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ABSTRACT 

This thesis investigates four microbial systems, with a particular focus for how spatial considerations 

shape the behavior and evolution of microorganisms. After a general introduction in Chapter 1, Chapter 

2 presents the results of experiments demonstrating how cellular activity varies through space within an 

anode-reducing biofilm. Chapter 3 presents a comprehensive comparative genomic analysis of all known 

marine anaerobic methanotrophic archaea, supporting the notion that these organisms share many 

energetic similarities with the anode reducing organisms in Chapter 2. These are interpreted as specific 

adaptations to life in highly structured microbial communities. Chapter 4 describes the enrichment and 

characterization of a new member of the purple sulfur bacteria, and the adaptations that may improve 

substrate acquisition beyond the normal limitations of diffusion. Chapter 5 describes the convergent 

evolution of novel Complex I gene clusters that have incorporated new proton pumping subunits, and 

the modifications made to the protein structure to facilitate the incorporation of these new subunits into 

the quaternary structure of the complex. 
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“A rival of mine once complained that my stories begin 
awkwardly and end untidily. I am willing to admit to many 

faults, but I will not burden my conscience with that one. All 
my tales are true, drawn from life, and a life story is not a 

tidy thing. It is a half-tamed horse that you seize on the run 
and ride with knees and teeth clenched, and then you 

regretfully slip off as gently and safely as you can, always 
wondering if you could have gone a few metres more.” 

 
-Karen Lord, Redemption in Indigo 
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1 
C h a p t e r  1  

1. INTRODUCTION 

Ecology is concerned with the interactions of organisms with each other and their environment. It 

follows that the physical position of an individual relative to other organisms and the abiotic factors that 

affect its growth is a crucial component in understanding its ecology. In microbial ecology, the distances 

over which important interactions occur are often small—nanometers to centimeters—with niches 

defined by steep gradients of nutrients or light that can change drastically over these spatial scales.  

 

A major focus of this thesis is the advancement of our ecological understanding of the organisms 

responsible for the anaerobic oxidation of methane (AOM) in marine sediments. This process is carried 

out by a symbiotic partnership between an anaerobic methane-oxidizing (ANME) archaea and a sulfate 

reducing bacteria (SRB). The ANME archaea oxidize methane to CO2, producing 8 electrons, that are 

transferred to the SRB for sulfate reduction. These organisms form dense spherical biofilms, or 

aggregates, affording them a spatial proximity that facilitates their coupled metabolisms.  

 

ANME-SRB aggregates occur throughout the world’s oceans, particularly along continental margins, 

where methane produced at depth rises up through diffusion or advection and meets sulfate-rich ocean 

water. These opposing gradients of methane and sulfate define the sulfate-methane transition zone 

(SMTZ), a narrow horizon in marine sediments where methane is oxidized with the reduction of sulfate. 

Here we see the effect of space in microbial ecology on multiple scales.  First, the supply of methane 

and sulfate, a result of diffusion and/or advection, determines the position of the SMTZ in which the 



 

 

2 
ANME-SRB symbiosis can thrive.  Second, the transfer of methane-derived electrons between partners 

necessitates the close physical association of cells on the scale of microns.  

 

This metabolic partnership is a common form of microbial interaction. Cross-feeding, or syntrophy, 

where the end product of one organism’s metabolism is the starting point of another’s, is commonplace 

in anaerobic microbiology. Often times these interactions are obligate for both parties—the first 

organism is inhibited by a buildup of its waste if a second is not there to consume it, and the second 

organism has no growth substrate without the activity of the first. The transport of metabolites from 

one organism to another occurs mainly by diffusion, requiring steep gradients over short distances for 

rapid transport. Therefore, the positioning of organisms in structured microbial communities really 

matters, and developing strategies to mix themselves—so that no producer is ever far from its nearest 

consuming partner—is thought to be an important aspect of their evolution (Schink and Thauer, 1988). 

 

The expectation that a well-mixed community optimizes metabolic cross-feeding is at odds with the 

apparent spatial organization of many ANME-SRB aggregates, which can be highly segregated with a 

dense ANME population at the center surrounded by a shell of SRB. ANME cells at the center of these 

aggregates are many cell distances from their nearest syntrophic partner, raising questions about their 

ability to remain active without a nearby sink for their metabolic waste. Reaction-diffusion modeling 

implemented with electron transfer based on diffusible chemical compounds such as H2, formate, or 

acetate suggested that this arrangement could not support the growth of most cells in the consortia 

(Alperin and Hoehler, 2009; Orcutt and Meile, 2008), only cells at the interface between the two 

populations. This was seen as a major limitation for the growth of these organisms, and these shell-type 

aggregates were interpreted as a terminal stage of growth of these communities (Schink and Stams, 2006). 
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The work presented in this thesis began with the development of techniques to probe metabolic activity 

in ANME-SRB aggregates on the single-cell level, allowing us to test the hypothesis that cells in these 

consortia experience a growth decrease with distance from their nearest partner (McGlynn et al., 2015). 

By incubating sediment samples from methane seeps with 15N labeled ammonium, we were able to 

observe the uptake of 15N, a proxy for a cell’s anabolic activity. Contrary to our expectations, we saw no 

significant decrease in cellular activity with increasing distance to syntrophic partners, as all the theory 

and modelling based on diffusive electron transfer had predicted. 

 

A reanalysis of the few publicly available genomes revealed that ANME encode large multi-heme 

cytochromes (MHCs). MHCs are often utilized by organisms that carry out direct electron transfer, 

where electrons obtained from oxidizing their carbon source are shuttled through the MHCs to external 

electron acceptors such as insoluble metal oxides or the anode in an electrochemical cell. A model 

organism that carries out this metabolism, Geobacter sulfurreducens, can form thick biofilms on suitably 

poised anodes. Direct electron transfer using MHCs and other conductive biomolecules was thought to 

enable the growth of G. sulfurreducens cells at the surface of these biofilms, tens of microns away from 

their electron acceptor (Reguera et al., 2006; Sun et al., 2016), distances much greater than could be 

supported by electron transfer via diffusible intermediates. Based on this knowledge from G. 

sulfurreducens, our finding of large MHC proteins encoded in ANME genomes, and the apparent 

insensitivity of ANME or SRB to similar distances from their partners, we proposed that the ANME-

SRB syntrophy was carried out by direct electron transfer through MHCs, alleviating the spatial 

constraints thought to be imposed by diffusive electron transport (McGlynn et al., 2015).  
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This argument was predicated on the assumption that G. sulfurreducens biofilms do, in fact, support the 

growth of cells many cell lengths away from their terminal electron acceptor. While this idea was 

pervasive in the literature (Reguera et al., 2006; Sun et al., 2016), the metabolic activity of cells in these 

biofilms had not been quantitatively assessed. In Chapter 2, we present the results of experiments carried 

out in collaboration with researchers at the University of Minnesota to investigate this question, using 

the techniques we developed to investigate cellular activity in ANME-SRB aggregates. The results of 

these experiments were surprising, with G. sulfurreducens biofilms repeatedly demonstrating a clear 

decrease in cellular activity with increasing distance from the anode. These results are important not only 

for our interpretation of the patterns of activity within the ANME-SRB aggregates, but also for the 

broader bioelectrochemistry community that is interested in the factors that limit current generation in 

microbial fuel cells. 

 

Reaction-diffusion modeling has contributed important insights into the factors that could control 

cellular activity in ANME-SRB aggregates and other structured microbial communities. We have 

continued advancing these models, expanding on the comparison between electron transport through 

diffusive chemical intermediates and direct electron transport through MHCs. Using the data presented 

in McGlynn et al. 2015, additional modelling efforts provided support for our direct electron transport 

hypothesis (He et al., 2019). Subsequent single-cell 15N incorporation data from exceptionally large 

ANME-SRB aggregates allowed us to further refine our models of electron transfer mechanisms (He et 

al., 2020b). Similarly, we used the G. sulfurreducens data that we generated in Chapter 2 to constrain new 

models that accurately reproduce the activity profiles observed in G. sulfurreducens biofilms (He et al., 

2020a). A major conclusion from these studies is that direct electron transfer is not a panacea for spatial 

limitations—cells utilizing direct electron transfer still suffer a growth penalty with increasing distance 
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from their terminal electron acceptor. However, this penalty occurs over a larger distance than that 

from diffusion-based electron transfer, allowing direct electron transfer to support metabolic 

interactions across spatial scales that would not be feasible with diffusible intermediates alone. 

 

The genomic observation of large MHC proteins in ANME was another key piece of information 

supporting our hypothesis that direct electron transfer was occurring in ANME-SRB consortia. 

However, the genomic coverage of the ANME was sparse in 2015, with some groups such as ANME-

2C and -3 having no sequenced representatives at all. This poor genomic coverage raised questions about 

whether or not this model could be extended to all ANME groups. In Chapter 3 we combined our 

genomic sequencing efforts with other groups throughout the world studying these organisms to create 

the most complete ANME genome comparison to date, including all known subgroups. This work 

highlights those genomic features that set ANME apart from their closely related methanogenic relatives, 

as well as those that differentiate ANME groups from one another. The preponderance of bioenergetic 

systems expected to be used for direct electron transfer remains one of the cardinal features of the 

ANME genomes, and we present a comprehensive review of the energy metabolism of these organisms.  

 

Chapter 4 focuses on a different type of microbial ecosystem, the salt marsh sediments that support the 

growth of sulfide-oxidizing organisms. Much like the SMTZ in methane seeps, sulfide oxidizing 

organisms exist in a narrow horizon where sulfide, produced at depth, diffuses up and intersects 

opposing gradients of chemical oxidants such as nitrate and oxygen, or light, which supports the growth 

of sulfide oxidizing phototrophs. The requirement for both sulfide and oxidizing power limits this niche 

to thin horizons within the sediment or overlying water. 
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Normally sulfide-oxidizing organisms are at the mercy of diffusion for the supply of their electron 

donors and acceptors. A remarkable exception to this is Thiovulum majus, an exceptionally fast swimming 

sulfide oxidizing chemotroph. T. majus is thought to beat diffusion by tethering itself in biofilms and 

using its flagella to pull oxygen-rich water towards itself, increasing its supply of electron acceptor. In 

this chapter we describe the enrichment and characterization of a novel sulfide oxidizing phototroph 

that has similar motility behaviors to T. majus. We hypothesize that this novel genus has adapted a similar 

strategy to increase its uptake of sulfide by facilitating the upward flow of sulfide-rich porewater. This 

would allow “Candidatus Thiorhodosphaera celerrima” to inhabit a new niche, defined by high sulfide 

and high light, whereas other organisms carrying out similar metabolism would have to choose one or 

the other due to the opposing gradients of these two resources. This proposal is further explored in silico 

by modelling approaches of varying complexity that demonstrate a significant increase in sulfide uptake. 

 

In Chapter 5 we examine a different type of spatial scale: the nanometer-scale modifications required 

when protein complexes are adapted to new functions. During the genome comparison study in Chapter 

3 we discovered a modified version of respiratory complex I in a variety of unrelated organisms. This 

complex is best known from mitochondria where it mediates electron transfer from NADH to 

ubiquinol, coupling this electron transfer to proton translocation, which occurs through three 

homologous proton pumping subunits. These complexes are broadly distributed throughout the tree of 

life, where they represent crucially important energy conserving steps in many diverse microbial 

metabolisms.  

 

The modified complex I’s we describe in this chapter were found to encode an additional copy of NuoM, 

one of the three proton pumping subunits. These “2M” gene clusters were found in a diverse group of 
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Archaea and Bacteria, and phylogenetic analysis revealed that this modification evolved convergently 

at least three separate times. Based on the crystal structure we were able to identify structural 

modifications to other subunits of the complex to physically accommodate the incorporation of a fourth 

site of proton translocation. The wide diversity of host organisms in which these complexes were 

discovered suggests that their increased proton pumping capacity might play a range of roles, important 

in different ways for different metabolisms. 

 

A unifying feature of all these studies is an attempt to understand how microbial evolution has 

circumvented spatial limitations. In ANME-SRB consortia the limitation of cellular activity that would 

arise from diffusive transport of electrons is avoided by the acquisition of direct electron transfer 

machinery. In “Ca. T. celerrima” the slow delivery of sulfide by diffusion is supplemented by motility-

based fluid flow. In the 2M complex I evolutionary pressure to increase proton pumping stoichiometry 

required physical changes in the protein structure to make way for an additional pumping subunit. 

 

The different way these evolutionary transitions occur highlights two major modes of evolution: de novo 

invention, and horizontal transfer of functional systems. In ANME, both appear to have played a role 

in the adaptation to direct electron transfer. Their membrane-bound c-type cytochrome reductases are 

constructed by novel modifications to the hydrogenases of closely related methanogens, and the 

mechanism of electron transport through their outer surface layer appears to be unique. Therefore, both 

these systems were most likely invented by the ancestors of modern ANME to achieve direct electron 

transfer in the context of archaeal cell biology. On the other hand, a very close homolog of OmcZ, an 

important MHC found in G. sulfurreducens that is secreted into the extracellular space during growth on 

electrodes is found in ANME genomes. The close relation between these proteins found in organisms 
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from different domains of life suggests recent horizontal transfer enable this metabolism. The 2M 

complex I’s exhibit both modes of evolution as well. These complexes have evolved independently three 

times, in all cases using the same physical extension mechanism. Yet, these three unrelated groups have 

also been distributed between divergent phyla, suggesting that while they are not prohibitively difficult 

to reinvent de novo, organisms can also benefit from acquiring them premade. In the final case of “Ca. T. 

celerrima”, even though these organisms co-occur with T, majus in sulfidic sediments, it does not appear 

that the convergence of this behavior is the result of gene transfer between the two organisms. 

 

These studies represent a holistic approach to developing an ecological understanding of 

microorganisms. With careful consideration of genome-encoded bioenergetic systems we can formulate 

coherent hypotheses that capture how environmentally providedavailable energy sources are converted 

through these systems into biologically useful forms of energy such as ATP and ion motive force. The 

explicit modeling of cellular energetics in the spatial context of their physical surroundings—be those 

diffusive gradients of nutrients from the environment, substrates cross-fed from a partner organism, or 

redox potentials imposed by an electrochemical cell—is a powerful tool for better understanding the 

environmental pressures that organisms have adapted to. Examining cellular activity in the context of 

spatial relationships allows us to ground-truth the hypotheses developed from genomic insights and 

modeling. Finally, comparing how these energy generating systems have changed during their vertical 

inheritance, or during their acquisition through horizontal transfer, provides a detailed evolutionary 

understanding of how modern organisms have adapted to their current niche.  
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Abstract  
Metal-reducing bacteria direct electrons to their outer surfaces where insoluble metal oxides or electrodes 

act as terminal electron acceptors, generating electrical current from anaerobic respiration. Geobacter 

sulfurreducens is a commonly enriched electricity-producing organism, forming thick conductive biofilms 

that magnify total activity by supporting respiration of cells not in direct contact with electrodes. 

Hypotheses explaining why these biofilms fail to produce higher current densities suggest inhibition by 

formation of pH, nutrient, or redox potential gradients; but these explanations are often contradictory, 

and a lack of direct measurements of cellular growth within biofilms prevents discrimination between 

these models. To address this fundamental question, we measured the anabolic activity of G. sulfurreducens 

biofilms using stable isotope probing coupled to nanoscale secondary ion mass spectrometry. Our results 

demonstrate that the most active cells are at the anode surface, and that this activity decreases with 

distance, reaching a minimum 10 µm from the electrode. Cells nearest the electrode continue to grow at 

their maximum rate in weeks-old biofilms 80 µm thick, indicating nutrient or buffer diffusion into the 

biofilm is not rate-limiting. This pattern, where highest activity occurs at the electrode and declines with 

each cell layer, is present in thin biofilms (<5 µm), fully grown biofilms (>20 µm), and at different anode 

redox potentials. These results suggest a growth penalty is associated with respiring insoluble electron 

acceptors at micron distances, which has important implications for improving microbial 

electrochemical devices as well as our understanding of syntrophic associations harnessing the 

phenomenon of microbial conductivity. 
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Introduction 
Microbial communities in nature exist predominantly as biofilms (Flemming et al., 2016; Stoodley et al., 

2002). These dense cell aggregates coat mineral surfaces and multicellular organisms in aquatic 

environments, sediments, soils, and the subsurface, controlling the majority of metal, sulfur, nitrogen, 

and carbon cycling (Battin et al., 2003; Ehrlich, 2016; Islam et al., 2004; Tadanier et al., 2005). Due to 

their high cell densities, diffusion of buffering agents and respiratory substrates to inner layers is limited 

(de Beer et al., 1994; Domozych and Domozych, 2008; Gantzer et al., 1988; Ramsing et al., 1993; 

Stoodley et al., 2002, 1998). Stratification of biofilms into phenotypically (Sauer et al., 2002) and 

metabolically (Wilmes et al., 2009) separate regions is well documented, creating structured microhabitats 

that alter respiration of organic matter (Battin et al., 2003), biodegradation of substrates (Lemaire et al., 

2008), and inhibition by antibiotics (Flemming et al., 2016).  

 

Biofilms comprised of metal-reducing bacteria represent a special case, as a subset of these organisms 

create between-cell conductive pathways directing electrons to acceptors many microns away.  

Electrodes colonized by such bacteria can oxidize organic wastes or power remote devices in a host of 

new electrochemical technologies, but the fundamental limits to conductive electrode biofilm metabolic 

activity are not understood (Sleutels et al., 2012). Unlike biofilms growing on a surface, where cells near 

the medium interface have optimal access to nutrients, a conductive community faces a paradox; cell 

layers close to an electrode have best access to the electron acceptor, but those farther from the electrode 

have best access to soluble electron donors and buffering agents diffusing in from the medium (Bond 

et al., 2002). If conductivity is rate-limiting, cell metabolism should be most rapid near the electrode. If 

diffusion is limiting, most cell activity is hypothesized to occur near the top.  
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Geobacter sulfurreducens is a model organism used to study extracellular electron transfer and biofilm 

conductivity (Bond et al., 2002; Holmes et al., 2004; Jung and Regan, 2007; Lee et al., 2008; Tejedor Sanz 

et al., 2018; Tender et al., 2002), as it can be grown using solid anodes, insoluble metal oxides, or in 

syntrophic granules with other bacteria as terminal electron acceptors (Summers et al., 2010). Under 

optimal conditions with a suitably poised electrode, G. sulfurreducens will form conductive biofilms over 

20 cell layers thick within 3 days and produce current densities on the order of 1 mA·cm-2 (Inoue et al., 

2011; Marsili et al., 2008a; Stephen et al., 2014a; Sun et al., 2015). A universal observation during G. 

sulfurreducens electrode experiments is that in the early stages of colonization, each new layer of cells 

results in a nearly proportional increase in total electrical current, suggesting that the first few layers have 

sufficient access to both medium nutrients and electron disposal pathways. As biofilm thickness exceeds 

about 10 µm, however, the addition of new biomass fails to proportionally increase total current 

(Bonanni et al., 2013; Sun et al., 2016). Despite its importance in engineering better water treatment 

technologies and improving anaerobic digestion, the location of the active cell population, and the 

fundamental limitation controlling electrical current production in these communities remains unknown. 

 

The most common method used to detect stratification within electrode biofilms is cell viability staining 

in conjunction with confocal microscopy. These methods, based on dyes that bind DNA in cells with 

intact or compromised membranes, yield conflicting results. Many studies report dead-staining cells near 

the anode surface, and live-staining cells at the interface with growth medium (Sun et al., 2017, 2016, 

2015). However, others find the opposite, with live-staining cells at the anode and dead-staining cells 

distant from the electrode (Nevin et al., 2008; Schrott et al., 2014), or observe live-staining cells 

throughout (Franks et al., 2012a; Reguera et al., 2006; Steidl et al., 2016). A limitation of the stain-based 

approach is that positively charged propidium meant to indicate “dead” cells will accumulate inside live 
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respiring cells in response to high membrane potential (Kirchhoff and Cypionka, 2017), and DNA-

based dyes bind to extracellular nucleic acids often present in biofilms, confounding attempts to resolve 

the central question of where metabolic activity is occurring. 

 

Long-range electron transfer from cells to electrodes requires active metabolism coupled to a complex 

conductive matrix composed of pili (Reguera et al., 2006), multiheme c-cytochromes (Inoue et al., 2011; 

Stephen et al., 2014a; Wang et al., 2019), and polysaccharides (Rollefson et al., 2011), and studies have 

attempted to detect metabolic stratification by measuring expression of key genes within biofilms. 

Through physical separation of inner (0-20 µm) from outer (20-40 µm) biofilm layers followed by 

microarray analysis (Franks et al., 2010), a modest downregulation in genes associated with metabolic 

activity was detected in outer biofilm layers. In contrast, fluorescent proteins driven by promoters for 

cytochromes, pili, or TCA cycle genes did not reveal significant differentiation between inner and outer 

layers in G. sulfurreducens electrode biofilms imaged by confocal microscopy (Franks et al., 2012b). 

 

While imaging and transcriptional methods have produced conflicting results, approaches focused on c-

type cytochrome oxidation state or redox potential within G. sulfurreducens biofilms consistently reveal 

gradients that suggest increased activity near the electrode. Multiheme c-type cytochromes have 

characteristic UV/Vis and Raman spectroscopic signatures when in oxidized vs. reduced states, enabling 

measurement of cytochrome oxidation state using either visual light (Jain et al., 2011; Liu et al., 2011) or 

confocal Raman microscopy (Lebedev et al., 2014; Robuschi et al., 2017, 2013). These spectral studies 

demonstrate that G. sulfurreducens catabolic activity results in reduction of cytochromes, and reveal a 

higher ratio of reduced cytochromes in layers farther from the anode surface. Measurements using 

microelectrodes mirror Raman-based cytochrome profiles, showing that redox potential also becomes 
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lower with distance from the anode surface (Babauta et al., 2012). While not direct assessments of 

cellular activity per se, reduced cytochromes and lower redox potential should limit metabolic activity of 

cells farther from the electrode. 

 

The opposite conclusion is proposed based on modeling of pH gradients within current-producing 

biofilms. Substrate oxidation coupled to electron removal at the electrode produces protons that must 

diffuse out of the biofilm, and many models predict pH levels should become inhibitory close to the 

electrode surface. Measurements with pH sensitive dyes (E. Franks et al., 2009) or microelectrodes 

(Babauta et al., 2012) have confirmed pH can decrease slightly from the outer surface of a thick (>50 

µm) biofilm to an anode surface, where it could become inhibitory. While most models suggest diffusion 

of electron donors should be adequate in all regions of the biofilm (Torres et al., 2008), measurements 

of acetate concentrations within a very thick (>100 µm) G. sulfurreducens biofilm using NMR (Renslow et 

al., 2013) detected a gradual decrease in acetate concentration from the bulk solution to the base of the 

biofilm, further indicating a diffusional limitation could occur near the electrode. 

 

Sophisticated biofilm models and indirect measurements continue to predict these contradictory 

hypotheses, ranging from the idea of active biomass near the anode surface becoming limited by 

conductivity as cells grow farther out (Kato Marcus et al., 2007), vs. a nearly opposite configuration 

where pH- or nutrient-dependent effects limit growth near the anode (Torres et al., 2008). The recent 

discovery of multiple redox potential-specific electron transfer pathways in G. sulfurreducens (Levar et al., 

2017, 2014; Zacharoff et al., 2016) raises a third possibility that microhabitats within the biofilm support 

different populations of cells utilizing different metabolic machinery, allowing uniform growth 

throughout analogous to metabolic differentiation reported in Shewanella biofilms (Teal et al., 2006). This 
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leaves open the fundamental mystery of what restricts cell growth in conductive microbial 

communities that depend on extracellular electron transfer.  

 

To conclusively identify regions of growth within electrode-reducing biofilms and test the hypothesis 

that metabolic stratification occurs, we directly imaged G. sulfurreducens anabolic activity in biofilms at 

sub-cellular resolution by coupling stable isotope probing with nanometer scale secondary ion mass 

spectrometry (nanoSIMS). Biofilms were grown on polished graphite electrodes at two different redox 

potentials under conditions optimized to reproducibly capture cells during exponential current increase 

at a very early stage (~5 µm thickness), after the onset of current plateau (~20 µm), and after 2 weeks of 

continuous biofilm accumulation (~80 µm) (Marsili et al., 2010, 2008b). These experimental conditions 

are highly reproducible and have been shown to produce biofilms expressing all the conductive 

components common to G. sulfurreducens biofilms reported in the literature (Hallberg et al., n.d.; Jiménez 

Otero et al., 2018).  At these various points in biofilm development, standard growth medium was 

substituted for stable isotope enriched medium containing 15N-enriched ammonium as the N source, 

13C-enriched acetate as C source and electron donor, and 2H-enriched water serving as a passive tracer 

of anabolism (Kopf et al., 2016). 15N, 13C and 2H incorporation was visualized at ~100 nm spatial 

resolution, allowing for assignment of activity at the scale of single cells within biofilms at various stages 

of development. In all cases and redox potentials, the highest anabolic activity occurred at the electrode 

surface, with a near-linear decrease in activity with distance from the electrode. This distance-dependent 

decline was also evident in biofilms only a few cells thick, as well as in 2-week old biofilms, suggesting 

that electron transfer over distance, rather than diffusion of nutrients from the medium, is the primary 

cause of current limitations in these environments.  
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Results 
Metabolic activity decreases from the electrode surface towards the outer edge of the 
biofilm. 

To analyze anabolic activity within current producing biofilms, G. sulfurreducens was grown with graphite 

electrodes poised at +240 mV vs. SHE as the sole terminal electron acceptor. Prior work has shown 

that after an initial exponential phase where both cells and current increase at a similar rate, biomass on 

the electrode continues to increase, but current does not, suggesting that only a subset of the biofilm is 

actively growing (Marsili et al., 2008b). We first labeled cells during this characteristic ‘plateau’ phase, 

when the exponential phase of current production had ceased. 83 hours into the experiment, the growth 

medium was replaced by growth medium containing 15N-enriched ammonium, 13C-enriched acetate and 

2H-enriched water. Current production by biofilms after addition of isotopically labeled medium 

paralleled those exposed to a regular medium control (Figure 1A).  

 

After an incubation period corresponding to the known doubling time of G. sulfurreducens (6.2 ± 0.7 h, 

n=7), biofilms were fixed, stained and embedded in resin for imaging by electron microscopy (Figure 

1B) and nanoSIMS analysis (Figure 2 and Figure 3). Biofilms not exposed to isotopes were incubated 

in isotopically labeled substrates after fixation as a control for non-specific binding and abiotic 

incorporation.  

 

Electron microscopy showed biofilms 15-20 µm thick, with cells in the inner layers oriented 

perpendicularly to the electrode surface (Fig. 1B, 89 hours of growth). Beyond ~10 µm, cells lost this 

orientation and appeared less tightly packed. These ultrastructural features were similar to those 

previously demonstrated for G. sulfurreducens grown on electrodes (Inoue et al., 2011; Stephen et al., 
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2014b). Thin sections of resin-embedded biofilms were deposited on silicon wafers and analyzed for 

13C/12C, 15N/14N, and 2H/1H stable isotope incorporation.  

 

In all nanoSIMS analyses, the greatest cellular activity (isotope enrichment) was near the electrode 

surface, and activity approached zero at a distance >10 µm from the electrode. The 14N12C- ion image 

was best for visualizing G. sulfurreducens biomass because of the lack of nitrogen in the embedding resin 

(Figure 2A). The heavy nitrogen ion 15N12C-, as well as the 15N fractional abundance images, demonstrate 

high anabolic activity where cells are adjacent to the anode (Figure 2B and C). This maximum cellular 

activity at the anode interface decreased with distance to a minimum at 10 µm, followed by a second 

small peak in cellular anabolic activity close to 15 µm from the electrode. The activity associated with 

this second peak was more heterogeneous than what was documented near the electrode surface, but 

was a consistently observed feature under these incubation conditions. 

 

The 15N fractional abundance for all nanoSIMS acquisitions of three biological replicates grown at +240 

mV are shown in Figure 2D. The features of these isotope enrichment curves within the ~20µm biofilm 

were reproducible, including an early peak in activity at the anode surface, a linear decrease with distance 

to a minimum isotope enrichment value, and the occurrence of a secondary small peak between this 

minimum and the outer surface of the biofilm.  

 

The fractional abundances of 15N, 13C and 2H depicted in Figure 3A-C all showed clear enrichment at 

the biofilm-anode interface, with 15N, 13C, and 2H incorporation decreasing with distance from the anode 

surface (Figure 3). Although these independent isotope tracers will be incorporated in different 

proportions into the major classes of biomolecules (i.e. lipids, proteins, etc.), the general activity pattern 
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remained the same for 13C, 2H and 15N enrichment. Here we present data from the 15N enrichment as 

this yielded the highest signal-to-noise ratio, with little to no exogenous nitrogen in the resin to dilute 

the signal from the stable isotope probing experiment (Kopf et al., 2015). 

 

With a fractional abundance of 15N added to growth media at 0.06, a G. sulfurreducens cell (15F=0.0036) 

doubling in 6 hours would reach a 15N fractional abundance value of ~0.03 in our experiments assuming 

all N came from the added NH4
+. Consistent with this prediction, peak values of fractional abundance 

were as high as 0.025 at the anode surface at the end of the 6 h incubation, allowing us to infer that cells 

closest to the electrode were doubling at nearly their maximum reported rate during the stable isotope 

probing experiment, even though they were positioned at the base of the biofilm farthest from the 

growth medium. 

 

Exponentially growing biofilms a few cell layers thick already display anabolic activity 
gradients.  
Early in growth experiments, when current and biomass is increasing exponentially and biofilms are only 

~5 µm thick, all cells are hypothesized to be doubling at maximal rates. Samples from this growth phase 

were analyzed to determine anabolic activity, and test if such biofilms showed evidence of metabolic 

stratification. The thickness of biofilms harvested during this early phase (Figure 4A) ranged between 

2-4 µm (Figure 4B and C, 35 hours of growth), and all exhibited a similar magnitude and trend of 

isotope incorporation (Figure 4D). 

 

The peak enrichment value, reflecting the maximal growth rate of cells in thin biofilms, was 

indistinguishable from thicker biofilms. Importantly, the region of fastest growth occurred at the same 

location in thin biofilms as in older biofilms. This indicated that cells in the upper layers of thick biofilms 
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did not inhibit growth of their brethren at the anode surface, such as by consuming acetate before it 

diffused to the inner layers, or by acidification. Surprisingly, in these thin biofilms, a decline in metabolic 

activity was still detected with increasing distance, following the same trend as seen in thicker biofilms. 

Based on these observations, distance from the anode is a key variable slowing cell growth even at short 

distances, compared to the presence of additional bacteria or thickness of the biofilm. Additional 

nanoSIMS images of 15N incorporation and plots for exponential and plateau phase can be found in 

Supplemental Material (Figure S1). 

 

Lowering redox potential of the anode increases the gradient in anabolic activity. 

Lowering the redox potential of an anode makes electron transfer by G. sulfurreducens less favorable. 

Under these conditions, the slower metabolic rate of cells could reduce demands on the conductive 

network or slow consumption of nutrients relative to diffusion into the biofilm, extending the zone 

where growth is possible. Conversely, if redox potential simply decreases with distance from the anode 

without a concomitant change in metabolic rate, starting at a lower potential would shrink the region 

where growth is possible. To directly test how cellular activity patterns were affected by anode potential, 

we analyzed the isotope incorporation patterns of G. sulfurreducens biofilms grown at -100 mV vs. SHE 

compared to those grown under the more optimal +240 mV. Four separate biofilms were grown at this 

lower potential, subjected to labeled media at various points during or after exponential current increase 

to create labeled biofilms ~5 µm and ~15 µm thick, and analyzed as before with isotope incorporation 

data binned every half micron from the surface of the anode (Figure 5A-E).  

 

The major similarity between these biofilms and those grown at +240 mV was the dominant trend of 

metabolic activity decreasing with distance from the anode surface.  However, the decline in activity 
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occurred much more rapidly when the anode potential was lower (-100 mV), with no initial peak in 

activity. Additionally, the second peak of activity beyond 10 µm was absent, yielding a much simpler 

pattern which decreased rapidly with distance from the anode. Overall, the use of a lower redox potential 

reduced the distance from the electrode where activity was detected.   

 

Increased driving force at the electrode surface does not immediately change anabolic 
activity patterns. 

The difference between biofilms grown at -100 mV vs. +240 mV indicated a strong impact of anode 

potential on metabolic stratification in biofilms. As many microbial electrochemical systems cycle or 

shift the anode potential during experiments or treatments, we investigated the ability of these biofilms 

to respond to a sudden transition in potential.  Biofilms were grown at -100 mV until current plateau 

stage, isotopically labeled growth medium was added as before, and then the electrode potential was 

changed to the more favorable +240 mV. The resulting 15N fractional abundance plots resembled those 

grown and labeled at -100 mV, including a steep decrease in isotope incorporation with distance, and 

lack of significant peaks in distant regions of the biofilm (Figure 5F). This indicated that over the short 

term, the more favorable potential could not be transmitted farther from the anode, or the conductive 

network in these biofilms could not be remodeled within 6 h to allow the increased driving force at the 

base of the biofilm to be used by cells more distant from the electrode as observed in biofilms initiated 

at +240 mV (Figure 2). 

 

Extended biofilm operation does not change the location of metabolically active cells. 
These results indicate that as biofilms at both high and low redox potentials add additional biomass, cells 

in the outer layers of the biofilm are at a disadvantage compared to their counterparts at the biofilm-

anode interface. After the biofilm reaches a characteristic thickness, additional layers cannot contribute, 
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producing the signature of a constant current plateau. Microbial electrochemical applications often 

maintain biofilms for weeks in this constant-current mode (Schrott et al., 2014; Sun et al., 2017, 2016, 

2015), while the data presented thus far are derived from much younger biofilms. One hypothesis that 

could explain earlier reports of the majority of live cells located at the top of biofilms is that during 

longer experiments with thicker biofilms, the activity pattern changes. To test this possibility, four 

replicate G. sulfurreducens biofilms were grown for at least two weeks with normal growth medium on 

electrodes poised at +240 mV vs. SHE. Unlabeled medium was exchanged as needed to keep nutrient 

levels in excess and prevent starvation, maintaining current production above 500 µA·cm-2 for this entire 

period. After this extended operation, biofilms were supplied with isotopically labeled medium for 6 

hours and prepared as before.  

 

Electron microscopy revealed much larger biofilms, often over 80 µm in thickness.  However, unlike 

the younger biofilms, cells in top layers of the long-term biofilm showed evidence of lysis or 

consumption of cellular material, with low cellular electron density documented in all four replicates 

(Figure 6A and Figure S2). The frequency of intact cells increased with depth into the biofilm, and at 

the anode-biofilm interface, the majority of cells appeared intact, as determined by cell morphology and 

electron density in the cytoplasm. These patterns were consistent with the measurements of Schrott et 

al. (Schrott et al., 2014), who found the DNA content of Geobacter biofilms increased steadily as biofilms 

were grown for similar periods of time, but the RNA:DNA ratio dropped sharply, consistent with 

degradation of anabolic capacity.  

 

Representative nanoSIMS isotope ratio images collected from various positions in the biofilm 

demonstrated that cells located near the anode were the only bacterial cells showing metabolic activity. 
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Despite the large amount of cell mass in the upper portion of the biofilm, the peak activity level near 

the electrode was similar to those measured for 5 µm and 15 µm thick biofilms (Figure 6B). Cells in 

outer layers, far from the anode, showed very little evidence of anabolic activity, with only occasional 

weak cellular enrichment signals. Consistent with our interpretation of cell lysis in upper layers, cells with 

higher electron density also contained substantially higher 14N12C counts relative to the top of the biofilm, 

reflecting high cellular concentrations of nitrogen containing biomolecules in cells adjacent to the 

electrode (Figure 6A and Figure S2). These results indicated that for consistently poised and maintained 

electrode biofilms, active growth continued near the electrode surface, pushing older cells out to the 

biofilm-medium interface, with surprisingly no apparent inhibition or contribution from nearly 80 µm 

of cells above the active layer. 

 

Are cellular activity profiles due to cell growth only at the electrode surface? 
Our isotope labeling experiments were conducted within an estimated doubling of G. sulfurreducens to 

minimize the potential for altering cellular activity-distance profiles due to active cell division, however 

it is possible that cells at the anode surface are dividing faster than the 6 hour labeling. To verify that the 

observed activity patterns in our experiments represent snapshots of cellular activity within communities 

that are spatially stable during the labeling period, we performed incubations in which biofilms were 

labeled for approximately two hours with 3 times the level of isotope enrichment added to the medium. 

In this experiment, nanoSIMS analysis of a biofilm with similar final current densities as those presented 

in Figures 2 and 3 produced a similar activity profile after only a 2 hour isotope pulse (~1/3 of a 

doubling), demonstrating that the observed pattern of isotope enrichment was not simply due to physical 

displacement of Geobacter cells from the electrode surface during biofilm growth, but rather is an activity 
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profile that represents cells having lower anabolic activity as distance from the electrode increases 

(Figure S3). 

 

Can Geobacter respire in the absence of anabolic activity? 
The incorporation of isotopically labeled substrates requires synthesis of new cellular material from N, 

C, or H, and it is important to consider that some cells could actively respire and contribute to current 

production, but not actively divide. Fast-growing heterotrophs like Streptococcus and Escherichia coli have 

well-documented abilities to uncouple catabolic from anabolic metabolism (Russell and Cook, 1995), 

but this is less well documented in bacteria during extracellular respiration. To examine the capacity of 

G. sulfurreducens to produce current in the absence of anabolic activity, we treated plateau-stage biofilms 

with tetracycline, an inhibitor of protein synthesis. In the presence of excess acetate and other nutrients, 

current production by tetracycline-treated biofilms decreased 95%. When medium was replaced to wash 

tetracycline from the biofilms, respiration recovered to near original levels. These experiments suggested 

that current production and anabolic activity were tightly coupled in these biofilms (Figure S4).  

 

Discussion 
The results presented here demonstrate that G. sulfurreducens biofilms experience a growth penalty with 

increasing distance from the anode surface. This result is robust at both the level of biofilm maturation 

and the reduction potential of the anode. A similar rate of 15N incorporation is observed in cells near the 

anode surface during exponential phase and in thick biofilms after current plateau, indicating that cells 

in the upper layers of the biofilm do not significantly inhibit inner layers by consuming substrate or 

producing toxic byproducts. This pattern, with anabolic activity dominating a relatively narrow zone at 

the anode surface, was true even after weeks of biofilm growth, indicating that the dominant synthesis 
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of new biomass throughout all stages occurs at the anode, pushing old inactive biomass outward. This 

also shows that cells inside the biofilm continue to grow exponentially even as the current production 

rate of the biofilm as a whole reaches “stationary phase”. Thus, current producing biofilms are not a 

monolithic and homogenous entity, but varied and heterogeneous, with metabolically stratified regions. 

This heterogeneity has implications for transcriptional, proteomic, and metagenomic studies that treat 

entire biofilms as a single community. 

 

The transition between an exponential increase in current to a plateau phase correlates with our findings 

of two major physiological regions within the biofilm. First, our results show that at distances of 

approximately 10 µm from the anode, anabolic activity is reduced to a minimum, regardless of the 

potential at which the electrode is poised. Second, the regular orientation of the cells perpendicular to 

the anode surface breaks down at approximately this same point. Biofilms grown at high potential do 

continue to increase total current at a slow but steady rate (Figure 1A), and exhibit a previously 

unrecognized secondary zone of modest anabolic activity in outermost layers (Figure 2D), while low 

potential biofilms do not exhibit any further current increase within this secondary zone (Figure 5A-

D).  

 

Our nanoSIMS activity data agrees with redox potential and cytochrome oxidation state measurements, 

and studies finding significant differences between the inner ~10 µm of these biofilms vs, outer layers 

(Franks et al., 2010; Steidl et al., 2016; Stephen et al., 2014a). Specifically, previous results using viability 

or respiratory stains suggested that while cells are alive throughout the biofilm, outer layers had different 

metabolic rates based on transcriptional profiles (38) or changes in protein abundance (Inoue et al., 2011; 

Stephen et al., 2014a).  These previous results are consistent with the anabolic gradient presented in 
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Figure 2, producing a quantitative measure of what were previously qualitative observations.  Cells 

appear to only experience the set potential near the anode surface, while cells located farther from 

electrodes experience an increasingly reduced pool of extracellular cytochromes to act as their electron 

acceptor (Babauta et al., 2012; Jain et al., 2011; Lebedev et al., 2014; Liu et al., 2011; Robuschi et al., 

2017, 2013; Snider et al., 2012), which ultimately makes electron transfer unfavorable to support growth. 

The low redox potential in these outer layers still appears to allow some acetate oxidation to proceed, 

based on the slow increase in current that occurs over subsequent days to weeks. We hypothesize that 

the second zone of anabolic activity in this region >10 µm from the electrode represents a shift to low 

potential-specific mode of growth, enabled by recently discovered systems such as the quinol oxidase 

CbcL that operates around potentials of -100 mV (Zacharoff et al., 2016). The fact that electrode 

surfaces poised at potentials near -100 mV fail to develop a distant zone of growth supports this model, 

as potential should more rapidly decrease to an unfavorable value in these biofilms. Alternatively, this 

second increase in anabolic activity could represent a switch to reliance on long-range electron transfer 

pathways such as those previously proposed to be dependent on the presence of cytochrome polymers 

(Wang et al., 2019) and/or pili (Reguera et al., 2006; Steidl et al., 2016). 

 

These data represent the first direct quantitative measurement of G. sulfurreducens anabolic activity at high 

spatial resolution within conductive biofilms. Our results highlight the uniqueness of current-producing 

biofilms, which stratify in a different pattern than canonical biofilm models, with the most anabolically 

active cells in bottom layers where dead or persister cells are typically found (Flemming et al., 2016; 

Stoodley et al., 2002). The combined effect of factors that could limit cellular metabolism within 

electroactive biofilms favors growth at the biofilm-anode interface. Localization of the most active cells 

at the electrode interface dispels the notion that pH or substrate limitation strongly inhibits growth of 
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cells in the inner layers of these biofilm, despite models predicting such an effect (Babauta et al., 2012; 

E. Franks et al., 2009; Renslow et al., 2013; Torres et al., 2008). In fact, in some cases, the highest rates 

of growth occurred within pockets or pits inside the graphite electrodes, where diffusion to cells was 

most severely restricted (i.e. Figure S1A). While these data cannot resolve which components enable 

extracellular electron transfer, our results constrain future models to ones that account for the major 

mode of biofilm growth occurring in layers near the anode that push biomass outward into increasingly 

less favorable conditions.  

