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Abstract 

O-linked β-N-acetylglucosamine glycosylation (O-GlcNAcylation) is a dynamic, 

inducible post-translational modification (PTM) of thousands of intracellular proteins. There are 

only two enzymes responsible for O-GlcNAc cycling in higher eukaryotes, O-GlcNAc 

transferase (OGT) and O-GlcNAcase (OGA), which catalyze addition and removal, respectively. 

We hypothesized that constructing OGT substrate/interactor networks could serve as a useful 

foundation for understanding the functions of O-GlcNAcylation. Moreover, this approach might 

reveal novel insights into how OGT is able to coordinate the specific modification of thousands 

of proteins in response to individual stimuli.  

Here, we first sought to validate interactor-substrate relationships suggested by these 

networks. Specifically, we found that knockdown (KD) of OGT interacting proteins was 

sufficient to disrupt O-GlcNAcylation of non-interacting OGT substrates. KD of the OGT 

interacting protein BAP1 changed the O-GlcNAcylation of several of its interactor proteins, 

many of which do not themselves interact with OGT. This KD strategy was attempted with other 

potential adaptor proteins such as WDR5 and CDK9, but KD was unsuccessful. KD of the OGT 

interacting protein GIT1 lead to intriguing changes in the O-GlcNAcylation of liprin-α1. Both of 

these proteins are vital for synaptic function in excitatory neurons. This result appears significant 

to the latter protein’s function as it changes with neuronal activity. The aforementioned two 

findings suggest that association between OGT and its interactors may allow OGT to engage 

different sets of substrates in different contexts.  

Further, we investigated whether modulating global O-GlcNAcylation can affect 

peroxisome and lipid droplet biogenesis and function, a potentially novel role for O-



GlcNAcylation revealed by our network. Together, these studies demonstrate that our 

networking approach highlights functional connections between OGT interactors and substrates.  
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Chapter 1: Introduction 

 Numerous neurodegenerative and hepatic disorders have links to energy metabolism.1,2 For 

instance, Alzheimer’s disease (AD) is a neurodegenerative disorder that affects upwards of 5.7 

million Americans, a number that is expected to double by 2050.3 One noteworthy characteristic 

of the disorder is that reduced brain glucose metabolism precedes the onset of other symptoms.4 

Similarly, many hepatic disorders stem from impairments in peroxisome fatty acid metabolism 

and lipid droplet regulation, which feeds into glucose metabolic pathways.5–7 In particular, type 2 

diabetes mellitus (T2DM) is characterized by a dysregulation of glucose metabolism impacted by 

fatty acid metabolism in liver peroxisomes.2,6,8 One potential consequence of altered glucose 

metabolism is altered O-linked β-N-acetylglucosamine glycosylation (O-GlcNAcylation). In fact, 

decreased O-GlcNAcylation has been observed in AD brains, suggesting that loss or reduction of 

O-GlcNAc may play a major role in AD pathogenesis.4 Additionally, O-GlcNAcylation has been 

observed to change in response to glucose availability in the liver.2,5,8–10 This, along with observed 

alterations in O-GlcNAcylation in mouse models of diabetes, have indicated that O-

GlcNAcylation may play an important role in the disorder.1  

O-GlcNAcylation is a dynamic, inducible post-translational modification of serine and 

threonine residues (Figure 1.1).11,12 Unlike most sugars, O-GlcNAc is localized to the cytoplasm, 



mitochondria, and nucleus, 

allowing it to affect and be affected 

by numerous intracellular 

processes.11–13 O-GlcNAcylation is 

vital to development, as OGT 

knock out is embryonic lethal.14 

UDP-GlcNAc, the donor sugar for 

O-GlcNAcylation, lies at the end of 

the hexosamine biosynthetic 

pathway (HBP), which integrates 

carbohydrate, lipid, ketogenic amino acid, and nucleic acid metabolic pathways, indicating that 

the modification may play a role in sensing nutrient availability.13,15,16 Due to all of the 

aforementioned properties, O-GlcNAc is uniquely suited to play a dynamic role a wide variety of 

processes such as transcriptional regulation, neuronal function, and nutrient sensing.11  Clearly, a 

better understanding of how O-GlcNAcylation is regulated and the specific roles it plays would 

elucidate a significant component of cellular functioning. 

Interestingly, O-GlcNAcylation is finely regulated in response to stimuli, similar to 

phosphorylation.11 However, unlike phosphorylation, which is regulated by diverse families of 

kinases and phosphatases, only a single pair of enzymes, O-GlcNAc transferase (OGT) and O-

GlcNAcase (OGA), are responsible for O-GlcNAc cycling in higher eukaryotes.4,12 Therefore, it 

remains an open question how just two enzymes can select among thousands of substrates to 

specifically regulate O-GlcNAcylation in response to stimuli. One proposed mechanism is that the 

dynamic interaction of OGT and OGA with adaptor proteins can ‘target’ these enzymes to certain 

Figure 1.1: Significance of O-GlcNAcylation. OGT 

covalently modifies serine and threonine residues of proteins 

with O-GlcNAc. This modification impacts a variety of 

functions. Adapted from Lazarus et al. 2011 and Hart et al. 

2011. 



substrates, 

constraining under 

what conditions and 

at which sites O-

GlcNAc cycling can 

occur  (Figure 1.2).17,18 

 To investigate the OGT adaptor protein hypothesis, our lab developed a technique to 

identify potential adaptor proteins   (Figure 1.3).19 O-GlcNAcylated proteins are chemically tagged 

with biotin via a chemoenzymatic labeling technique,20 enriched via streptavidin capture, and 

identified via mass-spectrometry (MS) based O-GlcNAc proteomics. OGT interactors are 

identified via tandem affinity purification-MS. These two sets of proteins are then organized into 

a protein-protein 

interaction (PPI) network 

in CytoScape (using two 

PPI databases, BioGRID 

and IntAct) and 

partitioned into 

subgroups in an 

unsupervised manner 

using the community 

clustering algorithm 

GLay.21,22 We 

hypothesized that we 

Figure 1.2: Adapter Protein Hypothesis. OGT interacts with different 

subsets of its substrates via different adapter proteins. This can confer the 

highly controlled specificity observed in protein O-GlcNAcylation. 

Figure 1.3: Creation of OGT Substrate/Interactor Networks. A Tissue 

from mice expressing FLAG and HA tagged OGT was used to conduct a 

pull down assay to capture any proteins associated with OGT, followed 

by LC-MS/MS to identify OGT interactors. B Chemoenzymatic labeling 

was used to tag O-GlcyNAcylated proteins from the same tissues as (A). 

These OGT substrate proteins were purified and identified by HCD-

triggered ET(nc)D MS/MS. C Protein-protein interaction based networking 

was used to combine the interactor and substrate data, and Glay was 

used to identify OGT functional clusters.  



could then identify potential OGT adaptor proteins by finding interactors that themselves 

interacted with many OGT substrates, especially those substrates which do not directly interact 

with OGT. This technique was carried out on whole brain lysates, liver lysates, and human 

embryonic kidney 293T (HEK 239T) cell lysates to yield three networks of OGT interactors and 

substrates.  

 Each of these networks yielded many results that we believed merited further study. For 

instance, the HEK 293T network contained three subnetworks related to transcriptional regulation 

that stood out as particularly interesting to investigate: that of BAP1, the PR-DUB complex, and 

its interactors  (Figure 1.4A); WDR5 and its interactors including the SET1 complex (Figure 1.4B); 

and CDK9 and its interactors (Figure 1.4C). In each case, the former protein is an OGT interactor 

that itself interacts with 

many OGT substrates. 

Many of these 

substrates do not 

themselves directly 

interact with OGT. This 

O-GlcNAcylation 

pattern suggested that 

the former protein could 

function as an adaptor 

protein for the latter set 

of proteins. The 

polycomb repressive 

Figure 1.4: BAP1, WDR5, and CDK9 Subnetworks. The proteins in pink 

boxes interact with OGT. Boxes with thick borders indicate that the protein is 

O-GlcNAcylated. These data were taken from the 293T cell network, but the 

relationships are present in other tissue networks as well. A BAP1 

Subnetwork. Note that ASXL1, FOXK1, FOXK2 (components of the PR-

DUB complex), and FOXO3 are O-GlcNAcylated but do not all interact with 

OGT. B WDR5 Subnetwork. Note that FOXK2 is an OGT substrate but not 

an interactor. WDR5 Interacts in a number of other complexes (not shown) 

with similar O-GlcNAcylation patterns. C CDK9 Subnetwork. Note that 

MLLT3, SART3, and many other proteins are O-GlcNAcylated, do not 

interact with OGT, but do interact with CDK9. 



deubiquitylase (PR-DUB) complex, particularly the deubiquitinase BRCA-associated protein 1 

(BAP1), is responsible for histone H2A deubiquitinylation, which plays an important role in gene 

expression.23 WD repeat-containing protein 5 (WDR5) has been suggested to serve as a scaffold 

protein for multiple complexes including the histone-lysine N-methyltransferase, H3 lysine-4 

specific (SET1) complex and is known to play a role in histone H3 methylation.24–26 Both of these 

subnetworks also appeared in the brain and liver networks, suggesting that O-GlcNAcylation of 

these proteins is important to gene regulation of all three tissue types. Cyclin-dependent kinase 9 

(CDK9) is a member of two transcriptional elongation-regulating complexes: the Super Elongation 

Complex (SEC) and the 7SK snRNP inactive complex.27–29 Investigations into these three 

subnetworks are discussed in Chapter 2. 

 The brain network contained multiple notable subgroups correlated with different neuronal 

functions. One particularly interesting subnetwork was enriched for postsynaptic density (PSD) 

proteins including ARF GTPase-activating protein GIT1 (GIT1) and the liprin-α (PPFIA) family 

of proteins. The PSD is a region of a neuron’s dendrite that receives signals and plays a role in 

synaptic plasticity. The liprin-α family and GIT1 are known to play a role in maintaining the 

structure of the PSD.30 The GIT1 subnetwork had an O-GlcNAcylation pattern suggesting a 

putative adaptor protein similar to that described above: GIT1 interacts with OGT and the OGT 



substrates liprin-α1-4, which 

themselves (except liprin-α3) do 

not interact directly with OGT   

(Figure 1.5). Investigations into 

this system and its effect on liprin-

α1 function are discussed in 

Chapter 3.  

 

 

 

 

 The liver network not only produced results similar to those above suggesting potential 

adaptor proteins but revealed new cellular functions for O-GlcNAcylation. One subnetwork 

Figure 1.5: GIT1 Subnetwork. The 

proteins in pink boxes interact with OGT. 

Boxes with thick borders indicate that 

the protein is O-GlcNAcylated. Data are 

from the whole brain lysate network. 

Note that liprin-α 1, 2, and 4 (PPFIA1, 2, 

and 4) are O-GlcNAcylated but do not 

interact with OGT. 

