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ABSTRACT 

Numerous studies of the economics of technological change have 

appeared since the seminal work of Abramovitz and Solow. Most are 

empirical studies that are without a formal theoretical basis. Scherer 

was the pioneer of theoretical work on the problem of R&D rivalry. 

This thesis revisits the issues in the literature on R&D. In 

Chapter I, sources of R&D allocative failures are identified and 

suggestions to remedy the situation are covered. In Chapter II, a 

selective critique of theoretical R&D models is provided. This 

completes Part I of the thesis. Part II constitutes the thesis proper. 

In Chapter III, I develop a nonsequential R&D search model and examine 

the economic determinants of R&D decisions. Predictions based on 

comparative statics results are given. The Reservation Technology 

concept is introduced. In Chapter IV, welfare implications of 

market structure on industrial R&D are investigated. It is shown that 

a monopolist may be less persistent in R&D search than a social decision 

maker. Sufficient conditions for noncooperative duopolists to be 

more persistent in R&D search than a monopolist are provided. A 

discussion on R&D economies of scale and a treatment of product and 

process innovation are also provided. Chapter V presents a new 

approach to the theory of R&D. A sequential R&D model with a two 

dimensional search space is developed and a Reswitching Property of R&D 

is established. 
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O'lapter I 

Sources of R&D Allocation Failures 

A Paradox 

A substantial amount of enpirical evidence suggests that there is a 

close and positive relationship between productivity change and 

aggregate R&D expenditure. F.arlier work by Griliches (1957, 1958), 

Kendrick (1961) , Mansfield (1968) and Salter (1969) , all support the 

hyp::>thesis at the industrial level. Results fran individual industry 

studies are confirmed by Brown and Conrad (1967), Raines (1968), 

Terleckyj (1974), and Mansfield and others (1977) at an inter-industry 

level. 

A central theme of economic research on R&D has been the role of 

government intervention to assure a more efficient rate of innovation. 

Four sources of market failures associated with R&D are summarized 

by Noll (1975) in a state of the art review. These sources are: 

(1) Indivisibility: the minimum efficient scale of R&D operations 

can be sufficiently large that the market for a particular 

class of ideas is not cx:mpetitive; 

(2) Inappropriability: inrovators are unable to capture the full 

econanic gains made possible by their innovations; 

(3) Indirect failures: if a good must be produced outside a 

canpetitive market, the institutions created to bring this 
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about may lead to inefficiencies in the advancement of 

knc:Mledge with respect to production and distribution of the 

gcx:>d; 

(4) Uncertainty: the eoonanic uses of the technical ideas that 

will ananate frcm R&D activities are not kna.vn in advance, so 

that the search for innovation is a gamble. (l'bll 1975, p. 3) • 

The first two sources of failures are due to the public good nature of 

R&D, but all four sources cause deviations from an efficient economic 

outcome. Thus, a paradox is apparent; while R&D may lead to substantial 

gains for society through reducing costs of production, an individual 

user may be motivated to let someone else develop cost-saving 

technologies. 

Because R&D has positive costs, other economic opportunities 

cx:mpete with R&D projects. HcMever, the social benefits of R&D appear 

to be large enough to warrant an effort to clarify the issues and 

evaluate mechanisms which might solve the incentive problan. This 

thesis will critique some of the debate surrounding the theory 

of innovation as initiated by Schumpeter's two books, Business 

cycles, and Capitalism, Socialism, and Dem:::cracy. In particular, I 

will focus on the notivation behind innovative activities. 

Based on this critique, I will construct a model of industrial 

R&D. In that m:xlel, industrial R&D will be restricted to the applied 

type. A clear distinction will be drawn between exogenous and 

endogenous variables. This in turn should help to explain the 
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inconclusive and inconsistent results obtained in sane empirical 

stt.rlies purp:>rting to test Schunpeter 's hyi;othesis. Welfare 

implications of the relationships between market structure and R&D 

activity will also be derived. 

Two causes of inappropriability are explored. '!he first is the 

indivisibility of R&D output. Once R&D canes to fruition, the 

resulting outp..it can be used an unlimited m:rnber of times without any 

form of depletion in quantity or quality. Hence, if the results of R&D 

can be applied to production processes or products not under the 

control of the innovator, the innovator will have little incentive to 

innovate in the first place. 'Ihe reason is that even if the innovator 

can charge the first user for his R&D results, that buyer can sell than 

to saneone else. But, if the innovator restricts the result to his a.vn 

use, the gain fran developing the innovation will be less. 

Despite the theoretical arguments just outlined, the problan of 

indivisibility of R&D activity itself is not crucial, because large 

scale R&D is closely associated with large scale technology, which may 

limit the p:>ssibility of decentralized market structures. Since large 

scale technology limits the technical feasibility of market structure 

choices, there may not be a great loss to society if the technology 

is not developed. Further, there may be a systematic bias against 

the development of small scale technology. Because the objective of 

a firm is to maximize profit, an innovation that limits the technical 

feasibility of market structures has value to an innovator beyond its 

direct effects on production costs. 
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'!he seo:::>nd cause of inappropriability is due to information 

disseminatioo fran the success of an innovation. R&D work is filled 

with uncertainty. A successful breakthrough on a particular R&D 

project tells others that the area of research is workable. Even if the 

original breakthrough is patented, a substantial amount of research 

opportunity may remain in related areas. To visualize this point, treat 

research as exploration in an Euclidean space with dimensions representing 

same technological characteristics, and a convex body representing the 

existing stock of knowledge. Success in pinp::>inting a p::>int outside 

the current state of knowledge will lead latecaners to "convexify" the 

newly identified p::>int with the set of prior knowledge. If benefits 

can be generated fran this seoondary activity, the innovator may not be 

able to capture all the benefits. Alternatively, if the innovator 

hides the breakthrough, and carries out the "convexifying" work 

himself, he suffers two losses. Someone else may discover the 

breakthrough and file a patent before he does, and in any case postponing 

development of the original breakthrough sacrifices present projects. 
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An .Approach 

The study of technological change is one departure i:oint in m::>ving 

fran static to dynamic analysis in econanics. The area was first 

seriously explored by Joseph A. Schunpeter (1939, 1947) • Schunpeter 

pro:pJSed a theory of innovatioo and later adapted it to the cx:>ncept of 

creative destruction.l He argued that a m::>nop::>listic market 

structure rnay be more ronducive to technological change than any other 

market structure, especially a o::mpetitive market. '!his implication 

rests heavily on the presence of potential rivalry, i.e. , entry. The 

theory is further restricted to "big" innovations: 

" ••• we shall i:mp:>se a restriction on our roncept of innovatioo and 

henceforth understand by an innovation a change in sane pro::luction 

function which is of the first and not of the secx:>nd or a still 

higher order of rnagnitude." 

(Schunpeter, 1939, p. 94) 

Galbraith (1956), through a different route, arrived at the same 

ronclusion. He relied on indivisibility of R&D processes as the main 

explanation for cx:mcentrated industry. 'Ihus he wrote: 

"There is no more pleasant fiction than that technical change is 

the pro::luct of the matchless ingenuity of the small man forced by 

canpetition to anploy his wits to better his neighoor. Unhappily, 

it is a fiction. Technical developnent has long since beo::me the 

preserve of the scientist and engineer. f.PSt of the cheap and 

simple inventions have, to p..lt it bluntly and unpersuasively, been 

made ••• Because developnent is rostly, it follows that it can be carried 
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only by a fian that has the resources which are associated with 

oonsiderable size." 

(Galbraith, 1956, pp. 86-87) 

As the School of Neo-Schunpeterians gradually evolved, Schunpeter's 

argunents were reinterpreted and much of the original flavor of his 

work was lost. HcMever, most of the work by that school was 

empirical. This caused a tendency to reinterpret Schumpeter's theory 

as needed to make use of the available data. Muller and Tilton (1969) 

were particularly worried atout the trend of misoonception. They 

pointed out that a theoretical disparity existed tetween Schunpeter's 

original argunents and those of Neo-Schumpeterians. Fisher and Temin 

(1973) wrote a critique of the whole tody of enpirical literature 

purporting to test Schumpeter's Hypothesis. Grether (1974), reviewing 

the enpirical literature,p::::>inted out the presence of a simultaneous 

equation problem in most of the work. Kamien and Schwartz (1975) 

provided a more a:rnprehensive review, covering toth empirical and 

theoretical studies. Their oonclusion with respect to the empirical 

literature is that the results are inoonclusive and sanetimes 

inoonsistent. · A p::::>ssible explanation of this ol::servation is that the 

equations used for regression are not based on sound theoretical 

IOC>dels. This motivates the present stooy of the microeo::manic 

foundations of production and R&D. 

A line of studies distinct fran the neo-Schumpeterians' empirical 

analysis was generated fran Schum:peter's work. ArrON (1962) developed 

a IOC>del to shcM that "the incentive to invest is less under moncr

p::::>listic than under a:mpetitive oonditions but even in the latter case 
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it will be less than is socially desirable." (ArrCM, 1962, p. 619). 

Whether ArrCM's result is in fact a counterexample to Schl.lfi'Peter's 

Hyp:::>thesis is questioned. Dansetz (1969) argued against ArrCM's 

implications. Hirshleifer (1971) investigated "pecuniary gains" as a 

counter argunent to ArrCM's result. Needham (1975) sunmarized the 

debate. HCMever, M::mtganery and Quirk (1974) questioned the validity 

of Hirshleifer's argument in a general equilibriun frane.work. 

A third independent line of theoretical research was also generated 

out of Schunpeter's thought-provoking work. Scherer (1967) first 

outlined a du:>poly m:>del with rivals o:mpeting to be the first in 

introducing a ne.w technology. Extensions of Scherer's w:irk were 

provided by Barzel (1968) , Baldwin and Childs (1969) , Kamien and 

Schwartz (1972) , and Flaherty (1977) • Ruff (1969) i;:osed the problffil in 

a Cournot F..conany. He used an optimal control approach and allCMed a 

variable degree of appropriability. His results reinforced 

Schurrpeter's Hyi;:othesis that "the rate of technological progress 

decreases as the nl.Illber of firms increase." (Ruff, p. 398) Certainty 

is assuned through:>ut Ruff's m:>del. Further work in line with 

Scherer's tradition b.lt introducing uncertainty formally can be found 

in I.oury (1976), Lee (1977}, and Lee and Wilde (1978). I.oury's work is 

of special interest. He adapted the rivalry rrodel to evaluate the 

welfare implications of market structures. The results he obtained 

rejected ArrCM's results across a spectrun of market structures. The 

implausibility of the restrictive assunptions in these IOC>deling efforts 

m::>tivates Part II of this thesis. In Chapter III, I introduce a 
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Treatment of p.iblic g::x:>ds in general equilibrium m::>dels was first 

tackled with the Lindahl solution concept.3 A literature review of 

this awroach can be found in Roberts (1974) • The difficulty with this 

solution concept is the test of stability. Individual incentive 

cx:mpatibility is not satisfied, and the free-rider problem is irnplicity 

ignored. Another approach incoqnrating incentive o:rnpatibility into 

public input allocation mechanisms is given by Groves and Loeb (1975). 

Their results are derived fran a partial equilibrium model and based on 

cx:mpetitive assumptions. Groves and Wyard (1974, 1978) extended this 

to a general equilibrium m::xlel. Hurwicz (1972) , and Ledyard and 

Roberts (1974) det0nstrated that if strategic behavior is allo.ved, it 

is i.mp::>ssible to find a resource allocation mechanisrn that yields 

'individually rational' Pareto-optima and which is also 'individually 

incentive o:mpatible' for all agents. Wyard (1977) further 

investigated the effect of alla.ving incanplete information of the 

allocation mechanisrn and of the resp:>nse of other individuals in the 

ircdel. The conclusion is that "for most differentiable mechanisms and 

envirorJT1ents, incentive o:rnpatibility will usually not be obtained even 

if information is incanplete. 11 (Wyard, p. 26.) 

A recently identified problem of R&D in terms of p:>licy issues is 

indirect failure. Dansetz (1969) was concerned with the proposal of 

government involvement. Capron and Noll (1971) st.mnarized the effect 

of regulation on technological change in regulated industries. 

Mont~ery and Noll (1974) docunented two case examples, namely, 

environment and transportation. M:.mtganery and Quirk (1974) · 
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investigated tax issues and their effects oo technological change. 

F.ads (1974, 1977} clarified the misnaner of "unregulated" industries. 

He urged a more thorough study of the effects of laws and regulations, 

subsidies and other forms of financial incentives, and the many forms 

of "externalities" generated fran goverment interventions in the 

econany on the speed and direction of technological change in both 

regulated and "unregulated" industries. 
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Cllapter I: Fcx:>tnotes 

1. Creative destruction is a dynamic eC:x:>nanic process through which 
ec:onanically obsolete production units are replaced by eronanically 
more efficient producticn units. 

2. 'lhe reswitching prCJ;perty of research and developnent is derived in 
Chapter V. It states the choice between research or developnent is 
an ec:oncmic decision such that "research and developnent" is not a 
linear sequence. One may Cb a little bit of research, then a 
little bit of developnent and sane more research. 

3. ·A Lindahl solution is a feasible allocation of private and public 
goods, a price system of private and public g::x:xls, and individuals' 
o::>ntributions to the public goods such that profits are maximized 
by producers and each ronsuner prefers this allocation to any other 
allocation within his budget ronstraint. 
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Chapter II 

A Critique of Theoretic R&D Models 

Literature Review 

The economics of R&D has grown extensively in the last two decades, 

so this critique will be selective. The interested readers are referred 

to more comprehensive surveys by Nelson (1959), Blaug (1963), Kennedy 

and Thirlwall (1972), Kamien and Schwartz (1975), and Noll (1975). Both 

deterministic and stochastic models are developed in the literature. 

In this critique, I shall concentrate on theoretical R&D models incorp

orating uncertainty explicitly. 

The blossoming of theoretical R&D literature is due to Scherer (1967). 

Scherer considers R&D as a class of investment projects characterized 

by a high level of uncertainty. The objective of a decision maker is 

to maximize expected net benefit. Scherer is interested in the timing 

of innovation and uses new technology introduction time as a control 

variable. Unfortunately, uncertainty is not treated explicitly. He 

assumes an exogenous expected reward to the first innovator. 

Uncertainty is then reduced to a premium on the discount rate. 

Subsequent revisions and extensions of Scherer's model by Barzel (1968), 

Baldwin and Childs (1969), and Flaherty (1977) suffer the same 

shortcoming. They assume away the problem of uncertainty and make the 

assumption that at least one rival firm chooses to do R&D. The 

question whether a firm will innovate at all under a greater or lesser 
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degree of rivalry is essentially left open. 

Kamien and Schwartz (1972) reformulate Scherer's model and 

introduce subjective probability distributions over technology 

introduction time, which remains as the control variable. Lee (1977) 

investigates a mirror image of Kamien and Schwartz's model by treating 

R&D costs as the control. It is demonstrated that ~he R&D decision is 

highly sensitive to assumptions on the relative payoffs to innovator 

and imitator. Kamien and Schwartz (1976) revisit the problem. They 

derive the result that there is generally some intermediate degree of 

rivalry at which a firm's innovative activity is maximized. 

Loury (1976) criticizes the work by Scherer and Ka.mien and Schwartz, 

identifying the partial equilibrium nature of their models. They and 

previous model builders do not consider the interrelations of rivals' 

decisions. Granted technological uncertainty is incorporated in 

Kamien and Schwartz's model, market uncertainty is left out. Loury 

instead follows Scherer's suggestion of looking into R&D rivalry as a 

Nash non-cooperative game. An equilibrium model emerges. An 

interesting aspect of Loury's model is that he treats R&D costs as 

one-period expenditures. The assumption is criticized by Lee and Wilde 

(1978). They formulate a variant of the model by treating R&D costs 

as continuous expenditures up to the time when one of the firms introduces 

a new technology. The differences and similarity of the conclusions 

of these two models are detailed in Section I. 

Ruff (1969) introduces a unique deterministic model which investigates 

the appropriability of R&D results. Allowing the final results of a 

firm's R&D investment to be determined by its own R&D effort and 

those of its rivals , Ruff arrives at the same conclusion as Loury, 
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namely, the rate of technological progress decreases as the number of 

firms increases. But Ruff assumes a fixed market structure. This 

assumption, together with the formulation of the appropriability 

problem, make one wonder why potential entrants are not benefited by 

existing firms' R&D effort if R&D results are not appropriable. 

A classificatory summary of the models in Table II-1 helps to 

clarify the different approaches. 

Deterministic 
Model 

Stochastic 
Model 

Types of Model 

Partial Equilibrium Model 

Sche-·er (1967) 
Barzel (1968) 
Bald\.;in and Childs (1969) 
Flaherty (1977) 

Kamien and Schwartz (1972,1976) 
Lee (1977) 

Intcro.ctivc 
Equilibrium Hodel 

Ruff (1969) 

Loury (1976) I 
Lee and Wilde (1978) 

TABLE II-1: Classificatory Summary of R&D i·l0dds 

All attempts except Ruff's consider static R&D decisions. Once a 

decision is made, the R&D manager abides by it and no changes are made 

until one of the other firms introduces a new technology. This feature 

is forced on the structure of the models when the authors use fixed 

reward and "winner gets all" assumptions. Such unrealistic assumptions 

are first discarded by Ruff when he integrates production with R&D. 
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Evenson and Kislev (1976) introduce a dynamic progannning model 

of R&D. Their model follows the footsteps of market search models. For 

an overview of the search theory development, see Kohn and Shavell 

(1974), Lippman and McCall (1976a, 1976b), Landsberger (1977), Karni 

and Schwartz (1977), Wilde (1976, 1977) and Burdett (1978). In 

Evenson and Kislev's model, parallel research is considered. Unfortunately, 

the discrete nature of their model creates several analytical difficulties 

and only a few interesting results are derived. In Chapter III of this 

thesis, a modification of the model is developed and analyzed; in 

particular, a continuous control variable is allowed. These two R&D models 

will be reviewed in Section II of this chapter. 

In contrast to previous models, Spulber (1977) introduces a two 

dimensional search space. This model incorporates non-sequential 

search strategies. Two cases are investigated, one for "once and for 

all" innovation and one for "innovation in each period." In 

Chapter V of this thesis, I formulate a sequential R&D search model 

with a two dimensional search space. A comparison of these two 

models is given in Section III of this chapter. A classificatory 

swmnary of the sophisticated models is provided by Table II-2: 

Degree of Freedom for R&D Search 

One Dimensional Search Space Two Dimensional Search Space 

Sequential Lee (Chapter V) I 
Evenson and Kislev (1976) Spulber (1977) 
Lee (Chapter III) Nonsequ en t ial 

TABLE II-2: Classification Summary of Sophisticated R&D Models 
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A recent breakthrough in the literature on R&D was due to Futia 

(1977). Futia proves the existence of a long run stochastic industry 

equilibrium under R&D rivalry. A short run industry equilibrium is 

defined as a pair of positive integers (n,j), where n denotes the number 

of identical firms and j the product produced or the production 

technique employed by all firms. Assume that if innovation takes place 

in any given time only one firm can be successful in innovation and 

all other firms lose the race. If innovation does not occur, 

all existing firms survive. Let A(£,k) be the probability that the 

number of R&D rivals in any given period is £ given the number of 

survivors at the beginning of that period is k. Futia assumes no 

exit of survivor firms, i.e. k .:_ £. With respect to entry, the 

conditional expectation of the number of firms in the industry at any 

time period is assumed to be an increasing function of the number of 

survivors at the beginning of that period, i.e. for any fixed m, 

m 
~ A(£,k) is a decreasing function of£. With this set of assumptions 

k=l 
Futia proves the existence of a unique stationary probability density 

over industry sizes, i.e. a long run stochastic industry equilibrium. 

