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SUMMARY

The interaction of a random small disturbance field in a com-
pressible fluid with shock waves and flame fronts is analyzed. The
disturbance field, which may consist of fluctuations of pressure,
entropy, and vorticity, is found to be modified in passing through the
shock or flame.

In the case of the shock wave, it is found that all of the three
types of disturbances are generated in comparable strength in the down-
stream flow by the presence of any of the three in the upstream flow.
Moderate fluctuations of either vorticity (turbulence) or entropy will
produce intense noise fields in the downstream flow. If the shock is
normal, the frequency of this noise field is much lower for very weak
shocks than for strong shocks, given the same upstream velocity and
disturbance wave length. If the weak shock is oblique to the flow, the
frequency of the noise is increased.

For the flame front, also, it is found that all three types of
disturbances are generated in the downstream flow by the presence of
one of them in the upstream flow. In this case, however, the normal
propagation Mach number of the flame enters as a small parameter. It
is found that the intensity of the downstream turbulence generated by
sound waves impinging on the upstream face of the flame is proportional
to the reciprocal of this Mach number times the intensity of the upstream
pressure fluctuation. Hence, rather strong turbulence may be generated

downstream of a flame by comparatively weak sound upstream. The
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pressure amplitudes of the sound fields generated by entropy and
vorticity fluctuations in the upstream flow are proportional, respect-
ively, to the Mach number squéred and cubed. For ordinary hydro-
carbon flames, ten percent turbulent velocity fluctuations, or one per-
cent entropy (temperature) fluctuations will cause audible sound to be
emitted. The frequency is in the range of 20 to perhaps 100 cycles per
second for an input disturbance wave length of cﬁe inch.

Although the énalysis is carried out for an isolated, infinite dis-
continuity, it is felt that the results are applicable, at least qualitatively,
to the complicated configurations of shock waves found in under or over-
expanded nozzles, and to the flame configurations found in actual com-

bustion processes.
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I. INTRODUCTION

The problem to be considered here is an outgrowth of recent
interest in noise generation by fluid mechanical processes. It is a
matter of common experience that such processes do produce noise;
high speed jets and turbulent Bunsen burner flames are two examples.
. However, the production of noise by such mechanisms had not received
much study until the advent of the modern jet-propelled airplane. The
propulsive jets of these craft produce so much noise as to be quite
objectionable if operated near densely populated areas.

The manner in which this n;)ise is produced is not completely
understood, however it is likely that most of the noise from present-
day jet engines with subsonic exhaust jets is produced by turbulence in
the jet. Lighthill(s) has studied the generation of noise by turbulence
and applied the theory to the production of noise by gaseous jets. One
of the results of this theory, which is verified by experiments, is that
the intensity of the noise produced varies approximately as the eighth
power of the jet velocity. Thus, as the jet velocity of engines is
increased by improvements in design or by adding afterburners, the noise
from this source is likely to become very severe.

If the velocity of the jet is supersonic another, perhaps equally
important mechanism for the production of noise exists; it is noise
generation by the interaction of turbulence with shock waves. This
mechanism was first recognized by Ribner(7) and Moore(8). Ribner
computed the interaction of a sinusoidal velocity profile of small
amplitude with a shock wave, finding that small disturbances of

pressure and entropy, as well as a modified velocity profile, were
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produced downstream of the shock. He réalized that since a field of
turbulence might be represented by a superposition of such velocity
profiles, the resultant superpoéed pressure fields would then constitute
a noise field, which would be very intense by acoustical standards.
Moore carried out a similar analysis for the case of plane sound waves
interacting with shock waves, finding that both velocity and entropy
distui'bances, as well as pressure disturbances, arose downstream of
the shock.

Small disturbances in a compressible fluid may be separated, as
shown by Kovasznay(é) and Moyal(4), into three types, which consist
respectively of fluctuations of pressure, entropy, and vorticity. These
three types of disturbances obey separate differential equations, which
are linear if the disturbances are small so that quadratic terms are
negligible, and which are not coupled if viscous and heat conductive
effects are also small. Hence, to this approximation, the three types
of small disturbances do not interact with each other.

If the amplitudes of the disturbances are not small, the inter-
action terms become appreciable, and each type of disturbance may be
produced by each of the others. Lighthill's theory considers the
generation of noise by relatively strong turbulence (vorticity). On the
other hand, even if the disturbances are weak, they will interact if
carried through a region of high gradients in the mean flow quantities,
since the interaction terms again become large in this region. There
are three common flow phenomena in which very large gradients are
encountered. They are shock waves, flame fronts, and shear layers.

The first two are distinguished from the last by the fact that the gas
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flows through, ratheér than along the surface of them. The shear layer
will not be considered because it would interact substantially only with
pressure waves, not with the ehtropy and vorticity fields.

The problem to be considered here then, is the interaction of
. discontinuities, in particular shock waves and flames, with small
disturbances of pressure, entropy, and vorticity. Since these small
disturbances are ordinarily random, of the nature of turbulence, only
the statistical properties of the disturbances can be specified, and
hence only the influence of the discontinuity on these propertiés can be
determined. Specifically, the mean squares of the pressure, entropy,
and vorticity fluctuations are the quantities which will be regarded as
known inputs to the interaction process. It will be assumed that the
input disturbances are isotropic. The quantities to be determined are
the mean squares of the pressure, entropy, and vorticity fluctuations
which result from the interaction of the input disturbances with the
discontinuity. For simplicity, it will be assumed that the discontinuity
is an infinite plane, separating two semi-infinite regions of uniform
flow perturbed by the small disturbance fields. The extent to which this
idealized model approximates the actual physical problem of finite
regions of nearly uniform flow, separated by discontinuities and perhaps
bounded by solid surfaces, may be understood from the nature of the
small flow disturbances themselves. The vorticity and entropy dis-
turbances may be thought of as small amplitude velocity and temperature
variations. .As Kovasznay has shown, they are carried along by the

main flow, in such a way that an observer moving with the mean flow
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velocity would see no 'chénges in these quantities with time. Thus the
nature of the vorticity and entropy fluctuations at a point in the fluid

is dependeﬁt only on the charac.ter of the disturbances along the stream-
tube passing thru that point, and the solution for these quantities from
the infinite discontinuity should be exactly applicable to the case of the
finite ‘diécdntinuity_. On the other hand, the pressure disturbances are
essentially sound waves, which propagate in the fluid. Therefore a
given point in the fluid may be affected by pressure disturbances
originating at all other points of the fluid, if the flow is subsonic. In

the case of an infinite discontinuity a given point in the flow is affected
by pressure disturbances having all possible directions of propagation
away from one side of the discontinuity, a given point of origin on the
discontinuity corresponding to each direction of propagation. Now if the
disturbance is restricted to a finite region of the discontinuity, only those
pressure disturbances whose lines of constant phase are such as to pass
thru both the finite region and the point in the flow will influence the
pressure field at that point., On the other hand, if the finite discontinuity
is contained in a channel, or bounded by any sound-reflecting surfaces,
the reflection processes may well make a given point in the fluid
accessible to pressure disturbances having nearly all possible directions
of propagation, in which case the 'solution of the problem of an infinite
discontinuity will be a reasonable approximation to that of a real, finite
discontinuity. It is therefore felt that the analysis should provide at
least a qualitative understanding of the influence of discontinuities on

small disturbances in actual flow processes.. Some possible applica-



tions will be mentioned here.

There are a number of cases in which the interaction of shocks
with smallb disturbances may bé of importance. One of these, as
mentioned above, is the supersonic, over- or under-expanded nozzle.

- In either case there will be shocks in the jet. If the flow is turbulent

as it leaves the nozzle, this turbulence will be carried thru the shocks.
Simﬂarly, if there are temperature non-uniformities in the flow, due

to combustion irregﬁlarities in the engine carrying the nozzle, these
temperature fluctuations will be carried through the shocks. The inter-
action of the shocks with the turbulence or temperature fluctuations will
give rise to a sound field in the flow downstream of the shocks. If the
intensity of the turbulence and temperature fluctuation can be estimated,
the noise level within the jet can then be estimated from this analysis.
To determine the amount of noise radiated from the jet is another
problem; however since the jet is bounded by constant pressure
boundaries, and the temperature is in general lower outside than inside,
it seems that the noise level just outside the jet should be of the same
order of magnitude as that within the jet. Furthermore the frequency
of sound waves would be conserved in the transmission process thru

the jet boundaries, so the estimates of sound frequency given by this
analysis should apply directly. Another interesting case is the inter-
action of the leading edge shock of a supersonic airplane with atmospheric
turbulence, temperature fluctuations, or sound. In particular, the
influence of the noise field so produced on the airplane skin or on the

boundary layer may be of interest.
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It is harder to find clear cut examples of plane flame fronts
which may interact with disturbances. However, if a turbulent flame
| may be thought of as a plane ﬂéme front the position of which
fluctuates with time%*, this analysis should be applicable, and should
for example, be useful in predicting the noise level generated by
turbulent flames.

Since the inception of this analysis, solutions of the interaction
of the vorticity mode> with shocks and flames have been published by
Ribner(g) and Tuckerl(lo), respectively. The present analysis includes
the results of these papers as special cases, and in addition considers
some aspects of these problems not contained in the above papers. The
most important of these are a determination of the frequency of the
sound generated by shock-turbulence interaction, and a treatment of the

sound generated by flame-turbulence interaction.

¥ For a recent investigation of this question, see Reference 16 .
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II. FORMULATION OF PROBLEM

The problem has been idealized, as explained in the introduction,
to the case of two semi-infinite regions of uniform flow, separated by an
infinite plane discontinuity. On the upstream side of the discontinuity
there is.sqpposed to exist a random small disturbance field which inter-
acts with the discontinuity and is regarded as the input to the interaction
process. It is desired to determine the disturbance field which results
from the interaction process.

Because the differential equations governing the small flow dis-
turbances are linear, if the input disturbance were specified completely,
the problem could be solved exactly by the well-known methods of linear
analysis. Actually, since only the statistical properties of the input
disturbance are specified, a complete solution is not needed; however,
because of the ease with which complete solutions are obtained, the
usual procedure in linear problems such as this is to define completely
a model which has the same statistical properties as the input
disturbance, solve the interaction process completely for this model,
then extract the desired statistical properties from the complete
solution. For some examples of this procedure, see Ref. (11).

In the present problem, the model must be capable of represent-
ing the statistical properties of a distribution of random vorticity,
pressure, aﬁd entropy fluctuations. It will be assumed that all
statistical properties of this distribution are stationary in time. Then

since the relevant statistical properties of the model are to be independ-
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ent of time, the time dependence of the rnbdel may be chosen arbitrarily.
A convenient choice is to represent the pressure field by a superposition
of plane sinusoidal sound waveé, and the vorticity and entropy fields

by plane sinusoidal velocity and entropy profiles. The disturbance

field may then be regarded as composed of elementary disturbances,
each of which satisfies the equations of the fluid, so that the interaction
process may be computed separately for the individual disturbances,

and the desired resuits obtained by superposition.

The analysis is divided into four sections. In the first, the
detailed interaction process is solved for the three types of input dis-
turbances, insofar as it can be without specifying the precise nature of
the discontinuity. A linear transformation between the upstream normal
velocity, pressure, and entropy and the corresponding downstream
quantities is defined, the coefficients of which may be derived from the
conservation laws for a given type of discontinuity. From this trans-
formation and the assumption that the tangential component of Velocity
is conserved in passing thru the discontinuity, a set of boundary
conditions is derived relating the amplitudes of the resultant sinusoidal
disturbances of vorticity, pressure, and entropy to the amplitudes of
the input disturbances with the same spatial and temporal periodicity
at the unperturbed position of the discontinuity. This set of relations
is found to be one short of sufficient, the other condition being a
characteristic of the discontinuity which is not contained in the con-
servation laws. Finally a set of transfer functions is defined which is

sufficient to describe the influence of the discontinuity on the dis-



turbance field.

In the second section, the statistical properties of the resultant
perturbation field are calculated in terms of the statistical properties
of the input disturbances and the transfer functions defined in the
-previous section. The superposition of plane sinusoidal disturbances
naturally leads to use of the Fourier transform technique. The
statistical results are thus formulated as a series of integrals involving
the transfer functions and the input statistical properties.

The final two sections are devoted to calculation of the transfer
functions and statistical properties for the two specific types of dis-
continuities: shock waves and flame fronts. For the shock wave, the
Rankine - Hugoniot equations, which are derivable from the conservation
laws, and the fact that it is impossible for disturbances originating at
the shock to influence the region upstream of the shock, provide the
information necessary for completion of the problem. In the case of
the flame front, the analogous relations are the Hugoniot equat'ion, and
the relationship between the normal burning velocity and the upstream
temperature and pressure.

In both cases, the transfer functions are obtained in analytical
form such that most of the integrations required for evaluation of the
statistical properties can be done analytically, whereas the correspond-

ing integrations in Refs. (9) and (10) were done numerically.



PART 1

INTERACTION OF ELEMENTARY DISTURBANCES

WITH THE DISCONTINUITY
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A. Governing Equations of the Fluid

Assuming that the effects of viscosity and heat conduction are
small during the time intervals involved in the interaction of the

turbulence with the discontinuity*, the equations governing the fluid are:

Momentum,
*

P*-g—? VPt =0 (1.1

Contiﬁuity, _
x

Energy,

Ds* _ 1.3

DE =0 (1.3}
State,

p¥=p*RT* (1.4)

If the disturbance velocities are small compared to the main
stream velocity, and the pressure, density and entropy fluctuations and
their derivatives are small compared to their respective undisturbed

values, the equations may be linearized by taking as new variables,

wy = U(*”U
U;,r: qu‘
Uy = U

p= =P
§p=p*-p
§= 5"‘50

* See Appendix C for a discussion of the neglected terms.
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where U , P , p and S, are the average values of the various

quantities. The resulting system of equations is

.(%‘*U%’T)Q +-f',—\71o =0 (1.5)
w3tV )PV =0 (3-4)
(g?;ugz) o | (1.7)

where Eq. (1. 4) has been used to eliminate the density as a variable.
Now taking the curl of Eq. (1.5), and letting the vorticity associated
with the disturbance be () = Vx{ , the equation governing the

vorticity is found to be,

(%*U%}—(“)—Q_— -0 (1.8)

Equations (1.6), (1.7) and (1.8} show that pressure, vorticity and
entropy disturbances are, to first order, independent, since they obey
separate differential equations. Equations (1.7) and (1. 8) indicate that
the entropy and vorticity are convected by the main flow in such a way
that an observer moving with the main flow would see vorticity and
entropy fields independent of time. Equation (1.6) is a wave equation,

indicating that pressure disturbances propagate in the fluid.

