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ABSTRACT

In classical graph theory, Hall’s theorem gives a necessary and sufficient condition
for a bipartite graph to have a perfect matching. The analogous statement for Borel
perfect matchings is false. If we instead consider Borel perfect matchings almost
everywhere or Borel perfect matchings generically, results similar to Hall’s theorem
hold. We present Marks’ proof that König’s theorem, a special case of Hall’s
theorem, fails in the context of Borel perfect matchings. We then discuss positive
results about the existence of Borel matchings that are close to perfect in the measure
theory and Baire category settings.
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C h a p t e r 1

INTRODUCTION

Given a standard Borel space - , a (Borel) graph on - is some M = (-, �) such
that � ⊆ -2 is a symmetric, irreflexive, (Borel) set. The elements of - are called
the vertices of M, and we think of the relation � as defining the edges of M. If
G, H ∈ - satisfy (G, H) ∈ �, we say that G and H are adjacent and that these vertices
are incident to the edge {G, H}. For G ∈ - , we denote the set of vertices adjacent to
G by #� (G) := {H ∈ - | (G, H) ∈ �}. For � ⊆ - , we define #� (�) := ∪G∈�#� (G).
A set � ⊆ - is an independent set if no two vertices in � are adjacent. The degree
of a vertex G ∈ - is the cardinality of #� (G). A graph M is 3-regular if every vertex
has degree 3. We say that M has bounded degree if there is some = ∈ N such that
every vertex has degree at most =. We call M locally finite if every vertex has finite
degree, and we call M locally countable if the degree of every vertex is countable.

A (Borel) matching of M is a symmetric, irreflexive, (Borel) subset " ⊆ � such
that if (G, H) ∈ " and (G, I) ∈ " for some G, H, I ∈ - , then H = I. Then " is a
subset of the edges of M such that no vertex is incident to more than one edge in
" . Let -" denote the set of vertices that are incident to edges in " . A (Borel)
matching " is a (Borel) perfect matching if -" = - . A matching " is �-invariant
if G ∈ -" implies #� (G) ⊆ -" .

The chromatic number of a graph M = (-, �), written j(M), is the least cardinality
of a set. for which there is a map 2 : - → . such that 2(G) ≠ 2(H) if (G, H) ∈ �. A
graphM is called bipartite if j(M) = 2. TheBorel chromatic number ofM = (-, �),
denoted j� (M), is the least cardinality of a standard Borel space . for which there
is a Borel map 2 : - → . such that 2(G) ≠ 2(H) if (G, H) ∈ �.

In classical graph theory, Hall’s theorem gives the following necessary and sufficient
condition for a bipartite graph to have a perfect matching.

Theorem 1.0.1 (Hall’s theorem). Let M be a finite bipartite graph with bipartition
{�, �}. Then M has a perfect matching if and only if |#� (�) | ≥ |� | for every
� ⊆ � and every � ⊆ �.

In the case where M is 3-regular, Hall’s theorem specializes to König’s theorem.
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Theorem 1.0.2 (König’s theorem). For all 3 ≥ 2, every finite bipartite 3-regular
graph has a perfect matching.

We are interested in similar results about Borel matchings. However, the direct
analog of König’s theorem in a Borel setting does not hold.

Theorem 1.0.3. [Mar16, Theorem 1.5] For all 3 ≥ 2, there is a 3-regular acyclic
Borel graph M on a standard Borel space - such that j� (M) = 2 and M has no
Borel perfect matching.

We present Marks’s proof of Theorem 1.0.3 in Section 2.

Instead of Borel perfect matchings, wemay consider Borel matchings that are almost
perfect. In Section 3, we discuss such matchings in the context of measure theory.
Suppose - is a standard Borel space with a Borel probability measure `, and
suppose M = (-, �) is a locally countable Borel graph. We call a Borel matching
" of M a Borel perfect matching `-almost everywhere (a.e.) if -" is �-invariant
and `(-") = 1. We say that M is `-measure preserving if for every partial Borel
bijection 5 : . → / between Borel subsets ., / ⊆ - satisfying Graph( 5 ) ⊆ �, we
have `(�) = `( 5 (�)) for all Borel � ⊆ . . In this setting, the following theorem by
Lyons and Nazarov provides a sufficient condition similar to Hall’s theorem.

Theorem 1.0.4. [LN11, Remark 2.6] Let M = (-, �) be a Borel graph on (-, `)
that is locally finite, `-measure preserving, and bipartite. Suppose there is some
constant 2 > 1 such that for all Borel independent sets � ⊆ - , `(#� (�)) ≥ 2`(�).
Then M has a Borel perfect matching `-a.e.

Finally, in Section 4, we consider Borel matchings that are almost perfect in a Baire
category sense. Suppose - is a Polish space and M = (-, �) is a Borel graph. We
say that a Borel matching " of � is a Borel perfect matching generically if -" is
�-invariant and comeager. Marks and Unger proved the following statement, which
gives a sufficient condition analogous to that in Hall’s theorem.

Theorem 1.0.5. [MU16, Theorem 1.3] Let - be a Polish space, and let M be a
locally finite bipartite Borel graph with a bipartition {�0, �1}. Suppose there is
some Y > 0 such that for every finite set � ⊆ �0 or � ⊆ �1, |#� (�) | ≥ (1 + Y) |� |.
Then M admits a Borel perfect matching generically.
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C h a p t e r 2

BOREL PERFECT MATCHINGS

One important result about matchings in classical graph theory is König’s theorem.

Theorem 2.0.1 (König’s theorem). For all 3 ≥ 2, every finite bipartite 3-regular
graph has a perfect matching.

2.1 Laczkovich’s Example
In [Lac88], Laczkovich constructs the following example, which demonstrates that
König’s theorem does not hold in a Borel setting for 3 = 2. Fix some irrational
U ∈ (0, 1). Let ' denote the rectangle with vertices (0, U), (U, 0), (1, 1 − U), and
(1 − U, 1), and let '′ := ' ∪ {(0, 0), (1, 1)}, as shown in the diagram below.

(0, 0)

(1, 1)

(U, 0)

(1, 1 − U)

(1 − U, 1)

(0, U)

G

H1

H2

Let - and . be copies of [0, 1], and let M be the bipartite graph on - t . where
G ∈ - and H ∈ . are adjacent in M if and only if (G, H) ∈ '′. For example, in the
diagram above, the neighborhood of G is {H1, H2}. Observe that M is a 2-regular
Borel graph with j� (M) = 2. Laczkovich proved that M is a counterexample to
König’s theorem in the Borel setting.

Theorem 2.1.1. [Lac88] The graph M has no Borel perfect matching.

