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ABSTRACT 

 Described herein are two projects in the field of natural product synthesis unified by their 

use of convergent strategies. An introduction into a relevant subclass of natural products, the 

bis(monoterpenoid) indole alkaloids, precedes our synthetic efforts. The molecules in this class 

are comprised of two monoterpenoid indole alkaloids conjoined by at least one carbon–carbon 

bond, and we review efforts to construct these dimers using semi-, partial, and total synthesis. 

 The account of our synthetic work begins with a detailed approach to the 

bis(monoterpenoid) indole alkaloid leucophyllidine. An enantioselective Pd-catalyzed 

decarboxylative allylic alkylation generates an α-quaternary-substituted lactam, which serves as a 

building block for both monomeric subunits. The northern fragment, eburnamonine, is constructed 

through a five-step sequence comprised of Fischer indole synthesis, Bischler–Napieralski 

cyclization, and diastereoselective hydrogenation. The southern fragment, eucophylline, is 

constructed through a ten-step formal synthesis comprised of a Friedländer quinoline synthesis, 

followed by two orthogonal C–H functionalizations that each displayed unexpected reactivity.  

 We then describe the evolution of a convergent coupling strategy to unify the two 

polycyclic fragments. While the “biomimetic” Friedel–Crafts and “bio-inspired” organometallic 

addition approaches failed, a Pd-catalyzed cross-coupling was ultimately successful in forging the 

key C–C bond. Extensive efforts to install the final stereogenic center with a variety of reducing 

agents were unsuccessful, and DFT modeling was utilized to probe the recalcitrant nature of the 

trisubstituted alkene. Preliminary investigations of a directed hydrogenation are then discussed. 

Finally, we report an approach to the first total synthesis of the polyoxygenated diterpenoid 

(–)-scabrolide A.  The route begins with the synthesis of an enantioenriched cyclopentendiol 

building block and an acyclic diyne from (R)-linalool and (R)-carvone, respectively. A Stieglich 

esterification and thermal [4+2] cycloaddition affords a tricylic intermediate bearing all 19 carbons 

observed in the natural product. The cycloheptenoid motif is installed through a photochemical 

[2+2]/fragmentation sequence, exploiting an unusual alkene protecting group strategy to 

counteract unexpected reactivity.   
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CHAPTER 1 

The Synthesis of Heterodimeric 

Bis(monoterpenoid) Indole Alkaloids 

 

1.1  INTRODUCTION 

 The bis(monoterpenoid) indole alkaloids1 comprise a diverse class of plant-derived natural 

products with over 200 isolated members to date.2 Unlike many natural product families which 

exhibit a high degree of analogy with respect to their molecular architectures due to conserved 

biosynthetic pathways, “bis(monoterpenoid) indole alkaloid” is a general descriptor which applies 

to any natural product composed of two monoterpene-derived indole alkaloids joined by at least 

one C–C bond.3,4,5 As a result of this broad definition, the molecules in this class exhibit 

exceptional variation in structure, reactivity, and function with no one member constituting an 

“archetypal” bisindole alkaloid (Figure 1.1). Consequently, the chemodiversity within this class 

has attracted the attention of chemists and biologists from various sub-disciplines for over sixty 

years. 
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Figure 1.1 Representative heterodimeric bis(monoterpenoid) indole alkaloids.  
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To the synthetic chemist, dimeric indole alkaloids present a number of challenging aspects, 

which have limited the number of successful synthetic efforts compared to their monomeric 

counterparts. Because of the broad definition, the members of this family often display multiple 

iconic alkaloid architectures—including aspidosperma, corynanthe, eburnea, macroline, 

vobasine, and others within a single chemical entity; in effect, one must complete two separate 

total syntheses en route to one of these higher order monomers, a challenge that is exacerbated by 

the need to construct or conjoin these two fragments in a single, sterically congested molecule. 

Furthermore, while classic retrosynthetic logic indicates that “dimerizing” C–C bonds are 

strategic disconnections,6 the execution in the forward sense is rarely facile. Convergent coupling 

reactions must construct sterically encumbered bonds with complete chemo-, regio-, and 

stereoselectivity between densely functionalized natural product frameworks.7 For this reason, 

many synthetic strategies have centered on biomimetic coupling reactions, typically a combination 

of electrophilic aromatic substitution, condensation, or Michael addition.2 However, the ability to 

replicate this reactivity ex vivo is far from guaranteed, while the requirement for distinction 

between “electron-rich” and “electron-poor” coupling partners can limit the extension to non-

natural products and natural-product analogs.  

 Beyond these intrinsic chemical obstacles, the bis(monoterpenoid) alkaloids have also 

received attention because of their rich biological activity. A number of newly isolated natural 

products in this class have demonstrated bioactivities including, but not limited to, antileukemic, 

antimicrobial, antioxidant, antiulcer, cytotoxic, norepinephrine reuptake-inhibiting, platelet 

inhibiting, and radical scavenging.3,4,5 In general, the dimeric alkaloids exhibit more potent 

activities than their individual component monomers,8,9,10,11 which is hypothesized to occur 
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through higher target affinity or greater stabilization of the protein-ligand complex.12,13 For most 

molecules in this class however, the nature of these biological interactions are poorly understood.  

The most well-studied members of this class, vinblastine (6) and vincristine (7) are FDA-

approved to treat a variety of rapidly-dividing cancers like Hodgkin’s lymphoma, melanoma, and 

Non-small-cell lung cancer. Mechanistically,14 vinblastine (6) and vincristine (7) inhibit mitotic 

spindle through disruption of microtubule binding, leading to cell cycle arrest, aberrant division, 

and necrosis of tumor cells. Small molecule antagonists of protein-protein interactions (PPI’s) have 

been branded “the holy grail of drug discovery,”15 and natural products that disrupt PPI’s have 

immense value as starting points for the evaluation of new leads.16,17 The independent bioactivity 

of component monomers and structural similarity to established PPI inhibitors have led us to 

hypothesize that other members of this family could modulate similar interactions. 

The goal of this account is to provide a comprehensive review of successful synthetic 

efforts to date as a resource for chemists who may wish to study bis(monoterpenoid) indole 

alkaloids through semi-, partial-, or total synthesis. Although a number of excellent book chapters 

have been dedicated to the subject,2,3,4,5  most are broadly focused, and they do not provide a 

comprehensive summary of synthetic efforts in a single resource. Furthermore, a number of other 

reviews on the topic of synthesis are either out-of-date18 or focused on specific subclass of 

bisindole alkaloids.19 We hope that this resource will help to facilitate future synthetic efforts by 

highlighting key developments in strategies and tactics.    

 Our discussion will be limited to heterodimeric bisindole alkaloids, which we define as 

alkaloids composed of two structurally unique monomeric subunits that are each monoterpene-

derived in origin; thus, the coupling strategies require an element of substrate or reagent control 

to engender cross-selectivity. This serves to distinguish from homodimeric alkaloids, which are 
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composed of identical subunits resulting from spontaneous dimerization under reaction conditions. 

Dimeric alkaloids in which one component is not monoterpene-derived (e.g. from a condensed 

tryptamine or isoquinoline-derived unit) fall out of the scope of this review. Polypyrroloindoline 

alkaloids also will not be included in this discussion, despite the structural analogy to many of the 

structures discussed herein, though interested parties may be directed to the following reviews.20,21  

 

1.2  SEMI- AND PARTIAL SYNTHESES OF BISINDOLE ALKALOIDS 

1.2.1  Buchi’s Partial Synthesis of Voacamine and Related Alkaloids 

The earliest synthesis of a bisindole alkaloid was that of voacamine (1) and voacorine (2), 

reported by Büchi in the early 1960’s.22,23 After performing a number of degradation studies to 

elucidate the structure of the component monomers, Büchi performed a semi-synthesis to confirm 

the identity of the dimeric structure. Treating of a mixture of naturally isolated alkaloids 

voacangine (17) and vobasinol (18) with 2% HCl in methanol produced voacamine (1) in 14% 

yield, along with an undisclosed quantity of its constitutional isomer voacamidine (20) (Scheme 

1.1A). This is hypothesized to proceed through the intermediacy of iminium 19 via a Friedel–

Crafts alkylation at either the indole C(6) of voacangine (blue) to form voacamine (1) or at C(8) 

(red) to form voacamidine (20). It was subsequently shown that the latter isomer can be 

equilibrated back to voacamine (1) under more strongly acidic conditions.24 

Under identical reaction conditions, Büchi showed that voacorine (2) could be accessed 

through the condensation of voacangarine (21) and vobasinol (18) (Scheme 1.1B). Analogous 

acid-mediated condensations would later be utilized to access vobasine-based alkaloids 

tabernamine25 (24), bisindole alkaloids from E. orientalis26,27 (22)–(23) and T. accedens28 (25)–

(26), ervahaimines A and B,29 and several unnatural dimers30 (Scheme 1.1C). 
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Scheme 1.1. Büchi’s semi-synthesis of voacamine, voacamidine, voacorine (1963). 
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via conjugate addition of the indoline nitrogen into the enone, which following protonation yields 

ketone 30  (Scheme 1.2B); intramolecular ketalization then occurs to condense the primary alcohol 

and generate hemiketal 29. Upon subsequent treatment with BF3•OEt2 at 0 °C, oxocarbenium 31 

is generated and intercepted via electrophilic aromatic substitution to afford Wheland intermediate 

32, which upon deprotonation generates alstonisidine (3). Although this target has yet to be 

generated by total synthesis, both quebachadine precursors34  and macroline (28)35,36,37,38,39  were 

later independently accessed through synthetic efforts.40 

Scheme 1.2. LeQuesne and Cook’s semi-synthesis of alstonisidine (1972). 
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1.2.3  LeQuesne and Cook’s Semi-synthesis of Villalstonine  

LeQuesne and coworkers also applied this reactivity to the synthesis of the related alkaloid 

villalstonine (4)32,41 from pleiocarpamine (33) and macroline (28) (Scheme 1.3A). In contrast to 

quebrachidine (27), the N-alkylated indole pleiocarpamine (34) reacts with the conjugate acceptor 

of macroline (28) at indole C(3), generating ketone 34; addition of the macroline primary alcohol 

into the carbonyl then promotes intramolecular aminal formation via addition of the oxygen into 

the C(2) iminium to form villalstonine (4) in 38% yield. (Scheme 1.3B)  

Scheme 1.3. LeQuesne’s semi-synthesis of villalstonine (1972). 
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1.2.4  LeQuesne and Cook’s Semi-synthesis of Macralstonine  

 Shortly thereafter, these conditions were applied a third time to the semi-synthesis of 

macralstonine (5)42 from macroline (28) and alstophylline (34) (Scheme 1.4A). Though this 

initially was proposed to occur via electrophilic aromatic substitution akin to that of villastronine, 

an alternative mechanism was later proposed43 where macroline (28) first equilibrates to 

oxocarbenium species 36 upon loss of water (Scheme 1.4B). This species is then intercepted by 

the electron rich indole ring of alstophylline (35) to afford conjugate adduct 37; hydration of the 

dihydropyran via oxocarbenium 38 then generates the natural product (5) in 40% yield. A total 

synthesis of alstophylline was later accomplished by Cook.44,45 

Scheme 1.4. LeQuesne and Cook’s semi-synthesis of macralstonine (1972). 
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1.2.5  Portier and Langlois’s Partial Synthesis of Vinblastine  

 Vinblastine (6) and vincristine (7) are the most well-studied members of this natural 

product class from a synthetic perspective (Figure 1.2). Isolated from the Madigascar periwinkle 

Cantharanthus roseus G. don in 1958,46,47,48 these natural products are composed of a northern 

fragment derived from cleavamine (39) —which is synthesized in vivo via C–C bond cleavage of 

the related natural product cantharanthine (40) —and a southern fragment derived from vindoline 

(41). Early attempts to couple cleavamine (39) and vindoline (41) directly through SEAr forged 

the undesired epimer of vinblastine at C(16’) as the exclusive product.49 

Figure 1.2 Vinblastine, vincristine, and their subunits. 
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Scheme 1.5. Portier and Langlois’s semi-synthesis of vinblastine (1979). 
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anhydrovinblastine (44) in 62% yield. Low temperatures were essential, as warming from –78 to 

0 °C eroded the diastereoselectivity from 4:1 to 1:1 d.r. at C(16’).52  

 Anhydrovinblastine (44) is then hydrogenated selectively at the Δ−15’,20’ olefin and N-

oxidized with m-CPBA to N-oxide 45. TFAA then initiates a second Polonovski-Portier 

rearrangement to generate enamine 46 upon subsequent elimination. Oxidation with thallium 

acetate then promotes β-acetloxylation to vinblastine-20’-acetate 47 before reductive deprotection 

with NaBH4 generates vinblastine (6) in 30% yield. While other oxidants (e.g. OsO4) oxidized 

from the less-hindered α-face, the thallium reagent offered the desired β-face oxidation due to 

direction by the enamine nitrogen lone pair.55 

 

1.2.6  Kutney’s Partial Synthesis of Vinblastine  

Kutney would follow up with an improved route to vinblastine using a similar strategy 

(Scheme 1.6).56 Following the tandem Polonovski–Portier rearrangement of N-oxide 42 and 

electrophilic aromatic substitution with vindoline (41), iminium 43 is subsequently treated with 

nicotinamide derivative 48 to promote 1,4-reduction of α,β-unsaturated iminium 43 preferentially 

at C(15’) (blue) over C(21’) (red) and generate enamine 46 directly. Circumventing the use of 

toxic thallium reagents, Kutney discovered that aerobic oxidation with iron (III) chloride could 

advance enamine 46 to vinblastine (6) following subsequent exposure to sodium borohydride in 

40% yield over the sequence. A 16% yield of the alcohol epimer leurosine (49) is also obtained.  
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Scheme 1.6. Kutney’s semi-synthesis of vinblastine (1988). 
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Scheme 1.7. Kuehne’s partial synthesis of vinblastine (1991). 
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1.2.8  Magnus’s Partial Synthesis of Vinblastine   

Scheme 1.8. Magnus’s partial synthesis of vinblastine (1993). 
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Treatment with nosyl chloroformate and base promotes acylation of the tertiary amine and 

C–C bond cleavage to indolene 64, which is intercepted by vindoline (41) to generate dimer 65 

with ~2:1 d.r. This intermediate is then advanced to vinblastine (6) over three-step sequence 

consisting of: 1) acetonide cleavage, 2) Swern oxidation and 3) carbamate cleavage/reductive 

amination to close the piperidine ring and complete the natural product.  

 

1.2.9  Cook’s Partial Synthesis of Villalstonine   

 In 1994, Cook reported a synthesis35,60 of macroline (28) en route to the first formal 

synthesis of villalstonine (4) (Scheme 1.9A). Tryptophan (66) was first elaborated to bridging 

lactam 67 over 4 steps via Pictet–Spengler and Dieckman cyclizations.61 Methylation of the benzyl 

protected amine is followed by hydrogenolysis and a two-step homologation sequence to access 

enal 68. Reduction and oxa-Michael addition affords vinyl ether 69, which is heated to promote a 

Claisen rearrangement, doubly reduced, and protected as acetonide 70. Hydroboration/oxidation 

of the exo-methylene occurs with complete selectivity for the β-face, before silylation and 

acetonide cleavage affords diol 71. Acetylation of the primary alcohol, oxidation of the secondary 

alcohol, and elimination of the acetoxy group affords enone 72. TBAF deprotection then affords 

the natural product macroline (28).   

Using a modified version of conditions described by LeQuesne,32 Friedel–Crafts alkylation 

generates the C–C bond (blue) before TBAF-triggered C–O bond formation (red) completes the 

synthesis of villalstonine (4) (Scheme 1.9B). Though a high yield is observed via qNMR, the 

isolated yield was comparable to that of the previously disclosed 38% yield in the one-step 

coupling (Scheme 1.9B). 
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Scheme 1.9. Cook’s partial synthesis of villalstonine (1994). 
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1.2.10  Magnus’s Partial Synthesis of Macrocarpamine   

Scheme 1.10. Cook’s partial synthesis of macrocarpamine (1996).  
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reduction and hydroboration/oxidation to triol 73 (Scheme 1.10A). Mono-tosylation is then 

followed by Swern oxidation and condensation to dihydropyran 74. Reduction of the remaining 

ketone and elimination then affords anhydromacrosalhinine-methine (75). Combining this with 

natural pleiocarpamine (33) in anhydrous HCl in methanol then produces macrocarpamine (8) in 

83% yield (Scheme 1.10B). Mechanistically, this proceeds through protonation of indole C(3), 

followed by addition of the vinylogous enol ether of (76) to the in-situ generated iminium ion, 

forming oxocarbenium 77. Deprotonation then affords the natural product (8) (Scheme 1.10C).  

Scheme 1.11. Poupon, Evanno, and Vincent’s semi-synthesis of bipleiophylline (1996). 
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1.3  TOTAL SYNTHESES OF BISINDOLE ALKALOIDS 

1.3.1 Magnus’s Total Synthesis of Norpleiomutine 

In 1984, Magnus published a route64 to the eburan–kopsia dimer norpleiomutine (10). 

Amine 80 is first elaborated to tetracyclic indole 81 through a five-step sequence65 involving 

intramolecular [4+2] cycloaddition (Scheme 1.12A). Esterification with enantioenriched sulfinyl 

acetic acid and l-cyclohexyl-3-(2-morpholinoethyl)carbodi-imide-metho-p-toluene sulfonate 

(CMS) allows for chromatographic separation of diastereomers, affording enantiomerically pure 

82. Acylation with TFAA at elevated temperatures generates lactam 83 via an interrupted 

Pummerer rearrangement, before α-alkylation with allyl bromide and heating affords caged Diels–

Alder adduct 84 in 72% yield. Following reduction of the olefin with diimide, oxidation of the 

thioether at 240 °C triggers a formal 1,3-migration to sulfoxide 85. Oxidation to the ketone 

followed by methoxide-mediated C–C bond cleavage generates hexacyclic intermediate 86. 

Deprotection of the indole nitrogen is followed by reesterification; conversion of the lactam to the 

thioamide with Lawesson’s reagent and desulfurization affords kopsonilam (87). 

To access the eburan fragment, Diels–Alder adduct 88 is subjected to oxidative cleavage 

and acetal hydrolysis to lactone 89 (Scheme 1.12B). Condensation with tryptamine under acidic 

conditions promotes a Pictet–Spengler cyclization, affording cis-fused pentacycle 90. A 

reduction/oxidation sequence then generates rac-eburnamonine (91), before a classical resolution 

and lithium aluminum hydride reduction affords a mixture of (–)-eburnamine (92) and 

isoeburnamine (93). Subjecting a mixture of the two isomers with kopsanilam (87) under acidic 

conditions then affords norpleiomutine (10) in 20 steps LLS from amine 80 (Scheme 1.12C).66 

This marks the first synthesis of a dimeric indole alkaloid in which both monomeric precursors are 

synthetically derived and enantioenriched. 
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Scheme 1.12. Magnus’s total synthesis of norpleiomutine (1984). 
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1.3.2 Cook’s Total Synthesis of Macralstonidine 

 In 2002, Cook and coworkers reported the first total synthesis of macralstonidine (12) from 

macroline (28) and (+)-Na-methylsarpagine (94).67 6-methoxytryptophan 95 was accessed from 4-

methoxyaniline through a Japp–Klingemann synthesis68 and advanced to lactam 96 (Scheme 

1.13A).69 N-alkylation generates a vinyl iodide, which then undergoes an intramolecular Pd-

catalyzed enolate alkenylation to afford bridging ketone 97. Wittig homologation with acidic 

workup produces an aldehyde before demethylation and borohydride reduction generates Na-

methylsarpagine (94). Acid-mediated condensation with synthetic macroline (28) under Gannick’s 

conditions70 then affords the dimer (+)-macralstonidine (Scheme 1.13B).  

Scheme 1.13. Cook’s total synthesis of macralstonidine (2002). 
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1.3.3 Fukuyama’s First Generation Total Synthesis of Vinblastine 

The first total synthesis of vinblastine (5) was completed by the Fukuyama group in 2002.71 

Starting from aldehyde 98, cyanohydrin formation and acetylation generates a racemic mixture of 

acetates, which undergoes enzymatic resolution to generate alcohol 99 in 42% yield and 97% ee 

(Scheme 1.14A). Following ozonolysis of the styrenyl olefin, the alcohol is activated with mesyl 

chloride before a tandem lithium aluminum hydride reduction and protection sequence advances 

to dihydrofuran 100. 

 In parallel, quinoline 101 is cleaved with thiophosgene, which following THP-protection 

affords isocyanate 102 (Scheme 1.14B). Addition of benzyl methyl malonate precedes a Fukuyama 

indole synthesis72 and Boc protection to afford indole 103 in 60% yield. Hydrogenolysis of the 

benzyl ether is followed by a decarboxylative Mannich reaction with elimination and THP 

deprotection to form enoate 104, which is coupled with dihydrofuran 100 through a convergent 

Mitsunobu reaction to access ether 105. TFA promotes hydration of the enol ether and Boc 

deprotection, while addition of pyrrolidine at high temperatures opens the hydrated furan ring and 

promotes an intramolecular [4+2] cycloaddition to construct pentacycle 106. This is advanced 

through a previously published 7-step sequence73 to vindoline (41). 

 To construct the cleavamine-derived northern fragment, oxazolidinone 107 is advanced to 

nitrile 108 through a diastereoselective Michael addition to acrylonitrile, reductive auxiliary 

cleavage, and TBDPS-protection (Scheme 1.14C). The nitrile is reduced to the aldehyde and 

condensed with hydroxylamine to an oxime, which undergoes a nitrone-olefin 1,3-dipolar 

cycloaddition to bicycle 109; reduction with zinc then unmasks β-hydroxy ketone 110. Baeyer-

Villiger oxidation promotes C–C bond cleavage to a lactone (not shown), which is hydrolyzed 

with basic methanol and orthogonally protected to afford acyclic fragment 111.   
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Scheme 1.14. Fukuyama’s total synthesis of vinblastine monomers (2002). 
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Base-mediated addition of ester 111 into isocyanate 112 is followed by an additional three-

step sequence to generate indole 113 as a mixture of diastereomers α to the ester. Bis-tosylation of 

the primary alcohols is followed by base-mediated epoxidation and intermolecular SN2 to afford 

amine 114. Treatment with K2CO3 at elevated temperatures then affords the 11-membered cyclic 

amine, 115 which is advanced through an additional three steps to dimerization precursor 116. 

Scheme 1.15. Fukuyama’s total synthesis of vinblastine (2002) and vincristine (2003). 
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To link the two monomeric subunits, indole 116 is treated with t-BuOCl to chloroenamine 

117, which upon addition of vindoline (41) and acid generates dimerized product 118 in 97% yield 

as a single diastereomer (Scheme 1.15A). Deprotections of the trifluoroacetate and nosyl groups 

are then followed by base-mediated closure of the 6-membered ring, affording vinblastine (5) in 

28 steps longest linear sequence from 101. Fukuyama later showed that an analogous sequence 

could be used to advance desmethylvindoline 119 to vincristine (6) (Scheme 1.15B).74 

 

1.3.4 Fukuyama’s Second Generation Total Synthesis of Vinblastine 

Fukuyama then published a second generation approach to vinblastine in 2007 (Scheme 

1.16).75 Instrumental to this route was a functional handle at C(20’) to allow for derivatization at 

this position. Starting from enantioenriched cyclopentene 124, Krapcho decarboxylation and 

saponification affords acid 125, which is then lactonized and BOM-protected to afford bicycle 

126. A three-step sequence then advances the intermediate to dihydropyran 127 before 

hydroboration/oxidation generates ketone 128. Grignard addition of TMS-acetylene installs the 

two-carbon handle before acid-mediated BOM-deprotection accesses pyran 129. Oxidation of the 

secondary alcohol and Baeyer-Villager oxidation advances to hemiacetal 130. Ethanolysis of the 

lactone, lactol reduction, acid-catalyzed lactonization, and silylation then affords key protected 

diol 131 in 85% yield. Addition to isothiocyanate 132 and Fukuyama synthesis then generates 

indole 133 as a mixture of diastereomers.  
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Scheme 1.16. Fukuyama’s second generation total synthesis of vinblastine (2007). 
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An additional eight steps are required to advance to azide 134, which is reduced and nosyl 

protected to amine 135. Protecting group manipulations are then used to access cyclization 

precursor 136, which undergoes a Mitsunobu reaction to generate cyclic amine 137. MOM-

deprotection and tosylation of the primary alcohol is followed by re-protection of the tertiary 

alcohol to dimerization precursor 138. The analogous dimerization sequence generates 139 in 84% 

yield, before an additional four steps afford vinblastine (5). Several derivatives of alkyne 139 were 

generated as well, but all analogs were less biologically active than vinblastine (5). 

 

1.3.5 Boger’s Total Synthesis of Vinblastine 

 A third total synthesis of vinblastine was reported by Boger in 2008.76,77 Their previously 

reported synthesis of vindoline78 begins with 6-methoxytryptamine (140), which is treated with 

CDI and 141 to afford urea 142 (Scheme 1.17A). Tosyl chloride induces cyclization to the 1,3,4-

oxadiazole before coupling with acid 143 to afford amide 144. Heating in 1,3,5-tri-iso-

propylbenzene (1,3,5-TIPB) at 230 °C promotes a tandem [4+2]/[3+2] cycloaddition to forge the 

alkaloid core as a mixture of enantiomers which are separated by chiral HPLC to afford 

enantiomerically pure 145. α-Oxidation of the lactam is isolated as silyl ether 146 before amide 

reduction and acetylation generates piperidine 147. Finally, hydrogenolysis of the cyclic ether, 

TIPS deprotection, and elimination affords vindoline (41) in 11 steps from 140. A second 

generation approach was later published starting from the chiral pool.79 
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Scheme 1.17. Boger’s total synthesis of vinblastine (2008). 
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Using cantharanthine (40) obtained from Raucher’s route8081, Boger developed a one-pot 

oxidative coupling/alkene hydration to synthesize vinblastine (5) directly from the component 

monomers (Scheme 1.17B). Originally, Fe(III) was proposed to oxidize cantharanthine (40) to 

radical cation 148, which undergoes C–C bond cleavage to stabilized radical 149 (Scheme 1.17C); 

this is oxidized to carbocation 150 before undergoing SEAr with vindoline (41) to iminium 43. The 

addition of iron (III) oxalate and sodium borohydride then initiate H• addition to the trisubstituted 

olefin (via the intermediate Fe–H species), generating a tertiary radical 151 that traps a molecule 

of singlet oxygen to the peroxide radical 152. A second hydrogen atom addition then generates the 

peroxide 153, which is reduced to vinblastine (5) in 42% yield, with 24% of leurosine (49) also 

isolated. The intermediates on this route were then elaborated to a number of analogues to study 

structure activity relationship.82 

However, this mechanistic proposal failed to explain two key observations: 1) the coupling 

reaction proceeded with perfect diastereoselectivity at C(16’) when conducted at 23 °C, while 

Kutney and Portier’s procedure, which implicated identical intermediates, favored the undesired 

epimer, and 2) no fragmented cleavamine-type derivatives were observed, as all mass balance 

returned as unreacted cantharanthine (40). A follow-up study83 proposed a new hypothesis where 

cantharanthine (40) is reversibly oxidized to charge-separated radical cation 154 which lies in 

equilibrium with iminium radical 155; nucleophilic attack by vindoline forms stabilized radical 

156 which is sequentially oxidized and deprotonated to anhydrovinblastine (44) and hydrated to 

vinblastine (5) through the mechanism described above (Scheme 1.17C). Boger further supported 

this hypothesis by publishing a new radical-cation based coupling method in 2019 (Scheme 

1.18B)84 
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Scheme 1.18. Boger’s revised mechanistic proposal and radical cation coupling (2019). 
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coupling partner 161. Mixture of methyl ether 161 and affinisine (157) in acidic methanol then 

affords (–)-accedinisine (13) in 35% yield (Scheme 1.19C). Use of Cbz-protected amine 160 in 

the coupling reaction was also utilized to afford N-desmethyl accedinisine.   

Scheme 1.19. Cook’s total synthesis of accedinisine (2008). 
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1.3.7 Fukuyama and Tokuyama’s Total Synthesis of Haplophytine 

Aside from vinblastine (5) and its congeners, haplophytine (14) is perhaps the most well-

studied bis(monoterpenoid) indole alkaloid. Isolated from the leaves of the plant Haplophyton 

cimicidum and noted for its insecticidal properties,88,89,90,91 it is the dimeric combination of the 

component alkaloids canthiphytine (158) and aspidophytine (159)  (Scheme 1.20A). Degradation 

studies by Cava and Yates showed that the western portion of the molecule readily undergoes a 

reversible rearrangement in the presence of acid or base (Scheme 1.20B).92,93 Despite several 

elegant syntheses of the aspidophytine moiety,94,95,96,97,98 all were unsuccessful at advancing 

directly to haplophytine (14). The three published routes to date all utilize simpler precursors in 

the coupling/rearrangement.   

Scheme 1.20. Haplophytine and proposed biosynthetic precursors. 
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in 74% yield and 98% ee (Scheme 1.21A). Reduction and mesylation are followed by a Fukuyama 

ketone synthesis100 to produce pthtalamido-ketone 163, before ketalization and elimination of the 

mesylate forges cyclopentene 164. Following a protecting group exchange (164 → 165), 

ozonolysis with reductive workup generates diol 166. Leveraging the difference in steric 

environments between two primary alcohols, orthogonal mesylation and oxidation precede 

alkylation of the nosyl amine to generate cyclic amine 167. Finally, ketal and nosyl cleavage 

promotes an intramolecular Mannich reaction, which following reesterification accesses the key 

tricyclic ketone 168.  

In a separate sequence, Vilsmeier–Haack formylation and Henry addition to indole 169 

affords nitroolefin 170 (Scheme 1.21B). Exhaustive reduction with LiAlH4, followed by acylation 

and esterification generates amide 171 which undergoes protecting group exchange at the phenol 

oxygen to mesylate 172. A Bischler–Napieralski cyclization then accesses the cyclic iminium, 

which undergoes Noyori-type asymmetric transfer hydrogenation101 and Cbz-protection to afford 

tricycle 173 in 97% ee. At this juncture, a coupling occurs to install the aryl ring of the southern 

fragment; iodination of the indole C(3) is followed by treatment with silver (I) to produce 

carbocation 174 which reacts with aniline derivative 175 to generate quaternary adduct 176 in 61% 

yield with 2.0–2.4:1 d.r. This is advanced to tetracycle 177 through a lactamization/protecting 

group exchange sequence. Treatment of the enamine with m-CPBA produces an epoxide 178, 

which undergoes a spontaneous semi-pinacol rearrangement to forge the rearranged northern 

fragment 179 in excellent yield. Fmoc deprotection and nitration then affords hydrazine 180. 
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Scheme 1.21. Fukuyama and Tokuyama’s total synthesis of haplophytine monomers (2009). 
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To complete the synthesis, fragments 168 and 180 were coupled through a two-step Fischer 

indole synthesis to access dimer 181 bearing the full skeleton of haplophytine (Scheme 1.22). 

Desaturation of the imine with benzeneselenic anhydride and Cbz-deprotection then occur before 

the final two methyl groups of 182 are installed by reductive amination. Finally, mesyl 

deprotection/saponification and oxidative lactonization then complete haplophytine (14) in 27 

steps LLS from indole 169. 

Scheme 1.22. Fukuyama and Tokuyama’s total synthesis of haplophytine (2009). 
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in 23% yield (albeit with only 25% conversion.) Following a seven-step sequence to advance to 

lactam 188, a similar m-CPBA initiated rearrangement occurs to forge the bridging tetracyclic 

fragment on the western fragment. Subsequent treatment with DDQ then oxidizes the intermediate 

to indole 189. 

Lithiation/borylation at C(2) of the newly formed indole is followed by Suzuki coupling 

with reported vinyl iodide103 190 and methylation of the indole to afford heptacycle 191. Amide 

activation with triflic anhydride promotes intramolecular cyclization with the indole C(3), 

followed by reduction of the resultant iminium. Deprotection of the primary alcohol and activation 

as the xanthate allows for a 5-exo trig radical cyclization into the indole104 to access 192, bearing 

the full carbocyclic skeleton of haplophytine. Deprotection of the carboxylic acid and oxidative 

lactonization then occurs, followed by debenzylation of the phenol oxygen and silylation to 

intermediate 193. Reductive amination installs the final methyl group, but it is unfortunately 

accompanied by reductive lactone opening. This bond is reformed with K3[Fe(CN)6] before 

desilylation affords haplophytine (14) in 33 steps from indole 169. 

 

 

 

 

 

 

 

 

 



Chapter 1: The Synthesis of Heterodimeric Bis(monoterpenoid) Indole Alkaloids 
 

38 

Scheme 1.23. Nicolaou and Chen’s total synthesis of haplophytine (2009). 
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1.3.9 Fukuyama and Tokuyama’s Total Synthesis of Conophylline 

In 2011, Fukuyama and Tokuyama published a route towards the dimeric aspidosperma 

alkaloids conophylline (15) and conophyllidine (16).105 Commercial phenol 194 was first 

advanced to ester 195 over an eight-step sequence (Scheme 1.24A). Nitro reduction, followed by 

acylation and dehydration affords isocyanate 196 which undergoes a Fukuyama indole synthesis 

followed by iodine quench to afford 2-iodoindole 197. After DIBAL reduction and orthogonal 

protections, indole 198 undergoes Stille coupling with vinylstannane 199 and THP deprotection to 

afford enoate 200. This is advanced upon coupling with dihydrofuran 100, previously implemented 

in their first-generation vinblastine synthesis,71 to tetracycle 201 in 49% yield over three steps. 

Following elimination of the secondary alcohol to pentacycle 202, indole protection and 

epoxidation affords the electrophilic coupling partner 203, a protected version of the natural 

product taberhanine. 

The nucleophilic coupling partner is synthesized from tetracycle 106, an intermediate that 

was also accessed during the vinblastine route (Scheme 1.24B).71 Through an analogous three-step 

sequence, 106 is advanced to epoxide 204. Following Troc-deprotection, mesyl group hydrolysis 

and allylation accesses nucleophilic coupling partner 205. 

To couple the monomeric subunits, electrophilic coupling partner is transformed to N-

oxide 206 with m-CPBA (Scheme 1.25). Subjection to TFAA generates acylated species 207 

which undergoes regioselective Polonovski-Portier rearrangement106 to iminium 208, which is 

intercepted by nucleophilic fragment 205 to access dimer 209 in 50% yield over two steps. Allyl 

deprotection with palladium promotes concomitant epoxide opening to forge the final 

dihydrofuran ring before global deprotection with LDA affords conophylline (15) in 27 steps LLS. 

A similar procedure is used to access the congener conophylline (16). 
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Scheme 1.24. Fukuyama and Tokuyama’s total synthesis of conophylline monomers (2011). 
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Scheme 1.25. Fukuyama and Tokuyama’s total synthesis of conophylline (2011). 
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Saponification is followed by lactamization and protecting group exchange at the indole nitrogen 

to afford rearrangement precursor 212.  

Scheme 1.26. Tokuyama’s total synthesis of haplophytine (2016). 
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affords peroxide 215, which is reduced to alkoxide 216 before semi-pinacol rearrangement 

produces the full carbocyclic skeleton 217 in 70% yield. Thermal Boc-deprotection and double 

reductive amination install the final two carbons, before mesyl deprotection and oxidative 

lactamization affords haplophytine (14) in 15 steps from previously published intermediates. 

  

1.4  CONCLUDING REMARKS 

In summary, the bis(monoterpenoid) indole alkaloids have inspired a deep and fascinating 

body of research over the past sixty years. Despite this substantial history, it is surprising that such 

a storied natural product class remains so dramatically underexplored. While other alkaloid 

subclasses are subject of dozens of accounts per year, successful bisindole alkaloid syntheses are 

scarce—especially relative to the continued focus on the monoterpenoid indole alkaloids which 

frequently compose these dimeric structures. Modern synthetic chemists have largely moved on 

from the “tour-de-force” approach to natural product total synthesis that were frequently 

implemented to construct these synthetically challenging targets. By implementing aspects of 

modern synthetic planning, we can construct these targets with improved efficiency and facilitate 

the completion of total synthetic efforts.  

One such strategy to facilitate studies is the implementation of divergent109 or diversity-

oriented synthesis110 in the construction of monomeric subunits. Inefficient monomer synthesis 

continues to be the bottleneck of progress, both in material throughput and time invested in 

optimizing new routes (vide infra). Monoterpenoid indole alkaloids, despite substantial structural 

variation, all arise from the same biosynthetic precursor strictosidine;111 these monomers are, thus, 

particularly well-suited for diversity-oriented synthesis, as evidenced by reports from Zhu,112 

MacMillan,113 and Stoltz.114 Fukuyama’s skillful repurposing of vinblastine intermediates toward 
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the synthesis of conophylline105 offers concrete proof-of-principle that this design element can 

improve the efficiency of route development. 

Another area of development is the incorporation of modern advances in cross-coupling to 

accomplish the convergent linkage of monomeric subunits. Successful efforts to-date have become 

overreliant on the biomimetic hypotheses to forge the key dimerizing bond; this has thwarted some 

efforts when these hypotheses have proven unsubstantiated and limited other attempts to expand 

the scope of coupling partners beyond the natural product. Generalizable cross-couplings can be 

utilized in multiple natural product syntheses, as evidenced by work on oligomeric 

polypyrrolidinoindolines by MacMillan115 and Movassaghi.116 Given the recent advances in 

C(sp3)–C(sp2) cross coupling, the viability of catalyst-controlled coupling strategies has never 

been greater.  

From origins in structural elucidation via semi-synthesis to modern implementation in 

analog development for structure-activity relationship studies, interest in this natural product class 

has evolved with the changing demands of modern synthetic chemistry. Given the designation of 

several accounts described herein as landmark syntheses,117,118 there remains little doubt that this 

natural product class will continue to garner interest for years to come. 
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CHAPTER 2 

Divergent Synthesis of 

Eburnamonine and Eucophylline 

 

2.1  INTRODUCTION 

2.1.1.  Isolation, Bioactivity, and Biosynthetic Hypotheses  

Leucophyllidine (230) is a bis(monoterpenoid) indole alkaloid that was first isolated from 

the bark of the Malaysian woody climber Leuconotis griffithi in 2009.1 It is composed of two 

polycyclic fragments: a northern pentacyclic indole-containing fragment derived from 

eburnamonine (91) and a southern tetracyclic vinylquinoline fragment derived from eucophylline 

(231) (Figure 2.1). Structurally, the molecule contains nine rings, four stereogenic carbons 

(including two all-carbon quaternary stereogenic centers) and a sterically hindered C(sp)3–C(sp)2 

bond which joins the two polycyclic fragments. The molecule demonstrates in vitro cytotoxicity 

toward drug-sensitive and drug-resistant human KB cells (IC50 = 5.16, 5.10 µM) while also acting 

as a dose-dependent inhibitor of nitrous oxide (NO) synthase.2 
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Figure 2.1 Leucophyllidine and its component monomers. 

 

 The two monomeric components of leucophyllidine (230) have each been independently 

isolated from separate biological sources (Figure 2.1). Eburnamonine (91) and its reduced form 

eburnamine (92) were first isolated in 1959 by Bartlett and Taylor3 from the plant Hunteria 

eburnea, and it was later demonstrated to show anticholinergic4 and cerebratonic5 properties. 

Eucophylline (231) was first isolated in 2010 from the related plant species Leuconotis 

eugenifolius. Though noteworthy for its unique tetrahydro-benzo[b][1,8]naphthyridine core, 

eucophylline (231) displays no known biological activity to date. 

Scheme 2.1. Proposed biosynthesis of eburnamine. 

 

Leucophyllidine
(230)

N OHN

Me
N

N

Me

H

Eucophylline
(231)

(91) Eburnamonine, X = O
(92) Eburnamine, X = β-OH

X

N OHN

Me
N

N

Me

H

H

N
H

N

Me

COOMe
N
H

N

Me

COOMeHO
N
H

N

Me

COOMeHO

233 234

N
H

N

Me

H

HO
MeOOC

235

N
H

N

Me

H

(236

MeOOC O

N
N

Me

H

MeOOC
OH

N
N

Me

H

238

OH

N
N

Me

H

HO
O

O
H

[O]

– H proton

transfer

Vincamine (237)

– MeO

+ H

– CO2

Eburnamine (92)

Aspidospermidine (232)



Chapter 2: Divergent Synthesis of Eburnamonine and Eucophylline 55 

 Biosynthetically, eburnamine (92) is hypothesized to arise from aspidospermidine (232), 

which is first oxidized to hydroxylated alkaloid 233 (Scheme 2.1). A fragmentation then occurs to 

reform iminium 234, which undergoes subsequent attack from indole C(2) to form rearranged 

pentacycle 235. Cleavage of the five-membered ring affords α-ketoester 236, before nucleophilic 

attack of the indole nitrogen closes the 6-membered ring of vincamine (237), thus completing the 

pentacyclic framework. Methyl ester hydrolysis to acid 238, followed by decarboxylation then 

affords eburnamine (91).6   

Scheme 2.2. Proposed biosynthesis of eucophylline. 
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alkaloid 244. At this juncture, reduction of the piperidine motif occurs before a 

fragmentation/oxidation establishes aromatic quinolone 246. This then participates in nucleophilic 

aromatic substitution to complete the tetrahydro[b][1.8]naphthyridine core of eucophylline (231). 

Scheme 2.3. Proposed biosynthesis of leucophyllidine. 

 

 The coupling of monomers is proposed to occur upon dehydration of eburnamine (92) to 

the corresponding iminium ion 246, followed by electrophilic aromatic substitution with the 

electron-rich eucophylline (231) to complete leucophyllidine (230) (Scheme 2.3). Based on 

synthetic work by Panday, the C(6) position of eucophylline is much less nucleophilic than C(8) 

to Friedel-Crafts type reactivity due to greater stabilization of the Weiland intermediate. Therefore, 

it is very likely that the corresponding dimerization event is enzyme-mediated.7 

 

2.1.2.   Previous Synthetic Efforts toward Eburnamine 

Scheme 2.4. Strategically significant bonds in eburnamonine. 
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than discuss each synthesis individually, we will focus on select examples that identified three 

strategic bonds (Scheme 2.4), disconnecting the pentacycle into a “tryptamine” and “lactam”-

derived fragments. These examples were the most influential in our retrosynthetic analysis.  

Scheme 2.5. Harley-Mason’s synthesis of (±) eburnamonine (1965). 
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approach to construct the eburnan core (Scheme 2.5). Starting from 4-formylhexanoate 247, 
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Scheme 2.6. Wenkert’s synthesis of (±) eburnamonine (1988). 

 

 Wenkert and coworkers8l later disclosed a route that utilizes a Pictet-Spengler cyclization 

into a cyclic iminium rather than an acyclic iminium (Scheme 2.6). Enaminone 252 is first 

converted to dithiolane 253, which is followed by Raney Nickel-mediated desulfurization to access 
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diastereoselectivity (1.4:1). Degradiation studies by Lounasmaa12 determined that the unnatural 

trans-ring fusion is thermodynamically preferred, leading us to hypothesize that the further 
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Scheme 2.7. Schlessinger’s synthesis of (±) eburnamonine (1979). 

 

 The route by Schlessinger and coworkers,8f in contrast, utilized a Bischler–Napieralski 

cyclization to access the eburnan core (Scheme 2.7). t-Butyl butyrate 258 is advanced over five 

steps to indole-substituted lactam 259. Enolate alkylation with methyl bromoacetate generates 

quaternary lactam 260 in racemic fashion, which is subsequently subjected to Bischler–Napieralski 

cyclization conditions and anion exchange to yield iminium perchlorate 261. Hydrogenation with 

10% palladium on carbon yields tertiary amine 262 in quantitative yield as a 3:1 mixture of 

diastereomers in favor of the cis-ring fusion; this selectivity arises from preferential addition of 

hydrogen from the less-hindered β-face of the natural product, generating the kinetically favorable 

cis product as the major diastereomer. Base-mediated lactamization then produces eburnamonine 

(91) in quantitative yield. 
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2.1.3.   Previous Synthetic Efforts toward Eucophylline 

Scheme 2.8. Landais’s synthesis of (±) eucophylline (2015). 

 

 In sharp contrast to eburnamonine (91), eucophylline (231) has only been synthesized twice 

since its initial isolation. The first report by Landais and coworkers13 begins with a three-
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quaternary adduct 267 in racemic fashion (Scheme 2.8). Treatment with sodium borohydride, 

followed by hydrogenolysis with Raney-Ni affords cyclized lactam 268 in 66% yield over two 
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Cyclization is then initiated with LDA to generate 4-aminopyridine 272, then advanced to triflate 

273 over two steps. Suzuki coupling with 274 appends the vinyl fragment in O-methyleucophylline 

275 before demethylation affords eucophylline (231) in 10% yield over 10 steps. 

Scheme 2.9. Panday’s asymmetric synthesis of eucophylline (2017). 
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chloroquinoline 281 in modest yield. Demethylation under forcing conditions accesses phenol 282 

before a final Stille coupling stannane 283 with appends the vinyl fragment, accessing 

eucophylline (231) in 22 steps from commercial material. 

 

2.1.4.  Inspiration 

For nearly two decades, our laboratory has studied the transition-metal catalyzed 

asymmetric allylic alkylation of prochiral enolates;14 these powerful methods allow us to access 

substrates bearing all-carbon quaternary stereogenic centers in good yield and enantioselectivity. 

The functionality incorporated in these products has enabled their utility as building blocks and 

inspired new disconnection strategies in natural products total synthesis. 

Recent advances in our technology has allowed the incorporation of nitrogenated 

functionality, providing new entry points into alkaloid total synthesis (Scheme 2.10). Our first 

extension of this methodology to N-containing heterocycles in 2012 used the decarboxylation 

allylic alkylation of racemic carboxylactam 284 to access enantioenriched lactam 286 in excellent 

yield and enantioselectivity while accomplishing formal syntheses of the natural products 

quebrachamine (287) and rhazinilam (288)15 (Scheme 2.10A). In subsequent years, we illustrated 

that decarboxylative allylic alkylation of dihydropyrido[1,2-a]indolone (DHPI) frameworks (289 

→ 290) could be elaborated into cis-fused Aspidosperma alkaloids limaspermidine (291) and 

aspidospermidine (232), trans-fused Kopsia alkaloids kopsihainanine A (292), and the rearranged 

alkaloid goniomatine (293) via stereodivergent cyclizations (Scheme 2.10B).16 The allylic 

alkylation of racemic Mannich adducts (294 → 295) has also enabled efficient syntheses of 

sibirinine  (296) and α,β-myrifabral A (297) (Scheme 2.10C).17 
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Scheme 2.10. Application of Pd-catalyzed asymmetric allylic alkylation to the synthesis of 

monoterpenoid indole alkaloids in the Stoltz laboratory. 
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1). Numerous bis(monoterpenoid) indole alkaloids including leucophyllidine (230) contain all-

carbon quaternary stereogenic center at the three position of a piperidine ring in both monomeric 

subunits (blue, Figure 2.2), and the eburnan monomer is conserved in several natural products 

such as strempeliopidine (298) and norpleiomutine (11). Furthermore, many alkaloids are joined 

at an α-amino stereogenic center (green, Figure 2.2). The conserved structural analogy between 

these fragments suggests that our technology, in combination with a generalized cross-coupling 

method, could provide a foundation for a general strategy to access bis(monoterpenoid) indole 

alkaloids. 

Figure 2.2. Conserved structural elements observed in bis(monoterpenoid) indole alkaloids. 
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method to forge the α-amino stereogenic center. The monomeric subunits would be synthesized 

through divergent routes to access both natural product cores from a conserved building block, 

enantioenriched lactam 300. 

Scheme 2.11. The divergent-convergent strategy to access leucophyllidine.  
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Scheme 2.12. Retrosynthetic analysis of eburnamonine. 

 

Convergence Divergence

N OHN

Me
N

N

Me

H

H

Leucophyllidine
(230)

NH

OMe

300

N
N

Me

H

Eburnamonine
(90)

O

N OHN

Me

Eucophylline
(231)

N
N

Me

H

Eburnamonine
(91)

O

N
H

N

MeMeOOC

261

N

OMe

301

H
N

NH

OMe

302

NH

O

(276)
δ-valerolactam

Reduction

Lactamization

Bischler–
Napieralski

Oxidative
Cleavage

N–Alkylation Asymmetric

Allylic
Alkylation



Chapter 2: Divergent Synthesis of Eburnamonine and Eucophylline 66 

Retrosynthetically, we envisioned that eburnamonine (91) could be accessed through a 

reduction of iminium perchlorate 261 with subsequent lactamization as is observed in the 

Schlessinger route (Scheme 2.12).8f This would be formed via the oxidative cleavage and Bischler–

Napieralski cyclization of indole substituted lactam 301. The indole would be installed through N- 

with a tryptophol-derived electrophile alkylation of building block 300 that, in turn, is accessible 

from δ-valerolactam (276) using our asymmetric allylic alkylation methodology. 

 

2.2.2.  Scalable Synthesis of the Enantioenriched Lactam Building Block 

Though the synthesis of lactam 300 had been previously reported, we elected to develop a 

modified route that would be both shorter and more efficient to perform on large-scale.15,18 Starting 

from δ-valerolactam (276), we first perform benzoyl protection to generate lactam 303. This is 

followed by C-acylation using allyl cyanoformate to produce allyl ester 304, which is then 

alkylated with ethyl iodide to generate racemic β-keto ester 284. Our decarboxylative allylic 

alkylation then generates the enantioenriched α-quaternary lactam 286 before benzoyl 

deprotection accesses key lactam precursor 300 in only five steps. 

Scheme 2.13. Revised synthesis of enantioenriched lactam building block.  
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While our first generation conditions were effective at generating lactam 300 in high yield 

and ee, there were several aspects of this reaction that were prohibitive to perform on large scale.15 

First, the conditions required 5 mol% loading of Pd(0) precatalyst with a pmdba ligand that would 

frequently co-elute with desired products upon purification. Second, the conditions also required 

12.5 mol % loading of ligand 285, which was accessible through a scalable, yet tedious 7-step 

route.19 Finally, the dilute concentrations of toluene greatly complicated the setup and workup. 

 To solve these problems, we sought to adapt our low-catalyst loading conditions, which 

required a less-expensive and robust Pd(II) source, lower ligand loadings, and higher 

concentrations in MTBE.20 While the yield was slightly lower, the enantioselectivity of this 

transformation was retained in the reported examples. Furthermore, the facile purification allowed 

excess ligand to be recovered and reused.  

Table 2.1. Development of gram-scale decarboxylative allylic alkylation.  
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(Entry 3). As the remainder of mass balance returned as starting material, we found that adding 

equimolar amounts of Pd and ligand 285 at 2 and 3 days, respectively, allowed us to restart the 

reaction and improve conversion and yield (Entry 4). By increasing the initial Pd and ligand 

loading to 1 mol % and 5 mol %, respectively, we obtained the desired product in 91% yield and 

92 % ee on 15-gram scale (Entry 5). 

 

2.2.3.  Advancement to the Bischler–Napieralski Product 

 With sufficient quantities of lactam 300 in hand, we turned our attention to advancing this 

intermediate to indole 301. We were disappointed to observe that all attempts to N-alkylate lactam 

300 with tryptophol-derived electrophiles failed to deliver the product in our hands; though we 

had successfully alkylated similar nucleophiles, we determined that the β-indolyl electrophiles 

were unstable under the basic conditions required for these reactions. Thus, we first N-alkylated 

indole with known21 dioxolane 305 in excellent yield, which was advanced to indole 306 through 

an optimized Fischer synthesis. 

Scheme 2.14. Indole installation via Fischer synthesis. 
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Scheme 2.15. Unexpected aza-Prins rearrangement and mechanistic proposal. 
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phosphonate affords secondary alcohol 313. Though this was a minor component, it could not be 

purified without careful HPLC separation, complicating analysis of the subsequent reaction. 

 To avoid this issue, we decided to perform oxidative cleavage of the allyl fragment first 

prior to the Bischler–Napieralski rearrangement, assuming that an ester or carboxylate at that 

position would be less nucleophilic or reversibly nucleophilic. Despite Harley-Mason’s precedent 

using Johnson–Lemieux conditions,8a we were disappointed to see that all attempts to perform 

oxidative functionalization in the presence of the indole ring (301 → 313) were unsuccessful 

(Scheme 2.16A). Though we briefly investigated protecting the indole nitrogen, this would add 

numerous steps to what was previously a very efficient sequence. 

Scheme 2.16. Alternate Bischler–Napieralski cyclization.   
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optimization that use of a milder acid (p-TsOH•H2O) and the hydrochloride salt of 

phenylhydrazine afforded our desired product 315 in good yield. Using Schlessinger’s 

conditions,8f the Bischler–Napieralski cyclization and anion exchange proceeded smoothly to 

perchlorate 261. 

 

2.2.4.  Final Steps 

 Although we had completed a formal synthesis of eburnamonine (91) according to 

Schlessinger’s route,8f we were disappointed to observe that the reported diastereoselective 

hydrogenation failed to produce any reduced amine in our hands (Scheme 2.17A). Though this 

was surprising at first, we later learned of other reports which had difficulty reproducing these 

conditions.22 Attempts to reduce the iminium ion with hydride-based reductants (e.g. LiAlH4, 

NaBH4, (n-Bu)3SnH, and Li(O-t-Bu)3AlH) led to lactamization prior to reduction, and afforded 

the trans-fused epi-eburnamonine 251 as the exclusive product (Scheme 2.17B). 

Scheme 2.17. Issues with diastereoselective reduction.  
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Scheme 2.18. The effect of solvent on diastereoselectivity. 
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intermediate could then undergo lactamization with basic methanol to afford eburnamonine (91) 

in quantitative yield and reduction with lithium aluminum hydride to form eburnamine (92). 