B. Fourier Analysis of the Disturbance Field

As shown by Egs. (1.6), (1.7) and (1. 8), a general disturbance
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field in a fluid may be thought of as composed of pressure, vorticity
and entropy fluctuations. It is possible to represent this field by means

of Fourier integrals as follows:

i[K-Xx +wt]

' [ K- t
—5-: CZ[E.&f’w JJZ?UL‘U)

KX +wit
'c$'=fc Lexroed dZs(K,w)
P

where the X  are chosen so that the mean velocity is zero. Now in

terms of the stationary coordinate system, these become

; 2 X t
%_zfet[l(-(x,—w),»x,,x e e ]d_Z_u(}s,w) (1.9)
Tk, (X -TU L) +KeXa + Ky X3 tw t]
%:j6Z[K( d Zp(k,w) (1. 10)
; - K. X, +K3 X3 twwt
%=er[K'(x' ver o ]dzs(g,w) (1.11)
P

Equations (1.6}, (1.7} and (1. 8) impose certain easily determined
conditions on @ if it is assumed that the integrals of Egs. (1.9), (1. 10)

and (1. 11) represent superpositions of elementary flows, so that the
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integrands themselves must satisfy the differential equations. Thus, for
the pressure field, from Eqgs. (1.10) and (1. 6),
w? = ar( K+ K"+ Kz?)

or w=takK (1.12)

and for the vorticity and entropy fields,
w =0
Part of the velocity field is associated with the pressure field,

and part with the vorticity field. For the part associated with the

pressure, the vorticity is zero, or

u
VX%—:D

Using Eq. (1.9), this may be shown to be equivalent to
KxdZu(kK,w) =0
which means that dZ_u and hence Wy 1is parallelto K . From

Eqgs. {1.9), (1.10) and (1.5}, the velocity field associated with the

pressure field is,

=

M K dZ, (5w (1. 13)

U i Jé[K.C&-U{:)+KLX1+K,x5 ~akt] B
v K

where ¢y--aK has been chosen from Eq. (l.12).
The divergence of the part of the velocity field associated with

the vorticity is zero, or

V'.LLV:O:

which is equivalent to

K- Ue =0,
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meaning that U+ is perpendicular to K

The general problem is represented diagrammatically in (Fig‘. 1),
where the discontinuity in the flow occurs at the plane surface S ., which
is parallel to the X3 axis, and makes the angle @ with the X, axis.
It consists of determining, from the known disturbance field upstream of
§ , the disturbance field downstream of S .

Upstream of S s

%ﬁ i jez'[K.(x.-Ué)iLszz +Ks X; ] 4Z. (&) -
% =jcz-[,<(x,-m)+/<zx;+ Ks x,a,:(dzs (€) 0 15)
Tg_zfei['('(x'-w) mXﬁszraKt]dZ-P (k) (1.16)
%izﬁ ej[K.(x.—Ut)+K;xL+ k;x,fakt]-?’i dzZ., () (1.17)

A similar set of equations applies for the downstream flow, the
ol
X|I axis being parallel to U , the X; axis coincident with the X3

v
axis, and the Xa axis orthogonalto X: and Xs.

dy i[KO-UBrea X, + K %, ]
-?}:er ; 3 7.0 (%) (1. 18)
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1 - '—l t) 1k X, Kz X ‘
%:jez[m(x. U]t ’]dzs (k) (1.19)

| ) K,(X,'-U"t)szxz"l- KsX; -a'kt ,
5 =f€z[ “ ]JZ? (£) (1.20)

u;§, | z‘[K.(x.‘-U’t)#zXz'*KsXs -a'kt | l 1.21

C. Transformation to the Case of a Normal Discontinuity

In order to simplify the boundary conditions at the discontinuity,
it is desirable to transform to a coordinate system in which the
discontinuity appears normal to the stream velocity. This requires a
simple rotation and a translation along the discontinuity, in thé plane of

X. and X, . Therefore, let

X,z S8 +nend tULcnd
(1.22)
X, = -£erb tnand + Ut cnbrind
where X. , Xi and € may refer to either the upstream or downstream
flow, because of the fact that the main stream velocity tangential to the

discontinuity is equal on the two sides.

Also, let
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Ki= k. 2wl + kiCr O
Ki=-k 2B + Rz 8

Ky = ks | (1
- U
U= 2%

Using these relations, Eqs. (1. 14) through (1. 17) may be written as

Un

&=fe£[k'(g%t) rean + ey X3 ] dZ (k) (1

2 B

e TR (E-Unt)thoh 1 b,
%zv(ea[.k(g'v )+ ’(-}- Xj]dzs(_g)

(1.
Tk (2-T,t) +hoty + by X, ~a kot

%O_zjea[ il ]dz*,(.’%) (1.
dp ik (8-Unt)t by thoxs -k €]

TUn " W | © L4z,

and for the downstream flow,
_u'-_VT = z[k'(sl-Ukt)""kz"( +k3)(3] de-’lj_ (E) .
Ul €
s '

‘ Tk, (B-U t) + =1 + Ry X3 ,
-%;:fe"[ (- t) ¥R j}dzs(l_e) (L.

.23)

. 24)

25)

26)

27)

. 28)

29)
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' [k (5-Upt) +k: kyx;-a' kbt ;
:Ig_'_zv[ez[k(fl Uct)+ ?z* 1X3 -4 ]dzr(k) (1.30)

! C>é[lz,(f~U,jt) + B+ X

Siiig
o
3
£~

@'kt ] ,
—%—JZ,, (k) (1.31)

In general, the relation between dZ(k) ana dZCk) is given by
the rotation (1. 23). If, however, the upstream disturbance field is
isotropic, then JdZ (k) is equal to dZe),

The entropy and pressure fields are completely specified by
C‘ZS (k) and szp (k) respectively. However, the specification of the
vorticity field requires the three components of C’Z_v(k). The in-
compressible continuity equation provides one more relation between
these three quantities, in the form,

b dZip (K +bodZ,, (k) + by d 7, CED =0

or

k, Wirr + le. Uz Fk; Wi, =0 (1.32)

so that two components of ‘J,Zlf(k) are gufficient to define the vorticity

field.

D. Boundary Conditions at the Discontinuity

The'matching of the downstream disturbance field, as represented
by Eqgs. (1'. 28) through (1. 31), to the upstream field, Eqs. (1. 24) through

{1.27), at the discontinuity will be considered in two parts. First, for
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given upstream wave numbers, k, s k,_ , k; , the corresponding
downstream wave numbers will be determined to give the same
periodicity in H , X3 and t for § equal to zero. Then the dZe)
will be determined in such a way as to satisfy the boundary conditions
for the velocity, pressure and entropy.
1. Matching of Wave Numbers

For the purpose of matching the known and unknown wave
numbers, the general problem may be divided into two cases:

1. The known upstream disturbance consists only of convected
disturbances (vorticity or entropy). The unknown wave numbers are
then associated with the convected downstream disturbances, downstream
pressure disturbances and upstream pressure disturbances, the last
being present because the pressure disturbances propagate in the fluid.
Comparison of Egs. (1.24) through (1.27) with Egs. (l.28) through (1. 31)

indicates that in all cases,

Accordingly, take

ke =V ki + k3 (1.33)

where R4 is the same for all disturbances which match in periodicity
at the discontinuity. Matching of the timme dependence yields for the

convected downstream disturbances,

R, = m k, (1.34)



where ' o . Un
and for the downstream pressure disturbance,
' ! '
by Uy + kpa' = k. (1. 35)

and

kc\".__m Mhl,z | ~_L ]—M{t?’ ks 2" ] k. >0 L 16
ke 1Mt M m‘M,’,,‘(E._) b oml<r B30
For the special case of Ms: =1} ,

| k
Iiw ) mz; (&) ©{1.37)

Similarly, for the upstream pressure disturbance,

ﬂﬂiz _I~Mn k+) . k>0 (1.38)
ki /- Mn M k' g My < |

The values of h,'.f, and kupg , as given by Eqs. (l.36)

and (1. 38), may be real or complex. If they are real, the pre'ssure
waves are periodic in ¢ . If they are complex, the pressure waves
are exponentially attenuated periodic functions of § . The downstream

pressure waves are not attenuated if
/= Mu k)2
1.3
e B = (1.39)

I'4
It is apparent that if Mu =1 , the waves are not attenuated (see Eq.
r
1.37), and that if M =0 , the waves are all attenuated.

The upstream pressure waves are not attenuated if
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’M“( ) < (1. 40}

2. The known upstream disturbance consists only of pressure
waves. In this case there can be no upstream convected disturbance.

For the downstream convected disturbances,

' {
b = (ki e 57, ks + k) (1.41)
For the downstream pressure wave,
' 3
kl?._ M [ I_'/——/"/éz 2% (1. 42)
k" /- 2— Mh M),tz kr’) )

For the special case My

1 ey
—k—'-?:L:__(_E—Zl {1.43)

]

For the reflected upstream pressure wave,

2 kl‘?
1 ———
Pree - ~2 /M’ - M (1 P ke (1. 44)
B, m(l- Ml-t)[' + My ke ]
kv

2. Boundary Conditions on the Velocity

Since the elementary upstream disturbance is plane, the inter-
action with the discontinuity is essentially two-dimensional. Let r
be a coordinate in the ¥ , X; , plane and perpendicular to the line of
intersection of the planes of constant phase of the disturbance with the

plane of the discontinuity, as in{Fig. 3). Also, let X be the angular
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coordinate as shown in (Fig. 3). Let Ly be the resultant of U2 and U3
in the direction of '?4 , and Ud be the resultant of Uz and U3

perpendicular to ke

Ua = - U, B 4oy, ke
L g, + W3 o (1. 45)
For the pressure waves, Ut =0 . For the vorticity disturbance,

ui:"u—z'u-%i‘ *’uav%—;

Now since in crossing the discontinuity the disturbance does not change

along lines perpendicular to F ,
Ud = Uat (1. 46)

Then, from Eqgs. (1.32), (1.45) and (1. 46)

-t ’%Lr - U ke
Uz = J 2
%’; + ks
~ lg‘}_.f +Ua %
(L;v = z .
ke, ks
2 .
Si - _2_7-_. k
ince Uy W= Ko + WUz Tz}; ’
Ur Wv vy Uy ke U ke
—_—= —= kv  HIF? Ry 3 Ezyp 1.47
Un Ur kt * Tn bt = Un ks (-4

The analysis may now be completed in the plane of g‘ and fF , as

follows,
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Assume that the discontinuity is disturbed, so that its angle to
the I axis is 0 , and that the disturbance propagates in the I

direction at the same velocity, |/ , as the upstream disturbance.

For convected inputs,

Un ke (1. 48)

And for pressure input,

AN TN bt ki (1.49)

Un [ 2 ks My

Denoting by Un and Uz the instantaneous local perturbations

to the velocities normal and tangential to the discontinuity,

Uy . Ko o V

Un = Un Un
(1.50)
Un h
where Ut isinthe § , pr plane. Similarly, for the downstream
side,
] \
W ¥
i Uk "
' ' (1.51)
i
. 4 s
] Un

From the conservation of momentum in the tangential direction,

Uy’ Ut
'I:)',i; = m—y—"- (1.52)

' T
Relationships may be found between Un P "CS" , and
P
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the upstream values ' -%-'-‘i't ’ —E—* ) —CE’; » for any given type of dis-
continuity. For the present these relations will be indicated by:

W u

_i:' = b,——"; 'I—L,,-CS—'; + bg% {(1.53)
‘ u

%‘L,_—. b"_ﬁfh #bs CSP +he % (1.54)
S' _ u S —

& = b TIE'K +bs & f~bq PF (1.55)

The boundary conditions which are applicable at the discontinuity

then follow from Egs. (1.50) through (1.55). They are:

-‘i-bT‘}— thd v b F o omb)l - (1.56)
%% = mgf t(-me S (L.57)
p:= 54%’— +b5% +b‘,gi_b+_ﬁ!{;g— (1.58)
g;':b?_{;‘_; + by +by 2 e (1.59)

- From Egs. (l.24) through (1.31) and (1. 47),
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%Lh - if:; ~Ciz — kWI dZ‘Pr ‘an JZ“PE
& = dZ,
% = CJZ?I + JZ‘#R '(1'60)

Ui~ af’ p
s' _ :
o , (1.61)
Ur _ _ kv 32 !
T = B e " CadZ
| l k { les :
h C=-—oe =+ = o — T d the sub t
where p vy P C,z ML k"f, an e subscripts

I and R mean incident and reflected.

Equations (1. 44) and (1. 45) are understood to be multiplied by
the commoﬁ exponential factor obtained from Eqs. (1. 24) through (1. 31)
by setting §' =0 and the appropriate matching of the wave numbers.
This factor cancels out of the boundary conditions. It will be assumed

that, with the same factor omitted,
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Substitution of Eqs. (1.60), (1.61) and (1. 63) in Egs. (1.56) through

. {

(1.59) leads to four equations for the five unknown quantities JZ;”,
S s
JZS' s cIZ; s CIZ*PR , and JZJ. . The other relation which is

]

necessary to make the equations determinate depends on the particular
discontinuity. For example, for shock waves, since pressure dis-
turbances do not propagate upstream of the shock, C]Z.ﬂz =0

For a flame front, the kinetics of the combustion process gives a

connection between X g and o
Un “p r

E. Definition of Tranasfer Function

The result of solution of the set of equations obtained above for

the unknown JZ;‘ " may be expressed as follows:
dZ; (k)= T/ dZ; (k) (1. 64)

!
where JZ;, denotes ;‘(J’:Z—;% R JZ‘; s JZ{D s ‘JZ‘PZ‘ ) JZ,,'V ;
JZ;‘ denotes —iz%q_ . 425 . JZ‘PI , and the repeated index is
to be summed over. The T-ij may be interpreted as transfer functions.
For example, T-;r is the transfer function giving the amplitude of the
downstream pressure field which results from vorticity convected

through the discontinuity.

F. Effect of Obliqueness of the Discontinuity

If the input perturbation field is isotropic, as will be assumed
in the present work, an oblique discontinuity has exactly the same

influence on the perturbation field as a normal discontinuity with the
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same normal velocity, if it is observed from a coordinate system travel-
ing along the discontinuity as in (Fig. 2). Furthermore, only the spacial
orientation and time dependenée of the downstream field will be different
when it is viewed from the ordinary stationary coordinate system. All
mean squares of fluctuating quantities will be unchanged. Accordingly,
in the following, all results will be referred to the 3‘ s Qs X3
coordinate system, except where a time dependent characteristic, such

as the frequency of the downstream sound waves, is involved.



PART II

EVALUATION OF STATISTICAL PROPERTIES
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A. Statistical Specification of the Disturbance Field

A complete knowledge of the input perturbation field would permit
a completé analysis into modeé, as in Eqgs. (1. 14) through (1.17), and a
complete calculation of the downstream perturbation field. Practically,
however, since the perturbation field is random, it can only be described
statistically, and in fact, knowledge of the statistical nature of the field
is limited to the two-point correlation tensor, although in principle, more
complete information could be given by means of the three-point and
higher correlations.

The correlation tensor is defined by:

Rii (£:X)= 4;(x) 4;(X+8) (2. 1)

where ? . and i ; denote any two quantities associated with the
perturbation field, and _& is the vector separation between the points
at which they are measured. The bar indicates an ensemble average,
that is, an average over a large number of possible configurations
such as represented by Eqgs. (1.14) through (1.17).

The spectral tensor is defined as the Fourier transform of the

correlation tensor,

1K-§

@ij(ﬂllhﬁlﬁ‘f?g; (4,X)e d¢ (2.2)

and therefore,

- Ri(42) = @i'(s,.&)e”‘("{&g (2.3)
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As is indicated in Eqgs. (2.2) and (2. 3), the spectral and correlation
tensors are in general functions of X . If the perturbation field is
hoinogenebus,_ they are indepeﬁden’h of translations of the coordinates,
and if isotfopic, of rotations of the coordinates.

