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Abstract 

This thesis is composed of two parts, each of which reflects our attempt to describe 

order flow determinants in a bilateral and multilateral trading environment, respectively. 

In Part I of this research, we investigate noncooperative bilateral sequential bargaining 

games in which the value of the asset changes stochastically according to a sequence of 

perfectly observable time-varying random variables. We attempt to model scientific specu­

lations of the game participants that lead to varied length of bargaining durations. Previous 

studies, which have focused on the analyses of incomplete information games in interpreting 

bargaining delays, have shown that such delays are attributed to information asymmetry on 

asset values among players that results in differences in players' personal valuation of the 

asset. However, following the viewpoint of the Efficient Market Hypothesis, we assume in 

our models that there is no uneven assimilation of information of vital importance that af­

fects the asset value once the players are at a negotiating table. Hence, one of the important 

features of the investigated models is that both players observe identical information re­

garding the future asset value, and that there is no uncertainty regarding one's opponent's 

preferences during the bargaining process. Despite the assumption of complete informa­

tion, we argue that a delay before an agreement under certain conditions is an inevitable 

consequence of the stochastic component in this model. 

We give game theoretic specifications for two types of bargaining games, which we call 

the Basic game and the Alternative game. The two games differ from each other in their 

timing of information arrivals with respect to players' actions. We characterize their sub­

game perfect equilibria that follow our particular behavioral assumptions. Characteristics 

---~ --··~-----~------ - - --- - - - -·----- ·- -- --------- - - -·---- ----- -·--------- --- ·----- - ----------·---- - - --·-- -- ---
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of the equilibrium outcomes of the two games are compared. We direct special attention to 

the study of the analytical results in comparison with those of Rubinstein (1982), Osborne 

and Rubinstein (1990), and Merlo and Wilson (1995). We then give statistical specifications 

for two types of stochastic bargaining simulations, which are the Autoregressive Binomial 

Model and the Generalized Wiener Process Model. Comparative statics of several variables 

and bargaining durations are investigated thoroughly through numerous simulation runs. 

Subsequently, through our research we clarify the importance of integrating stochastic con­

cepts into the bargaining theory and its applications in search of alternative explanations 

for various bargaining durations. 

In Part II of this research, we provide a set of experimental results in our study of order 

flow determinants in experimental financial markets with asymmetrically informed human 

subjects. The markets are organized as computerized double auctions accommodated with 

an order book that contains a complete set of current limit and market orders and that 

can be inspected by every market participant at any time during each trading period. Our 

empirical analysis focuses on the series of actions taken by the subjects that include quote 

revisions, limit order arrivals, and trades. At first, we report thorough descriptive statistics 

on the extracted data sets, where we do not assume any particular theory of the market 

microstructure. Then we show serial dependencies of order flow on the previous event type, 

the state of the order book, the size of bid-ask spread, and the time intervals. In so doing, 

we ascertain the significance of the impact of information carried in the order book. 



Contents 

I Stochastic Bargaining Games with Sequential Information Arrival 1 

1 Introduction 

1.1 Bargaining Delays and Information . 

1.2 Theoretical Literature on Bargaining Delays . 

1.3 This Dissertation . . . . . . . . . . . . . . . . 

2 Bargaining with Sequential Information Arrival 

2.1 The Model . . . . . . . 

2.1.1 The Basic Game 

2.1.2 The Alternative Game 

2.1.3 The Equilibrium Concept 

2.2 Analysis of the Basic Game ... 

2.3 Analysis of the Alternative Game . 

2.4 Notes on the Distribution of Surplus 

2.5 Discussion .............. . 

2A Derivations of Equilibria 

IX 
---·----·---· ------- ·----

2 

3 

6 

9 

15 

15 

20 

22 

24 

33 

47 

57 

59 

62 



CONTENTS 

2A.1 Equilibrium of the Basic Game .... 

2A.2 Equilibrium of the Alternative Game . 

3 Simulations of Stochastic Bargaining Games 

3.1 The Binomial Distribution Model . 

3.1.1 The Autocorrelation Model 

3.1.2 The LLD. Model ..... . 

3.1.3 Design and Data Structures . 

3.1.4 Results and Comparative Statics 

3.2 The Continuous Distribution Model .. 

3.2.1 The Geometric Brownian Motion (Wiener Process) Model . 

3.2.2 Design and Data Structures . . . 

3.2.3 Results and Comparative Statics 

3.3 Summary and Discussion . . . . . . . . 

3A Tables for Chapter 3 

3A.1 Autoregressive Binomial Models 

3A.2 Generalized Wiener Process Models 

3B Figures for Chapter 3 

3B.1 Autoregressive Binomial Models I . 

3B.2 Autoregressive Binomial Models II 

3B.3 Generalized Wiener Process Models 

3C Simulation Codes 

x 

62 

69 

79 

81 

81 

86 

87 

89 

96 

97 

100 

102 

106 

111 

111 

121 

138 

138 

150 

162 

169 



CONTENTS 

3C.1 Autoregressive Binomial Models .. 

3C.2 Generalized Wiener Process Models 

.4 Concluding Remarks on Part I 

Bibliography I 

II Information and Order Flow in Experimental Markets 

5 Order Flow in Experimental Financial Markets 

5.1 Introduction ...... . 

5.2 Experimental Procedure 

5.2.1 Market Organization . 

5.2.2 Experimental Design . 

5.3 Descriptive Summary . . . . . 

5.3.1 Trading Activities and Bid-Ask Spreads . 

5.3.2 Inferences Concerning Variances ..... 

5.3.3 Other Findings on the Descriptive Statistics . 

xi 

169 

185 

203 

207 

210 

211 

211 

214 

215 

217 

219 

220 

223 

225 

5.4 Analysis of the Order Flow . . . . . . . . . . . . . . 228 

5.4.1 Frequencies of Event, Conditional on the Previous Event Type 230 

5.4.2 Frequencies of Event, Conditional on the State of the Order Book 234 

5.4.3 Frequencies of Event, Conditional on the Size of Bid-Ask Spread 236 

5.4.4 Time Intervals between Events 237 

5.5 Concluding Remarks . . . . . . . . . . 240 



CONTENTS xii 

5A Tables for Chapter 5 245 

5B Figures for Chapter 5 285 

5C Computation Steps of the Hurst Exponent 307 

5D An Instruction for the Experiments 310 

5E Record Sheet and Dividend Sheet 316 

5F Data Files 324 

Bibliography II 326 

---- --- ----~ -- - ---- -------------~--~--~- ·----



List of Figures 

2.1 The Timing of Events (Basic Game) .... 20 

2.2 The Timing of Events (Alternative Game) . 22 

3.1 The Binary Tree of Depth 3 with Sequential Node I.D. Number . 88 

3.2 Design of Wiener Process Model with T = 2 ..... . 102 

3.3 Autoreg. Binomial Model (Basic Game) [T = 2-+ 18] 140 

3.4 Autoreg. Binomial Model (Basic Game) [T = 2-+ 18] 140 

3.5 Autoreg. Binomial Model (Basic Game) [T = 2-+ 18] 141 

3.6 Autoreg. Binomial Model (Basic Game) [T = 2-+ 18] 141 

3.7 Autoreg. Binomial Model (Basic Game) [,BB= 1.0-+ 3.8] 142 

3.8 Autoreg. Binomial Model (Basic Game) [,BB= 1.0-+ 3.8] 142 

3.9 Autoreg. Binomial Model (Basic Game) [p = 0.1-+ 0.9] 143 

3.10 Autoreg. Binomial Model (Basic Game) [xr = 0.1-+ 0.9] 144 

3.11 Autoreg. Binomial Model (Alternative Game) [T = 2-+ 18] 145 

3.12 Autoreg. Binomial Model (Alternative Game) [T = 2-+ 18] 145 

3.13 Autoreg. Binomial Model (Alternative Game) [T = 2-+ 18] 146 

xiii 



LIST OF FIGURES 

3.14 Autoreg. Binomial Model (Alternative Game) [T = 2-+ 18] .. 

3.15 Autoreg. Binomial Model (Alternative Game) [,Bs = 1.0-+ 3.8] 

3.16 Autoreg. Binomial Model (Alternative Game) [,Bs = 1.0-+ 3.8] 

3.17 Autoreg. Binomial Model (Alternative Game) [p = 0.1 -+ 0.9] . ·. 

3.18 Autoreg. Binomial Model (Alternative Game) [xT = 0.1-+ 0.9] . 

3.19 Autoreg. Binomial Model (Basic Game) [T = 2-+ 18] 

3.20 Autoreg. Binomial Model (Basic Game) [T = 2-+ 18] 

3.21 Autoreg. Binomial Model (Basic Game) [T = 2-+ 18] 

3.22 Autoreg. Binomial Model (Basic Game) [T = 2-+ 18] 

3.23 Autoreg. Binomial Model (Basic Game) [,Bs = 1.0-+ 3.8] 

3.24 Autoreg. Binomial Model (Basic Game) [,Bs = 1.0-+ 3.8] 

3.25 Autoreg. Binomial Model (Basic Game) [p = 0.1-+ 0.9] . 

3.26 Autoreg. Binomial Model (Basic Game) [xT = 0.1-+ 0.9] 

3.27 Autoreg. Binomial Model (Alternative Game) [T = 2-+ 18] 

3.28 Autoreg. Binomial Model (Alternative Game) [T = 2-+ 18] 

3.29 Autoreg. Binomial Model (Alternative Game) [T = 2-+ 18] 

3.30 Autoreg. Binomial Model (Alternative Game) [T = 2-+ 18] 

3.31 Autoreg. Binomial Model (Alternative Game) [,Bs = 1.0-+ 3.8] 

3.32 Autoreg. Binomial Model (Alternative Game) [,Bs = 1.0-+ 3.8] 

3.33 Autoreg. Binomial Model (Alternative Game) [p = 0.1-+ 0.9] . 

3.34 Autoreg. Binomial Model (Alternative Game) [xT = 0.1 -+ 0.9] 

3.35 Wiener Process Model (Basic Game) [O = -0.05-+ 0.06] 

3.36 Wiener Process Model (Basic Game) [O = -0.05-+ 0.06] 

xiv 

146 

147 

147 

148 

149 

152 

152 

153 

153 

154 

154 

155 

156 

157 

157 

158 

158 

159 

159 

160 

161 

163 

163 



LIST OF FIGURES xv 

3.37 Wiener Process Model {Alternative Game) [B = -0.05 -t 0.06] 164 

3.38 Wiener Process Model (Alternative Game) [B = -0.05 -t 0.06] 164 

3.39 Wiener Process Model (Basic Game) [BA= 0.5 -t 6.0] 165 

3.40 Wiener Process Model (Basic Game) [BA= 0.5 -t 6.0] 165 

3.41 Wiener Process Model (Alternative Game) [BA= 0.5 -t 6.0] . 166 

3.42 Wiener Process Model (Alternative Game) [BA= 0.5 -t 6.0] . 166 

3.43 Wiener Process Model (Basic Game) [T = 2 -t 12] . 167 

3.44 Wiener Process Model (Basic Game) [T = 2 -t 12] . 167 

3.45 Wiener Process Model (Alternative Game) [T = 2 -t 12] 168 

3.46 Wiener Process Model (Alternative Game) [T = 2 -t 12] 168 

5.1 Demand and Supply Schedules in Market 2 . . . . . . . . . . 286 

5.2a Time Series of Transaction Prices (Data 042393b : Market 1) 287 

5.2b Time Series of Transaction Prices (Data 042393c : Market 1) 288 

5.2c Time Series of Transaction Prices (Data 042393b : Market 2) 289 

5.2d Time Series of Transaction Prices (Data 042393c : Market 2) 290 

5.3a Average and Total Number of Bids and Asks (Data 042393b : Market 1) . 291 

5.3b Average and Total Number of Bids and Asks (Data 042393c : Market 1) . 291 

5.3c Average and Total Number of Bids and Asks (Data 042393b : Market .2) . 292 

5.3d Average and Total Number of Bids and Asks (Data 042393c : Market 2) . 292 

5.4a State of the Order Book (Data 042393b : Market 1) 293 

5.4b State of the Order Book (Data 042393c : Market 1) 293 

5.4c State of the Order Book (Data 042393b : Market 2) 294 



LIST OF FIGURES xvi 

5.4d State of the Order Book (Data 042393c : Market 2) . . . . . . . . . . 294 

5.5al Intraperiod Patterns of Market Activities (Data 042393b : Market 1) 295 

5.5a2 Intraperiod Patterns of Market Activities (Data 042393b : Market 1) 295 

5.5bl Intraperiod Patterns of Market Activities (Data 042393c : Market 1) 296 

5.5b2 Intraperiod Patterns of Market Activities (Data 042393c : Market 1) 296 

5.5cl Intraperiod Patterns of Market Activities (Data 042393b : Market 2) . 297 

5.5c2 Intraperiod Patterns of Market Activities (Data 042393b : Market 2) 297 

5.5dl Intraperiod Patterns of Market Activities (Data 042393c : Market 2) 298 

5.5d2 Intraperiod Patterns of Market Activities (Data 042393c : Market 2) 298 

5.6a Histograms of Intraperiod Price Changes (Data 042393b : Market 1) 299 

5.6b Histograms of Intraperiod Price Changes (Data 042393c : Market 1) 300 

5.6c Histograms of Intraperiod Price Changes (Data 042393b : Market 2) 301 

5.6d Histograms of Intraperiod Price Changes (Data 042393c : Market 2) 302 

5.7al Intraperiod Pattern of Bid-Ask Spreads (Data 042393b : Market 1) 303 

5.7a2 Intraperiod Pattern of Bid-Ask Spreads (Data 042393b : Market 1) 303 

5.7bl Intraperiod Pattern of Bid-Ask Spreads (Data 042393c : Market 1) 304 

5.7b2 Intraperiod Pattern of Bid-Ask Spreads (Data 042393c : Market 1) 304 

5.8a Distribution of Time Interval between Orders (Data 042393b : Market 1) 305 

5.8b Distribution of Time Interval between Orders (Data 042393c : Market 1) 305 

5.8c Distribution of Time Interval between Orders (Data 042393b : Market 2) 306 

5.8d Distribution of Time Interval between Orders (Data 042393c : Market 2) 306 



List of Tables 

3.1 Exhibit 1 : Autoreg. Binomial Model (Basic Game) 112 

3.2 Exhibit 2 : Autoreg. Binomial Model (Basic Game) 114 

3.3 Exhibit 3 : Autoreg. Binomial Model (Basic Game) 116 

3.4 Exhibit 4 : Autoreg. Binomial Model (Basic Game) 118 

3.5 Exhibit 5 : Autoreg. Binomial Model (Alternative Game) 119 

3.6 Exhibit 6 : Wiener Process Model (Basic Game) 122 

3. 7 Exhibit 7 : Wiener Process Model (Basic Game) 124 

3.8 Exhibit 8 : Wiener Process Model (Basic Game) 126 

3.9 Exhibit 9 : Wiener Process Model (Basic Game) 128 

3.10 Exhibit.10 : Wiener Process Model (Alternative Game) 130 

3.11 Exhibit 11 : Wiener Process Model (Alternative Game) 132 

3.12 Exhibit 12 : Wiener Process Model (Alternative Game) 134 

3.13 Exhibit 13 : Wiener Process Model (Alternative Game) 136 

5.la Summary of the Experimental Design (Market 1) 246 

5.lb States of Trading Periods (Market 1) ...... . 246 

5.lc Summary of the Experimental Design (Market 2) 247 

XVll 



LIST OF TABLES xviii 

5.ld Equilibrium Predictions in Market 1 . . . . . . . . . 247 

5.2a State Contingent Dividend Parameters in Market 1 . 248 

5.2b Buyers' Redemption Values in Market 2 248 

5.2c Sellers' Inventory Use Costs in Market 2 249 

5.2d Types of Each Subject in Market 1 and Market 2 250 

5.3a Descriptive Statistics on Market Activities (Data 042393b : Market 1) 251 

5.3b Descriptive Statistics on Market Activities. (Data 042393c : Market 1) 252 

5.3c Descriptive Statistics on Market Activities (Data 042393b : Market 2) 253 

5.3d Descriptive Statistics on Market Activities (Data 042393c : Market 2) 254 

5.4 Statistics for Tests Concerning Equality of Selected Variables between Market 

1 and Market 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 

5.5a ANOVA Tables for Tests Concerning Difference among X, Y, and Z States 

(Data 042393b : Market 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 

5.5b ANOVA Tables for Tests Concerning Difference among X, Y, and Z States 

(Data 042393c : Market 1) . . . . . . 

5.6 Unconditional Frequencies of Events 

257 

258 

5.7a Unconditional Frequencies of Events by Period (Data 042393b : Market 1) . 259 

5.7b Unconditional Frequencies of Events by Period (Data 042393c : Market 1) . 259 

5.7c Unconditional Frequencies of Events by Period (Data 042393b : Market 2) . 260 

5.7d Unconditional Frequencies of Events by Period (Data 042393c : Market 2) 260 

5.8a Cross-tabulation of Event Types by State . . . . . . . . . . . . . . . . . . 261 

5.8b Statistics for Tests Concerning Equality of Unconditional Event Frequencies 

among Three Defferent States . . . . . . . . . . . . . . . . . . . . . . . . . . 261 



LIST OF TABLES xix 

5.9a Frequencies of Events, Conditional on the Type of the Previous Event (Data 

042393b : Market 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 

5.9a' Frequencies of Events by State, Conditional on the Type of the Previous 

Event (Data 042393b : Market 1) . . . . . . . . . . . . . . . . . . . . . . . . 263 

5.9b Frequencies of Events, Conditional on the Type of the Previous Event (Data 

042393c : Market 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 

5.9b' Frequencies of Events by State, Conditional on the Type of the Previous 

Event (Data 042393c : Market 1) . . . . . . . . . . . . . . . . . . . . . . . . 265 

5.9c Frequencies of Events, Conditional on the Type of the Previous Event (Data 

042393b : Market 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 

5.9d Frequencies of Events, Conditional on the Type of the Previous Event (Data 

042393c : Market 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 

5.10 x2 Statistics for the Discrepancy between Unconditional Frequencies and 

Frequencies Conditional on the Last Event Type . . . . . . . . . . . . . . . 268 

5.lla Frequencies of Events, Conditional on the State of the Order Book (Data 

042393b : Market 1) ......... ·. . . . . . . . . . . . . . . . . . . . . . 269 

5.lla'Frequencies of Events by State, Conditional on the State of the Order Book 

(Data 042393b : Market 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 

5.llb Frequencies of Events, Conditional on the State of the Order Book (Data 

042393c : Market 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 

5.llb'Frequencies of Events by State, Conditional on the State of the Order Book 

(Data 042393c : Market 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 



LIST OF TABLES xx 

5.llc Frequencies of Events, Conditional on the State of the Order Book (Data 

042393b : Market 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 

5.lld Frequencies of Events, Conditional on the State of the Order Book (Data 

042393c : Market 2) ........................ : . . . . . . 274 

5.12 x2 Statistics for the Discrepancy between Unconditional Frequencies and 

Frequencies Conditional on the State of the Book . . . . . . . . . . . . . . . 275 

5.13a Frequencies of Events, Conditional on the Size of Bid-Ask Spread (Data 

042393b : Market 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 

5.13a'Frequencies of Events by State, Conditional on the Size of Bid-Ask Spread 

(Data 042393b : Market 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 

5.13b Frequencies of Events, Conditional oli the Size of Bid-Ask Spread (Data 

042393c : Market 1) . . . . . . ~ . . . . . . . . . . . . . . . . . . . . . . . . 277 

5.13b'Frequencies of Events by State, Conditional on the Size of Bid-Ask Spread 

(Data 042393c : Market 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 

5.13c Frequencies of Events, Conditional on the Size of Bid-Ask Spread (Data 

042393b : Market 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 

5.13d Frequencies of Events, Conditional on the Size of Bid-Ask Spread (Data 

042393c : Market 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 

5.14 x2 Statistics for the Discrepancy between Unconditional Frequencies and 

Frequencies Conditional on Bid-Ask Spread ..... 

5.15a Mean Time Interval between Two Events (seconds) 

5.15b Mean Time Interval between Two Events (seconds) 

279 

280 

281 



LIST OF TABLES xxi 

5.16 Statistics for Tests Concerning Equality of Mean Time Intervals among Dif­

ferent Conditioning Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 282 

5.l 7a Mean Time Intervals between TwQ Events, Jointly Conditional on the Pre-

vious Event Type, the State of the Order Book, and the Size of the Last 

Time Interval (Data 042393b : Market 1 ; 042393c : Market 1) . . . . . . . . 283 

5.l 7b Mean Time Intervals between Two Events, Jointly Conditional on the Pre-

vious Event Type, the State of the Order Book, and the Size of the Last 

Time Interval (Data 042393b : Market 2 ; 042393c : Market 2) 284 



Part I 

Stochastic Bargaining Games with 

Sequential Information Arrival 

1 



Chapter 1 

Introduction 

Part I of this research addresses the problem of resource allocation a:mong two parties in a 

dynamic context, where both parties have bargaining power, thereby significantly influenc-

ing the final outcome. The process of negotiation is modeled as a noncooperative sequential 

bargaining game in which the two parties alternate making offers over a share of a single 

divisible asset. We introduce a bilateral bargaining model in which the value of the asset 

changes stochastically according to a sequence of perfectly observable time-varying random 

variables. Then we give statistical specifications for two types of the stochastic bargain-

ing games to generate numerical examples. We direct special attention to the duration of 

negotiation processes in the analysis of the simulation results. 

Bargaining among parties of opposing interests constitutes a wide range of negotiation 

processes in economic, political, and legal spheres. To rival firms negotiating over market 

share, bargaining may be a process to achieve an agreement on a production level. In labor 

dispute, bargaining may be necessary to reach an agreement on wage levels. In the context 

of international trading, bargaining may indicate a negotiation over an import-export quota 
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among nations. Yet another example can be found in a process of public policy making 

among opposing political parties, between executive and legislative branches, or between 

the authorities and the general public. Likewise, bargaining describes an intrinsic aspect in 

the process of solving disputes when all the participants possess non-trivial influence over 

final outcomes. 

1.1 Bargaining Delays and Information 

Bargaining may break down, that is, the negotiating parties may never come to an agreement 

and may quit making further efforts to reach an agreement. It is not surprising to observe 

such breakdowns in cases where the parties can find better outside alternatives. If the 

outside alternatives are not available or costly to search for, and if the parties recognize 

positive gains from reaching an agreement in the current negotiation, we would expect that 

the rational participants would prefer an agreement to a breakdown. Such an agreement is 

often not achieved immediately after the negotiation begins. It is frequently accomplished 

only after a significant delay even when the participants are aware of costs associated with 

the bargaining duration. This delay becomes an unavoidable source of inefficiency when 

similar or better terms could have been realized in the earlier stage of negotiation. On 

August 13, 1992, the Century Plaza Hotel in Los Angeles was crowded with bidders from 

the United States, Europe, and the Pacific Rim. They were there to participate in an 

auction for real estate assets that the American banks were trying to unload. The result 

was quite disappointing to the banks, for barely half the properties were sold. Was this the 

issue of supply-and-demand imbalance? What is it that caused the buyers to balk? Was it 
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simply a matter of pricing? We are interested in analyzing how the bargaining participants' 

contention for larger gains could result in the bargaining delay. 

In the related sequential bilateral bargaining literature, 1 where a seller and a buyer are 

bargaining over a single indivisible asset, several attempts have been made in identifying 

conditions that require or cause delays in reaching an agreement. The central assumption 

in those models was the information asymmetry among the participants. For example, 

let us consider a case in which a seller's valuation is common knowledge and a buyer's 

valuation is known only to the buyer. Suppose that they alternate in quoting asks and 

bids over an indivisible asset. After observing the seller's ask price, the buyer can delay to 

signal that his valuation is low before quoting his bid. The buyer may choose to delay even 

longer to convince the seller that his signal is credible (Admati and Perry (1987)). Similar 

results have been obtained for the case where both the seller and the buyer have private 

information about the value of the asset. Let us now suppose that only a seller makes an 

offer and a buyer responds by accepting or rejecting the offer. For example, consider a case 

of monopoly pricing in which the buyer's valuation is known only to the buyer. A seller 

naturally charges a price that is higher than the marginal cost, and a buyer will not accept 

the offer if his valuation is lower than the monopoly price. But the transaction would have 

been efficient if the buyer's valuation is higher than the marginal cost. The seller may 

employ a screening strategy to find out the buyer's valuation by making successively lower 

offers until the buyer accepts. In other words, delay becomes a part of seller's screening 

strategy. In such cases, however, the delay disappears as the time interval between the 

offers converges to zero, allowing the seller to make offers frequently ( Gul, Sonnenschein, 

1 A detailed review of the literature is included in the next section. 

-------- -- - - - - - - - - - --- - - -- - ----~ -- - - -- - ----- ---- -- -------------·-----~-·--·--·-·-··------~-----
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and Wilson (1986), and Ausubel and Deneckere (1989)). In addition, if a buyer has an 

incentive to reject an offer that is lower than his valuation in the hope of receiving an even 

better offer, similar inefficiencies may result (Myerson and Satterthwaite (1983)). 

Consequently, those studies have shown that delay is attributed to information asym­

metry on the asset value among players, which results in differences in players' personal 

valuation of the asset. It is, however, unreasonable to assume that the information of vital 

importance which affects the value is not publicly held. Decisions and actions taken by ma­

jor financial intermediaries are visible to investors, and any non-trivial information travels 

to major financial centers all over the world along electronic pathways immediately after it 

leaks out. Following the viewpoint of the Efficient Market Hypothesis, in our bargaining 

models we assume that there is no uneven assimilation of information among players once 

they are at a negotiating table. This assumption indicates that one player cannot take 

advantage of poorly informed players by identifying arbitrage opportunities resulting from 

informational asymmetry. Hence, one of the important features of the investigated model 

in the following chapters is that both parties observe identical information regarding the 

value of the asset and that there is no uncertainty regarding one's opponent's characteris­

tics during a bargaining process. We conjecture that even without information asymmetry 

bargaining delay is generated due to the players' contention for larger gains based on their 

speculation in changes of the asset value in the future. 
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1.2 Theoretical Literature on Bargaining Delays 

In Rubinstein's (1982) sequential bargaining game of complete information with an alter-

nating offer process, it is well-known that there is a unique subgame perfect equilibrium in 

which the fust offer is immediately accepted by a responder.2 In other words, the agree-

ment is reached in the first period without any delay. Such a result is not implausible 

due to the assumption that every participant is completely informed about all aspects of 

the bargaining procedure. Previously studied game-theoretic formulations incorporating 

incompletely informed player( s) have indicated that models with informational disparities 

must be investigated in order to identify main causes of delays before reaching an agreement. 

A typical sequential bargaining game of incomplete information that has attracted much 

attention is the one with one-sided incomplete information and assumes that a seller's reser-

vation value is common knowledge and that a buyer's valuation is his private information. 

Such works include those by Sobel and Takahashi (1983), Cramton3 (1984), Rubinstein4 

(1985), Fudenberg, Levine, and Tirole (1985), Grossman and Perry (1986), Gul, Sonnen-

schein, and Wilson (1986), Admati and Perry (1987), Gul and Sonnenschein (1988), and 

Ausubel and Deneckere (1989). Rubinstein studies an alternating offer game, while the 

2Suppose that, in Rubinstein's famous bilateral pie-sharing bargaining game, players have time prefer­
ences with constant discount factors such as 8A for player A and 8B for player B, where 8i E (0, 1). Then 
its predicted unique subgame perfect equilibrium is the first proposer A making an offer such that 

A ( 1 - 5B OB - 5A5B) 
X = 1 - oAoB ' 1 - 8A8B ' 

which is accepted immediately by a responder B. Whenever we refer to the solution of Rubinstein's bar­
gaining model later in this dissertation, we mean the above result. 

3 Cramton (1984, 1987) extends the model into a two-sided uncertainty case. Fudenberg and Tirole (1983) 
also studied a two-sided incomplete information case for two-period bargaining games. 

4Rubinstein assumes that the buyer's discount factor or both his valuation and discount factor are private 
information. 
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others mainly look at a process where only the seller makes offers. 5 They usually suppose 

that the seller makes offers at discrete times with the interval .6., that is, t = O, .6., 2.6., · · · , 

and so on. Such one-sided offer games are often referred to as screening models, since the 

seller quotes successively lower offers to sort the possible buyer's types. Decreasing the offer 

prices over time until the buyer's acception is intuitive, since the seller can infer the buyer's 

valuation to be low after repeated rejection by the buyer, assuming that the buyer waits 

for an offer smaller than his reservation value and accepts it if the cost of another delay is 

larger than the anticipated next lower offer. Though each model investigated in the above 

strategic approach specifies an extensive form that is different from each other, resulting 

delay can be explained by this screening strategy. 

Delays generated in this manner, however, have been found to disappear as the time 

interval between offers becomes arbitrarily small(Gul and Sonnenschein (1988), and Gul, 

Sonnenschein, and Wilson (1986)). In other words, significant delays result only if offers 

are made infrequently or due to the agent's inability to make offers quickly. As the Coase 

conjecture states, one party's making offers frequently encourages its opponent to wait for 

an even better term for himself without a significant time loss, leading to a quick agreement 

with a favorable term for the opponent. Then, what would be necessary to have a significant 

delay in a screening model? The offer making agent has to avoid making offers frequently in 

order to convince its opponent that he is not going to make offers that are more favorable to 

the opponent than the current offer. To show that he is unlikely to compromise, he may use 

5 Grossman and Perry present numerical simulations for both alternating offer games and one-sided offer 
games. They show how to embed the one-sided offer equilibrium into the alternating offer process using 
beliefs that assign weight only to types in the interval support of the buyer's calculation. Fudenberg, Levine, 
and Tirole, and Ausubel and Deneckere also discuss both cases. 
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a significant delay before making the next offer. Hence, screening models have to assume an 

incentive for reputation building in order to explain significant delays observed in practice. 

A finding of Admati and Perry (1987) in an alternating offer framework is consistent with 

this argument. 6 They model an alternating offer game in which the time between offers is 

an endogenous strategic variable, and find that delays caused in such a model do not vanish 

as the time between offers approaches to zero. 

In alternating offer bargaining games, strategies are more like that of two-sided signal-

ing than one-sided screening(Admati and Perry (1987)). Delays are used as a signaling 

device to communicate one's type or valuation in a credible manner to his opponent. Let 

us first consider a one-sided uncertainty case, in which the seller's valuation is common 

knowledge and the buyer's valuation is either high or low. After receiving an offer from 

the seller, the buyer now can use a longer duration to signal that his valuation is low and 

finally make a counteroffer that is lower than the seller's offer. A low valuation buyer has 

to stall a sufficiently long time to eliminate the seller's wrong suspicion on his valuation. 

Hence, if the buyer has low valuation, he would have to choose a duration and a counteroffer 

that would have been unprofitable to him if he had high valuation. Delay here is a nee-

essary consequence of incomplete information. In two-sided uncertainty models a similar 

interpretation can be provided to explain delays. 

We have to notice, however, that in those models delays are generated by time intervals, 

leaving the relationship between delays and uncertainty unclear. Cho (1990) explicitly 

proved that the presence of uncertainty over the gain from trading is a necessary condition 

6 Ausubel and Deneckere (1988) show the condition to have delay even if the time interval between offers 
converges to zero in a seller-offer game with two-sided uncertainty. 
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for delay.7 Cramton (1984) showed that the more uncertainty present, the less efficient the 

bargaining outcome is; that is, the bargaining results in costly delays. 8 A more detailed 

survey of sequential bargaining games with incomplete information is provided by Linhart, 

Radner, and Satterthwaite (1992) and by Osborne and Rubinstein (1990). 

Though the models with asymmetric information have helped our search for the causes of 

costly delays, these models have not provided us with a complete list of the sources. Instead, 

they have indicated the necessity to investigate other sources of delays without the presence 

of informational disparities among the participants. Merlo and Wilson (1995) have made a 

creative attempt in attacking this challenge by studying a sequential bargaining game with 

multiple players in which both the surplus to be allocated and the identity of a person who 

makes an offer follow a stochastic process. Their model is that of complete information, so 

that any delay generated in this model is not due to informational asymmetry, but rather 

due to each player's speculation over the gain in the future. In fact, one of the models 

we investigate in the following chapters is one specific case that can be incorporated into 

their bargaining model. They have shown the existence of subgame perfect equilibria in 

their bargaining· game and investigated the characteristics of stationary subgame perfect 

equilibria in nontransferable utility. 

1.3 This Dissertation 

A particular type of bargaining that we investigate is a problem of surplus sharing, where 

the size of surplus is known to change stochastically as time proceeds. Hence, the game 

7It is proved in Theorem 5.4 in Cho (1990). 
8 The degree of uncertainty is measured by the amount of overlap of the supports of two uniform distri­

butions of equal length. The uncertainty is greatest when the supports are identical. 

----~-- --- ------------- ---~----
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is a discrete version of adaptive control system, in which we take a random change in the 

environment into account. The key feature of our bargaining model is the presence of 

uncertainty regarding the future value of the asset due to the stochastic factor. Each player 

observes identical information regarding the stochastic factor and has to make contingency 

plans for quoting an offer because of this uncertainty. Consequently, players employ closed­

loop strategies, in which they condition their actions on the history of the game up to the 

current period and respond optimally to the realizations of random variables. 

We introduce in our concluding remarks an idea for modeling possibilities of breakdowns 

explicitly in a bargaining game as a future extension to our games. This is another way 

of incorporating a stochastic process in explaining bargaining durations. We assume that 

the value of the asset in the current negotiation does not change in the short term, and 

that players can choose to invest their resources into the search for outside alternatives 

while participating in the current negotiation. The realization of better options follows 

a stochastic process, given each player's investment level. In such a model an agreement 

is generated by an increasing endogenous risk of breakdowns. Despite the assumption of 

complete information and the cost associated with the search, we conjecture to observe a 

delay caused by the presence of the potential for better outside options. 

Using the results of probability theory, we expand the scope of our analysis beyond the 

deterministic point of view. This stochastic treatment of the dynamic process of asset value 

variations enables us to identify a delay before reaching an agreement as an unavoidable 

consequence in some bargaining situations despite the assumption of perfect information. 

For example, in our model families of probability distributions that typically change their 

forms as time progresses are reflected in the players' beliefs about asset values in the future. 
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Such a sequence of observable random variables helps the formation of scientific speculations 

among the players, causing them to wait for better terms. We feel the need for explicitly 

modeling how such contentions for larger gains, resulting from an information flow, influence 

bargaining durations. Therefore, we must note the importance of integrating stochastic 

concepts into the bargaining theory and its applications. 

Sequential bargaining games usually assume the existence of some sort of impatience on 

the part of the participants. Such impatience has been modeled as discount factors on future 

payoffs or as fixed per-period costs in the existing bargaining literature. The presence of 

discount factors is viewed to generate an incentive to come to an early agreement. We note 

that discounting on payoffs over time is not considered in our models. Therefore, unlike 

many of previously studied bargaining models, the pressure to reach an agreement in our 

model is generated solely by the information fl.ow, not by the presence of discount factors. 

Though the investigated game is a specific bilateral bargaining over a divisible asset, 

potential scope of the model is not restricted to this pie-sharing situation. For example, a 

slight modification of the model can provide us with interpretation of a more general type 

of bargaining over an indivisible asset. Suppose that two players, a seller and a buyer, are 

bargaining over an indivisible asset. In each period the seller and the buyer submit an ask 

and a bid, respectively. Realized gains to be distributed from trade are determined by the 

bid-ask spread, while how it is divided is determined by the transaction price. Suppose 

that they can decide on the transaction price and whether or not to trade after observing 

the ask and the bid. Notice that they observe identical information regarding the size of 

gain, the bid-ask spread. 9 They form expectations as to what the gain in the future will 

9 0bserving the identical information does not necessarily mean that the both players interpret the infor-
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be after observing this bid-ask spread. Therefore, if the current gain is positive but the 

expected bid-ask spread in the future is larger than that in the current period, the players 

could have an incentive to wait until later period. Delay is not generated by information 

asymmetry, but by each player's speculation over the gain in the future. 

Hence, our principal task in Part I of this research is to provide an alternative explana-

tion to commonly observed phenomena of costly delays in reaching an agreement in many 

bargaining situations. Instead of characterizing the complete set of equilibria, we look for 

special types of equilibria that are consistent with specified behavioral rules. By following 

the language of game theory, we assume that each player, i.e., a decision maker, is rational 

and intelligent. By rational we mean that each player consistently acts to maximize the 

expected value of his own payoff and that he uses Bayes' rule to update his beliefs on the 

state whenever necessary. By intelligent we mean that each player knows everything that 

we know about the structure of the game and that he can make inferences about conditions 

that we can make. In summary, the main contributions of this dissertation are as follows: 

1. By incorporating a notion of dynamic stochastic control into a noncooperative game, 

we model two types of bilateral bargaining situations with the value of the asset 

changing stochastically. One is called the Basic Game, and the other is called the 

Alternative Game. The two models differ from each other in the timing of informa-

tion arrival and a player's response. By using a method of backward induction, we 

. explicitly solve for subgame perfect equilibria for the specified decision rules to the 

two types of stochastic bargaining games. We demonstrate that reservation values for 

mation in the same manner. In fact, there has to be a difference in interpreting the information reflecting 
diverse characteristics of the players in order to have any trade occurrence with indivisible assets. 
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proposing players differ between the Basic and the Alternative bargaining games. 

2. Some properties of subgame perfect equilibria are provided through the application 

of Merlo and Wilson (1995)'s results. For example, under given assumptions the 

existence of subgame perfect equilibria in both Basic and Alternative games is shown. 

3. We characterize the derived equilibria especially in comparison with Rubinstein's find­

ings on his pie-sharing bargaining game. We give several sufficient conditions for our 

equilibria to be unique and thus to converge to that of Rubinstein's game. We also 

provide necessary and sufficient conditions for such games to have a delay before an 

agreement. In so doing we also discuss similarities and dissimilarities of the two games. 

4. We numerically simulate such bargaining games and examine the results thoroughly. 

through comparative statics, directing special attention to bargaining durations. We 

design two types of simulation models. One is called the Autoregressive Binomial 

Model, in which the information shock depends on a random variable that follows a 

binomial distribution. The other is called the Generalized Wiener Process Model, in 

which the information shock follows a continuous distribution. Through the analyses 

of the two models, especially in comparison of the Basic and the Alternative games, 

we show the sensitivity of bargaining outcomes to the information availability. 

5. We provide a set of computerized experimental results in our study of order fl.ow 

determinants in experimental financial markets with asymmetrically informed human 

subjects. Thorough descriptive statistics are reported, and the dependency of order 

fl.ow on the previous order types and a size of order books are demonstrated through 
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x2 statistics.10 

The rest of the dissertation is organized as follows. Part I consists of four chapters 

that include this introduction chapter. In Chapter 2 we describe and analyze our Basic 

bargaining game and an Alternative game, and characterize subgame perfect equilibria. 

Chapter 3 defines the Autoregressive Binomial Model and the Generalized Wiener Process 

Model, and provides the results of computer simulations to describe effects of parameter 

changes in the bargaining games analyzed in Chapter 2. We conclude Part I in Chapter 4, 

where we give an example of possible extension that models the effect of endogenous risk 

of breakdowns in bargaining. Bibliography for Part I is attached after Chapter 4. Part 

II consists of Chapter 5, and its detailed introduction and brief concluding remarks are 

contained in the chapter. Thorough descriptive statistics on the results of experimental 

financial markets are given in Chapter 5, and the dependency of the order fl.ow on the 

previous order types and the size of order books are demonstrated. Bibliography for Part 

II is attached after Chapter 5. Related Appendices follow after each relevant chapter. 

10Part II is devoted to this task. Although both parts direct their attention to a stochastic nature of 
information flow, the underlining models in each part are very different from one another. The models 
in Part I incorporate a stochastic nature of external information flow that affects bargainers' beliefs on 
the value of divisible assets, whereas the implicit model underlining the experiments in Part II reflects a 
stochastic nature of internal information assimilation process in a competitive market, where a bargaining 
strategy is not a primary concern of the traders. Therefore, traders' speculative behavior is interpreted from 
a different perspective in each part. It should also be noted that the games in Part I are those of complete 
information with no asymmetric information among the players, whereas players in the experiments in Part 
II are asymmetrically informed. Hence, bargaining durations in Part I are attributed to differences in players' 
beliefs, while the durations between trades in Part II reflect an information availability. 



Chapter 2 

Bargaining with Sequential 

Information Arrival 

2.1 The Model 

We begin with a basic sequential bilateral bargaining game of perfect information with a 

commonly known finite horizon. The environment is modeled as a discrete-time game. Two 

risk neutral players, indexed by i EI= {A, B}, are bargaining on the partition of a single 

divisible asset.1 The value of the asset in period t, i.e., the gains to be distributed if the 

agreement is reached in period t, is denoted by Qt and changes stochastically over time 

according to a sequence of time-varying random variables { 87 }~=l · We assume that Qo is 

positive, so that the asset is desirable for the players to begin the negotiation. The asset 

will be divided only after two players come to an agreement. lit is positive and relates the 

1We often treat player A as female and player B as male purely for convenience' sake. Therefore, we 
refer. A as she and B as he. We use "he" for generic individuals. 

15 
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value of the asset in period (t - 1) to that in period t linearly; that is, 

It describes a set of stochastic constraints to each player's expected payoff maximization 

behavior. 

Let f ( ·) describe a state transition equation specifying how 8t evolves with time: 

It is a first order stochastic difference equation, and thus { 87 }~=l is a first order Markov 

process. Note that the current state 8t is a sufficient statistic for predicting future states. 

