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ABSTRACT

General Relativity predicts that gravitational radiation is purely tensor polarized and thus, gravita-

tional waves are composed of linear combinations of two transverse polarization modes, referred

to as plus (+) and cross (×) tensor modes. However, alternate gravitational theories predict the

existence of up to four additional vector and scalar longitudinal GW polarization modes.

In this thesis, we develop a test of the gravitational wave (GW) polarization prediction of general

relativity by searching for small admixtures of vector and/or scalar polarization components in

transient GWs from binary black hole mergers. We use a network of five non-co-oriented GW

detectors available in the near future, Bayesian inference parameter estimation, and nested sampling

to quantify the detection sensitivity for such non-tensor GW polarization components.
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C h a p t e r 1

Introduction

The detection of gravitational waves (GWs) by the Advanced Laser Interferometer Gravitational-

Wave Observatory (aLIGO) and Virgo has enabled experimental studies of gravity in highly dynamic

and strong-field regimes, which are inaccessible to laboratory, Solar System or cosmological tests

of gravity [1–5]. These detections have been used to place some of the most stringent constraints

on deviations from the general theory of relativity (GR).

General Relativity predicts that gravitational radiation is purely tensor polarized and thus, gravita-

tional waves are composed of linear combinations of two transverse polarization modes, referred

to as plus (+) and cross (×) tensor modes. However, alternate gravitational theories predict the

existence of up to four additional vector and scalar longitudinal GW polarization modes. Thus,

resolving the polarization content of GWs is a fundamental test of GR against alternate theories of

gravity [6, 7].

It is possible to resolve the polarization components of continuous GWs using a single GW detector.

This can be done by observing the distinct and predictable amplitude modulations of continuous

GW polarizations as the Earth spins with respect to the fixed stars [8]. However, such continuous

signals have not yet been observed.

On the other hand, transient GWs from compact binary coalescences (CBCs) have been directly

observed and are well-modeled using numerical relativity.

However, it is challenging to learn about the polarization content of such GWs using signals solely

from the three detector LIGO-Virgo network [9–11] This is because, for such transient GW signals,

three GW detectors are insufficient to resolve all polarization mode degeneracies and characterize

the GW polarization content [7, 12, 13]. All existing observations of GWs from CBCs are so far

consistent with predictions from GR, under the assumption of purely GR polarizations [5].

For transient GWs from CBCs, constraints on the amount of non-GR polarization can be placed

in an indirect manner. However, such measurements do not probe the geometric effect of the GW

directly and provide no direct, model-independent information on the actual polarization content of

gravitational radiation [12, 13]. For example, measurements of the orbital decay of binary systems

(see [14, 15] or [16, 17]), which are sensitive to the total radiated GW power, can constrain the

power contained in non-GR polarizations. However, there may be multiple theories, with different

polarization content, that still predict the correct observed GW power within expected errors [18–
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21].

Prospects for direct observation of GW polarizations are improved by combining measurements

from an increasing number of non-co-oriented GW detectors. In principle, for transient GW signals,

at least five non-co-oriented differential-arm GW detectors are required to break all degeneracies

among the five non-degenerate polarizations allowed by general metric theories of gravity [8, 22,

23]. The purpose of this study is to quantify how well we can constrain the polarization components

of transient GWs with five or fewer than five non-co-oriented GW detectors.

In this thesis, we present a Bayesian parameter estimation methodology for extracting information

about GW polarizations directly from transient CBC signals of Binary Black hole (BBH) mergers

observable by a ground-based GW detector network in the near future.

1.1 Gravitational wave polarizations

In GR and all other theories that respect Einstein’s equivalence principle, gravitational interactions

can be fully described via the universal coupling of matter to a metric tensor [6, 24]. Consequently,

in any such metric theory a nearly-null plane GW can be encoded in at most six independent

components of the Riemann tensor at all points in spacetime [6, 22]. These six degrees of

freedom give rise to six geometrically distinct polarizations, corresponding to the six independent

components of the arbitrary metric perturbation [13].

The metric perturbation of gravitational waves, at any given point ®G in spacetime can be written as

ℎ01 (®G) = ℎ� (®G)4�01 (1.1)

where ℎ� (®G) are six independent amplitudes and 4�
01

are the six polarization tensors implicitly

summed over polarizations �, and 01 are spacetime 4-vector indices.

For a GW propagating in the direction of the spatial unit vector wI = wG ×wH, there exists a purely

space-like Lorentz gauge with Cartesian coordinates along (wG ,wH,wI) (Figure 1.1) such that the

4×4 tensor metric perturbation equation (Eq.1.1) collapses into a 3×3 spatial matrix,

[ℎ8 9 ] =
©«
ℎ1 + ℎ+ ℎ× ℎG

ℎ× ℎ1 − ℎ+ ℎH

ℎG ℎH ℎ;

ª®®®¬
(1.2)

where ℎ� represents the amplitudes of the linear polarizations for plus (+) and cross (×) tensor

modes; vector-x (x) and vector-y (y) modes; breathing (b) and longitudinal (l) scalar modes [13].



3

Figure 1.1: The 4×4 tensor metric perturbation ℎ01 (®G) (Eq.1.1) with 16 degrees of freedom

collapses into a 3×3 spatial matrix [ℎ8 9 ] (Eq. 1.2) with 6 degrees of freedom by arguments of

symmetry and Gauge invariance.

It is important to note that in a traceless gauge we would have 2ℎ1 + ℎ; = 0. However, in a more

general gauge or theory ℎ1 and ℎ; are unconstrained, free parameters. Thus, depending upon

different assumptions, we refer to either five or (usually) six polarization modes throughout this

study.

The six different GW linear polarization modes have different geometrical effects that exhibit

different directions of the stretching and squeezing of spacetime on a ring of free falling particles

(Figure 1.2) [22, 23].

Figure 1.2: Effects of different GW polarization modes (plus (+) and cross (×) tensor modes;

vector-x (G) and vector-y (H) modes; breathing (1) and longitudinal (;) scalar modes) on a ring of

free falling particles. In all of these diagrams the GW propagates along the I direction (into the

plane for plus (+), cross (×) and breathing (1) modes; to the right for vector-x (G), vector-y (H) and

longitudinal (;) modes) [23].

Note that a purely scalar polarization mode looks like a three-dimensional breathing mode that

causes the stretching and squeezing of a sphere of free falling particles in all directions. The “sixth”

polarization mode is created by artificially breaking this purely scalar mode into equal amounts of

scalar polarizations in the transverse (b) and longitudinal (l) directions (Plot 5 and 6 in Figure 1.2).
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This is done to observe any unequal detector DARM response (Section 1.3) to the otherwise zero

net scalar response in a general relativistic gauge.

GR allows only linear combinations of the tensor (+) and (×) polarizations (Figure 1.3) [6]. This

is a direct consequence of the Bianchi identities and the Einstein Field Equations (EFE) outlined in

subsection 1.2.

Figure 1.3: In GR, the 3×3 spatial matrix [ℎ8 9 ] (Eq. 1.2) with 6 degrees of freedom collapses into

a 2×2 spatial matrix with only 2 degrees of freedom due to the Bianchi identities and the EFE

(more in the subsection 1.2). Thus, GR allows only linear combinations of the tensor (+) and (×)

polarizations [6].

However, alternative theories of gravity predict the existence of vector and scalar modes in addition

to the general relativistic tensor polarization modes. Scalar-tensor theories and some theories with

extra dimensions predict the presence of the breathing component (Plot 5 in Figure 1.2) associated

with a scalar field [25, 26]. Massive-graviton frameworks and bimetric theories, such as the Rosen

or Lightman-Lee theory, predict the presence of both vector and scalar modes [27–29]. Less

conventional theories [30] predict the presence of either vector or scalar modes only. Figure 1.4

outlines the GW polarization predictions of a few alternative gravitational theories.

These alternate theories do not intend to replace GR, but to challenge its completeness and possibly

modify GR into a more generalized theory of gravity. They can be tested without invoking GW

polarization predictions. However, GW polarization predictions provide a new and powerful test

for such alternative theories of gravity and for the completeness of GR.
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Figure 1.4: The GW polarization predictions of alternative theories of gravity [31, 32].

In this thesis, we explore the possibility of detecting small admixtures of vector and/or scalar

polarizations in gravitational radiation. We explore beyond GR regimes by simulating BBH

transient GW signals with tensor, vector and scalar polarization components in a network of

five non-co-oriented GW detectors available in the near future. We quantitatively determine the

detection sensitivity towards small admixtures of vector and/or scalar polarizations in the simulated

GW signal.
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1.2 Theoretical background

“Experimental tests of relativistic gravitational effects should be carried on using a

broader theoretical framework than provided by general relativity alone [6].”

- Clifford M. Will

Motivation for exploring alternate gravitational theories

Einstein used electromagnetic theory as a foundation for special relativity. GR is motivated by

a theoretical criterion of elegance and simplicity and a primary goal of producing a gravitational

theory that incorporates the principle of equivalence and special relativity, rather than a desire to

account for unexplained experimental or observational results [6].

GR has been tested to a high level of accuracy within the Solar System. It accounts for the anomalous

perihelion advance of Mercury, deflection of light by the Sun’s gravitational field, gravitational

redshift, Shapiro time delay and the absence of Nordtvedt effect in lunar motion. However, the

Solar System cannot be regarded as the absolute testing ground for gravitational theories. This is

because many alternate theories of gravity agree with GR in their weak-field, slow-motion limits

closely enough to pass all the Solar System tests. Disparities between alternate theories of gravity

and GR become more apparent through other predictions involving spacetime near compact objects,

and gravitational radiation or cosmological phenomenon in strong-field, highly dynamical gravity

regimes [6].

Some fundamental predictions of GR have also been tested through cosmological tests and in

strong-field and highly dynamical gravity regimes such as binary pulsars, neutron stars, black

holes, and inspiralling compact binaries [6].

However, the fundamental prediction of GR that GW have only two linearized tensor polarization

components has not been tested using GW observations, except in the extreme and crude case of

distinguishing purely-tensor polarized GWs from purely-vector or purely-scalar polarized GWs [5,

11, 13]. More generalized and subtle mixtures of GW polarization contents are yet to be extensively

explored.

To incorporate non-tensorial gravitational polarization components, alternative theories of gravity

modify the very foundations of GR, such as the equivalence principle and the Einstein Field

Equations (discussed in the next section).

Our motivation for exploring alternative theories of gravity and beyond GR regimes by searching for

such non-tensor GW polarizations in the near future is threefold. Firstly, as gravity is a fundamental

interaction of nature, it requires the most solid empirical underpinning we can provide. Secondly,

all attempts to quantize gravity and to unify it with other forces of nature suggest that GR might
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be an incomplete theory of gravitation. And lastly, as GR contains no adjustable constants, its

predictions are fixed. This implies that tests of any fundamental prediction of GR, including the

search for non-tensor GW polarizations, is either a dead end or a possible probe for new physics

[6].

Equivalence principle and non-tensor gravitational fields

The Equivalence principle (EP) is one of the fundamental foundations of gravitational theory and

states that gravitation is a phenomenon of curved spacetime [6].

The EP assumes equivalence between inertial mass and gravitational mass <� = <6 and, thus, for

the force equations

®� = <� ®0, ®� = <6 ®6 (1.3)

®0 = ®6 (1.4)

where g is the gravitational field.

This implies that, the gravitational interaction of an object with the field it is in can be fully

understood solely through its location in the field. That is, gravity is a purely geometric phenomenon

that can be completely explained by the geometry of spacetime as quantified by the space time

metric. Thus, the EP leads to “metric” theories of gravity.

Based on the EP and inspired by Maxwell’s equations for electromagnetism, Einstein’s Field

Equations (EFE) (Eq. 1.5) describe how matter and energy fit into gravity through continuous and

discrete transformations of space and matter.

�`a =
8c�

24
)`a (1.5)

where the Einstein tensor �`a describes space time curvature and the stress-energy tensor )`a

represents matter and energy.

These field equations describe gravitational field dynamics and obey Poincaré invariance, which

incorporates special relativistic symmetries of rotations and translations in spacetime including

isotropy, homogeneity of space, Lorentz invariance, and time-translation invariance [33]. Such

symmetries are spontaneously broken at any particular point in space when we consider initial

conditions such as externally applied electric and magnetic fields.

However, to accommodate vector and scalar gravitational fields, alternate metric theories of gravity

modify the existing theoretical framework.
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From a quantum mechanical viewpoint, accounting for such vector and scalar gravitational fields

is relatively simple. This can be done by endowing the graviton with an effective mass.

On one hand, GR predicts that gravitons are massless in a vacuum and only gain a negligibly small

induced mass when they interact with matter. This is a direct consequence of the Bianchi identities

in a vacuum

�
UV

;V
= 0 (1.6)

and the EFE (Eq.1.5) which outline gravity-matter interactions.

The Bianchi identities in a vacuum (Eq. 1.6) are analogous to ∇ · ®� = 0 in electromagnetism. We

draw such a parallel between gravity and electromagnetism as electromagnetic waves are carried

by spin 1 photons while gravity is carried by spin 2 gravitons.

In electromagnetism, transverse electric fields in a vacuum imply that photons are massless and,

thus, exhibit only two of their three total possible polarizations states given by (<B = ±1). The

longitudinal polarization mode (corresponding to <B = 0) for a photon is absent in a vacuum.

Similarly, in a vacuum, the general relativistic solution of the Bianchi identities (Eq. 1.6) implies

gravitational waves are transverse and, thus, gravitons are massless.

Moreover, the EFE predict that a graviton moving in ordinary matter will acquire an induced mass.

This effect is similar to photons gaining an effective mass when they interact with matter. However,

as the interaction of gravity with matter is extremely weak, the induced graviton mass is negligibly

small.

Thus, in GR, gravitons are essentially massless and must exhibit only two tensorial polarization

modes (<B = ±2) out of their five possible polarization modes given by (<B = 0,±1,±2) for spin 2

particles.

By contrast, massive graviton metric theories endow the gravition with a significant mass and

assume that gravitation is not transverse, but only traceless [27]. This allows for a more general

solution where all five possible polarization modes exist (Eq. 1.2). Mathematically, this represents

the effects of the existence of vector and scalar gravitational fields.

Thus, GR predicts that gravitational radiation must be purely tensor polarized as it is carried by

massless gravitons. On the other hand, endowing the graviton with an effective mass gives rise

to vector (<B = ±1) and scalar (<B = 0) polarization modes in addition to the tensor (<B = ±2)

polarized modes.

From a classical viewpoint, introducing such vector and scalar gravitational fields is challenging. If

vector and/or scalar gravitational fields exist, they must be sourced by vector and scalar components
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incorporated in the stress-energy tensor )`a on the RHS of Eq. 1.5. To do so, we must force the

vector and scalar terms into being components of a tensor and transforming like a tensor, which is

mathematically restrictive. Moreover, as the GWs leave the source and propagate in vacuum, the

vector and scalar terms must also be incorporated in the Einstein tensor �`a on the LHS of Eq. 1.5.

Thus, searching for vector and scalar polarizations might lead to modified, more general versions

of the EP, EFE and GR that change spacetime �`a to support vector and scalar polarizations.

1.3 Detector response and Antenna patterns

The strain produced by an incoming GW is detected through laser phase shifts (Eq. 1.8) resulting

from slight changes in lengths of the arms (Fabry-Perot cavities) [34] of the GW detectors (Figure

1.5).

Figure 1.5: Layout of an Advanced LIGO detector [34].

The phase q of the laser depends on the laser frequency : and the length of the detector arm ; and

can be given as

:; =
2c;

_
= q (1.7)
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The laser phase shifts Xq are a function of the change in the detector arm length X; and the laser

frequency fluctuations X_

Xq =
2c

_
X; − 2c;

_2
X_ (1.8)

The common arm (CARM) response of a GW detector (Δ!+) in Eq. 1.9 is highly sensitive to X_

and used to generate feedback to correct for laser frequency fluctuations (Eq. 1.9).

Δ!+ =
1

2
(Δ;G + Δ;H) (1.9)

where ;G and ;H are the lengths of the detector arms [34].

On the other hand, the differential arm (DARM) response of the GW detector (Δ!−) in Eq. 1.10

measures the differential displacement of the detector arm lengths, cancels X_, and is ideal for

detecting GW signals (Eq. 1.10) [34].

Δ!− =
1

2
(Δ;G − Δ;H) (1.10)

The GW detectors measure the dimensionless strain

ℎ =
Δ!−
!

(1.11)

where ! is the length of the GW detector arms (4 km for LIGO-like GW detectors).

DARM response of a single detector

As different polarization modes have different geometric effects on the stretching and squeezing of

spacetime (Figure 1.2), the GW detectors respond differently to each polarization mode.

The strain produced by a GW metric perturbation ℎ01 in the DARM response of a GW detector �

is given as

ℎ� (C) =
∑
�

1

2
(30G 31G − 30H3

1
H )4�01ℎ� (C, G�) =

∑
�

��
� ℎ� (C, G�) (1.12)

where 3G and 3H are the spatial unit vectors along the detector arms and we sum over repeated

spatial indices 0 and 1. Although these spatial vectors are also a function of time due to the motion

of Earth with respect to the fixed stars, they can be approximately treated as constants for transient
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CBC signals that last for a few seconds. ℎ� (C, G�) represents the amplitude of linear polarization

� ∈ [+,×, G, H, ;, 1].

These linear polarization amplitudes (ℎ� (C)’s) are determined by non-trivial combinations of source

dynamics, matter-gravity coupling and vacuum structure of a theory [13]. In the case of CBCs with

tensor modes only as predicted by GR, ℎ+ and ℎ× are the only non-zero components and can be

completely specified in terms of the binary masses, spins, and the orbital orientation of the source

with respect to the line of sight (more in section 2.1).

