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INTRODUCTION,

In studying stress distribution several methods have been
used. The purely experimental method is one in which loczl stresses are
measured directly by means of sensitive strzin gages. The photoelastic
method is the second one which gives a definite visual stress pattern
to each stress system, from which the shearing stress ean be read di-
rectly. There is a third one which is a purely a mathematical method.

This method is based upon the assumption of continuity and’the law of
equilibrium for esteblishingithe stress functions and equations derived
bt logical rrocesses. The solution is then obtained by the use of
boundary conditions. At the California Institute of Technolegy the
shear ocharacteristics of thin plates reinforced by one centrally locat-—
ed stiffener was investigated by the photoeiastic method, The third
m:thod has been used by the author for studying the same natural gro-

blem in hopes of checking the result already obtained.

It is common practice tc use penels of thin plates reinforced
by“loggitudinal stiffeners in the construction of modern metal airplanes.
So far as the strength charactepistics are concerned, it'is nascessary
to !mow the stress distribution of the sheets in order to obtain the
strength limits of the structures. This thin plate with a stiffener is
assumed to be loaded in to different ways. They are : first, uniform
normal loads are applied to the stiffener at both ends; second, uniform
normal load is applied to the stiffener at both end with znother load
uniformly distributed =long the oprosite edze of the ;late and stiffen-—
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By utilizing Airy's functicn end Fourier's series, the author
derived the strese components G &4 and Ty for the twe cases zbove.
/J‘ J’
Then from these expressicns the stress componénts were obtained for the
principal stresses and the maximum shearing stress and their directions
at any point on the thin plate were determined. The curves of the max-
irum shearing etress distributions were then drawn for the particular

specimens tested by the photoelastic methods.

The material cf the plete studied is Bakelite. The value of

Poisson's ratic for it is 0,36, which was auppli=d by Mr. 7. A. Zinzow,



Contents.,

Introduction
Symbols used.

Dimensions of the plate and stiffener.

Part‘One :
(a). General assumptions and method,
(b). Boundary conditions,
(c). Determination of f,(y) and By
(d). Result

(e) Discussion.,

.Part Two
(a) General assumptions
(b) General methods
(c) Boundzry cenditions
(é) Trznsformetion of coordinates
(ej Result
(f) Discussion.
Reference

Appendix,



tmﬁx‘
&y é}
ﬂu?
Gy, Sp
Tyo

b=

Symbols Used,

Rectangular coordinates

Polar coordinates

Compenents of the displaeement parzllel to the x and y axes in two

dirensional doordinctes.

Components of the normal stress parallel to the x and y axes.
The principal stresses.,

Shearing stress in rectangular coordinztes

Lleximum shearing stress,

Unit elongstion in x and y directions,

Shearing strain in rectangular coordinstes,

Redial and tangenti=l normal stresses in tolar coordinstes,
Shearing stress in .oler coordinstes

Stress function

Modﬁlus of elasticity in tension =nd ccmpression

Modulus of rigidity ( Modulus of Elasticity in shear ).
Poisson's ratio,

Intensity of = unifcraly distributed lozd.



Dimensions of the Plate and Stiffener,
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t7 = 0.555 in,

P = 2,000 1bs.
{ = 5.0 in,

a = 3% 1/32 in,
b =1 in,

to = 0,515 in,
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PART ONE

Maximum shearing stress distribution in a rectangular plate re—
enforced by a stiffener with uniform load applied at tHe twoé.ands of the

stiffener,
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(a) General Assumptions,

Consider the compression of a beam of constant rectangular cross
section by forces applied at the ends and parallel tc one of the principal
axes of the cross section, Then the shape of the compression will be as-

shown in the figure 1,
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FIGURE /.
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If a plate is added)without fastening,it will be found that the

plate is longer than the top of the beam in figure 1.

" Thus ,for the case in which the beam and plate are fastened toge-
ther)there must be a shearing force applied. This shearing forcem varies
from zero in the center of the beam to a maximum value at the ends. This

shear is betwecen the beam and plate,

L J

Now we consider cne half of the plate as OPQR in figﬁre 2. The
edge OP is fixed to the beam, edge QR is free and the edge OR and PQ may

be either fixed or free,
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-Da
Assumptions : For convenience we assume that

1. The lateral contraction of the beam can be neglected

without much error.

