C) = F+(C + )∗ + g)F−(C)k: (·, C) are in
�?+@+1(R; !2(Γ)) ⊂ �?+@+1(�; !2(Γ)). The finite time-interval Laplace-domain
estimate can thus be seen to bootstrap the estimate on R+, so that the overall result
requires less data regularity than required by a purely Fourier-domain argument.

13.2 Superalgebraic decay estimates of finite-time-history boundary densities
This section extends the theoretical results of the previous section, establishing not
only that the density k: is bounded in various Sobolev norms in R+ by the size of
the density on some preceding finite subinterval of the time history as was shown
in Theorem 4, but also through Theorem 5, that the Sobolev norms of the density
on time intervals of the form [),∞), ) > 0, decay rapidly as ) → ∞. More
precisely, given sufficient smoothness of the incident field, we show that the density
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decays faster than any inverse power of ) . This result is crucial in view of the time-
windowing methodology proposed in Chapter 2, since, in that context, there are
many windows that contribute to the overall solution and whose computation is not
desired over the entire space-time region of interest. In this context, the guarantees of
Theorem 4 only provide for a uniform bound overR+, and the possible accumulation
of errors from many such windows is problematic for rigorous guarantees of overall
solution accuracy. In contrast, the Theorem5 estimates on the interval [),∞),) > 0,
that decay rapidly as ) →∞ are of course greatly advantageous in connection with
the algorithm presented in Section 12 (specifically, for Theorem 3), as they provide
a termination criterion for computation of each one of the temporal densities k:
arising from the temporal windowing procedure proposed in Chapter 2. Indeed,
neglecting the contribution of many windows adds provably-small additional error,
as can be seen by summing the geometric series present in the proof of Theorem 3.

Roughly speaking, Theorem 5 establishes that if the surface density is measured to
be small for a certain period of time (approximately equal to the time it takes for a
signal to traverse a distance equal to the diameter of the obstacle), then it not only
remains small for all time thereafter, but, further, it decays superalgebraically fast
starting from the small observed value. In contrast, previous works [57, 94–96]
claim exponential decay of the solution D only relative to the total energy of the
incident wave 1.

In a less algorithmic and a more theoretical direction, this analysis can be viewed in
the context of the study of boundary integral density and local energy decay rates
for the wave equation. The study of temporal decay rates of wave scattering of
compactly-supported (finite energy) incident fields by bounded obstacles began in
the 3 = 3 case with reference [122] predicting exponential decay rates on compact
subsets of the domainΩ in the case of a spherical scatterer (though see also [65, Rem.
1]). These results were later extended to general “star-shaped” obstacles [95], with
further generalization achieved in reference [96] to a wide class of “nontrapping”
obstacles (see also Remark 21). Most of the remaining results in this area can be
found in references [16, 73, 74, 82, 83, 93, 94]—see also Remark 22 that discusses
the results of references [73, 74], which together with reference [16] represent the
only known local energy decay estimates for trapping structures.

There has been much less work concerning the decay of the densities themselves,
although, in view of Theorems 1 through 3 in Section 12 of the present chapter and
the preceding discussion concerning decay rates of the wave equation itself, such
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results can be very useful with regards to both theory and numerical implemen-
tation. In this connection, the author is only aware of reference [57], which uses
techniques from classical scattering theory to show (only for nontrapping obstacles)
that the integral equation operator �l can be analytically continued to an invertible
operator �l,f on the uniform strip −f < Im(l) ≤ 0 along the entire real l axis,
and it conjectures that the inverse operator �−1

l,f satisfies in that strip the bound

�−1
l,f




!2 (Γ)→!2 (Γ) ≤ � (f) (1 + |l|

2)@/2 for some @. The claimed result on expo-
nential decay in that reference rests entirely on the validity of this conjecture via a
straightforward application of Cauchy’s theorem.

We proceed instead by using known results that establish @-growth bounds of the
form 

�−1

l




!2 (Γ)→!2 (Γ) ≤ � (1 + l

2)@/2, l ≥ 0,

for real values ofl, under a variety of geometric contexts (cf. Remark 21), including
“parabolic” and “hyperbolic” trapping domains, nontrapping domains, etc. Utilizing
these @-growth bounds we establish, in Theorem 5, that, for smooth incident fields
of compact temporal support, the scattering density (and, thus, the fields) decay
superalgebraically fast (i.e. faster than any negative power of C) as C grows. In fact,
Theorem 5 provides a new avenue to the study of decay rates for wave scattering
problems for new classes of obstacles which can be shown to satisfy the @-growth
condition given in Definition 2. In particular, we conclude that superalgebraically-
fast decay takes place for all such obstacle types listed in Remark 21. As an example,
in view of the result [37], which shows that parabolic trapping regions satisfy the @-
growth condition with @ = 2 (or @ = 3—see also Remark 23), Theorem 5 shows that
superalgebraically-fast decay takes place for parabolic trapping regions—for which
no decay results were previously known. Examples are provided in Figure 4.1 of
such trapping obstacles, for which no decay rates were hitherto established. Indeed,
this is the first result showing decay rates for any kind of connected trapping obstacle
(see Remark 23, and cf. the results of references [16, 73, 74] showing decay for
classes of obstacle formed by certain finite unions of several obstacles, the only
previously-established decay rates for a trapping obstacle of any kind). In contrast,
our superalgebraic decay results are weaker than the exponential decay results
presented for certain other obstacle types previously studied [73, 96], and they could
be strengthened by extending the present results into the complex frequency domain,
perhaps along the lines of [28, 29]. Indeed, it has been suggested [37, p. 855] that
generalization from existing methods [47] could be utilized to pursue wave equation
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Figure 4.1: Examples of connected trapping obstacles that satisfy a @-growth con-
dition (@ = 3) and for which superalgebraically-fast wave equation time decay rates
are established in this thesis. Left: Visualization of the obstacle given in Remark 23,
and which serves to demonstrate the existence of connected trapping obstacles sat-
isfying the @-growth condition of Definition 2. Right: An elongated cavity trapping
obstacle, with a vertical dimension of 12 units and rectangular dimensions of 4 units,
that also satisfies a @-growth condition (@ = 3).

decay (and, indeed, possibly exponential decay).

We first state the main result, Theorem 5, and then outline the proof approach. It
may be helpful to recall the definitions and assumptions made at the beginning of
Section 13.1, which are assumed throughout this section; in particular note that
per Equation (4.25) is :-dependent (though for notational ease this :-dependence
is suppressed—see point 2 in Remark 20) and is supported in time in the bounded
interval � defined in Equation (4.24).

Theorem 5. Let Γ be the boundary of an obstacle satisfying a @-growth condition,
and let = and ? be given positive and nonnegative integers, respectively. Assume
that the incident field 1: satisfies W+1: ∈ �?+(=+1) (@+1) (R;�1(Γ)) and W+mn1: ∈
�?+=(@+1)+@ (R; !2(Γ)). For arbitrary ) > 1, the density k: can be bounded in the
�? ( [),∞); !2(Γ)) norm as

‖k: ‖� ? ( [),∞); !2 (Γ)) ≤ � (Γ, g, ?, =))1−= ‖k∗‖� ?+=(@+1) (�; !2 (Γ)) . (4.72)

The choice of ? = 1, additionally, allows the uniform estimate in time of

sup
C>)

‖k: (·, C)‖!2 (Γ) ≤ � (Γ, g, =))1−= ‖k∗‖�=(@+1)+1 (�; !2 (Γ)) . (4.73)
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The proof of Theorem 5 proceeds by certain Fourier-shifting and convolution tech-
niques and an overall approach based on integration-by-parts, and will require differ-
entiation of the boundary integral density as a function of frequency l. Estimating
the resultant frequency-derivative terms in this approach necessitates establishing
certain continuity results on the boundary integral density in frequency-domain, as
well as new analysis on certain frequency-differentiated boundary integral operators.
Thus, Definition 5 introduces certain frequency-differentiated boundary integral op-
erators, and, in Lemma 7, certain frequency-explicit norms for these operators are
given. Lemma 9, in turn, guarantees that for smooth data, the frequency-domain
integral equation solution is continuously differentiable as a function of frequency,
and Lemma 10 provides pointwise bounds on such derivatives (for obstacles satis-
fying a @-growth condition). Finally, Lemma 11 is a technical lemma (of a similar
character to some elements of the proof of Theorem 4), establishing bounds on the
integrals of certain quantities that arise from the estimates in Lemma 10. The proof
of Theorem 5 concludes the section.

A certain “time-history” technique used for the proof of Theorem 5 relies critically
on use of certain finite-time boundary integral relations, according to which, the
solution at any time future to a certain time point, can be obtained exactly, in
absence of additional illumination, from the solution values in a finite time interval
prior the given time point. Upon Fourier transformation, this approach allows
us to leverage existing @-growth bounds on the inverse frequency-domain integral
operators. The proof of decay then results by integration by parts in the frequency
domain. Importantly, the technical Lemma 11 makes essential use of the bounded
temporal support of the right-hand-side function ℎ(r, C), established in Lemma 5,
in order to obtain an upper bound on certain powers of the temporal variable C that
arise from frequency-differentiation. This is one of the main enabling steps in the
overall decay proof, in that it allows for a study based purely on operator-norm
estimates for real frequencies l to establish decay rates for scattering problems.
As indicated in [37] alternative complex-variable approaches would require use of
resolvent bounds for complex values of l, which are not available at this time.