The ��
�

represent the detector response (also called antenna pattern) of a detector � to the

polarization mode �. The antenna patterns depend only on the local geometry of the GW and the

detector, irrespective of the properties of the source [13, 35]. Thus, in the detector frame

��
� ≡ ��

� (k, \, q) (1.13)

where k is the polarization angle of the incident plane wave GW radiation from the source and

(\, q) are the polar and azimuthal angles of the source location with respect to the detector.

Figure 1.6 shows the local geometry of an incoming GW and a GW detector in the detector’s frame

of reference. In this figure 3G and 3H represent unit vectors along the arms of the detector and FI

represents the line of sight form the detector to the source (opposite to the direction of propagation

of the GW) such that FI = FG × FH.

Apart from this figure, we refer to FI as the direction of propagation of the GW while still using

the right-handed coordinate system FI = FG ×FH. Therefore, throughout the rest of the thesis, FG ,

FH, and FI are defined in the opposite direction with respect to that shown in Figure 1.6.

In this section we consider the source location (Figure 1.6) and detector response antenna patterns

(Figure 1.7) with respect to the local geometry of a single detector. Thus, we define FG , FH, FI and

k in the detector’s frame such that FG and FH is closely aligned with 3G and 3H respectively.

However, in the context of a network of detectors (in all following sections), we do not reference

FG , FH, FI and k with respect to any one detector. Instead, we define our coordinate system (and

specifically FG , FH, FI and k) with respect to the celestial coordinate system such that FG points

towards the celestial north pole. Thus, for a network of detectors in the next section, we use right

ascension and declination (U, X) instead of detector frame polar and azimuthal angles (\, q) to

describe the source location.
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Figure 1.6: The local geometry of an incoming GW signal and a GW detector (left) and the GW

polarization axis observed along the line of sight from the detector to the source (right) [35] in

the detector’s frame of reference. Here 3G and 3H represent unit vectors along the arms of the

detector, FI represents the line of sight form the detector to the source (opposite to the direction of

propagation of the GW) such that FI = FG × FH. The source location with respect to the detector

is specified by the polar and azimuthal angles (\, q). When observed along the line of sight from

the detector to the source (right), k is the polarization angle between FG and ℎ
(0)
+ , where ℎ

(0)
+ and

ℎ
(c)
+ are the directions along which space is stretched for the plus polarization in phase 0 and phase

c respectively.

The antenna patterns ��
�

(Eq. 1.13) for a single detector in the detector’s frame of reference for

different polarization modes � are shown in Figure 1.7. The antenna response ��
�

depend heavily

on the sky location of the source with respect to the detector.
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Figure 1.7: Antenna patterns for a single detector in detector’s frame of reference for different

polarization modes � ∈ [+,×, G, H, ;, 1]. The blue vectors in the x-y plane depict the spatial unit

vectors 3G and 3H along the detector arms. The x, y, and z coordinates specify the sky location of

the source with respect to the detector in the detector’s reference frame. The radial distance from

origin, which is redundant with the color map, quantifies the detector response ��
�

for polarization

mode �. Note that the detector DARM response is significantly weaker for scalar polarization

modes [32].
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Thus, a specific sky location generates different detector strain amplitudes ℎ� (C) at a detector D for

each ��
�

(Eq. 1.12 and Figure 1.7).

There are five non-degenerate polarizations �, namely +, ×, x, y, and either l or b, and five

possible values of ��
�

for these non-degenerate polarizations �. Since the antenna patterns of the

polarization modes are different, we need non-co-oriented detectors sensitive to different linear

combinations of polarization modes to distinguish between them. Thus, we require strain data

from five non-co-oriented detectors, which would be sensitive to different linear combinations of

polarizations, to disentangle the polarization content of transient GWs.

However, in this thesis, we are only concerned with the tensor, vector, or scalar polarizations. This

allows us to group the + and × modes (the x and y modes) into a single variable quantifying the

extent of tensor (vector) polarization. Thus, we expect to be able to resolve tensor, vector, and

scalar polarization degeneracies with less than five non-co-oriented detectors.

1.4 Ground-based detector network

To disentangle GW polarization content, we are interested in the sensitivity of a network of detectors

and its ability to distinguish different polarizations. In this thesis, we simulate five ground-based

GW detectors, including presently available detectors LIGO-Hanford, LIGO-Livingston, Virgo,

under construction detector KAGRA, and the detector available in the near future LIGO-India

(Figure 1.8).

Figure 1.8: Five GW detectors, including presently available detectors LIGO-Hanford, LIGO-

Livingston, Virgo, under construction detector KAGRA, and the detector available in the near

future LIGO-India [32, 36].

The sensitivity of the network to different polarizations can be quantified by an overlap factor. The

overlap factor (Figure 1.9) is a normalized inner product that compares the effective vector or scalar
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network sensitivity to the tensor network sensitivity [13]. It is given as

F�/C (U, X) =
®�� (U, X) · ®�C (U, X)
®�C (U, X) · ®�C (U, X)

(1.14)

where the effective response ®�� (U, X) for each polarization � ∈ {C, E, B} for a sky location (U, X)
and a set of # detectors is given as

®�� (U, X) ≡ (|�1
� (U, X) |, ..., |�#

� (U, X) |), (1.15)

and for any detector � among the # detectors

|��
C (U, X) | ≡

√
��
+ (U, X)2 + ��

× (U, X)2, (1.16)

|��
E (U, X) | ≡

√
��
G (U, X)2 + ��

H (U, X)2, (1.17)

|��
B (U, X) | ≡

√
��
;
(U, X)2 + ��

1
(U, X)2 =

√
2|��

; (U, X) |. (1.18)

The average response of the network over all sky locations (Figure 1.9) is worse for scalar polar-

ization modes than it is for vector ones [13, 32]. This is consistent with the fact that each detector

is individually less sensitive to scalar modes (Figure 1.7). Averaging over all sky locations, there is

no significant difference in network sensitivity between vector and tensor polarization modes [13].
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Figure 1.9: Overlaps for the effective antenna patterns of the three detector (LIGO-Virgo) and

the five detector (LIGO-Virgo, KAGRA and LIGO-India) networks. The top plots compare the

vector to tensor overlap factor (FE/C), and the bottom plots compare the scalar to tensor overlap

factor (FB/C). Red (blue) color marks regions for which the effective non-tensor response is greater

(less) than the tensor response. That is, the network of detectors is more sensitive to non-tensor

polarization modes in the redder regions. A map of the Earth is overlaid for reference under

the assumption that the location of the source is well-defined in geographic coordinates for BBH

transient GW signals that last for a few seconds [13, 32].

However, even if we have a network of five detectors in the near future, data from all detectors

might not be available for a particular observation. This is because individual GW detectors have

duty factors of 60-80%, which quantify the fraction of time a detector is acquiring data. Thus,

a network of GW detectors has a network duty factor, quantifying the fraction of time for which

different combinations of detectors are acquiring data. As an example, Figure 1.10 shows the duty

factor for the network of detectors acquiring data during the third LIGO observational run (O3)

[37].

In the subsequent sections, the existence of such a network duty factor motivates us to consider

random combinations of three or four detectors in order to determine the polarization detection

sensitivity for a GW observation when only three or four detectors out of a five GW detector network

are acquiring data.
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Figure 1.10: Duty Factors for individual detectors and the Network duty factor for the LIGO-Virgo

detector network used in the third LIGO Observational Run (O3) [37].



18

C h a p t e r 2

Methods

2.1 Generating BBH Tensor-Vector-Scalar (tvs) polarized GW waveforms

We generate BBH GW waveforms inspired by numerical relativity to model the BBH merger.

The waveforms are a part of the LALsimulation package and the inspiral is modeled by the

waveform approximant IMRPhenomPv2 [38], which assumes tensor polarizations (Figure 2.1).

IMRPhenomPv2 is also capable of modelling spin-orbit procession. However, for the purpose of

our study, we assume that the BBHs are spinless.

Figure 2.1: The inspiral, merger and ringdown phase of a BBH merger and the corresponding

tensor polarized GW waveform (ℎ(C)). Post-Newtonian perturbation methods are used to model the

early-inspiral phase. However, these methods break down for the late-inspiral and merger phases

and waveforms based on numerical relativity (modeled through waveform approximants such as

IMRPhenomPv2) must be employed.

The waveform approximant models the general relativistic GW BBH signal using the following

simulated intrinsic (to the source) and extrinsic (relative to the observer) parameters.
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Symbol Parameter Type

<1 Mass of primary black hole ["⊙] Intrinsic

<2 Mass of secondary black hole ["⊙] Intrinsic

®B1 Spin vector of primary black hole Intrinsic

®B2 Spin vector of secondary black hole Intrinsic

U Right Ascension of Source [rad] Extrinsic

X Declination of Source [rad] Extrinsic

3! Luminosity distance of Source [Mpc] Extrinsic

8 Inclination angle of Source w.r.t. observer [rad] Extrinsic

k Polarization angle [rad] Extrinsic

C2 Time at coalescence [GPS time in sec] Extrinsic

q2 Phase at coalescence [rad] Extrinsic

Table 2.1: Table of intrinsic and extrinsic parameters used by the waveform approximant to generate

the general relativistic GW signal of a BBH merger.

The waveform approximant returns the amplitudes of linear polarizations ℎ+ and ℎ× for the tensor

+ and × polarizations respectively.

ℎ+(<1, <2, ®B1, ®B2, U, X, 3! , 8, k, C2, q2) (2.1)

ℎ×(<1, <2, ®B1, ®B2, U, X, 3! , 8, k, C2, q2) (2.2)

For a general relativistic signal, the only non-zero polarization amplitudes ℎ+ and ℎ× of the

inspiraling BBH merger take the form

ℎ+ =
ℎ0(C)

2
(1 + cos 82) cosΦ(C), ℎ× = ℎ0(C) cos 8 sinΦ(C) (2.3)

where ℎ0(C) is the overall, time dependent amplitude for the tensor-only GW, Φ(C) is the signal’s

phase (which encodes information about the masses and spins of the source) and 8 is the inclination

angle between the angular momentum (®!) normal to the orbital plane and the observer’s line of

sight (=̂) [39].

Since model-independent knowledge of the true vector and scalar polarized GW waveforms is

limited [12], we use ℎ+ and ℎ× to create vector and scalar polarization waveforms by defining

®_ = (_C , _E, _B) parameters.

ℎ+ ≡ _Cℎ+(<1, <2, ®B1, ®B2, U, X, 3! , 8, k, C2, q2) (2.4)
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ℎ× ≡ _Cℎ×(<1, <2, ®B1, ®B2, U, X, 3! , 8, k, C2, q2) (2.5)

ℎG ≡ _Eℎ+ (2.6)

ℎH ≡ _Eℎ× (2.7)

ℎ; ≡ _Bℎ+ (2.8)

with the constraints

2_C + 2_E + _B = 1 (2.9)

_C , _E ∈ [0, 0.5]; _B ∈ [0, 1] (2.10)

where _C , _E and _B quantify the fraction of tensor, vector and scalar polarization components

present in the GW signal.

Since the detector responses to the two different scalar polarizations l and b only differ in a minus

sign and are indistinguishable, we include only one of the two scalar polarizations for our analysis.

It is important to note that through the above definition, we assume that the vector and scalar

polarization waveforms are similar to the tensor polarization waveform and only differ from it in

amplitude and phase. Although this assumption is known to be false, it compels us to use only

the geometrical effect of the GW in the non-co-oriented detector network, instead of a non-tensor

waveform template, in order to distinguish between polarization modes. Thus, it represents a near

worst case scenario for quantifying and placing upper limits on the detection sensitivity of the

vector and scalar polarization admixtures in GW radiation.

Waveform plots

We simulate BBH tvs polarized GW signal using the injection parameters in Table 2.2. The

randomly chosen GPS time corresponds to Jan 1, 2026 when we look forward to observing data

from five ground-based GW detectors. Note that the common C2 for all the GW injections is not a

problem in our simulated study as we analyse each GW injection as a separate event.
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We generate waveforms starting from frequencies above 20 Hz (Figure 2.2) as the LIGO detectors

are only sensitive to GW with frequencies higher than 20 Hz and waveforms in lower frequency

regions are long and time-consuming to generate.

The time domain waveforms ℎ(C) in Figure 2.2 highlight the inspiral, merger and ringdown phase

of the BBH coalescence. The frequency domain waveforms ℎ( 5 ) fall with increasing frequency

because the BBH spends more time radiating GW at lower frequencies during the inspiral than it

spends radiating GW at higher frequencies during the merger and ringdown phase. The magni-

tude versus frequency plots highlight the local frequency maxima at which the ringdown (broad

Lorentzian) occurs.

Symbol Parameter Value

<1 Mass of primary black hole ["⊙] 36.

<2 Mass of secondary black hole ["⊙] 29.

U Right Ascension of Source [rad] 1.37

X Declination of Source [rad] -1.21

3! Luminosity distance of Source [Mpc] 170.

\ 9= Inclination angle [rad] 0.4

k Polarization angle [rad] 2.66

C2 Time at coalescence [GPS time in sec] 1451260818 (Jan 1, 2026)

q2 Phase at coalescence [rad] 1.3

Table 2.2: Table of intrinsic and extrinsic general parameters used to generate the BBH tvs polarized

GW signal.

Note that in Table 2.1 the inclination angle (8) is the angle between angular momentum (®!) normal

to the orbital plane and the observer’s line of sight (=̂). However, in the presence of spin orbit

precession, ®! is not constant and the corrected inclination angle (\ 9= in Table 2.2) is calculated

with respect to the total angular momentum ( ®�) instead.

For the purpose of this thesis, 8 = \ 9= since the simulated BBHs are spinless.
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Figure 2.2: The time domain waveforms (left), frequency domain waveforms (middle), and magni-

tudes (right) of the tensor, vector and scalar polarization components (the three rows respectively)

of the BBH tvs polarized GW signal as defined by the general parameters in Table 2.2 and the ®_
parameters _C = 0.35, _E = 0.12 and _B = 0.06.

Sanity check for waveforms

Using simulated BBH tvs polarized GW signal, we see that the vector G and scalar ; waveforms

closely follow the tensor + waveform while the vector H waveform closely follows the tensor ×
waveform (Figure 2.3). The vector ℎG and scalar ℎ; amplitudes differ from the tensor ℎ+ amplitude

by factor of _E and _B respectively. The vector ℎH amplitude differs from the tensor ℎ× amplitude

by factor of _E. This is consistent with our definition of the ®_ parameters.
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Figure 2.3: The time (left) and frequency (right) domain waveforms for the polarization components

of the BBH tvs polarized GW signal generated in Figure 2.2. The ®_ parameter values are _C = 0.35,

_E = 0.12 and _B = 0.06. As per our definition, the vector ℎG and scalar ℎ; amplitudes differ from

the tensor ℎ+ amplitude by factor of _E and _B respectively. The vector ℎH amplitude differs from

the tensor ℎ× amplitude by factor of _E.

Next, we generate four different BBH tvs polarized GW waveforms using the general parameter in

Table 2.2 and the different ®_ parameter values given in Table 2.3.

Waveform Polarizations _C _E _B

Almost equal tvs 0.2 0.15 0.3

High Tensor 0.35 0.12 0.06

High Vector 0.16 0.3 0.08

High Scalar 0.05 0.15 0.6

Table 2.3: Table of different values of ®_ parameters used to generate four different BBH tvs

polarized GW waveforms.

Figure 2.4 shows the four different BBH tvs polarized GW signals. The signals have different ad-

mixtures of tensor, vector and scalar polarization components (given in Table 2.3). The amplitudes
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of the tensor, vector and scalar waveforms change as we change the ®_ parameters. This is consistent

with our definition of the vector and scalar waveforms (Eqs. 2.4 - 2.8)

Figure 2.4: The time (left) and frequency (middle) domain waveforms, and magnitudes (right) of

the four different BBH tvs polarized GW signals (four rows). The signals have different admixtures

of tensor, vector and scalar polarization components (given in Table 2.3) and the same general

parameters (given in Table 2.2). The amplitudes of the tensor, vector and scalar waveforms change

as we change the ®_ parameters. This is consistent with our definition of the vector and scalar

waveforms (Eqs. 2.4 - 2.8).

2.2 Simulating detector response

We use the default interferometer list in the GW astronomy Bayesian inference library “Bilby”

[40] to simulate the GW detectors LIGO-Hanford (H1), LIGO-Livingston (L1), Virgo (V1) and
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KAGRA (K1). The noise curves for the LIGO detectors H1 and L1 are simulated with A+ detector

sensitivity [41]. While, the noise curves for V1 and K1 are simulated using Advanced-Virgo and

KAGRA design detector sensitivities respectively [40] (Figure 2.5).

The fifth GW detector, LIGO-India (I1), which would be available in the near future, is virtually

created using Bilby. For the purposes of our analysis, LIGO India is projected using an A+ detector

sensitivity noise curve (Figure 2.5) and its location is the latitude and longitude of Hingoli district,

Maharashtra. The latitude, longitude, elevation, and detector arm azimuths used for simulating

LIGO-India may be different from the actual design.

We refer to a GW detector’s strain equivalent noise spectrum (i.e., the way detector noise manifests

in the strain channel) as its noise Amplitude Spectral Density (ASD). The ASDs in Figure 2.5

are sampled at 16 KHz, which is usually used to observe GW signal from binary neutron star

mergers at about 3 KHz. However, as we study GW signals from BBH mergers, we downsample

our dataset to 2,048 Hz with a Nyquist frequency of 1,024 Hz throughout the thesis in order to

increase computational efficiently. We then low pass filter the data below the Nyquist frequency to

prevent high frequency noise from leaking into lower frequencies.
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Figure 2.5: The noise Amplitude Spectral Densities (ASDs) for A+ [41], Advanced LIGO [42],

Advanced Virgo and KAGRA design detector sensitivities [40] sampled at 16 KHz. The ASDs for

detectors H1, L1 and I1 are based on the A+ detector sensitivity, which is significantly better than

Advanced-LIGO detector sensitivity. The ASDs for V1 and K1 are based on Advanced Virgo and

KAGRA design detector sensitivities respectively.