Proof of Theorem 2.1.1. We follow Laczkovich’s proof in [Lac88].
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Let _1 denote the measure on '′ such that _1(?) = 0 for all ? ∈ '′ and such that for
any disjoint line segments �1, �2, . . . , �= ⊆ '′,

_1(�1 t �2 t . . . t �=) =
=∑
8=1

_(�8),

where _ gives the Euclidean length of each line segment. Define the measure ` on
'′ by

`(�) :=
1

2
√

2
_1(�)

for all measurable subsets � ⊆ '′. So `('′) = 1.

Note that a matching in M is equivalent to a subset " ⊆ '′ that is the graph
of an injective involution from - to . . We will prove that no such " ⊆ '′ is
`-measurable, which will imply that M does not have a Borel matching.

Wewill now define two functions 5 : '′→ '′ and 6 : '′→ '′. Let 5 (G, H) = (G, H)
if G = 0 or G = 1. If G ∈ (0, 1), let 5 (G, H) := (G, I), where I is the unique point in
[0, 1] \ {H} such that (G, I) ∈ '′. Similarly, let 6(G, H) = (G, H) if H = 0 or H = 1. If
H ∈ (0, 1), let 6(G, H) := (F, H), where F is the unique point in [0, 1] \ {G} such that
(F, H) ∈ '′. Note that 5 = 5 −1 and 6 = 6−1 and that 5 and 6 are measure-preserving
homeomorphisms from '′ to itself.

We claim that 6 ◦ 5 is ergodic on '. Let ) = R/Z be the circle group with the
Lebesgue measure. Let ℎ : ' → ) be a measure-preserving homeomorphism
satisfying

ℎ(1, 1 − U) = 0;

ℎ(1 − U, 1) = U
2

;

ℎ(0, U) = 1
2

;

ℎ(U, 0) = 1 + U
2

.

Define : := ℎ ◦ 6 ◦ 5 ◦ ℎ−1. Note that : is a measure-preserving homeomorphism
from ) to itself, so there is some constant 2 ∈ ) such that : (C) = C + 2 for all C ∈ )
or : (C) = −C + 2 for all C ∈ ) . Since : (0) = U and : ( 12 ) =

1
2 + U, : (C) = C + U for all

C ∈ ) . We chose U to be irrational, so : is ergodic on '. Therefore, 6 ◦ 5 is ergodic
on '.

Suppose there is a `-measurable " ⊆ '′ such that " is the graph of an injective
involution from - to . . Observe that " ∩ 5 ("), '′ \ (" ∪ 5 (")), " ∩ 6("),
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and '′ \ (" ∪ 6(")) are finite sets, so `(") = 1
2 . Using our earlier observation

that 6 = 6−1, we note that "4(6 ◦ 5 ) (") is finite. Then `(") ∈ {0, 1} since 6 ◦ 5
is ergodic. This is a contradiction, so there is no such `-measurable " ⊆ '′, and
therefore, M does not have a Borel perfect matching. �

2.2 König’s Theorem in Higher Degree
Laczkovich’s example demonstrates that König’s theorem fails in the Borel setting
for degree 3 = 2. A theorem by Marks states that König’s theorem fails for Borel
matchings for all 3 ≥ 2:

Theorem 2.2.1. [Mar16, Theorem 1.5] For all 3 ≥ 2, there is a 3-regular acyclic
Borel graph M on a standard Borel space - such that j� (M) = 2 and M has no
Borel perfect matching.

We follow the proof of Theorem 2.2.1 given in [Mar16]. We first introduce some
definitions. Given a standard Borel space - and a countable group Γ, -Γ is a
standard Borel space under the product structure. We define the left shift action of
Γ on -Γ by

U · G(V) = G(U−1V)

for all G ∈ -Γ and U, V ∈ Γ. We define Free(-Γ) to be the set of all G ∈ -Γ for
which W · G ≠ G for all W ∈ Γ \ {4}. If - and . are spaces equipped with actions
of Γ and 5 : - → . is a function satisfying W · 5 (G) = 5 (W · G) for all W ∈ Γ and
G ∈ - , then we say 5 is Γ-equivariant.

The proof of Theorem 2.2.1 relies on a result about equivalence relations. For an
equivalence relation � on a standard Borel space - , a subset � ⊆ - is a complete
section if � intersects every �-class. If � and � are equivalence relations on - and
there exist disjoint Borel sets �, � ⊆ - such that � and � are complete sections for
� and �, respectively, then � and � have Borel disjoint complete sections. We have
the following theorem:

Theorem 2.2.2. [Mar16, Theorem 3.7] Let Γ and Δ be countable groups. Define
�Γ to be the equivalence relation on Free(NΓ∗Δ) such that G�ΓH if and only if there
exists some W ∈ Γ for which W · G = H. Define �Δ similarly. Then �Γ and �Δ do not
have Borel disjoint complete sections.

To prove Theorem 2.2.2, we use several lemmas. We need the following definitions
to state these lemmas. Given an equivalence relation � on a standard Borel space
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- , � is a countable Borel equivalence relation if � ⊆ - × - is a Borel set and
each �-class is countable. Suppose � is a countable Borel equivalence relation on
a standard Borel space - , we define the following. A set � ⊆ - is �-invariant
if for every G ∈ �, the orbit of G is contained in �. We define [-]<∞ to be the
standard Borel space of finite subsets of - , and we let [�]<∞ be the Borel subset of
[-]<∞ consisting of the finite subsets of - whose elements are �-equivalent. The
intersection graph on [�]<∞ is the graphwith vertex set [�]<∞where �, � ∈ [�]<∞

are adjacent exactly when �∩� ≠ 0 and � ≠ �. Then we have the following lemma,
which we state without proof:

Lemma 2.2.3. [KM04, Lemma 7.3] Suppose � is a countable Borel equivalence
relation on a standard Borel space - . Let M be the intersection graph on [�]<∞.
Then M has a Borel N-coloring.

We also need the following definitions. Let � ∈ {1, 2, . . . ,∞}, and let {�8}8<� be a
collection of equivalence relations on a standard Borel space - . If, for some = ≥ 2,
there is a sequence of distinct points G0, G1, . . . , G= ∈ - and a sequence 80, 81, . . . , 8= ∈
N such that 8 9 ≠ 8 9+1 for 0 ≤ 9 ≤ =−1, 8= ≠ 80, and G0�80G1�81G2 . . . G=�8=G0, then we
say that the �8 are non-independent. Otherwise, we say that the �8 are independent.
Let

∨
8<� �8 be the smallest equivalence relation that contains every �8. The �8 are

everywhere non-independent if for each
∨
8<� �8-class � ⊆ - , the restrictions �8��

are not independent. We state the following lemma without proof:

Lemma 2.2.4. [Mar16, Lemma 2.3] Suppose � ∈ {1, 2, . . . ,∞}, and suppose
{�8}8<� are countable Borel equivalence relations on a standard Borel space -
that are everywhere non-independent. Then there is a Borel partition {�8}8<� of -
such that for all 8 < �, �2

8
intersects every �8-class.

