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ABSTRACT 

This thesis investigates ecological interactions in the seafloor between microbial taxa 

(Chapters 1 and 2) and between these microorganisms and their mineral hosts (Chapters 2 

through 4). In seafloor sediments, electron acceptors are often limited, forcing 

microorganisms inhabiting these sediments to acquire symbiotic partners and/or perform 

extracellular electron transfer to insoluble electron acceptors. Seafloor methane seeps 

present an endmember case wherein extremely reducing fluids charged with methane 

advect through sediment. In these benthic ecosystems, anaerobic methanotrophic archaea 

(ANME) form symbiotic partnerships with sulfate-reducing bacteria (SRB), but it remained 

unclear if certain ANME exhibit a preference for certain SRB partners. In Chapter 1, I 

present results documenting such a pattern of partnership specificity in ANME-SRB 

consortia. In Chapter 2, I further examine these patterns in rare ANME taxa through 

development and application of a density-separation protocol refined from published work. 

This protocol exploits the co-association of microbial taxa on mineral surfaces to aid in the 

detection of novel symbioses, and further is useful to detect microbial interactions with 

certain minerals. In Chapter 3, I focus on the interaction between ANME-SRB consortia 

and authigenic silicates that have been observed on consortium exteriors, finding evidence 

to support that the precipitation of these silicates is actively mediated by ANME-SRB. In 

Chapter 4, I perform geochemical modeling benchmarked by synchrotron X-ray analysis to 

examine the imprint of extracellular electron transport by metal-reducing microorganisms 

on Precambrian manganese-rich sedimentary rocks. 
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1 
I n t r o d u c t i o n  

  
 

The geochemical dynamism of Earth’s surface—unique among known terrestrial 

planets—is inextricably tied to the emergence and radiation of microbial life. The 

expansion of microbial metabolic diversity has shaped the course of Earth history, for 

example causing a step change in atmospheric oxygen concentrations [1], creating a 

pathway for the transformation of N2 into biomass [2], and modulating the production and 

consumption of the powerful greenhouse gas CH4 [3]. Microbial life in all its variegated 

forms directs the flow of electrons between diverse donors and acceptors, and in so doing 

maintains the biogeochemical cycles necessary for Earth’s habitability. The numerous 

biochemical means by which these microorganisms transmit electrons between substrates 

present many opportunities for discovery, but the experimental study of these mechanisms 

is made more challenging by the difficulties associated with acquiring pure cultures of 

environmental microorganisms, the vast majority of which have not been cultured [4]. 

It has been proposed that the cultivation of environmental microorganisms is 

challenging due to the reliance of many microbial taxa upon symbiotic partnerships with 

other microorganisms [5]. Many microbial metabolisms important for the functioning of 

biogeochemical cycles are facilitated by a symbiotic relationship between microbial taxa, 

such as that between anaerobic methanotrophic archaea (ANME) and sulfate reducing 

bacteria (SRB) responsible for the anaerobic oxidation of methane (AOM) in seafloor 

sediments worldwide [6, 7]. In this and in many microbial symbioses, physical attachment 

of partner taxa facilitates the transfer of nutrients [8–10], reducing equivalents [11], and/or 

electrons [12–14] between partners. Study of these symbiotic relationships in situ has 
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uncovered significant diversity in the sequence identity of partner taxa [15–17], but how 

this diversity may influence the character of these symbioses remains largely an open 

question. 

Evidence from the study of several different microbial symbioses indicates that the 

nature of a symbiotic relationship can vary between different pairings of partner taxa. In the 

classic mutualism between reef-building coral hosts and their Symbiodinium sp. 

endosymbionts (colloquially termed ‘zooxanthellae’), coral access energy from sunlight via 

Symbiodinium sp. and in turn provide habitat to endosymbionts [18]. Study of coral hosts 

from a range of habitats has demonstrated that hosts exhibit preference for specific lineages 

of Symbiodinium sp. [19] which appears to have physiological implications for different 

host-symbiont pairings. The membership of host-symbiont pairs has been observed to 

predict host tolerance to thermal stress [20–22] and endosymbiont transcriptional profiles 

[23, 24]. Lichen, a microbial symbiosis between filamentous fungi and endosymbiotic 

green algae or cyanobacteria, have also been shown to exhibit specificity between partner 

taxa [25].  

For other symbiotic relationships between microorganisms, such as that between 

ANME and SRB, the specificity with which certain taxa co-associate remains unclear, but 

may have significant implications for the physiologies of different pairs of symbiotic 

partners. Extensive study of ANME-SRB consortia has documented a diversity of different 

ANME-SRB partnerships by fluorescence in situ hybridization (FISH)-based microscopy 

[16, 17, 26] and flow cytometry [27]. However, these results largely served to catalog the 

ANME-SRB pairings observed in Nature but did not synthesize these datasets to examine 

the extent to which certain SRB lineages may preferentially associate with certain ANME. 
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In Chapter 1, I present evidence from an ecological survey of Costa Rica methane seep 

sediments for a highly specific partnership between certain ANME and SRB partners, and 

further present stable isotope probing evidence indicating that this specificity is important 

for symbiotic function. 