Figure 1.6: Peroxisome Subnetwork and Perilipin O-GlcNAcylation Changes. The proteins in pink 

boxes interact with OGT. Boxes with thick borders indicate that the protein is O-GlcNAcylated. 

Peroxisome data are from the hepatic tissue network and perilipin data are from changes in O-

GlcNAcylation between normal and db/db mice..A The hepatic tissue network was enriched for several 

peroxisomal proteins including peroxisomal targeting signal 1 receptor (PEX5) and peroxisomal acyl-

coenzyme A oxidase 1 (ACOX1). B The fold changes for O-GlcNAcylation sites of several proteins 

involved in fatty acid processing are shown. Notably, five of the top ten fold changes in O-GlcNAcylation 

were in the lipid metabolism-related protein perilipin 4. The perilipin family in particular all showed large 

fold changes in O-GlcNAcylation.  



contained many proteins with roles in peroxisome organization and function (Figure 1.6.A) which 

had not been previously linked to O-GlcNAcylation.19 Peroxisomes have multiple functions in 

cellular metabolism including portions of fatty acid metabolism and processing of reactive oxygen 

species.31 Both of these processes are intimately linked to glucose metabolism, with the former 

feeding into it and the latter being a byproduct of the process. To further investigate phenomena 

related to the role of O-GlcNAc in liver function, O-GlcNAcylation levels of proteins in hepatic 

lysates from control and db/db mice (a mouse model of T2DM) were compared.32 The perilipin 

family of proteins contained many of the top increased O-GlcNAcylation sites in the livers of 

db/db mice (Figure 1.6.B). The perilipins play a key role in fatty acid metabolism, as they are 

responsible for regulation of lipid droplet size and dynamics.7,33–35 Lipid droplets store neutral fatty 

acids and are one of the main sites for their metabolism.7,36 Both the peroxisome and lipid droplet 

data are consistent with O-GlcNAc’s function as a nutrient sensor. Further investigations into these 

systems are discussed in Chapter 4. 

 Here, we aimed to validate the utility of our networking approach for identifying key 

proteins of interest in the study of O-GlcNAcylation. We did this by investigating examples of (1) 

potential adaptor proteins identified by our network, (2) the role an adaptor protein may play in 

the functioning of its interactors, and (3) the effect of O-GlcNAcylation on previously unstudied 

functions identified by our network. Together, these experiments not only demonstrate the utility 

of our networking approach for identifying adaptor proteins but reveal new information about the 

effects of O-GlcNAcylation on cellular functions.  

 

 

  



Chapter 2: Validation of BAP1, WDR5, and CDK9 as Putative OGT Adaptor Proteins 

 2.1: Introduction 

As discussed above, the mechanism by which OGT confers specificity in O-GlcNAcylation 

of its over one thousand substrates is an open problem. One promising hypothesis is that adaptor 

proteins allow OGT to associate with different subsets of its substrates and thereby create the 

observed specificities in both substrate choice and timing of O-GlcNAcylation in response to 

cellular conditions. To further our understanding of the relationships between the proteins 

involved, our lab created networks of OGT interactors and substrates.19 These networks were 

created for multiple tissue types including HEK 293T cells, whole brain lysates, and liver lysates. 

Using these networks, we identified numerous potential adaptor proteins involved in 

transcriptional regulation for further investigation. 

In all three networks, proteins in the Polycomb repressive deubiquitylase (PR-DUB) 

complex, particularly the deubiquitinase BRCA-associated protein 1 (BAP1), showed an 

interesting O-GlcNAcylation pattern (Figure 2.1.A).19 That is, OGT has numerous substrates that 

it does not interact with, but BAP1 and/or the PR-DUB complex do interact with these substrates 

as well as OGT. This pattern suggests that the BAP1-OGT interaction may be necessary for the 

O-GlcNAcylation of other proteins in the complex. Thus, BAP1 may function as an adaptor protein 

for the O-GlcNAcylation of other members in the PR-DUB complex. The PR-DUB complex and 

its associated proteins play a key role in histone H2A deubiquitinylation, which impacts gene 

expression.23 The interaction of this complex with OGT is also known to influence hepatic 

gluconeogenesis which may be involved T2DM pathogenesis.12,24,37  



The protein 

WD repeat-

containing protein 5 

(WDR5) shows a 

similar O-

GlcNAcylation 

pattern in that it is and 

OGT interactor that 

interacts with OGT 

substrates but is not 

itself an OGT 

substrate (Figure 

2.1.B).19 This 

suggests that WDR5 may function as an adaptor protein as well. WDR5 is also important for 

histone modification, though it plays a role in histone H3 methylation rather than H2A 

deubiquitinylation.24,25 WDR5 is vital for the functioning of the complexes it plays a part in and 

has been suggested to be an important scaffold protein.24,26 Additionally, OGT had already been 

identified as a subunit of WDR5 complexes, particularly  the SET1 complex highlighted in Figure 

2.1.B.24 These data are consistent with our hypothesis that WDR5 could serve as an adaptor protein 

for many of its interactors that are also OGT substrates.  

Similarly, the O-GlcNAcylation pattern of the protein CDK9 and its interactors in the HEK 

293T cell network indicate that CDK9 might serve as an adaptor protein (Figure 2.1.C).19 Like 

BAP1, many CDK9 interactors are OGT substrates, but not OGT interactors, suggesting that 

Figure 1.4: BAP1, WDR5, and CDK9 Subnetworks. The proteins in pink 

boxes interact with OGT. Boxes with thick borders indicate that the protein is 

O-GlcNAcylated. These data were taken from the 293T cell network, but the 

relationships are present in other tissue networks as well. A BAP1 

Subnetwork. Note that ASXL1, FOXK1, FOXK2 (components of the PR-

DUB complex), and FOXO3 are O-GlcNAcylated but do not all interact with 

OGT. B WDR5 Subnetwork. Note that FOXK2 is an OGT substrate but not 

an interactor. WDR5 Interacts in a number of other complexes (not shown) 

with similar O-GlcNAcylation patterns. C CDK9 Subnetwork. Note that 

MLLT3, SART3, and many other proteins are O-GlcNAcylated, do not 

interact with OGT, but do interact with CDK9. 



CDK9 serves as an adaptor protein for their O-GlcNAcylation. In particular, the OGT substrates 

MLLT3 and SART3 were of particular interest due to their interactions with CDK9 to perform an 

important roles in transcriptional regulation.29 CDK9 and MLLT3 are both members of the Super 

Elongation Complex (SEC), and CDK9 and SART3 are both members of the 7SK snRNP inactive 

complex, both of which regulate the transcriptional elongation stage of transcription.27,28  

To determine whether BAP1, WDR5, and CDK9 might be adaptor proteins for O-

GlcNAcylation of their interactors, we planned to knock down (KD) each one in 293T cells via 

transfection with siRNA, label O-GlcNAcylated proteins via chemoenzymatic labeling, and 

determine if there is a change in O-GlcNAcylation of the OGT substrates each is a potential adaptor 

protein for. By determining if there was a noteworthy change in O-GlcNAcylation of these 

proteins, this project served the twofold goal of validating the networks’ ability to suggest 

interesting systems to study and identify putative OGT adaptor proteins.  

 

  



2.2: Methods 

Chemoenzymatic Labeling 

 We have previously developed and characterized a chemoenzymatic labeling process to 

attach various tags to the O-GlcNAc sugar modification.20 This procedure uses an engineered 

bovine β-1,4-galactosyltransferase (Y289L GalT) to specifically and quantitatively append an 

unnatural azido sugar, N-azidoacetylgalactosamine (GalNAz), to O-GlcNAc residues. O-

GlcNAcylated proteins labeled with GalNAz can then be further functionalized bioorthogonally 

via either the copper-catalyzed azide-alkyne cycloaddition (CuAAC)  (Figure 2.2) or the strain-

promoted azide-alkyne cycloaddition (SPAAC) reactions.20 With both methods, there are multiple 

types of tags that can be used to functionalize the proteins, such as high-molecular-weight 

polyethylene glycol (PEG) ‘mass tags’ and biotin.20 Here, the SPAAC method was used to 

elaborate O-GlcNAcylated proteins with the biotin tag for subsequent enrichment of labeled 

proteins via streptavidin capture. See Appendix A for more information. 

 

  

Figure 2.2: Chemoenzymatic labeling of O-GlcNAcylated proteins. A Incubation of O-GlcNAcylated 

proteins with Y289L GalT and uridine diphosphate N-azidoacetylgalactosamine (UDP-GalNAz) installs 

a chemical handle that can be further functionalized with alkyne-containing biotin probes using copper-

catalyzed azide-alkyne cycloaddition (CuAAC, shown) or strain-promoted azide-alkyne cycloaddition 

(SPAAC, not shown). B Functionalization with biotin allows for selective enrichment and purification of 

O-GlcNAcylated proteins by streptavidin capture. C Sample Western Blot of CREB labeling. Adapted 

from Thompson et. al. 2017. 



Transfection 

 HEK 293T cells were grown on a Poly-D-Lysine (PDL) coated plate and treated at 50% 

confluency with siRNA for the protein of interest or a scrambled sequence using MISSION siRNA 

transfection reagent and protocols to package the DNA for cellular uptake. Cells were incubated 

for 48 hours to allow sufficient time for gene silencing and protein degradation, after which their 

media was exchanged. The cells were lysed as described in Appendix A. The lysates were run on 

SDS-PAGE followed by Western Bloting for the protein of interest with α-tubulin as a control to 

evaluate KD efficiency.   

 

2.3: Results 

 To determine if BAP1 serves as an adaptor protein, we transfected HEK 293T cells with 

siRNA to KD the protein. After optimization, we achieved 44-58% KD in two sets of cells and 

performed chemoenzymatic labeling on the lysates (Figure 2.3). In both cases, we did not observe 

significant changes in O-GlcNAcylation of PR-DUB complex proteins, but we did observe 

significant changes in FOXO3 O-GlcNAcylation. FOXO3 is a secondary interactor of BAP1 but 

a primary interactor of the PR-DUB complex, indicating that the complex itself might serve as an 

Figure 2.3: BAP1 KD O-GlcNAcylation. O-GlcNAcylation following two different BAP1 KD experiments 

are shown. A FOXO3a and CREB O-GlcNAcylation change significantly, while that of FOXK1 and 

FOXK2 do not. However, the variability in FOXK1 O-GlcNAcylation as well as the fact that the negative 

control of CREB had a significant change lead us to repeat the experiment. B FOXO3a O-GlcNAcylation 

had a statistically significant change, while that of FOXK1 and SETD1A did not. The high variability 

suggested that these data were insufficient to make concrete conclusions.  



adaptor protein (Figure 

2.4). However, the high 

variability in O-

GlcNAcylation of some 

proteins as well as the 

significant change in 

CREB O-

GlcNAcylation, which 

we did not expect to be affected, indicated that further experiments were needed to confirm these 

results.  

