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ABSTRACT

Individually trapped neutral atoms are a promising candidate for use in quan-
tum computing and simulation applications. They are highly scalable, have
long coherence times and can be entangled via strong dipole-dipole interac-
tions by driving to highly excited Rydberg states. However, the fidelity of
single atom operations as well as two-atom entangling operations is limited
by intrinsic sources of decoherence such as atomic motion, as well as technical
sources of noise such as laser intensity fluctuations and phase/frequency fluctu-
ations. We study the effect of these factors on single atom Rabi oscillations and
two-atom Rydberg blockaded Rabi oscillations, using perturbation theory and
numerical simulation. We develop a window function approach which helps us
qualitatively understand the significance of the different spectral components
of the noise as well as quantitatively understand the dependence of the Rabi
oscillation fidelity on Rabi frequency. This allows us to predict the maximum
experimentally achievable fidelities using independent measurements of exper-
imental parameters such as noise spectra and atomic temperature. Turning to
the question of near-term scalability of the experimental system, we prototype
and test a method of generating a ’ladder’ configuration of optical tweezers
utilizing two independent lasers. Our setup allows us to fully tune the ge-
ometry of the ladder, namely the separation between the two rows, the angle
between them, and their relative position along the axis of the ladder. This
pseudo-2D configuration enables us to reach larger system sizes in the near
future and allows us to access beyond 1D physics.
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C h a p t e r 1

INTRODUCTION

Over the past few decades, one of the major goals of the physics community
has been the development of feasible quantum computers and quantum simu-
lators. From the time since the idea of using a quantum mechanical device to
simulate nature was first proposed [1], there has been remarkable experimental
[2] and theoretical [3] progress towards making this idea a reality. Large scale
quantum computers/simulators have significant applications in a large variety
of fields. For example, they would allows us to gain a deeper understanding
of many-body quantum phenomena in condensed matter [4], and the funda-
mental behavior of particles in high-energy physics [5]. They would enable us
to make accurate models of large molecules, improving our understanding of
quantum chemistry as well as potentially enabling more efficient chemical syn-
thesis [6]. They have already been shown to provide speed-ups over classical
computers in several important problems, and it is believed that they would
provide speed-ups in many more highly practical computational problems [3].

Various experimental platforms have been developed over the years to try to
build quantum computers and simulators. These devices usually work with
collections of (effectively) two-level systems known a qubits or quantum bits,
analogous to classical binary bits of information on classical computers. The
various experimental platforms can be categorized based on which quantum
mechanical system they use to define their qubits. A few prominent platforms
include superconducting circuits [7], trapped ions [8], quantum dots[9] and
neutral atoms [10]. Regardless of how a qubit is defined, universal quantum
computation and digital quantum simulation can be performed using single-
and two-qubit quantum gates [11], analogous to classical logical gates. Thus it
is convenient of think of quantum devices as devices that implement quantum
circuits comprised of quantum gates. To solve meaningful problems we would
like to perform quantum operations with many qubits and with large circuit
depths. To reach large system sizes, we would like our quantum devices to be
scalable. And to reach large circuit depths, we would like our quantum gates
to be precise and reliable, or ’high fidelity’. Thus scalability and gate fidelity
are the primary means of comparing various experimental platforms.
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Neutral atom arrays have recently emerged as a promising platform for quan-
tum computation [12, 13, 14, 15, 16, 17, 18] and simulation [19, 20, 21, 22,
23]. They are highly scalable, have long coherence times and competitive gate
fidelities. In particular, neutral atoms can be arranged in a large one-, two-
or three-dimensional arrays, and be addressed individually by laser beams for
qubit operations with little crosstalk to quantum states of nearby atoms [24,
25]. Gate protocols utilizing highly excited (Rydberg) states [26] currently
provide the best means for entangling two neutral atom qubits. Yet, the gate
fidelities achieved with neutral atoms are comparatively lower than those with
platforms such as trapped ions [27] or superconducting qubits [28]. Various
decoherence channels have limited the practically achievable fidelities in neu-
tral atom systems. However, this is a relatively more recent field and we are
still primarily limited by technical imperfections, rather than any fundamental
limitations of this platform [29, 30, 31]. Thus understanding and mitigating
the sources of decoherence in this system is very important.

1.1 Outline and summary of results

In the Endres group, we conduct experiments with individually trapped arrays
of neutral Strontium-88 (88Sr) atoms. In the latter portion of this chapter,
we provide an overview of this experimental setup. In neutral atom qubits,
single qubit rotations can be performed using single atom Rabi oscillations.
Two-qubit entanglement can be generated by driving Rabi oscillations in the
Rydberg blockade regime, in which strong interactions between Rydberg states
prevents the excitation of two nearby atoms to the Rydberg state. Thus we
focus our attention on single atom and blockaded Rabi oscillations.

In chapter 2, we review how atoms interact with a classical electromagnetic
field to undergo Rabi oscillations. We derive the rotating wave Hamiltonian
in the absence of noise as well as in the presence of classical noise. We pro-
vide a general solution to the two-level dynamics resulting from light-matter
interaction. We also review how two atoms in the Rydberg state interact via
the van der Waal potential to produce entanglement.

The sources of decoherence in neutral atom experiments include laser noise,
atomic motion at finite temperature, spontaneous emission, black body radia-
tion, off-resonant scattering of light, imperfect pulse control, and state detec-
tion and preparation errors. Of these, the dominant ones are laser intensity
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noise, laser frequency noise, atomic motion and spontaneous emission. In
chapter 3, we describe how we measured the laser intensity and frequency
noise power spectral density (PSD) for our Rydberg laser.

Previous works [32, 14, 26] have numerically studied the effect of various noise
sources on single atom Rabi oscillations. In chapter 4, we extend upon the pre-
vious works by providing a simple analytical understanding of the effect of the
dominant noise sources using perturbation theory. We analytically study the
effect laser intensity noise, laser frequency noise and atomic motion on single
atom and two-atom blockaded Rabi oscillations. Further we provide analytic
upper bounds on experimentally achievable single atom and blockaded π-pulse
fidelities. For the case of laser intensity and frequency noise, we derive analytic
’window’ functions which select only specific components of the intensity and
frequency noise spectra. These window functions help us qualitatively under-
stand the significance of various spectral components of the noise as well as
quantitatively understand the dependence of the Rabi oscillation fidelity on
Rabi frequency. We find that for the case of only laser intensity noise, the π-
pulse fidelity decreases with increasing Rabi frequency, whereas for the case of
only laser frequency noise, the π-pulse fidelity increases with increasing Rabi
frequency. The decoherence caused by atomic motion at finite temperature
also decreases with increasing Rabi frequency. We see similar behavior for the
blockaded π-pulse fidelity. We compare our perturbation theory results to nu-
merical simulation and find good agreement. Further, we compare our result
to our recent experimental work [17] in which we report the highest neutral
atom entanglement fidelity and find good agreement as well.

In chapter 5, we study single atom and blockaded Rabi oscillations of trapped
atoms. Most Rydberg atom experiments are conducted with the optical traps
momentarily turned off during laser interrogation. This is because generically
Rydberg states are repelled from red-detuned optical traps. However, blinking
the traps off during interrogation leads to heating and loss of atoms, presenting
challenges for sequential gates for large circuit depths. Thus we investigate
the fidelity of Rabi oscillations when the optical traps are left on. Instead of
working in the usual fock basis of the harmonic trapping potential, we define a
more convenient modified basis of a displaced harmonic oscillator. Working in
this basis allows us to treat the ’non-magic’ trapping condition perturbatively.
We find that we can still achieve high fidelities for single atom and blockaded



4

π-pulses when the Rabi frequency is much larger than the trap frequency
spacing. We also experimentally demonstrated this in [17].

In chapter 6, we turn to the question of near term scalability of Strontium
atom arrays. To achieve magic trapping condition, we require a trapping laser
wavelength of 813nm. However, the optical polarizability of Strontium at
this wavelength is comparatively small and the commercially available laser
power is also limited. We explore one method to scale up the system size
by using two separate lasers to double the optical power. We generate two
rows of optical tweezers, one from each laser, and combine them into a ladder
configuration where the two rows are parallel to each other. We prototype
a setup which allows us to fully tune the geometry of the ladder, we can
adjust the separation between the two rows and the position along the axis
of the ladder. This pseudo-2D configuration allows us to access beyond 1D
physics models in addition to reaching larger system sizes. Finally we test the
mechanical stability of the setup to check if the alignment or position of the
tweezers drifts with time. We find that the mechanical stability is satisfactory.

In chapter 7 we provide concluding remarks and outlook for future work.

1.2 Overview of Sr experiment

In the Endres lab, we conduct experiments with individually trapped atoms
of neutral Strontium-88 (88Sr). Compared to the more conventional alkali
atoms such as Rubidium or Cesium, alkaline-earth (-like) atoms (AEAs) such
as Strontium and Ytterbium have a more complex electronic structure which
provides several benefits as detailed below. AEAs have narrow optical tran-
sitions which allow us to reach lower atomic temperatures through narrow-
line cooling. They also have ultra-narrow optical transitions, also known as
’clock’ transitions, which allow us to build extremely precise and accurate op-
tical atomic clocks. AEAs allow for single photon excitation to Rydberg states
from metastable clock states, leading to high fidelity Rydberg control. Further
the two valence electron structure of AEAs allows for high fidelity loss-based
detection of Rydberg states using auto-ionization.

The full experiment is described in detail in [34, 33, 35, 17]. We summarize the
main steps below (see Figure 1.1). Strontium-88 atoms start off in an atomic
beam oven at a high temperature. These are first slowed using a Zeeman slower
and 2D magneto-optical trap (MOT). Then the atoms are cooled and trapped
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(a) Optical Tweezer (b) Simplified level structure and elec-
tronic configuration for 88Sr.

Figure 1.1: Overview of the experiment. (a) Tweezer trapping of Strontium
atoms. Individual 88Sr atoms are trapped in 813nm magic wavelength optical
tweezers generated through microscope objectives (grey) with NA = 0.5. The
atoms are cooled with 689nm light (red) and imaged with 461nm light (dark
blue). Figure from [33]. (b) Relevant level structure (left) and electronic
configuration (right) for Rydberg control with 88Sr. The Rydberg ground-state
qubit is defined by a metastable ‘clock’ state |g〉 and the 5s61s 3S1 mJ = 0
Rydberg state |r〉 (highlighted with a purple box), which we detect by driving
to an auto-ionizing 5p61s state |r∗〉. Subscripts: A, auto-ionizing; R, Rydberg;
C, clock. The clock state |g〉 is initialized from the absolute ground state |a〉.
Figure from [17]

in a 3D ’blue’ MOT operating on the broad 1S0 ↔ 1P1 dipole allowed blue
transition (460.9 nm), followed by a 3D ’red’ MOT operating on the narrow
1S0 ↔ 3P1 red transition (689.5 nm). The atoms in the absolute ground
state 1S0 (|a〉) are then loaded into a 1D array of optical tweezers which are
generated using an acousto-optic deflector (AOD) and microscope objectives
with NA = 0.5. The wavelength of the tweezer trapping light is chosen to
be 813.4 nm which is the magic wavelength for the doubly-forbidden ultra-
narrow 1S0 ↔ 3P0 optical clock transition (≈ 698nm). The number of atoms
loaded in each tweezer is restricted to be only zero or one via light-assisted
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collisions, resulting in ∼ 50% stochastic loading of each tweezer. The atoms
in |a〉 are imaged via fluorescence imaging on the blue 461nm transition. The
tweezers which are loaded with one atom are then rearranged to the desired
configuration (non-interacting or strongly interacting) using the AOD.

The meta-stable clock state |g〉 is prepared from |a〉 by first driving a coher-
ent π-pulse on the clock transition followed by incoherent optical pumping
of the remaining atom population in |a〉. Then Rydberg Rabi oscillations
are performed via single photon, resonant excitation of the 5s5p 3P0 |g〉 ↔
5s61s 3S1 |r〉 UV Rydberg transition (317nm). At the end of the Rydberg laser
pulse, we implement a high fidelity auto-ionization based detection scheme. To
detect atoms in |r〉 we excite the core electron from a 5s to a 5p level with
408nm light, which then rapidly auto-ionizes the Rydberg electron, and makes
the ionized atom dark to subsequent imaging of |g〉. Atoms in |g〉 are detected
by transferring the population back to |a〉 and using blue fluorescence imaging
of |a〉.

In the non-interacting regime, resonant excitation acts as a local X-rotation
about the Bloch sphere for the Rydberg qubit defined by |g〉 and |r〉. In the
strongly-interacting regime, the Rydberg-blockade effect prevents the excita-
tion of both atoms to the Rydberg state resulting in entanglement between
the two atoms. In this case a blockaded π-pulse results in the generation of
a symmetric bell state of the two atoms. Further, several schemes have been
proposed [36, 16, 29] (and realized with alkali atoms [16, 24]) to utilize the
Rydberg blockade effect for entangling gates among qubits utilizing long-lived
atomic states. These schemes can be readily adapted to AEA experiments us-
ing for example |a〉 and |g〉 as the qubit states and using |r〉 only for entangling
operations.
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C h a p t e r 2

LIGHT-MATTER AND ATOM-ATOM INTERACTIONS

In this chapter, we shall summarize how atoms interact with a classical elec-
tromagnetic field and how two atoms at a distance interact with each other.
There is extensive literature covering these topics and hence we shall only
present a brief overview here. For the case of light-matter interaction, we shall
first present the standard derivation of the rotating wave Hamiltonian for an
atom interacting with a monochromatic classical electromagnetic field. We
shall then generalize this derivation to the case of a laser with classical inten-
sity and phase/frequency noise. For the atom-atom interaction, we shall focus
on the case of van der Waals (dipole-dipole) interactions between Rydberg
states which are relevant for our experimental setting.