We use Lemma 2.2.3 and Lemma 2.2.4 to prove the following lemma:

Lemma 2.2.5. [Mar16, Lemma 2.1] Let Γ and Δ be countable groups. Suppose
� ⊆ Free(NΓ∗Δ) is a Borel set. Then at least one of the following holds.

1. There is a continuous injective function 5 : Free(NΓ) → Free(NΓ∗Δ) such
that 5 is equivariant with respect to the left shift action of Γ and ran( 5 ) ⊆ �.

2. There is a continuous injective function 5 : Free(NΔ) → Free(NΓ∗Δ) such
that 5 is equivariant with respect to the left shift action of Δ and ran( 5 ) ⊆
Free(NΓ∗Δ) \ �.
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We refer to words of the form W0X1W2 . . ., where W8 ∈ Γ \ {4} and X8 ∈ Δ \ {4}
for all 8, as Γ-words. Similarly, we refer to words of the form X0W1X2 . . ., where
W8 ∈ Γ \ {4} and X8 ∈ Δ \ {4}, as Δ-words.

Proof of Lemma 2.2.5. First, we will define a game that produces an element
H ∈ NΓ∗Δ , where player I defines H(U) when U is a Γ-word and player II defines
H(U) when U is a Δ-word. Let W0, W1, . . ., and X0, X1, . . . be enumerations of Γ \ {4}
and Δ \ {4}, respectively. Let . be the subset of NΓ∗Δ consisting of the elements
G ∈ NΓ∗Δ such that for all G′ in the orbit of G and 8 ∈ N, W8 · G′ ≠ G′ and X8 · G′ ≠ G′.

We now define a function C : Γ ∗Δ \ {4} → N∪ {−1} to determine which values of
H are fixed on each turn of the game. Define C (4) := −1. For every U ∈ Γ ∗ Δ \ {4},
we can write U uniquely in the form W80X81W82 . . . c8< or X80W81X82 . . . c8< , where
c8< ∈ {W8< , X8<} based on the parity of <. Define C (U) := max0≤ 9≤< (8 9 + 9).
Observe that if U is a Δ-word or U = 4, then C (W8U) = max{C (U) + 1, 8}. In
particular, if 8 ≤ =, then C (W8U) ≤ = if and only if C (U) < =. Similarly, if 8 ≤ = and
U is a Γ-word or U = 4, then C (X8U) ≤ = if and only if C (U) < =.

We will define the game ��
:
for any : ∈ N and any Borel set � ⊆ . . The game

��
:
will produce some H ∈ NΓ∗Δ satisfying H(4) = : . On each turn = ∈ N, player

I defines H(U) for all Γ-words U satisfying C (U) = =, followed by player II defining
H(U) for all Δ-words U satisfying C (U) = =. We now specify who wins each run
of the game. If H ∈ �, then player II wins, and if H ∈ . \ �, then player I wins.
Otherwise, H ∉ . , so one of the following must hold:

1. There is some U ∈ Γ ∗ Δ and 8 ∈ N such that W8U−1 · H = H. In this case, we
say that (U, Γ) witnesses H ∉ . .

2. There is some U ∈ Γ ∗ Δ and 8 ∈ N such that X8U−1 · H = H. In this case, we
say that (U,Δ) witnesses H ∉ . .

We say that U witnesses H ∉ . if either of the above statements holds. We specify
that if (4, Γ) witnesses H ∉ . , then player II wins, and if (4,Δ) witnesses H ∉ . , then
player I wins. If neither of these happens, then there must be a Γ-word or Δ-word
witnessing H ∉ . . If there is some Δ-word U witnessing H ∉ . such that no Γ-words
V with C (V) ≤ C (U) witness H ∉ . , then player I wins. Otherwise, player II wins.

We will use games of the form ��
:
to construct our desired function 5 for the given

� ⊆ Free(NΓ∗Δ). Let �Γ be the equivalence relation on . such that G�ΓH if and
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only if W · G = H for some W ∈ Γ, and let �Δ be defined similarly. Note that �Γ and
�Δ are everywhere non-independent on . \ Free(NΓ∗Δ). By applying Lemma 2.2.4
with � = 2, there exists some Borel � ⊆ . \Free(NΓ∗Δ) such that � intersects every
�Δ-class on . \ Free(NΓ∗Δ) and �2 intersects every �Γ-class on . \ Free(NΓ∗Δ).
Define �� := � ∪ �. Borel determinacy implies that for every : ∈ N, player I or
player II has a winning strategy for ���

:
. Then player I or player II must have a

winning strategy for ���
:

for infinitely many : . Suppose player II has a winning
strategy for���

:
for infinitely many : ∈ N, and let ( be the set of all such : . We omit

the case where player I has a winning strategy for ���
:

for infinitely many : ∈ N;
a similar proof holds in that situation. For each : ∈ (, fix a winning strategy for
player II in ���

:
.

There exists a continuous injective equivariant function 6 : Free(NΓ) → Free((Γ).
So if we can construct a continuous injection 5 : ran(6) → Free(NΓ∗Δ) such that 5
is equivariant with respect to the left shift action of Γ and ran( 5 ) ⊆ �, then 5 ◦ 6 is
a function satisfying the lemma.

We now define 5 : ran(�) → Free(NΓ∗Δ). Consider any G′ ∈ Free(NΓ), and let
G := 6(G′). We will choose moves for player I in ���

G ′(W−1) such that the outcome
of the game when player II plays according to their fixed winning strategy will be
the value of W · 5 (G). We will do so simultaneously for all W ∈ Γ such that 5 is an
equivariant function and 5 (G) (W) = G′(W) for all W ∈ Γ.

We will define (W · 5 (G)) (U) inductively on C (U). By our definition of ���

G ′(W−1) , we
have (W · 5 (G)) (4) = G′(W−1) for all W ∈ Γ. Suppose we have defined (W · 5 (G)) (U)
for all W ∈ Γ and all U for which C (U) < =. We need to specify player I’s move on
turn = in each game; equivalently, we need to define (W · 5 (G)) (V) for all Γ-words
V with C (V) = =. Suppose V is a Γ-word such that C (V) = = and V = W8U for some
8 ∈ N and some U with C (U) < =. By definition of the left shift action of Γ, we need
(W · 5 (G)) (W8U) = (W−1

8
W · 5 (G)) (U) for all W ∈ Γ. By assumption, we have already

defined the value of (W−1
8
W · 5 (G)) (U), so this determines what player I should play

for (W · 5 (G)) (W8U). So we can determine player I’s move on turn = in each game,
which determines (W · 5 (G)) (V) for all W ∈ Γ and all Γ-words V such that C (V) = =.
The values of (W · 5 (G)) (V) for Δ-words V is determined by player II’s move on turn
= in each game, which is specified by the winning strategies we fixed for player II.
By induction, we can thus use the games ���

G ′(W−1) to define W · 5 (G) for all W ∈ Γ.