An important implication of Futia's model is that even though market 

structure determines the intensity of R&D rivalry in the short run, in 

the long run, market structure itself becomes endogenous. R&D rivalry 

and market structure are stochastically determined by the demand 

situation, R&D costs and ease of entry in the long run. 
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Section I 

Loury and Lee & Wilde 

Two defects in earlier models are corrected in Loury's model. 

First, technological uncertainty is considered explicitly. Second, 

market uncertainty is introduced. Entry and exit of firms are allowed 

and welfare results are derived. A Nash noncooperative solution 

concept is employed. 

The structure of the model is as follows. Firms can choose the 

level of a one time cost to purchase an exponential distribution of 

technology introduction time, the higher the R&D cost the earlier the 

expected technology introduction time. Taking all rivals' choices as 

given, a firm maximizes expected return net of R&D cost. A first order 

condition for expected profit maximization yields a solution to a firm. 

A syrmnetry assumption then leads to the determination of the equilibrium 

R&D fixed cost investment. Loury proves two important results: 

(i) As the number of firms in the industry increases, the 

equilibrium level of firm investment declines, and 

(ii) increasing the number of firms always increases the 

expected industry technology introduction date. 

The driving forces behind these conclusions are the assumptions of 

a one-time R&D expenditure and full appropriability. Lee and Wilde 

(1978) reformulate the model allowing variable R&D expenditure. Cost 

is incurred in each period up to the time when one of the firms in 

the industry introduces a new technology._ Surprisingly, opposite results 

are obtained: 
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(i) As the number of firms in the industry increases, the 

equilibrium level of firm R&D investment increases, and 

(ii) an increase in the number of firms in the industry leads 

to an earlier technology introduction time. 

Thus, conclusions in this respect are highly sensitive to the cost 

assumption, which leads to a different reaction pattern to rivals' 

decision. 

The two models are not left without coincidence of conclusions. 

In particular, welfare results on market structure are the same. 

They are 

(i) The equilibrium expected prof its of a representative firm 

decreases as additional firms enter the industry. 

(ii) Given the same number of projects, an industry with noncoopera

tive rivals will invest more in R&D than a monopolistic one. 

(iii) A zero prof it equilibrium industry will always incur more 

R&D investment in the aggregate than a monopolistic one. 

Welfare results from these models, while interesting, should not 

be taken without a grain of salt. The fixed reward and "winner gets 

all" assumptions are clearly unrealistic for two reasons. First, 

R&D benefits are derived from production cost reductions. The amount 

of cost savings or, more important, the profit increment depends on 

the demand elasticity of the final good. Market opportunities are not 

considered. Second, R&D is discussed with no reference to production. 

For a given demand elasticity, benefits from cost reducing innovation 

are sensitive to the current production level. Market power in price 
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setting is not incorporated in the models. 

Section II 

Evenson and Kislev and Lee 

Evenson and Kislev were the first to formulate R&D into a search 

model. They assume that nature defines a probability distribution of the 

technology level F(y), yE(0, 00). A decision maker can choose an integer 

number of observations n from the distribution by paying a cost, 

c(n), increasing with an increase in the number of observations,i.e. 

ctn)>o. After obtaining a sample of realized technology levels, the decision 

maker rank-orders them and picks the best to compare with the current 

technology level. If there is improvement, the new technology is 

adopted; if not, sampling continues with technology maintained at the 

previous level. Analytical difficulties of the model arise out of the 

discrete nature of the control variable. First, even though an 

optimal functional of the Bellman equation can be established, the 

optimal sampling policy may not be unique. Second, the effects of 

parametric changes of exogenous variables on the optimal sample size can 

not be derived without imposing restrictive assumptions, such as 

allowing only one time sampling. Hence the "optimal stopping technology 

level" is not characterized. All these defects are corrected in 

Chapterrrr of this thesis. A continuous control variable, viz. R&D 

cost,is introduced. An optimal stopping rule is characterized by a 

Reservation Technologylevel1 and the optimal R&D search intensity is 

derived. Comparative statics results on these two variables are 

established. 
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In passing, a misleading benefit function is defined by 

Evenson and Kislev. Let V(y) be the optimal expected discounted 

return net of search cost. The Bellman equation of their model is 

restated: 

max co n 
V(y) = [y-c(n)+a f V(z) +a F (y)V(y)] n y 

Where y stands for the net return, and Fn(y) is the probability that all 

n observations are less than or equal to y. Evenson and Kislev defined 

a benefit function B(y,n) as the last two terms on the right hand side 

of the equation. Consider the choice of doing nothing in the current 

period. The expected discounted return is given by y-c(a)+aV(y). Thus, 

the incremental benefit due to R&D is B(y,n)-aV(y). It is the incre-

mental benefit that should be interpreted as the benefit function of 

R&D. The former definition puts a "subsidy" on the true benefits of 

R&D. The definition implies greater R&D benefits at higher technology 

levels, which in turn implies no stopping if R&D is currently an 

optimal choice. The latter definition shows declining R&D benefits 

with increases in technology level. Stopping will eventually be optimal. 

Section III 
Spulber and Lee 

In Spulber's model, a two dimensional R&D search space is defined. 

Denote wt as the research performance level. Let the sequence {wt} be a 

submartingale2 and a stationary Markov process with a given transition 

probability. Denote xt as the quality level corresponding to the out

comes of a development process. Assume xt+l is drawn from the distri

bution given by F (•) and F ' (•) < F (•) if and only if wt'~ wt. 
wt wt - wt 

Spulber proves the existence of a unique 'switch-point' level of quality 

x*, with the property that if x > x*, the R&D process is stopped, 
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and if x < x*, the R & D process is continued. Spulber considers 

two cases. For the "one time innovation" case, the two dimen-

mensional search space is essentially treated as one dimensional. 

In his own words, "the stopping rule can be put in terms of either 

w* or x*", where w* is the switch-point research performance level. In 

the "innovation in each period" case, only sketchy results are discussed. 

In his model, Spulber never explicitly considers the economics of R&D. 

R&D are treated exogenously in a stylized growth model with the R&D 

decision determined by the trade off between immediate and future 

benefits. Optimal choice of reasearch, development or stopping under 

different state points in the two dimensional search space is not 

discussed. These shortcomings are corrected in Chapter V of this 

thesis. 

Conclusion 

Although this survey is selective, it has covered the mainstream 

developments in one aspect of the R&D literature. Over the recent past, 

theoretical R&D models have flourished. The rapid improvements in con

ceptualizing R&D problems transcend the deterministic partial equilibrium 

models leading to stochastic equilibrium models and from static decision 

models to dynamic search models of sequential and non-sequential 

strategies. More promising is Futia's breakthrough in proving a 

stochastic equilibrium industry size. A synthesis of the models by 

Lee and Futia is clearly an approach which has the potential of 

formalizing one aspect of the theory of innovation, verbally sketched 

out by Schumpeter some forty years ago. 



26 

Chapter II: Footnotes 

1. A Reservation Technology Level is that below which R&D is 

continued and above which R&D is stopped. 

2. Let {Wt} be a sequence of random variables and It be the 

information in the past history just before the observation 

of Wt+l and such that I 1 c I 2 c The sequence {Wt} in 

a submartingale with respect to It if 

E (Wt+l ( It) 2:_ Wt 
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Chapter III 

Non-Sequential R&D Search Model 

The number of studies of technological change increased ever 

since the seminal work of Solow (1957) and Abramovitz (1962). Lack

ing a theoretical model, Solow used residual analysis
1 

and discovered 

that about 80% of the increase in productivity
2 

in the U.S. economy 

over the period 1909-1949, cannot be explained by capital investment 

alone. This large residual was attributed as "technological change." 

Most subsequent work in this area has been empirically oriented. The 

results in general confirm Solow's conclusions. For example, 

Denison (1962) found that 42% of the rise in output per worker3 

between 1929 and 1957 is caused by improved worker's education, 

36% by technological change, and only 9% by capital accumulation. 

The scattered amount of effort invested in developing theoretical 

bases for econometric models has yielded little insight into the 

process of technological change. It is conceived as a parameter in 

most models. Results are obtained by shifting this parameter to 

generate comparative statics results. 

The basic notion of the theory of technological change can be 

summarized by Hicks neutral technical progress.
4 

The equation 

representing this concept is given by 

Y = aF(K, L) 
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where 

Y = quantity output, 

a = a(t) 

=shift parameter of the production function, F, 

K = capital input to the production process, and 

L = labor input to the production process, 

If the production function F is linear and homogeneous in K and L, 

it can be rewritten as: 

Y = aF(K, L) 

= F(aK, aL), if Fis linear and homogeneous. 

Now, if a(t) is expressed as an exponential growth function, say 

where 

-mt a = e 

m = the rate of improvement, 

t = time elapsed from initial period, 

and, if the rate of improvement for capital and labor differs, one has 

a generalized Hicks-neutral technical change. Special cases are m 

being constant fork, i.e., Harrod-neutral technical process; and m 

being constant for 1, i.e., Solow-neutral technical progess. These 

are the three basic notions of technical change and equations used by 

econometricians for regression purposes. They are usually referred to 

by the expression "manna from heaven." 5 Embodiment theory was proposed 
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requiring that new capital or labor will only incorporate knowledge 

at that moment of time. Unfortunately, according to a comment by 

Griliches (1965), 

"The fact that standard economics had no theory of technical 

change explains, I think, why we got around to trying to 

measure it as the 'residual.' Because it was an empty box, 

we proceeded to define it as everything that cannot be 

explained by standard theory ••• The hypothesis of embodi

ment, while potentially very fruitful, in practice turned 

out to be nothing more than a relabeling of an already 

empty box." [Griliches, p. 344.] 

If progress is to be made in understanding technological change, 

economists must study the production function itself, and how a larger 

set of production functions can be provided to extend society's choice 

options. With this orientation in mind, an innnediate observation is 

that any talk of shifts in a production function (not necessarily 

systematic changes) implicitly assumes a cost (perhaps of research 

and development) of bringing a new production function (or technology) 

into existence. There exists a "production function" of production 

functions. Society's choice space is extended to a higher dimension 

including not just the combinations of capital and labor but the 

production processes as well. 

There are studies that try to explain this second "production 

function." Organization theorists, for example, have made some pro

gress on the problem. They suggest that more effective research output 

can be generated by a better organizational set-up, which in turn 
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depends on the size of the research unit. Cooper (1964) in a study of 

the electronics and chemical industries concluded that large firms are 

plagued with bureaucracy, which causes a disharmony for creative 

activities. This in turn leads to the observation that a given product 

can cost three to ten times as much if developed by a large firm 

instead of a small one. Blair (1972) supported this conclusion and 

stated that bureaucracy and creativity are incompatible. For a review 

of studies of technological changes in the organizationalist paradigm, 

see Noll (1976). 

A third production function may be asked, and an infinite regress 

problem of the following sort arises: 

We wish to minimize some production costs through the produc

tion of new production processes, but then we also want to 

minimize the cost of this second production. A third pro

duction function (distilled from organization studies perhaps) 

is then postulated. So, we get into research on research ... 

Somehow a stop to this infinite problem is necessary to reveal which 

"research" is studied. The existence of other "research" is obvious, 

but only one move can be made at a time. 

In this chapter, the type of research under consideration will be 

made explicit. The distinction between endogenous and exogenous vari

ables is also clarified. Comparative statics results are derived in 

order to explain anomalies in controversial econometrics predictions. 

I propose to study technological change, considering one kind of 

research at a time. Uncertainty and imperfect information are incor

porated in applied research. Technological change is studied only at 



33 

the firm level. 6 The rational actor approach is used. I assume the 

objective of a firm is to maximize its discounted expected stream of 

profits. Two sources of technological change are considered. They 

are: 

(1) "Exogenous" Technological Change 

Technological opportunities in any area of research are 

influenced by many factors. In particular, research in 

other sectors of the economy may yield useful information. 

However, such activities are not within the control of the 

firm. The study of this aspect of technological change 

(from the individual firm's point of view) is much in line 

with the traditional way of formulating the R&D problem. 

Nevertheless, any study of exogenous technological change 

must include consideration of the interrelation between dif-

ferent technologies. For example, basic research results 

from non-prof it organizations such as government research 

facilities and universities may have a significant impact on 

industrial R&D. 

(2) Research Oriented Active Technological Search 

This second aspect of technological change is very important, 

and in fact complementary to the first. Obviously, one can-

not talk about new technology without asking how the new 

alternatives are generated. Unfortunately, by its very 

nature theoretical modeling of this activity is very dif f i-

cult. Only an initial attempt is made in this chapter, 

where a basic model is formulated. A more detailed study, 
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integrating production and R&D, is attempted in the next 

chapter, where welfare ranking of market structures will be 

considered. 

Since R&D is a very complex process, a number of interesting 

aspects must necessarily be ignored. Rosenberg (1975) correctly 

pointed out that research in a broad sense may be as simple (but yet 

significant) as ascertaining the production function associated with 

different input mixes. Technological change may come about in the form 

of process and product innovation, 
7 

the two being difficult to 

separate. A new product may be an input to an existing on-the-shelf 

production process which is not used because of a missing input. 

Alternatively, the successful commercialization of a laboratory tech

nology may lower the price of a product so much that the product can 

be used as an input to produce a once expensive product. These are 

very interesting research topics but will not be taken up here. Pro

duct and process innovation will be discussed in the next chapter. 

The inter-relatedness of research in different sectors of an economy 

is more difficult and ultimately calls for a general equilibrium model. 

As a start, I offer a non-sequential R & D search model (at the 

firm level), which will provide a first step toward a microeconomic 

foundation for technological change. 

The layout of this chapter is as follows. In Section I, the 

basic concepts of the model will be outlined. I assume that the pre

sent state of knowledge of the firm defines a distribution of potential 

technologies for it. The researcher knows the distribution. The 

objective of the decision maker is to maximize the discounted expected 
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sum of profits. The existence of a solution to the stochastic dynamic 

programming problem facing the decision maker is proved. In Section II, 

comparative statics results are derived. The concept of a Reservation 

Technology Level is introduced. This helps to explain why technology 

search may be stopped in a research area for some time, and later 

resumed. In Section III, I consider the effects of certain shifts in 

the distribution of potential technologies. This work substantiates 

the complementarity of basic and applied research. The chapter con

cludes with a summary of the results obtained and some speculation on 

other potential areas of research to be discussed in the next chapter. 

Section I 

Introduction 

In this section, I introduce the basic concepts of the model 

which will be developed and generalized in this and the next chapter. 

The basic structure of the model will be outlined here. Mathematical 

complications are presented in an appendix whenever it will not affect 

the continuity of the discussion. I also wish to emphasize at the 

beginning that the model will be structured in such a way that the 

firm-relevant R&D variables are endogenous, while R&D in other sectors 

are treated as exogenous. Exogenous technological change is considered 

briefly in Section III. 

The basic model is an extension of a model developed by Evensen 

and Kislev (1976), using agricultural research as an example. Their 

model uses stochastic dynamic programming with a discrete control 

variable. But discreteness in the control variable causes technical 
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difficulties in their formulation. A few interesting results were 

obtained by imposing very restrictive assumptions, e.g., the researcher 

can perform only one experiment, or a steady state prevails. I shall 

modify their model by introducing a continuous control variable, the 

R&D search intensity. This brings my model closely in line with labor 

market search models as first investigated by McCall (1970). Lippman 

and McCall (1976) provided a survey of this branch of research. Wilde 

(1977) extended McCall's sequential labor search model to nonsequential 

search, and established the existence of an equilibrium distribution of 

wage offers. I shall use a non-sequential search approach as well. 

A justification is that the firm can decide on a R&D budget, but cannot 

dictate the precise nature of the results. This may be due to the 

researchers doing some irrelevant projects, either consciously for pro

fessional interest or unintentionally due to wrong set-up and blind 

alley search. The number of actual observations from the distribution 

of potential technologies is therefore random. 

A number of interesting results are obtained from the new model: 

The learning concept as explored by cost engineers is formulated as 

statistical learning; 8 the formal results are stronger than those 

derived by Evensen and Kislev; a corrected benefit concept emerges; 

and the complementarity of basic and applied research is emphasized. 

We turn now to a description of the concepts used in the formal 

model. 
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Concepts of the Model 

A number of empirical studies will help in conceptualizing the 

formal model. Technological opportunity was defined by Phillips (1966) 

as the environment to which possible technological advances are con

strained. Thus, associated with any state of basic scientific know

ledge is a distribution of technological opportunities. The driving 

force in shaping this environment for applied research is basic 

research. Basic research is considered to be exogenous in my model of 

applied research, As technological progress pushes to the frontier 

of the environment, the prospect of getting any further advance 

lessens. Thus, technological progress will slacken over time unless 

exogenous changes reshape the research possibility more favorably. 

Technological opportunities, therefore, enter into the firm's objective 

function. 

Scherer (1965), Kelly (1970), and Baily (1972) found evidences to 

support this conjecture. Baily, for example, found that the number of 

new drugs introduced in any year was positively related to R&D spending 

in preceding years, and negatively related to a seven-year moving aver

age of past total new drug introductions. The premise also explains 

Schmookler's observation (1966) that there is no support to the 

hypothesis that inventions in a field beget further invention. Indeed, 

within a given research environment, my model predicts inventions, 

when viewed as applied to technological progress, may have a negative 

effect on further investment in inventive activities. However, some 

inventions or discoveries can contribute to basic technological progress, 

thus promoting more progress. Moreover, such inventions are often 
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exogenous to the research environment for which they are considered to 

be basic technological progress. 

While Schmookler (1962) emphasized the importance of the demand 

side of innovative activities, the decision to engage in applied R&D 

can be viewed as largely an economic decision, in which the benefits 

and costs of the endeavor are balanced against each other. Thus, the 

importance of the state of knowledge can be attributed to two factors. 

First, it makes possible higher levels of technology. Second, it may 

allow the achievement of a given level of technology at a lower cost. 

The Formal Model 

In the formal model, technology opportunities are represented by a 

probability distribution of potential technology level, F(z), defined 

on the closed interval [y' + e' y" + e)' where z is an index of potential 

technology level, and 8 is the parameter representing other related 

R&D activities. Delaying the consideration of exogenous technological 

change, we suppress the 8 notation. For the present, the relationship 

of R&D to production will be ignored, although it will be examined in 

the next chapter. The following assumptions are made: 

Assumption I: A research manager has a subjective probability 

assessment of the potential results of R&D. Assume 

this subjective distribution coincides with the true 

distribution as defined by the state of knowledge, 

F(z). The distribution is defined on the closed 

interval [y', y") with the current technology level 

practiced by the firm given by y. 
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The manager can form a research team, which conducts 

research at some intensity, A. The cost of this 

effort is given by KO.), where K' (),) > 0, and 

K"(:>.):::O. 

Assumption III: R&D is conceived as a process of acquiring observa-

Assumption IV: 

tions from the distribution of potential technologies. 

At R&D search intensity, A, the number of observa

tions is random, but controlled by a Poisson distri

bution with mean A. Hence, an alternative interpre

tation of A is the expected number of observations 

of new technologies, or the mean time for observing 

a new technology by the inverse of A. Thus, the 

manager can choose the expected number of observa

tions, but not the realized number of observations. 

Let the realized number of observations be n. The 

task of the manager is then to rank order these n 

observations, and compare the highest value of these 

observations with the current technology level. 

Assume that the higher the technology level, y, the 

higher the net benefit R(y) to the firm, i.e., 

R' (y) > 0. If the best observed technology is higher 

than the current one, the new technology is adopted 

without further cost. If not, the current technology 

is retained until a better technology shows up. 