 

These results support the widely held conclusion that G. sulfurreducens biofilms are conductive at distances 

exceeding 10 µm, but reveal that metabolism-at-a-distance comes with a cost, which is eventually 

inhibitory to growth. While the exact pattern of activity will vary between reactor designs, substrate 

concentrations, and especially buffering capacity of the media, the data presented here can be used to 

reconcile conflicting models of electroactive biofilms. Follow-up studies using mutants lacking 

conductive appendages such as polymerized OmcS cytochromes (Wang et al., 2019), or redox potential-

specific oxidases such as CbcL, could test new predictions regarding the molecular basis for growth 

within biofilms. With the growing number of environmental Bacteria and Archaea shown to be capable 

of direct extracellular electron transfer, either for microbial growth on metal oxide materials, or to 

mediate syntrophic growth between microbes e.g. (McGlynn et al., 2015; Summers et al., 2010; Wegener 

et al., 2015), enhancing our mechanistic understanding of growth by current-producing microorganisms 

is an important goal of environmental microbiology. Our findings place new limitations on the 

extracellular electron transfer process and help constrain the extent to which it can support active cell 

growth in these increasingly important microbial systems. 
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Materials and Methods 
Geobacter growth 

All experiments were performed using our laboratory strain of G. sulfurreducens PCA, with each 

experiment using freshly streaked single colonies from freezer stocks. Anaerobic NB medium (0.38 g/L 

KCl, 0.2 g/L NH4Cl, 0.069 g/L NaH2PO4H2O, 0.04 g/L CaCl22H2O, 0.2 g/L MgSO47H2O, 1% v/v 

trace mineral mix, pH 6.8, buffered with 2 g/L NaHCO3 and flushed with oxygen-free 80:20 N2:CO2 

gas mix) with 20 mM acetate as electron donor, 40 mM fumarate as electron acceptor was used to grow 

liquid cultures from colony picks. Three cm2 graphite electrodes were polished using 1500 grade sand 

paper (Gator Finishing Products) followed by 0.05 micron alumina slurry (Buehler), and cleaned via 

sonication to serve as working electrodes. Sterile three-electrode conical reactors containing 15 mL of 

acceptor-free medium with 40 mM acetate as the electron donor and 50 mM NaCl to equilibrate salt 

concentrations were flushed with a mix of N2-CO2 gas (80:20, v/v) until the O2 concentration reached 

less than 2 ppm. Cultures were prepared by inoculating multiple 1 ml liquid cultures from different single 

colonies inside an anaerobic chamber. Once these cultures reached late exponential phase, they were 

used to inoculate separate 10 ml cultures with 10% v/v. Each reactor was then inoculated with 25% v/v 

from this liquid culture as it approached acceptor limitation (as it reached an OD600 of 0.48). Working 

electrodes were set at either -100 mV or +240 mV vs standard hydrogen electrode (SHE) and average 

current density recorded every 12 seconds. All experiments were carried out at 30 °C.   

 

Stable isotope probe medium 

Heavy isotope labeled medium was identical in chemical composition to normal growth medium, with 

an increase in the final heavy isotope of 15N to 6 atom% in ammonium, 13C to 6 atom% in both acetate 

carbons, and 2H to 2 atom% in the water.  Enriched isotopic chemicals were purchased from Cambridge 
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isotope (15NH4Cl [NLM-467]) and Sigma (D2O [151882], 13CH3

13CO2Na [282014]). Increased strength 

labeled media for short term incubations was made using 3x the heavy isotope percentage with identical 

concentrations of chemical species. 

 

Stable isotope probing 

Once the desired biofilm growth stage had been reached, the potentiostat was paused, and medium was 

carefully exchanged for 15 mL of anaerobic labeled medium. For negative control samples, regular 

electrode growth medium was used instead of stable isotope enriched medium. Biofilms were then 

incubated for 6 hours with working electrodes poised at the same potential as during growth, or changed 

from -100 mV to +240 mV (Fig. 5F). 

 

Fixation and embedding 

After stable isotope incubation, graphite electrodes were harvested from each reactor, rinsed by placing 

in fresh medium once to remove planktonic cells, fixed at room temperature for 1 hr (2% glutaraldehyde, 

50 mM HEPES, pH 6.8), and stored at 4 °C in fixing solution. Negative controls to test for non-specific 

isotope binding were rinsed and incubated for 6 hours in stable isotope enriched media before storing 

in fixative. Samples (still attached to graphite) were rinsed twice (50 mM HEPES, pH 7) before negative 

staining in 1% OsO4, 50 mM HEPES, pH 7 for 2h. After rinsing again, samples were incubated for 1h 

in 1% uranyl-acetate and rinsed. Samples were then dehydrated with sequential 10 minute incubations 

in 25%, 50%, 75%, and 100% ETOH. A 50/50 v/v LR White resin (Sigma-Aldrich, uncatalyzed) and 

ETOH solution was used to incubate samples at room temperature overnight. Samples were then placed 

in 2 mL microcentrifuge tubes containing enough LR White solution (catalyzed with benzoyl peroxide) 

to cover ~0.5 cm above the graphite flag (~1.5 mL) and incubated at 60 °C overnight. 
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Sample preparation for nanoSIMS 

Resin-embedded biofilm-covered electrodes were cut perpendicular to the largest face of the electrode 

with a jeweler’s saw and a smooth face was prepared using a microtome and glass knife. Thin sections 

between 200-500nm were cut for nanoSIMS analysis with a diamond knife. Floated sections were 

collected on glow discharged 7mm x 7mm silicon wafers (Active Business Company GmbH).  Sections 

on silicon wafers were coated with 40nm gold using a Cressington sputter coater.  

 

Electron microscopy 

A subset of biofilm sections were imaged with transmission and scanning electron microscopy. For 

TEM, 100nm sections were cut using a diamond knife and collected on copper TEM grids and imaged 

on an FEI Tecnai (T12) operated at 120 keV. Sections collected on silicon wafers (described above) 

were imaged on a Merlin Compact SEM (Zeiss). 

 

NanoSIMS data acquisition 

Isotope enrichment data was collected on a CAMECA nanoSIMS 50L housed in the Center for 

Microanalysis at the California Institute of Technology. Gold coated samples were pre-sputtered with a 

90pA primary Cs+ ion beam with detector D1=1 until the 14N12C- ion counts stabilized. Data was 

collected using a 0.5 pA beam with D1=3, and ES=2. Six masses were collected corresponding to the 

1H-, 2H-, 12C-, 13C-, 14N12C-, and 15N12C- ions, for the determination of 2H/1H, 13C/12C and 15N/14N ratios, 

respectively using a tuning similar to that described in Kopf et al., (Kopf et al., 2015). Acquisitions were 

10 to 40µm square raster areas, with 128x128 to 512x512 pixels, and 1-4 planes were collected per area. 
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Dwell time settings resulting in acquisition times from 25 minutes to two hours per plane depending 

on the size of the rasters.  

 

Data processing 

NanoSIMS .im data files were initially processed using the Look@nanoSIMS Matlab GUI (Polerecky et 

al., 2012), to align planes and export raw data. All subsequent data processing and analysis was done in 

Matlab. Regions of acquisitions that contained Geobacter biofilm were outlined on the 14N12C- mass image, 

where the surface of the electrode was traced by hand, and each pixel of Geobacter biofilm was assigned 

a minimum distance to the electrode surface by calculating the pairwise distance between each pixel in 

the biofilm and the electrode surface. Biofilm pixels were assigned to bins of 0.5 µm increments from 

the anode surface, and the 15N12C- and 14N12C- counts were pooled for each distance bin to calculate the 

fractional abundance of the heavy isotopes: i.e. 15F = 15N12C-/(15N12C-+14N12C-). Pixels with low 14N12C 

counts corresponding to the epoxy resin in between cells were omitted, as was the furthest distance bin 

when it contained very few pixels. 
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Figures 
 

 
 
Figure 1 G. sulfurreducens biofilm structure is fully developed as the current density plateau is 
reached. Current density generation (A) and transmission electron microscopy images (B) of G. 
sulfurreducens biofilms. Cells were inoculated at time zero on anodes poised at +240 mV. After 83 hours 
of growth (see arrow), normal growth medium was exchanged with stable isotope labeled medium or 
unlabeled medium as a control.  
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Figure 2 15N incorporation reveals anabolic activity patterns within G. sulfurreducens biofilms. 
Representative nanoSIMS analysis of G. sulfurreducens biofilms. (A) 14N12C- ion image demonstrating 
biofilm morphology and spatial resolution. The graphite anode is located below the biofilm and the 
vertical black zone is a crack in the resin. Heavy nitrogen isotope image 15N12C- (B) and 15N fractional 
abundance image (C) reveal an enrichment at the anode surface. Graded scales to the right of A, B, and 
C serve as legend of abundance (A and B) or fractional abundance (C) measured throughout the biofilm.  
In (C) only pixels corresponding to the biofilm are displayed (see methods), and a 1 pixel radius gaussian 
blur is applied for image clarity. (D) Anabolic activity patterns in replicate G. sulfurreducens biofilms, n=3. 
Colored lines represent the average 15N fractional abundance of different locations within a single 
biofilm. Transparent envelopes surrounding lines represent standard deviation of fractional abundance 
at each distance calculated based on multiple acquisitions of each biofilm (number of acquisitions per 
biological replicate are shown in parentheses in the legend). Black lines represent controls that were 
chemically fixed before incubating with isotopically labeled media, indicating live cells are required for 
isotope incorporation. 
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Figure 3 13C and 2H incorporation follow the same pattern as 15N. Fractional abundance of 15N (A), 
13C (B) and 2H (C) binned every half micron from the anode surface (red line). Graded scales to the right 
of A, B, and C serve as legend of fractional abundance measured throughout the biofilm. D-F) half-
micron binned fractional abundance as a function of distance from electrode for 15N, 13C, and 2H, 
respectively from representative samples. F= fractional abundance. 
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Figure 4 The decrease in anabolic activity with distance from the electrode is already present in 
thin biofilms. Current density (A) and transmission electron microscopy images (B and C) of 
representative G. sulfurreducens biofilms harvested during exponential phase. Graphite electrodes poised 
at +240 mV vs. SHE served as the terminal electron acceptor and normal growth media was exchanged 
with stable isotope labeled media after 35 hours of growth (arrow on A). (D) Anabolic activity patterns 
in duplicate G. sulfurreducens biofilms. Red and purple lines represent the average 15N fractional abundance 
at different locations within a single biofilm (number of acquisitions per biological replicate are shown 
in parentheses in the legend). Transparent envelopes surrounding lines represent standard deviation of 
fractional abundance at each distance. Black lines represent controls that were chemically fixed before 
incubating with isotopically labeled media. For comparison, data from A and D is overlaid on data in 
gray from Fig. 1A and Fig. 2D, respectively, to show the similar maximum and decrease with distance 
features. 
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Figure 5 Lowering the poised potential of electrodes causes anabolic activity of G. 
sulfurreducens to decrease even more rapidly with distance, and cannot be restored by exposure 
to a more favorable reduction potential. Representative nanoSIMS analysis of G. sulfurreducens 
biofilms grown with graphite electrodes poised at -100 mV vs. SHE as sole terminal electron acceptor. 
(A) 14N12C- ion image demonstrating biofilm morphology and spatial resolution. Graphite anode is 
located in the bottom, below the biofilm. Heavy nitrogen isotope image 15N12C- (B) and 15N fractional 
abundance image (C) reveal an enrichment at the anode surface. Graded scale to the right of A, B, and 
C serves as legend of fractional abundance measured throughout the biofilm. In (C) only pixels 
corresponding to the biofilm are displayed (see methods).  Anabolic activity patterns in replicate G. 
sulfurreducens biofilms grown with graphite electrodes poised at -100 mV vs. SHE as sole terminal electron 
acceptor and harvested once current reached plateau (D), during exponential phase (E), or once current 
reached plateau and the reduction potential of the working electrode was raised to +240 mV vs. SHE 
for the duration of isotope label incorporation (F). Lines represent the average 15N fractional abundance 
for analyses of different locations within a single biofilm (number of acquisitions per biological replicate 
are shown in parentheses in the legend). Transparent envelopes surrounding lines represent standard 
deviation of fractional abundance at each distance. Black lines represent controls that were chemically 
fixed before incubating with isotopically labeled medium. For comparison, data from D-F are overlaid 
on data in gray from Fig. 2D. 
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Figure 6 Anabolic activity pattern of G. sulfurreducens biofilms does not change after growth 
is maintained for two weeks. (A) Electron microscopy and nanoSIMS analysis of representative two-
week old biofilm. Scanning electron microscopy image showing a two week old biofilm grown at +240 
mV, demonstrating the thickness of the biofilm and regions of cell lysis in the upper layers. 
Representative nanoSIMS images were taken in regions 1-4. (B) The 14N12C- ion image is shown along 
with the 15N fractional abundance for each region next to their enlarged SEM image. (C) Anabolic 
activity patterns in two-week old G. sulfurreducens biofilms. Dark blue, light blue, light green, and dark 
green represent the 15N fractional abundance for analyses of regions 1, 2, 3, and 4, respectively. Data 
representative of three biological replicates.  Acquisition regions are 30 µm square and serve as scale 
bars. 
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Figure S1 Repeatability of nanoSIMS analysis of G. sulfurreducens biofilms grown using a graphite 
electrode poised at +240 mV vs. SHE during (A) exponential and (B) current plateau phases. Panels 
from left to right correspond to 14N12C- ion image demonstrating biofilm morphology and spatial 
resolution. The location of the graphite anode is labeled on each 14N12C ion panel with the letter “e”. 
Second panels correspond to heavy nitrogen isotope image 15N12C-, and third panels to 15N fractional 
abundance image, all revealing an enrichment at the anode surface. Plots to the right of nanoSIMS 
images correspond to binned anabolic activity patterns in each additional representative G. 
sulfurreducens biofilm. These data all contributed to the average activity plots in Figure 2D and Figure 
4D. 
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Figure S2 SEM image of a region of lysing cells in thin section of weeks old G. sulfurreducens biofilms 
(detail of biofilm from Fig. 6a in the main text). Cells with more electron density retained the 
characteristic size and shape of healthy Geobacter rods, while low density material appeared to be made 
up of lysed cells with irregular broken membranes. Intact cells yielded much greater 14N12C- ion counts 
in nanoSIMS images, indicating dense biological material, and are oriented perpendicular to the surface 
of the anode (~20µm below the region displayed here). Scale bar is 5 µm.  
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Figure S3 Short stable isotope probe experiment with higher percent heavy isotope label reveals 
similar activity patterns. (A-D) Representative nanoSIMS image of the biofilm grown at +240 mV and 
labeled for ~2 hours with 3x heavy isotope percent medium once current plateau was reached. 
Acquisition region 30x30µm. In (C) and (D) only regions defined as biofilm by manual tracing and 
with 14N12C counts above background are shown (as described in the methods).  In (D) manual trace 
of the biofilm is shown in red, with electrode trace in green.  (E) Binned fractional abundance of 15N 
in the biofilm at four different acquisition locations demonstrating the characteristic enriched activity 
at the anode interface and small peak in activity at the top of the biofilm. 
  



 

 

42 

 

Figure S4 Current production of wild type G. sulfurreducens biofilms grown in triplicate until current 
reached plateau, then 20 µM tetracycline (Tet) was added. Once current density remained below 30 
µA·cm-2 for 24 hours, medium was exchanged for fresh medium with no antibiotic. 
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Abstract 
The anaerobic oxidation of methane coupled to sulfate reduction is a microbially mediated process 

requiring a syntrophic partnership between anaerobic methanotrophic (ANME) archaea and sulfate 

reducing bacteria (SRB). Based on genome taxonomy, ANME lineages are polyphyletic within the 

phylum Halobacterota, none of which have been isolated in pure culture. Here we reconstructed 28 

ANME genomes from environmental metagenomes and flow sorted syntrophic consortia. Together 

with a reanalysis of previously published datasets, these genomes enabled a comparative analysis of all 

marine ANME clades. We determined the genomic features which separate ANME from their close 

methanogenic relatives and identify what differentiates the ANME clades. Large multiheme 

cytochromes and bioenergetic complexes predicted to be involved in novel electron bifurcation 

reactions are well-distributed and conserved in the ANME archaea. Significant variations in the anabolic 

C1 metabolism exist between different ANME groups. Our analysis raised the possibility that 

methylotrophic methanogenesis in the Methanosarcinales may have evolved from a methanotrophic 

ancestor.  
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Introduction 
Anaerobic oxidation of methane (AOM) coupled to sulfate reduction is a key microbiological process 

in ocean sediments that controls the amount of methane released into overlying waters and the 

atmosphere. However, despite the global relevance and distribution of this process, including terrestrial 

habitats, there are currently no strain isolates that carry out AOM with sulfate. Thus, our understanding 

of the physiological and biochemical basis for AOM has advanced much more slowly than it has for 

many other microbially-mediated biogeochemical processes. Twenty years ago, strong evidence emerged 

that archaea may be involved in AOM based on stable isotope measurements of archaeal lipids and small 

subunit ribosomal RNA (16S rRNA) gene clone libraries from marine methane seeps (Hinrichs et al., 

1999). Shortly thereafter fluorescence in situ hybridization from methane seep environments provided 

microscopic evidence for the existence of a prevalent interdomain consortia consisting of an archaeon 

related to known methanogens and a bacterium related to sulfate reducing bacteria (Boetius et al., 2000; 

Orphan et al., 2001b). These discoveries led to the current paradigm that sulfate-dependent AOM is 

carried out by anaerobic methanotrophic (ANME) archaea in a syntrophic partnership with sulfate 

reducing bacteria (SRB). 

 

Subsequent work has expanded our understanding diversity and activities of the ANME archaea and 

lead to various theories pertaining to the biochemical mechanisms underlying the syntrophic interactions 

between ANME and SRB. Diversity surveys have suggested that ANME are polyphyletic with three 

distinct clades (ANME-1, 2, and 3) within the Halobacterota. 16S rRNA gene phylogenies support 

ANME-1 as a family-level clade, ANME-2 represent two distinct families within the Methanosarcinales, 

and members of ANME-3 are a novel genus closely related to Methanococcoides within the family 

Methanosarcinaceae (Knittel and Boetius, 2009; Orphan et al., 2001a). Initial ‘omic analysis of fosmid 
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libraries from ANME organisms supported “reverse methanogenesis” as the biochemical model for 

the methane oxidation pathway in AOM (Hallam et al., 2004; Meyerdierks et al., 2010, 2005). Subsequent 

analysis of more complete ANME genomes from enrichment cultures (Krukenberg et al., 2018; Stokke 

et al., 2012; Wang et al., 2013), or metagenome assembled genomes (MAGs) from AOM habitats have 

added to our understanding of some of the major groups of ANME, and further refined the reverse 

methanogenesis hypothesis (Borrel et al., 2019; McGlynn, 2017). 

 

The limited number of ANME genomes currently available relative to their 16S rRNA gene diversity 

leads to questions about whether or not the observations made in previous studies represent conserved 

features of the ANME archaea, or are skewed by the relatively small sample size and the incomplete or 

biased nature of metagenomic binning methods. In order to develop a better model for the evolution 

and metabolic capabilities of the ANME archaea we performed a large comparative analysis of the most 

complete set of ANME genomes to date, encompassing 39 reconstructed MAGs, fosmids, and 

amplified single aggregate genomes (ASAGs), and combine-assembled single amplified genomes (Co-

SAGs), more than doubling the previously available genomic information. This analysis includes 

representatives from all marine ANME groups including ANME-1, 2a, 2b, 2c, and 3. Using this 

expanded dataset we constructed a more robust phylogenetic framework for the ANME archaea and 

analyzed the differences in metabolic potential that exist within and between ANME clades, as well as 

between ANME and their methanogenic relatives. The distribution of various mechanisms of energy 

conservation and potential adaptations to syntrophic associations with SRB were documented across 

different ANME lineages. Based on these genomic observations we present a model for ANME 

metabolism for the different lineages and highlight important aspects of the ANME archaea physiology 

that require further attention. 
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Results 
Genome-resolved diversity of the methanotrophic archaea 

We reconstructed 28 new ANME genomes from metagenomic datasets and fluorescence-activated cell 

sorting of single aggregates (Hatzenpichler et al., 2016), as well as from reanalyzed publicly available 

metagenomic data from the sequence read archive (SRA) and the MG-RAST analysis server (see 

Methods for details). These genomes were combined with 11 previously published marine ANME 

genomes recovered from diverse environments (Dombrowski et al., 2017; Krukenberg et al., 2018; 

Meyerdierks et al., 2010; Parks et al., 2017; Wang et al., 2013; Yu et al., 2018) to generate a set of 39 

ANME genomes for comparative genomics, representing all of the major currently described clades 

(ANME-1, 2, 3) and subclades (e.g. ANME-2a, b, c and multiple clades in ANME-1) frequently detected 

in marine sediments (Table 1)(Knittel and Boetius, 2009). In most analyses we also include the recently 

described alkane-oxidizing “Candidatus Syntrophoarchaeum” (Laso-Pérez et al., 2016), as well as the 

nitrate-reducing freshwater ANME relatives known as ANME-2d or “Candidatus Methanoperedens” 

(Arshad et al., 2015; Haroon et al., 2013) and their marine relatives known as “Candidatus Argoarchaeum” 

(Chen et al., 2019; Dombrowski et al., 2017). At least one genus from each ANME subgroup was 

assigned a name, formal etymology can be found in Supplementary file 1. 

 

The draft ANME genomes sequenced and assembled here were between 46% and 98% complete (mean: 

78%, median: 80%) as determined by the presence of a set of marker proteins common to Halobacterota. 

Many of the less complete genomes originated from sequencing of individual flow sorted aggregates 

(Table 1). Most of the genomes did not contain duplicated marker genes, with the exception of the three 

genomes derived from sequenced fosmids, which encoded many duplicates (Table 1). The fosmids 

representing these genomes have consistent nucleotide signatures and, in many cases, contain 
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overlapping regions that suggests that they are derived from multiple strains rather than from a single 

clonal population. While genome incompleteness can impact the accurate reconstruction of ANME 

metabolism, we found reproducible trends in gene presence, absence, and synteny across the different 

ANME lineages, with multiple genomes for each ANME clade, often originating from different studies 

and habitats. Taxonomic assignments in Table 1 were made consistent with GTDB release 89 using 

analysis of relative evolutionary divergence (RED) (Parks et al., 2018). 

 

Members of the ANME-1 were originally described in 16S rRNA gene surveys of methane seep 

sediments (Hinrichs et al., 1999) and representatives of the ANME-1 were among the first to be 

genomically characterized (Hallam et al., 2004). ANME-1 16S rRNA genes have since been identified in 

marine cold seep environments, diffusive margin sulfate-methane transition zones, deep sea 

hydrothermal vents, and select anoxic terrestrial ecosystems (Takeuchi et al., 2011). With our updated 

genomic dataset there are now 19 representative genomes from ANME-1, recovered from eight 

locations, including deep-sea methane cold seeps, hydrocarbon-impacted hydrothermal vents and cold 

seeps, a mud volcano, and a hot, deep gold mine aquifer. Collectively, these genomes are highly diverse 

at the sequence level with the majority being at most 60% similar to each other, based on pairwise 

sequence similarity and non-homologous gene content between genomes (Table 1—figure 

supplement 1). These genomes represent six genera as determined by analysis of their RED values. 

Recently proposed nomenclature based on a single ANME-1 genome from fosmid sequences placed 

ANME-1 within their own order Methanophagales (Adam et al., 2017), and this is consistent with GTDB 

release 89. The 19 ANME-1 genomes analyzed here represent a single family-level division within that 

order. We propose to conserve the family and genus-level designation implied by “Methanophagales” with 
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the ANME-1 genome from Meyerdierks et al. 2010 belonging to the genus Methanophaga within the 

family Methanophagaceae (Table 1). 

 

Marine members of the ANME-2 are within the order Methanosarcinales and are composed of subgroups 

a, b, and c, first designated in Orphan et al. 2001 based on 16S rRNA gene sequences (Orphan et al., 

2001a). The ANME-2a and 2b form a family-level division with two genus-level clades corresponding 

to ANME-2a and 2b, recovered from six different locations including two methane cold seep sites, two 

submarine mud volcanoes, a hydrocarbon seep and shallow coastal sandy sediments (Table 1). We 

propose the name “Candidatus Methanocomedens” for the dominant genera corresponding to ANME-

2a with name propagating to the family level as Methanocomedenaceae. Recent coupled fluorescence and 

electron microscopy analyses have revealed distinct ultrastructural features of the ANME-2b (McGlynn 

et al., 2018), and in conjunction with phylogenetic information, we further propose the genus name 

“Candidatus Methanomarinus” for ANME-2b. The six “Ca. Methanocomedens” genomes have AAI 

values which range between 70% and 97% indicating that there are multiple distinct species, whereas 

the three “Ca. Methanomarinus” genomes have >98% AAI indicating that they represent strains of the 

same species (Table 1—figure supplement 1). The ANME-2c form a separate family (84% AAI 

among the 8 genomes analyzed in this study) representing two genus-level groups. For the dominant 

ANME-2c we propose the genus name “Candidatus Methanogaster” with name propagating to the family 

level as Methanogasteraceae. 

 

 “Ca. Methanoperedens nitroreducens” is a representative of the family Methanoperedenaceae formerly 

known as ANME-2d, within the order Methanosarcinales. These are the only known ANME that do not 

couple AOM in syntrophy with partner SRB, instead coupling the oxidation of methane with the 
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reduction of nitrate, iron oxides or manganese oxides in freshwater environments (Cai et al., 2018; 

Ettwig et al., 2016; Haroon et al., 2013). The marine sister group of Methanoperedenaceae, GoM Arc I 

(also known as AAA), was recently described as an anaerobic ethane degrader, and contains two genera 

“Candidatus Argoarchaeum” (Chen et al., 2019; Dombrowski et al., 2017) and the thermophilic 

“Candidatus Ethanoperedens”(Hahn et al., 2020). These clades are not specifically considered in the 

present work as they do not appear to be marine methanotrophs and have been extensively discussed in 

a recent study (Leu et al., 2020).  

 

ANME-3 is the ANME group most recently diverged from known methanogens. They are closely 

related by their 16S rRNA genes (94-96% similarity) to Methanococcoides, Methanosalsum, and Methanolobus, 

with 65% average AAI, indicating these organisms represent a novel genus within the family 

Methanosarcinaceae, for which we propose the name “Candidatus Methanovorans” (Table 1, Table 1—

figure supplement 1). The two genomes were both recovered from the Haakon Mosby Mud Volcano 

where this group was originally described on the basis of 16S rRNA gene sequences (Niemann et al., 

2006). This ANME genus forms consortia with bacteria from the Desulfobulbus group (Lösekann et al., 

2007). 

 

Phylogenetic reconstruction of 16S rRNA gene sequences, concatenated marker genes, DNA-directed 

RNA polymerase subunit beta (RpoB) and the methane activating enzyme McrA were constructed to 

demonstrate the evolutionary relationship between ANME and other related archaea (Figure 1). All 

marker gene sets show remarkably similar phylogenies, with ANME-1 forming the deepest branching 

group of ANME, while ANME-2 and 3 group within the order Methanosarcinales. Importantly, in 

agreement with previous studies, ANME-3 reproducibly branches well within the family 
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Methanosarcinaceae, in agreement with the AAI analysis described above. The McrA phylogeny deviates 

somewhat from this pattern, with ANME-1 falling further outside of the traditional methanogens, but 

grouping with some McrA from the H2-dependent methylotrophic methanogens as has been previously 

reported (Borrel et al., 2019; Boyd et al., 2019; Spang et al., 2017). The McrA in all ANME groups are 

more similar to methanogens than the recently described divergent McrA homologs in various 

uncultured archaea that are thought to utilize longer chain alkane substrates (Chen et al., 2019; 

Dombrowski et al., 2017; Laso-Pérez et al., 2016). With this general phylogenetic framework, we set out 

to characterize the major conserved features of the ANME energy metabolism. 

 

ANME energy metabolism 
Biochemically it is assumed that the ANME archaea oxidize methane to CO2 and pass electrons through 

an unconfirmed mechanism to their SRB partners to reduce sulfate. Metabolic reconstruction of a 

limited number of ANME draft genomes from environmental samples and enrichment cultures using 

multiple ‘omics approaches have shown that they contain and express the same genes used for 

methanogenesis (Hallam et al., 2004; Haroon et al., 2013; Krukenberg et al., 2018; Meyerdierks et al., 

2010; Pernthaler et al., 2008; Stokke et al., 2012). Detailed enzymatic studies of the methanogenic 

pathway have shown that all 7 steps are reversible (Holler et al., 2011; Kojima et al., 2014; Thauer, 2011), 

including the methane producing step catalyzed by methyl-coenzyme M reductase (Mcr) (Scheller et al., 

2010), which had previously been predicted to be irreversible. These findings reinforce the ‘reverse 

methanogenesis’ hypothesis (Hallam et al., 2004; Hoehler et al., 1994; Krüger et al., 2003; Zehnder and 

Brock, 1980), in which ANME use the same methanogenic enzymes to oxidize, rather than produce, 

methane. This model offers the most likely pathway for carbon oxidation in ANME; however the 

mechanisms by which these archaea conserve energy from this process, and the way by which methane 
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is activated and methane-derived electrons are transferred to their syntrophic sulfate-reducing 

bacterial partners remain open questions. 

 

It has been pointed out in recent reviews that a simple reversal of the methanogenesis pathway does not 

represent a viable basis for an energy metabolism in the ANME archaea, as the exact reversal of a process 

that results in net ATP generation must result in ATP loss (McGlynn, 2017; Timmers et al., 2017). 

Bioenergetic novelty beyond a wholesale reversal of methanogenesis therefore must exist. In the 

following discussion we break down the ANME energy metabolism into three phases and discuss the 

conserved features of these phases across our collection of ANME genomes (Figure 2). In the first 

phase, methane is oxidized to CO2 and all eight electrons are deposited on cytoplasmic electron carriers 

in an endergonic process that requires an investment of energy. In the second phase, cytoplasmic 

electron carriers are re-oxidized in an exergonic process that reduces a set of intermediate electron 

carriers, recovering the energy invested in the first phase and conserving additional energy as an ion 

motive force. In the final phase, electrons must be discarded, likely not involving energy gain or loss. 

We use this division of energy metabolism as an organizing framework throughout this work.  

 

Energy metabolism phase 1: The conserved C1 machinery of the methanogenesis pathway 
in ANME archaea 
Function of the methanogenesis pathway in ANME archaea  

Our analysis of this expanded set of ANME genomes is consistent with early genomic work that 

identified reverse methanogenesis as the most likely pathway of carbon oxidation in the ANME archaea 

(Hallam et al., 2004; Meyerdierks et al., 2010; Wang et al., 2013). Genes for all seven steps of the 

methanogenesis pathway were found in all of the ANME genomes (Figure 3). The only consistent 

exception is F420-dependent methylenetetrahydromethanopterin reductase (Mer), which is absent from 
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all 19 ANME-1 genomes as well as the “Ca. Syntrophoarchaeum”, as observed previously (Hallam et 

al., 2004; Laso-Pérez et al., 2016; Meyerdierks et al., 2010; Stokke et al., 2012). This modification of the 

canonical methanogenesis pathway is a common feature of the entire class Syntrophoarchaeia. Some 

ANME contain paralogous copies of enzymes carrying out certain steps of the pathway and these are 

indicated in Figure 3. Notably, none of the ANME genomes contain the specific methyltransferases for 

methanol (Sauer et al., 1997), methylamines (Paul et al., 2000) or methylated sulfur compounds (Fu and 

Metcalf, 2015) used for methylotrophic methanogenesis in the Methanosarcinaceae. This strongly argues 

against methylated compounds as intermediates or end products of methane oxidation in any known 

ANME group. 

 

To understand whether the transition to a methanotrophic lifestyle is accompanied by a significant 

diversification of the enzymes catalyzing the reactions of the reverse methanogenesis pathway we built 

phylogenetic trees of the enzymes involved in each step. With regard to the first step, i.e. the presumed 

involvement of the McrA in methane activation, the McrA phylogeny largely tracks with phylogenetic 

marker trees, except for ANME-1 (Figure 1). The second step of the pathway is carried out by the N5-

methyl-H4MPT:coenzyme M methyltransferase (Mtr) complex (Figure 3). All ANME groups contain 

Mtr homologs that are phylogenetically consistent with their genome phylogeny (Figure 4A). However, 

a highly divergent second copy of the entire Mtr complex exists that was first observed in the genome 

of an ANME-2a from an enrichment culture (Wang et al., 2013). We find this second “Mtr2” to be 

sporadically distributed through the ANME-2. Absent from the other ANME-2a genomes, Mtr2 is 

present in ANME-2c, one ANME-2d and both “Candidatus Argoarchaeum”. These Mtr2 complexes 

form a monophyletic group that is phylogenetically distinct from all previously described methanogens 

yet still contains the same gene synteny in the eight-subunit cluster. In addition, all the Mtr2 gene clusters 
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are followed downstream of MtrH2 by a highly divergent Mer2, which catalyzes the next step in the 

methanogenesis pathway. All ANME-2 and 3 contain a less divergent copy of Mer that tracks with their 

genome phylogeny (Mer1) (Figure 4B). 

 

The next fourth step of the pathway is catalyzed by the F420-dependent N5,N10-methylene-H4MPT 

dehydrogenase (Mtd) enzyme (Figure 3). Only a single copy of the gene encoding Mtd was found in 

any genome, and the phylogeny of the predicted protein sequence is largely congruent with the genome 

phylogenies (Figure 4C). The fifth step in the pathway is catalyzed by N5,N10-methenyl-H4MPT 

cyclohydrolase (Mch). The analysis of early fosmid libraries revealed a gene on an ANME-2c-assigned 

fosmid encoding Mch (Meyerdierks et al., 2005), which was highly divergent from an Mch located on 

an ANME-2-assigned fosmid from a previous study (Hallam et al., 2004). This led the authors to 

question whether the Mch had diverged rapidly between ANME-2c and different ANME-2 groups, or 

whether multiple Mch copies were present as paralogs within ANME-2c genomes. Interestingly, 

ANME-2a, 2b, 2c and 2d all share a well-supported monophyletic group of Mch genes (Mch2) that are 

very different from those of closely related methanogens (Mch1) (Figure 4D). The Mch2 cluster 

corresponds to the gene identified as being closely related to Mch found in Archaeoglobus (Meyerdierks 

et al., 2005). The ANME-2c genomes analyzed here also contain a copy of Mch1 that is closely related 

to those found in the methanogenic Methanosarcinaceae, which corresponds to the gene found in the first 

set of ANME-2-assigned fosmids (Hallam et al., 2004). Apparently ANME-2c contain both copies of 

this gene, while the ANME-2a, 2b, and 2d only contain the divergent Mch2. ANME-3 contain a copy 

very similar to those of their close methanogenic relatives. 
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The reaction catalyzed by Mch is a curious step of the methanogenesis pathway to have a strongly 

supported, ANME-specific clade of enzymes. The cyclohydrolase reaction is thought to occur essentially 

at equilibrium (Thauer, 2011), so it is unclear what evolutionary pressure would result in such a stark 

difference between Mch2 enzymes in ANME-2s and their closely related methanogenic relatives. The 

pterin moiety of the H4MPT analog could vary between ANME and the methanogens in the 

Methanosarcinaceae. At least five pterins are known to be found in H4MPT analogs in methanogenic 

archaea: methanopterin, sarcinopterin, tatiopterin-I, tatiopterin-O and thermopterin (Raemakers-

Franken et al., 1991). However, this level of sequence variation is not observed in other enzymatic steps 

of the pathway, which might be expected if the divergent Mch2 was the result of a significantly different 

form of C1-carrier in ANME. 

 

Divergent paralogs of formylmethanofuran-tetrahydromethanopterin N-formyltransferase (Ftr) were 

found in ANME-1, 2a and 2b. These Ftr2 clustered together in the phylogenetic tree with Ftr genes 

from Archaeoglobales and deeper branching hydrogenotrophic methanogens such as Methanopyrus kandleri 

and Methanothermobacter marburgensis (Figure 4E). These archaea all contain both Ftr1 and Ftr2, and only 

the Ftr1 versions have been biochemically characterized to our knowledge (Mamat et al., 2009). In the 

cases where transcriptomic information is available, Ftr1 is more highly expressed in ANME, and is 

therefore expected to be the dominant version utilized in ANME energy metabolism under the AOM 

conditions tested (Supplementary file 2). 

 

The seventh and final step of the methanogenesis pathway is carried out by formyl-methanofuran 

dehydrogenase (Figure 3). Two major variants of formylmethanofuran dehydrogenase are present in 

methanogens that contain either tungsten or molybdenum metal centers in their active sites (Fwd and 
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Fmd, respectively), and multiple paralogs of both can be found in methanogens such as Methanosarcina 

acetivorans (Rohlin and Gunsalus, 2010). Based on homology to versions of these enzymes in M. 

acetivorans, it appears that ANME largely contain the Fwd version, which have been detected in proteomic 

analyses of methane seeps (Glass et al., 2014) (Figure 4F). Some members of the ANME-2a, 2b, and 

2c have the Fmd version as well, and in the ANME-2c the genes encoding Fmd and Fwd occur together 

in a single large gene cluster. As was observed in previous ANME-1 genomes, the FwdFG subunits are 

not present in any ANME-1 (Borrel et al., 2019; Hallam et al., 2004; Meyerdierks et al., 2010). 

 

Based on the above observations we conclude that the transition from methanogenesis to 

methanotrophy required relatively little biochemical novelty within the central C1-carrying pathway of 

ANME energy metabolism. The loss of Mer in ANME-1 (step 3, Figure 3) remains the single major 

variation to the central C1-carrying pathway of ANME energy metabolism. Some paralogs exist, but 

with the exception of Mch2 in some ANME-2, these are less well conserved and less well expressed 

than those previously found in methanogenic archaea. While McrA in ANME-1 is slightly incongruous 

with its genome phylogeny, and was found to bind a modified F430 cofactor (Shima et al., 2012), we see 

little evidence for significant changes in ANME-2 or 3, suggesting these modifications are not necessary 

for using Mcr to activate methane. These results are broadly consistent with biochemical studies that 

have demonstrated the reversibility of the enzymes in this pathway (Kojima et al., 2014; Scheller et al., 

2010; Thauer, 2011), and suggests that there has likely been little specialization in terms of their 

directionality during the evolution of the ANME archaea. 
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Differing roles for MetF in ANME archaea 

Methylenetetrahydrofolate reductase (MetF) has been proposed to act in the third step as a replacement 

for Mer in ANME-1 (Stokke et al., 2012; Timmers et al., 2017) and metF is expressed at similar levels as 

other genes in the reverse methanogenesis pathway (Krukenberg et al., 2018). MetF is structurally similar 

to Mer and completes the same step of the Wood-Ljungdahl pathway in bacteria but uses NADPH as 

the electron donor rather than F420H2, and interacts with C1-bound tetrahydrofolate (H4F) instead of 

tetrahydromethanopterin (H4MPT).  

 

MetF is not only found in ANME-1, but also in other ANME groups and methanogenic members of 

the Methanosarcinaceae where it is expected to function as a methylene-H4F-interacting enzyme involved 

in anabolic processes (Buchenau and Thauer, 2004). Since the potential Mer/MetF switch in ANME-1 

appears to be the only significant modification to the central carbon oxidation pathway in ANME we 

investigated the distribution, phylogenetic placement, and genomic context of MetF in ANME in order 

to try and better understand the evolutionary history of these proteins. MetF homologs found in 

ANME-1 were clearly very different at the sequence level from those found in other ANME groups 

(Figure 5A), and, interestingly, the ANME-2c universally lack MetF of either type. All ANME MetF are 

found next to a MetV gene which is a common feature of MetF in acetogenic bacteria, and evidence 

suggests a complex forms between the proteins encoded by these two genes (Mock et al., 2014). 

 

Two phylogenetic trees were constructed with sequences of each of these MetF groups along with the 

most closely related homologs in the NCBI NR database (Figure 5B,C). The ANME-1 MetF homologs 

branched together with a diverse group of proteins found exclusively in uncultivated archaeal genomes, 

most of them identified as “Ca. Bathyarchaeota”, “Ca. Verstraetearchaeota”, and various members of 
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the “Ca. Asgardarchaeota”. The MetF from the other ANME were all found within a monophyletic 

group containing other closely related Methanosarcinaceae. MetF and MetV in the Methanosarcinaneae are 

found in gene clusters with other H4F-interacting enzymes that carry out important C1 reactions in 

biosynthesis, which led to the conclusion that H4F is used for biosynthesis in the Methanosarcinaceae 

(Buchenau and Thauer, 2004). This clustering of anabolic C1 genes is preserved in many of the ANME-

2 and 3, and we infer a similar function. For a detailed discussion of C1 anabolic metabolism in ANME, 

see below.  

 

The phylogeny of MetF proteins in ANME is best explained by two separate acquisitions of these genes. 

MetF in ANME-2 and 3 were likely acquired in the common ancestor of these organisms and the other 

Methanosarcinaceae along with other enzymes to utilize H4F-bound C1 moieties for the purpose of 

biosynthesis. Based on its distribution in uncultured archaea of different phyla, as well as the paucity of 

other H4F-interacting proteins in ANME-1, there is good support for a different, possibly catabolic, 

function of MetF in ANME-1. Due to the structural similarity between H4F and H4MPT (Shima et al., 

2000), it is possible that the ANME-1-type MetF has evolved to react with H4MPT instead of H4F. A 

switch between H4F and H4MPT as a carbon carrier is not unprecedented, as serine hydroxymethyl 

transferase (GlyA) has different versions specific to either H4F (Buchenau and Thauer, 2004) or H4MPT 

(Angelaccio et al., 2003; Hoyt et al., 1986). Additionally, MtdA in methylotrophic bacteria has been 

shown to react with either H4F or H4MPT (Vorholt et al., 1998). 

 

Energy metabolism phase 2: Cytoplasmic electron carrier oxidation and energy conservation 

After methane is oxidized to CO2 in the pathway described above, four electrons will be found on two 

molecules of F420H2, two electrons on reduced ferredoxin (Fd2-), and two electrons on the reduced forms 
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of coenzyme M and coenzyme B (CoM-SH, CoB-SH). If the proposed Mer/MetF switch in ANME-

1 is correct, then it is possible that MetF may have produced a reduced NADPH instead of one of the 

F420H2 (Figure 2). Importantly, these C1 oxidation reactions do not produce energy for the cell and will 

in fact consume sodium motive force at the step catalyzed by Mtr. This investment of energy helps drive 

the reaction in the oxidative direction, and the effect of energy investment can be seen in the decreased 

redox potential of the eight methane-derived electrons. The CH4/CO2 redox couple has a standard state 

midpoint potential of -220mV, and the average midpoint potential of the electrons once transferred to 

their cytoplasmic electron carriers is approximately -340mV (two on Fd2- (-500mV), four on F420H2 (-

360mV) and two on CoM-SH/CoB-SH (-145mV)) (Thauer, 2011). The next phase of ANME energy 

metabolism, the re-oxidation of these reduced cytoplasmic electron carriers, must conserve sufficient 

energy to overcome the loss at Mtr and support growth. 

 

This is very similar to the situation in the energy metabolism of methylotrophic methanogens in the 

Methanosarcinaceae which are close relatives of ANME-2 and 3. In these methanogens methyl groups are 

transferred from substrates such as methanol or methylamines onto CoM via substrate-specific 

methyltransferases. The methyl group is subsequently oxidized to CO2 via a reversal of the first six steps 

of the methanogenesis pathway, consuming sodium motive force at Mtr and producing two F420H2 and 

one Fd2- that must be re-oxidized coupled to energy conservation. In most cases, these electrons are 

transferred onto membrane-bound methanophenazine as an intermediate electron carrier in processes 

that lead to ion motive force generation. This ion motive force is then used to produce ATP via ATP 

synthase. The only oxidation reaction in ANME which does not normally occur in any methanogen is 

the production of the heterodisulfide (CoM-S-S-CoB) from the free sulfides CoM-SH and CoB-SH. 