The sensitivities of these ground-based detectors (Figure 2.5) are limited by the seismic motion

of the earth at low frequencies below 10 Hz, by thermal noise at intermediate frequencies and by

photon shot noise at high frequencies [42].

The A+ detector sensitivity noise curve (Figure 2.5) takes the Advanced LIGO model further by

making modifications to reduce thermal and quantum noise at intermediate and high frequencies

[41].

For low frequencies, third generation underground GW detectors with better seismic isolation [43]

would be able detect GW signals down to 2-3 Hz. Since CBCs spend most time in the low frequency

regime, GW data from detectors sensitive to lower frequencies would allow detections hours before

the merger and give enough response time to observe the coalescence through optical telescopes.

Moreover, the space-based detector LISA [44], which is set to be operational in 2036, would be
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able to observe GW signals in the low frequency regime between 10−5 and 10−1 Hz. At such low

frequencies, stellar mass BBHs will be effectively continuous sources and the techniques developed

in [23] can be used to study the polarization content of such GWs.

Figure 2.6 shows the noise ASD for the A+ detector sensitivity and the scaled magnitude of GW

signals of BBH mergers. The signal magnitude is scaled by a factor of
√
5 in order to place it in the

same plot as the noise ASD. The GW signal magnitude falls off as a power law during the inspiral

phase, flattens during the merger and forms a knee at the ringdown phase. The ringdown signal is

an exponentially damped sinusoid in the time domain and falls off as a broad-peaked Lorentzian in

the frequency domain. The waveform data above 130 Hz is overwhelmed by Gibbs noise and is to

be ignored.
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Figure 2.6: The noise ASD for A+ detector sensitivity and the scaled BBH merger GW signal

magnitude (scaled |ℎ( 5 ) |) versus frequency plot for different SNRs with a fixed component masses

m ≈ 100"⊙ (top), and different BBH component masses with a fixed SNR ∈ [100, 200] (bottom).

The signal magnitude is scaled by a factor of
√
5 in order to place it in the same plot as the noise

ASD. The waveform data above 130 Hz is overwhelmed by Gibbs noise and is to be ignored. We

observe that BBH with higher masses merge at lower frequencies (bottom).

Next, we inject BBH tvs polarized GW signals with different admixtures of tensor, vector and scalar

(tvs) polarizations in the network of the five non-co-oriented GW detectors (using parameters in

Table 2.4 and ®_ parameters in Table 2.3).
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For a GW signal, the detector response for a particular detector depends upon the location of the

source with respect to the detector and the polarization composition of the incoming GW signal

(Eq. 1.12 and Figure 1.7). Thus, for an incoming GW wave, the detector response differs between

the non-co-oriented detectors as the location, polarization angle, and inclination angle of the source

changes with respect to different detectors.

As a result, the strain injected in five non-co-oriented detectors due to the same incoming GW signal

differs in amplitude and phase (Figure 2.7). We use these differences in amplitudes and phases

of the injected strains in our non-co-oriented detectors to resolve degeneracies in the polarization

content of an incoming GW wave.

Symbol Parameter Value

<1 Mass of primary black hole ["⊙] 36.

<2 Mass of secondary black hole ["⊙] 29.

U Right Ascension of Source [rad] 0.99

X Declination of Source [rad] 0.88

3! Luminosity distance of Source [Mpc] 1 or 30

\ 9= Inclination angle (with spin orbit precession) [rad] 0.4

k Polarization angle [rad] 1.73

C2 Time at coalescence [GPS time in sec] 1451260818 (Jan 1, 2026)

q2 Phase at coalescence [rad] 1.3

Table 2.4: Table of intrinsic and extrinsic parameters used in Figure 2.7. Luminosity distance of

1 Mpc simulates the detector response without noise (left column in Figure 2.7) while that of 30

Mpc is simulates the detector response where signal is buried in noise (right column in Figure 2.7).
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Figure 2.7: The injected time domain strain for five non-co-oriented GW detectors without (left)

and with (right) detector noise. Four different BBH tvs polarized GW signals (four different rows)

with different admixtures of tvs polarization components were injected in all the five detectors

(general parameters given in Table 2.4 and ®_ parameters given in Table 2.3). The strain injected

in five non-co-oriented detectors due to the same incoming GW signal (in every plot) differs in

amplitude and phase.
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2.3 Bayesian Inference

We use Bayesian parameter estimation and nested sampling to quantify how well we can retrieve

the values of the injected ®_ parameters. The ®_ parameter values quantify the admixtures of tensor,

vector and scalar polarization present in the injected BBH GW signal. By estimating the values of

these ®_ parameter through Bayesian inference, we place constraints of the detection sensitivity for

the admixtures of vector and scalar polarizations.

Bayes theorem gives the posterior probability distribution of parameters ®\ (any varying parameters

such as ®_, 3! , U, X, k), given the data ®3 and hypothesis � as

?( ®\ | ®3, �) = ?( ®3 | ®\, �)?( ®\ |�)
/

(2.11)

where H is our hypothesis that GW signal is described by a model such that the signal subtracted

from the data gives Gaussian random noise, ?( ®3 | ®\, �) (or !) is the likelihood of the data given the

parameters ®\ and hypothesis H, ?( ®\ |�) are the priors, and the evidence / = ?( ®3 | ®�) normalizes

the RHS such that the posterior probability distribution is 1 when integrated over all parameter

space. The evidence / is estimated numerically as

/ =

∫
Θ

?( ®3 | ®\, �)?( ®\ |�)3 ®\ (2.12)

where Θ is the complete space of parameters ®\.

We employ a standard Gaussian noise likelihood ! for detector strain data ®3 given the parameters

®\ such that

?( ®3 | ®\, �) ≡ ! ( ®3 | ®\) (2.13)

and

ln ?( ®3 | ®\, �) = ln ! ( ®3 | ®\) = −1

2

∑
:

{
[3: − `: ( ®\)]2

f2
:

+ ln 2cf2
:

}
(2.14)

where k is the frequency bin index, f2 is the square of the noise ASD (called noise Power Spectral

Density), and `: ( ®\) is the signal in the frequency domain [40] as a function of the extrinsic, intrinsic

and ®_ parameters.
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When our hypothesis H is true and the signal `( ®\) matches the data such that their difference gives

Gaussian random noise, the likelihood is large. This, in turn, gives a large posterior probability for

those values of ®\ for which the signal `( ®\) matches the data.

Our dataset ®3 is a 16384 × � dimensional vector comprising of the detectors � ∈ [1, # = 5] and

time steps ∈ [1, 16384] for one second of data. In practice, the signals we observe for BBH mergers

are significantly shorter than one second in the detectable frequency regime above 20 Hz (Figure

2.5).

Each data point is correlated in time but in the frequency domain, noise is not correlated between

frequency bins (Eq. 2.14). This implies that the signal (which is determined by ®\ and �) is

strongly correlated between the detectors in a deterministic way. However, noise from each of the

� detectors is probabilistic and uncorrelated between detectors. Thus, subtracting the correlated

signal from the data in Eq. 2.14, leaves us with uncorrelated noise in each of the # detectors.

Due to such uncorrelated and random Gaussian noise, we assume that the data from each of the #

detectors are uncorrelated with that from the any other detector. Therefore, we define the probability

of our data from a network of detectors as

?( ®3 | ®\, �)network =

#∏
�=1

?( ®3 | ®\, �)� (2.15)

In practice, however, using the product of individual detector likelihoods to compute the likelihood

for a network of detectors is computationally inefficient. Instead, we compute the Bayes theorem

likelihood (Eq. 2.11) by exponentiating the sum of the log likelihood (Eq. 2.14) over all detectors.

The priors ?( ®\ |�) we use for Bayesian parameter estimation (Eq. 2.11), are delta functions at the

true values for all the fixed parameters such as BBH masses, spins, orientation and polarization

angles (\ 9=, k), and time and phase at coalescence (C2, q2).

The priors for the ®_ parameters span the entire parameter space allowed after imposing the

constraints outlined in our definition (Eqs. 2.9, 2.10). The priors are uniform in sky location

(U ∈ [0, 2c] and sin X ∈ [−1, 1]).

For a few GW parameter estimations, the polarization angle prior is uniform and periodic (k ∈
[0, c]) instead of a delta function at its true value (more in the next section).

Ideally, the prior for distance should be uniform in comoving volume in order to account for

cosmological effects of the evolution and expansion of the universe. Due to the evolution of the

universe, the rate of mergers changes over time with changes in the star formation rate. Also, due

to the expansion of the universe, the Euclidean volume changes over time, the observed rate of
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mergers changes with time dilation, and the GW signal is redshifted. However, for the purpose of

this study, we ignore such cosmological effects since they only affect the prior on distance and have

negligible impact on our results. We treat the universe as static and Euclidean.

We note that the choice of a prior that is uniform in Euclidean volume + = 4c33
!

such that

d+ = 4c32
!
d(3!) is computationally inefficient as the sampler spends more time at larger 3! , where

signals can be undetectably weak.

To increase the efficiency of our sampler, we define our prior to be uniform in 3! instead. While a

prior uniform in 3! is astrophysically and cosmologically incorrect, it makes the sampler converge

faster and does not affect our results as long as we work with relatively high SNR (> 20) signals.

We justify this as follows: For such relatively high SNR (> 20) signals in three or more detectors

our data are informative, the priors vary smoothly, the likelihood peaks strongly at a particular

value of ®\ and, consequently, our choice of prior should not impact our results.

2.4 Quantifying polarization detection sensitivities

In this thesis, we aim to determine the dependence of GW polarization detection sensitivity on the

number of detectors, true values of _E and _B, SNR, sky location (U, X), polarization angle k, BBH

binary masses, and our choice of the k prior distribution.

This is done through Single Event Analysis where the_C , _E and_B posterior probability distributions

are extracted from each individual event through a separate evaluation of the posterior.

Table 2.5 shows a list of questions that this thesis explores and our approach towards each of them.

Note that the “assigned name” in Table 2.5 signifies the ®_ parameter true values that we are

stepping through. For example, the assigned name “_E posterior” means that we step through 11

bins of progressively increasing values of _E while _B is either randomly selected, as in the case of

Tensor-Vector-Scalar (tvs) polarized GWs, or zero as in the case of Tensor-Vector (tv) only GWs.

The first four sets of GW parameter estimations (first four rows of Table 2.5) are performed using

a “fixed” k prior distribution, where the k prior is a delta function at its true value in the Bayesian

parameter estimation. If our data are informative, the choice of k prior should not have a significant

effect on our results. To examine this claim we perform two additional sets of tvs polarized GW

parameter estimations (row five and six of Table 2.5) with a “uniform” k prior distribution where

the k prior is uniform and periodic ∈ [0, c] for the Bayesian parameter estimation.

Moreover, Table 2.6 presents additional questions addressed in thesis that require a more elaborate

study (a major part of which is left for future work) for conclusive remarks.

We verify that our methods work for different BBH component masses (first row of Table 2.6).
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Through the Multiple Event Analysis (second row of Table 2.6), we present an example method

which explores the possibility that the fraction of vector and/or scalar polarization content is

constant for all GW radiation. This involves the hypothesis that the polarization ®_ parameters are

shared between different GW detections and are independent of all other parameters and properties

of the BBH merger. We then generate joint one-dimensional _ posterior probability distributions

for n number of such event by marginalizing over all other parameters.

Polarization Assigned Name Approach and Description Benefits

Tensor
-Vector
-Scalar (tvs)

_E posterior

for tvs GWs;
fixed k prior

528 GW injections for each;

(11 _E or _B true values
× 3 different SNRs
× 16 combinations of 3, 4,
or 5 GW detectors).

Sky location and polarization

angles randomly chosen from

uniform distributions of
U ∈ [0, 2c], sin X ∈ [−1, 1],
and k ∈ [0, c].
Prior distribution k is a delta

function at true value.

Explores the dependence

of polarization

detection sensitivity on

_E and _B true values,
the number of detectors,
SNR, sky location, and

polarization angle.

_B posterior

for tvs GWs;
fixed k prior

Tensor
-Vector (tv)

_E posterior

for tv GWs;
fixed k prior

Tensor
-Scalar (ts)

_B posterior

for ts GWs;
fixed k prior

Tensor
-Vector
-Scalar (tvs)

_E posterior

for tvs GWs;
uniform k prior

528 GW injections for each;

similar to the above, except

Prior distribution k is

uniform and periodic.

Explores the dependence

of polarization detection

sensitivity on the choice

of k prior distribution.
_B posterior

for tvs GWs;
uniform k prior

Table 2.5: List of questions explored in the thesis and an outline of our computational approach.
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Polarization Assigned Name Approach and Description Benefits

Tensor
-Vector
-Scalar (tvs)

®_ posteriors

for tvs GWs
with different
BBH masses

9 GW injections;

(3 different <1 and <2 values
× 3 different SNRs)

Prior distribution k is a delta

function at true value.

Explores the dependence

of polarization detection

sensitivity on the BBH
component masses

(more for future work)

Multiple Event

Analysis:

Joint ®_ posteriors

149 GW injections;

(fixed ®_ parameters with

randomly chosen

binary masses (<1, <2),

and luminosity distance (3!)

Explores the possibility that

there is a constant fraction of
vector and/or scalar polarization

content in GW radiation
(thesis outlines a simple example;

more left for future work)

Table 2.6: Additional questions addressed in thesis that require a more elaborate study for conclusive

remarks (a major part of which is left for future work). The sky location and polarization angles

are randomly chosen from uniform distributions of U ∈ [0, 2c], sin X ∈ [−1, 1], and k ∈ [0, c].
Prior distribution k is a delta function at its true value in the Bayesian parameter estimation.
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C h a p t e r 3

Results

We use the High Throughput Computing (HTC) software HTCondor [45] to run “embarrassingly

parallel” Bilby Bayesian parameter estimation “jobs” on the LIGO Caltech computing cluster.

We run multiple sets of 528 HTCondor jobs (outlined the first four rows of Table 2.5). Each set of

jobs simulates 33 different GWs in all possible combinations of three, four and five detectors (10 +

5 + 1 detector combinations). The simulation parameters common in all 528 injections are given

in Table 3.1. The randomly chosen GPS time corresponds to Jan 1, 2026 when we look forward

to observing data from five ground-based GW detectors. Note that the common C2 for all the GW

injections is not a problem in our simulated study as we analyse each GW injection as a separate

event.

The 33 different GWs have randomly chosen sky location and polarization angles from uniform

distributions of U ∈ [0, 2c], sin X ∈ [−1, 1], and k ∈ [0, c]. They are further split into 11

simulations of progressively increasing _E (or _B) values with low (3! = 700 Mpc), medium

(3! = 195 Mpc) and high (3! = 50 Mpc) SNR signals and random distribution of the remaining

polarization content between scalar (or vector) and tensor polarization components.

Thus, 528 jobs = 16 possible detector combinations × 3 different SNRs × 11 _E bins ∈ [0, 0.5] (or

11 _B bins ∈ [0, 1]).

Each job runs Bayesian parameter estimation on ONE event and produces posterior probability

distributions (Eq. 2.11) for _E, _B, sky location (U, X) and luminosity distance 3! with masses,

spins, orientation and polarization angles (\ 9=, k), and time and phase at coalescence (C2, q2) fixed

at their true value.

The priors used to compute the likelihood (Eq. 2.14) are Bilby’s default prior distributions for

the sky location (U, X) and uniform priors for 3! . The priors for the ®_ parameters span the

entire parameter space allowed after imposing a constraint prior corresponding to Eq. 2.9. Prior

distributions that are delta functions at the true value are used for the mass, spin, orientation and

polarization angles (\ 9=, k), time and phase at coalescence (C2, q2) in Table 3.1.
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Symbol Parameter Value

<1 Mass of primary black hole ["⊙] 36.

<2 Mass of secondary black hole ["⊙] 29.

®B1 Spin vector of primary black hole ["⊙] 0.

®B2 Spin vector of secondary black hole ["⊙] 0.

\ 9= Inclination angle (with spin orbit precession) [rad] 0.4

k Polarization angle [rad] random

C2 Time at coalescence [GPS time in sec] 1451260818 (Jan 1, 2026)

q2 Phase at coalescence [rad] 1.3

Table 3.1: Table of common parameters in the multiple sets of 528 condor jobs (outlined in Table

2.5) used to simulate 33 different tvs, tv and ts polarized GWs in all possible combinations of three,

four and five detectors.

We expect that varying the mass, spin, orientation angle (\ 9=), polarization angle (k), time and

phase at coalescence (C2, q2) priors from their delta function distribution in the Bayesian parameter

estimation would decrease both the accuracy and precision of our results. However, varying all

possible priors is prohibitively computationally intensive and beyond the scope of this thesis.

To verify that our results are not unrealistic, we allow one of these previously fixed priors, namely

the polarization angle (k) prior, to vary in the Bayesian parameter estimation for a small number

of jobs with tvs polarized GWs (outlined in rows five and six of Table 2.5) and quantify the effect

of this uniform k prior distribution on the polarization detection sensitivity. Figure 3.1 represents

an example corner plot for the posterior probability distributions inferred from ONE such Bayesian

parameter estimation job for a BBH tvs polarized GW injected in five detectors. It highlights

the correlation between the ®_ parameters, sky location (U, X), luminosity distance (3!), and the

polarization angle k and projects the one-dimensional _ posteriors. Such one-dimensional _

posteriors are plotted against their respective true parameter values to present our results as “violin”

plots in Section 3.1.
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Figure 3.1: Corner plot for one-dimensional projections of _E and _B, sky location (RA, DEC),

luminosity distance (3!), and polarization angle (k) posterior probability distributions recovered

through Bayesian parameter estimation. The BBH tvs polarized GW with _C = 0.05, _E = 0.2, _B =

0.5, low SNR (corresponding to 3! = 700 Mpc), randomly chosen sky location and polarization

angle, and other parameters given in Table 3.1 was injected in five detectors. The orange lines

depict the true parameter values while the blue outlines depict the 68% and 90% credible areas. The

priors used to compute the likelihood (Eq. 2.14) are Bilby’s default prior distributions for the sky

location (U, X) and uniform priors for 3! . The priors for the ®_ parameters span the entire parameter

space allowed after imposing a constraint prior corresponding to Eq. 2.9. Prior distributions that

are delta functions at the true value are used for the mass, spin, orientation angle (\ 9=), time and

phase at coalescence (C2, q2) priors. The prior k distribution is uniform and periodic ∈ [0, c] for

the Bayesian parameter estimation.
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We leave for future work more accurate variations of the prior distributions for mass, spin, orien-

tation angle (\ 9=), time and phase at coalescence (C2, q2).