Hence, the relevant distribution to the decision 
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maker is the distribution of best observed technology, 

defined as H(z, A). 

Assumption V: R&D is nontransferable. 

A number of results can be readily derived from this set of assumptions. 

Proposition III-1: H(z, A) =exp {-A[l - F(z)}} 

Proof: See Appendix. 

Several properties of the best observed technology function, H(z, A), 

are easily obtained: 

(i) H(z, 0) = 1, \jze:[y', y"} 

(ii) H(z, A ) 0,'i/z<y", 

= 1, z = y" ' 

(iii) H(y'' A) = exp(-A) > 0, 

(iv) H(y", A) = 1, A> 0, 

(v) ClH(z,A) 
= -H(z, A) [l - F(z)] < 0 ClA 

2 
(vi) Cl H(z 2 A) 

= H(z, A) [l-F(z)} 2 >0. 2 
ClA 

The figure below will make clear the stochastic dominance of the best 

observed technology distributive function with respect to R&D search 

intensity, A. 

Thus, the ~ollowing proposition is established: 

Proposition III-2: The best observed technology distributuion is 

stochastically ranked by R&D search intensity. In 

particular, it is convex downwards with respect to A: 
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Probability 

1 

O --~~t--~--1~~~~~~~~~-'-~~--1 .... Technology Level, z 
y' y y" 

Figure 111-1. Stochastic Dominance of Best Observed 
Distributive Functions 

Define the following terminology: 

E(Liy) - expected technological improvement with R&D search 

intensity A 

(Y" 
= J y (z - y) dH(z; A) 

(Y" = y" - y - J y H(z;A)dz, integration by parts 

Two further propositions can be derived: 

Proposition 111-3: There is a diminishing increment in technological 

improvement for a given state of knowledge. 

Proof: 

3E(Liy) 
ClA 

y" 
= ~ H(z; A) [l - F(z) ]dz> 0 

2 y" 
Cl E(Liy) = _ (y H(z; A) [l - F(z)] 2dz > 0 

n2 :Iv 
Q.E.D. 
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Proposition III-4: (i) For a given state of knowledge the higher the cur-

Proof: 

where 

rent level of technology the less the expected 

technological improvement with a fix R&D search 

intensity. 

(ii) The expected technological improvement decreases 

()E(lly) = 
()y 

at a decreasing rate as the current level of 

technology is improved. 

-1 + H(y;A) < 0 , 

H(y;A) Af(y) > 0 , 

f(y) 
()F(y) =---

()y 
Q.E.D. 

Hence, if the technology level, y, is interpreted as the negative of 

the average cost of production with constant marginal cost, one has a 

statistical explanation of the learning curve phenomenon, i.e., 

average cost decreases over time at a decreasing rate in an expected 

sense. 

The decision problem to be solved by the R&D manager is to find a 

level of R&D search intensity so as to maximize the expected discounted 

stream of net income. Let V(y,N) be the optimal expected present value 

of the system of production and technological search when there are 

N decision periods left. If the R&D manager chooses a R&D search 
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intensity A, the discounted expected value of the system starting from 

the next period is given by: 

r y" 
CL )y V(z,N-l)dH(z,AN) 

if the best observed technology is at a higher level than the current 

one; CL stands for the discount factor. The corresponding term is 

given by: 

if the best observed technology is no better than the current one. 

Combining these two terms with the current net income from production 

and the current cost incurred for the R&D program, gives: 

V(y ,N) = m:Nx { R(y) - K('N) +a !./" V(z, N-1) dH(z, AN)+ aV (y, N-1) H(y, AN)} 

\f N > 0 

where as above, R(y) is the net revenue to the firm at the technology 

level y and K C\J) is the cost of searching at the level ~· This is 

a recursive functional as developed by Bellman (1957). Define 

V(y,O) = O. Further assumptions on the R&D cost functions are: 

lim K' (A ) = K > 0 and 
;>..+() N ' 
N 

K(O) = 0 , \f N > 0 

For the infinite horizon case, the analogous functional is: 

V(y) = ~x { R(y) - K( A) + a;; y"v (z) dH(z; A) + aV (y) H(y; A)} 

= 
max 

A { 
y" } [R(y) + CLV(y)) - K(I..) + CL;; [V(z) - V(y)] dH (z; A) 
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An explanation is required for the second manipulation. Consider the 

following interpretation: 

R(y) + aV(y) = value of the system if the R&D manager does not 

engage in any form of R&D at the present period, 

but behaves optimally from the next period onwards; 

K(A) =cost of R&D search at intensity level A; 

l
y" 

B(A, y) =a y [V(z) - V(y)] dH(z;A) 

= discounted expected optimal benefit if research is 

pursued in the current period at intensity A. 

Clearly, this definition of a benefit function differs from that 

1 d . d . . l' 9 h d common y use in ynamic programming iterature. T e latter was use 

by Evensen and Kislev (op. cit., p. 271). I claim that my definition 

is the appropriate one for economic analysis. Indeed, it can be shown 

that the definition used by Evensen and Kislev has some contradictory 

. l' . 10 imp ications. 

I shall now establish some properties of the benefit function: 

Proposition III-5: B(y,A) is concave w.r.t. A, and B(y,O) = O,~y . 

..,( y" 
Proof: B(y;A) =Jv [V(z) - V(y)] dH(z;A) 

y . 

= alV(y") -V(y) - f y" H(z, A) a~~z) dzl, integration by 
Y ~ parts. 

B(y;A) is clearly non-negative, and B(y;O) = 0, 

since H(z;O) = l,~z . 
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Proof: (contd) 

and 

Concavity of the benefit function is straightforward: 

oB (y; A) 
()A 

=ahy" H(z,i.) [1-F(z)] a~~z)dz>O 

a
2
B(y;A) j_y" 2 av(z) = -a y H ( z , A) [ 1 - F ( z) ] ~ dz < 0 n2 o Q.E.D. 

Note that concavity of the benefit function implies diminishing returns 

to the intensity of R&D search, Hence, with a convexity assumption on 

the cost function of R&D, the optimal level of R&D intensity must be 

unique. A second property of the benefit function is given by the 

following: 

Proposition III-6: For a given level of knowledge, the higher the cur-

rent level of technology, the less the benefit of R&D search. 

Existence 

=-a[l-H(y;i.)] av(y) 
Cly 

< 0 • 
Q.E.D. 

I shall now prove the existence of a solution to the infinite 

horizon problem. The proof is a straightforward application of 

Denardo's Existence Theorem (1967). Two prerequisites are necess~ry 

before one can use the theorem, namely, monotonicity and contraction 

assumptions. I state the result in the form of a theorem, leaving 

the proof in an appendix. 
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Theorem III-1: Given the assumptions of the model, there exists a 

unique, continuous, bounded solution to the functional equation. 

Proof: See appendix. 

This completes the preliminary analysis of the model. The next task 

is to derive implications from the model. 

Section II 

Optimal R&D Search Intensity 

Theorem 111-1 establishes the existence of a functional, such that the 

following is satisfied: 

l (Y" l 
V(y) = m~x R(y) + aV(y) - K(t,) + a )y [V(z) - V(y)) dH(z; ;>..)J 

Thus, one can get the first order condition for maximization of the 

problem on the right-hand side by differentiating the expression in 

the bracket. Comparative statics results are then derived. Let 

WO. ;y) = R(y) - K(;>..) + aV(y") - ah y" H(z; ;>..) a~;z) dz 

Assume W(;>..;y) is twice differentiable w.r.t. A. 

The first order condition for maximization of W(A;y) A is given 

by: 

aw(A ;y) 
ah 

(Y" oV(z) 
= -K' ( A) + a J Y H ( z ; A) [ 1 - F ( z) ] az- dz = 0 . 
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This condition requires that the marginal cost of R&D, K'(A), should 

be equal to the discounted expected marginal benefit, 

(Y" av(z) 
a)y H(z;A) [1-F(z)J az dz 

Note that the expression takes into account all future benefits and 

costs, assumed to be optimally balanced. The second-order 

condition is obtained by showing a negative sign for the second 

derivative of W(A;y) A: 

a2wp..-y) f Y" 2 av(z) 
a:>..1' = -K"(;>..) - a.Jy H(z;A) [1-F(z)] az-- dz< 0 

Assume that (dW(A;y))/(dA) is differentiable w.r.t. a and y. Applying 

the Implicit Function Theorem on the first-order condition, and de

noting the optional search intensity by A*, the following comparative 

statics results can be derived: 

Theorem III-2: and 

Proof: 

dA* 
- < 0, if dy 

a2v(z) 
> O,'U zs[y',y"]. 

azaa. 

(Y" 
-K"(;>..) - a. )y H(z;:>..)[l-F(z)]

2 a~~z)dz 

d:>..* -a.H(y,:>..)[1-F(y)J ~ 
dy = -

-K"(:>..) - a. ;;y" H(z;:>-)[l-F(z)] 2 a~~z)dz 
< 0 

Q.E.D. 
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The comparative statics results have the following interpreta-

tions. An increase in the value of the discount factor (i.e., the less 

one discounts the future) will lead to more intensive search for a 

better technology because ceteris paribus the future stream of profits 

is valued more. At the same time the opportunity cost of investment 

is lower than before, and leads to more investment. Similarly, the 

higher the current technology level, the less intensive is the search 

for a better technology because, ceteris paribus, the lower the proba-

bility of finding a better technology. 

Given the definition of V(y), and the first-order condition, it 

follows that an increase in the current level of technology will lead 

to an increase in the optimal discounted expected stream of profit. 

Corollary III-1: 

Proof: 

aV(y) > O 
ay 

y" 
= R'(y)-K'(;l,)d'-+ctH(yO:\)ClV(y)+ct ( oV(z) H(z;).)[1-F(z)] d'-dz 

dy ' Cly Jy az dy 

= R'(y) + ctH(y,A)a~~y) , by the first order condition. 

Therefore, 

oV(y) - R'(y) > 0 since ctH(y;).) < 1 ay- - 1 - ctH ( y ; ;\) ' Q.E.D. 

Reservation Technology Level 

As noted earlier, this model is closely related to labor 

market search models. It is therefore not surprising to find a natural 

analogue to the reservation wage concept. Call this a reservation 

technology. Define the following marginal benefit function: 
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'¥(:A.;y) = ct JY" H(z;A) [1-F(z)] ()V(z) dz 
y ()z 

Theorem III-3: Given the assumptions of the model, and 

3 ye: [y' ,y"J ·~:iJ;(O,y) : et!vy" [1-F(z)] oV(z) dz > K - oz y 

then 

3y* e: (y,y") ~:i)!(O,y*) = C'J. f Y" [1-F(z)) oV(z) dz = K 
)y* oz 

Proof: 

Claim: ijl(A;y) is convex and decreasing A. 

First and second derivatives of the ijl(A;y) A are given by, 

. r y" 2 = -Jy H(z; A) [1-F(z)] 
0~~z) dz < 0 , and 

y" ( ) a.i H(z; A) [1-F(z)] 
3 0~/ dz > 0 . 

Four additional properties of ~(A;y) are: 

lim [y" (j) l/l(A;y) = a y [1-F(z)] 0~~z) dz > 0 , 
A~O 

(ii) lim 
ijl(A;y) 0, 'riy < y", = 

A-+<"> 
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(iii) -aH(y;>.) [1-F(y)] aV(y) < 0, \j). 2: 0, and 
ay 

(iv) ijl(l.;y") = 0, 'rJ A 2: 0 • 

Hence, if 3y E [y' ,y"] :i:ijl(O,y) > K 

and since ijl(O,y") = 0, and aijl(O,y) 
< 0 ' ay 

3y* e: (Y,y") :i:ijl(O,y*) = K by the Mean Value Theorem. 

A simple diagram will help to illustrate the theorem: 

KI (A) 

ijl(A,y) 

0 = >.(y*) 

Marginal Costs and 
Benefits of R&D 

K' (A) 

1-------ijl(l.;y*) 

>.(y) 

Figure III-3: Marginal Costs and Benefits of R&D 

R&D search 
intensity, A 

The above diagram also indicates the uniqueness of an optimal choice 

of R&D intensity. Q.E.D. 

y* is the reservation teclmology. One property of the reserva

tion technology is that, whenever a teclmol~gy level greater 

than or equal to y* is observed from R & D, the search process 

stops unless exogenous changes modify the underlying 
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search environment. If the current and best observed technology is 

less than the reservation technology level, the R&D search effort con-

tinues. Hence, the reservation technology is a stopping rule for R&D. 

The importance of this concept will be made clear in the next chapter. 

Comparative statics results on this concept are also of interest. 

Theorem III-4: ~ < o, dy* 
and era> 0, 

'0
2V(z) 

if > 0, 'r.f Z E: [y I ,y") , 
'az'aa dK 

Proof: By the definition of y*, 

a.£ y" [1-F(z)] 'OV(z) dz -K = 0 
* 'Oz 

y 

Using the Implicit Function Theorem, the desired results are 

obtained: 

dy* = ~~~~~l~~~~ 
dK 

-a[l-F(y*)] 

< 0 , 
'OV(y*) 

'ay* 

f Y
1

ll-F(z)] 'OV(z) dz+ af y" [1-F(z)] 2 
Jy* 'Oz Jy* 

2 
'a V(z)dz 
azaa dy* 

aa - -~~~~~~~~~~~~~~~~~~~~~~~ > 0 . 

-a[l-F(y*)] 'OV(y*) 
'ay* Q.E.D. 

Observe that a sufficient shift in K, the fixed cost of R&D, may 

stop the R&D search process. On the other hand, if K is lowered due to 

better organization of research, search opportunities which may have 

been economically unprofitable, and hence abandoned previously, might 

be resumed. This clearly indicates the importance of the market for 
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research manpower. An increase in the supply price of research input, 

whether fixed or variable,will affect R&D search activities. 

One also observes that the less the future is discounted, the 

higher will be the reservation technology level. Thus, the economic 

value of a research unit is not constant. It changes with changes in 

economic variables of the economy. In particular, endogenous changes 

in the applied technology of a particular research area will affect 

the value of further exploitation of the area. Exogenous changes in 

other research areas may have positive or negative effects on a given 

area of research. For example, better understanding of the theory 

behind the research area may improve the distribution of potential 

technologies by shifting the mean of the distribution. On the other 

hand, discovery of a new research area may increase the opportunity 

cost of exploiting the old research area. 

The preceeding model clearly indentifies a number of determinants 

of R&D. The R&D search intensity (and the monetary reward associated 

with it) in a given research area is dependent on its total and 

marginal cost (the former determines whether R&D is worthwhile, and 

the latter determines the efficient amount, given that it is worthwhile), 

the underlying state of knowledge, the discount factor, the current 

level of technology, and the number of decision periods taken into 

account by the decision maker. This last factor remains to be analyzed. 
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The· Finite Horizon Case 

Consider a N period version of the optimal functional, V(y,N), 

as stated in the previous discussion. 

By definition, V(y,O) - 0, and A~ - 0 

For a one period decision, 

Clearly, the optimal R&D search intensity for a one period decision 

problem is zero. Hence, 

and 

V(y,l) = R(y), and av(y,l) = R' (y) , 
ay 

dA* 
1 dy = 0, 

dA* 
and d: = 0 • 

Results for the R&D problem with decision periods greater than one are 

stated in the following theorem: 

Theorem III-5: Given the assumptions of the model, suppose the following 

also hold: 

2 
(i) 

0 a~~;,M) > o, '\lye [y' ,y"], 'llH ~2, 

( ii) oV(y ,M) > oV(y ,M-1) '\/y [ ' "] 'llM::: 2 
ay ay ' e Y ,y ' 
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Then the following comparative statics results hold for 

the optimal R&D search intensity, A~, and the reservation 

* technology y : 

dA* 
M 

(i) - < 0 
dy 

d).* 
(ii) -1:! > 0 

da 

* dyM 
(iii) < 0 

dK 

* (iv) dyM 
da > O 

( . ) lim 
Vl. M+oo 

Proof: See Appendix. 

, and 

* = A(y) • 

Results similar to (i) to (iv) of the theorem have already been 

proved for the infinite horizon case, Result (v) indicates the impor-

tance of the number of decision periods considered by a decision maker. 

The more periods in which the R&D results can be used profitably, the 

more intensively one searches for a better technology. This variable 

may vary within an industry, e.g., according to the expected longevity of 

the decision maker; or it may vary across industries, e.g., according 

to some planning rules adopted for financial planning. The sixth 

b h I'* l result provides an upper ound on t e sequence !AMI' It is complemen-

tary to result (v). It also indicates the sensitivity of decision to 
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the length of the decision horizon, the importance of which is most 

sigt1ificant for a short horizon. 

Section III 

Exogenous Technological Change 

In the above discussion of reservation technology levels, the 

possibility that exogenous technological change might affect the 

optimal R&D decision was raised. Recall that R&D in other sectors of 

the economy may change the cost structure of the R&D search process 

(e.g., better organization); or the technology opportunity (e.g., 

better instrumentation to cut off the possibility of poor technology). 

This type of technological change is introduced in the following 

discussion. 

The state of knowledge is defined as a distribution of potential 

new technologies, F(z). Clearly, the state of knowledge need not be 

static since knowledge can be enriched by basic research, or less fun

damentally, by other applied research. It is probable that basic and 

applied knowledge may emerge from applied research projects as joint 

products. For the moment, I simplify the problem by considering basic 

research as the sole driving force of technology opportunity. 

Success in basic research will change the distribution of 

technology within which R&D advances are confined. This can 

happen in a variety of ways. One special case, a shift in mean, is 

evaluated here. Suppose the distribution is defined on the closed 
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interval [y'+e, y"+e], instead of [y', y"], where y-y':::e:::o and e 

represents a shift parameter of the technology distribution. It shifts 

the mean of the distribution without affecting the shape (and in 

particular, the variance). With this simple form of a distribution 

shift, it is simple to modify the original best observed technology 

distributive function. For all zE [y'+8, y"+e], we have H(z-8,A.) as 

the probability of the best observed technology being less than or equal 

to z. This is sensible because one has not changed the basic mechanism 

describing how observations are generated. The basic model for an 

infinite horizon case may be restated as follows: 

! y"+6 ! 
V(y) = ~x [R(y) +aV(y) - K(A) +a;; [V(z) -V(y)]d H(z-6,A)f. 

Redefining variables, let x = z - 6, and obtain the modification: 

V(y) ~ ~x![R(y) +aV(y)] -K(A) +•J;:~ [V(x+0) -V(y)]d H(x,A)l 

maxf 11 , (Y" av(x+6) ~ 
= A lR(y) -K(A) +aV(y +6) -aJy_

6 
H(x,A) C3(x+6 )dx~ . 

Make the additional assumption that 

a2v(y) 
> o, 'r.Jye [y'+6, y"+6], ayae 

and proceed as before by first defining two familiar terms: 
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i. Expected change in technology 

= E(t1yl1. > O) 

(Y"+9 
= )y (z-y) dH(z-9,1.) 

y" 
= ( (x-1-9-y) dH(x, ;\), where x z-9 

Jy-9 

y" 
= y"+9 -y- ( H(x,1.)dx, integration by parts, and 

Jy-9 

ii. R&D derived-benefit function 

Ivy" 
=a [V(x-1-9) - V(y)] dH(x;I.) 

y-9 

= a[V(y"+9) - V(y)] - a H(x,1.) ClV(x+9)d Iv
y" 

y-9 a (x+9) x 

The effects of a change in the basic research parameter can be obtained, 

Proposition III-7: (i) ClE(lly) 
> 0 'r:J Y < y" + 9 , a9 ' 

2 
(ii) Cl E(lly) > O 

'r:J y < y" ' 
a9

2 ' 

2 
(iii) Cl E(lly) > O and 

a9a1. ' 

2 
a V(y) o 'I,./ [ ' "] ayae > ' v ys Y ,y · 



58 

Proof: Using the definition of the two terms, we obtain the desired 

results. 