Before proceeding it is necessary to first define and establish properties of frequency-
differentiated boundary integral operators.
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Definition 5. For < ∈ N, with reference to Definition 1, define the operators

m<l �l =


m<l  

∗
l − im<l (l, for 0 ≤ l < l0

m<l  
∗
l − i<m<−1

l (l − ilm<l (l, for l > l0,
(4.74)

where ( (
m<l  

∗
l

)
`
)
(r) B

∫
Γ

(
m<l
m�l (r, r′)
mn(r)

)
`(r′) df(r′), r ∈ Γ, (4.75)

and ( (
m<l (l

)
`
)
(r) B

∫
Γ

(
m<l�l (r, r′)

)
`(r′) df(r′), r ∈ Γ. (4.76)

Lemma 7. The boundary integral operator �l defined in Definition 1 can be
continuously differentiated with respect to the parameter l ≥ 0 at every l ≠ l0.
That is, for < ∈ N and letting l = l∗ + Δl, Δl ∈ R,

lim
Δl→0

m<−1
l �l − m<−1

l �l∗

Δl
= m<l �l∗ , (4.77)

where m8l�l is as defined in Equation (4.74) (and m0
l = �) and all operators are

understood in the sense of !2(Γ). The operator m<l �l, < ∈ N, satisfies the operator
norm bound

‖m<l �l‖!2 (Γ)→!2 (Γ) ≤ �1 + �2l (4.78)

for all nonnegative l ≠ l0, where the finite constants � 9 = � 9 (Γ, <) > 0 are
l-independent.

Proof of Lemma 7. We must show for an arbitrary fixed l∗ ≥ 0, that for any 5 ∈
!2(Γ) and < ∈ N, the limit

lim
Δl→0





(m<−1
l �l − m<−1

l �l∗

Δl
− m<l �l∗

)
5






!2 (Γ)

= 0.

Assuming that the result holds for < − 1 and < − 2, we use induction on < (the base
case < = 1 proceeds identically to below, except that terms with a (< − 1) factor
are taken to be zero). Considering l∗ > l0,

lim
Δl→0





(m<−1
l �l − m<−1

l �l∗

Δl
− m<l �l∗

)
5






!2 (Γ)

= lim
Δl→0

∫
Γ

����( (m<−1
l �l 5 ) (r) − (m<−1

l �l∗ 5 ) (r)
Δl

)
− (ml�l∗ 5 ) (r)

����2 df(r)
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Expanding the first integrand (the quotient) in this quantity reveals

lim
Δl→0

1
Δl

(
(m<−1
l �l 5 ) (r) − (m<−1

l �l∗ 5 ) (r)
)
=

lim
Δl→0

[ ∫
Γ

1
Δl

(
m<−1
l

m�l (r, r′)
mn(r) − m<−1

l

m�l∗ (r, r′)
mn(r)

)
5 (r′) df(r′)

− i(< − 1)
∫
Γ

1
Δl

(
m<−2
l �l (r, r′) − m<−2

l �l∗ (r, r′)
)
5 (r′) df(r′)

−i
(
l

Δl

∫
Γ

m<−1
l �l (r, r′) 5 (r) df(r′)

− l∗
Δl

∫
Γ

m<−1
l �l∗ (r, r′) 5 (r) df(r′)

) ]
,

while the last two terms can be expressed as

lim
Δl→0

∫
Γ

m<−1
l �l (r, r′) 5 (r′) df(r′)

+ lim
Δl→0

l∗

∫
Γ

1
Δl

(
m<−1
l �l (r, r′) − m<−1

l �l∗ (r, r′)
)
5 (r′) df(r′).

Using dominated convergence (the functions �l are smooth with respect to l, and
thus every term in the preceding expressions can be bounded independently of Δl),
we obtain

lim
Δl→0

1
Δl

(
(m<−1
l �l 5 ) (r) − (m<−1

l �l∗ 5 ) (r)
)

=

∫
Γ

(
m<l
m�l∗ (r, r′)
mn(r) − i(< − 1)m<−1

l �l∗ (r, r′)
)
5 (r) df(r′)

− i
∫
Γ

m<−1
l �l∗ (r, r′) 5 (r df(r′) − il∗

∫
Γ

m<l�l (r, r′) 5 (r) df(r′)

= (m<l  ∗l∗ 5 ) (r) − i<(m<−1
l (l∗ 5 ) (r) − il∗(m<l (l∗ 5 ) (r)

= (m<l �l∗ 5 ) (r).

Thus as desired,

lim
Δl→0





(m<−1
l �l − m<−1

l �l∗

Δl
− m<l �l∗

)
5






!2 (Γ)

= 0.

The case 0 ≤ l∗ < l0 proceeds similarly, but is simpler due to the simpler form of
definition of �l in that regime and is omitted for brevity.

We next show the frequency-explicit operator norm bound in (4.78). For 0 ≤ l <

l0, we have (first case in Equation (4.74))

m<l �l = m
<
l  
∗
l − im<l (l,
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and therefore,

‖m<l �l‖!2 (Γ)→!2 (Γ) ≤ ‖m<l  ∗l‖!2 (Γ)→!2 (Γ) + ‖m<l (l‖!2 (Γ)→!2 (Γ) . (4.79)

For l > l0, we have (second case in Equation (4.74))

m<l �l = m
<
l  
∗
l − i<m<−1

l (l − ilm<l (l,

and therefore,

‖m<l �l‖!2 (Γ)→!2 (Γ) ≤ ‖m<l  ∗l‖!2 (Γ)→!2 (Γ)

+ <‖m<−1
l (l‖!2 (Γ)→!2 (Γ) + l‖m<l (l‖!2 (Γ)→!2 (Γ) .

(4.80)

Clearly, the desired bound (4.78) follows immediately from bounds on the norms
of the operators in (4.79) and (4.80) and specifically, that the boundary integral
operator m<l  ∗l defined by (4.75) satisfies

‖m<l  ∗l‖!2 (Γ)→!2 (Γ) ≤

�1l, if m = 1,

�1l + �2, otherwise,
(4.81)

while the boundary integral operator m<l (l defined by (4.76) satisfies

‖m<l (l‖!2 (Γ)→!2 (Γ) ≤ �2. (4.82)

To prove that (4.81) and (4.82) hold, we extend (using the same proof techniques—
namely upper-bounds on the integral operator kernel in conjunction with the Riesz-
Thorin interpolation theorem) the results of [36] beyond the < = 0 case proved
there, and consequently we assume < ≥ 1 below. More specifically, for an integral
operator

)`(r) =
∫
Γ

^(r, r′)`(r′)df(r′),

the Riesz-Thorin interpolation theorem [64, Thm. 1.3.4] guarantees that

‖) ‖!2 (Γ)→!2 (Γ) ≤ ‖) ‖
1/2
!1 (Γ)→!1 (Γ) ‖) ‖

1/2
!∞ (Γ)→!∞ (Γ) ,

where
‖) ‖!1 (Γ)→!1 (Γ) = ess supr′∈Γ

∫
Γ

|^(r, r′) | df(r),

and
‖) ‖!∞ (Γ)→!∞ (Γ) = ess supr∈Γ

∫
Γ

|^(r, r′) | df(r′).
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Further, if |^(r, r′) | ≤ ˜̂(r, r′) for all r, r′ ∈ Γ and ˜̂(r, r′) = ˜̂(r′, r), then clearly

‖) ‖!2 (Γ)→!2 (Γ) ≤ ess supr∈Γ

∫
Γ

˜̂(r, r′) df(r′).

We first show the result for ) = m<l  ∗l. A computation shows

^(r, r′) = m<l
m�l (r, r′)
mn(r) =

(r − r′) · a(r)
4c |r − r′|3

eil|r−r′ | (i|r − r′|)< (il |r − r′| + < − 1) .

Defining ˜̂< (r, r′) = 1
4c |r−r′ |2−< (l diam(Γ) + < − 1), we see that |^(r, r′) | ≤ ˜̂< (r, r′),

and therefore

‖m<l  ∗l‖!2 (Γ)→!2 (Γ) ≤ ess supr∈Γ

∫
Γ

˜̂< (r, r′) df(r′)

≤

�1l, if m = 1,

�1l + �2, otherwise,

provided Γ is a Lipschitz boundary. This shows Equation (4.81).

Next, we consider ) = m<l (l. Clearly,

^(r, r′) = m<l�l (r, r′) = (i|r − r′|)< eil|r−r′ |

|r − r′| .

Defining ˜̂< (r, r′) = diam(Γ)<−1, we see that |^(r, r′) | ≤ ˜̂< (r, r′), and therefore

‖m<l  ∗l‖!2 (Γ)→!2 (Γ) ≤ ess supr∈Γ

∫
Γ

˜̂< (r, r′) df(r′) ≤ �3.