As an argument of ft, it is assumed that there exists an exogenous random variable, Et, that 

causes the transition from 8t to 8t+l to be stochastic, and that a sequence of such random 

variables, {ct}, is a stationary (i.i.d.) process and is independent of 8t. We assume that 

the 8t is perfectly observable by both players at the beginning of period t. Let us define a 

T 
product space n such that n = TI Dt, where 

t=O 

and 

Then nt defines the set of all sequences of length t of elements in a space of feasible 8s of 
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each period t. Hence, { o,. }~=O E ot, or simply 5t E ot. 

Let X be a product space of the sets of feasible share vectors in each t such that 

T 
X = IT Xt. Let us also define a share vector in period t as Xt = (xf, xf) where Xt E Xt. 

t=O 

Let 7rt be a payoff vector in period t, 7rt = ( 7rf, 7rf ), which will be defined for each game later 

in this section. A bargaining outcome, ( 7rt, t), describes the allocation of realized gains and 

the period number in which the bargaining ended. Implicitly assumed is that players care 

only about the resulting payoff scheme and the time of agreement, not about the history of 

the game that leads to the agreement. We also impose the non-negativity constraints such 

that 

x~ ~ 0, Vt, 

where x~ is player i's offer in period t, or a share of Qt that player i wants to take in period 

t if an agreement is reached. Note that with this formulation we allow players to make a 

ridiculous quote to generate a delay; that is, x~ could be larger than one without further 

restriction. 

Let Si denote the set of all strategies available to player i, i.e., Si is the set of all 

sequences of strategy mappings Si = { S~} ~=O. In addition, we define St = (sf, sf) as 

a strategy pair chosen by the players in period t, and s = (si, s2, · · · , ST) as a strategy 

combination for the entire game. The assumption of perfect information and p~rfect recall 

naturally indicates that each player knows all previous moves when one makes a decision. 
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Hence, an information set after period t, in general, is2 

We can think of Ot as a piece of new information that can be either endogenous or 

exogenous to the system and describes the value of the asset in period t. Hence, an arrival 

of new information implies the beginning of another negotiation period. We consider two 

cases that differ in the information availability to each player when they make decisions. 

The first case specifies the Basic game, in which both players take some action in each 

period. We call the second case the Alternative game, in which only one player takes an 

action in each period. The Alternative game allows us to investigate a case in which a 

responder has a chance to observe additional information regarding the asset value before 

making any decision after observing a proposer's offer. These two games appear to be 

similar to each other, but have to be distinguished for the reason that will become clear as 

we proceed with our analysis and simulations. We argue that the Alternative game may 

allow more variations in the bargaining durations. 

Before we describe detailed frameworks of the two games, we list the following assump-

2 A precise definition of information set available for each player is slightly different between the Basic 
game and the Alternative game. In a Basic game, an information set for a proposer A in even t is 

ht= ((oo,so), (61,s1),. .. , (6t-1,St-1),6t) E Ht, 

whereas that for a responder B in even t is 

ht= ((80, so), (61, s1),. · · , (Ot-1, St-1), Ot, sf) E Ht. 

In an Alternative game, an information set for an action taking player in t is 

ht= ((60,so),(61,s1),. .. ,(6t-1,St-1),6t) E Ht. 
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tions on the players' preferences over bargaining outcomes. The following assumptions are 

weak enough to allow a wide variety of preferences. 

Assumption 1 Each player's preference ordering b over a bargaining outcome (?rt, t) is 

complete, transitive, and reflexive. 

Assumption 2 For any t ET and any feasible ?rt, frt, (?rt, t) h (fr, t) if and only if ?ri > fri. 

In other words, the asset is desirable for the players to engage in a negotiation process until 

an agreement. 

Assumption 3 For any t, i E T and any feasible ?rt, t < i implies (?rt, t) !::i (?rti i), with 

strict preference if ?ri > 0. 

Hence, time is valuable in a sense that an agreement now is preferred to an agreement of 

the same payoff later. 

Assumption 4 Let {(?rn, t)}~=l and {(frn, i)}~=l be sequences of outcomes such that 

lim ?l"n = ?r and lim frn =fr. 
n-+oo n-+oo 

Then, (?r, t) b (fr, i) if and only if (?rn, t) b (frn, i) 'r:/n. 

Therefore, the preference ordering is continuous. Player i's preference orderings that sat-

isfy the assumptions above can be represented by a continuous utility function ui that is 

increasing in ?r~ and decreasing int. Note that we can make analogous assumptions on the 

players' preferences over uncertain outcomes in the future periods in terms of their expected 

values. In other words, we assume that the utility function possesses the expected utility 

property, i.e., it is a von Neumann-Morgenstern utility function. 
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time 
--+ 

Period 0 Period 1 Period 2 Period T 
Qo lh 82 
l l l --+ 

l l l 
I A and B observe Qo I I A and B observe 61 I I A and B observe 62 I I A and B observe OT I 

l l l l 
I A quotes x{f I I B quotes xf I I A quotes xt I game ends 

l l l 
I B rejects x{f I I A rejects xf I I B rejects x1 I 

l l l 
go to Period 1 go to Period 2 go to Period 3 

or or or 

I B accepts x{f I I A accepts xf I I B accepts x1 I 
l l l 

game ends game ends game ends 

Figure 2.1: The Timing of Events (Basic Game) 

2.1.1 The Basic Game 

Player A starts the bargaining by making an offer xt} E Xf after both players have observed 

Q0 at the beginning of period 0. In the same period player B responds to the A's offer 

by either accepting or rejecting it. If B accepts the offer, the bargaining terminates. If B 

rejects the offer, he will have a chance to make a counteroffer xf E Xf in period 1 after both 

players have observed 81. Then A responds to the B's offer by either accepting or rejecting 

it. In this fashion the players alternate in making offers until one of the players accepts 

an offer or the exogenously predetermined final period T, where T is an even integer and 

common knowledge, is reached. Figure 2.1 shows the timing of events in the Basic game. 

Notice that A makes an offer and B responds to it by choosing either {accept} or {reject} 

in even-numbered periods, while B makes an offer and A responds to it in odd-numbered 

periods. The Basic game is that of perfect information in a sense that players do not move 

simultaneously. 

When it is player i's turn to make an offer in period t, i has observed { 87 }~=l but has 
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not observed Ot+i, Ot+2, · · ·. Thus, i has his expectation as to what the future os will be. 

Taking this expectation into consideration, i chooses an offer that is optimal to him. A 

strategy for player i specifies the offer that i makes in period t, x~ E Xi, as a function of 

observed os. We define player A's strategies. Those of player B follow analogously. SA is 

the set of all sequences of strategy mappings sA = { S~ }~=0 , such that in even-numbered 

periods 

and in odd-numbered periods 

Sf Ht ----? {{accept}, {reject}}. 

Note that we consider only pure strategies in our analyses. 

If a responding player j accepts xf, the bargaining ends and j's realized gain is Qt(l -

xD while i's realized gain is Qtx~. In general, i's and j's realized gains in period t are, 

respectively, 

{ 

Qtx~ if j accepts x~ 
7r~ = 0 

otherwise, 

{ 

Qt(l - xD if j accepts x~ 
7r{ = 0 

otherwise. 

If no agreement is reached until the final period T, A receives 7r# = QTXT while B receives 

7r¥ = QT(l - XT ), where XT E [O, 1] is a predetermined A's default share in T that is known 
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time 
--+ 

Qo 
! 

Period 0 

I A and B observe Qo I 
! 
I A quotes xct I 

! 
go to period 1 

Period 1 

I A and B observe li1 I 
! 
I B rejects xct I 

! 
I B quotes xf I 

! 
go to Period 2 

or 

I B accepts xct I 
! 

game ends 

Period 2 Period T 

I A and B observe li2 I j A and B observe liT j 
! ! 
I A rejects xf I I A rejects x¥_ 1 I 

! I A quotes xt I game ends 

! or 

go to Period 3 I A accepts x¥_ 1 I 
or ! 
I A accepts xf I game ends 

! 
game ends 

Figure 2.2: The Timing of Events (Alternative Game) 

to both players before the game begins. 

Let Ei7ri+n denote i's conditional expected payoff in some future period t + n, n E 

(0, T - t), which is determined by a sequence of observed 8s up tot and his expectation of 

the strategies of both his own and the opponent j. i forms his expectation on his opponent 

j's future strategies and his own, based on his updated expectation of the asset values in 

the future periods. We note that it is possible to have EI =I= E{, reflecting differences in 

initial priors among players. The structure of the game is com:rp.on knowledge. 

2.1.2 The Alternative Game 

In the Alternative game player A also starts the bargaining by making an offer x~ in period 0 

after observing Qo. Then player B responds to the A's offer by either accepting or rejecting 

it after observing 81 in period 1. If B rejects the offer, then he makes a counteroffer xf 

before he observes 82. When period 2 begins, both players observe 82 and A will respond 

to xf by either accepting it or making a counteroffer x~. Figure 2.2 shows the timing of 

events described above. Notice that A and B take an action in period t, where tis even and 



CHAPTER 2. BARGAINING WITH SEQUENTIAL INFORMATION ARRIVAL 23 

odd, respectively. Therefore, the Alternative game is also a game of complete and perfect 

information, in which exactly one player takes an action in each period. 

When it is player i's turn to take an action in period t, i has observed { 8r }~=l but 

has not observed 8t+l· Hence, i has his expectations as to what 8t+1 will be and how his 

opponent j will respond to his offer after observing 8t+l · Based on such considerations, 

i chooses his action that maximizes his expected gain. Therefore, a strategy for player i 

specifies the action that i takes in period t, which is either to accept x{_1 or to quote a 

counteroffer xL as a function of observed 8s and the opponent's immediately preceding offer 

Formally, sA is the set of all strategies available to player A in even-numbered periods 

t(> O); that is, it is the set of all sequences of strategy mappings sA = {S.:;'.1}~=0• such that 

Sf Ht ~ {{accept}, {reject}}, 

and in the event of rejection 

Similarly, sB is the set of all strategies available to player Bin odd-numbered periods, and 

SB is defined analogously. 

If player i accepts player j's offer in period t, the bargaining terminates and i's realized 

gain is Qt(l - x{_1) while j's realized gain is Qtx{_1 . In general, i's and j's realized gains 



CHAPTER 2. BARGAINING WITH SEQUENTIAL INFORMATION ARRIVAL 24 

in period t(> 0) are, respectively, 

1!'1 { qt(1- xL1) if i accepts x{_ 1 
-

0 otherwise, 

~ { QtxL1 if i accepts x{_ 1 
-

0 otherwise. 

As in the Basic game, if no agreement is reached until the final period T, player A receives 

7!'# = QTXT while B receives 7!'¥ = QT(l - XT ), where XT is a predetermined share known 

to both players before the game begins. Since a proposer i's expected payoff in some future 

period ( t + n) is determined by a sequence of observed 8s, the space of expected payoffs 

for each observed sequence { 87 }~=l is the space of continuous functions C(Ej7ri+n)· The 

structure of the Alternative game is common knowledge. 

2.1.3 The Equilibrium Concept 

A strategy profile { sA' sB} generates a path of offers and responses, which determines a 

payoff to each player. Let us denote player i's realized payoff that is generated by a strategy 

Definition 1 A strategy profile {Sf, Sf} is a (pure strategy) Nash equilibrium if and only 

if 
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Unfortunately, it is demonstrated that the theory cannot give a very sharp prediction in 

bargaining games without further refinement in the equilibrium concept. Let { sA I ht, SB I ht} 

be a strategy profile induced by { 5A, SB} after a history ht E Ht. Then we give a definition 

of subgame perfect equilibrium as follows. 

Definition 2 A strategy profile { sA' 8B} is a subgame perfect equilibrium if and only if 

{SAjht,8Blht} is a Nash equilibrium in the game remaining after ht, for all t and ht, i.e., 

Subgame perfection implies that the players' strategies are best responses not only at the 

opening of the bargaining game, but also at any decision node. Therefore, each player's 

actions are optimal at every possible history. Merlo and Wilson (1995) proved the existence 

of sub game perfect equilibria in their stochastic sequential bargaining game. 3 In the rest of 

this subsection we give corollaries to their findings. 

Corollary 1 There exists a subgame perfect equilibrium in the Basic bargaining game. 

The proof follows that of Merlo and Wilson (1995) applied to our bargaining game 

framework. Let us first define the following and proceed with the proof. Define player 

i's minimum payoff to disagreement, which we shall call i's minimum reservation value, in 

some period t as 

3 Also refer to Harris (1985) for the existence of pure strategy subgame perfect equilibria in sequential 
games of perfect information with infinite action spaces. 

~--- -- - --~--- -----­--------------~-- - ----------- --~ -------~~~--~-------------------"-----"-----·--··--·----
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xi is a minimum reservation share that is a share i needs to have in the present period t, 

given ht, to guarantee himself a payoff exactly equal to the minimum expected continuation 

payoff in an equilibrium path. Similarly, define i's maximum reservation value as 

xi is a maximum reservation share i needs to have in the present period t to give him 

a payoff exactly equal to his maximum expected continuation payoff in an equilibrium 

path. We write a minimum reservation value vector as mt= (mf,mf), and a maximum 

reservation value vector as Mt = ( Mf, MtB). By construction they are nonempty valued. 

Next, define an operator on the space of feasible histories up to period t as 

where 

and 

wHMt,mt) = Qt max{l - x{,xH 

= max{ Qt - m{,Mf}, 

Qt max{l x{,xn 

= max{Qt-Mf,mn. 
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We can consider wi as a refinement on si that is a bounded measurable function. Hence, 

wi is the maximum possible payoff i can achieve in period t, while wi is the least payoff i 

can guarantee himself in period t. Let us also denote,F2 the set of bounded and measurable 

functions on n that take, values in R2, and let p = (pA, pB) E F 2 be a feasible payoff vector. 

The goal of the proof is to show that there exist extremal fixed points of wt x wt and 

that the extremal fixed points of Wt x Wt correspond to extremal sub game perfect payoffs. 

The corollary is proven through the series of the following lemmas, in which we first show 

the monotonicity and pointwise continuity of Wt x Wt. 

Lemma 1 If m[ ~ m; and Ml ;::: M[, then 

and 

Proof. Suppo.se that m[ ~ m; and Ml ;::: M[. 

i) We first show Wt(Ml,m[);::: Wt(M[,m;). Given ht E Ht, from the assumption it is 

1 th t Q i,1 > Q i,2 Q j,1 > Q j,2 Mi,1 > Mi,2 d Mj,1 > Mj,2 It c ear a t - mt _ t - mt , t - mt _ t - mt , t _ t , an t _ t . 

follows, from the definition of Wt, that 
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and 

ii) Next we show Wt(Ml,mf):::; Wt(M[,m~). Given ht E Ht, from the assumption it is 

follows, from the definition of Wt, that 

and 

. 1 '1 
= max{Qt - MJ' ,mi' } 

Therefore, Wt(Ml, mf) :::; Wt(M[, m¥). This completes the proof. 

Lemma 2 If ( uk, wk) ~ ( u, w) E F 2 x F2 pointwise, then 

- k k t - t Wt x Wt(u , w )(h) ~Wt x Wt(u, w)(h ). 

D 
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Proof. For ( u, w) E F 2 x F 2 and ht E Ht, define 

where 

Then, ( uk, wk) ----+ ( u, w) pointwise implies 

Given ht E Ht, Wt x Wt(·, ·)(ht) : F2 x F 2 ----+ R 2 x R 2 defines a continuous function with 

respect to the II · llht topology on F 2 x F 2• D 

Lemma 3 There exist Mi, mT E F 2 such that 

1. MI 2: mT 2: 0. 

2. Wt x Wt(MI,mn = (MI,mt). 

3. Wt x Wt(Mt, mt) = (Mt, mt) ===> mT :::; mt, Mt :::; MI. 

Proof. First we define (Mf,mf) = (wt(Mf-1 ,m~-1 ),Wt(Mf-1,m~- 1 )), and choose 

(Mf ,m~) 3 m~(ht) = 0, Mf(ht) 2: Xt, Xt = (xf,xf) E F 2• Then, by induction with an 

application of the monotonicity lemma, it is straightforward to show that { Mtkh=1,2, ... is a 

monotonically decreasing sequence and { mf h=1,2,. .. is a monotonically increasing sequence, 

with mf :::; Mtk Vk. Hence, (Mtk,mf) is monotonic and bounded. Then, there exists a 

----------------------~--··--·----------------------"-~------------
-----~-------~-"-
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ht E Ht. Hence, Wt x Wt(Mt, mf) converges to (M;, mt) pointwise. Then, continuity 

implies Wt x Wt(Mt,mf) converges to Wt x Wt(M;,mt). It follows that Wt(M;,mt) = 

M; ~ mt = Wt(Mt, mt). This proves 1 and 2. 

Hence, from the monotonicity lemma and the definition of (Mt, mf ), m[ = Wt(Mf, m~) :::; 

Wt( Mt, mt) = mt and Mt = Wt( Mt, mt) :::; Wt(Mf, m~) = Ml. By induction with the 

application of the monotonicity lemma, it is straightforward to show mf :::; mt and Mt :::; Mt 

for k 1, 2, · · · . Therefore, (Mt, mf) -+ (M;, mt) implies mt :::; mt and Mt :::; M;. This 

proves 3. D 

Lemma 4 Pr 
. j 

- (p~, Pr) is a subgame perfect equilibrium outcome if and only if mt < 

Proof. 

i) Consider any subgame perfect payoff vector p, and suppose that Mt and mt are supre-

mum and infimum of subgame perfect payoffs of the game after observing ht, respectively. 

mt~ Wt( Mt, mt) and Mt:::; Wt(Mt, mt)· Now we construct a convergent sequence such that 

Then, M 1 = Wt(M0 ,m0 ) ~ M 0 and m1 = Wt(M0 ,m0
) :::; m0

. From the monotonicity 

lemma, we have Mk ~ Mk-l and mk :::; mk-l for k = 1, 2, · · · . Note that mk is bounded 

since m0 is bounded.4 In addition, by assumption we know that there is an upperbound 

4Everyone is guaranteed to receive at least a payoff of 0 by not coming to an agreement in the current 
period. 
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on the feasible payoff vectors, i.e., Mk ::; p. Since {Mk} and {mk} are bounded mono-

tonic sequences, there is a (M,m) such that (Mk,mk) -j. (M,m) pointwise. Therefore, 

M 2 M 2 m 2 m. Then, from Lemma 3 we conlcude M* 2 M 2 M 2 m 2 m 2 m*. 

ii) Consider a payoff vector Pr such that m"t::; Et(Pr) ::; Mt. It is straightforward to 

show that there is a strategy profile that supports Pr as a subgame perfect equilibrium 

outcome. 0 

Consequently, Corollary 1 has been proven. The following corollary for the Alternative 

bargaining game is also immediate. 

Corollary 2 There exists a subgame perfect equilibrium in the Alternative bargaining game. 

Redefine mt and Mt in the following manner. 5 When player i is proposing an offer in a 

given period t, his minimum reservation value is 

while i's maximum reservation value is 

Note that the reservation values when i is responding to j's offer from the previous period 

is the same as the definitions given in the Basic game. Hence, the definitions above are the 

reservation values after rejecting an opponent's offer, which incorporate the uncertainty of 

the asset value in the following period (t + 1). With these definitions, the proof of Corollary 

5Whenever we are discussing Alternative games, we assume these definitions. 
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2 is analogous to that of the Basic game. 

Next, we include some of the findings by Merlo and Wilson on stationary subgame 

perfect equilibrium. Note that a strategy profile is stationary if the actions depend only 

on the current state. Hence, a stationary subgame perfect outcome is generated by sta-

tionary subgame perfect strategy profile. We denote player i's best feasible allocation that 

guarantees at least pB to player j as BRi(p), which is bounded and measurable on Ht, is 

continuous on ht E Ht, and exists whenever the set of feasible allocations is not empty. Let 

us define an operator 0 on the history of states such that a proposer A's equilibrium payoff 

these definitions, Theorem 1 and Theorem 8 of Merlo and Wilson (1995) can be immediately 

applied to our bargaining games. 

Theorem 1 (Theorem 1 of Merlo and Wilson (1995)) In Basic and Alternative bargaining 

games, p = (pA, pB) E F 2 is a stationary subgame perfect equilibrium payoff vector if and 

only if O(p) = p. 

Theorem 2 (Theorem 8 of Merlo and Wilson {1995)) (Mf•*,mf•*) and (m~·*,MtB'*) are 

stationary subgame perfect payoff vectors.6 

Merlo and Wilson (1995) proves the theorem above by showing that Wt x Wt( Mt, mt)= 

6 Note that the monotonicity of the operator I]! is essential for the existence of stationary subgame perfect 
equilibria in stochastic bargaining games. 

7In other words, first assume wt(Mt,mt) = Mf, wt(Mt,mt) = mt, wf(Mt,mt) = Mf, and 
wf(Mt,mt) = mf. Then it is straightforwar'd to show OA(mt,Mf) = wt(Mt,mt) = mt and 

OB (mt, Mf) = wf (Mt, mt) = Mf. Analogous argument is made for the case with(M:·*, mf•*). 
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In the following sections, we consider an equilibrium offer strategy such that xi -

max{ 1 - x{, xn. Therefore, the equilibrium payoff operator for a proposer i in the Basic 

game is wi(xt) = wi(xi,zj) = max{Qt - M{,Mf}. Qt - M{ is i's best payoff while 

guaranteeing a maximum reservation value for his opponent j. Hence, a responder j's 

equilibrium payoff is w{(xt) = M{ In the Alternative game, the operator is defined as 

wi(xt) = wi(xLzj) = max{Et(Qt+i) - M{,Mf}. This is a strategy that leads to ex ante 

Pareto optimal outcomes. We also show that the particular type of equilibrium strategies 

we have derived predicts stationary subgame perfect shares. 

2.2 Analysis of the Basic Game 

In this section we present some findings which are immediate from the formulation of the Ba­

sic bargaining game. We describe an equilibrium strategy profile derived through a method 

of backward induction. Recall that a strategy profile constructed by backward induction 

necessarily coincides with a subgame perfect equilibrium, since such an equilibrium requires 

the players to act optimally whenever they make decisions, i.e., choose their best responses 

in each period t, given an observed history ht. We first specify behavioral assumptions and 

provide a fundamental algorithm for the backward-induction solution to our Basic game in 

words. 

In the penultimate period (T - 1), it is player B's turn to make an offer. Consider a 

quote x¥_1 that satisfies 

C-I Accepting B's offer in period (T-1) gives A at least as much as what A expects 

to receive in period T. 
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C-II In the event that A accepts B's offer in period (T - 1), B receives at least as 

much as what B expects to receive in period T. 

x¥_1 satisfying condition C-I is a marginal offer that guarantees A's acceptance in period 

(T-1), while the one satisfying condition C-II grants B a payoff that motivates him not to 

delay untill period T. Whenever it is his turn to choose an action, B wishes to gain more 

than or at least as much as what he expects to receive from any future transactions. Let 

x¥_1 be the smallest such offer, i.e., the smallest offer that satisfies condition C-II, and let 

i~-l be the largest offer that satisfies condition C-I.Suppose that x¥_1 exists and consider 

the offers that are feasible and are greater than or equal to x¥_1. If i~_1 2: x¥_1 , then 

B quotes x¥_1 = i~_1 which will be accepted by A with certainty and will be expected 

to give both players at least as high a payoff as any possible payoff from future trading. If 

5;~_ 1 < x¥_1 , then B quotes x¥_1 2: x¥_1, knowing that his offer will be rejected by A. 

This is because delaying leaves B with a potential opportunity to gain a higher payoff in 

the future, so that B prefers delaying to having a transaction take place with his share less 

than x¥_
1 

in the current period. We assume that B will choose x¥_1 = x¥_1 in such a 

case. Hence, under such an assumption B will quote the larger of i~_1 and x¥_1. Let us 

also assume that if a respondent is indifferent between a guaranteed payoff in the current 

period and an expected payoff in the future, then he chooses to accept the current offer. 

A symmetric argument applies to A's action in period (T - 2) when it is A's turn to 

make an offer. In general, the two conditions can be restated as 

C-I In the event of the respondent's accepting the current offer, the respondent 

receives at least as much as what the respondent expects to receive in any 
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future period. 

C-II In the event of the respondent's accepting the current offer, the proposer receives 

at least as much as what the proposer expects to receive in any future period. 

Proceeding to an initial period in this fashion leads us to find a strategy profile that is a 

subgame perfect equilibrium as described in the following proposition. 

Proposition 1 A strategy profile {SA, §B} that satisfies the following conditions is a sub­

game perfect equilibrium of the Basic game. 

1. In an even-numbered period t, player A makes an offer such that 

(2.1) 

and player B accepts xf iff xf::::; 1- Ef (8t+1xf+l), and rejects otherwise. 

2. In an odd-numbered period t, player B makes an offer such that 

(2.2) 

and player A accepts xf iff xf ::::; 1 - Ef (8t+Ixf+l), and rejects otherwise. 

Proof. The derivation of this equilibrium is included in Appendix 2A.1. 

If an agreement is reached, the proposer's share gives him a payoff that is at least as 

much as the largest expected continuation payoff in future periods over a subgame perfect 
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equilibrium, 8 plus any surplus in excess of what the players expect to receive in any following 

future period. For example, a surplus A can extract in an even-numbered period t is 

no agreement. In other words, a negative surplus in a current period indicates that at least 

one player is very optimistic about the future value of the asset and that the player wants 

to delay until the value is maximized.9 It is also indicative that there is an advantage to be 

a proposer. When an agreement is reached, a proposer's surplus in excess of his reservation 

value is nonnegative, whereas a responder's surplus is always zero. 

It is also immediate that an equilibrium share predicted by the strategies given in Propo-

sition 1 is stationary. Let us consider some even-numbered period t. A proof of an odd-

numbered period is analogous. The reservation values for the players are written as Mf = 

then there is an agreement int. We have 

8For a proposer A in an even-numbered period, it is Ef (8t+iOt+2xf+2), and for a proposer Bin an odd­
numbered period, it is Ef (8t+iOt+2xf+2). It can be considered as a proposer's reservation share resulting 
from delay. 

9 This observation is revisited again in Proposition 9. 
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and 

Hence, 0(7!"t) = 1l"t. Simifarly, if 1 - Ef (8t+1xf-t_1) < Ef(8t+18t+2xf+2), we can show 

0( 1l"t) = 1l"t. Therefore, we can conclude that the derived equilibrium satisfies the condition 

specified in Theorem 1. 

Recall that Ei(-) is a player i's expectation conditional on the information that is avail­

able on and before period t. The proposition shows that the demand of each player depends 

on the expected values of both current and lagged 8s. It should also be noted that in this 

formulation we have not excluded the possibility of having a value of Xt that exceeds one, for 

8s are not restricted to be less than one. The following Lemma gives a sufficient condition 

to guarantee x} in the closed interval of zero and one. 

Lemma 5 If 8t E [O, 1) for all t with certainty, then x~ E [O, 1]. 

Proof. This is immediate by following our backward induction algorithm. D 

This lemma is used in the proofs of the following propositions that assume 8t E [O, 1). 

The next three propositions give sufficient conditions to have a unique subgame perfect 

equilibrium. 

Proposition 2 If 8t E [O, 1) for all t with certainty, then there is no delay before reaching 

an agreement. 

Proof. Suppose that 8t E [O, 1) for all t. What we need to show here is that player A's 

offer in period 0 is always accepted by player B in the period. From Proposition 1 the 
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condition that has to be satisfied to avoid delay is 

Suppose that this is not true; that is, 1 - Ef (81xf) < Et(8182xt). Then Et(xt) :::; 

Et(8182xt) since Et(xt) :::; max{l - Ef (81xf), Et(8182xt)}. This implies Et(xt) :::; 0 

because 8182 E [O, 1). Then Et(8182xt) :::; 0. But since 81 E [O, 1) and the assumption of 

8t E [O, 1) for all t implies xf E [O, 1], 1- Ef (81xf) > 0, which results in 1 - Ef (81xf) > 

Et(8182xt). This contradicts our assumption. Hence, we conclude that 1 - Ef (81xf) 2: 

D 

Proposition 3 If { 87 }~=l is non-stochastic, in particular 8 E [O, 1) and 8t = 8t, then the 

solution to the Basic game converges to that to the Rubinstein's model as T--+ oo. 

Proof. We need to show that x~ 1t0 as T ~ oo. From Proposition 2 we know that 

which means x~ = l-8Ef (xf). In a similar fashion we can show that if period 1 is reached, 

then xf = 1 - 82 Ef( xt). In general, 

and 

B l $:t+lEA( A ) Xt = - u t Xt+l · 
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By recursively substituting xf's and xf's into x~, we get 

x~ - 1 - 8Ef (xf) 

= 1 - 8 ( 1 - 82 ( 1 - 83 ( .. · (1 - 8T XT)))) 

T-1 

I)-1)t8L:~=Oi + 8L:J=oixT. 
t=O 

By taking a limit of the last expression, we have 

Note that by using L'H6pital's rule, 

"t . Ji"~ i 
Ii L--i=O '/, _ l' dt L--z=O _ 1 m -Im d -. 
t--+oo t t--+oo -t 

dt 

Since 181 < 1, as T approaches to infinity we have the sum of a converging geometric series 

such that 

A ~ t 1 
Xo = L...J(-8) = :18' 

t=O + 

This completes the proof. D 
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Proposition 4 If Ot 's are identically and independently distributed, and the players agree 

on the expected values, which is E(8t) = 8* E [O, 1), then the solution to the Basic game 

converges to the solution to the Rubinstein's model, provided that T--+ oo. 

Proof. By using a similar reasoning to Proposition 2, we can show 

In general, 

and 

Then x~ can be expressed as 

- 1- 8* (1- 5*(· .. (1- o*xr))) 

- 1 - 8* + 8*
2 

- 8*
3 + · · · + o*T XT 

T-1 

= L:(-o*)t + o*T XT· 

t=O 

Thus, as T approaches to infinity, we have 

x~ = 
[

T-1 ] 
lim L::(-o*)t + o*T XT 

T-->oo 
t=O 

1 
= 

1 + o*· 
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Hence, the proposition holds when o* E [O, 1). D 

The following two propositions give sufficient conditions to generate a delay in period 

(T - 1). 

Proposition 5 In period (T - 1), if the players' beliefs about the value of OT are greater 

than or equal to 1 with E;j_1(oT) > E~_1 (oT), then there is delay at period (T-1). 

Proof. We need to show that 

D 

Note that we can also show that there is a delay if E;j _ 1 (OT) ~ E~ _ 1 (OT) > 1 in a 

similar manner. These results indicate that players' beliefs do not have to differ.in order to 

generate delay if both are optimistic about the future. 

Proposition 6 In period (T - 1), if the players' beliefs are such that 
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where E¥_1 (8T) E [O, 1), then there is delay at period (T - 1). 

Proof. Suppose that E#_1(8T) - E¥_1(8T) > x; and E¥_1(8T) E [O, 1). Then we have 

1- E¥_1(8T)::; 1 and XT [E#-1(8T) -E¥_1(8T)] > 1. Therefore, 

l-E¥_1(8T) < XT[E#-1(8T)-E¥_1(8T)] 

1 XTE#-1(8T) < E¥_1(8T) - XTE¥_1(8T) 

1- E#-1(8TXT) < E¥_1(8T(l - XT)). 

D 

This proposition implies that E#_1 (8T) is necessarily larger than 1 to generate delay 

under the given conditions. Propositions 5 and 6 provide sufficient conditions to result in 

delay in period (T-1). The following proposition gives a necessary condition to have delay 

in period (T-1), and it shows that we can also observe delay when E¥_1 (8T) > E#_1 (8T ). 

Proposition 7 In period (T - 1), there is a delay only if the convex combination of 

E¥_1(8T) and E#_1(8T) is larger than one. 

Proof. Under our behavioral assumptions, the necessary condition that has to be satisfied 

to generate delay in period (T - 1) is that player B quotes x¥_1 that will be rejected by 

player A with certainty, which is 
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where 

By rearranging this inequality we have 

where the right side is a convex combination of E#: ... 1 and Ef!_1 with XT E [O, 1]. D 

This proposition is also intuitive in the following manner. Even if the predetermined 

default share XT is 0.5, indicating that the players have equal division of the surplus in the 

final period, as long as the proposer B is reasonably optimistic about the future value of 

the asset, meaning that Ef!_1 ( DT) is sufficiently large, B can generate a delay by making a 

ridiculously large quote that could be larger than one. The proposition also indicates that 

at least one of the players must be optimistic about the future value in order to have a 

delay. In other words, both E#_1(8T) and Ef!_1(8T) cannot be less than one together, since 

otherwise it is impossible to have the value of the convex combination larger than one. 

Proposition 8 In general, there is a delay until the final period T only if 

Proof. The proof is straightforward by using a method of backward induction with the 

result of Proposition 7 as its initial step. Suppose that there is a delay from some odd-
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numbered period (t + 1) through period (T - 1). A's strategy in period t is 

Now suppose that there is a delay in period t. Then, by definition it must be true that 

But our induction hypothesis indicates that 

and 

Therefore, 

The proof for odd-numbered ts is analogous. 0 

The proposition also indicates that at least one of the players must be optimistic 

about the future values of 8s in order to have a delay. Hence, both Ef(8t+1···8r) and 

Ef ( 8t+ 1 · · · 8r) cannot be less than one together, since otherwise it is impossible to have 
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the value of the convex combination larger than one. 

In the next proposition we restate the condition given in Proposition 1, and generalize 

the previous propositions. 

Proposition 9 In period t when it is i's turn to make an offer, there is a delay iff 

Proof. First, suppose that there is a delay in period t. Then, xi> 1 - E{(8t+1x{+l), 

where 

But this implies 

It follows that 

Now let us suppose that 
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Then 

x~ = max { 1- E{(lit+1x{+l), E:(lit+18t+2X~+2)} 

- E:(lit+1lit+2X~+2) 

> 1 - El (8t+1xl+l). 

D 

This proposition indicates that there is no delay unless at least one of the players is 

optimistic about the future values of 8. Hence, there exists a possibility of delay when a 

proposing player's belief Ej(lit+i) is less than one, given that a responding player has a very 

optimistic view about the value of lit+l, and vice versa. Note that this proposition also 

indicates that a mere difference in beliefs among the players is not a sufficient condition to 

generate a delay. 

After observing some of the results concerning the Basic model, here emerges a rather 

natural question not to be ignored. Since a respondent does not make his counter-offer 

until he observes another information in the event of his rejection, why can't he also wait 

to declare his acceptance or rejection until he has observed the new information? Or why 

shouldn't he always reject a current offer to observe another information in the next period? 

It is these questions that gave rise to the Alternative model. Hence, the findings in this 

section have served us as a prelude to our study of the Alternative game. The timing of 

events described in the Alternative model reflects commonly observed situations that certain 

information which are presently unavailable will, to varying degree, become available by the 

time when one's opponent makes a decision. 
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2.3 Analysis of the Alternative Game 

Our analysis of the Alternative model proceeds by utilizing dynamic programming algo-

rithms. We first derive the equilibrium described in the following proposition by work-

ing backwards from period T through a sequence of solutions to single stage optimization 

problems. Let yt~1 (Qt) represent player i's maximal expected payoff from the remaining 

negotiation periods including period ( t + 1), given that the value of the asset in period t is 

By using maximal expected payoff functions, the terminal conditions are written as 

{ 

V/(Qr-1) = xrEf(Qr) 

V,f (Qr-1) = (1- xr)Ef (Qr), 

and yti's describe the recurrence relation. By using such notations, we find that player i 

rejects x{_ 1 in period t if there exists x~ such that 

where 

= m~x prob { Qt+i(l - x~) 2:: v/+2(Qt+i)} 
xi 

x E; ( Qt+ix~IQt+1(l - xi) 2:: Vl+2(Qt+1)) 

+prob { Qt+1(l - x~) < V/+2(Qt+1)} 

x Ei (vt~2(Qt+i)IQt+1(l - xn < v/+2(Qt+1)). 
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If indeed i rejects, then i quotes such x~. The condition described here states that a player 

would reject an offer if the maximal expected payoff from the remaining period is larger 

than the payoff from accepting the current offer and that in the event of his rejecting the 

offer, the player would quote a counter-offer with which he can expect to receive at least as 

much as the maximal payoff. Implicitly assumed is that each player tries to maximize his 

expected payoff and that one prefers trading now to delaying if no payoff improvement is 

expected in the future. 

By using the algorithm analogous to that used in the Basic game, the equilibrium to 

the Alternative game is given as follows. 

Proposition 10 A strategy profile {SA, §B} that satisfies the following conditions is a 

subgame perfect equilibrium of the Alternative game. 

1. In an even-numbered period t, player A rejects xf-_1 iff 

and quotes 

A accepts xf_1 otherwise. 

2. In an odd-numbered period t, player B rejects xf_1 iff 
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and quotes 

(2.4) 

B accepts xf_1 otherwise. 

Proof. The derivation of this equilibrium is included in Appendix 2A.2. 

Recall that the physical environment characterized by random variables cs is memory-

less, whereas players' expectations, and thus strategies, depend on the history. Therefore, 

interesting observation by examining period (T-1) strategies. Suppose that period (T-1) 

is reached, and let us consider a case in which 

By rearranging the inequality, we have 

It is clear from this resulting inequality that in period (T- 2) there was at least one player 

who had a pessimistic view about the future asset value. Moreover, it is also indicative 

that both players might have been pessimistic in (T - 2), meaning that both might have 

speculated the value of 8 to be less than one. Now consider player B's period (T - 1) 

strategies. Given the value of x~_2 as above, he rejects it if x~_2 > 1 - (1 - XT )Ej!_1 ( DT ). 
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This condition can be rewritten in the following way. 

Therefore, if B speculates a higher value of 8T after observing 8T-l than he thought before 

observing 8T-b then he would reject x~_2 resulting in a delay until the final period. The 

possibility of this case is interesting, because this is the case in which both players might 

have not been very optimistic in period (T - 2), yet we may observe another delay in 

period (T - 1) if player B's view changes after observing new information 8T-1· Note that 

such a case is not possible in the Basic bargaining game. Having no chance of observing 

another information before responding to a current offer in the Basic game, the other player 

immediately accepts such an offer that reflects not very optimistic views of the players. 

The above observation is generalized in the following proposition. 

Proposition 11 The following conditions are sufficient to generate a delay in Alternative 

bargaining games. 

1. There is a delay in an odd-numbered period t if 

2. There is a delay in an even-numbered period t if 
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Proof. We give a proof for the odd-numbered period. The proof for an even-numbered 

period is analogous. We need to look at the following two cases. 

First, consider case 1. We need to show x~_1 > 1 - Ef (Dt+ixf), which is the condition 

to generate a delay. Suppose 

This inequality is rearranged to 

But by assumption, 

Therefore, 

Similarly, consider case 2, and suppose 
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This inequality is rearranged to 

But by assumption 

Hence, 

EB (8 8 xB) l _ t-1 t t+l t > l _ EB (8 B) 
EB (8) t t+lXt . 

t-1 t 

A 
Xt-1 

= Et1 (8t8t+18t+2xf+i) 
Et1(8t) 

> l - Ef-_1(8t8t+1xf) 
Ef-_1(8t) 

D 

Therefore, after observing 8t in some odd-numbered period t, if B becomes more opti-

mistic about the value of 8t+l than he was in period ( t - 1), then there is a delay. Note 

that this proposition indicates that the statement given in Proposition 2 is not true for Al-

ternative games. In other words, the assumption of 8t E [O, 1) alone does not guarantee an 

immediate agreement in Alternative games. We will observe more variations in bargaining 

durations in Alternative games when we run simulations in Chapter 3. 

The following lemma is analogous to Lemma 1, except that we eliminate the possibility 

of 8 = 0 to avoid undefined fractions in the derived equilibrium. 

Lemma 6 If 8t E (0, 1) for all t with certainty, then x~ E [O, 1]. 

Proof. This is immediate by following our backward induction algorithm. D 
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The conditions given in the next proposition, which are the same as those given in 

Proposition 3, guarantee an immediate agreement in Alternative games. 

Proposition 12 If { 07 }~=l is non-stochastic, in particular 8 E (0, 1) and Dt = ot, then 

the solution to the Alternative game converges to the solution to the Rubinstein's model as 

T-t oo. 

Proof. First, we show that there is an immediate agreement under the given conditions. 

Suppose that 8s are non-stochastic, 8 E (0, 1), and Dt = ot. Since x¥_1 = 1 - xr and 

8T E (0, 1), A's strategy in period (T - 2) is 

A 
XT-2 = max{l - 8T(l - xr), 8T xr} 

= 1- 8T x¥-1· 

Given such x~_2 , B's strategy in period (T - 3) is 

B 
XT-3 

By induction, it is straightforward to show that in general 

i t+2 . 
Xt = 1 - 0 xi+i · (2.5) 
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Hence, A's strategy in period 0 is x~ = 1 - 82xf. B accepts x~ in period 1 if x~ < 

1 - 82 Ef (xf). But this is satisfied since 

Therefore, there is an immediate agreement. 