Gratifyingly, treatment with DBU following the hydrogenation also allowed for 

lactamization in one-pot, synthesizing eburnamonine (91) and epi-eburnamonine 251 in 78% 

combined yield on gram-scale, but a modest 3.4:1 d.r on gram scale. (Table 2.2, entry 1). The 

lower diastereoselectivity and reaction times could be prevented on smaller scale using more dilute 

concentrations in DMF (entry 2), yet further dilutions were found to decrease yields (entry 3), 

potentially due to greater product loss on workup. Nevertheless, this route has allowed us to 

successfully synthesize up to 700 mg of eburnamonine in a single pass, facilitating studies of the 

subsequent late-stage chemistry. 

Table 2.2. Optimization of one-pot hydrogenation/lactamization. 
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date, this marks the shortest asymmetric synthesis of eburnamonine (91) or eburnamine (92) and 

the first to utilize asymmetric catalysis.  

 

2.3  TOTAL SYNTHESIS OF EUCOPHYLLINE 

2.3.1.   Retrosynthetic Analysis 

Scheme 2.19. Retrosynthetic analysis of eucophylline coupling partner. 
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central heterocyclic ring to aldehyde 321 and o-aminoaldehyde 322. The former would be accessed 

from enantioenriched lactam 300, while the latter would be synthesized from commercially 

available 2-amino-4-methoxybenzoic acid 323.    

 

2.3.2.   Advancement to the Friedländer Quinoline Synthesis Product 

 Starting from lactam 300, reduction with lithium aluminum hydride followed by Boc 

protection affords piperidine 324 in 69% yield over two steps (Scheme 2.20). Our initial attempts 

to functionalize the allyl fragment using hydroboration/oxidation reactions were met with 

surprisingly low yields. However, we found that the anti-Markovnikov selective Wacker oxidation 

developed by the Grubbs24 and Stoltz25 groups could provide aldehyde 321 directly on gram-scale 

with no detectable amount of the ketone isomer.  

Scheme 2.20. Synthesis of Friedländer precursors. 
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lithium aluminum hydride to benzyl alcohol 327 then oxidized to o-aminoaldehyde 322 under 

conditions described by Stahl.26 

Scheme 2.21. Unsuccessful Friedländer attempts. 
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equivalents of benzophenone proving optimal. Changing the oxidant to fluorenone (entry 5) or 

DDQ (entry 6) diminished the yield, and no product was observed when the temperature was 

lowered to 60 °C (Entry 7). When scaled to 0.5 mmol of aldehyde however, we observed a decrease 

to 45% yield (entry 8). By adding the base as a solution in 1,4-dioxane over 30 minutes (entry 9), 

we improved the yield to 74% on gram-scale. 

Table 2.3. Optimization of the Friedländer quinoline synthesis. 
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Scheme 2.22. Initial C(2)–H functionalization studies. 
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advances in direct N-oxide functionalization, we performed the Re-catalyzed N-oxidation followed 

by Boc-deprotection in one-pot (Scheme 2.22C). Intermediate 334 then was subjected to the 

PyBroP-mediated amination33 developed by Londregan and coworkers to afford tetracycle 319, 

albeit in 10% yield over 2 steps. 

 Due to the polarity and instability of Boc-deprotected N-oxide 334, we elected to modify 

our order of steps to avoid the direct isolation of this product. First, we subjected Boc-protected 

N-oxide 319 to Sn(OTf)2 deprotection as described by Reddy34, then added PyBroP and Hünig’s 

base in the same pot to promote the subsequent cyclization. Though no product was observed at 

room temperature (Table 2.4, entry 1), increasing to 40 °C generated tetracycle 319 in 41% yield 

(Entry 2), though further heating caused yield to diminish (Entry 3); switching to other solvents 

like THF led to a complete shutdown of cyclization (Entry 4). Triethylamine boosted the yield 

slightly (entry 5), while utilizing a 1M NaOH workup led to a significant improvement (entry 6).  

Table 2.4. Discovery of Sn(II)-mediated cyclization. 
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While performing order-of-addition studies, we observed trace product formation by 

LCMS when base was added before PyBroP. Upon heating this reaction, we were surprised to 

observe identical yields in the absence of PyBroP altogether (Entry 7), suggesting Sn(II) was the 

N-oxide activating agent. Finally, we found rigorous exclusion of water and an increase of reagent 

equivalents could generate the desired tetracycle in 81% yield (Entry 8). Though scalability issues 

were experienced due to the heterogeneous nature of the reactions, we were able to obtain 750 mg 

of tetracycle 319 by conducting a series of reactions in parallel (Entry 9). 

 

2.3.4.   Intermolecular C–H Alkylation: Investigation of a Minisci Alkylation 

Scheme 2.23. Reported Minisci conditions and application to the eucophylline tetracycle. 
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 To accomplish our second C–H functionalization, we elected to investigate the Minsici 

reaction35 due to its established utility in C(4) quinoline functionalization of densely functionalized 

natural products such as camptothecin36 ((335) → 336, Scheme 2.23A). While “classical” 

conditions lead to numerous oxidized side products, we were delighted to find that the mild 

photoredox-mediated conditions described by DiRocco and Krska37 (Scheme 2.23B) were much 

more tolerant of our system. While we successfully obtained alcohol 340 on our first attempt, we 

were disappointed to observe that the reaction was poorly reproducible and frequently generated 

methylated product 341 as the exclusive product (2.23B). Attributing this issue to inconsistencies 

in reaction setup, we found that switching our reaction setup from a Dewar with suspended LED 

to a Hepatochem photobox with an internal fan consistently provided alcohol 340 as the major 

product in good yield (Figure 1.2). 

While a consistent reaction was obtained, we noted that the reaction remained unusually 

fast (40 minutes) in comparison to the reported examples (~16 hours), and we began to suspect 

that a background reaction may be occurring. Upon conducting control experiments (Table 2.5), 

we were surprised to discover that the reaction proceeded in the absence of iridium complex (339), 

suggesting that our substrate itself is serving as its own photocatalyst for this reaction. Electron-

deficient quinolines have been reported to promote hydroxyalkylations under photochemical 

conditions,38 and DiRocco and Krska note that this “autophotocatalysis” occurs with several 

reported substrates when the intensity of the light source is increased.37  
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Figure 2.3. First and second generation Minisci reaction setup. 

   

Table 2.5. Control experiments for Minisci alkylation. 
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was irradiated at 380 nm, it recorded a maximum wavelength of emission (λem) at 476 nm. These 

values are remarkably similar to iridium complex (339) (λabs = 380 nm and 470 nm in MeCN),39 

lending support to this “autophotocatalytic” hypothesis. Further investigations of this 

transformation are ongoing.  

Figure 2.4. Absorption and emission spectra for Minsici precursor. 

 

   

2.3.5 Final Steps 

 Following our Minisci investigations, we found that the hydroxymethylation could be 

easily scaled to access alcohol 340. This intermediate is subsequently oxidized to aldehyde 342 

with DMP. Though methylenation under Wittig conditions were low yielding, we found that the 

modified Julia-Kocienski methylenation with sulfone 343 described by Aïssa40 could afford the 

targeted coupling partner, alkene 318, in 87% yield. To complete the formal synthesis, we 

performed lithiation/protonation to access O-methyleucophylline 344 as had been reported in the 

Landais route.13 
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Scheme 2.24. Formal synthesis of eucophylline. 

 

 

2.3.6 Concluding Remarks 

 In summary, we have completed a 16-step formal synthesis of eucophylline (231) from δ-

valerolactam (11 steps from conserved lactam building block 300). Key steps in this route include 

a Friedländer quinoline synthesis, an unprecedented Sn(II)-mediated C–H amination, and a 

photoredox-mediated Minisci hydroxymethylation promoted by a photoactive substrate. This route 

provides us with ample access to key coupling partner 318 to investigate our key cross-coupling 

en route to leucophyllidine (230).  
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2.5   EXPERIMENTAL SECTION 

2.5.1   Materials and Methods 

Unless otherwise stated, reactions were performed in flame-dried glassware under an 

argon or nitrogen atmosphere using dry, deoxygenated solvents. Solvents were dried by passage 

through an activated alumina column under argon.1 Reaction progress was monitored by thin-

layer chromatography (TLC) or Agilent 1290 UHPLC-LCMS. TLC was performed using E. 

Merck silica gel 60 F254 precoated glass plates (0.25 mm) and visualized by UV fluorescence 

quenching, p-anisaldehyde, CAM, or KMnO4 staining. Silicycle SiliaFlash® P60 Academic 

Silica gel (particle size 40–63 nm) was used for flash chromatography. 1H and 13C NMR spectra 

were recorded on a Varian Inova 500 (500  MHz and 126 MHz, respectively) and a Bruker AV 

III HD spectrometer equipped with a Prodigy liquid nitrogen temperature cryoprobe (400 MHz 

and 101 MHz, respectively) and are reported in terms of chemical shift relative to CHCl3 (δ 7.26 

and δ 77.16, respectively), CD2Cl2 (δ 5.32 and δ 53.84, respectively), (CD3)2SO (δ 2.50 and δ 

39.52, respectively) and CD3CN (δ 1.94 and 118.26). Data for 1H NMR are reported as follows: 

chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration). Multiplicities are 

reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, sept = septuplet, 

m = multiplet, br s = broad singlet, br d = broad doublet, br t = broad triplet, app = apparent. 

Some reported spectra in CDCl3 include minor solvent impurities of water (δ 1.56ppm), ethyl 

acetate (δ 4.12, 2.05, 1.26 ppm), dichloromethane (δ 5.30 ppm), acetone (δ 2.17 ppm), grease (δ 

1.26, 0.86 ppm), and/or silicon grease (δ 0.07 ppm), which do not impact product assignments.2 

Data for 13C NMR are reported in terms of chemical shifts (δ ppm). IR spectra were obtained by 

use of a Perkin Elmer Spectrum BXII spectrometer using thin films deposited on NaCl plates and 

reported in frequency of absorption (cm-1). Optical rotations were measured with a Jasco P-2000 
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polarimeter operating on the sodium D-line (589 nm), using a 100 mm path-length cell, and are 

reported as [α] T (concentration in g/100 mL, solvent). Analytical SFC was performed with a 

Mettler SFC supercritical CO2 analytical chromatography system utilizing Chiralpak OD-J 

column (4.6 mm x 25 cm) obtained from Daicel Chemical Industries, Ltd. High resolution mass 

spectra (HRMS) were obtained from the Caltech Mass Spectral Facility using a JEOL JMS-600H 

High Resolution Mass Spectrometer in fast atom bombardment (FAB+) or electron ionization 

(EI+) mode, or Agilent 6200 Series TOF with an Agilent G1978A Multimode source in mixed 

ionization mode (MM: ESI/APCI).  

Reagents were purchased from Sigma-Aldrich, Acros Organics, Strem, or Alfa Aesar and 

used as received unless otherwise stated. n-butyllithium was titrated prior to use according to the 

method of Gilman.3 Di-iso-propylamine was distilled from calcium hydride immediately prior to 

use. NBS was purchased from Sigma Aldrich, recrystallized from H2O, and stored in a –25 °C 

freezer. PhNHNH2•HCl was purchased from Sigma Aldrich, recrystallized from H2O and EtOH, 

and stored in a –25 °C freezer. MeOH was distilled from magnesium methoxide immediately 

prior to use. Allyl cyanoformate4, (R)-(CF3)3-t-Bu-PHOX 2855, dioxolane6 305 and tetrazole7 

343 were prepared by known methods.  
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2.4.2   Experimental Procedures 

 

N-Benzoyl δ-valerolactam 303: Following a modified procedure described by Gigant,8 a flame-

dried 1L flask with stir bar was charged with δ-valerolactam 276 (9.9 g, 100.0 mmol, 1.0 equiv) 

and THF (500 mL, 0.2 M), then cooled to –78 °C. n-butyllithium (2.30M in hexanes, 43.0 mL, 

99.0 mmol, 0.99 equiv) was added slowly and the solution was stirred at –78 °C for 30 minutes. 

Benzoyl chloride (12.8 mL, 110.0 mmol, 1.1 equiv) was added dropwise, then stirred at –78 °C 

for 30 minutes, removed from the cooling bath, and warmed to 23 °C over 30 minutes. The 

reaction was quenched with saturated ammonium chloride, transferred to a separatory funnel, 

and extracted with ether three times. The combined organic extracts were washed with brine, 

dried with magnesium sulfate, and concentrated in vacuo to produce an amorphous solid. This 

solid was recrystallized from toluene to afford N-benzoyl δ-valerolactam 303 (18.41 grams, 

94%) as a white crystalline solid. 1H NMR (400 MHz, CDCl3) δ 7.61 – 7.52 (m, 2H), 7.52 – 7.42 

(m, 1H), 7.42 – 7.33 (m, 2H), 3.80 (ddd, J = 6.3, 5.0, 1.0 Hz, 2H), 2.63 – 2.49 (m, 2H), 2.06 – 

1.88 (m, 4H); 13C NMR (101 MHz, CDCl3) δ 174.8, 173.6, 136.2, 131.6, 128.26, 128.0, 77.5, 

77.4, 77.2, 76.8, 46.3, 34.8, 23.0, 21.6; IR (Neat Film, NaCl) 2961, 1673, 1388, 1286, 1265, 

1159, 1146, 734 cm-1; HRMS (FAB+) m/z calculated for C12H13NO2 [M+H+]: 204.1025, found 

204.1024. Data were consistent with literature values.8 

 

NH

O

NBz

On-BuLi
THF, –78 °C, 30 min

then BzCl
–78 → 23 °C, 1h

276 94% yield 303
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Allyl ester 304: Following the procedure described by Behenna,9 a flame-dried 1L three-neck 

round bottom flask equipped with low temperature thermometer and stir bar was charged with 

THF (460 mL) and freshly distilled di-iso-propylamine (12.93 mL, 91.62 mmol, 1.2 equiv). The 

flask was cooled to –78 °C and a solution of n-butyllithium (2.44M in hexanes, 34.4 mL, 84.0 

mmol, 1.1 equiv) was added slowly. The flask was warmed to 0 °C and stirred for 30 minutes, at 

which point the solution turns pale yellow, then re-cooled to –78 °C. 

 A separate 250-mL round-bottom flask was charged with benzoyl lactam 303 (15.50 g, 

76.4 mmol, 1.0 equiv) and THF (95 mL). The solution was slowly transferred to the reaction 

flask via cannula (NOTE: the internal temperature of the reaction should not exceed –70 °C). 

Upon complete addition, the reaction mixture was stirred for 2 hours at –78 °C, then 1 hour at –

30 °C. The flask was re-cooled to –78 °C before neat allyl cyanoformate was added dropwise 

(9.33g, 84.0 mmol, 1.1 equiv). The reaction mixture was stirred at –78 °C for 2 hours, then 

slowly warmed up to 23 °C over 14 hours. 

 The reaction was quenched with saturated ammonium chloride, transferred to a 

separatory funnel, and extracted with diethyl ether (3X). The combined organic extracts were 

washed with brine, dried with sodium suflate, and concentrated in vacuo. Flash column 

chromatography (15→ 20 → 25 → 30% ethyl acetate/hexanes) afforded allyl ester 304 (15.34 g, 

70% yield) as a colorless oil. 1H NMR (400 MHz, CDCl3) δ 7.72 – 7.66 (m, 2H), 7.51 – 7.45 (m, 

1H), 7.41 – 7.35 (m, 2H), 5.95 (ddt, J = 17.2, 10.4, 5.9 Hz, 1H), 5.37 (dq, J = 17.2, 1.5 Hz, 1H), 

NBz

O

NBz

On-BuLi; (i-Pr)2NH
–78 → –30 °C, 3h

then allyl cyanoformate
–78 → 23 °C, 16h

303 70% yield

O

O

304
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5.29 (dq, J = 10.4, 1.2 Hz, 1H), 4.69 (dq, J = 5.9, 1.4 Hz, 2H), 3.88 – 3.76 (m, 2H), 3.59 (t, J = 

6.3 Hz, 1H), 2.39 – 2.30 (m, 1H), 2.22 – 2.13 (m, 1H), 2.12 – 2.02 (m, 1H), 2.01 – 1.90 (m, 1H). 

13C NMR (101 MHz, CDCl3) δ 174.6, 169.6, 169.3, 135.4, 131.9, 131.4, 128.3, 128.2, 119.3, 

66.4, 51.1, 46.3, 25.5, 20.7. IR (Neat Film, NaCl) 2960, 1737, 1674, 1448, 1389, 1285, 1259, 

1146, 986, 946, 824, 799, 732, 704, 670 cm-1; HRMS (FAB+) m/z calculated for C16H18NO4 

[M+H+]: 288.1236, found 288.1265. Data were consistent with literature values.9  

 

 

β-amidoester 284: To a flame-dried 1L round-bottom flask with stir bar was added allyl ester 

304 (15.33 g, 53.4 mmol, 1.0 equiv) and dichloromethane (390 mL). Cesium carbonate (76.7 g, 

235.5 mmol, 4.4 equiv) was added, and the heterogeneous mixture was stirred for 10 minutes. 

Ethyl iodide (18.8 mL, 235.5 mmol, 4.4 equiv) was then added dropwise, and the reaction 

mixture was stirred for 24 hours. The reaction was quenched with ammonium chloride and 

extracted with dichloromethane (5X). The combined organic extracts were washed with brine, 

dried with sodium sulfate, and concentrated in vacuo. Flash column chromatography 

(15%→20%→25%→30% diethyl ether/hexanes) afforded the desired β-ketoester 304 (14.95g, 

89% yield) as a light yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.73 – 7.68 (m, 2H), 7.50 – 7.44 

(m, 1H), 7.40 – 7.34 (m, 2H), 5.98 (ddt, J = 17.2, 10.4, 5.9 Hz, 1H), 5.40 (dq, J = 17.2, 1.5 Hz, 

1H), 5.33 (dq, J = 10.4, 1.2 Hz, 1H), 4.73 (dt, J = 5.9, 1.3 Hz, 2H), 3.86 – 3.71 (m, 2H), 2.47 – 

2.38 (m, 1H), 2.05 – 1.82 (m, 5H), 0.91 (t, J = 7.4 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 

NBz

O
CsCO3, EtI

CH2Cl2, 23 °C, 24 h

89% yield 284

O

ONBz

O

304

O

O

Me
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175.1, 172.1, 171.9, 136.0, 131.7, 131.5, 128.1 (2C), 119.7, 66.5, 57.0, 46.6, 29.9, 28.7, 20.4, 

9.2. IR (Neat Film, NaCl) 2963, 1731, 1680, 1448, 1386, 1264, 1187, 1136, 1025, 797, 723, 694, 

660 cm-1 HRMS (FAB+) m/z calculated for C18H22NO4 [M+H+]: 316.1549, found 316.1547.  

Data were consistent with literature values.9 

 

 

Enantioenriched N-benzoyl lactam 286: A 500-mL Schlenk flask with stir bar was flame-dried 

and brought into a nitrogen-filled glove box. The flask was charged with palladium (II) acetate 

(103.5 mg, 0.461 mmol, 0.010 equiv), (R)-CF3-t-Bu-PHOX 285 (1.37g, 2.31 mmol, 0.05 equiv), 

and MTBE (190 mL) before it was sealed, removed from the glovebox, and heated to 40 °C for 

30 minutes.  

 In a separate flask, racemic β-amidoester 284 (14.53 g, 46.1 mmol, 1.00 equiv) was 

dissolved in MTBE, then transferred to the Schlenk flask via cannula. The Schlenk flask was 

sealed once again and heated to 60 °C for 48 hours; to remove the overpressure of carbon 

dioxide generated during the reaction, the flask was connected to a nitrogen-containing Schlenk 

line and vented for about 3 seconds every hour for the first eight hours, then every 12 hours 

thereafter.  

 After complete consumption of the starting material, as determined by TLC, the flask was 

cooled to room temperature, transferred to a round-bottom flask, and concentrated in vacuo. 

Flash column chromatography (15%→20%→25% diethyl ether/hexanes) then afforded 

enantioenriched lactam 286 (11.40 g, 91% yield, 92% ee) as a colorless oil. 1H NMR (400 MHz, 

91% yield, 92% ee

Pd(OAc)2 (1 mol %)
285 (5 mol %)

MTBE, 40 → 60 °C, 48 h
NBz

O

286

NBz

O

284

O

O

Me

Me
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CDCl3) δ 7.54 – 7.49 (m, 2H), 7.49 – 7.43 (m, 1H), 7.41 – 7.35 (m, 2H), 5.73 (dddd, J = 16.5, 

10.6, 7.6, 7.0 Hz, 1H), 5.17 – 5.04 (m, 2H), 3.85 – 3.71 (m, 2H), 2.51 (ddt, J = 13.8, 7.0, 1.3 Hz, 

1H), 2.27 (ddt, J = 13.7, 7.6, 1.1 Hz, 1H), 2.08 – 1.92 (m, 2H), 1.92 – 1.78 (m, 3H), 1.78 – 1.63 

(m, 1H), 0.91 (t, J = 7.4 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 178.2, 175.8, 136.9, 133.8, 

131.4, 128.3, 127.6, 118.9, 47.6, 47.1, 41.5, 30.5, 30.4, 19.7, 8.4. IR (Neat Film, NaCl) 3075, 

2940, 2881, 1679, 1448, 1384, 1281, 1148, 916, 726, 658 cm-1; 1 HRMS (FAB+) m/z calculated 

for C17H22NO2 [M+H+]: 272.1651, found 272.1675; [α]D
22.2 35.3 (c 0.24, CHCl3, 92% ee); SFC 

conditions: 3% MeOH, 3.5 mL/min, Chiralpak OJ-H column, λ = 210 nm, tR (min): major = 

4.07, minor = 6.42. Data were consistent with literature values.9 

Figure 2.5. Reaction setup for large-scale decarboxylative allylic alkylation. 
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Lactam 300: Following a modified procedure by Behenna and coworkers,8 a 2L round-bottom 

flask with stir bar was charged with N-benzoyl lactam 286 (5.44 g, 20.1 mmol, 1.0 equiv) in 

methanol (500 mL). A solution of lithium hydroxide monohydrate (1.25 g, 30.1 mmol, 1.5 equiv) 

water (200 mL) was added, and the reaction mixture was stirred at 23 °C, for 20 hours.  

 The reaction was then partially concentrated in vacuo to remove methanol, then 

transferred to separatory funnel. The reaction mixture was diluted with ethyl acetate and 

saturated sodium bicarbonate, then extracted with ethyl acetate (4X). The combined organic 

extracts were washed with brine, dried with sodium sulfate, and concentrated in vacuo to afford 

neat lactam 300 (3.26 g, 98% yield) as a light yellow oil without any further purification. 1H 

NMR (400 MHz, CDCl3) δ 6.03 (br s, 1H), 5.88 – 5.68 (m, 1H), 5.12 – 5.03 (m, 2H), 3.26 (td, J 

= 5.9, 2.5 Hz, 2H), 2.49 (ddt, J = 13.6, 6.7, 1.3 Hz, 1H), 2.27 – 2.12 (m, 1H), 1.87 – 1.65 (m, 

5H), 1.50 (dq, J = 13.7, 7.4 Hz, 1H), 0.89 (t, J = 7.5 Hz, 3H); 13C NMR (101 MHz, CDCl3) 

176.8, 134,8, 110.0, 45.0, 42.9, 42,9, 31.2, 28.7, 31.2, 28.7, 19.9, 8.8. IR (Neat Film, NaCl) 

2972, 1718, 1286, 1147, 700, 676, 649 cm-1; [α]D
25 5.3 (c 0.09, CHCl3, 92% ee). Data were 

consistent with literature values.9 

 

 

 

98% yield

LiOH • H2O

MeOH/H2O (2.5:1) 
23 °C, 20 h

NH

O

286

Me

NBz

OMe

300
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Acetal 306: To a flame-dried 100 mL round bottom flask with stir bar was added lactam 300 

(4.00 g, 24.0 mmol, 1.0 equiv) and DMF (24.0 mL). The flask was cooled to 0 °C before sodium 

hydride (1.41 g, 60% dispersion in mineral oil, 35.3 mmol, 1.47 equiv) was added portionwise 

(CAUTION: Evolution of hydrogen gas). The reaction mixture was stirred at 0 °C for 1 hr before 

dioxolane 305 (6.88 g, 35.28 mmol, 1.47 equiv) was added dropwise. The flask was slowly 

warmed to 23 °C over 36 hours. 

When the starting material was consumed, as determined by TLC, the flask was re-cooled 

to 0 °C, then quenched with water. The mixture was transferred to a separatory funnel and 

extracted with ethyl acetate (5X). The organic extracts were combined and washed with 10% 

lithium chloride solution (2X), brine (1X), and dried with sodium suflate, then concentrated in 

vacuo. Flash column chromotography (30% → 40% → 50% ethyl acetate/hexanes) afforded 

desired acetal 306 (6.28g, 92% yield) as a colorless oil. 1H NMR (400 MHz, CDCl3)) δ 5.82 – 

5.67 (m, 1H), 5.09 – 5.00 (m, 2H), 4.92 – 4.82 (m, 1H), 4.00 – 3.91 (m, 2H), 3.90 – 3.79 (m, 

2H), 3.46 – 3.30 (m, 2H), 3.24 (td, J = 5.9, 1.8 Hz, 2H), 2.48 (ddt, J = 13.5, 6.6, 1.4 Hz, 1H), 

2.14 (ddt, J = 13.5, 8.1, 0.9 Hz, 1H), 1.84 – 1.72 (m, 3H), 1.71 – 1.59 (m, 6H), 1.45 (dq, J = 

13.5, 7.4 Hz, 1H), 0.84 (t, J = 7.5 Hz, 3H).; 13C NMR (101 MHz, CDCl3) δ 174.2, 135.2, 117.7, 

104.3, 65.0, 48.5, 47.5, 45.2, 43.5, 31.7, 31.3, 29.0, 21.8, 20.1, 8.9. IR (Neat Film, NaCl) 3072, 

2941, 2876, 1632, 1490, 1490, 1461, 1429, 1359, 1284, 1239, 11197, 1138, 1041, 944, 912; 

HRMS (FAB+) m/z calculated for C16H28NO3 [M+H+] 282.2069, found 282.2069. [α]D
22.4 8.9° 

(c 0.49, CHCl3., 92% ee). 

92% yield

NaH, DMF, 0 °C

then 305, 0 → 23 °C, 36 h
N

O

306300

Me

NH

OMe
O

O
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Indole 301: To a 50-mL flask with stir bar was added acetal 306 (144 mg, 0.50 mmol, 1.0 equiv) 

in 4% sulfuric acid in ethanol (10.0 mL) and phenylhydrazine (0.10 mL, 1.0 mmol, 2.0 equiv). 

The flask was equipped with a reflux condenser and heated to 80 °C for 45 minutes.  

 After completion, as determined by LCMS, the reaction was quenched with bicarbonate 

and transferred to a separatory funnel, and extracted with ethyl acetate (3X). The combined 

organic extracts were washed with brine, dried with sodium sulfate, and concentrated in vacuo. 

Flash column chromatography (30 → 40 → 50% ethyl acetate/hexanes) afforded indole 301 

(97.0 mg, 63% yield) as a yellow oil. 1H NMR (400 MHz, CDCl3) δ 8.15 (s, 1H), 7.69 (ddt, J = 

7.8, 1.4, 0.8 Hz, 1H), 7.36 (dt, J = 8.1, 1.0 Hz, 1H), 7.19 (ddd, J = 8.2, 7.0, 1.3 Hz, 1H), 7.12 

(ddd, J = 8.1, 7.1, 1.1 Hz, 1H), 7.08 – 7.03 (m, 1H), 5.74 (dddd, J = 16.8, 10.2, 8.1, 6.6 Hz, 1H), 

5.10 – 4.99 (m, 2H), 3.72 – 3.61 (m, 2H), 3.28 – 3.15 (m, 2H), 3.02 (ddd, J = 8.3, 6.1, 0.9 Hz, 

2H), 2.51 (ddt, J = 13.6, 6.6, 1.4 Hz, 1H), 2.18 (ddt, J = 13.4, 8.1, 1.0 Hz, 1H), 1.86 – 1.61 (m, 

5H), 1.48 (dq, J = 13.6, 7.4 Hz, 1H), 0.86 (t, J = 7.5 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 

174.1, 136.3, 135.1, 127.5, 122.0, 121.9, 119.3, 118.9, 117.6, 113.3, 111.1, 49.0, 48.7, 45.0, 43.4, 

31.5, 28.8, 23.2, 20.0, 8.8. IR (Neat Film, NaCl) 3261, 3072, 2937, 2876, 1611, 1490, 1458, 

1340, 1292, 1234, 1119, 1168, 1103, 999, 914, 876, 741, 687; HRMS (FAB+) m/z calculated for 

C20H26N2O [M + H+] 311.2123, found 311.2130; [α]D
22.4 13.4° (c 0.82, CHCl3, 92% ee). 

 

63% yield

PhNHNH2 • HCl

4% H2SO4/EtOH
 reflux, 45 min

301306

N

OMe
O

O
N

OMe HN
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Iminiums 307 and 308: To an oven-dried 20-mL scintillation vial was added indole 301 (60.0 

mg, 0.193 mmol, 1.0 equiv) in acetonitrile (0.4 mL). Phosphorous (V) oxychloride (0.54 mL, 5.8 

mmol, 30.0 equiv) was added dropwise and the reaction was sealed with a Teflon-lined cap and 

stirred for 2.5 hours. When starting material was consumed, as determined by LCMS, the 

reaction mixture was cooled to room temperature and concentrated in vacuo. Residual 

phosphoryl chloride was removed azeotropically with acetonitrile (3 x 1.0 mL) to yield a brown, 

amorphous solid. 

The crude mixture was redissolved in dichloromethane (1.0 mL), transferred to a one-

dram vial, and stirred at 23 °C. 1M aq. lithium perchlorate (0.4 mL) was added and the 

heterogeneous mixture was rapidly stirred for 30 minutes. The mixture was transferred to a 

separatory funnel and extracted with dichloromethane (3X). The combined organic extracts were 

washed with 1M lithium perchlorate (2 X), dried with sodium sulfate, and concentrated in vacuo 

to afford crude iminium perchlorate as a light yellow oil. Preparative HPLC afforded both 

iminium perchlorate 307 (62.3 mg, 0.152 mmol, 79%) and rearranged product 308 (9.0 mg, 

0.021 mmol, 11% with grease impurity), both as light yellow solids.  

Iminium Perchlorate 307: 1H NMR (400 MHz, CDCl3) δ 13.03 (s, 1H), 7.86 (dt, J = 8.6, 1.0 Hz, 

1H), 7.46 (d, J = 8.2 Hz, 1H), 7.37 (ddd, J = 8.3, 6.9, 1.1 Hz, 1H), 7.13 (ddd, J = 8.1, 7.0, 0.9 Hz, 

1H), 5.50 – 5.32 (m, 1H), 4.92 (dd, J = 10.1, 1.8 Hz, 1H), 4.80 (dd, J = 17.0, 1.7 Hz, 1H), 3.97 (t, 

J = 8.2 Hz, 2H), 3.88 (s, 2H), 3.02 (t, J = 8.2 Hz, 2H), 2.84 (dd, J = 14.2, 7.8 Hz, 1H), 2.60 (dd, J 

79% yield

POCl3,
MeCN, 100 °C 2.5 h

then 1M LiClO4
CH2Cl2, 23 °C, 0.5 h

301

N

OMe HN

307

N
H

N

Me
ClO4

N

H
N

Me

HO

308

+

11% yield



Chapter 2: Divergent Synthesis of Eburnamine and Eucophylline 
	

101 

= 14.2, 7.1 Hz, 1H), 2.17 (dq, J = 14.6, 7.4 Hz, 1H), 2.03 (dt, J = 14.6, 7.4 Hz, 1H), 1.92 (d, J = 

6.1 Hz, 2H), 1.82 – 1.73 (m, 2H), 0.69 (t, J = 7.4 Hz, 3H); 13C NMR (101 MHz, CDCl3) 13C 

NMR (101 MHz, CDCl3) δ 172.9, 142.3, 131.6, 129.1, 125.2, 124.4, 122.8, 121.7, 120.6, 120.4, 

115.1, 54.8, 53.7, 44.7, 41.0, 29.8, 26.3, 19.3, 17.7, 8.0.; IR (Neat Film, NaCl) 2924, 1682, 1593, 

1521, 1434, 1337, 1198, 1168, 926, 798, 753, 716, 620 cm-1; + HRMS (FAB+) m/z calculated 

for C20H25N2 [M] XXX, found YYY.  

Alcohol 308: 1H NMR (600 MHz, CD2Cl2) δ 10.64 (s, 1H), 7.48 (t, J = 8.2 Hz, 2H), 7.20 – 7.11 

(m, 2H), 7.07 (td, J = 7.5, 6.4 Hz, 1H), 4.76 (dt, J = 11.2, 5.6 Hz, 1H), 4.04 (dt, J = 13.2, 6.5 Hz, 

1H), 3.78 (dt, J = 12.8, 6.2 Hz, 1H), 3.57 – 3.51 (m, 2H), 3.19 (t, J = 6.4 Hz, 2H), 2.34 (dd, J = 

13.1, 4.8 Hz, 1H), 2.04 (dt, J = 13.7, 4.1 Hz, 1H), 1.93 (d, J = 14.5 Hz, 1H), 1.86 – 1.76 (m, 0H), 

1.46 (q, J = 11.7, 11.2 Hz, 2H), 1.32 – 1.27 (m, 1H), 1.20 (q, J = 7.4 Hz, 2H), 1.16 (d, J = 6.1 

Hz, 3H), 0.81 (t, J = 7.4 Hz, 3H); 13C NMR (101 MHz, CD3CN) δ 172.7, 141.9, 132.9, 129.7, 

126.5, 126.3, 124.1, 122.6, 122.3, 120.4, 114.3, 55.7, 54.8, 45.3, 42.2, 31.0, 27.3, 19.5, 18.3, 8.4. 

IR (Neat Film, NaCl) 3223, 2924, 2853, 1775, 1690, 1459, 1421, 1199, 1131, 1036, 916, 798, 

746, 718 cm-1; HRMS (FAB+) m/z calculated for C20H27N2O [M +] XXX, found YYY. 

 

 

Carboxylic acid 314: To a 500-mL round-bottom flask with stir bar was added acetal 306 (2.00 

g, 6.97 mmol, 1.0 equiv) in acetonitrile (105 mL). Water (35 mL) was added and the flask cooled 

to 0 °C. Ruthenium (III) trichloride hydrate (43.4 mg, 0.21 mmol, 0.03 equiv) was added, 

75% yield

RuCl3•xH2O (3 mol %)
NaIO4

MeCN/H2O (3:1), 0 °C, 5 h
N

O

314
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followed by sodium periodate (7.42 g, 34.8 mmol, 5.0 equiv) in a single portion. The 

heterogeneous mixture was rapidly stirred for 5 hours and monitored closely by LCMS.  

Upon completion, the reaction mixture was quickly filtered through a plug of Celite 

(washing with acetonitrile) and concentrated in vacuo to remove organic solvents. The aqueous 

mixture was extracted with dichloromethane (5X), dried with sodium sulfate, and concentrated in 

vacuo. Flash column chromatography (1 → 2 → 3 → 4 → 5% methanol/dichloromethane) 

afforded acid 314 (1.58 g, 75% yield) as a colorless oil. 1H NMR (400 MHz, CDCl3) δ 4.87 (t, J 

= 4.0 Hz, 1H), 4.04 – 3.93 (m, 2H), 3.93 – 3.77 (m, 2H), 3.55 – 3.46 (m, 1H), 3.32 (tt, J = 13.3, 

6.1 Hz, 3H), 2.66 (d, J = 15.7 Hz, 1H), 2.48 (d, J = 15.7 Hz, 1H), 1.95 – 1.63 (m, 7H), 1.63 – 

1.52 (m, 1H), 1.33 – 1.21 (m, 1H), 0.90 (dt, J = 17.8, 7.4 Hz, 4H); 13C NMR (101 MHz, CDCl3) 

δ 177.4, 172.3, 103.9, 65.0, 48.2, 48.0, 44.5, 42.8, 30.8, 30.5, 28.0, 21.1, 18.7, 7.8; IR (Neat 

Film, NaCl) 2948, 2880, 1729, 1630, 1598, 1579, 1498, 1456, 1438, 1359, 1290, 1186, 1142, 

1030, 946; HRMS (FAB+) m/z calculated for C15H26NO5 [M + H+] 300.1811, found 300.1810; 

[α]D
22.2 –17.4° (c 0.31, CHCl3, 92% ee). 

 

NOTE: We have observed that the times of this reaction were highly variable (between 1 and 6 

hours) depending on the scale and bottle of RuCl3•xH2O used. It is important to quench the 

reaction as soon as the starting material is consumed, as other oxidized byproducts will begin to 

form.  
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Indole 315: To a flame-dried 500-mL round-bottom flask with stir bar was added carboxylic 

acid 314 (3.02 g, 10.1 mmol, 1.0 equiv) and methanol (210 mL). Phenylhydrazine hydrochloride 

salt (3.10 g, 21.4 mmol, 2.0 equiv) and p-toluenesulfonic acid monohydrate (4.78 g, 32.1 mmol, 

3.0 equiv) were added sequentially. The flask was equipped with a reflux condenser and heated 

to reflux for 12 hours. After this, additional phenylhydrazine hydrochloride salt was added 

(1.00g, 6.89 mmol, 0.68 equiv) and the reaction was stirred at reflux for an additional four hours. 

Upon completion, as determined by LCMS analysis, the reaction was cooled to room 

temperature, quenched with 1M aqueous hydrochloric acid, and transferred to a separatory 

funnel. The mixture was extracted with dichloromethane (5X), before the combined organic 

extracts were washed with brine, dried with sodium sulfate, and concentrated in vacuo onto silica 

gel. Flash column chromatography (50% ethyl acetate/hexanes) afforded indole 315 (1.85 g, 

53% yield) as a viscous orange oil. 1H NMR (400 MHz, CDCl3) δ 8.03 (s, 1H), 7.69 (ddt, J = 

7.8, 1.5, 0.7 Hz, 1H), 7.36 (dt, J = 8.1, 1.0 Hz, 1H), 7.19 (ddd, J = 8.1, 7.0, 1.2 Hz, 1H), 7.15 – 

7.10 (m, 1H), 7.09 – 7.06 (m, 1H), 3.68 – 3.62 (m, 5H), 3.44 – 3.36 (m, 1H), 3.20 (dtd, J = 10.9, 

4.7, 2.2 Hz, 1H), 3.07 – 3.00 (m, 2H), 2.96 (d, J = 16.1 Hz, 1H), 2.35 (d, J = 16.0 Hz, 1H), 1.99 

– 1.89 (m, 1H), 1.83 – 1.60 (m, 5H), 0.88 (t, J = 7.5 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 

173.8, 172.6, 136.2, 127.5, 122.0, 121.9, 119.3, 118.9, 113.6, 111.1, 51.4, 49.0, 48.8, 43.4, 42.0, 

31.5, 29.1, 23.0, 19.9, 8.6; IR (Neat Film, NaCl) 3265, 2947, 2870, 1736, 1614, 1492, 1457, 

53% yield

PhNHNH2 • HCl
pTsOH • H2O

MeOH, reflux, 16 h
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1434, 1358, 1290, 1198, 1172, 1011, 744, cm-1; HRMS (FAB+) m/z calculated for C20H26N2O3 

[M + H+] 343.2022, found 343.2006; [α]D
22.4 –10.3° (c 0.28, CHCl3, 92% ee). 

 

 

Iminium perchlorate 261: To a flame-dried, 250-mL round-bottom flask with stir bar was 

added indole 315 (1.85g, 5.39 mmol, 1.0 equiv) in acetonitrile (110 mL). Freshly distilled 

phosphoryl chloride (15.0 mL, 153 mmol, 30.0 equiv) was then added, before the flask was 

equipped with a reflux condenser and heated to 100 °C for 14 hours. When the starting material 

was consumed, as determined by LCMS, the reaction mixture was cooled to room temperature 

and concentrated in vacuo. Residual phosphoryl chloride was removed azeotropically with 

acetonitrile (3 X 20 mL) to yield a brown, amorphous solid. 

 The crude mixture was redissolved in dichloromethane (27 mL) and stirred at room 

temperature. 1M aq. lithium perchlorate was added and the heterogeneous mixture was rapidly 

stirred for 30 minutes. The mixture was transferred to a separatory funnel and extracted with 

dichloromethane (3X). The combined organic extracts were washed with 1M lithium perchlorate 

(2X), dried with sodium sulfate, and concentrated in vacuo to afford crude iminium perchlorate 

261 (2.18 g, 95% crude yield) as a light brown solid without any further purification. 1H NMR 

(500 MHz, CD2Cl2) δ 10.34 (s, 1H), 7.83 (dt, J = 8.6, 0.9 Hz, 1H), 7.59 (dq, J = 8.2, 0.9 Hz, 1H), 

7.46 (ddd, J = 8.4, 6.9, 1.1 Hz, 1H), 7.20 (ddd, J = 8.1, 7.0, 0.9 Hz, 1H), 4.08 – 3.94 (m, 3H), 

3.87 (d, J = 14.9 Hz, 1H), 3.61 (dd, J = 18.6, 2.8 Hz, 1H), 3.45 (s, 3H), 3.20 (dd, J = 9.9, 6.6 Hz, 

95% yield

POCl3
MeCN, reflux, 14 h

then LiClO4, 23 °C, 30 min

315

N
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MeOOC

HN
N
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2H), 2.84 (d, J = 18.4 Hz, 1H), 2.30 – 2.20 (m, 1H), 2.14 – 1.98 (m, 4H), 1.93 – 1.82 (m, 1H), 

1.09 (t, J = 7.4 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 172.2, 171.9, 141.2, 129.0, 125.4, 124.9, 

123.0, 121.7, 121.1, 114.7, 54.6, 53.7, 52.1, 42.3, 42.0, 28.9, 27.8, 19.1, 17.8, 8.2; IR (Neat Film, 

NaCl) 3332, 2954, 1731, 1600, 1527, 1435, 1336, 1236, 1201, 1096, 752, 622 cm-1; HRMS 

(FAB+) m/z calculated for C20H25N2O2 [M – OCH3] XXX, found 295.1835; [α]D
22.4 10.4° (c 2.1, 

CHCl3, 92% ee). 

 

 

Amines 317a and 317b: To an oven-dried one-dram vial with stir bar was added iminium 

perchlorate 261 (21.2 mg, 0.050 mmol, 1.0 equiv) and DMF (0.1 mL). 10% palladium on carbon 

(11.6 mg, 0.010 mmol with respect to palladium, 0.2 equiv) was added, and the vial was 

evacuated and backfilled with hydrogen (5X). The solution was sparged with hydrogen for 1 

minute, then allowed to stir at 23 °C for 1 hour.  

After the reaction was complete (as determined by HPLC), the mixture was diluted with 

ethyl acetate and filtered through a pad of Celite. The solution was transferred to a separatory 

funnel, washed with 10% lithium chloride, brine, and water, dried with sodium sulfate, and 

concentrated in vacuo.  Flash column chromatography (10 → 20 → 50 → 100% ethyl acetate) 

afforded cis-fused amine 317a (11.7 mg, 71% yield) and trans-fused amine 317b (1.5 mg, 9% 

yield) as colorless oils. 

cis-fused amine 317a: 1H NMR (400 MHz, CDCl3) δ 7.83 (s, 1H), 7.47 (dd, J = 7.7, 1.1 Hz, 1H), 

7.32 (dt, J = 8.0, 0.9 Hz, 1H), 7.15 (ddd, J = 8.1, 7.0, 1.3 Hz, 1H), 7.09 (ddd, J = 8.0, 7.0, 1.1 Hz, 

81% yield, 8:1 d.r.

H2, 10% Pd/C

DMF, 23 °C, 1.5 h
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1H), 3.49 (s, 3H), 3.38 (t, J = 1.9 Hz, 1H), 3.07 – 2.97 (m, 3H), 2.94 – 2.84 (m, 1H), 2.66 – 2.59 

(m, 1H), 2.56 (dd, J = 11.2, 3.5 Hz, 1H), 2.40 (ddd, J = 12.4, 11.1, 2.8 Hz, 1H), 2.08 – 1.87 (m, 

4H), 1.85 – 1.76 (m, 1H), 1.67 – 1.55 (m, 2H), 1.18 (t, J = 7.7 Hz, 3H); 13C NMR (101 MHz, 

CDCl3) δ 173.8, 136.1, 132.7, 126.8, 121.8, 119.5, 118.0, 112.5, 110.9, 66.3, 57.0, 54.0, 51.2, 

40.5, 38.2, 32.4, 31.5, 22.3, 22.1, 8.2; IR (Neat Film, NaCl) 3432, 2943, 1729, 1463, 1346, 1319, 

1295, 1196, 1017, 743 cm-1; HRMS (FAB+) m/z calculated for C20H27N22O [M + H+] 327.2073, 

found 327.2084; [α]D
22.4 6.8° (c 0.44, CHCl3, 92% ee). 

trans-fused amine 317b: 1H NMR (400 MHz, CDCl3) δ 9.51 (s, 1H), 7.47 (ddt, J = 7.7, 1.4, 0.7 

Hz, 1H), 7.36 (dt, J = 8.0, 0.9 Hz, 1H), 7.16 – 7.05 (m, 2H), 3.81 (s, 3H), 3.31 (d, J = 1.7 Hz, 

1H), 3.02 – 2.87 (m, 3H), 2.82 (d, J = 13.0 Hz, 1H), 2.66 – 2.54 (m, 2H), 2.51 – 2.37 (m, 2H), 

2.22 (dd, J = 14.8, 7.6 Hz, 1H), 1.90 – 1.65 (m, 3H), 1.56 – 1.48 (m, 1H), 1.02 (ddd, J = 14.7, 

7.6, 1.1 Hz, 1H), 0.67 (t, J = 7.7 Hz, 3H); 13C NMR (101 MHz, CDCl3) 13C NMR (101 MHz, 

CDCl3) δ 175.2, 136.9, 133.8, 127.4, 121.3, 119.2, 117.9, 112.5, 111.4, 67.0, 56.7, 53.6, 52.2, 

43.1, 41.5, 32.9, 25.0, 22.6, 22.5, 7.3; IR (Neat Film, NaCl) 3333, 2934, 2796, 2749, 1709, 1456, 

1341, 1305, 1195, 1160, 936, 738 cm -1; HRMS (FAB+) m/z calculated for C20H27N22O [M + 

H+] 327.2073, found 327.2078; [α]D
22.4 13.4° (c 0.17, CHCl3, 92% ee). 

 

 

Eburnamonine (91) and epi-eburnamonine (251): To a flame-dried, 100 mL round-bottom 

flask with stir bar was added iminium perchlorate 261 (1.92 g, 4.52 mmol, 1.0 equiv) and DMF 

(9.0 mL). 10% palladium on carbon (960 mg, 0.90 mmol with respect to palladium, 0.2 equiv) 

78% yield, 3.4:1 d.r.

H2, 10% Pd/C
DMF, 23 °C, 3.5 h

then DBU, 3 h
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was added, and the flask was evacuated and backfilled with hydrogen (5X). The solution was 

sparged with hydrogen for 10 minutes, then allowed to stir at 23 °C for 3.5 hours. 

 The flask was then evacuated and backfilled with nitrogen (3X) and sparged for 5 

minutes. DBU (1.42 mL, 9.49 mmol, 2.1 equiv) was added dropwise, and the reaction was stirred 

at 23 °C for 2.5 hours. Additional DBU was added (0.27 mL, 1.81 mmol, 0.4 equiv) and the 

reaction was stirred at 23 °C for another 0.5 hours.  

 After the reaction was complete (as determined by HPLC), the mixture was diluted with 

ethyl acetate and filtered through a pad of Celite. The solution was transferred to a separatory 

funnel, washed with 10% lithium chloride, brine, and water, dried with sodium sulfate, and 

concentrated in vacuo. Flash column chromatography (5 → 25% ethyl acetate/chloroform) 

afforded eburnamonine 91 (0.82 g, 62%) as a light brown solid and epi-eburnamonine 251 

(0.23g, 17%) as an orange solid. Eburnamonine 91 was recrystallized from methanol to afford a 

white solid.  

Eburnamonine: 1H NMR (400 MHz, CDCl3) δ 8.39 – 8.35 (m, 1H), 7.46 – 7.41 (m, 1H), 7.37 – 

7.27 (m, 2H), 4.05 (s, 1H), 3.38 (dd, J = 13.9, 6.7 Hz, 1H), 3.29 (ddd, J = 13.9, 11.3, 5.8 Hz, 

1H), 2.92 (dddd, J = 16.9, 11.3, 6.7, 2.9 Hz, 1H), 2.69 (d, J = 16.8 Hz, 1H), 2.66 (bs, 1H), 2.60 

(d, J = 16.8 Hz, 1H), 2.58 – 2.41 (m, 2H), 2.09 (dq, J = 15.1, 7.6 Hz, 1H), 1.81 (qt, J = 13.2, 3.9 

Hz, 1H), 1.68 (dq, J = 14.7, 7.4 Hz, 1H), 1.51 (ddt, J = 13.6, 3.6, 1.9 Hz, 1H), 1.46 – 1.38 (m, 

1H), 1.05 (td, J = 13.6, 3.9 Hz, 1H), 0.94 (t, J = 7.6 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 

167.6, 134.4, 131.6, 130.0, 124.7, 124.1, 118.3, 116.4, 112.7, 57.9, 50.9, 44.5, 44.4, 38.7, 28.5, 

26.9, 20.6, 16.7, 7.8; IR (Neat Film, NaCl) 3051,, 2933, 2856, 1704, 1627, 1454, 1375, 1332, 

1262, 1208, ; HRMS (FAB+) m/z calculated for C19H23N2O [M + H+] 295.1810, found 

295.1787; [α]D
22.4 93.1° (c 0.55, CHCl3, 92% ee). Data were consistent with literature values.10 
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epi-Eburnamonine: 1H NMR (600 MHz, CDCl3) δ 8.35 – 8.31 (m, 1H), 7.40 (dd, J = 7.3, 1.6 Hz, 

1H), 7.31 – 7.24 (m, 3H), 3.14 – 3.05 (m, 3H), 3.03 (s, 1H), 2.88 (s, 1H), 2.80 (d, J = 16.7 Hz, 

1H), 2.65 (dq, J = 15.9, 2.5, 2.0 Hz, 1H), 2.52 (td, J = 11.4, 4.3 Hz, 1H), 2.37 – 2.28 (m, 2H), 

1.89 (hd, J = 8.4, 4.4 Hz, 3H), 1.63 (dtd, J = 13.5, 4.9, 4.3, 2.3 Hz, 1H), 1.23 – 1.15 (m, 1H), 

0.87 – 0.80 (m, 1H), 0.78 (t, J = 7.3 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 167.6, 135.1, 

133.3, 129.9, 124.1, 123.8, 118.1, 116.2, 113.0, 66.0, 55.4, 52.3, 44.3, 39.4, 31.8, 21.6, 21.3, 

20.7, 7.4; IR (Neat Film, NaCl) 3050, 2935, 2796, 1708, 1655, 1600, 1457, 1365, 1324, 1301, 

1149, 1118, 1042, 958, 746, 688 cm-1; HRMS (FAB+) m/z calculated for for C19H23N2O [M + 

H+] 295.1810, found 295.1834; [α]D
22.4 -120.2 (c 0.78, CHCl3). Data were consistent with 

literature values.10 

 

 

Eburnamine (92) and isoeburnamine (93): To a flame-dried 25 mL flask with stir bar was 

added lithium aluminum hydride (6.8 mg, 0.20 mmol, 2.0 equiv) and THF (1.18 mL). The flask 

was cooled to 0 °C and a solution of eburnamonine (91) (29.5 mg, 0.10 mmol, 1.0 equiv) in THF 

(1.78 mL) was slowly added dropwise. The solution was stirred at 0 °C for 45 minutes. 

 The reaction mixture was quenched with cool brine, transferred to a separatory funnel, 

and extracted with ethyl acetate (3X). The combined organic extracts were washed once with 

cool brine, dried with sodium sulfate, and concentrated in vacuo. Flash column chromatography 

afforded an inseparable mixture of eburnamine (92) and isoeburnamine (93) (24.1 mg, 81% 

81% yield, 2.2:1 d.r.

LiAlH4

THF, 0 °C, 45 min
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yield, 2.2:1 d.r.). The ratio of eburnamine to epi-eburnamine was determined by integration of 

the diagnostic peaks in the 1H NMR for 92 (5.59) and 93 (6.05), respectively. Data were 

consistent with literature values.11 

 Eburnamine 92 (major diastereomer): 1H NMR (400 MHz, CDCl3) δ δ 7.78 – 7.71 (m, 1H), 7.54 

– 7.45 (m, 1H), 7.25 – 7.14 (m, 2H), 5.59 (dd, J = 9.5, 5.2 Hz, 1H), 3.84 (bs, 1H), 3.37 – 3.15 

(m, 2H), 3.05 – 2.88 (m, 1H), 2.69 – 2.47 (m, 3H), 2.39 – 2.27 (m, 1H), 2.25 – 2.13 (m, 1H), 

2.12 – 1.95 (m, 1H), 1.85 – 1.24 (m, 4H), 0.96 – 0.80 (m, 4H). 13C NMR (101 MHz, CDCl3) δ 

136.8, 132.8, 128.8, 121.4, 120.3, 118.2, 112.3, 105.8, 76.8, 58.9, 50.9, 44.5, 43.7, 37.0, 28.7, 

25.3, 20.6, 16.9, 7.7.  

iso-Eburnamine 93 (minor diastereomer): 1H NMR (400 MHz, CDCl3) δ 7.78 – 7.71 (m, 1H), 

7.54 – 7.45 (m, 1H), 7.43 – 7.37 (m, 1H), 7.25 – 7.14 (m, 2H), 6.05 (dd, J = 4.8, 1.3 Hz, 0H), 

5.59 (dd, J = 9.5, 5.2 Hz, 1H), 3.87 – 3.82 (m, 1H), 3.37 – 3.15 (m, 2H), 3.05 – 2.88 (m, 1H), 

2.69 – 2.47 (m, 3H), 2.39 – 2.27 (m, 2H), 2.25 – 2.13 (m, 1H), 2.12 – 1.95 (m, 1H), 1.85 – 1.62 

(m, 1H), 1.62 – 1.42 (m, 2H), 1.42 – 1.24 (m, 2H), 0.96 – 0.80 (m, 4H). 13C NMR (101 MHz, 

CDCl3) δ 134.8, 131.3, 129.0, 121.4, 120.3, 118.6, 109.9, 105.7, 74.8, 59.4, 51.4, 45.0, 40.0, 

34.8, 29.1, 26.7, 21.1, 16.9, 7.8. 

