
New Frameworks for Structured Policy Learning

Thesis by
Hoang Minh Le

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2020
Defended October 22, 2019

ii

© 2020

Hoang Minh Le
ORCID: 0000-0002-5521-5856

All rights reserved except where otherwise noted

iii

ACKNOWLEDGEMENTS

First and foremost, I am deeply grateful for having the guidance of my Ph.D. advisor,
Yisong Yue. This dissertation would not have been possible without his support and
invaluable insights. I have learned a great deal from Yisong over the past 5 years.
I have many fond memories of my first conference talk, my first paper submission,
my first research proposal all with Yisong generously spending late night hours to
help me take the first steps towards being a machine learning researcher. Outside
of technical matters, Yisong’s kindness, patience, and encouragement have been an
inspiration. Yisong, it has been an honor and privilege to be your Ph.D. student.

I would like to thank my Ph.D. committee members, Adam Wierman, Yisong
Yue, Anima Anandkumar, and Hal Daumé, for taking the time out of their packed
schedules to provide valuable comments and suggestions.

I managed to get “research getaways” at Microsoft Research NYC and Disney
Research during my Ph.D. years as summer research interns. I would like to thank
my collaborators and mentors, Peter Carr, Alekh Agarwal, Nan Jiang, Miro Dudík,
Hal Daumé and Rob Schapire for teaching me new research perspectives. I had a
fantastic exposure to the diverse research environment at Disney Research lab in
Pittsburgh. I was continuously star-struck around the floor of MSR office in NYC,
talking to researchers whose work I greatly admired. Both internships were highly
rewarding and eye-opening experiences.

I also want to thank other collaborators (in no particular order): Cameron Voloshin,
Abhinav Verma, Swarat Chaudhuri, Luciana Cendon, Victor Dorobantu, Andrew
Taylor, Aaron Ames, Andrew Kang, Jianhui Chen and Patrick Lucey. I have learned
tremendously thanks to having such amazing people work with. It has also been fun
discussing many ideas and problems with my lab members, Stephan Zheng, Jialin
Song, Eric Zhan, Yuxin Chen, Yanan Sui, Joe Marino, Guanya Shi, Angie Liu, Rose
Yu, Jeremy Bernstein, Ellen Feldman, and Taehwan Kim.

The Department of Computing and Mathematical Sciences at Caltech has given me
amazing research environment and access to inspiring faculty members. Coming
from previous non-academic work experience, it was invaluable to take the courses
from Joel Tropp, Venkat Chandrasekaran, Adam Wierman, Yisong Yue, Houman
Owhadi, Thomas Vidick as a first year graduate student.

I want to acknowledge my other fellow Caltech students, who made Ph.D. life fun

iv

and memorable. Thanks Utkan, Corina, Dimitar, Nina, Benson, Sahin, Oguzhan,
Halime, Alvita, Dawna, Kyu, Jing, Andrea, and Jenish for many fun nights and
laughters. I want to give a shout-out to my Vietnamese soccer team and support
group at Caltech, Kien & Phuong, Lam & Uyen, Tri & Tran, Phong & Duong, anh
Thang & chi Nhan. I am very grateful to have all of you guys as part of my Caltech
family.

And to my Caltech home, I am extremely lucky to have my partner Zeynep and my
puppy Tobias with me through the Ph.D. journey. You guys have kept me sane,
healthy, well-fed, entertained and motivated along the way. None of this would have
been possible without you. Thank you for being my home!

Finally and most lovingly, I thank my immediate family for their endless love and
sacrifice. I am greatly indebted to my loving parents, who did everything to give
me amazing opportunities, despite how little they had. It is through their constant
support and understanding that I have had such a rich life experience. I thank my
sister and my little niece Trang for always being there.

v

ABSTRACT

Sequential decision making applications are playing an increasingly important role
in everyday life. Research interest in machine learning approaches to sequential
decision making has surged thanks to recent empirical successes of reinforcement
learning and imitation learning techniques, partly fueled by recent advances in deep
learning-based function approximation. However in many real-world sequential
decision making applications, relying purely on black box policy learning is often
insufficient, due to practical requirements of data efficiency, interpretability, safety
guarantees, etc. These challenges collectively make it difficult for many existing
policy learning methods to find success in realistic applications.

In this dissertation, we present recent advances in structured policy learning, which
are new machine learning frameworks that integrate policy learning with principled
notions of domain knowledge, which spans value-based, policy-based, and model-
based structures. Our framework takes flexible reduction-style approaches that
can integrate structure with reinforcement learning, imitation learning and robust
control techniques. In addition to methodological advances, we demonstrate several
successful applications of the new policy learning frameworks.

vi

PUBLISHED CONTENT AND CONTRIBUTIONS

Jianhui Chen, Hoang M Le, Peter Carr, Yisong Yue, and James J Lit-
tle. Learning online smooth predictors for realtime camera planning us-
ing recurrent decision trees. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4688–4696, 2016.
URL http://openaccess.thecvf.com/content_cvpr_2016/html/Chen_
Learning_Online_Smooth_CVPR_2016_paper.html.
H.M.L participated in developing the algorithm, implemented and analyzed
the method, conducted the experiments, and participated in the writing of the
manuscript.

Hoang Le, AndrewKang, YisongYue, and Peter Carr. Smooth imitation learning for
online sequence prediction. In International Conference on Machine Learning,
pages 680–688, 2016. URL http://proceedings.mlr.press/v48/le16.
html.
H.M.L participated in the formulation of the project, performed theoretical anal-
ysis, implemented and analyzed the method, conducted the experiments, and
participated in the writing of the manuscript.

HoangLe, Nan Jiang, AlekhAgarwal,MiroslavDudik, YisongYue, andHalDaumé.
Hierarchical imitation and reinforcement learning. In International Conference
on Machine Learning, pages 2923–2932, 2018. URL http://proceedings.
mlr.press/v80/le18a.html.
H.M.L participated in the conception of the project, formulated, implemented
and analyzed the method, prepared the data, conducted the experiments, and
participated in the writing of the manuscript.

Hoang Le, Cameron Voloshin, and Yisong Yue. Batch policy learning under con-
straints. In International Conference on Machine Learning, pages 3703–3712,
2019. URL http://proceedings.mlr.press/v97/le19a.html.
H.M.L participated in the conception of the project, formulated, implemented
and analyzed the method, prepared the data, conducted the experiments (with the
help from Voloshin), and participated in the writing of the manuscript.

Hoang M Le, Peter Carr, Yisong Yue, and Patrick Lucey. Data-driven ghosting
using deep imitation learning. URL http://www.sloansportsconference.
com/wp-content/uploads/2017/02/1671-2.pdf.
H.M.L participated in the conception of the project, formulated, implemented
and analyzed the method, prepared the data, conducted the experiments, and
participated in the writing of the manuscript.

Hoang M Le, Yisong Yue, Peter Carr, and Patrick Lucey. Coordinated multi-
agent imitation learning. In International Conference on Machine Learn-
ing, pages 1995–2003, 2017. URL http://proceedings.mlr.press/v70/

http://openaccess.thecvf.com/content_cvpr_2016/html/Chen_Learning_Online_Smooth_CVPR_2016_paper.html
http://openaccess.thecvf.com/content_cvpr_2016/html/Chen_Learning_Online_Smooth_CVPR_2016_paper.html
http://proceedings.mlr.press/v48/le16.html
http://proceedings.mlr.press/v48/le16.html
http://proceedings.mlr.press/v80/le18a.html
http://proceedings.mlr.press/v80/le18a.html
http://proceedings.mlr.press/v97/le19a.html
http://www.sloansportsconference.com/wp-content/uploads/2017/02/1671-2.pdf
http://www.sloansportsconference.com/wp-content/uploads/2017/02/1671-2.pdf
http://proceedings.mlr.press/v70/le17a.html
http://proceedings.mlr.press/v70/le17a.html

vii

le17a.html.
H.M.L participated in the conception of the project, formulated, implemented
and analyzed the method, prepared the data, conducted the experiments, and
participated in the writing of the manuscript.

A. J. Taylor, V. D. Dorobantu, H. M. Le, Y. Yue, and A. D. Ames. Episodic learning
with control lyapunov functions for uncertain robotic systems*. In 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 6878–
6884, 2019. URL https://doi.org/10.1109/IROS40897.2019.8967820.
H.M.L participated in analyzing the method and writing of the manuscript.

Abhinav Verma, Hoang Le, Yisong Yue, and Swarat Chaudhuri. Imitation-
projected programmatic reinforcement learning. In Advances in Neu-
ral Information Processing Systems, pages 15726–15737, 2019. URL
https://papers.nips.cc/paper/9705-imitation-projected-
programmatic-reinforcement-learning.pdf.
H.M.L participated in the conception of the project, developed the algorithm,
performed theoretical analysis, and participated in the writing of the manuscript.

Cameron Voloshin, Hoang M Le, Nan Jiang, and Yisong Yue. Empirical study
of off-policy policy evaluation for reinforcement learning. arXiv preprint
arXiv:1911.06854, 2019. URL https://arxiv.org/abs/1911.06854.
H.M.L participated in the conception of the project, analyzed the data, and par-
ticipated in the writing of the manuscript.

http://proceedings.mlr.press/v70/le17a.html
http://proceedings.mlr.press/v70/le17a.html
https://doi.org/10.1109/IROS40897.2019.8967820
https://papers.nips.cc/paper/9705-imitation-projected-programmatic-reinforcement-learning.pdf
https://papers.nips.cc/paper/9705-imitation-projected-programmatic-reinforcement-learning.pdf
https://arxiv.org/abs/1911.06854

viii

TABLE OF CONTENTS

Acknowledgements . iii
Abstract . v
Published Content and Contributions . vi
Bibliography . vi
Table of Contents . vii
List of Illustrations . xi
List of Tables . xiv
Chapter I: Introduction . 1

1.1 Structured Policy Learning - Definition and Classification 1
1.2 Learning with Value-Based Structure 5
1.3 Learning with Policy-Based Structure 6
1.4 Learning with Model-Based Structure 7
1.5 Overview Discussion on Existing Approaches to Policy Learning . . 8

Chapter II: Policy Learning under Value-Based Constraints 13
2.1 Policy Learning under Value-Based Constraints 13
2.2 Problem Formulation in the Batch Setting 15
2.3 Algorithms for Batch Policy Learning under Value-Based Constraints 18
2.4 Theoretical Analysis of Proposed Algorithms 22
2.5 Empirical Study . 26
2.6 Other Related Work . 29
2.7 Discussion . 30

Chapter III: Off-Policy Value Estimation for Reinforcement Learning 31
3.1 Introduction to Off-Policy Value Estimation 31
3.2 Overview of Off-Policy Value Estimators 33
3.3 Experiments . 37
3.4 Results . 38
3.5 Discussion and Future Directions 46

Chapter IV: Regularized Learning with Policy-Based Structure (Smooth Im-
itation Learning) . 49
4.1 Introduction . 49
4.2 Formulating the Problem as Functional Regularization 51
4.3 Related Work in Imitation Learning 54
4.4 Algorithm for Smooth Imitation Learning Setting 56
4.5 Theoretical Analysis of Reduction-Based Algorithm 58
4.6 Experiments . 64
4.7 Discussion . 68

Chapter V: Reduction to Online Learning with Policy-Based Structure (Pro-
grammatic Reinforcement Learning) . 69
5.1 Introduction to Programmatic Reinforcement Learning 69

ix

5.2 Policy Learning Problem within the Structured Policy Class 71
5.3 Learning Algorithm via Reduction to Online Learning 73
5.4 Theoretical Analysis . 75
5.5 Experiments . 80
5.6 Related Work . 83
5.7 Conclusion and Future Work . 85

Chapter VI: Hierarchical Imitation and Reinforcement Learning 86
6.1 Introduction . 86
6.2 Related Work in Imitation and Reinforcement Learning 87
6.3 Hierarchical Formalism . 88
6.4 Hierarchically Guided Imitation Learning 91
6.5 Hierarchically Guided IL / RL . 95
6.6 Experiments . 97
6.7 Discussion . 102

Chapter VII: Policy Learning with Latent Model 103
7.1 Motivating Applications for Latent Structure 103
7.2 Policy Learning Problem Formulation 105
7.3 Policy Learning Algorithm with Structure Learning and Inference . . 107
7.4 Experiments . 114
7.5 Related Work in Multi-Agent Learning Context 119
7.6 Limitations and Discussions . 120

Chapter VIII: Concluding Remarks . 121
Bibliography . 123
Appendix A: Appendix to Chapter 2 . 144

A.1 Equivalence between Regularization and Constraint Satisfaction . . . 144
A.2 Convergence Proofs . 147
A.3 End-to-end Generalization Analysis of Main Algorithm 149
A.4 Preliminaries to Analysis of Fitted Q Algorithms 153
A.5 Analysis of Fitted Q Evaluation . 157
A.6 Analysis of Fitted Q Iteration . 168
A.7 Additional Instantiation of Meta-Algorithm 175
A.8 Additional Experimental Details . 177

Appendix B: Appendix to Chapter 3 . 181
B.1 Notations . 182
B.2 Ranking of Methods . 183
B.3 Challenging Common Wisdom - Supporting Data 188
B.4 Methods . 190
B.5 Environments . 193
B.6 Experimental Setup . 196
B.7 Additional Supporting Figures for Chapter 3 203
B.8 Additional Supporting Tables to Chapter 3 213

Appendix C: Appendix to Chapter 4 . 216
C.1 Detailed Theoretical Analysis and Proofs 216
C.2 Imitation Learning With Smooth Regression Forests 225

Appendix D: Appendix to Chapter 5 . 231

x

D.1 Theoretical Analysis . 231
D.2 Additional Experimental Results and Details 245

Appendix E: Appendix to Chapter 6 . 249
E.1 Proofs for Chapter 6 . 249
E.2 Additional Experimental Details . 249
E.3 Additional Related Work . 256

Appendix F: Appendix to Chapter 7 . 258
F.1 Variational Inference Derivation for Hidden Markov Models 258
F.2 Experimental Evaluation . 264

xi

LIST OF ILLUSTRATIONS

Number Page
1.1 Agent-Environment Interaction Abstraction 8
2.1 Empirical Results of Batch Policy Learning under Value-Based Con-

straints - FrozenLake . 27
2.2 Empirical Results of Batch Policy Learning under Value-Based Con-

straints - CarRacing . 28
3.1 Categorization of Off-Policy Value Estimation Methods 33
3.2 OPE Method Selection Decision Tree 41
3.3 OPE - Compare IPS vs DM vs HM 42
3.4 OPE Various Method Comparison 44
3.5 OPE Policy Mismatch Comparison 45
4.1 Smooth Policy Learning Illustration 58
4.2 Learning with Smooth Structure vs. Standard Imitation Learning . . 65
4.3 Adaptive vs Fixed Learning Rate - SIMILE 65
4.4 Varying Expert Feedback Quality 66
4.5 Smoothness Structure vs Accuracy Trade-off 66
4.6 Policy Learning Performance Progression 67
4.7 Deterministic vs. Stochastic Policy Comparison 67
5.1 A High-level Syntax for Programmatic Policies 72
5.2 A Programmatic Policy in TORCS 72
5.3 Lift-and-Project Policy Learning Diagram 74
5.4 TORCS Experiment - Policy Improvement 81
5.5 TORCS Experiment - Number of Crashes 81
6.1 Hierarchical IL RL on Maze Navigation 97
6.2 Hierarchical IL vs Flat IL on Maze Navigation 97
6.3 Hierarchical IL RL on Montezuma’s Revenge 100
7.1 Policy Learning with Latent Model - Example 104
7.2 Policy Learning with Latent Model - Algorithm Schematic 107
7.3 Predator-Prey Example . 115
7.4 Policy with and without Structure Comparison 116
7.5 Policy with and without Structure Comparison - Soccer 117
7.6 Result Visualization - Soccer . 118

xii

7.7 Latent Role Visualization . 119
A.1 FrozenLake and CarRacing Environment 177
A.2 Regularized Policy Learning Baselines 178
B.1 Graph Environment . 194
B.2 Graph-MC Environment . 194
B.3 Mountain Car Environment . 194
B.4 Enduro Environment . 194
B.5 Discrete POMDP Environment . 194
B.6 Gridworld Environment . 194
B.7 Enduro DM vs IPS . 203
B.8 MountainCar Comparison - Function Approx 203
B.9 Enduro DM vs HM . 204
B.10 Direct Method Comparison - Small Policy Mismatch, Deterministic

Env . 204
B.11 Graph MDP Comparison - Large Policy Mismatch, Stochastic Env . . 204
B.12 Compare DM vs DR - Stochastic Env, Large Policy Mismatch 205
B.13 Compare FQE, IH and WIS in Limited Data Regime in Gridworld . . 205
B.14 IPS Comparison with IH - Dense and Sparse Rewards 205
B.15 Exact vs Estimated Behavior Policy Comparison - Pixel Gridworld . 206
B.16 Exact vs Estimated Behavior Policy Comparison - Pixel Gridworld . 206
B.17 Hybrid Method Comparison . 206
B.18 Hybrid Method Comparison . 207
B.19 Hybrid Method Comparison . 207
B.20 Hybrid Method Comparison . 207
B.21 Hybrid Method Comparison . 208
B.22 Class Comparison with Unknown Behavior Policy 208
B.23 Class Comparison with Unknown Behavior Policy 208
B.24 Class Comparison with Unknown Behavior Policy 209
B.25 Model-based vs Hybrid Method Comparison 209
B.26 FQE vs Hybrid Method Comparison 209
B.27 MRDR vs Hybrid Method Comparison 209
B.28 Q-Regression vs Hybrid Method Comparison 210
B.29 &cp_q vs Hybrid Method Comparison 210
B.30 Retracep_q vs Hybrid Method Comparison 210
B.31 Tree-Backup vs Hybrid Method Comparison 210
B.32 Doubly Robust Comparison - Pixel Gridworld 211

xiii

B.33 Weighted Doubly Robust Comparison - Pixel Gridworld 211
B.34 MAGIC Comparison - Pixel Gridworld 211
B.35 Doubly Robust Comparison - Pixel Gridworld 212
B.36 WDR Comparison - Pixel Gridworld 212
B.37 MAGIC Comparison - Pixel Gridworld 212
D.1 Policy Improvement in MountainCar 248
D.2 Policy Improvement in Pendulum 248
E.1 Hierarchical IL RL vs Hierarchical RL - Maze Navigation 250
E.2 Maze Domain Examples . 251
E.3 Montezuma’s Revenge Hierarchical Decomposition 252
E.4 Hierarchical IL RL vs Hierarchical RL - Montezuma’s Revenge . . . 253
E.5 Learning Progression for Montezuma’s Revenge 253
E.6 Number of High Level Expert Labels 254
F.1 Latent Role Assignment Frequency 265

xiv

LIST OF TABLES

Number Page
3.1 Empirical Environments for OPE 35
3.2 Empirical Environments for OPE 35
3.3 OPE Method Selection Guideline - Part 1 39
3.4 OPE Method Selection Guideline - Part 2 39
5.1 TORCS Performance Results . 82
5.2 Policy Generalization Results in TORCS 83
B.1 Glossary of terms for Chapter 3 . 182
B.2 Fraction of time among the top estimators across all experiments . . . 183
B.3 OPE - Short Horizon, Small Policy Mismatch 184
B.4 OPE - Short Horizon, Large Policy Mismatch 184
B.5 OPE - Long Horizon, Small Policy Mismatch 185
B.6 OPE - Long Horizon, Large Policy Mismatch, Deterministic Env . . 185
B.7 OPE - Long Horizon, Large Policy Mismatch, Stochastic Env 186
B.8 OPE - Insufficient Representation 186
B.9 OPE - Sufficient Representation, Poor Behavior Policy Estimate . . . 187
B.10 OPE - Sufficient Representation, Good Behavior Policy Estimate . . . 187
B.11 Graph MDP, T=10, N=50 . 188
B.12 Graph MDP, T=100, N=50 . 188
B.13 Graph MDP, T=10, N=50, Larger Policy Mismatch 189
B.14 IPS Methods . 190
B.15 Graph MDP Env Parameters . 197
B.16 Graph POMDP Env Parameters . 197
B.17 Gridworld Env Parameters . 198
B.18 Pixel Gridworld Env Parameters . 198
B.19 Discrete MountainCar Env Parameters 199
B.20 MountainCar Env Parameters . 199
B.21 Pixel MountainCar Env Parameters 200
B.22 Enduro Env Parameters . 200
B.23 Hyperparameters Choice by Env . 202
B.24 Graph MDP, 256 trajectories . 213
B.25 Graph MDP, 512 trajectories . 213
B.26 Graph MDP, 1024 trajectories . 214
B.27 Graph MDP, 256 trajectories, Dense Rewards 214

xv

B.28 Graph MDP, 512 trajectories, Dense Rewards 215
B.29 Graph MDP, 1024 trajectories, Dense Rewards 215
D.1 Performance Results in TORCS . 246
D.2 Generalization Results in TORCS 247
D.3 Performance Results in Classic Control 247
E.1 Network Architecture—Maze Domain 252
E.2 Network Architecture—Montezuma’s Revenge 255

1

C h a p t e r 1

INTRODUCTION

1.1 Structured Policy Learning - Definition and Classification
A Real-World Decision Making Motivation. The goal of this thesis is to make
some contributions towards improving learning-based sequential decision making
systems that are broadly beneficial for real-world applications. For the purpose of
this thesis, we will consider sequential decision making to be the task of making a
series of decision in a dynamic environment overtime, to achieve certain specified
outcome. While the specific objective of decision making may vary depending
on application domain, it is not difficult to appreciate the scope of dynamic deci-
sion making systems. Traffic routing, energy and power systems, industrial robots,
warehouse logistics, are among long-standing examples of sequential decision mak-
ing systems that have had large impact on daily lives. Clearly, not all previous
examples of decision making systems are what we would currently consider fully
algorithmic, or learning-based systems. However, from conversational agents to
online recommendation to search and advertising, we are clearly already interact-
ing with increasingly sophisticated learning-based systems on a daily basis. The
trends toward more data-driven and algorthmic-driven systems are rooted in exciting
developments in machine learning, aided by improving computational power and
increasing availability of data. Supervised machine learning has made significant
advances in the past decade, with highly visible successes in the areas of computer
vision (Krizhevsky et al., 2012; Deng et al., 2009) and natural language process-
ing (Devlin et al., 2019). Powerful deep learning advances have also contributed
to recent advances in sequential decision making domains, perhaps most notably
computer games (Mnih et al., 2015), and board games (Silver et al., 2017), and
robotic manipulations (Andrychowicz et al., 2020). Looking ahead into the near fu-
ture, researchers and practitioners are exploring potential applications in other areas
such as healthcare, remote work and education, autonomous vehicles, automated
customer and decision support, etc. Two central questions for these aspirational
applications natually arise: (i) how do we approach these diverse problem areas
from a machine learning perspective? and (ii) how do we use learning to build
real-world systems in a way that is computationally efficient, safe, and grounded in
real-world constraints?

2

Policy Learning in Dynamic Environment. This dissertation focuses on the prob-
lem of policy learning for sequential decision making tasks. A policy encapsulates
the decision making mechanism of an agent interacting with its environment over
time. At a high-level, this interaction can be viewed via an abstraction similar to
the standard reinforcement learning framework (Sutton and Barto, 2018b; Bertsekas
et al., 2005). The protocol is such that at each time step, the environment reveals
a context, the agent takes an action given the context, and the action influences the
context that the agent observes in the following time step, and so forth. Notice
that in general, this abstraction can be more general than a Markov Decision Pro-
cess (Puterman, 2014). Nevertheless, a policy is simply a mapping from context
to (a probability distribution over) actions. Often, the policy learning goal is to
derive an optimal policy, where optimality criterion depends on the exact problem
formulation.

We will give a more in-depth account of contemporary approaches to policy learn-
ing in the next chapter. As a rough summary, many recent work in policy learning
focus on balancing the exploration-exploitation trade-off, or casting the interaction
paradigm under reinforcement / imitation learning dichotomy. When the dynamics
are unknown, reinforcement learning (RL) is a general class of samples-based
techniques to learn policies, where samples often come from exploring the envi-
ronment Sutton and Barto (2018b). Efficient exploration is a major challenge of
reinforcement learning, and is the subject of very active research (Jiang et al., 2017).
Even for multi-arm bandit problem (RL with horizon 1), learning an n-optimal pol-
icy may require $p 1

n2 q samples in the worst case (Krishnamurthy et al., 2016). One
alternative class of techniques that short-circuit the exploration issue is imitation
learning (IL). Imitation learning is a direct way to learn policy by from expert or-
acle, which can be computational oracle, or human expert. Thus imitation learning
can be viewed as generalization of supervised learning to the sequential decision
domains.

Some Challenges with Contemporary Approaches. Both reinforcement and
imitation learning are general purpose classes of methods. However, the success
stories of both groups of techniques, while impressive (Cheng et al., 2019c; Pan et al.,
2018; Finn et al., 2016; Mnih et al., 2016; Silver et al., 2017), are still constrained
to somewhat limited domains, where we either have abundant access to simulated
data, or strong assumptions on the oracles.

Even with increasing computational power, data efficiency is still paramount. For

3

RL, much recent research effort has been dedicated towards improving sample
efficiency of exploration (Kakade et al., 2003; Agarwal et al., 2014; Jiang et al.,
2017). Imitation learning generally has been shown to be more sample-efficient than
pure exploration-based RL (Sun et al., 2017; Ross and Bagnell, 2014). However,
the sample cost to the expert oracle can potentially much more expensive than the
sample cost for exploration in scenarios where simulation-to-real transfer is feasible
(Peng et al., 2018), or in video games domains where simulation matches reality.

The learning agent has to handle imperfect cost and observation. Engineering the
right cost (reward) function is difficult for many realistic scenarios. In addition,
the most common modeling paradigm in RL is via Markov Decision Processess,
which assume full observation (context) of the learning agent. In practice, partial
observability is a prevalent setting and policy learning has to account for imperfect
information.

Finally, we would like to emphasize additional real-world constraints introduced by
various domains that are not adequately addressed by classical learning techniques.
For policy learning methods to be trusted with realistic applications, they need to
meet certain domain-specific desiderata:

• One sensible requirement is safety, concerning much of the applications re-
lated to human-computer interaction, such as autonomous driving, healthcare,
education, etc. (Garcıa and Fernández, 2015) At the most basic level, random
exploration is orthogonal to safe learning, thus posing challenges to purely
exploration-based RL

• Other reasonable constraints may include: stability, which is among the most
important concerns for roboticists and control engineers (Berkenkamp et al.,
2017); verifiability (or provably correctness in the formal methods sense);
smoothness requirement for many human-facing decision making tasks, such
as driving; (Bojarski et al., 2016); fairness of policy learning in the context
of socio-technical systems (Liu et al., 2018a).

Im summary, despite exciting developments, there remains a sizable gap between
what current learning-based methods could achieve and broadly useful, real-world
applications of policy learning across different domains.

Structured Policy Learning. This dissertation describes recent advances that
attempt to narrow the gap between contemporary policy learning methods and

4

realistic sequential decision making domains. The proposed methods center around
the theme of structured policy learning, which we define as the class of techniques
that integrates principled use of domain knowledge into the policy learning process,
in order to satisfy real-world desiderata as described above. A natural question given
this definition is how should we further clarify the source of domain knowledge?
While it is tempting to cast a stereotypical RL technique as assuming “no structure”,
and a stereotypical IL technique as assuming a strong form of structure, we argue
that in the context of realistic constraints, this distinction is not always the most
helpful. Consider two examples:

• Consider a hypothetical RL scenario with idealized cost function, where
single-stage cost (reward) matches exactly to the consecutive difference (dif-
ferential) of the optimal reward function. In this setting, optimal cost (reward)
design plays the role of the expert Ross and Bagnell (2014) and alleviates
the difficulty that is associated with a long horizon problem with sparse cost
(reward) signals. While this is an idealized scenario, we can view leveraging
off-line (sub-optimal) data, or value specification associated with realistic re-
quirements such as safety, are among possible venues to encode structure into
the learning problem.

• Consider a hypothetical IL scenario where a computational expert is easy to
derive via prior models (e.g., physics-based optimal controller for robotics, or
rule-based experts from existing systems). In this setting, perhaps standard
imitation learning techniques could succeed in learning the expert’s policy.
However, in case of an imperfect model, the cost (reward) corresponding to
the expert could be suboptimal in reality. The question facing the learning
agent is then how to reconcile and possibly leverage the information coming
from the expert in order to move towards another optimality criterion?

In examining these two examples above, we can see that integrating the right amount
of domain knowledge is not necessarily about forcing a trade-off between RL and IL.
In fact, as we will show in this dissertation, in many cases leveraging structure can
be a complementary abstraction to improve the learning performance while treating
the underlying policy learning sub-routine as a flexible reduction.

In this thesis, we will discuss three different ways to integrate structure into policy
learning:

5

1. Value-based structure: the desired objective can be expressed via some
constraints on the value function of a policy, where the value comes from
prior knowledge (e.g., safety), or historical data (e.g., policy improvement).

2. Policy-based structure: the cost (reward) might be difficult to specify, and
it can be easier to build the structure more directly into the policy class (e.g.,
policy is locally stable)

3. Model-based structure: An (approximate) knowledge about the environment
or the task is attainable (e.g., known hierarchical structure, or approximate
physics-based dynamics model)

We aim to incorporate these structures into the design of learning algorithms and
show how they can help improve both data efficiency and constraint satisfactions.
We will discuss methodological advances as well as empirical validations. For the
remainder of this chapter, we briefly introduce several concrete research directions
and the corresponding contributions of this dissertation.

1.2 Learning with Value-Based Structure
This is a setting where the domain expert can naturally specify constraints on value
function, or cost function objectives. In chapter 2, we consider a reinforcement
learning scenario where different value-based constraints can be imposed on a pol-
icy learning problem in a counterfactual manner, i.e., batch setting. The off-line,
off-policy learning approach is promising for realistic applications where existing
data is available, but the standard cost objective is not sufficient for learning a
reliable decision making agent. We propose a meta learning algorithm, and in-
stantiate with specific subroutines that offer end-to-end finite-sample performance
guarantees. The finite-sample results link the number of off-policy samples with
how well the algorithm can return an optimal policy subject to satisfying the value-
based constraints. To certify constraint satisfaction, we propose a new off-policy
policy evaluation (OPE) algorithm that is applicable in other reinforcement learning
settings.

Reasoning about value-based structure in a data-efficienct way requires off-policy
evaluation of policy performance as a natural component. Off-policy reasoning is
highly relevant for any safe and efficient deployment of policy learning to realistic
domains. In Chapter 3, we take a detailed look into the empirical performance of
different off-policy estimators. We design experimental conditions that highlight

6

different factors that are often neglected in previous work on OPE. Through our
analysis, we contribute a summary guideline for method selection. To the best of
our knowledge, Chapter 3 is the first comprehensive study of contemporary OPE
methods.

1.3 Learning with Policy-Based Structure
When the value-based evaluation of the constraints are hard to determined, it can
be more natural to build the constraints directly into the policy class. The learning
policy can then inherit the structure of the policy class, i.e., the desired structure
can be (approximately) “correct-by-construction”, which is an appealing property.
For policy-based structure, the challenge lies in designing algorithms that permit
reasoning about other optimality criteria of learning.

Similar to how regularization encodes prior knowledge in supervised learning con-
text, we take a policy class regularization perspective to policy learning in the
sequential setting. In this case, regularizing with respect to a policy class allows
mediating between an expressive policy class, such as deep neural networks, and
less expressive policy class, but with certifiable properties.

In Chapter 4, we regularize to a smooth policy class (under precise notion of
smoothness) and designed a learning algorithm that takes a reduction approach
to imitation learning. We prove that exploiting this policy structure improve data
efficiency of learning. The learning algorithm also outputs learned policy that has
better smoothness property than using conventional imitation learning alone. We
demonstrate the empirical performance of the algorithm in an realistic applications
that require learning smooth decision making policies.

In Chapter 5, we generalize this approach to the RL setting where we leverage re-
duction to online learning, in particular mirror descent, in the policy space. Similar
to Chapter 4, regularization to a policy class is enforced via projecting onto a con-
strained policy space. The projection of the online learning reduction is equivalent
to an IL subroutine, where the learning policy learns from the best “expert” from
the prescribed policy structure. The update step of online learning can assume the
form of standard RL update. In addition to the convergence analysis, in this chapter
we demonstrate a potential application in learning “programmatic” policies using
RL, where the programs are representable using structured programming language.
The algorithm aims to output a near optimal programmatic policy using this lift-
and-project approach. We show in a driving simulation that the learned policy can

7

generalize better to unseen environment compared to policies learned purely from
RL procedures. In addition, programmatic policies are also amenable to formal
verification, whereas deep neural networks remain difficult to verify using current
techniques.

1.4 Learning with Model-Based Structure
Distinct frommodel-basedRL, themodel-based structure refers to partial knowledge
of the environment or the task, which the learning agent can exploit to help speed
up learning process. Below are some examples of model-based structure.

Hierarchical structure is well studied in machine learning. In fact, recent success
of computer vision can be attributed to good hierarchical feature learning LeCun
et al. (1995); Qi et al. (2017). In reinforcement learning context, a common strategy
to improve sample efficiency in RL over long time horizons is to exploit hierarchi-
cal structure of the problem. In Chapter 6, we propose methods to improve the
sample-efficiency of both imitation learning and reinforcement learning, taking into
account the hierarchy decomposition. Our key design principle is an algorithmic
framework called hierarchical guidance, in which feedback (labels) from the high-
level expert is used to focus (guide) the low-level learner. The high-level expert
ensures that low-level learning only occurs when necessary (when subtasks have
not been mastered) and only over relevant parts of the state space. This differs
from a naïve hierarchical approach which merely gives a subtask decomposition.
Focusing on relevant parts of the state space speeds up learning (improves sample
efficiency), while omitting feedback on the already mastered subtasks reduces ex-
pert effort (improves label efficiency). We validate the approach in long horizon
domains, including the challenging Atari game Montezuma Revenge. Our exper-
iments show that incorporating a modest amount of expert feedback can lead to
dramatic improvements in performance compared to pure hierarchical RL.

Latent structure Reinforcement learning under partial observability is intractable
in general POMDP (Papadimitriou and Tsitsiklis, 1987). Recent progress has been
made towards policy learning in contextual decision processes under low rank
structural assumptions (Jiang et al., 2017). The difficulty of policy learning is
compounded for multi-agent settings, where information regarding the intention of
other agents in the environment is missing. In Chapter 7, we study the problem
of policy learning for multiple coordinating agents from demonstrations. Many
realistic multi-agent settings require coordination among collaborative agents to

8

achieve some common goal: modeling team sports, learning policies for game
AI, controlling teams of multiple robots, or modeling collective animal behavior.
Typically, the agents have access to the outcome of actions from other agents, but
the coordination mechanism is neither clearly defined nor observed, which makes
the full state only partially observable.

We propose a semi-supervised learning framework that integrates and builds upon
conventional imitation learning and unsupervised structure learning. The latent
structure is represented by a graphical model, which encodes a coordination mech-
anism of interacting agents. In order to make learning tractable, we develop an
alternating optimization method that enables integrated and efficient training of
both individual policies and the latent structure model. For learning individual
policies, we extend reduction-based single-agent imitation learning approaches into
multi-agent domain, utilizing powerful black-box supervised techniques such as
deep learning as base routines. For latent structure learning, we develop a stochas-
tic variational inference approach. We show that learning a good latent structure
to encode implicit coordination yields significantly superior imitation performance
compared to conventional baselines.

1.5 Overview Discussion on Existing Approaches to Policy Learning
A sequential decision making agent is characterized by its interaction with the
environment (Sutton and Barto, 2018b; Bertsekas et al., 2005). For each time C,
the environment reveals context GC in the context space - , the agent takes an action
0C P A, and the action influences the context GC`1 that the agent observes in the
following time step, and so forth. This interaction paradigm is general, in the sense

Figure 1.1: Policy maps context to actions

that the context can capture partial observation of the true state, and the agent-
environment interaction can also stand for an interaction between an agent and the
expert oracle. As such, this abstraction can convey both the reinforcement learning

9

and imitation learning paradigms. A policy c is simply a mapping from context
G P X to (a probability distribution over) actions in �. As mentioned in the previous
chapter, the optimization objective of policy learning depends on the problem setup.

In learning-based approaches, the dynamical system characterizing the agent - en-
vironment interaction is typically viewed as unknown or uncertain. If the dynamics
are known, one can leverage well-established techniques in dynamic programming
and optimal control to solve for optimal policies (Bertsekas et al., 2005). When the
dynamics are unknown, reinforcement learning is a general class of sample-based
methods to solve optimal control problems (Sutton and Barto, 2018b). Consider a
simple and stereotypical example of sequential decision making: a navigation task
over a grid where an agent has to make a series of steps towards the goal while
avoiding obstacles along the way. Ideally we would want such a learning agent to
be able to generalize, i.e., the configuration of the environment and goal locations
might change from episode to episode. Without prior knowledge of environmental
dynamics, a reinforcement learning agent needs to explore the environment to search
for an optimal policy. The objective in RL is usually to minimize long-term cost
(or equivalently, maximizing rewards): �pcq “ E

“
ř8
C“0 W

C2pGC , 0Cq
‰

, where�pcq is
called the value function of policy c, and 2pGC , 0Cq denotes single-stage cost (reward)
associated with observation GC and action 0C . In the last few years, the combination
of deep learning and classical RL techniques have produced very impressive em-
pirical successes mentioned above: from playing Atari games (Mnih et al., 2015),
to playing board games (Silver et al., 2017), to certain robotic manipulation tasks
(Andrychowicz et al., 2020). Without knowing the dynamics, a learning agent
needs to interact with the environment for exploration, before a good policy can
be learned via optimization (exploitation). Consequently, success in reinforcement
learning is still dependent on having access to environments where simulation data
is cheap, as the number of interaction with the environment is significant. Bringing
reinforcement learning techniques to real-world applications may introduce several
challenges:

1. Well-defined cost objective: The underlying assumption in RL framework is
that what the agent optimizes for can be summarized in a well-defined, scalar
cost function. Even if such hypothesis is valid, one can imagine designing a
good cost function is difficult in many scenarios (e.g., self-driving vehicles).
The difficulty of designing cost (reward) functionmotivates many recent effort
to investigate this inverse problem Hadfield-Menell et al. (2017); Finn et al.

10

(2016); Ziebart et al. (2008); Sorg et al. (2010). Designing an optimal cost
function can be as hard as solving the forward problem in the worst case Ng
et al. (1999).

2. Exploration: Even when we can obtain a reasonable cost function and observe
full state, the learning agent may come up against the third issue, which is
how to explore the environment efficiently. Efficient exploration is the holy-
grail of reinforcement learning, and is the subject of very active research
(Jiang et al., 2017). Even for multi-arm bandit problem (RL with horizon
1), learning an n-optimal policy may require $p 1

n2 q samples in the worst case
(Krishnamurthy et al., 2016). One side effect of random exploration is that the
policy may exhibit undesirable properties during training. Given the difficulty
of exploration in general, some recent work have developed more efficient
exploration algorithms under structural assumptions. (Du et al., 2019) proved
an efficient algorithm is possible assuming latent block structure of underlying
contextual space. (Misra et al., 2019) built on similar theme and showed that
exploiting state abstraction can make hard exploration problems tractable.

One alternative class of techniques that short-circuit the exploration issue is imitation
learning (IL). Imitation learning is a direct way to learn policy by leveraging domain
knowledge. Often the domain knowledge comes from optimal oracle, which can be
computational oracle, or human expert. The goal in imitation learning is usually
minimize the imitation loss with respect to the expert policy, in that sense the cost
function is easy to define: �pcq “ E3c rℓpcpGCq, c˚pGCqqs, where c˚ is the expert
policy, and the expectation is taken over state distribution 3c induced by the learning
policy c.

Many imitation learning techniques involve reductions to supervised learning. Go-
ing back to the navigation example, we can obtain a data set from querying oracle
policy c˚, which is either a search or optimization oracle, or human expert to get the
shortest path. We can simply reduce the sequential decision problem to supervised
learning, e.g., fitting a neural network to directly find the mapping from - to � in
this data set. This simple strategy is also known as behavioral cloning, which was
used for one of the first autonomous driving system, ALVINN (Pomerleau, 1989).

Behavioral cloning is simple and straightforward to implement, and may in fact
work well when data coverage is sufficient. However in many cases, especially
under partial observability, a behaviorally cloned policy may fail to generalize to

11

unseen instances of the environment. Interactive imitation learning is an alterna-
tive strategy to improve upon this weakness. Specifically, learning proceeds over
multiple episodes, similar to many episodic reinforcement learning techniques. At
each round of learning, the current policy, which might be performing poorly, can
query online expert to yield the correct action labels corresponding to the executed
trajectory. With each episode, querying the interactive oracle yields a new data set,
which can again be used in some update supervised learning procedure. As such, we
reduce the sequential decision problem to multiple supervised learning problems.
To update the learning policy, we can use either policy aggregation (Daumé III
et al., 2009), or data aggregation, in the style known as DAgger (Ross et al., 2011b).
These are among the most common imitation learning techniques that have found
widespread successes.

Overall, imitation learning can be significantly more sample efficient than pure
exploration-based RL Sun et al. (2017). Notice that the two classes of techniques
can be complementary: several recent RL success stories rely on bootstrapping the
learning agent with a large repository of expert trajectories to increase data and
computational efficiency (Silver et al., 2016; Vinyals et al., 2019). Many recent
successes from imitation learning are likely unattainable from conventional RL
techniques: autonomous driving of a real race car (Pan et al., 2018), visual speech
animation (Taylor et al., 2017), or more data-efficient robotic manipulation (Duan
et al., 2017). These are examples of tasks that are very difficult to do with deep
RL techniques alone, either due to a lack of natural simulation environment, or
unacceptable sample efficiency, or both. Still, there are two main drawbacks of
imitation learning strategy:

1. Hard to obtain expert labels: Imitation learning can be viewed as general-
ization of supervised learning to the sequential decision domains. Similar to
supervised learning, high-quality labels are required for good learning per-
formance. In many applications, it can be expensive to obtain expert oracle’s
labels, especially when interactive expert is part of the learning loop. For
computational expert, computational time can be an acceptable trade-off for
data acquisition. However, this issue is notable when the agent is learning
with human expert in the loop. Imitation learning techniques generally should
address the problem of data efficiency for the expert.

2. Non-optimal expert: Second, expert oracle itself may not be optimal, or fully
consistent from one expert to another. If the expert policy is not optimal, then

12

the cost objective to learn the policy is also faulty. Here the question of cost
function design is similar to the challenge we face in reinforcement learning
case.

In this section, we give a background overview for conventional approaches to policy
learning. In the next chapters, as we develop our approaches to structured policy
learning, we will further provide details from relevant recent work that combines
policy learning with different forms of structural considerations.

13

C h a p t e r 2

POLICY LEARNING UNDER VALUE-BASED CONSTRAINTS

Summary. When learning policies for real-world domains, two important questions
arise: (i) how to efficiently use pre-collected off-policy, non-optimal behavior data;
and (ii) how to mediate among different competing objectives and constraints. We
thus study the problem of batch policy learning under multiple constraints, and offer
a systematic solution. We first propose a flexible meta-algorithm that admits any
batch reinforcement learning and online learning procedure as subroutines. We then
present a specific algorithmic instantiation and provide performance guarantees for
the main objective and all constraints. As part of off-policy learning, we propose a
simple method for off-policy policy evaluation (OPE) and derive PAC-style bounds.
Our algorithm achieves strong empirical results in different domains, including in
a challenging problem of simulated car driving subject to multiple constraints such
as lane keeping and smooth driving. We also show experimentally that our OPE
method outperforms other popular OPE techniques on a standalone basis, especially
in a high-dimensional setting.