This shows Equation (4.82). �

Lemma 8 (Ramm [105]). Consider the parametrized linear bounded operator �l :
!2(Γ) → !2(Γ) and parametrized function 5 (l) ∈ !2(Γ), as well as the equation
for `(l) ∈ !2(Γ),

�l`(l) = 5 (l), (4.83)

for each l ∈ Δ, where Δ ⊂ R is an open bounded set. Assume that

1. Equation (4.83) is uniquely solvable for every l ∈ Δ0 = {l : |l − l0 | ≤ A},
for some A > 0 and l0 ∈ Δ, Δ0 ⊂ Δ,

2. 5 (l) is continuous with respect to l ∈ Δ0, supl∈Δ0
‖ 5 (l)‖!2 (Γ) ≤ 20,

3. limℎ→0 supl∈Δ0,E∈" ‖(�l+ℎ − �l)E‖!2 (Γ) = 0, where" is an arbitrary bounded
subset of !2(Γ),
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4. and that supl∈Δ0, 5 ∈#


�−1

l 5



!2 (Γ) ≤ 21, where # is an arbitrary bounded

subset of !2(Γ) and where 21 may depend on # .

Then,
lim
ℎ→0
‖`(l + ℎ) − `(l)‖!2 (Γ) = 0.

Lemma 9. Let ' ∈ �< (R+ \ l0; !2(Γ)), and let ` be the solution of the integral
equation

(�l`) (r, l) = '(r, l),

and defined for negative l by Hermitian symmetry. Then

` ∈ �< (R; !2(Γ)),

and there exist constants {2<
8
, 8 = 1, . . . , <} such that for all l ∈ R+ \ l0,(

�l
(
m<l `

) )
(r, l) = m<l '(r, l) −

<∑
8=1

2<8
(
m8l�l

) (
m<−8l `

)
(r, l), (4.84)

where equality is in the sense of !2(Γ).

Proof. Because �l is an invertible linear operator that is continuous and bounded
as a function of the parameter l, and ' is a continuous map into !2(Γ) for all
nonnegative l ≠ l0, the conditions of Lemma 8 are met (for the operator �l and
right-hand side '), and by that lemma, it follows that ` is also a continuous function
of l. Thus, Equation (4.84) is trivially true for < = 0. The argument then proceeds
by induction in ?, where it is assumed that for each ? ≤ B (and B < <, since the
induction must terminate at B + 1 = < depending on the regularity of '), ` ∈ � ?

and that (4.84) holds. We must show that the function ` = `(r, l) is B + 1 times
differentiable in l, or, more precisely, that ` ∈ �B+1(R; !2(Γ)). We must further
show that there exists {2B+1

8
, 8 = 1, . . . , B + 1} so that (4.84) holds for B + 1. (The

spatial r-dependence of ` is suppressed below for clarity, but all equality is in the
sense of !2(Γ).)

For an arbitrary nonnegative l∗ ≠ l0, let l = l∗ + Δl, Δl ∈ R. We wish to
show that mBl` is differentiable at l∗, and do this by showing a certain quotient of
increments has a finite limit. By assumption, ` satisfies

�lm
B
l`(l) = mBl'(l) −

B∑
?=1

2B? (m
?
l�l)mB−?l `(l),
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and

�l∗m
B
l`(l∗) = mBl'(l∗) −

B∑
?=1

2B? (m
?
l�l∗)m

B−?
l `(l∗).

Subtracting the second equation from the first, adding and subtracting �l∗mBl`(l)
on the left, and moving some terms to the right-hand side yields

�l∗m
B
l`(l) − �l∗mBl`(l∗) = mBl'(l) − mBl'(l∗)

−
B∑
?=1

2B?
[
(m?l�l)mB−?l `(l) − (m?l�l∗)m

B−?
l `(l∗)

]
− (�l − �l∗)mBl`(l).

Considering the expression in brackets in the preceding equation, adding zero results
in the identity

(m?l�l)mB−?l `(l) − (m?l�l∗)m
B−?
l `(l∗) =(

m
?
l�l − m?l�l∗

) (
m
B−?
l `(l) − mB−?l `(l∗)

)
−

(
m
?
l�l − m?l�?l∗

)
m
B−?
l `(l∗) + (m?l�l∗)

(
m
B−?
l `(l) − mB−?l (l∗)

)
,

which we use to rewrite that same equation as

�l∗m
B
l`(l) − �l∗mBl`(l∗) = mBl'(l) − mBl'(l∗)

−
B∑
?=1
2B?

[ (
m
?
l�l − m?l�l∗

) (
m
B−?
l `(l) − mB−?l `(l∗)

)
−

(
m
?
l�l − m?l�?l∗

)
m
B−?
l `(l∗) + (m?l�l∗)

(
m
B−?
l `(l) − mB−?l `(l∗)

) ]
− (�l − �l∗)mBl`(l).

Multiplying this equation by �−1
l∗ , we next show that the quotient of differences

1
Δl

(
mBl`(l) − mBl`(l∗)

)
inherent in this equation has a finite limit for each l∗.

Using the triangle inequality, we have

lim
Δl→0







 1
Δl

(
mBl`(l) − mBl`(l∗)

)
− �−1

l∗m
B+1
l '(l∗)

−�−1
l∗

B+1∑
?=1

2B+1? (m
?
l�l)mB+1−?l `(l∗)








!2 (Γ)

≤ lim
Δl→0



�−1
l∗




!2 (Γ)→!2 (Γ)





 1
Δl

(
mBl'(l) − mBl'(l∗)

)
− mB+1l '(l∗)






!2 (Γ)
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+ lim
Δl→0



�−1
l∗




!2 (Γ)→!2 (Γ)







 B∑
?=1

2B?

[
m
?
l�l − m?l�l∗

Δl

(
m
B−?
l `(l) − mB−?l `(l∗)

)
−
m
?
l�l − m?l�l∗

Δl
m
B−?
l `(l∗) +

(
m
?
l�l∗

) mB−?l `(l) − mB−?l `(l∗)
Δl

]
+
�l − �l∗
Δl

mBl`(l) +
B+1∑
?=1

2B+1? (m
?
l�l∗)m

B+1−?
l `








!2 (Γ)

Since by hypothesis ' ∈ �< and B + 1 ≤ <, the first limit on the right-hand side
of this inequality vanishes. In the second limit expression, the first term in the
sum also vanishes since firstly by Lemma 7, m

?
l�l−m ?l�l∗

Δl
→ m

?+1
l �l∗ , while at the

same time mB−?l ` is continuous by the inductive hypothesis in order that the quantity
‖mB−?l `(l) − mB−?l `(l∗)‖!2 (Γ) → 0 as Δl→ 0. We thus have

lim
Δl→0







 1
Δl

(
�l∗m

B
l`(l) − �l∗mBl`(l∗)

)
− mB+1l '(l∗)

−
B+1∑
?=1

2B+1? (m
?
l�l)mB+1−?l `(l∗)








!2 (Γ)

≤ lim
Δl→0

�







 B∑
?=1

2B?

[
(m?l�l∗)m

B+1−?
l `(l∗) − (m?+1l �l∗)m

B−?
l `(l∗)

]
+
�l − �l∗
Δl

mBl`(l) +
B+1∑
?=1

2B+1? (m
?
l�l∗)m

B+1−?
l `(l∗)








!2 (Γ)

.

Using the identity

�l − �l∗
Δl

mBl`(l) =
�l − �l∗
Δl

(
mBl`(l) − mBl`(l∗)

)
+
�l − �l∗
Δl

mBl`(l∗)

and the triangle inequality we further have

lim
Δl→0







 1
Δl

(
�l∗m

B
l`(l) − �l∗mBl`(l∗)

)
− mB+1l '(l∗)

−
B+1∑
?=1

2B+1? (m
?
l�l)mB+1−?l `(l∗)








!2 (Γ)
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≤ lim
Δl→0

�







 B∑
?=1

2B?

[
(m?l�l∗)m

B+1−?
l `(l∗) − (m?+1l �l∗)m

B−?
l `(l∗)

]
+
�l − �l∗
Δl

mBl`(l∗) +
B+1∑
?=1

2B+1? (m
?
l�l∗)m

B+1−?
l `(l∗)








!2 (Γ)

+ lim
Δl→0

�





�l − �l∗Δl

(
mBl`(l) − mBl`(l∗)

)




!2 (Γ)

.

The second limit on the right-hand side clearly vanishes since ` is B-times continu-
ously differentiable at l∗, while, conversely, the limit of the expression �l−�l∗

Δl
→

ml�l∗ . Finally, therefore, the limit obeys the inequality

lim
Δl→0







 1
Δl

(
�l∗m

B
l`(l) − �l∗mBl`(l∗)

)
− mB+1l '(l∗)

−
B+1∑
?=1

2B+1? (m
?
l�l)mB+1−?l `(l∗)








!2 (Γ)

≤�







 B∑
?=1

2B?

[
(m?l�l∗)m

B+1−?
l `(l∗) − (m?+1l �l∗)m

B−?
l `(l∗)

]
+(ml�l∗)mBl`(l∗) +

B+1∑
?=1

2B+1? (m
?
l�l∗)m

B+1−?
l `(l∗)








!2 (Γ)

.