It will be assumed that the known upstream field is homogeneous

and isotropic, so that,

(K&
R:i(8)= iii (K)e C’_K (2.4)

and

3

i K&
@ij (K) =‘[Rl‘j({)€ Jé‘ (2.5)

The elements of the downstream spectral tensor which do not
contain the pressure fluctuations also will be homogeneous; however,
because part of it is attenuated, the downstream pressure field will
lead to elements of the spectral tensor which are dependent on the
distance from the discontinuity. Furthermore, in the cases where
there is both an incident and a reflected upstream pressure field, the
resultant pressure field will in general be inhomogeneous, because of
the correlation between the incident and reflected waves.

The discussion of the downstream correlation tensor may then
be given in two parts, the first dealing with the homogeneous fields,
which include the vorticity, entropy and sound wave disturbances, and
the second, with the non-homogeneous fields associated with the

attenuated pressure waves, and upstream sound waves.
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For the sake of simplicity, only the mean square values of the
various perturbation quantities, hence only the diagonal elements of

the spectral tensor, will be considered.

B. Homogeneous Fields

Substituting any of Egs. (1. 14) through (1. 21) formally in Eq. (2. 1),

X

KX +K'(X+4)]
Rii(£)=fez[ dZ;(g') dz; ()

where the integration is over K and k' . Inthe case of homogeneous

* i . 1
fields, however, dZi (E)JZ» (k)=¢ unless K =k (1]), so the integral

reduces to

; K-8
R:i(8)= ez de(.tS)c[Zz'(E) (2.6)

The connection between the representation of the perturbation field
given by Eqs. (1. 14) through (1. 21) and the statistical representation

in terms of the spectral tensor is (11),

B,; (KK = 4z )dZ: (£ (2.7)

which seems reasonable from comparison of Eq. (2.3) with Eq. (2. 6).
Equation (1. 64) gives the relationships between the known and

unknown Fourier coefficients, AZ, and dZ; , and Eq. (2.7) then

allows the downstream spectral tensor to be given in terms of the up-

stream spectral tensor. Thus,



-30-

¥ ;
dZ2,;(K')d2Z2; (k')

h

@52 (£)dx’

[T;"*‘dz}‘ D] T3 dZk (Ke) ]

whence

&, () de'= TP TE dzf k) dZ,, (ke 2.8)

Again, it will be assumed for simplicity that the cross-correlations of
the upstream pressure, vorticity and entropy modes are negligible.

Equation (2. 8) then becomes,

@ﬁ@')df: T,-j*_n'j B;; (ki) dxk, (2.9)

This equation gives the diagonal elements of the downstream spectral
tensor in terms of the known diagonal elements of the upstream
spectral tensor.
1. Mean Square Values

The unknown mean square values are obtained from Eq. (2. 3)

by setting § equal to zero. Thus,

—_ .
fiz = Tz'J 7:” @ﬁ (Ki)d K (2. 10)

Here it has been assumed that the transfer functions, which were found
from the elementary disturbance analysis as functions of kg , may

be converted by Eq. (l.23) to functions of K . In the particular case
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where the known upstream field is isotropic, however, it is simpler to

proceed as follows:
: @j:’ (Ei)c‘ﬁs' = @H (kJ)d_kiJ (by isotropy)

and

—

?8.2 = 7’;.1* 7’;.';' @J'j (E;) JEJ (2.11)

C. Non-homogeneous Fields

1. Attenuated Pressure Waves

In the case of the attenuated pressure waves, the wave number
normal to the discontinuity, k"‘P or }Zl‘ﬂa , is complex, and the
expression analogous to Eq. (2. 6) contains a real exponential factor,

so that if !%‘E - daf'iﬁ , the relation corresponding to Eq. (2.11) is,
(

(B). = [ F" i e
att c Te Ts @jj(gj)c}_@j (2.12)

2. Reflected Upstream Sound

The equation analogous to Eq. (2. 9) for the upstream pressure
field which results from incident sound waves is somewhat more com-
plicated than Eq. {2.9), due to the fact that the pressure is the sum of
the incident and reflected pressure waves, the latter being spatially

correlated with the fermer. Thus, from Eq. (1. 26)

_ P z'[(bm*kll‘xi“[fuf)—-ﬂ.(kil*-k:r) ZL]
dz1,=[: tTee€ ]dZﬂ
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il

p':

| z'.[k(r‘(f-lfnt) *kz'{ they X3 -2 oy lL]
fe | dZ¢

14
Now define T.‘,,R by

dZy = (' +T¢“E")JZ~PI

Then

dz5 dzy = (1+ T *Tv *TE Tl ) dZgr d 24

and the relation analogous to Eq. (2.9} is

@W(K)J!b /2(”_7;1»"”-1’" T’"ﬁ;;'")@p.,(wzl_ (2. 13)

ola incideyt

where

s 7 cz'[(kmk,z)(suwt) ~a(ke~kr)t]
PR

D. Downstream Pressure Field

As has been indicated previously, the downstream pressure
field consists partly of sound waves and partly of attenuated pressure
waves. The mean square of each of these types will be determined, and
in addition the form of the spectral function will be determined for the
sound waves. Also, the one-dimensional frequency spectrum of the
sound will be determined.

1. Mean Square Pressure Fluctuation

It is necessary to evaluate Eqgs. (2. 11) and (2. 12) for the
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pressure. It will be found later that the transfer functions are most

conveniently expressed in spherical polar coordinates. Therefore, let

k= 'Q cr2 Y

ko = k 2oy siy

3 = k s g o2 (2. 14)

k+= k/m./l»\)l,

E 2 .
J(‘k,tt.«p) = kaiy
Using these relations,
\2 et ‘* ‘
%) “’”f f T T & (k) aivey dedy
o

(2.15)

® _pkcays . _
f

where the range of integration in ¢  is that which gives sound waves
for the first integral, and that which gives attenuated pressure waves

for the second integral.

Since the upstream field has been assumed isotropic, the form

of the spectral functions in ¢ may be given. For the vorticity (11) ,
E (k)

[ i, MI‘P (Z. 16)
@’U"U‘ U7 ke

and, since § and P are scalars,
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P = Gs (ks) (2.17)

é-pp = G"P (k?) (2.18)

" Inserting these in Eq. (2.15), the integrations over k and 4 may
be separated in the first integral, because the transfer functions are

independent of k

(%lw J f E(k)d by f T TV aindg dy

o (b [Tty e

o

| G, (ky) "*;J'E“JW*W iy dy

The first integral in each term gives just the upstream mean square

value of that input, since

2 .;I.T oo
i 2[ f B, ki aingdks dy dv
a 0 “p

=3‘%—;if E(kv) dler (2.20)
"5"" 27
? j[[@s(ks)ks 2w ¢ dlbsdy dy

=47 Gs(ks) ks Jdks (2.21)

(2]
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(B) = Z.,,(kv) b3 dles

(4]

(2.22)

Inserting these relations in Eg. (2.19),

?2 - Ilw'
(?’—‘)sma - _( T Ty ainig dy
G [T T gty [T Tkl e

Evaluation of the attenuated part of the mean-square pressure
fluctuation as a function of § requires knowledge of £ (Kv)
Gs (ks) and Gwp (k-,,) It is not possible to even estimate Gs or
G‘P . These would be determined by the conditions of a given problem.
However, at least an estimate can be made of the probable form of
E(kv) . It is known that for decaying isotropic turbulence E (kv)

-

varies as v ? for kv large, and also that for isotropic turbulence it

varies as k:} for IZU- small. An interpolation formula suggested in
Ref. (15) is

A St
E(S’): 'E(—I—I—S:————")W/‘ (2. 24)

where § = % and A is a normalization faétor. This form will
be adopted for E(S’) , as an example, although in a specific case E®)
might be quite different from this. The important trends in the in-
fluence of fhis form of £ (%) on the properties of the resultant disturb-

ance field will be quite clear, so the choice is not critical. The
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constant A may be referred to the input through Eq. (2. 20),

— o

wr) . 24 ¢

(UM') '5Uuz ("f §2)17/6 JP = 3‘25-/%2, ("0347) (2. 25)

0
Now let
-g(‘?)f 504
L o) f — 4
’ o (s
where
g(¢) = 2k S‘ﬁ coay

Then

( ) 725(““’ /Ia,o) T"*7;, i dg (2. 26)

L9 is given in (Fig. 5).
2. Spectral Function of Downstream Sound Waves
Given the form (2. 24) for E(ky) , it is possible to determine

{ /7
@‘P“)O(k"”)’ the spectral function for the downstream sound waves, by

transforming the appropriate integral of Eq. (2. 11) to an integral over

ky . From Eq. (1.35),
Ry =Jyﬁ(k"1,+ﬁz\/k.§o Hee )

k2w

i
fe 29 (2.27)

i

!
kav = ksw«

T a (i i)
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:::M frv *3D, (k)J(k*)

- f B, (k) dk;

then

and

! J - ¥* v 1 r.3'4
B, ()= T Ty 8., U ] (- gﬁ)
This function is most conveniently expressed in polar coordinates,by
Eq. (2. 14). Using this transformation, and integrating out the ' s

which is trivial since it occurs only in the differential,

@ (¢, f?,,) 47rT'r* @ ('f)j/kv)J— (k«, ) ) (2.29)

The extra factor of 2 arises from the fact that for 9 varying from
to g, o<ygo< M2 $' ranges from 0 to ¢
”"/2. < ‘fc’ < Tr

084 7

_k."P ) 12 . I;
j(ti,y',+') = kp s

and from Eq. (2.16),
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@ = E[kv') k+L
vy 4_”U-kz hz k‘z + k{’_—

k*= kY, [w(c‘n‘f *M' ) “tinre! ]

kq.—k? A‘l./l«v(f

Hence,

P - £ (kv) g’
VY ATOCEY | [pa(cm o'ty ) rainet |

Collecting these relations and substituting in Eq. (2. 29),

Fy (1) Ty gy sy
pp ko)zg.a,sl—i,;;l(wm‘.’)“’“f (L) so)

(%:_:) (1+ §9'7%\ ke

where

B\ ( b, )z g
T — — + Qe
ko) e g+ ML '
k !
Here L}" is the inclination of the downstream sound wave and -ki
o

is the ratio of its wave number to the reference wave number of the up-

stream turbulence. The range of Lf‘ is from O to Lk' , where
- /=
g, = Lo ( ]ZI:) (2.31)

3. One-Dimensional Frequency Spectrum of Downstream Sound Waves
Equation (2. 30) gives the distribution of intensity of the down-
stream sound waves over the inclination, t,P' , and the wave number,

¢ :
k-p . However, the quantity which is of interest acoustically is the
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distribution of energy'over the frequency which would be noted by a
stationary observer downstream.

Considering a single shear wave input, its resultant downstream
sound wave will have a frequency which is equal to the frequency of the
upstream wave as it is convected past a stationary point. Thus, if the

discontinuity is normal | &= 1}_: (Fig. 2),

Un kv teq
= 2.32
An average upstream frequency may be defined by
/2 d
Cryanydy
Vo = Unka_n(? — U ko
2 .,
l’ﬂ"( L Y d? 4
0
and the dimensionless, downstream frequency D' by
D - 5 ky 2.33
9 - ])O 1 ko 9) ( . )

The downstream sound intensity is, from Eqgs. (2. 15}, (2. 16), (2. 24),

and (2. 25),
'\ ler * 3
(1‘) B )[j (t'rs't)% T pdsdy
where : = _k__
ko

From Eq. (2.33),



-40-

Therefore .
CARE V'
(F) f P, (»)dv
where o
‘ v 'u"‘ v awlyY
CP»(") = 3‘3( ) f(w st e Gy 49 (2.34)
and ¥ = 1)’

Equation (2. 34) may be simplified for ¥ both small and large. The
I
range of Y is Y. < ry< | , where YPc varies with Mw
1
being less than Mr for Mu <1

For ¥ small, that is for —— << |

) u 14 L3
P,0) = 0226( ”’) Jr’" T2t dy (2. 35)
For ¥ large, thatis for -4 >>1,
-

P, = “5_(%)1)) f TV "y 2in3g dy (2. 36)

If the discontinuity is not normal ( #< LZ79 Fig. 2), Eq. (2.32)
for Y must be replaced by

)): U;rklf

un *Z /s
27 Cn g Cﬂ(9 z 7"90)
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and Yo may be chosen as

Do = T ko
47 B
Therefore,
)= 2 _E%f crn (6-T +g) (2.37)

and Eq. (2. 34) becomes
o El (%2 o 3(/)
@v(ﬁ)~.363 UK) f(,+rL),7°7; —F:P m Jl} (2.38)

’9’
S = Xem(e-Erq)

where

Similarly, Eq. (2.35) becomes

P ) =.0226 @—19'77-1%7—1; e 4 d (2.39)
» (UKJ 4 i 4 Cnf(g__il—_*y’) ¢

and Eq. (2.36) becomes

, (-5
P, () = llb‘(u”) Y 7;"*7'1," mzlg(9~?+q)ﬂu139oc!,o (2. 40)

E. Downstream Convected Fields

The downstream convected fields, that is, the vorticity and
entropy fields, may be computed in the same manner as the downstream

pressure field. The vorticity field has two significant mean square
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values, the velocities perpendicular to and parallel to the shock. The

entropy field is described by one mean square, since it is a scalar

field.

Each of these quantities may be computed by

g—}=_ ) sz“’*T,-"m ¢ dy

(2. 41)
f
+.L( ) T3 TF agdy +i(ﬁ) /7”7 Paigdy
where, for the entropy field, 72=(§' ? and for the vorticity field,
c— -
4;* = %le * or (“"V

However, it will be recalled from the analysis of the interaction of
a single vorticity wave with the discontinuity that one component of the
velocity, Ua , carries through without change. Thus, the actual mean
square velocity fluctuation associated with the vorticity and pa;'allel to
the discontinuity is a combination of this unchanged component and

ur‘v . . Let U_l,'u— be the lateral component of velocity associated
with the vorticity, that is, the vector sum of Ua and Uv"v . From

Eq. (1.64),
dZw

2 b

er"'v = Tr:.,r

and from Eq. (1. 46)

dZ o =mdZ v
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Also,
K 4 1 x "\
le'u JZIV = rv rlxrr M +m?* AZ":’ C}Zdv
Al 9

but

and from Eq. (1.60),

dZow dZur =dZ;dZy~ 42,5 dZ,,

whence

% ! r 1r 2 x
9Zie dZ4o ~(T00 Ty - 25 ) nd , o 7247,

A %6

Substituting in the first integral of Eq. (2. 4l) and carrying out the

integral of

ml.
R

(&) - (| 2 4fre o sons] mstiien

Assuming isotropy,

dZ; dzy = 2 %f)z

—_ ’ \2
and the first term of Eq. (2. 41), for fz-";— (.gi‘?’) is
Un

nivY” Ui \* .
B @ fpeifrrras] e

The other terms are unchanged, since Ux =0 for them.
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F. Reflected Upstream Pressure Field

The reflected upstream pressure field from a pressure input is
in general inhomogeneous. It c;onsists only of sound waves [ see
Eq. (1. 44)] ; therefore, kiyr is real. The reflected sound wave
intensity will be taken as the total sound intensity minus the incident

sound intensity. Thus, from Eq. (2.13),

IR T ], (i,

Z:(km. ~kiz)€

where
' Tr
Top = Tyk €
Now Tv,;g_ is independent of kR , so that the integrations over ¢

and k can be separated in the first term, giving

ll
( J.G’t)j Tp aipdg + f[ Tk ] By, (kdly (2,43
Since Tp‘; may be complex, the last term is best written:

. 2fEl(T:pI )Cn(kw. *ku:)é‘ @?..P(k:ﬁ)‘[k‘ﬁ (2. 44)



PART III

SHOCK WAVES
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Shock waves, like other flow discontinuities, may be character-
ized by certain relationships between the velocities normal to the shock
front, the pressure, and the enfropy on the two sides of the shock. For
the shock vs;ave, these relations are contained in the famous Rankine-
Hugoniot equations.