Note that for most of the analysis, the k prior distribution used in Bayesian parameter estimation is

a delta function at its true value unless specified otherwise.

In the following sections of this Chapter 3, we focus on presenting our results graphically. For

analysis, inference and conclusion of our results refer to Chapter 4.

3.1 Single Event Analysis

In this section, we present the posterior probability distributions of the inferred ®_ versus the injected

®_ values (colloquially referred to as “violin” plots) for the sets of 528 jobs outlined in Table 2.5. Each

violin in this section is created through Single Event Analysis. That is, _C , _E and _B probability

distributions are extracted from each individual event through a separate evaluation of the posterior.

The analysis, inference and conclusion for our results is presented in Chapter 4.

Tensor-Vector-Scalar (tvs) polarized GWs

3.1.1. _E posterior for tvs polarized GWs; fixed k prior

In Figures 3.2, 3.3, and 3.4 we present violin plots of the inferred _E posteriors versus the _E true

values for tvs polarized GWs in all possible three, four, and five detector combinations respectively.

Each plot highlights posterior probability distribution violins for 33 different tvs polarized GWs

(11 increasing values of _E with low, medium and high SNRs).

The one-dimensional _ posterior probability distributions are also plotted as histograms in the

Appendix (Figure A.1). The median and errors corresponding to the 90% credible interval for the

posterior probability distributions are given in Table A.1 and A.3 in the Appendix. Moreover, the

90% upper and lower limits for the _E posterior probability distributions (corresponding to the true

values _E = 0.0 and _E = 0.5 respectively) are given in Table A.2.
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Figure 3.2: Violin plot of _E for tvs polarized GW in all possible three-detector combinations

for low, medium and high SNRs. For a specific value of _E and SNR, the violin plot depicts

10 different violins corresponding to 10 possible three-detector combinations (top) and combines

them into a single violin (bottom). Each violin represents an injection with a randomly chosen

sky location, polarization angle (k) and random distribution of the remaining polarization content

between tensor (_C value) and scalar (_B value) components.
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Figure 3.3: Violin plot of _E for tvs polarized GW in all possible four-detector combinations for

low, medium and high SNRs. For a specific value of _E and SNR, the violin plot depicts 5 different

violins corresponding to 5 possible four-detector combinations (top) and combines them into a

single violin (bottom). Each violin represents an injection with a randomly chosen sky location,

polarization angle (k) and random distribution of the remaining polarization content between tensor

(_C value) and scalar (_B value) components.
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Figure 3.4: Violin plot of _E for tvs polarized GW in five detectors for low, medium and high SNRs.

Each violin represents an injection with a randomly chosen sky location, polarization angle (k) and

random distribution of the remaining polarization content between tensor (_C value) and scalar (_B
value) components.
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3.1.2. _B posterior for tvs polarized GWs; fixed k prior

In Figures 3.5, 3.6, and 3.7 we present violin plots of the inferred _B posteriors versus the _B true

values for tvs polarized GWs in all possible three, four, and five detector combinations respectively.

Each plot highlights posterior probability distribution violins for 33 different tvs polarized GWs

(11 increasing values of _B with low, medium and high SNRs).

The one-dimensional _ posterior probability distributions are also plotted as histograms in the

Appendix (Figure A.2). The median and errors corresponding to the 90% credible interval for the

posterior probability distributions are given in Table A.4 and A.6 in the Appendix. Moreover, the

90% upper and lower limits for the _B posterior probability distributions (corresponding to the true

values _B = 0.0 and _B = 1.0 respectively) are given in Table A.5.
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Figure 3.5: Violin plot of _B for tvs polarized GW in all possible three-detector combinations for

low, medium and high SNRs. For a specific value of _B and SNR, the violin plot depicts 10 different

violins corresponding to 10 possible three-detector combinations (top) and combines them into a

single violin (bottom). Each violin represents an injection with a randomly chosen sky location,

polarization angle (k) and random distribution of the remaining polarization content between tensor

(_C value) and vector (_E value) components.



45

Figure 3.6: Violin plot of _B for tvs polarized GW in all possible four-detector combinations for

low, medium and high SNRs. For a specific value of _B and SNR, the violin plot depicts 5 different

violins corresponding to 5 possible four-detector combinations (top) and combines them into a

single violin (bottom). Each violin represents an injection with a randomly chosen sky location,

polarization angle (k) and random distribution of the remaining polarization content between tensor

(_C value) and vector (_E value) components.
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Figure 3.7: Violin plot of _B for tvs polarized GW in five detectors for low, medium and high SNRs.

Each violin represents an injection with a randomly chosen sky location, polarization angle (k) and

random distribution of the remaining polarization content between tensor (_C value) and vector (_E
value) components.
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Tensor-Vector (tv) polarized GWs

3.1.3. _E posterior for tv polarized GWs; fixed k prior

In Figures 3.8, 3.9, and 3.10 we present violin plots of the inferred _E posteriors versus the _E true

values for tv polarized GWs in all possible three, four, and five detector combinations respectively.

Each plot highlights posterior probability distribution violins for 33 different tv polarized GWs (11

increasing values of _E with low, medium and high SNRs).

The one-dimensional _ posterior probability distributions are also plotted as histograms in the

Appendix (Figure A.3). The median and errors corresponding to the 90% credible interval for the

posterior probability distributions are given in Table A.7 and A.9 in the Appendix. Moreover, the

90% upper and lower limits for the _E posterior probability distributions (corresponding to the true

values _E = 0.0 and _E = 0.5 respectively) are given in Table A.8
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Figure 3.8: Violin plot of _E for tv polarized GW in all possible three-detector combinations for

low, medium and high SNRs. For a specific value of _E and SNR, the violin plot depicts 10 different

violins corresponding to 10 possible three-detector combinations (top) and combines them into a

single violin (bottom). Each violin represents an injection with a randomly chosen sky location,

polarization angle (k) where all remaining polarization content is tensorial (i.e., _B = 0).
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Figure 3.9: Violin plot of _E for tv polarized GW in all possible four-detector combinations for

low, medium and high SNRs. For a specific value of _E and SNR, the violin plot depicts 5 different

violins corresponding to 5 possible four-detector combinations (top) and combines them into a

single violin (bottom). Each violin represents an injection with a randomly chosen sky location,

polarization angle (k) where all remaining polarization content is tensorial (i.e., _B = 0).
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Figure 3.10: Violin plot of _E for tv polarized GW in five detectors for low, medium and high

SNRs. Each violin represents an injection with a randomly chosen sky location, polarization angle

(k) where all remaining polarization content is tensorial (i.e., _B = 0).
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Tensor-Scalar (ts) polarized GWs

3.1.4. _B posterior for ts polarized GWs; fixed k prior

In Figures 3.11, 3.12, and 3.13 we present violin plots of the inferred _B posteriors versus the _B true

values for ts polarized GWs in all possible three, four, and five detector combinations respectively.

Each plot highlights posterior probability distribution violins for 33 different ts polarized GWs (11

increasing values of _B with low, medium and high SNRs).

The one-dimensional _ posterior probability distributions are also plotted as histograms in the

Appendix (Figure A.4). The median and errors corresponding to the 90% credible interval for the

posterior probability distributions are given in Table A.10 and A.12 in the Appendix. Moreover,

the 90% upper and lower limits for the _B posterior probability distributions (corresponding to the

true values _B = 0.0 and _B = 1.0 respectively) are given in Table A.11.
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Figure 3.11: Violin plot of _B for ts polarized GW in all possible three-detector combinations for

low, medium and high SNRs. For a specific value of _B and SNR, the violin plot depicts 10 different

violins corresponding to 10 possible three-detector combinations (top) and combines them into a

single violin (bottom). Each violin represents an injection with a randomly chosen sky location,

polarization angle (k) where all remaining polarization content is tensorial (i.e., _E = 0).
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Figure 3.12: Violin plot of _B for ts polarized GW in all possible four-detector combinations for

low, medium and high SNRs. For a specific value of _B and SNR, the violin plot depicts 5 different

violins corresponding to 5 possible four-detector combinations (top) and combines them into a

single violin (bottom). Each violin represents an injection with a randomly chosen sky location,

polarization angle (k) where all remaining polarization content is tensorial (i.e., _E = 0).
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Figure 3.13: Violin plot of _B for ts polarized GW in five detectors for low, medium and high SNRs.

Each violin represents an injection with a randomly chosen sky location, polarization angle (k)

where all remaining polarization content is tensorial (i.e., _E = 0).
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Tensor-Vector-Scalar (tvs) polarized GW

3.1.5. _E posterior for tvs polarized GWs; uniform k prior

In Figures 3.14, 3.15, and 3.16 we present violin plots of the inferred _E posteriors versus the _E true

values for tvs polarized GWs in all possible three, four, and five detector combinations respectively.

Each plot highlights posterior probability distribution violins for 33 different tvs polarized GWs

(11 increasing values of _E with low, medium and high SNRs). The k prior distribution is uniform

and periodic ∈ [0, c] for the Bayesian parameter estimation.

The one-dimensional _ posterior probability distributions are also plotted as histograms in the

Appendix (Figure A.5). The median and errors corresponding to the 90% credible interval for the

posterior probability distributions are given in Table A.13 and A.15 in the Appendix. Moreover,

the 90% upper and lower limits for the _E posterior probability distributions (corresponding to the

true values _E = 0.0 and _E = 0.5 respectively) are given in Table A.14.
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Figure 3.14: Violin plot of _E for tvs polarized GW in all possible three-detector combinations

for low, medium and high SNRs. For a specific value of _E and SNR, the violin plot depicts

10 different violins corresponding to 10 possible three-detector combinations (top) and combines

them into a single violin (bottom). Each violin represents an injection with a randomly chosen

sky location, polarization angle (k) and random distribution of the remaining polarization content

between tensor (_C value) and scalar (_B value) components. The k prior distribution is uniform

and periodic ∈ [0, c] for the Bayesian parameter estimation.
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Figure 3.15: Violin plot of _E for tvs polarized GW in all possible four-detector combinations

for low, medium and high SNRs. For a specific value of _E and SNR, the violin plot depicts 5

different violins corresponding to 5 possible four-detector combinations (top) and combines them

into a single violin (bottom). Each violin represents an injection with a randomly chosen sky

location, polarization angle (k) and random distribution of the remaining polarization content

between tensor (_C value) and scalar (_B value) components. The k prior distribution is uniform

and periodic ∈ [0, c] for the Bayesian parameter estimation.
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Figure 3.16: Violin plot of _E for tvs polarized GW in five detectors for low, medium and high

SNRs. Each violin represents an injection with a randomly chosen sky location, polarization angle

(k) and random distribution of the remaining polarization content between tensor (_C value) and

scalar (_B value) components. The k prior distribution is uniform and periodic ∈ [0, c] for the

Bayesian parameter estimation.
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3.1.6. _B posterior for tvs polarized GWs; uniform k prior

In Figures 3.17, 3.18, and 3.19 we present violin plots of the inferred _B posteriors versus the _B

true values for tvs polarized GWs in three, four, and five detector combinations respectively.

Each plot highlights posterior probability distribution violins for 33 different tvs polarized GWs

(11 increasing values of _B with low, medium and high SNRs). The k prior distribution is uniform

and periodic ∈ [0, c] for the Bayesian parameter estimation.

However, the LIGO Caltech computing cluster was overburdened at the time when these jobs were

submitted. As a result, 519 of out the 528 specified jobs in Table 2.5 were completed in a reasonable

time (16 days). The specifications of the missing job are outlined in the Appendix.

The one-dimensional _ posterior probability distributions are also plotted as histograms in the

Appendix (Figure A.6). The median and errors corresponding to the 90% credible interval for the

posterior probability distributions are given in Table A.16 and A.18 in the Appendix. Moreover,

the 90% upper and lower limits for the _B posterior probability distributions (corresponding to the

true values _B = 0.0 and _B = 1.0 respectively) are given in Table A.17.
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Figure 3.17: Violin plot of _B for tvs polarized GW in three-detector combinations for low,

medium and high SNRs. For a specific value of _B and SNR, the violin plot depicts 10 different

violins corresponding to 10 possible three-detector combinations (top) and combines them into a

single violin (bottom). Each violin represents an injection with a randomly chosen sky location,

polarization angle (k) and random distribution of the remaining polarization content between

tensor (_C value) and vector (_E value) components. The k prior distribution is uniform and

periodic ∈ [0, c] for the Bayesian parameter estimation.



61

Figure 3.18: Violin plot of _B for tvs polarized GW in four-detector combinations for low, medium

and high SNRs. For a specific value of _B and SNR, the violin plot depicts 5 different violins

corresponding to 5 possible four-detector combinations (top) and combines them into a single violin

(bottom). Each violin represents an injection with a randomly chosen sky location, polarization

angle (k) and random distribution of the remaining polarization content between tensor (_C value)

and vector (_E value) components. The k prior distribution is uniform and periodic ∈ [0, c] for the

Bayesian parameter estimation.
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Figure 3.19: Violin plot of _B for tvs polarized GW in five detectors for low, medium and high

SNRs. Each violin represents an injection with a randomly chosen sky location, polarization angle

(k) and random distribution of the remaining polarization content between tensor (_C value) and

vector (_E value) components. The k prior distribution is uniform and periodic ∈ [0, c] for the

Bayesian parameter estimation.
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3.1.7. ®_ posteriors for tvs polarized GWs with different BBH component masses

Next, we run 9 HTCondor jobs that simulate 9 different tvs polarized GWs in a five-detector network

(outlined in the first row of Table 2.6).

These 9 different tvs polarized GWs are further split into 3 simulations of progressively increasing

BBH component masses with low (3! ∈ [300, 450, 700] Mpc), medium (3! ≈ 150 Mpc) and high

(3! = 70 Mpc) SNR signals and polarization content corresponding to_C = 0.2, _E = 0.15, _B = 0.3.

Each of the 9 different GWs has a randomly chosen sky location and polarization angle from

uniform distributions of U ∈ [0, 2c], sin X ∈ [−1, 1], and k ∈ [0, c]. The remaining simulation

parameters are common in all 9 injections and are given in Table 3.2. The three progressively

increasing BBH component masses have an arbitrarily fixed mass ratio = 0.8 for simplicity.

Thus, 9 jobs = 3 different BBH component masses × 3 different SNRs.

The purpose of these jobs is to verify that our methods work for different BBH component masses.

Symbol Parameter Value

_C Tensor polarization parameter 0.20

_E Vector polarization parameter 0.15

_B Scalar polarization parameter 0.3

®B1 Spin vector of primary black hole ["⊙] 0.

®B2 Spin vector of secondary black hole ["⊙] 0.

\ 9= Inclination angle (with spin orbit precession) [rad] 0.4

k Polarization angle [rad] random

C2 Time at coalescence [GPS time in sec] 1451260818 (Jan 1, 2026)

q2 Phase at coalescence [rad] 1.3

Table 3.2: Table of common parameters in the 9 condor jobs used to verify that our method works

for different BBH component masses.

The priors used to compute the likelihood (Eq. 2.14) are Bilby’s default prior distributions for the

masses and sky location (U, X), and uniform priors for 3! . The priors for the ®_ parameters span the

entire parameter space allowed after imposing a constraint prior corresponding to Eq. 2.9. Prior

distributions that are delta functions at the true value are used for the mass, spin, orientation angle

and polarization angle (\ 9=, k) and time and phase at coalescence (C2, q2) parameters in Table 3.2.

The one-dimensional _ posterior probability distributions are also plotted as histograms in the

Appendix (Figure A.7). The median and errors corresponding to the 90% credible interval for the

posterior probability distributions are given in Table A.19 and A.20 in the Appendix.
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Figure 3.20: Violin plot of _E (top) and _B (bottom) posteriors for tvs polarized GWs from BBHs

with progressively increasing component masses for low, medium and high SNRs in five detectors.

The true values of the ®_ parameters are _E = 0.15 and _B = 0.3. Each violin represents an injection

with a randomly chosen sky location and polarization angle (k).
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3.2 Multiple Event Analysis

In this section, we explore the possibility that the fraction of vector and/or scalar polarization content

is constant for all GW radiation. This involves the hypothesis that the polarization parameters ®_ are

shared between different GW detections and are independent of all other parameters and properties

of the BBH merger.

We generate joint posterior probability distributions for n number of such event by marginalizing

over all other parameters. The ®_ posterior probability distributions are extracted from each individ-

ual event through single event evaluation of the posterior, plotted as one-dimensional histograms

and multiplied bin by bin to generate a joint ®_ posterior.

We run 149 “embarrassingly parallel” HTCondor jobs simulating 149 different GW injections in

a network of five detectors. The polarization content of all 149 GWs corresponds to _C = 0.2,

_E = 0.15 and _B = 0.3.

Each GW has a randomly chosen sky location, polarization, luminosity distance and mass of

the primary black hole from uniform distributions of U ∈ [0, 2c], sin X ∈ [−1, 1], k ∈ [0, c],
3! ∈ [100, 200] Mpc, and <1 ∈ [20, 50]"⊙ in a network of five detectors.

Masses of the secondary black hole are arbitrarily selected by randomly choosing a mass ratio from

the uniform distribution of mass ratio ∈ [0.4, 0.8] for the 149 injections.

The randomly chosen GPS time corresponds to Jan 1, 2026 when we look forward to observing

data from five ground-based GW detectors. Note that the common C2 for all the GW injections is

not a problem in our simulated study as we analyse each GW injection as a separate event before

computing a joint posterior.

