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Abstract

This thesis is composed of two parts, each of which reflects our attempt to describe
order flow determinants in a bilateral and multilateral trading environment, respectively.

In Part I of this research, we investigate noncooperative bilateral sequential bargaining
games in which the value of the asset changes stochastically according to a sequence of
perfectly observable time-varying random variables. We attempt to model scientific specu-
lations of the game participants that lead to varied length of bargaining durations. Previous
studies, which have focused on the analyses of incomplete information games in interpreting
bargaining delays, have shown that such delays are attributed to information asymmetry on
asset values among players that results in differences in players’ personal valuation of the
asset. However, following the viewpoint of the Efficient Market Hypothesis, we assume in
our models ﬁhat there is no uneven assimilation of information of vital importance that af-
fects the asset value once the players are at a negotiating table. Hence, one of the important
features of the investigated models is that both players observe identical information re-
garding the future asset value, and that there is no uncertainty regarding one’s opponent’s
preferences during the bargaining process; Despite the assumption of complete informa-
tion, we argue that a delay before an agreement under certain conditions is an inevitable
consequence of the stochastic component in this model.

We give game theoretic specifications for two types of bargaining games, which we call
the Basic game and the Alternative game. The two games differ from each other in their
timing of information arrivals with respect to players’ actions. We characterize their sub-

game perfect equilibria that follow our particular behavioral assumptions. Characteristics




viii
of the equilibrium outcomes of the two games are compared. We direct special attention to
the study of the analytical results in comparison with those of Rubinstein (1982), Osborne
and Rubinstein (1990), and Merlo and Wilson (1995). We then give statistical specifications
for two types of stochastic bargaining simulations, which are the Autoregressive Binomial
Model and the Generalized Wiener Process Model. Comparative statics of several variables
and bargaining durations are investigated thoroughly through numerous simulation runs.
Subsequently, through our research we clarify the importance of integrating stochastic con-
cepts into the bargaining theory and its applications in search of alternative explanations
for various bargaining durations.

" In Part II of this research, we provide a set of experimental results in our study of order
flow determinants in experimental financial markets with asymmetrically informed human
subjects. The markets are organized as computerized double auctions accommodated with
an order book that contains a complete set of current limit and market orders and that
can be inspected by every market participant at any time during each trading period. Our
empirical analysis focuses on the series of actions taken by the subjects that include quote
revisions, limit order arrivals, and trades. At first, we report thorough descriptive statistics
on the extracted data sets, where we do not assume any particular theory of the market
microstructure. Then we show serial dependencies of order flow on the previous event type,
the state of the order book, the size of bid—ask spread, and the time intervals. in so doing,

we ascertain the significance of the impact of information carried in the order book.
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Part 1

Stochastic Bargaining Games with

Sequential Information Arrival




Chapter 1

Introduction

Part I of this research addresses the problem of resource allocation among two parties in a
dynamic context, where both parties have bargaining power, thereby significantly influenc-
ing the final outcome. The process of negotiation is modeled as a noncooperative sequential
bargaining game in which the two parties alternate making offers over a share of a single
divisible asset. We introduce a bilateral bargaining model in which the value of the asset
changes stochastically according to a sequence of p.erfectly observable time-varying random
variables. Then we give statistical specifications for two types of the stochastic bargain-
ing games to geﬁerate numerical examples. We direct special attention to the duration of
negotiation processes in the analysis of the simulation results.

Bargaining among parties of opposing interests constitutes a wide range of ‘negotiation
processes in economic, political, and legal spheres. To rival firms negotiating over market
share, bargaining may be a process to achieve an agreement on a production level. In labor
dispute, bargaining may be necessary to reach an agreement on wage levels. In the context

of international trading, bargaining may indicate a negotiation over an import-export quota
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among nations. Yet another example can be found in a process of public policy making
among opposing political parties, between executive and legislative branches, or between
the authorities and the gengral public. Likewise, bargaining describes an intrinsic aspect in
the process of solving disputes when all the participants possess non—trivial influence over

final outcomes.

1.1 Bargaining Delays and Information

Ba,rgaining may break down, that is, the negotiating parties may never come to an agreement
and may quit making further efforts to reach an agreement. It is not surprising to observe
such breakdowns in cases where the parties can find better outside alternatives. If the
outside alternatives are not available or costly to search for, and if the parties recognize
positive gains from reaching an agreement in the current negotiation, we would expect that
Athe rational participants would prefer an agreement‘ to a breakdown. Such an agreement is
often not achieved immediately after the negotiation begins. It is frequently accomplished
only after a significant delay even when the participants are aware of costs associated with
the bargaining ciuration. This delay becomes an unavoidable source of inefficiency when
similar or better terms could have been realized in the earlier stage of negotiation. On
August 13, 1992, the Century Plaza Hotel in Los Angeles was crowded with b.idders_ from
the United States, Europe, and the Pacific Rim. They were there to participate in an
auction for real estate assets that the American banks were trying to unload. The result
was quite disappointing to the banks, for barely half the properties were sold. Was this the

issue of supply—-and—demand imbalance? What is it that caused the buyers to balk? Was it
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simply a matter of pricing? We are interested in analyzing how the bargaining participants’
contention for Iarger gains could result in the bargaining delay.

In the related sequential bilateral bargaining literature,! where a seller and a buyer are
bargaining over a single indivisible asset, several attempts have been made in identifying
conditions that require or cause delays in reaching an agreement. The central assumption
in those models was the information asymmetry among the participants. For example,
let us consider a case in which a seller’s valuation is common knowledge and a buyer’s
valuation is known only to the buyer. Suppose that they alternate in quoting asks and
bids over an indivisible asset. After observing the seller’s ask price, the buyer can delay to
signal that his valuation is low before quoting his bid. The buyer may choose to delay even
longer to convince the seller that his signal is credible (Admati and Perry (1987)). Similar
results have been obtained for the case where both the seller and the buyer have private
information about the value of the asset. Let us now suppose that only a seller makes an
offer and a buyer responds by accepting or rejecting the offer. For example, consider a case
of monopoly pricing in which the buyer’s valuation is known only to the buyer. A seller
naturally charges a price that is higher than the marginal cost, and a buyer will not accept
the offer if his valuation is lower than the monopoly price. But the transaction would have
been efficient if the buyer’s valuation is higher than the marginal cost. The seller may
employ a screening strategy to find out the buyer’s valuation by making succeséively lower
offers until the buyer accepts. In other words, delay becomes a part of seller’s screening
strategy. In such cases, however, the delay disappears as the time interval between the

offers converges to zero, allowing the seller to make offers frequently (Gul, Sonnenschein,

LA detailed review of the literature is included in the next section.
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and Wilson (1986), and Ausubel and Deneckere (1989)). In addition, if a buyer has an
incentive to reject an offer that is lower than his valuation in the hope of receiving an even
better offer, similar inefficiencies may result (Myerson and Satterthwaite (1983)).
Consequently, those studies have shown that delay is attributed to information asym-
metry on the asset value among players, which results in differences in players’ personal
valuation of the asset. It is, however, unreasonable to assume that the information of vital
importance which affects the value is not publicly held. Decisions and actions taken by ma-
jor financial intermediaries are visible to investors, and any non-trivial information travels
to major financial centers all over the world along electronic pathways immediately after it
leaks out. Following the viewpoint of the Efficient Market Hypothesis, in our bargaining
models wé assume that there is no uneven assimilation of information among players once
they are at a negotiating table. This assumption indicates that one player cannot take
advantage of poorly informed players by identifying arbitrage opportunities resulting from
informational asymmetry. Hence, one of the important features of the investigated model
in the following chapters is that both parties observe identical information regarding the
value of the asset and that there is no uncertainty regarding one’s opponent’s characteris-
tics during a bargaining process. We conjecture that even without information asymmetry
bargaining delay is generated due to the players’ contention for larger gains based on their

speculation in changes of the asset value in the future.
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1.2 Theoretical Literature on Bargaining Delays

In Rubinstein’s (1982) sequential bargaining game of complete information with an alter-
nating offer process, it is well-known that there is a unique subgame perfect equilibrium in
which the first offer is immediately accepted by a responder.? In other words, the agree-
ment is reached in the first period without any delay. Such a result is not implausible
due to the assumption that every participant is completely informed about all aspects of
the bargaining procedure. Previously studied game-theoretic formulations incorporating
incompletely informed player(s) have indicated that models with informational disparities
must be investigated in order to identify main causes of delays before reaching an agreement.

A typical sequential bargaining game of incomplete information that has attracted much
attention is the one with one-sided incomplete information and assumes that a seller’s reser-
vation value is common knowledge and that a buyer’s valuation is his private information.
Such works include those by Sobel and Takahashi (1983), Cramton® (1984), Rubinstein*
(1985), Fudenberg, Levine, and Tirole (1985), Grossman and Perry (1986), Gul, Sonnen-
schein, and Wilson (1986), Admati and Perry (1987), Gul and Sonnenschein (1988), and

Ausubel and Deneckere (1989). Rubinstein studies an alternating offer game, while the

?Suppose that, in Rubinstein’s famous bilateral pie-sharing bargaining game, players have time prefer-
ences with constant discount factors such as 6# for player A and 67 for player B, where 6 € (0,1). Then
its predicted unique subgame perfect equilibrium is the first proposer A making an offer such that

Ao (L85  6° —6467
T \1-646B" 1-64§8 )’

which is accepted immediately by a responder B. Whenever we refer to the solution of Rubinstein’s bar-
gaining model later in this dissertation, we mean the above result.

3Cramton (1984, 1987) extends the model into a two-sided uncertainty case. Fudenberg and Tirole (1983)
also studied a two-sided incomplete information case for two—period bargaining games.

*Rubinstein assumes that the buyer’s discount factor or both his valuation and discount factor are private
information.
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others mainly look at a process where only the seller makes offers.> They usually suppose
that the seller makes offers at discrete times with the interval A, that is, t = 0, A, 24, -,
and so on. Such one-sided offer games are often referred to as screening models, since the
seller quotes successively lower offers to sort the possible buyer’s types. Decreasing the offer
prices over time until the buyer’s acception is intuitive, since the seller can infer the buyer’s
valuation to be low after repeated rejection by the buyer, assuming that the buyer waits
for an offer smaller than his reservation value and accepts it if the cost of another delay is
larger than the anticipated next lower offer. Though each model investigated in the above
strategic approach specifies an extensive form that is different from each other, resulting
delay can be explained by this screening strategy.

Delays generated in this manner, however, have been found to disappear as the time
interval between offers becomes arbitrarily small(Gul and Sonnenschein (1988), and Gul,
Sonnenschein, and Wilson (1986)). In other words, signiﬁcant delays result only if offers
are made infrequently or due to the agent’s inability to make offers quickly. As the Coase
conjecture states, one party’s making offers frequently encourages its opponent to wait for
an even better term for himself without a significant time loss, leading to a quick agreement
with a favorable term for the opponent. Then, what would be necessary to have a significant
delay in a screening model? The offer making agent has to avoid making offers frequently in
order to convince its opponent that he is not going to make offers that are more favorable to

the opponent than the current offer. To show that he is unlikely to compromise, he may use

5Grossman and Perry present numerical simulations for both alternating offer games and one-sided offer
games. They show how to embed the one-sided offer equilibrium into the alternating offer process using
beliefs that assign weight only to types in the interval support of the buyer’s calculation. Fudenberg, Levine,
and Tirole, and Ausubel and Deneckere also discuss both cases.
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a significant delay before making the next offer. Hence, screening models have to assume an
incentive for reputation building in order to explain significant delays observed in practice.
A finding of Admati and Perry (1987) in an alternating offer framework is consistent with
fhis argument.® They model an alternating offer game in which the time between offers is
an endogenous strategic variable, and find that delays caused in such a model do not vanish
as the time between offers approaches to zero.

In alternating offer bargaining games, strategies are more like that of two-sided signal-
ing than one-sided screening(Admati and Perry (1987)). Delays are used as a signaling
device to communicate one’s type or valuation in a credible manner to his opponent. Let
us first consider a one-sided uncertainty case, in which the seller’s valuation is common
knowledge and the buyer’s valuation is either high or low. After receiving an offer from
the seller, the buyer now can use a longer duration to signal that his valuation is low and
finally make a counteroffer that is lowe; than the seller’s offer. A low valuation buyer has
to stall a sufficiently long time to eliminate the seller’s wrong suspicion on his valuation.
Hence, if the buyer has low valuation, he would have to choose a duration and a counteroffer
that would have beenvunproﬁtable to him if he had high valuation. Delay here is a nec-
essary consequeﬁce of incomplete information. In two-sided uncertainty models a similar
interpretation can be provided to explain delays.

| We have to notice, however, that in those models delays are generated by tinie intervals,
leaving the relationship between delays and uncertainty unclear. Cho (1990) explicitly

proved that the presence of uncertainty over the gain from trading is a necessary condition

5 Ausubel and Deneckere (1988) show the condition to have delay even if the time interval between offers
converges to zero in a seller-offer game with two-sided uncertainty.
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for delay.” Cramton (1984) showed that the more uncertainty present, the less efficient the
bargaining outcome is; that is, the bargaining results in costly delays.® A more detailed
survey of sequential bargaiping games with incomplete information is provided by Linhart,
Radner, and Satterthwaite (1992) and by Osborne and Rubinstein (1990).

Though the models with asymmetric information have helped our search for the causes of
costly delays, these models have not provided us with a complete list of the sources. Instead,
they have indicated the necessity to investigate other sources of delays without the presence
of informational disparities among the participants. Merlo and Wilson (1995) have made a
creative attempt in attacking this challenge by studying a sequential bargaining game with
multiple players in which both the surplus to be allocated and the identity of a person who
makes an offer follow a stochastic process. Their model is that of complete inférmation, 80
that any delay generated in this model is not due to informational asymmetry, but rather
due to each player’s speculation over the gain in the future. In fact, one of the models
we investigate in the following chapters is one specific case that can be incorporated into
their bargaining model. They have shown the existence of subgame perfect equilibria in
their bargaining game and investigated the characteristics of stationary subgame perfect

equilibria in nontransferable utility.

1.3 This Dissertation

A particular type of bargaining that we investigate is a problem of surplus sharing, where

the size of surplus is known to change stochastically as time proceeds. Hence, the game

"It is proved in Theorem 5.4 in Cho (1990).
8The degree of uncertainty is measured by the amount of overlap of the supports of two uniform distri-
butions of equal length. The uncertainty is greatest when the supports are identical.
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is a discrete version of adaptive control éystem, in which we take a random change in the
environment into account. The key feature of our bargaining model is the presence of
uncertainty regarding the future value of the asset due to the stochastic factor. Each player
observes identical information regarding the stochastic factor and has to make contingency
plans for quoting an offer because of this uncertainty. Conseqpently, players employ closed—
loop strategies, in which they condition their actions on the history of the game up to the
current period and respond optimally to the realizations of random variables.

We introduce in our concluding remarks an idea for modeling possibilities of breakdowns
explicitly in a bargaining game as a future extension to our games. This is another way
of incorporating a stochastic process in explaining bargaining durations. We assume that
the value of the asset in the current negotiation does not change in the short term, and
that players can choose to invest their resources into the search for outside alternatives
while participating in the current negotiation. The realization of better options follows
a stochastic process, given each player’s investment level. In such a model an agreement
is generated by an increasing endogenous risk of breakdowns. Despite the assumption of
complete information and the cost associated with the search, we conjecture to observe a
delay caused by the presence of the potential for better outside options.

Using the results of probability theory, we expand the scope of our analysis beyond the
deterministic point of view. This stochastic treatment of the dynamic process of asset value
variations enables us to identify a delay before reaching an agreement as an unavoidable
consequence in some bargaining situations despite the assumption of perfect information.
For example, in our model families of probability distributions that typically change their

forms as time progresses are reflected in the players’ beliefs about asset values in the future.
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Such a sequence of observable random variables helps the formation of scientific speculations
among the players, causing them to wait for better terms. We feel the need for explicitly
modeling how such contentions for larger gains, resulting from an information flow, influence
bargaining durations. Therefore, we must note the importance of integrating stochastic
concepts into the bargaining theory and its applications.

Sequential bargaining games usually assume the existence of some sort of impatience on
the part of the participants. Such impatience has been modeled as discount factors on future
payoffs or as fixed per—period costs in the existing bargaining literature. The presence of
discount factors is viewed to generate an incentive to come to an early agreement. We note
that discounting on payoffs over time is not considered in our models. Therefore, unlike
many of previously studied bargaining models, the pressure to reach an agreement in our
model is generated solely by the information flow, not by the presence of discount factors.

Though the investigated game is a specific bilateral bargaining over a divisible assee,
potential scope of the model is not restricted to this pie-sharing situation. For example, a
slight modification of the model can provide us with interpretation of a more general type
of bargaining over an indivisjble asset. Suppose that two players, a seller and a buyer, are
bargaining over an indivisible asset. In each period the seller and the buyer submit an ask
and a bid, respectively. Realized gains to be distributed from trade are determined by the
bid-ask spread, while how it is divided is determined by the transaction price. Suppose
the,t they can decide on the transaction price and whether or not to trade after observing
the ask and the bid. Notice that they observe identical information regarding the size of

gain, the bid-ask spread.® They form expectations as to what the gain in the future will

9Observing the identical information does not necessarily mean that the both players interpret the infor-
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be after observing this bid—ask spread. Therefore, if the current gain is positive but the
expected bid-ask spread in the future is larger than that in the current period, the players
could have an ince.ﬁtive to wait until later period. Delay is not generated by information
asymmetry, but by each player’s speculation over the gain in the future.

Hence, our principal task in Part I of this research is to provide an alternative explana-
tion to commonly observed phenomena of costly delay;; in reaching an agree#nent in many
bargaining situations. Instead of characterizing the complete set of equilibria, we look for
special types of equilibria that are consistent with specified behavioral rules. By following
the language of game theory, we assume that each player, i.e., a decision maker, is rational
and intelligent. By rational we mean that each player consistently acts to maximize the
expected value of his own payoff and that he uses Bayes’ rule to update his beliefs on the
state whenever necessary. By intelligent we mean that each player knows everything that
we know about the structure of the game and that he can make inferences about conditions

that we can make. In summary, the main contributions of this dissertation are as follows:

1. By incorporating a notion of dynamic stochastic control into a noncooperative game,
we model two types of bilateral bargaining situations with the value of the asset
changing stochastically. One is called the Basic Game, and the other is called the
Alternative Game. The two models differ from each other in the timing of informa-
tion arrival and a player’s response. By using a method of backward induction, we
_explicitly solve for subgame perfect equilibria for the specified decision rules to the

two types of stochastic bargaining games. We demonstrate that reservation values for

mation in the same manner. In fact, there has to be a difference in interpreting the information reflecting
diverse characteristics of the players in order to have any trade occurrence with indivisible assets.
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proposing players differ between the Basic and the Alternative bargaining games.

2. Some properties of subgame perfect equilibria are provided through the application
of Merlo and Wilson (1995)’s results. For example, under given assumptions the

existence of subgame perfect equilibria in both Basic and Alternative games is shown.

3. We chéracterize the derived equilibria especially in comparison with Rubinstein’s find-
ings on his pie-sharing bargaining game. We give several sufficient conditions for our
equilibria to be unique and thus to converge to that of Rubinstein’s game. We also
provide necessary and sufficient conditions for such games to have a delay before an

agreement. In so doing we also discuss similarities and dissimilarities of the two games.

4. We numerically simulate such bargaining games and examine the results thoroughly.
through comparative statics, directing special attention to bargaining durations. We
design two types of simulation models. One is called the Autoregressive Binomial
Model, in which the information shock depends on a random variable that follows a
binomial distribution. The other is called the Generalized Wiener Process Model, in
which the information shock follows a continuous distribution. Through the analyses
of the two models, especially in comparison of the Basic and the Alternative games,

we show the sensitivity of bargaining outcomes to the information availability.

5. We provide a set of computerized experimental results in our study of order flow
determinants in experimental financial markets with asymmetrically informed human
subjects. Thorough descriptive statistics are reported, and the dependency of order

flow on the previous order types and a size of order books are demonstrated through
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x? statistics.1®

The rest of the dissertation is organized as follows. Part I consists of four chapters
‘that include this introduction chapter. In Chapter 2 we describe and analyze our Basic
bargaining game and an Alternative game, and characterize subgame perfect equilibria.
Chapter 3 defines the Autoregressive Binomial Model and the Generalized Wiener Process
Model, and provides the results of computer simulations to describe effects of parameter
changes in the bargaining games analyzed in Chapter 2. We conclude Part I in Chapter 4,
where we give an example of possible extension that models the effect of endogenous risk
of breakdowns in bargaining. Bibliography for Part I is attached after Chapter 4. Part
II consists of Chapter 5, and its detailed introduction and brief concluding remarks are
contained in the chapter. Thorough descriptive statistics on the results of experimental
financial markets are given in Chapter 5, and the dependency of the order flow on the
previous order types and the size of order books are demonstrated. Bibliography for Part

II is attached after Chapter 5. Related Appendices follow after each relevant chapter.

0Part II is devoted to this task. Although both parts direct their attention to a stochastic nature of
information flow, the underlining models in each part are very different from one another. The models
in Part I incorporate a stochastic nature of external information flow that affects bargainers’ beliefs on
the value of divisible assets, whereas the implicit model underlining the experiments in Part II reflects a
stochastic nature of internal information assimilation process in a competitive market, where a bargaining
strategy is not a primary concern of the traders. Therefore, traders’ speculative behavior is interpreted from
a different perspective in each part. It should also be noted that the games in Part I are those of complete
information with no asymmetric information among the players, whereas players in the experiments in Part
11 are asymmetrically informed. Hence, bargaining durations in Part I are attributed to differences in players’
beliefs, while the durations between trades in Part II reflect an information availability.




Chapter 2

Bargaining with Sequential

Information Arrival

2.1 The Model

We begin with a basic sequential bilateral bargaining game of perfect information with a
commonly known finite horizon. The environment is modeled as a discrete—time game. Two
risk neutral players, indexed by i € I = {4, B}, are bargaining on the partition of a single
divisible asset.! The value of the asset in period t, i.é., the gains to be distributed if the
agreement is reached in period ¢, is denoted by @; and changes stochastically over time
according to a sequence of time-varying random variables {6,}t_;. We assume~ that Qo is
positive, so that the asset is desirable for the players to begin the negotiation. The asset

will be divided only after two players come to an agreement. §; is positive and relates the

1\]Ve often treat player A as female and player B as male purely for convenience’ sake. Therefore, we
refer A as she and B as he. We use “he” for generic individuals.

15
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value of the asset in period (¢ — 1) to that in period ¢ linearly; that is,

Qt = 6Q¢—1.

It describes a set of stochastic constraints to each player’s expected payoff maximization

behavior.

Let f(-) describe a state transition equation specifying how §; evolves with time:

6i41 = fi(6e,€¢)-

It is a first order stochastic difference equation, and thus {6;}t_, is a first order Markov
process. Note that the current state 6; is a sufficient statistic for predicting future states.
As an argument of f;, it is assumed that there exists an exogenous random variable, e¢, that
causes the transition from 6; to 6;41 to be stochastic, and that a sequence of such random
variables, {e:}, is a stationary (i.i.d.) process and is independent of §;. We assume that
the ¢; is perfectly observable by both players at the beginning of period ¢. Let us define a

T
product space § such that Q = [] Q;, where
t=0
b €

and

8= (60,61, ,6r) € Q.

Then QF defines the set of all sequences of length ¢ of elements in a space of feasible és of
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each period t. Hence, {6,}_, € Q?, or simply 6 € OF.

Let X be a product space of the sets of feasible share vectors in each ¢ such that
X = tﬁoXt. Let us also define a share vector in period ¢ as z; = (:cf‘,:vtB ) where z; € X;.
Let m; be a payoff vector in period ¢, m; = (nf, 7F), which will be defined for each game later
in this section. A bargaining outcome, (m,t), describes the allocation of realized gains and
the period number in which the bargaining ended. Implicitly assumed is that players care
only about the resulting payoff scheme and the time of agreement, not about the history of
the game that leads to the agreement. We also impose the non-negativity constraints such

that

x>0, Vt,

where ¢ is player 4’s offer in period ¢, or a share of Q; that player i wants to take in period
t if an agreement is reached. Note that with this formulation we allow players to make a
ridiculous quote to generate a delay; that is, :1:% could be larger than one without further
restriction.

Let St denote the set of all strategies available to player 4, i.e., S* is the set of all
sequences of strategy mappings S* = {S:}I_,. In addition, we define s; = (sf,sP) as
a strategy pair chosen by the players in period ¢, and s = (s1,892, - ,57) as a strategy
combination for the entire game. The assumption of perfect information and perfect recall

naturally indicates that each player knows all previous moves when one makes a decision.
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Hence, an information set after period ¢, in general, is?

h't = ((60150)7 (51’51)’ T 7(5t13t)) (S Ht.

We can think ‘of 6; as a piece of new information that can be either endogenous or
exogenous to the system and describes the value of the asset in period ¢. Hence, an arrival
of new information implies the beginning of another negotiation period. We consider two
cases that differ in the information availability to each player when they make decisions.
The first case specifies the Basic game, in which both players take some action in each
period. We call the second case the Alternative game, in which only one player takes an
action in each period. The Alternative game allows us to investigate a case in which a
responder has a chance to observe additional information regarding the asset value before
making any decision after observing a proposer’s offer. These two games appear to be
simﬂar to each other, but have to be distinguished for the reason that will become clear as
we proceed with our analysis and simulations. We argue that the Alternative game may
allow more variations in the bargaining durations.

Before we describe detailed frameworks of the two games, we list the following assump-

%A precise definition of information set available for each player is slightly different between the Basic
game and the Alternative game. In a Basic game, an information set for a proposer A in even t is

h* = ((60,50), (61,81), -~ , (6:-1,8¢-1),6:) € HY,
whereas that for a responder B in even t is
ht = ((6o, 50), (61,81), "+ » (64—1, 84—1), 6t s1) € H*.
In an Alternative game, an information set for an action taking player in ¢ is

R = ((60,50), (61,81), - , (64—1,8¢~1),6¢) € H*.
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tions on the players’ preferences over bargaining outcomes. The following assumptions are

weak enough to allow a wide variety of preferences.

Assumption 1 Each player’s preference ordering »; over a bargaining outcome (my,t) is

complete, transitive, and reflexive.
Assumption 2 For anyt € T and any feasible m, 7y, (s, 1) > (7,1) if and only if 7 > #°.

In other words, the asset is desirable for the players to engage in a negotiation process until

an agreement.

Assumption 3 For any t,t € T and any feasible m;, t < t implies (ms,t) =; (3, %), with

strict preference if 7 > 0.

Hence, time is valuable in a sense that an agreement now is preferred to an agreement of

the same payoff later.

Assumption 4 Let {(my,t)}52; and {(7r,)}3; be sequences of outcomes such that

lim 7 =7 and lm &, = 7.
n—oQ n-—o0

Then, (m,t) =; (#,%) if and only if (mp,t) =5 (7p, 1) Vn.

Therefore, the preference ordering is continuous. Player ¢’s preference orderings that sat-
isfy the assumptions above can be represented by a continuous utility functior.l u® that is
increasing in 7} and decreasing in ¢. Note that we can make analogous assumptions on the
players’ preferences over uncertain outcomes in the future periods in terms of their expected
values. In other words, we assume that the utility function possesses the expected utility

property, i.e., it is a von Neumann-Morgenstern utility function.
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Figure 2.1: The Timing of Events (Basic Game)
2.1.1 The Basic Game

Player A starts the bargaining by making an offer 3364 € X 64 after both players have observed
Qo at the beginning of period 0. In the same period player B responds to the A’s offer
by either accepting or rejecting it. If B accepts the offer, the bargaining terminates. If B
rejects the offer, he will have a chance to make a counteroffer z¥ € X in period 1 after both
players have observed §;. Then A responds to the B’s offer by either accepting or rejecting
it. In this fashion the players alternate in making offers until one of the players accepts
an offer or the exogenously predetermined final period T', where T is an even integer and
common knowlédge, is reached. Figure 2.1 shows the timing of events in the Basic game.
Notice that A makes an offer and B responds to it by choosing either {accept} or {reject}
in even—numbered periods, while B makes an offer and A responds to it in odd-numbered
periods. The Basic game is that of perfect information in a sense that players do not move
simultaneously.

When it is player #’s turn to make an offer in period ¢, i has observed {§,}t_; but has
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not observed 6zy1,6¢4+2,---. Thus, 7 has his expectation as to what the future és will be.
Taking this expectation into consideration, i chooses an offer that is optimal to him. A
strategy for player ¢ speciﬁes the offer that ¢ makes in period t, 2} € X}, as a function of
observed §s. We define player A’s strategies. Those of player B follow analogously. S4 is
the set of all sequences of strategy mappings S# = {SA}L_,, such that in even-numbered

periods

sf . HY —. X,

and in odd-numbered periods

Sf . H' — {{accept}, {reject}}.

Note that we consider only pure strategies in our analyses.
If a responding player j accepts ¢, the bargaining ends and j’s realized gain is Q(1 —
x) while 4’s realized gain is Q:zi. In general, i’s and j’s realized gains in period t are,

respectively,

.
; Qi if j accepts Tt
7rt = <
\ 0 otherwise,
.
) Q(1 — xt) if j accepts ¢
o= S
0 otherwise.
\

If no agreement is reached until the final period T, A receives w% = @7z while B receives

72 = Qr(1—=r), where z7 € [0,1] is a predetermined A’s default share in 7" that is known
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Figure 2.2: The Timing of Events (Alternative Game)

to both players before the game begins.

Let Eiri,, denote i's conditional expected payoff in some future period t + n, n €
(0,T — t), which is determined by a sequence of observed és up to ¢ and his expectation of
the strategies of both his own and the opponent j. ¢ forms his expectation on his opponent
j’s future strategies and his 'own, based on his updated expectation of the asset values in
the future periods. We note that it is possible to have Et # E{ , reflecting differences in

initial priors among players. The structure of the game is common knowledge.

2.1.2 The Alternative Game

In the Alternative game player A also starts the bargaining by making an offer z#' in period 0
after observing Qy. Then player B responds to the A’s offer by either accepting br rejecting
it after observing 61 in period 1. If B rejects the offer, then he makes a counteroffer xf
before he observes 6. When period 2 begins, both players observe 6, and A will respond
to =P Dby either accepting it or making a counteroffer z4. Figure 2.2 shows the timing of

events described above. Notice that A and B take an action in period ¢, where ¢ is even and
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odd, respectively. Therefore, the Alternative game is also a game of complete and perfect
information, in which exactly one player takes an action in each period.

When it is player i’s turn to take an action in period ¢, ¢ has observed {6,}:_, but
has not observed é;11. Hence, ¢ has his expectations as to what 6;; will be and how his
opponent j will respond to his offer after observing ;1. Based on such considerations,
i chooses his action that maximizes his expected gain. Therefore, a strategy for player i
specifies the action that ¢ takes in period ¢, which is either to accept :c{_l or to quote a
counteroffer z¢, as a function of observed &s and the opponent’s immediately preceding offer
.

‘ Formally, S is the set of all strategies available to player A in even—numbered periods

7=01

t(> 0); that is, it is the set of all sequences of strategy mappings S4 = {SA}7_,, such that
Sf . H' — {{accept}, {reject}},

and in the event of rejection

S& . HY — X,

Similarly, S is the set of all strategies available to player B in odd-numbered periods, and

SB is defined analogously.
If player 7 accepts player j’s offer in period ¢, the bargaining terminates and ¢’s realized

gain is Q:(1 — m{_l) while j’s realized gain is th{_l. In general, ¢’s and j’s realized gains
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in period t(> 0) are, respectively,

r

Q1 — zd_,) ifi accepts o
t—1 -1

0 otherwise,
S

.
Qiz]_, if i accepts z]_,;

0 otherwise.

\

As in the Basic game, if no agreement is reached until the final period T, player A receives
7r14 = @Qrz7 while B receives wg = Qr(1 — zr), where o7 is a predetermined share known
to both players before the game begins. Since a proposer 7’s expected payoff in some future
period (¢ 4+ n) is determined by a sequence of observed 6s, the space of expected payoffs
for each observed sequence {6,}_; is the space of continuous functions C(Ein%,,). The

structure of the Alternative game is common knowledge.

2.1.3 The Equilibrium Concept

A strategy profile {54, S8 } generates a path of offers and responses, which determines a

payoff to each player. Let us denote player 7’s realized payoff that is generated by a strategy

profile {S4, S8} by 7¢(54, SB).

Definition 1 A strategy profile {2, 5B} is a (pure strategy) Nash equilibrium if and only

if
1. 8 eSii=AB,;
2. T(8f, SE) > nf(SE, SF), VSA e 54 ;

3. WtB(S'{q,StB) > Wf(gf,StB), VS’f €SB .
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Unfortunately, it is demonstrated that the theory cannot give a very sharp prediction in
bargaining games without further refinement in the equilibrium concept. Let {S4|ht, SB|ht}
be a strategy profile induced by {54, S} after a history h* € H®. Then we give a definition

of subgame perfect equilibrium as follows.

Definition 2 A strategy profile {54, SB } is a subgame perfect equilibrium if and only if

{S4|ht, 5B |t} is a Nash equilibrium in the game remaining after h¢, for all £ and A, i.e.,
1. Siec&i=A,B;
2. BEf(rf(8,9F)) > BA(x{ (S, 5F)), Vi, R, 58 € 54
3. EE(rf(Sf,5P)) > EF (P (S£,SP)), Vt,h%,SF € 85 .
Subgame perfection implies that the players’ strategies are best responses not only at the
opening of the bargaining game, but also at any decision node. Therefore, each player’s
actions are optimal at every possible history. Merlo and Wilson (1995) proved the existence

of subgame perfect equilibria in their stochastic sequential bargaining game.? In the rest of

this subsection we give corollaries to their findings.
Corollary 1 There exists a subgame perfect equilibrium in the Basic bargaining game.

The proof follows that of Merlo and Wilson (1995) applied to our bargaining game
framework. Let us first define the following and proceed with the proof. Define player
i’s minimum payoff to disagreement, which we shall call 7’s minimum reservation value, in

some period ¢ as

m% = Qtﬂ = mlll{EZ(W:-), T=t+1,--- 1Tlh’t}

3Also refer to Harris (1985) for the existence of pure strategy subgame perfect equilibria in sequential
games of perfect information with infinite action spaces.
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z} is a minimum reservation share that is a share i needs to have in the present period ¢,
given h®, to guarantee himself a payoff exactly equal to the minimum expected continuation

payoff in an equilibrium path. Similarly, define i’s maximum reservation value as
M = Qi = max{E{(rt), r =t+1,-- , T|ht}.

E is a maximum reservation share i needs to have in the present period ¢ to give him
a payoff exactly equal to his maximum expected continuation payoff in an equilibrium
path. We write a minimum reservation value vector as m; = (mf, m¥), and a maximum
reservation value vector as M; = (M#, MP). By construction they are nonempty valued.

Next, define an operator on the space of feasible histories up to period t as
\pé(Mtamt)(ht) = _‘I'—% x %(Mtamt)(ht) = (T(Mtamt)(ht)? _g(Mtvmt)(h't)) ’
where

Ui(M,my) = Qp max{l— of, )

= max{Q; — m{,Mf},
and

Ci(My,my) = Q max{l—ai,ai}

= max{Q; — Mt],mi}
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We can consider ¥? as a refinement on s} that is a bounded measurable function. Hence,
ﬁ is the maximum possible payoff ¢ can achieve in period ¢, while _\Ii is the least payoff 7
can guarantee himself in peﬁod t. Let us also denote F? the set of bounded and measurable
functions on Q that take values in R, and let p = (p#,p?) € F? be a feasible payoff vector.

The goal of the proof is to show that there exist extremal fixed points of ¥, x U; and
that the extremal fixed points of ¥y X ¥y correspond to extremal subgame perfect payoffs.
The corollary is proven through the series of the following lemmas, in which we first show

‘the monotonicity and pointwise continuity of ¥; x ;.