Now we show that x~ = 1! 6 as T ~ oo. The equation 2.5 can be rewritten as 

Hence, we can express x~ as 

X~ = 1 - 82 ( 1 - 83 ( 1 - 84 ( .. · ( 1 - 8T ( 1 - XT))))) 

T 

= I)-i)t-1 8cE~=oi-1) + 8cET=oj-1)xr. 
t=l 

By taking a limit of the last expression, we have 

T 
• ( _1 ("~ i-l))t-1 = hm L (-l)8t-1 L.Ji=o • 

T-+oo 
t=l 

Note that by using L'Hopital's rule, 

"'t . 1 .4.("'~ i - 1) 
1. L..Ji=O i - l' dt L..Ji=O - 1 Im =Im -. 
t-+oo t - 1 t-+oo 1t (t - 1) 
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Since 8 E (0, 1), by rewriting the sum of a converging geometric series, we ha~e 

00 00 

x~ - 2:)-8)t-1 = 2:)-8)t = 
t==l t=O 

1 
1 +8' 

This completes the proof. D 

The next proposition also gives conditions in which results of Alternative games converge 

to the Rubinstein's solution as it was observed with Basic games. 

Proposition 13 If 8t 's are identically and independently distributed, and the players agree 

on the expected values, which is E(8t) = 8* E (0, 1), then the solution to the Alternative 

game converges to the solution to the Rubinstein's model, provided that T --+ oo. 

Proof. The proof proceeds in the same fashion as that of the previous proposition. Since 

B's strategy in period (T - 1) is x¥_1 = 1 - XT, A's strategy in period (T - 2) is 

x~_2 max{l-8*(1-xT), 8*xT} 

= 1 - 8* ( 1 - XT) 

= 1-8*x¥_1. 

Similarly, B's strategy in period (T - 3) is 

x¥_3 - max{l - 8*(1- 8*(1- XT)), 8*
2 

(1 - XT)} 

- 1- 8*(1 - 8*(1- XT)) 

1 8* A - XT-2· 
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In general, 

x~ = 1 - 8* X{+l. 

Hence, x~ = 1-8*xf. B accepts x~ in period 1 if x~ ~ 1-8* Ef (xf). But this is satisfied 

since 

x~ - 1 - 8* xf < 1 - 8* xf - 1 - 8* Ef ( xf). 

Therefore, there is an immediate agreement. x~ can be also expressed as 

X~ 1- 8* (1- 8*(· · · (1- 8*(1- XT)))) 

1 S:* S:*2 S:*3 S:*(T-1) S:*(T-1) 
- - u + u - u + · · · - u + u XT 

T-1 - L ( -8*)t + 8*(T-1) XT· 
t=O 

Thus, as T approaches to infinity we have 

x~ - f~~ [I:(-8*)t + 8*(T-l) XT] 
t=O 

1 
= 

1+8*" 

Hence, the proposition holds when 8* E (0, 1). 0 

Consequently, if we eliminate a speculative element in the beliefs from our bargaining 

games in a certain way as above, then the results of both Basic and Alternative games with 

T --+ oo conform to that of Rubinstien's model. 

The next proposition gives a condition to generate a delay in a penultimate period. 

Proposition 14 There is delay in period (T-1), if and only if player B is optimistic about 
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the asset value in period T in such a way that 
1~~~; 2 < Ef!_1 ( 8r). 

Proof. The proof is straightforward from the equilibrium conditions given in Proposition 

10. In period (T-1), the condition that will make player B reject x~_2 is x~_2 > 1 - (1-

xr )Ef!_1 (8r ), which is rearranged to give 

1- X~-2 B --- < Er-1(8r). 
1-xr 

D 

This proposition says that if B expects the asset value to increase in the next period 

more than the ratio of his share in the current period (T-1) to his share in period T, then 

there will be a delay in period (T- 1). This sort of delay is likely to occur especially when 

B's expectation of period-T value in period (T-1) becomes larger than his expectation in 

period (T - 2) after observing DT-1· 

2.4 Notes on the Distribution of Surplus 

By construction of our equilibria in the Basic bargaining game, there is an advantage of being 

a proposer insofar as extracting a surplus in excess of his maximum expected continuation 

payoff in the event of agreement. Suppose that player i proposes xl = max{l - xl, xn in 

period t. If the offer is accepted, then we know xl = 1 - xl ~ x~. Therefore, the payoff 

vector is (7ri, wi) = ( Qt(l - xl), Qt;[) = (Ml+ E, M/), where E ~ 0. Consequently, the 

equilibrium was constructed in such a way that if an agreement is reached, then a proposer 

extracts a surplus over what he expects to receive by delaying until any future period, while 
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a responder receives the amount exactly equal to his maximum continuation payoff. 

This, however, does not mean that a proposer's payoff is always higher than that of a 

responder. The size of a realized payoff depends on each player's view of the future. In the 

example above, it c.an be observed that 7ri = Qt(l -zj) > Qtzj = 7r{ if and only if zj < 1/2. 

In other words, the proposer's payoff is larger than the responder's payoff only when the 

responder is sufficiently pessimistic about his future continuation payoffs. As a numerical 

example, let us look at Exhibit 3 that is included in Table 3.3 of Appendix 3A.l. This is 

the case in which player A starts the negotiation with a more pessimistic view than player 

B .10 Take Path = 10 in the table, where an agreement occurs.11 Despite the fact that A 

is a proposer in period 2, A receives less than B. With regard to surplus extraction, notice 

that 71": > Mf, whereas 7rf = Mf. Hence, the proposer A has received more than her 

maximum reservation value, while B received exactly the same as his maximum reservation 

value. This is in accord with our discussion above. 

In the Alternative game, it is possible to observe both players receiving positive surplus; 

that is, 7rf > Mf and 7rf > Ml in the same period. Suppose that player i proposes an offer 

such that x~ == max{l - x{' xn, and first let us consider the case in which x~ = 1 - x{ ~ x~. 

We would like to find a condition to have both 71"~+1 > Mf+l and 7r{+l > Mf+1 in the 

event of agreement in period (t + 1). We can observe, by simple manipulation of the 

inequalities, that both players have a positive surplus if and only if both Mf+; < Qt~1x{ 

and Qt+ix{ < Qt+1 - Mf+l are satisfied. Consequently, the necessary condition to have 

both inequalities satisfied is Mf+l + Mf+l < Qt+l· In a similar fashion, we can obtain the 

10 After observing the information in period 0, player A assigns a probability 0.25 to the arrival of favorable 
information in period 1, whereas player B assigns a probability 0.67. 

11 Path 10 is the path with £1 1 and £2 = O. This will be described in detail in Chapter 3. 
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same necessary condition in the case where x~ = x~ > 1-x{. As a numerical example, let us 

look at Exhibit 10 included in Table 3.10 of Appendix 3A.2. The first agreement occurs in 

period 1, in which ?rf = 0.596253 > 0.596184 = Mf and ?rf = 0.596279 > 0.596266 = Mf, 

indicating a positive surplus in excess of maximum continuation payoff on both players. 

2. 5 Discussion 

It has become clear that it matters to analyze the Basic game and the Alternative game 

separately.12 In the Basic model, a proposer knows exactly what his and his opponent's 

payoffs will be if his offer is accepted in the current period. A responder in the Basic 

model also knows exactly what his and his opponent's payoffs are if he accepts the offer. 

On the contrary, in the Alternative model a proposer knows what his payoff in the event 

of acceptance will be only in terms of its expected value when he quotes his offer, while 

a responder knows exactly what his payoff will be if he ai::cepts the offer. Consequently, 

a proposer in Alternative games cannot generate a delay with certainty when he makes 

.an offer, since he cannot observe the next period 8 that his opponent will observe before 

responding. But a proposer can force a delay with certainty in Basic games. For example, 

as indicated in Proposition 11, the assumption of Ot E (0, 1) alone does not guarantee an 

immediate agreement in Alternative games, whereas it is guaranteed in Basic games as 

shown in Proposition 2. A bargainer's ability to observe certain information before making 

his decision affects his bargaining power, and proposer's bargaining power in Alternative 

games is not as strong as that in the Basic games in terms of manipulating durations. It is 

12 As numerical examples, it is interesting to compare Exhibits 3 and 5, or Exhibits 6 and 10 that are 
included in Appendix 3A. 
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also clear from the derived equilibria that an additional uncertainty on the proposing party 

affects reservation values. 

Are the two games equivalent if a responding party always rejects the current offer in the 

Basic model to observe new information? In computing the offer-strategies the proposer's 

reservation values in the two games are equivalent if a proposer in the Basic game knows 

with certainty that a responder always rejects his offer in the current period in order. to 

observe the next available information. This is because in such a case the proposer in the 

Basic game adjusts his reservation value to incorporate the additional uncertainty as if he 

were playing the Alternative game. Without such an anticipation of consistent rejection, 13 

a proposer in the Basic game has a different reservation value from a proposer in the 

Alternative game as we have observed. 

As it was shown, however, there are conditions with which the solution to the Basic 

games coincides with that to the Alternative games.14 For example, if bts are identically 

and independently distributed with E(8t) = 8* E [O, 1), then the solution to both games 

converges to a unique subgame perfect equilibrium that is the same as the Rubinstein's 

solution. In Rubinstein's perfect and complete information bargaining game, it is players' 

time preferences modeled as discounting of the asset value that gives a pressure for an early 

agreement. In our model the pressure comes from players' speculation on the information 

flow in the future. Consequently, when players speculate a series of future information shocks 

to be an undesirable one, such a speculation leads to an effect on bargaining outcomes that 

is similar to the one caused by a presence of discount factors. 

13We note that it is not reasonable to assume such rejection strategies on the part of responder if he can 
achieve the highest expected payoff by accepting the current offer. 

14Refer to propositions 3, 4, 12, and 13. 
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This research originally started out by introducing 8 as a convenient way of captur­

ing differences in beliefs after observing common information as a stochastic process. The 

models studied here have reduced the richness of the. initial bargaining games by altering 

the interpretation of 8, and the original intent was not accomplished. However, even in 

this restricted framework, our analyses confirm that the introduction of stochastic compo­

nents into bargaining situations is essential in describing varied bargaining durations. For 

example, as it was found in Proposition 3 of the Basic game and in Proposition 12 of the 

Alternative game, if a sequence of 8s is not stochastic in addition to the assumption of 

8t E (0, 1), then the solution converges to that of Rubinstein's bargaining model. 



Appendix 2A 

Derivations of Equilibria 

The derivations of the equilibria given in Propositions 1 and 10 are provided. Each step of 

backward induction algorithm is described in detail. 

2A.1 Equilibrium of the Basic Game 

Proposition 1 A strategy profile { f;A, f;B} that satisfies the following conditions is a sub­

game perfect equilibrium of the basic game. 

1. In an even-numbered period t, player A makes an offer such that 

(2A.1) 

and player B accepts xf if xf:::; 1 - Ef (8t+iXf+l), and rejects otherwise. 

2. In an odd-numbered period t, player B makes an offer such that 

(2A.2) 

62 
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and player A accepts xf if xf s; 1 - Ef (8t+Ixii-1 ), and rejects otherwise. 

Proof of Proposition 1 : The derivation of this equilibrium is immediate by using the 

backward-induction algorithm outlined in section 2.2. Note that subgame perfection co-

incides with backward induction in games of perfect information. Recall the following 

behavioral assumptions that each player's strategy must satisfy. 

C-I In the event of the respondent's accepting the current offer, the respondent 

receives at least as much as what the respondent expects to receive in any 

future period. 

C-iI In the event of the respondent's accepting the current offer, the proposer receives 

at least as much as what the proposer expects to receive in any future period. 

(i) In period (T - 1), it is B's turn to quote an offer. Condition C-I gives 

B 
XT-l 

indicating that an offer that is smaller than or equal to 1 - xrE#_1 ( 8r) guarantees A's 

acceptance. Condition C-II gives 
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meaning that (1 - XT )Ej!_1 (6T) is the smallest offer B is willing to make. Hence, player 

B's offer in period (T - 1) is 

(2A.3) 

A would accept x¥_1 such that 

since such x¥_1 satisfies the condition C-L 

(ii) In period (T - 2), the largest offer A is willing to make, which satisfies condition 

C-I, is given as 

(2A.4) 

This is because the offer has to guarantee B a payoff at least as large as B's expected payoff 

in periods (T 1) and that in period T. The former requires 

QT-2(1 - x~-2) > Efl_2(QT-1x¥_1) 

QT-2(1- x~-2) > Efl_2(DT-1QT-2x¥-1) 

x~_2 < 1 - Efl_2(DT-1x¥_1), 
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and the latter requires 

QT-2(1- X~-2) > B¥-2(QT(l - XT)) 

QT-2(1 - X~-2) > B¥_2(DTDT-1QT-2(l - XT)) 

X~-2 '.S 1- (1- XT)E¥_2(DTDT-1). 

The smallest offer satisfying condition C-II is 

65 

(2A.5) 

since the offer has to give A at least as much a payoff as she expects to receive in period 

(T - 1); that is, 

QT-2X~-2 > Bz'!_2(QT-1(l - x¥_1)) 

QT-2xt.-2 > E#-2(DT-1QT-2(l - x¥_1)) 

x~-2 > E#-2(c5T-1(l - xK .. 1)), 

and also at least as much as she expects to receive in period T; that is, 

QT-2X~-2 > E#-2(QTXT) 

QT-2X~-2 > E#-2(DTDT-1QT-2XT) 

x~_2 > XTE#_2(8TDT-1). 
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Hence, the conditions 2A.4 and 2A.5 tell us that A makes an offer such that 

x~-2 - max { E#_2 (8r-1(l - x¥_1)), xrE#_2(8r8r-1), 

min{l - B~_2 (8r-1x¥_1 ), 1- (1- xr)E¥_2(8r8r-1)}}. (2A.6) 

But the equation 2A.6 is simplified to 

(2A.7) 

due to the reasons described in 1 and 2 below. 

1. x¥_1 ;::: E¥_1(8r(l - xr)) implies 

But by applying the law of iterated mathematical expectations to the right-hand side 

to condition on the information up to period (T - 2), this can be rewritten as 

Hence, 
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But by applying the law of iterated expectations to the right-hand side, this is written 

as 

Hence, 

(iii) Suppose that the equilibrium strategy prescribed in the proposition holds for peri-

ods t through (T-1). We need to show that the strategies in period (t -1) follow those of 

the equilibrium, i.e., 

and player i accepts xL1 if xL1 :'.S: 1 - EL1 (8tx~). 

Condition C-I indicates that j's offer has to satisfy 



APPENDIX 2A. DERIVATIONS OF EQUILIBRIA 68 

By the induction hypothesis and an application of the law of iterated mathematical expec­

tations, we have x{_1 :S 1 - EL1 (8tx~). 

Condition C-II indicates that j's offer has to satisfy 

x{_1 > max{E{_1 (8t(l - x~)), E{_1 (8t+18tx{+i), 

E{_l (8t+2Dt+iDt(l - X~+2)), E{_l (8t+30t+20t+18tx{+3), ... }. 

By the induction hypothesis and an application of the law of iterated mathematical expec­

tations, we have x{_ 1 2:: E{_ 1 ( 8t+ 1 0tX~+I). 

Consequently, player j's offer strategy in period (t - 1) is 

as desired. By construction we know that player i's acceptance decision follows the strategy 

based on a unique reservation value, i.e., i accepts x{_1 if x{_1 :S1- EL1 (8txD. 

Therefore, we conclude that the equilibrium strategy holds for all t. 

D 
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2A.2 Equilibrium of the Alternative Game 

Proposition 10 A strategy profile {SA, 8B} that satisfies the following conditions is a 

subgame perfect equilibrium of the alternative game. 

1. In an even-numbered period t, player A rejects xf._1 if 

and quotes 

(2A.8) 

A accepts xf_1 otherwise. 

2. In an odd-numbered period t, player B rejects xf_1 if 

and quotes 

xf =max 1 · { 
Ef(8t+18t+2xf+1) Ef (8t+18t+2Dt+3xf+2)} 

Ef(8t+1) Ef (8t+1) 
(2A.9) 

B accepts xf_1 otherwise. 

Proof of Proposition 10 : 
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By using the algorithm similar to the one used in the basic model, we derive the equilib-

rium of the alternative model. Hence, we work backwards from period T through a sequence 

of solutions to single stage optimization problems. 

(i) In period (T-1) after observing OT-Ii it is player B's turn to respond to A's action 

that was taken in period (T- 2). B rejects x~_2 if his utility by accepting it in the current 

period is smaller than his expected payoff from period T; that is, 

Then, B will quote x¥_1 that satisfies 

indicating that an offer that guarantees A's acceptance has to be smaller than or equal to 
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indicating that B needs to make an offer that is at least as large as 1 - XT to grant himself 

a payoff not less than he is guaranteed to receive in period T. But B knows that it is 

meaningless for B to quote x¥_1 > 1-xT since it would only result in A's rejection without 

improving his payoff. Hence, the only offer B would make in the event of his rejecting x~_2 
. B 1 
IS XT-l = - XT· 

(ii) In period (T - 2), it is player A's turn to respond to B's action from the previous 

period. A rejects x¥_3 if 

(2A.10) 

This is because A would reject x¥_3 if accepting it in the current period gives her a payoff 

strictly smaller than her expected payoff from period (T - 1); that is, 

or a payoff strictly smaller than her expected payoff from period T; that is, 
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Given the condition 2A.10, A will quote x~_2 such that 

(2A.11) 

The first expression in the braces is due to the condition that guarantees B's acceptance; 

that is, Qr-1 (1 - x~_2 ) ~ E-¥_1 ( Qr(l - xr) ). Since in period (T - 2) player A can infer 

this only in terms of her expectation given information up to period (T - 2), the condition 

is in fact, 

A 
XT-2 

The second expression in the braces is due to the condition that gives A a payoff in period 

(T - 1) at leas.t as much as that in period T; that is, 

This condition implies 

A 
XT-2 
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Hence, the condition 2A.10 simplifies to 

(iii) In period (T - 3), player B rejects x~_4 if 

x~-4 > min {1- E¥_3(8T-2x¥_3), 1- E¥_3(8T-18T-2(l - x~_2 )), 

1 - (1 - XT )E¥-3 ( DTDT-1 DT-2)} · 
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(2A.12) 

(2A.13) 

This is because B would reject x~_4 if accepting it in the current period gives him a payoff 

strictly smaller than his expected payoff from period (T - 2); that is, 

QT-3(1 - x~_4) < E¥_3(QT-2x¥_3) 

x~_4 > 1 - E¥_3(8T-2x¥_3), 

or a payoff strictly smaller than his expected payoff from period (T - 1); that is, 

QT-3(1- x~_4) < E¥_3(QT-1(l - x~-2)) 

x~-4 > 1 - E¥_3(8T-18T-2(l x~-2)), 

or a payoff strictly smaller than his expected payoff from period T; that is, 

QT-3(1 X~_4) < E¥_3(QT(l - XT)) 

X~-4 > 1 - (1- XT)E¥_3(8TDT-1l5T-2). 
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Given the condition 2A.13, B will quote x¥_3 such that 

B 
XT-3 
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This is because x¥_3 has to satisfy the condition that it gives B a payoff at least as much 

as that in period (T - 1); that is, 

B 
XT-3 

and a payoff at least as much as that in period T; that is, 

The two conditions above give 

But this simplifies to 

B 
XT-3 

(2A.15) 
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because from (ii) 

A 
XT-2 

E¥_3(c5rc5r-1c5r-2(l - xr )) 
E¥_3(c5r-2) 

> 
1 

_ E¥_2(c5rc5r-1(l - XT)) 

E¥-2Cc5r-1) 
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The last two steps are due to the fact that the information set in period (T - 3) is included 

in that in period (T - 2). The condition C-I that guarantees A's acceptance in period 

(T · 1) indicates that x¥_3 also has to satisfy the following. 

and 

Since B has to infer these after observing the information up to period (T - 3), the first 

condition becomes 

B 
XT-3 

< 
1 

_ E;j_3 (c5r-1c5r-2x~_2 ) 
E;j_3(c5r-2) ' 
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and the second condition becomes 

B 
XT-3 

< 1 - E#_3(DTDT-1DT-2XT) 
E#_3(8T-2) 

The two conditions above give the condition 

But this simplifies to 

because from (ii) 

A 
XT-2 

E#-2(DT-1X~-2) 

E#_3 (8T-2E#-2(DT-1X~-2)) 
E#_3(DT-2) 

l _ E#_3(DT-2E#-2(DT-1X~_2 )) 
E#_3(8T-2) 

From the conditions 2A.15 and 2A.16, the equation 2A.14 becomes 

x¥_3 ~max {I 
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(2A.16) 

(2A.17) 
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Now the condition 2A.13 simplifies to 

because the condition 2A.17 implies 

and from (ii), 

> l - Ej!_2(6TDT-1(l - XT)) 
Ej!_2(6T-1) 
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(2A.18) 

(iv) Suppose that the equilibrium strategy prescribed in the proposition holds for periods 

t through (T - 1). We need to show that the strategies in period (t - 1) follow those of 

the equilibrium, i.e., player j rejects xL2 if xL2 > 1 - E{_1 (6txL1), and in the event of 

rejection he offers 
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Condition C-I indicates that j's offer has to satisfy 

By the induction hypothesis and an application of the law of iterated mathematical expec-

· Ei (8 8 xi) tations we have x1 < 1 - t-1 t t+i t 
' t-1 - Ei-1 (8t) 

Condition C-II indicates that j's offer has to satisfy 

{ 
EL1 (8t8t+1(l - xn) EL1 (8t8t+18t+2x{+l) > max . , . , 

EL1 (8t) EL1 (8t) 

EL1 (8t8t+18t:28t+3(l - X~+2))' EL1 (8t8t+18~+28t+38t+4x1+3)' ... } . 

EL1 (8t) EL1 (8t) 

By the induction hypothesis and an application of the law of iterated mathematical expec-

t t . h j > E{_ 1 (8tOt+i8t+2x{+1 ) 
a ions, we ave xt-l _ Ef_

1
(ot) 

Consequently, player j's offer strategy in period (t - 1) is 

as desired. By construction we know that player j's acceptance decision follows the strategy 

based on a unique reservation value, i.e., j accepts xL2 if xL2 :S 1 - E/_1 (8txL1). 

Therefore, we conclude that the equilibrium strategy holds for all t. 

D 



Chapter 3 

Simulations of Stochastic 

Bargaining Garnes 

We construct simulated negotiation processes and investigate the effects of variations in 

parameter values on bargaining outcomes. The structures of the games are the ones studied 

in Chapter 2.1 Equilibrium strategies simulated here are the ones derived in Proposition 

1 for Basic bargaining games and Proposition 10 for Alternative bargaining games. The 

bargaining environment is defined by utilizing statistical tools. We also attempt to provide 

behavioral simulation models for bargaining in the sense that we are modeling each agent's 

decision process based on the specified behavior rules. The behavioral assumptions made in 

our bargaining games help to realize such an attempt. According to the definitions of the 

games, the simulation is designed in such a way that the bargaining flow is governed by the 

initial environment, specified behavioral rules of the agents, and the information flow. Such 

1 Notations in this chapter are kept consistent with those used in Chapter 2. 

79 
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simulations help us identify bargaining durations in negotiations with various parameter 

values and make predictions on the outcomes of similar situations in actual bargaining 

settings. 

The factor that affects the asset value is influenced by a variable that takes a value of 

either one or zero in our first model, the Autoregressive Binomial Model. Such a factor is 

derived from a continuous distribution in our second model, the Generalized Wiener Process 

Model. The agent's decision is made by taking into account this newly arrived information. 

The behavioral rules in taking an action were given as conditions C-I and C-II in the 

previous chapter. They are repeated below. 

C-I In the event of the respondent's accepting the current offer, the respondent 

receives at least as much as what the respondent expects to receive in any 

future period. 

C-II In the event of the respondent's accepting the current offer, the proposer receives 

at least as much as what the proposer expects to receive in any future period. 

The assumption of complete information assures that each agent has an access to the iden­

tical information as soon as it becomes available to the negotiating environment. We allow 

the possibility of different initial beliefs on unknown parameter values that can result from 

different interpretations of the same information among the players prior to the negotiation. 

This is to reflect a variety of speculation processes and different levels of expectations due 

to diversified human characteristics. Once the bargaining process begins, agents' behavior 

is consistent in that they use Bayes' rule whenever possible to update their conjecture on 

the future information flow that affects the value of the asset. We first describe in the next 



CHAPTER 3. SIMULATIONS OF STOCHASTIC BARGAINING GAMES 81 

section the statistical specification of the binomial bargaining model in detail. Computa-

tional methods and the data structure are explained later.2 The results of the binomial 

model, including findings on comparative statics, are given below. Then we investigate the 

continuous distribution model in the rest of the chapter. 

3.1 The Binomial Distribution Model 

We first simulate the case in which the information variable /is constitute a first~order 

autoregressive series.3 Though we are aware that the information in actual negotiation 

situations may have a very complex correlation structure, we attempt to study the case 

of the first-order dependency structure with a stochastic factor that follows a binomial 

distribution as a simple approximation to the reality. Later, we will provide a specification 

of the model with identically and independently distributed /is. 

3.Ll The Autocorrelation Model 

Let us consider a case of autocorrelated 8s with perfect observation such that 

Ot+l = p8t + Ct+l, IPI < 1, 

where ctS are mutually stochastically independent4 and 

c,...., binomial(!, 0), 0 E (0, 1), 

2 An additional description is also provided in the beginning of the simulation codes included in Appendix 
30.1 and 30.2. 

3We address such models as autocorrelation models or autoregressive binomial models in our research. 
4Hence, {ct} is a stationary process, in that the transition (probability) matrix is independent of time. 
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and 

0 ,...., {3eta( a, {3), 

with positive constants a and {3. We will use aA and f3A to characterize player A and 

aB and f3B to characterize player B. This will allow us to incorporate the possibility of 

different priors about parameter values, indicating that the two players can have different 

expectations on the future value of the asset. Let us for now use a and {3 for a generic 

player. 

We consider c as a message regarding the information that affects the asset value. When 

c becomes available in the negotiating environment, it is instantaneously passed to both 

agents. Notice that we assume that the players do not know the value of 0, the probability 

that c takes the value 1. Let X = I:;=l £ 7 • Then X ,...., binomial(t, 0). Hence, the 

conditional probability density function of x' given e = 0' is 

f(xlO) = 
( : ) O"(I - O)t-x if x = 0, !, · · · , t 

0 otherwise, 

where the prior probability density function of the random variable 8 is given as 

{ 

r(a+,6) oa-1(1 - O)f3-l 0 < 0 < 1 
g( O) = r(a)r(,B) 

0 otherwise. 

After observing a piece of information Ot in period t, the players update their beliefs about 

the value of(} by using Bayes' rule, so that they can compute the expected value of Ot+l· 
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The joint probability density function of X and 8 is given by f (xjO)g(O) and the marginal 

probability density function of X is 

h1(x) = ( 
t ) r a+.B)r(a+x)r t+{3-x if x = 0, 1, ... 't 

r a r ,B)r t+a+.B 
x 

0 otherwise. 

Therefore, the conditional probability density function of 8, given X = x, is 

Hence, the prior mean of the distribution of 8 is expressed as 

a 
Eo(O) = --(3 

a+ 

while the posterior mean of the conditional distribution of 8, given X = x, is 

Et(Ojx) = fo1 

Oh(Ojx)dO 

a+ :L;=l €r 

a+f3+t · 

It follows that the expected value of Dt+i after observing the information in period t is 

computed as 
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where 

Et(<t+d ~ 1 ·Et (o t,£T) + 0. ( 1- E,(BI f,cT)) 
- Et (o t,£T) 

a+ E~=1 cr 
a+,6+t · 

In general, the expected value of the product of lagged 8s and xs are computed by 

Et(8t+1Xt+1) 

and 
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where 

ct is a sequence of cs up to and including period t. Note that in computing the value of 6, 

the order of realized cs matters. 
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For example, the expected value of lagged 8s may be computed by5 

where 

t 

Et(ct+ict+2I I::Cr) 
r=l 

= a+ :L;=l er . [a+ :L;=l er + 1 . a+ :L;=l er 
a+,B+t a+,B+t+l a+,B+t 

+ a + :L;=l er . (i _ a + :L;=l er)] . 
a+,B+t+l a+,B+t 

3.1.2 The I.I.D. Model 

In this section we briefly outline one example of possible LLD. model specifications by using 

the statistical tools applied in the autocorrelation model in the previous section. Here the 

information variable 8s are identically and independently distributed. The results of this 

LLD. model simulations are not reported in this version, since they do not add prominently 

5For example, a lagged expectation of c:s such as E1(c:2c:alc:1=1) is computed by 

E1(c:2c:alc:1 = 1) = Ei(c:2lc:1=l)E1(c:alc:1=1) 
= prob{c:2 = llc:1=1} · (E1(c:alc:1 = l,c:2 = l)prob{c:2 = llc:1=1} 

+ E1(c:3lc:1 = l,c:2 = O)prob{c:2 = Olc:1=1}) 

a + 1 . [ a + 2 . a + 1 + a + 1 . (l _ a + 1 ) ] 
a+,B+l a+,8+2 a+,B+l a+,8+2 a+,B+l · 
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different interpretations on the relations between bargaining durations and other parameter 

values from the :findings on the autocorrelation model. 

Let us define each 8 as a sum of a prespeci:fied constant and a variable that follows a 

Bernoulli trial. 

8 = p + 'TJ, p E (0, 1), 

where 

'TJ ,...., binomial(l, 0), 0 E (0, 1), 

and 

e ,...., ()eta( a, (3)' 

with predetermined positive constants a and (3. e here is the probability that 'T/ takes the 

value 1, and the players have prior beliefs on the value of e. Therefore, 8 can be greater 

than 1 if 'T/ takes a value 1, given p E (0, 1). The rest of the description of this model is 

analogous to that of the autocorrelation model. 

3.1.3 Design and Data Structures 

We design the autocorrelation model as a full binary tree, which is symmetric and whose 

depth T + 1 is determined by an exogenously given final period number, T. 6 Hence, the 

tree has a total of (2T+i 1) nodes, with each node having a degree no larger than 2. Each 

6We frequently use T = 18 as a maximum possible number of negotiations in exhibits that follow. Since 
T = 18 indicates 218 = 262144 possible states in the terminal period T, we think that increasing T over 18 to 
create a higher diversity is not necessary for our purposes. In addition, as T becomes large, the reliability of 
the backward induction algorithm becomes questionable due to correspondingly more involved hypotheses. 
Also the standard deviation of the forecast error grows as the forcast horizon increases, resulting in wider 
confidence intervals. The total number of nodes in the tree when T = 18 is 219 

- 1 = 524287. 
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Root 

Period 0 

Period 1 

Period 2 

Figure 3.1: The Binary Tree of Depth 3 with Sequential Node I.D. Number 

level of the tree coincides with each period t, with the first level associated with period 0. 

Since such a tree is complete7 , we can assign a unique identification number to each node 

from 1 to (2T+l - 1) in a systematic manner. Given an id number, we can find a unique 

path, which is defined as a sequence of observed cs, to reach a node that is identified with 

the id number. Hence, this numbering scheme enables us to reach any node in the tree, 

given an address of its root node and the id number, without using a recursive coding. At 

the root node the initial conditions such as the value of 60 and p are given. We use a linked 

representation, where each child of a parent node of period t is associated with the state 

that ct+l is either 0 or 1. An example of the tree with T = 2 is shown in Figure 3.1. 

Each node in the tree is defined by data structure node and contains the following 

7 Consider a numbering scheme such that starting with the root node with number one we sequentially 
number nodes on each level from one side to the other. A binary tree with N nodes and a depth T + 1 is 
complete if and only if its nodes correspond to the nodes which are numbered one to N in the full binary 
tree of depth T + 1. 
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information. 

struct node 
{ 

} 

long unsigned int id; 
unsigned int t; 
float delta; 
float PAO; 
float PBO; 
float PAl; 
float PBl; 
float X; 
float Q; 
unsigned int sum_e; 
unsigned int R; 
unsigned int flag; 
struct node *left; 
struct node *right; 
struct node *parent; 

/* ID number of each node, 1, 2, 3, ... , 2(T+l) - 1. * / 
/*Period number, t = 1, 2, ·3, ... , T. */ 
/* Ex-post 8 value, i.e., Ot. * / 
/* Pf{ct+i = Olct}. */ 
/* ptB{ct+i = Olct}. */ 
/* ptA{ct+i = llct}. * / 
/*Pf {ct+i = llct}. */ 
/* Current offer. * / 
/* Current asset value. * / 
/* 2:~=1 C7· *I 
/* Response strategy : 1 for accept, 0 for reject. * / 
/* 0 if no trade before t, 1 otherwise. * / 
/* Pointer to a left child, i.e., a node with ct+l = 0 * / 
/* Pointer to a right child, i.e., a node with £t+l = 1 * / 
/* Pointer to a parent. * / 
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The codes for the simulation of the Basic bargaining game, along with more details on 

design and data structures, are included in Appendix 3C.l.8 This binomial tree procedure 

is also used with the LLD. model. 

3.1.4 Results and Comparative Statics 

The Basic Game 

Tables 3.1through3.39 show three simulation results of the Autoregressive Binomial model's 

Basic game with T = 4. Offers and responses are made by following the behavioral as-

sumptions we made in the previous section. Given such equilibrium strategies, the players 

compute their expected payoffs from trading in the future, which also appear in the ta-

8The program in the appendix shows a core part of the codes, on which we have made numerous modi­
fications to obtain various different versions to generate data sets. 

9 All the tables relevant to Chapter 3 are included in Appendix 3A. Appendix 3A.1 contains tables for 
Autoregressive Binomial Models, while Appendix 3A.2 contains those for Wiener Process Models. 
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bles. These exhibits clarify how the delays are generated by players' speculation on value 

increases in the future in our Basic bargaining model. Exhibit 1 provides an example of an 

immediate trade despite that the players have identical priors about the information fl.ow. 

In this case both players are not very optimistic about the possibility of the value increase 

later on, as it is reflected in low probabilities they assign for the future c to be one.10 In 

period 0, player B's highest expected continuation payoff is the one in period 1, which is 

0.461687. Since player A's offer in period 0 guarantees B as much as B's highest expected 

payoff in the future, B has no reason to reject the current offer. Hence, the acceptance 

occurs in period 0 with A receiving 0.738313 and B receiving 0.461687. Note that proposer 

A has extracted the surplus in excess of her maximum reservation payoff despite that both 

A and B are assumed to have the same preferences over the future. 

In Exhibit 2, the players again have identical priors about the information fl.ow. But 

both of them are more optimistic about the future value of the asset than in the case of 

Exhibit 1, so that we now observe a delay before agreement. In period 0, player B would 

receive nothing if he accepts the current offer,11 while his expected payoffs in period 1, 3, 

and 4 are positive. Hence, B rejects the offer in period 0, and the game continues to period 

1. In period 1, if the information they have observed is c1 = 0, then A would accept B's offer 

to receive 0.143430 that is as high as A's any expected continuation payoff in the following 

periods given c 1 = 0. On the contrary, if they have observed c1 = 1 as new information, 

then both players would maintain their optimistic views and there would be another delay. 

The game proceeds as it is described in the table. 

10Both players assign probability 0.25 to the event £1 = 1. 
11In the table, this appears as a negative number, owing to the ridiculous offer player A has made to 

generate a delay. 

----------------
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Exhibit 3 is the case in which an agreement does not occur immediately despite a big 

di∏erence among players' beliefs. In this exhibit, piayer B is more optimistic than piayer 

A about the future asset value. B assigns a probability 0.67 to the information in period 1 

being 1, while A assigns a probability 0.25, indicating that B has higher incentive to delay 

than A does. Accepting the current offer would give B a payoff of 0.904373, which is very 

high compared to what the proposer A would receive, that is 0.295627. However, B foresees 

the possibility of even higher payoffs in future periods, that are period 1, 3, and 4. Hence, 

B rejects the offer in period 0, and the game continues.

In general, as the predetermined maximum length of negotiation process increases, we 

can observe more delay before reaching an agreement. The bargaining duration, however, 

is not sensitive to the change of the maximum length if both players are pessimistic about 

the future value of the asset. By pessimistic, we refer to the characteristics of players who 

assign low initial priors for the 6rst information, Si, being one. and/or to the environment 

with low initial values of parameters such as p and <⅛. Exhibit 4 in Table 3.4 uses the same 

parameter values as Exhibit 3, except that the maximum length of time T is 2 in Exhibit 

4. Player A's initial belief of si = 1 is 0.25, and we consider her view as pessimistic. On 

the other hand, relatively optimistic B assigns probability 0.67. Hence, this is the case 

that two players have different beliefs about the information How, with one person being 

very optimistic. In Exhibit 3, we observed that the Erst offer made by player A in period 

0 was rejected by player B, resulting in a delay. On the other hand, Exhibit 4 shows an 

immediate agreement in period 0. Figure 3.3 shows the relationship between the changes 

in T and bargaining durations with the other parameter values identical to the ones in 
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Exhibits 3 and 4. Z-⅛xis indicates frequencies of agreement in each period.^

Simiiariy, if both piayers are optimistic, then the duration shows sensitivity to the 

changes in T even when the environment is not very promissing. In Figure 3.4. neither A 

nor B has a very pessimistic view about the future value of the asset, with A assigning 

probability 0.57 and B assigning 0.45 to the first information to be one. Notice also that 

the values of p and <5o are low to begin with. As it appears in the 6gure, however, as long 

as both players are reasonably optimistic, then the bargaining duration is sensitive to T.^ 

In addition. Figure 3.5 gives another example of how sensitive the duration can be if both 

players are not very pessimistic and the initial environment is also promissing with large 

values of p and ⅞. The bargaining duration becomes longer as its horizon increases. For 

example, with T = 6 the Erst agreement can be reached in period 3, while with T = 18 the 

Erst possible agreement is in period 10. However, if both players are pessimistic, then we 

observe high agreement frequencies in earlier periods. Figure 3.6 shows such an example, 

in which an agreement is reached immediately in period 0 in the cases with T = 2 through 

T= 10.

Figures 3.7 and 3.8 show how differences in players' initial beliefs affect bargaining 

durations. In Figure 3.7. A has an optimistic view, while B's view is varied from optimistic

'2.411 the figures relevant to Chapter 3 are included in Appendix 3B.1, 3B.2, and 3B.3. Appendix 3B.1 
contains Figures 3.3 through 3.18, which are figures for Auroregressive Binomial Models. The frequency on 
Z-axis in the figures are computed in such a way that the total number of agreements is divided by the 
total number of states in a given period. We consider such a frequency as an unconditional frequency since 
it counts even unreachable nodes in the bargaining tree. Appendix 3B.2 contains Figures 3.19 through 3.34, 
which are also figures for Autoregressive Binomial Models. But they have conditional frequencies on Z-axis, 
in that we ignore irrelevant states or unreachable nodes in the tree. Parameter values used in the figures in 
Appendix 3B.2 are analogous to the ones in Appendix 3B.1. Appendix 3B.2 is provided as an additional 
reference. Appendix 3B.3 contains Figures 3.35 through 3.46, which are 6gures for Wiener Process Models 
studied in the next section. The frequencies used in the figures in Appendix 3B.3 are conditional, where we 
ignore unreachable nodes.

'2Also notice that the environment with low p and <⅛ results in higher frequencies of agreements in a 
period corresponding to that in the more promising environment.
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to pessimistic.14 Frequencies of agreement show slight tendencies to increase as B's view 

becomes pessimistic at a given period except for period 0 and 1. In Figure 3.8, A has a 

pessimistic view, while B's view is varied from optimistic to pessimistic. The relationship 

between the frequencies of agreement and the variation in B's view are very similar to that 

of Figure 3.7, except that frequencies of agreement are higher in Figure 3.8 than in Figure 

3.7 in any given period. Again, this is a consequence of pessimistic players' incentive to 

come to an early agreement. · 

In Figure 3.9 we provide four cases in which pis varied from 0.1 through 0.9 to reflect 

a change in the environment that influences the asset value. These four cases differ in the 

players' prior beliefs.15 Case 1 is an example with optimistic A and B, Case 2 is with 

pessimistic A and B, Case 3 is with optimistic A and pesimistic B, and Case 4 is with 

pessimistic A and optimistic B. As it is clear from the figures, all of the four cases show the 

tendency of longer delays as p increases; that is, the environment becomes more promising 

on the value increase. For example, in Case 1 the first possible agreement can be reached 

in period 0 with p = 0.1, while the first possible agreement is in period 4 with p = 0.6. 

The figures also indicate that the frequencies of agreement in any given period decrease as 

p increases. For example, in Case 4 the frequency of agreement in period 4 with p = 0.1 

is 1.0, while it is 0.0625 with p = 0.7. These findings are intuitive, since it is a hopeful 

speculation for a value increase that generates delays. 

Figure 3.10 shows four cases in which A's predetermined default share xr varies from 

14The value of (3B, which appears on the x-axis labeled "Beta...B," is varied from 1 through 3.8 by the 
interval of 0.4. This indicates B's initial beliefs are changed from 0.67 to 0.34, i.e., the probability B assigns 
to the event c1 = 1 is varied from 0.67 to 0.34. 

15In Case 1 A's prior is 0.67 and B's prior is 0. 75, in Case 2· they are 0.25 and 0.29, in Case 3 they are 
0.67 and 0.25, and in Case 4 they are 0.25 and 0.67, respectively. 
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0.1 through 0.9. The prior beliefs of the players in the four cases correspond to those in 

Figure 3.9. In Case 1 and 2 we do not observe much sensitivity in the bargaining duration 

and frequencies of agreement in a given period as the value of XT changes. These are the 

cases in which play~rs are both optimistic and are both pessimistic, respectively. In Case 

3 and 4, small changes in the frequencies of agreement is observed. A is optimistic and B 

is pessimistic in Case 3, in which the frequencies of agreement in a given period decrease 

gradually and a delay becomes longer as XT increases. Hence, this is a case that the 

environment that is increasingly promising to A generates a longer duration despite that a 

pessimistic B wants to come to an early agreement. On the other hand, A is pessimistic and 

B is optimistic in Case 4, in which the frequency increases and a delay becomes shorter as 

XT increases. This is a case that as the environment becomes more and more unfavorable to 

B, an optimistic B wants to generate an early agreement. Optimistic players seem to have 

more control over durations than pessimistic players. Consequently, when the two players' 

views sufficiently differ from each other, the bargaining duration shows more sensitivity to 

the change in XT. 