 Efforts to achieve WDR5 and CDK9 KD using the same method and conditions as the 

BAP1 KD were unsuccessful. Further, generation of a CDK9 KO line using the same method as 

the BAP1 KO line was unsuccessful. Thus, we were unable to test our hypotheses regarding WDR5 

and CDK9 as adaptor proteins for their interactors.  

 

2.4 Conclusion and Future Directions 

We successfully knocked down BAP1 and found that BAP1 KD significantly decreased 

FOXO3 O-GlcNAcylation, indicating that this system was of interest for further study despite 

variable results. The WDR5 and CDK9 KDs were unsuccessful. The difficulty in creating KD or 

KO of these proteins may be due to their vital roles in the cell leading to decreased viability after 

KD, though it should be noted that successful CKD9 KD has been achieved by other labs.38 Future 

directions for this project involve examining O-GlcNAcylation changes of a BAP1 KO cell line, 

which would mitigate the potentially confounding variable of incomplete KD, and creating 

Figure 2.4: BAP1 Knock Down Hypothesis. We hypothesize that the 

PR-DUB complex acts as an adapter for OGT to O-GlcNAcylate FOXO3. 

Thus, we expect BAP1 KD to reduce FOXO3 O-GlcNAcylation. 



comparable CDK9 and WDR5 KO cell lines for similar experiments. The experiments presented 

here served as a proof of concept that BAP1 KD lead to alterations in O-GlcNAcylation. 

 

  



Chapter 3: Examination of Liprin-α1 O-GlcNAcylation, its Regulation by GIT1, and 

its Role in GRIP1 Binding. 

3.1 Introduction 

As discussed in Chapter 1, how OGT confers specificity in O-GlcNAcylation of its over 

one thousand substrates is an open problem. One promising hypothesis is that adaptor proteins 

allow OGT to associate with different subsets of its substrates, which would provide the observed 

specificities in both substrate choice and cellular conditions under which the modification occurs. 

To further our understanding of the relationships between the proteins involved, our lab created 

networks of OGT interactors and substrates.19 Here, we wished to investigate an adaptor protein 

system in more depth and determine the effect this O-GlcNAcylation has on the function of a 

specific OGT substrate. In the brain network, there is a subgroup particularly enriched for proteins 

in the PSD. The PSD is the region of a neuron’s dendrite that receives neuronal signals and is a 

key player in synaptic plasticity. A 

subnetwork including ARF 

GTPase-activating protein GIT1 

(GIT1) and the liprin-α family of 

proteins is of particular interest 

because of their O-GlcNAcylation 

pattern (Figure 3.1).19 The liprin-α 

proteins are all O-GlcNAcylated, 

but only liprin-α3 and GIT1 

interact with OGT, suggesting that 

GIT1 may function as an adaptor 

Figure 3.1: GIT1 Subnetwork. The 

proteins in pink boxes interact with 

OGT. Boxes with thick borders 

indicate that the protein is O-

GlcNAcylated. Data are from the 

whole brain lysate network. Note that 

liprin-α 1, 2, and 4 (PPFIA1, 2, and 4) 

are O-GlcNAcylated but do not 

interact with OGT. 



protein for the liprin-α family of proteins and is therefore necessary for their O-GlcNAcylation by 

OGT.  

The liprin-α family and GIT1 are also important for maintaining the structure of the PSD.30 

In particular, liprin-α1 is involved in targeting α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 

acid receptors (AMPARs) to the synaptic membrane.30,39 These glutamate-responsive ion channels 

are responsible for the majority of excitatory neurotransmission in the brain and are key players in 

the process of long-term potentiation (LTP), a primary mechanism for synaptic plasticity, learning, 

and memory.30,40 To target AMPARs to the post-synaptic membrane, liprin-α1 must bind to 

glutamate receptor-interacting protein 1 (GRIP1), which binds to AMPARs (particularly the 

GluR2 subunit).39–41 Interestingly, the only known O-GlcNAcylation site on liprin-α1 lies within 

the region known to mediate binding to GRIP1.41 Furthermore, the crystal structure of liprin-α1 

bound to GRIP141 suggests that O-GlcNAcylation of this site might prevent binding due to its 

steric bulk. Thus, we hypothesize that the O-GlcNAcylation of liprin-α1 might interrupt the 

binding between liprin-α1 and GRIP1. If true, this would indicate that when O-GlcNAcylation is 

decreased, levels of the liprin-α1 GRIP1 complex increase and result in more AMPARs being 

targeted to the synapse (Figure 3.2). Taken together, the aforementioned data suggest a potential 

role for liprin-α1 O-GlcNAcylation in LTP and synaptic organization. Here, we determined the 

dynamics of liprin-α1 O-GlcNAcylation in neurons, investigated the role of GIT1 as an adaptor 

protein in regulating liprin-α1 O-GlcNAcylation with neuronal stimulation, and began to examine 



the effect of liprin-α1 O-GlcNAcylation on its binding with GRIP1. 

 

 

3.2: Methods 

Chemoenzymatic Labeling 

 We have previously developed and characterized a chemoenzymatic labeling process to 

attach various tags to the O-GlcNAc sugar modification.20 This procedure uses an engineered 

bovine β-1,4-galactosyltransferase (Y289L GalT) to specifically and quantitatively append an 

unnatural azido sugar, N-azidoacetylgalactosamine (GalNAz), to O-GlcNAc residues. O-

GlcNAcylated proteins labeled with GalNAz can then be further functionalized bioorthogonally 

via either the copper-catalyzed azide-alkyne cycloaddition (CuAAC) (Figure 2.2) or the strain-

promoted azide-alkyne cycloaddition (SPAAC) reactions.20 Here, the SPAAC method was used to 

elaborate the biotin tag for subsequent enrichment of labeled proteins via streptavidin capture. 

Quantities of protein used for the labeling experiments in Section 3.4 were decreased, so reaction 

and reagent volumes were decreased to compensate and maintain equivalent concentrations. See 

Appendix A for more details. 

Figure 3.2: Overall Liprin-α1 O-GlcNAcylation Hypothesis. When liprin-α1 is not O-GlcNAcylated, we 

expect it to bind to GRIP1, which in turn continues targeting AMPARs to the synapse (left). We expect 

liprin-α1 O-GlcNAcylation, to inhibit its binding with GRIP1, which would reduce the number of AMPARs 

in the membrane (right). Overall, we hypothesize that this serves as a protective mechanism against 

 



 

Co-Immunoprecipitation 

Neurons expressing OGT-FH containing HA and FLAG tags were grown and either 

silenced or KCl stimulated. Cells were lysed after 26 days and diluted as preparation for the co-

immunoprecipitation assay. Input lysate was saved for Western Blotting. The lysate was incubated 

with anti-FLAG magnetic beads, and protein was eluted. Inputs and eluents were run on SDS-

PAGE and Western blotted for HA (one of the tags on OGT), liprin-α1 and GIT1. Pulldown 

efficiency was calculated by measuring the intensity of the eluent bands relative to the input. See 

Appendix A for more details. 

 

Lentivirus Production 

HEK 293T cells were transfected with GIT1 or scrambled shRNA-containing lentiviral 

plasmids, as well as lentiviral packaging plasmids, using Lipofectamine 3000 to package the DNA 

at 50-90% confluence according to manufacturer’s instructions. The virus was harvested by 

collecting and replacing the media 24 and 48 hours post-transfection and concentrated using PEG 

precipitation.42 The knockdown (KD) efficiency of the virus was validated by infecting primary 

mouse cortical neurons followed by lysis, SDS-PAGE, and Western blotting for GIT1. See 

Appendix A for more details. 

 

3.3 Liprin-α1 O-GlcNAcylation Increases with Neuronal Depolarization 

The data for the brain network was collected from whole brain lysates, so we first needed 

to confirm that liprin-α1 was O-GlcNAcylated in neurons specifically. To do this, we cultured 

mouse primary cortical neurons to maturity (21 DIV), then either silenced or stimulated them. This 

allowed us to determine if O-GlcNAcylation levels change with neural activity. We harvested the 

lysates and labeled O-GlcNAcylated proteins as described in Appendix A. Using this 



methodology, we have shown that liprin-α1 

is O-GlcNAcylated in neurons, and this O-

GlcNAcylation increases with neuronal 

stimulation (Figure 3.3). This signifies that 

liprin-α1 O-GlcNAcylation may participate 

in regulating its role in neuronal function.  

 

 

 

 

 

 

 

3.4 Investigation of GIT1 as an Adaptor Protein 

 The previously discussed network of O-GlcNAcylated proteins in whole brain lysates 

indicated that GIT1, but not liprin-α1, is an interactor of OGT. To verify that this was true in mouse 

cortical neurons, neurons expressing FLAG- and HA-tagged OGT (OGT-FH) were either silenced 

or stimulated with KCl and lysed, before purifying OGT by immunoprecipitation. We then 

performed a Western blot on the samples from this experiment and confirmed that GIT1 does in 

fact co-IP with OGT, but liprin-α1 does not (Figure 3.4.A). There was no qualitative difference in 

OGT, GIT1, or liprin- α1 pull down between the silenced and stimulated conditions; a quantitative 

comparison was not possible due to the absence of an input sample for the silenced condition, so 

we replicated this experiment with an input sample present, which quantitatively yielded the same 

results (Figure 3.4.B). A nonspecific HA band from the OGT blot overlapped with the GIT1 signal, 

Figure 3.3: Liprin-α1 O-GlcNAcylation. Liprin-α1 

O-GlcNAcylation in mouse primary cortical neurons. 

A Representative Western Blot of streptavidin 

capture enrichment of O-GlcNAcylated liprin-α1. B 

There was a significant increase in liprin-α1 O-

GlcNAcylation with KCl stimulation, but not with TMG 

inhibition of OGA.   

* p < 0.05; n = 6 



so this set of data cannot 

be used to compare 

GIT1 stoichiometry. To 

the extent that can be 

shown by each of these 

experiments, KCl 

stimulation does not 

appear to change GIT1 

association with OGT, 

indicating that the 

increase in liprin-α1 O-

GlcNAcylation 

previously observed during KCl stimulation was not necessarily due to greater association of GIT1 

and OGT. These results indicate that GIT1 is a relatively stable interactor of OGT, while liprin-α1 

only associates transiently, confirm the previously observed interaction between OGT and GIT1 

using TAP-MS, and demonstrate for the first time that a significant portion of neuronal GIT1 is 

stably associated with OGT. 