(i) ClE(liy) = 1 - H(y-8,;\) > 0, 'r./y < y" + 8, 
a8 

(ii) a2E(liy) = H(y-8,;\) ;\f(y-8) > 0 
a82 Y < y" + 8 ' 

(iii) 
a2E(Liy) 

38 Cl;\ = H(y-8,;\) [l-F(y-8)) > 0 , and 

(iv) Ivy" av(x+8) dH( ;\) + 
a a (x+8) x, 

y-8 

i Y"fav(x+e) _ av(y)J dH( ·;\) 
a L ae a x, 

y-8 y 
> o. 

Q.E.D. 
Now, let 

W(;\,y,8) = R(y) + aV(y"+8) - K(;\) - C1 f Y" H(z,;\) a~~~:~~dx 
Jy-8 

Assume W(;\,y,8) is twice differentiable A. 

The first order condition for maximizing W(A,y,8) is given by: 

ClW(;\,y,8) = -K'(;\) +a (Y" ClV(x+8) H(x,;\) [1-F(x)]dx = 0 
n )y-8 Cl(x+8) 

The second order condition is satisfied by showing that the second derivative 

of W(;\,y,8) is negative: 

Cl W(;\,y,8) = -K"(;\) - a. ClV(x+8) H(x, ;\) [1-F(x)) dx < 0 2 i y" 2 
n2 y-8 a (x+8) 

Assume (ClW(;\,y,8))/(Cl;\) is differentiable 8. 
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Applying the Implicit Function Theorem, the comparative statics result 

on the optimal R&D search intensity is obtained: 

di. 

as 

a (Y" [ Cl2V(x+8) + Cl2V(x+8)JH(x,;l.) [1-F(x)]dx + aClV(y) H(y-6,;l.) [l-F(y-8)] 
Jy-e a (x+e) 2 a (x+e) ae ay 

-K"(A) - a ClV x+S H(x,:i_) [1-F(x)] dx 1 y" ( ) 2 

y-S Cl(x+S) 

Unfortunately, even with the additional assumption this last value 

cannot be signed. The hint from this is clear, An improvement in 

basic research need not lead to more intensive applied research, 

because the optimal applied R&D depends on the discounted expected 

marginal optimal benefit, and not on the absolute amount of benefit. 

For example, subsidization of R&D by lumpsum payment may merely raise 

the return to R&D investment without changing the optimal R&D search 

intensity, However, a shift in the basic research parameter can have 

an effect on the stopping rule for R&D search, i.e., the reservation 

technology level. Again, define the reservation technology level as 

y*, such that the following is satisfied: 

K = a H(z-6, 1') [l-F(z-6)] __ z_dz 1y"+6 av( ) 
y* az 

J
y" 

= a * H(x, 1') [1-F(x)] a~~~:~~ dx 
Y -6 

where x = z - 6 
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Using the Implicit Function Theorem, 

d * aH(y*-e,:>.) [1-F(y*-e)] av(y*) +a (Y" H(x,:>.) [1-F(x)J ~~~i~;~~dx 
-ie- = -~~~~~~~~~~~a_y_*~~--'J_vy~'-'-_e~~~~~~~~~~~~- > 0 

aV(y*) 
-aH(y*-e,:>.) [1-F(y*-e)] 

a?' 

Shifting the distribution of potential technologies in such a way that 

higher technology levels are made possible will yield a higher expected 

gain by raising the probability of getting a better technology level. A 

more important implication is that the claim that a higher benefit will 

lead to more R&D needs to be modified, The corrected claim should be: 

"The higher the benefit of R&D from derived demand, the higher 

is the technology level one has to reach before further search is 

unprofitable; but it need not imply a higher intensity of R&D 

search. It implies more persistent search." 

Summary and Conclusion 

Two things have been demonstrated in this chapter. First, dependent 

and independent variables in R&D decision at the firm level have been 

explicitly identified. The dependent variables are the future tech-

nology level, and current R&D search intensity. The independent 

variables are: 

(i) Discount factor (hence interest rate), 

(ii) Current technology level, 

(iii) Basic R&D search intensity, 

(iv) State of Knowledge, and 

(v) Decision horizon in R&D planning, N. 
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Second, a concept borrowed from labor market search literature 

has been introduced, which is denoted by the Reservation Technology 

Level (RTL). The property of RTL is straightforward. If the 

current technology level is less than RTL, R&D search continues. 

Once the best observed technology level is not less than the RTL, 

R&D search is terminated. Furthermore, RTL < y", the upper limit 

of technology possibilities, given the state of knowledge. Thus, 

ex ante applied research does not push to the frontier. Ex post, 

however, one may have a technology level exceeding the RTL. If 

the current technology level lies between RTL and y", it indicates 

unprofitable R&D, even though progress is still possible. On the 

other hand, if external conditions change, economic or technical 

R&D may be resumed in an abandomed research area. 

So far, it has been assumed that the measure of technology 

level, and net income to the firm have a straightforward relation. 

In the next chapter, production will be made explicit in the 

decision process. In particular, I investigate the interaction 

of production and R&D decisions. The importance of demand for 

the product output will be emphazied together with the cost of 

R&D. 
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Appendix 

Proposition III-1: H(z;A) = exp{-A[l-F(z)]} 

Proof (Wilde, 1977): 

H(z;A) = Prob (best observation s z) 

CXl 

= L Prob (n observation) x Prob (best of n s z) 

n=O 

CXl 

=L 
-A n e A 
n! 

n=O 

-A 
CXl 

[AF(z) ]n 
= e L n! 

n=O 

= -A AF(z) e e 

= e-A[l-F(z)] 
Q.E.D. 

Theorem III-1: Given the assumptions of the model, there exists a 

unique, continuous, bounded solution to the functional equation. 

Proof: The proof is a straightforward application of Denardo's 

Theorem. Elaboration of the Monotonicity and Contraction 

assumptions is necessary before applying the theorem. 
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(i) Monotonicity Assumption 

y" 
Let h(y,;>,.,V) ::R(y) +aV(y) -K(/,.) +aJ; [V(z) -V(y)] dH(z;;>,.) 

where yt. [y I ,y"] 

v: [y',y"]-+ IB.+ 

(Y" 
Similarly, h(y,;>,.,u) ::R(y) +aU(y) -K(A) +o.Jy [U(z) -U(y)] dH(z;;>,.) • 

If V(x) ;:: U(x) \ixt.[y' ,y"], and /,. = ;>,.*(y), the optimal 

choice of /.. given y, then 

h(y,;>,.*(y),V) - h(y,;>,.*(y),U) 

(Y" 
= a [ V ( y) - U ( y) ] + a J y [ V ( z) - U ( z ) ] dH ( z , >. * ( y) ) 

j y" 
-a [V(y) -U(y)] dH(z,;>,.*(y)) 

y 

=a [V(y)-U(y)] dH(z,t.. (y))+ .fvy * 
y' 

h(y,t..*(y),V) 2: h(y,t.*(y),U) if V(x);:: U(x) \ixt.[y',y"] 

(ii) Contraction Assumption 

. ( (Y" 
= lo.Jy~[V(y) -U(y)] dH(z,t..*(y)) +a}y [V(z) -U(z)] 

dH(z,t..*(y)) \ 
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. " 
Sa fY ~xjV(x)-U(x)jdH(z,J.*(y))+a fY m~xjV(x)-U(x)i 

)y' Jy 

= a maxiV(x) - U(x) I 
x 

:: a p [V, U] , where p is the metric so defined. 

dH(z,>-*(y)) 

Since 1 > a > 0, one has the contraction assumption, which embeds a 

contraction mapping. Invoking Denardo's Theorem, one has the result. 

Q.E.D. 

Theorem III-5: Given the assumptions of the model, if the following 

(i) 

and (ii) 

(i) 

(ii) 

(iii) 

holds: 

2 
a V(y ,M) > o, 'r.ly i:: [y' ,y"J, 'r.IM 2: 2 , 

aetay 

aV(y ,M) 
> 

ay 
av(y ,M-1) ' 'r.ly E [y' ,y"]' 'r.IM :::: 2 

ay . 

Then, for all M > 2, the following comparative statics results 

* hold for the optimal R&D search intensity AM' and the 

reservation technology level, y~: 

dJ.* 
_Ji< 0 
dy 

d>-* 
M 

-- > 0 det 

* dyM 
-- < 0 
dK 



(iv) 

(v) 

(vi) 

Proof: 

For 

Let 
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dy* 
_Ji > 0 
da 

A~l(y) > ~(y) > ••• 

lim A*( ) 
M+ex> My + A*(y) 

V(y,O) :: 0 • 

• . . * Al = O,and 

V(y,1) = y • 

M ;:: 2 

A;(y) > A~ (y) = 0 

V(y ,M) = m~lR(y) + aV(y ,M-1) - K(~) +a J;y" [V(z ,M-1) 

- V(y,M-1)) dH(y,AM)t 

= max R(y) + o.V(y" M-l) _ K(A ) _ o. (Y cW(z ,M-1) l " 
AM ' M Jy az 

H(z,AM)dzt • 

y" 
W(AM'Y ,M) = R(y) + o.V(y" ,M-1) - K(AM) - 0. .h av(~~M-1) 
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The first order condition for maximization of W(\i,y,M) \i is: 

= 0 

The second order condition for maximization of W(\i,y,M) is: 

ClV(z,M-1) H(z,XM) [l-F(z)]2dz < 0 
oz 

Using the Implicit Fµnction Theorem on the first order condition, one 

has: 

ivy" 'V( 1) J.y" 2 d>.M* 0 ~,M- H(z,>.M) [1-F(z)] dz+a 0 V~z;M-l) H(z,X) 
y Z . y oZ.:> M 

(f(l = - -'----------v"".--.--'--~:___ _________ _ 
-K"C\

1
> - a.£· a\(~;M-l) H(z,).M) [l-F(z)J

2
dz 

[1-F(z)]dz 

> 0 ' 

d;* - oV(y,M-1) H(. ). ) [1-F( )] 
__2!= -~---"-__,ay ___ ,,_M ___ Y ___ _ 

< 0 • 
cly 

Let y~ be defined by: 

a.f y" av(~ ,M-l) H(z ,0) (1-F(z)] dz = K - KI (0) 
y* z 

M 
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Using the Implicit Function Theorem, one has 

y"[ 2 ~ J;~ av<~;M-1) + aa v~~a~-l)J H(z,O) [1-F(z) ]dz 

-- - - ---------------=--------- < 0 ' 
da 

av(yM* ,M-1) 
* * - a---- H(yM,O) [1-F(yM)) 

ayM 

* dyM 1 
-- = --------------- < 0 

a'K 

Thus, proofs of (i) to (iv) are completed. 

By assumption, 

But 

av(y,M) > 
ay 

av (y ,M-1) \:f ye:[y, ,y"] V'M 2 2 ay 

" y" 
••• a~ Y av(~;M-l) H(z, t.) [1-F(z) ]dz> a J; av<~;M-2 ) H(z, t.) 

[1-F(z) ]dz, \:f /.. • 

l
y" 

=a y aV(~;M-l) H(z,~) [1-F(z)]dz , 

K' (A* ) 
M-1 

(Y" 
= a)y aV(~;M-2 ) H(z,t.~_1) [1-F(z)]dz , 
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and 

K' (/..) > 0 , K"(A.) ~ 0 

~(y) > ~-l (y) , \tM ~ 2 

This completes the proof of (v). A diagram (Figure IV-3) will help 

to clarify the proof. 

Marginal Costs and 
Benefits of R&D 

,.l/ Y11 
aV(z ,M-2) ..... H(z,A.) [1-F(z)]dz 

y az 

'--~~~~~-1-~~~__.;.~~~~~~~~~~~~~--i._R&D Search 

* "'M-l(y) ~(y) 

Figure III-3: Marginal Costs and Benefits of R&D 

To prove (vi), the following are used: 

Intensity A. 

+di..~ l-K'(t..*) +a (Y" aV(z,M-1) H(z t..*) [1-F(z)]dzl 
dy M )y az ' M ~ 
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by the first order condition for maximization of W(XM,y,M). 

Let 

From (v) 

Hence, 

and 

av(y,M) = R'(y) + 8 av(y,M-1) 
ay M ay · 

~(y) > ~-l (y) > ••• > x;(y) > X~(y) = 0 

< • • • < 

av(y,M) = R'(y) + B aV(y,M-1) 
ay M ay 

< R'(y) + B av(y,M-1) 
M-1 ay 

[ 
<W(y,M-2)] = R'(y) + 8M-1 R'(y) + 8M-1 ay 

[ 
ClV(y,M-2)1 

< R'(y) + BM-1 R'(y) + 8M-2 ay j 

[ J 
aV(y,M-2) 

= R' (y) 1 + 8M-l + 8M-1 8M-2 ay 

+ BM-leM-2 ... B3B2 aV(y,2) 
ay 

= R' (y) [1 + 8M-1 + 8M-18M-2 + ... J 
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But 

. . 

or 
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< R'(y)[l + BM-1 + BM-18M-2 + ••• J 
+ B B ···e B fR'(y) + B oV(y,l)J 

M-1 M-2 3 2L 1 ay 

oV(y,l) 
-~- = R'(y) ay 

M-1 J 
... + n Bj ' 

j=l 

oV(y,M-1) = R'(y) + f3 oV(y,M-2) 
ay M-1 ay 

= R'(y) + B [R'(y) + B oV(y,M-3)] 
M-1 M-2 oy 

= R' (y) [l + f3 J + B oV(y,M-3) 
M-1 M-1 M-2 oy . 

M-1 
= R'(y)[l+f3 +f3 f3 +···J+ne. oV(y,l) M-1 M-1 M-2 J oy 

j=2 

M-1 
oV(y,M) 

< 
av <:l 2M-1) 

+ R' (y) fl Bj ay ay 
j=l 

M-1 
oV(y,M) oV(y,M-1) 

< R'(y)n Bj ay ay 
j=l 

l 



But 

since 

But 

71 

• lim l oV(y ,M) _ 
• • M+ 00 dy 

M-1 

oV(y,M-l)l s lim .R' ( ) n i3J. 
ay ~ M+ 00 y 

M-1 

limn M+oo i3j=O, 

j=l 

••• lim laV(y,M) - aV(y,M-1) l s 0 
M+oo oy ay ~ 

av(y ,M) 
ay 

av(y ,M-1) , 'tly , 'tlM ~ 2 
> -~'----a y 

j=l 

by assumption, 

lim laV(y,M) _ oV(y,M-l)l = O , and 
M+oo ay ay \ 

lim 
M+oo ~(y) Q.E.D. 
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Chapter III: Footnotes 

1. In 1957, Robert M. Solow found that increased capital intensity 
accounted for only 12.5% of the increase in U.S. nonfarm output per 
manhour between 1909 and 1949. The remaining unexplained increase 
in output per manhour was attributed to change in labor quality and 
technological improvements. His method was to attribute to new 
technology the increase that could not be explained by changes in 
factors of production in a time-series required, and is therefore 
known as residual analysis. 

2. Productivity is measured by several methods. The simplest one is 
the rate of change of output per manhour. This is a partial 
productivity index since labor is the only input factor taken into 
account. A total productivity index is the ratio of the change in 
output to the sum of changes in labor and capital costs, holding 
factor prices constant. Salter (1969) defined a third measure of 
productivity change as the relative change in total unit costs when 
the techniques in each period are those which would minimize unit 
costs holding factor prices constant. None of these measures are 
satisfactory when one considers product quality improvements. 

3. Denison's work suffers from the same shortcomings as Solow's. 

4. Hicks neutral technical progress occurs when the production 
function of a technology shifts over time by a uniform upward 
displacement. Harrod (Solow)-neutral technical change assumes 
capital (labor) input being constant over time. 

5. Embodiment theory postulates that technical progress, like manna 
from heaven, falls on certain types of capital equipment and on 
certain sections of the labor force. 

6. Rational actor approach is one when individuals are assumed to be 
rational and set out to maximize some well defined objective 
function. Utility maximization by consumers and profit maximization 
by producers are examples of the rational actor approach. 

7. The distinction between process and product innovations is arbitrary. 
A process innovation is one in which a new production technique is 
introduced. A product innovation is one in which a new product is 
introduced to the market. In general, however, an innovation will 
involve changes in both products and processes. 

8. There are two types of statistical learning. First, there is the 
learning by which one updates an order statistic from sampling. 
Second, there is the learning by which one obtains a new sample and 
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updates one's prior subjective probability distribution. The 
latter is known as Bayesian learning. However, I shall use the 
former. An example of the latter is exhibited by Grossman, 
Kihlstrom and Merman (1977). 

10. There is a vast literature on dynamic programming. For example, 
see Bellman (1957), Blackwell (1962), Ross (1970) and Kohn and 
Shavell (1974). 

11. See Chapter II for details. 
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Chapter IV 

Market Structure and Industrial R&D 

The Problem 

Several studies of industrial R&D and market structure were 

discussed and reviewed in Chapter II. It was argued there that the 

derived demand nature of R&D is not explicitly recognized in most 

studies. This has led some students of R&D to formulate models with 

a fixed reward for successful R&D, the entire amount of which is 

received by the first successful firm. However, the assumption of a 

fixed reward is not a good approximation to reality. The magnitude of 

R&D benefits depends on the degree of R&D success, that is, how much 

improvement is made possible by the new technology. It also depends on 

how much improvement one's rival has achieved. In addition, a "winner 

gets all" argument assumes the presence of a perfect, infinite patent 

system. An innovative firm must incur costs to enforce an effective 

patent system and undoubtedly patents do not work perfectly in any case. 

Even if the patent system were costless, further inventions may push 

technology ahead of present patentable technology, and hence lower the 

value of the latter. In fact, an efficient patent system should not be 

a barrier to further genuine progress. One way to bypass this problem 

is to introduce a continual innovation process with success in each 

stage rewarded by some fixed amount. Futia (1977) uses this formulation, 

and assumes a Markovian process to establish the existence of a 

distribution of firm sizes in an industry.
1 

I shall study continuous 



78 

innovations with endogenous payoffs. To this end, I integrate final 

goods production and R&D, and consider R&D benefits from a derived 

demand point of view. 

Schumpeter and some of his followers argued that because a monpolist 

comes closest to fully appropriating R&D benefits, imperfect competition 

might sacrifice static efficienty but promote dynamic efficiency.
2 

Static 

efficiency refers to production with a given technology. It requires that 

the price to marginal cost be equal for all products. Dynamic efficiency 

refers to an optimal rate of technological progress, made possible by R&D. 

It requires cost reductions over time with a changing technology. 

Schumpeterians further argue that the gains in dynamic efficiency 

might outweigh static efficiency losses so much that monopoly would 

be the socially desirable choice of market structure. This conclusion 

is based on the premise that a monopolist has a "natural" tendency 

to invest more in R&D, and share the fruit of its success with 

consumers. I intend to investigate this set of conclusions in a formal 

model. In particular, I am interested in the welfare ranking of 

market structures with respect to static and dynamic efficiency. 

Standard economic theory suggests that a monopolist will produce at 

a lower level of output than is socially optimal. A related and important 

question is whether a monopolist will perform more R&D than a 

competitive firm. If so, this would partially compensate for the loss 

in static efficiency associated with monopolies. 

The last issue of interest here is whether we should treat pro

duct and process innovations separately. 3 Are they theoretically 
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identical? Indeed, about 75% of industrial R&D expenditures are al

located to new products or product improvement, while only 25% are 

allocated to process innovations. A production-R&D model needs to 

reconcile these two types of R&D, otherwise a substantial part of 

innovative activities will be left unexplained. The theoretical 

similarities of product and process innovations will be investigated. 