Many of the strategies of energy conservation coupled to cytoplasmic electron carrier oxidation that 
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have been characterized in the methylotrophic methanogens appear to be conserved in the ANME 

archaea. 

 

F420H2 oxidation 

F420H2 oxidation for the purpose of energy conservation in methylotrophic methanogens can occur via 

the F420H2:methanophenazine oxidoreductase complex (Fpo) or the F420-reducing hydrogenase (Frh) 

(Figure 6A). F420H2 oxidation by the cytoplasmic Frh produces H2 which diffuses out of the cell and is 

subsequently oxidized on the positive side of the membrane by a membrane-bound hydrogenase (Vht) 

(Kulkarni et al., 2018). Our data does not support this occurring in any known ANME groups given the 

lack of both the NiFe hydrogenase subunit of Frh and Vht-like hydrogenases.  

 

This leaves Fpo as the much more likely candidate for F420H2 oxidation in ANME. Fpo is a homolog of 

respiratory complex I, and in the Methanosarcinaceae it couples the transfer of electrons from F420H2 to the 

membrane soluble electron carrier methanophenazine with the translocation of protons across the cell 

membrane. In sulfate-reducing Archaeoglobales the homologous F420H2:quinone oxidoreductase complex 

(Fqo) utilizes a membrane-soluble quinone acceptor instead of methanophenazine (Baumer et al., 2000; 

Brüggemann et al., 2000). These complexes are conserved across all ANME groups (Figure 6—figure 

supplement 1), and phylogenetic analysis of Fpo shows that homologs from ANME-2a, 2b, 2c and 3 

are most similar to the Methanosarcinaceae, suggesting they also may utilize methanophenazine. The 

homologs from ANME-1 were distinct from those of the other ANME clades and were most similar to 

the Fqo described from Archaeoglobales as previously reported (Hallam et al., 2004) (Figure 6—figure 

supplement 2). Consistent with this possibility these ANME-1 genomes also contained homologs of 

the futalosine pathway used for menaquinone biosynthesis that are absent in the other marine ANME 
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clades. This suggests that ANME-1 use a quinone as their membrane-soluble electron carrier as was 

previously suggested (Timmers et al., 2017). In either case, Fpo and Fqo are expected to be important 

points of F420H2 oxidation and membrane energization in all ANME groups. 

 

Ferredoxin oxidation 

Similar to F420H2 oxidation, several mechanisms are known for coupling ferredoxin oxidation to energy 

conservation in methanogens. Four major pathways have been proposed: 1) a hydrogen cycling 

mechanism using energy conserving hydrogenase (Ech) (Kulkarni et al., 2018), 2) oxidation with a 

modified version of the Rhodobacter nitrogen fixation (Rnf) complex (Li et al., 2006), 3) an Fpo-dependent 

pathway (Welte and Deppenmeier, 2011a), and 4) a heterodisulfide reductase (Hdr)-mediated electron 

confurcation (Yan and Ferry, 2018)(Figure 6B). The Ech model is easily ruled out by the lack of Ech 

homologs in all marine ANME genomes, although these are present in the freshwater ANME-2d 

genomes (Arshad et al., 2015; Haroon et al., 2013).  

 

Genomes from many members of the ANME-2a, 2b, 2c and 3 contained homologs of the Rnf complex 

(Figure 6—figure supplement 1). Rnf was first characterized in bacteria as an enzyme that performed 

the endergonic transfer of electrons from NADH to ferredoxin by dissipating sodium motive force 

(Biegel et al., 2011). In methanogens however Rnf is believed couple the exergonic electron transfer 

from ferredoxin to methanophenazine with the endergonic translocation of sodium ions to the positive 

side of the cytoplasmic membrane. This activity in methanogens involves of a multiheme cytochrome c 

subunit which is present in their Rnf gene clusters (Li et al., 2006), along with a small conserved 

membrane integral protein (MA0665 in M. acetivorans). This enzyme complex operates in methylotrophic 

members of the Methanosarcinaceae that do not conduct hydrogen cycling, and in some cases is required 
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for energy conservation during acetoclastic methanogenesis (Schlegel et al., 2012; Welte and 

Deppenmeier, 2014). 

 

Rnf was not found in the ANME-1 genomes analyzed here, with the exception of two genomes from a 

genus-level subclade recovered from a South African gold mine aquifer (SA) and from a hydrocarbon 

seep from the Gulf of Mexico (GoMg4) (Table 1; Figure 6—figure supplement 1). Rnf gene clusters 

in ANME-2a, 2b and 3 contain homologs of the cytochrome c subunit and MA0665 normally found in 

methanogens, but surprisingly both were missing in the Rnf gene clusters from all ANME-2c and the 

two ANME-1. Homologs for these subunits were not identified elsewhere in any of these genomes. 

Based on the current information, it is unclear what reaction the ANME-2c and ANME-1 Rnf are 

performing since it has been demonstrated that this cytochrome c is involved in the electron transfer to 

methanophenazine (Wang et al., 2011). It is possible that Rnf retains the ability to transfer electrons 

from ferredoxin to a membrane bound electron carrier in these lineages, or alternatively they could 

function as ferredoxin:NAD+ oxidoreductase, as found in bacteria. It is unclear what role the latter 

function could play in our current model of ANME metabolism. 

 

An additional ANME-specific modification to the rnf gene cluster is the inclusion of a membrane-bound 

b-type cytochrome in ANME-2a, 2b, and 3. This type of cytochrome is generally involved in electron 

transfer between membrane-bound and soluble electron carriers, and has no closely related homologs 

in methanogens. If the protein encoded by this gene is incorporated into the Rnf complex, it could be 

of great importance to the flow of electrons in these groups. This observation is particularly striking in 

ANME-3 since their close methanogenic relatives in the Methanosarcinaceae lack this b-type 

cytochrome. This means that ANME-3 has acquired this subunit by horizontal gene transfer from an 
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ANME-2a or 2b, or that all of the related methanogens have lost it. Whichever evolutionary scenario 

is correct, this represents an important ANME-specific modification to a key bioenergetic complex. 

 

Because the majority of ANME-1 do not contain an Rnf complex an alternative mechanism is needed 

to explain how ferredoxin is recycled. One option is the Fpo-dependent mechanism proposed in 

Methanosaeta thermophila where ferredoxin is thought to be oxidized using an Fpo complex without the 

FpoF subunit (Welte and Deppenmeier, 2011a). If this pathway operates in ANME-1 the reduced 

ferredoxin would donate electrons directly to the iron sulfur clusters found in the FqoBCDI subunits. 

Since FqoF homologs are encoded in the ANME-1 genomes, and are expected to be used in complete 

Fqo complexes to oxidize F420H2 as described above, this Fd2- oxidation strategy would require some 

Fqo complexes to have FqoF bound, while others do not. 

 

Another possibility would be for soluble FqoF to act as a Fd2-:F420 oxidoreductase, and then the 

subsequent oxidation of F420H2 by a normal Fqo complex (Figure 6B). This pathway has been proposed 

in Methanosarcina mazei based on the Fd2-:F420 oxidoreductase activity of soluble FpoF (Welte and 

Deppenmeier, 2011b). In either of these Fpo/Fqo-dependent Fd2- oxidation pathways, the oxidation of 

Fd2- would result in the reduction of a membrane-bound electron carrier coupled to energy conservation 

in the form of proton translocation by the Fpo/Fqo complexes. 

 

A final possible mechanism of Fd2- oxidation is through soluble heterodisulfide reductase (Hdr)-

mediated flavin-based electron confurcation. This process has some biochemical support for operating 

in this direction (Yan and Ferry, 2018), but would constitute a reversal of the well accepted electron 

bifurcation mechanism used by many hydrogenotrophic methanogens. In the best characterized 
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examples of this process, an enzyme complex of soluble Hdr and a hydrogenase (hdrABC-mvhADG) 

reduce ferredoxin and heterodisulfide with four electrons sourced from two hydrogen molecules (Buckel 

and Thauer, 2013). If reversed, this reaction could potentially oxidize Fd2-. As this mechanism would 

also involve CoM-SH/CoB-SH oxidation it is discussed in detail in the following section. 

 

CoM-SH/CoB-SH oxidation 

The last oxidation that needs to occur during this part of ANME energy metabolism is CoM-SH/CoB-

SH oxidation to the heterodisulfide (CoM-S-S-CoB). This oxidation is the most energetically challenging 

because the relatively high midpoint potential of the heterodisulfide (E0’ = -145mV) rules out most 

methanogenic electron carriers as acceptors without the input of energy to force electrons “uphill” to a 

lower redox potential. It also represents the second net reaction in the ANME energy metabolism that 

does not occur during canonical methanogenesis (the first step being methane activation through Mcr). 

In methylotrophic methanogens heterodisulfide is the terminal electron acceptor for the six electrons 

that have passed through F420H2 and Fd2- discussed in the previous sections. 

 

Two enzyme systems from methanogens could potentially produce heterodisulfide by running in 

reverse: soluble HdrABC using a confurcation mechanism as mentioned above, or HdrDE, a 

membrane-bound system which would deposit electrons on methanophenazine (Figure 6C). ANME-

2a, 2b, 2c, 2d, and 3 genomes contained HdrDE genes similar to ones from closely related methanogens. 

The reaction carried out by this complex in methanogens is expected to be readily reversible, with 

electrons from CoM-SH/CoB-SH oxidation being deposited on methanophenazine. This electron 

transfer reaction is slightly endergonic at standard state due to the redox potential of methanophenazine 

(E0’ = -165mV) being lower than that of heterodisulfide by 20mV. The slightly endergonic nature of the 
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electron transfer could be overcome by a quinol loop-like mechanism, where two protons are released 

in the cytoplasm from CoM-SH/CoB-SH oxidation and two protons are consumed on the outer face 

of the cytoplasmic membrane to form reduced MpH2, thus dissipating proton motive force (Simon et 

al., 2008). Electron transfer from the cytoplasm to the outer face of the membrane occurs through the 

b-type cytochromes in the HdrE subunit. The HdrDE complexes are well expressed in a number of 

different ANME groups (Supplementary file 2). 

 

HdrDE gene clusters are absent in all ANME-1 genomes. This, combined with the lack of Rnf and Ech, 

suggests that ANME-1 in particular could rely on HdrABC complexes for both CoM-SH/CoB-SH and 

ferredoxin oxidation. Since its discovery just over ten years ago (Li et al., 2008), flavin-based electron 

bifurcation and confurcation have been shown to be a key energy conversion point in many anaerobic 

metabolisms, with a great diversity of different electron donors and acceptors (Buckel and Thauer, 2018). 

In the complete HdrABC-MvhADG complex from methanogens the endergonic reduction of Fd (E0’ 

= -500mV) with H2 (E0’ = -420mV) is driven by the exergonic reduction of heterodisulfide (E0’ = -

145mV) with H2.  

 

In most cases a strict reversal of H2 electron bifurcation is not possible in ANME due to a lack of 

MvhAG genes that encode the NiFe hydrogenase large and small subunits. The exceptions are two small 

subclades within ANME-2c and ANME-1 that contain NiFe hydrogenases similar to Mvh. These two 

subclades contain genomes recovered from different environments; a South African gold mine (SA) and 

the Gulf of Mexico (GoMg4) for ANME-1, versus a hydrocarbon seep off of Santa Barbara, CA (COP2) 

and a mud volcano from the Mediterranean (AMVER4-31) for ANME-2c. The majority of ANME-2c 

and ANME-1, however, lack these genes, and they are completely absent in ANME-2a, 2b and 3, 
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suggesting confurcation of electrons from Fd2- and CoM-SH/CoB-SH to H2 is not a dominant 

process in most ANME lineages.  

 

Novel gene clusters encoding electron bifurcation/confurcation complexes 

While a strict reversal of hydrogen-dependent electron bifurcation seems unlikely in ANME, the 

potential involvement of alternative bifurcation/confurcation reactions in ANME metabolism is 

supported by the broad distribution and conservation of unusual HdrABC homologs, even in those 

ANME genomes containing HdrDE. Alternative bifurcation reactions have been proposed in 

methanogens, where formate or F420H2 can serve as the electron donor in place of hydrogen. In the case 

of formate, MvhA and G are replaced by the F420H2-dependent formate dehydrogenase genes FdhAB 

(Costa et al., 2013, 2010). In the case of F420H2, certain HdrABC complexes might be able to interact 

with F420H2 without any additional protein subunits (Yan and Ferry, 2018).  

 

A comparison of ANME HdrA homologs to crystal structures of the entire HdrABC-MvhADG 

complex purified from Methanothermococcus wolfeii (Wagner et al., 2017), reveal some stark differences in 

how these complexes may facilitate electron bifurcation. HdrA in methanogens normally consists of 

four domains, an N-terminal domain with an iron sulfur cluster, a thioredoxin reductase domain which 

binds the bifurcating FAD, and two ferredoxin domains (Figure 7). The MvhAG hydrogenase feeds 

electrons through MvhD and the C-terminal ferredoxin domain to the FAD where they are bifurcated, 

one pair passing up through HdrBC onto CoM-S-S-CoB, and the other through the inserted ferredoxin 

domain to a free soluble ferredoxin. Interestingly, the heterohexameric HdrABC-MvhADG forms 

dimers, and one of the cysteine ligands for the N-terminal iron sulfur cluster comes from the 
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thioredoxin-reductase domain of the other copy of HdrA (Cys197), indicating an obligate dimeric 

nature of the complex in M. wolfeii (Figure 7C). 

 

By creating alignments of the ANME HdrA paralogs and comparing the presence of domains, 

conserved residues, sequence similarity, and their genomic context, we clustered the dominant HdrA 

homologs into 13 groups (Figure 8A, Figure 8—figure supplement 1). Most methanogen genomes 

contain 1-2 copies of hdrABC gene clusters, but ANME, and in particular ANME-1, have a greater 

abundance of hdrA homologs that exceed the number of hdrBC homologs (Figure 8—figure 

supplement 2). Some of these HdrA homologs exceed 1000 amino acids in length. In comparison, 

HdrA from methanogens is usually 650 amino acids in length, with some slightly larger homologs 

occurring due to the fusion of hdrA and mvhD (Stojanowic et al., 2003). The gene clusters containing 

HdrA homologs often contained HdrBC and MvhD as expected, but more unexpected was the co-

occurrence of multiple copies of HdrA and the occasional presence of HdrD-like proteins (Figures 8A, 

Figure 8—figure supplement 3). Although HdrD is a fusion of HdrB and HdrC, it is not common to 

find the fused form in gene clusters with HdrA in methanogens. Distant homologs of the F420-dependent 

formate dehydrogenase FdhAB were also found in HdrA gene clusters in all ANME groups. The gene 

cluster containing HdrA 2 and 3 along with FdhAB-like genes in ANME-2a was discussed in detail in 

one of the earliest studies of ANME fosmid libraries (Meyerdierks et al., 2005), and the significance of 

this cluster has now been substantiated by its broad conservation as well as reasonably high transcription 

levels (Supplementary file 2). 

 

Many HdrA homologs in ANME were lacking various domains present in the crystalized complex from 

M. wolfeii (Figure 8B). An interesting pattern emerges in gene clusters with tandem HdrA genes (i.e. 
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HdrA 5 and 6, or 12 and 13), in which one copy has the N-terminal domain, but lack the Cys197 

ligand for the N-terminal FeS cluster in its thioredoxin reductase domain, while the second copy lacks 

the N-terminal domain but has Cys197. It seems likely that these tandem HdrA genes form 

heterodimers, breaking the rotational two-fold symmetry found in the crystal structure (Figure 8B). 

This pattern of Cys197/N-terminal domain complementarity can also be seen in largest HdrA homologs 

3 and 4, which are fusions of two HdrA genes. In both cases the N-terminal HdrA contains the N-

terminal domain, but lacks Cys197, while the C-terminal HdrA contains Cys197 and no N-terminal 

domain, suggesting these two HdrA domains within a single continuous peptide may act as their own 

heterodimeric partners. Evidence for symmetry breaking in HdrABC complexes has recently been 

demonstrated in Methanococcus maripaludis, where a hydrogenase and a formate dehydrogenase can be 

simultaneously bound to dimerized HdrABC (Milton et al., 2018). This appears to be the result of 

HdrABC’s ability to bind either hydrogenase or formate dehydrogenase in these methanogens, which 

results in a mixture of subunits, whereas in the ANME case this heteromeric form may be imposed by 

the heterodimer of two HdrA paralogs. 

 

Another remarkable HdrA modification is a 500 amino acid insertion in the ferredoxin domain of HdrA 

9, 10, and 11, present only in some ANME-1 genomes (Figure 8). This insertion shares 45% amino 

acid sequence identity to the NfnB subunit of the bifurcating NADH-dependent reduced 

ferredoxin:NADP oxidoreductase crystalized from Thermotoga maritima (Demmer et al., 2015). NfnB 

binds the b-FAD cofactor thought to be responsible for bifurcation in the NfnAB complex, potentially 

giving these HdrA-NfnB genes two electron bifurcation sites, and suggests NADPH as a possible 

electron carrier in these compounds. 
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Based on the extensive conservation of FdhAB subunits in Hdr gene clusters in nearly all ANME 

groups it is tempting to speculate that these enzymes may have an important role in CoM-SH/CoB-SH 

oxidation through electron confurcation. A reversal of electron bifurcation from formate would be a 

reasonable reaction to expect in ANME metabolism, as formate is a common syntrophic intermediate. 

Based on its concentration one could envision its midpoint potential to lie appropriately between that 

of Fd2- and CoM-SH/CoB-SH to receive electrons from both. FdhA belongs to the molybdopterin 

oxidoreductase family, members of which act on many different substrates including formate, nitrate, 

and DMSO among others in assimilatory and dissimilatory processes (Hille et al., 2014). The FdhA 

homologs from ANME genomes are often annotated as formate dehydrogenases and retain a conserved 

cysteine ligand for binding the molybdenum atom (sometimes a selenocysteine in other organisms). 

However, they are very distantly related to any biochemically characterized enzymes, making it difficult 

to assign their substrate with any level of certainty. A very closely related gene cluster with HdrA and 

FdhAB can be found in the genomes of the methylotrophic methanogen genus Methanolobus, potentially 

providing a good opportunity to study the substrate specificity of this specific group of molybdopterin 

oxidoreductases in a pure culture organism. These are the only methanogens that encode this type of 

Hdr gene cluster, and it is worth noting in this context that the Methanolobus are incapable of using 

formate as a methanogenic substrate (Kendall and Boone, 2006).  

 

Another possibility is confurcation of Fd2- and CoM-SH/CoB-SH electrons to F420H2. FdhB and 

homologous proteins carry out oxidoreductase reactions with F420 (Mills et al., 2013) in F420-dependent 

hydrogenases (FrhB), formate dehydrogenases (FdhB), F420-dependant sulfite reductase (Fsr) and the 

Fpo complex (FpoF). The observation of FdhB homologs in gene clusters with HdrA in ANME-2d 

lead to the suggestion that these complexes could confurcate Fd2- and CoM-SH/CoB-SH to reduce two 
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molecules of F420, although this model proposes no role for the FdhA homologs present in the gene 

clusters (Arshad et al., 2015). Some HdrA gene clusters only contain FdhB and not an FdhA homolog, 

however these are found only in ANME-1 genomes (Figure 8A, Figure 8—figure supplement 

3).Additionally, there is evidence that certain HdrABC complexes can interact with F420 without any 

additional subunits (Yan et al., 2017). If such a reaction were to produce F420H2 in ANME, its re-

oxidation through the Fpo complex could be coupled to energy conservation as has been previously 

proposed in M. acetivorans (Buan and Metcalf, 2010).  

 

We can only speculate on the functions of all these modifications, but it is clear that ANME have an 

exceptionally diverse potential of bifurcation/confurcation complexes at their disposal, and that the flow 

of electrons through these complexes will necessarily be different than in the traditional HdrABC-

MvhADG complex due to domain gain and loss within the HdrA homologs, as well as the replacement 

of hydrogenase subunits with various other input modules. While any electron confurcation schemes 

through HdrABC is speculative at this point, they seem to be viable option for Fd2- and CoM-SH/CoB-

SH oxidation in ANME due to their widespread conservation across all ANME groups, particularly in 

ANME-1 that lack HdrDE and most known Fd2- oxidation systems. Additionally, an examination of 

previously reported transcriptomic information indicates that these complexes are often expressed to 

levels on par with other components of the reverse methanogenesis pathway (Supplementary file 2). 

A key question that remains is what substrate the FdhA homologs in ANME act upon. A small molecule 

such as formate was previously proposed to serve as one mechanism of electron transfer between 

ANME and SRB, but no evidence of this was found by in vitro enrichment experiments (Nauhaus et 

al., 2005, 2002; Wegener et al., 2016). 
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Energy metabolism phase 3: Genomic evidence for mechanisms of syntrophic electron 
transfer 
The most enigmatic phase of marine ANME metabolism is the interspecies electron transfer to the 

sulfate-reducing partner; a process which appears to necessitate the formation of conspicuous 

multicellular aggregates of the two organisms (Knittel and Boetius, 2009; Orphan et al., 2002). The 

cytoplasmic electron carrier oxidation described in the previous section will result in 8 electrons on a 

combination of membrane-bound MpH2 or QH2 and possibly some soluble electron carrier formed 

through an electron confurcation reaction oxidizing Fd2- and CoM-SH/CoB-SH. Based on energetic 

considerations and precedent from other known syntrophies, the hypothesized mechanisms for the 

AOM syntrophy have included the diffusive exchange of small molecules such as hydrogen, formate, 

acetate, methanol, methylamine (Nauhaus et al., 2005), methyl-sulfides (Moran et al., 2008), zero-valent 

sulfur (Milucka et al., 2012), and direct electron transfer using multiheme cytochrome c proteins 

(McGlynn et al., 2015; Meyerdierks et al., 2010; Wegener et al., 2015). We assessed the genomic potential 

for each of these syntrophic electron transfer strategies across our expanded sampling of ANME clades. 

 

Hydrogen transfer 

Hydrogen transfer is one of the most common forms of syntrophic electron transfer (Schink and Stams, 

2006). A classic mode of syntrophic growth involves hydrogenotrophic methanogens consuming H2 

produced by the fermentative metabolism of a syntrophic partner. A direct reversal of the methanogenic 

side of this syntrophy is not possible as the majority of ANME genomes lack any identifiable 

hydrogenases with the notable exception of MvhA homologs in a small set of ANME-1 and 2c genomes 

as mentioned in the preceding section (Figure 8—figure supplement 3). The first report of an ANME-

1 genome from fosmid libraries contained a gene that appeared to encode an FeFe hydrogenase 
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(Meyerdierks et al., 2010); however, homologs of this gene were not found in any of the other ANME-

1 genomes analyzed here. 

 

This lack of hydrogenases is consistent with the lack of energy-conserving hydrogenases in the genomes 

of their syntrophic sulfate-reducing bacterial partners from cold seeps (Skennerton et al., 2017) and 

previous experimental results showing that the addition of excess hydrogen does not inhibit AOM 

(Meulepas et al., 2010; Nauhaus et al., 2002). Hydrogen has been shown to stimulate sulfate reduction 

in AOM sediments suggesting that at least some portion of the sulfate-reducing community can utilize 

this electron donor (Meulepas et al., 2010; Nauhaus et al., 2005; Wegener et al., 2016). In the case of the 

syntrophic thermophilic ANME-1-“Candidatus Desulfofervidus auxilii” consortium, hydrogen 

amendment suppresses growth of ANME-1, because the “Ca. D. auxilii” can grow alone on hydrogen 

and stops investing in electron transferring structures (Krukenberg et al., 2016). Together, genomic and 

physiological data suggests that the vast majority of ANME are incapable of producing hydrogen as an 

electron shuttle.  

 

Formate transfer 

Formate is another possible small molecule intermediate commonly involved in syntrophic electron 

transfer (Schink, 1997), and was predicted to be a possible intermediate in the ANME-SRB syntrophy 

based on early modeling studies (Sørensen et al., 2001). As described above FdhAB-like genes in 

association with Hdr-containing gene clusters are broadly distributed in ANME and could potentially 

be used to produce formate from Fd2- and CoM-SH/CoB-SH and are relatively highly expressed 

(Supplementary file 2) but their substrate is currently unknown. In addition to these complexes, five 

of the ANME-1 genomes contained a membrane-bound formate dehydrogenase with signal sequences 
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predicted to mediate their secretion to the positive side of the cytoplasmic membrane. One of the 

ANME-1 genomes containing this formate dehydrogenase is based on early fosmid libraries that were 

analyzed extensively, and it was suggested to play a role in electron transfer, depicted as either being free-

floating in the pseudoperiplasm, or anchored to the membrane via a c-type cytochrome (Meyerdierks et 

al., 2010). Interestingly, the gene cluster encoding these formate dehydrogenases in four other ANME-

1 genomes also contain DmsC-like genes that traditionally serve as membrane anchor subunits for 

members of the molybdopterin oxidoreductase family. The presence of these genes in the other ANME-

1 genomes makes it likely that this is how the complex is anchored and interacts with the ANME-1 

membrane-bound quinol, since this is a fairly common pattern for members of this family of 

oxidoreductases (Grimaldi et al., 2013). Interestingly these formate dehydrogenase are distributed very 

sporadically through the ANME-1 instead of being confined to a specific subgroup (Figure 8—figure 

supplement 3). 

 

This genomic evidence from different subclades seems to indicate a more plausible role for formate than 

hydrogen in ANME metabolism. However, like hydrogen, formate addition was not shown to inhibit 

AOM (Meulepas et al., 2010; Nauhaus et al., 2005, 2002) which would be expected if it was the major 

electron donor to the sulfate reducing partner in those sediments. The addition of formate to AOM 

sediments and enrichment cultures of ANME-SRB consortia has also had mixed results in terms of 

stimulating sulfate reduction (Meulepas et al., 2010; Nauhaus et al., 2005; Wegener et al., 2016). 

Additionally, genes encoding FdhC, a member of the formate-nitrate transporter family thought to be 

responsible for formate transport in many formate-utilizing methanogens (Wang et al., 2009; Wood et 

al., 2003) was absent from all ANME genomes.  
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Other soluble electron carriers 

Acetate has been proposed as a syntrophic intermediate in sulfate-coupled AOM (Meyerdierks et al., 

2010; Valentine and Reeburgh, 2000), and one could easily envision an energy conservation strategy in 

ANME archaea whereby methane and CO2 are combined in a reversal of acetoclastic methanogenesis 

and energy is conserved via substrate-level phosphorylation through Pta and AckA as in acetogenic 

bacteria. Acetate thus produced could be used by the SRB partner for sulfate reduction. Two problems 

exist with this model that make it unlikely in any of the ANME groups represented here. First, Pta and 

AckA were absent from all ANME genomes. Second, this model requires that the two electrons 

transferred from methane to heterodisulfide (E0’ = -145mV) would be used for the reduction of CO2 

which requires ferredoxin (E0’ = -500mV). This would mean the single ATP produced by substrate level 

phosphorylation would have to overcome the sodium motive energy lost in the Mtr step, force electrons 

energetically uphill by ~350mV from the free disulfides onto ferredoxin, and have energy left over for 

growth. Experimental addition of acetate to AOM enrichments has not been found to decouple the 

partners and inhibit methane oxidation, as would be expected for a soluble extracellular intermediate 

(Meulepas et al., 2010; Nauhaus et al., 2005, 2002). 

 

Methylsulfides were suggested to be a potential intermediate in AOM (Moran et al., 2008), but as noted 

above the methyltransferase genes for methylsulfides, methanol, and methylamines were not recovered 

in any ANME genomes, and experiments have not found methylsulfide-stimulated sulfate reduction in 

ANME-SRB enrichments (Meulepas et al., 2010). Zero-valent sulfur has also been suggested as an 

intermediate in marine AOM using an ANME-2 enrichment (Milucka et al., 2012). However, in vitro 

studies with other ANME consortia did not show a similar response (Wegener et al., 2016, 2015) and 

recent investigations into sulfur utilizing genes in ANME found no evidence for dissimilatory sulfate 
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reduction (Yu et al., 2018). If this process occurs, it is in a restricted group of ANME through a novel 

biochemical mechanism. Electron transfer is also possible via soluble organic shuttles. Shewanella 

oneidensis MR-1 was determined to utilize small molecule shuttles derived from menaquinone (Newman 

and Kolter, 2000) or flavins (Brutinel and Gralnick, 2012) that help electrons pass through the external 

environment to their ultimate electron acceptor. The mechanism of producing these compounds is very 

poorly understood. Only recently a major menaquinone-like shuttle was identified and its biosynthesis 

elucidated (Mevers et al., 2019). Such a shuttle-based electron transfer strategy could be potentially used 

for accepting electrons from the ANME Hdr complexes, but predicting the occurrence of these shuttling 

mechanisms from genomic information does not seem possibly with our current understanding of these 

processes. 

 

Direct interspecies electron transfer 

If soluble electron carriers were produced by ANME, they could simply diffuse to the SRB without any 

additional specialized protein systems. Specific transporters or permeases would only be needed if the 

compounds produced in the ANME cytoplasm are not membrane permeable. On the other hand, 

electrons on MpH2/QH2 would require an oxidation system with no analog in methanogens. In 

cytochrome-containing methanogens the eventual electron acceptor for these membrane-bound 

electrons is the heterodisulfide located in the cytoplasm, whereas the terminal electron acceptor of 

marine ANME would be their partner SRB located outside of the cell.  

 

This is a respiratory challenge that is similar to the one facing bacteria that carry out extracellular electron 

transfer (EET) to utilize insoluble metal oxides or electrodes as terminal electron acceptors. Instead of 

having a soluble terminal electron acceptor that can diffuse to the cytoplasmic membrane and be reduced 
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by a terminal oxidase, these organisms make conduits for their electron transport chain to extend 

through the periplasm and outer membranes to interact directly with an electron acceptor in the 

extracellular space (Richardson et al., 2012).  

 

Various systems have been discovered in gram negative bacteria that perform EET. These generally 

consist of a quinol:cytochrome c oxidoreductase enzyme, small soluble cytochrome c intermediates 

between the inner and outer membranes, and a beta barrel/decaheme cytochrome c protein complex 

that is embedded in the outer membrane (Figure 9A)(Shi et al., 2016). In bacteria that form large 

conductive biofilms, the extracellular space is also densely packed with secreted c-type cytochromes 

which can form large conductive complexes (Wang et al., 2019) . Based on the similarity of the metabolic 

challenge facing ANME and EET-capable bacteria, as well as the discovery of abundant analogs of 

bacterial EET systems in ANME genomes (McGlynn et al., 2015; Meyerdierks et al., 2010; Wegener et 

al., 2015), an attractive hypothesis is that the ANME-SRB syntrophy is based on direct electron transfer 

between the syntrophic partners. However, in contrast to other EET-capable bacteria that use metals as 

terminal electron acceptors, the highly specific interspecies interaction observed in the AOM consortia 

may require the partner SRB to contain a specific electron-transferring systems. 

 

Potential methanophenazine:cytochrome c oxidoreductase complexes 

In bacteria capable of EET, the quinol:cytochrome c oxidoreduction step is carried out by a diverse 

group of non-homologous enzymes. These can be as simple as CymA in Shewanella oneidensis MR-1, 

which is a four heme-binding cytochrome c protein with a single transmembrane helix (Schwalb et al., 

2003), or more complex, involving multiple subunits such as the recently described NetBCD system in 

Aeromonas hydrophila (Conley et al., 2018). These complexes are relatively easy to replace, as CymA 
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knockouts in S. oneidensis MR-1 can be rescued by suppressor mutants that turn on the expression of 

completely unrelated quinol oxidoreductase complexes (Cordova et al., 2011). In Geobacter sulfurreducens 

at least two quinol:cytochrome c systems coexist, ImcH and CbcL, that appear to be tuned to the redox 

potential of different terminal electron acceptors (Levar et al., 2014; Zacharoff et al., 2016). The only 

common features in these systems is the presence of periplasmic cytochrome c or FeS binding proteins 

associated with, or fused to, membrane anchor subunits that facilitate electron transfer from the 

membrane bound quinol to the periplasmic acceptor (Figure 9A).  

 

Due to the non-homologous nature of these electron transport systems in bacteria, we examined the 

ANME genomes for genes and gene clusters with a potential for analogous function, but adapted to the 

specifics of archaeal cell biology (Figure 9B). ANME-2a, 2b, and 2c were found to encode a membrane-

bound cytochrome b that is closely related to the membrane-bound subunit of the Vht hydrogenase 

(VhtC), which in methanogens mediates the reduction of methanophenazine with electrons from H2 

(Thauer et al., 2010) (Figure 9—figure supplement 1). In the genomes of ANME-2a and 2b, this 

cytochrome b is followed by a multiheme c-type cytochrome (MHC) containing between 7 and 11 heme-

binding motifs (CxxCH), instead of the vhtAG genes encoding the hydrogenase subunits found in 

Methanosarcina. In ANME-2c a closely related homolog for this MHC protein was found elsewhere in 

the genome. This conspicuous gene clustering is not found in any methanogenic archaea, and the 

importance of this system is supported by the high expression of the cytochrome b subunit reported in 

both ANME-2a and ANME-2c (Krukenberg et al., 2018; Wang et al., 2013). Phylogenetic analysis shows 

these VhtC homologs to be a closely related sister group to those found in Methanosarcina (Figure 9—

figure supplement 2). These gene clusters are the clearest examples of biological novelty well conserved 
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in ANME that could explain the evolution of electron transfer capabilities, and we refer to them here 

as methanophenazine-cytochrome c oxidoreductase (Mco). 

 

Notably, neither ANME-3 nor ANME-1 contained homologs to Mco, so this does not appear to be a 

universal mechanism of electron transport in all ANME. ANME-1 lacked any identifiable cytochrome 

b, while the only ones apparent in ANME-3 were multiple copies of hdrE and the gene associated with 

Rnf gene cluster mentioned above. These Rnf-associated cytochrome b in ANME-2a, 2b, and 3 are not 

found in any related methanogens. It is possible that these is also somehow involved in the oxidation of 

MpH2 and in the transfer of these electrons onto the Rnf-associated cytochrome c for the purpose of 

EET. Two recent studies on M. acetivorans have implicated the Rnf-associated cytochrome c in electron 

transfer to Fe(III) or the artificial electron acceptor AQDS (Holmes et al., 2019; Prakash et al., 2019). 

Such a process may be occurring in the ANME-SRB syntrophy via a similar mechanism and explain 

previous results of marine ANME utilizing AQDS, Fe(III), and Mn(IV) (Beal et al., 2009; Scheller et al., 

2016).  

 

Another possible MpH2/QH2 oxidizing systems found in ANME genomes are diverse homologs related 

to the membrane-bound periplasmic nitrate reductase subunit NapH which are sporadically distributed 

throughout ANME genomes. NapH typically contains four transmembrane helices and two conserved 

cytoplasmic FeS clusters, and mediates electron flow from a menaquinol to the periplasmic nitrate 

reductase NapAB (Sparacino-Watkins et al., 2014). The NapH homologs in ANME are not found in 

suggestive gene clusters except in one of the ANME-2c genomes in which NapH was followed 

immediately by an 8 heme MHC, reminiscent of quinol:cytochrome c oxidoreductase gene clusters 

described in bacteria (Figure 9B). NapH homologs are found in both ANME-3, as well as two ANME-
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1, and are worthy of investigating further due to the lack of other obvious candidates for 

menaquinol/methanophenazine oxidation in those genomes. However, under standard laboratory 

AOM conditions (Krukenberg et al., 2018), the NapH homolog found in ANME-2c E20 had very low 

expression levels (Supplementary file 2). Due to their uneven distribution in ANME genomes these 

NapH homologs may have other non-essential functions.  

 

While no other gene clusters could be identified that seemed likely to carry out this 

MpH2/QH2:cytochrome c oxidoreduction step, the example of CymA in S. oneidensis MR-1 highlights 

how simple these systems can be while still being vitally important respiratory proteins, and how easily 

one system can be functionally complemented by a completely unrelated one (Cordova et al., 2011; 

Schwalb et al., 2003). Numerous small multiheme cytochromes are encoded and expressed in ANME 

genomes that either have single membrane anchors on their C-terminus or PGF-CTERM 

archaeosortase motifs that are predicted to covalently link them to membrane lipids. These small MHC 

proteins could potentially act in a similar fashion to CymA. However, without an associated or fused 

large membrane anchor that is homologous to previously characterized systems it is difficult to implicate 

them directly in membrane bound electron carrier oxidation through genomic evidence alone.  

 

Multiheme cytochrome c protein abundance and expression 

ANME genomes contained many (5-8 times) more genes encoding MHCs than any of their 

methanogenic relatives (Figure 9—figure supplement 3). Only the “Ca. Syntrophoarchaeum” and 

some members of the Archaeoglobales that are known to conduct EET contain a similar number of MHC 

genes among the archaea. Many homologous groups of these MHCs are only present in ANME and 

these other archaea. All MHC proteins are predicted to reside in the extracellular space as heme 
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attachment to the cytochrome c apoprotein occurs on the positive side of the cytoplasmic membrane 

(Sanders et al., 2010). Representatives of these MHCs are among the highest expressed proteins in 

multiple ANME lineages. Small MHC in ANME-2c E20, ANME-1 GB37 and ANME-1 GB60 were 

the 14th, 10th, and 18th highest expressed proteins, respectively, and contain 8, 4 and 4 heme binding 

motifs, respectively (Supplementary file 2). One specific group of small MHC proteins has widespread 

distribution in the ANME, “Ca. Syntrophoarchaeum”, and some members of the Archaeoglobales, with 

no relatives in methanogenic archaea. Multiple paralogs exist in most ANME groups and these include 

some of the highest expressed proteins in ANME, many exceeding all methanogenesis pathway genes 

except Mcr (Figure 9—figure supplement 4, Supplementary file 2). 

 

As with the quinol oxidation step, the intermediate small soluble cytochromes c vary greatly between 

different EET-capable bacteria, so any number of these ANME cytochromes could be capable of 

carrying out this intermediate step between the cytoplasmic membrane and outermost layer of the cells. 

A small six heme-binding cytochrome c protein OmcS has recently been shown to be the monomer that 

makes up conductive extracellular “nanowires” in G. sulfurreducens thought to imbue biofilms with 

conductive properties (Figure 9) (Filman et al., 2019; Wang et al., 2019). No close homolog of OmcS 

were identified in ANME genomes, although any number of these relatively small cytochromes could 

be carrying out a similar function in the extracellular space between ANME and SRB, consistent with 

ultrastructural observations made with heme-reactive staining (Krukenberg et al., 2018; McGlynn et al., 

2015). 

 

An 8-heme MHC in G. sulfurreducens known as OmcZ was shown to be required for optimal anodic 

current in biofilms grown on electrodes, and is secreted in biofilms and in culture supernatant (Inoue et 
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al., 2010). Very closely related homologs of OmcZ were found in multiple ANME-2a, 2b, and 2c 

genomes (Figure 10). The sequence similarity shared between OmcZ and the proteins found in these 

ANME groups is not limited to CxxCH motifs, but also extensive N- and C-terminal regions with many 

completely conserved residues. This level of sequence conservation is quite remarkable for homologs 

found in archaea and bacteria, and suggest an important conserved function of these non-heme binding 

domains, as well as a relatively recent inter-domain horizontal transfer. The OmcZ homolog in ANME-

2c E20 is the MHC that is the 14th highest expressed protein in cultures grown under standard laboratory 

AOM conditions (Supplementary file 2). In ANME-2a and 2b the genes encoding these OmcZ 

homologs are found next to the enormous MHCs described below.  

 

S-layer conduits 

ANME-2a, 2b, 2c, 2d, and 3 genomes also encode for exceptionally large MHCs with 20 and 80 heme 

binding sites (Figure 11, Figure 9—figure supplement 3). Similarly large cytochromes in archaea are 

only found in Geoglobus and Ferroglobus (McGlynn et al., 2015). Both of these groups are capable of 

extracellular iron reduction (Slobodkina et al., 2009; Smith et al., 2015). The largest and best conserved 

of these MHCs were classified into three major groups (ANME MHC Type A, B, and C) based on 

sequence identity, conserved domains, and heme-binding motif distribution (Figure 11). The most 

notable feature of ANME MHC-A and B is the presence of predicted S-layer domains, which commonly 

make up the outer proteinaceous shell surrounding the cytoplasmic membrane in many archaea (Albers 

and Meyer, 2011). ANME MHC-B additionally contain an N-terminal domain free of heme-binding 

motifs and annotated as “peptidase M6-like domains”. The presence of an S-layer domain in these 

cytochromes suggests their use for electron transfer through this outermost layer. In M. acetivorans the S-

layer domain structure has been determined by x-ray crystallography and contains two subdomains 
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connected by a flexible linker (Arbing et al., 2012). In all ANME MHC with S-layer domains, this 

flexible linker also contains a single heme-binding motif, which would place a heme group within the 

plane of the S-layer. Both ANME MHC-A and B encode for C-terminal regions predicted to be 

transmembrane helices that may anchor them cytoplasmic membrane. We suggest that ANME MHC-

A and B are functionally analogous to the MtrCAB complexes found in the outer membranes of the 

EET-capable gram-negative bacteria (Figure 9A) (Richardson et al., 2012). In ANME an alternative 

mechanism needs to be employed since the outermost layer is proteinaceous.  

 

ANME MHC type C do not encode for an S-layer domain or C-terminal transmembrane helices, but 

do encode for a large N-terminal “pectin lyase-like domain”. It is difficult to predict the function of 

these additional domains, however it is interesting to note that the pectin lyase fold typically occurs in 

proteins that attach to and/or degrade carbohydrates, and has been found in bacteriophage tail spike 

proteins for attachment to hosts (Latka et al., 2017). It is possible then that this domain is involved in 

recognizing the outer cell wall of partner bacteria. Some ANME genomes contained exceptionally large 

MHC that did not fall clearly into these three categories. ANME-3 HMMV2 for example contained a 

single polypeptide containing C-terminal features of ANME MHC-C and N-terminal features of ANME 

MHC-B (Figure 11). A fosmid assigned to ANME-2c ERB4 encoded the largest MHC in our dataset 

containing an S-layer domain, a pectin lyase-like domain, and 86 heme binding motifs. 

 

In actively growing ANME-2c cultures, genes encoding these large ANME MHC were expressed at 

lower levels than the enzymes of the reverse methanogenesis pathway and some of the smaller MHCs 

leading the authors to conclude that these were of little importance to electron transfer in this culture 

(Krukenberg et al., 2018). If two proteins are expected to carry out the same function in a pathway, 
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transcription levels may be useful in determining which may be the dominant one operating under 

certain conditions. But this is not the case for the different classes of MHCs in the model of ANME 

EET presented here. The small MHCs are thought to serve as intermediates between the inner 

membrane and S-layer, as well as assist in conveying conductivity to the extracellular matrix, while the 

large S-layer proteins specifically provide a conduit through the S-layer. The small MHCs may cover 

longer distances, and would therefore be expected to be numerically dominant, but still could not make 

a functional EET system if no specific mechanisms existed for the short transfer through the S-layer to 

the extracellular environment. This is exactly the scenario observed in the electrogenic model bacterium 

G. sulfurreducens that requires MHC conduits through the outer membrane for EET formed by MtrCAB 

and other analogous porin-cytochrome systems (Richardson et al., 2012). While absolutely necessary for 

efficient EET, these genes show lower expression levels that those of some of the smaller soluble MHCs 

encoded in the genome (Jiménez Otero et al., 2018). We therefore find this previously reported transcript 

information to be consistent with the model of ANME-2 and 3 EET presented here in which the S-

layer fusions play a key role (Figure 9B).  