Making the selections 2B+11 = −1 + 2B1, 2
B+1
? = −2B? + 2B?−1 (? = 2, . . . , B), 2B+1

B+1 = 2
B
B

ensures that the right-hand side, a fixed quantity independent of Δl, vanishes.
This shows that mBl` is differentiable and establishes that Equation (4.84) holds for
arbitrary l = l∗. Continuity of mB+1l ` follows, as in the case for `, by application
of the result of Lemma 8 since the right-hand-side of (4.84) is continuous by the
inductive hypothesis, and, as previously mentioned, the operator �l satisfies the
required conditions for that lemma. �

Lemma 10. Assume the obstacle satisfies a @-growth condition. Let ' ∈ �< (R+ \
l0; !2(Γ)), and let ` be the solution of the integral equation

(�l`) (r, l) = '(r, l),

for each l ≥ 0 and defined for negative l by Hermitian symmetry. Then there exist
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coefficients 1<
8 9
> 0 and 2<

8
> 0 such that for l ≠ ±l0, we have



m<l `(·, l)

!2 (Γ) ≤
<−1∑
8=0

©­«
(8+1) (@+1)−1∑

9=0
1<8 9 |l| 9



m<−8l '(·, |l|)



!2 (Γ)

ª®¬
+
<(@+1)∑
8=0

2<8 |l|8 ‖`(·, l)‖!2 (Γ) ,

(4.85)

and coefficients 3<
8 9
> 0 and 4<

8
> 0 so that for l ≠ ±l0, we have



m<l `(·, l)

2
!2 (Γ) ≤

<−1∑
8=0

©­«
(8+1) (@+1)−1∑

9=0
3<8 9l

2 9 

m<−8l '(·, |l|)


2
!2 (Γ)

ª®¬
+
<(@+1)∑
8=0

4<8 l
28 ‖`(·, l)‖2

!2 (Γ) .

(4.86)

Proof. By Lemma 9, ` ∈ �< (R; !2(Γ)) so for l ≠ ±l0 all quantities in the
inequalities are well-defined, and there exist 0B+1

:
such that for l ∈ R+ \ l0 the

equation(
mB+1l `

)
(r, l) = �−1

l

(
mB+1l '(r, l) −

B+1∑
:=1

0B+1: (m
:
l�l) (mB+1−:l `) (r, l)

)
holds in !2(Γ). To prove the bound (4.85), assume the result holds for < ≤ B, and
consider < = B + 1 (the base case < = 0 is trivially satisfied as the first sum in
the inequality is dropped). Using Definition 2 of the @-growth condition as well as
operator norms from Lemma 7 (Equation (4.78)), there exist positive �1, �2, U:0,
and U:1 such that for alll ∈ R+ \l0, the inequalities



�−1
l




!2 (Γ)→!2 (Γ) ≤ �1+�2l

@

and


m:l�l

!2 (Γ)→!2 (Γ) ≤ U:0 + U:1l hold, and therefore we obtain for l ≠ ±l0,



mB+1l `(·, l)



!2 (Γ) ≤ (�1 + �2 |l |@)

( 

mB+1l '(·, l)



!2 (Γ)

+
B+1∑
:=1
|0B+1: | (U:0 + U:1 |l|)



mB+1−:l `(·, l)



!2 (Γ)

)
.

(4.87)

Substituting in the result of the inductive hypothesis (that is, that Equation (4.85)
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holds for < ≤ B),

mB+1l `(·, l)



!2 (Γ) ≤ (�1 + �2 |l |@)



mB+1l '(·, l)



!2 (Γ)

+
B+1∑
:=1
|0B+1: |

(
�1U:0 + �2U:0 |l |@ + �1U:1 |l| + �2U:1 |l|@+1

)
·

·

B−:∑
8=0

(8+1) (@+1)−1∑
9=0

1B+1−:8 9 |l| 9


mB+1−:−8l '(·, l)




!2 (Γ)

+
(B+1−:) (@+1)∑

8=0
2B+1−:8 |l|8 ‖`(·, l)‖!2 (Γ)

]
,

and then, expanding the products results in the inequality

mB+1l `(·, l)



!2 (Γ) ≤ (�1 + �2 |l|@)



mB+1l '(·, l)



!2 (Γ)

+
B+1∑
:=1

B−:∑
8=0

(8+1) (@+1)−1∑
9=0

|0B+1: |1
B+1−:
8 9

(
�1U:0 |l| 9 + �2U:0 |l |@+ 9

+�1U:1 |l| 9+1 + �2U:1 |l|@+ 9+1
) 

mB+1−:−8l '(·, l)




!2 (Γ)

+
B+1∑
:=1

(B+1−:) (@+1)∑
8=0

|0B+1: |2
B+1−:
8

(
�1U:0 |l|8 + �2U:0 |l|@+8

+�1U:1 |l|8+1 + �2U:1 |l|@+8+1
)
‖`(·, l)‖!2 (Γ) .

Considering this final inequality, it can be seen that the maximal power of |l | in the
first sum-term expression is at the indices : = 1, 8 = B − 1 and 9 = B(@ + 1) − 1, for
which the term present in the above inequality is |l|@+(B(@+1)−1)+1 ‖ml'(·, l)‖!2 (Γ) =

|l | (B+1) (@+1)−1 ‖ml'(·, l)‖!2 (Γ) , and which is found in (4.85) for < = B + 1. Sim-
ilarly, the maximal power of |l | in the second sum-term expression is at the in-
dices : = 1 and 8 = B(@ + 1), for which the term in the above inequality above
equals |l| (B+1) (@+1) ‖`(·, l)‖!2 (Γ) , which is also present in (4.85) for < = B + 1.
Since inspection of this final inequality shows that there is no term of the form
|l| 9



mB+1−:−8l '(·, l)



!2 (Γ) or |l|

8 ‖`(·, l)‖!2 (Γ) that is not also present in Equa-
tion (4.85) for < = B + 1, inequality (4.85) is established.

The inequality (4.86) follows immediately from (4.85) using the formula


∑<

8=1 58


2 ≤

<
∑<
8=1 ‖ 58‖

2. �

Lemma 11. For l ≥ 0 let

'(r, l) =
(
W−mn − i[W+

)
�C (r, l), r ∈ Γ,
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where �C is defined by Equation (4.40) and [ is as defined in Definition 1, and
assume ' ∈ �< (R+ \ l0; !2(Γ)) and k∗ ∈ �=+1(�; !2(Γ)) for some = > 0. Then
for 0 ≤ 8 ≤ < and 0 ≤ 9 ≤ =∫ ∞

0
l2 9 

m<−8l '(·, l)



2
!2 (Γ) dl ≤ � ‖k∗‖2� 9+1 (�; !2 (Γ)) ,

where � is independent of k.

Proof. We have∫ ∞

0
l2 9 

m<−8l '(·, l)



2
!2 (Γ) dl =

∫
Γ

∫ ∞

0

���(̂8 9<�C (r, l)���2 dl df(r), (4.88)

where the operator (̂8 9< is defined as

(̂8 9< = l
9m<−8l

(
W−mn − i[W+

)
.

Now, [ is defined piecewise as [ = l for l > l0 and [ = 1 for 0 ≤ l < l0. The
argument requires certain estimates to be made in time-domain, and, for that reason,
it becomes useful to consider the splitting of (4.88)∫ ∞

0
l2 9 

m<−8l '(·, l)



2
!2 (Γ) dl

=

∫
Γ

(∫ l0

0
+
∫ ∞

l0

) ���(̂8 9<�C (r, l)���2 dl df(r).

Then, with a view to matching (̂8 9< on each integration region, define the operators
with Fourier symbols

(̂1
8 9< = l

9m<−8l (W−mn − ilW+), and (̂2
8 9< = l

9m<−8l (W−mn − iW+)

and which are in time-domain

(1
8 9< = (i

m

mC
) 9 (8C)<−8 (W−mn +

m

mC
W+), and (2

8 9< = (i
m

mC
) 9 (8C)<−8 (W−mn − iW+).

These definitions are used in conjunction with Plancherel’s theorem to observe that∫ ∞

0
l2 9 

m<−8l '(·, l)



2
!2 (Γ) dl

≤
∫
Γ

∫ ∞

−∞

���(̂1
8 9<�

C (r, l)
���2 dl df(r) +

∫
Γ

∫ ∞

−∞

���(̂2
8 9<�

C (r, l)
���2 dl df(r)

=

∫
Γ

∫ ∞

−∞

���(1
8 9<ℎ(r, C)

���2 dC df(r) +
∫
Γ

∫ ∞

−∞

���(2
8 9<ℎ(r, C)

���2 dC df(r)

=

∫
Γ

∫ )∗

−g

���(1
8 9<D∗(r, C)

���2 dC df(r) +
∫
Γ

∫ )∗

−g

���(2
8 9<D∗(r, C)

���2 dC df(r),
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where the last equality follows by using the result of Lemma 5, that on Γ the function
ℎ is temporally supported in [−g, )∗] and is equal to D∗ on Γ × [−g, )∗]. Defining
for clarity the functions D̃1 = (W−mn + m

mC
W+)D∗ and D̃2 = (W−mn − iW+)D∗, we have by

the Leibniz product rule∫ ∞

0
l2 9 

m<−8l '(·, l)



2
!2 (Γ) dl

≤
∫
Γ

∫ )∗

−g

����(i mmC ) 9 (8C)<−8D̃1(r, C)
����2 dC df(r)

+
∫
Γ

∫ )∗

−g

����(i mmC ) 9 (8C)<−8D̃2(r, C)
����2 dC df(r)

=

∫
Γ

∫ )∗

−g

����� 9∑
ℓ=0

0ℓ

(
mℓ

mCℓ
(8C)<−8

) (
m 9−ℓ

mC 9−ℓ
D̃1(r, C)

)�����
2

dC df(r)

+
∫
Γ

∫ )∗

−g

����� 9∑
ℓ=0

0ℓ

(
mℓ

mCℓ
(iC)<−8

) (
m 9−ℓ

mC 9−ℓ
D̃2(r, C)

)�����
2

dC df(r).