" Completion of the preceding general analysis for this special
case then e(:ntails the computation of the coefficients of Eqs. (1.53)}
through (1.55) from the Rankine-Hugoniot equations, solution of the
system of Eqs. (1.56) through (1.59) for the transfer functions of the

shock wave, and finally evaluation of the integrals giving the desired

statistical properties of the downstream disturbance field.

A. Completion of Analysis of the Interaction of the Discontinuity with

the Elementary Disturbances

1. Characteristics of the Shock Wave

The velocity ratio across a shock wave is given by:

Un tH oM,

m= =
Un 1 +22 p

(3.1)

For small perturbations of Un , Unx and My , by using the

thermodynamic relation,

éTI=-S—g+Y" & (3. 2)

"Eq. (3.1) may be written in the form,

Wy - = Un - —
Y= -(mhmger(rEm] & R ] 3.3)
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The following two equations may be shown, from the equations of

momentum, continuity and state, to be valid for any discontinuity:

%z[l—(wam-:)l"?ﬁ]‘ﬁ— rr M [amn 4 - %bff (3. 4)
¥ MR (m-1) z?;
| ' U U -
S-v(BB) (%) o

|
Using Eq. (3. 3) to eliminate the —%-’E from Eqgs. (3. 4) and (3.5),

' ¢rin ' y-t i
S R s ER SRy E s
C o ~f 2 Y- S
ét'~ '%?F 20~ “dﬂ - %ﬁﬂ Mi Z'Fv¢n'"}
,_MD XLy -2 ] (3.7)

Comparing Eqgs. (1.53}) through (1.55) with Eqs. (3. 3), (3.6) and (3. 7)

gives the coefficients bi for the shock wave:
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bl$="2bzs+'
= |-y

bzs— | el g

bSS‘—' Z;;'[bzs

bes= £ M
(3. 8)

!75‘5= ‘f‘ ‘.74—5
bes=1-%5 bas
b7s= Tlfbﬁ ~2 bzs

bq'sz ‘I’F’b?s ’f'sz +

) ~
b‘l‘s*’}ii L""S + ‘%7” bzs

2. Calculation of the Transfer Functions
Equations (1.56) through (1.59), together with Eqs. (1.60) and

(1.61), represent four equations for the five unknown quantities,

dZ¢' ! ’ '
- 1;’ s ‘st , dz‘# , AZ‘PR and dZs, . Inthe case of the shock
wave, the system is made determinate by the impossibility of upstream
propagation of pressure waves. Thus JZ"PP- is equal to zero.
Equation (1.57) may be used to eliminate dZo— as an unknown from

Egs.(1.56) ,. (1.58) and {1.59), the result being three simultaneous

equations for the unknowns of the downstream perturbation field,
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dZy > :
7&“‘%, c/Z-p a.nd_c]Z5 . These are:

[I“C kw] JZu', ”C;[% +Cy JZ_;, =

L
(3.9)
[bls *VHC3 Jé;ﬁél’ +£2.SC/Z ‘f'[b_;s C(‘?s-—‘”*”‘!@.)]cjz.p
[|+C2ﬁt§‘0‘(‘ dZ.P [b-‘U kw'] ii'}g" —
" {3.10)
bos 148258 822 [ 921 1 bss dZs +fbes ~Clus (42 - 254 )[d 2,
850 & | d2s ([bmc, %7z, + 2
(3.11)
I,7SE+,;”—I-, ‘/n %f]j—f% + bgs dZs +ﬂ7q5—C, ém(-/%f~”% 'D%)]JZ‘P
where C. = = bis v
3 m=t Uy

The coefficients in these equations, and therefore the transfer functions,
are functions only of ratios of wave numbers, and are most simply
expressed in terms of polar coordinates as defined by Eqs. (2. 14).

The evaluation of the coefficients in Egs. (3. 9) through (3. 11) depends
on whether the input is convected or propagating.

For convected inputs:



where

ki _
4 ,Z"wny
by _ ()~ X
k, - ma, Mu') J
c = - 4 M‘/
z Y | T~ Mu X

o _ '
ke T tauy
Y o 1
Un Y
by - m
ke 7
ky [~ &
L ea, M
__‘M‘,”
Cir = Y Mn
ma. ¢
Co=-T I~Mix 2
i P
= .
Coz ¢ + 5

(3.13)
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o - {2
an= L
m*Mu

42=%(ﬁ"—”~—,)

(3. 14)
)(HL Y‘H )
With this notation, for convected inputs, take
A M
Al 1= g L LS (3.15)
-~ - 142 /T
v ors dar2y I~ M X
and for a pressure input,
12 T A z
A = l— g—% - ma.a. h ‘ y ] (3' 16)
v ¢ I—Mi z

In terms of these quantities, the transfer functions for the shock wave,

which will be denoted by Sf are, for the downstream pressure field,

Ay S) = bes[1~ Zorg ] G
D, Sy =-be[1- 2] (3.18)

A‘P S‘p =" "fb [( YMM) 4 +(b35+ ){)/(;u Cn"a)},-‘]

+[l:es + % Cﬂ?](l—— g-%)

For the vorticity,

(3.19)
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m x
a mza.-("”*’v* Fanc? - o=
Ay Siv =brs~};‘;—3=q -4 All[ Y z)( M“)] (3. 20)

ADs S < bas + 22 ppyt [’”“" ("—)J (3.21)

r+i [~ th

A?Sut = bas + 2 bis + 4

Y M ¢ ¥

(3.22)

as _ Y~‘b o bas bas b m ) _ | I~ %1

95 + Cozgp- [os‘——— T ; Mi.

B e

| — Mu =z
For the lateral component of the vorticity,
v m

Ay Svv = ~Tang D Siv (3.23)

5 m 5 4
As Sru— =" ﬁu(} As Sw- (3.24)

= m
Ay Sy =~ G Ap Sy (3.25)
and for the entropy,
m
807 = e [1- 2] .20
|~ X,
LT
tasl

Vip 5 = bgs ~m(‘9351"2b“) ’ Vg -~ Maa. My a 4 (3. 27)

| — Mu X
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wep [ m~| ’ a S‘P
St-bsrlEleri s - ) - st PR e

These transfer functions may be real or complex. They are
real if the downstream pressure wave is a sound wave, and complex
if it is attenuated. The physical significance of the complex transfer

functions is that the phase of the associated quantity is shifted relative

to that of the input.

3. Limiting Cases

For the convected inputs, a simple limiting case is that for
4 2—2 . The lines of constant phase are then coincident with stream-
lines, and the problem is that of a steady sinusoidal velocity-or
entropy profile imposed on a shock. For this case,
A‘U‘ ovs =1 E'”‘ = d

ke~ Yr=r®

and

S;z‘;b45
S = am~ (3. 29)
Sp =0

S _ -

v I “
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For the pressure input, an interesting special case is that for

which Cery = --M(—“ . The upstream pressure waves are then Mach
. t .
waves. For this case, A‘Pz ! E‘i’; = 2

T

Py, _ _ bt
Sp=bes - vmr

and

S,i =b35 - Yb!%ﬁ + )',‘;,T,z[bas - 5;'51%] (3.30)
St =0
5: = qu - _‘bls_i
Y M
The downstream pressure field is, of course, attenuated, so that only
S,T} and S: are of real interest. These are shown in (Fig. 6).

For convenience in interpreting this figure and those to follow, the

variation of Mu with W is shown in (Fig. 7).

B. Statistical Properties of the Downstream Disturbance Field

The diagonal elements of the transformation matrix wiil be
evaluated; that is, the mean square sound pressure, normal and lateral
vorticity, and entropy will be evaluated in terms of the mean squares
of these quantities upstream. In addition, the mean squére pressure
in the attenuated pressure waves will be evaluated for vorticity input,
and the spectral function and one-dimensional frequency spectrum will
be evaluated for the sound waves resulting from vorticity input.

1. Mean Square Sound, Vorticity and Entropy

From Egs. (2.23) and (2. 41),
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- Gei Py
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Jer, T
+er S*zm gdy
O s ‘})cz

(u“’ =rf- )fS,’{I*S?f,M’sPM
—_— 7’/2
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() S S5 ain g dy +L(%f SETSY aingdy

U \* Unr 0
(5) -1 )f ! S et

,,,)JS Sperieg dy +J-(i)f5 * S, <ain g dy
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( =%“”’)f5”5 ainipdy

Rty 77/2# N ”
+H3) f Sy G5 ay dg *f(%)‘f 5875 iy dg
a a

(3.31)

(3.32)

(3.33)

(3.34)

where for convected inputs (vorticity and entropy), ¢y, 1is given by

)

and for pressure input, ‘yc; and ¢, are the two roots of

(3. 35)
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T B
9.°= @ (3.36)

" These critical angles are presented in (Figs. 8 and 9).
The abéve integrals have been evaluated analytically for the
cases of convected inputs. The details of this calculation are given
in Appendix B. The greater complexity of the transfer functions for
pressure input made analytical evaluation of these integrals impractical;
however, they were evaluated numerically.
For convenience, define average values of the transfer functions
by:
v — (Im \* ‘-;{ s\ —‘177,' 7\
(P')som =5y _Tﬁ) t Sy (CP b Sy (P)
U\ — T TTa/ewt —— N
(&) - 5205 - @ STE

D

[V T ey, TV, on/T)
(Z) = s (4] + STEY + sv(P)

(3.37)

These average values of the transfer functions are given in (Figs. 10
through 13).

(Figure 10) shows the 3; , that is, the root-mean-square,
downstream, dimensionless pressure fluctuation divided by the
appropriate root-mean-square input. S:{ and SE exhibit
rather pecuiia’r behavior near M =1, with an extremely rapid decrease

———

to zero at M = 1. The limiting behavior of S.;: for W approaching 1
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is given by

PR
511: = (38;)*;5 (%’)*(m-:)é + @ (m-n% (3. 38)

which is in agreement with Ref. (4). The derivation of this expression
is given in Appendix B.

Equation (3. 38) represents the limiting behavior of the derived
formula for ‘g—f‘ as m approaches 1; however, two of the assumptions
which were made in the linearization of the problem are violated as m
approaches 1, so it does not necessarily represent the actual behavior
of the sound intensity.

First, the assumption that all perturbation quantities and their
gradients must be small is violated. For M near 1, all of the con-
tribution to the sound intensity is from the sound waves which result

from shear waves having y very near Yc: . This may be seen

from the limiting form of S%" . From Eq. (48), Appendix B,

!

==z ! 2 x(~x)dx
Sy =the V4, | (3.39)

! (X'H)% V /—-xll
0

where

-
x =1~ YH (1) Xarc> o

The contribution to the integral is distributed over the range
0 £ X £ 1, with the integrand zero at 0 and 1. However, for m
 approaching 1, X is very nearly 1l except for Zaw?¥ very large, so

that all the contribution to the integral comes from a small range of

- ] |
Y near Y = Zag.™! 7;%7 (—"»,,ﬂj . The quantity %7— —l-;-f may be taken
9.



-57-~

as a measure of the change in the pressure gradient in the downstream
sound wave as ¢ varies. For ¢ equalto ¢, , and m approach-

‘ing 1, this quantity is
+ b (P 7vm T
B _‘E‘% = ..417 Y vu 4 m- (3.40)

so that the gradients become very large as ™M approaches 1.

Secondly, the assumption that boundary conditions may be applied
at the unperturbed position of the shock is violated. As m approaches 1,
the angle '-f:.' which corresponds to Y. approaches 1)?:— , 8o that the
principal contribution to the sound is from waves whose fronts are

nearly parallel to the unperturbed shock. The limiting relation for 9

is

g = "= Y (m-1)’ (3.41)

Thus, for M = 1,01, ‘}’c,| = 173.7°, and the wave fronts are just 6. 3°
from parallel to the unperturbed shock. Now since the shock is
actually wavy, if T~ P! becomes too small, the sound waves may
actually intersect the shock at a point removed from their origin and be
absorbed.

_—

Because of these difficulties, the behavior of 5-;: cannot be
definitely determined from the present analysis for M very close to 1,
that is, for very weak shocks. However, for M greater than about
1. 01, the assumptions are valid, and for M =1, the sound level is zero,
since then the shock is a Mach wave and has no first order interaction

with the turbulence. Therefore, it can be said that the sound generated

by interaction of turbulence with a shock should increase initially very
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rapidly as the normal Mach number of the shock is increased from 1.
— —_—
The behavior of S; is quite similar to that of 5;," , the

limiting expression for M approaching 1 being

— L I L
5: = (£ E(F)F (m-)F + O m-)* (3. 42)

—

The fact that 5.: is of magnitude comparable to that of ST%,
indicates that temperature spottiness in the upstream flow is as important
as the turbulence level in determining the noise production by shocks. In
fact, in the exhaust of an afterl;urning turbojet, for example, it is not
unlikely that the temperature spottiness would be more important than
the turbulence.

(Figure 11) gives the averages of the transfer functions for the
component normal to the shock of the velocity associated with the
vorticity mode, and (Fig. 12) gives the component parallel to the shock.
Comparison of (Figs. 11 and 12) shows that these two components are
of the same order of magnitude for all three inputs, so that the down-
stream turbulence is essentially isentropic.

(Figure 13) indicates that a considerable amount of entropy
spottiness is generated by either sound or shear waves interacting with
the shock, although for weak shocks, the entropy generation by
vorticity goes to zero quite rapidly. This is consistent with the well-
known result that for weak shocks the entropy increase varies as

(Ma~1)° (13)

As an example of the usefulness of the average transfer functions
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of (Figs. 10 through 13), consider the following problem. A convergent
nozzle operating at a pressure ratio in excess of that required for
choking will develop a flow pattern with an alternating set of expansions

and re-compressions, the number depending on the pressure ratio.

Shocks

Aésume that just ahead of the shock, the root-mean-square fluctuations
of velocity are one percent of the free stream, and the entropy spottiness
is one percent. The latter might arise from combustion inhomogeneities,
especially if an afterbu;ner is mounted on the engine. From (Fig. 10},

the mean square downstream pressure fluctuation is given by

L — _—
(3 - (ST ) =
This pressure intensity corresponds to a noise level of 149 decibels
within the jet. If an appreciable fraction of this intensity is radiated out
of the jet by interaction with the boundaries, this will be an important
source of noise from choked nozzles.
2. Mean Square Pressure Fluctuation in Attenuated Waves Due to
Vorticity

Evall}ation of Eq. (2.26) is more difficult than that of Eq. (2.23)

because of the exponential and algebraic factors, each of which involve

both variables of integration. In the range of attenuated waves, 3:;:
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is complex, which means that the downstream Pressure waves are

shifted in phase relative to the shear wave input. After forming the

complex conjugate, multiplying and simplifying,

2 ( +___l_. ® [ + M
bre (Lan?g-m)| a) T (aom M - ML*

SN

d.m Mk,

2 e
[mm- A+ -;,,'—al)ﬂwt.,] s (a ﬁuz‘r_,)[_mf_i_m_ij

From Eq. (1. 36),

Ya >

e= mar Mh’

and

9(¢) =zk,g‘[ﬁm—-"; PR ]

Egquation (2. 26) becomes
r
(Y2 2 T 1"* .
3]

where

«tdw.z’fol =E"‘

T () is obtained from (Fig. 5) and Eq. (3. 44) as a function of ¢

(3. 43)

(3. 44)

(3. 45)

H

and Eq. (3.45) may then be integrated numerically using Eq. (3. 43).