 

ANME-1 contained fewer MHCs and at most had 10 predicted heme-binding motifs, and these proteins 

did not contain any identifiable S-layer domains. From the available genomic data, it is unclear how these 

cytochromes fit into the cell structure of ANME-1. It was recently suggested that ANME-1 lack an S-

layer due to the absence of predicted S-layer domain containing proteins (Timmers et al., 2017). 

However, the same analysis found no Archaeoglobus proteins with S-layer domains, yet the Archaeoglobus 

S-layer has been visualized and extensively characterized (Kessel et al., 1990). The S-layer domain in the 

large MHC from ANME-2 and 3 are only recognizable because they are homologous to the S-layer 

protein of M. acetivorans that was recently crystalized (Arbing et al., 2012). Before this study the S-layer 
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domain was only identified as a domain of unknown function (DUF1608). The ANME-1 

ultrastructure is usually cylindrical and highly reminiscent of Methanospirillum which contain S-layers 

(Beveridge et al., 1991). How the MHC in ANME-1 fit into this cell structure will require further 

investigation. Gram positive bacteria are also capable of EET, and in some cases have been found to 

use more modestly sized MHC proteins (6-9 heme binding motifs) for electron transport through the 

outermost cell wall (Carlson et al., 2012). Such a model could very well apply to the cell wall and 

cytochromes encoded in the ANME-1 genomes.  

 

Duplication of Cytochrome c maturation machinery 

Cytochrome c proteins are matured on the outer face of the cytoplasmic membrane through a variety of 

systems, the most common in bacteria and archaea being the cytochrome c maturation (Ccm) system 

(Sanders et al., 2010). Ccm transports heme B to the positive side of energized membranes and mediates 

its attachment to the cytochrome c apoprotein (Figure 12). The Ccm system has been found in archaea 

closely related to ANME (Kletzin et al., 2015), and slight modifications to these systems in archaea have 

been investigated in detail (Allen et al., 2006). Most ANME genomes contained CcmABCEF and lacked 

CcmH a pattern observed previously in most other archaea including methanogens. One exception to 

this is the freshwater ANME-2d, which contains CcmH homologs similar to those found in Ferroglobus 

and Geoglobus sp. (Allen et al., 2006; Kletzin et al., 2015).  

 

A very interesting feature of the ANME genomes reported here is the presence of multiple paralogs of 

CcmF. CcmF is the largest of the Ccm proteins, and is involved in the transfer and attachment of heme 

B to the cytochrome c apoprotein. One of these highly divergent CcmF paralogs that is conserved in 

ANME-2a, 2b, 2c, 2d, 3 and “Ca. Argoarchaeum” is found in every case next to the S-layer containing 
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ANME MHC-B (Figure 11, 12B). The diversification of CcmF paralogs in ANME and the clustering 

of one of the CcmF paralogs with ANME MHC-B suggests that special CcmF proteins may be needed 

to handle the extremely large apoproteins associated with these MHCs. The specialization of CcmF 

homologs to particular cytochromes c is not without precedent, a specific CcmF homolog NrfE is known 

to be required for insertion of heme B into NrfA at a modified heme binding site with a CxxCK motif 

(Lee et al., 2007). These additional CcmF homologs in ANME may be required due to the extreme size 

of the ANME MHC apoproteins or due to the presence of multiple modified heme biding motifs with 

increased amino acids between the cysteine residues (Figure 11).  

 

Immediately upstream of the CcmF/ANME MHC-B genes in ANME-2a, 2b and 3 are two highly 

conserved genes also expected to be involved in MHC maturation (Figure 12B, Figure 9—figure 

supplement 1). One is a signal peptidase which is likely involved in the cleavage of the N-terminal signal 

sequence present on most of the encoded MHC proteins in ANME. The second is an integral membrane 

protein that has no automated annotations (labelled 8x TMH), and is found in every ANME group, the 

“Ca. Syntrophoarchaeum”, “Ca. Argoarchaeum”, and Geoglobus/Ferroglobus, but no other genomes based 

on BLAST searches of the NCBI nr database. While no specific motifs are clearly obvious, a large 

periplasmic loop is predicted that contains multiple highly conserved tryptophan residues which is a 

common feature of the heme handling proteins (HHP) family to which both CcmF and CcmE belong 

(Lee et al., 2007). This protein may have a role in heme handling in the maturation process of the MHC 

proteins in ANME as well. These two genes are also found in a cluster of cytochrome c genes highlighted 

in a previous metagenomic study of ANME-1 (Meyerdierks et al., 2010). Due to their similarity to 

peptidases and heme handling proteins we suspect these are not membrane anchors for the mature 

MHC proteins as previously posited. The unusual ANME-1 subclade consisting of GoMg4 and SA 
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contained no cytochrome c genes and also lacked CcmABCE, all CcmF paralogs, the signal peptidase, 

and the integral membrane protein described above. This provides an additional validation of the quality 

of our genome bins, as well as further highlighting the interesting biological differences in this subgroup 

of ANME-1. In conclusion, a key genomic difference between canonical methanogens and the ANME 

archaea are traits linked to direct interspecies electron transfer, especially large, diverse cytochromes and 

associated biosynthetic machinery. It should be noted that it is possible for engineered syntrophies to 

occur with methanogenic Methanosarcinaceae even in the absence of MHC, although the mechanistic 

details of how electrons are transferred in this system are lacking (Yee and Rotaru, 2020). 

 

Anabolic pathways 
In addition to energy metabolism reconstruction, the diversity of ANME genomes presented here allows 

for an evaluation of the anabolic pathways present in the different methanotrophic lineages. The 

assimilation of isotopically light (13C-depleted) carbon into ANME lipids and bulk biomass was crucial 

to their initial discovery (Boetius et al., 2000; Hinrichs et al., 1999; Orphan et al., 2002, 2001b; Pancost 

et al., 2000), and is an important signal used for the interpretation of stable isotope studies of ancient 

carbonate systems. A better understanding of the precise biochemical pathways available for building 

this biomass will help better interpret these types of analyses, as well as the results of stable isotope 

probing experiments. Early experiments also highlighted how isotope signatures serve to identify the 

syntrophic cooperation between the consortia partners (Orphan et al., 2001b, 2001a). In this regard, 

long-term symbiotic interactions between organisms has been hypothesized to lead to lasting anabolic 

impressions on the organisms involved, specifically the adaptive loss of anabolic pathways such that 

syntrophic partners are left with complementary set of functions such as amino acid biosynthesis 
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(Embree et al., 2015; Morris et al., 2012). Below we highlight some of the key conserved features and 

differences between anabolic pathways present across the different groups of ANME archaea. 

 

Anabolic C1 metabolism 

C1 metabolism concerns the enzymes, reaction and cofactors mediating redox transformations of single 

carbon molecules and the ways these are incorporated into various biomolecules through the formation 

of carbon-carbon bonds. The single known anabolic C1 pathway present in all ANME is the Wood-

Ljungdahl (reductive acetyl-Coenzyme A) pathway. The methyl branch of this pathway is the 

methanogenesis pathway described in previous sections. In this pathway, methyl groups attached to 

H4MPT are combined with CO2 and a pair of electrons from Fd2- to make acetyl-CoA which can then 

be used in a wide variety of biosynthetic processes. This pathway ANME share with methanogens, some 

of which are autotrophic, i.e. derive their cell carbon from CO2 reduction. Still, an important question 

for interpreting isotopic studies is whether there are other means of C1 assimilation and, if so, if these 

alternative mechanisms vary within and between ANME clades.  

 

The H4MPT cofactor of the Wood-Ljungdahl pathway was first discovered in methanogenic archaea 

and was originally thought to be an archaea-specific modified folate substituting in place of H4F in all 

methanogens and their relatives for C1 carrying reactions. This view held until it was shown the H4MPT 

was also present in methylotrophic bacteria (Chistoserdova, 1998). These bacteria contain both H4MPT 

and H4F and assessing roles of the C1 pools associated with each pathway for either catabolism or 

anabolism was a major challenge requiring decades of biochemical, genetic, and comparative genomic 

analysis to begin to fully understand (Chistoserdova et al., 2009). In methylotrophic bacteria H4MPT 

appears to be the dominant catabolic oxidation pathway for formaldehyde generated by methanol 
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dehydrogenase, while H4F can either serve as a catabolic oxidation pathway for certain methylated 

compounds or as a mechanism for transferring C1 moieties from formate into the anabolic serine cycle. 

Because of the nuanced understanding of C1 metabolism in methylotrophic bacteria and the apparent 

importance of maintaining separate C1 pathways in these organisms, we investigated the extent to which 

H4F-bound C1 pools may be present in the ANME archaea (Figure 13). 

 

In ANME-2a, 2b, 2d and 3, MetF is clustered with the genes for MetV, FolP, FolD, GlyA, and PurN, 

all of which are involved in H4F-related anabolic C1 reactions (Figure 13C). This cluster of genes is also 

found in other closely related methanogens in the Methanosarcinaceae (Buchenau and Thauer, 2004). 

PurH1, encoded elsewhere in these genomes, also utilizes H4F. A range of biochemical and isotope 

labelling studies found that these enzymes are involved in anabolic pathways and have demonstrated 

their specificity for H4F in M. barkeri. Importantly, the C1 moieties in the H4F pathway are not derived 

from free C1 compounds, as the critical enzyme formate H4F ligase is not present in any ANME 

genome. Instead, in ANME the positions of compounds that are derived from methylene-H4F will come 

from the C2 position of acetyl-CoA as was shown in M. barkeri (Buchenau and Thauer, 2004). Acetyl-

CoA derived carbon passes through pyruvate to serine, and through the activity of serine hydroxymethyl 

transferase (GlyA), the carbon derived from the C2 of acetate is transferred from serine to H4F to be 

used for biosynthesis of purines, thymine and possibly methionine (Figure 13A). The methyl group 

donor for methionine biosynthesis is likely a corrinoid protein, but its identity remains unknown in 

methanogens (Schroder and Thauer, 1999). 

 

ANME-2c lacks a MetF of either the normal Methanosarcinaceae variety, or the ANME-1/uncultured 

archaeal version. Consistent with the lack of the Methanosarcinaceae variety of MetF, all ANME-2c 
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genomes additionally lack MetV, FolP, FolD, PurN and PurH1 (Figure 13C). This absence of H4F-

interacting genes is also true of all the ANME-1 genomes, save for MetV which is found alongside the 

ANME-1 MetF. This suggests H4F is not used in ANME-1 or 2c for biosynthetic reactions (Figure 

13B) 

 

GlyA homologs are found in all ANME genomes. Since GlyA is expected to interact with H4F in 

ANME-2a, 2b, 2d and 3, we conducted a deeper analysis of GlyA in order to find an explanation for 

their presence in ANME-2c and ANME-1 since they seemed to lack the other H4F-related genes. 

Phylogenetic analysis of GlyA showed a clear differentiation between GlyA in ANME-1 and 2c vs. those 

in ANME-2a, 2b, 2d and 3 (Figure 13D). GlyA in methanogens without H4F react with H4MPT 

(Angelaccio et al., 2003; Hoyt et al., 1986), while the Methanosarcinaceae with H4F contain GlyA active 

towards H4F (Buchenau and Thauer, 2004). ANME-1 and 2c GlyA sequences cluster with the GlyA 

that have been biochemically characterized to interact with H4MPT, while GlyA from other ANME 

cluster with those of Methanosarcinaceae and would be expected to react with H4F (Lin and Sparling, 1998). 

This pattern of presence/absence of genes and phylogenetic affiliation of homologs suggests that H4F 

is present in the ANME-2a 2b 2d and 3, H4F is present and used in the same manner as M. barkeri. In 

ANME-1 and 2c we expect that GlyA is necessary to produce glycine from serine, but that the resulting 

C1 moiety is shuttled back into the H4MPT-bound C1 pool. 

 

PurH1 and PurN which are absent in ANME-1 and ANME-2c utilize formyl-H4F as a source of C1 

moieties for two of the carbon atoms in the biosynthesis of purines (Figure 13A). An interesting 

question is how ANME-1 and 2c are able to grow without these enzymes. Alternate enzymes, PurT and 

PurP/PurH2, can carry out these steps, but use free formate as the C1 donor (Brown et al., 2011). 
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Notably, ANME-2c contained both PurT and PurH2 which are absent in the ANME-2a, 2b, 2d and 

3, while ANME-1 genomes contained PurH2 but lacked PurT. A lack of both PurT and PurN has been 

observed in Archaeoglobales and Methanobacteriales, which suggests that there is an as yet unidentified 

enzyme catalyzing this step since both are known to synthesize their own purines (Brown et al., 2011). 

This distribution of genes involved with purine biosynthesis indicates at least an anabolic role for formate 

in ANME-1 and 2c metabolism. 

 

Another important anabolic C1 reaction is carried out by thymidylate synthase, a crucial step in the 

synthesis of the thymidine base of DNA, which catalyzes the methylation of deoxyuridine 

monophosphate (dUMP) to produce deoxythymidine monophosphate (dTMP). This C1 moiety is often 

derived from 5,10-methylene-H4F, and this reaction can be carried out by two non-homologous 

thymidylate synthase proteins, known as ThyA and ThyX (Myllykallio, 2002). The reactions catalyzed 

by these enzymes are slightly different, with ThyA using the H4F itself as an electron donor to reduce 

the methylene to methyl, producing a dihydrofolate product. ThyX in contrast utilizes NAPDH in the 

reaction, leaving H4F in the tetrahydro oxidation state.  

 

The genomes of ANME-2a, 2b, 2c, 2d, and 3 contain ThyA, whereas most ANME-1 have ThyX. The 

only exception to this is the small ANME-1 subgroup comprised of genomes GoMg4 and SA that 

contain ThyA instead of ThyX, adding to the list of unique features of this ANME-1 subclade. 

Phylogenetic reconstruction of ThyA homologs revealed a similar split between ANME with and 

without H4F; ANME-2a, 2b, and 3 cluster with their close methanogenic relatives, while ANME-1 and 

2c cluster with Methanocellales. Curiously ANME-2d also cluster with ANME-1 and 2c although they 

contain all the other H4F interacting proteins. Much less is known about ThyA biochemistry in 



 

 

99 
methanogens. Labeling and biochemical studies have not been carried out to the same degree as with 

GlyA, making it is difficult to predict the cofactor specificity for either of these ThyA clusters. Due to 

the presumed lack of H4F in ANME-1 and 2c the ANME-1, 2c, and 2d cluster likely utilizes H4MPT, 

while the ANME-2a, 2b, and 3 cluster utilizes H4F (Figure 13A, B).  

 

The difference between using ThyX or ThyA could be particularly useful because thymidylate synthase 

has recently been the subject of great interest as a druggable target in Mycobacterium tuberculosis. ThyX is 

thought to be essential for M. tuberculosis while humans contain ThyA, therefore various ThyX inhibitors 

are being investigated for clinical antimicrobial uses (Basta et al., 2012). These ThyX inhibitors could be 

valuable tools for ANME ecology research if they are shown to be specific inhibitors of ANME-1 in 

order to determine the contribution of ANME-1 to methane oxidation in mixed ANME communities. 

 

Apparent amino acid prototrophy 

Obligate coupling between the energy metabolisms of syntrophic organisms has been suggested to lead 

to additional metabolic dependencies such as amino acid or vitamin auxotrophies through adaptive gene 

loss (Embree et al., 2015; Morris et al., 2012). Yet, the genomes of all ANME clades contain a near 

complete complement of genes predicted for synthesizing all amino acids, including many of the 

pathway modifications described from cultured methanogens (Figure 13—figure supplement 1). Of 

the enzymes that are widespread in related methanogens, only phosphoribosyl-ATP diphosphatase (EC 

3.6.1.31), a step of histidine biosynthesis is not found in any other ANME genomes, with the exception 

of ANME-3 (Figure 13—figure supplement 1). The gene responsible for this step is also absent in 

Archaeoglobus fulgidus and Nitrosopumilus maritimus, both of which are capable de novo histidine synthesis, 
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suggesting other unknown mechanisms exist for completing this step of histidine biosynthesis 

(Fondi et al., 2009). 

 

Other isolated steps in amino acid synthesis were also unannotated in ANME genomes, however they 

were also missing in related methanogens known to complete these steps in an as yet uncharacterized 

manner. ANME genomes appear to lack phosphoserine transaminase but this is possibly complemented 

by a broad specificity aspartate aminotransferase as has been described in other methanogens 

(Helgadóttir et al., 2007). Aromatic amino acids appear to be produced via the 6-deoxy-5-ketofructose-

1-phosphate (DKFP) pathway to produce shikimate (Porat et al., 2006; White, 2004; White and Xu, 

2006), however DKFP synthase was not detected in most of the ANME genomes or in many of the 

Methanosarcinales, again suggesting an as yet unidentified alternate gene may be used in this process 

(Figure 13—figure supplement 1). Methionine appears to be synthesized using the partially described 

pathway converting aspartate-semialdehyde directly to homocysteine, though not all enzymes are known 

for this pathway (Allen et al., 2015). The final steps of tyrosine and phenylalanine synthesis did not have 

annotated genes in many methanogens or ANME genomes but may be complemented by a broad 

specificity amino acid transaminase. Finally, histidinol-phosphatase (EC3.1.3.15) that is also part of 

histidine biosynthesis is unannotated in all of the ANME and methanogen genomes, suggesting an 

alternate, undiscovered gene operating at this step. 

 

Incomplete partial TCA cycles for 2-oxoglutarate synthesis 

Many biomolecules including porphyrins and amino acids are synthesized from 2-oxoglutarate, and this 

intermediate comes from the TCA cycle beginning with acetyl-CoA sourced from CH3-H4MPT and CO2 

via the acetyl-CoA decarbonylase/synthase complex (ACDS). In methanogens, a complete TCA cycle 
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is not needed. Instead, one of two partial pathways are present to produce 2-oxoglutarate for 

biosynthesis: either the partial TCA cycle operates in the oxidative direction passing through isocitrate, 

as found in the Methanosarcinales, or it runs in the reductive direction through succinate, as in Methanococcus 

(Simpson and Whitman, 1993)(Figure 14). Surprisingly, ANME-2a and 2b largely contain the enzymes 

of the reductive partial TCA cycle, diverging from their close Methanosarcinaceae relatives (Figure 14). In 

contrast, the ANME-1 and 2c universally lack some of the genes in the reductive pathway, but contained 

the three genes catalyzing the reactions in the partial oxidative pathway. This pathway would involve 

ATP citrate lyase operating in the direction of ATP production, which is not typical. While some 

ANME-2a come close to having a complete TCA cycle, no single genome was found that contains all 

steps in the pathway, supporting the notion that these enzymes are more used as a means to make an 

important biosynthetic intermediate, not for running a complete reverse TCA cycle for carbon fixation. 

The ANME-3 genomes lack the complete set of genes for either pathway, and it is currently unclear 

how they can produce 2-oxoglutarate.  

Additional ANME features of interest 
In addition to the catabolic and anabolic pathways described above, we identified a number of other 

genomic features that appear interesting based either on their unique presence in ANME as compared 

to closely related methanogens, or their potential for being important in other aspects of the ANME-

SRB syntrophy.  

 

Nitrogenase in ANME  

A phylogeny of the large subunit of nitrogenase, NifD, indicates that the ANME nitrogenases of the 

“methane seep group” form a monophyletic clade (Figure 15). The closest relatives of this group are 

from Roseiflexus castenholzii, which was also reported for nifH gene clones (Dekas et al., 2009). This cluster 

is notably divergent from the NifD in methanogenic Methanosarcinales capable of N2 fixation (Figure 15). 
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The ANME NifD, as well as R. castenholzii and Endomicrobium proavitum, all contain the conserved 

cysteine and histidine residues for binding the P-cluster and FeMoCo ligands (McGlynn et al., 2012), 

which suggests they may be functional in nitrogen fixation, consistent with nifH transcript expression in 

the environment and correlated FISH-NanoSIMS analysis of 15N2 assimilation (Dekas et al., 2009). All 

gene clusters of the methane seep group exhibit the gene order NifHI1I2DK, and lack the nifN and nifE 

genes that function as molecular scaffolds for the maturation of the FeMo cofactor (Figure 15—figure 

supplement 1). These genes were traditionally thought to be crucial for a functioning nitrogenase (Dos 

Santos et al., 2012; Hu and Ribbe, 2016). However, a recent report of nitrogen fixation in E. proavitum, 

which also lack nifEN, suggests that these genes are not strictly necessary for nitrogen fixation (Zheng 

et al., 2016).  

 

It was unexpected to find nitrogenases of the “methane seep group” in many of our ANME-1 genomes. 

Clone libraries of nifH amplicons from methane seeps were used to define four major groups present 

and expressed in these habitats referred to as: methane seep group, methanosarcina-like group, group 

III and group IV (Dekas et al., 2016). The methane seep group is composed of sequences almost 

exclusively found in seep environments and was assigned to members of the ANME-2 based on multiple 

lines of evidence (Miyazaki et al., 2009; Pernthaler et al., 2008). Group IV were detected in ANME-1 

fosmids and shown to be poorly expressed by metatranscriptome analysis. This low expression coupled 

with the fact that group IV NifH were proposed to be involved in F430 biosynthesis instead of nitrogen 

fixation (Staples et al., 2007) led to conclusion that ANME-1 are likely incapable of nitrogen fixation 

(Meyerdierks et al., 2010). Group III NifH sequences are largely composed of sequences similar to those 

found in Deltaproteobacteria, likely corresponding to the ANME’s syntrophic partners (Dekas et al., 2016). 

The Methanosarcina-like group is very similar to sequences found in genomes of the Methanosarcina genus, 
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and they were expected to come from low abundance methanogens occasionally present in methane 

seep environments. The wide distribution of methane seep group nitrogenase in addition to nitrogenases 

belonging to the group IV in ANME-1 suggest that these organisms may also be capable of nitrogen 

fixation. 

 

The monophyletic nature of the nitrogenase genes in ANME is notable in the context of the paraphyletic 

nature of ANME organisms. This form of nitrogenase may have been present in the common ancestor 

of all ANME, and was subsequently lost in all methanogenic members of the Methanosarcinaceae and then 

replaced with a phylogenetically distinct nitrogenase in some lineages. Alternatively, separate horizontal 

gene transfer events could have taken place to insert this nitrogenase into the various ANME clades 

which would seem to imply a strong selection for this specific nitrogenase clade in the ANME 

metabolism. Notably, ANME-3 is the only ANME clade lacking a nitrogenase suggesting a requirement 

for fixed nitrogen, such as porewater ammonium (Bowles and Joye, 2011).  

 

ANME-1 genomes harbor many FrhB/FdhB/FpoF paralogs 

Since F420 is an electron carrier expected to be used by ANME we examined the diversity of genes 

predicted to be involved in F420 redox reactions. A number of proteins that interact with F420 have been 

discussed above, and many of them share homologous subunits that carry out F420 redox chemistry such 

as FrhB (F420 dependent hydrogenase), FdhB (F420 dependent formate dehydrogenase) and, FpoF/FqoF, 

etc. Other enzymes utilizing this FrhB-like domain are known such as F420-dependent sulfite reductase 

(Fsr), which has recently been examined in detail in ANME (Yu et al., 2018). Surprisingly, our 

examination of this protein family revealed many additional unknown paralogs, particularly in ANME-

1 (Figure 16). These paralogs were generally monophyletic within the ANME-1, suggesting duplication 
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and neofunctionalization within the order Syntrophoarchaeales (Figure 16—figure supplement 1). 

The gene clusters containing these FrhB paralogs were often well conserved, and seemed to contain 

genes that code for enzymes not generally expected to interact directly with F420. For example, FrhB6 is 

mainly found in gene clusters containing pyruvate ferredoxin oxidoreductase, the enzyme responsible 

for the reductive carboxylation of acetyl-CoA to form pyruvate. Similarly, FrhB7 was found in gene 

clusters with CODH alpha and epsilon subunits. These subunits of the larger CODH/ACS complex are 

responsible for the carbon monoxide dehydrogenase activity (Gong et al., 2008). 

 

If these two enzyme systems form complexes with the novel FrhB paralogs as this gene clustering 

suggests, then they may be operating only in the oxidative direction, using electrons from the CO/CO2 

couple or the oxidative decarboxylation of pyruvate to reduce F420H2. Biochemical precedent seems to 

indicate that F420H2 cannot be an electron donor for these reactions under physiological conditions. It 

was initially thought that pyruvate oxidoreductase responsible for the anabolic formation of pyruvate 

could utilize F420H2 as its physiological electron donor based on experiments with crude cell extracts 

(Zeikus et al., 1977). Subsequent studies that purified the pyruvate oxidoreductase enzyme found F420 to 

not be a substrate as an electron donor or acceptor (Bock et al., 1996). Instead, pyruvate oxidoreductase 

interacted with ferredoxin, a finding consistent with previous results from bacteria. This result also is 

also more consistent with bioenergetic arguments, the pyruvate/acetyl-CoA+CO2 redox couple is 

expected to be around -500mV and therefore should not be able to be reduced by F420H2 with a midpoint 

in the vicinity of -340mV. Thus the pyruvate dependent reduction in crude cell extracts was attributed 

to secondary reduction of F420 by Fd (Bock et al., 1996). The gene clusters here may represent a dedicated 

system of F420 reduction associated with the breakdown of multi-carbon compounds. Whether this 
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system is used in the breakdown of carbon storage molecules, or is an important part of ANME 

catabolism, remains to be determined. 

 

Additional noteworthy ANME-specific FrhB paralogs include FrhB10, which are found in gene clusters 

with various subunits of glutamate synthase, potentially representing a third putative group of F420-

dependent glutamate synthases (Susanti and Mukhopadhyay, 2012). FrhB8 are found in gene clusters 

with divergent NuoF homologs and thioredoxin genes, and are almost exclusively found in ANME 

groups (Figure 16—figure supplement 1). While our limited transcriptome data shows many of these 

FrhB homologs to be expressed at moderate levels, FrhB7 in ANME-1 GB60 is an exception, with 

expression levels near those of the methanogenesis pathway (Supplementary file 2). As with the 

diversity of HdrA-containing gene clusters, this expansion of FrhB-containing gene clusters in the 

ANME-1 points to a wide range of novel electron transport capabilities in ANME-1. 

 

Extensive Dockerin/Cohesin domain-containing proteins 

Recently a protein domain study of three marine ANME genomes reported that ANME-1 and ANME-

2a contained a surprising number of proteins predicted to have dockerin or cohesin domains (Timmers 

et al., 2017). These domains are best known from their role in the construction of the cellulosomes 

which are large, multiprotein complexes that bind and degrade extracellular cellulose in Clostridia and 

other cellulose degrading bacteria (Bayer et al., 2004). Dockerin and cohesin domains form strong bonds 

with one another, and by encoding multiple sets of complementary dockerin and cohesin-containing 

proteins many copies of enzymes with cellulolytic activity can be linked to other proteins containing 

cellulose binding domain as well as anchored to the cell surface. These multiprotein complexes can be 
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bound to the cell by anchor proteins that contain cohesion and S-layer homology (SLH) domains or 

via covalent linkage to lipids through the action of sortases.  

 

Cohesin and dockerin domains have been found in diverse bacteria and archaea that are not thought to 

be involved with cellulose degradation, suggesting functions beyond the well characterized ones in 

clostridia (Peer et al., 2009). Early work found proteins containing dockerin and cohesin domain in 

Archaeoglobus and these archaeal versions have been verified to perform specific strong dockerin-cohesin 

bonds (Bayer et al., 1999; Haimovitz et al., 2008). However archaea that contained dockerin or cohein 

domains did not contain large so-called “scaffoldin” proteins with multiple copies of cohesin domains 

which are required for the formation of large multimeric complexes (Peer et al., 2009). Since dockerin 

and cohesin domains simply facilitate the linkage of functional domains, the implications of these 

domains are not clear simply by their presence in the genome. 

 

Dockerin and cohesin domain-containing proteins in bacteria vary considerably between closely related 

species in the number and identity of additional domains, and the proteins in ANME are similarly 

variable, but a few consistent trends are apparent. In members of ANME-2a, ANME-2c and ANME-1 

there are proteins that consist of a dockerin domain and multiple cohesin domains, up to as many as 

five. These scaffoldin-like proteins therefore have the ability to localize multiple copies of whatever 

proteins contain their cohesins’ complementary dockerin domains. Common dockerin containing 

protein in ANME are the periplasmic substrate-binding components of ABC transporters of various 

types, such as the nickel/dipeptide/oligopeptide (NikA/OppA) system and the TroA system used for 

metal ion uptake (Berntsson et al., 2009; Zheng et al., 2011). In most ANME-2c genomes there are 

proteins encoding S-layer domains and dockerin domains, suggesting dockerin/cohesin pairing may be 
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important for attaching functional proteins to the outer layer of the cell and possibly mediating 

interactions with bacteria. Using experimental methods to determine which dockerin and cohesin 

domains bind to each other will lead to a better understanding of composition of the ANME 

extracellular space. A complete list of ANME proteins containing dockerin or cohesin domains can be 

found in Supplementary file 3. 

 

Phage-like protein translocation structures 

Phage-like protein translocation structures (PLTSs) are large multiprotein complexes that share 

structural and functional similarities to type VI secretion systems, pyocins, and the Serratia entomophila 

antifeeding prophage described in a broad survey of microbial genomes based on sequence identity and 

synteny (Sarris et al., 2014). This broad family of related complexes have a wide variety of functions, 

from neighboring cell lysis, to morphologic transformation of targeted eukaryotic cells (Shikuma et al., 

2014), stabilizing symbiotic interactions (Speare et al., 2018) and mediating sibling conflict in the 

multicellular aggregate bacterium Myxococcus xanthus (Troselj et al., 2018). PLTSs are anchored in the 

cytoplasmic membrane and upon contraction of the sheath proteins extrude a protein complex with a 

sharp spike that penetrates neighboring cell membranes and can deliver various effector proteins 

(Shneider et al., 2013). Recent reviews of the known structure and function of these complexes highlight 

the conserved features which include phage baseplate-like proteins, sheath proteins, AAA+ ATPases, 

LysM-motif proteins for peptidoglycan binding, and VgrG and PAAR-domain spike proteins (Taylor et 

al., 2018).  

 

Gene clusters related to these systems were identified in all ANME groups with gene synteny similar to 

that of Methanomethylovorans hollandica that was described in a recent review (Sarris et al., 2014) (Figure 
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17). This gene cluster was relatively well expressed in ANME-2c (Supplementary file 2), and could 

potentially play an important role in the symbiosis between ANME and partner bacteria, or alternatively 

defend AOM consortia from invasion. Interestingly, PLTS clusters from closely related ANME-2a and 

2b were very different from one another, with the ANME-2b sequences much more closely related to 

the ones found in ANME-1 (Figure 17C). In the two ANME-2d genomes available, one encoded the 

version like ANME-2a, ANME-2c, and ANME-3, while the other ANME-2d genome encoded a 

version that was very similar to ANME-1 and ANME-2b. This difference is most apparent in the PAAR 

domain spike proteins, with ANME-2b much more similar to the PAAR domain proteins encoded in 

ANME-1 (Figure 17C). It is interesting that such closely related ANME groups encode such different 

PLTS systems, and suggests that ANME-1 and 2b may have similar interactions with organisms 

(possibly syntrophic SRB partners) that are quite different than those in association with ANME-2a, 2c 

and 3.  

Discussion 
The evolution and conserved metabolic features of marine ANME archaea 

It remains a microbiological enigma that methanogens, i.e. those that produce methane as a waste 

product during their catabolic metabolism, and methanotrophs, i.e. those which gain energy from the 

consumption of methane, use the same set of core genes, but can not be reversed Our investigation of 

this expanded set of ANME genomes revealed key features present in ANME that are absent in their 

methanogenic relatives. A unifying feature of the ANME archaea appears to be a multitude of multiheme 

c-type cytochromes which are rare in methanogens. This expansive repertoire of MHCs, some harboring 

30+ heme binding domains in ANME-2 and 3, specific cytochrome c maturation machinery, and 

associated conserved hypothetical proteins are features only shared by certain members of the 

Archaeoglobales that are known to conduct EET like Ferroglobus. The large ANME-MHCs with S-layer 
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fusions and the repurposing of the cytochrome b subunit of membrane bound hydrogenases into a 

potential methanophenazine:cytochrome c oxidoreductase complex (Mco) remain some of the clearest 

examples of bioenergetic novelty in ANME compared to their methanogenic relatives with which they 

share the core methanogenic pathway. The study of EET in symbiotic associations is relatively new, and 

there are no specific marker proteins yet identified that definitively confer EET ability. There is however 

a general pattern in that the genomes of EET-capable organisms contain many, often exceptionally large, 

MHCs, as well as systems enabling the transfer of electrons through the various outer layers of the cell. 

ANME appear to contain all of these genomic features, and this clear EET potential represents an 

important physiological difference between ANME and methanogens.  

 

Another common feature of ANME genomes that set them apart from their methanogenic counterparts 

is the high abundance and diversity of soluble Hdr complexes with distant formate dehydrogenase 

(FdhAB) homologs. This is especially true for ANME-1 that lack certain features often found within 

Methanosarcinaceae including HdrDE and the Rnf complex in most cases. It is likely that these soluble Hdr 

complexes are involved in electron recycling and transfer processes in at least ANME-1, but also 

ANME-2 and 3 based on their conservation and expression levels. So far, experimental evidence 

suggests that formate is not an electron carrying intermediate in AOM, and the canonical formate 

transport protein (FdhC) is absent. Hence, the specific substrate and function of these well-conserved 

complexes remains a fundamental question in ANME metabolism remaining to be addressed. 

Regardless of the nature of the electron acceptor utilized by these Hdr complexes, the reverse 

methanogenesis model requires that their combined effect is a net oxidation of CoM-SH/CoB-SH, 

presumably through electron confurcation. 
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This expanded set of ANME genomes also helps us better understand the evolutionary history of 

the ANME. The paraphyletic nature of ANME suggests that the transition between methanogenic and 

methanotrophic metabolisms has occurred multiple times. The order of these events is not immediately 

evident, as multiple scenarios could lead to the observed pattern of metabolism and gene content. This 

is particularly true in the case of ANME-3, which contains multiple features identified in ANME-2 

genomes including large MHC proteins, specific duplicated CcmF proteins, the b-type cytochrome 

associated with Rnf, divergent FdhAB associated with HdrA genes, among others. The presence of these 

bioenergetic genes within ANME-3, which appear to be the most recently diverged from within the 

Methanosarcinaceae, strongly suggests that this repertoire is critical to the methane oxidation phenotype. 

With the present data we do not believe there is a clear parsimony-based argument to distinguish 

between the possibilities that these ANME-specific features represent a gain of function through 

horizontal gene transfer into the ancestor of ANME-3, or whether they were lost in the methanogenic 

members of the Methanosarcinaceae.  

 

It has long been assumed that ANME evolved from methanogenic ancestors and our current 

phylogenies support this scenario, as many groups of hydrogenotrophic methanogens emerge from the 

archaeal tree before the rise of ANME-1 which is the deepest branching ANME group (Figure 1). With 

this expanded set of ANME genomes, another interesting evolutionary possibility presents itself: the 

entire group of methylotrophic methanogens within the Methanosarcinaceae may be derived from a 

methanotrophic ancestor. These methanogens run six of seven steps of the methanogenesis pathway in 

reverse. This fact was used early on to suggest “reverse methanogenesis” was reasonable for ANME, 

since they would only have to reverse one additional step. The order of our discovery of these 

metabolisms may not reflect the order with which these metabolisms evolved, and the complete reversal 
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of the methanogenesis pathway may date back to the last common ancestor of ANME-1 and the 

other ANME. In this evolutionary scenario, methylotrophic methanogenesis in the Methanosarcinaceae 

evolved by the simple acquisition of methyl transferases and the subsequent loss of ANME-specific 

systems of EET. Instead of transferring electrons from methane oxidation to the outside of the cell, the 

Methanosarcinaceae electrons are funneled from methyl group oxidation back into the cytoplasm to reduce 

heterodisulfide. 

 

The “Methanoalium” group of ANME-1 and the potential for methanogenesis in ANME 

The clade within ANME-1 represented by the SA and GoM4 genomes is an exceptional group which 

requires further detailed study. This group has previously been referred to as the “freshwater” ANME-

1 clade and has been found in 16S rRNA gene surveys of various terrestrial and marine environments 

(Brazelton et al., 2010, 2006; Takeuchi et al., 2011). A recent report constructed the first genome from 

this group of ANME-1 from a Tibetan hot spring (THS) (Borrel et al., 2019). We recognized similar 

characteristics between the THS genome and the GoM4 and SA genomes reconstructed here, including 

the bacterial-type Rnf and the absence of MHC. Although not mentioned previously, we find the same 

MvhA-type hydrogenase in the ANME-1-THS genome and an absence of cytochrome maturation 

machinery. As a final check on the novel characteristics of this unusual ANME-1 clade, we reconstructed 

one additional genome from a recent metagenomic dataset of the Lost City hydrothermal field. This site 

has reported 16S rRNA genes and McrA sequences belonging to this freshwater ANME-1 clade (Borrel 

et al., 2019; Brazelton et al., 2010, 2006; Kelley et al., 2005). This additional Lost City ANME-1 MAG 

was 88% complete with 2% contamination and notably had all the hallmark genomic features observed 

in GoM4, SA, and THS (Figure 18).  
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A number of investigations of ANME-dominated environments have concluded that some ANME 

lineages, particularly ANME-1, maybe have net methanogenic capabilities (Bertram et al., 2013; Beulig 

et al., 2019; House et al., 2009; Lloyd et al., 2011). Genomic analysis alone cannot falsify the hypothesis 

that ANME archaea can gain energy from methanogenesis, due to the similarities in the main 

methanogenic pathway enzymes. Yet incubations of methane seep samples with methanogenic 

substrates has only succeeded in stimulating the growth of low abundance traditional methanogens, 

never ANME (Wegener et al., 2016). The evolution between methanotrophy (e.g. ANME-2a, 2b, and 

2c), and methanogenesis (canonical members of the Methanosarcinaceae) as well as the apparently recent 

transition to back to methanotrophy in ANME-3 appears to include biochemical innovation and 

genomic adaptation which occurs on evolutionary timescales, but not ad hoc in the environment. Likely, 

in a group as old and diverse as the ANME-1 archaeal order (representing at least 6 genera in our 

genomic collection), such a transition may have also occurred. We hypothesize that this clade of ANME-

1 (SA, GoM4, THS, and LC) that encode for hydrogenases and lack c-type cytochromes may be bona 

fide methanogens. However, the little evidence currently available for representatives of this clade from 

terrestrial subsurface suggests that this group may carry out methane oxidation as well (Takeuchi et al., 

2011). Whether this group occurs in association with a syntrophic partner is currently unknown. What 

is clear is that this clade’s genomic content and environmental distribution sets them well apart from 

other ANME. We propose the genus “Ca. Methanoalium” for the “freshwater ANME-1 clade” in 

recognition of the differences in their metabolic potential and unusual environmental distribution (see 

Supplementary file 1 for etymology). 
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Anabolic independence of the ANME archaea from their syntrophic partner 

The tight metabolic coupling between syntrophic ANME and SRB could be expected to result in 

reductive biosynthetic pathway loss in one of the partners as predicted in the “Black Queen Hypothesis” 

(Morris et al., 2012). Unfortunately, the partner SRB have not yet been cultured, and thus it remains 

unknown if these show specific genomic adaptations to a consortia lifestyle. However, we do not 

observe obvious evidence of this occurring at the level of major ANME lineages for amino acids. If this 

sort of reductive evolution does occur in the ANME-SRB symbiosis, it may be occurring at the species 

or strain level, and would be very difficult to confidently detect in coarse-grained genomic analysis with 

partial genomes. More detailed investigations of the question of complementary biosynthetic pathways 

between syntrophic partners will be best studied in sediments or enrichment cultures that are dominated 

by a single ANME-SRB pairing, where near complete genomes of both partners can be generated. But, 

on the broad scale of ANME evolution to their syntrophic lifestyle, there does not seem to be a 

concerted loss of anabolic independence in any of the major lineages. This result is distinct from that 

described in some other syntrophic communities such as those performing the anaerobic oxidation of 

hexadecane (Embree et al., 2015). 

 

Biogeochemical and microbiological consideration of ANME carbon signatures 

Bacterial methylotrophs and methanotrophs have traditionally been defined as organisms that derive 

both their carbon and energy from the oxidation of C1 compounds or methane, respectively (Hanson 

and Hanson, 1996; Lidstrom, 2006). ANME were called methanotrophs because it appeared that their 

energy metabolism was based on methane oxidation, and the 13C-depleted isotope signature of their 

lipids were thought to be evidence of the assimilation of 13C-depleted methane carbon. Biogeochemical 

studies further show that the respiration of methane to CO2 dominates carbon turnover in most ANME 
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environments, and thus that the dissolved inorganic pool of carbon is mostly methane-derived. As a 

consequence, the carbon assimilated for biomass production is only a few percent of the methane 

oxidized and thus also methane-derived from the biogeochemical perspective (Nauhaus et al., 2007; 

Treude et al., 2007). However, in vivo isotope-probing experiments showed that ANME biomass is 

effectively labelled by 14CO2 or 13CO2, leading to the conclusion that ANME assimilate a mixture of CO2 

and CH4 (Treude et al., 2007; Wegener et al., 2008), or almost only CO2 (Kellermann et al., 2012). Short 

pulse-chase experiments with 14CO2 and 14CH4 also support this latter interpretation (Wegener et al., 

2016). 

 

Microbiological considerations for the classification of this C1 metabolism were best articulated by 

Leadbetter and Foster in the context of aerobic methane oxidizing bacteria (Leadbetter and Foster, 

1958): 

  

“Although there is no universally accepted definition of the nature of the autotrophic mode of life, the ability to 

grow at the expense of CO2 as the exclusive source of carbon for cell synthesis remains as the cardinal consideration 

in the concept of an autotroph. 

   The question needing study is whether, during growth on methane, these bacteria dehydrogenate the methane 

molecule to CO2 and “active” hydrogen, following this with a reductive assimilation of the CO2 with “active” 

hydrogen.” 

 

The dominant bacterial methanotrophs in most environments assimilate methane-derived carbon at the 

oxidation state of formaldehyde for a large portion of their biomass using either the serine or ribulose 

monophosphate pathway (RuMP) (Lidstrom, 2006). Some organisms have been discovered that use the 
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oxidation of C1 compounds for their source of energy, but use a Calvin-Benson-Bassham (CBB) 

cycle for the fixation of CO2. These organisms presented a problem for nutritional nomenclature because 

the definition of methylotroph/methanotroph normally involves the incorporation of cell carbon. For 

methylotrophs, Paracoccus denitrificans uses a CBB cycle when growing on C1 compounds, and these 

historically have been referred to as an “autotrophic methylotroph” (Anthony, 1982; Lidstrom, 2006). 