Discussion 

In this study, I wish to investigate the issues identified above. 

First, the importance of studying production and R&D decisions simul-

taneously is examined. Modeling production without consider-

ing R&D sacrifices elements of dynamic competition over time. For 

example, the results of R&D cause firms (and markets) to move from 

old equilibria to new ones, typically with gains accruing to the inno

vators during the transition. At the same time, evaluating R&D deci

sions without tying in the benefits derived from production ignores 

the demand side of R&D. 4 Studies of the effects of rivalry on R&D 

with this shortcoming give an incomplete picture of the problem. But 

by introducing production, a benefit function forR&D can be generated 

and employed as derived demand. Given a cost function of R&D, the 

equilibrium level of R&D can thus be calculated. 

In addition, I wish to show that a monopolist may not perform 

R&D in a socially optimal fashion. In fact, since a monopolist 

produces at a lower level of output than a competitive industry, the 

gain in profit from any cost reduction can be less than the gain in 

social welfare for the same reduction in average cost that would accrue 
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at competitive equilibrium. A monopolist applies the cost saving 

technology to a lesser quantity of output than a social planner would. 

Hence, a monopolist may perform R&D at a level lower than the social 

optimum. In particular, he may stop R&D search at too low a level 

of reservation technology. 5 

If the above is indeed true, it will be worthwhile to investigate 

whether a monopolist will always search more intensively for better tech-

nology than an oligopolist. If so, it makes sense to include monopoly 

in the social menu of market structures. If a monopolist always per-

forms less R&D, a monopoly situation may be excluded from society's 

menu of market structures because both static and dynamic efficiency 

can be gained by moving from monopoly to ologopoly. If the answer 

is indefinite, one needs to investigate the specific market 

in question before making a definite choice. However, I shall 

provide a sufficient condition for a noncooperative duopolistic 

market structure to have a higher reservation technology level than 

that for a monopolist. Thus, the claim that a monopolistic market 

structure has innate merit will be seriously questioned. 

At this point, it is useful to mention the possibility of tech-

6 
nology choice bias in R&D. A detailed discussion will be postponed 

until Section III, but note here that a transient monopolist may spend 

less in developing a small scale efficient technology in favor of a 

large scale efficient technology. Referring to Figure IV-1, I claim th3t 

a monopolist will develop technology A rather than technology B, if 

both technologies are under consideration by the monopolist alone, 

(i.e., there is no R&D rivalry). The reason is that an antitrust suit 
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Figure IV-1: Technology choice bias of a monopolist. 

may break up a monopoly using the former type of technology (assuming 

external economies of scale are not pertinent), while the latter will 

yield a natural monopoly argument against antitrust, and will provide 

a justification to prevent entry through regulatory protection. 

Indeed, if planning becomes more sophisticated in the future, one may 

expect a tendency toward large scale production technologies in mono-

polistic markets. As time elapses, it may even make sense to develop 

large scale technology alone, since most readily available knowledge 

is for that intent. The opportunity cost of developing small scale 

technology may become very high. 

For the case of oligopolists, if there is a collusive agreement about 

market shares,the same kind of technology choice bias occurs. However, 

with sufficient rivalry, the bias may be in the opposite direction, 

i.e., oligopolists may choose smaller scale technologies. The reason 

is that smaller scale technology givesmore flexibility in the choice of output 
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and, therefore, is less risky. This second type of bias is socially 

preferable to the former. In both cases, the biases are limited by 

technology opportunities. With R&D being endogenous, technology oppor-

tunities may be endogenous to some extent for the economy as a whole. 

Thus the bias may be significant. Since technology opportunity 

is exogenous to this model, this kind of technology choice bias is not 

considered. 

Furthermore, to avoid this issue, it is assumed that the number of 

firms in the industry under study remains unchanged within the relevant 

periods. With this restrictive assumption, it is equally like~y that 

a monopolist will develop an efficient, small scale technology and 

apply it to large number of production units, even though such a tech

nology can sustain a number of firms, i.e., it is assumed that there is no 

entry threat. Thus, endogenous changes in the market structure are not 

covered within the present discussion. Future consideration in this di

rection may generate insights to the dynamic process of growth and struc-

7 trual changes in an industry. 

There is still another problem. If a technology exhibits increasing 

returns to scale for all relevant output levels, a natural monopoly 

prevails and a model of oligopolistic market structure is useless. The 

relevant model for this situation can either be that of regulator-

monopolist interaction or product differentiation and monopolistic 

competition. I shall save them ~or future research. 

For the present, I assume that the currently used technology 

shows initial increasing returns to scale but changes to decreasing 

returns to scale at a relatively low level of output. This implies 

that the market can sustain the concurrent operation of several firms. 



83 

Furthermore, I assume that both production and R&D cost functions 

exhibit this property. Hence, it is relevant to study the welfare 

ranking of different market structures since all of them are compatible 

with given technologies of production and R&D. An empirical study by 

Bain (1954) showed that even for highly concentrated industries the 

minimum optimal scale plant may be a small percentage of an industry's 

8 
output. See Table IV-1. For future consideration, a R&D cost function 

may be treated as having increasing return to scale, so that R&D effort 

is separated from the industry, e.g., in the electric utility industry, 

equipment suppliers are doing most of the R&D work. One may then 

evaluate the nature of technology adoption under different market 

9 structures. 

Finally, it is assumed that the results of any individual firm's R&D 

efforts are not automatically disseminated, i.e., the exclusion prin-

ciple of public good is applicable. Indeed, when Schumpeter argues 

that a monopolist has a strong incentive to invest in R&D, he implicitly 

assumes that the results of R&D must not be disseminated instantaneously 

and without cost. Otherwise, no matter how hard a monopolist tries to 

be technically progressive, he will suffer from entry at any instant of 

time. The feasibility of exclusion with respect to R&D output is 

assumed throughout this chapter. Thus, the producer of R&D is a mono-

polist with respect to R&D. 
Section I 

The Model 

To evaluate the welfare implications of market structure with 

respect to R&D, I will use the basic model developed in the last 
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Table IV-1: Estimates of Minimum Optimal Plant Scale Ranges for 
20 U.S. Manufacturing Industries, 1951 

(Source: Bain, J. S. "Economies of Scale, Concentration, and 
the Condition of Entry in Twenty Manufacturing 
Industries," AER, March 1954, pp. 15-39) 

Industry 

Flour Milling 

Shoe Manufacturing 

Canned Fruits and Vegetables 

Cement Manufacturing 

Distilled Liquors 

Farm Machinery, excluding Tractors 

Petroleum Refining 

Integrated Steel Mills 

Tin Can Manufacturing 

Diversified Meat Packing 

Rubber Tires and Tubes 

Gypsum Plaster and Plasterboard 

Rayon Yarn and Fibers 

Soap and Detergents 

Cigarettes 

Integrated Auto Production 

Fountain Pen Production 

Primary Copper Refining 

Tractor Manufacturing 

Typewriter Production 

Percentage of National Capacity 
Provided by One Plant Complex 

of Minimum Optimal Scale 

0.1 to 0,5 

0.1.4 to 0.5 

0.25 to 0.5 

1 

1.25 to 1. 75 

1 to 1. 5 

1. 75 

1 to 2.5 

0.3 to 2.0 

2 to 2.5 

1.4 to 2.75 

2 to 3 

4 to 6 

4 to 6 

5 to 6 

5 to 10 

5 to 10 

10 

10 to 15 

10 to ;rn 
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chapter. That model is extended here by making production explicit, 

Assume that there is a well defined demand function for a final product, 

p(q), where p: [O,q] + [O,p] with p(O) = p, p'(q) < O, for all qE[O,q], 

and p(q) : 0, for all q ~ q, q < oo (p stands for the price of the final 

good, and q the quantity of output). The total cost of producing a 

given output q with a given technology level denoted by y, is repre-

sented by nC(q/n,y), where C is the total cost function of one produc-

tion unit (e.g., a production plant), and n is the number of production 

units; c: [O,oo) x [y' ,y"] -+ [O,oo), c1 : 'OC/o(q/n) > 0, c11 : 

a2c/('a(q/n) 2) > O, c2 : 'OC/'ay < O. A total cost function allows R&D 

output to be interpreted as either lowering the variable cost or the 

fixed cost. Since R&D involves long term decisions, and its effect 

is to alter the production function, it is necessary to treat fixed 

cost as endogenous. A decision maker can improve his current tech-

nology by paying the costs of R&D, mK(/,/m), where K is the total cost 

function of one R&D search unit (e.g., project team), mis the number 

of search units, and A is the intensity of R&D search; K: [0, 00 ) -+ 

2 2 
- 'OK/'a(/,/rn) > 0, and Kll : a K/'a(t,/m) > 0. 

Recall that the probability of the best observed technology of 

i research unit i being less than or equal to z is denoted by H (z,>,/m) = 

e -/,/m [l - F(z)], where >,/m is the R&D search intensity, F(z) is the 

probability that an observed new technology level is less than or equal 

to z, and i=l, •.• ,m. Hence, the distribution function of the best 

observed technology for a firm operating these m research units is 

defined by H(z;>,,m), where 
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H(z;A,m) = Prob {observations from all of the m research units 

are less than or equal to z} 

= m i Il H (z;A/m) 
i=l 

= [ e -A/m[l-F(z) ]] m 

= e-A[l-F(z)] 

-A[l-F(z)] 
But H(z,A) = e , where H(z;A) is the best observed technology 

distribution for a single research unit operating at R&D search inten-

sity A. Thus, breaking up research into several units will not affect 

overall performance. It will, however, lower the total cost up to a 

point where fixed costs prohibit more decentralization. 

s Let V (y) be the stream of social benefits, given a current tech-

nology level ye::[y' ,y"] and an optimal program of production and R&D, 

Vs: [y' ,y"] -+ :JR. Denote the discount factor by a. The discounted 

expected optimal value of the production/R&D system in the next period 

is given by the expression 

given R&D investment succeeds in generating a better technology level, 

and by the expression 

s 
av (y) H(y; A) 
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given R&D investment fails to yield a better technology level. The 

objective of a social decision maker is assumed to be the maximizing of 

social surplus, that is, the sum of consumer surplus and producer sur-

plus. The objective functional for the infinite horizon production/ 

R&D system, given current technology level y, can therefore be stated as 

Vs(y) = max~! (q p(x) dx-n c(..9..,y) - mK(2.) +iy"Vs(y) dH(z,t.) 
m,n,q," Jo n m Y 

s +av (y) H(y;t.) 

Let Ws(m,n,q,t.;y) be the function in the bracket to be maximized. 

s 
W (m,n,q,t.;y) lo 

q y" 
= p(x) dx-nc(-9.,y) - mK(l..) +a ( Vs(z) dH(z;t.) o n m Jy . 

s 
+ av (y) H(y;t.) . 

Integrating by parts, 

Ws(m,n,q,t.;y) = foq p(x) dx-nc(~,y) - mK(~) + aV(y") 

(Y" ClVs (z) 
- a}y Clz H(z;l.)dz . 

First order conditions for maximizing W(m,n,q,l.;y) are given by: 

(1) 
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(2) aws = -K (~) + a p" avs (z) 
oA 1 m y 

()z 
H(z;J.) [1-F(z) ]dz = 0 , 

(3) Ws(m,n+l,q,J.;y) - Ws(m,n,q,J.;y) 2_ -c:(~·Y) +;Cl (;,y) = 0, 

(4) W
8

(m+l, n,q,A;y) - W
8

(m,n,q,A;y) .::_ -K (;) + ~ K1 (~) • o . 

The first equation requires that output should be produced up to the 

point where marginal cost of production equals price. This is a 

production efficiency criterion. Equation (3) can be restated as 

n/q C(q/n,y) = c1 (q/n,y): the average cost of production should equal 

the marginal cost of production. This is a criterion for the optimal 

choice of the number of production plants. The second equation states 

that the marginal cost of R&D is just compensated by the discounted 

expected marginal benefit of R&D. The last equation is a criterion 

for optimal choice of the number of R&D units. It expresses the 

equality of marginal cost and average cost of R&D. 

Thus, (1) and (3) together yield the conditons that 

Price of output = Marginal Cost of Production 

= Average Cost of Production. 

Similarly, Eqs. (2) and (4) imply that 

Discounted Expected Marginal Benefit of R&D 

= Marginal Cost of R&D 

= Average Cost of R&D. 
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Note that a social welfare maximizer will equate the marginal benefit 

of R&D with its marginal cost, but will set price equal to the marginal 

cost of production. 

From the definition of Vs(y) 

avs(y) 
= 

ay 

+ [-K (~) + CLjy" avs(z) H(z·I-) [l-F(z)]dz]d'-
1 m Y az ' dy 

+ [-c(..9.. y) + .51 C (..9.. y)l dn + [-K(~) + ~ K (~)~ dm 
n' n 1 n' 'J dy m m 1 m 1J dy . 

By the first order condition 

or 

avs(y) 
ay 

s (qs ) avs(y) s 
= -n c2 s'y + CL ay H(y, ;\ ) , 

n 

s s s -n c 2 (q /n ,y) 
> 0 • 

s 
1 - CLH(y, I- ) 

For comparison, consider a monopolist. The objective of a mono-

polist is to maximize a discounted stream of profit. Thus, his 

objective functional is given by 

11(y) = I Ivy" M max t p(q) q-n c(nq'y) - mK(~) +CL Y V (z) dH(z;/-) 
m,n,q,1- ~ 

M • I + aV (y) H(y,/-)\ 
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Let ~(m,n,q,A) be the function in the bracket to be maximized. 

- ,.,iY" al1(z) ... H(z;J.)dz 
y Clz 

First order conditions for maximization are given by 

(l') 
d~ Cl[p(q)q] 

- c1(~,y) 0 --= = Clq Clq 

(2') d~ = (A) f y" ClVM(z) -K1 m +a y az H(z;J.)[1-F(z)]dz a;. 

Assume that demand is elastic: 

Cl[p(q)q] > 0 
Clq and 

az[p(q)q] 
< 0 . 

Clq 

= 0 
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The differences between this set of first order conditions and that 

for a social welfare maximizer are provided by Eqs. (1) and (l'), and 

(2) and (2'). Equation (l') requires that the marginal revenue of 

output be equal to the marginal cost of production, while Eq. (1) 

requires price equals marginal cost of production. The implication 

of this difference is shown in Figure IV-2. 

PRICE, p 

M 
q 

s 
q 

p(q) 

Figure IV-2: Price-Output Decision: Monopolist vs. 
Social Decision Maker 

QUANTITY 
OUTPUT 

q 

The assumption that the minimum efficient scale for each produc-

tion unit is unique implies that there is a unique value of minimum 

average cost, which equals marginal cost at that output. For a social 

welfare maximizer, this equals the price of output. For a monopolist, 

this equals marginal revenue of output. With downward sloping demand, 

the demand curve lies to the right of the marginal revenue curve. Thus, 

the corresponding quantities of output for a social welfare maximizer 
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and for a monopolist differ, In fact, a social welfare maxmizer 

produces more output than a monopolist. This is a classical result. 

It is recalled here because it is crucial to show the welfare implica-

tions of market structures. Conditions (2) and (2') are similar in 

form. However, there is a difference in the definitions of the optimal 

functionals Vs and Vm. Vs is expressed in terms of social welfare 

maximization, while Vm is derived from profit maximization, This is 

also crucial for a proof of the main theorem in this chapter. 

The concept of Reservation Technology Level (RTL) is used here. 

Recall that at a technology level greater than or equal to RTL, a 

decision maker will stop R&D search. At any technology level less 

than that, the decision maker will continue R&D search. Let y* be the 

RTL for the social welfare maximizer, and y** be that for a profit 

maximizing 

where 

monopolist, 
y" avs (z) 

a, ?* dZ H(z,O) [1-F(z) ]dz = K1 (0) > 0 , and 

,,, jY**" "' _ _M(z) ~ oV- H(z,0)[1-F(z)]dz = K1 (0) > 0 . 
y dZ 

Clearly, the optimal R&D search intensity should not be different be-

tween a social welfare maximizer and a monopolist for all levels of 

technology. In particular, one has 

A necessary (but not sufficient) condition for a social welfare maxi-

mizer to invest more in R&D search is that y* f y**· In fact, y* > y**· 

Theorem IV-1: y* > y** 

Proof: The definition of a reservation technology level requir.es that 

" s ly" ClVM(z) 
a. (Y ClV Cl (z) H(z,O) [1-F(z) ]dz = a ** Clz H(z,O) [1-F(z) ]dz . 
)y* z y 
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avs(z) 
az 

Similarly, 

aJi(z) 
az 

Therefore 

Suppose 

= 

= 
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s s s -n c
2

(q /n ,z) 

s 1-aH(z,A. ) 

s s s -n c
2

(q /n ,z) 

M M M -n c
2

(q /n ,z) 

M 1-a.H(z,A. ) 

M M M 

, for all ze:[y*,y"). 

-n c2 (q /n ,z) ** 
= --

1
.,...-_-a ___ , for all ze:[y ,y") • 

aJi(z) > az , for all y :::: max {y* ,y**} . 

y* $ y** . 

This implies 

a.ly" avs (z) 
oz H(z,O)[l-F(z))dz 

y** Ivy" avs ( ) 
s a. 

0 
z H(z,O)[l-F(z))dz 

y* z 

" aJi(z) a.~* oz H(z,O)[l-F(z)]dz. 
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But, 

a~(z) 
> oz , for all zg[y**,y"] , a contradiction. 

Therefore, 

y* > y** • Q.E.D. 

The implication of this theorem is important. It states that a 

monopolist will stop short of further R&D search at a level less than 

that for a social welfare maximizer. With exogenous conditions fixed, 

a social welfare maximizer may end up with a higher level of technology 

than that of a monopolist on the average. The driving force behind 

this theorem can be found from the observation that a social welfare 

maximizer has a higher output level than a monopolist. The cost saving 

of having better technology is greater for a social welfare maximizer 

than a monopolist. This provides a stronger incentive to persist 

in R&D. Since a monopolist pick output so that marginal avenue and 

marginal cost are equated, he has less incentive to do R&D. However, 

it is not necessarily true that greater R&D benefits will lead to 

greater R&D investment. It is marginal benefit and cost that count. 

There is no a priori reason why the marginal benefit to a social wel-

fare maximizer will always be greater than that to a monopolist at each 

given level of R&D investment. Hence, it is not necessarily true that 

a social welfare maximizer will always invest more in R&D at all tech-

nology levels less than the reservation technology level. Since the 

R&D cost function is arbitrary other than it is convex, more assumptions 

are required to show that the marginal benefit to a social welfare 
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maximizer is greater than that to a monopolist for all levels of 

R&D search intensities. See Figure IV-3. 

Cost and Benefit for R&D Search 
KO,) 

Bs(>..;y) 

---- BM(A;y) 

Figure IV-3: 

R&D Search Intensity 
;\ 

Optimal R&D Search Intensity .. 

The benefit function for a welfare maximizer is clearly greater than that 

for a monopolist. However, there is no reason to believe that the 

marginal benefit will also be greater. In particular, if the benefit 

function for a welfare maximizer rises steeply at low levels of R&D 

search and then climbs slowly, while the benefit to a monopolist con-

tinues to increase, then it may be the case that a monopolist will 

have a higher marginal benefit at high levels of R&D search intensity. 