2.1 Rotating Wave Hamiltonian

This section is based on [37]. We begin by describing how an atom interacts
with a classical electromagnetic field. We treat the atom as a two-level system
(2LS) with ground state |g〉 and excited state |e〉 and an energy splitting ~ωA.
We shall occasionally use |r〉 for the excited state to indicate a Rydberg state.
We can write the atomic HamiltonianHA in the basis of the ground and excited
state as:

HA = −~ωA
2
σz (2.1)

where σµ represent the spin-1/2 Pauli matrices for µ = {x, y, z}. Let the
λ be the wavelength of the incident light, ωL be the angular frequency and
k = 2π/λ be the wavenumber. Further let the direction of propagation of the
EM wave be along the x-axis. Then the propagating electric field is varies with
position and time as given by a travelling wave ∝ cos (kx− ωLt− φ) where
φ is some arbitrary phase offset. Define Ω be the bare Rabi frequency, which
characterizes the strength of the atom-field coupling. Then we can write the
atom-field interaction Hamiltonian as:

HAF (t) = ~Ω cos (kx− ωLt− φ)σx (2.2)

The angular frequencies involved in these Hamiltonians are very large with
extremely short associated time-scales. We would like to make a frame trans-
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formation that eliminates this fast oscillation and reveals the slow dynamics
relevant on experimental time-scales. This is the essence of the Rotating Wave
Approximation (RWA). This frame transformation is identical to the interac-
tion picture formalism with an added approximation to drop fast-oscillating
terms. In terms of the interaction picture, define a b̈are" Hamiltonian HR,
and the associated time-evolution operator UR(t) as:

HR = −~ωL
2
σz (2.3)

UR(t) = exp

(
−iHRt

~

)
= exp

(
iωLt

2
σz
) (2.4)

Then the interaction picture Hamiltonian HI(t) is given by:

HI(t) = UR(t)†(HA +HAF (t))UR(t)−HR (2.5)

Further let us decompose the cosine term in HAF (t) as a sum of exponentials.
We shall make use of the fact that e−iασzσxeiασz = (e2iασ+ + e−2iασ−) where
σ+ = |e〉〈g| and σ− = |g〉〈e|. We define ∆ = ωL−ωA to be the detuning of the
laser (in angular frequency) with respect to the atomic transition (angular)
frequency. This gives us:

HI(t) =
~∆

2
σz +

~Ω

2

(
ei(kx−ωLt−φ) + e−i(kx−ωLt−φ)

)
(eiωLtσ+ + e−iωLtσ−)

=
~∆

2
σz +

~Ω

2

(
ei(kx−φ)σ+ + e−i(kx−φ)σ−

)
+

~Ω

2

(
ei(kx−2ωLt−φ)σ− + e−i(kx−2ωLt−φ)σ+

)
HI ≈

~∆

2
σz +

~Ω

2

(
ei(kx−φ)σ+ + e−i(kx−φ)σ−

)
(2.6)

In the last line we make the rotating wave approximation and drop the fast
oscillating terms. This gives us a time-independent rotating wave Hamiltonian
which governs the slow dynamics of the system in the laser frame of reference
(as opposed to the lab frame of reference). Restricting to just the electronic
degrees of freedom, we can treat the eikx factor as just a phase factor. This is
a good approximation for many experiments where the translational degrees
of freedom are not as important, for example at low temperatures and when
the experiment is conducted in free flight.
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2.2 2LS General Solution

Here we show the general solution for the driven two-level system (2LS). In
matrix form the Hamiltonian is given by:

H =
~
2

[
∆ Ωe−iφ

Ωeiφ −∆

]
(2.7)

We can define Ω̄ to be generalized Rabi frequency given by Ω̄ =
√

Ω2 + ∆2.
Let us define an angle θ using the relations:

cos θ =
∆

Ω̄
=

∆√
Ω2 + ∆2

, sin θ =
Ω

Ω̄
=

Ω√
Ω2 + ∆2

(2.8)

Then we can diagonalize the Hamiltonian H with the unitary U as H = UDU †

where D is a diagonal matrix. The unitary U and the diagonal matrix (of
eigen-energies) are given by:

U =

[
cos θ

2
sin θ

2
e−iφ

sin θ
2
eiφ − cos θ

2

]
, D =

[√
Ω2+∆2

2

−
√

Ω2+∆2

2

]
(2.9)

Thus the eigenstates of the Hamiltonian are:

|E+〉 =

(
cos θ

2

sin θ
2
eiφ

)
, |E−〉 =

(
sin θ

2
eiφ

− cos θ
2

)
(2.10)

2.3 RWA Hamiltonian for noisy case

Now we generalize the derivation of the rotating wave Hamiltonian for the case
when the driving laser has intensity and phase fluctuations. Instead of eq. 2.2,
we have the following noisy atom-field coupling Hamiltonian.

HAF (t) = ~Ω(t) cos (kx− ωLt− φ(t))σx (2.11)

Here Ω(t) represents the fluctuating Rabi frequency as a result of fluctuating
laser intensity and φ(t) represents the fluctuating laser phase. We shall make
a frame transformation as before to follow the laser frame of reference. We
make the assumption that the laser’s phase φ(t) is a differentiable function of
time. For any physical process we can expect φ(t) to at least be a continuous
function. However, its derivative need not be continuous. Yet we can still treat
φ(t) to be approximately differentiable in some coarse-grained sense. This is
because at the level of the rotating wave approximation, we are only concerned
with terms in the Hamiltonian that do not get averaged out are relevant on
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experimentally observable timescales. If we average φ(t) over some small time-
window ∆t ∼ 1/ωA then the discontinuities in the derivative of φ(t) vanish (as
long as φ(t) is continuous, which is a physically reasonable assumption).

To transform to the laser frame, as opposed to eq. (2.3), we define the bare
Hamiltonian HR(t) and associated time-evolution operator as:

HR(t) = −~(ωL + φ̇(t)

2
σz (2.12)

UR(t) = exp

(
−i
~

∫ t

0

HR(t′)dt′
)

= exp

(
i(ωLt+ φ(t))

2
σz
) (2.13)

This gives us the interaction picture Hamiltonian

HI ≈
~(∆ + φ̇(t))

2
σz +

~Ω(t)

2

(
eikxσ+ + e−ikxσ−

)
(2.14)

Define ν(t) = φ̇(t) be the instantaneous frequency noise of the laser. Then
by construction ν(t) is a stationary random variable, meaning that its first
moment vanishes, ν(t) = 0. If |ν(t)| � Ω then we can treat the laser frequency
fluctuations perturbatively. Let us also separate Ω(t) into its static component
Ω and its fluctuating component Ωε(t), i.e. Ω(t) = Ω(1 + ε(t)). Then ε(t) is
also a stationary variable ε(t) = 0. If |ε(t)| � 1, then we can also treat the
laser intensity fluctuations perturbatively. We write the Hamiltonian as the
sum of a noise free Hamiltonian H0 and a stationary perturbation Hamiltonian
H1(t). Ignoring the translational degrees of freedom, we can work in a two-level
system.

H0 =
~∆

2
σz +

~Ω

2
σx (2.15)

H1(t) =
~ν(t)

2
σz +

~Ωε(t)

2
σx (2.16)

We shall find the perturbative effect of noise on Rabi oscillations in Chapter
4.

2.4 Rydberg Interactions

Now we consider how two atoms interact with each other in our experimental
setup. This section is based off the review of Rydberg atom experiments [12].
Rydberg states are highly excited electronic states of an atom where a valence
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electron has a large principal quantum number n � 1. Two nearby atoms in
Rydberg states can interact very strongly with each other via the dipole–dipole
interaction. This interaction is given by the van der Waals potential.

Hint =
C6

R6
|rr〉〈rr| (2.17)

where R is the distance between the atoms and C6 is the van der Waals inter-
action coefficient that depends on the atomic species as well as the principal
quantum number. Then the interaction strength is given by UvdW = C6/R

6.
Consider the ground state |g〉 coupled to a Rydberg state |r〉 with a resonant
laser with Rabi frequency Ω. In the case of two atoms, the two-atom ground
state is still resonantly coupled to the states |gr〉 and |rg〉 containing a sin-
gle Rydberg excitation. However, the doubly excitated state |rr〉 is shifted
out of resonance by the strong van der Waals interaction UvdW . In the limit
UvdW � ~Ω, the double excitation is energetically forbidden. This effect is
known as the Rydberg blockade. See figure 2.1.

Figure 2.1: Rydberg interactions and the blockade effect. (a) A resonant laser
couples the ground state |g〉 to the Rydberg state |r〉 with coupling strength
Ω. (b) For two nearby atoms, the van der Waals interaction UvdW shifts the
doubly excited state |rr〉, preventing the double excitation of the atomic pair
when UvdW � ~Ω. Figure from [12]

Specifically, the laser couples the ground state |G〉 = |gg〉 only to the symmet-
ric collective state |W 〉 = 1√

2
(|rg〉+ |gr〉). The anti-symmetric collective state

|D〉 = 1√
2
(|rg〉 − |gr〉) is dark to the laser excitation. And the doubly excited

state |R〉 = |rr〉 is energetically forbidden. Thus the dynamics of the system
prepared in the ground state follow that of a two-level system comprised of just
|G〉 and |W 〉 with collectively enhanced Rabi frequency

√
2Ω. The state |W 〉 is

maximally entangled. Thus we can entangle two atoms by simply performing
a resonant pi-pulse in the blockaded regime. We shall consider the fidelity of
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such an entangling operation in the presence of noise and other decoherence
in Chapters 4 and 5. Ultimately, to generate entanglement that is useful from
a quantum computing perspective, we would like to entangle two atoms in
long-lived states such as hyperfine or metastable clock states. This blockade
effect was proposed in [36] precisely as a means of implementing fast quantum
gates between long-lived states in neutral atoms.
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C h a p t e r 3

TECHNICAL NOISE

There are two main sources of technical noise in our experiment, namely in-
tensity noise and frequency noise on the UV Rydberg laser. For an ideal laser,
the laser’s phase would be perfectly coherent and it’s intensity perfectly sta-
ble over time. However, in any real laser, this is not the case. The laser’s
intensity fluctuates with time resulting in fluctuations in the Rabi frequency
for the atoms. And the laser’s phase drifts manifesting as frequency noise for
the atoms. We briefly describe how these noise sources are measured in the
lab and report our measured noise power spectral densities (PSDs).

3.1 Laser intensity noise

103 104 105 106

Fourier Frequency [Hz]

10 10

10 9

S
(f)

 [1
/H

z]

Figure 3.1: Laser intensity noise power spectral density (PSD)

The intensity noise of a laser can be measured using a fast photo-diode. Let
I(t) be the actual intensity of the laser as a function of time with mean value
I0 = I(t). Let ∆I(t) = I(t)− I0 be the intensity fluctuation of the laser. The
voltage measured from the photo-diode is proportional to the laser intensity.
Thus we can shine the laser directly onto a fast photo-diode and record time
traces of the output voltage, call it VI(t) = κI(t) with mean value V0 = V (t).
Let ∆V (t) = V (t) − V0 be the voltage fluctuation of the photo-diode output
voltage. Then we can see that since V ∝ I, the relative voltage fluctuation is
equal to the relative intensity fluctuation, i.e. ∆V (t)/V0 = ∆I(t)/I0.
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Now the (time dependent) Rabi frequency Ω(t) is proportional to the square
root of the laser intensity, i.e. Ω(t) ∝

√
I(t). Assuming the noise to be

Gaussian distributed, we can approximate the relative fluctuations in Rabi
frequency to be half the relative fluctuations in laser intensity. This assumption
is valid when the relative fluctuations are small compared to the mean. Just
as before we define Ω(t) = Ω(1 + ε(t)). Thus our approximation is that

ε(t) ≈ 1

2

∆I(t)

I0

=
1

2

∆V (t)

V0

(3.1)

Thus using the voltage time trace V (t), we can calculate the auto-correlation
function for relative Rabi frequency noise Kε given by:

Kε(τ) = ε(t)ε(t+ τ) (3.2)

Since the noise variable ε(t) is real, the auto-correlation function is an even
function, Kε(τ) = Kε(−τ). Using Kε(τ) we can calculate the power spectral
density Sε(ω) via a Fourier transform.

Sε(τ) =

∫
dτeiωτKε(τ) =

∫
dτ cosωτKε(τ) (3.3)

The laser intensity noise PSD measured for our Rydberg laser is shown in
Figure 3.1. There are three main features in the spectrum. First, we see that
there is a peak in the PSD for low Fourier frequencies. This means that there
is a strong contribution from very slow fluctuations in the intensity. We call
this low frequency contribution the ’shot-to-shot’ noise, i.e. noise which varies
from one shot of the experiment to the next, but is essentially static over the
course of a single shot. Second, we see that for the majority of the spectrum,
the noise PSD is constant. This nearly frequency independent contribution is
the ’white’ noise contribution. Finally, there is a small peak in the noise at
about 500 kHz. This peak comes from the conversion of frequency noise to
intensity noise in an optical cavity. We shall discuss this in the next section.

3.2 Laser Frequency noise

Our Rydberg laser system is described in detail in [17]. We generate UV light
at λUV = 316.6 nm from an infrared extended cavity laser diode (ECDL) at
λIR = 1266.6 nm using two frequency doubling cavities. The fundamental
laser (IR) is stabilized to an ultralow expansion (ULE) optical cavity using
the Pound-Drever-Hall (PDH) method [38]. We use the in-loop PDH error
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Figure 3.2: Laser frequency noise power spectral density

signal derived from the cavity reflection to extract a frequency noise spectrum
as detailed in [39, 40]. We summarize this procedure below for completeness.

We measure the reflected light from the ULE cavity using a photo-diode and a
spectrum analyzer. This gives us the electrical power spectral density for the
photo-diode output voltage. From the calibration of the PDH locking signal,
we can convert the photo-diode voltage to laser frequency noise f measured
relative to the cavity resonance frequency f0, i.e. f = flaser − f0. Thus we
obtain a frequency noise power spectral density for the laser light reflected
off the cavity. However, we wish to obtain the frequency noise PSD of the
light incident on the cavity rather than the light reflected off the cavity. Thus
we need to correct for the cavity roll-off factor (CRF) associated with the
Fabry-Perot cavity, given by [39, 41]:

CRFF ,νc(f) =
1

F
+

1− 1/F

1 +
(

2f
νc

)2 (3.4)

where F is the finesse of the cavity, νc is the cavity linewidth (FWHM) and f
is the frequency noise measured relative to the cavity resonance. We measure
our cavity finesse to be ≈ 14000 using ringdown spectroscopy [42] and our
cavity linewidth to be ≈ 110 kHz. Dividing by this cavity roll-off factor, we
obtain the frequency noise PSD for the IR light incident on the cavity.

In our laser system, the IR light is frequency doubled twice in two bowtie
cavities. This doubling has two effects on the frequency noise PSD. First, since
the frequency is quadrupled, the frequency noise PSD increases by a factor of
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16 (since the PSD is the second moment of the noise). However, in addition,
when the light passes through the two bowtie cavities, the cavities filter the
frequency noise [14] imparting a cavity roll-off factor to the transmitted light.
The bowtie cavities have a finesse of ≈ 150 and a cavity linewidth of ≈ 7 MHz.
Multiplying by the factor of 16 and the two cavity roll-off factors for the two
cavities, we obtain the frequency noise PSD for the UV light.

The laser frequency noise PSD measured for our Rydberg laser is shown in
Figure 3.2. We see that the PDH locking suppresses frequency noise below the
cavity linewidth of ≈ 110 kHz. Additionally, we see that there is a broad peak
in the frequency noise at about 500 kHz. This is the ’servo bump’ of the PDH
lock. Since the typical Rabi frequency is larger than the cavity linewidth, the
servo bump has a significant contribution to the Rabi infidelity. At higher
Fourier frequencies, the frequency noise PSD tapers off very quickly (partly
because of the cavity filteration). The cavity filteration also results in some of
the laser frequency noise being converted to laser intensity noise. We see some
evidence of this in the measured intensity noise PSD. The broad servo bump
at ∼ 500 kHz shows up as a small peak in the intensity noise at ∼ 500 kHz as
seen in Figure 3.1.

3.3 Numerics

0 1 2 3 4 5
Time [ s]

0.0

0.2

0.4

0.6

0.8

1.0

rr
(t)

Figure 3.3: Numerically simulated noisy single atom Rabi oscillations. Here we
consider the effects of intensity noise and frequency noise for Rabi frequency
Ω = 2π × 1 MHz. The red curves are the individual traces of the population
ρrr(t) for randomly generated instances of ε(t) and ν(t). The black curve is
the average of the red curves, i.e., ρrr(t).
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In this section we discuss how to perform the numerical simulation of laser
intensity and frequency noise. We start with measured power spectral density
of the noise source, generate time-traces of the noise term in our Hamiltonian,
numerically simulate the time-dependent Schrodinger equation, and average
over many (typically ∼ 100) independently generated noise time-traces.

To generate the time-traces we follow the procedure from [39] summarized
below. Let SX(f) be the power spectral density of a stationary, random,
real process X(t). Let the Fourier component of X(t) with frequency f be
written as Af cos (2πft+ φf ). When we measure the power spectrum SX(f)

in a real system, we can only measure it at discrete frequencies with frequency
spacing ∆f . In this case, the amplitude of the Fourier component of X(t) with
frequency f is given by Af = 2

√
SX(f)∆f where the factor of 2 comes from

the positive and negative frequency components (for a real signal SX(f) =

SX(−f)). Since the different Fourier components in a random process are
uncorrelated, to generate a noise time-trace, we add them with random phase
offsets φf sampled uniformly, φf ∈ [0, 2π).