IR (Neat Film, NaCl) 3356, 2921, 2714, 1694, 1668, 1455, 1366, 1301, 1272, 1165, 1057, 741 

cm -1; HRMS (FAB+) m/z calculated for C19H24N2O [M + H+] XXX, found YYY; [α]D
22.4 -7.6 (c 

0.89, CHCl3). 
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Piperidine 324: To a flame-dried 500 mL round-bottom flask with stir bar was added lactam 

300 (2.47 g, 14.8 mmol, 1.0 equiv) in diethyl ether (150 mL). The flask was cooled to 0 °C 

before lithium aluminum hydride (1.64 g, 44.4 mmol, 3.0 equiv) was added portionwise. The 

flask was equipped with a reflux condenser and heated to reflux for 24 hours.  

After the reaction is complete, as determined by TLC, the flask is re-cooled to 0 °C and 

quenched with saturated sodium carbonate. The flask was then removed from the bath and stirred 

at 23 °C for 20 minutes. The mixture was transferred to a separatory funnel and extracted with 

diethyl ether (5X). The combined organic extracts were washed with brine (2X), dried with 

sodium sulfate, and concentrated in vacuo to yield a brown oil, which was used immediately in 

the next step without further purification. 

The 500 mL round bottomed flask was equipped with a stir bar, placed under nitrogen 

atmosphere, and charged with acetonitrile (75 mL). The flask was cooled to 0 °C before di-tert-

butyldicarbonate (4.08 mL, 17.8 mmol, 1.2 equiv) and DMAP (180 mg, 1.48 mmol, 0.1 equiv) 

were added sequentially. The flask was warmed slowly to 23 °C over 12 hours. Additional di-

tert-butyldicarbonate (2.0 mL, 8.9 mmol, 0.6 equiv) was added and the reaction was stirred for 

an additional 6 hours.  

After the reaction was complete, as determined by TLC, the reaction was quenched with 

2,2,2-trifluoroethanol (~ 5mL) and stirred for 30 minutes. The stir bar was then removed and the 

reaction mixture is concentrated in vacuo onto silica gel. Flash column chromatography (5% 

ethyl acetate/hexane) afforded piperidine 324 (2.59 grams, 70% yield) as a colorless oil. 1H 

70% yield, 2 steps

1. LiAlH4 
    Et2O, 0°C → reflux, 24 hr

2. Boc2O, DMAP (10 mol %)
    MeCN, 0 → 23 °C, 18h

324300
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NMR (400 MHz, CDCl3) δ 5.77 (ddt, J = 15.6, 11.6, 7.5 Hz, 1H), 5.08 – 4.98 (m, 2H), 3.34 (t, J 

= 5.8 Hz, 2H), 3.10 (m, 2H), 2.05 (dd, J = 14.1, 7.1 Hz, 1H), 1.95 (bs, 1H), 1.51 (m, 2H), 1.46 

(bs, 9H), 1.38 (t, J = 6.2 Hz, 2H), 1.33 – 1.14 (m, 2H), 0.82 (t, J = 7.5 Hz, 3H); 13C NMR (101 

MHz, CDCl3) δ 155.2, 134.3, 117.4, 79.2, 52.5, 52.0, 44.9, 44.0, 38.7, 36.1, 33.9, 33.5, 28.6, 

27.2, 21.1, 7.4; IR (Neat Film, NaCl) 2973, 2933, 2857, 1695, 1426, 1365, 1274, 1250, 1162, 

1101, 912, 767 cm-1; HRMS (FAB+) m/z calculated for C15H28NO2 [M + H+] 254.2120, found 

254.2101; [α]D
22.5 9.3° (c 1.8, CHCl3, 92% ee). 

 

 

Aldehyde 321: To a flame-dried 500-mL round-bottom flask with stir bar was added 

bis(benzonitrile) palladium(II) chloride (460 mg, 1.2 mmol, 0.15 equiv), copper (II) chloride 

dihydrate (205 mg, 1.2 mmol, 0.15 equiv), and silver (I) nitrite (92.4 mg, 0.6 mmol, 0.075 

equiv). Nitromethane (10 mL) and tert-butanol (150 mL) were sequentially added and stirred at 

23 °C. The flask was evacuated and backfilled with oxygen (3X) before the reaction mixture was 

sparged for 10 minutes. Piperidine 321 (2.02 g, 8.0 mmol, 1.0 equiv) was added neat, and the 

reaction was sparged at 23 °C for another 5 minutes. The reaction mixture was stirred at 23 °C 

for 16 hours. 

 The reaction was quenched with water, transferred to a separatory funnel, and extracted 

with ethyl acetate (4X). The combined organic extracts were washed with brine, dried with 

sodium suflate, and concentrated in vacuo (rotary evaporator with bath at 40 °C to remove t-

BuOH). Flash column chromatography (15 → 20% ethyl acetate/hexanes) afforded aldehyde 321 

72% yield 321324

NBoc

MePd(PhCN)2Cl2 (15 mol %)
CuCl2•2H2O (15 mol %)
AgNO2 (7.5 mol %), O2

tBuOH/MeNO2 (15:1)
 23 °C, 16 h

NBoc

Me

O
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(1.52 g, 72% yield) as a colorless oil 1H NMR (400 MHz, CD2Cl2) δ 9.75 (s, 1H), 3.17 (m, 4H), 

2.51 – 2.15 (m, 2H), 1.70 – 1.46 (m, 4H), 1.42 (s, 9H), 1.34 – 1.10 (m, 4H), 0.80 (t, J = 7.5 Hz, 

3H); 13C NMR (101 MHz, CD2Cl2) δ 202.7, 155.1, 79.4, 52.5, 51.7, 45.3, 44.2, 38.5, 35.6, 34.4, 

28.7, 28.5, 27.5, 27.1, 25.9, 25.5, 21.4, 7.4. IR (Neat Film, NaCl) 2973, 2933, 2857, 1695, 1426, 

1365, 1274, 1250, 1162, 1101, 912, 767 cm-1; HRMS (FAB+) m/z calculated for C15H28NO3 [M 

+ H+] 270.2069, found 270.2056; [α]D
25 13.0° (c 1.92, CHCl3). 

 

 

Methyl 2-amino-5-bromo-4-methoxybenzoate 326: To a flame-dried 250 mL round-bottom 

flask with stir bar was added 2-amino, 4-methoxybenzoic acid 323 (3.00 g, 18.0 mmol, 1.0 

equiv) and DMF (90 mL). The flask was cooled to 0 °C, and N-bromosuccinimide (1.1 equiv, 

19.8 mmol. 1.1 equiv) was added in a single portion. The flask was removed from the bath and 

warmed to 23 °C over 90 minutes. 

 The reaction was quenched with saturated sodium sulfite and acidified to pH ~3 with 

concentrated hydrochloric acid. The solution was transferred to a separatory funnel and extracted 

with diethyl ether (3X). The combined organic extracts were washed with 10% sat. lithium 

chloride, water, and brine, then concentrated in vacuo to yield a white solid. This was used in the 

next reaction immediately without further purification. 

 To a flame-dried 250 mL round-bottom flask with stir bar was added the crude reaction 

mixture and DMF (45 mL). The flask was cooled to 0 °C before potassium carbonate (4.97 g, 

NH2MeO

OH

O

NH2MeO

OMe

O

74% yield, 2 steps

1. NBS (1.1 equiv)
    DMF, 0 °C, 1.5 hr

2. K2CO3, MeI
    DMF, 0 → 23 °C, 1 hr

326323

Br
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36.0 mmol, 2.0 equiv) and methyl iodide (1.68 mL, 27.0 mmol, 1.5 equiv) were added 

sequentially. The flask was removed from the cooling bath and warmed to 23 °C over 1 hour. 

 The reaction was quenched with cool water, transferred to a separatory funnel, and 

extracted with ethyl acetate (3x). The combined organic extracts were washed with 10% 

saturated lithium chloride and brine, dried with sodium sulfate, and concentrated in vacuo. Flash 

column chromatography (20 → 30% ethyl acetate/hexanes) afforded methyl ester 326 as a light 

yellow, amorphous solid (3.47 g, 74% yield over 2 steps). 1H NMR (400 MHz, CDCl3) δ 8.00 (s, 

1H), 6.11 (s, 1H), 5.85 (s, 2H), 3.86 (s, 3H), 3.84 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 167.5, 

160.1, 151.8, 135.7, 105.2, 98.7, 98.3, 56.3, 51.7, 31.1; IR (Neat Film, NaCl) 3478, 3467, 2948, 

1687, 1610, 1589, 1485, 1446, 1277, 1224, 1109, 1050, 822, 555 cm-1; HRMS (FAB+) m/z 

calculated for C9H10BrNO3 [M + •] 258.9844, found 258.9851. 

 

 

(2-amino-5-bromo-4-methoxyphenyl)methanol 327: To a flame-dried 250 mL round-bottom 

flask with stir bar was charged lithium aluminum hydride (798 mg, 21.0 mmol, 800 mg) and 

diethyl ether (30 mL). The flask was cooled to 0 °C before a solution of ester 326 (2.60 g, 10.0 

mmol, 1.0 equiv) in diethyl ether (30 mL) was added dropwise via cannula. The flask was stirred 

at 0 °C for 10 minutes. The reaction was quenched with methanol and saturated Rochelle’s salt 

solution, then warmed to 23 °C over 20 minutes. The mixture was transferred to a separatory 

funnel and extracted with diethyl ether (3X). The combined organic extracts are washed with 

brine, dried with magnesium sulfate, and concentrated to afford alcohol 327 (2.06 g, 89%) as a 

NH2MeO

OMe

O

NH2MeO

OH

89% yield

LiAlH4

Et2O, 0 °C, 45 min

327326

BrBr
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white solid with no further purification. 1H NMR (400 MHz, CD2Cl2) δ 7.17 (s, 1H), 6.29 (s, 

1H), 4.54 (s, 2H), 3.81 (s, 3H); 13C NMR (101 MHz, CD2Cl2) δ 156.74, 147.45, 133.53, 119.01, 

100.28, 98.18, 63.44, 56.51; IR (Neat Film, NaCl) 3370, 2926, 1605,0501, 1446, 1407, 1307, 

1217, 1050, 999, 888, 827 cm-1; HRMS (FAB+) m/z calculated for C8H10BrNO2 [M + •] 

230.9895, found 230.9908. 

 

2-amino-4-methoxybenzaldehyde 322: To prepare a stock solution, an oven-dried 20 mL 

scintillation vial with stir bar was charged with 4-4’-dimethoxy-2-2’bipyridine (108 mg), 

TEMPO (78 mg), NMI (92 mg) and acetonitrile (2.5 mL). A separate flame-dried 100 mL round-

bottom flask was charged sequentially with alcohol 327 (232 mg, 1.0 mmol, 1.0 equiv), 

acetonitrile (10 mL), and tetrakis(acetonitrile) copper (I) triflate (18.8 mg, 0.050 mmol, 0.050 

equiv). 0.25 mL of stock solution was then added and the reaction was stirred under air for 2 

hours. 

 The reaction was diluted with ethyl acetate, filtered through a plug of silica gel, and 

concentrated in vacuo. Flash column chromatography (20 → 25 → 30% ethyl acetate/hexanes) 

yielded aldehyde 322 as a white solid (200 mg, 87% yield). 1H NMR (400 MHz, CDCl3) δ 9.66 

(d, J = 0.6 Hz, 1H), 7.59 (s, 1H), 6.28 (s, 2H), 6.09 (s, 1H), 3.90 (s, 3H); 13C NMR (101 MHz, 

CDCl3) 13C NMR (101 MHz, CDCl3) δ 191.1, 161.0, 151.4, 139.7, 114.4, 98.5, 97.9, 56.4; IR 

(Neat Film, NaCl) 3431, 3313, 2843, 1652, 1611, 1228, 1198, 1048, 818 cm-1; HRMS (FAB+) 

m/z calculated for C8H8BrNO2 [M + H+] 229.9817, found 229.9842. 

 

NH2MeO

H

O

88% yield327

Br

[Cu(MeCN)4]OTf (5 mol %)
(MeO)-bpy (5 mol%)
TEMPO (5 mol %)

NMI (10 mol %)

air
MeCN, 23 °C, 2 h

NH2MeO

OH
Br

322
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Quinoline 320: To a flame-dried 50 mL round-bottom flask with stir bar was added alcohol 327 

(1.10 g, 4.75 mmol, 1.3 equiv) and a solution of aldehyde 321 (985 mg, 3.66 mmol, 1.0 equiv) in 

1,4-dioxane (11 mL). The reaction was then heated to 80 °C for 1 hour. Benzophenone (3.33 g, 

18.3 mmol, 5 equiv) was then added at 80 °C in a single portion, and the reaction mixture was 

stirred at that temperature for 5 minutes. A solution of potassium tert-butoxide (1.03g, 9.15 

mmol, 2.5 equiv) in 1,4-dioxane (9.2 mL) was then added over 30 minutes via syringe pump. 

The reaction mixture was then stirred for an additional 15 minutes. 

Upon completion, the reaction mixture was cooled to 23 °C, quenched with saturated 

sodium bicarbonate solution, and transferred to a separatory funnel. The mixture was extracted 

with ethyl acetate (3X) before the combined organic extracts were washed with brine, dried with 

sodium sulfate, and concentrated in vacuo. Flash column chromatography (30% ethyl 

acetate/hexanes) afforded quinoline 320 (1.26 g, 74% yield) as a yellow foam. 1H NMR (400 

MHz, CDCl3) δ 8.63 (d, J = 2.2 Hz, 1H), 7.99 (s, 1H), 7.76 (s, 1H), 7.41 (s, 1H), 4.00 (s, 3H), 

3.48 – 3.06 (m, 4H), 2.75 (d, J = 13.8 Hz, 1H), 2.65 (d, J = 13.8 Hz, 1H), 1.67 – 1.51 (m, 2H) 

(H2O peak overlapping), 1.42 (s, 9H), 1.40 – 1.34 (m, 12), 1.22 (m, 2H), 0.95 (t, J = 7.5 Hz, 3H); 

13C NMR (101 MHz, DMSO) δ 155.3, 154.1, 153.4, 146.8, 135.1, 131.3, 129.4, 123.2, 113.1, 

108.3, 78.5, 56.6, 51.3, 50.8, 37.4, 36.8, 32.4, 28.0, 25.5, 20.8, 7.5; IR (Neat Film, NaCl) 2969, 

2933, 2855, 1688, 1614, 1598, 1477, 1427, 1365, 1323, 1273, 1247, 1207, 1157, 1042, 919, 849, 

NBoc

Me

O

NBoc

Me

NMeO

Br

74% yield

1,4-dioxane
80 °C, 1 h

then Ph2CO, t-BuOK
80 °C, 45 min

320321327

NH2MeO

OH
Br

+
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732 cm-1; HRMS (FAB+) m/z calculated for C23H32BrN2O3 [M + H+] 463.1596, found 463.1623; 

[α]D
22.6° 21.2° (c 0.21, CHCl3). 

 

 

Amine 330: To a 10-mL round-bottom flask with stir bar was added quinoline 320 (46.3 mg, 

0.10 mmol, 1.0 equiv) in dichloromethane (1.8 mL). The flask was cooled to 0 °C and 

trifluoroacetic acid (0.2 mL) was added dropwise. The flask was warmed slowly to 23 °C over 

12 hours. 

 Upon completion, as determined by LCMS analysis, the solution was diluted with water, 

transferred to a scintillation vial, and extracted with diethyl ether (3X). The mixture was then 

basified to pH = 7 by addition of 1M NaOH. The aqueous layer was extracted with 

dichloromethane (3X), then 3:1 chloroform/isopropanol (3X), dried with sodium sulfate, then 

concentrated in vacuo. Preparative TLC (5% methanol/dichloromethane) afforded amine 330 

(30.8 mg, 85% yield) as a white, amorphous solid. 1H NMR (400 MHz, CDCl3) δ 8.67 (d, J = 2.2 

Hz, 1H), 7.98 (s, 1H), 7.78 (d, J = 2.2 Hz, 1H), 7.41 (s, 1H), 4.03 (s, 3H), 3.33 – 3.00 (bs, 1H), 

2.91 – 2.83 (m, 3H), 2.77 (d, J = 13.8 Hz, 1H), 2.70 – 2.60 (m, 2H), 1.80 – 1.69 (m, 1H), 1.68 – 

1.57 (m, 1H), 1.43 (t, J = 6.2 Hz, 2H), 1.33 (q, J = 7.8 Hz, 2H), 0.97 (t, J = 7.5 Hz, 3H); 13C 

NMR (101 MHz, CDCl3) 13C NMR (101 MHz, CDCl3) δ 156.2, 153.6, 147.4, 135.3, 131.3, 

129.9, 123.8, 114.3, 108.3, 56.6, 53.8, 46.5, 38.0, 36.6, 32.9, 27.2, 21.6, 14.3, 8.2, 7.6; IR (Neat 

Film, NaCl) 2932, 2855, 1614, 158, 1477, 1341, 1248, 126, 1042, 917, 850, 756, 612 cm-1; 

NBoc

Me

NMeO

Br

85% yield

TFA

CH2Cl2, 0 → 23 °C, 12 h

320

NH

Me

NMeO

Br
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HRMS (FAB+) m/z calculated for C23H32BrN2O3 [M + H+] 363.1072, found 363.1098;; [α]D
22.6 

3.5 (c 1.21, CHCl3). 

 

 

Fluoroquinolines 327a and 327: To an oven-dried one-dram vial with stir bar in a nitrogen 

filled glove box was added quinoline 320 (27.5 mg, 0.0593 mmol, 1.0 equiv) and acetonitrile 

(2.4 mL). Silver (II) fluoride (43.0 mg, 0.297 mmol, 5.0 equiv) was then added in a single 

portion. The vial was removed from the glovebox and heated to 50 °C in the dark for 1.5 hours. 

After completion of the reaction, the reaction mixture was filtered through a pad of Celite 

and concentrated in vacuo. The crude mixture was dissolved in ethyl acetate and treated with 

saturated sodium bicarbonate. The organic extracts were separated and the aqueous layer was 

extracted with ethyl acetate (5X). The combined organic extracts were then washed with brine, 

dried with sodium sulfate, and concentrated in vacuo. Preparative TLC (30% ethyl 

acetate/hexanes) afforded both 2-fluoroquinoline 329a (7.0mg, 24% yield) and 4-fluoroquinoline 

329b (6.8 mg, 24% yield) both as amorphous white solids.  

2-fluoroquinoline 329a: 1H NMR (400 MHz, CDCl3) δ 8.00 (s, 1H), 7.86 (s, 1H), 7.27 (s, 1H), 

4.01 (s, 3H), 3.78 – 3.25 (m, 2H), 3.00 (d, J = 70.6 Hz, 2H), 2.72 (s, 2H), 1.60 (s, 1H), 1.46 (s, 

11H), 1.33 (dt, J = 13.4, 6.9 Hz, 3H), 0.95 (t, J = 7.5 Hz, 3H); 13C NMR (101 MHz, CDCl3) 13C 

NMR (101 MHz, CDCl3) δ 162.6, 160.2, 157.2, 155.3, 145.7, 141.4, 131.0, 122.9, 118.4, 113.3, 

107.4, 79.6, 56.7, 51.2, 37.9, 34.6, 32.6, 28.6, 26.4, 21.3, 7.8.; IR 2932, 1688, 1480, 1428, 1366, 

NBoc

Me

NMeO

Br AgF2

MeCN, 50 °C, 1.5 h
dark

320

NBoc

Me

NMeO

Br

329a, 2-F

F

49% yield
C2:C4 1:1 329b, 4-F
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1249, 1157, 1041, 758 cm -1 (Neat Film, NaCl); HRMS (FAB+) m/z calculated for 

C23H31FBrN2O3 [M + H+] 481.1502, found 481.1523; [α]D
25° 27.2° (c 0.35, CHCl3). 

4-fluoroquinoline 327a: 1H NMR (400 MHz, CDCl3) 1H NMR (400 MHz, Chloroform-d) δ 8.74 

(d, J = 2.1 Hz, 1H), 7.82 (d, J = 2.0 Hz, 1H), 7.80 (s, 1H), 4.15 (d, J = 2.1 Hz, 3H), 3.35 (d, J = 

108.0 Hz, 4H), 2.80 (d, J = 14.0 Hz, 1H), 2.71 (d, J = 13.8 Hz, 1H), 1.71 – 1.61 (m, 1H), 1.46 (s, 

10H), 1.38 (dd, J = 11.0, 5.1 Hz, 1H), 1.29 – 1.16 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H); 13C NMR 

(101 MHz, CDCl3) 13C NMR (101 MHz, CDCl3) δ 155.3, 153.6, 151.0, 148.4, 143.7, 137.7, 

135.1, 131.9, 125.7, 125.5, 117.6, 79.7, 62.1, 52.3, 38.0, 37.6, 33.1, 28.6, 26.8, 21.4, 7.8; IR 

2930, 2862, 1686, 1474, 1428, 1365, 1273, 1248, 1154, 1039, 754 cm -1(Neat Film, NaCl); 

HRMS (FAB+) m/z calculated for C23H31FBrN2O3 [M + H+] 481.1502, found 481.1491; [α]D
22.6 

17.9° (c 0.32, CHCl3). 

 

 

Quinoline N-oxide 332:  To a 50-mL round-bottom flask with stir bar was added quinoline 320 

(1.60 g, 3.44 mmol, 1.0 equiv) and dichloromethane (3.5 mL). 35% hydrogen peroxide solution 

(1.67 mL, 17.2 mmol, 5.0 equiv) was added, followed by methyltrioxorhenium(VII) (171 mg, 

0.688 mmol, 0.20 equiv). The biphasic reaction mixture was rapidly stirred at 23 °C for 12 hours. 

The reaction was quenched with 5 mg of manganese dioxide and stirred rapidly for 30 minutes 

until evolution of oxygen ceased. The solution was transferred to a separatory funnel and 

extracted with dichloromethane, before the combined organic extracts were dried with sodium 

sulfate and concentrated in vacuo to yield a yellow oil. Addition of ethyl acetate caused 

NBoc

Me

NMeO

Br

33280% yield

MeRhO3 (20 mol %) 
H2O2

CH2Cl2, 23 °C, 12 h
NBoc

Me

NMeO

Br

320
O
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quinoline N-oxide 332 to precipitate as a white, amorphous solid (1.32 g, 80% yield). 1H NMR 

(400 MHz, CDCl3) δ 8.38 (d, J = 1.5 Hz, 1H), 8.06 (s, 1H), 8.04 (s, 1H), 7.40 (s, 1H), 4.08 (s, 

3H), 3.52 – 3.00 (m, 4H), 2.71 (d, J = 13.9 Hz, 1H), 2.58 (d, J = 13.9 Hz, 1H), 1.59 (dp, J = 14.0, 

7.3, 6.8 Hz, 2H), 1.47 (s, 9H), 1.43 – 1.36 (m, 2H), 1.26 (m, 2H), 0.95 (t, J = 7.5 Hz, 3H); 13C 

NMR (101 MHz, CDCl3) 13C NMR (101 MHz, CDCl3) δ 157.5, 155.2, 140.3, 138.2, 131.9, 

130.6, 126.3, 125.6, 117.0, 99.3, 79.9, 57.2, 51.9, 44.8, 43.9, 38.1, 37.5, 33.2, 28.6, 26.9, 21.4, 

7.8; IR (Neat Film, NaCl) 2967, 2934, 2868, 1687, 1573, 1470, 1428, 1343, 1306, 1273, 1247, 

1203, 1155, 1038, 863, 754 cm-1; HRMS (FAB+) m/z calculated for C23H31BrN2O4 [M + H+] 

479.1545, found 479.1538; [α]D
25° 16.8° (c 0.46, CHCl3). 

 

 

Tetracycle 332: To an oven-dried 1-dram vial in a nitrogen-filled glove box was added N-oxide 

332 (96.0 mg, 0.20 mmol, 1.0 equiv), dichloromethane (1.0 mL), and tin (II) 

trifluoromethanesulfonate (2.5 equiv, 0.50 mmol, 2.5 equiv). This was repeated nine times and 

the reactions were stirred rapidly for 3 hours, during which time the solution turned from a clear 

yellow to a cloudy white. Triethylamine (1.39 mL, 1.00 mmol, 5.0 equiv) was added to each of 

the vials, which were then quickly sealed and heated to 40 °C for 1 hour. 

 After the reaction was complete, the vials were removed from the glovebox, diluted with 

dichloromethane, and transferred to a separatory funnel containing 0.5M aqueous sodium 

hydroxide. The solution was extracted with dichloromethane (5X), before the combined organic 

extracts were washed with brine, dried with sodium suflate, and concentrated in vacuo. Flash 

N OMe

Br

31979% yield

Sn(OTf)2 (2.5 equiv)
CH2Cl2, 23 °C, 3 h

then Et3N (5.0 equiv) 
23 → 40 °C, 1 h

332

NBoc

Me

NMeO
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column chromatography (1% methanol/0.5% triethylamine/ethyl acetate → 3% methanol/0.5% 

triethylamine/ethyl acetate) afforded tetracycle 319 as a white solid. 1H NMR (600 MHz, CDCl3) 

jδ 7.88 (s, 1H), 7.70 (s, 1H), 7.32 (s, 1H), 3.99 (s, 3H), 3.77 – 3.69 (m, 1H), 3.26 – 3.16 (m, 1H), 

3.08 (dd, J = 13.3, 2.2 Hz, 1H), 2.94 (ddd, J = 13.4, 2.9, 1.2 Hz, 1H), 2.89 (dt, J = 17.4, 1.7 Hz, 

1H), 2.73 (dt, J = 17.3, 1.5 Hz, 1H), 1.84 – 1.74 (m, 1H), 1.62 – 1.53 (m, 1H), 1.38 – 1.29 (m, 

4H), 0.95 (t, J = 7.5 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 162.9 156.1, 147.1, 134.5, 130.5, 

126.1, 122.1, 112.0, 107.5, 58.1, 56.5, 56.0, 37.4, 36.1, 35.1, 30.9, 19.7, 7.3; IR (Neat Film, 

NaCl) 2928, 1612, 1477 1449, 1371, 1234, 11127, 1040, 859, 755, 674, 649 cm-1; HRMS 

(FAB+) m/z calculated for C18H22N2OBr [M + H+] 361.0916, found 363.0936; [α]D
22.7 83.7° (c 

0.99, CHCl3, 92% ee). 

 

 

Alcohol 340: To a flame-dried, 25 mL round-bottom flask with stir bar was added tetracycle 319 

(337 mg, 0.93 mmol, 1.0 equiv), benzoyl peroxide (451 mg, 1.87 mmol, 2.0 equiv), and 

methanol (9.3 mL). The reaction mixture is sparged with argon for 20 minutes before 

trifluoroacetic acid (0.71 mL, 9.34 mmol, 10.0 equiv) is added dropwise. The flask is placed in a 

Hepatochem© setup and irradiated with blue LED’s for 45 minutes.  

 The mixture was quenched with sodium bicarbonate solution, transferred to a separatory 

funnel, and extracted with dichloromethane (3X). The combined organic extracts were washed 

with brine, dried, and concentrated in vacuo. Flash column chromatography (1→ 2 → 3 → 4 

→5% methanol/0.5% triethylamine/ethyl acetate afforded alcohol 340 (280 mg, 77% yield) as a 

77% yield

Blue LED
Bz2O2, TFA

MeOH, 23 °C, 45 min

HO

Me

N

340

Br

OMe

Me

N

Br

OMeN N
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white amorphous solid. 1H NMR (400 MHz, CD2Cl2) δ 8.24 (s, 1H), 7.16 (s, 1H), 5.03 – 4.88 

(m, 2H), 3.90 (s, 3H), 3.62 (ddt, J = 13.1, 4.2, 2.1 Hz, 1H), 3.12 – 3.03 (m, 1H), 3.03 – 2.91 (m, 

1H), 2.88 – 2.64 (m, 3H), 2.39 – 1.97 (bs, 1H), 1.72 – 1.60 (m, 1H), 1.57 – 1.44 (m, 1H), 1.29 (q, 

J = 7.5 Hz, 2H), 1.22 (dd, J = 6.3, 3.5 Hz, 2H), 0.88 (t, J = 7.6 Hz, 3H); 13C NMR (101 MHz, 

CD2Cl2); δ 163.1, 156.1, 147.8, 142.0, 128.3, 124.6, 120.9, 112.2, 108.0, 57.6, 57.3, 56.7, 56.3, 

36.2, 35.8, 35.5, 31.1, 20.1, 7.4. IR (Neat Film, NaCl) 3178, 2923, 2853, 1606, 0580, 1463, 

1451, 1410, 1369, 1236, 1046, 756 cm-1; HRMS (FAB+) m/z calculated for C19H24BrN2O2 [M + 

H+] 391.1021, found 391.1013; [α]D
22.7 83.6 (c 0.19, CHCl3, 92% ee). 

Figure 2.6. Reaction Setup for Photoredox-mediated Minisci Reaction. 
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Aldehyde 342: To a 50-mL round bottom flask with stir bar was added alcohol 340 (280 mg, 

0.716 mmol, 1.0 equiv), non-dried dichloromethane (14.2 mL), and sodium bicarbonate (420 mg, 

5.01 mmol, 7.0 equiv). The flask was cooled to 0 °C and Dess-Martin periodinane (424 mg, 1.00 

mmol, 1.4 equiv) was added as a single portion. The reaction mixture was stirred at 0 °C for 1 

hour. 

 The reaction mixture was quenched with water, transferred to a separatory funnel, and 

extracted with dichloromethane (3X). The combined organic extracts were washed with brine, 

dried with sodium sulfate, and concentrated in vacuo. Flash column chromatography (0 → 20 → 

30% ethyl acetate/dichloromethane) afforded aldehyde 342 (235 mg, 85% yield) as an 

amorphous, yellow solid. 1H NMR (600 MHz, CD2Cl2) δ 10.88 (s, 1H), 8.82 (s, 1H), 7.31 (s, 

1H), 4.01 (s, 3H), 3.79 – 3.74 (m, 1H), 3.25 (dd, J = 18.1, 1.5 Hz, 1H), 3.23 – 3.17 (m, 1H), 3.12 

(dd, J = 13.3, 2.3 Hz, 1H), 3.02 (dd, J = 18.1, 2.3 Hz, 1H), 2.94 (ddd, J = 13.5, 2.8, 1.3 Hz, 1H)., 

1.80 – 1.73 (m, 1H), 1.66 – 1.59 (m, 1H), 1.41 (q, J = 7.6 Hz, 2H), 1.34 (tt, J = 10.5, 3.1 Hz, 

2H), 0.98 (t, J = 7.6 Hz, 3H); 13C NMR (101 MHz, CD2Cl3) δ 193.6, 163.6, 156.5, 148.5, 133.8, 

128.5, 128.4, 117.7, 114.7, 107.9, 57.2, 56.79, 56.46, 36.0, 35.8, 35.4, 31.1, 20.2, 7.4; IR (Neat 

Film, NaCl) 2926, 1692, 1603, 1567, 1478, 1363, 1230, 1215, 1043, 752 cm -1; HRMS (FAB+) 

m/z calculated for C19H22BrN2O2 [M + H+] 389.0865, found 389.0854; [α]D
22.7° 311.7° (c 0.05, 

CHCl3, 92% ee). 

O

Me

N

Br

34285% yield

DMP, NaHCO3

CH2Cl2, 0 °C, 1 h

340

OMeN

HO

Me

N

Br

OMeN
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Alkene 318: To an oven-dried 1-dram vial with stir bar was added aldehyde 342 (50 mg, 0.128 

mmol, 1.0 equiv), sulfone 343 (31.5 mg, 0.154 mmol, 1.2 equiv), and tetrahydrofuran (1.28 mL). 

The vial is cooled to –78 °C and sodium hexamethyldisilizane (30.4 mg, 0.166 mmol, 1.3 equiv) 

was added quickly as a single portion. The reaction mixture was stirred at –78 °C for 30 minutes 

and monitored by TLC.  

 The reaction was quenched with saturated ammonium chloride and warmed up to 23 °C. 

The mixture was extracted with ethyl acetate (5X) before the combined organic extracts were 

washed with brine, dried with sodium sulfate, and concentrated in vacuo. Flash column 

chromatography (0.5% triethylamine in ethyl acetate) afforded alkene 318 (42.7 mg, 87% yield) 

as a light yellow oil. 1H NMR (400 MHz, CDCl3) δ 8.21 (s, 1H), 7.32 (s, 1H), 6.80 (ddt, J = 

17.9, 11.7, 0.9 Hz, 1H), 5.88 (dd, J = 11.7, 1.6 Hz, 1H), 5.56 (dd, J = 18.0, 1.7 Hz, 1H), 4.00 (s, 

3H), 3.79 (dd, J = 14.0, 3.8 Hz, 1H), 3.20 (ddd, J = 13.4, 11.3, 4.8 Hz, 1H), 3.07 (dd, J = 13.3, 

2.2 Hz, 1H), 2.93 (ddd, J = 13.5, 2.7, 1.3 Hz, 1H), 2.72 (dt, J = 17.9, 1.2 Hz, 1H), 2.58 – 2.51 (m, 

1H), 1.81 – 1.71 (m, 1H), 1.62 – 1.50 (m, 1H), 1.41 – 1.27 (m, 4H), 0.95 (t, J = 7.5 Hz, 3H); 13C 

NMR (101 MHz, CDCl3) δ 162.1, 156.0, 147.4, 142.9, 131.6, 129.1, 123.4, 122.8, 120.1, 111.9, 

107.8, 57.6, 56.5, 56.0, 36.8, 36.2, 35.3, 30.9, 19.8, 7.4; IR (Neat Film, NaCl) 2957, 2932, 1603, 

1560, 1479, 1449, 1412, 1367, 1229, 1045, 1001, 847, 754 cm-1; HRMS (FAB+) m/z calculated 

for C20H24BrN2O [M + H+] 387.1073, found 387.1072; [α]D
22.7 186.5° (c 0.20, CHCl3, 92% ee). 

Me

N

Br

OMeN

O

Me

N

Br

OMeN

31887% yield

343, NaHMDS

THF, –78 °C

342
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O-methyleucophylline 344: To an oven-dried, 1-dram vial with stir bar was added alkene 318 

(15.5 mg, 0.040 mmol, 1.0 equiv) in THF (0.4 mL). The vial was cooled to –78 °C and stirred 

for 10 minutes. n-BuLi (2.30 M in hexanes, 0.0480 mmol, 24 µL, 1.1 equiv) was added dropwise 

and the reaction mixture was stirred for an additional 10 minutes. 

The reaction was then diluted with diethyl ether, quenched with saturated ammonium 

chloride solution and warmed to 23 °C over 30 minutes. The organic extracts were separated and 

the aqueous layer was extracted with ethyl acetate (3X). The combined organic extracts were 

washed with brine, dried with sodium sulfate, and concentrated in vacuo. Preparative TLC 

(100% ethyl acetate) affords O-methyleucophylline 344 (5.1 mg, 41% yield) as a light yellow 

oil. 1H NMR (400 MHz, CDCl3) δ 7.92 (d, J = 9.2 Hz, 1H), 7.27 (d, J = 2.6 Hz, 1H), 7.03 (dd, J 

= 9.2, 2.6 Hz, 1H), 6.84 (ddt, J = 17.9, 11.6, 0.9 Hz, 1H), 5.84 (dd, J = 11.7, 1.8 Hz, 1H), 5.54 

(dd, J = 18.0, 1.8 Hz, 1H), 3.91 (s, 3H), 3.81 – 3.72 (m, 1H), 3.18 (ddd, J = 13.5, 12.4, 3.7 Hz, 

1H), 3.07 (dd, J = 13.2, 2.1 Hz, 1H), 2.94 (ddd, J = 13.2, 3.0, 1.1 Hz, 1H), 2.72 (dt, J = 17.7, 1.3 

Hz, 1H), 2.60 – 2.51 (m, 1H), 1.80 – 1.31 (m, 6H), 0.95 (t, J = 7.6 Hz, 3H); 13C NMR (101 MHz, 

CDCl3) δ 161.8, 160.1, 148.5, 143.7, 132.1, 126.1, 122.7, 121.9, 119.4, 117.7, 106.7, 57.8, 55.9, 

55.5, 36.8, 36.3, 35.3, 30.8, 19.7, 7.4; IR (Neat Film, NaCl) 3730, 2919, 1620, 1557, 1452, 1370, 

1226, 1159, 1026, 941, 848 cm -1; HRMS (FAB+) m/z calculated for C20H54N2O [M + H+] 

309.1967, found 309.1950; [α]D
22.7 117.0° (c 0.26, CHCl3). Data were consistent with literature 

values.12 

 

NMeO

34441% yield

n-BuLi
THF, –78 °C, 10 min

then NH4Cl

318

N

Me

NMeO

Br

N

Me
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2.5.3   Comparison of NMR Data to Known Samples  

Table 2.6. Comparison of eburnamonine 1H NMR peaks to previously synthesized material 

 

 
 

Synthetic Eburnamonine 
(This research, 400 MHz) 

Synthetic Eburnamonine 
(Panday) 

8.37 (m, 1H) 
 

8.38 (m, 1H) 

7.44 (m, 1H) 
 

7.45 (m, 1H) 

7.32 (m, 2H) 
 

7.33 (m, 2H) 

4.05 (bs) 
 

3.99 (bs, 1H) 

3.38 (dd, J = 13.9, 6.7 Hz) 
 

3.30 (m, 2H) 

3.29 (ddd, J = 13.9, 11.3, 5.8 Hz) 
 

3.30 (m, 2H) 

2.92 (dddd, J = 16.9, 11.3, 6.7, 2.9 Hz, 1H) 
 

2.91 (m, 1H) 

2.69 (d, J = 16.8 Hz, 1H) 
 

2.64 (m, 3H) 

2.66 (bs, 1H) 
 

2.64 (m, 3H) 

2.60 (d, J = 16.8 Hz, 1H) 
 

2.64 (m, 3H) 

2.50 (m, 2H) 
 

2.46 (m, 2H) 

2.09 (dq, J = 15.1, 7.6 Hz, 1H) 
 

2.06 (m, 1H) 

1.81 (qt, J = 13.2, 3.9 Hz, 1H) 
 

1.72 (m, 2H) 

1.68 (dq, J = 14.7, 7.4 Hz, 1H) 
 

1.72 (m, 1H) 

1.51 (ddt, J = 13.6, 3.6, 1.9 Hz, 1H) 
 

1.50 (d, J = 13.7, 1H) 

1.42 (m, 1H) 
 

1.40 (m, 1H) 

1.05 (td, J = 13.6, 3.9 Hz, 1H) 
 

1.05 (dt, J = 13.5, 3.8 Hz, 1H) 

0.94 (t, J = 7.6 Hz, 3H) 
 

0.94 (t, J = 7.6 Hz, 3 H) 
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Table 2.7. Comparison of eburnamonine 13C NMR peaks to previously synthesized 

material. 

 
Synthetic Eburnamonine 
(This research, 101 MHz) 

Synthetic Eburnamonine 
(Panday, 100 MHz) 

167.6 167.6 
134.4 134.2 
131.6 132.0 
130.0 130.1 
124.7 124.3 
124.1 123.8 
118.3 118.1 
116.4 116.2 
112.7 112.6 
57.9 57.7 
50.9 50.6 
44.5 44.4 
44.4 44.3 
38.7 38.4 
28.5 28.3 
26.9 26.9 
20.6 20.6 
16.7 16.5 
7.8 7.6 
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Table 2.8. Comparison of O-methyl eucophylline 1H NMR peaks to previously synthesized 

material. 

 
 
 
 
 
 
 

Synthetic O-methyleucophylline 
(This research, 400 MHz) 

Synthetic O-methyleucophylline 
(Landais, 300 MHz) 

7.92 (d, J = 9.2 Hz, 1H) 7.91 (d, 1H, J = 9.3 Hz) 
 

7.27 (d, J = 2.6 Hz, 1H), 7.27 ( d, 1H , J = 2.7 Hz) 
 

7.03 (dd, J = 9.2, 2.6 Hz, 1H) 7.02 (dd, 1H , J = 2.7, 9.3 Hz) 
 

6.84 (ddt, J = 17.9, 11.6, 0.9 Hz, 1H) 6.83 (dd, 1H, J = 11.7, 18 Hz) 
 

5.84 (dd, J = 11.7, 1.8 Hz, 1H 5.83 (dd, 1H, J = 1.8, 11.7 Hz) 
 

5.54 (dd, J = 18.0, 1.8 Hz, 1H) 5.53 (dd, 1H, J = 1.8, 18 Hz) 
 

3.91 (s, 3H) 
 

3.90 (s, 3H),  

3.81 – 3.72 (m, 1H) 3.84-3.73 (m, 1H) 
 

3.18 (ddd, J = 13.5, 12.4, 3.7 Hz, 1H) 3.24-3.12 (m, 1H) 
 

3.07 (dd, J = 13.2, 2.1 Hz, 1H) 3.06 (dd, 1H, J = 1.8, 13.2 Hz), 
 

2.94 (ddd, J = 13.2, 3.0, 1.1 Hz, 1H) 2.93 (dd, 1H, J = 1.5, 13.2 Hz) 
 

2.72 (dt, J = 17.7, 1.3 Hz, 1H) 2.71 (d, 1H, J = 17.7 Hz), 
 

2.60 – 2.51 (m, 1H) 2.54 (dd, 1H, J = 1.5, 17.7 Hz) 
 

1.80-1.31 (m, 6H) 1.80-1.25 (m, 4H) 
 

“ 1.35 (q, 2H, J = 7.5 Hz), 
 

0.95 (t, J = 7.6 Hz, 4H). 0.94 (t, 3H, J = 7.5 Hz). 
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Table 2.9. Comparison of O-methyl eucophylline 13C NMR peaks to previously 

synthesized material. 

 
Synthetic O-

methyleucophylline 
(This research, 101 MHz) 

Synthetic O-
methyleucophylline 
(Landais, 75 MHz) 

161.8 161.6 
160.1 160.0 
148.5 148.4 
143.7 143.6 
132.1 131.9 
126.1 126.0 
12237 122.6 
121.9 121.8 
119.4 119.2 
117.7 117.5 
106.7 106.5 
57.8 57.6 
55.9 55.7 
55.5 55.4 
36.8 36.6 
36.3 36.1 
35.3 35.1 
30.8 30.6 
19.7 19.5 
7.4 7.2 
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Scheme A1.1. Total synthesis of eburnamine and eburnamonine 

	

	

NBz

O

NBz

O

O

O

NBz

O

O

O

Me

n-BuLi, (i-Pr)2NH
THF, –78 → –30 °C

then
 allyl cyanoformate, 

–78 → 23 °C

Cs2CO3, EtI

CH2Cl2, 23 °C

Pd(OAc)2 (1 mol %)
XX (5 mol %)

MTBE, 40 → 60 °C

LiOH 

MeOH/H2O
(10:1), 23 °C

NBz

OMe

304

284 286

N

OMe

MeOOC

N

OMe
O

O

NaH, DMF 
0 → 23 °C

then XX

RuCl3 • xH2O 
(3 mol %)

NaIO4

MeCN/H2O 
(3:1), 0 °C

N

OMe

HOOC
O

O

PhNHNH2 • HCl
TsOH • H2O

MeOH, reflux
N
H

N

Me COOMe

ClO4

N
N

Me

H

O

314

315

306

Eburnamonine
(91)

70% yield
15.6g scale

89% yield
15.4g scale

91% yield, 92% e.e.
14.8g scale

98% yield
11.3g scale

O

O Br

N

O

(p-CF3C6H4)P

CF3

Me
Me

Me

(R)-CF3-t-BuPHOX, 285

n-BuLi
THF, –78 °C

then BzCl
78 → 23 °C

94% yield
10.0g scale

303

NH

O

276

NH

OMe

300

92% yield 75% yield

53% yield

H
N

95% yield

POCl3
MeCN, reflux;

then 1M LiClO4

H2, Pd/C
DMF, 23 °C

then DBU

78% yield,
3.4:1 d.r.

N
N

Me

H

HO

(XX) 
Eburnamine

LiAlH4

THF, 0 °C

(80% yield)
2.2:1 d.r.

305

261
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Scheme A1.2. Total synthesis of 6-bromoeucophylline 

	

NH

OMe
1. LiAlH4, Et2O, reflux

2. Boc2O, DMAP
    MeCN, 0 → 23 °C

NBoc

Me

O

327
1,4-dioxane, 80 °C

then KOtBu,
Ph2CO, 80 °C

NBoc

Me

N

MeReO3 (20 mol %)
H2O2 (aq.)

CH2Cl2, 23 °CMeO

Br

Sn(OTf)2
CH2Cl2, 23 °C

then Et3N 
23 → 40 °C

NMeO

Br

N

DMP, NaHCO3

CH2Cl2, 0 → 23 °C

O

N

Br

OMeN

Me

300

321 320

319

342

NBoc

Me

324

Pd(PhCN)2Cl2 (15 mol %)
CuCl2•2H2O (15 mol %)

AgNO2 (7.5 mol %), O2
t-BuOH/MeNO2 

(15:1), 23°C

Bz2O2, TFA

Blue LED
MeOH, 23 °C

343, NaHMDS

THF, –78 °C

Me
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Me

NMeO

Br

O
332

HO

N

Br

OMeN

Me
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N

Br

OMeN

Me

318

N OHN

Me
n-BuLi

THF, –78 °C

then NH4Cl (aq)

69% yield, 2 steps 74% yield

72% yield 80% yield

OH

NH2MeO
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N
N

N
N
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MeO2S

79% yield 77% yield

85% yield 89% yield

41% yield

327 343
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Figure A2.3. 13C NMR (101 MHz, CDCl3) of compound 303. 
 

Figure A2.2. Infrared spectrum (Thin Film, NaCl) of compound 303. 
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Figure A2.6. 13C NMR (101 MHz, CDCl3) of compound 304. 
 

Figure A2.5. Infrared spectrum (Thin Film, NaCl) of compound 304. 
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Figure A2.9. 13C NMR (101 MHz, CDCl3) of compound 284. 
 

Figure A2.8. Infrared spectrum (Thin Film, NaCl) of compound 284. 
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 Figure A2.12.13C NMR (101 MHz, CDCl3) of compound 286. 

Figure A2.11. Infrared spectrum (Thin Film, NaCl) of compound 286. 
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Figure A2.15. 13C NMR (101 MHz, CDCl3) of compound 300. 
 

Figure A2.14. Infrared spectrum (Thin Film, NaCl) of compound 300. 
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Figure A2.18. 13C NMR (101 MHz, CDCl3) of compound 306. 
 

Figure A2.17. Infrared spectrum (Thin Film, NaCl) of compound 306. 
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Figure A2.21. 13C NMR (101 MHz, CDCl3) of compound 301. 
 

Figure A2.20. Infrared spectrum (Thin Film, NaCl) of compound 301. 
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Figure A2.24. 13C NMR (101 MHz, CDCl3) of compound 307. 
 

Figure A2.23. Infrared spectrum (Thin Film, NaCl) of compound 307. 
 



Appendix 2: Spectra Relevant to Chapter 2 

 

150 

 
  
 
 

 

 F
ig

ur
e 

A2
.2

5.
 1 H

 N
M

R
 (6

00
 M

H
z,

 C
D

2C
l 2)

 o
f c

om
po

un
d 
30
8.

 
 

N

H N

M
e

HO



Appendix 2: Spectra Relevant to Chapter 2 

 

151 

  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

Figure A2.27. 13C NMR (101 MHz, CD3CN) of compound 308. 
 

Figure A2.26. Infrared spectrum (Thin Film, NaCl) of compound 308. 
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Figure A2.30. 13C NMR (101 MHz, CDCl3) of compound 314. 
 

Figure A2.29. Infrared spectrum (Thin Film, NaCl) of compound 314. 
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 Figure A2.33.13C NMR (101 MHz, CDCl3) of compound 315. 
 

Figure A2.32. Infrared spectrum (Thin Film, NaCl) of compound 315. 
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Figure A2.36. 13C NMR (101 MHz, CDCl3) of compound 261. 
 

Figure A2.35. Infrared spectrum (Thin Film, NaCl) of compound 261. 
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 Figure A2.39. 13C NMR (101 MHz, CDCl3) of compound 317b. 
 

Figure A2.38. Infrared spectrum (Thin Film, NaCl) of compound 317a. 
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Figure A2.42. 13C NMR (101 MHz, CDCl3) of compound 317b. 
 

Figure A2.41. Infrared spectrum (Thin Film, NaCl) of compound 317b. 
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Figure A2.45. 13C NMR (101 MHz, CDCl3) of compound 91. 
 

Figure A2.44. Infrared spectrum (Thin Film, NaCl) of compound 91. 
 



Appendix 2: Spectra Relevant to Chapter 2 

 

164 

 
 

    

Fi
gu

re
 A

2.
46

. 1 H
 N

M
R

 (6
00

 M
H

z,
 C

D
C

l 3)
 o

f c
om

po
un

d 
25
1.

 
 

 

N
N M
e

H

O



Appendix 2: Spectra Relevant to Chapter 2 

 

165 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure A2.48. 13C NMR (101 MHz, CDCl3) of compound 251. 
 

Figure A2.47. Infrared spectrum (Thin Film, NaCl) of compound 251. 
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 Figure A2.51. 13C NMR (101 MHz, CDCl3) of compound 92 and 93. 
 

Figure A2.50. Infrared spectrum (Thin Film, NaCl) of compound 92 and 93. 
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 Figure A2.54. 13C NMR (101 MHz, CDCl3) of compound 324. 
 

Figure A2.53. Infrared spectrum (Thin Film, NaCl) of compound 324. 
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Figure A2.57. 13C NMR (101 MHz, CD2Cl2) of compound 321. 
 

Figure A2.56. Infrared spectrum (Thin Film, NaCl) of compound 321. 
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Figure A2.60. 13C NMR (101 MHz, CDCl3) of compound 326. 
 

Figure A2.59. Infrared spectrum (Thin Film, NaCl) of compound 326. 
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Figure A2.63. 13C NMR (101 MHz, CD2Cl2) of compound 327. 
 

Figure A2.62. Infrared spectrum (Thin Film, NaCl) of compound 327. 
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Figure A2.66. 13C NMR (101 MHz, CDCl3) of compound 322. 
 

Figure A2.65. Infrared spectrum (Thin Film, NaCl) of compound 322. 
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Figure A2.69. 13C NMR (101 MHz, d6-DMSO) of compound 320. 
 

Figure A2.68. Infrared spectrum (Thin Film, NaCl) of compound 320. 
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Figure A2.72. 13C NMR (101 MHz, CDCl3) of compound 330. 
 

Figure A2.71. Infrared spectrum (Thin Film, NaCl) of compound 330. 
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Figure A2.75. 13C NMR (101 MHz, CDCl3) of compound 329a. 
 

Figure A2.74. Infrared spectrum (Thin Film, NaCl) of compound 329a. 
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Figure A2.78. 13C NMR (101 MHz, CDCl3) of compound 329b. 
 

Figure A2.77. Infrared spectrum (Thin Film, NaCl) of compound 329b. 
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Figure A2.80. Infrared spectrum (Thin Film, NaCl) of compound 332. 
 

Figure A2.81. 13C NMR (101 MHz, CDCl3) of compound 332. 
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Figure A2.83. Infrared spectrum (Thin Film, NaCl) of compound 319. 
 

Figure A2.84. 13C NMR (101 MHz, CDCl3) of compound 319. 
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Figure A2.88. 13C NMR (101 MHz, CD2Cl2) of compound 340. 
 

Figure A2.87. Infrared spectrum (Thin Film, NaCl) of compound 340. 
 



Appendix 2: Spectra Relevant to Chapter 2 

 

193 

   

Fi
gu

re
 A

2.
89

. 1 H
 N

M
R

 (4
00

 M
H

z,
 C

D
2C

l 2)
 o

f c
om

po
un

d 
34
2.

 
 

 

N
M
eOBr

N

M
e

O



Appendix 2: Spectra Relevant to Chapter 2 

 

194 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 

 
 

Figure A2.91. 13C NMR (101 MHz, CD2Cl2) of compound 342. 
 

Figure A2.90. Infrared spectrum (Thin Film, NaCl) of compound 342. 
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Figure A2.94 13C NMR (101 MHz, CDCl3) of compound 318. 
 

Figure A2.93. Infrared spectrum (Thin Film, NaCl) of compound 318. 
 



Appendix 2: Spectra Relevant to Chapter 2 

 

197 

  

Fi
gu

re
 A

2.
95

 1 H
 N

M
R

 (4
00

 M
H

z,
 C

D
C

l 3)
 o

f c
om

po
un

d 
34
4.

 
 

 

N
M
eO

N

M
e



Appendix 2: Spectra Relevant to Chapter 2 

 

198 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 

 
 

Figure A2.97. 13C NMR (101 MHz, CDCl3) of compound 344. 
 