As previously mentioned, GIT1 is a potential OGT-adaptor protein and thus its presence 

may be necessary for liprin-α1 O-GlcNAcylation, including dynamic O-GlcNAcylation. In 

previous labeling experiments, liprin-α1 O-GlcNAcylaion increased with KCl stimulation, which 

mimics excitatory stimulation; if GIT1 is necessary for this process we would expect GIT1 KD to 

prevent this increase. To determine if GIT1 is required for liprin-α1 O-GlcNAcylation, we 

employed our previously validated lentiviral-mediated strategy to KD GIT1 in primary mouse 

Figure 3.4: GIT1 KD and Liprin-α1 O-GlcNAcylation. A & B 

Verification of GIT1 as an OGT Interactor qualitatively (A) and 

quantitatively (B). Co-IP was conducted on OGT labeled with HA from 

cells that were either silenced (-) or stimulated (+). GIT1 co-IPed with 

OGT, but liprin- α1 did not. C Representative Western Blot of GIT1 KD 

following treatment with GIT1 shRNA lentivirus. KD consistently reached 

55-89% efficiency. D GIT1 KD prevents depolarization-mediated 

increase in liprin-α1 O-GlcNAcylation. 
* p < 0.05; n = 8 



cortical neurons and 

assay liprin-α1 O-

GlcNAcylation 

using 

chemoenzymatic 

labeling. Briefly, we 

have developed a 

lentivirus to deliver 

a short-hairpin RNA 

(shRNA) targeting GIT1 mRNA for degradation (Figure 3.4.C). We used the aforementioned 

chemoenzymatic labeling technique to attach a biotin tag and enrich O-GlcNAcylated proteins. 

Initial experiments have proven promising and indicated that GIT1 may regulate KCl stimulation-

mediated liprin-α1 O-GlcNAcylation (Figure 3.4.D). Interestingly, while baseline liprin-α1 O-

GlcNAcylation did not decrease significantly following GIT1 KD as expected, we observed that 

dynamic liprin-α1 O-GlcNAcylation did not occur with GIT1 KD. This indicates that GIT1 may 

mediate dynamic liprin-α1 O-GlcNAcylation (Figure 3.5). Overall, these data give evidence in 

support of the hypothesis that GIT1 acts as an adaptor protein for liprin-α1 O-GlcNAcylation, 

though more replicates would be necessary to be certain of the details.  

 

Figure 3.5: GIT1 KD Model. When GIT1 is present (top), OGT can interact 

with liprin-α1 to O-GlcNAcylate it when neurons are stimulated. When GIT1 is 

knocked down (bottom), this interaction cannot occur and liprin-α1 O-

GlcNAcylation does not increase. 



3.5 Determination of the Effect of Liprin-α1 O-GlcNAcylation on its Binding with 

GRIP1 

Finally, to determine if liprin-α1 

O-GlcNAcylation affects liprin-α1 

binding with GRIP1, we planned to 

transfect cells to express mutant forms 

of liprin-α1 and exogenous GRIP1 and 

attempt to co-immunoprecipitate (co-

IP) the two proteins. In the first 

experimental group, the O-

GlcNAcylation site on liprin-α1 

(T1263) will be replaced with a bulky 

amino acid (tryptophan) to mimic O-GlcNAcylation. If our hypothesis is correct, then we expect 

this mutant will have decreased binding to GRIP1. 

In the second experimental group, the liprin-α1 O-

GlcNAcylation site will be replaced with the non-

bulky amino acid, alanine, (that cannot be O-

GlcNAcylated) to prevent O-GlcNAcylation. Here, 

we expect liprin-α1 to bind to GRIP1 more strongly 

than wild type (WT) liprin-α1. If successful, these 

experiments would strongly suggest that O-

GlcNAcylation of liprin-α1 may actively regulate 

its binding to GRIP1 (Figure 3.6). Thus far, we 

Figure 3.6: GRIP1 co-IP experimental design. By 

mimicking the naturally occurring O-GlcNAcylation states 

of liprin-α1 with single-residue mutants, we will 

demonstrate whether the O-GlcNAc modification affects 

GRIP1 binding. 

Figure 3.7: Plasmid map of Liprin-α1 

expression vector. Liprin-α1 (green) 

with an HA tag (orange) is contained 

within a CMV6 plasmid for expression in 

HEK 293T cells. 



created a construct containing WT liprin-α1 (Figure 3.7), have designed the mutagenesis to create 

the single amino acid replacement liprin-α1 constructs, and designed the GRIP1 construct. Future 

experiments would use the above outlined methods to create the remaining constructs, transfect 

HEK 293T cells with them, and run the co-IP. 

 

3.6 Conclusion and Future Directions 

Liprin-α1 is O-GlcNAcylated in neurons, and this O-GlcNAcylation increases with neuronal 

stimulation. This signifies that liprin-α1 O-GlcNAcylation may participate in regulating its role in 

neuronal function. GIT1 may also mediate dynamic liprin-α1 O-GlcNAcylation. In the future, 

these experiments should be repeated in order to have higher confidence in our results. 

Additionally, the creation and testing of the liprin-α1 and GRIP1 constructs will need to be 

finished, and the co-IP experiment conducted. Overall, these experiments not only demonstrated 

the utility of our networking approach for identifying a potential adaptor protein but revealed new 

information about the properties of liprin-α1 O-GlcNAcylation.  



Chapter 4: Effects of Global Modulation of O-GlcNAcylation on Fat Metabolism, 

Peroxisome Structure, and Lipid Droplet Structure. 

4.1: Introduction 

As discussed in Chapter 1, numerous lines of evidence have suggested that O-GlcNAc 

functions as a nutrient sensor.43 To further our understanding of O-GlcNAcylation, our lab created 

networks of OGT interactors and substrates for multiple tissue types including liver lysates.19 This 

liver network uncovered new cellular functions for O-GlcNAcylation related to its nutrient sensor 

role. In particular, it contains a cluster enriched for proteins involved in peroxisome organization 

and function (Figure 4.1.A), which have not been previously tied to O-GlcNAcylation.19 

Peroxisomes are responsible for portions of fatty acid metabolism that feed into glucose 

metabolism and processing of reactive oxygen species (a byproduct of glucose metabolism).31 

Additionally, there are several clusters in the liver network enriched for proteins involved in fatty 

acid metabolism, especially very-long- and long-chain fatty acid metabolism that takes place in 

peroxisomes, indicating that O-GlcNAcylation may play a role in the process as well.  

Figure 4.1: Peroxisome Subnetwork and Perilipin O-GlcNAcylation Changes. The proteins in pink 

boxes interact with OGT. Boxes with thick borders indicate that the protein is O-GlcNAcylated. 

Peroxisome data are from the hepatic tissue network and perilipin data are from changes in O-

GlcNAcylation between normal and db/db mice..A The hepatic tissue network was enriched for several 

peroxisomal proteins including peroxisomal targeting signal 1 receptor (PEX5) and peroxisomal acyl-

coenzyme A oxidase 1 (ACOX1). B & C The fold changes for O-GlcNAcylation sites of several proteins 



To further investigate the role of O-GlcNAc in liver function, O-GlcNAcylation levels of 

proteins in hepatic lysates from control and db/db mice (a mouse model of T2DM) were 

compared.32 Briefly, chemoenzymatic labeling (described in Chapter 2) was used to tag and purify 

O-GlcNAcylated proteins from the two types of lysates. Mass spectrometry was used to identify 

labeled proteins and quantify O-GlcNAcylation at each site. Ratios of these O-GlcNAcylation 

levels between the two conditions for each site were calculated. 

This screen demonstrated that the O-GlcNAcylation of several perilipin family proteins 

was significantly increased in the livers of db/db mice (Figure 4.1.B).32 Lipid droplets are critical 

sites for neutral fatty acid storage and metabolism.7,36 Perilipins help regulate lipid droplet size and 

dynamics, which is vital for proper fatty acid metabolism.7,33–35 Previous studies have suggested 

that O-GlcNAcylation of members of the perilipin family of proteins is involved in regulation of 

lipolysis in visceral fat tissue,34 though perilipin O-GlcNAcylation had not yet been examined in 

liver tissue. Perilipin 2, which possesses five of the increasing O-GlcNAcylation sites, is known 

to be at least in part regulated by peroxisome proliferator-activated receptor α (PPARα) and γ in 

liver tissues.36,44 This raises the possibility that the O-GlcNAcylation of proteins involved in 

peroxisome and lipid droplet formation and function might regulate fatty acid biosynthesis and 

storage. Perilipin 4, which possesses five of the top ten changing O-GlcNAcylation sites in our 

screen, is known to be involved in lipid droplet formation, though the exact functions of this protein 

have not yet been determined.36 Though not a perilipin itself, one of the other proteins in the db/db 

mice O-GlcNAcylation fold change screen containing the two of the top ten sites was elongation 

of very long chain fatty acids protein 6 (Elovl6) (Figure 4.1.C).32 This protein catalyzes the rate 

limiting step of long- and very long-chain fatty acid elongation.45 While not directly related to 

perilipin function, this process is also very important to fat metabolism and has been implicated in 



hepatic insulin sensitivity, though the exact effect it has and its regulation are unclear.46 Further, 

altering O-GlcNAcylation can influence insulin signaling, glucose uptake, gluconeogenesis, and 

fatty acid metabolism, indicating that it has a vital role in these processes.1,2,8,16,47  

Though the effects of O-GlcNAcylation on a few individual proteins involved in these 

processes are known, how this modification accomplishes these results and the overall role it plays 

in coordinating each of these processes as a whole has yet to be elucidated. Moreover, virtually 

nothing is known about the role of O-GlcNAc in peroxisome function despite it being intimately 

linked to many aspects of metabolism.1,2,8,48 This, along with the aforementioned evidence that O-

GlcNAc serves as a nutrient sensor and the liver network is particularly enriched in peroxisome 

and fatty acid metabolism proteins, suggests that O-GlcNAcylation may play a role in regulating 

peroxisome function. To investigate these phenomena, we used established methods to globally 

increase O-GlcNAcylation and subsequently sought to examine changes in long-chain fatty acid 

metabolism and determine differences in peroxisome and lipid droplet morphology. 

 

4.2 In-vitro Assay for Fatty Acids 

 To determine the effect of O-

GlcNAcylation on peroxisomes 

and/or fatty acid metabolism in 

hepatic cells, we grew human 

hepatocellular carcinoma (HepG2) 

cells in normal and hyperglycemic 

conditions. Cells from both 

conditions were treated with thiamet 

G (TMG),49 a potent OGA inhibitor, 

Figure 4.2: Fatty Acid Concentrations. Fatty acid 

concentrations of HepG2 lysates were measured using a 

long-chain fatty acid detection assay. No significant 

differences were observed between conditions.  
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to prevent O-GlcNAc cycling. To investigate effects on fatty acid metabolism, cell lysates were 

tested for long-chain and very-long-chain fatty acids after treatment and compared to an untreated 

control. Even after optimization to decrease variability, no significant differences between the 

conditions were observed (Figure 4.2). It is likely that any differences are too small for detection 

by the resolution of this test or that the cell is able to compensate for global O-GlcNAc modulation 

with respect to its fatty acid levels in the short term. 