More recently, the methane-oxidizing bacteria Methylacidiphilum fumariolicum and “Candidatus 

Methylomirabilis oxyfera” have been found to operate a CBB cycle for carbon assimilation from CO2 

(Khadem et al., 2011; Rasigraf et al., 2014). These authors have taken a similar naming scheme, referring 

to M. fumariolicum as an “autotrophic methanotroph” (Khadem et al., 2011). These examples from 

bacteria can be transferred to the ANME, suggesting that the methanotroph label should be conserved, 

and the only question remaining is whether to adopt the “autotroph” label as well. 

 

The predominant labelling of ANME biomass by 14CO2 or 13CO2 is intriguing, and suggest that they 

could be autotrophs or mixotrophs as some methanogens (Berg et al., 2010; Weimer and Zeikus, 1978). 

So far, all known ANME genomes encode solely the Wood-Ljungdahl pathway for carbon fixation that 

is also used for methane oxidation. One option to explain these isotope labelling results is that ANME 

are autotrophic methanotrophs, and have an additional, so far undetected CO2 fixation pathway, so that 

anabolic and catabolic C1 reactions can run in opposite directions simultaneously, such as the CBB cycle 

in M. fumariolicum. Yet we have not found evidence for a second carbon fixation pathway in the ANME. 

Another possibility is that the C1 enzymes, C1 pools and cofactors used in the catabolic and anabolic 

pathways are separated spatially within the ANME cells. This could potentially be achieved by having 

two complete sets of paralogs of the enzymes of the Wood-Ljungdahl pathway that could be used in 

different directions and trafficking these paralogs to different compartments within the cell. While some 
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multiple paralogs of the methyl branch of the Wood-Ljungdahl pathway are spread sporadically 

throughout the ANME, we did not find any conserved complete second paralogous copy of all the 

enzymes of the archaeal Wood-Ljungdahl pathway. Another possibility could be a complete assimilatory 

Wood-Ljungdahl pathway utilizing H4F as found in bacteria, but the H4F-interacting enzymes found in 

some ANME-2 and -3 would not allow them to activate CO2 via formate, and are instead are expected 

to be involved in specific anabolic reactions well downstream of acetyl-CoA production. If the ANME 

archaea are autotrophs, it remains to be determined how this is carried out from a biochemical 

perspective. 

 

Another plausible explanation for the predominant labelling of ANME biomass by 13CO2 could be 

intense carbon back flux on the C1 branch on the Wood-Ljungdahl pathway to the point of CH3-

H4MPT, against the net flux of carbon. Metabolisms operating at close to equilibrium can present 

challenges to isotope labeling studies because the forward and reverse fluxes through that pathway 

approach equal values (Holler et al., 2011). AOM operates as close to equilibrium as is thought to be 

possible to support life, and most of the steps of the methyl branch of the Wood-Ljungdahl pathway 

are essentially at equilibrium (Thauer, 2011). Under these conditions it seems quite possible that the 

isotope label of the DIC in these incubations could back flux up through the methyl branch of the 

Wood-Ljungdahl pathway to the point of CH3-H4MPT, even if the net reaction is in the oxidative 

direction. Further experiments are required to distinguish between these possible explanations, and 

determine whether ANME should be referred to as “autotrophic methanotrophs” or simply 

“methanotrophs”. 
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MetF, F420-dependent NADP reductase and electron bifurcation complexes 

There remains no clear explanation for what evolutionary or bioenergetic pressures may have led to the 

loss of Mer and presumed replacement by MetF in ANME-1. An important challenge posed by this 

switch is that MetF interacts with NADPH instead of F420H2, and it is not immediately apparent how 

electrons from NADPH are harnessed for energy production in ANME-1. In one sense, this is similar 

to the case of methanogens that use multicarbon alcohols as electron donors for CO2 reduction (Berk 

and Thauer, 1997). Some of these methanogens contain alcohol dehydrogenases that utilize F420 as the 

electron acceptor, and therefore the electrons liberated from the alcohols as F420H2 can immediately be 

used in the methanogenesis pathway. Other methanogens however contain alcohol dehydrogenases that 

are NADPH specific and so a secondary oxidoreductase is needed to transfer NADPH electrons onto 

F420. It was discovered that in this latter group of methanogens, high activities of F420H2:NADP 

oxidoreductase (Fno) could be found, and the protein responsible was purified, characterized and 

sequenced (Berk and Thauer, 1998, 1997). If an Fno enzyme was expressed at sufficiently high levels in 

ANME-1 then the electrons on NADPH derived from MetF could be fed back into the F420 pool for 

catabolism, just as in the alcohol-oxidizing methanogens.  

 

Remarkably, ANME-1 universally lack homologs of Fno although they are present in all other ANME 

and methanogens we examined. In most methanogens Fno is present for the reverse reaction, the 

production of NADPH for anabolic reactions. This conspicuous absence in ANME-1 of what seems to 

be a nearly universally conserved mechanism of hydride transfer between the F420H2 and NADPH pools 

is noteworthy on its own, but is particularly interesting when considered in the context of the Mer/MetF 

switch. If ANME-1 produce NADPH from MetF, they will have more electrons than they need for 

anabolism through this reaction since this amounts to a quarter of all methane-derived electrons. If this 
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is how MetF is being utilized in ANME-1, then how these NADPH electrons are transferred back 

into an energy conservation pathway is an important open question. Most ANME-1 also contain a 

homolog of what we have designated HdrA9, 10 or 11, which constitute HdrA with large insertions with 

high sequence identity with NfnB. This subunit interacts with NADPH in the well characterized Nfn 

systems (Demmer et al., 2015), so if MetF produces NADPH, these modified HdrA/NfnB fusions may 

represent a novel path back into the catabolic energy metabolism of ANME-1, confurcating electrons 

from NADPH and CoM-SH/CoB-SH.  

 

The prevalence of many diverse copies of HdrABC systems in ANME-1 may offer an alternative 

explanation for how MetF-derived electrons are directed back into central catabolism. Recently a protein 

complex containing MetFV, HdrABC, and MvhD was discovered in Moorella thermoacetica that is 

suggested to carry out electron bifurcation with NADH, CH2=H4F and other unknown reactants (Mock 

et al., 2014). Genomic analysis revealed the genes coding for these six proteins were found in a gene 

cluster together in M. thermoacetica and our examination of this HdrA homolog in this complex is much 

like HdrA 3 and 4 described above, with two fused HdrA domains with complementary Cys197/N-

terminal domain loss. While none of the ANME-1 genomes analyzed here contain MetF in a gene cluster 

with HdrA homologs, the two “Ca. Syntrophoarchaeum” genomes both contain gene clusters 

containing MetFV, HdrA, and MvhD. If MetF catalyzes the CH3-H4MPT oxidation step in ANME-1, 

it may form complexes with one of the many HdrA paralogs. This would allow electrons to funnel 

directly into a bifurcation/confurcation reaction without passing through the F420H2 pool. In any case, 

electron flow through ANME-1 is likely to involve a significant amount of novelty that will require 

detailed biochemical studies to test these genomic predictions. 
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An energetic argument for both chemical diffusion and direct electron transfer in 

ANME-SRB syntrophy 

Two strategies for syntrophic electron transfer could be widespread in the ANME-SRB syntrophy based 

on the conserved features of energy metabolism described here, EET utilizing the abundant MHC 

proteins, as well as diffusion of soluble electron carriers potentially produced by the diverse HdrABC 

complexes. A possible explanation for the conservation of these two systems in the genomes of ANME 

is that a mixed electron transfer through both systems may best suit an equal division of energy between 

the ANME and their sulfate reducing syntrophic partners.  

 

If ANME-2a were to use Fpo, Rnf and HdrDE to oxidize F420H2, Fd2-, and CoM-SH/CoB-SH, our 

expectation would be that all eight electrons from methane oxidation would end up on MpH2 (Figure 

19A). This would conserve abundant energy for the ANME through the Fpo and Rnf complexes, but 

the redox potential of the Mp/MpH2 couple (E0’ = -165mV) is more than 50mV more positive than the 

SO4
2-/HS- redox couple (E0’ = -217mV). If all electrons were to pass through MpH2 to the SRB their 

entire metabolism would be endergonic by about 40kJ/mol sulfate. For an equitable sharing of energy 

between ANME and SRB, the average redox potential of electrons during transfer should be 

approximately halfway between the CH4/CO2 (E0’ = -240mV) redox potential and the SO4
2-/HS- couple 

(E0’ = -217mV). The MpH2 pool would need to be more than 90% reduced to drop its midpoint 

potential to ~ -230mV from -165mV, but this would render the HdrDE reaction impossible to run in 

the CoM-SH/CoB-SH oxidizing direction since the heterodisulfide E0’ is approximately 100mV more 

positive than this. The situation would be even more difficult for ANME-1 which are predicted to use 

a menaquinone which is very likely at a higher potential than MpH2, requiring the membrane-bound 

electron carrier pool to be greater than 99% reduced for the SRB to yield any energy accepting all eight 
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electrons from menaquinone. In addition, whatever the MpH2 or QH2 pool midpoint potential is, it 

will be lower than the potential the SRB will receive electrons at, since the transfer from ANME to SRB 

through MHC must be down a redox gradient to maintain electron flow.  

 

On the other hand, if all methane-derived electrons were used to produce a low-potential soluble 

electron carrier like formate through the action of cytoplasmic HdrA-based confurcation then the SRB 

could readily grow with electrons at this potential for sulfate reduction. In this scenario however the 

ANME’s entire energy metabolism would contain no steps that could be coupled to energy conservation. 

Energy would be lost at the sodium pumping Mtr step, and there is no mechanism for recovering this 

energy since these soluble Hdr/Fdh complexes do not produce transmembrane potential or carry out 

substrate-level phosphorylation (Figure 19B).  

 

A combined model of cytochrome-based EET and diffusion of low potential intermediates could 

alleviate the need for extremely reduced quinol pools to overcome the energetic inequalities between 

ANME and SRB, and may help explain the conservation and high expression of these two seemingly 

opposing methods of syntrophic electron transfer (Figure 19C). Four electrons transferred from two 

F420H2 through MpH2/QH2 and MHC-based EET could provide just enough energy to the ANME to 

overcome the losses at Mtr and support growth. This would utilize the Fpo and Fqo homologs that are 

universally conserved in all ANME groups. If the remaining four electrons are confurcated to formate 

or a similarly low potential electron carrier then the effective midpoint potential of this compound could 

be tuned to reach a balance where the effective redox potential of all eight of the transferred electrons 

were ~ -230mV, with the ANME conserving energy via the four electrons passing through Fpo/Fqo, 

and the SRB conserving energy through the four electrons on the lower potential soluble electron carrier. 
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The SRB would need to continue consuming the higher potential EET electrons, or else the lower 

potential electrons would cease flowing. Experimental results argue against formate as the predominant 

free extracellular intermediate in AOM (Meulepas et al., 2010; Nauhaus et al., 2005, 2002; Wegener et 

al., 2016), but perhaps another small molecule or diffusible organic substrate of sufficiently low redox 

potential could solve this energetic puzzle. 

 

Conclusion 

In proposing that AOM might be explained by methanogens running in reverse and transferring 

intermediates to a sulfate reducing bacterial partner, Zehnder and Brock concluded (Zehnder and Brock, 

1980):  

 

“We do not pretend that our hypothesis provides a complete explanation for the geochemical observations in anoxic 

marine environments, but our results provide reasonable evidence that methane is not biologically inert in strict 

anaerobic ecosystems.”  

 

In a similar spirit, we present these genome-based models of ANME metabolism with the understanding 

that they represent a series of hypotheses that require biochemical, genetic, or physiological experiments 

performed on purified ANME or ANME-encoded proteins to test. These models in the context of our 

expanded phylogenetic framework will help address important remaining questions in ANME-SRB 

syntrophy. Future studies will need to focus on specific ANME subgroups, preferably at the species 

level, to address questions of energy conservation mechanisms and adaptation to specific niches in 

anoxic marine environments. Novel methods of analysis such as electrode cultivation in may provide 

important new insights into the genomically predicted EET-capabilities. Features specifically supporting 
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syntrophy, including extracellular structures such as pili, specific interactions using phage-like protein 

translocation structures, or dockerin-cohesin systems will require careful experimental analysis far 

beyond genomic studies, but may have significant impacts on our understanding of cell-cell interactions 

in AOM consortia. We expect that explicit consideration of the carbon and electron transfer pathways 

in specific ANME clades will help address controversial results such as net methane production and the 

question autotrophic growth. Solving the enigma of the origin and functioning of the anaerobic 

oxidation of methane on Earth is important for understanding of the dynamics of methane fluxes in 

Earth history, and also for the evolution of the archaea and their syntrophic interactions with bacteria. 

Materials and Methods 

Quality and taxonomic assessment of genomes 

Details of sample processing, DNA extraction, amplification (when applicable), sequencing and genome 

assembly for each genome can be found in Supplementary file 4. All genomes were assessed for their 

completeness and contamination using checkM 1.0.6 (Parks et al., 2015) using the ‘taxonomy_wf’ 

command and the Euryarchaeota marker set containing 188 marker genes. Genome taxonomy was 

assigned using the GTDB_Tk (Chaumeil et al., 2020) and naming conventions are consistent with the 

GTDB release 89. 

 

16S rRNA gene sequencing of sorted single aggregates  

For sorted single aggregate samples that did not have a 16S rRNA gene in the binned genomic dataset, 

we attempted to amplify the 16S rRNA genes for cloning and subsequent sequencing. The original MDA 

amplified samples were used as template to amplify the bacterial 16S rRNA gene using a modified 

universal reverse primer u1492R (5’-GGYTACCTTGTTACGACTT-3’) and modified bacterial b8F-

ym (5’-AGAGTTTGATYMTGGCTC- 3’) (Lane, 1991). The u1492R primer was also paired with a 
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modified archaeal a8F-y (5’-TCCGGTTGATCCYGCC- 3’) to amplify the archaeal 16S rRNA gene 

(von Wintzingerode et al., 1999). Fifteen microliter PCRs were run for 1 min at 94°C, followed by 40 

cycles of 15s at 94°C, 30s at 54°C, and 45s at 72°C, and a final elongation step at 72°C for 4 min. The 

reaction mix included 0.2 µM forward and reverse primers (Integrated DNA Technologies, Inc. 

Coralville, IA, USA), 1× ExTaq PCR buffer (Takara, Clontech Laboratories, Inc., Mountain View, CA, 

USA), 0.75 U ExTaq (Takara), 0.22 mM dNTPs (New England Biolabs, Ipswich, MA, USA), and 1 µl 

template. No amplicon was visible in triplicate DNA control reactions when 4 µl were run on a 1.5% 

agarose gel visualized with SYBR Safe (ThermoFisher Scientific; cat. no. S33102). PCR products were 

plate purified (Millipore Multiscreen filter plates; cat. no. MSNU03010), ligated with the Invitrogen 

TOPO TA Cloning Kit (ThermoFisher Scientific; cat. No. K457501) and transformed using Top Ten 

chemically competent Escherichia coli cells. Picked colonies were grown overnight in Luria–Bertani 

broth (Miller’s modification) and amplified using M13 primers for 30 cycles. The M13 products were 

visualized to confirm the correct size insert and screened by RFLP digest using HaeIII enzyme (NEB) 

on a 3% agarose gel. All unique clones were plate purified and sent for sequencing using T3 and T7 

primers at Laragen Sequencing (Culver City, CA, USA). Contigs were assembled using Geneious 

software version R10 (Kearse et al., 2012). Sequence accessions for the clones from these genomes can 

be found in Supplementary file 5. 

 

Calculation of genome similarity 

The average amino acid identity (AAI) was calculated between each pair of genomes was calculated using 

compareM and its AAI workflow (aai_wf) command (https://github.com/dparks1134/CompareM). 

Briefly this workflow first identifies all open reading frames were determined using prodigal 2.0.6 (Hyatt 

et al., 2010) and then homologous genes were determined using reciprocal best-hits using 0.7.11 
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(Buchfink et al., 2015). The AAI was calculated by averaging the percent similarity of all proteins that 

were reciprocal best hits. The genome similarity (GS) displayed in Table 1—figure supplement 1 was 

calculated by first calculating the percent alignment between the genomes as the fraction of the genes 

that are reciprocal best hits (RBH), using the smaller number of total genes between the two genomes 

(X & Y) as the denominator, and then multiplying the AAI value by that fraction (i.e. GS = 

AAI*RBH/min(X, Y)). The order of the matrix was calculated using the R statistical programming 

language 3.3.2 (R Core Team 2016) using the ‘hclust’ function using the default distance metric 

(‘euclidean’) and the ‘ward.D2’ method of agglomeration. This matrix was visualized using ggplot2 

(Wickham, 2009). 

 

16S rRNA gene phylogeny 

16S rRNA gene sequences were extracted from SILVA 128 (Quast et al., 2013; Yilmaz et al., 2014) and 

new sequences from ANME genomes were aligned using SINA 1.2.11 (Pruesse et al., 2012) though the 

online portal at https://www.arb-silva.de/aligner/. Alignment columns were masked in ARB 6.0.2 

(Ludwig et al., 2004) using the inbuilt ‘archaea ssuref’ filter and exported in fasta format removing all 

columns that contained only gaps. The phylogenetic tree in Figure 1A was constructed using RAxML 

8.1.7 (Stamatakis, 2014) using the following parameters: raxmlHPC-PTHREADS-SSE3 -f a -k -x 12395 

-p 48573 -N 100 -T 16 -m GTRGAMMAI. Trees were visualized using ete3 (Huerta-Cepas et al., 2016). 

 

Concatenated protein phylogeny 

The genome trees in Figures 1B, 3 and 18 were constructed from a list of 43 hidden markov models 

(HMM) trained from proteins common to both bacteria and archaea sourced from Pfam and TIGRfam 

(Supplementary file 6). Open reading frames were annotated onto genome sequences using prodigal 
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2.6 (Hyatt et al., 2010) and candidates for the marker genes were identified using hmmsearch 3.1b1 

(http://hmmer.org). Only the top match to each maker was retained and aligned to the HMM using 

hmmalign 3.1b1 (http://hmmer.org). The alignment was trimmed on each side using the stockholm 

format reference coordinate annotation (line beginning with #=GC RF) to include only residues that 

matched the reference (columns containing an ‘x’). The protein sequences were then concatenated and 

a phylogenetic tree was constructed using RAxML 8.1.7 (Stamatakis, 2014) using the following 

parameters: raxmlHPC-PTHREADS-SSE3 -f a -k -x 67842 -p 568392 -N 100 -T 16 -m 

PROTGAMMAWAG -o IMG_638154518. Note that the outgroup is specified in the command line (-

o IMG_638154518), which corresponds to Sulfolobus solfataricus.  

 

McrA phylogeny 

McrA sequences from cultured methanogenic and methanotrophic archaea and genome sequences from 

uncultured representatives were downloaded from the NCBI refseq database. These sequences were 

combined with clone sequences from ANME dominated environments (Lösekann et al., 2007; 

Trembath-Reichert et al., 2016) and from the ANME genomes sequenced here. These sequences were 

aligned using muscle 3.8.31 (Edgar, 2004) with the default parameters. The phylogenetic tree in Figure 

1D was constructed using RAxML 8.1.7 (Stamatakis, 2014) using in the following parameters: 

raxmlHPC-PTHREADS-SSE3 -f a -k -x 67842 -p 19881103 -N 100 -T 16 -m PROTGAMMAWAG.  

 

Transcriptome data 

Data shown in Supplementary file 2 was reproduced from the main text or supplemental data of papers 

reporting on the ANME-2a Wang genome (Wang et al., 2013), the ANME-2d BLZ1 genome (Arshad 

et al., 2015), and the ANME-2c E20, ANME-1 GB37 and GB60 genomes (Krukenberg et al., 2018). 



 

 

126 
 

NifD and FpoH phylogenies 

Homologs of NifD and FpoH were identified in ANME genomes using KEGG ortholog IDs K02586 

and K00337, respectively. Genes annotated with these KEGG IDs were separately combined with a set 

of protein sequences from uniprot that were also annotated with these IDs using the following website 

(in the case of NifD (http://www.uniprot.org/uniprot/? query=k02586&sort=score&format=fasta). A 

representative set of genes was made using cd-hit 4.6 (Li and Godzik, 2006) by removing all sequences 

that were greater than 95% amino acid similarity to each other. In the case of FpoH most bacterial 

sequences were omitted. These sequences were aligned using muscle 3.8.31 (Edgar, 2004) with the 

default parameters. A phylogenetic tree was constructed using RAxML 8.1.7 (Stamatakis, 2014) using in 

the following parameters: raxmlHPC-PTHREADS-SSE3 -f a -k -x 8512 -p 110339 -N 100 -T 16 -m 

PROTGAMMAWAG. Tree was visualized using ete3 (Huerta-Cepas et al., 2016). 

 

Additional protein phylogenies 

Phylogenetic trees for RpoB, MtrE, Mer, Mtd, Mch, Ftr, FwdB/FmdB, MetF, HdrA, VhtC/McoA, 

Small ANME MHCs, CcmF, GlyA, ThyA, FrhB were constructed based on alignments using muscle 

3.8.31 (Edgar, 2004) with the default parameters. Trees were built with PhyML 3.0 (Guindon et al., 2010) 

implemented on the website (http://www.atgc-montpellier.fr/phyml/) with automatic substitution 

model selection based on the Akaike Information Criterion as implemented by SMS (Lefort et al., 2017). 

Branch support was provided by the aLRT SH-like fast likelihood-based method. Trees were visualized 

with iTOL (Letunic and Bork, 2019).   

 

Determination of cytochrome orthologs 
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Homologous proteins displayed in Figure 9—figure supplement 3 were determined using 

proteinortho 5.16 (Lechner et al., 2011) using the option ‘-singles’ to keep even unique proteins. 

Orthologs containing multiheme cytochromes were determined by counting the number of CxxCH 

motifs in the amino acid sequences. Orthologous groups where the median count of heme binding 

domains was greater than one were included for analysis. These groups were then curated to resolve any 

erroneous placement of individual proteins. Each group of cytochromes was aligned using muscle 3.8.31 

(Edgar, 2004) and individual sequences that did not share conserved residues or contained unusual 

insertions or deletions were moved into separate orthologs. Proteins that were originally categorized as 

unique were also compared using blastp 2.6.0+ (Camacho et al., 2009) to determine if they could be 

placed into an orthologous group. 

 

Analysis of ANME-MHCs 

Cytochromes with greater than ten heme binding motifs were annotated using Interpro (Finn et al., 

2017; Jones et al., 2014) and were categorized based on the presence of an S-layer domain, 

transmembrane helixes, and the presences and type of putative sugar binding/degrading motifs. 

 

Identification of dockerin/cohesin domains 

Proteins containing dockerin and/or cohesin domains were identified by predicting domains in all 

hypothetical proteins in all ANME genomes using the KBase platform’s Annotate Domains app (v.1.0.7) 

with the “All domain libraries” function (drawing from COGs, CDD, SMART, PRK, Pfam, 

TIGRFAMs, and NCBIfam) (Arkin et al., 2018). All domain annotations were downloaded as csv files, 

and any protein containing a dockerin or cohesin domain was exported along with other domains therein 

to a separate csv file. These csv files can be found in Supplementary file 3. 
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Figures 

 

Table 1 Genome statistics Summary of genome characteristics, sources and accession numbers of the 
analyzed ANME genomes. Major ANME subgroups are separated by bold lines and proposed 
taxonomy adheres to the GTDB framework. At least one genus within each subgroup has been given a 
proposed name, and genomes that fall within other genera or species are simply given numerical 
placeholders (Genus and Species columns, respectively). Type indicates the method used for genome 
reconstruction, including: metagenome assembled genome (MAG), amplified single aggregate genome 
(ASAG), combine-assembled single amplified genomes (Co-SAGs), or fosmid library. Estimated levels 
of completeness (comp) and contamination (cont) are reported as percent as evaluated by CheckM. 
Note: ERB4, ERB6, and ERB7 are fosmid libraries with highly similar strains combined which has 
resulted in high levels of “contamination”. See Supplementary file 1 for complete details of assembly 
and binning for each genome. 
  

Genome Order Family Genus Species Type Sample Location Habitat Publication Accession Comp Cont Size (Mb) Scaffolds
ANME-3 sp. HMMV Methanosarcinales Methanosarcinaceae Methanovorans sp. nov. 1 MAG Haakon Mosby Mud Volcano submarine mud volcano, 1250 m water depth This study DQIP01000000 98.0 3 2.45 236
ANME-3 sp. HMMV2 Methanosarcinales Methanosarcinaceae Methanovorans sp. nov. 2 MAG Haakon Mosby Mud Volcano submarine mud volcano, 1250 m water depth This study DQIO01000000 94.4 4 2.56 334

ANME-2c sp. COP1 Methanosarcinales Methanogasteraceae Methanogaster sp. nov. 1 MAG Coal Oil Point natural hydrocarbon seep, 47m depth Parks et al. 2017 DASC01000000 88.5 2 2.39 222
ANME-2c sp. Agg-C10 Methanosarcinales Methanogasteraceae Methanogaster sp. nov. 1 ASAG Hydrate Ridge, Oregon cold seep sediment incuabtion, 6ºC This study QBUU01000000 45.7 1 1.53 277
ANME-2c sp. HMMV-459B1 Methanosarcinales Methanogasteraceae Methanogaster sp. nov. 3 MAG Haakon Mosby Mud Volcano submarine mud volcano, 1250 m water depth This study QBUV01000000 94.7 2 1.69 226
ANME-2c sp. E20 Methanosarcinales Methanogasteraceae Methanogaster sp. nov. 2 MAG Elba enrichment culture, 20ºC Krukenberg et al.  2018 PQXF00000000 95.7 4 3.98 7
ANME-2c sp. AMVER4-21 Methanosarcinales Methanogasteraceae Methanogaster sp. nov. 4 MAG Amon Mud Volcano submarine mud volcano, 1120 m water depth This study QBUT01000000 62.7 5 1.90 94
ANME-2c ERB4 Methanosarcinales Methanogasteraceae Methanogaster sp. nov. 1 Fosmids Eel River Basin, California methane cold seep, 5ºC This study see Methods 81.6 229 10.13 172
ANME-2c AMVER4-31 Methanosarcinales Methanogasteraceae gen. nov. 1 sp. nov. 1 MAG Amon Mud Volcano submarine mud volcano, 1120 m water depth This study QBUS01000000 65.1 4 1.60 109
ANME-2c COP2 Methanosarcinales Methanogasteraceae gen. nov. 1 sp. nov. 1 MAG Coal Oil Point natural hydrocarbon seep, 47m depth Parks et al. 2017 DAWR01000000 92.5 2 2.37 224

ANME-2a S7142MS1 Methanosarcinales Methanocomedenaceae Methanocomedens sp. nov. 1 MAG Santa Monica Mounds, California cold seep sediment incuabtion, 6ºC Yu et al 2018 PYCK01000000 94.5 0 1.89 267
ANME-2a CONS7142H05b1 Methanosarcinales Methanocomedenaceae Methanocomedens sp. nov. 1 ASAG Santa Monica Mounds, California cold seep sediment incuabtion, 6ºC This study QGHJ01000000 62.3 1 1.72 166
ANME-2a CONS7142G09b1 Methanosarcinales Methanocomedenaceae Methanocomedens sp. nov. 1 ASAG Santa Monica Mounds, California cold seep sediment incuabtion, 6ºC This study QCYW01000000 70.3 0 2.14 193
ANME-2a HMMV-459B4 Methanosarcinales Methanocomedenaceae Methanocomedens sp. nov. 1 MAG Haakon Mosby Mud Volcano submarine mud volcano, 1250 m water depth This study QBUQ01000000 83.2 4 1.45 501
ANME-2a Wang Methanosarcinales Methanocomedenaceae Methanocomedens sp. nov. 1 ASAG Gulf of Cadiz submarine mud volcano, 1200 m water depth Wang et al.  2013 IMG:2565956544 98.5 3 3.64 575
ANME-2a HMMV-459A3 Methanosarcinales Methanocomedenaceae Methanocomedens sp. nov. 2 MAG Haakon Mosby Mud Volcano submarine mud volcano, 1250 m water depth This study QBUR01000000 70.9 0 1.17 192

ANME-2b HR1 Methanosarcinales Methanocomedenaceae Methanomarinus sp. nov. 1 MAG Hydrate Ridge, Oregon cold seep sediment incuabtion, 6ºC Yu et al 2018 MZXQ01000000 95.7 0 2.20 335
ANME-2b CONS3730F09p3b1 Methanosarcinales Methanocomedenaceae Methanomarinus sp. nov. 1 ASAG Hydrate Ridge, Oregon cold seep sediment incuabtion, 6ºC This study QCYX01000000 79.1 0 2.03 213
ANME-2b CONS3730E01UFb2 Methanosarcinales Methanocomedenaceae Methanomarinus sp. nov. 1 ASAG Hydrate Ridge, Oregon cold seep sediment incuabtion, 6ºC This study QENI01000000 71.8 1 2.14 224
ANME-2b CONS3730D10UFb2 Methanosarcinales Methanocomedenaceae Methanomarinus sp. nov. 1 ASAG Hydrate Ridge, Oregon cold seep sediment incuabtion, 6ºC This study QYBA01000000 58.9 0 1.42 266

ANME-2d Ca . Methanoperedens sp. BLZ1 Methanosarcinales Methanoperedenaceae Methanoperedens nitroreducens MAG Wastewater bioreactor bioreactor Arshad et al.  2015 LKCM01000000 96.8 3 3.74 514
ANME-2d Ca . Methanoperedens nitroreducens Methanosarcinales Methanoperedenaceae Methanoperedens nitroreducens MAG Wastewater bioreactor and sediment bioreactor Haroon et al.  2013 JMIY01000000 98.8 1 3.20 10

ANME-1 AG-394-G06 Methanophagales Methanophagaceae Methanophaga sp. nov. 1 ASAG Gulf of Mexico methane cold seep, 5ºC This study PRCZ01000000 66.0 1 1.53 119
ANME-1 AG-394-G21 Methanophagales Methanophagaceae Methanophaga sp. nov. 1 ASAG Gulf of Mexico methane cold seep, 5ºC This study PRCY01000000 68.5 1 1.87 101
ANME-1 Meyerdierks Methanophagales Methanophagaceae Methanophaga sp. nov. 1 MAG North-Western Crimean sea microbial mat, ~200 m water depth Meyerdierks et al.  2010 FP565147 82.3 21 3.40 1
ANME-1 GoMg3.2 Methanophagales Methanophagaceae Methanophaga sp. nov. 1 Co-SAG Gulf of Mexico methane cold seep, 5ºC This study QBUN01000000 81.5 6 2.73 426
ANME-1 ERB7 Methanophagales Methanophagaceae Methanophaga sp. nov. 1 Fosmids Eel River Basin, California methane cold seep, 5ºC This study see Methods 90.7 247 5.87 175
ANME-1 CONS3730B06UFb1 Methanophagales Methanophagaceae Methanophaga sp. nov. 1 ASAG Hydrate Ridge, Oregon cold seep sediment incuabtion, 6ºC This study QENH01000000 90.1 2 3.18 201
ANME-1 Agg-C03 Methanophagales Methanophagaceae gen. nov. 1 sp. nov. 1 ASAG Hydrate Ridge, Oregon cold seep sediment incuabtion, 6ºC This study QBUP01000000 65.4 3 1.90 375
ANME-1 CONS3730F07p2b1 Methanophagales Methanophagaceae gen. nov. 1 sp. nov. 1 ASAG Hydrate Ridge, Oregon cold seep sediment incuabtion, 6ºC This study QENK01000000 74.6 3 2.75 380
ANME-1 CONS3730MDAH03UFb1 Methanophagales Methanophagaceae gen. nov. 1 sp. nov. 1 ASAG Hydrate Ridge, Oregon cold seep sediment incuabtion, 6ºC This study QENL01000000 79.1 15 3.42 505
ANME-1 CONS3730H04p2b1 Methanophagales Methanophagaceae gen. nov. 1 sp. nov. 1 ASAG Hydrate Ridge, Oregon cold seep sediment incuabtion, 6ºC This study QENJ01000000 64.4 1 2.57 369
ANME-1 GoMg2 Methanophagales Methanophagaceae gen. nov. 1 sp. nov. 2 Co-SAG Gulf of Mexico methane cold seep, 5ºC This study QBUM01000000 79.5 3 2.19 251
ANME-1 GoMg4 Methanophagales Methanophagaceae Methanoalium sp. nov. 1 Co-SAG Gulf of Mexico methane cold seep, 5ºC This study QBUO01000000 55.9 2 1.34 177
ANME-1 SA Methanophagales Methanophagaceae Methanoalium sp. nov. 2 MAG Welkom, South Africa Gold Mine Aquifer, 37ºC Lau et al 2014 mgm4536100.3 91.3 2 2.01 196
ANME-1 ERB6 Methanophagales Methanophagaceae gen. nov. 2 sp. nov. 1 Fosmids Eel River Basin, California methane cold seep, 5ºC This study see Methods 66.4 82 4.55 134
ANME-1 SCGC AAA252-L18 Methanophagales Methanophagaceae gen. nov. 2 sp. nov. 1 Co-SAG Gulf of Cadiz submarine mud volcano, 3860 m water depth This study DQIN00000000 71.4 6 2.57 700
ANME-1 GoMg1 Methanophagales Methanophagaceae gen. nov. 2 sp. nov. 1 Co-SAG Gulf of Mexico methane cold seep, 5ºC This study QBUL01000000 80.5 4 2.34 189
ANME-1 ex4572-4 Methanophagales Methanophagaceae gen. nov. 3 sp. nov. 1 MAG Guaymas basin orange microbial mat, 50-80ºC Dombrowski et al.  2017 NJEM01000000 70.9 2 1.02 95
ANME-1 GB37 Methanophagales Methanophagaceae gen. nov. 3 sp. nov. 1 MAG Guaymas basin enrichment culture, 37ºC Krukenberg et al.  2018 PQXB01000000 92.1 4 1.53 4
ANME-1 GB60 Methanophagales Methanophagaceae gen. nov. 4 sp. nov. 1 MAG Guaymas basin enrichment culture, 60ºC Krukenberg et al.  2018 PQXC00000000 88.9 2 1.62 36
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Table 1—figure supplement 1 Genome similarity between methanogen and ANME genomes 
reported here. Details of similarity calculations can be found in the Materials and Methods. 
  

Methanohalophilus mahii
Methanosalsum zhilinae

Methanosarcina acetivorans C2A
Methanosarcina mazei Go1

ANME sp. HMMV2
Methanolobus tindarius DSM 2278
Methanolobus psychrophilus R15

Methanosarcina barkeri str. Fusaro
ANME sp. HMMV

Methanomethylovorans hollandica DSM 15978
Methanohalobium evestigatum Z−7303
Methanococcoides burtonii DSM 6242

Ca. Syntrophoarchaeum caldarius
Methanosaeta thermophila PT

Methanosarcinales archaeon ex4572−44
Ca. Methanoperedens sp. BLZ1

Methanosaeta concilii GP6
Ca. Methanoperedens nitroreducens

Methanosaeta harundinacea 6Ac
Methanocella paludicola SANAE
Methanocella arvoryzae MRE50
Methanocella conradii HZ254

Ca. Syntrophoarchaeum butanivorans
Methanosarcinales archaeon ex4484−138

ANME sp. AMVER4−31
ANME sp. AMVER4−21

ANME sp. Agg−C10
ANME sp. ERB4

ANME sp. E20
ANME sp. COP2
ANME sp. COP1

ANME sp. CONS3730F09p3b1
ANME sp. CONS3730D10UFb2

ANME sp. CONS7142H05b1
ANME sp. Wang

ANME sp. CONS3730E01UFb2
ANME sp. HR1

ANME sp. CONS7142G09b1
ANME sp. HMMV−459B1

ANME sp. S7142MS1
ANME sp. HMMV−459A3
ANME sp. HMMV−459B4

ANME sp. ERB6
ANME sp. ERB7

ANME sp. SA
ANME sp. SCGC AAA252−L18

ANME sp. GoMg2
ANME sp. GoMg3.2
ANME sp. Agg−C03

ANME sp. GoMg4
ANME sp. CONS3730H04p2b1
ANME sp. CONS3730F07p2b1
ANME sp. CONS3730B06UFb1

ANME sp. CONS3730MDAH03UFb1
ANME sp. GoMg1

ANME sp. Meyerdierks
ANME−1 cluster archaeon ex4572−4

ANME sp. GB37
ANME sp. GB60

Methanococcus maripaludis S2
Methanocaldococcus jannaschii DSM 2661

Methanothermococcus okinawensis IH1
Methanocaldococcus fervens AG86
Methanococcus aeolicus Nankai−3

Methanococcus maripaludis C5
Methanotorris formicicus Mc−S−70

Methanomicrobium mobile BP
Methanolinea tarda NOBI−1

Methanocorpusculum bavaricum DSM 4179
Methanofollis liminatans GKZPZ

Methanoplanus limicola DSM 2279
Methanosphaerula palustris E1−9c
Methanospirillum hungatei JF−1
Methanoculleus marisnigri JR1

Methanolacinia petrolearia DSM 11571
Methanoregula boonei 6A8

Geoglobus ahangari
Ferroglobus placidus DSM 10642
Archaeoglobus fulgidus DSM 4304

Archaeoglobus profundus DSM 5631
Archaeoglobus sulfaticallidus PM70−1

Geoglobus acetivorans
Archaeoglobus veneficus SNP6

Methanobrevibacter smithii DSM 2374
Methanothermobacter marburgensis str. Marburg

Ca. Methanomassiliicoccus intestinalis Issoire−Mx1
Methanopyrus kandleri AV19
Methanobacterium veterum

Methanobrevibacter ruminantium M1
Methanobacterium paludis
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Figure 1 Phylogeny of ANME and related archaea Phylogenetic trees constructed from ANME 
genomes, sequences of closely related archaea, and a selection of sequences derived from clone libraries 
demonstrate the relationship between ANME and methanogens of the Halobacterota. (A) Phylogenetic 
tree built with 16S rRNA gene sequences, root leads to sequence from Sulfolobus solfataricus p2. (B) 
Phylogenomic tree built with concatenated marker set 4 (see Supplementary file 3 for list), root also to 
S. solfataricus p2. (C) Phylogenetic tree built with protein sequence of RpoB, root leads to sequences from 
“Ca. Methanomethyliales” and “Ca. Bathyarchaeota”. (D) Phylogenetic tree of McrA protein sequences. 
Note the divergence of proposed alkane oxidizing McrA genes in “Ca. Syntrophoarchaeum”, “Ca. 
Bathyarchaeota” and “Ca. Argoarchaeum”. Branch support values of 100% are labelled with closed 
circles, >50% with open circles. Tree scales represent substitutions per site. Tree construction 
parameters are found in the Materials and Methods section. For tree files and alignments see Figure 
1—source data 1. 
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Figure 1—figure supplement 1 Expanded 16S rRNA gene tree 
Tree expanding compressed clades in Figure 1A 
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Figure 1—figure supplement 2 Expanded concatenated marker protein tree 
Tree expanding compressed clades in Figure 1B 
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Figure 1—figure supplement 3 Expanded rpoB protein tree 
Tree expanding compressed clades in Figure 1C 
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Figure 1—figure supplement 4 Expanded mcrA protein tree 
Tree expanding compressed clades in Figure 1D 
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Figure 2 Summary of ANME energy metabolism Schematic representation of the three phases of 
ANME energy metabolism in our current model. In Phase 1 methane is oxidized to CO2 through the 
reversal of the canonical seven step methanogenesis pathway. Energy is invested in this phase in the 
form of sodium ion translocation from the outer face of the cytoplasmic membrane to the inner face 
(yellow arrow). As C1 moieties are sequentially oxidized, eight electrons are transferred to soluble 
electron carriers such as F420H2, NADPH, Fd2-, and CoM-SH/CoB-SH. In Phase 2 eight electrons on 
these primary electron carriers are transferred to secondary electron carriers in a process that conserves 
energy needed for cell growth in the form of sodium and proton motive forces (yellow arrows). In Phase 
3 the secondary electron carriers are relieved of their electrons in various ways depending on the 
environmentally available electron acceptors, which can include sulfate reducing bacteria in the case of 
marine ANME-SRB consortia, iron, manganese or oxidized nitrogen species in the case of “Ca. 
Methanoperedens”. Humic substances and artificial electron acceptors (AQDS) have also served as 
electron acceptors in laboratory experiments for a variety of different ANME groups from fresh and 
marine environments. 
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Figure 3 Presence of methanogenesis pathway genes in ANME archaea The proteins responsible 
for the seven steps of methanogenesis from CO2. Mcr: Methyl-coenzyme M reductase; Mtr: N5-methyl-
H4MPT:coenzyme M methyltransferase; Mer: methylene-H4MPT reductase; Mtd: F420-dependent 
methylene-H4MPT dehydrogenase; Mch: N5,N10-methenyl-H4MPT cyclohydrolase; Ftr: 
formylmethanofuran-H4MPT formyltransferase; Fmd/Fwd: formyl-methanofuran dehydrogenase. 
Colored boxes represent presence of homologs of these proteins in ANME genomes. Missing genes are 
represented by gray boxes with diagonal line fill. Numbers in the second column represent estimated 
genome completeness. When genes are together in a gene cluster their boxes are displayed fused 
together. If a gene cluster appears truncated by the end of a contig it is depicted by a serrated edge on 
the box representing the last gene on the contig. Numbers following protein names indicate whether the 
enzyme is closely related to those found in Methanosarcinaceae (1) or are distantly related homologs (2). 
Question mark represents hypothetical protein of unknown function found clustered with Mer2. Tree 
orienting genome order is the same as found Figure 1B. For details on paralog phylogenetic relations 
see Figure 4. Gene accession numbers can be found in Figure 3—source data 1. 
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Figure 4 Methanogenesis phylogeny Phylogenetic trees constructed from protein sequences of 
enzymes involved in the methanogenesis pathway in ANME and related archaea. Mcr phylogeny is 
presented in Figure 1. Numbers next to clades indicates whether the cluster is closely related to those 
found in Methanosarcinaceae (1) or are distantly related homologs (2), matching labels in Figure 3. A) 
MtrE: N5-methyl-H4MPT:coenzyme M methyltransferase subunit E; B) Mer: methylene-H4MPT 
reductase; C) Mtd: F420-dependent methylene-H4MPT dehydrogenase; D) Mch: N5,N10-methenyl-
H4MPT cyclohydrolase; E) Ftr: formylmethanofuran-H4MPT formyltransferase; F) FmdB/FwdB: 
formyl-methanofuran dehydrogenase subunit B, molybdenum/tungsten variety, respectively. Branch 
support values of 100% are labelled with closed circles, >50% with open circles. Tree scales represent 
substitutions per site. Tree construction parameters are found in the Materials and Methods section. 
Alignments and tree files can be found in Figure 4—source data 1 
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Supplementary file 2 Summary of transcriptome results Multiple transcriptome studies have been 
conducted in conjunction with some of the ANME genomes previously published and reanalyzed here. 
The transcription level of specific ANME features highlighted in the present work have been compiled 
from the supplementary data of these studies. 