The priors used to compute the likelihood (Eq. 2.14) are delta functions for the masses, spins,

orientation and polarization angles (\ 9=, k), and time and phase at coalescence (C2, q2). We use

Bilby’s default prior distributions for the sky location (U and X) and uniform priors for 3! . The

priors for the ®_ parameters span the entire parameter space allowed after imposing a constraint

corresponding to Eq. 2.9.
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Figure 3.21: _E posterior probability distribution histograms for Single (left) and Multiple Event

Analysis (right) from 149 tvs polarized GW injections with true values _C = 0.2, _E = 0.15 and

_B = 0.3.

Figure 3.22: _B posterior probability distribution histograms for single (left) and Multiple Event

Analysis from 149 tvs polarized GW injections with true values _C = 0.2, _E = 0.15 and _B = 0.3.
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C h a p t e r 4

Summary, Conclusion and Future Work

4.1 Summary

In this thesis, we demonstrate the ability to examine beyond GR regimes and test the GW polarization

prediction of GR against those of alternate metric gravitational theories by searching for non-

tensorial GW polarization modes.

We address the accuracy and precision with which we can recover the small admixtures of non-

tensorial (or non-GR) polarization components in tensor-vector-scalar (tvs) polarized, transient

GWs from BBH CBCs. This thesis is future oriented and uses simulated data from a ground-based

network of five non-co-oriented GW detectors which would only be available in 2026.

This study is a part of a larger, high risk high reward effort to challenge the completeness of GR and

possibly modify GR into a more generalized theory of gravity. We do not expect GR to be violated

and the detection of non-tensorial GW polarizations is unlikely, but potentially a spectacular probe

for new physics.

Chapter 1 discusses how resolving the polarization content of GWs by searching for admixtures

of vector and/or scalar GW polarization modes (as predicted by alternate metric gravitational

theories) challenges the existing GR theoretical framework and can lead to a more generalized

theory of gravity. It also provides a brief description of the six possible GW polarization modes

predicted by the general metric theory of gravity, how each of these modes causes a different

geometric response in the DARM of a single ground-based GW detector, and how a network of

non-co-oriented GW detectors can resolve polarization degeneracies.

Chapter 2 defines the constrained, linearized ®_ parameters (_C , _E and _B) that we use to quantify

the fraction of tensor, vector and scalar polarization components in a BBH GW signal (Eqs. 2.9 and

2.10) and outlines our assumption that vector and scalar polarization waveforms are similar to the

tensor polarized waveform and differ only in amplitude and phase (Eqs. 2.4 - 2.8). Although this

assumption is known to be false, it represents a near worst case scenario for placing upper limits

on the detection sensitivity of the vector and scalar polarization admixtures by compelling us to

use only the geometrical effect of the GW in the non-co-oriented detector network to distinguish

between polarization modes. The chapter also overviews how we generate BBH tvs polarized

GW waveforms, simulate GW detectors, and use Bayesian inference parameter estimation and

nested sampling to extract the ®_ parameters from simulated data and to quantify the GW detection
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sensitivity in a network of GW detectors.

Chapter 3 explains in further detail the parameters of the GWs which are fixed or varied for the

Bayesian inference parameter estimation. For most of the thesis, the parameters for masses, spins,

orientation angle (\ 9=), polarization angle (k), time and phase at coalescence (C2, q2) of the spinless

BBHs are “fixed” at their true values (i.e., they are delta functions at their true values outlined

in Table 3.1) in the Bayesian parameter estimation. It presents the violin plots of ®_ posterior

distributions for the GW parameter estimation jobs outlined in Tables 2.5 and 2.6.

The one-dimensional _ posterior probability distributions and credible intervals are presented both

graphically (as histograms) and in tabular form in the Appendix.

4.2 Conclusion

We quantify the dependence of polarization detection sensitivity for tvs, tv and ts polarized GWs

on the polarization composition (®_ parameters), sky location, and luminosity distance in a network

of three, four and five GW detectors (corresponding to the GW parameter estimation jobs outlined

in the first four rows of Table 2.5). The results of the study are shown as posterior probability

distribution violins for the inferred ®_ posteriors versus the true ®_ parameter values.

The violin plots for the ®_ posteriors visually demonstrate that the recovered ®_ parameter values are

accurate and precise as the posterior 90% credible intervals enclose the ®_ true values in almost

all cases and the credible intervals narrow for a greater number of GW detectors and higher SNR

signals.

A computationally intensive p-p plot of the of the recovered ®_ posteriors plotted against the true ®_
values is required to verify that x% credible intervals enclose the true value x% of the time and is

left for future work.

Quantifying precision for recovered ®_ posteriors

We estimate the average of the range of the credible intervals for the recovered ®_ posteriors (for

the first four rows in Table 2.5 which correspond to tvs polarized GWs in the violin plots 3.2 - 3.7

and corresponding credible interval Tables A.1 - A.6, the tv polarized GWs in the violin plots 3.8

- 3.10 and corresponding credible interval Tables A.7 and A.9, and the ts polarized GWs in the

violin plots 3.11 - 3.13 and corresponding credible interval Tables A.10 and A.12).

The 90% credible intervals for our inferred ®_ posterior probability distributions reduce with increas-

ing number of detectors and average at 0.094 for a three-detector network, 0.066 for a four-detector

network and 0.044 for a five-detector network. This marks a 53% narrowing of the credible inter-

vals (and consequent improvement in precision) from a three-detector network to a five-detector

network.
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The 90% credible intervals for our inferred ®_ posterior probability distributions also narrow with

increasing SNR and on an average range from 0.14 for low SNR GWs (8 ≤ G ≤ 35), 0.05 for

medium SNR GWs (35 ≤ G ≤ 100) and 0.001 for high SNR GWs (G ≥ 100). This marks a 92%

narrowing of the ®_ posterior credible intervals (and consequent improvement in precision) from a

low SNR to a high SNR GW signal.

However, observed BBH mergers usually have lower SNRs. Thus, it is notable that the major

improvement in precision for a five-detector network corresponds to the low SNR regime. Averaging

over low SNR GWs, the 90% credible intervals for our inferred ®_ posteriors range from 0.187 for

a three-detector network, 0.141 for a four-detector network, and 0.098 for a five-detector network.

This marks a 48% narrowing of the low SNR GW ®_ posterior credible intervals (and consequent

improvement in precision) from a three-detector network to a five-detector network.

Varying additional parameters in the Bayesian parameter inference

We expect that varying the mass, spin, orientation angle (\ 9=), polarization angle (k), time and

phase at coalescence (C2, q2) priors from their delta function distribution in the Bayesian parameter

estimation would decrease both the accuracy and precision of our results. However, varying all

possible parameters is prohibitively computationally intensive and beyond the scope of this thesis.

To verify that our results are not unrealistic, we allow one of these previously fixed priors, namely

the polarization angle (k) prior, to vary in the Bayesian parameter estimation for a small number

of jobs with tvs polarized GWs (outlined in rows five and six of Table 2.5) and quantify the effect

of this uniform k prior distribution on our previous results.

We estimate the change in the average range of the credible intervals for the results in which the k

prior distribution is varied uniformly in the Bayesian parameter estimation (corresponding to rows

five and six of Table 2.5, namely tvs polarized GWs in the violin plots 3.14 - 3.19 and credible

interval tables A.13- A.18) versus the previous results in which the k prior distribution is a delta

function at its true value in the Bayesian parameter estimation (corresponding to the first two rows

of Table 2.5, namely tvs polarized GWs in the violin plots 3.2 - 3.7 and credible interval tables A.1

- A.6).

The credible intervals slightly broaden (causing the precision to slightly worsen) when the prior k

distribution is uniform and periodic ∈ [0, c] as compared to when it is a delta function at its true

value. When the k prior is uniformly varied, the 90% credible intervals increase by an average of

0.0045 from their previous values where the k prior is fixed. This marks a 5.6% broadening in the

®_ posterior credible intervals when the k prior distribution is chosen to be uniform and periodic

instead of a delta function. The choice of the k prior distribution has almost equal effect on the

precision of both _E and _B parameters.
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However, we expect that varying the orientation angle (\ 9=) prior from its delta function distri-

bution in the Bayesian parameter estimation would have a more significant impact on our results.

Quantifying the effect on detection sensitivity by uniformly varying the prior \ 9= ∈ [0, c] in the

Bayesian parameter estimation is left for future work.

Verifying that the method works for different BBH component mass values

The violin plots for the _E and _B posteriors in Figure 3.20 visually demonstrate that the recovered

®_ parameter values for all three different BBH masses are accurate and precise as the posterior 90%

credible intervals enclose the ®_ true values in almost all cases. This implies that our methods work

for different BBH component masses.

We expect the ®_ parameter estimation precision to decrease with increasing component masses.

This is because, larger mass binaries merge at a lower frequency where the ground-based GW

detectors have a smaller bandwidth due to seismic noise [34]. Moreover, the rate of events and the

distance up to which signals can be detected also change as a function of the binary masses and can

affect the precision.

However, a more comprehensive analysis of the dependence of polarization sensitivity on BBH

mass values is left for future work.

Multiple Event Analysis:

Polarization detection sensitivity if the fraction of vector and/or scalar polarization content

is constant for all GW radiation

Under the hypothesis that the polarization ®_ parameters are shared between different GW detections

and are independent of other parameters and properties of the BBH merger, we generate joint one-

dimensional _ posterior probability distributions for 149 such GW events by marginalizing over all

other parameters. This enables us to explore the possibility that the fraction of vector and/or scalar

polarization content is constant for all GW radiation.

The ®_ posterior probability distribution histograms for the Single versus Multiple Event Analysis for

149 different GWs in five detectors (Figures 3.21 and 3.22) indicate that results from the Multiple

Event Analysis have better precision as the statistical errors reach the sub 1% level.

However, in the Multiple Event Analysis for _B posterior in Figure 3.22, we observe a bias in

the accuracy due to systematic errors as the precision increases. Thus, in the regime where the

statistical error reaches a sub 1% level (the width of the _B posterior in Figure 3.22 marks a statistical

error of about 0.3%) subtle systematic errors dominate and must be considered.
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Systematic Errors

The most probable sources of systematic error in our simulated study are the Bayseian analysis and

the method by which results from multiple events are combined to generate a joint posterior. In a

real event, however, the major sources of systematic errors include the LIGO calibrated response

to a GW signal at 2% accuracy, the LIGO waveform model at 1% accuracy, and the LIGO noise

model at 1-2% accuracy.

4.3 Future work

Near-term future work involves looking for evidence of the presence of vector and/or scalar GW

polarization components in BBH mergers observed from three or more (ideally five) detectors.

To further benefit such a study, the limit on non-tensor GW polarization admixtures should be

estimated in an even more realistic, computationally rigorous manner by allowing the mass, spin,

orientation angle (\ 9=), time and phase at coalescence (C2, q2) priors to vary from their delta function

distributions in the Bayesian parameter estimation.

Moreover, the computationally intensive p-p plot of the recovered ®_ posteriors versus the true ®_
values should be plotted and analyzed to verify that ®_ posterior x% credible intervals enclose the

true ®_ values x% of the time.

Furthermore, long term future work involves constraining the limit on non-tensor GW polarization

admixtures arbitrarily well. This can be achieved by developing the true vector and scalar polar-

ized GW waveforms either through a theoretical framework for non-tensor GW waveforms or by

reconstructing the vector and scalar waveforms from observational data [12]. If the true vector

and scalar waveforms are known, the nested sampler can use a waveform template in addition to

the geometrical effect of the GW in the non-co-oriented detector network to distinguish between

polarization modes. This crucial additional information could drastically improve our polarization

detector sensitivity.

Searching for non-tensorial beyond GR polarizations is part of a larger effort to advance our

understanding of gravity in the strong-field, highly dynamic regime. In the case that such admixtures

of non-tensor GW polarizations are observed, we must strive to understand the physics behind them.
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A p p e n d i x A

Single Event Analysis

The _E and _B violin plots are sufficient to visually confirm that the results in chapter 3 are accurate

and precise.

In addition to the violin plots, we present the one-dimensional posterior probability distributions

histograms of the inferred ®_ posteriors versus the injected ®_ values and the 90 % credible interval

tables for the various sets of 528 jobs outlined in Table 2.5 and the 9 jobs outlined in the first row of

Table 2.6. These histograms and credible interval tables essentially convey the same information

presented in the violin plots.

Each histogram in this section is created through a Single Event Analysis. That is, _C , _E and _B

probability distributions are extracted from each individual event through a separate evaluation of

the posterior.

A.1 Tensor-Vector-Scalar (tvs) polarized GWs

_E posterior for tvs polarized GWs; fixed k prior

In the following Figure A.1, we plot histograms of _E posterior probability distributions for tvs

polarized GWs. The rows step through 11 progressively increasing values of _E ∈ [0, 0.5].
The remaining polarization content is randomly distributed between tensor (_C) and scalar (_B)

components as per the constraint in Equation 2.9.

The 90% credible intervals for the _E and _B posterior probability distributions are given in Tables

A.1 and A.3 respectively. Moreover, the 90% upper and lower limits for the _E posterior probability

distributions (corresponding to true values _E = 0.0 and _E = 0.5 respectively) are given in Table

A.2.
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Figure A.1: Histograms of_E posteriors for tvs polarized GWs averaged over all possible three (left),

four (middle) and five (right) detector combinations for low, medium and high SNRs (corresponding

to Figures 3.2, 3.3 and 3.4 respectively). The rows step through 11 progressively increasing values

of _E ∈ [0, 0.5]. The remaining polarization content is randomly distributed between tensor (_C)

and scalar (_B) components as per the constraint in Equation 2.9. Each histogram corresponds to

an injection with a randomly chosen sky location and polarization angle (k).
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_E true SNR 3 detectors 4 detectors 5 detectors

0.0

Low 0.01+0.03
−0.009

0.01+0.02
−0.007

0.01+0.01
−0.005

Med 0.004+0.008
−0.003

0.003+0.006
−0.003

0.001+0.003
−0.001

High 0.001+0.003
−0.001

0.001+0.003
−0.001

0.001+0.001
−0.0008

0.05

Low 0.05+0.03
−0.03

0.05+0.04
−0.03

0.05+0.02
−0.02

Med 0.05+0.04
−0.02

0.05+0.01
−0.01

0.055+0.008
−0.008

High 0.049+0.007
−0.004

0.051+0.003
−0.004

0.050+0.002
−0.002

0.1

Low 0.10+0.03
−0.03

0.10+0.02
−0.02

0.10+0.01
−0.01

Med 0.10+0.01
−0.01

0.099+0.005
−0.006

0.105+0.004
−0.004

High 0.100+0.003
−0.002

0.100+0.002
−0.002

0.102+0.001
−0.001

0.15

Low 0.15+0.03
−0.03

0.16+0.02
−0.02

0.15+0.02
−0.02

Med 0.15+0.01
−0.01

0.15+0.01
−0.007

0.155+0.004
−0.004

High 0.151+0.004
−0.005

0.150+0.003
−0.004

0.150+0.002
−0.002

0.2

Low 0.20+0.08
−0.05

0.20+0.03
−0.03

0.21+0.02
−0.02

Med 0.20+0.01
−0.01

0.203+0.009
−0.009

0.197+0.005
−0.005

High 0.201+0.003
−0.004

0.200+0.002
−0.003

0.201+0.002
−0.002

0.25

Low 0.25+0.05
−0.04

0.25+0.03
−0.04

0.25+0.03
−0.02

Med 0.25+0.04
−0.03

0.25+0.01
−0.01

0.247+0.008
−0.008

High 0.250+0.006
−0.003

0.250+0.002
−0.001

0.252+0.001
−0.001

0.3

Low 0.30+0.04
−0.05

0.30+0.03
−0.03

0.32+0.02
−0.02

Med 0.30+0.01
−0.007

0.299+0.005
−0.006

0.301+0.003
−0.003

High 0.300+0.003
−0.002

0.300+0.001
−0.001

0.301+0.001
−0.001

0.35

Low 0.34+0.03
−0.03

0.34+0.03
−0.03

0.33+0.02
−0.01

Med 0.35+0.03
−0.02

0.35+0.02
−0.01

0.351+0.008
−0.008

High 0.349+0.002
−0.005

0.349+0.003
−0.002

0.349+0.001
−0.001

0.4

Low 0.40+0.04
−0.04

0.38+0.04
−0.03

0.42+0.03
−0.02

Med 0.40+0.02
−0.01

0.40+0.01
−0.01

0.407+0.007
−0.007

High 0.400+0.003
−0.003

0.400+0.002
−0.002

0.399+0.001
−0.001

0.45

Low 0.44+0.04
−0.05

0.45+0.03
−0.04

0.43+0.03
−0.03

Med 0.45+0.02
−0.03

0.45+0.01
−0.02

0.450+0.009
−0.008

High 0.450+0.004
−0.004

0.451+0.003
−0.003

0.451+0.002
−0.002
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_E true SNR 3 detectors 4 detectors 5 detectors

0.5

Low 0.48+0.02
−0.03

0.48+0.01
−0.02

0.48+0.01
−0.02

Med 0.49+0.01
−0.03

0.49+0.007
−0.01

0.490+0.007
−0.008

High 0.497+0.002
−0.006

0.498+0.001
−0.003

0.499+0.001
−0.002

Table A.1: Table of _E median and errors corresponding to a 90% credible interval for the posterior

probability distributions in Figures 3.2, 3.3, 3.4 and Histograms in Figure A.1.

_E true SNR 3 detectors 4 detectors 5 detectors

0.0

Low 0.03 0.02 0.014

Med 0.01 0.007 0.003

High 0.003 0.004 0.002

0.5

Low 0.46 0.46 0.47

Med 0.47 0.48 0.483

High 0.493 0.496 0.498

Table A.2: Table of _E posterior 90% upper (row 1) and lower (row 2) limits (corresponding to true

values _E = 0.0 and _E = 0.5 respectively) in Figures 3.2, 3.3, 3.4.