From our construction, 5 is injective, continuous, and equivariant with respect to the
left shift action of Γ. We also know that each 5 (G) is a winning outcome for player
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II in ���
G ′ . It suffices to show that ran( 5 ) ⊆ �. We will first show that ran( 5 ) ⊆ . .

Consider any G′ ∈ Free(NΓ), and let G = 6(G′). Because 5 (G) results from awinning
strategy for player II, (4,Δ) does not witness 5 (G) ∉ . . Suppose (4, Γ) witnesses
5 (G) ∉ . . Then there exists 8 ∈ N such that for all W ∈ Γ, (W8 · 5 (G)) (W) = 5 (G) (W).
We can rewrite (W8 · 5 (G)) (W) as 5 (G) (W−1

8
W). By construction of 5 , we then have

G′(W−1
8
W) = G′(W) for all W ∈ Γ, or equivalently, W8 · G′ = G′. But this contradicts

G ∈ Free(NΓ). We conclude that (4, Γ) does not witnesses 5 (G) ∉ . . Therefore, 4
does not witness 5 (G) ∉ . .

We will show that for all U ∈ Γ ∗ Δ and all G′ ∈ Free(NΓ), U does not witness
5 (G) ∉ . , where G = 6(G′). We will use induction on C (U). Suppose this statement
holds for all V ∈ Γ∗Δ such that C (V) < =. First, we consider any Γ-word U satisfying
C (U) = =. We can find W ∈ Γ and V ∈ Γ ∗ Δ such that U = WV and C (V) < =. Then
U−1 · 5 (G) = V−1W−1 · 5 (G), which we can rewrite as V−1 · 5 (W−1 · G) since 5 is
Γ-equivariant. By our induction hypothesis, V does not witness 5 (W−1 · G) ∉ . , so
U does not witness 5 (G) ∉ . . Now consider any Δ-word U satisfying C (U) = =.
By our induction hypothesis and our argument for Γ-words, there is no Γ-word V
witnessing 5 (G) ∉ . satisfying C (V) ≤ =. Since 5 (G) is consistent with player II’s
winning strategy, U cannot witness 5 (G) ∉ . .

Therefore, we have ran( 5 ) ⊆ . . Because each 5 (G) is the result of a winning
strategy for player II in some game ���

:
, we must have ran( 5 ) ⊆ �� = �∪�. Note

that ran( 5 ) is Γ-invariant. By definition of �, � does not contain any non-empty
Γ-invariant sets, so we must have 5 (G) ⊆ �. We conclude that 5 is a function of
form (1), as desired. �

We now use these lemmas to prove Theorem 2.2.2.

Proof of Theorem 2.2.2. It suffices to show that it is impossible to find any Borel
set � ⊆ Free(NΓ∗Δ) such that � is a complete section for �Δ and Free(NΓ∗Δ) \ �
is a complete section for �Γ. Given any Borel set � ⊆ Free(NΓ∗Δ), we can find a
function 5� as in Lemma 2.2.5. If 5� satisfies statement (1) of Lemma 2.2.5, then
Free(NΓ∗Δ) \ � cannot be a complete section for �Γ. If 5� satisfies statement (2)
of Lemma 2.2.5, then � cannot be a complete section for �Δ . Therefore, we cannot
have � be a complete section for �Δ while Free(NΓ∗Δ) \ � is a complete section for
�Γ. �

Finally, we prove Theorem 2.2.1.

Proof of Theorem 2.2.1. Fix some 3 ≥ 2, and let Γ := Z/3Z =: Δ . Define �Γ
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and �Δ as in Theorem 2.2.2, and let - be the standard Borel space consisting of
equivalence classes of �Γ and �Δ . Let G be the intersection graph on - , and note
that G is 3-regular, acyclic, and Borel with j� (G) = 2.

We claim that G does not admit a Borel perfect matching. Suppose " ⊆ - × - is
a Borel perfect matching for G. Define � ⊆ Free(NΓ∗Δ) by

� := {G ∈ Free(NΓ∗Δ) | {G} = ' ∩ ( for some (', () ∈ "}.

Then � and Free(NΓ∗Δ) \ � are Borel disjoint complete sections for �Γ and �Δ ,
contradicting Theorem 2.2.2. Therefore, G does not admit a Borel perfect matching.

�
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C h a p t e r 3

BOREL MATCHINGS AND MEASURE THEORY

In graph theory, Hall’s theorem states that bipartite graphs with a certain expansion
property have perfect matchings. Recall that for any set of vertices � in a graph M,
we write #M (�) to denote the set of vertices that are adjacent to �. Hall’s theorem
states the following:

Theorem 3.0.1 (Hall’s theorem). Let M be a finite bipartite graph with bipartition
{�, �}. Then M has a perfect matching if and only if |#� (�) | ≥ |� | for every
� ⊆ � and every � ⊆ �.

Theorem 2.2.1 states that König’s theorem does not hold for Borel perfect matchings.
Since König’s theorem is a specific case of Hall’s theorem, Hall’s theorem likewise
fails forBorel perfectmatchings. Instead ofBorel perfectmatchings, we can consider
Borel matchings that are perfect on “large” subsets of a graph. Lyons-Nazarov
[LN11] and Marks-Unger [MU16] proved results analogous to Hall’s theorem from
the perspectives of measure theory and Baire category notions, respectively.

3.1 Bipartite Graphs
To present the theorem of Lyons and Nazarov, we first recall some definitions.
Let M = (-, �) be a locally countable Borel graph on a standard Borel space
- with some probability measure `. Recall that if " is a Borel matching of M
such that -" is �-invariant and `(-") = 1, we call " a Borel perfect matching
`-almost everywhere (a.e.). Furthermore, recall that the graph M is `-measure
preserving if for every Borel automorphism 5 : - → - such that Graph( 5 ) ⊆ �,
`(�) = `( 5 −1(�)) for all measurable � ⊆ - .

Lyons and Nazarov proved the following theorem, which uses a measure-theoretic
concept of expansion in the setting of Borel perfect matchings `-a.e.