The Alternative Game 

In Alternative bargaining games, a responder has another chance to observe information 

that is not available when a proposer makes an offer.16 Exhibit 5 in Table 3.5·shows the 

outcome of the Alternative game by using the same parameter values as the ones used in 

Exhibit 3 in Table 3.3. Note that an agreement in period 1 is considered as an immediate 

16Note that the reservation values included in columns labeled "Beliefs" are the reservation values for 
determining the response. Recall that· reservation values that a proposing party uses in Alternative games 
are different from those in the Basic games, due to the added uncertainty. Refer to the equilibrium concept 
section in Chapter 2. 
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agreement in Alternative games due to the structure of the game. The first offer made by 

A is rejected by B in Exhibit 3, since B's expected payoffs from period 1, 3, and 4 are 

higher than what he would receive by accepting the current offer. In Exhibit 5, however, 

the first offer is accepted by B in period 1 if he has observed c1 = 0. After B has observed 

the information in period 1, he has updated his beliefs about the future payoffs before he 

responds. His expected payoffs from the remaining periods, which are 0.133601 in period 

2, 0.108138 in period 3, and 0.133601 in period 3, are lower than what he is guaranteed to 

receive in period 1 that is 0.165822. Consequently, he has no incentive to wait until later 

if he has observed 0 in period 1. If he has observed c1 = 1 instead, then he still maintains 

this optimistic view about the future value, so that the game continues. 

Figures 3.11through3.18 show examples of Autoregressive Binomial model's Alternative 

game simulations and use the same parameter values corresponding to Figures 3.3 through 

3.10, respectively. In Figures 3.11through3.14, it is observed that bargaining durations are 

longer as the predetermined bargaining horizon becomes larger. This :finding is consistent 

with the finding of the Basic game.17 It has to be noted, however, that the frequencies of 

agreements in a given T in Alternative games do not increase monotonically especially in 

the earlier periods. For example, in Figure 3.11 frequencies in some earlier even-numbered 

periods are lower than those in their preceding odd-numbered periods. Similar relationships 

are found far less frequently in the examples of Basic games. Pessimistic views of the 

players generate higher frequencies of agreements even in earlier periods as observed in 

Figure 3.14. In the promising environment with high values of p and 80, as given in Figure 

17 Also note that the frequencies of agreements in a given period in an environment with low p and 80 are 
higher than that in the more promising environment. 
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3.13, bargaining durations are very sensitive to the changes in the predetermined bargaining 

horizon and significant delays are generated as T increases. 

Figures 3.15 and 3.16 show the relationship between the difference in priors and the 

frequencies of agreement that are very similar to that of the Basic game, except that each 

agreement frequency in the Alternative game is far lower than that in the Basic game in 

any given period. In other words, the structure of Alternative game is likely to generate 

longer bargaining durations. Such relations are also observed in Figure 3.17 in comparison to 

Figure 3.9, regarding the relationship between the value of p and the agreement frequencies. 

We observe an interesting feature in the results given in Figure 3.18 on the relation 

between xr and the frequencies, which are not observed in the Basic game's counterpart 

given in Figure 3.10. In all of the four cases we observe increasing trade frequencies in even­

numbered periods and decreasing frequencies in odd-numbered periods as xr increases. 

This may attribute to B's incentive to come to an early agreement, so that B makes an 

offer that is acceptable to A before reaching the final period. That means that B finds a 

current payoff higher than the payoff he expects to receive when the predetermined default 

share is realized. 

3.2 The Continuous Distribution Model 

In this section we provide another example, in which the state evolves according to a 

continuous distribution. In order to model the behavior of the asset value in our bargaining 

games, we consider a stochastic process that is frequently used to study stock prices. It is 

a particular type of Markov stochastic process used in physics to describe the motion of a 
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particle that is referred to as Brownian motion. 18 

3.2.1 The Geometric Brownian Motion (Wiener Process) Model 

Let us suppose that a sequence of asset values, { Q7 }:f=0 , can be represented by a generalized 

Wiener process. In other words, the asset value can be described by an expected drift rate 

and a variance rate. Such a process can be expressed as19 

(3.1) 

where 

c: ,...., N(O, 1). 

µ, is the expected rate of value increase per unit time, and u is the volatility of the value 

and we assume that it is a constant. Hence, the second term on the right-hand side of 

the equation uc:.,/di is the stochastic component of the value change. We assume that 

us are exogenously deterniined and known to the players. It is also assumed that C:tS 

are independent. In the model a length of each period, dt, is specifically incorporated in 

computing the asset value changes. But we note that the bargaining duration in terms of 

the number of negotiation periods is not sensitive to a change in the length of the interval 

in our bargaining games. 

18For detailed introduction of the Wiener process, refer to Chapter 2 in Krylov (1995). 
19The equation 3.1 is a widely used model of stock price behavior, whereµ is referred to as the expected 

rate of return and u is referred to as the stock price volatility. 
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Let us define b.Qt-1 as a change in the asset value in a small time interval b.t such that 

Then the discrete version of the equation 3.1 can be written as20 

It follows that the information shock Ot is expressed by 

8t -
Qt 

Qt-1 
Qt-1 + b.Qt-1 

Qt-1 

= 1 + µtb.t + <Yt€tvt5:i. 

We also assume that µs are independently and identically distributed random variables with 

µ "' N(O, cp) 

and the value of µt is linearly related to the value of €t. 

Note that the value of(} is unknown to the players, whereas the value of cp is known. 

Each player has a prior belief on (} that can be expressed in terms of a normal distribution, 

so that 

20Note that with this formulation we consider a fixed length of time interval for each period, which is not 
the case in the binomial model examples given in the earlier section. 
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and 

() "' N ( ()~, cp~) 

characterize player A and B, respectively. We use ()t and <pt to indicate a generic player's 

beliefs in period t. The players observe µt in period t, and use it to compute the information 

shock 8t and to update their beliefs on the value of() by using Bayes' rule for formulating 

their strategies. The initial probability density function, conditional on the information 

available before the game begins, is given by 

where µ._ 1 indicates the initial information that a player possesses to form his prior beliefs. 

The posterior probability density function is given by 

It follows that the posterior density is 

where the posterior mean is a weighted mean of a prior mean and an observed value with 

the weights being proportional to their respective precisions (i.e., the respective reciprocals 
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of the variances), 

e _ e 1/'Pt-1 1/1.p .. 
t - t-11/ 1/ + µt I I , 'Pt-1 + 'P 1 'Pt-1 + 1 'P 

and the posterior variance is expressed as 

1 
'Pt= . 

1/ 'Pt-1 + l/<p 

After updating the beliefs Ot and 'Pt in period t, the players compute their expected payoffs 

in the future periods. 21 

3.2.2 Design and Data Structures 

The bargaining process is stored in a linked list, in which two types of data structures 

coexist. One structure defined by node is frequently referred to as a base list in our 

program, and each node carries the following information. 

21 For example, after observing µtin period t, player A computes Bf and cpf. Then she computes expected 
information shocks such as 

and 
Ef (8t+2) = 1 + Ef (µt+2)flt = 1 +Bf flt. 

The second equation follows immediately from 

A( ) A( A ) A 1/cpt A( ) 1/cp BA 
Et µt+2 =Et Bt+i = Bt l/cpt + l/cp +Et µt+i l/cpt + l/cp = t · 

It follows that A's expected valuation of the asset is expressed as 

Ef (Qt+n) = (1 +Bf flttQt. 
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struct node 
{ 

unsigned int t; 
fl.oat delta; 
fl.oat thetaA; 
fl.oat thetaB; 
fl.oat PhiA; 
fl.oat PhiB; 
fl.oat X; 
fl.oat Q; 
unsigned int R; 
fl.oat Apay; 
fl.oat Bpay; 
struct node *next; 
struct node *past; 
struct node *strat; 

} 

/* Period number, t = 1, 2, 3, ... , T. * / 
/* Ex-post 8 value, i.e., 8t. * / 
/* A's prior on the mean of e. * / 
/* B's prior on the mean of e. * / 
/* A's prior on the variance of e. *I 
/* B's prior on the variance of e. *I 
/* Current offer strategy. * / 
/* Current asset value. * / 
/* Response strategy : 1 for accept, 0 for reject. * / 
/*A's payoff if trade now. * / 
/* B's payoff if trade now. * / 
/* Pointer to its child node. * / 
/* Pointer to its parent node. * / 
/* Pointer to a strategy list. * / 

This list is used to store the offer and response strategies that the players have decided 

to take after observing the information available up to the current period. 

The other list is defined by a structure snode, and we often refer to the list as a strategy 

list. Each snode carries the following information. 

struct snode 
{ 

unsigned int t; 
fl.oat EAdelta; 
fl.oat EBdelta; 
fl.oat EAQ; 
fl.oat EBQ; 
fl.oat X; 
unsigned int R; 
fl.oat EApay; 
fl.oat EBpay; 
struct node *next; 
struct node *past; 
struct node *base; 

} 

/* Period number, t = 1, 2, 3, ... , T. * / 
/* A's expected value of 8. * / 
/* B's expected value of 8. * / 
/* A's expected value of the asset. * / 
/* A's expected value of the asset. * / 
/* Offer strategy. * / 
/* Response strategy : 1 for accept, 0 for reject. * / 
/* A's expected payoff in the future period. * / 
/* B's expected payoff in the future period. * / 
/* Pointer to its child node. * / 
/* Pointer to its parent node. * / 
/* Pointer to a base list. * / 

This list stores the information such as expected payoffs in the future that are necessary 

for the players to compute their strategies in the current period. This list is connected to 
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Origin 

Period O 

Period 1 

Period 2 

Figure 3.2: Design of Wiener Process Model with T = 2 

the base list with a pointer base, along with a pointer strat pointed from a node in the base 

list. Figure 3.2 shows a case of T = 2. The shaded nodes in the figure constitute the base 

list, while the nodes surrounded by a big circle constitute the strategy list. 22 

3.2.3 Results and Comparative Statics 

Tables 3.6 through 3.12 in Appendix 3A.2 show several random sample runs, each of which 

is associated with an idum number23 that generates a unique sequence of pseudo-random 

numbers. They contain the information such as how the asset value and the players' beliefs 

evolve from the opening of the negotiation untill the final period. Figures 3.35 through 

22The core part of the codes for Alternative games is included in Appendix 3C.2, which also provides more 
detailed description of the design. Primary input variables are also described in detail in the appendix. 

23 An idum number is an integer number given to a subroutine that generates a sequence of pseudo-random 
numbers. Each idum number is associated with a particular sequence of random numbers, so that it helps 
us to reproduce a specific sequence of events by feeding the code with the same idum number. 
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3.46 in Appendix 3B.3 show the results of simulation runs, each of which consists of 10,000 

random sample runs. In all of the figures, we assume that XT = 0.5, a = 0.06, D..t = 

0.01, Qo = 1.2, and cp = 0.0004. 

Exhibits 6 through 8, contained in Tables 3.6 through 3.8, are examples on the process 

of Basic game. All three examples use the same input parameter values, except for an idum 

number that generates a sequence of random numbers. Exhibit 6 is a case in which there 

is an immediate agreement. After observing an information in period 0, both players know 

that the value of the information shock on the asset value has been 0.994825 and that the 

value now is equal to 1.193791. Based on this observation they update their beliefs on the 

true value of e, and compute their expected payoffs in the future. If B accepts A's offer 

0.499918, he knows with certainty that his payoff in the current period would be 0.596994. 

His computed expected payoffs in any future period is lower than this payoff. Hence, B has 

no incentive to reject the offer, resulting in an immediate acceptance. A then receives a 

payoff 0.596797 that is also higher than any of her expected payoffs in the future. Note that 

the proposer A receives a positive surplus 0.000139 in excess of her maximum continuation 

payoff 0.596658. · 

In Exhibit 7 we observe a delay until the final period. If B accepts A's offer in period 0, 

A receives 0.600693 and B receives 0.600329. These payoffs are higher than what they end 

up with in Exhibit 6. However, B speculates even higher payoffs in the future. and hence 

there is a delay. In a similar fashion, the bargaining continues until the default period is 

reached. Indeed, both players receive payoffs that are higher than any payoffs they have 

gotten in earlier periods. It is interesting to note that we observe a delay in period 4 in 

which the information shock has turned out to be less than 1. This reflects that players 



CHAPTER 3. SIMULATIONS OF STOCHASTIC BARGAINING GAMES 104 

accumulate knowledge, so that there has to be a significant decrease in the asset value to 

prevent a delay if the value has been increasing for several consecutive periods. Exhibit 8 is 

the case of one period delay, and a similar interpretation can be given to this case as above. 

Exhibits 10 through 13, contained in Tables 3.10 through 3.13, are examples of Alter-

native bargaining games. We use the same input parameter values in these exhibits as in 

the Basic game exhibits described above, i.e., Exhibits 10, 11, 12, and 13 are given the 

same idum numbers as Exhibits 6, 7, 8, and 9, respectively. In Exhibit 10 the first offer 

made by A is accepted by B in period 1 with payoffs that are lower than what they would 

have received if they were playing an equivalent Basic game. 24 Exhibit 11 shows a delay 

until the final period and therefore the payoffs players receive are the same as what they 

would have received in an equivalent Basic game.25 In Exhibit 12 the first offer made by 

A is accepted by B in period 1. A difference in the players' payoffs in this case is smaller 

than a difference in the case of a Basic game. Exhibit 13 gives yet another example of the 

Alternative game, in which we observe a delay until a penultimate period. An interesting 

observation is made int= 3, in comparison to the result of Exhibit 9. The expected values 

of os in the remaining periods are less than l. As Proposition 2 in the previous chapter 

indicates, there is an acceptance of a current offer in such a case in the Basic game. In 

Exhibit 13, however, there is a rejection to cause a delay int= 3 despite that the expected 

values of os in all the remaining periods are less than 1. 

Figures 3.35 and 3.36 describe how the change in the value of e influences bargaining 

durations in Basic games. Both players have optimistic priors on the value of 0 in the first 

24Refer to Exhibit 6. 
25Refer to Exhibit 7. 
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figure, while both have low priors in the second figure. Y-axis takes the number of first 

occurrences of agreement in a specified period out of 10,000 simulation runs. In other words, 

unreachable nodes in the bargaining game tree are ignored. For example, in Figure 3.35 

almost all of the agreements are reached immediately in period 0 with () .= -0.05, while 

most of the agreements are not reached until the final period as () approaches to 0.06. The 

two figures appear to be almost identical, despite the significant differences in the priors. 

This is due to the fact that once the players have observed the first piece of information in 

period 0, by using Bayes' rule both can update their beliefs that will approach to the true 

value fairly quickly. For instance, A's belief on the mean of() is updated into a negative 

number after observing the first information. Since e characterizes µ that is the expected 

rate of value increase, it is intuitive to observe an immediate agreement if players conjecture 

the value of () to be negative. Figures 3.37 and 3.38 are the Alternative game's analogue 

to Figures 3.35 and 3.36, respectively. Alternative games generate more delays even when 

the value of() is very low.26 Moreover, in Alternative games we observe more variations in 

bargaining durations when () is low than in Basic games. 

Figures 3.39 and 3.40 show the relationship between the difference between the players' 

beliefs and the frequencies of agreements. In the first figure B has a pessimistic prior on 

the value of(), while A's belief is varied from 0.5 through 6.0. In the second figure B has an 

optimistic prior, while A's prior is varied from 0.5 through 6.0. Both figures sliow almost 

identical relationships, indicating that the agreement frequencies are not very sensitive 

to the difference in priors. In these examples nearly half of the simulations result in an 

immediate agreement and nearly a quarter of them result in a delay until the final period. 

26Recall that an agreement in period 1 is considered as an immediate agreement in Alternative games. 
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A relatively low value of e encourages an early agreement, while once there is a delay, then 

players tend to wait until the final period. Figures 3.41 and 3.42 are an Alternative game's 

analogue to Figures 3.39 and 3.40. They show low frequencies of an immediate agreement 

and high frequencies of delays until the final period, despite that they are given the same 

initial conditions as the Basic game's counterpart. Again, the frequencies do not show a 

significant sensitivity to the change in the size of differences among players' priors. 

Figures 3.43 through 3.46 show the relationship between the change in the predetermined 

bargaining horizon and the agreement frequencies. The frequencies show only a slight 

sensitivity to the change in T. But the difference between the Alternative games and the 

Basic games appear to be clear in these figures. In Alternative games only less than a 

quarter of 10,000 sample runs result in an immediate agreement, while nearly half of them 

show an immediate agreement in Basic games. In general, in both Autoregressive Binomial 

Models and Wiener Process Models the Alternative games show more delays than the Basic 

games with the same parameter values. The fact that one player can observe another piece 

of information before responding to a current offer expands the players' expectation of value 

increases, causing higher frequencies of delays. 

3.3 Summary and Discussion 

Analyzing simulation results helps us capture non-monotonic relations among correlated 

variables and subtle changes in durations, and is useful in identifying a general trend in 

case of such non-monotonic relations where analytical solutions are frequently not straight­

forward to interpret. We also believe that the differences in comparative statics between 
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Basic and Alternative games are adequately demonstrated through our simulations. We 

summarize our findings on comparative statics as follows. 

• Autoregressive Binomial Model 

1. As T increases, i.e., as the bargaining horizon becomes longer, the occurrence of 

the first agreement is observed in a later period. The sensitivity of the duration 

is significant especially when players have optimistic initial priors on the future 

asset values. [For unconditional frequencies refer to Figures 3.3 through 3.6 

(Basic Game) and Figures 3.11through3.14 (Alternative Game). For conditional 

frequencies refer to Figures 3.19 through 3.22 (Basic Game) and Figures 3.27 

through 3.30 (Alternative Game).] 

2. As players' initial priors become more pessimistic, we observe higher frequencies 

of agreement in a given period. Moreover, we observe agreements in earlier 

periods as players become pessimistic. If we look at the conditional frequencies 

in Figure 3.24, for example, it is clear that first agreements occur immediately 

in the very first period when both players are sufficiently pessimistic. Note that 

the difference in players' initial priors does not seem to have much influence over 

bargaining durations. [For unconditional frequencies refer to Figures 3. 7 and 3.8 

(Basic Game) and Figures 3.15 and 3.16 (Alternative Game). For conditional 

frequencies refer to Figures 3.23 and 3.24 (Basic Game) and Figures 3.31 and 

3.32 (Alternative Game).] 

3. Asp increases, i.e., as the bargaining environment becomes more promising on 

the asset value increase in the future for both players, then there are longer 
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bargaining durations before we observe the first agreement. If players have pes­

simistic priors on information shocks at the same time when pis low, then we 

observe an immediate agreement. [For unconditional frequencies refer to Figure 

3.9 (Basic Game) and Figure 3.17 (Alternative Game). For conditional frequen­

cies refer to Figure 3.25 (Basic Game) and Figure 3.33 (Alternative Game).] 

4. As XT increases, i.e., as A's predetermined default share in period T increases, 

then in Basic games the bargaining durations are not very sensitive when both 

players have similar priors about information shocks. If A is optimistic and 

B is pessimistic, we observe a subtle tendency to have a longer duration as 

XT increases, while if A is pessimistic and B is optimistic, we observe a subtle 

tendency to come to an early agreement. On the other hand, in Alternative 

games we observe higher sensitivity of durations than we can observe in Basic 

games. With larger XT we observe higher frequencies of agreement in a given 

even-numbered period and lower frequencies in a given odd-numbered period. 

We observe the similar tendency regardless of players' priors, except that there 

is higher frequencies of agreement in earlier periods with one or more pessimistic 

players. [For unconditional frequencies refer to Figure 3.10 (Basic Game) and 

Figure 3.18 (Alternative Game). For conditional frequencies refer to Figure 3.26 

(Basic Game) and Figure 3.34 (Alternative Game).] 

• Wiener Process Model 

1. As () increases, i.e., as the expected rate of value increase becomes larger, the 

"'"'""''..l~ is reached in a later period. It is clearly demonstrated that the 
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variances in durations until the first agreement is larger in Alternative games 

than in Basic games. [Refer to Figures 3.35 and 3.36 (Basic Game) and Figures 

3.37 and 3.38 (Alternative Game).] 

2. The frequencies of agreement do not show much sensitivity to the change in T 

as in the case of Autoregressive Binomial Models. But how differently Basic 

games and Alternative games predict are reflected clearly in our findings. [Refer 

to Figures 3.43 and 3.44 (Basic Game) and Figures 3.45 and 3.46 (Alternative 

Game).] 

3. The frequencies of agreement do not show much sensitivity to the size of differ­

ences in players' initial priors. But how differently Basic games and Alternative 

games predict are reflected clearly in our findings. [Refer to Figures 3.39 and 

3.40 (Basic Game) and Figures 3.41 and 3.42 (Alternative Game).] 

We conclude our discussion by listing several extensions that can be made to our simu­

lations. We can endogenize the time interval between information arrivals to investigate the 

physical length of bargaining durations, instead of measuring the duration by the number 

of periods. Incorporating an exogenously determined varied length of time interval between 

information shocks is another potential extension. For example, we may suppose that it 

occurs at some rate per unit time, so that the frequency of information arrivals in a given 

period length follows the Poisson distribution. Modeling a risk averse player's behavior 

is also another extension. We may characterize a risk averse player with a strategy of 

compromising with a lower share than that of a risk neutral counterpart after observing 

undesirable information to avoid any delay, or with a higher share only after observing a 
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series of desirable information to generate a delay. In addition, players' uncertainty about 

the value of the asset at a certain time in the future depends on how far they are looking 

ahead. We may model such uncertainty by using a variance as its measure. 



Appendix 3A 

Tables for Chapter 3 

3A.1 Autoregressive Binomial Models 

Table 3.1 : Exhibit 1 : Autoreg. Binomial Model (Basic Game) 
[T = 4, aA = a3 = 1, f3A = f3B = 3, XT = 0.5, p = 0.5, 80 = 0.5, Qo = 1.2] 

Table 3.2 : Exhibit 2 : Autoreg. Binomial Model (Basic Game) 
[T = 4, aA = a3 = 2, f3A = f3B = 1, XT = 0.5, p = 0.5, 80 = 0.5, Qo = 1.2] 

Table 3.3 : Exhibit 3: Autoreg. Binomial Model (Basic Game) 
[T = 4, aA = 1, a3 = 2, f3A = 3, f3B = 1, XT = 0.5, p = 0.5, 80 = 0.5, Qo = 1.2] 

Table 3.4: Exhibit 4: Autoreg. Binomial Model (Basic Game) 
[T = 2, aA = 1, a3 = 2, f3A = 3, f3B = 1, XT = 0.5, p = 0.5, 80 = 0.5, Qo = 1.2] 

Table 3.5: Exhibit 5 : Autoreg. Binomial Model (Alternative Game) 
[T = 4, aA = 1, a3 = 2, f3A = 3, f3B = 1, XT = 0.5, p = 0.5, 80 = 0.5, Qo = 1.2] 
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3A.2 Generalized Wiener Process Models 
Table 3.6 : Exhibit 6: Wiener Process Model (Basic Game) 

[T = 6, (}~ = 1.2, oe = 0.8, cp~ = 0.5, cpe = 0.05, (} = 0.0014, cp = 0.0004, idum = -1] 

Table 3. 7 : Exhibit 7 : Wiener Process Model (Basic Game) 
[T = 6, (}~ = 1.2, oe = 0.8, cp~ = 0.5, cpe = 0.05, (} = 0.0014, cp = 0.0004, idum = -3] 

Table 3.8 : Exhibit 8 : Wiener Process Model (Basic Game) 
[T = 6, (}~ = 1.2, oe = 0.8, cp~ = 0.5, cpe = 0.05, (} = 0.0014, cp = 0.0004, idum = -1000] 

Table 3 .. 9 : Exhibit 9 : Wiener Process Model (Basic Game) 
[T = 6, (}~ = 1.2, oe = 0.8, cp~ = 0.5, cpe = 0.05, (} = 0.0014, cp = 0.0004, idum = -555] 

Table 3.10: Exhibit 10: Wiener Process Model (Alternative Game) 
[T = 6, (}~ = 1.2, oe = 0.8, cp~ = 0.5, cpe = 0.05, (} = 0.0014, cp = 0.0004, idum = -1] 

Table 3.11 : Exhibit 11 : Wiener Process Model (Alternative Game) 
[T = 6, (}~ = 1.2, oe = 0.8, cp~ = 0.5, cpe = 0.05, (} = 0.0014, cp = 0.0004, idum = -3] 

Table 3.12 : Exhibit 12 : Wiener Process Model (Alternative Game) 
[T = 6, (}~ = 1.2, oe = 0.8, cp~ = 0.5, cpe = 0.05, (} = 0.0014, cp = 0.0004, idum = -1000] 

Table 3.13: Exhibit 13: Wiener Process Model (Alternative Game) 
[T = 6, (}~ = 1.2, oe = 0.8, cp~ = 0.5, cpe = 0.05, (} = 0.0014, cp = 0.0004, idum = -555] 
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Appendix 3B 

Figures for Chapter 3 

3B.1 Autoregressive Binomial Models I 

Unconditional Frequencies 

Figure 3.3: Autoreg. Binomial Model (Basic Game) [T = 2-+ 18] 
[aA = 1.0, aB = 1.0, f3A = 3.0, f3B = 1.0, XT = 0.5, p = 0.5, 80 = 0.5, Qo = 1.2] 

Figure 3.4: Autoreg. Binomial Model (Basic Game) [T = 2-+ 18] 
[aA = 1.3, aB = 1.5, f3A = 1.0, f3B = 1.8, XT = 0.5, p = 0.4, 80 = 0.4, Qo = 1.2] 

Figure 3.5 : Autoreg. Binomial Model (Basic Game) [T = 2-+ 18] 
[aA = 1.0, aB = 2.0, f3A = 1.5, f3B = 2.0, XT = 0.4, p = 0.7, 80 = 0.8, Qo = 1.2] 

Figure 3.6: Autoreg. Binomial Model (Basic Game) [T = 2-+ 18] 
[aA = 1.0, aB = 1.0, f3A = 3.0, f3B = 3.0, XT = 0.5, p = 0.4, 80 = 0.4, Qo = 1.2] 

Figure 3.7: Autoreg. Binomial Model (Basic Game) [f3B = 1.0-+ 3.8] 
[T = 8, aA = 2.0, aB = 2.0, f3A = 1.0, XT = 0.3, p = 0.3, 80 = 0.3, Qo = 1.0] 

Figure 3.8: Autoreg. Binomial Model (Basic Game) [f3B = 1.0-+ 3.8] . 
[T = 8, aA = 1.0, aB = 2.0, f3A = 3.0, XT = 0.3, p = 0.3, 80 = 0.3, Qo = 1.0] 

Figure 3.9: Autoreg. Binomial Model (Basic Game) [p = 0.1-+ 0.9] 
[T = 8, XT = 0.5, 80 = 0.5, Qo = 1.0] 

Case 1 : aA = 2.0, aB = 3.0, f3A = 1.0, f3B = 1.0 
Case 2 : aA = 1.0, aB = 1.0, f3A = 3.0, f3B = 2.5 
Case 3 : aA = 2.0, aB = 1.0, f3A = 1.0, f3B = 3.0 
Case 4 : aA = 1.0, aB = 2.0, f3A = 3.0, f3B = 1.0 
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Figure 3.10 : Autoreg. Binomial Model (Basic Game) [xT = 0.1 -+ 0.9] 
[T = 8, XT = 0.5, 80 = 0.5, Qo = 1.0] 

Case 1 : O:A = 2.0, as = 3.0, f3A = 1.0, f3s = 1.0 
Case 2 : a.A= 1.0, as= 1.0, f3A = 3.0, f3s = 2.5 
Case 3 : a.A= 2.0, as= 1.0, f3A = 1.0, f3s = 3.0 
Case 4: a.A= 1.0, as= 2.0, f3A.= 3.0, f3s = 1.0 

Figure 3.11 : Autoreg. Binomial Model (Alternative Game) [T = 2-+ 18] 
[a.A= 1.0, as = 1.0, f3A = 3.0, f3s = 1.0, XT = 0.5, p = 0.5, 80 = 0.5, Qo = 1.2] 

Figure 3.12 : Autoreg. Binomial Model (Alternative Game) [T = 2-+ 18] 
[a.A = 1.3, as = 1.5, f3A = 1.0, f3s = 1.8, XT = 0.5, p = 0.4, 80 = 0.4, Qo = 1.2] 

Figure 3.13 : Autoreg. Binomial Model (Alternative Game) [T = 2-+ 18] 
[a.A= 1.0, as 2.0, f3A = 1.5, f3s = 2.0, XT = 0.4, p = 0.7, 80 = 0.8, Qo = 1.2] 

Figure 3.14: Autoreg. Binomial Model (Alternative Game) [T = 2-+ 18] 
[a.A = 1.0, as = 1.0, f3A = 3.0, f3s = 3.0, XT = 0.5, p = 0.4, 80 = 0.4, Qo = 1.2] 

Figure 3.15 : Autoreg. Binomial Model (Alternative Game) [f3s = 1.0-+ 3.8] 
[T = 8, 0.A = 2.0, as = 2.0, f3A = 1.0, XT = 0.3, p = 0.3, 80 = 0.3, Qo = 1.0] 

Figure 3.16: Autoreg. Binomial Model (Alternative Game) [f3s = 1.0-+ 3.8] 
[T = 8, 0.A = 1.0, as = 2.0, f3A = 3.0, XT = 0.3, p = 0.3, 80 = 0.3, Qo = 1.0] 

Figure 3.17 : Autoreg. Binomial Model (Alternative Game) [p = 0.1 -+ 0.9] 
[T = 8, XT = 0.5, 80 = 0.5, Qo = 1.0] 

Case 1 : a.A = 2.0, as = 3.0, f3A = 1.0, f3s = 1.0 
Case 2 : a.A = 1.0, as = 1.0, f3A = 3.0, f3s = 2.5 
Case 3 : a.A= 2.0, as = 1.0, f3A = 1.0, f3s = 3.0 
Case 4 : a.A= 1.0, as= 2.0, f3A = 3.0, f3s = 1.0 

Figure 3.18 : Autoreg. Binomial Model (Alternative Game) [xT = 0.1 -+ 0.9] 
[T = 8, XT = 0.5, 80 = 0.5, Qo = 1.0] 

Case 1 : a.A = 2.0, as = 3.0, f3A = 1.0, f3s = 1.0 
Case 2 : a.A= 1.0, as= 1.0, f3A = 3.0, f3s = 2.5 
Case 3 : a.A= 2.0, as= 1.0, f3A = 1.0, f3s = 3.0 
Case 4: a.A = 1.0, as= 2.0, f3A = 3.0, f3s = 1.0 
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Figure 3.3: Autoregressive Binomial Model (Basic Game) [T = 2 -+ 18] 

(aA = 1.0, O!B = 2.0, f3A = 3.0, f3B = 1.0, XT = 0.5, p = 0.5, 80 = 0.5, Qo = 1.2) 

.. .. ... .. ., .. .. .. . , 
• 
i" 

.. .. ... 
• .. . ,, 
! ... 
l 

. ,, ... ... ... . ,, 

Figure 3.4: Autoregressive Binomial Model (Basic Game) [T = 2-+ 18] 

(aA 1.3, O!B = 1.5, f3A = 1.0, f3B = 1.8, XT = 0.5, p = 0.4, 80 = 0.4, Qo = 1.2) 

.. .. . , .. .. 
"' .. 
... . ,, ... ... ... 
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Figure 3.5: Autoregressive Binomial Model (Basic Game) [T = 2--)- 18] 

(aA = 1.0, aB = 2.0, fJA = 1.5, fJB = 2.0, XT = 0.4, p = 0.7, 80 = 0.8, Qo = 1.2) 

--(Tl 

.. .. . , 
D• .. .. .. . , .. .. 
010 ... 
"" ... ... ... ... . ,, 

Figure 3.6: Autoregressive Binomial Model (Basic Game) [T = 2--)- 18] 

(aA = 1.0, aB = 1.0, fJA = 3.0, fJB = 3.0, XT = 0.5, p = 0.4, 80 = 0.4, Qo = 1.2) 

ao .. . , ., .. .. . , .. .. 
010 ... ... ... ... ... . ,, 
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Figure 3.7: Autoregressive Binomial Model (Basic Game) [,8s = 1.0 -t 3.8] 

(T = 8, O:A = 2.0, o:s = 2.0, ,BA = 1.0, xr = 0.3, p = 0.3, oo = 0.3, Qo = 1.0) 

.. .. 
D• 
D• .. .. .. 
01 

Figure 3.8: Autoregressive Binomial Model (Basic Game) [,8s = 1.0 -t 3.8] 

(T = 8, O:A = 1.0, o:s = 2.0, ,BA = 3.0, xr = 0.3, p = 0.3, oo = 0.3, Qo = 1.0) 

.. .. 
D• 
D• .. .. .. 
D7 
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Figure 3.11: Autoregressive Binomial Model (Alternative Game) [T = 2 ~ 18] 

(aA = 1.0, aB = 2.0, f3A = 3.0, f3B = 1.0, XT = 0.5, p = 0.5, 80 = 0.5, Qo = 1.2) 

ao .. 
"' a• 

ao .. 
a' .. .. 
a10 
au ... ... ... ... 
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Dl7 

Figure 3.12: Autoregressive Binomial Model (Alternative Game) [T = 2 ~ 18] 

(aA = 1.3, aB = 1.5, f3A = 1.0, f3B = 1.8, XT = 0.5, p = 0.4, 80 = 0.4, Qo = 1.2) 

DO .. 
D• 

"' .. 
ao .. .. .. 
D\O 
D\1 ... ... ... ... ... 
Dl7 
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Figure 3.13: Autoregressive Binomial Model (Alternative Game) [T = 2-+ 18] 

(aA = 1.0, aB = 2.0, f3A = 1.5, f3B = 2.0, XT = 0.4, p = 0.7, 80 = 0.8, Qo = 1.2) 

" --(1) 

ao .. 
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D' .. 
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Figure 3.14: Autoregressive Binomial Model (Alternative Game) [T = 2-+ 18] 

(aA = 1.0, aB = 1.0, f3A = 3.0, f3B = 3.0, XT = 0.5, p = 0.4, 80 = 0.4, Qo = 1.2) 

" --(1) 
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Figure 3.15: Autoregressive Binomial Model (Alternative Game) [,BB = 1.0 --). 3.8] 

(T = 8, aA = 2.0, aB = 2.0, ,BA = 1.0, xr = 0.3, p = 0.3, oo = 0.3, Qo = 1.0) 

., ., 
00 .. .. 
01 .. 
07 

Figure 3.16: Autoregressive Binomial Model (Alternative Game) [,BB = 1.0--). 3.8] 

(T = 8, aA = 1.0, aB = 2.0, ,BA= 3.0, xr = 0.3, p = 0.3, oo = 0.3, Qo = 1.0) 

., ., 
02 
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3B.2 Autoregressive Binomial Models II 

Conditional Frequencies 

Figure 3.19: Autoreg. Binomial Model (Basic Game) [T = 2--+ 18] 
[aA = 1.0, aB = 1.0, f3A = 3.0, f3B = 1.0, XT = 0.5, p = 0.5, Do = 0.5, Qo = 1.2] 

Figure 3.20: Autoreg. Binomial Model (Basic Game) [T = 2--+ 18] 
[aA = 1.3, aB = 1.5, f3A = 1.0, f3B = 1.8, XT = 0.5, p = 0.4, Do= 0.4, Qo = 1.2] 

Figure 3.21 : Autoreg. Binomial Model (Basic Game) [T = 2--+ 18] 
[aA = 1.0, aB = 2.0, f3A = 1.5, f3B = 2.0, XT = 0.4, p = 0.7, Do = 0.8, Qo = 1.2] 

Figure 3.22: Autoreg. Binomial Model (Basic Game) [T = 2--+ 18] 
[aA = 1.0, aB = 1.0, f3A = 3.0, f3B = 3.0, XT = 0.5, p = 0.4, Do = 0.4, Qo = 1.2] 

Figure 3.23: Autoreg. Binomial Model (Basic Game) [f3B = 1.0--+ 3.8] 
[T = 8, aA = 2.0, aB = 2.0, f3A = 1.0, XT = 0.3, p = 0.3, Do = 0.3, Qo = 1.0] 

Figure 3.24: Autoreg. Binomial Model (Basic Game) [f3B = 1.0--+ 3.8] 
[T = 8, aA = 1.0, aB = 2.0, f3A = 3.0, XT = 0.3, p = 0.3, Do = 0.3, Qo = 1.0] 

Figure 3.25 : Autoreg. Binomial Model (Basic Game) [p = 0.1--+ 0.9] 
[T = 8, XT = 0.5, Do = 0.5, Qo = 1.0] 

Case 1 : aA = 2.0, aB = 3.0, f3A = 1.0, f3B = 1.0 
Case 2 : aA = 1.0, aB = 1.0, f3A = 3.0, f3B = 2.5 
Case 3 : aA = 2.0, aB = 1.0, f3A = 1.0, f3B = 3.0 
Case 4: aA = 1.0, aB = 2.0, f3A = 3.0, f3B = 1.0 

Figure 3.26 : Autoreg. Binomial Model (Basic Game) [xT = 0.1 --+ 0.9] 
[T = 8, XT = 0.5, Do = 0.5, Qo = 1.0] 

Case 1 : aA = 2.0, aB = 3.0, f3A = 1.0, f3B = 1.0 
Case 2 : aA = 1.0, aB = 1.0, f3A = 3.0, f3B = 2.5 
Case 3 : aA = 2.0, aB = 1.0, f3A = 1.0, f3B = 3.0 
Case 4: aA = 1.0, aB = 2.0, f3A = 3.0, f3B = 1.0 
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Figure 3.27: Autoreg. Binomial Model (Alternative Game) [T = 2 - 18] 
[aA = 1.0, O:B = 1.0, f3A = 3.0, f3B = 1.0, XT = 0.5, p = 0.5, 80 = 0.5, Qo = 1.2] 

Figure 3.28: Autoreg. Binomial Model (Alternative Game) [T = 2 - 18] 
[aA = 1.3, O:B = 1.5, /3A = 1.0, f3B = 1.8, XT = 0.5, p = 0.4, 80 = 0.4, Qo = 1.2] 

Figure 3.29: Autoreg. Binomial Model (Alternative Game) [T = 2 - 18] 
[aA = 1.0, O:B = 2.0, f3A = 1.5, f3B = 2.0, XT = 0.4, p = 0.7, 80 = 0.8, Qo = 1.2] 

Figure 3.30: Autoreg. Binomial Model (Alternative Game) [T = 2 - 18] 
[aA = 1.0, O:B = 1.0, /3A = 3.0, f3B = 3.0, XT = 0.5, p = 0.4, 80 = 0.4, Qo = 1.2] 

Figure 3.31 : Autoreg. Binomial Model (Alternative Game) [f3B = 1.0 - 3.8] 
[T = 8, O:A = 2.0, O:B = 2.0, f3A = 1.0, XT = 0.3, p = 0.3, 80 = 0.3, Qo = 1.0] 

Figure 3.32: Autoreg. Binomial Model (Alternative Game) [f3B = 1.0 - 3.8] 
[T = 8, O:A = 1.0, O:B = 2.0, f3A = 3.0, XT = 0.3, p = 0.3, 80 = 0.3, Qo = 1.0] 

Figure 3.33 : Autoreg. Binomial Model (Alternative Game) [p = 0.1 - 0.9] 
[T = 8, XT = 0.5, 80 = 0.5, Qo = 1.0] 

Case 1 : aA = 2.0, aB = 3.0, f3A = 1.0, f3B = 1.0 
Case 2 : aA = 1.0, aB = 1.0, f3A = 3.0, f3B = 2.5 
Case 3 : aA = 2.0, aB = 1.0, f3A = 1.0, /3B = 3.0 
Case 4 : aA = 1.0, aB = 2.0, f3A = 3.0, f3B = 1.0 

Figure 3.34: Autoreg. Binomial Model (Alternative Game) [xT = 0.1 - 0.9] 
[T = 8, XT = 0.5, 80 = 0.5, Qo = 1.0) 

Case 1 : aA = 2.0, aB = 3.0, f3A = 1.0, f3B = 1.0 
Case 2 : O:A = 1.0, aB = 1.0, f3A = 3.0, f3B = 2.5 
Case 3 : O:A = 2.0, aB = 1.0, f3A = 1.0, f3B = 3.0 
Case 4: O:A = 1.0, aB = 2.0, /3A = 3.0, f3B = 1.0 

151 



APPENDIX 3B. FIGURES FOR CHAPTER 3 

Figure 3.19: Autoregressive Binomial Model {Basic Game) [T = 2-+ 18] 

(aA = 1.0, O!B = 2.0, f3A = 3.0, f3B = 1.0, XT = 0.5, p = 0.5, 80 = 0.5, Qo = 1.2) 
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Figure 3.20: Autoregressive Binomial Model {Basic Game) [T = 2 -+ 18] 

(aA = 1.3, O!B = 1.5, f3A = 1.0, f3B = 1.8, XT = 0.5, p = 0.4, 80 = 0.4, Qo = 1.2) 
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Figure 3.21: Autoregressive Binomial Model (Basic Game) [T = 2 --t 18] 

(aA = 1.0, aB = 2.0, f3A = 1.5, f3B = 2.0, XT = 0.4, p = 0.7, 80 = 0.8, Qo = 1.2) 
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Figure 3.22: Autoregressive Binomial Model (Basic Game) [T = 2 --t 18] 

(aA = 1.0, aB = 1.0, f3A = 3.0, f3B = 3.0, XT = 0.5, p = 0.4, 80 = 0.4, Qo = 1.2) 
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Figure 3.23: Autoregressive Binomial Model (Basic Game) [,BB = 1.0 -+ 3.8] 

(T = 8, UA = 2.0, UB = 2.0, ,BA = 1.0, XT = 0.3, p = 0.3, 80 = 0.3, Qo = 1.0) 

QO .. 
"' DO .. .. .. 
D7 

Figure 3.24: Autoregressive Binomial Model (Basic Game) [,BB= 1.0-+ 3.8] 

(T = 8, UA = 1.0, UB = 2.0, ,BA= 3.0, XT = 0.3, p = 0.3, 80 = 0.3, Qo = 1.0) 
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D7 
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Figure 3.27: Autoregressive Binomial Model (Alternative Game) [T = 2 — 18] 

(u.4 = 1.0, ag = 2.0, ,3^ = 3.0, pg = 1.0, :ττ = 0.5, p = 0.5, ⅜ = 0.5, Qo = 1.2)

Figure 3.28: Autoregressive Binomial Model (Alternative Game) = 2 — 18] 

(α.4 = 1.3. ng = 1-5. <3,4 = 1.0, 3g = 1.8, ττ = 0.5, p = 0.4. ⅛ = 0.4. Qo = 1-2)
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Figure 3.29: Autoregressive Binomial Model (Alternative Game) [T = 2-+ 18] 

(aA = 1.0, CTB = 2.0, f3A = 1.5, f3B = 2.0, XT = 0.4, p = 0.7, 80 = 0.8, Qo = 1.2) 

DO .. 
a2 
co .. 
ao .. .. .. 
a" 
an ... ... ... 