X(t) =
∑
f

2
√
SX(f)∆f cos (2πft+ φf ) (3.5)

We use this equation to generate ε(t) and ν(t). Using these time traces, we
numerically simulate the time-dependent Hamiltonians using the Runge-Kutta
method. In Figure 3.3, we show a sample numerical simulation of the effect of
frequency and intensity noise using the measured PSDs at a Rabi frequency
of Ω = 2π × 1 MHz.
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C h a p t e r 4

ANALYSIS OF NOISY RABI OSCILLATIONS

The fidelity of single qubit operations as well as two-qubit entangling gates is
limited by several decoherence channels of which the dominant ones are laser
intensity noise and frequency noise and atomic motion. Here we present ana-
lytical expressions for the effect of these noise sources on the Rabi oscillations
of a single atom and a pair of atoms in the Rydberg blockaded regime. We de-
rive this result in terms of the power spectral density of the noise sources and
use it to predict the maximum achievable single and two-qubit gate fidelities.

4.1 Introduction

The important noise sources in experiments involving laser-driven, optically
trapped neutral atoms include laser noise, atomic motion at finite temperature,
black body radiation, off-resonant scattering from the trap potential, imper-
fect pulse control, and state detection and preparation errors. Previous works
have numerically and experimentally studied these noise sources for Rabi os-
cillations in single atoms [32]. There has also been theoretical analysis of the
effect of white noise (Markovian approximation) on atomic spectroscopy [43,
44] and on the time dynamics in the context of stochastic differential equations
[45, 46]. However, the noise sources in a real experiment are often far from
Markovian and this non-Markovian behavior can have an important role on the
decoherence. The effect of non-Markovian, time-dependent noise sources has
been studied previously in solid-state isolated systems using a cluster expan-
sion method [47] and also in many-body interacting systems using a resonance
counting method [48]. However, here we present a simple description of the
effect of non-Markovian noise sources on Rabi oscillations of isolated and in-
teracting Rydberg atoms using time-dependent perturbation theory. We solve
for the early-time dynamics focusing on the effect of laser intensity noise, laser
frequency noise and atomic motion at finite temperature. Our result provides
upper bounds on achievable single and two-qubit gate fidelities for given noise
spectra, and also provides guidance to make improvements to these fidelities
by appropriately modifying servo-controls of the laser systems.

In Section 4.2, we analyze Rabi oscillations in a single Rydberg atom. Our
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main result is a perturbative solution of the effect of non-Markovian frequency
noise based on a simple window-function picture applied to experimentally
measurable noise spectra. These analytic time-dependent ’window functions’
allow us to quantitatively understand how different spectral components of
the noise play a role in the decoherence dynamics. In particular, they explain
the particular sensitivity of Rabi oscillations to frequency noise near the Rabi
frequency and intensity noise near zero frequency.

In Section 4.3, we analyze Rabi oscillations in a pair of strongly interacting
Rydberg atoms. By appropriately changing basis, the same analysis of inten-
sity and frequency noise from Sec. 4.2 can be applied here as well. For the
atomic motional effects we find that while the center-of-mass motion of the
atoms leads to similar decoherence as the single atom case, the relative motion
of the atoms couples to an undesired dark state.

4.2 Single Atom Rabi Oscillations

We consider a single atom (two-level system) driven on resonance as our bare
Hamiltonian. In the absence of a trapping potential, as is typical for Rydberg
atom experiments, the Hamiltonian is given by:

H0 =
~Ω

2
σx (4.1)

where Ω is the Rabi frequency and σµ is the spin-1/2 Pauli operator (µ =

x, y, z). Working in the density matrix formalism, ρ(t) = |Ψ(t)〉〈Ψ(t)| and
starting in the ground state, ρ(0) = |g〉〈g|, the bare density matrix evolves as:

ρ0(t) =

[
1
2
(1 + cos Ωt) i

2
sin Ωt

− i
2

sin Ωt 1
2
(1− cos Ωt)

]
(4.2)

We consider a perturbation Hamiltonian given by:

H1(t) =
~Ωε(t)

2
σx +

~ν(t)

2
σz (4.3)

The ε(t) term accounts for fractional fluctuations in the drive strength experi-
enced by the atoms arising from laser intensity noise, beam pointing instability
or pulse timing errors. This term commutes with the bare Hamiltonian and
is thus its effect is exactly soluble. The ν(t) term accounts for fluctuations in
the frequency of the laser experienced by the atoms, including laser frequency
noise as well as the Doppler shift of the transition caused by thermal motion
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of the atom (discussed further in Sec. 4.2). This term does not commute with
the bare Hamiltonian and its effect is thus not exactly soluble in general.

We assume that the noise sources are real, stationary (time-translation invari-
ant), Gaussian distributed and statistically independent. Thus,

ν(t) = ε(t) = 0 (stationary) (4.4)

ν(t)ε(t′) = 0 (independent) (4.5)

where X denotes the ensemble average of X. The noise sources are char-
acterized by their covariance, i.e., two-point correlation function denoted by
K(τ):

Kε(τ) = ε(t)ε(t+ τ) (4.6)

Kν(τ) = ν(t)ν(t+ τ) (4.7)

Since the noise sources are real, K(τ) = K(−τ). The power spectral density
(PSD) of the noise is given by the Fourier transform of the two-point correlation
function and is denoted by S(ω):

S(ω) =

∫
dτ cosωτK(τ) (4.8)

In the following, we individually calculate the effect of each noise source and
sum up their contributions to get the net effect. To quantify the decoherence
of the Rabi oscillations we examine the ensemble-averaged excited state pop-
ulation, ρrr(t) = 〈r| ρ(t) |r〉 . The π-pulse fidelity Fπ, which is the fidelity of
a single qubit bit-flip gate, is given by

Fπ = ρrr(π/Ω) (4.9)

Intensity Noise (Integrable)

We first analyze the effect of just intensity fluctuations. The corresponding
perturbing Hamiltonian is give by:

H1(t) =
~Ωε(t)

2
σx (4.10)

Note that this perturbation commutes with the bare Hamiltonian. Thus we
calculate the ensemble-averaged excited state population, ρrr(t), using a sim-
ilar approach as provided in [49].

ρrr(t) =
1

2
− cos Ωt

2
e
−Ω2

2

t∫
0

dt1
t∫
0

dt2Kε(t2−t1)
(4.11)
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Figure 4.1: Intensity noise effects on single atom Rabi oscillations (a) Window
functions, W0(ω, t), at three different Rabi interrogation times. The effect of
the noise on the excited population is proportional to the area underW0(ω, t)×
Sε(ω). The window function selects the near-DC components of the intensity
noise PSD. (c) Infidelity of a π-pulse (1 - Fπ). The red dots are generated using
numerical simulation using the measured PSD (see chapter ?? for details) and
the gray curve is from Eq. (4.16). Note that the fidelity reduces for higher
Rabi frequency since the width of the window function is proportional to the
Rabi frequency.

Using this general expression (Eq. 4.11) we can analyze three different noise
profiles of interest:

• Shot-to-shot noise:

ρrr(t) =
1

2
− cos Ωt

2
exp

(
−t2

τ 2
1

)
(4.12)

where we use Kε(t) = σ2
ε in which σε is the standard deviation of the

fractional laser intensity noise and τ1 =
√

2
Ωσε

is the 1/e Rabi decoherence
time. This gives us a Gaussian decay profile and gives a π-pulse fidelity
of Fπ = exp

(
−πσε√

2

)
.

• White noise:

ρrr(t) =
1

2
− cos Ωt

2
exp

(
−t
τ2

)
(4.13)

where we use Kε(t) = αεδ(t) and τ2 = 2
αεΩ2 is the 1/e Rabi decoherence

time. This gives an exponential decay profile and gives a π-pulse fidelity
of Fπ = exp

(−παεΩ
2

)
.

• Non-Markovian noise:
When the noise is neither shot-to-shot nor white, we can still write a
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convolution-less solution by writing the two-point correlation function
in terms of the PSD, (see Eq. (4.8)). This gives us:

ρrr(t) =
1

2
− cos Ωt

2
e−

Ω2t2

2

∫
dω
2π
Sε(ω)W0(ω,t) (4.14)

where W0 is a time-dependent ’window’ function on the noise PSD de-
fined as:

W0(ω, t) =

(
sin (ωt/2)

(ωt/2)

)2

(4.15)

Figure 4.1(a) shows a plot of the window function as a function of normal-
ized Fourier frequency ω/Ω, for different values of time t. This window
function is centered around zero frequency, and has a width of ∼ 2π/t.
At short times, the atom is sensitive to almost all the spectral com-
ponents of the noise, while at long times, the atom picks out only the
low frequency components of the PSD. The resultant decay profile is
generically neither Gaussian nor exponential and gives a π-pulse fidelity
of

Fπ = exp
(−π2

2

∫
dω

2π
Sε(ω)W0(ω, t)

)
(4.16)

Using the experimentally measured intensity noise PSD (figure ??) and
equation (4.16), we can calculate the effect of just intensity nosie on the
π-pulse fidelity as a function of Rabi frequency. See figure 4.1(b).

Frequency Noise

Here we consider the case of non-Markovian frequency noise, neglecting any
intensity noise:

H1(t) =
~ν(t)

2
σz (4.17)

This perturbing Hamiltonian does not commute with the bare Hamiltonian.
While the case of case of shot-to-shot noise (see Sec. 4.2) and white noise [45,
46] (also see Appendix A.4) can be solved exactly, in practice, laser frequency
noise is neither shot-to-shot nor white, as we can see from figure ??. Thus, we
resort to a perturbative analysis to analytically derive resultant time dynam-
ics for arbitrary frequency noise. In the interaction picture, the perturbing
Hamiltonian is given by H̄1(t) = U0(t)†H1(t)U0(t) where U0(t) = e−iH0t/~ is
the ’free’ time evolution operator.

H̄1(t) =
~ν(t)

2
(cos Ωt σz + sin Ωt σy) (4.18)
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The full (perturbed) time-evolution operator U(t) gets modified from the bare
one as:

U(t) = U0(t)
[
e
− i

~

t∫
0

dt′H̄1(t′)]
T

(4.19)

where [...]T denotes time-ordering. Starting from an initial state of ρ(0) =

|g〉〈g|, we can use this formal solution expanded order by order to compute the
excited state population as ρrr(t) = 〈r|U(t)ρ(0)U(t)† |r〉 = | 〈r|U(t) |g〉 |2.

Explicitly writing out the matrix element 〈r|U(t) |g〉 to 2nd order in pertur-
bation, we have:

〈r|U(t) |g〉 = −i sin
Ωt

2
− 1

2

∫ t

0

dt1ν(t1)

(
sin

Ωt

2
cos Ωt1 − cos

Ωt

2
sin Ωt1

)
+
i

4

∫ t

0

dt1

∫ t1

0

dt2ν(t1)ν(t2)

(
sin

Ωt

2
cos Ω(t1 − t2)− cos

Ωt

2
sin Ω(t1 − t2)

)
(4.20)

We can then compute | 〈r|U(t) |g〉 |2 to second order and average over the
noise realizations making use of Eq. (4.7). See Appendix ?? for details of the
calculation. The excited state population is then given by:

ρrr(t) =
1

2
− cos Ωt

(1

2
− t2

8

∫
dω

2π
Sν(ω)W1(ω,Ω, t)

)
+ sin Ωt

(t2
8

∫
dω

2π
Sν(ω)W2(ω,Ω, t)

)
(4.21)

where Sν(ω) is the Fourier transform of the two-point correlation function of
the frequency noise (see Eq. (4.8)). Here we have defined two new window
functions W1 and W2 to be:

W1(ω,Ω, t) =
(

3Ω2 + ω2 + (Ω2 − ω2) cos 2Ωt

− 4Ω2 cos Ωt cosωt− 4Ωω sin Ωt sinωt
)
/
(

(Ω2 − ω2)2t2
)

(4.22)

W2(ω,Ω, t) =
(

4Ωω cos Ωt sinωt− 4Ω2 sin Ωt cosωt

+ (Ω2 − ω2)(2Ωt+ sin 2Ωt)
)
/
(

(Ω2 − ω2)2t2
)

(4.23)

See Appendix A.2 for the derivation of these window functions. In figure
4.2(a,b) we plot W1 and W2 as a function of normalized Fourier frequency
for various Rabi pulse times t. We see that the window functions pick out
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Figure 4.2: Frequency noise effects on single atom Rabi oscillations. (a,b)
Window functions W1 and W2, probed at three different Rabi interrogation
times. The effect of the noise is proportional to the area under W1(ω,Ω, t)×
Sν(ω) and W2(ω,Ω, t) × Sν(ω). The window functions W1 and W2 at very
early times are Fourier broadened from their long time limit and thus exhibit
a single peak structure at early times and two sharp features at long times.
(c) Rabi oscillations with frequency noise effects for Ω = 2π×1 MHz. The red
dots are generated using numerical simulation using the measured PSD (see
Chapter ?? for details) while the gray curve is the perturbation theory result
Eq. (4.21). We see good agreement between the theory and numerics at early
times. (d) Infidelity of a π-pulse (1 - Fπ). The red dots are generated using
numerical simulation and the gray curve is from Eq. (4.24). We see that the
π-pulse fidelity increases with increasing Rabi frequency.

spectral components of the noise near low frequency at early times and near
Rabi frequency at late times. Thus at different times, the atoms are sensitive
to different parts of the noise PSD. To minimize the decoherence at a given
time, we can try to modify the PSD in a way that minimizes the overlap with
the window functions at that time.

Using Eq. (4.21), we can compute the π-pulse fidelity to be:

Fπ = 1− π2

4Ω2

∫
dω

2π
Sν(ω)W1(ω,Ω,

π

Ω
) (4.24)

We also compare the perturbative result of Eq. (4.21) with exact numerical



25

simulation of the frequency noise following the approach of [39, 50] (see Fig.
4.2(c)). We find good agreement between our perturbative calculation and
exact numerics.