Section II 

Comparative Statics 

It remains to show the effects of changes in the parameters of 

the model on the endogenous variables. These results should be useful 

for predictions. Recall that there are great similarities between the 
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first order condi.tions for maximizing social welfare and those for max-

imizing profit. The comparative statics expressions should have the same 

signs for both cases. Unfortunately, some of the comparative statics ex-· 

pressions cannot be signed. The following special assumptions are added 

to tentatively sign the rest of the comparative statics expressions. They 

are: 

(i) p(q,y) is the inverse demand function, where y is a shift 

(ii) 

(iii) 

(iv) 

(v) 

R&D unit, 

paramter and - ()p > 0 
P2 = ay . 

MR qy 
Cl2[p(q,y)q] 

- ------ > 0, ClqCly 

a2V(z) 
~ 0 U'zs[y' ,y"] ozCla 

a2V(z) 
~ 0 °U' Z€: (y I ,y") 

ClZCly 

a2
v(z) :s 0 U'zs [y' ,y"] azas 

, 

, where S is the fixed 

and K(A./m) represents the variable cost of R&D. 

cost of a 

Assumptions (i) and (ii) are standard for regular demand functions. 

Assumptions (iii) and (iv) postulate that the discount factor and 

demand shift have a reinforcing property with technological advances on 

the optimal return function. Assumption (v) postulates that a unit 

increase in the fixed cost of R&D tends to lower the marginal benefit 

of technological advance. The comparative statics results are 

summarized by a theorem. 
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Theorem IV-2: Given the assumptions of the model, the following 

comparative statics are obtained: 

~ 
R&D 

Number of Output per R&D Number R&D Intensity 
Production Production Search of R&D Intensity per Unit 

Output Unit Unit Intensity Units per Unit Sale 
s 

e 

'/../m '/../pq q n q/n ), m 
e 

Current Technology 
Level, y + ? ? - - 0 -

Discount Factor, 
0 0 0 ( +) ( + ) 0 ( + ) 

a 

Fixed Cost per 
0 0 0 ( -) ( - ) + ( - ) 

R&D Unit, S 

Demand Shift ( + ) ( + ) 0 ( +) ( + ) 0 ? 
Parameters, '( 

N.B. Signs within brackets are true with the additional assumptions (i) to (v). 

Proof: See Appendix. 

The results of this theorem are interesting. An increase in 

the current level of technology will lower the optimal level of R&D 

search intensity. However, R&D search intensity per R&D unit is 

unaffected. The reason is that the optimal number of R&D units is 

decreased by an increase in the technology level. The overall effects 

of the two endogenous adjustments compensate one another, so that 

R&D search intensity per R&D unit remains unchanged. The effect of 

a change in the interest rate has similar consequences on the optimal 

level of R&D, the optimal number of R&D search units, and the R&D 

search intensity per R&D search unit. An increase in the fixed cost 

of R&D will lead to a decrease in the optimal level of R&D. The 

optimal number of R&D units is also decreased, but the extent of its 

change is large enough that the net result causes the R&D search per 
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unit to increase. In the present model, there are no inventories, so 

that a change in the discount factor has no effect on production. 

Furthermore, current production is independent of current R&D activities. 

Thus, a change in the fixed cost of R&D will have no effect on current 

production. Observing that a change in the discount factor 

affects the optimal choice of R&D, it is expected that the technology 

level in future periods will be affected. This in turn implies 

that future production levels will be affected. Even though an 

increase in the current technology level will lower the optimal R&D 

search intensity, it has a positive effect on the current production 

level. More interesting is the result that an upward shift in the demand 

function will increase current production, the optimal R&D search 

intensity, the optimal number of R&D search units, and the optimal 

number of production units. These results confirm the claim by many 

economists that one policy which would promote R&D is to improve the 

general state of the economy. For example, with ample time for adjust

ment, a decrease in the tax rate may increase disposable income, and 

if the relevant markets are producing normal goods, it will increase 

both the production level and the intensity of R&D search. A further 

observation is that the effect of any change in the exogenous variables 

has quite an opposite result on the R&D search intensity per unit of 

sale as against the R&D search intensity per R&D search unit. While 

an increase in the technology level, the interest rate, and the demand 

for the final product have no effect on the R&D search intensity per 

R&D unit, there are negative effects on the R&D search per unit of sale 
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for the first two changes but ambiguous results from the last change. 
p 

The ambiguous results are due to the positive effect of a change in 

the demand on both the production level and the optimal R&D search. 

Noncooperative Duopolists 

For the rest of this section, a non-cooperative duopolistic 

market is considered. The model used is similar to that described in 

the previous section. Assume that the objective of a duopolist is to 

maximize discounted profits over time. Consider Duopolist I. There are 

four choice variables at his disposal. They are: 

ql = Duopolist I's current output, 

Al = Duopolist I's R&D search intensity, 

nl = Duopolist I's number of production units, and 

ml = Duopolist I's number of R&D units. 

Similar notations are used for Duopolist II, except for superscript 

differences. The current technology level of Duopolist I is given 

1 by y. The demand function for the product of the industry is defined 

by: 

1 2 
p(q + q ), 

where p is the price of the industry output. 

The Nash equilibrium concept is employed in this model. The 

reason is that R&D implies great uncertainty with respect to the 

competitive positions of the rivals. With collusion ruled out, cal-

culating the indirect effect of one's behavior on one's rival is 
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difficult. 2 
Thus, Duopolist I takes the output level q and R&D search 

intensity A
2 of his rival as given. Assume that both firms know the 

set of distributions of potential technology levels for each level of 

R&D search intensity. If Duopolist II's technology level is z2 in the 

next period, Duopolist I's expected discounted profit stream from the 

next period onwards is given by 

!v y" 1 1 2 1 1 
a V (z ,z ) dH(z , A ) , 

y' 

conditional on finding a higher technology level, and 

1 1 2 1 1 av (y ,z ) H(y ,A ) , 

conditional on failing to develop a better technology. v1 (z1,z2) 

stands for the optimal expected discounted profit stream for Duopolist I 

given his technology level is z1 , and his rival's is 2 
z • Now, Duo-

polist I knows that his rival is searching for a new technology at 

. . '2 intensity I\ Hence, the expected discounted profit stream including 

the expectation of his rival's technology in the next period is given 

by 

y y 112 11 112 11 22 " [ " ] h2 aJ;1 V (z ,z ) dH(z ;A ) +av (y ,z ) H(y ;!. ) dH(z ;!. ) , 

conditional on Duopolist II getting a better technology, and 
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if Duopolist II fails to get a better technology in the 

next period. The full expression of this optimal functional may be 

written as 

1 1 2 max ~ 1 2 1 1 (q1 
1) 1 ("l) V (y 'y ) = 1 1 1 l l p ( q + q ) q - n C l 'y - m K l 

q ,A ,n ,m n m 

[ 

II 1 2 1 1 1 1 2 1 l] 2 2~ 
+ a.J;: v1cz ,y) dH(z ;A) +a.V (y ,y) H(y ;") H(y ;A)~ 

Applying integration by parts twice, it is restated as 
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1 1 1 1 1 . Let W (q ,!. ,n ,m ) be the function in the bracket. First order 

d . . f . . . wl < 1 , 1 1 1) . b con itions or maximizing q ,A ,n ,m are given y 

(5) 

0 ' 

1111 1 11111 (1' 1 (1) W ( q , A , n + 1 , m ) - W (Cl , \ , n , m ) < -C .9_ y + .L c .9_ yl = 
. - l' . 1 1 l' 

n n n 
0 ' 

1 1 1 1 1 1 1 1 1 1 ( t. 
1

) t. 
1 

( t. 
1
) W (q , )\ ,n ,m +l) - W (q , A ,n ,m ) _::. K ml + ml K

1 
mi" = 0 (8) 

where 

ac al , and K1 
oK 

- ;n1 

Equation (5) requires that for equilibrium output, marginal revenue to 

a duopolist equals marginal cost of production. Equation (6) is more 

complicated, It requires that the marginal cost of R&D search inten-

sity equal the marginal benefits of R&D. The latter is the sum of two 

(6) 

(7) 
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terms. The first term is the marginal benefit derived from an increase 

in the optimal return holding his rival's R&D search intensity constant. 

The second term is a result of interaction between the two rivals. It 

states the effect of a change in a duopolist's technology on the optimal 

return to another duopolist. The sign of this term is ambiguous. 

Equations (7) and (8) are familiar. They require marginal cost equals 

average cost of production and for R&D. 

A synnnetry condition is imposed on the duopolistic market. Assume 

that technology levels of the two duopolists are the same. With this 

further assumption, the equilibrium output and R&D search intensity 

should be the same. Hence, letting 2qD be the industry's output, and 

2AD be the industry's R&D search intensity, the first order conditions 

may be rewritten as: 

(5 I) 

-K (AD)+ a (Y"j av(z
1

,y11
) _ 

1 mD Jy l az1 

hy" a 2v ( z 1 , z 2) 2 D 2 I 1 n 1 1 < 6 , ) - - H ( z ; A ) dz I H ( z ; I- ) [ 1 - F ( z ) ] dz = 0 
az1 az2 I 
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It is possible to proceed to derive the analytical solutions necessary 

for comparative statics. However, it is difficult to sign the results, 

because they involve the third derivative of the optimal return 

functional, such as 

It was shown in the first section that a monopolist may invest 

less in R&D search than a social welfare maximizer. It was further 

demonstrated that the Reservation Technology Level (RTL) of a mono-

polist is lower than that of a social welfare maximizer. The welfare 

result in this section is weaker. It will be shown in the following 

theorem that a non-cooperative duopolistic market may have more R&D 

investment than that of a monopolistic one, but the result requires 

more assumptions. It is proved by showing that the RTL of a 

non-cooperative duopolist y*** may be greater than that of a mono-

** polist y Thus, the innate advantage of monopolistic market as 

upheld by Schumpeterians is questioned, but not disproved. A con-

elusive judgment requires more detailed knowledge of the specific 

demand situation and the interactive effects among rivals' behavior. 

Theorem IV-3: If 
M D 

n (z) s n (z) 'd zs [y*** ,y"] , and 

\.I 1 [ *** "] \.I 2 [ *** "] vz E.: y ,y 'vz E.: y ,y 

then y** < y*** 
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Proof: By the definition of a reservation technology level, one obtains 

"'/v Y" oJl(z) ~ oz H(z,O)[l-F(z)]dz 
y** 

Ivy" Jo~ (z1 ,y") Ivy" o 2~ (z1 ,z2
) 2 2) 1 1 1 =a ) - l 2 H(z ,O)dz 

1 
H(z ,O)[l-F(z )]dz . 

y*** l oz1 y*** oz oz J 

Now, 

M M M -n c2 (q /n ,z) 

1 - a 
't:J ZE: [y** ,y*] 

and 

D D D -n c
2

(q /n ,z) 

1 - a 
't:Ju:. [y*** ,y"] 
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- ** 1 z t H(z ,O)dz H(z ,O) [1-F(z ) ]dz • Ivy" a2vn ( 1 2) 2 2 } 1 1 1 

y az az 

- (Y" 
Jy** 

y** < y*** Q.E.D. 

It is possible that nM(z) s nD(z) ~z~[y***,y"]. For example, see 

Figure IV-4. Here the demand as perceived by the duopolist is more 

elastic than the actual demand of the industry. The marginal revenue 

as perceived by the duopolist is also more elastic. Thus, market 

opportunities for the duopolist are larger than those for a monopolist. 

Rivalry may create a better environment for R&D. The assumptions in 

the theorem are sufficient conditions for the theorem. As long as 

O ~z1 e: [y*** ,y"] ~ z2e: [y*** ,y"], it is possible 

that even if nM(z) > nD(z), y** < y***. A sufficient condition then 

is that: 

a~(z) 
az < - (Y" 

)y** 
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Figure IV-4: Nash Equilibrium of Duopolists. 

Section III 

Two things need to be resolved in this section. The first is 

related to an assumption made in the previous sections. It has been 

assumed that the R&D cost function in the model exhibits increasing 

returns to scale, and changes to decreasing returns to scale at a low 

level of R&D search intensity. Schumpeterians usually assume the con-

trary, i.e., there are increasing returns to scale throughout the 

relevant range of R&D search intensity. 

It has been presumed so far that technological change can be 

modeled as a reduction of the cost of production alone. No distinction 

has been made between product and process innovations. Indeed, it will 

be argued here that product innovation is a special case of process 
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innovation in the sense that the former does not have a positive 

current output level due to the current high cost of production, and 

hence is an unprofitable activity. Theoretical similarities of the 

two types of innovations will be discussed. 

R&D Economies of Scale 

Consider the evolution of an industry. At the early stage of 

development, firms in the industry are striving for survival. Each 

is trying to capture a market share. Changes in relative market shares 

are significant. As the market size ceases to increase rapidly, and a 

small group of dominant firms emerge out of fortuitous technical 

improvement and management superiority, the relative market shares 

begin to stabilize. If price fixing occurs, it would only reinforce 

the stability of relative market shares. 

If these firms are faced with the choice of developing a small 

scale technology versus a large scale technology, both with the same 

potential minimum average cost, though at different levels of output, 

there is a tendency to invest in the large scale technology. There 

are two reasons for such a bias. The first is an employment

control rationale. The entrepreneur acting to lower the 

probability of new entrants, will avoid spinning off experts from his 

firm to form new ones. With a large scale technology, employees of 

the firm will find it difficult to understand the complete production 

process. An example is the amazingly complex assembly process for 

automobiles. There are plants that assemble engines alone. Further

more, the employees in production and those in R&D are separated. The 

., 
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direct motive is to take advantage of specialization, but a consequence 

is the further compartmentalization of experts. It has been a paradox 

that economists emphasize the importance of better relations between 

the production and R&D departments of a firm, and yet the two remain 

isolated to a large extent for many firms. Nevertheless, a small group 

of ingenious employees may be able to master the whole relation of pro-

cesses in the firm. Granted this is true, they will still have diffi-

culty finding financing. Their knowledge is limited to large scale 

technology, which in most cases implies a need for a large 

start-up investment. Finally, they will have to compete with a group 

of large and collusive firms. Overall, there would appear to be little 

incentive to start a new venture. 

A second motivation for an entrepreneur to favor large scale tech-

nology is the potential of future antitrust suits. As long as the 

market grows small firms can survive. When the growth slows down, 

dominant firms will carve up the market. Small firms may not be in 

the "club" of collusive firms. Antitrust suits are prone to happen 

in the face of political maneuvering generated by marginal firms, which 

are now struggling for survival. A possible defense against potential 

antitrust will be to argue along natural monopoly lines. Technical 

sustainability of market structures may foreclose economic arguments 

. h f d . f" lO against t e group o ominant irms. 

As more and more R&D investment is spent on large scale technology 

development, only a selective type of knowledge is generated, namely, 

the design and control of large scale systems. Over time, potential 

competitors will be forestalled from developing small scale technology, 
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because the technical knowledge relevant for that scale is nonexistent 

due to historical large scale technology bias, and the large investment 

necessary to develop a large scale technology is prohibitive in the 

face of collusive firms. Thus, large scale R&D for the development of 

large scale technology may be motivated by profit seeking behavior, 

and hence it is an endogenous choice. It may not necessarily be 

socially preferable. 

As far as policy choices are concerned, there is a dilemma. The 

historical technology scale bias has resulted in a stock of knowledge 

for developing large scale technology. The cost of developing small 

scale technology is high. However, continuing the trend will preclude 

competition. The alternative is to correct the situation over time, 

i.e. a reverse in technology bias at the margin that works to 

restore competition. But existing firms in the industry will 

have no incentive to develop small scale technology. Small firms 

need to be encouraged to develop small scale technology whenever tech

nical opportunity exists. However, if large subsidies are used, small 

firms may have the same bias towards large scale technology discussed 

above. If small scale technology is cost competitive in the normal 

economic sense, a preferable method may be to guarantee that the 

technology will not be foreclosed by large firms using cross subsidization. 

Treatment of Product and Process Innovation 

For theoretical purposes, I treat product innovation as a situation 

in which the good had such a high cost of production in the past that 

equilibrium output quantity was zero. Hence, a product innovation can 

be considered as a special case of process innovation. 
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This may not be true as some critics may say. They offer the 

reason that with process innovation, one knows the number of producers. 

However, a new product innovation implies that there is no producer in 

the past, although there may be an unknown number of potential producers. 

Hence, a monopoly situation can be temporarily established for the first 

innovator. Indeed, this is true. But, in process innovation there is 

an unknown number of potential producers too, granted that the number 

of current producers is known. Thus, in either case the same element 

of uncertainty occurs, namely, the number of potential producers. An 

example will.be the watch industry. No one in the industry would have 

expected Texas Instrument to enter the watch market a decade ago. 

Whether a model can be applied to product or process innovation will 

depend on the level of uncertainty considered. 

Again, one may argue that for product innovation, there is no 

existing market, and hence no information on the demand for the product 

nor the supply capability of potential producers. Rosenberg (1975) 

indirectly provides a rebuttal to the argument. He points 

out that if R&D is defined as information buying, assessment of demand 

at prices other than the current one is also a form of R&D. This 

observation provides the basis for a counter argument. The demand 

structure and the supply capability of the current and potential pro

ducers are not known for situations where prices are substantially 

lower than the current one. Since process innovation will eventually 

lead to lower real costs of production, product and process 

innovations may be treated as essentially equivalent for theoreti-

cal purposes. The difference again lies in the level of uncertainty. 
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A critic may present a third argument as follows: For a process 

innovation, any improvement by one producer affects the production 

level of all his rivals while for the case of a product innovation, 

the successful results of R&D by one producer has no production effect 

on his rivals since none of them were producing in the past (by the 

definition of a new product), One may produce an immediate counter 

argument. For a product innovation, the success of an innovator has 

no actual production effect on his rivals, yet it has a potential pro

duction effect on them, The reason is that his rivals, in the event 

they also lower the production cost substantially in the future, will 

not be producing as many units as in the case that the first producer had 

not succeeded in entering the market previously. Hence, I conclude 

that integrating production with product or process innovative R&D 

should lead to no theoretical disparity. The only difference is the 

level of uncertainty involved. 

Summary and Conclusion 

In this chapter, it has been shown that a monopolist is less per

sistent in R&D search than a social welfare maximizer is. Since a 

monopolist produces at less than the socially optimal level, his benefit 

derived from cost reduction is less. Therefore, he will stop searching 

at a lower level of technology. However, the fact that a monopolist has 

a benefit function dominated by that of a social welfare maximizer 

does not imply he will always invest less in R & D at all levels 

of technology. Marginal benefits and marginal costs determine the 

level of R&D investment. In fact, the benefits to a social welfare max-
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imizer might rise so rapidly that the increase in benefits at high levels 

of R&D search intensity may taper off gradually. The marginal benefits 

to a social welfare maximizer may be less than those to a monopolist at 

such levels of R&D search intensity. This point is not recognized by 

some economists when they model R&D with a fixed reward. They ignore 

the continuous nature of R&D. 

It is further demonstrated that the welfare ranking of market 

structures is highly sensitive to the demand elasticity as well as the 

cross effect of one's rivals' behavior on one's objective. If demand 

is sufficiently elastic below the monopolistic price, a duopolistic 

market may produce more than twice the output of a monopolist. In 

that event, the returns to each duopolist on R&D investment may be 

sufficient to motivate more R&D than that invested by a monopolist. 

It remains to evaluate other situations with different oligopolistic 

market structures, and with different solution concepts. There are a 

number of group behavior theories which have different implications. 

Thus, the conclusions with respect to the welfare ranking of market 

structures is only tentative. What is achieved here is to demonstrate 

some important determinants to such judgements. 