 

4.3 Characterization of Peroxisome and Lipid Droplet Morphology  

 Similarly treated cells as in section 4.2 were grown 

on cover slips for microscopy as described in Appendix A. 

These cells were fixed; stained with antibodies for PMP70, 

ACOX1, or catalase; and imaged by confocal microscopy. 

The PMP70 antibody did not noticeably stain any cellular 

component, and the ACOX1 antibody was not very specific 

and signal was present throughout the cytoplasm. However, 

the catalase antibody clearly stained peroxisomes. The 

images were promising, with peroxisomes clearly 

distinguishable (Figure 4.3).  

In order to examine lipid droplets at the same time 

as peroxisomes, another set of cells were stained for 

catalase and with 4,4-Difluoro-1,3,5,7,8-Pentamethyl-4-

Bora-3a,4a-Diaza-s-Indacene (BODIPY). Peroxisomes 

were unable to be detected by microscopy, most likely due 

to a problem with the microscope laser that detected the secondary antibody used against the 

Figure 4.3: Representative Images 

of Peroxisome Imaging in HepG2 

Cells. Maximum intensity projection 

images shown for all conditions. 

Nuclei were stained with 4′,6-

diamidino-2-phenylindole (DAPI) and 

appear blue in these images. 

Peroxisomes were visualized with 

ACOX1 antibody and appear green in 

these images. A Low glucose 

condition imaged with 63x objective. 

B Low glucose and TMG treatment 

condition, imaged with 63x objective. 

C High glucose condition imaged with 

63x objective. D High glucose and 

TMG treatment condition, imaged 

with 100x objective.  

B 

C D 

A 



catalase antibody. 

However, lipid droplet 

images were successfully 

obtained (Figure 4.4). 

Image processing was 

performed on these 

preliminary images to 

determine the success of 

this procedure and to create 

a data processing pipeline 

for larger scale tiled images. 

Image processing code was 

written to segment the images and identify lipid droplets (Appendix C), and the area of each droplet 

were determined (Figure 4.5). While there were slight differences between conditions, the standard 

deviations were too large to support any conclusions. However, the sample size was relatively 

small with only 10-15 

cells per image, so a 

tiled image of the 

entire slide might be 

able to decrease this 

variance.  

 

Figure 4.4: Representative Images of Lipid Droplet Imaging in 

HepG2 Cells. Nuclei were stained with 4′,6-diamidino-2-phenylindole 

(DAPI) and appear blue in these images. Lipid droplets were visualized 

with 4,4-Difluoro-1,3,5,7,8-Pentamethyl-4-Bora-3a,4a-Diaza-s-

Indacene (BODIPY) and appear green in these images. All images 

were taken with 63x objective. A High glucose condition B High glucose 

and TMG treatment condition. C Low glucose condition. D Low glucose 

and TMG treatment condition. E No glucose condition.  

Figure 4.5: 

Representative 

Boxplot of Lipid 

Droplet Areas in 

HepG2 Cells. Areas of 

lipid droplets identified 

during image 

segmentation were 

measured for each of 

the conditions in three 

sets of images. Here, a 

representative set of 

data are shown. 

Notably, while the mean 

lipid droplet area differs 

between conditions, the 

variations are too large 

to support any 

conclusions. 



4.4 Conclusion and Future Directions 

 The liver network and db/db liver screen both suggested novel roles for O-GlcNAc in 

fatty acid metabolism related to peroxisomes and lipid droplets, respectively. Bulk measurement 

of long- and very-long-chain fatty acids did not have fine enough resolution to detect differences 

due to global O-GlcNAc modulation, suggesting that such differences are either small or negated 

by feedback mechanisms on the timescale examined. Though we were unable to obtain 

significant data regarding the effect of O-GlcNAcylation on peroxisome morphology and lipid 

droplet size and number, we developed a method to investigate our hypothesis and process data 

from these experiments. Future investigations can implement these methods to create larger data 

sets that would likely decrease the variance observed.   



Appendix A: Materials and Methods 

Cell culture  

Primary mouse cortical neurons were prepared as previously described,50 plated on poly-

d-lysine (PDL) coated plates, and cultured in Neurobasal medium (ThermoFisher) with 1% 

penicillin-streptomycin (P/S, ThermoFisher), 2mM GlutaMAX Supplement (ThermoFisher), and 

B-27 Plus (ThermoFisher). Half of the media was changed every 2-4 days. After 20 DIV, neuronal 

activity was silenced using tetrodotoxin (TTX, 10 μM, Tocris Biosciences) and D-AP5 (100 μM, 

Tocris Biosciences), treated with Thiamet-G (TMG, 50 μM, Sigma Aldrich), or treated with both 

TMG (50 µM) and glucosamine (50 mM, Sigma Aldrich). The following day, silenced neurons 

and those treated with both TMG and glucosamine were depolarized with KCl (60 mM) for 2 hours 

and subsequently lysed with either RIPA buffer or 2% SDS in HEPES pH 7.9, containing Roche 

c0mplete protease inhibitor cocktail (Sigma Aldrich), TMG (0.1 mM), and benzoase nuclease 

(Santa Cruz Biotechnology). The TMG treated neurons were lysed as described without treatment 

with KCl. In all cases, the protein concentration was measured using BCA assay (ThermoFisher).  

HEK 293T cells were maintained in DMEM medium (Invitrogen) with 2 mM GlutaMAX, 

100 U/mL penicillin-streptomycin (ThermoFisher), and 10% FBS (Invitrogen). Cells grown for 

transfection experiments were grown on poly-d-lysine (PDL) coated plates. 

Hep G2 cells were plated on collagen-coated plates and maintained in DMEM medium 

(Invitrogen) with low glucose (1 mg/mL), 2 mM GlutaMAX, 100 U/mL penicillin-streptomycin 

(ThermoFisher), 10% FBS (Invitrogen), and without phenol red. Cells grown for microscopy were 

grown on cover slips coated with poly-d-lysine (PDL) followed by collagen-coating as described 

above. 

 



Cell Staining 

 Hep G2 cells were grown as described above. At 50% confluency, cells were fixed using 

paraformaldehyde. Each well was stained with one of the following antibodies and the appropriate 

secondary antibodies: PMP70 (ThermoFisher, MA5-31368, 1:200), ACOX1 (ThermoFisher, PA5-

82750, 1:200), catalase (Cell Signaling Technology, 12980, 1:800), anti-mouse IgG Alexa Fluor 

647 (abcam, ab150115, 1:500), anti-rabbit IgG Alexa Fluor 488 (abcam, ab150077, 1:500). Lipid 

droplets were visualized by staining with 4,4-Difluoro-1,3,5,7,8-Pentamethyl-4-Bora-3a,4a-

Diaza-s-Indacene (BODIPY) 493/505 (5 µM in PBS). The cells were stained with 4′,6-diamidino-

2-phenylindole (DAPI) to visualize the nucleus. Following all staining, cells were imaged using a 

Zeiss 710 LSM confocal microscope. 

 

Chemoenzymatic labeling 

Elaboration with UDP-GalNAz:  

O-GlcNAcylated proteins from cell lysates (150 μg) were labeled as previously 

described.20 Briefly, proteins were precipitated by adding methanol (3x volume), chloroform 

(0.75x volume), and water (2.25x volume) followed by vortexing and centrifugation (21,2130 x 

g). The aqueous layer was removed and the pellet was washed with 2.5x volume of methanol 2-3 

times. The pellet was dried and resolubilized with 40 µL dissolution buffer (20 mM HEPES, 1% 

SDS, pH 7.9). Water (49 µL), 5.5 mM MnCl (11 μL), and 80 µL 2.5x GalT labeling buffer (50 

mM HEPES, 125 mM NaCl, 5% IGEPAL CA-630, pH 7.9) were added and the solution was 

vortexed.  10 µL of an engineered enzyme, GalT (Y289L, 2 mg/mL), and 10 µL of an artificial 

azido sugar, UDP-GalNAz (0.5 mM in 10 mM HEPES, pH 7.9, synthesized in house according to 

published procedures51), were added and the reaction was carried out at 4°C for 1 hour with end-

over-end rotation. For proteins intended to undergo the SPACC reaction only, 10 µL of 



iodoacetamide (Sigma Aldrich, 500 µM) was added and allowed to react for 1 hour at room 

temperature in the dark with end-over-end rotation. Control experiments were carried out in 

parallel in the absence of UDP-GalNAz. Following this, the proteins were precipitated as described 

above. Labeling of proteins from the GIT1 KD experiment were conducted on 100 μg of protein 

and half volumes were used for all steps. 

 

CuAAC and SPAAC:  

O-GlcNAcylated proteins were further elaborated with biotin or 5-kDa poly(ethylene) 

glycol (PEG) via either the CuAAC or strain-promoted azide-alkyne cycloaddition (SPAAC) 

reactions as described previously.20 Briefly, for the CuAAC reaction, proteins were resolubilized 

in dissolution buffer (1% SDS in TBS pH 7.6) and in a separate tube, 300 µL H2O, 7.5 µL BTTAA 

(10 mM, Click Chemistry Tools), 15 µL CuSO4 (50 mM), and 15 µL of the biotin-PEG4-alkyne 

(5 mM, Click Chemistry Tools) were added (quantities for 3 reactions). 100 µL of the mix was 

added to the redissolved protein, following which the solution was vortexed. 4 µL Tris(2-

carboxyethyl)phosphine (100 mM, Sigma Aldrich) was then added to the reaction and the solution 

was allowed to react for 1 hour in the dark before being precipitated as before.  

For the SPAAC reaction, proteins were resolubilized in dissolution buffer followed by 

addition of the desired dibenzocyclooctyne (DBCO). PEGylation (DBCO-mPEG, 5 kDa in 

DMSO, Click Chemistry Tools) took place at 95°C for 5 min using 1 mM DBCO-PEG. 

Biotinylaton (DBCO-biotin, 5 mM in DMSO) took place at room temperature for 1 hour in the 

dark with end-over-end rotation. Excess tag was removed by precipitation as before.  

 

Enrichment of biotinylated proteins:  



Proteins were resolubilized in dissolution buffer and incubated with streptavidin magnetic 

beads (ThermoFisher) for 1.5 hours in the dark. Beads were then washed 5 times with 0.5 ml of 

low salt buffer (100 mM Na2HPO4, 150 mM NaCl, 0.1% SDS, 1% Triton X-100, 0.5% sodium 

deoxycholate) and 5 times with 1 ml of high salt buffer (100 mM Na2HPO4, 500 mM NaCl, 0.2% 

Triton X-100). Biotinylated proteins were eluted by boiling the resin in 50 mM Tris-HCl pH 6.8, 

2.5% SDS, 100 mM dithiothreitol (DTT), 10% glycerol, and 2 mM biotin for 15 min with 

occasional vortexing. 