Considering the derivative mℓ

mCℓ
(iC)<−8 in these expressions, we further have∫ ∞

0
l2 9 

m<−8l '(·, l)



2
!2 (Γ) dl

=

∫
Γ

∫ )∗

−g

����� 9∑
ℓ=0

0̃ℓ

(
8<−8C<−8−ℓ

) (
m 9−ℓ

mC 9−ℓ
D̃1(r, C)

)�����
2

dC df(r)

+
∫
Γ

∫ )∗

−g

����� 9∑
ℓ=0

0̃ℓ

(
8<−8C<−8−ℓ

) (
m 9−ℓ

mC 9−ℓ
D̃2(r, C)

)�����
2

dC df(r),

where 0̃ℓ = (<−8)!
(<−8−ℓ)!0ℓ for < − 8 − ℓ ≥ 0 and 0̃ℓ = 0 for < − 8 − ℓ < 0. Since the

C-integration region is limited to the bounded region [−g, )∗] the factors C<−8−ℓ can
be bounded above by a constant, and thus∫ ∞

0
l2 9 

m<−8l '(·, l)



2
!2 (Γ) dl

≤ �1

9∑
ℓ=0

∫
Γ

∫ )∗

−g

(���� mℓmCℓ D̃1(r, C)
����2 + ���� mℓmCℓ D̃2(r, C)

����2) dC df(r)

≤ �1

9∑
ℓ=0

∫
Γ

∫ ∞

−∞

(���� mℓmCℓ D̃1(r, C)
����2 + ���� mℓmCℓ D̃2(r, C)

����2) dC df(r),

where the last inequality estimates above the !2 norm on the finite region [−g, )∗] by
the full !2(R) norm. Recalling the definitions of D̃1 and D̃2 as D̃1 = (W−mn + m

mC
W+)D∗
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and D̃2 = (W−mn − iW+)D∗, we thus continue in the frequency domain and estimate,∫ ∞

0
l2 9 

m<−8l '(·, l)



2
!2 (Γ) dl

≤ �1

9∑
ℓ=0

(∫
Γ

∫ ∞

−∞

��lℓ (W−mn − ilW+)*C∗(r, l)
��2 dl df(r)

+
∫
Γ

∫ ∞

−∞

��lℓ (W−mn − iW+)*C∗(r, l)
��2 dl df(r)

)
≤ �1

∫
Γ

∫ ∞

−∞

���(1 + l2) 9/2(W−mn − ilW+)*C∗(r, l)
���2 dl df(r)

+ �1

∫
Γ

∫ ∞

−∞

���(1 + l2) 9/2(W−mn − iW+)*C∗(r, l)
���2 dl df(r).

We thus have shown the estimate∫ ∞

0
l2 9 

m<−8l '(·, l)



2
!2 (Γ) dl ≤ �1

∫ ∞

−∞
(1 + l2) 9



(m−n − il)*C∗(·, l)


2
!2 (Γ) dl

+ �1

∫ ∞

−∞
(1 + l2) 9



(W−mn − iW+)*C∗(·, l)


2
!2 (Γ) dl.

(4.89)

By Lemma 6, the frequency-wise operator bounds

(W−mn − ilW+)*C∗(·, l)



!2 (Γ) ≤ � (1 + l

2)1/2


kC∗(·, l)

!2 (Γ) (4.90)

and 

(W−mn − iW+)*C∗(·, l)



!2 (Γ) ≤ � (1 + l

2)1/2


kC∗(·, l)

!2 (Γ) , (4.91)

hold for some �, � > 0 independent of l and k. Using Equations (4.90) and (4.91)
in Equation (4.89), we conclude∫ ∞

0
l2 9




m@−8l '(·, l)



2

!2 (Γ)
dl

≤
∫ ∞

−∞
�2(1+l2) 9+1



kC∗(·, l)

2
!2 (Γ) dl

+
∫ ∞

−∞
�3(1 + l2) 9+1



kC∗(·, l)

2
!2 (Γ) dl.

≤ �


kC∗

� 9+1 (R; !2 (Γ)) = � ‖k∗‖� 9+1 (�; !2 (Γ)) .

�
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With Lemmas 7 through 11 having been established, it is now possible to conclude
with the proof of Theorem 5.

Proof of Theorem 5. Define F(C), a nonnegative bounded �∞2 (R) function, F(C) ≤
1, satisfying (for given window width parameters g and )F),

F(C) =


0 if C < −g

1 if 0 ≤ C ≤ )F
0 if C > )F + g.

(4.92)

Define also F) (C) = F(C − )).

In order to study the decay of ‖k+(·, C)‖!2 (Γ) on C > ) , we consider first the bound

‖k: ‖2!2 ( [),)+)F ); !2 (Γ)) =

∫ )+)F

)

‖k+(r, C)‖2!2 (Γ) dC

≤
∫ ∞

−∞
‖F) (C)k+(·, C)‖2!2 (Γ) dC = ‖F)k+‖

2
!2 (R; !2 (Γ)) ,

(4.93)

and show that k: in this norm decays as ) →∞. The result on [),∞) then follows
by summing an infinite number of the norms of the desired quantity over such
bounded-intervals.

The function (F)k+) (r, C) can be written using the convolution theorem as

(F)k+) (r, C) =
∫ ∞

−∞

(
F̂) ∗ kC+

)
(r, l)e−8lC dl. (4.94)

But, in view of the definition of F in Equation (4.92) and the subsequent definition
of F) , we have F̂) = eil) F̂(l), and, thus, integration by parts yields(
F̂) ∗ kC+

)
(r, l) =

∫ ∞

−∞
e8g) F̂(g)kC+(r, l − g)3g

= −
∫ ∞

−∞

1
8)

e8g)
(
F̂′(g)kC+(r, l − g) − F̂(g)mlkC+(r, l − g)

)
3g,

(4.95)

where the boundary terms at ±∞ in the integration by parts calculation vanish
because |kC+ | → 0 as |l| → ∞. This can be repeated given sufficient smoothness
of kC+(r, ·). Indeed, since kC+ ∈ �= by Lemma 9,(
F̂) ∗ kC+

)
(r, l) =

(
− 1
8)

)= ∫ ∞

−∞
e8g)

(
=∑

<=0
08 (m=−<F̂(g))

(
m<l k

C
+(r, l − g)

))
3g,

(4.96)
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where all boundary terms vanish since |m<l kC+ | → 0 as |l | → ∞ for all < < =.
The vanishing of such boundary terms results from Lemma 10, which ensures
that for < < =, the limit of



m<l kC+(·, l)

!2 (Γ) → 0 as |l | → ∞ if the limit
|l |<(@+1)



kC+(·, l)

!2 (Γ)) → 0—a fact satisfied for k+ ∈ �<(@+1) (R; !2(Γ)) which
is itself ensured by Lemma 1 together with the hypothesis of the present theorem
that W+1: ∈ � (=+1) (@+1) (R; !2(Γ)) and W+mn1: ∈ �=(@+1)+@ (R; !2(Γ)).

Therefore, using Plancherel’s theorem,

‖F)k+ ‖2!2 (R; !2 (Γ)) =



�(F)k+)


2

!2 (R; !2 (Γ))
=



F̂) ∗ kC+

2
!2 (R; !2 (Γ))

=

∫ ∞

−∞

∫
Γ

�� (F̂) ∗ kC+) (r, l)��2 df(r) dl

=

∫
Γ



(F̂) ∗ kC+(r, ·))

2
!2 df(r).

≤
∫
Γ

(= + 1))−2=
=∑

<=0




0< (
(ei) ·m=−<F̂) ∗ (m<l kC+)

)
(r, ·)




2

!2
df(r),

where we used the fact that ‖∑=
8=1 58‖2 ≤ =

∑=
8=1 ‖ 58‖2. Note the presence of ei) ·

in the final convolution expression above, arising from the eig) in Equation (4.96);
this term has unit absolute value and so is irrelevant to the !1 estimates that follow.
Indeed, because of the fact that eig)m=−<l F̂(g) is an element of !1(R) (and with
a norm value independent of )), application of Young’s inequality yields a bound
on the temporal !2 norm of the convolution in terms of ei) ·m=−<F̂ ∈ !1(R) and
m<kC+(r, ·) ∈ !2(R),

‖F)k+‖2!2 (R; !2 (Γ)) ≤
∫
Γ

(= + 1))−2=
=∑

<=0
|08 |2 ‖m=−<F̂‖2!1



m<l kC+(r, ·)

2
!2 df(r)

≤ � (=, g, )F))−2=
=∑

<=0

∫
Γ



m<l kC+(r, ·)

2
!2 df(r)

= � (=, g, )F))−2=
=∑

<=0



m<l kC+

2
!2 (R; !2 (Γ)) .

