
Frameworks for High Dimensional Convex Optimization

Thesis by
Palma Alise den Nijs London

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2020
Defended July 8, 2020

ii

c© 2020

Palma Alise den Nijs London
ORCID: 0000-0001-6472-8293

All rights reserved except where otherwise noted

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor, AdamWierman, for his guidance and support
throughout my graduate studies. I also thank my committee members, Steven
Low, Yisong Yue, and Anima Anandkumar for their advice on various topics
over the years.

I would also like to thank Shai Vardi for his guidance throughout the years of
my Ph.D., which was instrumental in setting the course for various projects
on which we worked.

I would like to thank Reza Eghbali, with whom I worked closely on several top-
ics, and had numerous discussions which significantly aided me in developing
my background in convex optimization.

I would like to express my sincere gratitude for Maryam Fazel, with whom I
worked as an undergraduate at the University of Washington. This put me on
the path to working on topics in convex optimization, and Maryam continued
to help me develop my research background and offer research guidance during
my graduate studies.

I am also grateful for guidance by Petros Drineas and Haim Avron in the later
stages of my graduate studies.

Finally I would like to thank my parents for their unending encouragement.

iv

ABSTRACT

We present novel, efficient algorithms for solving extremely large optimization
problems. A significant bottleneck today is that as the size of datasets grow,
researchers across disciplines desire to solve prohibitively massive optimization
problems. In this thesis, we present methods to compress optimization prob-
lems. The general goal is to represent a huge problem as a smaller problem
or set of smaller problems, while still retaining enough information to ensure
provable guarantees on solution quality and run time. We apply this approach
to the following three settings.

First, we propose a framework for accelerating both linear program solvers
and convex solvers for problems with linear constraints. Our focus is on a
class of problems for which data is either very costly, or hard to obtain. In
these situations, the number of data points m available is much smaller than
the number of variables, n. In a machine learning setting, this regime is
increasingly prevalent since it is often advantageous to consider larger and
larger feature spaces, while not necessarily obtaining proportionally more data.
Analytically, we provide worst-case guarantees on both the runtime and the
quality of the solution produced. Empirically, we show that our framework
speeds up state-of-the-art commercial solvers by two orders of magnitude,
while maintaining a near-optimal solution.

Second, we propose a novel approach for distributed optimization which uses
far fewer messages than existing methods. We consider a setting in which the
problem data are distributed over the nodes. We provide worst-case guar-
antees on the performance with respect to the amount of communication it
requires and the quality of the solution. The algorithm uses O(log(n + m))

messages with high probability. We note that this is an exponential reduction
compared to the O(n) communication required during each round of tradi-
tional consensus based approaches. In terms of solution quality, our algorithm
produces a feasible, near optimal solution. Numeric results demonstrate that
the approximation error matches that of ADMM in many cases, while using
orders-of-magnitude less communication.

Lastly, we propose and analyze a provably accurate long-step infeasible Inte-
rior Point Algorithm (IPM) for linear programming. The core computational

v

bottleneck in IPMs is the need to solve a linear system of equations at each
iteration. We employ sketching techniques to make the linear system com-
putation lighter, by handling well-known ill-conditioning problems that occur
when using iterative solvers in IPMs for LPs. In particular, we propose a
preconditioned Conjugate Gradient iterative solver for the linear system. Our
sketching strategy makes the condition number of the preconditioned system
provably small. In practice we demonstrate that our approach significantly
reduces the condition number of the linear system, and thus allows for more
efficient solving on a range of benchmark datasets.

vi

PUBLISHED CONTENT AND CONTRIBUTIONS

[1] Palma London et al. “A Parallelizable Acceleration Framework for Pack-
ing Linear Programs”. In: Proc. of Association for the Advancement of
Artificial Intelligence. 2018, pp. 3706–3713. url: https://www.aaai.
org/ocs/index.php/AAAI/AAAI18/paper/viewFile/17118/16589.
Palma London is the lead author and contributed to all aspects of the
paper.

[2] Palma London, Shai Vardi, and Adam Wierman. “Logarithmic Com-
munication for Distributed Optimization in Multi-Agent Systems”. In:
Proceedings of the ACM on Measurement and Analysis of Computing
Systems 3.3 (2019), pp. 1–29. doi: 10.1145/3366696.
Palma London is the lead author and contributed to all aspects of the
paper.

[3] Agniva Chowdhury et al. “Speeding up Linear Programming using Ran-
domized Linear Algebra”. In: arXiv:2003.08072 (2020). url: https:
//arxiv.org/abs/2003.08072.
Palma London contributed to all aspects of the paper and led the nu-
merical experiments.

[4] Palma London et al. “Black-box Acceleration of Convex Program Solvers”.
In: Submitted (2020).
Palma London is the lead author and contributed to all aspects of the
paper.

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewFile/17118/16589
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewFile/17118/16589
https://doi.org/10.1145/3366696
https://arxiv.org/abs/2003.08072
https://arxiv.org/abs/2003.08072

vii

TABLE OF CONTENTS

Acknowledgements . iii
Abstract . iv
Published Content and Contributions vi
Table of Contents . vii
List of Illustrations . viii
List of Tables . ix
Chapter I: Introduction: Compression of Optimization Problems 1

1.1 Settings of Interest . 3
1.2 State-of-the-art Optimization Solvers and Current Bottlenecks 4

1.2.1 Optimization Solvers 4
1.2.2 Distributed Optimization 5
1.2.3 Interior Point Methods for Linear Programming 7

1.3 Contributions . 7
1.3.1 Acceleration Method for Packing Optimization Problems 8
1.3.2 Distributed Algorithm for Multi-Agent Systems 10
1.3.3 Speeding up IPMs for Linear Programming using Ran-

domization . 11
Chapter II: Acceleration Algorithm for Packing Optimization with Lin-

ear Constraints . 13
2.1 Problem Formulation . 14
2.2 Related literature . 15
2.3 A Black-box Acceleration Framework 18

2.3.1 Set Up . 19
2.3.2 Acceleration Algorithm 20

2.4 Results: Feasibility and Optimality Guarantees 23
2.5 Experiments . 25

2.5.1 Linear Case: Accelerating Gurobi 26
2.5.2 Convex Case: Accelerating SCS 28
2.5.3 Setting Parameters in Practice 31
2.5.4 The Benefits of Cloning 31
2.5.5 Case Study: California Road Network Dataset 33

2.6 Proofs . 34
2.6.1 Preliminary Results . 34
2.6.2 Quantizing the Solution Space 37
2.6.3 Feasibility . 38
2.6.4 Optimality . 40

2.7 Discussion . 45
Chapter III: Distributed Algorithm with Logarithmic Communication

Complexity . 46

viii

3.1 Motivation . 46
3.1.1 Problem Overview and Distributed Setting 49
3.1.2 Approach . 52

3.2 Related literature . 52
3.3 Problem Formulation . 55

3.3.1 Network Utility Maximization (NUM) 57
3.3.2 Support vector machines (SVMs) 58

3.4 A Local Optimization Framework 59
3.5 Theoretical Results . 63

3.5.1 Results on communication complexity and solution quality 64
3.5.2 Additional Results and Proofs 66

3.6 Case Studies . 68
3.6.1 Experimental Setup . 68
3.6.2 Benchmark & Performance Metrics 70
3.6.3 Experimental Results 72

3.6.3.1 Linear Programming 72
3.6.3.2 Network Utility Maximization (NUM) 73
3.6.3.3 Support Vector Machines (SVMs) 73
3.6.3.4 Sparsity . 76
3.6.3.5 Stragglers & Failures 76

3.7 Discussion . 77
3.8 Proofs of Technical Results . 78

3.8.1 Proof of Lemma 18 . 78
3.8.2 Proof of Lemma 22 . 79
3.8.3 Supplementary information 82
3.8.4 Pseudocode for General Online Fractional Packing . . . 82
3.8.5 ADMM . 83

Chapter IV: Speeding up IPMs for Linear Programming using Random-
ization . 84
4.1 Background on Interior Point Methods 84

4.1.1 Computational Bottleneck for IPMs 85
4.2 Setting of interest: under/over constrained LPs 86

4.2.1 Our contributions . 87
4.2.2 Comparison with Related Work 90

4.3 Notation and Background . 92
4.4 Conjugate Gradient Solver . 92
4.5 The Infeasible IPM algorithm 94
4.6 Discussion and Extensions . 98
4.7 Experiments . 100
4.8 Proofs of Technical Results . 105

4.8.1 Proof of Lemma 28 . 105
4.8.2 Satisfying eqn. (4.9) using CG Solver 105
4.8.3 Proof of Lemma 29 . 106
4.8.4 Proof of Lemma 30 . 107

4.9 Convergence Analysis of Infeasible IPM Algorithm 6 108

ix

4.9.1 Number of Iterations for the CG Solver 108
4.9.2 Determining Step-size and Final Convergence 114
4.9.3 Proof of Theorem 27 124

Bibliography . 125

x

LIST OF ILLUSTRATIONS

Number Page
21 Illustration of the relative error and speedup across sample sizes,

εs. The shaded area depicts a reasonable setting range for εs; the
speedup is significant, while the relative error is low. Two levels
of sparsity, p, are shown. 27

22 Illustration of the relative error and runtime as the problem size,
m, grows. Throughout, n/m = 103. In (b), Gurobi ran into
memory errors for problems with m > 300. However, our accel-
erator algorithm was able to solve the problems in a faction of
the time, with low relative error. 28

23 The relative error and runtime as the problem size, m, grows,
where we fix the ratio n/m = 103. In (a), (b), fj(xj) = cj log(xj),
and in (c), (d) fj(xj) = cjx

1/2
j 30

24 The relative error and runtime ratios as the sample size, εs,
varies, where we fix n = 5× 105, m = 100. In (a), (b), fj(xj) =

cj log(xj), and in (c), (d) fj(xj) = cjx
1/2
j 30

25 Illustration of how the optimal solution x∗ and our approximate
x(φ̂) solution differ. In particular, increasing εf affects the feasi-
bility of our solution: comparing (a) and (b), as εf is increased,
the approximate solution x(φ̂) shifts downwards; in (a) the ap-
proximate solution is infeasible, but setting εf = 0.1 produces a
feasible x(φ̂). Here m = 100 and n = 600 and fj(xj) = cj log(xj). 32

26 Illustration of the impact of cloning on solution quality as the
number of clones grows. 32

27 Illustration of the relative error and runtime across sample sizes,
εs, for the real data experiment on the California road network
dataset. 34

31 The constraint matrix is depicted in (a), and the hypergraph H
in (b). Red shaded nodes represent the primal variables and blue
hyperedges represent the constraints, or dual variables. Hyper-
edges encircle primal variables which appear together in a con-
straint. 56

xi

32 An illustration of LOCO. The constraint matrix A is depicted
in (a), where shaded entries represent non-zeros. The rankings
of the constraints are indicated next to their corresponding rows
in A. The hypergraph H is depicted in (b). Figures (c)-(h) il-
lustrate the construction of sets X1 and Y1 for the local problem
associated with variable x1. The darkest shaded matrix elements
in (c), (e), and (g) indicate constraints as they are received by
agent 1. Blue emboldened hyperedges in (d), (f), and (h) repre-
sent constraints added to Y1. Red shaded nodes represent vari-
ables added to set X1. The process stops in (g) because rank-
ings 0.1 < 0.3. The local problem associated with variable x1

is defined on variables X1 = {1, 2, 3, 4} and constraints, or dual
variables, Y1 = {1, 2, 3}. 60

33 Messages required by LOCO and ADMM for random linear pro-
gramming instances. Plots (a) and (b) vary n while fixing spar-
sity p = 10−4, showing the results in linear-scale and log-scale
respectively. Plots (c) and (d) fix n = 103 and vary the sparsity p. 70

34 Comparison of the relative error and messages required by LOCO
and ADMM for random linear programming instances. Plots
(a) and (b) show the Pareto optimal curve for ADMM for two
different settings of the relative tolerance parameter: εrel = 10−4

and εrel = 10−1 respectively. 71
35 Illustration of the number of messages required by LOCO and

ADMM for NUM using an Autonomous System (AS) graph. . . 72
36 Plot (a) illustrates of the number of messages required by LOCO and

the relative error between LOCO and ADMM, in the case of
synthetic SVM data, when n = 10, 000 and m is varied, and
p = 0.03%. In all instances, the number of messages required
by ADMM was over 100K, an order of magnitude larger than
LOCO, and are not plotted due to being out of range for the plot.
Plot (b) illustrates the speedup provided by LOCO compared to
ADMM. ‘Max’ and ‘Med’ refer to the largest and median sized
subproblem respectively. 74

xii

37 Comparison of the local problem dimension (|Xk| × |Yk|) to the
original problem size (m × n), averaged over all the local prob-
lems, in the case of synthetic SVM data. In (a) n = m = 10, 000,
in (b) n = 5, 000 and m = 10, 000. 74

38 Illustration of the impact of stragglers. The plots illustrate how
the speedup of LOCO relative to ADMM varies with (a) the
problem dimension n, when the Pareto shape parameter is set
to 5, and (b) the shape parameter of the straggler distribution.
Synthetic SVM data is used with n = m = 10, 000 and p = 0.03%. 77

41 ARCENE data set: Our Algorithm 6 (Sk. IPM) requires an
order of magnitude fewer (a) inner iterations than the Standard
IPM with CG, at each outer iteration, due to the improved (b)
conditioning of Q−1/2AD2ATQ−1/2 compared to AD2AT 99

42 ARCENE data set : for various (w, tolCG) settings, (a) the max-
imum number of inner iterations used by our algorithm and
(b) the maximum condition number of Q−1/2AD2ATQ−1/2, across
outer iterations. The standard IPM, across all settings, needed
on the order of 1,000 iterations and κ(AD2AT) was on the order
of 108. The relative error was fixed to 0.04%. 99

43 DEXTER data set : Our algorithm (Sk. IPM) requires an order
of magnitude fewer inner iterations than the Standard IPM with
CG, at each outer iteration, as demonstrated in (a). This is pos-
sible due to the improved conditioning of Q−1/2AD2ATQ−1/2 com-
pared to AD2AT , demonstrated in (b). For all, tolCG = 10−5,
τ = 10−9. 103

44 ARCENE data set : As w increases, (a) the number of inner
iterations decreases, and is relatively robust to tolCG, and, (b)
the condition number decreases as well. 103

xiii

LIST OF TABLES

Number Page
31 SVM on CCAT and C11 from Reuters RCV1 75
41 Comparison of (our) sketched IPM with CG, standard IPM with

CG, and Standard IPM with a direct solver, for the `1-SVM
problem on UCI Machine Learning Repository [67] data sets.
Across all, τ = 10−9 and a relative error of 10−3 or less was
achieved. We define κSk = κ(Q−1/2AD2ATQ−1/2) and κStan =

κ(AD2AT). 104

1

C h a p t e r 1

INTRODUCTION: COMPRESSION OF OPTIMIZATION
PROBLEMS

As the size of datasets grow, researchers across disciplines desire to solve ex-
tremely large optimization problems. In these settings, practical applications
require optimization algorithms to work at extreme scales, and despite decades
of work, existing solvers do not scale as desired in many cases.

In this thesis, we present novel, efficient algorithms for extremely large opti-
mization problems. A significant bottleneck today is that massive amounts of
data are being gathered, leading to prohibitively massive optimization prob-
lems that are often impossible to solve in real time. In this thesis, we seek
to understand if such seemingly huge problems are always inherently huge;
perhaps a problem has a related, smaller approximate representation, which
can be used to arrive at the optimal solution.

We present methods to compress optimization problems, and introduce
novel algorithms which make use of this compression. The general goal is
to represent a given optimization problem as a smaller problem, making it
more amenable to efficient solving, while still retaining enough information to
ensure a highly accurate solution. Our algorithms have provable guarantees
on running time and solution quality. To make this goal possible, we make use
of two strategies simultaneously: (1) develop randomization techniques and
(2) leverage characteristics of real datasets to design novel algorithms.
These strategies are outlined below:

First, given a huge optimization problem, can the large problem be rewritten
as a smaller, representative problem? These smaller problems can be designed
by using statistical properties of the data, in order to identify truly influential
variables and constraints in the underlying optimization problem. Identifying
such a useful random subset is nontrivial; the subset must be informative, how-
ever, the work required to make the selection must be computationally light.
To tackle these challenges, we additionally develop the following strategy.

Second, to tackle the prohibitive computational challenge presented by ex-
tremely large datasets, it is increasingly necessary to develop algorithms that

2

are specifically designed for various types of data, rather than apply a generic
algorithm. We develop structure specific algorithms that leverage com-
monly occurring characteristics of real datasets to motivate the design
of faster, memory efficient, provably optimal algorithms. For example, the con-
straint matrix in a Linear Program might be very short-and-fat, or it might
be sparse, having few non-zeros. These characteristics occur overwhelmingly
often in practice and are easy to identify. Thus, when confronted with a par-
ticular problem, a practitioner can quickly decide which algorithm is most
appropriate for the problem.

We bring together the above strategies by determining how the structure of the
problem data can motivate the identification of an influential random subset
of the data or variables, used to design a “compressed” problem.

In this thesis, we focus on algorithms for both Linear Programs (LPs) and
problems with a convex objective with linear constraints. We address various
computational settings. In particular, the above strategies motivate algorithms
that are amenable to distributed and parallel computation.

In what follows in this chapter, we provide background on the type of opti-
mization problems we address here, give background on the current state of
optimization solvers in both general and distributed settings, and then describe
our contributions.

3

1.1 Settings of Interest

Throughout this thesis, we focus on problems of the following form: convex
problems with linear constraints. Specifically, our algorithms apply to prob-
lems of the following form:

maximize
∑n

j=1 fj(xj) (1.1a)

subject to
∑n

j=1 aijxj ≤ bi i ∈ [m] (1.1b)

where aij is an element of matrix A ∈ R(m×n), b ∈ Rm, and fj : R → R are
continuous concave functions differentiable. An important special case of the
above are Linear Programs (LPs), where c ∈ Rn:

maximize
∑n

j=1 cjxj (1.2a)

subject to
∑n

j=1 aijxj ≤ bi i ∈ [m] (1.2b)

Solving LPs is broadly applicable in mathematics, science, and engineering.
Many problems in machine learning and inference are LPs problems at their
core. For example, LP problems include `1 regularized support vector machines
(SVM) [212], `1 regression or least absolute deviations (LAD) [198], basis pur-
suit [204], nonnegative matrix factorization [168, 80], sparse inverse covariance
matrix estimation [209], Markov Decision Processes [21], applications of graph-
ical models [166], and relaxations of maximum a posteriori (MAP) estimation
problems [178, 133]. Providing fast solvers for these problems is crucial in
practice. The design of very fast solvers is thus well-motivated, both from a
theoretical and a practical perspective.

The more general problem of form (1.1) appears often in practice as well.
In this work, we in particular focus on this problem in a distributed setting.
For example, consider Network Utility Maximization (NUM) [206], which is a
general class of optimization problems that has seen widespread applications
in multi-agent systems, from the design of TCP congestion control [99, 119,
120, 186] to understanding of protocol layering as optimization decomposition
[44, 156] and power system demand response [177, 114].

Linear support vector machines (SVMs) [53, 95, 93] are also of form (1.1). Of
recent interest is the framework of federated machine learning, in which one
seeks to train machine learning models in settings where data is distributed
among multiple agents due to privacy concerns. This approach has received

4

significant attention from researchers in recent years, e.g., [102], and appears
in industry as well, e.g., [130].

Additional examples include distributed inference in sensor networks (which
has broad applications to the Internet of Things [87, 158, 152, 85]), inference
in graphical models [166, 5], relaxations of maximum a posteriori estimation
problems [178], management of content distribution networks and data centers
[28, 154], and control of power systems [71, 160].

In some results we focus on covering or packing problems. These are problems
for which the input data is non-negative: A ∈ Rm×n

≥0 , b ∈ Rm
≥0, and c ∈ Rn

≥0.
Many problems in machine learning, inference, and resource allocation are
packing problems at their core. Of the problems listed above, NUM [206]
and maximum a posteriori estimation problems [178] are often packing prob-
lems, as well as channel transmission [96], inference problems in biology [128],
scheduling and graph embedding [163], and associative Markov networks [190],
the maximum cut problem [194], zero-sum matrix games [146], flow controls
[19], auction mechanisms [213], wireless sensor networks [37], and many other
areas.

Given the prevalence of LPs and problems of form (1.1) in practice, we focus
on developing algorithms for these problems.

1.2 State-of-the-art Optimization Solvers and Current Bottlenecks

In this section we describe the state of current linear and convex solvers. We
highlight several core computational challenges that are associated with these
methods. In the following chapters, we present novel approaches to tackle each
of these challenges.

1.2.1 Optimization Solvers

There has been considerable work over the past decades in developing linear
and more generally, convex program solvers. These solvers are generally either
interior-point methods (IPMs) or first order (gradient-based) methods. For
linear programing, commercial software like Cplex and Gurobi internally use
both the simplex method and interior-point methods. For convex solvers,
interior-point methods are used in most off-the-shelf public software packages
like SDPT3 [193] and SeDuMi [188], as well as the commercial software package
MOSEK [9] and the more recent embedded conic solver ECOS [62]. However,

5

the computational cost of first- and second-order methods used in some of the
above packages is often prohibitive for high dimensional problems.

Prohibitively large datasets. As large amounts of data are gathered and stored,
we desire to solve extremely large problems. On one hand, there is contin-
ual improvement in computing power. However, rather than solving large
problems using brute force computational power, we can try to determine if
seemingly huge problems can perhaps have smaller representations.

Black-box methods to accelerate existing solvers. Given the wealth of algo-
rithms that exist, the pertinent goal today may not be to replace these algo-
rithms, but rather to make sure we are using them in a smart way. In other
words, an already existing algorithm can be used as a black-box within a more
complex framework. The key challenge here is to identify how to design that
framework. As motivated in the beginning of this chapter, we use easy-to-
identify characteristics of a given huge problem in order to design smaller,
related problems, that can be feed into already existing algorithms in a black-
box fashion. In Chapter 2 we describe a novel method to accelerate a family
of linear and convex solvers.

1.2.2 Distributed Optimization

Distributed optimization is a computing paradigm of major importance across
fields. Beginning in the 1960s approaches emerged for solving large scale linear
programs via decomposition into pieces that could be solved in a distributed
manner. For example, two early approaches are Bender’s decomposition [22]
and the Dantzig-Wolfe decomposition [56, 57], which can both be generalized
to nonlinear objectives via the subgradient method [23, 143, 182]. Today,
there are a wide variety of approaches for distributed optimization, e.g., primal
decomposition [105, 23], dual decomposition [74, 31, 143, 99, 119, 186, 191],
subgradient methods [140, 142], and proximal gradient descent methods [181],
to name a few.

Distributed Settings and Communication Complexity Challenges. Despite the
extensive literature on distributed optimization algorithms, computational and
communication challenges remain. As the size of datasets grow, it is essential
to develop distributed methods that are computationally light at each node,
require minimal communication between nodes, and are robust to link failures.

The distributed methods described above often employ consensus schemes as a

6

mechanism for distributing the computation among the processing units, form-
ing the basis for many first order and second order distributed optimization
algorithms, e.g., [27, 141]. For example, ADMM is a popular dual decom-
position method, introduced by [77] that can be implemented in a consensus
setting [31].

In the consensus setting, distributed agents pass current estimates of the global
solution between agents or a master node, gradually improving those estimates
at each step with the goal of reaching global consensus or convergence to an
optimal solution. The end goal is for each distributed agent to have a complete
solution, x ∈ Rn. Thus, in such approaches, the distributed agents at each
step are required to store, update, and broadcast a vector of dimension that
matches that of the full system-wide solution to the problem. However, in some
problem settings, this approach can be overkill. For example, in multi-agent
systems, typically an agent’s final goal is only to compute its local variable,
or piece of the solution in order to determine a local action. Thus, each agent
computing the entire full global solution, x ∈ Rn is unnecessary. Further,
no individual agent can determine its own action or estimate without global
convergence of all agents in the network. In our work described in Chapter 3,
we take advantage of this change of perspective, and design a distributed
approach that uses far less communication that existing approaches.

Often, the more traditional distributed paradigms have been applied to multi-
agent system settings. For example, distributed optimization has been used in
the design of multi-agent systems in the following settings: the management of
content distribution networks and data centers [28, 154], communication net-
work protocol design [99, 120, 186], trajectory optimization [88, 104], forma-
tion control of vehicles [189, 165], sensor networks [152, 115], control of power
systems [71, 160], and management of electric vehicles and distributed storage
devices [79]. Additionally, recently such approaches have become prominent
in the emerging field of federated machine learning [102, 130], where data is
distributed across a set of agents and the goal of the agents is to train a model
using the full data set without sharing data between them.

In Chapter 3, we propose a novel distributed algorithm that uses far less
communication than existing approaches.

7

1.2.3 Interior Point Methods for Linear Programming

IPMs work by searching the interior of the feasible region in order to get
close to an optimal vertex on the boundary. At each iteration, a new search
direction and step length is computed. For a detailed discussion on IPMs, see
Section 4.1. To guide the choice of new search direction, the algorithm strives
to satisfy the optimality conditions of the problem. This computation involves
solving a linear system.

The core computational bottleneck in IPMs is the need to solve the linear
system of equations at each iteration. This leads to two key challenges: first,
for high-dimensional matrices A, solving the linear system is computationally
prohibitive. Most implementations of IPMs use a direct solver ; see Chapter
6 of [149]. However, if A large and dense, direct solvers are computationally
impractical. Thus, a natural alternative is to use iterative solvers rather than
direct solvers. However, a second challenge arrises: the matrix involved in the
normal equations, AD2AT, is typically ill-conditioned. Here, D = X

1
2S−

1
2 ,

and X,S ∈ Rn×n are diagonal matrices having i-th diagonal elements equal
to i-th components of x and s respectively for i = 1, 2, . . . , n, and p ∈ Rm.
In particular, due to the nature of the complementary slackness conditions
of the LP, the diagonal matrix D grows increasingly ill-conditioned as IPM
algorithms approach the optimal primal-dual solution.

Thus, a key challenge for large scale IPMs for LPs is to develop techniques
that can handle very large datasets, and are robust to the ill-conditioning issue
of the linear system.

1.3 Contributions

Here we summarize the work presented in this thesis. First, we include a brief
outline of the contributions, and in the remainder of the section we present a
detailed summary of each contribution.

(1) We propose a framework for accelerating exact and approximate con-
vex programming solvers for packing problems of form (1.1), of which
an important special case is linear programing (1.2). Analytically, we
provide worst-case guarantees on both the runtime and the quality of
the solution produced. Empirically, we show that our framework speeds
up Gurobi and SCS by two orders of magnitude, while maintaining a
near-optimal solutions. This work is described in Chapter 2 and [117].

8

(2) We propose a novel approach for distributed optimization which uses
far fewer messages than existing methods. Problems of form (3.1) are
considered, in which the problem data, A and b, are distributed over
the nodes. We provide worst-case guarantees on the performance with
respect to the amount of communication it requires and the quality of
the solution. This work is described in Chapter 3 and [116].

(3) We propose and analyze a provably accurate long-step infeasible IPM
algorithm for LPs. We employ sketching [201] techniques to make the
computation lighter, and to handle well-known conditioning problems
that occur when using iterative solvers in IPMs for LPs. This work is
described in Chapter 4 and [46].

Below we include an in-depth summary of each of the three contributions listed
above.

1.3.1 Acceleration Method for Packing Optimization Problems

We propose a framework for accelerating exact and approximate convex pro-
gramming solvers for packing problems of form (1.1). The approach is not
to design a new algorithm, but to design a black-box acceleration framework
that can speed up existing algorithms. Given a convex program solver A and
a problem of dimension (m × n), we select a subset of the variables of size
εsn uniformly at random. We then construct a sample problem of dimension
(m × εsn), defined only on those selected variables. Thus, the number of
variables in the sample problem is greatly reduced compared to the original
formulation. We solve the dual of the sample problem using solver A, treating
it as a black box. Finally, we set the values of the original primal variables xj
for all j ∈ [n] based on the approximate dual solution.

As described above, this algorithm is designed for problems for which m� n.
Intuitively, the larger n is compared to m, the more amenable the problem
is to subsampling the columns of the matrix A. We formalize this idea by
quantifying two fundamental tradeoffs in the framework. The first is captured
by the sample size, εs. Setting εs to be small yields a dramatic speedup of the
algorithm A; however, if εs is set too small the quality of the solution suffers.
A second tradeoff involves feasibility. In order to ensure that the output of
the framework is feasible with high probability, the constraints of the sample

9

problem are scaled down by a factor denoted by εf . Feasibility is guaranteed
if εf is large enough; however, if it is too large, the quality of the solution (as
measured by the approximation ratio) suffers.

Our main technical result is a worst-case characterization of the impact of
εs and εf on the speedup provided by the framework and the quality of the
solution. Assuming that algorithm A gives an α–approximation to the optimal
solution of the dual, we prove that the acceleration framework guarantees a
(1 − εf)/α

2–approximation to the optimal solution of the original problem,
under some assumptions about the input and εf . We formally state the result
in Theorem 1. We note here that the solution quality does not depend on εs,
which highlights that the framework maintains a high-quality approximation
even when sample size is small.

The technical requirements for εf in Theorem 1 impose some restrictions on
both the family of problems that can be provably solved using our framework
and the algorithms that can be accelerated. In particular, Theorem 1 requires
mini bi to be large and the algorithm A to satisfy approximate complementary
slackness conditions (see Section 2.3). While the condition on bi is restric-
tive, the condition on the algorithms is satisfied by most common solvers, e.g.,
exact solvers and many primal dual approximation algorithms. Further, our
experimental results demonstrate that these technical requirements are conser-
vative; the framework produces solutions of comparable quality to the original
solver in settings that are far from satisfying the theoretical requirements. In
addition, the accelerator works in practice for algorithms that do not satisfy
approximate complementary slackness conditions, e.g., for gradient algorithms
as in [185]. In particular, our experimental results show that the accelerator
obtains solutions that are close in quality to those obtained by the algorithms
being accelerated on the complete problem, and that the solutions are ob-
tained considerably faster (by up to two orders of magnitude). The results
reported in this thesis demonstrate this by accelerating the state-of-the-art
commercial solver Gurobi, and the SCS solver, on a wide array of randomly
generated packing LPs and CPs and obtaining solutions with < 4% relative
error and a more than 150× speedup.

10

1.3.2 Distributed Algorithm for Multi-Agent Systems

We propose a new approach for distributed optimization in multi-agent sys-
tems that reduces the communication overhead of traditional approaches, while
also guaranteeing robustness to communication delay and failures in the sys-
tem. We consider problems of form (1.1) (defined more specifically as prob-
lem (3.1) in Section 3), where the problem is defined over a network. Each
node j is associated with a local variable, xj ∈ Rqi , and a local function,
fj. The problem data, A and b, are distributed over the nodes. Nodes may
communicate with neighbors, but no central communication is performed.

As described in Section 1.2.2, work on distributed algorithms has often focused
on a distributed setting in which each node is required to compute the full
solution x ∈ Rn. However, in many applications it is not necessary to acquire
the entire solution at each node. For example, an agent at a node may be
interested only in computing its local action. In a distributed model fitting
setting, training data may be acquired and stored at different nodes, but each
node may desire to learn about only a subset of the features.

Thus we consider a muti-agent distributed setting in which the jth node is
only concerned about solving for its local variable, xj. Our results highlight
that this change of focus enables an exponential reduction in communication.
In particular, our approach requires sending only (1) minimal data between
nodes; each node does not have to see the entire A matrix, and (2) the number
of messages is low and thus link failures in the system only affect a small
number of node. More concretely, our approach is as follows.

We introduce a fundamentally new approach to distributed constrained opti-
mization: LOCO (LOcal Convex Optimization). For each node in the network,
we define a local problem associated with variable xj, which is defined on a
subset Xj of the primal variables and a subset Yj of the data, or constraints.
Each node j solves its local problem using a given algorithm A, producing an
approximation of its associated variable, xj. Sets Xj and Yj are much smaller
in size than the dimensions of the original problem, n and m respectively, re-
sulting in a dramatic dimension reduction and thus light computation when
solving each local problem at each node. When the data matrix A is sparse,
Xj and Yj both have sizes on the order of O(logm), where the sparsity of the
matrix appears in a constant.

We provide worst-case guarantees on the performance of LOCO with respect

11

to the amount of communication it requires and the quality of the solution.
Regarding communication, the process of determining sets Xj and Yj requires
O(log(n + m)) messages with high probability. After this step, solving the
local problems at each node requires no communication. Note that this is an
exponential reduction compared to the O(n) communication required during
each round of traditional approaches such as consensus and dual descent, even
when A is sparse.

We also provide worst-case guarantees on the performance of LOCO with
respect to the quality of the solution. Since the nodes do not have access to
the entire problem under LOCO, it is unreasonable to expect an exact solution.
Instead, LOCO produces a feasible, α-approximation of the optimal solution,
where α depends on the given algorithm A used to solve the local problem of
an agent (Theorem 19). Our numeric results in Section 3.6 highlight that the
approximation error of LOCO matches that of ADMM in many cases, while
using orders-of-magnitude less communication.

This approach is based on an area of theoretical computer science: local com-
putation algorithms [174]. A key result from this literature is that online
algorithms can be converted into local algorithms with the same performance
guarantee in graph problems with bounded degree [126, 169]. For the first time,
we connect these techniques to optimization problems, where the bounded de-
gree property can be interpreted as the sparsity of the constraint matrix.

Our framework is well suited for solving problems over a network where link
failures are common. If a link fails, or if a node goes offline while a dual de-
composition algorithm is executing, the process is brought to a halt. With
LOCO, failures only affect a small number of nodes, making it robust to net-
work failures. Similarly, our framework is robust to dynamic changes in the
network; an arrival of a new node in the network only requires a few mes-
sages and the recomputation of the variables associated with nearby nodes. In
contrast, a dual decomposition algorithm typically requires recomputing the
entire solution.

1.3.3 Speeding up IPMs for Linear Programming using Random-
ization

As briefly described in Section 1.2.3, the core computational bottleneck in
IPMs is the need to solve a linear system of equations at each iteration. This

12

leads to two key challenges: for high-dimensional matrices A, solving the linear
system is computationally prohibitive, and requires an iterative solver rather
than a direct solver. However, a second challenge arrises: the matrix involved
in the normal equations, AD2AT, is typically ill-conditioned.

We address both challenges by developing a preconditioner for AD2AT using
matrix sketching, which allows us to prove strong convergence guarantees for
the residual error of Conjugate Gradient (CG) solvers. First, this can be
presented as an independent result; we propose and analyze a preconditioned
CG iterative solver for the normal equations (see eqn. (4.4a)). Our sketch-
ing strategy will make the condition number of the pre-conditioned system
provably small. This is key for developing an algorithm that works well in
practice.

Second, we propose and analyze a provably accurate long-step infeasible IPM
algorithm. The proposed IPM solves the normal equations using iterative
solvers. In this thesis, for brevity and clarity, we primarily focus our description
and analysis on the CG iterative solver. We note that a non-trivial concern
is that the use of iterative solvers and matrix sketching tools implies that
the normal equations at each iteration will be solved only approximately. In
our proposed IPM, we develop a novel way to correct for the error induced
by the approximate solution in order to guarantee convergence. Importantly,
this correction step is relatively computationally light, unlike a similar step
proposed in [137].

We empirically show that our algorithm performs well in practice. We consider
solving LPs that arise from `1-regularized SVMs and test them on a variety
of synthetic and real datasets. Several extensions of our work are discussed in
Section 4.6.

Our approach is designed for the special case where m � n, i.e., the number
of constraints is much smaller than the number of variables; see Section 4.6 for
a generalization. This is a common setting in ML applications of LP solvers,
since `1-SVMs and basis pursuit problems often exhibit such structure when
the number of available features (n) is larger than the number of objects (m).
We can also handle the case when m � n, by simply taking the dual of the
original problem.

13

C h a p t e r 2

ACCELERATION ALGORITHM FOR PACKING
OPTIMIZATION WITH LINEAR CONSTRAINTS

In this chapter we propose a black-box framework that can be used to acceler-
ate both exact and approximate convex programming (CP) solvers for packing
problems. We exploit characteristics of the problem structure to enable these
solvers to run in a fraction of the original time [117].

As summarized in Section 1.3.1, our framework can speed up existing algo-
rithms. Given a convex program solver A and a problem of dimension (m×n),
we select a subset of the variables of size εsn uniformly at random. We then
construct a sample problem of dimension (m × εsn), defined only on those
selected variables. Thus, the number of variables in the sample problem is
greatly reduced compared to the original formulation. We then solve the dual
of the sample problem using solver A, treating it as a black box. Finally, we
set the values of the original primal variables xj for all j ∈ [n] based on the
approximate dual solution.

In particular, our approach is designed for class of problems for which data
is either very costly, or hard to obtain. In these situations m � n; i.e.,
the number of data points m available is much smaller than the number of
variables, n. In a machine learning setting, this regime is increasingly prevalent
since it is often advantageous to consider larger and larger feature spaces, while
not necessarily obtaining proportionally more data. Such instances are also
common in areas such as genetics, astronomy, and chemistry. There has been
considerable research focusing on this class of problems in recent years, in the
context of LPs [64, 26] and also more generally in convex optimization and
compressed sensing [39, 63], low rank matrix recovery [167, 38], and graphical
models [208, 134].

14

2.1 Problem Formulation

Our focus is on convex problems with packing constraints. Specifically, our
framework applies to problems of the following form:

maximize
∑n

j=1 fj(xj) (2.1a)

subject to
∑n

j=1 aijxj ≤ bi i ∈ [m] (2.1b)

0 ≤ xj ≤ 1 j ∈ [n] (2.1c)

where aij ∈ [0, 1] is an element of matrix A of size (m × n), b ∈ Rm
≥0, and

fj : [0, 1] → R are continuous concave nondecreasing functions differentiable
over (0, 1). We further assume that fj(0) = 0. Note that if this is not the case,
the functions can be appropriately shifted. An important special case of the
above are packing linear programs (LP):

maximize
∑n

j=1 cjxj (2.2a)

subject to
∑n

j=1 aijxj ≤ bi i ∈ [m] (2.2b)

0 ≤ xj ≤ 1 j ∈ [n] (2.2c)

where c ∈ Rn
≥0. In this chapter, we develop a general algorithm for problems

of form (2.1), and an algorithm specific to packing linear programs (2.2).