ANME-2a sp. Wang ANME-2c sp. E20 ANME-1 sp. GB37 ANME-1 sp. GB60 ANME-2d sp. BLZ1
McrA 2409 10.1282 9.2004 11.3398 57436 x = not present in genome
McrB 4618 9.2748 9.1975 11.0564 31898 NM = not measured
McrC 4112 9.2353 1.6110 4.1348 45848 NR = not reported
McrD 3943 9.2396 x x NR
McrG 3112 9.6083 9.3888 11.4629 26015
MtrA1 1429 5.1720 4.6449 5.1880 1201
MtrB1 608 5.0568 5.0891 6.0365 1018
MtrC1 5359 4.7465 4.3046 5.5697 741
MtrD1 5080 5.0899 5.0314 5.7621 720
MtrE1 6057 4.8296 5.6337 6.1483 1268
MtrF1 2948 5.2516 4.3491 6.0343 2117
MtrG1 470 5.7992 4.9181 6.3578 1505
MtrH1 1720 5.6614 4.3311 7.0791 1915
MtrA2 230 0.7280 x x x
MtrB2 NM 1.0737 x x x
MtrC2 NM 0.7601 x x x
MtrD2 173 0.7152 x x x
MtrE2 5128 -0.3353 x x x
MtrF2 NM 2.0109 x x x
MtrG2 50 x x x
MtrH2 167 1.0137 x x x
Mer1 2652 7.7327 x x 1575
Mer2 393 -2.7409 x x x
MetF NR x 3.3903 6.0426 NR
MetV NR x 2.7532 5.0344 NR
Mtd 66 7.1454 3.3944 3.5399 1130
Mch1 x 5.2326 0.9195 2.6930 374
Mch2 4872 3.6289 x x 160
Ftr1 1581 5.3322 2.4222 3.7288 1333
Ftr2 NM x -1.9296 -0.0508 x
FwdA 6030 3.9056 2.4439 4.1120 404
FwdB 3030 3.7583 1.9024 4.4592 511
FwdC 7392 5.3057 2.8263 3.5015 691
FwdD 4536 4.0554 3.2972 3.9773 296
RnfA 622 3.4474 x x x
RnfB 427 3.7907 x x x
RnfC 1296 2.9705 x x x
RnfD 492 2.2104 x x x
RnfG 1012 2.2686 x x x
RnfE 650 2.6610 x x x
FpoA 2296 4.3301 1.6742 1.2893 304
FpoB NM 3.5198 3.0775 2.7928 664
FpoC NM 3.5301 x x 393
FpoD 2160 4.1695 x x 672
FpoH 1196 3.1499 2.2905 - 588
FpoI 2265 3.3646 3.1789 - 705
FpoJ1 NM 3.8686 0.7241 1.2708 645
FpoJ2 x 4.2977 x x 479
FpoK NM 4.8266 2.7599 3.0421 720
FpoL 2320 3.9066 1.6561 2.0428 752
FpoM 2484 3.7661 1.6597 2.2938 481
FpoN 3135 4.1567 1.9146 0.9632 618
FpoO NM x x x 730
FpoX x 5.2315 x x x
FpoY x 5.2654 x x x
FpoF 4368 5.3571 3.0435 3.9571 964
HdrD 2551 5.3612 x x 946
HdrE 1349 4.5716 x x 1369
HdrA1 1878 -0.7572 x x
HdrB1 1269 -1.0860 x x
HdrC1 1241 -0.4109 x x
HdrD1 287 -3.6243 x x
? NR 3.7303 x x
FdhA1 NM 3.4938 x x
FrhB3 1326 2.4211 x x 368
MvhD1 NR 2.7959 x x
HdrA2 NR 3.5522 x x
MvhD2 NM 4.1741 x x
HdrA3 1878 3.7475 x x
HdrB2 1269 2.9469 x x
HdrC2 760 3.2553 x x
HdrD2 NR 2.8987 x x
HdrA4 x x 2.9911 x
HdrB4 x x 3.3477 x
HdrC4 x x 2.8278 x
FrhB4 x x 3.1032 x
MvhD4 x x 4.1699 x
HdrA5 (11) x x 2.2274 4.7878
HdrA4 (7) x x 2.6829 5.0229
HdrB3 x x 4.0340 5.5270
HdrC3 x x 3.9055 5.7005
AmcA/VhtC 1539 5.3246 x x x
AmcB (cyt c) NR 6.9548 x x x
Acd 685

FrhB6 x x x 2.0495
PorB (FrhB6) x x x 1.5793
PorA (FrhB6) x x 0.6903 2.0865
PorD (FrhB6) x x 0.1959 2.9897
PorG (FrhB6) x x 0.5254 2.5898
FrhB7 x x 0.4533 4.2476
CODHe (FrhB7) x x 1.7939 x
CODHa (FrhB7) x x 1.2966 2.2940
FrhB8 NR -1.6629 0.4619 1.8517
FrhB8 NR 0.6158 1.4006 2.4513
FrhB8 NR -0.2244 1.9178 2.8206
FrhB9 (Fsr) NR 3.8021 1.6414 x
FrhB10 x x x -0.5359
FrhB10 x x x 0.8471

PLTS01 NR 1.4107 x x NR
PLTS02 NR 1.1459 x x NR
PLTS03 NR 0.9866 x x NR
PLTS04 NR 2.4941 x x NR
PLTS05 NR 3.0464 x x NR
PLTS06 NR 3.2592 x x NR
PLTS07 NR 2.5886 x x NR
PLTS08 NR 1.0300 x x NR
PLTS09 NR 0.6744 x x NR
PLTS10 NR 0.1041 x x NR
PLTS11 NR 0.3114 x x NR
PLTS12 NR 0.7103 x x NR
PLTS13 NR 1.6680 x x NR
PLTS14 NR 1.5961 x x NR
PLTS15 NR 1.3398 x x NR
PLTS16 NR 0.9900 x x NR
PLTS17 NR 0.6125 x x NR
PLTS18 NR 1.7670 x x NR

Highest MHC (from Fig 9-sup 4) x 5.9957 7.0882 6.6859 9148
Highest MHC overall x 7.2325 7.0882 6.7590 9148
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Figure 5 MetF in ANME Archaea (A) Amino acid sequence identity of MetF homologs found in 
ANME, “Ca. Argoarchaeum” and “Ca. Syntrophoarchaeum”. ANME-1 and “Ca. Syntrophoarchaeum” 
form one cluster based on sequence similarity, while ANME-2a, 2b, 2d, 3 and “Ca. Argoarchaeum” 
form a second. Grayscale values represent percent identity. Sequences similar to the ANME-2/3 or 
ANME-1 clusters were retrieved via BLAST search of the NCBI nr database and used to construct 
phylogenetic trees of these two groups. (B) ANME-2, 3 and “Ca. Argoarchaeum” cluster together with 
closely related members of the Methanosarcinaceae. (C) ANME-1 and “Ca. Syntrophoarchaeum” form a 
polyphyletic group within a diverse group of sequences derived from MAGs of uncultured archaea. 
Notably the ANME-1 sp. SA is significantly different than the rest of the ANME-1. Roots for both 
trees lead to closely related MetF sequences from bacteria. Branch support values of 100% are labelled 
with closed circles, >50% with open circles. Tree scales represent substitutions per site. Tree 
construction parameters are found in the Materials and Methods section. Alignments and tree files can 
be found in Figure 5—source data 1. 
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Figure 6 Cytoplasmic electron carrier oxidation Some energy conservation systems discovered in 
methanogenic archaea are conserved in ANME archaea (colored fill) while others appear absent 
(transparent gray with diagonal line fill). (A) F420H2 oxidation is coupled to proton translocation in 
methylotrophic methanogens via the Fpo/Fqo complex or by the production of H2 by Frh and 
subsequent oxidation by Vht. In either case, electrons are ultimately deposited on MpH2. Neither Frh 
or Vht complexes have been observed in any ANME genomes analyzed here. (B) Fd2- oxidation can be 
coupled either to sodium motive force or proton motive force in methylotrophic methanogens. The Rnf 
complex catalyzes Fd2-:Mp oxidoreductase reaction coupled to sodium translocation and is found in a 
number of methanogens and ANME. The ANME-2c contain most of the complex, but lack the 
cytochrome c, cytochrome b and MA0665 subunits, so their activity is difficult to predict. Ech and Vht 
can combine to produce net proton translocation via H2 diffusion in methylotrophic methanogens, but 
neither complex is found in ANME. FpoF can catalyze a Fd2-:F420 oxidoreductase reaction and F420H2 
could then pass through the Fpo/Fqo complex. Various HdrABC complexes are present in all ANME 
genomes, and could in principle oxidize Fd2- ad CoM-SH/CoB-SH through a reversal of electron 
bifurcation reaction. The electron acceptor in this process is likely to not be H2 in most ANME groups 
due to the absence of MvhG and MvhA. (C) Besides the HdrABC complexes mentioned above and 
second possible CoM-SH/CoB-SH oxidation strategy would be a reversal of the HdrDE reaction found 
in methylotrophic methanogens. In ANME the reaction would have to proceed in the direction 
illustrated, and therefore would dissipate proton motive force by consuming a proton on the positive 
side of the membrane. For presence/absence of these systems in ANME genomes analyzed here see 
Figure 6—figure supplement 1. 
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Figure 6—figure supplement 1 Presence of Fd2- and F420H2 oxidation systems 
The presence of each subunit of the oxidation complexes outlined in Figure 6 is represented by colored 
boxes. ANME-2c and “Ca. Syntrophoarchaeum” lack the FpoO subunit found in other ANME and 
methanogens, and instead are followed by two highly expressed and conserved proteins denoted FpoX 
and Y. ApbE is a flavin transferase involved in Rnf biosynthesis. Missing genes are represented by 
transparent gray boxes with diagonal line fill. Numbers in the second column represent genome 
completeness. When genes are together in a gene cluster their boxes are displayed fused together. Gene 
accession numbers can be found in Figure 6—source data 1. 
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Figure 6—figure supplement 2 FpoH phylogenetic tree Phylogeny of the H subunit of Fpo/Fqo 
complexes found in ANME and related organisms demonstrates the large evolutionary distance between 
these complexes. See methods for details of tree construction. Sequences labeled with five and six-sided 
stars represent the biochemically characterized Fpo and Fqo complexes, respectively. ANME groups are 
highlighted. Closed circles represent branch support values of 80 to 100%, gray circles between 70 and 
80%. Tree scales represent substitutions per site. Tree construction parameters are found in the methods 
section. Alignment and tree file can be found in Figure 6—source data 1. 
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Figure 7 HdrABC structure overview Depiction of the primary structure of HdrA and the quarternary 
structure of the HdrABC-MvhADG complex based on the structure from M. wolfeii. (A) HdrA can be 
broken down into four domains, the positions of these domains and key iron-sulfur cluster binding 
cysteines are illustrated, scale denotes amino acid position in the M. wolfeii sequence. (B) Quarternary 
structure of the entire HdrABC-MvhABG complex illustrating the dimeric structure. (C) Detail of HdrA 
domain structure highlighting cofactor position and proposed electron flow from MvhD in through the 
C-terminal ferredoxin, bifurcation through the FAD cofactor, with two electrons flowing out through 
HdrBC via the Thioredoxin reductase domain’s FeS cluster, while two other electrons flow out through 
the inserted ferredoxin domain, presumably to free ferredoxin (Fd2-). Importantly for the proposed 
heterodimeric HdrA discussed here, this latter electron flow passes through the FeS cluster bound 
through a combination of Cys residues in the N-terminal domain, combined with a single Cys from the 
other HdrA subunit (Cys197 highlighted in red). 
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Figure 8 Hdr Operons and Domain heterogeneity (A) Examples of gene clusters containing HdrA 
genes from select ANME genomes. HdrA paralogs present in ANME have extensive modification to 
the domain structure as compared to the HdrA crystalized from M. wolfeii (see Figure 7 for details of 
HdrA structure). These domains and associated protein subunits are illustrated with the gene context 
and orientation. (B) Illustration of conserved domains and cofactor binding residues in the 13 HdrA 
clusters defined here. All HdrA appeared to retain residues responsible for interaction with FAD, 
however the presence of FeS-binding cysteine residues, and entire domains as defined on the M. wolfeii 
structure are variably retained. Importantly, tandem or fused HdrA appear to have complementary 
presence/absence of C-terminal ferredoxin domains and Cys197 suggesting the formation of a 
heterodimeric complex. 
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Figure 8—figure supplement 1 Alignment of HdrA sequences Protein alignments of representative 
ANME HdrA sequences were made and overlaid with the domains as colored in Figure 7 and 8 based 
on the domains identified in the M. wolfeii structure. Cysteine residues are highlighted as red lines. Large 
insertion in the middle corresponds to the NfnB-like domain that interrupts the inserted ferredoxin 
domain in some ANME-1 HdrA. “HdrA1 (MA3128)” and “HdrA2 (MA2868)” from M. acetivorans 
(numbering from Buan and Metcalf, 2010) are included as references. Branch support values >50% are 
reported. Tree scales represent substitutions per site. Tree construction parameters are found in the 
methods section. Alignment and tree files can be found in Figure 8—source data 1. 
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Figure 8—figure supplement 2 Hdr counts per genome Most ANME and methanogen genomes 
contain 1-2 copies of hdrABC genes, however ANME-1 have a much greater abundance of hdrA 
homologs that are not accompanied by an increase in the number of hdrB or C homologs.  
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Figure 8—figure supplement 3 Hdr Presence/Absence Colored boxes represent presence of Hdr 
and associated genes in ANME genomes. HdrA1 in ANME is the same group as HdrA1 (MA3128) 
from M. acetivorans. Interestinly, only in ANME-3 is HdrA1 paired with HdrB1C1 (numbering from 
Buan and Metcalf, 2010). In other ANME HdrA1 is paired with HdrB2C2. HdrA2 from M. acetivorans 
(here called HdrA14), is found in ANME-2 and 3 and largely lacks clear gene clustering, although its 
associated polyferredoxin is found elsewhere in most genomes. Question marks represent genes with 
no known annotation but that are conserved in Hdr gene clusters. Missing genes are represented by gray 
boxes with diagonal line fill. Numbers in the second column represent genome completeness. When 
genes are together in a gene cluster their boxes are displayed fused together. Numbers were assigned to 
distinct clusters of paralogs, matching those labels found in Figure 8. Gene accession numbers can be 
found in Figure 8—source data 1. 
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Figure 9 EET overview Comparison between EET systems known from gram negative bacteria and 
proposed analogous systems in ANME archaea. A) EET systems in gram negative bacteria involve 
membrane-bound quinol:cytochrome c oxidoreductases (CbcL, ImcH, CymA, NetD), small soluble 
cytochromes apparently involved in electron transport through the periplasmic space (PpcA, Stc, PdsA), 
and a beta-barrel/decaheme cytochrome c protein complex (MtrCAB) that acts as an electron conduit 
by which electrons can transit through the outer membrane to the extracellular space filled with 
additional cytochrome c such as OmcZ and filaments of OmcS. B) Analogous protein complexes found 
in ANME genomes that appear optimized for the challenges associated with EET in the archaeal cell 
architecture. MpH2:cytochrome c oxidoreductases are likely present in the form of gene clusters 
containing VhtC cytochrome b subunits together with large 7 or 11 heme-binding MHC proteins (Mco). 
Other potential options for this step could include the NapH homologs sporadically distributed through 
ANME genomes, or through the action of the unique cytochrome b gene found in ANME Rnf clusters. 
Electron transfer through the outer proteinaceous S-layer requires a different mechanism than the beta-
barrel/decaheme cytochrome strategy evolved in the EET-capable bacteria containing an outer 
membrane. This step is expected to be overcome by the giant ANME-specific MHC proteins containing 
S-layer domains allowing them to integrate into the S-layer structure. Very close homologs of OmcZ are 
found in ANME (see Figure 10). For details of S-layer MHC fusions, see Figure 11. 
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Figure 9—figure supplement 1 EET presence/absence Colored boxes represent presence of 
various key hypothetical EET genes in ANME genomes. Peptidase and 8x TMH denote a signal 
peptidase involved in cytochrome maturation and a hypothetical membrane protein with 8 predicted 
transmembrane helices that are found only in ANME and EET-capable Ferroglobus and Geoglobus sp. 
Missing genes are represented by gray boxes with diagonal line fill. Numbers in the second column 
represent genome completeness. When genes are together in a gene cluster their boxes are displayed 
fused together. Gene accession numbers can be found in Figure 9—source data 1. 
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Figure 9—figure supplement 2 Mco phylogeny VhtC and McoA homologs from a selection of 
methanogens and the ANME genomes reported here were used to build a phylogenetic tree. ANME 
VhtC homologs clustered with multiheme cytochrome genes in ANME-2a and 2b, whereas in 
methanogens they always clustered with the VhtAG gene encoding the hydrogenase enzyme used by 
these organisms. Branch support values >50% are reported. Tree scales represent substitutions per site. 
Tree construction parameters are found in the methods section. Alignment and tree files can be found 
in Figure 9—source data 1. 
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Figure 9—figure supplement 3 Cytochrome c orthologs Multiheme cytochromes present in 
ANME, methanogens and Archeoglobales genomes. The central panel depicts the presence of 
cytochromes between genomes, where cytochromes between genomes have been grouped based on 
reciprocal best-hit blast results. The cytochromes in the central panel are ordered based on the median 
number of heme binding sites (CxxCH motifs) present in each group (upper bar plot). The clade 
distribution of each cytochrome is shown in the lower bar plot, while the right bar plot depicts the 
number of cytochromes present in each organism. Genomes that did not contain any multiheme 
cytochromes, which were most methanogens, are not shown. 
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Figure 9—figure supplement 4 Broadly distributed cytochrome c homologs in ANME Unrooted 
phylogenetic reconstruction of the most broadly distributed group of MHC proteins found in the 
ANME archaea. Homologs to this group were only found in ANME, “Ca. Argoarchaeum”, “Ca. 
Syntrophoarchaeum” and members of the Archaeoglobales known for their EET capabilities. Stars 
represents the sequence corresponding to the exceptionally highly expressed cytochromes highlighted 
in Table 2. Branch support values >90% are depicted as filled circles. Tree scales represent substitutions 
per site. Tree construction parameters are found in the Materials and Methods section. Alignment and 
tree files can be found in Figure 9—source data 1. 
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Figure 10 OmcZ homologs Protein sequence alignment of OmcZ homologs from various Geobacter 
species and ANME genomes reported here using muscle 3.8.31 with default settings. The eight CxxCH 
binding motifs are highlighted in gray. Regions of significant sequence identity are present throughout 
the protein, not just associated with the CxxCH motifs suggesting conserved function. Alignment file 
can be found in Figure 10—source data 1. 
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Figure 11 ANME MHC Schematic of protein structure highlighting the position of heme-binding 
motifs and other conserved features of the large ANME-specific multiheme cytochromes. The ANME 
MHC were divided into three major groups based on sequence similarity and conserved domains 
structure. ANME MHC-A contains an S-layer domain and C-terminal transmembrane helix. In ANME-
2a and 2b these proteins are extended by an additional transmembrane helix and more heme-binding 
motifs. ANME MHC-B contains an S-layer domain and C-terminal transmembrane helix as well, but an 
N-terminal region devoid of heme-binding domains has similarity to peptidase M6-like domains. ANME 
MHC-C do not contain S-layers or C-terminal transmembrane helices, but instead contain a large N-
terminal region with a predicted pectin lyase-type domain. Domains predicted with InterProScan and 
are displayed with colored boxes. Large MHC proteins from ANME-3 sp. HMMV2 and ANME-2c sp. 
ERB4 that do not clearly fit into these categories are also shown (Note: ANME-2c sp. ERB4 is a single 
peptide split between two lines due to its size). 
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Figure 12 Cytochrome maturation and CcmF duplication (A) Phylogenetic analysis of CcmF 
homologs from ANME and closely related archaea. CcmF1 cluster contains the CcmF found in the 
Methanosarcinaceae. CcmF2 is a closely related group of homologs found only in ANME and “Ca. 
Argoarchaeum”, and in all cases is found next to the S-layer containing ANME MHC-B. CcmF3 
comprises the larger of two encoded genes that appear to be a split CcmF, and are found in ANME and 
Ferroglobus. (B) Example gene clusters from all groups that contain CcmF2 illustrating their position with 
respect to ANME MHC-B. Some genomes additionally contain a signal peptidase and a predicted 
membrane integral ANME-specific gene in this cluster (8x TMH). Horizontal red lines denote CxxCH 
heme binding domains, teal represent S-layer domain (see Figure 11 for details of ANME-MHC 
structure). (C) Schematic of cytochrome maturation pathway. CcmA and B comprise ABC transporter 
module that exports heme B, which is transferred to CcmE via CcmC’s tryptophan (W)-rich periplasmic 
loop. CcmE is expected to utilize CcmF1 to mature cytochrome c proteins found in both ANME and 
methanogens of the Methanosarcinaceae. CcmF2 found only next to ANME MHC-B is expected to be 
involved in its maturation. The co-occurring signal peptidase is likely involved in cleavage of the N-
terminal signal sequence. Closed circles represent branch support values between 80 and 100%. Tree 
scales represent substitutions per site. Tree construction parameters are found in the Materials and 
Methods section. Alignment and tree files can be found in Figure 12—source data 1. 
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Figure 13 H4MPT vs H4F C1 metabolisms (A) Pathway of C1 transformations in ANME-2a, 2b, 2d 
and 3 based on presence of genes and precedent from M. barkerii. H4MPT is the catabolic C1 carrier, 
while the H4F C1 pool is derived from serine and is used for the biosynthesis of purine, thymidine and 
possibly methionine. (B) Pathway of C1 transformations available to ANME-1 and 2c which lack the 
vast majority of the H4F interacting enzymes in (A). H4F-CHO-specific enzymes in pyrimidine synthesis 
are replaced by free formate versions in ANME-2c. While present in these organisms, GlyA appears to 
be the type that interacts with H4MPT instead of H4F. (C) Colored boxes represent presence of various 
H4F-interacting genes in ANME genomes. Missing genes are represented by gray boxes with diagonal 
line fill. Numbers in the second column represent genome completeness. When genes are together in a 
gene cluster their boxes are displayed fused together. (D) Phylogenetic analysis of GlyA and ThyA 
homologs found in ANME genomes. Red and yellow stars indicate GlyA sequences shown to react with 
H4MPT and H4F, respectively. Closed circles represent branch support values of 100%, open circles 
>50%. Tree scales represent substitutions per site. Tree construction parameters are found in the 
Materials and Methods section. Alignment and tree files can be found in Figure 13—source data 1. 
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Figure 13—figure supplement 1 Amino acid pathways Amino acid pathways present in ANME 
genomes, methanogens and sulfate reducing bacteria. Each enzymatic reaction is labelled with an 
enzyme commission (EC) number, or in one case where an EC number is not available, a Pfam accession 
number and a matrix of small colored boxes. Each colored box represents a single genome, if the box 
is colored it means that that genome contains an annotation for that enzyme, otherwise it is left blank. 
Genomes are colored based on their clade. 
  

Pyruvate

enolaldehyde methylglyoxal

6-deoxy-5-ketofructose 1-phosphate
2-amino-3,7-dideoxy-D-
threo-hept-6-ulosonate 3-dehydroquinate 3-dehydroshikimate shikimate shikimate 3-phosphate 5-enolpyruvoyl-shikimate 3-phosphate chorismate prephenate 4-hydroxyphenylpyruvate L-tyrosine

anthranilateL-glutamine N-(5-phosphoribosyl)-
anthranilate

1-(o-carboxyphenylamino)-
1’-deoxyribulose 5’-phosphate

(1S,2R)-1-C-(indol-3-yl)
glycerol 3-phosphate

indole
L-serine

L-tryptophan
keto-phenylpyruvate L-phenylalanine

4.2.3.-
2.2.1.11

2.2.1.10 1.4.1.24 4.2.1.10 1.1.1.25 2.7.1.71 2.5.1.19 4.2.3.5 5.4.99.5

4.1.3.27

4.2.1.51
2.6.1.5; 2.6.1.57

1.3.1.12
2.6.1.5; 2.6.1.57

2.4.2.18 5.3.1.24 4.1.1.48

4.2.1.20

4.2.1.20

2.2.1.6 (S)-2-acetolactate (2R)-2,3-dihydroxy-3-methylbutanoate1.1.1.86 3-methyl-2-oxobutanoate4.2.1.9 L-valine2.6.1.42

4.2.1.33(2S)-2-isopropylmalate 2-isopropylmalate (2R,2S)-3-isopropylmalate (2S)-2-isopropyl-3-oxosuccinate 4-methyl-2-oxopentanoate L-leucine

2.3.3.13

4.2.1.33 1.1.1.85 1.1.1.85
2.6.1.6; 
2.6.1.42

2.3.1.182

(R)-citramalate
4.2.1.35 citraconate 1.1.1.-(2R,3S)-3-methylmalate 2-oxobutanoate (S)-2-aceto-2-hydroxybutanoate

2.2.1.6
(R)-2,3-dihydroxy-3-methylpentanoate1.1.1.86 (S)-3-methyl-2-oxopentanoate

4.2.1.9 L-isoleucine2.6.1.42

2.6.1.1

L-aspartate

L-aspartyl-4-phosphate

2.7.2.4

L-aspartate-semialdehyde 1.2.1.111.1.1.3
L-homoserine

O-phospho-L-homoserine

2.7.1.39

4.2.3.1

L-threonine

Phosphoenolpyruvate

D-glyceraldehyde 3-phosphate

B-D-fructose 1,6-biphosphate

4.1.2.13

3-phospho-D-glyceroyl-phosphate

1.2.1.12

3-phospho-D-glycerate

2.7.2.3

2-phospho-D-glycerate

5.4.2.12

4.2.1.11

2.7.9.2;
2.7.9.1;
2.7.1.40

2.7.1.113.1.3.11

B-D-fructofuranose 6-phosphate

5.3.1.9

D-glucopyranose 6-phosphate

1.2.1.59

4.3.3.7

(2S,4S)-4-hydroxy-2,3,4,5-
therahydrodipicolinate

(S)-2,3,4,5-tetrahydrodipicolinate

1.17.1.8

2.6.1.83

L,L-diaminopimelate

5.1.1.7

meso-diaminopimelate

4.1.1.20

L-lysine

5-phosph-a-D-ribose-
1-diphosphate

L-histidine1-(5-phospho-B-D-ribosyl)-ATP 1-(5-phospho-B-D-ribosyl)-AMP

1-(5-phospho-B-D-ribosyl)-5-
[(5-phosphoribosylamino) 
methylideneamino]imidazole-
4-carboxamide

phosphoribulosylformimino-
AICAR-phosphate

D-erythro-imidazole-
glycerol-phosphate imidazole acetol-phosphate L-histidinol-phosphate histidinol histidinal

2.4.2.17 3.6.1.31 3.5.4.19 5.3.1.16 4.3.2.- 4.2.1.19 2.6.1.9 3.1.3.15 1.1.1.23 1.1.1.23

1.1.1.95 3-phosphooxypyruvate
2.6.1.52 3-phospho-L-serine3.1.3.3 L-serine

6.1.1.27

O-phospho-L-seryl-[tRNAcys]
2.5.1.73 L-cysteinyl-[tRNAcys]

3.1.1.29 L-cysteine

1.1.1.49 6-phospho D-glucono-1,5-lactone
3.1.1.31

D-gulconate 6-phosphate
1.1.1.44 D-ribulose 5-phosphate

5.3.1.6
D-ribose 5-phosphate

2.7.6.1

2.1.2.1 glycine

Oxaloacetate

Citrate

Isocitrate

2-oxoglutarate

Succinyl-CoA

Succinate

Fumarate

Malate

4.2.1.34.2.1.2

1.1.1.421.3.4.1

6.2.1.5

2.3.3.1;
2.3.3.161.1.1.37

4.1.1.31;
4.1.1.32;
4.1.1.49

1.2.7.3

Acetyl-CoA

6.4.1.1

2.3.3.8

1.1.1.38

2.3.1.31

O-acetyl-L-homoserine

2.5.1.49

L-homocysteine

2.1.1.13 2.1.1.14

L-methionine

1.2.7.1

L-aspartyl-[tRNAasn]

L-asparaginyl-[tRNAasn]

6.3.5.6

6.1.1.-

3.1.1.29

L-asparagine

1.4.1.3 L-glutamate

6.3.1.2

L-glutamine

2.3.1.1
N-acetylglutamyl-phosphate

2.7.2.8 1.2.1.38 N-acetyl-L-glutamate 5-semialdehyde2.6.1.11
N-acetyl-L-ornithine

2.3.1.35
L-ornithine

2.1.3.3
L-citrulline

6.3.4.5
L-arginino-succinate 4.3.2.1 L-arginine

2.7.2.11

y-L-glutamyl 5-phosphate

1.2.1.41

L-glutamate-5-semialdehyde

1.5.1.2

(S)-1-pyrroline-5-carboxylate

L-proline

2.8.1.7
L-alanine

L-histidine

1 10

10

1
Each enzyme contains a grid of 100 boxes.
Each box represents a single genome and 
is either colored based on the taxonomy 
of the organism, or is left blank if no gene
is annotated for that reaction in that genome.

The order of the rows and columns is left-to-right
top-to-bottom. If less than 100 genomes are
used, then a number of boxes will always be blank
towards the end. To the right is the color pattern
if all genomes contained a particular reaction.

D-arabino-Hex-3-
ulose-6-phosphate

4.1.2.435.3.1.27

PF01837

6.1.1.11

L-seryl-[tRNAsec] 2.7.1.164
O-phospho-L-seryl-[tRNAsec] 2.9.1.2

selenophosphate 2.7.9.3 selenide

L-selenocysteinyl-[tRNAsec]

N-acetyl-L-glutamate

4.3.1.12L-ornithine

row column organism
1 1 ANME sp. GB37
1 2 ANME sp. GB60
1 3 ANME sp. GoMg1
1 4 ANME sp. GoMg2
1 5 ANME sp. GoMg3.2
1 6 ANME sp. GoMg4
1 7 ANME sp. SA
1 8 ANME-1 cluster archaeon ex4572-4
1 9 ANME sp. Agg-C03
1 10 ANME sp. CONS3730F07p2b1
2 1 ANME sp. CONS3730H04p2b1
2 2 ANME sp. CONS3730MDAH03UFb1
2 3 ANME sp. ERB6
2 4 ANME sp. SCGC AAA252-L18
2 5 ANME sp. CONS3730B06UFb1
2 6 ANME sp. ERB7
2 7 ANME sp. Meyerdierks
2 8 ANME-1 cluster archaeon AG-394-G06
2 9 ANME-1 cluster archaeon AG-394-G21
2 10 Candidatus Syntrophoarchaeum butanivorans
3 1 Candidatus Syntrophoarchaeum caldarius
3 2 Methanobacterium arcticum
3 3 Methanobrevibacter millerae
3 4 Methanosphaera stadtmanae DSM 3091
3 5 Methanothermobacter marburgensis str. Marburg
3 6 Methanothermus fervidus DSM 2088
3 7 Methanocaldococcus jannaschii DSM 2661
3 8 Methanotorris formicicus Mc-S-70
3 9 Methanococcus maripaludis C5
3 10 Methanothermococcus okinawensis IH1
4 1 Methanocella arvoryzae MRE50
4 2 Methanocorpusculum bavaricum DSM 4179
4 3 Methanoculleus marisnigri JR1
4 4 Methanofollis liminatans DSM 4140
4 5 Methanolacinia petrolearia DSM 11571
4 6 Methanomicrobium mobile BP
4 7 Methanoplanus limicola DSM 2279
4 8 Methanolinea tarda NOBI-1
4 9 Methanoregula boonei 6A8
4 10 Methanosphaerula palustris E1-9c
5 1 Methanospirillum hungatei JF-1
5 2 ANME sp. CONS7142G09b1
5 3 ANME sp. CONS7142H05b1
5 4 ANME sp. HMMV-459A3
5 5 ANME sp. HMMV-459B4
5 6 ANME sp. S7142MS1
5 7 ANME sp. Wang
5 8 ANME sp. Agg-A10
5 9 ANME sp. CONS3730D10UFb2
5 10 ANME sp. CONS3730E01UFb2

row column organism
6 1 ANME sp. CONS3730F09p3b1
6 2 ANME sp. HR1
6 3 ANME sp. AMVER4-21
6 4 ANME sp. AMVER4-31
6 5 ANME sp. Agg-C10
6 6 ANME sp. COP1
6 7 ANME sp. COP2
6 8 ANME sp. E20
6 9 ANME sp. ERB4
6 10 ANME sp. HMMV-459B1
7 1 Candidatus Methanoperedens nitroreducens
7 2 Candidatus Methanoperedens sp. BLZ1
7 3 Methanosarcinales archaeon ex4484-138
7 4 Methanosarcinales archaeon ex4572-44
7 5 Methanosaeta concilii GP6
7 6 Methanosaeta harundinacea 6Ac
7 7 Methanosaeta sp. S5133MB62
7 8 Methanosaeta thermophila PT
7 9 ANME sp. HMMV
7 10 ANME sp. HMMV2
8 1 Methanococcoides burtonii DSM 6242
8 2 Methanohalobium evestigatum Z-7303
8 3 Methanohalophilus mahii DSM 5219
8 4 Methanolobus psychrophilus R15
8 5 Methanomethylovorans hollandica DSM 15978
8 6 Methanosalsum zhilinae DSM 4017
8 7 Methanosarcina acetivorans C2A
8 8 Methermicoccus shengliensis DSM 18856
8 9 Candidatus Methanomethylophilus alvus Mx1201
8 10 Candidatus Methanomassiliicoccus intestinalis Issoire-Mx1
9 1 Methanomassiliicoccus luminyensis B10
9 2 Desulfatibacillum alkenivorans AK-01
9 3 Desulfatiglans anilini DSM 4660
9 4 Desulfatirhabdium butyrativorans DSM 18734
9 5 Desulfobacter curvatus DSM 3379
9 6 Desulfobacterium autotrophicum HRM2
9 7 Desulfobacula toluolica Tol2
9 8 Desulfococcus multivorans DSM 2059
9 9 Desulfonema limicola str. Jadebusen
9 10 Desulforegula conservatrix Mb1Pa
10 1 Desulfosarcina sp. BuS5
10 2 Desulfospira joergensenii DSM 10085
10 3 Desulfotignum phosphitoxidans DSM 13687
10 4 Desulfobacterales sp. C00003060
10 5 Desulfobacterales sp. C00003104
10 6 Desulfobacterales sp. C00003106
10 7 Desulfobacterales sp. CONS3730E10p2b1
10 8 Desulfobacterales sp. CONS7142G09b2
10 9 Desulfobacterales sp. PC51MH44
10 10 Desulfobacterales sp. S7086CLCb20



 

 

159 

 
Figure 14 TCA cycle (A) Schematic of the enzymes and reactants in the partial oxidative and reductive 
TCA cycles in ANME that lead to 2-oxoglutarate for the purpose of producing anabolic intermediates 
for biosynthesis. Reductive pathway shown in blue, oxidative pathway shown in red.  (B) Colored boxes 
represent presence of various TCA cycle genes in ANME genomes. Missing genes are represented by 
gray boxes with diagonal line fill. Numbers in the second column represent genome completeness. When 
genes are together in a gene cluster their boxes are displayed fused together. Note: some steps can be 
carried out by multiple different enzyme systems. Gene accession numbers can be found in Figure 14—
source data 1. 
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Figure 15 Methane seep group nitrogenase phylogeny and distribution (A) Maximum likelihood 
phylogenetic tree of NifD amino acid sequences from the “methane seep” group of nitrogenase, with 
close relatives. Closed circles represent branch support values of 80 to 100%, gray circles between 70 
and 80%. Tree scales represent substitutions per site. Tree construction parameters are found in the 
Materials and Methods section. Alignments and tree files can be found in Figure 15—source data 1. 
(B) Presence of seep group nitrogenase in genomes presented here. Colored boxes represent presence 
of various nitrogenase related genes in ANME genomes. Missing genes are represented by gray boxes 
with diagonal line fill. Numbers in the second column represent genome completeness. When genes are 
together in a gene cluster their boxes are displayed fused together. Gene accession numbers can be found 
in Figure 15—source data 1. 
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Figure 16 Diversity of FrhB family proteins Phylogeny and distribution of the FrhB paralogs 
recovered in our ANME genomes. (A) Phylogenetic tree built from all FrhB paralogs in ANME and 
methanogenic archaea. Major groups have been collapsed (for full tree see Figure 16—figure 
supplement 1). Label in parenthesis describe conserved gene cluster; FdhB: F420-dependent formate 
dehydrogenase, FrhB: F420-dependent hydrogenase, FqoF: F420:quinone oxidoreductase, Fpo: 
F420:phenazine oxidoreductase, HdrA: in cluster with HdrA genes, NuoF-Trx: in cluster with NuoF and 
thioredoxin genes, Fsr: F420-dependent sulfite reductase, FGltS: F420-dependent glutamate synthase, Pfor: 
in cluster with pyruvate ferredoxin oxidoreductase genes, CODH: in cluster with carbon monoxide 
dehydrogenase alpha and epsilon subunits. Only branch support values >50% are displayed. Tree scales 
represent substitutions per site. Tree construction parameters are found in the Materials and Methods 
section. Alignment and tree files can be found in Figure 16—source data 1. (B) Presence of various 
FrhB paralogs in different ANME genomes. Colored boxes represent presence of various nitrogenase 
related genes in ANME genomes. Missing genes are represented by gray boxes with diagonal line fill. 
Numbers in the second column represent genome completeness. When genes are together in a gene 
cluster their boxes are displayed fused together. Gene accession numbers can be found in Figure 16—
source data 1. 
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Figure 16—figure supplement 1 Expanded FdhB protein tree FrhB paralogs are labelled as in 
Figure 16. Only branch support values >90% are shown for clarity. Tree scales represent substitutions 
per site. Tree construction parameters are found in the Materials and Methods section. Alignment and 
tree files can be found in Figure 16—source data 1. 
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Figure 17 Phage-like protein translocation structures (A) PLTS gene clusters in ANME genomes. 
(B) Alignment of PAAR domain spike proteins. PAAR motifs highlighted in blue. Alignments were 
made using muscle 3.8.31 with default settings, and alignment file can be found in Figure 17—source 
data 1 (C) amino acid identity of PAAR domain proteins highlighting two clear groupings. Note: closely 
related ANME-2a and 2b genomes contain PLTS structures belonging to different clusters.  (D) 
Schematic of PLTS function. 
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Figure 18 Comparison between “Ca. Methanoalium” and other ANME-1 genera Phylogenomic 
tree based on concatenated marker proteins highlighting individual ANME-1 genera, two of which have 
been assigned “Candidatus” names. Estimated genome completeness and contamination are shown in 
the first and second columns. Comparison of the presence of hydrogenase, membrane-associated 
formate dehydrogenases, Rnf complexes and cytochrome maturation machinery highlights important 
differences in electron flow between these genera. Genomes encoding MHC with more than 10 CxxCH 
heme-binding motifs are marked in the final column. Bar chart on the far right demonstrates the number 
of c-type cytochromes per genome. Only branch support values >50% are shown for clarity. Tree scales 
represent substitutions per site. Tree construction parameters are found in the Materials and Methods 
section. Alignment and tree files can be found in Figure 18—source data 1. 
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Figure 19 Energetics of mixed electron transfer Energy flow diagrams showing the redox potential 
(y-axis) of electrons as they travel from methane through the ANME energy metabolism to the SRB 
partner (x-axis is reaction progression). Width of paths correspond to number of electrons. Endergonic 
electron flow (uphill) shown in red, exergonic (downhill) in blue. Steps labelled with numbers are carried 
out by the following enzymes; 1: Mcr, 2: Mer/Mtd, 3: Fwd/Fmd, 4: Rnf, 5: Fpo/Fqo, 6: HdrDE, 7: Mco 
and ANME-MHC, 8: HdrABC and ANME-specific FrhB, FdhA, 9: uncatalyzed diffusion of electron 
carrier 10: FdhAB, possibly confurcation through HdrA complexes. X/XH2 represent a hypothetical 
low-potential electron carrier that could be used as a diffusive electron shuttle. (A) electron transfer 
based entirely on EET from the methanophenazine pool. (B) electron transfer based entirely on soluble 
electron shuttle produced in the cytoplasmic space. (C) Mixed model with half of the electrons passing 
through each pathway. 
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Abstract 
Substrate uptake by bacteria is a diffusion-dominated process. The speed with which most bacteria are 

able to swim is not great enough to increase substrate uptake by fluid flow, and therefore motility is 

largely used to find locations with higher substrate concentrations, which leads to greater rates of 

diffusion. A notable exception to this rule is Thiovulum majus, a chemotrophic sulfide oxidizer 10 µm in 

diameter that can swim up to 600 µm/s. This prodigious swimming speed allows veil-like biofilms of T. 

majus found on sulfidic sediments to significantly increase their oxygen uptake through advective fluid 

flow. Here we enrich and characterize a representative of a novel genus of purple sulfur bacteria with 

similar size and swimming speed as T. majus. Phylogenetic and genomic analysis places this novel 

phototroph in the family Chromatiaceae, and high-speed video microscopy demonstrates a maximum 

swimming speed greater than 800 µm/s, making these organisms the second fastest bacterium described. 

Modeling results suggest that sediment-adhered cells could use this motility to increase the supply of 

sulfide, the electron donor for anoxygenic photosynthesis, extending this diffusion-beating strategy to a 

new guild of microorganisms. 
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Introduction 
Sulfide oxidizing bacteria are found in narrow horizons corresponding to optimal combinations of 

substrates that have steep, opposing concentration gradients. Sulfide is generally produced at depth in 

anoxic sediments and diffuses upwards into more oxic overlying water where it is consumed by biotic 

and abiotic processes. Chemotrophic sulfide oxidizers gain energy from the oxidation of sulfide and 

reduction of higher potential electron acceptors such as nitrate and oxygen, while phototrophic sulfide 

oxidizers use sulfide as a source of electrons for light-driven cyclic electron flow. Chemotrophic sulfur 

oxidizing bacteria are referred to as “colorless sulfur bacteria” in contrast to the phototrophic sulfur 

oxidizers that are split into “purple sulfur bacteria” and “green sulfur bacteria” depending on their 

phylogeny and complement of photosynthetic pigments. Both modes of growth are generally restricted 

to upper layers of sulfidic sediments or near the oxycline in euxinic bodies of water, where optimal 

concentrations of sulfide, electron acceptor and light are achieved. The competition between and within 

these groups for common resources has been the subject of much investigation, through environmental 

surveys (Jørgensen and Des Marais, 1986; Visscher et al., 1992), coculture experiments (van Gemerden, 

1974; van Gemerden and Beeftink, 1981), and modeling studies (Decker et al., 2005; Wit et al., 1995). 

Ecophysiological considerations lead to the vertical stratification of sulfide oxidizers in narrow bands 

corresponding to their optimal photochemical niche. 