(4.97)

Indeed F ∈ �∞2 , so it is assured that F̂ and its derivatives are in !1, since the Fourier
transform is a continuous operator mapping the Schwartz class of test functions
into itself. The constant � (=, g, )F) depends on )F only through the !1 norm of
F̂ and its derivatives, and is independent of ) . Note that (in a slight abuse of
notation) the



m<l kC+

!2 (R;!2 (Γ)) terms on the right-hand-sides of Equation (4.97) are
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written as norm values for clarity, but their finiteness has not yet been established—a
requirement that is satisfied next.

Indeed, in order to bound terms in the last expression on the right-hand-side of Equa-
tion (4.97), we note that from Lemma 3 we have that kC+ satisfies, for nonnegative
l, the integral equation (

�lk
C
+
)
(r, l) = '(r, l),

where '(r, l) = W−m=�C (A, l) − 8[W+�C (A, l). Now, we utilize the estimate (4.86)
from Lemma 10 which shows that for < ≤ =, there exist constants 3<

8 9
> 0 and

4<
8
> 0 such that for all l ≠ ±l0,



m<l kC+(·, l)

2
!2 (Γ) ≤

<−1∑
8=0

(8+1) (@+1)−1∑
9=0

3<8 9l
2 9 

m<−8l '(·, |l|)



2
!2 (Γ)

+
<(@+1)∑
8=0

4<8 l
28 

kC+(·, l)

2

!2 (Γ) .

(4.98)

Integrating this estimate, we have,∫ ∞

−∞



m<l kC+(·, l)

2
!2 (Γ) dl ≤

<−1∑
8=0

(8+1) (@+1)−1∑
9=0

23<8 9

∫ ∞

0
l2 9 

m<−8l '(·, l)



2
!2 (Γ) dl

+
<(@+1)∑
8=0

4<8

∫ ∞

−∞
l28 

kC+(·, l)

2

!2 (Γ) dl.

Using the estimates of Lemma 11 for each term in the first sum in the right-hand-side
expression and Theorem 4 for each of the terms in the second sum, we thus have,
for < ≤ =,∫ ∞

−∞



m<l kC+(·, l)


2
!2 (Γ) dl ≤ �1 ‖k+‖�<(@+1)−1 (�; !2 (Γ)) + �2 ‖k+‖�<(@+1) (R; !2 (Γ))

≤ �3 ‖k∗‖�<(@+1) (�; !2 (Γ)) ≤ �3 ‖k∗‖�=(@+1) (�; !2 (Γ)) < ∞,

with �1, �2, �3 > 0 independent of k. Indeed, k∗ ∈ �=(@+1) (�; !2(Γ)) by Lemma 2
since W+1: ∈ �=(@+1)+1(R; !2(Γ)) and W+mn1: ∈ �=(@+1) (R; !2(Γ)), and therefore
it follows that m<l kC+ ∈ !2(R; !2(Γ)) for < ≤ = (in particular, justifying the use of
the norm in (4.97)). In view of Equation (4.93), the estimate



m<l k+

!2 (R;!2 (Γ)) ≤
� ‖k∗‖�=(@+1) (�;!2 (Γ)) , < ≤ =, that was just shown can be used in Equation (4.97) to
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yield the bound

‖k: ‖2!2 ( [),)+)F ); !2 (Γ)) ≤ ‖F)k+‖
2
!2 (R; !2 (Γ) ≤ � (=, g, )F))

−2=
=∑
8=0



m8lkC+

2
!2 (R; ! (Γ))

≤ � (Γ, g, =, )F))−2=
=∑
8=0

�8 ‖k∗‖2�8 (@+1) (�; !2 (Γ)) .

By norm equivalence, then,

‖k: ‖2!2 ( [),)+)F ); !2 (Γ)) ≤ � (Γ, g, =, )F))
−2= ‖k∗‖2�=(@+1) (�; !2 (Γ)) , (4.99)

with � = � (Γ, g, =, )F) independent of ) and k.

Since W+1: ∈ �?+2(R; !2(Γ)) and W+mn ∈ �?+1(R; !2(Γ)), by Lemma 2 the
density satisfies k: ∈ � ? (R; !2(Γ)). Bounds on



m?C k:

!2 ( [),)+)F ); !2 (Γ)) follow
analogously to that in the proof of Theorem 4, resulting in the estimate

m?C k:

2

!2 ( [),)+)F ); !2 (Γ)) ≤ � (=, g, )F))
−2= ‖k∗‖2� ?+=(@+1) (�; !2 (Γ)) , (4.100)

and therefore yielding the bound

‖k: ‖� ? ( [),)+)F ); !2 (Γ)) ≤ � (Γ, g, ?, =, )F))−= ‖k∗‖� ?+=(@+1) (�; !2 (Γ)) , (4.101)

where, as before, k∗ ∈ �?+=(@+1) (�; !2(Γ)) by Lemma 2 using the assumed incident
field regularity W+1: ∈ �?+=(@+1)+1(R; !2(Γ)) and W+mn1: ∈ �?+=(@+1) (R; !2(Γ)).

Bounds on k: in [),∞) follow by adding the contributions from the bounded
subintervals,

‖k: ‖� ? ( [),∞); !2 (Γ)) = lim
!→∞

!∑
ℓ=0
‖k: ‖� ? ( [)+ℓ)F ,)+(ℓ+1))F ); !2 (Γ))

≤ � (Γ, g, ?, =, )F) ‖k∗‖� ?+=(@+1) (�; !2 (Γ)) lim
!→∞

!∑
ℓ=0
() + ℓ)F)−=.

Since for ) > 1 the summand () + ℓ)F)−= is an eventually strictly decreasing and
positive function, it is easy to see that for ℓ > ℓ∗, () + ℓ)F)−= ≤

∫ ℓ

ℓ−1() + G)F)
−=dG.

and therefore
∞∑
ℓ=0
() + ℓ)F)−= ≤ �)−=+1,

thus proving

‖k: ‖� ? ( [),∞); !2 (Γ)) ≤ � (Γ, g, ?, =, )F))1−= ‖k∗‖� ?+=(@+1) (�; !2 (Γ)) ,

which is the claimed estimate (4.72). The result (4.73) follows from use of (4.72)
with ? = 1 and the use of the Sobolev lemma [58, Lemma 6.5].

�
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14 Window tracking for long-time 3D simulations
This section demonstrates the proposed method, implicit in Theorem 3, on a variety
of scattering problems with long-duration incident fields, in both nontrapping and
trapping contexts.

We next investigate long-time numerical simulations with a trapping geometry con-
sisting of a union of several (# = 8) well-separated spheres (8, with the union having
the property that the convex hull of any two spheres (8 and ( 9 does not intersect
with any other sphere (ℓ, 1 ≤ 8, 9 , ℓ ≤ #; see Figure 4.3 for a geometry view.
This geometry is closely related to certain geometries introduced in reference [73],
which have been shown to be weakly-trapping (they satisfy a @-growth condition
with @ = 1 due to the weak logarithmic-in-l growth of their operator norms [37],
cf. Remark 21). In fact, the geometry considered here is slightly more trapping (and
thus more computationally challenging) than considered in that body of literature,
due to the spheres being more closely-positioned, and thus exhibiting more evident
and interesting multiple-scattering behavior. It is not known if the geometry tested
satisfies a @-growth condition.

The incident field is given by Equation (2.35), in the direction k̂inc = (1, 1, 1).
Using a numerical bandwidth, = 20, the frequency-domain interval [−,,,] was
discretized with 250 frequencies and a maximum spatial discretization of 97, 200
degrees of freedom. Each frequency-domain problem was solved with GMRES to
a relative residual of 10−5. Figure 4.2 displays the total field DC>C

:
for the single

: = 4 window, while Figure 4.3 is an intensity plot of the corresponding boundary
integral density. In particular, on the right-hand side of Figure 4.3, the interior-
facing regions of the multiply-connected obstacle are illuminated from scattering
off other regions of the obstacle, demonstrating the multiple-scattering that occurs
in trapping geometries.

Figure 4.4 is a demonstration of a window-tracking methodology for this geometry.
It plots a barchart which shows the time intervals when the density k: is measured
to be above a certain YC>; tolerance. These numerical experiments that demonstrate
the potential of stopping-time-based analysis of wave equation solution components
D: through representation formulas based on the density k: were performed prior
to and indeed spurred the theoretical developments introduced in this section. One
experiment selected a stopping time based on the ending time value of a certain time
interval �: with length exceeding diam(Ω2)/2 on which supC∈�: ‖k: (·, C)‖!∞ (Γ) <
YC>; . Indeed, exclusion of terms D: from the sum

∑ 
:=1 D: based on the stopping
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Figure 4.2: Snapshots of the total field DC>C
:

(: = 4) resulting from the scattering of
a plane wave from an array of spheres trapping obstacle. Time proceeds left to right
and from top to bottom.
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Figure 4.3: Snapshots of the boundary integral density k: (: = 4) resulting from
the scattering of a plane wave from an array of spheres trapping obstacle. Time
proceeds left to right, showing first on the left the initial impinging of the plane
wave as well as later on the right the multiple-scattering of the wave by the (weakly)
trapping obstacle.

time for k: (cf. Theorem 3) with the tolerance YC>; = 10−3 resulted, for the planar
region depicted in Figure 4.2, in solution errors of no more than 7.2 · 10−4.