Many problems in machine learning, inference, and resource allocation are
packing problems at their core. Providing fast solvers for these problems is
crucial, e.g., the network utility maximization problem and large scale wire-
less networks [181], channel transmission [96], inference problems in biology
[128], scheduling and graph embedding [163], and associative Markov networks
[190]. Packing linear programs arise in a wide variety of settings, including the
maximum cut problem [194], zero-sum matrix games [146], flow controls [19],
auction mechanisms [213], wireless sensor networks [37], and many other areas.
In machine learning, they show up in an array of problems, e.g., in applications
of graphical models [166], and in relaxations of maximum a posteriori (MAP)
estimation problems [178], among others.

Below we discuss related approaches.

15

2.2 Related literature

The approach underlying our framework is motivated by recent work that uses
ideas from online algorithms to make offline algorithms more scalable, e.g.,
[127, 118, 116], and builds on our preliminary work [117]. A specific inspiration
for this work is an online algorithm [4] that uses a two step procedure: it
solves an LP based on a subsampled constraint matrix, acquired during the
first stages of the online algorithm. It then uses the LP solution as the basis
of a rounding scheme in later stages. The algorithm only works when the
arrival order is random, which is analogous to sampling in the offline setting.
However, [4] rely on exactly solving the sample LP acquired in the first stages;
considering approximate solutions of the sampled problem, as we do, adds
complexity to the algorithm and analysis. Also, unlike their approach, we
leverage the offline setting to fine-tune εf in order to optimize our solution while
ensuring feasibility, which is not possible in the online setting. Additionally,
we extend these ideas about LPs to convex problems of form (3.1).

In general, our work is related to the literature on online algorithms for packing
LPs and convex problems under the random permutation model. As discussed
above, [4] present an online algorithm for packing LPs. Subsequently, algo-
rithms for online packing LPs and various generalizations to the convex case
have been studied by [100, 89, 90, 3], and [69]. However, these algorithms
either require an update of the dual variable at each online step, or solve the
primal problem to optimality at each step. Neither of those approaches can
be adapted to design an acceleration framework for the convex case in the
way that we adapt the work of [4] to design an algorithm for LPs as discussed
above. Hence, the design presented for the convex case deviates significantly
from the online algorithms literature.

The sampling phase of our framework is reminiscent of the method of sketch-
ing ; see [201] and references therein. To construct a sketch of a matrix, the
matrix is pre-multiplied by a random matrix, essentially selecting a subset of
the measurements, or rows of the matrix. We however have a different goal:
to select a subset of the variables, or columns of the matrix. While sketching
is designed for solving overdetermined regression problems for which m � n,
we consider the m� n setting, where there are relatively few measurements,
and we would like to consider a subset of the variables.

Additionally, the second step of our algorithm is a departure from the sketching

16

approach. In sketching, the smaller problem associated with the sketched
matrix is solved, producing an approximate primal solution. The guarantees
produced are often in the form of bounds on norms of the sketched matrix,
which translate directly to results about the optimally of the solution. This
is possible because the objective function depends only on norms involving
the data to be sketched: A and b. For example in linear regression, the
objective function is ‖Ax − b‖2

2. Sketching results typically produce bounds
on ‖S(Ax − b)‖2

2, where S is the sketching matrix. These bounds translate
directly to the quality of the approximation of the solution. However in more
general problems, the objective function does not conveniently depend on a
norm of the sketched matrix. For example, in linear programs the objective
function is cTx; new analysis is needed to account for how the c vector affects
the quality of the solution, independently from the subsampled data matrix. In
our approach we develop a second step, in which we assign the primal variables
of the original problem based on the dual solution to the sampled problem.
This assignment is dependent on the objective function. No such analogy is
present in sketching methods. Thus despite the similarity to sketching in our
first step, sketching results do not apply here.

The sampling phase of the framework is also reminiscent of the experiment
design problem, in which the goal is to solve the least squares problem us-
ing only a subset of available data while minimizing the error covariance of
the estimated parameters, see e.g. [32]. Recent work by [172] applies these
ideas to online algorithms, when collecting data for regression modeling. Like
sketching, experiment design is applied in the overdetermined setting, whereas
we consider the underdetermined scenario. Additionally, instead of sampling
constraints, we sample variables.

The second step of our algorithm is a thresholding step, which is related to
the rich literature of LP rounding, see [25] for a survey. Typically, rounding is
used to arrive at a solution to an ILP; however we use thresholding to “extend”
the solution of a sampled problem to the original problem. The scheme we use
is a deterministic threshold based on complementary slackness conditions. It
is inspired by [4] in the LP case, but adapted here for more general problems,
and extended to handle approximate solvers rather than exact solvers. Within
the rounding LP literature, the most related recent work is that of [185], which
proposes a scheme for rounding an approximate LP solution. However, [185]

17

use all of the problem data during the approximation step, whereas we show
that it is enough to use a (small) sample of the data.

A key feature of our framework is that it can be parallelized easily when used
to accelerate a distributed or parallel algorithm. There is a rich literature on
distributed and parallel LP solvers, e.g., [205, 150, 36, 171]. More specifically,
there is significant interest in distributed strategies for approximately solving
covering and packing linear problems, such as the problems we consider here,
e.g., [121, 207, 19, 12, 6].

Our algorithm is related to column generation, a heuristic technique developed
for LPs with an extremely large number of variables; see [145, 58] for a survey.
In column generation, a series of smaller problems, all defined on a subset of
the variables, are solved cyclically. More specifically, in column generation a
subset of the variables is used to define a smaller master problem. The dual
solution of the master problem is used to define a new subproblem, the solution
to which will help identify a new variable to be added to the master problem.
The master problem is then re-solved and this process is repeated. In contrast,
in our approach we solve a single smaller problem based on one subset of the
variables. To make a direct connection with our approach, it is as if we solve
the master problem only once; a sort of one-shot column generation.

Column generation has made it possible to find nearly optimal solutions to
huge LPs, which would otherwise be considered intractable to solve, and has
made a significant impact in, e.g., airline crew scheduling problems [18, 86],
transportation routing problems, and scheduling problems. In general, column
generation is a heuristic approach; see work by [161, 175]. Theoretical bounds
on the solution quality exist only for problem specific applications regarding
ILPs; for example the classical cutting stock problem has been studied in
this context [81]. For solving ILPs in general, column generation along with
branch-and-bound rounding techniques have been developed to produce the so
called branch-and-price algorithm [17]. In the context of column generation,
the results in this work can be thought of as theoretical groundwork for a
one-shot column generation for packing problems where, in order to ensure
feasibility, we require an assumption on the maximum value of the b vector
(recall that we scale aij ∈ [0, 1] w.l.o.g.).

Another related algorithmic idea that has been applied to LPs is constraint
sampling, in which a subproblem is formed from a subset of the constraints;

18

see [147] for recent work. We note that subsampling the constraints differs
from subsampling variables (as in column generation), in that in constraint
sampling a complete x ∈ Rn solution is acquired after solving the subproblem,
while in column generation additional work is required to recover the primal
solution.

In the general context of convex solvers, there has been considerable work over
the past decade. Convex solvers are generally either interior-point methods
or first order methods. Interior-point methods are used in most off-the-shelf
public software packages like SDPT3 [193] and SeDuMi [188], the commercial
software package MOSEK [9], and the more recent embedded conic solver,
ECOS [62]. However, the computational cost of the second-order methods used
in interior-point methods is often prohibitive for high dimensional problems.
In comparison, first order methods tend to scale well for very large problems.
For a survey on large scale optimization methods and first-order methods see
[73] and [40]. SCS [151] is a widely used first order method. It employs an
operator splitting approach, or specifically alternating directions method of
multipliers [78, 33]. Given the popularity of SCS, we use it in this thesis to
illustrate the acceleration provided by our framework in the convex case.

2.3 A Black-box Acceleration Framework

In this section we introduce our acceleration framework. At a high level,
the framework works by using an existing solver in a black-box fashion to
solve a small problem, defined on a subset of the variables. This approximate
solution is then incorporated in a deterministic thresholding scheme to assign
the variables in the original problem.

The framework applies to solvers that are either exact or approximate. In
the approximate case, the solution satisfies the approximate complementary
slackness if the following holds. Let x1, . . . , xn be a feasible solution to the
primal and y1, . . . , ym be a feasible solution to the dual. We refer to column j
of matrix A as aj.

• Primal Approximate Complementary Slackness: For αp ≥ 1 and j ∈ [n],
if xj > 0 then cj ≤

∑m
i=1 aijyi ≤ αp · cj.

• Dual Approximate Complementary Slackness: For αd ≥ 1 and i ∈ [m],
if yi > 0 then bi/αd ≤

∑n
j=1 aijxj ≤ bi.

19

We call an algorithm A whose solution is guaranteed to satisfy the above
conditions an (αp, αd)-approximation algorithm for F . This terminology is
non-standard, but is instructive when describing our results. It stems from a
foundational result which states that an algorithm A that satisfies the above
conditions is an α-approximation algorithm for any LP in F for α = αpαd e.g.,
[35].

The framework we present can be used to accelerate any (1, αd)-approximation
algorithm. While this is a stronger condition than simply requiring that A is
an α-approximation algorithm, many common dual ascent algorithms satisfy
this condition, e.g., [2, 15, 16, 70, 82]. For example, the vertex cover and
Steiner tree approximation algorithms of [2] and [16] respectively are both
(1, 2)-approximation algorithms.

2.3.1 Set Up

We define the dual problem to (2.1). Let φ ∈ Rm be the dual variable cor-
responding to the primal constraints (2.1a), and let ψ ∈ Rn correspond to
constraints (2.1b). The dual problem is

minimize
φ∈Rm+ ,ψ∈Rn+

bTφ−
∑n

j=1 f
?
j (aTj φ+ ψj) + 1Tψ,

where 1 is the vector of ones, and f ? is the concave conjugate function defined
as

f ?j (v) = inf
x∈R+

vxj − fj(xj). (2.3)

The Lagrangian for problem (2.1) is

L(x, φ, ψ) :=
n∑
t=1

fj(xj)− φT (Ax− b)− ψT (1− x), (2.4)

where x ≥ 0, from which we derive the following optimality condition:

xj ∈ argmax
xj≥0

fj(xj)− (aTj φ+ ψj)xj ∀j ∈ [n]. (2.5)

Thus note that
f ′j(xj) = aTj φ+ ψj ∀j ∈ [n]. (2.6)

The complimentary slackness conditions ψj(1 − xj) = 0 for all j ∈ [n] imply
that if ψj > 0, then x∗j = 1 where ∗ denotes optimality. However, if ψj = 0,
then f ′j(x∗j) = aTj φ

∗. We use these facts to motivate our algorithm.

20

2.3.2 Acceleration Algorithm

Given a (1, αd)-approximation algorithmA, the acceleration framework is com-
prised of the following two steps. The approach is summarized in Algorithm 1.

Step 1.

Uniformly at random select a subset of the variables, S ⊂ [n], |S| = s = dεsne.
Relabel the sampled variables as 1, . . . , s for clarity, and define the sample
problem on s variables as follows:

maximize
x∈Rs

∑s
j=1 fj(xj) (2.7a)

subject to
∑s

j=1 aijxj ≤
(1−εf)εs

αd
bi i ∈ [m] (2.7b)

0 ≤ xj ≤ 1 j ∈ [s]. (2.7c)

Here, αd is the parameter of the dual approximate complementary slackness
guarantee of A, εf > 0 is a parameter set to ensure feasibility during the
thresholding step, and εs > 0 is a parameter that determines the fraction of
the primal variables that are be sampled. Our analytic results give insight for
setting εf and εs; see Section 2.5.3.

Next, use solver A to solve the dual of the sample problem (2.7). Let φS ∈ Rm

be the dual variable corresponding to the primal constraints (2.7b), and let
ψS ∈ Rs correspond to constraints (2.7c). Then, the sample dual problem is

minimize
φ∈Rm+ ,ψ∈Rs+

(1−εf)εs
αd

bTφ−
∑s

j=1 f
?
j (aTj φ+ ψj) + 1Tψ, (2.8)

where 1 is the vector of ones, and f ? is the concave conjugate function as
defined in (2.3).

Finally, retrieve the sample dual solution φS, which is an approximation of the
dual solution of the original problem (2.1).

Step 2.

The second step in our acceleration framework uses the dual solution from
the sample problem to define a deterministic thresholding procedure, which is
used to construct the solution of problem (2.1). This procedure is motivated
by the optimality condition (2.5).

21

Evaluating (2.5) when f ′ is non-invertible (equivalently f ∗ is non-differentiable;
f ′−1 = f ?′), we find, for j ∈ [s],

xSj ∈ ∂f ∗(aTj φ
S + ψSj) = argmax

0≤xSj ≤1

(aTj φ
S + ψSj)xSj − fj(xSj). (2.9)

The set of subgradients ∂f ∗(aTj φS +ψSj) is not necessarily a singleton set. We
assign our approximation of the primal solution, which we denote as xj(φS),
to be the smallest element in ∂f ∗(aTj φS +ψSj). Such an element exists because
the set is a closed convex subset of [0, 1]. We define the allocation rule xj(φS),
in which we set the primal variables for all j ∈ [n] as a function of the dual
solution φS:

xj(φ
S) :=

{
1 if aTj φ

S < f ′j(1)

arg min ∂f ∗j (aTj φ
S + ψS) otherwise.

(2.10)

If f is strictly convex, (2.10) reduces to the following:

xj(φ
S) :=

{
1 if aTj φ

S < f ′j(1)

f ′−1
j (aTj φ

S) otherwise.
(2.11)

For an example of (2.11), consider the following: if fj(xj) = cj log(xj), then
xj(φ

S) = 1 if aTj φS < cj, and xj(φ
S) =

cj
aTj φ

S otherwise. If f is linear, (2.10)
reduces to the following binary thresholding procedure:

xj(φ
S) =

{
1 if aTj φ

S < cj

0 otherwise.
(2.12)

The allocation rule (2.10) reduces to (2.12) in the linear case because the
derivative of fj is cj for all x. In (2.10) we take the smallest value in the set
of subgradients ∂f ∗(aTj φS + ψSj), which in this case is x = 0.

Setting εs and εf

The parameters εs and εf must be chosen when using the framework. In gen-
eral, parameter εs is chosen based on the user’s requirement for accuracy versus
speed; it directly controls the size of the sample problem. The parameter εf is
related to the feasibility and nearness to optimally of the solution. Concretely,
we suggest choosing εs and εf using the following approach. First, choose εs

22

Algorithm 1: Acceleration Framework
Input: Convex Program C, solver A, εs > 0, εf > 0
Output: x̂ ∈ Rn

(1) Select s = dεsne primal variables uniformly at random. Solve the
sample dual problem (2.8) using A to find an (approximate) dual
solution yS = [φS, ψS] ∈ [Rm,Rs].

(2) Set x̂j = xj(φ
S) as defined in (2.10), for all j ∈ [n].

based on the user’s requirement for speed vs. accuracy. This tradeoff is illus-
trated in the experiments section in Figures 21 and 24. Given a fixed εs, a
concrete approach for choosing εf is given in Algorithm 2. Here, we set εf = 0

and increase εf iteratively, solving the sample problem with different values
of the parameter. Solving multiple problems in order to identify the best εf
is generally not time prohibitive, because the sample problems are very small
compared to the original. One can also simply set εf in accordance with the
theoretical bounds. Our analytic results in the next section provide guarantees
on the largest εf that guarantees feasibility. However, we find in practice that
we can often use a smaller εf and get a closer to optimal solution without vio-
lating feasibility. Thus, it is useful to search for the minimal εf that provides
feasibility for a given problem. A practical discussion of setting both εs and
εf is found in Section 2.5.3.

Algorithm 2: An approach for setting εf
Input: Convex Program L, solver A, εs > 0, εf > 0
Output: x̂ ∈ Rn

Set εf = 0.
while εf < 1 do

x̂= Algorithm 1(L,A,εs,εf).
if x̂ is a feasible solution to L then

Return x̂.
else

Increase εf .

Discussion

Before moving to the analysis, we provide some context about why the al-
location rule (2.10) works. Recall that (2.6) states that f ′j(xj) = aTj φ + ψj

23

for all j ∈ [n]. Hence, if ψj > 0, the complimentary slackness conditions
ψj(1 − xj) = 0 imply that x∗j = 1. However, if ψj = 0, then x∗j = f ′−1

j (aTj φ
∗).

Thus, in the allocation rule we set xj(φ) based on these optimality conditions.
Notice that we do not have access to the optimal dual solution φ∗ to problem
(2.1), but rather to an approximation φS, the solutions to the sample dual
problem (2.8). Thus we cannot satisfy the complementary slackness condi-
tions exactly. The key argument we need to make is that, despite having
only an approximate φS, the solution xj(φ

S) is nearly optimal. To account
for the fact that an approximate dual solution is produced in the first step,
we preemptively scale the b vector by the factor (1−εf)εs

αd
in constraints (2.1a).

Given this rescaling, the solution xj(φ
S) is feasible and nearly optimal with

high probability.

2.4 Results: Feasibility and Optimality Guarantees

In this section we present our main technical results, which provide worst-case
guarantees on the feasibility and optimality of the solution provided by our
acceleration framework.

Let C be a packing problem with n variables and m constraints, as in (2.1),
and define B := mini∈[m]{bi}. The following theorem bounds the quality of
the solution provided by the acceleration framework.

Theorem 1. Let C be a packing problem of form (2.1) or (2.2), with n vari-
ables and m constraints, and define B := mini∈[m]{bi}. Let A be a (1, αd)-
approximation algorithm for C, with runtime f(n,m). For any εs, εf > 0, in
the concave case (2.1), if,

B ≥
10(m log(n+

4εf εsn
2

m logn
) + log(m

εs
))

ε2fεs
, (2.13)

or in the linear case (2.2), if,

B ≥
10(m log(n) + log(m

εs
))

ε2fεs
, (2.14)

then Algorithm 1 runs in time f(εsn,m)+O(n), and obtains a feasible
(

1−εf
α2
d

)
-

approximation to the optimal solution for C with probability at least 1− 2εs.

The key trade-off in the acceleration framework is between the size of the
sample problem, determined by εs, and the resulting quality of the solution,

24

determined by the feasibility parameter, εf . The accelerator provides a large
speedup if εs can be made small without causing εf to be too large. Theorem
1 quantifies the trade-off between εf and εs, along with the relation to B.
The bound on B in Theorem 1 defines the class of problems for which the
accelerator is guaranteed to perform well: problems for which m � n and B
is not too small. Nevertheless, our experimental results successfully apply the
framework well outside of these parameters; the theoretical analysis provides
a very conservative view on the applicability of the framework.

We also compare the results for the concave versus linear case in Theorem 1.
First, note that the concave result does not depend on the form of the concave
function f . Second, note that the bounds on B in the concave (2.13) and
linear (2.14) cases are of the same order; Ω

(
m
ε2f εs

log(n)
)
. In a recent paper

on linear programs, [117] achieve the same order bound on B. Thus, despite
applying to general convex programs in this work, we achieve the same order
bound. We also note that the difference in (2.13) and (2.14) occurs in the
second term in the argument of the first logarithmic term, which is present
due to the analysis of the convex case. The reason for this difference is made
clear in the proof of Lemma 12.

As discussed in the introduction, our work is related to the literature on online
algorithms for packing linear programs with optimal competitive ratio under
random permutation model. In this context B is often referred to as the bid-
to-budget ratio. In the case of [4], the one-time learning algorithm achieves
a competitive ratio of 1 − ε if the bid-to-budget ratio is Ω

(
m
ε3

log(n
ε
)
)
, which

is similar to the assumption on B in Theorem 1. However, [135] present a
different analysis for the algorithm by [4], in which they require a bid-to-
budget ratio of Ω

(
m2

ε3
log(m

ε
)
)
. Removing the dependency on n, which is

the time horizon of the online problem, is of theoretical importance in the
online setting. However, in our setting, even though m � n, typically m is
comfortably larger than log(n); hence a result similar to that of [4] is more
desirable.

In addition to exact and approximate LP solvers, our framework can be used
solve integer linear programs (ILP). These are linear programs with binary

25

decision variables:

maximize
∑n

j=1 cjxj (2.15a)

subject to
∑n

j=1 aijxj ≤ bi i ∈ [m] (2.15b)

xj ∈ {0, 1} j ∈ [n]. (2.15c)

The allocation rule (2.12) produces binary solutions, and so naturally the
solutions satisfy ILP integrality constraints.

Our framework can be parallelized; Step 2 of Algorithm 1 can be done in
parallel. Additionally, if the solver A that is being accelerated is parallelizable,
further parallelization can be achieved. We formally state these points below.

Corollary 2. Let A be an (1, αd)-approximation algorithm for problems of
form (2.1), with runtime f(n,m).

• Consider an ILP. Algorithm 1 obtains a feasible (1−εf)

α2
d

-approximation
to the optimal solution for the ILP with probability at least 1 − 1

n
with

runtime f(εsn,m) +O(n).

• If A is a parallel algorithm, then executing Algorithm 1 on p processors
in parallel obtains a feasible (1−εf)

α2
d

-approximation to the optimal solution
with probability at least 1 − 1

n
and runtime fp(εsn,m) + O(n/p), where

fp(εsn,m) denotes A’s runtime for the sample program on p processors.

2.5 Experiments

We illustrate the speedup provided by our acceleration framework by using it
to accelerate state-of-the-art commercial solvers. We first run our acceleration
framework on synthetic randomly generated problems, and then provide a real
data example. Additionally, we demonstrate the benefits of cloning.

We accelerate Gurobi and SCS, in the case of linear and convex programs
respectively. Due to limited space, we do not present results for more spe-
cialized solvers; however, the improvements shown here provide a conservative
estimate of the improvements possible with more specialized solvers. Similarly,
the speedup provided by an exact solver (such as Gurobi) provides a conser-
vative estimate of the improvements when applied to approximate solvers or
when applied to solve ILPs.

26

Note that our experiments consider situations where the assumptions in Theo-
rem 1 on B, m, and n do not hold. Thus, they highlight that the assumptions
of the theorem are conservative and the accelerator can perform well outside
of the settings prescribed by the analysis. This is also true with respect to the
assumptions on the algorithm being accelerated. While our proof requires the
algorithm to be a (1, αd)-approximation, the accelerator works well for other
types of algorithms too. For example, we have applied our framework to the
gradient algorithm such as [185] in the linear case, with results that parallel
those presented for Gurobi below. All experiments are run on a server with
Intel E5-2623V3@3.0GHz 8 cores and 64GB RAM.

2.5.1 Linear Case: Accelerating Gurobi

In this section we describe experiments done on synthetic randomly generated
linear programs. We describe the speedup provided for Gurobi, a state-of-the-
art commercial LP solver.

Experimental Setup. To illustrate the performance of our accelerator, we run
Algorithm 1 on randomly generated LPs. Unless otherwise specified, the ex-
periments use a matrix A ∈ Rm×n of size m = 102, n = 106. Each element of
A, denoted as aij, is first generated from [0, 1] uniformly at random and then
set to zero with probability 1− p. Hence, p controls the sparsity of matrix A,
and we vary p in the experiments. The vector c ∈ Rn

≥0 is drawn i.i.d. from
[1, 100] uniformly. Each element of the vector b ∈ Rm

≥0 is fixed as 0.1n. (Note
that the results are qualitatively the same for other choices of b.) By default,
the parameters of the accelerator are set as εs = 0.01 and εf = 0, though these
are varied in some experiments. Each point in the presented figures is the
average of over 100 executions under different realizations of A and c.

In order to measure the quality of the solution, we define the relative error
as (1 − p̂/p∗), where p∗ is the optimal objective value and p̂ is the objective
value produced by our algorithm. To measure the acceleration, we define the
speedup of the accelerated algorithm as the ratio of the runtime of the original
solver to the runtime of our algorithm.

We implement the accelerator in Matlab and use it to accelerate Gurobi. We
intentionally perform the experiments with a small degree of parallelism in
order to obtain a conservative estimate of the acceleration provided by our
framework. As the degree of parallelism increases, the speedup of the accel-

27

10
−4

10
−20

2

4

6

8

ε
s

R
el

at
iv

e
E

rr
or

(%
)

10
−4

10
−2 0

50

100

150

200

S
pe

ed
up

(a) p = 0.8

10
−4

10
−20

2

4

6

8

ε
s

R
el

at
iv

e
E

rr
or

(%
)

10
−4

10
−2 0

10

20

30

40

S
pe

ed
up

(b) p = 0.4

Figure 21: Illustration of the relative error and speedup across sample sizes,
εs. The shaded area depicts a reasonable setting range for εs; the speedup is
significant, while the relative error is low. Two levels of sparsity, p, are shown.

erator increases and the quality of the solution remains unchanged (unless
cloning is used, in which case it improves).

Experimental Results. Our experimental results highlight that our acceleration
framework provides speedups of two orders of magnitude (over 150×), while
maintaining high-quality solutions (relative errors of < 4%).

The trade-off between relative error and speed. The fundamental trade-off in
the design of the accelerator is between the sample size, εs, and the quality
of the solution. The speedup of the framework comes from choosing εs small,
but if it is chosen too small then the quality of the solution suffers. For the
algorithm to provide improvements in practice, it is important for there to be
a sweet spot where εs is small and the quality of the solution is still good, as
indicated in the shaded region of Figure 21.

Scalability. In addition to speeding up LP solvers, our acceleration framework
provides significantly improved scalability. Because the LP solver only needs to
be run on a (small) sample LP, rather than the full LP, the accelerator provides
order of magnitude increase in the size of problems that can be solved. This
is illustrated in Figure 23. The figure shows the runtime and relative error of
the accelerator. In these experiments we have fixed p = 0.8 and n/m = 103

as we scale m. We have set εs = 0.01 throughout. As (a) shows, one can
choose εs more aggressively in large problems since leaving εs fixed leads to
improved accuracy for large scale problems. Doing this would lead to larger
speedups; thus by keeping εs fixed we provide a conservative estimate of the
improved scalability provided by the accelerator. The results in (b) illustrate

28

100 200 300
0

2

4

6

8

m

R
el

at
iv

e
E

rr
or

(%
)

(a) Relative Error

0 200 400
0

200

400

600

m

R
u
n
ti
m

e
 (

s
)

Gurobi
Accelerator

(b) Runtime

Figure 22: Illustration of the relative error and runtime as the problem size,
m, grows. Throughout, n/m = 103. In (b), Gurobi ran into memory errors
for problems with m > 300. However, our accelerator algorithm was able to
solve the problems in a faction of the time, with low relative error.

the improvements in scalability provided by the accelerator. Gurobi’s run
time grows quickly until finally, it runs into memory errors and cannot arrive
at a solution. In contrast, the runtime of the accelerator grows slowly and
can (approximately) solve problems of much larger size. To emphasize the
improvement in scalability, we run an experiment on a laptop with Intel Core
i5 CPU and 8 GB RAM. For a problem with size m = 102, n = 107, Gurobi
fails due to memory limits. In contrast, the accelerator produces a solution in
10 minutes with relative error less than 4%.

2.5.2 Convex Case: Accelerating SCS

In this section we empirically demonstrate the speed up provided by our ac-
celeration method for convex. problems of form (2.1). We accelerate SCS, a
state-of-the-art convex program solver. As in the LP case, the experiments
show that our method provides order-of-magnitude speedups, while producing
near-optimal solutions. We consider several monotonically increasing objective
functions, as described below.

Experimental Setup. We implement the accelerator in python and use CVXPY
[60] to call SCS. We use randomly generated problems for our experiments
and each point in the figures is averaged over 50 executions under different
realizations of A, b and fj for all j ∈ [n].

To generate random instances, we generate matrices A ∈ Rm×n as follows.
Each element of A is drawn i.i.d. from the uniform distribution U [0, 1], and

29

then set to zero with probability 1− p. We vary p in the experiments, which
controls the sparsity of matrix. We set b = Ay + 0.1z, where y and z are
both random vectors drawn i.i.d. from U [0, 1]. We consider concave objective
functions fj(xj) = cj log(xj) and fj(xj) = cjxj

1/2, where cj is drawn i.i.d. from
U [0, 1]. We note that the derivative does not exist at xj = 0 for the func-
tion log(xj). Instead, to satisfy our assumptions, we can solve an equivalent
problem with objective function log(xj + δ)− log(δ).

Unless otherwise specified, the problem dimensions are m = 102, n = 106, the
parameters are set as εs = 0.01 and εf = 0 and εf is increased as described in
Algorithm 2, found in Section 2.3, until feasibility is reached. The parameters
are varied in experiments.

Note that these experiments consider settings in which the assumptions of
Theorem 1 on B do not hold. When we set b = Ay+ 0.1z as described above,
these values are smaller than the bound on B. However our algorithm performs
well even in this setting, demonstrating that the assumptions of the theorem
are conservative.

Experimental Results. We see a remarkable speedup in our experiments, while
maintaining high-quality solutions. Figure 23 demonstrates the relative error
and speedup as the size of the problems are varied. The ratio n/m = 103

is fixed as we vary both n and m. We set p = 0.8 and εs = 0.01. Here we
see a speedup of multiple orders of magnitude compared to SCS. Additionally,
the line corresponding to SCS stops at about n = 1M variables. At this
point, SCS runs into memory errors and is unable to proceed. However, our
algorithm is able to solve the same problem in a factor of 100 less time, while
achieving a relative error of 1%. Our accelerator is additionally able to proceed
with larger problems, ones that SCS can not handle. Thus, our accelerator
provides remarkable scalability: we can quickly solve problems with orders of
magnitude more variables than SCS can handle.

Figure 24 demonstrates the relative error and speedup as the sample size εs
is varied. We see that, as εs decreases, the speedup is larger, but problems
become harder and thus error increases. For larger εs, the speedup is less
pronounced but the accuracy is very high.

30

500 1000
m

2

4

6

Re
la
tiv

e
Er
ro
r (
%
)

(a) Relative Error

0 500 1000
m

0

500

1000

Ru
nt
im

e
(s
)

SCS
Accelerator

(b) Runtime

250 500 750
m

1

2

Re
la
tiv

e
Er
ro
r (
%
)

(c) Relative Error

0 500 1000
m

0

500

1000

Ru
nt
im

e
(s
) SCS

Accelerator

(d) Runtime

Figure 23: The relative error and runtime as the problem size, m, grows, where
we fix the ratio n/m = 103. In (a), (b), fj(xj) = cj log(xj), and in (c), (d)
fj(xj) = cjx

1/2
j .

10−4 10−3 10−2
εs

5

10

15

20

Re
la
tiv

e
Er
ro
r (
%
)

10

20

30

40

50

Ru
nt
im

e
Ra

tio

(a) Relative Error

10−4 10−3 10−2
εs

2
4
6
8

10

Re
la
tiv

e
Er
ro
r (
%
)

25

50

75

100

125

Ru
nt
im

e
Ra

tio

(b) Runtime

10−4 10−3 10−2
εs

2

4

6

Re
la
tiv

e
Er
ro
r (
%
)

10

15

20

25

Ru
nt
im

e
Ra

tio

(c) Relative Error

10−4 10−3 10−2
εs

1

2

3

4

Re
la
tiv

e
Er
ro
r (
%
)

10

20

30

40

50

Ru
nt
im

e
Ra

tio

(d) Runtime

Figure 24: The relative error and runtime ratios as the sample size, εs, varies,
where we fix n = 5× 105, m = 100. In (a), (b), fj(xj) = cj log(xj), and in (c),
(d) fj(xj) = cjx

1/2
j .

31

2.5.3 Setting Parameters in Practice

While Theorem 1 gives guidance on how to set εf and εs to ensure the worst-
case guarantees, in practice it is possible to be more aggressive.

Figure 25 demonstrates the nature of the solution as εs and εf vary. We plot
the optimal solution sorted by magnitude, as well as our approximate solution
sorted in the same order as the optimal, i.e., x∗j and x(φ)j appear on the
same vertical line for the same j. First, we observe the effects of varying εf .
In (a) and (c) we experiment with setting εf = 0, and find that the solution
produced is infeasible. However in (b) and (d) we increase εf and find a feasible
solution. Visually, when comparing (a) and (b), we can see our solution shifts
downwards in (b), which makes sense; a solution with smaller values is more
likely to be feasible in a packing maximization problem. Secondly, we observe
the effects of varying εs. When comparing (b) and (d), we demonstrate that
increasing εs causes the approximate solution to tighten around the optimal;
a larger sample size allows for a closer to optimal solution.

2.5.4 The Benefits of Cloning

Speculative execution is an important tool that parallel analytics frameworks
use to combat the impact of stragglers. Our acceleration framework can im-
plement speculative execution seamlessly by running multiple clones (samples)
in parallel and choosing the ones that finish the quickest. We illustrate the
benefits associated with cloning in Figure 26. This figure shows the percent-
age gain in relative error and speedup associated with using different numbers
of clones. In these experiments, we consider LPs generated as described in
Section 2.5.1. We fix ε = 0.002 and p = 0.8. We vary the number of clones
run and the accelerator outputs a solution after the fastest four clones have
finished. Note that the first four clones do not impact the speedup as long as
they can be run in parallel. However, for larger numbers of clones our experi-
ments provide a conservative estimate of the value of cloning since our server
only has 8 cores. The improvements would be larger than shown in Figure 26
in a system with more parallelism. Despite this conservative comparison, the
improvements illustrated in Figure 26 are dramatic. Cloning reduces the rel-
ative error of the solution by 12% and triples the speedup. Note that these
improvements are significant even though the solver we are accelerating is not
a parallel solver.

32

0 200 400 600
Indices of sorted x *

0.0

0.2

0.4

0.6

0.8

1.0

x j
 so

lu
tio

n
x *

x(ϕ)

(a) εf = 0, εs = 0.5

0 200 400 600
Indices of sorted x *

0.0

0.2

0.4

0.6

0.8

1.0

x j
 so

lu
tio

n

x *

x(ϕ)

(b) εf = 0.1, εs = 0.5

0 200 400 600
Indices of sorted x *

0.0

0.2

0.4

0.6

0.8

1.0

x j
 so

lu
tio

n

x *

x(ϕ)

(c) εf = 0, εs = 0.8

0 200 400 600
Indices of sorted x *

0.0

0.2

0.4

0.6

0.8

1.0

x j
 so

lu
tio

n

x *

x(ϕ)

(d) εf = 0.05, εs = 0.8

Figure 25: Illustration of how the optimal solution x∗ and our approximate
x(φ̂) solution differ. In particular, increasing εf affects the feasibility of our
solution: comparing (a) and (b), as εf is increased, the approximate solution
x(φ̂) shifts downwards; in (a) the approximate solution is infeasible, but setting
εf = 0.1 produces a feasible x(φ̂). Here m = 100 and n = 600 and fj(xj) =
cj log(xj).

0 20 40
0

5

10

15

Number of Clones

R
el

at
iv

e
E

rr
or

 G
ai

n(
%

)

(a) Relative Error

0 20 40
20

40

60

80

Number of Clones

S
pe

ed
up

(b) Speedup

Figure 26: Illustration of the impact of cloning on solution quality as the
number of clones grows.

33

2.5.5 Case Study: California Road Network Dataset

To illustrate the performance in a specific practical setting, we consider an
example focused on optimal resource allocation in a network. We consider an
LP that represents a multi-constraint knapsack problem associated with plac-
ing resources at intersections in a city transportation network. For example,
we can place medical testing facilities, advertisements, or emergency supplies
at intersections in order to maximize social welfare, but such that there never
is a particularly high concentration of resources in any area.

Specifically, we consider a subset of the California road network dataset [111],
consisting of 100, 000 connected traffic intersections. We consider only a subset
of a total of 1, 965, 206 intersections because Gurobi is unable to handle such
a large dataset when run on a laptop with Intel Core i5 CPU and 8 GB RAM.
We choose 1000 of the 100, 000 intersections uniformly at random and defined
for each of them a local vicinity of 20, 000 neighboring intersections, allowing
overlap between the vicinities. The goal is to place resources strategically
at intersections, such that the allocation is not too dense within each local
vicinity. Each intersection is associated with a binary variable which represents
a yes or no decision to place resources there. Resources are constrained such
that the sum of the number of resource units placed in each local vicinity does
not exceed 10, 000.

Thus, the dataset is as follows. Each element Aij in the data matrix is a binary
value representing whether or not the i-th intersection is part of the j-th local
vicinity. There are 1000 local vicinities and 100, 000 intersections, hence A is
a (1000× 100, 000) matrix. Within each local vicinity, there are no more than
bj = 10, 000 resource units.

The placement of resources at particular locations has an associated utility,
which is a quantifier of how beneficial it is to place resources at various lo-
cations. For example, the benefit of placing medical test supplies, advertise-
ments, or emergency supplies at certain locations may be proportional to the
population of the surrounding area. In this problem, we randomly draw the
utilities from Unif[1, 10]. The objective value is the sum of the utilities at
whose associated nodes resources are placed.

Figure 27 demonstrates the relative error and runtime of the accelerator com-
pared to Gurobi, as we vary the sample size εs. There is a speed up by a factor
of more than 30 when the approximation ratio is 0.9, or a speed up by a factor

34

0 0.05 0.1
0

5

10

15

ǫs

R
e

la
ti
v
e

 E
rr

o
r

(%
)

(a) Relative Error

0 0.05 0.1
0

50

100

150

ǫs

R
u
n
ti
m

e
 (

s
)

Gurobi
Accelator

(b) Runtime

Figure 27: Illustration of the relative error and runtime across sample sizes,
εs, for the real data experiment on the California road network dataset.

of about 9 when the approximation ratio is 0.95.

2.6 Proofs

In this section we present a proof of Theorem 1. The proof approach has two
main steps: (1) show that the solution provided by Algorithm 1 is feasible
with high probability (Lemma 12); and (2) show that the value of the solution
is sufficiently close to optimal with high probability (Lemma 16). First, we
present preliminary results.

2.6.1 Preliminary Results

We make use of the following concentration bound, for example as found in
[196].