2. The deformation of the elastic plate takes plave in the
Xy plane only thus it 1s two-dimensional. The diéplacements{of the
particles of the plate can then be resolved into components u, v
parallel to the coordinatesaxes X, y respectively.

In elacsticaly it is well known that the stress function hasg’

to satisfy the compatibility equation

4 4 ‘4
ve = %Eg* 2 'a"iggyz ¥ Egyg'—‘ © (1)
The stress components are
i _ e _ )2
Gx—ﬁg ’ 6.'3’"))(“3 ,L——)‘}%

Provided that there is no body force.

<

Since any stress distribution can be expressed by a Fourier's
series and the accuracy of the calculations only depends upon the
rapidity of the convergence of the series and the number of the
terms taken, thus the assumption can be legitimately made that
sine or cosine functions may be used for expressiné this distribu-
tion. Furthermore we aésume thét the plate concerned 1is at rest
under the action of external force as in the usual case. The re-

sulting problem is then ssatic, that 1s, independent of time.



-Agsume a. stress functicn @ such that,

P=rf () sin TP (2)

n

where n's are integers and fn's zre functions of y only.

This stress function meens thet the distribution in 211 sections

along x is similar and only differs in zmount.

By substitution,tha stress comjponents are then

d*fn .
6;_= ain nrx

dys S ¢
C= - @ 1, oin )

njjx
T=- (%?) dfy, cos g~
dy

(b)  Boundary Conditions.

Since the beam and plete are fastened together the dis:lacements

ofstdeey over the line of centact should be the same a%
u =u = 4)
- at y=0 (4
Plate beam ’

The cther bovndary conditicns which are self evident are
v =0 at y=20 ()
5}=o at vy =a (6)

=0 at vy =a (7)



From (3) and (6) :

fn (¥) =0 at y=a (8)
Again from elasticity we know that

Yy =
Yxy

1}

(9)
éX =

Ex =
From (5) and (9) we have
25 - ;245 2T =0 (10)
57 57 & o% | -

Substituting (3) into (10) and using the relation G = __E we have

2(1+y)
dem - n7r) “24y) dfn =0 (11)
dy3 dv
From (7) we have
: df =0 at y=a (12)

dy

(c) (i), To find the expression of fn (v)

From the com,atibility equation (1) and the stress function (2),
‘we obtain : .
dfn -2 n77)2df +(z fn =0 (13)
dy # ( ) :

This differential equation_is a linear one with constant coeffi-

cients, So there is a first solution f(y) = ™, Substitutfien - gives
=+nr +n7 ; that is, it has two pairs of re peated roots, hence its

L T2

complete solution is :
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£,(7) = ae + B, e £ + 0.y e +Dy e

Where An , Bn, Cn,Dn are constants which are now to be determined by the boundary

conditicns.

First assume an infinite lerge ;late,i.e. y = a &2 00
af. -
Then from boundary conditions y =ea, f,(y) =0 & a-g,n 0 Hence

£,00) =Be e Dy EQZX_

Subskituting the last exgression inte (11) we then have

Dy =~ 922[ B, %Z‘}s and hence,
f o= T E (- LD (1)
n 1_9

- All the solutions of the tyce (14) will be the sclutions of (11) & (13),

since the e;uations are linear, therefore

6 IE 5, o E G ) i

(I=p

. 7 "‘n /ps

%“Z,(%)d B © '%I (l—'jl+))jy ) gin %
: 1+

gt m T T (-

(ii). To determine the ccefficients B, by using condition (4)',

@

From the relstions in (9) we have

22 .1 (¢ -
22 =% (5, ;)

Hence the disrlacen-nt u, of either the zlate or beam 1s :
X

o
i
= f

(6,795,) &

]
Evaldating it at y = O for the jlate by (3') we have then :

1 7f J3X
u};late =" Z (pZ)Bn 3;2{2__;')&“ CG§ %_

+%Z'(‘r‘ja1) Bn 5{,2))'_)/2- (4)
1=y

Now we e¥aluate u for the beam as follows :