_B true SNR 3 detectors 4 detectors 5 detectors

0.7 Low 0.69+0.06
−0.06

0.68+0.05
−0.05

0.68+0.03
−0.03

0.86 Low 0.87+0.06
−0.06

0.86+0.06
−0.07

0.87+0.04
−0.04

0.53 Low 0.52+0.08
−0.09

0.53+0.06
−0.06

0.55+0.04
−0.04

0.43 Low 0.43+0.07
−0.07

0.42+0.04
−0.05

0.41+0.03
−0.03

0.37 Low 0.4+0.1
−0.2

0.38+0.05
−0.06

0.39+0.04
−0.03

0.4 Low 0.4+0.09
−0.1

0.41+0.08
−0.08

0.38+0.05
−0.07

0.1 Low 0.08+0.09
−0.06

0.10+0.05
−0.06

0.08+0.03
−0.03

0.21 Low 0.21+0.03
−0.03

0.21+0.03
−0.04

0.23+0.01
−0.01

0.12 Low 0.1+0.1
−0.1

0.2+0.08
−0.1

0.09+0.05
−0.06

0.03 Low 0.03+0.04
−0.03

0.03+0.03
−0.03

0.03+0.02
−0.02

0.0 Low 0.03+0.06
−0.02

0.02+0.05
−0.01

0.02+0.03
−0.02
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_B true SNR 3 detectors 4 detectors 5 detectors

0.06 Med 0.06+0.02
−0.02

0.06+0.01
−0.01

0.059+0.008
−0.008

0.36 Med 0.36+0.03
−0.02

0.36+0.01
−0.01

0.354+0.008
−0.007

0.45 Med 0.45+0.03
−0.03

0.45+0.02
−0.01

0.442+0.009
−0.008

0.38 Med 0.38+0.02
−0.03

0.38+0.02
−0.02

0.377+0.009
−0.009

0.49 Med 0.49+0.03
−0.02

0.48+0.01
−0.01

0.494+0.009
−0.009

0.33 Med 0.33+0.03
−0.07

0.33+0.01
−0.02

0.33+0.01
−0.01

0.33 Med 0.33+0.02
−0.03

0.33+0.02
−0.02

0.328+0.008
−0.008

0.18 Med 0.18+0.04
−0.06

0.18+0.03
−0.02

0.18+0.01
−0.02

0.06 Med 0.05+0.03
−0.04

0.06+0.03
−0.04

0.05+0.02
−0.02

0.05 Med 0.04+0.05
−0.03

0.05+0.03
−0.03

0.05+0.02
−0.02

0.0 Med 0.02+0.04
−0.01

0.01+0.03
−0.01

0.02+0.02
−0.01

0.75 High 0.748+0.007
−0.008

0.75+0.005
−0.01

0.749+0.004
−0.004

0.1 High 0.10+0.007
−0.02

0.100+0.005
−0.005

0.100+0.002
−0.002

0.4 High 0.40+0.01
−0.01

0.399+0.008
−0.006

0.396+0.005
−0.004

0.24 High 0.24+0.01
−0.01

0.24+0.01
−0.01

0.239+0.006
−0.006

0.36 High 0.36+0.007
−0.01

0.360+0.005
−0.005

0.361+0.003
−0.003

0.22 High 0.22+0.007
−0.01

0.221+0.004
−0.005

0.222+0.003
−0.003

0.29 High 0.290+0.005
−0.004

0.291+0.004
−0.003

0.290+0.002
−0.002

0.3 High 0.299+0.005
−0.005

0.299+0.005
−0.004

0.301+0.002
−0.002

0.04 High 0.040+0.007
−0.005

0.040+0.003
−0.003

0.040+0.002
−0.002

0.06 High 0.061+0.004
−0.004

0.061+0.003
−0.003

0.061+0.002
−0.002

0.0 High 0.00+0.01
−0.002

0.002+0.005
−0.002

0.001+0.002
−0.0009

Table A.3: Table of _B median and errors corresponding to a 90% credible interval for the posterior

probability distributions in Figures 3.2, 3.3, 3.4 and Histograms in Figure A.1.
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_B posterior for tvs polarized GWs; fixed k prior

In the following Figure A.2, we plot histograms of_B posterior probability distributions for tvs polar-

ized GWs. The rows step through 11 progressively increasing values of _B ∈ [0, 1]. The remaining

polarization content is randomly distributed between tensor (_C) and vector (_E) components as per

the constraint in Equation 2.9.

The 90% credible intervals for the _B and _E posterior probability distributions are given in Tables

A.4 and A.6 respectively. Moreover, the 90% upper and lower limits for the _B posterior probability

distributions (corresponding to true values _B = 0.0 and _B = 1.0 respectively) are given in Table

A.5.
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Figure A.2: Histograms of_B posteriors for tvs polarized GWs averaged over all possible three (left),

four (middle) and five (right) detector combinations for low, medium and high SNRs (corresponding

to Figures 3.5, 3.6 and 3.7 respectively). The rows step through 11 progressively increasing values

of _B ∈ [0, 1]. The remaining polarization content is randomly distributed between tensor (_C) and

vector (_E) components as per the constraint in Equation 2.9. Each histogram corresponds to an

injection with a randomly chosen sky location and polarization angle (k).
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_B true SNR 3 detectors 4 detectors 5 detectors

0.0

Low 0.04+0.09
−0.03

0.02+0.04
−0.02

0.01+0.02
−0.009

Med 0.01+0.02
−0.006

0.01+0.01
−0.006

0.006+0.008
−0.005

High 0.002+0.005
−0.002

0.001+0.003
−0.0008

0.001+0.002
−0.001

0.1

Low 0.10+0.06
−0.05

0.10+0.05
−0.04

0.08+0.03
−0.03

Med 0.10+0.02
−0.04

0.10+0.02
−0.02

0.11+0.01
−0.01

High 0.100+0.004
−0.005

0.099+0.003
−0.003

0.101+0.002
−0.002

0.2

Low 0.2+0.1
−0.1

0.18+0.08
−0.07

0.15+0.05
−0.05

Med 0.20+0.02
−0.03

0.20+0.02
−0.01

0.203+0.009
−0.009

High 0.200+0.003
−0.003

0.200+0.001
−0.002

0.199+0.001
−0.001

0.3

Low 0.30+0.05
−0.05

0.30+0.03
−0.04

0.28+0.02
−0.02

Med 0.30+0.02
−0.02

0.30+0.02
−0.01

0.305+0.008
−0.008

High 0.299+0.006
−0.008

0.301+0.004
−0.005

0.299+0.003
−0.003

0.4

Low 0.4+0.08
−0.1

0.4+0.1
−0.06

0.41+0.05
−0.05

Med 0.40+0.04
−0.06

0.40+0.02
−0.02

0.399+0.008
−0.008

High 0.399+0.005
−0.005

0.399+0.004
−0.004

0.400+0.003
−0.003

0.5

Low 0.50+0.06
−0.06

0.50+0.05
−0.04

0.52+0.03
−0.04

Med 0.50+0.05
−0.06

0.50+0.02
−0.04

0.50+0.01
−0.01

High 0.499+0.007
−0.008

0.502+0.006
−0.006

0.497+0.003
−0.004

0.6

Low 0.60+0.08
−0.07

0.60+0.05
−0.04

0.60+0.04
−0.04

Med 0.59+0.03
−0.03

0.60+0.03
−0.02

0.60+0.01
−0.01

High 0.60+0.01
−0.006

0.600+0.007
−0.005

0.601+0.003
−0.003

0.7

Low 0.7+0.07
−0.1

0.66+0.05
−0.06

0.67+0.06
−0.06

Med 0.70+0.02
−0.02

0.70+0.02
−0.02

0.71+0.01
−0.01

High 0.699+0.005
−0.005

0.699+0.004
−0.003

0.701+0.002
−0.002

0.8

Low 0.75+0.08
−0.09

0.78+0.06
−0.07

0.71+0.06
−0.06

Med 0.79+0.03
−0.03

0.80+0.02
−0.02

0.81+0.01
−0.01

High 0.800+0.007
−0.009

0.800+0.003
−0.003

0.798+0.002
−0.002

0.9

Low 0.86+0.06
−0.06

0.88+0.06
−0.06

0.90+0.04
−0.04

Med 0.90+0.03
−0.04

0.90+0.02
−0.02

0.90+0.01
−0.01

High 0.90+0.01
−0.01

0.901+0.006
−0.006

0.898+0.005
−0.005
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_B true SNR 3 detectors 4 detectors 5 detectors

1.0

Low 0.95+0.04
−0.09

0.95+0.04
−0.06

0.97+0.02
−0.03

Med 0.99+0.009
−0.02

0.99+0.007
−0.01

0.995+0.004
−0.007

High 0.99+0.004
−0.01

0.997+0.002
−0.004

0.997+0.002
−0.003

Table A.4: Table of _B median and errors corresponding to a 90% credible interval for the posterior

probability distributions in Figures 3.5, 3.6, 3.7 and Histograms in Figure A.2.

_B true SNR 3 detectors 4 detectors 5 detectors

0.0

Low 0.1 0.05 0.03

Med 0.03 0.02 0.012

High 0.006 0.003 0.002

1.0

Low 0.88 0.90 0.95

Med 0.98 0.98 0.99

High 0.987 0.994 0.995

Table A.5: Table of _B posterior 90% upper (row 1) and lower (row 2) limits (corresponding to true

values _B = 0.0 and _B = 1.0 respectively) in Figures 3.5, 3.6, 3.7.

_E true SNR 3 detectors 4 detectors 5 detectors

0.41 Low 0.39+0.03
−0.06

0.40+0.03
−0.03

0.42+0.01
−0.01

0.06 Low 0.06+0.04
−0.04

0.05+0.05
−0.03

0.07+0.02
−0.03

0.08 Low 0.08+0.03
−0.03

0.08+0.02
−0.02

0.09+0.01
−0.01

0.08 Low 0.07+0.05
−0.03

0.08+0.03
−0.04

0.09+0.02
−0.02

0.13 Low 0.12+0.08
−0.06

0.15+0.04
−0.09

0.12+0.03
−0.04

0.2 Low 0.20+0.04
−0.06

0.20+0.03
−0.02

0.19+0.02
−0.02

0.09 Low 0.09+0.03
−0.05

0.10+0.02
−0.03

0.07+0.02
−0.02

0.01 Low 0.03+0.05
−0.03

0.02+0.04
−0.02

0.04+0.03
−0.03

0.1 Low 0.11+0.03
−0.03

0.10+0.02
−0.03

0.12+0.02
−0.02

0.0 Low 0.02+0.04
−0.02

0.02+0.03
−0.02

0.02+0.02
−0.02

0.0 Low 0.01+0.04
−0.01

0.01+0.03
−0.01

0.01+0.01
−0.008
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_E true SNR 3 detectors 4 detectors 5 detectors

0.09 Med 0.09+0.01
−0.01

0.09+0.009
−0.01

0.095+0.005
−0.005

0.08 Med 0.08+0.02
−0.01

0.081+0.009
−0.007

0.078+0.005
−0.005

0.04 Med 0.04+0.01
−0.02

0.041+0.008
−0.009

0.038+0.005
−0.005

0.06 Med 0.06+0.01
−0.02

0.06+0.01
−0.02

0.059+0.006
−0.006

0.22 Med 0.22+0.03
−0.01

0.218+0.005
−0.007

0.219+0.003
−0.003

0.21 Med 0.21+0.02
−0.03

0.21+0.03
−0.01

0.206+0.008
−0.008

0.14 Med 0.14+0.02
−0.02

0.14+0.009
−0.02

0.136+0.006
−0.006

0.14 Med 0.14+0.01
−0.02

0.139+0.007
−0.008

0.140+0.005
−0.005

0.03 Med 0.03+0.01
−0.01

0.03+0.01
−0.01

0.026+0.006
−0.006

0.04 Med 0.04+0.01
−0.02

0.041+0.008
−0.008

0.038+0.006
−0.007

0.0 Med 0.003+0.007
−0.002

0.002+0.005
−0.002

0.001+0.002
−0.001

0.09 High 0.090+0.003
−0.002

0.090+0.002
−0.001

0.090+0.001
−0.001

0.22 High 0.220+0.004
−0.003

0.220+0.003
−0.003

0.220+0.002
−0.002

0.08 High 0.080+0.005
−0.005

0.080+0.004
−0.004

0.079+0.002
−0.002

0.19 High 0.190+0.003
−0.002

0.190+0.002
−0.002

0.190+0.001
−0.001

0.2 High 0.200+0.003
−0.002

0.200+0.003
−0.002

0.199+0.001
−0.001

0.01 High 0.010+0.002
−0.004

0.010+0.002
−0.002

0.011+0.001
−0.001

0.09 High 0.090+0.003
−0.003

0.090+0.002
−0.001

0.0895+0.0009
−0.0009

0.08 High 0.080+0.004
−0.003

0.080+0.003
−0.003

0.081+0.002
−0.002

0.01 High 0.011+0.004
−0.004

0.009+0.002
−0.002

0.010+0.001
−0.001

0.03 High 0.030+0.002
−0.002

0.029+0.001
−0.001

0.030+0.001
−0.001

0.0 High 0.002+0.006
−0.001

0.001+0.002
−0.0009

0.001+0.001
−0.0006

Table A.6: Table of _E median and errors corresponding to a 90% credible interval for the posterior

probability distributions in Figures 3.5, 3.6, 3.7 and Histograms in Figure A.2.
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A.2 Tensor-Vector (tv) polarized GWs

_E posterior for tv polarized GWs; fixed k prior

In the following Figure A.3, we plot histograms of _E posterior probability distributions for tv

polarized GWs. The rows step through 11 progressively increasing values of _E ∈ [0, 0.5]. All the

remaining polarization content is tensorial (i.e. _B = 0).

The 90% credible intervals for the _E and _B posterior probability distributions are given in Tables

A.7 and A.9 respectively. Moreover, the 90% upper and lower limits for the _E posterior probability

distributions (corresponding to true values _E = 0.0 and _E = 0.5 respectively) are given in Table

A.8.
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Figure A.3: Histograms of _E posteriors for tv polarized GWs averaged over all possible three (left),

four (middle) and five (right) detector combinations for low, medium and high SNRs (corresponding

to Figures 3.8, 3.9 and 3.10 respectively). The rows step through 11 progressively increasing values

of _E ∈ [0, 0.5]. All the remaining polarization content is tensorial (i.e. _B = 0). Each histogram

corresponds to an injection with a randomly chosen sky location and polarization angle (k).
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_E true SNR 3 detectors 4 detectors 5 detectors

0.0

Low 0.01+0.02
−0.009

0.01+0.02
−0.007

0.005+0.009
−0.004

Med 0.004+0.009
−0.003

0.003+0.006
−0.002

0.002+0.004
−0.002

High 0.001+0.002
−0.001

0.001+0.001
−0.0005

0.0005+0.0009
−0.0005

0.05

Low 0.05+0.04
−0.03

0.04+0.03
−0.03

0.05+0.02
−0.02

Med 0.06+0.02
−0.01

0.06+0.009
−0.01

0.050+0.007
−0.006

High 0.048+0.004
−0.005

0.050+0.002
−0.002

0.048+0.002
−0.002

0.1

Low 0.10+0.02
−0.03

0.10+0.02
−0.02

0.11+0.01
−0.01

Med 0.10+0.009
−0.01

0.097+0.005
−0.005

0.095+0.004
−0.004

High 0.099+0.003
−0.002

0.100+0.002
−0.002

0.100+0.0009
−0.001

0.15

Low 0.14+0.04
−0.03

0.15+0.02
−0.02

0.14+0.01
−0.01

Med 0.14+0.009
−0.01

0.147+0.006
−0.007

0.149+0.004
−0.004

High 0.148+0.002
−0.003

0.149+0.001
−0.002

0.150+0.001
−0.002

0.2

Low 0.21+0.04
−0.06

0.19+0.02
−0.03

0.20+0.02
−0.02

Med 0.20+0.009
−0.01

0.198+0.008
−0.007

0.198+0.005
−0.005

High 0.199+0.002
−0.003

0.199+0.002
−0.002

0.200+0.001
−0.001

0.25

Low 0.23+0.03
−0.03

0.23+0.02
−0.03

0.24+0.02
−0.02

Med 0.24+0.009
−0.02

0.248+0.008
−0.006

0.243+0.004
−0.005

High 0.250+0.002
−0.002

0.250+0.002
−0.002

0.249+0.001
−0.001

0.3

Low 0.30+0.04
−0.04

0.28+0.03
−0.04

0.29+0.02
−0.02

Med 0.30+0.007
−0.01

0.299+0.005
−0.007

0.297+0.003
−0.003

High 0.299+0.001
−0.001

0.300+0.001
−0.001

0.3003+0.0007
−0.0008

0.35

Low 0.34+0.06
−0.03

0.34+0.04
−0.02

0.35+0.02
−0.02

Med 0.34+0.01
−0.02

0.35+0.008
−0.01

0.345+0.005
−0.006

High 0.350+0.003
−0.003

0.350+0.002
−0.003

0.349+0.001
−0.001

0.4

Low 0.39+0.03
−0.03

0.38+0.02
−0.03

0.38+0.02
−0.02

Med 0.39+0.01
−0.02

0.40+0.007
−0.01

0.397+0.004
−0.005

High 0.400+0.002
−0.006

0.400+0.002
−0.002

0.399+0.001
−0.001

0.45

Low 0.43+0.04
−0.04

0.44+0.03
−0.03

0.44+0.03
−0.02

Med 0.44+0.01
−0.03

0.45+0.008
−0.03

0.444+0.005
−0.006

High 0.450+0.007
−0.004

0.449+0.003
−0.003

0.450+0.002
−0.002
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_E true SNR 3 detectors 4 detectors 5 detectors

0.5

Low 0.48+0.02
−0.04

0.47+0.02
−0.02

0.47+0.02
−0.02

Med 0.49+0.01
−0.02

0.49+0.007
−0.01

0.495+0.004
−0.006

High 0.497+0.002
−0.004

0.497+0.002
−0.003

0.499+0.001
−0.002

Table A.7: Table of _E median and errors corresponding to a 90% credible interval for the posterior

probability distributions in Figures 3.8, 3.9, 3.10 and Histograms in Figure A.3.