Theorem 3 (Hoeffding-Bernstein Inequality). Let u1, u2 . . . , us be random
samples without replacement from the real numbers r1, . . . , rn, where rj ∈
[0, 1]. For t > 0, Pr

[
|
∑s

j=1 uj −
s
n

∑n
j=1 rj| ≥ t

]
≤ 2 exp

(
−t2

2sσ2
n+t

)
, where

σ2
n = 1

n

∑n
j=1(rj −

∑n
j=1 rj/n)2.

Throughout this section, we use the following definition.

Definition 4. Denote the solution produced by Algorithm 1 as x(φS) ∈ Rn,
the solution to the sample problem (2.7) as xS ∈ Rs, and the dual sample
solutions as φS ∈ Rm and ψS ∈ Rs. Let the algorithm A being accelerated be
a (1, αd)–approximation algorithm. Define a sample S ⊂ [n], |S| = εsn. Let
S be the set of all samples, and N = [n]. Define events, associated with each

35

constraint i ∈ [m],

Di =
{
S ∈ S :

∑
j∈S aijx

S
j ≤

(1−εf)εs
αd

bi

}
Ei =

{
S ∈ S :

∑
j∈S aijxj(φ

S) ≤ (1− εf)εsbi
}

Fi =
{
S ∈ S :

∑
j∈N aijxj(φ

S) ≤ bi

}
.

For brevity, we drop S from our notation hereafter. The following claim de-
scribes the relation between the sample solution xS to problem (2.7) and the
solution x(φS) produced by Algorithm 1.

Claim 5. Let xS be the sample solution to (2.7) and x(φS) be the approximate
solution to (2.1). If Algorithm A is a (1, αd)-approximate solver, then αdxSj ≥
xj(φ

S) for all j ∈ [s].

Proof. Recall that in the allocation rule (2.10) we set xj(φS) based on the
optimality conditions of the sample problem. Specifically, we consider (2.6),
reproduced below,

f ′j(x
S
j) = aTj φ

S + ψSj ∀j ∈ [s] (2.16)

and the value of ψSj , to motivate the two branches of the general allocation
rule (2.10), and its special cases, (2.11) and (2.12). Consider the following
cases.

• ψSj > 0: Evaluating (2.16), we see that f ′j(xSj) > aTj φ
S. This is the

condition in the first branch of each of the allocation rules, in which we
set xj(φS) = 1. The approximate complimentary slackness conditions
imply that 1 ≤ xSj αd. Recalling that αd ≥ 1, we see that αdxSj ≥
x(φS). Note also that in the case of an exact solver (αd = 1), the exact
complimentary slackness conditions ψSj (1 − xSj) = 0 imply that xSj = 1,
and so xSj = xj(φ

S) = 1.

• ψSj = 0: Evaluating (2.16), we see that f ′j(xSj) = aTj φ
S, which corre-

sponds to the second branch of the allocation rules (2.10), (2.11) and
(2.12), which differ. Consider the following cases.

– Case (1) Concave f ′j non-invertible: As described in the general
allocation rule (2.10), we set xj(φS) equal to the smallest value
that satisfies f ′j(xSj) = aTj φ

S. Thus, xSj ≥ xj(φ
S).

36

– Case (2) Strictly Concave: The sample solution and the result of
the strictly concave allocation rule (2.11) are equal: xSj = xj(φ

S) =

f ′−1
j (aTj φ

S).

– Case (3) Linear: The linear allocation rule (2.12) sets xj(φS) = 0,
and so xSj ≥ xj(φ

S).

The following lemma relates the sample solution xS to the solution x(φS)

produced by Algorithm 1.

Lemma 6. Define events Di and Ei as in Definition 4. For all i ∈ [m],
Di ⊂ Ei.

Proof. Due to Claim 5, αdxSj ≥ xj(φ
S) for all j ∈ S. Thus,∑

j∈S

aijxj(φ
S) ≤

∑
j∈S

αdaijx
S
j ≤ αd

(1− εf)εs
αd

bi = (1− εf)εsbi,

where the second inequality is due to the definition of Di.

Finally, the following lemma will be used in the feasibility argument.

Lemma 7. For all constraints i ∈ [m],

Pr[Di∩F̄i] ≤ Pr[Ei∩F̄i] ≤ Pr
[
|
∑

j∈S aijxj(φ
S)− εs

∑
j∈N aijxj(φ

S)| > εfεsbi

]
.

Proof. For each constraint i ∈ [m], we evaluate Pr[Di ∩ F̄i]:

Pr[Di ∩ F̄i] = Pr

[∑
j∈S

aijx
S
j ≤

(1− εf)εs
αd

bi ∩
∑
j∈N

aijxj(φ
S) > bi

]

≤ Pr

[∑
j∈S

aijxj(φ
S) ≤ (1− εf)εsbi ∩

∑
j∈N

aijxj(φ
S) > bi

]
(2.17)

≤ Pr

[∑
j∈S

aijxj(φ
S) ≤ (1− εf)εsbi

∣∣∣∣∣ ∑
j∈N

aijxj(φ
S) > bi

]

≤ Pr

[
|
∑
j∈S

aijxj(φ
S)− εs

∑
j∈N

aijxj(φ
S)| > εfεsbi

]
,

where (2.17) is due to Lemma 6.

37

2.6.2 Quantizing the Solution Space

We bound the number of possible solutions xj(φS). Naively it may seem that
there are an infinite number of possible solutions, as xj ∈ [0, 1]. However,
we can bound the number of possible solutions by considering classes of dual
variables that result in approximately equivalent primal realizations xj(φS).
We discretize the primal solution space, [0, 1], with a grid size of q, and define
the following:

Definition 8. Consider a discretization of the primal solution space [0, 1],
with grid size q ≤ 1. Denote the value of f ′j evaluated at discrete values as
Tj = {f ′j(0+), f ′j(q), . . . , f

′
j(qb1/qc} ∪ {f ′j(1−)}.

Definition 9. Consider two dual solutions φS1 , φS2 ∈ Rm
+ to problem (2.7).

Discretize the primal solution space as in Definition 8. Let Gj = {(aj, ξ)|ξ ∈
Tj} and G = ∪jGj. We say φS1 and φS2 are in the same equivalence class and
write φS1 ∼ φS2 when

∀j,∀(aj, ξ) ∈ Gj : aTj φ
S1 ≥ ξ ⇐⇒ aTj φ

S2 ≥ ξ. (2.18)

We show that two dual variables in the same equivalence class, when applied to
the allocation rule (2.10), result in two primal solutions which are element-wise
within a distance of q from each other.

Lemma 10. Consider two dual variables in the same equivalence class. The
corresponding primal solutions satisfy |xj(φS1)− xj(φS2)| ≤ q for all j ∈ [n].

Proof. Suppose that the interval [0, 1] is discretized with a grid size of q, as
in Definition 8. Consider two dual variables in the same equivalence class as
specified in Definition 9. Equation (2.18), along with the allocation rule (2.10),
imply that if φS1 ∼ φS2 , then the following cases occur:

• when aTj φS1 < f ′j(1
−) and aTj φS2 < f ′j(1

−), then xj(φS1) = xj(φ
S2) = 1

• when aTj φS1 ≥ f ′j(0
+) and aTj φS2 ≥ f ′j(0

+), then xj(φS1) = xj(φ
S2) = 0

• when f ′j(1
−) ≤ aTj φ

S1 < f ′j(0
+) and f ′j(1

−) ≤ aTj φ
S2 < f ′j(0

+), then
|xj(φS1)− xj(φS2)| ≤ q.

38

Thus in general, |xj(φS1)− xj(φS2)| ≤ q for all j.

We employ a classical result of combinatorial geometry [153] to bound the
number of possible primal solutions.

Lemma 11. There are at most (n(1 + 1
q
))m possible primal solutions x(φS).

Proof. We employ a classical result of combinatorial geometry [153]. This
result says that given k points in m-dimensional space, the number of possible
separations, or regions, created by an m-dimensional plane is km.

We characterize each primal solution by a separation of k points in an m-
dimensional plane by a hyperplane. In this context, each point corresponds to
a value that the primal solution can take on. The number of values the primal
solution xj(φS) can take on is described by the size of the set Tj as defined in
Definition 8. Thus, k =

∑n
j=1|Tj|.

In the linear case, note that |Tj|= 1, ∀j, thus k = n. However in general,
the size of set Tj is determined by the number of quantized values on the
[0, 1] interval, which is dependent on the grid size q. Recalling Definition 8,
|Tj|≤

(
1 + 1

q

)
, ∀j. There are n such sets, and so k ≤ n(1 + 1

q
).

Applying [153], we find that the number of possible primal solutions is equal
to the maximum number of regions created by the hyperplane, which is at
most (n(1 + 1

q
))m.

2.6.3 Feasibility

Now we turn to the feasibility portion of the proof; we show that the solution
provided by Algorithm 1 is feasible with high probability.

Lemma 12. Let A be a (1, αd)-approximation algorithm for packing problems,
αd ≥ 1. For any εs, εf > 0, if the conditions (2.13) and (2.14) on B hold, for
the concave (2.1) and linear (2.2) cases respectively, then the solution Algo-
rithm 1 produces is feasible with probability at least 1− 2εs.

Proof. We bound the probability that for a given sample S, the sample solution
xS is feasible for the sample problem (2.7), while there is some constraint i for
which the complete solution x(φS) is infeasible in the original problem (2.1).
Recall the events defined in Definition 4. Our goal is to bound Pr[Di ∩ F̄i].

39

First, we relate the sample solution xS to x(φS). Due to Claim 5, we find that
αdx

S
j ≥ xj(φ

S) for all j ∈ [s]. Applying Lemma 6, we find that Di ⊂ Ei, and
by Lemma 7 Pr[Di ∩ F̄i] ≤ Pr[Ei ∩ F̄i]. We now proceed to bound Pr[Ei ∩ F̄i].

Suppose that the primal solution space [0, 1] is discretized with a grid size
of q. Let q =

εf mini bi
4n

. Consider two equivalent dual variables φS1 and φS2

as defined in Definition 9. Applying Lemma 10, the inequality q ≥ εf bi
4n

, and
recalling that aij ∈ [0, 1], we find:∣∣∣∣∣∑

j∈S

aijxj(φ
S1)−

∑
j∈S

aijxj(φ
S2)

∣∣∣∣∣ ≤∑
j∈S

q ≤ εsnq ≤ εsεfbi/4 (2.19)∣∣∣∣∣∑
j∈N

aijxj(φ
S1)−

∑
j∈N

aijxj(φ
S2)

∣∣∣∣∣ <∑
j∈N

q < nq < εfbi/4. (2.20)

Now for each equivalence class C of dual variables, and for each constraint i,
we bound the probability of Pr[Ei ∩ F̄i ∩

{
φS ∈ C

}
].

In line (2.21) below, we consider any dual variable φS ∈ C in a fixed equivalence
class. In line (2.22) we fix a particular dual variable ΦC within the equivalence
class C. Thus, ΦC is not a random variable. This allows us to apply the
Hoeffding-Bernstein Inequality (Theorem 3) in the next line (2.23), where the
randomness present is due only to the choice of samples, indexed by j, which
leads to a random selection of aij. We emphasize that xj(ΦC) is deterministic.

Pr[Ei ∩ F̄i ∩
{
φS ∈ C

}
] ≤ Pr

[∣∣∣∣∣∑
j∈S

aijxj(φ
S)− εs

∑
j∈N

aijxj(φ
S)

∣∣∣∣∣ > εfεsbi ∩
{
φS ∈ C

}]
(2.21)

≤ Pr

[∣∣∣∣∣∑
j∈S

aijxj(Φ
C)− εs

∑
j∈N

aijxj(Φ
C)

∣∣∣∣∣ > εfεsbi
2

]
(2.22)

≤ Pr

[∣∣∣∣∣∑
j∈S

aijxj(Φ
C)− E

[∑
j∈N

aijxj(Φ
C)

]∣∣∣∣∣ > εfεsbi
2

]
(2.23)

≤ 2 exp

(
−

ε2fε
2
sb

2
i

2εsbi + εfεsbi/2

)
(2.24)

= 2 exp

(
−
ε2fεsbi

8 + 2εf

)
≤ 2 exp

(
−
ε2fεsbi

8

)
, (2.25)

40

where line (2.21) is due to Lemma 7. In line (2.22) we fix a particular dual
variable ΦC within the equivalence class C. The inequality holds due to the
fact that if ∣∣∣∣∣∑

j∈S

aijxj(φ
S)− εs

∑
j∈N

aijxj(φ
S)

∣∣∣∣∣ > εfεsbi and φS ∈ C, (2.26)

then∣∣∣∣∣∑
j∈S

aijxj(Φ
C)− εs

∑
j∈N

aijxj(Φ
C)

∣∣∣∣∣ ≥
∣∣∣∣∣∑
j∈S

aijxj(φ
S)− εs

∑
j∈N

aijxj(Φ
C)

∣∣∣∣∣− εfεsbi
4

by (2.19)

≥

∣∣∣∣∣∑
j∈S

aijxj(φ
S)− εs

∑
j∈N

aijxj(φ
S)

∣∣∣∣∣− εfεsbi
2

by (2.20)

>
εfεsbi

2
by (2.26).

In line (2.24) we apply the Hoeffding-Bernstein Inequality (Theorem 3). To
complete the proof, we take a union bound over all possible primal solutions,
and the values i of the m constraints. The number of possible primal solutions
is described in Lemma 11. Setting q ≥ εf bi

4n
we find

2(n(1 +
4n

εfbi
))m exp

(
−
ε2fεsbi

8

)
(2.27)

≤ 2(n(1 +
4εfεsn

m log(n)
))m exp

(
−
ε2fεsbi

8

)
≤ 2εs

m
. (2.28)

In (2.27), bi appears twice. If we make the assumption on B as in (2.13),
then that also implies that bi > m log(n)

ε2f εs
. Thus, (2.28) follows first because

of the weaker assumption on bi, and then because of the stronger assumption
(2.13). Finally, we take a union bound over all constraints: P (∪mi=1(Di ∩ F̄i)) ≤
m2εs

m
= 2εs.

2.6.4 Optimality

The following lemma describes the relation between the approximate solution
x(φS) and the approximation of the primal objective function.

Lemma 13. Given the dual solution (φS, ψS) to the sample problem (2.7), if
the solution produced by Algorithm (1), x̂ = x(φS), satisfies the dual approxi-

41

mate complementary slackness conditions for r ≤ 1:

∀i φSi > 0⇒ rbi ≤ (Ax̂)i ≤ bi, (2.29)

∀j ψSj > 0⇒ r ≤ x̂j ≤ 1, (2.30)

then x̂ is an r-approximation of the optimal primal solution x∗ original prob-
lem (2.1).

Proof. Consider any approximate solution (x̂, φS, ψS) that satisfies the approx-
imate complementary slackness conditions, as stated in (2.29) and (2.30).

Recall that (2.5) motivates the allocation (2.10). Thus, (2.6) and (2.10) imply
that f ′j(x̂j) ≥ aTj φ

S, ∀j ∈ [n]. Taking into account the concavity of the
objective function and the assumption that fj(0) = 0 for all j, we derive the
following:

∀j fj(x̂j) ≥ x̂jf
′
j(x̂j) ≥ x̂ja

T
j φ

S. (2.31)

Recall that the dual to the sample problem (2.7) is

minimize
φ∈Rm+ ,ψ∈Rs+

bTφ−
∑n

j=1 f
?
j (aTj φ+ ψj) + 1Tψ,

where f ?j (v) = infx∈R+ vx− fj(xj) is the concave conjugate function. Thus,∑n
j=1 f

?
j (aTj φ

S + ψSj) = φSAx̂+ ψS
T
x̂−

∑n
j=1 fj(x̂j). (2.32)

So, the dual objective is

D(φS) :=
∑m

i=1 biφ
S
i −
∑n

j=1 f
?
j (aTj φ

S + ψSj) + 1TψS (2.33)

≤ 1

r

∑m
i=1 (Ax̂)iφ

S
i −
∑n

j=1 f
?
j (aTj φ

S + ψSj) + ψS
T
x̂

=
1

r
φS

T
Ax̂− φSTAx̂− ψST x̂+

∑n
j=1 fj(x̂j) + ψS

T
x̂

= (
1

r
− 1)φS

T
Ax̂+

∑n
j=1 fj(x̂j).

The second line above follows from (2.29) and (2.30), and the third from (2.32).
Thus by (2.31), the primal objective is

P(x̂) :=
∑n

t=1 fj(x̂j) ≥ φS
T
Ax̂

⇒ D(φS) ≤ 1

r
P(x̂) ⇒ P(x∗) ≤ 1

r
P(x̂).

42

Next, we make a mild technical assumption.

Assumption 14. For any dual solution φS there are at most m columns aj
of A such that aTj φS = f ′j(xj).

Assumption 14 does not always hold; however it can be enforced by perturbing
each fj by a small amount at random, for example as described by [59] and [4].

Claim 15. Let xS and φS be solutions to the sample problem (2.7). Then
{xj(φS)}j∈[s] and {xSj }j∈[s] differ on at most m values of j.

Proof. When fj(x) is strictly concave, or equivalently f ′j(x) is invertible, by
allocation rule (2.11) the solutions are trivially equivalent xj(φS) = xSj for all
j ∈ [s].

For instances in which fj(x) has piece-wise linear components, then f ′j(x) may
be non-invertible. In such cases, as described in the general allocation rule
(2.10), we set xj(φS) to be the smallest element such that f ′j(x) ≥ aTj φ

S. Thus
the resulting function, which we denote f ′−1

j , may have discontinuity points.

We are concerned with instances in which aTj φS falls on a discontinuity point
of f ′−1

j . In such cases it is possible that xSj 6= xj(φ
S).

Here, f ′−1(x) is a non-increasing function and thus we can apply Froda’s The-
orem, which describes the set of discontinuities of a monotone real valued
function. The set of discontinuities is countable and is thus of Lebesgue mea-
sure zero.

By Assumption 14, there are at most m values of j for which aTj φS = f ′j(xj). If
f ′j is non-invertible in these instances, then by the above reasoning, we choose
m values from a countable set of discontinuity points. Therefore, there are at
most m cases in which aTj φS falls on a discontinuity point, which implies there
are at most m values of j for which xSj 6= xj(φ

S).

Now we show that the solution is approximately optimal with high probability.

Lemma 16. Let A be a (1, αd)-approximation algorithm for packing problems,
αd ≥ 1. For any εs, εf > 0, if, the conditions (2.13) and (2.14) on B hold,

43

for the concave (2.1) and linear (2.2) cases respectively, then the solution Al-
gorithm 1 produces is a (1 − 3εf)/α

2
d-approximation with probability at least

1− 2εs.

Proof. To show the solution is approximately optimal, we bound the proba-
bility that for a given sample, the sample solution xS causes constraints i in
the sample problem to be nearly tight, while the complete solution x(φS) does
not cause those constraints to be nearly tight in the original problem. Define
events,

Mi = {S ∈ S :
∑
j∈S

aijx
S
j ≥

(1− 2εf)εs
α2
d

bi}

Ni = {S ∈ S :
∑
j∈N

aijxj(φ
S) <

1− 3εf
α2
d

bi}.

We want to bound Pr[Mi ∩ N̄i]. When φSi > 0, the approximate dual com-
plementary slackness condition associated with the i-th primal constraint of
problem (2.7) is ∑

j∈S

aijx
S
j ≥

(1− εf)εs
α2
d

bi.

This allows us to bound
∑

j∈S aijxj(φ
S) as follows:∑

j∈S

aijxj(φ
S) ≥

∑
j∈S

aijx
S
j −m ≥

(1− 2εf)εs
α2
d

bi,

where the first inequality follows from Claim 15 and the second follows from
the fact that B ≥ mα2

d

εf εs
.

We discretize the values that the primal solution can take, as done in the
feasibility argument in Lemma 12. However, we now let q =

εf mini bi
4nαd

. Consider
two dual variables φS1 and φS2 in the same equivalence class, as defined in
Definition 9. Applying Lemma 10,∣∣∣∣∣∑

j∈S

aijxj(φ
S1)−

∑
j∈S

aijxj(φ
S2)

∣∣∣∣∣ ≤∑
j∈S

q ≤ εsnq ≤
εsεfbi
4αd

(2.34)∣∣∣∣∣∑
j∈N

aijxj(φ
S1)−

∑
j∈N

aijxj(φ
S2)

∣∣∣∣∣ <∑
j∈N

q < nq <
εfbi
4αd

. (2.35)

For each equivalence class C of dual variables, and for each constraint i, we
derive the following bound on the probability of Pr[Mi ∩ N̄i ∩ {φ ∈ C}]. We

44

employ the same approach used in the analogous argument in the feasibility
proof of Lemma 12, equations (2.21) and (2.22), where we fix a particular dual
variable ΦC within the equivalence class C. We bound

Pr

[∑
j∈S

aijx
S
j ≥

(1− 2εf)εs
α2
d

bi ∩
∑
j∈N

aijxj(φ
S) <

1− 3εf
α2
d

bi ∩ {φ ∈ C}

]

≤ Pr

[∑
j∈S

aijxj(Φ
C) ≥ (1− 2εf)εs

α2
d

bi ∩
∑
j∈N

aijxj(Φ
C) <

1− 3εf
α2
d

bi

]

≤ Pr

[∣∣∣∣∣∑
j∈S

aijxj(Φ
C)− E

[∑
j∈N

aijxj(Φ
C)

]∣∣∣∣∣ > εfεs
2α2

d

bi

]
≤ 2 exp

(
−

ε2fεsbi

8α2
d + 2αdεf

)
.

Now take αd close to one, i.e., we assume 10 ≥ 8α2
d + 2αdεf . We apply

Lemma 11 for q =
εf mini bi

4nαd
and find

2(n(1 +
4n

εfbi
αd))

m exp

(
−
ε2fεsbi

10

)
≤2(n(1 +

4εfεsn

m log(n)
))m exp

(
−
ε2fεsbi

10

)
≤ 2εs

m
,

where the last line follows first because bi > m log(n)

ε2f εsαd
, and then because of the

assumption made on B (2.13). Taking the union bound over values of i we
find that P (∪mi=1(Mi ∩ N̄i)) ≤ 2εs. Finally, consider Lemma 13, for r =

1−3εf
α2
d

.
It follows that if x∗ is an optimal solution to L, then with probability at least
1− 2εs,

P(x(φS)) ≥ 1− 3εf
α2
d

P(x∗).

Finally, the proof of Theorem 1 follows from the above results.

Proof. Proof of Theorem 1. The solution generated by the allocation rule is
feasible due to Lemma 12. The guarantee of a (1 − εf)/α

2
d-approximation

of the optimal solution follows from Lemma 16. For simplicity, we state the
result of Lemma 16 with a rescaling of εf by 1/3. Concerning the runtime,
A is executed on a problem with εsn variables, and so it takes that fraction
of the original runtime. Then, the second step of the algorithm is n simple
computations of f ′−1

j (aTj φ
S) for all j ∈ [n].

45

2.7 Discussion

We proposed a framework for accelerating exact and approximate convex pro-
gramming solvers for packing linear programming problems and a family of
convex programming problems with linear constraints. Analytically, we pro-
vide worst-case guarantees on the runtime and the quality of the solution
produced. Numerically, we demonstrate that our framework speeds up Gurobi
and SCS by two orders of magnitude, while maintaining a near-optimal solu-
tion.

Our framework works by subsampling columns of the data matrix, and then
defining a smaller sample problem defined on that subsampled matrix. We
solve the dual of the sample problem using any given convex program solver in
a black-box fashion. Finally, we set the values of the original primal variables
based on the approximate dual solution of the sample problem.

Possible future areas of research include the following. In numerical experi-
ments we find that our algorithm can handle a larger family of problems than
suggested by our theoretical bounds on B. Understanding this gap and im-
proving the analysis is an area of interest. Additionally, our analysis relies
partly on the fact that we are concerned with packing problems in this pa-
per. It would be interesting to see what type of techniques are useful for more
general problems.

46

C h a p t e r 3

DISTRIBUTED ALGORITHM WITH LOGARITHMIC
COMMUNICATION COMPLEXITY

This chapter introduces a novel approach for distributed optimization in multi-
agent systems. We consider a setting in which distributed agents work together
to solve a global optimization problem. In a multi-agent system, an agent
typically participates in a global optimization problem in order to obtain a
solution to a local variable, associated with a local action for an agent. A
key characteristic of this setting is that each agent participates in the global
problem, but does not necessarily need to know the full global solution. This
setting contrasts with many more general distributed settings, in which all
distributed units are required to participate in calculating the entire global
solution. In the work presented here, we take advantage of this change in
perspective in the multi-agent setting, allowing us to guarantee exponentially
reduced communication and significantly improved robustness compared to
more traditional distributed algorithms that are currently employed in multi-
agent systems.

3.1 Motivation

Distributed optimization is an area of crucial importance to the design and
control of multi-agent systems. Despite the wide variety of approaches to dis-
tributed optimization in multi-agent systems, the approaches that are studied
and used today are similar at a high level. This similarity leads to funda-
mental limitations on their scalability and robustness. In particular, many of
the algorithms discussed in Section 1.2.2 work by passing current estimates of
the global solution between agents, or a central node, and gradually improve
those estimates at each step with the goal of convergence to a (near) opti-
mal solution, i.e., consensus. Classically, in such approaches, the distributed
agents are required to store, update, and broadcast a vector of dimension that
matches that of the full system-wide solution to the problem at each step,
which for multi-agent systems in modern applications can be enormous. Fur-
ther, no individual agent can determine its own action or estimate without
global convergence of all agents in the network. This is a result of the fact

47

that distributed optimization algorithms are designed to allow each distributed
agent to compute the full global solution. But, this is overkill for multi-agent
systems, where typically an agent needs only to compute its local piece of the
solution in order to determine its action.

As a result, there are a number of serious and fundamental challenges when it
comes to applying distributed optimization algorithms in the design of multi-
agent distributed systems.

First, since the network size can be enormous, consisting of tens or hundreds
of thousands of distributed agents (for example, in emerging internet of things
(IoT) applications, the communication and storage demands for each iteration
may be extreme. In fact, in most such approaches, e.g., consensus-style ap-
proaches, the communication within a single round requires O(n) messages,
typically containing a current estimate of the global solution. There has been
considerable research that seeks to reduce the communication overhead of these
approaches, e.g., [140, 142, 181, 94]. These approaches seek to partition the
global solution into multiple blocks, each of which can be communicated less
frequently, thus lowering the communication overhead. However, to this point,
order-of-magnitude improvements have not been found for general classes of
optimization problems.

Second, the iterative convergence of traditional distributed optimization algo-
rithms means that the convergence of all nodes can be delayed if a single node
or communication link is congested. For example, if there is communication lag
in one part of the network, a consensus algorithm cannot reach consensus, and
thus no agent in the network can determine its local action. Such “stragglers”
are frequent in modern distributed systems and lead to significant delays in
many distributed optimization designs. The importance of this issue has been
recognized for decades, and there has been considerable work toward develop-
ing asynchronous approaches for dual descent and consensus algorithms, e.g.,
[195, 210, 41, 20]. However, even asynchronous algorithms require all nodes
to communicate repeatedly in order for consensus to be achieved. Thus, if a
set of agents is suffering from poor communication conditions, agents across
the network must still wait for that part of the network to converge in order
to determine their actions.

Third, classical approaches result in designs where any changes in network
structure due to communication links failing or agents entering/leaving the

48

network means that the algorithm is brought to a halt and needs to restart the
convergence process. Again, this is a long-standing issue and the design of fault
tolerant distributed optimization has received considerable attention. Robust-
ness to failures and changes in the system are typically addressed through the
design of fault-tolerant, Byzantine distributed optimization approaches, e.g.,
[43]; however, such approaches require significant adjustments to the classical
algorithms and come at significant expense in terms of convergence rates and
optimality guarantees.

Fourth, because classical distributed algorithms require global convergence or
consensus before any individual agent can determine its local action, a sin-
gle agent computing its individual action or estimate imposes communication
and computation demands on every agent in the network. This introduces
unnecessary overhead and delay since it means that an individual agent is
impacted by stragglers, agents entering/exiting, etc., across the whole system
even though it only seeks to compute its local action. Ideally, an agent would
be able to compute its part of the solution without the need to compute the
full global solution.

Goal. In this work, we seek to develop a new approach for distributed opti-
mization in multi-agent systems that can reduce the communication overhead
of traditional approaches, while also guaranteeing robustness to communica-
tion delay and failures in the system. To accomplish this, we seek a design
that allows an individual agent to compute its local optimal action without the
need for global communication.

Our approach toward achieving this goal is to develop a novel connection be-
tween distributed optimization and an emerging sub-field of theoretical com-
puter called local computation algorithms (LCAs) [174] – applying local com-
putation algorithms to optimization problems for the first time. The LCA
framework was formally introduced by [174] in order to connect a variety of
algorithms with similar goals that had recently appeared in distinct areas [176,
10, 98]. Until our work, the field has focused on the design of LCAs for graph
problems such as matching, maximal independent set, and coloring [7, 112,
169, 75]. In this work we show that the approach is promising for distributed
optimization as well.

The defining property of local computation algorithms is that they seek to
compute a local “piece” of the solution to some algorithmic problem using only

49

information that is “close” to that piece of the problem. For example, an LCA
for matching allows each node in the graph to compute its own match locally
by communicating only with a small neighborhood of other nodes, without
computing the entire matching for the graph. Yet, if all nodes run the LCA,
then the solution each node computes is part of the same global matching.

In the context of distributed optimization in multi-agent systems, this means
that when running an LCA, a distributed agent computes its own action or
estimate (its local piece of the solution to the global optimization problem)
without computing or communicating the global solution. However, if every
agent runs the LCA, then the agents together (approximately) solve the global
optimization problem, i.e., compute pieces of the same global solution. So, if
there exists an LCA for the optimization problems used in networked and dis-
tributed systems, it would allow an agent to compute its local action without
waiting for global consensus to be achieved. Thus, it could provide a significant
reduction in communication compared to traditional approaches while also im-
proving robustness to stragglers and agents entering/exiting the system, since
stragglers and agents entering/exiting would only impact an agent’s computa-
tion of their action if they happen within the small, local neighborhood of the
agent.

In this work we develop the first local computation algorithm for convex opti-
mization, LOCO (LOcal Convex Optimization). This optimization framework
represents a fundamentally new approach for distributed optimization in multi-
agent systems that allows an individual agent to compute its action with expo-
nentially less communication than traditional approaches, while maintaining
robustness to both stragglers and the entrance/exit of agents into the system.
Further, LOCO allows an individual agent to compute its action or estimate
without the need for global convergence, and thus without the need for global
communication and computation.

3.1.1 Problem Overview and Distributed Setting

We consider a multi-agent system with N distributed agents that wish to
compute actions or estimates xj ∈ Rqj , where qj is the dimension of the actions
for agent j, so that the combination of the actions forms a global solution
x ∈ Rn to a constrained optimization problem of the following form. This form
is of interest for a wide variety of problems in multi-agent networked systems,

50

e.g., regression problems and support vector machines [53, 95, 93], distributed
inference in sensor networks, which has broad applications to the Internet of
Things [87, 158, 152, 85], inference in graphical models [166, 5], relaxations
of maximum a posteriori (MAP) estimation problems [178], network utility
maximization (NUM) problems, [99, 119], management of content distribution
networks and data centers [28, 154], and control of power systems [71, 160]:

minimize
∑N

j=1 fj(xj) (3.1)

subject to
∑N

j=1 aijxj ≥ bi i ∈ [m]

x ≥ 0,

where xj ∈ Rqj and fj : Rqj → R are convex functions. We allow overlap
or coupling between the functions fj; i.e., a component of the entire solution
x ∈ Rn may appear in multiple local functions fj. When this happens, the
agents’ actions are coupled through the overlapping variables. Formally, this
implies that

∑N
j=1 qj ≥ n, where if there is equality there are no variables that

appear in multiple agents actions, xj, and if the inequality is strict there are
variables that appear in two or more agents’ actions. Additionally, aij ∈ R≤qj

are submatrices of an A ∈ Rm×n matrix, where [ai1, . . . , aij, . . . , ain] is the ith
row of A, and b ∈ Rm.

The problem is defined over a network, where each agent j is associated with
a node j, a variable xj, and a function fj. The problem data (m constraints),
A and b, are distributed over the agents, and the N agents are completely
distributed. In this work, we are concerned with settings in which n, m, and
N are large, but each local function fj depends on a relatively small number
of components of x, i.e., the dimension of the agents’ actions is small, and the
matrix A is sparse (has a small number of non-zero entries in each row and
column).

We would like to emphasize that the task for an individual, distributed agent
is to compute its own local action or estimate, xj. The agent does not need the
full global solution x, only its local piece. Note that in traditional approaches
for distributed optimization, e.g., consensus and dual descent, a byproduct of
the algorithms used is that each agent computes the full global solution x,
which may be of significant size and requires global convergence (and thus
communication and computation by every agent in the network) to compute.
This should not be viewed as a feature of these algorithms, instead it is an

51

unnecessary overhead in the case of multi-agent systems (since the agent is
only responsible for its local action).

A key insight in the design of LOCO is that is not necessary for an individ-
ual agent to compute the global solution in order to determine its individual
action. Instead, it is possible for an agent to compute its local “piece” of the
solution xj without computing the full global solution x. To achieve this, the
fundamental idea of LOCO is to, for a given distributed agent, define a local
problem associated with the agent’s action (variable) xj, which is defined on
a subset Xj of the primal variables and a subset Yj of the data (constraints).
The agent j then solves its local problem using a given algorithm that is
purely local. This produces the local action/estimate, xj, that is a piece of an
(approximately) optimal solution to the global problem x. Further, if every
distributed agent runs the same local algorithm, then x is computed.

Note that the sets Xj and Yj used by LOCO are much smaller in size than
n and m respectively (the dimensions of the original problem), resulting in
a dramatic dimension reduction and thus a reduction in communication and
computation when the matrix A is sparse. We show (Theorem 19) that, when
the data matrix A is sparse, i.e., the maximum number of non-zero entries
in a row or column is bounded by a constant, Xj and Yj both have sizes on
the order of O(logm). We utilize this to guarantees that a small number of
messages needs to be passed, and that the messages passed are small in size.

We provide worst-case guarantees on the performance of LOCO with respect
to the amount of communication it requires and the quality of the solution.
Regarding communication, the process of determining sets Xj and Yj requires
O(logm) messages with high probability. After this step, solving the local
problems at each node requires no communication. Note that this is an ex-
ponential reduction compared to the O(n) communication required during
each round of traditional approaches such as consensus and dual descent when
A is sparse. We also provide worst-case guarantees on the performance of
LOCO with respect to the quality of the solution. Since the nodes do not
have access to the entire problem under LOCO, it is unreasonable to expect
an exact solution. Instead, LOCO produces a feasible, α-approximation of the
optimal solution, where α depends on the given algorithm A used to solve the
local problem of an agent (Theorem 19). Our numeric results in Section 3.6
highlight that the approximation error of LOCO matches that of ADMM in

52

many cases, while using orders-of-magnitude less communication.

3.1.2 Approach

To develop algorithms to solve the local problem of an agent, we prove a re-
duction that allows generic online algorithms to be “converted” into local op-
timization algorithms. This approach is based on an insight in a foundational
result in the local computation literature, which shows that online algorithms
can be converted into local algorithms with the same performance guarantee in
graph problems with bounded degree [126, 169]. Our contribution is to, for the
first time, show that a similar reduction is possible for optimization problems,
where the bounded degree property is replaced by the sparsity of the constraint
matrix. This enables us to prove that if an online algorithm, A, running on
global information is guaranteed to output an α-approximate solution, then
when LOCO uses the algorithm to compute the local solution of an agent the
resulting solution is also an α-approximation. Thus, the LOCO framework
inherits the approximation ratio of A.

To illustrate the power of this reduction and the generality of LOCO, we pro-
vide specific results for two different classes of optimization problems of sig-
nificant practical interest (Corollaries 20 and 21). These two results use two
different online algorithms as the algorithm for solving the local problem of an
individual agent in LOCO, thus highlighting the generality of the LOCO frame-
work. Specifically, we show that LOCO achieves an O(logm)-approximation
in the case that the objective functions are linear and an ε-approximation in
the case of linear SVM problems. Beyond these theoretical guarantees, we
also provide numerical case studies for these two examples in Section 3.6. The
case studies show order-of-magnitude improvements in communication time
are possible using LOCO, and that this is possible without incurring excessive
approximation error.

3.2 Related literature

Distributed optimization is a field with a long history. In the 1960s, approaches
emerged for solving large scale convex programs in a distributed manner. Early
approaches include [56, 22, 74, 173, 195, 24].

Distributed optimization algorithms can be broadly categorized into dual de-
composition methods [191], subgradient methods [140, 142], and proximal
gradient methods [181]. Many of these distributed algorithms use consensus

53

methods as a way to distribute computation among the agents. For example,
ADMM is a popular dual decomposition method, introduced by [77] that can
be implemented in a consensus setting [31]. Variants of consensus ADMM
have been studied in the context of support vector machines [76] and gener-
ally in distributed model fitting [72, 139, 83]. ADMM has also found broad
applications in denoising images [187] and signal processing [52, 179]. Despite
the success of ADMM and other techniques for distributed optimization, they
tend to require significant memory storage at each node, and suffer form large
communication costs. For example, distributed dual decomposition methods
typically requires several rounds of communication between neighbors, and use
as many as O(n) messages at each round, where n is the number of nodes in
the graph. In our work, we propose a technique that is lighter in both commu-
nication and computation, and is more robust to stragglers and the entry/exit
of agents.

Within the networked control and communication networks literature, there
is a large body of work on distributed algorithms [99, 119, 44]. Dual decom-
position algorithms are particularly prominent in this setting. For example,
[199] propose a novel approach for solving the network utility maximization
problem. See [156] for a survey of distributed algorithms for NUM. Additional
recent distributed dual decomposition algorithms include [138, 42].

More broadly, distributed computation is an active field today. Some recent
work that is connected to the work in this chapter includes [124], which pro-
poses a distributed decomposition method based on passing gradient informa-
tion between nodes with the goal of limiting communication. Work by [101]
also propose a gradient based approach, one in which gradient compression
techniques are utilized to improve iteration and communication complexity for
the gradient descent algorithm. More recent consensus based asynchronous
distributed approaches include [210, 41, 20]. Additionally, [94] introduce a
decomposition method which seeks to decrease required communication by
solving smaller subproblems at each node. The subproblems are defined on a
subset of the variables, which is similar to our approach.