Theorem 3.1.1. [LN11, Remark 2.6] LetM = (-, �) be a Borel graph on a standard
probability space (-, `) such that M is locally finite, `-measure preserving, and
bipartite. Suppose there is some constant 2 > 1 such that for all Borel independent
sets � ⊆ - , `(#� (�)) ≥ 2`(�). Then M has a Borel perfect matching `-a.e.
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The proof of this statement relies on a result by Elek and Lippner about the lengths
of augmenting paths in Borel matchings. A path of length : in M = (-, �) is a
sequence of vertices G0, G1, . . . , G: such that (G8, G8+1) ∈ � for 0 ≤ 8 < : and such
that G8 ≠ G 9 for 8 ≠ 9 . Given a Borel matching " on a graph M = (G, �), a path
G0, G1, . . . , G2=+1 in M is called an augmenting path if (G28, G28+1) ∉ " for 0 ≤ 8 ≤ =,
(G28+1, G28+2) ∈ " for 0 ≤ 8 < =, and G0, G2=+1 ∉ -" . Such a path is augmenting in
the following sense: if we define "′ to be the matching on M that reverses which
edges in G0, G1, . . . , G2=+1 are contained in " and agrees with " on all other edges,
then -" ′ = -" ∪ {G0, G2=+1}. Elek and Lippner proved the following statement
about the lengths of augmenting paths in Borel matchings.

Proposition 3.1.2. [EL10, Proposition 1.1] Let - be a standard Borel space, and
let M = (-, �) be a locally finite Borel graph on - . Fix any ) ≥ 1. For any Borel
matching " of M, there is a Borel matching "′ of M such that -" ⊆ -" ′ and such
that every augmenting path in "′ has length greater than 2) + 1.

Proof of Proposition 3.1.2. We follow the proof given in [Ant13].

Let . be the set of paths of odd length at most 2) + 1 in - . Let N be the graph
with vertex set . such that two paths G0, G1, . . . , G2=+1 and H0, H1, . . . , H2<+1 in . are
adjacent in N if and only if G8 = H 9 for some 0 ≤ 8 ≤ = and 0 ≤ 9 ≤ <. Since
M is locally finite, N is locally finite as well, an therefore, there is a Borel coloring
2 : . → N on N.

Define "−1 := " . Let 20, 21, 22, . . . be a sequence of elements in N such that
each element of N appears infinitely many times in this sequence. To construct the
desired matching "′, we first construct a sequence of matchings "0, "1, "2, . . .

such that -"= ⊆ -"=+1 for all = ∈ N. We do the following for each 8 ∈ N inductively.
First, consider all paths in 2−1(28). If G0, G1, . . . , G28+1 ∈ 2−1(28) is an augmenting
path in "8−1, switch which edges of the path lie in the matching. In other words,
remove each (G2 9+1, G2 9+2) from "8−1 for 0 ≤ 9 < 8, and add (G2 9 , G2 9+1) to "8−1 for
0 ≤ 9 ≤ 8. Since no two paths in 2−1(28) share a vertex, the result of this procedure
is still a matching; call this matching "8. Note that -"8−1 ⊆ -"8 for each 8 ∈ N.

We claim that for every edge (G, H) ∈ �, there exists an # such that either (G, H) ∈ -=
for all = > # or (G, H) ∉ -= for all = > # . Suppose not, and let (G, H) ∈ � be a
counterexample. Then (G, H) must be switched infinitely many times as part of an
augmenting path. Define � ⊆ - to be the collection of points I ∈ - for which
there is some : ≤ 2= and G1, G2, . . . , G: ∈ - such that G, G1, G2, . . . , G: , I is a path
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in M. Note that every augmenting path that contains the vertex G must lie in �, so
switching the edges in any augmenting path containing G increases the number of
matched vertices in � by 1. Since (G, H) is switched infinitely many times, |-"= ∩� |
is unbounded as = increases, implying that � is an infinite set. However, � must be
finite since M is locally finite. So such a counterexample cannot exist. We conclude
that for every (G, H) ∈ �, there is some # such that (G, H) ∈ -= for all = > # or
(G, H) ∉ -= for all = > # .

Let "′ ⊆ � consist of the edges (G, H) for which there exists some # such that
(G, H) ∈ "= for all = > # . If (G, H) and (G, I) are edges in "′, there is some =
for which (G, H) ∈ "= and (G, I) ∈ "= by definition of "′. Since each "= is a
matching, H = I. Therefore, "′ is a matching as well. Since each "= is Borel, "′

is a Borel matching. We claim that "′ has the desired properties.

Consider any G ∈ -" . Since -" ⊆ -"= for all = ∈ N, we can find points {H=}=∈N
such that (G, H=) ∈ "= for each = ∈ N. By local finiteness of M, some H< must occur
infinitely many times. Our argument above implies that there is some # such that
(G, H<) ∈ "= for all = > # . Then (G, H<) ∈ "′, so G ∈ -" ′. Therefore, -" ⊆ -" ′.

It remains to show that "′ does not contain any augmenting paths of length at
most 2) + 1. Suppose there is an augmenting path G0, G1, . . . , G2=+1 in "′ with
= ≤ ) . By definition of "′, we can find some # such that for all = > # , we have
(G28, G28+1) ∉ "= for 0 ≤ 8 ≤ =, and (G28+1, G28+2) ∈ "= for 0 ≤ 8 < =. Let : be
the color assigned to this path by the coloring 2. By definition of the sequence
20, 21, 22, . . ., we can find #′ > # such that 2# ′ = : . Then in round #′, the edges of
G0, G1, . . . , G2=+1 are switched. In other words, (G28, G28+1) ∈ "# ′ for 0 ≤ 8 ≤ =, and
(G28+1, G28+2) ∈ "# ′ for 0 ≤ 8 < =. This is a contradiction, so no such path exists.
Therefore, "′ does not contain any augmenting paths of length at most 2) + 1.

Thus, "′ is a Borel matching of M satisfying the desired conditions. �

We now use Proposition 3.1.2 to prove Theorem 3.1.1.

Proof of Theorem 3.1.1. We follow the proof given in [Ant13].

First, we recursively define a sequence {"8}8∈N of Borel matchings in M. Let
"0 := ∅. Given the matching "8, define "8+1 to be the Borel matching obtained
via the construction in the proof of Proposition 3.1.2 above, using ) = 8 + 1. Then
-"8 ⊆ -"8+1 , and every augmenting path for"8+1 has length greater than 2(8+1) +1.
We bound the measure of - \ -"8 using the following lemma.
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Lemma 3.1.3. [LN11] Suppose " is a Borel matching of M such that every aug-
menting path for " has length greater than 2= + 1, and let � := - \ -" . Then
`(�) ≤ 2− =2 .

Proof of Lemma 3.1.3. We define a sequence of sets {�8}0≤8≤= recursively. Let
�0 := �. Given �2: for some : ∈ N, define

�2:+1 := #� (�2: ) = {G ∈ - | ∃H ∈ �2: (G, H) ∈ �}.

Given �2:+1 for some : ∈ N, define

�2:+2 := {G ∈ - | ∃H ∈ �2:+1 (G, H) ∈ "}.