Lemma 1 If mi < m? and M} > MZ, then
(Mt amt) > ¥ (Mm

and

___z(Mtv )<‘Il(Mts E)

Proof. Suppose that m} < m? and M} > M?.
i) We first show Uy(M},m}) > Ty (M2, m?). Given ht € H?, from the assumption it is
clear that Q; —my' > Q; —my?, Qs —md' > Q¢ — mf?, Mj' > M}*?, and MP' > MJ2. 1t

follows, from the definition of ¥y, that

VML, mp)(hY) = max{Q, —mi*, M)

> max{Q; - m{?, MP*} = Wi(M?,md)(h),
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and

V(M m)(hY) = max{Q;—mi!, MP'}

> max{Q; — mp?, MJ?} = Wl(MZ,md)(h).

Therefore, Uz (M}, m}) > Ty(M2Z, m2).
ii) Next we show W;(M{,m}) < Uy(M2,m?). Given ht € H?, from the assumption it is
i1 4,2 4,1 5,2 il 0,2 il 2
clear that Q¢ — My < Q¢ — My”", Qr — M < Q¢ — MP*, my* <my*, and m)*" < m?. It

follows, from the definition of ¥;, that

Ti(ME,m)(hY) = max{Q, — M, mb

IN

max{Q; — M}?,mi®} = W(ME,m?)(ht),

and
Y(M7,mp)(hf) = max{Q — My, mf"
< max{Qy - Mp%,mi’} = W(MF,mi)(h").
Therefore, ¥y(M},m}) < Uy(MZ, m?). This completes the proof. |

Lemma 2 If (u*,w*) — (u,w) € F2 x F? pointwise, then

Ty x Uy, wb) () — T; x Ly(u, w)(BY).
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Proof. For (u,w) € F? x F? and h* € H*, define
llu, wllpe = B (max{||ulloo, [[wlloo }A) ,
where
lglloo = max{g*(r%) : i = A, B}.

Then, (u*, w*) — (u,w) pointwise implies
”(ukvwk) - (u’ ’w)”h‘ — 0, Vh' € Ht-

Given ht € H?, Uy x Uy(-,-)(h) : F? x F?2 — R? x R? defines a continuous function with

respect to the || - ||5¢ topology on F? x F2. |

Lemma 3 There exist M}, m} € F? such that

1. M{>mi>0.
2. Uy x Uy(Mf,mg) = (M, my).

3. Wy x Uy(My,me) = (Mg, my) => mf <my, My < M.

Proof. First we define (MF, mf) = (Tt(Mtk"l,mf“l),&(Mf'l,mf_l)), .a,nd choose
(M2, m?) > md(ht) = 0, MP(R) > x4, z; = (zf,zP) € F2. Then, by induction with an |
application of the monotonicity lemma, it is straightforward to show that {Mtk}k;-_l’g’... is a
monotonically decreasing sequence anéi {m§} k=1,2,-- is a monotonically increasing sequence,

with mf < MF Vk. Hence, (MF, mF) is monotonic and bounded. Then, there exists a
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pair of functions M}, m} € F? such that MF(ht) | My (h*) and mE(ht) T m¥(ht) for
ht € Ht. Hence, T; x Uy(MF, mF) converges to (M, m}) pointwise. Then, continuity
implies U; x Uy(MF, mF) converges to Uy x Uy(My,m}). It follows that Uy(M;,m}) =
M{ > my = Uy(M{, mf). This proves 1 and 2.

Now let (M;, ms) = (Us(Mz, ms), Us(My, my)). Then, we have m{ < m; and My < MY.
Hence, from the monotonicity lemma and the definition of (MF,m¥), m} = Uy(MP, md) <
Wy(M;,my) = my and My = (Mg, mg) < Ty(MP,md) = M}. By induction with the
application of the monotonicity lemma, it is straightforward to show mf < myand M; < Mf
for k =1,2,---. Therefore, (M}, mf) — (M}, m}) implies m} < m; and M; < M{. This

proves 3. O

Lemma 4 p, = (pt, pl) is a subgame perfect equilibrium outcome if and only if mi <

Et(p'r) S Mt*

Proof.

i) Consider any subgame perfect payoff vector p, and suppose that M; and 7 are supre-
mum and infimum of subgame perfect payoffs of the game after observing ht, respectively.
By construction, we can show pé(ht) > Wi(M;, ;) and p*(R?) < Wi(M;, ), which indicate
e > _\I_I_E(Mt, hy) and M, < E(Mt, 7). Now we construct a convergent sequence such that
(M*,mF) = (Ty(MF1,mk=1), Oy(MF~1 m* 1)) k= 1,2, -, with (M°,m®) = (M, 7).
Then, M! = Ty(M° mP) > M° and m! = T, (M% mP < m® From the monotonicity
lemma, we have M* > MF1 and mF < mF~1 for k = 1,2,---. Note that mk is bounded

since 0 is bounded.* In addition, by assumption we know that there is an upperbound

“Everyone is guaranteed to receive at least a payoff of 0 by not coming to an agreement in the current
period.
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on the feasible payoff vectors, i.e., M* < 5. Since {M*} and {m*} are bounded mono-
tonic sequences,‘there is a (M,m) such that (M*,m*) — (M,7m) pointwise. Therefore,
M > M > & > . Then, from Lemma 3 we conlcude M* > M > M > > m > m*.

ii) Consider a payoff vector p, such that m}. < Ei(p;) < My. It is straightforward to
show that there is a strategy profile that supports p, as a subgame perfect equilibrium
outcome. 0

Consequently, Corollary 1 has been proven. The following corollary for the Alternative

bargaining game is also immediate.
Corollary 2 There exists a subgame perfect equilibrium in the Alternative bargaining game.
Redefine m; and M; in the following manner.” When player i is proposing an offer in a
given period ¢, his minimum reservation value is
m; = Bj(Qe41)z} = min{Ej(n7), 7 =t+2,--+ ,T|h},
while ¢’s maximum reservation value is

M} = Bj(Quir)ef = max{Ej(n}), 7=t +2,- , TIh'}.

Note that the reservation values when ¢ is responding to j’s offer from the previous period
is the same as the definitions given in the Basic game. Hence, the definitions above are the
reservation values after rejecting an opponent’s offer, which incorporate the uncertainty of

the asset value in the following period (¢+1). With these definitions, the proof of Corollary

®Whenever we are discussing Alternative games, we assume these definitions.
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2 is analogous to that of the Basic game.

Next, we include some of the findings by Merlo and Wilson on stationary subgame
perfect ‘equilibrilim. Note that a strategy profile is stationary if the actions depend only
on the current state. Hence, a stationary subgame perfect outcome is generated by sta-
tionary subgame perfect strategy profile. We denote player i’s best feasible allocation that
guarantees at least pZ to player j as BR(p), which is bounded and measurable on H?, is
continuous on h* € H?, and exists whenever the set of feasible allocations is not empty. Let
us define an operator O on the history of states such that a proposer A’s equilibrium payoff
is O4(p)(h?) = max{BRA(p)(ht),p*} and a responder B’s payoff is OB (p)(h*) = pP. With
these definitions, Theorem 1 and Theorem 8 of Merlo and Wilson (1995) can be immediately

applied to our bargaining games.

%

Theorem 1 (Theorem 1 of Merlo and Wilson (1995)) In Basic and Alternative bargaining

games, p = (p?,pP) € F? is a stationary subgame perfect equilibrium payoff vector if and

only if O(p) = p.

Theorem 2 (Theorem 8 of Merlo and Wilson (1995)) (M{"*, mg™) and (mi*, MP™) are

stationary subgame perfect payoff vectors.®

Merlo and Wilson (1995) proves the theorem above by showing that Wy x Uy(M;, my) =

(Mtamt) iInphes O(mvatB) = (m{lvMiB)7

5Note that the monotonicity of the operator ¥ is essential for the existence of stationary subgame perfect
equilibria in stochastic bargaining games.

"In other words, first assume _‘I?(Mt,mt) = M#, _\11_24_(M¢,mt) = mf, @?(Mt,mt) = ME, and
WP (Mi,mi) = mf. Then it is straightforward to show O*(mf,MP) = W_f(M,;,mt) = mf and

OB (mf, MP) = UB(M;,m:) = M£. Analogous argument is made for the case with (MA*, mB™).
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In the following sections, we consider an equilibrium offer strategy such that z¢ =
max{l — E, E} Therefore, the equilibrium payoff operator for a proposer ¢ in the Basic
game is Ui(z;) = Wi(zh,z]) = max{Q; — M}, M}}. Q; — M} is i’s best payoff while
guaranteeing a maximum reservation value for his opponent j. Hence, a responder j’s
equilibrium payoff is \I/{ (z2) = Mt] . In the Alternative game, the operator is defined as
Wi(z;) = Wi(zh, o)) = max{Fi(Qr1) — MJ, M}}. This is a strategy that leads to ez ante
Pareto optimal outcomes. We also show that the particular type of equilibrium strategies

we have derived predicts stationary subgame perfect shares.

2.2 Analysis of the Basic Game

In this section we present some findings which are immediate from the formulation of the Ba-
sic bargaining game. We describe an equilibrium strategy profile derived through a method
of backward induction. Recall that a strategy profile constructed by backward induction
necessarily coincides with a subgame perfect equilibrium, since such an equilibrium requires
the players to act optimally whenever they make decisions, i.e., choose their best responses
in each period t, given an observed history h*. We first specify behavioral assumptions and
provide a fundamental algorithm for the backward-induction solution to our Basic game in

words.

In the penultimate period (T' — 1), it is player B’s turn to make an offer. Consider a

quote z&_, that satisfies

C-1 Accepting B’s offer in period (T'—1) gives A at least as much as what A expects

to receive in period T
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C-II In the event that A accepts B’s offer in period (T' — 1), B receives at least as

much as what B expects to receive in period T.

w?_l satisfying condition C-I is a marginal offer that guarantees A’s acceptance in period
(T —1), while the one satisfying condition C-II grants B a payoff that motivates him not to
delay untill period T. Whenever it is his turn to choose an action, B wishes to gain more
than or at least as much as what he expects to receive from any future transactions. Let
a"v?_l be the smallest such offer, i.e., the smallest offer that satisfies condition C-II, and let
:%?_1 be the largest offer that satisfies condition C-1.. Suppose that #2_, exists and consider
the offers that are feasible and are greater than or equal to :7:?_1. If :?;?_1 > .’E?_l, then
B quotes x?_l = §£_1 which will be accepted by A with certainty and will be expected
to give both players at least as high a payoff as any possible payoff from future trading. It
5:-?_,1 < #B_,, then B quotes z2_, > &2 _,, knowing that his offer will be rejected by A.
This is because delaying leaves B with a potential opportunity to gain a higher payoff in
the future, so that B prefers delaying to having a transaction take place with his share less
than #Z_, in the current period. We assume that B will choose zf_; = Z%_; in such a
case. Hence, under such an assumption B will quote the larger of é?__l and :i:g_l. Let us
also assume that if a respondent is indifferent between a guaranteed payoff in the current
period and an expected payoff in the future, then he chooses to accept the current offer.
.A symmetric argument applies to A’s action in period (T' — 2) when it is A’s turn to

make an offer. In general, the two conditions can be restated as

C-I In the event of the respondent’s accepting the current offer, the respondent

receives at least as much as what the respondent expects to receive in any
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future period.

C-II In the event of the respondent’s accepting the current offer, the proposer receives

at least as much as what the proposer expects to receive in any future period.

Proceeding to an initial period in this fashion leads us to find a strategy profile that is a

subgame perfect equilibrium as described in the following proposition.

Proposition 1 A strategy profile {54, 5B} that satisfies the following conditions is a sub-

game perfect equilibrium of the Basic game.

1. In an even-numbered period t, player A makes an offer such that

ot = max {1 — EB(6:4128.1), Ef(Ses16e427fis)} s (2.1)

and player B accepts zf iff zf <1 — EE(6i4138.,), and rejects otherwise.

2. In an odd-numbered period t, player B makes an offer such that
of =max {1 - B} (6i115441), BP (6416042782)} (2.2)
and player A accepts zf iff tf <1 - Ef(6t+1mﬁ1), and rejects otherwise.

Proof. The derivation of this equilibrium is included in Appendix 2A.1.
If an agreement is reached, the proposer’s share gives him a payoff that is at least as

much as the largest expected continuation payoff in future periods over a subgame perfect
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equilibrium,? plus any surplus in excess of what the players expect to receive in any following
future period. For example, a surplus A can extract in an even—numbered period ¢t is
1 — (Bf (6141604238 ) + EE (64128,1)). Note that if 1 — (BA(-) + EE(-)) < 0, then there is
no agreement. In other words, a negative surplus in a current period indicates that at least
one player is very optimistic about the future value of the asset and that the player wants
to delay until the value is maximized.® It is also indicative that there is an advantage to be
a proposer. When an agreement is reached, a proposer’s surplus in excess of his reservation
valué is nonnegative, whereas a responder’s surplus is always zero.

It is also immediate that an equilibrium share predicted by the strategies given in Propo-
sition 1 is stationary. Let us consider some even-numbered period t. A proof of an odd-
numbered period is analogous. The reservation values for the players are written as M{ =
Qi B (6141614278t 9), and ME = QuEP (64128,1). I 1 - BE (644128,1) = B (6416142284 0),

then there is an agreement in {. We have

OA(m) = OAxf,nf)
= Qmax{l — B (6:41221), Ef (61416t12780)}
= Qi1 - EZ(6141281))

= Qt—MtBa

8For a proposer A in an even-numbered period, it is Ef* (8416:+2f42), and for a proposer B in an odd—

numbered period, it is B (6i+16:+2282). It can be considered as a proposer’s reservation share resulting
from delay.

9This observation is revisited again in Proposition 9.




CHAPTER 2. BARGAINING WITH SEQUENTIAL INFORMATION ARRIVAL 37

and

OB (my) = QB (614138.1) = ME.

Hence, O(m;) = my. Similarly, if 1 — EP (6t+1xﬂ1j < Ef(6416¢427f,5), we can show
O(m¢) = m. Therefore, we can conclude that the derived equilibrium satisfies the condition
specified in Theorem 1.

Recall that Ei(-) is a player 4’s expectation conditional on the information that is avail-
able on and before period t. The proposition shows t.hat the demand of each player depends
on the expected values of both current and lagged ds. It shouid also be noted that in this
formulation we have not excluded the possibility of having a value of z; that exceeds one, for
bs are not restricted to be less than one. The following Lemma gives a sufficient condition

to guarantee z! in the closed interval of zero and one.
Lemma 5 If 6; € [0,1) for all t with éertaz'nty, then zt € [0,1].

Proof. This is immediate by following our backward induction algorithm. |
This lemma is used in the proofs of the following propositions that assume é; € [0,1).
The next three propositions give sufficient conditions to have a unique subgame perfect

equilibrium.

Proposition 2 If §; € [0,1) for all t with certainty, then there is no delay before reaéhing

an agreement.

Proof. Suppose that &; € [0,1) for all £. What we need to show here is that player A’s

offer in period 0 is always accepted by player B in the period. From Proposition 1 the
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condition that has to be satisfied to avoid delay is
1 - Eg (6127) > Eg(6:1627%).

Suppose that this'is not true; that is, 1 — EP(612F) < E§(616274). Then Ef(zf) <
E{(61627%) since Ef(z4') < max{l — Ef(6:2P), Ef(6162x4)}. This implies Ef(z4) < 0
because §;6; € [0,1). Then Ef(616224) < 0. But since 6i € [0,1) and the assumption of
6; € [0,1) for all ¢ implies 2P € [0,1], 1 — EZ(613F) > 0, which results in 1 — E§ (6:2F) >
E{(6,6224). This contradicts our assumption. Hence, we conclude that 1 — Ef (6;2F) >

E64(5152m§1). 0

Proposition 3 If {6,}t_, is non-stochastic, in particular 6 € [0,1) and 6; = &, then the

solution to the Basic game converges to that to the Rubinstein’s model as T — oo.

Proof. We need to show that m{? = —1-};3 as T — oo. From Proposition 2 we know that
1 - E§ (612f) > Ef\(616233),

which means z§ = 1— SEE(zP). In a similar fashion we can show that if period 1 is reached,

then 2P = 1 — 62E{*(z£). In general,
zf =1~ 8B (2)

and

oF =1- S EAG,).
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By recursively substituting z{i’s and zP’s into =, we get

zy = 1-6Ef(af)
= 1-6§(1~ &8 Ef(a3))

= 1-6(1-6*(1-68EE(=D)))

= 1-61-8(1-8(--1-6"=zr)))
T-1 T

t=0

By taking a limit of the last expression, we have

Tw1

; _1)EsT b0t o gm0

111’9%0{;( 1)t6%i=0% 4 § "’QST]
T-1

= jim 3 (oot =)

t=0

Note that by using L’Hopital’s rule,

& d st s
. L. .
lim 220" _ yypy @ =0’ %M’ =1
t—oo T t—o0 Et-t
Since || < 1, as T' approaches to infinity we have the sum of a converging geometric series

such that

> 1

t=0

This completes the proof. m]
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Proposition 4 If 6;’s are identically and independently distributed, and the players agree

on the ezpected values, which is E(6;) = &* € (0,1), then the solution to the Basic game

converges to the solution to the Rubinstein’s model, provided that T — oo.

Proof. By using é similar reasoning to Proposition 2, we can show
1- 6*Ef (a7) > 6 Bf\(z1).

In general,

aft =1- 6" EE(zf,)

and

zf =1- 6 Bf (afy1)-

Then z§ can be expressed as

zf = 1-68Ef(a7)

= 1-6*(1—6(--(1-6%2zr)))

= 1646 -+ + 6 ap
-1 T

S

t=0

Thus, as T approaches to infinity, we have
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Hence, the proposition holds when §* € [0,1). O

The following two propositions give sufficient conditions to generate a delay in period

(T - 1).

Proposition 5 In period (T — 1), if the players’ beliefs about the value of 67 are greater

than or equal to 1 with E4_,(87) > EB_,(67), then there is delay at period (T — 1).

Proof. We need to show that

1 — Ef_,(6rz7) < EF_1(60(1 - 27)).

Suppose that E£_,(ér) > EZ_;(6r) > 1. Then we have

1- 1’TE14_1(5T) < 1- :BTEg__l((ST)
< Ef i(6r) — o7 EF_;(67)

= (1-or)Bf_1(ér).

Note that we can also show that there is a delay if Eﬁ_l(ér_r) > Eg_l(&p) > 1in a
similar manner. These results indicate that players’ beliefs do not have to differ.in order to

‘generate delay if both are optimistic about the future.

Proposition 6 In period (T — 1), if the players’ beliefs are such that

1

B, (6r) - B4 (67) > —
T
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where EE_,(67) € [0,1), then there is delay at period (T — 1).

Proof. Suppose that E£_, (6r) — EE_,(67) > _:3—1-1: and EZ_,(6r) € [0,1). Then we have

1—EE ,(67) <1 and z7 [Ef_,(67) - EE_,(67)] > 1. Therefore,

1—-Ef_1(6r) < zr [Bf_i(6r) — BF_;(ér)]
1—zpEf_1(6r) < EE ,(6r) - zrEE_(67)

1—Ef_i(brzr) < Ef_i(6r(1 - =7)).

O

This proposition implies that E4_, (67) is necessarily larger than 1 to generate delay
under the given conditions. Propositions 5 and 6 provide sufficient conditions to result in
delay in period (T"—1). The following proposition gives a necessary condition to have delay

in period (T —1), and it shows that we can also observe delay when EE_, (67) > Ef_,(67).

Proposition 7 In period (T — 1), there is a delay only if the convex combination of

EB . (8r) and E4_,(6T) is larger than one.

Proof. Under our behavioral assumptions, the necessary condition that has to be satisfied

to generate delay in period (T — 1) is that player B quotes mg__l that will be rejected by

player A with certainty, which is

x%—l =(1- $T)E£-1(5T),
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where

1—-zrEf_(6r) < (1 — or)EF_,(61).

By rearranging this inequality we have

orE4_1 (6r) + (1 — or)EE_, (67) > 1,

where the right side is a convex combination of E#-; and EE_; with zr € [0,1]. o

This proposition is also intuitive in the following manner. Even if the predetermined
default share z7 is 0.5, indicating that the players have equal division of the surplus in the
final period, as long as the proposer B is reasonably optimistic about the future value of
the asset, meaning that Eﬁ__l(&p) is sufficiently large, B can generate a delay by making a
ridiculously large quote that could be larger than one. The proposition also indicates that
at least one of the players must be optimistic about the future value in order to have a
delay. In other words, both E4_, (67) and E2_, (67) cannot be less than one together, since

otherwise it is impossible to have the value of the convex combination larger than one.

Proposition 8 In general, there is a delay until the final period T only if
mTEf(6t+16t+2 b))+ (1 - .’L'T)EtB((st+15t+2 .- b67) > 1Vt

Proof. The proof is straightforward by using a method of backward induction with the

result of Proposition 7 as its initial step. Suppose that there is a delay from some odd-
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numbered period »(t + 1) through period (T —1). A’s strategy in period t is

of = max {1 - BZ(641251), Bf (6i116022819)} -

Now suppose that. there is a delay in period ¢. Then, by definition it must be true that
of = B (b4161427842) > 1 = B2 (6p412841)-

But our induction hypothesis indicates that

A A
ziyo = 27 E{i9(6t436t44 - - 6T),

and
OJEH_ = (1 - $T)E£*_1(6t+26t+3 tee 6T)
Therefore,
A = o EAMp1bian -+ 67) > 1 — (1 — o7) BB (61416012 - 6
zp = zrEf (64410642 T) > (1= o7)Ef (61416142 T).
orEf (6416002 - 67) + (1 — 27)EP (6141642 -+ 67) > 1.
The proof for odd-numbered ts is analogous. O

The proposition also indicates that at least one of the players must be optimistic
about the future values of 6s in order to have a delay. Hence, both EtA(5t+1 ---6r) and

EE(6ty1---67) cannot be less than one together, since otherwise it is impossible to have
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the value of the convex combination larger than one.
In the next proposition we restate the condition given in Proposition 1, and generalize

the previous propositions.

Proposition 9 In period t when it is i’s turn to maeke an offer, there is a deloy iff
E}(6t4160+2%519) + B (6112741) > 1.

Proof. First, suppose that there is a delay in period ¢t. Then, z} > 1 — E‘{ (5t+1m{ 1)

where

z} = max {1 ~ Bl (8s412]4,), B} (5t+15t+2$§+2)} -

But this implies

7 = Bi(Bi416t420t ) > 1 — B (Sp413lyy).

It follows that

E(84416042T519) + E{(5t+1${+1) > 1.

Now let us suppose that

Ei(611160420% ) + B (5t+1${+1) > 1.
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Then

T = 'max{l — B} (bs1121,1), E§(5t+15t+2$§+2)}
= Ej(8s+18t427%40)

> 1-Ef (5t+137{+1)-

0

This proposition indicates that there is no delay unless at least one of the players is
optimistic about the future values of §. Hence, there exists a possibility of delay when a
proposing player’s belief E#(6:+1) is less than one, given that a responding player has a very
optimistic view about the value of 6;y;, and vice versa. Note that this proposition also
indicates that a mere difference in beliefs among the players is not a sufficient condition to
generate a delay.

After observing some of the results concerning the Basic model, here emerges a rather
natural question not to be ignored. Since a respondent does not make his counter—offer
until he observes another information in the event of his rejection, why can’t he also wait
to declare his acceptance or rejection until he has observed the new information? Or why
shouldn’t he always reject a current offer to observe another information in the next period?
It is these questions that gave rise to the Alternative model. Hence, the findings in this
section have served us as a prelude to our study of the Alternative game. The timing of
events described in the Alternative model reflects commonly observed situations that certain
information which are presently unavailable will, to varying degree, become available by the

time when one’s opponent makes a decision.
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2.3 Analysis of the Alternative Game

Our analysis of the Alternative model proceeds by utilizing dynamic programming algo-
rithms. We first derive the equilibrium described in the following proposition by work-
ing backwards from period T through a sequence of solutions to single stage optimization
problems. Let V?;H(Qt) represent player i’s maximal expected payoff from the remaining
negotiation periods including pefiod (t+ 1), given that the value of the asset in period ¢ is
Qs

By using maximal expected payoff functions, the terminal conditions are written as

VA(Qr-1) = zrEf(Qr)

VE(Qr-1) = (1-=1)EE(Qr),

and Vs describe the recurrence relation. By using such notations, we find that player i

rejects m{_l in period ¢ if there exists i such that
Qi1 —zl_y) < Via(Qy)
where

Vi41(Q:) = max prob {Qt+1(1 —x}) > ";{yz(Qt+1)}
x B} (Qt+1mﬂQt+1(1 —a) 2 ‘/;j;n?(Qt“"l))
+ prob {Qt+1(1 —af) < %{1-2(62”1)}

x Ej (Vtz:i—a(QtH)!QtH(l —a) < Vt];rz(Qt“)) '
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If indeed i rejects, then i quotes such zf. The condition described here states that a player
would reject an offer if the maximal expected payoff from the remaining period is larger
than the payoff from accepting the current offer and that in the event of his rejecting the
éffer, the player would quote a counter—offer with which he can expect to receive at least as
much as the maximal payoff. Implicitly assumed is that each player tries to maximize his
expected payoff and that one prefers trading now to delaying if no payoff improvement is
expected in the future.

By using the algorithm analogous to that used in the Basic game, the equilibrium to

the Alternative game is given as follows.

Proposition 10 A strategy profile {S’A,S'B } that satisfies the following conditions is a

subgame perfect equilibrium of the Alternative game.

1. In an even-numbered period t, player A rejects zf 1 iff
2P > 1 - B bzl

and quotes

M {1 B EtB(5t+15t+2$g1) Ef(5t+15t+25t+3mél-2) } ) (2.3)

xT = max 3
‘ EB(641) Ef(6:41)

A accepts T2 | otherwise.

2. In an odd-numbered period t, player B rejects :cf:_ 1 ff

afty > 1 - B (64128),
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and quotes

B {1 _ Bf(berrbirazhi) EP (5t+15t+25t+33’£4-2)} (2.4)

Z; = max y
E{(6541) - EP(611)

B accepts ot | otherwise.

Proof. The derivation of this equilibrium is included in Appendix 2A.2.

Recall that the physical environment characterized by random variables es is memory-
less, whereas players’ expectations, and thus strategies, depend on the history. Therefore,
E%(84416¢4+27% 1) may not be equal to Ef(8s11)F(642)Ei(zt,,). We can make a following
interesting observation by examining period (T — 1) strategies. Suppose that period (T'—1)

is reached, and let us consider a case in which

- _ (L-=r)BR_,(brbr—1) _ arEf_o(brér-1)
-2 EB ,(6r-1) Ef_,(67-1)

By rearranging the inequality, we have

E#_5(676r-1)

EB ,(6r6r-1)
T Eﬁ_z (6T——1)

+ 1 —z7) E£—2(6T~1)

<1

It is clear from this resulting inequality that in period (T — 2) there waé at least one player
who had a pessimistic view about the future asset value. Moreover, it is also indicative
that both players might have been pessimistic in (T — 2), meaning that both might have
speculated the value of § to be less than one. Now consider player B’s period (T — 1)

strategies. Given the value of z£_, as above, he rejects it if 2_, > 1 — (1 — z7)EE_, (67).
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This condition can be rewritten in the following way.

(1- wT)Eig—z(‘STfsT—ﬂ
1-— +(1—zr)EE_(67) > 1
E$_2(6T_1) ( T) T 1( T)

Ef_1(67)Ef_4(6r-1) — EE_5(676r-1) > 0.

Therefore, if B speculates a higher value of ér after observing é7_; than he thought before
observing d7_1, then he would reject x?__z resulting in a delay until the final period. The
possibility of this case is interesting, because this is the case in which both players might
have not been very optimistic in period (T — 2), yetv we may observe another delay in
period (T" — 1) if player B’s view changes after observing new information é7_;. Note that
such a case is not possible in the Basic bargaining game. Having no chance of observing
another information before responding to a current offer in the Basic game, the other player
immediately accepts such an offer that reflects not very optimistic views of the players.

The above observation is generalized in the following proposition.

Proposition 11 The following conditions are sufficient to generate a delay in Alternative

bargaining games.

1. There is a delay in an odd-numbered period t if
EP (8B (6er12f) > BE 1 (6i6r4127).
2. There is a delay in an even—numbered period t if

Eﬁl(ét)Ef(6t+lmf) > Eﬁ—l(ét&t-*-le)-
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Proof. We give a proof for the odd-numbered period. The proof for an even—numbered
period‘ is analogous. We need to look at the following two cases.

1 gA . =1 - BEa@benazf) _ BL,(Bibiabiactt,)
Tl B 1(8) Ef 1 (6e)

EE | (61614128)

_ B (8i6e+1604258 ) >1—
- Ef (&)

2. 8 . =
-1 E{ 1 (8e)

First, consider case 1. We need to show zf*; > 1 — EP(6;412f), which is the condition

to generate a delay. Suppose

EZ . (6:)EE (6:1128) > BE | (81614137

This inequality is rearranged to

EB . (6:6¢1128
— 1( an t) >1—Ef(5t+1mf).

EZ(8)
But by assumption,
EEB (6:644128
oA =12 1(6¢be1177 )

EE | (8:)

Therefore,

ity > 1 - B (Beaa?).
Similarly, consider case 2, and suppose

EB . (6:)Ef (64412P) > EE 1 (6:614127).
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This inequality is rearranged to

1 EB | (6:61413F)

> 1— B (bp127).-

EE 1 (é)
But by assumption
LA = Ef 1 (616111600278,1)
o Ef 1 (5)
> 1- E£-1(gt5t+1$t3)
B4 (6)

Hence,

zfty > 1= Bf (beaa}).

52

O

Therefore, after observing 6; in some odd-numbered period ¢, if B becomes more opti-

mistic about the value of 6;,; than he was in period (¢ — 1), then there is a delay. Note

that this proposition indicates that the statement given in Proposition 2 is not true for Al-

ternative games. In other words, the assumption of 6; € [0,1) alone does not guarantee an

immediate agreement in Alternative games. We will observe more variations in bargaining

durations in Alternative games when we run simulations in Chapter 3.

The following lemma is analogous to Lemma 1, except that we eliminate the possibility

of § = 0 to avoid undefined fractions in the derived equilibrium.
Lemma 6 If §; € (0,1) for all t with certainty, then zt € [0,1].

Proof. This is immediate by following our backward induction algorithm.
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The conditions given in the next proposition, which are the same as those given in

Proposition 3, guarantee an immediate agreement in Alternative games.

Proposition 12 If {6,}._; is non-stochastic, in particular § € (0,1) and & = &, then
the solution to the Alternative game converges to the solution to the Rubinstein’s model as

T — oo.

Proof. First, we show that there is an immediate agreement under the given conditions.
Suppose that 6s are non-stochastic, § € (0,1), and § = é*. Since z2_, = 1 —~ zr and

6T € (0,1), A’s strategy in period (T — 2) is

f_, = max{l-6T(1-=r), Tz}
= 1-6T(1—-z7)
= 1- 5T$g_1.

Given such x4 _,, B’s strategy in period (T — 3) is

2_, = max{l-§ 11 -6T(1-2r), 76711~ z71)}
= 1-611-6T1 - 2z7))

= 1] - 6T‘1CE%___2.

By induction, it is straightforward to show that in general

ot =1- 8" . (2.5)
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Hence, A’s strategy in period 0 is z§ = 1 — §2zP. B accepts z# in period 1 if o <

1 — §2EP(z?). But this is satisfied since
g = 1-6%P < 1-6%2F = 1- 62EE (zP).

Therefore, there is an immediate agreement.

Now we show that zf! = ﬁg as T' — oo. The equation 2.5 can be rewritten as

zh=1- "2 (1— 6% (1- 6 (1- 8T —21))))).-

Hence, we can express zf as
af = 1-62(1-8 (1 -6 - (1-67(1-z1)))
T

t=1

By taking a limit of the last expression, we have

T
lim [Z(—l)t"lé(ZLO i-1) 4 5(2?:0 jﬁl).’BT:|

T—o0

t=1
T . -
= jim 3 (et 0)

Note that by using L’Hopital’s rule,

. d t .
ﬁm_.:'f.(?_z..jz ﬁma-_t(_z_isﬂ_:}l:l_
tmoo  t—1 oo L(t—1)
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Since & € (0,1), by rewriting the sum of a converging geometric series, we have

A oo(___é)t—-l — = &) = _____1__
o ; 20" = 155

t=0

This completes the proof. m]

The next proposition also gives conditions in which results of Alternative games converge

to the Rubinstein’s solution as-it was observed with Basic games.

Proposition 13 If é;’s are identically and independently distributed, and the players agree
on the expected values, which is E(6;) = 6* € (0,1), then the solution to the Alternative

game converges to the solution to the Rubinstein’s model, provided that T — oo.

Proof. The proof proceeds in the same fashion as that of the previous proposition. Since

B’s strategy in period (T — 1) is z8_, = 1 — ap, A’s strategy in period (T — 2) is

4 _, = max{l-&(1-z7), 6§z}
= 1-601—-zr)

Similarly, B’s strategy in period (T — 3) is

By = max{l—6(1—6(-21), 61 -2r)
= 1-6(1=6(1—21)

e 1 — 6*1:%_2.
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In general,

zi=1- 5*‘”{+1-

Hence, z§ = 1—6*zP. B accepts z{ in period 1 if 2§ < 1—6*EP(¢P). But this is satisfied
since

wf = 1-6F < 1-6zf = 1-6&EP D).

Therefore, there is an immediate agreement. z{' can be also expressed as

o = 1-61-6C--(1-601-z7)))

3

= 1-6+8 -6+ 5T ¢ 6*(T—1)mT

T-1

= Y (=) + 6 Var.
t=0

Thus, as T approaches to infinity we have

T1
mé = lim {Z(—(S*)t-{-é*(%l)mrp

T—00 =0
1 .
146

Hence, the proposition holds when §* € (0,1). O

Consequently, if we eliminate a speculative element in the beliefs from our bargaining
games in a certain way as above, then the results of both Basic and Alternative games with
T — oo conform to that of Rubinstien’s model.

The next proposition gives a condition to generate a delay in a penultimate period.

Proposition 14 There is delay in period (T'—1), if and only if player B is optimistic about
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_pA
the asset value in period T in such a way that 1—17:_5%;—2 < EE_,(67).

Proof. The proof is straightforward from the equilibrium conditions given in Proposition

10. In period (T — 1), the condition that will make player B reject z4_, is Th o, >1-(1-
zr)EZ_,(6r), which is rearranged to give
1—z4

T—%;Z < Ef_(6r).

0

This proposition says that if B expects the asset value to increase in the next period
more than the ratio of his share in the current period (T — 1) to his share in period T', then
there will be a delay in period (T — 1). This sort of delay is likely to occur especially when

B’s expectation of period-T value in period (T — 1) becomes larger than his expectation in

period (T — 2) after observing 67—1.

2.4 Notes on the Distribution of Surplus

By construction of our equilibria in the Basic bargaining game, there is an advantage of being
a proposer insofar as extracting a surplus in excess of his maximum expected continuation
payoff in the event of agreement. Suppose that player ¢ proposes Tt = max{1 - ;{, ,:c—g} in
period t. If the offer is accepted, then we know z = 1 — E > m_i Therefore, the payoff
vector is (i, md) = (Qt(l ~;_{T),th> = (M + ¢, M), where ¢ > 0. Consequently, the

equilibrium was constructed in such a way that if an agreement is reached, then a proposer

extracts a surplus over what he expects to receive by delaying until any future period, while
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a responder receives the amount exactly equal to his maximum continuation payoff.