Conclusion
This chapter has proposed a framework for investigating the temporal decay of the
boundary densities and field quantities associated with wave scattering. Elementary
relationships were derived between the field quantities and these boundary integral
equation solutions (densities), which motivated the in-depth study presented in
Section 13. It was established not only that it is possible to estimate the future size
of the density based on norms of the density on a finite interval of time related to
the physical size of the obstacle, but also that the densities decay (superalgebraically
fast) relative to such estimates and in a quantifiable manner related to their degree
of trapping. As referenced in the abstract, this chapter includes the first decay rate
for wave scattering from a connected trapping obstacle. Finally, some numerical
examples were presented showing the capability of this theory in practice, including
for trapping geometries.
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Figure 4.4: Timeline plot of the significance of the boundary density on Γ relative to
a tolerance YC>; . The horizontal axis indicates simulation time (of the chirp signal),
while the vertical axis lists the time window in consideration. For a given window,
the bar is only plotted on regions of time where the norm of the density has exceeded
YC>; . The colors are for contrast only and are otherwise not meaningful.
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C h a p t e r 5

CONCLUSION AND OUTLOOK

“If you have come this far you probably know already and have strong feelings [ . . . ], and if
you don’t it will not make your life any better to find out [ . . . ] and develop strong feelings.”

—Matt Levine (2019)

This thesis has proposed and demonstrated a new approach to the numerical compu-
tation of wave scattering. Unlike all previous numerical solution methods, the cost
to evaluate the solution at an advanced time ) is a nonincreasing function of )—a
claimed O(1) overall cost with respect to the evaluation time. A number of elements
presented establish this overall claim, the most significant being the result of Chap-
ter 2, that Helmholtz equations at only O(1) distinct frequencies need be solved to
accurately produce solutions at arbitrarily-large solution times. As argued in that
chapter, this promise is fulfilled as the result of a combination of two techniques,
which overall serve to decouple the required number of frequencies at which the
solution is required from the solution time: (1) a certain windowing-and-recentering
procedure for the incident field to analytically factor out high-frequency phases in
the forward Fourier transform (of the incident field) as well as (2) a specialized
quadrature technique to enable numerically-accurate inverse Fourier transforms of
band-limited functions (the scattered fields) at arbitrarily-large times. Chapter 2 also
demonstrated certain generalizations of the first-proposed method in the context of
fully generic incident fields, such as e.g. moving point sources.

Chapter 3 addressed certain problems that arise from the slow time-decay of solu-
tions in two-dimensional scattering, by the introduction of a method which relies on
known asymptotic results for the long-time behavior of two-dimensional wave equa-
tion solutions and which interpolates distantly far-future times to fit the coefficients
of this asymptotic approximation. Of course, this exploited the feature, unique to
hybrid frequency/time methods, that the solution at (highly-)advanced times can be
evaluated before the solution at earlier times.

In Chapter 4, the focus shifted to three-dimensional scattering, and, in that chapter,
techniques for further acceleration were proposed in conjunction with some novel
estimates on time-dependent boundary densities. These estimates bounded the
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norms of future evolution of the density in terms of the norm of the boundary density
on a finite time-history of length related precisely to the non-dimensional physical
size of the obstacle. Furthermore, the theory assures superalgebraic temporal decay
of the densities relative to these estimates, and indeed led to new results in scattering
theory. As mentioned in that chapter, work in this area is ongoing, to demonstrate
the success of this new theory in algorithms.

Of course, as described in the introduction, the ideas inherent to this thesis are of a far
more generic nature than implied by their demonstration only on the acoustic wave
equation. The advantages outlined transfer without difficulty to closely-related
problems in elasticity and electromagnetism, and will certainly be the focus of
future research. Even for acoustics, investigations of hybrid frequency/timemethods
applied in the context of frequency-dependent dispersivemedia are ongoing (see also
Appendix A) and have already shown significant promise and success. A possible
future direction concerns a specialized treatment of highly-trapping obstacles, for
which, owing to the many reflections and thus the more oscillatory character of
the scattered field in frequency-domain, hybrid frequency-time methods currently
require an increasing number of Helmholtz solutions (as the degree of trapping
increases), even for incident fields of a short duration. New applications in nonlinear
waves and inverse problems are also possible andwill be the topic of future inquiries.

It is submitted that the frequency-time hybrid solvers proposed in this thesis form the
basis of a highly-advantageous methodology and perspective for the efficient simu-
lation of time-dependent wave propagation and scattering. This thesis has perhaps
additionally opened new directions for the development of numerical algorithms as
well as solution of theoretical questions in the field of wave scattering.
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A p p e n d i x A

HYBRID FREQUENCY-TIME METHODS FOR COMPLEX
MEDIA

This appendix is concerned with wave propagation in complex media, in contrast to
the scattering in homogeneous “linear” media (characterized by a linear dispersion
ratio ^(l), cf. Equation (1.7)) considered in the rest of this thesis. Complex media
may be associated with propagation that is frequency-dependent, with attenuation
and wavespeed variation per frequency, or (possibly additionally) associated with
propagation with a spatially-varying wavespeed. This appendix focuses on the for-
mer problem, though it is noted that with an adequate variable-coefficient Helmholtz
solver similar methodologies apply to the latter problem. As reviewed in Chapter 1
a wide variety of methods (broadly, Finite Difference Time Domain (FDTD), Fi-
nite Element Time Domain (FETD), and Time-Domain Boundary Integral Equation
methods) in the literature have been developed for solving surface scattering prob-
lems and some have been adapted to situations involving strongly dispersive media,
see e.g. [21]. A key feature of the methodology introduced in this thesis is its
reliance on solution of frequency-domain problems, for which frequency-dependent
media properties can often be very simply described, as a “black-box” element of
the solution procedure. This feature leads straightforwardly to a method for solving
wave scattering problems in dispersive media. We present the relevant equations
and relations in a simplified, one-dimensional context, though everything presented
transfers directly to the multi-dimensional case where true scattering occurs.

We briefly review prior work in numerical methods for simulation of waves propa-
gating in dispersive media. Foundational work in reference [99] derived from first
principles a model of attenuation losses, due to a number # of various relaxation
mechanisms, in the form of a first-principles-derived wave equation of temporal
order # + 2, with a resulting reduced wave equation of a frequency-dependent
wavenumber. Instead of solving a time-domain PDE of possibly high order, others
focused on developing a theory for simulating lossy media via modeling time-
fractional derivative operators as convolutions, see e.g. references [111, 112]. The
review [103] points out the substantial (and increasing, with desired final simulation
time) memory burden this approach implies. Reference [85] sought to ameliorate
this issue by using a recursive algorithm for the time-fractional derivative with lim-
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ited history, though [103] also notes that in addition to being ad-hoc this requires a
priori fitting of coefficients for each power law to physical or simulated data, e.g.
with FDTD. We find also that the contribution [115] uses space-fractional derivative
operators, avoiding these issues. These methods require evaluation of convolutions
over the time history at every time-step, which can be costly in terms of required
memory and computational effort. In the context of time-domain boundary integral
equation solvers, reference [21] extends methods developed for linear homogeneous
wave propagation to strongly dispersive media, relying on contour integration to
produce an auxiliary time-domain Green’s function and leading to more efficient
time-domain solvers.

In reference [85], the case of attenuating media is discussed, for which a monochro-
matic wave F having initial amplitude F0 and frequency l shows exponential
attenuation over propagation distance ΔG, with amplitude following the frequency
power-law attenuation relation

F̂(G + ΔG) = F̂0(G)4−U(l)ΔG , with (A.1)

U(l) = U0

(2c)H |l|
H, where 1 ≤ H ≤ 2. (A.2)

Now, the partial differential equation describing one-dimensional wave propagation
in an idealized homogeneous lossless medium with wave speed 20 is

mF

mC
+ 20

mF

mG
= 0, (A.3a)

F(0, C) = ?(C), C > 0 (A.3b)

which by Fourier transformation is equivalent to the frequency domain equation

m, (G, l)
mG

− 8: (l), (G, l) = 0, where : (l) = V0 = l/20. (A.4)

As is well-known, plane wave solutions to this equation are of the form 48(: (l)G−lC) .
We turn now to modification of the dispersion relation : (l) to model attenuation.
In order to satisfy the Kramers-Kronig relations (ensuring analyticity and hence
causality of the waves) when adding attenuation, the dispersion relation must be
modified [111] to become

: (l) = V0 + V′(l) + 8U(l) = V0 + 8!W (l), (A.5)

where the relative dispersion V′(l) is

V′(l) = − U0

(2c)H cot((H + 1)c/2)l|l|H−1, (A.6)
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and we have defined the function !W to be the change in the dispersion relation
due to the dispersive media. Reference [112] develops a causal time-domain wave
equation

mF(G, C)
mG

+ 1
20

mF(G, C)
mC

!W (C) ∗ F(G, C) = 0, (A.7a)

F(0, C) = ?(C), C ≥ 0, (A.7b)

to describe wave motion with this attenuative behavior. Reference [85], in turn,
describes a modified FDTD-type numerical method to numerically handle the re-
sulting convolution integrals using certain recursive algorithms. In that work, the
numerical validation against simulation data is performed by simulation of a chirp
signal propagating in a lossy medium (castor oil), between two reference points P1
and P2 that are separated by 1 cm (cf. [85, Fig. 2]). The chirp signal used is

?(C) = cos
(
2c

((
54 − 5B

2C?