We emphasize that the above approaches and other decomposition based meth-
ods [124, 123, 101, 94, 210, 41, 20] differ from our approach in the form of mes-
sages passed. The methods discussed above send local copies of the solution
vector x ∈ Rn, or gradient information, to maintain consensus. Thus, these

54

messages are typically a vector in Rn. We however send small pieces of the
constraint matrix, A. Since the A matrix is very sparse, this amounts to only
sending several matrix coefficients aij at a time, along with their index infor-
mation (i, j). Thus, our messages are extremely lightweight, and throughout
this chapter, any comparison via the number of messages to other algorithms,
is a conservative estimate of the benefits of LOCO.

Another key difference between the approaches used in [94, 101] and LOCO is
a trade-off between the cost of sending messages versus the cost of doing heavy
computation at each node in the graph. In [94], messages are sent between
all neighboring nodes at each iteration, making it relatively message heavy; in
contrast, LOCO sends very few messages. In terms of computation, however,
[94] does very light computation in each step at each node while LOCO does
more computation locally. The choice of which approach to use depends on
which is more expensive: communication or computation.

Another way in which our framework differs from dual decomposition is that
it does not require every node to converge to the full, global solution, i.e., con-
sensus. In particular, our framework provably produces an α-approximation
to the optimal local action in a logarithmic number of steps, whereas dual
decomposition and consensus algorithms require analysis of convergence rates
and stopping criteria.

Stragglers and failures have been major obstacles for the distributed optimiza-
tion literature during the past decades. Two prominent goals are (i) the design
of asynchronous algorithms and (ii) providing Byzantine faulty tolerance. For
both of these goals, the challenge is to be robust to communication delays
or unreliability in the system. In asynchronous computation, the goal is to
compute the solution when distributed agents do not report updates in a reli-
able way [195, 148, 157]. In the Byzantine faulty tolerance, some components
of the distributed system are unreliable and perhaps adversarial [43]. Our
work shares these goals, but approaches them in a different way; we design
a new way to distribute the computation between the agents, requiring less
communication and thus approaching robustness to failures differently.

Some of the key insights behind LOCO are based on a field of theoretical com-
puter science: local computation algorithms (LCAs) [174]. Most of the focus of
research in this field has been on graph problems such as matching, maximal
independent set, and coloring [7, 112, 169, 75, 1]. Our work contributes to the

55

LCA literature by moving from graph problems to the more general domain
of distributed convex optimization, which has not been studied previously.

Two other related lines of work are the distributed LOCAL and CONGEST
models [159], in which the complexity of a protocol is measured by the num-
ber of rounds required. Of particular relevance is [103], which concerns solving
packing linear programs in a distributed manner in the LOCAL model. We
note that our algorithm can be implemented in the LOCAL (and CONGEST)
models, in O(log n) rounds; the algorithm of [103], while using a polyloga-
rithmic number of rounds, can use as much as linear communication if the
diameter of the network is small.

Lastly, our approach shares characteristics with sketching and leverage score
sampling [201], in that a subset of the rows of the data matrix A are selected
and a problem of smaller dimension is solved. However, our work differs from
these approaches significantly. For example, we select a block of the matrix,
or a subset of both rows and columns. Thus the dimension of the problem is
reduced in both the number of variables and the number of data points.

3.3 Problem Formulation

We study a multi-agent system with N distributed agents and no central con-
trol. The agents may communicate with neighbors, but communication with
a centralized processing unit is prohibited. The system is designed such that
the agents seek to compute their local actions or estimates xj for each of the
N agents and that the set of all agent actions solves a constrained convex opti-
mization problem with a separable objective and coupled constraints. Specifi-
cally, the agents together seek to solve an optimization problem of form (3.1).

The problem is defined over a network G, and each agent j is associated with a
node j, a variable xj, and a function fj. The problem data (constraints), A and
b, are distributed over the agents. Each agent has a subset of the constraints,
or rows of the A matrix. There may be copies of the same constraints at
different nodes.

In our algorithm, the problem is represented as a hypergraph H = (V,H).
The set of nodes in the hypergraph V = {1 . . . N} is the same as that of G,
where each node corresponds to a variable xj. Hyperedges H = {1 . . .m}
correspond to constraints. We associate each constraint with a dual variable
yi ∀i ∈ [m], and refer to primal constraints and dual variables interchangeably.

56

x1 x2 x3 x4 x5
y1
y2
y3
y4

x2	

x4
	

x3	

x5	x1	

(a) (b)

Figure 31: The constraint matrix is depicted in (a), and the hypergraph H in
(b). Red shaded nodes represent the primal variables and blue hyperedges rep-
resent the constraints, or dual variables. Hyperedges encircle primal variables
which appear together in a constraint.

As an example, in Figure 31, nodes encircled by a hyperedge correspond to
primal variables that appear together in a constraint.

We measure the performance of an algorithm in this setting with respect to
the amount of communication it requires and the quality of the solution it
produces. To measure the amount of communication, we define a message
to be information that is sent between neighbors in a graph and we define
message complexity to be the number of messages sent across edges in order
to compute the solution. In our setting, small pieces of the constraint matrix,
A, are passed between nodes. Since the A matrix is very sparse, this amounts
to only sending several matrix coefficients aij at a time, along with their index
information (i, j), and the coefficient bi. We define a message with respect to
each ith constraint to be the list of matrix coefficients {aij∀j ∈ [n] : aij 6= 0},
for a given ith row of the matrix A, along with the coefficient bi.

When the algorithm uses randomization, we prove bounds on the message
complexity that hold with probability at least 1− 1

mγ
, where m is the number

of constraints and γ > 0 can be an arbitrarily large constant. We denote this
by 1− 1

polym
. We do not bound the size of the messages, but note that in both

our algorithm and most dual descent and consensus algorithms the message
lengths are of order O(log (n+m)).

By default, the graph we consider communication over is the hypergraph H.
However, we can also describe communication with respect to the physical
network G. The difference between these is a function of the sparsity of A,
which we define as d = max{dr, dc}, where dr and dc denote the maximum
number of nonzero entries in rows and columns of A respectively. We say that

57

A is sparse if the sparsity of A is bounded by a constant. Thus, given that
the constraint matrix A has sparsity d, the number of messages required on G
compared to H differs by a factor of at most d2.

To measure the quality of the solution of an algorithm in this setting we use
the approximation ratio. An algorithm is said to produce an α-approximate
solution if its solution is guaranteed to be at most αOPT , where OPT is
the value of the optimal solution. In our empirical results, we compare the
performance of LOCO to the dual decomposition method ADMM, for which
approximation ratio is not a standard measure. Thus, empirical comparisons
are made using relative error, defined in Section 4.7, which is related to, but
different from, the approximation ratio.

This setting and the performance measures we use are of broad interest in
multi-agent systems. For example, the setting has been considered in regres-
sion problems and support vector machines [53, 95, 93], distributed inference
in sensor networks, which has broad applications to the Internet of Things [87,
158, 152, 85], inference in graphical models [166, 5], relaxations of maximum
a posteriori (MAP) estimation problems [178], Network Utility Maximization
(NUM) problems, [99, 119], management of content distribution networks and
data centers [28, 154], and control of power systems [71, 160]:

In this thesis, we use two examples to highlight the generality of the LOCO frame-
work: NUM and SVM, which we describe in Subsections 3.3.1 and 3.3.2 respec-
tively. With the example of SVM, we also highlight the potential for LOCO to
be used in settings that are not fully distributed.

3.3.1 Network Utility Maximization (NUM)

To illustrate the application of LOCO to multi-agent systems, we focus on the
example of NUM, which is a general class of optimization problems that has
seen widespread applications in multi-agent systems, from the design of TCP
congestion control [99, 119, 120, 186] to understanding of protocol layering
as optimization decomposition [44, 156] and power system demand response
[177, 114]. For a recent survey on NUM see [206].

The NUM framework considers a network containing a set of sources (agents)
S = {1, . . . ,m} and links L = {1, . . . , n} of capacity cj, for j ∈ L. Source
i ∈ S is characterized by (Li, fi, xi, x̄i): Li ⊆ L is a path in the network;
fi : R+ → R is a concave utility function; xi and x̄i are the minimum and

58

maximum transmission rates of source i respectively.

The goal of a source is to determine its rate xi such that the aggregate utility
of all sources is maximized. Source i attains a concave utility fi(xi) when it
transmits at rate xi along path Li, within the minimum and maximum rates
allowed. The maximization of aggregate utility is formulated as

maximize
∑m

i=1 fi(xi) (3.2)

subject to ATx ≤ c

x ≤ x ≤ x̄,

where A ∈ Rm×n
+ is defined as Aij = 1 if j ∈ Li and 0 otherwise.

Different choices of fi correspond to different network goals. Some of the
most common in networking settings are (i) setting fi(xi) = xi to maximize
throughput; (ii) setting fi(xi) = log(xi) to achieve proportional fairness; (iii)
setting fi(xi) = −1/xi to minimizes potential delay [119, 129].

While consensus and dual descent methods have received considerable atten-
tion in the NUM literature, note that sources do not need to know the global
solution. They only need to know their local rate, xi. Thus, NUM is a natural
application where local computation can provide significantly reduced commu-
nication and improved robustness by eliminating the demand that every agent
converge to the full, global solution.

We use numerics in Section 3.6 to show the improvements LOCO provides
compared to classical approaches for NUM. In these examples, we focus on
fi(xi) = xi, i.e., maximizing throughput, since it is typically viewed as the
most challenging. However, the LOCO framework can be applied to any NUM
objective.

3.3.2 Support vector machines (SVMs)

Federated machine learning is an increasingly prominent framework that seeks
to train machine learning models in settings where data is distributed among
multiple agents due to privacy concerns. This approach has received significant
attention from researchers in recent years, e.g., [102], and appears in industry
as well, e.g., [130]. Inspired by this, our second example illustrates how LOCO
can be used for distributed training of an SVM.

SVMs represent a core model in machine learning that is crucial for applica-
tions in both regression and classification. While there are many variations

59

of SVMs, we use the following classical version to illustrate the application of
LOCO. We consider the task of fitting an SVM to data pairs S = {(zi, yi)}mi=1,
where zi ∈ Rn and yi ∈ {+1,−1} is a label for each data pair. Tradition-
ally, this problem is presented as a regularized optimization problem of the
following form:

minimizex
∑

(zi,yi)∈S max{0, 1− y(xT z)}+ λ||x||22. (3.3)

As stated the above optimization does not match the form of (3.1), however
there are a number of standard tranformations that lead to matching forms.
For example, we use the case of linear SVMs to illustration LOCO. For linear
SVMs, (3.3) can be written in the following form [95], which matches (3.1):

minimize
x,ξi≥0

1

m

∑m
i=1 ξi + λ||x||22 (3.4)

subject to yi(x
T zi) ≥ 1− ξi, ∀i ∈ [m].

Here, the local variables associated with the agents are ξi, and these can be
computed in a completely distributed way using the LOCO framework, see
Section 3.6 for experiments demonstrating the performance and robustness
improvements of this approach.

This application highlights another point about LOCO. It can be applied in
both distributed and parallel settings. In particular, if the goal is to determine
the whole global solution, i.e., the full SVM model, then one simple “join” step
where each agent sends the solution to a central entity accomplishes this. Thus,
LOCO can be used to provide a parallel SVM implementation that is robust
to stragglers and failures of compute nodes.

3.4 A Local Optimization Framework

In this section we introduce the framework that is the main contribution of this
chapter of the thesis: LOcal Convex Optimization (LOCO). We describe the
framework and give intuition for it in this section and then, in the next section,
we focus on providing provable guarantees on communication and accuracy.

LOCO consists of two steps. In the first, LOCO generates a (small) localized
neighborhood for each variable or source. In the second, LOCO simulates
an online algorithm on the localized neighborhood. Note that the first step
is independent of the online algorithm, and the second is independent of the

60

x1 x2 x3 x4 x5
y1
y2
y3

y4

x2

x4

x3

x5x10.4
0.2
0.1
0.3

(a) (b)

x1 x2 x3 x4 x5
y1
y2
y3

y4

(c) (d)

x2

x4

x3

x5x10.4
0.2
0.1
0.3

x1 x2 x3 x4 x5
y1
y2
y3
y4

(e) (f)

x2

x4

x3

x5x1

x1 x2 x3 x4 x5
y1
y2
y3
y4

(g) (h)

x2

x4

x3

x5x1

0.4
0.2
0.1
0.3

0.4
0.2
0.1
0.3

Figure 32: An illustration of LOCO. The constraint matrix A is depicted in
(a), where shaded entries represent non-zeros. The rankings of the constraints
are indicated next to their corresponding rows in A. The hypergraph H is
depicted in (b). Figures (c)-(h) illustrate the construction of sets X1 and Y1

for the local problem associated with variable x1. The darkest shaded matrix
elements in (c), (e), and (g) indicate constraints as they are received by agent 1.
Blue emboldened hyperedges in (d), (f), and (h) represent constraints added
to Y1. Red shaded nodes represent variables added to set X1. The process
stops in (g) because rankings 0.1 < 0.3. The local problem associated with
variable x1 is defined on variables X1 = {1, 2, 3, 4} and constraints, or dual
variables, Y1 = {1, 2, 3}.

method used to generate the localized neighborhoods. Therefore, one should
think of LOCO as a general framework that can yield a variety of algorithms for
different classes of optimization problems depending on the online algorithm

61

it is instantiated with. For example, we can use different online algorithms for
the second step of LOCO depending on whether we consider NUM or SVM,
as we do in the next section.

More specifically, the details of the two follow and are summarized in Algo-
rithm 3 below.

Step 1: Set up the Local Problems. For each agent j ∈ V , define an
associated local problem, consisting of a subset Xj of the primal variables and
a subset Yj of the constraints, or dual variables. The local problem is of the
form:

minimize
∑

k∈Xj fk(xk) (3.5)

subject to
∑

k∈Xj aijxk ≥ bi i ∈ Yj

xk ≥ 0 k ∈ Xj,

In order to construct sets Xj and Yj, first generate a random ordering on the
constraints. Let r : [m] → [0, 1] be a function that assigns each constraint,
or dual variable yi, a real number between 0 and 1 uniformly at random. We
call r(i) yi’s rank. For more about generating r efficiently, see Section 3.8.3.
We assume that all of the nodes have access to r, and hence can compute the
rank of any constraint.

Construct Xj and Yj as follows. At node j, calculate the rank of each of
the constraints in which variable xj appears, i.e., for all i such that aij 6= 0.
Among these constraints, identify the index of the highest ranked constraint:
h = argmaxj{r(i)|aij 6= 0}. Add constraint h to set Yj. In a recursive fashion,
at a given node j′, contact j′’s neighbors in H to learn which constraints they
appear in: i ∈ [m] s.t. aij′ 6= 0. At node j′, calculate the ranks of each of
these constraints. Add to Yj the constraints that have lower rank than the
constraint most recently added to Yj, i.e., r(i) < r(h), and add to Xj the
primal variables that appear in those constraints. Repeat this process until
all visited neighbors appear in constraints that have higher rank than the last
constraint added to Yj. This process is stated concretely in Algorithm 3; see
Figure 32 for an example.

Step 2: Solve the Local Problems. The jth agent solves the jth local
problem (3.5) using any existing convex optimization algorithm that is a local
sequential algorithm in the following sense.

62

Definition 17. A local sequential algorithm for problems of form (3.1) is one
that observes input sequentially. Assume that the constraints arrives according
to some order π, for simplicity, we set π(i) = i; that is, the constraint asso-
ciated with the dual variable yi arrives at step i ∈ [m]. At step i = 1, . . . ,m,
only yi and xj such that aij 6= 0 are possibly updated, and their new values
depend only on the value (at step i) of primal variables xj such that aij 6= 0.

Note that all the updates the local sequential algorithm makes at step i are
based only on the values of xj ∀j ∈ V for which aij 6= 0 when yi arrives.
Local sequential algorithms include most online algorithms, such as the algo-
rithms in [34] for covering or packing linear programs; those in [14] for convex
covering and packing problems with linear constraints; and in [68] for general
convex conic covering problems. For example, NUM is a packing problem
with linear constraints, and thus LOCO can be run with the algorithms of
[34] or [14]. Local sequential algorithms also include many stochastic gradient
descent methods, where data is drawn randomly at each step. An example is
the Pegasos algorithm for SVMs [180], which at each iteration operates on a
single training example. Note that our setting is offline; however, if we use an
online algorithm, we simulate it in an offline setting.

Let r be the ranking function for constraints as defined in Step 1 and let A
be any sequential algorithm that receives the constraints in the order defined
by r. Note that the jth local problem contains precisely the variables and
constraints that A considers when deciding the value of xj.

In order to solve the jth local problem, the constraints Yj are considered
sequentially in the order assigned by the ranking r. At each step, LOCO
simulates the arrival of a constraint in Yj, in the order implied by r, and
the variables in Xj are updated. We assume the univariate non-negativity
constraints do not arrive sequentially and are known initially. In |Yj| steps,
the algorithm produces some solution for all the variables inXj, which includes
the desired xj component of the solution. At this point, xj’s value is identical
to its value in the solution produced by A: the construction of Yj and Xj

guarantees that it has been updated precisely as it would have been in the
execution of A, up to the point when h, the highest ranked constraint that
contains xj arrived. Clearly, xj will not be updated at any point afterwards,
by the definition of the sequential algorithm. As the value of xj when solving
the jth local problem is identical to its value when executing A on the entire

63

problem (1) for every j, we get the following lemma, whose proof is deferred
until Section 18.

Lemma 18. Let [x∗1, . . . , x
∗
N] be the solution obtained if the sequential algo-

rithm A is run on the original problem (3.1), and let x̂j be the solution obtained
by solving the jth local problem (3.5). Then if [x∗1, . . . , x

∗
N] is an h(n,m)- ap-

proximate solution to (3.1) then [x̂1, . . . , x̂N] is also an h(n,m)- approximate
solution to (3.1).

Contrasting LOCO with classical approaches. From the description
above, it is clear that LOCO fundamentally differs from dual decomposition
and consensus methods. Dual ascent and consensus methods iterate until
global optimality conditions are met. In order to check for global optimality,
methods such as ADMM typically require communication among all nodes in
the distributed network at each iteration. LOCO operates in a completely
different way; when constructing sets Xj and Yj, the jth node only interacts
with nodes in Xj, and then solves its local problem without requiring further
communication beyond that set of nodes. Thus, communication is strictly
localized and there are no multiple rounds of communication.

As a result, there is a difference in the form of the theoretical guarantees
for LOCO and dual decomposition/consensus algorithms. Convergence rate
bounds are the goal when studying dual decomposition and consensus meth-
ods. In contrast LOCO is a framework that inherits the convergence or stop-
ping criterion of the local sequential algorithm employed. LOCO executes for
a predetermined number of steps, which is the size of set Yj. In contrast, for
ADMM the number of iterations required is unknown a priori (though it can
be bounded). LOCO produces an h(n,m)-approximation to the solution in
exactly |Yj| steps.

3.5 Theoretical Results

In this section we provide results that bound the communication demands of
LOCO and the quality of the solution it produces. The key insight in the
design of LOCO is that it is possible to convert any local sequential algo-
rithm into a distributed algorithm. We prove that the resulting distributed
algorithm has the same approximation ratio as the original local sequential al-
gorithm. In particular, our main theoretical result shows that LOCO provides
solutions to convex optimization problems that are as close to optimal as those

64

Algorithm 3: LOCO (LOcal Convex Optimization)
Input: Convex Program of form (3.1), sequential algorithm A, ranking
r : [m]→ [0, 1], index of agent j
Output: x̂j
Initialize: Calculate the rank of the constraints for all i such that aij 6= 0.
Let h be the index of the highest ranked constraint: h =
argmaxj{r(i)|aij 6= 0}

Step 1: Find sets Xj and Yj associated with xj.
Xj = ∅; Yj = {h}
ptr = 1; endptr = 2
while ptr < endptr do
h = Yj(ptr) ;
ptr++
for all j′ ∈ [n] s.t. ahj′ 6= 0 do
for all i ∈ [m] s.t. aij′ 6= 0 do
if j′ /∈ Xj then
Xj ← Xj ∪ {j′}

if r(i) < r(h) then
if i /∈ Yj then
Yj ← Yj ∪ {i}
endptr++

Step 2: Use A to solve the local problem (3.5) defined on Xj and Yj.
Constraints arrive in the order determined by r.

of the best local sequential algorithms for the problems, while using exponen-
tially less communication than classical distributed optimization algorithms.
Further, because each agent computes its local piece of the solution without
global communication, LOCO provides significant improvements in robustness
compared to traditional consensus-based and dual descent-based approaches.

3.5.1 Results on communication complexity and solution quality

Our main result is summarized in the following theorem.

Theorem 19. Let P be a convex problem of form (3.1), where A ∈ Rm×n has
sparsity d. Consider LOCO instantiated with a local sequential algorithm A
for P with approximation ratio h(n,m). Each agent j ∈ V , where |V | = N ,
independently computes x̂j using at most 2O(d2)qj logm messages with probabil-
ity 1−1/ poly (m). The resulting complete solution [x̂1, . . . , x̂N] ∈ Rn provides
an h(n,m)-approximate solution to P .

65

This result shows that there is no performance loss when converting the lo-
cal sequential algorithm to a distributed algorithm using LOCO. Further,
for sparse graphs (where d is a constant), the communication demands are
logarithmic, as opposed to linear like in consensus based algorithms.

Theorem 19 provides a general result, but it is also useful to illustrate this re-
sult for specific local sequential algorithms. In particular, LOCO can be used
broadly for any class of optimization problems for which local sequential al-
gorithms exist. Thus, improvements to local sequential and online algorithms
immediately yield improved distributed algorithms.

We illustrate this with the following corollaries for the cases of linear programs
and linear SVMs. These two corollaries provide the basis for the case studies
for NUM and SVMs in Section 3.6.

In the case of NUM, we focus on the goal of throughput maximization, which
means that the objective is linear. In this case, we can use the online algorithm
from [34] for packing linear programs, which yields the following corollary.

Corollary 20. Given a linear program with n variables, m constraints, and
a sparse constraint matrix, each agent j ∈ V , where |V | = N , indepen-
dently computes x̂j using at most O(logm) messages with probability 1 −
1/ poly(m). The resulting complete solution [x̂1, . . . , x̂N] provides an O(logm)-
approximation.

In the case of SVM, we focus on the linear SVM problem described in (4.24). In
that case, we can apply the Pegasos [180] algorithm, which yields the following
result.

Corollary 21. Given a linear SVM problem with n variables, m constraints,
where d is a bound on the number of nonzero features in each example, and λ is
the regularization parameter, each agent j ∈ V , where |V | = N , independently
computes x̂j using at most O(logm) messages with probability 1− 1/ poly(m).
The resulting complete solution [x̂1, . . . , x̂N] provides an ε-approximation.

Note that we focus on NUM with a linear objective, but LOCO is not limited
to linear objectives and Theorem 19 can be applied to NUM with a general
convex objective function,for example, using the algorithm in [14].

Now that we have concretely stated both the algorithm and results, we see
how LOCO lends itself to the robustness properties outlined in the intro-

66

duction. As stated in Theorem 19, setting up each local problem requires
at most 2O(d2) logm messages. This bound on communication implies that
an agent will only communicate with a logarithmically bounded number of
agents, constituting a small neighborhood around the agent. This behavior
makes the computation robust to failures or delays; a failure will only effect
nearby agents, leaving agents outside of the logarithmically bounded neigh-
borhood unaffected. Similarly, if a new agent enters the system, only agents
in the logarithmically bounded neighborhood must share new data and re-
compute. This is in contrast to the large body of distributed optimization
algorithms, which typically require all of the agents to update computations
if a new agent enters the system. Additionally, after the initial round of com-
munication, each local problem is solved independently at the corresponding
node with no further communication. This design increases the robustness of
LOCO to failures; the computation is done completely locally, never disrupted
by failures or delays.

A final note about these results is that our analysis is based on worst-case
adversarial input for local sequential algorithms. Thus, it is natural to expect
LOCO to achieve a much better approximation ratio in practice, as LOCO
randomizes constraint arrival order and so adversarial inputs are extremely
unlikely. We verify this intuition in Section 3.6, confirming that our empir-
ical results outperform the theoretical guarantees by a considerable margin.
An interesting open problem is to give better theoretical bounds for the lo-
cal sequential for stochastic inputs. If such results are obtained they would
immediately improve the bounds in Theorem 19.

3.5.2 Additional Results and Proofs

Here we outline the analysis used the prove the results presented in the previous
section. Core technical parts of the proofs are deferred until Section 3.8.

To begin, in order to bound the communication complexity in Theorem 19,
the core argument needed is a bound on the size of sets Yk. First, we need to
define some terminology for hypergraphs. Given a hypergraphH = (V,H), the
neighbors of a hyperedge y ∈ H, denoted N (y), are the hyperedges with ver-
tices in common with y. The hyperedge degree of y is its number of neighbors,
|N (y)|.

Using this terminology, we proceed to prove some technical lemmas.

67

Lemma 22. Let H = (V,H) be a hypergraph, |H| = m, whose hyperedge
degree is bounded by d′, and let r : H → [0, 1] be a function that assigns to
each hyperedge y ∈ H a number between 0 and 1 independently and uniformly
at random. Let Ymax be the size of the largest set of constraints Yy chosen for
a local problem: Ymax = max{|Yy| : y ∈ H}. Then, for λ = 4(d′ + 1),

Pr[|Ymax| > 2λ · 15λ logm] ≤ 1

m2
.

The proof of Lemma 22 uses ideas from a proof in [169], and employs a quanti-
zation of the rank function. Due to space constraints, the proof of Lemma 22
is deferred until Section 3.8.2.

We are now ready to prove Theorem 19.

Proof of Theorem 19. First, consider the communication complexity. The re-
sult in Lemma 22 refers to communication on the hypergraph, H. However,
messages will be sent on the physical network, G. Thus we can set d′ = d2 in
Lemma 22 to describe communication on the physical network.

Lemma 22 establishes the communication required for an individual agent
when computing one scalar component of the solution. However, recall that
each agent computes the solution to the vector xj ∈ Rqj . Taking the union
bound over the size of this vector, we see that Pr[|Yk| > 2O(d2)qj logm] ≤ 1

m2 .

Due to the sparsity of the constraint matrix, it holds that |Xk| < d|Yk|.
Thus, the number of messages is upper bounded by |Xk|, and thus, Pr[|Xk| >
2O(d2)qj logm] ≤ 1

m2 . Finally, the approximation ratio is established by Lemma 18,
completing the proof.

In addition to Lemmas 18 and 22, the following technical lemma is needed to
complete the proof of Corollary 20. We restate Theorem 14.1 from [34].

Lemma 23. For any B > 0, there exists a B-competitive online algorithm for
linear programs with m constraints; each constraint is violated by a factor at
most 2 log(1+m)

B
.

Proof of Corollary 20. The approximation ratio is due to the online algorithm
presented and analyzed in [34] (see Lemma 23). Theorem 19 and Lemma 23,
setting B = 2 log(1 +m) imply Corollary 20.

68

Proof of Corollary 21. The approximation ratio is due to the online algorithm
presented and analyzed in [180]. Theorem 19 implies Corollary 21.

3.6 Case Studies

The previous section provides worst-case bounds on the performance of LOCO.
Here, we illustrate the performance that can be expected in real applications.
To do this, we use both synthetic and real data to look at linear programs,
NUM, and SVM The results demonstrate an orders-of-magnitude reduction
in communication with LOCO as compared to ADMM, while maintaining
nearly optimal solutions. We demonstrate the performance of our algorithm
on linear programs, a network utility maximization problem, an on training
support vector machines. Experiments were run on a server with Intel E5-
2623V3@3.0GHz 8 cores and 64GB RAM.

3.6.1 Experimental Setup

Linear Programming. Our first set of experimental results use synthetic
linear programming examples. We generate random synthetic instances of
linear programs as follows. To generate A ∈ Rm×n, we set aij ∼i.i.d. U(0, 1)

with probability p and aij = 0 otherwise. We then add min{m,n} i.i.d. draws
from U(0, 1) to the main diagonal, to ensure each row of A has at least one
nonzero entry. Similarly we set bi ∼i.i.d. U [0, 1]. We set the minimum and
maximum transmission rates to be xi = 0 and x̄i = 1. Unless otherwise
stated, we set n = m and fj(xj) = cjxj with cj ∼i.i.d. U [0, 1].

For the case of linear programs in Step 2 of our algorithm, we employ an
online algorithm for covering and packing linear programs proposed by [34],
pseudocode for which is in Section 3.8.4. Running this algorithm requires
tuning one parameter: B, discussed in Lemma 23 in Section 3.5.2, which
governs the worst-case guarantee for the online algorithm used in Step 2. A
smaller B gives a better guarantee in terms of message complexity, however
some constraints may be violated. Setting B = 2 ln(1 + m) provides the
best worst-case guarantee, and is our choice in the experiments unless stated
otherwise. In fact, it is possible to tune B (akin to tuning ADMM) to specific
data, as the constraints are often still satisfied for smaller B. In Figure 34 (c),
we show the improvement in performance guarantee by tuningB, while keeping
the dual solution feasible.

Throughout all experiments, each point in the figures is averaged over 50

69

executions, and the ranking function r is a random permutation of the vertex
IDs.1

Network Utility Maximization (NUM). Our second set of experiments
focus on the linear network utility maximization (NUM) problem. We consider
the graph of Autonomous System (AS) relationships in [192]. The graph has
8020 nodes and 36406 edges. To interpret the graph in a NUM framework,
associate each source node with a path of edges, ending at a destination node.
For each source i in the graph, we randomly select a destination which is at
distance `i, sampled i.i.d. from Unif[` − 0.5`, ` + 0.5`]. Here fj(xj) = cjxj,
which corresponds to throughput maximization. We draw c ∈ Rn i.i.d. from
Unif[0, 1], and set the minimum and maximum transmission rates to be 0

and 1.

Note that Step 2 of LOCO is implemented using the same online algorithm as
for linear programming, described above.

Support Vector Machines (SVMs). Our final example is the linear SVM
problem, as described in (4.24). We run experiments on both randomly gener-
ated synthetic data, and real data. For the synthetic data, we define a matrix
Z ∈ Rm×n as follows. We set zij ∼i.i.d. N(0, 1) with probability p and zij = 0

otherwise. We then add min{m,n} i.i.d. draws from N(0, 1) to the main diag-
onal, to ensure each row of Z has at least one nonzero entry.2 We set yi = +1

with probability 0.5 and yi = −1 otherwise.

We also run LOCO to train SVMs on the Reuters RCV1 Text Categorization
Test Data Set [113], for classification tasks CCAT and C11. This data set has
sparsity p = 0.16%, with n = 47, 236 features, m = 781, 265 training examples,
and mtest = 23149 testing examples.

When implementing Step 2 of our algorithm for the case of SVM, we employ
the well known Pegasos [180] algorithm. Note that in Pegasos, at each step
a data point is selected uniformly at random. Our setting is also designed to
do this, as the ranking function r is also a collection of values drawn from [m]

uniformly at random. However in Pegasos [180], the stopping criterion can
1For the purposes of our simulations, such a permutation can be efficiently sampled, and

guarantees perfect randomness. For larger n and m, it is possible to use pseudo-randomness
with almost no loss in message complexity [169].

2Note that the sparsity of A is not necessarily a constant; however, this can only increase
the message complexity.

70

0 5000 10000 15000
0

5

10

15
x 10

6

n

M
e
s
s
a
g
e
s

 ADMM 1
 ADMM 2

 LOCO Max

 LOCO Avg

(a)

0 5000 10000 15000

10
0

10
2

10
4

10
6

10
8

n

M
e
s
s
a
g
e
s

 ADMM 1
 ADMM 2

 LOCO Max

 LOCO Avg

(b)

1 1.5 2

x 10
−4

0

4

8

12
x 10

6

p

M
e

s
s
a

g
e

s

 ADMM 1
 ADMM 2

 LOCO Max

 LOCO Avg

(c)

0.5 1 1.5 2

x 10
−4

10
0

10
2

10
4

10
6

10
8

p

M
e

s
s
a

g
e

s

 ADMM 1
 ADMM 2

 LOCO Max

 LOCO Avg

(d)

Figure 33: Messages required by LOCO and ADMM for random linear pro-
gramming instances. Plots (a) and (b) vary n while fixing sparsity p = 10−4,
showing the results in linear-scale and log-scale respectively. Plots (c) and (d)
fix n = 103 and vary the sparsity p.

be varied along with accuracy requirements, while in our case, we run exactly
|Yk| iterations of Pegasos to solve each local problem. Unless specified, we set
the regularization parameter to be λ = 0.0001.

3.6.2 Benchmark & Performance Metrics

We use ADMM as a benchmark for comparison in this thesis given its promi-
nence in applications. For completeness, the pseudocode for ADMM is in-
cluded in Section 3.8.5. Running ADMM requires tuning four parameters [31].
Unless otherwise specified, we set the relative and absolute tolerances to be
εrel = 10−4 and εabs = 10−2, the penalty parameter to be ρ = 1, and the
maximum number of allowed iterations to be tmax = 10000. This is done to
provide the best performance for ADMM: the parameters are tuned in the
typical fashion to optimize ADMM [31].

We evaluate ADMM and LOCO with respect to the quality of the solution

71

0 0.05 0.1 0.15 0.2
10

3

10
4

10
5

10
6

10
7

Relative Error

 M
e
s
s
a
g
e
s

ADMM
LOCO Max
LOCO Avg

(a)

0 0.05 0.1 0.15 0.2
10

3

10
4

10
5

10
6

10
7

Relative Error

 M
e
s
s
a
g
e
s

ADMM
LOCO Max
LOCO Avg

(b)

Figure 34: Comparison of the relative error and messages required by LOCO
and ADMM for random linear programming instances. Plots (a) and (b) show
the Pareto optimal curve for ADMM for two different settings of the relative
tolerance parameter: εrel = 10−4 and εrel = 10−1 respectively.

provided and the number of messages sent. To assess the quality of the solution
we measure the relative error, which is defined as |p

∗−pLOCO|
|p∗| , where p∗ is the

optimal solution. For problem instances of small dimension, one can run an
interior point method to check the optimal solution, but this is tedious for
large problem sizes. In the large dimension cases we consider, we regard p∗ to
be ADMM’s solution with small tolerances, such that the maximum number of
allowed iterations is never needed. Note that the relative error is an empirical,
normalized version of the approximation ratio for a given instance.

We now explain how we count the number of messages used by each of the
algorithms. As defined in Section 3.3, a message is a list of matrix coefficients
{aij∀j ∈ [n] : aij 6= 0}, for a given ith row of the matrix A, along with the
coefficient bi. Since the A matrix is very sparse, this amounts to only sending
several matrix coefficients aij at a time. In contrast, a message in ADMM
passes a local copy of the primal and dual solution vectors, which are vectors
in Rn and Rm. Thus, the size of the messages passed by LOCO is smaller than
that of ADMM, and any comparison we make between the two is a conservative
estimate for the improved communication efficiency of LOCO.

For a distributed implementation of ADMM, two sets of n variables are up-
dated on separate processors (see Chapter 7.1 of [31]). The number of messages
required by ADMM is twice the number of nodes in the network G, multiplied
by the number of iterations required by ADMM. In contrast, LOCO com-
municates only in order to construct the local problems; running the online

72

5 10 15 20
0

2

4

6

8
x 10

6

Average Path Length

M
e
s
s
a
g
e
s

ADMM
LOCO Max
LOCO Avg

(a)

5 10 15 20
10

0

10
5

10
10

Average Path Length

M
e
s
s
a
g
e
s

ADMM
LOCO Max
LOCO Avg

(b)

Figure 35: Illustration of the number of messages required by LOCO and
ADMM for NUM using an Autonomous System (AS) graph.

algorithm does not require any communication. The number of messages re-
quired to construct the kth local problem is proportional to the size of set Xk.
When communicating over the hypergraph H, at most |Xk| + d messages are
required, and over any general network G, at most d2(|Xk| + d) messages are
required.

Finally, we compare the running times of LOCO and ADMM. We define the
speedup as the running time of ADMM divided by the running time of LOCO.
In all cases, we allow the n nodes to compute in parallel.

3.6.3 Experimental Results

This section describes the results for our case studies. In each case our results
highlight order-of-magnitude reductions in communication overhead compared
to ADMM with minimal decrease in accuracy. Further, this happens while
providing significantly improved robustness.

3.6.3.1 Linear Programming

Our first experimental results focus on synthetic examples of linear programs.
Figure 33 illustrates our results, showing that LOCO requires considerably
fewer messages than ADMM, across both small and large n and varying levels
of sparsity. In these plots, we also chose to plot not only the average messages
over all the subproblems, LOCOAvg, but also the maximum amount, LOCO-
Max, for the problem with the largest sets Xk and Yk.

The performance of ADMM depends significantly on the tolerance used, and
so the figure includes ADMM with tolerances εrel of both 10−4 (ADMM 1) and

73

10−3 (ADMM 2). Note that even with suboptimal tolerance, which results in
fewer iterations, ADMM still requires orders of magnitude more communica-
tion than LOCO.

We additionally explore the tradeoff between message complexity and relative
error. Figures 34(a) and (b) illustrate the Pareto optimal frontier for ADMM:
the minimal messages needed in order to obtain a particular relative error.
We tune the parameters of ADMM such that the algorithms have comparable
relative error to enable a fair comparison. Unlike ADMM, LOCO does not have
a comparable parameter to tune, thus LOCO corresponds to a single point in
the figures. This point is beyond the Pareto frontier of ADMM, highlighting
the order-of-magnitude reduction in communication provided by LOCO. In all
the plots, we note that the standard deviations are small enough that they are
not visible on the plots.

In all of these plots, in some sense ADMM is doing “more” than LOCO. These
plots show the communication necessary for an agent to compute its local
action. However, when using ADMM the agent is computing the full, global
solution, while when using LOCO the agent is computing precisely what is
desired: the local action of the agent.