‘This, however, does not mean that a proposer’s payoff is always higher than that of a
responder. The size of a realized payoff depends on each player’s view of the future. In the
example above, it can be observed that 7} = Q4(1 —-:1:_{) > Qt_xg = 7r§ if and only if ;J: < 1/2.
In other words, the proposer’s payoff is larger than the responder’s payoff only when the
responder is sufficiently pessimistic about his future continuation payoffs. As a numerical
example, let us look at Exhibit 3 that is included in Table 3.3 of Appendix 3A.1. This is
the case in which player A starts the negotiation with a more pessimistic view than player
B.10 Take Path = 10 in the table, where an agreement occurs.!! Despite the fact that A
is a proposer in period 2, A receives less than B. With regard to surplus extraction, notice
that 75t > M4, whereas 7¥ = MP. Hence, the proposer A has received more than her
maximum reservation value, while B received exactly the same as his maximum reservation
value. This is in accord with our discussion above.

In the Alternative game, it is possible to observe both players receiving positive surplus;
that is, 7t > M and 7f > M}P in the same period. Suppose that player ¢ proposes an offer
such that =i = max{1 - m—{, E}, and first let us consider the case in which 2t = 1 — :—v_{ > ;Z
We would like to find a condition to have both nf,; > M}, and 71'{ b1 > M't’+1 in the
event of agreement in period (¢ + 1). We can observe, by simple manipulation of the
inequalities, that both players have a positive surplus if and only if both Mt’+1 < Qt:%l;?z
and QHl;{T < Qpe1 — Mf 1 are satisfied. Consequently, the necessary condition to have

both inequalities satisfied is M}, ; + Mt]+1 < Qt+1. In a similar fashion, we can obtain the

10 After observing the information in period 0, player A assigns a probability 0.25 to the arrival of favorable
information in period 1, whereas player B assigns a probability 0.67.
1 Path = 10 is the path with g1 = 1 and €2 = 0. This will be described in detail in Chapter 3.
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same necessary condition in the case where z% = Zcz >1 —_:II—{. As a numerical example, let us
look at Exhibit 10 included in Table 3.10 of Appendix 3A.2. The first agreement occurs in
period 1, in which 7ft = 0.596253 > 0.596184 = M{* and ¥ = 0.596279 > 0.596266 = MZ,

indicating a positive surplus in excess of maximum continuation payoff on both players.

2.5 Discussion

It has become clear that it matters to analyze the Basic game and the Alternative game
separately.!? In the Basic model, a proposer knows exactly what his and his opponent’s
payoffs will be if his offer is accepﬁed in the current period. A responder in the Basic
model also knows exactly what his and his opponent’s payoffs are if he accepts the offer.
On the contrary, in the Alternative model a proposer knows what his payoff in the event
of acceptance will be only in terms of its expected value when he quotes his offer, while
a responder knows exactly what his payoff will be if he accepts the offer. Consequently,
a proposer in Alternative games cannot generate a delay with certainty when he makes
an offer, since he cannot observe the next period 6 that his opponent will observe before
responding. But a proposer can force a delay with certainty in Basic games. For example,
as indicated in Proposition 11, the assumption of § € (0,1) alone does not guarantee an
immediate agreement in Alternative games, whereas it is guaranteed in Basig games as
shown in Proposition 2. A bargainer’s ability to observe certain information before making
his decision affects his bargaining power, and proposer’s bargaining power in Alternative

games is not as strong as that in the Basic games in terms of manipulating durations. It is

12 A5 numerical examples, it is interesting to compare Exhibits 3 and 5, or Exhibits 6 and 10 that are
included in Appendix 3A.
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also clear from the derived equilibria that an additional uncertainty on the proposing party
affects reservation values.

Are the two games equivalent if a responding party always rejects the current offer in the
Basic model to observe new information? In computing the offer-strategies the proposer’s
reservation values in the two games are equivalent if a proposer in the Basic game knows
with certainty that a responder always rejects his offer in the current period in order to
observe the next available information. This is because in such a case the proposer in the
Basic game adjusts his reservation value to incorporate the additional uncertainty as if he
were playing the Alternative game. Without such an anticipation of consistent rejection,!?
a proposer in the Basic game has a different reservation value from a proposer in the
Alternative game as we have observed.

As it was shown, however, there are conditions with which the solution to the Basic
games coincides with that to the Alternative games.!* For example, if 6;s are identically
and independently distributed with E(6;) = 6* € [0,1), then the solution to both games
converges to a unique subgame perfect equilibrium that is the same as ithe Rubinstein’s
solution. In Rubinstein’s perfect and complete information bargaining game, it is players’
time preferences inodeled as discounting of the asset value that gives a pressure for an early
agreement. In our model the pressure comes from players’ speculation on the information
flow in the future. Consequently, when players speculate a series of future information shocks
to be an undesirable one, such a speculation leads to an effect on bargaining outcomes that

is similar to the one caused by a presence of discount factors.

13We note that it is not reasonable to assume such rejection strategies on the part of responder if he can
achieve the highest expected payoff by accepting the current offer.
Refer to propositions 3, 4, 12, and 13.
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This research originally started out by introducing é as a convenient way of captur-
ing differences in beliefs after observing common information as a stochastic process. The
models studied here have reduced the richness of the initial bargaining games by altering
the interpretation of §, and the original intent was not accomplished. However, even in
this restricted framework, our analyses confirm that the introduction of stochastic compo-
nents into bargaining situations is essential in describing varied bargaining durations. For
example, as it was found in Proposition 3 of the Basic game and in Proposition 12 of the
Alternative game, if a sequence of s is not stochastic in addition to the assumption of

6 € (0,1), then the solution converges to that of Rubinstein’s bargaining model.




Appendix 2A

Derivations of Equilibria

The derivations of the equilibria given in Propositions 1 and 10 are provided. Each step of

backward induction algorithm is described in detail.

2A.1 Equilibrium of the Basic Game

Proposition 1 A strategy profile {S’A,S'B } that satisfies the following conditions is a sub-

game perfect equilibrium of the basic game.

1. In an even—numbered period t, player A makes an offer such that
of = max {1 - EF(6,11251), Bf (6418427832)} 5 (2A.1)

and player B accepts zf* if xt <1 - EP (6t+1:1;ﬂ1), and rejects otherwise.

2. In an odd-numbered period t, player B makes an offer such that

zf = max {1 — B (6s117441), BF (6er16022840)} (2A.2)

62
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and player A accepts zf if xf <1 - Ef(&tﬂmﬁl), and rejects otherwise.

Proof of Proposition 1 : The derivation of this equilibrium is immediate by using the
backward-induction algorithm outlined in section 2.2. Note that subgame perfection co-
incides with backward induction in games of perfect information. Recall the following

behavioral assumptions that each player’s strategy must satisfy.
gy

C-I In the event of the respondent’s accepting the current offer, the respondent
receives at least as much as what the respondent expects to receive in any

future period.

C-1II In the event of the respondent’s accepting the current offer, the proposer receives

at least as much as what the proposer expects to receive in any future period.

() In period (T — 1), it is B’s turn to quote an offer. Condition C-1 gives

Qr_1(1-22_y) > Ef_,(Qrzr)

QT—I(l"'mg-—l) > E%_l(é‘TQT—lmT)

W
IA

TT_q 1 - zpEf_ (67),

indicating that an offer that is smaller than or equal to 1 — z7E#_,(é7) guarantees A’s

acceptance. Condition C-II gives

Qr-1zf_y > EF_(Qr(1-=r))
Qr-1zp_; > Ef 1(6rQr-(1 - z7))

a2, > (1-z7)ER_1(67),
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meaning that (1 — z7)EE_,(6r) is the smallest offer B is willing to make. Hence, player

B’s offer in period (T'—1) is

:1;5_1 =max {1 - zpE#_,(é7), (1 - zr)EE_,(67)} . (2A.3)
A would accept zZ_, such that
a1 < 1—arBp_y(br),

since such zZ_, satisfies the condition C-I.

(22) In period (T — 2), the largest offer A is willing to make, which satisfies condition

C-1, is given as
o4_g =min {1 - BE_,(6r_12f_,), 1 — (1 — o7) EE_,(érér-1)} . (2A.4)

This is because the offer has to guarantee B a payoff at least as large as B’s expected payoff

in periods (T' — 1) and that in period 7. The former requires

Qr-2(1 —zf_5) > EP 5(Qr-1z8_,)

Qr—o(1—2£_5) > EE ,(6r-1Qr—22Z_))

IA

33?—2 1- Eg—z(fsT—lw%—l),
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and the latter requires

Qr_o(l-24_y) > EE ,(Qr(1-zr))
Qro(l —zf_5) > EPR_5(6r67-1Qr—2(1 — z7))

33147_2 S ]. - (1 - xT)EQBi_Z(aTéT_]_).
The smallest offer satisfying condition C-II is
o7y = max {Bf_5(br-1(1 ~ 2f4)), arEf_(6rér-1)}, (2A.5)

since the offer has to give A at least as much a payoff as she expects to receive in period

(T — 1); that is,

Y

QT—297%_2‘ E%—z (Qr-1(1 - :v%_.l))

v

Qr—2zt_, Ef 5 (6r-1Qr—2(1 — 2Z_1))

af_y > Ef (6r-1(1 —28.,)),

and also at least as much as she expects to receive in period T'; that is,

Qr—2zf_y > Ef 4(Qrzr)

v

Qr—2rh_, E$_5(6r6r-1QT—27T)

A
LT

v

zrEf_y(6767-1).
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Hence, the conditions 2A.4 and 2A.5 tell us that A makes an offer such that

af_y = max{Ef ,(6r_1(1 - 28_,)), zrEf_5(6rbr-1),

min{l - Bf_y(6r135_1), 1 — (1 —z7)Bf_5(6r67-1)}}.  (2A.6)
But the equation 2A.6 is simplified to
:1;%_2 = max {1 - Ele?.z(éT—lxg-l), :L'TE%_Z((STﬁT_l)} , (2A.7)

due to the reasons described in 1 and 2 below.

1. zf_; > B ;(6r(1 — zr)) implies
1— BE ,(6r-128_1) <1~ Ef (671 Bf_,(6r(1 — =1))).

But by applying the law of iterated mathematical expectations to the right-hand side

to condition on the information up to period (T" — 2), this can be rewritten as
1 - EZ y(6r-12F_1) <1 - Ef_5(br-167(1 — 21)).
Hence,

min {1 — BE_,(6r—128_1), 1 - BR_y(brér_1(1 —z7))} =1 - EZ ,(6r-122_,).
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2. 8_, >1— E4_ | (6rar) implies
Ef_5(6r-1(1 — 2B_))) < BA_,(6r_1E4_, (6727)).

But by applying the law of iterated expectations to the right-hand side, this is written

as

Ef_5(6r-1(1 — 2_1)) < B _y(6r-16727).

Hence,
max {Ef_o(7-1(1 — 22_,)), Bf_,(6r67—127)} = Ef_o(6rb6r_127).

(75¢) Suppose that the equilibrium strategy prescribed in the proposition holds for peri-
ods t through (7' —1). We need to show that the strategies in period (¢ — 1) follow those of

the equilibrium, i.e.,
z]_; = max{l - E}_;(6;x}), B]_; (6:614177,1)},

and player 7 accepts z_; if zl_| <1-Ei_(6h).

Condition C-I indicates that j’s offer has to satisfy

93{—1 < min{l - E§—1(5t372), 1- E§—1(5t+15t(1 - “3{+1))>

1— B} 1 (8t4+260416:Th19), 1 — Bi_1 (644+3604260416:(1 — 50{4-3)), -}
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By the induction hypothesis and an application of the law of iterated mathematical expec-

tations, we have z_; < 1 — E¢_, (6;z%).

Condition C-II indicates that j’s offer has to satisfy

wl_y > max{EZ..l(&(l-mi)),E§_1(6t+16tw§+1),

Bl (8p426:416:(1 — T4 1)), Ej_1(5t+35t+25t+15t${+3), -}

By the induction hypothesis and an application of the law of iterated mathematical expec-

tations, we have ]_; > E] (64162, ;).

Consequently, player j’s offer strategy in period (¢ — 1) is
z]_y = max{l — Ef_, (8zl), E]_1(6:6t4177.1)},

as desired. By construction we know that player ¢’s acceptance decision follows the strategy

based on a unique reservation value, i.e., ¢ accepts zi_; if z1_; <1 — E!_,(6:z%).

Therefore, we conclude that the equilibrium strategy holds for all ¢.
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2A.2 Equilibrium of the Alternative Game

Proposition 10 4 strategy profile {S'A,gB} that satisfies the following conditions is a

subgame perfect equilibrium of the alternative game.

1. In an even-numbered period t, player A rejects z2 | if

gy >1— B (4177),

and quotes
A_ EP (6118i42581)  Bf (bs116t12614375 5) 9A 8
zy =maxql— 5 ) i . (2A.8)
Ep (6t41) Ef(6t41)
A accepts :cﬁ 1 otherwise.
2. In an odd-numbered period t, player B rejects :17{1_ 1 if
oy > 1 - EP (6120,
and quotes
B _ Ef(6i116t127fy1)  BP(614161426143585) w
zy =max{1l-— 5 , 5 . (2A.9)
Ef (6141) Ey (6t41)

B accepts zf* ; otherwise.

Proof of Proposition 10 :
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By using the algorithm similar to the one used in the basic model, we derive the equilib-
rium of the alternative model. Hence, we work backwards from period T' through a sequence
of solutions to single stage optimization problems.

() In period (7" — 1) after observing ér_1, it is player B’s turn to respond to A’s action
that was taken in period (7' — 2). B rejects m%_z if his utility by accepting it in the current

period is smaller than his expected payoff from period T'; that is, -

Qro1(l —zf_3) < Ef_1(Qr(l-—=71))
Qr-1(l —z4_5) < EP_1(6rQr-1(1- =z7))

1:%__2 > 1 - (1 - mT)Ej@_l(ﬁT).

Then, B will quote x?_l that satisfies

E$_1(Qr(1—z2_,)) > Ef_(Qrer)

mg_l < 1-uzp,

indicating that an offer that guarantees A’s acceptance has to be smaller than or equal to

1 — 7, and

EE (Qrz2_)) > EP_(Qr(1-=r1))

mg_l > l—zr,
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indicating that B needs to make an offer that is at least as large as 1 — z7 to grant himself
a payoff not less than he is guaranteed to receive in period T. But B knows that it is
meaningless for B to quote m?_l > 1—z7 since it would only result in A’s rejection without
improving his payoff. Hence, the only offer B would make in the event of his rejecting m%_Q

(44) In period (T — 2), it is player A’s turn to respond to B’s action from the previous

period. A rejects z2_, if

of_g >min {1 - Bf_,(6r_13%_,), 1 - arEf_(6r6r1)}. (2A.10)

This is because A would reject m¥_3 if accepting it in the current period gives her a payoff

strictly smaller than her expected payoff from period (7' — 1); that is,

Qr-2(1-2f_3) < Ef_3(Qr-1zf_,)

gf_3 > 1—Ef o(6r-13%_,),

or a payoff strictly smaller than her expected payoff from period T'; that is,

Qr-2(1 —zf_3) < Ef_,(Qrar)

.'Eg,_g, > 1—:cTE14_2(5T5T..1).
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Given the condition 2A.10, A will quote z£_, such that

A {1 _ (A —ar)BR ,(bréra) arEf_y(brér-1) } (2A.11)

Tp_og = max

EZ_,(67-1) © Ef ,(6r-1)
The first expression in the braces is due to the condition that guarantees B’s acceptance;
that is, Qr—1(1 — z£_,) > EEZ ,(Qr(1 — x7)). Since in period (T — 2) player A can infer

this only in terms of her expectation given information up to period (T — 2), the condition

is in fact,

Ef 5(Qr-1(1 —z£_y)) > EE ,(Qr(l - z7))

AL < 1- (1 — or)ER_»(6r67-1)

zh_y <
2 EZ_,(6r-1)

The second expression in the braces is due to the condition that gives A a payoff in period

(T' — 1) at least as much as that in period T’ that is,

B o(Qrazh_y) > FEf ,(Qrar)

zrE#_y(676r-1)
E£_2(5T-—1)

This condition implies

Ef_o(6r-—12%_y) Ef_,(6r67-127)

v

1 - Bf_y(br-12%_3) < 1—Ef_p(bréria7).
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Hence, the condition 2A.10 simplifies to ‘
Th_3 > 1~ Bf_,(br_a17h_,). (2A.12)
(#47) In period (T — 3), player B rejects z£_, if

af_y > min{l— ER 3(6r_0a8_3), 1 — BB 4(6p_167_a(1 — TP _3))s

1~ (1 - 27)Bf_3(6r6r-167-2)} . (2A.13)

This is because B would reject z#_, if accepting it in the current period gives him a payoff

strictly smaller than his expected payoff from period (T — 2); that is,

Qr-s(l —zf_4) < EZ 3(Qr-27Z_3)

op_y > 1-Ef 4(br—22f_3),
or a payoff strictly smaller than his expected payoff from period (T" — 1); that is,

Qr-s(l —zf_4) < EP 3(Qr-1(l—z8_y))

op_y > 1-Ef 3(br-16r-2(1 - of_y)),
or a payoff strictly smaller than his expected payoff from period T'; that is,

Qr-s(l —zf_y) < Ef 3(Qr(l-zr))

:C?__,i > 1-(1- mT)EZQ_3(6T6T—16T—2)-
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Given the condition 2A.13, B will quote zZ_, such that

B _ ER 3(br—18r—2(1 — af_y)) EB_3(8rbr_167—2(1 — zr))
I3 = ax B ’ B ’
EF_3(6r-2) Ef_3(ér—2)
Ef_g(br_187_23#_,) Ef_3(brér_167—227)
min{] — —£=3 T2/ 1 - —I=3 . (2A.14
R 7 SR B Gra) ) A

This is because mg_g has to satisfy the condition that it gives B a payoff at least as much
as that in period (T — 1); that is,

Ef 3(Qrsz®_3) > EE 3(Qr-1(1 —4_,))

i Ef_3(br_187_2(1 — z4_,))
=3 = Eg_s(aT-—Z) o

and a payoff at least as much as that in period T'; that is,

\%

Ef 3(Qr—2zf_3) > EE 3(Qr(l-zr))

- E£_3(5T5T—~16T—2(1 — 7))
T-3 = E¥_3(6T-2) °

The two conditions above give

5 {Eﬁ_s(éT-laT..g(l —zh_,)) EB_(6r6r-167-5(1 — z7)) }
Tp_g = max .

Eg_g((ST_.Q) ’ qu_g((ST—Z)

But this simplifies to

B -
S Ef_3(brér-167-2(1 — 7)) (2A.15)

?

:EB
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because from (%)

_ BR ,(6rér—1(1 - zr))
ngz(‘sT—l)

Ef_o(6r67—1(1 — 7)) > EE_,(6r-1(1 — 4_,))

:L'éQ 1

v

v

Ef_3(67—2Ef_5(676r-1(1 — z71))) Ef_3(67—2Bf o(6r-1(1 — 24 _,)))

EZ (6767—167—2(1 — z7)) S EE_ (6716721 — z4_,))
Eﬁ_g(‘sT—Z) - E;,E_3(5T-2)

The last two steps are due to the fact that the information set in period (7" — 3) is included
in that in period (T" — 2). The condition C-I that guarantees A’s acceptance in period

(T — 1) indicates that z2_, also has to satisfy the following.

Qr-2(1 - -’Eg—s) 2 E%—2(QT—1$%—2)’

and

Qr—2(1 — 28 _3) > Ef_,(Qrezr).

Since B has to infer these after observing the information up to period (T — 3), the first

condition becomes

Ef_3(Qr—2(1—x8_3)) > Ef_s(Qrzf_y)

Ef_g(6p-167_9z#_,)

< 1- ,
I3 = Eﬁ_g(ﬁT—-Z)
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and the second condition becomes

Ef 5(Qr-2(1-28_3)) > Ef_3(Qrer)

_ Bf_y(6r6r-16r_977)

B
Tp_a < 1
s Bf_4(ér—2)
The two conditions above give the condition
B : Ef_ (67167224 _,) Ef#_4(676r2167—27T)
Tp_g Sming 1 - = , 1— A
ET-3(5T~2) ET—3(6T"2)

But this simplifies to

B Ef_3(br—16r_9f_,)
Tp_g S 1-— Y 5
ET_3(5T—-2)

(2A.16)

because from (44)

Ef_,(brér1zT)
E%_g (6T—-1)

Ef_o(6r-17%_5) Ef_y(6r6r—177)
Ef_3(6r_3Ef_y(br_135_,)) S Ef_3(6r_2Ef_y(6rbr_127))
Ef_3(6r-2) - Ef_3(br-2)
_ Bf 3(br—2Bf_,(br-13_,)) 1 Ef_3(6r_9Ef_,(6rér_127))
E%..3(6T——2) - E%—3(6T—2)

v

A
T2

v

1

From the conditions 2A.15 and 2A.16, the equation 2A.14 becomes

_ Ef_3(br—16r-22f_5) EF_3(8rér-16r—s(1 — o1))
E%_.g(‘ST—-Z) ’ Ellg_g(é‘T—2)

} . (2A.17)

:cg_g = max {1
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Now the condition 2A.13 simplifies to

of_y > 1 - Bf (67038 ), (2A.18)
because the condition 2A.17 implies

B E£_3(6T5T—16T~2(1 - .’CT))
Tp—3 2 B
ET-3(5T-2)

Ef 3(6r-208_3) > BB _,(6pér_167_2(1 — z7))

1 — Ef_3(67—22%_3) % 1— Ef_3(676r—167-2(1 — z7)),

and from (1),

EB (6p6r_1(1 —
s, > 1- T—2(£T 1(1 - z7))
ET..z(‘ST—l)

Eg—z(‘ST——l(l - -’E%—z)) E%-z(‘sT‘ST—l(1 - z7))

IA

EZ 3(6r-2EE 5(6r-1(1 —24_,))) < EE 3(6r—2FE_o(676r-1(1 — 27)))

1— EE (6r_167_2(1 — zt_y))

I\

1 - EE ;(676r_167-2(1 — z7)).

(iv) Suppose that the equilibrium strategy prescribed in the proposition holds for periods
t through (T — 1). We need to show that the strategies in period (¢ — 1) follow those of
the equilibrium, i.e., player j rejects zt_, if zt_, > 1 — E{_l(éta:{_l), and in the event of

rejection he offers

o = max 41— E§_1§5t5t+1x%), By (8:8+160+27341) .
Et~1(5t) EZ.1(5t)
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Condition C-I indicates that j’s offer has to satisfy

o S i {1 _ B Gbonzd) | Bl (Biiaba(l - af,y)

E; (&) Ei 1 (6:) ’
1 B} (816141641.2611.3%8 ) 1 E}_1(61614160128043614(1 — ], 3))
E; 1(8) ’ E;_1(6¢) [

By the induction hypothesis and an application of the law of iterated mathematical expec-

Eti-l (Bebeq1xl)

tations, we have zj_; <1 AR

Condition C-II indicates that j’s offer has to satisfy

7, > max { B 1(86e+1(1 — 7)) BL (6:801160423],,)

€Ty v ) ; 9
i E{_,(6) E{_,(6)
E]_1(816t4160126t43(1 — 7h,9)) EJ_;(64044161426113614-47],3)
E]_1(6) ’ E{_1(6:) ’

By the induction hypothesis and an application of the law of iterated mathematical expec-

. - Ei_,(6:6t416e402] 1)
J t-1 +106+2T4 41

tations, we have z;_, > .
E]_,(6:)

Consequently, player j’s offer strategy in period (¢ — 1) is

T E;_1(6:61417%) B 1 (6:6141604277,1)
T;_y =max{1l- - , 7 ,
Et_1(6:) El_|(6:)
as desired. By construction we know that player j’s acceptance decision follows the strategy
based on a unique reservation value, i.e., j accepts zi_, if zt_, <1 — E{_l(étm{_l).

Therefore, we conclude that the equilibrium strategy holds for all ¢.




Chapter 3

Simulations of Stochastic

Bargaining Games

We construct simulated negotiation processes and investigate the effécts of variations in
parameter values on bargaining outcomes. The structures of the games are the ones studied
in Chapter 2.! Equilibrium strategies simulated here are the ones derived in Proposition
1 for Basic bargaining games and Proposition 10 for Alternative bargaining games. The
bargaining envir(;nment is defined by utilizing statistical tools. We also attempt to provide
behavioral simulation models for bargaining in the sense that we are modeling each agent’s
decision process based on the specified behavior rules. The behavioral assumptions made in
our bargaining games help to realize such an attempt. According to the deﬁnit.ions of the
games, the simulation is designed in such a way that the bargaining flow is governed by the

initial environment, specified behavioral rules of the agents, and the information flow. Such

“Notations in this chapter are kept consistent with those used in Chapter 2.

79
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simulations help us identify bargaining durations in negotiations with various parameter
values and make predictions on the outcomes of similar situations in actual bargaining
settings.

The factor that affects the asset value is influenced by a variable that takes a value of
either one or zero in our first model, the Autoregressive Binomial Model. Such a factor is
derived from a continuous distribution in our second model, the Generalized Wiener Process
Model. The agent’s decision is made by taking into account this newly arrived information.
The behavioral rules in taking an action were given as conditions C-I and C-II in the

previous chapter. They are repeated below.

C-I In the event of the respondent’s accepting the current offer, the respondent
receives at least as much as what the respondent expects to receive in any

future period.

C-II In the event of the respondent’s accepting the current offer, the proposer receives

at least as much as what the proposer expects to receive in any future period.

The assumption of complete information assures that each agent has an access to the iden-
tical information as soon as it becomes available to the negotiating environment. We allow
the possibility of different initial beliefs on unknown parameter values that can result from
different interpretations of the same information among the players prior to the négotiation.
This is to reflect a variety of speculation processes and different levels of expectations due
to diversified human characteristics. Once the bargaining process begins, agents’ behavior
is consistent in that they use Bayes’ rule whenever possible to update their conjecture on

the future information flow that affects the value of the asset. We first describe in the next
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section the statistical specification of the binomial bargaining model in detail. Computa-
tional methods and the data structure are explained later.? The results of the binomial
model, including findings on comparative statics, are given below. Then we investigate the

continuous distribution model in the rest of the chapter.

3.1 The Binomial Distribution Model

We first simulate the case in which the information variable &s constitute a first-order
autoregressive series.> Though we are aware that the information in actual negotiation
situations may have a very complex correlation structure, we attempt to study the case
of the first—order dependency structure with a stochastic factor that follows a binomial
distribution as a simple approximation to the reality. Later, we will provide a specification

of the model with identically and independently distributed ds.

3.1:1 The Autocorrelation Model

Let us consider a case of autocorrelated ds with perfect observation such that
8¢r1 = pbt + €t41, |p| < 1,
where ¢;s are mutually stochastically independent* and

£ ~ binomial(1,60), 0 € (0,1),

2 An additional description is also provided in the beginning of the simulation codes included in Appendix
3C.1 and 3C.2.

3We address such models as autocorrelation models or autoregressive binomial models in our research.

“Hence, {¢:} is a stationary process, in that the transition (probability) matrix is independent of time.
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and

0 ~ :Beta'(av ﬂ)a

with positive constants o and §. We will use ag4 and B4 to characterize player A and
ap and fp to chafacterize player B. This will aﬂow us to incorporate the possibility of
different priors about parameter values, indicating that the two players can have different
expectations on the future value of the asset. Let us for now use « and 8 for a generic
player.

We consider € as a message regarding the information that affects the asset value. When
€ becomes available in the negotiating environment, it is instantaneously passed to both
agents. Notice that we assume that the players do not know the value of €, the probability
that ¢ takes the value 1. Let X = S°_ e,. Then X ~ binomial(t,d). Hence, the

conditional probability density function of X, given © = 6, is

0=(1—9)t® fz=0,1,---,¢
fzl9)=19 \ =

0 otherwise,

where the prior probability density function of the random variable © is given as

T(a+f) pa—1(1 _ g\B-1
o(6) = OGO )] 0<f<1

0 otherwise.

After observing a piece of information §; in period ¢, the players update their beliefs about

the value of # by using Bayes’ rule, so that they can compute the expected value of dz41.
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The joint probability density function of X and © is given by f (x|6)g(0) and the marginal

probability density function of X is

No+B)(a+z)T(t+f~ S
ety i =0,1,

0 otherwise.

Therefore, the conditional probability density function of ©, given X = z, is

h(0lz) = £210)9(6) (“;L"(g(").

Hence, the prior mean of the distribution of © is expressed as

«

Eo(0) = oy

while the posterior mean of the conditional distribution of ©, given X = z, is

t

/ " oh(6lz)d
0

o+ Ei:l Er
at+f+t

It follows that the expected value of 6;y; after observing the information in period ¢ is

computed as

Ei(6t41) = pb + Ei(et41),
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where

ﬁb&>+ﬂ-(l—EHﬂ§é&0)

Et(5t+1) = 1- Et (0
T=1 T=1

= B (9 267)

a+ Y
a+B+t

Il

In general, the expected value of the product of lagged 6s and zs are computed by

E(6t41%¢41)
= Ge1Zt41 et gpyr=0 - Pr{Est1 = 0]e*}

+5t+133t+1|5t,€t+1=1 - pr{5t+1 = 1l5t}’

and

E4(6t416t42%142)
= Gp418642t42)et 64 1=0,6149=0  PT{Et42 = Ole*, €01 = 0} - pr{esy = 0|}
+5t+'15t+250t+2lst,et+1=0,at+2=1 cprieee = 1let, i1 = 0} - priesss = 0|}
F641642Tt 120t o1 =1,6040=0  PT{Er42 = 0%, 001 = 1} - pri{esss = 1|}

+5t+16t+2mt+2‘6‘,65+1=1,Et+2=1 : pT{Et+2 = 1‘€t76t+1 = 1} ' pr{5t+1 = 1lgt}7

84
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where

priecrs = 0le’, €441 = 0} - priesss = 0l¢‘}
+priessa = 1|e’, 6141 = 0} - priess1 = 0le’}
+priesia = O’  er41 = 1} - priesyr = 1]’}
+pr{eto = 1]Et etr1 =1} - prieg = 1]€t}
— 1_0‘+E¢ 167 . 1 a+Z'r—1€T

atB+t+1 o+ B+t
a+}:t,_ e\ [{_ Oz+2t=151-
a+pB+t+1 a+t B+t

(EE

1 a+}:T_ er+1 0""27— Er
a+fB+t+1 o+ B+t

=1.

-+

-+

a+Yi, eT+1> (a+ZT 1ef>

a+fB+t+1 a+f+t

et is a sequence of es up to and including period t. Note that in computing the value of 6,

the order of realized es matters.
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For example, the expected value of lagged s may be computed by®

Ey(61416t+2)
= B¢ ((p6t + et4+1)(pbt+1 + €142))
= By ((p6; + e141) (0261 + pess + E42))

= p°6; + 206t Fs(ecr1) + pbiEs(erra) + pEi(eyr) + Bilerrierya),

where

¢
Fi(etv1€142] Z Er)

7=1

_atyi e at+dijertl o+l ier
a+pf+t a+fB+t+1 a+ B+t

a+z:=167 . (1__ O‘""z?r:la'r):‘

a+B+t+1 a+ B+t

3.1.2 The 1.I1.D. Model

In this section we briefly outline one example of possible I.I.D. model specifications by using
the statistical tools applied in the autocorrelation model in the previous section. Here the
information variable s are identically and independently distributed. The results of this

LI.D. model simulations are not reported in this version, since they do not add prominently

5For example, a lagged expectation of es such as Ej(ezes3le1 = 1) is computed by

Ei(ezesler=1) = Ei(eler = 1) Ei(esler = 1)
= prob{es = 1lle1 = 1} - (Erlesler = l,e2 = 1)prob{ez = lle1 = 1}
+ Ei(esler = 1,62 = 0)prob{es = Olex = 1})
a+l [ a+?2 o+l  atl .<1_“ a+1 )]
atf+1 |atB+2 atB+1l a+p+2 at+B+1/]

[
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different interpretations on the relations between bargaining durations and other parameter

values from the findings on the autocorrelation model.

Let us define each ¢ as a sum of a prespecified constant and a variable that follows a

Bernoulli trial.

§=p+mn, pe(0,1),

where

n ~ binomial(1,8), 6 € (0,1),

and

6 ~ ﬁeta(ay :3)7

with predetermined positive constants o and (. 6 here is the probability that n takes the
value 1, and the players have prior beliefs on the value of . Therefore, 6 can be greater
than 1 if n takes a value 1, given p € (0,1). The rest of the description of this model is

analogous to that of the autocorrelation model.

3.1.3 Design and Data Structures

We design the autocorrelation model as a full binary tree, which is symmetric and whose
depth T + 1 is determined by an exogenously given final period number, T.6 Hence, the

tree has a total of (27! — 1) nodes, with each node having a degree no larger than 2. Each

6We frequently use T = 18 as a maximum possible number of negotiations in exhibits that follow. Since
T = 18 indicates 2'® = 262144 possible states in the terminal period T, we think that increasing T' over 18 to
create a higher diversity is not necessary for our purposes. In addition, as T becomes large, the reliability of
the backward induction algorithm becomes questionable due to correspondingly more involved hypotheses.
Also the standard deviation of the forecast error grows as the forcast horizon increases, resulting in wider
confidence intervals. The total number of nodes in the tree when T' = 18 is 2'° — 1 = 524287.
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Root

Root Node

Period 0

Period 1

Period 2

NULL NULL NULL NULL

Figure 3.1: The Binary Tree of Depth 3 with Sequential Node I.D. Number

level of the tree coincides with each period t; with the first level associated with period 0.
Since such a tree is complete”, we can assign a unique identification number to each node
from 1 to (277! — 1) in a systematic manner. Given an id number, we can find a unique
path, which is defined as a sequence of observed es, to reach a node that is identiﬁed with
the id number. Hence, this numbering scheme enables us to reach any node in the tree,
given an address of its root node and the id number, without using a recursive coding. At
the root node the initial conditions such as the value of §y and p are given. We use a linked
representation, where each child of a parent node of period t is associated with the state
that g4 is either 0 or 1. An example of the tree with T' = 2 is shown in Figure 3.1.

Each node in the tree is defined by data structure node and contains the following

"Consider a numbering scheme such that starting with the root node with number one we sequentially
number nodes on each level from one side to the other. A binary tree with N nodes and a depth T'+ 1 is

complete if and only if its nodes correspond to the nodes which are numbered one to N in the full binary
tree of depth T + 1.
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information.

struct node

{

long unsigned int id;

unsigned int t;
float delta;

float PAO;

float PBO;

float PA1;

float PB1;

float X;

float Q;

unsigned int sum._e;
unsigned int R;
unsigned int flag;
struct node *left;
struct node *right;
struct node *parent;

/* ID number of each node, 1, 2, 3, ..., 2T+ 1, */
/* Period number, t =1, 2,3, ..., T. */

/* Ex—post 6 value, i.e., §;. */

/¥ P ersy = 0fet). */

/* PB{ess = 0fe'}. ¥/

/* P ety = 1[e'}. */

[* PP{ets1 = 1let}. */

/* Current offer. */

/* Current asset value. */

/* j‘:l Er- =i‘:/

/* Response strategy : 1 for accept, 0 for reject. */

/* 0 if no trade before ¢, 1 otherwise. */

/* Pointer to a left child, i.e., a node with g4 =0 */
/* Pointer to a right child, i.e., a node with g;41 =1 */
/* Pointer to a parent. */

The codes for the simulation of the Basic bargaining game, along with more details on
design and data structures, are included in Appendix 3C.1.8 This binomial tree procedure

is also used with the I.I.D. model.

3.1.4 Results and Comparative Statics
The Basic Game

Tables 3.1 through 3.3° show three simulation results of the Autoregressive Binomial model’s
Basic game with 7' = 4. Offers and responses are made by following the behavioral as-
sumptions we made in the previous section. Given such equilibrium strategies, the players

compute their expected payoffs from trading in the future, which also appear in the ta-

8The program in the appendix shows a core part of the codes, on which we have made numerous modi-
fications to obtain various different versions to generate data sets.