2.1 Policy Learning under Value-Based Constraints
We study the problem of policy learning under multiple constraints. Contemporary
approaches to learning sequential decision making policies have largely focused on
optimizing some cost objective that is easily reducible to a scalar value function.
However, in many real-world domains, choosing the right cost function to optimize
is often not a straightforward task. Frequently, the agent designer faces multiple
competing objectives. For instance, consider the aspirational task of designing au-
tonomous vehicle controllers: one may care about minimizing the travel time while
making sure the driving behavior is safe, consistent, or fuel efficient. Indeed, many
such real-world applications require the primary objective function be augmented
with an appropriate set of constraints (Altman, 1999).

Contemporary policy learning research has largely focused on either online rein-
forcement learning (RL) with a focus on exploration, or imitation learning (IL) with
a focus on learning from expert demonstrations. However, many real-world settings
already contain large amounts of pre-collected data generated by existing policies
(e.g., existing driving behavior, power grid control policies, etc.). We thus study the

14

complementary question: can we leverage this abundant source of (non-optimal)
behavior data in order to learn sequential decision making policies with provable
guarantees on both primary objective and constraint satisfaction?

We thus propose and study the problem of batch policy learning under multiple
constraints. Historically, batch RL is regarded as a subfield of approximate dynamic
programming (ADP) (Lange et al., 2012), where a set of transitions sampled from
the existing system is given and fixed. From an interaction perspective, one can view
many online RL methods (e.g., DDPG (Lillicrap et al., 2016)) as running a growing
batch RL subroutine per round of online RL. In that sense, batch policy learning is
complementary to any exploration scheme. To the best of our knowledge, the study
of constrained policy learning in the batch setting is novel.

We present an algorithmic framework for learning sequential decision making poli-
cies from off-policy data. We employ multiple learning reductions to online and
supervised learning, and present an analysis that relates performance in the reduced
procedures to the overall performance with respect to both the primary objective
and constraint satisfaction.

Constrained optimization is a well studied problem in supervised machine learning
and optimization. In fact, our approach is inspired by the work of (Agarwal et al.,
2018) in the context of fair classification. In contrast to supervised learning for clas-
sification, batch policy learning for sequential decision making introduces multiple
additional challenges. First, setting aside the constraints, batch policy learning itself
presents a layer of difficulty, and the analysis is significantly more complicated. Sec-
ond, verifying whether the constraints are satisfied is no longer as straightforward
as passing the training data through the learned classifier. In sequential decision
making, certifying constraint satisfaction amounts to an off-policy policy evaluation
problem, which is a challenging problem and the subject of active research. In
this chapter, we develop a systematic approach to address these challenges, provide
a careful error analysis, and experimentally validate our proposed algorithms. In
summary, our contributions in this chapter are:

• We formulate the problem of batch policy learning under multiple constraints,
and present the first approach of its kind to solve this problem. The definition
of constraints is general and can subsume many objectives. Our approach
utilizesmulti-level learning reductions, andwe showhow to instantiate it using
various batch RL and online learning subroutines. We show that guarantees
from the subroutines provably lift to provide end-to-end guarantees on the

15

original constrained batch policy learning problem.

• While leveraging techniques from batch RL as a subroutine, we provide a
refined theoretical analysis for general non-linear function approximation that
improves upon the previously known sample complexity result (Munos and
Szepesvári, 2008).

• To evaluate off-policy learning performance and constraint satisfaction, we
propose a simple new technique for off-policy policy evaluation (OPE), which
is used as a subroutine in our main algorithm. We show that it is competitive
to other OPE methods.

• We validate our algorithm and analysis with two experimental settings. First,
a simple navigation domain where we consider safety constraint. Second, we
consider a high-dimensional racing car domain with smooth driving and lane
centering constraints.

2.2 Problem Formulation in the Batch Setting
We first introduce notation. Let X Ă R3 be a bounded and closed 3-dimensional
state space. Let A be a finite action space. Let 2 : X ˆ A ÞÑ r0, s�s be the
primary objective cost function that is bounded by s�. Let there be < constraint cost
functions, 68 : X ˆ A ÞÑ r0, s�s, each bounded by s�. To simplify the notation, we
view the set of constraints as a vector function 6 : Xˆ A ÞÑ r0, s�s< where 6pG, 0q
is the column vector of individual 68pG, 0q. Let ?p¨|G, 0q denote the (unknown)
transition/dynamics model that maps state/action pairs to a distribution over the
next state. Let W P p0, 1q denote the discount factor. Let j be the initial states
distribution.

We consider the discounted infinite horizon setting. An MDP is defined using the
tuple pX,A, 2, 6, ?, W, jq. A policy c P Πmaps states to actions, i.e., cpGq P A. The
value function�c : X ÞÑ R corresponding to the primary cost function 2 is defined in
the usual way: �cpGq “ E

“
ř8
C“0 W

C2pGC , 0Cq | G0 “ G
‰

, over the randomness of the
policy c and transition dynamics ?. We similarly define the vector-value function
for the constraint costs �c : X ÞÑ R< as �cpGq “ E

“
ř8
C“0 W

C6pGC , 0Cq|G0 “ G
‰

.
Define �pcq and�pcq as the expectation of �cpGq and�cpGq, respectively, over the
distribution j of initial states.

16

Batch Policy Learning under Constraints
In batch policy learning, we have a pre-collected dataset:
D “ tpG8, 08, G

1
8
, 2pG8, 08q, 61:<pG8, 08qu

=
8“1, generated from (a set of) historical be-

havioral policies denoted jointly by cD. The goal of batch policy learning under
constraints is to learn a policy c P Π from D that minimizes the primary objective
cost while satisfying < different constraints:

min
cPΠ

�pcq

s.t. �pcq ď g

(OPT)

where �p¨q “ r61p¨q, . . . , 6<p¨qs
J and g P R< is a vector of known constants. We

assume that (OPT) is feasible. However, the dataset D might be generated from
multiple policies that violate the constraints.

Examples of Policy Learning with Constraints
Counterfactual & Safe Policy Learning. In conventional online RL, the agent
needs to “re-learn” from scratch when the cost function is modified. Our framework
enables counterfactual policy learning assuming the ability to compute the new cost
objective from the same historical data. A simple example is safe policy learning
(Garcıa and Fernández, 2015). Define safety cost 6pG, 0q “ qpG, 0, 2q as a new
function of existing cost 2 and features associated with current state-action pair.
The goal here is to counterfactually avoid undesirable behaviors observed from
historical data. We experimentally study this safety problem in Section 2.5.

Other examples from the literature that belong to this safety perspective include
planning under chance constraints (Ono et al., 2015; Blackmore et al., 2011). The
constraint here is �pcq “ ErIpG P X4AA>Aqs “ PpG P X4AA>Aq ď g.

Multi-objective Batch Learning. Traditional policy learning (RL or IL) presup-
poses that the agent optimizes a single cost function. In reality, we may want to
satisfy multiple objectives that are not easily reducible to a scalar objective function.
One example is learning fast driving policies under multiple behavioral constraints
such as smooth driving and lane keeping consistency (see Section 2.5).

Equivalence between Constraint Satisfaction and Regularization
Our constrained policy learning framework accommodates several existing regu-
larized policy learning settings. Regularization typically encodes prior knowledge,
and has been used extensively in the RL and IL literature to improve learning per-

17

formance. Many instances of regularized policy learning can be naturally cast into
(OPT):

• Entropy regularized RL (Haarnoja et al., 2017; Ziebart, 2010) maps to policy-
dependent constraint cost 6pGq “ Hpcp¨|Gqq, where H measures conditional
entropy.1

• Conservative policy improvement (Levine and Abbeel, 2014; Schulman et al.,
2015; Achiam et al., 2017) is equivalent to �pcq “ � !pc, c:q, where c: is
some “well-behaving” policy.

• Smooth imitation learning (Le et al., 2016a) is equivalent to �pcq “
minℎPH Δpℎ, cq, where � is a class of provably smooth policies and Δ is a
divergence metric.

• Regularizing RL with expert demonstration (Hester et al., 2018) is equivalent
to �pcq “ ErℓpcpGq, c˚pGqqs, where c˚ is the expert policy.

We provide further equivalence derivation of the above examples in Appendix A.1.
Of course, some problems are more naturally described using the regularization
perspective, while others using constraint satisfaction.

More generally, one can establish the equivalence between regularized and con-
strained policy learning via a simple appeal to Lagrangian duality as shown in
Proposition 2.2.1 below. This Lagrangian duality also has a game-theoretic in-
terpretation (Section 5.4 of (Boyd and Vandenberghe, 2004)), which serves as an
inspiration for developing our approach.

Proposition 2.2.1. Let Π be a convex set of policies. Let � : Π ÞÑ R, � : Π ÞÑ R

be value functions. Consider the two policy optimization tasks:

Regularization: min
cPΠ

�pcq ` _J�pcq

Constraint: min
cPΠ

�pcq s.t. �pcq ď g

Assume that the Slater’s condition is satisfied in the Constraint problem (i.e., Dc
s.t. �pcq ă g). Assume also that the constraint cannot be removedwithout changing
the optimal solution, i.e., infcPΠ�pcq ă infcPΠ:�pcqďg �pcq. Then @ _ ą 0, D g, and
vice versa, such that Regularization and Constraint share the same optimal
solutions. (Proof in Appendix A.1.)

1Constraint value function�pcq can be viewed as the expectation over discounted state visitation
distribution. The lack of explicit discount rate does not intefere with our overall approach.

18

2.3 Algorithms for Batch Policy Learning under Value-Based Constraints
To make use of strong duality, we first convexify the policy class Π by allowing
stochastic combinations of policies, which effectively expands Π into its convex
hull ConvpΠq. Formally, ConvpΠq contains randomized policies, which we denote
c “

ř)
C“1 UCcC for cC P Π and

ř)
C“1 UC “ 1. Executing a mixed c consists of first

sampling one policy cC from c1:) according to distribution U1:) , and then executing
cC . Note that we still have Ercs “

ř)
C“1 UCErcCs for any first-moment statistic of

interest (e.g., state distribution, expected cost). It is easy to see that the augmented
version of (OPT) over ConvpΠq has a solution at least as good as the original (OPT).
As such, to lighten the notation, we will equate Π with its convex hull for the rest of
the chapter.

Meta-Algorithm
The Lagrangian of (OPT) is !pc, _q “ �pcq ` _Jp�pcq ´ gq for _ P R<`. Clearly
(OPT) is equivalent to the min-max problem: min

cPΠ
max
_PR:

`

!pc, _q. We assume (OPT)

is feasible and that Slater’s condition holds (otherwise, we can simply increase the
constraint g by a tiny amount). Slater’s condition and policy class convexification
ensure that strong duality holds (Boyd and Vandenberghe, 2004), and (OPT) is also
equivalent to the max-min problem:max

_PR:
`

min
cPΠ

!pc, _q.

Since !pc, _q is linear in both _ and c (due to stochastic mixture2) , strong dual-
ity is also a consequence of von Neumann’s celebrated convex-concave minimax
theorem for zero-sum games (VonNeumann andMorgenstern, 2007). From a game-
thoeretic perspective, the problem becomes finding the equilibrium of a two-player
game between the c´player and the _´player (Freund and Schapire, 1999). In
this repeated game, the c´player minimizes !pc, _q given the current _, and the
_´player maximizes it given the current (mixture over) c.

We first present a meta-algorithm (Algorithm 1) that uses any no-regret online
learning algorithm (for _) and batch policy optimization (for c). At each iteration,
given _C , the c-player runs Best-response to get the best response:

Best-responsep_Cq “ arg min
cPΠ

!pc, _Cq

“ arg min
cPΠ

�pcq ` _JC p�pcq ´ gq.

2This places no restrictions on the individual policies. Individual policy can be non-linear and
cost function can be non-convex.

19

Algorithm 1Meta-algo for Batch Constrained Learning
1: for each round C do
2: cC Ð Best-responsep_Cq
3: pcC Ð

1
C

řC
C1“1 cC1 , p_C Ð

1
C

řC
C1“1 _C1

4: Lmax “ max_ !ppcC , _q
5: Lmin “ !pBest-responsepp_Cq, p_Cq
6: if Lmax ´ Lmin ď l then
7: Return pcC
8: end if
9: _C`1 Ð Online-algorithmpc1, . . . , cC´1, cCq
10: end for

This is equivalent to a standard batch reinforcement learning problem where we
learn a policy that is optimal with respect to 2 ` _JC 6. The corresponding mixed
strategy is the uniform distribution over all previous cC . In response to the c´player,
the _´player employs Online-algorithm, which can be any no-regret algorithm
that satisfies:

ÿ

C

!pcC , _Cq ě max
_

ÿ

C

!pcC , _q ´ >p)q

Finally, the algorithm terminates when the estimated primal-dual gap is below a
threshold l (Lines 7-8).

Leaving aside (for the moment) issues of generalization, Algorithm 1 is guaranteed
to converge assuming: (i) Best-response gives the best single policy in the class,
and (ii) Lmax and Lmin can be evaluated exactly.

Proposition 2.3.1. Assuming (i) and (ii) above, Algorithm 1 is guaranteed to stop
and the convergence depends on the regret of Online-algorithm. (Proof in
Appendix A.2.)

Specific Instantiation of Meta-Algorithm
We now focus on a specific instantiation of Algorithm 1. Algorithm 2 is our main
algorithm in this chapter.

Policy Learning. We instantiate Best-response with Fitted Q Iteration (FQI),
a model-free off-policy learning approach (Ernst et al., 2005). FQI relies on a
series of reductions to supervised learning. The key idea is to approximate the true
action-value function&˚ by a sequence t&: P F u

:“0, where F is a chosen function
class.

20

Algorithm 2 Constrained Batch Policy Learning
Input: Dataset D “ tG8, 08, G

1
8
, 28, 68u

=
8“1 „ cD. Online algorithm parameters: ℓ1

norm bound �, learning rate [
1: Initialize _1 “ p

�
<`1 , . . . ,

�
<`1q P R

<`1

2: for each round C do
3: Learn cC Ð FQIp2 ` _JC 6q // FQI with cost 2 ` _JC 6
4: Evaluate p�pcCq Ð FQEpcC , 2q // Algo 3 with cC , cost 2
5: Evaluate p�pcCq Ð FQEpcC , 6q // Algo 3 with cC , cost 6
6: pcC Ð

1
C

řC
C 1“1 cC 1

7: p�ppcCq Ð
1
C

řC
C 1“1

p�pcC 1q, p�ppcCq Ð 1
C

řC
C 1“1

p�pcC 1q

8: p_C Ð
1
C

řC
C 1“1 _C 1

9: Learn rc Ð FQIp2 ` p_JC 6q // FQI with cost 2 ` p_JC 6

10: Evaluate p�prcq Ð FQEprc, 2q, p�prcq Ð FQEprc, 6q

11: pLmax “ max
,}}1“�

ˆ

p�ppcCq ` _
J
”

p p�ppcCq ´ gq
J, 0

ıJ
˙

12: pLmin “ p�prcq ` p_JC

”

p p�prcq ´ gqJ, 0
ıJ

13: if pLmax ´ pLmin ď l then
14: Return pcC
15: end if
16: Set IC “

”

p p�pcCq ´ gq
J, 0

ıJ

P R<`1

17: _C`1r8s “ �
_C r8s4

´[IC r8s

ř

9 _C r 9s4
´[IC r 9s

@8 // _r8s the 8Cℎ coordinate
18: end for

In Lines 3 & 9, FQIp2 ` _J6q is defined as follows. With &0 randomly initialized,
for each : “ 1, . . . , , we form a new training dataset rD: “ tpG8, 08q, H8u

=
8“1 where:

@8 : H8 “ p28 ` _
J68q ` Wmin

0
&:´1pG

1
8 , 0q,

and pG8, 08, G18 , 28, 68q „ D (original dataset). A supervised regression procedure is
called to solve for:

&: “ arg min
5 PF

1
=

=
ÿ

8“1
p 5 pG8, 08q ´ H8q

2.

FQI returns the policy: c “ arg min0 & p¨, 0q. FQI has been shown to work
well with several empirical domains: spoken dialogue systems (Pietquin et al.,
2011), physical robotic soccer (Riedmiller et al., 2009), and cart-pole swing-up
(Riedmiller, 2005), and clinical treatment (Prasad et al., 2017). Another possible
model-free subroutine is Least-Squares Policy Iteration (LSPI) (Lagoudakis and
Parr, 2003b). One can also consider model-based alternatives (Ormoneit and Sen,
2002).

21

Algorithm 3 Fitted Q Evaluation: FQEpc, 2q
Input: Dataset D “ tG8 , 08 , G18 , 28u

=
8“1 „ cD. Function class F . Policy c to be evaluated

1: Initialize &0 P F randomly
2: for : “ 1, 2, . . . , do
3: Compute target H8 “ 28 ` W&:´1pG

1
8
, cpG1

8
qq @8

4: Build training set rD: “ tpG8 , 08q, H8u
=
8“1

5: Solve a supervised learning problem:
&: “ arg min

5 PF

1
=

ř=
8“1p 5 pG8 , 08q ´ H8q

2

6: end for
Output: p� cpGq “ & pG, cpGqq @G

Off-policy Policy Evaluation. A crucial difference between constrained policy
learning and existing work on constrained supervised learning is the technical chal-
lenge of evaluating the objective and constraints. First, estimating p!pc, _q (Lines
11-12) requires estimating p�pcq and p�pcq. Second, any gradient-based approach to
Online-learning requires passing in p�pcq ´ g as part of gradient estimate (line
15). This problem is known as the off-policy policy evaluation (OPE) problem: we
need to evaluate p�pcq and p�pcq having only access to data D „ cD

There are three main contemporary approaches to OPE: (i) importance weighting
(IS) (Precup et al., 2000, 2001), which is unbiased but often has high-variance; (ii)
regression-based direct methods (DM), which are typically model-based (Thomas
and Brunskill, 2016b),and can be biased but have much lower variance than IS; and
(iii) doubly-robust techniques (Jiang and Li, 2016a; Dudík et al., 2011b), which
combine IS and DM.

We propose a simple model-free technique using function approximation, called
Fitted Q Evaluation (FQE). FQE is based on an iterative reductions scheme similar
to FQI, but for the problem of off-policy evaluation. Algorithm 3 lays out the steps.
The key difference with FQI is that the <8= operator is replaced by &:´1pG

1
8
, cpG1

8
qq

(Line 3 of Algorithm 3). Each G1
8
comes from the original D. Since we know cpG1

8
q,

each rD: is well-defined. Note that FQE can be plugged-in as a direct method if one
wishes to augment the policy evaluation with a doubly-robust technique.

Online Learning Subroutine. As !pcC , _q is linear in _, many online convex
optimization approaches can be used for Online-algorithm. Perhaps the simpli-
est choice is Online Gradient Descent (OGD) (Zinkevich, 2003). We include an
instantiation using OGD in Appendix A.7.

For our main Algorithm 2, similar to (Agarwal et al., 2018), we use Exponenti-

22

ated Gradient (EG) (Kivinen and Warmuth, 1997), which has a regret bound of
$p

a

logp<q)q instead of $p
?
<)q as in OGD. One can view EG as a variant of

Online Mirror Descent (Nemirovsky and Yudin, 1983) with a softmax link function,
or of Follow-the-Regularized-Leader with entropy regularization (Shalev-Shwartz
et al., 2012). Gradient-based algorithms generally require bounded _. We thus force
}_}1 ď � using hyperparameter �. Solving (OPT) exactly requires � “ 8. We
will analyze Algorithm 2 with respect to finite �. With some abuse of notation, we
augment _ into a p<`1q´dimensional vector by appending �´}_}1, and augment
the constraint cost vector 6 by appending 0 (Lines 11, 12 & 15 of Algorithm 2).3

2.4 Theoretical Analysis of Proposed Algorithms
Convergence Guarantee
The convergence rate of Algorithm 2 depends on the radius � of the dual variables
_, the maximal constraint value s�, and the number of constraints <. In particular,
we can show $p �

2

l2 q convergence for primal-dual gap l.

Theorem 2.4.1 (Convergence of Algorithm 2). After) iterations, the empirical
duality gap is bounded by

pLmax ´ pLmin ď 2
� logp< ` 1q

[)
` 2[� s�2

Consequently, to achieve the primal-dual gap of l, setting [“ l

4 s�2�
will ensure

that Algorithm 2 converges after 16�2
s�2 logp<`1q
l2 iterations. (Proof in Appendix A.2.)

Convergence analysis of our main Algorithm 2 is an extension of the proof to
Proposition 2.3.1, leveraging the no-regret property of the EG procedure (Shalev-
Shwartz et al., 2012).

Generalization Guarantee of FQE and FQI
In this section, we provide sample complexity analysis for FQE and FQI as stan-
dalone procedures for off-policy evaluation and off-policy learning. We use the
notion of pseudo-dimension as capacity measure of non-linear function class F
(Friedman et al., 2001). Pseudo-dimension dimF , which naturally extends VC di-
mension into the regression setting, is defined as the VC dimension of the function
class induced by the sub-level set of functions of F : dimF “ VC-dimptpG, Hq ÞÑ

3The p< ` 1qCℎ coordinate of 6 is thus always satisfied. This augmentation is only necessary
when executing EG.

23

signp 5 pGq ´ Hq : 5 P F uq. Pseudo-dimension is finite for a large class of func-
tion approximators. For example, (Bartlett et al., 2017) bounded the pseudo-
dimension of piece-wise linear deep neural networks (e.g., with ReLU activations)
as $p,! log,q, where, is the number of weights, and ! is the number of layers.

Both FQI and FQE rely on reductions to supervised learning to update the value
functions. In both cases, the learned policy and evaluation policy induces a different
state-action distribution compared to the data generating distribution `. We use the
notion of concentration coefficient for the worst case, proposed by (Munos, 2003),
to measure the degree of distribution shift. The following standard assumption from
analysis of related ADP algorithms limits the severity of distribution shift over future
time steps:

Assumption 1 (Concentrability coefficient of future state-action distribution). (Munos,
2003, 2007;Munos and Szepesvári, 2008; Antos et al., 2008a,b; Lazaric et al., 2010,
2012; Farahmand et al., 2009; Maillard et al., 2010)
Let %c be the operator acting on 5 : Xˆ A ÞÑ R s.t.
p%c 5 qpG, 0q “

ş

X 5 pG
1, cpG1qq?p3G1|G, 0q. Given data generating distribution `, ini-

tial state distribution j, for < ě 0 and an arbitrary sequence of stationary policies
tc<u<ě1 define the concentration coeffient:

V`p<q “ sup
c1,...,c<

›

›

›

›

3pj%c1%c2 . . . %c<q

3`

›

›

›

›

8

We assume V` “ p1´ Wq2
ř

<ě1
<W<´1V`p<q ă 8.

This assumption is valid for a fairly large class of MDPs (Munos, 2007). For
instance V` is finite for any finite MDP, or any infinite state-space MDP with
bounded transition density.4 Having a finite concentration coefficient is equivalent
the top-Lyapunov exponent Γ ď 0 (Bougerol and Picard, 1992), which means the
underlying stochastic system is stable. We show below a simple sufficient condition
for Assumption 1 (albeit stronger than necessary).

Example 2.4.1. Consider an MDP such that for any non-stationary distribution d,
the marginals over states satisfy dGpGq

`GpGq
ď ! (i.e., transition dynamics are sufficiently

4This assumption ensures sufficient data diversity, even when the executing policy is determinis-
tic. An example of how learning can fail without this assumption is based on the “combination lock”
MDP (Koenig and Simmons, 1996). In this deterministic MDP example, V` can grow arbitrarily
large, and we need an exponential number of samples for both FQE and FQI. See Appendix A.4.

24

stochastic), and D" : @G, 0 : `p0|Gq ą 1
"

(i.e., the behavior policy is sufficiently
exploratory). Then V` ď !" .

Recall that for a given policy c, the Bellman (evaluation) operator is defined as
pTc&qpG, 0q “ ApG, 0q ` W

ş

X&pG
1, cpG1qq?p3G1|G, 0q. In general Tc 5 may not

belong to F for 5 P F . For FQE (and FQI), the main operation in the algorithm is
to iteratively project Tc&:´1 back to F via &: “ arg min 5 PF } 5 ´ Tc&:´1}. The
performance of both FQE and FQI thus depend on how well the function class F
approximates the Bellman operator. We measure the ability of function class F to
approximate the Bellman evaluation operator via the worst-case Bellman error:

Definition 2.4.1 (inherent Bellman evaluation error). Given a function class F
and policy c, the inherent Bellman evaluation error of F is defined as 3cF “

sup6PF inf 5 PF } 5 ´ Tc6}c where }¨}c is the ℓ2 norm weighted by the state-action
distribution induced by c.

We are now ready to state the generalization bound for FQE:

Theorem 2.4.2 (Generalization error of FQE). Under Assumption 1, for n ą 0
& X P p0, 1q, after iterations of Fitted Q Evaluation (Algorithm 3), for = “
$
`

s�4

n2 plog
X
` dimF log s�2

n2 ` log dimF q
˘

, we have with probability 1´ X:

���pcq ´ p�pcq
�� ď W1{2

p1´ Wq3{2
`a

V`
`

23 cF ` n
˘

`
2W {2 s�
p1´ Wq1{2

˘

.

This result shows a dependency on n of r$p 1
n2 q, compared to r$p 1

n4 q from other related
ADP algorithms (Munos and Szepesvári, 2008; Antos et al., 2008b). The price that
we pay is a multiplicative constant 2 in front of the inherent error 3cF . The error
from second term on RHS decays exponentially with iterations . The proof is in
Appendix A.5.

We can show an analogous generalization bound for FQI. While FQI has been
widely used, to the best of our knowledge, a complete analysis of FQI for non-linear
function approximation has not been previously reported.5

Definition 2.4.2 (inherent Bellman optimality error). (Munos and Szepesvári, 2008)
Recall that the Bellman optimality operator is defined as pT&qpG, 0q “ ApG, 0q `

5FQI for continuous action space from (Antos et al., 2008a) is a variant of fitted policy iteration
and not the version of FQI under consideration. The appendix of (Lazaric and Restelli, 2011) contains
a proof of FQI specifically for linear function class.

25

W
ş

X min01PA&pG1, 01q?p3G1|G, 0q. Given a function class F , the inherent Bellman
error is defined as 3F “ sup6PF inf 5 PF } 5 ´ T6}`, where }¨}` is the ℓ2 norm
weighted by `, the state-action distribution induced by cD.

Theorem 2.4.3 (Generalization error of FQI). Under Assumption 1, for n ą 0
& X P p0, 1q, after iterations of Fitted Q Iteration, for = “ $

`

s�4

n2 plog
X
`

dimF log s�2

n2 ` log dimF q
˘

, we have with probability 1´ X:���˚ ´ �pc q�� ď 2W
p1´ Wq3

`a

V` p23F ` nq ` 2W {2 s�
˘

where c is the policy acting greedy with respect to the returned function& . (Proof
in Appendix A.6.)

End-to-End Generalization Guarantee
We are ultimately interested in the test-time performance and constraint satisfaction
of the returned policy from Algorithm 2. We now connect the previous analyses
from Theorems 2.4.1, 2.4.2 & 2.4.3 into an end-to-end error analysis.

Since Algorithm 2 uses FQI and FQE as subroutines, the inherent Bellman error
terms 3F and 3cF will enter our overall performance bound. Estimating the inherent
Bellman error caused by function approximation is not possible in general (chapter
11 of (Sutton and Barto, 2018b)). We assume existence of a sufficiently expressive
F that can generally make 3F and 3cF arbitrarily small. To simplify our end-to-end
analysis, consider 3F “ 0 and 3cF “ 0, i.e., the function class F is closed under
applying the Bellman operator.

Assumption 2 (Bellman operator realizability). We consider function classes F
sufficiently rich so that @ 5 : T 5 P F & Tc 5 P F for the policies c returned by
Algorithm 2.

With Assumptions 1 & 2, we have the following error bound:

Theorem 2.4.4 (Generalization guarantee of Algorithm 2). Let c˚ be the optimal
policy to (OPT). Denote s+ “ s� ` � s�. Let be the number of iterations of FQE
and FQI. Let ĉ be the policy returned by Algorithm 2, with termination threshold l.
For n ą 0 & X P p0, 1q, when = “ $

`

s+4

n2 plog p<`1q
X

` dimF log s+2

n2 ` log dimF q
˘

,
we have with probability at least 1´ X:

�pĉq ď �pc˚q ` l `
p4` �qW
p1´ Wq3

`a

V`n ` 2W {2s+
˘

,

26

and

�pĉq ď g ` 2
s+ ` l

�
`

W1{2

p1´ Wq3{2
`a

V`n `
2W {2s+
p1´ Wq1{2

˘

.

The proof is in Appendix A.3. This result guarantees that, upon termination of
Algorithm 2, the true performance on the main objective can be arbitrarily close to
that of the optimal policy. At the same time, each constraint will be approximately
satisfied with high probability, assuming sufficiently large � & , and sufficiently
small n .

2.5 Empirical Study
We perform experiments on two different domains: a grid-world domain (fromOpe-
nAI’s FrozenLake) under a safety constraint, and a challenging high-dimensional
car racing domain (from OpenAI’s CarRacing) under multiple behavior constraints.
We seek to answer the following questions in our experiments: (i) whether the em-
pirical convergence behavior of Algorithm 2 is consistent with our theory; and (ii)
how the returned policy performs with respect to the main objective and constraint
satisfaction. Appendix A.8 includes a more detailed discussion of our experiments.

Frozen Lake.
Environment &Data Collection. The environment is an 8x8 grid. The agent has 4
actions N,S,E,W at each state. The main goal is to navigate from a starting position
to the goal. Each episode terminates when the agent reaches the goal or falls into
a hole. The main cost function is defined as 2 “ ´1 if goal is reached, otherwise
2 “ 0 everywhere. We simulate a non-optimal data gathering policy cD by adding
random sub-optimal actions to the shortest path policy from any given state to goal.
We run c� for 5000 trajectories to collect the behavior dataset D (with constraint
cost measurement specified below).

Counterfactual Safety Constraint. We augment the main objective 2 with safety
constraint cost defined as 6 “ 1 if the agent steps into a hole, and 6 “ 0 otherwise.
We set the constraint threshold g “ 0.1, roughly 75% of the accumulated constraint
cost of behavior policy cD. The threshold can be interpreted as a counterfactually
acceptable probability that we allow the learned policy to fail.

Results. The empirical primal dual gap pLmax ´ pLmin in Figure 2.1 (left) quickly
decreases toward the optimal gap of zero. The convergence is fast and monotonic,
supporting the predicted behavior from our theory. The test-time performance in
Figure 2.1 (middle) shows the safety constraint is always satisfied, while the main

27

Figure 2.1: FrozenLake Results. (Left) Empirical duality gap of algorithm 2 vs.
optimal gap. (Middle) Comparison of returned policy and others w.r.t. (top) main
objective value and (bottom) safety constraint value. (Right) FQE vs. other OPE
methods on a standalone basis.

objective cost also smoothly converges to the optimal value achieved by an online
RL baseline (DQN) trained without regard to the constraint. The returned policy
significantly outperformed the data gathering policy cD on both main and safety
cost.

Car Racing.
Environment &Data Collection. The car racing environment (OpenAI), is a high-
dimensional domain where the state is a 96ˆ96ˆ3 tensor of raw pixels. The action
space A “ tsteering ˆ gas ˆ brakeu takes 12 discretized values. The goal in this
episodic task is to traverse over 95% of the track, measured by a given number of
“tiles” as a proxy for distance coverage. The agent receives a reward (negative cost)
for each unique tile crossed and no reward if the agent is off-track. A small positive
cost applies at every time step, with maximum horizon of 1000 for each episode.
With these costs given by the environment, one can train online RL agent using
DDQN (Van Hasselt et al., 2016). We collect « 5000 trajectories from DDQN’s
randomization, resulting in data set D with « 94000 transition tuples.

Fast Driving under Behavioral Constraints. We study the problem of minimizing
environment cost while subject to two behavioral constraints: smooth driving and
lane centering. The first constraint�0 approximates smooth driving by 60pG, 0q “ 1
if 0 contains braking action, and 0 otherwise. The second constraint cost 61 measures

28

Figure 2.2: CarRacing Results. (Left) & (Middle) (Lower is better) Comparing our
algorithm, regularized LSPI, online RL w/o constraints, behavior policy c� w.r.t.
main cost objectives and two constraints. (Right) FQE vs. other OPE methods on a
standalone basis.

the distance between the agent and center of lane at each time step. This is a highly
challenging setup since three objectives and constraints are in direct conflict with
one another, e.g., fast driving encourages the agent to cut corners and apply frequent
brakes to make turns. Outside of this work, we are not aware of previous work in
policy learning with 2 or more constraints in high-dimensional settings.

Baseline and Procedure. As a naïve baseline, DDQN achieves low cost, but ex-
hibits “non-smooth” driving behavior (see our supplementary videos). We set the
threshold for each constraint to 75% of the DDQN benchmark. We also compare
against regularized batch RL algorithms (Farahmand et al., 2009), specifically reg-
ularized LSPI. We instantiate our subroutines, FQE and FQI, with multi-layered
CNNs. We augment LSPI’s linear policy with non-linear features derived from a
well-performing FQI model.

Results. The returned mixture policy from our algorithm achieves low main objec-
tive cost, comparable with online RL policy trained without regard to constraints.
After several initial iterations violating the braking constraint, the returned policy
- corresponding to the appropriate _ trade-off - satisties both constraints, while
improving the main objective. The improvement over data gathering policy is

29

significant for both constraints and main objective.

Regularized policy learning is an alternative approach to (OPT) (section 2.2). We
provide the regularized LSPI baseline the same set of _ found by our algorithm
for one-shot regularized learning (Figures 2.2 (left & middle)). While regularized
LSPI obtains good performance for themain objective, it does not achieve acceptable
constraint satisfaction. By default, regularized policy learning requires parameter
tuning heuristics. In principle, one can perform a grid-search over a range of
parameters to find the right combination - we include such an example for both
regularized LSPI and FQI in Appendix A.8. However, since our objective and
constraints are in conflict, main objective and constraint satisfaction of policies
returned by one-shot regularized learning are sensitive to step changes in _. In
constrast, our approach is systematic, and is able to avoid the curse-of-dimensionality
of brute-force search that comes with multiple constraints.

In practice, one may wish to deterministically extract a single policy from the
returned mixture for execution. A de-randomized policy can be obtained naturally
from our algorithm by selecting the best policy from the existing FQE’s estimates
of individual Best-response policies.

Off-Policy Evaluation
The off-policy evaluation by FQE is critical for updating policies in our algorithm,
and is ultimately responsible for certifying constraint satisfaction. While other OPE
methods can also be used in place of FQE, we find that the estimates from popular
methods are not sufficiently accurate in a high-dimensional setting. As a standalone
comparison, we select an individual policy and compare FQE against PDIS (Precup
et al., 2000), DR (Jiang and Li, 2016a) and WDR (Thomas and Brunskill, 2016b)
with respect to the constraint cost evaluation. To compare both accuracy and data-
efficiency, for each domain we randomly sample different subsets of dataset D (from
10% to 100% transitions, 30 trials each). Figure 2.1 (right) and 2.2 (right) illustrate
the difference in quality. In the FrozenLake domain, FQE performs competitively
with the top baseline method (DR and WDR), converging to the true value estimate
as the data subsample grows close to 100%. In the high-dimensional car domain,
FQE signficantly outperforms other methods.

2.6 Other Related Work
Constrained MDP (CMDP). Among the most important techniques for solving
CMDP are the Lagrangian approach and solving the dual LP program via occupation

30

measure(Altman, 1999). However, these approaches require knownMDP, and small
state dimension so that solving via an LP is tractable. More recently, the constrained
policy optimization approach (CPO) by (Achiam et al., 2017) learns a policy when
the model is not initially known. The focus of CPO is on online safe exploration,
and thus is not directly comparable to our setting. Other approaches (Cheng et al.,
2019d; Dalal et al., 2018) address safe exploration by building the constraint directly
into the policy.

Multi-objective Reinforcement Learning (MORL). (Van Moffaert and Nowé,
2014; Roĳers et al., 2013) Approaches to MORL have largely focused on approx-
imating the Pareto frontier that trades-off competing objectives (Van Moffaert and
Nowé, 2014; Roĳers et al., 2013). The underlying approach toMORL frequently re-
lies on linear or non-linear scalarization of rewards to heuristically turns the problem
into a standard RL problem. Our proposed approach represents another systematic
paradigm to solve MORL, whether in batch or online settings.

2.7 Discussion
We have presented in this chapter a systematic approach for batch policy learning
under multiple constraints. Our problem formulation can accommodate general
definition of constraints, as partly illustrated by our experiments. We provide
guarantees for our algorithm for both the main objective and constraint satisfaction.
Our empirical results show a promise of making constrained batch policy learning
applicable for real-world domains, where behavior data is abundant.

While our algorithmic development focuses on the batch setting, i.e.,our imple-
mentation complies with the steps laid out in Algorithm 2. Adopting the proposed
algorithmic approach to the online setting is relatively straightforward. However,
in very large scale or high-dimensional problems, we may consider a noisy update
version for both policy learning and evaluation. We leave the theorerical and prac-
tical exploration of this extension to future work. In our high-dimensional domain
with long horizon, our proposed FQE algorithm for OPE achieves strong results.
More extensive comparisons between FQE and other contemporary OPE methods
deserve further study. We will focus on the problem of off-policy value estimation
in the next chapter.

31

C h a p t e r 3

OFF-POLICY VALUE ESTIMATION FOR REINFORCEMENT
LEARNING

Summary. As seen from the previous chapter, the problem of off-policy value
estimation (OPE) is critical for reliable value-based approaches to policy learning.
Also known as off-policy policy evaluation in reinforcement learning context, OPE
has recently attracted a significant attention due to its practical impoirtance. How-
ever, the disparate experimental conditions in recent OPE literature make it difficult
both for practitioners to choose a reliable estimator for their application domain, as
well as for researchers to identify fruitful research directions. In this chapter, we
present the first detailed empirical study of a broad suite of OPE methods. Based
on thousands of experiments and empirical analysis, we offer a summarized set of
guidelines to advance the understanding of OPE performance in practice, and sug-
gest directions for future research. Along the way, our empirical findings challenge
several commonly held beliefs about which class of approaches tends to perform
well. Our accompanying software implementation serves as a first comprehensive
benchmark for OPE.

3.1 Introduction to Off-Policy Value Estimation
We focus on understanding the relative performance of existing methods for off-
policy value estimation (OPE), which is the problem of estimating the value of a
target policy using only pre-collected historical data generated by another policy.
The earliest OPE methods rely on classical importance sampling to handle the
distribution mismatch between the target and behavior policies (Precup et al., 2000).
Many advanced OPE methods have since been proposed for both contextual bandits
(Dudík et al., 2011b; Bottou et al., 2013; Swaminathan et al., 2017; Wang et al.,
2017; Li et al., 2015; Ma et al., 2020) and reinforcement learning settings (Jiang
and Li, 2016a; Dudík et al., 2011b; Farajtabar et al., 2018a; Liu et al., 2018c;
Xie et al., 2019). These new developments reflect practical interests in deploying
reinforcement learning to safety-critical situations (Li et al., 2011; Wiering, 2000;
Bottou et al., 2013; Bang and Robins, 2005), and the increasing importance of
off-policy learning and counterfactual reasoning more broadly (Degris et al., 2012;
Thomas et al., 2017; Munos et al., 2016; Le et al., 2019b; Liu et al., 2019; Nie et al.,

32

2019). OPE is also closely related to the problem of dynamic treatment regimes in
the causal inference literature (Murphy et al., 2001).

Empirical validations have long contributed to the scientific understanding and ad-
vancement of machine learning techniques (Chapelle and Li, 2011; Caruana et al.,
2008; Caruana and Niculescu-Mizil, 2006). Recently, many have called for careful
examination of empirical findings of contemporary deep learning and deep rein-
forcement learning efforts (Henderson et al., 2018; Locatello et al., 2019). As OPE
is central to real-world applications of reinforcement learning, an in-depth empir-
ical understanding is critical to ensure usefulness and accelerate progress. While
many recent methods are built on sound mathematical principles, a practitioner is
often faced with a non-trivial task of selecting the most appropriate estimator for
their application. A notable gap in current literature is a comprehensive empirical
understanding of contemporary methods, due in part to the disparate testing envi-
ronments and varying experimental conditions among prior work. Consequently,
there is little holistic insight into where different methods particularly shine, nor a
systematic summary of the challenges one may encounter when in different scenar-
ios. Researchers and practitioners may reasonably deduce the following commonly
held impressions from surveying the literature:

1. Doubly robustmethods are often assumed to outperformdirect and importance
sampling methods.

2. Horizon length is the primary driver of poor performance for OPE estimators.

3. Model-based is the go-to direct method, either standalone or as part of a
doubly-robust estimator.

The reality, as we will discuss, is much more nuanced. In this chapter, we take a
closer look at recently proposed methods and offer a thorough empirical study of
a wide range of estimators. We design various experimental conditions to explore
the success and failure modes of different methods. We synthesize general insights
to guide practitioners, and suggest directions for future research. Finally, we pro-
vide a highly extensive software package that can interface with new experimental
environments and methods to run new OPE experiments at scale.

Notations and Preliminaries for the Chapter
As per RL standard, we represent the environment by x-, �, %, ', Wy. - is the state
space (or observation space in the non-Markov case), � is the (finite) action space,

33

IP
S

M
et

ho
ds

Direct Methods

Hybrid Methods

Doubly-Robust
Weighted Doubly Robust

MAGIC

Fitted Q Evaluation
Model Fitting

Direct Q Regression
More Robust Doubly-Robust

Retrace(-)

Q/(-)
Tree Backup(-)

Standard IS
Standard WIS
Per-Decision IS
Per-Decision WIS

Infinite Horizon

Figure 3.1: Categorization of OPE methods. Some methods are direct but have IPS
influence and thus fit slightly away from the direct methods axis.

% : - ˆ � ˆ - Ñ r0, 1s is the transition function, ' : - ˆ � Ñ R is the reward,
and discount factor W P p0, 1s. A policy c maps states to a distribution over actions,
and cp0|Gq denotes the probability of choosing 0 P � in G P - .

OPE is typically considered in the episodic RL setting. A behavior policy c1
generates a historical data set, � “ tg8u#

8“1, of # trajectories (or episodes), where
8 indexes over trajectories, and g8 “ pG80, 0

8
0, A

8
0, . . . , G

8
)´1, 0

8
)´1, A

8
)´1q. The episode

length) is frequently assumed to be fixed for notational convenience. In practice,
one can pad additional absorbing states to handle variable lengths. Given a desired
evaluation policy c4, the OPE problem is to estimate the value +pc4q, defined as:

+pc4q “ EG„30

«

)´1
ÿ

C“0
WCAC |G0 “ G

ff

,

with 0C „ c4p¨|GCq, GC`1 „ %p¨|GC , 0Cq, AC „ 'pGC , 0Cq, and 30 is the initial state
distribution.

3.2 Overview of Off-Policy Value Estimators
OPE methods were historically categorized into importance sampling, direct, and
doubly robust methods. This demarcation was first introduced for contextual
bandits (Dudík et al., 2011b), and later to reinforcement learning (Jiang and Li,
2016a). Some recent methods have blurred the boundary of these categories, such

34

as Retrace(_) (Munos et al., 2016) that uses a product of importance weights of mul-
tiple time steps for off-policy & correction, and MAGIC (Thomas and Brunskill,
2016a) that switches between importance weighting and direct methods.