Figure 3.30: Autoregressive Binomial Model (Alternative Game) [T = 2-+ 18] 

(aA = 1.0, CTB = 1.0, f3A = 3.0, f3B = 3.0, XT = 0.5, p = 0.4, 80 = 0.4, Qo = 1.2) 

DO .. 
02 
Co .. 
ao .. 
07 .. .. 
en ... ... ... 
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Figure 3.31: Autoregressive Binomial Model (Alternative Game) [,8n = 1.0-+ 3.8] 

(T = 8, aA = 2.0, an = 2.0, .BA = 1.0, XT = 0.3, p = 0.3, 80 = 0.3, Qo = 1.0) 

., ., .. .. .. .. .. 
D7 

Figure 3.32: Autoregressive Binomial Model (Alternative Game) [,8n = 1.0-+ 3.8] 

(T = 8, aA = 1.0, an= 2.0, .BA= 3.0, XT = 0.3, p = 0.3, 80 = 0.3, Qo = 1.0) 

., .. . , 
DO .. .. .. 
07 
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3B.3 Generalized Wiener Process Models 

Conditional Frequencies 

Figure 3.35: Wiener Process Model (Basic Game) [O = -0.05 -t 0.06] 
[(}A= 5.5, (}B = 5.5, 'PA= 1.5, 'PB= 1.5, cp = 0.0004, O' = 0.06, Qo = 1.2] 

Figure 3.36: Wiener Process Model (Basic Game) [O = -0.05 -t 0.06] 
[(}A= 0.5, (}B = 0.5, 'PA= 0.5, 'PB= 0.5, cp = 0.0004, O' = 0.06, Qo = 1.2] 

Figure 3.37: Wiener Process Model (Alternative Game) [O = -0.05 -t 0.06] 
[(}A= 5.5, (}B = 5.5, 'PA = 1.5, 'PB= 1.5, cp = 0.0004, O' = 0.06, Qo = 1.2] 

Figure 3.38: Wiener Process Model (Alternative Game) [O = -0.05 -t 0.06] 
[(}A = 0.5, (}B = 0.5, 'PA = 0.5, 'PB= 0.5, cp = 0.0004, O' = 0.06, Qo = 1.2] 

Figure 3.39 : Wiener Process Model (Basic Game) [O A = 0.5 -t 6.0] 
[OB= 0.5, 'PA= 1.5, 'PB = 0.5, (} = 0.0014, cp = 0.0004, O' = 0.06, Qo = 1.2] 

Figure 3.40: Wiener Process Model (Basic Game) [BA= 0.5 -t 6.0] 
[OB= 6.0, 'PA= 1.5, 'PB= 1.5, (} = 0.0014, cp = 0.0004, O' = 0.06, Qo = 1.2] 

Figure 3.41 : Wiener Process Model (Alternative Game) [BA= 0.5 -t 6.0] 
[OB= 0.5, 'PA= 1.5, 'PB = 0.5, (} = 0.0014, cp = 0.0004, O' = 0.06, Qo = 1.2] 

Figure 3.42: Wiener Process Model (Alternative Game) [BA= 0.5 -t 6.0] 
[OB= 6.0, 'PA = 1.5, 'PB = 1.5, (} = 0.0014, cp = 0.0004, O' = 0.06, Qo = 1.2] 

Figure 3.43: Wiener Process Model (Basic Game) [T = 2 -t 12] 
[(}A 5.5, (}B = 5.5, 'PA= 1.5, 'PB = 1.5, (} = 0.0014, cp = 0.0004, O' = 0.06, Qo = 1.2] 

Figure 3.44: Wiener Process Model (Basic Game) [T = 2 -t 12] 
[(}A= 0.5, (}B = 0.5, 'PA= 0.5, 'PB = 0.5, (} = 0.0014, cp = 0.0004, O' = 0.06, Qo = 1.2] 

Figure 3.45: Wiener Process Model (Alternative Game) [T = 2 -t 12] 
[(}A= 5.5, (}B = 5.5, 'PA= 1.5, 'PB = 1.5, (} = 0.0014, cp = 0.0004, O' = 0.06, Qo = 1.2] 

Figure 3.46: Wiener Process Model (Alternative Game) [T = 2 -t 12] 
[BA = 0.5, (}B = 0.5, 'PA= 0.5, 'PB = 0.5, (} = 0.0014, cp = 0.0004, O' = 0.06, Qo = 1.2] 
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Figure 3.35: Wiener Process Model (Basic Game) [B = -0.05 ~ 0.06] 

(BA= 5.5, BB= 5.5, 'PA= 1.5, 'PB= 1.5, cp = 0.0004, a= 0.06, Qo = 1.2) 

Figure 3.36: Wiener Process Model (Basic Game) [B = -0.05 ~ 0.06] 

(BA= 0.5, BB= 0.5, 'PA= 0.5, 'PB= 0.5, cp = 0.0004, a= 0.06, Qo = 1.2) 
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Figure 3.37: Wiener Process Model (Alternative Game) [e = -0.05 -+ 0.06] 

(eA = 5.5, (}B = 5.5, 'PA= 1.5, 'PB= 1.5, cp = 0.0004, (J = 0.06, Qo = 1.2) 

Figure 3.38: Wiener Process Model (Alternative Game) [(} = -0.05-+ 0.06] . 

(e A= 0.5, (}B = 0.5, 'PA = 0.5, 'PB = 0.5, cp = 0.0004, (J = 0.06, Qo = 1.2) 
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Figure 3.39: Wiener Process Model (Basic Game) [BA = 0.5 -t 6.0] 

(BB = 0.5, 'PA = 1.5, </)B = 0.5, B = 0.0014, <p = 0.0004, <J' = 0.06, Qo = 1.2) 

Figure 3.40: Wiener Process Model (Basic Game) [BA= 0.5 -t 6.0] 

(BB = 6.0, </)A= 1.5, </)B = 1.5, B = 0.0014, <p = 0.0004, <J' = 0.06, Qo = 1.2) 
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Figure 3.41: Wiener Process Model (Alternative Game) [BA= 0.5 ~ 6.0] 

(OB = 0.5, <pA = 1.5, <pB = 0.5, () = 0.0014, <p = 0.0004, a= 0.06, Qo = 1.2) 

Figure 3.42: Wiener Process Model (Alternative Game) [OA = 0.5 ~ 6.0] 

(OB = 6.0, <pA = 1.5, <pB = 1.5, () = 0.0014, <p = 0.0004, a= 0.06, Qo = 1.2) 
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Figure 3.43: Wiener Process Model (Basic Game) [T = 2 -r 12] 

(OA = 5.5, Os= 5.5, 'PA= 1.5, 'PB= 1.5, 0 = 0.0014, cp = 0.0004, (}" = 0.06, Qo = 1.2) 

DO .. 
D2 
03 .. 
ao .. 
07 .. .. 
010 
an .,, 

Figure 3.44: Wiener Process Model (Basic Game) [T = 2 ---+ 12] 

(OA = 0.5, Os= 0.5, 'PA= 0.5, 'PB= 0.5, 0 = 0.0014, cp = 0.0004, (}" = 0.06, Qo = 1.2) 

--(1) 

DO .. 
a2 
co .. 
05 .. 
07 .. .. 
010 
D11 
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Figure 3.45: Wiener Process Model (Alternative Game) [T = 2-+- 12] 

(OA = 5.5, eB = 5.5, 'PA= 1.5, 'PB= 1.5, e = 0.0014, <.p = 0.0004, (]" = 0.06, Qo = 1.2) 

.. .. .. .. .. .. .. 
07 .. .. ... ... ... 

Figure 3.46: Wiener Process Model (Alternative Game) [T = 2-+- 12] 

(OA = 0.5, eB = 0.5, 'PA= 0.5, 'PB= 0.5, e = 0.0014, <.p = 0.0004, (]" = 0.06, Qo = 1.2) 

.. .. .. .. .. .. .. . , .. .. ... 
au ... 
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Simulation Codes 

3C.1 Autoregressive Binomial Models 
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ABBMl.c Fri Apr 7 03:16:14 1995 

#include <stdio.h> 
#include <malloc.h> 
#include <math.h> 
#include <stdlib.h> 

l 

/* ABBMl.c : Autoregressive Binomial Bargaining Model One *I 

/* =================================================================== */ 
/* discription of the program "ABBMl.c" ============================== */ 
/* =================================================================== */ 

/* ABBMl.c simulates a special case of bilateral bargaining game 
/* that is studied in Chapter 2 and Chapter 3 of my Ph.D. dissertation 
/* at California Institute of Technology. The detailed behavioral 
/* assumptions of the game participants are given in the chapters, and 
/* we do not repeat them here. The particular game that is simulated 
/* is the one called "Basic Game" of "Autoregress'ive Binomial 
/* Bargaining Model" in the dissertation. Its "Alternative Game" is 
/* simulated in another version of this program, which can be obtained 
/* from the author. Hence, this version contains a very basic part of 
/* the simulation process, upon which we have made numerous 
/* modifications and extensions to create different versions of the 
/* program and have generated various types of data sets. 

/* DATA STRUCTURES 
/* The bargaining process is described by a full binary tree with 
/* its depth equaling to an exogenously predetermined bargaining 
/* horizon minus one period. The tree is stored in a linked structure 
/* "node," which is defined below. Each level in the tree describes 
/* each trading period, with the first level corresponding to Period 
/* O. A left child of each node is associated with a state in which a 
/* currently observed value of epsilon is zero, whereas a right child 
/* is associated with epsilon one. Each node in the tree is given an 
/* unique id number, with its root node corresponding to one. The id 
/* number is incremented by one from the left node to the right node 
·1* in each level. This numbering scheme enables us to reach any node 
/* in the tree, given the address of the root node and the id number, 
/* without using a recurrsive coding. In addition, each node can also 
/* be identified by an uniquely associated "path." A "path" is a 
/* sequence of observed epsilons upto the current period, and the 
/* sequence is stored in a linked list structure "binary," which is 
/* defined below. We have accomodated each node in both "node" and 
/* "binary" with a pointer that enables us to move in the list in any 
/* direction we wish, hoping to have some flexibility in future 
I* extensions. 

I* DESIGN 
/* After reading primary input values, we first create a root node 
/* of the bargaining tree and store the initial information by calling 
/* a subroutine plant_first_node() from main(). Then we add one node 
/* at a time by calling plant_tree() to create a full tree. We call 
/* point_to_parent() to add a pointer to each node that points to its 
/* parent node. calc_node() computes variable values to be stored in 
/* each node that are necessary for the computation of players' 
/* bargaining strategies. calc_strategy() computes each player's 
/* offer strategies and response strategies at each node. At this 
/* point, we have a full binary tree with each node containing 
/* information that describe the bargaining process. Consequently, 
/* optional subroutines can be accomodated to the program afterwards 
/* to generate various output. 

*I 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*I 
*/ 
*I 
*/ 
*/ 

*/ 
*I 
*/ 
*/ 
*I 
*/ 
*/ 
*I 
*I 
*I 
*/ 
*I 
*/ 
*I 
*/ 
*I 
*/ 
*I 
*/ 
*/ 
*I 

*I 
*I 
*I 
*/ 
*I 
*I 
*I 
*I 
*I 
*/ 
*I 
*/ 
*I 
*I 
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ABBMl.c Fri Apr 7 03:16:14 1995 2 

/* FUNDAMENTAL NOTATIONS * / 
/* Notations are kept consistent with the ones used in the */ 
/* dissertation whenever it is appropriate and possible. For example, */ 
/* alpah_A in the dissertation is denoted as a_A in this program. */ 
/* Likewise, alpha_B = a_B, beta_A = b_A, and beta_B = b_B. Other */ 
/* Greek letters are replaced with English writings, such as rho and */ 
/* delta. */ 

/* PRIMARY INPUT VARIABLES 
/* In this version, primary input variables are read interactively 
/* by calling a subroutine get_par() in main(). 
/* Such input variables are : 
/* T : unsigned int (positive integer) 
/* Predetermined number of maximum bargaining periods 
/* a_A float (positive constant) 
/* alpha_A, a parameter for Beta distribution 
/* that characterizes player A's prior 
/* a_B float (positive constant) 
/* alpha_B, a parameter for Beta distribution 
/* that characterizes player B's prior 
/* b_A float (positive constant) 
/* beta_A, a parameter for Beta distribution 
/* that characterizes player A's prior 
/* b_B float (positive constant) 
/* beta_B, a parameter for Beta distribution 
/* that characterizes player B's prior 
/* X_T float (0 <= X_T <= 1) 
/* Predetermined player A's default share in Period T 
/* rho float <lrhol < 1) 
/* Describes the autocorrelation of delta 
/* deltaO : float 
/* Initial information that is available in Period 0 
/* QO : float (positive real) 
/* Initial value of the asset in Period 0 

/* BASIC OUTPUT 
/* We have included in this version, as an example of output, a 
/* subroutine trade_freq(). trade_freq() computes unconditional and 
/* conditional frequencies of agreement in each trading period, and 
/* writes the results in formatted output files, ta.dat and tb.dat. 
/* ta.dat contains information such as T, X_T, rho, and t (current 
/* period) along with computed unconditional and conditional 
/* frequencies. tb.dat contains information such a_A, a_B, b_A, b_B, 
/*and t along with the computed frequencies. Unconditional 
/* frequencies are computed by dividing (the number of nodes in which 
/* a response strategy indicates an acceptance) by (the total number 
/*of nodes in the level (trading period)). Conditional frequencies 
/* are computed by dividing (the number of reachable nodes in which a 
/* response strategy indicates an acceptance) by (the total number of 
/* reachable nodes in the level). A node is 'reachable' if there has 
/* been no trade upto the current period. If, for example, there has 
/* been an agreement in period 0, then none of the nodes in the tree 
/* other than the root node is reachable. Hence, the conditional 
/* frequencies cannot be computed for the rest of the nodes, and in 
/* such a case we give O frequency as its output. 

/* RELATED VERSIONS 
/* There are other versions of ABBMl.c that contain modules to 
/* simulate "Alternative Game" and to generate other output files. 

/* NOTE: main() is defined at the very end of the program. 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

*/ 
*/ 
*/ 

*/ 
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!* =================================================================== *! 
/* Defining messages ================================================= */ 
/* =================================================================== ~1 

#define DISPLAYl "BARGAINING SIMULATION PROGRAM : ABBMl.c \n• 
#define ENDMESSAGEl "END OF BARGAINING SIMULATION PROGRAM : ABBMl.c \n" 

!* =================================================================== */ 
/* Defining macros =================================================== */ 
!* =================================================================== */ 

#define space2 printf("\n\n") 
#define space3 printf("\n\n\n") 
#"define LINEl printf("********************* \n 11

) 

#define out2(fp, al, a2) fprintf(fp, "%u %u \n", al, a2) 
#define out3(fp, al, a2, a3) fprintf(fp, "%f %f %u \n", al, a2, a3) 

#define sqr(x) (x*x) /* sqr gives a squared value of the argument */ 
#define max(A, B) ((A) > (B) ? (A) (B)) 

/* max gives a larger number of the given two numbers */ 

!* =================================================================== */ 
/* Defining data structure (declaration of global variables) ========= */ 
!* =================================================================== */ 

/* "node" specifies each node in a full binary tree that describes */ 
/* the stochastic bargaining process. Each node contains information */ 
/* necessary to compute players' strategies as it appears below. */ 

struct node 
{ 

long unsigned int id; /*id of each node: 1, 2, ... , 2A(T+l)-l */ 
unsigned int t; /*period number t = 0, 1, 2, ... , T */ 
float delta; /* ex-post delta */ 
float PAO; /* A's prior of e 0 in the next period */ 
float PAl; /*A's prior of e 1 in the next period*/ 
float PBO; /* B's prior of e 0 in the next period */ 
float PBl; /* B's prior of e 1 in the next period*/ 
int sU11Le; /* sum of e's upto the current period */ 
float X; /* player i's offer in the current period */ 
unsigned int R; /*player j's respose: 1 =accept, 0 =reject */ 
float Q; /* asset value in the current period */ 
int flag; /* O if no trade before t, 1 if trade before 1 */ 
struct node *left; /*left child, i.e., a node withe= 0 */ 
struct node *right; /*right child, i.e., a node withe= 1 */ 
struct node *parent; /* pointer to its parent node */ 

} ; 

/* =================================================================== *! 

/* "binary" stores a value of e, 0 or 1, in each period, the sequence */ 
/* of which is stored in a linked list and is used to identify a path */ 
/* to each node in the bargaining tree. */ 

struct binary 
{ 

} ; 

int num; 
struct binary *next; 
struct binary *reverse; 

/* =================================================================== *! 
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FILE *fa; 
FILE *fb; 

/* Formatted output file */ 
/* Formatted output file */ 

/* =================================================================== */ 
/* =================================================================== */ 
/* =============== INPUT/MISCELLANEOUS SUBROUTINES =================== */ 
/* =================================================================== */ 
/* =================================================================== */ 

/* =================================================================== */ 
/* display =========================================================== 
/* =================================================================== 
/* displays the current program name. 

void display () 

space3; 
printf(DISPLAYl); 
space3; 

return; 

/* End of display() */ 

*/ 
*/ 
*/ 

I* =================================================================== */ 
/* open_files ======================================================== */ 
/* =================================================================== */ 
/* opens files to write the output. */ 

void open_files() 

fa fopen( 11 ta.dat 11
, "w 11

); 

fb fopen( 11 tb.dat 11
, 

11 w"); 

return; 

/* End of open_files() */ 

/* =================================================================== *I 
/* close_files ======================================================= */ 
/* =================================================================== */ 
/* closes the output files that have been opened in open_files(). */ 

void close_files() 

fclose (fa) ; 
fclose(fb); 

return; 

/* End of close_files() */ 

/* =================================================================== */ 
/* end_message ======================================================= */ 
/* =================================================================== */ 
/* prints the ending message on the monitor. */ 

void end_message() 
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space3; 
printf{ENDMESSAGEl); 
space3; 

return; 

/* End of end_message{) */ 

5 

/* =================================================================== */ 
/* power ============================================================= */ 
/* =================================================================== */ 
/* raise base to n-th power ; n >= 0 */ 

long int power(base, n) 

long int base, n; 

long int i, p; 

p = 1; 
for{i=l; i<=n; ++i) 

p = p * base; 
return p; 

/* End of power{) */ 

/* =================================================================== */ 
/* get_par =========================================================== */ 
/* =================================================================== */ 
/* get_par{) is called in main{). */ 
/* get_par{) function reads input parameter values interactively. */ 

void get_par{T, a_A, a_B, b_A, b_B, X_T, rho, deltaO, QO) 

unsigned int *T; 
float *a_A, *a_B, *b_A, *b_B, *X_T, *rho, *deltaO, ~QO; 

printf {"Enter T {even integer) : "); 
scanf { "%d", T); 
printf{"Enter a_A {positive real) "); 
scanf { "%f", a_A); 
printf {"Enter a_B {positive real) "); 
scanf{"%f", a_B); 
printf {"Enter b_A (positive real) "); 
scanf{"%f", b_A); 
printf{"Enter b_B {positive real) "); 
scanf{"%f", b_B); 
printf{"Enter X_T {positive real) "); 
scanf { "%f", X_T); 
printf{"Enter rho <!real!< 1) : "); 
scanf { "%f", rho); 
printf{"Enter deltaO {real) : "); 
scanf("%f", deltaO); 
print£ {"Enter QO {positive real) : "); 
scanf{"%f", QO); 

space3; 

return; 
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/* End of get__par() */ 

/* =================================================================== */ 
/* =================================================================== */ 
!* ==================== CONSTRUCTING BINARY TREE===================== */ 
/* =================================================================== */ 
/* =================================================================== */ 

/* =============================================================== */ 
/* plant_first_node ================================================== */ 
/* =================================================================== */ 
/* creates the origin node of the binary tree. */ 

struct node *plant_first_node(p, id, a_A, a_B, b_A, b_B, X_T, rho, deltaO, QO) 

struct node *p; 
long unsigned int id; 
float a_A, a_B, b_A, b_B, X_T, rho, deltaO, QO; 

p = (struct node *)calloc(l, sizeof(struct node)); 
p->left = NULL; 
p->right = NULL; 
p->id = id; 
p->delta = deltaO; 
p->PAl a_A I (a_A + b_A); 
p->PAO 1 - p->PAl; 
p->PBl a_B I (a_B + b_B); 
p->PBO 1 - p->PBl; 
p->sum_e = 0; 
p->X = 0.0; 
p->Q = QO; 
return p; 

/* End of plant_first_node() */ 

/* =================================================================== */ 
/* plant_tree ======================================================== */ 
/* =================================================================== */ 
/* plant_tree() constructs a full binary tree by adding one node each */ 
/ * time. Each node added is assigned an uniqu'e id number that enables *I 
/* us to reach any node we wish, given the address of the origin and */ 
/* a "path" that is defined later. The id numbers are used throughout */ 
I* this program. *I 

struct node *plant_tree(origin, id, path) 

struct node *origin; 
long unsigned int id; 
struct binary *path; 

struct node *p, *temp; 

p = origin; 
while (path != NULL) 
{ 

if (path->num == 0) 
{ 

if (p->left != NULL) 
p = p->left; 
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temp= (struct node *)calloc(l, sizeof(struct node)); 
temp->left = NULL; 
temp->right = NULL; 
temp->id = id; 
p->left = temp; 

else 
{ 

if (p->right != NULL) 
p = p->right; 

else 
{ 

temp= (struct node *)calloc(l, si~eof(struct node)); 
temp->left = NULL; 
temp->right = NULL; 
temp->id id; 
p->right = temp; 

} 
path = path->reverse; 

/* End of while */ 

return origin; 

/* End of plant_tree() */ 

/* =================================================================== */ 
/* find__path ========================================================= */ 
/* =================================================================== */ 
/* Given an id number of a node, find__path() finds a unique sequence */ 
/* of observed epsilons upto the current period. Such a sequence is */ 
I* stored in a structure "binary. " *I 

struct binary *find__path(Z) 

long unsigned int Z; 

struct binary *first, *last, *now, *past, *list[30], *rt; 
long int counter; 

counter = 1; 
while (Z >= 1) 
{ 

now= (struct binary *)calloc(l, sizeof(struct binary)); 
list[counter]=now; 
now->num = (Z%2); 
Z =(int) (Z/2); 
now->next = NULL; 
first = now; 
if (counter == 1) 
{ 

last = now; 
last->reverse 

else 
{ 

NULL; 

past->next now; 
now->reverse = past; 

past = now; 
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counter counter + 1; 

rt = first->reverse; 
counter --; 
while(counter > 0) 
{ ' 

free(list[counter]); 
counter--; 

return rt; 

/* End of find_path() */ 

B 

/* =================================================================== */ 
/* find_period ======================================================= 
/* 
/* 
/* 
/* 

find_period() is called in calc_node() with an id number. 
Given an id number of a node in the tree, find_period() returns 
a period number to which the node with the given id number belongs. 

unsigned int find_period(id) 

long unsigned int id; 

long unsigned int counter; 
struct binary *path; 

counter = O; 
path = find_path(id); 
while (path != NULL) 
{ 

counter = counter + l; 
path = path->reverse; 

return counter; 

/* End of find_period() */ 

*/ 
*/ 
*/ 
*/ 
*/ 

/* =========================~========================================= */ 
/* goto_node ========================================================= */ 
/* =================================================================== 
/* 
/* 
I* 

Provided the address of the root node, an id number and a path 
associated with a particular node in concern, goto_node() -finds the 
address of the node. 

struct node *goto_node(root, id, path) 

struct node *root; 
long unsigned int id; 
struct binary *path; 

struct node *p; 

p = root; 
while (path != NULL) 
{ 

if (path->num == 0) 
p p->left; 

else 
p p->right; 

*/ 
*I 
*/ 
*I 
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path path->reverse; 

return p; 

/* End of goto_node() */ 

/* =================================================================== */ 
/* point_to_parent =================================================== */ 
/* =================================================================== */ 
/* accomodate each node with a pointer that points back to its parent */ 
/* node. */ 

void point_to_parent(root, T) 

struct node *root; 
unsigned int T; 

struct node *current_node; 
struct binary *path; 
long unsigned int i; 

for (i=l; i <= (power(2,T) - 1); i++) 
( 

path= find_path(i); 
current_node = goto_node(root, i, path); 
current_node->left->parent = current_node; 
current_node->right->parent = current_node; 

return; 

/* End of point_to_parent() */ 

/* =================================================================== */ 
/* =================================================================== */ 
/* ==================== BARGAINING STRATEGIES ======================== */ 
/* =================================================================== */ 
/* =================================================================== */ 

/* =================================================================== */ 
/* calc_node ========================================================= */ 
/* =================================================================== */ 
/* computes basic information to be stored in each node, given primary */ 
/* input values. */ 

void calc_node(root, T, rho, a_A, a_B, b_A, b_B) 

struct node *root; 
unsigned int T; 
float rho, a_A, a_B, b_A, b_B; 

struct node *p; 
struct binary *path; 
long unsigned int i; 

p = root; 
for (i=2; i <= (power(2,T+l) - 1); i++) 
{ 

path = find_path(i); 
p = goto_node(root, i, path); 
p->sum_e = compute_sum_e(i); 
p->t = find_period(i); 
p->delta =rho* p->parent->delta + e_past(i); 
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p->PAl 
p->PAO 
p->PBl 
p->PBO 
p->Q = 

(a_A + p->sum_e) (a_A + b_A + p->t); 
1 - p->PAl; 
(a_B + p->sum_e) (a_B + b_B + p->t); 
1 - p->PBl; 

p->parent->Q * p->delta; 

return; 

I* End of calc_node() */ 

/* =================================================================== */ 
/* compute_sum_e ===================================================== */ 
/* =================================================================== */ 
I* sums a sequence of epsilons upto the current node, given its id */ 
/* number. * / 

int compute_sum_e(Z) 

long unsigned int Z; 

struct binary *moving; 
int e; 

moving = find__path(Z); 

if (moving != NULL) 
( 

e = moving->num; 
while (moving->reverse != NULL) 
( 

moving = moving->reverse; 
e = e + moving->num; 

else 
e = O; 

return e; 

/* End of compute_sum_e() */ 

/* =================================================================== */ 
/* e__past ============================================================ */ 
/* =================================================================== */ 
/* Given an id number, returns the latest observed value of e. */ 

int e__past(Z) 

long unsigned int Z; 

struct binary *moving; 
int i; 

moving= find__path(Z); 

if (moving == NULL) 
i = O; 

else 
( 

while (moving->reverse != NULL) 
moving = moving->reverse; 

i = moving->num; 
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return i; 

/* End of e_past() */ 

/* =================================================================== */ 
/* calc_strategy ===================================================== */ 
/* =================================================================== */ 
/* computes players' offer and response strategies at each node. */ 

void calc_strategy(root, T, X_T) 

struct node *root; 
unsigned int T; 
float X_T; 

struct binary *path; 
float argl, arg2; 
struct node *p; /* points to a current node */ 
long unsigned int lastnode_id; /* the largest id number in the tree */ 
long unsigned int i; /* id counter */ 

lastnode_id = power(2, T+l) -1; 
for (i = lastnode_id; i >= l; i--) 
{ 

path= find_path(i); 
p = goto_node(root, i, path); 

if (p->t == T) 
{ 

) 

p->X X_T; 
p->R l; 

else if (p->t 
{ 

(T-1)) 

argl 1 - (X_T * (p->PAO * p->left->delta + p->PAl * p->right->delta)); 
arg2 (1 - X_T) * (p->PBO * p->left->delta + p·>PBl * p->right->delta); 
p->X max(argl, arg2); 
if (p->X <= argl) 

p->R l; /*A accepts B's offer in T-1. */ 
else 

p->R O; /*A rejects B's offer in T-1. */ 

else if (p->t 
{ 

(T-2)) 

argl 1 - (p->PBO * p->left->delta * p->left->X 
+ p->PBl * p->right->delta * p->right->X); 

arg2 X_T * (p->PAO * p->left->PAO * p->left->delta 
* p->left->left->delta + p->PAO * p->left->PAl 
* p->left->delta * p->left->right->delta 
+ p->PAl * p->right->PAO * p->right->delta 
* p->right->left->delta + p->PAl * p->right->PAl 
* p->right->delta * p->right->right->delta); 

p->X = max(argl, arg2); 
if (p->X <= argl) 

p->R l; /* B accepts A's offer in T-2. */ 
else 

p->R O; /* B rejects A's offer in T-2. */ 
) 
else if ((p->t % 2) == 0) /*strategy for even numbered periods*/ 
{ 
argl = 1 - (p->PBO * p->left->delta * p->left->X 
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+ p->PBl * p->right->delta * p->right->X) ; 
arg2 p->PAO * p->left->PAO * p->left->delta * p->left->left->delta 

* p->left->left->X + p->PAO * p->left->PAl * p->left->delta 
* p->left->right->delta * p->lef t->right->X 
+ p->PAl * p->right->PAO * p->right->delta 
* p->right->left->delta * p->right->left->X 
+ p->PAl * p->right->PAl * p->right->delta 
* p->right->right->delta * p->right->right->X; 

p->X = max(argl, arg2); 
if (p->X <= argl) 

p->R 1; /* B accepts A's offer. */ 
else 

p->R O; /* B rejects A's offer. */ 

else if ((p->t % 2) == 1) /*strategy for odd numbered periods*/ 
{ 
argl 1 - (p->PAO * p->lef t->delta * p->left->X 

+ p->PAl * p->right->delta * p->right->X) ; 
arg2 p->PBO * p->left->PBO * p->left->delta * p->left->left->delta 

* p->left->left->X + p->PBO * p->left~>PBl * p->left->delta 
* p->left->right->delta * p->left->right->X 
+ p->PBl * p->right->PBO * p->right->delta 
* p->right->left->delta * p->right->left->X 
+ p->PBl * p->right->PBl * p->right->delta 
* p->right->right->delta * p->right->right->X; 

p->X = max(argl, arg2); 
if (p->X <= argl) 

p->R l; /* A accepts B's offer. */ 
else 

p->R O; /* A rejects B's offer. */ 

/* End of for (i lastnode_id; i >= 1; i--) */ 

return; 

/* End of calc_strategy() */ 

/* =================================================================== */ 
/* trade_flag ======================================================== */ 
/* =================================================================== */ 
/*If a node in concern is reachable, i.e., there has been no trade */ 
/* in a path upto the node, then flag receives 0. If a node is not */ 
/* reachable, flag receives 1. */ 

void trade_flag(root, T) 

struct node *root; 
unsigned int T; 

struct binary *path; 
struct node *temp, *p; 
long unsigned int i; 
int addR; /* sum of R upto the previous period */ 

for (i=l; i<=(power(2, T+l) -1); i++) 
( 

path= find_path(i); 
p = goto_node(root, i, path); 
if (p->parent == NULL) 

p->flag = O; 
else 
{ 
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temp p; 
addR O; 
while (temp->parent != NULL) 
{ . 

) 

addR 
temp 

addR + temp->parent->R; 
temp->parent; 

if (addR 0) 
p->flag O; 

else 
p->flag l; 

/* End of else */ 
/*End of for (i=l; i<=(power(2, T+l) -1); i++) */ 

return; 

/* End of trade_flag() */ 

/* =================================================================== */ 
/* =================================================================== */ 
/* ======================= OUTPUT SUBROUTINES ======================== */ 
/* =================================================================== */ 

*/ /* 

/* =================================================================== */ 
/* trade_freq ======================================================== */ 
/* =================================================================== */ 
/* computes and outputs unconditional and conditioanl frequencies of */ 
/* agreement in each trading period. Output files, ta.dat and tb.dat */ 
/* are created. *I 

void trade_freq(root, T, X_T, rho, a_A, a_B, b_A, b_B) 

struct node *root; 
unsigned int T; 
float X_T, rho, a_A, a_B, b_A, b_B; 

unsigned int i; 
unsigned int fl; /* number of agreement in t (unconditional) */ 
unsigned int f2; /* number of agreement in t (if no trade upto t-1) */ 
long unsigned int j; 
long unsigned int fltotal; /* total number of nodes in concern for freq */ 
long unsigned int f2total; /* total number of nodes in concern for confreq */ 
float freq, confreq; 
struct binary *path; 
struct node *p; 

i = O; /* period counter */ 
j = O; /* id counter */ 
for (i=O; i <= (T-1); i++) 
{ 

fl = O; 
f2 = O; 
fltotal = power(2, i); 
f2total = O; 
for (j = power(2,i); j <= (power(2, i+l) - 1); j++) 
{ 

path = find_path(j); 
p = goto_node(root, j, path); 
if (p->R == 1) 

fl = fl + 1; 

if (p->flag 0) 
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f2total = f2total + l; 
if (p->R == 1) 

f2 = f2 + 1; 

freq= (fl * 1.0) I (fltotal * 1.0); 
confreq = (f2 * 1.0) / (f2total * 1.0); 

14 

fprintf(fa, "%d %f %f %d %f %f \n", T, X_T, rho, i, freq, confreq); 
fprintf ( fb, "%f %f %f %f %d %f %f \n", a_A, a_B, b_A, b_B, i, freq, confreq); 

return; 

/* End of trade_freq() */ 

/* =================================================================== */ 
/* display_tree ====================================================== */ 
/* =================================================================== 
/* displays basic information stored in each node of the binary tree. 

void display_tree(root, T) 

struct node *root; 
unsigned int T; 

struct binary *path; 
struct node *temp; 
long unsigned int i; 

for (i=l; i <= (power(2, T+l) - 1); i++) 
{ 

path= find_path(i); 
temp= goto_node(root, i, path); 
printf("id = %d, period= %d \n", temp->id, temp->t); 
printf("sUI1Le = %d, delta= %f \n", ternp->sum_e, temp->delta); 
printf("PAO = %f, PAl = %f \n", temp->PAO, temp->PAl); 
printf("PBO = %f, PBl = %f \n", temp->PBO, temp->PBl); 
printf("Q %f \n", ternp->Q); 
printf ( "X %f \n", temp->X); 
printf ( "R %d \n", temp->R); 
LINEl; 

return; 

/* End of display_tree() */ 

*/ 
*/ 

/* =================================================================== */ 
/* =================================================================== */ 
/* =================================================================== */ 
/* ============================MAIN================================= */ 
/* =================================================================== */ 
/* =================================================================== */ 
/* =================================================================== */ 

main() 
( 

/* =================================================================== */ 

int T; 
long unsigned int i; 
float a_A, a_B, b_A, b_B; 

/* the maximum number of periods in the game */ 
/* id counter */ 

/* a_A = alpha_A in the paper */ 
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float 
float 
float 
float 

X_T; 
rho; 
deltaO; 
QO; 

/* Likewise, b_A beta_A, and so on. */ 
/* player A's predetermined share in the final period T */ 

!* lrhol < 1 */ 
/* delta_O in period O *! 

struct node *root; 
struct binary *path; 

!* Q_Q in period 0 *! 
/* root node (origin) of the binary tree *f 

/* path from the root node to a given node in the sequence of e's */ 

/* =================================================================== */ 

display(); 

open_files(); 
get_par(&T, &a_A, &a_B, &b_A, &b_B, &X_T, &rho, &deltaO, &QO); 

root = NULL; 
root= plant_first_node(root, 1, a_A, a_B, b_A, b_B, X_T, rho, deltaO, QO); 
for (i=2; i <= (power(2, T+l) - 1); i++) 
( 

path 
root 

find_path(i); 
plant_tree(root, i, path); 

point_to_parent(root, T); 
calc_node(root, T, rho, a_A, a_B, b_A, b_B); 
calc_strategy(root, T, X_T); 
trade_flag(root, T); 

trade_freq(root, T, X_T, rho, a_A, a_B, b_A, b_B); 
display_tree(root, T); 
close_files(); 

end_message(); 

/* End of main() */ 

/* ======================= End of "ABBMl.c" ========================== */ 
!* ============================================================~====== *! 
/* =================================================================== *! 
!* =================================================================== */ 
!* =================================================================== *! 
!* =================================================================== */ 
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#include <stdio.h> 
#include <malloc.h> 
#include <math.h> 
#include <stdlib.h> 

1 

I* WPBM2.c : Wiener Process Bargaining Model Two *I 

!* =================================================================== *I 
!* discription of the program "WPBM2.c" ============================== *! 
I* =================================================================== *I 

!* WPBM2.c simulates a special case of bilateral bargaining game */ 
!* that is studied in Chapter 2 and Chapter 3 of my Ph.D. dissertation */ 
!* at California Institute of Technology. The detailed behavioral */ 
/* assumptions of the game participants are given in the chapters, and */ 
I* we do not repeat them here. The particular game that is simulated */ 
!* is the one called "Alternative Game" of "Generalized Wiener Process */ 
I* (or Brownian Motion) Model" in the dissertation. "Basic Game" of */ 
I* this model is simulated in another version of this program, which */ 
!* can be obtained from the author. Hence, this version contains a */ 
!* very basic part of the simulation process of the Wiener Process */ 
!* model. *I 

!* DATA STRUCTURES AND DESIGN */ 
/* The bargaining process is stored in a linked list, in which two */ 
/* types of data structures coexist. One structure defined by "node" */ 
/* below is frequently referred to as 'a base list' in this program. */ 
/* This list begins with its origin corresponding to period 0, and */ 
/* each node carries the information such as players' offer and */ 
/* response strategies in each period. The other structure defined by */ 
!* "snode" is frequently referred to as 'a strategy list,' that */ 
!* contains the players' updated beliefs over future values of the */ 
/* asset given the information upto the current period. The */ 
/* information stored in this list is used to compute what strategy to */ 
/* take in the current period. A pointer 'strat' points to 'snode' in */ 
!* this strat list of each period from 'node' of the corresponding */ 
/* period, while a pointer 'base' points from the strategy list to its */ 
/* corresponding 'node' in the base list. In addition, each node is */ 
/* accomodated with a pointer to point back to its parent node, which */ 
/* adds the program flexib~lity. */ 
/* In this version, each simulation run consists with 10,000 sample */ 
/* runs. In other words, given initial values, a sequence of random */ 
/* numbers associated with each idurn number is generated for 10,000 */ 
/* times. idurn takes a negative integer. We give an initial value */ 
/* of idurn = -1 in main() as an example, that is decremented by 1 */ 
/* down to -10,000. */ 

/* FUNDAMENTAL NOTATIONS *I 
/* Notations are kept consistent with the ones used in the */ 
/* dissertation whenever it is appropriate and possible. For example, */ 
/* a Greek letter 'theta' with a subscript 'A' in the dissertation is */ 
/* written thetaA in this program. Likewise, PhiA, PhiB, sigma, and */ 
I* so on. */ 

!* PRIMARY INPUT VARIABLES */ 
/* In this version, the initail values of variables are read */ 
/* interactively by calling a subroutine get_par() in main(). *I 
/* We give initial values to the following variables. */ 
/* T : unsigned int (positive integer) */ 
/* Predetermined number of maximum bargaining periods */ 
/* thetaA : float *I 
/* Player A's prior belief on the mean of theta */ 
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/* 
/* 
/* 
I* 
/* 
/* 
I* 
/* 
/* 
I* 
/* 
I* 
I* 
/* 
I* 
/* 
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thetaB : float 

Phi A 

PhiB 

theta : 

Player B's prior belief on the mean of theta 
float 
Player A's prior belief on the variance of theta 
float 
Player B's prior belief on the variance of theta 
float 
Mean of a normal distribution that describes mu, the 
expected rate of value increase 