Figure A2.96 Infrared spectrum (Thin Film, NaCl) of compound 344. 
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CHAPTER 3 

Progress toward a Convergent  

Total Synthesis of Leucophyllidine 

 

3.1  INTRODUCTION 

Having successfully completed the synthesis of both monomeric precursors, eburnamonine 

(91) and eucophylline (231), we then turned our attention toward the second phase of our synthetic 

endeavor: the convergent coupling and completion of the dimeric bisindole alkaloid 

leucophyllidine (230) (Scheme 3.1).1 As our long-term goal remained to develop a general strategy 

for the synthesis of other related natural products and synthetic analogues, we remained cognizant 

of the fact that the α-amino stereogenic center was a conserved motif at the site of 

heterodimerization; as such, the development of a generalizable coupling strategy that was reliant 

on reagent- or catalyst-control, rather than substrate-control, would have immense benefit if 

applied to future synthetic efforts.  
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Scheme 3.1. The divergent-convergent strategy to access leucophyllidine. 

 

At the onset of this project, we identified three broad coupling strategies that could 

potentially be exploited to access leucophyllidine (230). The first was a “biomimetic” Friedel-

Crafts acylation strategy from eburnamine (91) and eucophylline (231) directly (Scheme 3.2A); 

this would rely on an electrophilic aromatic substitution at C(6) of eucophylline into an in-situ 

generated iminium ion under acidic conditions to forge both the final C–C bond and stereogenic 

center of the natural product in a single operation. The second was a “bio-inspired” organometallic 

addition strategy from a metallated eucophylline-derivative and a masked eburnamine hemiaminal 

(Scheme 3.2B); this strategy would exploit reactive organometallic species generated at C(6) of 

eucophylline and add it into the eburnamine-derived iminium ion under Lewis acidic conditions. 

The third was a “transition metal-catalyzed” cross-coupling approach between an isolable 

eucophylline organometallic and an eburnamine-derived alkenyl electrophile (Scheme 3.2C). This 

would first involve a C(sp)2–C(sp)2 cross coupling to build the final C–C bond before a subsequent 

reduction would set the final stereogenic center and complete the natural product. 
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Scheme 3.2. Proposed coupling strategies toward leucophyllidine. 

 
 
 
3.2  BIOMIMETIC FRIEDEL-CRAFTS STRATEGY 

The first strategy we planned to investigate was a biomimetic Friedel-Crafts approach. We 

were encouraged by reports from Magnus2 and coworkers who successfully accessed the bisindole 

alkaloid norpleiomutine (10) from the component alkaloids kopsinine (87) and eburnamine (91) 

in aqueous acid (Scheme 3.3A). Though this strategy would be insufficient for a general coupling 

strategy, we predicted this would have the highest probability of success, while providing some 

information about the inherent reactivity of the substrates. Before we could test this hypothesis, 

however, the Panday group3 reported a failed biomimetic coupling of leucophyllidine, which 

generated C(8) coupling product 360 (Scheme 3.3B). As the authors attributed this regioselectivity 

to greater stabilization of the Wheland intermediate, we did not investigate further. 
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Scheme 3.3. Literature precedent for biomimetic coupling approach. 

 
 

3.3  BIOINSPIRED ORGANOMETALLIC ADDITION STRATEGY 

 We subsequently turned our attention to the organometallic addition strategy. In order to 

investigate this reactivity while material access to monomeric subunits was limited, we developed 

model systems to investigate bond formation through this manifold. Following a procedure 

described by Wang,4 N-benzyl tryptamine 361 was condensed with α-ketoglutaric acid to promote 

a tandem Pictet-Spengler/lactamization sequence and afford tetracycle 362 in 89% yield (Scheme 

3.4). Hydrogenolysis of the benzyl protecting group generates secondary amine 363 before 

subsequent N-alkylation with n-propyl bromide affords eburnamonine model 364 which is then 

reduced to eburnamine model 365. A eucophylline model is accessed by condensation of our 

previously synthesized aldehyde 322 with cyclohexanone 366 to afford quinoline 367. 
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Scheme 3.4. Synthesis of eburnamine and eucophylline model substrates. 

 

We were encouraged by a report from Movassaghi5 showing that alkaloid-derived iminium 

electrophiles (368 → 369, Scheme 3.5A) could be intercepted by a Grignard reagent to afford 

quaternary adduct  370 (Scheme 3.5A); however, as our desired iminium is enolizable, we 

surmised that milder, less basic organometallic reagents would be necessary to conduct the desired 

transformation. We were surprised to find few reports of organometallic additions into in-situ 

formed iminium ions, as the majority of reported examples required α-directing groups (e.g Petasis 

reactions)6 to promote this reactivity. However, we did find two accounts illustrating that 

organozinc reagents could perform the requisite addition in the presence of copper at room 

temperature (Scheme 3.5B)7 or in the absence of copper at elevated temperature (Scheme 3.5C).8 

Much to our delight, we found that phenylzinc bromide, generated through the cobalt-mediated 

procedure developed by Périchon (377 → 378),9 could effectively be added into model eburnamine 

365 to generate arylated product XX, albeit as a mixture of diastereomers (Scheme 3.5D). This 

offered proof-of-principle that such a strategy could be realized.  
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Scheme 3.5. Literature precedent and proof-of-principle experiment for bio-inspired strategy. 

 

Encouraged by this result, we then sought to investigate a coupling reaction that more 

closely represented out desired system. To avoid the need for excess organometallic reagent, we 

first sought to mask the hemiaminal with a different iminium surrogate. While O-methyl aminal 

379a formation could be conducted easily,10 we found that this intermediate rapidly decomposed 

while neat under vaccum (Table 3.1, entry 1); ethylation under phase transfer conditions11 afforded 

ethoxylated model 379b (entry 2) but with little improvement in stability. Gratifyingly, we found 

that the ethoxyethyl group 379c12 offered better stability at lower temperatures (entry 3). The 

corresponding aminonitrile13 379d (entry 4) could also be generated, however, this intermediate 
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proved to be too stable and any attempts to remove the cyano group in the presence of Lewis acids 

and silver salts were ultimately unsuccessful.  

Table 3.1. Protection of the eburnamine model hemiaminal. 

 

We then turned to formation of the organozinc reagent from model bromide 367 using an 

iodine quench to quantify the active amount of organometallic species (as iodide 380), 

protodemetallation (as iodide 381), and recovered starting material 365.14 Using previously 

implemented cobalt conditions9 led to modest conversions (Table 3.2, entry 1), while Périchon’s 

second generation conditions15 (entry 2) effected an increase in zincation and protohalogenation. 

Reike zinc16 (entry 3) lead to limited yield while lithiation-transmetallation17 (entry 4) resulted in 

complete protodemetallation. Returning to the cobalt conditions, increasing the temperature lead 

to greater rates of zincation (entry 5), and doubling the catalyst loading improved our ideal 

conversion to 86% (entry 6). 

With individual conditions for nucleophile and electrophile optimized, we turned our 

attention to coupling the two fragments. Despite an extensive screen of parameters including 

solvent mixtures, copper catalysts, and Lewis acids, the desired coupling product XX was not 

observed. We hypothesize that the ortho-methoxy quinoline was significantly more sterically 
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hindered, which caused the α-deprotonation pathway to outcompete the corresponding 1,2-

addition. Discouraged by these results, we elected not to investigate further. 

Table 3.2. Synthesis of organozinc coupling partner.  

 

Scheme 3.6. Unsuccessful model arylations. 
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3.4  TRANSITION METAL-CATALYZED CROSS-COUPLING STRATEGY 

3.4.1 Suzuki Couplings 

 After evaluating the organometallic addition strategy with no success, we turned our 

attention to transition metal-catalyzed cross-coupling strategy. First, we attempted to investigate 

Suzuki coupling conditions due to their established history of success with highly functionalized 

substrates.18 Eburnamonine (91) was easily advanced to the corresponding trifloxyenamine 385 

under optimized conditions for lactam-derived enolates19 (Scheme 3.7A), but attempts to conver 

this to a boronic ester,20 and later a stannane at this position using Pd-catalysis led to complex 

mixtures of products, which we hypothesize is due to severe steric hindrance imposed by the 

benzenoid ring of the indole motif. 

Scheme 3.7. Attempted synthesis of Suzuki coupling partners. 
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boronic acid 387, leading only to proto-dehalogenation, as was observed in our aforementioned 

zincation attempts (Scheme 3.7B); we attribute this challenge to likely formation of aryne 

intermediate 388 which competes with the exchange process.21 While Miyaura borylation22 did 

lead to high conversion and significant amount of ester 389, we found that this intermediate was 

unstable to purification, and a significant amount of hydrolyzed boronic acid 387 and 

protodeboronated product was observed via LCMS (Scheme 3.7C). We attribute this 

decomposition to the formation of internal hydrogen bonding with the ortho-methoxy group in 

390, contributing to the build-up of negative charge at quinoline C(6) and boron, which resulted 

in ipso protonation and hydrolysis, respectively.23 

Table 3.3. Optimization of one-pot Miyaura borylation/Suzuki coupling. 

 

 To avoid these isolation issues, we explored a one-pot Miyaura borylation/Suzuki coupling. 

Much to our delight, we found that successful borylation, with Pd(dppf)Cl2 and B2(pin)2, could be 
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“
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Yield*
386

0%
0%

21%
24%

4%
0%
0%

10 “ Et3N (anhydrous), 16 h 0%

* HPLC yields calculated using 2,3,5,6-tetrachloronitrobenzene as an internal standard.

“

Slow decomposition of coupling partners

“

Protodeborylation and triflate hydrolysis

Triflate hydrolysis
Triflate hydrolysis
Rapid triflate hydrolysis
Triflate hydrolysis

3 “ NMP/H2O (4:1), 16 h 20% “
4 “ DMSO/H2O (10:1), 16 h 24% “

N OMeN

N
N

Me

H

N OMeN

Br

318 386

Pd(dppf)Cl2 • CH2Cl2 (10 mol%)
B2pin2 (1.1 equiv), KOAc (3.0 equiv)

DMF, 90 °C, 4h;

then Na2CO3 (5.0 equiv), 385
DMF/H2O (4:1), 40 °C, 30 min

Me
Me



Chapter 3: Progress toward a Convergent Total Synthesis of Leucophyllidine 209 

followed by the addition of aqueous base and triflate 385 to afford the cross-coupled product in 

24% yield (Table 3.3, entry 1). The remainder of mass balance returned as protodeborylated 

nucleophile 344 and hydrolyzed triflate in the form of eburnamonine (91). Decreasing the 

DMF/water ratio lead to a slight decrease in yield (entry 2). While other polar aprotic solvents led 

to comparable yields (entry 3–4), less polar solvents such as THF and toluene decreased the 

efficiency of the borylation. Attempts to use anhydrous sodium carbonate slowed both the 

decomposition and cross coupling pathways (entry 5). Use of other stronger inorganic bases (entry 

6–8), non-basic fluoride (entry 9), and organic base (entry 10) drastically hindered reactivity in 

almost all cases, causing rapid decomposition of the triflate electrophile.  

 

3.4.2 Stille Couplings 

Scheme 3.8. Synthesis of Stille coupling partners. 
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 Disappointed by this unsuccessful optimization, we turned our attention to Stille couplings. 

Stannylation of bromide 318 afforded trimethylstannane 391 in good yield (Scheme 3.8A). Around 

this time, we became aware of research by Reisman and coworkers24 detailing the conversion of 

alkenyl triflates into their cooresponding halides under Ni-catalysis; gratifyingly, conditions using 

Ni(II) and Ni(0) precatalysts were applied to access both the vinyl bromide 392 and vinyl iodide 

393 in moderate yield (Scheme 3.8B). 

Table 3.4. Optimization of Stille Coupling.  

 

 Turning to our key cross-coupling event, we were disappointed to find canonical Stille 

conditions with triflate 385 in 1,4-dioxane produced little to no cross-coupled product 386 (Table 
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in cross-coupling product (entry 4), though LCMS analysis suggested that methyl transfer from 
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this problem, we investigated copper additives and were delighted to see that use of CuCl26 and 
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vinyl iodide electrophile 393 (entry 7), we found that background coupling reactions proceeded in 

the absence of palladium at greatly decreased yield.28 With the vinyl bromide 392, we attempted 

conditions described by Buchwald29 (entry 8) and Fu30 (entry 9), but no reactivity could be 

observed in these cases.    

 

3.5  INVESTIGATION OF TRISUBSTITUTED OLEFIN REDUCTION 

Scheme 3.9. Preparative Stille coupling with vinyl stannane. 

 

 With optimized conditions in hand, we demonstrated that the Stille coupling could be 

performed on preparative scale by decreasing CuTC loading and using a slight excess of triflate 

385,31 accessing sufficient quantities of our cross-coupled product 386, which we termed O-

methyldehydro-leucophyllidine (Scheme 3.9). We hypothesized that the enamine-like 

trisubstituted olefin could be reduced selectively over the monosubstituted vinyl group using 

reductive amination-type conditions to leverage the electron-rich nature of the N-substituted 

alkene. However, we were disappointed to observe quantitative reduction of the exocyclic olefin, 

generating O-methyl isoleucophyllidine 394. Returning to the literature, we discovered that 4-

N N

Me

OMe

N
N

Me

H
SnMe3

TfO

Pd(PPh3)4 (10 mol %)
CuTC (1.1 equiv)

NMP, 26 °C, 10 min
+

N N

Me

OMe

N
N

Me

H

54% yield

391 385
1.1 equiv

N N

Me

OMe

N
N

Me

H
Me

O-methyl dihydro-
isoleucophyllidine, 395

O-methyl dehydro-
isoleucophyllidine, 386

N N

Me

OMe

N
N

Me

H
Me

NaBH4, AcOH

MeCN, reflux

99% yield

O-methyl 
isoleucophyllidine, 394

Hydrogenation



Chapter 3: Progress toward a Convergent Total Synthesis of Leucophyllidine 212 

vinylpyridines are active conjugate acceptors for a variety of soft nucleophiles32 and are frequently 

exploited in polymerization processes.33 Attempts to over-reduce to O-methyl dihydro-

leucophyllidine 395 were unsuccessful, indicating that chemoselective olefin differentiation was 

not likely a viable approach to the desired natural product. 

Scheme 3.10. Preparative Stille coupling with formyl stannane. 

 

 To circumvent this issue, we advanced aldehyde 342 to the corresponding 

trimethylstannane 396 (Scheme 3.10). We observed an improvement in the yield of coupling 

product 397, which we attribute to two principle factors: 1) a greater electron-withdrawing 

influence of the formyl substituent improves transmetallation rates with CuTC to decrease the 

formation of homocoupled byproducts; 2) undesired decomposition pathways due to the presence 
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Table 3.5. Hydrogenation attempts. 

 

1

Entry* Conditions Result
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With our key substrate in hand, we then turned our attention to the final diastereoselective 

hydrogenation. Homogeneous hydrogenation (Table 3.5, entry 1–6) quickly caused an undesired 

reduction, likely of the aldehyde motif, while a deoxygenation occured upon use of acid additives 

(formic acid, entry 3)34 or more active catalysts (Raney Ni, entry 6).35 Alternative transfer 

hydrogenations (entry 4) and platinum catalysts (entry 5) led to complex mixtures, likely due to 

additional reduction of the heterocyclic motifs. Homogeneous hydrogenation (entry 7–10) with 

iridium36 or nickel-37 based catalysts were also unsuccessful, which we attributed to catalyst 

poisoning by the basic amines. 

 Moving away to non-hydrogenation approaches, we found that attempts to use 

hydroboration/protonation (entry 11), reductive amination (entry 12), or in-situ formed metal 

hydrides (entry 13) were likewise unsuccessful. Shifting to single electron reductants, we were 

disappointed to see that hydrogen atom transfer reductions described by Shenvi,38 Baran,39 

Herzon,40 and Boger41 (entry 14–17) all failed to reduce the olefin despite their established 

effectiveness in the reduction of highly substituted olefins. Dissolving metal reduction42 (entry 18) 

led to rapid overreduction, while milder silica-supported reductants (entry 19) led to complete 

recovery of starting material. Finally, samarium-based reductions led once again to either 

deoxygenation (entry 20) or no reaction43 (entry 21) based on additive. 

 

3.6  DFT MODELING OF CROSS-COUPLING SUBSTRATE 

Puzzled by this lack of reactivity, we elected to model formyl substrate 397 

computationally using density functional theory (DFT) to investigate the nature of this recalcitrant 

olefin. Our calculations revealed two major atropisomers with respect to the central C–C bond, 

corroborating our observed experimental results by NMR (Figure 3.1). Relaxed surface scans 
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along the biaryl dihedral offer an initial estimation to the rotational barrier of 12.6 kcal mol-1, and 

the “MeO-up” atropisomer 0.6 kcal mol-1 (gas phase) is slightly lower in energy. 

Figure 3.1. DFT models of Stille coupling product. 

 

In these models, we observed two unexpected phenomena. The first is that the trisubstituted 

olefin lies slightly out of conjugation with the π-system of the indole ring, as observed in Newman 

projections 397a–I and 397b–I. The strain of the lactam-derived ring, due to the rigid 

conformation of the eburnan monomer and presence of the bulky eucophylline substituent, forces 

the two carbons of the “enamine” olefin to buckle, thus deactivating the alkene and contributing 

to the lack of expected reactivity. The second observation is that the piperidine ring of the eburan 

monomer adopts a boat-like configuration in both the lowest energy conformations 397a–II and 

397b–II, pushing the ethyl substituent of the quaternary center into a pseudo-axial position. While 
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we were concerned that hydrogenation would be preferred from the α-face due to the concave 

nature of the cis-ring fusion, the boat-configuration opens up the desired face of reduction while 

creating an unfavorable flagpole interaction on the undesired face. Furthermore, the close 

proximity of the quinoline C(7) methoxy group in the 397b–II configuration suggests that, 

following demethylation, this oxygen could be used to direct hydrogenation from the desired face, 

thus setting the correct diastereomer. 

 

3.7  FUTURE DIRECTIONS AND CONCLUDING REMARKS 

To complete the synthesis of leucophyllidine (230), our strategy moving forward is to apply 

a directed hydrogenation approach to install the final stereogenic center of leucophyllidine. Given 

the facile reduction of the formyl group, we first protected it with ethylene glycol to ketal 401, 

then demethylated to afford the hydrogenation precursor 402, albeit in low yield over two steps. 

We plan to investigate a number of hydrogenation catalysts to access reduced product 403. Of 

particular interest are Ir-based Crabtree-Pfaltz catalysts36a in the presence of acid to prevent 

poisoning by the substrate’s tertiary amines,44 Rh/phosphines due to success in similar reports by 

Amgen in phenol-directed hydrogenations,45 and organocatalytic transfer hydrogenations.46 If the 

appropriate stereochemistry can be set, only ketal deprotection to aldehyde XX and methylenation 

will be required to complete leucophyllidine (230). 
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Scheme 3.11. Endgame strategy. 

 

 In conclusion, we have developed a highly convergent Stille coupling to cross-couple the 

eburnamine and eucophylline-derived fragments to install the full carbocyclic skeleton of 

leucophyllidine. Initial attempts to forge the key C–C bond and stereogenic center using 

biomimetic and bio-inspired strategies were unsuccessful in model systems. A challenging 

hydrogenation currently prohibits us from completing the natural product. Nevertheless, we 

believe that use of an intramolecular directing group will ultimately help us to achieve the synthesis 

of the final target. 
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3.8   EXPERIMENTAL SECTION 

3.8.1   Materials and Methods 

Unless otherwise stated, reactions were performed in flame-dried glassware under an argon 

or nitrogen atmosphere using dry, deoxygenated solvents. Solvents were dried by passage through 

an activated alumina column under argon.1 Reaction progress was monitored by thin-layer 

chromatography (TLC) or Agilent 1290 UHPLC-LCMS. TLC was performed using E. Merck 

silica gel 60 F254 precoated glass plates (0.25 mm) and visualized by UV fluorescence quenching, 

p-anisaldehyde, CAM, or KMnO4 staining. Silicycle SiliaFlash® P60 Academic Silica gel 

(particle size 40–63 nm) was used for flash chromatography. 1H and 13C NMR spectra were 

recorded on a Varian Inova 500 (500 MHz and 126 MHz, respectively) and a Bruker AV III HD 

spectrometer equipped with a Prodigy liquid nitrogen temperature cryoprobe (400 MHz and 101 

MHz, respectively) and are reported in terms of chemical shift relative to CHCl3 (δ 7.26 and δ 

77.16, respectively) and C6D6 (δ 7.16 and δ 128.06, respectively). Data for 1H NMR are reported 

as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration). Multiplicities 

are reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, sept = septuplet, 

m = multiplet, br s = broad singlet, br d = broad doublet, br t = broad triplet, app = apparent. Some 

reported spectra in chloroform include minor solvent impurities of water (δ 1.56ppm), ethyl acetate 

(δ 4.12, 2.05, 1.26 ppm), methylene chloride (δ 5.30 ppm), acetone (δ 2.17 ppm), grease (δ 1.26, 

0.86 ppm), and/or silicon grease (δ 0.07 ppm), which do not impact product assignments.2 Data for 

13C NMR are reported in terms of chemical shifts (δ ppm). IR spectra were obtained by use of a 

Perkin Elmer Spectrum BXII spectrometer using thin films deposited on NaCl plates and reported 

in frequency of absorption (cm-1). Optical rotations were measured with a Jasco P-2000 

polarimeter operating on the sodium D-line (589 nm), using a 100 mm path-length cell, and are 
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reported as [α] T (concentration in g/100 mL, solvent). Analytical SFC was performed with a 

Mettler SFC supercritical CO2 analytical chromatography system utilizing Chiralpak OD-J column 

(4.6 mm x 25 cm) obtained from Daicel Chemical Industries, Ltd. High resolution mass spectra 

(HRMS) were obtained from the Caltech Mass Spectral Facility using a JEOL JMS-600H High 

Resolution Mass Spectrometer in fast atom bombardment (FAB+) or electron ionization (EI+) 

mode, or Agilent 6200 Series TOF with an Agilent G1978A Multimode source in mixed ionization 

mode (MM: ESI/APCI). Reagents were purchased from Sigma-Aldrich, Acros Organics, Strem, 

or Alfa Aesar and used as received unless otherwise stated. Copper (I) thiophene carboxylate was 

prepared by known methods.3

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3: Progress toward a Convergent Total Synthesis of Leucophyllidine 224 

3.8.2   Experimental Procedures 

 

Lactam 362: Following the procedure described by Wang, to a 1L round-bottom flask equipped 

with stir bar was added N-benzyltryptamine 361 (6.25g, 25.0 mmol, 1.0 equiv), α-ketoglutaric acid 

(5.11g, 35.0 mmol, 1.4 equiv), benzene (340 mL), and 1,4-dioxane (225 mL). The flask was 

equipped with a Dean-Stark apparatus and heated to 100 °C for 4 days.  

After completion, the flask was cooled to room temperature, diluted with ethyl acetate, and 

washed successively with saturated sodium bicarbonate, water, and brine. The organics were dried 

with ethyl acetate, and concentrated in vacuo to afford tetracycle 362 a green solid (7.03g, 89% 

yield). The material is carried forward without further purification. Characterization data are in 

accordance with published values.4	

 

 

Model lactam 364: To a flame dried 100-mL flask with stir bar was charged lactam 362 (1.0 g, 

3.16 mmol, 1.0 equiv) in trifluoroethanol (32 mL). The headspace was evacuated and backfilled 

with nitrogen and stirred for 5 minutes before 10% palladium on carbon (0.5 g) was added in a 

362361

N
H

NHBn

89% yield

a-ketoglutaric acid
p-TsOH•H2O

Dean-Stark
PhMe/1,4-dioxane

(6:4), reflux, 4 days

N
NBn

O

36468% yield, 2 steps

1. H2, Pd/C 
   TFE, 23 °C, 16 h

2. n-PrBr, K2CO3, KI
    DMF, 50 °C, 16 h
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single portion. The headspace was then evacuated and backfilled with hydrogen gas (3X) before 

the flask was stirred for 16 hours.  

Following completion, as determined by LCMS analysis, the solution was sparged with 

nitrogen gas for five minutes. The reaction mixture was then filtered through a pad of Celite, 

washing the filter cake with methanol. The combined organics were then concentrated in vacuo to 

afford a green, amorphous solid. The product was used directly in the next reaction without further 

purification. 

To a separate, flame-dried 100-mL flask with stir bar was added the crude starting material 

in DMF (15 mL), potassium iodide (786 mg, 4.74 mmol, 1.5 equiv), and potassium carbonate (1.31 

g, 9.48 mmol, 3.0 equiv). The reaction mixture was stirred at 23 °C for five minutes before n-

propyl bromide (0.43 mL, 4.74 mmol, 1.5 equiv) was added dropwise. The reaction mixture was 

heated to 50 °C for 16 hours.  

Following completion, as determined by LCMS analysis, the reaction mixture was cooled 

to room temperature and diluted with ethyl acetate. The organic layer was washed sequentially 

with water (1X) and brine (1X), dried with sodium sulfate, and concentrated in vacuo. Flask 

column chromatography (50% → 100% ethyl acetate/hexanes) afforded model lactam 364 (580 

mg, 68% yield as a white, amorphous solid. 1H NMR (400 MHz, CDCl3) δ 8.41 – 8.33 (m, 1H), 

7.44 – 7.36 (m, 1H), 7.33 – 7.22 (m, 2H), 3.46 (ddt, J = 12.0, 4.9, 2.7 Hz, 1H), 3.34 (ddd, J = 11.7, 

6.0, 1.3 Hz, 1H), 2.90 – 2.80 (m, 3H), 2.79 – 2.65 (m, 2H), 2.59 (td, J = 11.6, 4.4 Hz, 1H), 2.47 – 

2.36 (m, 2H), 1.80 (dtd, J = 13.6, 12.2, 4.3 Hz, 1H), 1.71 – 1.50 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H).; 

13C NMR (101 MHz, CDCl3) δ 168.3, 135.0, 134.9, 129.5, 124.5, 124.0, 118.2, 116.3, 113.5, 56.9, 

55.2, 50.2, 33.1, 27.4, 21.6, 20.1, 12.1; IR (neat film, NaCl) 2961, 2801, 1708, 1456, 1385, 1362, 
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1329, 1344, 750 cm-1 (Neat Film, NaCl); HRMS (ESI/APCI) m/z calculated for C17H21N2O [M + 

H+]: 269.1654, found, 269.1669. 

 

 

Model hemiaminal XX: To a flame-dried 100-mL flask with stir bar was added lithium aluminum 

hydride (358 mg, 9.44 mmol, 2.0 equiv) and THF (24 mL) at 0 °C. In a separate flask, eburnan 

model XX (1.27 g, 4.72 mmol, 1.0 equiv) was dissolved in THF (23 mL) and cooled to 0 °C. The 

starting material was added to the flask dropwise via cannula over 10 minutes, and the reaction 

mixture was allowed to stir at 0 °C for 35 additional minutes. 

After the reaction was complete, as determined by TLC, the reaction was quenched with 

cool brine, transferred to a separatory funnel, and extracted with ethyl acetate (3X). The combined 

organics were washed once with cool brine, dried with sodium sulfate, and concentrated in vacuo. 

Flash column chromatography (50% → 100% ethyl acetate/hexanes) afforded a mixture model 

hemiaminal XX epimers (1.02 g, 80% yield, 17.5:1 d.r.) as a white, amorphous solid. The ratio of 

major and minor diastereomers was determined by integration of the diagnostic peaks in the 1H 

NMR for and 5.41 and 5.95, respectively.  

Major diastereomer: 1H NMR (400 MHz, CDCl3) δ 7.68 – 7.58 (m, 1H), 7.50 – 7.42 (m, 1H), 7.21 

– 7.08 (m, 2H), , 5.41 (dd, J = 9.2, 5.6 Hz,), 3.25 (tdd, J = 11.0, 5.2, 1.7 Hz, 2H), 2.93 – 2.62 (m, 

4H), 2.61 – 2.50 (m, 1H), 2.49 – 2.37 (m, 1H), 2.32 (ddd, J = 12.7, 9.7, 5.0 Hz, 1H), 2.15 (dtd, J 

= 12.3, 4.6, 2.9 Hz, 1H), 1.72 – 1.45 (m, 3H), 1.35 – 1.14 (m, 1H), 0.92 (t, J = 7.4 Hz, 3H); 13C 

NMR (101 MHz, CDCl3) δ 138.0, 135.7, 128.3, 121.6, 120.3, 118.2, 112.0, 107.3, 78.9, 58.1, 55.0, 

36580% yield, 17.5:1 d.r.

LiAlH4
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50.4, 33.4, 26.1, 21.7, 19.9, 12.2. IR (Neat Film, NaCl); HRMS (ESI/APCI) m/z calculated for 

CXHXNXOX [M + H+]: C17H23N2O, found, YYY. 

 

 

Aminal 379a: To a flame-dried, one-dram vial with stir bar was added hemiaminal model 365 

(27.0 mg, 0.10 mmol, 1.0 equiv), pyridinium p-toluenesulfonate (2.5 mg, 0.010 mmol, 0.10 equiv) 

and methanol (0.2 mL). The vial was sealed and heated to reflux for 16 hours. Upon completion, 

the reaction mixture was cooled to room temperature, diluted with ethyl acetate, filtered through a 

plug of Celite, and concentrated in vacuo. Preparative TLC (50% ethyl acetate/hexanes) affords 

aminal 379a as a colorless oil. Product characterization data was not obtained due to the Spring 

2020 COVID-19 shutdown of research facilities. 

 

 

Aminal 379b: To a 25 mL round-bottom flask with stir bar was added hemiaminal model 365 

(108 mg, 0.4 mmol, 1.0 equiv) and toluene (10 mL) and 50% aqueous NaOH (10 mL). 

Tetrabutylammonium iodide (664 mg, 1.8 mmol, 4.5 equiv) was added in a single portion before 

and the biphasic mixture was rapidly stirred for 10 minutes. Ethyl iodide (2.17 mL, 27.2 mmol, 68 

equiv) was added dropwise and the reaction was slowly warmed to 23 °C for 16 hours.  

N
N

MeO Me

74% yield

PPTS
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N
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The reaction mixture was diluted with diethyl ether and transferred to a separatory funnel. 

The organic layer was washed with water (3X) and brine (3X), dried with sodium sulfate, and 

concentrated in vacuo. Flash column chromatography on silica gel (0 →  40 → 50% ethyl 

acetate/hexanes) afforded aminal 379c (56.0 mg, 47% yield) as a colorless oil. Product 

characterization data was not obtained due to the Spring 2020 COVID-19 shutdown of research 

facilities. 

 

 

Aminal 379c: To a 25 mL round-bottom flask with stir bar was added hemiaminal model 365 (108 

mg, 0.4 mmol, 1.0 equiv) and toluene (10 mL) and 50% aqueous NaOH (10 mL). 

Tetrabutylammonium iodide (664 mg, 1.8 mmol, 4.5 equiv) was added in a single portion before 

being cooled to 0 °C and rapidly stirred for 10 minutes. 2-bromoethyl ethyl ether (3.96 mL, 28 

mmol, 70 equiv) was added dropwise and the reaction was slowly warmed to 23 °C for 16 hours.  

The reaction mixture was diluted with diethyl ether and transferred to a separatory funnel. 

The organic layer was washed with water (3X) and brine (3X), dried with sodium sulfate, and 

concentrated in vacuo. Flash column chromatography on silica gel pre-treated with 0.5% 

triethylamine/hexanes (0 → 30 → 40 → 50% ethyl acetate/hexanes) afforded aminal 379c (97.2 

mg, 71% yield) as a colorless oil which was stored in a –20 °C freezer to avoid decomposition. 

Major Diastereomer: 1H NMR (400 MHz, CD2Cl2) δ, 7.50 – 7.36 (m, 2H), 7.19 – 7.04 (m, 2H), 

5.50 (dd, J = 8.1, 5.6 Hz, 1H), 3.79 – 3.55 (m, 3H), 3.54 – 3.23 (m, 5H), 2.93 – 2.74 (m, 2H), 2.73 

– 2.63 (m, 1H), 2.55 (td, J = 11.5, 4.4 Hz, 1H), 2.43 – 2.28 (m, 3H), 2.17 – 1.99 (m, 1H), 1.68 – 

N
N

O Me

71% yield

EtOCH2CH2Br
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1.50 (m, 2H), 1.42 – 1.26 (m, 1H), 1.18 (dt, J = 18.2, 7.0 Hz, 3H), 0.94 (td, J = 7.4, 5.6 Hz, 3H). 

13C NMR (101 MHz, CD2Cl2) δ 137.9, 136.4, 128.0, 121.1, 119.8, 117.8, 111.5, 107.1, 83.7, 69.8, 

66.5, 63.9, 57.6, 55.0, 50.2, 27.7, 25.7, 21.8, 20.1, 15.0, 11.8. 

Minor Diastereomer: 1H NMR (400 MHz, CD2Cl2) δ 7.60 (ddd, J = 8.0, 1.4, 0.8 Hz, 2H), 7.19 – 

7.04 (m, 2H), 5.66 (dd, J = 3.0, 2.1 Hz, 1H), 3.79 – 3.55 (m, 3H), 3.54 – 3.23 (m, 5H), 2.93 – 2.74 

(m, 2H), 2.73 – 2.63 (m, 1H), 2.55 (td, J = 11.5, 4.4 Hz, 1H), 2.43 – 2.28 (m, 2H), 2.17 – 1.99 (m, 

2H), 1.84 – 1.70 (m, 1H), 1.68 – 1.50 (m, 1H), 1.42 – 1.26 (m, 1H), 1.18 (dt, J = 18.2, 7.0 Hz, 3H), 

0.94 (td, J = 7.4, 5.6 Hz, 3H). 13C NMR (101 MHz, CD2Cl2) δ 136.8, 136.4, 128.4, 120.8, 119.8, 

118.0, 110.9, 107.1, 81.3, 70.0, 67.7, 66.5, 58.6, 55.0, 50.8, 27.1, 25.7, 21.5, 20.0, 15.0, 11.8. 

Combined: IR (Neat Film, NaCl): 2959, 2866, 2800, 1458, 1345, 1309, 1159, 1120, 743 cm-1. 

HRMS (ESI/APCI) m/z calculated for C21H31N2O2 [M + H+]: 342.2386, found, 343.2368. 

	

	

 

Aminonitrile 379d: To a flame-dried one-dram vial with stir bar was added hemiaminal 365 (30 

mg, 0.111 mmol, 1.0 equiv) in dichloromethane (1.1 mL). The vial was cooled to –78 °C before 

trimethylsilyl cyanide (21.1 µL, 0.167 mmol, 1.5 equiv) and boron trifluoride diethyl etherate (21.0 

µL, 0.167 mmol, 1.5 equiv) were successively added. The cooling bath was removed and the vial 

was allowed to warm to 23 °C over 1.5 hours. 

 After the reaction was complete, the solution was quenched with saturated sodium 

bicarbonate solution and extracted with dichloromethane (3X). The combined organic extracts 

85% yield

TMSCN, BF3•OEt2

CH2Cl2, –78 °C, 1 h

365
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were dried with sodium sulfate and concentrated in vacuo. Flash column chromatography (30% 

→ 40% ethyl acetate/hexanes) afforded aminonitrile 379d (26.8 mmol, 85% yield) as an 

amorphous white solid. Product characterization data was not obtained due to the Spring 2020 

COVID-19 shutdown of research facilities. 

	

 

Bromoquinoline 367: To a 100-mL round-bottom flask equipped with stir bar was added aldehyde 

322 (1.20 g, 5.2 mmol, 1.0 equiv), absolute ethanol (17.8 mL), and cyclohexanone 366 (0.59 mL, 

5.7 mmol, 1.1 equiv). Powdered potassium hydroxide (350 mg, 6.3 mmol, 1.2 equiv) was added 

in one portion. The flask was fitted with a reflux condenser and heated to reflux for 30 minutes. 

Following the completion of the reaction, the flask was cooled to room temperature, filtered 

through Celite (washing the cake with absolute ethanol), and concentrated in vacuo. The crude 

mixture was purified by flash column chromatography (40% ethyl acetate/hexanes) to afford 

bromoquinoline 367 (1.34 g, 88% yield) as a light brown, amorphous solid. 1H NMR (500 MHz, 

CD3OD) δ 8.02 (s, 1H), 7.85 (s, 1H), 7.29 (s, 1H), 4.00 (s, 3H), 3.04 (t, J = 6.5 Hz, 2H), 2.98 – 

2.94 (m, 2H), 2.02 – 1.96 (m, 2H), 1.93 – 1.86 (m, 2H); 13C NMR (126 MHz, CD3OD) δ 161.0, 

157.7, 147.7, 136.1, 132.2, 131.2, 124.6, 114.3, 107.0, 56.9, 33.9, 29.8, 24.0, 23.9; IR (Neat Film, 

NaCl) 2937, 2862, 1614, 1599, 1481, 1454, 1361, 1318, 1318, 1240, 1205, 1040, 838 cm-1; HRMS 

(ESI/APCI) m/z calculated for C14H15NOBr [M + H+]: 292.0337, found 292.0327.  
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Iodoquinoline 380: To an oven-dried 1-dram vial with stir bar was added bromide 367 (100 mg, 

0.33 mmol, 1.0 equiv), potassium iodide (846 mg, 5.1 mmol, 15.0 equiv), and copper (I) iodide 

(323 mg, 1.7 mmol, 5.0 equiv). The vial was evacuated and backfilled with nitrogen three times 

before HMPA (1.0 mL) was added to the solution. The vial was heated to 150 °C for 3 hours.  

The reaction mixture was transferred to a 20-mL scintillation vial and diluted with 1M HCl 

until homogeneous. The solution was then basified with 1 M NaOH and extracted with ethyl 

acetate (5X). The combined organic extracts were washed with brine, dried with sodium sulfate, 

and concentrated in vacuo. Flash column chromatography (25% → 30% → 40% ethyl 

acetate/hexanes) afforded iodoquinoline 380 (71 mg, 61% yield) as a light brown solid. 1H NMR 

(400 MHz, (1.34 g, 88% yield)) δ 8.17 (s, 1H), 7.62 (d, J = 1.2 Hz, 1H), 7.27 (s, 1H), 3.98 (s, 3H), 

3.07 (t, J = 6.5 Hz, 2H), 2.98 – 2.88 (m, 2H), 2.02 – 1.94 (m, 2H), 1.91 – 1.84 (m, 2H). 13C NMR 

(101 MHz, CDCl3) δ 160.2, 157.4, 147.8, 137.6, 133.6, 129.4, 123.9, 106.5, 87.4, 56.5, 33.6, 29.1, 

23.2, 22.9. IR (Neat film, NaCl) 2933, 1858, 1611, 1593, 1473, 1452, 1407, 1316, 1238, 1207, 

1035 cm-1; HRMS (ESI/APCI) m/z calculated for C14H15NOI [M + H+]: 340.0199, found, 

340.0226. 
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Quinoline 381: To a flame-dried, 25-mL round-bottom flask with stir bar was added 

bromoquinoline 367 (146 mg, 0.5 mmol, 1.0 equiv) and THF (5.0  mL). The flask was cooled to 

–78 °C and n-BuLi (0.26 mL, 2.3 M, 1.2 equiv) was added dropwise, turning the solution from 

colorless to red. The reaction mixture was stirred at that temperature for an additional ten minutes. 

Saturated aqueous ammonium chloride (2.0 mL) was then added and the reaction was warmed to 

room temperature over 20 minutes. 

 The reaction mixture was diluted with diethyl ether and the organic layer was separated. 

The aqueous layer was washed with ether (3X) before the combined organic extracts were dried 

with sodium sulfate and concentrated in vacuo. Flash column chromatography (30% → 40% → 

50% ethyl acetate/hexanes) afforded quinoline 381 (89 mg, 83% yield) as a light brown oil. 1H 

NMR (400 MHz, CDCl3) δ 7.72 (d, J = 1.2 Hz, 1H), 7.56 (d, J = 8.9 Hz, 1H), 7.33 (d, J = 2.5 Hz, 

1H), 7.09 (dd, J = 8.9, 2.5 Hz, 1H), 3.91 (s, 3H), 3.09 (t, J = 6.5 Hz, 2H), 2.99 – 2.82 (m, 2H), 2.06 

– 1.91 (m, 2H), 1.91 – 1.78 (m, 2H);  13C NMR (101 MHz, CDCl3) δ 160.1, 159.2, 147.9, 135.1, 

128.6, 127.9, 122.4, 118.9, 106.1, 55.5, 33.4, 29.0, 23.3, 23.0; IR (Neat Film, NaCl) 2928, 1624, 

1602, 1452, 1317, 1231, 1210 1032, 852, 810 cm-1; HRMS (ESI/APCI) m/z calculated for 

CXHXNXOX [M + H+]: 214.1206, found, 214.1232.	

 

381

NMeO
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NMeO

Br

83% yield

n-BuLi, 
THF, –78 °C, 10 min

then NH4Cl (aq.)
–78→ 23 °C, 20 min
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Trifloxyenamine 385: To a flame-dried, 25 mL flask with stir bar was added eburnamonine (91) 

(258 mg, 0.877 mmol, 1.0 equiv) and THF (4.4 mL). The flask was cooled to –78 °C before 1M 

LiHMDS in THF (1.23 mL, 1.23 mmol, 1.4 equiv) was added dropwise via syringe pump over 30 

minutes. The reaction mixture was then stirred at –78 °C for 1 hour, during which time the solution 

turned from light yellow to orange. HMPA (305 µL, 1.75 mmol, 2.0 equiv) was added dropwise 

and stirred at –78 °C for 10 minutes, during which time the solution turned dark brown. N-phenyl 

triflimide (438 mg, 1.23 mmol, 1.4 equiv) in THF (1.0 mL) was then added dropwise. The reaction 

mixture was stirred at –78 °C for 1.5 hours, then allowed to warm slowly to 23 °C over 14.5 hours. 

 The reaction mixture was quenched with water, transferred to a separatory funnel, and 

extracted with diethyl ether (5X). The combined organics were washed with 10% sodium 

hydroxide, dried with potassium carbonate, and concentrated in vacuo. Flash column 

chromatography (30 → 40 → 50% ethyl acetate/hexanes) afforded trifloxyenamine 385 (266 mg, 

71% yield) as a colorless oil, which then solidified to an amorphous white solid after letting stand 

in the freezer (–20 °C) for at least 24 hours. 1H NMR (400 MHz, CDCl3) δ 7.66 (dt, J = 8.3, 0.9 

Hz, 1H), 7.47 (dt, J = 7.6, 1.0 Hz, 1H), 7.27 – 7.22 (m, 2H), 7.18 (ddd, J = 8.2, 7.2, 1.0 Hz, 1H), 

5.03 (s, 1H), 4.28 (s, 1H), 3.38 (dd, J = 13.8, 5.8 Hz, 1H), 3.27 (td, J = 13.8, 12.6, 5.2 Hz, 1H), 

3.00 (dddd, J = 17.2, 11.3, 6.0, 2.9 Hz, 1H), 2.75 – 2.59 (m, 2H), 2.52 (dd, J = 16.2, 5.1 Hz, 1H), 

2.13 – 1.97 (m, 1H), 1.76 (dq, J = 14.8, 7.5 Hz, 1H), 1.57 (d, J = 13.7 Hz, 1H), 1.46 (dt, J = 13.5, 

3.2 Hz, 1H), 1.15 (td, J = 13.7, 3.7 Hz, 1H), 1.01 (t, J = 7.5 Hz, 3H); δ 13C NMR (101 MHz, 

CDCl3) δ 138.9, 133.3, 129.1, 123.5, 121.5, 120.3, 118.9, 117.1, 112.2, 110.7, 105.3, 55.2, 51.7, 

71% yield

LHMDS
THF, –78 °C, 1.5 h

then HMPA, PhNTf2
–78 → 23 °C, 16 h

385(91)
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45.3, 39.6, 30.6, 27.9, 20.5, 16.3, 9.0. IR (Neat Film, NaCl); HRMS (ESI/APCI) m/z calculated 

for CXHXNXOX [M + H+]: 427.1303, found, 427.1309; [α]D
22.2 38.7° (c. 0.07, CHCl3). 

 

 

Alkenyl bromide 392: To an oven-dried 1-dram vial with stir bar in a nitrogen-filled glove box 

was added nickel (II) acetate tetrahydrate (1.2 mg, 0.0050 mmol, 0.1 equiv), zinc dust (0.6 mg, 

0.01 mmol, 0.2 equiv), 1,5-cyclooctadiene (1.2 µL, 0.01 mmol, 0.1 equiv), and lithium bromide 

(8.2 mg, 0.075 equiv, 1.5 mmol). DMA (0.05 mL) and THF (0.15 mL) was added and the reaction 

was stirred at 26 °C for 5 minutes. Trifloxyenamine 385 (22.7 mg, 0.050 mmol, 1.0 equiv) was 

added and the reaction was stirred in the dark for 2 hours. 

 The reaction was removed from the glovebox and quenched with saturated ammonium 

chloride. The solution was extracted with diethyl ether (3X). The combined organics were washed 

with brine, dried with sodium suflate, and concentrated in vacuo. Preparative TLC (40% ethyl 

acetate in hexanes) afforded alkenyl bromide 385 (10.3 mg, 59% yield) as a colorless oil. 1H NMR 

(400 MHz, CDCl3) δ 8.25 – 8.19 (m, 1H), 7.44 (dt, J = 7.7, 1.0 Hz, 1H), 7.23 – 7.11 (m, 2H), 5.40 

(s, 1H), 4.17 (s, 1H), 3.34 (ddd, J = 13.7, 6.1, 0.8 Hz, 1H), 3.24 (ddd, J = 13.7, 11.3, 5.3 Hz, 1H), 

3.00 (dddd, J = 16.3, 11.4, 6.1, 2.8 Hz, 1H), 2.61 (dd, J = 8.8, 2.8 Hz, 2H), 2.54 – 2.46 (m, 1H), 

1.93 – 1.75 (m, 2H), 1.73 – 1.63 (m, 1H), 1.51 (dt, J = 13.8, 3.3 Hz, 1H), 1.40 (dp, J = 13.2, 3.1 

Hz, 1H), 1.13 (td, J = 13.7, 3.7 Hz, 1H), 0.99 (t, J = 7.5 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 

135.2, 132.8, 129.2, 122.2, 121.2, 120.8, 118.5, 113.2, 111.7, 109.1, 56.4, 51.5, 45.1, 40.7, 29.2, 

27.5, 20.6, 16.4, 8.8; IR (Neat Film, NaCl) 2931, 1699, 1605, 1452, 1371, 1269, 1065, 739 cm-1; 

59% yield

Ni(OAc)2•4H2O (10 mol%)
Zn (10 mol %), COD (10 mol %)

LiBr (1.5 equiv)

DMA/THF (1:3), 23 °C, 2 hr
dark

392
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HRMS (ESI/APCI) m/z calculated for C19H22N2Br [M + H+]: 357.0966, found, 357.0974. [α]D
22.2 

13.0° (c 0.27, CHCl3). 

 

 

Alkenyl iodide 393: To an oven-dried 1-dram vial with stir bar in a nitrogen-filled glove box was 

added trifloxyenamine 385 (20.0 mg, 0.050 mmol, 1.0 equiv), bis(1,5-cyclooctadiene)nickel (0) 

(1.3 mg, 0.0050 mmol, 0.1 equiv), and a 3:1 mixture of THF/DMA (0.2 mL). Sodium iodide (10.3 

mg, 0.070 equiv, 1.5 mmol) was added, the reaction was removed from the glovebox and stirred 

in the dark at 23°C for 2 hours. 

 The reaction was quenched with saturated ammonium chloride. The solution was extracted 

with diethyl ether (3X). The combined organics were washed with brine, dried with sodium suflate, 

and concentrated in vacuo. Preparative TLC (50% ethyl acetate/ hexanes) afforded alkenyl iodide 

393 (10.7 mg, 52% yield) as a colorless oil. 1H NMR (400 MHz, CDCl3) δ 8.35 (d, J = 8.4 Hz, 

1H), 7.50 – 7.39 (m, 1H), 7.20 (dtd, J = 27.0, 7.3, 1.2 Hz, 2H), 5.81 (s, 1H), 4.19 (s, 1H), 3.42 – 

3.21 (m, 2H), 3.00 (dddd, J = 17.3, 11.3, 6.2, 2.7 Hz, 1H), 2.70 – 2.44 (m, 3H), 1.83 (qd, J = 7.5, 

1.6 Hz, 2H), 1.69 (q, J = 12.8 Hz, 1H), 1.50 (dt, J = 13.7, 3.2 Hz, 1H), 1.39 (dp, J = 13.0, 3.1 Hz, 

1H), 1.12 (td, J = 13.7, 3.7 Hz, 1H), 0.99 (t, J = 7.4 Hz, 3H).; 13C NMR (101 MHz, CDCl3) δ 

135.9, 131.9, 129.2, 121.7, 120.8, 118.5, 112.9, 108.5, 79.3, 56.7, 51.4, 44.9, 42.1, 29.9, 28.8, 27.4, 

20.5, 16.4, 8.7; IR (Neat Film, NaCl) 2930, 2860, 1589, 1451,1364, 1271, 1171, 744 cm-1; HRMS 

(ESI/APCI) m/z calculated for C19H22N2I [M + H+]: 405.0828, found, 405.0822. [α]D
22.2 –7.0 ° (c 

0.41, CHCl3). 

57% yield 393385
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Vinylquinoline stannane 391. To an oven-dried 1-dram vial in a nitrogen filled glove box was 

added vinylquinoline 318 (25.0 mg, 0.065 mmol, 1.0 equiv), tetrakis-

(triphenylphosphine)palladium (0) (7.6 mg, 0.0065 mmol, 0.10 equiv) and toluene (0.42 mL). 

Hexamethylditin (20.0 µL, 0.153 mmol, 1.5 equiv) was added dropwise. The flask was sealed, 

removed from the glovebox, and heated to 90 °C for 1.5 hours. Upon completion, the reaction 

mixture was subjected directly to flash column chromatography (0%→10%→15% 

acetone/hexanes) to afford stannane 391 (21.2 mg, 70% yield) as a bright yellow oil. 1H NMR (400 

MHz, CDCl3) δ 8.01 (s, 1H), 7.19 (s, 1H), 6.91 – 6.80 (m, 1H), 5.86 (dd, J = 11.7, 1.9 Hz, 1H), 

5.56 (dd, J = 18.0, 1.8 Hz, 1H), 3.89 (s, 3H), 3.82 – 3.71 (m, 1H), 3.23 – 3.12 (m, 1H), 3.06 (dd, J 

= 13.2, 2.1 Hz, 1H), 2.98 – 2.91 (m, 1H), 2.71 (d, J = 17.7 Hz, 1H), 2.59 – 2.49 (m, 1H), 1.75 (dd, 

J = 13.2, 3.1 Hz, 1H), 1.59 – 1.49 (m, 1H), 1.35 (q, J = 7.4 Hz, 3H), 1.28 (m, 1H), 0.95 (t, J = 7.6 

Hz, 3H), 0.30 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 164.3, 161.6, 149.4, 143.3, 133.4, 132.2, 

132.1, 122.6, 121.6, 119.6, 104.6, 104.5, 57.8, 55.9, 55.6, 36.9, 36.3, 35.4, 30.8, 19.6, 7.4, -8.9; IR 

(Neat Film, NaCl) 2918, 1596, 1555, 1455, 1404, 1364, 1210, 1051, 768; HRMS (ESI/APCI) m/z 

calculated for C23H33N2OSn [M + H+]: 473.1615, found, 473.1626. [α]D
22.4 115.1° (c 0.23, CHCl3). 

 

NMeO

Me3Sn

391318

N

Me

NMeO

Br

N

Me Pd(PPh3)4 (10 mol %)
Sn2Me6

PhMe, 90 °C, 1.5h

70% yield
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Vinyl dimer 386. To an oven-dried 1-dram vial in a nitrogen filled glove box was added triflate 

385 (21.0 mg, 0.0491 mmol, 1.1 equiv), followed by a solution of stannane 391 (21.0 mg, 0.0445 

mmol, 1.0 equiv) in NMP, which had been previously degassed through subjugation to five freeze-

pump-thaw cycles. The solution was allowed to stir in the glovebox for five minutes. 

Tetrakis(triphenylphosphine) palladium (0) (5.2 mg, 0.0045 mmol, 0.10 equiv) and copper (I) 

thiophene-2-carboxylate (9.3 mg, 0.0491 mmol, 1.1 equiv) were added in single portions in quick 

succession. The reaction mixture was allowed to stir at glovebox temperature (26 °C) for 10 

minutes, during which the solution turned from yellow to light brown. 

 The vial was removed from the glovebox, diluted with ethyl acetate, and quenched with 

saturated sodium bicarbonate. The aqueous layer was extracted with ethyl acetate (3X), before the 

combined organics were washed with brine (2X), dried with sodium sulfate, and concentrated in 

vacuo. The crude mixture was passed through a pad of silica gel (eluting with 5% methanol in 

dichloromethane) to remove excess NMP, and the eluent was concentrated again in vacuo. 

Preparative TLC (7% methanol/dichloromethane) afforded vinyl dimer 386 (14.1 mg, 54% yield, 

4:1 mixture of atropisomers) as a light yellow foam.  
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Major atropisomer: 1H NMR (400 MHz, C6D6) δ 8.33 (s, 1H), 7.60 (s, 1H), 7.58 – 7.47 (m, 1H), 

7.09 (ddd, J = 7.9, 7.1, 1.0 Hz, 1H), 6.87 (ddd, J = 8.4, 7.1, 1.3 Hz, 1H), 6.70 (dt, J = 8.4, 0.9 Hz, 

1H), 6.60 – 6.49 (m, 1H), 5.46 (dd, J = 11.7, 1.9 Hz, 1H), 5.35 (dd, J = 17.9, 1.9 Hz, 1H), 5.25 (s, 

1H), 4.41 (d, J = 2.5 Hz, 1H), 4.25 – 4.14 (m, 1H), 3.15 – 3.05 (m, 2H), 3.12 (s, 3H), 3.05 – 2.95 

(m, 1H), 2.94 – 2.73 (m, 3H), 2.65 – 2.56 (m, 1H), 2.54 – 2.36 (m, 3H), 2.33 – 2.21 (m, 1H), 2.06 

– 1.94 (m, 1H), 1.93 – 1.77 (m, 1H), 1.76 – 1.62 (m, 1H), 1.51 – 1.38 (m, 2H), 1.34 – 1.26 (m, 

2H), 1.26 – 1.15 (m, 3H), 1.09 – 1.00 (m, 2H), 1.00 – 0.92 (m, 3H) 0.79 – 0.73 (m, 3H). 13C NMR 

(101 MHz, C6D6) δ 163.1, 159.3, 150.2, 143.6, 135.6, 134.9, 132.5, 132.0, 131.5, 129.7, 126.9, 

122.6, 122.5, 122.1, 120.1, 119.4, 118.6, 118.2, 111.5, 107.9, 107.5, 57.8, 57.0, 56.1, 55.4, 52.0, 

45.5, 37.6, 37.6, 37.2, 36.1, 35.4, 30.7, 30.3, 28.0, 21.2, 20.0, 16.8, 9.0, 7.3. 