The result is shown in (Fig. 14), for m = 2. The intensity of pressure

fluctuations in the sound waves has been added for comparison.

At the
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shock, the intensity in the attenuated waves is about 7.5 times as high
as that in the sound waves; howe.ver, at a distance 34 =.139 A, , where
| Ao is 1.55 times the wave length associated with the peak of £ (5)

Eq. (2.24), it has decayed to the same magnitude as the sound waves.
‘If, for example, the peak energy were at a wave length of one inch, then
the distance at which the intensities are equal would be . 21 inches, and
at a distance of one inch the attenuated waves would be comparatively
weak. These trends would not be significantly different for other Mach
numbers. The expression for S‘:"“ , the transfer function for the
amplitude of the attenuated waves at the discontinuity, for m approach-
ing 1, is

—

L A
Sy = T R} F)Tm-0F 5 0C(m-0™ (3. 46)

which is V?(T = 5.5 times that of the sound waves, as given by
Eq. (3. 38).

3. Spectral Function for Downstream Sound Waves

Equation (2. 30) has been evaluated for a single stream Mach

number (M = 2, Mn = 1. 58) to show the distribution of energy over the
wave number k;o and angle L}" of the sound waves. The results are
shown in (Figs. 15 and 16). (Figure 15) gives the variation with wave
number for ¢ = 1200, and (Fig. 16), the variation with ¢' for

% = 1.6. The variations with wave number for other angles are very
nearly the same as in (Fig. 15), only the amplitude varying as in (Fig.

16). The variations with wave number for angles other than 120° are
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very nearly as in (Fig. 16), with the ampiitude varying as in (Fig. 15).
The variation with E%_ is, of course, a direct result of the
assumed energy distribution , Eq. (2. 24) ; however, the distribution
over q)' is characteristic of the interaction process. The distribution
‘of energy over ( varies as 2’y [Eq. (2. 20)]. The distribution
over ‘f’ is roughly as shown in (Fig. 16) for all Mach numbers, except
that as M approaches 1, the entire contribution comes from the peak
near qc' , which is 132. 4° in (Fig. 16). For proof of this, see Eq. (3. 39).
This means that for m approaching 1, all the sound is concentrated in
waves propagating upstream and nearly parallel to the shock.
4. One-Dimensional Frequency Spectrum of Downstream Sound Waves
Equation (2. 34) will first be evaluated for a range of M for
normal shocks. Then, since the downstream sound spectrum depends
on the obliqueness of the shock [¢9 in (Fig. 2‘)] as well as its strength,
the behavior with & will be found for weak oblique shocks. For normal

shocks, Eq. (2.34) becomes

/3
. v\ ST o ey
@,(9)=.725(Uk) (i 32)'% 51, 7] dy (3. 47)
[}
where !
5= Zeay

and Eqs. (2. 3%) and (2. 36) become, for 5 small,
Y

\ Un-\2 4 '
P, (») = 0853 -ﬁ) M ;;;‘P dy (3. 48)

(/]
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for § large,
_ o
B,09 =23 4) ’“ij Sy cnPpainig dy (3. 49)
(e}

For P small, ¢» varies as Y% , as shown by Eq. (3.48), and
for large, it varies as Y F , as shown by Eq. (3.49). These
limiting behaviors are, of course, characteristic of the assumed form
of E($) }-_Eq. (2. 24)_]. The computed curves of (Fig. 17) show that for
intermediate » the behavior is still roughly that of £($), with the
exception that as M decreases, the peak shifts toward zero. If the
peak of o _ occurs at » = 1.55, the distribution of energy
over frequenc’:’;: is ‘about the same as for the upstream flow, where by
frequency in the upstream flow is meant the apparent frequency of a
velocity profile as it is convected past a stationary observer. If the
peak is to the left of 1.55, the distribution of energy has shifted to
lower frequencies, and if it is to the right, the distribution of énergy
has shifted to higher frequencies. (Figure 18) shows that for m above
2, the shift is to slightly higher frequency, but for w near 1, the
effective down-stream frequency becomes comparatively small. The
fact that, for M approaching 1, all the contribution to the sound

intensity comes from a small range of angles near (. permits an

approximate analytical evaluation of @,; for this case.

@U (\) ‘) - 1482 344

R gt

N e (1+ 5.) %
5 |
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where | 9!
Se = 3 Cr Y.
" The peak of this distribution is at Se

i

1.55, hence at

Q:ma.x. = 3,10 Cs2¢c , so that as m approaches 1 and Y. approaches
% [(Fig. Sg, the peak of the distribution of energy over frequency
approaches zero frequency.

The characfer of the downstream sound field resulting from
convection of either turbulence or entropy spottiness through a normal
shoc.k may now be described roughly as follows. For vanishingly weak
shocks, there will be no sound. As the strength of the shock is
increased slightly, the sound intensity will increase very rapidly, and
the frequency will increase very rapidly also, until a value of M =1.1
{ Mn =1.06)is reached. The intensity then will behave as in (Fig. 10)
and the frequency will continue to increase gradually as shown in (Fig. 18).

For oblique shocks, Eq. (2. 38) may be evaluated for Wi near 1,

since the major contribution to the integral still comes from ¢ near

Yc . Thus,
$,0) 83 [
1’}5})‘ G (6-F+9) (1+ 52)7%
where _ Ny
3e 2cn (6-2 +4.)
and

P = 3_‘7)-‘ —V {lﬂ(m")

will be at ¥ = 1.55, as before, so

o)
¢

The maximum of

that
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. . l -
))‘mdx :3,'0[&0—9 CJQ( %*‘Pc) + At BM( 2 LPL)]
Therefore, for a given M near 1, since —:lltu}c is small, ))lnmx.
increases as € decreases from , and in fact for @ appreciably

2

less than 171 this is the dominating effect, so that for € small, as
it would be for weak shocks at high stream Mach numbers, much
higher frequency sound would be expected than from a normal shock

of the same strength. The above formulas should be reasonably

accurate for m upto 1.5, or Mwu upto 1.3,

C. Summary of Results for Shock Wave

A small disturbance field of vorticity, entropy or pressure is in
general amplified in passing through a shock wave. Furthermore a
given type of disturbance will produce disturbances of all three kinds, of
comparable magnitudes, in the downstream flow. Both the amplification
of the original disturbance and the production of the other types in
general increase continuously as the shock strength increases. The
intensity of sound generated by vorticity and entropy disturbances is an
exception. In this case the intensity increases very rapidly as the
strength of the shock is increased to a velocity ratio of about 1. 1. It
then decreases somewhat and finally increases continuously. The
frequency of the sound generated by vorticity or entropy fluctuations
depends on the strength of the shock, not just on its propagation velocity

and the scale of the fluctuation. If the shock is normal, as its strength
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(velocity ratio) is increased for given disturbance wave length and
velocity of propagation, the frequency increases from 0 for a velocity
ratio of 1 to a value equal to that of the convected upstream disturbance
for a velocity ratioc of 1.75 (Mach number of 1.43). Beyond this point
it remains nearly constant. If the shock is oblique and not very strong,
the frequency of the sound varies as the cosine of the angle between the
shock and the flow direction.

In addition to the statistical results for random disturbance fields,
which have been summarized above, the analysis also provides a com-
plete set of transfer functions for the interaction of shock waves with
sound waves and stationary small amplitude velocity and temperature

profiles in the upstream flow.



PART IV

FLAME FRONTS
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If the flame front is considered as a very thin region through
which the flow is altered by heat addition, it represents a discontinuity
across which the normal velocity, the pressure and the entropy may
change, as for the shock wave. The principal differences are two: first,
" the flame front propagates at a much lower velocity than the shock, and
second, because of this, pressure disturbances arising at the flame may

propagate upstream.

A. Completion of Analysis of Interaction of the Flame with the

Elementary Disturbances

1. Characteristics of the Flame Front

A flame front, considered as a discontinuity, may be character-
ized by two quantities: the heat release @ , and the normal burning
velocity Un . i?:oth of these quantities are dependent on the reaction
taking place at the flame front. In the present analysis, (Q will be
considered dependent only on the composition of the combustible mixture.

Un  will be considered a function of the temperature and pressure, the

exact functional form to be determined empirically.

From the usual conservation relations, the velocity ratio across

the flame front may be written,

]

| +¥M + 1/(I+¥Mk)z.z(y+y)/\7""[,+z-+ ’—;_1'1‘7,:)

m = Un
U 201+ + X i)

(4. 1)
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where

Now, since My is small for ordinary flame fronts {(of the order of
10—3), it is appropriate to expand Eq. (4.1)in M« . The result is
i 2
m = ,ﬁ-[HF(Z’)Mn + - ]

where

frry= v -2 (1) - 3(;-‘)(1#)

‘F[t') is shown in (Fig. 19). Since {(Z) is not large, the above relation
may be approximated by

-
m= o (4.2)

For small perturbations of velocity, pressure and entropy upstream,

this may be written, using Eq. (3.2), as

u -
TRR I CRR D ey

From Egs. (3. 4) and (3.5), using the fact that if Awu is small, M.

is also small,

1

2;.—= % (4. 4)

f (o
- - T+ (4.5)

The constants of Eqgs. (1.53) through (1.55) are then as follows for

the flame front:
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b,{ =

bzf-z - 7‘%—“\'

byf = - Zi(__?:_)

3 Y\

bif =0 (4.6)
bsf =

baf =1

bzf=0

bss = 1+

bq-f- = ba-F

2. Calculation of the Transfer Functions

Equations (1.56) through (1.59) represent four equations for the
'
. ‘e dZ ' )
five quantities ﬂoTy‘e' , JZS . C'Z? s CJZ'PK and AZ,— . In the case
of the flame, the functional dependence of the normal burning velocity
on the temperature and pressure, that is, on the reaction kinetics, is
sufficient to make the system determinate. This relation will be

indicated by:

< fsn &+ LGn g

i % (4.7)
Using Eq. (1.50), this becomes
f-ok <fmErfng (4.8)

Equation (4. 8) together with Eqs. (1.56) through (1.59), represent a
complete set of equations for the parameters of the downstream

perturbation field, and the upstream reflected pressure field. Using
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Eqs. (1.60) and (1. 61), and eliminating dZe¢ by Eq. (1.57),
(-8, %)32s (ka4 )dz; [ G (B o 42, =

ST A P

24P

(o )82 )i [ 2 )] 42,

n

(/+l..(\fkk,;f d2v £ dz,-[t, +C.I(k””—,—2“—. “)]A (4.10)
dz}, -dz,, = dZ4; (4.11)
42 S - 2EDIZ,, + e dz, 12

As for the shock wave, the transfer functions are most simply
expressed in polar coordinates. In addition to Eqs.(3.12) and (3. 13),

the following are needed, for convected inputs,

N IR
as Jtew o | (4.13)

for pressure input,

}Zurz__ / w .
T mas (1+ ) “’*W
4,14
Cpo = -2 —&F @1
IR ¥ Mk wr
and : .
-M
ag = / -

M
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With this notation, for convected inputs take

Avo*s = ﬁ_(l—m) -I(/ff),&*;;—? - —aﬁ[t--‘%"(t+fum?‘;xl+%;)}

vy vy (4. 15)

and for pressure input,

L m
Ay =5 ) ) - [ I

[+ My

3 =Mz ] (4. 16)

The denominators of the transfer functions are somewhat more com-
plicated than the analogous relations for the shock wave [Eqs., (3.15)
and (3. 16)] because of the extra term which results from the influence
of the pressure wave which propagates upstream. However, they can
be simplified in specific cases by making use of the fact that Me g
very small. It is convenient to consider the convected and pressure
inputs separately.

For convected inputs, since 4, and d4¢ become large for A/

small, it is evident from Eqgs. (3. 12) and (4. 13) that -i}i and
—k%f- are complex for practically the entire range of ¢ , which

means, of course, that the upstream and downstream pressure waves
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are attenuated for practically all ¥ . It is therefore a good approxi-
mation to neglect the range of ¢ vyielding sound waves, in the evaluation
of the downstream vorticity anél entropy fields, so that the transfer
functions for the entropy and vorticity will be given in the simplified
form which is obtained in the limit of Mn approaching zero. A similar
argument applies to the transfer functions for the attenuated pressure
field,. so that they too will be given only in the limiting form for Mx
approaching zero. However, the range of Y in which sound waves are
generated is appreciable though small. Therefore, transfer functions
which are valid in this small range of 4 will be given for the sound
fields resulting from convected inputs.

For pressure inputs, the transfer functions may be simplified by
straightforward expansion in terms of M». The range of ¢y yielding
sound waves downstream is not small in this case because the propa-
gation velocity of the incident sound effectively increases the velocity
of propagation along the flame, V

The simplified results which are applicable for M» approaching
zero, excluding the sound generated by convected inputs, are then as
follows:

for convected inputs,
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ki

C - | /ia/wsp
2 ¥YME | - tany
'tr-—}y,—u—M¢

and for pressure input,

#: M,,,_M'f

Z= }/r— ISYPRY N
w= Cozy

Eijiz_./‘_nz_‘s o +Mu(2-—f-'o’-!-“f)]

k.
zew o
CI’. —CII = ¥ M
|
dl- W”Mh’,"
Ag = ‘,_

(4.17)

(4. 18)



~-T4-

With these simplifications,

(1 28y i (e ) beny 22 ]

Avars = Mﬁ[(|+ "b"——ij—i) -z (Z"«t@u tf)j
Ay = g7 {m‘f;l':?z } A

Equation (4. 20) is relevant only for P< l;t

, since for

(4. 19)

(4. 20)

the upstream sound waves would not interact with the discontinuity, but

would propagate upstream from it.

The transfer functions are:

A FS = -1, *‘”'(fr')jta—:;?

. am coryp
AbY = vmie oy

-2 H_
m,auw-i[?‘f‘“" i ‘%’%]

v _ !
Af = v [+ 1] ] 2]

) [?I(I'Z:‘)f- f4). 2 ‘f]ﬂ.[(q'ﬁ -2 - r)/a‘"f]
AS % :Wf

[/+ /t‘—yg—‘i] -z'[?g,taw}

(4.21)

(4.22)

(4.23)

(4. 24)

(4. 25)
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ALFE < .z(n;;ittf (4. 26)
A Fs ~-F5 AR (4.27)
AFre == A Ao (4. 28)
AT = "WTJEA*H‘? (4. 29)
AY = A (4. 30)
A = £ (4.31)
Fol = Fr-1 (4.32)
Fs=-BGE)FY (4.33)
5 < m (4. 34)
Fo=-1205) | (4.35)

In all the above simplified transfer functions, /™, occurs only
as a multiplicative factor, if at all, so that the influence of burning

velocity may be seen quite easily. The orders of magnitude of the
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various transfer functions are shown in (Fig. 20) as powers of Mk
The transfer function for lateral vorticity from a pressure input is

!

worthy of npte, since it varies .a.s A This is a result of the fact
that the Mach number of propagation of the sound wave along the flame
front is of the order of one, rather than of the order of Muw , as for
convected inputs. Thus, the lines of constant phase of the downstream
velocity profile lie almost parallel to the flame, and the velocity in the
shear flow is nearly parallel to the flame. Since the normal component
of this velocity is of the same order as the input, the tangential com-
ponent becomes large.