Motional Effects

Here we analyze the effect of a finite momentum distribution on the Rabi
oscillations of Rydberg atom qubits. In this section we include the motional
degrees of freedom which were previously ignored, but we work in 1D since the
incoming laser beam can only change the atomic momentum along one axis (we
label this as X). The drive Hamiltonian (in the rotating wave approximation)
is given by:

H =
p2

2m
+

~Ω

2
(e−ikLxσ+ + h.c.) (4.25)

where kL is the wavevector of the Rydberg laser and σ+ = |r〉〈g|. We shall
work in the basis |p, s〉 where s ∈ (g, r) labels the atomic state and p is the
atom’s momentum. The Rabi drive couples the states |p, g〉 and |p− ~kL, r〉.
We can rewrite the Hamiltonian as:

H =

∫
dp Γ(p)

[
p2

2m
~Ω
2

~Ω
2

(p−~kL)2

2m

]
Γ†(p) (4.26)

where

Γ(p) =

(
|p, g〉

|p− ~kL, r〉

)
(4.27)

We eliminate the term p2/2m from the diagonal which only acts as an energy
offset and absorb the recoil shift term ~2k2

L/2m into the transition frequency
since it is independent of momentum p. The remaining term is the effective
Doppler detuning of δ = kLp/m. Starting in a pure state ρ(0) = |p, g〉〈p, g|,
the atom experiences detuned Rabi oscillations with effective Rabi frequency:

Ωeff =
√

Ω2 + δ2 ≈ Ω(1 +
δ2

2Ω2
) (for δ � Ω) (4.28)

By tracing over the final momnetum of the atom, we can write the excited
state population as ρrr(t; p) where p stands for the initial momentum:

ρrr(t; p) =
Ω2

Ω2
eff

(1− cos Ωefft)

2
(4.29)

≈ 1− ξ2

2
− 1− ξ2

2
cos

(
Ωt(1 +

ξ2

2
)

)
(4.30)
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where we have defined the normalized Doppler detuning ξ = δ/Ω = kLp
mΩ

and
assume ξ � 1. Now suppose the initial state is not a pure momentum eigen-
state, but is given by the density matrix:

ρ(0) =

∫
dp1

∫
dp2f(p1, p2) |p1, g〉〈p2, g| (4.31)

where f(p1, p2) represents the coherent as well as thermal momentum distri-
bution. Notice that the Hamiltonian does not couple different momentum
eigenstates within the same electronic state. Thus, when we trace over the
motional degrees of freedom, we are only left with the diagonal terms f(p, p):

ρrr(t) =

∫
dp 〈p, r| e−iHt/~ρ(0)eiHt/~ |p, r〉

=

∫
dpf(p, p)ρrr(t; p)

Now f(p, p) depends on the atomic temperature T and the details of the
trapping potential from which the atom is released. For low temperatures,
we can assume that the trapping potential is simply a harmonic potential
Utrap(x) = 1

2
mω2x2 where ω is the trapping frequency. Starting in a thermal

state of this potential with temperature T , we can calculate p = 0 and

p2 =
~mω

2 tanh ( ~ω
2kBT

)
. (4.32)

For very low temperatures, kBT � ~ω, the momentum variance approaches
the Heisenberg limit p2 → ~mω/2. Whereas for higher temperatures, kBT �
~ω, the momentum variance approaches the classical limit p2 → mkBT . We
can approximate f(p, p) = N (0, p2), i.e. a Gaussian distribution with zero
mean and variance p2. This defines the variance of ξ which we denote by
ξ2

0 =
k2
Lp

2

m2Ω2 . The probability distribution of ξ is P (ξ) = N (0, ξ2
0).

Finally, tracing over final momentum distribution we get the following (see
Appendix A.1 for details of calculation):

ρrr(t) =

∫
dξP (ξ)ρrr(t; p) (4.33)

≈ 1− ξ2
0

2
− |σ(t)(1− σ(t)2)|

ξ0

cos (Ωt+ φ(t))

2
(4.34)

where σ2(t) =
ξ2
0

1−iΩtξ2
0
is the complex time-dependent variance that enters the

averaging integral, and φ(t) = arg(σ(t)(1− σ(t)2) is the Doppler-induced time-
dependent phase shift. From Eq. (4.34), we identify that the Rabi signal has
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Figure 4.3: Infidelity of a π-pulse (1−Fπ) plotted as a function of temperature
and Rabi frequency. Here we used 88Sr atoms with a trapping frequency ω =
2π × 80 kHz and kL = 2π/(317nm). Considering only motional effects, the
fidelity increases with Rabi frequency and decreases with temperature.

a decay timescale of τ = 1
Ωξ2

0
= Ωm2

k2
Lp

2
. The π-pulse fidelity is given by:

Fπ = 1− ξ2
0 +O(ξ4

0) = 1− k2
Lp

2

m2Ω2
(4.35)

Thus for a given temperature, going to higher Rabi frequency Ω increases the
fidelity (see Fig. 4.3)

Note that tracing over the momentum distribution to find ρrr(t) is identical
to the case of averaging over an ensemble of experiments, each with a shot-
to-shot frequency detuning δ. Hence atomic motion can be considered to be
a shot-to-shot frequency noise source. If there is an additional independent
source of shot-to-shot frequency noise, we can simply use an appropriately
modified variance, ξ2

0 = ξ2
0,1 + ξ2

0,2.

Combined effect

Finally, we can consider what happens when we have all three noise sources:
intensity noise, frequency noise, and atomic motion. As per our assumption,
these sources of noise are statistically independent and we can simply add
their contributions together. From Eqs. (4.16,4.24, and 4.35), the combined
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Figure 4.4: Infidelity of a π-pulse (1 - Fπ) considering the effects of intensity
noise, frequency noise and temperature. The red dots are generated using
numerical simulation and the gray curve is from Eq. (4.36). In addition,
the star marker represents the (SPAM corrected) experimentally achieved π-
pulse fidelity for this system reported in [17]. We see very good agreement
between numerics, our perturbative result and the experimental data point.
This implies that the noise sources we have considered are indeed the only
dominant ones in our experiment. At low Rabi frequency, the limiting factor is
frequency noise whereas at high Rabi frequency, the limiting factor is intensity
noise.

π-pulse fidelity is:

Fπ = 1− δ2

Ω2
− π2

2

∫
dω

2π
Sε(ω)W0(ω,

π

Ω
)

− π2

8Ω2

∫
dω

2π
Sν(ω)W1(ω,Ω,

π

Ω
) (4.36)

We also compare this result to the recent experimental work from our group
[17] (see Fig. 4.4). We find very good agreement between our model and the
experimentally achieved fidelity. This implies that the noise sources we have
considered here are the only dominant ones in our experiment. One known
decoherence source which we have ignored here is spontaneous emission. We
estimate our Rydberg state lifetime to be ≈ 80µs. The contribution to the π-
pulse infidelity at the Rabi frequency of ≈ 2π× 7MHz is ≈ 2× 10−3 estimated
using the integrated Rydberg state population [26]. This shifts our grey curve
in figure 4.4 up, but is still within error bars of the experimental data point.
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4.3 Blockaded Rabi Oscillations

When atoms are laser driven in the Rydberg-blockaded regime [26, 14], the
very strong dipole-dipole interaction of the Rydberg states greatly suppresses
the probability of a double excitation within the blockade radius. The atoms
within the blockade radius become entangled as a result of this interaction. For
the Rydberg-blockaded Rabi oscillation, the two-atom Hamiltonian is given by:

H =
~Ω

2

(
e−ikLx1σ+

1 + e−ikLx2σ+
2 + h.c.

)
+ V (x1, x2) |r1r2〉〈r1r2| (4.37)

where x1 and x2 are the positions of the two atoms and V (x1, x2) is the van
der Waals interaction term between the Rydberg states. In the ideal blockade,
the interaction strength is infinite V (x1, x2) → ∞. In this case, we can treat
the interacting two-atom system as a three-level system with the basis states:
ground state |g〉, bright state |w〉, and dark state |d〉 as defined below. In the
case of finite but large Rydberg interaction strength, the blockade condition
is not exact. We consider this case of in section ??.

|g〉 = |g1g2〉 (4.38)

|w〉 =
e−ikLx1 |r1g2〉+ e−ikLx2 |g1r2〉√

2
(4.39)

|d〉 =
e−ikLx1 |r1g2〉 − e−ikLx2 |g1r2〉√

2
(4.40)

The bare Hamiltonian in this basis is given by (see Appendix A.3 for deriva-
tion):

H0 =
~Ω2

2
Xgw (4.41)

where Ω2 ≡
√

2 Ω is the enhanced Rabi frequency and Xgw ≡ |w〉〈g| + |g〉〈w|.
See figure 4.5.

The intensity and frequency perturbations to this Hamiltonian are given by:

H1(t) =
~Ω2ε(t)

2
Xgw +

~ν(t)

2
(Zgw − |d〉〈d|) (4.42)

where Zgw ≡ |g〉〈g|−|w〉〈w|. Just as before, ε(t) characterizes the laser intensity
fluctuations and ν(t) characterizes the laser frequency noise. We shall treat
motional effects separately in section 4.3. The effect of atomic motion appears
as a local independent Doppler shift for each atom as well as a coupling to the
dark |d〉 state.
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V

Figure 4.5: Rydberg blockade effect. The blockaded Hamiltonian has an en-
hanced Rabi frequency Ω2 =

√
2Ω and the interaction strength V prevents

excitation of the |r〉 state.

Note that the states |w〉 and |d〉 are maximally entangled states. Starting
from the |g〉 state, by driving a resonant π-pulse in the blockade regime (pulse
duration of π/Ω2), we can prepare the symmetric maximally entangled state
|w〉. This blockaded π-pulse is thus an entangling gate. Note that while |d〉 is
also maximally entangled, an incoherent mixture (or even any generic coherent
mixture) of |w〉 and |d〉 is not maximally entangled. Thus we define the two-
qubit entanglement fidelity as:

F2 = ρww(π/Ω2) (4.43)

If F2 = 1 then the applied gate resulted in maximal entanglement. If F2 < 1,
then the gate was imperfect and the atoms are not maximally entangled.

Intensity noise (integrable)

For the case of just intensity noise perturbation, the system is integrable just
as before and in fact, there is no contribution of the dark state:

H1(t) =
~Ω2ε(t)

2
Xgw (4.44)

The subspace spanned by |g〉 and |w〉 does not mix with the |d〉 state. This
case is identical to the one for a single atom with Ω→ Ω2 and Fπ → F2. Thus
we simply refer the reader to Section 4.2.



31

Frequency noise

For the case of frequency noise perturbation, the system is no longer integrable:

H1(t) =
~ν(t)

2
(Zgw − |d〉〈d|) (4.45)

While the Hamiltonian explicitly has a term with |d〉〈d|, there is no term that
couples the |g〉 state or the |w〉 state to the |d〉 state. Thus once again, the
subspace spanned by |g〉 and |w〉 does not mix with the |d〉 state. Hence this
case is identical to the one for a single atom with Ω→ Ω2 and Fπ → F2. We
refer the reader to Section 4.2.

Finite blockade interaction strength

So far we assumed an infinite Rydberg interaction strength and completely
eliminated the |r〉 = |r1r2〉 state. In the case of a finite but large interaction
strength, V (x1, x2) = V � ~Ω, the blockade condition is not perfectly satis-
fied. However, we can still adiabatically eliminate the |r〉 state in the dressed
state picture. In this section, we ignore any laser noise and consider only the
effect of imperfect blockade on the entanglement fidelity. In particular, let us
see how the state |w〉 gets dressed with a slight admixture of |r〉 in the case of
imperfect blockade, resulting in loss of fidelity.

Consider the Hamiltonian Hwr for just the states |w〉 and |r〉

Hwr = V |r〉〈r|+ Ω2

2
(|w〉〈r|+ |r〉〈w|) (4.46)

Let |r〉 and |w〉 be the eigenstates of Hwr. We shall treat the Rabi drive
as a perturbation on top of the Rydberg interaction Hamiltonian. Thus
H0 = V |r〉〈r| and Hpert = Ω2

2
(|w〉〈r| + |r〉〈w|). We can see that |w〉 and

|r〉 are eigenstates of H0 with energies Ew = 0 and Er = V . Using standard
time-independent pertubation theory to second order, we can calculate the
corrections to eigenenergies to be E(2)

w = −~2Ω2

2V
and E(2)

r = ~2Ω2

2V
.

Going back to the full Hamiltonian, the Rabi drive between |g〉 and |w〉 is no
longer resonant because the state |w〉 has shifted down in energy as a result
of the admixture of |r〉. We can make the drive between |g〉 and |w〉 resonant
by introducing an appropriate laser detuning. Now starting in the state |g〉〈g|,
performing a π-pulse with the Rabi drive, we can prepare the state |w〉〈w|.
However, the entanglement fidelity is not unity since 〈w|w〉 6= 1. In fact,

〈w|w〉 ≈ 1− ~2Ω2

2V 2
(4.47)
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Thus the entanglement fidelity in the case of imperfect blockade (and no other
noies) is given by:

F2 = |〈w|w〉|2 ≈ 1− ~2Ω2

4V 2
(4.48)

Motional effects

Here we analyze the effect of a finite momentum distribution on the blockaded
Rabi oscillations. The drive Hamiltonian (in the rotating wave approximation)
is given by:

H =
p2

1

2m
+

p2
2

2m
+

~Ω

2
(e−ikLx1σ+

1 + e−ikLx2σ+
2 + h.c.) (4.49)

We shall work in the basis |p1, p2, s〉 where s ∈ (g, w, d) labels the electronic
state and p1 and p2 represent the atomic momenta.

|p1, p2, g〉 = |(p1, g1), (p2, g2)〉

|p1, p2, w〉 =
1√
2

(|(p1 − ~kL, r1), (p2, g2)〉

+ |(p1, g1), (p2 − ~kL, g2)〉)

|p1, p2, d〉 =
1√
2

(|(p1 − ~kL, r1), (p2, g2)〉

− |(p1, g1), (p2 − ~kL, g2)〉)

In this basis, the Hamiltonian can be rewritten as follows (up to a constant
kinetic energy term):

H =

∫
dp1

∫
dp2 Γ(p1, p2)

×


~kL(p1+p2)

2m
~Ω2

2
0

~Ω2

2
0 ~kL(p2−p1)

2m

0 ~kL(p2−p1)
2m

0

Γ†(p1, p2) (4.50)

where

Γ(p1, p2) =

 |p1, p2, g〉
|p1, p2, w〉
|p1, p2, d〉

 (4.51)

See Appendix A.3 for derivation.

We see that the Hamiltonian has a Doppler detuning term between |g〉 and
|w〉 which is sensitive to the global motion of the two atoms, and a Doppler
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Figure 4.6: Motional effects in the blockade

coupling between |w〉 and |d〉 which is sensitive to only the relative motion
of the two atoms. We solve this case perturbatively assuming the Doppler
shifts are much smaller than the Rabi frequency. Suppressing the momentum
degrees of freedom once again, we write the bare Hamiltonian same as before:

H0 =
~Ω2

2
Xgw (4.52)

and the perturbation Hamiltonian is given by:

H1 =
~δ1

2
(|g〉〈g| −Xwd) +

~δ2

2
(|g〉〈g|+Xwd) (4.53)

where δj = kLpj/m and Xwd ≡ |w〉〈d| + |d〉〈w|. Using the time-evolution
operator U(t) (Eq. (4.19)), the ensemble-averaged bright state population
ρww(t) = | 〈w|U(t) |g〉 |2, can be calculated to second order as:

ρww(t) =
(1

2
− 5δ2

4Ω2
2

)
(1− cos Ω2t)

+
δ2t

8Ω2

sin Ω2t+O(δ4t4) (4.54)

We can estimate the fidelity of an entangling π-pulse by plugging in t = π/Ω2:

F2 = 1− 5δ2

4Ω2
= 1− 5k2

Lp
2

4m2Ω2
(4.55)

Similarly for the dark state, we find:

ρdd(t) =
δ2

Ω2
2

(
3− cos Ω2t− 4 cos

Ω2t

2

)
+O(δ4t4) (4.56)

In Fig. 4.7, we compare our perturbative calculation with exact numerical
simulation of the motional effects in the three-level system using Eqs. (4.52,
4.53) and find good agreement between the two at early times. At longer
times, we need to go to higher orders in perturbation strength.
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Figure 4.7: Blockaded Rabi oscillations. (a) and (b) Population of |w〉 and |d〉
respectively including only motional effects at Rabi frequency Ω = 2π×3 MHz,
trap frequency ω = 2π × 80 kHz and temperature T = 15 µK (to exaggerate
the decoherence). The blue dots are generated using numerical simulation,
the gray curve is the perturbation theory result Eq. (4.54, 4.56). We see good
agreement between the theory and numerics at early times. (c) and (d) Same
as (a) and (b) respectively except with Ω = 2π × 1 MHz. The decoherence
is faster at this lower Rabi frequency. (e) Infidelity of an entangling π-pulse
(1 - F2) at same trapping frequency and temperature. The blue dots are
generated using numerical simulation and the gray curve is from Eq. (4.55).
(f) 2D color plot of the entangling π-pulse infidelity (1 - F2). Considering only
motional effects, the fidelity increases with Rabi frequency and decreases with
temperature.