In this section, we propose to regroup OPE into three similar classes of methods,
but with expanded definition for each category. Figure 3.1 provides an overview
of OPE methods that we consider. The relative positioning of different methods
reflects how close they are to being a pure regression-based estimator versus a pure
importance sampling-based estimator. Appendix B.4 contains a full description of
all methods under consideration.

Inverse Propensity Scoring (IPS)
Inverse Propensity Scoring (IPS), also called importance sampling, is widely used
in statistics (Powell and Swann, 1966; Hammersley and Handscomb, 1964; Horvitz
and Thompson, 1952) and RL (Precup et al., 2000). The key idea is to reweight
the rewards in the historical data by the importance sampling ratio between c4 and
c1, i.e., how likely a reward is under c4 versus c1. IPS methods yield consistent
and (typically) unbiased estimates; however the product of importance weights can
be unstable for long time horizons. The cumulative importance weight between
c4 and c1 is written as d8

9 : 9 1 “
śminp 9 1,)´1q

C“ 9

c4p0
8
C |G

8
Cq

c1p0
8
C |G

8
Cq
(where d8

C:C1 “ 1 for C1 ă C).

Weighted IPS replaces a normalization factor # by F 9 : 9 1 “
1
#

ř#
8“1 d

8
9 : 9 1 . The

weighted versions are biased but strongly consistent.

Importance Sampling (IS) takes the form:
ř#
8“1

d80:)´1
#

ř)´1
C“0 W

CAC . There are three
other main IPS variants that we consider: Per-Decision Importance Sampling
(PDIS), Weighted Importance Sampling (WIS) and Per-Decision WIS (PDWIS)
(see Appendix Table B.14 for full definitions). Other variants of IPS exist but are
neither consistent nor unbiased (Thomas, 2015). IPS often assumes known c1,
which may not be possible – one approach is to estimate c1 from data (Hanna et al.,
2019), resulting in a potentially biased estimator that can sometimes outperform
traditional IPS methods.

Direct Methods (DM)
The main distinction of direct methods from IPS is the focus on regression-based
techniques to (more) directly estimate the value functions of the evaluation policy
(&c4 or +c4). We consider eight different direct approaches, described completely
in appendix B.4. Similar to policy learning literature, we can view OPE through the

35
Table 3.1: Environment parameters - Part 1

Environment Graph Graph-MC MC Pix-MC Enduro

Markov? yes yes yes yes yes
State/Obs position position [pos, vel] pixels pixels
) 4 or 16 250 250 250 1000
Stoch Env? variable no no no no
Stoch Rew? variable no no no no
Sparse Rew? variable terminal terminal terminal dense
&̂ Func. Class tabular tabular linear/NN NN NN

Table 3.2: Environment parameters - Part 2

Environment Graph-POMDP GW Pix-GW

Markov? no yes yes
State/Obs position position pixels
) 2 or 8 25 25
Stoch Env? no no variable
Stoch Rew? no no no
Sparse Rew? terminal dense dense
&̂ Func. Class tabular tabular NN

lens of model-based vs. model-free approaches1.

Model-based. Perhaps the most commonly used DM is model-based (also called
approximate model, denoted AM), where the transition dynamics, reward function
and termination condition are directly estimated from historical data (Jiang and Li,
2016a; Paduraru, 2013). The resulting learned MDP is then used to compute the
value of c4, e.g., by Monte-Carlo policy evaluation.

Model-free. Estimating the action-value function p&p¨; \q, parameterized by \, is
the focus of several model-free approaches. The value estimate is then: p+pc4q “

1
#

ř#
8“1

ř

0P� c4p0|B
8
0q
p&pG80, 0; \q. A simple example is Fitted Q Evaluation (FQE)

(Le et al., 2019a), which is a model-free counterpart to AM, and is functionally
a policy evaluation counterpart to batch Q learning. FQE learns a sequence of

1the distinction is arguably blurry. We stickwith this convention simply for linguistic convenience

36

estimators p&p¨, \q “ lim:Ñ8
p&: , where:

p&: “ min
\

1
#

#
ÿ

8“1

)´1
ÿ

C“0
p p&:´1pG

8
C , 0

8
C ; \q ´ H8Cq2,

H8C ” A
8
C ` WEc4

p&:´1pG
8
C`1, ¨; \q, p&0 ” 0.

Indeed, several model-free methods originated from off-policy learning settings,
but are also natural for OPE. &cp_q (Harutyunyan et al., 2016) can be viewed as a
generalization of FQE that looks to the horizon limit to incorporate the long-term
value into the backup step. Retrace(_) (Munos et al., 2016) and Tree-Backup(_)
(Precup et al., 2000) also use full trajectories, but additionally incorporate varying
levels of clipped importance weights adjustment. The _-dependent term mitigates
instability in the backup step, and is chosen based on experimental findings ofMunos
et al. (2016).

Q Regression (Q-Reg) and More Robust Doubly-Robust (MRDR) (Farajtabar et al.,
2018a) are two recently proposed direct methods that make use of cumulative
importance weights in deriving the regression estimate for &c4 , solved through a
quadratic program. MRDR changes the objective of the regression to that of directly
minimizing the variance of the Doubly-Robust estimator (see Section 3.2).

Liu et al. (2018c) recently proposed a method for the infinite horizon setting (IH).
While IH can be viewed as a Rao-Blackwellization of the IS estimator, we include
it in the DM category because it essentially solves the Bellman equation for state
distributions and requires function approximation, which are more characteristic
of DM. IH shifts the focus from importance sampling over action sequences to
estimating the importance ratio l between state density distributions induced by
c1 and c4. This ratio replaces all but the final importance weights d)´1 in the IH
estimate, which resembles IS. More recently, several estimators inspired by density
ratio estimation idea have been proposed (Nachum et al., 2019; Uehara and Jiang,
2019; Xie et al., 2019) - we will leave evaluation of these new extensions for future
work.

Hybrid Methods (HM)
Hybrid methods subsume doubly robust-like approaches, which combine aspects
of both IPS and DM. Standard doubly robust OPE (denoted DR) (Jiang and Li,
2016a) is an unbiased estimator that leverages a DM to decrease the variance of the

37

unbiased estimates produced by importance sampling techniques:

#
ÿ

8“1

p+pG80q

#
`

1
#

#
ÿ

8“1

)´1
ÿ

C“0
WCd80:CrA

8
C ´

p&pG8C , 0
8
Cq ` W

p+pG8C`1qs.

Other HMs include Weighted Doubly-Robust (WDR) and MAGIC (see Appendix
B.4). WDR self-normalizes the importance weights (similar to WIS). MAGIC
introduces adaptive switching between DR and DM; in particular, one can imagine
using DR to estimate the value for part of a trajectory and then using DM for the
remainder. Using this idea, MAGIC (Thomas and Brunskill, 2016a) finds an optimal
linear combination among a set that varies the switch point between WDR and DM.
Note that any DM that returns p&c4pG, 0; \q yields a set of corresponding DR, WDR,
and MAGIC estimators. As a result, we consider twenty-one hybrid approaches in
our experiments.

3.3 Experiments
ExperimentDesignPrinciples. Weconsider several domain characteristics (simple-
complex, deterministic-stochastic, sparse-dense rewards, short-long horizon), c1, c4
pairs (close-far), and data sizes # (small-large), to study OPE performance under
varying conditions.

We use two standard RL benchmarks from OpenAI Brockman et al. (2016): Moun-
tain Car (MC) and Enduro Atari game. As many RL benchmarks are fixed and
deterministic, we design 6 additional environments that allow control over var-
ious conditions: (i) Graph domain (tabular, varying stochasticity and horizon),
(ii) Graph-POMDP (tabular, control for representation), (iii) Graph-MC (simplify-
ing MC to tabular case), (iv) Pixel-MC (study MC in high-dimensional setting),
(v) Gridworld (tabular, long horizon version) and (vi) Pixel-Gridworld (controlled
Gridworld experiments with function approximation).

All together, our benchmark consists of eight environments with characteristics
summarized in Table 3.1. Complete descriptions can be found in Appendix B.5.

Protocol & Metrics. Each experiment depends on specifying environment and its
properties, behavior policy c1, evaluation policy c4, and number of trajectories #
from rolling-out c1 for historical data. The true on-policy value+pc4q is the Monte-
Carlo estimate via 10, 000 rollouts of c4. We repeat each experiment < “ 10 times
with different random seeds. We judge the quality of a method via two metrics:

38

• Relative mean squared error (Relative MSE): 1
<

ř<
8“1

pp+pc4q8´
1
<

ř<
9“1 +pc4q 9q

2

p 1
<

ř<
9“1 +pc4q 9q

2 ,
which allows a fair comparison across different conditions.2

• Near-top Frequency: For each experimental condition, we include the number
of times each OPE estimator is within 10% of the best performing estimator
to facilitate aggregate comparison across domains.

Implementation & Hyperparameters. With thirty-three different OPE methods
considered, we run thousands of experiments across the above eight domains. Hy-
perparameters are selected based on publication, code release or author consultation.
We maintain a consistent set of hyperparameters for each estimator and each en-
vironment across experimental conditions (see hyperparameter choice in appendix
Table B.23). We create a software package that allows running experiments at scale
and easy integration with new domains and techniques for future research. Due to
limited space, we will show the results from selected experiment conditions. The
complete results, with highlighted best method in each class, are available in the
appendix.

3.4 Results
What is the best method?
The first important takeaway is that there is no clear-cut winner: no single method
or method class is consistently the best performer, as multiple environmental factors
can influence the accuracy of each estimator. With that caveat in mind, based on the
aggregate top performance metrics, we can recommend the following estimators for
each method class (See Table 3.3 and appendix Table B.2).

Inverse propensity scoring (IPS). In practice, weighted importance sampling,
which is biased, tends to be more accurate and data-efficient than unbiased basic
importance sampling methods. Among the four IPS-based estimators, PDWIS tends
to perform best (Figure 3.4 left).

Direct methods (DM). Generally, FQE, &cp_q, and IH tend to perform the best
among DM (appendix Table B.2). FQE tends to be more data efficient and is the
best method when data is limited (Figure 3.5). &cp_q generalizes FQE to multi-
step backup, and works particularly well with more data, but is computationally
expensive in complex domains. IH is highly competitive in long horizons and with
high policy mismatch in a tabular setting (appendix Tables B.6, B.7). In pixel-based

2The performance metric in prior OPE work is typically mean squared error MSE“
1
<

ř<
8“1p

p+pc4q8 ´+pc4q8q
2

39

Table 3.3: Method Selection Guidelines - Part 1

Class Recommendation When to use

Direct FQE Stochastic env, severe policy mismatch
&p_q Compute non-issue, moderate policy mismatch
IH Long horizon, mild policy mismatch, good kernel

IPS PDWIS Short horizon, mild policy mismatch
Hybrid MAGIC FQE Severe model misspecification

MAGIC &p_q Compute non-issue, severe model misspecification

domains, however, choosing a good kernel function for IH is not straightforward,
and IH can underperform other DM (appendix Table B.10). We provide a numerical
comparison among direct methods for tabular (appendix Figure B.11) and complex
settings (Figure 3.4 center).

Table 3.4: Method Selection Guidelines - Part 2. (For Near-top Frequency, see
definition in Section 3.3 and support in Table B.2)

Class Recommendation Prototypical env. Near-top Freq.

Direct FQE Graph, MC, Pix-MC 23.7%
&p_q GW/Pix-GW 15.0%
IH Graph-MC 19.0%

IPS PDWIS Graph 4.7%
Hybrid MAGIC FQE Graph-POMDP, Enduro 30.0%

MAGIC &p_q Graph-POMDP 17.3%

Hybrid methods (HM). With the exception of IH, each DM corresponds to three
HM: standard doubly robust (DR), weighted doubly robust (WDR), and MAGIC.
For each DM, its WDR version often outperforms its DR version. MAGIC can often
outperform WDR and DR. However, MAGIC comes with additional hyperparam-
eters, as one needs to specify the set of partial trajectory length to be considered.
Unsurprisingly, their performance highly depends on the underlying DM. In our
experiments, FQE and &cp_q are typically the most reliable: MAGIC with FQE or
MAGIC with&cp_q tend to be among the best hybrid methods (see appendix Figures
B.17 - B.21).

Key drivers of method accuracy
The main reason for the inconsistent performance of estimators is various environ-
mental factors that are inadequately studied from prior work. These coupled factors

40

often impact accuracy interdependently:

• Representation mismatch: Function approximators with insufficient represen-
tation power weaken DM, and so do overly rich ones as they cause overfitting
(e.g., tabular classes). These issues do not impact IPS. Severemisspecification
favors HM and weakens DM.

• Horizon length: Long horizons hurt all methods, but especially those depen-
dent on importance weights (including IPS, HM and some DM).

• Policy mismatch: Large divergence between c1 and c4 hurts all methods, but
tends to favor DM in the small data regime relative to HM and IPS. HM will
catch up with DM as data size increases.

• Bad estimation of unknown behavior policy:3 c1 estimation quality depends
on the state and action dimensionality, and historical data size. Poor c1
estimates cause HM and IPS to underperform simple DM.

• Environment / Reward stochasticity: Stochastic environments hurt the data
efficiency of all methods, but favor DM over HM and IPS.

We perform a series of controlled experiments to isolate the impact of these factors.
Figure 3.3 shows a typical comparison of the best performing method in each class,
under a tabular setting with both short and long horizons, and a large mismatch
between c1 and c4. The particular best method in each class may change depending
on the specific conditions. Within each class, a general guideline for method
selection is summarized in Table 3.3. The appendix contains the full empirical
results of all experiments.

A recipe for method selection
Figure 3.2 summarizes our general guideline for navigating key factors that affect
the accuracy of different estimators. To guide the readers through the process, we
now dive further into our experimental design to test various factors, and discuss
the resulting insights.

Do we potentially have representation mismatch? Representation mismatch comes
from two sources: model misspecification and poor generalization. Model misspec-
ification refers to the insufficient representation power of the function class used

3Poor estimation of c1 can also be seen as model misspecification. We distinguish the represen-
tation issue of c1 from other representation issues related to DM

41

Figure 3.2: Method Class Selection Decision Tree. Numerical support can be found
in Appendix B.2.

to approximate either the transition dynamics (AM), value function (other DM), or
state distribution density ratio (in IH).

Tabular representation for MDP controls for representation mismatch by ensuring
adequate function class capacity, as well as zero inherent Bellman error (left branch,
Fig 3.2). In such case, we may still suffer from poor generalization without sufficient
data coverage, which depends on other factors in the domain settings.

The effect of representation mismatch (right branch, Fig 3.2) can be understood via
two controlled scenarios:

• Misspecified and poor generalization: We expose the impact of this severe
mismatch scenario via the Graph POMDP construction, where selected infor-
mation are omitted from an otherwise equivalent Graph MDP. HM substan-
tially outperform DM in this setting (Figure 3.3 right versus left).

• Misspecified but good generalization: Function class such as neural networks
has powerful generalization ability, but may introduce bias and inherent Bell-
man error4 (Munos and Szepesvári, 2008; Chen and Jiang, 2019) (see linear
vs. neural networks comparison for Mountain Car in appendix Fig B.8).
Still, powerful function approximation makes (biased) DM very competitive

4defined as sup6PF inf 5 PF | | 5 ´Tc6 | |3c , where F is function class chosen for approximation, and
3c is state distribution induced by evaluation policy c

42

Figure 3.3: Comparing IPS versus DM versus HM under short and long horizon,
large policy mismatch and large data. Left: (Graph domain) Deterministic envi-
ronment. Center: (Graph domain) Stochastic environment and rewards. Right:
(Graph-POMDP) Model misspecification (POMDP). Minimum error per class is
shown.

with HM, especially under limited data and in complex domains (see pixel-
Gridworld in appendix Fig B.22-B.24). However, function approximation bias
may cause serious problem for high dimensional and long horizon settings.
In the extreme case of Enduro (very long horizon and sparse rewards), all DM
fail to convincingly outperform a naïve average of behavior data (appendix
Fig B.7).

Short horizon vs. Long horizon? It is well-known that IPS methods are sensitive
to trajectory length (Li et al., 2015). Long horizon leads to an exponential blow-
up of the importance sampling term, and is exacerbated by significant mismatch
between c1 and c4. This issue is inevitable for any unbiased estimator (Jiang and
Li, 2016b) (a.k.a., the curse of horizon (Liu et al., 2018b)). Similar to IPS, DM
relying on importance weights also suffer from long horizon (appendix Fig B.11),
though to a lesser degree. IH aims to bypass the effect of cumulative weighting in
long horizons, and indeed performs substantially better than IPS methods in very
long horizon domains (Fig 3.4 left).

A frequently ignored aspect in previous OPE work is a proper distinction between
fixed, finite horizon tasks (IPS focus), infinite horizon tasks (IH focus), and indefinite
horizon tasks, where the trajectory length is finite but varies depending on the
policy. Many applications should properly belong to the indefinite horizon category.5
Applying HM in this setting requires proper padding of the rewards (without altering
the value function in the infinite horizon limit) as DR correction typically assumes
fixed length trajectories.

5Applying IH in the indefinite horizon case requires setting up an absorbing state that loops over
itself with zero terminal reward.

43

How different are behavior and target policies? Similar to IPS, the performance of
DM is negatively correlated with the degree of policy mismatch. Figure 3.5 shows
the interplay of increasing policy mismatch and historical data size, on the top DM
in the deterministic gridworld. We use psup0P�,GP-

c4p0|Gq

c1p0|Gq
q) as an environment-

independent metric of mismatch between the two policies. The performance of
the top DM (FQE, &cp_q, IH) tend to hold up better than IPS methods when the
policy gap increases (appendix Figure B.13). FQE and IH are best in the small data
regime, and &cp_q performs better as data size increases (Figure 3.5). Increased
policy mismatch weakens the DM that use importance weights (Q-Reg, MRDR,
Retrace(_) and Tree-Backup(_)).

Do we have a good estimate of the behavior policy? Often the behavior policy
may not be known exactly and requires estimation, which can introduce bias and
cause HM to underperform DM, especially in low data regime (e.g., pixel gridworld
appendix Figure B.22-B.24). Similar phenomenon was observed in the statistics
literature (Kang et al., 2007). As the data size increases, HMs regain the advantage
as the quality of the c1 estimate improves.

Is the environment stochastic or deterministic? While stochasticity affects all meth-
ods by straining the data requirement, HM are more negatively impacted than DM
(Figure 3.3 center, Figure B.12). This can be justified by e.g., the variance analysis
of DR, which shows that the variance of the value function with respect to stochastic
transitions will be amplified by cumulative importance weights and then contribute
to the overall variance of the estimator; see Jiang and Li (2016b, Theorem 1) for
further details. We empirically observe that DM frequently outperform their DR
versions in the small data case (Figure B.12). In a stochastic environment and
tabular setting, HM do not provide significant edge over DM, even in short horizon
case. The gap closes as the data size increases (Figure B.12).

Challenging common wisdom
We close this section by briefly revisiting commonly held beliefs about high-level
performance of OPE methods.

Are HM always better than DM? No. Overall, DM are surprisingly competitive
with HM. Under high-dimensionality, long horizons, estimated behavior policies,
or reward/environment stochasticity, HM can underperform simple DM, sometimes
significantly (e.g., see appendix Figure B.12).

Concretely, HM can perform worse than DM in the following scenarios that we

44

Figure 3.4: Left: (Graph domain) Comparing IPS (and IH) under short and long
horizon. Mild policy mismatch setting. PDWIS is often best among IPS. But IH
outperforms in long horizon. Center: (Pixel-MC) Comparing direct methods in
high-dimensional, long horizon setting. Relatively large policy mismatch. FQE and
IH tend to outperform. AM is significantly worse in complex domains. Retrace(_),
Q(_) and Tree-Backup(_) are very computationally expensive and thus excluded.
Right: (Pixel Gridworld) Comparing MAGIC with different base DM and different
data size. Large policy mismatch, deterministic environment, known c1.

tested:

• Tabular with large policy mismatch, or stochastic environments (appendix
Figure B.12, Table B.4, B.7).

• Complex domains with long horizon and unknown behavior policy (appendix
Figure B.22-B.24, Table B.9).

When data is sufficient, or model misspecification is severe, HM do provide consis-
tent improvement over DM.

Is horizon length the most important factor? No. Despite conventional wisdom
suggesting IPS methods are most sensitive to horizon length, we find that this is not
always the case. Policy divergence sup0P�,GP-

c4p0|Gq

c1p0|Gq
can be just as, if not more,

meaningful. For comparison, we designed two scenarios with identical mismatch
psup0P�,GP-

c4p0|Gq

c1p0|Gq
q) as defined in Section 3.4 (see appendix Tables B.12, B.13).

Starting from a baseline scenario of short horizon and small policy divergence (ap-
pendix Table B.11), extending horizon length leads to 10ˆ degradation in accuracy,
while a comparable increase in policy divergence causes a 100ˆ degradation.

How good is model-based direct method (AM)? AM can be among the worst per-
forming direct methods (appendix Table B.2). While AM performs well in tabular
setting in the large data case (appendix Figure B.11), it tends to perform poorly in
high dimensional settings with function approximation (e.g., Figure 3.4 center). Fit-
ting the transition model %pG1|G, 0q is often more prone to small errors than directly
approximating &pG, 0q. Model fitting errors also compound with long horizons.

45

Figure 3.5: (Gridworld domain) Errors are directly correlated with policy mismatch
but inversely correlated with data size. We pick the best direct methods for illustra-
tion. The two plots represent the same figure from two different vantage points. See
full figures in appendix.

Other Considerations
Hypeparameter selection. As with many machine learning techniques, hyperpa-
rameter choice affects the performance of most estimators (except IPS estimators).
The situation is more acute for OPE than the online off-policy learning setting,
due to the lack of proper validation signal (such as online game score). When us-
ing function approximation, direct methods may not have satisfactory convergence,
and require setting a reasonable termination threshold hyperparameter. Q-Reg and
MRDR require extra care to avoid ill-conditioning, such as tuning with L1 and L2
regularization.6 Similarly, the various choice of the kernel function for IH and
the index set for hybrid method such as MAGIC have large impact on the perfor-
mance. In general, given the choice among different hybrid (or direct) methods, we
recommend opting for simplicity as a guiding principle.

Computational considerations. DM are generally significantly more computation-
ally demanding than IPS. In complex domains, model-free iterative methods can be
expensive in training time. Iterative DM that incorporate rollouts until the end of
trajectories during training (Retrace(_), &cp_q, Tree-Backup(_)) are the most com-
putationally demanding7, requiring an order of) times the number of &̂:´1pG, 0q

lookups per gradient step compared to FQE. Model-based method (AM) are ex-
pensive at test time when coupled with HM, since rolling-out the learned model
is required at every state along the trajectory.8 HM versions of direct methods
require) times more inference steps, which is often fast after training. In difficult

6From correspondence with the authors.
7(Munos et al., 2016) limits the rolling-out horizon to 16 in Atari domains, but for the policy

learning scenario.
8Unlike iterative DM (e.g., FQE), model-based method AM does not benefit from stochastic

gradient speedup. Parallelizing the rollouts of AM is highly recommended.

46

tasks such as Atari games, running AM, Retrace(_), &cp_q, Tree-Backup(_) can be
prohibitively expensive. Q-Reg, MRDR are non-iterative methods and thus are the
fastest to execute among DM. The run-time of IH is dependent on the batch size in
building a kernel matrix to compute state similarity. The batch size for IH should
be as large as possible, but could significantly slow the training.

Sparsity (non-smoothness) of the rewards: Methods that are dependent on cumu-
lative importance weights are also sensitive to reward sparsity (Figure B.14). We
recommend normalizing the rewards. As a rough guideline, zero-centering rewards
often improve performance of methods that depend on importance weights. This
seemingly naïve practice can be actually viewed as a special case of DR using a
constant DM component (baseline), and can yield improvements over vanilla IPS
(Jiang and Li, 2016a).

3.5 Discussion and Future Directions
The most difficult environments break all estimators. Atari games pose significant
challenges for contemporary techniques due to long horizon and high state dimen-
sionality. It is possible that substantially more historical data is required for current
OPE methods to succeed. However, to overcome computational challenge in com-
plex RL domains, it is important to identify principled ways to stabilize iterative
methods such as FQE, Retrace(_), Q(_) when using function approximation, as
convergence is typically not attainable. Some recent progress has been made in sta-
bilizing batch Q-learning in the off-policy learning setting (Fujimoto et al., 2019).
It remains to be seen whether similar approach can also benefit DM for OPE.

Lack of short-horizon benchmark in high-dimensional settings. Evaluation of other
complex RL tasks with short horizon is currently beyond the scope of our study, due
to the lack of a natural benchmark. We refer to prior work on OPE for contextual
bandits, which are RL problems with horizon 1 (Dudík et al., 2011b). For contextual
bandits, it has been shown that while DR is highly competitive, it is sometimes
substantially outperformed by DM (Wang et al., 2017). New benchmark tasks
should have longer horizon than contextual bandits, but shorter than typical Atari
games. We also currently lack natural stochastic environments in high-dimensional
RL benchmarks. An example candidate for medium horizon, complex OPE domain
is NLP tasks such as dialogue.

Other OPE settings. Below we outline several practically relevant settings that
current literature has overlooked:

47

• Continuous actions. Recent literature on OPE has exclusively focused on
finite actions. OPE for continuous action domains will benefit continuous
control applications. Currently, continuous action domains will not work
with all IPS and HM (see IPS for continuous contextual bandits by Kallus
and Zhou (2018)). Among DM, perhaps only FQE may reasonable work with
continuous action tasks with some adaptation.

• Missing data coverage. A common assumption in the analysis of OPE is a full
support assumption: c4p0|Gq ą 0 implies c1p0|Gq ą 0, which often ensure
unbiasedness of estimators (Precup et al., 2000; Liu et al., 2018c; Dudík et al.,
2011b). This assumption may not hold, and is often not verifiable in practice.
Practically, violation of this assumption requires regularization of unbiased
estimators to avoid ill-conditioning (Liu et al., 2018c; Farajtabar et al., 2018a).
One avenue to investigate is to optimize bias-variance trade-off when the full
support is not applicable.

• Confounding variables. Existing OPE research often assumes that the
behavior policy chooses actions solely based on the state. This assumption is
often violated when the decisions in the historical data are made by humans
instead of algorithms, who may base their decisions on variables not recorded
in the data, causing confounding effects. Tackling this challenge, possibly
using techniques from causal inference (Tennenholtz et al., 2019; Oberst and
Sontag, 2019), is an important future direction.

Evaluating new OPE estimators. More recently, several new OPE estimators have
been proposed: (Nachum et al., 2019; Zhang et al., 2020) further build on the
perspective of density ratio estimation from IH; Uehara and Jiang (2019) provides
a closely related approach that learns value functions from important ratios; (Xie
et al., 2019) proposes improvement over standard IPS by estimating marginalized
state distribution in an analogous fashion to IH; (Kallus and Uehara, 2019a,b)
analyze double reinforcement learning estimator that makes use of both estimates
for & function and state density ratio. While we have not included these new
additions in our analysis, our software implementation is highly modular and can
easily accommodate new estimators and environments.

Algorithmic approach to method selection. While we have identified a general
guideline for selecting OPE method, often it is not easy to judge whether some
decision criteria are satisfied (e.g., quantifying model misspecification, degree of
stochasticity, or appropriate data size). As more OPE methods continue to be

48

developed, an important missing piece is a systematic technique for model selection,
given a high degree of variability among existing techniques.

49

C h a p t e r 4

REGULARIZED LEARNING WITH POLICY-BASED
STRUCTURE (SMOOTH IMITATION LEARNING)

Summary. We study the problem of smooth imitation learning for online sequence
prediction, where the goal is to train a policy that can smoothly imitate demonstrated
behavior in a dynamic and continuous environment in response to online, sequential
context input. Since the mapping from context to behavior is often complex, we take
a learning reduction approach to reduce smooth imitation learning to a regression
problem using complex function classes that are regularized to ensure smoothness.
We present a learning meta-algorithm that achieves fast and stable convergence to
a good policy. Our approach enjoys several attractive properties, including being
fully deterministic, employing an adaptive learning rate that can provably yield larger
policy improvements compared to previous approaches, and the ability to ensure
stable convergence. Our empirical results demonstrate significant performance gains
over previous approaches.

4.1 Introduction
In many complex planning and control tasks, it can be very challenging to explicitly
specify a good policy. For such tasks, the use of machine learning to automatically
learn a good policy from observed expert behavior, also known as imitation learning
or learning from demonstrations, has proven tremendously useful (Abbeel and Ng,
2004; Ratliff et al., 2009; Argall et al., 2009; Ross and Bagnell, 2010; Ross et al.,
2011a; Jain et al., 2013).

In this chapter, we study the problem of imitation learning for smooth online se-
quence prediction in a continuous regime. Online sequence prediction is the problem
of making online decisions in response to exogenous input from the environment,
and is a special case of reinforcement learning (see Section 4.2). We are further
interested in policies that make smooth predictions in a continuous action space.

Our motivating example is the problem of learning smooth policies for automated
camera planning (Chen et al., 2016): determining where a camera should look
given environment information (e.g., noisy person detections) and corresponding

50

demonstrations from a human expert.1

It is widely accepted that a smoothly moving camera is essential for generating
aesthetic video (Gaddam et al., 2015). From a problem formulation standpoint,
one key difference between smooth imitation learning and conventional imitation
learning is the use of a “smooth” policy class (which we formalize in Section 4.2),
and the goal now is to mimic expert demonstrations by choosing the best smooth
policy.

The conventional supervised learning approach to imitation learning is to train a
classifier or regressor to predict the expert’s behavior given training data comprising
input/output pairs of contexts and actions taken by the expert. However, the learned
policy’s prediction affects (the distribution of) future states during the policy’s
actual execution, and so violates the crucial i.i.d. assumptionmade bymost statistical
learning approaches. To address this issue, numerous learning reduction approaches
have been proposed (Daumé III et al., 2009; Ross and Bagnell, 2010; Ross et al.,
2011a), which iteratively modify the training distribution in various ways such that
any supervised learning guarantees provably lift to the sequential imitation setting
(potentially at the cost of statistical or computational efficiency).

We present a learning reduction approach to smooth imitation learning for online
sequence prediction, which we call SIMILE (Smooth IMItation LEarning). Build-
ing upon learning reductions that employ policy aggregation (Daumé III et al.,
2009), we provably lift supervised learning guarantees to the smooth imitation set-
ting and show much faster convergence behavior compared to previous work. Our
contributions in this section can be summarized as:

• We formalize the problem of smooth imitation learning for online sequence
prediction, and introduce a family of smooth policy classes that is amenable
to supervised learning reductions.

• We present a principled learning reduction approach, which we call SIMILE.
Our approach enjoys several attractive practical properties, including learning
a fully deterministic stationary policy (as opposed to SEARN (Daumé III
et al., 2009)), and not requiring data aggregation (as opposed to DAgger (Ross
et al., 2011a)) which can lead to super-linear training time.

1Access data at http://www.disneyresearch.com/publication/smooth-imitation-
learning/ and code at http://github.com/hoangminhle/SIMILE.

http://www.disneyresearch.com/publication/smooth-imitation-learning/
http://www.disneyresearch.com/publication/smooth-imitation-learning/
http://github.com/hoangminhle/SIMILE

51

• We provide performance guarantees that lift the the underlying supervised
learning guarantees to the smooth imitation setting. Our guarantees hold
in the agnostic setting, i.e., when the supervised learner might not achieve
perfect prediction.

• We show how to exploit a stability property of our smooth policy class to
enable adaptive learning rates that yield provably much faster convergence
compared to SEARN (Daumé III et al., 2009).

• We empirically evaluate using the setting of smooth camera planning (Chen
et al., 2016), and demonstrate the performance gains of our approach.

4.2 Formulating the Problem as Functional Regularization
Let X “ tG1, . . . , G)u Ă X) denote a context sequence from the environment X,
and A “ t01, . . . , 0)u Ă A) denote an action sequence from some action spaceA.
Context sequence is exogenous, meaning 0C does not influence future context GC`: for
: ě 1. Let Π denote a policy class, where each c P Π generates an action sequence
A in response to a context sequence X. Assume X Ă R<,A Ă R: are continuous
and infinite, with A non-negative and bounded such that ®0 ĺ 0 ĺ '®1 @0 P A.

Predicting actions 0C may depend on recent contexts GC , . . . , GC´? and actions
0C´1, . . . , 0C´@. Without loss of generality, we define a state space S as tBC “
rGC , 0C´1su.2 Policies c can thus be viewed as mapping states S “ XˆA to actions
A. A roll-out of c given context sequence X “ tG1, . . . , G)u is the action sequence
A “ t01, . . . , 0)u:

0C “ cpBCq “ cprGC , 0C´1sq,

BC`1 “ rGC`1, 0Cs @C P r1, . . . ,)s .

Note that unlike the general reinforcement learning problem, we consider the setting
where the state space splits into external and internal components (by definition, 0C
influences subsequent states BC`: , but not GC`:). The use of exogenous contexts tGCu
models settings where a policy needs to take online, sequential actions based on
external environmental inputs, e.g. smooth self-driving vehicles for obstacle avoid-
ance, helicopter aerobatics in the presence of turbulence, or smart grid management
for external energy demand. The technical motivation of this dichotomy is that we
will enforce smoothness only on the internal state.

2We can always concatenate consecutive contexts and actions.

52

Consider the example of autonomous camera planning for broadcasting a sport event
(Chen et al., 2016). X can correspond to game information such as the locations of
the players, the ball, etc., and A can correspond to the pan-tilt-zoom configuration
of the broadcast camera. Manually specifying a good camera policy can be very
challenging due to sheer complexity involved with mapping X to A. It is much
more natural to train c P Π to mimic observed expert demonstrations. For instance,
Π can be the space of neural networks or tree-based ensembles (or both).

Following the basic setup from (Ross et al., 2011a), for any policy c P Π, let 3cC
denote the distribution of states at time C if c is executed for the first C´1 time steps.
Furthermore, let 3c “ 1

)

ř)
C“1 3

c
C be the average distribution of states if we follow

c for all) steps. The goal of imitation learning is to find a policy ĉ P Π which
minimizes the imitation loss under its own induced distribution of states:

ĉ “ arg min
cPΠ

ℓcpcq “ arg min
cPΠ

EB„3c rℓpcpBqqs , (4.1)

where the (convex) imitation loss ℓpcpBqq captures how well c imitates expert
demonstrations for state B. One common ℓ is squared loss between the policy’s
decision and the expert demonstration: ℓpcpBqq “ }cpBq ´ c˚pBq}2 for some norm
}.}. Note that computing ℓ typically requires having access to a training set of expert
demonstrations c˚ on some set of context sequences. We also assume an agnostic
setting, where the minimizer of (4.1) does not necessarily achieve 0 loss (i.e. it
cannot perfectly imitate the expert).

Smooth Imitation Learning & Smooth Policy Class
In addition to accuracy, a key requirement of many continuous control and planning
problems is smoothness (e.g., smooth camera trajectories). Generally, “smoothness"
may reflect domain knowledge about stability properties or approximate equilibria
of a dynamical system. We thus formalize the problem of smooth imitation learning
as minimizing (4.1) over a smooth policy class Π.

Most previous work on learning smooth policies focused on simple policy classes
such as linear models (Abbeel and Ng, 2004), which can be overly restrictive. We
instead define a much more general smooth policy class Π as a regularized space of
complex models.

Definition 4.2.1 (Smooth policy class Π). Given a complex model class F and
a class of smooth regularizers H , we define smooth policy class Π Ă F ˆH as
satisfying:

53

Π fi tc “ p 5 , ℎq, 5 P F , ℎ P H | cpBq is close to

both 5 pG, 0q and ℎp0q

@ induced state B “ rG, 0s P Su

where closeness is controlled by regularization.

For instance, F can be the space of neural networks or decision trees andH be the
space of smooth analytic functions. Π can thus be viewed as policies that predict
close to some 5 P F but are regularized to be close to some ℎ P H . For sufficiently
expressive F , we often have that Π Ă F . Thus optimizing over Π can be viewed as
constrained optimization over F (by H), which can be challenging. Our SIMILE
approach integrates alternating optimization (between F and H) into the learning
reduction. We provide two concrete examples of Π below.

Example 4.2.1 (Π_). Let F be any complex supervised model class, and define the
simplest possible H fi tℎp0q “ 0u. Given 5 P F , the prediction of a policy c can
be viewed as regularized optimization over the action space to ensure closeness of
c to both 5 and ℎ:

cpG, 0q “ arg min
01PA

›

› 5 pG, 0q ´ 01
›

›

2
` _

›

›ℎp0q ´ 01
›

›

2

“
5 pG, 0q ` _ℎp0q

1` _
“
5 pG, 0q ` _0

1` _
, (4.2)

where regularization parameter _ trades-off closeness to 5 and to previous action.
For large _, cpG, 0q is encouraged make predictions that stays close to previous
action 0.

Example 4.2.2 (Linear auto-regressor smooth regularizers). Let F be any complex
supervised model class, and define H using linear auto-regressors, H fi tℎp0q “

\J0u, which model actions as a linear dynamical system (Wold, 1939). We can
define c analogously to (4.2).

In general, SIMILE requires that Π satisfies a smooth property stated below. This
property, which is exploited in our theoretical analysis (see Section 4.5), is motivated
by the observation that given a (near) constant stream of context sequence, a stable
behavior policy should exhibit a corresponding action sequence with low curvature.
The two examples above satisfy this property for sufficiently large _.

54

Definition 4.2.2 (�-state-smooth imitation policy). For small constant 0 ă � ! 1,
a policy cprG, 0sq is �-state-smooth if it is �-smooth w.r.t. 0, i.e. for fixed G P X,
@0, 01 P A, @8:

›

›∇c8prG, 0sq ´ ∇c8prG, 01sq
›

›

˚
ď � }0 ´ 01} where c8 indicates the

8Cℎ component of vector-valued function3 cpBq “
“

c1pBq, . . . , c:pBq
‰

P R: , and }.}
and }.}˚ are some norm and dual norm respectively. For twice differentiable policy
c, this is equivalent to having the bound on the Hessian ∇2c8prG, 0sq ĺ �I: @8.

4.3 Related Work in Imitation Learning
The most popular traditional approaches for learning from expert demonstration fo-
cused on using approximate policy iteration techniques in the MDP setting (Kakade
and Langford, 2002; Bagnell et al., 2003). Most prior approaches operate in dis-
crete and finite action space (He et al., 2012; Ratliff et al., 2009; Abbeel and Ng,
2004; Argall et al., 2009). Some focus on continuous state space (Abbeel and Ng,
2005), but requires a linear model for the system dynamics. In contrast, we focus
on learning complex smooth functions within continuous action and state spaces.

One natural approach to tackle themore general setting is to reduce imitation learning
to a standard supervised learning problem (Syed and Schapire, 2010; Langford
and Zadrozny, 2005; Lagoudakis and Parr, 2003a). However, standard supervised
methods assume i.i.d. training and test examples, thus ignoring the distribution
mismatch between training and rolled-out trajectories directly applied to sequential
learning problems (Kakade and Langford, 2002). Thus a naive supervised learning
approach normally leads to unsatisfactory results (Ross and Bagnell, 2010).

Iterative Learning Reductions. State-of-the-art learning reductions for imitation
learning typically take an iterative approach, where each training round uses standard
supervised learning to learn a policy (Daumé III et al., 2009; Ross et al., 2011a). In
each round =, the following happens:

• Given initial state B0 drawn from the starting distribution of states, the learner
executes current policy c=, resulting in a sequence of states B=1, . . . , B

=
)
.

• For each B=C , a label p0=C (e.g., expert feedback) is collected indicating what the
expert would do given B=C , resulting in a new dataset D= “ tpBC , p0

=
C qu.

3This emphasizes the possibility that c is a vector-valued function of 0. The gradient andHessian
are viewed as arrays of : gradient vectors and Hessian matrices of 1-d case, since we simply treat
action in R: as an array of : standard functions.

55

• The learner integratesD= to learn a policy ĉ=. The learner updates the current
policy to c=`1 based on ĉ= and c=.

The main challenge is controlling for the cascading errors caused by the changing
dynamics of the system, i.e., the distribution of states in each D= „ 3c= . A policy
trained using 3c= induces a different distribution of states than 3c= , and so is no
longer being evaluated on the same distribution as during training. A principled
reduction should (approximately) preserve the i.i.d. relationship between training
and test examples. Furthermore the state distribution 3c should converge to a
stationary distribution.

The arguably most notable learning reduction approaches for imitation learning are
SEARN (Daumé III et al., 2009) and DAgger (Ross et al., 2011a). At each round,
SEARN learns a newpolicy ĉ= and returns a distribution (ormixture) over previously
learned policies: c=`1 “ Vĉ= ` p1 ´ Vqc= for V P p0, 1q. For appropriately small
choices of V, this stochastic mixing limits the “distribution drift” between c= and
c=`1 and can provably guarantee that the performance of c=`1 does not degrage
significantly relative to the expert demonstrations.4

DAgger, on the other hand, achieves stability by aggregating a new dataset at each
round to learn a new policy from the combined data set D Ð D Y D=. This
aggregation, however, significantly increases the computational complexity and thus
is not practical for large problems that require many iterations of learning (since the
training time grows super-linearly w.r.t. the number of iterations).

Both SEARN and DAgger showed that only a polynomial number of training rounds
is required for convergence to a good policy, but with a dependence on the length
of horizon) . In particular, to non-trivially bound the total variation distance
}3c=4F ´ 3c>;3}1 of the state distributions between old and new policies, a learning
rate V ă 1

)
is required to hold (Lemma 1 of Daumé III, Langford, and Marcu (2009)

and Theorem 4.1 of Ross, Gordon, and Bagnell (2011a)). As such, systems with
very large time horizons might suffer from very slow convergence.

Our Contributions. Within the context of previous work, our SIMILE approach
can be viewed as extending SEARN to smooth policy classes with the following
improvements:

4A similar approach was adopted in Conservative Policy Iteration for the MDP setting (Kakade
and Langford, 2002).

56

• We provide a policy improvement bound that does not depend on the time
horizon) , and can thus converge much faster. In addition, SIMILE has
adaptive learning rate, which can further improve convergence.

• For the smooth policy class described in Section 4.2, we show how to generate
simulated or “virtual” expert feedback in order to guarantee stable learning.
This alleviates the need to have continuous access to a dynamic oracle / expert
that shows the learner what to do when it is off-track. In this regard, the way
SIMILE integrates expert feedback subsumes the set-up from SEARN and
DAgger.

• Unlike SEARN, SIMILE returns fully deterministic policies. Under the con-
tinuous setting, deterministic policies are strictly better than stochastic policies
as (i) smoothness is critical and (ii) policy sampling requires holding more
data during training, which may not be practical for infinite state and action
spaces.

• Our theoretical analysis reveals a new sequential prediction setting that yields
provably fast convergence, in particular for smooth policy classes on finite-
horizon problems. Existing settings that enjoy such results are limited to
Markovian dynamics with discounted future rewards or linear model classes.

4.4 Algorithm for Smooth Imitation Learning Setting
Our learning algorithm, called SIMILE (Smooth IMItation LEarning), is described
in Algorithm 4. At a high level, the process can be described as:

1. Start with some initial policy ĉ0 (Line 2).

2. At iteration =, use c=´1 to build a new state distribution S= and dataset
D= “ tpB

=
C , p0

=
C qu (Lines 4-6).