)
C2 + 5BC + 1/4

))
, (A.8)

with “start” frequency 5B = 100 kHz and “end” frequency 54 = 3MHz over a
pulse width of C? = 10 `B. Note that the chirp signal attains the start and end
frequencies at the beginning and end of a 10-`B observation window. The physical
characteristics of themedium correspond to castor oil and are H = 1.4, 20 = 1525m/s,
U0 = 2.0 dB / (cm MHzy). Note that the wavespeed in the attenuating medium for a
given frequency l is

2(l) = l

: (l) =
l

V0 + V′(l)
= 20

1
1 + V′(l)/V0

, (A.9)

while in a neutral medium of identical wavespeed it is trivially 20(l) = l/V0 = 20.

As a proof of concept for the applicability of hybrid-type methods to dispersive
media, we show that a simple application of the hybrid method for this problem
yields identical results as the numerical-experimental validation in that contribution.
The frequency domain problems to be solved are

m, (G, l)
mG

− 8: (l), (G, l) = 0, 0 < G < ∞ (A.10a)

, (0, l) = ?̂(l), (A.10b)

which have, for each l, solutions , (G, l) = ?̂(l)48: (l)G and which produce the
time domain solution via the inverse Fourier transform

F(G, C) = 1
2c

∫ ∞

−∞
, (G, l)4−8lC 3l. (A.11)
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Figure A.1: Time-shifted solutions at reference points described in the text, com-
puted using the hybrid method.

We use the hybrid frequency/time methodology developed in Chapter 2 to numeri-
cally solving the problem ((A.7)); that is, we transform the incoming wave ?(C) into
discrete Fourier space, on a fixed set of frequency mesh points l 9 (1 ≤ 9 ≤ �), and
then inverse transform using this fixed set to produce solutions for arbitrarily large
time. We show in Figure A.1 the time-shifted solutions F(G, C) at the previously
mentioned reference points P1 and P2. One detail warrants mentioning when inter-
preting Figure A.1: the solutions are measured at two spatial points, separated by
ΔG = 1 cm, so for easy comparison they must be time-shifted by an appropriate time
offset C>. For a neutral medium a natural choice would be C> = ΔG/20; however,
because a generic incident signal propagates through the medium with a variety
of wavespeeds over the active frequency range 100 kHz ≤ 5 ≤ 3MHz due to the
variable dispersion relation in Equation (A.5), no single shift is adequate. To ensure
that the highest-frequency components are in phase when comparing the solutions
at P1 and P2, we shift the solution at point P2 by

C> =
ΔG

2(l4)
=
ΔG

20
(1 + V′(l4)/V0) , where l4 = 2c 54 . (A.12)

Any differences with the solution in the contribution [85, Fig. 3] produced by the
modified (and much more algorithmically involved) FDTD method are impercepti-
ble. The computational time for the entire solution amounted to 1.5B on a machine
with an Intel Core i7-8650U.

The beauty of using hybrid frequency/time techniques for simulating transient prop-
agation and scattering in complex media is the straightforward reliance on existing
frequency-domain solvers at the complex frequencies that correspond directly to the
frequency-dependence of the material. Extending the complex media work in this
appendix to the setting of scattering problems in multiple dimensions is ongoing.
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A p p e n d i x B

HYBRID FREQUENCY-TIME METHODS FOR INITIAL-VALUE
PROBLEMS

A related problem to the problem (1.6) considered in this thesis is the initial value
problem

m2D(r, C)
mC2

− 22ΔD(r, C) = 0. r ∈ Ω, C > 0, (B.1a)

D(r, 0) = 5 (r), mD(r, 0)
mC

= 6(r), r ∈ Ω, (B.1b)

D(r, C) = 1(r, C), r ∈ Γ, C > 0, (B.1c)

where the functions 5 (r) and 6(r) are suitably smooth functions defined on Ω, and
1(r, C) is a suitably smooth and compatible function defined on the boundaryΓ = mΩ
for C > 0. Unlike the pure scattering problem (1.6) studied in the majority of this
thesis for which Fourier transformation is a natural tool for analysis and numerical
solution, initial boundary value problems such as Equation (B.1) are often studied
using the Laplace transform. The initial value problem can be seen as somewhat
more challenging in that the data is known possibly only for C ≥ 0, but indeed the
Laplace transform is ideally suited for this problem.

For the wave equation, Laplace transformation in time results in the modified
Helmholtz equation (sometimes called the Yukawa equation) with, in general, a
non-homogeneity that is dependent upon the initial data in Equation (B.1b). It is
useful to first recall the familiar definition of the Laplace transform of a function
5 (C),

� (B) = L{ 5 }(B) =
∫ ∞

0
5 (C)4−BC dC. (B.2)

Applying the Laplace transform in time to the wave equation for each fixed r ∈ Ω,
we find:

L{DCC (r, ·)−22ΔD(r, ·)} = [4−BCDC (r, C)]C=∞C=0

+ B[4−BCD(r, C)]C=∞C=0 + B
2* (r, B) − 22Δ* (r, B).

Using the prescribed initial conditions (B.1b), this leads to the modified Helmholtz
equation

Δ* (r, B) − (B/2)2* (r, B) = −6(r) − B 5 (r), (B.3)
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with boundary condition

* (r, B) = �(r, B), r ∈ Γ. (B.4)

As is well-known, the Green’s function for this equation is

�B (r, r′) =


i
4�
(1)
0 (i

B
2
|r − r′|) for 3 = 2, and

e−
B
2 |r−r′ |

4c |r−r′ | for 3 = 3.
(B.5)

The inhomogeneous modified Helmholtz equation (B.3) can be recast into a ho-
mogeneous one by first identifying a solution to the PDE (B.3) without a care
for matching the boundary conditions. More specifically, using properties of the
Green’s function (B.5) we select

*? (r, B) =
∫
Ω

�B (r, r′) [6(r) − B 5 (r)] df(r′), (B.6)

which satisfies (B.3). Then, the homogeneous modified Helmholtz equation can be
solved with modified boundary data to obtain an overall solution* (r, B) +*? (r, B)
satisfying the inhomogeneous equation (B.3).

Once required frequency-domain PDEs are solved, a time domain simulation can
be obtained by inverting the Laplace transform in accordance with the well-knwon
inverse Laplace transform formula

5 (C) = L−1{�}(C) = 1
2ci

∫ f+i∞

f−i∞
eBC� (B) dB, f > f0, (B.7)

where the function � is analytic as a function of B in the half-plane '4(B) > f0 (the
f0 is known as the abscissa of convergence of the function �).

In contrast to the Fourier case, where the literature for accurate rapid evaluation of
Fourier transform at arbitrarily-large times is muchmore limited, there has been con-
siderable investigation of the Laplace transform inversion problem. Reference [118]
has details on existing methods for numerical inversion, as does reference [78] for
cases in which, like the present one, production of the solution in frequency-domain
requires solution of a (generally expensive) PDE boundary-value problem and not
merely the considerably less-expensive point evaluations of a given function. (For an
entirely general review of numerical methods for Laplace inversion, see Cohen [43].)
The reference [118] points out that there are two main types of inversion formulas,
those based only on strictly real samples of the transformed function (the so-called
“Post-Widder inversion formulas” [43, Ch. 7]) and those based on deformation of
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and quadrature for complex Bromwich contour integrals (B.7). Kuhlman notes that
many methods do not place a priority on minimizing the number of samples needed
for many inversions at different times. This is important in our context because each
“sample” requires the solution of a Helmholtz-type equation which is expensive,
and so such inversion methods are disadvantageous. Perhaps the leading candidate
in our context is the Weeks method discussed at length in [118].

Other issues arise when using a Hybrid Laplace/time approach, if a Bromwich
contour Laplace inversion method is chosen, which implies a need for solutions
at complex B-values. Clearly, an integral equation method is required that is ca-
pable of producing accurate solutions at these wavenumbers. For problems in
two-dimensional spatial domains the classical Martensen-Kussmaul rule used in
Colton & Kress [45, Ch. 3.5] is no longer sufficient (see [117] for details on why
this is unstable for complex frequencies with large imaginary component). Never-
theless, some options do exist, among them a high-order Alpert [1] rule (as recently
used in [79] in a CQ context), or other kernel-splitting quadrature rules that retain
exponential convergence for complex wavenumbers. One favorable option is the
smoothly-windowed piece-wise defined kernel-splitting techniques as in [27, Eq.
30].

One open question is whether the method of Weeks is the best quadrature rule for
the purposes of this method, or if instead it would be advantageous to develop new
numerical methods for inversion, so as to minimize the number of evaluations (i.e.
PDE solves) of the transform function that are required for production of solution
values on the desired temporal range. Methods based on Green’s formula to reduce
the cost of evaluation of (B.6) for values of the particular solution may also be
pursued. Clearly, significant questions and challenges do exist for this problem,
which are left for future work.
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