Combined effect

Considering the effect of all the different noise sources, namely, intensity noise,
frequency noise, finite blockade strength and atomic motion, we get a combined
two-atom entanglement fidelity of

F2 = 1− 5

4

δ2

Ω2
− ~2Ω2

4V 2
− π2

2

∫
dω

2π
Sε(ω)W0(ω,

π√
2Ω

)

− π2

16Ω2

∫
dω

2π
Sν(ω)W1(ω,

√
2Ω,

π√
2Ω

) (4.57)

See Fig. 4.8 for a comparison to numerics. In addition, we also compare
this result to the recent experimental work from our group [17]. We find that
our entanglement fidelity predicted using independent measurements of noise
parameters is consistent with our experimental data point at the 1σ level. We
estimate the contribution to the infidelity from spontaneous emission using
the integrated Rydberg state population and find it is ≈ 10−3. Thus our
predicted fidelity is still consistent with the experimental data point. Thus
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Figure 4.8: Infidelity of a two-qubit entangling π-pulse (1 - F2) considering
the effects of intensity noise, frequency noise, finite blockade strength and
temperature. We use an interaction strength of V = h × 130 MHz as in our
experimental setup [17]. The blue dots are generated using numerical simu-
lation and the gray curve is from Eq. (4.57). In addition, the star marker
represents the (SPAM corrected) experimentally achieved two-atom entangle-
ment fidelity reported in [17]. We see good agreement between numerics and
our perturbative result. Our predicted fidelity is consistent with our exper-
imental data point at the 1σ level. This implies that the noise sources we
have considered are the dominant ones in our experiment. At low Rabi fre-
quency, the limiting factor is frequency noise whereas at high Rabi frequency,
the limiting factor is intensity noise.

our noise modelling is accurate enough to predict experimentally achievable
entanglement fidelities.

4.4 Conclusion

We have analyzed some of the dominant noise sources present in Rabi oscilla-
tions of Rydberg atoms. For both the non-interacting case and the Rydberg
blockaded case, we provided analytical expressions for the effect of atomic
motion, intensity noise and frequency noise with an arbitrary PSD. We also
considered the case of imperfect blockade. We presented our results in terms
of window functions acting on the noise PSDs which give us qualitative as well
as quantitative understanding of the effect of the various frequency compo-
nents of the noise. We compared our analytical results with exact numerical
simulations and saw good agreement. Additionally, we compared our pre-
dicted π-pulse fidelity and entanglement fidelity to the actual experimentally
observed fidelities and found that our prediction is consistent with what we
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observe. Thus our modelling helps us predict the experimentally achievable
fidelities and helps us understand how the various noise sources contribute to
the decoherence of Rabi oscillations.
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C h a p t e r 5

RABI OSCILLATIONS OF ATOMS IN A TRAP

5.1 Motivation

So far when studying the Rabi oscillations of atoms we have only considered
the electronic degrees of freedom of the atoms and ignored their translational
degrees of freedom. In this chapter, we shall study how the (quantized) motion
of the atoms affects Rabi oscillations. There are two ways in which the motion
of the atom comes into play. Firstly, when the atoms absorb a photon, they also
experience a momentum kick from the momentum of the photon. Secondly,
while typical experiments with Rydberg atoms are conducted with the optical
tweezers turned off, we can also conduct these experiments with the confining
potentially left on. This means that the momentum and position the atom
can affect how they behave when driven by a laser.

At the start of a quench experiment, the atoms are held in optical tweezers
using the optical polarizability of the atoms. The tightly focused gaussian trap-
ping beams of light give rise to an approximately harmonic trapping potential
at the focus. See Appendix C for details of the full trapping potential. Here,
we shall work in 1D and treat the potential to be harmonic. If we fine-tune the
wavelength of the trapping light, we can ensure that the optical polarizability
of the ground state |g〉 and excited state |e〉 is identical. This is known as a
’magic’ trapping condition [51]. However, in general the polarizabilities of the
two states are unequal. In fact, when the excited state is a Rydberg state, it
is generically not even trapped by the optical tweezer (magic trapping of Ryd-
berg states with optical tweezers was only recently demonstrated in Yb atoms
[52]). We (Endres group) recently experimentally demonstrated high fidelity
Rydberg Rabi oscillations in the presence of the non-magic potential of optical
tweezers [17]. For the large Rabi frequency that we were able to achieve, the
presence of the optical potential did not seem to have any appreciable effect on
the Rabi oscillation fidelity. Futher, we were able to demonstrate high-fidelity
Rydberg blockaded oscillations in the presence of the traps as well. Thus
we are interested in understanding Rabi oscillations in the generic non-magic
trapping condition.
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5.2 Hamiltonian

The case of Rabi oscillations with a harmonic trapping potential in the case
where the trap frequency is much larger than the Rabi frequency has been
well studied in literature [53]. Here, the Hamiltonian is analyzed using basis
states which are electronic states tensored with the fock basis of the harmonic
oscillator. However, for high-fidelity Rydberg atom Rabi oscillations, we are
interested in the case where the Rabi frequency is much larger than the trap
frequency. In this case, the usual basis is not convenient to work in, as we
shall see. Instead, we define a new basis of a displaced harmonic oscillator in
which all the operators in the Hamiltonian are nearly diagonal.

The full single particle Hamiltonian is given by:

H =
p2

2m
⊗ 1

+
1

2
mx2

(
ω2
g |g〉〈g|+ ω2

e |e〉〈e|
)

+
~Ω

2

(
eikx |e〉〈g|+ e−ikx |g〉〈e|

)
− ~∆ |e〉〈e|

(5.1)

We shall rewrite this Hamiltonian in a more convenient form as follows. We
introduce a fictitious trapping frequency ω. Using this frequency as a reference,
we define the relative polarizability of the ground electronic state to be αg =

ω2
g/ω

2. We define the relative polarizability of the excited state αe similarly.
Note that for the magic condition αe = αg, for the general non-magic condition
αe 6= αg, and for the case when the trapping potential is turned off altogether,
αe = αg = 0. Using these variables, we get the following Hamiltonian:

H =

(
p2

2m
+

1

2
mω2x2

)
⊗ 1

+
~Ω

2

(
eikx |e〉〈g|+ e−ikx |g〉〈e|

)
− ~∆ |e〉〈e|

+
1

2
mω2x2 ((αg − 1) |g〉〈g|+ (αe − 1) |e〉〈e|)

(5.2)

Now we can expand the continuous position variables using the ladder oper-
ators defined by the harmonic oscillator with trapping frequency ω. That is,
we define x and p as:

x = x0(a+ a†)

p = p0(ia† − ia)
(5.3)
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where x0 =
√

~
2mω

is the length scale of the harmonic oscillator and p0 =√
~mω

2
= ~

2x0
is the momentum scale. Let η be the Lamb-Dicke parameter

i.e. η = kx0 = 2πx0

λL
where λL is the wavelength of the driving laser. This

parameter indicates how delocalized the atomic wavefunction is compared to
the laser wavelength. If η � 1, the atom is tightly confined. And if η ≈ 1,
the atomic spread is comparable to the wavelength. Given the commutation
relation [x, p] = i~, we have [a, a†] = 1. Also a |n〉 =

√
n |n− 1〉 and a† |n〉 =

√
n+ 1 |n+ 1〉. In this basis the Hamiltonian is given by:

H = ~ω
(
a†a+

1

2

)
⊗ 1

+
~Ω

2

(
eiη(a+a†) |e〉〈g|+ e−iη(a+a†) |g〉〈e|

)
− ~∆ |e〉〈e|

+
~ω
4

(a+ a†)2 ((αg − 1) |g〉〈g|+ (αe − 1) |e〉〈e|)

(5.4)

Now we shall see why the usual fock basis is a good basis for the case where
Ω� ω and why it is not convenient when ω � Ω. Assume for now that the de-
tuning ∆ is zero (resonant) or negligible compared to other energy scales in the
Hamiltonian. Note that the term a†a is diagonal in the fock basis, i.e. it does
not change the harmonic oscillator occupation number (〈n′| a†a |n〉 ∝ δn′,n).
The term (a+ a†)2 changes the occupation number by at most 2 levels. How-
ever, the term eiη(a+a†) could change the occupation number by an arbitrary
number (see Figure 5.1). We can see this by Taylor expanding the operator
using η as the expansion parameter. The explicit form of the operator eiη(a+a†)

in the fock basis can be expressed in terms of a generalized Laguerre polyno-
mial [53]. The coefficient of the eiη(a+a†) is the Rabi frequency ∼ Ω. In the case

Figure 5.1: Magnitude of the matrix elements of the operator eikx in the fock
basis. We work with Lamb-Dicke parameter η = 0.5. Notice that the matrix
elements have a significant non-zero magnitude for a large number of fock
states |n+ ∆n〉 starting from the state |n〉.
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where Ω� ω, the transitions where the oscillator occupation number changes
by more than one are strongly suppressed by a factor of ∼ Ω/ω. Thus even
though the operator eiη(a+a†) connects several different states, most of those
transitions are energetically suppressed. However, when ω � Ω, the transi-
tions in oscillator occupation number caused by the operator eiη(a+a†) are no
longer energetically suppressed. Thus a single n in the ground electronic state
can be driven to many different n′ in the excited electronic state. Thus we
need to define a new basis in which the operator eiη(a+a†) connects only a few
different states (ideally only 2).

5.3 Strong resonant drive

Here we work in the limit ωg/Ω � 1. We do not make assumptions about
the magnitude of the Lamb-Dicke parameter η. We shall set ω = ωg. Let
ξ = eiη(a+a†) and ξ† = e−iη(a+a†). Let H = H0 +H1 where

H0 =
~Ω

2

(
ξ |e〉〈g|+ ξ† |g〉〈e|

)
− ~∆ |e〉〈e|+ ~ωg

(
a†a+

1

2

)
⊗ 1

H1 =
~ωg
4

(αe − 1)(a+ a†)2 |e〉〈e|
(5.5)

We shall use |g, n〉 = |g〉 ⊗ |n〉 and |e, ξ(n)〉 = |e〉 ⊗ eiη(a+a†) |n〉 as basis states.
Note that 〈e, ξ(n)| = 〈e| ⊗ 〈n| e−iη(a+a†). Inserting resolutions of the identity
to the left and right of the Hamiltonian, we can write the Hamiltonian as:

H =

(∑
n′

|g, n′〉〈g, n′|+ |e, ξ(n′)〉〈e, ξ(n′)|

)
H

(∑
n

|g, n〉〈g, n|+ |e, ξ(n)〉〈e, ξ(n)|

)
(5.6)

Now for convenience we define the the spinors Γn and Γ†n as:

Γ†n =
(
|g, n〉 |e, ξ(n)〉

)
Γn =

(
〈g, n|
〈e, ξ(n)|

)
(5.7)

Then we can rewrite H as:

H =

(∑
n′

Γ†n′Γn′

)
H

(∑
n

Γ†nΓn

)
=
∑
n,n′

Γ†n′
(
Γn′HΓ†n

)
Γn (5.8)

where
(
Γn′HΓ†n

)
is a 2× 2 matrix given by:

hn′,n =
(
Γn′HΓ†n

)
=

[
〈g, n′|H |g, n〉 〈g, n′|H |e, ξ(n)〉
〈e, ξ(n′)|H |g, n〉 〈e, ξ(n′)|H |e, ξ(n)〉

]
(5.9)
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Note that since x commutes with ξ, we can compute many matrix elements
just as in the standard fock basis. For the momentum operator, we use the
Baker-Campbell-Hausdorff (BCH) formula to compute matrix elements. A
particular version of the formula is given by:

eXY e−X = Y + [X, Y ] +
1

2
[X, [X, Y ]] +

1

6
[X, [X, [X, Y ]]] + ... (5.10)

Applying BCH to X = −iη(a+ a†) = −ikx gives us:

Y [X, Y ] 1
2
[X, [X, Y ]] 1

6
[X, [X, [X, Y ]]]

(a+ a†)n 0 0 0
a†a iη(a† − a) η2 0

a2 2iηa −η2 0

(a†)2 −2iηa† −η2 0

Now we can compute all the non-zero matrix elements:

〈g, n′|H0 |g, n〉 = ~ωg
(
n+

1

2

)
δn′,n

〈g, n′|H0 |e, ξ(n)〉 = ~Ω/2δn′,n

〈e, ξ(n′)|H0 |g, n〉 = ~Ω/2δn′,n

〈e, ξ(n′)|H0 |e, ξ(n)〉 = ~ωg
(
n+

1

2
+ η2

)
δn′,n − ~∆δn′,n

+ iη~ωg
(√

n+ 1δn′,n+1 −
√
nδn′,n−1

)
〈e, ξ(n′)|H1 |e, ξ(n)〉 =

~ωg(αe − 1)

4

[
(1 + 2n)δn′,n

+
(
δn′,n−2

√
n(n− 1) + δn′,n+2

√
(n+ 1)(n+ 2)

) ]
(5.11)

Let hn′,n =
(
Γn′H0Γ†n

)
corresponding to the magic trapping part of the Hamil-

tonian and h′n′,n =
(
Γn′H1Γ†n

)
correspond to the non-magic terms. Then we
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can write the Hamiltonian as:

hn,n = n~ωg1 +
~Ω

2
σx + ~(ωgη

2 −∆)

(
1− σz

2

)
hn+1,n = +iη~ωg

√
n+ 1

(
1− σz

2

)
hn,n+1 = −iη~ωg

√
n+ 1

(
1− σz

2

) (5.12)

h′n,n =
~ωg(αe − 1)

4
(2n+ 1)

(
1− σz

2

)
h′n+2,n =

~ωg(αe − 1)

4

√
(n+ 1)(n+ 2)

(
1− σz

2

)
h′n,n+2 = −~ωg(αe − 1)

4

√
(n+ 1)(n+ 2)

(
1− σz

2

) (5.13)

See Figure 5.2 for a visualization of the different terms in the Hamiltonian.
For magic trapping, we can choose the laser detuning ∆ such that it cancels
the doppler shift term ωgη

2 = ~k2/2m. For the non-magic trapping case, we
cannot make all fock levels resonant. However, for low temperatures, we are
mostly interested in the lowest fock level. Thus we choose the laser detuning
that makes the |g, 0〉 ↔ |e, ξ(0)〉 transition resonant, i.e. ∆ = ωgη

2 + ωg(αe −
1)/4.

Strong resonant drive with magic trapping

In this case, all h′n′,n terms are zero. The Hamiltonian has a chemical potential
for each site, an on-site flip-flop term, and a nearest-neighbour spin-selective
hopping term. In the strong drive regime, we can treat the hopping term
perturbatively. Let us perform another change of basis. We shall work in the
|±n〉 basis defined by:

|±n〉 =
|g, n〉 ± |e, ξ(n)〉√

2
(5.14)

For the ’resonant’ case, there is no σz term in hn,n. Thus |±n〉 are eigenstates
of the bare Hamiltonian with bare energy E(0)

±n = n~ωg ± ~Ω/2.

Perturbative energy shifts and corrections to the eigenstates

The first order shift to the energy vanishes since the perturbing terms are
off-diagonal. We get a second order contribution to energy. We are most
interested in the low n eigenstates since these are the ones we deal with at
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(a) Magic Trapping condition

(b) Non-Magic Trapping condition

Figure 5.2: Visualizing the Hamiltonian in the modified basis in matrix form
with a truncated Hilbert space of 4 harmonic oscillator energy levels. For the
magic trapping case, we can see that the Hamiltonian is almost block diagonal
with block size of 2. In the non-magic trapping case, the Hamiltonian has
matrix elements that change the occupation number n by up to 2. Thus in
both cases, this modified basis is quite convenient.

low temperature of the atoms. We calculate the perturbative corrections to
the n = 0 eigenstates and eigenenergies in table 5.1. We define y = ω/Ω and
use the notation: |Ψ〉 is the unperturbed eigenstate,

∣∣ψ(1)
〉
is the first order

correction to state, E(2)
ψ is the second order correction to the energy of the

state and |ψ〉 = |ψ〉+
∣∣ψ(1)

〉
+ ... is un-normalized perturbed eigenstate.