Phi : float 
Variance of a normal distribution that describes mu 

sigma float 
Predetermined volatility of the asset value 

delta_t : float 
Predetermined time interval of information arrival 

initialQ : float (positive real) 
Initial value of the asset 

x_T float (0 <= X_T <= 1) 
Predetermined player A's default share in Period T 

*/ 
*/ 
*I 
*/ 
*/ 
*I 
*I 
*/ 
*/ 
*/ 
*/ 
*I 
*/ 
*I 
*/ 
*/ 
*I 
*/ 
*I 

/* BASIC OUTPUT *I 
/* We have included in this version, as an example of output, a */ 
/* subroutine out_freq() and out_exp_delta(). out_freq() writes */ 
/* frequencies of first agreement in each period, that are computed in */ 
/* calc_freq(). 'Frequency' here is a number of agreement out of */ 
/* 10,000 simulation runs, given that there has been no trade upto a */ 
/* period in concern. 
/* out_exp_delta() writes in an output file the expected values of */ 
/* delta that are stored in a strategy list. */ 

/* RELATED VERSIONS */ 
/* There are other versions of WPBM2.c that contains modules to */ 
/* simulate "Basic Game" and to generate other output files. */ 

/* NOTE: main() is defined at the very end of the program. *I 

/* =================================================================== */ 
/* Defining DISPLAY messages ========================================= */ 
I* =================================================================== *I 

#define DISPLAYl "BARGAINING SIMULATION PROGRAM : WPBM2.c \n" 
#define ENDMESSAGEl "END OF BARGAINING SIMULATION PROGRAM : WPBM2.c \n" 

/* =================================================================== *I 
/* Defining constants ================================================ */ 
I* =================================================================== */ 

#define MINIDUM -10000 /* Minimum number idum takes */ 
#define· ITR O. 0005 /* iteration interval for the value of theta *I 

/* =================================================================== *I 
/* Defining constants for random() =================================== */ 
/* =================================================================== *I 
/* Refer to "Numerical Recipes in C : Second Edition" (p280) for this */ 
/* random number generating function. */ 

#define IA 16807 
#define IM 2147483647 
#define AM (1.0/IM) 
#define IQ 127773 
#define IR 2836 
#define NTAB 32 
#define NDIV (l+(IM-1)/NTAB) 
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#define EPS l.2e-7 
#define RNMX (1.0-EPS) 

3 

/* =================================================================== */ 
/* Defining macros =================================================== */ 
/* =================================================================== */ 

#define space2 printf ( "\n \n") 
#define space3 printf (" \n\n\n") 

#define out3(fp, al, a2, a3) fprintf(fp, "%f %f %u \n", al, a2, a3) 

#define sqr(x) (x*x) /* sqr gives a squared value of the argument */ 
#define max(A, B) ((A) > (B) ? (A) (B)) 

/*max gives a larger number of the given two numbers */ 

/* =================================================================== */ 
/* Defining data structure (declaration of global variables) ========= */ 
/* =================================================================== */ 

I* "node" specifies a node in a linked list (base list), in which */ 
/* players' strategies are stored along with the following data. */ 

struct node 
{ 

unsigned int t; 
float delta; 
float thetaA; 
float thetaB; 
float PhiA; 
float PhiB; 
float Q; 
float X; 
unsigned int R; 
float Apay; /* A's payoff 
float Bpay; /* B's payoff 
struct node *next; 
struct node *past; 
struct snode *strat; 

); 

/* period number t = 0, 1, ... , T 
/* ex-post delta 

/* A's prior on the mean of theta 
/* B's prior on the mean of theta 

/* A's prior on the variance of theta 
/* B's prior on the variance of theta 

/* asset value in the current period 
/* offer strategy in the current period 

/* response strategy in the current period 
if agreement occurs in the current period 
if agreement occurs in the current period 

/* pointer to its child 
/* pointer to its parent 

/* pointer to a strategy list 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

/* =================================================================== */ 

/* "snode" specifies a node in a linked list (strategy list), in which */ 
/* expected values of various variables are stored. */ 

struct ·snode 
{ 

unsigned int t; 
float EAdelta; 
float EBdelta; 
float EAQ; 
float EBQ; 
/* offer strategy in the future, 
/* upto the current period */ 
float X; 

/*period number t = 0, 1, ... , T 
/* A's expected value of delta 
/* B's expected value of delta 

/* A's expected value of the asset 
/* B's expected value of the asset 
based on the available information 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

/* response strategy in the future, based on the available 
/* information upto the current period */ 

*/ 

unsigned int R; 
float EApay; 
float EBpay; 
struct snode *next; 
struct snode *past; 
struct node *base; 

/* A's expected payoff in the future period */ 
/* B's expected payoff in the future period */ 

/* pointer to its child */ 
/* pointer to its parent */ 

/* pointer to a base list */ 
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); 

/* =================================================================== */ 

I* "freq" specifies a node in a linked list, in which trading * / 
/* frequencies of each period is stored. Also refer to calc_freq() */ 
/* and out_freq(). */ 

struct freq 
{ 

); 

unsigned int t; 
unsigned int i; 
struct freq *next; 

/*period number t = 0, 1, ... , T */ 
/* frequency counter */ 

/* pointer to its child */ 

/* =================================================================== */ 

FILE *fa; 
FILE *fb; 

/* Formatted output file */ 
/* Formatted output file */ 

/* =================================================================== */ 
/* =================================================================== */ 
/* =============== INPUT/MISCELLANEOUS SUBROUTINES =================== */ 
/* =================================================================== */ 
/* =================================================================== */ 

/* =================================================================== */ 
/* display=========================================================== */ 
/* =================================================================== */ 
/* displays the current program name. */ 

void display() 

space3; 
printf(DISPLAYl); 
space3; 

return; 

/* End of display() */ 

/* =================================================================== */ 
/* open_files ======================================================== *I 
/* =================================================================== */ 
/* opens files to write the output. */ 

void open_files() 

fa fopen( 11 ta.dat", "w"); 
fb fopen( "tb.dat", "w"); 

return; 

/* End of open_files() */ 

/* =================================================================== */ 
/* close_files ======================================================= */ 
/* =================================================================== */ 
/* closes the output files that have been opened in open_files(). */ 

void close_files() 
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I* End of close_files() */ 

5 

/* =================================================================== */ 
/* end_message ======================================================= */ 
/* =================================================================== */ 
/* prints the ending message. */ 

void end_message() 

space3; 
printf(ENDMESSAGEl); 
space3; 

return; 

/* End of end_message() */ 

/* =================================================================== */ 
/* power ============================================================= */ 
/* =================================================================== */ 
/* raise base ton-th power : n >= 0. */ 

float power(base, n) 

float base; 
long int n; 

long int i; 
float p; 

p = 1.0; 
for(i=l; i<=n; ++i) 

p = p * base; 

return p; 

/* End of power() */ 

/* =================================================================== */ 
/* get_par =========================================================== */ 
/* =================================================================== */ 
/* get_par() is called in main(). 
/* get_par() reads input data (parameter values) interactively. 

*/ 
*/ 

void get_par(T, theta, Phi, X_T, delta_t, sigma, initialQ, thetaA, thetaB, PhiA, PhiB) 

unsigned int *T; 
float *theta, *Phi, *X_T, *delta_t, *sigma, *initialQ; 
float *thetaA, *thetaB, *PhiA, *PhiB; 

printf ("Enter T (even int) "); 
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scanf ( "%d", T); 
printf ("Enter theta (real) ") ; 
scanf ( "%f", theta); 
printf ("Enter Phi (real) : "); 
scanf("%f", Phi); 
printf{"Enter X_T (positive real) : "); 
scanf ( "%f", X_T); 
printf("Enter delta_t (positive real) "); 
scanf ( "%f", delta_t) ; 
printf("Enter sigma (positive real) : "); 
scanf ( "%f", sigma) ; 
printf("Enter initialQ (positive real) : "); 
scanf ( "%f", initialQ); 
printf ("Enter thetaA (real) "); 
scanf ( "%f" , thetaA) ; 
printf ("Enter thetaB (real) "); 
scanf ( "%f", thetaB); 
printf("Enter PhiA (real) "); 
scanf ( "%f" , PhiA) ; 
printf ("Enter PhiB (real) "); 
scanf ( "%f", PhiB); 

return; 

/* End of get_par() */ 
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/* =================================================================== */ 
/* random============================================================ */ 
/* =================================================================== */ 
/* "Minimal" random number generator of Park and Miller with Bays- */ 
/* Durham shuffle and added safeguards. Returns a uniform random */ 
/* deviate between 0.0 and 1.0 (exclusive of the endpoint values). */ 
/* Call with idum, a negative integer to initialize; thereafter, do */ 
/* not alter idum between succesive deviates in a sequence. RNMX */ 
/* should approximate the largest floating value that is less than 1. */ 
/* (Taken from p280 of "Numerical Recipes in C" : Second edition) *I 

float random(flag, idum) 

int flag; 
long *idum; 

int j; 
long k; 
static long iy=O; 
static long iv[NTAB]; 
float temp; 

if (flag== 1) 
{ 

if (*idum <= o 11 iiyl 
{ 

if (-(*idum) < 1) 
*idum l; 

else 
*idum -(*idum); 

for (j=NTAB+7;j>=O;j--) 
{ 

k=(*idum)/IQ; 
*idum=IA*(*idum-k*IQ)-IR*k; 
if (*idum < 0) *idum += IM; 
if (j < NTAB) iv[j] = *idum; 

iy = iv[OJ; 
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k = (*idum) /IQ; 
*idum = IA * (*idum-k*IQ)-IR*k; 
if (*idum < 0) 

*idum += IM; 
j = iy/NDIV; 
iy = iv[j]; 
iv[j] = *idum; 
if ( (temp=AM*iy) > RNMX ) 

return RNMX; 
else 

return temp; 

J /* End of random() */ 
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/* =================================================================== */ 
/* stnormal ========================================================== */ 
/* =================================================================== */ 
/*Refer to "Numerical Recipes in C : Second edition." */ 
I* Given idum, it returns a value from a standard normal distribution. */ 

float stnormal(flag, idum) 

int flag; 
long *idum; 

static int iset=O; 
static float gset; 
float fac, rsq, vl, v2; 

if (iset == 0) 
{ 

do 
{ 

vl 2.0*random(flag, idum)-1.0; 
flag = O; 
v2 = 2.0*random(flag, idum)-1.0; 
rsq = vl * vl + v2 * v2; 
while ((rsq >= 1.0) 11 (rsq == 0.0)); 

fac = sqrt(-2.0*log(rsq)/rsq); 
gset=vl*fac; 
iset=l; 
return v2*fac; 

else 
{ 

iset O; 
return gset; 

/* End of stnormal() */ 

/* =================================================================== */ 
/* normal ============================================================ */ 
/* =================================================================== */ 
/* stn =a value taken from a standardized normal distribution (i.e., */ 
/* a normal distribution with a mean 0 and standard deviation 1). */ 
/*Returns a value converted from N(0,1) to N(theta, Phi). */ 
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float norrnal(stn, theta, Phi) 

float stn, theta, Phi; 

float stdiv; 
float n; 

stdiv = sqrt(Phi); 
n =theta+ (stdiv * stn); 
return n; 

!* End of normal() */ 
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/* =================================================================== */ 
/* calc_delta ======================================================== */ 
/* =================================================================== */ 
/* Called in build_base_list() to compute an ex-post delta values that */ 
I* is stored in each node in the base list. */ 

float calc_delta(e, mu, sigma, delta_t) 

float e, mu, sigma, delta_t; 

float d; 

d = 1 + mu*delta_t + sigma*e*sqrt(delta_t); 
return d; 

/* End of calc_delta() */ 

/* =================================================================== */ 
/* calc_Q ============================================================ */ 
/* =================================================================== */ 
/* Called in build_base_list() to compute an ex-post asset value that */ 
/* is stored in each node in the base list. */ 

float calc_Q(e, mu, sigma, delta_t, preQ) 

float e, mu, sigma, delta_t, preQ; 

float tempQ; 
float d; 

d= 1 + mu*delta_t + sigma*e*sqrt(delta_t); 
tempQ = d * preQ; 
return tempQ; 

/* End of calc_Q() */ 

/* =================================================================== */ 
I* =================================================================== */ 
/* =============== CONSTRUCTING THE BARGAINING LIST================== */ 
/* =================================================================== */ 
/* =================================================================== */ 

/* =================================================================== */ 
/* build_base_list =================================================== */ 
/* =================================================================== */ 
/* Construct the base list. */ 
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thetaB, PhiA, PhiB) 

struct node *origin; 
long idum; 
int T; 
float theta, Phi, initialQ, delta_t, sigma; 
float thetaA, thetaB, PhiA, PhiB; 

struct node *p, *temp; 
int t; 
int flag; 
float e, mu; 

flag = l; 

9 

origin= (struct node *)calloc(l, sizeof(struct node)); 
origin->next = NULL; 
origin->past = NULL; 
origin->strat= NULL; 
origin->t = O; 
e = stnormal(flag, &idum); 
mu= normal(e, theta, Phi); 
origin->delta = calc_delta(e, mu, sigma, delta_t); 
origin->Q = calc_Q(e, mu, sigma, delta_t, initialQ); 
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origin->thetaA (thetaA * ((1/PhiA)/((1/PhiA) + (1/Phi)))) + (mu* ((l/Phi)/((1/PhiA) 
+ (1/Phi)))); 

origin->thetaB (thetaB * ((1/PhiB)/((1/PhiB) + (1/Phi)))) + (mu* ((1/Phi)/((1/PhiB) 
+ (1/Phi)))); 

origin->PhiA 
origin->PhiB 

flag = O; 

p = origin; 

1/ ( (1/PhiA) + (1/Phi)); 
1/ ( (1/PhiB) + (1/Phi)); 

for (t=l; t<=T; t++) 
{ 

temp= (struct node *)calloc(l, sizeof(struct node)); 
temp->next = NULL; 
temp->past = p; 
temp->strat= NULL; 
temp->t = t; 
e = stnormal(flag, &idum); 
mu= normal(e, theta, Phi); 
temp->delta = calc_delta(e, mu, sigma, delta_t); 
temp->Q = calc_Q(e, mu, sigma, delta_t, temp->past->Q); 
temp->thetaA = (temp->past->thetaA * ((1/temp->past->PhiA)/((1/temp->past->PhiA) + (1 

/Phi))))·+ (mu* ((1/Phi)/((1/temp->past->PhiA) + (1/Phi)))); 
temp->thetaB = (temp->past->thetaB * ((1/temp->past->PhiB)/((1/temp->past->PhiB) + (1 

/Phi)))) + (mu* ((1/Phi)/((1/temp->past->PhiB) + (1/Phi)))); 
temp->PhiA = 1/((1/temp->past->PhiA) + (1/Phi)); 
temp->PhiB = 1/((1/temp->past->PhiB) + (1/Phi)); 
p->next = temp; 
p = p->next; 

return origin; 

/* End of build_base_list() */ 

/* =================================================================== */ 
/* build_strat_list ================================================== */ 
/* =================================================================== */ 
/* Construct the strategy list. */ 
/* Pl points through the base list made in build_base_list() */ 
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struct node *build_strat_list(origin, T, delta_t) 

struct node *origin; 
int T; 
float delta_t; 

struct node *Pl; 
struct snode *P2, *temp; 
float EAdelta, EBdelta, Qt; 
int t; 

Pl = origin; 
while (Pl->next != NULL) 
{ 

EAdelta = 1 + Pl->thetaA * delta_t; 
EBdelta = 1 + Pl->thetaB * delta_t; 
Qt = Pl->Q; 
for (t Pl->t + l; t <= T; t++) 
{ 

temp (struct snode *)calloc(l, sizeof(struct snode)); 
temp->next = NULL; 
temp->t = t; 
temp->EAdelta = EAdelta; 
temp->EBdelta = EBdelta; 
temp->EAQ Qt* (power(EAdelta, (t - Pl->t))); 
temp->EBQ =Qt* (power(EBdelta, (t - Pl->t))); 

if ((t - Pl->t) == 1) 
{ 

Pl->strat = temp; 
temp->base = Pl; 

else 
{ 

P2->next temp; 
temp->past = P2; 

P2 = temp; 

/* End of for (t 

Pl Pl->next; 

Pl->t + l; t <= T; t++) */ 

/* End of while (Pl->next != NULL) */ 

return origin; 

/* End of build_strat_list() */ 

/* =================================================================== */ 
/* calc_offer_strategy =============================================== */ 
/* =================================================================== */ 
/* Calculates offer strategies, X, to be stored in the base list and */ 
/* the strategy list. */ 

struct node *calc_offer_strategy(origin, T, X_T) 

struct node *origin; 
int T; 
float X_T; 
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int i, count; 
struct node *Pl; 
struct snode *P2; 
float argl, arg2; 

Pl = origin; 
while (Pl->next != NULL) 
{ 

count = T-1; 
while (count >= 0) 
{ 

P2 = Pl->strat; 
for (i = Pl->strat->t; i <= count; i++) 

P2 = P2->next; 

11 

/* compute offer strategies in the strategy list */ 

if (P2->t == T) 
{ 

P2->X X_T; 
) 
else if (P2->t == (T-1)) 
{ 

P2->X = 1 - X_T; 
) 

else if (P2->t == (T-2)) 
{ 

argl = 1 - ((1 - X_T) * P2->next->next->EBdelta); 
arg2 = X_T * P2->next->next->EAdelta; 
P2->X = max(argl, arg2); 

else if ((P2->t % 2) == 0) 
( 

argl 1 (P2->next->next->EBdelta * P2->next->X); 

196 

arg2 P2->next->next->EAdelta * P2->next->next->next->EAdelta * P2->next->next-> 
X; 

P2->X = max(argl, arg2); 
) 

else if ((P2->t % 2) == 1) 
{ 

argl 1 (P2->next->next->EAdelta * P2->next->X); 
arg2 P2->next->next->EBdelta * P2->next->next->next->EBdelta * P2->next->next-> 

X; 
P2->X = max(argl, arg2); 

count = count - l; 

/* End of while (count >= 0) */ 

/* compute offer strategies in the base list */ 

if (Pl->t == (T-1)) 
Pl->X = 1 - X_T; 

else if (Pl->t == (T-2)) 
{ 

argl = 1 - ((1 - X_T) * Pl->strat->next->EBdelta); 
arg2 = Pl->strat->next->EAdelta * X_T; 
Pl->X = max(argl, arg2); 
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else if ((Pl->t % 2) == 0) 
{ 

12 

argl 1 - (Pl->strat->next->EBdelta * Pl->strat->X); 
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arg2 Pl->strat->next->EAdelta * Pl->strat->next->next->EAdelta * Pl->strat->next-
>X; 

>X; 

Pl->x = max(argl, arg2); 

else if ((Pl->t % 2) == 1) 
{ 

argl 1 - (Pl->strat->next->EAdelta * Pl->strat->X); 
arg2 Pl->strat->next->EBdelta * Pl->strat->next->next->EBdelta * Pl->strat->next-

Pl->X = max(argl, arg2); 

Pl = Pl->next; 

/* End of while (Pl->next != NULL) */ 

Pl->X = X_T; 

return origin; 

/* End of calc_offer_strategy() */ 

/* =================================================================== */ 
/* exp_payoff ======================================================== */ 
/* =================================================================== */ 
/* Computes expected payoffs if an offer in a period in cancer is */ 
/* accepted. The computed eXPected payoffs are stored in the strategy */ 
/* list and the base list. */ 

struct node *eXP_payoff(origin, T, X_T) 

struct node *origin; 
int T; 
float X_T; 

struct node *Pl; 
struct snode *P2; 

Pl = origin; 
while (Pl->next != NULL) 
{ 

P2 = Pl->strat; 

if ( (P2->t % 2) 0) 
{ 

P2->EApay 
P2->EBpay 

else 
{ 

P2->EApay 
P2->EBpay 

(1 - Pl->X) * P2->EAQ; 
Pl->X * P2->EBQ; 

Pl->X * P2->EAQ; 
(1 - Pl->X) * P2->EBQ; 

if (P2->next != NULL) 
P2 = P2->next; 

while (P2->next != NULL) 



APPENDIX 30. SIMULATION CODES 

WPBM2.c Sun Apr 9 01:25:25 1995 13 

if ((P2->t % 2) 0) 
{ 

P2->EApay 
P2->EBpay 

(1 - P2->past->X) * P2->EAQ; 
P2->past->X * P2->EBQ; 

else 
{ 

P2->EApay 
P2->EBpay 

P2 = P2->next; 

P2->past->X * P2->EAQ; 
(1 - P2->past->X) * P2->EBQ; 

/* End of while (P2->next != NULL) */ 

P2->EApay 
P2->EBpay 

if (Pl->t 
{ 

X T * P2->EAQ; 
(1 - X_T) * P2->EBQ; 

0) 

Pl->Apay = 0.0; 
Pl->Bpay = 0.0; 

) 

else if ((Pl->t % 2) == 0) 
{ 

) 

Pl->Apay = (1 - Pl->past->X) • Pl->Q; 
Pl->Bpay = Pl->past->X * Pl->Q; 

else if ((Pl->t % 2) == 1) 
{ 

Pl->Apay Pl->past->X * Pl->Q; 
Pl->Bpay = (1 - Pl->past->X) * Pl->Q; 

Pl = Pl->next; 

/* End of while (Pl->next != NULL) */ 

Pl->Apay 
Pl->Bpay 

X_T * Pl->Q; 
(1 - X_T) * Pl->Q; 

return origin; 

/* End of exp_payoff() */ 

/* =================================================================== */ 
/* calc_resp_strategy ================================================ */ 
/* =================================================================== */ 
/* Computes response strategies in the base list. */ 
/* R = O if reject, R = 1 if accept. */ 

struct node •calc_resp_strategy(origin, T, X_T) 

struct node •origin; 
int T; 
float X_T; 

struct node *Pl; 
struct snode *P2; 
float arg; 

Pl = origin; 
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while (Pl->next != NULL) 
{ 

if (Pl->t == 0) 
Pl->R = O; 

else if ((Pl->t % 2) == 0) 
{ 

arg = 1 - (Pl->strat->EAdelta * Pi->X); 
if (Pl->past->X <= arg) 

Pl->R 1; 
else 

else 
{ 

Pl->R O; 

arg = 1 - (Pl->strat->EBdelta * Pl->X); 
if (Pl->past->X <= arg) 

Pl->R 1; 
else 

Pl->R O; 
} 

Pl = Pl->next; 

Pl->R = 1; 

return origin; 

/* End of calc_resp_strategy() */ 
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/* =================================================================== */ 
/* =================================================================== */ 
/* =================== OUTPUT RELATED SUBROUTINES ==================== */ 
/* =================================================================== */ 
/* =================================================================== */ 

/* =================================================================== */ 
/* init_first ======================================================== */ 
/* =================================================================== */ 
/* Initialize a linked list pointed by a pointer "first" with a data */ 
/* structure "freq" that will be used to store the number of first */ 
/* agreement in each trading period out of 10,000 sample runs. */ 

struct freq *init_first(first, T) 

struct freq *first; 
int T; 

struct freq *templ, *temp2; 
int t; 

first= (struct freq *)calloc(l, sizeof(struct freq)); 
first->t = O; 
first->i = 0; 
first->next = NULL; 
templ = first; 
t = l; 
while (t <= Tl 
{ 

temp2 = (struct freq *)calloc(l, sizeof(struct freq)); 
temp2->t = t; 
temp2->i = O; 
temp2->next.= NULL; 
templ->next = temp2; 
templ = temp2; 
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t = t + l; 

return first; 

/* End of init_first() */ 

/* =================================================================== */ 
/* calc_freq ========================================================= */ 
/* =================================================================== */ 
I* By moving through the base list, it counts the number of first */ 
/* agreement in each period out of 10,000 sample runs, and store the */ 
/*result in a list with the data structure "freq." */ 

struct freq *calc_freq(first, origin) 

struct freq *first; 
struct node *origin; 

struct node *Pl; 
struct freq *P2; 

Pl = origin; 
P2 = first; 
while (Pl->R != 1) 
{ 

Pl Pl->next; 
P2 P2->next; 

P2->i = P2->i + l; 

return first; 

/* End of calc_freq() */ 

/* =================================================================== */ 
/* out_freq ========================================================== */ 
/* =================================================================== */ 
/* Writes the information stored in a structure "freq" in an output */ 
/* file "tb.dat." *I 

void out_freq(first, theta) 

struct freq *first; 
float theta; 

struct freq *temp; 

temp = first; 
while (temp->next != NULL) 
{ 

} 

fprintf(fb, "theta= %f, t %d, freq %d \n", theta, temp->t, temp->i); 
temp = temp->next; 

fprintf(fb, "theta= %f, t %d, freq %d \n", theta, ternp->t, temp->i); 

/* End of out_freq() */ 

/* =================================================================== *I 
/* out_exp_delta ===================================================== */ 
/* =================================================================== */ 
/* Writes expected values of delta stored in the strategy list into an */ 

200 



APPENDIX 30. SIMULATION CODES 

WPBM2.c Sun Apr 9 01:25:25 1995 

/*output file "ta.dat." 

void out_exp_delta(origin, T) 

struct node *origin; 
int T;, 

struct node *temp; 
struct snod·e *temp2; 
int t; 

temp = origin; 
while (temp != NULL) 
{ 

ternp2 = ternp->strat; 
for (t = temp->t +1; t <= T; t++) 
{ 

16 

*/ 

%d, EAQ= %f, EBQ= %f \n", ternp2->t, ternp2->EAQ, temp2->EBQ); 
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fprintf(fa, "t 
fprintf (fa, "t 

>EBdelta); 
%d, EAdelta= %f, EBdelta= %f \n", temp2->t, temp2->EAdelta, temp2-

fprintf(fa, "\n"); 
temp2 = temp2->next; 

temp = temp->next; 

return; 

/* End of out_exp_delta() */ 

/* =================================================================== */ 
/* =================================================================== */ 
/* =================================================================== */ 
/* ============================MAIN================================= */ 
/* =================================================================== */ 
/* =================================================================== */ 
/* =================================================================== */ 

main{) 
{ 

/* =================================================================== */ 

int T; /* the maximum number of periods in the game */ 
long idum; /* seed number to generate a sequence of random numbers */ 
/* Refer to the description of the input ·variables in the beginning of */ 
/* this program for the followings. */ 
float delta_t, sigma; 
float theta, Phi; 
float thetaA, thetaB, PhiA, PhiB; 
float X_T; 
float initialQ; 

struct node *origin; 
struct freq *first; 

/* pointer to a root node of the base list */ 
/* pointer to a root node of the frequency list */ 

/* =================================================================== */ 

display(); 
open_files () ; 
get_par(&T, &theta, &Phi, &X_T, &delta_t, &sigma, &initialQ, &thetaA, &thetaB, &PhiA, & 

PhiB); 
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WPBM2.c 

first 
first 

sun Jlpr 9 01:25:25 1995 

NULL; 
init_first(first, T); 

idum = -1; 
while (idum >= MINIDUM) 
( 

origin = NULL; 
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origin = build_base_list(origin, idum, T, theta, Phi, initialQ, delta_t, sigma, theta 
A, thetaB, PhiA, PhiB); 

origin build_strat_list(origin, T, delta_t); 
origin calc_offer_strategy(origin, T, X_T); 
origin exp_payoff(origin, T, X_T); 
origin calc_resp_strategy(origin, T, X_T); 
first= calc_freq(first, origin); 
idum = idum - l; 

out_freq(first, theta); 
out_exp_delta(origin, T); 
end_message(); 
close_files(); 

/* End of main() */ 

/* ======================= End of "WPBM2.c" ========================== */ 
I* 
/* 
I* 
/* 

=================================================================== 
=================================================================== 
=================================================================== 
=================================================================== 

*/ 
*I 
*/ 
*/ 



Chapter 4 

Concluding Remarks on Part I 

Incorporating stochastic elements into sequential bargaining games has been proven to 

provide us with an alternative way of describing various bargaining durations. Despite the 

assumption of complete information, in our games it is not uncommon to observe delays 

before the first agreement. The comparison of the Basic and the Alternative games showed 

us the sensitivity of the durations to the timing of information arrivals and players' actions. 

In addition, our equilibrium strategies predict differences in reservation values of an offer-

making player between the Basic and the Alternative games. Simulation outputs have 

confirmed many of our analytical findings and conjectures with regard to comparative statics 

results. 

By construction, however, neither of our bargaining games explains breakdowns1 in the 

current negotiation. It is not new to us, however, to observe a bargaining breakdown even 

if there are positive gains for both parties from a potential agreement. Such breakdowns 

1 By breakdown we mean that the bargaining parties never come to an agreement and leave the negotiation 
table without any transaction among themselves. 

203 
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can leave one or both parties with zero payoff and become a source of inefficiency. In 

addition to explaining various bargaining durations, we need to construct a model that 

incorporates such possibilities. We conclude Part I by including the following idea as a 

potential extension that will enhance our understanding of bargaining durations in more 

complicated situations. 

We would like to model delays and eventual negotiation breakdowns explicitly in the 

presence of complete information, where players can choose at their own cost to search for 

outside options that can be realized stochastically. Consider a negotiation process where 

both parties see positive gains from an agreement at the same time when each player knows 

that his opponent is constantly searching for a better outside option. Suppose that both 

the value of the asset in the current negotiation and of the outside option they are looking 

for are common knowledge and positive constant. Furthermore, let us assume that there 

is a cost associated with the search for the outside option, and the option always gives a 

higher utility than the agreement in the current bargaining to the party that has found 

it. This sort of model can be motivated by the following simple example. Suppose that 

person A is looking for an apartment to rent, hoping to move in very soon, and is currently 

negotiating with a condominium owner B who wants to sublet. We can reasonably assume 

that the value of the asset in concern is constant, since the value of the condominium or 

other apartments may not fluctuate much in a short term. In the meantime A is still 

looking for a better deal elsewhere and B is hoping to find someone who wants to rent it 

with the price he is asking for. Naturally, the more vigorously one looks for an outside 

option, the more likely the person finds a better option. If neither finds a better option 

within a reasonable length of time, then they compromise with each other and settle with 
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the price that is determined by an exogenous factor such as information through reliable 

real estate agents. If one finds a better option, then the current negotiation breaks down. 

For example, if A finds a deal of the century, she receives the value of the outside option 

higher than the agreement in the current negotiation, whereas B is left with no payment. 

According to Rubinstein and Osborne (1990), with the assumption of complete infor­

mation, opting out is not a credible threat, and thus an outside option has no effect on 

the bargaining outcome. We conjecture that the introduction of stochastic realization of 

outside options can result in varied bargaining durations. We need to model an endogenous 

risk of breakdowns in our bargaining games. By introducing a decision variable such as 

each player's search intensity of outside options, we will have a bargaining model in which 

an outside option becomes stochastically available to players. In a discrete time model, for 

example, at the beginning of each negotiation period both players first compute their reser­

vation values and decide on their level of investment into the search to maximize expected 

payoffs. For example, let Vi(-) be a player i's continuation payoff after period t begins, 

so that both players decide on their investment levels to maximize Vi and V/. Then, one 

player quotes a price, to which the other responds. In other words, i quotes an offer x~ 

such that x~ = ~ax{VNQt, 1 - (V/ /Qt)}, which j accepts if x~ = 1 - (V/ /Qt) or rejects 

if x~ = vti /Qt > 1 - (ytj /Qt)· The game ends if the responder accepts the offer or if the 

responder rejects and at least one player finds a better option by the end of the period. If 

the responder rejects and no one finds a better option by the end of the period, the next 

negotiation period ( t + 1) opens. The game continues until a predetermined time hori­

zon is reached. Note that an agreement is generated by an increasing endogenous risk of 

breakdown, while the potential for finding a better outside option may cause a delay. We 
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shall solve for Nash equilibrium level of investment and may find conditions to guarantee 

a unique investment choice process. We shall also check conditions for the uniqueness of 

players' contingency plans or equilibrium payoffs. Res_ults should be compared to those of 

Rubinstein and Osborne (1990), which predicts unique subgame perfect equilibrium with 

the presence of outside options. Running simulations to study comparative statics, espe­

cially with respect to bargaining durations, is also recommended. 
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Part II 

Information and Order Flow in 

Experimental Markets 



Chapter 5 

Order Flow in Experimental 

Financial Markets 

5.1 Introduction 

The efficient market hypothesis, which has acquired widespread support in the fields of eco­

nomics and finance, states that financial markets with significant informational asymmetries 

such as securities exchanges are said to be efficient if the prices of the securities traded fully 

convey available information. In rational expectation settings, the informational efficiency 

of prices is achieved since the model predicts that the prices reflect all relevant private infor­

mation about the asset value, provided that the market is in perfect competition (Milgrom 

and Stokey (1982)). In other words, a market that provides an efficient mechanism for infor­

mation dissemination resolves uncertainty among rational traders. It has been successfully 

demonstrated in the related experimental economics literature that laboratory asset mar­

kets disseminate privately held information efficiently (Forsythe, Palfrey, and Plott (1982), 
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Plott and Sunder (1982), and Plott and Sunder (1988)). 

The existing market microstructure literature that investigates the information dissem­

ination and aggregation properties of markets in experimental context has mainly been 

constructed within a restricted framework in which traders are allowed to submit only mar­

ket orders. Limit orders, along with market orders, constitute an intrinsic part of financial 

market trading. For instance, in a market such as the Paris Stock Exchange, the Tokyo 

Stock Exchange, or the Toronto Stock Exchange, every market participant observes both 

market and limit orders entered by other members, so that one can utilize the information 

in estimating the demand and supply for a particular stock one is interested in trading. In 

other words, the traders condition their beliefs not only on the transaction prices, but also. 

on the more detailed order fl.ow that can be found in the limit order book. Consequently, 

the list of limit orders is part of a source for predicting the future stock prices, thereby influ­

encing transaction outcomes. In a specialist market such as the New York Stock Exchange, 

where investors submit limit orders to the specialist who is the only person having an ac­

cess to the list of all the limit orders, the specialist utilizes the information for promoting 

effective execution of orders. 

Likewise, it is a common practice for investors to submit limit orders in the operation 

of stock market. In the computerized simulated markets Bollerslev and Domowitz (1993) 

investigated, the size of the order book is shown to be positively related to the. amount of 

information available, for the price volatility decreases as the book length grows.1 Hence, we 

may conjecture that the system provided with a limit order book carries more information 

both implicitly and explicitly about the market, and the effects of allowing the traders to 

1This result is in accordance with Kyle(l985)'s theoretical findings. 
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have an access to such information should not be ignored. We attempt to investigate how 

the information conveyed in the order book affects the order flow ·in experimental financial 

markets with asymmetrically informed traders. 

In this chapter the markets are organized as computerized double auctions accommo-

dated with an order book that contains a complete list of current limit and market orders.2 

In practice, investors can submit limit orders in the operation of the stock market. In our 

experimental market all the participants can submit both market and limit orders. The list 

of the orders can be inspected by every market participant at any time during each market 

period. All of the trades are executed at outstanding quotes in the book. Our empirical 

analysis of the experimental data sets focuses on the series of actions taken by the subjects 

that include quote revisions, limit order arrivals, and trades. Players' actions are identified 

as events. The state of the book is updated immediately after the occurrence of each event. 

In the analysis of order flow, we report the presence of serial dependencies of order arrivals 

on the previous event type, the state of the order book, the size of the bid-ask spread, and 

the time intervals. The method of the analysis follows that of Biais, Hillion, and Spatt 

(1993).3 

We seek to provide an empirical analysis of the acquired data in an attempt to un-

derstand the order flow dynamics and to identify the determinants of the order fl.ow by 

creating a market that reflects several essential features of financial markets in a controlled 

laboratory environment. We are particularly interested in how the traders interpret various 

2The software we used is called MUDA, Multiple-Unit Double Auction, and has been developed at the 
California Institute of Technology. We describe our market organization in the next section. For more details 
of this software, refer to Plott (1991). 

3 Biais et al. uses summary statistics to characterize the order book and contingency tables to analyze 
the determinants of the order fl.ow in the analysis of data from the Paris Bourse. 
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states of the order book and how they typically respond to certain information they extract 

from the order book. In summary, our tasks in this chapter are i) to observe the interaction 

of subjects' behavior and the information conveyed in the transaction prices and the limit 

order book, ii) to ascertain the significance of the impact of information car.ried in the order 

book, iii) to empirically examine the determinants of the order fl.ow, and iv) to compare 

the results from the data acquired in the computerized laboratory financial markets with 

the previous findings in the literature of order fl.ow analyses, especially in comparison with 

those of Biais et al. (1993). 

The rest of the chapter is organized as follows. In section 5.2, we describe the organiza­

tion of our experimental financial market along with the details of the experimental design. 

In section 5.3, we give selected descriptive statistics on the acquired data sets. Section 5.4 

contains the analyses of the determinants of the order fl.ow, such as the previous event type, 

the state of the order book, the size of bid-ask spread, and the time intervals. We give brief 

concluding remarks and several ideas for a future research in section 5.5. 

5. 2 Experimental Procedure 

All of the experiments were conducted in the Laboratory of Experimental Economics and 

Political Science at the California Institute of Technology. The experiments were run on a set 

of computers operated in a local area network. The subjects were undergraduate students 

of various majors and backgrounds at the California Institute of Technology, and were 

recruited by the announcement of an invitation to participate in an economics experiment. 

They were told that the experiment would not require any prior knowledge of economics or 
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computers and that they would be paid the amount they have earned through their decision 

making in cash at the end of the experiment. We particularly recruited those who have 

never participated in an experiment of the similar environment before. 

Once the subjec.ts were in the laboratory, each person was randomly seated at a terminal 

where he/she was given a packet of instructions along with a subject identification number.4 

The content of the packet is described in detail in the section below where the market 

environments are discussed. The subjects were read the instructions by the experimenter, 

and several examples were given on a board to enhance their understanding of the rules. 

Approximately thirty minutes were spent for the instructional purposes. Then a practice 

period, Period 0, was run for 7 minutes to accustom the subjects to the rules and the 

environment. The procedure that is specific to each market environment is also included 

below. We ran 15 periods in each experimental session, in which each peirod lasted for 5 

minutes. The subjects were aware of the length of each period, but were not told how many 

periods would be run. After each session has ended, each subject was paid in cash before 

leaving the laboratory. 

5.2.1 Market Organization 

All of the markets were organized as a computerized double auction accommodated with 

an open limit order book. The subjects can submit market and limit orders at any time 

during a trading period through their terminals. The subjects' actions are transparent in 

that everyone has an access to observe everyone else's action at any time during a trading 

peirod, including the activities in the order book. The order book shows the market and 

4 A copy of the instruction packet used in the actual experiments is included in Appendices 5D and 5E. 
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limit bid and ask quotes along with the associated quantities and the subject identification 

numbers. The price priority rule is enforced over the time priority rule. The size of the 

book can be considered infinite in that the complete list of the limit orders were listed in 

our experiments, though there is a physical limit. We consider the lowest limit order on 

the sell-side as the standing market ask and the highest limit order on the buy-side as the 

standing market bid. Hence, orders entered as limit orders automatically become standing 

market orders when they are the lowest or highest on each side of the book. The limit 

orders do not have a prespecified lifetime; that is, the subjects are allowed to keep or revise 

the orders as they wish. Hence, an unexecuted limit order remains in the book until it is 

deleted by a person who has entered it. However, the limit order book is cleared at the end 

of each trading period; that is, any orders remaining at the closing of a trading period are 

not carried over to the next period. 

Transactions can occur only at the current standing quotes, which eliminates the pos-

sibility of transactions at prices strictly within the bid-ask spread. Along with the data 

in which we can keep track of each subject's choice of actions, this feature is a significant 

advantage of our experimental markets in the analysis of the order flow, since we can readily 

identify each trade as buyer-initiated or seller-initiated. 5 

5In the analysis of data from stock exchanges, we need to employ certain methods to classify the direction 
of each transaction. But since many transactions occur within the bid-ask spread and since we do not know 
who exactly is a seller or a buyer, it is difficult to classify every transaction accurately just by looking at 
the transaction prices data. For such classification methods, refer, for example, to Blume, MacKinlay, and 
Terker (1989). 
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5.2.2 Experimental Design 

The experimental design described in this section is summarized in Tables 5.la, 5.lb, 5.lc, 

and 5.ld. There are two types of market environments, which we often refer to as the 

market 1 environment and the market 2 environment. The four data sets analyzed and 

reported here are indexed as 042393b:Marketl, 042393b:Market2, 042393c:Marketl, and 

042393c:Market2, where 042393 indicates that the experiment was run on April 23, 1993. 

The market 1 environment simulates a financial market with no specialist, where assets 

of uncertain values are traded in the presence of asymmetric information among subjects. 

The market 2 environment is a simple competitive market design often used in testing a 

competitive behavior of subjects characterized by symmetric demand and supply schedules. 

In each experiment, there are eight subjects, half of which is identified as type I and the 

other half is type II in the market 1 environment, while half is a seller and the other half is 

a buyer in the market 2 environment. Each packet of instructions contained the materials 

that identify the subjects with these types along with a copy of the general instruction. 

Market 1 environment 

In this hypothetical asset market, three subjects are randomly chosen before the beginning 

of each period to become insiders in market 1. 6 The insiders are given an opportunity to 

observe an ex post liquidation value of the risky asset. Assuming anonymity, each subject 

does not know who is informed or uninformed other than about himself /herself. There 

is no exogenous arrival of information regarding the value of the asset in the middle of 

each trading period, so that the information revelation is endogenous. Consequently, in 

6We refer to the informed subjects as insiders despite that other interpretations are possible. 
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such a market environment, uninformed traders have access to only the market-generated 

information. 

The asymmetric information in the market is generated in the following manner. Each 

period is associated with one of three states, X, Y, and Z, which is known to only the 

insiders. 7 The value of the asset varies from person to person, and from state to state. 