Minor atropisomer:  1H NMR (400 MHz, C6D6) δ 8.32 (s,1H), 7.74 (s, 1H), 7.58 – 7.47 (m, 2H), 

6.76 – 6.60 (m, 2H), 6.39 (dd, J = 17.9, 11.7 Hz, 1H), 5.30 – 5.21 (m, 2H), 5.19 (s, 1H), 4.28 (s, 

1H), 4.25 – 4.14 (m, 1H), 3.36 (s, 3H), 3.15 – 3.05 (m, 2H), 3.05 – 2.95 (m, 1H), 2.94 – 2.73 (m, 

3H), 2.65 – 2.56 (m, 1H), 2.54 – 2.36 (m, 3H), 2.33 – 2.21 (m, 1H), 2.06 – 1.94 (m, 1H), 1.93 – 

1.77 (m, 1H), 1.76 – 1.62 (m, 1H), 1.51 – 1.38 (m, 2H), 1.34 – 1.26 (m, 2H), 1.26 – 1.15 (m, 3H), 

1.09 – 1.00 (m, 2H), 1.00 – 0.92 (m, 3H) 0.73 – 0.66 (m, 3H).13C NMR (101 MHz, C6D6) δ 163.2, 

159.2, 149.8, 143.7, 135.1, 134.5, 130.0, 129.6, 127.8, 125.6, 122.9, 121.9, 121.9, 120.6, 120.0, 

119.9, 119.1, 118.8, 113.3, 112.4, 109.0, 108.1, 57.7, 56.9, 56.8, 55.5, 52.2, 45.4, 37.6, 37.1, 36.0, 

35.3, 28.9, 27.6, 20.9, 20.1, 16.8, 9.1, 8.7, 7.3. 

IR: 2930, 2854, 1618, 1453, 1417, 1371, 1226, 1216, 1195, 752 cm. HRMS (ESI/APCI) m/z 

calculated for C39H45N4O [M + H+]: 585.3515, found, 585.3582. [α]D
22.4 131.0° (c 0.45, CHCl3). 
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Ethylquinoline 402. To a flame-dried, one-dram vial with stir bar was charged vinyl dimer 392 

(1.0 mg, 0.0017 mmol, 1.0 equiv) and methanol (0.17 mL). Sodium borohydride (6.4 mg, 0.17 

mmol, 100.0 equiv) was added and the reaction was heated to 60 °C for 20 minutes. The reaction 

mixture was cooled to room temperature, quenched with saturated sodium bicarbonate, and 

extracted with ethyl acetate (3X). The combined organic extracts were dried with sodium sulfate 

and concentrated in vacuo. Preparative TLC (7% methanol/dichloromethane) afforded ethyl 

quinoline 402 (1.0 mg, 99% yield) as an amorphous white solid. Product characterization data was 

not obtained due to the Spring 2020 COVID-19 shutdown of research facilities. 

 

	

Formylquinoline stannane 396. To a flame-dried 1-dram vial in a nitrogen filled glove box was 

added formylquinoline 342 (122.0 mg, 0.315 mmol, 1.0 equiv), tetrakis(triphenylphosphine) 

palladium (0) (37.0 mg, 0.0320 mmol, 0.10 equiv) and toluene (2.1 mL). Hexamethylditin (98.0 

µL, 0.473 mmol, 1.5 equiv) was added dropwise. The vial was sealed, removed from the glovebox, 

and heated to 90 °C for 3 hours. Upon completion, the reaction mixture was subjected directly to 

flash column chromatography (0%→10%→15% acetone/hexanes) to afford formylquinoline 
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stannane 396 (112.1 mg, 75% yield) as a bright yellow oil. 1H NMR (600 MHz, CDCl3) δ 11.03 

(s, 1H), 8.43 (s, 1H), 7.23 (s, 1H), 3.91 (s, 3H), 3.81 (d, J = 13.6 Hz, 1H), 3.25 – 3.17 (m, 2H), 

3.13 (dd, J = 13.3, 2.2 Hz, 1H), 3.02 – 2.95 (m, 2H), 1.78 (d, J = 13.5 Hz, 1H), 1.64 – 1.57 (m, 

1H), 1.40 (q, J = 7.6 Hz, 2H), 1.33 (hept, J = 4.2 Hz, 1H), 0.99 (t, J = 7.6 Hz, 3H), 0.34 (s, 9H). 

13C NMR (101 MHz, CDCl3) δ 194.2, 164.5, 162.4, 150.0, 135.8, 134., 131.3, 125.9, 118.2, 104.7, 

57.3, 56.2, 55.6, 36.0, 35.3, 31.1, 30.7, 19.7, 7.4, -8.8. IR (Neat Film, NaCl) 2924, 2852, 2363, 

1698, 1596, 1456, 1403, 1363, 1211, 1046, 758 cm-1; HRMS (ESI/APCI) m/z calculated for 

CXHXNXOX [M + H+]: 475.1408, found, 475.1434. [α]D
22.4 142.7° (c 0.09, CHCl3). 

	

 

Formyl dimer 397. To a flame-dried 10 mL round-bottom flask with stir bar in a nitrogen filled 

glove box was added triflate 385 (30.0 mg, 0.0698 mmol, 1.1 equiv), followed by a solution of 

stannane 396 (30.0 mg, 0.0634 mmol, 1.0 equiv) in NMP (1.25 mL), which had been previously 

degassed through subjugation to five freeze-pump-thaw cycles. The solution was allowed to stir 

in the glovebox for five minutes. Tetrakis(triphenylphosphine) palladium (0) (7.3 mg, 0.0064 

mmol, 0.10 equiv) and copper (I) thiophene-2-carboxylate (13.3 mg, 0.0698 mmol, 1.1 equiv) were 
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added in a single portion in quick succession. The reaction mixture was allowed to stir at glovebox 

temperature (26 °C) for 10 minutes, during which the solution turned from yellow to light brown. 

 The vial was removed from the glovebox, diluted with ethyl acetate, and quenched with 

saturated sodium bicarbonate. The aqueous layer was extracted with ethyl acetate (3X), before the 

combined organics were washed with brine (2X), dried with sodium sulfate, and concentrated in 

vacuo. The crude mixture was passed through a pad of silica gel (eluting with 5% methanol in 

dichloromethane) to remove excess NMP, and the eluent was concentrated again in vacuo. 

Preparative TLC (7% methanol/dichloromethane) afforded formyl dimer 397 (25.5 mg, 69% yield) 

as a light yellow foam. 

Major atropisomer: 1H NMR (400 MHz, CDCl3) δ 11.01 (s, 1H), 8.49 (s, 1H), 7.44 – 7.37 (m, 1H), 

7.33 (s, 1H), 7.01 – 6.91 (m, 1H), 6.79 – 6.68 (m, 1H), 6.09 (dt, J = 8.4, 0.9 Hz, 1H), 5.14 (s, 1H), 

4.41 (s, 1H), 3.94 – 3.82 (m, 1H), 3.61 (s, 3H), 3.49 – 3.34 (m, 2H), 3.32 – 3.14 (m, 3H), 3.14 – 

2.94 (m, 3H), 2.90 – 2.69 (m, 2H), 2.66 – 2.53 (m, 1H), 1.95 (dp, J = 29.2, 7.3 Hz, 2H), 1.85 – 

1.75 (m, 2H), 1.72 – 1.55 (m, 2H), 1.54 – 1.23 (m, 6H), 1.01 (q, J = 7.6 Hz, 6H). 13C NMR (101 

MHz, CDCl3) δ 193.5, 163.5, 159.1, 149.2, 134.8, 134.3, 131.1, 130.7, 128.9, 127.5, 127.1, 126.2, 

121.6, 119.6, 119.0, 118.2, 117.3, 111.8, 107.7, 107.1, 57.1, 56.7, 56.3, 56.0, 52.1, 45.4, 37.5, 35.9, 

35.9, 35.2, 30.8, 30.0, 27.6, 20.8, 20.0, 16.6, 9.0, 7.4. 

Minor atropisomer: 1H NMR (400 MHz, CDCl3) δ 10.85 (s, 1H), 8.39 (s, 1H), 7.46 (s, 1H), 7.44 

– 7.37 (m, 1H), 7.01 – 6.91 (m, 1H), 6.79 – 6.68 (m, 1H), 6.21 (dt, J = 8.4, 0.9 Hz, 1H), 5.01 (s, 

1H), 4.41 (s, 1H), 3.94 – 3.82 (m, 1H), 3.87 (s, 3H), 3.49 – 3.34 (m, 2H), 3.32 – 3.14 (m, 3H), 3.14 

– 2.94 (m, 3H), 2.90 – 2.69 (m, 2H), 2.66 – 2.53 (m, 1H), 1.95 (dp, J = 29.2, 7.3 Hz, 1H), 1.85 – 

1.75 (m, 3H), 1.72 – 1.55 (m, 2H), 1.54 – 1.23 (m, 6H), 1.01 (q, J = 7.6 Hz, 6H). 13C NMR (101 

MHz, CDCl3) δ 193.5, 163.5, 159.1, 149.2, 134.3, 131.3, 131.1, 130.2, 128.9, 127.5, 127.1, 126.2, 
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121.6, 119.6, 119.0, 118.2, 117.3, 111.8, 107.7, 107.1, 57.1, 56.7, 56.3, 56.0, 52.0, 45.4, 37.5, 35.9, 

35.9, 35.2, 30.8, 30.0, 27.6, 20.8, 20.0, 16.6, 9.0, 7.4. 

IR: 2923, 1694, 1456, 1214, 1042, 754, 744 cm -1 HRMS (ESI/APCI) m/z calculated for 

C38H43N4O2 [M + H+]: 587.3386, found, 587.3368. [M + H+]; [α]D
22.4 381.8° (c 0.32, CHCl3). 

 

 
 
Phenol 402: To a flame dried, 10-mL round-bottom flask with stir bar was added a solution of 

formyl dimer 397 (23.8 mg, 0.405 mmol, 1.0 equiv) in dichloromethane (2.7 mL). Ethylene glycol 

was added (50 µL, 0.41 mmol, 10.0 equiv) before the reaction was cooled to 0 °C. Boron trifluoride 

diethyl etherate (23 µL, .0.41 mmol, 10.0 equiv) was added dropwise and the reaction was stirred 

for 2 hours. Additional ethylene glycol (50 µL, 0.41 mmol, 1.0 equiv) was then added and the 

reaction was stirred for an additional 1 hour.  

After the reaction was complete, as determined by LCMS, the flask was warmed to room 

temperature and quenched with 1M NaOH. The solution was transferred to a separatory funnel, 

the organic layer was separated, and the aqueous layer was extracted with ethyl acetate (3X). The 

combined organic extracts were washed with brine, dried with sodium sulfate, and concentrated in 

vacuo. The combined organic extracts were filtered through a plug of silica gel, eluting with 10% 

methanol in dichloromethane. The eluent was concentrated in vacuo, transferred to a one-dram 

vial, dried under high vaccum for 30 minutes, and used directly in the next reaction. 
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 The crude material was charged with a stir bar, placed under nitrogen atmosphere, and 

charged with a freshly prepared solution of 0.4M sodium ethanethiol in DMF (2.0 mL, 0.810 

mmol, 20.0 equiv). A teflon-lined cap was quickly added, and the reaction was heated to 150 °C 

for 10 minutes. Upon completion of the reaction, the vial was cooled to room temperature, 

quenched with 1:1 30% ammonium hydroxide solution/brine, and extracted with ethyl acetate 

(5X). The combined organic extracts were washed with 10% lithium chloride solution, brine, and 

water, dried with sodium sulfate, and concentrated in vacuo. Preparative TLC (8% 

methanol/dichloromethane) afforded phenol 402 (9.0 mg, 36% yield) as a light, yellow oil.  

Major atropisomer:  1H NMR (400 MHz, CDCl3) δ 8.14 (s, 1H), 7.86 (s, 1H), 7.36 – 7.30 (m, 1H), 

6.87 (t, J = 7.4 Hz, 1H), 6.36 (s, 1H), 6.28 (t, J = 7.8 Hz, 1H), 5.86 (d, J = 8.5 Hz, 1H), 5.17 (s, 

1H), 4.39 (s, 1H), 4.36 – 4.26 (m, 2H), 4.22 – 4.10 (m, 1H), 3.87 – 3.82 (m, 1H), 3.45 – 3.29 (m, 

3H), 3.12 (td, J = 13.2, 3.4 Hz, 1H), 3.06 – 2.98 (m, 1H), 2.84 – 2.74 (m, 3H), 2.69 (d, J = 11.2 

Hz, 2H), 2.53 (dd, J = 37.2, 15.8 Hz, 1H), 2.20 – 2.14 (m, 1H), 2.04 – 1.82 (m, 2H),  1.81 – 1.60 

(m, 3H), 1.60 – 1.30 (m, 6 H), 1.01 (dt, J = 11.4, 7.4 Hz, 3H), 0.92 (dt, J = 15.1, 7.5 Hz, 3H). 13C 

NMR (101 MHz, CDCl3) δ 160.6, 155.9, 148.9, 137.2, 134.7, 134.6, 130.9, 128.5, 126.7, 126.3, 

124.7, 121.6, 119.5, 118.9, 117.8, 117.6, 113.3, 111.2, 107.1, 100.7, 65.6, 65.6, 56.6, 55.8, 55.6, 

51.6, 45.2, 37.3, 36.0, 35.1, 35.0, 30.5, 29.8, 27.6, 20.8, 19.5, 16.6, 8.9, 7.4. 

Minor atropisomer:  1H NMR (600 MHz, CDCl3) δ 8.04 (s, 1H),  7.60 (s, 2H), 7.43 (d, J = 7.8 Hz, 

1H), 7.02 (t, J = 7.3 Hz, 1H), 6.85 – 6.80 (m, 1H), 6.43 (d, J = 8.4 Hz, 1H), 6.18 (s, 1H), 4.36 – 

4.26 (m, 1H), 4.22 – 4.10 (m, 3H), 3.91 (d, J = 13.6 Hz, 1H), 3.87 – 3.82 (m, 2H), 3.72 (td, J = 

7.7, 6.4 Hz, 1H), 3.45 – 3.29 (m, 1H), 3.20 (td, J = 13.0, 3.3 Hz, 1H), 3.12 (td, J = 13.2, 3.4 Hz, 

1H), 3.06 – 2.98 (m, 1H), 2.93 (d, J = 17.6 Hz, 1H), 2.84 – 2.74 (m, 3H), 2.69 (d, J = 11.2 Hz, 

2H), 2.56 (dd, J = 37.2, 15.8 Hz, 1H), 2.04 – 1.82 (m, 1H),  1.81 – 1.60 (m, 3H), 1.60 – 1.30 (m, 
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6 H), 1.01 (dt, J = 11.4, 7.4 Hz, 3H), 0.92 (dt, J = 15.1, 7.5 Hz, 3H). 13C NMR (101 MHz, CDCl3) 

δ 162.3, 154.6, 148.5, 137.7, 134.3, 131.9, 131.2, 128.9, 127.0, 125.1, 122.4, 121.8, 119.9, 119.8, 

118.4, 117.8, 113.5, 111.7, 108.1, 100.4, 65.4, 64.9, 56.7, 56.5, 56.0, 37.5, 35.3, 32.1, 31.9, 30.9, 

29.5, 29.4, 27.6, 22.8, 20.0, 16.7, 14.3, 8.9, 7.4.  

IR: 2924, 1614, 1455, 1214, 968, 757, HRMS (ESI/APCI) m/z calculated for C39H44N4O3 [M + 

H+]: 617.3492, found, 617.3477. [α]D
22.4 6.4° (c 0.50, CHCl3). 

 

0.4M Sodium Ethanethiol Stock Solution. To a flame-dried 25-mL round bottom flask with stir 

bar was added DMF (10 mL) and thioethanol (0.29 mL). Sodium hydride (160 mg, 60% dispersion 

in mineral oil) was added portionwise. The solution was then stirred for 10 minutes prior to use. 

Freshly prepared solutions of sodium ethanethiol tend to result in a cleaner reaction profile and 

shorter reaction times.  

3.8.3 Computational Details 

All quantum mechanical calculations were performed with ORCA version 4.2.0.1 

Geometry optimizations and frequency calculations were carried out with the Becke’s three 

parameter B3LYP global hybrid generalized gradient approximation (hybrid-GGA) density 

functional paired with Becke–Johnson damped D4 dispersion corrections (henceforth referred to 

as D4). For optimization and frequency calculation, all atoms are described with the split valence 

def2-SV(P) basis set. Thermal corrections (at 298 K, 1 atm standard state) were calculated from 

the unscaled vibrational frequencies at this level of theory. The Quasi-RRHO method was applied 

to correct for the breakdown of the harmonic oscillator approximation for low frequency 

vibrations. All stationary points are characterized by the appropriate number of imaginary 

vibrational modes (zero for optimized geometries). Triple-z quality single point calculations were 



Chapter 3: Progress toward a Convergent Total Synthesis of Leucophyllidine 245 

carried out on all stationary points with the B3LYP-D4 density functional with the def2-TZVPP 

basis set11 on all atoms. The SMD implicit solvation model for THF was employed in these single 

point calculations to include effects of solvation (CDS corrections included). Gas phase single 

point calculations were carried out for comparison. Thermal corrections obtained at the previous 

level of theory are then applied to these solvated electronic energies to obtain the reported free 

energies (G298). Henceforth this level of theory is denoted as B3LYP-D4/def2-TZVPP–

SMD(THF)//B3LYP-D4/def2-SV(P). 

The resolution of identity (RI) and chain-of-spheres (keyword = RIJCOSX) 

approximations were utilized for coulomb and exchange integrals, respectively. The fitted def2/J 

auxiliary basis sets was employed. The finest integration grid settings (Grid7, GridX9, 

NoFinalGrid) were utilized in all calculations.  
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3.8.4 Additional References 

 (1) Pangborn, A. M.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. 

Organometallics 1996, 15, 1518–1520. � 

(2) Fulmer, G.R, Miller, A.J.M.; Sherden, N.H.; Gottlieb, H.E.; Nudelman, A.; Stoltz, B.M.; 

Bercaw, J.E.; Goldberg, K.I. Organometallics 2010, 29, 2176–2179. 

(3) Allred, G. D.; Liebeskind, L. S. J. Am. Chem. Soc. 1996, 118, 2748–2749. 

(4) Dai, J-K.; Dan, W-J.; Du, H-T.; Zhang, J-W.; Wang, J-R Bioorg. Med. Chem. Lett. 2016,  

26, 580–583.	
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Scheme A3.1. Vinyl Stille coupling and undesired reduction 
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Scheme A3.2. Formyl Stille coupling and proposed endgame 
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Figure A4.3. 13C NMR (101 MHz, CDCl3) of compound 364. 
 

Figure A4.2. Infrared spectrum (Thin Film, NaCl) of compound 364. 
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Figure A4.6. 13C NMR (101 MHz, CDCl3) of compound 364. 
 

Figure A4.5. Infrared spectrum (Thin Film, NaCl) of compound 364. 
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Figure A4.9. 13C NMR (101 MHz, CD2Cl2) of compound 379c. 
 

Figure A4.8. Infrared spectrum (Thin Film, NaCl) of compound 379c. 
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 Figure A4.12.13C NMR (101 MHz, CDCl3) of compound 367. 

Figure A4.11. Infrared spectrum (Thin Film, NaCl) of compound 367. 
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Figure A4.14. Infrared spectrum (Thin Film, NaCl) of compound 380. 
 

Figure A4.15. 13C NMR (101 MHz, CDCl3) of compound 380. 
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Figure A4.18. 13C NMR (101 MHz, CDCl3) of compound 361. 
 

Figure A4.17. Infrared spectrum (Thin Film, NaCl) of compound 361. 
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Figure A4.21.  13C NMR (101 MHz, CDCl3) of compound 385. 
 

Figure A4.20. Infrared spectrum (Thin Film, NaCl) of compound 385. 
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Figure A4.24 13C NMR (101 MHz, CDCl3) of compound 392. 
 

Figure A4.23 Infrared spectrum (Thin Film, NaCl) of compound 392. 
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Figure A4.27 13C NMR (101 MHz, CDCl3) of compound 391. 
 

Figure A4.26 Infrared spectrum (Thin Film, NaCl) of compound 391. 
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Figure A4.30 13C NMR (101 MHz, CDCl3) of compound 391. 
 

Figure A4.29 Infrared spectrum (Thin Film, NaCl) of compound 391. 
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Figure A4.33 13C NMR (101 MHz, C6D6) of compound 386. 
 

Figure A4.32 Infrared spectrum (Thin Film, NaCl) of compound 386. 
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Figure A4.38 13C NMR (101 MHz, CDCl3) of compound 396. 
 

Figure A4.37 Infrared spectrum (Thin Film, NaCl) of compound 396. 
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Figure A4.41 13C NMR (101 MHz, CDCl3) of compound 397. 
 

Figure A4.40 Infrared spectrum (Thin Film, NaCl) of compound 397. 
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 Figure A4.44 13C NMR (101 MHz, CDCl3) of compound 403. 
 

Figure A4.43 Infrared spectrum (Thin Film, NaCl) of compound 402. 
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CHAPTER 4 

The Total Synthesis of (–)-Scabrolide A 

 

 

4.1  INTRODUCTION 

4.1.1.  Isolation, Bioactivity, and Biosynthetic Hypotheses  

 The soft corals of the genus Sinularia have attracted immense scientific interest as a fertile 

source of bioactive natural products. The rich chemodiversity of compounds isolated from these 

marine organisms has inspired a substantial body of research from natural products chemists, 

synthetic chemists, and biochemists alike.1 Sinularia-derived secondary metabolites demonstrate 

an exceptional array of macrocyclic and polycyclic architectures noted for their various fused ring 

systems and complicated patterns of oxidation.2 Biologically, these compounds display potent 

biological activities such as cytotoxicity, which is hypothesized to account for the low natural 

predation of the parent organisms.3 
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Figure 4.1. Furanobutenolide-derived norcembranoid diterpenoids. 

 

 The furanobutenolide-derived cembranoid and norcembranoid diterpenoids are a particular 

subclass which has attracted significant attention within the synthetic community. The name arises 

from the furanobutenolide scaffold (415) from which the C20 cembranoid (R = Me, CHO, COOMe) 

and C19 norcembranoid (R = H) diterpenoids arise (Figure 4.1).2 This intermediate serves as a 

biogenic precursor for the various tricarbocyclic norcembranoid frameworks observed in these 

natural products; these include the fused-[5,6,7] ring system observed in scabrolide A (416),4 

scabrolide B (417),4 12-hydroxyscabrolide A (418),5 sinulochmodin C (419),6 yonarolide (420),7 

and dissectolide (421),8 the fused-[5,7,6] ring system observed in ineleganolde (422),9 the fused-

[6,5,7] ring system observed in sinulanorcembranolide A (423),10 and several bridged variants.  
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Scheme 4.1. Proposed biosynthesis of fused tricyclic norcembranoid diterpenoids. 

 

 Biosynthetically, the diverse set of ring systems are hypothesized to arise from a series of 

transannular Michael additions from 5-epi-sinuleptolide (424) (Scheme 4.1A). Deprotonation at 

C(5), for example, is believed to promote a 7-exo-trig cyclization with concomitant elimination of 

the allylic alcohol to establish butenolide 425. Deprotonation at C(7) then initiates a 5-exo trig 

cyclization to establish the fused-[5,6,7] core of sinulochmodin C (419). A retro oxa-Michael 

addition then generates scabrolide B (417), which can isomerize to scabrolide A (416) and 

eliminate to yonarolide (420).1,2  
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exo-trig cyclization generates the fused-[5,7,6] core of ineleganolide (422) (Scheme 4.1B). 1,2 

These hypotheses are supported by research by Pattenden and coworkers,11 who reported in 2011 

that treatment of 5-epi sinulariolide with LHMDS generated a mixture of ineleganolide (422) and 

sinulochmodin C (419) (Scheme 4.2). 

Scheme 4.2. Pattenden’s semi-synthesis of ineleganolide and sinulochmodin C (2011). 
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acetal cleavage affords aldehyde 432. A Ni-catalyzed aldehyde-diene coupling with isoprene and 

subsequent DMP oxidation affords ketone 433, which is then advanced through a ring-closing 

metathesis and Rh-catalyzed isomerization to access pavidolide B (426) in 10 steps LLS. 

Scheme 4.3. Yang’s asymmetric synthesis of pavidolide B (2017). 
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hemiaminal formation, and epimerization of the isopropyl fragment. Alkylation with TMS-

diazomethane then advances this intermediate to sarcophytin (434). 

Scheme 4.4. Carriera’s asymmetric synthesis of sarcophytin (2018). 
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Scheme 4.5. Ding’s asymmetric synthesis of several cembranoids (2018). 
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Scheme 4.6. Fürstner’s asymmetric synthesis of sinulariadiolide (2019). 
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Scheme 4.7. Zhu’s asymmetric synthesis of pavidolide B (2020). 
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 In 2017, our lab published our progress toward the synthesis of the furanobutenolide-

derived norcembranoid diterpenoid ent-ineleganolide (422).19 Ester 462, accessible in 8 steps from 

(S)-carvone, is hydrolyzed, coupled to cyclopentendiol 464, and subjected to Regitz diazo transfer 

to afford diazo 465 (Scheme 4.8). Treatment with catalytic Rh(II) then promotes a tandem 

cyclopropanation-Cope rearrangement to construct the fused [5,7,6] core 466 in 53% yield. SmI2 

reduces to cyclohexanone 467, which undergoes a three-step sequence of epoxidation, reductive 

epoxide cleavage, and oxidation to afford ketone 468. Unfortunately, all attempts to advance this 

intermediate to the natural product (422) were unsuccessful. Other late-stage strategies, including 

isomerization of the tetrasubstituted olefin before oxa-Michael addition, were also unsuccessful.   

Scheme 4.8. Stoltz’s progress toward the synthesis of ent-ineleganolide (2016). 
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 Though our strategy did not afford access to ineleganolide (422), the tactics developed for 

these late-stage manipulations remained informative and provided key insights into the reactivity 

of complex terpenoid scaffolds. While the cyclopropanation-Cope strategy to access a [5,7,6]-ring 

system would only be applicable to ineleganolide (422), we reasoned that a strategy to access the 

[5,6,7]-ring system could be applied to several natural products of varying degrees of complexity 

(e.g. 416 – 420), benefiting from the expertise gained through unsuccessful pathways. To develop 

this strategy, we elected to target the norcembranoid diterpenoid scabrolide A (416). 

 Scabrolide A (416) (Figure 4.1), a flagship member of the polycyclic furanobutenolide-

derived natural product family, was first isolated by Sheu and coworkers from the Taiwanese soft 

coral Sinularia scabra in 2002 alongside four other novel norcembranoids (scabrolides B–D) and 

four known norcembranoids, including the closely related inelganolide (422).4 Since its initial 

isolation, 1 has been demonstrated to inhibit IL-6 and IL-12 production in vitro, suggesting its 

potential as an anti-inflammatory agent.5 Structurally, scabrolide A (416) is characterized by a 

fused [5,6,7] carbocyclic framework featuring six stereogenic centers, five of which are 

contiguously situated about the compact and densely functionalized western portion of the 

molecule. The eastern portion possesses a synthetically challenging cycloheptenone with its ketone 

positioned in an electronically dissonant 1,4-relationship to the central ring ketone, and a distal 

stereocenter in the form of an isopropenyl substituent. 

 

4.1.4.  Retrosynthetic Analysis  

 We envisioned that the challenging cycloheptenone moiety of scabrolide A (416) could 

arise from a Tamao-Fleming oxidation and oxidative fragmentation20 of the cyclobutane moiety 

observed in silane 469 (Scheme 4.9); this would be generated, in turn, from a 
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hydrosilylation/photochemical [2+2] cycloaddition21 of alkyne 470. Late-stage installation of the 

C(3) ketone was crucial, as a number of earlier strategies had found that the basic C(12) proton 

would frequently initiate an intramolecular aldol condensation.22 The central cyclohexanone 

would be formed through a thermal [4+2] cycloaddition and subsequent oxidative manipulations 

of ester 471. Disconnection across the ester moiety provides two fragments: cyclopentendiol 464 

which would serve as the diene and acyclic diyne 472 which would serve as the dienophile. These 

would be formed through derivatization of (–)-linalool (473) and (R)-carvone (450). 

Scheme 4.9. Retrosynthetic analysis of scabrolide A. 
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4.2  SYNTHESIS OF THE CYCLOHEXENONE CORE 

4.2.1 Synthesis of the Cyclopentendiol 

In 2012, our group first published a route to access cyclopentendiol ent-464 using 

asymmetric catalysis.23 Tris • HCl (474) is first advanced to silyl enol ether 475 over six steps 

(Scheme 4.10). A Pd-catalyzed allylic alkylation with 2-chloroallyl mesylate then establishes the 

tertiary alcohol stereogenic center of dioxolane 477 in 82% yield and 92% ee. This is then 

advanced through α bromination/intramolecular Wittig cyclization to cyclopenteone 478, before 

reduction with DIBAL–H forges secondary alcohol 479 as a single diastereomer. With both 

stereogenic centers now installed, this intermediate is advanced through five additional steps to 

cyclopentendiol ent-464.  

Scheme 4.10. First generation route to cyclopentendiol building block (2011). 
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derived from a substantially more expensive D-tert-leucine. To circumvent these challenges, we 

looked to develop a revised route to our building block from chiral pool starting materials.  

Scheme 4.11. Second generation synthesis of cyclopentendiol from linalool.  
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from commercial material. This sequence provides equivalent amounts of material to our 

previously published sequence23 in fewer than half the number of steps.  

 

4.2.2 Synthesis of the Acyclic Diyne 

Scheme 4.12. Synthesis of acyclic diyne from carvone 
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Simultaneous Fischer esterification/acetal protection of the aldehyde affords fragment 488 which 

is subsequently reduced with DIBAL–H to afford differentially protected dialdehyde 489 in five 

steps.  

Aldehyde 489 is first converted to gem-dibromide 490 under Wittig conditions. n-BuLi 

then promotes the Corey-Fuchs elimination, and the resultant alkynyllithium is quenched with 

TMSCl, generating acetylide 491. Subsequent treatment with aqueous acid then cleaves the acetal 

in one-pot, affording aldehyde 492 in 73% yield. In a similar fashion, aldehyde 493 is converted 

to dibromide 494 before Corey-Fuchs elimination generates an alkynyllithium species that is 

quenched with carbon dioxide to afford carboxylate 494. Subjugation to TBAF deprotects the 

acetylide in one-pot and generates diyne 472 in 49% yield. 

 

4.2.3 Convergent Esterification/Diels–Alder 

 With both fragments in hand, we turned our attention to the synthesis of the central six-

membered ring (Scheme 4.13). Equimolar quantities of diol 464 and acid 472 could be effectively 

coupled under Steglich esterification conditions28 generating Diels–Alder precursor 471 in 79% 

yield. Gratifyingly, we found that heating this intermediate for three hours in xylenes afforded 

cyclohexadiene 495 in 75% yield as a single diastereomer.  

Following the precedent of our ineleganolide route, 18 directed epoxidation with vanadium 

afforded selective epoxidation of the Δ-6,7 olefin in 94% yield as a single diasteromer29 496 before 

reductive cleavage with catalytic Ti30 generated secondary alcohol 497 stereoselectively. The 

oxidation of secondary alcohol 497 proved to be unexpectedly challenging, with our previously 

optimized DMP conditions providing inconsistent and poorly scalable yields. Other mild and 

robust oxidations (e.g., TPAP/NMO,31 CuOTf/ABNO/O2
32)  failed to effect this transformation in 
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synthetically useful yields. After further screening, we discovered that IBX in MeCN at 50 °C was 

uniquely effective in providing enone 470 in good yield with olefin migration occurring 

spontaneously upon purification on silica gel. We attribute this challenging oxidation to two 

factors: 1) steric hindrance, as the alcohol is buried in the concave face of intermediate 497, and 

2) potential hydrogen bonding within the syn-1,3-diol, which confers further stability.  

Scheme 4.13. Thermal [4+2] cycloaddition and oxidative manipulations. 
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subsequent photocycloaddition upon irradiation with 350 nm light primarily yielded formation of 

the fused [5,6,4,4] system 500, which was confirmed through x-ray crystallography. No detectable 

quantity of the desired [5,6,4,5]-system 469a was observed. While we were aware that this 

undesired enone-isopropenyl olefin cycloaddition could occur, we predicted that the strained 

nature of these products would occlude formation in significant quantity. The exclusive formation 

of intermediate 500 indicated that optimization to select for desired tetracycle 469a was unlikely.  

Scheme 4.14. Hydrosilylation and unexpected photocycloaddition 
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dimethylphenylsilyl substituent creates undesired steric interactions, which dissuades the adoption 

of this conformation.  

Scheme 4.15. Mechanistic rationale for the observed photocycloaddition 
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acid (Entry 3) or Snyder’s reagent35 (Entry 4) produced dehydration products. Sharpless 

dihydroxylation (Entry 5 and 6) led to modest diastereoselectivity, but a complex mixture of other 

products was also formed. 

Table 4.1. Optimization of the isopropenyl protection strategy. 

  

 We were delighted, however, to see that epoxidation with m-CPBA occurred cleanly in 

high yield but poor d.r. (Entry 7). Performing the reaction at lower temperature lead to decreases 

in yield and d.r. (Entry 8). Though Shi’s catalyst had been reported to promote diastereoselective 

epoxidation of other carvone derivatives,36 we were disappointed to see no improvement with our 

system (Entry 9). Jacobsen epoxidations37 with both enantiomers of catalyst (Entry 10 and 11) 

likewise produced no observable epoxidized products.   
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4.3.3  Synthesis of the Cyclobutanol 

Though the diastereoselectivity of the epoxidation could not be improved, epoxide mixture 

509 was carried forward through the hydrosilylation (509 → 510, Scheme 4.16). To our delight, 

the subsequent photocycloaddition occurred smoothly, accessing cyclobutane 511 as a mixture of 

epoxide epimers. Reductive clevage with titanium then generates a seperable mixture of primary 

alcohols 512a and 512b in 1.7:1 d.r.38 Both intermediates can then be oxidized under Tamao-

Fleming conditions to cyclobutanols 513a and 513b.  

Scheme 4.16. [2+2] photocycloaddition and subsequent oxidation. 
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Interestingly, the crystal structures display both intermediates as trans-fused cyclobutanols 

which would not be possible under the 5-exo trig mechanism previously hypothesized. 

Mechanistically, this observation can be explained by invoking a mechanism in which an initial 7-

endo trig between C(4) and C(5) of 514 occurs from the convex α-face of the molecule generating 

diradical 515a (Scheme 4.17). This long-lived radical species does not recombine until rotation of 

the C(5)–C(13) bond to conformation 515b occurs preceding recombination of the 1,4-diradical 

from the β-face; this prevents severe steric interactions between the bulky phenyldimethylsilyl 

substituent and the cyclohexanone ring generating trans-fused product 511. Similar 

stereochemical outcomes (i.e. preferential formation of trans-fused adducts) have been reported in 

analogous systems39 presumably due to the presence of substitution at the internal position of the 

reacting olefin. 

Scheme 4.17. Mechanistic rationale for the trans-fused cyclobutane 
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silica gel in methanol promoted elimination to cyclohexenone 518 (Scheme 4.18). We then 

investigated a number of methods to eliminate the primary alcohol including Chugaev elimination 

conditions, mesylation, brominations, iodination, Burgess’ reagent41 and Martin’s sulfurane,42 

though all were ultimately unsuccessful. We attribute this challenging elimination to steric 

hindrance of the unactivated C(15) proton, which is “thexyl”-like. We therefore limited our future 

efforts to unimolecular eliminations.  

Scheme 4.18. Failed fragmentation/elimination approach. 
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carbocation which, upon deprotonation, generates cyclopropane 525. Addition of peroxide then 

completes the oxidation/intramolecular elimination sequence of the Grieco dehydration to generate 

the isolated species 519. 

Scheme 4.19. Unexpected ring contraction and proposed mechanism. 
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silver-mediated conditions created a complex mixture of products, we discovered that CuI/NIS 

conditions44 successfully promoted a one-pot fragmentation/elimination to access scabrolide A 

(416) in a single operation. 

Scheme 4.20. Completion of scabrolide A. 
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cycloheptenone ring and complete the total synthesis. Efforts are currently ongoing to extend this 

strategy toward the synthesis of other norecembranoid diterpenoids, and progress will be reported 

in due course.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4: The Total Synthesis of (–)-Scabrolide A 308 

4.5  REFERENCES 

(1)  Craig II, R.A.; Stoltz, B.M. Chem. Rev. 2017, 117, 7878–7909 

(2)  Li, Y.; Pattenden, G. Nat. Prod. Rep. 2011, 28, 1269–1310. b) Li, Y.; Pattenden, G. Nat 

Prod Rep. 2011, 28, 429–440. 

(3)  a) Montaser, R.; Luesch, H.; Future Med. Chem. 2011, 3, 1473–1489.  b) Berrue, F.; 

Kerr, R.G. Nat. Prod. Rep. 2009, 26, 681–710. c) Kamel, H.N.; Slattery, M.; Pharm. 

Biol. 2005, 43, 253–269.  

(4)  Sheu, J.; Ahmed, A. F.; Shiue, R.; Dai, C.; Kuo, Y.; J. Nat. Prod. 2002, 65, 1904–1908. 

(5)  Thao, N.P.; Nam, N.H. Cuong, N.X.; Quang, T.H.; Tung, P.T.; Dat, L.D.; Chae, D.; Kim, 

S.; Koh, Y-S.; Kiem, P.V. Bioorg. Med. Chem. Lett. 2013, 23, 228–231. 

(6)  Tseng, Y.-J.; Ahmed, A.F.; Dai, C.-F.; Chiang, M.Y.; Sheu, J.-H. Org. Lett. 2005, 7, 

3813–3816. 

(7)  Iguchi, K.; Kajiyama, K.; Yamada, Y. Tetrahedron Lett. 1995, 36, 8807–8808. 

(8)  Kobayashi, M.; Rao, K.M.C.A.; Krishna, M.M.; Anjaneyulu, V.; J. Chem. Res. (S) 1995, 

188–189. 

(9)  Duh, C.-Y.; Wang, S.-K.; Chia, M.-C.; Chiang, M.Y. Tetrahedron Lett. 1999, 40, 6033–

6035. 

(10 ) Yen, W.-H.; Su, Y.-D.; Chang, Y.-C.; Chen, Y.-H.; Dai, C.-F.; Wen, Z.-H.; Su, J.-H.; 

Sung, P.-J. Tetrahedron Lett. 2013,  54, 2267–2270. 

(11)  Li, Y.; Pattenden, G. Tetrahedron 2011, 67, 10045–10052. 

(12)  Zhang, P-P.; Yan, Z-M.; Li, Y-H.; Gong, J-X.; Yang, Z J. Am. Chem. Soc. 2017, 139, 

13989–13992.  

(13)  Nannini, L.J.; Nemat, S.J.; Carriera, E.M. Angew. Chem. Int. Ed. 2018, 57, 823–826. 

                                                



Chapter 4: The Total Synthesis of (–)-Scabrolide A 309 

                                                                                                                                                       
(14)  He, C.; Xuan, J.; Rao, P; Xie, P.-P.; Hong, X.; Lin, X.; Ding, H. Angew. Chem. Int. Ed. 

2018, 58, 5100–5014.  

(15) Marfat, A.; Helquist, P. Tetrahedron Lett. 1978, 44, 4217–4720.  

(16)  Meng, Z.; Fürstner, A. J. Am. Chem. Soc. 2019, 141, 805–809. 

(17)  Zhu, Y.; Romero, E.L.; Srinivas, K.; Noriega, E. ChemRxiv. 2020, Preprint. DOI: 1

 0.26434/chemrxiv.11560137.v1 

(18)  Brill, Z.G.; Condakes, M.L.; Ting, C.P.; Maimone, T.J. Chem. Rev. 2017, 117, 11753–

11795. 

(19)  a) Craig II, R.A.; Roizen, J.L.; Smith, R.C.; Jones, A.C.; Virgil, S.C.; Stoltz. B.M. Chem 

Sci. 2017, 8, 507–514. b) Craig II, R.A.; Smith, R.C.; Roizen, J.L.; Jones, A.C.; Virgil, 

S.C.; Stoltz, B.M. J. Org Chem. 2018, 83, 3467–3485. c) Craig II, R.A.; Smith, R.C.; 

Roizen, J.L.; Jones, A.C.; Virgil, S.C.; Stoltz, B.M. J. Org Chem. 2019, 84, 7772–7746. 

(20)  For reviews of cyclobutane fragmentation strategies in synthesis see (a) Oppolzer, W. 

Acc. Chem. Res. 1982, 15, 135–141. (b) Winkler, J. D.; Bowen, C. M.; Liotta, F. Chem. 

Rev. 1995, 95, 2003–2020. 

(21)  For reviews of [2+2] photocycloadditions see: (a) Crimmins, M.T. Chem. Rev. 1988, 88, 

1453–1473. (b) Sarkar, D.; Bera, N.; Ghosh, S. Eur. J. Org. Chem. 2020, 1310–1326. (c) 

Hoffman, N. Chem. Rev. 2008, 108, 1052–1103. (d) Kärkäs M. D.; Porco, J. A., Jr.; 

Stephenson, C. R. J. Chem. Rev. 2016, 116, 9683–0747. 

(22)  Loskot, S.A. Ph. D. Dissertation. California Institute of Technology 2019. 

(23)  Craig, R. A., II; Roizen, J. L.; Smith, R. C.; Jones, A. C.; Stoltz, B. M. Org. Lett. 2012, 

14, 5716–5719. 



Chapter 4: The Total Synthesis of (–)-Scabrolide A 310 

                                                                                                                                                       
(24)  a) Brill, Z. G.; Grover, H. K.; Maimone, T. J. Science, 2016, 352, 1078–1082. b) Thatch, 

D.Q.; Brill, Z.G.; Grover, H.K. Esguerra, K.V.; Thompson, J.K.; Maimone, T.J. Angew. 

Chem. Int. Ed. 2020, 59, 1532–1535. 

(25)  Though the conjugate addition product could be directed trapped as the TES enol ether on 

small scale, we found that yields were significantly lower than the two step sequence 

when multigram quantitites of starting material were utilized.  

(26)  Ryu, I.; Murai, S.; Hatayama, Y.; Sonada, N. Tetrahedron Lett. 1978, 37, 3455–3458 

(27)  Weinstabl, H.; Gaich, T.; Mulzer, J. Org. Lett. 2012, 14, 2834–2837. 

(28)  Neises, B.; Steglich, W. Angew. Chem. Int. Ed. 1978, 17, 522–524. 

(29)  Direct conversion of epoxide 496 to ketone 470 through Meinwald rearrangement was 

attempted but ultimately proved unsuccessful. 

(30)  Gansäuer, A.; Bluhm, H.; Pierobon, M. J. Am. Chem. Soc. 1998, 120, 12849–12859.  

(31)  Griffith, W. P.; Ley, S. V.; Whitcombe, G. P.; White, A. D. J. Chem. Soc., Chem. Commun. 

1987, 21, 1625–1627. 

(32)  Steves, J. E.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 15742–15745. 

(33)  Trost, B.M.; Ball, Z.T. J. Am. Chem. Soc. 2005, 127, 17644–17655. 

(34)  (a) Srinivasan, R.; Carlough, K. H. J. Am. Chem. Soc. 1967, 89, 4932–4936. (b) Liu, R. 

S. H.; Hammond, G. S. J. Am. Chem. Soc. 1967, 89, 4936–4944. (c) Wolff, S.; Agosta, 

W. C. J. Org. Chem. 1981, 46, 4821–4825. (d) Wolff, S.; Agosta, W. C. J. Chem. Soc., 

Chem. Commun. 1981, 118–120. (e) Wolff, S.; Agosta, W. C.. J. Am. Chem. Soc. 1983, 

105, 1292–1299. 

(35)  Schevenels, F.T.; Shen, M.; Snyder, S.A. J. Am. Chem. Soc. 2017, 139, 6329–6337. 



Chapter 4: The Total Synthesis of (–)-Scabrolide A 311 

                                                                                                                                                       
(36)  Wang, K-Y.; Liu, D-D.; Sun, T-W.; Lu, Y.; Zhang, S-L.; Li, Y-H.; Han, Y.X.; Liu, H-Y.; 

Peng, C.; Wang, Q-Y.; Chen, J-H.; Yang, Z. J. Org. Chem. 2018, 83, 6907–6923. 

(37)  Fristrup, P.; Dideriksen, B.B.; Tanner, D.; Norrby, P-O. J. Am. Chem. Soc. 2005, 127, 

13672–13679.  

(38)  It is unusual for the starting material and product both have the same diastereomeric 

ratios, as the Ti-catalyzed epoxide opening invokes a radical intermediate, which should 

ablate all stereochemical information. This suggests the substrate may invoke “memory 

of chirality” with hydrogen radical addition occurring very quickly  

(39)  For similar examples, see: (a) Corey, E. J.; Mitra, R. B.; Uda, H. J. Am. Chem. Soc. 1963, 

86, 485–492. (b) Pirrung, M. C. J. Am. Chem. Soc. 1979, 101, 7130–7131. (c) Pirrung, 

M. C. J. Am. Chem. Soc. 1981, 103, 82–87. 

(40)  Huang, F-Q.; Xie, J.; Sun, J-G.; Wang, Y-W.; Dong, X.; Qi, LW.; Zhang, B. Org. Lett. 

2016, 18, 684–687. 

(41)  Atkins, G.M.; Burgess, E.M. J. Am. Chem. Soc. 1968, 90, 4744 – 4745. 

(42)  (a) Martin, J. C.; Arhart, R. J. J. Am. Chem. Soc. 1971, 93, 2339–2341; (b) Martin, J. C.; 

Arhart, R. J. J. Am. Chem. Soc. 1971, 93, 2341–2342; (c) Martin, J. C.; Arhart, R. Li, J.J. 

J. Am. Chem. Soc. 1971, 93, 4327–4329. (d) Martin, J. C.; Arhart, R. J.; Franz, J. A.; 

Perozzi, E. F.; Kaplan, L. J. Org. Synth. 1977, 57, 22–26.  

(43) Grieco, P. A.; Gilman, S.; Nishizawa, M. J. Org. Chem. 1976, 41, 1485–1486. 

(44)  Takasu, K.; Nagao, S.; Ihara, M. Tetrahedron Lett. 2005, 46, 1005–1008. 

 



Chapter 4: The Total Synthesis of (–)-Scabrolide A 312	

4.6   EXPERIMENTAL SECTION 

4.6.1   Materials and Methods 

Unless otherwise stated, reactions were performed in flame-dried glassware under a 

nitrogen atmosphere using dry, deoxygenated solvents. Solvents were dried by passage through an 

activated alumina column under argon.1 Reaction progress was monitored by thin-layer 

chromatography (TLC). TLC was performed using E. Merck silica gel 60 F254 precoated glass 

plates (0.25 mm) and visualized by UV fluorescence quenching, p-anisaldehyde, or KMnO4 

staining. Silicycle SiliaFlash® P60 Academic Silica gel (particle size 40–63 µm) was used for 

flash chromatography. 1H NMR spectra were recorded on Varian Inova 500 MHz and 600 MHz 

and Bruker 400 MHz spectrometers and are reported relative to residual CHCl3 (δ 7.26 ppm), C6D6 

(δ 7.16 ppm) or CD3OD (δ 3.31 ppm). 13C NMR spectra were recorded on a Varian Inova 500 

MHz spectrometer (125 MHz) and Bruker 400 MHz spectrometers (100 MHz) and are reported 

relative to CHCl3 (δ 77.16 ppm), C6D6 (δ 128.06 ppm) or CD3OD (δ 49.01 ppm). Data for 1H 

NMR are reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), 

integration). Multiplicities are reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, 

p = pentet, sept = septuplet, m = multiplet, br s = broad singlet, br d = broad doublet. Data for 13C 

NMR are reported in terms of chemical shifts (δ ppm). IR spectra were obtained by use of a Perkin 

Elmer Spectrum BXII spectrometer or Nicolet 6700 FTIR spectrometer using thin films deposited 

on NaCl plates and reported in frequency of absorption (cm–1). Optical rotations were measured 

with a Jasco P-2000 polarimeter operating on the sodium D-line (589 nm), using a 100 mm path- 

length cell. High resolution mass spectra (HRMS) were obtained from the Caltech Mass Spectral 

Facility using a JEOL JMS-600H High Resolution Mass Spectrometer in fast atom bombardment 

(FAB+) or electron ionization (EI+) mode, or using an Agilent 6200 Series TOF with an Agilent 
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G1978A Multimode source in electrospray ionization (ESI+), atmospheric pressure chemical 

ionization (APCI+), or mixed ionization mode (MM: ESI-APCI+).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4: The Total Synthesis of (–)-Scabrolide A 314	

4.6.2   Experimental Procedures 

 

 

Vinylcyclopentanone 482: To a flame-dried 500 mL three-necked flask is added CuBr • DMS 

(543 mg, 2.65 mmol, 0.12 equiv). The flask is evacuated and back-filled three times with argon, 

and charged with THF (110 mL). The solution is cooled to –78 °C and vinylmagnesium bromide 

in THF (1.0 M, 26.5 mL, 1.2 equiv) is added. The flask is equipped with an addition funnel and 

stirred at –78 °C for 30 minutes, during which time the solution turned from dark to red-brown. In 

a separate 100 mL flask, enone 481, prepared according to the procedure of Maimone2, (5.0 g, 

22.1 mmol, 1.0 equiv) is dissolved in THF (22.1 mL). HMPA (10.97 mL, 66.1 mmol, 3.0 equiv) 

and TMSCl (6.94 mL, 55.2 mmol, 2.5 equiv) are added at room temperature, and stirred for 5 

minutes. This solution is transferred to the addition funnel and slowly added to the flask over 1 

hour; an internal temperature no greater than –70 °C should be maintained and the solution will 

turn orange to yellow to dark brown.  

Upon complete addition, the reaction is stirred at -78 °C for an additional hour, then 

warmed to 0 °C. Saturated aq NH4Cl (125 mL) is added before stirring at 0 °C for 1 hour. The 

layers are separated and the aqueous layer is extracted with diethyl ether (3X). The combined 

organics are washed with brine, dried with MgSO4, and concentrated under reduced pressure. Flash 

column chromatography (10 → 20% Et2O/Hexanes) affords the title compound (3.59 g, 64% yield, 

9:1 mixture of diastereomers) as a yellow oil.  

O

OTBSMe

64% yield
9:1 dr

VinylMgBr
CuBr•DMS (12 mol %) 

TMSCl, HMPA

THF –78 → 0°C, 2h
O

OTBSMe

481 482
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Major Diastereomer: 1H NMR (400 MHz, CDCl3) δ 5.81 (ddd, J = 17.1, 10.4, 7.4 Hz, 1H), 5.26 

– 4.92 (m, 2H), 2.89 (dtd, J = 8.1, 6.7, 1.2 Hz, 1H), 2.64 (ddd, J = 18.7, 8.2, 1.1 Hz, 1H), 2.39 (d, 

J = 17.8 Hz, 1H), 2.32 (dd, J = 17.6, 1.1 Hz, 1H), 2.17 (dd, J = 18.7, 6.6, 1.1 Hz, 1H), 1.27 (s, 

3H), 0.85 (s, 6H), 0.10 (d, J = 8.0 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 216.2, 136.9, 116.6, 

79.7, 53.5, 52.8, 42.2, 25.7, 24.2, 18.0, –2.2, –2.4; IR (Neat film, NaCl) 2956, 2930, 2857, 1750, 

1471, 1462, 1402, 1378, 1257, 1162, 1114, 1025, 997, 918, 836, 774, 617 cm–1; HRMS (FAB+) 

m/z calc’d for C14H27O2Si [M+H]+: 255.1780, found 255.1784; [α]D25.0 –30.0° (c 1.0 , CHCl3).  

 

 

Silyl Enol Ether 483: A 500 mL round-bottom flask is soaked in a base bath overnight, then 

washed, flame-dried, and placed under nitrogen atmosphere. The flask is charged with 2,2,6,6- 

tetramethylpiperidine (4.01 mL, 23.63 mmol, 1.2 equiv) and THF (108 mL) before it is cooled to 

–78 °C. n-BuLi (9.30 mL of 2.33 M, 1.1 equiv) is added to the flask, then stirred at 0 °C for 1 hr. 

The flask is cooled to –78 °C and charged with TESCl (3.96 mL, 23.6 mmol, 1.2 equiv), then 

stirred for 5 minutes. Using a syringe pump, vinylcyclopentanone 482 (5.00 g, 19.69 mmol, 1.0 

equiv) in THF (20 mL) is added dropwise over 1 hour.  

Upon complete addition, the reaction is stirred until complete by TLC (15 minutes.) 

Triethylamine (5 mL) is added and the reaction is quenched with a saturated aqueous sodium 

bicarbonate solution, and gradually warmed to 23 °C. The layers are separated and the aqueous 

layer is extracted with hexanes (5X). The combined organics are washed with water and 0.1 M 

citric acid solution, dried with sodium sulfate, and concentrated under reduced pressure. Flash 

66% yield

LiTMP, TESCl

THF, –78 °C, 45 min
TESO

OTBSMe

483

O

OTBSMe

482
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column chromatography (2.5% Et2O/Hexanes) affords the title compound (4.78 g, 12.96 mmol, 

66% yield, 9:1 mixture of diastereomers) as a colorless oil.  