3. Train ĉ= “ arg mincPΠ EB„S= rℓ=pcpBqqs, where ℓ= is the imitation loss (Lines
7-8). Note that ℓ= needs not be the original ℓ, but simply needs to converge to
it.

4. Interpolate ĉ= and c=´1 to generate a new deterministic policy c= (Lines 9-
10). Repeat from Step 2 with = Ð = ` 1 until some termination condition is
met.

Supervised Learning Reduction. The actual reduction is in Lines 7-8, where we
follow a two-step procedure of first updating the smooth regularize ℎ=, and then

57

Algorithm 4 SIMILE (Smooth IMItation LEarning)
Input: features X “ tGCu, human trajectory A˚ “ t0˚C u, base routine Train,

smooth regularizers ℎ P H
1: Initialize A0 Ð A˚, S0 Ð t

”

GC , 0
˚
C´1

ı

u,

ℎ0 “ arg min
ℎPH

)
ř

C“1

›

›

›
0˚C ´ ℎp0

˚
C´1q

›

›

›

2: Initial policy c0 “ ĉ0 Ð TrainpS0,A0| ℎ0q
3: for = “ 1, . . . , # do
4: A= “ t0

=
C u Ð c=´1pS=´1q //sequential roll-out

5: S= Ð tB=C “

”

GC , 0
=
C´1

ı

u //B=C “
“

GC:C´?, 0C´1:C´@
‰

6: pA= “ tp0=C u @B=C P S= // collect smooth feedback

7: ℎ= “ arg min
ℎPH

)
ř

C“1

›

›

›
p0=C ´ ℎpp0

=
C´1q

›

›

›
//new regularizer

8: ĉ= Ð TrainpS=, pA=| ℎ=q // train policy
9: V Ð Vpℓpĉ=q, ℓpc=´1qq //adaptively set V
10: c= “ Vĉ= ` p1´ Vqc=´1 // update policy
11: end for
output Last policy c#

training ĉ= via supervised learning. In other words, Train finds the best 5 P F
possible for a fixed ℎ=. We discuss how to set the training targets p0=C below.

Policy Update. The new policy c= is a deterministic interpolation between the
previous c=´1 and the newly learned ĉ= (Line 10). In contrast, for SEARN, c=
is a stochastic interploation (Daumé III et al., 2009). Lemma 4.5.2 and Corollary
4.5.3 show that deterministic interpolation converges at least as fast as stochastic for
smooth policy classes.

This interpolation step plays two key roles. First, it is a form of myopic or greedy
online learning. Intuitively, rolling out c= leads to incidental exploration on the
mistakes of c=, and so each round of training is focused on refining c=. Second,
the interpolation in Line 10 ensures a slow drift in the distribution of states from
round to round, which preserves an approximate i.i.d. property for the supervised
regression subroutine and guarantees convergence.

However this model interpolation creates an inherent tension between maintaining
approximate i.i.d. for valid supervised learning and more aggressive exploration
(and thus faster convergence). For example, SEARN’s guarantees only apply for
small V ă 1{) . SIMILE circumvents much of this tension via a policy improvement
bound that allows V to adaptively increase depending on the quality of ĉ= (see
Theorem 4.5.6), which thus guarantees a valid learning reduction while substantially

58

ht

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

CVPR
#307

CVPR
#307

CVPR 2015 Submission #307. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Learning Online Smooth Predictors for Realtime Camera Planning

Anonymous CVPR submission

Paper ID 307

Abstract

Data-driven prediction methods are extremely useful in
many computer vision applications. However, the estima-
tors are normally learned within a time independent con-
text. When used for online prediction, the results are jittery.
Although smoothing can be added after the fact (such as
a Kalman filter), the approach is not ideal. Instead, tem-
poral smoothness should be incorporated into the learning
process. In this paper, we show how the ‘search and learn’
algorithm (which has been used previously for tagging parts
of speech) can be adapted to efficiently learn regressors for
temporal signals. We apply our data-driven learning tech-
nique to a camera planning problem: given noisy basketball
player detection data, we learn where the camera should
look based on examples from a human operator. Our exper-
imental results show how a learning algorithm which takes
into account temporal consistency of sequential predictions
has significantly better performance than time independent
estimators.

1. Introduction
In this work, we investigate the problem of determining

where a camera should look when broadcasting a basketball
game (see Fig. 1). Realtime camera planning shares many
similarities with online object tracking: in both cases, the
algorithms must constantly revise an estimated target posi-
tion as new evidence is acquired. Noise and other ambi-
guities cause non-ideal jittery trajectories: they are are not
good representations of how objects actually move, and in
camera planning, lead to unaesthetic results. In practice,
temporal regularization is employed to minimize jitter. The
amount of regularization is a design parameter, and controls
a trade-off between precision and smoothness. In contrast to
object tracking, smoothness is of paramount importance in
camera control: fluid movements which maintain adequate
framing are preferable to erratic motions which pursue per-
fect composition.

Model-free estimation methods, such as random forests,
are very popular because they can be learned directly from

Figure 1: Camera Planning. The objective is to predict
an appropriate pan angle for a broadcast camera based
on noisy player detection data. Consider two planning al-
gorithms (shown as blue and red curves in the schematic)
which both make the same mistake at time A but recover to a
good framing by C (the ideal camera trajectory is shown in
black). The blue solution quickly corrects by time B using
a jerky motion, whereas the red curve conducts a gradual
correction. Although the red curve has a larger discrepancy
with the ideal motion curve, its velocity characteristics are
most similar to the ideal motion path.

data. Often, the estimator is learned within a time indepen-
dent paradigm, and temporal regularization is integrated as
a post-processing stage (such as a Kalman filter). However,
this two stage approach is not ideal because the data-driven
estimator is prevented from learning any temporal patterns.
In this paper, we condition the data-driven estimator on pre-
vious predictions, which allows it to learn temporal patterns
within the data (in addition to any direct feature-based re-
lationships). However, this recursive formulation (similar
to reinforcement learning) makes the problem much more
difficult to solve. We employ a variant of the ‘search and
learn’ (SEARN) algorithm to keep training efficient. Its
strategy is to decouple the recursive relationships using an
auxiliary reference signal. This allows the predictor to be
learned efficiently using supervised techniques, and our ex-
periments demonstrate significant improvements when us-
ing this holistic approach.

Problem Definition In the case of camera planning, we
assume there is an underlying function f : X 7! Y which
describes the ideal camera work that should occur at the

1

Figure 4.1: Illustration of a smooth simulated feedback (red) vs non-smooth feedback
(blue)

speeding up convergence.

FeedbackGeneration. We can generate training targets p0=C using “virtual” feedback
from simulating expert demonstrations, which has two benefits. First, we need not
query the expert c˚ at every iteration (as done in DAgger (Ross et al., 2011a)).
Continuously acquiring expert demonstrations at every round can be seen as a
special case and a more expensive strategy. Second, virtual feedback ensures stable
learning, i.e., every ĉ= is a feasible smooth policy.

Consider Figure 4.1, where our policy c= (blue/red) made a mistake at location A,
and where we have only a single expert demonstration from c˚ (black). Depending
on the smoothness requirements of the policy class, we can simulate virtual expert
feedback as via either the red line (more smooth) or blue (less smooth) as a tradeoff
between squared imitation loss and smoothness.

When the roll-out of c=´1 (i.e. A=) differs substantially from A˚, especially during
early iterations, using smoother feedback (red instead of blue) can result in more
stable learning. We formalize this notion for Π_ in Proposition 4.5.8. Intuitively,
whenever c=´1 makes a mistake, resulting in a “bad” state B=C , the feedback should
recommend a smooth correction p0=C w.r.t. A= to make training “easier” for the
learner.5 The virtual feedback p0=C should converge to the expert’s action 0˚C . In
practice, we use p0=C “ f0=C ` p1´ fq0˚C with f Ñ 0 as = increases (which satisfies
Proposition 4.5.8).

4.5 Theoretical Analysis of Reduction-Based Algorithm
All proofs are deferred to the supplementary material.

Stability Conditions
One natural smoothness condition is that cprG, 0sq should be stable w.r.t. 0 if G
is fixed. Consider the camera planning setting: the expert policy c˚ should have

5A similar idea was proposed (He et al., 2012) for DAgger-type algorithm, albeit only for linear
model classes.

59

very small curvature, since constant inputs should correspond to constant actions.
This motivates Definition 4.2.2, which requires that Π has low curvature given
fixed context. We also show that smooth policies per Definition 4.2.2 lead to stable
actions, in the sense that “nearby” states are mapped to “nearby” actions. The
following helper lemma is useful:

Lemma 4.5.1. For a fixed G, define cprG, 0sq fi ip0q. If i is non-negative and
�-smooth w.r.t. 0., then:

@0, 01 :
`

ip0q ´ ip01q
˘2
ď 6�

`

ip0q ` ip01q
˘
›

›0 ´ 01
›

›

2
.

Writing c as cprG, 0sq fi
“

c1prG, 0sq, . . . , c:prG, 0sq
‰

with each c8prG, 0sq�-smooth,
Lemma 4.5.1 implies }pcprG, 0sq ´ cprG, 01sqq} ď

?
12�' }0 ´ 01} for ' upper

bounding A. Bounded action space means that a sufficiently small � leads to the
following stability conditions:

Condition 1 (Stability Condition 1). Π satisfies the Stability Condition 1 if for a
fixed input feature G, the actions of c in states B “ rG, 0s and B1 “ rG, 01s satisfy
}cpBq ´ cpB1q} ď }0 ´ 01} for all 0, 01 P A.

Condition 2 (Stability Condition 2). Π satisfies Stability Condition 2 if each c is W-
Lipschitz continuous in the action component 0 with W ă 1. That is, for a fixed G the
actions of c in states B “ rG, 0s and B1 “ rG, 01s satisfy }cpBq ´ cpB1q} ď W }0 ´ 01}

for all 0, 01 P A.

These two conditions directly follow from Lemma 4.5.1 and assuming sufficiently
small �. Condition 2 is mildly stronger than Condition 1, and enables proving much
stronger policy improvement compared to previous work.

Deterministic versus Stochastic
Given two policies c and ĉ, and interpolation parameter V P p0, 1q, consider two
ways to combine policies:

1. stochastic: cBC>pBq “ ĉpBq with probability V, and cBC>pBq “ cpBq with
probability 1´ V

2. deterministic: c34CpBq “ VĉpBq ` p1´ VqcpBq

Previous learning reduction approaches only use stochastic interpolation (Daumé III
et al., 2009; Ross et al., 2011a), whereas SIMILE uses deterministic. The following

60

result shows that deterministic and stochastic interpolation yield the same expected
behavior for smooth policy classes.

Lemma 4.5.2. Given any starting state B0, sequentially execute c34C and cBC> to
obtain two separate trajectories A “ t0Cu

)
C“1 and Ã “ t0̃Cu

)
C“1 such that 0C “

c34CpBCq and 0̃C “ cBC>pB̃Cq, where BC “ rGC , 0C´1s and B̃C “ rGC , 0̃C´1s. Assuming the
policies are stable as per Condition 1, we have EÃr0̃Cs “ 0C @C “ 1, . . . ,) , where
the expectation is taken over all random roll-outs of cBC>.

Lemma 4.5.2 shows that deterministic policy combination (SIMILE) yields unbiased
trajectory roll-outs of stochastic policy combination (as done in SEARN & CPI).
This represents a major advantage of SIMILE, since the number of stochastic roll-
outs of cBC> to average to the deterministic trajectory of c34C is polynomial in the
time horizon) , leading to much higher computational complexity. Furthermore, for
convex imitation loss ℓcpcq, Lemma 4.5.2 and Jensen’s inequality yield the following
corollary, which states that under convex loss, deterministic policy performs at least
no worse than stochastic policy in expectation:

Corollary 4.5.3 (Deterministic Policies Perform Better). For deterministic c34C and
stochastic cBC> interpolations of two policies c and ĉ, and convex loss ℓ, we have:

ℓc34C pc34Cq “ ℓcBC>pErcBC>sq

ď E rℓcBC>pcBC>qs

where the expectation is over all roll-outs of cBC>.

Remark. We construct a simple example to show that Condition 1 may be necessary
for iterative learning reductions to converge. Consider the case where contexts
X Ă R are either constant or vary neglibly. Expert demonstrations should be
constant c˚prG=, 0˚sq “ 0˚ for all =. Consider an unstable policy c such that
cpBq “ cprG, 0sq “ :0 for fixed : ą 1. The rolled-out trajectory of c diverges c˚ at
an exponential rate. Assume optimistically that ĉ learns the correct expert behavior,
which is simply ĉpBq “ ĉprG, 0sq “ 0. For any V P p0, 1q, the updated policy
c1 “ Vĉ ` p1 ´ Vqc becomes c1prG, 0sq “ V0 ` p1 ´ Vq:0. Thus the sequential
roll-out of the new policy c1 will also yield an exponential gap from the correct
policy. By induction, the same will be true in all future iterations.

61

Policy Improvement
Our policy improvement guarantee builds upon the analysis fromSEARN(Daumé III
et al., 2009), which we extend to using adaptive learning rates V. We first restate the
main policy improvement result from Daumé III et al. (2009).

Lemma 4.5.4 (SEARN’s policy nondegradation - Lemma 1 from Daumé III et al.
(2009)). Let ℓ<0G “ supc,B ℓpcpBqq, c1 is defined as cBC> in lemma 4.5.2. Then for
V P p0, 1{)q:

ℓc1pc
1
q ´ ℓcpcq ď V)EB„3c rℓpĉpBqqs `

1
2
V2)2ℓ<0G .

SEARN guarantees that the new policy c1 does not degrade from the expert c˚ by
much only if V ă 1{) . Analyses of SEARN and other previous iterative reduction
methods (Ross et al., 2011a; Kakade and Langford, 2002; Bagnell et al., 2003;
Syed and Schapire, 2010) rely on bounding the variation distance between 3c and
3c1 . Three drawbacks of this approach are: (i) non-trivial variation distance bound
typically requires V to be inversely proportional to time horizon) , causing slow
convergence; (ii) not easily applicable to the continuous regime; and (iii) except
under MDP framework with discounted infinite horizon, previous variation distance
bounds do not guarantee monotonic policy improvements (i.e. ℓc1pc1q ă ℓcpcq).

We provide two levels of guarantees taking advantage of Stability Conditions 1 and
2 to circumvent these drawbacks. Assuming the Condition 1 and convexity of ℓ, our
first result yields a guarantee comparable with SEARN.

Theorem 4.5.5 (T-dependent Improvement). Assume ℓ is convex and !-Lipschitz,
and Condition 1 holds. Let n “ max

B„3c
}ĉpBq ´ cpBq}. Then:

ℓc1pc
1
q ´ ℓcpcq ď Vn!) ` V pℓcpĉq ´ ℓcpcqq . (4.3)

In particular, choosing V P p0, 1{)q yields:

ℓc1pc
1
q ´ ℓcpcq ď n! ` V pℓcpĉq ´ ℓcpcqq . (4.4)

Similar to SEARN, Theorem 4.5.5 also requires V P p0, 1{)q to ensure the RHS of
(4.4) stays small. However, note that the reduction term Vpℓcpĉq´ ℓcpcqq allows the
bound to be strictly negative if the policy ĉ trained on 3c significantly improves on
ℓcpcq (i.e., guaranteed policy improvement). We observe empirically that this often
happens, especially in early iterations of training.

62

Under the mildly stronger Condition 2, we remove the dependency on the time
horizon) , which represents a much stronger guarantee compared to previous work.

Theorem 4.5.6 (Policy Improvement). Assume ℓ is convex and !-Lipschitz contin-
uous, and Condition 2 holds. Let n “ max

B„3c
}ĉpBq ´ cpBq}. Then for V P p0, 1q:

ℓc1pc
1
q ´ ℓcpcq ď

VWn!

p1´ Vqp1´ Wq
` Vpℓcpĉq ´ ℓcpcqq. (4.5)

Corollary 4.5.7 (Monotonic Improvement). Following the notation from Theorem
4.5.6, let Δ “ ℓcpcq ´ ℓcpĉq and X “ Wn!

1´W . Then choosing step size V “ Δ´X
2Δ , we

have:
ℓc1pc

1
q ´ ℓcpcq ď ´

pΔ´ Xq2

2pΔ` Xq
. (4.6)

The terms n and ℓcpĉq´ℓcpcq on the RHS of (4.4) and (4.5) come from the learning
reduction, as they measure the “distance” between ĉ and c on the state distribution
induced by c (which forms the dataset to train ĉ). In practice, both terms can be
empirically estimated from the training round, thus allowing an estimate of V to
minimize the bound.

Theorem 4.5.6 justifies using an adaptive and more aggressive interpolation param-
eter V to update policies. In the worst case, setting V close to 0 will ensure the
bound from (4.5) to be close to 0, which is consistent with SEARN’s result. More
generally, monotonic policy improvement can be guaranteed for appropriate choice
of V, as seen from Corollary 4.5.7. This strict policy improvement was not possible
under previous iterative learning reduction approaches such as SEARN and DAgger,
and is enabled in our setting due to exploiting the smoothness conditions.

Smooth Feedback Analysis
Smooth FeedbackDoesNotHurt: Recall fromSection 4.4 that oneway to simulate
“virtual” feedback for training a new ĉ is to set the target 0̂C “ f0C ` p1´fq0˚C for
f P p0, 1q, where smooth feedback corresponds to f Ñ 1. To see that simulating
smooth “virtual” feedback target does not hurt the training progress, we alternatively
view SIMILE as performing gradient descent in a smooth function space (Mason
et al., 1999). Define the cost functional � : Π Ñ R over policy space to be the
average imitation loss over S as �pcq “

ş

S
}cpBq ´ c˚pBq}

2
3%pBq. The gradient

(Gâteaux derivative) of �pcq w.r.t. c is:

∇�pcqpBq “ B�pc ` UXBq
BU

ˇ

ˇ

ˇ

U“0
“ 2pcpBq ´ c˚pBqq,

63

where XB is Dirac delta function centered at s. By first order approximation�pc1q “
�pVĉ`p1´ Vqcq “ �pc` Vpĉ´ cqq « �pcq` Vx∇�pcq, ĉ´ cy. Like traditional
gradient descent, we want to choose ĉ such that the update moves the functional
along the direction of negative gradient. In other words, we want to learn ĉ P Π

such that x∇�pcq, ĉ ´ cy ! 0. We can evaluate this inner product along the states
induced by c. We thus have the estimate:

x∇�pcq, ĉ ´ cy « 2
)

)
ÿ

C“1
pcpBCq ´ c

˚
pBCqqpĉpBCq ´ cpBCqq

“
2
)

)
ÿ

C“1
p0C ´ 0

˚
C qpĉprGC , 0C´1sq ´ 0Cq.

Sincewewant x∇�pcq, ĉ´cy ă 0, this motivates the construction of new data setD
with states trGC , 0C´1su

)
C“1 and labels tp0Cu

)
C“1 to train a new policy ĉ, where we want

p0C ´ 0
˚
C qpp0C ´ 0Cq ă 0. A sufficient solution is to set target p0C “ f0C ` p1´ fq0˚C

(Section 4.4), as this will point the gradient in negative direction, allowing the
learner to make progress.

Smooth Feedback is Sometimes Necessary: When the current policy performs
poorly, smooth virtual feedback may be required to ensure stable learning, i.e.
producing a feasible smooth policy at each training round. We formalize this notion
of feasibility by considering the smooth policy class Π_ in Example 4.2.1. Recall
that smooth regularization of Π_ via H encourages the next action to be close
to the previous action. Thus a natural way to measure smoothness of c P Π_ is
via the average first order difference of consecutive actions 1

)

ř)
C“1 }0C ´ 0C´1}.

In particular, we want to explicitly constrain this difference relative to the expert
trajectory 1

)

ř)
C“1 }0C ´ 0C´1} ď [at each iteration, where [9 1

)

ř)
C“1

›

›

›
0˚C ´ 0

˚
C´1

›

›

›
.

When c performs poorly, i.e. the "average gap" between current trajectory t0Cu
and t0˚C u is large, the training target for ĉ should be lowered to ensure learning a
smooth policy is feasible, as inferred from the following proposition. In practice,
we typically employ smooth virtual feedback in early iterations when policies tend
to perform worse.

Proposition 4.5.8. Let l be the average supervised training error from F , i.e.
l “ min

5 PF
EG„X r} 5 prG, 0sq ´ 0˚}s. Let the rolled-out trajectory of current policy c be

t0Cu. If the average gap between c and c˚ is such thatEC„Uniformr1:)s r}0
˚
C ´ 0C´1}s ě

3l ` [p1 ` _q, then using t0˚C u as feedback will cause the trained policy ĉ to be

64

non-smooth, i.e.:
EC„Uniformr1:)s r}0̂C ´ 0̂C´1}s ě [, (4.7)

for t0̂Cu the rolled-out trajectory of ĉ.

4.6 Experiments
Automated Camera Planning. We evaluate SIMILE in a case study of automated
camera planning for sport broadcasting (Chen and Carr, 2015; Chen et al., 2016).
Given noisy tracking of players as raw input data tGCu)C“1, and demonstrated pan
camera angles from professional human operator as t0˚C u)C“1, the goal is to learn a
policy c that produces trajectory t0Cu)C“1 that is both smooth and accurate relative to
t0˚C u

)
C“1. Smoothness is critical in camera control: fluid movements which maintain

adequate framing are preferable to jittery motions which constantly pursue perfect
tracking (Gaddam et al., 2015). In this setting, time horizon) is the duration of the
event multiplied by rate of sampling. Thus) tends to be very large.

Smooth Policy Class. We use a smooth policy class following Example 4.2.2:
regression tree ensembles F regularized by a class of linear autoregressor functions
H (Chen et al., 2016). See Appendix C.2 for more details.

Summary of Results.

• Using our smooth policy class leads to dramatically smoother trajectories than
not regularizing usingH .

• Using our adaptive learning rate leads to much faster convergence compared
to conservative learning rates from SEARN (Daumé III et al., 2009).

• Using smooth feedback ensures stable learning of smooth policies at each
iteration.

• Deterministic policy interpolation performs better than stochastic interpola-
tion used in SEARN.

Smooth versus Non-Smooth Policy Classes. Figure 4.2 shows a comparison of
using a smooth policy class versus a non-smooth one (e.g., not using H). We see
that our approach can reliably learn to predict trajectories that are both smooth and
accurate.

Adaptive vs. Fixed V: One can, in principle, train using SEARN, which requires
a very conservative V in order to guarantee convergence. In contrast, SIMILE
adaptively selects V based on relative empirical loss of c and ĉ (Line 9 of Algorithm
4). Let errorpĉq and errorpcq denote the mean-squared errors of rolled-out

65

Figure 4.2: Expert (blue) and predicted (red) camera pan angles. Left: SIMILE
with ă10 iterations. Right: non-smooth policy.

Figure 4.3: Adaptive versus fixed interpolation parameter V.

trajectories t0̂Cu, t0Cu, respectively, w.r.t. ground truth t0˚C u. We can set V as:

V̂ “
errorpcq

errorpĉq ` errorpcq
, (4.8)

which encourages the learner to disregard bad policies when interpolating, thus
allowing fast convergence to a good policy (see Theorem4.5.6). Figure 4.3 compares
the convergence rate of SIMILE using adaptive V versus conservative fixed values
of V commonly used in SEARN (Daumé III et al., 2009). We see that adaptively
choosing V enjoys substantially faster convergence. Note that very large fixed Vmay
overshoot and worsen the combined policy after a few initial improvements.

Smooth Feedback Generation: We set the target labels to 0̂=C “ f0=C ` p1´ fq0˚C
for 0 ă f ă 1 (Line 6 of Algorithm 4). Larger f corresponds to smoother (0̂=C

66

Figure 4.4: Comparing different values of f.

ht

Figure 4.5: Smoothness Structure vs Accuracy Trade-off

is closer to 0=
C´1) but less accurate target (further from 0˚C), as seen in Figure 4.4.

Figure 4.5 shows the trade-off between smoothness loss (blue line, measured by first
order difference in Proposition 4.5.8) and imitation loss (red line, measured by mean
squared distance) for varying f. We navigate this trade-off by setting f closer to 1
in early iterations, and have f Ñ 0 as = increases. This “gradual increase” produces
more stable policies, especially during early iterations where the learning policy
tends to perform poorly (as formalized in Proposition 4.5.8). In Figure 4.4, when
the initial policy (green trajectory) has poor performance, setting smooth targets
(Figure 4.4b) allows learning a smooth policy in the subsequent round, in contrast to
more accurate but less stable performance of “difficult” targets with low f (Figure

67

4.4c-d). Figure 4.6 visualizes the behavior of the the intermediate policies learned
by SIMILE, where we can see that each intermediate policy is a smooth policy.

Figure 4.6: Performance after different number of iterations.

Deterministic vs. Stochastic Interpolation: Finally, we evaluate the benefits
of using deterministic policy averaging intead of stochastically combine different
policies, as done in SEARN. To control for other factors, we set V to a fixed value
of 0.5, and keep the new training dataset D= the same for each iteration =. The
average imitation loss of stochastic policy sampling are evaluated after 50 stochastic
roll-outs at each iterations. This average stochastic policy error tends to be higher
compared to the empirical error of the deterministic trajectory, as seen from Figure
4.7, and confirms our finding from Corollary 4.5.3.

Figure 4.7: Deterministic policy error vs. average stochastic policy error for V “ 0.5
and 50 roll-outs of the stochastic policies.

68

4.7 Discussion
We formalized the problem of smooth imitation learning for online sequence pre-
diction, which is a variant of imitation learning that uses a notion of a smooth policy
class. We proposed SIMILE (Smooth IMItation LEarning), which is an iterative
learning reduction approach to learning smooth policies from expert demonstrations
in a continuous and dynamic environment. SIMILE utilizes an adaptive learning
rate that provably allows much faster convergence compared to previous learning
reduction approaches, and also enjoys better sample complexity than previous work
by being fully deterministic and allowing for virtual simulation of training labels.
We validated the efficiency and practicality of our approach on a setting of online
camera planning.

69

C h a p t e r 5

REDUCTION TO ONLINE LEARNING WITH POLICY-BASED
STRUCTURE (PROGRAMMATIC REINFORCEMENT

LEARNING)

Summary. We study the problem of programmatic reinforcement learning, in which
policies are represented as short programs in a symbolic language. Programmatic
policies can be more interpretable, generalizable, and amenable to formal verifica-
tion than neural policies; however, designing rigorous learning approaches for such
policies remains a challenge. Our approach to this challenge — a meta-algorithm
called Propel— is based on three insights. First, we view our learning task as
optimization in policy space, modulo the constraint that the desired policy has a
programmatic representation, and solve this optimization problem using a form of
mirror descent that takes a gradient step into the unconstrained policy space and
then projects back onto the constrained space. Second, we view the unconstrained
policy space as mixing neural and programmatic representations, which enables
employing state-of-the-art deep policy gradient approaches. Third, we cast the pro-
jection step as program synthesis via imitation learning, and exploit contemporary
combinatorial methods for this task. We present theoretical convergence results for
Propel and empirically evaluate the approach in three continuous control domains.
The experiments show that Propel can significantly outperform state-of-the-art
approaches for learning programmatic policies.

5.1 Introduction to Programmatic Reinforcement Learning
A growing body of work (Verma et al., 2018; Bastani et al., 2018; Zhu et al.,
2019) investigates reinforcement learning (RL) approaches that represent policies
as programs in a symbolic language, e.g., a domain-specific language for composing
control modules such as PID controllers (Ang et al., 2005). Short programmatic
policies offer many advantages over neural policies discovered through deep RL,
including greater interpretability, better generalization to unseen environments, and
greater amenability to formal verification. These benefits motivate developing
effective approaches for learning such programmatic policies.

However, programmatic reinforcement learning (PRl) remains a challenging prob-
lem, owing to the highly structured nature of the policy space. Recent state-of-the-art

70

approaches employ program synthesis methods to imitate or distill a pre-trained neu-
ral policy into short programs (Verma et al., 2018; Bastani et al., 2018). However,
such a distillation process can yield a highly suboptimal programmatic policy —
i.e., a large distillation gap— and the issue of direct policy search for programmatic
policies also remains open.

In this chapter, we developPropel (Imitation-ProjectedProgrammaticReinforcement
Learning), a new learning meta-algorithm for PRl, as a response to this challenge.
The design of Propel is based on three insights that enables integrating and build-
ing upon state-of-the-art approaches for policy gradients and program synthesis.
First, we view programmatic policy learning as a constrained policy optimization
problem, in which the desired policies are constrained to be those that have a
programmatic representation. This insight motivates utilizing constrained mirror
descent approaches, which take a gradient step into the unconstrained policy space
and then project back onto the constrained space. Second, by allowing the uncon-
strained policy space to have a mix of neural and programmatic representations, we
can employ well-developed deep policy gradient approaches (Sutton et al., 2000;
Lillicrap et al., 2015; Schulman et al., 2015, 2017; Cheng et al., 2019e) to compute
the unconstrained gradient step. Third, we define the projection operator using
program synthesis via imitation learning (Verma et al., 2018; Bastani et al., 2018),
in order to recover a programmatic policy from the unconstrained policy space. Our
contributions can be summarized as:

• We present Propel, a novel meta-algorithm that is based on mirror descent,
program synthesis, and imitation learning, for PRl.

• On the theoretical side, we show how to cast Propel as a form of constrained
mirror descent. We provide a thorough theoretical analysis characterizing the
impact of approximate gradients and projections. Further, we prove results that
provide expected regret bounds and finite-sample guarantees under reasonable
assumptions.

• On the practical side, we provide a concrete instantiation of Propel and evaluate it
in three continuous control domains, including the challenging car-racing domain
Torcs (Wymann et al., 2014). The experiments show significant improvements
over state-of-the-art approaches for learning programmatic policies.

71

5.2 Policy Learning Problem within the Structured Policy Class
The problem of programmatic reinforcement learning (PRl) consists of a Markov
Decision Process (Mdp) M and a programmatic policy class Π. The definition
of M “ pS,A, %, 2, ?0, Wq is standard (Sutton and Barto, 2018b), with S being
the state space, A the action space, %pB1|B, 0q the probability density function of
transitioning from a state-action pair to a new state, 2pB, 0q the state-action cost
function, ?0pBq a distribution over starting states, and W P p0, 1q the discount factor.
A policy c : S Ñ A (stochastically) maps states to actions. We focus on continuous
control problems, so S and A are assumed to be continuous spaces. The goal is to
find a programmatic policy c˚ P Π such that:

c˚ “ arg min
cPΠ

�pcq, where: �pcq “ E

«

8
ÿ

8“0
W82pB8, 08 ” cpB8qq

ff

, (5.1)

with the expectation taken over the initial state distribution B0 „ ?0, the policy
decisions, and the transition dynamics %. One can also use rewards, in which case
(5.1) becomes a maximization problem.

Programmatic Policy Class. A programmatic policy class Π consists of policies
that can be represented parsimoniously by a (domain-specific) programming lan-
guage. Recent work (Verma et al., 2018; Bastani et al., 2018; Zhu et al., 2019)
indicates that such policies can be easier to interpret and formally verify than neural
policies, and can also be more robust to changes in the environment.

In this chapter, we consider two concrete classes of programmatic policies. The
first, a simplification of the class considered in Verma et al. (Verma et al., 2018), is
defined by the modular, high-level language in Figure 5.1. This language assumes a
library of parameterized functions‘\ representing standard controllers, for instance
Proportional-Integral-Derivative (PID) (Åström and Hägglund, 1984) or bang-bang
controllers (Bellman et al., 1956). Programs in the language take states B as inputs
and produce actions 0 as output, and can invoke fully instantiated library controllers
along with predefined arithmetic, boolean and relational operators. The second,
“lower-level" class, from Bastani et al. (Bastani et al., 2018), consists of decision
trees that map states to actions.

Example. Consider the problem of learning a programmatic policy, in the language
of Figure 5.1, that controls a car’s accelerator in the Torcs car-racing environ-
ment (Wymann et al., 2014). Figure 5.2 shows a program in our language for this
task. The program invokes PID controllers PIDx 9 ,\% ,\� ,\�y, where 9 identifies the

72

cpBq ::“ 0 | Oppc1pBq, . . . , c:pBqq | if 1 then c1pBq else c2pBq | ‘\pc1pBq, . . . , c:pBqq

1 ::“ qpBq | BOpp11, . . . , 1:q

Figure 5.1: A high-level syntax for programmatic policies, inspired by (Verma et al.,
2018). A policy cpBq takes a state B as input and produces an action 0 as output. 1
represents boolean expressions; q is a boolean-valued operator on states; Op is an
operator that combines multiple policies into one policy; BOp is a standard boolean
operator; and ‘\ is a “library function" parameterized by \.

if pBrTrackPoss ă 0.011 and BrTrackPoss ą ´0.011q
then PIDxRPM,0.45,3.54,0.03,53.39ypBq else PIDxRPM,0.39,3.54,0.03,53.39ypBq

Figure 5.2: A programmatic policy for acceleration in Torcs (Wymann et al.,
2014), automatically discovered by Propel. BrTrackPoss represents the most
recent reading from sensor TrackPos.

sensor (out of 29, in our experiments) that provides inputs to the controller, and \%,
\ � , and \� are respectively the real-valued coefficients of the proportional, integral,
and derivative terms in the controller. We note that the program only uses the
sensors TrackPos and RPM. While TrackPos (for the position of the car relative
to the track axis) is used to decide which controller to use, only the RPM sensor is
needed to calculate the acceleration.

LearningChallenges. Learning programmatic policies in the continuousRL setting
is challenging, as the best performing methods utilize policy gradient approaches
(Sutton et al., 2000; Lillicrap et al., 2015; Schulman et al., 2015, 2017; Cheng et al.,
2019e), but policy gradients are hard to compute in programmatic representations.
In many cases, Πmay not even be differentiable. For our approach, we only assume
access to program synthesis methods that can select a programmatic policy c P Π

that minimizes imitation disagreement with demonstrations provided by a teaching
oracle. Because imitation learning tends to be easier than general RL in long-
horizon tasks (Sun et al., 2017), the task of imitating a neural policy with a program
is, intuitively, significantly simpler than the full programmatic RL problem. This
intuition is corroborated by past work on programmatic RL (Verma et al., 2018),
which shows that direct search over programs often fails to meet basic performance
objectives.

73

Algorithm 5 Imitation-Projected Programmatic Reinforcement Learning (Propel)
1: Input: Programmatic & Neural Policy Classes: Π & F .
2: Input: Either initial c0 or initial 50
3: Define joint policy class: H ” Π‘ F //ℎ ” c` 5 defined as ℎpBq “ cpBq ` 5 pBq

4: if given initial 50 then
5: c0 Ð Projectp 50q //program synthesis via imitation learning
6: end if
7: for C “ 1, . . . ,) do
8: ℎC Ð UpdateFpcC´1, [q //policy gradient in neural policy space with learning

rate [
9: cC Ð ProjectΠpℎCq //program synthesis via imitation learning
10: end for
11: Return: Policy c)

5.3 Learning Algorithm via Reduction to Online Learning
To develop our approach, we take the viewpoint of (5.1) being a constrained opti-
mization problem, where Π Ă H resides within a larger space of policies H . In
particular, we will represent H ” Π ‘ F using a mixing of programmatic poli-
cies Π and neural polices F . Any mixed policy ℎ ” c ` 5 can be invoked as
ℎpBq “ cpBq ` 5 pBq. In general, we assume that F is a good approximation of Π
(i.e., for each c P Π there is some 5 P F that approximates it well), which we
formalize in Section 5.4.

We can now frame our constrained learning problem as minimizing (5.1) over
Π Ă H , that alternate between taking a gradient step in the general space H and
projecting back down ontoΠ. This “lift-and-project” perspective motivates viewing
our problem via the lens of mirror descent (Nemirovsky and Yudin, 1983). In
standard mirror descent, the unconstrained gradient step can be written as ℎ Ð
ℎ?A4E ´ [∇H �pℎ?A4Eq for step size [, and the projection can be written as c Ð
arg minc1PΠ �pc1, ℎq for divergence measure �.

Our approach, Imitation-ProjectedProgrammaticReinforcement Learning (Propel),
is outlined in Algorithm 5 (also see Figure 5.3). Propel is a meta-algorithm that
requires instantiating two subroutines, Update and Project, which correspond to
the standard update and projection steps, respectively. Propel can be viewed as a
form of functional mirror descent with some notable deviations from vanilla mirror
descent.

UpdateF . Since policy gradient methods are well-developed for neural policy
classes F (e.g., (Lillicrap et al., 2015; Schulman et al., 2015, 2017; Henderson et al.,
2018; Duan et al., 2016; Cheng et al., 2019e)) and non-existent for programmatic

74H
<latexit sha1_base64="FjVpgZ9sYnF4JX/Xxf2CItINeeg=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjNV0GXRTZcV7AOmQ8mkmTY0kwzJHaEM/Qw3LhRx69e482/MtLPQ1gOBwzn3knNPmAhuwHW/ndLG5tb2Tnm3srd/cHhUPT7pGpVqyjpUCaX7ITFMcMk6wEGwfqIZiUPBeuH0Pvd7T0wbruQjzBIWxGQsecQpASv5g5jAhBKRtebDas2tuwvgdeIVpIYKtIfVr8FI0TRmEqggxviem0CQEQ2cCjavDFLDEkKnZMx8SyWJmQmyReQ5vrDKCEdK2ycBL9TfGxmJjZnFoZ3MI5pVLxf/8/wUotsg4zJJgUm6/ChKBQaF8/vxiGtGQcwsIVRzmxXTCdGEgm2pYkvwVk9eJ91G3buqNx6ua827oo4yOkPn6BJ56AY1UQu1UQdRpNAzekVvDjgvzrvzsRwtOcXOKfoD5/MHfD+RYg==</latexit>

UpdateF
<latexit sha1_base64="uVEU6tZiG0qwOqgTWDNX6SrYYHs=">AAACBnicbVBNS8NAEN34WetX1KMIwSJ4KkkV7LEgiMcKpi20IWw2m3bp5oPdiVBCTl78K148KOLV3+DNf+MmzUFbHww83pthZp6XcCbBNL+1ldW19Y3N2lZ9e2d3b18/OOzJOBWE2iTmsRh4WFLOImoDA04HiaA49Djte9Prwu8/UCFZHN3DLKFOiMcRCxjBoCRXPxmFGCYMMjvxMdDczUqBYJ7d5LmrN8ymWcJYJlZFGqhC19W/Rn5M0pBGQDiWcmiZCTgZFsAIp3l9lEqaYDLFYzpUNMIhlU5WvpEbZ0rxjSAWqiIwSvX3RIZDKWehpzqLG+WiV4j/ecMUgraTsShJgUZkvihIuQGxUWRi+ExQAnymCCaCqVsNMsECE1DJ1VUI1uLLy6TXaloXzdbdZaPTruKooWN0is6Rha5QB92iLrIRQY/oGb2iN+1Je9HetY9564pWzRyhP9A+fwCaZZnQ</latexit>

UpdateF
<latexit sha1_base64="uVEU6tZiG0qwOqgTWDNX6SrYYHs=">AAACBnicbVBNS8NAEN34WetX1KMIwSJ4KkkV7LEgiMcKpi20IWw2m3bp5oPdiVBCTl78K148KOLV3+DNf+MmzUFbHww83pthZp6XcCbBNL+1ldW19Y3N2lZ9e2d3b18/OOzJOBWE2iTmsRh4WFLOImoDA04HiaA49Djte9Prwu8/UCFZHN3DLKFOiMcRCxjBoCRXPxmFGCYMMjvxMdDczUqBYJ7d5LmrN8ymWcJYJlZFGqhC19W/Rn5M0pBGQDiWcmiZCTgZFsAIp3l9lEqaYDLFYzpUNMIhlU5WvpEbZ0rxjSAWqiIwSvX3RIZDKWehpzqLG+WiV4j/ecMUgraTsShJgUZkvihIuQGxUWRi+ExQAnymCCaCqVsNMsECE1DJ1VUI1uLLy6TXaloXzdbdZaPTruKooWN0is6Rha5QB92iLrIRQY/oGb2iN+1Je9HetY9564pWzRyhP9A+fwCaZZnQ</latexit>

UpdateF
<latexit sha1_base64="uVEU6tZiG0qwOqgTWDNX6SrYYHs=">AAACBnicbVBNS8NAEN34WetX1KMIwSJ4KkkV7LEgiMcKpi20IWw2m3bp5oPdiVBCTl78K148KOLV3+DNf+MmzUFbHww83pthZp6XcCbBNL+1ldW19Y3N2lZ9e2d3b18/OOzJOBWE2iTmsRh4WFLOImoDA04HiaA49Djte9Prwu8/UCFZHN3DLKFOiMcRCxjBoCRXPxmFGCYMMjvxMdDczUqBYJ7d5LmrN8ymWcJYJlZFGqhC19W/Rn5M0pBGQDiWcmiZCTgZFsAIp3l9lEqaYDLFYzpUNMIhlU5WvpEbZ0rxjSAWqiIwSvX3RIZDKWehpzqLG+WiV4j/ecMUgraTsShJgUZkvihIuQGxUWRi+ExQAnymCCaCqVsNMsECE1DJ1VUI1uLLy6TXaloXzdbdZaPTruKooWN0is6Rha5QB92iLrIRQY/oGb2iN+1Je9HetY9564pWzRyhP9A+fwCaZZnQ</latexit>

UpdateF
<latexit sha1_base64="uVEU6tZiG0qwOqgTWDNX6SrYYHs=">AAACBnicbVBNS8NAEN34WetX1KMIwSJ4KkkV7LEgiMcKpi20IWw2m3bp5oPdiVBCTl78K148KOLV3+DNf+MmzUFbHww83pthZp6XcCbBNL+1ldW19Y3N2lZ9e2d3b18/OOzJOBWE2iTmsRh4WFLOImoDA04HiaA49Djte9Prwu8/UCFZHN3DLKFOiMcRCxjBoCRXPxmFGCYMMjvxMdDczUqBYJ7d5LmrN8ymWcJYJlZFGqhC19W/Rn5M0pBGQDiWcmiZCTgZFsAIp3l9lEqaYDLFYzpUNMIhlU5WvpEbZ0rxjSAWqiIwSvX3RIZDKWehpzqLG+WiV4j/ecMUgraTsShJgUZkvihIuQGxUWRi+ExQAnymCCaCqVsNMsECE1DJ1VUI1uLLy6TXaloXzdbdZaPTruKooWN0is6Rha5QB92iLrIRQY/oGb2iN+1Je9HetY9564pWzRyhP9A+fwCaZZnQ</latexit>

UpdateF
<latexit sha1_base64="uVEU6tZiG0qwOqgTWDNX6SrYYHs=">AAACBnicbVBNS8NAEN34WetX1KMIwSJ4KkkV7LEgiMcKpi20IWw2m3bp5oPdiVBCTl78K148KOLV3+DNf+MmzUFbHww83pthZp6XcCbBNL+1ldW19Y3N2lZ9e2d3b18/OOzJOBWE2iTmsRh4WFLOImoDA04HiaA49Djte9Prwu8/UCFZHN3DLKFOiMcRCxjBoCRXPxmFGCYMMjvxMdDczUqBYJ7d5LmrN8ymWcJYJlZFGqhC19W/Rn5M0pBGQDiWcmiZCTgZFsAIp3l9lEqaYDLFYzpUNMIhlU5WvpEbZ0rxjSAWqiIwSvX3RIZDKWehpzqLG+WiV4j/ecMUgraTsShJgUZkvihIuQGxUWRi+ExQAnymCCaCqVsNMsECE1DJ1VUI1uLLy6TXaloXzdbdZaPTruKooWN0is6Rha5QB92iLrIRQY/oGb2iN+1Je9HetY9564pWzRyhP9A+fwCaZZnQ</latexit>

UpdateF
<latexit sha1_base64="uVEU6tZiG0qwOqgTWDNX6SrYYHs=">AAACBnicbVBNS8NAEN34WetX1KMIwSJ4KkkV7LEgiMcKpi20IWw2m3bp5oPdiVBCTl78K148KOLV3+DNf+MmzUFbHww83pthZp6XcCbBNL+1ldW19Y3N2lZ9e2d3b18/OOzJOBWE2iTmsRh4WFLOImoDA04HiaA49Djte9Prwu8/UCFZHN3DLKFOiMcRCxjBoCRXPxmFGCYMMjvxMdDczUqBYJ7d5LmrN8ymWcJYJlZFGqhC19W/Rn5M0pBGQDiWcmiZCTgZFsAIp3l9lEqaYDLFYzpUNMIhlU5WvpEbZ0rxjSAWqiIwSvX3RIZDKWehpzqLG+WiV4j/ecMUgraTsShJgUZkvihIuQGxUWRi+ExQAnymCCaCqVsNMsECE1DJ1VUI1uLLy6TXaloXzdbdZaPTruKooWN0is6Rha5QB92iLrIRQY/oGb2iN+1Je9HetY9564pWzRyhP9A+fwCaZZnQ</latexit>

Project⇧
<latexit sha1_base64="yJrGS/uwBUglQp5t/VvEbT6FBk0=">AAACD3icbVC7SgNBFJ2Nrxhfq5Y2i0GxCrtR0DJoYxnBPCAbwuzkJhkz+2DmrhiW/QMbf8XGQhFbWzv/xtlkC008MHA49zHnHi8SXKFtfxuFpeWV1bXiemljc2t7x9zda6owlgwaLBShbHtUgeABNJCjgHYkgfqegJY3vsrqrXuQiofBLU4i6Pp0GPABZxS11DOPXYQHnO5JPBFDmrg+xRHHpC7DO2CY9tw6T3tm2a7YU1iLxMlJmeSo98wvtx+y2IcAmaBKdRw7wm5CJXImIC25sYKIsjEdQkfTgPqgusnUR2odaaVvDUKpX4DWVP09kVBfqYnv6c7MrJqvZeJ/tU6Mg4tuwoMoRgjY7KNBLCwMrSwcq8+lPllMNKFMcu3VYiMqKUMdYUmH4MyfvEia1YpzWqnenJVrl3kcRXJADskJccg5qZFrUicNwsgjeSav5M14Ml6Md+Nj1low8pl98gfG5w9vop4p</latexit>

⇧<latexit sha1_base64="wssQ+renNbqLlT7M0IUVY1jBbiA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeClx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNM7uZ+54lrI2L1iNOE+xEdKREKRtFKD/2mGJQrbtVdgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGepohE3frY4dUYurDIkYaxtKSQL9fdERiNjplFgOyOKY7PqzcX/vF6K4a2fCZWkyBVbLgpTSTAm87/JUGjOUE4toUwLeythY6opQ5tOyYbgrb68Ttq1qndVrd1fV+qNPI4inME5XIIHN1CHBjShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwAiOY23</latexit>

Figure 5.3: Depicting the Propel meta-algorithm.
policy classes Π, Propel is designed to leverage policy gradients in F and avoid
policy gradients in Π. Algorithm 6 shows one instantiation of UpdateF . Note that
standard mirror descent takes unconstrained gradient steps inH rather than F , and
we discuss this discrepancy between UpdateH and UpdateF in Section 5.4.