Hpert |ψ〉 =
∑
j

cj |φj〉∣∣ψ(1)
〉

=
∑
j

cj
Eψ − Eφj

E
(2)
ψ =

∑
j

|cj|2

Eψ − Eφj

(5.15)

Note that for moderate values of η, there is significant mixing of eigenstates
by the perturbing Hamiltonian (regardless of how large Ω is). We can also
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|ψ〉 Eψ |φj〉 cj Eψ − Eφj
∣∣ψ(1)

〉
E

(2)
ψ 〈ψ|ψ〉 − 1

|+0〉 ~Ω/2 |+1〉 iη
2
~ωg −~ωg − iη

2
|+1〉 −η2

4
~ωg η2

4

|−1〉 − iη
2
~ωg ~Ω− ~ωg − iη

2
y

1−y |−1〉 η2

4
y

1−y~ωg
η2

4
y2

(1−y)2

|−0〉 −~Ω/2 |+1〉 − iη
2
~ωg −~Ω− ~ωg iη

2
y

1+y
|+1〉 −η2

4
y

1+y
~ωg η2

4
y2

(1+y)2

|−1〉 iη
2
~ωg −~ωg − iη

2
|−1〉 −η2

4
~ωg η2

4

Table 5.1: Perturbative correction to the n = 0 eigenstates and eigenenergies
for magic trapping

compute these energy shifts and overlaps for all other |±n〉 for n ≥ 1.

Numerics

We perform numerical simulation of time evolution for the case of magic
trapping. We start in a thermal initial state in the ground electronic man-
ifold. Specifically, we mean that the initial density matrix is given by ρ0 =

ρHOβ ⊗|g〉〈g| where ρHOβ is the reduced density matrix of the harmonic oscillator
at inverse temperature β = 1/T . In other words, the reduced density matrix of
the harmonic oscillator is diagonal and the population in the state labelled by
n is given by its Boltzmann factor e−βEn/Z where Z is the partition function.
We use a truncated Hilbert space, restricting to N = 100 harmonic oscillator
energy levels. The resultant two atom Hilbert space has dimension 2N = 200.
We do not see any finite size effects as a result of this truncation. We use
parameters of ω/2π = 100 kHz, ω/2π = 1 MHz, η = 0.5 and T = 2.5µK

as a test case (see Figure 5.3). We find that the resultant Rabi oscillations
have high contrast. In addition, the population remains well confined to the
motional ground state of the harmonic oscillator even though Ω � ω. The
average occupation number of the harmonic oscillator remains small (< 0.5)
and the spread of the atomic wavefunction in position space is small.

Strong drive with non-magic trapping

This is case relevant to Rydberg Rabi oscillations with anti-trapped Rydberg
states. Here we still have ω = ωg � Ω. However, αe 6= αg. In this case the
h′n,n, h′n,n+2 and h′n+2,n terms are non-zero but still perturbative since ω � Ω

and |αe| ∼ 1. We choose ∆ = ωgη
2 +ωg(αe−1)/4 to make the lowest motional

level resonant. Thus we can again change basis to the |±n〉 basis which are
eigenstates of the bare Hamiltonian. We calculate perturbative corrections to
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(a) Electronic ground state population Pg (b) Motional ground state population

(c) Average motional occupation number n̄(d) Standard Deviation of atomic position√
〈x2〉

Figure 5.3: Numerical simulation of time evolution of a thermal initial state
for the case of magic trapping. See text for details.

these states and their energies.

Perturbative energy shifts and corrections to the eigenstates

The first order shift to the energy no longer vanish for all n since the perturbing
terms not all off-diagonal. However, for n = 0, the h′n,n term is zero and thus
the first order shift is also zero. We calculate the second order correction to
energy and the first-order correction to the n = 0 state in table 5.2. Again let
y = ω/Ω and define cj, |φj〉,

∣∣ψ(1)
〉
, E(2)

ψ and |ψ〉 same as in equation (5.15).

We see that the more non-magic the trapping is, i.e., the further αe is from 1,
the more the eigenstates get mixed together. Note that for moderate values
of η, there is significant mixing of eigenstates by the perturbing Hamiltonian
(regardless of how large Ω is). We can also compute these energy shifts and
overlaps for all other |±n〉 for n ≥ 1.
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|ψ〉 Eψ |φj〉
∣∣ψ(1)

〉
E

(2)
ψ 〈ψ|ψ〉 − 1

|+0〉 ~Ω/2 |+1〉 − iη
2
|+1〉 −η2

4
~ωg η2

4

|−1〉 − iη
2

y
1−y |−1〉 η2

4
y

1−y~ωg
η2

4
y2

(1−y)2

|+2〉 − (αe−1)
√

2
16

|+2〉 − (αe−1)2

64
~ωg (αe−1)2

128

|−2〉 − (αe−1)
√

2
8

y
1−2y
|−2〉 (αe−1)2

32
y

1−2y
~ωg (αe−1)2

32
y2

(1−2y)2

|−0〉 −~Ω/2 |+1〉 iη
2

y
1+y
|+1〉 −η2

4
y

1+y
~ωg η2

4
y2

(1+y)2

|−1〉 − iη
2
|−1〉 −η2

4
~ωg η2

4

|+2〉 (αe−1)
√

2
8

y
1+2y
|+2〉 − (αe−1)2

32
y

1+2y
~ωg (αe−1)2

32
y2

(1+2y)2

|−2〉 − (αe−1)
√

2
16

|−2〉 − (αe−1)2

64
~ωg (αe−1)2

128

Table 5.2: Perturbative correction to the n = 0 eigenstates and eigenenergies
for non-magic trapping

Numerics

Now we numerical simulate time evolution for the case of non-magic trapping.
Again, we start in a thermal initial state in the ground electronic manifold. We
use parameters of ω/2π = 100 kHz, ω/2π = 1 MHz, η = 0.5 and T = 2.5µK.
In addition, we set αe = −1, i.e. the excited state is just as anti-trapped as
the ground state is trapped. We use a truncated Hilbert space, restricting to
N = 100 harmonic oscillator energy levels. The resultant two atom Hilbert
space has dimension 2N = 200. We do not see any finite size effects as a result
of this truncation. See Figure 5.4.

We find that the resultant Rabi oscillations initially have a large contrast but
rapidly start to lose contrast. After a few cycles, the oscillations show a revival
which is typical of thermal decoherence of Rabi oscillations. This occurs when
the different motional levels oscillate at slightly different Rabi frequencies and
periodically constructively and destructively interfere. The population is no
longer well confined to the motional ground state of the harmonic oscillator.
However, the population in the motional ground state does not keep decreasing
monotonically - the population asymptotes to about 0.5 after about 5 Rabi
cycles. The average occupation number of the harmonic oscillator rapidly
increases at short times but does not keep increasing unbounded. It seems
to peak at about 5 cycles and then reduces again. The spread of the atomic
wavefunction in position space mimics the behavior of the motional occupation
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number.

(a) Electronic ground state population Pg (b) Motional ground state population

(c) Average motional occupation number n̄(d) Standard Deviation of atomic position√
〈x2〉

Figure 5.4: Numerical simulation of time evolution of a thermal initial state
for the case of non-magic trapping. See text for details.

It appears that the fidelity of Rabi oscillations is severely impacted by the non-
magic condition. However, in real experiments, we take measures to mitigate
this effect. The trap depth of the optical tweezers is adiabatically reduced by
several fold (∼ 10 times reduction) before the start of the Rabi drive. This
adiabatic ramp-down not only reduces the temperature of the atoms (thus
reducing the momentum-spread) but also reduced the ratio of ω/Ω. Thus the
non-magic effects and reduced by several fold when we ramp down the tweezer
depth. We numerically simulate this ramp-down effect for many different
values of Ω and ω keeping the initial temperature constant at T = 2.5µK.
From the resultant Rabi oscillations, we extract the pi-pulse fidelity Fπ and
two-pi-pulse fidelity F2π. These we define as Fπ = 〈e| ρ(t = π/Ω) |e〉 and
Fπ = 〈g| ρ(t = 2π/Ω) |g〉. See Figure 5.5 for a parametric plot of the pi-pulse
and two-pi-pulse infidelities (1 − F ). We see that increasing Rabi frequency
Ω and decreasing the trap frequency ω lead to higher fidelities. Further, even
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for the anti-trapping condition, the fidelities achievable are quite high (at the
0.9999 level ignoring all other decoherence).

(a) Pi-pulse Infidelity 1− Fπ

(b) Two-Pi-pulse Infidelity 1− F2π

Figure 5.5: Rabi oscillation fidelities extracted from numerical simulation for
a single atom in a non-magic condition. See text for details.
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5.4 Rydberg interactions

The interaction between two atoms in the rydberg state is given by the van
der Waals potential.

Hint =
C6

|~r1 − ~r2|6
|ee〉〈ee| (5.16)

where C6 is the van der Waals interaction coefficient that depends on the
atomic species as well as the principal quantum number. Let a0 be the mean
separation between the two atoms. In the Rydberg blockade regime, C6/a

6
0 �

Ω, the energy penalty of having two atoms in the Rydberg state is much larger
than the Rabi drive frequency. Thus the strong dipole-dipole interactions
prevent more than one Rydberg excitation for atoms within the blockade radius
Rc ≈ (C6/Ω)1/6. By driving Rabi oscillations in the blockaded regime, the
two atoms get entangled and form a symmetric Bell state [54]. The blockaded
Hamiltonian couples the electronic state |G〉 = |gg〉 to the maximally entangled
state |W 〉 = 1√

2
(|eg〉+|ge〉). We wish to study how entanglement with motional

degrees of freedom impacts the two-atom entanglement fidelity.

The position operators in the denominator of the interaction term are trou-
blesome to deal with as they appear. However, we can Taylor expand the
denominator about the mean separation a0 to bring the operators to the nu-
merator.

C6

|~r1 − ~r2|6
= C6

(
1

a6
0

− 6(x1 − x2)

a7
0

+
21(x1 − x2)2

a8
0

− 3(y1 − y2)2

a8
0

− 3(z1 − z2)2

a8
0

+ ...

)
≈ V − 6V (x1 − x2)

a0

+O((δr)2)

(5.17)

where we have defined V = C6/a
6
0. We see that to first order in position

fluctuations, the interaction potential only depends on the separation along
the x-direction. Even including second order effects, the x, y and z directions
remain separable. Thus we can continue to work in 1D. Further, since ξ = eikx

commutes with x, the matrix elements of the interaction Hamitonian in the
modified fock basis are identical to those in the usual fock basis.

Now we can perform numerics to see what effect a fully quantum mechanical
treatment of atomic motion has on blockaded Rabi oscillations. In particular,
we can simulate blockaded Rabi oscillations when the optical traps are turned
off as well as when they are left on.
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Numerics

We numerically simulate the time-evolution governed by the two atom Hamil-
tonian. In our experiment, we work with the 3P0 Rydberg state of 88Sr
with n = 61. For the C6 interaction coefficient, we use the value from [55]
which gives C6/2π = 275 GHz µm6. We work with mean atomic spacing of
a0 = 3.6µm. Thus the interaction strength is given by V/2π ≈ 130 MHz.

Untrapped condition

First, we simulate the case where the traps are turned off as a base case. We
know that the blockaded Rabi oscillations in this case can be high fidelity when
we are well in the blockade regime. We start in a product state where the initial
density matrix of the two atom system is a tensor product of the initial density
matrices of the two individual atoms. We use parameters of Ω/2π = 1 MHz,
ω/2π = 100 kHz (η ≈ 0.5), T = 2.5µK and αg = αe = 0. This means that the
atoms start in a harmonic trap with trap frequency ω/2π = 100 kHz, but just
before the Rabi drive is turned on, we turn off the optical tweezers, conducting
the experiment without any optical potential. We use a truncated Hilbert
space for each atom, restricting to N = 10 harmonic oscillator energy levels
per atom. The resultant two atom Hilbert space has dimension 4N2 = 400.
We do see finite size effects as a result of truncating the Hilbert space beyond
∼ 6 Rabi cycles. However, at short times, the truncation has no noticeable
effects. See Figure 5.6.

The atomic population oscillates with high contrast between the ground state
|G〉 and the maximally entangled state ’bright’ state |W 〉. The population in
the the ’dark’ state |D〉 = 1√

2
(|eg〉 − |ge〉) as well as in the double excitation

state |R〉 = |ee〉 is negligible. Because the atoms are untrapped, we can see
that the motional occupation number rapidly increases with time and keeps
increasing unbounded. This is also seen in the spread of the atomic wavefunc-
tion with time. This means that in the absence of any trapping potential, the
initially confined atomic wavepacket spreads out ballistically in time.

Non-magic trapping condition

We now repeat the simulation for the case of non-magic trapping. We use
parameters of Ω/2π = 1 MHz, ω/2π = 100 kHz (η ≈ 0.5), T = 2.5µK and
αg = 1, αe = −1 (anti-trapping). We use a truncated Hilbert space for each
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(a) Electronic ground state population PG (b) Maximally entangled ’bright’ state
population PW

(c) Average motional occupation number n̄ (d) Standard deviation of atomic position√
〈x2

1〉

Figure 5.6: Numerical simulation of blockaded Rabi oscillations in the un-
trapped case. See text for details.

atom, restricting to N = 10 harmonic oscillator energy levels per atom. The
resultant two atom Hilbert space has dimension 4N2 = 400. We do not see
any finite size effects as a result of truncating the Hilbert space. See Figure
5.7.

We see that the contrast of the Rabi oscillation between |G〉 and |W 〉 is some-
what reduced compared to the untrapped case. However, as mentioned previ-
ously, in an experiment, we adiabatically ramp down the trap depth to mitigate
this effect. The population in the doubly excited state |R〉 is negligible. How-
ever, the population in the dark state |D〉 is higher than in the untrapped case.
Ramping down the trap depth can mitigate this effect as well. Looking at the
average motional occupation number, we see that even for this anti-trapping
configuration, the occupation number does not increase very rapidly. This can
also be seen in the spread of the atomic wavefunction with time. This means
that even the excited state is just as repelled by the optical potential as the
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(a) Electronic ground state population PG (b) Maximally entangled ’bright’ state
population PW

(c) Average motional occupation number n̄ (d) Standard deviation of atomic position√
〈x2

1〉

Figure 5.7: Numerical simulation of blockaded Rabi oscillations in the non-
magic trapping case. See text for details.

ground state is attracted to it, the net effect is that the atomic wavepacket
does not expand nearly as quickly as in the untrapped case.

We numerically simulate the blockaded oscillations for different values of Ω

and ω keeping the initial temperature constant at T = 2.5µK. We extract
the pi-pulse fidelity Fπ and two-pi-pulse fidelity F2π. See Figure 5.8 for a
parametric plot of the pi-pulse and two-pi-pulse infidelities (1 − F ). We see
that decreasing trap frequency ω leads to higher fidelities while increasing Rabi
frequency Ω only increases fidelity up to a certain point. Beyond this point,
increasing Rabi frequency actually reduces the Pi-pulse fidelity because we
start to weaken the Rydberg blockade constraint. We find that even for the
anti-trapping condition, the fidelities achievable are quite high (at the 0.9999

level ignoring laser noise and spontaneous decay).