_E true SNR 3 detectors 4 detectors 5 detectors

0.0

Low 0.03 0.02 0.012

Med 0.011 0.007 0.005

High 0.003 0.0014 0.0012

0.5

Low 0.45 0.45 0.45

Med 0.47 0.481 0.49

High 0.494 0.495 0.498

Table A.8: Table of _E posterior 90% upper (row 1) and lower (row 2) limits (corresponding to true

values _E = 0.0 and _E = 0.5 respectively) in Figures 3.8, 3.9, 3.10.

_B true SNR 3 detectors 4 detectors 5 detectors

0.0 Low 0.02+0.05
−0.02

0.02+0.03
−0.02

0.02+0.03
−0.02

0.0 Low 0.02+0.05
−0.02

0.03+0.04
−0.02

0.04+0.03
−0.03

0.0 Low 0.03+0.09
−0.02

0.02+0.04
−0.02

0.02+0.03
−0.02

0.0 Low 0.04+0.06
−0.03

0.02+0.05
−0.02

0.02+0.03
−0.02

0.0 Low 0.02+0.08
−0.02

0.01+0.05
−0.01

0.02+0.02
−0.01

0.0 Low 0.05+0.08
−0.05

0.05+0.08
−0.05

0.05+0.06
−0.04

0.0 Low 0.03+0.07
−0.02

0.02+0.08
−0.02

0.03+0.03
−0.02

0.0 Low 0.02+0.03
−0.02

0.02+0.03
−0.02

0.03+0.03
−0.02

0.0 Low 0.0+0.1
−0.04

0.04+0.08
−0.04

0.03+0.05
−0.03

0.0 Low 0.02+0.04
−0.02

0.01+0.03
−0.009

0.02+0.02
−0.02

0.0 Low 0.02+0.07
−0.02

0.03+0.04
−0.02

0.04+0.03
−0.03
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_B true SNR 3 detectors 4 detectors 5 detectors

0.0 Med 0.00+0.01
−0.004

0.007+0.009
−0.006

0.009+0.008
−0.007

0.0 Med 0.01+0.03
−0.008

0.01+0.02
−0.01

0.01+0.01
−0.006

0.0 Med 0.01+0.02
−0.01

0.01+0.02
−0.007

0.01+0.01
−0.009

0.0 Med 0.01+0.03
−0.01

0.01+0.02
−0.01

0.01+0.01
−0.007

0.0 Med 0.01+0.03
−0.009

0.01+0.01
−0.007

0.01+0.01
−0.008

0.0 Med 0.01+0.05
−0.01

0.01+0.02
−0.008

0.01+0.01
−0.008

0.0 Med 0.01+0.03
−0.007

0.01+0.02
−0.005

0.003+0.005
−0.002

0.0 Med 0.02+0.04
−0.02

0.01+0.02
−0.009

0.01+0.01
−0.008

0.0 Med 0.02+0.05
−0.01

0.01+0.02
−0.01

0.01+0.01
−0.005

0.0 Med 0.02+0.05
−0.02

0.01+0.03
−0.008

0.01+0.01
−0.008

0.0 Med 0.01+0.04
−0.01

0.01+0.02
−0.01

0.00+0.01
−0.004

0.0 High 0.001+0.003
−0.001

0.001+0.002
−0.001

0.001+0.002
−0.0009

0.0 High 0.001+0.009
−0.001

0.001+0.002
−0.001

0.002+0.002
−0.001

0.0 High 0.003+0.007
−0.003

0.003+0.008
−0.003

0.002+0.004
−0.002

0.0 High 0.01+0.01
−0.005

0.003+0.006
−0.003

0.005+0.006
−0.004

0.0 High 0.00+0.02
−0.002

0.002+0.005
−0.002

0.001+0.001
−0.0006

0.0 High 0.002+0.006
−0.002

0.002+0.005
−0.002

0.002+0.003
−0.002

0.0 High 0.002+0.003
−0.002

0.001+0.002
−0.0009

0.001+0.002
−0.001

0.0 High 0.001+0.003
−0.001

0.001+0.002
−0.0007

0.001+0.001
−0.0007

0.0 High 0.00+0.01
−0.001

0.001+0.002
−0.001

0.001+0.002
−0.001

0.0 High 0.002+0.003
−0.001

0.001+0.003
−0.001

0.001+0.001
−0.0006

0.0 High 0.004+0.009
−0.003

0.003+0.005
−0.002

0.001+0.002
−0.0007

Table A.9: Table of _B median and errors corresponding to a 90% credible interval for the posterior

probability distributions in Figures 3.8, 3.9, 3.10 and Histograms in Figure A.3.
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A.3 Tensor-Scalar (ts) polarized GWs

_B posterior for ts polarized GWs; fixed k prior

In the following Figure A.4, we plot histograms of _B posterior probability distributions for ts

polarized GWs. The rows step through 11 progressively increasing values of _B ∈ [0, 1]. All the

remaining polarization content is tensorial (i.e. _E = 0).

The 90% credible intervals for the _B and _E posterior probability distributions are given in Tables

A.10 and A.12 respectively. Moreover, the 90% upper and lower limits for the _B posterior

probability distributions (corresponding to true values _B = 0.0 and _B = 1.0 respectively) are

given in Table A.11.
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Figure A.4: Histograms of _B posteriors for ts polarized GWs averaged over three (left), four

(middle) and five (right) detector combinations for low, medium and high SNRs (corresponding to

Figures 3.11, 3.12 and 3.13 respectively). The rows step through 11 progressively increasing values

of _B ∈ [0, 1]. All the remaining polarization content is tensorial (i.e., _E = 0). Each histogram

corresponds to an injection with a randomly chosen sky location and polarization angle (k).
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_B true SNR 3 detectors 4 detectors 5 detectors

0.0

Low 0.03+0.05
−0.02

0.02+0.05
−0.02

0.02+0.03
−0.02

Med 0.01+0.02
−0.008

0.01+0.01
−0.005

0.005+0.008
−0.004

High 0.002+0.005
−0.002

0.002+0.002
−0.002

0.001+0.002
−0.001

0.1

Low 0.09+0.04
−0.04

0.09+0.03
−0.04

0.09+0.02
−0.02

Med 0.10+0.02
−0.03

0.11+0.01
−0.02

0.10+0.01
−0.01

High 0.099+0.005
−0.006

0.101+0.004
−0.003

0.101+0.002
−0.002

0.2

Low 0.2+0.1
−0.1

0.2+0.07
−0.1

0.16+0.05
−0.06

Med 0.20+0.03
−0.02

0.20+0.01
−0.01

0.196+0.008
−0.008

High 0.200+0.003
−0.003

0.200+0.002
−0.001

0.200+0.001
−0.001

0.3

Low 0.29+0.06
−0.06

0.31+0.03
−0.03

0.29+0.02
−0.02

Med 0.29+0.02
−0.04

0.29+0.01
−0.01

0.307+0.008
−0.008

High 0.298+0.004
−0.004

0.299+0.003
−0.003

0.300+0.002
−0.002

0.4

Low 0.37+0.06
−0.09

0.39+0.03
−0.04

0.38+0.03
−0.04

Med 0.4+0.02
−0.2

0.40+0.01
−0.01

0.397+0.006
−0.007

High 0.402+0.007
−0.008

0.401+0.005
−0.008

0.400+0.003
−0.003

0.5

Low 0.49+0.04
−0.03

0.48+0.03
−0.02

0.47+0.02
−0.02

Med 0.5+0.05
−0.1

0.49+0.03
−0.02

0.51+0.01
−0.01

High 0.500+0.009
−0.008

0.500+0.005
−0.004

0.502+0.003
−0.004

0.6

Low 0.6+0.1
−0.06

0.59+0.06
−0.06

0.58+0.04
−0.03

Med 0.59+0.02
−0.03

0.60+0.02
−0.02

0.59+0.009
−0.01

High 0.598+0.006
−0.009

0.601+0.004
−0.006

0.597+0.003
−0.003

0.7

Low 0.66+0.07
−0.08

0.66+0.05
−0.06

0.69+0.04
−0.05

Med 0.69+0.03
−0.04

0.69+0.02
−0.02

0.69+0.01
−0.01

High 0.700+0.005
−0.005

0.699+0.003
−0.003

0.698+0.002
−0.002

0.8

Low 0.8+0.1
−0.1

0.76+0.07
−0.08

0.73+0.05
−0.05

Med 0.79+0.02
−0.04

0.79+0.01
−0.03

0.799+0.009
−0.009

High 0.799+0.004
−0.006

0.800+0.003
−0.003

0.799+0.002
−0.002

0.9

Low 0.9+0.07
−0.1

0.86+0.08
−0.05

0.89+0.04
−0.04

Med 0.90+0.03
−0.03

0.90+0.02
−0.01

0.89+0.009
−0.01

High 0.90+0.01
−0.01

0.898+0.005
−0.006

0.896+0.003
−0.004
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_B true SNR 3 detectors 4 detectors 5 detectors

1.0

Low 0.95+0.04
−0.06

0.96+0.03
−0.06

0.97+0.02
−0.03

Med 0.99+0.009
−0.02

0.99+0.007
−0.01

0.995+0.003
−0.006

High 1.00+0.003
−0.02

0.997+0.002
−0.004

0.998+0.001
−0.002

Table A.10: Table of _B median and errors corresponding to a 90% credible interval for the posterior

probability distributions in Figures 3.11, 3.12, 3.13 and Histograms in Figure A.4

_B true SNR 3 detectors 4 detectors 5 detectors

0.0

Low 0.07 0.06 0.04

Med 0.02 0.014 0.011

High 0.005 0.004 0.002

1.0

Low 0.90 0.91 0.95

Med 0.98 0.98 0.99

High 0.988 0.994 0.996

Table A.11: Table of _B posterior 90% upper (row 1) and lower (row 2) limits (corresponding to

true values _B = 0.0 and _B = 1.0 respectively) in Figures 3.11, 3.12, 3.13.

_E true SNR 3 detectors 4 detectors 5 detectors

0.0 Low 0.01+0.03
−0.01

0.01+0.03
−0.01

0.01+0.01
−0.007

0.0 Low 0.02+0.03
−0.02

0.02+0.02
−0.01

0.01+0.02
−0.007

0.0 Low 0.01+0.03
−0.009

0.01+0.02
−0.007

0.01+0.01
−0.006

0.0 Low 0.02+0.03
−0.01

0.01+0.02
−0.01

0.01+0.02
−0.009

0.0 Low 0.03+0.06
−0.02

0.01+0.03
−0.01

0.02+0.03
−0.02

0.0 Low 0.02+0.04
−0.02

0.01+0.03
−0.01

0.03+0.02
−0.02

0.0 Low 0.01+0.03
−0.01

0.01+0.02
−0.008

0.01+0.01
−0.008

0.0 Low 0.02+0.05
−0.02

0.02+0.05
−0.02

0.02+0.03
−0.01

0.0 Low 0.01+0.04
−0.01

0.01+0.02
−0.01

0.01+0.02
−0.008

0.0 Low 0.02+0.04
−0.02

0.01+0.02
−0.01

0.02+0.02
−0.02

0.0 Low 0.01+0.03
−0.01

0.01+0.02
−0.01

0.01+0.01
−0.006
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_E true SNR 3 detectors 4 detectors 5 detectors

0.0 Med 0.00+0.01
−0.004

0.003+0.006
−0.003

0.001+0.003
−0.001

0.0 Med 0.00+0.01
−0.004

0.004+0.006
−0.003

0.002+0.004
−0.002

0.0 Med 0.003+0.008
−0.003

0.004+0.005
−0.003

0.002+0.004
−0.002

0.0 Med 0.01+0.01
−0.005

0.01+0.01
−0.006

0.002+0.004
−0.001

0.0 Med 0.01+0.01
−0.005

0.004+0.007
−0.003

0.002+0.004
−0.002

0.0 Med 0.002+0.005
−0.002

0.002+0.004
−0.001

0.001+0.002
−0.001

0.0 Med 0.00+0.01
−0.004

0.004+0.008
−0.003

0.006+0.006
−0.005

0.0 Med 0.01+0.02
−0.006

0.00+0.01
−0.004

0.004+0.005
−0.004

0.0 Med 0.01+0.01
−0.005

0.004+0.009
−0.003

0.002+0.004
−0.002

0.0 Med 0.005+0.009
−0.004

0.005+0.007
−0.004

0.003+0.005
−0.003

0.0 Med 0.002+0.006
−0.002

0.003+0.004
−0.002

0.001+0.002
−0.0007

0.0 High 0.002+0.002
−0.001

0.001+0.004
−0.0009

0.001+0.001
−0.0006

0.0 High 0.001+0.002
−0.0007

0.001+0.001
−0.0006

0.0003+0.0006
−0.0003

0.0 High 0.002+0.004
−0.002

0.001+0.003
−0.001

0.001+0.002
−0.001

0.0 High 0.001+0.002
−0.001

0.001+0.002
−0.0008

0.001+0.001
−0.0006

0.0 High 0.001+0.001
−0.0007

0.001+0.001
−0.0005

0.0004+0.0008
−0.0004

0.0 High 0.001+0.002
−0.001

0.001+0.002
−0.0006

0.001+0.001
−0.0005

0.0 High 0.001+0.002
−0.0007

0.001+0.001
−0.0004

0.0005+0.0008
−0.0005

0.0 High 0.001+0.003
−0.001

0.001+0.002
−0.0009

0.001+0.002
−0.0009

0.0 High 0.001+0.003
−0.001

0.001+0.002
−0.0009

0.0005+0.0009
−0.0004

0.0 High 0.001+0.002
−0.0007

0.001+0.001
−0.0005

0.0004+0.0007
−0.0003

0.0 High 0.00+0.01
−0.001

0.001+0.002
−0.0009

0.000+0.001
−0.0004

Table A.12: Table of _E median and errors corresponding to a 90% credible interval for the posterior

probability distributions in Figures 3.11, 3.12, 3.13 and Histograms in Figure A.4
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A.4 Tensor-Vector-Scalar (tvs) polarized GWs; uniform k prior

_E posterior for tvs polarized GWs; uniform k prior

In the following Figure A.5, we plot histograms of _E posterior probability distributions for tvs

polarized GWs. The rows step through 11 progressively increasing values of _E ∈ [0, 0.5].
The remaining polarization content is randomly distributed between tensor (_C) and scalar (_B)

components as per the constraint in Equation 2.9. The k prior distribution is uniform and periodic

∈ [0, c] for the Bayesian parameter estimation.

The 90% credible intervals for the _E and _B posterior probability distributions are given in Tables

A.13 and A.15 respectively. Moreover, the 90% upper and lower limits for the _E posterior

probability distributions (corresponding to true values _E = 0.0 and _E = 0.5 respectively) are

given in Table A.14.
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Figure A.5: Histograms of _E posteriors for tvs polarized GWs averaged over three (left), four

(middle) and five (right) detector combinations for low, medium and high SNRs (corresponding to

Figures 3.14, 3.15 and 3.16 respectively). The rows step through 11 progressively increasing values

of _E ∈ [0, 0.5]. The remaining polarization content is randomly distributed between tensor (_C)

and scalar (_B) components as per the constraint in Equation 2.9. Each histogram corresponds to an

injection with a randomly chosen sky location and polarization angle (k). The k prior distribution

is uniform and periodic ∈ [0, c] for the Bayesian parameter estimation.
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_E true SNR 3 detectors 4 detectors 5 detectors

0.0

Low 0.02+0.04
−0.01

0.01+0.03
−0.007

0.01+0.01
−0.01

Med 0.01+0.01
−0.005

0.004+0.006
−0.003

0.004+0.005
−0.004

High 0.001+0.004
−0.001

0.001+0.002
−0.001

0.0004+0.0009
−0.0004

0.05

Low 0.05+0.03
−0.04

0.04+0.03
−0.03

0.06+0.02
−0.02

Med 0.05+0.02
−0.02

0.05+0.01
−0.01

0.054+0.008
−0.009

High 0.050+0.005
−0.004

0.050+0.002
−0.003

0.049+0.002
−0.002

0.1

Low 0.11+0.04
−0.04

0.10+0.02
−0.02

0.11+0.01
−0.01

Med 0.10+0.01
−0.01

0.100+0.008
−0.007

0.098+0.004
−0.004

High 0.100+0.003
−0.003

0.100+0.003
−0.002

0.100+0.001
−0.001

0.15

Low 0.15+0.03
−0.03

0.15+0.03
−0.02

0.15+0.02
−0.02

Med 0.15+0.01
−0.02

0.147+0.009
−0.008

0.155+0.005
−0.005

High 0.150+0.008
−0.005

0.149+0.003
−0.004

0.150+0.002
−0.002

0.2

Low 0.19+0.07
−0.05

0.20+0.04
−0.03

0.22+0.02
−0.02

Med 0.20+0.01
−0.01

0.199+0.008
−0.009

0.202+0.005
−0.005

High 0.201+0.004
−0.004

0.200+0.003
−0.003

0.198+0.002
−0.002

0.25

Low 0.26+0.05
−0.04

0.27+0.03
−0.04

0.27+0.03
−0.03

Med 0.26+0.05
−0.03

0.25+0.01
−0.01

0.257+0.009
−0.008

High 0.250+0.003
−0.003

0.249+0.002
−0.002

0.249+0.001
−0.001

0.3

Low 0.29+0.05
−0.05

0.30+0.03
−0.03

0.30+0.02
−0.02

Med 0.30+0.02
−0.01

0.299+0.006
−0.005

0.299+0.004
−0.004

High 0.300+0.003
−0.002

0.300+0.001
−0.002

0.300+0.001
−0.001

0.35

Low 0.35+0.03
−0.04

0.35+0.04
−0.03

0.33+0.02
−0.02

Med 0.35+0.03
−0.03

0.35+0.02
−0.02

0.352+0.009
−0.008

High 0.350+0.004
−0.003

0.349+0.003
−0.003

0.350+0.001
−0.001

0.4

Low 0.40+0.04
−0.04

0.40+0.04
−0.04

0.40+0.03
−0.02

Med 0.40+0.02
−0.02

0.40+0.01
−0.01

0.396+0.007
−0.007

High 0.400+0.004
−0.003

0.400+0.002
−0.002

0.400+0.001
−0.001

0.45

Low 0.45+0.03
−0.04

0.46+0.03
−0.04

0.46+0.02
−0.03

Med 0.44+0.02
−0.02

0.45+0.01
−0.02

0.453+0.009
−0.008

High 0.449+0.006
−0.005

0.451+0.004
−0.004

0.451+0.002
−0.002
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_E true SNR 3 detectors 4 detectors 5 detectors

0.5

Low 0.47+0.02
−0.03

0.48+0.01
−0.02

0.47+0.02
−0.02

Med 0.49+0.01
−0.02

0.49+0.008
−0.02

0.493+0.005
−0.008

High 0.497+0.002
−0.006

0.498+0.001
−0.003

0.498+0.001
−0.002

Table A.13: Table of _E median and errors corresponding to a 90% credible interval for the posterior

probability distributions in Figures 3.14, 3.15, 3.16 and Histograms in Figure A.5.