ProjectΠ. Projecting onto Π can be implemented using program synthesis via
imitation learning, i.e., by synthesizing a c P Π to best imitate demonstrations
provided by a teaching oracle ℎ P H . Recent work (Verma et al., 2018; Bastani
et al., 2018; Zhu et al., 2019) has given practical heuristics for this task for various
programmatic policy classes. Algorithm 7 shows one instantiation of ProjectΠ
(based on DAgger (Ross et al., 2011a)). One complication that arises is that finite-
sample runs of such imitation learning approaches only return approximate solutions
and so the projection is not exact. We characterize the impact of approximate
projections in Section 5.4.

Practical Considerations. In practice, we often employ multiple gradient steps
before taking a projection step (as also described in Algorithm 6), because the step
size of individual (stochastic) gradient updates can be quite small. Another issue that
arises in virtually all policy gradient approaches is that the gradient estimates can
have very high variance (Sutton et al., 2000; Konda and Tsitsiklis, 2000; Henderson
et al., 2018). We utilize low-variance policy gradient updates by using the reference
c as a proximal regularizer in function space (Cheng et al., 2019e).

For the projection step (Algorithm7), in practicewe often retain all previous roll-outs
g from all previous projection steps. It is straightforward to query the current oracle
ℎ to provide demonstrations on the states B P g from previous roll-outs, which can
lead to substantial savings in sample complexity with regards to executing roll-outs
on the environment, while not harming convergence.

75

Algorithm 6 UpdateF : neural policy gradient for mixed policies
1: Input: Neural Policy Class F . Input: Reference programmatic policy: c
2: Input: Step size: [. Input: Regularization parameter: _
3: Initialize neural policy: 50 //any standard randomized initialization
4: for 9 “ 1, . . . , < do
5: 5 9 Ð 5 9´1 ´ [_∇F�pc ` _ 5 9´1q //using DDPG (Lillicrap et al., 2015), TRPO

(Schulman et al., 2015), etc., holding c fixed
6: end for
7: Return: ℎ ” c ` _ 5<

Algorithm 7 ProjectΠ: program synthesis via imitation learning
1: Input: Programmatic Policy Class: Π. Input: Oracle policy: ℎ
2: Roll-out ℎ on environment, get trajectory: g0 “ pB

0, ℎpB0q, B1, ℎpB1q, . . .q

3: Create supervised demonstration set: Γ0 “ tpB, ℎpBqqu from g0
4: Derive c0 from Γ0 via program synthesis //e.g., using methods in (Verma et al.,

2018; Bastani et al., 2018)
5: for : “ 1, . . . , " do
6: Roll-out c:´1, creating trajectory: g:
7: Collect demonstration data: Γ1 “ tpB, ℎpBqq|B P g:u
8: Γ: Ð Γ1 Y Γ:´1 //DAgger-style imitation learning (Ross et al., 2011a)
9: Derive c: from Γ: via program synthesis //e.g., using methods in (Verma et al.,

2018; Bastani et al., 2018)
10: end for
11: Return: c"

5.4 Theoretical Analysis
We start by viewing Propel through the lens of online learning in function space,
independent of the specific parametric representation. This start point yields a
convergence analysis of Alg. 5 in Section 5.4 under generic approximation errors.
We then analyze the issues of policy class representation in Sections 5.4 and 5.4, and
connect Algorithms 6 and 7 with the overall performance, under some simplifying
conditions. In particular, Section 5.4 characterizes the update error in a possibly
non-differentiable setting; to our knowledge, this is the first such analysis of its kind
for reinforcement learning.

Preliminaries. We consider Π and F to be subspaces of an ambient policy space
U, which is a vector space equipped with inner product x¨, ¨y, induced norm }D} “
a

xD, Dy, dual norm }E}˚ “ suptxE, Dy| }D} ď 1u, and standard scaling & addition:
p0D ` 1EqpBq “ 0DpBq ` 1EpBq for 0, 1 P R and D, E P U. The cost functional of a
policy D is �pDq “

ş

S 2pB, DpBqq3`
DpBq, where `D is the distribution of states induced

by D. The joint policy class is H “ Π ‘ F , by H “ tc ` 5 |@c P Π, 5 P F u.1
Note that H is a subspace of U, and inherits its vector space properties. Without

1The operator ‘ is not a direct sum, since Π and F are not orthogonal.

76

affecting the analysis, we simply equateU ” H for the remainder of the chapter.

We assume that � is convex inH , which implies that subgradient B�pℎq exists (with
respect to H) (Bauschke et al., 2011). Where � is differentiable, we utilize the
notion of a Fréchet gradient. Recall that a bounded linear operator ∇ : H ÞÑ H is
called a Fréchet functional gradient of � at ℎ P H if lim

}6}Ñ0

�pℎ`6q´�pℎq´x∇�pℎq,6y
}6}

“ 0.

By default, ∇ (or ∇H for emphasis) denotes the gradient with respect toH , whereas
∇F defines the gradient in the restricted subspace F .

Propel as (Approximate) Functional Mirror Descent
For our analysis, Propel can be viewed as approximating mirror descent in (infinite-
dimensional) function space over a convex set Π Ă H .2 Similar to the finite-
dimensional setting (Nemirovsky and Yudin, 1983), we choose a strongly convex
and smooth functional regularizer ' to be the mirror map. From the approximate
mirror descent perspective, for each iteration C:

1. Obtain a noisy gradient estimate: p∇C´1 « ∇�pcC´1q

2. UpdateH pcq inH space: ∇'pℎCq “ ∇'pcC´1q ´ [p∇C´1 (Note
UpdateH ‰ UpdateF)

3. Obtain approximate projection: cC “ Project'ΠpℎCq « arg mincPΠ �'pc, ℎCq

�'pD, Eq “ 'pDq´'pEq´x∇'pDq, D´Ey is a Bregman divergence. Taking 'pℎq “
1
2 }ℎ}

2 will recover projected functional gradient descent in !2-space. Here Update
becomes ℎC “ cC´1 ´ [p∇�pcC´1q, and Project solves for arg mincPΠ }c ´ ℎC}

2.
While we mainly focus on this choice of ' in our experiments, note that other
selections of ' lead to different Update and Project operators (e.g., minimizing
KL divergence if ' is negative entropy).

The functional mirror descent scheme above may encounter two additional sources
of error compared to standard mirror descent (Nemirovsky and Yudin, 1983). First,
in the stochastic setting (also called bandit feedback (Flaxman et al., 2005)), the
gradient estimate p∇C may be biased, in addition to having high variance. One
potential source of bias is the gap between UpdateH and UpdateF . Second, the
Project step may be inexact. We start by analyzing the behavior of Propel under
generic bias, variance, and projection errors, before discussing the implications of
approximating UpdateH and ProjectΠ by Algs. 6 & 7, respectively. Let the bias

2Π can be convexified by considering randomized policies, as stochastic combinations of c P Π
(cf. (Le et al., 2019b)).

77

be bounded by V, i.e.,
›

›

›
Erp∇C |cCs ´ ∇�pcCq

›

›

›

˚
ď V almost surely. Similarly let the

variance of the gradient estimate be bounded by f2, and the projection error norm
}cC ´ c

˚
C } ď n . We state the expected regret bound below; more details and a proof

appear in Appendix D.1.

Theorem 5.4.1 (Expected regret bound under gradient estimation and projection
errors). Let c1, . . . , c) be a sequence of programmatic policies returned by Al-
gorithm 5, and c˚ be the optimal programmatic policy. Choosing learning rate
[“

b

1
f2 p

1
)
` nq, we have the expected regret over) iterations:

E

«

1
)

)
ÿ

C“1
�pcCq

ff

´ �pc˚q “ $

˜

f

c

1
)
` n ` V

¸

. (5.2)

The result shows that error n from Project and the bias V do not accumulate and
simply contribute an additive term on the expected regret.3 The effect of variance of
gradient estimate decreases at a

a

1{) rate. Note that this regret bound is agnostic
to the specific Update and Project operations, and can be applied more generically
beyond the specific algorithmic choices used in this section of the thesis.

Finite-Sample Analysis under Vanilla Policy Gradient Update and DAgger
Projection
Next, we show how certain instantiations of Update and Project affect the magni-
tude of errors and influence end-to-end learning performance from finite samples,
under some simplifying assumptions on the Update step. For this analysis, we
simplify Alg. 6 into the case UpdateF ” UpdateH . In particular, we assume
programmatic policies in Π to be parameterized by a vector \ P R: , and c is dif-
ferentiable in \ (e.g., we can view Π Ă F where F is parameterized in R:). We
further assume the trajectory roll-out is performed in an exploratory manner, where
action is taken uniformly random over finite set of � actions, thus enabling the
bound on the bias of gradient estimates via Bernstein’s inequality. The Project
step is consistent with Alg. 7, i.e., using DAgger (Ross et al., 2011b) under convex
imitation loss, such as ℓ2 loss. We have the following high-probability guarantee:

Theorem 5.4.2 (Finite-sample guarantee). At each iteration, we perform vanilla
policy gradient estimate of c (over H) using < trajectories and, use DAgger al-
gorithm to collect " roll-outs for the imitation learning projection. Setting the

3Other mirror descent-style analyses, such as in (Sun et al., 2018b), lead to accumulation of
errors over the rounds of learning) . One key difference is that we are leveraging the assumption of
convexity of � in the (infinite-dimensional) function space representation.

78

learning rate [“
c

1
f2

` 1
)
` �

"
`

b

logp){Xq
"

˘

, after) rounds of the algorithm, we
have that:

1
)

)
ÿ

C“1
�pcCq ´ �pc

˚
q ď

$

¨

˝f

d

1
)
`
�

"
`

c

logp){Xq
"

˛

‚`$

˜

f

c

logp):{Xq
<

`
�� logp):{Xq

<

¸

holds with probability at least 1´ X, with � being the task horizon, � the cardinality
of action space, f2 the variance of policy gradient estimates, and : the dimension
Π’s parameterization.

The expanded result and proof are included in Appendix D.1. The proof leverages
previous analysis from DAgger (Ross et al., 2011a) and the finite sample analysis
of vanilla policy gradient algorithm (Kakade et al., 2003). The finite-sample regret
bound scales linearly with the standard deviation f of the gradient estimate, while
the bias, which is the very last component of the RHS, scales linearly with the task
horizon �. Note that the standard deviation f can be exponential in task horizon
� in the worst case (Kakade et al., 2003), and so it is important to have practical
implementation strategies to reduce the variance of the Update operation. While
conducted in a stylized setting, this analysis provides insight in the relative trade-
offs of spending effort in obtaining more accurate projections versus more reliable
gradient estimates.

Closing the gap between UpdateH and UpdateF

Our functional mirror descent analysis rests on taking gradients inH : UpdateH pcq
involves estimating ∇H �pcq in the H space. On the other hand, Algorithm 6
performs UpdateF pcq only in the neural policy space F . In either case, although
�pcq may be differentiable in the non-parametric ambient policy space, it may not
be possible to obtain a differentiable parametric programmatic representation in
Π. In this section, we discuss theoretical motivations to addressing a practical
issue: How do we define and approximate the gradient ∇H �pcq under a parametric
representation? To our knowledge, we are the first to consider such a theoretical
question for reinforcement learning.

Defining a consistent approximation of ∇H �pcq. The idea in UpdateF pcq (Line
8 of Alg. 5) is to approximate ∇H �pcq by ∇F �p 5 q, which has a differentiable

79

representation, at some 5 close to c (under the norm). Under appropriate conditions
on F , we show that this approximation is valid.

Proposition 5.4.3. Assume that (i) � is Fréchet differentiable on H , (ii) � is also
differentiable on the restricted subspace F , and (iii) F is dense in H (i.e., the
closure sF “ H). Then for any fixed policy c P Π, define a sequence of policies
5: P F , : “ 1, 2, . . .), that converges to c: lim:Ñ8 } 5: ´ c} “ 0. We then have
lim:Ñ8 }∇F �p 5:q ´ ∇H �pcq}˚ “ 0.

Since the Fréchet gradient is unique in the ambient spaceH , @: we have∇H �p 5:q “

∇F �p 5:q Ñ ∇H �pcq as : Ñ 8 (by Proposition 5.4.3). We thus have an asymptoti-
cally unbiased approximation of ∇H �pcq via differentiable space F as: ∇F �pcq fi

∇H �pcq fi lim:Ñ8 ∇F �p 5:q.4 Connecting to the result from Theorem 5.4.1, let
f2 be an upper bound on the policy gradient estimates in the neural policy class
F , under an asymptotically unbiased approximation of ∇H �pcq, the expected regret
bound becomes E

”

1
)

ř)
C“1 �pcCq

ı

´ �pc˚q “ $

´

f

b

1
)
` n

¯

.

Bias-variance considerations of UpdateF pcq To further theoretically motivate a
practical strategy for UpdateF pcq in Algorithm 6, we utilize an equivalent proximal
perspective of mirror descent (Beck and Teboulle, 2003), where UpdateH pcq is
equivalent to solving for ℎ1 “ arg minℎPH [x∇H �pcq, ℎy ` �'pℎ, cq.

Proposition 5.4.4 (Minimizing a relaxed objective). For a fixed programmatic pol-
icy c, with sufficiently small constant _ P p0, 1q, we have that

min
ℎPH

[x∇H �pcq, ℎqy ` �'pℎ, cq ď min
5 PF

�
`

c ` _ 5
˘

´ �pcq ` x∇�pcq, cy (5.3)

Thus, a relaxed UpdateH step is obtained by minimizing the RHS of (5.3), i.e.,
minimizing �pc ` _ 5 q over 5 P F . Each gradient descent update step is now
5 1 “ 5 ´[_∇F �pcC`_ 5 q, corresponding to Line 5 of Algorithm 6. For fixed c and
small _, this relaxed optimization problem becomes regularized policy optimization
over F , which is significantly easier. Functional regularization in policy space
around a fixed prior controller c has demonstrated significant reduction in the
variance of gradient estimate (Cheng et al., 2019e), at the expense of some bias.
The below expected regret bound summarizes the impact of this increased bias and
reduced variance, with details included in Appendix D.1.

4We do not assume �pcq to be differentiable when restricting to the policy subspace Π, i.e.,
∇Π�pcq may not exist under policy parameterization of Π.

80

Proposition 5.4.5 (Bias-variance characterization of UpdateF). Assuming �pℎq
is !-strongly smooth over H , i.e., ∇H �pℎq is !-Lipschitz continuous, approxi-
mating UpdateH by Update� per Alg. 6 leads to the expected regret bound:
E
”

1
)

ř)
C“1 �pcCq

ı

´ �pc˚q “ $

´

_f

b

1
)
` n ` _2!2

¯

.

Compared to the idealized unbiased approximation in Proposition 5.4.3, the intro-
duced bias here is related to the inherent smoothness property of cost functional
�pℎq over the joint policy class H , i.e., how close �pc ` _ 5 q is to its linear under-
approximation �pcq ` x∇H �pcq, _ 5 y around c.

5.5 Experiments
We demonstrate the effectiveness of Propel in synthesizing programmatic con-
trollers in three continuous control environments. For brevity and focus, this sec-
tion primarily focuses on Torcs5, a challenging race car simulator environment
(Wymann et al., 2014). Empirical results on two additional classic control tasks,
Mountain-Car and Pendulum, are provided in Appendix D.2; those results follow
similar trends as the ones described for Torcs below, and further validate the con-
vergence analysis of Propel.

Experimental Setup. We evaluate over five distinct tracks in the Torcs simulator.
The difficulty of a track can be characterized by three properties; track length, track
width, and number of turns. Our suite of tracks provides environments with varying
levels of difficulty for the learning algorithm. The performance of a policy in the
Torcs simulator is measured by the lap time achieved on the track. To calculate
the lap time, the policies are allowed to complete a three-lap race, and we record
the best lap time during this race. We perform the experiments with twenty-five
random seeds and report the median lap time over these twenty-five trials. Some
of the policies crash the car before completing a lap on certain tracks, even after
training for 600 episodes. Such crashes are recorded as a lap time of infinity while
calculating the median. If the policy crashes for more than half the seeds, this is
reported as Cr in Tables 5.1 & 5.2. We choose to report the median because taking
the crash timing as infinity, or an arbitrarily large constant, heavily skews other
common measures such as the mean.

Baselines. Among recent state-of-the-art approaches to learning programmatic
policies are Ndps (Verma et al., 2018) for high-level language policies, and Viper

5The code for the Torcs experiments can be found at: https://bitbucket.org/averma8053/propel

https://bitbucket.org/averma8053/propel

81

0 1 2 3 4 5
Iterations

0

50

100

150

200

L
a
p
 T

im
e
 I
m

p
ro

v
e
m

e
n
t

G-Track

E-Road

Aalborg

Ruudskogen

Alpine-2

Figure 5.4: Median lap-time improvements during multiple iterations of IppgPro-
gram over 25 random seeds.

1 2 3 4 5
Track ID

0

100

200

300

400

500

600

N
u
m

b
e
r

o
f

C
ra

s
h
e
s

Max Episodes

DDPG

PROPEL-Prog

Figure 5.5: Median number of crashes during training of Ddpg and IppgProgram
over 25 random seeds.
(Bastani et al., 2018) for learning tree-based policies. Both Ndps and Viper rely on
imitating a fixed (pre-trained) neural policy oracle, and can be viewed as degenerate
versions of Propel that only run Lines 4-6 in Algorithm 5. We present two Propel
analogues to Ndps and Viper: (i) IppgProgram: Propel using the high-level
language of Figure 5.1 as the class of programmatic policies, similar to Ndps. (ii)
IppgTree: Propel using regression trees, similar to Viper. We also report results
for Prior, which is a (sub-optimal) PID controller that is also used as the initial policy
in Propel. In addition, to study generalization ability as well as safety behavior
during training, we also include Ddpg, a neural policy learned using the Deep
Deterministic Policy Gradients (Lillicrap et al., 2015) algorithm, with 600 episodes
of training for each track. In principle, Propel and its analysis can accommodate
different policy gradient subroutines. However, in the Torcs domain, other policy
gradient algorithms such as PPO and TRPO failed to learn policies that are able to
complete the considered tracks. We thus focus on Ddpg as our main policy gradient
component.

Evaluating Performance. Table 5.1 shows the performance on the considered
Torcs tracks. We see that IppgProgram and IppgTree consistently outperform the
Ndps (Verma et al., 2018) and Viper (Bastani et al., 2018) baselines, respectively.

82

Table 5.1: Performance results in Torcs over 25 random seeds. Each entry is
formatted as Lap-time / Crash-ratio, reporting median lap time in seconds over all
the seeds (lower is better) and ratio of seeds that result in crashes (lower is better).
A lap time of Cr indicates the agent crashed and could not complete a lap for more
than half the seeds.

G-Track E-Road Aalborg Ruudskogen Alpine-2
Length 3186m 3260m 2588m 3274m 3774m

Prior 312.92 / 0.0 322.59 / 0.0 244.19 / 0.0 340.29 / 0.0 402.89 / 0.0
Ddpg 78.82 / 0.24 89.71 / 0.28 101.06 / 0.40 Cr / 0.68 Cr / 0.92
Ndps 108.25 / 0.24 126.80 / 0.28 163.25 / 0.40 Cr / 0.68 Cr / 0.92
Viper 83.60 / 0.24 87.53 / 0.28 110.57 / 0.40 Cr / 0.68 Cr / 0.92
IppgProgram 93.67 / 0.04 119.17 / 0.04 147.28 / 0.12 124.58 / 0.16 256.59 / 0.16
IppgTree 78.33 / 0.04 79.39 / 0.04 109.83 / 0.16 118.80 / 0.24 236.01 / 0.36

While Ddpg outperforms Propel on some tracks, its volatility causes it to be unable
to learn in some environments, and hence to crash themajority of the time. Figure 5.4
shows the consistent improvements made over the prior by IppgProgram, over the
iterations of the Propel algorithm. Appendix D.2 contains similar results achieved
on the two classic control tasks, MountainCar and Pendulum. Figure 5.5 shows that,
compared to Ddpg, our approach suffers far fewer crashes while training in Torcs.

Evaluating Generalization. To compare the ability of the controllers to perform
on tracks not seen during training, we executed the learned policies on all the other
tracks (Table 5.2). We observe that Ddpg crashes significantly more often than
IppgProgram. This demonstrates the generalizability of the policies returned by
Propel. Generalization results for the IppgTree policy are given in the appendix.
In general, IppgTree policies are more generalizable than Ddpg but less than Ippg-
Program. On an absolute level, the generalization ability of Propel still leaves
much room for improvement, which is an interesting direction for future work.

Verifiability of Policies. As shown in prior work (Bastani et al., 2018; Verma
et al., 2018), parsimonious programmatic policies are more amenable to formal ver-
ification than neural policies. Unsurprisingly, the policies generated by IppgTree
and IppgProgram are easier to verify than Ddpg policies. As a concrete exam-
ple, we verified a smoothness property of the IppgProgram policy using the Z3
SMT-solver (de Moura and Bjørner, 2008) (more details in Appendix D.2). The
verification terminated in 0.49 seconds.

Initialization. In principle, Propel can be initialized with a random program,
or a random policy trained using Ddpg. In practice, the performance of Propel

83

Table 5.2: Generalization results in Torcs, where rows are training and columns are
testing tracks. Each entry is formatted as IppgProgram / DDPG, and the number
reported is the median lap time in seconds over all the seeds (lower is better). Cr
indicates the agent crashed and could not complete a lap for more than half the
seeds.

G-Track E-Road Aalborg Ruudskogen Alpine-2

G-Track - 124 / Cr Cr / Cr Cr / Cr Cr / Cr
E-Road 102 / 92 - Cr / Cr Cr / Cr Cr / Cr
Aalborg 201 / 91 228 / Cr - 217 / Cr Cr / Cr
Ruudskogen 131 / Cr 135 / Cr Cr / Cr - Cr / Cr
Alpine-2 222 / Cr 231 / Cr 184 / Cr Cr / Cr -

depends to a certain degree on the stability of the policy gradient procedure, which
is Ddpg in our experiments. Unfortunately, Ddpg often exhibits high variance
across trials and fares poorly in challenging RL domains. Specifically, in our Torcs
experiments, Ddpg fails on a number of tracks (similar phenomena have been
reported in previous work that experiments on similar continuous control domains
(Henderson et al., 2018; Cheng et al., 2019e; Verma et al., 2018)). Agents obtained
by initializing Propel with neural policies obtained via Ddpg also fail on multiple
tracks. Their performance over the five tracks is reported in Appendix D.2. In
contrast, Propel can often finish the challenging tracks when initialized with a very
simple hand-crafted programmatic prior.

5.6 Related Work
Program Synthesis. Program synthesis is the problem of automatically searching
for a program within a language that fits a given specification (Gulwani et al.,
2017). Recent approaches to the problem have leveraged symbolic knowledge about
program structure (Feser et al., 2015), satisfiability solvers (Solar-Lezama et al.,
2006; Jha et al., 2010), and meta-learning techniques (Murali et al., 2018; Parisotto
et al., 2016; Devlin et al., 2017; Balog et al., 2017) to generate interesting programs
in many domains (Alur et al., 2013; Polozov and Gulwani, 2015; Alur et al., 2017).
In most prior work, the specification is a logical constraint on the input/output
behavior of the target program. However, there is also a growing body of work
that considers program synthesis modulo optimality objectives (Bloem et al., 2009;
Chaudhuri et al., 2014; Raychev et al., 2016), often motivated by machine learning
tasks (Murali et al., 2018; Valkov et al., 2018; Ellis et al., 2018; Du et al., 2018;
Verma et al., 2018; Bastani et al., 2018; Zhu et al., 2019). Synthesis of programs

84

that imitates an oracle has been considered in both the logical (Jha et al., 2010)
and the optimization (Verma et al., 2018; Bastani et al., 2018; Zhu et al., 2019)
settings. The projection step in Propel builds on this prior work. While our current
implementation of this step is entirely symbolic, in principle, the operation can
also utilize contemporary techniques for learning policies that guide the synthesis
process (Murali et al., 2018; Balog et al., 2017; Si et al., 2019).

Constrained Policy Learning. Constrained policy learning has seen increased
interest in recent years, largely due to the desire to impose side guarantees such as
stability and safety on the policy’s behavior. Broadly, there are two approaches to
imposing constraints: specifying constraints as an additional cost function (Achiam
et al., 2017; Le et al., 2019b), and explicitly encoding constraints into the policy
class (Alshiekh et al., 2018; Le et al., 2016b; Cheng et al., 2019e; Dalal et al., 2018;
Berkenkamp et al., 2017). In some cases, these two approaches can be viewed as
duals of each other. For instance, recent work that uses control-theoretic policies as
a functional regularizer (Le et al., 2016b; Cheng et al., 2019e) can be viewed from
the perspective of both regularization (additional cost) and an explicitly constrained
policy class (a specific mix of neural and control-theoretic policies). We build upon
this perspective to develop the gradient update step in our approach.

RL using Imitation Learning. There are two ways to utilize imitation learning
subroutines within RL. First, one can leverage limited-access or sub-optimal experts
to speed up learning (Ross and Bagnell, 2014; Cheng et al., 2019a; Chang et al.,
2015; Sun et al., 2018a). Second, one can learn over two policy classes (or one
policy and one model class) to achieve accelerated learning compared to using only
one policy class (Montgomery and Levine, 2016; Cheng et al., 2019c; Sun et al.,
2018b; Cheng et al., 2019b). Our approach has some stylistic similarities to previous
efforts (Montgomery and Levine, 2016; Sun et al., 2018b) that use a richer policy
space to search for improvements before re-training the primary policy to imitate
the richer policy. One key difference is that our primary policy is programmatic
and potentially non-differentiable. A second key difference is that our theoretical
framework takes a functional gradient descent perspective— it would be interesting
to carefully compare with previous analysis techniques to find a unifying framework.

RL with Mirror Descent. The mirror descent framework has previously used to
analyze and design RL algorithms. For example, Thomas et al. (Thomas et al.,
2013) and Mahadevan and Liu (Mahadevan and Liu, 2012) use composite objective
mirror descent, or Comid (Duchi et al., 2010), which allows incorporating adap-

85

tive regularizers into gradient updates, thus offering connections to either natural
gradient RL (Thomas et al., 2013) or sparsity inducing RL algorithms (Mahadevan
and Liu, 2012). Unlike the approach in this section, these prior approaches perform
projection into the same native, differentiable representation. Also, the analyses in
these prior work do not consider errors introduced by hybrid representations and ap-
proximate projection operators. However, one can potentially extend our approach
with versions of mirror descent, e.g., Comid, that were considered in these efforts.

5.7 Conclusion and Future Work
We have presented Propel, a meta-algorithm based onmirror descent, program syn-
thesis, and imitation learning, for programmatic reinforcement learning (PRl). We
have presented theoretical convergence results for Propel, developing novel analy-
ses to characterize approximate projections and biased gradients within the mirror
descent framework. We also validated Propel empirically, and show that it can dis-
cover interpretable, verifiable, generalizable, performant policies and significantly
outperform the state of the art in PRl.

The central idea of Propel is the use of imitation learning and combinatorial
methods in implementing a projection operation for mirror descent, with the goal
of optimization in a functional space that lacks gradients. While we have developed
Propel in an RL setting, this idea is not restricted to RL or even sequential decision
making. Future work will seek to exploit this insight in other machine learning and
program synthesis settings.

86

C h a p t e r 6

HIERARCHICAL IMITATION AND REINFORCEMENT
LEARNING

Summary. We study how to effectively leverage expert feedback to learn sequential
decision-making policies. We focus on problems with sparse rewards and long time
horizons, which typically pose significant challenges in reinforcement learning. We
propose an algorithmic framework, called hierarchical guidance, that leverages
the hierarchical structure of the underlying problem to integrate different modes
of expert interaction. Our framework can incorporate different combinations of
imitation learning (IL) and reinforcement learning (RL) at different levels, leading
to dramatic reductions in both expert effort and cost of exploration. Using long-
horizon benchmarks, including Montezuma’s Revenge, we demonstrate that our
approach can learn significantly faster than hierarchical RL, and be significantly
more label-efficient than standard IL. We also theoretically analyze labeling cost for
certain instantiations of our framework.

6.1 Introduction
Learning good agent behavior from reward signals alone—the goal of reinforce-
ment learning (RL)—is particularly difficult when the planning horizon is long and
rewards are sparse. One successful method for dealing with such long horizons is
imitation learning (IL) (Abbeel and Ng, 2004; Daumé III et al., 2009; Ross et al.,
2011b; Ho and Ermon, 2016), in which the agent learns by watching and possibly
querying an expert. One limitation of existing imitation learning approaches is that
they may require a large amount of demonstration data in long-horizon problems.

The central question we address in this chapter of the thesis is: when experts are
available, how can we most effectively leverage their feedback? A common strategy
to improve sample efficiency in RL over long time horizons is to exploit hierarchical
structure of the problem (Sutton et al., 1998, 1999; Kulkarni et al., 2016; Dayan and
Hinton, 1993; Vezhnevets et al., 2017; Dietterich, 2000). Our approach leverages
hierarchical structure in imitation learning. We study the case where the underlying
problem is hierarchical, and subtasks can be easily elicited from an expert. Our key
design principle is an algorithmic framework called hierarchical guidance, in which
feedback (labels) from the high-level expert is used to focus (guide) the low-level

87

learner. The high-level expert ensures that low-level learning only occurs when
necessary (when subtasks have not been mastered) and only over relevant parts
of the state space. This differs from a naïve hierarchical approach which merely
gives a subtask decomposition. Focusing on relevant parts of the state space speeds
up learning (improves sample efficiency), while omitting feedback on the already
mastered subtasks reduces expert effort (improves label efficiency).

We begin by formalizing the problem of hierarchical imitation learning (section 6.3)
and carefully separate out cost structures that naturally arise when the expert pro-
vides feedback at multiple levels of abstraction. We first apply hierarchical guidance
to IL, derive hierarchically guided variants of behavior cloning and DAgger (Ross
et al., 2011b), and theoretically analyze the benefits (section 6.4). We next apply
hierarchical guidance to the hybrid setting with high-level IL and low-level RL (sec-
tion 6.5). This architecture is particularly suitable in settings where we have access
to high-level semantic knowledge, the subtask horizon is sufficiently short, but the
low-level expert is too costly or unavailable. We demonstrate the efficacy of our ap-
proaches on a simple but extremely challenging maze domain, and on Montezuma’s
Revenge (section 6.6). Our experiments show that incorporating a modest amount
of expert feedback can lead to dramatic improvements in performance compared to
pure hierarchical RL.1

6.2 Related Work in Imitation and Reinforcement Learning
For brevity, we provide here a short overview of related work, and defer to Ap-
pendix E.3 for additional discussion.

Imitation Learning. One can broadly dichotomize IL into passive collection of
demonstrations (behavioral cloning) versus active collection of demonstrations. The
former setting (Abbeel and Ng, 2004; Ziebart et al., 2008; Syed and Schapire, 2008;
Ho and Ermon, 2016) assumes that demonstrations are collected a priori and the
goal of IL is to find a policy that mimics the demonstrations. The latter setting
(Daumé III et al., 2009; Ross et al., 2011b; Ross and Bagnell, 2014; Chang et al.,
2015; Sun et al., 2017) assumes an interactive expert that provides demonstrations
in response to actions taken by the current policy. We explore extension of both
approaches into hierarchical settings.

Hierarchical Reinforcement Learning. Several RL approaches to learning hier-
1Code and experimental setups are available at https://sites.google.com/view/

hierarchical-il-rl

https://sites.google.com/view/hierarchical-il-rl
https://sites.google.com/view/hierarchical-il-rl

88

archical policies have been explored, foremost among them the options framework
(Sutton et al., 1998, 1999; Fruit and Lazaric, 2017). It is often assumed that a useful
set of options are fully defined a priori, and (semi-Markov) planning and learning
only occurs at the higher level. In comparison, our agent does not have direct access
to policies that accomplish such subgoals and has to learn them via expert or rein-
forcement feedback. The closest hierarchical RL work to ours is that of (Kulkarni
et al., 2016), which uses a similar hierarchical structure, but no high-level expert
and hence no hierarchical guidance.

Combining Reinforcement and Imitation Learning. The idea of combining IL
and RL is not new (Nair et al., 2017; Hester et al., 2018). However, previous
work focuses on flat policy classes that use IL as a “pre-training” step (e.g., by pre-
populating the replay buffer with demonstrations). In contrast, we consider feedback
at multiple levels for a hierarchical policy class, with different levels potentially
receiving different types of feedback (i.e., imitation at one level and reinforcement
at the other). Somewhat related to our hierarchical expert supervision is the approach
of (Andreas et al., 2017), which assumes access to symbolic descriptions of subgoals,
without knowing what those symbols mean or how to execute them. Previous
literature has not focused much on comparisons of sample complexity between IL
and RL, with the exception of the recent work of (Sun et al., 2017).

6.3 Hierarchical Formalism
For simplicity, we consider environments with a natural two-level hierarchy; the hi
level corresponds to choosing subtasks, and the lo level corresponds to executing
those subtasks. For instance, an agent’s overall goal may be to leave a building.
At the hi level, the agent may first choose the subtask “go to the elevator,” then
“take the elevator down,” and finally “walk out.” Each of these subtasks needs to
be executed at the lo level by actually navigating the environment, pressing buttons
on the elevator, etc.2

Subtasks, which we also call subgoals, are denoted as 6 P G, and the primitive
actions are denoted as 0 P A. An agent (also referred to as learner) acts by
iteratively choosing a subgoal 6, carrying it out by executing a sequence of actions 0

2An important real-world application is in goal-oriented dialogue systems. For instance, a
chatbot assisting a user with reservation and booking for flights and hotels (Peng et al., 2017;
El Asri et al., 2017) needs to navigate through multiple turns of conversation. The chatbot developer
designs the hierarchy of subtasks, such as ask_user_ goal, ask_dates, offer_ flights, confirm, etc. Each
subtask consists of several turns of conversation. Typically a global state tracker exists alongside the
hierarchical dialogue policy to ensure that cross-subtask constraints are satisfied.

89

until completion, and then picking a new subgoal. The agent’s choices can depend
on an observed state B P S.3 We assume that the horizon at the hi level is �hi, i.e., a
trajectory uses at most �hi subgoals, and the horizon at the lo level is �lo, i.e., after
at most �lo primitive actions, the agent either accomplishes the subgoal or needs
to decide on a new subgoal. The total number of primitive actions in a trajectory is
thus at most �full B �hi�lo.

The hierarchical learning problem is to simultaneously learn a hi-level policy ` :
S Ñ G, called the meta-controller, as well as the subgoal policies c6 : S Ñ A for
each 6 P G, called subpolicies. The aim of the learner is to achieve a high reward
when its meta-controller and subpolicies are run together. For each subgoal 6, we
also have a (possibly learned) termination function V6 : S Ñ tTrue,Falseu, which
terminates the execution of c6. The hierarchical agent behaves as follows:

1: for ℎhi “ 1 . . . �hi do
2: observe state B and choose subgoal 6 Ð `pBq

3: for ℎlo “ 1 . . . �lo do
4: observe state B
5: if V6pBq then break
6: choose action 0 Ð c6pBq

7: end for
8: end for

The execution of each subpolicy c6 generates a lo-level trajectory
g “ pB1, 01, . . . , B� , 0� , B�`1q with � ď �lo.4 The overall behavior results in a
hierarchical trajectory f “ pB1, 61, g1, B2, 62, g2, . . . q, where the last state of each
lo-level trajectory gℎ coincides with the next state Bℎ`1 in f and the first state of the
next lo-level trajectory gℎ`1. The subsequence of f which excludes the lo-level
trajectories gℎ is called the hi-level trajectory, ghi B pB1, 61, B2, 62, . . . q. Finally,
the full trajectory, gfull, is the concatenation of all the lo-level trajectories.

We assume access to an expert, endowed with a meta-controller `‹, subpolicies c‹6,
and termination functions V‹6, who can provide one or several types of supervision:

• HierDemopBq: hierarchical demonstration. The expert executes its hierar-
chical policy starting from B and returns the resulting hierarchical trajectory

3While we use the term state for simplicity, we do not require the environment to be fully
observable or Markovian.

4The trajectory might optionally include a reward signal after each primitive action, which might
either come from the environment, or be a pseudo-reward as we will see in Section 6.5.

90

f‹ “ pB‹1, 6
‹
1 , g

‹
1 , B

‹
2, 6

‹
2 , g

‹
2 , . . . q, where B

‹
1 “ B.

• Labelhipghiq: hi-level labeling. The expert provides a good next subgoal at
each state of a given hi-level trajectory ghi “ pB1, 61, B2, 62, . . . q, yielding a
labeled data set tpB1, 6

‹
1q, pB2, 6

‹
2q, . . . u.

• Labellopg; 6q: lo-level labeling. The expert provides a good next primitive
action towards a given subgoal 6 at each state of a given lo-level trajectory
g “ pB1, 01, B2, 02, . . . q, yielding a labeled data set tpB1, 0

‹
1q, pB2, 0

‹
2q, . . . u.

• Inspectlopg; 6q: lo-level inspection. Instead of annotating every state of a
trajectory with a good action, the expert only verifies whether a subgoal 6 was
accomplished, returning either Pass or Fail.

• Labelfullpgfullq: full labeling. The expert labels the agent’s full trajec-
tory gfull “ pB1, 01, B2, 02, . . . q, from start to finish, ignoring hierarchical
structure, yielding a labeled data set tpB1, 0

‹
1q, pB2, 0

‹
2q, . . . u.

• Inspectfullpgfullq: full inspection. The expert verifies whether the agent’s
overall goal was accomplished, returning either Pass or Fail.

When the agent learns not only the subpolicies c6, but also termination functions
V6, then Labello also returns good termination values l‹ P tTrue,Falseu for each
state of g “ pB1, 01 . . . q, yielding a data set tpB1, 0

‹
1, l

‹
1q, . . . u.

Although HierDemo and Label can be both generated by the expert’s hierarchical
policy p`‹, tc‹6uq, they differ in the mode of expert interaction. HierDemo returns
a hierarchical trajectory executed by the expert, as required for passive IL, and
enables a hierarchical version of behavioral cloning (Abbeel and Ng, 2004; Syed
and Schapire, 2008). Label operations provide labels with respect to the learning
agent’s trajectories, as required for interactive IL. Labelfull is the standard query
used in prior work on learning flat policies (Daumé III et al., 2009; Ross et al.,
2011b), and Labelhi and Labello are its hierarchical extensions.

Inspect operations are newly introduced in this work, and form a cornerstone of our
interactive hierarchical guidance protocol that enables substantial savings in label
efficiency. They can be viewed as “lazy” versions of the corresponding Label opera-
tions, requiring less effort. Our underlying assumption is that if the given hierarchical
trajectoryf “ tpBℎ, 6ℎ, gℎqu agreeswith the expert on hi level, i.e., 6ℎ “ `‹pBℎq, and
lo-level trajectories pass the inspection, i.e., Inspectlopgℎ; 6ℎq “ Pass, then the re-
sulting full trajectorymust also pass the full inspection, Inspectfullpgfullq “ Pass.

91

Algorithm 8 Hierarchical Behavioral Cloning (h-BC)
1: Initialize data buffers Dhi ÐH and D6 ÐH, 6 P G
2: for C “ 1, . . . ,) do
3: Get a new environment instance with start state B
4: f‹ Ð HierDemopBq
5: for all pB‹

ℎ
, 6‹
ℎ
, g‹
ℎ
q P f‹ do

6: Append D6‹
ℎ
Ð D6‹

ℎ
Y g‹

ℎ

7: Append Dhi Ð Dhi Y tpB
‹
ℎ
, 6‹
ℎ
qu

8: end for
9: end for
10: Train subpolicies c6 Ð Trainpc6,D6q for all 6
11: Train meta-controller ` Ð Trainp`,Dhiq

This means that a hierarchical policy need not always agree with the expert’s exe-
cution at lo level to succeed in the overall task.