From the equilibrium condition we know that 61y

j./. G—Y (pl&te )
beam z
Assume that the normal stresses in the x direction are uniformly distributed

over every cross-section of the beam and thelr value‘xs then,

x = P - §¥/{2:‘t1 dx

where P is the total load on the end of the beam, A the area of the cross

section,

Evaluating at 'y = 0 then we ilave

Px+ _2 Ztan 2 cos n7x
B EA 1-y

y i

2 ;mz(anycosm&
1-y Et:¢ ¥ L
+1t4 5(n7)ys,

E t2 Zi‘ L

It is well known mathematically that
x=£—4ﬂ
2

Z 1< cos nIrx
T 35 n £

fas

and 42:;2 = =

Us:Lng this mathematical expansion we get the’ follow:mg exyression’ for u
=-1 418y +49P -1 (nT) Bn)
Pocan B o A(1-y) Ayn® tz 7 Y
+ 1

4By + 4fP

A(l-)) At -t (7T )J)Bn) cos nzx (2%
ot 4

Because of the displacements of the beam and plate are always equal, so the

be identically equal

Then we get

coefficients of the corresponding terms of expressions (%) and ¢3’ should
-
, - P (1-))
By tie _ .
T+ L5t — Y- PP o =155
| aty ¢ 4 tg g
= (L) on
hiT )

Pn
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(d) The result,

It is well known that Mohr's circle can be used for determining

the principal stresses and the meximum shearing stress if any set of the

stress components Gy, @ vy Ly 8Te given, or by the formulee :
» Cx‘f’(} ‘ .
" + //6x-64)2 4
S, 6 =72 (929) 7,
=L e -6 V= (-~ 632
Tomax =46, 61)..4/(6&2 2 . xg
For the problem concerned we haves
P er g ‘r
Tmax =— | 2f,_ T [¢ =57 T, ¢ L2
max /VQ[CI[ZZ“,(/*V/]f@‘€+c‘)f2—-——(/fu/;/e 4
roofedemiffe- Fungle P g
Z--~ Iy, -7 - €7}

{ - ( )]f{z (/+JJJ(]} =, 4:27',:

+
7 ~§77
+05Cf{a~‘?(/+ﬂ)jf{z~ /(/7"}//47/6 fc,wlhf




where

o /
n =
|+ AT [(S3t2V-V* _ Y-V
‘ <4-7/‘,,Q 4‘:/(,@ )V?

The directions of the principal stresses can be found for any

particular points ( x,y ) by the formula :

tan 20 = 2 —Z:::El

| Cx ~6 }
The direction of the maximug shearing stress for the same point lies
on the plane passing this point, which ‘mskes an angle of T/ with re-
spect to the principal stresses, that is, on the plane bisecting the angle

between the two principal stresses.
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--ev CORRECTED CURVE,
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LISTRIBUTION OF MAXIMUNMN SHEARING STRESS

( FROM REFERENCE 8 )




Discussion

Comparing the theoretical curves of tuw maximum shearing

stress distribution with those obtained by photoelastic method.

1. The curvatures of the latter ones are bigger; that is

n

the masnitudes of the maximum chearing stress distribution of

the plate near the two ends of the beam decrease a 1little mor

rapidly at the points farther from the beam,

2. The curvatures of the curves obuulqed by the theoretical

O]

e

in

method are smaller comparatively. However the curvature increas
with an increase in Polsson's ratio.
%. The magnitudes of the 1axiw um shearing stresgs in the

middle part of the plate obtained by these two methods closely

4, On the two edses ( x = O )‘@f of the plate the zensral
solution shows that T is different from zero, but along these

edges for a certain distance from the beam, T is very =mall. In

calculatin?'taax. 1t has been assumed that on the =zdres Tenualsg
zero.

5. The equationaof thef:,(?xor 6& brea%s down when it con-
tains no factors e-igy and cos ¥%¥ or e—igyﬂsin 2%; simul=-

T

taneously. This 1z the case at polnts y=0 and x=0 or y=C and x=:

¥

i

»

dnce then the series wnich represents theC, g, or 6& is diver-

°2ge reference No.8
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gent its value becomes infinite,

6. By an inspection of these expression (3") we can find
that if ¢ aovproaches infinipg all the values of T ,C;X or ny
are 1dentically ecual to zero. These are correct because at
infinite distance from the points where the force ic apolied

there 1g no disrtibution of stredses at all.



aring stress distribution in a rectangsulsar lat:
snforced by = stiffensr with uniform losd 2t the two ends of the

berm and omn one =dge of tlie plate,
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(a) Goneral fssu stions

Let = wnifeorm normel pressure be applisd 2long o finite longth

&

of one edze of the plote 2nd two andes o

L HUHHH

The gssuiptions of other things and the Initiel shesring fcorce
appiied in thz section bstween the beam and th2 plate bhear the szuas

teristics cs & Taort One

{b) Gencrsl lethod

The roblen steted abovz 1s de=zlt with by suserimpesing two cases:

Case (1). TAe uniform normal pressure acts a2t two ends of the hsam as

Cage (2). The uniform normel pressure =zcte 2t one edze of the plate.