While the results in Chapter 1 were successfully extracted from a complex dataset 

of many hundreds of methane seep sediment samples, detection of partnerships between 

more rare ANME subtypes was not possible, requiring the application of techniques to 

parse microbial communities at higher resolution. In Chapter 2, I present results from the 

application of a density-separation protocol refined from previously-published techniques 

[28]. By exploiting the intimate physical associations between sediment-dwelling 

microorganisms and minerals, I amplified the correlation signal between ANME and SRB 

taxa co-associating on mineral surfaces by separating minerals in methane seep sediment 

samples by density. These techniques circumvent the so-called ‘hairball’ [29] of 

computationally-inferred ecological interactions resulting from correlation analysis of 

complex sediment microbiomes. The results I present in Chapter 2 further document 

interactions between certain ANME-SRB consortia and certain minerals common in 

marine sediments, providing avenues for future study of these microbe-mineral 

interactions. 

Such interactions between microorganisms and minerals form an interface between 

the geosphere and biosphere that has served to preserve a record of microbial life on Earth. 

AOM, mediated by microbial metabolism, drives the precipitation of carbonate minerals at 

sites of methane seepage [30]. Microscopy study of ANME-SRB consortia, however, 

documents authigenic silicate minerals associated with consortia [31, 32]. In Chapter 3, I 
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investigate the growth of these phases in AOM incubations from which almost all 

sediment had been removed, finding strong evidence for their growth from media 

significantly undersaturated with respect to previously-measured equilibria for precipitation 

of amorphous silica and clays. Together with evidence from seep carbonates, I infer that 

ANME-SRB consortia may mediate the precipitation of authigenic silicates, representing a 

means by which ANME-SRB consortia may be preserved in the rock record. 

Microbial metabolism has also left an imprint on the rock record by directing redox 

transformations of mineral electron acceptors [33]. In Chapter 4, I present coupled 

synchrotron X-ray spectroscopy and geochemical modeling results that indicate Mn(III) 

mineral phases found in abundance in Precambrian manganese-rich sedimentary rocks 

were likely stabilized through microbially-mediated reduction of primary Mn oxides, rather 

than through abiotic means.  

Spanning a range of different geomicrobiological questions, this thesis provides the 

groundwork for further exploration of the diverse microbial symbioses and microbe-

mineral interactions that have shaped Earth’s biogeochemistry. In particular, I hope future 

work further explores the hypothesized patterns of partnership specificity in ANME-SRB 

consortia presented in the first and second chapters of this dissertation. Although Chapter 1 

presents a compelling argument that the partnership between ANME-2b and SEEP-SRB1g 

is highly specific, the degree of specificity or promiscuity in other ANME-SRB 

partnerships merits further quantitative exploration by FISH experiments. The partnership 

between ANME-2c and SEEP-SRB1a presents a particularly interesting case, in which 

ANME-2c, a clade consisting of multiple genera, may exhibit preference either for SEEP-

SRB1a or SEEP-SRB2. Evidence for this flexibility comes from both correlation analysis 
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and FISH experiments performed on cold seep sediment samples in this thesis (Ch. 1) as 

well as FISH experiments on samples of sedimented hydrothermal vents of the Guaymas 

Basin in the Gulf of California [34] that show ANME-2c to preferentially associate with 

SEEP-SRB1a or SEEP-SRB2 in Costa Rica cold seep sediments and with SEEP-SRB2 in 

Guaymas Basin sedimented hydrothermal vent sites, although it will require further 

analysis to determine how these patterns of association relate to diversity within the 

ANME-2c clade. This pattern differs substantially from the high degree of preference 

exhibited by ANME-2b or ANME-2a for SEEP-SRB1g or SEEP-SRB1a partners, 

respectively. Exploring the relationship between the SRB taxon preferred by ANME-2c 

and the environmental parameters of the sediment from which consortia were sampled will 

likely yield insight into the dynamics of ANME-2c partnership specificity. Network 

analysis also implies that ANME-2c form intimate associations in hot seep sediments with 

members of the candidate phylum Atribacteria (data not shown) thought to be involved in 

hydrocarbon degradation [35], but the nature of this association is entirely unknown. 

Additionally, ANME-2c are members of consortia of diverse morphotypes (G. Chadwick, 

pers. comm.) and which may relate to patterns of partnership specificity. ANME-1, 

representing a separate order of methanotrophic archaea with multiple genera, also exhibits 

similar flexibility in its partnerships with SRB, as ANME-1 has been observed to associate 

with SEEP-SRB2 in cold seep sediments (Ch. 1) and members of the HotSeep-1 in 

methane-rich hydrothermal vent sediments [34]; further work could characterize the nature 

of ANME-1 partnerships in situ and further shed light on the parameters that may 

contribute to ANME-1 forming partnerships with different SRB partner taxa. 
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The discoveries described in this thesis point toward a more holistic understanding 

of the symbiotic relationship that lies at the heart of AOM. Previous work has primarily 

focused on the biochemistry of anaerobic methane oxidation within ANME, as these 

microorganisms presented striking similarities to methanogenic archaea. However, 

relatively less emphasis has been placed on investigating in detail the role of partner SRB. 

Although the scope of this thesis was constrained to sketching the contours of symbiotic 

diversity in AOM, it is my hope that future research will explore the co-evolution of 

ANME and their SRB partners, and in so doing shed new light on the enigma of the 

anaerobic oxidation of methane. 
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