Besides algorithmic reasons, the motivation for separating the types of feedback is
that different expert queries will typically require different amount of effort, which
we refer to as cost. We assume the costs of the Label operations are �L

hi, �L
lo and

�L
full, the costs of each Inspect operation are �I

lo and �I
full. In many settings,

lo-level inspection will require significantly less effort than lo-level labeling, i.e.,
�I

lo ! �L
lo. For instance, identifying if a robot has successfully navigated to the

elevator is presumably much easier than labeling an entire path to the elevator. One
reasonable cost model, natural for the environments in our experiments, is to assume
that Inspect operations take time $p1q and work by checking the final state of the
trajectory, whereas Label operations take time proportional to the trajectory length,
which is $p�hiq, $p�loq and $p�hi�loq for our three Label operations.

6.4 Hierarchically Guided Imitation Learning
Hierarchical guidance is an algorithmic design principle in which the feedback
from high-level expert guides the low-level learner in two different ways: (i) the
high-level expert ensures that low-level expert is only queried when necessary
(when the subtasks have not been mastered yet), and (ii) low-level learning is
limited to the relevant parts of the state space. We instantiate this framework first
within passive learning from demonstrations, obtaining hierarchical behavioral
cloning (Algorithm 8), and then within interactive imitation learning, obtaining
hierarchically guided DAgger (Algorithm 9), our best-performing algorithm.

92

Algorithm 9 Hierarchically Guided DAgger (hg-DAgger)
1: Initialize data buffers Dhi ÐH and D6 ÐH, 6 P G
2: Run Hierarchical Behavioral Cloning (Algorithm 8)

up to C “)warm-start
3: for C “)warm-start ` 1, . . . ,) do
4: Get a new environment instance with start state B
5: Initialize f ÐH

6: repeat
7: 6 Ð `pBq

8: Execute c6, obtain lo-level trajectory g
9: Append pB, 6, gq to f
10: B Ð the last state in g
11: until end of episode
12: Extract gfull and ghi from f

13: if Inspectfullpgfullq “ Fail then
14: D‹ Ð Labelhipghiq
15: Process pBℎ, 6ℎ, gℎq P f in sequence as long as

6ℎ agrees with the expert’s choice 6‹ℎ in D‹:
16: if Inspectpgℎ; 6ℎq “ Fail then
17: Append D6ℎ Ð D6ℎ Y Labellopgℎ; 6ℎq
18: break
19: end if
20: Append Dhi Ð Dhi Y D‹

21: end if
22: Update subpolicies c6 Ð Trainpc6,D6q for all 6
23: Update meta-controller ` Ð Trainp`,Dhiq
24: end for

Hierarchical Behavioral Cloning (h-BC)
We consider a natural extension of behavioral cloning to the hierarchical setting
(Algorithm 8). The expert provides a set of hierarchical demonstrations f‹, each
consisting of lo-level trajectories g‹

ℎ
“ tpB‹

ℓ
, 0‹
ℓ
qu
�lo
ℓ“1 as well as a hi-level trajectory

g‹hi “ tpB‹
ℎ
, 6‹
ℎ
qu
�hi
ℎ“1. We then run Train (lines 8–9) to find the subpolicies c6

that best predict 0‹
ℓ
from B‹

ℓ
, and meta-controller ` that best predicts 6‹

ℎ
from B‹

ℎ
,

respectively. Train can generally be any supervised learning subroutine, such as
stochastic optimization for neural networks or some batch training procedure. When
termination functions V6 need to be learned as part of the hierarchical policy, the
labels l‹6 will be provided by the expert as part of g‹

ℎ
“ tpB‹

ℓ
, 0‹
ℓ
, l‹

ℓ
qu.5 In this

setting, hierarchical guidance is automatic, because subpolicy demonstrations only
occur in relevant parts of the state space.

5In our hierarchical imitation learning experiments, the termination functions are all learned.
Formally, the termination signal l6, can be viewed as part of an augmented action at lo level.

93

Hierarchically Guided DAgger (hg-DAgger)
Passive IL, e.g., behavioral cloning, suffers from the distribution mismatch between
the learning and execution distributions. This mismatch is addressed by interactive
IL algorithms, such as SEARN (Daumé III et al., 2009) and DAgger (Ross et al.,
2011b), where the expert provides correct actions along the learner’s trajectories
through the operation Labelfull. A naïve hierarchical implementation would pro-
vide correct labels along the entire hierarchical trajectory via Labelhi and Labello.
We next show how to use hierarchical guidance to decrease lo-level expert costs.

We leverage two hi-level query types: Inspectlo and Labelhi. We use Inspectlo

to verify whether the subtasks are successfully completed and Labelhi to check
whether we are staying in the relevant part of the state space. The details are
presented in Algorithm 9, which uses DAgger as the learner on both levels, but the
scheme can be adapted to other interactive imitation learners.

In each episode, the learner executes the hierarchical policy, including choosing a
subgoal (line 7), executing the lo-level trajectories, i.e., rolling out the subpolicy
c6 for the chosen subgoal, and terminating the execution according to V6 (line 8).
Expert only provides feedback when the agent fails to execute the entire task, as
verified by Inspectfull (line 13). When Inspectfull fails, the expert first labels
the correct subgoals via Labelhi (line 14), and only performs lo-level labeling as
long as the learner’s meta-controller chooses the correct subgoal 6ℎ (line 15), but
its subpolicy fails (i.e., when Inspectlo on line 16 fails). Since all the preceding
subgoals were chosen and executed correctly, and the current subgoal is also correct,
lo-level learning is in the “relevant” part of the state space. However, since the
subpolicy execution failed, its learning has not been mastered yet. We next analyze
the savings in expert cost that result from hierarchical guidance.

Theoretical Analysis. We analyze the cost of hg-DAgger in comparison with flat
DAgger under somewhat stylized assumptions. We assume that the learner aims to
learn themeta-controller ` from some policy classM, and subpolicies c6 from some
class Πlo. The classes M and Πlo are finite (but possibly exponentially large) and
the task is realizable, i.e., the expert’s policies can be found in the corresponding
classes: `‹ P M, and c‹6 P Πlo, 6 P G. This allows us to use the halving
algorithm (Shalev-Shwartz et al., 2012) as the online learner on both levels. (The
implementation of our algorithm does not require these assumptions.)

The halving algorithm maintains a version space over policies, acts by a majority
decision, and when it makes a mistake, it removes all the erring policies from the

94

version space. In the hierarchical setting, it thereforemakes atmost log |M|mistakes
on the hi level, and at most log |Πlo | mistakes when learning each c6. The mistake
bounds can be further used to upper bound the total expert cost in both hg-DAgger
and flat DAgger. To enable an apples-to-apples comparison, we assume that the flat
DAgger learns over the policy classΠfull “ tp`, tc6u6PGq : ` PM, c6 P Πlou, but
is otherwise oblivious to the hierarchical task structure. The bounds depend on the
cost of performing different types of operations, as defined at the end of Section 6.3.
We consider a modified version of flat DAgger that first calls Inspectfull, and
only requests labels (Labelfull) if the inspection fails. The proofs are deferred to
Appendix E.1.

Theorem 6.4.1. Given finite classes M and Πlo and realizable expert policies, the
total cost incurred by the expert in hg-DAgger by round) is bounded by

)�I
full `

`

log2 |M| ` |Gopt| log2 |Πlo|
˘

p�L
hi ` �hi�

I
loq

`
`

|Gopt| log2 |Πlo|
˘

�L
lo, (6.1)

where Gopt Ď G is the set of the subgoals actually used by the expert, Gopt B `‹pSq.

Theorem 6.4.2. Given the full policy class
Πfull “ tp`, tc6u6PGq : ` PM, c6 P Πlou and a realizable expert policy, the total
cost incurred by the expert in flat DAgger by round) is bounded by

)�I
full `

`

log2 |M| ` |G| log2 |Πlo|
˘

�L
full. (6.2)

Both bounds have the same leading term,)�I
full, the cost of full inspection, which

is incurred every round and can be viewed as the “cost of monitoring.” In contrast,
the remaining terms can be viewed as the “cost of learning” in the two settings, and
include terms coming from their respective mistake bounds. The ratio of the cost of
hierarchically guided learning to the flat learning is then bounded as

Eq. (6.1)´)�I
full

Eq. (6.2)´)�I
full

ď
�L

hi ` �hi�
I
lo ` �

L
lo

�L
full

, (6.3)

where we applied the upper bound |Gopt| ď |G|. The savings thanks to hierarchical
guidance depend on the specific costs. Typically, we expect the inspection costs to be
$p1q, if it suffices to check the final state, whereas labeling costs scale linearly with
the length of the trajectory. The cost ratio is then 9�hi`�lo

�hi�lo
. Thus, we realize most

significant savings if the horizons on each individual level are substantially shorter
than the overall horizon. In particular, if �hi “ �lo “

?
�full, the hierarchically

95

Algorithm 10 Hierarchically Guided DAgger /&-learning
input Function pseudopB; 6q providing the pseudo-reward
input Predicate terminalpB; 6q indicating the termination of 6
input Annealed exploration probabilities n6 ą 0, 6 P G
1: Initialize data buffers Dhi ÐH and D6 ÐH, 6 P G
2: Initialize subgoal &-functions &6, 6 P G
3: for C “ 1, . . . ,) do
4: Get a new environment instance with start state B
5: Initialize f ÐH

6: repeat
7: Bhi Ð B, 6 Ð `pBq and initialize g ÐH

8: repeat
9: 0 Ð n6-greedyp&6, Bq
10: Execute 0, next state B̃, Ã Ð pseudopB̃; 6q
11: Update &6: a (stochastic) gradient descent step

on a minibatch from D6

12: Append pB, 0, Ã, B̃q to g and update B Ð B̃

13: until terminalpB; 6q
14: Append pBhi, 6, gq to f
15: until end of episode
16: Extract gfull and ghi from f

17: if Inspectfullpgfullq “ Fail then
18: D‹ Ð Labelhipghiq
19: Process pBℎ, 6ℎ, gℎq P f in sequence as long as

6ℎ agrees with the expert’s choice 6‹ℎ in D‹:
20: Append D6ℎ Ð D6ℎ Y gℎ

Append Dhi Ð Dhi Y D‹

21: else
22: Append D6ℎ Ð D6ℎ Y gℎ for all pBℎ, 6ℎ, gℎq P f
23: end if
24: Update meta-controller ` Ð Trainp`,Dhiq
25: end for

guided approach reduces the overall labeling cost by a factor of
?
�full. More

generally, whenever �full is large, we reduce the costs of learning be at least a
constant factor—a significant gain if this is a saving in the effort of a domain expert.

6.5 Hierarchically Guided IL /RL
Hierarchical guidance also applies in the hybrid setting with interactive IL on the
hi level and RL on the lo level. The hi-level expert provides the hierarchical
decomposition, including the pseudo-reward function for each subgoal,6 and is also

6This is consistent withmany hierarchical RL approaches, including options (Sutton et al., 1999),
MAXQ (Dietterich, 2000), UVFA (Schaul et al., 2015a) and h-DQN (Kulkarni et al., 2016).

96

able to pick a correct subgoal at each step. Similar to hg-DAgger, the labels from
hi-level expert are used not only to train the meta-controller `, but also to limit the
lo-level learning to the relevant part of the state space. In Algorithm 10 we provide
the details, with DAgger on hi level and&-learning on lo level. The scheme can be
adapted to other interactive IL and RL algorithms.

The learning agent proceeds by rolling in with its meta-controller (line 7). For
each selected subgoal 6, the subpolicy c6 selects and executes primitive actions
via the n-greedy rule (lines 9–10), until some termination condition is met. The
agent receives some pseudo-reward, also known as intrinsic reward (Kulkarni et al.,
2016) (line 10). Upon termination of the subgoal, agent’s meta-controller ` chooses
another subgoal and the process continues until the end of the episode, where the
involvement of the expert begins. As in hg-DAgger, the expert inspects the overall
execution of the learner (line 17), and if it is not successful, the expert provides
hi-level labels, which are accumulated for training the meta-controller.

Hierarchical guidance impacts how the lo-level learners accumulate experience.
As long as the meta-controller’s subgoal 6 agrees with the expert’s, the agent’s
experience of executing subgoal 6 is added to the experience replay buffer D6. If
the meta-controller selects a “bad” subgoal, the accumulation of experience in the
current episode is terminated. This ensures that experience buffers contain only the
data from the relevant part of the state space.

Algorithm 10 assumes access to a real-valued function pseudopB; 6q, providing
the pseudo-reward in state B when executing 6, and a predicate terminalpB; 6q,
indicating the termination (not necessarily successful) of subgoal 6. This setup is
similar to prior work on hierarchical RL (Kulkarni et al., 2016). One natural defini-
tion of pseudo-rewards, based on an additional predicate successpB; 6q indicating
a successful completion of subgoal 6, is as follows:

$

’

’

’

&

’

’

’

%

1 if successpB; 6q

´1 if successpB; 6q and terminalpB; 6q

´^ otherwise,

where ^ ą 0 is a small penalty to encourage short trajectories. The predicates
success and terminal are provided by an expert or learnt from supervised or
reinforcement feedback. In our experiments, we explicitly provide these predicates
to both hg-DAgger/Q as well as the hierarchical RL, giving them advantage over
hg-DAgger, which needs to learn when to terminate subpolicies.

97

episode 0-250
(success rate 27%)

250-500
(81%)

500-750
(91%)

750-1000
(97%)

0K

2K

4K

6K

8K

10K

ex
p

er
t

co
st

hg-DAgger (Alg. 2)
expert cost per type

HI-level labeling

LO-level labeling

LO-level inspection

0K 50K 100K 150K 200K 250K 300K 350K 400K
RL samples at LO-level

0%

20%

40%

60%

80%

100%
su

cc
es

s
ra

te

hg-DAgger/Q (Alg. 3)
RL samples vs. expert cost

0K

5K

10K

15K

20K

25K

30K

35K

40K

H
I-

le
ve

l
ex

p
er

t
co

st

success rate
HI-level expert cost
every 5K episodes

Figure 6.1: Maze navigation. (Left) One sampled environment instance; the agent
needs to navigate from bottom right to bottom left. (Middle) Expert cost over time
for hg-DAgger; the cost of Label operations equals the length of labeled trajectory,
the cost of Inspect operations is 1. (Right) Success rate of hg-DAgger/Q and the
hi-level label cost as a function of the number of lo-level RL samples.

0 200 400 600 800 1000

episode (rounds of learning)

0%

20%

40%

60%

80%

100%

su
cc

es
s

ra
te

hg-DAgger
h-BC
flat DAgger
flat beh. cloning

0K 10K 20K 30K 40K 50K 60K 70K

expert cost (HI + LO levels)

0%

20%

40%

60%

80%

100%

su
cc

es
s

ra
te

hg-DAgger
h-BC
flat DAgger
flat beh. cloning

0K 10K 20K 30K 40K 50K 60K

expert cost (LO-level)

0%

20%

40%

60%

80%

100%

su
cc

es
s

ra
te

hg-DAgger
flat DAgger

Figure 6.2: Maze navigation: hierarchical versus flat imitation learning. Each
episode is followed by a round of training and a round of testing. The success rate is
measured over previous 100 test episodes; the expert cost is as in Figure 6.1. (Left)
Success rate per episode. (Middle) Success rate versus the expert cost. (Right)
Success rate versus the lo-level expert cost.

6.6 Experiments
We evaluate the performance of our algorithms on two separate domains: (i) a
simple but challengingmaze navigation domain and (ii) theAtari gameMontezuma’s
Revenge.

98

Maze Navigation Domain
TaskOverview. Figure 6.1 (left) displays a snapshot of themaze navigation domain.
In each episode, the agent encounters a new instance of the maze from a large
collection of different layouts. Each maze consists of 16 rooms arranged in a 4-by-4
grid, but the openings between the rooms vary from instance to instance as does the
initial position of the agent and the target. The agent (white dot) needs to navigate
from one corner of the maze to the target marked in yellow. Red cells are obstacles
(lava), which the agent needs to avoid for survival. The contextual information the
agent receives is the pixel representation of a bird’s-eye view of the environment,
including the partial trail (marked in green) indicating the visited locations.

Due to a large number of random environment instances, this domain is not solvable
with tabular algorithms. Note that rooms are not always connected, and the locations
of the hallways are not always in the middle of the wall. Primitive actions include
going one step up, down, left or right. In addition, each instance of the environment
is designed to ensure that there is a path from initial location to target, and the
shortest path takes at least 45 steps (�full “ 100). The agent is penalized with
reward ´1 if it runs into lava, which also terminates the episode. The agent only
receives positive reward upon stepping on the yellow block.

A hierarchical decomposition of the environment corresponds to four possible sub-
goals of going to the room immediately to the north, south, west, east, and the fifth
possible subgoal go_to_target (valid only in the room containing the target). In this
setup, �lo « 5 steps, and �hi « 10–12 steps. The episode terminates after 100
primitive steps if the agent is unsuccessful. The subpolicies and meta-controller use
similar neural network architectures and only differ in the number of action outputs.
(Details of network architecture are provided in Appendix E.2.)

Hierarchically Guided IL. We first compare our hierarchical IL algorithms with
their flat versions. The algorithm performance is measured by success rate, defined
as the average rate of successful task completion over the previous 100 test episodes,
on random environment instances not used for training. The cost of each Label
operation equals the length of the labeled trajectory, and the cost of each Inspect
operation equals 1.

Both h-BC and hg-DAgger outperform flat imitation learners (6.2,left). hg-DAgger,
in particular, achieves consistently the highest success rate, approaching 100% in
fewer than 1000 episodes. 6.2 (left) displays the median as well as the range from
minimum to maximum success rate over 5 random executions of the algorithms.

99

Expert cost varies significantly between the two hierarchical algorithms. Figure
6.2 (middle) displays the same success rate, but as a function of the expert cost.
hg-DAgger achieves significant savings in expert cost compared to other imitation
learning algorithms thanks to a more efficient use of the lo-level expert through
hierarchical guidance. Figure 6.1 (middle) shows that hg-DAgger requires most of
its lo-level labels early in the training and requests primarily hi-level labels after
the subgoals have been mastered. As a result, hg-DAgger requires only a fraction of
lo-level labels compared to flat DAgger (Figure 6.2, right).

Hierarchically Guided IL /RL. We evaluate hg-DAgger/Q with deep double &-
learning (DDQN, Van Hasselt et al., 2016) and prioritized experience replay (Schaul
et al., 2015b) as the underlying RL procedure. Each subpolicy learner receives a
pseudo-reward of 1 for each successful execution, corresponding to stepping through
the correct door (e.g., door to the north if the subgoal is north) and negative reward
for stepping into lava or through other doors.

6.1 (right) shows the learning progression of hg-DAgger/Q, implying two main
observations. First, the number of hi-level labels rapidly increases initially and then
flattens out after the learner becomes more successful, thanks to the availability of
Inspectfull operation. As the hybrid algorithm makes progress and the learning
agent passes the Inspectfull operation increasingly often, the algorithm starts
saving significantly on expert feedback. Second, the number of hi-level labels is
higher than for both hg-DAgger and h-BC.Inspectfull returnsFail often, especially
during the early parts of training. This is primarily due to the slower learning speed
of &-learning at the lo level, requiring more expert feedback at the hi level. This
means that the hybrid algorithm is suited for settings where lo-level expert labels
are either not available or more expensive than the hi-level labels. This is exactly
the setting we analyze in the next section.

In Appendix E.2, we compare hg-DAgger/Qwith hierarchical RL (h-DQN, Kulkarni
et al., 2016), concluding that h-DQN, even with significantly more lo-level samples,
fails to reach success rate comparable to hg-DAgger/Q. Flat &-learning also fails in
this setting, due to a long planning horizon and sparse rewards (Mnih et al., 2015).

HierarchicallyGuided IL /RLvsHierarchicalRL:ComparisononMontezuma’s
Revenge
Task Overview. Montezuma’s Revenge is among the most difficult Atari games for
existing deep RL algorithms, and is a natural candidate for hierarchical approach

100

0%

20%

40%

60%

80%

100%

su
cc

es
s

ra
te

Learning Progression (random trial)

0K 1K 2K 3K 4K 5K 6K 7K 8K 9K

episode (HI-level labeling cost)

0K

200K

400K

600K

800K

1000K

L
O

-l
ev

el
sa

m
pl

es

Subgoal 1
Subgoal 2 (key)
Subgoal 3
Subgoal 4 (door)

0.0M 0.5M 1.0M 1.5M 2.0M 2.5M 3.0M 3.5M 4.0M
LO-level reinforcement learning samples

0

100

200

300

400

ex
te

rn
al

re
w

ar
ds

hg-DAgger/Q versus h-DQN (100 trials)

hg-DAgger/Q 3rd quartile

hg-DAgger/Q median

h-DQN

Figure 6.3: Montezuma’s revenge: hg-DAgger/Q versus h-DQN. (Left) Screenshot
of Montezuma’s Revenge in black-and-white with color-coded subgoals. (Middle)
Learning progression of hg-DAgger/Q in solving the first room of Montezuma’s
Revenge for a typical successful trial. Subgoal colors match the left pane; success
rate is the fraction of times the lo-level RL learner achieves its subgoal over the
previous 100 attempts. (Right) Learning performance of hg-DAgger/Q versus h-
DQN (median and inter-quartile range).

due to the sequential order of subtasks. Figure 6.3 (left) displays the environment
and an annotated sequence of subgoals. The four designated subgoals are: go to
bottom of the right stair, get the key, reverse path to go back to the right stair, then
go to open the door (while avoiding obstacles throughout).

The agent is given a pseudo-reward of 1 for each subgoal completion and -1 upon loss
of life. We enforce that the agent can only have a single life per episode, preventing
the agent from taking a shortcut after collecting the key (by taking its own life and
re-initializing with a new life at the starting position, effectively collapsing the task
horizon). Note that for this setting, the actual game environment is equipped with
two positive external rewards corresponding to picking up the key (subgoal 2, reward
of 100) and using the key to open the door (subgoal 4, reward of 300). Optimal
execution of this sequence of subgoals requires more than 200 primitive actions.
Unsurprisingly, flat RL algorithms often achieve a score of 0 on this domain (Mnih
et al., 2015, 2016; Wang et al., 2016).

hg-DAgger/Q versus h-DQN. Similar to the maze domain, we use DDQN with
prioritized experience replay at the lo level of hg-DAgger/Q. We compare its per-
formancewith h-DQNusing the same neural network architecture as (Kulkarni et al.,
2016). Figure 6.3 (middle) shows the learning progression of our hybrid algorithm.
The hi-level horizon �hi “ 4, so meta-controller is learnt from fairly few samples.
Each episode roughly corresponds to one Labelhi query. Subpolicies are learnt in
the order of subgoal execution as prescribed by the expert.

We introduce a simple modification to &-learning on the lo level to speed up
learning: the accumulation of experience replay buffer does not begin until the first

101

time the agent encounters positive pseudo-reward. During this period, in effect, only
the meta-controller is being trained. This modification ensures the reinforcement
learner encounters at least some positive pseudo-rewards, which boosts learning in
the long horizon settings and should naturally work with any off-policy learning
scheme (DQN, DDQN, Dueling-DQN). For a fair comparison, we introduce the
same modification to the h-DQN learner (otherwise, h-DQN failed to achieve any
reward).

Tomitigate the instability of DQN (see, for example, learning progression of subgoal
2 and 4 in Figure 6.3, middle), we introduce one additional modification. We
terminate training of subpolicies when the success rate exceeds 90%, at which point
the subgoal is considered learned. Subgoal success rate is defined as the percentage
of successful subgoal completions over the previous 100 attempts.

Figure 6.3 (right) shows the median and the inter-quartile range over 100 runs of hg-
DAgger/Q and hg-DQN.7 The lo-level sample sizes are not directly comparablewith
the middle panel, which displays the learning progression for a random successful
run, rather than an aggregate over multiple runs. In all of our experiments, the
performance of the imitation learning component is stable across many different
trials, whereas the performance of the reinforcement learning component varies
substantially. Subgoal 4 (door) is the most difficult to learn due to its long horizon
whereas subgoals 1–3 are mastered very quickly, especially compared to h-DQN.
Our algorithm benefits from hierarchical guidance and accumulates experience for
each subgoal only within the relevant part of the state space, where the subgoal is
part of an optimal trajectory. In contrast, h-DQN may pick bad subgoals and the
resulting lo-level samples then “corrupt” the subgoal experience replay buffers and
substantially slow down convergence.8

The number of hi-level labels in Figure 6.3 (middle) can be further reduced by using
a more efficient RL procedure than DDQN at the lo level. In the specific example
of Montezuma’s Revenge, the actual human effort is in fact much smaller, since
the human expert needs to provide a sequence of subgoals only once (together with
simple subgoal detectors), and then hi-level labeling can be done automatically. The
human expert only needs to understand the high level semantics, and does not need
to be able to play the game.

7In Appendix E.2, we present additional plots, including 10 best runs of each algorithm, subgoal
completion rate over 100 trials, and versions of Figure 6.3 (middle) for additional random instances.

8In fact, we further reduced the number of subgoals of h-DQN to only two initial subgoals, but
the agent still largely failed to learn even the second subgoal (see the appendix for details).

102

6.7 Discussion
We have presented hierarchical guidance framework and shown how it can be used
to speed up learning and reduce the cost of expert feedback in hierarchical imitation
learning and hybrid imitation–reinforcement learning.

Our approach can be extended in several ways. For instance, one can consider
weaker feedback such as preference or gradient-style feedback (Fürnkranz et al.,
2012; Loftin et al., 2016; Christiano et al., 2017), or a weaker form of imitation
feedback, only saying whether the agent action is correct or incorrect, corresponding
to bandit variant of imitation learning (Ross et al., 2011b).

Our hybrid IL / RL approach relied on the availability of a subgoal termination
predicate indicating when the subgoal is achieved. While in many settings such a
termination predicate is relatively easy to specify, in other settings this predicate
needs to be learned. We leave the question of learning the termination predicate,
while learning to act from reinforcement feedback, open for future research.

103

C h a p t e r 7

POLICY LEARNING WITH LATENT MODEL

Summary. We study the problem of imitation learning from demonstrations of
multiple coordinating agents. One key challenge in this setting is that learning a
goodmodel of coordination can be difficult, since coordination is often implicit in the
demonstrations andmust be inferred as a latent variable. Wepropose a joint approach
that simultaneously learns a latent coordination model along with the individual
policies. In particular, our method integrates unsupervised structure learning with
conventional imitation learning. We illustrate the power of our approach on a
difficult problem of learning multiple policies for fine-grained behavior modeling in
team sports, where different players occupy different roles in the coordinated team
strategy. We show that having a coordination model to infer the roles of players
yields substantially improved imitation loss compared to conventional baselines.

7.1 Motivating Applications for Latent Structure
The areas of multi-agent planning and control have witnessed a recent wave of
strong interest due to the practical desire to deal with complex real-world prob-
lems, such as smart-grid control, autonomous vehicles planning, managing teams
of robots for emergency response, among others. From the learning perspective,
(cooperative) multi-agent learning is not a new area of research (Stone and Veloso,
2000; Panait and Luke, 2005). However, compared to the progress in conventional
supervised learning and single-agent reinforcement learning, the successes of multi-
agent learning have remained relatively modest. Most notably, multi-agent learning
suffers from extremely high dimensionality of both the state and actions spaces, as
well as relative lack of data sources and experimental testbeds.

The growing availability of data sources for coordinated multi-agent behavior, such
as sports tracking data (Bialkowski et al., 2014), now enables the possibility of
learning multi-agent policies from demonstrations, also known as multi-agent imi-
tation learning. One particularly interesting aspect of domains such as team sports
is that the agents must coordinate. For example, in the professional soccer setting
depicted in Figure 7.1, different players must coordinate to assume different roles
(e.g., defend left field). However, the roles and role assignment mechanism are
unobserved from the demonstrations. Furthermore, the role for a player may change

104

Figure 7.1: Our motivating example of learning coordinating behavior policies for
team sports from tracking data. Red is the attacking team, blue is the defending
team, and yellow is the ball.

during the same play sequence. In the control community, this issue is known as
“index-free” multi-agent control (Kingston and Egerstedt, 2010).

Motivated by these challenges, we study the problem of imitation learning for mul-
tiple coordinating agents from demonstrations. Many realistic multi-agent settings
require coordination among collaborative agents to achieve some common goal
(Guestrin et al., 2002; Kok et al., 2003). Beyond team sports, other examples
include learning policies for game AI, controlling teams of multiple robots, or mod-
eling collective animal behavior. As discussed above, we are interested in settings
where agents have access to the outcome of actions from other agents, but the co-
ordination mechanism is neither clearly defined nor observed, which makes the full
state only partially observable.

We propose a semi-supervised learning framework that integrates and builds upon
conventional imitation learning and unsupervised, or latent, structure learning. The
latent structure model encodes a coordination mechanism, which approximates the
implicit coordination in the demonstration data. In order to make learning tractable,
we develop an alternating optimization method that enables integrated and efficient
training of both individual policies and the latent structure model. For learn-
ing individual policies, we extend reduction-based single-agent imitation learning
approaches into multi-agent domain, utilizing powerful black-box supervised tech-
niques such as deep learning as base routines. For latent structure learning, we
develop a stochastic variational inference approach.

We demonstrate the effectiveness of our method in two settings. The first is a
synthetic experiment based on the popular predator-prey game. The second is
a challenging task of learning multiple policies for team defense in professional

105

soccer, using a large training set1 of play sequences illustrated by Figure 7.1. We
show that learning a good latent structure to encode implicit coordination yields
significantly superior imitation performance compared to conventional baselines.
To the best of our knowledge, this is the first time an imitation learning approach
has been applied to jointly learn cooperative multi-agent policies at large scale.

7.2 Policy Learning Problem Formulation
In coordinated multi-agent imitation learning, we have agents acting in coordi-
nation to achieve a common goal (or sequence of goals). Training data D con-
sists of multiple demonstrations of agents. Importantly, we assume the identity
(or indexing) of the experts may change from one demonstration to another.
Each (unstructured) set of demonstrations is denoted by * “ t*1, . . . ,* u, where
*: “ tDC,:u

)
C“1 is the sequence of actions by agent : at time C. Note that each set of

demonstrations can have varying sequence length T. Let � “ t2Cu)C“1 be the context
associated with each demonstration sequence.

Policy Learning. Our ultimate goal is to learn a (largely) decentralized policy, but
for clarity we first present the problem of learning a fully centralized multi-agent
policy. Following the notation of (Ross et al., 2011a), let ®cp®Bq :“ ®0 denote the joint
policy that maps the joint state, ®B “ rB1, . . . , B s, of all agents into actions
®0 “ r01, . . . , 0 s. The goal is to minimize imitation loss:

L8<8C0C8>= “ E®B„3 ®c rℓp®cp®Bqqs ,

where 3 ®c denotes the distribution of states experienced by joint policy ®c and ℓ is the
imitation loss defined over the demonstrations (e.g., squared loss for deterministic
policies, or cross entropy for stochastic policies).

The decentralized setting decomposes the joint policy ®c “ rc1, . . . , c s into
policies, each tailored to a specific agent index or “role”.2 The loss function is then:

L8<8C0C8>= “

ÿ

:“1
EB„3c: rℓpc:pB:qqs .

Black-Box Policy Classes. In order to leverage powerful black-box policy classes
such as random forests and deep learning, we take a learning reduction approach to

1Data at http://www.stats.com/data-science/ and see video result at http://
hoangminhle.github.io

2It is straightforward to extend our formulation to settings where multiple agents can occupy the
same role, and where not all roles are occupied across all execution sequences.

http://www.stats.com/data-science/
http://hoangminhle.github.io
http://hoangminhle.github.io

106

training ®c. One consequence is that the state space representation B “ rB1, . . . , B s

must be consistently indexed, e.g., agent : in one instance must correspond to
agent : in another instance. This requirement applies for both centralized and
decentralized policy learning, and is often implicitly assumed in prior work on
multi-agent learning. A highly related issue arises in distributed control of index-free
coordinating robots, e.g., to maintain a defined formation (Kloder and Hutchinson,
2006; Kingston and Egerstedt, 2010).

Motivating example: Soccer Domain. Consider the task of imitating professional
soccer players, where training data includes play sequences from different teams and
games. Context � corresponds to the behavior of the opposing team and the ball.
The data includesmultiple sequences of -set of trajectories* “ t*1,*2, . . . ,* u,
where the actual identity of player generating*: may change fromone demonstration
to the next.

One important challenge for black-box policy learning is constructing an indexing
mechanismover the agents to yield a consistent state representation. For example, the
same index should correspond to the “left defender” in all instances. Otherwise, the
inputs to the policy will be inconsistent, making learning difficult if not impossible.
Note that barring extensive annotations or some heuristic rule-based definitions, it is
unnatural to quantitatively define what makes a player “left defender”. In addition,
even if we had a way to define who the “left defender” is, he may not stay in the
same role during the same sequence.

Role-based Indexing. We address index-free policy learning via role learning and
role-based index assignment. To motivate our notion of role, let’s first consider the
simplest indexing mechanism: one could equate role to agent identity. However, the
data often comes from various sequences, with heterogeneous identities and teams
of agents. Thus instead of learning identity-specific policies, it is more natural
and data-efficient to learn a policy per role. However, a key challenge in learning
policies directly is that the roles are undefined, unobserved, and could change
dynamically within the same sequence. We thus view learning the coordination, via
role assignment, as an unsupervised structured prediction problem.

Coordination via Structured Role Assignment. Instead of handcrafting the defi-
nition of roles, we learn the roles in an unsupervised fashion, without attaching any
semantic labels to the roles. At the same time, role transition should obey certain
structural regularity, due to coordination. This motivates using graphical models to
represent the coordination structure.

107

Figure 7.2: Alternating stochastic optimization training scheme for our semi-
supervised structure regularization model.

Coordinated Policy Learning. We formulate the indexing mechanism as an as-
signment function A which maps the unstructured set * and some probabilistic
structured model @ to an indexed set of trajectory � rearranged from*, i.e.,

A : t*1, ..,* u ˆ @ ÞÑ r�1, .., � s ,

where the set t�1, .., � u ” t*1, ..,* u. We view @ as a latent variable model
that infers the role assignments for each set of demonstrations. Thus, @ drives
the indexing mechanism A so that state vectors can be consistently constructed to
facilitate optimizing for the imitation loss.

We employ entropy regularization, augmenting the imitation loss with some low
entropy penalty (Grandvalet et al., 2004; Dudik et al., 2004), yielding our overall
objective:

min
c1,..,c ,A

ÿ

:“1
EB:„3c: rℓpc:pB:qq|A,Ds ´ _�pA|Dq (7.1)

where both imitation loss and entropy are measured with respect to the state distri-
bution induced by the policies, and D is training data. This objective can also be
seen as maximizing the mutual information between latent structure and observed
trajectories (Krause et al., 2010).

7.3 Policy Learning Algorithm with Structure Learning and Inference
Optimizing (7.1) is challenging for two reasons. First, beyond the challenges in-
herited from single-agent settings, multi-agent imitation learning must account for
multiple simultaneously learning agents, which is known to cause non-stationarity
for multi-agent reinforcement learning (Busoniu et al., 2008). Second, the latent role
assignment model, which forms the basis for coordination, depends on the actions
of the learning policies, which in turn depend on the structured role assignment.

108

Algorithm 11 Coordinated Multi-Agent Imitation Learning
Input: Multiple unstructured trajectory sets * “ t*1, . . . ,* u with *: “

tDC,:u
)
C“1 and context � “ t2Cu

)
C“1.

Input: Graphical model @ with global/local parameters \ and I.
Input: Initialized policies c: , : “ 1, . . . ,
Input: Step size sequence d=, = “ 1, 2, . . .
1: repeat
2: r�1, . . . , � s Ð Assignt*1, . . . ,* |@p\, Iqu
3: rc1, . . . , c s Ð Learn r�1, . . . , � , �s

4: Roll-out c1, . . . , c to obtain p�1, . . . , p�
5: �: Ð p�: @:

(Alternatively: �: Ð p�: with prob [for [Ñ 1)
6: @p\, Iq Ð LearnStructuret�1, . . . , � , �, \, d=u
7: until No improvement on validation set

output policies c1, c2, . . . , c

We propose an alternating optimization approach to solving (7.1), summarized in
Figure 7.2. The main idea is to integrate imitation learning with unsupervised
structure learning by taking turns to (i) optimize for imitation policies while fixing
a structured model (minimizing imitation loss), and (ii) re-train the latent struc-
ture model and reassign roles while fixing the learning policies (maximizing role
assignment entropy). The alternating nature allows us to circumvent the circular
dependency between policy learning and latent structure learning. Furthermore, for
(i) we develop a stable multi-agent learning reduction approach.

Approach Outline
Algorithm 11 outlines our framework. We assume the latent structure model for
computing role assignments is formulated as a graphicalmodel. Themulti-agent pol-
icy training procedure Learn utilizes a reduction approach, and can leverage power-
ful off-the-shelf supervised learning tools such as deep neural networks (Hochreiter
and Schmidhuber, 1997). The structure learning LearnStructure and role as-
signment Assign components are based on graphical model training and inference.
For efficient training, we employ alternating stochastic optimization (Hoffman et al.,
2013; Johnson and Willsky, 2014; Beal, 2003) on the same mini-batches. Note that
batch training can be deployed similarly, as illustrated by one of our experiments.

We interleave the three components described above into a complete learning al-
gorithm. Given an initially unstructured set of training data, an initialized set
of policies, and prior parameters of the structure model, Algorithm 11 performs
alternating structure optimization on each mini-batch (size 1 in Algorithm 11).

109

• Line 2: Role assignment is performed on trajectories t�1, . . . , � u by running
inference procedure (Algorithm 14). The result is an ordered set r�1, . . . , � s,
where trajectory �: corresponds to policy c: .

• Line 3-5: Each policy c: is updated using joint multi-agent training on
the ordered set r�1, . . . , � , �s (Algorithm 12). The updated models are
executed to yield a rolled-out set of trajectories, which replace the previous
set of trajectories t�:u.

• Line 6: Parameters of latent structured model are updated from the rolled-out
trajectories (Algorithm 13).

The algorithm optionally includes a mixing step on line 5, where the rolled-out
trajectories may replace the training trajectories with increasing probability ap-
proaching 1, which is similar to scheduled sampling (Bengio et al., 2015), and may
help stabilize learning in the early phase of the algorithm. In our main experiment,
we do not notice a performance gain using this option.

Joint Multi-Agent Imitation Learning
In this section we describe the Learn procedure for multi-agent imitation learning
in Line 3 of Algorithm 11. As background, for single agent imitation learning,
reduction-based methods operate by iteratively collecting a new data set D= at each
round = of training, consisting of state-action pairs pBC , 0˚C qwhere 0˚C is some optimal
or demonstrated action given state BC . A new policy can be formed by (i) combining
a new policy from this data set D= with previously learned policy c (Daumé III
et al., 2009) or (ii) learning a new policy c directly from the data set formed by
aggregating D1, . . . ,D= (Ross et al., 2011a). Other variants exist although we do
not discuss them here.

The intuition behind the iterative reduction approach is to prevent a mismatch in
training and prediction distributions due to sequential cascading errors (also called
covariate-shift). The main idea is to use the learned policy’s own predictions in the
construction of subsequent states, thus simulating the test-time performance during
training. This mechanism enables the agent to learn a policy that is robust to its own
mistakes. Reduction-based methods also accommodate any black-box supervised
training subroutine. We focus on using expressive function classes such as Long

110

Algorithm 12 Joint Multi-Agent Imitation Learning: Learnp�1, �2, . . . , � , �q

Input: Ordered actions �: “ t0C,:u)C“1 @: , context t2Cu
)
C“1

Input: Initialized policies c1, . . . , c
Input: base routine Trainp(, �q mapping state to actions
1: Set increasing prediction horizon 9 P t1, . . . ,)u
2: for C “ 0, 9 , 2 9 , . . . ,) do
3: for 8 “ 0, 1, . . . , 9 ´ 1 do
4: Roll-out 0̂C`8,: “ c:pB̂C`8´1,:q @ agent :
5: Cross-update for each policy : P t1, . . . , u

B̂C`8,: “ i: pr0̂C`8,1, . . . , 0̂C`8,: , . . . , 0̂C`8, , 2C`8sq
6: end for
7: Policy update for all agent :

c: Ð TrainptB̂C`8,: , 0
˚
C`8`1,:u

9

8“0q
8: end for

output updated policies c1, c2, . . . , c

Short-Term Memory networks (LSTM) (Hochreiter and Schmidhuber, 1997) as the
policy class.3

Algorithm 12 outlines the Learn procedure for stablemulti-agent imitation learning.
Assumewe are given consistently indexed demonstrations � “ r�1, . . . , � s, where
each �: “ t0C,:u)C“1 corresponds action of policy c: . Let the corresponding expert
action be 0˚

C,:
. To lighten the notation, we denote the per-agent state vector by

BC,: “ i:pr0C,1, . . . , 0C,: , . . . , 0C, , 2Csq4

Algorithm 12 employs a roll-out horizon 9 , which divides the entire trajectory into
){ 9 segments. The following happens for every segment:

• Iteratively perform roll-out at each time step 8 for all policies (line 4) to
obtain actions tp08,:u.

• Each policy simultaneously updates its state pB8,: , using the prediction from all
other policies (line 5).

• At the end of the current segment, all policies are updated using the error
signal from the deviation between predicted p08,: versus expert action 0˚8,: , for
all 8 along the sub-segment (line 7).

3Note that conventional training of LSTMs does not address the cascading error problem. While
LSTMs are very good at sequence-to-sequence prediction tasks, they cannot naturally deal with
the drifting of input state distribution drift caused by action output feedback in dynamical systems
(Bengio et al., 2015).

4Generally, state vector BC ,: of policy c: at time C can be constructed as BC ,: “

rq:pr01:C ,1, 21:C sq, . . . , q:pr01:C , , 21:C sqs

111

After policy updates, the training moves on to the next 9-length sub-segment, using
the freshly updated policies for subsequent roll-outs. The iteration proceeds until
the end of the sequence is reached. In the outer loop the roll-out horizon 9 is
incremented.

Two key insights behind our approach are:

• In addition to the training-prediction mismatch issue in single-agent learning,
each agent’s predictionmust also be robust to imperfect predictions from other
agents. This non-stationarity issue also arises in multi-agent reinforcement
learning (Busoniu et al., 2008) when agents learn simultaneously. We perform
joint training by cross-updating each agent’s state using previous predictions
from other agents.

• Many single-agent imitation learning algorithms assume the presence of a dy-
namic oracle to provide one-step corrections 0˚C along the roll-out trajectories.
In practice, dynamic oracle feedback is very expensive to obtain and some
recent work have attempted to relax this requirement (Le et al., 2016a; Ho and
Ermon, 2016). Without dynamic oracles, the rolled-out trajectory can deviate
significantly from demonstrated trajectories when the prediction horizon 9

is large («)), leading to training instability. Thus 9 is gradually increased
to allow for slowly learning to make good sequential predictions over longer
horizons.

For efficient training, we focus on stochastic optimization, which can invoke base
routine Train multiple times and thus naturally accommodates varying 9 . Note
that the batch-training alternatives to Algorithm 12 can also employ similar training
schemes, with similar theoretical guarantees lifted to the multi-agent case. The
Appendix shows how to use DAgger (Ross et al., 2011a) for Algorithm 12, which
we used for our synthetic experiment.

Coordination Structure Learning
The coordination mechanism is based on a latent structured model that governs the
role assignment. The training and inference procedures seek to address two main
issues:

• LearnStructure: unsupervised learning a probabilistic role assignment
model @.

112

• Assign: how @ informs the indexing mechanism so that unstructured trajec-
tories can be mapped to structured trajectories amenable to Algorithm 12.