 

Quantification of O-GlcNAcylation 

Following either reaction and, for biotinylated proteins, streptavidin capture, SDS-PAGE 

and Western blot for liprin-α1 were used to analyze O-GlcNAcylation. Western blot for the protein 

CREB 50 served as a positive control. For biotinylated proteins, the percentage of O-GlcNAcylated 

protein was calculated by taking the ratios of input and eluent weighted by proportion of the total 

protein in each lane as previously described.52 For PEGylated proteins, the percentage of O-

GlcNAcylated protein was calculated by dividing the intensity of the higher-MW shifted band to 

the total intensity of the protein in that lane also as previously described.50  

 

Co-Immunoprecipitation 

Neurons expressing OGT-FH containing HA and FLAG tags were grown and either 

silenced or KCl stimulated as described above. Cells were lysed after 26 days as previously 

described and diluted to 2 mg/mL with TBS buffer (1% Triton in TBS, Roche c0mplete protease 

inhibitor cocktail (Sigma Aldrich), TMG (0.1 mM), and phosphatase inhibitors (Cyclosporin A, 

okadaic acid, and a phosphatase inhibitor cocktail). The lysate was incubated with anti-FLAG 

magnetic beads (Sigma Aldrich) at 4°C overnight with end-over-end rotation. Some input lysate 



was saved for Western Blotting. The beads were washed with 3 times with 0.1% Triton-X-100 in 

TBS pH 7.9 and eluted with 2% SDS in Tris, pH 8. Inputs and eluents were run on SDS-PAGE 

and Western blotted for HA (one of the tags on OGT), liprin-α1 and GIT1. Pulldown efficiency 

was calculated by measuring the intensity of the eluent bands relative to the input. 

 

Fatty Acid Assay 

 Concentration of long-chain fatty acids (8 or more carbons) in Hep G2 cell lysates was 

determined using a Free Fatty Acid Quantitation Kit (Sigma Aldrich, MAK044). The cells were 

trypsinized and washed with PBS followed by lysis and fatty acid extraction per manufacturer’s 

instructions, except that the fatty acids were left to dry in a fume hood overnight rather than 

vacuum dried. The colorimetric assay itself was performed per manufacturer’s instructions. 

 

Lentivirus production 

HEK 293T cells were transfected with GIT1 shRNA (5’ – 

GCCACCTTGATCATCGACATTC – 3’, Sigma Aldrich) or scrambled shRNA (5’ – 

AGTCCTTAGTCGAATCAGCCG – 3’) lentiviral 

plasmids (Figure A.1), as well as lentiviral packaging 

plasmids (ViraPower Lentiviral Packaging Mix, 

ThermoFisher), using Lipofectamine 3000 

(ThermoFisher) at 50-90% confluence according to 

manufacturer’s instructions. The virus was harvested by 

collecting and replacing the media 24 and 48 hours post-

transfection and concentrated using PEG precipitation.42 

The knockdown (KD) efficiency of the virus was 

Figure A.1: Plasmid map of GIT1 

shRNA vector. The red rectangle 

indicates the region containing the 

shRNA sequence for GIT1 KD: 

 5’ GCCACCTTGATCATCGACATTC 3’ 



validated by infecting primary mouse cortical neurons followed by lysis, SDS-PAGE, and Western 

blotting for GIT1.  

 

Transfection 

 HEK 293T cells were grown on a Poly-D-Lysine (PDL) coated plate and treated at 50% 

confluency with siRNA for the protein of interest [BAP1 (Origene, SR322372)] or a scrambled 

sequence (Origene, SR30004) using MISSION siRNA transfection reagent and protocols (Sigma, 

S1452) to package the DNA for cellular uptake. Cells were incubated for 48 hours to allow 

sufficient time for the DNA to enter cells, after which their media was exchanged. Once sufficient 

time had passed for the siRNA machinery to KD the protein of interest (72 hours post-treatment), 

the cells were lysed as described above. Western Blots staining for the protein of interest with α-

tubulin as a control were performed to evaluate KD efficiency.   

 

Western blots and antibodies  

 The following primary antibodies were used for Western blotting (1:1000 dilution unless 

otherwise stated): anti-liprin-α1 (Proteintech, 14175-1-AP), anti-CREB (Cell Signaling 

Technology, 9104 (mouse), 4820 (rabbit)), anti-GIT1 (Cell Signaling Technology, sc-365084), 

anti-α-tubulin (Sigma Aldrich, T9026, 1:3000), anti-HA (Cell Signaling Technology, C29F4, 

1:2000), anti-BAP1 (Cell Signaling Technology, A302-243A-M (1:1000), and 13187 (1:500)), 

anti-FOXK1 (Cell Signaling Technology, 12025S, 1:750), anti-FOXK2 (Cell Signaling 

Technology, 12008S), anti-FOXO3a (Cell Signaling Technology, 75D8), anti-SET1A (Cell 

Signaling Technology, 61702). The following secondary antibodies were used for Western 

blotting (1:10,000 dilution): anti-rabbit IgG Alexa Fluor Plus 680 (ThermoFisher, A27020), anti-



mouse IgG DyLight 800 (ThermoFisher, A11357). All Western blots were visualized and 

quantified using an Odyssey Infrared Imaging System and software (Li-Cor, Version 5.2).  

 

  



Appendix B: Supplementary Data 

Validation of 1 Hour GalT Incubation 

 The first step of the aforementioned chemoenzymatic labeling technique is labeling O-

GlcNAcylated residues with an artificial UDP sugar using the engineered enzyme GalT.20,53 

Recent work in our laboratory has suggested that the reaction reaches completion in only 1 hour 

as opposed to overnight as previous reported.20,53  To confirm this exciting new result, lysates from 

293T cells were spiked with semisynthetic O-GlcNAcylated ubiquitin-HA53 and 

chemoenzymatically labeled with 5 kDa PEG mass tags as described above except that the GalT 

labeling was left to proceed for either 1 hr or overnight (O/N).  O-GlcNAcylation stoichiometry 

was then determined by Western blotting for CREB and HA. The results showed no significant 

difference in labeling between the 1 hour and O/N GalT incubations, indicating that the 1 hour 

incubation time can be used to expedite the overall labeling process (Figure B.1). Future 

experiments that utilize this technique will be carried out with the modified GalT incubation time.  

 

Figure B.1: Validation of 1 hr GalT Incubation. Incubation 

of O-GlcNAcylated proteins with Y289L GalT UDP-GalNAz 

installs a PEG tag. The 1 hr and overnight (O/N) incubations 

showed similar results. A Western blot of CREB and 

semisynthetic HA. B Quantification of CREB O-GlcNAcylation 

compared to negative control. C Quantification of HA O-

GlcNAcylation compared to negative control. 



Titration of GIT1 shRNA Lentivirus 

Following production of the GIT1 shRNA lentivirus and scrambled control virus, KD 

efficacy and required dosage needed to be determined. To do this, neurons were prepared as 

described above in 12-well plates (1 mL well volume) and treated with 0 to 64 µL of GIT1 or 

scrambled virus after two weeks. Media was changed each day and cells were lysed 7 days post-

infection. Western blot was conducted on the lysates to determine KD efficiency at each dosage 

(Figure B.2). Dosages were scaled to well volume for actual KD experiments.   

Figure B.2:  GIT1 shRNA lentivirus titer. Primary mouse cortical 

neurons were transduced with lentivirus as indicated. A clear dose-

response relationship was observed with a maximum KD efficiency 

of 70.5%.  



Appendix C: Image Processing Code 

This code is partially adapted from: 

v3_barcoding_meoh_fixed (2019) Katsuya Colón. Unpublished. 

BE/Bi 103. Justin Bois, BE/Bi 103 GitHub. https://github.com/bebi103 

#data compiling and processing 

import glob 

import numpy as np 

import pandas as pd 

import scipy 

import os 

import csv 

 

# Image processing tools 

import skimage 

import skimage.io 

import skimage.feature 

import bebi103 

import czifile 

 

#plotting packages 

import bokeh.io 

#import bokeh_catplot 

bokeh.io.output_notebook() 

import holoviews as hv 

hv.extension('bokeh') 

import matplotlib.pyplot as plt 

import seaborn as sns 

import panel as pn 

pn.extension() 

 

#ignore warnings 

import warnings 

warnings.filterwarnings("ignore") 

C:\Users\thism\anaconda3\lib\site-packages\bebi103\viz.py:37: UserWarning: DataShader import failed with error "cannot import nam

e 'encode_utf8' from 'bokeh.embed.notebook' (C:\Users\thism\anaconda3\lib\site-packages\bokeh\embed\notebook.py)". 

Features requiring DataShader will not work and you will get exceptions. 

  Features requiring DataShader will not work and you will get exceptions.""" 

Image Importing 

def czi_to_numpy_array(im_names, im_dir): 

    """ 

    Collects a list of im_names in im_dir into a numpy array.  

     



    Inputs 

        im_names: a list of the image file names to be converted 

        im_dir: the path to the directory in which the images are stored. Must be a subdirectory of wherever the code is being ru

n 

     

    Returns numpy array with all images as its elements 

     

    Does not contain any error checking 

    """ 

    # Initialize a list to load images into temporarily 

    temp_arr = [] 

     

    # Add images to the list 

    for im in im_names: 

        # Compile the image 

        im_czi = czifile.imread(im_dir + im) 

         

        # Squeeze the image to get rid of empty dimensions 

        squeezed_im = np.squeeze(im_czi) 

         

        # Add the image to the array 

        temp_arr.append(squeezed_im) 

     

    # Convert the list into a numpy array 

    numpy_arr = np.array(temp_arr) 

     

    # Return the collected images 

    return numpy_arr 

# Get lists of image names 

first_set_63x_dir = './First_Set_63x_Images/' 

first_set_63x_names = os.listdir(first_set_63x_dir) 

 

second_set_63x_dir = './Second_Set_63x_Images/' 

second_set_63x_names = os.listdir(second_set_63x_dir) 

# Check if the lists are correct 

print("First set 63x names: ") 

first_set_63x_names 

First set 63x names:  

['high_63x_snap_Avg8Speed7_SmallPinhole.czi', 

 'high_TMG_63x_snap_Avg8Speed7_SmallPinhole.czi', 

 'Low_63x_snap_Avg8Speed7_SmallPinhole.czi', 

 'Low_TMG_63x_snap_Avg8Speed7_SmallPinhole.czi', 

 'None_63x_snap_Avg8Speed7_SmallPinhole.czi'] 

print("Second set 63x names: ") 

second_set_63x_names 

Second set 63x names:  

['HighTMG_63x_snap_Avg8Speed7_SmallPinhole.czi', 

 'High_63x_snap_Avg8Speed7_SmallPinhole.czi', 



 'LowTMG_63x_snap_Avg8Speed7_SmallPinhole.czi', 

 'Low_63x_snap_Avg8Speed7_SmallPinhole.czi', 

 'None_63x_snap_Avg8Speed7_SmallPinhole.czi'] 

# Collecting each list of images into a numpy array 

first_set_63x_arr = czi_to_numpy_array(first_set_63x_names, first_set_63x_dir) 

 

second_set_63x_arr = czi_to_numpy_array(second_set_63x_names, second_set_63x_dir) 

# Check to make sure that each array contains the correct number of images 

print("Dimensions of first set 63x array: ") 

first_set_63x_arr.shape 

Dimensions of first set 63x array:  

(5, 3, 512, 512) 

print("Dimensions of second set 63x array: ") 

second_set_63x_arr.shape 

Dimensions of second set 63x array:  

(5, 3, 512, 512) 

# Check to make sure that the different channels are different for the first image in each set 

print("Same channels in first set 63x? ") 

(first_set_63x_arr[0][0] == first_set_63x_arr[0][1]).all() 

Same channels in first set 63x?  