Major diastereomer: 1H NMR (400 MHz, C6D6) δ 5.81 (ddd, J = 17.1, 10.1, 7.9 Hz, 1H), 5.16 

(ddd, J = 17.1, 2.2, 1.2 Hz, 1H), 5.05 (ddd, J = 10.1, 2.2, 0.9 Hz, 1H), 4.66 (q, J = 1.8 Hz, 1H), 

3.42 (ddq, J = 6.6, 2.3, 1.2 Hz, 1H), 2.68 (dt, J = 15.7, 1.6 Hz, 1H), 2.41 (dt, J = 15.7, 1.4 Hz, 1H), 

1.27 (s, 3H), 1.04 – 0.99 (m, 18H), 0.73 – 0.61 (m, 6H), 0.15 (s, 3H), 0.14 (s, 3H); 13C NMR (100 

MHz, C6D6) δ 153.9, 139.3, 115.2, 103.2, 81.9, 59.9, 50.7, 26.8, 26.3, 18.5, 7.2, 5.5, –2.0, –1.9. IR 

(Neat film, NaCl) 3078, 2955, 2933, 2477, 2856, 1647, 1459, 1360, 1334, 1250, 1226, 1135, 1091, 

1018 1004, 918, 834, 799, 774, 746 cm–1; HRMS (FAB+) m/z calc’d for C20H39O2Si2 [M–H]+: 

367.2489, found 367.2489; [α]D25.0 –66.8° (c 1.0, CHCl3).  

	

	

Dienone 484: A 1 L round-bottomed flask is charged with silyl enol ether 483 (5.80 g, 15.76 mmol, 

1.0 equiv) in benzene (310 mL). HMDS is added dropwise via syringe and the resulting solution 

is stirred for 5 minutes. DDQ (7.87 g, 34.67 mmol, 2.2 equiv) is added in a single portion, and the 

reaction is stirred for 45 minutes, during which time it turns from black to bright red. Celite (30 g) 

is added to the reaction, then concentrated and dried on high vaccum for 1 h. Flash column 

chromatography (1% → 10% Et2O/Hexanes) affords the title compound as a gold oil (3.35 g, 13.27 

mmol, 84% yield) along with triethylsilanol as a coeluted impurity (1.16 g as determined by 1H 

NMR). A pure sample for characterization is obtained by preparative TLC (30% Et2O/Hexane). 

1H NMR (400 MHz, CDCl3) δ 6.56 (ddd, J = 17.8, 11.1, 0.8 Hz, 1H), 6.14 – 5.99 (m, 2H), 5.70 

DDQ, HMDS

PhH, 23 °C, 45 min

85% yield
O

OTBSMe

484

TESO

OTBSMe

483
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(dd, J = 11.1, 1.5 Hz, 1H), 2.70 (dd, J = 17.9, 0.7 Hz, 1H), 2.57 (d, J = 17.8 Hz, 1H), 1.53 (d, J = 

0.6 Hz, 3H), 0.86 (s, 9H), 0.13 (s, 3H), 0.07 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 205.0, 175.9, 

129.0, 126.5, 125.5, 78.8, 53.2, 29.2, 25.8, 18.1, –2.3, –2.7; IR (Neat film, NaCl) 2955, 2930, 2857, 

1709, 1603, 1473, 1361, 1336, 1253, 1232, 1206, 1159, 1074, 1004, 938, 862, 834, 776 cm–1; 

HRMS (FAB+) m/z calc’d for C14H25O2Si [M+H]+: 253.1624, found 253.1622; [a]D25.0 –92.1° (c 

0.2, CHCl3).  

	

	

Diol XX: A 500-mL round-bottom flask is charged with dienone 484 (2.69 g, 10.67 mmol, 1.0 

equiv) in MeOH (110 mL) and cooled to –78 °C. CeCl3 • 7 H2O (5.17 g, 13.87 mmol, 1.3 equiv) 

is added, and the solution is stirred for 5 minutes before NaBH4 (534 mg, 13.87 mmol, 1.3 equiv) 

is added in a single portion. The reaction is stirred at –78 °C for 1 hour, warmed to room 

temperature, and quenched with saturated, aqueous ammonium chloride. The mixture is 

concentrated on a rotary evaporator to remove methanol, transferred to a separatory funnel, and 

extracted with diethyl ether (3X). The combined organics are washed with brine, dried with 

MgSO4, and concentrated to afford an orange oil which is used directly in the next step without 

further purification.  

To a 500 mL flame-dried flask is added the crude reduction product in THF (150 mL). 1M 

TBAF in THF (15.0 mL equiv, 15.0 mmol, 1.4 equiv) is added dropwise by syringe. The flask is 

equipped with a reflux condenser and heated to reflux for 8 h. After completion as judged by TLC, 

the reaction is cooled to 23 °C and quenched with brine. The mixture is extracted with ethyl acetate 

1. CeCl3 • 7 H2O, NaBH4
    MeOH, –78 °C, 1h

2. TBAF
    THF, reflux, 8h

67% yield, 2 steps
>20:1 d.r.

HO

OHMe

464

O

OTBSMe

484
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(5X) before the combined organic layers are washed with brine, dried with Na2SO4, and 

concentrated under reduced pressure onto silica gel. The mixture is purified by flash column 

chromatography (50 → 75% → 100% ethyl acetate/hexanes) to afford the title compound (1.17 g, 

8.35 mmol, 78% yield over two steps) as an amorphous white solid. All spectral data for 11 was 

found to be in good accordance with literature values.3 

	

	

Dibromide 490: A 500 mL round-bottom flask is charged with Br2CHPPh3Br•MeCN (55.6 g, 

100.0 mmol, 1.4 equiv; prepared according to the method of Mulzer)4 and THF (238 mL, 0.3 M). 

The reaction mixture is cooled to 0 °C and t-BuOK (9.6 g, 85.7 mmol, 1.2 equiv) is added in one 

portion. This mixture is stirred 1.5 h at 0 °C and then warmed to 23 °C and stirred an additional 

30 min. The mixture is cooled to 23 °C and aldehyde 489 (13.3 g, 71.4 mmol, 1.0 equiv) is added 

dropwise via syringe. The dark suspension is stirred for 2 h at 0 °C until no aldehyde is detected 

by TLC. The mixture is quenched with saturated, aqueous NH4Cl and partitioned between water 

and Et2O. The aqueous phase is extracted with Et2O (3X). The organic extracts are combined, 

washed with brine, dried over magnesium sulfate, filtered through a sand/cotton plug and 

concentrated under reduced pressure. The crude residue is purified by flash chromatography (Dry 

load crude on Celite; 20% Et2O/Hexanes) to afford the title compound (20.9 g, 61.1 mmol, 86% 

yield) as a red/orange oil: 1H NMR (400 MHz, CDCl3) 6.30 (t, J = 7.0 Hz, 1H), 4.83 (dt, J = 2.9, 

1.5 Hz, 1H), 4.77 (dt, J = 1.9, 0.8 Hz, 1H), 4.36 – 4.28 (m, 1H), 3.32 (s, 3H), 3.30 (s, 3H), 2.43 – 

H

O

Me
MeO OMe

489

Br2CHPPh3
t-BuOK

THF, 0 → 23°C, 2h

H

Me
MeO OMe

Br Br

490
71% yield
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2.30 (m, 1H), 2.24 – 2.07 (m, 2H), 1.72 – 1.62 (m, 5H); 13C NMR (125 MHz, CDCl3) 145.7, 137.0, 

113.0, 102.9, 89.2, 53.3, 52.7, 42.0, 36.9, 35.7, 18.6; IR (Neat film, NaCl) 3073, 2948, 2829, 1645, 

1440, 1377, 1191, 1127, 1060, 896, 787 cm-1; HRMS (FAB+) m/z calc’d for C11H17O2Br2 [M– 

H]+: 340.9575, found 340.9579; [α]D25.0 – 4.5° (c 1.0, CHCl3).  

 

 

Aldehyde 492: A 500 mL round-bottom flask is charged with dibromide 490 (16.6 g, 48.5 mmol, 

1.0 equiv) in THF (100 mL, 0.5 M), and cooled to –78 °C. n-BuLi (2.3 M in hexanes; 42.2 mL, 

97.1 mmol, 2.0 equiv) is added dropwise over 10 min, and the mixture is allowed to stir for 15 min 

at –78 °C after which complete consumption of dibromide 490 is observed by TLC. TMSCl (18.5 

mL, 145.5 mmol, 3.0 equiv) is added dropwise to the reaction mixture, which is then allowed to 

gradually warm to 23 °C over 2 h. The mixture is then cooled to 0 °C and water (100 mL) is added 

followed by 1,4-dioxane (50 mL). HCl (36% w/w, 40 mL, 10.0 equiv) is added and the reaction 

mixture is warmed to room temperature and allowed to stir for 16 h. NaHCO3 (sat. aq.) is added 

until the pH of the solution is roughly 7. The reaction mixture is partitioned between water and 

Et2O, and extracted with Et2O (3X). The combined organic extracts are washed with brine, dried 

over sodium sulfate, and concentrated to afford an orange oil which is purified by flash 

chromatography (10% Et2O/Hexanes). The title compound (7.37 g, 35.4 mmol, 73% yield) is 

isolated as a pale-yellow oil: 1H NMR (400 MHz, CDCl3) δ 9.70 (dd, J = 2.4, 1.6 Hz, 1H), 4.83 – 

4.80 (m, 1H), 4.79 – 4.76 (m, 1H), 2.89 – 2.77 (m, 1H), 2.68 (ddd, J = 16.8, 6.1, 1.7 Hz, 1H), 2.52 

CBr4, PPh3

CH2Cl2, 0 °C, 10 min
Me

TMS

H

83% yield

Me
O

TMS

H

492

Br

Br
493
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(ddd, J = 16.7, 8.4, 2.5 Hz, 1H), 2.40 (dd, J = 16.9, 5.8 Hz, 1H), 2.29 (dd, J = 17.0, 7.9 Hz, 1H), 

1.70 (dd, J = 1.5, 0.9 Hz, 3H), 0.11 (s, 9H); 13C NMR (100 MHz, CDCl3) 201.6, 145.4, 112.3, 

104.5, 87.3, 46.3, 40.2, 24.8, 20.3, 0.1; IR (Neat film, NaCl) 3077, 2959, 2900, 2827, 2720, 1727, 

1648, 1430, 1408, 1377, 1250, 1024, 1038, 896, 760, 644 cm-1; HRMS (MM: ESI-APCI+) m/z 

calc’d for C12H21OSi [M+H]+ 209.1356, found 209.1352.; [α]D25.0 –13.5° (c 1.0, CHCl3).  

 

 

Dibromide 493: A 500 mL round-bottom flask is charged with triphenylphosphine (50.4 g, 192.0 

mmol, 4.0 equiv) in CH2Cl2 (96 mL). The solution is cooled to 0 °C, and CBr4 (31.8 g, 96.0 mmol, 

2.0 equiv) is added in one portion. The colorless solution immediately changes to yellow/orange 

in color. The mixture is allowed to stir for 10 min at 0 °C, after which aldehyde 492 (10.0 g, 48.0 

mmol, 1.0 equiv) is added via syringe. The aldehyde is consumed immediately, as judged by TLC. 

The reaction mixture is then quenched with water, and partitioned between water and CH2Cl2. The 

aqueous phase is extracted with CH2Cl2 (3X), and the combined organic extracts are washed with 

brine and dried over MgSO4. The crude is concentrated onto SiO2, loaded onto a column, and 

purified by flash chromatography (5% Et2O/Hexanes) to afford the title compound (14.48 g, 39.8 

mmol, 83% yield) as a yellow oil: 1H NMR (400 MHz, CDCl3) 6.34 (t, J = 6.9 Hz, 1H), 4.84 (p, 

J = 1.5 Hz, 1H), 4.76 (dt, J = 1.7, 0.8 Hz, 1H), 2.47 – 2.16 (m, 5H), 1.69 (dd, J = 1.5, 0.8 Hz, 3H), 

0.14 (s, 9H); 13C NMR (100 MHz, CDCl3) 145.4, 136.9, 112.7, 105.1, 89.5, 86.75, 44.9, 35.8, 

CBr4, PPh3

CH2Cl2, 0 °C, 10 min
Me

TMS

H

83% yield

Me
O
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H

492
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24.7, 19.7, 0.3; IR (Neat film, NaCl) 2958, 2922, 2176,1646, 1441, 1248 cm-1; HRMS (EI+) m/z 

calc’d for C13H20SiBr2 [M+•] 363.9681, found 363.9668; [α]D25.0 +4.1° (c 1.0, CHCl3).  

 

 

Ynoic Acid 472: A 250 mL round bottom flask was charged with dibromide 493 (9.27 g, 25.45 

mmol, 1.0 equiv) in THF (52 mL). The solution was cooled to –78 °C, and n-BuLi (2.3 M in 

hexanes; 16.6 mL, 38.18 mmol, 1.5 equiv) was added dropwise. After 10 min, dibromide 493 had 

been completely consumed (as judged by TLC), and the reaction was then sparged with CO2 from 

a balloon passing through a drying tube full of Dryrite. The solution was allowed to warm to 23 

°C over 30 min with continuous sparging with CO2. The solution was then sparged with N2 for 10 

min at 23 °C, followed by the addition of TBAF (1.0 M in THF; 50.9 mL, 50.9 mmol, 2.0 equiv). 

The solution was allowed to stir for 16 h at 23 °C after which TMS-protected substrate remained, 

as judged by LCMS. TBAF (25.5 mL, 25.5 mmol, 1.0 equiv) was added, and the reaction was 

stirred an additional 1 h at 23 °C. The reaction was quenched with sat. aq. NaHCO3, diluted with 

water and EtOAc, and extracted with EtOAc (1X). The aqueous extract was then acidified with 

conc. HCl until a cloudy precipitate was observed. The aqueous was then extracted with EtOAc 

(3X). The combined organic extracts were then washed with brine and dried over MgSO4. 

Concentration under reduced pressure afforded the title compound (2.20 g, 12.5 mmol, 49% yield) 

as a pale orange oil which was found to be pure by NMR and used in the subsequent step without 

further purification: 1H NMR (400 MHz, CDCl3) δ 10.98 (s, 1H), 4.92 (p, J = 1.4 Hz, 1H), 4.84 

Me

TMS

H
Br

Br

493

n-BuLi
THF, –78 °C, 10 min
then CO2, 40 min

 –78 → 23 °C
then TBAF, 16h

Me

CO2H

472
49% yield
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(q, J = 1.0 Hz, 1H), 2.71 – 2.47 (m, 3H), 2.41 (d, J = 2.7 Hz, 1H), 2.40 – 2.39 (m, 1H), 2.01 (t, J 

= 2.6 Hz, 1H), 1.73 (dd, J = 1.5, 0.8 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 158.4, 144.1, 113.1, 

90.3, 81.6, 74.1, 70.6, 43.7, 22.5, 22.4, 20.2; IR (Neat film, NaCl) 3302, 2928, 2643, 2236, 2119, 

1964, 1416, 1244, 1078, 899, 775, 792, 759, 641, 648 cm -1; HRMS (MM: ESI-APCI+) m/z calc’d 

for C11H13O2 [M+H]+: 177.0910, found 177.0916; [a]D25.0 –1.6° (c 1.0, CHCl3).  

 

 

Ester XX: A 250 mL round bottom flask is charged with diol 464 (1.03 g, 7.35 mmol, 1.0 equiv), 

acid 472 (1.30 g, 7.35 mmol, 1.0) and DMAP (90 mg, 0.735 mmol, 0.10 equiv) in CH2Cl2 (74 

mL). The solution is cooled to 0 °C, and DIC (1.15 mL, 7.35 mmol, 1.0 equiv) is added dropwise. 

The reaction is stirred for 2 h while gradually warming to 23 °C, and then stirred an additional 3 h 

at 23 °C. The mixture is then partitioned between CH2Cl2 and H2O, and the aqueous phase is 

extracted with CH2Cl2 (3X). The organic extracts are washed with brine, dried over Na2SO4, and 

concentrated. The crude residue was purified by flash chromatography (0% → 5% → 10% → 15% 

→ 20% EtOAc/Hexanes) to afford the title compound (1.74 g, 5.83 mmol, 79% yield) as a 

colorless oil: 1H NMR (400 MHz, CDCl3) δ 6.43 – 6.20 (m, 1H), 5.82 (d, J = 2.4 Hz, 1H), 5.78 

(dd, J = 17.8, 1.7 Hz, 1H), 5.64 – 5.49 (m, 1H), 5.33 (dd, J = 11.2, 1.6 Hz, 1H), 4.92 (p, J = 1.4 

Hz, 1H), 4.84 (dd, J = 1.4, 0.8 Hz, 1H), 2.77 – 2.46 (m, 4H), 2.44 – 2.39 (m, 2H), 2.05 (dd, J = 

14.7, 4.4 Hz, 1H), 2.01 (t, J = 2.6 Hz, 1H), 1.74 (dd, J = 1.5, 0.8 Hz, 3H), 1.44 (s, 3H); 13C NMR 

(100 MHz, CDCl3) δ 153.5, 151.8, 144.3, 129.0, 126.1, 119.6, 113.0, 87.6, 81.7, 81.1, 77.1, 74.5, 

Me

CO2H

+
DIC, DMAP

CH2Cl2, 0 °C, 5h

464 472

HO

OHMe

79% yield
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70.5, 49.0, 43.8, 26.8, 22.5, 22.4, 20.3; IR (Neat film, NaCl) 3396, 2938, 2235, 1708, 1252, 1071, 

942, 752 cm-1; HRMS (MM: ESI-APCI+) m/z calc’d for C19H23O3 [M+H]+: 299.1642, found 

299.1632; [α]D25.0 –130.8° (c 1.0, CHCl3).  

 

 

Cyclohexadiene 495: Ester 471 (804 mg, 2.69 mmol, 1.0 equiv) is dissolved in xylenes (270 mL). 

This solution is divided between two 500 mL Schlenk flasks. Each flask is subjected to three 

freeze-pump-thaw cycles, and then back-filled with nitrogen. The flasks are sealed, heated to 140 

°C, and stirred for 3 h. The flasks are then cooled to ambient temperature and the reaction mixtures 

are combined in a 2 L round-bottom flask. The solvent is removed under reduced pressure, and the 

resulting solid is purified by flash chromatography (30% → 40% → 50% EtOAc/Hexanes) to 

afford the title compound (604 mg, 2.02 mmol, 75% yield) as a flakey white solid: 1H NMR (400 

MHz, CDCl3) δ 5.84 (ddd, J = 6.4, 3.0, 1.9 Hz, 1H), 4.97 (ddd, J = 9.1, 8.0, 7.0 Hz, 1H), 4.77 (t, J 

= 1.7 Hz, 1H), 4.69 – 4.65 (m, 1H), 3.31 (t, J = 9.8 Hz, 1H), 3.12 – 2.98 (m, 2H), 2.83 – 2.61 (m, 

2H), 2.63 – 2.41 (m, 2H), 2.33 (d, J = 2.6 Hz, 1H), 2.32 (dd, J = 2.7, 1.4 Hz, 1H), 2.00 (t, J = 2.6 

Hz, 1H), 1.69 (dd, J = 1.4, 0.8 Hz, 3H), 1.67 – 1.60 (m, 1H), 1.41 (d, J = 1.1 Hz, 3H); δ 13C NMR 

(100 MHz, CDCl3) δ 168.2, 155.9, 152.0, 146.1, 125.5, 116.5, 112.8, 82.9, 80.0, 75.3, 69.7, 49.8, 

45.7, 45.7, 35.3, 26.7, 22.9, 18.8 cm-1; IR (Neat film, NaCl) 3305, 2967, 2920, 2360, 2118, 1730, 

1647, 1447, 1374, 1358, 1290, 1219, 1045, 1018, 896, 632 cm-1; HRMS (MM: ESI-APCI+) m/z 

calc’d for C19H23O3 [M+H]+: 299.1642, found 299.1631. [α]D25.0 –87.4° (c 0.5, CHCl3).  

O

Me
OH

O
Me O H

O

OH
Me

Me

471 495

sealed tube

xylenes, 140 °C, 3h

75% yield 
>20:1 d.r.
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Epoxide 18: A 500 mL round-bottom flask is charged with Diels–Alder adduct 495 (1.75 g, 5.87 

mmol, 1.0 equiv) in a mixture of CH2Cl2 (59 mL) and benzene (196 mL). VO(acac)2 is added (117 

mg, 0.440 mmol, 0.075 equiv) in one portion, and the mixture is stirred 10 min at 23 °C until it is 

pale-green in color. TBHP (5.0 M in decane, 2.30 mL, 11.74 mmol, 2.0 equiv) is added dropwise 

via syringe, and the mixture becomes deep-red in color. The mixture is stirred at 23 °C for 1 h, at 

which point no starting material remained, as judged by TLC. The reaction mixture is poured 

directly onto a flash column and purified by flash chromatography (0% → 50% → 70% → 80% 

EtOAc/Hexanes) to afford the title compound (1.73 g, 5.50 mmol, 94% yield) as an amorphous 

white solid. 1H NMR (400 MHz, CDCl3) δ 4.90 – 4.77 (m, 3H), 3.78 (d, J = 3.4 Hz, 1H), 3.40 – 

3.18 (m, 2H), 2.87 (dd, J = 16.7, 3.4 Hz, 1H), 2.62 – 2.43 (m, 3H), 2.41 – 2.26 (m, 3H), 2.06 – 

1.95 (m, 2H), 1.74 (t, J = 1.1 Hz, 3H), 1.46 – 1.41 (m, 3H); 13C NMR (100 MHz, CDCl3) δ 168.9, 

149.9, 146.1, 120.7, 112.5, 82.9, 76.6, 73.6, 69.8, 69.7, 51.8, 50.1, 45.7, 44.8, 36.7, 36.6, 22.7, 

22.7, 19.4; IR (Neat film, NaCl) 3474, 3267, 1735, 1655, 1421, 1358, 1195, 1120, 1030, 901, 793, 

674 cm-1; HRMS (MM: ESI-APCI+) m/z calc’d for C19H23O4 [M+H]+: 315.1591, found 315.1586; 

[α]D25.0 –69.8° (c 0.5, CHCl3).  

 

94% yield 
>20:1 d.r.
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Diol 497: A 250 mL round bottom flask is charged with epoxide 496 (1.70 g, 5.41 mmol, 1.0 

equiv), titanocene dichloride (269 mg, 1.08 mmol, 0.20 equiv), manganese dust (326 mg, 5.95 

mmol, 1.10 equiv), and collidine•HCl (1.07 g, 6.76 mmol, 1.25 equiv) in THF (54 mL, 0.10 M). 

1,4- cyclohexadiene is then added dropwise to the red suspension, which gradually changes to a 

blue/grey color. The suspension is stirred for 2 h at 23 °C, after which the starting material is 

consumed, as judged by TLC. Celite is added directly to the mixture, and the solvent is removed 

under reduced pressure. The resulting solid is loaded directly onto a flash column and purified by 

flash chromatography (40% → 50% → 60% EtOAc/Hexanes) to afford the title compound (1.47 

g, 4.65 mmol, 86% yield) as an off-white solid: 1H NMR (400 MHz, CDCl3) 4.90 (ddd, J = 8.1, 

6.5, 3.9 Hz, 1H), 4.83 (d, J = 1.4 Hz, 2H), 4.67 (td, J = 5.4, 2.9 Hz, 1H), 3.40 (d, J = 6.0 Hz, 1H), 

3.37 – 3.28 (m, 1H), 3.18 (s, 1H), 3.10 (ddd, J = 9.9, 7.9, 2.1 Hz, 1H), 2.64 – 2.48 (m, 3H), 2.36 

(dd, J = 9.5, 7.8 Hz, 1H), 2.32 (dd, J = 2.7, 1.1 Hz, 1H), 2.31 – 2.29 (m, 1H), 2.13 – 1.98 (m, 3H), 

1.97 (t, J = 2.6 Hz, 1H), 1.80 – 1.71 (m, 3H), 1.43 (s, 3H); δ 13C NMR (100 MHz, CDCl3) δ 169.8, 

151.3, 146.8, 125.2, 112.4, 83.2, 81.7, 79.4, 69.5, 68.3, 49.6, 48.4, 45.2, 44.6, 41.4, 36.8, 28.6, 

22.9, 19.3; IR (Neat film, NaCl) 3296, 3076, 2116, 1738, 1731, 1668, 1424, 1375, 1360, 1306, 

1223, 1198, 1105, 896 cm–1; HRMS (MM: ESI-APCI+) m/z calc’d for C19H25O4 [M+H]+: 

317.1747, found 317.1761; [α]D25.0 –11.8° (c 0.5, CHCl3).  
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Note: The success of this procedure was found to be scale-dependent. Consequently, this reaction 

was run with a maximum batch size of 50 mg (497) per reaction flask. When run on scale, reactions 

were set up side-by-side, and combined for purification, as detailed below:  

Enone 470: Diol 497 (1.0 g, 3.16 mmol, 1.0 equiv) is divided into 20 scintillation vials (not flame 

dried, 50 mg, 0.158 mmol per vial) each equipped with a magnetic stir bar and a septum cap. To 

each vial is added IBX (188 mg, 0.671 mmol, 4.25 equiv) and each vial is evacuated and back- 

filled with N2. MeCN (11 mL) is added to each vial after which the vials are sealed, heated to 50 

°C, and stirred for 2 h. The reactions are cooled to 23 °C, combined, and filtered over a plug of 

SiO2, rinsing generously with EtOAc. The filtrate is concentrated under reduced pressure, and the 

residue obtained is purified by flash chromatography (30% → 40% → 50% EtOAc/Hexanes) to 

afford the title compound (716 mg, 2.28 mmol, 72% yield) as a white foam: 1H NMR (400 MHz, 

CDCl3) δ 6.00 (d, J = 1.0 Hz, 1H), 5.11 (dd, J = 6.7, 5.4 Hz, 1H), 4.88 – 4.81 (m, 1H), 4.78 (dt, J 

= 1.6, 0.8 Hz, 1H), 3.68 – 3.45 (m, 2H), 3.16 – 3.05 (m, 1H), 2.79 – 2.59 (m, 2H), 2.48 (d, J = 9.2 

Hz, 1H), 2.39 – 2.28 (m, 3H), 2.03 (t, J = 2.6 Hz, 1H), 1.88 (dd, J = 15.0, 5.5 Hz, 1H), 1.71 (s, 

1H), 1.67 (d, J = 0.7 Hz, 3H), 1.49 (s, 3H); δ 13C NMR (100 MHz, CDCl3) δ 196.1, 173.6, 156.3, 

145.0, 128.8, 113.6, 82.7, 82.6, 82.2, 70.5, 55.2, 47.4, 44.0, 42.1, 41.4, 38.2, 26.3, 23.9, 18.8; IR 

(Neat film, NaCl) 3450, 3290, 2970, 2930, 2118, 1758, 1649, 1376, 1290, 1176, 1161, 1107, 912, 

735 cm–1; HRMS (MM: ESI-APCI+) m/z calc’d for C19H23O4 [M+H]+: 315.1591, found 315.1571; 

[α]D25.0 –150.0° (c 0.5, CHCl3).  
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Vinyl Silane 499: A 1-dram vial is charged with enone 470 (7.0 mg, 0.0223 mmol, 1.0 equiv) in 

CH2Cl2 (400 µL). Phenyldimethylsilane (4 µL, 0.0267 mmol, 1.2 equiv) is added, and the mixture 

is cooled to 0 °C. [RuCp*(MeCN)3]PF6 (10 mg/mL stock solution 56 µL, 0.00112 mmol, 0.05 

equiv) is added dropwise. Following the addition, the reaction is stirred 5 min at 0 °C, after which 

alkyne 470 is no longer detectable by TLC. The reaction mixture is loaded directly onto a 

preparatory TLC plate and purified by preparatory TLC (80% EtOAc/Hexanes) to afford the title 

compound (9.0 mg, 0.0200 mmol, 90% yield) as a colorless oil: 1H NMR (400 MHz, CDCl3) δ 

7.68 – 7.46 (m, 2H), 7.39 – 7.31 (m, 3H), 5.80 (t, J = 1.4 Hz, 1H), 5.70 – 5.64 (m, 1H), 5.54 (d, J 

= 2.8 Hz, 1H), 5.04 (dd, J = 7.1, 5.3 Hz, 1H), 4.66 – 4.59 (m, 1H), 4.40 – 4.32 (m, 1H), 3.32 (td, J 

= 10.6, 7.1 Hz, 1H), 2.94 – 2.74 (m, 2H), 2.50 – 2.24 (m, 5H), 2.22 – 2.09 (m, 1H), 1.85 (dd, J = 

14.9, 5.5 Hz, 1H), 1.52 (s, 3H), 1.47 (s, 3H), 0.41 (s, 3H), 0.39 (s, 3H); 13C NMR (100 MHz, 

CDCl3) δ 196.0, 173.4, 157.3, 147.7, 146.3, 138.9, 134.2, 129.0, 128.6, 128.6, 128.0, 112.7, 82.6, 

82.3, 55.1, 47.3, 43.7, 42.1, 41.9, 40.5, 38.3, 26.5, 18.0, -2.7, -3.2; IR (Neat Film NaCl) 3434, 

3049, 2962, 1762, 1654, 1427, 1376, 1290, 1250, 1216, 1173, 1160, 1109, 1030, 992, 933, 891, 

834, 817, 776, 736, 703 cm–1; HRMS (MM: ES+) m/z calc’d for C27H35O4Si [M+H]+: 451.2305, 

found 451.2314; [α]D25.0 –106.1 ° (c 0.60, CHCl3).  
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Cyclobutane XX: A 1-dram vial is charged with vinyl silane 499 (22 mg, 0.0488 mmol, 1.0 equiv) 

in PhH (5.0 mL). The solution is sparged with N2 for 5 min, and placed in a photoreactor equipped 

with Hitachi UVA bulbs (F8T5-BLB, ~350 nm). The reaction is stirred under 350 nm irradiation 

for 10 h, after which no starting material remains (as judged by TLC). An 1HNMR spectrum of 

the crude product shows a mixture with 21 as the major constituent. The crude white solid is 

purified by flash chromatography (50% EtOAc/Hexanes), followed by normal-phase (SiO2) 

preparative HPLC (EtOAc/Hexanes, 7.0 mL/min, monitoring wavelength = 254 nm, isocratic– 

50% EtOAc/Hexanes, 10 min) then reverse-phase (C18) preparative HPLC (MeCN/H2O, 9.0 

mL/min, monitoring wavelength = 260 nm, isocratic– 70% MeCN/H2O, 10 min) to afford pure 21 

(5.0 mg, 0.0111 mmol, 23 % yield). X-ray quality crystals are grown by slow cooling from i-PrOH: 

1H NMR (400 MHz, CDCl3) δ 7.54 – 7.46 (m, 2H), 7.38 – 7.32 (m, 3H), 5.68 – 5.61 (m, 1H), 5.40 

(d, J = 2.8 Hz, 1H), 4.95 (ddd, J = 7.0, 5.6, 1.6 Hz, 1H), 3.46 (td, J = 10.2, 6.7 Hz, 1H), 3.09 – 

2.93 (m, 1H), 2.89 – 2.78 (m, 2H), 2.77 – 2.61 (m, 2H), 2.33 – 2.14 (m, 4H), 1.98 (dd, J = 14.8, 

5.6 Hz, 1H), 1.94 – 1.85 (m, 1H), 1.75 (dd, J = 13.1, 4.3 Hz, 1H), 1.41 (s, 3H), 1.00 (s, 3H), 0.37 

(s, 6H); 13C NMR (100 MHz, CDCl3) δ 215.1, 175.7, 148.1, 138.2, 134.1, 129.2, 127.9, 126.9, 

82.0, 81.5, 55.1, 49.2, 46.6, 46.6, 44.5, 43.5, 38.7, 38.6, 36.1, 34.1, 31.0, 27.6, 21.7, -2.8, -2.9; IR 

(Neat Film NaCl) 3453, 2934, 2858, 1759, 1689, 1428, 1375, 1248, 1206, 1106, 1012, 938, 858, 

833, 818, 703 cm–1; HRMS (MM: ES+) m/z calc’d for C27H35O4Si [M+H]+: 451.2305, found 

451.2321; [α]D25.0 –113.4 ° (c 0.12, CHCl3).  
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Epoxides 509a and 509b: A 100 mL round-bottom flask is charged with enone 470 (450 mg, 1.43 

mmol, 1.0 equiv) in CH2Cl2 (48 mL). The solution is cooled to 0 °C, and m–CPBA (~70% wt/wt; 

1.06 g, 4.29 mmol, 3.0 equiv) is added in one portion. The mixture is stirred while gradually 

warming to 23 °C over 2 h, and then stirred an additional 10 h at 23 °C, at which point XX has 

been completely consumed as judged by TLC. The reaction mixture is poured directly onto a flash 

column and purified by flash chromatography (50% → 60% → 70% → 80% EtOAc/Hexanes) to 

afford the title compounds (410 mg,1.24 mmol, 87% yield) as a white foam. The products are 

isolated as a 1.7:1 mixture of diastereomers (judged by 1H NMR). A portion of this mixture was 

subjected to normal phase (SiO2) preparative HPLC (EtOAc/Hexanes, 7.0 mL/min, monitor 

wavelength 254 nm, 60% EtOAc/Hexanes) to obtain pure samples of the two products for the 

purposes of characterization:  

Diastereomer 1 (minor): 1H NMR (400 MHz, CDCl3) δ 6.05 (d, J = 1.4 Hz, 1H), 5.12 (dd, J = 6.7, 

5.4 Hz, 1H), 3.75 – 3.42 (m, 2H), 2.99 (ddt, J = 15.6, 6.2, 1.2 Hz, 1H), 2.76 – 2.63 (m, 2H), 2.57 

(d, J = 4.5 Hz, 1H), 2.54 – 2.44 (m, 2H), 2.44 – 2.27 (m, 2H), 2.05 (t, J = 2.7 Hz, 1H), 1.99 – 1.84 

(m, 2H), 1.50 (s, 3H), 1.34 (d, J = 0.7 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 196.0, 173.6, 156.4, 

128.5, 82.9, 82.7, 81.8, 71.2, 58.6, 55.2, 54.2, 47.5, 42.6, 42.3, 42.2, 36.5, 26.4, 21.0, 18.4; IR 

(Neat film, NaCl) 3436, 3283, 2970, 2926, 1758, 1656, 1378, 1292, 1177, 1109, 735 cm-1; (MM: 

ESI-APCI+) m/z calc’d for C19H23O5 [M+H]+: 331.1545, found 331.1538; [α]D25.0 –144.5 °(c 1.0, 

CHCl3).  
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Diastereomer 2 (major): 1H NMR (400 MHz, CDCl3) δ 6.10 (t, J = 1.6 Hz, 1H), 5.11 (dd, J = 7.1, 

5.4 Hz, 1H), 3.84 (dt, J = 10.9, 1.2 Hz, 1H), 3.76 – 3.57 (m, 1H), 3.35 – 3.16 (m, 1H), 2.70 (dd, J 

= 4.6, 0.8 Hz, 1H), 2.63 – 2.45 (m, 3H), 2.40 – 2.24 (m, 3H), 2.05 (t, J = 2.6 Hz, 1H), 1.95 – 1.84 

(m, 2H), 1.49 (s, 3H), 1.25 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 196.4, 174.1, 156.4, 129.3, 

82.9, 82.9, 81.3, 71.1, 58.5, 55.5, 54.2, 47.5, 42.8, 42.8, 41.3, 38.5, 26.4, 22.5, 16.0; IR (Neat film, 

NaCl) 3436, 3283, 2250, 1758, 1657, 1378, 1109, 735 cm-1; HRMS (MM: ESI-APCI+) m/z calc’d 

for C19H23O5 [M+H]+: 331.1545, found 331.1540; [α]D25.0 –83.5° (c 1.0, CHCl3).  

 

 

Vinyl Silanes 510a and 510b: A 250 mL round bottom flask is charged with a mixture of 509a 

and 509b (725 mg, 2.19 mmol, 1.0 equiv) in CH2Cl2 (22 mL). Phenyldimethylsilane is added, and 

the mixture is cooled to 0 °C. [RuCp*(MeCN)3]PF6 (10 mg/mL stock solution, 5.5 mL, 0.110 

mmol, 0.05 equiv) is added dropwise. Following the addition, the reaction is stirred 5 min at 0 °C, 

after which the starting material is no longer detectable by TLC. The reaction mixture is poured 

directly onto a flash column, and purified by flash chromatography (0% → 50% EtOAc/Hexanes) 

to afford the title compounds (870 mg, 1.86 mmol, 85% yield) as a colorless foam. The products 

are isolated as a 1.7:1 mixture of diastereomers (judged by 1H NMR), which were characterized 

separately:  

Diastereomer 1 (minor): 1H NMR (400 MHz, CDCl3) δ 7.54 (ddd, J = 4.9, 2.4, 1.7 Hz, 2H), 7.37 

– 7.29 (m, 3H), 5.83 (d, J = 1.2 Hz, 1H), 5.71 (dd, J = 2.3, 1.3 Hz, 1H), 5.61 (d, J = 2.7 Hz, 1H), 

4.99 (dd, J = 7.0, 5.3 Hz, 1H), 3.15 (td, J = 10.6, 7.0 Hz, 1H), 2.84 (ddd, J = 14.2, 3.3, 1.6 Hz, 
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1H), 2.72 (dt, J = 13.6, 2.2 Hz, 1H), 2.45 (d, J = 4.7 Hz, 1H), 2.39 (d, J = 10.4 Hz, 1H), 2.29 (d, J 

= 15.0 Hz, 1H), 2.20 – 1.98 (m, 5H), 1.84 (dd, J = 15.0, 5.4 Hz, 1H), 1.47 (s, 3H), 1.20 (s, 3H), 

0.46 (s, 3H), 0.38 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 195.7, 173.0, 157.2, 147.4, 139.6, 134.4, 

129.2, 128.7, 128.7, 127.9, 82.7, 82.0, 58.6, 55.2, 54.9, 47.3, 42.3, 41.9, 40.4, 40.0, 36.3, 26.5, 

16.6, -2.7, -3.9; IR (Neat film, NaCl) 3435, 2960, 1762, 1659, 1426, 1376, 1288, 1247, 1217, 1163, 

1106, 1034, 992, 938, 838, 818, 753, 703 cm–1; HRMS (FAB+) m/z calc’d for C27H35O5Si 

[M+H]+: 467.2254, found 467.2265; [α]D25.0 –62.0° (c 1.0, CHCl3).  

Diastereomer 2 (major): 1H NMR (400 MHz, CDCl3) δ 7.63 – 7.44 (m, 2H), 7.39 – 7.31 (m, 3H), 

6.03 (t, J = 1.5 Hz, 1H), 5.73 (dt, J = 2.4, 1.2 Hz, 1H), 5.58 (d, J = 2.6 Hz, 1H), 5.07 (dd, J = 7.1, 

5.3 Hz, 1H), 3.53 (td, J = 10.6, 7.1 Hz, 1H), 3.38 (dt, J = 11.0, 1.2 Hz, 1H), 3.23 – 3.07 (m, 1H), 

2.48 (d, J = 10.3 Hz, 1H), 2.43 – 2.19 (m, 5H), 2.17 – 2.06 (m, 2H), 1.89 (dd, J = 14.9, 5.5 Hz, 

1H), 1.50 (s, 3H), 1.13 (d, J = 0.6 Hz, 3H), 0.40 (d, J = 0.8 Hz, 6H); 13C NMR (100 MHz, CDCl3) 

δ 196.0, 173.8, 157.8, 147.0, 138.2, 134.2, 129.3, 129.3, 129.0, 128.2, 82.7, 82.5, 59.2, 55.3, 53.6, 

47.5, 42.2, 42.1, 40.7, 40.2, 38.3, 26.6, 15.9, -2.8, -2.9; ; IR (Neat film, NaCl) 3439, 2924, 2854, 

2282, 1758, 1656, 1428, 1373, 1291, 1266, 1248, 1214, 1164, 1108, 992, 937, 838, 821, 738  

cm–1; HRMS (FAB+) m/z calc’d for C27H35O5Si [M+H]+: 467.2254, found 467.2265; [α]D25.0 –

17.9° (c 0.6, CHCl3).  
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Cyclobutanes 511a and 511b: A mixture of vinyl silanes 509a and 509b (870 mg, 1.86 mmol, 

1.0 equiv) is divided into 11 portions (79 mg each). Each portion is charged into a 40 mL 

scintillation vial, with PhH (34 mL). Each vial is sparged with nitrogen for 5 min, and placed in a 

photoreactor equipped with Hitachi UVA bulbs (F8T5-BLB, ~350 nm). The reactions are stirred 

under 350 nm irradiation for 5 h, after which no starting material remains (as judged by TLC). The 

reactions are combined in a 1 L round bottom flask, and concentrated onto Celite. The resulting 

solid is loaded onto a column, and purified by flash chromatography (30% → 40% → 50% → 

60% → 70% → 80% EtOAc/Hexanes) to afford the title compounds (620 mg, 1.33 mmol, 71% 

yield) as a white solid. The products are isolated as a 1.7:1 mixture of diastereomers (judged by 

1H NMR), which were characterized separately.  

 

Note: The 1H NMR spectra of these intermediates show broadened signals which were difficult to 

assign and integrate properly. Additionally, several signals were found to be missing from the 13C 

NMR spectra. We attribute these observations to hindered rotation of the –Si(Me)2Ph group about 

the highly congested cyclobutane ring. The NMR spectra are reported as observed, and the 

stereochemistry (and identity) of these products is assigned based upon the NMR and X-ray data 

obtained for 512a and 512b.  

Diastereomer 1 (minor): 1H NMR (400 MHz, CDCl3) δ 7.51 (s, 2H), 7.35 – 7.28 (m, 3H), 4.93 (s, 

1H), 3.70 – 3.54 (m, 1H), 3.47 (s, 1H), 3.03 (d, J = 9.3 Hz, 1H), 2.70 – 2.30 (m, 4H), 1.93 (dd, J 
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= 15.2, 4.8 Hz, 1H), 1.68 (s, 1H), 1.45 (d, J = 2.1 Hz, 3H), 1.34 – 1.17 (m, 4H), 0.56 (d, J = 18.1 

Hz, 4H); 13C NMR (100 MHz, CDCl3) δ 205.8, 134.3, 128.5, 127.6, 82.1, 81.4, 60.3, 57.6, 52.3, 

50.9, 49.0, 47.7, 47.6, 40.1, 38.9, 35.0, 27.5; IR (Neat film, NaCl) 3395, 2958, 1773, 1686, 1369, 

1256, 1202, 1089, 1014, 815, 776, 732 cm–1; HRMS (ES+) m/z calc’d for C27H35O5Si [M+H]+: 

467.2254, found 467.2280; [α]D25.0 –41.1 ° (c 0.19, CHCl3).  

Diastereomer 2 (major): 1H NMR (400 MHz, CDCl3) δ 7.59 – 7.45 (m, 2H), 7.34 – 7.28 (m, 3H), 

4.92 (s, 1H), 3.60 (td, J = 9.8, 6.2 Hz, 1H), 3.47 (s, 1H), 3.02 (d, J = 9.3 Hz, 1H), 2.56 (dd, J = 

10.0, 5.3 Hz, 3H), 2.42 – 2.31 (m, 1H), 1.94 (dd, J = 15.1, 4.8 Hz, 1H), 1.67 (s, 2H), 1.45 (s, 3H), 

1.25 (d, J = 1.7 Hz, 3H), 0.53 (s, 5H); 13C NMR (100 MHz, CDCl3) δ 205.8, 134.3, 128.5, 127.7, 

82.1, 81.5, 60.3, 57.1, 53.9, 50.9, 49.0, 47.7, 40.7, 38.6, 29.8, 27.5; IR (Neat film, NaCl) 3388, 

2960, 2929, 1773, 1686, 1552, 1426, 1368, 1248, 1203, 1178, 1107, 1088, 817, 724, 696 cm–1; 

HRMS (ES+) m/z calc’d for C27H35O5Si [M+H]+: 467.2254, found 467.1853; [α]D25.0 –23.1 ° (c 

0.19, CHCl3).  

 

 

Diols 512a and 512b: A 100 mL round bottom flask is charged with a mixture of epoxides 511a 

and 511b (620 mg, 1.33 mmol, 1.0 equiv), Cp2TiCl2 (66 mg, 0.266 mmol, 0.20 equiv), Mn dust 

(80 mg, 1.46 mmol, 1.10 equiv), and collidine • HCl (262 mg, 1.66 mmol, 1.25 equiv) in THF (27 

mL). To this red suspension is added 1,4-cyclohexadiene (567 µL, 599 mmol, 4.5 equiv) and the 

suspension gradually changes to a blue/grey color. The mixture is stirred at 23 °C for 1.5 h, after 
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which the starting material is completely consumed, as judged by TLC. Celite is then added 

directly to the reaction mixture and the solvent is removed under reduced pressure. The resulting 

solid is loaded directly onto a flash column and purified by flash chromatography (60% → 65% 

→ 70% → 75% → 80% → 90% →100% EtOAc/Hexanes) to afford XX (385 mg, 0.781 mmol, 

62% yield) and epi-XX (224 mg, 0.478 mmol, 36% yield) as white solids.��

�

Note: The 1H NMR spectra of these intermediates show broadened signals which were difficult to 

assign and integrate properly. Additionally, several signals were found to be missing from the 13C 

NMR spectra. We attribute these observations to hindered rotation of the –Si(Me)2Ph group about 

the highly congested cyclobutane ring. The NMR spectra are reported as observed, and the 

stereochemistry (and identity) of these products is assigned based upon the NMR and X-ray data 

obtained for 512a and 512b.  

512a (major): 1H NMR (400 MHz, CD3OD) δ 7.57 – 7.48 (m, 2H), 7.30 – 7.22 (m, 3H), 4.95 (s, 

1H), 3.98 (s, 1H), 3.74 (tt, J = 10.1, 5.1 Hz, 1H), 3.64 (q, J = 10.2, 9.2 Hz, 1H), 3.52 – 3.38 (m, 

1H), 3.30 – 3.15 (m, 1H), 2.76 – 1.38 (m, 11H), 1.34 (s, 3H), 1.10 – 0.83 (m, 3H), 0.52 (s, 4H); 

13C NMR (100 MHz, CD3OD) δ 210.1, 168.5, 151.9, 135.3, 129.2, 128.4, 108.8, 84.4, 81.6, 81.6, 

67.3, 65.6, 61.9, 52.5, 45.9, 41.7, 41.5, 27.3, 15.7; IR (Neat film, NaCl) 3380, 2958, 2924, 2869, 

1770, 1694, 1360, 1254, 1204, 1090, 1416, 828, 736, 730, 702 cm–1; HRMS (ES+) m/z calc’d for 

C27H37O5Si [M+H]+: 469.2410, found 469.2437; [α]D25.0 –37.0 ° (c 0.24, CHCl3).  

512b (major): 1H NMR (400 MHz, CD3OD) δ 7.58 – 7.46 (m, 2H), 7.27 (t, J = 3.2 Hz, 3H), 4.94 

(t, J = 5.7 Hz, 1H), 3.81 – 3.69 (m, 1H), 3.69 – 3.58 (m, 1H), 3.48 (q, J = 7.1, 4.5 Hz, 1H), 3.33 

(d, J = 13.8 Hz, 4H), 3.25 – 3.11 (m, 1H), 2.68 – 1.39 (m, 11H), 1.34 (s, 3H), 1.10 – 0.74 (m, 4H), 

0.52 (d, J = 11.9 Hz, 5H); 13C NMR (100 MHz, CD3OD) δ 210.1, 178.1, 135.3, 129.2, 128.4, 84.3, 
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81.6, 67.4, 61.9, 52.5, 47.8, 47.1, 47.1, 46.2, 44.1, 42.4, 41.8, 40.0, 35.9, 27.3, 15.6, -2.1, -4.9; IR 

(Neat film, NaCl) 3378, 2954, 2937, 2868, 2353, 1771, 1696, 1558, 1364, 1258, 1245, 1086, 827 

cm–1; HRMS (ES+) m/z calc’d for C27H37O5Si [M+H]+: 469.2410, found 469.2440; [α]D25.0 –

39.9° (c 0.90, CHCl3).  

 

 

 

Triol 513a: A 20-mL scintillation vial is charged with 512a (80 mg, 0.171 mmol, 1.0 equiv) and 

AcOOH (30% in aqueous AcOH, 3.4 mL). To this solution is added Hg(OAc)2 (100 mg, 0.341 

mmol, 2.0 equiv) in a single portion. The reaction is stirred 45 min at 23 °C, after which no 512a 

remains (as judged by LCMS). The reaction mixture is diluted with EtOAc (10 mL) and pipetted 

over an ice-cold mixture of sat. aq. Na2S2O3 and sat. aq. NaHCO3 (1:4). This aqueous solution is 

then extracted with EtOAc (3X), then CHCl3/i-PrOH (3:1) (2X). The organic extracts are 

combined and dried over Na2SO4, filtered, and concentrated under reduced pressure to afford a 

crude solid which is purified by flash chromatography (80% → 100% EtOAc/Hexanes) to afford 

the title compound (33 mg, 0.942 mmol, 55% yield) as a white solid. X-ray quality crystals were 

obtained by slow cooling from EtOH/CH2Cl2/Hexanes: 1H NMR (400 MHz, CD3OD) δ 5.16 (dd, 

J = 6.2, 4.7 Hz, 1H), 3.88 (dd, J = 9.8, 7.7 Hz, 1H), 3.72 (ddd, J = 10.6, 9.3, 6.3 Hz, 1H), 3.55 – 

3.47 (m, 2H), 3.37 – 3.32 (m, 1H), 2.58 (d, J = 10.6 Hz, 1H), 2.35 (d, J = 15.0 Hz, 1H), 2.23 (dd, 

J = 11.9, 9.7 Hz, 1H), 2.19 – 1.98 (m, 3H), 1.95 (dd, J = 15.1, 4.9 Hz, 1H), 1.85 (ddd, J = 12.9, 
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6.1, 2.0 Hz, 1H), 1.70 (dd, J = 13.1, 9.9 Hz, 1H), 1.54 – 1.41 (m, 2H), 1.35 (s, 3H), 0.93 (d, J = 

6.8 Hz, 3H); 13C NMR (100 MHz, CD3OD) δ 209.4, 181.7, 89.3, 88.2, 81.6, 67.1, 62.1, 59.0, 51.8, 

51.3, 47.8, 47.3, 45.8, 41.8, 41.3, 41.2, 40.7, 27.3, 15.3; IR (Neat Film NaCl) 3308, 2936, 1694, 

1371, 1217, 1184, 1120, 1016 cm-1; HRMS (MM: ESI-APCI+) m/z calc’d for C19H27O6 

[M+H]+: 351.1802, found 315.1790; [α]D25.0 –61.1° (c 0.5, MeOH).  

 

 

Triol 513b A 20-mL scintillation vial is charged with 512b (80 mg, 0.171 mmol, 1.0 equiv) and 

AcOOH (30% in aqueous AcOH, 3.4 mL). To this solution is added Hg(OAc)2 (100 mg, 0.341 

mmol, 2.0 equiv) in a single portion. The reaction is stirred 45 min at 23 °C, after which no 512b 

remains (as judged by LCMS). The reaction mixture is diluted with EtOAc (10 mL) and pipetted 

over an ice-cold mixture of sat. aq. Na2S2O3 and sat. aq. NaHCO3 (1:4). This aqueous solution is 

then extracted with EtOAc (3X), then CHCl3/i-PrOH (3:1) (2X). The organic extracts are 

combined and dried over Na2SO4, filtered, and concentrated under reduced pressure to afford a 

crude solid which is purified by flash chromatography (80% → 100% EtOAc/Hexanes) to afford 

the title compound (37 mg, 0.0.106 mmol, 62% yield) as a white solid. X-ray quality crystals were 

obtained by layer diffusion of hexanes into CH2Cl2/EtOH: 1H NMR (400 MHz, CD3OD) δ 5.16 

(dd, J = 6.2, 4.7 Hz, 1H), 3.88 (dd, J = 9.8, 7.7 Hz, 1H), 3.79 – 3.64 (m, 1H), 3.57 – 3.45 (m, 2H), 

3.40 – 3.34 (m, 1H), 2.57 (d, J = 10.6 Hz, 1H), 2.35 (d, J = 15.1 Hz, 1H), 2.28 – 2.11 (m, 2H), 

2.07 (dd, J = 11.9, 7.7 Hz, 1H), 2.02 – 1.90 (m, 2H), 1.87 (ddd, J = 13.0, 6.1, 2.1 Hz, 1H), 1.68 
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(dd, J = 13.1, 10.2 Hz, 1H), 1.57 – 1.43 (m, 2H), 1.35 (s, 3H), 0.94 (d, 3H); 13C NMR (100 MHz, 

CD3OD) δ 209.4, 181.7, 89.0, 88.2, 81.6, 66.9, 62.1, 59.3, 51.8, 51.3, 47.8, 47.3, 45.1, 41.7, 41.5, 

41.4, 40.7, 27.3, 15.4; IR (Neat Film NaCl) 3464, 3292, 2953, 1720, 1693, 1372, 1190, 1104 cm 

-1; HRMS (MM: ESI-APCI+) m/z calc’d for C19H27O6 [M+H]+: 351.1802, found 315.1790; 

[α]D25.0 –42.2° (c 0.5, MeOH).  