3. Transfer Functions for Sound Generated by Convected Inputs

The range of ¢ for which sound waves arise is
0 < 2g < I o :
Harn 9 7, 7y M,
Using the fact that _faw. ¢ is small then, the following approximate

form mavy be obtained for Avo,.s , from Eq. {4.15)

| mv+Vnd X
Ayors = r&Mu

Ao 2 Y
whence
{
Fo = =YmbMet — ey (4. 36)
and
s 1 =/
Frz XMMMZ' m‘lf"f'mx (4'37)

It is evident that these transfer functions are not particularly small¥%, so

* The transfer function for the attenuated waves is of order /YI¢
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that even though the range of Y giving sound is small, the sound

intensity may be appreciable.

B. Statistical Properties of the Resultant Homogeneous Disturbance

Fields

As for the shock wave, the quantities to be determined are the
mean squares of the pressure, entropy and velocity fluctuations, in terms
of the corresponding input quantities. Because the flame propagates sub-
sonically, pr;essure fields result both upstream and downstream. The
downstream sound intensity will be denoted by (@1 . To distinguish
the incident upstream sound intensity, which is the preséure input, from
the upstream sound intensity resulting from the interaction, they will be
denoted by (——g)} and (?)‘: , respectively. The actual upstream
sound intensity is, of course, the sum of these,.

The downstream vorticity and entropy intensities are readily
obtained from Eqgs. (2. 41) and the appropriate transfer functions. of
Eqgs. (4.21) to (4.35). Since the transfer functions were derived for
the limiting case of Mn approaching zero, the range of integration may
be extended from O to M2 .,

Upstream and downstream sound waves arise only from the sound
wave input for the case of Mu approaching zero. This sound intensity
is obtained from Eqgs. (2.23) and (2. 43). Only the homogeneous part of
the reflected sound intensity will be included here. The inhomogeneous

term will be considered separately later.

There is also a small amount of sound produced by convected



inputs, since Mu  is actually not zero, though it is small,
sound intensity is obtained by integration of Eqgs.

the appropriate small ranges of ¢
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and velocity are then given by

e

G;,T)‘z 3 igr)* f5 2aci3pdy

+((b)f * s dg +1Ff E;'z/za;fa/(,

@) = 2 (L

Ure
U

(]

— 9
+(*‘;)”[ Fon' Fop iy dg +4 (5) fﬁp%ﬁm?"‘f

(723

/3

+ (%y/ﬁik r
(-]

)=g. %_)f o

P
Foo Fw ai2gdy

(7714:)[ o fry ity dy

w72
'f‘(c?p) /L; Frvd’“"?(/y 'f'){_()p)/’:fv Mﬁp‘l‘f

¥

2ew Iy Jy

This

(4. 36) and (4. 37) over

The mean square sound, entropy

(4. 38)

(4. 39)

(4. 40)

(4. 41)
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- (b)ff“‘sww ey fm-—wwuf 4. 42

As before, let
F - m ) FGE
* F—_‘;L(;S‘;a—)z *-F‘P/z [—)—I

For the computation of the values of /C;sz and ﬁ;t, it was

necessary to estimate the value of f, . From Ref. (12), the value of f,

is as follows:

for Iso-Octane and air, 1.40
for Propane and air, 1.16
for Ethylene and air, 1.18

A representative value of 5/4 was chosen therefore for the calculations.
(Figures 21 and 22) show the transfer functions for the down-
stream vorticity field. They indicate that the turbulent intensity,

measured as a fraction of the stream velocity, is strongly reduced by
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the flame. The actual magnitudes of the fnean square velocities are
almost unchanged as shown in (Fig. 23). The latter figure is in agree-
" ment with the :‘cesuus' of Ref. (10). |

Thé turbulence generated by upstream entropy fluctuations is
strongly anisotropic, the normal component of velocity being almost 20
times the 1at¢ral component. These transfer functions are of such a
size that the downstream turbulence is of about the same fractional
intensity as the entropy fluctuation which induces it. The dimensionless
entropy fluctuation used here is, in the absence of sound, equal to the
temperature fluctuation divided by the absolute temperature [Eq. (3. 2)], 80
a variation of one percent in the upstream temperature would produce a
turbulence level of one percent downstream.

(Figure 22) shows that the generation of turbulence by the inter-

action of sound waves with a flame may also be quite important, since fa

is proportional to #‘ . Thus, for Z =6, U = 100 cm/sec =
3.3 ft/sec, a = 1120 ft/sec, and atmospheric upstream pressure, if

the upstream sound level is 100 decibels, the downstream root-mean-
square lateral velocity fluctuation is .23 percent of the downstream
normal ve'locity. If the sound level is 120 decibels, it is 2.3 percent,
and if the sound level is 140 decibels, the turbulence level is 23 percent.
Such sound intensities may be expected in the combustion chamber
or afterburner of a turbojet, for example.

Sound waves impinging on a flame are largely reflected as shown
by (Figs. 25 and 26). This has, of course, been known for some time

" Ref. (14) , although in previous analyses, the flame has been considered
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a température discontinuity, without through flow.
(Figures 27 and 28) show that there is some sound generated by
convected disturbancés pas_sing‘ through a flame. It is of low intensity
for small Mx , being proportional to Mi  for vorticity input and
Mu  for entropy input. However, since sound is observable at
extremely low intensities, it is not negligible. For example, if
U« =3.3 ft/sec (100 cm/sec), A& = 1120 ft/sec, and atmospheric
pressure, a turbulence level of ten percent would yield sound intensities
of 16.4 and 21.2 decibels downstream and upstream, respectively, for
T =6.

An entropy fluctuation of one percent would, for the same case,
give 40 decibels downstream and 46.5 decibels upstream. These are
not high noise levels, but they are definitely in the audible range.

The frequency of the noise would be equal to that of the input
disturbance as it is convected by a stationary observer. Thus, for the
above example, if the wave length of the input disturbance were one inch,
the frequency would be 40 cycles per second for a normal flame.
Because the sound comes from input waves having 4 very near zero,
this frequency is characteristic of the normal burning velocity, not of
the flow velocity, so that an oblique flame would give sound of the
same frequency as that from a normal flame.

1. Mean Square Pressure Fluctuation in Attenuated Waves Due to
Vorticity
The evaluation of Eq. (2.26) may be carried out as it was for the

shock wave. Thus
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{,_%{.)" ((H i""f")z + Z”M“f]

ﬂ’ﬂﬁvz vt [I y Aot i[(-z— + ) Jam tt_L_1* .
o j 7T gt ?m]
From Eq. (1. 36)
F=Aw9 ana  g(9)= aks§ 2eny
- T

where Lcy) is again given by (Fig. 5). This equation has been
evaluated numerically for a typical case of £ =6. The result is shown
in (Fig. 29). This result is not very sensitiveto C , for ¢ in the
range 5 <" < 10. The principal dependence is on M« , as indicated
in (Fig. 27). For the case mentioned above, with Uk = 3.3 ft/sec,

a = 1120 ft/sec, one percent initial turbulence would yield a noise level
of 50 decibels directly behind the flame. At a distance of about half the
wave length corresponding to the peak of E(f), the sound would be 20
decibels weaker, and it would continue to attenuate approximately in this
manner. Increasing the turbulence level to 10 percent would raise the
noise level 20 decibels at each point.

The contribution to the integral of Eq. (4. 44) is fairly evenly
distributed over the entire range of ¢ , so that the distribution of
energy over frequency for this sound should be approximately the same

'~ as the distribution of energy over frequency for the upstream shear waves.
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Thus, the peak intensity would occur at the frequency corresponding to
the peak of £(¢), which is, for a normal flame, [Eq. (2. 32)],

) = Uk
= Der ;

for Un =3.3 ft/sec, if lkll' = one inch,
) = 20 cycles/sec.

The shorter wave length eddies would, however, produce higher
frequencies. Furthermore, since the contribution to Eq. (4. 44) is
uniformly distributed over ¢ , the frequency of the sound produced is
determined by the flow velocity, not the velocity normal to the flame,

so that the frequency would be higher for oblique flames than for normal

flames, if the normal burning velocity were the same in both cases.

C. Inhomogeneous Reflected Upstream Sound

The inhomogeneous contribution to the reflected sound intensity

is given by Eq. (2.44). In the present case of i approaching zero,

e - - (102 )

and to first order, the inhomogeneous factor becomes

Coa (2 g1 5 cong)

so0 that

—

(B, - +r[RUFR)G (k) by Cr(2bpricng ) aigdlpdy (4 45)

where
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Coep ~ WV/~[/+?)M3;
Cezy 4 m\ﬁ—'(u—z\)mze’ '

P =
Fre

Assume that GP (L'f]:) is a delta function at ko , then
/2

(_‘H; « [g)—;fﬂa(@z) ca (2keos Crop) 2ew. ¢ dp (4. 46)

Now let Coey =x | then
£ o x=Yx2-(Im)
S e G

[
m = I is about 0.1, and X varies from 1 to 0, so that F‘}vz is

(4. 47)

complex over most of the range of ¢ (roughly from 17° to 900). In

this range,

RL (Fol ) = P x*
___ —_ Y1-m
B = @ [(argonands 5 aabs
R
o

and

B): - L &1 a4 (6 2)] oy

For A approaching zero, this becomes

- -+1e= B

and for A very large, it approaches zero, with oscillations in between.

. For a given ks , then, a fluctuation in the sound intensity should be
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noted as the observer moves upstream from the flame. This is shown
in (Fig. 30), for M = 0. For any real distribution of intensity of the
incident waves over wave number, this pattern would be smeared out,

but there might still be a noticeable periodicity.

D. Reflection and Re-impingement of Sound Waves on the Upstream

Face of the Flame

Since the sound intensity reflected back upstream is a large
fraction of the incident sound intensity when sound waves impinge on a
flame front {see (Fig. 26)1, the question arises as to the possibility of
a resonant condition occurring, with a large increase in pressure
intensity, if there is a reflecting surface upstream of the flame.

A simple model which contains the essential features of the

problem is shown below.

| -

| reflecting
| Surface

e
|

flame

The reflecting surface will be assumed to reflect the wave like
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a solid. wall, except that the amplitude of the reflected wave is a fraction

of the amplitude which would result from reflection by a solid wall.
Aséum‘e, now, that a soﬁnd wave is generated at the flame by

its interaction with sound, vorticity or entropy waves. This wave is

described by:

oo [ U ke r -2 ]
(F) = e o dzy

(4.50)
The notation is a little different from that used previously. The super-
script indicates the order of the wave. Thus 1 denotes the original
sound wave, 2 the sound wave reflected from the upstream surface,

and so on. This reflected wave is given by

T1L® —a /&
(%)Qze‘[k'(f'“‘”*k“" ““”L@]olzf (4.51)

where, by matching the time dependence and the € dependence at

§=-4,

®
—k%z-(/ #;ZMkﬂ?—cﬁ

and :
YO K01+ Miurte P
If the upstream surface reflects like a solid wall, the amplitude of the

reflected wave is given by:

428 < «dzf

where & will be taken less than one. The wave reflected off the up-

stream surface now interacts with the flame, which gives off an up-
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stream sound wave,

2 k(—,, )+IC4- ﬂlz®t +¢O
(;ﬂ)@ [ e (5-Uat r- ]J

21, (4.52)
where
k®
ol = (1+ 2 My te )
@, 4@
and P ¥
dZ® a,,zg»O F]/l (H'Z*}Amh? Jz®
crg®@+ (Wl Y1~ C14r) ave 2 y@ : (4.53)

The process of reflection continues, the pressure in the region finally

being given by:

] O 0 _ (l)
v s [RO(5-Tht) +hear ~aklt | A { z[(lé)-k?’)(s‘-mt)-a(!?’-k% 20000111 aec)]
p=¢C Z‘k | +a &

©0

il O (1 M aeeg®)] Y 1

h=a
The series is readily summed, so that
e 6
RO RO 3 Tt) -2 (- KOO ~2-L k(1 #1 T 2te )]

i: [+A €
P e

(L2 LEP( 1+ M zee 9O) |

i [KO(s-t3t) +hgr ~a k%]
xe o0

(4.54)
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Define a new transfer function by:

T4t thgr -a kO
2. F o LH IO ]4275" (4.55)

The pressure intensity in the region between the flame and the reflecting

surface is given by:
(Pi)z = JﬁfFi*F,éf* (k@)k‘? A—Wg’@a/é@ (/sp@

For the sake of simplicity, assume that <P, ([ k%) is a delta function
Y e

in kg? , at Iz(, , and uniform in q>® for £« g>®<7r , then

B-@ [ e

43
where 7 denotes the pressure intensity generated by the original
disturbance interacting with the flame. If there is to be a large ampli-
fication of the pressure, most of the contribution to the integral of Eq.

x [4
(4.56) will come from a value of rfD where the denominator of £’ r

1
is small. To zero order in /M« , F/F is
—__.._-—— cod 2‘0(-1*;) mlf@]
s it
= —-——-—————[lu(r” £ (2.8k €90 + (5 Y (ko004 |
H"’(ZF‘ﬁ:Ffz : ‘1’/2)

F—f: may be real or complex. In the range of where it is real, Fﬂf
has a maximum of 1 at Zew” 'f@:m . In the range of 4@ where it is
- complex /‘;,Z'Ff‘; = 1, and the real part of /L:p}’: has a maximum of

1 at AcuwtY =, where the imaginary part of /:f’,t = 0. There-
L4 1 s
fore, £ F may be large at M"?@‘—‘- m if A ig near 1 and the

. R . . ’ G
cosine in the denominator is near 1 for zeu "TO near W . /pr‘z
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varies rather slowly with tf® near M‘y@ =it , so that near this

value of q’@ s
| 1 +8 con[2ke (Lrs) Vi=u’]

FE =
1~p o [2ko Lofi~nd ]
where
£= /’}'-21

1. . - nr
which will be large if k,.{ = m and @ approaches one. It thus
appears that if the reflecting upstream surface reflects the sound waves

without too much attenuation, and if the wave length of the sound is

2L Y1-wW
]

intensity developing. The actual magnitude of the pressure intensity

» # an integer, there is a possibility of a high pressure

depends strongly on how well the upstream surface reflects the sound

waves.