9All the tables relevant to Chapter 3 are included in Appendix 3A. Appendix 3A.1 contains tables for
Autoregressive Binomial Models, while Appendix 3A.2 contains those for Wiener Process Models.




CHAPTER 3. SIMULATIONS OF STOCHASTIC BARGAINING GAMES 90

bles. These exhibits clarify how the delays are generated by players’ speculation on value
increases in the future in our Basic bargaining model. Exhibit 1 provides an example of an
immediate trade despite that the players have identical priors about the information flow.
In this case both players are not very optimistic about the possibility of the value increase
later on, as it is reflected in low probabilities they assign for the future ¢ to be one.!® In
period 0, player B’s highest expected continuation payoff is the one in period 1, which is
0.461687. Since player A’s offer in period 0 guarantees B as much as B’s highest expected
payoff in the future, B has no reason to reject the current offer. Hence, the acceptance
occurs in period 0 with A receiving 0.738313 and B receiving 0.461687. Note that proposer
A has extracted the surplus in excess of her maximum reservation payoff despite that both |
A and B are assumed to have the same preferences over the future.
In Exhibit 2, the players again have identical priors about the information flow. But
-both of them are more optimistic about the future value of the asset than in the case of
Exhibit 1, so that we now observe a delay before agreement. In period 0, player B would
receive nothing if he accepts the current offer,!! while his expected payoffs in period 1, 3,
and 4 are positive. Hence, B rejects the offer in period 0, and the game continues to period
1. In period 1, if the information they have observed is €; = 0, then A would accept B’s offer
to receive 0.143430 that is as high as A’s any expected continuation payoff in the following
periods given €; = 0. On the contrary, if they have observed €; = 1 as new ixiformétion,
then both players would maintain their optimistic views and there would be another delay.

The game proceeds as it is described in the table.

0Both players assign probability 0.25 to the event g1 = 1.
1n the table, this appears as a negative number, owing to the ridiculous offer player A has made to
generate a delay.
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Exhibit 3 is the case in which an agreement does not occur immediately despite a big
difference among players” beliefs. In this exhibit, player B is more optimistic than player
A about the future asset value. B assigns a probability 0.67 to the information in period 1
being 1, while A assigns a probability 0.25, indicating that B has higher incentive to delay
than A does. Accepting the current offer would give B a payoff of 0.904373, which is very
high compared to what the proposer A would receive, that is 0.295627. However, B foresees
the possibility of even higher payoffs in future periods, that are period 1, 3, and 4. Hence,
B rejects the offer in period 0, and the game continues.

In general, as the predetermined maximum length of negotiation process increases, we
can observe more delay before reaching an agreement. The bargaining duration, however,
is not sensitive to the change of the maximum length if both players are pessimistic about
the future value of the asset. By pessimistic, we refer to the characteristics of players who
assign low initial priors for the first information, €,, being one, and/or to the environment
with low initial values of parameters such as g and 8g. Exhibit 4 in Table 3.4 uses the same
parameter values as Exhibit 3, except that the maximum length of time T is 2 in Exhibit
4. Player A’s initial belief of £y = 1 is 0.25, and we consider her view as pessimistic. On
the other hand. relatively optimistic B assigns probability 0.67. Hence, this is the case
that two players have different beliefs about the information flow, with one person being
very optimistic. In Exhibit 3, we observed that the first offer made by player A in period
0 was rejected by player B, resulting in a delay. On the other hand, Exhibit 4 shows an
immediate agreement in period 0. Figure 3.3 shows the relationship between the changes

in T and bargaining durations with the other parameter values identical to the ones in
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Exhibits 3 and 4. Z-axis indicates frequencies of agreement in each period.!2

Similarly, if both players are optimistic, then the duration shows sensitivity to the
changes in T even when the environment is not very promissing. In Figure 3.4, neither A
nor B has a very pessimistic view about the future value of the asset, with 4 assigning
probability 0.57 and B assigning 0.45 to the first information to be one. Notice also that
the values of p and ép are low to begin with. As it appears in the figure, however. as long
as both players are reasonably optimistic, then the bargaining duration is sensitive to T.!3
In addition. Figure 3.5 gives another example of how sensitive the duration can be if both
players are not very pessimistic and the initial environment is also promissing with large
values of p and 6y. The bargaining duration becomes longer as its horizon increases. For
example. with 7" = 6 the first agreement can be reached in period 3, while with 7" = 18 the
first possible agreement is in period 10. However. if both players are pessimistic. then we
observe high agreement frequencies in earlier periods. Figure 3.6 shows such an example.
in which an agreement is reached immediately in period 0 in the cases with T = 2 through
T = 10.

Figures 3.7 and 3.8 show how differences in players’ initial beliefs affect bargaining

durations. In Figure 3.7, A has an optimistic view, while B’s view is varied from optimistic

241l the figures relevant to Chapter 3 are included in Appendix 3B.1, 3B.2, and 3B.3. Appendix 3B.1
contains Figures 3.3 through 3.18, which are figures for Auroregressive Binomial Models. The frequency on
Z-axis in the figures are computed in such a way that the total number of agreements is divided by the
total number of states in a given period. We consider such a frequency as an unconditional frequency since
it counts even unreachable nodes in the bargaining tree. Appendix 3B.2 contains Figures 3.19 through 3.34,
which are also figures for Autoregressive Binomial Models. But they have conditional frequencies on Z-axis,
in that we ignore irrelevant states or unreachable nodes in the tree. Parameter values used in the figures in
Appendix 3B.2 are analogous to the ones in Appendix 3B.1. Appendix 3B.2 is provided as an additional
reference. Appendix 3B.3 contains Figures 3.35 through 3.46, which are figures for Wiener Process Models
studied in the next section. The frequencies used in the figures in Appendix 3B.3 are conditional, where we
ignore unreachable nodes.

3 Also notice that the environment with low p and 8o results in higher frequencies of agreements in a
period corresponding to that in the more promising environment.
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to pessimistic.!* Frequencies of agreement show slight tendencies to increase as B’s view
becomes pessimistic at a given period except for period 0 and 1. In Figure 3.8, A has a
pessimistic view, while B’s view is varied from optimistic to pessimistic. The relationship
between the frequencies of agreement and the variation in B’s view are very similar to that
of Figure 3.7, except that frequencies of agreement are higher in Figure 3.8 than in Figure
3.7 in any given period. Again, this is a consequence of pessimistic players’ incentive to
come to an eaﬂy agreement.

In Figure 3.9 we provide four cases in which p is varied from 0.1 through 0.9 to reflect
a change in the environment that influences the asset value. These four cases differ in the
bldyers’ prior beliefs.!> Case 1 is an example with optimistic A and B, Case 2 is with
pessimistic A and B, Case 3 is with optimistic A and pesimistic B, and Case 4 is with
pessimistic A and optimistic B. As it is clear from the figures, all of the four cases show the
tendency of longer delays as p increases; that is, the environment becomes more promising
on the value increase. For example, in Case 1 the first possible agreement can be reached
in period 0 with p = 0.1, while the first possible agreement is in period 4 with p = 0.6.
The figures also indicate that the frequencies of agreement in any given period decrease as
p increases. For example, in Case 4 the frequency of agreement in period 4 with p = 0.1
is 1.0, while it is 0.0625 with p = 0.7. These findings are intuitive, since it is a hopeful
speculation for a value increase that generates delays.

Figure 3.10 shows four cases in which A’s predetermined default share zr varies from

*4The value of 8p, which appears on the x-axis labeled “Beta.B,” is varied from 1 through 3.8 by the
interval of 0.4. This indicates B’s initial beliefs are changed from 0.67 to 0.34, i.e., the probability B assigns
to the event €1 = 1 is varied from 0.67 to 0.34.

5In Case 1 A’s prior is 0.67 and B’s prior is 0.75, in Case 2 they are 0.25 and 0.29, in Case 3 they are
0.67 and 0.25, and in Case 4 they are 0.25 and 0.67, respectively.
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0.1 through 0.9. The prior beliefs of the players in the four cases correspond to those in
Figure 3.9. In Case 1 and 2 we do not observe much sensitivity in the bargaining duration
and frequencies of agreement in a given ;;eriod as the value of x7 changes. These are the
cases in which players are both optimistic and are both pessimistic, respectively. In Case
3 and 4, small changes in the frequencies of agreement is observed. A is optimistic and B
is pessimistic in Case 3, in which the frequencies of agreement in a given period decrease
gradually and a delay becomes longer as z7 increases. Hence, this is a case that the
environment that is increasingly promising to A generates a longer duration despite that a
pessimistic B wants to come to an early agreement. On the other hand, A is pessimistic and
B is optimistic in Case 4, in which the frequency increases and a delay becomes shorter as
xp increases. This is a case that as the environment becomes more and more unfavorable to
B, an optimistic B wants to generate an early agreement. Optimistic players seem to have
more control over durations than pessimistic players. Consequently, when the two players’
views sufficiently differ from each other, the bargaining duration shows more sensitivity to

the change in z7.

The Alternative Game

In Alternative bargaining games, a responder has another chance to observe information
that is not available when a proposer makes an offer.!® Exhibit 5 in Table 3.5 shows the
outcome of the Alternative game by using the same parameter values as the ones used in

Exhibit 3 in Table 3.3. Note that an agreement in period 1 is considered as an immediate

*6Note that the reservation values included in columns labeled “Beliefs” are the reservation values for
determining the response. Recall that reservation values that a proposing party uses in Alternative games
are different from those in the Basic games, due to the added uncertainty. Refer to the equilibrium concept
section in Chapter 2.
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agreement in Alternative games due to the structure of the game. The first offer made by
A is rejected by B in Exhibit 3, since B’s expected payoffs from period 1, 3, and 4 are
higher than what he would receive by accepting the current offer. In Exhibit 5, however,
the first offer is accepted by B in period 1 if he has observed ¢; = 0. After B has observed
the information in period 1, he has updated his beliefs about the future payoffs before he
responds. His expected payoffs from the remaining periods, which are 0.133601 in period
2, 0.108138 in period 3, and 0.133601 in period 3, are lower than what he is guaranteed to
receive in period 1 that is 0.165822. Consequently, he has no incentive to wait until later
if he has observed 0 in period 1. If he has observed g; = 1 instead, then he stiil maintains
this optimistic view about the future value, so that the game continues.

Figures 3.11 through 3.18 show examples of Autoregressive Binomial model’s Alternative
game simulations and use the same parameter values corresponding to Figures 3.3 through
3.10, respectively. In Figures 3.11 through 3.14, it is observed that bargaining durations are
longer as the predetermined bargaining horizon becomes larger. This finding is consistent
with the finding of the Basic game.l” It has to be noted, however, that the frequencies of
agreements in a given T' in Alternative games do not increase monotonically especially in
the earlier periods. For example, in Figure 3.11 frequencies in some earlier even—numbered
periods are lower than those in their preceding odd-numbered periods. Similar relationships
are found far less frequently in the examples of Basic games. Pessimistic views of the
players generate higher frequencies of agreements even in earlier periods as observed in

Figure 3.14. In the promising environment with high values of p and 6y, as given in Figure

17 Also note that the frequencies of agreements in a given period in an environment with low p and 6, are
higher than that in the more promising environment.
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3.13, bargaining durations are very sensitive to the changes in the predetermined bargaining
horizon and significant delays are generated as T increases.

Figures 3.15 and 3.16 show the relationship between the difference in priors and the
ﬁequencies of agreement that are very similar to that of the Basic game, except that each
agreement frequency in the Alternative game is far lower than that in the Basic game in
any given period. In other words, the structure of Alternative game is likely to generate
longer bargaining durations. Such relations are also observed in Figure 3.17 in comparison to
Figure 3.9, regarding the relationship between the value of p and the agreement frequencies.

We observe an interesting feature in the results given in Figure 3.18 on the relation
between z7 and the frequencies, which are not observed in the Basic game’s counterpart
given in Figure 3.10. In all of the four cases we observe increasing trade frequencies in even—
numbered periods and decreasing frequencies in odd-numbered periods as zp increases.
This may attribute to B’s incentive to come to an early agreement, so that B makes an
offer that is acceptable to A before reaching the final period. That means that B finds a
current payoff higher than the payoff he expects to receive when the predetermined default

share is realized.

3.2 The Continuous Distribution Model

In this section we provide another example, in which the state evolves according to a
continuous distribution. In order to model the behavior of the asset value in our bargaining
games, we consider a stochastic process that is frequently used to study stock prices. It is

a particular type of Markov stochastic process used in physics to describe the motion of a
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particle that is referred to as Brownian motion.!8

3.2.1 The Geometric Brownian Motion (Wiener Process) Model

Let us suppose that a sequence of asset values, {@:}1_,, can be represented by a generalized
Wiener process. In other words, the asset value can be described by an expected drift rate

and a variance rate. Such a process can be expressed as'®

dQi—1

o = ppdt + eV dt, G

where

e ~ N(0,1).

p is the expected rate of value increase per unit time, and o is the volatility of the value
‘and we assume that it is a constant. Hence, the second term on the right-hand side of
the equation cev/dt is the stochastic component of the value change. We assﬁme that
os are exogenously determined and known to the players. It is also assumed that es
are independent. .In the model a length of each period, dt, is specifically incorporated in
computing the asset value changes. But we note that the bargaining duration in terms of
the number of negotiation periods is not sensitive to a change in the length of the interval

in our bargaining games.

8For detailed introduction of the Wiener process, refer to Chapter 2 in Krylov (1995).

®The equation 3.1 is a widely used model of stock price behavior, where p is referred to as the expected
rate of return and o is referred to as the stock price volatility.
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Let us define AQ;—1 as a change in the asset value in a small time interval At such that

AQi-1 = Q¢ — Q1.
Then the discrete version of the equation 3.1 can be written as?®

AQi—1

Qt ) == [I,tAt -+ oLV At.

Tt follows that the information shock 6; is expressed by

Qs
6 =
t Qi1
_ Qi AQi—1
Qi1
= 14 uAt + oer VAL

We also assume that ys are independently and identically distributed random variables with

g~ N(8,p)

and the value of y; is linearly related to the value of €.
Note that the value of 8 is unknown to the players, whereas the value of ¢ is known.

Each player has a prior belief on § that can be expressed in terms of a normal distribution,

so that

0 ~ N85, 08)

20Note that with this formulation we consider a fixed length of time interval for each period, which is not
the case in the binomial model examples given in the earlier section.
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and

0 ~ NOF,of)

characterize player A and B, respectively. We use 8; and ¢; to indicate a generic player’s
beliefs in period ¢. The players observe u; in period ¢, and use it to compute t‘;he information
shock 6; and to update their beliefs on the value of # by using Bayes’ rule for formulating
their strategies. The initial probability density function, conditional on the information

available before the game begins, is given by

p(0) p(p-110)
[ p(6) p(p-110) 40

1 (8- 60)
e ()

p(0pp-1)

where p_; indicates the initial information that a player possesses to form his prior beliefs.

The posterior probability density function is given by

p(0|ut™Y) p(pe)0, 1)
[p(0ut=1) p(uelf, pt=1)do

RY
V2T 24

p(0]u")

Tt follows that the posterior density is

Olut™r ~ N(0: 1)

where the posterior mean is a weighted mean of a prior mean and an observed value with

the weights being proportional to their respective precisions (i.e., the respective reciprocals
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of the variances),

1/p11 1/¢
O = 0;— + ,
t t 11/%*1_{_1/90 Ml/sot—l—l-l/(P

and the posterior variance is expressed as

1

= g1 +1/¢

100

After updating the beliefs 6; and ¢; in period ¢, the players compute their expected payoffs

in the future periods.?

3.2.2 Design and Data Structures

The bargaining process is stored in a linked list, in which two types of data structures

coexist. One structure defined by node is frequently referred to as a base list in our

program, and each node carries the following information.

21For example, after observing ¢ in period ¢, player A computes 68 and @f. Then she computes expected

information shocks such as

Ef(6e1) = 1+ Ef (usg1)At = 1+ 0f At
and

Bf (be42) = 1+ Ef (pey2) At = 1+ 6{ At

The second equation follows immediately from

/¢ A

1/ A P
Ef =BrOL ) =0 —"L" — +E = .
# (ue2) = Bf (0¢31) ) o 1y =

t 1/ +1/p

Tt follows that A’s expected valuation of the asset is expressed as

Ef (Qetn) = (L + 07 A Q..
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struct node

{

unsigned int t; /* Period number, t =1, 2, 3, ..., T. */
float delta; /* Ex—post § value, i.e., 6. */

float thetaA; /¥ A’s prior on the mean of §. */

float thetaB; /* B’s prior on the mean of 6. */

float PhiA; /* A’s prior on the variance of 6. */
float PhiB; /* B’s prior on the variance of 6. */
float X; /* Current offer strategy. */

float Q; /* Current asset value. */

unsigned int R; /* Response strategy : 1 for accept, 0 for reject. */
float Apay; /* A’s payoff if trade now. */

float Bpay; /* B’s payoff if trade now. */

struct node *next; /* Pointer to its child node. */
struct node *past; /* Pointer to its parent node. */
struct node *strat; /* Pointer to a strategy list. */

}

101

This list is used to store the offer and response strategies that the players have decided

to take after observing the information available up to the current period.

The other list is defined by a structure snode, and we often refer to the list as a strategy

list. Each snode carries the following information.

struct snode

{

unsigned int t; /* Period number, t =1, 2, 3, ..., T. */

float EAdelta; /* A’s expected value of 6. */

float EBdelta; /* B’s expected value of §. */

float EAQ; /* A’s expected value of the asset. */

float EBQ; /* A’s expected value of the asset. */

float X; /* Offer strategy. */

unsigned int R; /* Response strategy : 1 for accept, 0 for reject. */
float EApay; /* A’s expected payoff in the future period. */
float EBpay; /* B’s expected payoff in the future period. */

struct node *next; /* Pointer to its child node. */
struct node *past; /* Pointer to its parent node. */
struct node *base; /* Pointer to a base list. */

}

This list stores the information such as expected payoffs in the future that are necessary

for the players to compute their strategies in the current period. This list is connected to
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Origin

Root Node

Period 0

Period 1

Period 2

NULL

Figure 3.2: Design of Wiener Process Model with T' = 2

the base list with a pointer base, along with a pointer strat pointed from a node in the base
list. Figure 3.2 shows a case of T = 2. The shaded nodes in the figure constitute the base

list, while the nodes surrounded by a big circle constitute the strategy list.?2

3.2.3 Results and Comparative Statics

Tables 3.6 through 3.12 in Appendix 3A.2 show several random sample runs, each of which
is associated with an idum number?? that generates a unique sequence of pseudo-random
numbers. They contain the information such as how the asset value and the players’ beliefs

evolve from the opening of the negotiation untill the final period. Figures 3.35 through

22The core part of the codes for Alternative games is included in Appendix 3C.2, which also provides more
detailed description of the design. Primary input variables are also described in detail in the appendix.

23 An idum number is an integer number given to a subroutine that generates a sequence of pseudo-random
numbers. Each idum number is associated with a particular sequence of random numbers, so that it helps
us to reproduce a specific sequence of events by feeding the code with the same idum number.
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3.46 in Appendix 3B.3 show the results of simulation runs, each of which consists of 10,000
random sample runs. In all of the figures, we assume that zr = 0.5, ¢ = 0.06, At =
0.01, Qo =12, and ¢ = 0.0QO4.

Exhibits 6 through 8, contained in Tables 3.6 through 3.8, are examples on the process
of Basic game. All three examples use the same input parameter values, except for an idum
number that generates a sequence of random numbers. Exhibit 6 is a case in which there
is an immediate agreement. After observing an information in period 0, both players know
that the value of the information shock on the asset value has been 0.994825 and that the
value now is equal to 1.193791. Based on this observation they update their beliefs on the
true value of ¢, and compute their expected payoffs in the future. If B accepts A’s offer
0.499918, he knows with certainty that his payoff in the current period would be 0.596994.
His computed expected payoffs in any future period is lower than this payoff. Hence, B has
no incentive to reject the offer, resulting in an immediate acceptance. A then receives a
payoff 0.596797 that is also higher than any of her expected payoffs in the future. Note that
the proposer A receives a positive surplus 0.000139 in excess of her maximum continuation
payoff 0.596658.

In Exhibit 7 we observe a delay until the final period. If B accepts A’s offer in period 0,
A receives 0.600693 and B receives 0.600329. These payoffs are higher than what they end
up with in Exhibit 6. However, B speculates even higher payoffs in the future and hence
there is a delay. In a similar fashion, the bargaining continues until the default period is
- reached. Indeed, both players receive payoffs that are higher than any payoffs they have
gotten in earlier periods. It is interesting to note that we observe a delay in period 4 in

which the information shock has turned out to be less than 1. This reflects that players
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accumulate knowledge, so that there has to be a significant decrease in the asset value to
prevent a delay if the value has been increasing for several consecutive periods. Exhibit 8 is
the case of one period delay, and a similar interpretation can be given to this case as above.

Exhibits 10 through 13, contained in Tables 3.10 through 3.13, are examples of Alter-
native bargaining games. We use the same input parameter values in these exhibits as in
the Basic game exhibits described above, i.e., Exhibits 10, 11, 12, and 13 are given the
same idum numbers as Exhibits 6, 7, 8, and 9, respectively. In Exhibit 10 the first offer
made by A is accepted by B in period 1 with payoffs that are lower than what they would
have received if they were playing an equivalent Basic game.?* Exhibit 11 shows a delay
until the final period and therefore the payoffs players receive are the same as what they
would have received in an equivalent Basic game.?5 In Exhibit 12 the first offer made by
A is accepted by B in period 1. A difference in the players’ payoffs in this case is smaller
than a difference in the case of a Basic game. Exhibit 13 gives yet another example of the
Alternative game, in which we observe a delay until a penultimate period. An interesting
observation is made in t = 3, in comparison to the result of Exhibit 9. The expected values
of 6s in the remaining periods are less than 1. As Proposition-2 in the previous chapter
indicates, there is an acceptance of a current offer in such a case in the Basic game. In
Exhibit 13, however, there is a rejection to cause a delay in ¢ = 3 despite that the expected
values of §s in all the remaining periods are less than 1.

Figures 3.35 and 3.36 describe how the change in the value of § influences bargaining

durations in Basic games. Both players have optimistic priors on the value of 6 in the first

24Refer to Exhibit 6.
25Refer to Exhibit 7.
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figure, while both have low priors in the second figure. Y-axis takes the number of first
occurrences of agreement in a specified period out of 10,000 simulation runs. In other words,
unreachable nodes in the bargaining game tree are ignored. For example, in Figure 3.35
almost all of the agreements are reached immediately in period 0 with § .= —0.05, while
most of the agreements are not reached until the final period as 8 approaches to 0.06. The
two figures appear to be almost identical, despite the significant differences in the priors.
This is due to the fact that once the players have observed the first piece of information in
period 0, by using Bayes’ rule both can update their beliefs that will approach to the true
value fairly quickly. For instance, A’s belief on the mean of 0 is updated into a negative
number after observing the first information. Since @ characterizes u that is the expected
rate of value increase, it is intuitive to observe an imﬁediate agreenient if players conjecture
the value of 8 to be negative. Figures 3.37 and 3.38 are the Alternative game’s analogue
to Figures 3.35 and 3.36, respectively. Alternative games generate more delays even when
the value of 6 is very low.?6 Moreover, in Alternative games we observe more variations in
bargaining durations when 6 is low than in Basic games.

Figures 3.39 and 3.40 show the relationship between the difference between the players’
beliefs and the frequencies of agreements. In the first figure B has a pessimistic prior on
the value of §, while A’s belief is varied from 0.5 through 6.0. In the second figure B has an
optimistic prior, while A’s prior is varied from 0.5 through 6.0. Both figures show almost
identical relationships, indicating that the agreement frequencies are not very sensitive
to the difference in priors. In these examples nearly half of the simulations result in an

immediate agreement and nearly a quarter of them result in a delay until the final period.

26Recall that an agreement in period 1 is considered as an immediate agreement in Alternative games.
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A relatively low value of 6 encourages an early agreement, while once there is a delay, then
players tend to wait until the final period. Figures 3.41 and 3.42 are an Alterﬁative game’s
analogue to Figures 3.39 and 3.40. They show low frequencies of an immediate agreement
and high frequenciés of delays until the ﬁnaln period, despite that they are given the same
initial conditions as the Basic game's counterpart. Again, the frequencies do not show a
significant sensitivity to the change in the size of differences among players’ priors.
Figures 3.43 through 3.46 show the relationship between the change in the predetermined
bargaining horizon and the agreement frequencies. The frequencies show only a slight
sensitivity to the change in T'. But the difference between the Alternative games and the
Basic games appear to be élear in these figures. In Alternative games only less than a
quarter of 10,000 sample runs result in an immediate agreement, while nearly half of them
show an immediate agreement in Basic games. In geﬁeral, in both Autoregressive Binomial
Médels and Wiener Process Models the Alternative games show more delays than the Basic
games with the same parameter values. The fact that one player can observe another piece
of information before responding to a current offer expands the players’ expectation of value

increases, causing higher frequencies of delays.

3.3 Summary and Discussion

Analyzing simulation results helps us capture non-monotonic relations among correlated
variables and subtle changes in durations, and is useful in identifying a general trend in
case of such non—-monotonic relations where analytical solutions are frequently not straight-

forward to interpret. We also believe that the differences in comparative statics between
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Basic and Alternative games are adequately demonstrated through our simulations. We

summarize our findings on comparative statics as follows.

e Autoregressive Binomial Model

1. As T increases, i.e., as the bargaining horizon becomes longer, the occurrence of
the first agreement is ébserved in a later period. The sensitivity of the duration
is significant especially when players have optimistic initial priors on the future
asset values. [For unconditional frequencies refer to Figures 3.3 through 3.6
(Basic Game) and Figures 3.11 through 3.14 (Alternative Game). For conditional
frequencies refer to Figures 3.19 through 3.22 (Basic Game) and Figures 3.2.7

through 3.30 (Alternative Game).]

2. As players’ initial priors become more pessimistic, we observe higher frequencies
of agreement in a given period. Moreover, we observe agreements in earlier
periods as players become pessimistic. If we look at the conditional frequencies
in Figure 3.24, for example, it is clear that first agreements occur immediately
in the very first period when both players are sufficiently pessimistic. Note that
the difference in players’ initial priors does not seem to have much influence over
bargaining durations. [For unconditional frequencies refer to Figures 3.7 and 3.8
(Basic Game) and Figures 3.15 and 3.16 (Alternative Game). For conditional
frequencies refer to Figures 3.23 and 3.24 (Basic Game) and Figures 3.31 and

3.32 (Alternative Game).]

3. As p increases, i.e., as the bargaining environment becomes more promising on

the asset value increase in the future for both players, then there are longer
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bargaining durations before we observe the first agreement. If playérs have pes-
simistic priors on information shocks at the same time when p is low, then we
observe an immediate agreement. [For unconditional frequencies refer to Figure
3.9 (Basic Game) and Figure 3.17 (Alternative Game). For conditional frequen-

cies refer to Figure 3.25 (Basic Game) and Figure 3.33 (Alternative Game).]

4. As z7 increases, i.e., as A’s predetermined default share in period T increases,
then in Basic games the bargaining durations are not very sensitive when both
players have similar priors about information shocks. If A is optimistic and
B is pessimistic, we observe a subtle tendency to have a longer duration as
z7 increases, while if A is pessimistic and B is optimistic, we observe a subtle
tendency to come to an early agreement. On the other hand, in Alternative
games we observe higher sensitivity of durations than we can observe in Basic
games. With larger zr we observe higher Erequenciés of agreement in a given
even—numbered period and lower frequencies in a given odd-numbered period.
We observe the similar tendency regardiess of players’ priors, except that there
is higher frequencies of agreement in earlier periods with one or more pessimistic
player.s. [For unconditional frequencies refer to Figure 3.10 (Basic Game) and
Figure 3.18 (Alternative Game). For conditional frequencies refer to Figure 3.26

(Basic Game) and Figure 3.34 (Alternative Game).]
e Wiener Process Model

1. As 0 increases, i.e., as the expected rate of value increase becomes larger, the

first agreement is reached in a later period. It is clearly demonstrated that the
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variances in durations until the first agreement is larger in Alternative games

than in Basic games. [Refer to Figures 3.35 and 3.36 (Basic Game) and Figures

3.37 and 3.38 (Alternative Game).]

2. The frequencies of agreement do not show much sensitivity to the change in T'
as in the case of Autoregressive Binomial Models. But how differently Basic
games and Alternative games predict are reflected clearly in our findings. [Refer

to Figures 3.43 and 3.44 (Basic Game) and Figures 3.45 and 3.46 (Alternative

Game).]

3. The frequencies of agreement do not show much sensitivity to the size of differ-
ences in players’ initial priors. But how differently Basic games and Alternative
games predict are reflected clearly in our findings. [Refer to Figures 3.39 and

3.40 (Basic Game) and Figures 3.41 and 3.42 (Alternative Game).]

We conclude our discussion by listing several extensions that can be made to our simu-
lations. We can endogenize the time interval between information arrivals to investigate the
physical length of bargaining durations, instead of measuring the duration by the number
of periods. Incorporating an exogenously determined véried length of time interval between
information shocks is another potential extension. For example, we may suppose that it
occurs at some rate per unit time, so that the frequency of information arrivals in a given
period length follows the Poisson distribution. Modeling a risk averse player’s behavior
is also another extension. We may characterize a risk averse player with a strategy of
compromising with a lower share than that of a risk neutral counterpart after observing

undesirable information to avoid any delay, or with a higher share only after observing a
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series of desirable information to generate a delay. In addition, players’ uncertainty about
the value of the asset at a certain time in the future depends on how far they are looking

ahead. We may model such uncertainty by using a variance as its measure.




Appendix 3A

Tables for Chapter 3

3A.1 Autoregressive Binomial Models

Table 3.1 : Exhibit 1 : Autoreg. Binomial Model (Basic Game)
[T =4, ap=ap=1, fa=Pp =3, zr =05, p=0.5, 8 =0.5, Qo=1.2]

Table 3.2 : Exhibit 2 : Autoreg. Binomial Model (Basic Game)
[T=4, ap=ap=2, fa=Pp=1, zr = 0.5, p=0.5, § = 0.5, Qo = 1.2

Table 3.3 : Exhibit 3 : Autoreg. Binomial Model (Basic Game)
[T=4, ap=1, ap=2, Ba=3, fp =1, zr =05, p=05, f =05, Qo =12

Table 3.4 : Exhibit 4 : Autoreg. Binomial Model (Basic Game)
[T=2 as=1, ap=2, fa=3, fp=1, zr =0.5, p=0.5, 6 = 0.5, Qo = 1.2]

Table 3.5: Exhibit 5 : Autoreg. Binomial Model (Alternative Game)
T=4, as=1, ap =2, Ba=3, fp =1, zr =05, p=035, 6 =05, Qo =1.2]
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3A.2 Generalized Wiener Process Models

Table 3.6 :  Exhibit 6 : Wiener Process Model (Basic Game)
[T =6, 04 =12, 68 =0.8, pft =0.5, pF =0.05, 6 =0.0014, p = 0.0004, idum = —1]

Table 3.7 : Exhibit 7 : Wiener Process Model (Basic Game)
[T =6, 68 =12, 6F = 0.8, ¢f =0.5, pf =0.05, § = 0.0014, = 0.0004, idum = —3]

Table 3.8 :  Exhibit 8 : Wiener Process Model (Basic Game)
[T =6, 04 =12, 68 = 0.8, ¢f =05, ¢f =0.05, § = 0.0014, ¢ = 0.0004, idum = —1000]

Table 3,9 :  Exhibit 9 : Wiener Process Model (Basic Game)
[T =6, 68 =12, 6F =0.8, ¢ =0.5, pf =0.05, § = 0.0014, @ = 0.0004, idum = —555|

Table 3.10 :  Exhibit 10 : Wiener Process Model (Alternative Game)
[T =6, 04 =12, 65 = 0.8, pf =0.5, of =0.05, § = 0.0014, ¢ = 0.0004, idum = —1]

Table 3.11 : Exhibit 11 : Wiener Process Model (Alternative Game)
[T =6, 68 =12, 6F =08, o =0.5, ¢f =0.05, § = 0.0014, p = 0.0004, idum = —3]

Table 3.12 :  Exhibit 12 : Wiener Process Model (Alternative Game)
[T =6, 64 =1.2, 7 = 0.8, pff =0.5, pf =0.05, 6 = 0.0014, ¢ = 0.0004, idum = —1000]

Table 3.13 : Exhibit 13 : Wiener Process Model (Alternative Game)
[T =6, 64 =12, 68 =08, pf =05, pf =0.05, 6 =0.0014, ¢ = 0.0004, idum = —555]
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Appendix 3B

Figures for Chapter 3

3B.1 Autoregressive Binomial Models 1

Unconditional Frequencies

Figure 3.3 : Autoreg. Binomial Model (Basic Game) [T’ = 2 — 18]
[ea =10, ap = 1.0, Ba =3.0, B = 1.0, or = 0.5, p=0.5, & = 0.5, Qo = 1.2]

Figure 3.4 : Autoreg. Binomial Model (Basic Game) [I' = 2 — 18]
[OAA == 1.3, ap = 1.5, ﬂA = 1.0, ﬂB = 1.8, I = 0.5, p = 0.4, 60 = 0.4:, Qo S 1.2]

Figure 3.5: Autoreg. Binomial Model (Basic Game) [T' = 2 — 18]
[@a = 1.0, ap =2.0, B4 =15, fg =20, 27 =04, p=0.7, 8o = 0.8, Qo =1.2]

Figure 3.6 : Autoreg. Binomial Model (Basic Game) [T' = 2 — 18]
j0a =10, ap =10, B4 =30, fp =30, a7 =05, p=04, & =04, Qo = 1.2]

Figure 3.7 : Autoreg. Binomial Model (Basic Game) [ = 1.0 — 3.8]
[T =8, ag =20, ap =2.0, Ba=1.0, zr =03, p=103, 6 =0.3, Qo = 1.0]

Figure 3.8 : Autoreg. Binomial Model (Basic Game) [3p = 1.0 — 3.8]
[T=8, an=10, ap =20, f4=30,zr =03, p= 0.3, 6y = 0.3, QO—IO]

Figure 3.9: Autoreg. Binomial Model (Basic Game) [p = 0.1 — 0.9)
[T =8, zr = 0.5, 6 = 0.5, Qo = 1.0]
Case1: as =20, ap=3.0, f4a=10, fp=10
Case2: aa =10, ap =10, B4 =3.0, B =25
Case3: as =20, ap=1.0, fa=10, B =30
Case 4: ag=1.0, ag =2.0, B4 =30, fp =10

138
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Figure 3.10 : Autoreg. Binomial Model (Basic Game) [z = 0.1 — 0.9]
[T =8, z7 = 0.5, 8 = 0.5, Qo = 1.0]
Casel: ag =20, ap=30, fa=1.0, Bp=1.0
Case2: ag =10, apg=1.0, B4=3.0, Bg =25
Case3: ag =20, ag=1.0, B4 =10, B =3.0
Cased: aa=1.0, ap =20, f4.=3.0, Bp=1.0

Figure 3.11 : Autoreg. Binomial Model (Alternative Game) [T' = 2 — 18]
[OlA = 1.0, ap = 1.0, ,3,4 = 3.0, ﬁB = 1.0, T = 0.5, p= 0.5, 50 - 0.5, Q() = 1.2]

Figure 3.12: Autoreg. Binomial Model (Alternative Game) [T' = 2 — 18]
[a =13, ap=15, B4 =10, fp =18, zr =05, p= 0.4, 6o =04, Qo =1.2]

Figure 3.13 :  Autoreg. Binomial Model (Alternative Game) [T' = 2 — 18]
[@a = 1.0, ap =2.0, Ba=1.5, Bp =20, zr =04, p=0.7, § =038, Qo = 1.2)