False 

print("Same channels in second set 63x? ") 

(second_set_63x_arr[0][0] == second_set_63x_arr[0][1]).all() 

Same channels in second set 63x?  

False 

# Print out an example set of images to make sure everything worked correctly 

 

# Print which image this is 

print(first_set_63x_names[0] + '\n') 

 

# DAPI channel: 

print('DAPI Channel:') 

bokeh.io.show(bebi103.image.imshow(first_set_63x_arr[0][0])) 

 

# Lipid droplet channel: 

print('Lipid droplet Channel:') 

bokeh.io.show(bebi103.image.imshow(first_set_63x_arr[0][1])) 

 

# Peroxisome channel: 

print('Peroxisome Channel:') 

bokeh.io.show(bebi103.image.imshow(first_set_63x_arr[0][2])) 

high_63x_snap_Avg8Speed7_SmallPinhole.czi 

 

DAPI Channel: 

Lipid droplet Channel: 

Peroxisome Channel: 

# Get all of the snapshot .lsm file names for second set 100x images  

second_set_100x_names = sorted(glob.glob('./Second_Set_100x_Images/*.lsm')) 



 

# Check if the names are correct 

second_set_100x_names 

['./Second_Set_100x_Images\\HighTMG_100x_Pinhole_Avg16Speed7.lsm', 

 './Second_Set_100x_Images\\High_100x_Pinhole_Avg16Speed7.lsm', 

 './Second_Set_100x_Images\\LowTMG_100x_Pinhole_Avg16Speed7.lsm', 

 './Second_Set_100x_Images\\Low_100x_Pinhole_Avg16Speed7.lsm', 

 './Second_Set_100x_Images\\None_100x_Pinhole_Avg16Speed7.lsm'] 

# Compile the images from the 100x list into an image collection 

second_set_100x_col = skimage.io.ImageCollection(second_set_100x_names, conserve_memory = True) 

 

# Look at the shape of the collection to make sure the correct number of images are present 

print("Dimensions of second set 100x collection: ") 

second_set_100x_col[0].shape 

Dimensions of second set 100x collection:  

(512, 512, 3) 

def im_col_to_grey(im_col): 

    """ 

    Converts the first channel in each image in an image collection into greyscale 

    Uses the skimage color.rgb2grey function 

     

    Input 

        im_col: a skimage image collection 

     

    Returns a numpy array with all the images as its elements 

    """ 

    # Initialize a list to load images into temporarily 

    temp_arr = [] 

     

    # Add images to the list 

    for im in im_col: 

        # Convert channel of interest to grey scale 

        grey_im = skimage.color.rgb2grey(im) 

         

        # Add the image to the array 

        temp_arr.append(grey_im) 

     

    # Convert the list into a numpy array 

    numpy_arr = np.array(temp_arr) 

     

    # Return the collected images 

    return numpy_arr 

# Convert channel of interest (first channel) to grey scale 

second_set_100x_arr = im_col_to_grey(second_set_100x_col) 

# Look at the shape of the array to make sure the correct number of images are present still 

print("Dimensions of second set 100x array: ") 

second_set_100x_arr.shape 

Dimensions of second set 100x array:  



(5, 512, 512) 

# Print out an example image to make sure everything worked correctly 

 

# Print which image this is 

print(second_set_100x_names[0] + '\n') 

 

# Lipid droplet channel: 

print('Lipid droplet Channel:') 

bokeh.io.show(bebi103.image.imshow(second_set_100x_arr[0])) 

./Second_Set_100x_Images\HighTMG_100x_Pinhole_Avg16Speed7.lsm 

 

Lipid droplet Channel: 

Image Segmentation 

Zerocrossing Background Filter 

This function finds edges of objects by finding the maximum rate of change in pixel intensity. First, a square 

structuring element is used to detect edges. Then the image is max/min filtered using this output. The sobel filter is 

then used to compute the rate of change. Finally, the edges are returned by comparing these values to the inputed 

threshold. 

def zero_crossing_filter(im, selem, thresh): 

    """ 

    Returns image with 1 if there is a zero crossing and 0 otherwise. 

     

    thresh is the the minimal value of the gradient, as computed by Sobel 

    filter, at crossing to count as a crossing. 

    """ 

     

    # Do max filter and min filter 

    im_max = scipy.ndimage.filters.maximum_filter(im, footprint=selem) 

    im_min = scipy.ndimage.filters.minimum_filter(im, footprint=selem) 

     

    # Compute gradients using Sobel filter 

    im_grad = skimage.filters.sobel(im) 

     

    # Return edges 

    return (((im >= 0) & (im_min < 0)) | ((im <= 0) & (im_max > 0))) \ 

                & (im_grad >= thresh) 

LoG Function 

A gaussian filter is used to visualize the background, which is then subtracted from the image. The image is 

denoised using total variation denoiseing (tv_chambolle function). A laplacian of gaussian is then applied. The 

above zerocrossing function is used to segment the image. Following this, the image is skeletonized, holes are filled, 

and small objects (likely dust/noise) are removed before clear borders are defined. 

def log(im, gauss_sigma, weight, log_sigma, selem, thresh, min_size, buffer_size): 

    """ 

    A gaussian filter followed by a gaussian laplace filter is used to subtract background. The images are segmented using 

    the zerocrossing filter function above. The shapes are then filled in and small objects are removed. 

    """ 



     

    # Normalize image and convert to floats 

    im_normalized = (im.astype(float) - im.min()) / (im.max() - im.min()) 

     

    # Use a filter to visualize background 

    im_gauss = skimage.filters.gaussian(im_normalized, gauss_sigma) 

     

    # Subtract the background 

    im_subtracted = im_normalized - im_gauss 

     

    # Denoise image 

    im_denoised = skimage.restoration.denoise_tv_chambolle(im_subtracted, weight) 

     

    # Apply laplacian of gaussian filter 

    im_log = scipy.ndimage.filters.gaussian_laplace(im_denoised, log_sigma) 

    

    # Apply zerocrossing filter function to detect edges 

    im_edge = zero_crossing_filter(im_log, selem, thresh) 

     

    # Skeletonize image 

    im_skeletonized = skimage.morphology.skeletonize(im_edge) 

     

    # Fill in holes 

    im_filled = scipy.ndimage.morphology.binary_fill_holes(im_skeletonized) 

     

    # Remove objects that are too small 

    im_removed = skimage.morphology.remove_small_objects(im_filled, min_size = min_size) 

     

    # Define a clear border for each object 

    im_bordered = skimage.segmentation.clear_border(im_removed, buffer_size = buffer_size) 

     

    # Return processed image 

    return im_bordered 

Processing images using the LoG and zerocrossing functions (1st 2 functions) 

# Threshold and segment every image using previously optimized parameters and add to appropriate list 

processed_list_first_set_63x = [] 

processed_list_second_set_63x = [] 

processed_list_second_set_100x = []     

     

for im in first_set_63x_arr: 

    im_thresh = log( 

        im[1], gauss_sigma = 50.0, weight = 0.001, log_sigma = 1.5, selem = skimage.morphology.square(3),  

        thresh = 0.001, min_size = 5, buffer_size = 5 

    ) 

    processed_list_first_set_63x.append(im_thresh) 

 

for im in second_set_63x_arr: 



    im_thresh = log( 

        im[1], gauss_sigma = 50.0, weight = 0.001, log_sigma = 1.5, selem = skimage.morphology.square(3),  

        thresh = 0.001, min_size = 5, buffer_size = 5 

    ) 

    processed_list_second_set_63x.append(im_thresh) 

     

for im in second_set_100x_arr: 

    im_thresh = log( 

        im, gauss_sigma = 50.0, weight = 0.001, log_sigma = 1.5, selem = skimage.morphology.square(2),  

        thresh = 0.001, min_size = 8, buffer_size = 5 

    ) 

    processed_list_second_set_100x.append(im_thresh) 

Thresholding images using the LoG_zerocrossing function (3rd function) 

Viewing an example from each set 

# Print which image this is 

print(first_set_63x_names[0] + '\n') 

 

# Print segmented images 

print("LoG & Zerocrossing Segmented image: ") 

bokeh.io.show(bebi103.image.imshow(processed_list_first_set_63x[0])) 

 

# Comparing it to the original image 

print("Original image: ") 

bokeh.io.show(bebi103.image.imshow(first_set_63x_arr[0][1])) 

 

# Print which image this is 

print(second_set_63x_names[0] + '\n') 

 

# Print segmented images 

print("LoG & Zerocrossing Segmented image: ") 

bokeh.io.show(bebi103.image.imshow(processed_list_second_set_63x[0])) 

 

# Comparing it to the original image 

print("Original image: ") 

bokeh.io.show(bebi103.image.imshow(second_set_63x_arr[0][1])) 

 

# Print which image this is 

print(second_set_100x_names[0] + '\n') 

 

# Print segmented images 

print("LoG & Zerocrossing Segmented image: ") 

bokeh.io.show(bebi103.image.imshow(processed_list_second_set_100x[0])) 

 

# Comparing it to the original image 

print("Original image: ") 

bokeh.io.show(bebi103.image.imshow(second_set_100x_arr[0])) 

high_63x_snap_Avg8Speed7_SmallPinhole.czi 



 

LoG & Zerocrossing Segmented image:  

Original image:  

HighTMG_63x_snap_Avg8Speed7_SmallPinhole.czi 

 

LoG & Zerocrossing Segmented image:  

Original image:  

./Second_Set_100x_Images\HighTMG_100x_Pinhole_Avg16Speed7.lsm 

 

LoG & Zerocrossing Segmented image:  

Original image:  

Image Statistics 

# Label all binary images 

labels_list_first_set_63x = [] 

labels_list_second_set_63x = [] 

labels_list_second_set_100x = [] 