First, we will show that �2: is an independent set for 0 ≤ 2: ≤ =. Suppose
G, H ∈ �2: satisfy (G, H) ∈ �. By construction of �2: , there is a path G0, G1, . . . , G2: =

G such that G 9 ∈ � 9 for 0 ≤ 9 ≤ 2: and such that (G28+1, G28+2) ∈ " for all
0 ≤ 8 < : . Similarly, there is a path H0, H1, . . . H2: = H such that H 9 ∈ � 9 for
0 ≤ 9 ≤ 2: and such that (H28+1, H28+2) ∈ " for all 0 ≤ 8 < : . Then observe that
G0, G1, . . . , G2: , H2: , H2:−1, . . . , H1, H0 is an augmenting path for " of length 2: + 1,
contradicting the definition of" . Therefore, we conclude that �2: is an independent
set.

Since each �2: is a Borel independent set, our conditions onM imply that `(�2:+1) ≥
2`(�2: ) for each : . Now observe that �2:+1 ⊆ -" : if some element of �2:+1 lies in
- \ -" = �0, then M must contain an odd cycle, contradicting the assumption that
M is bipartite. So we have `(�2:+1) = `(�2:+2) for each : since M is `-measure
preserving. Thus, we conclude that

`(�) = `(�0)
≤ 2− =2 `(�=)
≤ 2− =2 .

�

By Lemma 3.1.3, `(- \ -"8 ) converges to 0 as 8 →∞. Since - \ -"0 ⊇ - \ -"1 ⊇
. . ., we have `(∪=∈N-"=) = 1.

For each G ∈ ∪=∈N-"= , there exists # such that G ∈ -"= for all = > # . For = > # ,
let H= ∈ - be defined such that (G, H=) ∈ "=. Since M is locally finite, there must
be some H such that H= = H for infinitely many = > # . We claim that there is a set
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�′ ⊆ ∪=∈N-"= of measure 1 such that for G ∈ �′, H= = H for cofinitely many such =.
Let � be the set of all G ∈ ∪=∈N-"= such that this does not hold. We wish to show
that `(�) = 0.

For each = ∈ N, define �= to be the set of G ∈ - such that there is some H ∈ - for
which (G, H) ∈ "= and (G, H) ∉ "=+1. Observe that � ⊆ lim sup

=→∞
�=. So

`(�) ≤ `(lim sup
=→∞

�=)

≤ `( lim
:→∞

⋃
=≥:

�=)

≤ lim
:→∞

∑
=≥:

`(�=).

Suppose G ∈ �=. By the construction of "=+1 from "= according to the proof of
Proposition 3.1.2, G must be contained in exactly one augmenting path of length
at most 2= + 1 containing some element of - \ -"= . Then because M is `-
measure preserving, `(�=) ≤ (2= + 1)`(- \ -"=). Applying Lemma 3.1.3, we
have `(�=) ≤ (2= + 1)2− =2 . So lim

:→∞

∑
=≥: `(�=) = 0, implying that `(�) = 0.

Therefore, there is a set �′ ⊆ ∪=∈N-"= of measure 1 such that for G ∈ �′, H= = H
for cofinitely many such =. Let � ⊆ �′ be a �-invariant set of measure 1.

We now define a matching " on �. For G, H ∈ �, we define (G, H) ∈ " if and
only if there are cofinitely many = such that (G, H) ∈ "=. Since each "= is a Borel
matching, " is a Borel matching. Therefore, " is a Borel perfect matching `-a.e.
for M. �

The requirement that 2 > 1 in Theorem 3.1.1 is necessary. Let M be the Cayley
graph of the free part of the shift action of Z on 2Z. Then `(#� (�)) ≥ `(�) for
all Borel independent sets � ⊆ 2Z. If M has Borel perfect matching `-a.e., then we
obtain a Borel set that has measure 1

2 and is invariant under applying the shift action
twice, contradicting the fact that the action of Z on 2Z is mixing. Therefore, M does
not have a Borel perfect matching `-a.e., so the assumption 2 > 1 is necessary.

Furthermore, the expansion condition in Theorem 3.1.1 cannot be relaxed to one on
finite sets, unlike in Hall’s theorem.

Proposition 3.1.4. [KM19, Proposition 15.1] Let (-, `) be a standard probability
space. For every = ≥ 1, there is some Borel graph M = (-, �) that is `-measure
preserving and has bounded degree, satisfies j� (M) = 2, and has the property that
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|#� (�)) | ≥ =|� | for every finite independent set � ⊆ - , with no Borel perfect
matching `-a.e.

Conley and Miller proved a theorem about Borel perfect matchings `-a.e. when the
complexity of the edge relation is restricted. Let (-, `) be a standard probability
space, and letM = (-, �) be a locally countableBorel graph. If there is a�-invariant
Borel set � ⊆ - such that `(�) = 1 and such that, on �, the equivalence relation
generated by � can be written as the increasing union of finite Borel equivalence
relations, the graph M is `-hyperfinite. Conley and Miller proved the following
result about Borel matchings in acyclic `-hyperfinite graphs:

Theorem 3.1.5. [CM17, Theorem B] Let (-, `) be a standard probability space,
and let M = (-, �) be an acyclic, locally countable Borel graph. If M is `-
hyperfinite and every point in some �-invariant Borel set of measure 1 has degree
at least 3, then M has a Borel perfect matching `-a.e.

3.2 A Shift Action
We conclude this section by presenting a theorem by Csóka and Lippner, which
extends a result by Lyons and Nazarov in [LN11] by removing the assumption that
the Cayley graph of the given group is bipartite.

Recall that for a standard Borel space - and a countable group Γ, the shift action
of Γ on -Γ is given by U · G(V) = G(U−1V) for all G ∈ -Γ and U, V ∈ Γ. Suppose
( is a finite symmetric generating set of Γ, where ( does not contain the identity.
Then we define M ((, [0, 1]Γ) to be the graph on [0, 1]Γ such that G, H ∈ [0, 1]Γ are
adjacent exactly when there is some W ∈ ( such that W · G = H. Csóka and Lippner
proved the following theorem about Borel matchings on M ((, [0, 1]Γ).

Theorem 3.2.1. [CL17, Theorem 1.1] Let Γ be a non-amenable group with a finite
symmetric generating set ( not containing the identity. Let ` be the probability mea-
sure on [0, 1]Γ defined as the product of the Lebesgue measure on each coordinate.
Then M ((, [0, 1]Γ) has a Borel perfect matching `-a.e.

We first present several definitions.