Given an arbitrarily ordered set of trajectories * “ t*1, . . . ,* , �u, let the coor-
dination mechanism underlying each such* be governed by a true unknown model
?, with global parameters \. We suppress the agent/policy subscript and consider
a generic featurized trajectory GC “ rDC , 2Cs @C. Let the latent role sequence for the
same agent be I “ I1:) . At any time C, each agent is acting according to a latent role
IC „ Categoricalt1̄, 2̄, . . . , ̄u, which are the local parameters to the structured
model.

Ideally, role and index asignment can be obtained by calculating the true posterior
?pI|G, \q, which is often intractable. We instead aim to approximate ?pI|G, \q by a
simpler distribution @ via techniques from stochastic variational inference (Hoffman
et al., 2013), which allows for efficient stochastic training on mini-batches that can
naturally integrate with our imitation learning subroutine.

In variational inference, posterior approximation is often cast as optimizing over
a simpler model class Q, via searching for parameters \ and I that maximize the
evidence lower bound (ELBO) L:

L p@pI, \qq fi E@ rln ?pI, \, Gqs ´ E@ rln @pI, \qs ď ln ?pGq

Maximizing L is equivalent to finding @ P Q to minimize the KL divergence
KL p@pI, \|Gq||?pI, \|Gqq. We focus on the structured mean-field variational family,
which factorizes @ as @pI, \q “ @pIq@p\q. This factorization breaks the dependency
between \ and I, but not between single latent states IC , unlike variational inference
for i.i.d data (Kingma and Welling, 2013).

Training to learn model parameters

The procedure to learn the parameter of our structured model is summarized in
Algorithm 13. Parameter learning proceeds via alternating updates over the factors
@p\q and @pIq, while keeping other factor fixed. Stochastic variational inference
performs such updates efficiently in mini-batches. We slightly abuse notations
and overload \ for the natural parameters of global parameter \ in the exponential
family. Assuming the usual conjugacy in the exponential family, the stochastic
natural gradient takes a convenient form (line 2 of Algo 13, and derivation in
Appendix), where CpI, Gq is the vector of sufficient statistics, 1 is a vector of scaling

113

Algorithm 13 Structure Learning: LearnStructure t*1, . . . ,* , �, \, du ÞÑ
@p\, Iq

Input: -: “ tGC,:u)C“1 “ trDC,: , 2Csu @C, : .- “ t-:u

:“1

Graphical model parameters \, stepsize d
1: Local update: compute @pIq via message-passing while fixing \ (See Appendix

for derivations)
2: Global parameter update: via natural gradient ascent
\ Ð \p1´ dq ` dp\?A8>A ` 1

JE@pIq rCpI, Gqsq
output Updated model @p\, Iq “ @p\q@pIq

factors adjusting for the relative size of the mini-batches. Here the global update
assumes optimal local update @pIq has been computed.

Fixing the global parameters, the local updates are based on message-passing over
the underlying graphical model. The exact mathematical derivation depends on the
specific graph structure. The simplest scenario is to assume independence among
IC’s, which resembles naive Bayes. In our experiments, we instead focus on Hidden
Markov Models to capture first-order dependencies in role transitions over play
sequences. In that case, line 1 of Algorithm 13 resembles running the forward-
backward algorithm to compute the update @pIq. The forward-backward algorithm
in the local update step takes $p 2)q time for a chain of length) and hidden
states. For completeness, derivation of parameter learning for HMMs is included in
the Appendix.

Inference for role and index assignment

We can compute two types of inference on a learned @:

Role inference. Compute the most likely role sequence tIC,:u)C“1 P t1̄, . . . , ̄u
) ,

e.g., using Viterbi (or dynamic programming-based forward message passing for
graph structures). This most likely role sequence for agent : , which is the low-
dimensional representation of the coordination mechanism, can be used to augment
the contextual feature t2Cu)C“1for each agent’s policy training.

Role-based Index Assignment Transform the unstructured set * into an ordered
set of trajectories � to facilitate the imitation learning step. This is the more im-
portant task for the overall approach. The intuitive goal of an indexing mechanism
is to facilitate consistent agent trajectory to policy mapping. Assume for notational
convenience that we want index : assigned to an unique agent who is most likely
assuming role :̄ . Our inference technique rests on the well-known Linear Assign-
ment Problem (Papadimitriou and Steiglitz, 1982), which is solved optimally via the

114

Algorithm 14 Multi-Agent Role Assignment: Assign t*1, . . . ,* |@u ÞÑ

r�1, . . . , � s

Input: Approximate inference model @. Unordered trajectories* “ t*:u :“1.
1: Calculate cost matrix " P R ˆ per equation 7.2
2: A Ð MinCostAssignmentp"q

output �: “ *Ap:q @: “ 1, 2, . . . ,

Kuhn-Munkres algorithm. Specifically, construct the cost matrix " as:

" “ "1 d "2 (7.2)

"1 “
“

@ptGC,:u|IC,: “ :̄q
‰

“

«

)
ź

C“1
@pGC,: |IC,: “ :̄q

ff

"2 “
“

ln @ptGC,:u|IC,: “ :̄q
‰

“

«

)
ÿ

C“1
ln @pGC,: |IC,: “ :̄q

ff

where : “ 1, . . . , , :̄ “ 1̄, . . . , ̄,d is the Hadamard product, and matrices
"1, "2 take advantage of the Markov property of the graphical model. Now solving
the linear assignment problem for cost matrix " , we obtain the matching A from
role :̄ to index : , such that the total cost per agent is minimized. From here, we
rearrange the unordered set t*1, . . . ,* u to the ordered sequence r�1, . . . , � s ”

r*Ap1q, . . . ,*Ap qs according to the minimum cost mapping.

To see why this index assignment procedure results in an increased entropy in the
original objective (7.1), notice that:

�pA|Dq « ´

ÿ

:̄“1

%p:̄q@pAp�:q “ :̄q log @pAp�:q “ :̄q

“ ´
1

ÿ

:̄“1

"p:̄ , :q,

where we assume each latent role :̄ has equal probability. The RHS increases from
the linear assignment and consequent role assignment procedure. Our inference
procedure to perform role assignment is summarized in Algorithm 14.

7.4 Experiments
We present empirical results from two settings. The first is a synthetic setting based
on predator-prey, where the goal is to imitate a coordinating team of predators.
The second is a large-scale imitation learning setting from player trajectores in
professional soccer games, where the goal is to imitate defensive team play.

115

Predator-Prey Domain
Setting. The predator-prey problem, also frequently called the Pursuit Domain
(Benda, 1985), is a popular setting for multi-agent reinforcement learning. The tra-
ditional setup is with four predators and one prey, positioned on a grid board. At each
time step, each agent has five moves:

Figure 7.3:

N,S,E,W or nomove. The world is toroidal: the agents can move
off one end of the board and come back on the other end. Agents
make move simultaneously, but two agents cannot occupy the
same position, and collisions are avoided by assigning a random
move priority to the agents at each time step. The predators
can capture the prey only if the prey is surrounded by all four
predators. The goal of the predators is to capture the prey as fast
as possible, which necessarily requires coordination.

Data. The demonstration data is collected from 1000 game instances, where four
experts, indexed 1 to 4, are prescribed the consistent and coordinated role as illus-
trated in the capture state of Figure 7.3. In other words, agent 1 would attempt to
capture the prey on the right hand side, which allows for one fixed role for each
expert throughout the game. However, the particular role assignment is hidden from
the imitation learning task. Each expert is then exhaustively trained using Value
Iteration (Sutton and Barto, 1998) in the reinforcement learning setting, with the
reward of 1 if the agent is in the position next to the prey according to its defined
role, and 0 otherwise. A separate set of 100 games was collected for evaluation. A
game is terminated after 50 time steps if the predators fail to capture the prey. In the
test set, the experts fail to capture the prey in 2% of the games, and on average take
18.3 steps to capture the prey.

Experiment Setup. For this experiment, we use the batch version of Algorithm 11
(see appendix) to learn to imitate the experts using only demonstrations. Each policy
is represented by a random forest of 20 trees, and were trained over 10 iterations.
The expert correction for each rolled-out state is collected via Value Iteration. The
experts thus act as dynamic oracles, which result in a multi-agent training setting
analogous to DAgger (Ross et al., 2011a). We compare two versions of multi-agent
imitation learning:

• Coordinated Training. Weuse our algorithm, with the latent structure model
represented by a discrete Hidden Markov Model with binomial emission. We

116

Figure 7.4: Comparing performance in Predator-Prey between our approach and
unstructured multi-agent imitation learning, as a function of the number of training
rounds. Our approach demonstrates both significantly lower failure rates as well as
lower average time to success (for successful trials).

use Algorithm 14 to maximize the role consistency of the dynamic oracles
across different games.

• Unstructured Training. An arbitrary role is assigned to each dynamic oracle
for each game, i.e., the agent index is meaningless.

In both versions, training was done using the same data aggregation scheme and
batch training was conducted using the same random forests configuration.

Results. Figure 7.4 compares the test performance of our method versus un-
structured multi-agent imitation learning. Our method quickly approaches expert
performance (average 22 steps with 8% failure rate in the last iteration), whereas
unstructured multi-agent imitation learning performance did not improve beyond
the first iteration (average 42 steps with 70% failure rate). Note that we even gave
the unstructured baseline some advantage over our method, by forcing the prey to
select the moves last after all predators make decisions (effectively making the prey
slower). Without this advantage, the unstructured policies fail to capture the prey
almost 100% of the time. Also, if the same restriction is applied to the policies
obtained from our method, performance would be on par with the experts (100%
success rate, with similar number of steps taken).

Multi-agent Imitation Learning for Soccer
Setting. Soccer is a popular domain for multi-agent learning. RoboCup, the robotic
and simulation soccer platform, is perhaps the most popular testbed for multi-agent

117

Figure 7.5: Experimental results on soccer domain. We see that using coordina-
tion substantially improves the imitation loss, and that the decentralized policy is
comparable to the centralized.

reinforcement learning research to date (Stone, 2016). The success of MARL has
been limited, however, due to the extremely high dimensionality of the problem. In
this experiment, we aim to learn multi-agent policies for team soccer defense, based
on tracking data from real-life professional soccer (Bialkowski et al., 2014).

Data. We use the tracking data from 45 games of real professional soccer from
a recent European league. The data was chunked into sequences with one team
attacking and the other defending. Our goal is to learn up to 10 policies for team
defense (11 players per team, minus the goal keeper). The training data consists of
7500 sets of trajectories � “ t�1, . . . , �10u , where �: “ t0C,:u)C“1 is the sequence
of positions of one defensive player, and � is the context consisting of opponents
and the ball. Overall, there are about 1.3 million frames at 10 frames per second.
The average sequence length is 176 steps, and the maximum is 1480.

Experiment Setup. Each policy is represented by a recurrent neural network
structure (LSTM), with two hidden layers of 512 units each. As LSTMs generally
require fixed-length input sequences, we further chunk each trajectory into sub-
sequences of length 50, with overlapping window of 25 time steps. The joint
multi-agent imitation learning procedure follows Algorithm 12 closely. In this set-
up, without access to dynamic oracles for imitation learning in the style of SEARN
(Daumé III et al., 2009) and DAgger (Ross et al., 2011a), we gradually increase the
horizon of the rolled-out trajectories from 1 to 10 steps look-ahead. Empirically,
this has the effect of stabilizing the policy networks early in training, and limits the
cascading errors caused by rolling-out to longer horizons.

The structured model component is learned via stochastic variational inference
on a continuous HMM, where the per-state emission distribution is a mixture of

118

Figure 7.6: Result of 10 coordinated imitation policies, corresponding with Figure
7.1. White is the rolled-out imitation policies.

Gaussians. Training and inference operate on the same mini-batches used for joint
policy learning.

We compare against two variations. The first employs centralized policy that aggre-
gates the state vectors of all decentralized learner and produces the actions for all
players, i.e., a multi-task policy. The centralized approach generally requires more
model parameters, but is potentially much more accurate. The second variation is to
not employ joint multi-agent training: we modify Algorithm 12 to not cross-update
states between agents, and each role is trained conditioned on the ground truth of
the other agents.

Results. Figure 7.5 shows the results. Our coordinated learning approach substan-
tially outperforms conventional imitation learning without structured coordination.
The imitation loss measures average distance of roll-outs and ground truth in meters
(note the typical size of soccer field is 110ˆ 70 meters). As expected, average loss
increases with longer sequences, due to cascading errors. However, this error scales
sub-linearly with the length of the horizon, even though the policies were trained
on sequences of length 50. Note also that the performance difference between
decentralized and centralized policies is insignificant compared to the gap between
coordinated and unstructured policies, further highlighting the benefits of structured
coordination in multi-agent settings. The loss of a single network, non-joint training
scheme is very large and thus omitted from Figure 7.5 (see the appendix).

Visualizations. Imitation loss, of course, is not a full reflection of the quality
of the learned policies. Unlike predator-prey, the long-term reward signal is not
available, so we rely on visual inspection as part of evaluation. Figure 7.6 overlays
policy prediction on top of the actual game sequence from Figure 7.1. Additional

119

Figure 7.7: Components of role distributions, corresponding to a popular formation
arrangement in professional soccer

test examples are included in supplemental videos 5. We note that learned policies
are qualitatively similar to the ground truth demonstrations, and can be useful for
applications such as counterfactual analysis (Le et al., 2017). Figure 7.7 displays
the Gaussian components of the underlying HMM. The components correspond to
the dominant modes of the roles assigned. Unlike the predator-prey domain, roles
can be switched during a sequence of play. See the appendix for more details on
role swap frequency.

7.5 Related Work in Multi-Agent Learning Context
The problem of multi-agent imitation learning has not been widely considered,
perhaps with the exception of (Chernova and Veloso, 2007) which focused on very
different applications and technical challenges (i.e., learning a model of a joint task
by collecting samples from direct interaction with teleoperating human teachers).
The actual learning algorithm there requires the learner to collect enough data points
from human teachers for confident classification of task. It is not clear how well the
proposed method would translate to other domains.

Index-free policy learning is generally difficult for black-box machine learning tech-
niques. Some recent work has called attention to the importance of order to learning
when input or output are sets (Vinyals et al., 2015), motivated by classic algorithmic
and geometric problems such as learning to sort a set of numbers, or finding convex
hull for a set of points, where no clear indexing mechanism exists. Other permuta-
tion invariant approaches include those for standard classification (Shivaswamy and
Jebara, 2006).

5Additional videos can be seen at http://hoangle.info

http://hoangle.info

120

7.6 Limitations and Discussions
In principle, the training and inference of the latent structure model can accom-
modate different types of graphical models. However, the exact procedure varies
depending on the graph structure. It would be interesting to find domains that
can benefit from more general graphical models. Another possible direction is to
develop fully end-to-end differentiable training methods that can accommodate our
index-free policy learning formulation, especially deep learning-based method that
could provide computational speed-up compared to traditional graphical model in-
ference. One potential issue with the end-to-end approach is the need to depart from
a learning-reductions style approach.

Although we addressed learning from demonstrations in this chapter, the proposed
framework can also be employed for generative modeling, or more efficient struc-
tured exploration for reinforcement learning. Along that line, our proposed method
could serve as a useful component of general reinforcement learning, especially
in multi-agent settings where traditional exploration-based approaches such as Q-
learning prove computationally intractable.

121

C h a p t e r 8

CONCLUDING REMARKS

In this dissertation, we have developed three groups of techniques for structured
policy learning. To summarize, in Chapter 2 and 3, we discussed value-based
structured policy learning, which imposes constraints on overall performance of the
policy as an external specification. In Chapter 4 and 5, we showed that building
structural constraints directly into the policy class can yield both certifiable policy
performance, as well as improved data efficiency in the setting of constrained imita-
tion learning. In Chapter 6 and 7, we demonstrated that exploiting partial knowledge
of the model can significantly improve the data efficiency of learning, as well as
alleviating the generally difficult imperfect observation scenarios.

As an overarching message, policy learning has much to gain from bringing system-
atic structure into learning. Not only can we achieve more data-efficient learning,
but the learning agent can also better capture what we ultimately care about in real-
life applications. Through our applications, structured policy learning has shown
encouraging performance, and is an overall more reasonable approach compared
to the alternative paradigm of end-to-end learning, which has been powered by the
recent advances in deep learning.

Looking forward, we do have several interesting questions that arise from the ap-
proach of this thesis:

• How do we reason about generalization power of policy learning when we
incorporate structural constraints? How do we develop a further unifying per-
spectives to bring together different types of structural constraints presented
in this work? An interesting research direction as a proof of concept would
be bringing value-based and policy-based approaches together, or alterna-
tively, indentifying methods to unify different model-based structure into one
common framework for better analysis and algorithm design

• In addition tomethodological advances, there is perhaps no better replacement
for real-world policy learning than trying to solve real-world problems. The
research community would benefit from expanding into better benchmarking
testbeds that reflect realistic constraints. More broadly, this opens up the

122

question of how do we interface policy learning methods with established
methods from other disciplines. One of the emerging lessons from our recent
work is that we have much to learn from the algorithmic techniques that other
disciplines have come up with for decision making, such as game theory, or
program synthesis, or control theory and others. Such a fusion of knowledge
can potentially accelerate the advent of a learning-based systems of the future
that best serve the common interests

123

BIBLIOGRAPHY

Pieter Abbeel and Andrew YNg. Apprenticeship learning via inverse reinforcement
learning. In International Conference on Machine Learning (ICML), 2004.

Pieter Abbeel and Andrew Y Ng. Exploration and apprenticeship learning in rein-
forcement learning. In International Conference on Machine Learning (ICML),
2005.

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy
optimization. In International Conference on Machine Learning, pages 22–31,
2017.

Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, and Robert
Schapire. Taming themonster: A fast and simple algorithm for contextual bandits.
In International Conference on Machine Learning, pages 1638–1646, 2014.

Alekh Agarwal, Alina Beygelzimer, Miroslav Dudík, John Langford, and Hanna
Wallach. A reductions approach to fair classification. In International Conference
on Machine Learning, 2018.

Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott
Niekum, and Ufuk Topcu. Safe reinforcement learning via shielding. In Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

Eitan Altman. ConstrainedMarkov decision processes, volume 7. CRC Press, 1999.

Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund
Raghothaman, Sanjit A Seshia, Rishabh Singh, Armando Solar-Lezama, Em-
ina Torlak, and Abhishek Udupa. Syntax-guided synthesis. In 2013 Formal
Methods in Computer-Aided Design, pages 1–8. IEEE, 2013.

Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. Scaling enumerative pro-
gram synthesis via divide and conquer. In Tools and Algorithms for the Construc-
tion and Analysis of Systems - 23rd International Conference, TACAS 2017, Held
as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part I, pages
319–336, 2017.

Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement
learning with policy sketches. In ICML, 2017.

OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz,
Bob McGrew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell,
Alex Ray, et al. Learning dexterous in-hand manipulation. The International
Journal of Robotics Research, 39(1):3–20, 2020.

124

Kiam Heong Ang, Gregory Chong, and Yun Li. Pid control system analysis, design,
and technology. IEEE transactions on control systems technology, 13(4):559–576,
2005.

András Antos, Csaba Szepesvári, and Rémi Munos. Fitted q-iteration in continuous
action-space mdps. In Advances in neural information processing systems, pages
9–16, 2008a.

András Antos, Csaba Szepesvári, and Rémi Munos. Learning near-optimal policies
with bellman-residual minimization based fitted policy iteration and a single
sample path. Machine Learning, 71(1):89–129, 2008b.

Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey
of robot learning from demonstration. Robotics and autonomous systems, 57(5):
469–483, 2009.

Karl Johan Åström and Tore Hägglund. Automatic tuning of simple regulators with
specifications on phase and amplitude margins. Automatica, 20(5):645–651,
1984.

J Andrew Bagnell, Sham M Kakade, Jeff G Schneider, and Andrew Y Ng. Policy
search by dynamic programming. In Neural Information Processing Systems
(NIPS), 2003.

Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and
Daniel Tarlow. Deepcoder: Learning to write programs. In 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-
26, 2017, Conference Track Proceedings, 2017.

Heejung Bang and James M. Robins. Doubly robust estimation in missing data and
causal inference models. Biometrics, 61(4):962–973, 2005. doi: 10.1111/j.1541-
0420.2005.00377.x.

Peter L Bartlett, Nick Harvey, Christopher Liaw, andAbbasMehrabian. Nearly-tight
vc-dimension bounds for piecewise linear neural networks. In Proceedings of the
22nd Annual Conference on Learning Theory (COLT 2017), 2017.

Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement
learning via policy extraction. In Advances in Neural Information Processing
Systems, pages 2494–2504, 2018.

Heinz H Bauschke, Patrick L Combettes, et al. Convex analysis and monotone
operator theory in Hilbert spaces, volume 408. Springer, 2011.

Matthew James Beal. Variational algorithms for approximate Bayesian inference.
University of London United Kingdom, 2003.

Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient
methods for convex optimization. Operations Research Letters, 31(3):167–175,
2003.

125

Richard Bellman, Irving Glicksberg, and Oliver Gross. On the “bang-bang” control
problem. Quarterly of Applied Mathematics, 14(1):11–18, 1956.

Miroslav Benda. On optimal cooperation of knowledge sources. Technical Report
BCS-G2010-28, 1985.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sam-
pling for sequence prediction with recurrent neural networks. In Advances in
Neural Information Processing Systems, pages 1171–1179, 2015.

Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and Andreas Krause. Safe
model-based reinforcement learning with stability guarantees. In Advances in
neural information processing systems, pages 908–918, 2017.

Dimitri P Bertsekas, Dimitri P Bertsekas, Dimitri P Bertsekas, and Dimitri P Bert-
sekas. Dynamic programming and optimal control, volume 1. Athena scientific
Belmont, MA, 2005.

Alina Bialkowski, Patrick Lucey, Peter Carr, YisongYue, and IainMatthews. “win at
home and draw away”: Automatic formation analysis highlighting the differences
in home and away team behaviors. In MIT Sloan Sports Analytics Conference
(SSAC), 2014.

Lars Blackmore, Masahiro Ono, and Brian CWilliams. Chance-constrained optimal
path planning with obstacles. IEEE Transactions on Robotics, 27(6):1080–1094,
2011.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A
review for statisticians. Journal of the American Statistical Association, 112
(518):859–877, 2017.

Roderick Bloem, Krishnendu Chatterjee, Thomas A. Henzinger, and Barbara Job-
stmann. Better quality in synthesis through quantitative objectives. In Computer
Aided Verification, 21st International Conference, CAV 2009, Grenoble, France,
June 26 - July 2, 2009. Proceedings, pages 140–156, 2009.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Ji-
akai Zhang, et al. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316, 2016.

Léon Bottou, Jonas Peters, Joaquin Qui nonero Candela, Denis X. Charles, D. Max
Chickering, Elon Portugaly, Dipankar Ray, Patrice Simard, and Ed Snelson.
Counterfactual reasoning and learning systems: The example of computational
advertising. Journal of Machine Learning Research (JMLR), 14:3207–3260,
2013.

Philippe Bougerol and Nico Picard. Strict stationarity of generalized autoregressive
processes. The Annals of Probability, pages 1714–1730, 1992.

126

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge univer-
sity press, 2004.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

Lucian Busoniu, Robert Babuska, and Bart De Schutter. A comprehensive survey
of multiagent reinforcement learning. IEEE Transactions on Systems Man and
Cybernetics Part C Applications and Reviews, 38(2):156, 2008.

Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison of su-
pervised learning algorithms. In International Conference on Machine Learning
(ICML), 2006.

Rich Caruana, Nikos Karampatziakis, and Ainur Yessenalina. An empirical eval-
uation of supervised learning in high dimensions. In Proceedings of the 25th
international conference on Machine learning, pages 96–103, 2008.

Kai-Wei Chang, Akshay Krishnamurthy, Alekh Agarwal, Hal Daume III, and John
Langford. Learning to search better than your teacher. In ICML, 2015.

Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. In
Advances in neural information processing systems, pages 2249–2257, 2011.

Swarat Chaudhuri, Martin Clochard, andArmando Solar-Lezama. Bridging boolean
and quantitative synthesis using smoothed proof search. InPOPL, pages 207–220,
2014.

Jianhui Chen and Peter Carr. Mimicking human camera operators. In IEEE Winter
Conference Applications of Computer Vision (WACV), 2015.

Jianhui Chen, Hoang M. Le, Peter Carr, Yisong Yue, and James J. Little. Learning
online smooth predictors for real-time camera planning using recurrent decision
trees. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

Jinglin Chen and Nan Jiang. Information-theoretic considerations in batch rein-
forcement learning. In International Conference on Machine Learning (ICML),
2019.

C Cheng, X Yan, N Wagener, and B Boots. Fast policy learning through imitation
and reinforcement. In Uncertainty in artificial intelligence, 2019a.

Ching-An Cheng, Xinyan Yan, Nathan Ratliff, and Byron Boots. Predictor-corrector
policy optimization. In International Conference on Machine Learning, pages
1151–1161, 2019b.

Ching-An Cheng, Xinyan Yan, Evangelos Theodorou, and Byron Boots. Accel-
erating imitation learning with predictive models. In Conference on Artificial
Intelligence and Statistics (AISTATS), 2019c.

127

Richard Cheng, Abhinav Verma, Gabor Orosz, Swarat Chaudhuri, Yisong Yue, and
Joel Burdick. Control regularization for reduced variance reinforcement learning.
In International Conference on Machine Learning, pages 1141–1150, 2019d.

Richard Cheng, Abhinav Verma, Gabor Orosz, Swarat Chaudhuri, Yisong Yue, and
Joel Burdick. Control regularization for reduced variance reinforcement learning.
In International Conference on Machine Learning, pages 1141–1150, 2019e.

SoniaChernova andManuelaVeloso. Multiagent collaborative task learning through
imitation. In Proceedings of the fourth International Symposium on Imitation in
Animals and Artifacts, pages 74–79, 2007.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario
Amodei. Deep reinforcement learning from human preferences. In NIPS, 2017.

Antonio Criminisi, Jamie Shotton, and Ender Konukoglu. Decision forests: A
unified framework for classification, regression, density estimation, manifold
learning and semi-supervised learning. Foundations and Trends in Computer
Graphics and Vision, 7(2–3):81–227, 2012.

Gal Dalal, Krishnamurthy Dvĳotham, Matej Vecerik, Todd Hester, Cosmin Padu-
raru, and Yuval Tassa. Safe exploration in continuous action spaces. arXiv
preprint arXiv:1801.08757, 2018.

Hal Daumé III, John Langford, and Daniel Marcu. Search-based structured predic-
tion. Machine learning, 75(3):297–325, 2009.

Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. In NIPS, 1993.

Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver.
In TACAS, pages 337–340, 2008.

Thomas Degris, Martha White, and Richard S Sutton. Off-policy actor-critic. In
Proceedings of the 29th International Coference on International Conference on
Machine Learning, pages 179–186. Omnipress, 2012.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee, 2009.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman
Mohamed, and Pushmeet Kohli. Robustfill: Neural program learning under noisy
i/o. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pages 990–998. JMLR. org, 2017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. In Pro-
ceedings of the 2019Conference of the North AmericanChapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pages 4171–4186, 2019.

128

Thomas G Dietterich. Hierarchical reinforcement learning with the MAXQ value
function decomposition. J. Artif. Intell. Res.(JAIR), 13(1):227–303, 2000.

Simon Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dudik,
and John Langford. Provably efficient rl with rich observations via latent state
decoding. In International Conference on Machine Learning, pages 1665–1674,
2019.

Tao Du, Jeevana Priya Inala, Yewen Pu, Andrew Spielberg, Adriana Schulz, Daniela
Rus, Armando Solar-Lezama, and Wojciech Matusik. Inversecsg: automatic
conversion of 3d models to CSG trees. ACM Trans. Graph., 37(6):213:1–213:16,
2018.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Bench-
marking deep reinforcement learning for continuous control. In International
Conference on Machine Learning, pages 1329–1338, 2016.

Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAI Jonathan Ho, Jonas
Schneider, Ilya Sutskever, Pieter Abbeel, and Wojciech Zaremba. One-shot im-
itation learning. In Advances in neural information processing systems, pages
1087–1098, 2017.

John C Duchi, Shai Shalev-Shwartz, Yoram Singer, and Ambuj Tewari. Composite
objective mirror descent. In COLT, pages 14–26, 2010.

Miroslav Dudik, Steven J Phillips, and Robert E Schapire. Performance guarantees
for regularizedmaximum entropy density estimation. In International Conference
on Computational Learning Theory, pages 472–486. Springer, 2004.

Miroslav Dudík, John Langford, and Lihong Li. Doubly robust policy evaluation
and learning. In International Conference on Machine Learning (ICML), 2011a.

MiroslavDudík, John Langford, and Lihong Li. Doubly robust policy evaluation and
learning. In Proceedings of the 28th International Conference on International
Conference on Machine Learning, pages 1097–1104. Omnipress, 2011b.

Layla El Asri, Hannes Schulz, Shikhar Sharma, Jeremie Zumer, Justin Harris,
Emery Fine, Rahul Mehrotra, and Kaheer Suleman. Frames: a corpus for adding
memory to goal-oriented dialogue systems. In Proceedings of the 18th Annual
SIGdial Meeting on Discourse and Dialogue, pages 207–219, 2017.

KevinEllis, Daniel Ritchie, ArmandoSolar-Lezama, and JoshTenenbaum. Learning
to infer graphics programs from hand-drawn images. In Advances in Neural
Information Processing Systems, pages 6059–6068, 2018.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode rein-
forcement learning. Journal of Machine Learning Research, 6(Apr):503–556,
2005.

129

Amir M Farahmand, Mohammad Ghavamzadeh, Shie Mannor, and Csaba
Szepesvári. Regularized policy iteration. In Advances in Neural Information
Processing Systems, pages 441–448, 2009.

Mehrdad Farajtabar, Yinlam Chow, and Mohammad Ghavamzadeh. More robust
doubly robust off-policy evaluation. arXiv preprint arXiv:1802.03493, 2018a.

Mehrdad Farajtabar, Yinlam Chow, and Mohammad Ghavamzadeh. More robust
doubly robust off-policy evaluation. In International Conference on Machine
Learning (ICML), 2018b.

John K. Feser, Swarat Chaudhuri, and Isil Dillig. Synthesizing data structure
transformations from input-output examples. In Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implementation,
Portland, OR, USA, June 15-17, 2015, pages 229–239, 2015.

Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse
optimal control via policy optimization. In International conference on machine
learning, pages 49–58, 2016.

Abraham D Flaxman, Adam Tauman Kalai, and H Brendan McMahan. Online
convex optimization in the bandit setting: gradient descent without a gradient.
In Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algo-
rithms, pages 385–394. Society for Industrial and Applied Mathematics, 2005.

Yoav Freund and Robert E Schapire. Adaptive game playing using multiplicative
weights. Games and Economic Behavior, 29:79–103, 1999.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical
learning. Springer, 2001.

Ronan Fruit andAlessandro Lazaric. Exploration–exploitation inmdpswith options.
arXiv preprint arXiv:1703.08667, 2017.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement
learning without exploration. In International Conference on Machine Learning,
pages 2052–2062, 2019.

Johannes Fürnkranz, Eyke Hüllermeier, Weiwei Cheng, and Sang-Hyeun Park.
Preference-based reinforcement learning: a formal framework and a policy itera-
tion algorithm. Machine learning, 89(1-2):123–156, 2012.

Vamsidhar Reddy Gaddam, Ragnhild Eg, Ragnar Langseth, Carsten Griwodz, and
Pål Halvorsen. The cameraman operating my virtual camera is artificial: Can
the machine be as good as a human&quest. ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMM), 11(4):56, 2015.

Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforce-
ment learning. Journal of Machine Learning Research, 16(1):1437–1480, 2015.

130

Yves Grandvalet, Yoshua Bengio, et al. Semi-supervised learning by entropy mini-
mization. In NIPS, volume 17, pages 529–536, 2004.

Carlos Guestrin, Michail Lagoudakis, and Ronald Parr. Coordinated reinforcement
learning. In ICML, volume 2, pages 227–234, 2002.

Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. Program synthesis. Foun-
dations and Trends in Programming Languages, 4(1-2):1–119, 2017.

Zhaohan Guo, Philip S Thomas, and EmmaBrunskill. Using options and covariance
testing for long horizon off-policy policy evaluation. In Advances in Neural
Information Processing Systems, pages 2492–2501, 2017.

László Györfi, Michael Kohler, AdamKrzyzak, and HarroWalk. A distribution-free
theory of nonparametric regression. Springer Science & Business Media, 2006.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint
arXiv:1803.10122, 2018.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforce-
ment learning with deep energy-based policies. In International Conference on
Machine Learning, pages 1352–1361, 2017.

Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart J Russell, and Anca
Dragan. Inverse reward design. In Advances in neural information processing
systems, pages 6765–6774, 2017.

John Michael Hammersley and David Christopher Handscomb. Monte carlo meth-
ods. 1964.

Josiah Hanna, Scott Niekum, and Peter Stone. Importance sampling policy evalua-
tion with an estimated behavior policy. In International Conference on Machine
Learning (ICML), 2019.

Anna Harutyunyan, Marc G. Bellemare, Tom Stepleton, and Rémi Munos.
Q(lambda) with off-policy corrections. In International Conference on Algo-
rithmic Learning Theory (ALT), 2016.

MatthewHausknecht and Peter Stone. Deep reinforcement learning in parameterized
action space. In ICLR, 2016.

David Haussler. Sphere packing numbers for subsets of the boolean n-cube with
bounded vapnik-chervonenkis dimension. Journal of Combinatorial Theory,
Series A, 69(2):217–232, 1995.

He He, Jason Eisner, and Hal Daume. Imitation learning by coaching. In Neural
Information Processing Systems (NIPS), 2012.

Ruĳie He, Emma Brunskill, and Nicholas Roy. Puma: Planning under uncertainty
with macro-actions. In AAAI, 2010.

131

Mikael Henaff, Alfredo Canziani, and Yann LeCun. Model-predictive policy learn-
ing with uncertainty regularization for driving in dense traffic. arXiv preprint
arXiv:1901.02705, 2019.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and
David Meger. Deep reinforcement learning that matters. In Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal
Piot, Dan Horgan, John Quan, Andrew Sendonaris, Ian Osband, et al. Deep
q-learning from demonstrations. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In
Advances in Neural Information Processing Systems, pages 4565–4573, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-
putation, 9(8):1735–1780, 1997.

Matt Hoffman and David Blei. Structured stochastic variational inference. CoRR
abs/1404.4114, 2014.

Matthew D Hoffman, David M Blei, Chong Wang, and John William Paisley.
Stochastic variational inference. Journal of Machine Learning Research, 14(1):
1303–1347, 2013.

Daniel G Horvitz and Donovan J Thompson. A generalization of sampling without
replacement from a finite universe. Journal of the American statistical Associa-
tion, 47(260):663–685, 1952.

Ashesh Jain, Brian Wojcik, Thorsten Joachims, and Ashutosh Saxena. Learning
trajectory preferences for manipulators via iterative improvement. In Neural
Information Processing Systems (NIPS), 2013.

Susmit Jha, Sumit Gulwani, Sanjit A Seshia, and Ashish Tiwari. Oracle-guided
component-based program synthesis. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering-Volume 1, pages 215–224.
ACM, 2010.

Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for reinforce-
ment learning. In International Conference onMachine Learning, pages 652–661,
2016a.

Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for reinforce-
ment learning. In International Conference onMachine Learning (ICML), 2016b.

Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E
Schapire. Contextual decision processes with low bellman rank are pac-learnable.
In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pages 1704–1713. JMLR. org, 2017.

132

Matthew James Johnson and Alan S Willsky. Stochastic variational inference for
bayesian time series models. In ICML, pages 1854–1862, 2014.

Sham Kakade and John Langford. Approximately optimal approximate reinforce-
ment learning. In International Conference on Machine Learning (ICML), 2002.

Sham Machandranath Kakade et al. On the sample complexity of reinforcement
learning. PhD thesis, University of London London, England, 2003.

Nathan Kallus and Masatoshi Uehara. Double reinforcement learning for ef-
ficient off-policy evaluation in markov decision processes. arXiv preprint
arXiv:1908.08526, 2019a.

Nathan Kallus and Masatoshi Uehara. Efficiently breaking the curse of horizon:
Double reinforcement learning in infinite-horizon processes. arXiv preprint
arXiv:1909.05850, 2019b.

NathanKallus andAngela Zhou. Policy evaluation and optimizationwith continuous
treatments. In Proceedings of the 21st International Conference on Artificial
Intelligence and Statistics (AISTATS), 2018.

Joseph DY Kang, Joseph L Schafer, et al. Demystifying double robustness: A com-
parison of alternative strategies for estimating a populationmean from incomplete
data. Statistical science, 22(4):523–539, 2007.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

Peter Kingston and Magnus Egerstedt. Index-free multi-agent systems: An eulerian
approach. IFAC Proceedings Volumes, 43(19):215–220, 2010.

Jyrki Kivinen and Manfred K Warmuth. Exponentiated gradient versus gradient
descent for linear predictors. Information and Computation, 132(1):1–63, 1997.

Stephen Kloder and Seth Hutchinson. Path planning for permutation-invariant
multirobot formations. IEEE Transactions on Robotics, 22(4):650–665, 2006.

Sven Koenig and Reid G Simmons. The effect of representation and knowledge
on goal-directed exploration with reinforcement-learning algorithms. Machine
Learning, 22(1-3):227–250, 1996.

Jelle R Kok, Matthĳs TJ Spaan, Nikos Vlassis, et al. Multi-robot decision making
using coordination graphs. In Proceedings of the 11th International Conference
on Advanced Robotics, ICAR, volume 3, pages 1124–1129, 2003.

Vĳay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in neural
information processing systems, pages 1008–1014, 2000.

133

Andreas Krause, Pietro Perona, and Ryan G Gomes. Discriminative clustering
by regularized information maximization. In Advances in neural information
processing systems, pages 775–783, 2010.

Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Pac reinforcement
learning with rich observations. In Advances in Neural Information Processing
Systems, pages 1840–1848, 2016.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum.
Hierarchical deep reinforcement learning: Integrating temporal abstraction and
intrinsic motivation. In NIPS, pages 3675–3683, 2016.

Michail Lagoudakis and Ronald Parr. Reinforcement learning as classification:
Leveragingmodern classifiers. In International Conference onMachine Learning
(ICML), 2003a.

Michail G Lagoudakis and Ronald Parr. Least-squares policy iteration. Journal of
machine learning research, 4(Dec):1107–1149, 2003b.

Sascha Lange, ThomasGabel, andMartin Riedmiller. Batch reinforcement learning.
In Reinforcement learning, pages 45–73. Springer, 2012.

John Langford and Bianca Zadrozny. Relating reinforcement learning performance
to classification performance. In International Conference on Machine Learning
(ICML), 2005.

AlessandroLazaric andMarcelloRestelli. Transfer frommultiplemdps. InAdvances
in Neural Information Processing Systems, pages 1746–1754, 2011.

Alessandro Lazaric, Mohammad Ghavamzadeh, and Rémi Munos. Finite-sample
analysis of lstd. In ICML-27th International Conference on Machine Learning,
pages 615–622, 2010.

Alessandro Lazaric, Mohammad Ghavamzadeh, and Rémi Munos. Finite-sample
analysis of least-squares policy iteration. Journal of Machine Learning Research,
13(Oct):3041–3074, 2012.

Hoang Le, AndrewKang, YisongYue, and Peter Carr. Smooth imitation learning for
online sequence prediction. In Proceedings of The 33rd International Conference
on Machine Learning, pages 680–688, 2016a.

Hoang Le, Cameron Voloshin, and Yisong Yue. Batch policy learning under con-
straints. In International Conference on Machine Learning, pages 3703–3712,
2019a.

134

Hoang Le, Cameron Voloshin, and Yisong Yue. Batch policy learning under con-
straints. In International Conference on Machine Learning, pages 3703–3712,
2019b.

HoangM. Le, AndrewKang, YisongYue, and Peter Carr. Smooth imitation learning
for online sequence prediction. In International Conference onMachine Learning
(ICML), 2016b.

Hoang M. Le, Peter Carr, Yisong Yue, and Patrick Lucey. Data-driven ghosting
using deep imitation learning. InMIT Sloan Sports Analytics Conference (SSAC),
2017.

Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and
time series. The handbook of brain theory and neural networks, 3361(10):1995,
1995.

Wee Sun Lee, Peter L Bartlett, and Robert CWilliamson. Efficient agnostic learning
of neural networks with bounded fan-in. IEEE Transactions on Information
Theory, 42(6):2118–2132, 1996.

Sergey Levine and Pieter Abbeel. Learning neural network policies with guided
policy search under unknown dynamics. In Advances in Neural Information
Processing Systems, pages 1071–1079, 2014.

Lihong Li, Wei Chu, John Langford, and Xuanhui Wang. Unbiased offline eval-
uation of contextual-bandit-based news article recommendation algorithms. In
International Conference on Web Search and Data Mining (WSDM), 2011.

Lihong Li, Remi Munos, and Csaba Szepesvari. Toward minimax off-policy value
estimation. In Artificial Intelligence and Statistics, pages 608–616, 2015.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep
reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep
reinforcement learning. In International Conference on Learning Representations
(ICLR), 2016.

Lydia Liu, Sarah Dean, Esther Rolf, Max Simchowitz, and Moritz Hardt. De-
layed impact of fair machine learning. In International Conference on Machine
Learning, pages 3156–3164, 2018a.

Qiang Liu, Lihong Li, Ziyang Tang, and Dengyong Zhou. Breaking the curse of
horizon: Infinite-horizon off-policy estimation. InNeural Information Processing
Systems (NIPS), 2018b.

135

Qiang Liu, Lihong Li, Ziyang Tang, andDengyongZhou. Breaking the curse of hori-
zon: Infinite-horizon off-policy estimation. In Advances in Neural Information
Processing Systems, pages 5361–5371, 2018c.

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Off-policy pol-
icy gradient with state distribution correction. arXiv preprint arXiv:1904.08473,
2019.

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly,
Bernhard Schölkopf, and Olivier Bachem. Challenging common assumptions
in the unsupervised learning of disentangled representations. In International
Conference on Machine Learning, pages 4114–4124, 2019.

Robert Loftin, Bei Peng, JamesMacGlashan, Michael L Littman, Matthew E Taylor,
Jeff Huang, and David L Roberts. Learning behaviors via human-delivered
discrete feedback: modeling implicit feedback strategies to speed up learning. In
AAMAS, 2016.

Jiaqi Ma, Zhe Zhao, Xinyang Yi, Ji Yang, Minmin Chen, Jiaxi Tang, Lichan Hong,
and Ed H Chi. Off-policy learning in two-stage recommender systems. In Pro-
ceedings of The Web Conference 2020, pages 463–473, 2020.

Sridhar Mahadevan and Bo Liu. Sparse q-learning with mirror descent. In Proceed-
ings of the Twenty-Eighth Conference on Uncertainty in Artificial Intelligence,
pages 564–573. AUAI Press, 2012.

Odalric-Ambrym Maillard, Rémi Munos, Alessandro Lazaric, and Mohammad
Ghavamzadeh. Finite-sample analysis of bellman residual minimization. In
Proceedings of 2nd Asian Conference on Machine Learning, pages 299–314,
2010.

Llew Mason, Jonathan Baxter, Peter L Bartlett, and Marcus Frean. Functional
gradient techniques for combining hypotheses. In Neural Information Processing
Systems (NIPS), 1999.

Dipendra Misra, Mikael Henaff, Akshay Krishnamurthy, and John Langford. Kine-
matic state abstraction and provably efficient rich-observation reinforcement
learning. arXiv preprint arXiv:1911.05815, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning. Na-
ture, 518(7540):529, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In ICML, pages 1928–1937, 2016.