 

 

Diol X: To a stirred suspension of triol 513a (21 mg, 0.0599 mmol, 1.0 equiv), AgOTf (6.0 mg, 

0.0240 mmol, 0.40 equiv), and 1,10-phenanthroline (9.0 mg, 0.0479 mmol, 0.80 equiv) in 

acetonitrile (3.2 mL, 0.019 M) was added t-butyl hypochlorite (14 µL, 0.120 mmol, 2.0 equiv) at 

23 °C. The suspension changed from white to red, and then to dark brown. The reaction mixture 

was allowed to stir at 23 °C for 12 h, after which no starting material remained (as judged by TLC 

and LCMS). The reaction mixture was diluted with ethyl acetate, and quenched with 5 drops of 

saturated aqueous sodium thiosulfate after which the dark brown color quickly dissipated. The 

mixture was passed directly over a short plug of silica, and the eluent was concentrated onto SiO2 

and dry loaded onto a column. The crude was purified by flash chromatography (50 – 100% ethyl 

acetate/hexanes) to afford an unstable intermediate (presumed to be the γ-chloroketone) which was 

not characterized further. 

The product from the above reaction was dissolved in methanol (5 mL). TLC SiO2 (scraped from 

TLC plates and crushed with a mortar and pestle) was added (c.a. 1 g). The suspension was allowed 
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to stir for 12 hours at 23 °C, after which the abovementioned product had been completely 

consumed (as judged by TLC). The methanol was removed under reduced pressure, and then 

resuspended in acetone (10 mL) and stirred for 1 hour. The suspension was filtered through a plug 

of Celite® and concentrated to afford diol X (10 mg, 40% yield) as a white solid. Product 

characterization data was not obtained due to the Spring 2020 COVID-19 shutdown of research 

facilities. 

 

 

Cyclopropane 518: To a stirred solution of diol 517 (4 mg, 0.0115 mmol, 1.0 equiv) in THF (400 

µL, 0.029 M) cooled to 15 °C in a nitrogen-filled glovebox was added o-NO2PhSeCN (156 mg/mL 

solution in THF, 25 µL, 0.0173 mmol, 1.5 equiv). To this light-brown solution was added n-Bu3P 

(83 mg/mL solution in THF, 42 µL, 0.0173 mmol, 1.5 equiv), at which point the solution rapidly 

changed to deep red in color. The reaction mixture was stirred 20 min at 15 °C and then warmed 

to 23 °C and stirred an additional 2 h. At this point, a small amount of starting material was detected 

by LCMS. An additional portion of o-NO2PhSeCN (156 mg/mL solution in THF, 8 µL, 0.00775 

mmol, 0.5 equiv) was added, followed by n-Bu3P (83 mg/mL solution in THF, 14 µL, 0.00775 

mmol, 0.5 equiv) at 23 °C, and the reaction was subsequently allowed to stir an additional 2 h. The 

reaction was removed from the glovebox and cooled to 0 °C. H2O2 (30%, 60 µL) was added 

dropwise, and the reaction was stirred 1 h at 0 °C. The mixture was allowed to warm to 23 °C, and 

stirred an additional 12 h. The reaction mixture was purified directly by preparative HPLC to afford 

26% yield
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X (1 mg, 26% yield) as a white solid. Product characterization data was not obtained due to the 

Spring 2020 COVID-19 shutdown of research facilities. 

 

 

 

Note: The Grieco dehydration to cyclobutanol 4a was performed using both 25 and epi-25, with 

both substrates providing similar yields of product. A representative procedure for this reaction 

is provided below:  

 

Cyclobutanol 527: In a nitrogen filled glovebox a 1-dram vial is charged with 513a (8.0 mg, 

0.0228 mmol, 1.0 equiv) and o-NO2PhSeCN (15.5 mg, 0.0685 mmol, 3.0 equiv) in THF (450 µL). 

To this orange solution is added n-Bu3P (17 µL, 0.0685 mmol, 3.0 equiv) dropwise via syringe, at 

which point the reaction mixture becomes deep red/brown in color. This solution is allowed to stir 

in the glovebox at 23 °C for 7 h, at which point 513a has been completely consumed, as judged by 

LCMS. The vial is then removed from the glovebox and cooled to 0 °C after which H2O2 (30% 

w/w, 80 µL) is cautiously added dropwise. This orange solution is then stirred while gradually 

warming to 23 °C over c.a. 2 h and then stirred at 23 °C an additional 18 h. The reaction is then 
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loaded directly onto a column and purified by flash chromatography (30% → 40% → 50% 

EtOAc/Hexanes) to afford the title compound (6.0 mg, 0.0181 mmol, 79% yield) as a white solid: 

1H NMR (400 MHz, CDCl3) δ 6.08 (s, 1H), 5.14 (dd, J = 6.1, 4.6 Hz, 1H), 4.75 – 4.71 (m, 1H), 

4.71 – 4.68 (m, 1H), 3.83 (dd, J = 9.6, 8.0 Hz, 1H), 3.66 – 3.56 (m, 1H), 3.36 (d, J = 9.1 Hz, 1H), 

2.79 (ddd, J = 15.9, 13.0, 8.0 Hz, 1H), 2.60 (d, J = 10.7 Hz, 1H), 2.43 (d, J = 15.4 Hz, 1H), 2.34 

(dd, J = 12.1, 9.6 Hz, 1H), 2.24 (dd, J = 12.1, 8.0 Hz, 1H), 2.14 (ddd, J = 13.2, 9.8, 2.2 Hz, 1H), 

1.96 (dd, J = 15.3, 4.8 Hz, 1H), 1.90 – 1.78 (m, 2H), 1.74 – 1.67 (m, 5H), 1.48 (s, 3H); 13C NMR 

(100 MHz, CDCl3) δ 205.8, 179.2, 146.1, 109.9, 88.0, 86.0, 81.3, 60.6, 57.8, 50.3, 50.3, 47.7, 46.3, 

45.3, 44.7, 40.8, 40.5, 27.6, 21.1; IR (Neat Film NaCl) 3346, 2936, 1726, 1710, 1598, 1366, 1325, 

1218, 1194, 1123, 1088, 1011, 850, 822 cm -1; HRMS (MM: ESI-APCI+) m/z calc’d for C19H25O5 

[M+H]+: 333.1697, found 333.1694; [α]D25.0 –31.1° (c 0.4, CHCl3).  

 

  

Scabrolide A (416): In a nitrogen-filled glovebox, a 1-dram vial is charged with cyclobutanol 4a 

(5.0 mg, 0.0151 mmol, 1.0 equiv), CuI (22.0 mg, 0.117 mmol, 7.8 equiv) and NIS (6.7 mg, 0.0300 

mmol, 2.0 equiv) in PhMe (1.5 mL). The vial is stirred at 23 °C for 5 min, and then transferred to 

a preheated, 90 °C aluminum block. The reaction is stirred at 90 °C for 1 h. At this point, an 

additional portion of NIS (3.3 mg, 0.0150 mmol, 1.0 equiv) is added, and the reaction is stirred an 

additional 20 min at 90 °C. The mixture is then cooled to 23 °C and filtered through a pad of Celite, 

washing with EtOAc. This solution is concentrated to a red film, which is directly purified by 

(–)-scabrolide A, (416)527
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reverse-phase (C18) preperative HPLC (MeCN/H2O, 5.0 mL/min, monitor wavelength = 260 nm, 

30% MeCN ramp to 45% MeCN over 6 min) to afford scabrolide A (3.0 mg, 0.00909 mmol, 61% 

yield) as a white solid. X-ray quality crystals were obtained by layer-diffusion of hexanes into a 

CH2Cl2 solution of (416): 1H NMR (400 MHz, CDCl3) δ 5.11 (dd, J = 7.1, 5.4 Hz, 1H), 4.87 – 

4.84 (m, 1H), 4.85 – 4.82 (m, 1H), 3.70 (dd, J = 45.1, 17.2 Hz, 1H), 3.61 (ddd, J = 11.1, 10.0, 7.2 

Hz, 1H), 3.51 (d, J = 11.3 Hz, 1H), 3.43 (dd, J = 17.3, 1.6 Hz, 1H), 3.18 – 3.03 (m, 1H), 2.97 – 

2.80 (m, 2H), 2.68 – 2.55 (m, 2H), 2.60 (d, J = 10.1 Hz, 1H), 2.30 (d, J = 15.0 Hz, 1H), 1.93 (dd, 

J = 15.0, 5.6 Hz, 1H), 1.83 (t, J = 1.0 Hz, 3H), 1.50 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 208.2, 

193.1, 173.7, 151.8, 147.2, 132.9, 111.0, 83.2, 82.3, 54.6, 47.6, 46.4, 44.8, 41.7, 41.1, 39.7, 37.3, 

26.3, 21.5; IR (Neat Film NaCl) 3366, 2965, 2930, 2858, 1765, 1696, 1636, 1445, 1374, 1358, 

1275, 1260, 1219, 1182, 1162, 1120, 1090, 1012, 899, 690 cm–1; HRMS (MM: ESI-APCI+) m/z 

calc’d for C19H23O5 [M+H]+: 331.1540, found 331. 1539; [α]D25.0 –210.7 ° (c 0.39, CHCl3).  
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4.6.3 Comparison of Natural and Synthetic Material 

Table 4.2. Comparison of scabrolide 1H NMR peaks to naturally-isolated material. 
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Table 4.3. Comparison of scabrolide 13C NMR peaks to naturally-isolated material. 
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Scheme A5.1. Synthesis of esterification precursors from chiral pool starting materials. 
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Scheme A5.2. Synthesis of tricyclic core of (–)-scabrolide A. 
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Scheme A5.3. Total synthesis of (–)-scabrolide A. 
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Figure A6.3 13C NMR (101 MHz, CDCl3) of compound 482. 
 

Figure A6.2 Infrared spectrum (Thin Film, NaCl) of compound 482. 
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Figure A6.6  13C NMR (101 MHz, C6D6) of compound 483. 
 

Figure A6.5 Infrared spectrum (Thin Film, NaCl) of compound 483. 
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Figure A6.9 13C NMR (101 MHz, CDCl3) of compound 484. 
 

Figure A6.8 Infrared spectrum (Thin Film, NaCl) of compound 484. 
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Figure A6.12 13C NMR (101 MHz, CDCl3) of compound 490. 

Figure A6.11 Infrared spectrum (Thin Film, NaCl) of compound 490. 
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 Figure A6.15 13C NMR (101 MHz, CDCl3) of compound 492. 
 

Figure A6.14 Infrared spectrum (Thin Film, NaCl) of compound 492. 
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Figure A6.18 13C NMR (101 MHz, CDCl3) of compound 493. 
 

Figure A6.17 Infrared spectrum (Thin Film, NaCl) of compound 493. 
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Figure A6.21 13C NMR (101 MHz, CDCl3) of compound 472. 
 

Figure A6.20 Infrared spectrum (Thin Film, NaCl) of compound 472. 
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 Figure A6.24 13C NMR (101 MHz, CDCl3) of compound 471. 
 

Figure A6.23 Infrared spectrum (Thin Film, NaCl) of compound 471. 
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Figure A6.27 13C NMR (101 MHz, CDCl3) of compound 495. 
 

Figure A6.26 Infrared spectrum (Thin Film, NaCl) of compound 495. 
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Figure A6.30 13C NMR (101 MHz, CDCl3) of compound 496. 
 

Figure A6.29 Infrared spectrum (Thin Film, NaCl) of compound 496. 
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Figure A6.33 13C NMR (101 MHz, CDCl3) of compound 497. 
 

Figure A6.32 Infrared spectrum (Thin Film, NaCl) of compound 497. 
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Figure A6.36 13C NMR (101 MHz, CDCl3) of compound 470. 
 

Figure A6.35 Infrared spectrum (Thin Film, NaCl) of compound 470. 
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Figure A6.39 13C NMR (101 MHz, CDCl3) of compound 499. 
 

Figure A6.38 Infrared spectrum (Thin Film, NaCl) of compound 499. 
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 Figure A6.42 13C NMR (101 MHz, CDCl3) of compound 500. 
 

Figure A6.41 Infrared spectrum (Thin Film, NaCl) of compound 500. 
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Figure A6.45 13C NMR (101 MHz, CDCl3) of compound 509a. 
 

Figure A6.44 Infrared spectrum (Thin Film, NaCl) of compound 509a. 
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Figure A6.48 13C NMR (101 MHz, CDCl3) of compound 509b. 
 

Figure A6.47 Infrared spectrum (Thin Film, NaCl) of compound 509b. 
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Figure A6.51 13C NMR (101 MHz, CDCl3) of compound 510a. 
 

Figure A6.50 Infrared spectrum (Thin Film, NaCl) of compound 510a. 
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Figure A6.54 13C NMR (101 MHz, CDCl3) of compound 510b. 
 

Figure A6.53 Infrared spectrum (Thin Film, NaCl) of compound 510b. 
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Figure A6.57 13C NMR (101 MHz, CDCl3) of compound 511a. 
 

Figure A6.56 Infrared spectrum (Thin Film, NaCl) of compound 511a. 
 



Appendix 6: Spectra Relevant to Chapter 4 

 

388 

  
  

Fi
gu

re
 A

6.
58

 1 H
 N

M
R

 (4
00

 M
H

z,
 C

D
C

l 3)
 o

f c
om

po
un

d 
51

1b
. 

 

 

(d
ia

st
er

om
er

 2
)

O
H

O

O
H

M
e

O
H

H

Si
M
e 2
Ph

M
e
O

H



Appendix 6: Spectra Relevant to Chapter 4 

 

389 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure A6.60  13C NMR (101 MHz, CDCl3) of compound 511b. 
 

Figure A6.59 Infrared spectrum (Thin Film, NaCl) of compound 511b. 
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Figure A6.63 13C NMR (101 MHz, CDCl3) of compound 512a. 
 

Figure A6.62 Infrared spectrum (Thin Film, NaCl) of compound 512a. 
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 Figure A6.66 13C NMR (101 MHz, CD2Cl2) of compound 512b. 
 

Figure A6.65 Infrared spectrum (Thin Film, NaCl) of compound 512b. 
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Figure A6.69 13C NMR (101 MHz, CDCl3) of compound 513a. 
 

Figure A6.68 Infrared spectrum (Thin Film, NaCl) of compound 513a. 
 



Appendix 6: Spectra Relevant to Chapter 4 

 

396 

 
 
  

Fi
gu

re
 A

6.
70

 1 H
 N

M
R

 (4
00

 M
H

z,
 C

D
C

l 3)
 o

f c
om

po
un

d 
51
3b

. 
 

 

O
H

O

O
H

M
e

O
H

H

O
H

M
e

O
H

H



Appendix 6: Spectra Relevant to Chapter 4 

 

397 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure A6.72 13C NMR (101 MHz, CDCl3) of compound 513b. 
 

Figure A6.71 Infrared spectrum (Thin Film, NaCl) of compound 513b. 
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Figure A6.74  Infrared spectrum (Thin Film, NaCl) of compound 527. 
 

 Figure A6.75 13C NMR (101 MHz, CDCl3) of compound 527. 
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Figure A6.77 Infrared spectrum (Thin Film, NaCl) of compound 416. 
 

 Figure A6.78 13C NMR (101 MHz, CDCl3) of compound 416. 
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A7.1 X-RAY CRYSTAL STRUCTURE ANALYSIS FOR DICYCLOBUTANE 500 
 
Figure A7.1. X-Ray Coordinate of Compound 500. 

   

 
Table A7.1.  Crystal data and structure refinement for dicyclobutane 500. 

 

Identification code  d20010 

Empirical formula  C27 H34 O4 Si 

Formula weight  450.63 

Temperature  100 K 

Wavelength  0.71073 ≈ 

Crystal system  Monoclinic 

Space group  P 1 21 1 (# 4) 

Unit cell dimensions a = 6.9085(14) ≈ α= 90∞ 

 b = 10.3765(19) ≈ β= 90.920(7)∞ 

 c = 17.058(3) ≈ γ = 90∞ 

Volume 1222.7(4) ≈3 
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Z 2 

Density (calculated) 1.224 g/cm3 

Absorption coefficient 0.126 mm-1 

F(000) 484 

Crystal size 0.04 x 0.32 x 0.33 mm3 

Theta range for data collection 2.30 to 32.80∞ 

Index ranges -10 ≤ h ≤ 10, -15 ≤ k ≤ 14, -25 ≤ l ≤ 25 

Reflections collected 76181 

Independent reflections 8271 [R(int) = 0.0400] 

Completeness to theta = 25.242∞ 99.9 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 1.0000 and 0.9658 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 8271 / 1 / 294 

Goodness-of-fit on F2 1.035 

Final R indices [I>2sigma(I)] R1 = 0.0401, wR2 = 0.0827 

R indices (all data) R1 = 0.0511, wR2 = 0.0865 

Absolute structure parameter [Flack] 0.03(2) 

Absolute structure parameter [Hooft] 0.03(2) 

Extinction coefficient n/a 

Largest diff. peak and hole 0.38 and -0.28 e.≈-3 
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Table A7.2.  Atomic coordinates  ( x 105) and equivalent  isotropic displacement 

parameters (≈2x 104) for d20010.  U(eq) is defined as one third of  the trace of the 

orthogonalized Uij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   
Si(1) 84284(6) 63687(4) 52641(3) 131(1) 

O(1) 111852(17) 29694(12) 7683(7) 152(2) 

O(2) 79881(18) 57572(12) 914(7) 147(2) 

O(3) 38726(17) 51229(12) 1471(7) 144(2) 

O(4) 38244(19) 62608(14) 12393(8) 225(3) 

C(1) 82860(30) 50711(17) 60272(10) 171(3) 

C(2) 99300(30) 44260(19) 63105(11) 232(4) 

C(3) 98070(40) 34900(20) 68921(13) 321(5) 

C(4) 80480(40) 31820(20) 72063(12) 351(6) 

C(5) 63960(40) 38080(20) 69452(13) 352(5) 

C(6) 65160(30) 47390(20) 63599(12) 262(4) 

C(7) 110220(30) 66249(18) 50382(11) 186(4) 

C(8) 73000(30) 78492(19) 56752(12) 216(4) 

C(9) 70990(20) 58674(17) 43479(10) 146(3) 

C(10) 54230(20) 64340(20) 41591(10) 198(3) 

C(11) 79900(30) 48322(19) 38422(10) 187(4) 

C(12) 69380(20) 45416(17) 30720(9) 143(3) 

C(13) 78020(20) 35684(16) 24887(9) 141(3) 

C(14) 71910(30) 21741(18) 25210(11) 229(4) 

C(15) 99620(30) 38166(19) 22866(10) 171(3) 

C(16) 93360(20) 44468(16) 14974(9) 125(3) 

C(17) 96770(20) 35768(16) 8123(9) 112(3) 

C(18) 81300(20) 34745(16) 1844(9) 119(3) 

C(19) 80950(20) 46296(17) -3905(9) 134(3) 

C(20) 98020(20) 46930(20) -9383(10) 186(3) 

C(21) 61600(20) 43949(18) -8193(10) 147(3) 

C(22) 47800(20) 39861(16) -1795(10) 131(3) 

C(23) 43930(20) 53252(16) 8983(10) 136(3) 

C(24) 60350(20) 33804(15) 4887(9) 115(3) 

C(25) 55500(20) 41887(15) 12201(10) 116(3) 
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C(26) 72260(20) 44950(16) 17844(9) 109(3) 

C(27) 69120(20) 55650(16) 24121(9) 129(3) 

________________________________________________________________________________ 



Appendix 7: X-Ray Crystallography Reports Relevant to Chapter 4 

	

407 

Table A7.3.   Bond lengths [≈] and angles [∞] for dicyclobutane 500. 

_____________________________________________________  

Si(1)-C(1)  1.8765(19) 

Si(1)-C(7)  1.8576(18) 

Si(1)-C(8)  1.8646(19) 

Si(1)-C(9)  1.8736(17) 

O(1)-C(17)  1.221(2) 

O(2)-H(2)  0.8400 

O(2)-C(19)  1.433(2) 

O(3)-C(22)  1.451(2) 

O(3)-C(23)  1.342(2) 

O(4)-C(23)  1.201(2) 

C(1)-C(2)  1.398(3) 

C(1)-C(6)  1.399(3) 

C(2)-H(2A)  0.9500 

C(2)-C(3)  1.392(3) 

C(3)-H(3)  0.9500 

C(3)-C(4)  1.374(4) 

C(4)-H(4)  0.9500 

C(4)-C(5)  1.381(4) 

C(5)-H(5)  0.9500 

C(5)-C(6)  1.392(3) 

C(6)-H(6)  0.9500 

C(7)-H(7A)  0.9800 

C(7)-H(7B)  0.9800 

C(7)-H(7C)  0.9800 

C(8)-H(8A)  0.9800 

C(8)-H(8B)  0.9800 

C(8)-H(8C)  0.9800 

C(9)-C(10)  1.334(2) 

C(9)-C(11)  1.514(2) 

C(10)-H(10A)  0.9500 

C(10)-H(10B)  0.9500 

C(11)-H(11A)  0.9900 

C(11)-H(11B)  0.9900 

C(11)-C(12)  1.521(2) 
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C(12)-H(12)  1.0000 

C(12)-C(13)  1.544(2) 

C(12)-C(27)  1.547(2) 

C(13)-C(14)  1.508(3) 

C(13)-C(15)  1.558(2) 

C(13)-C(26)  1.585(2) 

C(14)-H(14A)  0.9800 

C(14)-H(14B)  0.9800 

C(14)-H(14C)  0.9800 

C(15)-H(15A)  0.9900 

C(15)-H(15B)  0.9900 

C(15)-C(16)  1.552(2) 

C(16)-H(16)  1.0000 

C(16)-C(17)  1.498(2) 

C(16)-C(26)  1.546(2) 

C(17)-C(18)  1.505(2) 

C(18)-H(18)  1.0000 

C(18)-C(19)  1.549(2) 

C(18)-C(24)  1.548(2) 

C(19)-C(20)  1.518(2) 

C(19)-C(21)  1.533(2) 

C(20)-H(20A)  0.9800 

C(20)-H(20B)  0.9800 

C(20)-H(20C)  0.9800 

C(21)-H(21A)  0.9900 

C(21)-H(21B)  0.9900 

C(21)-C(22)  1.521(2) 

C(22)-H(22)  1.0000 

C(22)-C(24)  1.554(2) 

C(23)-C(25)  1.522(2) 

C(24)-H(24)  1.0000 

C(24)-C(25)  1.544(2) 

C(25)-H(25)  1.0000 

C(25)-C(26)  1.527(2) 

C(26)-C(27)  1.560(2) 

C(27)-H(27A)  0.9900 
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C(27)-H(27B)  0.9900 

 

C(7)-Si(1)-C(1) 107.95(9) 

C(7)-Si(1)-C(8) 111.74(9) 

C(7)-Si(1)-C(9) 109.15(8) 

C(8)-Si(1)-C(1) 107.66(9) 

C(8)-Si(1)-C(9) 109.90(9) 

C(9)-Si(1)-C(1) 110.42(8) 

C(19)-O(2)-H(2) 109.5 

C(23)-O(3)-C(22) 112.53(13) 

C(2)-C(1)-Si(1) 122.14(14) 

C(2)-C(1)-C(6) 116.87(18) 

C(6)-C(1)-Si(1) 120.95(16) 

C(1)-C(2)-H(2A) 119.3 

C(3)-C(2)-C(1) 121.5(2) 

C(3)-C(2)-H(2A) 119.3 

C(2)-C(3)-H(3) 119.8 

C(4)-C(3)-C(2) 120.3(2) 

C(4)-C(3)-H(3) 119.8 

C(3)-C(4)-H(4) 120.1 

C(3)-C(4)-C(5) 119.8(2) 

C(5)-C(4)-H(4) 120.1 

C(4)-C(5)-H(5) 120.0 

C(4)-C(5)-C(6) 120.0(2) 

C(6)-C(5)-H(5) 120.0 

C(1)-C(6)-H(6) 119.2 

C(5)-C(6)-C(1) 121.6(2) 

C(5)-C(6)-H(6) 119.2 

Si(1)-C(7)-H(7A) 109.5 

Si(1)-C(7)-H(7B) 109.5 

Si(1)-C(7)-H(7C) 109.5 

H(7A)-C(7)-H(7B) 109.5 

H(7A)-C(7)-H(7C) 109.5 

H(7B)-C(7)-H(7C) 109.5 

Si(1)-C(8)-H(8A) 109.5 

Si(1)-C(8)-H(8B) 109.5 
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Si(1)-C(8)-H(8C) 109.5 

H(8A)-C(8)-H(8B) 109.5 

H(8A)-C(8)-H(8C) 109.5 

H(8B)-C(8)-H(8C) 109.5 

C(10)-C(9)-Si(1) 119.42(13) 

C(10)-C(9)-C(11) 122.28(16) 

C(11)-C(9)-Si(1) 118.29(12) 

C(9)-C(10)-H(10A) 120.0 

C(9)-C(10)-H(10B) 120.0 

H(10A)-C(10)-H(10B) 120.0 

C(9)-C(11)-H(11A) 108.3 

C(9)-C(11)-H(11B) 108.3 

C(9)-C(11)-C(12) 116.09(15) 

H(11A)-C(11)-H(11B) 107.4 

C(12)-C(11)-H(11A) 108.3 

C(12)-C(11)-H(11B) 108.3 

C(11)-C(12)-H(12) 108.9 

C(11)-C(12)-C(13) 120.12(14) 

C(11)-C(12)-C(27) 119.48(15) 

C(13)-C(12)-H(12) 108.9 

C(13)-C(12)-C(27) 88.87(12) 

C(27)-C(12)-H(12) 108.9 

C(12)-C(13)-C(15) 114.57(14) 

C(12)-C(13)-C(26) 89.81(12) 

C(14)-C(13)-C(12) 119.49(14) 

C(14)-C(13)-C(15) 115.87(15) 

C(14)-C(13)-C(26) 122.86(15) 

C(15)-C(13)-C(26) 87.81(12) 

C(13)-C(14)-H(14A) 109.5 

C(13)-C(14)-H(14B) 109.5 

C(13)-C(14)-H(14C) 109.5 

H(14A)-C(14)-H(14B) 109.5 

H(14A)-C(14)-H(14C) 109.5 

H(14B)-C(14)-H(14C) 109.5 

C(13)-C(15)-H(15A) 113.6 

C(13)-C(15)-H(15B) 113.6 
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H(15A)-C(15)-H(15B) 110.8 

C(16)-C(15)-C(13) 90.41(12) 

C(16)-C(15)-H(15A) 113.6 

C(16)-C(15)-H(15B) 113.6 

C(15)-C(16)-H(16) 112.6 

C(17)-C(16)-C(15) 112.18(14) 

C(17)-C(16)-H(16) 112.6 

C(17)-C(16)-C(26) 115.32(13) 

C(26)-C(16)-C(15) 89.42(12) 

C(26)-C(16)-H(16) 112.6 

O(1)-C(17)-C(16) 120.27(15) 

O(1)-C(17)-C(18) 121.13(15) 

C(16)-C(17)-C(18) 118.59(14) 

C(17)-C(18)-H(18) 107.7 

C(17)-C(18)-C(19) 113.56(13) 

C(17)-C(18)-C(24) 115.02(13) 

C(19)-C(18)-H(18) 107.7 

C(24)-C(18)-H(18) 107.7 

C(24)-C(18)-C(19) 104.83(13) 

O(2)-C(19)-C(18) 105.62(13) 

O(2)-C(19)-C(20) 111.44(14) 

O(2)-C(19)-C(21) 110.55(13) 

C(20)-C(19)-C(18) 114.76(14) 

C(20)-C(19)-C(21) 113.17(14) 

C(21)-C(19)-C(18) 100.60(13) 

C(19)-C(20)-H(20A) 109.5 

C(19)-C(20)-H(20B) 109.5 

C(19)-C(20)-H(20C) 109.5 

H(20A)-C(20)-H(20B) 109.5 

H(20A)-C(20)-H(20C) 109.5 

H(20B)-C(20)-H(20C) 109.5 

C(19)-C(21)-H(21A) 110.8 

C(19)-C(21)-H(21B) 110.8 

H(21A)-C(21)-H(21B) 108.9 

C(22)-C(21)-C(19) 104.71(13) 

C(22)-C(21)-H(21A) 110.8 
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C(22)-C(21)-H(21B) 110.8 

O(3)-C(22)-C(21) 109.16(14) 

O(3)-C(22)-H(22) 111.3 

O(3)-C(22)-C(24) 106.65(12) 

C(21)-C(22)-H(22) 111.3 

C(21)-C(22)-C(24) 106.87(13) 

C(24)-C(22)-H(22) 111.3 

O(3)-C(23)-C(25) 110.75(14) 

O(4)-C(23)-O(3) 120.29(16) 

O(4)-C(23)-C(25) 128.72(16) 

C(18)-C(24)-C(22) 104.01(13) 

C(18)-C(24)-H(24) 110.4 

C(22)-C(24)-H(24) 110.4 

C(25)-C(24)-C(18) 116.90(13) 

C(25)-C(24)-C(22) 104.31(13) 

C(25)-C(24)-H(24) 110.4 

C(23)-C(25)-C(24) 104.41(13) 

C(23)-C(25)-H(25) 105.9 

C(23)-C(25)-C(26) 117.04(13) 

C(24)-C(25)-H(25) 105.9 

C(26)-C(25)-C(24) 116.77(13) 

C(26)-C(25)-H(25) 105.9 

C(16)-C(26)-C(13) 89.64(12) 

C(16)-C(26)-C(27) 112.50(13) 

C(25)-C(26)-C(13) 122.03(14) 

C(25)-C(26)-C(16) 120.17(13) 

C(25)-C(26)-C(27) 117.93(13) 

C(27)-C(26)-C(13) 86.99(12) 

C(12)-C(27)-C(26) 90.61(12) 

C(12)-C(27)-H(27A) 113.5 

C(12)-C(27)-H(27B) 113.5 

C(26)-C(27)-H(27A) 113.5 

C(26)-C(27)-H(27B) 113.5 

H(27A)-C(27)-H(27B) 110.8 

_____________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  
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Table A7.4.   Anisotropic displacement parameters  (≈2x 104) for dicyclobutane 500.  The 

anisotropic displacement factor exponent takes the form:  -2p2[ h2 a*2U11 + ...  + 2 h k 

a* b* U12 ] 

______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 

______________________________________________________________________________  

Si(1) 159(2)  129(2) 106(2)  -10(2) 21(2)  6(2) 

O(1) 118(5)  178(6) 160(6)  -24(5) 17(4)  24(5) 

O(2) 205(6)  121(5) 116(5)  10(4) 11(5)  -30(5) 

O(3) 140(5)  149(6) 142(6)  -6(5) -20(4)  22(4) 

O(4) 247(6)  212(7) 214(6)  -56(6) -47(5)  99(6) 

C(1) 269(9)  143(8) 102(7)  -31(6) 9(6)  -29(7) 

C(2) 332(10)  174(9) 190(9)  -5(7) -24(7)  0(8) 

C(3) 538(14)  193(10) 230(10)  32(8) -100(9)  -2(9) 

C(4) 682(17)  213(10) 157(9)  47(8) -33(10)  -139(10) 

C(5) 521(14)  326(12) 212(10)  7(9) 93(9)  -188(11) 

C(6) 292(10)  287(11) 208(9)  1(8) 36(7)  -79(8) 

C(7) 176(8)  190(9) 194(8)  0(7) 28(6)  -11(6) 

C(8) 256(9)  181(9) 211(9)  -71(7) 48(7)  24(7) 

C(9) 175(8)  169(8) 95(7)  -17(6) 25(6)  3(6) 

C(10) 193(8)  259(9) 143(7)  -44(8) 24(6)  38(8) 

C(11) 230(8)  212(9) 117(7)  -29(6) -24(6)  88(7) 

C(12) 176(7)  150(8) 103(7)  -8(6) 2(6)  21(6) 

C(13) 200(8)  127(7) 94(7)  1(6) -3(6)  25(6) 

C(14) 380(11)  129(8) 177(9)  26(7) 11(8)  6(8) 

C(15) 169(8)  224(9) 120(8)  -34(7) -25(6)  64(7) 

C(16) 117(7)  140(7) 117(7)  -24(6) -9(5)  11(6) 

C(17) 123(7)  106(7) 109(7)  10(6) 17(5)  -21(6) 

C(18) 113(7)  126(7) 118(7)  -20(6) 0(5)  -2(6) 

C(19) 133(7)  158(8) 110(7)  -11(6) 6(6)  -8(6) 

C(20) 152(8)  286(9) 120(7)  -10(7) 19(6)  -22(7) 

C(21) 147(7)  187(8) 108(7)  0(6) -12(6)  -1(6) 

C(22) 124(7)  138(7) 130(8)  -25(6) -22(6)  -5(6) 

C(23) 112(7)  145(8) 150(8)  2(6) 1(6)  -6(6) 

C(24) 110(7)  110(7) 125(7)  -18(6) 4(6)  -24(5) 

C(25) 113(7)  114(7) 121(7)  -7(6) 17(5)  -17(5) 
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C(26) 123(7)  104(7) 100(7)  -2(6) -2(5)  9(6) 

C(27) 162(8)  114(7) 110(7)  -23(6) -5(6)  15(6) 

______________________________________________________________________________ 
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Table A7.5.   Hydrogen coordinates ( x 104) and isotropic  displacement parameters (≈2x  

10 3) for dicyclobutane 500. 

________________________________________________________________________________  

 x  y  z  U(eq) 

________________________________________________________________________________  

  
H(2) 8157 6416 -185 22 

H(2A) 11158 4631 6101 28 

H(3) 10946 3063 7073 39 

H(4) 7969 2541 7602 42 

H(5) 5179 3604 7165 42 

H(6) 5368 5158 6182 31 

H(7A) 11550 5842 4802 28 

H(7B) 11742 6823 5523 28 

H(7C) 11141 7345 4670 28 

H(8A) 7307 8535 5280 32 

H(8B) 8038 8129 6140 32 

H(8C) 5963 7662 5821 32 

H(10A) 4744 6191 3693 24 

H(10B) 4907 7080 4490 24 

H(11A) 8064 4026 4152 22 

H(11B) 9332 5093 3723 22 

H(12) 5576 4284 3185 17 

H(14A) 5777 2123 2544 34 

H(14B) 7764 1767 2988 34 

H(14C) 7635 1726 2051 34 

H(15A) 10625 4419 2652 21 

H(15B) 10726 3017 2223 21 

H(16) 9907 5324 1425 15 

H(18) 8391 2679 -127 14 

H(20A) 9563 5356 -1337 28 

H(20B) 9968 3855 -1194 28 

H(20C) 10979 4908 -637 28 

H(21A) 5698 5191 -1081 18 

H(21B) 6288 3708 -1218 18 

H(22) 3791 3362 -384 16 
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H(24) 5666 2459 570 14 

H(25) 4617 3660 1526 14 

H(27A) 7993 6189 2452 15 

H(27B) 5656 6017 2353 15 

________________________________________________________________________________ 
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Table A7.6. Torsion angles [∞] for dicyclobutane 500. 

________________________________________________________________  

Si(1)-C(1)-C(2)-C(3) 178.21(15) 

Si(1)-C(1)-C(6)-C(5) -177.84(16) 

Si(1)-C(9)-C(11)-C(12) -175.06(13) 

O(1)-C(17)-C(18)-C(19) -101.67(18) 

O(1)-C(17)-C(18)-C(24) 137.55(16) 

O(2)-C(19)-C(21)-C(22) -69.88(17) 

O(3)-C(22)-C(24)-C(18) -116.84(13) 

O(3)-C(22)-C(24)-C(25) 6.18(16) 

O(3)-C(23)-C(25)-C(24) 11.88(17) 

O(3)-C(23)-C(25)-C(26) 142.66(14) 

O(4)-C(23)-C(25)-C(24) -173.87(17) 

O(4)-C(23)-C(25)-C(26) -43.1(2) 

C(1)-Si(1)-C(9)-C(10) 108.36(16) 

C(1)-Si(1)-C(9)-C(11) -72.16(15) 

C(1)-C(2)-C(3)-C(4) -0.3(3) 

C(2)-C(1)-C(6)-C(5) -0.1(3) 

C(2)-C(3)-C(4)-C(5) -0.2(3) 

C(3)-C(4)-C(5)-C(6) 0.6(3) 

C(4)-C(5)-C(6)-C(1) -0.5(3) 

C(6)-C(1)-C(2)-C(3) 0.5(3) 

C(7)-Si(1)-C(1)-C(2) -2.71(18) 

C(7)-Si(1)-C(1)-C(6) 174.94(15) 

C(7)-Si(1)-C(9)-C(10) -133.12(15) 

C(7)-Si(1)-C(9)-C(11) 46.36(16) 

C(8)-Si(1)-C(1)-C(2) -123.49(16) 

C(8)-Si(1)-C(1)-C(6) 54.16(17) 

C(8)-Si(1)-C(9)-C(10) -10.26(18) 

C(8)-Si(1)-C(9)-C(11) 169.22(14) 

C(9)-Si(1)-C(1)-C(2) 116.53(15) 

C(9)-Si(1)-C(1)-C(6) -65.82(17) 

C(9)-C(11)-C(12)-C(13) 175.87(15) 

C(9)-C(11)-C(12)-C(27) 68.3(2) 

C(10)-C(9)-C(11)-C(12) 4.4(3) 

C(11)-C(12)-C(13)-C(14) 93.2(2) 
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C(11)-C(12)-C(13)-C(15) -50.9(2) 

C(11)-C(12)-C(13)-C(26) -138.41(16) 

C(11)-C(12)-C(27)-C(26) 139.19(15) 

C(12)-C(13)-C(15)-C(16) -101.10(15) 

C(12)-C(13)-C(26)-C(16) 126.97(12) 

C(12)-C(13)-C(26)-C(25) -106.95(16) 

C(12)-C(13)-C(26)-C(27) 14.41(12) 

C(13)-C(12)-C(27)-C(26) 14.75(12) 

C(13)-C(15)-C(16)-C(17) -104.61(14) 

C(13)-C(15)-C(16)-C(26) 12.62(13) 

C(13)-C(26)-C(27)-C(12) -14.38(12) 

C(14)-C(13)-C(15)-C(16) 113.47(16) 

C(14)-C(13)-C(26)-C(16) -107.31(17) 

C(14)-C(13)-C(26)-C(25) 18.8(2) 

C(14)-C(13)-C(26)-C(27) 140.14(16) 

C(15)-C(13)-C(26)-C(16) 12.37(12) 

C(15)-C(13)-C(26)-C(25) 138.45(15) 

C(15)-C(13)-C(26)-C(27) -100.19(12) 

C(15)-C(16)-C(17)-O(1) -43.4(2) 

C(15)-C(16)-C(17)-C(18) 136.71(15) 

C(15)-C(16)-C(26)-C(13) -12.41(13) 

C(15)-C(16)-C(26)-C(25) -139.99(15) 

C(15)-C(16)-C(26)-C(27) 74.19(15) 

C(16)-C(17)-C(18)-C(19) 78.18(18) 

C(16)-C(17)-C(18)-C(24) -42.6(2) 

C(16)-C(26)-C(27)-C(12) -102.75(14) 

C(17)-C(16)-C(26)-C(13) 101.98(15) 

C(17)-C(16)-C(26)-C(25) -25.6(2) 

C(17)-C(16)-C(26)-C(27) -171.42(13) 

C(17)-C(18)-C(19)-O(2) -53.01(17) 

C(17)-C(18)-C(19)-C(20) 70.15(18) 

C(17)-C(18)-C(19)-C(21) -168.04(13) 

C(17)-C(18)-C(24)-C(22) 151.53(14) 

C(17)-C(18)-C(24)-C(25) 37.2(2) 

C(18)-C(19)-C(21)-C(22) 41.39(16) 

C(18)-C(24)-C(25)-C(23) 103.80(15) 
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C(18)-C(24)-C(25)-C(26) -27.1(2) 

C(19)-C(18)-C(24)-C(22) 26.08(16) 

C(19)-C(18)-C(24)-C(25) -88.27(16) 

C(19)-C(21)-C(22)-O(3) 88.93(15) 

C(19)-C(21)-C(22)-C(24) -26.05(17) 

C(20)-C(19)-C(21)-C(22) 164.31(15) 

C(21)-C(22)-C(24)-C(18) -0.18(17) 

C(21)-C(22)-C(24)-C(25) 122.84(14) 

C(22)-O(3)-C(23)-O(4) 176.83(15) 

C(22)-O(3)-C(23)-C(25) -8.36(18) 

C(22)-C(24)-C(25)-C(23) -10.38(15) 

C(22)-C(24)-C(25)-C(26) -141.32(14) 

C(23)-O(3)-C(22)-C(21) -113.97(15) 

C(23)-O(3)-C(22)-C(24) 1.16(17) 

C(23)-C(25)-C(26)-C(13) 146.06(15) 

C(23)-C(25)-C(26)-C(16) -103.13(17) 

C(23)-C(25)-C(26)-C(27) 40.9(2) 

C(24)-C(18)-C(19)-O(2) 73.35(14) 

C(24)-C(18)-C(19)-C(20) -163.50(14) 

C(24)-C(18)-C(19)-C(21) -41.68(15) 

C(24)-C(25)-C(26)-C(13) -89.16(18) 

C(24)-C(25)-C(26)-C(16) 21.6(2) 

C(24)-C(25)-C(26)-C(27) 165.67(13) 

C(25)-C(26)-C(27)-C(12) 110.60(15) 

C(26)-C(13)-C(15)-C(16) -12.32(12) 

C(26)-C(16)-C(17)-O(1) -143.85(16) 

C(26)-C(16)-C(17)-C(18) 36.3(2) 

C(27)-C(12)-C(13)-C(14) -142.94(16) 

C(27)-C(12)-C(13)-C(15) 72.99(15) 

C(27)-C(12)-C(13)-C(26) -14.51(12) 

________________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  
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Table A7.7. Hydrogen bonds for dicyclobutane 500  [≈ and ∞]. 

____________________________________________________________________________  

D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 

____________________________________________________________________________  

 O(2)-H(2)...O(1)#1 0.84 1.95 2.7880(18) 173.8 

____________________________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  

#1 -x+2,y+1/2,-z       
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A7.3 X-RAY CRYSTAL STRUCTURE ANALYSIS FOR TRIOL 513b. 
 
Figure A7.2. X-Ray Coordinate of Compound 513a. 

Table A7.8.  Crystal data and structure refinement for triol 513a. 

Identification code  d19153 

Empirical formula  C19 H26 O6 

Formula weight  350.40 

Temperature  100 K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  P212121 

Unit cell dimensions a = 10.221(3) Å a= 90° 

 b = 12.581(3) Å b= 90° 

 c = 13.333(4) Å g = 90° 

Volume 1714.4(8) Å3 

Z 4 

Density (calculated) 1.358 g/cm3 
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Absorption coefficient 0.100 mm-1 

F(000) 752 

Crystal size 0.31 x 0.19 x 0.18 mm3 

Theta range for data collection 2.226 to 36.285°. 

Index ranges -16 £ h £ 16, -20 £ k £ 20, -22 £ l £ 22 

Reflections collected 73152 

Independent reflections 7997 [R(int) = 0.0477] 

Completeness to theta = 25.242° 100.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 1.0000 and 0.9208 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 7997 / 0 / 231 

Goodness-of-fit on F2 1.069 

Final R indices [I>2sigma(I)] R1 = 0.0424, wR2 = 0.0942 

R indices (all data) R1 = 0.0592, wR2 = 0.1007 

Absolute structure parameter [Flack] 0.21(16) 

Absolute structure parameter [Hooft] 0.26(15) 

Extinction coefficient n/a 

Largest diff. peak and hole 0.383 and -0.250 e.Å-3 
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Table A7.9.  Atomic coordinates  (x 105) and equivalent  isotropic displacement parameters 

(Å2x 104)for triol 513a.  U(eq) is defined as one third of the trace of the orthogonalized Uij 

tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   
O(1) 68042(10) 78131(7) 63641(8) 165(2) 

O(2) 86227(11) 70321(8) 47229(8) 213(2) 

O(3) 70632(11) 61684(9) 39054(7) 213(2) 

O(4) 52317(11) 47286(8) 43910(8) 209(2) 

O(5) 62828(10) 58461(8) 81516(7) 170(2) 

O(6) 61450(11) -568(7) 63049(8) 186(2) 

C(1) 80656(12) 63996(9) 70998(9) 120(2) 

C(2) 79658(13) 76259(9) 69319(10) 142(2) 

C(3) 79192(15) 82417(10) 79130(11) 201(3) 

C(4) 91843(14) 78776(11) 63116(11) 195(3) 

C(5) 94105(14) 69305(11) 56324(11) 193(3) 

C(6) 88652(12) 59459(10) 61866(9) 136(2) 

C(7) 81180(12) 53340(10) 53598(9) 136(2) 

C(8) 78429(13) 61948(11) 45872(10) 170(2) 

C(9) 69363(12) 47732(9) 58110(9) 116(2) 

C(10) 56514(13) 43122(10) 53164(10) 139(2) 

C(11) 48826(13) 48194(11) 62174(10) 181(2) 

C(12) 60524(12) 55734(9) 63681(9) 124(2) 

C(13) 67102(12) 59314(9) 72997(9) 118(2) 

C(14) 73647(13) 38142(9) 64645(9) 139(2) 

C(15) 70260(13) 28115(9) 58468(9) 131(2) 

C(16) 57444(15) 31051(10) 52945(11) 187(3) 

C(17) 68816(13) 17984(9) 64757(9) 127(2) 

C(18) 66587(14) 8454(10) 57824(10) 159(2) 

C(19) 80353(15) 15980(10) 71809(10) 181(2) 

________________________________________________________________________________ 



Appendix 7: X-Ray Crystallography Reports Relevant to Chapter 4 

	

424 

 Table A7.10  Bond lengths [≈] and angles [∞] for dicyclobutane 500 

_____________________________________________________  

O(1)-H(1)  0.8400 

O(1)-C(2)  1.4276(16) 

O(2)-C(5)  1.4612(19) 

O(2)-C(8)  1.3333(18) 

O(3)-C(8)  1.2094(17) 

O(4)-H(4)  0.8400 

O(4)-C(10)  1.4075(16) 

O(5)-C(13)  1.2217(15) 

O(6)-H(6)  0.8400 

O(6)-C(18)  1.4316(16) 

C(1)-H(1A)  1.0000 

C(1)-C(2)  1.5623(17) 

C(1)-C(6)  1.5736(18) 

C(1)-C(13)  1.5287(18) 

C(2)-C(3)  1.5210(19) 

C(2)-C(4)  1.528(2) 

C(3)-H(3A)  0.9800 

C(3)-H(3B)  0.9800 

C(3)-H(3C)  0.9800 

C(4)-H(4A)  0.9900 

C(4)-H(4B)  0.9900 

C(4)-C(5)  1.514(2) 

C(5)-H(5)  1.0000 

C(5)-C(6)  1.5463(18) 

C(6)-H(6A)  1.0000 

C(6)-C(7)  1.5464(18) 

C(7)-H(7)  1.0000 

C(7)-C(8)  1.5209(17) 

C(7)-C(9)  1.5227(17) 

C(9)-C(10)  1.5799(18) 

C(9)-C(12)  1.5432(16) 

C(9)-C(14)  1.5513(17) 

C(10)-C(11)  1.5708(19) 

C(10)-C(16)  1.5219(18) 
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C(11)-H(11A)  0.9900 

C(11)-H(11B)  0.9900 

C(11)-C(12)  1.5394(18) 

C(12)-H(12)  1.0000 

C(12)-C(13)  1.4825(17) 

C(14)-H(14A)  0.9900 

C(14)-H(14B)  0.9900 

C(14)-C(15)  1.5459(17) 

C(15)-H(15)  1.0000 

C(15)-C(16)  1.5474(19) 

C(15)-C(17)  1.5328(17) 

C(16)-H(16A)  0.9900 

C(16)-H(16B)  0.9900 

C(17)-H(17)  1.0000 

C(17)-C(18)  1.5310(17) 

C(17)-C(19)  1.5290(19) 

C(18)-H(18A)  0.9900 

C(18)-H(18B)  0.9900 

C(19)-H(19A)  0.9800 

C(19)-H(19B)  0.9800 

C(19)-H(19C)  0.9800 

 

C(2)-O(1)-H(1) 109.5 

C(8)-O(2)-C(5) 111.89(10) 

C(10)-O(4)-H(4) 109.5 

C(18)-O(6)-H(6) 109.5 

C(2)-C(1)-H(1A) 107.3 

C(2)-C(1)-C(6) 106.34(10) 

C(6)-C(1)-H(1A) 107.3 

C(13)-C(1)-H(1A) 107.3 

C(13)-C(1)-C(2) 110.27(10) 

C(13)-C(1)-C(6) 117.76(10) 

O(1)-C(2)-C(1) 107.05(10) 

O(1)-C(2)-C(3) 110.24(11) 

O(1)-C(2)-C(4) 110.89(11) 

C(3)-C(2)-C(1) 112.44(10) 
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C(3)-C(2)-C(4) 112.67(11) 

C(4)-C(2)-C(1) 103.24(10) 

C(2)-C(3)-H(3A) 109.5 

C(2)-C(3)-H(3B) 109.5 

C(2)-C(3)-H(3C) 109.5 

H(3A)-C(3)-H(3B) 109.5 

H(3A)-C(3)-H(3C) 109.5 

H(3B)-C(3)-H(3C) 109.5 

C(2)-C(4)-H(4A) 110.4 

C(2)-C(4)-H(4B) 110.4 

H(4A)-C(4)-H(4B) 108.6 

C(5)-C(4)-C(2) 106.56(11) 

C(5)-C(4)-H(4A) 110.4 

C(5)-C(4)-H(4B) 110.4 

O(2)-C(5)-C(4) 110.08(12) 

O(2)-C(5)-H(5) 111.4 

O(2)-C(5)-C(6) 105.55(11) 

C(4)-C(5)-H(5) 111.4 

C(4)-C(5)-C(6) 106.83(11) 

C(6)-C(5)-H(5) 111.4 

C(1)-C(6)-H(6A) 109.6 

C(5)-C(6)-C(1) 105.44(10) 

C(5)-C(6)-H(6A) 109.6 

C(5)-C(6)-C(7) 103.66(10) 

C(7)-C(6)-C(1) 118.41(10) 

C(7)-C(6)-H(6A) 109.6 

C(6)-C(7)-H(7) 109.0 

C(8)-C(7)-C(6) 102.68(10) 

C(8)-C(7)-H(7) 109.0 

C(8)-C(7)-C(9) 116.80(11) 

C(9)-C(7)-C(6) 109.92(10) 

C(9)-C(7)-H(7) 109.0 

O(2)-C(8)-C(7) 111.12(11) 

O(3)-C(8)-O(2) 121.17(12) 

O(3)-C(8)-C(7) 127.68(13) 

C(7)-C(9)-C(10) 131.65(10) 
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C(7)-C(9)-C(12) 110.62(9) 

C(7)-C(9)-C(14) 111.00(10) 

C(12)-C(9)-C(10) 87.35(9) 

C(12)-C(9)-C(14) 113.72(10) 

C(14)-C(9)-C(10) 100.58(9) 

O(4)-C(10)-C(9) 118.85(11) 

O(4)-C(10)-C(11) 111.51(11) 

O(4)-C(10)-C(16) 111.94(11) 

C(11)-C(10)-C(9) 86.99(9) 

C(16)-C(10)-C(9) 108.81(10) 

C(16)-C(10)-C(11) 116.83(12) 

C(10)-C(11)-H(11A) 114.0 

C(10)-C(11)-H(11B) 114.0 

H(11A)-C(11)-H(11B) 111.2 

C(12)-C(11)-C(10) 87.80(10) 

C(12)-C(11)-H(11A) 114.0 

C(12)-C(11)-H(11B) 114.0 

C(9)-C(12)-H(12) 108.2 

C(11)-C(12)-C(9) 89.41(9) 

C(11)-C(12)-H(12) 108.2 

C(13)-C(12)-C(9) 109.63(10) 

C(13)-C(12)-C(11) 130.45(11) 

C(13)-C(12)-H(12) 108.2 

O(5)-C(13)-C(1) 121.33(11) 

O(5)-C(13)-C(12) 126.17(12) 

C(12)-C(13)-C(1) 112.45(10) 

C(9)-C(14)-H(14A) 110.6 

C(9)-C(14)-H(14B) 110.6 

H(14A)-C(14)-H(14B) 108.7 

C(15)-C(14)-C(9) 105.80(9) 

C(15)-C(14)-H(14A) 110.6 

C(15)-C(14)-H(14B) 110.6 

C(14)-C(15)-H(15) 108.7 

C(14)-C(15)-C(16) 104.37(10) 

C(16)-C(15)-H(15) 108.7 

C(17)-C(15)-C(14) 114.12(10) 
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C(17)-C(15)-H(15) 108.7 

C(17)-C(15)-C(16) 112.17(11) 

C(10)-C(16)-C(15) 106.38(11) 

C(10)-C(16)-H(16A) 110.5 

C(10)-C(16)-H(16B) 110.5 

C(15)-C(16)-H(16A) 110.5 

C(15)-C(16)-H(16B) 110.5 

H(16A)-C(16)-H(16B) 108.6 

C(15)-C(17)-H(17) 107.5 

C(18)-C(17)-C(15) 109.58(10) 

C(18)-C(17)-H(17) 107.5 

C(19)-C(17)-C(15) 113.53(11) 

C(19)-C(17)-H(17) 107.5 

C(19)-C(17)-C(18) 110.91(10) 

O(6)-C(18)-C(17) 112.44(10) 

O(6)-C(18)-H(18A) 109.1 

O(6)-C(18)-H(18B) 109.1 

C(17)-C(18)-H(18A) 109.1 

C(17)-C(18)-H(18B) 109.1 

H(18A)-C(18)-H(18B) 107.8 

C(17)-C(19)-H(19A) 109.5 

C(17)-C(19)-H(19B) 109.5 

C(17)-C(19)-H(19C) 109.5 

H(19A)-C(19)-H(19B) 109.5 

H(19A)-C(19)-H(19C) 109.5 

H(19B)-C(19)-H(19C) 109.5 

_____________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  
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Table A7.11.  Anisotropic displacement parameters  (Å2x 104) for triol 513a.  The 

anisotropic displacement factor exponent takes the form:  -2p2[ h2 a*2U11 + ...  + 2 h k a* 

b* U12 ]. 