3.6.3.2 Network Utility Maximization (NUM)

Our second set of results focuses on throughput maximization in NUM. Figure
35 demonstrates and order of magnitude difference in the messages required by
LOCO compared to ADMM. The number of messages is shown as a function
of the average path length in the instances of the NUM problems. Here, the
average path length serves as a metric to describe the sparsity of the constraint
matrix, as it has a nonzero component for every utilized edge in the graph.
LOCO greatly outperforms ADMM for all tested average path lengths. In
all instances, the relative error was 0.4% or less, and so the improvement
comes with minimal cost in terms of accuracy. Similar results hold for other
objectives beyond throughput maximization, but we omit these due to space
constraints.

3.6.3.3 Support Vector Machines (SVMs)

To evaluate LOCO in the context of SVMs, we use both synthetic and real
data. Our first set of experiments focus on synthetic data and illustrate the
number of messages required and the quality of the solution produced by

74

(a) Messages and Relative Error

10000 20000 30000 40000
m

5

10

15

20

25

Sp
ee
du
p

Med.
Max.

(b) Runtime Ratio

Figure 36: Plot (a) illustrates of the number of messages required by
LOCO and the relative error between LOCO and ADMM, in the case of
synthetic SVM data, when n = 10, 000 and m is varied, and p = 0.03%. In
all instances, the number of messages required by ADMM was over 100K,
an order of magnitude larger than LOCO, and are not plotted due to being
out of range for the plot. Plot (b) illustrates the speedup provided by LOCO
compared to ADMM. ‘Max’ and ‘Med’ refer to the largest and median sized
subproblem respectively.

0.02 0.04 0.06
p (%) Sparsity

0.0

0.2

0.4

0.6

0.8

1.0

 D
im

en
sio

n
Ra

tio

|Xk|
n
|Yk|
m

(a)

0.05 0.10
p (%) Sparsity

0.0

0.2

0.4

0.6

0.8

1.0

 D
im

en
sio

n
Ra

tio

|Xk|
n
|Yk|
m

(b)

Figure 37: Comparison of the local problem dimension (|Xk| × |Yk|) to the
original problem size (m × n), averaged over all the local problems, in the
case of synthetic SVM data. In (a) n = m = 10, 000, in (b) n = 5, 000 and
m = 10, 000.

75

Table 31: SVM on CCAT and C11 from Reuters RCV1

Alg. CCAT C11 Mess-
Train (Test) Train (Test) ages

ADMM 0.31% (10.74%) 0.14% (3.09%) 330K
LOCO 4.84% (7.88%) 2.64% (3.01%) 18K

LOCO compared to ADMM. Figure 36(a) shows both the number of messages
for LOCO and relative error between the LOCO and ADMM as m varies. The
messages are averaged over the local problems. The messages required by for
ADMM are all above 100K, and out of range for this plot. In general ADMM
requires an order of O(nT) messages, where T is the number of iterations.
We also see that as the problem sizes increases, the relative error between the
LOCO and ADMM decreases. Figure 36(b) shows the speedup provided by
LOCO compared to ADMM. As the problem size m increases, the speedup
increases.

Next, we evaluate the performance of LOCO on real data using the Reuters
RCV1 Text Categorization Test Data Set [113]. Results are found in Table 41.

We found that for task CCAT LOCO produces a test error of 6.16% when run
on the original dataset. However, when generating sets Yk, we found that the
dataset could be thresholded to increase sparsity and reduce communication
overhead further. To do this, we thresholded the values in the matrix below
0.1, setting all such values equal to 0. The thresholding value was chosen
so that the test error did not change significantly, while the sparsity of the
resulting matrix decreased. We tried several different thresholds, and found 0.1
to be representative for this dataset. We note that thresholding is a valuable
tool in practice only when it does not increase the test error significantly.
This resulted in a matrix with sparsity p = 0.045%. Running LOCO on this
thresholded data set led to a slight increase in the test error; 6.16% originally,
and 7.88% with thresholding. However, the local problems reduced to an
average size of |Yk| = 18K, which is a order of magnitude reduction of the
original problem dimension of m = 781, 265, and consequently yields an order-
of-magnitude reduction in communication.

76

3.6.3.4 Sparsity

The performance of LOCO is dependent on the sparsity of the constraint ma-
trix A. As seen in Figure 33 (c) and (d), the number of messages increases
as p increases. Many real world problems, such as NUM and SVM discussed
above, involve very sparse matrices which are appropriate for LOCO. We fur-
ther investigate the effects of sparsity in Figure 37. The figure highlights that
the improvement in communication achieved by LOCO is possible because the
dimensions of the local problems, (|Xk|×|Yk|), are small compared to the orig-
inal (m×n) problem. The dimensions of the local problems are dependent on
the sparsity, p, due to the way in which we use the sparsity structure to deter-
mine when new constraints are added to set Yk in Algorithm 3. In Figure 37,
as p increases, the local problems get larger, and plateau when |Yk| = m. For
the synthetic SVM data described in Section 3.6.1, we empirically observe a
phase transition like behavior as p varies. We note that this transition depends
on the distribution of the placement of the nonzero elements in matrix A. For
example in Figure 37(a) and (b), |Yk| varies differently for different n and m.

3.6.3.5 Stragglers & Failures

Our last results highlight the robustness of LOCO to stragglers and failures.
In modern distributed systems, stragglers are a fact of life. Conflicts and con-
gestion lead to unpredictable delays in local parts of the system, which can
then delay the progression of distributed algorithms globally. Figure 38 illus-
trates the robustness of LOCO to stragglers by plotting the speedup of LOCO
as compared to ADMM. In these experiments, we model the distribution of
delays caused by stragglers using a Pareto distribution, which is motivated by
empirical studies of stragglers in real systems such as [8]. The figure highlights
that, as n increases, the speedup provided by LOCO is more pronounced and
that as the tail of the distribution of stragglers becomes heavier the difference
becomes less pronounced.

We also consider the effect of node failures on LOCO. In LOCO a failure at
node j affects all the nodes that share common nodes found in set Xj. We
experimented with a variety of settings, and the comparison between ADMM
and LOCO is dramatic. A representative example is with n = m = 10, 000 and
p = 0.03. The results from the other settings we considered are qualitatively
the same. In this setting, the largest set Xj in LOCO has about 5% of all the
nodes. As a result, the failure of a single node has the capacity, in the worst

77

10000 20000 30000 40000
n

400

600

800

1000

Sp
ee

du
p
wi
th
 S
tra

gg
le
rs

(a)

2 3 4 5 6
Straggler Pareto Para.

100

200

300

400

500

Sp
ee

du
p
wi
th
 S
tra

gg
le
rs

(b)

Figure 38: Illustration of the impact of stragglers. The plots illustrate how the
speedup of LOCO relative to ADMM varies with (a) the problem dimension n,
when the Pareto shape parameter is set to 5, and (b) the shape parameter of
the straggler distribution. Synthetic SVM data is used with n = m = 10, 000
and p = 0.03%.

case, to affect about 15% of the nodes. In contrast, in ADMM, a single failure
stops the whole process as the central node waits for the failed node, and thus
no nodes obtain solutions.

3.7 Discussion

We introduced a new approach for the design of multi-agent systems using
distributed optimization based on ideas from the emerging field of local com-
putation algorithms. In our framework, LOCO, each agent in a network com-
putes its local piece of the solution, using exponentially less communication
than existing techniques, and produces a provably nearly optimal solution
without the need for iterative rounds of communication. Additionally, LOCO
is robust to network stragglers and failures due to the independent nature
of the local problems. Our empirical case studies demonstrate that LOCO
requires orders of magnitude fewer messages than ADMM, while maintaining
high quality solutions in random linear programming instances, and NUM and
SVM problems.

We remark that the reduction in this work holds for worst-case guarantees of
sequential algorithms, when the constraints arrive in adversarial order. How-
ever, in LOCO we determine the order of arrival internally, and so the worst-
case guarantees may be too conservative. Our reduction also holds for average-
case guarantees of sequential algorithms, when the constraints arrive uniformly
at random. Hence, any such guarantees immediately apply to LOCO. Cur-

78

rently, there are few such theoretical guarantees to problems to which LOCO is
applicable, and we believe this is an interesting research direction. Further,
it may be possible to improve performance by optimizing the order in which
constraints arrive or by choosing the form of randomness used in the order of
arrivals in order to avoid the adversarial behavior underlying the worst-case
bounds in this work.

We view this work as a first step towards the investigation of local computation
algorithms for distributed optimization. In future work, we plan to study
the performance of LOCO on more general network optimization problems.
Further, it would be interesting to apply other techniques from the field of
local computation algorithms to develop algorithms for other settings in which
distributed computing is useful, such as power systems and federated machine
learning.

3.8 Proofs of Technical Results

3.8.1 Proof of Lemma 18

By the definition of local sequential algorithms, the last time a variable xj can
be updated is the last arrival time of a constraint yi such that aij 6= 0 and its
new values depend only on the value (at step i) of the primal variables xj such
that aij 6= 0. Assume that LOCO simulates A, a local sequential algorithm.
It suffices to show that when yi “arrives” during the execution of LOCO, the
primal variables xj such that aij 6= 0 have the same value as they do when yi
arrives during the execution of A. We show this by contradiction.

Denote the constraints in Yj by y1, . . . , y|Yj |, and assume that they are sorted
by arrival time, i.e., y1 arrives first out of the constraints in Yj. Let i′ be the
smallest value such that there exists some xj for which ai′j 6= 0 that has a
different value in the two executions when yi′ arrives. If xj was never updated
in the execution, this is because there exists no constraint yi′′ that is a neighbor
of yi′ in H that arrived before yi′ , hence xj was never updated in the execution
of A it was not updated by A before yi′ arrived. Otherwise, consider the
last time xj was updated by LOCO. Assume this was when yi′′ arrived. As
i′ is the smallest value such that there exists some xj for which ai′j 6= 0 that
has a different value in the two executions when yi′ arrives, it must hold that
all of the variables xj such that ai′′j 6= 0 were correctly valued, but then by
the definition of the local sequential algorithm, xj′ must have been updated

79

correctly, a contradiction.

3.8.2 Proof of Lemma 22

Logarithms are base e. Let H = (V,H) be a hypergraph. Recall that the
neighbors of a hyperedge y ∈ H are the hyperedges with vertices in common
with y, denoted N (y). For any set of hyperedges S ⊆ H, let N (S) denote the
set of hyperedges that are not in S but are neighbors of some hyperedge in S:
N (S) = {N (y) : y ∈ S} \ S. For a set S ⊆ H and a function g : H → N, we
use S ∩ g−1(i) to denote the set {y ∈ S : g(y) = i}.

Let H = (V,H) be a hypergraph, and let g : H → N be some function on the
hyperedges. An adaptive hyperedge exposure procedure is one that does not
know g a priori. The procedure is given an edge y ∈ H and g(y). Edges from
H \ S are iteratively added to S; for every edge y′ added, g(y′) is revealed
immediately after y′ is added. Let St denote S after the addition of the t-th
edge. The following is a concentration bound that shows that for a random g,
any sufficiently large set of adaptively exposed hyperedges, less than half will
have the same value of g w.h.p. Its short proof is given for completeness.

Lemma 24. Let H = (V,H) be a hypergraph for which |H| = m, let Q > 0

be some constant, let γ = 15Q, and let g : H → [Q] be a function chosen
uniformly at random from all such possible functions. Consider an adaptive
hyperedge exposure procedure that is initialized with an edge y ∈ H. Then, for
any q ∈ [Q], the probability that there is some t, γ logm ≤ t ≤ m for which
|St ∩ g−1(q)| > 2|St|

Q
is at most 1

m4 .

Proof. Let yi be the ith edge added to S by the adaptive hyperedge exposure
procedure, and let Ii be the indicator variable whose value is 1 iff g(yi) = q.

For any t ≤ m, E [[]
t∑
i=1

Ij] =
t

Q
. As Ii and Ij are independent for all i 6= j,

by the Chernoff bound, for γ logm ≤ t ≤ m,

Pr

[
t∑
i=1

Ij >
2t

Q

]
≤ e

−t
3Q ≤ e−5 logm.

A union bound over all possible values of t : γ logm ≤ t ≤ m completes the
proof.

Recall that d′ is the upper bound on the hyperedge degree. Let r : V → [0, 1]

be a function chosen uniformly at random from all such possible functions.

80

Partition [0, 1] into Q = 4(d′+1) segments of equal measure, W1, . . . ,WQ. For
every v ∈ V , set g(v) = q if r(v) ∈ Wq (g is a quantization of r).

Consider the following method of generating two sets of vertices: Y and Z,
where Y ⊆ Z. Set Z can be thought of as a set St for some t as described in
Lemma 24. For some edge h, set Y = Z = {h}. Continue inductively: choose
some edge w ∈ Y , add all N (w) to Z and compute g(u) for all u ∈ N (w).
Add the edges u such that u ∈ N (w) and g(u) ≥ g(w) to Y . The process ends
when no more edges can be added to Y .

Y is generated with respect to g, the quantization of r. The actual sets of
constraints constructed in LOCO for the local problems are defined with re-
spect to r. Here, |Y | is an upper bound on the size of the sets constructed
in LOCO. It is difficult to reason about the size of Y directly, as the ranks
of its edges are not independent. The edges of the vertices in Z, though, are
independent, as Z is generated by an adaptive hyperedge exposure procedure.
Z is a superset of Y that includes Y and its boundary, hence |Z| is also an
upper bound on the size of the query set.

We now define Q+ 1 “layers” - Y≤0, . . . , Y≤Q: Y≤q = Y ∩
⋃q
i=0 g

−1(i). That is,
Y≤q is the set of vertices in Y whose rank is at most q. (The range of g is [Q],
hence Y≤0 will be empty, but we include it to simplify the proof.)

Claim 25. Set Q = 4(d′ + 1), γ = 15Q. Assume without loss of generality
that g(v) = 0. Then for all 0 ≤ i ≤ Q− 1,

Pr[|Y≤i| ≤ 2iγ logm ∧ |Y≤i+1| ≥ 2i+1γ logm] ≤ 1

m4
.

Proof. For all 0 ≤ i ≤ Q, let Z≤i = Y≤i ∪N(Y≤i). Note that

Z≤i ∩ g−1(i) = Y≤i ∩ g−1(i), (3.6)

because if there had been some u ∈ N(Y≤i), g(u) = i, u would have been added
to Y≤i.

Note that |Y≤i| ≤ 2iγ logm ∧ |Y≤i+1| ≥ 2i+1γ logm implies that

|Y≤i+1 ∩ g−1(i+ 1)| > |Y≤i+1|
2

. (3.7)

In other words, the majority of vertices v ∈ Y≤i+1 must have g(v) = i+ 1.

81

Given |Y≤i+1| > 2i+1γ logm, it holds that |Z≤i+1| > 2i+1γ logm because
Y≤i+1 ⊆ Z≤i+1. Furthermore, Z≤i+1 was constructed by an adaptive hyperedge
exposure procedure and so the conditions of Lemma 24 hold for Z≤i+1. From
Equations (3.6) and (3.7) we get

Pr[|Y≤i| ≤ 2iγ logm ∧ |Y≤i+1| ≥ 2i+1γ logm]

≤ Pr

[∣∣Z≤i+1 ∩ g−1(i+ 1)
∣∣ > |Y≤i+1|

2

]
≤ Pr

[∣∣Z≤i+1 ∩ g−1(i+ 1)
∣∣ > 2 |Z≤i+1|

Q

]
≤ 1

m4
,

where the second inequality is because |Z≤i+1| ≤ (d+ 1)|Y≤i+1|, as G’s degree
is at most d′; the last inequality is due to Lemma 24.

Lemma 26. Set Q = 4(d′ + 1). Let H = (V,H) be a hypergraph with degree
bounded by d′, where |H| = m. For any edge h ∈ H, Pr

[
Yh > 2Q · 15Q logm

]
<

1
m3 .

Proof. To prove Lemma 26, we need to show that, for γ = 15Q,

Pr[|Y≤Q| > 2Lγ logm] <
1

m3
.

We show that for 0 ≤ i ≤ Q,Pr[|Y≤i| > 2iγ logm] < i
m4 , by induction. For

the base of the induction, |S0| = 1, and the claim holds. For the inductive
step, assume that Pr[|Y≤i| > 2iγ logm] < i

m4 . Then, denoting by I the event
|Y≤i| > 2iγ logm and by Ī the event |Y≤i| ≤ 2iγ logm,

Pr[|Y≤i+1| > 2i+1γ logm]

= Pr[|Y≤i+1| > 2i+1γ logm : I] Pr[I]

+ Pr[|Y≤i+1| > 2i+1γ logm : Ī] Pr[̄I].

From the inductive step and Claim 25, using the union bound, the lemma
follows.

Applying a union bound over all the hyperedges gives that the size of set Yk
pertaining to the kth local problem (3.5) is O(logm) with probability at least
1− 1/m2, completing the proof of Lemma 22.

82

Algorithm 4: General Online Fractional Linear Packing
Input: Linear Program defined on A ∈ Rm×n, b ∈ Rm and c ∈ Rn, and
approximation parameter B
Output: x, y
Initialize: x = 0n, y = 0m

for i = 1...m do
for j = 1...n do
aj(max)← maxik=1{akj};

while
∑n

j=1 aijxj < 1 do
Increase yi continuously;
for j = 1...n do
δ = exp(B

2ci

∑i
k=1 akjyk)− 1 ;

xj = max
{
xj,

1
naj(max)

δ
}

3.8.3 Supplementary information

A note on ranking the constraints. In the Introduction, we describe
generating a random permutation over the constraints. However, storing a
random permutation requires Ω(n) space, and we would need to store this
permutation on every node. Instead, we can approximate a random permuta-
tion with a random ordering by assigning a real number uniformly at random
to each constraint, using function r as we described in Section 3.4. We note
that in practice, such an r does not exist. It has been shown in e.g., [7, 169]
that r can be approximated arbitrarily well by a hash function by a random
hash function of polylogarithmic length. We do not formally define what we
mean by “arbitrarily well” here; we refer the reader to [169] for an in depth
discussion. In this thesis we assume for simplicity that each node has access
to an r function.

3.8.4 Pseudocode for General Online Fractional Packing

In our experiments in Section 3.6 we use an online algorithm from [34] for the
cases of linear programming and NUM. For completeness we give the details
of the algorithm in Algorithm 4.

In this online problem, constraints arrive in an online fashion over a sequence
of rounds. During the ith round, the packing variable yi and the covering
variables xj ∀j ∈ [n] for which aij > 0 are increased. The minimum yi is found
such that the covering constraints are satisfied.

83

3.8.5 ADMM

In our numerical results we compare LOCO to ADMM. For completeness, we
describe the application of ADMM to problem (2.1).

To apply ADMM, we introduce a slack variable s ≥ 0 such that the inequality

constraint becomes Ax − s = b. Let x′ =
[
x, s
]T

, A′ = [A − I] and b =[
1n,0n

]T
where this notation indicates a stack of vectors. We can now write

the problem in standard ADMM form,

min
x′,z

g(x′) + h(z)

s.t. x′ − z = 0,

where g = (x)+ is the indicator function associated with the constraints x ≥ 0

and h(z′) = −
∑n

j=1 fj(zj) where dom h = {z|A′z = b′}.

Writing down the scaled augmented Lagrangian Lρ(x′, z, u) = g(x′) + h(z) +

uT (z− x′) + ρ
2
‖x′− z‖2, we can see that all the update steps have closed form

solution (see Chapter 5.2 of [31]). The updates become

x′k+1 = (zk+1 + uk)+

zk+1 =

[
ρI A′T

A′ 0

]−1 [
ρ(x′k − uk)− b

c′

]
uk+1 = uk + (x′k+1 − zk+1).

The solution to problem (2.1) is recovered from the first n entries of x′.

84

C h a p t e r 4

SPEEDING UP IPMS FOR LINEAR PROGRAMMING USING
RANDOMIZATION

Internally, commercial linear program solvers use both Interior Point Meth-
ods (IPMs) and the simplex method. Thus designing more efficient IPMs is
of practical importance. Especially as datasets get larger, IPMs suffer from
scaling issues. We present a provably accurate long-step infeasible IPM for
LPs. The approach uses randomization, while still producing an optimal so-
lution. First, we provide background on IPMs, and discuss the computation
bottlenecks involved.

4.1 Background on Interior Point Methods

Interior Point Methods (IPMs) were pioneered by Karmarkar in the mid 1980s [97].
A family of IPMs has grown since then. For an introduction to IPMs, see Chap-
ter 14 of Wright’s book, [149] and [202]. Consider the standard form of the
primal LP problem:

min cTx , subject to Ax = b , x ≥ 0 , (4.1)

where A ∈ Rm×n, b ∈ Rm, and c ∈ Rn are the inputs, and x ∈ Rn is the vector
of the primal variables. The associated dual problem is

max bTy , subject to ATy + s = c , s ≥ 0 , (4.2)

where y ∈ Rm and s ∈ Rn are the vectors of the dual and slack variables respec-
tively. Triplets (x, y, s) that uphold both (4.1) and (4.2) are called primal-dual
solutions.

IPMs work by searching the interior of the feasible region in order to get close
to an optimal point. IPM algorithms start at an initial point, either inside or
outside of the feasible region, and at each iteration, compute a new Newton
search direction (∆x,∆y,∆s) and step length. Thus, a path in the feasible
region is iteratively traversed until the algorithm identifies an almost optimal
solution close to the boundary of the feasible region. To guide the choice
of new search direction, the algorithm strives to satisfy (or nearly satisfy)
the optimality conditions of the optimization problem. The solutions (x, y, s)

85

of (4.1) and (4.2) are characterized by the well-known Karush-Kuhn-Tucker
(KKT) conditions. We propose to focus on Infeasible IPMs, where the goal is
to satisfy approximate KKT conditions, by solving the following linear system:

Ax− b = rp ATy + s− c = rd , XS 1n = σµ1n , (x, s) > 0 , (4.3a)

where rp and rd are the residuals of the primal and dual feasibility constraints
respectively, and σ and µ are parameters of the algorithm. In order to obtain
a search direction (∆x,∆y,∆s), one standard approach [149] involves solving
the following linear system at each iteration of the IPM:

AD2AT∆y = p, (4.4a)

∆s = − rd − AT∆y , (4.4b)

∆x = − x+ σµS−11n −D2∆s , (4.4c)

where D = X
1
2S−

1
2 , and X,S ∈ Rn×n are diagonal matrices having i-th diago-

nal elements equal to i-th components of x and s respectively for i = 1, 2, . . . , n,
and p ∈ Rm.

Solving the linear system (4.4a), which is often referred as the normal equa-
tions1, is the core computational task. Given ∆y, computing ∆s and ∆x

involves matrix-vector products.

4.1.1 Computational Bottleneck for IPMs

The core computational bottleneck in IPMs is the need to solve the linear
system of eqn. (4.4a) at each iteration. This leads to two key challenges: first,
for high-dimensional matrices A, solving the linear system is computationally
prohibitive. Most implementations of IPMs use a direct solver ; see Chapter 6
of [149]. However, if AD2AT is large and dense, direct solvers are computa-
tionally impractical. If AD2AT is sparse, specialized direct solvers have been
developed, but these do not apply to many LP problems arising in machine
learning applications due to irregular sparsity patterns. Second, an alterna-
tive to direct solvers is the use of iterative solvers, but the situation is further
complicated since AD2AT is typically ill-conditioned. Indeed, as IPM algo-
rithms approach the optimal primal-dual solution, the diagonal matrix D is

1Another widely used approach is to solve the augmented system [149]. This approach
is less relevant for this thesis.

86

ill-conditioned, which also results in the matrix AD2AT being ill-conditioned.
Additionally, using approximate solutions for the linear system of eqn. (4.4a)
causes certain invariants, which are crucial for guaranteeing the convergence
of IPMs, to be violated; see Section 4.2.1 for details.

We propose to address both challenges by sketching the matrix AD in order
to solve a smaller linear system at each iteration. We will use iterative linear
solvers (e.g., Richardson’s iteration, Conjugate Gradients, etc.) to solve the
sketched version of (4.4a). It is well-known that the matrix AD2AT becomes
ill-conditioned as we approach optimality: our sketching strategy will take this
into account in order to make the condition number of the pre-conditioned
system provably small. This is key for developing an algorithm that works
well in practice.

Specifically, we construct a sketching matrix W ∈ Rn×w, for an appropriate
choice of the sketching dimension w � n and an accuracy parameter ε, such
that the structural constraint

∥∥V TWWTV − Im
∥∥

2
≤ ε is satisfied, where we

let V ∈ Rn×m be the matrix of right singular vectors of AD. We define
Q = ADWWTDAT. If the structural constraint is satisfied for each iteration
of the interior point method, we show that equation (4.4a) can be solved using
Richardson iteration with a randomized pre-conditioner Q−

1
2 . Thus, rather

than solving (4.4a), we solve the preconditioned system

Q−
1
2 AD2AT∆y = Q−

1
2p , (4.5)

and recover an approximate solution ∆̂y, which we will then use to approxi-
mate solutions ∆̂x and ∆̂s. Let f̃ = Q−

1
2 (AD2AT∆̂y−p) be the the residual of

the preconditioned system. In general, our goal is to show that ‖f̃‖2 is small,
and ensure that despite generating approximate solutions at each iteration, we
produce an accuracy guarantee for the IPM after a given number of iterations.

4.2 Setting of interest: under/over constrained LPs

In this work, we address the aforementioned challenges for the special case
where m� n, i.e., the number of constraints is much smaller than the number
of variables; see Section 4.6 for a generalization. This is a common setting in
ML applications of LP solvers, since `1-SVMs and basis pursuit problems often
exhibit such structure when the number of available features (n) is larger than
the number of objects (m). This setting has been of interest in recent work

87

on LPs [64, 26, 117]. For simplicity of exposition, we also assume that the
constraint matrix A has full rank, equal to m.

First, we propose and analyze a preconditioned Conjugate Gradient (CG)
iterative solver for the normal equations of eqn. (4.4a), using matrix sketching
constructions from the Randomized Linear Algebra (RLA) literature. We
develop a preconditioner for AD2AT using matrix sketching which allows us
to prove strong convergence guarantees for the residual error of CG solvers.

Second, building upon the work of [137], we propose and analyze a provably
accurate long-step infeasible IPM algorithm. The proposed IPM solves the
normal equations using iterative solvers. In this thesis, for brevity and clarity,
we primarily focus our description and analysis on the CG iterative solver. We
note that a non-trivial concern is that the use of iterative solvers and matrix
sketching tools implies that the normal equations at each iteration will be
solved only approximately. In our proposed IPM, we develop a novel way to
correct for the error induced by the approximate solution in order to guarantee
convergence. Importantly, this correction step is relatively computationally
light, unlike a similar step proposed in [137]. Third, we empirically show that
our algorithm performs well in practice. We consider solving LPs that arise
from `1-regularized SVMs and test them on a variety of synthetic and real
datasets. Several extensions of our work are discussed in Section 4.6.

4.2.1 Our contributions

Our point of departure in this work is the introduction of preconditioned, it-
erative solvers for solving eqn. (4.4a). Preconditioning is used to address the
ill-conditioning of the matrix AD2AT. Iterative solvers allow the computa-
tion of approximate solutions using only matrix-vector products while avoid-
ing matrix inversion, Cholesky or LU factorizations, etc. A preconditioned
formulation of eqn. (4.4a) is

Q−1AD2AT∆y = Q−1p, (4.6)

where Q ∈ Rm×m is the preconditioning matrix; Q should be easily invertible
(see [13, 84] for background). An alternative yet equivalent formulation of
eqn. (4.6), which is more amenable to theoretical analysis, is

Q−
1/2AD2ATQ−

1/2z = Q−
1/2p, (4.7)

88

where z ∈ Rm is a vector such that ∆y = Q−1/2z. Note that the matrix
in the left-hand side of the above equation is always symmetric, which is not
necessarily the case for eqn. (4.6). We do emphasize that one can use eqn. (4.6)
in the actual implementation of the preconditioned solver; eqn. (4.7) is much
more useful in theoretical analyses.

Recall that we focus on the special case where A ∈ Rm×n has m � n, i.e.,
it is a short-and-fat matrix. Our first contribution starts with the design and
analysis of a preconditioner for the Conjugate Gradient solver that satisfies,
with high probability,

2

2 + ζ
≤ σ2

min(Q−
1
2AD) ≤ σ2

max(Q−
1
2AD) ≤ 2

2− ζ
, (4.8)

for some error parameter ζ ∈ [0, 1]. In the above, σmin(·) and σmax(·) corre-
spond to the smallest and largest singular value of the matrix in parentheses.
The above condition says that the preconditioner effectively reduces the con-
dition number of AD to a constant. We note that the particular form of the
lower and upper bounds in eqn. (4.8) was chosen to simplify our derivations.
RLA matrix-sketching techniques allow us to construct preconditioners for all
short-and-fat matrices that satisfy the above inequality and can be inverted
efficiently. Such constructions go back to the work of [11]; see Section 4.4 for
details on the construction of Q and its inverse. Importantly, given such a
preconditioner, we then prove that the resulting CG iterative solver satisfies

‖Q−1/2AD2ATQ−
1/2z̃t −Q−1/2p‖2 ≤ ζt‖Q−1/2p‖2. (4.9)

Here z̃t is the approximate solution returned by the CG iterative solver af-
ter t iterations. In words, the above inequality states that the residual error
achieved after t iterations of the CG iterative solver drops exponentially fast.
To the best of our knowledge, this result is not known in the CG literature:
indeed, it is actually well-known that the residual error of CG may oscillate,
even in cases where the energy norm of the solution error decreases monoton-
ically. However, we prove that if the preconditioner is sufficiently good, i.e., it
satisfies the constraint of eqn. (4.8), then the residual error decreases as well.

Our second contribution is the analysis of a novel variant of a long-step in-
feasible IPM algorithm proposed by [137]. Recall that such algorithms can,
in general, start with an initial point that is not necessarily feasible, but does
need to satisfy some, more relaxed, constraints. Following the lines of [211,

89

137], let S be the set of feasible and optimal solutions of the form (x∗, y∗, s∗)

for the primal and dual problems of eqns. (4.1) and (4.2) and assume that S
is not empty. Then, long-step infeasible IPMs can start with any initial point
(x0, y0, s0) that satisfies (x0, s0) > 0 and (x0, s0) ≥ (x∗, s∗), for some feasible
and optimal solution (x∗, s∗) ∈ S. In words, the starting primal and slack
variables must be strictly positive and larger (element-wise) when compared
to some feasible, optimal primal-dual solution. See Chapter 6 of [202] for an
extensive discussion regarding why such starting points that are sufficiently
positive can be identified in practice more efficiently than feasible points.

The flexibility of infeasible IPMs comes at a cost: long-step feasible IPMs con-
verge inO(n log 1/ε) iterations, while long-step infeasible IPMs needO(n2 log 1/ε)

iterations to converge [211, 137]. (Here ε is the accuracy of the approximate
LP solution returned by the IPM; see Algorithm 6 for the exact definition.)
Let

Ax0 − b = r0
p, (4.10)

ATy0 + s0 − c = r0
d, (4.11)

where r0
p ∈ Rn and r0

d ∈ Rm are the primal and dual residuals, respectively,
and characterize how far the initial point is from being feasible. As long-step
infeasible IPM algorithms iterate and update the primal and dual solutions, the
residuals are updated as well. Let rk = (rkp , r

k
d) ∈ Rn+m be the primal and dual

residual at the k-th iteration: it is well-known that the convergence analysis
of infeasible long-step IPMs critically depends on rk lying on the line segment
between 0 and r0. Unfortunately, using approximate solvers (such as the CG
solver proposed above) for the normal equations violates this invariant. [137]
proposed a simple solution to fix this problem by adding a perturbation vector
v to the current primal-dual solution that guarantees that the invariant is
satisfied. Again, we use RLA matrix sketching principles to propose an efficient
construction for v that provably satisfies the invariant. Next, we combine the
above two primitives to prove that Algorithm 6 in Section 4.5 satisfies the
following theorem.

Theorem 27. Let 0 ≤ ε ≤ 1 be an accuracy parameter. Consider the long-
step infeasible IPM Algorithm 6 (Section 4.5) that solves eqn. (4.7) using
the CG solver of Algorithm 5 (Section 4.4). Assume that the CG iterative
solver runs with accuracy parameter ζ = 1/2 and iteration count t = O(log n).

90

Then, with probability at least 0.9, the long-step infeasible IPM converges after
O(n2 log 1/ε) iterations.

We note that the 0.9 success probability above is for simplicity of exposition
and can be easily amplified using standard techniques. Also, at each iteration
of our infeasible long-step IPM algorithm, the running time is O((nnz(A) +

m3) log n), ignoring constant terms. See Section 4.5 for a detailed discussion
of the overall running time.

Our empirical evaluation demonstrates that our algorithm requires an order
of magnitude fewer inner CG iterations than a standard IPM using CG, while
producing a comparably accurate solution (see Section 4.7).

4.2.2 Comparison with Related Work

There is a large body of literature on solving LPs using IPMs. We only review
literature that is immediately relevant to our work. Recall that we solve the
normal equations inexactly at each iteration, and develop a way to correct for
the error incurred. We also focus on IPMs that can use an sufficiently positive,
infeasible initial point (see Section 4.2.1). We discuss below two papers that
present related ideas.

Work by [137] proposed the use of an approximate iterative solver for eqn. (4.4a),
followed by a correction step to “fix” the approximate solution (see our dis-
cussion in Section 4.2.1). We propose efficient, RLA-based approaches to pre-
condition and solve eqn. (4.4a), as well as a novel approach to correct for
the approximation error in order to guarantee the convergence of the IPM
algorithm. Specifically, [137] propose to solve eqn. (4.4a) using the so-called
maximum weight basis preconditioner [170]. However, computing such a pre-
conditioner needs access to a maximal linearly independent set of columns of
AD in each iteration, which is costly, taking O(m2n) time in the worst-case.
More importantly, while [136] was able to provide a bound that depends only
on properties of A, and is independent of D, this bound might, in general,
be very large. In contrast, our bound is a constant and it does not depend
on properties of A or its dimension. In addition, [137] assumed a bound on
the two-norm of the residual of the preconditioned system, but it is unclear
how their preconditioner guarantees such a bound. Similar concerns exist for
the construction of the correction vector v proposed by [137], which our work
alleviates.

91

The line of research in the Theoertical Computer Science literature that is
closest to our work is [55], who presented an IPM that uses an approximate
solver in each iteration. They present an accuracy guarantee for the final ob-
jective value that is comparable to ours. However, their final solution satisfies
the constraints approximately and thus is only approximately feasible, whereas
our approach returns a final solution that satisfies the constraints exactly and
is primal-dual feasible. Since [55] allows an approximately feasible solution as
the end result, it does not need to correct for the error incurred in each itera-
tion due to the approximate solver. Finally, [55] focuses on short-step, feasible
IPMs (unlike our work) and their proposed approximate solver only works
for the special case of input matrices that correspond to graph Laplacians,
following the lines of [184, 183].

We also note that in the Theoretical Computer Science liteature, [107, 108,
109, 106, 110] and [51] proposed and analyzed theoretically ground-breaking
algorithms for LPs based on novel tools such as the so-called inverse main-
tenance for accelerating the linear system solvers in IPMs. However, these
endeavors are primarily focused on the theoretically fast but practically inef-
ficient short-step feasible IPMs. In contrast, our work is focused on infeasible
long-step IPMs, known to work efficiently in practice.

Another relevant line of research is the work of [54], which proposed solving
eqn. (4.4a) using preconditioned Krylov subspace methods, including variants
of generalized minimum residual (GMRES) or CG methods. Indeed, [54] con-
ducted extensive numerical experiments on LP problems taken from standard
benchmark libraries, but did not provide any theoretical guarantees.

From a matrix-sketching perspective, our work was also partially motivated
by [45], which presented an iterative, sketching-based algorithm to solve under-
constrained ridge regression problems, but did not address how to make use
of such approaches in an iterative framework, as we do here. [162, 203] pro-
posed the so-called Newton sketch to construct an approximate Hessian ma-
trix for more general convex objective functions of which LP is a special case.
Nevertheless, these randomized second-order methods are significantly faster
than the conventional approach only when the data matrix is over-constrained,
i.e. m � n. It is unclear whether the approach of [162, 203] is faster than
IPMs when the optimization problem to be solved is linear. [197] proposed
a probabilistic algorithm to solve LP approximately in a random projection-

92

based reduced feature-space. A possible drawback of this paper is that the
approximate solution is infeasible with respect to the original region. Finally,
we refer the interested reader to the surveys [201, 65, 92, 125, 66] for more
background on Randomized Linear Algebra.

4.3 Notation and Background

A,B, . . . denote matrices and a,b, . . . denote vectors. For vector a, ‖a‖2 de-
notes its Euclidean norm; for a matrix A, ‖A‖2 denotes its spectral norm and
‖A‖F denotes its Frobenius norm. We use 0 to denote a null vector or null
matrix, dependent upon context, and 1 to denote the all-ones vector. For any
matrixX ∈ Rm×n withm ≤ n of rankm its thin Singular Value Decomposition
(SVD) is the product UΣV T , with U ∈ Rm×m (the matrix of the left singular
vectors), V ∈ Rn×m(the matrix of the top-m right singular vectors), and Σ ∈
Rm×m a diagonal matrix whose entries are equal to the singular values of X.
We use σi(·) to denote the i-th singular value of the matrix in parentheses.

We now briefly discuss a result on matrix sketching [50, 49] that is particularly
useful in our theoretical analyses. In our parlance, [50] proved that, for any
matrix Z ∈ Rm×n, there exists a sketching matrix W ∈ Rn×w such that∥∥ZWWTZT − ZZT

∥∥
2
≤ ζ

4

(
‖Z‖2

2 +
‖Z‖2

F

r

)
(4.12)

holds with probability at least 1 − δ for any r ≥ 1. Here ζ ∈ [0, 1] is a
(constant) accuracy parameter. Ignoring constant terms, w = O(r log(r/δ));
W has O(log(r/δ)) non-zero entries per row; and the product ZW can be
computed in time O(log(r/δ) · nnz(Z)).