Figure 3.14:  Autoreg. Binomial Model (Alternative Game) [T' =2 — 18]
[@a =10, ap =1.0, B4 =30, Bp =30, zr =05, p=04, § =04, Qo = 1.2]

Figure 3.15: Autoreg. Binomial Model (Alternative Game) [fp = 1.0 — 3.8]
[T =8, as =20, ap =20, fa =10, zr =03, p=023, 8o = 0.3, Qo = 1.0]

Figure 3.16 : Autoreg. Binomial Model (Alternative Game) [8p = 1.0 — 3.8
[T =8, as=10, ap =20, Ba =30, zr =03, p=0.3, & = 0.3, Qo = 1.0]

Figure 3.17 :  Autoreg. Binomial Model (Alternative Game) [p = 0.1 — 0.9]
[T = 8, T = 0.5, 60 - 05, Qo = 10]
Casel: as =20, ap=3.0, B4=1.0, Bg=1.0
Case2: aq =10, ag=10, 84 =30, fp =25
Case3: as =20, ag=10, B4=10, fp=3.0
Case4: as=1.0, ap=2.0, B4 =30, Bp=1.0

Figure 3.18 :  Autoreg. Binomial Model (Alternative Game) [zr = 0.1 — 0.9]
[T =8, zr = 0.5, 6 = 0.5, Qo = 1.0]
Casel: aqa =20, ag=3.0, Ba=10, Bp=1.0
Case2: ag =10, ap =1.0, 84 = 3.0, B =25
Case 3: aag =20, ag =10, B4 =10, g =30
Case4: ayg =10, ap=2.0, 4 =30, fp=1.0
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Figure 3.3: Autoregressive Binomial Model (Basic Game) [T = 2 — 18]

(a4 =10, ap =20, B4 =3.0, B =10, zp = 0.5, p=0.5, 6 = 0.5, Qo = 1.2)

Figure 3.4: Autoregressive Binomial Model (Basic Game) [T' =2 — 18]

(aq =13, ap =15, f4=1.0, fp=18, zr =05, p= 0.4, 6o = 0.4, Qo =1.2)
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Figure 3.5: Autoregressive Binomial Model (Basic Game) [T = 2 — 18]

(aa =10, ap =20, fa =15, B =20, z7 =04, p=0.7, 6 =0.8, Qo =1.2)

Figure 3.6: Autoregressive Binomial Model (Basic Game) [T' = 2 — 18]

(04 =10, ap =10, Ba = 3.0, fp =3.0, o7 =0.5, p=0.4, 6 =0.4, Qo =1.2)

2 m 13 "
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Figure 3.7: Autoregressive Binomial Model (Basic Game) [fp = 1.0 — 3.8]

(T =8, ay=20, ag =20, f4=10, zr =03, p=0.3, 6 =0.3, Qo = 1.0)

Figure 3.8: Autoregressive Binomial Model (Basic Game) [fp = 1.0 — 3.8]

(T =8, ay=1.0, ap =20, B4 =30, zr =0.3, p=03, § =03, Qo = 1.0)

Fraquencies of Agresnent

142
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Figure 3.11: Autoregressive Binomial Model (Alternative Game) [T = 2 — 18]

(aa =1.0, ap = 2.0, B4 =3.0, B =1.0, 37 =05, p=0.5, § = 0.5, Qo = 1.2)

Figure 3.12: Autoregressive Binomial Model (Alternative Game) [T' = 2 — 18]

(0a =13, ap=1.5, fa=10, fp=18, zr =05, p= 0.4, o =04, Qo =1.2)
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Figure 3.13: Autoregressive Binomial Model (Alternative Game) [T = 2 — 18]

(apg =10, ap =20, B4 =15, B =20, 27 =04, p=0.7, § =0.8, Qo =1.2)

Figure 3.14: Autoregressive Binomial Model (Alternative Game) [T' = 2 — 18]

(aa = 1.0, ap =1.0, fa =30, Bp = 3.0, zr = 0.5, p=0.4, & = 0.4, Qo =1.2)
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Figure 3.15: Autoregressive Binomial Model (Alternative Game) [fp = 1.0 — 3.8]

(T =8, ay=20, ap =20, fa =10, z7 =0.3, p=0.3, § = 0.3, Qo = 1.0)

Figure 3.16: Autoregressive Binomial Model (Alternative Game) [8p = 1.0 — 3.8

(T=8, ag=10, ap =20, fa =30, zr =03, p=0.3, & = 0.3, Qo =1.0)
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3B.2 Autoregressive Binomial Models II

Conditional Frequencies -

Figure 3.19: Autoreg. Binomial Model (Basic Game) [T' = 2 — 18]
[ea =10, ap =1.0, B4 = 3.0, fp = 1.0, zr = 0.5, p= 0.5, 6 = 0.5, Qo = 1.2]

Figure 3.20 :  Autoreg. Binomial Model (Basic Game) [T = 2 — 18]
[oa =13, ap=1.5, a=1.0, Bp =18, z7 =0.5, p=04, § =04, Qo =1.2]

Figure 3.21 :  Autoreg. Binomial Model (Basic Game) [T' = 2 — 18]
[¢a =1.0, ap =2.0, B4 =15, B =20, zr =04, p=0.7, 6o =0.8, Qo =1.2]

Figure 3.22 : Autoreg. Binomial Model (Basic Game) [T = 2 — 18§]
[a = 1.0, ap = 1.0, B4 = 3.0, fp = 3.0, zr = 0.5, p =04, 6 =0.4, Qo = 1.2]

Figure 3.23 :  Autoreg. Binomial Model (Basic Game) [8p = 1.0 — 3.8]
[T =8, as =20, ap =20, f4=1.0, 27 =03, p=03, =03, Qo= 1.0]

Figure 3.24 :  Autoreg. Binomial Model (Basic Game) [8p = 1.0 — 3.8]
[T =8, as =10, ap =2.0, f4=3.0, 27 =03, p=0.3, § =0.3, Qo = 1.0]

Figure 3.25 :  Autoreg. Binomial Model (Basic Game) [p = 0.1 — 0.9]
[T =8, zr =0.5, 6 = 0.5, Qo = 1.0]
Casel: ag =20, ap=3.0, fa=10, fp=1.0
Case2: as=1.0, ap=1.0, a4 =30, fp=2.5
Case3: as =20, ap=1.0, fa =10, B =3.0
Cased: ag =10, ap=2.0, f4=3.0, fp=1.0

‘Figure 3.26 :  Autoreg. Binomial Model (Basic Game) [z = 0.1 — 0.9]
[T =8, zr = 0.5, 6 = 0.5, Qo = 1.0]
Casel: ag =20, ag=3.0, B4=1.0, B =1.0
Case2: s =10, ap=1.0, B4 =30, fp=2.5
Case3: ag =20, ap=1.0, B4 =10, Bg=3.0
Cased: aa=1.0, ag=2.0, B4 =3.0, =10
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Figure 3.27 : Autoreg. Binomial Model (Alternative Game) [T' = 2 — 18]
[¢a =1.0, ap =1.0, B4 =3.0, B =1.0, z7 =0.5, p=0.5, § = 0.5, Qo = 1.2

Figure 3.28 :  Autoreg. Binomial Model (Alternative Game) [T = 2 — 18]
[0a =13, ap =1.5, Ba=1.0, g =18, z7 =0.5, p=04, § =04, Qo =1.2]

Figure 3.29 : Autoreg. Binomial Model (Alternative Game) [T = 2 — 18]
[OLA = 1.0, op = 2.0, ,BA = 1.5, ,BB = 2.0, T = 0.4, p= 0.7, 60 = 0.8, Qo = 1.2]

Figure 3.30 : Autoreg. Binomial Model (Alternative Game) [T = 2 — 18]
[ea =10, ap = 1.0, Ba = 3.0, Bz = 3.0, zr = 0.5, p=04, 6 = 0.4, Qo = 1.2]

Figure 3.31 : Autoreg. Binomial Model (Alternative Game) [p = 1.0 — 3.8]
[T =8, as =20, ap =20, Ba =10, o7 =03, p=0.3, 6 = 0.3, Qo = 1.0]

Figure 3.32 :  Autoreg. Binomial Model (Alternative Game) [8p = 1.0 — 3.8]
[T =8, as=10, ap =20, Ba=3.0, o7 =03, p=0.3, § = 0.3, Qo = 1.0]

Figure 3.33 :  Autoreg. Binomial Model (Alternative Game) [p = 0.1 — 0.9]
[T =8, zr = 0.5, & = 0.5, Qo = 1.0]
Casel: agq =20, ag=30,084=10, Bg=1.0
Case 2: aq =10, ag=1.0, B4 =30, B =25
Case 3: aas =20, ag =10, B4 =1.0, B =3.0
Cased: ag =10, ag =20, B4=3.0, fp=1.0

Figure 3.34 :  Autoreg. Binomial Model (Alternative Game) [z = 0.1 — 0.9]
[T =8, or = 0.5, 6 = 0.5, Qo = 1.0]
Casel: as =20, ag =30, B4=1.0, fp=1.0
Case2: ay =10, ag=1.0, 4 =30, fp =25
Case3: as =20, ag=1.0, B4 =10, Bp=3.0
Cased: as=1.0, ag =20, Ba=3.0, fp=1.0
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Figure 3.19: Autoregressive Binomial Model (Basic Game) [T =2— 18§

(aa =10, ap = 2.0, Ba =3.0, Bz =1.0, zr = 0.5, p=0.5, 6 = 0.5, Qo = 1.2)

g
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Figure 3.20: Autoregressive Binomial Model (Basic Game) [T = 2 — 18]

(@a =13, ap =15, fa =10, fg =18, o7 =05, p=04, 6 =04, Qo =1.2)
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Figure 3.21: Autoregressive Binomial Model (Basic Game) [T' = 2 — 18]

(0a =1.0, ap =2.0, fa =15, fg=20, z7 =04, p=10.7, 6 =028, Qo =1.2)

Figure 3.22: Autoregressive Binomial Model (Basic Game) [T' =2 — 18]

(eq = 1.0, ap = 1.0, Ba =30, Bg =230, zr =0.5, p=0.4, 6o = 0.4, Qo =1.2)
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Figure 3.23: Autoregressive Binomial Model (Basic Game) [8p = 1.0 — 3.8]

(T =8, ay=20, ap=20, B4 =10, o7 =03, p=0.3, 6 = 0.3, Qo = 1.0)

Figure 3.24: Autoregressive Binomial Model (Basic Game) [8p = 1.0 — 3.8]

(T =8, ap=1.0, ap=2.0, f4=3.0, 27 =03, p= 0.3, 6o = 0.3, Qo = 1.0)
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Figure 3.27: Autoregressive Binomial Model (Alterpative Game) [T = 2 — 18]

[3%]

{aqg =1.0, up =2.0, 84 =3.0, 8 =1.0, c7 =0.5, p=10.3, §o =0.5, Qg =1.2)
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Figure 3.28: Autoregressive Binomial Model (Alternative Game) [T = 2 — 18]

(a4 =13. apg=15. 34 =10, 38 =18, z7 =05, p=04. § =0.4. Qo =1.2)
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Figure 3.29: Autoregressive Binomial Model (Alternative Game) [T' =2 — 18]

(a4 =10, ap =20, B4 =15, fp =20, zp =04, p=0.7, § =08, Qo =1.2)
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Figure 3.30: Autoregressive Binomial Model (Alternative Game) [T' =2 — 18]

(ca =10, ap =1.0, B4 =3.0, fp=3.0, z7 = 0.5, p=0.4, o =04, Qo=1.2)
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Figure 3.31: Autoregressive Binomial Model (Alternative Game) [8p = 1.0 — 3.8]

(T =8, g =20, ap=2.0, 4=1.0, 20 =0.3, p=0.3, § =0.3, Qp = 1.0) _
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Figure 3.32: Autoregressive Binomial Model (Alternative Game) [fp = 1.0 — 3.8]

(T =8, an=1.0, ap =20, B4 =30, or =0.3, p=0.3, & = 0.3, Qo =1.0)
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3B.3 Generalized Wiener Process Models

Conditional Frequencies

Figure 3.35: Wiener Process Model (Basic Game) [# = —0.05 — 0.06]
[0a =55, g =5.5, pa = 1.5, pp = 1.5, ¢ = 0.0004, ¢ = 0.06, Qo = 1.2]

Figure 3.36 : Wiener Process Model (Basic Game) [# = —0.05 — 0.06]
04 =05, 65 =0.5, pa =0.5, pp = 0.5, ¢ =0.0004, o = 0.06, Q¢ = 1.2]

Figure 3.37: Wiener Process Model (Alternative Game) [# = —0.05 — 0.06]
04 =5.5, 05 = 5.5, pa = 1.5, pp = 1.5, ¢ = 0.0004, o = 0.06, Qo = 1.2]

Figure 3.38: Wiener Process Model (Alternative Game) [# = —0.05 — 0.06]
[04 = 0.5, 8g = 0.5, o4 = 0.5, g = 0.5, ¢ = 0.0004, ¢ = 0.06, Qg = 1.2]

Figure 3.39: Wiener Process Model (Basic Game) [#4 = 0.5 — 6.0]
0B =0.5, w4 =1.5, pp = 0.5, § = 0.0014, ¢ = 0.0004, o = 0.06, Qo = 1.2

Figure 3.40 : Wiener Process Model (Basic Game) [f4 = 0.5 — 6.0]
[0 = 6.0, wa =1.5, pp = 1.5, 8 =0.0014, ¢ = 0.0004, 0 = 0.06, Qo = 1.2]

Figure 3.41 : Wiener Process Model (Alternative Game) [#4 = 0.5 — 6.0]
05 = 0.5, pa = 1.5, pp = 0.5, 6 = 0.0014, p = 0.0004, ¢ = 0.06, Qo = 1.2]

Figure 3.42 : Wiener Process Model (Alternative Game) [#4 = 0.5 — 6.0]
65 = 6.0, pa = 1.5, pp = 1.5, 8 = 0.0014, ¢ = 0.0004, o = 0.06, Qo = 1.2]

Figure 3.43 : Wiener Process Model (Basic Game) [T' =2 — 12]
64 =55, 0 =5.5, pa =15, pp = 1.5, § = 0.0014, v = 0.0004, ¢ = 0.06, Qo = 1.2]

Figure 3.44 : Wiener Process Model (Basic Game) [T = 2 — 12]
64 =0.5, 0p = 0.5, 4 = 0.5, pp = 0.5, § = 0.0014, v = 0.0004, o = 0.06, Q0—12]

Figure 3.45: Wiener Process Model (Alternative Game) [T' = 2 — 12]
[0a =55, 05 =5.5, pa =15, pp =15, 6 =0.0014, ¢ = 0.0004, o = 0.06, Qo = 1.2]

Figure 3.46 : Wiener Process Model (Alternative Game) [T' = 2 — 12]
[04 =05, 85 = 0.5, pa = 0.5, pp = 0.5, § = 0.0014, ¢ = 0.0004, ¢ = 0.06, Qo = 1.2]

162
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Figure 3.35: Wiener Process Model (Basic Game) [§ = —0.05 — 0.06]

(04 =55, 0 =55, pa =15, o =15, ©=0.0004, o =0.06, Qo =1.2)

Figure 3.36: Wiener Process Model (Basic Game) [# = —0.05 — 0.06]

(04 =05, 05 = 0.5, 04 =05, pp = 0.5,  =0.0004, o =0.06, Qo = 1.2)

nbar of First Agresmect
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Figure 3.37: Wiener Process Model (Alternative Game) [0 = —0.05 — 0.06]

(64 =5.5, 0 = 5.5, va =15, pp=1.5, ¢ =0.0004, ¢ = 0.06, Qo =1.2)

Figure 3.38: Wiener Process Model (Alternative Game) [§ = —0.05 — 0.06] .

(64 =05, 05 =0.5, pa = 0.5, pp = 0.5, » = 0.0004, o = 0.06, Qo = 1.2)
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Figure 3.39: Wiener Process Model (Basic Game) [#4 = 0.5 — 6.0]
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Figure 3.41: Wiener Process Model (Alternative Game) [#4 = 0.5 — 6.0]

(05 = 0.5, ws =15, g =05, 6=0.0014, ¢ = 0.0004, o = 0.06, Qo = 1.2)

Figure 3.42: Wiener Process Model (Alternative Game) [§4 = 0.5 — 6.0]

(0 = 6.0, o4 =15, pp =15, § =0.0014, ¢ = 0.0004, o = 0.06, Qo =12) .

Mumtae of Frist Agrasmant
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Figure 3.43: Wiener Process Model (Basic Game) [T' = 2 — 12]

167

(04 =55, 0 =55, o4 =15, pg =15, 6=0.0014, ¢ =0.0004, o = 0.06, Qo = 1.2)

e

Figure 3.44: Wiener Process Model (Basic Game) [T = 2 — 12]

(04 = 0.5, 05 =0.5, pa =05, pp = 0.5, 0 = 0.0014, ¢ = 0.0004, o =0.06, Qo = 1.2)
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Figure 3.45: Wiener Process Model (Alternative Game) [T' = 2 — 12]

(04 =55, 05 =55, o4 =15, g =1.5, § = 0.0014, ¢ = 0.0004, ¢ = 0.06, Qo = 1.2)

Figure 3.46: Wiener Process Model (Alternative Game) [T' = 2 — 12]

(04 = 0.5, 05 = 0.5, o4 =05, pp =05, 6 =0.0014, ¢ = 0.0004, o = 0.06, Qo = 1.2)
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Appendix 3C

Simulation Codes

3C.1 Autoregressive Binomial Models
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ABEMl.c ‘ Fri Apr 7 03:16:14 1995 1

#include <stdio.h>
#include <malloc.h>
#include <math.h>

#include <stdlib.h>

ABBMl.c : Autoregressive Binomial Bargaining Model One

discription of the program "ABBMl.c"

ABBMl.c simulates a special case of bilateral bargaining game
that is studied in Chapter 2 and Chapter 3 of my Ph.D. dissertation
at California Institute of Technology. The detailed behavioral
assumptions of the game participants are given in the chapters, and
we do not repeat them here. The particular game that is simulated
is the one called "Basic Game" of "Autoregressive Binomial
Bargaining Model" in the dissertation. Its "Alternative Game" is
simulated in another version of this program, which can be obtained
from the author. Hence, this version contains a very basic part of
the simulation process, upon which we have made numerous
modifications and extensions to create different versions of the
program and have generated various types of data sets.

DATA STRUCTURES

The bargaining process is described by a full binary tree with
its depth equaling to an exogenously predetermined bargaining
horizon minus one period. The tree is stored in a linked structure
'node, * which is defined below. Each level in the tree describes
each trading period, with the first level corresponding to Period
0. A left child of each node is associated with a state in which a
currently observed value of epsilon is zero, whereas a right child
is associated with epsilon one. Each node in the tree is given an
unigue id number, with its root node corresponding to one. The id
number is incremented by one from the left node to the right node
in each level. This numbering scheme enables us to reach any node
in the tree, given the address of the root node and the id number,
without using a recurrsive coding. In addition, each node can also
be identified by an uniquely associated “path.” A "path” is a
sequence of observed epsilons upto the current period, and the
sequence is stored in a linked list structure "binary,” which is
defined below. We have accomodated each node in both "node" and
"binary" with a pointer that enables us to move in the list in any
direction we wish, hoping to have some flexibility in future
extensions.

DESIGN

After reading primary input values, we first create a root node
of the bargaining tree and store the initial information by calling
a subroutine plant_first_node() from main(). Then we add one node
at a time by calling plant_tree() to create a full tree. We call
point_to_parent{) to add a pointer to each node that points to its
parent node. calc_node() computes variable values to be stored in
each node that are necessary for the computation of players’
bargaining strategies. c¢alc_strategy() computes each player’s
offer strategies and response strategies at each node. At this
point, we have a full binary tree with each node containing
information that describe the bargaining process. Consecquently,
optional subroutines can be accomodated to the program afterwards
to generate various output.
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ABBMl.c Fri Apr 7 03:16:14 1985 2

FUNDAMENTAL NOTATIONS
Notations are kept consistent with the ones used in the
dissertation whenever it is appropriate and possible. For example,
alpah A in the dissertation is denoted as a_A in this program.
Likewise, alpha_B = a_B, beta_A = b_A, and beta_B = b_B. Other
Greek letters are replaced with English writings, such as rho and
delta.

PRIMARY INPUT VARIABLES
In this version, primary input variables are read interactively
by calling a subroutine get_ par() in main{().
Such input variables are
T : unsigned int (positive integer)
Predetermined number of maximum bargaining periods

a_A : float (positive constant)

alpha_A, a parameter for Beta distribution

that characterizes player A’s prior
a_B : float (positive constant)

alpha B, a parameter for Beta distribution

that characterizes player B's prior
b_A : float (positive constant)

beta A, a parameter for Beta distribution

that characterizes player A's prior
b B : float (positive constant)

beta_B, a parameter for Beta distribution

that characterizes player B's prior
X T : float (0 <= X_T <= 1)

Predetermined player A’s default share in Period T
rtho : float (|rho] < 1)

Describes the autocorrelation of delta
deltal : float

Initial information that is available in Period 0

Q0 : float (positive real)

Initial value of the asset in Period 0

BASIC OUTPUT

We have included in this version, as an example of output, a
subroutine trade freq{). trade_freg() computes unconditional and
conditional frequencies of agreement in each trading period, and
writes the results in formatted output files, ta.dat and tb.dat.
ta.dat contains information such as T, X_T, rho, and t (current
period) along with computed unconditional and conditional
frequencies. tb.dat contains information such a_A, a B, b A, b_B,
and t along with the computed frequencies. Unconditional
frequencies are computed by dividing (the number of nodes” in which
a response strategy indicates an acceptance) by (the total number
of nodes in the level (trading period)). Conditional frequencies
are computed by dividing (the number of reachable nodes in which a
response strategy indicates an acceptance) by (the total number of
reachable nodes in the level). A node is 'reachable’ if there has
been no trade upto the current period. If, for example, there has
been an agreement in period 0, then none of the nodes in the tree
other than the root node is reachable. Hence, the conditional
frequencies cannot be computed for the rest of the nodes, and in
such a case we give 0 frequency as its output.

RELATED VERSIONS
There are other versions of ABBMl.c that contain modules to
simulate "Alternative Game" and to generate other output files.

NOTE: main() is defined at the very end of the program.
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ABBMl.c Fri Apr 7 03:16:14 1985 3

/* */
/* bDefining messages */
/* *./
#define DISPLAYl "BARGAINING SIMULATION PROGRAM : ABBMl.c \n"

#define ENDMESSAGEl "END OF BARGAINING SIMULATION PROGRAM : ABBMl.c \n*®
/* */
/* Defining macros */
/* */

#define space2 printf (*\n\n")
#define space3d printf (*\n\n\n")
#define LINEl printf(ﬂ********************* \nll)

#define out2(fp, al, a2) fprintf{fp, "%u %u \n", al, a2)
#define outl (fp, al, a2, a3) fprintf(fp, "$£ $f %u \n", al, a2, a3l)

#define sqr(x) (x*x) /* sgr gives a squared value of the argument */

#define max{a, B) ((A) > (B) ? (&) : (B))
/* max gives a larger number of the given two numbers */

/* */
/* Defining data structure (declaration of global variables) = */
/* */
/* "node" specifies each node in a full binary tree that describes */
/* the stochastic bargaining process. Each node contains information */
/* necessary to compute players’ strategies as it appears below. */

struct node
{

long unsigned int id; /* id of each node: 1, 2, o 2 (T+1) -1 */

unsigned int t; /* period number t = 0, 1, 2, ..., T */
float delta; /* ex-post delta */
float PAO; /* A's prior of e = 0 in the next period */
float PAL; /* A's prior of e = 1 in the next period */
float PBO; /* B's prior of e = 0 in the next period */
float PB1; /* B's prior of e = 1 in the next period */
int sum_e; /* sum of e's upto the current period */
float X; /* player i‘s offer in the current period */
unsigned int R; /* player j's respose: 1 = accept, 0 = reject */
float Q; /* asset value in the current period */
int flag; /* 0 if no trade before t, 1 if trade before 1 */
struct node *left; /* left child, i.e., a node with e = 0 */
struct node *right; /* right child, i.e., a node with e = 1 */
struct node *parent; /* pointer to its parent node */
}i
/* */

/* *binary" stores a value of e, 0 or 1, in each period, the sequence */
/* of which is stored in a linked list and is used to identify a path */
/* to each node in the bargaining tree. */

struct binary

{ .
int num;
struct binary *next;
struct binary *reverse;

}i

/* */
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FILE *fa; /* Formatted output file */

FILE *fb; /* Formatted output file */
IAd */
/* = */
/* mm=zsmozsssss== INPUT/MISCELLANEOUS SUBROUTINES */
/* */
/* */
/* */
/* display */
/* */
/* displays the current program name. */
void display ()
{

space3;

printf (DISPLAY1);

space3;

return;
} /* End of display() */
/'k * /
/* open_files */
/% */
/* opens files to write the output. */
void open_files()
{

fa = fopen("ta.dat", "w");:

fb = fopen(“tb.dat", "w");

return;
} /* End of open_files() */
/* * /
/* close_files */
/% */
/* closes the output files that have been opened in open_ files(). */
void close_files()
(

felose(fa)

fclose(fb);

return;
} /* End of close_£files() */
’* */
/* end_message */
/* */
/* prints the ending message on the monitor. */

void end_message ()
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ABBMl.c Fri Apr 7 03:16:14 1995 5
{

space3;

printf (ENDMESSAGEL) ;

space3;

return;

} /* End of end message(} */

*/

/* power */
/* */
/* raise base to n-th power ; n >= 0 */
long int power (base, n)

long int base, n;
{

long int i, p;

p=1;

for(i=1; i<=n; ++i)

p = p * base;

return p;
} /* End of power{) */
IAd */
/* get_par */
/* */
/* get_par() is called in main{(). */
/* get_par() function reads input parameter values interactively. */

void get.par(T, a_A, a_B, b_A, b B, X_T, rho, deltal, Q0)

unsigned int *T;
float *a_A, *a.B, *b_aA, *b_B, *X_T, *rho, *deltal, *00;

printf{"Enter T (even integexr) : *);
scanf{"%d", T);

printf ("Enter a_A (positive real) : ");
geanf (*$£", a A);

printf("Enter a_B (positive real) : ");
scanf (*%£", a_B);

printf("Enter b_A (positive real) : ");
scanf ("$£", b A);

printf(*Enter b B (positive real) : ");
scanf (*$£", b_B);
printf ("Enter X_T (positive real) : ")

scanf ("$£*, X T);
printf{*Enter rho (|real| < 1} : ");
scanf ("$£*, rho);

printf ("Enter deltal (real) : ");
scanf ("$£*, deltal):
printf ("BEnter Q0 (positive real) : ");

scanf (*$£", Q0);
space3;

return;
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}

/'k
/*
/*
/*
/*

/*
/*
/*
/*

struct node *plant_first_node(p,

/* End of get_par() */

Fri Apr 7 03:16:14 1995 €

CONSTRUCTING BINARY TREE

plant_ first_node

creates the origin node of the binary tree.

struct node *p;
long unsigned int id;

id, a_A, a.B, b_A, b_B, X_T, rho, deltal, Q0)

float a a, a. B, b A, b_B, X 7, rho, deltal, QO0;

p = (struct node *)calloc({l,
p->left = NULL;

p->right = NULL;

p->id = id;

p->delta =
p->PAl
p->PA0

deltal;

a A/ (a.A + b A);
1 - p->PAl;

p->PBl = a_B / (a_B + b_B);
p->PRO 1 - p->PBl;
p->sum_e = 0;

p->X = 0.0;

p->0 = Q0;

return p;

Boau i

} /* End of plant_first_node()

sizeof (struct node));

*/

plant_tree

plant_tree() constructs a full binary tree by adding one node each
time. Each node added is assigned an unique id number that enables
us to reach any node we wish, given the address of the origin and

a "path" that is defined later. The id numbers are used throughout

this program.

struct node *plant_tree{origin, id, path)

struct node *origin;
long unsigned int id;
struct binary *path;

struct node *p, *temp;

p = origin;
while {(path != NULL)
{
if (path->num == 0)
{
if (p->left != NULL)
p = p->left;

*/
*/
*/
*/

*/

*/
*/
*/
*/
*/
*/
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temp = (struct node *)calloc(l, sizeof(struct node));

temp->left = NULL;
temp->right = NULL;
temp->id = id;
p->left = temp;
}
}
else
{
if (p->right != NULL)
p = p->right;
else

{

temp = (struct node *)calloc(l, sizeof(struct node));

temp->left = NULL;
temp->right = NULL;
temp->id = id;
p->right = temp;
}
}
path = path->reverse;
} /* End of while */

return origin;

} /* End of plant_tree() */

/*
/*
/%
/*
/*
/*

£ind_path

Given an id number of a node,

of observed epsilons upto the current period.

£ind_path{() £finds a unique sequence
Such a sequence is

stored in a structure “"binary."

struct binary *find_path(Z)

long unsigned int Z;

struct binary *£irst, *last,
long int counter;

counter = 1;
while (2 >= 1)
{

list[counter]=now;
now->num = (2%2);
Z =(int) (2/2);
now->next = NULL;
first = now;
if (counter == 1)
{
last = now;
last~>reverse = NULL;

}
else
{
past~>next = now;
now->reverse = past;
}

past = now;

*now, *past, *list[30], *rt;

now = (struct binary *)calloc(l, sizeof (struct binary)):

*/
*/
*/
*/
*/
*/
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counter = counter + 1;

|}

rt = first->reverse;

counter --;

while (counter > 0)

( A
free(list[counter]);
counter--;

}

return rt;
} /* End of find_path() */

/*
/* find_period
/*
/* £ind_period() is called in calc_node() with an id number.

/* Given an id number of a node in the tree, find_period() returns

/* a period number to which the node with the given id number belongs.

unsigned int find_period(id)

long unsigned int id;

long unsigned int counter;
struct binary *path;

counter = 0;
path = find path(id);
while {(path != NULL)
{
counter = counter + 1;
path = path->reverse;
}

return counter;
} /* End of find period{) */

/*
/* goto_node
/*
/* provided the address of the root node, an id number and a path

/* associated with a particular node in concern, goto_node() finds the
/* address of the node.

struct node *goto_node{root, id, path)

struct node *root;
long unsigned int id;
struct binary *path;

struct node *p;

p = root;
while (path != NULL)
{
if (path->num == 0)
p = p~>left;
else
p = p->right;

*/

*/
*/
*/
*/

*/

*/
*/
*/
*/
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path = path->reverse;
) .
return p;

} /* End of goto_node() */

/*

/* point_to_parent

/*

/* accomodate each node with a pointer that points back to its parent

/* node.
void point_to_parent(root, T)

struct node *root;
unsigned int T;

struct node *current_node;
struct binary *path;
long unsigned int i;

for (i=1; i <= (power(2,T) - 1); i++)
t .
path = find_path(i);

current_node = goto_node(root, i, path);
current_node->left->parent = current_node;
current_node->right->parent = current_node;

}

return;

} /* End of point_to_parent() */

/* BARGAINING STRATEGIES

/*

/* calc_node

/*

/* computes basic information to be stored in each node, given primary

/* input values.

void calc_node(root, T, rho, a A, a_B, b.A, b_B)

struct node *root;
unsigned int T;
float rho, a_A, a_B, b_A, b_B;

struct node *p;
struct binary *path;
long unsigned int i;

p = root;
for {i=2; i <= (power{2,T+l) - 1); i++)
{
path = find path(i);
p = goto_node{root, i, path);
p~>sum_e = compute_sum_e(i);
p->t = find period(i);

p->delta = rho * p->parent->delta + e _past(i);

178
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p->PAl = (a_A + p->sum_e) / (a_BA + b_A + p->t);
p->PA0 = 1 - p->PAlL;
p->PBlL = (a_B + p->sum_e) / (a_B + b_B + p->t);
p->PB0 = 1 - p->PBl;
p->Q = p->parent->Q * p->delta;

} .
return;

} /* End of calc_node() */

/*
/*
/*
/)\'
/*

compute_sum_e

sums a sequence of epsilons upto the current node, given its id
number .

int compute_sum_e(2)

long unsigned int Z;

struct binary *moving;
int e;

moving = find_path(Z);

if (moving != NULL)
{
e = moving->num;
while (moving->reverse != NULL)
{
moving = moving->reverse;
e = e + moving->num;
}
}
else
e = 0;

return e;

} /* End of compute_sum_e() */

/*
/*
/'k
/*

e_past

@Given an id number, returns the latest observed value of e. */

int e_past(2)

long unsigned int 7;
struct binary *moving;
int i;

moving = find_path(Z);

if (moving == NULL)

i = 0;
else
{
while (moving->reverse != NULL)

moving = moving->reverse;
i = moving->num;

*/
*/
*/

*/

*/
*/
*/
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}

return i;

} /* End of e_past() */

/*
/*
/*
/*

*/

calc_strategy */
*/

computes players’ offer and response strategies at each node. */

void calc_strategy(root, T, X_T)

struct node *root;
unsigned int T;
float X_7T;

struct binary *path;

float argl, arg2;

struct node *p; /* points to a current node */ .
long unsigned int lastnode_id; /* the largest id number in the tree */
long unsigned int i; /* id counter */

lastnode_id = power(2, T+1) -1;
for (i = lastnode_id; i >= 1; i--)
{

path = find path(i);

p = goto_node(root, i, path);

if (p->t == T)
{

p~>X = X T;

p->R = 1;

}

else if (p->t == (T-1))

{

argl = 1 - (X_T * (p->PA0 * p->left->delta + p->PAl * p->right->delta));
arg2 = {1 - X_T) * {(p->PB0 * p->left->delta + p->PBl * p->right->delta);
p->X = max{argl, arg?);

if (p->X <= argl)

p->R = 1; /* A accepts B's offer in T-1. */
else

p~->R = 0; /* A rejects B's offer in T-1. */

}

else if (p->t == (T-2))

{
argl = - (p->PBQ * p->left->delta * p->left->X
p->PBl * p->right->delta * p->right->X);

T * (p->PA0 * p->left->PA0 * p->left->delta
p->left->left->delta + p->PA0 * p-~>left->PAL
p->left->delta * p->left->right->delta
p~->PAl * p->right->PA0 * p->right->delta
p->right->left->delta + p->PAl * p->right->PAl
p->right->delta * p->right->right->delta);

p->% = max{argl, arg2);

if (p->X <= argl)

p->R = 1; /* B accepts A's offer in T-2. */
else
p->R = 0; /* B rejects A’s offer in T-2. */

arg2

]
* ok ok * D

}

else if {(p->t % 2) == 0) /* strategy for even numbered periods */
{

argl = 1 - (p-»PB0 * p->left->delta * p->left->X
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arg2

p->X

Fri Apr 7 03:16:14 1995 12

+ p->PBl * p->right->delta * p->right->X);
= p ~>PAQ * p->left->PA0 * p->left->delta * p->left->left->delta
* p->left~>left->X + p~->PAQ * p~>left->PAl * p->left->delta
p->left->right->delta * p->left->right->X
p->PAl * p->right->PA0 * p->right->delta
p->right-»left->delta * p->right->left->X
p->PAl * p->right->PAl * p->right->delta
p->right~->right->delta * p->right->right->X;
= max{argl, arg2);