Let M = (-, �) be a 3-regular, infinite, connected graph. A real cut for M is a
partition - = � t �2 such that � is a finite set and |�| ≥ 2. If |�| is odd, we say
that this partition is a real cut into odd sets. The size of the cut is |{(G, H) ∈ � |
G ∈ �, H ∈ �2}|, the number of edges between � and �2, which is finite since M is
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3-regular and � is finite. Csóka and Lippner proved the following lemma about the
sizes of real cuts:

Lemma 3.2.2. [CL17, Lemma 2.5] Let M be as above, and suppose that for every
G1, G2 ∈ - , there is an automorphism of M sending G1 ↦→ G2. Then every real cut of
M has size at least 3, and there is a real cut with size exactly 3 if and only if every
G ∈ - lies in a unique 3-clique.

Now let - be a probability space with measure `, and let M = (-, �) be a 3-regular,
`-measure preserving, Borel graph on - . We define a measure on sets of edges as
follows. For any symmetric, measurable set � ⊆ �, define

`∗(�) :=
1
2

∫
-

3� (G)3`(G),

where 3� (G) is the number of elements H ∈ #� (G) such that (G, H) ∈ �. For any
measurable set of vertices . ⊆ - , let

� (.,. 2) := {(G, H) ∈ � | G ∈ ., H ∈ . 2} ∪ {(H, G) ∈ � | G ∈ . 2, H ∈ . }

be the collection of edges between . and . 2. For 20 > 0, we say that M is a
20-expander if for all measurable . ⊆ - , we have

`∗(� (.,. 2)) ≥ 20`(�)`(�2).

If every real cut into odd sets for M has size at least 3 +1, and if there is some 20 > 0
such that M is a 20-expander, then we say that M is admissible. Csóka and Lippner
proved the following theorem about augmenting paths in admissible graphs:

Theorem 3.2.3. [CL17, Theorem 4.2] For any 20 > 0 and any integer 3 ≥ 3,
there is a constant 2 = 2(20, 3) such that the following holds: given any 3-regular,
`-measure preserving, Borel graph M on a probability space (-, `) such that M is
admissible, and given any Borel matching " on M such that `(- \ -") ≥ Y, there
is an augmenting path for " of length at most 2(log 1

Y
)3.

We can now prove Theorem 3.2.1, following [CL17].

Proof of Theorem 3.2.1. Let 3 := |( |, and note that M := M ((, [0, 1]Γ) is 3-regular.
We also observe that for any G1, G2 ∈ [0, 1]Γ, there is an automorphism sending
G1 ↦→ G2.
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First, suppose there is a real cut of M with size 3. Then by Lemma 3.2.2, every
vertex of M lies in a unique 3-clique. Then define " to be the collection of edges
(G, H) ∈ � such that G and H are in different 3-cliques. Observe that " is a Borel
perfect matching, as desired.

Now suppose every real cut of M has size at least 3 + 1. Let "1 := ∅, and define
Borel matchings "1, "2, "3, . . . inductively such that "= has no augmenting paths
of length at most 2= + 1 and such that "=+1 is obtained from "= via the procedure
described in the proof of Proposition 3.1.2. Let*= := - \ -"= . Let �= = "=4"=+1

denote the set of edges in � that are switched between "= and "=+1. Note that
every edge in �= must lie along an augmenting path of length at most 2= + 3. Each
augmenting path has both endpoints in *=, and each point in *= is contained in at
most one augmenting path whose edges are switched, so `∗(�=) ≤ (2= + 3)`(*=).

Suppose `(*=) = Y. Since Γ is non-amenable, there is some 20 > 0 such that M
is a 20-expander [LN11, Lemma 2.3]. We are assuming that every real cut of M
has size at lest 3 + 1, so M is admissible. Let 2 = 2(20, 3) be a constant satisfying
Theorem 3.2.3. Then we know that M has an augmenting path for "= of length at
most 2(log 1

Y
)3. By definition of "=, we must have

2

(
log

1
Y

)3
> 2= + 1,

which yields

Y < exp

(
−

(
2= + 1
2

) 1
3
)
.

So by the Borel-Cantelli lemma, the set E of edges that lie in �: for infinitely many
: satisfies `∗(�) = 0.

Define " to be the set of edges (G, H) ∈ � that lie in "= for cofinitely many =. Since
each "= is a Borel matching, " is a Borel matching. From above, we have that
`(- \ ∪=∈N-"=) = 0 and `∗(�) = 0, so " is a Borel perfect matching `-a.e. �
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C h a p t e r 4

BOREL MATCHINGS AND BAIRE CATEGORY

An expansion condition on finite sets of vertices is sufficient to conclude that a
Borel matching is almost perfect in a Baire category setting. Suppose M = (-, �)
is a Borel graph on a Polish space - . We recall that a Borel matching " of � is
called a Borel perfect matching generically if -" is �-invariant and comeager. The
following theorem by Marks and Unger adapts Hall’s theorem to this setting.

Theorem 4.0.1. [MU16, Theorem 1.3] Let - be a Polish space, and let M = (-, �)
be a locally finite bipartite Borel graph with a bipartition {�0, �1}, which need not
be Borel. Suppose there is some Y > 0 such that for every finite set � ⊆ �0 or
� ⊆ �1, |#� (�) | ≥ (1+Y) |� |. ThenM admits a Borel perfect matching generically.

To prove this result, we need several definitions. Let M = (-, �) be a graph.
For G, H ∈ - , let 3� (G, H) be the length of the minimum-length path from G to H.
Define M2 = (-, �2) to be the graph on - such that (G, H) ∈ �2 if and only if
3� (G, H) = 2. For any matching " of M, we define the graph M − " to be the
restriction M�(- \ -").

Now suppose M is bipartite with some bipartition {�0, �1}. The graph M satisfies
Hall’s condition if for every finite set � ⊆ �0 or � ⊆ �1, |#� (�) | ≥ |� |. If M
satisfies Hall’s condition, and if every �2-connected finite set � with |� | ≥ = such
that � ⊆ �0 or � ⊆ �1 satisfies |#� (�) | ≥ (1 + Y) |� |, we say that M satisfies
HallY,=.

Marks and Unger proved the following lemma.

Lemma 4.0.2. [MU16, Lemma 3.1] Let - be a Polish space, and let M = (-, �)
be a locally finite Borel graph on - . Given any funtion 5 : N → N, there is
some sequence {�=}=∈N of Borel sets in - such that � := ∪=∈N�= is comeager and
�-invariant, and such that 3� (G, H) > 5 (=) for all distinct G, H ∈ �=.

Proof of Lemma 4.0.2. We follow the proof in [MU16]. Let {*8}8∈N be a basis of
open sets for - . For 8 ∈ N and A > 0, let �8,A be the set consisting of exactly those
G ∈ *8 such that for all H ≠ G with 3� (G, H) ≤ A, H ∉ *8. Given any A > 0 and any
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G ∈ - , the set {H | H ≠ G, 3� (G, H) ≤ A} is finite since M is locally finite, so there is
some 8 for which G ∈ �8,A . Therefore, for any A > 0, - = ∪8∈N�8,A .