4.4 Conjugate Gradient Solver

In this section, we discuss the computation of the preconditioner Q (and its
inverse), followed by a discussion on how such a preconditioner can be used to
satisfy eqns. (4.8) and (4.9). Algorithm 5 takes as input the sketching matrix
W ∈ Rn×w, which we construct as discussed in Section 4.3. Our preconditioner
Q is equal to

Q = ADWWTDAT. (4.13)

Notice that we only need to compute Q−1/2 in order to use it to solve eqn. (4.7).
Towards that end, we first compute the sketched matrix ADW ∈ Rm×w. Then,
we compute the SVD of the matrix ADW : let UQ be the matrix of its left

93

Algorithm 5: Solving eqn. (4.7) via CG
Input: AD ∈ Rm×n, p ∈ Rm, sketching matrix W ∈ Rn×w, iteration count
t;
1. Compute ADW and its SVD: let UQ be the matrix of its left singular
vectors and let Σ

−1/2
Q be the matrix of its singular values;

2. Compute Q−1/2 = UQΣ
−1/2
Q ;

3. Initialize z̃0 ← 0m and run standard CG on the preconditioned system
of eqn. (4.7) for t iterations;
Output: return z̃t;

singular vectors and let Σ
−1/2
Q be the matrix of its singular values. Notice that

the left singular vectors of Q−1/2 are equal to UQ and its singular values are
equal to Σ

−1/2
Q . Therefore, Q−1/2 = UQΣ

−1/2
Q .

Let AD = UΣV T be the thin SVD representation of AD. We apply the results
of [50] (see Section 4.3) to the matrix Z = V T ∈ Rm×n with r = m to get that,
with probability at least 1− δ,∥∥V TWWTV − Im

∥∥
2
≤ ζ/2. (4.14)

The running time needed to compute the sketch ADW is equal to (ignoring
constant factors) O(nnz(A) · log(m/δ)). Note that nnz(AD) = nnz(A). The
cost of computing the SVD of ADW (and therefore Q−1/2) is O(m3 log(1/δ)).
Overall, computing Q−1/2 can be done in time

O(nnz(A) · log(m/δ) +m3 log(1/δ)). (4.15)

Given these results, we now discuss how to satisfy eqns. (4.8) and (4.9) using
the sketching matrixW . We start with the following bound, which is relatively
straight-forward given prior RLA work (see Section 4.8.1 for a proof).

Lemma 28. If the sketching matrix W satisfies eqn. (4.14), then, for all i =

1 . . .m,

(1 + ζ/2)−1 ≤ σ2
i (Q

−1/2AD) ≤ (1− ζ/2)−1.

This lemma directly implies eqn. (4.8). We now proceed to show that the above
construction for Q−1/2, when combined with the conjugate gradient solver to
solve eqn. (4.7), indeed satisfies eqn. (4.9)2. We do note that in prior work most

2See Chapter 9 of [122] for a detailed overview of CG.

94

of the convergence guarantees for CG focus on the error of the approximate
solution. However, in our work, we are interested in the convergence of the
residuals and it is known that even if the energy norm of the error of the
approximate solution decreases monotonically, the norms of the CG residuals
may oscillate. Interestingly, we can combine a result on the residuals of CG
from [30] with Lemma 28 to prove that in our setting the norms of the CG
residuals also decrease monotonically.

Let f̃ (j) be the residual at the j-th iteration of the CG algorithm, i.e., f̃ (j) =

Q−1/2AD2ATQ−1/2z̃j − Q−1/2p. Recall from Algorithm 5 that z̃0 = 0 and thus
f̃ (0) = −Q−1/2p. In our parlance, Theorem 8 of [30] proved the following bound.

‖f̃ (j)‖2 ≤
κ2(Q−1/2AD)− 1

2
‖f̃ (j−1)‖2 ,

where κ(Q−1/2AD) is the condition number of Q−1/2AD. Combined with
Lemma 28 (see Section 4.8.2 for details), we get

‖f̃ (t)‖2 ≤ ζ‖f̃ (t−1)‖2 ≤ · · · ≤ ζt‖f̃ (0)‖2 = ζt‖Q−1/2p‖2 ,

which proves the condition of eqn. (4.9).

We remark that one can consider using MINRES [155] instead of CG. Our
results hinges on bounding the two-norm of the residual. MINRES finds, at
each iteration, the optimal vector with respect the two-norm of the residual
inside the same Krylov subspace of CG for the corresponding iteration. Thus,
the bound we prove for CG applies to MINRES as well.

4.5 The Infeasible IPM algorithm

In order to avoid spurious solutions, primal-dual path-following IPMs bias
the search direction towards the central path and restrict the iterates to a
neighborhood of the central path. This search is controlled by the centering
parameter σ ∈ [0, 1]. At each iteration, given the current solution (xk, yk, sk),
a standard infeasible IPM obtains the search direction (∆xk,∆yk,∆sk) by
solving the following system of linear equations:

AD2AT∆yk = pk , (4.16a)

∆sk = − rkd − AT∆yk , (4.16b)

∆xk = − xk + σµkS
−11n −D2∆sk. (4.16c)

95

HereD and S are computed given the current iterate (xk and sk). After solving
the above system, the infeasible IPM Algorithm 6 proceeds by computing a
step-size ᾱ to return:

(xk+1, yk+1, sk+1) = (xk, yk, sk) + ᾱ(∆xk,∆yk,∆sk). (4.17)

Recall that rk = (rkp , r
k
d) is a vector with rkp = Axk − b and rkd = ATyk + sk − c

(the primal and dual residuals). We also use the duality measure µk = xk
T
sk/n

and the vector

pk = −rkp − σµkAS−11n + Axk − AD2rkd . (4.18)

Given ∆yk from eqn. (4.16a), ∆sk and ∆xk are easy to compute from eqns. (4.16b)
and (4.16c), as they only involve matrix-vector products. However, since we
will use Algorithm 5 to solve eqn. (4.16a) approximately using the sketching-
based preconditioned CG solver, the primal and dual residuals do not lie on the
line segment between 0 and r0. This invalidates known proofs of convergence
for infeasible IPMs.

For notational simplicity, we now drop the dependency of vectors and scalars
on the iteration counter k. Let ∆̂y = Q−1/2z̃t be the approximate solution to
eqn. (4.16a). In order to account for the loss of accuracy due to the approxi-
mate solver, we compute ∆̂x as follows:

∆̂x = − x+ σµS−11n −D2∆̂s− S−1v. (4.19)

Here v ∈ Rn is a perturbation vector that needs to exactly satisfy the following
invariant at each iteration of the infeasible IPM:

AS−1v = AD2AT∆̂y − p . (4.20)

We note that the computation of ∆̂s is still done using eqn. (4.16b), which
does not change. [137] argued that if v satisfies eqn. (4.20), the primal and
dual residuals lie in the correct line segment.

Construction of v. There are many choices for v satisfying eqn. (4.20). A
general choice is v = (AS−1)†(AD2AT∆̂y−p), which involves the computation
of the pseudoinverse (AS−1)†, which is expensive, taking time O(m2n). In-
stead, we propose to construct v using the sketching matrix W of Section 4.3.
More precisely, we construct the perturbation vector

v = (XS)
1/2W (ADW)†(AD2AT∆̂y − p). (4.21)

96

The following lemma proves that the proposed v satisfies eqn. (4.20); see Sec-
tion 4.8.3 for the proof.

Lemma 29. Let W ∈ Rn×w be the sketching matrix of Section 4.3 and v be
the perturbation vector of eqn. (4.21). Then, with probability at least 1 − δ,
rank(ADW) = m and v satisfies eqn. (4.20).

We emphasize here that we will use the same exact sketching matrixW ∈ Rn×w

to form the preconditioner used in the CG algorithm of Section 4.4 as well as
the vector v in eqn.(4.21). This allows us to form the sketching matrix only
once, thus saving time in practice. Next, we present a bound for the two-norm
of the perturbation vector v of eqn. (4.21); see Section 4.8.4 for the proof.

Lemma 30. With probability at least 1 − δ, our perturbation vector v in
Lemma 29 satisfies

‖v‖2 ≤
√

3nµ ‖f̃ (t)‖2, (4.22)

with f̃ (t) = Q−1/2AD2ATQ−1/2z̃t −Q−1/2p.

The above result is particularly useful in proving the convergence of Algo-
rithm 6. More precisely, combining a result from [137] with our precon-
ditioner Q−1/2, we can prove that ‖Q−1/2p‖2 ≤ O(n)

√
µ. This bound al-

lows us to prove that if we run Algorithm 5 for O(log n) iterations, then
‖f̃ (t)‖2 ≤ γσ

4
√
n

√
µ and ‖v‖2 ≤ γσ

4
µ. The last two inequalities are critical in the

convergence analysis of Algorithm 6; see Section 4.9 for details.

We are now ready to present the infeasible IPM algorithm. We will need the
following definition for the neighborhood

N (γ) =
{

(xk, yk, sk) : xki s
k
i ≥ (1− γ)µ and

‖rk‖2
‖r0‖2

≤ µk
µ0
,
}
.

Here γ ∈ (0, 1) and we note that the duality measure µk steadily reduces at

97

each iteration.

Algorithm 6: Infeasible IPM
Input: A ∈ Rm×n, b ∈ Rm, c ∈ Rn, γ ∈ (0, 1), tolerance ε > 0, centering
parameter σ ∈ (0, 4/5);

Initialize: k ← 0; initial point (x0, y0, s0);

while µk > ε do

(a) Compute sketching matrix W ∈ Rn×w (Section 4.3) with ζ = 1/2

and δ = O(n−2);

(b) Compute rkp = Axk − b; rkd = ATyk + sk − c; and pk from eqn. (4.18);

(c) Solve the linear system of eqn. (4.7) for z using Algorithm 5 with W
from step (a) and t = O(log n). Compute ∆̂y = Q−1/2z;

(d) Compute v using eqn. (4.21) with W from step (a); ∆̂s using
eqn. (4.16b); ∆̂x using eqn. (4.19);

(e) Compute
α̃ = argmax{α ∈ [0, 1] : (xk, yk, sk) + α(∆̂x

k
, ∆̂y

k
, ∆̂s

k
) ∈ Γ}.

(f) Compute ᾱ = argmin{α ∈ [0, α̃] : (xk + α∆̂x
k
)T(sk + α∆̂s

k
)}.

(g) Compute (xk+1, yk+1, sk+1) = (xk, yk, sk) + ᾱ(∆̂x
k
, ∆̂y

k
, ∆̂s

k
); set

k ← k + 1;

Running time. We start by discussing the running time to compute v. As
discussed in Section 4.4, (ADW)† can be computed in O(nnz(A) · log(m/δ) +

m3 log(m/δ)) time. Now, as W has O(log(m/δ)) non-zero entries per row,
pre-multiplying by W takes O(nnz(A) log(m/δ)) time (assuming nnz(A) ≥ n).
Since X and S are diagonal matrices, computing v takes O(nnz(A)·log(m/δ)+

m3 log(m/δ)) time, which is asymptotically the same as computing Q−1/2 (see
eqn. (4.15)).

We now discuss the overall running time of Algorithm 6. At each iteration,
with failure probability δ, the preconditioner Q−1/2 and the vector v can be
computed in O(nnz(A) · log(m/δ) + m3 log(m/δ)) time. In addition, for t =

O(log n) iterations of Algorithm 5, all the matrix-vector products in the CG
solver can be computed inO(nnz(A)·log n) time. Therefore, the computational
time for steps (a)-(d) is given by O(nnz(A) · (log n+log(m/δ))+m3 log(m/δ)).
Finally, taking a union bound over all iterations with δ = O(n−2) (ignoring
constant factors), Algorithm 6 converges with probability at least 0.9. The
running time at each iteration is given by O((nnz(A) +m3) log n).

98

4.6 Discussion and Extensions

We briefly discuss extensions of our work. First, there is nothing special about
using a CG solver for solving eqn. (4.7). We can replace the proposed CG solver
with another iterative solver, without any loss in accuracy or any increase
in the number of iterations for the long-step infeasible IPM Algorithm 6 of
Section 4.5.

Additionally, recall that our approach focused on full rank input matrices A ∈
Rm×n with m� n. Our overall approach still works if A in any m× n matrix
that is low-rank, e.g., rank(A) = k � min{m,n}. In that case, using the thin
SVD of A, we can rewrite the linear constraints as follows UAΣAV

T
A x = b,

where UA ∈ Rm×k and VA ∈ Rn×k are the matrices of left and right singular
vecors of A respectively; ΣA ∈ Rk×k is the diagonal matrix with the k non-
zero singular values of A as its diagonal elements. The LP of eqn. (4.1) can
be restated as

min cTx , subject to V T
A x = b̃ , x ≥ 0 , (4.23)

where b̃ = Σ−1
A UT

Ab. Note that, rank(VA) = k � n and therefore eqn. (4.23)
can be solved using our framework. The matrices UA, VA, and ΣA can be
approximately recovered using the fast SVD algorithms of [92, 29, 48].

Finally, even though we chose to use the Count-Min sketch and its analysis
from [50] (Section 4.3), there are many other alternative sketching matrix con-
structions that would lead to similar results. A particularly simple one is the
Gaussian sketching matrix WG ∈ Rn×w, where every entry is a N (0, 1) ran-
dom variable. Setting w = O (m+log(1/δ)/ε2) would result in the same accuracy
guarantees as the sketching matrix of Section 4.3. However, the (theoretical)
running time needed to compute ADW increases to O(m·nnz(A)). In practice,
at least for relatively small matrices, using Gaussian sketching matrices is a
reasonable alternative; see the discussion in [132] which argued that the Gaus-
sian matrix sketching-based solvers are considerably better than direct solvers.
We also opted to use Gaussian matrices in our empirical evaluation, since we
primarily interested in measuring the accuracy of the final solution as a func-
tion of the number of iterations of the solver and the IPM algorithm. Other
known constructions of sketching matrices that are also applicable in our set-
ting include (any) sub-gaussian sketching matrix; the Subsampled Randomized
Hadamard transform (SRHT); and any of the Sparse Subspace Embeddings
of [47, 144, 131, 49].

99

0 20 40 60
Outer Iterations

101

102

103
In
ne

r C
G
Ite

ra
tio

ns
Stand. IPM
Sk. IPM w=200
Sk. IPM w=400
Sk. IPM w=1000

(a)

0 20 40 60
Outer Iterations

102

104

106

108

Co
nd

iti
on

 N
um

be
r Stand. IPM

Sk. IPM w=200
Sk. IPM w=400
Sk. IPM w=1000

(b)

Figure 41: ARCENE data set: Our Algorithm 6 (Sk. IPM) requires
an order of magnitude fewer (a) inner iterations than the Standard IPM
with CG, at each outer iteration, due to the improved (b) conditioning of
Q−1/2AD2ATQ−1/2 compared to AD2AT .

3e-06 6e-06 1e-05 3e-05
Rel. Tolerance CG

200

300

500

1000

Sk
et

ch
 D

im
. w

Max. Inner Iterations

15

20

25

30

(a) Max. Inner CG Iterations.

3e-06 6e-06 1e-05 3e-05
Rel. Tolerance CG

200

300

500

1000

Sk
et

ch
 D

im
. w

Max. Cond. Num.

5
10
15
20
25
30
35
40

(b) Max. Condition Number.

Figure 42: ARCENE data set : for various (w, tolCG) settings, (a) the maxi-
mum number of inner iterations used by our algorithm and (b) the maximum
condition number of Q−1/2AD2ATQ−1/2, across outer iterations. The standard
IPM, across all settings, needed on the order of 1,000 iterations and κ(AD2AT)
was on the order of 108. The relative error was fixed to 0.04%.

100

4.7 Experiments

Here we demonstrate the empirical performance of our algorithm on a variety
of real-world datasets from the UCI ML Repository [67], such as ARCENE,
DEXTER [91], DrivFace [61], and a gene expression cancer RNA-Sequencing
dataset that is part of the PANCAN dataset [200]. See Table 41 for a descrip-
tion of the datasets.

We also generated random synthetic instances of linear programs as follows.
To generate A ∈ Rm×n, we set aij ∼i.i.d. U(0, 1) with probability p and aij = 0

otherwise. We then add min{m,n} i.i.d. draws from U(0, 1) to the main
diagonal, to ensure each row of A has at least one nonzero entry. We set
b = Ax+0.1z, where x and z are random vectors drawn from N(0, 1). Finally,
we set c ∼ N(0, 1).

We observed that the results for both synthetic data and real-world data were
qualitatively similar. Thus, we highlight results on several representative real
datasets. The experiments were implemented in Python and run on a server
with Intel E5-2623V3@3.0GHz 8 cores and 64GB RAM.

Support Vector Machines (SVMs) As an application, we consider `1-
regularized SVMs. All of the datasets are concerned with binary classification
with m � n, where n is the number of features. Below, we describe the `1-
SVM problem and how it can be formulated as an LP. Here, m is the number
of training points, n is the feature dimension, and the size of the constraint
matrix in the LP becomes m× (2n+ 1).

The classical `1-SVM problem is as follows. We consider the task of fitting
an SVM to data pairs S = {(xi, yi)}mi=1, where xi ∈ RN and yi ∈ {+1,−1}
is a label for each data pair. Here, m is the number of training points, and
N is the feature dimension. The SVM problem with an `1 regularizer has the
following form:

minimize
w

‖w‖1 (4.24)

subject to yi(w
Txi + b′) ≥ 1, ∀i ∈ [m].

This problem can be written as an LP by introducing the variables w+ and w−,
where w = w+ − w−. The objective becomes

∑n
j w

+
j + w−j , and we constrain

w+
i ≥ 0 and w−i ≥ 0. Note that the size of the constraint matrix in the LP

101

becomes (m× (2N + 1)), where m is the number of training points, and N is
the feature dimension.

Comparisons and Metrics. We compare our Algorithm 6 with a standard
IPM (see Chapter 10, [164]) using CG, and a standard IPM using a direct
solver. We also use CVXPY as a benchmark to compare the accuracy of the
solutions; we define the relative error ‖x̂−x?‖2/‖x?‖2, where x̂ is our solution and
x? is the solution generated by CVXPY. We also consider the number of outer
iterations, namely the number of iterations of the IIPM algorithm, as well as
the number of inner iterations, namely the number of iterations of the CG
solver. We denote the relative stopping tolerance for CG by tolCG and we
denote the outer iteration residual error by τ . If not specified: τ = 10−9,
tolCG = 10−5, and σ = 0.5. We evaluated a Gaussian sketching matrix, and
the initial triplet (x, y, s) for all IPM algorithms was set to be all ones.

Experimental Results. Figure 41(a) shows that our Algorithm 6 uses an
order of magnitude fewer inner iterations than the un-preconditioned standard
solver. This is due to the improved conditioning of the respective matrices in
the normal equations, as demonstrated in Figure 41(b). Across various real
and synthetic data sets, the results were qualitatively similar to those shown
in Figure 41. Results for several real data sets are summarized in Table 41.

The number of outer iterations is unaffected by our internal approximation
methods, and is generally the same for our Algorithm 6, the standard IPM
with CG, and the standard IPM with a direct linear solver (denoted IPM
w/Dir), as seen in Table 41. Figure 41 also demonstrates the relative insensi-
tivity to the choice of w (the sketching dimension, i.e., the number of columns
of the sketching matrix W of Section 4.3). For smaller values of w, our algo-
rithm requires more inner iterations. However, across various choices of w, the
number of inner iterations is always an order of magnitude smaller than the
number required by the standard solver.

Figure 42 shows the performance of our algorithm for a range of (w, tolCG)
pairs. Figure 42(a) demonstrates that the number of the inner iterations is
robust to the choice of tolCG and w. The number of inner iterations varies
between 15 and 35 for the ARCENE data set, while the standard IPM took
on the order of 1, 000 iterations across all parameter settings. Across all set-
tings, the relative error was fixed at 0.04%. In general, our sketched IPM
is able to produce an extremely high accuracy solution across parameter set-

102

tings. Thus we do not report additional numerical results for the relative error,
which was consistently 10−3 or less. Figure 42(b) demonstrates a tradeoff of
our approach: as both tolCG and w are increased, the condition number
κ(Q−1/2AD2ATQ−1/2) decreases, corresponding to better conditioned systems.
As a result, fewer inner iterations are required.

Figure 43 illustrates the convergence and conditioning behavior for the DEX-
TER data set. We see a similar behavior as found for the ARCENE data set
in Figure 41. Figure 44 displays more results for the ARCENE data set.

The following is how we made use of a gene expression cancer RNA-Sequencing
data set, taken from the UCI Machine Learning repository. It is part of the
RNA-Seq (HiSeq) PANCAN data set [200], and is a random extraction of gene
expressions from patients who have different types of tumors: BRCA, KIRC,
COAD, LUAD, and PRAD. We considered the binary classification task of
identifying BRCA versus other types.

The following is how we made use of the DrivFace data set taken from the
UCI Machine Learning repository. In the DrivFace data set, each sample
corresponds to an image of a human subject, taken while driving in real sce-
narios. Each image is labeled as corresponding to one of three possible gaze
directions: left, straight, or right. We considered the binary classification task
of identifying two different gaze directions: straight, or to either side left or
right.

103

0 10 20 30
Outer Iterations

101

102

103

In
ne

r C
G
Ite

ra
tio

ns
Stand. IPM
Sk. IPM w=500
Sk. IPM w=1000
Sk. IPM w=2000

(a)

0 10 20 30
Outer Iterations

102
104
106
108
1010

Co
nd

iti
on

 N
um

be
r Stand. IPM

Sk. IPM w=500
Sk. IPM w=1000
Sk. IPM w=2000

(b)

Figure 43: DEXTER data set : Our algorithm (Sk. IPM) requires an order
of magnitude fewer inner iterations than the Standard IPM with CG, at each
outer iteration, as demonstrated in (a). This is possible due to the improved
conditioning of Q−1/2AD2ATQ−1/2 compared to AD2AT , demonstrated in (b).
For all, tolCG = 10−5, τ = 10−9.

200 400 600 800 1000
Sketch Dim. w

10

15

20

25

30

In
ne

r I
te
ra
tio

ns

CG tol = 3e−06
CG tol = 6e−06
CG tol = 1e−05
CG tol = 3e−05

(a)

200 400 600 800 1000
Sketch Dim. w

101

κ(
Q

−1
/2
AD

2 A
T Q

−1
/2
) CG tol = 3e−06

CG tol = 6e−06
CG tol = 1e−05
CG tol = 3e−05

(b)

Figure 44: ARCENE data set : As w increases, (a) the number of inner it-
erations decreases, and is relatively robust to tolCG, and, (b) the condition
number decreases as well.

104

Ta
bl
e
41

:
C
om

pa
ri
so
n
of

(o
ur
)
sk
et
ch
ed

IP
M

w
it
h
C
G
,s
ta
nd

ar
d
IP

M
w
it
h
C
G
,a

nd
St
an

da
rd

IP
M

w
it
h
a
di
re
ct

so
lv
er
,f
or

th
e

` 1
-S
V
M

pr
ob

le
m

on
U
C
I
M
ac
hi
ne

Le
ar
ni
ng

R
ep

os
it
or
y
[6
7]

da
ta

se
ts
.
A
cr
os
s
al
l,
τ

=
10
−

9
an

d
a
re
la
ti
ve

er
ro
r
of

10
−

3
or

le
ss

w
as

ac
hi
ev
ed
.
W
e
de

fin
e
κ

Sk
=
κ

(Q
−

1 /
2
A
D

2
A

T
Q
−

1 /
2
)
an

d
κ

St
an

=
κ

(A
D

2
A
T

).

P
ro
b
le
m

S
iz
e

S
ke
tc
h
IP

M
w
/
P
re
co
n
d
.
C
G

S
ta
n
d
.
IP

M
w
/
U
n
p
re
c.

C
G

IP
M

w
/
D
ir
.

(m
×
N

)
w

In
.
It
.

O
ut
.
It
.

κ
Sk

In
.
It
.

O
ut
.
It
.

κ
St

an
O
ut
.
It
.

A
R
C
E
N
E

(1
00
×

10
K

)
20

0
3
0

50
38
.0

9
1
.1
K

59
4.

4
×

10
8

50
D
E
X
T
E
R

(3
00
×

20
K

)
50

0
3
9

39
75
.4

2
4
.6
K

39
7.

6
×

10
9

39
D
ri
vF

ac
e

(6
06
×

64
00

)
10

00
5
0

42
68
.8

7
1
3
9
K

43
17
×

10
1
2

42
G
en
e
R
N
A

(8
01
×

20
53

1)
20

00
2
7

44
20
.0

3
1
0
1
K

20
8

4.
7
×

10
1
2

44

105

4.8 Proofs of Technical Results

First, we define some additional notation. For simplicity, we assume B = AD

in most of the proofs in Section 4.8. We also take B = UΣV T to be the
thin SVD representation of B. Additionally, for vectors a = (a1, . . . , a`)

T and
b = (b1, . . . , b`)

T, we denote a◦b = (a1b1, . . . , a`b`)
T. For any vector a ∈ Rn, the

`∞ norm is defined as, ‖a‖∞ = maxi |ai| and we will heavily use the following
standard inequality to prove results in the upcoming sections,∣∣∣∣aT1nn

∣∣∣∣ ≤ ‖a‖∞ ≤ ‖a‖2 . (4.25)

4.8.1 Proof of Lemma 28

Proof. For simplicity, we assumeB = AD. Consider the condition of eqn. (4.14):

‖V TWWTV − Im‖2 ≤
ζ

2
⇔ − ζ

2
Im 4 V TWWTV − Im 4

ζ

2
Im

⇒ − ζ

2
BBT 4 BWWTBT −BBT 4

ζ

2
BBT (4.26)

⇒
(

1− ζ

2

)
BBT 4 BWWTBT︸ ︷︷ ︸

Q

4

(
1 +

ζ

2

)
BBT , (4.27)

where we obtain eqn. (4.26) by pre- and post-multiplying the previous in-
equality by UΣ and ΣUT respectively and using the facts that B = UΣV T

and BBT = UΣ2UT. Next, pre- and post- multiplying eqn. (4.27) by Q−1/2,
we obtain (

1 +
ζ

2

)−1

In 4 Q−1/2BBTQ−1/2 4

(
1− ζ

2

)−1

Im . (4.28)

Eqn. (4.28) implies that all the eigenvalues of Q−1/2BBTQ−1/2 are bounded
between

(
1 + ζ

2

)−1
and

(
1− ζ

2

)−1
. Therefore, we have(

1 +
ζ

2

)−1

≤ σ2
i (Q

−1/2B) ≤
(

1− ζ

2

)−1

.

4.8.2 Satisfying eqn. (4.9) using CG Solver

Let f̃ (j) be the residual at the j-th iteration of the CG algorithm, i.e., f̃ (j) =

Q−1/2AD2ATQ−1/2z̃j − Q−1/2p. Recall from Algorithm 5 that z̃0 = 0 and thus
f̃ (0) = −Q−1/2p. Theorem 8 of [30] proved the following bound.

106

Lemma 31 (Theorem 8 of [30]). Let f̃ (j−1) and f̃ (j) be the residuals obtained
by the CG solver at steps j − 1 and j. Then,

‖f̃ (j)‖2 ≤
κ2(Q−1/2AD)− 1

2
‖f̃ (j−1)‖2 ,

where κ(Q−1/2AD) is the condition number of Q−1/2AD.

From Lemma 28, we get

κ2(Q−
1/2AD) =

σ2
max(Q−1/2AD)

σ2
min(Q−1/2AD)

≤ 1 + ζ/2

1− ζ/2
. (4.29)

Combining eqn. (4.29) with Lemma 31,

‖f̃ (j)‖2 ≤
1+ζ/2
1−ζ/2 − 1

2
‖f̃ (j−1)‖2

=
ζ

2− ζ
‖f̃ (j−1)‖2 ≤ ζ‖f̃ (j−1)‖2 , (4.30)

where the last inequality follows from ζ ≤ 1. Applying eqn. (4.30) recursively,
we get

‖f̃ (t)‖2 ≤ ζ‖f̃ (t−1)‖2 ≤ · · · ≤ ζt‖f̃ (0)‖2 = ζt‖Q−1/2p‖2 ,

which proves the condition of eqn. (4.9).

4.8.3 Proof of Lemma 29

Proof. Let AD = UΣV T be the thin SVD representation of AD. We use the
exact same W as discussed in Section 4.4. Therefore, eqn. (4.14) holds with
probability 1− δ.

Next, using the using Weyl’s inequality, we have for i = 1, 2, . . . ,m∥∥V TWWTV − Im
∥∥

2
≥
∣∣σ2
i (V

TW)− 1
∣∣ . (4.31)

Now, combining eqns. (4.14) and (4.31), we further have

(1− ζ/2)
1/2 ≤ σi(V

TW) ≤ (1 + ζ/2)
1/2 , (4.32)

which implies the top m singular values of V TW and non-zero. Therefore,
rank(V TW) = m , as it has exactly m rows. Next, using SVD of AD, we
rewrite ADW as

ADW = UΣ(V TW) . (4.33)

107

Note that UΣ is a non-singular matrix and we know rank of a matrix remains
unaltered by pre (or post)-multiplying by a non-singular matrix. Therefore,
we have rank(ADW) = rank(V TW) = m.

As ADW has full row-rank, right-inverse exists and ADW (ADW)† = Im.
Therefore, taking v = (XS)−1/2W (ADW)†(AD2AT∆̂y − p), we finally have

AS−1 v = AS−1(XS)
1/2W (ADW)†(AD2AT∆̂y − p)

= ADW (ADW)†(AD2AT∆̂y − p)

= AD2AT∆̂y − p ,

where the second last equality follows from the fact that D = X1/2S−1/2. This
concludes the proof.

4.8.4 Proof of Lemma 30

Proof. We already have, Q = ADW (ADW)T. Let ADW = ÛΣ̂V̂ T be the thin
SVD representation of ADW . Therefore, Q = ÛΣ̂2ÛT. Now, from Lemma 29,
we know ADW has full row rank. Therefore, Σ̂ has the all m diagonal entries
positive which implies Q1/2Q−1/2 = Im.

Next, we bound ‖v‖2 in the following way

‖v‖2 = ‖(XS)
1/2W (ADW)†(AD2AT∆̂y − p)‖2

= ‖(XS)
1/2W (ADW)†Q

1/2Q
−1/2(AD2AT∆̂y − p)‖2

≤ ‖(XS)
1/2W (ADW)†Q

1/2‖2 ‖f̃ (t)‖2 , (4.34)

where we have used the fact that Q−1/2(AD2AT∆̂y − p) = f̃ (t) and the last
inequality follows from the sub-multiplicativity property of spectral-norm.

Again using SVD of ADW , we have (ADW)† = V̂ Σ̂−1ÛT and Q1/2 = ÛΣ̂ÛT,
which implies (ADW)†Q1/2 = V̂ V̂ T. So, (ADW)†Q1/2 is a projection matrix
and we know that if we multiply a matrix with a projection matrix, it doesn’t
increase the matrix-norm. Using this, from eqn. (4.34) we further have,

‖v‖2 ≤ ‖(XS)
1/2WV̂ V̂ T‖2‖f̃ (t)‖2 ≤ ‖(XS)

1/2W‖2‖f̃ (t)‖2 (4.35)

As we use the exact same W discussed in Section 4.4 to construct v and note
that eqn. (4.12) holds for any matrix Z. Therefore, using with Z = (XS)1/2

108

with that W , eqn. (4.12) in Section 4.3 boils down to

∥∥(XS)
1/2WWT(XS)

1/2 − (XS)
∥∥

2
≤ ζ

4

(
‖(XS)

1/2‖2
2 +
‖(XS)1/2‖2

F

m

)
(4.36)

holds with probability at least 1− δ for any r ≥ 1.

Now, applying Weyl’s inequality on the left hand side of the eqn. (4.36), we
further have∣∣∣∥∥(XS)

1/2W
∥∥2

2
−
∥∥(XS)

1/2
∥∥2

2

∣∣∣ ≤ ζ

4

(
‖(XS)

1/2‖2
2 +
‖(XS)1/2‖2

F

m

)
. (4.37)

Now, using the facts that ζ ≤ 1, ‖(XS)1/2‖2 ≤ ‖(XS)1/2‖F , and
‖(XS)

1/2‖2F
m

≤
‖(XS)1/2‖2

F , from eqn. (4.37),∥∥(XS)
1/2W

∥∥2

2
≤ 3‖(XS)

1/2‖2
F = 3nµ , (4.38)

where the last equality follows from ‖(XS)1/2‖2
F = xTs = nµ .

Finally, combining eqns. (4.35) and (4.38), we conclude

‖v‖2 ≤
√

3nµ‖f̃ (t)‖2.

4.9 Convergence Analysis of Infeasible IPM Algorithm 6

4.9.1 Number of Iterations for the CG Solver

In this section, most of the proofs follow [137] except for the fact that we used
our sketching based preconditioner Q−1/2.

Lemma 32. Let (x0, y0, s0) be the initial point with (x0, s0) > 0 and (x∗, y∗, s∗) ∈
S such that (x∗, s∗) ≤ (x0, s0) with s0 ≥ |ATy0 − c|. Then, for any point
(x, y, s) ∈ N (γ) such that r = η r0 and 0 ≤ η ≤ min

{
1, sTx

s0Tx0

}
, then we have

(i) η (xTs0 + sTx0) ≤ 3nµ , (4.39a)

(ii) η ‖S(x∗ − x0)‖2 ≤ η ‖Sx0‖2 ≤ ηsTx0 ≤ 3nµ , (4.39b)

(iii) η ‖X(s0 + ATy0 − c)‖2 ≤ 2η ‖Xs0‖2 ≤ 2η xTs0 ≤ 6nµ . (4.39c)

Proof. We prove eqns. (4.39a)–(4.39c) below.

109

Proof of eqn. (4.39a). For completeness, we provide a proof of eqn. (4.39a)
which is already discussed in [137]. Since (x∗, s∗, y∗) ∈ S, the following equal-
ities hold:

Ax∗ = b (4.40a)

ATy∗ + s∗ = c. (4.40b)

Furthermore, r = ηr0 implies

Ax− b = η(Ax0 − b) (4.41a)

ATy + s− c = η(ATy0 + s0 − c). (4.41b)

Combining eqn. (4.40a) with eqn. (4.41a) and eqn. (4.40b) with eqn. (4.41b),
we get

A
(
x− ηx0 − (1− η)x∗

)
= 0 (4.42a)

AT(y − ηy0 − (1− η)y∗) + (s− ηs0 − (1− η)s∗) = 0. (4.42b)

Multiplying the eqn. (4.42b) by (x− ηx0 − (1− η)x∗)
T on the left and using

eqn. (4.42a), we get(
x− ηx0 − (1− η)x∗

)T (
s− ηs0 − (1− η)s∗

)
= 0 ,

expanding which we get

η
(
x0Ts+ xTs0

)
= η2x0Ts0 + (1− η)2(x∗)Ts∗ + xTs

+ η(1− η)
(
x0Ts∗ + (x∗)Ts0

)
− (1− η)

(
(x∗)Ts+ xTs∗

)
.

(4.43)

Next, we use the given conditions and rewrite eqn. (4.43) as

η
(
x0Ts+ s0Tx

)
≤ η2x0Ts0 + xTs+ η(1− η)

(
x0Ts∗ + s0Tx∗

)
≤ η2x0Ts0 + xTs+ 2η(1− η)x0Ts0

≤ 2ηx0Ts0 + xTs ≤ 3xTs = 3nµ , (4.44)

where the first inequality in eqn. (4.44) follows from from a couple of facts.
First, (1 − η)((x∗)Ts + xTs∗) ≥ 0 as (x∗, s∗) ≥ 0 and (x0, s0) ≥ 0; second,

110

as (x∗, s∗, y∗) ∈ S (which implies x∗ ◦ s∗ = 0), we have (x∗)Ts∗ = 0 . Second
inequality in eqn. (4.44) holds as x∗ ≤ x0, s∗ ≤ s0, (x∗, s∗) ≥ 0 and (x0, s0) ≥
0; combining which we have (x0Ts∗ + s0Tx∗) ≤ 2x0Ts0. Third inequality in
eqn. (4.44) is true as we have η2x0T + 2η(1 − η)x0Ts0 = 2ηx0Ts0 − η2x0Ts0 ≤
2ηx0Ts0. Final inequality holds as η ≤ xTs

x0Ts0
.

Proof of eqn. (4.39b). The last inequality directly follows from eqn. (4.39a);
second last inequality is also easy to prove as

‖Sx0‖2 =

√√√√ s∑
i=1

(six0
i)

2 ≤

√√√√(s∑
i=1

six0
i

)2

= sTx0 . (4.45)

To prove the first inequality in eqn. (4.39b), we use the fact x0 ≥ x∗ as follows

‖Sx0‖2
2 − ‖S(x∗ − x0)‖2

2 =
n∑
i=1

(six
0
i)

2 −
n∑
i=1

s2
i

(
(x∗i)

2 + (x0
i)

2 − 2x∗ix
0
i

)
=

n∑
i=1

s2
i

(
2x∗ix

0
i − (x∗i)

2
)
≥ 0 .

Proof of eqn. (4.39c). This can be proven using a similar approach as in
eqn. (4.39b). Last inequality directly follows from eqn. (4.39a); second last
inequality is also easy to prove as

‖Xs0‖2 =

√√√√ n∑
i=1

(xis0
i)

2 ≤

√√√√(n∑
i=1

xis0
i

)2

= xTs0 . (4.46)

For the first inequality, we proceed as follows

‖X(s0 + ATy0 − c)‖2
2 = ‖Xs0‖2

2 + ‖X(ATy0 − c)‖2
2 + 2s0TXTX(ATy0 − c)

= ‖Xs0‖2
2 +

n∑
i=1

x2
i (A

Ty0 − c)2
i + 2

n∑
i=1

x2
i s

0
i (A

Ty0 − c)i

≤ ‖Xs0‖2
2 +

n∑
i=1

(xis
0
i)

2 + 2
n∑
i=1

(xis
0
i)

2

= ‖Xs0‖2
2 + ‖Xs0‖2

2 + 2‖Xs0‖2
2 = 4‖Xs0‖2

2 , (4.47)

where the inequality in eqn. (4.47) follows from xi ≥ 0, s0
i ≥ 0 and

∣∣(ATy0 − c)i
∣∣ ≤

s0
i for all i = 1, 2, . . . n . This concludes the proof of Lemma 32.