 

While nearly all bacteria exist in a low Reynolds number regime where nutrient delivery is dominated by 

diffusion (Purcell, 1977), certain colorless sulfur bacteria have adaptations thought to circumvent these 

limitations (Schulz and Jørgensen, 2001). One major mechanism of to achieve substrate uptake rates 

greater than diffusion is the formation of extraordinarily large cells coupled to physical movement across 

their opposing substrate gradients. Members of the Thioploca genus form giant filaments up to 40 µm 
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wide and 10s of mm long that migrate vertically between sulfidic sediments and nitrate rich surface 

waters, filling enormous vacuoles with nitrate at concentrations up to 500 mM (Fossing et al., 1995; 

Huettel et al., 1996). Similarly sized Beggiatoa species form large mats on sulfidic sediments and individual 

filaments have been observed to react to light and oxygen in order to optimally position themselves in 

response to sulfide gradients (Møller et al., 1985). Thiomargarita namibiensis, the largest bacteria by volume, 

is mostly composed of a single giant vacuole that is thought to refill with nitrate when they are 

occasionally resuspended from sulfidic sediment into the overlying water by bubbles created from 

methane degassing (Schulz and Beer, 2002).  

 

Another mechanism for colorless sulfur bacteria to escape diffusion limitation is to move exceptionally 

fast. The best studied example of this is found in the genus Thiovulum. At approximately 10 µm in 

diameter, Thiovulum majus is smaller than the colorless sulfur bacteria described above, but individual cells 

can swim with speeds up to 600 µm/s (Garcia-Pichel, 1989). While rapidly motile as free-swimming 

cells, Thiovulum sp. are naturally found in biofilms, known as “veils”, comprised of huge numbers of cells 

anchored to the sediment and one another via “slime” tethers (Fenchel and Glud, 1998). Instead of 

using their motility in a traditional chemotactic manner to find locations with more optimal substrate 

concentrations through a biased random walk, Thiovulum sp. pull aerobic water towards themselves 

through the concerted efforts of the biofilm community (Fenchel and Glud, 1998; Petroff et al., 2015; 

Schulz and Jørgensen, 2001). The size and ultrafast swimming places Thiovulum sp. near the boundary 

between advection-dominated and diffusion-dominated regimes, where substrate uptake can be 

significantly increased by fluid flow. 
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In contrast to the colorless sulfur bacteria, the purple sulfur bacteria have not been reported to have 

similar ability to increase their flux of substrate beyond what diffusion provides. Purple sulfur bacteria 

are not exceptionally large, precluding the size-dependent methods described above, and while they 

exhibit various forms of taxis in response to light and chemical stimuli (Gest, 1995; Thar and Kühl, 

2001), these are not particularly rapid; they are thought to be used to position themselves at an optimal 

horizon in sediment or water columns through traditional chemo- and phototactic behavior.  

 

Here we present the physical enrichment and characterization of a novel purple sulfur bacterium that 

shares some of the unique behaviors of Thiovulum sp. Multiple enrichments from two separate 

marshlands produced morphologically, phylogenetically, and behaviorally consistent populations. 

Phylogenetic analysis of marker genes, comparative genomics, and whole-cell absorbance spectra 

supported the placement of this group within the family Chromatiaceae. Enriched cells were significantly 

larger than most other known Chromatiaceae, and high-speed video microscopy was used to quantify 

swimming speeds, revealing the fastest phototrophic bacterium known, with top speeds exceeding those 

reported for Thiovulum majus. We propose the provisional name “Candidatus Thiorhodosphaera 

celerrima” to describe a novel genus in recognition of its phylogenetic distance from existing members 

of the Chromatiaceae as well as the phenotypic peculiarity of their extreme swimming speed (Murray and 

Stackebrandt, 1995).  

 

Results 
Enrichment and morphological description of a novel purple bacteria 

Observation of marine-impacted marshlands near Woods Hole, Ma. revealed a thin purple layer 

overlying sulfidic sediments rich in organic detritus (Figure 1a, b). In some places this purple layer was 
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covered by presumed oxygenic phototrophs based on color and the entrainment of small bubbles. 

This colored layer and ~7.5 ml of underlying sediment was collected in 50 ml polypropylene tubes, filled 

with overlying water, capped, and taken to an east facing windowsill in the laboratory where it received 

ambient sunlight. The following morning, the purple layer had reformed on the side of the tube facing 

the window at the sediment-water interface. This layer was a physically coherent biofilm with enough 

structural integrity to withstand the decanting of water and sediment and gentle rinsing with 0.2 µm 

filtered water from the enrichment site (Figure 1c). The biofilm was removed with a sterile toothpick 

and resuspended with 0.2 µm filtered water from the sampling location. Wet mounts of the resulting 

concentrated cell suspension revealed a mixed community of organisms dominated by a single 6-10 µm 

diameter purple coccoid with the characteristic pigmentation of purple sulfur bacteria (Figure 1d). 

Multiple subsequent enrichments from this site, as well as a pool in Little Sippewissett Marsh (Seitz et 

al., 1993; Shapiro et al., 2011), yielded similar purple biofilms dominated by a morphologically similar 

organism which we refer to throughout as “Ca. T. celerrima”. 

 

“Ca. T. celerrima” cells were vigorously motile once disturbed from the biofilm (Movie S1-S3). Fresh 

preparations resuspended in 0.2 µm filtered water from the enrichment site were observed to rapidly 

accumulate in the bottom corner of a well of a 24-well tissue culture plate opposite artificial illumination. 

This behavior was used as a means to physically enrich “Ca. T. celerrima” from associated organisms 

(Figure 2a). Enriched cells contained refractory intracellular globules presumed to be elemental sulfur 

and a single large lophotrichous flagellar bundle was clearly visible in stationary cells (Figure 2b). A 

small concentrated wet mount of these cells was used to determine whole-cell absorbance spectra using 

a microscope-mounted spectrophotometer (Figure 2c). Spectra of “Ca. T. celerrima” best matched 

those from purple sulfur bacteria of the Chromatiaceae, specifically Chromatium okenii (Stomp et al., 2007).   
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Phylogeny and genomic features of “Ca. Thiorhodosphaera celerrima 

Aliquots of “Ca. T. celerrima” cells purified through at least three rounds of dilution and motility-based 

concentration from the Ballfield Marsh and Little Sippewisset Marsh sites were pelleted in a 

microcentrifuge tube and used directly as templates for PCR using universal 16S rRNA gene primers. 

Sanger sequencing of PCR products yielded two nearly identical 16S sequences. The only variation 

occurred at two positions where the electrophorograms had ambiguous base calls. The 16S rRNA gene 

sequence of “Ca. T. celerrima” was most closely related to members of the Chromatiaceae, but was at most 

93.1% identical with a type strain from this family (Halochromatium salexigens DSM 4395T). Phylogenetic 

analysis of 16S rRNA gene sequences from type strains from the Chromatiaceae indicate that “Ca. T. 

celerrima” falls within this family (Figure 3a). A short 16S rRNA gene fragment was found via a 

literature search from an enrichment of an unnamed purple sulfur bacteria from Guadeloupe (Gros et 

al., 2018) to be 99% identical to the 16S of the “Ca. T. celerrima”. This is the only sequence publicly 

available with greater than 94% sequence identity to “Ca. T. celerrima”.  

 

One aliquot of enriched “Ca. T. celerrima” cells from Ballfield Marsh was used for whole genome 

shotgun sequencing. Small amounts of DNA from contaminating organisms was present, so sequencing 

results were treated as a metagenome and multiple methods of read quality filtering, assembly, and 

binning were compared using a combination of methods hosted on the KBase platform (Arkin et al., 

2018) (see Materials and Methods and Supplemental file 1 for assembly comparisons). The final “Ca. 

T. celerrima” MAG contained 216 contigs, and was estimated to be 90.5% complete and 1.4% 

contaminated using the 581 marker gene set for the Gammaproteobacteria implemented by CheckM (Parks 

et al., 2015). This MAG contained a full length 16S rRNA gene sequence matching those produced by 
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PCR and Sanger sequencing (Figure 3a). The PufLM subunits of the photosystem are also used as 

marker genes for defining the phylogeny of the Chromatiaceae (Tank et al., 2009), so we constructed a 

phylogenetic tree of concatenated PufLM protein sequences and found this too placed “Ca. T. 

celerrima” MAG within the Chromatiaceae nearest Thiorhodovibrio, albeit with poor branch support. 

Classification of the “Ca. T. celerrima” MAG consistent with the standardized genome taxonomy 

GTDB (Parks et al., 2018) using GTDB_tk (Chaumeil et al., 2020) placed it within the Thiorhodovibrio 

genus based on its similarity to the single genome representative of this genus Thiorhodovibrio sp. 970. 

 

The “Ca. T. celerrima” MAG contained features common to the central energy metabolism of purple 

sulfur bacteria (summarized in Table S1). Photosystem genes corresponding to the reaction center 

(PufLM), tetraheme electron donor for reaction center (PufC), multiple copies of the light harvesting 

alpha and beta subunits (PufAB), and bacteriochlorophyll biosynthesis genes (BchCXYZ) were present 

and colocalized in a gene cluster. Cyclic electron transfer between the reaction center occurs through bc1 

complex (PetABC). Only a bd-type terminal oxidase was present (CydAB). Reverse electron transfer is 

expected to occur for the purpose of generating reduced electron donors NADH, NADPH and Fd. 

This can be carried out by the Nuo complex (NADH generation from quinols), Rnf (Fd2- generation 

from NADH), and membrane-bound transhydrogenase (NADPH generation from NADH). These 

enzymes use proton and sodium motive force to drive these endergonic electron transfer reactions. The 

genes utilized for sulfur metabolism in the model purple sulfur bacteria Allochromatium vinosum 

(Weissgerber et al., 2014, 2013) are mostly present, including sulfide:quinone oxidoreductase (Sqr), 

DsrMKJOP membrane complex, sulfite reductase (DsrAB), adenylylsulfate reductase (AprAB), sulfate 

adenylyltransferase (Sat), and sulfur globule protein (SgpB)(Table S1).  
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Motility of “Ca. Thiorhodosphaera celerrima” 

Freshly prepared wet mounts of highly enriched “Ca. T. celerrima” cells demonstrated incredibly rapid 

swimming reminiscent of Thiovulum majus (Garcia-Pichel, 1989). To quantify the average swimming 

speed, high-speed video microscopy analysis was used to track individual cells, recording their path 

length and time visible (Figure 4a, Movie S4). 2,147 individual cells were analyzed in 14 separate 

acquisitions from two different wet mounts. The average swimming speed was 399 µm/s with a standard 

deviation 141 µm/s (Figure 4b). The fastest cell was observed to transit the entire field of view at an 

average speed of 814 µm/s. Average cell diameter was found to be 7.49 µm with a standard deviation 

of 0.76 µm (Figure 4c). Swimming speed and cell diameter were not significantly correlated (data not 

shown). 

 

“Ca. T. celerrima” also demonstrated a variety of motility behaviors that have been described previously 

in members of the purple sulfur bacteria. Concentrated preparations of highly motile cells in 0.2µm 

filtered source water would rapidly bioconvect (Figure 5a, Movie S5). In wells of 24-well plates the 

cells would accumulate at the air-water interface on the edges of the well, then groups would dislodge 

from the wall, swimming towards the center of the well before sinking to the bottom. This type of group 

behavior has been documented in other purple sulfur bacteria such as C. okenii (Pfennig, 1968).  

 

Light-based tactic responses were also readily apparent. In wet mounts cells would accumulate at the 

edge of the water extending beyond the coverslip (Figure 5b, Movie S6). When the low intensity 

microscope light was suddenly increased, the motile cells that had been swarming at the air-water 

interface immediately dispersed. Decreasing to dim light reversed the behavior and the cells returned to 

the air-water interface. This behavior could be reproduced repeatedly in a matter of seconds (Figure 
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5b, Movie S6). “Ca. T. celerrima” cells were also found to concentrate in locations with steady high 

levels of illumination compared to their surroundings. This was demonstrated in wet mounts by leaving 

the transmitted light on through a 10x objective and observing the accumulation of cells in the circle of 

illumination (Figure 5c) and is consistent with the classic “scotophobic” response (Gest, 1995). “Ca. T. 

celerrima” cells often settled and adhered to the surface of whatever container they were prepared in. 

This was not due to a loss of cell viability as cells were routinely observed to maintain rapid flagellar 

rotation (Movie S7). This adhesion appeared to be a tethering of some kind, as cells were often observed 

beating their flagella while not being able to break free from a small area (Movie S8).  

 

Flow-induced increase in substrate uptake 
The rapid motility and biofilm-forming behavior of “Ca. T. celerrima” is highly reminiscent of Thiovulum. 

Since these behaviors have been demonstrated to facilitate faster-than-diffusion substrate uptake in 

Thiovulum (Fenchel and Glud, 1998; Petroff et al., 2015), we investigated whether a similar effect could 

be beneficial in the context of the anoxygenic phototrophic metabolism predicted for “Ca. T. celerrima”. 

In the simplest case of free-swimming “Ca. T. celerrima” the Reynolds number (Re) and the Peclet 

number (Pe) are similar to those for Thiovulum (Table 1, Figure 6a). These dimensionless quantities 

capture the relative importance of viscous vs. inertial forces and advective vs. diffusive transport, 

respectively, and illustrate that for both organisms, viscous forces are dominant, and diffusion is the 

major mechanism of substrate delivery. However, the induced flow is likely to increase substrate uptake 

as it leads to steeper concentration gradients. At the low Re relevant for free-swimming “Ca. T. 

celerrima”, the ratio of total to diffusive flux can be estimated as 0.5*[1+(1+2*Pe)1/3] (Kiørboe, 2008). 

Using this approximation for free-swimming “Ca. T. celerrima” one would expect a significant increase 

in substrate delivery by approximately 22%. 
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The biofilm-forming behavior in the lab and in the environment suggests that the free-swimming 

calculations above may not accurately reflect the ecophysiological conditions under which this behavior 

was selected. Assuming that sediment-adhered “Ca. T. celerrima” cells use their motility to increase 

substrate delivery they would need to operate in the opposite direction as Thiovulum, pulling up sulfidic 

water from the sediment instead of pulling down oxygen-rich water, because there is no catabolic role 

for O2 in the PSB metabolism.  

 

To capture this scenario we estimate the force a “Ca. T. celerrima” cell is able to exert on the surrounding 

water accounting for the cell size, its velocity and the viscosity of the surrounding fluid (Stoke’s law; 

Figure 6a). The resulting force of approximately 31 pN is then used to drive fluid flow in the sediment. 

We consider flow over 2 cm, the distance between the sediment surface where “Ca. T. celerrima” is 

located and the depth where sulfide profiles reach a steady value of  approximately 1mM in the 

Sippewissett Salt Marsh (Salman et al., 2015). Assuming the force sets up a vertical pressure gradient and 

a sediment permeability of 10-12m2, Darcy’s law is used to calculate the flow velocity through the 

sediment (Figure 6b). Using the boundary conditions of [HS-]=0 at the surface, and [HS-]=1 mM at 2 

cm depth, we can explicitly solve for the flux of sulfide with and without this pressure-derived flux (see 

Materials and Methods for details). We find the sulfide delivery to the surface to be increased by ~35% 

with these assumptions. 

 

While this one-dimensional model captures some basic principles, counter gradients of oxygen and 

lateral water movement can further complicate the assessment of the impact of flow induced by “Ca. T. 

celerrima” in the environment. For example, biofilms of the close relative of “Ca. T. celerrima” from 
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Guadeloupe revealed an interesting pattern of white sulfur oxidizing bacteria at the margins of the 

purple mats (Gros et al., 2018). This observation led us to speculate that the upward flux of porewater 

under the “Ca. T. celerrima” mat might improve the energetics of colorless sulfide oxidizers at the 

margins of “Ca. T cellerima” biofilms due to the recharge with oxygen-rich surface water at the biofilm 

margins. To assess this, we implemented a radially symmetric advection-diffusion-reaction model 

comprised of a circular “Ca. T. cellerima” biofilm surrounded by a sulfide oxidizing biofilm, with 1mM 

sulfidic conditions imposed 2 cm deep in the sediment and oxic conditions in the overlying water 

(Materials and Methods; Figure 6c). By comparing the sulfide consumption in the central region of the 

“Ca. T. cellerima” biofilm with and without flow (Figure 6d and e), we find that flow increases sulfide 

consumption by 37%. Contrary to our expectations, the model shows little effect of sulfide or O2 

consumption rates in the surrounding chemotrophic mat. 

 

Discussion 
 

“Ca. Thiorhodosphaera celerrima” represents a novel genus within the Chromatiaceae 

 

16S rRNA gene sequence identity values of 94.5 -95% have been proposed for delineating genus-level 

divisions within bacteria (Tindall et al., 2010; Yarza et al., 2014). It is also suggested that “these genetic 

criteria should always be accompanied by a discriminant phenotypic property” (Yarza et al., 2014). By 

both metrics “Ca. T. celerrima” should be assigned to a new genus. All phytogenetic analyses clearly 

place these organisms within the Chromatiaceae family (Figure 3) but 16S rRNA sequence identity values 

to any currently recognized members are ≤93%. Phenotypically they can be easily distinguished from 

other genera within the Chromatiaceae as their cell diameter of ~7.5 µm is larger than currently described 
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genera within the family (Imhoff, 2014) and their swimming speeds exceed anything known for a 

photosynthetic organism, a feature which doubles as a useful method for cell enrichment from complex 

communities. Based on a short 16S rRNA gene sequence it was suggested that a close relative of “Ca. 

T. celerrima” from Guadeloupe be assigned to the genus Halochromatium (Gros et al., 2018). With the 

expanded phylogenetic analysis provided here, we suggest both of these organisms are species within 

the new genera “Ca. Thiorhodosphaera”. Characteristics of both organisms are consistent including cell 

size, lophotrichous flagellar bundles, and photophobic behavior (Gros et al., 2018). The Guadeloupe 

strain was also characterized ultrastructurally and the intracellular sulfur globules were verified using 

EDS (Gros et al., 2018). Taxonomic characterization based on the GTDB_tk algorithm assigns “Ca. T. 

celerrima” to the Thiorhodovibrio genus based on similarity to the Thiorhodovibrio sp. 970 genome. While 

we recognize the value of such methods for classifying MAGs with no discriminant phenotypic property, 

we find the differences apparent between “Ca. Thiorhodosphaera” described here and previously (Gros 

et al., 2018) to be reason enough to propose a new genus separate from the Thiorhodovibrio (Imhoff and 

Overmann, 2015). 

 

“Candidatus Thiorhodosphaera celerrima”. Gr. n. theion (Latin transliteration thium), sulfur; Gr. n. 

rhodon, the rose; L. fem. n. sphaera, a ball, sphere; N.L. fem. n. Thiorhodosphaera, the red sulfur ball.  

L. fem. adj. celerrima, superlative degree of celer, fast. “Candidatus Thiorhodosphaera celerrima”, the 

fastest red sulfur ball. 

 

Ecological implications of fast swimming in “Ca. Thiorhodosphaera celerrima”  

Our phylogenetic and genomic analyses, spectroscopic characterization, and previous ultrastructural and 

elemental analysis (Gros et al., 2018), suggest “Ca. T. celerrima” is a sulfur oxidizing phototroph, 
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although this has not been shown conclusively by growth under these conditions. Culturing attempts 

were undertaken starting with enrichments of “Ca. T. celerrima” in media designed for the isolation of 

sulfide oxidizing Chromatiaceae with an infrared LED light source, but we were unsuccessful at producing 

a pure culture. The closely related organism from Guadeloupe also resisted cultivation (Gros et al., 2018).  

 

Both colorless sulfur bacteria and purple sulfur bacteria use reduced sulfur compounds as electron 

donors, but only the former are commonly found to have morphological and behavioral adaptations to 

improve their substrate consumption beyond the limitations of diffusion (Fenchel and Glud, 1998; 

Huettel et al., 1996; Schulz and Jørgensen, 2001). This difference could be rationalized on metabolic 

grounds. The purple sulfur bacteria employ cyclic electron flow, which uses light energy to run a single 

electron many times through their photosystem and electron transport chain. New electrons are only 

needed to replace those lost to anabolic reactions such as carbon or nitrogen fixation. Each reduced 

sulfur compound that is oxidized therefore produces a large non-stoichiometric amount of ATP. In 

colorless sulfur bacteria each electron is transferred to the terminal electron acceptor in a linear manner 

producing a roughly stoichiometric amount of ATP per electron donor and acceptor. This difference 

between the amount of energy gained per substrate molecule may explain why it has been more common 

to find colorless sulfur bacteria with adaptations aimed at increasing their substrate flux.  

 

While not stoichiometrically dependent on sulfide for ATP, purple sulfur bacteria are still intimately tied 

to the supply of reduced sulfur compounds. They can differentially respond to diurnal cycles of sulfide 

profiles and light levels (van Gemerden, 1974), with studies in marine sulfuretums demonstrating that 

some members of the Chromatiaceae can migrate between the sediment and water to follow optimal 

concentration gradients of sulfide, oxygen and light (Jørgensen et al., 1982). Laboratory competition 
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studies show that slight differences between the kinetics of sulfide uptake or the ability to store 

intermediate sulfur compounds for later use are important niche-defining characteristics (Van Gemerden 

and Mas, 1995). While electron donor limitation may not be as energetically costly to purple sulfur 

bacteria as it is in the colorless sulfur bacteria, considerations surrounding acquisition of electron donor 

seem central to the adaptations that define the different purple sulfur bacteria niches.  

 

Based on our analysis of flow-induced sulfide delivery to “Ca. T. celerrima” we could potentially expect 

uptake to increase by 30-40%, depending on the assumptions and models being used. While these values 

are very approximate, in principle it seems that the same adaptive advantage explaining Thiovulum’s 

extreme motility could apply to “Ca. T. celerrima” as well. Normal purple sulfur bacteria face a trade-

off when choosing where to position themselves in sediment or water columns. Closer to the surface 

will provide more light energy but less electron donor, while deeper will yield greater electron donor but 

less light energy to oxidize it with. The rapid motility demonstrated here may allow “Ca. T. celerrima” 

to get the best of both options, high light energy and increased sulfide supply, with some of the increased 

energy production being used to drive fluid flow. 

 

The top speed of 814 µm/s makes “Ca. T. celerrima” the second fastest bacterium yet described, only 

exceeded by “Candidatus Ovobacter propellens” found to have a maximum speed of approximately 

1mm/s. While no information on the physiology or phylogeny of “Ca. O. propellens” is available, it was 

found associated with Thiovulum-containing veils in sulfidic sediments (Fenchel and Thar, 2004). “Ca. T. 

celerrima” from Woods Hole, MA and Guadeloupe were both found in habitats that are routinely found 

to contain Thiovulum veils (Garcia-Pichel, 1989, p.; Gros, 2017; Gros et al., 2018; Petroff et al., 2015). 

Clearly, there appears to be a strong selective advantage to this rapid motility phenotype in these sulfidic 
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environments, suggesting this exceptional swimming speed may be an important behavioral 

adaptation to the gradient lifestyle. While “Ca. T. celerrima” remains to be cultured, we hope that the 

generation of a draft genome and phylogenetic markers linked to morphologic description and a simple 

enrichment strategy will facilitate more studies of this interesting new phototroph. Whether the 

swimming speed is used in the manner hypothesized here remains to be determined, and such ideas 

could be tested by measuring the flow fields above dense biofilms using micron-sized latex beads, as 

done previously for Thiovulum (Fenchel and Glud, 1998). 

 

Materials and Methods 
Sampling locations 

Samples of “Ca. T. celerrima” were collected from the Ballfield Marsh behind Woods Hole park 

(41.529722 N 70.670242 W) and Little Sippewissett Marsh (41.576373 N 70.638566 W) in July, 2016. 

Samples of surface sediment and overlying water were collected in 50ml polypropylene tubes. An 

additional ~1L of the overlying water was collected and sterile filtered (0.2µm) to be used for serial 

enrichment and wet mounts. 

 

Cell enrichment 

The general strategy for cell enrichment is illustrated in Figure 2a. Free-swimming cells of “Ca. T. 

celerrima” were prepared by gently resuspending biofilms formed on the side of polypropylene 

containers in 0.2µm filtered source water in a well of a 24-well plate (Figure 1c). These cells were found 

to rapidly swim away from intense artificial light, forming a dense pellet in the opposing corner of the 

well. At least four wells of a 24-well plate were filled with additional sterile-filtered source water and the 

concentrated “Ca. T. celerrima” population was pipetted into new sterile well. Enrichments were 
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sequentially resuspend and concentrated in this way until no other cell morphologies were observed 

(typically 3-4 passages). 

 

Spectroscopy 

A concentrated preparation of “Ca. T. celerrima” was prepared on a microscope slide and absorbance 

measurements were made with a fiber optic spectrophotometer attached to a microscope eye piece. 

Background light spectrum of the lamp without cells was substracted from the spectrum of light passing 

through “Ca. T. celerrima”.  

 

16S rRNA gene sequencing 

A preparation of “Ca. T. celerrima” from Ballfield Marsh and Woods Hole were pelleted in a 

microcentrifuge and used as templates for a colony PCR using the 8F and 1391R universal 16S primer 

set (8F: agagtttgatcctggctcag 1391R: gacgggcggtgwgtrca), with an extended initial step to facilitate cell 

lysis: 10 minutes at 98°C; 30 cycles of: 10s at 98°C; 30s at 60°C; 45s at 72°C; and 5 minutes of 72°C. 

PCR products were gel purified and sequenced using sanger sequencing. Sequences were deposited on 

GenBank with accession numbers MN559830.1 and MN559831.1. 

 

DNA Extraction for whole genome sequencing 

A frozen pellet of “Ca. T. celerrima” from Ballfield Marsh from the same enriched preparation that was 

analyzed for motility was used for DNA isolation using the following protocol. Pellet was resuspended 

in 100ul of lysis buffer (20mM Tris, 1mM EDTA, 100mM NaCl, 15mg/ml lysozyme, 1mg/ml RNAse). 

Resuspended cells were heated at 37°C for 30 minutes, then 10ul of 10% SDS was added and the 

solution vortexed for 1 minute, followed by a standard phenol:chloroform:isoamyl alcohol extraction. 
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The aqueous phase was combined with 1/10th volume of 3M sodium acetate (pH 5.2), and 2.5x 

volumes of 100% ethanol and 10ul of linear acrylimide (10mg/ml). The resulting solution was 

precipitated -20°C for an hour and then spun at max speed in a tabletop centrifuge at 4°C for 30 minutes. 

The resulting pellet was washed with chilled 70% ethanol and pelleted at max speed in a tabletop 

centrifuge at 4°C for 5 minutes. Ethanol was removed with a pipette and tube cap left open for residual 

to evaporate. DNA was resuspended in nuclease free water. DNA was sequenced on an Illumina HiSeq 

2500 with NEBNext® Multiplex library with 700bp insert size. Sequencing was carried out by the 

Millard and Muriel Jacobs Genetics and Genomics Laboratory at Caltech and produced ~19 million 

reads of 250bp paired-end sequences.  

 

Genome assembly  

Sequence data was processed into four datasets with different quality filtering including: raw data, 

Illumina chastity filtering, and Trimmomatic applied with two different settings (see Supplemental file 

1 for details). These four datasets were assembled with four different assemblers available on the Kbase 

platform (Arkin et al., 2018): SPAdes (Bankevich et al., 2012), metaSPAdes (Nurk et al., 2017), Kiki 

(https://github.com/GeneAssembly/kiki) and MEGAHIT (Li et al., 2015). All 16 resulting assemblies 

were then binned with metaBAT2 (Kang et al., 2019). This process only resulted in a single dominant 

bin in all cases, which was quality assessed using checkM (Parks et al., 2015). The estimated completeness 

and contamination for all assemblies is reported in Supplemental file 1. The assemblies were routinely 

best with Kiki based on high completeness, low contamination, and length of contigs. The best assembly 

was selected and manually binned using the anvi’o workflow for metagenome binning (with only a single 

sample for coverage information) (Eren et al., 2015). This resulted in a final MAG of 3.6 million bp on 
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216 contigs with 90.5% completeness and 1.4% contamination. This MAG was annotated with the 

IMG webserver (Chen et al., 2019) and can be found with Taxon Object ID: 3300034821. 

 

Phylogentic reconstruction 

16S rRNA and PufLM phylogenies have been used to define phylogenetic relationships within the family 

Chromatiaceae in references (Imhoff, 2014) and (Tank et al., 2009), respectively. 16S rRNA genes from 

type species of the Chromatiaceae and “Ca. T. celerrima” were aligned with the SINA aligner (Pruesse 

et al., 2012) with SILVA database 132 (Quast et al., 2013). 16S tree was built on the webserver 

http://www.atgc-montpellier.fr/phyml/ running PhyML 3.0 (Guindon et al., 2010). Substitution model 

was automatically selected using Akaike Information Criterion implemented by SMS (Lefort et al., 2017) 

and the tree was constructed with 100 bootstrap replicates for branch support. Concatenated PufLM 

sequences were aligned using muscle 3.8.31 (Edgar, 2004) and three was constructed using RAxML 

8.2.12 (Stamatakis, 2014) implemented on the CIPRES Science Gateway (Miller et al., 2010). The CAT 

evolutionary model (Si Quang et al., 2008) was used with 25 distinct rate categories and DAYHOFF 

substitution matrix. 100 bootstrap replicates were calculated for branch support. 

 

High speed video microscopy image analysis  

At least four rounds of motility-based enrichment was carried out on a sample of “Ca. T. celerrima” 

from Ballfield Marsh before microscopy analysis. Wet mounts of enriched cells were visualized with a 

ZEISS Axio Observer Z1 with two different objectives: Plan-Neofluar 10x/0.30 Ph1 and Plan-

Apochromat 20x/0.8 M27. Video captures were taken at 120 frames per second in three second bursts 

with ZEISS Axiocam 702 mono. After analysis pixel/micron calibration was made for both objectives 

by capturing images of a micrometer. 
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Image stacks originally captured in .czi file format were exported as individual TIFF images. TIFF images 

were imported into ImageJ as an image stack and tracks were determined using TrackMate v3.4.2 

(Tinevez et al., 2017). The only image manipulation required before applying TrackMate was inversion 

so cells appeared as increased pixel intensity on a dark background. LoG (Laplacian of Gaussian) particle 

detection was used with 8µm diameter and threshold value of 2. Tracks were determined using the 

simple LAP (Linear assignment problem) trackers. Raw track data was exported as xml file and further 

processed in MATLAB 2016 (MathWorks, Natick, MA, USA). Some cells were either adhered to the 

microscope slide or present in only a few frames of the analysis so a 10 body length displacement 

(100µm) minimum cutoff was applied to tracks.  

 

Flow modeling 

Values of Reynolds number (Re) and Peclet number (Pe) in Table 1 were calculated using Re = u*r/v 

and Pe = u*r/D where r = cell radius, u = swimming speed, v = viscosity (~10^-6 m2/s) and D = 

diffusion coefficient (~10^-9 m2/s) (Kiørboe, 2008). The ratio of substrate delivery with flow vs. 

stationary was calculated for free swimming cells from the Sherwood number approximation (Sh): Sh = 

0.5*[1+(1+2*Pe)1/3]. 

 

The force free-swimming “Ca. T. celerrima” exert is calculated from Stoke’s law (F = 6πµru) with µ = 

dynamic viscosity (1.09*10-3 Pa*s) and r and u as above, yielding ~31pN (similar to the 40pN found for 

Thiovulum in reference (Petroff et al., 2015)). Darcy’s law (q = -k/µ* Δp/L) is used to calculate the fluid 

flow rate (q) based on a pressure gradient (Δp), permeability (k = 10-12m2) and distance (L=0.02m). The 

pressure gradient is calculated assuming pressure = 0 at 2cm depth and pressure at the surface from the 
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force (31pN) and cross-sectional area of a “Ca. T. celerrima” cell. See Supplementary file 2 for full 

calculations. 

 

The 1D model depicted in Figure 6b considers a 2cm vertical sediment column with constant porosity 

and no sources or sinks of sulfide between the top and bottom and fluid flow (u) calculated as above. 

The sulfide concentrations are set as boundary conditions C(x=0) = Ctop = 0 and C(x=2cm) = Cbot = 

1mM. The convection-diffusion equation at steady state (dC/dt=0) is given in equation (eq. 1) 
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Which can be solved explicitly for sulfide concentration throughout the sediment column (eq. 2). The 

flux through the sediment profile due to diffusion and advection are shown in (eq. 3 and 4). 
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With these conditions, the flux based on diffusion at the surface is ~6.76 mol/m2/s, and this diffusive 

flux is much greater than the advective flux near the surface (with Ctop = 0 the advective flux at the 

surface is zero). The dominance of diffusion is expected based on the low Re and Pe values. The diffusive 

flux in this gradient without flow is found with Fick’s law (J = -DdC/dx) with D given above, dC = 

1mM and dx = 2cm to be 5mol/m2/s. The ratio of the diffusive flux in the with flow to diffusive flux 

without flow is presented in Table 1 is therefore 6.76/5 = 1.35. 
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The 3D model geometry was motivated by the images of a close relative of “Ca. T. celerrima” from 

Guadeloupe where a mat of purple sulfur bacteria was surrounded by a ring of while sulfide oxidizing 

bacteria (Gros et al., 2018). The radially symmetric advection-diffusion-reaction model was implemented 

in COMSOL Multiphysics 5.4 (COMSOL Inc., Burlington, MA, USA). Details of the modeling 

assumptions, domain properties, and modelling output can be found in Supplementary files 3 and 4. 

The consumption of sulfide in domain 1 corresponding to a “Ca. T. celerrima” biofilm was compared 

with and without flow for the values presented in Table 1. 
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Figures 

 
Figure 1 Habitat and initial observations of “Ca. T. celerrima” (A) Satellite imagery of Woods 
Hole, Ma. and nearby areas obtained from Google Earth. Stars indicate sampling locations, bottom left 
marks Ballfield Marsh behind Woods Hole park, and top right marks Little Sippewissett Marsh. (B) 
Characteristic image of purple layer overlying sediments found in Ballfield Marsh. (C) After one night 
in the laboratory, purple layer moved and adhered to the side of the sealed polypropylene tube. The 
biofilm was strongly attached to the wall of the tube allowing for easy decanting of sediment and source 
water. Arrow indicates the top level of sediment where the majority of the cells would accumulate in 
these enrichments. (D) Wet mount produced from biofilm community scraped from the side of the 
polypropylene tube reveal a single dominant purple morphotype with many other associated 
photosynthetic organisms. Scale bar 10 µm. 
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Figure 2 Enrichment and physical characteristics of “Ca. T. celerrima”. (A) Extremely rapid light-
based motility allowed for the preparation of highly purified enrichments of “Ca. T. celerrima”. Biofilms 
adhered to sampling containers as in Figure 1C were scraped and resuspended in filtered source water 
resulting in a mixed enrichment. Successive rounds of illumination and pipetting of self-concentrated 
“Ca. T. celerrima” cells into new sterile media progressively increased purity. (B) Characteristic 
photomicrographs of “Ca. T. celerrima” cells demonstrating lophotrichous flagellar tufts and refractile 
sulfur globules.  Scale bars all 10 µm. c Absorbance spectra of a dense preparation of “Ca. T. celerrima” 
cells with characteristic whole cell spectra of related purple sulfur bacteria from ref. 21. 
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Figure 3 Phylogenetic analysis of “Ca. T. celerrima” and related organisms. (A) Phylogenetic tree 
constructed from 16S rRNA gene sequences of type species from all major genera within the family 
Chromatiaceae. Alignments were generated with the SINA Aligner using the global SILVA alignment and 
tree was calculated using PhyML (see Materials and Methods for details). (B) Phylogenetic tree 
constructed from concatenated protein sequences of the photosynthetic reaction center PufLM also 
places “Ca. T. celerrima” within the Chromatiaceae. Accession numbers are GenBank IDs except for “Ca. 
T. celerrima” and Chromatium okenii LaCa which are IMG IDs. Tree scales represents substitutions per 
site, and bootstrap branch support values above 50 are shown. Roots leads to members of the related 
Ectothiorhodospiraceae family. 
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Figure 4 Measurement of swimming speeds for individual “Ca. T. celerrima” cells (A) One field 
of view showing all the motility tracks of “Ca. T. celerrima” cells captured during a 3 second, 364 frame 
acquisition. Tracks are colored by the average speed of the cell. Color bar in top right indicates speed, 
scale bar represents 200 µm. For representative video see Movie S4. (B,C) Histograms of cell swimming 
speed and diameter, respectively, accumulated from fourteen acquisitions from two separate wet mount 
preparations (2,147 individual cells).  
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Figure 5 Light-based motility behaviors of “Ca. T celerrima”. (A) Bioconvection was observed 
when dense preparations of “Ca. T celerrima” were mixed to homogeneity in a well of a 24-well plate 
containing sterile filtered source water. Over the 30 second time course represented here, cells 
concentrated themselves around the circumference of the meniscus and swarmed together towards the 
center of the well. Representative frames shown, for complete video see Movie S5. (B) Phobic motility 
response of “Ca. T celerrima” cells swarming at the edge of a wet mount to the rapid increase in 
illumination intensity. Representative frames shown, for complete video see Movie S6. (C) “Ca. T 
celerrima” cells accumulate in the constant illuminated region of a 10x objective over the course of 
approx. ten minutes. This response likely due to the classic “scotophobic” or “schreckbewegung” 
response. 
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Table 1 Substrate uptake enhancement by swimming. Comparison of “Ca. T celerrima” with 
Escherichia coli, a characteristic member of the Chromatiaceae family Chromatium okenii, and Thiovulum 
majus. The dimensionless Reynolds (Re) and Peclet (Pe) numbers are calculated from the cell size and 
swimming speed. Re values well below 1 demonstrate that viscous forces dominate over inertial forces 
in all cases. Pe numbers of ~1 for “Ca. T celerrima” under different assumptions and free swimming 
Thiovulum majus indicates qualitatively that these organisms exist at a boundary between advection and 
diffusion dominated mass transport regimes. Flow increase column represent quantitative estimates of 
the increase in diffusive substrate uptake due to advection. Cell size and swimming speed for non-“Ca. 
T celerrima” organisms are from ref 13. See Materials and Methods for details of calculations. 
  

Radius (µm) Speed (µm/s) Re Pe Flow increase
Escherichia coli 0.25 16 4.00E-06 0.004 1.00
Chromatium okenii 2.875 27 7.76E-05 0.078 1.02
"Ca . T. celerrima" Free-swimming 3.745 399 1.49E-03 1.494 1.29
Thiovulum majus  Free-swimming 5 600 3.00E-03 3.000 1.46
"Ca . T. celerrima" 1D Darcy's law - - - - 1.35
"Ca . T. celerrima" 3D Biofilm - - - - 1.37
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Figure 6 Theoretical evaluation of advection-based substrate uptake in “Ca. T celerrima”. (A) 
Schematic of free-swimming “Ca. T celerrima” cell with parameters used in further modelling.  Cell 
radius (r), average swimming speed (u) correspond to experimental data from Figure 4. Equation of 
force from Stoke’s law is shown in the upper right. (B) Schematic of sediment-adhered “Ca. T celerrima” 
and parameters used for the calculation of sulfide flux via Darcy’s law. (C) Schematic of radially 
symmetric 3D biofilm model including “Ca. T celerrima” and a surrounding biofilm of colorless sulfide 
oxidizing bacteria. Dimensions of the modeling domains are indicated. (D) representative modeling 
results illustrating flow lines (black lines) velocity vectors (black arrows) oxygen concentration (colored 
shading) and sulfide isopleths (colored lines). Upper and lower models are run with with and without 
“Ca. T celerrima”-induced pressure gradients, respectively.  
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Movie S1-3 
Video microscopy of wet mounts of biofilms scraped from the side of polypropylene tubes containing 
“Ca. T celerrima” rapidly swimming and a variety of other associated organisms. 
Movie S4 
Representative example of 3 second video used for “Ca. T celerrima” tracking 
Movie S5 
Bioconvection of “Ca. T celerrima” in 24 well plate. In this video an enrichment of “Ca. T celerrima” is 
stirred to distribute the cells evenly throughout the well, and cells quickly accumulate at the edges of the 
well and begin bioconvection behavior. 
Movie S6 
Example of the effect of sudden increases in light intensity of the group motility of “Ca. T celerrima”. 
Movie S7 
Example of “Ca. T celerrima” flagellar bundle rotation in a surface adhered cell 
Movie S8 
Example of two “Ca. T celerrima” beating their flagella while staying attached or tethered to the surface 
of the glass slide. 
 
Supplementary file 1 
Locus tags (IMG) of genes highlighted in the text as important for “Ca. T celerrima” motility or energy 
metabolism. 
Supplementary file 2 
Details of 1D modeling calculations and data for Figure 6B. 
Supplementary file 3 
Details of 3D modeling parameters, implementation and output. 
Supplementary file 4 
Data from 3D modeling used to evaluate the increase in substrate consumption due to flow. 
Supplementary file 5 
Full COMSOL output of 3D model. 
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Abstract 

Respiratory complex I is part of a large family of homologous enzymes that carry out the transfer 

of electrons between soluble cytoplasmic electron carriers and membrane-bound electron carriers.  

These complexes are vital bioenergetic enzymes that serve as the entry points into electron transport 

chains for a wide variety of microbial metabolisms, and electron transfer is coupled to proton 

translocation.  The core complex of this enzyme is made up of 11 protein subunits, with three major 

proton pumping subunits.  Here, we document a large number of modified complex I gene cassettes 

found in genome sequences from diverse cultured bacteria, shotgun metagenomics, and 

environmentally-derived archaeal fosmids all of which encode a fourth proton pumping subunit.  The 

incorporation of this extra subunit into a functional protein complex is supported by large amino acid 

insertions in the amphipathic helix that runs the length of the protein complex.  Phylogenetic analyses 

reveal that these modified complexes appear to have arisen independently multiple times in a remarkable 

case of convergent molecular evolution.  From an energetic perspective, we hypothesize that this 

modification on the canonical complex I architecture allows for the translocation of a fifth proton per 

reaction cycle—the physiological utility of this modified complex is discussed. 
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Introduction 
The generation and maintenance of an electrochemical proton gradient across the cytoplasmic 

membrane is centrally important for nearly all cells (Mitchell, 1966).  The energy stored in this gradient 

is used for ATP generation as well as the active transport of a range of metabolites and other ions to 

and from the cytoplasm through the action of a wide array of symporters and antiporters.  Membrane-

bound electron transport in respiring organisms is carried out in order to produce and maintain this 

gradient.  Complex I, so named due to its position in the mitochondrial electron transport chain, is one 

of the most broadly distributed electron transport complexes in biology.  Complex I homologs are 

capable of interacting with widely utilized cytoplasmic electron carriers such as NADH, F420H2 (Bäumer 

et al., 2000), flavodoxins (Weerakoon and Olson, 2008), and likely ferredoxins (Battchikova et al., 2011; 

Welte and Deppenmeier, 2011), depositing their electrons onto many diverse membrane-soluble 

electron carriers including ubiquinone, menaquinone, and methanophenazine.  Members of this family 

are often named based on the identity of the electron donors and acceptors such as NADH:ubiquinone 

oxidoreductase (Nuo), NADH:quinone oxidoreductase (Nqo), NADH dehydrogenase (Ndh), 

F420:methanophenazine oxidoreductase (Fpo), and F420H2:quinone oxidoreductase (Fqo). This substrate 

versatility is due to the modular nature of the complex, where the electron input and output modules 

can be adapted or replaced to facilitate new interactions, while keeping the core function of redox 

powered proton pumping intact. 