53

(a) Pi-pulse Infidelity 1− Fπ

(b) Two-Pi-pulse Infidelity 1− F2π

Figure 5.8: Blockaded Rabi oscillation fidelities extracted from numerical sim-
ulation for two atoms in a non-magic condition. See text for details.
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C h a p t e r 6

LADDER ARRAY

6.1 Introduction

An optical tweezer is simply a tightly focused laser beam. With an appropriate
wavelength of light, these tweezers can trap or repel atoms and can be used
to hold individual atoms. We can generate a single optical tweezer by simply
focusing a laser beam using a convex lens. By sending multiple laser beams
with slightly different angles into the same focusing lens, we can generate
multiple optical tweezers. The position of the tweezers can be controlled by
changing the angle of the laser beams. The more tightly focused a beam is,
the more trapping force it can generate. Thus for AMO experiments, typically
very tightly focusing lenses with short focal lengths are used.

In a standard tweezer array setup, an acousto-optic deflector (AOD) is used
to generate an array of laser beams from a single input laser beam. Acousto-
optic deflectors are devices that can deflect light by a variable angle controlled
by the frequency of an electrical signal. By sending multiple electrical signals
with different frequencies, we can generate multiple deflected laser beams from
a single input beam. The optical power of the incoming laser beam gets
distributed among the multiple deflected beams. The tweezers generated with
the deflected beams thus have at most 1/N times the power of the incoming
laser beam. Thus to scale to large system sizes, we need the laser power to
scale with the number of tweezers we want to create. We are interested in
reaching large system sizes for a variety of reasons. For quantum computing
with atomic qubits, more number of atoms gives us more computational power.
The Hilbert space that can be explored with N qubits grows as 2N . Thus every
additional qubit that we can get doubles our Hilbert space. For quantum
metrology applications, for example, high precision optical clocks, the more
atoms we have the faster we can reach a given precision by averaging the
signal. Further, for studying thermodynamic properties of quantum systems,
we want our system to be as large as possible to reduce boundary effects.

For the Strontium magic wavelength of 813nm, the commercially available
laser power is limited to about 10W. The Ti:Saph laser used in the Endres lab
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has an output power of just over 5W. However, to reach system sizes larger
than 100 atoms, we need to more laser power. One possible solution is to
use two separate lasers to double the total power. It is possible to coherently
combine two lasers using appropriate monitoring and control of the frequency
and relative phase of the two lasers. However, we can also use the two lasers
to generate two parallel rows of tweezers. This configuration is known as a
’ladder array’.

Working in the ladder configuration not only allows us to reach larger N for
the various applications mentioned earlier but also opens up many new physics
directions. For example, by changing the separation between the two rows of
tweezers, we could study the physics of two coupled quantum systems. By
adjusting the position along the axis of the array, we can change the geometry
to be either a square lattice or a triangular lattice. This changes the coordi-
nation number of each atom from 3 to 4 and also leads to more frustration in
magnetic systems. There are additional possibilities of spin-1 physics[56], res-
onating valence bond[57, 58] physics and even lattice gauge theories[59] using
spin ladder systems.

We built a prototype setup to test the feasibility of our method of combining
optical tweezer arrays from two lasers into a tunable ladder configuration.

6.2 Laser Monitoring Setup and Calibration

Figure 6.1: Laser pick-off stage

The laser we used for this prototype setup was a SolsTis Ti:Sapphire CW
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laser with an Equinox pump laser both from Msquared. The SolsTis laser
requires a pump beam at 532 nm and produces an output beam of upto that
has a tunable wavelength from 725nm - 960nm. Thus we can use this laser to
generate the 813.4nm light that we require for magic trapping of Strontium
atoms. The Equinox pump laser is a high power 532nm laser that can provide
up to 18W of pump power. Together this setup outputs up to 5.5W of 813nm
light.

We first built a pick-off stage to monitor the laser power as well as wavelength.
We sample a small fraction of the laser light using a pick-off plate and direct
this light onto a photodiode to measure the intensity. We also couple this
light into an optical fiber which can be connected to a wavemeter to measure
the wavelength. We calibrate the photodiode voltage reading by changing the
pump power from the Equinox, measuring the laser power with a thermal-head
power meter and recording the corresponding photodiode voltage. Note that
at the max pump power of 18W, we have an output power of 5W. We obtain
a clean linear calibration curve.

Figure 6.2: Laser power calibration

6.3 Acousto-Optic Deflectors (AOD) Setup

Acousto-optic deflectors take in sinusoidal radio-frequency (RF) electrical tones
and generate deflected beams. The RF tones drive a piezoelectric transducer
which generates sound waves in the AOD crystal. Incoming light undergoes
Bragg diffraction off the periodic density modulation caused by the sound
waves. The diffraction efficiency is given by the ratio of the power in the de-
flected beam to the power in the incoming beam. As we increase the RF power,
the diffraction efficiency increases until a certain threshold beyond which the
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AOD can get damaged. The AOD we used here was DTSX-400-810.920 from
AA Opto Electronic. The damage threshold for this AOD was 2W (or 33
dBm).

We generate the RF signals using an AWG which is controlled by MATLAB
from a computer. We used the existing design of RF amplification and filtering
to boost the AWG output to the level required to drive the AOD. The output
from the AWG was passed through a high pass filter (41-800 MHz) followed by
a low pass filter (DC - 140 MHz) and then through an RF amplifier (Gain ≈
35). We can digital scale the amplitude of the AWG to control the RF power
supplied to the AOD. We calibrate the digital amplitude scaling factor to RF
output power by measuring the RF power using a spectrum analyzer.

Figure 6.3: Calibrating RF power supplied to the AOD

6.4 Imaging Stage

In the real experimental setup, we use high power objective lenses with short
focal lengths (f = 4mm) and large numerical appertures (NA ≈ 0.5). These
lenses are custom made to have high transmission at the various wavelengths
required for trapping, cooling and imaging Strontium atoms, and cost tens of
thousands of dollars. For the purposes of the prototype setup, we used simple
achromat doublet lenses with a relatively short focal lengths (f = 35 mm) as a
substitute for the objectives. We used a Basler camera (acA3800-14um) with
an imaging lens to image the tweezers produced in the focal plane of our mock
objectives. Using these components we can generate and image a single row
of tweezers as in a standard experimental setup. We image a few different
array sizes as a test. After confirming that all the components are working as
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Figure 6.4: Objective lenses and imaging camera

expected, we can move to generating and combining two rows of tweezers.

6.5 Combining two rows of tweezers

In a real experimental situation, we would like to combine two rows of tweezers
from two independent lasers to double the available laser power and reach
larger system sizes. However, for the prototype setup, we use a single laser
and one AOD to generate one array of tweezers and use a 50:50 splitter to
duplicate this tweezer array. This allows us to perform a proof of principle
test for the combining technique without having to use two AODs.

Now, to generate the ladder array, we want to combine two beams of light
that can each generate an array of tweezers. When combining two beams of
light with opposite polarization, we typically use a polarizing beam splitter
(PBS). The PBS selectively reflects light of only one polarization and allows
the opposite polarization light to pass through unaffected. However, for the
ladder arrays we require both arrays to have the same polarization to allow
for laser cooling with a global cooling beam. Thus we cannot use a PBS to
combine the two beams of light.

Instead we use a D-shaped mirror (which is just a mirror with a sharp edge).
We allow one beam of light to pass by the edge of the mirror (analogous to
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(a) Single tweezer

(b) 11 tweezers

(c) 21 tweezers

Figure 6.5: Imaging a single row of tweezers. There is some spherical aberra-
tion in the tweezers because of the plano-convex lenses combined with slight
misalgnment in the objectives.

the beam that goes through the PBS). And we reflect the other beam of light
of the D-mirror very close to the edge of the mirror (analogous to the beam
that is reflected by the PBS). Using this method, the two laser beams cannot
be overlapped with each other but can be brought very close to each other,
limited only by diffraction off the edge of the mirror.

We combine the two rows of tweezers in the focal plane of a lens with a large
focal length (we use f = 150mm). Using a telescope, this focal plane maps
directly to the focal plane of the objective lens. For the ladder configuration,
we want to generate two arrays of tweezers that are parallel to each other with
a given separation. To be concrete, let the direction of propagation of light be
along the z-direction, and the axis of the first array be in the x-direction. Then,
if all goes well then the second array is at the same z-position and is the parallel
to the first array, separated only in the y-direction. However, in general, the
second array could be focused at a different z-position compared to the first
array and could be at some arbitrary angle (in the XY plane) with respect
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to the first array. To correct this we need to adjust the relative z-position,
relative angle between the axes of the array as well as the y-separation. We
can perform these adjustments as follows:

• Adjusting the relative z-position: The focal plane in which we combine
the two laser beams on the D-mirror gets mapped with a telescope to
the focal plane of the objectives. Thus, by adjusting the path length of
the laser beams before the D-mirror, we can ensure that the two beams
focus at the same z-position. We do this by adding mirrors mounted on
translation stages for both laser beams.

• Adjusting the relative angle: The relative angle between the arrays can
be adjusted by rotating the wavefront of one of the beams. This can
be done using a periscope - changing the angle of one of the mirrors in
the periscope rotates the wavefront. In practice, the angle between the
arrays is very small and can be corrected using a procedure similar to
beam walking with the periscope mirrors.

• Adjusting the y-separation: Once the arrays are parallel to each other,
we can adjust their y-displacement using the D-mirror on which the two
beams are combined. By changing the separation between the two beams
at the D-mirror, we can change the separation in the focal plane of the
objectives (since the two focal planes are mapped to each other with a
telescope).

• Adjusting the x-separation: If the teo arrays have zero x-offset, then they
form a square-lattice ladder geometry. We can beam-walk to change the
x-offset to generate a triangular lattice ladder geometry or anything in
between.

6.6 Translation Stage Setup

We implement the translation stages for z-position control using sliding bread-
boards. We mount a periscope on each of the 2 translation stages to allow us
to rotate the angle of both the rows of tweezers. We also mount the D-mirror
on a 2D translation stage to allow for control of the y-separation between the
two tweezers arrays. See figure for the layout on the optical table.
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Figure 6.6: Layout of the translation stages and D-mirror for combination of
the two tweezer arrays

6.7 Imaging and ’Live’ Aligning the ladder array

Using this setup, we generated, combined and imaged two rows of tweezers. By
monitoring the video stream from the imaging camera, we can make sure both
arrays are focused in the same plane and roughly align the two rows. However,
to help with fine alignment, we wrote a MATLAB script to image the tweezers,
compute the angle between the rows and their y-separation. Using this tool,
we can eliminate any angle between the rows and precisely adjust the inter-row
separation.

6.8 Test of Stability

Finally, we perform a test of the mechanical stability of the setup. Once we
align our optics, we would like our setup to remain well aligned for hours (if not
days) while we take data. Drifts in alignment can ruin data quality and add
a lot of overhead time in the daily experimental procedure. Thus, mechanical
stability is an important consideration in AMO experiments. We logged the
position and angle data using the same MATLAB live alignment tool. We
found that the setup was sufficiently stable over the course of several hours
despite the numerous translation stages and the D-mirror beam combining.
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(a) Live alignment tool

(b) Square lattice ladder geometry

Figure 6.7: Imaging and Live aligning the ladder array

The drift in the inter-row separation was about 0.5% over the course of 4
hours. The drift in the relative angle between the rows of tweezers was about
0.02 degrees over 4 hours.
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(a) Inter-row separation

(b) Relative angle between rows

Figure 6.8: Mechanical stability of the setup
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C h a p t e r 7

CONCLUSION AND OUTLOOK

In this thesis, we have analyzed the effect of various sources of decoherence
on single atom and Rydberg blockaded Rabi oscillations. For the case of un-
trapped atoms, we provided upper bounds on experimentally achievable single
atom and blockaded π-pulse fidelities in terms of the experimentally measured
noise power spectral densities (PSDs) and atomic temperature. We derived
analytic ’window’ functions which select specific components of the laser in-
tensity and frequency noise spectra, helping us understand the dependence of
the Rabi oscillation fidelity on Rabi frequency. We find good agreement of
our perturbative result with numerics and recent experimental work from the
group. We also studied Rabi oscillations of trapped atoms in the non-magic
trapping condition. We found that when the Rabi frequency is much larger
than the harmonic trapping frequency, the single atom and blockaded π-pulse
fidelity can still be quite high. Finally, we turned towards the question of near-
term scalability of the experimental system. We built and tested a method for
generating a ’ladder’ configuration of optical tweezers utilizing two indepen-
dent lasers in a way that allows us to fully tune the geometry of the ladder.
We tested the mechanical stability of our setup and found its performance
satisfactory. This pseudo-2D configuration would enable us to reach larger
system sizes in the near future, whilst also allowing us to access beyond 1D
physics.

7.1 Outlook

Our perturbative analysis of Rabi oscillations can be written in terms of a
diagrammatic expansion as shown in Appendix B. This diagrammatic book-
keeping can facilitate the generalization of this method to the case of quantum
operations with multiple pulses. For example, a Ramsey measurement involves
2 laser pulses separated by a duration of free-evolution. While the number of
diagrams contributing at second-order in perturbation theory grows rapidly
with the number of pulses, we can apply certain finite-correlation time ap-
proximations for the noise sources to reduce the number of tedious calculations
required. Such a generalized method would be a powerful tool for studying
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the effects of noise on quantum operations.

In this thesis, we used a metastable clock state |g〉 as the ground state and a
Rydberg state |r〉 as the excited state of our qubit. Instead, to fully leverage
the properties of the atoms we would like to use two long-lived states (such
as |a〉 and |g〉) as our qubits. These states have very long coherence times are
non-interacting. We can turn on interactions between these qubits by driving
to Rydberg states as proposed in [36] and demonstrated in [24], or as proposed
and demonstrated in [16]. We can analyze the fidelities of such entangling gates
by considering working with 3 states per atom (|a〉 , |g〉 , |r〉) and using the
generalized diagrammatic approach for multiple pulses. Preliminary numerics
of these gates indicate a functional dependence of fidelity on Rabi frequency
similar to that for single atom Rabi oscillations.

Regarding the ladder array prototype, we would like to integrate this design
with the main experiment to reach larger system sizes. Additionally, we would
like to exploit the pseudo-2D nature of the ladder configuration to explore the
physics of spin-ladders[56], Haldane physics [60] and resonating valence bond
(RVB) [57, 58] physics.
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A p p e n d i x A

CALCULATIONS FOR NOISY RABI OSCILLATIONS

A.1 Doppler effect calculations

From Eq. (4.30), the excited state population for a given initial momentum p

is given by:

ρrr(t; p) ≈
1− ξ2

2
− 1− ξ2

2
cos
(
Ωt(1 +

ξ2

2
)
)

(A.1)

Picking up from Eq. (4.33) and using the probability distribution of ξ is
P (ξ) = N (0, ξ2

0), we have:
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∫
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2πσ(t)
(1− ξ2)e
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where σ2(t) =
ξ2
0

1−iΩtξ2
0
. We can re-write this more suggestively as:

ρrr(t) ≈
1− ξ2

0

2
− |σ(t)(1− σ(t)2)|

ξ0

cos (Ωt+ φ(t))

2
(A.2)

where φ(t) = arg(σ(t)(1− σ(t)2) is the doppler-induced time-dependent phase
shift and the decay envelope is given by:

|σ(t)(1− σ(t)2)|
ξ0

≈ 1

(1 + Ω2t2ξ4
0)1/4

(
1− ξ2

0

1 + Ω2t2ξ4
0

)
(A.3)

This envelope has a decay time scale of τ = 1
Ωξ2

0
= Ω

σ2
δ
. Since φ(t) � π for

short times, we can estimate the π-pulse fidelity by ignoring φ(t) and plugging
in t = π/Ω. This gives us Fπ ≤ 1− ξ2

0

A.2 Single Atom Frequency Noise Calculations

We start in known initial state ρ(0) = |g〉 〈g| and we are interested in the
population of the excited state as a function of time ρrr(t). Thus we focus
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on the matrix element 〈r|U(t) |g〉. Explicitly writing this out to 2nd order in
perturbation, we have:

〈r|U(t) |g〉 = −i sin
Ωt

2
− 1

2

∫ t

0

dt1ν(t1)

(
sin
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2
cos Ωt1 − cos
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2
sin Ωt1
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+
i

4
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0

dt1

∫ t1
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dt2ν(t1)ν(t2)

(
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2
cos Ω(t1 − t2)− cos
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2
sin Ω(t1 − t2)

)
+O(ν4t4) (A.4)

We compute | 〈r|U(t) |g〉 |2 keeping only terms up to second order and then
average over the ensemble. In doing so, we use ν(t′)ν(t′′) = Kν(t

′′ − t′).

| 〈r|U(t) |g〉 |2 = sin2 Ωt

2
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4
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(A.5)

Further, we decouple the two integrals over time by writing the two-point
correlation function in terms of its fourier transform i.e. the power spectral
density, i.e., Kν(t2 − t1) =

∫
dω
2π
Sν(ω) cosω(t2 − t1):
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(A.6)
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The first integral vanishes. The second one gives usW1 and the third one gives
use W2. That is, we define W1 and W2 as below:

W1(ω,Ω, t) =
1

t2
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−
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]

=
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(A.7)
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(A.8)

This gives us equation (4.21).