* bkt *

if (p->X <= argl)

p->R = 1; /* B accepts A's offer, */
else
p->R = 0; /* B rejects A's offer. */
}
else if ((p->t % 2) == 1) /* strategy for odd numbered periods */
{
argl = 1 - (p->PA0 * p->left->delta * p->left->X
+ p~>PAl * p->right->delta * p->right->X);
arg2 = p->PB0 * p->left~>PB0 * p->left->delta * p->left->left->delta
* p->left->left->X + p->PBO * p->left->PBl * p->left->delta
* p->left->right->delta * p~>left->right->X
+ p->PBl * p->right->PB0 * p->right->delta
* p->right->left->delta * p->right->left->X
+ p->PBl * p->right->PBl * p~>right->delta
* p->right->right->delta * p->right->right->X;
p->X = max(argl, arg2);
if {p~>X <= argl)
p->R = 1; /* A accepts B's offer. */
else

p->R = 0; /* A rejects B's offer. */

}

} /* End of for (i = lastnode_id; i >= 1; i--) */

return;
} /* End of calc_strategy() */
/* */
/* trade_flag = */
/* */
/* If a node in concern is reachable, i.e., there has been no trade */
/* in a path upto the node, then flag receives_o. If a node is not */
/* reachable, flag receives 1. */

void trade_flag(root, T)

struct node *root;
unsigned int T;

struct binary *path;
struct node *temp, *p;
long ungigned int i;

int addR;

for {i=l;
{
path =

/* sum of R upto the previous period */
i<={power (2, T+1) ~1}; i+4)

find_path(i);

p = goto_node(root, i, path); .
if (p->parent == NULL)
p->flag = 0;

else

{
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temp = p;
addr = 0;
while (temp->parent != NULL)
{
addr addR + temp->parent->R;

temp = temp->parent;

if (addR == 0)

p->flag 0;
else -
p~->flag = 1;

} /* End of else */
} /* End of for (i=1l; i<={powexr (2, T+1) ~1}; i++) */

return;

} /* BEnd of trade_flag() */

/*
/*
/*
/%
/%

/*
/%
/'k
/'k
/*
/*

OUTPUT SUBROUTINES

trade_freq

computes and outputs unconditional and conditioanl frequencies of
agreement in each trading period. Output files, ta.dat and tb.dat
are created.

void trade_freq{root, T, X_T, rho, a_A, a_B, b_A, b_B)

struct node *root;
ungigned int T;
float X_T, rho, a_A, a_B, b A, b_B;

unsigned int i;
unsigned int £1; /* number of agreement in t (unconditional) */

unsigned int £2; /* number of agreement in t (if no trade upto t-1) */

long unsigned int j;

long unsigned int fltotal; /* total number of nodes in concern for freg */
long unsigned int f2total; /* total number of nodes in concern for confreq */

float freq, confreq;
struct binary *path;
struct node *p;

i = 0; /* period counter */
j = 0; /* id counter */
for (i=0; i <= (T-1); i++)
{
£1 = 0;
£2 = 0;
filtotal = power(2, i);
f2total = 0;
for {j = power(2,i); j <= (power(2, i+l) - 1}); j++)

path = find_path(j);
p = goto_node(root, 3j, path);
if (p~>R == 1)

£l = £1 + 1;

if {(p->flag == 0)

*/
*/
*/
*/
*/

*/
*/
*/

*/
*/
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{
f2total = f2total + 1;
if (p~>R == 1)
£2 = £2 + 1;
}
}
freg = (£1 * 1.0) / (fltotal * 1.0);
confreq = (£2 * 1.0) / (f2total * 1.0);
fprintf(fa, "%d %£ %f %4 %f %£ \n", T, X_T, rho, i, freq, confreq);
fprintf(£fb, "%$f $f %£ %£f %4 %f %£f \n", a_A, a_B, b_A, b_B, i, freg, confreq);
}

return;

} /* End of trade _freq{) */

/* */
/* display_tree */
/* */

/* displays basic information stored in each node of the binary tree. */
void display_tree{root, T)

struct node *root;
unsigned int T;

struct binary *path;
struct node *temp;
long unsigned int i;

for (i=l; i <= (power(2, T+1) - 1); i++)

{
path = find_ path(i);
temp = goto_node(root, i, path);
printf{*id = %4, period = %d \n", temp->id, temp->t);
printf("sum e = $d, delta = %$£ \n", temp->sum_e, temp~>delta);
printf£{("PA0 = %£, PAl = %f \n", temp~->PA0, temp~>PAl};
printf{"PBO = %£, PBl = %f \n", temp->PBO, temp->PBl);
printf("Q = %£ \n", temp->Q);

printf ("X = $f \n", temp->X);

printf ("R %d \n", temp~->R);
LINEL;

}

return;

} /* End of display_tree{) */

/* */
/* */
/* */
/* MAIN */
/* */
/* */
/* */
main()

{

/* */
int T; /* the maximum number of periods in the game */
long unsigned int i; /* id counter */

float a_A, a_B, b A, b_B; /* a_A = alpha_ A in the paper */
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/* Likewise, b_A = beta A, and so on. */

float X_T; /* player A's predetermined share in the final period T */
float rho; /* |rho| < 1 */
float deltal; /* delta 0 in period 0 */
£loat QO; /* Q0 in period 0 */
struct node *root; /* root node (origin) of the binary tree */

struct binary *path;
/* path from the root node to a given node in the sequence of e’s */

/* */

display();

open_£files();
get_par(&T, &a A, &a_B, &b_A, &b_B, &X_T, &rho, &deltal, &Q0);

root = NULL;
root = plant_first_node(root, 1, a_A, a B, b A, b B, X T, rho, deltal, QO0);

for (i=2; i <= (power (2, T+1) - 1); i++)
{

path = find_path(i);

root = plant_tree(root, i, path);

}

point_to_parent (root, T); .
calc_node(root, T, rho, a_A, a_B, b_A, b_B);
cale_strategy(root, T, X.T);
trade_flag(root, T);

trade_freqg(root, T, X_T, rho, a_A, a_B, b_A, b_B); N
display.tree(root, T);
close_files();

end_message () ;

} /* End of main() */

/* End of "ABBMl.c' */
/* = */
/* */
/'k */
/> */

/* */




APPENDIX 3C. SIMULATION CODES 185

3C.2 Generalized Wiener Process Models




APPENDIX 3C. SIMULATION CODES

WPBMZ.c

#include
#include
#include
#include
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<stdio.h>
<malloc.h>
<math.h>
<stdlib.h>

WPBM2.c : Wiener Process Bargaining Model Two

/* discription of the program "WPBMZ2.c"

/* WPBM2.c simulates a special case of bilateral bargaining game
/* that is studied in Chapter 2 and Chapter 3 of my Ph.D. dissertation

/* at California Institute of Technology.

The detailed behavioral

/* assumptions of the game participants are given in the chapters, and

/* we do not repeat them here.

/* is the one called "Alternative Game"

/* (or Brownian Motion) Model* in the dissertation.

The particular game that is simulated
"Generalized Wiener Process
"Basic Game® of

/* this model is simulated in another version of this program, which

/* can be obtained from the author.

Hence,

this version contains a

/* very basic part of the simulation process of the Wiener Process

/* model.

DATA STRUCTURES AND DESIGN
/* The bargaining process is stored in a linked list, in
/* types of data structures coexist.
/* below is freguently referred to as ‘a base list’ in this
/* This list begins with its origin corresponding to period
/* each node carries the information such as players’

/* response strategies in each period.
/* "snode" is frequently referred to as ‘a strategy list,’ that
/* contains the players’ updated beliefs over future values of the

/* asset given the information upto the current period.

One structure defined

The other structure

which two
by “node*®
program.
0, and
and
defined by

The

/* information stored in this list is used to compute what strategy to

/* take in the current period.

A pointer ‘strat’ points to ‘snode’ in

/* this strat list of each period from ‘node’ of the corresponding
/* period, while a pointer ‘base’ points from the strategy list to its

/* corresponding ‘node’ in the base list.

In addition,

each node is

/* accomodated with a pointer to point back to its parent node, which
/* adds the program flexibility.

/* In this version,

/* runs.

/* times.

each simulation run consists with 10,000 sample

In other words, given initial values, a sequence of random
/* numbers associated with each idum number is generated for 10,000

idum takes a negative integer.

/* of idum = -1 in main{) as an example,

We give an initial value
that is decremented by 1

/* down to -10,000.
/* FUNDAMENTAL: NOTATIONS
/* Notations are kept consistent with the ones used in the

/* dissertation whenever it is appropriate and possible.

For example,

/* a Greek letter ‘theta’ with a subscript ‘A’ in the dissertation is

/* written thetaA in this program.

/* so on.
/’k
/* Iin

/* We give initial values to the following variables.
: unsigned int (positive integer)

/* T

PRIMARY INPUT VARIABLES

Likewise,

sigma, and

this version, the initail values of variables are read
/* interactively by calling a subroutine get_par() in main().

predetermined number of maximum bargaining periods
/* thetanA : float
Player A's prior belief on the mean of theta

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

*/
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/* thetaB : float

/* Player B's prior belief on the mean of theta

/* Phia : float

/* Player A's prior belief on the variance of theta

/* PhiB : float

/* Player B’'s prior belief on the variance of theta

TAd theta : float

/* Mean of a normal distribution that describes mu, the
/* expected rate of value increase

IAd Phi : float

/* Variance of a normal distribution that describes mu

/* sigma : float

/* Predetermined volatility of the asset value

/* delta_t : float

/* Predetermined time interval of information arrival
/* initialQ : float (positive real)

/* Initial value of the asset

/* X T : float (0 <= X T <= 1)

/* Predetermined player A‘s default share in Period T

/* BASIC OUTPUT

/* We have included in this version, as an example of output, a
/* subroutine out_freq() and out_exp_delta(). out_freg() writes

/* frequencies of first agreement in each period, that are computed in
/* calc_freq(). ’'Frequency’ here is a number of agreement out of
/* 10,000 simulation runs, given that there has been no trade upto a
/* period in concern.

/* out_exp_delta() writes in an output file the expected values of
/* delta that are stored in a strategy list.

/* RELATED VERSIONS

/* There are other versions of WPBM2.c that contains modules to
/* simulate "Basic Game" and to generate other output files.

/-k

/*
VA
/>

NOTE: main() is defined at the very end of the program.

Defining DISPLAY messages

#define DISPLAY1l "BARGAINING SIMULATION PROGRAM : WPBMZ.c \n'

#define ENDMESSAGEl "END OF BARGAINING SIMULATION PROGRAM : WPBMZ.c \n"

/*
/*
/*

Defining constants

#define MINIDUM -10000 /* Minimum number idum takes */
#define ITR 0.0005 /* iteration interval for the value of theta */

/*
/*
/*
/%
VA

pefining constants for random(}

Refer to "Numerical Recipes in C : Second Edition® (p280) for this
random number generating function.

#define IA 16807

#define IM 2147483647
#define AM (1.0/IM)

#define IQ 127773

#define IR 2836

#define NTAB 32

#define NDIV (1+(IM-1)/NTAB)

*/

*/
*/
*/

*/
*/
*/

*/
*/

*/
*/
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#define EPS 1.2e-7
#define RNMX (1.0-EPS)

/*

/* Defining macros

/*

#define space2 printf({“\n\n")
#define space3 printf("\n\n\n")

#define out3 (fp, al, a2, a3) fprintf(fp,

“$£ %£ %u \n", al, a2, a3)

#define sqr(x) (x*x) /* sqr gives a squared value of the argument */

#define max(A, B) ((A) > (B) ? (A) : (B)

/* max gives a larger number of the given two numbers */

)

/*

/* Defining data structure (declaration of global variables) ===

/*

/* "node" specifies a node in a linked list (base list), in which

/* players’ strategies are stored along with the following data.

struct node

{
unsigned int t; /* period number t = 0, 1, .. T
float delta; /* ex-post delta
float thetad; /* A's prior on the mean of theta
float thetaB; /* B's prior on the mean of theta
float Phia; /* A's prior on the variance of theta
float PhiB; /* B's prior on the variance of theta
float Q; /* asset value in the current period
float X; /* offer strategy in the current period
unsigned int R; /* response strategy in the current period
float Apay; /* A's payoff if agreement occurs in the current period
float Bpay; /* B’s payoff if agreement occurs in the current period
struct node *next; /* pointer to its child
struct node *past; /* pointer to its parent
struct snode *strat; /* pointer to a strategy list

}i

/*

/* "snode" specifies a node in a linked list (strategy list), in which

/* expected values of various variables are stored.

struct ‘snode

{
unsigned int t; /* period number t = 0, 1, ..., T
float Eadelta; /* A's expected value of delta
float EBdelta; /* B's expected value of delta
float EAQ; /* A's expected value of the asset
float EBQ; /* B's expected value of the asset

/* offer strategy in the future, based on the available information

/* upto the current period */
float X;

/* response strategy in the future, based on the available
/* information upto the current period */

unsigned int R;

float ERpay; /* A's expected payoff in the future period
float EBpay; /* B's expected payoff in the future period
/* pointer to its child
/* pointer to its parent
/* pointer to a base list

struct snode *next;
struct snode *past;
struct node *base;

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

>/

*/
*/

*/
*/
*/
*/

*/

*/

*/
*/
*/
*/
*/
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}i

/*

/* "freq" specifies a node in a linked list, in which trading

/* frequencies of each period is stored. Also refer to calc_freq()
/* and out_freqgl).

struct freg

(

}i
/*

/-k
/*
/*
/*
YA

/*k
VA
/*
/*

unsigned int t; /* period number t = 0, 1, ..., T
unsigned int i; /* frequency counter
struct freq *next; /* pointer to its child
FILE *fa; /* Formatted output file
FILE *fb; /* Formatted output file
mmzxmzexzzeesss [NPUT/MISCELLANEOUS SUBROUTINES

display

displays the current program name.

void display({)

{

space3;
printf (DISPLAY1) ;
space3;

return;

} /* End of display() */

/*
/*
/*
/*

open_files

opens files to write the output. -

void open_files()

{

}

/*
/*
VA
/*

fa = fopen{'"ta.dat", "w");
fb = fopen("tb.dat", *w"};
return;

/* End of open_files() */

close_files

closes the output files that have been opened in open_files().

void close_files()

*/

*/
*/
*/

*/
*/

*/
*/
*/
*/

*/
*/
*/
*/
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fclose(fa);
fclose (£b);

return;

} /* End of close_files() */

/* */
/* end_message */
/* */
/* prints the ending message. */

void end_message ()

{
space3;
printf (ENDMESSAGEL) ;
spaced;

return;

} /* End of end_message() */

/* */
/* power */
lad */
/* raise base to n~th power : n >= 0. */

float power (base, n)

float base;
long int n;

long int i;

float p;

p=1.0;

for(i=1; i<=n; ++i)
P = p * base;

return p;

} /* End of power{) */

/* */
/* get_par */
/* */
/* get_par() is called in main(). */
/* get_par() reads input data {parameter values) interactively. */

void get_par (T, theta, Phi, X_T, delta_t, sigma, initialQ, thetad, thetaB, PhiA, PhiB)
unsigned int *T;

float *theta, *Phi, *X_T, *delta_t, *sigma, *initialQ;
float *thetad, *thetaB, *PhiA, *PhiB;

printf{“BEnter T (even int) : ");
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}

/*
/*
/*
/%
/*
/*
/*
/*
/*
/*

scanf ("%d", T); .

printf ("Enter theta (real) : ");

scanf ("%£", theta);

printf ("Enter Phi (real) : *};

scanf ("$£", Phi);

printf ("Enter X_T (positive real) : *);
scanf (“%£", X_T);

printf (*Enter delta_t (positive real) : v);
scanf ("%£", delta_t);

printf ("Enter sigma (positive real) : ");
scanf ("$£", sigma);

printf ("Enter initialQ (positive real) : ");
scanf (*$£", initialQ);

printf ("Enter thetad (real) : ");

scanf ("%£", thetad);

printf ("Enter thetaB (real) : ");

scanf ("$£", thetaB);

printf ("Enter PhiaA (real) : ");

scanf ("%£", Phia);

printf (*Enter PhiB (real) : "};

scanf ("$£", PhiB);

return;

/* End of get_par() */

random
*Minimal" random number generator of Park and Miller with Bays-
Durham shuffle and added safeguards. Returns a uniform random

deviate between 0.0 and 1.0 (exclusive of the endpoint values).
Call with idum, a negative integer to initialize; thereafter, do
not alter idum between succesive deviates in a sequence. RNMX

should approximate the largest floating value that is less than 1.

{(Taken from p280 of "Numerical Recipes in C" : Second edition)

float random(flag, idum)

int flag;
long *idum;

int j;

long k;

static long iy=0;
static long iv[NTAB];
float temp;

{(flag== 1)

if (*idum <= 0 || liy)
{
if (-{(*idum) < 1)
*idum = 1;
else
*idum = - (*idum);
for (j=NTAB+7;j>=0;7-~)
{
k= {*idum) /IQ;
*idum=IA* (*idum~-k*IQ)-IR*k;
if (*idum < 0) *idum += IM;
if {j < NTAB) iv[jl = *idum;

}
iy = iv[0];

*/

*/
*/
*/
*/
*/

*/
*/
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k = (*idum)/IQ;
*idum = IA * (*idum-k*IQ)-IR*k;
if {(*idum < 0)
*idum += IM;
j = iy/NDIV;
iy = iv[jl;
iv[i] = *idum;
if {{temp=AM*iy) > RNMX )
return RNMX;
else
return temp;

} /* End of random{) */

/*

/* stnormal

/*

/* Refer to "Numerical Recipes in C : Second edition.®

/* Given idum, it returns a value from a standard normal distribution.

float stnormal (flag, idum)

int £lag;
long *idum;

static int iset=0;
static float gset;
float fac, rsaq, vl, v2;

if {(iset == 0)
{
do
{
vl = 2.0*random(flag, idum)-1.0;
flag = 0;
v2 = 2.0*random{flag, idum)-1.0;
rsg = vl * vl + v2 * v2;
} while ((rsg >= 1.0) || (rsq == 0.0));

fac = sqgrt{-2.0*log(rsq) /rsq);
gset=vl*£fac;
iset=l;
return v2*fac;
}
else
{
iset = 0;
return gset;

}
} /* End of stnormal() */

/*

/* normal
/*

/* stn = a value taken from a standardized normal distribution (i.e.,

/* a normal distribution with a mean 0 and standard deviation 1).
/* Returns a value converted from N{0,1}) to N(theta, Phi).

*/

*/
*/
*/
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float normal(stn, theta, Phi)

float stn, theta, Phi;

float stdiv;

float n;

stdiv = sgrt(pPhi);

n = theta + (stdiv * stn);

return n;

} /* End of normal{) */

/* */
/* calc_delta */
/* */
/* Called in build_base_list() to compute an ex-post delta values that */
/* is stored in each node in the base list. */

float calc_delta{e, mu, sigma, delta_t}

float e, mu, sigma, delta_t;

float 4;

d = 1 + mu*delta_t + sigma*e*sqrt{delta_t);
return d;

} /* End of calc_delta() */

IAd */
/* calc. Q */
/* */
/* Called in build_base_list() to compute an ex-post asset value that */
/* is stored in each node in the base list. */

float cale_Q(e, mu, sigma, delta_t, preQ)
float e, mu, sigma, delta_t, preQ;
float tempQ;
float d;
d= 1 + mu*delta_t + sigma*e*sqgrt(delta_t);
tempQ = d * preQ;

return tempQ;

} /* End of calc_Q() */

/* */
/* */
/* =m==mssssssszs=ss CONSTRUCTING THE BARGAINING LIST */
/% */
IAd */
/% */
/* build_base list */
/* */
/* Construct the base list. */

struct node *build_base_ list(origin, idum, T, theta, Phi, initialQ, delta_t, sigma, thetaa
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, thetaB, PhiA, PhiB)

struct node *origin;

long idum;

int T;

float theta, Phi, initialQ, delta_t, sigma;
float thetah, thetaB, PhiA, PhiB;

{

struct node *p, *temp;

int t;

int flag;

float e, mu;

flag = 1;

origin = (struct node *)calloc(l, sizeof(struct node));

origin->next = NULL;

origin->past = NULL;

origin->strat= NULL;

origin->t = 0;

e = stnormal (flag, &idum);

mu = normal{e, theta, Phi);

origin->delta = calc_delta(e, mu, sigma, delta_t);

origin->Q = calc_Q(e, mu, sigma, delta_t, initialQ);

origin~>thetad = (thetaA * ((1/PhiA)/{(1/Phid} + (1/Phi}))) + {(mu * ({(1/Phi)/((1/Phi’d)
+ (1/Phi}}));

origin->thetaB = (thetaB * ((1/PhiB)/{({1/PhiB) + {(1/Phi)}))) + {(mu * ((1/Phi)/{((1/PhiB)
+ (1/Phi))));

origin->PhiA = 1/((1/PhiA) + (1/Phi));
origin->PhiB = 1/({(1/PhiB} + (1/Phi});

flag = 0;

p = origin;
for (t=1; t<=T; t++)
{
temp = {struct node *)calloc(l, sizeof(struct node));
temp->next = NULL;
temp->past = p;
temp->strat= NULL;
temp->t = t;
e = stnormal{flag, &idum);
mu = normal(e, theta, Phi);
temp->delta = calc_delta(e, mu, sigma, delta_t);
temp->Q = calc_Q(e, mu, sigma, delta_t, temp->past~>Q);
temp->thetad = (temp->past->thetaA * ((1/temp->past->PhiA)/({(1/temp->past->PhiA) + (1
/Phi} ) )+ (mu * {({(1/Phi}/{({1l/temp->past->PhiA) + {(1/Phi))}));
temp~>thetaB = (temp->past->thetaB * ({1/temp~->past->PhiB)/((1l/temp->past->PhiB) + (1
/Phi)))) + (mu * ((1/Phi)/((1/temp->past->PhiB) + (1/Phi})));
temp->PhiA = 1/{(1/temp->past->PhiA) + (1/Phi));
temp~>PhiB = 1/((1l/temp->past->PhiB) + (1/Phi));
p->next = temp;
p = p->next;

return origin;

} /* End of build base_ list() */

/* */
/* build_strat list */
/* */
/* Construct the strategy list. */

/* Pl points through the base list made in build base list() */
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struct node *build_strat list{origin, T, delta_t)

struct node *origin;
int T;
float delta_t;

struct node *P1l;

struct snode *P2, *temp;
float EAdelta, EBdelta, Qt;
int t;

Pl = origin;
while (Pl->next != NULL)

{
EAdelta = 1 + Pl->thetaA * delta_t;
EBdelta = 1 + Pl-»>thetaB * delta_t;
Qt = P1->Q;

for (£t = Pl->t + 1; t <= T; t++)
{

temp = (struct snode *)calloc{l, sizeof(struct snode));

temp->next = NULL;

temp->t = t;

temp->EAdelta = EAdelta;
temp->EBdelta = EBdelta;
temp->EAQ = Qt * (power (EAdelta,
temp->EBQ = Qt * (power (EBdelta,

if ({t - Pl->t) == 1)

{
Pl->strat = temp;
temp->base = P1;

}

else

{
P2~>next = temp:;
temp->past = P2;

}

P2 = temp;

{t - Pi->t)));
(t - PL->t)));

} /* BEnd of for (t = Pl->t + 1; t <= T; t++) */

Pl = Pl->next;

} /* End of while (Pl->next != NULL) */

return origin;

} /* End of build_strat list() */

/*
/*
/*
/*
/*

calc_offer strategy

Calculates offer strategies, X, to be stored in the base list and

the strategy list.

struct node *calc_offer_strategy(origin, T, X_.T)

struct node *origin;
int T;
float X_T;

*/
*/
*/

*/
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{
int i, count;
struct node *Pl;
struct snocde *P2;
float argl, arg2;

Pl = origin;
while (Pl->next f= NULL)
{
count = T-1;
while (count >= 0)
{
P2 = Pl->strat;
for (i = Pl->strat->t; i <= count; i++)
P2 = P2->next;

/* compute offer strategies in the strategy list */

if (P2->t == T)
{

P2->X = X_T;
;lse if (P2->t == (T-1))
{ P2->X = 1 - X_T;
;lse if (P2->t == (T-2})
¢ argl - ({1 - X_T) * P2->next->next->EBdelta);

= 1
arg2 = X T * P2->next->next->RAdelta;
P2->X = max({argl, arg2);

}
else if {((P2->t % 2) == 0)
{

argl = 1 -~ (P2->next->next->EBdelta * P2~>next->X);
arg2 = P2->next->next->EAdelta * P2Z->next->next->next->EAdelta * P2->next->next->
X;
P2~>X = max(argl, argl);
}
else if ((P2->t % 2} == 1}
{
argl = 1 -~ (P2->next->next->EAdelta * P2->next->X);
arg?2 = P2->next->next->EBdelta * P2->next->next->next->EBdelta * P2->next->next->
X;

P2->X = max{argl, arg?);
}

count = count - 1;

} /* End of while (count >= 0) */

/* compute offer strategies in the base list */

if (Pl->t == (T-1))
Pl->X = 1 - X T;
else if (Pl->t == (T-2))
{
- ({1 - X_T) * pl->strat->next->EBdelta);

1
Pl->strat~>next->EAdelta * X_T;
Pl->X = max(argl, arg2);
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else if ((Pl->t % 2) == 0)
{
argl = 1 - (Pl->strat->next->EBdelta * Pl->strat->X);
arg2 = Pl->strat->next->EAdelta * Pl->strat->next->next->EAdelta * Pl->strat->next-
>X;
Pl->X = max(argl, arg2);
}
else if ((Pl->t % 2} == 1)
(
argl = 1 - (Pl->strat->next->EAdelta * Pl-»>strat->X);
arg2 = Pl-»strat->next->EBdelta * Pl->strat->next->next->EBdelta * Pl->strat-»>next-
>X;

P1->X = max(argl, arg2?);
}
Pl = Pl->next;
} /* End of while (Pl->next != NULL) */
Pl->X = X_T;
return origin;

} /* End of calc_offer strategy{) */

/* */
/* exp_payoff */
/* */
/* Computes expected payoffs if an offer in a period in concer is */
/* accepted. The computed expected payoffs are stored in the strategy */

/* list and the base list. , */
struct node *exp_payoff (origin, T, X_T)

struct node *origin;
int T;
float X_T;

struct node *Pl;
struct snode *P2;

Pl = origin;
while (Pl->next != NULL)
{

P2 = Pl->strat;

if ((P2->t & 2) == 0)
{

P2->EApay = (1 - Pl1->X) * P2->EAQ;
p2->EBpay = Pl->X * P2->EBQ;

}

else

{
P2->EApay = Pl->X * P2->EAQ;
P2->EBpay = (1 -~ Pl->X) * P2~->EBQ;

}

if (P2-»>next != NULL)
P2 = P2Z~>next;

while (P2->next !{= NULL)
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{

if ((P2->t % 2) == 0)

{
P2->EApay = (1 - P2->past->X) * P2~>EAQ;
P2->EBpay = P2->past->X * P2->EBQ;

}

else

{
P2->EApay = P2~->past->X * P2~>EAQ;
P2->EBpay = (1 - P2->past->X) * P2->EBQ;

}
P2 = P2->next;

} /* End of while (P2->next != NULL) */

P2->EApay = X_T * P2->EAQ;
P2->EBpay = (1 - X_T) * P2->EBQ;
if (Pl->t == 0)
{
Pl->Apay = 0.0;
Pl->Bpay = 0.0;
else if {({(Pl->t % 2) == 0)
{
Pl->Apay = (1 - Pl->past->X) * Pl->Q;
Pl->Bpay = Pl->past->X * P1l->(Q;
else if ((Pl->t % 2) == 1)

{
Pl->Apay = Pl-s>past->X * P1->Q;
Pl->Bpay = (1 - Pl->past->X) * Pl->Q;
}
Pl = Pl->next;
} /* End of while (Pl->next = NULL) */

Pl->Apay = X_ T * P1l->Q;
Pl->Bpay = (1 - X._T) * Pl->Q;

return origin;
} /* End of exp_payoff() */

/*

/* calc_resp. strategy

/*

/* Computes response strategies in the base list.
/* R = 0 if reject, R = 1 if accept.

struct node *calc_resp_strategyl{origin, T, X_.T)
struct node *origin;

int T;
float X_T;

struct node *P1;
struct snode *P2;
float arg;

Pl = origin;

*/
*/

*/
*/
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while (Pl-»>next != NULL)
{
if (Pl->t == Q)
P1->R = 0;
else if ((Pl->t % 2) == 0)
{

arg = 1 - (Pl->strat->EAdelta * Pi-»X);
if (Pl->past->X <= arg)

P1->R = 1;
else
P1->R = 0;
}
else

{
arg = 1 - (Pl->strat->EBdelta * P1->X);
if {Pl->past->X <= arg)

P1l->R = 1;
else
Pl->R = 0;

Pl = Pl->next;
yo
Pl~>R = 1;
return origin;

} /* End of calc_resp_strategy() */

/* 2 */
/* */
/* OUTPUT RELATED SUBROUTINES */
/* */
/* */
TAd */
/* init_first */
/* */
/* Initialize a linked list pointed by a pointer "first" with a data */
/* structure "freg" that will be used to store the number of first */
/* agreement in each trading period out of 10,000 sample runs. */

struct freg *init_first(first, T)

struct freq *first;
int T;

struct freqg *templ, *temp2;
int t;

first = (struct freq *)calloc(l, sizeof(struct freq)):
first->t = 0;
first->i = 0;
first~>next = NULL;
templ = first;
t = 1;
while (t <= T)
{
temp2 = (struct freqg *)calloc{l, sizeof(struct freq)):;
temp2->t = t;
temp2->i = 0;
temp2->next .= NULL;
templ->next = temp2;
templ = temp2;
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t =t + 1;
}

return first;

} /* End of init_first() */

/*
/*
/*
/*
VA
/*

/*
/'k
/*
/*
/*k

*/
calc_freq */
*/
By moving through the base list, it counts the number of first */
agreement in each period out of 10,000 sample runs, and store the */
result in a list with the data structure "freg." */
struct freqg *calc_freq(first, origin)
struct freqg *first;
struct node *origin;
struct node *P1l;
struct freg *P2;
Pl = origin;
P2 = first;
while (P1->R != 1)
{
Pl = Pl->next;
P2 = P2->next;
}
P2->i = P2->i + 1;
return first;
} /* End of calc_freqg{) */
*/
out_freq *x/
*/
Writes the information stored in a structure "freg® in an output */
file "tb.dat." */
void out_freg(first, theta)
struct freg *first;
float theta;
struct freg *temp;
temp = first;
while (temp->next != NULL)
{
fprintf (fb, "theta = %f, t = %d, freg = %d \n", theta, temp->t, temp->i);

temp = temp->next;

}
fprintf(fb, "theta = %£, t = %d, freq = %d \n", theta, temp->t, temp->i);

} /* End of out_freg() */

/*
/*
/i
/*

out_exp_delta

*/

*/

*/

Writes expected values of delta stored in the strategy list into an */

200
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/* output file "ta.dat.*® */
void out_exp delta{origin, T)

struct node *origin;
int T;

struct node *temp;
struct snode *temp2;
int t;

temp = origin;
while (temp != NULL)
{
temp2 = temp->strat;
for (t = temp->t +1; t <= T; t++)
{
forintf (fa, "t
fprintf (fa, "t
>EBdelta) ;
fprintf (fa, "\n");
temp2 = temp2->next;
} .
temp = temp->next;
}

%d, EAQ= %£, EBQ= %f \n", temp2->t, temp2->EAQ, temp2->EBQ);
%d, EAdelta= %f, EBdelta= %f£ \n", temp2->t, temp2->EAdelta, temp2-

return;

} /* End of out_exp_delta() */

/* : */
/* */
/* *)
/* MAIN LY
/* */
/* */
/* */
main()

{

/* */
int T; /* the maximum number of periods in the game */
long idum; /* seed number to generate a sequence of randdm numbers */
/* Refer to the description of the input wvariables in the beginning of */
/* this program for the followings. */

float delta_t, sigma;

float theta, Phi;

float thetan, thetaB, PhiA, PhiB;
float X_T;

float initialQ;

struct node *origin; /* pointer to a root node of the base list */

struct freqg *first; /* pointer to a root node of the frequency list */

/* * /
display();

open_£files();

get_par (&7, &theta, &Phi, &X_T, &delta_t, &sigma, &initialQ, &thetad, &thetaB, &PhiA, &
PhiB);
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first = NULL;
first = init_first(first, T);

idum = -1;
while (idum >= MINIDUM)
{

origin = NULL;

202

origin = build_base_list(origin, idum, T, theta, Phi, initialQ, delta_t, sigma, theta

thetaB, PhiA, PhiB);
origin = build_strat_list (origin, T, delta_t);
origin = calc_offer_strategy(origin, T, X_T);
origin = exp_payoff{origin, T, X_T);
origin = calc_resp_strategy(origin, T, X_T);
first = calc_freq(first, origin);
idum = idum - 1;

}

out_freqg(first, theta);

out_exp_delta({origin, T);

end_message () ;

close_£files();

/* End of main() */

End of "WPBM2.c"

*/
*/
*/

*/




Chapter 4

Concluding Remarks on Part I

Incorporating stochastic elements into sequential bargaining games has been proven to
provide us with an alternative way of describing various bargaining durations. Despite the
assumption of complete information, in our games it is not uncommon to observe delays
before the first agreement. The comparison of the Basic and the Alternative games showed
us fhe sensitivity of the durations to the timing of information arrivals and players’ actions.
In addition, our equilibrium strategies predict differences in reservation values of an offer—
making player between the Basic and the Alternative games. Simulation outputs have
confirmed many of our analytical findings and conjectures with regard to comparative statics
results.

By construction, however, neither of our bargaining games explains breakdowns! in the
current negotiation. It is not new to us, however, to observe a bargaining breakdown even

if there are positive gains for both parties from a potential agreement. Such breakdowns

1By breakdown we mean that the bargaining parties never come to an agreement and leave the negotiation
table without any transaction among themselves.
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can leave one or both parties with zero payoff and become a source of inefficiency. In
addition to explaining various bargaining durations, we need to construct a model that
incorporates such possibilities. We conclude Part I by including the following idea as a
potential extension that will enhance our understanding of bargaining durations in more
complicated situations.

We would like to model delays and eventual negotiation breakdowns explicitly in the
presence of complete information, where players can choose at their own cost to search for
outside options that can be realized stochastically. Consider a negotiation process where
both parties see positive gains from an agreement at the same time when each player knows
that his opponent is constantly searching for a better outside option. Suppose that both
the value of the asset in the current negotiation and of the outside option they are looking
for are common knowledge and positive constant. Furthermore, let us assume that there
is a cost associated with the search for the outside option, and the option always gives a
higher utility than the agreement in the current bargaining to the party that has found
it. This sort of model can be motivated by the following simple example. Suppose that
person A is looking for an apartment to rent, hoping to move in very soon, and is currently
negotiating with a condominium owner B who wants to sublet. We can reasonably assume
that the value of the asset in concern is constant, since the value of the condominium or
other apartments may not fluctuate much in a short term. In the meantime A is still
looking for a better deal elsewhere and B is hoping to find someone who wants to rent it
with the price he is asking for. Naturally, the more vigorously one looks for an outside
option, the more likely the person finds a better option. If neither finds a better option

within a reasonable length of time, then they compromise with each other and settle with
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the price that is determined by an exogenous factor such as information through reliable
real estate agents. If one finds a better option, then the current negotiation breaks down.
For example, if A finds a deal of the century, she receives the value of the outside option
lﬁgher than the agreement in the current negotiation, whereas B is left with no payment.
According to Rubinstein and Osborne (1990), with the assumption of complete infor-
mation, opting out is not a credible threat, and thus an outside option has no effect on
the bargaining outcome. We conjecture that the introduction of stochastic realization of
outside options can result in varied bargaining durations. We need to model an endogenous
risk of breakdowns in our bargaining games. By.introducing a decision variable such as
each player’s search intensity of outside options, we will have a bargaining model in which
an outside option becomes stochastically available to players. In a discrete time model, for
example, at the beginning of each negotiation period both players first compute their reser-
vation values and decide on their level of investment into the search to maximize expected
payoffs. For example, let VZ(-) be a player i’s continuation payoff after period t begins,
so that both players decide on their investment levels to maximize V; and th . Then, one
player quotes a price, to which the other responds. In other words, i quotes an offer zi
such that i = max{V}/Q;,1 — (V;j /Q:)}, which j accepts if 2t = 1 — (th /Q¢) or rejects
if 2 = Vi/Qy > 1 — (V;] /Qt). The game ends if the responder accepts the offer or if the
responder rejects and at least one player finds a better option by the end of the period. If
the responder rejects and no one finds a better option by the end of the period, the next
negotiation period (£ + 1) opens. The game continues until a predetermined time hori-
zon is reached. Note that an agreement is generated by an increasing endogenous risk of

breakdown, while the potential for finding a better outside option may cause a delay. We
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shall solve for Nash equilibrium level of investment and may find conditions to guarantee
a unique investment choice process. We shall also check conditions for the uniqueness of
players’ contingency plans or equilibrium payoffs. Results should be compared to those of
Rubinstein and Osborne (1990), which predicts unique subgame perfect equilibrium with
the presence of oﬁtside options. Running simulations to study comparative statics, espe-

cially with respect to bargaining durations, is also recommended.
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Information and Order Flow in

Experimental Markets




Chapter 5

Order Flow in Experimental

Financial Markets

5.1 Introduction

The efficient market hypothesis, which has acquired widespread support in the fields of eco-
nomics and finance, states that financial markets with significant informational asymmetries
such as securities exchanges are said to be efficient if the prices of the securities traded fully
convey available information. In rational expectation settings, the informational efficiency
of prices is achieved since the model predicts that the prices reflect all relevant private infor-
mation about the asset value, provided that the market is in perfect competition (Milgrom
and Stokey (1982)). In other words, a market that provides an efficient mechanism for infor-
mation dissemination resolves uncertainty among rational traders. It has been successfully
demonstrated in the related experimental economics literature that laboratory asset mar-

kets disseminate privately held information efficiently (Forsythe, Palfrey, and Plott (1982),

DD
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Plott and Sunder (1982), and Plott and Sunder (1988)).