Last of all, it is resolved that there need not be any special 

treatment for product as contrasted with process innovation. The problem 

is a matter of degree of uncertainty. It is shown that there may be 

technological bias in developing potential technologies. A descriptive 

theory of such bias is provided. The motivation of such behavior is 

also identified. Breaking down R&D decision on a microeconomic level 
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has provided many insights to the problem as a trade-off to the rapid 

increase in complexity. Research in this direction will definitely 

give more insights on the growth and behavior of an industry. It may 

also explain some interactive reactions in firms' investment decisions, 

both for production and R&D. Formal modeling of these aspects is left 

for future research. 
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Chapter IV: Footnotes 

1. See Chapter II for a review of Futia's model. 

2. Static efficiency is achieved when marginal benefits and costs of 
production are equal holding technology constant. Dynamic 
efficiency is achieved when marginal benefits and costs of 
technology development are equal. The former is a short run 
efficiency criterion while the latter is a long-run efficiency 
criterion. 

3. See section III of this chapter. 

4. The demand side of R&D is actually a derived demand. R&D results 
are usually not for final consumption. It is the cost reduction 
that benefits consumers by allowing more quantity purchases for a 
given income. 

5. Reservation technology level is that below which R&D is continued 
and above which R&D is stopped. 

6. Technology choice bias occurs when a R&D decision maker chooses to 
develop a technology that requires a larger output level to achieve 
minimum average cost of production while there is another tech
nology that yields the same minimum average cost of production but 
at a lower output level and the expected costs of developing the 
two technologies are the same. 

7. Futia (1977) has some breakthroughs in this direction. See chapter 
II for a more detailed discussion of his model. 

8. The implication from this table is biased in the sense that some 
industries are highly regionalized, i.e., within their geographical 
region. 

9. The diffusion of technology is not investigated in this paper. Its 
importance will only urge for future research. 

10. This is a too strong a statement when one considers the A&P grocery 
chain store case and the ALCOA aluminum industry case. In both 
cases, economic argument fails to revert antitrust decisions. 
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Chapter V 

Sequential R&D Search Model 

Properties of Technological Change 

It has long been emphasized that technological change has been both 

continuous and discontinuous. There is continuity in minor 

innovations, and discontinuity in major breakthroughs involving 

radical overhauls of manufacturing processes and/or the 

introduction of new products. In spite of this duality, technological 

change follows the Marshallian principle of supply and demand, with 

the addition of uncertainty. The supply side is governed by technical 

feasibility (hence costs), while the demand side is ruled by the 

market value of the final product. Attempts to model these aspects 

of technological change remain a challenge to economists. 

Stages of Technological Change 

Technological change is commonly delineated into stages. One 

dichotomy is between research and development. 

For example, Ames (1961) defines research as "a flow of new state .. 

ments about the natural world" and development as "a flow 

of instructions (blueprints, diagrams etc.) which enable the 

construction and equipment industries to build fixed plants of kinds 

never used before; and also enable the personnel of these plants to 

operate them when finished." Mansfield (1968) defines research as 

"original investigation directed to the discovery of new scientific 

knowledge" and development as "technical activity concerned with non

routine problems encountered in translating research findings into 
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products and processes." More recent] y, Spulber (1977) defines research 

as a "stage where discoveries are made and the technical feasibility of 

their application is ascertained," and development as a "stage, where the 

results obtained in the research stage are made 'operational' and the 

utility of implementing the outcome is determined." 

Admittedly, these definitions of research and development lack 

economic content. One needs to introduce the costs and benefits 

relevant to each stage and investigate the allocative process of expend

ing effort between the two stages. Furthermore, one needs to postulate 

linkages between research and development to avoid separating technolog

ical change into two unrelated stages. To this end, economists approach 

the problem from different directions. Ames investigates the capital 

market and the equilibrium interest rate. Mansfield tests empirical 

relations between productivity changes and economic variables, such as 

level of research and development funding. Spulber theorizes on the 

microeconomic foundations of research and development. 

I postulate that development is a costly process through which positive 

economic return may be the reward. One may internret develonment as 

commercial testing of a technology from a given technology field. Sec

ondly, I postulate research is also a costly process through which 

improvements in the likelihood of positive economic returns may occur in 

the development process. One may interpret research as searching for 

a new technology field with a better prospect of development success. 

Thus, development is identified with direct economic gains and research 

with indirect economic gains. The purpose of the latter is to make the 
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former economically more attractive. I shall assume away the possibility 

that research may be a consumption good. Though researchers may view 

research as a consumption good, individuals funding the research activ

ities will have in mind an expectation of economic gains. 

The "Switching" Property of R&D 

Standard results from search theory with a one dimensional 

search space indicate that there is a reservation technology level, 

below which research is continued and above which research is stopped. 

This constitutes Spulber's "switchpoint" property of research and devel

opment, namely, once research is discontinued, it will never be resumed. 

This is contrary to casual observation. Research and development occur 

continually with changes in emphasis over time, but neither one is dis

continued forever. The only way to introduce this "reswitching" prop

erty of research and development to the standard search model of one 

dimensional search space is to allow exogenous changes in the probabil

ity distribution over the search space. I propose to provide a model 

in which the "reswitching" property of research and development i~ 

endogenous. To achieve this end, a two dimensional 

search space will be introduced into the standard search model. Wilde 

(1977) and Burdett (1978) introduced this extension. The structure of the 

model will closely follow Burdett's. The next section will describe the 

model. A following section will analyze it in detail. The last section 

will deal with a number of comparative statics results. 
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Section I 

The Model 

Following Spulber's (1977) conception of the microeconomic processes 

of research and development, I introduce the concept of a technological 

knowledge index, zs[O,l], which can be improved stochastically by engag

ing in research activities. Based on a given technological knowledge 

index, there is a probability distribution of an economic index, GCnlz) 

which can be achieved by a development process. Associated with a given 

economic index, ns[O,l], there is an economic return function R(n). A 

higher economic index implies higher economic benefits per time period, 

i.e. R~(n) > O. The distribution of the economic index is rank ordered by 

the technological knowledge index, based on the first order stochastic 

dominance concept introduced by Quirk and Saposnik (1962), i.e., 

3G(nlz)/3z < 0 for all nE[O,l) and zE[O,l). Additional properties 

imposed on the distributive function G are: 

G(O\y) 0 

G(ljy) = 1 for all ys[O,l], and 

3G(niy) > 0 for all ns[O,l] 

an 

Thus the objective of research is to seek a higher technological 

knowledge index and to improve the likelihood of achieving higher than 

current economic return through the development process. Let H(z), 

zs[O,l], be the distribution function of technological knowledge index, 

and assume 
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H(O) = 0 

H(l) = 1, and 

H~(z) > 0 for all z~[O,l] • 

To take an observation from this distribution, a decision maker has 

to pay a constant cost of K. Similarly, independent of the technolog-

ical knowledge index, a decision maker has to pay a constant cost of C in 

order to take an observation from the distribution of the economic index. 

Suppose the current state of the world is defined by the pair (m,y). 

A decision maker has three options. Option I is 
I 

doing nothing other than collecting whatever the existing economic 

index, m, allows in the current period, and behaving optimally in all 

future periods. A case for Option I is that research and development 

costs are prohibitively high and/or the probability of further net 

return is very low. The second option is to search for a higher value 

of the technological knowledge index in the current period and then 

behave optimally thereafter. The remaining option is to exploit 

existing technological knowledge and search for a higher 

economic return. Mutual exclusiveness of the three options is assumed. 

See Figure V-1. 

Assume the decision maker attempts to ma~imize the 

expected discounted economic return net of R&D search costs. Let V(m,y) 

be the optimal expected discounted return net of search costs if the 

current technological knowledge index is y and the current economic 

index is m. Independent of which option is chosen, a decision maker 
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receives R(m) in the current period. If option I is chosen, the 

decision maker will receive the optimal expected discounted return net 

of search costs V(m,y) in the next period. Expressed in present value 

form, the last expression is given by aV(m,y), where a is the discount 

factor. Define u
1

(m,y) = aV(m,y). If option II is chosen, the decision 

maker has to pay a fixed search cost K in the current period, and 

receive the present value of an expected sum 

f
l 

V(m,z) dH(z) + aV(m,y) H(y) 
y 

in the next period. The first term in the expression is the payoff if 

the research activity is successful. The second term is the payoff if 

the research activity yields no improvement. Define 

I OPTION I: 

I .. DO NOTHING NOW AND BEHAVE OPTIMALLY 

I THEREON 

I 
I OPTION II: I ECONOMIC INDEX OF BEST MARKET TESTED TECHNOLOGY• m ~ ... PAY A COST KAND SEARCH FOR A BETTER TECH-

TECHNOLOGICAL KNOWLEDGE OF BEST TECHNOLOGY FIELD• y I NO LOGY FIELD AND THEN BEHAVE OPTIMALLY 
THEREON 

I 
I 
I OPTION Ill: 

I-+ PAY A COST C, MARKET TEST A TECHNOLOGY 

STATE OF THE WORLD I 
FROM THE BEST AVAi LiABLE TECHNOLOGY FIELD 
AND THEN BEHAVE OPTIMALLY THEREON 

I 

ACTION SPACE 

Figure V-1. Mutually Exclusive R&D Action Choices for a 
Given State of the World 
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= f
l 

-K + a V(m,z) dH(z) + aV(m,y) H(y). 
y 

Last of all, if option III is chosen, the decision maker has to pay a 

fixed search cost C in the current period and receive a present value 

of an expected discounted sum 

a f
l 

V(n,y) dG(n!y) + aV(m,y) G(m!y) • 
m 

The first term is the payoff if the development activity is successful. 

The second term is the payoff if the development activity yields no 

improvement. Define 

f
l 

-C +a V(n,y) dG(n!y) + aV(m,y) G(m!y) • 
m 

Thus the optimal expected discounted return net of search costs can be 

restated as 

(eq. V-1) 

Existence 

The existence of a functional V that satisfies the equation can be 

proved by a straightforward application of Denardo (1967). The result 

is stated as a theorem while the proof is left in an appendix. 
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Theorem V-1: Given the assumptions of the sequential research and 

development model, there exists a unique, continuous, bounded solution 

to the functional equation V-1. 

Proof: see appendix 

The Existence Theorem itself does not require the differentiability 

of the optimal functional. Assume that the optimal functional V is 

twice differentiable. Additional assumptions are made as follows: 

(1) 
av(m,y) 

~ 0 for all (m,y) e:S' and strictly positive 
am for some (m, y) e:S ' 

(2) 
ClV(m,Y) 

~ 0 for all (m,y) E: s' and strictly positive 
Cly for some (m, y) E: s ' 

2 
a V(m,y) . 

(3) amay 5 0 for all (m, y) e:S' and strictly negative 
for some (m, y) e:S 

where 

s = [O,l] X [O,l) 

Preliminary examination of the expected discounted return will be 

useful. 

Proposition V-1: 
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Proof: Recall the definitions of u1 and u2 . 

Therefore 

= 
oV(m,y) 

O'. 
ay 

ou2 a oV(m,y) H(y) 
ay ay 

Q.E.D. 

Proposition V-1 states that as the technological knowledge index 

is increased by research activities, Option II (choosing research) 

becomes less attractive relative to Option I thus, stopping may 

eventually be preferable over research. For a given distribution of the 

technological knowledge index, the probability of further research 

success decreases with increases in the technological knowledge index. 

On the other hand. the .search cost of research remains c.onRtant. 

Thus the economic attractiveness of Option II decreases with an increase 

in the technological knowledge index. 

Proposition V-2: 

(1) 

(2) 

aul au 
> -

2- > 0 and om - Clm - , 

au3 
> -- ~ 0 - Clm 
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Proof: Recall the definitions of u1 , u 2 , and u3 . 

1) 

Therefore 

2) 

Therefore 

au2 

om 

au 
~ om 

ClV(m,y) 
a 

am 

au
1 oV(m,y) 

= a om am 

+ a J 1 [av~:, z) - ClV(m,y)J dH(z) 0 ~ om 
y 

aul au2 > o. 
-~--om om 

Q.E.D. 

Proposition V-2 states that as the economic index is increased by 

development activities over time, Options II and III became an inferior 

choice compared to Option I. The attractiveness of Option II is that 

research activities may raise the technological knowledge index which in 

turn raises the probability of improving the current economic index. 

However, as the current economic index increases, the probability of 

future development success is lowered. Thus stopping may eventually be 

preferable to research. The second part of Proposition V-2 is more 

straightforwarc:i. the higher the current economic index, the lower the 
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probability of development successes. With the search cost of development 

remaining constant, the economic attractiveness of development decreases 

relative to stopping. It remains to identify criteria under which 

research is preferable to development. 

Optimal Choice Regions 

Define the following sets 

s .. 
1] 

(m,y) 

Section II 

(def V-1) 

For example, if the current state (m,y)ES is also an element of s 12 , 

it implies that the decision maker is indifferent between Option I and Option II. 

Note that neither one is claimed to be the optimal choice. Consider s12 . 

u
1 

(m,y) = aV(m,y) 

1
1 

-K + a V(m,z) dH(z) + aV(m,y) H(y) 
y 

-K + aV(m,y) + a j
1 

[v(m,z) - V(m,y)J dH(z) . 
y 

Thus, (m,y)Es12 implies that u1 (m,y) u 2 (m,y) or 

0 -K +a }
1 

[v(m,z) - V(m,y)J dH(z). 
y 

(eq V-2) 
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Note that the second term on the right hand-side is decreasing with 

respect toy. Thus for each mE[O,l], there is only one yE[O,l] such that 

the above equation is satisfied. 

Applying the Implicit Function Theorem, one obtains 

dm 
dy = 

1 J av~~,y) dH(z) 

f l [aV(m, z) _ av(m,y)J dH(z) 
am am 

y 

which is nonpositive if the denominator is negative. 

This result is stated as a lemma. 

Lemma IV-1: 

If (m,y) E s12 and av(m,z)/am > av(m,y)/am for some z > y and nonnegative 

for all (m,y)E s12 then 

dm 
dy ~ 0 

Let m* be defined by 

0 

and y* by 

0 

-K +a ~l [v(rn*,z) - V(rn*,O)J dH(z) , 

-K +a f 1 
[v(O,z) - V(O,y*)] dH(z) 

y* 

Note that y* < 1 for K > 0. 

(def V-2) 

(def V-3) 
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Uniqueness of y* is established by noting that the second term of 

the definition of y* is decreasing with respect to y*. Uniqueness of m* 

can be established if one assumes a2v(m,z)/amaz < 0 for all (m,z)E s
12

. 

Since au1 /am ~ au2/am, u1 (m,y) = u2 (m,y) implies u1 (n,y)? u2 (n,y) for 

(n, y) E S and n ~ m. Using the notations ")'- 11 and "-" to represent "is 

strictly preferred to" and "is indifferent to" -respectively, I illustrate 

the results in Figure V-2. 

Based on the results stated above, the state space, S, can 

be partitioned into three sets. One represents a subset of the state 

space with the property that Option I (stopping) is strictly preferred 

to Option II (research). Another represents the set s12 , and the third 

represents a subset of S with the property that Option II (research) 

ECONOMIC 
INDEX 
M 

m' 

0 y' 

TECHNOLOGICAL 
KNOWLEDGE 
INDEX 

Figure V-2. Rank Ordering of Option I of Stopping vs. 
Option II of Research 
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is strictly preferred to Option I (stopping). Thus Option II is an 

optimal choice only in the last two sets. 

Next, Options I and III are rank ordered. Consider s
13

. 

u1 (m,y) = aV(m,y) . 

= Jl 
-C + a V(n,y) dG(njy) + aV(m,y) G(mjy) 

m 

• -C + •V(rn,y) +a ~l [v(n,y) - V(rn,y)J dG(n!Yl. 

Thus (m,y)E s
13 

implies that u
1 

(m,y) 

0 -c +a j
1 

[v(n,y) - V(m,y)J dG(nly). 
m 

(def V-4) 

Impose the condition that Option I is indeed the optimal choice of the 

three options. This implies that 

or 

V(m,y) = R(m) + u
1 

(m,y) 

= R(m) + aV(m,y) 

V(m,y) R(m) 
1 - a 

From previous results, au
1

/am > au
3

/am, and au
1

/am > au
2

/am. Thus, 

if Option I is the optimal choice for (m,y)E S, Option I is also the 

optimal choice for (n,y)E s and n ~ m. Stated alternatively, 

V(m,y) = R(m)/(l - a) implies V(n,y) = R(n)/(l - a) for all n ~ m. 



Note 

Define 

s~. = I (m,y) 
1] l 
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= u.(m,y), 
J 

V(m,y) = R(m) + ui(m,y), (m,y)E s! 
t that S .. may be empty. 
1] 

(def V-5) 

1 For all (m,y)E s
13

, the following equation must be satisfied: 

0 = -C +a Jl [ R(n) - ·R(m)J dG(nl) 
1 - a 1 - a y • 

m 

(eq V-3) 

Note that the second term on the right-hand side is decreasing with 

respect tom. Thus for each yE[O,l], there is only one mE[O,l] such 

that the above equation is satisfied. Integrating by parts, I have 

0 -C + _a_ [R(l) - R(m)] 
1 - a 

1 - a J
l 

R ... (n) G(niy) dn 
m 

(eq V-4) 

Note that the third term on the right- hand side is increasing with 

respect toy. Thus, for each mE[O,l], there is only one yE[O,l}, 

such that the above equation is satisfied. 
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Applying the Implicit Function Theorem, one obtains 

dm 
dy 

= 

> 0 . 

- a J 1 R'(n) ClG(n!y) dn 
1 - a Cly m 

_a_ R .. (m) +_a_ R .. (m) G(m!y) 
1 - a 1 - a 

The result is stated as a lemma. 

Lernma V-2: 1 
If (m,y) e: sl2' dm/dy > 0. 

1 Since s
12 

represents the set of optimal stopping states, dm/dy > 0 

implies that the development "switchpoint" is increasing with respect 

to the technological knowledge index. A similar result is obtained by 

Spulber [1977]. Let m be defined by 

0 

and rn by 

0 = 

- c + a J 1 [R ( n) - R ( m) J d G ( n I 0) 
_ 1-a 1-a ' 
m 

-c +a j 1 
[R(n) - R(m) J dG(nil) 

= 1 - a 1 - a 
m 

Note that m < rn < 1 for C > 0. 

(def V-6) 

(def V-7) 
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Uniqueness of m and m can be established by noting that the second 

term on the right-hand side of each equation is decreasing with respect 

tom and m respectively. Since au1 /am ~ au
3

/am, u
1

(m,y) = u
2

(m,y) 

.implies u1 (n,y) ~ u3 (n,y) for all (n,y)E Sand n ~ m. Figure V-3 

serves to illustrate the result. It remains to show that m ~ m*. 

Theorem V-2: iii ~ m* 

Proof: Assume the contrary i.e. iii < m* 

The assumption implies that there is a y > 0 such that 

(1) u1 (m*,y) > u2 (m*,y), and 

(2) for ally E[O,y], V(m*,y) 

ECONOMIC 
INDEX 

m 

I )'-111 

1-111 

V(m•'<,O). 

111 )'-I 

m 

TECHNOLOGICAL 
KNOWLEDGE 
INDEX 

0 y 

Figure V-3. Rank Ordering of Option I of Stopping and 
Option III of Development 
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From (1), I have 

O > - K +a .hl [v(m*,z) - V(m*,)i)J dH(z). 

But u1 (m*,O) = u2 (m*,O) since (m*,O)E s
12

. 

Therefore, I have 

0 -K + a .£1 
[ V(m*,z) V(m*,o)J dH(z) 

• -K +; f/ [v(m*,z) - V(m*,O)J dH(z) 

+ a .ly [ V(m*, z) - V(m* ,0) }H(z) 

= -K +a ~l [v(m*,z) - V(m*,O)J dH(z), 

which yields an obvious contradiction. 