%e cen assume that RC is merely o line in cn infinite ;late o8 in

figure &5,



gtresges at any peint of the zlate is with the croier units, given

by the stress funetion’

g=8 (Fe-rig) o (18)

)
& T,'

“here (v, @), (vt / sre soler coordinates ot the orisins O
> b £

seectively .

’

at oo

£ the plate the first term cf the stross

5
Cf.
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0
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1
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S,
<
t
e

function ¢, tha

JH, ifchell, Frcc, London inth,

¥R
0
53]
o
S
d.
o}

* The solution of this problen

S LLe

Soce, Vol, 34, o. 134, 1202,



/
Ty = — — [~ =—— — &
ré Dy (/’ A(P) Tz
Similarly C,bl = - & %8 c// at the origin Q' gives
2T '
’ z ’.
Cy - = “‘.77_"’ 9"
r__ _:Z___ s
Sy = =¥
i [ — 2
S 2

The dirsctions of the grincipal stresses bisect the angle between

the radii r and r'. Thz megnitudes of the totel principal stresses at any

point i are 3

S, :—-_W_Z__(o(-/-@d/»o()
gi—:-?z(o(__ma()
7

where | K = % _ 94
Hence -C'ma)(‘-“—;"z‘/“(a -6, )

__ &

(c¢) Boundary Conditicns

(1) The uniform normal load along OR is c, that is s

. .
It is reduced to s ¢ - gp’ = 7/"

(2) The rest of the boundary is free from the stress.

0]



(d) Trencfera=tion of Coordin.tas.

. . . . \ A 53 - y S o~ G
For suerimposing cozes (1) and (2) we grould nove thom in the

seme coprdlincte system., It 1s svident tnot this csn be ecsily done byv us-
ing & rectarpguler coordinate systen, e tierafore choose the ripgin ceg in -

&

s
1ure 7
rlLsure 7,

atb-1= v ame ¢

Substituiing then inte

[7(, +( - })]Z’ *’b I _ 1+(a+é~ 47/‘/1 """'é

2982, then

-""":c‘ '7*(1 our ‘__11554,

Put b = o for
___)/ - ~ax  x¢  x(a-7) }

Mty XRPT xee(a- gt

S = Z [ —Aax. x 7 X (a-3)
1= 2 gy xoep ! xes(a-g)t

% hoe o end X+ (a-p) aer g *

eenddy




Oz = "”“[f:aw ~;(4—<7) //;u %/Z ;(a«(;)fj/

—mexz . AxX
Wx/m%/zudzm—p}é

hesult for -Z: mex

» 72 haves ths reguired result

T s -z gz
X-(part/) 7/7éiic‘~¢//zk_/{q_/}/&

(£) Diccussion.

le 22 2 whele the magnitude of the mexdimum shearing stross obin

W
o N
}J-
B
' -t
-
o
~

then that of the waximun e strzss obtained by the photo-

elastic method. ¥

o The aaxdimun gheoring stress of the v cr art cf the lote

es ls lerger necr the cdge and smeller for ths lower

wart of the plate cround the bsam. than thet obtained exycrimentzlly,

. Tafarence
Bees Refaerence 2
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Lppendix,

Since it is methemeticzlly true that

A+ (ath-3)* ozt byt
/‘U—_,_(a,f»b-;)& 11’“{'(51?)1-«_0

. Z’,b 1@ Z
- __(ath-3) (b-])¢
2b+ (ath=})"  2r4 (b)) x*+ (ath=})* xc4 (6-})*

the srhearing

Hence there ere tihree forms for exgressing stress cf the

second probism, these =TIt 3@

.= b ! _ /
o I {zwm—wwz <+ +(b~;)l/'

_ _ & 4_ (a+b-1)* (b~4)"
Wj + Z) f

T =
“& -+ (atb~}) 2 (b~ 1)*

and 2 { a’,"-—(@‘f‘b‘})l_ IL“(A‘}}'LX

7(:“+(Q+b~fj)" 7C‘+(E‘J)\‘

‘tL} = T3
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