The existing market microstructﬁre literature that investigates the information dissem-
ination and aggregation pyoperties of markets in experimental context has mainly been
constructed within a restricted framework in which traders are allowed to submit only mar-
ket orders. Limit orders, along with market orders, constitute an intrinsic part of financial
market trading. For instance, in a market such as the Paris Stock Exchange, the Tokyo
Stock Exchange, or the Toronto Stock Exchange, every market participant observes both
market and limit orders entered by other members, so that one can utilize the information
in estimating the demand and supply for a particular stock one is interested in trading. In
pther words, the traders condition their beliefs not only on the transaction prices, but also
on the more detailed order flow that can be found in the limit order book. Consequently,
the list of limit orders is part of a source for predicting the future stock prices, thereby influ-
encing transaction outcomes. In a specialist market such as the New York Stock Exchange,
where investors submit limit orders to the specialist who is the only person having an ac-
cess to the list of all the limit orders, the specialist utilizes the information for promoting
effective execution of orders.

Likewise, it is a common practice for investors to submit limit orders in the operation
of stock market. In the computerized simulated markets Bollerslev and Domowitz (1993)
investigated, the size of the order book is shown to be positively related to the amdunt of
information available, for the price volatility decreases as the book length grows.! Hence, we
may conjecture that the system provided with a limit order book carries more information

both implicitly and explicitly about the market, and the effects of allowing the traders to

YThis result is in accordance with Kyle(1985)’s theoretical findings.
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have an acéess to such information should not be ignored. We attempt to investigate how
the information conveyed in the order book affects the order flow in experimental financial
" markets with asymmetrically informed traders.

In this chapter the markets are organized as computerized double auctions accommo-
dated with an order book that contains a complete list of current limit and market orders.?
In practice, investors can submit limit orders in the operation of the stock market. In our
experimental market all the participants can submit both market and limit orders. The list
of the orders can be inspected by every market participant at any time during each market
period. All of the trades are executed at outstanding quotes in the book. Qur empirical
analysis of the experimental data sets focuses on the series of actions taken by the subjects
that include quote revisions, limit order arrivals, and trades. Players’ actions are identified
as events. The state of the book is updated immediately after the occurrence of each event.
In the analysis of order flow, we report the presence of serial dependencies of order arrivals
on the previous event type, the state of the order book, the size of the bid—ask spread, and
the time intervals. The method of the analysis follows that of Biais, Hillion, and Spatt
(1993).3 -

We seek to provide an empirical analysis of the acquired data in an attempt to un-
derstand the order flow dynamics and to identify the determinants of the order flow by
creating a market that reflects several essential features of financial markets in a controlled

laboratory environment. We are particularly interested in how the traders interpret various

?The software we used is called MUDA, Multiple-Unit Double Auction, and has been developed at the
California Institute of Technology. We describe our market organization in the next section. For more details
of this software, refer to Plott (1991).

3Biais et al. uses summary statistics to characterize the order book and contingency tables to analyze
the determinants of the order flow in the analysis of data from the Paris Bourse.
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states of the order book and how they typically respond to certain information they extract
from the order book. In summary, our tasks in this chapter are i) to observe the interaction
of subjects’ behavior and the information conveyed in the transaction prices and the limit
order book, ii) to ascertain the significance of the impact of information carried in the order
book, iii) to empirically examine the determinants of the order flow, and iv) to compare
the results from the data acquired in the computerized laboratory financial markets with
the previous ﬁndiﬁgs in the literature of order flow analyses, especially in comparison with
those of Biais et al. (1993).

The rest of the chapter is organized as foll{ows.I In section 5.2, we describe the organiza-
tion of our experimental financial market along with the details of the experimental design.
In section 5.3, we give selected descriptive statistics on the acquired data sets. Section 5.4
contains the analyses of the determinants of the order flow, such as the previous event type,
the state of the order book, the size of bid—ask spread, and the time intervals. We give brief

concluding remarks and several ideas for a future research in section 5.5.

5.2 Experimental Procedure

All of the experiments were conducted in the Laboratory of Experimental Economics and
Political Science at the California Institute of Technology. The experiments were run on a set
of computers operated in a local area network. The subjects were undergraduate students
of various majors and backgrounds at the California Institute of Technology, and were
recruited by the announcement of an invitation to participate in an economics experiﬁent.

They were told that the experiment would not require any prior knowledge of economics or
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computers and that they would be paid the amount they have earned through their decision
making in cash at the end of the experiment. We particularly recruited those who have
never participated in an experiment of the similar environment before.

Once the subjects were in the laboratory, each person was randomly seated at a terminal
where he/she was given a packet of instructions along with a subject identification number.*
The content of the packet is described in detail in the section below where the market
environments are discussed. The subjects were read the instructions by the experimenter,
and several examples were given on a board to enhance their understanding of the rules.
Approximately thirty minutes were spent for the instructional purposes. Then a practice
period, Period 0, was run for 7 minutes to accustom the subjects to the rules and the
environment. The procedure that is specific to each market environment is also included
below. We ran 15 periods in each experimental session, in which each peirod lasted for 5
minutes. The subjects were aware of the length of each period, but were not told how many
periods would be run. After each session has ended, each subject was paid in cash before

leaving the laboratory.

5.2.1 Market Organization

All of the markets were organized as a computerized double auction accommodated with
an open limit order book. The subjects can submit market and limit orders at any time
during a trading period through their terminals. The subjects’ actions are transparent in
that everyone has an access to observe everyone else’s action at any time during a trading

peirod, including the activities in the order book. The order book shows the market and

A copy of the instruction packet used in the actual experiments is included in Appendices 5D and 5E.
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limit bid and ask quotes along with the associated quantities and the subject identification
numbers. The price priority rule is enforced over the time priority rule. The size of the
book can be considered infinite in that the complete list of the limit orders were listed in
our experiments, though there is a physical limit. We consider the lowest limit order on
the sell-side as the standing market ask and the highest limit order on the buy-side as the
standing market bid. Hence, orders entered as limit orders automatically become standing
market orders when they are the lowest or highest on each side of the book. The limit
orders do not have a prespecified lifetime; that is, the subjects are allowed to keep or revise
the orders as they wish. Hence, an unexecuted limit order remains in the book until it is
deleted by a person who has entered it. However, the limit order book is cleared at the end
of each trading period; that is, any orders remaining at the closing of a trading period are
not carried over to the next period.

Transactions can occur only at the current standing quotes, which eliminates the pos-
sibility of transactions at prices strictly within the bid-ask spread. Along with the data
in which we can keep track of each subject’s choice of actions, this feature is a significant
advantage of our experimental markets in the analysis of the order flow, since we can readily

identify each trade as buyer—initiated or seller—initiated.’

5Tn the analysis of data from stock exchanges, we need to employ certain methods to classify the direction
of each transaction. But since many transactions occur within the bid—ask spread and since we do not know
who exactly is a seller or a buyer, it is difficult to classify every tramsaction accurately just by looking at
the transaction prices data. For such classification methods, refer, for example, to Blume, MacKinlay, and
Terker (1989).
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5.2.2 Experimental Design

The experimental design described in this section is summarized in Tables 5.1a, 5.1b, 5.1c,
apd 5.1d. There are two types of market environments, which we often refer to as the
market 1 environment and the market 2 environment. The four data sets analyzed and
reported here are indexed as 042393b:Marketl, 042393b:Market2, 042393c:Marketl, and
042393c:Market2, where 042393 indicates that the experiment was run on April 23, 1993.
The market 1 environment simulates a financial market with no specialist, where assets
of uncertain values are traded in the presence of asymmetric information among subjects.
The market 2 environment is a simple competitive market design often used in testing a
competitive behavior of subjects characterized by symmetric demand and supply schedules.
In each experiment, there are eight subjects, half of which is identified as type I and the
other half is type IT in the market 1 environment, while half is a seller and the other half is
a buyer in the market 2 environment. Each packet of instructions contained the materials

that identify the subjects with these types along with a copy of the general instruction.

Market 1 environment

In this hypothetical asset market, three subjects are randomly chosen before the beginning
of each period to become insiders in market 1.5 The insiders are given an opportunity to
observe an ez post liquidation value of the risky asset. Assuming anonymity, each subject
does not know who is informed or uninformed other than about himself/herself. There
is no exogenous arrival of information regarding the value of the asset in the middle of

each trading period, so that the information revelation is endogenous. Consequently, in

SWe refer to the informed subjects as insiders despite that other interpretations are possible.
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such a market environment, uninformed traders have access to only the market-generated
information.

The asymmetric informgtion in the market is generated in the following manner. Each
period is associated with one of three states, X, Y, and Z, which is knownito only the
insiders.” The value of the asset varies from person to person, and from state to state.
Therefore, the asset value to each subject is defined by one of the state-dependent types,
type I and type II, which specify the asset’s dividend value for a given state. These types are
given in Table 5.2a. The dividend values follow those used by Forsythe and Lundholm (1990)
in their investigation of information aggregation properties of experimental markets. The
state of each period was determined randomly by the experimenter before the experiment
sessions by using a random number table. After each trading period has ended, the state

of the past period becomes public information, and the subjects compute their profits for

the period.

Market 2 environment

The market 2 environment is described by a set of demand and supply schedules illustrated
in Figure 5.1. It is a symmetric market with respect to supply and demand, in which each
trader is classified as either a buyer or a seller and is provided with a table containing one’s

own reservation values for units one trades during a given trading period.®

"Refer to Table 5.1b.
8Refer to Tables 5.2b through 5.2d.
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5.3 Descriptive Summary

Figures 5.2a through 5.2d show the obtained time series of transaction prices from the
experiments. Several summary statistics are included in Tables 3a through 3d in order to
provide some intuition for the acquired data sets. The trading volume in the tables is the
number of units traded in each period, which is equivalent of the number of transactions
since in our experiment the subjects are not allowed to place multiple-unit orders. Note that
it is not necessarily equal to the total number of contracts outstanding at the end of each
trading period. This indicates the existence of a trader who has taken both a long position
and a short position within the same period.® An action taken by the subjects is identified
as an event that belongs to one of ten event types. These event types are described and
explored in detail in the following sections. But briefly, on the buyers’ side they are “take
ask,” which results in immediate trading at the standing ask price, “new bid > standing
bid,” meaning a buyer overbidding the current standing bid, “new bid = standing bid,”
meaning a buyer entering a new bid equal to the current standing bid that will be recorded
in the limit order book, “new bid < standing bid,” meaning a.buyer entering a new bid
lower than the current standing bid that wili also be recorded in the book accordingly,
and “cancel bid,” meaning a buyer cancelling a bid he has entered previously. The event
types on the sellers’ side are defined analogously. The price change is defined as 3 difference
between transaction prices at transaction times ¢t and t — 1. The bid—ask spread is expressed

in francs that is a difference between the lowest ask quote and the highest bid quote, and is

9This is commonly observed in real exchanges. For example, the volume of trading in some commodity
futures contracts in a day can be larger than its open interest at the end of the day, reflecting a large number
of day trades.
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updated whenever a new event occurs. The time between events is a time elapsed in seconds
between two consecutive events. Additional descriptive statistics on the market activities,
such as the number of bids or asks, the size of the bid-side or ask—side spread in the order

book, and the size of the bid-side or ask-side depth are included in Figures 5.3a through

5.4d.

5.3.1 Trading Activities and Bid—Ask Spreads

We include variables such as the trading volume and the number of events for each period
as direct measures of the level of trading activities. A glance over the number of events
in each market indicates that the subjects are generally more active in the markets with
information asymmetry than in the market 2 environment, where the equilibrium trading
volume predetermined by the experimenter has proven to prevail by previous researchers.
This simply confirms the conjecture that the speculators make a market active and that an
active market attracts speculators. This indicates the positive relation between the trading
volume and the absorptive capacity of the market, or the liquidity of the market.1®

The previous literature has found that the level of trading activities is a determinant
of the bid-ask spread. MclInish and Wood (1992) study the intraday patterns of bid-ask
spreads in the NYSE data and find that the size of bid-ask spread is significantly inversely
related to the number of trades and the number of shares per trade.!! Our data do not
necessarily contradict their findings, but it is not clear whether we can conclude that it is

true in the analysis of the data on the inter-period basis. In Table 5.3a both the trading

10For example, see Kyle (1985) and Admati and Pfleiderer (1988).
Copeland and Galai (1983) show that the bid-ask spread is inversely related to the frequency of trading.

For the analysis of data for intervals of a day or longer, see Tinic and West (1972), and Benston and
Hagerman (1974). ‘
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volume and the event frequency are highest in period 12 where the mean bid-ask spread
is 56.11 francs, whereas in period 1, where the event frequency is lowest and the trading
volume is relatively low, the mean bid-ask spread is 104.02 francs. But in period 2, where
the trading volume is lowest and the event frequency is relatively low, the mean bid-ask
spread is 40.86 francs with a low standard deviation, which is smaller than 56.11 francs.
We also find such inconsistencies in the other three data sets.!? Accordingly, we find that
it is difficult to conclude that the level of activities is a significant determinant of bid—ask
spreads in our data sets. This inconsistency with the prior work, however, certainly does not
mean that our laboratory markets have produced uninterpretable data. The key argument
made by previous researchers as a reason of the inverse relationship between the trading
activities and the spread size is the economies of scale in transactions costs, i.e., an increase
in trading activities results in lowering the trading costs due to the economies of scale,
which in turn leads to a smaller spread.’® In the absence of transactions costs, we need
to seek for another interpretation. Moreover, there is empirical evidence that the pattern
of differences in bid—ask spreads across days of a week is not stable over time compared to
their intraday patterns.!* Since our notion of a period supposedly corresponds to a day,
this instability might have contributed to the observed inconsistency.

Mclnish and Wood (1992) also find the crude reverse J-shape pattern in the analysis
of the minute-by-minute bid-ask spreads. Figures 5.7al and 5.7a2 shows two examples

of the intra-period patterns of bid—ask spreads that approximately follow a reverse J-

~ '2Along with Tables 5.3a through 5.3d, refer also to Figures 5.3a through 5.3d, which show the average
bid and ask in francs and the average number of bids and asks computed for each period.

13An alternative interpretation is due to Ho and Stoll (1983) in inventory control models of a dealership
market, where increasing trading volume may lead to a larger spread if dealers are put in an undesired
inventory position.

'4This statement was noted by McInish and Wood (1992).
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shape pattern. The spreads are large in the early stage of the given period, then they
become smaller in the middle, followed by slightly larger spreads near the end of the period.
Examples in which the pattern observed is very different from the reverse J-shape pattern
are given in Figures 5.7bl and 5.7b2. In period 10 of 042393c data, the spread becomes
smaller almost monotonically as time advances. Since the market is designed as that of
asymmetric information, we can interpret it as follows. The private information was revealed
fairly early in the period that led to a gradual but permanent information adjustment
and eventually was conveyed into prices by the end of the period. Hence, there is no
informational shock near the end of the period nor speculation of higher risk. Another
example included in Figure 5.7b2 is the pattern in period 12 of 042393c data. The data shows
the spread widening later in the period followed by a succession of very large spreads. This
observation can be interpreted that the private information was successfully concealed by the
insiders in the early stage and that there was an informational impact later in the period.!®
In fact, we can observe in the time series graphed in Figure 5.2b that the transaction prices
begin to rapidly move up to a price level predicted by the rational expectations model in
the last half of the period. Likewise, the spread size depends on how the information is
assimilated into the market price reflecting the insiders’ strategies that may not be obvious

to the others.

5By using NYSE data McInish and Wood (1992) show that there is a direct relationship between spreads
and the amount of information comimg to the market.
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5.3.2 Inferences Concerning Variances

In the next observation we deal with inferences concerning variances of the selected variables.
The standard deviation of transaction prices are higher in the market 1 environment than in
the market 2 environment in period-by-period comparison, except for a few periods. This
result is consistent with previous theoretical and empirical findings. In market 2 each trader
has no uncertainty about the asset value since one’s reservation value is predetermined and
given to him in the beginning of the experiment, while in market 1 there exists uncertainty
regarding the ex post liquidation value among the subjects except for three randomly chosen
insiders. Hence, there is no necessity of speculation nor information extraction from prices
in the market 2 environment, whereas the information that is available to the insiders in
the market 1 environment may not be fully absorbed into prices especially in the early
stage of each period. The large price volatility increases speculative profits by increasing
the chances of buying low and selling high in an asymmetric information market where
speculating traders condition their actions on the prices. In Kyle’s (1985) insider trading
model, he finds that the price volatility decreases as ‘information is conveyed into prices. The
empirical investigation conducted by Bollerslev and Domowitz (1993) reports the negative
monotonic relation between the amount of available information and the price variability.!®
The findings on the standard deviation of price changes also fall in line with this argument.
The standard deviations of bid-ask spreads are also higher in the market 1 environment
than in the market 2 environment. This is consistent with Bollerslev et al.’s finding that the

standard deviation of transaction prices and that of bid—ask spreads follow similar patterns.

6Tn the Bollerslev et al.’s simulated markets, the level of available information is modeled as a varied
length of the electronic order book, in which the longer book size indicates more information available in
the market.
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The above observations are supported formally by the following statistical arguments.
Since it is not doubtful whether the assumption of normality is appropriate for the distri-
bution of such variables by observing their skewness and kurtosis, we can employ the ratio

of the variances as a test statistic for testing the hypotheses

.2 _ 2 . .2 2 -

(A) Ho : 0y =04g 5 Ha : 04y > 0fg
o2 2 . L2 2

(B) Ho : 0pey =0peg s Ha 2 0pyy > 0o

2 2 . . 9 2
(C) Ho : 0pyy = 0hya 5 Ha @ Ohgy > Ohga,

where 0%, 02, and o}, are the variance of transaction prices, price changes, and bid-
ask spreads in Market 1, respectively, and the othérs are defined analogously. The data
from 042393b and 042393c are pooled by market environment.!” The test statistics and
the critical regions are shown in Table 5.4. We find the results in favor of the alternative
hypothesis for all three cases; in other words, there is sufficient evidence to doubt the
equality of the variances of these variables between the two market environments. Hence,
we can conclude-that the data support the contention that there is more variability in the
transaction prices, the price changes, and the bid—ask spreads in markets with information

asymmetries.

"The standard deviation of transaction prices in the market 1 environment is calculated over the trans-
action prices pooled across 15 periods in Market 1 of both 042393b and 042393c data sets. The standard
deviations of price changes and of bid—ask spreads are defined similarly.
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5.3.3 Other Findings on the Descriptive Statistics

With insiders present in the market 1 environment, the rational expectations model and the
prior information model predict different transaction prices for three different states X, Y,
and Z, while they predict the same price for any étate in the market without insiders.!® As
it can be observed in Tables 5.3a and 5.3b, the mean transaction prices differ in period—by—
period compa,rison, whereas it is not obvious among the mean price changes and the mean
bid-ask spreads. We perform an analysis of variance to test whether the differences among
the means of selected descriptive variables in the three states in the market 1 environment

are significant. The null hypotheses are

(A) Hy HirX = WtrYy = WirZ
(B) Ho : Hpex = Bpey = fipez

(C) Hy : pbax = Pbay = BbaZs

where pirx, ppex, and pp,x are the mean transaction price, the mean price change, and the
mean bid-ask spread in X-state periods, respectively, and the others are defined similarly.
The alternative hypothesis to each null hypothesis is that the p’s are not all equal. The
ANOVA tables are included in Tables 5.5a and 5.5b. The null hypothesis is rejected for
the mean of transaction prices in both 042393b and 042393c data sets at any.reasonable
level of significance. In other words, the transaction price series fluctuate about different
levels in different states. Therefore, the series is nonstationary in the mean. This result can

easily be inferred from the time series plot in Figures 5.2a and 5.2b, in which both inter—

8Refer to Table 5.1d.
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and ihtra~period series show a time trend and wander away from a fixed horizontal level.
Nonstationarity can be caused by a shift in the influence of periodic factors. In inter—period
time series, it is the change in the information on the terminal value of the asset that
becomes available to three traders at the beginning of each trading period. In intra~period
time series, it may reflect an uneven assimilation of information throughout a given trading
period. Hence, this result conﬁrms: the existence of insiders in the markets according to
the rational expectations model’s and the prior information model’s predictions. The null
hypothesis cannot be rejected for the mean price change, indicating that the observed
difference between the two means is not signiﬁcant. Hence, one cannot conclude that the
means of price changes vary among different states. In addition, we can say that the process
resulted by taking successive differences of transaction prices is stationary, indicating that
the original series could be a homogeneous nonstationary process of order one. It suggests
a potential application of Autoregressive integrated moving average (ARIMA) models, that
are fre(iuently used in the the analj;sis of capital markets, to our experimental time series.
These results should be visited again when we deal with the speciﬁcation'of time series
models. The difference in the mean bid-ask spreads is significant at the 0.05 level of
significance in both 042393b and 042393c data, but is not at the 0.01 level in 042393b data.

The unconditional frequencies of ten event types are computed for the data pooled
across 15 periods and included in Table 5.6, and are also computed for each period of the
four data sets and included in Tables 5.7a through 5.7d.1° The data in the tables will be
compared to the frequencies that are conditional on several variables in the next section,

where we turn our attention more to the determinants of the order flow. Before moving

9Hence, each column in the tables sums to 100.
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on to the analysis of the order flow, however, we shall determine whether there in fact is a
relationship between the state of the market and the event frequencies. The states of the
market we look at here are the X, Y, and Z states in the market 1 environment that are

defined in section 2. We test the null hypothesis concerning proportions,
H() . PiX =P1;y =Pi2, fOT’i= 1,... ,10,

where P;; is the unconditional frequency of event i in state j, with Zggl P;; = 100 for
each of the three states. The alternative hypothesis is that the P’s are not equal for at
least one event type. This is equivalent of testing an existence of a dependence between the
proportion of certain event type and the state of the market. We compute the following

statistic for the test.

T ¢ r ¢
(0s — Ei)* . (2= NVis) (51 Nig)
X2=ZZ,_£J_E_ij.ZJ_.~, with By = 4 :

- N,
=1 j=1 total

where O;; is the observed and E;; is the expected frequency of event ¢ in state j, and r and
¢ are the number of event types and states, respectively. The results included in Table 5.8b
along with the c;)ntingency table in Table 5.8a clearly show that the null hypothesis has to
be rejected in both 042393b and 042393c data sets at any reasonable level of significance.
Hence, we conclude that there is a dependence between the frequencies of event types and
the state of the market, so that the probability of certain event’s occurrence is not the same
for the three different states. We note that this result should be referred when the evidence

of information dissemination in the market is investigated.
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5.4 Analysis of the Order Flow

As it was mentioned earlier, we have differentiated subjects’ actions into ten categories,
and identify them by different event types. These event types are used as indices of the
direction and the level of aggressiveness of an action.?? The direction indicates whether
a trade is buyer— or seller-initiated, and with our data sets we can classify the direction
accurately. Event 1, for example, is “take ask,” which results in an immediate trading at
the current standing ask quote and thus is the mbst aggressive type of action taken by
a buyer. Event 2 is the second most aggressive action by a buyer, which is “new bid >
standing bid” that results in replacing the current standing bid. We call such orders market
érders in our experimental markets. Event 3 and Event 4 are “new bid = standing bid” and
“new bid < standing bid,” respectively. These orders will be placed in the limit order book
according to price priority over time priority rule, and they are called limit orders. Event 5
is “cancellation” that removes a previously entered market or limit order. The event types
on the sellers’ side are defined analogously.

Table 5.6 reports the unconditional frequencies of ten event types over the data pooled
across 15 periods for each of the four data sets. Among the buyers’ side activities, “take
ask” is the most frequent event type and “new bid > standing bid” is the second most
frequent event type in two of the four data sets, while the latter is the most frequent event

type in the other two. In all of the four data sets, the orders away from the standing quotes,

20This differentiation of event types follows the method used by Biais, Hillion, and Spatt (1993), except
that they have 15 categories instead of 10. This is because in our experimental market the subjects are
instructed not to enter multiple~unit orders, whereas in the Paris Bourse it is allowed as a matter of course.
Therefore, Biais et al.’s differentiation includes the notion of the size of an order such as “large buy” and
“small buy.” We also do not have a category that they call “applications,” which are prearranged trades
put through the market at or within the best quotes.
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i.e., “new bid < standing bid,” occupy low frequencies. Analogously, on the sellers’ side the
events such as “take bid,” “new ask < standing ask,” and “new ask = standing ask” receive
high frequencies compared to “new ask > standing ask” and “cancel ask.” In general, most
of the activities is within the bid-ask spread and at the standing quotes, which agrees with
Biais et al.’s findings from the Paris Bourse data.?! The subjects are anxious to participate
actively in the trading processes instead of waiting in line to be hit by the other side of
the market, reflecting the competition for price priority. The uninformed subjects are also
hesitant to place orders away from the standing quote with the risk of being hit in case
of unexpected informational events, whereas the informed subjects are reluctant to take
the risk of revealing their privately held information too soon by letting the book carry
more informaiton. Hence, the subjects seem to recognize the higher adverse selection cost
associated with the quotes away from the standing quotes.

Tables 5.7a through 5.7d provide the unconditional frequencies of ten event types com-
puted for each period of the four daté sets. The data included in these tables seem to
conform to the statement above. It has to be noted, however, that the event frequencies
are found to be dependent on the market environment as it was discussed in the previous
section. This finding can be considered as a piece of evidence that the order flow reflects
the information dissemination process, and that it presumably reflects different information
differently. Hence, the more of the order flow one has an access to observe, the inore infor-
mation one has a chance to extract. Consequently, this point confirms the contention made

by Bollerslev et al. that the longer book seems to provide more information.

*1Biais et al. also cite Harris and Hasbrouck’s (1992) result on the NYSE data that is also consistent with
our findings.
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We depict the intraperiod frequencies of events in Figures 5.5a1 through 5.5d2. We
divide each period into 10 intervals of 30 seconds, and compute the frequencies of events
in one interval relative to the other intervals. In the Paris Bourse data Biais et al. found
a prominent U-shaped pattern in the frequencies of orders and trades, in which market
activities are relatively frequent in the morning and near the end of the trading day. In
our data sets this pattern is not observed. In fact, in the market 1 environment it is
difficult to identify if there is any pattern among the eveﬁt frequencies. The markets seem
to remain active throughout the trading period. This may be due to the short time limit
we have set for each period. In the market 2 environment it appears that the market is
relatively active right after the opening and that events gradually become less frequent as
the competitive equilibrium is achieved. These figures show this contrast of markets with

information asymmetry and without one clearly.

5.4.1 Frequencies of Event, Conditional on the Previous Event Type

Tables 5.9a through 5.9d document the frequencies of ten event types conditional on the
previous event type that is also identified as one of the ten event types.?? The price improve-
ment tends to occur right after a trade; that is, “new bid > standing bid” and “new ask <
standing ask” have high frequencies relative to the other events after “take ask” or “take
bid” has just occurred. This observation reflects the subjects’ competition for the supply
of liquidity after the liquidity is consumed by the t_rade. The high probability of “new ask
< standing ask” after “take bid” and of “new bid > standing bid” after “take ask” could

also be an evidence of information effects in the order flow. After one seller observes that

*2Hence, each row in the tables sums to 100.
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another seller has accepted a standing bid, he may react to this event by entering an ask
that can replace the current standing ask as a part of information adjustment process. Biais
et al. (1993) interpret the shift in the order book due to large transactions as information
effects. But they do not observe such shifts due to small transactions. Our finding, however,
is an indication that traders are capable of extracting some information even from a unit
transaction. The frequencies of these overbidding and undercutting event types conditional
on the last event being a trade also tend to be higher than their unconditional frequencies.
They also have high probabilities of cccurrence after the placement of new orders at or
within the standing quotes on the same side of the market, although they are not most
frequent under this condition unlike Biais et al.’s finding in their data set.2 This is also a
reflection of the competitive behavior of the subjects for the supply of liquidity.?*

The frequency of “take bid” by a seller is high right after an overbidding action by a
buyer, and the frequency of “take ask” by a buyer is high right after an undercutting action
by a seller. This shows the existence of traders waiting to pick up a more favorable offer
and competing for trade execution.

The diagonal effect that was observed in Biais et al.’s analysis of the Paris Bourse
data is also present in our data sets. The frequencies on the diagonal of each table are
generally large compared to the frequencies in the other rows of the same column; that is,
the same type of event tends to occur in succession.?® In addition, they tend to be larger

than the unconditional counterpart of the frequencies, meaning that the probability of a

**Note that the probabilities of overbidding and undercutting behavior are also high after the price im-
provement on the opposite side of the market.

%4Bjais et al. (1993) cite Ho and Stoll (1983) and Kyle (1985) for the models of competition for the supply
of liquidity.

25Hasbrouck and Ho (1987) find strongly positive autocorrelations in the buy-sell indicator series for
NYSE data.
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particular event’s occurrence is higher after the same type of event has just occurred than
the probability expected unconditionally. This observation of positive serial correlation
in event occurrence can be provided with several interpretations. The effect may reflect
the subjects’ behavioral pattern that they tend to interpret and react to the available
information in a similar fashion, resulting in the succession of the same event type. A
sequence of consecutive overbidding behavior, for example, may initiate an upward shift
in the bid-ask spread leading to a permanent information adjustment. It may also reflect
another behavioral pattern that some subjects learn to imitate the action of other subjects
who are trusted for their accurate interpretation of information. Hence, some subjects
extract information from the flow of other subjects’ actions that works as a signal of what
they are supposed to do. Or since the subjects are instructed to place a single—unit order
at a time in our experiments, the same person may enter the same order consecutively with
a short time interval in order to acquire an opportunity for trading multiple units. The
diagonal effect of actions that result in an immediate trading such as “take ask” and “take
bid” also reflects the positive relationship between the intensity of trade and the liquidity.
If traders have discretion over the timing of their trades, they tend to bunch at times when
they expect the others to be trading as well, for that is the time at which the liquidity is
highest.26

The statistical significance of the differences between the conditional and unconditional

frequencies noted in the discussion above is shown by the following argument. We calculate

26This is the central finding by Admati and Pfleiderer (1988). Kyle (1985) shows that this effect is
enhanced with the presence of informed traders.
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the multinomial chi-square sum in order to test the hypotheses,

Hy : F}, =UFiVk

H, : F}) # UF} for some k,

where FZ K is the frequency of event & in the data set 7, conditional on the previous event
being j, and UF,g is the unconditional frequency of event k in the data set i. The x?2 statistic
is calculated for ten different last event types in each of the four data sets. For example,

the x? statistic for event type j in data i is

10 i UF,:)2
- Z UFZ :

k=1

where V; is the number of the observations with the previous event type being j. This
follows the x? distribution with the degrees of freedom equal to 9, which is the number
of event types minus 1.27 The computed x? values are included in Table 5.10. The null
hypothesis is clearly rejected for any last event typé in all of the four data sets, indicating
that the difference among the unconditional and conditional frequencies are statistically
significant. Therefore, we can conclude that a current event type is not independent of the

last event type in our experimental financial markets.

*The critical values for the significance levels 0.05 and 0.01 are x&.05(9df) = 16.919 and x3 0, (9df) ~
21.666, respectively.
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5.4.2 Frequencies of Event, Conditional on the State of the Order Book

In this section we look at the discrepancy between the unconditional frequencies and the
frequencies of event conditional on the previous state of the limit order book. The limit
order book is characterized by nine different states, which depend on the relative size of
bid-side and ask-side spreads.and of bid—side and ask-side depths of the book. The bid—
side spread is defined as the difference in francs between the standing bid quote and the
lowest bid quote listed last in the limit order book.2 The bid-side depth is defined as
the number of orders listed in the limit order book plus 1 unit of the standing bid.?® The
ask-side spread and depth are defined similarly. State 1, for example, is “(bid-side spread
> ask-side spread) A (bid-side depth > ask-side depth),” state 2 is “(bid-side sprea,dA >
ask—side spread) A (bid-side depth = ask-side depth),” state 3 is “(bid-side spread > ask—
side spread) A (bid-side depth < ask-side depth),” and so on. The state of the book is
updated whenever there is a new event. Tables 5.11a through 5.11d report the conditional
frequencies, in which each row corresponds to each state.3°

The frequencies of “take bid” tend to be high when the ask—side depth is larger than or

equal to the bid-side depth, whereas those of “take ask” tend to be high when the ask-side

depth is smaller than the bid-side depth. The former reflects the selling pressure with

more people waiting to sell, and the latter reflects the buying pressure with more people
waiting to buy. A similar pattern is observed in the undercutting and the overbidding

behavior. The high probabilities of the placement of new asks within the bid—-ask spread

281f there is no bid or only a standing bid, the spread is defined to be 0.

2%Gince only a sigle-unit order is allowed, this is equivalent of the total number of units listed in the book
including 1 unit of the standing bid. For instance, the depth is 0 if there is no order, and the depth is 1 if
there is only a standing bid and no order in the book.

3Hence, each row in the tables sums to 100.
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or at the standing quotes when the ask—side depth is larger than or equal to the bid-side
depth indicate that a number of the participants are anxious to gain time priority to sell,
while the high probabilities of new bids within or at the market standing quotes reflect the

opposite.

We conduct the x? test to confirm the discrepancy between the unconditional and the

conditional frequencies. The hypotheses tested are

Hy : BF,=UF}Vk

H, : BF}) # UFj for some k,

where BFJZ,C is the frequency of event k in the data set i, conditional on the state of the
book being j, and UF}; is the unconditional frequency of event k in the data set i. For
example, the x? statistic for the book state j in data 7 is

Fi, — UFL)?
UFL

10 (B
X’ =Ny
k=1

where N; is the number of observations with thé state of the book being j. Again, this chi-
square statistic has 9 dégrees of freedom, which is the number of event types minus 1. Table
5.12 contains the computed test statistics. The null hypothesis is rejected for any reasonable
level of significance. Therefore, we have confirmed the presence of dependency bétween the

order flow and the state of the order book in our experimental financial markets.
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5.4.3 Frequencies of Event, Conditional on the Size of Bid—-Ask Spread

In Tables 5.13a through 5.16 we define the size of the bid-ask spread to be large if it is
at least as large aé the time-series mean of bid-ask spreads through 15 periods, and to be
small otherwise.3’ The frequencies of “take ask” and “take bid” are relatively high when
a bid-ask spread is smaller than the mean bid-ask spread; that is, trades tend to occur
when a bid—ask spread is tight. The frequencies of “new bid > standing bid” and “new ask
< standing ask” are relatively high when a bid-ask spread is larger than or equal to the
mean bid—ask spread; that is, overbidding and undercutting behavior tend to occur wheﬁ a
bid-ask spread is large. Other events such as new orders away from the standing quote do
noi;, appear to be affected by the size of bid—ask spread. These findings are consistent with
Biais et al.’s findings on the Paris Bourse data.