E. Summary of Results for Flames

A small disturbance field of pressure, vorticity or entropy
fluctuations will generate disturbance fields of all three types in inter-
acting with a flame front. The amplitudes of the generated disturbances
are of comparable magnitude to that of the original disturbance, and
depend only on the heat release of the flame, with the following
exceptions. Sound waves incident on the upstream face of the flame
g'enerate turbulence in the downstream flow. The amplitude of the
turbulent velocity parallel to the flame is proportional to the reciprocal
of thé propagatiqn Mach number of the flame. Turbulence (vorticity

mode) or temperature fluctuations (entropy mode) when convected thru
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a fla,mé, produce sound or noise, the root-mean square pressure
fluctuation of which is proportional to the propagation Mach number of
the flame cubed for vorticity iﬁput and squared for entropy input. Either
tjrpe of input, of reasonable amplitude, will produce audible, though not
particularly loud sound. The amplitudes of all disturbances resulting
from convection of entropy disturbances through the flame also depend

on the relation between the entropy of the fluid upstream of the flame and

its velocity of propagation.
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| Equation (2.24)

Equation (1.61)

Equation (2. 16)

Tré,nsfer functions for ﬂame[subscript indicates output, super-
script input, Eq. (1.64)] . See also equations following Eq. (4. 42)
Equation (2. 17)

Integral [ Eq. (2. 25)]

Jacobian

Mach number

Unperturbed or average pressure

Heat release

Gas constant or correlation tensor [ Eq. (2. 1)]

Transfer functions for shock [subscript indicates output, super-
script input, Eq. (1. 64)]. See also Eq. (3. 37)

Transfer function - general Eq. (l.64)

Unperturbed or average stream velocity

Velocity of propagation of disturbance along discontinuity (Fig. 4)
Fourier coefficient XEqgs. (1.9 - 1.11)

Speed of sound. Also functions of Mach number in transfer
functions

Coefficients in relations specifying nature of discontinuity

Eqgs. (1.53 - 1.55)

Coefficients specifying dependence of burning velocity of flame

on pressure and temperature Eq. (4.7)
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Function of ¢ [Eq. (2.25)]
Wave number referred to transformed axes [Eq. (1. 23)]
Velocity ratio.,
DiS‘fur'bance pressure
Any of the small disturbance quantities
- Coordinate parallel to discontinuity (Fig. 4)
Entropy fluctuation
Time |
Disturbance velocities
Special variable [Eq. (4. 13)]
Special variable | Eq. (4. 14)]
Coordinate or special variable [Eq. (3. 12)]

Special variable [Eq. (3. 13)]

NS x & § 8 @ 3™ 4 3 F =%

Special variable [ Eq. (3. 13)_)

Denominator of transfer function

Spectral tensor

o o b

Vorticity vector

A Equation preceding Eq. (4.52)
g Imaginary part of —kki’l Eq. (2.12)
Y Ratio of specific heats , “%/c .
& Separation vector [ Eq. (2. 1)]
ke
S Y [ Eqa. (2. 24)]
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7 Axis parallel to discontinuity

4 Angle between flow direction and discontinuity (Fig. 1)
K ‘Wave number referred fo origiﬁal axis

A Wave length

» Frequency KEq. (2.33)

H Coordinate in direction of normal velocity (Fig. 2)
e Density

a Perturbation ‘angle of discontinuity (Fig. 4)
- Dimensionless heat release Eq. (4.1)

Yy Angular coordinate Egq. (2.14)

w Circular frequency
Subscripts

z Incident

R Reflected

¢ Critical

n Normal to discontinuity

b Pressure

r In r direction

s Entropy

4 Tangential to discontinuity

u Velocity

v Velocity associated with vorticity

1,2,3 In Xy, Xz, X3, OF g, n x3directions

4 In r direction when used in k4
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SHOCK WAVE

» A. Mean Square Outputs for Convected Inputs

‘For evaluation, the integrals of Eqs. (3. 31) to (3. 34) may be
divided into two parts; first the range in which the transfer functions are
real, and second, the range in which they are complex. For the
conve_éted inputs, the transfer functions are real for

0<g<Yc, , and
complex for <4 <%z ,

1. Ewvaluation for o<9 < e,
Using the substitutions,
X = y’“a. .,td/u,?‘(f
Za,.? _ f~x?
‘f - Ay

vy = FEE

b= a, +1

_ ]' xdx
de= ﬁ?[(bl—xl);/fl}?] '

Eq. (3.15) may be written

) __ (erae)i-x*)

vars Xjf’a?x1+a;ox +Aany

and the transfer functions become

-

v X3+ X +a7 X +Ag N,
S, = bis = bye B 2
14 X34Aq X+ X + A4, s D.




where

Sl::: Aiz

SS =4

('S
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x3anx*+qi1eX +ais

X3+aqX*+dpx + Au

(1-x*Xx+ar;)

X34a X 4dpX + Au

Voo - -)/_4_'. v
SVU - m /-—)(1. T

s }/a: ! s
S|’U’=~ /"XL S]U

5

S? = bas

Sr= bn Sy

bgs

X34+ Q26X+ A2y X + B2z

X3+ﬂqx'-+— A X + Aun

=a/6 Ni(/-X’)

b,

B 6

B9
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= "
d7= mﬂ, - f
dy = 4447
' f
dg = — —
g = 2/ Mk 5

do=-[1+a, (2 m-as)]

d” = I-ﬂ;a;
My
B 10
ﬂ/z_z b/j ‘fﬂz(m")

- J | az~bis ‘
dls’ )2 Mh’_ ‘ka ﬂz_]

Asq = ﬂ’u [d, (As~crm) -d.(m~1) «10/5]

174

d,dz +ﬂzMul(M'/X/‘ﬂ/lﬂ}]

Dt = ~172§ ~ 2

Y+/
!
= Mo |_
O » wr v (1) + /[‘7‘72;”]
dza: M' md.a. _ !'
o bes M

A 15&5
dz’ b?s - / —HL) f-MM: -

]

-~ ! _ sz_s
Az, Mk, [! W—d,({ + Des - ’))]
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The parts of Eqs. {(3.31) to (3. 34) due to convected inputs, and in the

range O=<¢<¢., are then,

= 1~ ’M 2 x(1~xY
2 .. 3 . - -
S;r ) b” ﬁ'f(D: ( Z..X")z"/bz-x:’ dx 5 =i, n=2
0

{

st o L) s (j‘_{)z x J .m0, M=
R [ ==X T

—T ) 2 z

vi 32 zlr—r M\ x((—x*=) ' _
Py Zalz ﬂlf(“DT (bz_x_)z i dx ; m;l,l’l—~2
(-]

l

[
53 2 Ak ((~Xx%)
52 a a AZ X . _ _
S,U % | ,f D, (l;‘-xl)j/b"*-xb'Jx L=l n=
(7]

i

!
! z
ra 2 4 3/2 2 A/z_ X .
5 Tmta"q,, (—d < = dx Sm=o, N=2
ri V4 ! [ -D/ (bLX‘) Vbz-—x'— )

!

’
—_— 2
z 2 Nz .
Ss - miaf/ld,b[[“) X ) co, =
v AL e dx 5

4

S 2
7= () 5

. i
S:.-:Lz_ g {/V4-1 X . m:d,lfl:/
5 N 1[_{[ zﬁ (b*-x2)Y - x? dx

B

B

B

11

12

13

14

15

16

17
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The factor multiplying the radical in each of the integrands may be

written,
N x(/-x‘)”t ')'1 | '2' ' :
() Cee-p)T " [X-h T - n)"]

where m=o,!

as indicated in Eqs. (B 15) to (B 21)
n="4L2

and Yo,r, iy
re = b
"52"5

are the roots of X3 +dext +t duX +Qu =O

Each of the integrals may thus be decomposed into a set of integrals of
the forms,

L; :/_’__J_’S___ 147-(”['”‘”’1 sl
| G fpexe fz (- n)[ﬁm]

‘l.b‘l.

B 18
= ! o] by

b oo bli~r;)

- -/ .
Sl Pyl S
¢

=°’é‘ Vi;i “'] y rizhb>o
=7 -] ) riechee
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=--1 | S . -
32b 0+b)z b I; ) rz"b
The '/4,' and B: are computed as follows:
= [‘F(X) (X§r“)1]x=k

= [ footxer ) Wez . ishzz,gs
A= L] Foocxer:) Jeers {n;,ﬂ.%w
/4’;': [‘F[X)(X"Vz')]xzyi n=1l, a=4,5
B; = N ix(1—=x) M (x-r)*

: -

7T(x~r) Tf‘(x v )" B 20

JT ¢ x=V;

3 5~ = .-'-";zlg/f)f
A =B id— "~~ Z N PV R B 21
) HIN dx X £ (x~ry) (X-rjs V) =t =023
i'

J=4
J#i ev,
2 7.4
y A x(1-x+)" (x~r;) j Rsl, (=45
i =
THexen)* 11 (x-17) B 22
J=1 iz¢ xX=ry
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where N , n© and ™ are different for each integral, but the rv are

the same for all of them. The final results are then,

T Vﬁ[;(/r I, +8: 1 )]
= dhaia | Z(A,-I; ) + Z(BI_ )]
571?: 2 ai Y, [i (A:T; #B,'Iz-')]
S’ = aiyay [ Z(/I )+ g(B,-L.')]

o= 2wl LZ(A;I; +Bz-I;)]
S5 = weaal [ SOATD + 35.2.)]
Ty T

bes

—

SSSL = b yaT [Z:[A ‘L) + Z(Bz’l—;)]

2. Evaluation for 9c <9< ™2

In this range of ¢ , X is imaginary. Let

Z= al%t(f—-/
2,9 [FZ
Lol =
) [+ Z
M(f P

J.,o - 3Lﬁ7{([a’+z);/'zg_,? ]

B 23

B 24



Roots of
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X’ +a,x*+a,x+a,=0

o

LA
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and the transfer functions become

Svff v | * Z23+d2es 2 +24 Z A 2s- _ b 2 N
17 ¢5 = £s

——

¥ 234 R0 Z 4 A27 2 oy L.
‘5* s J_ L
¥ oy =3 5 *

e PN 2 23+ quZZf-ﬁJoZ“'aJ[ » M
Srv' 5”/ =4

= 4
* 234826 2%+ A2+2 Fdzg * Dy

(1+2)3(Z2+d3. )
Z3 pttog Z2H 0272 424

TS = = i frOr2)

¥ v mzat *
Se Sve = Tz S Siw

S¥ ~rs _ MY ost s
rvr Drv T [+2 i Sy

Sesr = () sty

bas

gs*Sg _ ngs z3+0c2 403 2 +H37 b N
S s 23442, 2 F A2y Z Hd2p D,

where

25

26

27

28

29

30

31

32
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13 =de 247

A2t = A7%~ 246 s
Ars= ds°

Az = A3° - 240
dz27 = d/ﬂz ~244 1747

B 33
A28 = Au"

A2q = A15* ~2ds
A2 = d!; -2413 L r5
Az = Qi

Asz = a7’

da3s = Gog -28a1

43&, ‘-’4242"14;5&21
Az7 = Az

The parts of Eqs. (128) to {131) due to convected inputs, and in the range

9o < ¢ < /2 are then,

B 34

| +Z L _
L”MJD (b+2’)°Vbl+Z dz o mston=®

n

=L .
Sp =% “FJD (blﬂ)]/b?#z /2 o oL = B3
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! /Vc /tZ
v _ 3 . - -
S, +ﬂ/zW Do e e dz S M=, 01 =2

‘*—'—‘” +2z 2.
hr :f’fol}_j/' ks U ) dz ')m=1,lfl=l

(17 +2) | hrtz’

o2
J
T watal [ Qe

Do (b2 72 dz 5 m=0, n=2

— .
T M&z % 1+Z
Sys-a, = zalG[M A j m=1(, =1

D, (b +Z)W;2—7

“ \.—-H
v (1775

———

Se ™

]

The factor multiplying the radical may be written,

_ N _rz)™m B
fe=p Bzt Z(z ) T @o*

m=o,1,2
‘/L: ()2.

a0
L2y [ M / o
a b?S “,[a Dz (bz?"zjybl-ff AZ © ) m—a, M !

B 36

B 37

B 38

B 39

B 40

B 41
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Yiy Vo y by are the roots of Z24 U2y Z2 4272 2§ =0

Each of the integrals may thus be decomposed into a set of integrals of

the_ form

JZ. . z
I. = = = ! b 2 D r. fé X . N
z. [;-n)iizv,_b j?r‘..{_bzi b“ W ) r. f".‘t >0

I

2.
Ty e ey rithieo

B 42
- 2 =
b j vis-b?
T d
Z
Ifi’—'-f - 2
(z+b) =+ T 32
The A’:‘ and B: are computed as follows
A= N (1#2)M (z~r;) r=l, 2=1,2,3,4
3
[ 17 ]G+ ez, =123 B
b= z=r;
B N (i+z)m
+= =2
(z-ry) B 45
9=/ Zc—bl

ks
- [ dN m \Z ] C o
APB‘F[ ax Tw=z ", 2~n'] L ) M2, =t g4
Z=-b"
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The final results aré then,

iﬂl = bes VZ’[Z;(A:'L') + 3+l;']

§T = bhiia| Z(A-I})]

_.—_If

T sarim | Z&LL) 5 1,]

ﬁ.l

Sot=Lai VZ.’[ Z,(A" 1})]

—— W

¢
re =7 wiaal [ 4:(’4 L:) +5¢1;'] | .

e

:u_z = %—L ﬂ/z/lﬂmz[ Z(A;I;)]

577’—/ I??;) 5.

bys

Ry [

55 snir[ S|

The total mean square value is, for example

P —— /

= S lu'L
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Roots of 2Z°+aq,z*+q,z +0a,=0

/
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. e { —
B. Limiting Form of 5‘1':' and 5'1': for I —>/

From Eq. (B 11)

!

55 = b Wf(/v. Calx)

) (b*~x)*Y pex=

where N _ X3MAex*+Ar X+ Ag

D' 7 X3 104X $hpX FA s

It is desired to expand the above expression in powers of (m-1)

The
coefficients in —gL may be expressed as follows: [see Eq. (B 10)] .
!