______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 

______________________________________________________________________________  

O(1) 160(4)  78(3) 256(4)  18(3) -73(4)  14(3) 

O(2) 247(5)  195(5) 197(4)  86(4) 30(4)  -22(4) 

O(3) 248(5)  234(5) 155(4)  65(4) 9(4)  49(4) 

O(4) 240(5)  171(5) 217(5)  47(4) -100(4)  13(4) 

O(5) 207(5)  140(4) 162(4)  -7(3) 37(3)  -6(3) 

O(6) 220(5)  90(4) 246(5)  18(3) 38(4)  9(3) 

C(1) 129(5)  80(4) 150(5)  16(4) -14(4)  3(4) 

C(2) 145(5)  78(4) 203(5)  26(4) -39(4)  -7(4) 

C(3) 249(7)  106(5) 248(6)  -17(4) -65(5)  -1(5) 

C(4) 164(6)  138(5) 281(7)  57(5) -14(5)  -46(4) 

C(5) 148(6)  190(6) 241(6)  75(5) 30(5)  -21(5) 

C(6) 119(5)  118(5) 171(5)  28(4) 6(4)  15(4) 

C(7) 150(5)  119(5) 137(5)  24(4) 14(4)  37(4) 

C(8) 183(6)  165(5) 161(5)  45(4) 60(4)  45(5) 

C(9) 146(5)  88(4) 113(4)  2(4) -10(4)  13(4) 

C(10) 175(5)  99(5) 144(5)  -7(4) -40(4)  12(4) 

C(11) 159(5)  160(6) 224(6)  -54(5) 21(5)  -41(5) 

C(12) 124(5)  96(5) 150(5)  -16(4) 10(4)  -5(4) 

C(13) 138(5)  61(4) 156(5)  -1(4) 9(4)  7(4) 

C(14) 199(6)  82(4) 137(5)  6(4) -40(4)  6(4) 

C(15) 180(5)  83(4) 131(5)  -6(4) -18(4)  9(4) 

C(16) 260(7)  97(5) 205(6)  -18(4) -106(5)  11(5) 

C(17) 164(5)  83(4) 135(5)  -1(4) -2(4)  8(4) 

C(18) 225(6)  89(5) 164(5)  -17(4) 14(5)  -7(4) 

C(19) 215(6)  127(5) 201(6)  14(4) -43(5)  19(5) 

______________________________________________________________________________ 
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Table A7.12.   Hydrogen coordinates ( x 104) and isotropic  displacement parameters 

(Å2x 10 3)for dicyclobutane 500. 

________________________________________________________________________________  

 x  y  z  U(eq) 

________________________________________________________________________________  

  
H(1) 6684 8471 6306 25 

H(4) 5784 5170 4181 31 

H(6) 5423 103 6566 28 

H(1A) 8603 6283 7717 14 

H(3A) 7789 8999 7771 30 

H(3B) 8745 8144 8275 30 

H(3C) 7194 7979 8324 30 

H(4A) 9046 8529 5909 23 

H(4B) 9948 7989 6756 23 

H(5) 10360 6843 5470 23 

H(6A) 9606 5501 6439 16 

H(7) 8714 4791 5058 16 

H(11A) 4063 5183 6019 22 

H(11B) 4732 4326 6784 22 

H(12) 5924 6206 5925 15 

H(14A) 8315 3845 6603 17 

H(14B) 6887 3812 7111 17 

H(15) 7729 2696 5337 16 

H(16A) 5768 2845 4594 22 

H(16B) 4982 2784 5637 22 

H(17) 6081 1881 6899 15 

H(18A) 6042 1052 5244 19 

H(18B) 7499 647 5464 19 

H(19A) 7913 917 7525 27 

H(19B) 8084 2171 7677 27 

H(19C) 8849 1578 6792 27 
________________________________________________________________________________ 
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Table A7.13. Torsion angles [∞] for triol 513a. 

________________________________________________________________  

O(1)-C(2)-C(4)-C(5) -79.58(13) 

O(2)-C(5)-C(6)-C(1) -105.80(11) 

O(2)-C(5)-C(6)-C(7) 19.30(13) 

O(4)-C(10)-C(11)-C(12) -98.40(12) 

O(4)-C(10)-C(16)-C(15) 137.74(11) 

C(1)-C(2)-C(4)-C(5) 34.76(13) 

C(1)-C(6)-C(7)-C(8) 94.36(12) 

C(1)-C(6)-C(7)-C(9) -30.62(14) 

C(2)-C(1)-C(6)-C(5) 9.99(13) 

C(2)-C(1)-C(6)-C(7) -105.35(12) 

C(2)-C(1)-C(13)-O(5) -91.19(14) 

C(2)-C(1)-C(13)-C(12) 91.19(12) 

C(2)-C(4)-C(5)-O(2) 84.92(13) 

C(2)-C(4)-C(5)-C(6) -29.20(14) 

C(3)-C(2)-C(4)-C(5) 156.31(11) 

C(4)-C(5)-C(6)-C(1) 11.36(14) 

C(4)-C(5)-C(6)-C(7) 136.46(11) 

C(5)-O(2)-C(8)-O(3) 175.54(12) 

C(5)-O(2)-C(8)-C(7) -6.18(15) 

C(5)-C(6)-C(7)-C(8) -21.94(12) 

C(5)-C(6)-C(7)-C(9) -146.91(10) 

C(6)-C(1)-C(2)-O(1) 89.94(12) 

C(6)-C(1)-C(2)-C(3) -148.85(11) 

C(6)-C(1)-C(2)-C(4) -27.15(13) 

C(6)-C(1)-C(13)-O(5) 146.60(12) 

C(6)-C(1)-C(13)-C(12) -31.03(14) 

C(6)-C(7)-C(8)-O(2) 18.23(13) 

C(6)-C(7)-C(8)-O(3) -163.63(13) 

C(6)-C(7)-C(9)-C(10) 161.05(11) 

C(6)-C(7)-C(9)-C(12) 55.47(12) 

C(6)-C(7)-C(9)-C(14) -71.76(12) 

C(7)-C(9)-C(10)-O(4) -24.01(18) 

C(7)-C(9)-C(10)-C(11) -136.98(13) 
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C(7)-C(9)-C(10)-C(16) 105.66(14) 

C(7)-C(9)-C(12)-C(11) 155.80(10) 

C(7)-C(9)-C(12)-C(13) -70.95(12) 

C(7)-C(9)-C(14)-C(15) -106.00(11) 

C(8)-O(2)-C(5)-C(4) -123.70(12) 

C(8)-O(2)-C(5)-C(6) -8.76(15) 

C(8)-C(7)-C(9)-C(10) 44.64(17) 

C(8)-C(7)-C(9)-C(12) -60.94(14) 

C(8)-C(7)-C(9)-C(14) 171.83(10) 

C(9)-C(7)-C(8)-O(2) 138.56(11) 

C(9)-C(7)-C(8)-O(3) -43.30(18) 

C(9)-C(10)-C(11)-C(12) 21.52(9) 

C(9)-C(10)-C(16)-C(15) 4.37(15) 

C(9)-C(12)-C(13)-O(5) -121.85(13) 

C(9)-C(12)-C(13)-C(1) 55.64(13) 

C(9)-C(14)-C(15)-C(16) -35.43(13) 

C(9)-C(14)-C(15)-C(17) -158.22(11) 

C(10)-C(9)-C(12)-C(11) 21.90(9) 

C(10)-C(9)-C(12)-C(13) 155.15(10) 

C(10)-C(9)-C(14)-C(15) 36.73(12) 

C(10)-C(11)-C(12)-C(9) -22.02(9) 

C(10)-C(11)-C(12)-C(13) -137.67(13) 

C(11)-C(10)-C(16)-C(15) -91.96(14) 

C(11)-C(12)-C(13)-O(5) -15.0(2) 

C(11)-C(12)-C(13)-C(1) 162.49(12) 

C(12)-C(9)-C(10)-O(4) 91.51(12) 

C(12)-C(9)-C(10)-C(11) -21.47(9) 

C(12)-C(9)-C(10)-C(16) -138.83(11) 

C(12)-C(9)-C(14)-C(15) 128.49(11) 

C(13)-C(1)-C(2)-O(1) -38.79(13) 

C(13)-C(1)-C(2)-C(3) 82.43(13) 

C(13)-C(1)-C(2)-C(4) -155.87(10) 

C(13)-C(1)-C(6)-C(5) 134.19(11) 

C(13)-C(1)-C(6)-C(7) 18.86(15) 

C(14)-C(9)-C(10)-O(4) -154.85(11) 

C(14)-C(9)-C(10)-C(11) 92.17(10) 
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C(14)-C(9)-C(10)-C(16) -25.19(13) 

C(14)-C(9)-C(12)-C(11) -78.49(12) 

C(14)-C(9)-C(12)-C(13) 54.76(13) 

C(14)-C(15)-C(16)-C(10) 18.65(14) 

C(14)-C(15)-C(17)-C(18) -175.42(11) 

C(14)-C(15)-C(17)-C(19) -50.80(15) 

C(15)-C(17)-C(18)-O(6) -163.03(11) 

C(16)-C(10)-C(11)-C(12) 131.10(12) 

C(16)-C(15)-C(17)-C(18) 66.15(14) 

C(16)-C(15)-C(17)-C(19) -169.23(11) 

C(17)-C(15)-C(16)-C(10) 142.70(11) 

C(19)-C(17)-C(18)-O(6) 70.85(15) 

________________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  
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Table A7.14. Hydrogen bonds for triol 513a. 

____________________________________________________________________________  

D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 

____________________________________________________________________________  

 O(1)-H(1)...O(6)#1 0.84 1.93 2.7645(15) 170.3 

 O(4)-H(4)...O(3) 0.84 1.85 2.6841(17) 172.0 

 O(6)-H(6)...O(5)#2 0.84 2.01 2.8235(16) 161.6 

____________________________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  

#1 x,y+1,z    #2 -x+1,y-1/2,-z+3/2       
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A7.3 X-RAY CRYSTAL STRUCTURE ANALYSIS FOR TRIOL 513b. 
 
Figure A7.3. X-ray Crystal Structure for 513b. 

 
 
Table A7.15. X-Ray Coordinate of Compound 513b. 

Identification code  V20005 

Empirical formula  C19 H32 O9 

Formula weight  404.44 

Temperature  100(2) K 

Wavelength  1.54178 ≈ 

Crystal system  Orthorhombic 

Space group  P212121 

Unit cell dimensions a = 9.0245(13) ≈ α= 90∞. 

 b = 13.383(2) ≈ β= 90∞. 

 c = 16.329(3) ≈ γ = 90∞. 

Volume 1972.1(5) ≈3 

Z 4 

Density (calculated) 1.362 Mg/m3 

Absorption coefficient 0.906 mm-1 
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F(000) 872 

Crystal size 0.600 x 0.300 x 0.150 mm3 

Theta range for data collection 4.271 to 74.810∞. 

Index ranges -11<=h<=10, -16<=k<=15, -19<=l<=20 

Reflections collected 20468 

Independent reflections 4017 [R(int) = 0.0461] 

Completeness to theta = 67.679∞ 99.7 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7538 and 0.5503 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 4017 / 9 / 282 

Goodness-of-fit on F2 1.087 

Final R indices [I>2sigma(I)] R1 = 0.0314, wR2 = 0.0874 

R indices (all data) R1 = 0.0315, wR2 = 0.0875 

Absolute structure parameter 0.06(4) 

Extinction coefficient n/a 

Largest diff. peak and hole 0.342 and -0.300 e.≈-3 
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Table A7.16  Atomic coordinates  ( x 105) and equivalent  isotropic displacement parameters 

(≈2x 104) for triol 513b.  U(eq) is defined as one third of the trace of the 

orthogonalized Uij tensor 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   
O(1) 7488(2) 5070(1) 8786(1) 20(1) 

C(1) 6251(2) 5178(1) 8340(1) 17(1) 

O(2) 5331(2) 5794(1) 8528(1) 23(1) 

C(2) 6244(2) 4454(1) 7623(1) 14(1) 

C(3) 4778(2) 3952(1) 7419(1) 12(1) 

C(4) 4938(2) 3335(1) 6621(1) 14(1) 

C(5) 4168(2) 3973(1) 5960(1) 14(1) 

C(6) 2780(2) 4388(1) 6396(1) 16(1) 

C(16) 3800(2) 3404(1) 5169(1) 16(1) 

C(17) 5215(2) 3010(1) 4767(1) 19(1) 

O(3) 4944(2) 2495(1) 4010(1) 22(1) 

C(18) 2929(2) 4059(2) 4575(1) 22(1) 

C(7) 3164(2) 4383(1) 7305(1) 14(1) 

O(4) 2807(2) 5300(1) 7691(1) 21(1) 

C(8) 2599(2) 3462(1) 7821(1) 18(1) 

C(9) 4188(2) 3370(1) 8165(1) 14(1) 

C(10) 5111(2) 2472(1) 8330(1) 13(1) 

O(5) 4650(1) 1619(1) 8426(1) 18(1) 

C(11) 6770(2) 2710(1) 8379(1) 13(1) 

C(12) 7370(2) 3649(1) 7898(1) 14(1) 

C(13) 8371(2) 4213(1) 8507(1) 18(1) 

C(14) 8646(2) 3502(2) 9217(1) 18(1) 

C(15) 7232(2) 2868(1) 9288(1) 14(1) 

O(6) 6066(1) 3429(1) 9662(1) 17(1) 

C(19) 7469(2) 1889(1) 9746(1) 19(1) 

O(1W) 4785(2) 3561(1) 2568(1) 28(1) 

O(2W) 6663(2) 3854(1) 1302(1) 21(1) 

O(3W) 3494(2) 756(1) 4427(1) 36(1) 
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________________________________________________________________________________ 
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Table A7.17  Bond lengths [≈] and angles [∞] for dicyclobutane 513b 

____________________________________________________  

O(1)-C(1)  1.340(2) 

O(1)-C(13)  1.469(2) 

C(1)-O(2)  1.210(2) 

C(1)-C(2)  1.520(2) 

C(2)-C(3)  1.521(2) 

C(2)-C(12)  1.549(2) 

C(2)-H(2)  1.0000 

C(3)-C(9)  1.541(2) 

C(3)-C(4)  1.549(2) 

C(3)-C(7)  1.578(2) 

C(4)-C(5)  1.542(2) 

C(4)-H(4A)  0.9900 

C(4)-H(4B)  0.9900 

C(5)-C(16)  1.536(2) 

C(5)-C(6)  1.544(2) 

C(5)-H(5)  1.0000 

C(6)-C(7)  1.525(2) 

C(6)-H(6A)  0.9900 

C(6)-H(6B)  0.9900 

C(16)-C(18)  1.525(3) 

C(16)-C(17)  1.529(3) 

C(16)-H(16)  1.0000 

C(17)-O(3)  1.436(2) 

C(17)-H(17A)  0.9900 

C(17)-H(17B)  0.9900 

O(3)-H(3O)  0.80(2) 

C(18)-H(18A)  0.9800 

C(18)-H(18B)  0.9800 

C(18)-H(18C)  0.9800 

C(7)-O(4)  1.417(2) 

C(7)-C(8)  1.577(2) 

O(4)-H(4O)  0.82(2) 

C(8)-C(9)  1.545(2) 

C(8)-H(8A)  0.9900 
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C(8)-H(8B)  0.9900 

C(9)-C(10)  1.486(2) 

C(9)-H(9)  1.0000 

C(10)-O(5)  1.226(2) 

C(10)-C(11)  1.533(2) 

C(11)-C(15)  1.557(2) 

C(11)-C(12)  1.577(2) 

C(11)-H(11)  1.0000 

C(12)-C(13)  1.541(2) 

C(12)-H(12)  1.0000 

C(13)-C(14)  1.520(3) 

C(13)-H(13)  1.0000 

C(14)-C(15)  1.536(2) 

C(14)-H(14A)  0.9900 

C(14)-H(14B)  0.9900 

C(15)-O(6)  1.430(2) 

C(15)-C(19)  1.523(2) 

O(6)-H(6O)  0.85(2) 

C(19)-H(19A)  0.9800 

C(19)-H(19B)  0.9800 

C(19)-H(19C)  0.9800 

O(1W)-H(1W1)  0.85(2) 

O(1W)-H(1W2)  0.85(2) 

O(2W)-H(2W1)  0.84(2) 

O(2W)-H(2W2)  0.86(2) 

O(3W)-H(3W1)  0.84(2) 

O(3W)-H(3W2)  0.87(2) 

 

C(1)-O(1)-C(13) 111.53(14) 

O(2)-C(1)-O(1) 120.48(17) 

O(2)-C(1)-C(2) 128.76(17) 

O(1)-C(1)-C(2) 110.76(15) 

C(1)-C(2)-C(3) 117.03(14) 

C(1)-C(2)-C(12) 102.49(14) 

C(3)-C(2)-C(12) 109.07(14) 

C(1)-C(2)-H(2) 109.3 
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C(3)-C(2)-H(2) 109.3 

C(12)-C(2)-H(2) 109.3 

C(2)-C(3)-C(9) 110.52(13) 

C(2)-C(3)-C(4) 109.79(14) 

C(9)-C(3)-C(4) 115.36(14) 

C(2)-C(3)-C(7) 131.85(15) 

C(9)-C(3)-C(7) 87.64(13) 

C(4)-C(3)-C(7) 100.48(13) 

C(5)-C(4)-C(3) 104.57(13) 

C(5)-C(4)-H(4A) 110.8 

C(3)-C(4)-H(4A) 110.8 

C(5)-C(4)-H(4B) 110.8 

C(3)-C(4)-H(4B) 110.8 

H(4A)-C(4)-H(4B) 108.9 

C(16)-C(5)-C(4) 114.32(15) 

C(16)-C(5)-C(6) 113.02(15) 

C(4)-C(5)-C(6) 103.99(13) 

C(16)-C(5)-H(5) 108.4 

C(4)-C(5)-H(5) 108.4 

C(6)-C(5)-H(5) 108.4 

C(7)-C(6)-C(5) 105.26(14) 

C(7)-C(6)-H(6A) 110.7 

C(5)-C(6)-H(6A) 110.7 

C(7)-C(6)-H(6B) 110.7 

C(5)-C(6)-H(6B) 110.7 

H(6A)-C(6)-H(6B) 108.8 

C(18)-C(16)-C(17) 110.89(15) 

C(18)-C(16)-C(5) 111.16(15) 

C(17)-C(16)-C(5) 110.59(15) 

C(18)-C(16)-H(16) 108.0 

C(17)-C(16)-H(16) 108.0 

C(5)-C(16)-H(16) 108.0 

O(3)-C(17)-C(16) 113.11(16) 

O(3)-C(17)-H(17A) 109.0 

C(16)-C(17)-H(17A) 109.0 

O(3)-C(17)-H(17B) 109.0 
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C(16)-C(17)-H(17B) 109.0 

H(17A)-C(17)-H(17B) 107.8 

C(17)-O(3)-H(3O) 104(2) 

C(16)-C(18)-H(18A) 109.5 

C(16)-C(18)-H(18B) 109.5 

H(18A)-C(18)-H(18B) 109.5 

C(16)-C(18)-H(18C) 109.5 

H(18A)-C(18)-H(18C) 109.5 

H(18B)-C(18)-H(18C) 109.5 

O(4)-C(7)-C(6) 112.16(15) 

O(4)-C(7)-C(8) 111.50(14) 

C(6)-C(7)-C(8) 116.74(15) 

O(4)-C(7)-C(3) 118.31(15) 

C(6)-C(7)-C(3) 109.03(14) 

C(8)-C(7)-C(3) 87.12(13) 

C(7)-O(4)-H(4O) 112(2) 

C(9)-C(8)-C(7) 87.50(13) 

C(9)-C(8)-H(8A) 114.1 

C(7)-C(8)-H(8A) 114.1 

C(9)-C(8)-H(8B) 114.1 

C(7)-C(8)-H(8B) 114.1 

H(8A)-C(8)-H(8B) 111.3 

C(10)-C(9)-C(3) 110.97(14) 

C(10)-C(9)-C(8) 130.51(16) 

C(3)-C(9)-C(8) 89.58(12) 

C(10)-C(9)-H(9) 107.7 

C(3)-C(9)-H(9) 107.7 

C(8)-C(9)-H(9) 107.7 

O(5)-C(10)-C(9) 125.92(16) 

O(5)-C(10)-C(11) 121.20(16) 

C(9)-C(10)-C(11) 112.88(15) 

C(10)-C(11)-C(15) 109.83(13) 

C(10)-C(11)-C(12) 118.35(14) 

C(15)-C(11)-C(12) 105.90(13) 

C(10)-C(11)-H(11) 107.4 

C(15)-C(11)-H(11) 107.4 
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C(12)-C(11)-H(11) 107.4 

C(13)-C(12)-C(2) 103.35(14) 

C(13)-C(12)-C(11) 105.74(13) 

C(2)-C(12)-C(11) 118.28(14) 

C(13)-C(12)-H(12) 109.7 

C(2)-C(12)-H(12) 109.7 

C(11)-C(12)-H(12) 109.7 

O(1)-C(13)-C(14) 109.94(15) 

O(1)-C(13)-C(12) 105.36(14) 

C(14)-C(13)-C(12) 106.27(14) 

O(1)-C(13)-H(13) 111.7 

C(14)-C(13)-H(13) 111.7 

C(12)-C(13)-H(13) 111.7 

C(13)-C(14)-C(15) 105.55(14) 

C(13)-C(14)-H(14A) 110.6 

C(15)-C(14)-H(14A) 110.6 

C(13)-C(14)-H(14B) 110.6 

C(15)-C(14)-H(14B) 110.6 

H(14A)-C(14)-H(14B) 108.8 

O(6)-C(15)-C(19) 110.20(15) 

O(6)-C(15)-C(14) 110.70(14) 

C(19)-C(15)-C(14) 113.33(14) 

O(6)-C(15)-C(11) 106.36(13) 

C(19)-C(15)-C(11) 112.85(15) 

C(14)-C(15)-C(11) 103.01(14) 

C(15)-O(6)-H(6O) 109.5(19) 

C(15)-C(19)-H(19A) 109.5 

C(15)-C(19)-H(19B) 109.5 

H(19A)-C(19)-H(19B) 109.5 

C(15)-C(19)-H(19C) 109.5 

H(19A)-C(19)-H(19C) 109.5 

H(19B)-C(19)-H(19C) 109.5 

H(1W1)-O(1W)-H(1W2) 103(3) 

H(2W1)-O(2W)-H(2W2) 105(3) 

H(3W1)-O(3W)-H(3W2) 111(3) 

_____________________________________________________________  
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Symmetry transformations used to generate equivalent atoms:  
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Table A7.18. Anisotropic displacement parameters  (Å2x 104) for triol 513b.  The 

anisotropic displacement factor exponent takes the form:  -2p2[ h2 a*2U11 +  + 2 h k a* 

b* U12] 

______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 

______________________________________________________________________________  

O(1) 22(1)  15(1) 22(1)  -2(1) -5(1)  -4(1) 

C(1) 22(1)  11(1) 18(1)  2(1) -1(1)  -5(1) 

O(2) 28(1)  16(1) 25(1)  -5(1) 0(1)  1(1) 

C(2) 16(1)  12(1) 13(1)  2(1) 2(1)  -1(1) 

C(3) 14(1)  12(1) 10(1)  2(1) 0(1)  0(1) 

C(4) 17(1)  14(1) 12(1)  0(1) 0(1)  2(1) 

C(5) 18(1)  13(1) 11(1)  1(1) -1(1)  2(1) 

C(6) 19(1)  18(1) 13(1)  2(1) -1(1)  6(1) 

C(16) 18(1)  16(1) 13(1)  0(1) -1(1)  0(1) 

C(17) 23(1)  21(1) 13(1)  -3(1) 0(1)  2(1) 

O(3) 34(1)  19(1) 13(1)  -3(1) 2(1)  1(1) 

C(18) 28(1)  25(1) 14(1)  0(1) -4(1)  5(1) 

C(7) 15(1)  15(1) 14(1)  0(1) 1(1)  2(1) 

O(4) 21(1)  22(1) 21(1)  -8(1) -2(1)  7(1) 

C(8) 14(1)  23(1) 17(1)  5(1) 0(1)  -1(1) 

C(9) 14(1)  15(1) 12(1)  3(1) -1(1)  -2(1) 

C(10) 16(1)  15(1) 8(1)  1(1) -1(1)  -2(1) 

O(5) 20(1)  15(1) 20(1)  4(1) -1(1)  -4(1) 

C(11) 14(1)  14(1) 11(1)  1(1) 0(1)  -1(1) 

C(12) 13(1)  15(1) 15(1)  1(1) 2(1)  -2(1) 

C(13) 15(1)  18(1) 21(1)  0(1) -1(1)  -3(1) 

C(14) 14(1)  21(1) 20(1)  0(1) -5(1)  -2(1) 

C(15) 15(1)  16(1) 13(1)  -1(1) -3(1)  0(1) 

O(6) 17(1)  20(1) 13(1)  -2(1) -1(1)  4(1) 

C(19) 21(1)  19(1) 16(1)  3(1) -4(1)  1(1) 

O(1W) 25(1)  39(1) 20(1)  9(1) 5(1)  12(1) 

O(2W) 22(1)  26(1) 16(1)  0(1) -1(1)  6(1) 

O(3W) 61(1)  22(1) 25(1)  0(1) 8(1)  -2(1) 

______________________________________________________________________________ 



Appendix 7: X-Ray Crystallography Reports Relevant to Chapter 4 

	

446 

Table A7.19. Hydrogen coordinates ( x 104) and isotropic  displacement parameters (Å2x 

10 3) for dicyclobutane 513b. 

________________________________________________________________________________  

 x  y  z  U(eq) 

________________________________________________________________________________  

  
H(2) 6630 4801 7124 16 

H(4A) 5995 3229 6485 17 

H(4B) 4448 2676 6677 17 

H(5) 4831 4546 5819 17 

H(6A) 2559 5075 6207 20 

H(6B) 1908 3959 6287 20 

H(16) 3168 2818 5316 19 

H(17A) 5892 3578 4662 22 

H(17B) 5717 2549 5152 22 

H(3O) 4480(30) 2009(19) 4146(18) 33 

H(18A) 2013 4285 4839 33 

H(18B) 2685 3673 4084 33 

H(18C) 3528 4640 4422 33 

H(4O) 3520(30) 5530(20) 7947(16) 31 

H(8A) 1843 3633 8237 22 

H(8B) 2282 2884 7485 22 

H(9) 4262 3819 8653 16 

H(11) 7318 2112 8171 16 

H(12) 7970 3424 7418 17 

H(13) 9319 4431 8245 22 

H(14A) 8825 3878 9729 22 

H(14B) 9516 3073 9105 22 

H(6O) 6270(30) 3525(19) 10162(13) 25 

H(19A) 7686 2030 10322 28 

H(19B) 8302 1527 9501 28 

H(19C) 6570 1480 9708 28 

H(1W1) 4840(40) 3250(20) 3020(15) 42 

H(1W2) 4070(30) 3960(20) 2643(19) 42 

H(2W1) 6130(30) 3730(20) 1714(15) 32 

H(2W2) 7530(30) 3640(20) 1429(17) 32 
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H(3W1) 3680(40) 690(30) 4929(15) 54 

H(3W2) 3500(40) 174(19) 4180(20) 54 

________________________________________________________________________________ 
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Table A7.20. Torsion angles [∞] for dicyclobutane 513b 

________________________________________________________________  

C(13)-O(1)-C(1)-O(2) 173.80(17) 

C(13)-O(1)-C(1)-C(2) -6.71(19) 

O(2)-C(1)-C(2)-C(3) -40.9(3) 

O(1)-C(1)-C(2)-C(3) 139.63(15) 

O(2)-C(1)-C(2)-C(12) -160.19(19) 

O(1)-C(1)-C(2)-C(12) 20.37(18) 

C(1)-C(2)-C(3)-C(9) -57.69(19) 

C(12)-C(2)-C(3)-C(9) 57.98(18) 

C(1)-C(2)-C(3)-C(4) 173.93(14) 

C(12)-C(2)-C(3)-C(4) -70.40(17) 

C(1)-C(2)-C(3)-C(7) 48.3(2) 

C(12)-C(2)-C(3)-C(7) 164.02(16) 

C(2)-C(3)-C(4)-C(5) -103.66(16) 

C(9)-C(3)-C(4)-C(5) 130.68(15) 

C(7)-C(3)-C(4)-C(5) 38.30(16) 

C(3)-C(4)-C(5)-C(16) -164.03(14) 

C(3)-C(4)-C(5)-C(6) -40.33(17) 

C(16)-C(5)-C(6)-C(7) 149.27(15) 

C(4)-C(5)-C(6)-C(7) 24.73(18) 

C(4)-C(5)-C(16)-C(18) 175.24(16) 

C(6)-C(5)-C(16)-C(18) 56.5(2) 

C(4)-C(5)-C(16)-C(17) -61.13(19) 

C(6)-C(5)-C(16)-C(17) -179.83(15) 

C(18)-C(16)-C(17)-O(3) -54.5(2) 

C(5)-C(16)-C(17)-O(3) -178.33(15) 

C(5)-C(6)-C(7)-O(4) 132.31(15) 

C(5)-C(6)-C(7)-C(8) -97.27(17) 

C(5)-C(6)-C(7)-C(3) -0.71(19) 

C(2)-C(3)-C(7)-O(4) -24.0(3) 

C(9)-C(3)-C(7)-O(4) 91.77(16) 

C(4)-C(3)-C(7)-O(4) -152.87(15) 

C(2)-C(3)-C(7)-C(6) 105.8(2) 

C(9)-C(3)-C(7)-C(6) -138.51(15) 

C(4)-C(3)-C(7)-C(6) -23.14(17) 
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C(2)-C(3)-C(7)-C(8) -136.90(18) 

C(9)-C(3)-C(7)-C(8) -21.17(12) 

C(4)-C(3)-C(7)-C(8) 94.19(13) 

O(4)-C(7)-C(8)-C(9) -98.27(15) 

C(6)-C(7)-C(8)-C(9) 131.00(15) 

C(3)-C(7)-C(8)-C(9) 21.11(12) 

C(2)-C(3)-C(9)-C(10) -70.31(18) 

C(4)-C(3)-C(9)-C(10) 54.98(19) 

C(7)-C(3)-C(9)-C(10) 155.46(14) 

C(2)-C(3)-C(9)-C(8) 155.83(15) 

C(4)-C(3)-C(9)-C(8) -78.88(16) 

C(7)-C(3)-C(9)-C(8) 21.60(13) 

C(7)-C(8)-C(9)-C(10) -139.29(18) 

C(7)-C(8)-C(9)-C(3) -21.61(13) 

C(3)-C(9)-C(10)-O(5) -129.31(18) 

C(8)-C(9)-C(10)-O(5) -20.8(3) 

C(3)-C(9)-C(10)-C(11) 51.09(19) 

C(8)-C(9)-C(10)-C(11) 159.58(16) 

O(5)-C(10)-C(11)-C(15) -84.3(2) 

C(9)-C(10)-C(11)-C(15) 95.36(17) 

O(5)-C(10)-C(11)-C(12) 154.02(16) 

C(9)-C(10)-C(11)-C(12) -26.4(2) 

C(1)-C(2)-C(12)-C(13) -24.82(16) 

C(3)-C(2)-C(12)-C(13) -149.51(14) 

C(1)-C(2)-C(12)-C(11) 91.56(17) 

C(3)-C(2)-C(12)-C(11) -33.1(2) 

C(10)-C(11)-C(12)-C(13) 133.11(16) 

C(15)-C(11)-C(12)-C(13) 9.42(18) 

C(10)-C(11)-C(12)-C(2) 18.0(2) 

C(15)-C(11)-C(12)-C(2) -105.67(16) 

C(1)-O(1)-C(13)-C(14) -124.26(15) 

C(1)-O(1)-C(13)-C(12) -10.13(19) 

C(2)-C(12)-C(13)-O(1) 21.90(17) 

C(11)-C(12)-C(13)-O(1) -103.05(15) 

C(2)-C(12)-C(13)-C(14) 138.55(14) 

C(11)-C(12)-C(13)-C(14) 13.60(18) 



Appendix 7: X-Ray Crystallography Reports Relevant to Chapter 4 

	

450 

O(1)-C(13)-C(14)-C(15) 81.46(17) 

C(12)-C(13)-C(14)-C(15) -32.08(18) 

C(13)-C(14)-C(15)-O(6) -75.99(18) 

C(13)-C(14)-C(15)-C(19) 159.61(15) 

C(13)-C(14)-C(15)-C(11) 37.36(17) 

C(10)-C(11)-C(15)-O(6) -40.78(18) 

C(12)-C(11)-C(15)-O(6) 88.10(15) 

C(10)-C(11)-C(15)-C(19) 80.17(18) 

C(12)-C(11)-C(15)-C(19) -150.95(15) 

C(10)-C(11)-C(15)-C(14) -157.26(14) 

C(12)-C(11)-C(15)-C(14) -28.37(17) 

________________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  
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Table 21.  Hydrogen bonds for V20005  [≈ and ∞]. 

____________________________________________________________________________  

D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 

____________________________________________________________________________  

 O(3)-H(3O)...O(3W) 0.80(2) 1.95(2) 2.755(2) 175(3) 

 O(4)-H(4O)...O(2) 0.82(2) 1.93(2) 2.737(2) 168(3) 

 C(9)-H(9)...O(6) 1.00 2.37 2.976(2) 117.8 

 O(6)-H(6O)...O(2W)#1 0.85(2) 1.95(2) 2.790(2) 175(3) 

 O(1W)-H(1W1)...O(3) 0.85(2) 1.91(2) 2.758(2) 178(3) 

 O(1W)-H(1W2)...O(4)#2 0.85(2) 1.96(2) 2.799(2) 169(3) 

 O(2W)-H(2W1)...O(1W) 0.84(2) 1.86(2) 2.701(2) 173(3) 

 O(2W)-H(2W2)...O(5)#3 0.86(2) 1.96(2) 2.804(2) 168(3) 

 O(3W)-H(3W1)...O(1)#4 0.84(2) 2.49(3) 3.184(2) 141(3) 

 O(3W)-H(3W2)...O(2W)#5 0.87(2) 1.94(2) 2.814(2) 175(4) 

____________________________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  

#1 x,y,z+1    #2 -x+1/2,-y+1,z-1/2    #3 x+1/2,-y+1/2,-z+1       

#4 -x+1,y-1/2,-z+3/2    #5 -x+1,y-1/2,-z+1/2       
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A7.4 X-RAY CRYSTAL STRUCTURE ANALYSIS FOR SCABROLIDE A (416) 
 

 
 
Figure A7.4. X-ray coordinate of scabrolide a (416) 

 
Table A7.22 Crystal data and structure refinement for scabrolide A (416). 

Identification code  V20018 

Empirical formula  C19 H22 O5 

Formula weight  330.36 

Temperature  100(2) K 

Wavelength  1.54178 ≈ 

Crystal system  Orthorhombic 

Space group  P212121 

Unit cell dimensions a = 6.1878(4) ≈ α= 90∞. 

 b = 14.9676(14) ≈ β= 90∞. 

 c = 17.511(2) ≈ γ = 90∞. 

Volume 1621.8(3) ≈3 

Z 4 

Density (calculated) 1.353 Mg/m3 

Absorption coefficient 0.800 mm-1 

F(000) 704 

Crystal size 0.450 x 0.200 x 0.150 mm3 

Theta range for data collection 3.885 to 74.514∞. 

Index ranges -7<=h<=7, -18<=k<=18, -20<=l<=21 

Reflections collected 14706 
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Independent reflections 3306 [R(int) = 0.0575] 

Completeness to theta = 67.679∞ 100.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7538 and 0.6083 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3306 / 1 / 222 

Goodness-of-fit on F2 1.048 

Final R indices [I>2sigma(I)] R1 = 0.0353, wR2 = 0.0889 

R indices (all data) R1 = 0.0369, wR2 = 0.0906 

Absolute structure parameter 0.00(7) 

Extinction coefficient n/a 

Largest diff. peak and hole 0.657 and -0.199 e.≈-3 
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Table 23.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (≈2x 103) 

for V20018.  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   
O(1) 1620(2) 5711(1) 5387(1) 19(1) 

C(1) 2687(3) 6235(1) 4894(1) 16(1) 

O(2) 1762(2) 6741(1) 4470(1) 20(1) 

C(2) 5129(3) 6135(1) 5002(1) 16(1) 

C(3) 6351(3) 6183(1) 4262(1) 14(1) 

C(4) 6411(3) 7080(1) 3873(1) 17(1) 

C(5) 5192(3) 7133(1) 3101(1) 18(1) 

C(16) 5851(4) 7974(2) 2674(1) 22(1) 

C(17) 4347(5) 8604(2) 2509(2) 34(1) 

C(18) 8117(4) 8092(2) 2448(2) 34(1) 

C(6) 5415(4) 6278(2) 2609(1) 21(1) 

C(7) 7669(4) 5905(1) 2542(1) 22(1) 

O(3) 8577(4) 5848(1) 1932(1) 38(1) 

C(8) 8816(3) 5587(2) 3257(1) 18(1) 

C(9) 7470(3) 5491(1) 3974(1) 15(1) 

C(10) 7522(3) 4620(1) 4364(1) 15(1) 

O(4) 8720(2) 4016(1) 4141(1) 19(1) 

C(11) 6084(3) 4457(1) 5040(1) 15(1) 

C(12) 3939(3) 3993(1) 4811(1) 16(1) 

O(5) 3102(2) 4518(1) 4189(1) 15(1) 

C(19) 4176(3) 3021(1) 4572(1) 21(1) 

C(13) 2585(3) 4137(1) 5535(1) 18(1) 

C(14) 3075(3) 5093(1) 5780(1) 19(1) 

C(15) 5399(3) 5298(1) 5486(1) 16(1) 

________________________________________________________________________________ 
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Table 24.   Bond lengths [≈] and angles [∞] for  V20018. 

_____________________________________________________  

O(1)-C(1)  1.341(3) 

O(1)-C(14)  1.462(3) 

C(1)-O(2)  1.206(3) 

C(1)-C(2)  1.530(3) 

C(2)-C(3)  1.502(3) 

C(2)-C(15)  1.522(3) 

C(2)-H(2)  1.0000 

C(3)-C(9)  1.345(3) 

C(3)-C(4)  1.506(3) 

C(4)-C(5)  1.551(3) 

C(4)-H(4A)  0.9900 

C(4)-H(4B)  0.9900 

C(5)-C(16)  1.519(3) 

C(5)-C(6)  1.549(3) 

C(5)-H(5)  1.0000 

C(16)-C(17)  1.356(4) 

C(16)-C(18)  1.468(4) 

C(17)-H(17A)  0.9500 

C(17)-H(17B)  0.9500 

C(18)-H(18A)  0.9800 

C(18)-H(18B)  0.9800 

C(18)-H(18C)  0.9800 

C(6)-C(7)  1.507(3) 

C(6)-H(6A)  0.9900 

C(6)-H(6B)  0.9900 

C(7)-O(3)  1.210(3) 

C(7)-C(8)  1.515(3) 

C(8)-C(9)  1.514(3) 

C(8)-H(8A)  0.9900 

C(8)-H(8B)  0.9900 

C(9)-C(10)  1.472(3) 

C(10)-O(4)  1.232(3) 

C(10)-C(11)  1.501(3) 

C(11)-C(15)  1.540(3) 
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C(11)-C(12)  1.551(3) 

C(11)-H(11)  1.0000 

C(12)-O(5)  1.439(2) 

C(12)-C(19)  1.522(3) 

C(12)-C(13)  1.535(3) 

O(5)-H(5O)  0.84(2) 

C(19)-H(19A)  0.9800 

C(19)-H(19B)  0.9800 

C(19)-H(19C)  0.9800 

C(13)-C(14)  1.524(3) 

C(13)-H(13A)  0.9900 

C(13)-H(13B)  0.9900 

C(14)-C(15)  1.558(3) 

C(14)-H(14)  1.0000 

C(15)-H(15)  1.0000 

 

C(1)-O(1)-C(14) 111.70(15) 

O(2)-C(1)-O(1) 122.04(19) 

O(2)-C(1)-C(2) 127.36(19) 

O(1)-C(1)-C(2) 110.44(17) 

C(3)-C(2)-C(15) 117.69(17) 

C(3)-C(2)-C(1) 112.65(16) 

C(15)-C(2)-C(1) 104.94(16) 

C(3)-C(2)-H(2) 107.0 

C(15)-C(2)-H(2) 107.0 

C(1)-C(2)-H(2) 107.0 

C(9)-C(3)-C(2) 123.12(18) 

C(9)-C(3)-C(4) 120.27(18) 

C(2)-C(3)-C(4) 116.46(17) 

C(3)-C(4)-C(5) 115.37(16) 

C(3)-C(4)-H(4A) 108.4 

C(5)-C(4)-H(4A) 108.4 

C(3)-C(4)-H(4B) 108.4 

C(5)-C(4)-H(4B) 108.4 

H(4A)-C(4)-H(4B) 107.5 

C(16)-C(5)-C(6) 112.80(17) 
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C(16)-C(5)-C(4) 109.91(17) 

C(6)-C(5)-C(4) 113.52(17) 

C(16)-C(5)-H(5) 106.7 

C(6)-C(5)-H(5) 106.7 

C(4)-C(5)-H(5) 106.7 

C(17)-C(16)-C(18) 121.0(2) 

C(17)-C(16)-C(5) 119.8(2) 

C(18)-C(16)-C(5) 119.3(2) 

C(16)-C(17)-H(17A) 120.0 

C(16)-C(17)-H(17B) 120.0 

H(17A)-C(17)-H(17B) 120.0 

C(16)-C(18)-H(18A) 109.5 

C(16)-C(18)-H(18B) 109.5 

H(18A)-C(18)-H(18B) 109.5 

C(16)-C(18)-H(18C) 109.5 

H(18A)-C(18)-H(18C) 109.5 

H(18B)-C(18)-H(18C) 109.5 

C(7)-C(6)-C(5) 115.61(17) 

C(7)-C(6)-H(6A) 108.4 

C(5)-C(6)-H(6A) 108.4 

C(7)-C(6)-H(6B) 108.4 

C(5)-C(6)-H(6B) 108.4 

H(6A)-C(6)-H(6B) 107.4 

O(3)-C(7)-C(6) 121.7(2) 

O(3)-C(7)-C(8) 119.3(2) 

C(6)-C(7)-C(8) 119.01(18) 

C(9)-C(8)-C(7) 117.25(18) 

C(9)-C(8)-H(8A) 108.0 

C(7)-C(8)-H(8A) 108.0 

C(9)-C(8)-H(8B) 108.0 

C(7)-C(8)-H(8B) 108.0 

H(8A)-C(8)-H(8B) 107.2 

C(3)-C(9)-C(10) 121.31(18) 

C(3)-C(9)-C(8) 121.41(18) 

C(10)-C(9)-C(8) 117.22(17) 

O(4)-C(10)-C(9) 121.05(18) 
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O(4)-C(10)-C(11) 119.20(18) 

C(9)-C(10)-C(11) 119.75(17) 

C(10)-C(11)-C(15) 115.54(17) 

C(10)-C(11)-C(12) 112.03(16) 

C(15)-C(11)-C(12) 105.17(16) 

C(10)-C(11)-H(11) 107.9 

C(15)-C(11)-H(11) 107.9 

C(12)-C(11)-H(11) 107.9 

O(5)-C(12)-C(19) 110.42(17) 

O(5)-C(12)-C(13) 110.60(16) 

C(19)-C(12)-C(13) 114.45(17) 

O(5)-C(12)-C(11) 105.04(15) 

C(19)-C(12)-C(11) 114.65(17) 

C(13)-C(12)-C(11) 100.97(16) 

C(12)-O(5)-H(5O) 107(2) 

C(12)-C(19)-H(19A) 109.5 

C(12)-C(19)-H(19B) 109.5 

H(19A)-C(19)-H(19B) 109.5 

C(12)-C(19)-H(19C) 109.5 

H(19A)-C(19)-H(19C) 109.5 

H(19B)-C(19)-H(19C) 109.5 

C(14)-C(13)-C(12) 104.79(16) 

C(14)-C(13)-H(13A) 110.8 

C(12)-C(13)-H(13A) 110.8 

C(14)-C(13)-H(13B) 110.8 

C(12)-C(13)-H(13B) 110.8 

H(13A)-C(13)-H(13B) 108.9 

O(1)-C(14)-C(13) 109.84(16) 

O(1)-C(14)-C(15) 106.79(15) 

C(13)-C(14)-C(15) 106.01(17) 

O(1)-C(14)-H(14) 111.3 

C(13)-C(14)-H(14) 111.3 

C(15)-C(14)-H(14) 111.3 

C(2)-C(15)-C(11) 114.84(16) 

C(2)-C(15)-C(14) 104.14(16) 

C(11)-C(15)-C(14) 105.07(16) 
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C(2)-C(15)-H(15) 110.8 

C(11)-C(15)-H(15) 110.8 

C(14)-C(15)-H(15) 110.8 

_____________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  
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Table 25.   Anisotropic displacement parameters  (≈2x 103) for V20018.  The anisotropic 

displacement factor exponent takes the form:  -2π2[ h2 a*2U11 + ...  + 2 h k a* b* U12 ] 

______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 

______________________________________________________________________________  

O(1) 17(1)  21(1) 20(1)  0(1) 4(1)  5(1) 

C(1) 17(1)  18(1) 14(1)  -4(1) 2(1)  1(1) 

O(2) 19(1)  20(1) 21(1)  -2(1) -1(1)  6(1) 

C(2) 16(1)  18(1) 13(1)  -2(1) -2(1)  0(1) 

C(3) 11(1)  18(1) 14(1)  0(1) -3(1)  -4(1) 

C(4) 19(1)  17(1) 16(1)  0(1) -2(1)  -3(1) 

C(5) 16(1)  20(1) 17(1)  2(1) -2(1)  -1(1) 

C(16) 26(1)  23(1) 18(1)  4(1) -3(1)  -4(1) 

C(17) 34(1)  27(1) 41(1)  13(1) 4(1)  4(1) 

C(18) 27(1)  38(1) 35(1)  17(1) -1(1)  -6(1) 

C(6) 24(1)  23(1) 17(1)  -1(1) -7(1)  -3(1) 

C(7) 30(1)  19(1) 17(1)  -3(1) 2(1)  0(1) 

O(3) 49(1)  45(1) 20(1)  -1(1) 10(1)  14(1) 

C(8) 16(1)  21(1) 19(1)  0(1) 4(1)  -1(1) 

C(9) 10(1)  21(1) 14(1)  1(1) -1(1)  -2(1) 

C(10) 8(1)  19(1) 17(1)  -2(1) -3(1)  -1(1) 

O(4) 11(1)  19(1) 27(1)  0(1) 1(1)  1(1) 

C(11) 12(1)  17(1) 16(1)  4(1) -2(1)  2(1) 

C(12) 11(1)  18(1) 17(1)  3(1) 0(1)  1(1) 

O(5) 10(1)  18(1) 17(1)  2(1) -1(1)  -1(1) 

C(19) 15(1)  17(1) 29(1)  2(1) 0(1)  -2(1) 

C(13) 14(1)  22(1) 19(1)  5(1) 3(1)  -1(1) 

C(14) 17(1)  24(1) 15(1)  2(1) 3(1)  2(1) 

C(15) 14(1)  21(1) 14(1)  0(1) -1(1)  -1(1) 

______________________________________________________________________________ 
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Table A7.26. Hydrogen coordinates ( x 104) and isotropic  displacement parameters (Å2x 

10 3 )for scabrolide a (416) 

________________________________________________________________________________  

 x  y  z  U(eq) 

________________________________________________________________________________  

  
H(2) 5617 6652 5321 19 

H(4A) 7940 7245 3785 21 

H(4B) 5787 7530 4224 21 

H(5) 3622 7198 3225 21 

H(17A) 4754 9131 2244 41 

H(17B) 2887 8518 2659 41 

H(18A) 8266 8645 2153 50 

H(18B) 8575 7584 2135 50 

H(18C) 9025 8127 2906 50 

H(6A) 4469 5811 2829 26 

H(6B) 4874 6411 2089 26 

H(8A) 9481 5001 3144 22 

H(8B) 10006 6010 3367 22 

H(11) 6869 4053 5401 18 

H(5O) 1810(40) 4353(19) 4117(16) 22 

H(19A) 2797 2803 4369 31 

H(19B) 4593 2660 5015 31 

H(19C) 5292 2972 4176 31 

H(13A) 1027 4062 5425 22 

H(13B) 3009 3708 5939 22 

H(14) 2975 5162 6347 22 

H(15) 6404 5411 5923 20 

________________________________________________________________________________ 
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Table A7.27.  Torsion angles [∞] for scabrolide a (416). 

________________________________________________________________  

C(14)-O(1)-C(1)-O(2) 174.04(18) 

C(14)-O(1)-C(1)-C(2) -10.2(2) 

O(2)-C(1)-C(2)-C(3) -40.7(3) 

O(1)-C(1)-C(2)-C(3) 143.75(16) 

O(2)-C(1)-C(2)-C(15) -169.96(19) 

O(1)-C(1)-C(2)-C(15) 14.5(2) 

C(15)-C(2)-C(3)-C(9) 7.3(3) 

C(1)-C(2)-C(3)-C(9) -115.0(2) 

C(15)-C(2)-C(3)-C(4) -168.25(17) 

C(1)-C(2)-C(3)-C(4) 69.4(2) 

C(9)-C(3)-C(4)-C(5) 71.1(3) 

C(2)-C(3)-C(4)-C(5) -113.2(2) 

C(3)-C(4)-C(5)-C(16) -165.26(18) 

C(3)-C(4)-C(5)-C(6) -37.9(3) 

C(6)-C(5)-C(16)-C(17) 114.0(2) 

C(4)-C(5)-C(16)-C(17) -118.3(2) 

C(6)-C(5)-C(16)-C(18) -66.2(3) 

C(4)-C(5)-C(16)-C(18) 61.6(3) 

C(16)-C(5)-C(6)-C(7) 79.8(2) 

C(4)-C(5)-C(6)-C(7) -46.1(3) 

C(5)-C(6)-C(7)-O(3) -118.2(2) 

C(5)-C(6)-C(7)-C(8) 62.2(3) 

O(3)-C(7)-C(8)-C(9) -167.6(2) 

C(6)-C(7)-C(8)-C(9) 12.0(3) 

C(2)-C(3)-C(9)-C(10) 1.6(3) 

C(4)-C(3)-C(9)-C(10) 177.02(16) 

C(2)-C(3)-C(9)-C(8) -175.38(18) 

C(4)-C(3)-C(9)-C(8) 0.0(3) 

C(7)-C(8)-C(9)-C(3) -57.2(3) 

C(7)-C(8)-C(9)-C(10) 125.7(2) 

C(3)-C(9)-C(10)-O(4) -172.57(19) 

C(8)-C(9)-C(10)-O(4) 4.6(3) 

C(3)-C(9)-C(10)-C(11) 7.9(3) 

C(8)-C(9)-C(10)-C(11) -174.98(17) 
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O(4)-C(10)-C(11)-C(15) 155.15(18) 

C(9)-C(10)-C(11)-C(15) -25.3(2) 

O(4)-C(10)-C(11)-C(12) -84.4(2) 

C(9)-C(10)-C(11)-C(12) 95.1(2) 

C(10)-C(11)-C(12)-O(5) -50.5(2) 

C(15)-C(11)-C(12)-O(5) 75.75(18) 

C(10)-C(11)-C(12)-C(19) 70.9(2) 

C(15)-C(11)-C(12)-C(19) -162.86(17) 

C(10)-C(11)-C(12)-C(13) -165.57(16) 

C(15)-C(11)-C(12)-C(13) -39.29(18) 

O(5)-C(12)-C(13)-C(14) -69.4(2) 

C(19)-C(12)-C(13)-C(14) 165.12(17) 

C(11)-C(12)-C(13)-C(14) 41.41(18) 

C(1)-O(1)-C(14)-C(13) -112.91(18) 

C(1)-O(1)-C(14)-C(15) 1.6(2) 

C(12)-C(13)-C(14)-O(1) 86.82(18) 

C(12)-C(13)-C(14)-C(15) -28.20(19) 

C(3)-C(2)-C(15)-C(11) -24.3(2) 

C(1)-C(2)-C(15)-C(11) 101.83(19) 

C(3)-C(2)-C(15)-C(14) -138.68(17) 

C(1)-C(2)-C(15)-C(14) -12.52(19) 

C(10)-C(11)-C(15)-C(2) 32.7(2) 

C(12)-C(11)-C(15)-C(2) -91.33(19) 

C(10)-C(11)-C(15)-C(14) 146.55(16) 

C(12)-C(11)-C(15)-C(14) 22.47(19) 

O(1)-C(14)-C(15)-C(2) 7.3(2) 

C(13)-C(14)-C(15)-C(2) 124.43(17) 

O(1)-C(14)-C(15)-C(11) -113.76(17) 

C(13)-C(14)-C(15)-C(11) 3.33(19) 

________________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  
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Table A7.28. Hydrogen bonds for scabrolide a (416). 

____________________________________________________________________________  

D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 

____________________________________________________________________________  

 C(2)-H(2)...O(2)#1 1.00 2.53 3.461(2) 154.0 

 C(8)-H(8B)...O(2)#2 0.99 2.47 3.289(3) 139.6 

 O(5)-H(5O)...O(4)#3 0.84(2) 1.98(2) 2.815(2) 170(3) 

 C(19)-H(19C)...O(4) 0.98 2.64 3.270(3) 122.7 

 C(15)-H(15)...O(3)#4 1.00 2.58 3.123(3) 113.7 

____________________________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  

#1 x+1/2,-y+3/2,-z+1    #2 x+1,y,z    #3 x-1,y,z       

#4 -x+3/2,-y+1,z+1/2       
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