Therefore, the asset value to each subject is defined by one of the state-dependent types, 

type I and type II, which specify the asset's dividend value for a given state. These types are 

given in Table 5.2a. The dividend values follow those used by Forsythe and Lundholm (1990) 

in their investigation of information aggregation properties of experimental markets. The 

state of each period was determined randomly by the experimenter before the experiment 

sessions by using a random number table. After each trading period has ended, the state 

of the past period becomes public information, and the subjects compute their profits for 

the period. 

Market 2 environment 

The market 2 environment is described by a set of demand and supply schedules illustrated 

in Figure 5.1. It is a symmetric market with respect to supply and demand, in which each 

trader is classified as either a buyer or a seller and is provided with a table containing one's 

own reservation values for units one trades during a given trading period.8 

7Refer to Table 5.lb. 
8Refer to Tables 5.2b through 5.2d. 
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5.3 Descriptive Summary 

Figures 5.2a through 5.2d show the obtained time series of transaction prices from the 

experiments. Several summary statistics are included in Tables 3a through 3d in order to 

provide some intuition for the acquired data sets. The trading volume in the tables is the 

number of units traded in each period, which is equivalent of the number of transactions 

since in our experiment the subjects are not allowed to place multiple-unit orders. Note that 

it is not necessarily equal to the total number of contracts outstanding at the end of each 

trading period. This indicates the existence of a trader who has taken both a long position 

and a short position within the same period.9 An action taken by the subjects is identified 

as an event that belongs to one of ten event types. These event types are described and 

explored in detail in the following sections. But briefly, on the buyers' side they are "take 

ask," which results in immediate trading at the standing ask price, "new bid > standing 

bid," meaning a buyer overbidding the current standing bid, "new bid = standing bid," 

meaning a buyer entering a new bid equal to the current standing bid that will be recorded 

in the limit order book, "new bid < standing bid," meaning a_ buyer entering a new bid 

lower than the current standing bid that will also be recorded in the book accordingly, 

and "cancel bid," meaning a buyer cancelling a bid he has entered previously. The event 

types on the sellers' side are defined analogously. The price change is defined as a difference 

between transaction prices at transaction times t and t -1. The bid-ask spread is expressed 

in francs that is a difference between the lowest ask quote and the highest bid quote, and is 

9 This is commonly observed in real exchanges. For example, the volume of trading in some commodity 
futures contracts in a day can be larger than its open interest at the end of the day, reflecting a large number 
of day trades. 
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updated whenever a new event occurs. The time between events is a time elapsed in seconds 

between two consecutive events. Additional descriptive statistics on the market activities, 

such as the number of bids or asks, the size of the bid-side or ask-side spread in the order 

book, and the size of the bid-side or ask-side depth are included in Figures 5.3a through 

5.4d. 

5.3.1 Trading Activities and Bid-Ask Spreads 

We include variables such as the trading volume and the number of events for each period 

as direct measures of the level of trading activities. A glance over the number of events 

in ·each market indicates that the subjects are generally more active in the markets with 

information asymmetry than in the market 2 environment, where the equilibrium trading 

volume predetermined by the experimenter has proven to prevail by previous researchers. 

This simply confirms the conjecture that the speculators make a market active and that an 

active market attracts speculators. This indicates the positive relation between the trading 

volume and the absorptive capacity of the market, or the liquidity of the market.10 

The previous literature has found that the level of trading activities is a determinant 

of the bid-ask spread. Mclnish and Wood (1992) study the intraday patterns of bid-ask 

spreads in the NYSE data and find that the size of bid-ask spread is significantly inversely 

related to the number of trades and the number of shares per trade.11 Our data do not 

necessarily contradict their findings, but it is not clear whether we can conclude that it is 

true in the analysis of the data on the inter-period basis. In Table 5.3a both the trading 

1°For example, see Kyle (1985) and Admati and Pfleiderer (1988). 
11Copeland and Galai (1983) show that the bid-ask spread is inversely related to the frequency of trading. 

For the analysis of data for intervals of a day or longer, see Tinic and West (1972), and Benston and 
Hagerman (1974). 
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volume and the event frequency are highest in period 12 where the mean bid-ask spread 

is 56.11 francs, whereas in period 1, where the event frequency is lowest and the trading 

volume is relatively low, the mean bid-ask spread is 104.02 francs. But in period 2, where 

the trading volumE:l is lowest and the event frequency is relatively low, the mean bid-ask 

spread is 40.86 francs with a low standard deviation, which is smaller than 56.11 francs. 

We also find such inconsistencies in the other three data sets.12 Accordingly, we find that 

it is difficult to conclude that the level of activities is a significant determinant of bid-ask 

spreads in our data sets. This inconsistency with the prior work, however, certainly does not 

mean that our laboratory markets have produced uninterpretable data. The key argument 

made by previous researchers as a reason of the inverse relationship between the trading 

activities and the spread size is the economies of scale in transactions costs, i.e., an increase 

in trading activities results in lowering the trading costs due to the economies of scale, 

which in turn leads to a smaller spread.13 In the absence of transactions costs, we need 

to seek for another interpretation. Moreover, there is empirical evidence that the pattern 

of differences in bid-ask spreads across days of a week is not stable over time compared to 

their intraday patterns.14 Since our notion of a period supposedly corresponds to a day, 

this instability might have contributed to the observed inconsistency. 

Mclnish and Wood (1992) also find the crude reverse J-shape pattern in the analysis 

of the minute-by-minute bid-ask spreads. Figures 5.7al and 5.7a2 shows two examples 

of the intra-period patterns of bid-ask spreads that approximately follow a reverse J-

12 Along with Tables 5.3a through 5.3d, refer also to Figures 5.3a through 5.3d, which show the average 
bid and ask in francs and the average number of bids and asks computed for each period. 

13 An alternative interpretation is due to Ho and Stoll (1983) in inventory control models of a dealership 
market, where increasing trading volume may lead to a larger spread if dealers are put in an undesired 
inventory position. 

14This statement was noted by Mclnish and Wood (1992). 
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shape pattern. The spreads are large in the early stage of the given period, then they 

become smaller in the middle, followed by slightly larger spreads near the end of the period. 

Examples in which the pattern observed is very different from the reverse J-shape pattern 

are given in Figures 5.7bl and 5.7b2. In period 10 of 042393c data, the spread becomes 

smaller almost monotonically as time advances. Since the market is designed as that of 

asymmetric information, we can interpret it as follows. The private information was revealed 

fairly early in the period that led to a gradual but permanent information adjustment 

and eventually was conveyed into prices by the end of the period. Hence, there is· no 

informational shock near the end of the period nor speculation of higher risk. Another 

example included in Figure 5.7b2 is the pattern in period 12 of042393c data. The data shows 

the spread widening later in the period followed by a succession of very large spreads. This 

observation can be interpreted that the private information was successfully concealed by the 

insiders in the early stage and that there was an informational impact later in the period.15 

In fact, we can observe in the time series graphed in Figure 5.2b that the transaction prices 

begin to rapidly move up to a price level predicted by the rational expectations model in 

the last half of the period. Likewise, the spread size depends on how the information is 

assimilated into the market price reflecting the insiders' strategies that may not be obvious 

to the others. 

15By using NYSE data Mclnish and Wood (1992) show that there is a direct relationship between spreads 
and the amount of information comimg to the market. 
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5.3.2 Inferences Concerning Variances 

In the next observation we deal with inferences concerning variances of the selected variables. 

The standard deviation of transaction prices are higher in the market 1 environment than in 

the market 2 environment in period-by-period comparison, except for a few periods. This 

result is consistent with previous theoretical and empirical findings. In market 2 each trader 

has no uncertainty about the asset value since one's reservation value is predetermined and 

given to him in the beginning of the experiment, while in market 1 there exists uncertainty 

regarding the ex post liquidation value among the subjects except for three randomly chosen 

insiders. Hence, there is no necessity of speculation nor information extraction from prices 

in the market 2 environment, whereas the information that is available to the insiders in 

the market 1 environment may not be fully absorbed into prices especially in the early 

stage of each period. The large price volatility increases speculative profits by increasing 

the chances of buying low and selling high in an asymmetric information market where 

speculating traders condition their actions on the prices. In Kyle's (1985) insider trading 

model, he finds that the price volatility decreases as information is conveyed into prices. The 

empirical investigation conducted by Bollerslev and Domowitz (1993) reports the negative 

monotonic relation between the amount of available information and the price variability.16 

The findings on the standard deviation of price changes also fall in line with this argument. 

The standard deviations of bid-ask spreads are also higher in the market 1 environment 

than in the market 2 environment. This is consistent with Bollerslev et al. 's finding that the 

standard deviation of transaction prices and that of bid-ask spreads follow similar patterns. 

16In the Bollerslev et al.'s simulated markets, the level of available information is modeled as a varied 
length of the electronic order book, in which the longer book size indicates more information available in 
the market. 
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The above observations are supported formally by the following statistical arguments. 

Since it is not doubtful whether the assumption of normality is appropriate for the distri-

bution of such variables by observing their skewness and kurtosis, we can employ the ratio 

of the variances as a test statistic for testing the hypotheses 

(A) Ho 0"2 0"2 • 
trl = tr2 ' Ha 

2 2 . 
O"trl > O"tr2 

0"2 - 0'.2 • Ha 
2 2 

pcl - pc2 ' O" pcl > O" pc2 (B) Ho 

(C) Ho 0"2 0"2 • 
bal = ba2 ' Ha 

2 2 
O"bal > O"ba2' 

where a-tri, o-~cl, and a-ial are the variance of transaction prices, price changes, and bid-

ask spreads in Market 1, respectively, and the others are defined analogously. The data 

from 042393b and 042393c are pooled by market environment.17 The test statistics and 

the critical regions are shown in Table 5.4. We find the results in favor of the alternative 

hypothesis for all three cases; in other words, there is sufficient evidence to doubt the 

equality of the variances of these variables between the two market environments. Hence, 

we can conclude·that the data support the contention that there is more variability in the 

transaction prices, the price changes, and the bid-ask spreads in markets with information 

asymmetries. 

17The standard deviation of transaction prices in the market 1 environment is calculated o~er the trans­
action prices pooled across 15 periods in Market 1 of both 042393b and 042393c data sets. The standard 
deviations of price changes and of bid-ask spreads are defined similarly. 
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5.3.3 Other Findings on the Descriptive Statistics 

With insiders present in the market 1 environment, the rational expectations model and the 

prior information model predict different transaction prices for three different states X, Y, 

and Z, while they·predict the same price for any state in the market without insiders.18 As 

it can be observed in Tables 5.3a and 5.3b, the mean transaction prices differ in period-by­

period comparison, whereas it is not obvious among the mean price changes and the mean 

bid-ask spreads. We perform an analysis of variance to test whether the differences among 

the means of selected descriptive variables in the three states in the market 1 environment 

are significant. The null hypotheses are 

(A) Ho 

(B) Ho 

(C) Ho 

where µtrx, µpcX, and µbaX are the mean transaction price, the mean price change, and the 

mean bid-ask spread in X-state periods, respectively, and the others are defined similarly. 

The alternative hypothesis to each null hypothesis is that the µ 's are not all equal. The 

ANOVA tables are included in Tables 5.5a and 5.5b. The null hypothesis is rejected for 

the mean of transaction prices in both 042393b and 042393c data sets at any reasonable 

level of significance. In other words, the transaction price series fluctuate about different 

levels in different states. Therefore, the series is nonstationary in the mean. This result can 

easily be inferred from the time series plot in Figures 5.2a and 5.2b, in which both inter-

18Refer to Table 5.ld. 
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and intra-period series show a time trend and wander away from a fixed horizontal level. 

Nonstationarity can be caused by a shift in the influence of periodic factors. In inter-period 

time series, it is the change in the information on the terminal value of the asset that 

becomes available to three traders at the beginning of each trading period .. In intra-period 

time series, it may reflect an uneven assimilation of information throughout a given trading 

; 

period. Hence, this result confirms the existence of insiders in the markets according to 

the rational expectations model's and the prior information model's predictions. The null 

hypothesis cannot be rejected for the mean price change, indicating that the observed 

difference between the two means is not significant. Hence, one cannot conclude that the 

means of price changes vary among different states. In addition, we can say that the process 

resulted by taking successive differences of transaction prices is stationary, indicating that 

the original series could be a homogeneous nonstationary process of order one. It suggests 

a potential application of Autoregressive integrated moving average (ARJMA) models, that 

are frequently used in the the analfsis of capital markets, to our experimental time series. 

These results should be visited again when we deal with the specification of time series 

models. The difference in the mean bid-ask spreads is significant at the 0.05 level of 

significance in both 042393b and 042393c data, but is not at the 0.01 level in 042393b data. 

The unconditional frequencies of ten event types are computed for the data pooled 

across 15 periods and included in Table 5.6, and are also computed for each period of the 

four data sets and included in Tables 5.7a through 5.7d.19 The data in the tables will be 

compared to the frequencies that are conditional on several variables in the next section, 

where we turn our attention more
1 
to the determinants of the order fl.ow. Before moving 

19Hence, each column in the tables sums to 100. 
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on to the analysis of the order flow, however, we shall determine whether there in fact is a 

relationship between the state of the market and the event frequencies. The states of the 

market we look at here are the X, Y, and Z states in the market 1 environment that are 

defined in section 2. We test the null hypothesis concerning proportions, 

Ho Pix= PiY = Piz, for i = 1, ... , 10, 

where Pij is the unconditional frequency of event i in state j, with L::i~1 Pij = 100 for 

each of the three states. The alternative hypothesis is that the P's are not equal for at 

least one event type. This is equivalent of testing an existence of a dependence between the 

proportion of certain event type and the state of the market. We compute the following 

statistic for the test. 

2 _ ~ ~ ( Oij - Eij )2 . (2::~=1 Nij) (l:j=l Nij) 
x - ~ ~ . . , with Eij = N , 

. . 1 EiJ total i=l J= 

where Oij is the observed and Eij is the expected frequency of event i in state j, and r and 

c are the number of event types and states, respectively. The results included in Table 5.8b 

along with the contingency table in Table 5.8a clearly show that the null hypothesis has to 

be rejected in both 042393b and 042393c data sets at any reasonable level of significance. 

Hence, we conclude that there is a dependence between the frequencies of event types and 

the state of the market, so that the probability of certain event's occurrence is not the same 

for the three different states. We note that this result should be referred when the evidence 

of information dissemination in the market is investigated. 
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5.4 Analysis of the Order Flow 

As it was mentioned earlier, we have differentiated subjects' actions into ten categories, 

and identify them by different event types. These event types are used as indices of the 

direction and the level of aggressiveness of an action. 20 The direction indicates whether 

a trade is buyer- or seller-initiated, and with our data sets we can classify the direction 

accurately. Event 1, for example, is "take ask," which results in an immediate trading at 

the current standing ask quote and thus is the most aggressive type of action taken by 

a buyer. Event 2 is the second most aggressive action by a buyer, which is "new bid > 

standing bid" that results in replacing the current standing bid. We call such orders market 

orders in our experimental markets. Event 3 and Event 4 are "new bid = standing bid" and 

"new bid < standing bid," respectively. These orders will be placed in the limit order book 

according to price priority over time priority rule, and they are called limit orders. Event 5 

is "cancellation" that removes a previously entered market or limit order. The event types 

on the sellers' side are defined analogously. 

Table 5.6 reports the unconditional frequencies of ten event types over the data pooled 

across 15 periods for each of the four data sets. Among the buyers' side activities, "take 

ask" is the most frequent event type and "new bid > standing bid" is the second most 

frequent event type in two of the four data sets, while the latter is the most frequent .event 

type in the other two. In all of the four data sets, the orders away from the standing quotes, 

20This differentiation of event types follows the method used by Biais, Hillion, and Spatt (1993), except 
that they have 15 categories instead of 10. This is because in our experimental market the subjects are 
instructed not to enter multiple-unit orders, whereas in t.he Paris Bourse it is allowed as a matter of course. 
Therefore, Biais et al. 's differentiation includes the notion of the size of an order such as "large buy" and 
"small buy." We also do not have a category that they call "applications," which are prearranged trades 
put through the market at or within the best quotes. 
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i.e., "new bid< standing bid," occupy low frequencies. Analogously, on the sellers' side the 

events such as "take bid," "new ask< standing ask," and "new ask= standing ask" receive 

high frequencies compared to "new ask> standing ask" and "cancel ask." In general, most 

of the activities is within the bid-ask spread and at the standing quotes, which agrees with 

Biais et al. 's findings from the Paris Bourse data.21 The subjects are anxious to participate 

actively in the trading processes instead of waiting in line to be hit by the other side of 

the market, reflecting the competition for price priority. The uninformed subjects are also 

hesitant to place orders away from the standing quote with the risk of being hit in case 

of unexpected informational events, whereas the informed subjects are reluctant to take 

the risk of revealing their privately held information too soon by letting the book carry 

more informaiton. Hence, the subjects seem to recognize the higher adverse selection cost 

associated with the quotes away from the standing quotes. 

Tables 5.7a through 5.7d provide the unconditional frequencies of ten event types com-

puted for each period of the four data sets. The data included in these tables seem to 

conform to the statement above. It has to be noted, however, that the event frequencies 

are found to be dependent on the market environment as it was discussed in the previous 

section. This finding can be considered as a piece of evidence that the order flow reflects 

the information dissemination process, and that it presumably reflects different information 

differently. Hence, the more of the order flow one has an access to observe, the more infor-

mation one has a chance to extract. Consequently, this point confirms the contention made 

by Bollerslev et al. that the longer book seems to provide more information. 

21 Biais et al. also cite Harris and Hasbrouck's (1992) result on the NYSE data that is also consistent with 
our findings. 
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We depict the intraperiod frequencies of events in Figures 5.5al through 5.5d2. We 

divide each period into 10 intervals of 30 seconds, and compute the frequencies of events 

in one interval relative to the other intervals. In the Paris Bourse data Biais et al. found 

a prominent U-shaped pattern in the frequencies of orders and trades, in which market 

activities are relatively frequent in the morning and near the end of the trading day. In 

our data sets this pattern is not observed. In fact, in the market 1 environment it is 

difficult to identify if there is any pattern among the event frequencies. The markets seem 

to remain active throughout the trading period. This may be due to the short time limit 

we have set for each period. In the market 2 environment it appears that the market is 

reiatively active right after the opening and that events gradually become less frequent as 

the competitive equilibrium is achieved. These figures show this contrast of markets with 

information asymmetry and without one clearly. 

5.4.1 Frequencies of Event, Conditional on the Previous Event Type 

Tables 5.9a through 5.9d document the frequencies of ten event types conditional on the 

previous event type that is also identified as one of the ten event types.22 The price improve­

ment tends to occur right after a trade; that is, "new bid > standing bid" and "new ask < 

standing ask" have high frequencies relative to the other events after "take ask" or "take 

bid" has just occurred. This observation reflects the subjects' competition for· the supply 

of liquidity after the liquidity is consumed by the trade. The high probability of "new ask 

< standing ask" after "take bid" and of "new bid > standing bid" after "take ask" could 

also be an evidence of information effects in the order flow. After one seller observes that 

22Hence, each row in the tables sums to 100. 
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another seller has accepted a standing bid, he may react to this event by entering an ask 

that can replace the current standing ask as a part of information adjustment process. Biais 

et al. (1993) interpret the shift in the order book due to large transactions as information 

effects. But they do not observe such shifts due to small transactions. Our finding, however, 

is an indication that traders are capable of extracting some information even from a unit 

transaction. The frequencies of these overbidding and undercutting event types conditional 

on the last event being a trade also tend to be higher than their unconditional frequencies. 

They also have high probabilities of occurrence after the placement of new orders at or 

within the standing quotes on the same side of the market, although they are not most 

frequent under this condition unlike Biais et al.'s finding in their data set.23 This is also a 

reflection of the competitive behavior of the subjects for the supply of liquidity.24 

The frequency of "take bid" by a seller is high right after an overbidding action by a 

buyer, and the frequency of "take ask" by a buyer is high right after an undercutting action 

by a seller. This shows the existence of traders waiting to pick up a more favorable offer 

and competing for trade execution. 

The diagonal effect that was observed in Biais et al. 's analysis of the Paris Bourse 

data is also present in our data sets. The frequencies on the diagonal of each table are 

generally large compared to the frequencies in the other rows of the same column; that is, 

the same type of event tends to occur in succession. 25 In addition, they tend to be larger 

than the unconditional counterpart of the frequencies, meaning that the probability of a 

23Note that the probabilities of overbidding and undercutting behavior are also high after the price im­
provement on the opposite side of the market. 

24Biais et al. (1993) cite Ho and Stoll (1983) and Kyle (1985) for the models of competition for the supply 
of liquidity. 

25 Hasbrouck and Ho (1987) find strongly positive autocorrelations in the buy-sell indicator series for 
NYSE data. 
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particular event's occurrence is higher after the same type of event has just occurred than 

the probability expected unconditionally. This observation of positive serial correlation 

in event occurrence can be provided with several interpretations. The effect may reflect 

the subjects' behavioral pattern that they tend to interpret and react to the available 

information in a similar fashion, resulting in the succession of the same event type. A 

sequence of consecutive overbidding behavior, for example, may initiate an upward shift 

in the bid-ask spread leading to a permanent information adjustment. It may also reflect 

another behavioral pattern that some subjects learn to imitate the action of other subjects 

who are trusted for their accurate interpretation of information. Hence, some subjects 

extract information from the flow of other subjects' actions that works as a signal of what 

they are supposed to do. Or since the subjects are instructed to place a single-unit order 

at a time in our experiments, the same person may enter the same order consecutively with 

a short time interval in order to acquire an opportunity for trading multiple units. The 

diagonal effect of actions that result in an immediate trading such as "take ask" and "take 

bid" also reflects the positive relationship between the intensity of trade and the liquidity. 

If traders have discretion over the timing of their trades, they tend to bunch at times when 

they expect the others to be trading as well, for that is the time at which the liquidity is 

highest.26 

The statistical significance of the differences between the conditional and unconditional 

frequencies noted in the discussion above is shown by the following argument. We calculate 

26This is the central finding by Admati and Pfleiderer (1988). Kyle (1985) shows that this effect is 
enhanced with the presence of informed traders. 
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the multinomial chi-square sum in order to test the hypotheses, 

Ho 

Fj,k # U F~ for some k, 

where Fj,k is the frequency of event k in the data set i, conditional on the previous event 

being j, and U F~ is the unconditional frequency of event k in the data set i. The x2 statistic 

is calculated for ten different last event types in each of the four data sets. For example, 

the x2 statistic for event type j in data i is 

10 (F~ _ U pi)2 
X2 = N·. '"°" J,k . k 

3 L..t UFi ' 
k=l k 

where Nj is the number of the observations with the previous event type being j. This 

follows the x2 distribution with the degrees of freedom equal to 9, which is the number 

of event types minus 1.27 The computed x2 values are included in Table 5.10. The null 

hypothesis is clearly rejected for any last event type in all of the four data sets, indicating 

that the difference among the unconditional and conditional frequencies are statistically 

significant. Therefore, we can conclude that a current event type is not independent of the 

last event type in our experimental financial markets. 

27The critical values for the significance levels 0.05 and 0.01 are x5.05 (9df) ~ 16.919 and x5.o1 (9df) ~ 
21.666, respectively. 
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5.4.2 Frequencies of Event, Conditional on the State of the Order Book 

In this section we look at the discrepancy between the unconditional frequencies and the 

frequencies of event conditional on the previous state of the limit order book. The limit 

order book is characterized by nine different states, which depend on the relative size of 

bid-side and ask-side spreads and of bid-side and ask-side depths of the book. The bid-

side spread is defined as the difference in francs between the standing bid quote and the 

lowest bid quote listed last in the limit order book. 28 The bid-side depth is defined as 

the number of orders listed in the limit order book plus 1 unit of the standing bid. 29 The 

ask-side spread and depth are defined similarly. State 1, for example, is "(bid-side spread 

> ask-side spread) /\ (bid-side depth > ask-side depth)," state 2 is "(bid-side spread > 

ask-side spread) /\ (bid-side depth= ask-side depth)," state 3 is "(bid-side spread> ask-

side spread) /\ (bid-side depth < ask-side depth)," and so on. The state of the book is 

updated whenever there is a new event. Tables 5.lla through 5.lld report the conditional 

frequencies, in which each row corresponds to each state.30 

The frequencies of "take bid" tend to be high when the ask-side depth is larger than or 

equal to the bid-side depth, whereas those of "take ask" tend to be high when the ask-side 

depth is smaller than the bid-side depth. The former reflects the selling pressure with 

more people waiting to sell, and the latter reflects the buying pressure with more people 

waiting to buy. A similar pattern is observed in the undercutting and the overbidding 

behavior. The high probabilities of the placement of new asks within the bid-ask spread 

28If there is no bid or only a standing bid, the spread is defined to be 0. 
29Since only a sigle-unit order is allowed, this is equivalent of the total number of units listed in the book 

incl~ding 1 unit of the standing bid. For instance, the depth is 0 if there is no order, and the depth is 1 if 
there is only a standing bid and no order in the book. 

30Hence, each row in the tables sums to 100. 
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or at the standing quotes when the ask-side depth is larger than or equal to the bid-side 

depth indicate that a number of the participants are anxious to gain time priority to sell, 

while the high probabilities of new bids within or at the market standing quotes reflect the 

opposite. 

We conduct the x2 test to confirm the discrepancy between the unconditional and the 

conditional frequencies. The hypotheses tested are 

Ho BFj,k = UF~ 'ef k 

Ha BFj,k =f. UF~ for some k, 

where BFj,k is the frequency of event k in the data set i, conditional on the state of the 

book being j, and U F~ is the unconditional frequency of event k in the data set i. For 

example, the x2 statistic for the book state j in data i is 

10 (BF~ - UFi)2 
2 _ N·.""""' 1,k k 

X - J L.J UFi ' 
k=l k 

where Nj is the number of observations with the state of the book being j. Again, this chi-

square statistic has 9 degrees of freedom, which is the number of event types minus 1. Table 

5.12 contains the computed test statistics. The null hypothesis is rejected for any reasonable 

level of significance. Therefore, we have confirmed the presence of dependency between the 

order flow and the state of the order book in our experimental financial markets. 
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5.4.3 Frequencies of Event, Conditional on the Size of Bid-Ask Spread 

In Tables 5.13a through 5.16 we define the size of the bid-ask spread to be large if it is 

at least as large as the time-series mean of bid-ask spreads through 15 periods, and to be 

small otherwise.31 The frequencies of "take ask" and "take bid" are relat1.vely high when 

a bid-ask spread is smaller than the mean bid-ask spread; that is, trades tend to occur 

when a bid-ask spread is tight. The frequencies of "new bid > standing bid" and "new ask 

< standing ask" are relatively high when a bid-ask spread is larger than or equal to the 

mean bid-ask spread; that is, overbidding and undercutting behavior tend to occur when a 

bid-ask spread is large. Other events such as new orders away from the standing quote do 

not appear to be affected by the size of bid-ask spread. These findings are consistent with 

Biais et al. 's findings on the Paris Bourse data. 

We conduct a x2 test again to see the statistical significance of the discrepancy between 

the conditional and unconditional frequencies of the events. The hypotheses tested are 

Ha SFj,k =f. UF~ for some k, 

where SF~ k is the frequency of event k in period i, conditional on the size of the bid-ask 
J, 

spread right before the event being j, and U F~ is the unconditional frequency of event k in 

period i. For example, the x2 statistic for the bid-ask spread size j in period i is 

10 (SF~ - U Fi)2 
2 '"" J,k k 

X = Nj . L.J U pi ' 
k=l k 

31 Note that in Tables 5.13a' and 5.13b' the mean is computed for X-, Y-, and Z-state periods. 
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where Nj is the number of observations with the bid-ask spread being j. This chi-square 

has nine degrees of freedom, which is the number of event types minus one. As it is clear 

by observing the computed x2 statistics reported in Table 5.14, we can reject the null 

hypothesis at any reasonable level of significance. Hence, we can conclude that the size 

of bid-ask spreads affects the frequencies of different events in our experimental :financial 

markets. 

5.4.4 Time Intervals between Events 

The distributions of time intervals between two consecutive events are graphed in Figure 

5.8a through Figure 5.8d. Over 50 percent of all events occur in 2 seconds after another event 

has occurred in the market 1 environment, and about 50 percent in 3 seconds in the market 

2 environment. Part of the short time intervals may be due to the stringent time limit we 

set for each period, or may be reflecting quick responses of subjects to observed events in 

competition for time priority. The frequency of events almost monotonically decreases as the 

time interval increases. Hausman et al. (1992) studied 1988 transactions data for selected 

U.S. stocks, and found similar patterns in the depiction of the time-between-trades for the 

stocks with relatively large market capitalization.32 Biais et al.'s empirical distribution of 

the time intervals of the Paris Bourse data also showed the similar pattern. 

Tables 5.15a and 5.15b show mean time intervals between two events conditional on the 

last event type, the state of the order book, the size of bid-ask spread, and the size of the 

last time interval. The size of the last time interval is defined to be large if it is larger than 

32In their sample derived from the Institute for the Study of Security Markets database, International 
Business Machines Corporation has the largest market capitalization with a market value of $69.8 billion, 
and Handy and Harman Company has the smallest. The smaller, less liquid stocks showed a very different 
pattern. 
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or equal to the time series mean of time intervals computed from the data pooled across 

15 periods, and to be small otherwise. The mean time interval after a small time interval 

is smaller than that after a large time interval in all of the four data sets. This suggests 

the existence of an alternating pattern of intense and sparse activities during a trading 

period. This pattern was also observed by Biais et al. The differences between the means 

conditional on the last time interval are shown to be statistically significant below. The 

mean time interval after the large bid-ask spread is larger than that after the small bid-ask 

spread in three of the four data sets. This contradicts the findings by Biais et al. on the 

Paris Bourse data. But in two out of the three cases th.e difference is not significant. 

Mean time intervals after order placements at standing quotes are short, reflecting that 

some subjects wishing to trade multiple units at the same price enter multiple orders for 

a single unit of the same price within a short time. 33 An event after a cancellation tends 

to occur quickly, too. In fact, another cancellation often follows one cancellation with a 

short time interval, reflecting a quick response of other observant subjects or a sequence 

of multiple cancellations by the same subject to incorporate newly acquired information 

into their decisions. On the other hand, mean time intervals after a transaction tend to be 

larger than their unconditional counterpart. The intervals after overbidding or undercutting 

events are smaller than the intervals after a transaction in 042393c data, but they are larger 

in 042393b data though not by much. 34 

The intervals conditional on the state of the book indicate that an event tends to occur 

quickly when the state of the book is strongly asymmetric between the bid-side and the 

33Note again that in our experiments the subjects are not allowed to enter multiple-unit orders. 
34In Biais et al. 's analysis of the Paris Bourse data, they found that the mean time interval is shortest 

after market sell orders, and relatively short after market buy orders. 
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ask-side. In other words, if a difference between the bid-side and the ask-side spread is 

large at the same time when a difference between the bid-side and the ask-side depth is 

large, then the next event tends to occur in short time. If those differences are small, the 

time interval before the next event tends to be large. This is the indication that the subjects 

interpret that a shape of a book may become very asymmetric in a process of information 

assimilation, reflecting a significant amount of private information and emitting a signal 

that the current price needs to incorporate the information quickly. Hence, it results in the 

subjects' reacting to their observation quickly. 

In order to support the above observations formally, we perform an analysis of variance 

to test each of the following hypotheses. 

(A) Ho 

(B) Ho 

(C) Ho 

(D) Ho 

µeventl = µevent2 = · · · = µeventlO 

µstatel = µstate2 = · · · = µstatelO 

µspreadlg = µspreadsm 

µintervallg = µintervalsm1 

where µeventl, µ8~ate1, µspreadlg, and µintervallg are the mean time intervals conditional on the 

previous event type being 1, the state of the book being 1, the size of bid-ask spread being 

large, and the previous time interval being large, respectively, and the others are defined 

similarly. Computed F ratios for the treatments are reported in Table 5.16. According to 

these statistics, it is difficult to conclude that the size of the previous bid-ask spread has a 

significant influence over the time interval, for the null hypothesis ( C) cannot be rejected 

in three of the four data sets. On the other hand, in three out of the four data sets the null 
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hypothesis (B) is rejected, indicating the time interval may be influenced by the state of the 

book. In addition, the time intervals are clearly dependent on the previous event type and 

the last time interval. Hence, we may conclude that. the time interval between two trades 

or events carries information that is valuable to the market participants' decisions. 

It is also interesting to inspect Tables 5.17a and 5.17b, which contain mean time intervals 

jointly conditional on the previous event type, the state of the book, and the size of the last 

time interval. 

5.5 Concluding Remarks 

We conclude this chapter by describing potential research interests on our data sets. 

Prices provide an important source of information along with other variables. In fact, it 

is a common practice for securities' traders to study price changes in forming their invest-

ment decisions. Our empirical investigation on the determinants of the order fl.ow indicates 

that the complex nature of order placements is closely related to price dynamics. It brings us 

to study how this interdependence between the order fl.ow and the price dymanics functions. 

We need to analyze the movement of intra-period price changes conditional on the history 

of order fl.ow, whereas many previous works have focused on unconditional distribution of 

price changes. 35 In so doing discreteness of price changes should not be ignored especially 

for intraperiod price movements, since such finely-sampled price changes may take on only 

several distinct values. 

As it was indicated in the previous section, orders arrive in varied time intervals. Since 

a5 Easley and O'Hara (1987) find that the order fl.ow affects the conditional distribution of the next price 
change. 
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the order flow is not independent of the time intervals, the information contained in the 

length of time between, for example, two transactions may have a significant influence over 

price dynamics. In the process of the model specification, we need to incorporate a variable 

that reflects the information in the intervals. 

In addition, we may include independent variables that describe the state of the order 

book on the ask side and on the bid side. For example, first we can examine several simple 

regression models without applying a time-series model to the residual series and analyze 

each model for cases in which independent variables are at t + 1, t + 2, and so on. Then 

choose the model with the best fit and use it to construct a combined regression-time-series 

model. In other words, give an ARIMA specification of the residual series. One of the goals 

is to conclude whether or not the state of the book is a good indicator of future transaction 

prices. We conjecture that the order book carries a significant amount of information, so 

that the presence of the book enhances the better forecasting by traders. We can repeat 

the similar procedure with other independent variables such as bid-ask spreads. 

Another interesting extension is to investigate how traders' private information regarding 

a liquidation value of risky assets becomes conveyed into market variables such as transac­

tion prices in laboratory asset markets, where asymmetrically informed traders can submit 

both market and limit orders. We are particularly interested in analyzing how the presence 

of the limit order book contributes to the process of disseminating the traders' private infor­

mation. Previous experimental investigations regarding information dissemination focuses 

on the analysis of efficiency measures. They don't look at second-by-second movement of 

activities and variables. We feel the need to look for the sign of information revelation in 

the order flow and its determinant variables. By giving a closer look at the order flow and 
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investigating the intraperiod pattern of the variables that are empirically proven to be the 

.determinants of the order flow in the previous sections, we should be able to show the sign 

of information dissemination in the experimental asset markets that are not accommodated 

with the sufficient conditions given by Forsythe and Lundholm (1990).36 . In other words, 

Rational Expectation equilibria do not have to be achieved to be able to conclude that the 

market has provided information dissemination institution. Instead, look at the movement 

of, for example, a bid-ask spread, and look for the sign of information dissemination based 

on the previous theoretical findings and empirical findings on the real data. Each period 

may have different insiders and a different subject may have a different way of revealing 

one's private information, indicating that it may be harder for others to extract information 

when a certain person is an insider. Hence, every period doesn't necessarily converge to 

a Rational Expectation equilibrium price within the limited length of time. But can we 

reject Rational Expectation hypothesis just because transaction prices have not converged 

to what it predicts? We argue that the answer is no. We can find the information dissemi-

nation process among the order flow and other variables that affect the order flow. Hence, 

it's possible that information is revealed right before a given period ends and thus the fact 

that information has been successfully revealed is not reflected in the equilibrium price yet. 

We need to look at other variables to find the sign of revelation. 

Though Rational Expectation equilibrium is not really achieved, we may still .be able 

to show the evidence of information dissemination by looking at the shifts in the order 

book. If the shift of bid-ask spread is not transient, reflecting the permanent adjustment 

36Forsythe et al. found, through the analysis of experimental data, that participants' trading experience 
and common knowledge of dividends are jointly sufficient to achieve a Rational Expectation equilibrium. 
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to the newly revealed information, then we may claim that it is information effects and is 

the evidence of the information dissemination process. We may be able to observe from 

figures the movement of intraperiod bid-ask spread for a few periods of X, Y, and z that 

reflects the permaµent adjustment. We provided four examples related to this topic in 

figures 5.7al, 5.7a2, 5.7bl, and 5.7b2. The different sizes of the spreads may indicate that 

bid-ask spreads are larger for assets where information asymmetries are more pervasive. It 

would be worthwhile to verify empirically that information asymmetries affect the ability of 

executing trades. We can also compare standard deviations of price changes (or transaction 

prices) between early part and late part within each period. We hope to see CTearly > CTlate· 

We should also comment on observed information mirage or bubbles as a consequence of 

speculative behavior. 

Yet another interesting extension is to investigate the concept of dynamic equilibrium 

in laboratory experiments.37 This will require us to make a slight modification of the 

experimental design. Suppose that there are two types of traders in equilibrium in the 

market that form two different trends. For example, we may design the experiment in which 

one type is strongly influenced by a short-term view and the other's behavior is affected by a 

long-term prospect. We may be able to observe two different types of fair valuation of assets, 

one mostly reflecting the short-term information, and the other reflecting the state after 

the market has fully adjusted for the information. In such a case the equilibrium may shift 

between the two fair valuations with a certain length of time interval that is required for the 

37We computed the Hurst exponent with our data sets to see the evidence of relaxation processes. Indeed 
the computed exponent indicated 1/f noise in our data. But it is still inconclusive, since we had to aggregate 
the data for all the 15 periods. We included the step-by-step computation process of the Hurst exponent 
as a reference in Appendix 5C. 
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market to absorb the information shocks. In other words, we should design the experiment 

in such a way that the same information may affect different subjects differently depending 

on each subject's investment horizon. We believe that analyzing the price dynamics and 

other details of the order flow in such trading environments may help us understand a part 

of the stock price movements that are sometimes hard to explain within the framework of 

the Efficient Market Hypothesis. 
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Table 5.2a 

State Contingent Dividend Parameters in Market 1 

State X State Y State Z 

Type! 120 330 40 

Type II 205 90 125 

Table 5.2b 

Buyers' Redemption Values in Market 2 

Unit Type 1 Type 2 Type 3 Type 4 

1 230 224 234 238 

2 196 190 204 212 

3 162 156 170 178 

4 128 138 138 146 

5 94 128 108 116 

6 60 100 74 82 

7 26 66 40 48 

8 10 32 10 10 

9 10 10 10 10 

10 10 10 10 10 
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Table 5.2c 

Sellers' Inventory Use Costs in Market 2 

Unit Type 1 Type 2 Type 3 Type 4 

1 32 28 28 36 

2 62 54 48 70 

3 96 88 82 104 

4 128 120 116 138 

5 158 150 144 172 

6 192 184 178 206 

7 226 218 212 240 

8 245 250 250 245 

9 250 255 255 250 

10 255 260 260 255 
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Table 5.2d 

Types of Each Subject in Market 1 and Market 2 

Subject ID# Market 1 Market 2 

0 Type I Buyer Type 1 

1 Type I Seller Type 1 

2 Type I Buyer Type 2 

3 Type I Seller Type 2 

4 Type II Buyer Type 3 

5 Type II Seller Type 3 

6 Type II Buyer Type 4 

7 Type II Seller Type 4 



T
ab

le
 5

.3
a 

S
el

ec
ti

ve
 D

es
cr

ip
ti

ve
 S

ta
ti

st
ic

s 
o

n
 M

ar
ke

t 
A

ct
iv

it
ie

s 
(D

at
a 

04
23

93
b 

: 
M

ar
ke

t 
1)

 

P
er

 1
 

P
er

 2
 

P
er

 3
 

P
er

 4
 

P
e

r 
5 

P
er

 6
 

P
er

 7
 

P
e
r8

 
P

er
 9

 
P

er
 1

0 

T
ra

di
ng

 V
ol

um
e 

18
 

14
 

20
 

20
 

36
 

25
 

32
 

22
 

38
 

26
 

N
u

m
b

er
 o

f 
E

ve
n

ts
 

41
 

58
 

61
 

57
 

92
 

69
 

71
 

71
 

94
 

95
 

T
ra

ns
ac

ti
on

 P
ri

ce
 

(F
rn

n
cs

} 

H
ig

h 
41

0 
17

0 
15

0 
20

0 
30

0 
20

0 
25

0 
21

9 
22

5 
14

0 
L

ow
 

10
0 

10
0 

30
 

10
0 

12
0 

15
0 

13
0 

15
0 

10
0 

5 
M

ea
n 

22
1.

11
 

13
0.

00
 

74
.2

5 
14

3.
25

 
17

2.
14

 
18

6.
48

 
19

4.
03

 
17

0.
36

 
18

4.
08

 
81

.6
5 

S
td

. 
de

v.
 

71
.6

9 
20

.0
0 

30
.7

9 
23

.4
1 

36
.0

7 
16

.4
7 

32
.9

3 
19

.5
9 

28
.4

7 
22

.1
3 

P
ri

ce
 C

h
an

ge
 

(F
rn

n
cs

) 

M
ea

n 
9.