 

for i in processed_list_first_set_63x: 

    im_labeled, n_labels = skimage.measure.label(i, background=0, return_num=True) 

    labels_list_first_set_63x.append((im_labeled, n_labels)) 

     

for i in processed_list_second_set_63x: 

    im_labeled, n_labels = skimage.measure.label(i, background=0, return_num=True) 

    labels_list_second_set_63x.append((im_labeled, n_labels)) 

     

for i in processed_list_second_set_100x: 

    im_labeled, n_labels = skimage.measure.label(i, background=0, return_num=True) 

    labels_list_second_set_100x.append((im_labeled, n_labels)) 

# Check that lebels worked correctly by looking at one of the labeled images 

labels_list_first_set_63x[0] 

(array([[0, 0, 0, ..., 0, 0, 0], 

        [0, 0, 0, ..., 0, 0, 0], 

        [0, 0, 0, ..., 0, 0, 0], 

        ..., 

        [0, 0, 0, ..., 0, 0, 0], 

        [0, 0, 0, ..., 0, 0, 0], 

        [0, 0, 0, ..., 0, 0, 0]], dtype=int64), 

 154) 

# Show number of cells 

print("Number of individual cells = ", labels_list_first_set_63x[0][1]) 

 

# See result  

bokeh.io.show( 

    bebi103.image.imshow( 

        labels_list_first_set_63x[0][0] 

    ) 



) 

Number of individual cells =  154 

# Get properties from the lipid droplet channel for all images 

im_props_list_first_set_63x = [] 

im_props_list_second_set_63x = [] 

im_props_list_second_set_100x = [] 

 

for i in range(0,len(labels_list_first_set_63x)): 

    im_props = skimage.measure.regionprops(labels_list_first_set_63x[i][0], intensity_image = first_set_63x_arr[i][1]) 

    im_props_list_first_set_63x.append((im_props, first_set_63x_names[i])) 

     

for i in range(0,len(labels_list_second_set_63x)): 

    im_props = skimage.measure.regionprops(labels_list_second_set_63x[i][0], intensity_image = second_set_63x_arr[i][1]) 

    im_props_list_second_set_63x.append((im_props, second_set_63x_names[i])) 

     

for i in range(0,len(labels_list_second_set_100x)): 

    im_props = skimage.measure.regionprops(labels_list_second_set_100x[i][0], intensity_image = second_set_100x_arr[i]) 

    im_props_list_second_set_100x.append((im_props, second_set_100x_names[i])) 

# Total number of lipid droplets 

tot_droplets_first_set_63x = [] 

tot_droplets_second_set_63x = [] 

tot_droplets_second_set_100x = [] 

 

for label in labels_list_first_set_63x: 

    tot_droplets_first_set_63x.append(label[1]) 

 

for label in labels_list_second_set_63x: 

    tot_droplets_second_set_63x.append(label[1]) 

 

for label in labels_list_second_set_100x: 

    tot_droplets_second_set_100x.append(label[1]) 

# Test that one of the total numbers lists look correct 

tot_droplets_first_set_63x 

[154, 99, 203, 115, 116] 

# Combining all the numbers of lipid droplets per image into a list 

data = [] 

data.append(["First Set 63x:", 0]) 

for i in range(0, len(first_set_63x_names)): 

    data.append([first_set_63x_names[i], tot_droplets_first_set_63x[i]]) 

 

data.append(["Second Set 63x:", 0]) 

for i in range(0, len(second_set_63x_names)): 

    data.append([second_set_63x_names[i], tot_droplets_second_set_63x[i]]) 

 

data.append(["Second Set 100x:", 0]) 

for i in range(0, len(second_set_100x_names)): 

    data.append([second_set_100x_names[i], tot_droplets_second_set_100x[i]]) 

 



df = pd.DataFrame( 

    data = data, columns = ["Image Name", "Number of Lipid Droplets"] 

) 

 

# View chart 

df 

First Set 63x 

# Areas of lipid droplets in oixels 

data = [[prop.area, im_props_list_first_set_63x[i][1]]  

        for i in range(0,len(im_props_list_first_set_63x)) for prop in im_props_list_first_set_63x[i][0]] 

 

df_area = pd.DataFrame( 

    data = data, columns = ["Lipid Droplet Area (pixels)", "Image Name"] 

) 

 

df_area 

 

# Write the raw data to a .csv file to save it 

with open('First_set_63x.csv', 'w', newline='') as csvfile: 

    writer = csv.writer(csvfile) 

    writer.writerow(["Lipid droplet area (pixels)"] + ["Filename"]) 

    writer.writerows(df_area.values) 

# Average area of lipid droplets 

area = df_area.groupby("Image Name") 

 

area_mean = area.mean() 

 

print("Mean Areas: ") 

area_mean 

Mean Areas:  

 

# Standard deviation of lipid droplet areas 

area_stdev = area.std() 

 

print("Standard Deviation of Areas: ") 

area_stdev 

Standard Deviation of Areas:  

 

#violin plots with jitter box 

 

violin = hv.Violin(df_area, vdims="Lipid Droplet Area (pixels)", kdims = "Image Name") 

violin.opts(xrotation = 90, xlabel = "", inner='quartiles', cut=0.2, bandwidth=0.4, 

            padding = 0.1, violin_fill_color = "lightgrey", 

            frame_height = 400, frame_width = 300) 

 



jitter_box = hv.Scatter(df_area, vdims="Lipid Droplet Area (pixels)", kdims = "Image Name") 

jitter_box.opts(jitter=0.3, alpha=0.4, size=5, height=600, width=600, color = "k") 

 

violin*jitter_box 

#box plots with jitter box 

 

box = hv.BoxWhisker(df_area, vdims="Lipid Droplet Area (pixels)", kdims = "Image Name") 

box.opts(xrotation = 90, xlabel = "",box_fill_color = "lightgrey", padding = 0.1, outlier_alpha = 0, 

            frame_height = 400, frame_width = 300) 

 

jitter_box = hv.Scatter(df_area, vdims="Lipid Droplet Area (pixels)", kdims = "Image Name") 

jitter_box.opts(jitter=0.3, alpha=0.4, size=5, height=600, width=600, color = "k") 

 

box*jitter_box 

Second Set 63x 

# Areas of lipid droplets in oixels 

data = [[prop.area, im_props_list_second_set_63x[i][1]]  

        for i in range(0,len(im_props_list_second_set_63x)) for prop in im_props_list_second_set_63x[i][0]] 

 

df_area = pd.DataFrame( 

    data = data, columns = ["Lipid Droplet Area (pixels)", "Image Name"] 

) 

 

df_area 

 

# Write the raw data to a .csv file to save it 

with open('Second_set_63x.csv', 'w', newline='') as csvfile: 

    writer = csv.writer(csvfile) 

    writer.writerow(["Lipid droplet area (pixels)"] + ["Filename"]) 

    writer.writerows(df_area.values) 

# Average area of lipid droplets 

area = df_area.groupby("Image Name") 

 

area_mean = area.mean() 

 

print("Mean Areas: ") 

area_mean 

Mean Areas:  

 

# Standard deviation of lipid droplet areas 

area_stdev = area.std() 

 

print("Standard Deviation of Areas: ") 

area_stdev 

Standard Deviation of Areas:  



 

#violin plots with jitter box 

 

violin = hv.Violin(df_area, vdims="Lipid Droplet Area (pixels)", kdims = "Image Name") 

violin.opts(xrotation = 90, xlabel = "", inner='quartiles', cut=0.2, bandwidth=0.4, 

            padding = 0.1, violin_fill_color = "lightgrey", 

            frame_height = 400, frame_width = 300) 

 

jitter_box = hv.Scatter(df_area, vdims="Lipid Droplet Area (pixels)", kdims = "Image Name") 

jitter_box.opts(jitter=0.3, alpha=0.4, size=5, height=600, width=600, color = "k") 

 

violin*jitter_box 

#box plots with jitter box 

 

box = hv.BoxWhisker(df_area, vdims="Lipid Droplet Area (pixels)", kdims = "Image Name") 

box.opts(xrotation = 90, xlabel = "",box_fill_color = "lightgrey", padding = 0.1, outlier_alpha = 0, 

            frame_height = 400, frame_width = 300) 

 

jitter_box = hv.Scatter(df_area, vdims="Lipid Droplet Area (pixels)", kdims = "Image Name") 

jitter_box.opts(jitter=0.3, alpha=0.4, size=5, height=600, width=600, color = "k") 

 

box*jitter_box 

Second Set 100x 

# Areas of lipid droplets in oixels 

data = [[prop.area, im_props_list_second_set_100x[i][1]]  

        for i in range(0,len(im_props_list_second_set_100x)) for prop in im_props_list_second_set_100x[i][0]] 

 

df_area = pd.DataFrame( 

    data = data, columns = ["Lipid Droplet Area (pixels)", "Image Name"] 

) 

 

df_area 

 

# Write the raw data to a .csv file to save it 

with open('Second_set_100x.csv', 'w', newline='') as csvfile: 

    writer = csv.writer(csvfile) 

    writer.writerow(["Lipid droplet area (pixels)"] + ["Filename"]) 

    writer.writerows(df_area.values) 

# Average area of lipid droplets 

area = df_area.groupby("Image Name") 

 

area_mean = area.mean() 

 

print("Mean Areas: ") 

area_mean 



Mean Areas:  

 

# Standard deviation of lipid droplet areas 

area_stdev = area.std() 

 

print("Standard Deviation of Areas: ") 

area_stdev 

Standard Deviation of Areas:  

 

#violin plots with jitter box 

 

violin = hv.Violin(df_area, vdims="Lipid Droplet Area (pixels)", kdims = "Image Name") 

violin.opts(xrotation = 90, xlabel = "", inner='quartiles', cut=0.2, bandwidth=0.4, 

            padding = 0.1, violin_fill_color = "lightgrey", 

            frame_height = 400, frame_width = 300) 

 

jitter_box = hv.Scatter(df_area, vdims="Lipid Droplet Area (pixels)", kdims = "Image Name") 

jitter_box.opts(jitter=0.3, alpha=0.4, size=5, height=600, width=600, color = "k") 

 

violin*jitter_box 

#box plots with jitter box 

 

box = hv.BoxWhisker(df_area, vdims="Lipid Droplet Area (pixels)", kdims = "Image Name") 

box.opts(xrotation = 90, xlabel = "",box_fill_color = "lightgrey", padding = 0.1, outlier_alpha = 0, 

            frame_height = 400, frame_width = 300) 

 

jitter_box = hv.Scatter(df_area, vdims="Lipid Droplet Area (pixels)", kdims = "Image Name") 

jitter_box.opts(jitter=0.3, alpha=0.4, size=5, height=600, width=600, color = "k") 

 

box*jitter_box 
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