 

Understanding of complex I function has benefited greatly from recent high-resolution crystal structures 

from thermophilic bacteria and yeast mitochondria (Baradaran et al., 2013; Efremov et al., 2010; Hunte 

et al., 2010) as well as single-particle electron cryo-microscopy of mammalian mitochondria 
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(Vinothkumar et al., 2014).  These studies reveal significant similarities shared between distantly 

related complexes (Sazanov, 2015).  Complex I consists of three modules that are summarized briefly 

here.  The Nuo naming scheme is used throughout which assigns the names NuoA-N to genes in the 

order they appear in the operon of the 14 subunit complex that oxidizes NADH and reduces 

ubiquinone.  NuoEFG form the cytoplasmic N-module that interacts with NADH and facilitates its 

oxidation (Figure 1A).  The NuoF protein binds an FMN cofactor, which serves as an intermediary 

between the 2-electron carrying NADH and 1-electron carrying iron sulfur clusters that transfer the 

electrons through the complex.  The NuoG protein contains multiple iron sulfur clusters, and is 

homologous to members of the complex iron sulfur molybdopterin (CISM) superfamily of proteins, 

although it does not bind the bis(MGD)Mo cofactors generally required for catalytic activity in the CISM 

superfamily (Grimaldi et al., 2013).   

 

In many Epsilonbacteraeota (Waite et al., 2017) such as Campylobacter jejuni and Helicobacter pylori the complex 

I operons contain NuoG but lack the NuoEF genes and have instead incorporated two unrelated protein 

subunits in their place (Figure 1B).  These two subunits allow these complex I homologs to use a 

flavodoxin protein as the electron donor instead of NADH (Weerakoon and Olson, 2008).  The N-

module is absent in archaea where it is sometimes functionally replaced by FpoF—a subunit that binds 

an FAD cofactor and oxidizes a lower potential electron carrier, F420H2 (Bäumer et al., 2000; Friedrich 

and Scheide, 2000) (Figure 1C).  FpoF is not often associated with the rest of the Fpo gene cluster.  

Many other bacterial and archaeal complex I operons also lack the N-module, with no replacement 

contained in the gene cluster, leaving the identity of the physiological electron donor in question 

(Moparthi and Hägerhäll, 2011) (Figure 1D).  Hypotheses for the electron donor for these complexes 

include the recruitment of other proteins to functionally replace the diaphorase activity of the N-module, 
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as was hypothesized for the Hox hydrogenase (Schmitz and Bothe, 1996) and NdhV (Gao et al., 

2016) in Cyanobacteria, FAD/NAD(P) binding oxidoreductases in ammonia oxidizing Thaumarchaea 

(Spang et al., 2012), or the complete absence of an N-module analog, and instead the direct interaction 

between the complex I homolog and soluble proteinaceous electron carriers such as ferredoxins 

(Friedrich et al., 1995). 

 

The Q-module is comprised of subunits NuoBCDI that together bind additional iron-sulfur clusters and 

accept electrons from the N-module; they also partially facilitate the reduction of a quinone bound on 

the cytoplasmic face of the membrane.  NuoD is homologous to the large catalytic subunits of NiFe 

hydrogenses but, in an interesting evolutionary parallel to NuoG, appears to have lost the residues 

required to bind the active site cofactors. 

 

The remaining subunits NuoAHJKLMN are all integral membrane proteins referred to as the P-module. 

NuoL, M, and N pump one proton each during a reaction cycle, with a final fourth proton being pumped 

by the combined action of the remaining NuoAHJK subunits (Jones et al., 2017; Sazanov, 2015).  NuoL, 

M and N are homologous to one another as well as to subunits from sodium-proton antiporters, 

formate-hydrogen lyases, carbon monoxide dehydrogenases, and membrane bound hydrogenases—

relationships that reveal the shared evolutionary history of many major types of bioenergetic proton 

pumping complexes (Moparthi et al., 2014).  NuoL contains a unique structural feature that sets it apart 

from NuoM and NuoN: a C-terminal extension that forms an amphipathic helix reaching from the far 

end of the complex back to the NuoN subunit (Sazanov, 2015)(illustrated in Figure 1).  It is thought 

that this helix is important for transducing the energy released in the redox reactions of the Q-module 

into conformational changes in the P-module, leading to proton translocation.  This helix has been 
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described as a molecular “piston” (Efremov et al., 2010), and site-directed mutagenesis studies 

creating insertions or deletions in this helix have deleterious effects on complex I assembly and function 

(Belevich et al., 2011; Torres-Bacete et al., 2011).  The Fpo complex of methanogenic archaea likely 

pumps fewer protons based on biochemical measurements of the H+/e- stoichiometry, which are 

consistent with the less favorable energetics of the F420/methanophenazine redox couple (Deppenmeier 

et al., 1990)(Figure 1B) and sequence analysis of the FpoL gene from a variety of methanogenic archaea 

(Welte and Deppenmeier, 2014). 

 

Here we describe multiple occurrences and evolutionary histories of gene cassettes encoding complex I 

homologs that incorporate a second full-length copy of the NuoM subunit.  These modified complex I 

homologs can be found in many phylogenetically diverse organisms, and appear to have arisen through 

convergent evolution involving the horizontal gene transfer of a second, distantly related copy of NuoM.  

Importantly, comparisons of the primary amino acid sequences of the peptides encoded by these gene 

cassettes supports the proposal that this extra NuoM is incorporated into a single functional complex 

by modifications that lengthen the NuoL amphipathic helix.  The inclusion of the additional subunit 

suggests the upgrading of these complexes to a 5H+/2e- stoichiometry, which if correct would reflect 

the most protons pumped per reaction cycle by any bioenergetic complex. 

 

Materials and methods 
Complex I subunit gene selection 

A rarified subset of microbial genomes (1,860) were selected from nearly 26,000 archaeal and bacterial 

genomes available on the IMG (Markowitz et al., 2012) server in April 2015.  The rarified list was selected 

manually, keeping approximately one genome from each prokaryotic genus.  Finalized genomes were 
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favored over partial or draft genomes when available.  Initial complex I gene homologs were selected 

by retrieving all genes from this genome set automatically annotated as one of the Nuo genes by Kegg 

Ortholog number (see below).  In our experience these proteins tend to be well annotated, although 

there are occasional contaminating proteins from other bioenergetics subunits, which were manually 

excluded from the analysis if they did not fall in what appeared to be a complex I operon.  After 

identifying complex I clusters with additional pumping subunits, additional sequences from close 

relatives of those complexes were retrieved from databases including NCBI and IMG/M. 

 

Protein sequence alignment 

All proteins annotated as NuoL (including NuoL, NuoLM and NdhF [K00341, K15863, and K05577]) 

and NuoM (including NuoM, NuoLM, and NdhD [K00342, K15863, and K05575]) were separately 

aligned with Clustal Omega (Sievers et al., 2011), MUSCLE (Edgar, 2004) and MAFFT (Katoh et al., 

2002).  Many of the loops between transmembrane helices in NuoL and NuoM have lineage-specific 

indels that are not homologous features, and confound phylogenetic reconstruction, so we utilized 

GBlocks to identify well-conserved positions in our alignments that were suitable for building 

phylogenies (Talavera et al., 2007).  The resulting alignments consisted of 274, 249 and 232 positions for 

NuoL from Clustal Omega, MAFFT, and MUSCLE, respectively.  201, 169 and 118 positions for 

NuoM, from Clustal Omega, MAFFT, and MUSCLE, respectively.  201, 154 and 145 positions for 

NuoN, from Clustal Omega, MAFFT, and MUSCLE, respectively.  We further rarified the dataset using 

a 90% identity cut-off to reduce the dataset to a manageable size for phylogenetic reconstruction.  After 

rarification the datasets contained between ~650 and ~1100 sequences depending on the subunit and 

alignment method used. 
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Phylogenetic reconstruction 

For the large protein datasets, trees were constructed with RAxML for all three alignment methods.  

RAxML trees were built with RAxML-HPC v.8 on the CIPRES Science Gateway V 3.3 with 25 distinct 

rate categories, CAT model, with the LG substitution matrix.  Only the Clustal aligned trees are shown 

in main text figures, those based on the other two alignment methods are shown in supplementary 

figures.  Clade-specific trees constructed with the same RAxML settings, alignments were made with the 

three aforementioned alignment programs without GBlocks. 

 

Structural homology modeling 

NuoL genes from each clade and the NuoG gene from Nitrospira defluvii were submitted to the I-

TASSER webserver (Roy et al., 2010; Yang et al., 2015; Zhang, 2008).  For Clade I the NuoL sequence 

from Chloroflexus sp. Y-400-fl was submitted and the top model had a C-score of 0.4, TM-score 0.77+/-

0.1 and RMSD of 7.3+/-4.2.  For Clade 2 the NuoL sequence from Desulfonatronovibrio magnus was 

submitted and the top model had a C-score of 0.82, TM-score 0.82+/-0.08 and RMSD of 6.1+/-3.8.  

For Clade 3 the NuoL sequence from Nitrospira defluvii was submitted and the top model had a C-score 

of 0.62, TM-score 0.8+/-0.09 and RMSD of 6.7+/-4.  The top model for N. defluvii NuoG had a C-

score of 0.08, TM-score 0.72+/-0.11 and RMSD of 8.5+/-4.5.   

 

Genome sequencing and assembly 

The genomes of Bellilinea caldifistulae GOMI-1 (DSM 17877) and Literilinea aerophila PRI-4131 (DSM 

25763) were sequenced as part of a project to expand the phylogenetic breadth of Chloroflexi genomes. 

Genomic DNA was ordered from Deutsche Sammlung von Mikroorganismen und Zellkulturen 

(DSMZ) and sequenced using the Illumina MiSeq platform. SPAdes 3.1.1 (Nurk et al., 2013) was used 
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to assemble the genomes. For B. caldifistulae, sequence coverage, GC composition and phylogenetic 

affiliation of conserved single copy genes were used to exclude contaminating contigs and genome 

annotation was performed using the NCBI Prokaryotic Genome Annotation Pipeline. The draft genome 

is 3.72 Mb in size, comprised of 31 contigs, 3399 genes, 2990 CDSs, and is estimated to be ~95% 

complete based on conserved single copy genes (106/111). This whole-genome shotgun project has 

been deposited in DDBJ/EMBL/GenBank under the accession number LGHJ00000000.  L. aerophila 

sequencing data was not high enough quality to produce a draft genome, however, SPAdes assembly did 

produce a contig containing the complex I gene cassette.  The DNA sequence for this contig is deposited 

in NCBI under accession number JWSX01002273.1. 

 

Results and discussion 
Diverse complex I gene cassettes with extra proton pumping subunits 
Through detailed investigation of the diversity of complex I homologs we discovered a unique type of 

complex I gene cassette encoding a second full-length copy of the large proton pumping subunit NuoM. 

These gene clusters (herein referred to as 2M complexes) are observed in genomic data from five 

different bacterial phyla, environmentally-derived Thaumarchaeal fosmids, and a number of genome bins 

from assembled metagenomes.  Examples of 2M complex gene clusters are shown in Figure 2A, and 

were initially classified into three clades according to their gene synteny and primary sequence similarity.  

Phylogenetic trees built from NuoL homologs from a broad sampling of publically available data reveal 

that the three clades of 2M complexes form phylogenetically coherent groups comprised of organisms 

from: Clade 1) Chloroflexi, Verrucomicrobia and Acidobacteria; Clade 2) uncultured Thaumarchaea and 

Deltaproteobacteria of the Desulfovibrionales order; and Clade 3) the genus Nitrospira (Figure 2A). In each 

case the most closely related NuoL proteins compared to those found in the 2M clades occurred in 
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canonical complex I operons without the second NuoM subunit (as in Figure 2A). This suggests 

three separate evolutionary events in which a second NuoM was added to a canonical complex I operon.  

The accuracy of these phylogenetic relationships were evaluated using two different primary sequence 

alignment tools—both yielded phylogenies confirming the polyphyletic nature of the 2M clades 

(Methods, Figures S1-3) 

 

To determine the origins of these second NuoM subunits contained in the 2M operons we constructed 

phylogenetic trees from a broad sampling of NuoM subunits in a similar manner as NuoL.  As was 

observed with the NuoL phylogeny, all three clades were distinct from one another in the NuoM tree 

(Figure 3A). However, the two copies of NuoM from each clade are not closely related to one another.  

This illustrates that the second NuoM was not derived from direct duplication of NuoM from within 

the operon, but instead was incorporated from a separate complex I homolog through horizontal gene 

transfer.  Interestingly the NuoM2 gene from the Clade 3 Desulfovibrionales is located within a completely 

different region of the tree than the NuoM2 from the Thaumarchaeal fosmids of this clade.  It appears 

that although the NuoL subunits in Clade 3 are all closely related, the additional NuoM subunits were 

acquired independently in these two separate lineages.  Phylogenies of the last large proton pumping 

subunit NuoN revealed the same polyphyletic pattern of the three 2M clades, including the separate 

clusters between the Desulfovibrionales and Thaumarchaea members of Clade 3.  Additional NuoM and 

NuoN trees were constructed using the same approach as with the NuoL trees, all yielded similar 

relationships (Figures S4-9). 
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Evolution of 2M gene cassettes 

To increase our understanding of the evolution and diversity of 2M complexes, we retrieved many 

additional members of the 2M clades to build clade-specific phylogenies.  We also retrieved their nearest 

relatives from the NuoL tree in Figure 2A to use as outgroups for our analysis.  These additional 2M 

gene cassettes came from publically available data as well as our own sequencing efforts targeting diverse 

groups of cultured Chloroflexi (see Methods).  The operon structures of this expanded collection of 2M 

complexes are shown in Figure 4A-C and are ordinated by the phylogenetic relationships of their NuoL 

proteins. NuoL was chosen for reconstructing their phylogenetic history because it is the largest protein 

in the operon (~600 amino acids) and there is reason to believe that concatenating all of the genes 

together to make a composite phylogeny would be inappropriate due to the possibility that the individual 

genes in these operons have distinct evolutionary histories.  In all three clades there is a high degree of 

congruence between the NuoL phylogeny and gene synteny in the operons suggesting the tree topology 

accurately captures key aspects of the evolution of these gene clusters.   

 

The 2M clades differ from one another in their operon structure and gene content.  All members of 

Clades 1 and 3 have inserted the additional NuoM2 subunit between the original NuoL and NuoM1 

subunits (Figure 4A,C), whereas the representatives from Clade 2 all have the gene order NuoMLMN, 

with the additional NuoM2 gene being inserted between the L and N (Figure 4B).  The gene order with 

a NuoM preceding NuoL is characteristic of Thaumarchaeal and Crenarchaeal complex I operons, which 

agrees with the phylogenetic placement of this group with the NuoL from canonical complex I operons 

in these archaea, as well as some members of Clade 2 being found in Thaumarchaeal fosmids (Deschamps 

et al., 2014).  
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In Clade 1 three large subgroups are apparent based on the phylogeny of NuoL, the phylogeny of 

the host organism, and the operon structure (Figure 4A).  Clade 1a contains examples found in 

Verrucomicrobia and Acidobacteria, Clade 1b contains members of the Chloroflexia class of the Chloroflexi and 

Clade 1c is found in Thermoflexia and Anaerolineae classes of the Chloroflexi.  All members of Clade 1 lack 

the N-module genes and exhibit a unique gene order where all subunits of the Q-module (NuoBCDI) 

occur one after the other. This pattern never occurs in normal complex I operons, and might be a result 

of the gene rearrangement(s) that led to the incorporation of an additional NuoM gene. Notably, the 

ORFs marked in red in the Didymococcus colitermitum TAV2 operon are annotated as an IS200-like 

transposase and a member of the PD-(D/E)XK nuclease superfamily, which could be remnants of the 

mobile genetic elements responsible for the genome rearrangements that formed these 2M operons 

(Figure 4A).  In Clade 1c the NuoBCDI genes are found together in a separate part of the genome, 

with NuoC and NuoD fused (as depicted in Figure 2A).  This NuoCD fusion is not unique to 2M 

complexes and also exists in normal complex I operons (Friedrich, 1998), but the separation of the Q-

module genes from the rest of the complex is peculiar.   

 

Clade 3 operons from the Nitrospira genus have two important differences between them and the other 

2M complexes.  First, is the complete absence of a NuoH gene.  Members of the Nitrospira also have a 

canonical Nuo-type complex I however, so at least one copy of NuoH is present in these organisms; 

perhaps this NuoH is used by both complexes.  No lone NuoH genes could be found elsewhere in any 

of the genomes.  The second major difference is the presence of a large NuoG homolog in the gene 

cluster where the N-module proteins are normally located.  As mentioned above, NuoG is part of the 

CISM superfamily, and in traditional complex I lacks the bis(MGD)Mo cofactor.  However, the NuoG 

homolog in these gene cassettes is much more similar to members of the CISM superfamily than normal 
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NuoG proteins, particularly the large catalytic subunits of formate dehydrogenases, so it is possible 

that in the Clade 3 2M complexes the NuoG has a novel catalytic role.  This similarity to formate 

dehydrogenases extends to the incorporation of an additional iron sulfur cluster, which connects the 

iron sulfur clusters used by canonical NuoG to the ancestral CISM active site as has been previously 

reported for the NuoG proteins of H. pylori and C. jejuni (Efremov and Sazanov, 2012).  However, one 

of the key ligand binding residues, SeCys/Cys140 (PDB:1FDO numbering) used for ligating the 

molybdenum atom in the bis(MGD)Mo cofactor (Cerqueira et al., 2015), is replaced by a glycine in the 

Clade 3 NuoG homologs (Figure S10).  The absence of this cysteine argues against the Clade 3 NuoG 

homologs being catalytically active in the known CISM fashion.  The H. pylori and C. jejuni complex I 

gene cassettes lack NuoEF as well, but they have been replaced by two additional proteins that have 

resulted in the utilization of flavodoxin instead of NADH (Weerakoon and Olson, 2008).  Neither of 

these two proteins have homologs in the Nitrospira genomes. 

 

Extension of the NuoL amphipathic helix 
The acquisition of a second copy of NuoM and its incorporation into a consistent well-ordered operon 

suggests that these 2M gene cassettes may produce larger versions of complex I with the ability to pump 

an extra proton reaction cycle.  To further investigate this idea, we closely examined the sequences of 

the NuoL genes from these 2M complexes in light of available crystal structure data. If these 2M 

complexes contain an additional NuoM subunit one would expect the entire P-module to be extended 

in length by the width of this subunit, and a canonical NuoL subunit positioned at the distal end of a 

2M complex would not be able to reach its amphipathic helix past the second copy of NuoM all the way 

to the NuoN (see Figure 1).   
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Remarkably, the alignments of the NuoL proteins in each of the three clades described above have 

an insertion of 26-28 amino acids in the middle of the amphipathic helix compared to their closest 

relatives lacking the second NuoM, as well as the NuoL sequence from T. thermophilus (Figure 5A-C).  

Although estimates of the exact position of these insertions vary slightly based on the sequence 

alignment algorithm used, they all place an insertion of this size within the amphipathic helix (see 

Methods, Figures S11-13).  Using the T. thermophilus crystal structure, we measured the distance spanned 

by 26 amino acids along the amphipathic helix to be ca. 37 Å—a distance that nearly exactly matches the 

width of the NuoM subunit (Figure 6A). Structural homology models built using I-TASSER (Roy et 

al., 2010; Yang et al., 2015; Zhang, 2008) fit the NuoL subunits from all three 2M clades very well onto 

existing complex I crystal structures and have placed the extra 26-28 amino acids as insertions in the 

middle of the amphipathic helix in agreement with the multiple sequence alignments (Figure 6B-D).   

 

Some of the closest relatives of the 2M complex NuoL genes contain the amphipathic helix insertion, 

but lack the additional NuoM.  In Clade 1, Caldilinea aerophilum, Ardenticatena maritima, Litorilinea aerophila, 

and five members of the Actinobacteria outgroup complex all have the insertion (Figure 5A).  No close 

relatives of Clade 2 exhibited this insertion, but the closest relative of the Clade 3 complexes, Ca. 

Methylomirabilis oxyfera, had an insertion without a second NuoM as well (Figure 5C).  From this we 

interpret the insertion of the 26-28 amino acids in the NuoL amphipathic helix as a potentiating mutation 

that enabled the addition of a second, distantly related NuoM subunit.  It is worth noting that many of 

the Actinobacteria (Ca. Microthrix parvicella, Nitriliruptor alkaliphilus, AAA007-J07 and AC-312-N20), C. 

aerophila, and Ca. M. oxyfera all have a second complex I gene cassette immediately up or downstream 

of the one depicted in Figure 5, raising the possibility that these organisms might use an additional 

NuoM from the second complex in lieu of forming their own 2M operon. 
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Bioenergetic considerations and physiological conditions leading to increased proton 
pumping 

The physiological and ecological utility of these novel 2M complexes remains to be discovered, however 

multiple instances of their convergent evolution, combined with their diversity and cross-domain 

horizontal gene transfer suggests that they have meaningful adaptive value.  We speculated that by 

containing an extra proton-pumping subunit, 2M complexes achieve a higher stoichiometry of protons 

translocated per 2e- reaction cycle.  On its face, such a trait might seem like an advantage for all 

metabolisms that employ complex I, but to inform this idea it is useful to examine the energetics of the 

reactions facilitated by these enzymes.  From a thermodynamic point of view, complex I and its 

homologs convert energy released from a redox reaction into transmembrane proton motive force.  

Below we examine how the redox reaction and electrochemical proton gradient can influence the 

number of protons pumped per reaction. 

 

The Gibbs free energy associated with the redox chemistry carried out at complex I is described by 

equation (1), which is simply the number of electrons transferred, multiplied by Faraday’s constant and 

the potential of the redox couple (E).  The potential of the redox couple is described by the Nernst 

equation (2), which is dependent on the standard state of the redox couple (E°), less the natural log of 

the ratio between the concentration of oxidized and reduced versions of each species. 

(1)  ∆𝐺 = −𝑛3𝐹𝐸 

(2) 𝐸 = 𝐸° − LM
N
ln𝐾, 	𝐾 = [U][WX(]

[UX(][W]
 

Complex I homologs convert the free energy of these redox reactions into free energy stored in the 

proton transmembrane electrochemical gradient.  This form of Gibbs free energy depends on the 
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number of protons translocated (nH), multiplied by the difference in electrochemical proton potential 

across the membrane (equation (3)).  The electrochemical potential is in turn dependent on the pH and 

charge gradients across the membrane (equation (4)). 

(3) Δ𝐺 = −𝑛X∆𝜇[X      

(4) ∆𝜇[X = 𝐹∆𝜓 − 2.3𝑅𝑇∆𝑝𝐻 

Combining the two Gibbs free energy terms yields equation (5), which gives the free energy change 

associated with the combined reactions of electron transfer and proton translocation.  

(5) ∆𝐺 = −𝑛X(𝐹∆𝜓 − 2.3𝑅𝑇∆𝑝𝐻) − 𝑛3𝐹(𝐸° −
LM
N
ln𝐾) 

Of particular interest for the discussion of these 2M complexes is the nH term.  Solving equation (5) for 

nH yields equation (6) which illustrates how each of the variables affects nH.   

(6) 𝑛X =
∆d7	efN(g°9

hi
j klm)

n.oLM∆pX9N∆q
 

 

Many different aspects of the reaction catalyzed by complex I homologs can affect the number of 

protons pumped, but only a few seem likely to require an increased proton pumping capacity during 

electron transport in the organisms we have identified that contain 2M complexes.  For example, a 

change in the identity or redox state of electron carriers may result in an increase in E°: i.e. a larger redox 

potential difference between the cytoplasmic electron carrier and the membrane bound electron carrier.  

Due to the positive dependence of E° on nH in equation (6), if all other factors remain the same, this 

change would increase the number of protons that can be pumped.  Similarly, decreasing ∆𝑝𝐻 will 

increase the value of nH, since there is an inverse relationship between these two values.  Restating this 

in physiological terms: as the extracellular pH increases, more protons can be pumped per reaction since 

there is a weaker proton motive force resisting the action. 
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The effect ∆pH can have on enzymes relying on proton motive force has already received much 

attention in the context of alkaliphilic bacteria such as Bacillus pseudofirmus OF4.  These organisms have 

adapted to high pH environments in part by increasing the number of c-ring subunits in their ATP 

synthases (Hicks et al., 2010; Meier et al., 2007; Preiss et al., 2014, 2013).  This adaptation increases the 

number of protons translocated per ADP phosphorylated, and helps compensate for the fact that each 

proton translocation carries with it less energy.  We hypothesize that in some cases the addition of the 

second NuoM subunit in 2M complexes could be a complex I equivalent of increasing the number of 

c-ring subunits in the Bacillus ATPase (Figure 7A).  With respect to this hypothesis, it is worth noting 

that of the five Desulfovibrionales encoding 2M complexes, four are alkaliphiles with pH optima between 

9.5 and 10 (Sorokin et al., 2011, 2008). 

 

In the case of alkaliphiles described above, the environment imposes a decrease in the electrochemical 

proton gradient.  Another possible reason for an organism to operate at an electrochemical proton 

gradient below “normal” levels may be the adaptation to slow growth.  Protons can leak directly through 

the cytoplasmic membrane in a way that is decoupled from energy conservation.  For organisms that 

metabolize catabolic substrates very slowly, this leakage may present a large problem to their viability 

(Niftrik et al., 2004; Valentine, 2007).  The amount of proton leakage through a membrane is related to 

the electrochemical proton gradient across it (Rupprecht et al., 2010).  In fact, the leakage current 

through the membrane appears to be non-linear with respect to transmembrane voltage, meaning a 

relatively small drop in transmembrane electrochemical proton gradient could result in a quite significant 

decrease in leakage current (Rupprecht et al., 2010).  If the catabolic activity of a slow growing organism 

respiring at low rates cannot keep up with the leakage current experienced by fast-growing organisms at 
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high respiration rates, then one possible solution would be to employ biochemical adaptations that 

decrease their normal operating transmembrane potential.  Living at this lower potential would require 

the pumping of more protons to conserve the same amount of energy contained in a redox reaction.  

The addition of an additional M subunit in complex I may help accomplish this. 

 

It is noteworthy that many of the organisms highlighted here, particularly Nitrospira and ammonia 

oxidizing Thaumarchaea, are notorious for slow growth, low biomass yields, and substrate limited growth 

conditions (Daims et al., 2015; Ehrich et al., 1995; Könneke et al., 2005; Stieglmeier et al., 2014).  

Additionally, three of the Verrucomicrobia (TAV1, TAV2 and TAV5) and Acidobacteria sp. KBS 89 were all 

isolated in a single study which described a novel cultivation strategy specifically designed for slow 

growing organisms (Stevenson et al., 2004).  Enrichments were incubated for more than 30 days and the 

colonies that were picked were invisible to the naked eye.  Interestingly, the Verrucomicrobia were isolated 

from the termite gut, and the Acidobacteria from soil, but both were isolated under slow growth conditions 

and both contained a version of the 2M complex. 

 

Finally, complex I can run in the reverse direction, producing low potential electron carriers (like 

NADH) from high potential donors (like ubiquinonol) at the expense of proton motive force.  This 

reverse electron transport occurs in many chemolithoautotrophs and anoxygenic photoautotrophs, 

which utilize electron donors that are at a higher redox potential than the cytoplasmic electron carrier 

required for carbon fixation (Aleem, 1966).  The Nitrospira that comprise Clade 2 (Daims et al., 2015; 

Koch et al., 2015) and the Thaumarchaea that comprise Clade 3 (Deschamps et al., 2014) both face this 

challenge with their autotrophic pathways. The ammonia-oxidizing Thaumarchaea utilize the highly 

efficient hydroxypropionate/hydroxybutyrate cycle for carbon fixation that requires electrons from 
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NADPH (Könneke et al., 2014), while Nitrospira utilize the reverse tricarboxylic acid cycle for carbon 

fixation, which requires the use of even lower potential ferredoxins (Lücker et al., 2010).  In both cases 

reverse electron transport must occur, since the midpoint potential of NADPH (-320 mV) and 

ferredoxins (ca. -500 mV) are well below the potential of the NH4
+/NO2

- redox couple used for their 

energy metabolism (+340 mV)(Simon and Klotz, 2013).  It may be that in these organisms, the 2M 

complexes are used specifically for reverse electron transport onto NADPH or ferredoxin (Figure 7B).  

In Nitrospina gracilis it has been proposed that a complex I operon lacking a traditional N-module could 

be responsible for reverse electron transport to the level of ferredoxin (Lücker et al., 2013).  Close 

relatives of that version of complex I do not appear in the Nitrospira genomes recovered to date, but 

the 2M complexes described here could in principal provide a similar energetic advantage under 

conditions of reverse electron transport.  Reverse electron transport may be an important function of 

the 2M complexes in photosynthetic Chloroflexi as well.  These organisms use reaction center II for cyclic 

electron flow, which, unlike reaction center I, does not produce a reduced ferredoxin (Fischer et al., 

2016).  Therefore, to withdraw electrons from the photosynthetic electron transport chain and transfer 

them to lower potential electron acceptors like NAD(P)H for carbon assimilation and anabolism, there 

must be an input of energy for reverse electron transport from quinols.  It is possible that in these 

organisms reverse electron transport can only be achieved using the increased driving force of the 2M 

complexes. 

 

Conclusions 
Complex I and its homologous bioenergetic complexes have been modified and repurposed many times 

during the evolution of life on Earth.  This evolution has involved the addition and removal of subunits 

specific for certain substrates onto a membrane-integral chassis containing between 1 and 3 large proton 
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pumping subunits (Moparthi et al., 2014).  The 2M complex I homologs described here represent a 

fascinating modification on the canonical complex I enzyme that incorporate a fourth large pumping 

subunit.  The phylogenetic analyses presented here demonstrate that these 2M complexes are 

polyphyletic, with respect to both the phylogeny of the host organism and the evolutionary history of 

the individual major pumping subunits.  Combined with the unique gene synteny found in each of the 

three clades this strongly supports the conclusion that the construction of these operons resulted from 

multiple cases of convergent molecular evolution. 

 

The highly conserved nature of the 2M complexes in each of the three respective clades implies that 

these are not pseudogenes or evolutionary dead-ends.  The construction of gene clusters with the 

additional subunit, as well as the precise size and location of the insertions in the amphipathic helix of 

NuoL implies that this increase in pumping potential has been selected for under specific adaptive 

pressures.  Future work is required to understand the conditions under which the complexes are 

expressed, and verify their subunit composition, substrate specificity, and proton pumping 

stoichiometry. However, the physiological diversity of the organisms containing these complexes 

suggests that they have evolved in response to different selective pressures and for different functions.  

The evolution of these complexes appears to have involved changes to the genetic content of an 

organism through horizontal gene transfer, genome restructuring through operon rearrangement, and 

protein primary, secondary, tertiary and quaternary structure modification in the extension of the NuoL 

amphipathic helix. Altogether, these observations highlight the different biological scales over which 

changes occur in order to bring about functional evolutionary transitions. 
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Figures 

 
Figure 1  Common complex I homolog quaternary structure and gene order.  Yellow arrows indicate 
proton translocations from the cytoplasm to the periplasm through the membrane-bound P-module. 
The C-terminal amphipathic helix of NuoL is labeled HL.  4Fe4S sulfur clusters are depicted as cubes, 
2Fe2S clusters as diamonds.  (A) Canonical 14 subunit NADH:ubiquinone oxidoreductase (Nuo) as 
found in T. thermophilus.  Genes are generally arranged in an operon in alphabetical order as depicted.  
(B) A complex I cassette found in Epsilonbacteraeota and best characterized in C. jejuni and H. pylori.  The 
NuoEF genes are replaced by two smaller, non-homologous, proteins, which facilitate the interaction 
with flavodoxin (Fld) instead of NADH.  The NuoG proteins in these operons contain an extra iron 
sulfur cluster.  (C) A methanogen-type F420H2:methanophenazine oxidoreductase (Fpo) showing the 
replacement of the N-module (NuoEFG) with the FpoF gene (in blue).  This gene is not commonly 
associated with the rest of the operon, but its inclusion in the functional protein complex has been 
demonstrated by purification of the native Fpo complex.  Note: two genes are annotated as NuoJ in 
these operons, but this represents a fission of the canonical NuoJ gene, and not a gene duplication event.  
(D) A common complex I gene cassette found in many organisms containing only the core 11 subunits 
of the complex.  Few of these complexes have been studied biochemically and it is currently unknown 
whether the electron donors for these complexes are soluble proteinaceous electron carriers such as 
ferredoxins (Fd), or whether additional proteins encoded elsewhere in the genome are recruited to the 
complex to interact with small molecule electron carriers like NADH.  
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Figure 2  2M complex I homologs were found in three discrete clades.  (A) Examples of the operon 
structure of 2M complexes from each of the three different clades showing the addition of a second 
NuoM subunit (in orange) as well as general operon features.  Closely related canonical complex I 
operons are shown for comparison (underlined).  In Clade 1 the second NuoM occurs right after the 
first, and the operons contain a unique gene rearrangement that swaps the NuoH and NuoI subunits; in 
some members of this Clade such as Anaerolinea thermophila UNI-1 the NuoBCDI genes occur separately 
from the rest of the operon.  In Clade 2 the two NuoM genes are found on either side of NuoL; the 
NuoM preceding the NuoL is characteristic of the complex I operons found in Thaumarchaea.  None 
of the operons have full N-modules, and only Clade 3 has a NuoG homolog in its operon.  (B) A 
maximum likelihood phylogenetic tree of NuoL subunits from a rarified subset of publically available 
genome data.  The NuoL genes from Clades 1, 2 and 3 fall far from one another in well-supported 
groups surrounded by NuoL genes in normal complex I operons—a pattern that implies that multiple 
independent events of convergent evolution gave rise to the 2M complex Is.  Bootstrap support is shown 
for values ≥80%.  High resolution NuoL trees, including those built from MUSCLE and MAFFT 
alignments are shown in Figures S1-3. 
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Figure 3  Phylogenetic trees of NuoM and N subunits from a rarified subset of publically available 
genome data.  Bootstrap support is marked on the branches with values ≥80% support are shown.  (A) 
As observed in the NuoL tree, the NuoM genes from Clades 1, 2 and 3 remain separate and distinct.  
Within Clade 2 the NuoM2 genes are appear to be polyphyletic, with separate origins for the 
Thaumarchaeal NuoM2 and the Deltaproteobacterial NuoM2.  Operon diagrams illustrate which NuoM 
homolog is found in each position of the tree.  (B) The NuoN genes also show the polyphyletic nature 
of the three 2M clades, as well and separation between Deltaproteobacteria and Thaumarchaeal members of 
Clade 3.  High resolution NuoM and N trees, including those built from MUSCLE and MAFFT 
alignments are shown in Figures S1-3. 
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Figure 4  2M Clade-specific NuoL phylogenies with operon structures.  (A) Clade 1 phylogeny reveals 
three major groups; 1a: Verrucomicrobia and Acidobacteria, 1b: Chloroflexia, 1c: Thermoflexia and Anaerolinea.  
All members and outgroups for Clade 1 lack NuoEFG genes and exhibit the unique reordering of the 
NuoH/I genes as highlighted in Figure 2a.  Possible mobile genetic elements in the Didymococcus 
colitermitum operon are highlighted in red.  (B) Clade 2 is comprised of members of the Deltaproteobacteria 
and marine Thaumarchaea fosmids; it shares the NuoML gene order found in the other known 
Thaumarchaea used as an outgroup.  (C) Clade 3 is comprised of members of the Nitrospira genus and 
contains a large NuoG gene as the only subunit of the N-module.  The designations NuoM1 and NuoM2 
were assigned based on which copy was more similar to the NuoM found in the most closely related 
normal complex I operons.  Note: some operons are truncated due to their location on the ends of 
genomic contigs, and do not reflect segmentation or truncation in intact genomes. 
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Figure 5  Sequence alignments highlighting the amphipathic helix insertions of the NuoL subunits from 
2M complexes and their close relatives.  Cladograms represent the same tree topology as those in Figure 
4, with colored branches marking the 2M groups.  The T. thermophilus sequence is included in the 
alignment as a sequence length metric of where the amphipathic helix begins and ends.  (A) Clade 1 
contains 26-28 amino acids insertions compared to many of the close relatives and T. thermophilus. (B) 
Clade 2 contains 27 amino acid insertions compared to their closest relatives (28 compared to T. 
thermophilus).  (C) Clade 3 contains 26 amino acid insertions.  Notably, in (A) and (C) the closest relatives 
of the 2M complexes that were used as outgroups in the phylogenetic analysis also have insertions in the 
amphipathic helix, despite not having a second distantly related NuoM in their complex I operons.  
MUSCLE alignments are shown here, Clustal Omega and MAFFT alignments are shown in Figures 
S11-S13. 
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Figure 6 Nuo crystal structure and structural homology models highlighting the characteristic amino 
acid insertion lengthening the amphipathic helical arm that spans the 2M complexes.  (A) NuoL, M and 
N subunits from the 4HEA crystal structure with a stretch of 26 amino acids marked in purple on the 
amphipathic helix (28 denoted by the additional red residues on either end of the purple region).  This 
length of helix is approximately the same width as the NuoM subunit shown in orange. I-TASSER 
structural homology models of NuoL from Clades 1, 2, and 3 modeled onto the NuoL subunits from 
4HEA are shown in (B), (C), and (D), respectively.  In all cases the insertions noted in Figure 5 have 
been colored purple, and were modeled by I-TASSER as helices that doubled back on the original helix. 
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Figure 7 Possible functions of 2M complexes.  (A) Extra proton pumping subunit may be used to 
extrude a fifth proton per reaction in order to conserve energy under conditions of lowered 
transmembrane proton motive force, such as in alkaliphilic environments or potentially as an adaptation 
to slow growth. (B) The extra proton may be used for extra driving force to conduct reverse electron 
transport onto low potential electron acceptors like ferredoxin (Fd) for use in carbon or nitrogen 
fixation. 
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Note: figures S1-S30 are available through CaltechDATA: 10.22002/D1.1425 
 
Figures S1-10  High-resolution phylogenetic trees showing organisms names and gene accession 
numbers for NuoL built using RAxML and MrBayes as described in the Methods.  Branches and leaves 
corresponding to members of 2M complex operons have been colored by clade (1:red, 2:green, 3:blue) 
and labeled numerically.  Figures S1-3 are constructed from sequence alignments using Clustal Omega, 
MAFFT and MUSCLE, respectively using the 90% rarified dataset with LG+CAT options.  Figures S4-
9 are constructed from Clustal Omega alignments using the 70% identity rarified dataset using 
Dayhoff+CAT, Dayhoff+GAMMA, LG+CAT, LG+GAMMA, WAG+CAT, and WAG+GAMMA, 
respectively.  Figure S10 is a tree constructed using MrBayes with an 80% identity rarified dataset with 
the LG substitution matrix run for 35,410,000 generations reaching a standard deviation of split 
frequencies of 0.022 (two runs with four chains, 1 cold, 3 heated).  Figure S1 is the same tree topology 
used in Figure 2b.  All trees show branch support with values 50% or greater. 
 
Figures S11-20  High-resolution phylogenetic trees showing organisms names and gene accession 
numbers for NuoM built using RAxML and MrBayes as described in the Methods.  Branches and leaves 
corresponding to members of 2M complex operons have been colored by clade (1:red, 2:green, 3:blue) 
and labeled numerically.  Figures S11-13 are constructed from sequence alignments using Clustal Omega, 
MAFFT and MUSCLE, respectively using the 90% rarified dataset with LG+CAT options.  Figures 
S14-19 are constructed from Clustal Omega alignments using the 70% identity rarified dataset using 
Dayhoff+CAT, Dayhoff+GAMMA, LG+CAT, LG+GAMMA, WAG+CAT, and WAG+GAMMA, 
respectively.  Figure S20 is a tree constructed using MrBayes with a 70% identity rarified dataset with 
the LG substitution matrix run for 50,000,000 generations reaching a standard deviation of split 
frequencies of 0.015 (two runs with four chains, 1 cold, 3 heated).  Figure S11 is the same tree topology 
used in Figure 3a.  All trees show branch support with values 50% or greater. 
 
Figures S21-30  High-resolution phylogenetic trees showing organisms names and gene accession 
numbers for NuoN built using RAxML and MrBayes as described in the Methods.  Branches and leaves 
corresponding to members of 2M complex operons have been colored by clade (1:red, 2:green, 3:blue) 
and labeled numerically.  Figures S21-23 are constructed from sequence alignments using Clustal Omega, 
MAFFT and MUSCLE, respectively using the 90% rarified dataset with LG+CAT options.  Figures 
S24-29 are constructed from Clustal Omega alignments using the 70% identity rarified dataset using 
Dayhoff+CAT, Dayhoff+GAMMA, LG+CAT, LG+GAMMA, WAG+CAT, and WAG+GAMMA, 
respectively.  Figure S30 is a tree constructed using MrBayes with a 70% identity rarified dataset with 
the LG substitution matrix run for 47,000,000 generations reaching a standard deviation of split 
frequencies of 0.025 (two runs with four chains, 1 cold, 3 heated).  Figure S21 is the same tree topology 
used in Figure 3b.  All trees show branch support with values 50% or greater. 
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Figure S31  I-TASSER structural homology model of the NuoG protein found in the Nitrospira defluvii 
2M complex (IMG Gene ID: 649658404) based on the formate dehydrogenase (PDB:1FDO).  Cysteine 
residues that ligate iron sulfur clusters found in the NuoG protein of traditional complex I homologs 
such as Nuo in T. thermophilus are shown in blue, red, orange, and yellow (coordinating FeS clusters N1b, 
N4, N5 and N7 respectively).  The extra putative FeS cluster binding cysteines are shown in green, at 
positions previously described in C. jejuni and H. pylori.  A FeS cluster at this location would likely connect 
the N7 cluster with the rest of the clusters in the chain.  The positions corresponding to the residues 
important for enzyme activity in formate dehydrogenase, SeCys140 and His141, are marked in purple.  
His141 is retained, but the equivalent position to SeCys140, the molybdenum atom ligand, is occupied 
by a glycine which cannot replace this function. 
  



 

 

240 
 

 
Figure S32  Sequence alignments of the NuoL gene from Clade 1 highlighting the 26-28 amino acid 
insertion in the amphipathic helix region.  These figures correspond to the same region and gene order 
as shown in Figure 5a.  (A) Clustal W alignment.  (B) MAFFT alignment. 
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Figure S33  Sequence alignments of the NuoL gene from Clade 2 highlighting the 26-28 amino acid 
insertion in the amphipathic helix region.  These figures correspond to the same region and gene order 
as shown in Figure 5b.  (A) Clustal W alignment.  (B) MAFFT alignment. 

 
Figure S34  Sequence alignments of the NuoL gene from Clade 3 highlighting the 26-28 amino acid 
insertion in the amphipathic helix region.  These figures correspond to the same region and gene order 
as shown in Figure 5c.  (A) Clustal W alignment.  (B) MAFFT alignment. 
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