Therefore. 

m ~ m*. 

Corollary V-1: 1 > m*. 

Proof: -Recall 1 > m 

Figure V-4 combines the last two figures. 

Q.E.D. 

Q.E. D. 
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m 
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Figure V-4. Rank Ordering of Option I of Stopping, 
Option II of Research and Option III of 
Development. 

Referring to Figure V-4, there is a set at the lower left hand 

corner that does not indicate an optimal choice of an option. Consider 

rank ordering of Options II and III in this set. Define the following 

two sets: 

E "" I (m,y)E S H(y) = (def V-8) 

and 

R I (m,y)E S : u2 (m,y) (def V-9) 

Consider the set E. Recall that H-(y) > 0 and 3G(m!y)/3y < O. Thus E 

is a graph. For all (m,y)E E> 



Note that (O,O) ~ E, 

dm 
dy 

> 
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0 . 

aG(mly) 
am 

Consider the set R. By definition, 

or 

- K + aV(m,y) +a ~l [v(m,z) - V(m,y)J dH{z) -c + Cl v (1, y) 

aV(n,y) G(njy) dn . 
an 

(eq V-4) 

Assuming the Implicit Function Theorem requirements are satisified, the 

following is derived 

dm 
dy 

aV(m,y) _ o. (
1 

aV(m,y) dH(z) 
o. ay Jv ay 

aV(m,y) + fl [oV(m,z) 
a -am- a -am-

y 

{ 
c. av(m,y) _a_y_ 

_ o. o\1(1,y) + o. f 1 [oV(n,y) ilG(n!\') 
ay Jm an ay 

av(m,y)J dH( ) av(m,y) G( ! ) ---- z -a--- m\' am am I. 

oG (n' \') 

~ 
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Suppose RnE :f cp. 

Let (m, y) e: RnE. The above equation is reduced to 

{a f aV(n,y) dG(n[y) - a 11 aV(n,y) aG(nly) 
dn} 

dm ay n ay 
m = 

dy 

af av(m,z) 
am dH(z) 

> 0 . 

Hence, at point(s) of intersection, R will cut E with a positive slope. 

Furthermore, if ClV(m,y)/ay, ClV(m,y)/am and ClG(niy)/ay are all bounded 

between - 00 and +=, then (m,y)e:R and H(y) - G(miy) > 0 imply that 

dm/dy is bounded between - 00 and +oo. A similar conclusion may be drawn 

for H(y) - G(mjy) < O. With these additional assumptions one may con-

elude that RnE has only one element. See Figure V-5. 

The Reswitching Property of Research and Development 

Referring to Figure V-6, an inunediate observation is the possibility 

of path A. Suppose the initial state is the pair (y
1

,m
1
). The optimal 

choice is to do research and improve the level of technological knowl-

edge. Suppose the observed improvement is Yz• The state in the second 

period is given by the pair (y
2

,m
1

). The optimal choice switches to 

development. With some luck, the economic index is improved to m2 . The 

new state is (y
2

,m
2

) which switches back to the region where research is 

the optimal choice. Thus, one might observe any positive number of 

switches between research and development. Suppose t~chnological 

knowledge is limited in the sense that if the state enters into a point 
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Figure V-5: Rank Ordering of Option I of Stopping, 
Option II of Research and Option III of 
Development--a final analysis. 
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say (y
4

,m
3

) then for all m ~ m
3

, the optimal choice at a state (y4 ,m) 

excludes research. In that event, continual development will eventually 

move the state into an absorbing region, say at point (y
4

, m
5

) where 

stopping is optimal. A static state of the world may then be observed. 

Section III 

Comparative Statics 

Two tasks remain to be shown in this section. First, further prop-

erties of optimal choice regions will be characterized. Second, com-

parative statics results will be investigated. 

Consider the set s
13

. It is informative to know the conditions 

under which s
13 

is empty. Recall the definition of m, i.e. 

0 = f
l 

-c + Cl. 
1 - Cl. ~ 

[R(n) - R(m)] dG(n\l). 

Note that 

: {-
1 

a {_ l [R(n) - R(;;;)] dG (n i 1)} 
affi - a )~ 

Ci. (;l )~ R'(m) dG(n\1) < o, 1 - (). 

i.e. the second term on the right-hand side of the equation is decreas-

= = ing with respect to an increase in m. One can solve C in terms of m, 

i.e. C = C(m). Alternatively, one can solve min terms of C, i.e. 

ill = iii<c). Define C = C(O). max 
Therefore, 

0 C + a fl [R(n) - R(O)] dG(n\l). 
- max 1 a )

0 
(def V-9) 
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Thus, for all C > c max' no solution exists for m. This 

set s13 is empty. By Theorem V-2, m !?' m*. Since ffi > m, 

empty. The result is stated as a theorem. 

Theorem V-3: (i) c > cmax implies that sl3 = $, 

(ii) sl3 = $ implies that sl2 = $ • 

implies that the 

s12 is also 

Theorem V-3 (ii) implies that if development is a poor investment 

at all points in the search space, so, too, are research activities. The 

purpose of research is to improve the likelihood of economic gains in 

development. If development is not profitable at all levels of the tech-

nological knowledge index, success in research activities will be fruit-

less since no development work will be carried out to realize economic 

returns. Thus, research activities are not pursued either. The follow-

ing will show that the converse is not necessarily true. 

Suppose 0 < C < C . One can solve for mE(O, 1), i.e. s13 f $. 
max 

Consider the set s
12

• Recall the definition of m*, i.e. 

0 = -K + o 11
[V(m*, z) - V(m*, O)] dH(z). 

Note that 

z) - V(m*, O)] [
aV(m*, z) _ av(m*, O)J dH(z) 

am'" dm'" 

< 0 
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i.e. the second term on the right-hand side of the above equation is 

decreasing with respect to an increase in m*. One can solve K in terms 

of m*, i.e. K = K(m*), or alternatively, m* in terms of K, i.e. 

m* = m*(K). Let K = K(O). max Therefore, 

For all 

empty. 

0 = -K + a 1l [V(O, z) - V(O, O)] dH(z). max (def V-10) 

K > K , no solution exists for m*. This implies that 512 is max 

Recall the definitions of m and m. It is obvious that ~~ = 0 

diii. 
and dK = 0. A change in research costs does not affect development. 

Thus, the fact that 512 is empty does not imply 513 is empty. Even 

though research is a poor investment development may still be profitable. 

Comparative statics results on C and K are stated in the max max 

following theorem. 

Theorem V-4: (i) 

(ii) 

dK 

dC 
max 

--- > 0 ' do: 

If av(O, z) ~ 0 and is strictly positive for some ao:az 

ze:[O,l], 

then max > o. 
da 

Proof: Applying the Implicit Function Theorem on the definitions 

C and K , one obtains 
max max 



and 

dK 
max 

dCl 

de 
max 

da. 

[ 
0 

> 0 . 
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1 1
1 

[R(n) - R(O)] dG(nil) = 

> 0, 

Interpretation of the results is straightforward. If one discounts 

future returns less, one would discontinue research (development) only at 

higher research (development) costs. 

Other comparative statics results are stated in the following 

three theorems. 

Theorem V-5: (i) 
dm -- > 0 da. , 

(ii) 
dill 

0 - > 
da. , 

2 y) 
If 

a V(m, 
~ 0 and strictly positive for some 

aa.ay 

(m, y) E: s 

(iii) 
dm>'< 

0 > , 
da; 

(iv) 
dy* 

> 0 . 
da. 
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Proof: To prove (i) and (ii), recall the definition of 813 , i.e. 

0 -C + a 11 
[R(n) - R(m)] dG(n\y) 

1 - a 
m 

a a 
-C + y--:-a [R(l) - R(m)] - l 

- a 
R' (n) G (n I y) dn · 

Applying the Implicit Function Theorem, one obtains 

and 

Clm 
Cla 

1 

(1 - a) 

a 

> 0 , 

1 fl 
(1 - a) 

2 
Jm 

a fl 
1 - a Jm 

< 0 . 

Ll [R(n) : R(m)] dG(n!y) 
m 

11 R' (m) dG (n I y) 
m 

[R(n) - R(m)] dG(nly) 

R'(n) ClG(njy) dn 
Cly 

To prove (iii) and (i~), recall the definition of 812 , i.e. 

1 
0 = -K +a~ [V(m, z) - V(m, y)] dH(z). 

y 
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Applying the Implicit Function Theorem, one obtains 

fl 1 
y)J dH(z) [V(m, z) - V(m, y)] dH(z) + a J [ave;~ z) av(m, 

am y aa 
au 

a fl [av(m, z) - av(m, y)J dH(z) 
am am y 

> 0 , 

and 

fl [V(m, z) - V(m, y)] dH(z) +a fl [()V(m, z) av (m, y)J dH(z) 
aa acx ay y 

acx 
- ex fl av (m, y) dH(z) 

ay y 

> 0 . Q.E.D. 

Since the decision to engage in research and development is aimed 

for future returns, the more one values future returns the more one 

persists in the research and development mode. However, it is not clear 

whether one will persist more in research or in development. 

The next two theorems will consider the effect of a parametric 

change in the research and development costs. First, consider an 

increase in the research cost. 

Theorem V-6: (i) 

(ii) 

dm 
dK 

d!ii 
dK 

Jf 

0, and 

= 0. 

2 
Cl V(m, y) 

ClKCly 
< 0 for all (m, y)ES , then 



(iii) 

(iv) 

dm* 
dK 

dy* 
dK 
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< o, and 

< 0. 

Proof: By the definition of 8
13

, one immediately obtains results (i) 

and (ii). Applying the Implicit Function Theorem on the definition of 

812 , one obtains 

(iii) 

and 

(iv) 

dm 
dK 

dy 
dK 

1 

-1 + a ~ [av(m, z) _ 
y aK 

av(~K y)J dH(z) 

< 0 ' 

< 0 • 

[
av(m, z) -

am av(~~ y)J dH(z) 

-a f 1 aV(m, y) dH(z) 
ay 

y 

Holding everything else constant, an increase in the research 

Q.E.D. 

cost will not affect the overall persistency in the research and <level-

opment mode. However, one will choose to do development work more often 

than to do research. This result is stronger than a previous result of a 

parametric change of the discount factor in the sense that it indicates 

a clear trade off between research and development. The next theorem 
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will show that an increase in the development cost will again lead to 

ambiguous trade off between research and development even though the 

overall picture points towards less persistency in the research and 

development mode. 

Theorem V-7: (i) 
dm 

0' and < 
dC 

(ii) 
dm 

0 . < 
dC 

2 y) 
If 

Cl V(m, 
< 0 and strictly negatively for 

a cay 

some (m, y)ES 
' 

then 

(iii) 
dm~< 

0, and < 
dC 

(iv) 
dy~'< 

< o. 
dC 

Proof: Applying the Implicit Function Theorem on the definition of s
13

, 

one obtains 

Clm 
ac 

1 

R' (m) dG(n!y) 

< 0 ' 
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and 

ll 1 
= 

ac 
Jl aG(n y) a 

R' (n) dn 
1 - a ay 

m 

> 0 . 

Applying the Implicit Function Theorem to the definition of s
12

, 

one obtains results (iii) and (iv) : 

am 
ac 

and 

< 

= 

J, 1 [aV(m, z) av(m, y)J dH (z) a ac ac y 

a J,l[av(~~ z) - aV(m, y)J dH(z) 
am 

y 

0 ' 

"~l[av(~(: z) - av(~(: y)J dH(z) 

-a f 1 av(m, y) dH(z) 
ay 

y 

< 0 . 

Not only does an increase in development costs lower the profitability 

of development work, it also affects the financial picture of research. 
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Summary and Conclusion 

An analysis of a sequential research and development model 

has been accomplished in this paper. By allowing a two dimensional 

search space, I have demonstrated a "reswitching" phenomenon of research 

and development. The decision to do developmental work depends on the 

direct economic gains from successful development and its related costs, 

which are incurred irrespective of success or failure. The cecision to perform 

research hinges upon the indirect economic gains from successful 

research through which prospect for future development success is improved. 

Thus economic factors specific to development decision (e.g., develop

ment cost) will affect both research and development decisions, but 

those specific to research decision (e.g., research cost) will not 

affect development decisions. Even with this unilateral relationship between 

research and development, a "reswitching" property of the model emerges. 

Success in development may bring research back as the next optimal 

choice of action. However, research is never an absorbing state. 

Eventually, a state may be entered such that no research is undertaken. 

Note just prior to optimal stopping, the state is always for development 

and not for research. The model rejects the idea of research for the 

sake of research. It is the final application (development) of 

research results that counts. 

Results from the model also lead to the conclusion that the 

optimal choice to do development work is consistent with the presence 

of a high prospect of research success. The decision to develop or to do 
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research is an economic decision. It depends on expected cost and 

benefit calculations. Although there is a great opportunity for further 

research, research may still be temporarily abandoned because of 

innnediately available economic gains from development. Indeed, 

development may be so successful that the economic environment may be 

changed drastically enough to render further research uneconomical. 

An obvious inference from this model is that, when non-sequential search 

strategy is allowed, research and development may occur simultaneously 

within some regions in the search space. 

Last of all, the model draws implications as to the importance of the 

"right" choice of discount rate for research and development. The choice will 

affect the overall preference for research and development vs. stopping. 

However, the decision to do research or to develop remains to be determined 

by the choice of discount rate and the relevant economic factors such 

as costs and benefits of research and development. 
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APPENDIX 

Theorem V-1: Given the assumptions of the sequential research and <level-

opment model, there exists a unique, continuous, bounded 

solution to the functional equation V-1. 

Proof: The proof is a straightforward application of Denardo's Theorem. 

Two prerequisites are necessary, namely Monotonicity and 

Contraction Assumptions. 

Monotonicity 

Let 

h(m,y,V) 

Let 

h(m,y,U) = 

R(m) +max {u
1 

(m, y), u 2 (m, y), u
3

(m, y)} 

R(m) +max l aV(m, y), - K +a {
1 

V(m, z) dH(z) 

1 
+ aV(m, y) H(y), - C +a J V(n, z) dG(niy) 

m 

+ nV(m, y) G(n[y)l 

R(m) + max I aU(m, y), - K + a {
1 

U(m, z) dH(z) 

1 
+ aU(m, y) H(y), - C +a J U(n, z) dG(nJy) 

ni 

+ aU(m, y) G(m[yll 

If V(m, y) ~ U(m, y) for all (m, y)ES _ [O, 1] x [O, 1] , 
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(i) aV(m, y) ~ aU(m, y), 

(ii) -K +a f 1 
V(m, z) dH(z) + aV(m, y) H(y) 

y 

> -K +a f 1 U(m, z) dH(z) + aU(m, y) H(y), and 
y 

(iii) -C +a f 1
' V(n, z) dG(nly) + aV(m, y) G(mly) 

m 

> -C + a 
/

1 

m 
U(n, z) dG(nly) + aU(m, y) G(m\y). 

Therefore, 

h(m,y,V) ~ h(m,y,U) for all (m, y)ES . 

Contraction. 

Sufficient conditions that h(m,y,V) is a contraction mapping are: 

(i) laV(m, y) - aU(m, y) I aiV(m, y) - U(m, y)I 

(ii) \a 

< a sup I ) ) I 
( ) S 

V (m, y - U (m, y , n,y E 

/

1 

y 
[V(m, z) - U(m, z)) dH(z) + aH(y)[V(m, y) - U(m, y)\ 

1 
< a f IV(m, z) - U(m, z) I dH(z) 

y 

+ aH(y) IV(m, y) - U(m, y)I 
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< "'fl ~ (m:;~ES IVCm, y) - U(m, y)I dH(~) 
y 

+ a.H(y) (m:~~ES IV(m, y) - U(m, y)I 

= a. ( sup) 
5 

lvCm, y) - U(m, y) I , and 
m,y E 

1 
(iii) la. J [V(n, y) - U(n, y)) dG(n!y) 

m 

- a.G(mly) [V(m, y) - U(m, y)JI 

1 
< a. J iv(n, y) - U(n, y) I dG(niy) 

m 

+ a.G(mly) lv(m, y) - U(m, y)I 

1 

f sup I ( ) ( ) I ( I ) < a. ( ) S V m, y - U m, y dG n y 
m m,y E 

+ a.G(miy) sup iv(n, y) - U(m, y)\ 
(m,y)ES 

Q.E.D. 
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O"lapter VI: Conclusion 

Several objectives have been accanplished in this thesis. First, 

on the supply side, technology opp::>rtunities and R&D rosts are 

ronsidered. Technology opp::>rtunities are ronceptualized as a 

probablity distribution of technology level which can be realized by 

sampling. R&D as a tool for sampling is costly. For a given R&D cost, 

the degree of technology improvement is uncertain, but an expected 

inprovanent can be defined. There is no a priori reason that 

technology opp.xtuni ties and R&D rost structure are the same for 

different industries. Chances are they are not. 'Ihus, different 

industries facing the same market situations may have different rates 

of technology change. 

On the demand side, R&D is not treated as final ronsumption. 

Its potential for lowering production costs generates its value. 

In economic jargon, the demand for R&D is a derived demand. 

By integrating R&D and production decisions, market opportunities 

and market power are assimilated in the thesis. Economic 

determinants of R&D decisions are clarified. 

Second, a Reservation Technology Level (RTL) concept is 

introduced. A RI'L is one ab::>ve which R&D is stopped and belCJN which 

R&D is rontinued. It is argued that the R&D decision is based on oosts 

and benefits. The possibility of further technical advance is not a 

sufficient rondition for R&D. In fact, it is shown that the RI'L is 

strictly less than the highest achievable technology level. 
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P\lrtherm:>re, the a:>ncept of RI'L is useful for a welfare ranking of 

market structures. Sinc-e the optimal R&D intensity is determined by 

marginal costs and benefits of R&D, there is, no a priori reason to 

believe a single market structure will be most a:>nducive for R&D 

throughout the history of an industry. :fi:Mever, it is shc:Mn that the 

RI'L of a social decision maker who maximizes social surplus is higher 

than that of a m:::>no:i;:olist. Sufficient a:>nditions also exist for 

oono::x:>perative doopolists to have a higher RTL than a m:::>nop:::>list. 

Thirdly, uncertainty ranains as a thane throughout the thesis. An 

extensive treatment of uncertainty is exemplified by a discussion of 

product and prOC'ess innovations. It is argued that the two prOC'esses 

are theoretically the sane other than the level of unc-ertainty 

involved. Another a:>ntribution to the study of uncertainty of R&D is 

the introduction of a tw:::> dimensional search space. It is postulated 

that a technology is characterized by two indic-es, namely, a 

technological knowledge index and an ea:>nanic index. The two indices 

are related. Consider a probability distribution over the two 

indic-es. It is postulated that the a:>nditional probability of 

achieving a better than current ea:>nc:mic index is greater for higher 

levels of the technological knowledge index. Searches for a higher 

technological knowledge index and a higher eoonanic index are defined 

as research and development, respectively. Characterizations of an 

optimal sequential strategy yield a disequilibrium-like :i;henanenon, 

defined as the Reswitching Property of R&D. An optimal path may lead 

one to Cb sane research and sane developnent and then sane m:::>re 

research, etc. Thus, those economists who are interested in 
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disequilibrium studies of R&D will have to characterize what they mean 

by disequilibriun dynamics. 'Ibe moving back and forth fran research to 

developnent and vice versa need not be a disequilibrilml phenanenon per 

se. 
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O'lapter VI: Footnote 

1. The term was used by Nelsen and Winter (1976). '!hey postulate a 
evolutionary theory of innovation, a o:>ncept closely related to 
Darwinism. Selection force may be loosely stated as a survival 
test. 
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