41
 

1.
54

 
1.

05
 

1.
58

 
4.

00
 

-0
.8

3 
1.

45
 

-2
.1

0 
1.

49
 

-1
.6

0 
S

td
. 

d
ev

. 
94

.3
0 

23
.0

4 
39

.6
7 

30
.4

6 
14

.2
6 

10
.6

3 
45

.8
3 

14
.3

3 
24

.9
4 

31
.3

6 
B

id
-A

sk
 S

p
re

ad
 

(F
ra

n
cs

) 

M
ea

n 
10

4.
02

 
40

.8
6 

32
.5

4 
10

4.
26

 
65

.7
7 

92
.5

8 
10

7.
17

 
78

.4
5 

70
.8

0 
53

.1
1 

S
td

. 
de

v.
 

11
5.

80
 

26
.1

8 
40

.1
2 

67
.6

2 
40

.6
2 

48
.3

0 
44

.3
8 

29
.7

3 
40

.0
5 

36
.8

9 
T

im
e 

be
tw

ee
n 

E
ve

n
ts

 

(S
ec

o
n

d
s)

 

M
ea

n 
7.

39
 

6.
29

 
4.

89
 

5.
33

 
3.

15
 

4.
32

 
4.

25
 

4.
23

 
3.

19
 

3.
26

 
S

td
. 

de
v.

 
13

.3
3 

7.
96

 
10

.0
9 

5.
95

 
3.

93
 

6.
88

 
4.

20
 

4.
01

 
6.

09
 

3.
22

 

P
er

 1
1 

P
er

 1
2 

P
er

 1
3 

30
 

39
 

28
 

98
 

15
2 

86
 

22
5 

30
0 

10
0 

13
6 

15
0 

80
 

18
9.

93
 

21
4.

92
 

91
.9

6 
18

.5
3 

33
.8

4 
4.

70
 

2.
72

 
3.

68
 

0.
37

 
11

.9
7 

37
.1

7 
4.

89
 

40
.3

3 
56

.1
1 

36
.7

7 
22

.7
3 

42
.0

2 
33

.6
5 

3.
00

 
2.

01
 

3.
40

 
5.

73
 

3.
59

 
5.

48
 

P
er

 1
4 

P
er

 1
5 

17
 

25
 

94
 

10
0 

15
0 

15
0 

10
0 

80
 

11
6.

47
 

11
1.

92
 

13
.2

0 
17

.2
1 

1.
88

 
1.

67
 

19
.0

5 
22

.2
5 

47
.1

6 
56

.2
0 

34
.2

1 
40

.8
1 

3.
26

 
3.

06
 

5.
75

 
6.

16
 

;:t.
. ~ ~ t:
j ~
 ~ ~ tJ:

j 
t-

; ~ '".
tj ~ @

 
;;t:

.: 
'"t

i ~ :::d
 

CJ
"! 

~
 

C
Jl

 
1-

-'
 



T
ab

le
 5

.3
b 

S
el

ec
ti

ve
 D

es
cr

ip
ti

ve
 S

ta
ti

st
ic

s 
o

n
 M

ar
k

et
 A

ct
iv

it
ie

s 
(D

at
a 

04
23

93
c 

: 
M

ar
ke

t 
1)

 

P
e

r 
1 

P
er

 2
 

P
er

 3
 

P
er

 4
 

P
er

 5
 

P
er

 6
 

P
er

 7
 

P
e
rs

 
P

er
 9

 
P

er
 1

0 

T
ra

di
ng

 V
ol

um
e 

18
 

22
 

20
 

14
 

24
 

13
 

31
 

15
 

23
 

19
 

N
u

m
b

er
 o

f 
E

ve
n

ts
 

37
 

59
 

49
 

42
 

61
 

80
 

79
 

66
 

64
 

73
 

T
ra

n
sa

ct
io

n
 P

ri
ce

 

{F
rl

\n
C

S)
 

H
ig

h 
16

5 
17

0 
12

0 
15

0 
23

0 
19

9 
25

0 
18

0 
18

0 
14

5 
L

ow
 

10
0 

89
 

95
 

11
5 

90
 

11
0 

14
5 

14
0 

12
5 

50
 

M
ea

n 
11

9.
39

 
13

7 
91

 
10

9.
20

 
12

2.
50

 
18

8.
13

 
14

8.
39

 
16

4.
68

 
16

1.
00

 
16

1.
96

 
11

0.
00

 
S

td
. 

de
v.

 
23

.7
2 

18
.8

1 
6.

13
 

8.
49

 
35

.4
4 

27
.6

4 
18

.6
2 

12
.9

8 
15

.8
6 

19
.2

9 
P

ri
ce

 C
ha

ng
e 

{F
ra

n
c

&
) 

M
ea

n
 

3.
82

 
3.

86
 

1.
05

 
1.

92
 

6.
09

 
3.

33
 

1.
17

 
2.

86
 

1.
14

 
-1

.9
4 

S
td

. 
de

v.
 

22
.1

1 
15

.1
5 

7.
89

 
7.

78
 

20
.2

2 
31

.3
3 

21
.3

2 
7.

26
 

14
.3

0 
24

.5
6 

B
id

-A
sk

 S
pr

ea
d 

(F
ra

n
cs

) 

M
ea

n
 

42
.2

4 
24

.0
7 

22
.4

7 
8.

48
 

48
.8

5 
93

.5
0 

21
.4

1 
78

.0
2 

39
.4

4 
45

.6
0 

S
td

. 
de

v.
 

24
.7

8 
23

.8
1 

29
.5

3 
7.

58
 

42
.3

6 
58

.7
2 

14
.2

9 
95

.0
1 

19
.2

4 
38

.1
4 

T
im

e 
be

tw
ee

n 
E

ve
nt

s 

(S
ec

on
d

s)
 

M
ea

n
 

8.
11

 
5.

10
 

5.
76

 
7.

05
 

4.
97

 
3.

74
 

3.
78

 
4.

48
 

4.
70

 
4.

08
 

S
td

. 
de

v.
 

9.
27

 
8.

57
 

6.
61

 
7.

90
 

5.
55

 
5.

22
 

4.
12

 
6.

08
 

6.
34

 
4.

93
 

P
er

 1
1 

P
er

 1
2 

P
er

 1
3 

27
 

32
 

25
 

11
6 

78
 

60
 

20
0 

25
0 

20
0 

14
5 

14
1 

15
0 

16
2.

11
 

18
4.

03
 

16
5.

60
 

15
.2

9 
31

.2
1 

12
.9

4 

1.
62

 
2.

26
 

0.
83

 
11

.0
2 

35
.0

0 
12

.9
9 

16
.7

0 
48

.4
2 

30
.3

7 
17

.3
1 

44
.2

2 
25

.2
0 

2.
55

 
3.

87
 

5.
05

 
4.

56
 

4.
27

 
5.

19
 

P
er

 1
4 

P
er

 1
5 

12
 

21
 

34
 

56
 

14
9 

17
0 

70
 

12
5 

97
.5

8 
15

0.
48

 
24

.7
3 

8.
93

 

-1
.8

2 
o.o

o 
38

.2
4 

9.
03

 

46
.3

5 
32

.8
6 

21
.7

6 
15

.9
2 

8.
91

 
5.

39
 

10
.7

0 
7.

17
 

;:i,
.. 

"ti
 ~ @
 

~ ~ ~ b::
I 

t-
i ~ '":

rj ~ @
 

~
 

"ti
 ~ ~ ~ 1:.

.:1
 

O
l 

1:.
.:1

 



T
ab

le
 5

.3
c 

S
el

ec
ti

ve
 D

es
cr

ip
ti

ve
 S

ta
ti

st
ic

s 
on

 M
ar

ke
t 

A
ct

iv
it

ie
s 

(D
at

a 
04

23
93

b 
: 

M
ar

ke
t 

2)
 

P
er

 1
 

P
er

 2
 

P
er

3
 

P
er

 4
 

P
er

 5
 

P
er

 6
 

P
er

 7
 

P
er

 8
 

P
e
r9

 
P

er
 1

0 

T
ra

d
in

g 
V

ol
um

e 

9 
12

 
13

 
16

 
16

 
15

 
12

 
13

 
14

 
14

 
N

u
m

b
er

 o
f 

E
ve

nt
s 

43
 

53
 

51
 

57
 

53
 

49
 

47
 

59
 

56
 

42
 

T
ra

ns
ac

ti
on

 P
ri

ce
 

(F
ra

n
ca

) 

H
ig

h
 

16
5 

17
0 

16
0 

15
8 

14
3 

15
0 

13
9 

14
4 

14
0 

13
7 

L
ow

 
14

0 
13

0 
13

0 
12

5 
11

0 
12

2 
12

0 
13

0 
12

5 
12

0 
M

e
a

n
 

15
6.

56
 

14
9.

33
 

14
7.

85
 

13
8.

50
 

13
3.

00
 

13
5.

13
 

12
9.

33
 

13
7.

54
 

13
4.

36
 

12
9.

64
 

S
td

. 
de

v.
 

8.
17

 
10

.9
1 

11
.1

7 
9.

32
 

9.
13

 
10

.2
3 

8.
52

 
4.

37
 

5.
67

 
5.

58
 

P
ri

ce
 C

h
an

ge
 

(F
rn

n
cs

) 

M
ea

n 
0.

50
 

0.
18

 
-2

.5
0 

-0
.3

3 
-2

.0
0 

-0
.2

1 
0.

00
 

0.
75

 
-0

.3
1 

-0
.7

7 
S

td
. 

de
v.

 
12

.3
3 

14
.7

4 
17

.6
5 

9.
07

 
10

.3
9 

7.
66

 
12

.4
7 

3.
02

 
5.

91
 

3.
81

 
B

id
-A

sk
 S

p
re

ad
 

(F
rn

n
cs

) 

M
ea

n
 

30
.7

7 
23

.1
7 

24
.1

0 
16

.9
1 

16
.2

1 
17

.7
3 

16
.7

4 
12

.6
4 

14
.6

3 
9.

29
 

S
td

. 
de

v.
 

19
.9

4 
14

.5
1 

8.
44

 
10

.8
2 

12
.8

1 
7.

92
 

15
.6

8 
9.

31
 

7.
01

 
5.

85
 

T
im

e 
be

tw
ee

n 
E

ve
nt

s 

(S
ec

o
n

d
s)

 

M
ea

n
 

7.
23

 
5.

63
 

5.
80

 
5.

30
 

5.
77

 
6.

47
 

6.
43

 
5.

11
 

5.
36

 
7.

24
 

S
td

. 
de

v.
 

13
.5

2 
9.

04
 

9.
02

 
6.

59
 

4.
60

 
7.

98
 

6.
66

 
6.

40
 

8.
00

 
11

.2
3 

P
er

 1
1 

P
er

 1
2 

P
er

 1
3 

14
 

14
 

13
 

41
 

33
 

48
 

13
6 

13
5 

13
3 

12
0 

12
0 

20
 

12
8.

86
 

12
9.

14
 

12
0.

00
 

5.
17

 
5.

27
 

30
.4

3 

-0
.6

2 
0.

46
 

9.
42

 
6.

10
 

6.
75

 
30

.5
2 

16
.7

3 
14

.0
3 

11
.6

5 
10

.9
3 

18
.7

1 
7.

42
 

7.
40

 
9.

18
 

6.
38

 
11

.0
9 

10
.3

8 
8.

05
 

P
er

 1
4 

P
er

 1
5 

12
 

13
 

44
 

46
 

14
9 

13
0 

12
1 

12
0 

13
5.

83
 

12
7.

46
 

11
.3

8 
7.

41
 

2.
18

 
1.

17
 

5.
56

 
8.

64
 

39
.8

4 
16

.6
1 

1.
88

 
4.

35
 

6.
95

 
7.

33
 

13
.2

6 
14

.5
6 

;:i:
.. 

'"t1
 t;] @
 

~
 ~ ~ tI:J
 

1:-
t 

&;5
 

~
 ~ @
 

;:i:
.: '"t1
 t;5 ::x:
i 

<:1
1 "" c.rt ~ 



T
ab

le
 5

.3
d 

S
el

ec
ti

ve
 D

es
cr

ip
ti

ve
 S

ta
ti

st
ic

s 
o

n
 M

ar
k

et
 A

ct
iv

it
ie

s 
(D

at
a 

04
23

93
c 

: 
M

ar
ke

t 
2)

 

P
er

 1
 

P
er

 2
 

P
er

3
 

P
er

 4
 

P
er

 5
 

P
er

6
 

P
er

 7
 

P
er

 8
 

P
er

9
 

P
er

 1
0 

T
ra

d
in

g 
V

ol
u

m
e 

11
 

11
 

13
 

12
 

13
 

11
 

12
 

14
 

13
 

14
 

N
um

be
r 

of
 E

ve
n

ts
 

42
 

46
 

41
 

41
 

37
 

32
 

34
 

58
 

35
 

50
 

T
ra

n
sa

ct
io

n
 P

ri
ce

 

(F
rn

n
cs

) 

H
ig

h
 

20
0 

20
0 

17
5 

17
5 

17
5 

17
0 

17
4 

16
5 

16
0 

16
0 

L
ow

 
14

0 
15

0 
14

5 
14

0 
14

5 
14

5 
14

2 
14

0 
14

2 
12

0 
M

ea
n

 
16

4.
55

 
16

6.
82

 
15

7.
92

 
15

7.
00

 
15

9.
08

 
15

7.
18

 
15

5.
92

 
15

3.
64

 
15

2.
54

 
14

8.
36

 
S

td
. 

de
v.

 
21

.1
5 

19
.4

0 
11

.9
4 

12
.0

2 
10

.9
2 

9.
02

 
8.

76
 

7.
15

 
5.

64
 

9.
83

 
P

ri
ce

 C
h

an
ge

 

(F
ra

n
cs

) 

M
ea

n 
-6

.0
0 

-5
.0

0 
-2

.5
0 

-3
.1

8 
0.

00
 

-1
.5

0 
-1

.1
8 

-1
.9

2 
-1

.5
0 

-3
.0

8 
S

td
. 

de
v.

 
14

.3
0 

10
.2

7 
9.

29
 

10
.9

8 
14

.6
2 

9.
28

 
12

.1
9 

5.
16

 
3.

68
 

7.
45

 
B

id
-A

sk
 S

p
re

ad
 

(F
ra

n
cs

} 

M
ea

n 
98

.7
9 

66
.6

7 
7.

34
 

19
.9

3 
5.

27
 

11
.2

5 
12

.5
0 

12
.3

3 
8.

80
 

8.
88

 
S

td
. 

de
v.

 
32

.4
6 

28
.1

2 
9.

05
 

14
.2

2 
7.

07
 

10
.5

8 
10

.4
2 

8.
53

 
5.

89
 

7.
44

 
T

im
e 

b
et

w
ee

n
 E

ve
n

ts
 

(S
ec

on
d

s)
 

M
ea

n 
7.

38
 

6.
59

 
7.

40
 

7.
22

 
8.

22
 

7.
69

 
8.

24
 

5.
21

 
8.

54
 

6.
26

 
S

td
. 

de
v.

 
7.

73
 

10
.6

4 
9.

63
 

6.
56

 
11

.3
7 

8.
02

 
19

.7
1 

6.
63

 
12

.1
4 

9.
78

 

P
er

 1
1 

P
er

 1
2 

P
er

 1
3 

13
 

13
 

12
 

45
 

51
 

47
 

17
0 

15
5 

15
5 

14
0 

12
0 

14
0 

15
2.

77
 

14
6.

31
 

14
7.

92
 

9.
20

 
9.

65
 

4.
32

 

-2
.5

0 
-2

.9
2 

0.
00

 
7.

18
 

8.
81

 
5.

85
 

9.
44

 
11

.2
9 

15
.0

4 
5.

86
 

8.
15

 
9.

66
 

6.
43

 
5.

88
 

6.
13

 
8.

56
 

9.
26

 
6.

85
 

P
er

 1
4 

P
er

 1
5 

14
 

15
 

52
 

54
 

15
5 

15
5 

12
0 

13
0 

14
5.

14
 

14
7.

20
 

9.
94

 
6.

56
 

-2
.3

1 
-1

.7
1 

6.
16

 
4.

16
 

7.
85

 
6.

85
 

7.
82

 
5.

80
 

6.
02

 
5.

61
 

8.
32

 
9.

98
 

::i:.
. 
~
 ~ ~ ~
 

~
 ~ tJ

j 
t"-1

 ~ ~ ~ @
 

>
 

~
 ~ ~ <:

Jl 

t-.:
> 

0
1

 
~
 



APPENDIX 5A. TABLES FOR CHAPTER 5 

Table 5.4 

Statistics for Tests Concerning Equality of Selected Variables 
between Market 1 and Market 2 

(A) Ho : ulr1 = Ufr2 j H. : Ufrl > Ufr2 

F = ~ 1>1 8.348 > 1.130 1>1 Fo.os (705, 390) 
(Jtr2 

F = ~ 1>1 6.832 > 1.140:::: Fo.os(675, 360) 
"11c:l 

F = ~:::: 4.779 > 1.000:::: Fo.05(2192, 1386) 
0'£"ii2 

z = ".;1
-" :: :::: 2.244 > 1.645:::: Zo.os 
~+~ 

255 
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Table 5.5a 

ANOVA Tables for Tests Concerning Difference among X, Y, and Z States 
(Data 042393b: Market 1) 

(A) Ho : /LtrX = /LtrY = /LtrZ 
Source of Degrees of Sum of Mean 
variation freedom squares square F Fo.05(2, 387) 

States 2 3.39882e+005 1.69941e+005 80.25 3.02 
Residuals 387 8.19558e+005 2.11772e+003 

Total 389 1.15944e+006 

(B) Ho : µpcX = µpcY = Jl.pcz 
Source of Degrees of Sum of Mean 
variation freedom squares square F Fo.05(2, 372) 

States 2 6.10750e+002 3.05375e+002 0.29 3.02 
Residuals 372 3.90453e+005 1.0496le+003 

Total 374 3.91064e+005 

(G) Ho : µbaX 
Source of Degrees of Sum of 
variation freedom squares square F Fo.os(2, 1236) 

States 2 1.92890e+004 9.64450e+003 3.96 2.99 
Residuals 1236 3.00852e+006 2.43408e+003 

Total 1238 3.02781e+006 
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Table 5.5b

ANOVA Tables for Te^t^ C^ncer^g Di^^nce among X. Y. and Z States 
(Data 042393c : Market 1)

(.4) Hoiμt<-X = PtrK ~ jtιrZ
Source o/ Dey^es 

J⅛eedom
Sum o/ 
squares

Mean 
square F ‰s(2. 3M)

States 2 L.^;^:^<e+oo5 7.2HU0^004 110.87 IM
Residuals 313 2.05^^005 6.5698-4e+002

Total 315 3.513^^005

(B) Ho : Ppc.t = = t⅛cz

variation
Deyes o/ ⅜m Mean 

square F ⅛.os(2, 298)J⅛eedo^ squares
States 2 3.27186e+002 1.63593e+002 0.40 3.03

Residuals 298 l.23145e+005 4.1323⅛-i-002
Total 300 LXM7^<e+005

(C) Ho ; q⅛a.c = P⅛ar = U⅛oZ
Degrees o/ 
/recdom

⅜m 
squares

Mean 
square F F).„,(2. 951)

States 2 3.06200e+004 1.53100e+004 7.50 3.00
Residuals 951 1.94M⅛e+006 2.040^^003

Total 953 1.97100^006
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Table 5.15a 

Mean Time Interval between Two Events (seconds) 

DntnS~ 
Conditioning Vnrinbles (t -1) ! : Mn,rkct 1 042393c : Mnrket I 042393b : Mnrket 2 042393c : Mnrket 2 

Ta.ken.sk 4.585 6.417 7.380 7.262 

New bid > standing bid 4.656 4.433 7.158 7.261 

New bid = stnnding bid 1.310 2.565 1.273 1.703 

New bid < standing bid 4.484 4.333 6.680 7.250 

Cancel bid 1.313 0.600 4.870 8.167 

Tnke bid 3.763 6.276 7.040 10.269 

New nsk < standing nsk 3.888 4.701 7.196 7.491 

New nsk = standing nsk 1.720 2.558 2.603 2.919 

New nsk > standing nsk 4.710 2.300 3.250 6.756 

Cancel nsk 2.074 2.667 5.308 3.404 

Bid-side sprend > ~ Ask-side sprend . 2.228 4.136 7.831 7.000 
Bid-side depth = 

Ask-side depth 7.000 6.074 4.150 2.833 
Bid-side depth < 

Ask-side depth 4.089 4.200 6.363 8.000 
Bid-side sprcnd = Bid-side depth > 

Ask-side spread Ask-side depth 2.286 4.620 4.154 1.905 
Bid-side depth = 

Ask-side depth 5.833 8.222 5.500 4.800 
Bid·side depth < 

Ask-side depth I 3.793 6.333 2.744 3.214 
Bid-side sprend < Bid-side depth > 

Ask-side spread . Ask-side depth I 4.584 3.879 6.571 2.200 
Bid-side depth = 

Ask-side depth 5.574 8.750 7.300 3.714 
Bid-side depth < 

Ask-side depth 3.504 6.622 6.403 7.586. 

Uncondilionnl 3.588 4.563 6.171 6.632 
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Table 5.15b 

Mean Time Interval between Two Events (seconds) 

Data.Set -

Conditioning Variables (t - I) ! 042393b : Market I 042393c : Market I 042393b : Market 2 042393c : Market 2 

Bid-nsk spren.d ~ 

Menn bid-nsk sprea.d 4.294 4.866 5.882 6.711 
Bid-nsk sprcnd < 

Menn bid-nsk spren.d 2.999 4.396 6.380 6.600 

Time interval > Menn time interval 4.900 5.186 8.899 8.541 

Time interval < Menn time interval 2.974 4.120 5.156 5.891 

Unconditionnl 3.588 4.563 6.171 6.632 
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Table 5.16 

Statistics for Tests Concerning Equality of Mean Time Intervals 
among Different Conditioning Variables 

042393b : Mktl 
042393c : Mktl 
042393b : Mkt2 
042393c : Mkt2 

042393b : Mktl 
042393c : Mktl 
042393b : Mkt2 
042393c : Mkt2 

042393b : Mktl 
042393c : Mktl 
042393b : Mkt2 
042393c : Mkt2 

042393b : Mktl 
042393c : Mktl 
042393b : Mkt2 
042393c : Mkt2 

(A) Ho : µevent! = µevent2 = ''' = µeventlO 

F ~ 26.88 > 1.88 ~ Fo.os(9, 1214) 
F ~ 6.64 > 1.89 ~ Fo.os(9, 929) 
F ~ 3.15 > 1.90 ~ Fo.os(9, 697) 
F ~ 4.22 > 1.90 ~ Fo.os(9, 640) 

(B) Ho : µ,tatel µ,tate2 = ·'' = µstate9 

F ~ 7.40 > 1.94 ~ Fo.os(8, 1215) 
F ~ 3.59 > 1.95 ~ Fo.os(8, 930) 
F ~ 1.49 < 1.95 ~ Fo.os(8, 698) 
F ~ 3.03 > 1.95 ~ Fo.os(8, 641) 

(C) Ho : µ,preadlq = µ,pread&m 

F ~ 14.03 > 3.84 ~ Fo.os(l, 1222) 
F ~ 1.25 < 3.85 ~ Fo.os(l, 937) 
F ~ 0.51 < 3.85 ~ Fo.os(l, 705) 
F ~ 0.02 < 3.85 ~ Fo.os(l, 648) 

(D) Ho : µintervallg = µintervalsm 

F ~ 27.07 > 3.84 ~ Fo.os(l, 1207) 
F ~ 6.47 > 3.84 ~ Fo.os(l, 922) 
F ~ 24.04 > 3.84 ~ Fo.os(l, 690) 
F ~ 10.19 > 3.84 ~ Fo.os(l, 633) 

F= MS(Tr) 
MSE 

where MS(Tr) is the treatment mean square and MSE is the error mean square. 
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Figure 5.1 : Demand and Supply Schedules in Market 2 
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Figure 5.3a: Average and Total Number of Bids and Asks (Data 042393b : Market 1) 
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Figure 5.3b : Average and Total Number of Bids and Asks (Data 042393c : Market 1) 
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Figure 5.3c : Average and Total Number of Bids and Asks (Data 042393b : Market 2) 
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Figure 5.3d: Average and Total Number of Bids and Asks (Data 042393c : Market 2) 
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Figure 5.4a: State of the Order Book (Data 042393b Market 1) 
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Figure 5.4b State of the Order Book (Data 042393c Market 1) 
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Figure 5.4c State of the Order Book (Data 042393b Market 2) 
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Figure 5.4d State of the Order Book (Data 042393c Market 2) 
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Figure 5.5al : Intraperiod Patterns of Market Activities (Data 042393b : Market 1) 
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Figure 5.5a2 : Intraperiod Patterns of Market Activities (Data 042393b : Market 1) 
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Figure 5.5bl : Intraperiod Patterns of Market Activities (Data 042393c : Market 1) 
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Figure 5.5b2 : Intraperiod Patterns of Market Activities (Data 042393c : Market 1) 
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Figure 5.5cl : Intraperiod Patterns of Market Activities (Data 042393b : Market 2) 
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Figure 5.5c2 : Intraperiod Patterns of Market Activities (Data 042393b : Market 2) 
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Figure 5.5dl : Intraperiod Patterns of Market Activities (Data 042393c : Market 2) 
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Figure 5.5d2 : Intraperiod Patterns of Market Activities (Data 042393c : Market 2) 
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Figure 5.6a : Histograms of Intraperiod Price Changes (Data 042393b : Market 1} 

(The horizontal axis ranges from -100 to 100 with ticksize 5.) 
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Figure 5.6b : Histograms of Intraperiod Price Changes (Data 042393c : Market 1) 

(The horizontal axis ranges from -100 to 100 with ticksize 5.) 
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Figure 5.6c : Histograms of Intraperiod Price Changes (Data 042393b : Market 2) 

(The horizontal axis ranges from -40 to 40 with ticksize 2.) 
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Figure 5.6d: Histograms of Intraperiod Price Changes (Data 042393c : Market 2) 

(The horizontal axis ranges from -40 to 40 with ticksize 2.) 
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Figure 5.7al : Intraperiod Pattern of Bid-Ask Spreads (Data 042393b : Market 1) 
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Figure 5.7a2 : Intraperiod Pattern of Bid-Ask Spreads (Data 042393b : Market 1) 
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Figure 5.7bl : Intraperiod Pattern of Bid-Ask Spreads (Data 042393c : Market 1) 
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Figure 5.7b2 : Intraperiod Pattern of Bid-Ask Spreads (Data 042393c : Market 1) 
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Figure 5.8a : Distribution of Time Interval between Orders (Data 042393b : Market 1) 
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Figure 5.8b : Distribution of Time Interval between Orders (Data 042393c : Market 1) 
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Figure 5.8c : Distribution of Time Interval between Orders (Data 042393b : Market 2) 

140 

120 

o ~ ~ ~ ~ ~ ~ N ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ S ~ ~ % ~ ~ 
limo lnfofvalt (seconcb) 

Figure 5.8d : Distribution of Time Interval between Orders (Data 042393c : Market 2) 
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Appendix 5C 

Computation Steps of the Hurst 

Exponent 

Suppose that a given time series has M observation points. First, we convert the series into 

a time series of length N = M - 1 of logarithmic ratios in the following manner. 

1 Mi+l . 
Ni = og Mi , i = 1, 2, ... , M - 1. 

Then we divide the log-ratio time series into A consecutive subperiods of length n, i.e., 

A· n = N. Each subperiod is labeled Ia, with a = 1, 2, ... , A, and each element in Ia is 

labeled Nj,a, with j = 1, 2, ... , n. For each Ia of length n, the average value is defined as 
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where Ea(N) is an expected value of Ni in subperiod Ia. A series of cumulative deviations 

from the mean value for each subperiod Ia is defined as 

Xj,a =I>= lj(Ni,a - Ea(N)), j = 1, 2, ... , n. 

Hence, we have n values computed for each Ia. The range is defined as the difference 

between the maximum and the minimum value of Xj,a in each Ia such that 

Ra = max(Xj,a) - min(Xj,a), 1 :S j :S n. 

The standard deviation calculated for each subperiod Ia is 

We normalize each range Ra by dividing it by a corresponding standard deviation a ai that 

is, the rescaled range for each Ia is & . The average R/ S value for length n is defined as 
Ua 

(R/a)n = Al La= lA Ra. 
O"a 

The length n is increased to the next higher value, where (M - l)/n is an integer. Then 

the procedure above is repeated for the new value of n, until n = (M - 1)/2. Finally, 

we perform an ordinary least squares regression on log( n) as the independent variable and 

log( R/ a )n as the dependent variable. The estimated slope of the equation is the estimate of 

the Hurst exponent. More detailed description of the rescaled range analysis can be found 
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in Chapter 4 of Peters (1994). 



Appendix 5D 

An Instruction for the 

Experiments 

INSTRUCTIONS 

General: 
This is an experiment in the economics of market decision making. Various research 

foundations have provided funds for this research. The instructions are simple, and if you 
follow them carefully and make good decisions, you might earn a considerable amount of 
money which will be paid to you in cash. 

In this experiment there are two markets, called Market 1 and Market 2. In Market 1 you 
will buy and sell certificates in a sequence of market periods. Attached to the instructions 
you will find a sheet, labeled "Dividend Sheet," which helps determine the value to you of 
any decisions you might make in Market 1. In Market 2 you are either a buyer or a seller as 
indicated on your Market 2 Record Sheet. You will buy or sell units of goods in a sequence 
of market periods. On . your Market 2 Record Sheet you will find Redemption Value or 
Inventory Use Cost of each unit, which helps determine the value to you of any decisions 
you might make in Market 2. You are not to reveal the information on your Dividend Sheet 
and the Record Sheet to anyone. It is your own private information. 

The type of currency used in this market is francs. All trading and earnings will be in 
terms of francs. Each franc is worth _____ dollars to you in Market 1, and ______ dollars 
to you in Market 2. Do not reveal this number to anyone. At the end of the experiment 
your francs will be converted to dollars at this rate, and you will be paid in dollars. Notice 
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that the more francs you earn, the more dollars you earn. 

Market 1 

Specific Instructions: 
Your profits in Market 1 come from two sources - from collecting dividend earnings on 

all certificates you hold at the end of the period and from buying and selling certificates. 
During each market period you are free to purchase· or sell as many certificates as you wish, 
provided you follow the rules below. The dividend per certificate depends on the state of the 
market period. Each market period will be in one of three states, X, Y, or Z. You can find 
the dividends associated with each of these three states on your "Dividend Sheet." You are 
assigned either Type I or Type II dividend sheet. Note that dividend values corresponding 
to a state may be different for different dividend types. For example, if the state is X, then 
the dividend you will receive might not be the same as the dividend received by someone 
else. The method by which the state is selected each period is explained later in these 
instructions. 

Suppose that your dividend sheet was as follows. (The numbers are completely hypo­
thetical.) 

State X State Y State Z 
Dividend 100 70 50 

At the end of each market period the state will be announced. You will compute your total 
dividend earnings for the period by multiplying the dividend per certificate, given the state, 
by the number of certificates held. That is, (number of certificates held) x (dividend per 
certificate) = total dividend earnings. Suppose, for example, that you hold 5 certificates at 
the end of a period and that the state is X. If your dividend is 100 francs per certificate as 
in the example, then your total dividend earnings from the period would be 5 x 100 = 500 
francs. Likewise, if the state is Y and if youi: dividend is 70 francs as in the example, then 
your total dividend earnings would be 5 x 70 = 350 francs. This number should be recorded 
in the box labeled C on your "Record Sheet" after each period. 

Sales from your certificate holdings increase your francs on hand by the arriount of the 
sale price. Similarly, purchases reduce your francs on hand by the amount of the purchase 
price. Thus you can gain or lose money on the purchase and resale of certificates. Your 
total gain or loss from buying and selling certificates should be recorded in the box labeled 
B on your "Record Sheet" after each period. 

At the beginning of each period, each of you are provided with an initial holding of ___ _ 
certificates. You may sell these if you wish or you may hold them. If you hold a certificate, 
then you receive "dividend per certificate" at the end of the period. Notice therefore that 
for each certificate you hold initially, you can earn during the period at least the amount 
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shown as "dividend per certificate." You earn this amount if you do not sell the certificate 
during the period. 

In addition, at the beginning of each period you are provided with an initial amount 
of 10,000 francs on hand. You may keep this if you wish or you may use it to purchase 
certificates. 

Thus at the beginning of each period you are endowed with holdings of __ certificates 
and 10,000 francs. on hand. You are free to buy and sell certificates as you wish according 
to the rules below. Your francs on hand at the end of each period are determined by your 
initial amount of francs on hand, dividends on certificate holdings at the end of the period, 
and gains and losses from purchases and sales of certificates. All francs on hand at the end 
of each period in excess of 10,000 francs are your total profits for the period and are yours 
to keep. 

Determination of States: 
The dividend you receive from the certificates you hold depends on the state of a market 

period. The state can be either X, Y, or Z. If the market period is in the state X, then your 
dividend per certificate is the one associated with the state X as given in your "Dividend 
Sheet." The state of a market period will be randomly determined before each period 
begins. But it will not be made public until the period ends. Each state is equally likely. 
A random number table was used and can be inspected by anyone after the experiment. 

Information about States: 
At the beginning of each market period, before trading starts, each of you will receive 

a clue card that may or may not carry some information regarding the state. If your clue 
card contains "X ,'' then the state is X for sure. Similarly, "Y" and "Z" inform you that 
the state is Y and Z with certainty, respectively. If your clue card does not contain any 
information, then it means you have received no information for the period. In each period 
there will be exactly two people who receive the information, one person among Type I 
people and the other person among Type II people. 

At the beginning of each period, each trader will draw a clue card out of a box that the 
experimenter had prepared. After you have drawn a clue card, write down the information 
you have received as it appears in the clue card in the box A of your "Record Sheet (Market 
1)." If you have received no information, then write "No" in the box. The information given 
to you in a clue card is your private information, and you are not allowed to talk to each 

. other regarding your private information. 

Trading and Recording Rules: 

1. All transactions are for one certificate at a time. After each of your sales or purchases 
you must record the TRANSACTION PRICE in the appropriate column on your 
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"Record Sheet" depending on the nature of the transaction. 

2. You are free to sell or buy as many certificates as you wish. Notice that if you think 
that it would be profitable, then you can sell more certificates than you have on hand. 
In such a case, if you end up with a negative number of certificates on hand at the end 
of the period, then your dividend earnings would be negative. Suppose, for example, 
that you hold -2 certificates on hand at the end of period and that .the dividend per 
certificate is 50 francs. Then your dividend earnings are -2 x 50 = -100 francs. Of 
course if you sold the certificates for more than 50 francs each, then you have made a 
profit. But if you sold for less than 50 francs each, then you have made a loss. 

3. At the end of each period, compute your total earnings from buying and selling from 
the period, and record it in the box labeled B. 

4. At the end of each period, after the experimenter has announced the state of the 
period, compute your total dividend earnings from the period and record it in the box 
labeled C. 

5. The price of the information given to you at the beginning of each period is zero in 
every market period. Therefore, 0 has been entered in the box labeled D in every 
market period. 

6. At the end of each period, compute your total profits from the period by adding the 
numbers in boxes B and C, and record it in the box labeled E. Also record it on the 
appropriate row of your "Profit Sheet." 

7. At the end of the experiment, add up your profit from all the periods, and record it 
on row 18 of your "Profit Sheet." Then, convert it into dollars by multiplying the 
profit by the conversion rate that is given on row 19 of your "Profit Sheet." Finally 
record your profit in dollars on row 20 of your "Profit Sheet." The experimenter will 
pay you this amount of money in cash. 

Market Organization: 
The market for these certificates is organized as follows. The market will be conducted 

in a series of market periods. Each market lasts for ____ minutes. The technology of 
trading will be explained to you. 

Are there any questions? 
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Anyone wishing to purchase a certificate is free to do so by employing either or both of 
the following. 

1. Enter the price you are willing to pay, let's call it 'buy order,' in the order box on your 
monitor and hit I Fl I key, and wait until someone accepts your buy order. Note that 
if your buy order is higher than any other buy orders, then it will become a standing 
buy order and will appear in the buy order box on the monitor. If your buy order is 
lower than the current standinT bur order, then it will be kept in a "Book," which 
you can always view by hitting F5 key. 

2. You can purchase a certificate by accepting a 'sell order' which jppers in the sell 
order box on the monitor. In order to accept a sell order, hit Ctrl + I Fl I keys 
simultaneously. Note that 'accepting a sell order' means that you are purchasing a 
certificate at a price that appears in the sell order box on your screen. 

Similarly, anyone wishing to sell a certificate is free to do so by employing either or both 
of the following. 

1. Enter the price you are willing to sell (a sell order) in the order box on your monitor 
and hit I F2 I key, and wait until someone accepts your sell order. Note that if your 
sell order is lower than any other sell orders, then it will become a standing sell order 
and will appear in the sell order box on the monitor. If your sell order is higher than 
the current stantin, sell order, then it will be kept in a "Book" which you can always 
view by hitting F5 key. 

2. You can sell a certificate by accepting a 'buy order' which appears in the buy order box 
on the monitor. In order to accept a buy order, hit I Ctrl I + I F2 I keys simultaneously. 
Note that 'accepting a buy order' means that you are selling a certificate at a price 
that appears in the buy order box on your screen. 

Are there any questions? 
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FINANCIAL AGREEMENT 

315 

SHOULD MY EARNINGS FROM THE EXPERIMENT BE NEGATIVE, I AGREE 

TO WORK IN THE ECONOMIC SCIENCE LABORATORY AT A RATE OF 7 DOL­

LARS PER HOUR UNTIL THE LOSS IS REPAID. 

NAME ---------

DATE --------------
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Record Sheet and Dividend Sheet 
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Subject ID #---- Period #--

Record Sheet (Market 1 

Information on a clue card is : 

Row 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

~ 0 

Number of certificates 
on hand at the end 

x 

Sale Price Purchase Price 

-

Dividend 
per certificate 

Your profit in Market 1 from this period is : 

B + c 

Type I) 

Revenue from 
trading 

--

Total dividend 

I B 
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Subject ID#--

Record Sheet (Market 1 

Information on a clue card is : 

Row 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Number of certificates 
on hand at the end 

x 

Sale Price Purchase Price 

-

Dividend 
per certificate 

Your profit in Market 1 from this period is : 

B + c 

Period#---

Type II) 

Revenue from 
trading 

-

Total dividend 
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Subject ID #-- Period#--

Record Sheet (Market 2 : Buyer) 

Row Redemption Value (1) Purchase Price (2) Profit ( (1) - (2)) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Your profit in Market 2 from this period is --t 
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Subject ID #-- Period#--

Record Sheet (Market 2 : Seller) 

Row Sale Price (1) Inventory Use Cost ( 2) Profit ((1) - (2)) 

1 
2 

3 
4 
5 
6 
7 
8 
9 
10 

Your profit in Market 2 from this period is --+ 
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Profit Sheet 

Subject ID # ____ _ 

Market Period I Profit (Market 1) I Profit (Market 2) I 
0 0 (Practice) 
1 1 
2 2 
3 3 
4 4 
5 5 
6 6 
7 7 
8 8 
9 9 
10 10 
11 11 
12 12 
13 13 
14 14 
15 15 
16 16 
17 17 
18 Total Profit in Francs 

19 Dollars per Franc 

20 Total Profit in Dollars 

~J\l\1~ --------------------------------------------------­
DJ\'l'~ ---------------------------------------------------

321 
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Dividend Sheet (Market 1 : Type I) 

State X State Y State Z 
Dividend 120 330 40 
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Dividend Sheet (Market 1 : Type II) 

State X State Y State Z 
Dividend 205 90 125 
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Data Files 

The raw data from the experiments reported here are saved at the Laboratory for Experi­

mental Economics and Political Science at the California Institute of Technology. The file 

names follow the convention we use in the lab., 042393b.sta and 042393c.sta. 

The raw data required several modifications due to obvious mistakes that were made 

by the experiment participants or problems associated with a computer software. These 

changes are documented below. 

• (042393b, mktl) Period 14 at 7499 seconds : The bid order by agent 5 has been 

modified into 5 units instead of 50 units. 

o (042393c, mktl) Period 7 at 3781 seconds : "dask" order was placed by agent 1 (1 

unit of 250). However, the .col data set indicates that this ask order was never entered 

before the "dask" order. Hence, it was eliminated. MUDA was revised to correct such 

problems in the later version. 
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• (042393c, mktl) Period 7 at 3933 seconds : "dask" order entered by agent 1 (1 unit 

of 200) had the same problem as above, and was eliminated. 

• (042393c, mktl) Period 10 at 5261 seconds : "dask" order entered by agent 3 (1 unit 

of 129) had the same problems as above, and was eliminated. 

• (042393c, mktl) Period 13 at 6524 seconds : "dask" order entered by agent 1 (1 unit 

of 250) had the same problem as above, and was eliminated. 

• (042393c, mktl) Period 15 at 7260 seconds : "dask" order entered by agent 5 (1 unit 

of 190) had the same problem as above, and was eliminated. 

• (042393c, mkt2) Period 11 at 5714 seconds : "dask" order entered by agent 3 (1 unit 

of 160) had the same problem as above, and was eliminated. 

• (042393c, mkt2) Period 14 at 6862 seconds : "dask" order entered by agent 1 (3 units 

of 155) had the same problem as above, and was eliminated. 

• Multiple unit orders were modified into multiple orders of single unit. 
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