_E true SNR 3 detectors 4 detectors 5 detectors

0.0

Low 0.05 0.03 0.02

Med 0.013 0.009 0.008

High 0.004 0.003 0.0011

0.5

Low 0.45 0.46 0.45

Med 0.47 0.48 0.487

High 0.493 0.496 0.497

Table A.14: Table of _E posterior 90% upper (row 1) and lower (row 2) limits (corresponding to

true values _E = 0.0 and _E = 0.5 respectively) in Figures 3.14, 3.15, 3.16.

_B true SNR 3 detectors 4 detectors 5 detectors

0.7 Low 0.7+0.08
−0.1

0.68+0.05
−0.06

0.72+0.04
−0.04

0.86 Low 0.86+0.08
−0.08

0.87+0.06
−0.05

0.86+0.04
−0.04

0.53 Low 0.5+0.2
−0.1

0.53+0.07
−0.05

0.53+0.04
−0.04

0.43 Low 0.43+0.08
−0.07

0.43+0.06
−0.06

0.46+0.04
−0.04

0.37 Low 0.4+0.09
−0.1

0.37+0.05
−0.05

0.35+0.03
−0.03

0.4 Low 0.4+0.09
−0.1

0.37+0.07
−0.08

0.38+0.06
−0.06

0.1 Low 0.1+0.2
−0.08

0.12+0.05
−0.06

0.08+0.04
−0.04

0.21 Low 0.21+0.07
−0.04

0.21+0.03
−0.03

0.21+0.02
−0.02

0.12 Low 0.1+0.1
−0.1

0.1+0.1
−0.09

0.12+0.06
−0.06

0.03 Low 0.03+0.04
−0.03

0.03+0.03
−0.02

0.03+0.02
−0.02

0.0 Low 0.03+0.05
−0.03

0.02+0.04
−0.02

0.03+0.03
−0.02
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0.06 Med 0.06+0.02
−0.03

0.06+0.01
−0.01

0.058+0.008
−0.008

0.36 Med 0.36+0.02
−0.03

0.36+0.02
−0.01

0.361+0.008
−0.007

0.45 Med 0.45+0.05
−0.04

0.45+0.01
−0.02

0.455+0.009
−0.009

0.38 Med 0.38+0.04
−0.02

0.39+0.02
−0.02

0.37+0.01
−0.01

0.49 Med 0.49+0.02
−0.02

0.49+0.02
−0.02

0.484+0.009
−0.009

0.33 Med 0.3+0.02
−0.1

0.33+0.01
−0.02

0.32+0.01
−0.01

0.33 Med 0.33+0.02
−0.04

0.33+0.01
−0.02

0.331+0.008
−0.008

0.18 Med 0.18+0.06
−0.04

0.18+0.04
−0.03

0.17+0.02
−0.02

0.06 Med 0.07+0.06
−0.04

0.06+0.03
−0.02

0.07+0.02
−0.02

0.05 Med 0.05+0.05
−0.04

0.06+0.03
−0.03

0.04+0.02
−0.02

0.0 Med 0.02+0.04
−0.02

0.02+0.02
−0.01

0.01+0.02
−0.009

0.75 High 0.75+0.007
−0.01

0.747+0.005
−0.006

0.748+0.003
−0.003

0.1 High 0.10+0.009
−0.01

0.100+0.004
−0.004

0.101+0.002
−0.002

0.4 High 0.40+0.01
−0.01

0.402+0.007
−0.007

0.402+0.005
−0.005

0.24 High 0.24+0.01
−0.03

0.24+0.01
−0.009

0.242+0.006
−0.006

0.36 High 0.36+0.009
−0.01

0.360+0.005
−0.007

0.364+0.003
−0.003

0.22 High 0.219+0.008
−0.007

0.219+0.005
−0.005

0.218+0.003
−0.003

0.29 High 0.290+0.004
−0.003

0.290+0.004
−0.003

0.289+0.002
−0.002

0.3 High 0.298+0.006
−0.008

0.300+0.005
−0.006

0.299+0.003
−0.003

0.04 High 0.040+0.009
−0.009

0.040+0.004
−0.004

0.042+0.003
−0.003

0.06 High 0.060+0.006
−0.008

0.060+0.004
−0.003

0.060+0.002
−0.002

0.0 High 0.00+0.01
−0.002

0.002+0.004
−0.001

0.001+0.003
−0.001

Table A.15: Table of _B median and errors corresponding to a 90% credible interval for the posterior

probability distributions in Figures 3.14, 3.15, 3.16 and Histograms in Figure A.6.
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_B posterior for tvs polarized GWs; uniform k prior

In the following Figure A.6, we plot histograms of _B posterior probability distributions for tvs

polarized GWs. The rows step through 11 progressively increasing values of _B ∈ [0, 1]. The

remaining polarization content is randomly distributed between tensor (_C) and vector (_E) com-

ponents as per the constraint in Equation 2.9. The k prior distribution is uniform and periodic

∈ [0, c] for the Bayesian parameter estimation.

The 90% credible intervals for the _B and _E posterior probability distributions are given in Tables

A.16 and A.18 respectively. The 90% upper and lower limits for the _B posterior probability

distributions (corresponding to true values _B = 0.0 and _B = 1.0 respectively) are given in Table

A.17.

However, the LIGO Caltech computing cluster was overburdened at the time when these jobs were

submitted. As a result, 519 out of 528 jobs were completed in a reasonable time (16 days). The list

of injections that are missing from our results is as follows:

Number of detectors Detector combination SNR _B true

3 detectors

[L1, K1, I1] medium _B = 0.2

[V1, K1, I1] low _B = 0.6

[V1, K1, I1] high _B = 0.7

[L1, V1, K1] low _B = 0.8

[L1, V1, I1] low _B = 1.0

4 detectors

[H1, L1, K1, I1] medium _B = 0.0

[L1, V1, K1, I1] medium _B = 0.4

[H1, L1, K1, I1] medium _B = 0.5

[H1, L1, V1, I1] low _B = 1.0



112



113



114



115

Figure A.6: Histograms of _B posteriors for tvs polarized GWs averaged over three, four and

five detector combinations for low, medium and high SNRs (corresponding to Figures 3.17, 3.18

and 3.19 respectively). The rows step through 11 progressively increasing values of _B ∈ [0, 1].
The remaining polarization content is randomly distributed between tensor (_C) and vector (_E)

components as per the constraint in Equation 2.9. Each histogram corresponds to an injection with

a randomly chosen sky location and polarization angle (k). The k prior distribution is uniform and

periodic ∈ [0, c] for the Bayesian parameter estimation.
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_B true SNR 3 detectors 4 detectors 5 detectors

0.0

Low 0.03+0.07
−0.03

0.03+0.05
−0.02

0.02+0.03
−0.01

Med 0.01+0.03
−0.007

0.01+0.02
−0.005

0.005+0.008
−0.004

High 0.002+0.006
−0.002

0.001+0.006
−0.001

0.001+0.002
−0.0007

0.1

Low 0.10+0.05
−0.05

0.13+0.04
−0.04

0.12+0.03
−0.03

Med 0.09+0.04
−0.04

0.11+0.01
−0.01

0.10+0.01
−0.01

High 0.100+0.005
−0.005

0.101+0.003
−0.004

0.101+0.002
−0.002

0.2

Low 0.2+0.1
−0.1

0.17+0.08
−0.08

0.22+0.04
−0.04

Med 0.20+0.02
−0.05

0.20+0.01
−0.01

0.205+0.009
−0.009

High 0.200+0.005
−0.004

0.201+0.002
−0.002

0.200+0.001
−0.001

0.3

Low 0.31+0.06
−0.07

0.30+0.05
−0.06

0.29+0.02
−0.02

Med 0.30+0.02
−0.05

0.30+0.01
−0.01

0.302+0.008
−0.008

High 0.30+0.009
−0.01

0.298+0.005
−0.005

0.299+0.004
−0.004

0.4

Low 0.4+0.1
−0.1

0.4+0.1
−0.08

0.44+0.05
−0.05

Med 0.40+0.06
−0.04

0.40+0.01
−0.01

0.409+0.008
−0.008

High 0.399+0.008
−0.007

0.400+0.004
−0.006

0.398+0.003
−0.003

0.5

Low 0.50+0.05
−0.07

0.49+0.07
−0.04

0.51+0.04
−0.04

Med 0.5+0.08
−0.1

0.50+0.02
−0.02

0.50+0.01
−0.01

High 0.50+0.009
−0.01

0.500+0.007
−0.006

0.500+0.004
−0.004

0.6

Low 0.6+0.07
−0.1

0.58+0.05
−0.05

0.61+0.04
−0.04

Med 0.61+0.04
−0.02

0.60+0.03
−0.02

0.60+0.01
−0.01

High 0.601+0.007
−0.006

0.601+0.004
−0.005

0.601+0.003
−0.003

0.7

Low 0.67+0.08
−0.09

0.66+0.06
−0.06

0.67+0.06
−0.06

Med 0.70+0.04
−0.03

0.70+0.02
−0.02

0.71+0.01
−0.01

High 0.699+0.005
−0.004

0.700+0.005
−0.004

0.699+0.002
−0.002

0.8

Low 0.8+0.08
−0.1

0.75+0.07
−0.07

0.81+0.05
−0.07

Med 0.79+0.04
−0.02

0.80+0.02
−0.02

0.81+0.01
−0.01

High 0.80+0.006
−0.01

0.799+0.004
−0.004

0.802+0.002
−0.002

0.9

Low 0.87+0.07
−0.07

0.88+0.06
−0.06

0.84+0.03
−0.03

Med 0.90+0.03
−0.04

0.90+0.02
−0.03

0.89+0.01
−0.01

High 0.90+0.008
−0.01

0.899+0.008
−0.009

0.900+0.005
−0.005
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_B true SNR 3 detectors 4 detectors 5 detectors

1.0

Low 0.92+0.05
−0.09

0.93+0.05
−0.05

0.96+0.03
−0.05

Med 0.98+0.01
−0.03

0.99+0.009
−0.02

0.99+0.008
−0.01

High 0.99+0.004
−0.01

0.996+0.003
−0.005

0.994+0.003
−0.003

Table A.16: Table of _B median and errors corresponding to a 90% credible interval for the posterior

probability distributions in Figures 3.17, 3.18, 3.19 and Histograms in Figure A.6.

_B true SNR 3 detectors 4 detectors 5 detectors

0.0

Low 0.08 0.07 0.04

Med 0.03 0.03 0.011

High 0.006 0.005 0.002

1.0

Low 0.86 0.89 0.92

Med 0.96 0.98 0.979

High 0.987 0.992 0.991

Table A.17: Table of _B posterior 90% upper (row 1) and lower (row 2) limits (corresponding to

true values _B = 0.0 and _B = 1.0 respectively) in Figures 3.17, 3.18, 3.19.

_E true SNR 3 detectors 4 detectors 5 detectors

0.41 Low 0.40+0.04
−0.04

0.40+0.02
−0.04

0.40+0.01
−0.02

0.06 Low 0.06+0.04
−0.04

0.05+0.03
−0.03

0.04+0.02
−0.02

0.08 Low 0.08+0.03
−0.03

0.08+0.02
−0.02

0.08+0.01
−0.01

0.08 Low 0.07+0.05
−0.04

0.08+0.04
−0.03

0.09+0.02
−0.02

0.13 Low 0.13+0.06
−0.08

0.14+0.05
−0.07

0.11+0.03
−0.04

0.2 Low 0.20+0.05
−0.04

0.21+0.02
−0.05

0.19+0.02
−0.02

0.09 Low 0.09+0.07
−0.04

0.09+0.02
−0.05

0.11+0.01
−0.02

0.01 Low 0.03+0.06
−0.02

0.02+0.04
−0.02

0.03+0.03
−0.03

0.1 Low 0.10+0.04
−0.04

0.11+0.03
−0.04

0.07+0.02
−0.02

0.0 Low 0.02+0.04
−0.02

0.02+0.03
−0.02

0.01+0.02
−0.01

0.0 Low 0.02+0.05
−0.02

0.01+0.02
−0.01

0.01+0.02
−0.01
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0.09 Med 0.09+0.01
−0.01

0.091+0.008
−0.009

0.088+0.006
−0.006

0.08 Med 0.08+0.01
−0.01

0.08+0.009
−0.01

0.077+0.005
−0.005

0.04 Med 0.04+0.01
−0.01

0.044+0.007
−0.007

0.043+0.006
−0.006

0.06 Med 0.06+0.01
−0.02

0.058+0.008
−0.009

0.070+0.006
−0.006

0.22 Med 0.22+0.01
−0.01

0.220+0.005
−0.006

0.223+0.003
−0.004

0.21 Med 0.21+0.04
−0.04

0.21+0.01
−0.01

0.204+0.008
−0.008

0.14 Med 0.14+0.02
−0.02

0.14+0.009
−0.01

0.143+0.006
−0.006

0.14 Med 0.14+0.01
−0.01

0.140+0.007
−0.006

0.136+0.005
−0.005

0.03 Med 0.03+0.01
−0.02

0.03+0.01
−0.01

0.026+0.006
−0.006

0.04 Med 0.04+0.01
−0.02

0.04+0.01
−0.01

0.039+0.006
−0.006

0.0 Med 0.00+0.01
−0.003

0.003+0.005
−0.002

0.002+0.003
−0.002

0.09 High 0.090+0.002
−0.002

0.090+0.001
−0.001

0.091+0.001
−0.001

0.22 High 0.220+0.004
−0.003

0.220+0.003
−0.003

0.219+0.002
−0.002

0.08 High 0.08+0.007
−0.01

0.079+0.005
−0.005

0.079+0.002
−0.002

0.19 High 0.19+0.01
−0.004

0.191+0.003
−0.003

0.191+0.002
−0.002

0.2 High 0.201+0.005
−0.003

0.200+0.002
−0.002

0.201+0.001
−0.001

0.01 High 0.009+0.003
−0.003

0.010+0.002
−0.002

0.010+0.002
−0.002

0.09 High 0.090+0.003
−0.003

0.090+0.002
−0.002

0.090+0.001
−0.001

0.08 High 0.080+0.003
−0.004

0.080+0.002
−0.002

0.080+0.002
−0.002

0.01 High 0.010+0.005
−0.004

0.010+0.002
−0.003

0.008+0.001
−0.002

0.03 High 0.030+0.002
−0.002

0.030+0.002
−0.001

0.030+0.001
−0.001

0.0 High 0.002+0.005
−0.001

0.001+0.002
−0.001

0.002+0.002
−0.001

Table A.18: Table of _E median and errors corresponding to a 90% credible interval for the posterior

probability distributions in Figures 3.17, 3.18, 3.19 and Histograms in Figure A.6.
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®_ posteriors for tvs polarized GWs with different BBH component masses

Figure A.7: Histograms of _E (top) and _B (bottom) posteriors for tvs polarized GWs from BBHs

with progressively increasing component masses for low, medium and high SNRs in five detectors

(corresponding to Figure 3.20). The true values of the ®_ parameters are _C = 0.2, _E = 0.15 and

_B = 0.3. Each histogram corresponds to an injection with a randomly chosen sky location and

polarization angle (k).

_E true SNR
<1 = 20 "⊙ <1 = 35 "⊙ <1 = 50 "⊙

<2 = 16 "⊙ <2 = 28 "⊙ <2 = 40 "⊙

0.15

Low 0.15+0.01
−0.01

0.17+0.03
−0.02

0.14+0.02
−0.02

Med 0.151+0.006
−0.006

0.150+0.005
−0.004

0.147+0.002
−0.002

High 0.151+0.004
−0.004

0.147+0.002
−0.002

0.149+0.001
−0.001

Table A.19: Table of _E median and errors corresponding to a 90% credible interval for the posterior

probability distributions in Figure 3.20 and Histogram in Figure A.7
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_B true SNR
<1 = 20 "⊙ <1 = 35 "⊙ <1 = 50 "⊙

<2 = 16 "⊙ <2 = 28 "⊙ <2 = 40 "⊙

0.3

Low 0.30+0.02
−0.02

0.25+0.04
−0.05

0.30+0.02
−0.02

Med 0.30+0.01
−0.01

0.30+0.009
−0.01

0.301+0.002
−0.002

High 0.300+0.005
−0.004

0.301+0.004
−0.004

0.302+0.003
−0.003

Table A.20: Table of _B median and errors corresponding to a 90% credible interval for the posterior

probability distributions in Figure 3.20 and Histogram in Figure A.7
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