111

Our next result bounds ‖Q−1/2p‖2 which will be instrumental in in proving the
final convergence bound.

Lemma 33. Let (x0, y0, s0) be the initial point with (x0, s0) > 0 such that
x0 ≥ x∗ and s0 ≥ max{s∗, |c−ATy0|} for some (x∗, y∗, s∗) ∈ S. Furthermore,
let (x, y, s) ∈ N (γ) with r = η r0 for some 0 ≤ η ≤ 1. If the sketching matrix
W ∈ Rn×w satisfies the condition in eqn. (4.8), then

‖Q−1/2p‖2 ≤
√

2

(
9n√
1− γ

+ σ

√
n

1− γ
+
√
n

)
√
µ .

Recall that, r = (rp, rd) = (Ax − b, ATy + s − c) and r0 = (r0
p, r

0
d) = (Ax0 −

b, ATy0 + s0 − c) .

Proof. Note that in our case, after correcting the approximation error of the
CG solver using v, the primal and dual residuals r = (rp, rd) corresponding
to an iterate (x, y, s) ∈ N (γ) always lie on the line segment between zero and
r(0). In other words, r = ηr(0) always holds for some η ∈ [0, 1]. This was
formally proven in Lemma 35 .

To bound ‖Q−1/2p‖2, first we express p as in eqn. (4.4a) and rewrite

Q−
1/2p = Q−

1/2
(
−rp − σµB(XS)−

1/21n +BD−1x−BDrd
)
. (4.48)

Then, applying triangle inequality on ‖Q−1/2p‖2 in eqn. (4.48), we get

‖Q−1/2p‖2 ≤ ∆1 + ∆2 + ∆3 + ∆4 , (4.49)

where

∆1 = ‖Q−1/2rp‖2 ,

∆2 = σµ‖Q−1/2B(XS)−
1/21n‖2 ,

∆3 = ‖Q−1/2BD−1x‖2 ,

∆4 = ‖Q−1/2BDrd‖2 .

To bound ∆1, ∆2, ∆3, and ∆4 separately, we will heavily use the condition in
eqn. (4.8). In particular, from eqn. (4.8), note that we have ‖Q−1/2B‖2 ≤

√
2

as ζ ≤ 1 .

112

Bounding ∆1. Putting rp = η r0
p, r0

p = Ax0 − b and b = Ax∗, we rewrite ∆1

as

∆1 = η ‖Q−1/2A(x0 − x∗)‖2

= η ‖Q−1/2BD−1(x0 − x∗)‖2

≤ η ‖Q−1/2B‖2‖D−1(x0 − x∗)‖2

≤
√

2η ‖D−1(x0 − x∗)‖2

=
√

2η ‖(XS)−
1/2S(x0 − x∗)‖2

≤
√

2η ‖(XS)−
1/2‖2 ‖S(x0 − x∗)‖2 , (4.50)

where the above steps follow from submultiplicativity and eqn. (4.8). From
eqn. (4.8), note that we have ‖Q−1/2B‖2 ≤

√
2 as ζ ≤ 1 . Now, applying

eqn. (4.39b) and ‖(XS)−1/2‖2 = max1≤i≤n
1√
xisi

, we further have

∆1 ≤
√

2 max
1≤i≤n

1
√
xisi
· 3nµ

≤ 3
√

2n

√
µ

1− γ
, (4.51)

where the last inequality follows from (x, y, s) ∈ N (γ).

Bounding ∆2. Applying submultiplicativity, we have

∆2 = σµ ‖Q−1/2B (XS)−
1/21n‖2

≤ σµ ‖Q−1/2B‖2‖(XS)−
1/21n‖2

≤
√

2σµ ‖(XS)−
1/21n‖2

=
√

2σµ

√√√√ n∑
i=1

1

xisi
≤
√

2σµ

√√√√ n∑
i=1

1

(1− γ)µ

=
√

2σ

√
nµ

(1− γ)
, (4.52)

where the second last inequality follows from eqn. (4.8) and last inequality
holds as (x, y, s) ∈ N (γ).

113

Bounding ∆3. Putting D = S−1/2X1/2; x = X 1n and

∆3 = ‖Q−1/2B (S
1/2X−

1/2)X 1n‖2

= ‖Q−1/2B (SX)
1/2 1n‖2

≤ ‖Q−1/2B‖2‖(SX)
1/2 1n‖2

≤
√

2

√√√√ n∑
i=1

xisi =
√

2nµ , (4.53)

where the inequalities follows respectively from submultiplicativity and eqn. (4.8).

Bounding ∆4. Putting rd = η r0
d, we have

∆4 = η‖Q−1/2BDr0
d‖2

≤ η‖Q−1/2B‖2‖(XS)−
1/2Xr0

d‖2

≤
√

2η ‖(XS)−
1/2X(ATy0 + s0 − c)‖2

≤
√

2η ‖(XS)−
1/2‖2 ‖X(ATy0 + s0 − c)‖2 ,

where the above inequalities follow from submultiplicativity and eqn. (4.8).
Now, applying eqn. (4.39c) and ‖(XS)−1/2‖2 ≤ 1√

(1−γ)µ
, we further have

∆4 ≤ 6
√

2n

√
µ

1− γ
(4.54)

Final bound. Combining eqns. (4.49), (4.51), ,(4.52), (4.53) and (4.54)

‖Q−1/2p‖2 ≤
√

2

(
9n√
1− γ

+ σ

√
n

1− γ
+
√
n

)
√
µ . (4.55)

This concludes the proof of Lemma 33.

Lemma 34. Let the the sketching matrixW satisfies the conditions in eqns. (4.8)
and (4.9). Then, after t ≥ log(4

√
6nψ/γσ)

log(1/ζ)
iterations of the CG solver in Algo-

rithm 5, we have the following:

‖f̃ (t)‖2 ≤
γσ

4
√
n

√
µ and ‖v‖2 ≤

γσ

4
µ ,

where ψ =

(
9n√
1−γ + σ

√
n

1−γ +
√
n

)
and f̃ (t) = Q−1/2AD2ATQ−1/2z̃t − Q−1/2p

is the residual of the solver.

114

Proof. Combining Lemma 33 and the condition in eqn. (4.9), we have

‖f̃ (t)‖2 ≤ ζtψ
√

2µ. (4.56)

Now, ‖f̃ (t)‖2 ≤ γσ
4
√
n

√
µ holds if

√
2ψ ζt

√
µ ≤ γσ

4
√
n

√
µ holds, i.e. if

(
1

ζ

)t
≥ 4
√

2nψ

γσ
holds.

i.e. if t ≥ log(4
√

2nψ/γσ)

log(1/ζ)
holds, which is true.

Next, combining Lemma 30 and eqn. (4.56) we get

‖v‖2 ≤
√

3nµ ‖f̃ (t)‖2 ≤
√

6n ζtψµ.

Therefore, ‖v‖2 ≤ γσµ
4

holds if

√
6nψ ζtψµ ≤ γσµ

4
holds, if

(
1

ζ

)t
≥ 4
√

6nψ

γσ
holds.

i.e. if t ≥ log(4
√

6nψ/γσ)

log(1/ζ)
holds, which is also true.

Now, fixing γ and σ and ζ, we indeed need t = O(log n) iterations of Algo-
rithm 5 for ‖f̃ (t)‖2 ≤ γσ

4
√
n

√
µ and ‖v‖2 ≤ γσµ

4
to hold.

4.9.2 Determining Step-size and Final Convergence

In this section, most of the proofs match that of [137], which we reproduce
here:

Let (∆̂x, ∆̂y, ∆̂s) respectively satisfies eqns. (4.19), (4.16a) and (4.16b). We
rewrite the systen in the following alternative form

A∆̂x =− rp , (4.57a)

AT∆̂y + ∆̂s =− rd , (4.57b)

X∆̂s+ S∆̂x =−XS 1n + σµ1n − v. (4.57c)

We define each new point traversed by the algorithm as (x(α), y(α), s(α)),
where

(x(α), y(α), s(α)) := (x, y, s) + α(∆̂x, ∆̂y, ∆̂s) (4.58)

µ(α) := x(α)T s(α)/n (4.59)

r(α) := r (x(α), s(α), y(α)) . (4.60)

115

The goal in this section is to bound the number of outer iterations required by
Algorithm 6. To do so, we make arguments about the magnitude of the step
size, α. First, we provide an upper bound on α, which allows us to show that
each new point (x(α), s(α), y(α)) traversed by the algorithm stays within the
neighborhood Γ. Second, we provide a lower bound on α, which allows us to
bound the number of iterations required.

The following Lemma will be used throughout the subsequent arguments.

Lemma 35 (Lemma 3.3 of [137]). Assume (∆̂x, ∆̂s, ∆̂y) satisfies equations
(4.57) for some σ ∈ R, v ∈ Rn and (x, y, s) be any point such that (x, s) > 0.
Then, for every α ∈ R,

(a) x(α) ◦ s(α) = (1− α)x ◦ s+ ασµ1n − αv + α2∆̂x ◦ ∆̂s ,

(b) µ(α) = [1− α(1− σ)]µ− α vT1n
n

+
α2 ∆̂x

T
∆̂s

n
,

(c) r(α) = (1− α)r.

Proof. Considering (4.57c), we obtain (a) due to the following:

x(α) ◦ s(α) = (x+ α∆̂x) ◦ (s+ α∆̂s)

= x ◦ s+ α(x ◦ ∆̂s+ ˆs∆x) + α2∆̂x ◦ ∆̂s

= x ◦ s+ α(−x ◦ s+ σµ1n − v) + α2∆̂x ◦ ∆̂s

= (1− α)x ◦ s+ ασµ1n − αv + α2∆̂x ◦ ∆̂s.

To obtain (b), left multiply the above inequality by 1T
n and divide by n. Lastly

(c) follows from (4.57a) and (4.57b).

We begin with providing an upper bound on α, ensuring that each new point
(x(α), y(α), s(α)) traversed by the algorithm stays within the neighborhood Γ.

Lemma 36 (Lemma 3.5 of [137]). Assume (∆̂x, ∆̂y, ∆̂s) satisfies equations
(4.57) for some σ > 0, (x, y, s) ∈ Γ for γ ∈ (0, 1) and ‖v‖2 ≤ γσµ

4
. Then,

(x(α), y(α), s(α)) ∈ Γ for every scalar α such that

0 ≤ α ≤ min

{
1,

γσµ

4‖∆̂x ◦ ∆̂s‖∞

}
. (4.61)

116

Proof. We begin by showing that ‖r(α)‖2
‖r‖2 ≤

µ(α)
µ

. The assumptions γ ∈ (0, 1)

and the inequality in eqn. (4.25) imply that vT1n
n
≤ σµ

4
. Thus, considering

Lemma 35(b),

µ(α) = [1− α(1− σ)]µ− α v
T1n
n

+ α2 ∆̂x
T
∆̂s

n

≥ [1− α(1− σ)]µ− α σµ
4

+ α2 ∆̂x
T
∆̂s

n

≥ (1− α)µ+ α
3σµ

4
− α2‖∆̂x ◦ ∆̂s‖∞

≥ (1− α)µ+ α ‖∆̂x ◦ ∆̂s‖∞

(
3σµ

4 ‖∆̂x ◦ ∆̂s‖∞
− α

)
≥ (1− α)µ, (4.62)

where the first inequality follows from vT1n
n
≤ σµ

4
, and the last inequality holds

as α ≤ γσµ

4‖∆̂x◦∆̂s‖∞
and γ < 1 . Now, due to eqn. (4.62) and Lemma 35(c), we

see that
‖r(α)‖2

‖r‖2

≤ µ(α)

µ
(4.63)

for all α satisfying eqn. (4.61). Thus, we argue that
(
x(α), y(α), s(α)

)
∈ Γ by

the following. First, we see that

‖r(α)‖2

‖r0‖2

=
‖r(α)‖2

‖r‖2

‖r‖2

‖r0‖2

≤ µ(α)

µ

µ

µ0

=
µ(α)

µ0

. (4.64)

Next, we have to show that x(α)◦s(α) ≥ (1−γ)µ(α)1n. Applying Lemma 35(a)
and Lemma 35(b), we compute

x(α) ◦ s(α)− (1− γ)µ(α)1n

= (1− α) (x ◦ s− (1− γ)µ1n) + αγσµ1n − α
(
v − (1− γ)

vT1n
n

1n

)
+ α2

(
∆̂x ◦ ∆̂s− (1− γ)

∆̂x
T
∆̂s

n
1n

)

≥ α

(
γσµ−

∥∥∥∥v − (1− γ)
vT1n
n

1n

∥∥∥∥
∞
− α

∥∥∥∥∥∆̂x ◦ ∆̂s− (1− γ)
∆̂x

T
∆̂s

n
1n)

∥∥∥∥∥
∞

)
1n

≥ α

(
γσµ− 2‖v‖∞ − 2α‖∆̂x ◦ ∆̂s‖∞

)
1n

≥ α

(
γσµ− γσµ

2
− γσµ

2

)
1n = 0,

117

where the first inequality follows from x ◦ s ≥ (1 − γ)µ1n (as we have,
(x, y, s) ∈ N (γ) and a ≤ ‖a‖∞ 1n for any vector a ∈ Rn). In the second
last inequality, we apply the fact that for any u ∈ Rn and δ ∈ [0, n], it holds
that

∥∥∥u− δ uT1nn 1n

∥∥∥
∞
≤ (1 + δ)‖u‖∞.

We now turn to the task of providing a lower bound on the values of ᾱ and
the corresponding µ(ᾱ) value.

Lemma 37 (Lemma 3.6 of [137]). In each iteration of Algorithm 6, if ‖v‖2 ≤
γσµ

4
, then the step size ᾱ satisfies

ᾱ ≥ min

{
1,

min{γσ, (1− 5
4
σ)}µ

4‖∆̂x ◦ ∆̂s‖∞

}
(4.65)

and

µ(ᾱ) =
[
1− ᾱ

2
(1− 5

4
σ)
]
µ. (4.66)

Proof. Applying the inequality in eqn. (4.25), we have the following bound,

−v
T1n
n
≤ ‖v‖∞ ≤ ‖v‖2 ≤

1

4
γσµ. (4.67)

Recall that α̃ describes the maximum possible step size allowed, as calculated
in step (e) of Algorithm 6, and ᾱ describes the actual step size used, calcu-
lated in step (f). The relation between them is ᾱ ∈ [0, α̃]. Here, our goal
is to describe ᾱ and µ(ᾱ). First, recall that by Lemma 36 and step (e) of
Algorithm 6,

α̃ ≥ min

{
1,

γσµ

4‖∆̂x ◦ ∆̂s‖∞

}
. (4.68)

Also recall from Lemma 35(b) the expression for µ(α):

µ(α) = [1− α(1− σ)]µ− αvT1n/n+ α2∆̂x
T
∆̂s/n. (4.69)

We will evaluate ᾱ and µ(ᾱ) for the following two cases.

Case 1: ∆̂x
T
∆̂s ≤ 0. In this case, we rewrite the definition of ᾱ from step (f)

of Algorithm 6

ᾱ = argmin
α

(x+ α∆̂x)T(s+ α∆̂s)︸ ︷︷ ︸
g(α)

, subject to α ≤ α̃ .

118

Next, we show that g(α) is decreasing in α whenever ∆̂x
T
∆̂s ≤ 0 . We rewrite

g(α) as follows:

g(α) = (x+ α∆̂x)T(s+ α∆̂s)

= xTs+ α
(
xT∆̂s+ sT∆̂x

)
+ α2 ∆̂x

T
∆̂s

= xTs+ α
(
−xTs+ nσµ− vT1n

)
+ α2 ∆̂x

T
∆̂s , (4.70)

where the last equality follows from pre-multiplying eqn. (4.57c) by 1T
n . Now,

taking derivatives with respect to α on the both sides of eqn. (4.70), we have

g′(α) =
(
−xTs+ nσµ− vT1n

)
+ 2α ∆̂x

T
∆̂s

≤
(
−nµ+ nσµ+

nσµ

4

)
+ 2α ∆̂x

T
∆̂s

=

(
5σ

4
− 1

)
nµ+ 2α ∆̂x

T
∆̂s ≤ 0 , (4.71)

where the first inequality is due to eqn. (4.67) and the fact that γ < 1; the
last inequality follows from the facts that σ ≤ 5

4
, α ≥ 0 and ∆̂x

T
∆̂s ≤ 0 . This

concludes that g(α) is indeed decreasing in 0 ≤ α ≤ 1 which implies ᾱ = α̃.
Combining eqn. (4.68) with this fact yields

ᾱ ≥ min

{
1,

γσµ

4‖∆̂x ◦ ∆̂s‖∞

}
.

Now, we use eqn. (4.69) and ∆̂x
T
∆̂s ≤ 0 to evaluate µ(ᾱ)

µ(ᾱ) ≤ [1− ᾱ(1− σ)]µ− ᾱ v
T1n
n

= µ−
(

(1− σ)µ+
vT1n
n

)
ᾱ

≤ µ+
(
− (1− σ)µ+ ‖v‖∞

)
ᾱ ≤ µ+

(
−(1− σ)µ+

γσµ

4

)
ᾱ

≤ µ+
(
−(1− σ)µ+

σµ

4

)
ᾱ = µ+

(
−µ+

5σµ

4

)
ᾱ =

(
1−

(
1− 5σ

4

)
ᾱ

)
µ

≤
(

1−
(

1− 5σ

4

) ᾱ
2

)
µ, (4.72)

where we applied eqn. (4.67) along with the fact that σ < 4
5
.

Case 2: ∆̂x
T
∆̂s > 0. In this case, first we consider the minimizer of the

following unconstrained optimization problem

αmin = argmin
α

(x+ α∆̂x)T(s+ α∆̂s)︸ ︷︷ ︸
g(α)

.

119

Taking the first derivative of g(α) and solving for α, we see that

αmin =
nµ(1− σ) + vT1n

2∆̂x
T
∆̂s

≥
nµ(1− σ)− 1

4
σnµ

2∆̂x
T
∆̂s

≥
µ(1− 5

4
σ)

2‖∆̂x ◦ ∆̂s‖∞
, (4.73)

where the first inequality follows from eqn. (4.67) and γ ≤ 1, the last inequality
holds as ∆̂x

T
∆̂s
n
≤ ‖∆̂x ◦ ∆̂s‖∞. Now, there can be two possibilities: whenever

αmin ≤ α̃, we have ᾱ = αmin and if αmin > α̃, then we have ᾱ = α̃. Therefore,
we get ᾱ = min{αmin, α̃} . Finally, we combine eqns. (4.68) and (4.73) to get

ᾱ = min{αmin, α̃} ≥ min

{
1,

min{γσ, (1− 5
4
σ)}µ

4‖∆̂x ◦ ∆̂s‖∞

}
.

Now we would like to produce an upper bound on µ(ᾱ). Note that µ(α) is
convex,3 and so the function must lie beneath a linear function interpolating
µ(ᾱ) at α = 0 and α = αmin i.e. let φ(α) = pα + q be the line joining the
points

(
0, µ(0)

)
and

(
αmin, µ(αmin)

)
. Therefore, using the expression of µ(α)

in Lemma 35(b), we determine p and q through the following equations

φ(0) = µ(0) and φ (αmin) = µ (αmin) .

First equation gives q = µ and using this we find p from the second equation
as follows

φ (αmin) = µ (αmin)

⇒ pαmin + µ = (1− αmin(1− σ))µ− αmin
v>1n
n

+ α2
min

∆̂x
T
∆̂s

n

⇒ pαmin + µ = µ− αmin

(
(1− σ)µ+

v>1n
n

)
+ α2

min

∆̂x
T
∆̂s

n

⇒ p = −
(

(1− σ)µ+
v>1n
n

)
+ αmin

∆̂x
T
∆̂s

n
,

where the last step follows from αmin 6= 0. Next, putting the value of αmin

from eqn. (4.73), we further have

p = −
(

(1− σ)µ+
v>1n
n

)
+
nµ(1− σ) + v>1n

2∆̂x
T
∆̂s

· ∆̂x
T
∆̂s

n

= − 1

2

(
(1− σ)µ+

v>1n
n

)
. (4.74)

3From the expression of µ(α) in Lemma 35(b), note that µ(α) is twice differentiable
w.r.t. α and µ′′(α) = 2 ∆̂x

T
∆̂s

n which is positive as ∆̂x
T

∆̂s > 0.

120

Now, µ(α) is convex in 0 ≤ α ≤ αmin, we further have, µ(ᾱ) ≤ φ(ᾱ). Using
this and the values of p = −1

2

(
(1− σ)µ+ v>1n

n

)
and q = µ from the above

expressions,

µ(ᾱ) ≤ φ(ᾱ) = p ᾱ + q = −1

2

(
(1− σ)µ+

v>1n
n

)
ᾱ + µ

=
(

1− (1− σ)
ᾱ

2

)
µ− vT1n

n
· ᾱ

2

≤
(

1− (1− σ)
ᾱ

2

)
µ+

σµ

4
· ᾱ

2
=

(
1− ᾱ

2

(
1− 5

4
σ

))
µ , (4.75)

where the inequality is due to eqn. (4.67) and γ < 1. This concludes the proof.

At this point, we have provided a lower bound (4.65) for the allowed values of
the step size ᾱ. Next, we will show that this lower bound is bounded away from
zero. Observing (4.65), it it sufficient to show that ‖∆̂x ◦ ∆̂s‖∞ is bounded.

Lemma 38 (Lemma 3.7 of [137]). Let (x0, y0, s0) be the starting point with
(x0, s0) > 0 such that (x0, s0) ≥ (x∗, s∗) for some (x∗, y∗, s∗) ∈ S, and let
(x, y, s) ∈ Γ be such that r = ηr0 for some η ∈ [0, 1]. Then, the search
direction (∆̂x, ∆̂y, ∆̂s) produced by Algorithm 6 at each iteration satisfies

max{‖D−1∆̂x‖2, ‖D∆̂s‖2} ≤
(

1 +
σ2

1− γ
− 2σ

)1/2√
n+

6nµ√
(1− γ)

√
µ+

γσ

4

√
3µ.

(4.76)

Proof. Equations (4.57a) and (4.57b) and assumption r = ηr0 imply that

A(∆̂x+ η(x0 − x∗)) = 0

AT(∆̂y + η(y0 − y∗)) + (∆̂s+ η(s0 − s∗)) = 0

from which it follows that (∆̂x+η(x0−x∗))T(∆̂s+η(s0−s∗)) = 0. Multiplying
(4.57c) on the left by (XS)−1/2, we obtain

D−1∆̂x+D∆̂s = H(σ)− (XS)−1/2v ,

where H(σ) := −(XS)1/21n + σµ(XS)−1/21n. Equivalently,

121

D−1(∆̂x+ η(x0 − x∗)) +D(∆̂s+ η(s0 − s∗))

= H(σ) + η
(
D(s0 − s∗) +D−1(x0 − x∗)

)
− (XS)−1/2v. (4.77)

Notice that the two terms on the left hand side are orthogonal. Also, recalling
the choice of our v in Lemma 29 and in the proof of Lemma 30, taking Z = In

yields

‖(XS)−1/2v‖2 = ‖W (ADW)†(AD2AT∆̂y − p)‖2

≤ ‖W (ADW)†Q1/2‖2‖f̃ (t)‖2 = ‖WV̂ V̂ T‖2‖f̃ (t)‖2

≤
√

3n‖f̃ (t)‖ , (4.78)

where V̂ the matrix of the right singular vectors in the thin SVD representation
of ADW . the last inequality is follows from the fact that V̂ V̂ T is a projection
matrix and the proof of Lemma 30 with Z = In.

Now, it is easy to verify that if a and b are any two orthogonal vectors, then
max {‖a‖2, ‖b‖2} ≤ ‖a + b‖2. Combining this with eqn. (4.77) and applying
triangle inequality, we therefore have

max
{
‖D−1(∆̂x+ η(x0 − x∗))‖2, ‖D(∆̂s+ η(s0 − s∗))‖2

}
≤ ‖D−1(∆̂x+ η(x0 − x∗)) +D(∆̂s+ η(s0 − s∗))‖2

≤ ‖H(σ)‖2 + η
(
‖D(s0 − s∗)‖2 + ‖D−1(x0 − x∗)‖2

)
+ ‖(XS)−1/2v‖2

≤ ‖H(σ)‖2 + η
(
‖D(s0 − s∗)‖2 + ‖D−1(x0 − x∗)‖2

)
+
√

3n ‖f̃ (t)‖2 ,

(4.79)

where the last inequality follows from eqn. (4.78) .

Again, using triangle inequality, we have

‖D−1∆̂x‖2 = ‖D−1(∆̂x+ η(x0 − x∗))− ηD−1(x0 − x∗)‖2

≤ ‖D−1(∆̂x+ η(x0 − x∗))‖2 + η‖D−1(x0 − x∗)‖2. (4.80)

Similarly, we also have

‖D∆̂s‖2 = ‖D(∆̂s+ η(s0 − s∗))− ηD(s0 − s∗)‖2

≤ ‖D(∆̂s+ η(s0 − s∗))‖2 + η‖D(s0 − s∗)‖2. (4.81)

122

Combining eqns. (4.80) and (4.81), we have

max
{
‖D−1∆̂x‖2, ‖D∆̂s‖2

}
(4.82)

≤ max
{
‖D−1(∆̂x+ η(x0 − x∗))‖2, ‖D(∆̂s+ η(s0 − s∗))‖2

}
+ η

(
‖D−1(x0 − x∗)‖2 + ‖D(s0 − s∗)‖2

)
≤ ‖H(σ)‖2 + η

(
‖D(s0 − s∗)‖2 + ‖D−1(x0 − x∗)‖2

)
+

√
3

2
‖f̃ (t)‖2

+ η
(
‖D−1(x0 − x∗)‖2 + ‖D(s0 − s∗)‖2

)
≤ ‖H(σ)‖2 + 2η

(
‖D(s0 − s∗)‖2 + ‖D−1(x0 − x∗)‖2

)
+
√

3n · γσ

4
√
n

√
µ ,

(4.83)

where the second inequality is due to eqn. (4.79) and the last inequality follows
from Lemma (34).

Next, we bound ‖H(σ)‖2 as follows:

‖H(σ)‖2
2 =

∥∥−(XS)1/21n + σµ(XS)−1/21n
∥∥2

2

=
n∑
i=1

xi si + σ2µ2

n∑
i=1

1

xi si
− 2nσµ

≤ nµ+ σ2µ2

n∑
i=1

1

(1− γ)µ
− 2nσµ =

(
1 +

σ2

1− γ
− 2σ

)
nµ

⇒ ‖H(σ)‖2 ≤
(

1 +
σ2

1− γ
− 2σ

)1/2√
nµ , (4.84)

where the inequality follows from the fact that (x, y, s) ∈ N (γ) .

Now, using the definition of D and submultplicativity, we bound the following
expression:(

‖D(s0 − s∗)‖2 + ‖D−1(x0 − x∗)‖2

)
≤ ‖(XS)−

1/2‖2

(
‖X(s0 − s∗)‖2 + ‖S(x0 − x∗)‖2

)
≤
(

max
i

1
√
xi si

)(
xTs0 + sTx0

)
≤ 1√

(1− γ)µ

(
xTs0 + sTx0

)
, (4.85)

where the second inequality follows from the facts that ‖S(x0 − x∗)‖2 ≤ sTx0

and ‖X(s0 − s∗)‖2 ≤ xTs0 (see (ii) and (iii) of Lemma 32) and the last in-
equality holds due to (x, y, s) ∈ N (γ) .

123

Finally, combining eqns. (4.83), (4.84) and (4.85), we conclude

max
{
‖D−1∆̂x‖2, ‖D∆̂s‖2

}
≤
(

1 +
σ2

1− γ
− 2σ

)1/2√
nµ+

2η√
(1− γ)µ

(
xTs0 + sTx0

)
+
γσ

4

√
3µ

≤
(

1 +
σ2

1− γ
− 2σ

)1/2√
nµ+

6nµ√
(1− γ)µ

+
γσ

4

√
3µ

=

(
1 +

σ2

1− γ
− 2σ

)1/2√
nµ+

6n√
(1− γ)

√
µ+

γσ

4

√
3µ ,

where the last inequality follows from Lemma 32(i).

Lemma 39 (Theorem 2.6 of [137]). Let initial point (x0, s0, y0) satisfies (x0, s0) ≥
(x∗, s∗) for some (x∗, s∗, y∗) ∈ S. Then, Algorithm 6 generates an iterate
(xk, sk, yk) satisfying µk ≤ εµ0 and ‖rk‖2 ≤ ε‖r0‖2 within O(n2 log 1

ε
) itera-

tions.

Proof. Let (∆̂x
k
, ∆̂s

k
, ∆̂y

k
) denote that the search direction, rk be the residual

and µk denotes the duality measure at the k-th iteration of Algorithm 6. Then,
(xk, sk, yk) ∈ Γ and the using Lemma 35, it is easy to see that rk = ηr0 for
some η ∈ (0, 1). Next, we bound ‖∆̂x

k
◦ ∆̂s

k
‖∞ as the following:

‖∆̂x
k
◦ ∆̂s

k
‖∞ ≤ ‖∆̂x

k
◦ ∆̂s

k
‖2 = ‖(Dk)−1∆̂x

k
◦Dk∆̂s

k
‖2

≤ ‖(Dk)−1∆̂x
k
‖2 ‖Dk∆̂s

k
‖2

≤ max
{
‖(Dk)−1∆̂x

k
‖2

2 , ‖Dk∆̂s
k
‖2

2

}
, (4.86)

where the second inequality holds as ‖a ◦ b‖2 ≤ ‖a‖2 · ‖b‖2 for any two vectors
a and b with same dimensions. This can be verified applying Cauchy-Schwartz
inequality as follows:

‖a ◦ b‖2 =
√∑

(ai bi)2 =
√

(a ◦ a)T(b ◦ b)

≤
√
‖a ◦ a‖2 · ‖b ◦ b‖2 =

√√∑
a4
i ·
√∑

b4
i

≤
√√

(
∑

a2
i)

2 ·
√

(
∑

b2
i)

2 =
√∑

a2
i ·
∑

b2
i = ‖a‖2 · ‖b‖2.

124

Now, using Lemma 38 and from the right hand side of eqn. (4.86), we see that
‖∆̂x

k
◦ ∆̂s

k
‖∞ = O(n2)µk. From Lemma 37, we see that for some constant

β > 0,

µk+1 ≤
(

1− β

n2

)
µk,∀k ≥ 0. (4.87)

Using the above inequality recursively with the fact that log(1 +x) < x for all
x > −1, we have µk ≤ εµ0 for some accuracy parameter ε > 0. Then using this
with the fact that ‖rk‖2/‖r0‖2 ≤ µk/µ0 for all k ≥ 0, the second conclusion of
the Lemma follows.

4.9.3 Proof of Theorem 27

Finally, our Theorem 27 follows from Lemma 34 and Lemma 39.

125

BIBLIOGRAPHY

[1] Dimitris Achlioptas, Themis Gouleakis, and Fotis Iliopoulos. “Local
Computation Algorithms for the Lovász Local Lemma”. In: CoRR abs/1809.07910
(2018). arXiv: 1809.07910. url: http://arxiv.org/abs/1809.
07910.

[2] Ajit Agrawal, Philip Klein, and R. Ravi. “When Trees Collide: An Ap-
proximation Algorithm for the Generalized Steiner Problem on Net-
works”. In: SIAM J. on Comp. 24.3 (1995), pp. 440–456.

[3] Shipra Agrawal and Nikhil R Devanur. “Fast algorithms for online
stochastic convex programming”. In: ACM-SIAM Symp. on Discrete
Algo. SIAM. 2014, pp. 1405–1424.

[4] Shipra Agrawal, ZizhuoWang, and Yinyu Ye. “A Dynamic Near-Optimal
Algorithm for Online Linear Programming”. In: Oper. Res. 62.4 (2014),
pp. 876–890.

[5] A. Ahmed et al. “Scalable inference in latent variable models”. In: Proc.
of the 5th ACM WSDM. 2012, pp. 123–132.

[6] Zeyuan Allen-Zhu and Lorenzo Orecchia. “Using Optimization to Break
the Epsilon Barrier: A Faster and Simpler Width-independent Algo-
rithm for Solving Positive Linear Programs in Parallel”. In: Proc. of
SODA. 2015, pp. 1439–1456.

[7] N. Alon et al. “Space-Efficient Local Computation Algorithms”. In:
Proc. 22ndACM-SIAM Symposium on Discrete Algorithms (SODA).
2012, pp. 1132–1139.

[8] Ganesh Ananthanarayanan et al. “GRASS: Trimming Stragglers in Ap-
proximation Analytics”. In: 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14). 2014.

[9] Erling D. Andersen and Knud. D. Andersen. The Mosek Interior Point
Optimizer for Linear Programming: An Implementation of the Homo-
geneous Algorithm. Springer US, 2000, pp. 197–232.

[10] R. Andersen et al. “Local Computation of PageRank Contributions”.
In: Internet Mathematics 5(1–2) (2008), pp. 23–45.

[11] Haim Avron, Petar Maymounkov, and Sivan Toledo. “Blendenpik: Su-
percharging LAPACK’s Least-Squares Solver”. In: SIAM Journal on
Scientific Computing 32.3 (2010), pp. 1217–1236. doi: 10.1137/090767911.

[12] Baruch Awerbuch and Rohit Khandekar. “Stateless distributed gradient
descent for positive linear programs”. In: Proc. of STOC. 2008, pp. 691–
700.

https://arxiv.org/abs/1809.07910
http://arxiv.org/abs/1809.07910
http://arxiv.org/abs/1809.07910
https://doi.org/10.1137/090767911

126

[13] Owe Axelsson and Vincent Allan Barker. Finite element solution of
boundary value problems: theory and computation. Vol. 35. Siam, 1984.

[14] Y. Azar et al. “Online algorithms for covering and packing problems
with convex objectives”. In: Proc. of the IEEE 57th Annual Symposium
on Foundations of Computer Science (FOCS). 2016, pp. 148–157.

[15] A. Balakrishnan, T. L. Magnanti, and R. T. Wong. “A Dual-Ascent
Procedure for Large-Scale Uncapacitated Network Design”. In: Oper.
Res. 37.5 (1989), pp. 716–740.

[16] R Bar-Yehuda and S Even. “A linear-time approximation algorithm for
the weighted vertex cover problem”. In: J. of Algs. 2.2 (1981), pp. 198–
203.

[17] C. Barnhart et al. “Branch-and-price: Column generation for solving
huge integer programs”. In: Operations Research 48.3 (2000), pp. 318–
326.

[18] Cynthia Barnhart et al. Handbook in Transportation Science. Airline
crew scheduling. Springer, 2002, pp. 517–560.

[19] Yair Bartal, John W. Byers, and Danny Raz. “Fast Distributed Approx-
imation Algorithms for Positive Linear Programming with Applications
to Flow Control”. In: SIAM J. on Comp. 33.6 (2004), pp. 1261–1279.

[20] Amrit Singh Bedi and Ketan Rajawat. “Asynchronous Incremental Stochas-
tic Dual Descent Algorithm for Network Resource Allocation”. In: IEEE
Transactions on Signal Processing 66 (2017), pp. 2229–2244.

[21] Diego Bello and German Riano. “Linear Programming solvers for Markov
Decision Processes”. In: Systems and Information Engineering Design
Symposium. Vol. 28. May 2006, pp. 90–95.

[22] J. F. Benders. “Partitioning procedures for solving mixed-variables pro-
gramming problems”. In: Numerische mathematik 4.1 (1962), pp. 238–
252.

[23] D. P. Bertsekas. Nonlinear programming. Athena Scientific, 1999.

[24] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computa-
tion: Numerical Methods. Prentice Hall, 1989.

[25] Dimitris Bertsimas and Rakesh Vohra. “Rounding algorithms for cov-
ering problems”. In: Math. Prog. 80.1 (1998), pp. 63–89.

[26] D. Bienstock and G. Iyengar. “Approximating Fractional Packings and
Coverings in O(1/epsilon) Iterations”. In: SIAM J. Comp. 35.4 (2006),
pp. 825–854.

[27] V. Blondel et al. “Convergence in multiagent coordination, consensus,
and flocking”. In: Proc. of IEEE Conference on Decision and Control.
2005, pp. 2996–3000.

127

[28] Sem Borst, Varun Gupta, and Anwar Walid. “Distributed caching al-
gorithms for content distribution networks”. In: Proceedings of IEEE
INFOCOM. 2010, pp. 1–9.

[29] Christos Boutsidis, Petros Drineas, and Malik Magdon-Ismail. “Near-
Optimal Column-Based Matrix Reconstruction”. In: The SIAM Journal
on Computing 43.2 (2014), pp. 687–717.

[30] R Bouyouli et al. “New results on the convergence of the conjugate
gradient method”. In: Numerical Linear Algebra with Applications 16.3
(2009), pp. 223–236.

[31] S. Boyd et al. “Distributed optimization and statistical learning via the
alternating direction method of multipliers”. In: Found. and Trends in
Machine Learning 3.1 (2011), pp. 1–122.

[32] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cam-
bridge University Press, 2004.

[33] Stephen Boyd et al. “Distributed optimization and statistical learning
via the alternating direction method of multipliers”. In: Found. and
Trends in M. L. 3 (2011), pp. 1–122.

[34] N. Buchbinder and J. Naor. “The Design of Competitive Online Algo-
rithms via a Primal-Dual Approach”. In: Foundations and Trends in
Theoretical Computer Science 3.2-3 (2009), pp. 93–263.

[35] Niv Buchbinder and Joseph Naor. “The Design of Competitive Online
Algorithms via a Primal-Dual Approach”. In: Found. and Trends in
Theoretical Computer Science 3.2-3 (2009), pp. 93–263.

[36] M. Burger et al. “A distributed simplex algorithm for degenerate lin-
ear programs and multi-agent assignment”. In: Automatica 48.9 (2012),
pp. 2298–2304.

[37] John Byers and Gabriel Nasser. “Utility-based decision-making in wire-
less sensor networks”. In: Mobile and Ad Hoc Networking and Comp.
2000, pp. 143–144.

[38] Emmanuel Candes and Yaniv Plan. “Tight oracle inequalities for low-
rank matrix recovery from a minimal number of noisy random mea-
surements”. In: IEEE Trans. Info. Theory 57.4 (2011), pp. 2342–2359.