&6 :-[H-%*’(m-/)]
Az =-[ 1~ b}’({mﬂ)]
Ag= [~ 3%“'(14;-,)

dq = I~ Fcrrocm-0

Gig=-[ 1+20m-1) |
Ay = —[/+ ?—;ﬂ[m—/)]

also,
a4 = “"I".i(m-l)

b*= 1+ Xm0

NiY? ies i .
Therefore 'DT) may be expanded as a power series in (#~) , as
follows,

/v,) o /X1y

5/ = (%% + Fox) (m-r) +-
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so that the integral becomes

!
x~1\r x((=x*) dx ' *
f XH) (=) ~x* +Om-1) = = + OCm~1)
o

The coefficient of the integral becomes

so that

and

57 = () 5 (0 ot 4 GCw

—_
The limiting form of 5’; differs from that of 5;’

factor of ']/—é' , thus

e 4 1 ~
SE' = (£)* 35 () (w0

B 48

B 49

only in a

B 50
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FLAME FRONT

~A. Mean Square Outputs

The integrals of Egs. (4. 32) to (4. 36) may be divided into two
categories, those arising from convected inputs, and those from

pressure input,

1. Convected Inputs

let 2:%2«,6

then YR 9 = |/—(-+Z2__ B 51

d — CJZ
4= 2127 27

and the transfer functions may be written as follows:

2
v g mz[ 23+ AesZ? +-As562 fﬂf?] e Na

; =
v lr 23+ﬂ5-o Z%+ddsy Z + ds2 Ds B 52
s¥ s (2% Asa Z + As0) Z Noe
w Fip = Ass 23+ A5a 20+ A5 2+ A2 = dss D, © B 53

#  mr pu¥ v
FetF = = Fv Frf B 54

S 2 s ¥* s
I’I{*F)’v': g 7L~/lf' Frr B 55

I

S¥ s 2
Fs'Fs = B 56



-113-

where .
ﬂ_fa = At (?2 ‘H"‘t)z

A = mt +2 ()3 +m)

= [ g

Ass = [me(4+)]"

d - f‘f;*l "’W?’ *
54 Z(F+1) ]

Hop = ml(%%)l

The integrals to be evaluated are then

oo
=d=z
Vz:i 2 N’ . =1 =

Fry I Ds (1+2)*fir+2 y m=1, =2

fs}
. $ 2 _ﬁ_’j_‘p A//O Z . = { -
Fig © = ,zf D, (1t fi+z ) m=lH=d

6

Qo
2= 3 9 My dz . _
A A i I

oo
s . dssm*| Mo dz =0, =1
Ds ctrzfi+2’? ) ’

B 57

B 58

B 59

B 60

B 61
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. nh

Fi*= m*| amgdp = m> B 62

The factor multiplying the radical in each integral may be written:

#z) = g/(wz)“: Z(z ) (T%ZS‘

iz

where. m=0,|
n: ’]2-
F=hn,r, b are roots of Z3+2s0Z%+dssZ sz =0
Fe=-1

The integrals are then of the same form as for the shock;

+ YT
I = 147/ LIk R 2 N A B 63
= - <0 B 64
V'-('?T' Han! V- Cre+1) Y ol
=2 y hi=-t B 65
T_ 2
I, = § B 66
and the A; and B: are computed as follows:
Nz (z-r) pat, 121,234
B 67

Ai = 3 p
[Tr(z-rj)] (z+1) n=2, i=1,23
jai Z=v
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N
E(Z‘h‘) j

By

n==2 B68

=~1

| - |
/44254[’[\7‘“%1"2&1" ZGT)] h=2,7=9 B 69
J=t

z=-i

The final results are

= g D (ALL) v 24s + 3B, ]
— 3 .

i | S (AT rak]
Fre=dmt| 3 (AL) rads 26,

Fre Z’im[ g(ﬂiﬂ) " 244]

B 70

]

2. Pressure Input
Again two separate integrations are necessary, for the range
where the transfer functions are real and complex, that is o< ¢¥< 4

and ¢ < P< /2 respectively. Evaluation for 7<¢ < Pc

x= Y1~ (1t8) 22y’

iy = fm’ Ji=x= B 71
~xdx

dq:
Ti-x=" Yo




Roots of
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2% Q,7*+05 2 +0,=0

\
_rz
AN
. \\
_r3 §r\ ' ——— |
2 6 8 10



-117-

then from Eq. (4. 20),

Al = mE T x+ Jerxe
oYM

[~x*

and the transfer functions become:

F-p__'z kz\f—)(z

P xry X
F_,P_ 2(m-t) (/"/YZ)Z/Z\'FXZ

F¥ - api(me1) JI-x* ) otxr
v Y Mu X+ Yrrxr

- f
F}‘P:*%,—WZ' F:J

Y _ P
Fyo = F& =

The integrals to be evaluated are:

——————

f'{'k”' d

& ‘*’W/wm]

! ! : 2
2 _ 2 e xdx
For Zz _[d [ PP oy I ] ]

B 72

B 73

B 74

B 75

B 76

B 77

B 78
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}L"z ..zlm /) "1-x2)® ]/Z‘f-x‘-'
Fii f [“W? B 79

I3 Y am- /J (/~x‘)y“f«xl’

—— e |

L - r" 2
Fr= = (% me)” Fr* B 81

Upon evaluation,
—~—
P2 Y \'5 2 (\J’/
s B (-2 o (345 -2]

——e | A /
f;,l" = ,zz“[ [aﬁf/" 82L[Z‘H)z’/,’- PUPH) E 4 /Z;_z - %f —351]

B 82

Pe—
Flt= ;f;g (m~ JL{ 14 /[(Z“H)”z Z‘”’]fﬁ(/-r) (¥ *§)][(?+l)’7l-(‘57=]

T‘ﬂ!*2(/*(“)-2‘(%'3&2][((‘1-1)3/"—2'3/1 f%/ﬁ"/)'%' _;ZZ“‘F 2 (201) +1 (2-@)_ 2 }

’ T z_’ ‘;/z. -t
M L= 2ml=n-0 {.71 (c“+!)”2+(1§t—5--§7)(2‘+/)’7t+% ?7/2‘—(39,.7_
5

it
F2-2(1-2) -ir}
775 3

let z= (J+2)2en29 ~/

- %(‘) ?5'/,.

Evaluation for ¢, < 9 < ™2

,[‘Pf’ 1_ ﬁ:’ o’ Z

W B 83
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/E/-z'f— = (m;)zz._m/(zlf—zzwj]/}—? dz B 84
04 2! 20 (m-1)= ¢
Frv™ = YIMZE/(/)LZ)VZ*—Z dz B 85
h
[}

Jg
;
1]

N
L 2
(r) f /7= dz B 86
o

after evaluation,

7e
= e _ (0 miE] 2 L, 8,3 ‘

B 87

i

_—t
v 2m-1) w3l 3/.
ro vy [ re 1-7% r z]

{

il’nz (*’"mZ‘)" g

B. Approximate Evaluation of 7// and FT,;FI for Mu—o

The range of ¢ for which sound waves arise in the downstream

" flow is that for which
too 2 Y < 2 mrMu® = M

Now for Mk  small, A ors may be written approximately as

! [Vn v+1/ﬁ'x]
B 88

Avors = 7 A2ty
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where

v=Yi~astauzy’ ;5 4=

X=}ll'~4;%2‘-f’1 ) A= !
1. Downstream Sound Intensity

Since d¢=ma, , where m is about 1/5 to 1/10, it is reasonable

to take ¢t , so that for 0=<X= 1 for this case Au- becomes
A = Ym’ Yl +X
' rl-Mu ‘/tdou.z‘f
Then
Fv - BrZ‘Mu ./a/uz‘f ~-m
L4 Vm” | Y + x B 89

and from Eq. (2.23),

v of ! 2 d
/‘-1,1’ = érlm’?‘Nk/[ﬁ?—] x(1-xdx
(/]

After evaluation of the integral,

——

L{ k3 ~imn - ,{. 77 .
Fo = 2y 2V = [ #( MM’?“’TWC]M‘" B 90

2. Upstream Sound Intensity
The range of Y for which sound waves arise in the upstream
flow is that for which
ez < Z{? =~ Mt
Since W</ , this range is greater than that for downstream sound.
Therefore the upstream sound intensity will consist of a contribution

from the range of ¢ which gives downstream sound, plus a con-
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tribution from the range where the downstream waves are attenuated,

but the upstream waves are not. The total sound intensity is the sum
of these two contribufions, the first of which is exactly equal to the
downstream sound intensity. | see Eq. (4. 30)]. In the second region,
X is imaginary | Eq. (B 88)], so that A, Avsrs may be written

A |~ [~ ()™
rors A'u-orsﬁ YErME /4 2

whence

2 v _ )/LZ”-ML:- w*
Fjo Fj’ - [ ~nt /“(H’WJ’U"L B 91

Also, . -
J,(/uq) = ..LL‘.Z_,
Ity —U 2

‘1‘{ = -7 'a-*cl’U‘
Tad (1+ag-va))i-ve
and from Eq. (B 86)

= i

_F? ZZ\ZMLMH ’U“(, Vz) J'U‘
R -V
whence
_ 3 w1 -w)
Fre 'E F ((+m)* ’é"?(“‘ =) I B 92
' 2
The approximate evaluation of };5 and f;; is quite similar,

the results being

FF = yitmm)* (-0t 18 (g %W' )

B 93
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and

/ p—

/’%“ =L ﬁ%(ﬁ-/)sz«@}[ﬁ) B 94

The change in the power of My from 6 in Egs.(B 90) and (B 92) to
4 in Eqs. (B 93 and (B 94) is due to the different angular dependence of
the upstream spectral function for vorticity and entropy inputs [ see
Eq. (2.33)] . Since ¢ 1is small 2o P =P x My, , so that the

——
integral for /:—;,1” contains an additional factor of order Afx
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A, Differential Equations of the Fluid

The equations describing the motion of the fluid are

}éz‘évwgowv-u) +YV U c1
d.I~_l_c1 K 2

T T VT ©z
L4V (pu) = ¢3
£

£ _g_ﬁ C 4

where it has been assumed that C‘P , ¥ and K are constant. Now

let 7= 1:"% , 57:,[97,7.0[ , (~___,(,,;_7§- . From the usual

relation for the entropy of a perfect gas

= — -
o= g =6-FT | C5

Using Eqs. (C 4) and (C 5) and assuming that the Prandtl number is 3/4,

Egs. (C 1), (C 2) and (C 3) may be rearranged as follows:

o

gt +E v =[vu FEV(V-L) | ¥ hx Uxd -4 Vur Cé

3
7 PV L (ERVr -

l’;g{_%g»[(aﬂ_fé?l (B(V (Q(VIJ ] _U-vr ©7

|~

I

D
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V-d = ;,‘1(_6’7' oT _ 4 v

4 C38
‘Now take the curl of Eq. (C 6) letting Vx4 = ¢
K<Y
3"t D V'@ =- (vare -gT, e (vox(vm) C9

Take the divergence of Eq. (C 6), substitute Eq. (C 8) for V-4 ,
. 2
and eliminate 58?1: by Eq. (C 7), then

2

“ld‘ﬂ'_ 20 _ 4 YD 0 T _ 4 .
azdtt VU _‘gt F ?%" ~3—*§— Z(M VZ') ;w,Vzu A Z,r—_)

i
R~
RO
(—-ﬁ-’ﬁ-\
~ |~
'at
‘EIK

;15 }[( a(v_u)) > (-4 u} (acvgJ”}+e (7)) G 10

Equations (C 7), (C 9) and (C 10) give a complete description of the
behavior of the fluid, in terms of the dependent variables «w , 7r
and 0 . The advantage of this particular form is that if &« , T
and & are small, and the viscosity Y is small, the equations
immediately reduce to three linear equations for the three variables &« ,

I+ and 0 . The significance of the small non-linear terms may best
be seen by making the equations completely dimensionless, then
separating out the first and second order terms according to the
classical perturbation scheme.

A characteristic length may be introduced by imagining the

disturbances as sinusoidal; then the wave length is the characteristic

length desired. The speed of sound is the natural choice for the other
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dimensional quantity. In terms of these, define

t*:kaé ) k:.’%ﬁr
x*= b x
k. U
us=-z-
vt-Y¥
.
W= %
and let
__LQ__*:é’_(Q, +(f‘l’,(/_Q7—+'A‘
W= Ur r&2dzt-
W= +E*Ma+---
C=E0 +EFOL
B=EE60) +EH +
where . , ¢, W, » U- are assumed to be of order one, so that &

is a measure of the size of w¥, {* etc. Also, take X = % to be
a small quantity, of order £ or less, then the first and second order

terms of Eqs. (C 7), (C 9) and (C 10) may be separated, as follows:

dw:r _
ot =0 . Ccl1ll

-
=

]

C 12
O T iy

gpre "V T =0 C 13
a_C_Qt

g7 = H(vrw) ~(v. 4ty wf - (VEIX(V*T) C 14
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% = %(#VHUT 7"31‘ ’{}'V“m) + U 'V*o_t C 15
az”;;_ ~V.’ﬂ.ﬂ, (i ¥ 2 aﬁ 3
b 2 = d ) FV Uy (G

%;( U- "ﬂ“. + (V"H.)'(V*ﬂ’;) C lé

Equations (C 11), (C 12) and (C 13) are of course equivalent to
gs. (1.6), (1.7) and (1. 8), page 11. Equations (C 14),(C 15) and
(C 16) for the second order quantities are the same, except that first
order quantities act as sources on the right side. The validity of the
assumptions made in deriving Eqgs. (1.6), (1.7) and (1.8) may now be

assessed. First, it is evident that « = k) must be small, so that

-
may not be too large. Since the ratio ;,-'3— is roughly proportional
to the temperature, the assumptions may not be valid at extremely
high temperatures. Secondly, since the terms on the right of Egs.
(C 14) to (C 16) involve the derivatives of the various quantitieé, these
derivatives must be small, as well as the quantities themselves., As

is pointed out in the discussion of the downstream sound field from a

shock, this condition is not alw'ays satisfied in the preceding analysis.

B. Boundary Conditions at the Discontinuity

The discontinuity is, as before, assumed to be disturbed, its
angle to the I axis being ¢~ , and its velocity of propagation in the r

direction, ¥ . The boundary conditions are most readily formulated
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\

4
in terms of the velocities, pressure and entropy. Thus, let
‘(—(j% = E Uy +E Uz + - -
%’i=£ U, +E Uz + - - C 17
*g—:f‘ﬂ FE P+
S _
g, SES TETS oo
Where ULt is the first order velocity associated with 7% , and

& , in the direction of the g’ axis, &ry in the direction of the »
axis, Uz is the second order velocity, etc. Now denote the actual

position of the discontinuity by

§= &8 ter S+ - C 18
The connection between § and ¢ being,

d§ _
dr‘ﬁwd‘ C 19

The values of Eq. (C 17) at the actual position of the discontinuity, to

order &% are then
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U, au;,{o)

—T—j:(é)'z E Ui (0) +&=[Ui,z0) +

]

(Ay- z B Y
ﬁ(é):@ Ur, (00 +& [b(hz.w) + 79;4‘.{2)5']

C 20
_f._(s): 2 (o) 2 ¥, (o)
P E P, (o) +¢”[Pz + T;“S.
- J
&;(S):gs}(o) 462[51f0)'f 35(0 5]
The instantaneous local velocities normal and tangential to the dis-
continuity are then
Un 4 1 & U, (0) &2
B = [@@ g e[t S5t - gty o ]
C 21
tl 2 Ur, (o)
7" £] dr, @ ~0i | +&[Urel0) ¢ -"g—;’-ﬂ—s, - 6 ~Up @) ]

The characteristics of a given discontinuity may be expanded

in the form

ﬁ‘ﬁ,— [b A Seh T (g)]

+£z[bn (Uuﬁ-mff- b.. %ra))’ +bs (_}-(;)f ¢ b,s .%‘i(g) c—%;:(s) C 22

+hig 2 2is) + bas 7(5) ¥ (J)]

I3U

and similar relations for . and gfl
‘ P
Now the problem consists of inverting the relations analogous
to Eq. (C 21) for the downstream side of the discontinuity, using Egs.
(C 22) and (C 21) to obtain expressions to first and second order for
%“‘—,[J) in terms of g‘;(ﬂ , }:,P—(g) and 2%(5) , to which the

solutions for the downstream flow may be matched.
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Figure 1. Orientation of discontinuity, S, with respect to mean
upstream velocity, U, mean downstream velocity, U', and
coordinates X1, X2, X3.
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Figure 2: Transformation from case of oblique discontinuity

in X1, X2, X3 coordinate system to case of normal
discontinuity in§ - y» Xs ¢ coordinate system
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projection of ¢

intersection of plane of
constant phase with n-x,
plane

plane of

constant
phase

Figure 3: Reduction to two-dimensional probel iff » r plane.
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1.2

I(0)=1.0347

2.0
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