Let {(8}8∈N be a set of Borel automorphisms that generate�, and denote the closure
of this set under compositions and inverses by {)8}8∈N. Let i : N → N2 be a
bijection, and write i(=) = (8=, 9=). For any = ∈ N, we have - = ∪:∈N�:, 5 (=) , so we
have - = ∪:∈N)8= (�:, 5 (=)) since )8= is an automorphism. Then there is some : ∈ N
such that )8= (�:, 5 (=)) is non-meager in * 9= . Define �′= := �:, 5 (=) , and observe that
for distinct G, H ∈ �′=, we have 3� (G, H) > 5 (=). Let �′ := ∪=∈N�′=.

For each 8 ∈ N, )8 (�′) is non-meager in every * 9 , so )8 (�′) is a comeager set.
Then � := ∩8∈N)8 (�′) is comeager. For each 8 ∈ N and G ∈ - , observe that G ∈ �
if and only if )8 (G) ∈ � because {)9 } 9∈N is closed under compositions. Because
G, H ∈ - are �-connected if and only if )8 (G) = H for some 8, we conclude that �
is �-invariant. Therefore, if we set �= := � ∩ �′= for each = ∈ N, the sets {�=}=∈N
satisfy the desired conditions. �

We now use Lemma 4.0.2 to prove Theorem 4.0.1, following the proof in [MU16].

Proof of Theorem 4.0.1. Fix an increasing function 5 : N→ N such that 5 (=) ≥ 8
for all = ∈ N and such that

∑
=∈N

8
5 (=) < Y. Let {�=}=∈N be a sequence of Borel sets

obtained by applying Lemma 4.0.2 with this function 5 , and let � := ∪=∈N�=. It
suffices to find a Borel perfect matching of M��.

Let Y= := Y − ∑
8≤=

8
5 (8) for each = ∈ N. By our definition of 5 , Y= > 0. Observe

that it is enough to find a sequence of Borel matchings {"=}=∈N of M such that for
all = ∈ N, we have ∪<≤=�< ⊆ -"= , "= ⊆ "=+1, and M − "= satisfies HallY=, 5 (=) .
If we construct such a sequence, then " := ∪=∈N"= is a Borel perfect matching of
M��, implying that " is a Borel perfect generically of M.

We define our sequence {"=}=∈N inductively. Let "−1 := ∅ and Y−1 := Y. By
assumption, M − "−1 = M satisfies HallY−1,1. Suppose we have defined "=−1 to
satisfy the desired conditions. Let -=−1 = - \ -"=−1 be the set of vertices that
are not matched by "=−1. By assumption, M − "=−1 satisfies Hall’s condition, so
it has a perfect matching. So for any G ∈ �= ∩ -=−1, there is some edge 4 that
is incident to G in a perfect matching of M − "=−1. Note that (M − "=−1) − {4}
satisfies Hall’s condition as well. We define a Borel set of such edges as follows.
Let {)8}8∈N be Borel automorphisms generating �. For G ∈ �= ∩ -=−1 and 8 ∈ N
such that G � )8 (G), let 48,G denote the edge between G and )8 (G). Let 4G be the
edge 48,G where 8 ∈ N is the minimal natural number for which (M − "=−1) − {48,G}
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satisfies Hall’s condition. We know 4G exists by our previous observations. Define
"′= := {4G | G ∈ �= ∩ -=−1}, and let "= := "=−1 ∪ "′=.

Note that "= is a matching since "=−1 is a matching and 3� (G, H) > 5 (=) ≥ 8 for
all distinct G, H ∈ �= ∩ -=−1. Since "=−1 is Borel by our inductive hypothesis and
"′= was defined in a Borel manner, "= is a Borel matching. By our construction,
it is clear that ∪<≤=�< ⊆ -"= and "=−1 ⊆ "=. We want to show that M − "=

satisfies HallY=, 5 (=) . By the inductive hypothesis and our construction of"′=, M−"=

satisfies Hall’s condition. Let -= := - \ -"= . It remains to show that for all finite
(� −"=)2-connected sets � such that |� | ≥ 5 (=) and � ⊆ -= ∩ �0 or � ⊆ -= ∩ �1,
we have |#�−"= (�) | ≥ (1 + Y=) |� |.

Let � be a finite (� − "=)2-connected subset of -= ∩ �0 or -= ∩ �1. Let � :=
#�−"=−1 (�) − #�−"= (�). We consider the cases |� | ≥ 2 and |� | ≤ 1 separately.

First, suppose |� | ≥ 2. For each G ∈ �, there is some HG ∈ � such that G�HG .
Furthermore, there must exist some I such that (G, I) ∈ "′=, and exactly one of G
and I must be in �= Let G̃ ∈ {G, I} be the point contained in �=. Because "= is
a matching and � is contained in either �0 or �1, we have G̃ ≠ G̃′ for any distinct
G, G′ ∈ �. Then our definition of �= implies that 3� (HG , HG ′) > 5 (=) −4. Because �
is (�−"=)2-connected, there must be a path inM−"= from HG to HG ′. So there must
be at least b 5 (=)−4

4 c elements I ∈ � such that 3� (HG , I) ≤ 5 (=)−4
2 . Since we know

3� (HG , HG ′) > 5 (=) − 4 for distinct G, G′ ∈ �, note that the sets {I ∈ � | 3� (HG , I) ≤
5 (=)−4

2 } must be disjoint for all G ∈ �. Then |� | ≥ b 5 (=)−4
4 c · |� | ≥ 5 (=)

8 · |� |. So

|#�−"= (�) | = |#�−"=−1 | − |� |

≥ (1 + Y=−1) |� | −
8
5 (=) |� |

≥
((

1 + Y −
∑
8≤=−1

8
5 (8)

)
− 8
5 (=)

)
|� |

= (1 + Y=) |� |,

as desired.

We now consider the case |� | ≤ 1. Since |� | ≥ 5 (=), we can rewrite |� | =
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|#�−"=−1 (�) | − |#�−"= | (�) ≤ 1 as

|#�−"= (�) | ≥ |#�−"=−1 (�) | − 1

≥ (1 + Y=−1) |� | −
1
5 (=) |� |

> (1 + Y=−1) |� | −
8
5 (=) |� |

= (1 + Y=) |� |.

Thus, M − "= satisfies HallY=, 5 (=) . We have inductively constructed a sequence
{"=}=∈N of Borel matchings satisfying the desired conditions. Therefore, by our
earlier argument, M has a Borel perfect matching generically. �

Unlike in Hall’s theorem, Theorem 4.0.1 does not hold when Y = 0.
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