[39] Emmanuel Candes, Justin Romberg, and Terence Tao. “Robust Uncer-
tainty Principles: Exact Signal Reconstruction from Highly Incomplete
Frequency Information”. In: IEEE Trans. Inform. Theory 52.2 (2006),
pp. 489–509.

[40] Volkan Cevher, Stephen Becker, and Mark Schmidt. “Convex Optimiza-
tion for Big Data: Scalable, randomized, and parallel algorithms for big
data analytics”. In: IEEE Signal Proc. Mag. 31.5 (2014), pp. 32–43.

128

[41] T. Chang et al. “Asynchronous Distributed ADMM for Large-Scale
Optimization—Part I: Algorithm and Convergence Analysis”. In: IEEE
Transactions on Signal Processing 64.12 (2016), pp. 3118–3130.

[42] N. Chatzipanagiotis, D. Dentcheva, and M. M. Zavlanos. “An Aug-
mented Lagrangian Method for Distributed Optimization”. In: Math.
Program. 152.1-2 (2015), pp. 405–434.

[43] Yudong Chen, Lili Su, and Jiaming Xu. “Distributed Statistical Ma-
chine Learning in Adversarial Settings: Byzantine Gradient Descent”.
In: Proc. ACM Meas. Anal. Comput. Syst. SIGMETRICS 1.2 (2017).

[44] Mung Chiang et al. “Layering as optimization decomposition: A math-
ematical theory of network architectures”. In: Proceedings of the IEEE
95.1 (2007), pp. 255–312.

[45] Agniva Chowdhury, Jiasen Yang, and Petros Drineas. “An Iterative,
Sketching-based Framework for Ridge Regression”. In: Proceedings of
the 35th International Conference on Machine Learning. Vol. 80. 2018,
pp. 988–997.

[46] Agniva Chowdhury et al. “Speeding up Linear Programming using Ran-
domized Linear Algebra”. In: arXiv:2003.08072 (2020).

[47] Kenneth L. Clarkson and David P. Woodruff. “Low Rank Approxima-
tion and Regression in Input Sparsity Time”. In: Proceedings of the 45th
annual ACM symposium on Theory of Computing. 2013, pp. 81–90.

[48] Kenneth L Clarkson and David P Woodruff. “Low-rank approximation
and regression in input sparsity time”. In: Journal of the ACM (JACM)
63.6 (2017), p. 54.

[49] Michael B Cohen. “Nearly tight oblivious subspace embeddings by trace
inequalities”. In: Proceedings of the twenty-seventh annual ACM-SIAM
symposium on Discrete algorithms. SIAM. 2016, pp. 278–287.

[50] Michael B. Cohen, Jelani Nelson, and David P. Woodruff. “Optimal
Approximate Matrix Product in Terms of Stable Rank”. In: 43rd Inter-
national Colloquium on Automata, Languages, and Programming. 2016,
11:1–11:14.

[51] Michael B Cohen, Yin Tat Lee, and Zhao Song. “Solving linear pro-
grams in the current matrix multiplication time”. In: Proceedings of
the 51st Annual ACM SIGACT Symposium on Theory of Computing.
ACM. 2019, pp. 938–942.

[52] P. Combettes and V. Wajs. “Signal recovery by proximal forward-
backward splitting”. In: Multiscale Modeling & Simulation 4.4 (2005),
pp. 1168–1200.

[53] C. Cortes and V. Vapnik. “Support-vector networks”. In:Machine Learn-
ing 20.3 (1995), pp. 273–297.

129

[54] Yiran Cui et al. “Implementation of Interior-point Methods for LP
based on Krylov Subspace Iterative Solvers with Inner-iteration Pre-
conditioning”. In: arXiv preprint arXiv:1604.07491 (2016).

[55] Samuel I Daitch and Daniel A Spielman. “Faster approximate lossy
generalized flow via interior point algorithms”. In: Proceedings of the
fortieth annual ACM symposium on Theory of computing. ACM. 2008,
pp. 451–460.

[56] G. Dantzig and P. Wolfe. “Decomposition principle for linear programs”.
In: Oper. Res. 8.1 (1960), pp. 101–111.

[57] George Dantzig. Linear programming and extensions. Princeton univer-
sity press, 2016.

[58] G. Desaulniers, J. Desrosiers, and M.M. Solomon. Column Generation.
Springer, 2005.

[59] Nikhil R. Devanur and Thomas P. Hayes. “The adwords problem: online
keyword matching with budgeted bidders under random permutations”.
In: Proc. of EC. 2009, pp. 71–78.

[60] Steven Diamond and Stephen Boyd. “CVXPY: A Python-Embedded
Modeling Language for Convex Optimization”. In: J. of Machine Learn-
ing Res. 17.83 (2016), pp. 1–5.

[61] Katerine Diaz-Chito, Aura Hernández-Sabaté, and Antonio M López.
“A reduced feature set for driver head pose estimation”. In: Applied Soft
Computing 45 (2016), pp. 98–107.

[62] Alexander Domahidi, Eric Chu, and Stephen Boyd. “ECOS: An SOCP
solver for embedded systems”. In: Euro. Control Conf. 2013, pp. 3071–
3076.

[63] David L. Donoho. “Compressed sensing”. In: IEEE Trans. Inform. The-
ory 52 (2006), pp. 1289–1306.

[64] David L. Donoho and Jared Tanner. “Sparse Nonnegative Solution of
Underdetermined Linear Equations by Linear Programming”. In: Proc.
of the National Academy of Sciences of the USA. 2005, pp. 9446–9451.

[65] Petros Drineas and Michael W Mahoney. “Lectures on Randomized
Numerical Linear Algebra”. In: vol. 25. The Mathematics of Data,
IAS/Park City Mathematics Series. 2018, pp. 1–45.

[66] Petros Drineas and Michael W. Mahoney. “RandNLA: Randomized Nu-
merical Linear Algebra”. In: Communications of the ACM 59.6 (2016),
pp. 80–90.

[67] Dheeru Dua and Casey Graff. UCI Machine Learning Repository. 2017.
url: http://archive.ics.uci.edu/ml.

http://archive.ics.uci.edu/ml

130

[68] R. Eghbali and M. Fazel. “Designing smoothing functions for improved
worst-case competitive ratio in online optimization”. In: Neural Infor-
mation Processing Systems. 2016, pp. 3287–3295.

[69] Reza Eghbali, Jon Swenson, and Maryam Fazel. “Exponentiated Sub-
gradient Algorithm for Online Optimization under the Random Per-
mutation Model”. In: arXiv preprint arXiv:1410.7171 (2014).

[70] Donald Erlenkotter. “A Dual-Based Procedure for Uncapacitated Fa-
cility Location”. In: Oper. Res. 26.6 (1978), pp. 992–1009.

[71] T. Erseghe. “Distributed optimal power flow using ADMM”. In: IEEE
Trans. on Power Sys. 29.5 (2014), pp. 2370–2380.

[72] Tomaso Erseghe et al. “Fast Consensus by the Alternating Direction
Multipliers Method”. In: IEEE Trans. on Sig. Proces. 59 (2011), pp. 5523–
5537.

[73] Ernie Esser, Xiaoqun Zhang, and Tony Chan. “A general framework for
a class of first order primal-dual algorithms for convex optimization in
imaging science”. In: SIAM J. on Imaging Sciences 3.4 (2010), pp. 1015–
1046.

[74] H. III. Everett. “Generalized Lagrange multiplier method for solving
problems of optimum allocation of resources”. In: Operations research
11.3 (1963), pp. 399–417.

[75] Uriel Feige, Boaz Patt-Shamir, and Shai Vardi. “On the Probe Com-
plexity of Local Computation Algorithms”. In: 45th International Col-
loquium on Automata, Languages, and Programming, (ICALP). 2018,
50:1–50:14.

[76] Pedro A Forero, Alfonso Cano, and Georgios B. Giannakis. “Consensus-
Based Distributed Support Vector Machines”. In: J. Mach. Learn. Res.
11 (2010), pp. 1663–1707.

[77] D. Gabay and B. Mercier. “A dual algorithm for the solution of non-
linear variational problems via finite element approximation”. In: Com-
puters & Mathematics with Applications 2.1 (1976), pp. 17–40.

[78] D. Gabay and B. Mercier. “A dual algorithm for the solution of nonlin-
ear variational problems via finite element approximations”. In: Comp.
and Math. with Appl. 2.1 (1976), pp. 17–40.

[79] L. Gan, U. Topcu, and S. H. Low. “Optimal decentralized protocol
for electric vehicle charging”. In: IEEE Transactions on Power Systems
28.2 (2013), pp. 940–951.

[80] Nicolas Gillis and Robert Luce. “Robust Near-Separable Nonnegative
Matrix Factorization Using Linear Optimization”. In: J. Mach. Learn.
Res. 15.1 (2014), pp. 1249–1280. issn: 1532-4435.

131

[81] P Gilmore and Ralph Gomory. “A linear programming approach to the
cutting-stock problem”. In: Operations Research 11.6 (1963), pp. 863–
888.

[82] Michel X. Goemans and David P. Williamson. “A General Approxi-
mation Technique for Constrained Forest Problems”. In: SIAM J. on
Comp. 24.2 (1995), pp. 296–317.

[83] Tom Goldstein et al. “Unwrapping ADMM: Efficient Distributed Com-
puting via Transpose Reduction”. In: AISTATS. 2016, pp. 1151–1158.

[84] Gene H Golub and Charles F Van Loan. Matrix computations. Vol. 3.
JHU press, 2012.

[85] J. Gonzalez et al. “Distributed parallel inference on large factor graphs”.
In: Proc. of the 25th Conf. on UIAI. 2009, pp. 203–212.

[86] B. Gopalakrishnan and E.L. Johnson. “Airline crew scheduling: state-
of-the-art.” In: Annals of Operations Research 140 (2005), pp. 305–337.

[87] C. Guestrin et al. “Distributed regression: an efficient framework for
modeling sensor network data”. In: Proceedings of the 3rd ACM IPSN.
2004, pp. 1–10.

[88] Yi Guo and Lynne E Parker. “A distributed and optimal motion plan-
ning approach for multiple mobile robots”. In: Robotics and Automa-
tion, 2002. Proceedings. ICRA’02. IEEE International Conference on.
Vol. 3. 2002, pp. 2612–2619.

[89] Anupam Gupta and Marco Molinaro. “How experts can solve LPs on-
line”. In: Euro. Symp. on Algo. Springer. 2014, pp. 517–529.

[90] Anupam Gupta and Marco Molinaro. “How the experts algorithm can
help solve LPs online”. In: Math. of Oper. Res. 41.4 (2016), pp. 1404–
1431.

[91] Isabelle Guyon et al. “Result analysis of the NIPS 2003 feature selection
challenge”. In: Advances in neural information processing systems. 2005,
pp. 545–552.

[92] N. Halko, P. Martinsson, and J. Tropp. “Finding Structure with Ran-
domness: Probabilistic Algorithms for Constructing Approximate Ma-
trix Decompositions”. In: SIAM Review 53.2 (2011), pp. 217–288.

[93] T. Hazan, A. Man, and A. Shashua. “A parallel decomposition solver
for svm: Distributed dual ascend using fenchel duality”. In: Proc. of
CVPR. 2008, pp. 1–8.

[94] Jianghai Hu, Yingying Xiao, and Ji Liu. “Distributed Algorithms for
Solving Locally Coupled Optimization Problems on Agent Networks”.
In: Decision and Control (CDC), 2007 IEEE Annual Conference on.
IEEE. 2018, pp. 2420–2425.

132

[95] T. Joachims. “Training Linear SVMs in Linear Time”. In: Proceedings
of the 12th ACM SIGKDD. 2006, pp. 217–226.

[96] M. Johansson and M. Sternad. “Resource allocation under uncertainty
using the maximum entropy principle”. In: IEEE Trans. Info. Theory
51.12 (2005), pp. 4103–4117.

[97] Narendra Karmarkar. “A new polynomial-time algorithm for linear pro-
gramming”. In: Proceedings of the sixteenth annual ACM symposium on
Theory of computing. ACM. 1984, pp. 302–311.

[98] J. Katz and L. Trevisan. “On the efficiency of local decoding procedures
for error-correcting codes”. In: Proc. 32nd Annual ACM Symposium on
the Theory of Computing (STOC). 2000, pp. 80–86.

[99] F. Kelly, A. Maulloo, and D. Tan. “Rate control for communication
networks: shadow prices, proportional fairness and stability”. In: J. of
the Operational Research Society 49.3 (1998), pp. 237–252.

[100] Thomas Kesselheim et al. “Primal beats dual on online packing LPs in
the random-order model”. In: ACM Symp. on Theory of Comp. 2014,
pp. 303–312.

[101] S. Khirirat, M. Johansson, and D. Alistarh. “Gradient compression for
communication-limited convex optimization”. In: 2018 IEEE Confer-
ence on Decision and Control (CDC). 2018, pp. 166–171.

[102] Jakub Konecny, Brendan McMahan, and Daniel Ramag. “Federated op-
timization: Distributed optimization beyond the datacenter”. In: arXiv
preprint arXiv:1511.03575 (2015).

[103] C. Koufogiannakis and N. E. Young. “Distributed algorithms for cover-
ing, packing and maximum weighted matching”. In: Distributed Com-
puting 24.1 (2011), pp. 45–63.

[104] Yoshiaki Kuwata and Jonathan P How. “Cooperative distributed ro-
bust trajectory optimization using receding horizon MILP”. In: IEEE
Transactions on Control Systems Technology 19.2 (2011), pp. 423–431.

[105] Leon S Lasdon. Optimization theory for large systems. Courier Corpo-
ration, 1970.

[106] Yin Tat Lee and Aaron Sidford. “Efficient inverse maintenance and
faster algorithms for linear programming”. In: 2015 IEEE 56th Annual
Symposium on Foundations of Computer Science. IEEE. 2015, pp. 230–
249.

[107] Yin Tat Lee and Aaron Sidford. “Path Finding I: Solving Linear Pro-
grams with Õ

√
rank Linear System Solves”. In: arXiv preprint arXiv:1312.6677

(2013).

133

[108] Yin Tat Lee and Aaron Sidford. “Path Finding II: An\˜ O (m sqrt (n))
Algorithm for the Minimum Cost Flow Problem”. In: arXiv preprint
arXiv:1312.6713 (2013).

[109] Yin Tat Lee and Aaron Sidford. “Path finding methods for linear pro-
gramming: Solving linear programs in O(rank) iterations and faster
algorithms for maximum flow”. In: 2014 IEEE 55th Annual Symposium
on Foundations of Computer Science. IEEE. 2014, pp. 424–433.

[110] Yin Tat Lee and Aaron Sidford. “Solving Linear Programs with Sqrt
(rank) Linear System Solves”. In: arXiv preprint arXiv:1910.08033 (2019).

[111] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large Net-
work Dataset Collection. http://snap.stanford.edu/data. June
2014.

[112] R. Levi, R. Rubinfeld, and A. Yodpinyanee. “Brief Announcement: Lo-
cal Computation Algorithms for Graphs of Non-Constant Degrees”. In:
Proc. of the 27th ACM on Symposium on Parallelism in Algorithms
and Architectures, (SPAA). 2015, pp. 59–61.

[113] David D. Lewis et al. “RCV1: A New Benchmark Collection for Text
Categorization Research”. In: J. Mach. Learn. Res. 5 (Dec. 2004), pp. 361–
397. issn: 1532-4435.

[114] Na Li, Lijun Chen, and Steven H Low. “Optimal demand response
based on utility maximization in power networks”. In: IEEE Power and
Energy Society General Meeting. 2011, pp. 1–8.

[115] Y. Liao, H. Qi, and W. Li. “Load-balanced clustering algorithm with
distributed self-organization for wireless sensor networks”. In: IEEE
Sensors Journal 13.5 (2013), pp. 1498–1506.

[116] Palma London, Shai Vardi, and Adam Wierman. “Logarithmic Com-
munication for Distributed Optimization in Multi-Agent Systems”. In:
Proceedings of the ACM on Measurement and Analysis of Computing
Systems 3.3 (2019), pp. 1–29.

[117] Palma London et al. “A Parallelizable Acceleration Framework for Pack-
ing Linear Programs”. In: Association for the Advancement of Artificial
Intelligence. 2018, pp. 3706–3713.

[118] Palma London et al. “Distributed optimization via local computation
algorithms”. In: ACM SIGMETRICS Performance Evaluation Review
45.2 (2017), pp. 30–32.

[119] S. H. Low and D. E. Lapsley. “Optimization flow control. I. Basic al-
gorithm and convergence”. In: IEEE/ACM Transactions on Network-
ing 7.6 (Dec. 1999), pp. 861–874. issn: 1063-6692. doi: 10.1109/90.
811451.

http://snap.stanford.edu/data
https://doi.org/10.1109/90.811451
https://doi.org/10.1109/90.811451

134

[120] Steven H Low, Fernando Paganini, and John C Doyle. “Internet con-
gestion control”. In: IEEE Control Systems 22.1 (2002), pp. 28–43.

[121] Michael Luby and Noam Nisan. “A Parallel Approximation Algorithm
for Positive Linear Programming”. In: Proc. of STOC. 1993, pp. 448–
457.

[122] David G. Luenberger and Yinyu Ye. Linear and Nonlinear Program-
ming. 3rd. Springer Publishing Company, Incorporated, 2008. isbn:
3319188410.

[123] S. Magnússon et al. “Communication Complexity of Dual Decompo-
sition Methods for Distributed Resource Allocation Optimization”. In:
IEEE Journal of Selected Topics in Signal Processing 12.4 (2018), pp. 717–
732.

[124] S. Magnússon et al. “Convergence of limited communication gradient
methods.” In: IEEE Journal of Selected Topics in Signal Processing
63.5 (2018), pp. 1356–1371.

[125] Michael W. Mahoney. “Randomized Algorithms for Matrices and Data”.
In: Foundations and Trends in Machine Learning 3.2 (2011), pp. 123–
224.

[126] Y. Mansour et al. “Converting Online Algorithms to Local Computation
Algorithms”. In: Proc. of 39th Intl. Colloq. on Automata, Lang. and
Prog. (ICALP). 2012, pp. 653–664.

[127] Yishay Mansour et al. “Converting Online Algorithms to Local Com-
putation Algorithms”. In: Proc. of ICALP. 2012, pp. 653–664.

[128] Andrea De Martino and Daniele De Martino. “An introduction to the
maximum entropy approach and its application to inference problems
in biology”. In: Heliyon 4.4 (2018).

[129] L. Massoulié and J. Roberts. “Bandwidth sharing: objectives and algo-
rithms”. In: IEEE INFOCOM’99. Vol. 3. 1999, pp. 1395–1403.

[130] Brendan McMahan and Daniel Ramage. Federated learning: Collab-
orative machine learning without centralized training data. https://
research.googleblog.com/2017/04/federated-learning-collaborative.
html. Accessed: 2017-04-10.

[131] Xiangrui Meng and Michael W Mahoney. “Low-distortion subspace em-
beddings in input-sparsity time and applications to robust linear re-
gression”. In: Proceedings of the forty-fifth annual ACM symposium on
Theory of computing. ACM. 2013, pp. 91–100.

[132] Xiangrui Meng, Michael a Saunders, and Michael W Mahoney. “LSRN:
A parallel iterative solver for strongly over- or underdetermined sys-
tems”. In: SIAM Journal on Scientific Computing 36.2 (2014), pp. 95–
118.

https:// research.googleblog.com/ 2017/ 04/ federated-l earning-collaborative.html
https:// research.googleblog.com/ 2017/ 04/ federated-l earning-collaborative.html
https:// research.googleblog.com/ 2017/ 04/ federated-l earning-collaborative.html

135

[133] Ofer Meshi and Amir Globerson. “An alternating direction method
for dual MAP LP relaxation”. In: Joint European Conference on Ma-
chine Learning and Knowledge Discovery in Databases. Springer. 2011,
pp. 470–483.

[134] K. Mohan et al. “Node-Based Learning of Multiple Gaussian Graphical
Models”. In: Journal of Machine Learning Research 15 (2014), pp. 445–
488.

[135] Marco Molinaro and R Ravi. “The geometry of online packing linear
programs”. In: Math. of Oper. Res. 39.1 (2013), pp. 46–59.

[136] Renato DC Monteiro, Jerome W O’Neal, and Takashi Tsuchiya. “Uni-
form boundedness of a preconditioned normal matrix used in interior-
point methods”. In: SIAM Journal on Optimization 15.1 (2004), pp. 96–
100.

[137] Renato DC Monteiro and Jerome W O’Neal. “Convergence analysis of
a long-step primal-dual infeasible interior-point lp algorithm based on
iterative linear solvers”. In: Georgia Institute of Technology (2003).

[138] D. Mosk-Aoyama, T. Roughgarden, and D. Shah. “Fully distributed
algorithms for convex optimization problems”. In: SIAM J. on Opt.
20.6 (2010), pp. 3260–3279.

[139] J.F.C. Mota et al. “D-ADMM: A communication-efficient distributed
algorithm for separable optimization”. In: IEEE Trans. on Sig. Proces.
61.10 (2013), pp. 2718–2723.

[140] A. Nedic and A. Ozdaglar. “On the Rate of Convergence of Distributed
Subgradient Methods for Multi-agent Optimization”. In: Decision and
Control (CDC), 2007 IEEE 46th Annual Conference on. IEEE. 2007,
pp. 4711–4716.

[141] A. Nedić and A. Ozdaglar. “Convergence rate for consensus with de-
lays”. In: Journal of Global Optimization 47.3 (2010), pp. 437–456.

[142] A. Nedic, A. Ozdaglar, and P. A. Parrilo. “Constrained Consensus and
Optimization in Multi-Agent Networks”. In: IEEE Transactions on Au-
tomatic Control 55.4 (2010).

[143] Angelia Nedic and Asuman Ozdaglar. “Distributed subgradient meth-
ods for multi-agent optimization”. In: IEEE Trans. on Autom. Control
54.1 (2009), pp. 48–61.

[144] Jelani Nelson and Huy L Nguyên. “OSNAP: Faster numerical linear
algebra algorithms via sparser subspace embeddings”. In: 2013 IEEE
54th Annual Symposium on Foundations of Computer Science. IEEE.
2013, pp. 117–126.

136

[145] George L. Nemhauser. “Column Generation for Linear and Integer Pro-
gramming”. In: Documenta Mathematica Extra Volume ISMP (2012),
pp. 65–73.

[146] Yurii Nesterov. “Smooth minimization of non-smooth functions”. In:
Math. Prog. 103.1 (2005), pp. 127–152.

[147] Nam Ho-Nguyen and Fatma Kilinc-Karzan. “Online First-Order Frame-
work for Robust Convex Optimization”. In: Operations Research 66.6
(2018), pp. 1670–1692.

[148] Feng Niu et al. “HOGWILD!: A Lock-free Approach to Parallelizing
Stochastic Gradient Descent”. In: Proceedings of the 24th International
Conference on Neural Information Processing Systems. NIPS’11. 2011.

[149] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer
Science & Business Media, 2006.

[150] G. Notarstefano and F. Bullo. “Distributed abstract optimization via
constraints consensus: Theory and applications”. In: IEEE Trans. Au-
tom. Control 56.10 (2011), pp. 2247–2261.

[151] Brendan O’Donoghue et al. “Conic Optimization via Operator Splitting
and Homogeneous Self-Dual Embedding”. In: J. Opt. Theory Appl. 169
(2016), pp. 1042–1068.

[152] R. Olfati-Saber. “Distributed Kalman filtering for sensor networks”. In:
Proc. of IEEE CDC. 2007, pp. 5492–5498.

[153] Peter Orlik and Hiroaki Terao. Arrangements of Hyperplanes. Grundlehren
der mathematischenWissenschaften. Springer-Verlag Berlin Heidelberg,
1992.

[154] V. Padmanabhan et al. “Distributing streaming media content using co-
operative networking”. In: Proceedings of workshop on Network and op-
erating systems support for digital audio and video. ACM. 2002, pp. 177–
186.

[155] Christopher C Paige and Michael A Saunders. “Solution of sparse in-
definite systems of linear equations”. In: SIAM journal on numerical
analysis 12.4 (1975), pp. 617–629.

[156] D. Palomar and M. Chiang. “Alternative distributed algorithms for
network utility maximization: Framework and applications”. In: IEEE
Trans. on Autom. Control 52.12 (2007), pp. 2254–2269.

[157] Xinghao Pan et al. “CYCLADES: Conflict-free Asynchronous Machine
Learning”. In: Proceedings of the 30th International Conference on Neu-
ral Information Processing Systems. NIPS’16. 2016.

137

[158] M. Paskin, C. Guestrin, and J. McFadden. “A robust architecture for
distributed inference in sensor networks”. In: Proceedings of the 4th
ACM IPSN. 2005.

[159] D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM
Monographs on Discrete Mathematics and Applications, 2000.

[160] Q. Peng and S. Low. “Distributed optimal power flow algorithm for
radial networks, I: Balanced single phase case”. In: IEEE Transactions
on Smart Grid (2016).

[161] Pierre Pesnea, Ruslan Sadykov, and François Vanderbeck. “Feasibility
Pump Heuristics for Column Generation Approaches”. In: INRIA re-
search report:Lecture Notes in Computer Science inria-00686255 7276.6
(2012), pp. 332–343.

[162] Mert Pilanci and Martin J Wainwright. “Newton sketch: A near linear-
time optimization algorithm with linear-quadratic convergence”. In:
SIAM Journal on Optimization 27.1 (2017), pp. 205–245.

[163] Serge A. Plotkin, David B. Shmoys, and Eva Tardos. “Fast Approxi-
mation Algorithms for Fractional Packing and Covering Problems”. In:
Math. of Oper. Res. 20.2 (1995), pp. 257–301.

[164] William H. Press, Saul A. Teukolsky, and Vetterling. “Numerical Recipes
3rd Edition: The Art of Scientific Computing”. In: The Oxford Handbook
of Innovation. 3rd ed. Cambridge University Press, 2007. Chap. 10.

[165] Robin L Raffard, Claire J Tomlin, and Stephen P Boyd. “Distributed
optimization for cooperative agents: Application to formation flight”.
In: Proc. of IEEE Conference on Decision and Control. Vol. 3. 2004,
pp. 2453–2459.

[166] P. Ravikumar, A. Agarwal, and M. J. Wainwright. “Message passing
for graph-structured linear programs: Proximal methods and rounding
schemes”. In: JMLR 11.1 (2010), pp. 1043–1080.

[167] Benjamin Recht, Maryam Fazel, and Pablo A Parrilo. “Guaranteed
minimum-rank solutions of linear matrix equations via nuclear norm
minimization”. In: SIAM Review 52.3 (2010), pp. 471–501.

[168] Ben Recht et al. “Factoring nonnegative matrices with linear programs”.
In: Advances in Neural Information Processing Systems. 2012, pp. 1214–
1222.

[169] O. Reingold and S. Vardi. “New techniques and tighter bounds for local
computation algorithms”. In: Journal of Computer and System Science
82.7 (2016), pp. 1180–1200.

138

[170] Mauricio GC Resende and Geraldo Veiga. “An implementation of the
dual affine scaling algorithm for minimum-cost flow on bipartite un-
capacitated networks”. In: SIAM Journal on Optimization 3.3 (1993),
pp. 516–537.

[171] D. Richert and J. Cortés. “Robust distributed linear programming”. In:
Trans. Autom. Control 60.10 (2015), pp. 2567–2582.

[172] Carlos Riquelme, Ramesh Johari, and Baosen Zhang. “Online Active
Linear Regression via Thresholding”. In: Proc. of Association for the
Advancement of Artificial Intelligence. 2017.

[173] R. T. Rockafellar. Network Flows and Monotropic Optimization. John
Wiley and Sons, New York, 1984.

[174] R. Rubinfeld et al. “Fast Local Computation Algorithms”. In: Proc. 2nd
Sym. on Innov. in Computer Science (ICS). 2011, pp. 223–238.

[175] Ruslan Sadykov and François Vanderbeck. “Column Generation for Ex-
tended Formulations”. In: EURO Journal on Computational Optimiza-
tion 1.1-2 (2013), pp. 81–115.

[176] M. Saks and C. Seshadhri. “Local Monotonicity Reconstruction”. In:
SIAM J. on Comp. 39.7 (2010), pp. 2897–2926.

[177] Pedram Samadi et al. “Optimal real-time pricing algorithm based on
utility maximization for smart grid”. In: Proc. of IEEE Smart Grid
Communications (SmartGridComm). 2010, pp. 415–420.

[178] S. Sanghavi, D. Malioutov, and A. S. Willsky. “Linear programming
analysis of loopy belief propagation for weighted matching”. In: Proc.
of NIPS. 2008, pp. 1273–1280.

[179] I. Schizas, A. Ribeiro, and G. Giannakis. “Consensus in ad hoc WSNs
with noisy links—Part I: Distributed estimation of deterministic sig-
nals”. In: IEEE Trans. on Signal Processing 56.1 (2008), pp. 350–364.

[180] Shai Shalev-Shwartz et al. “Pegasos: primal estimated sub-gradient
solver for SVM”. In:Mathematical Programming 127.1 (2011), pp. 3–30.

[181] Yuanming Shi et al. “Large-scale convex optimization for dense wire-
less cooperative networks”. In: IEEE Trans. Signal Proc. 63.18 (2015),
pp. 4729–4743.

[182] N. Z. Shor.Minimization methods for non-differentiable functions. Vol. 3.
Springer Science & Business Media, 2012.

[183] Daniel A Spielman and Shang-Hua Teng. “Nearly linear time algorithms
for preconditioning and solving symmetric, diagonally dominant linear
systems”. In: SIAM Journal on Matrix Analysis and Applications 35.3
(2014), pp. 835–885.

139

[184] Daniel A Spielman and Shang-Hua Teng. “Nearly-linear time algo-
rithms for graph partitioning, graph sparsification, and solving linear
systems”. In: Proceedings of the STOC. Vol. 4. 2004.

[185] Srikrishna Sridhar et al. “An Approximate, Efficient LP Solver for LP
Rounding”. In: Proc. of NIPS. 2013, pp. 2895–2903.

[186] Rayadurgam Srikant. The mathematics of Internet congestion control.
Springer Science & Business Media, 2012.

[187] G. Steidl and T. Teuber. “Removing multiplicative noise by Douglas-
Rachford splitting methods”. In: Journal of Math. Imaging and Vision
36.2 (2010), pp. 168–184.

[188] J. F. Sturm. “Using SeDuMi 1.02, a MATLAB toolbox for optimization
over symmetric cones”. In: Optim. Methods Softw. 1.1-4 (1999), pp. 625–
653.

[189] I. Suzuki and M. Yamashita. “Distributed anonymous mobile robots:
Formation of geometric patterns”. In: SIAM Journal on Computing 28.4
(1999), pp. 1347–1363.

[190] Ben Taskar, Vassil Chatalbashev, and Daphne Koller. “Learning Asso-
ciative Markov Networks”. In: Proc. of ICML. 2004.

[191] H. Terelius, U. Topcu, and R. M. Murray. “Decentralized multi-agent
optimization via dual decomposition”. In: IEEE Transactions on Auto-
matic Control 44.1 (2011).

[192] The CAIDA UCSD AS Relationship Dataset. http://www.caida.org/
data/as-relationships/. 2007.

[193] K.-C. Toh, M. J. Todd, and R. H. Tutuncu. “SDPT3 - a MATLAB
software package for semidefinite programming, version 1.3”. In: Optim.
Methods Softw. 11.545-4 (1999), pp. 625–581.

[194] Luca Trevisan. “Parallel Approximation Algorithms by Positive Linear
Programming”. In: Algorithmica 21.1 (1998), pp. 72–88.

[195] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans. “Distributed asyn-
chronous deterministic and stochastic gradient optimization algorithms”.
In: IEEE Trans. on Autom. Control 31 (1986), pp. 803–812.

[196] AW van der Vaart and Jon Wellner. Weak Convergence and Empirical
Processes With Applications to Statistics. Springer Series in Statistics.
Springer-Verlag New York, 1996.

[197] Ky Vu, Pierre-Louis Poirion, and Leo Liberti. “Random Projections
for Linear Programming”. In: Mathematics of Operations Research 43.4
(2018), pp. 1051–1071. doi: 10.1287/moor.2017.0894. eprint: https:
//doi.org/10.1287/moor.2017.0894. url: https://doi.org/10.
1287/moor.2017.0894.

http://www.caida.org/data/as-relationships/
http://www.caida.org/data/as-relationships/
https://doi.org/10.1287/moor.2017.0894
https://doi.org/10.1287/moor.2017.0894
https://doi.org/10.1287/moor.2017.0894
https://doi.org/10.1287/moor.2017.0894
https://doi.org/10.1287/moor.2017.0894

140

[198] Hansheng Wang, Guodong Li, and Guohua Jiang. “Robust Regression
Shrinkage and Consistent Variable Selection Through the LAD-Lasso”.
In: Journal of Business and Economic Statistics 25 (2007), pp. 347–
355.

[199] E. Wei, A. Ozdaglar, and A. Jadbabaie. “A distributed Newton method
for network utility maximization: Algorithm”. In: IEEE Trans. on Au-
tom. Control 58.9 (2015), pp. 2162–2175.

[200] John N Weinstein et al. “The cancer genome atlas pan-cancer analysis
project”. In: Nature genetics 45.10 (2013), pp. 1113–1120.

[201] David P. Woodruff. “Sketching as a Tool for Numerical Linear Algebra”.
In: Foundations and Trends in Theoretical Computer Science 10.1-2
(2014).

[202] Stephen J Wright. Primal-dual interior-point methods. Vol. 54. Siam,
1997.

[203] Peng Xu et al. “Sub-sampled newton methods with non-uniform sam-
pling”. In: Advances in Neural Information Processing Systems. 2016,
pp. 3000–3008.

[204] Junfeng Yang and Yin Zhang. “Alternating Direction Algorithms for
`1-Problems in Compressive Sensing”. In: SIAM Journal on Scientific
Computing 33.1 (2011), pp. 250–278.

[205] G. Yarmish and R. Slyke. “A distributed, scalable simplex method”. In:
J. of Supercomputing 49.3 (2009), pp. 373–381.

[206] Y. Yi and M. Chiang. “Stochastic network utility maximization -— a
tribute to Kelly’s paper published in this journal a decade ago”. In:
European Transactions on Telecommunications 19.4 (2008), pp. 421–
442.

[207] Neal E. Young. “Sequential and parallel algorithms for mixed packing
and covering”. In: Proc. of FOCS. 2001, pp. 538–546.

[208] M. Yuan and Y. Lin. “Model selection and estimation in the Gaussian
graphical model”. In: Biometrika 94.10 (2007a), pp. 19–35.

[209] Ming Yuan. “High dimensional inverse covariance matrix estimation via
linear programming”. In: Journal of Machine Learning Research 11.Aug
(2010), pp. 2261–2286.

[210] Ruiliang Zhang and James T. Kwok. “Asynchronous Distributed ADMM
for Consensus Optimization”. In: Proceedings of the 31st International
Conference on International Conference on Machine Learning - Volume
32. ICML’14. 2014, pp. II-1701–II-1709.

141

[211] Yin Zhang. “On the convergence of a class of infeasible interior-point
methods for the horizontal linear complementarity problem”. In: SIAM
Journal on Optimization 4.1 (1994), pp. 208–227.

[212] Ji Zhu et al. “1-Norm Support Vector Machines”. In: Proceedings of
the 16th International Conference on Neural Information Processing
Systems. 2003, pp. 49–56.

[213] Edo Zurel and Noam Nisan. “An efficient approximate allocation algo-
rithm for combinatorial auctions”. In: Proc. of EC. 2001.

	Acknowledgements
	Abstract
	Published Content and Contributions
	Table of Contents
	List of Illustrations
	List of Tables
	Introduction: Compression of Optimization Problems
	Settings of Interest
	State-of-the-art Optimization Solvers and Current Bottlenecks
	Optimization Solvers
	Distributed Optimization
	Interior Point Methods for Linear Programming

	Contributions
	Acceleration Method for Packing Optimization Problems
	Distributed Algorithm for Multi-Agent Systems
	Speeding up IPMs for Linear Programming using Randomization

	Acceleration Algorithm for Packing Optimization with Linear Constraints
	Problem Formulation
	Related literature
	A Black-box Acceleration Framework
	Set Up
	Acceleration Algorithm

	Results: Feasibility and Optimality Guarantees
	Experiments
	Linear Case: Accelerating Gurobi
	Convex Case: Accelerating SCS
	Setting Parameters in Practice
	The Benefits of Cloning
	Case Study: California Road Network Dataset

	Proofs
	Preliminary Results
	Quantizing the Solution Space
	Feasibility
	Optimality

	Discussion

	Distributed Algorithm with Logarithmic Communication Complexity
	Motivation
	Problem Overview and Distributed Setting
	Approach

	Related literature
	Problem Formulation
	Network Utility Maximization (NUM)
	Support vector machines (SVMs)

	A Local Optimization Framework
	Theoretical Results
	Results on communication complexity and solution quality
	Additional Results and Proofs

	Case Studies
	Experimental Setup
	Benchmark & Performance Metrics
	Experimental Results
	Linear Programming
	Network Utility Maximization (NUM)
	Support Vector Machines (SVMs)
	Sparsity
	Stragglers & Failures

	Discussion
	Proofs of Technical Results
	Proof of Lemma 18
	Proof of Lemma 22
	Supplementary information
	Pseudocode for General Online Fractional Packing
	ADMM

	Speeding up IPMs for Linear Programming using Randomization
	Background on Interior Point Methods
	Computational Bottleneck for IPMs

	Setting of interest: under/over constrained LPs
	Our contributions
	Comparison with Related Work

	Notation and Background
	Conjugate Gradient Solver
	The Infeasible IPM algorithm
	Discussion and Extensions
	Experiments
	Proofs of Technical Results
	Proof of Lemma 28
	Satisfying eqn. (4.9) using CG Solver
	Proof of Lemma 29
	Proof of Lemma 30

	Convergence Analysis of Infeasible IPM Algorithm 6
	Number of Iterations for the CG Solver
	Determining Step-size and Final Convergence
	Proof of Theorem 27

	Bibliography