A.3 Blockade Hamiltonian

The two atom (noisy) drive and interaction Hamiltonian is given by:

H =
~Ω(t)

2

(
e−ikLx1σ+

1 + e−ikLx2σ+
2 + h.c.

)
+

~ν(t)

2
(σz1 + σz2) + V (x1, x2) |r1r2〉〈r1r2|

(A.9)

where σµ1 = σµ⊗1 and σµ2 = 1⊗σµ. We can explicitly write this Hamiltonian
in the |g〉, |w〉, |d〉 and |r〉 basis (where |r〉 ≡ |r1r2〉) as H =

∑
i,j |i〉〈i|H |j〉〈j|

with i, j ∈ (g, w, d, r).

H =
~Ω(t)

√
2

2
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)
+

~ν(t) ∗ 2

2
(|g〉〈g| − |r〉〈r|) + V (x1, x2) |r〉〈r|

Ignoring the |r〉 state because of the Rydberg blockade effect, and adding a
constant offset, we get:

H =
~Ω2

2
Xgw +

(
~Ω2ε(t)

2
Xgw +

~ν(t)

2
(Zgw − |d〉〈d|)

)
(A.10)

where Xgw = |g〉〈w|+ |w〉〈g| and Zgw = |g〉〈g| − |w〉〈w|.
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Blockade Motional Effects

The drive Hamiltonian (in the rotating wave approximation) is given by:

H =
p2

1

2m
+

p2
2

2m
+

~Ω

2

(
e−ikLx1σ+

1 + e−ikLx2σ+
2 + h.c.

)
(A.11)

Let us first start in the basis |(p1, s1), (p2, s2)〉 where si ∈ (gi, ri) and pi repre-
sent the atomic momenta. The Rabi drive terms couple the state |(p1, g1), (p2, s2)〉
to |(p1 − ~kL, r1), (p2, s2)〉, and the state |(p1, s1), (p2, g2)〉 to |(p1, r1), (p2 − ~kL, r2)〉.
We eliminate the doubly-excited states (because of the Rydberg blockade) and
changing basis to the more convenient form |p1, p2, s〉 where s ∈ (g, w, d):

|p1, p2, g〉 = |(p1, g1), (p2, g2)〉

|p1, p2, w〉 =
|(p1 − ~kL, r1), (p2, g2)〉+ |(p1, g1), (p2 − ~kL, g2)〉√

2

|p1, p2, d〉 =
|(p1 − ~kL, r1), (p2, g2)〉 − |(p1, g1), (p2 − ~kL, g2)〉√

2

Assembling these together into a pseudo-spinor Γ(p1, p2),

Γ(p1, p2) =

 |p1, p2, g〉
|p1, p2, w〉
|p1, p2, d〉

 (A.12)

we can see easily that Γ†(p′1, p
′
2) H Γ(p1, p2) is non-zero only when p1 = p′1 and

p2 = p′2. Thus, we can write the Hamiltonian as:
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∫
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Γ†(p1, p2) (A.13)

which is the same as Eq. (4.50) up to a constant energy shift (and absorbing the
~2k2

L/2m term into the transition energy). We solve the resultant dynamics
perturbatively assuming the Doppler shifts are much smaller than the Rabi
frequency. Suppressing the momentum degrees of freedom once again, we
write the bare Hamiltonian as:

H0 =
~Ω2

2
Xgw (A.14)

and the perturbation Hamiltonian as:

H1 =
~δ1

2
(|g〉〈g| −Xwd) +

~δ2

2
(|g〉〈g|+Xwd) (A.15)
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where δj = kLpj/m. We calculate the perturbed time-evolution operator up
to second order using Eq. (4.19) by straight forward integration, giving us:

〈w|U(t) |g〉 = −i sin
Ω2t

2
− (δ1 + δ2)t

4
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2

)
+O(δ4

i t
4) (A.16)

Averaging over the ensemble, we assume that the momentum distributions pj
and hence the doppler detuning distributions δj are Gaussian (see Eq. (4.32)).
We assume homogenous temperature and trap depth, i.e., δ2

1 = δ2
2 = δ2. To

second order in the perturbation, the bright state population is given by:
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We can also look at the dark state population using:

〈d|U(t) |g〉 =
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Averaging over the ensemble, we find:

ρdd(t) =
δ2

Ω2
2

(
3− cos Ω2t− 4 cos

Ω2t

2

)
+O(δ4t4) (A.19)

A.4 White Noise: Markovian Process

The limit of white frequency noise has been well studied in literature [45, 46].
We present the results here for completeness. Assuming the noise correlation
function is ν(t)ν(t′) = αδ(t − t′) (Gaussian white noise) we get the following
Optical Bloch Equations (OBE):

d

dt


ρgg(t)

ρrg(t)

ρgr(t)

ρrr(t)

 = − i
2


0 −Ω Ω 0

−Ω −iα 0 Ω

Ω 0 −iα −Ω

0 Ω −Ω 0



ρgg(t)

ρrg(t)

ρgr(t)

ρrr(t)

 (A.20)

Starting in a pure initial state ρ(0) = |g〉 〈g|, we have:

ρrr(t) =
1

2
− e−αt/4

(
cos Ω′t

2
+
α sin Ω′t

4Ω′

)
(A.21)

where Ω′ =
√

Ω2 − α2/16 and Fπ . (1 + e−
απ
4Ω )/2.



71

A p p e n d i x B

DIAGRAMMATIC APPROACH IN THE EIGENBASIS

B.1 Abstract

Instead of calculating the effect of laser noise on Rabi oscillations starting
iwith a fixed initial state (i.e. |g〉〈g|), we calculate the effect of laser noise on
the quantum channel that maps the initial density matrix to the final density
matrix. The fidelity of this operation is then given my the maximal distance
between the effect of pure channel on a density matrix and the effect of the
noisy channel on the same density matrix.

B.2 Set up

The drive hamiltonian is given by:

H0 =
~Ω

2
(|r〉〈g|+ |g〉〈r|) (B.1)

The eignenstates of this Hamiltonian are:

|±〉 =
1√
2

(|g〉 ± |r〉)

E± = ±~Ω

2

(B.2)

Let us define |0〉 ≡ |+〉 and |1〉 ≡ |−〉. Writing all matrices in this basis, we
get:

H0 =
~Ω

2
σz

H1(t) =
~ν(t)

2
σx

(B.3)

The time-evolution operator is given by

U0(t) = e−
iH0t
~ = e−

iΩt
2
σz

[U0(t)]αβ = 〈α|U0(t) |β〉 = e−
iΩt
2

(−1)αδαβ
(B.4)

The density matrix evolves under the action of H0 as:

ρ(t) = U(t)ρ(0)U(t)†

[ρ(t)]αβ =
∑
µ,ν

[U(t)]αµ[ρ(0)]µν [U(t)†]νβ
(B.5)
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This quantum channel can be pictured as below. U0(t) takes |µ〉 forward in
time and U0(t)† takes 〈ν| backwards in time.

U0(t)
|α〉 |µ〉

U0(t)†
〈β| 〈ν|

B.3 Perturbations

In the presence of noise, we can try to use perturbation theory to calculate
the effect on the quantum channel.

The first order effect on time-evolution operator is:

U0(t1)

H1(t1)

U0(t− t1)
|α〉 |µ〉

[U1(t)]αµ =
−i
~

∫ t

0

dt1[U0(t− t1)H1(t1)U0(t1)]αµ

=
−i
2

∫ t

0

dt1e
− iΩ(t−t1)

2
(−1)αν(t1)[σx]αµe

− iΩt1
2

(−1)µ

=
−i
2
δµ,α+1e

− iΩt
2

(−1)α
∫ t

0

dt1e
iΩt1(−1)αν(t1)

(B.6)

Second-order effect is given by:

U0(t2)

H1(t2)

U0(t1 − t2)

H1(t1)

U0(t− t1)
|α〉 |µ〉

[U2(t)]αµ =
−1

~2

∫ t

0

dt1

∫ t1

0

dt2[U0(t− t1)H1(t1)U0(t1 − t2)H1(t2)U0(t2)]αµ

=
−1

4
δα,µe

− iΩt
2

(−1)α
∫ t

0

dt1

∫ t1

0

dt2e
iΩ(t1−t2)(−1)αν(t1)ν(t2)

(B.7)

B.4 Averaging over the noise

As per our noise model, we have the following two properties:

ν(t) = 0 (B.8)

ν(t1)ν(t2) = K(|t1 − t2|) (B.9)
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In order to average over the noise, lets define a new tensor quantity Γ(t).

[ρ(t)]αβ =
∑
µ,ν

[U(t)]αµ[ρ(0)]µν [U(t)†]νβ

[ρ(t)]αβ =
∑
µ,ν

[U(t)]αµ[U(t)∗]βν [ρ(0)]µν

[ρ(t)]αβ =
∑
µ,ν

Γαβ,µν(t)[ρ(0)]µν

(B.10)

where Γαβ,µν(t) = [U(t)]αµ[U(t)∗]βν . We can expand Γαβ,µν(t) in a perturbative
series up to second order as shown in Fig. B.1.

|α〉 |µ〉

〈β| 〈ν|

|α〉 |µ〉

〈β| 〈ν|

|α〉 |µ〉

〈β| 〈ν|

|α〉 |µ〉

〈β| 〈ν|

Figure B.1: The tensor quantity Γαβ,µν(t) is written out as a (perturbative)
diagrammatic series. The arrows to the left correspond to the free evolution
U0(t) and the arrows to the right correspond to U0(t)†. The vertices correspond
to the perturbing term and have a vertex factor − i

2
σx. The dashed lines

correspond to the noise correlation function giving a factor of K(|t1 − t2|)
where t1 and t2 are the end-points of the dashed line. These end-points need
to be integrated over. The first row of the diagram gives the bare tensor. The
second row shows the second-order corrections to the tensor caused by the
noise.

Γαβ,µν(t) = δαµδβνe
− iΩt

2
[(−1)α−(−1)β ]

− 1

4
δαµδβνe

− iΩt
2

[(−1)α−(−1)β ]

∫ t

0

dt1

∫ t1

0

dt2e
iΩ(t1−t2)(−1)αK(|t1 − t2|)

− 1

4
δαµδβνe

− iΩt
2

[(−1)α−(−1)β ]

∫ t

0

dt1

∫ t1

0

dt2e
−iΩ(t1−t2)(−1)βK(|t1 − t2|)

+
1

4
δµ,α+1δν,β+1e

− iΩt
2

[(−1)α−(−1)β ]

∫ t

0

dt1

∫ t

0

dt2e
−Ω[t1(−1)α−t2(−1)β ]K(|t1 − t2|)

(B.11)
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We can Fourier transform the noise correlation function to obtain the noise
power spectral density. This allows us to perform the integrals over time,
leaving behind a window function that depends on Fourier frequency.

Γαβ,µν(t) = δαµδβνe
− iΩt

2
[(−1)α−(−1)β ]

− 1

4
δαµδβνe

− iΩt
2

[(−1)α−(−1)β ]

∫
dω

2π
S(ω)[χ2(ω,Ω, t, α) + χ2(ω,Ω, t, β + 1)]

+
1

4
δµ,α+1δν,β+1e

− iΩt
2

[(−1)α−(−1)β ]

∫
dω

2π
S(ω)χ1(ω,Ω, t, α, β)

(B.12)

where we have defined two window functions χ1 and χ2.

χ2(ω,Ω, t, α) =
(
Ω2 + ω2 + i(−1)αΩt(Ω2 − ω2)

− eiΩt(−1)α((Ω2 + ω2) cosωt− 2i(−1)αΩωt sinωt)
)
/(Ω2 − ω2)2 (B.13)

χ1(ω,Ω, t, α, β) =


2
(

(Ω2+ω2)(1−cos Ωt cosωt)−2Ωω sin Ωt sinωt
)

(Ω2−ω2)2 β = α

2(cosωt−cos Ωt)(cos Ωt+i(−1)α sin Ωt)
Ω2−ω2 β = α + 1

(B.14)
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A p p e n d i x C

OPTICAL TWEEZER POTENTIAL IN 3D

In the experimental setup, the atoms are held in place using optical tweezers
which are described by a Gaussian beam. The trapping potential experienced
by the atoms is given by:

U(x, y, z) = −Z0

2
α(λ)× I(x, y, z) (C.1)

where Z0 =
√
µ0/ε0 is the vacuum wave impedance, α is the polarizability of

the atom and I(r, z) is the intensity of the trapping laser [37].

I(x, y, z) = I0
1

1 + ( z
zR

)2
exp (

−2(x2 + y2)

w2
0(1 + ( z

zR
)2)

) (C.2)

where zR = πw2
0/λt = ktw

2
0/2 is the Rayleigh range [61]. In our current setup,

w0 ≈ λt = 813nm. We can Taylor expand this expression to 4th order to
obtain an algebraic expression for the trap potential. Let x̄ = x/w0, ȳ = y/w0

and z̄ = z/zR.

I(x, y, z) ≈ I0

(
1− 2x̄2 − 2ȳ2 − z̄2

+ 2x̄4 + 2ȳ4 + z̄4

+ 4x̄2ȳ2 + x̄2z̄2 + ȳ2z̄2 + ...
) (C.3)

Thus to leading order, the Gaussian potential gives rise to an isotropic har-
monic potential in the radial direction and a weaker harmonic potential in
the axial direction. Using this expression we can write down the Hamiltonian
for the atom in the trap. We can define ωx = ωy = ωρ ≡

√
2mZ0αI0

w2
0

and

ωz ≡
√

mZ0αI0
z2
R

.

Htrap =
p2
x

2m
+

1

2
mω2

x

(
x2 − x4

w2
0

+ ...
)

+
p2
y

2m
+

1

2
mω2

y

(
y2 − y4

w2
0

+ ...
)

+
p2
z

2m
+

1

2
mω2

z

(
z2 − z4

z2
R

+ ...
)

−mω2
ρ

(x2y2

w2
0

+
y2z2

z2
R

+
x2z2

z2
R

+ ...
)

(C.4)
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We can see that to leading order the three axes x, y, and z have independent
harmonic oscillators. The harmonic oscillator states only mix together at
fourth order. Thus at low temperatures we can (1) assume the three axes are
independent and (2) ignore the y and z directions entirely and treat the system
as one dimensional (assuming drive laser is along x-direction).
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