We conduct a x? test again to see the statistical significance of the discrepancy between

the conditional and unconditional frequencies of the events. The hypotheses tested are

Hy : SFi,=UF}VEk

H, : SF}, + UF} for some k,

where SF}k is the frequency of event k in period i, conditional on the size of the bid-ask
spread right before the event being j, and UF,i is the unconditional frequency of event k in
period i. For example, the x? statistic for the bid-ask spread size j in period ¢ is

0 (SFi, —UF})?

k k
=Ny UF;
k=1

31Note that in Tables 5.13a’ and 5.13b’ the mean is computed for X~, Y~, and Z-state periods.
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where V; is the number of observations with the bid—ask spread being j. This chi-square
has nine degrees of freedom, which is the number of event types minus one. As it is clear
by observing the computed x? statistics reported in Table 5.14, we can reject the null
hypothesis at any reasonable level of significance. Hence, we can conclude that the size

of bid-ask spreads affects the frequencies of different events in our experimental financial

markets.

5.4.4 Time Intervals between Events

The distributions of time intervals between two consecutive events are graphed in Figure
5.8a through Figure 5.8d. Over 50 percent of all events occur in 2 seconds after another event
has occurred in the market 1 environment, and about 50 percent in 3 seconds in the market
2 environment. Part of the short time intervals may be due to the stringent time limit we
set for each period, or may be reflecting quick responses of subjects to observed events in
competition for time priority. The frequency of events almost monotonically decreases as the
time interval increases. Hausman et al. (1992) studied 1988 transactions data for selected
U.S. stocks, and found similar patterns in the depiction of the time-between—trades for the
stocks with relatively large market capitalization.?? Biais et al.’s empirical distribution of
the time intervals of the Paris Bourse data also showed the similar pattern.

Tables 5.15a and 5.15b show mean time intervals between two events conditional on the
last event type, the stat_e of the order book, the size of bid—ask spread, and the size of the

last time interval. The size of the last time interval is defined to be large if it is larger than

32In their sample derived from the Institute for the Study of Security Markets database, International
Business Machines Corporation has the largest market capitalization with a market value of $69.8 billion,

and Handy and Harman Company has the smallest. The smaller, less liquid stocks showed a very different
pattern.
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or equal to the time series mean of time intervals computed from the data pooled across
15 periods, and to be small otherwise. The mean time interval after a small time interval
is smaller than that after a large time interval in all of the four data sets. This suggests
the existence of an alternating pattern of intense and sparse activities during a trading
period. This pattern was also observed by Biais et al. The differences between the means
conditional on the last time interval are shown to be statistically significant below. The
mean time interval after the large bid—-ask spread is larger than that after the small bid-ask
spread in three of the four data sets. This contradicts the findings by Biais et al. on the
Paris Bourse data. But in two out of the three cases the difference is not significant.

Mean time intervals after order placements at standing quotes are short, reflecting that
some subjects wishing to trade multiple units at the same price enter multiple orders for
a single unit of the same price within a short time.3® An event after a cancellation tends
to occur quickly, too. In fact, another cancellation often follows one cancellation with a
short time interval, reflecting a quick response of other observant subjects or a sequence
of multiple cancellations by the same subject to incorporate newly acquired information
into their decisions. On the other hand, mean time intervals after a transaction tend to be
larger than their unconditional counterpart. The intervals after overbidding or undercutting
events are smaller than the intervals after a transaction in 042393c data, but they are larger
in 042393b data though not by much.34

The intervals conditional on the state of the book indicate that an event tends to occur

quickly when the state of the book is strongly asymmetric between the bid-side and the

33Note again that in our experiments the subjects are not allowed to enter multiple-unit orders.
34Tn Biais et al’s analysis of the Paris Bourse data, they found that the mean time interval is shortest
after market sell orders, and relatively short after market buy orders.
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ask-side. In other words, if a difference between the bid-side and the ask-side spread is
large at the same time when a difference between the bid-side and the ask-side depth is
large, then the next event tends to occur in short time. If those differences are small, the
time interval before the next event tends to be large. This is the indication that the subjects
interpret that a shape of a book may become very asymmetric in a process of information
assimilation, reflecting a significant amount of private information and emitting a signal
that the current price needs to incorporate the information quickly. Hence, it results in the
subjects’ reacting to their observation quickly.

In order to support the above observations formally, we perform an analysis of variance

to test each of the following hypotheses.

(A) Hy : peventl = Mevent2 = *** = [heventl0
(B) Hy : pstatel = Hstate2 = *** = Mstateld
(C) Ho : Ispreadlg = Hspreadsm

(D ) Hy @ Pintervally = Pintervalsm

where [leyentl, Msiatel» [spreadigs @04 Lintervallg 8T€ the mean time intervals conditional on the
previous event type being 1, the state of the book being 1, the size of bid-ask spread being
large, and the previous time interval being large, respectively, and the others are defined
similérly. Computed F ratios for the treatments are reported in Table 5.16. According to
these statistics, it is difficult to conclude that the size of the previous bid-ask spread has a
significant influence over the time interval, for the null hypothesis (C) cannot be rejected

in three of the four data sets. On the other hand, in three out of the four data sets the null
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bypothesis (B) is rejected,‘ indicating the time interval may be influenced by the state of the
book. In addition, the time intervals are clearly dependent on the previous event type and
the last time interval. Henge, we may conclude that the time interval between two trades
or events carries information that is valuable to the market participants’ decisions.

It is also interesting to inspect Tables 5.17a and 5.17b, which contain mean time intervals

jointly conditional on the previous event type, the state of the book, and the size of the last

time interval.

5.5 Concluding Remarks

We conclude this chapter by describing potential research interests on our data sets.

Prices provide an important source of information along with other variables. In fact, it
is a common practice for securities’ traders to study price changes in forming their invest-
ment decisions. Our empirical investigation on the determinants of the order flow ‘indicates
that the complex nature of order placements is closely related to price dynamics. It brings us
to study how this interdependence Between the order.ﬂow and the price dymanics functions.
We need to ana,l.yze the movement of intra-period price changes conditional on the history
of order flow, whéreas many previous works have focused on unconditional distribution of
price changes.?® In so doing discreteness of price changes should not be ignored especially
for intraperiod price movements, since such finely—sampled price changes may take on only
several distinct values.

As it was indicated in the previous section, orders arrive in varied time intervals. Since

3®Easley and O’Hara (1987) find that the order flow affects the conditional distribution of the next price
change. .
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the order flow is not independent of the time intervals, the information contained in the
length of time between, for example, two transactions may have a significant influence over
price dynamics. In the process of the model specification, we need to incorporate a variable
that reflects the information in the intervals.

In addition, we may include independent variables that describe the state of the order
book on the ask side and on the bid side. For example, first we can examine several simple
regression models without applying a time-series model to the residual series and analyze
each model for cases in which independent variables are at £+ 1, ¢t + 2, and so on. Then
choose the model with the best fit and use it to construct a combined regression—time-series
model. In other words, give an ARIMA specification of the residual series. One of the goals
is to conclude whether or not the state of the book is a good indicator of future transaction
prices. We conjecture that the order book carries a significant amount of information, so
that the presence of the book enhances the better forecasting by traders. We can repeat
the similar procedure with other independent variables such as bid—ask spreads.

Another interesting extension is to investigate how traders’ private information regarding
a liquidation value of risky assets becomes conveyed into marke.t variables such as transac-
tion prices in laboratory asset markets, where asymmetrically informed traders can submit
both market and limit orders. We are particularly interested in analyzing how the presence
of the limit order book contributes to the process of disseminating the traders’ pfivate infor-
mation. Previous experimental investigations regarding information dissemination focuses
on the analysis of efficiency measures. They don’t look at second-by—second movement of
activities and variables. We feel the need to look for the sign of information revelation in

the order flow and its determinant variables. By giving a closer look at the order flow and




CHAPTER 5. ORDER FLOW IN EXPERIMENTAL FINANCIAL MARKETS 242

investigating the intraperiod pattern of the variables that are empirically proven to be the
determinants of the order flow in the previous sections, we should be able to show the sign
of information dissemination in the experimental asset markets that are not accommodated
with the sufficient conditions given by Forsythe and Lundholm (1990).36 . In other words,
Rational Expectation equilibria do not have to be achieved to be able to conclude that the
market has provided information dissemination institution. Instead, look at the movement
of, for example, a bid—ask spread, and look for the sign of information dissemination based
on the previous theoretical findings and empirical findings on the real data. Fach period
may have different insiders and a different subject may have a different way of revealing
one’s private information, indicating that it may be harder for others to extract information
when a certain person is an insider. Hence, every period doesn’t necessarily converge to
a Rational Expectation equilibrium price within the limited length of time. But can we
reject Rational Expectation hypothesis just because transaction prices have not converged
to what it predicts? We argue that the answer is no. We can find the information dissemi-
nation process among the order flow and other variables that affect the order flow. Hence,
it’s possible that information is revealed right before a given period ends and thus the fact
that information has been successfully revealed is not reflected in the equilibrium price yet.
We need to look at other variables to find the sign of revelation.

Though Rational Expectation equilibrium is not really achieved, we may still be able
to show the evidence of information dissemination by looking at the shifts in the order

book. If the shift of bid—ask spread is not transient, reflecting the permanent adjustment

38Forsythe et al. found, through the analysis of experimental data, that participants’ trading experience
and common knowledge of dividends are jointly sufficient to achieve a Rational Expectation equilibrium.
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to the newly revealed information, then §ve may claim that it is information effects and is
the evidence of the information dissemination process. We may be able to observe from
figures the movement of intraperiod bid-ask spread for a few periods of X, Y, and Z that
reflects the permanent adjustment. We provided four examples related to this topic in
figures 5.7al, 5.7a2, 5.7bl, and 5.7b2. The different sizes of the spreads may indicate that
bid-ask spreads are larger for assets where information asymmetries are more pervasive. It
would be worthwhile to verify empirically that information asymmetries affect the ability of
executing trades. We can also compare standard deviations of price changes (or tfansaction
prices) between early part and late part within each period. We hope to see Oearly > Olate-
We should also comment on observed information mirage or bubbles as a consequence of
speculative behavior.

Yet another interesting extension is to investigate the concept of dynamic equilibrium
in laboratory experiments.?” This will require us to make a slight modification of the
experimental design. Suppose that there are two types of traders in equilibrium in the
market that form two different trends. For example, we may design the experiment in which
one type is strongly influenced by a short—term view and the other’s behavior is affected by a
long-term prospect. We may be able to observe two different types of fair valuation of assets,
one mostly reflecting the short—term information, and the other reflecting the state after
the market has fully adjusted for the information. In such a case the equilibrium may shift

between the two fair valuations with a certain length of time interval that is required for the

$7We computed the Hurst exponent with our data sets to see the evidence of relaxation processes. Indeed
the computed exponent indicated 1/f noise in our data. But it is still inconclusive, since we had to aggregate
the data for all the 15 periods. We included the step-by—step computation process of the Hurst exponent
as a reference in Appendix 5C.
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market to absorb the information shocks. In other words, we should design the experiment
in such a way that the same information may affect different subjects differently depending
on each subject’s investment horizon. We believe that analyzing the price dynamics and
other details of the order flow in such trading environments may help us understand a part
of the stock price movements that are sometimes hard to explain within the framework of

the Efficient Market Hypothesis.
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State Contingent Dividend Parameters in Market 1

Table 5.2a

State X | State Y | State Z
Type 120 330 40
Type I 205 90 125
Table 5.2b

Buyers’ Redemption Values in Market 2

Unit || Type 1 | Type 2 | Type 3 | Type 4
1 230 224 234 238
2 196 190 204 212
3 162 156 170 178
4 128 138 138 146
5 94 128 108 116
6 60 100 74 82
7 26 66 40 48
8 10 32 10 10
9 10 10 10 10
10 10 10 10 10
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Table 5.2¢

Sellers’ Inventory Use Costs in Market 2

Unit || Type 1 | Type 2 | Type 3 | Type 4

1 32 28 28 36

2 62 54 48 70

3 96 88 82 104

4 128 120 116 138

5 158 150 144 172

6 192 184 178 206

7 226 218 212 240

8 245 250 250 ' 245

9 250 255 255 250

10 255 260 260 255
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Table 5.2d

Types of Each Subject in Market 1 and Market 2

Subject ID # || Market 1 Market 2
0 Typel | Buyer Typel
1 Typel | Seller Typel
2 Typel | Buyer Type 2
3 Typel | Seller Type 2
4 Type II | Buyer Type 3
5 Type IT | Seller Type 3
6 Type IT | Buyer Type 4
7 Type Il | Seller Type 4
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Table 5.4

Statistics for Tests Concerning Equality of Selected Variables
between Market 1 and Market 2

g2 —g? . . 42 2
() Ho : ofy=0fs ; Hy : ol >0l

F= 55‘? #~ 8.348 > 1.130 ¢ F g5(705, 360)

(B) Hyg : Uzgcl =02gz:2 i Ha azgcl >0-2ch

F = %~ 6.832 > 1140  Fo 5(675,360)
L

e 2 e el . ] 2
(C) Hp: Thg) = Tbga 3 Hy : oy >af

F = i % 4779 > 1.000 % Fi 05(2192, 1386)
b2

(D) Hy : ppa = P2 H, : Hpcl > fpea

7 = ki f‘““ e 22 2,244 > 1,645 ~ Zo o5

a2
ped

o
1
Tt P

(B) Hp : poor =psa2 3 Ha : foal > Mosz

7= 7&4.:.&“—. % 27.910 > 1.645 = Zy 05
Wyt Ry
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Table 5.5a

ANOVA Tables for Tests Concerning Difference among X, Y, and Z States
(Data 042393b : Market 1)

(4) Ho : trx = ey = flarz

Source of Degrees of Sum of Mean
veriation  freedom squares sguare F Fyos(2, 387)
States 2 3.39882¢+005 1.69941e+005 80.25 3.02
Residuals 387 8.19558e--005 2.11772e-+003
Total 389 1.15944e+-006

(B) _Ho : ppex = Ppey = pez

Source of Degrees of Sum of Mean
veriation  freedom squares square F  Fhes(2, 372)
States 2 6.10750e-+002  3.05375e+002 0.29 3.02
Residuals 372 3.90453e+005 1.04961e+003
Total 374 3.91064e+005

(C)  Ho : trex = Mooy = Pz

Source of Degrees of Sum of Mean
veriakion  freedom squares square F  Fops(2, 1236)
States 2 1.92890e+004 9.64450e-+003 3.96 2.99

Residuals 1236 3.00852e-+006  2.43408e4-003
Total 1238 3.02781e4-006
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(8]
ot
-1

Table 5.5b

ANOVA Tables for Tests Concerning Difference among X. Y. and Z States
(Data 0-42393c : Market 1)

(4) Ho : perx = porv = pierz

Source of Degrees of Sum of Mean
varigtion  freedom squares square F Fo05(2. 313)
States 2 1.45682e+005 7.28410e+004 110.87 3.03
Residuals 313 2.05636e+005 6.56984e+002
Total 315 3.51318e+005

(B) Hy : ppeX = piocy = fipez

Source of Degrees of Sum of Mean
varigtion  freedom squares square F Fyos(2. 298)
States 2 3.27186e+002 1.63593e-+002 0.40 3.03
Residuals 298 1.23145e+005 4.13238e+002
Total 300 1.23472e+005

(C)  Ho : BbaX = Boa¥ = Hbaz

Source of Degrees of Sum of Mean
variation  freedom squares square F  Fyoes(2. 951)
States 2 3.06200e+004 1.53100e+004 7.50 3.00

Residuals 951 1.94038e+006  2.04036e-+003
Total 953 1.97100e+006
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Table 5.15a
Mean Time Interval between Two Events (seconds)

Datn Set —
Conditioning Varinbles (t — 1) | 042303b : Market 1 | 042393c : Market 1 | 042303b : Market 2 | 042303c : Market 2
Take nsk 4.585 6.417 7.380 7.262
New bid > standing bid 4.656 4433 7.158 7.261
New bid = standing bid 1.310 2.565 1.273 1.703
New bid < standing bid 4.484 4.333 6.680 7.260
Cancel bid 1.313 0.600 4.870 8.167
Take bid 3.763 6.276 7.040 10.269
New ask < standing ask 3.888 4.701 7.196 7.491
New ask = standing ask 1.720 2.558 2.603 2.919
New ask > standing ask 4.710 2.300 3.250 6.756
Cancel ask 2.074 2.667 5.308 3.404
Bid-side spread > | Bid-side depth >
Ask-side spread Ask-side depth 2.228 4,136 7.831 7.000
Bid-side depth =
Ask-side depth 7.000 6.074 4.150 2.833
Bid-side depth <
Ask-side depth 4.089 4.200 6.363 8.000
Bid-side spread = | Bid-side depth >
Ask-side spread Ask-side depth 2.286 4.620 4.154 1.905
Bid-side depth =
Ask-side depth 5.833 8.222 5.500 4.800
Bid-side depth <
Ask-side depth 3.793 6.333 2.744 3.214
Bid-side spread < | Bid-side depth >
Ask-side spread Ask-gide depth 4,584 3.879 6.571 2.200
Bid-side depth =
Ask-side depth 5.574 8.750 7.300 3.714
Bid-side depth <
Ask-side depth 3.504 6.622 6.403 7.586-
Unconditional 3.588 4.563 6.171 6.632
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Table 5.15b

Mean Time Interval between Two Events (seconds)

Data Set —

Conditioning Variables {t 1) | 042393b : Market 1 | 042363c : Market 1 | 042393b: Market 2 | 042303c : Market 2
Bid-ask spread 2>

Mean bid-nsk spread 4.204 4.866 5.882 6.711
Bid-nsk spread <

Mean bid-ask spread 2.999 4.396 6.380 6.600
Time interval > Mean time interval 4.900 5.186 8.899 8.541
Time interval < Mean time interval 2.974 4.120 5.156 5.801
Unconditional 3.588 4563 _eam 6.632




APPENDIX 5A. TABLES FOR CHAPTER 5

Table 5.16

Statistics for Tests Concerning Equality of Mean Time Intervals
among Different Conditioning Variables

(4)  Ho : pevents = flevent2 =+ = flevent1n
042393b : Mktl F ~26.88 > 1.88 = Fp 05(9, 1214)
042393c : Mktl F6.64 > 1.89 ~ Fyg5(9, 929)
042303b : Mkt2 P 315> 1.90 % Fo.g5(9, 697)
042393c : Mkt2 F =4.22>1.90 = Fyg5(9, 640)

(B) Ho : pstater = fbstatez == ** == [lotated
042393b : Mktl FaT740> 194~ Fygs5(8, 1215)
042393c : Mktl F =~ 3.59 > 1.95 ~ Fy 05(8, 930)
042393b : Mkt2 F 149 < 1.95 = Fy 05(8, 698)
042303¢ : Mkt2 F 303> 1.95 ~ F05(8, 641)

(C) HO * Haspreadly = Papreadsm
042393b : Mktl F ~14.03 > 3.84 ~ Fp5(1, 1222)
042393c : Mktl F 125 < 3.85 = Fy05(1, 937)
042393b : Mkt2 F =051 < 3.85 = Fyg5(1, 705)
042393c : Mkt2 F ~0.02 < 3.85 ~ Fy o5(1, 648)

(D) Hyg: Bintervally = Hintervalsm
042393b : Mktl F ~27.07> 3.84 = Fye5(1, 1207)
042393¢ : Mktl F 647> 3.84 = Fyg5(1, 922)
042393b : Mkt2 F ~24.04 > 3.84 = Fj05(1, 690)
042393c : Mkt2 F ~10.19 > 3.84 =~ Fyp5(1, 633)

where M S(Tr) is the treatment mean square and MSE is the error mean square.

_ MS(Tr)
T MSE
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Figures for Chapter 5
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Figure 5.1 : Demand and Supply Schedules in Market 2
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Figure 5.3a : Average and Total Number of Bids and Asks (Data 042393b : Market 1)
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Figure 5.3b : Average and Total Number of Bids and Asks (Data 042393c : Market 1)
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Figure 5.3c : Average and Total Number of Bids and Asks (Data 042393b : Market 2)
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Figure 5.3d : Average and Total Number of Bids and Asks (Data 042393c : Market 2)
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Figure 5.4a : State of the Order Book (Data 042393b : Market 1)
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Figure 5.4c : State of the Order Book (Data 042393b : Market 2)
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Figure 5.4d : State of the Order Book (Data 042393c : Market 2)
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Figure 5.5al : Intraperiod Patterns of Market Activities (Data 042393b : Market 1)
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Figure 5.5a2 : Intraperiod Patterns of Market Activities (Data 042393b : Market 1)
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Figure 5.5b1 : Intraperiod Patterns of Market Activities (Data 042393c : Market 1)
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Figure 5.5b2 : Intraperiod Patterns of Market Activities (Data 042393c : Market 1)
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Figure 5.5¢2 :
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Intraperiod Patterns of Market Activities (Data 042393b
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Figure 5.5d1 : Intraperiod Patterns of Market Activities (Data 042393c
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Market 1)

Histograms of Intraperiod Price Changes (Data 042393b :

Figure 5.6a
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Figure 5.6b : Histograms of Intraperiod Price Changes (Data 042393c : Market 1)
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Market 2)

tograms of Intraperiod Price Changes (Data 042393c :
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Figure 5.7al : Intraperiod Pattern of Bid~Ask Spreads (Data 042393b : Market 1)
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Figure 5.7bl : Intraperiod Pattern of Bid—Ask Spreads (Data 042393c : Market 1)
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Figure 5.8a : Distribution of Time Interval between Orders (Data 042393b : Market 1)
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Figure 5.8b : Distribution of Time Interval between Orders (Data 042393c : Market 1)
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Figure 5.8c : Distribution of Time Interval between Orders (Data 042393b : Market 2)
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Appendix 5C
Computation Steps of the Hurst

Exponent

Suppose that a given time series has M observation points. First, we convert the series into

a time series of length NV = M — 1 of logarithmic ratios in the following manner.

Ni=1og%1,i=1,2,... M —1.

i

Then we divide the log-ratio time series into A consecutive subperiods of length n, i.e.,
‘A -n = N. Each subperiod is labeled I,, with @ = 1,2,... , A, and each element in I, is

labeled Nj o, with j =1, 2, ... ,n. For each I, of length n, the average value is defined as

1 .
Eo(N)= =3 j=1nNjq
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where E4(N) is an expected value of N; in subperiod I,. A series of cumulative deviations

from the mean value for each subperiod I, is defined as
Xja=9 i=1j(Nya— Ba(N)), j=1,2,... ,n.

Hence, we have n values computed for each I,. The range is defined as the difference

between the maximum and the minimum value of X, in each I, such that
Ry, = max(Xj;,) —min(Xj,), 1<j<n.
The standard deviation calculated for each subperiod I, is

0= (3" = In(Nju — Ea(N)))}

We normalize each range R, by dividing it by a corresponding standard deviation o,; that

is, the rescaled range for each I, is gf The average R/S value for length n is defined as
1 R,
(R/o)n = 1 Za = 1A;(—1-.

The length n is increased to the next higher value, where (M — 1)/n is an integer. Then
the procedure above is repeated for the new value of n, until n = (M — 1)/2. Finally,
we perform an ordinary least squares regression on log(n) as the independent variable and
log(R/0), as the dependent variable. The estimated slope of the equation is the estimate of

the Hurst exponent. More detailed description of the rescaled range analysis can be found
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in Chapter 4 of Peters (1994).




Appendix 5D
An Instruction for the

Experiments

INSTRUCTIONS

General:

This is an experiment in the economics of market decision making. Various research
foundations have provided funds for this research. The instructions are simple, and if you
follow them carefully and make good decisions, you might earn a considerable amount of
money which will be paid to you in cash.

In this experiment there are two markets, called Market 1 and Market 2. In Market 1 you
will buy and sell certificates in a sequence of market periods. Attached to the instructions
you will find a sheet, labeled “Dividend Sheet,” which helps determine the value to you of
any decisions you might make in Market 1. In Market 2 you are either a buyer or a seller as
indicated on your Market 2 Record Sheet. You will buy or sell units of goods in a sequence
of market periods. On your Market 2.-Record Sheet you will find Redemption Value or
Inventory Use Cost of each unit, which helps determine the value to you of any decisions
you might make in Market 2. You are not to reveal the information on your Dividend Sheet
and the Record Sheet to anyone. It is your own private information. 4

The type of currency used in this market is francs. All trading and earnings will be in
terms of francs. Each francis worth __________ dollars to you in Market 1, and __________ dollars
to you in Market 2. Do not reveal this number to anyone. At the end of the experiment
your francs will be converted to dollars at this rate, and you will be paid in dollars. Notice

310
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that the more francs you earn, the more dollars you earn.

Market 1

Specific Instructions:

Your profits in Market 1 come from two sources — from collecting dividend earnings on
all certificates you hold at the end of the period and from buying and selling certificates.
During each market period you are free to purchase or sell as many certificates as you wish,
provided you follow the rules below. The dividend per certificate depends on the state of the
market period. Each market period will be in one of three states, X, Y, or Z. You can find
the dividends associated with each of these three states on your “Dividend Sheet.” You are
assigned either Type I or Type II dividend sheet. Note that dividend values corresponding
to a state may be different for different dividend types. For example, if the state is X, then
the dividend you will receive might not be the same as the dividend received by someone
else. The method by which the state is selected each period is explained later in these
instructions.

Suppose that your dividend sheet was as follows. (The numbers are completely hypo-
thetical.)

State X | State Y | State Z
Dividend 100 70 50

At the end of each market period the state will be announced. You will compute your total
dividend earnings for the period by multiplying the dividend per certificate, given the state,
by the number of certificates held. That is, (number of certificates held) x (dividend per
certificate) = total dividend earnings. Suppose, for example, that you hold 5 certificates at
the end of a period and that the state is X. If your dividend is 100 francs per certificate as
in the example, then your total dividend earnings from the period would be 5 x 100 = 500
francs. Likewise, if the state is Y and if your dividend is 70 francs as in the example, then
your total dividend earnings would be 5 x 70 = 350 francs. This number should be recorded
in the box labeled C on your “Record Sheet” after each period. .

Sales from your certificate holdings increase your francs on hand by the amount of the
sale price. Similarly, purchases reduce your francs on hand by the amount of the purchase
price. Thus you can gain or lose money on the purchase and resale of certificates. Your
total gain or loss from buying and selling certificates should be recorded in the box labeled
B on your “Record Sheet” after each period.

At the beginning of each period, each of you are provided with an initial holding of _____
certificates. You may sell these if you wish or you may hold them. If you hold a certificate,
then you receive “dividend per certificate” at the end of the period. Notice therefore that
for each certificate you hold initially, you can earn during the period at least the amount
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shown as “dividend per certificate.” You earn this amount if you do not sell the certificate
during the period. ‘

In addition, at the beginning of each period you are provided with an initial amount
of 10,000 francs on hand. You may keep this if you wish or you may use it to purchase
certificates.

Thus at the beginning of each period you are endowed with holdings of _____ certificates
and 10,000 francs on hand. You are free to buy and sell certificates as you wish according
to the rules below. Your francs on hand at the end of each period are determined by your
initial amount of francs on hand, dividends on certificate holdings at the end of the period,
and gains and losses from purchases and sales of certificates. All francs on hand at the end
of each period in excess of 10,000 francs are your total profits for the period and are yours
to keep.

Determination of States:

The dividend you receive from the certificates you hold depends on the state of a market
period. The state can be either X, Y, or Z. If the market period is in the state X, then your
dividend per certificate is the one associated with the state X as given in your “Dividend
Sheet.” The state of a market period will be randomly determined before each period
begins. But it will not be made public until the period ends. Each state is equally likely.
A random number table was used and can be inspected by anyone after the experiment.

Information about States:

At the beginning of each market period, before trading starts, each of you will receive
a clue card that may or may not carry some information regarding the state. If your clue
card contains “X,” then the state is X for sure. Similarly, “Y” and “Z” inform you that
the state is Y and Z with certainty, respectively. If your clue card does not contain any
information, then it means you have received no information for the period. In each period
there will be exactly two people who receive the information, one person among Type I
people and the other person among Type II people.

At the beginning of each period, each trader will draw a clue card out of a box that the
experimenter had prepared. After you have drawn a clue card, write down the information
you have received as it appears in the clue card in the box A of your “Record Sheet (Market
1).” If you have received no information, then write “No” in the box. The information given
to you in a clue card is your private information, and you are not allowed to talk to each
. other regarding your private information.

Trading and Recording Rules:

1. Al transactions are for one certificate at a time. After each of your sales or purchases
you must record the TRANSACTION PRICE in the appropriate column on your
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“Record Sheet” depending on the nature of the transaction.

2. You are free to sell or buy as many certificates as you wish. Notice that if you think
that it would be profitable, then you can sell more certificates than you have on hand.
In such a case, if you end up with a negative number of certificates on hand at the end
of the period, then your dividend earnings would be negative. Suppose, for example,
that you hold —2 certificates on hand at the end of period and that the dividend per
certificate is 50 francs. Then your dividend earnings are —2 x 50 = —100 francs. Of
course if you sold the certificates for more than 50 francs each, then you have made a
profit. But if you sold for less than 50 francs each, then you have made a loss.

3. At the end of each period, compute your total earnings from buying and selling from
the period, and record it in the box labeled B.

4. At the end of each period, after the experimenter has announced the state of the

period, compute your total dividend earnings from the period and record it in the box
labeled C.

5. The price of the information given to you at the beginning of each period is zero in
- every market period. Therefore, 0 has been entered in the box labeled D in every
market period.

6. At the end of each period, compute your total profits from the period by adding the
numbers in boxes B and C, and record it in the box labeled E. Also record it on the
appropriate row of your “Profit Sheet.”

7. At the end of the experiment, add up your profit from all the periods, and record it
on row 18 of your “Profit Sheet.” Then, convert it into dollars by multiplying the
profit by the conversion rate that is given on row 19 of your “Profit Sheet.” Finally
record your profit in dollars on row 20 of your “Profit Sheet.” The experimenter w111
pay you this amount of money in cash.

Market Organization:
The market for these certificates is organized as follows. The market will be conducted

in a series of market periods. Each market lasts for ______ minutes. The technology of
trading will be explained to you. ‘

-Are there any questions?
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Anyone wishing to purchase a certificate is free to do so by employing either or both of
the following.

1. Enter the price you are willing to pay, let’s call it ‘buy order,’ in the order box on your
monitor and hit key, and wait until someone accepts your buy order. Note that
if your buy order is higher than any other buy orders, then it will become a standing
buy order and will appear in the buy order box on the monitor. If your buy order is
lower than the current standing buy order, then it will be kept in a “Book,” which
you can always view by hitting key.

2. You can purchase a certificate by accepting a ‘sell order’ which appears in the sell
order box on the monitor. In order to accept a sell order, hit + keys
simultaneously. Note that ‘accepting a sell order’ means that you are purchasing a
certificate at a price that appears in the sell order box on your screen.

Similarly, anyone wishing to sell a certificate is free to do so by employing either or both
of the following.

1. Enter the price you are willing to sell (a sell order) in the order box on your monitor
and hit key, and wait until someone accepts your sell order. Note that if your
sell order is lower than any other sell orders, then it will become a standing sell order
and will appear in the sell order box on the monitor. If your sell order is higher than
the current standing sell order, then it will be kept in a “Book” which you can always
view by hitting key.

2. You can sell a certificate by accepting a 'buy order’ which appears in the buy order box

on the monitor. In order to accept a buy order, hit + keys simultaneously.
Note that ’accepting a buy order’ means that you are selling a certificate at a price
that appears in the buy order box on your screen.

Are there any questions?
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FINANCIAL AGREEMENT

SHOULD MY EARNINGS FROM THE EXPERIMENT BE NEGATIVE, I AGREE
TO WORK IN THE ECONOMIC SCIENCE LABORATORY AT A RATE OF 7 DOL-

LARS PER HOUR UNTIL THE LOSS IS REPAID.

NAME

DATE




Appendix 5E

Record Sheet and Dividend Sheet
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Subject ID #___ Period #..___
Record Sheet (Market 1 : Type I)

Information on a clue card is : o A

Row Sale Price Purchase Price

CO| ~J| O] UY| x| QO] BN

Nl

10
11
12
13
14
15
16
17
18 Revenue from

19 , trading

20 —_ = | B

Number of certificates Dividend
on hand at the end per certificate Total dividend

Your profit in Market 1 from this period is :
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Subject ID #_____ Period #_____
Record Sheet (Market 1 : Type II)

Information on a clue card is : A

Row Sale Price Purchase Price

00| =] O] O i O B[ =

Ne=]

10
11
12
13
14
15
16
17
18 Revenue from

19 trading

20 — = | B

Number of certificates Dividend
on hand at the end per certificate Total dividend

Your profit in Market 1 from this period is :

B + C = D
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Subject ID #.____ Period #_____
Record Sheet (Market 2 : Buyer)

Row || Redemption Value (1) Purchase Price (2) Profit ((1) - (2))
1
2
3
4
5 .
6
7
8
9
10
Your profit in Market 2 from this period is —
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Subject ID #_____ ' Period #_____

Record Sheet (Market 2 : Seller)

Row Sale Price (1) Inventory Use Cost (2) | Profit ((1) - (2))
1
2
3
4
)
6
7
8
9
10
Your profit in Market 2 from this period is —
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Profit Sheet
Subject ID # _____

Row Market Period Profit (Market 1) | Profit (Market 2)

0 0 (Practice)

1 1

2 2

3 3

4 4

5} )

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 | Total Profit in Francs

19 Dollars per Franc

20 | Total Profit in Dollars
NAME

DATE
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Dividend Sheet (Market 1 : Type I)

State X | State Y | State Z
Dividend 120 330 40
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Dividend Sheet (Market 1 : Type II)

State X

State Y

State Z

Dividend

205

90

125

323
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Data Files

The raw data from the experiments reported here are saved at the Laboratory for Experi-
mental Economics and Political Science at the California Institute of Technology. The file
names follow the convention we use in the lab., 042393b.sta and 042393c.sta.

The raw data required several modifications due to obvious mistakes that were made
by the experiment participants or problems associated with a computer software. These

changes are documented below.

o (042393b, mktl) Period 14 at 7499 seconds : The bid order by agent 5 has been

modified into 5 units instead of 50 units.

e (042393c, mktl) Period 7 at 3781 seconds : “dask” order was placed by agent 1 (1
unit of 250). However, the .col data set indicates that this ask order was never entered
before the “dask” order. Hence, it was eliminated. MUDA was revised to correct such

problems in the later version.
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e (042393c, mktl) Period 7 at 3933 seconds : “dask” order entered by agent 1 (1 unit

of 200) had the same problem as above, and was eliminated.

e (042393c, mktl) Period 10 at 5261 seconds : “dask” order entered by agent 3 (1 unit

of 129) had the same problems as above, and was eliminated.

e (042393c, mktl) Period 13 at 6524 seconds : “dask” order entered by agent 1 (1 unit

of 250) had the same problem as above, and was eliminated.

e (042393c, mktl) Period 15 at 7260 seconds : “dask” order entered by agent 5 (1 unit

of 190) had the same problem as above, and was eliminated.

e (042393c, mkt2) Period 11 at 5714 seconds : “dask” order entered by agent 3 (1 unit

of 160) had the same problem as above, and was eliminated.

e (042393c, mkt2) Period 14 at 6862 seconds : “dask” order entered by agent 1 (3 units

of 155) had the same problem as above, and was eliminated.

e Multiple unit orders were modified into multiple orders of single unit.
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