136

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of ma-
chine learning. MIT press, 2012.

William H Montgomery and Sergey Levine. Guided policy search via approximate
mirror descent. In Advances in Neural Information Processing Systems, pages
4008–4016, 2016.

Rémi Munos. Error bounds for approximate policy iteration. In ICML, volume 3,
pages 560–567, 2003.

Rémi Munos. Performance bounds in l_p-norm for approximate value iteration.
SIAM journal on control and optimization, 46(2):541–561, 2007.

Rémi Munos and Csaba Szepesvári. Finite-time bounds for fitted value iteration.
Journal of Machine Learning Research, 9(May):815–857, 2008.

Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and
efficient off-policy reinforcement learning. In Advances in Neural Information
Processing Systems, pages 1054–1062, 2016.

Vĳayaraghavan Murali, Swarat Chaudhuri, and Chris Jermaine. Neural sketch
learning for conditional program generation. In ICLR, 2018.

Susan A Murphy, Mark J van der Laan, James M Robins, and Conduct Problems
PreventionResearchGroup. Marginalmeanmodels for dynamic regimes. Journal
of the American Statistical Association, 96(456):1410–1423, 2001.

Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li. Dualdice: Behavior-agnostic
estimation of discounted stationary distribution corrections. In Advances in Neu-
ral Information Processing Systems, pages 2315–2325, 2019.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter
Abbeel. Overcoming exploration in reinforcement learning with demonstrations.
In ICRA, 2017.

Arkadii Semenovich Nemirovsky and David Borisovich Yudin. Problem complexity
and method efficiency in optimization. Wiley, 1983.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward
transformations: Theory and application to reward shaping. In ICML, volume 99,
pages 278–287, 1999.

Xinkun Nie, Emma Brunskill, and Stefan Wager. Learning when-to-treat policies.
arXiv preprint arXiv:1905.09751, 2019.

Michael Oberst and David Sontag. Counterfactual off-policy evaluation with
gumbel-max structural causal models. In International Conference on Machine
Learning, pages 4881–4890, 2019.

137

Junhyuk Oh, Yĳie Guo, Satinder Singh, and Honglak Lee. Self-imitation learning.
In International Conference on Machine Learning, 2018.

Masahiro Ono, Marco Pavone, Yoshiaki Kuwata, and J Balaram. Chance-
constrained dynamic programming with application to risk-aware robotic space
exploration. Autonomous Robots, 39(4):555–571, 2015.

Dirk Ormoneit and Śaunak Sen. Kernel-based reinforcement learning. Machine
learning, 49(2-3):161–178, 2002.

Cosmin Paduraru. Off-policy evaluation in Markov decision processes. PhD thesis,
McGill University Libraries, 2013.

Yunpeng Pan, Ching-AnCheng, Kamil Saigol, Keuntak Lee, XinyanYan, Evangelos
Theodorou, and Byron Boots. Agile autonomous driving using end-to-end deep
imitation learning. In Robotics: science and systems, 2018.

Liviu Panait and Sean Luke. Cooperative multi-agent learning: The state of the art.
Autonomous agents and multi-agent systems, 11(3):387–434, 2005.

Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: al-
gorithms and complexity. Courier Corporation, 1982.

Christos H Papadimitriou and John N Tsitsiklis. The complexity of markov decision
processes. Mathematics of operations research, 12(3):441–450, 1987.

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong
Zhou, and Pushmeet Kohli. Neuro-symbolic program synthesis. arXiv preprint
arXiv:1611.01855, 2016.

Baolin Peng, Xiujun Li, Lihong Li, Jianfeng Gao, Asli Celikyilmaz, Sungjin Lee,
and Kam-Fai Wong. Composite task-completion dialogue policy learning via
hierarchical deep reinforcement learning. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing, pages 2231–2240, 2017.

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-
to-real transfer of robotic control with dynamics randomization. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pages 1–8. IEEE,
2018.

Olivier Pietquin, Matthieu Geist, Senthilkumar Chandramohan, and Hervé Frezza-
Buet. Sample-efficient batch reinforcement learning for dialogue management
optimization. ACM Transactions on Speech and Language Processing (TSLP), 7
(3):7, 2011.

Oleksandr Polozov and Sumit Gulwani. Flashmeta: a framework for inductive
program synthesis. In Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Appli-
cations, OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA, October
25-30, 2015, pages 107–126, 2015.

138

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In
Advances in neural information processing systems, pages 305–313, 1989.

Michael JD Powell and J Swann. Weighted uniform sampling—a monte carlo
technique for reducing variance. IMA Journal of Applied Mathematics, 2(3):
228–236, 1966.

Niranjani Prasad, Li-Fang Cheng, Corey Chivers, Michael Draugelis, and Barbara E
Engelhardt. A reinforcement learning approach to weaning of mechanical venti-
lation in intensive care units. arXiv preprint arXiv:1704.06300, 2017.

Doina Precup, Richard S Sutton, and Satinder P Singh. Eligibility traces for off-
policy policy evaluation. In Proceedings of the Seventeenth International Confer-
ence on Machine Learning, pages 759–766. Morgan Kaufmann Publishers Inc.,
2000.

Doina Precup, Richard S Sutton, and Sanjoy Dasgupta. Off-policy temporal dif-
ference learning with function approximation. In Proceedings of the Eighteenth
International Conference on Machine Learning, pages 417–424. Morgan Kauf-
mann Publishers Inc., 2001.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic pro-
gramming. John Wiley & Sons, 2014.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space. In Advances in neural
information processing systems, pages 5099–5108, 2017.

Nathan Ratliff, David Silver, and J. Andrew Bagnell. Learning to search: Functional
gradient techniques for imitation learning. Autonomous Robots, 27(1):25–53,
2009.

Veselin Raychev, Pavol Bielik, Martin T. Vechev, and Andreas Krause. Learning
programs from noisy data. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2016, St.
Petersburg, FL, USA, January 20 - 22, 2016, pages 761–774, 2016.

Martin Riedmiller. Neural fitted q iteration–first experiences with a data efficient
neural reinforcement learning method. In European Conference on Machine
Learning, pages 317–328. Springer, 2005.

Martin Riedmiller, Thomas Gabel, Roland Hafner, and Sascha Lange. Reinforce-
ment learning for robot soccer. Autonomous Robots, 27(1):55–73, 2009.

Diederik M Roĳers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A
survey of multi-objective sequential decision-making. Journal of Artificial Intel-
ligence Research, 48:67–113, 2013.

139

Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In
Conference on Artificial Intelligence and Statistics (AISTATS), 2010.

Stephane Ross and J Andrew Bagnell. Reinforcement and imitation learning via
interactive no-regret learning. arXiv preprint arXiv:1406.5979, 2014.

Stephane Ross, Geoff Gordon, and J. Andrew Bagnell. A reduction of imitation
learning and structured prediction to no-regret online learning. In Conference on
Artificial Intelligence and Statistics (AISTATS), 2011a.

Stéphane Ross, Geoffrey J Gordon, and Drew Bagnell. A reduction of imitation
learning and structured prediction to no-regret online learning. InAISTATS, pages
627–635, 2011b.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value
function approximators. In International Conference onMachine Learning, pages
1312–1320, 2015a.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experi-
ence replay. arXiv preprint arXiv:1511.05952, 2015b.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
Trust region policy optimization. In International Conference onMachine Learn-
ing, pages 1889–1897, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Shai Shalev-Shwartz et al. Online learning and online convex optimization. Foun-
dations and Trends® in Machine Learning, 4(2):107–194, 2012.

Jack Sherman and Winifred J. Morrison. Adjustment of an inverse matrix corre-
sponding to a change in one element of a given matrix. Ann. Math. Statist., 21
(1):124–127, 03 1950. doi: 10.1214/aoms/1177729893.

Pannagadatta K Shivaswamy and Tony Jebara. Permutation invariant svms. In
Proceedings of the 23rd international conference on Machine learning, pages
817–824. ACM, 2006.

Xujie Si, Yuan Yang, Hanjun Dai, Mayur Naik, and Le Song. Learning a meta-
solver for syntax-guided program synthesis. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019,
2019.

David Silver, Aja Huang, Chris JMaddison, Arthur Guez, Laurent Sifre, GeorgeVan
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, et al. Mastering the game of go with deep neural networks and
tree search. nature, 529(7587):484, 2016.

140

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
et al. Mastering the game of go without human knowledge. Nature, 550(7676):
354, 2017.

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodík, Sanjit A. Seshia, and Vi-
jay A. Saraswat. Combinatorial sketching for finite programs. In ASPLOS, pages
404–415, 2006.

Jonathan Sorg, Richard L Lewis, and Satinder P Singh. Reward design via online
gradient ascent. In Advances in Neural Information Processing Systems, pages
2190–2198, 2010.

Nathan Srebro, Karthik Sridharan, and Ambuj Tewari. Smoothness, low noise and
fast rates. In Neural Information Processing Systems (NIPS), 2010.

Peter Stone. What’s hot at RoboCup. InAssociation for the Advancement of Artificial
Intelligence (AAAI), 2016.

Peter Stone and Manuela Veloso. Multiagent systems: A survey from a machine
learning perspective. Autonomous Robots, 8(3):345–383, 2000.

Wen Sun, Arun Venkatraman, Geoffrey J Gordon, Byron Boots, and J Andrew
Bagnell. Deeply aggrevated: Differentiable imitation learning for sequential
prediction. arXiv preprint arXiv:1703.01030, 2017.

Wen Sun, J Andrew Bagnell, and Byron Boots. Truncated horizon policy search:
Combining reinforcement learning & imitation learning. In International Con-
ference on Learning Representations (ICLR), 2018a.

Wen Sun, Geoffrey J Gordon, Byron Boots, and J Bagnell. Dual policy iteration. In
Advances in Neural Information Processing Systems, pages 7059–7069, 2018b.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction,
volume 1. MIT press Cambridge, 1998.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018a.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018b.

Richard S Sutton, Doina Precup, and Satinder P Singh. Intra-option learning about
temporally abstract actions. In ICML, volume 98, pages 556–564, 1998.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-
mdps: A framework for temporal abstraction in reinforcement learning. Artificial
intelligence, 112(1-2):181–211, 1999.

141

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour.
Policy gradient methods for reinforcement learning with function approximation.
In Advances in neural information processing systems, pages 1057–1063, 2000.

Adith Swaminathan and Thorsten Joachims. Batch learning from logged bandit
feedback through counterfactual risk minimization. Journal of Machine Learning
Research, 16(1):1731–1755, 2015.

Adith Swaminathan, Akshay Krishnamurthy, Alekh Agarwal, Miro Dudik, John
Langford, Damien Jose, and Imed Zitouni. Off-policy evaluation for slate rec-
ommendation. In Advances in Neural Information Processing Systems, pages
3632–3642, 2017.

Umar Syed and Robert E Schapire. A game-theoretic approach to apprenticeship
learning. In NIPS, pages 1449–1456, 2008.

Umar Syed and Robert E Schapire. A reduction from apprenticeship learning to
classification. In Neural Information Processing Systems (NIPS), 2010.

Sarah Taylor, Taehwan Kim, Yisong Yue, Moshe Mahler, James Krahe, Anasta-
sio Garcia Rodriguez, Jessica Hodgins, and Iain Matthews. A deep learning
approach for generalized speech animation. ACM Transactions on Graphics
(TOG), 36(4):93, 2017.

Guy Tennenholtz, Shie Mannor, and Uri Shalit. Off-policy evaluation in partially
observable environments. arXiv preprint arXiv:1909.03739, 2019.

Philip Thomas. Reinforcement learning: An introduction, 2015.

Philip Thomas and Emma Brunskill. Data-efficient off-policy policy evaluation
for reinforcement learning. In International Conference on Machine Learning
(ICML), 2016a.

Philip Thomas and Emma Brunskill. Data-efficient off-policy policy evaluation for
reinforcement learning. In International Conference on Machine Learning, pages
2139–2148, 2016b.

Philip S Thomas, William C Dabney, Stephen Giguere, and Sridhar Mahadevan.
Projected natural actor-critic. In Advances in neural information processing
systems, pages 2337–2345, 2013.

Philip S Thomas, Georgios Theocharous, Mohammad Ghavamzadeh, Ishan Du-
rugkar, and Emma Brunskill. Predictive off-policy policy evaluation for nonsta-
tionary decision problems, with applications to digital marketing. 2017.

Masatoshi Uehara and Nan Jiang. Minimax weight and q-function learning for
off-policy evaluation. arXiv preprint arXiv:1910.12809, 2019.

142

Lazar Valkov, Dipak Chaudhari, Akash Srivastava, Charles Sutton, and Swarat
Chaudhuri. Houdini: Lifelong learning as program synthesis. In Advances in
Neural Information Processing Systems, pages 8687–8698, 2018.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning
with double q-learning. In AAAI, volume 2, page 5. Phoenix, AZ, 2016.

Kristof Van Moffaert and Ann Nowé. Multi-objective reinforcement learning using
sets of pareto dominating policies. The Journal of Machine Learning Research,
15(1):3483–3512, 2014.

Abhinav Verma, Vĳayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and
Swarat Chaudhuri. Programmatically interpretable reinforcement learning. In
International Conference on Machine Learning, pages 5052–5061, 2018.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max
Jaderberg, David Silver, and Koray Kavukcuoglu. Feudal networks for hierarchi-
cal reinforcement learning. arXiv preprint arXiv:1703.01161, 2017.

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to
sequence for sets. arXiv preprint arXiv:1511.06391, 2015.

Oriol Vinyals, Igor Babuschkin, JunyoungChung,MichaelMathieu,Max Jaderberg,
Wojciech M Czarnecki, Andrew Dudzik, Aja Huang, Petko Georgiev, Richard
Powell, et al. Alphastar: Mastering the real-time strategy game starcraft ii.
DeepMind Blog, 2019.

John Von Neumann and Oskar Morgenstern. Theory of games and economic be-
havior (commemorative edition). Princeton university press, 2007.

Yu-Xiang Wang, Alekh Agarwal, and Miroslav Dudík. Optimal and adaptive off-
policy evaluation in contextual bandits. In International Conference on Machine
Learning, pages 3589–3597, 2017.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando
Freitas. Dueling network architectures for deep reinforcement learning. In ICML,
pages 1995–2003, 2016.

MA Wiering. Multi-agent reinforcement learning for traffic light control. In Inter-
national Conference on Machine Learning (ICML), 2000.

Herman Wold. A study in the analysis of stationary time series, 1939.

Bernhard Wymann, Eric Espié, Christophe Guionneau, Christos Dimitrakakis,
Rémi Coulom, and Andrew Sumner. TORCS, The Open Racing Car Simula-
tor. http://www.torcs.org, 2014.

TengyangXie, YifeiMa, andYu-XiangWang. Towards optimal off-policy evaluation
for reinforcement learning with marginalized importance sampling. In Neural
Information Processing Systems (NIPS), 2019.

143

Shangtong Zhang, Bo Liu, and Shimon Whiteson. Gradientdice: Rethinking gener-
alized offline estimation of stationary values. arXiv preprint arXiv:2001.11113,
2020.

Stephan Zheng, Yisong Yue, and Patrick Lucey. Generating long-term trajectories
using deep hierarchical networks. In NIPS, 2016.

He Zhu, Zikang Xiong, Stephen Magill, and Suresh Jagannathan. An inductive
synthesis framework for verifiable reinforcement learning. In ACM Conference
on Programming Language Design and Implementation (SIGPLAN), 2019.

Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of
maximum causal entropy. PhD thesis, CMU, 2010.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum
entropy inverse reinforcement learning. In AAAI, volume 8, pages 1433–1438.
Chicago, IL, USA, 2008.

Martin Zinkevich. Online convex programming and generalized infinitesimal gra-
dient ascent. In Proceedings of the 20th International Conference on Machine
Learning (ICML-03), pages 928–936, 2003.

144

A p p e n d i x A

APPENDIX TO CHAPTER 2

In this appendix section, we provide additional discussion and detailed proofs for
the results presented in Chapter 2.

A.1 Equivalence between Regularization and Constraint Satisfaction
Formulating Different Regularized Policy Learning Problems as Constrained
Policy Learning
In this section, we provide connections between regularized policy learning and our
constrained formulation (OPT). Although the main chapter in the thesis focuses
on batch policy learning, here we are agnostic between online and batch learning
settings.

Entropy regularized RL. The standard reinforcement learning objective, either in
online or batch setting, is to find a policy c˚std that minimizes the long-term cost
(equivalent to maximizing the accumuted rewards):

c˚std “ arg min
c

ÿ

C

EpGC ,0Cq„cr2pGC , 0Cqs “ arg min
c

EpG,0q„`c r2pG, 0qs

Maximum entropy reinforcement learning (Haarnoja et al., 2017) augments the
cost with an entropy term, such that the optimal policy maximizes its entropy
at each visited state: c˚MaxEnt “ arg minc EpG,0q„`c r2pG, 0qs ´ _Hpcp¨|Gqq. As
discuseed by (Haarnoja et al., 2017), the goal is for the agent to maximize the
entropy of the entire trajectory, and not greedily maximizing entropy at the current
time step (i.e., Boltzmann exploration). Maximum entropy policy learning was
first proposed by (Ziebart et al., 2008; Ziebart, 2010) in the context of learning
from expert demonstrations. Entropy regulazed RL/IL is equivalent to our problem
(OPT) by simply set �pcq “ EpGC ,0Cq„cr2pGC , 0Cqs (standard RL objective), and
6pG, 0q “ cp0|Gq log cp0|Gq, thus �pcq “ ´Hpcq ď g

Smooth imitation learning (& Regularized imitation learning). This is a con-
strained imitation learning problem studied by (Le et al., 2016a): learning to
mimic smooth behavior in continuous space from human desmonstrations. The
data collected from human demonstrations is considered to be fixed and given a
priori, thus the imitation learning task is also a batch policy learning problem.

145

The proposed approach from (Le et al., 2016a) is to view policy learning as a
function regularization problem: policy c “ p 5 , 6q is a combination of func-
tions 5 and ℎ, where 5 belongs to some expressive function class F (e.g., de-
cision trees, neural networks) and ℎ P H with certifiable smoothness property
(e.g., linear models). Policy learning is the solution to the functional regulariza-
tion problem c “ arg min 5 ,6 EG„`c } 5 pGq ´ c�pGq} ` _ }ℎpGq ´ c�pGq}, where c�
is the expert policy. This constrained imitation learning setting is equivalent to
our problem (OPT) as follows: �pcq “ �pp 5 , ℎqq “ EG„`c } 5 pGq ´ c�pGq} and
�pcq “ �pp 5 , ℎqq “ minℎ1PH }ℎ

1pGq ´ c�pGq} ď g

RegularizingRLwith expert demonstrations / Learning from imperfect demon-
strations. Efficient exploration in RL is a well-known challenge. Expert demon-
strations provide a way around online exploration to reduce the sample complexity
for learning. However, the label budget for expert demonstrations may be limited,
resulting in a sparse coverage of the state space compared to what the online RL
agent can explore (Hester et al., 2018). Additionally, expert demonstrations may
be imperfect (Oh et al., 2018). Some recent work proposed to regularize standard
RL objective with some deviation measure between the learning policy and (sparse)
expert data (Hester et al., 2018; Oh et al., 2018; Henaff et al., 2019).

For clarity we focus on the regularized RL objective for Q-learning in (Hester et al.,
2018), which is defined as �pcq “ ��&p&q`_1�=p&q`_2��p&q`_3�!2p&q, where
��&p&q is the standard deep Q-learning loss, �=p&q is the n-step return loss, ��p&q
is the imitation learning loss defined as ��p&q “ max0PA r&pG, 0q ` ℓp0� , 0q ´

&pG, 0�qs, and �!2p&q is an L2 regularization loss applied to the Q-network to
prevent overfitting to a small expert dataset. The regularization parameters _’s are
obtained by hyperparameter tuning. This approach provides a bridge between RL
and IL, whose objective functions are fundamentally different (see AggreVate by
(Ross and Bagnell, 2014) for an alternative approach).

We can cast this problem into (OPT) as: �pcq “ ��&p&q ` _3�!2p&q (standard
RL objective), and two constraints: 61pcq “ EG„`c rmax0PA&pG, 0q ` ℓp0� , 0q ´

&pG, 0�qs, and
62pG, 0q “ EG„`c r2C ` W2C`1` . . .` W

=´12C`=´1`min10 W=&pGC`=, 01q ´&pGC , 0qs
Here 61 captures the loss w.r.t. expert demonstrations and 62 reflects the n-step
return constraint.

More generally, one can define the imitation learning constraint as
�pcq “ EG„`cℓpcpGq, c�pGqq for an appropriate divergence definition between cpGq

146

and c�pGq (defined at states where expert demonstrations are available).

Conservative policy improvement. Many policy search algorithms perform small
policy update steps, requiring the new policy c to stay within a neighborhood of
the most recent policy iterate c: to ensure learning stability (Levine and Abbeel,
2014; Schulman et al., 2015; Montgomery and Levine, 2016; Achiam et al., 2017).
This simply corresponds to the definition of �pcq “ distancepc, c:q ď g,
where distance is typically !-divergence or total variation distance between
the distribution induced by c and c: . For !-divergence, the single timestep cost
6pG, 0q “ ´cp0|Gq logp c:p0|Gq

cp0|Gq
q

Equivalence of Regularization and Constraint Viewpoint - Proof of Proposition
2.2.1
Regularization ùñ Constraint: Let _ ą 0 and c˚ be optimal policy in
Regularization. Set g “ �pc˚q. Suppose that c˚ is not optimal in Constraint.
Then Dc P Π such that �pcq ď g and �pcq ă �pc˚q. We then have

�pcq ` _J�pcq ă �pc˚q ` _Jg “ �pc˚q ` _J�pc˚q

which contradicts the optimality of c˚ for Regularization problem. Thus c˚ is
also the optimal solution of the Constraint problem.

Constraint ùñ Regularization: Given g and let c˚ be the corresponding
optimal solution of the Constraint problem. The Lagrangian of Constraint is
given by !pc, _q “ �pcq`_J�pcq, _ ě 0. We then have c˚ “ arg min

cPΠ

max
_ě0

!pc, _q.

Let
_˚ “ arg max

_ě0
min
cPΠ

!pc, _q

Slater’s condition implies strong duality. By strong duality and the strong max-min
property (Boyd and Vandenberghe, 2004), we can exchange the order of maximiza-
tion and minimization. Thus c˚ is the optimal solution of

min
cPΠ

�pcq ` p_˚qJp�pcq ´ gq

Removing the constaint p_˚qJg, we have that c˚ is the optimal solution of the
Regularization problem with _ “ _˚. And since c˚ ‰ arg min

cPΠ

�pcq, we must

have _˚ ě 0.

147

A.2 Convergence Proofs
Convergence of Meta-algorithm - Proof of Proposition 2.3.1
Let us evaluate the empirical primal-dual gap of the Lagrangian after) iterations:

max
_
!pĉ) , _q “ max

_

1
)

ÿ

C

!pcC , _q (A.1)

ď
1
)

ÿ

C

!pcC , _Cq `
>p)q

)
(A.2)

ď
1
)

ÿ

C

!pc, _Cq `
>p)q

)
@c P Π (A.3)

“ !pc, p_)q `
>p)q

)
@c (A.4)

Equations (A.1) and (A.4) are due to the definition of ĉ) and p_) and linearity of
!pc, _q wrt _ and the distribution over policies in Π. Equation (A.2) is due to the
no-regret property of Online-algorithm. Equation (A.3) is true since cC is best
response wrt _C . Since equation (A.4) holds for all c, we can conclude that for)
sufficiently large such that >p)q

)
ď l, we have max_ !pĉ) , _q ď minc !pc, p_)q ` l

, which will terminate the algorithm.

Note that we always have max_ !pĉ) , _q ě !pĉ) , p_)q ě minc !pc, p_)q. Algo-
rithm 1’s convergence rate depends on the regret bound of the Online-algorithm
procedure. Multiple algorithms exist with regret scaling as Ωp

?
)q (e.g., online

gradient descent with regularizer, variants of online mirror descent). In that case,
the algorithm will terminate after $p 1

l2 q iterations.

Empirical Convergence Analysis of Main Algorithm - Proof of Theorem 2.4.1
By choosing normalized exponentiated gradient as the online learning subroutine,
we have the following regret bound after) iterations of themain algorithm 2 (chapter
2 of (Shalev-Shwartz et al., 2012)) for any _ P R<`1

`
, }_}1 “ �:

1
)

)
ÿ

C“1

p!pcC , _q ď
1
)

)
ÿ

C“1

p!pcC , _Cq `

� logp<`1q
[

` [s�2�)

)
(A.5)

148

Denote l) “
� logp<`1q

[
`[s�2�)

)
to simplify notations. By the linearity of p!pc, _q in

both c and _, we have for any _ that

p!pĉ) , _q
linearity
“

1
)

)
ÿ

C“1

p!pcC , _q
eqn p�.5q
ď

1
)

)
ÿ

C“1

p!pcC , _Cq ` l)

best response cC
ď

1
)

)
ÿ

C“1

p!pĉ) , _Cq ` l)
linearity
“ p!pĉ) , p_)q ` l)

Since this is true for any _, max_ p!pĉ) , _q ď p!pĉ) , p_)q ` l) .

On the other hand, for any policy c, we also have

p!pc, p_)q
linearity
“

1
)

)
ÿ

C“1

p!pc, _Cq
best response cC

ě
1
)

)
ÿ

C“1

p!pcC , _Cq

eqn p�.5q
ě

1
)

)
ÿ

C“1

p!pcC , p_)q ´ l)
linearity
“ p!pĉ) , p_)q ´ l)

Thus minc p!pc, p_)q ě p!pĉ) , p_)q ´ l) , leading to

max
_

p!pĉ) , _q ´min
c

p!pc, p_)q ď p!pĉ) , p_)q ` l) ´ pp!pĉ) , p_)q ´ l)q “ 2l)

After) iterations of the main algorithm 2, therefore, the empirical primal-dual gap
is bounded by

max
_

p!pĉ) , _q ´min
c

p!pc, p_)q ď
2� logp<`1q

[
` 2[s�2�)

)

In particular, if we want the gap to fall below a desired thresholdl, setting the online
learning rate [“ l

4 s�2�
will ensure that the algorithm converges after 16�2

s�2 logp<`1q
l2

iterations.

149

A.3 End-to-end Generalization Analysis of Main Algorithm
In this section, we prove the following full statement of theorem 2.4.4 of the main
chapter 2. Note that to lessen notation, we define s+ “ s� ` � s� to be the bound of
value functions under considerations in algorithm 2.

Theorem A.3.1 (Generalization bound of algorithm 2). Let c˚ be the optimal
policy to problem OPT. Let be the number of iterations of FQE and FQI. Let
ĉ be the policy returned by our main algorithm 2, with termination threshold l.
For any n ą 0, X P p0, 1q, when = ě 24¨214¨s+4

n2 p log p<`1q
X

` dimF log 320s+2

n2 `

logp144pdimF ` 1qqq, we have with probability at least 1´ X:

�pĉq ď �pc˚q ` l `
p4` �qW
p1´ Wq3

p
a

�dn ` 2W {2s+q

and

�pĉq ď g ` 2
s+ ` l

�
`

W1{2

p1´ Wq3{2
p
a

�dn `
2W {2s+
p1´ Wq1{2

q

Let ĉ “ 1
)

ř

C cC be the returned policy) iterations, with corresponding dual variable
p_ “ 1

)

ř

C _C .

By the stopping condition, the empirical duality gap is less than some threshold l,
i.e., max

_PR<`1
`

,}_}1“�

p!pĉ, _q ´min
cPΠ

p!pc, p_q ď l where p!pc, _q “ p�pcq ` _Jp p�pcq ´

gq. We first show that the returned policy approximately satisfies the constraints.
The proof of theorem A.3.1 will make use of the following empirical constraint
satisfaction bound:

Lemma A.3.2 (Empirical constraint satisfactions). Assume that the constraints
p�pcq ď g are feasible. Then the returned policy ĉ approximately satisfies all
constraints

max
8“1:<`1

pp68pĉq ´ g8q ď 2
s� ` l

�

Proof. We consider max
8“1:<`1

pp68pĉq ´ g8q ą 0 (otherwise the lemma statement is triv-

ially true). The termination condition implies that p!pĉ, p_q´ max
_PR<`1

`
,}_}1“�

p!pĉ, _q ě

´l

ùñ p_Jp p�pĉq ´ pgq ě max
_PR<`1

`
,}_}1“�

_Jp p�pĉq ´ pgq ´ l (A.6)

150

Relaxing the RHS of equation (A.6) by setting_r 9s “ � for 9 “ arg max
8“1:<`1

rp68pĉq ´ g8s

and _r8s “ 0 @8 ‰ 9 yields:

� max
8“1:<`1

rp68pĉq ´ g8s ´ l ď p_Jp p�pĉq ´ gq (A.7)

Given c such that p�pcq ď g, also by the termination condition:

p!pĉ, p_q ´ p!pc, p_q ď max
_PR<`1

`
,}_}1“�

p!pĉ, _q ´min
cPΠ

p!pc, p_q ď l

Thus implies

p!pĉ, p_q ď p!pc, p_q ` l “ p�pcq ` p_Jp p�pcq ´ gq ď p�pcq ` l (A.8)

combining what we have from equation (A.8) and (A.7):

� max
8“1:<`1

rp68pĉq ´ pg8s´l ď p_Jp p�pĉq´ pgq “ p!pĉ, p_q´ p�pĉq ď p�pcq`l´ p�pĉq

Rearranging and bounding p�pcq ď s� and p�pĉq ď ´ s� finishes the proof of the
lemma.

We now return to the proof of theorem A.3.1, our task is to lift empirical error to
generalization bound for main objective and constraints.

Denote by n�&� the (generalization) error introduced by the Fitted Q Evaluation
procedure (algorithm 3) and n�&� the (generalization) error introduced by the Fitted
Q Iteration procedure (algorithm 15). For now we keep n�&� and n�&� unspecified
(to be specified shortly). That is, for each C “ 1, 2, . . . ,) , we have with probability
at least 1´ X:

�pcCq ` _
J
C p�pcCq ´ gq ď �pc

˚
q ` _JC p�pc

˚
q ´ gq ` n�&�

Since c˚ satisfies the constraints, i.e., �pc˚q ´ g ď 0 componentwise, and _C ě 0,
we also have with probability 1´ X

!pcC , _Cq “ �pcCq ` _
J
C p�pcCq ´ gq ď �pc

˚
q ` n�&� (A.9)

Similarly, with probability 1´ X, all of the following inequalities are true

p�pcCq ` n�&� ě �pcCq ě p�pcCq ´ n�&� (A.10)
p�pcCq ` n�&�1 ě �pcCq ě p�pcCq ´ n�&�1 (row wise for all < constraintsq

(A.11)

151

Thus with probability at least 1´ X

!pcC , _Cq “ �pcCq ` _
J
C p�pcCq ´ gq ě

p�pcCq ` _
J
C p

p�pcCq ´ gq ´ n�&�p1` _JC 1q

ě p�pcCq ` _
J
C p

p�pcCq ´ gq ´ n�&�p1` �q

“ p!pcC , _Cq ´ n�&�p1` �q (A.12)

Recall that the execution of mixture policy ĉ is done by uniformly sampling one
policy cC from tc1, . . . , c)u, and rolling-out with cC . Thus from equations (A.9)
and (A.12), we have EC„*r1:)sp!pcC , _Cq ď �pc

˚q ` n�&� ` p1` �qn�&� w.p. 1´ X.
In other words, with probability 1´ X:

1
)

)
ÿ

C“1

p!pcC , _Cq ď �pc
˚
q ` n�&� ` p1` �qn�&�

Due to the no-regret property of our online algorithm (EG in this case):

1
)

)
ÿ

C“1

p!pcC , _Cq ě max
_

p!pĉ, _q ´ l “ p�pĉq `max
_
_Jp p�pĉq ´ gq ´ l

If p�pĉq´g ď 0 componentwise, choose_r8s “ 0, 8 “ 1, 2, . . . , < and_r<`1s “ �.
Otherwise, we can choose _r 9s “ � for 9 “ arg max

8“1:<`1
rp68pĉq ´ gr8ss and _r8s “

0 @8 ‰ 9 . We can see that max
_PR<`1

`
,}_}1“�

_Jp p�pĉq ´ gq ě 0. Therefore:

p�pĉq ´ l ď �pc˚q ` n�&� ` p1` �qn�&� with probability at least 1´ X

Combined with the first term from equation (A.10):

�pĉq ´ n�&� ´ l ď �pc
˚
q ` n�&� ` p1` �qn�&�

or
�pĉq ď �pc˚q ` l ` n�&� ` p2` �qn�&� (A.13)

We now bring in the generalization error results from our standalone analysis of FQI
(appendix A.6) and FQE (appendix A.5) into equation (A.13).

Specifically, when
= ě 24¨214¨s+4

n2

´

log p<`1q
X

` dimF log 320s+2

n2 ` logp144pdimF ` 1qq
¯

, when FQI
and FQE are run with iterations, we have the guarantee that for any n ą 0,

152

with probability at least 1´ X

�pĉq ď �pc˚q ` l `
2W

p1´ Wq3
´

a

�`n ` 2W {2s+
¯

looooooooooooooooomooooooooooooooooon

FQI generalization error

`

`
W1{2p2` �q
p1´ Wq3{2

˜

a

�`n `
W {2

p1´ Wq1{2
2s+

¸

loooooooooooooooooooooooomoooooooooooooooooooooooon

p2`�qˆ FQE generalization error

ď �pc˚q ` l `
p4` �qW
p1´ Wq3

´

a

�`n ` 2W {2s+
¯

(A.14)

From lemma A.3.2, p�pĉq ď g ` 2 s�`l
�
ď g ` 2 s+`l

�
. From equation (A.11), for

each t=1,2,. . . ,T, we have p�pcCq ě �pcCq ´ n�&�1 with probability 1´ X. Thus

P
´

p�pĉq ě �pĉq ´ n�&�1
¯

“

)
ÿ

C“1
Pp p�pcCq

ě �pcCq ´ n�&�1|ĉ “ cCqPpĉ “ cCq

ě)p1´ Xq
1
)
“ 1´ X

Therefore, we have the following generalization guarantee for the approximate sat-
isfaction of all constraints:

�pĉq ď g ` 2
s+ ` l

�
`

W1{2

p1´ Wq3{2

˜

a

�`n `
W {2

p1´ Wq1{2
2s+

¸

(A.15)

Inequalities (A.14) and (A.15) complete the proof of theorem A.3.1 (and theorem
2.4.4 of the main thesis chapter 2)

153

A.4 Preliminaries to Analysis of Fitted Q Algorithms
In this section, we set-up necessary notations and definitions for the theoretical
analysis of FQE and FQI. To simplify the presentation, we will focus exclusively on
weighted ℓ2 norm for error analysis.

With the definitions and assumptions presented in this section, we will present the
sample complexity guarantee of Fitted-Q-Evaluation (FQE) in appendix A.5. The
proof for FQI will follow similarly in appendix A.6.

While it is possible to adapt proofs from related algorithms (Munos and Szepesvári,
2008; Antos et al., 2008b) to analyze FQE and FQI, in the next two sections we
show improved convergence rate from $p=´4q to $p=´2q, where = is the number of
samples in data set D.

To be consistent with the notations in themain thesis chapter 2, we use the convention
�pcq as the value function that denotes long-term accumulated cost, instead of using
+pcq denoting long-term rewards in the traditional RL literature. Our notation for
& function is similar to the RL literature - the only difference is that the optimal
policy minimizes &pG, 0q instead of maximizing. We denote the bound on the
value function as s� (alternatively if the single timestep cost is bounded by s2, then
s� “ s2

1´W). For simplicity, the standalone analysis of FQE and FQI concerns only
with the cost objective 2. Dealing with cost 2 ` _J6 offers no extra difficulty - in
that case we simply augment the bound of the value function to s+ “ s� ` � s�.

Bellman operators
The Bellman optimality operator T : BpXˆ A; s�q ÞÑ BpXˆ A; s�q as

pT&qpG, 0q “ 2pG, 0q ` W

ż

X
min
01PA

&pG1, 01q?p3G1|G, 0q (A.16)

The optimal value functions are defined as usual by �˚pGq “ sup
c

�cpGq and

&˚pG, 0q “ sup
c

&cpG, 0q @G P X, 0 P A.

For a given policy c, the Bellman evaluation operator Tc : BpX ˆ A; s�q ÞÑ
BpXˆ A; s�q as

pTc&qpG, 0q “ 2pG, 0q ` W

ż

X
&pG1, cpG1qq?p3G1|G, 0q (A.17)

It is well known that Tc&c “ &c, a fixed point of the Tc operator.

154

Data distribution and weighted ℓ2 norm
Denote the state-action data generating distribution as `, induced by some data-
generating (behavior) policy cD, that is, pG8, 08q „ ` for pG8, 08, G18 , 28q P D.

Note that data set D is formed by multiple trajectories generated by cD. For
each pG8, 08q, we have G1

8
„ ?p¨|G8, 08q and 28 “ 2pG8, 08q. For any (measur-

able) function 5 : X ˆ A ÞÑ R, define the `-weighted ℓ2 norm of 5 as } 5 }2` “
ş

XˆA 5 pG, 0q
2`p3G, 30q “

ş

XˆA 5 pG, 0q
2`Gp3GqcDp0|3Gq. Similarly for any other

state-action distribution d, } 5 }2d “
ş

XˆA 5 pG, 0q
2dp3G, 30q

Inherent Bellman error
FQE and FQI depend on a chosen function class F to approximate &pG, 0q. To
express how well the Bellman operator T6 can be approximated by a function in
the policy class F , when T6 R F , a notion of distance, known as inherent Bellman
error was first proposed by (Munos, 2003) and used in the analysis of related ADP
algorithms (Munos and Szepesvári, 2008; Munos, 2007; Antos et al., 2008a,b;
Lazaric et al., 2010, 2012; Lazaric and Restelli, 2011; Maillard et al., 2010).

Definition A.4.1 (Inherent Bellman Error). Given a function class F and a chosen
distribution d, the inherent Bellman error of F is defined as

3F “ 3pF ,TF q “ sup
ℎPF

inf
5 PF

} 5 ´ Tℎ}d

where }¨}d is the d´weighted ℓ2 norm and T is the Bellman optimality operator
defined in (A.16)

To analyze FQE,wewill form a similar definition for theBellman evaluation operator

Definition A.4.2 (Inherent Bellman Evaluation Error). Given a function class F
and a policy c, the inherent Bellman evaluation error of F is defined as

3cF “ 3pF ,TcF q “ sup
ℎPF

inf
5 PF

} 5 ´ Tcℎ}dc

where }¨}dc is the ℓ2 norm weighted by dc. dc is defined as the state-action
distribution induced by policy c, and Tc is the Bellman operator defined in (A.17)

Concentrability coefficients
Let %c denote the operator acting on 5 : X ˆ A ÞÑ R such that p%c 5 qpG, 0q “
ş

X 5 pG
1, cpG1qq?pG1|G, 0q3G1. Acting on 5 (e.g., approximates &), %c captures the

transition dynamics of taking action 0 and following c thereafters.

155

The following definition and assumption are standard in the analysis of related
approximate dynamic programming algorithms (Lazaric et al., 2012; Munos and
Szepesvári, 2008; Antos et al., 2008a). As approximate value iteration and policy
iteration algorithms perform policy update, the new policy at each round will induce
a different stationary state-action distribution. One way to quantify the distribution
shift is the notion of concentrability coefficient of future state-action distribution, a
variant of the notion introduced by (Munos, 2003).

Definition A.4.3 (Concentrability coefficient of state-action distribution). Given
data generating distribution ` „ cD, initial state distribution j. For < ě 0, and an
arbitrary sequence of stationary policies tc<u<ě1 let

V`p<q “ sup
c1,...,c<

›

›

›

›

3pj%c1%c2 . . . %c<q

3`

›

›

›

›

8

(V`p<q “ 8 if the future state distribution j%c1%c2 . . . %c< is not absolutely con-
tinuous w.r.t. `, i.e, j%c1%c2 . . . %c<pG, 0q ą 0 for some `pG, 0q “ 0)

Assumption 3. V` “ p1´ Wq2
ř

<ě1
<W<´1V`p<q ă 8

Combination Lock Example. An example of an MDP that violates Assumption 3
is the “combination lock” example proposed by (Koenig and Simmons, 1996). In
this finite MDP, we have # states X “ t1, 2, . . . , #u, and 2 actions: going L or
R. The initial state is G0 “ 1. In any state G, action ! takes agent back to initial
state G0, and action ' advances the agent to the next state G ` 1 in a chain fashion.
Suppose that the reward is 0 everywhere except for the very last state # . One can see
that for an MDP such that any behavior policy c� that has a bounded from below
probability of taking action ! from any state G, i.e., c�p!|Gq ě a ą 0, then it takes
an exponential number of trajectories to learn or evaluate a policy that always takes
action '. In this setting, we can see that the concentration coefficient V` can be
designed to be arbitrarily large.

Complexity measure of function class F

Definition A.4.4 (Random !1 Norm Covers). Let n ą 0, let F be a set of functions
X ÞÑ R, let G=1 “ pG1, . . . , G=q be = fixed points in X. Then a collection of functions
Fn “ t 51, . . . , 5#u is an n-cover of F on G=1 if

@ 5 P F , D 5 1 P Fn : |1
=

=
ÿ

8“1
5 pG8q ´

1
=

=
ÿ

8“1
5 1pG8q| ď n

156

The empirical covering number, denote by N1pn, F , G=1q, is the size of the smallest
n-cover on G=1. Take N1pn, F , G=1q “ 8 if no finite n-cover exists.

Definition A.4.5 (Pseudo-Dimension). A real-valued function class F has pseudo-
dimension dimF defined as the VC dimension of the function class induced by the
sub-level set of functions of F . In other words, define function class H “ tpG, Hq ÞÑ
signp 5 pGq ´ H : 5 P F u, then

dimF “ VC-dimensionpHq

157

A.5 Analysis of Fitted Q Evaluation
In this section we prove the following statement for Fitted Q Evaluation (FQE).

Theorem A.5.1 (Guarantee for FQE - General Case (theorem 2.4.2 in chapter
2)). Under Assumption 3, for n ą 0 & X P p0, 1q, after iterations of Fitted Q
Evaluation (Algorithm 3), for = “ $p

s�4

n2 plog
X
` dimF log s�2

n2 ` log dimF qq, we
have with probability 1´ X:���pcq ´ p�pcq

�� ď W1{2

p1´ Wq3{2
p
a

V`
`

23cF ` n
˘

`
2W {2 s�
p1´ Wq1{2

q.

Theorem A.5.2 (Guarantee for FQE - Bellman Realizable Case). Under Assump-
tions 3-4, for any n ą 0, X P p0, 1q, after iterations of Fitted Q Evaluation
(Algorithm 3), when = ě 24¨214¨ s�4

n2 p log
X
` dimF log 320 s�2

n2 ` logp144pdimF ` 1qqq,
we have with probability 1´ X:���pcq ´ p�pcq

�� ď W1{2

p1´ Wq3{2
p
a

V`n `
2W {2 s�
p1´ Wq1{2

q

Wefirst focus on theoremA.5.2, analyzing FQE assuming a sufficiently rich function
class F so that the Bellman evaluation update Tc is closed wrt F (thus inherent
Bellman evaluation error is 0). We call this the Bellman evaluation realizability
assumption. This assumption simplifies the presentation of our bounds and also
simplifies the final error analysis of Algo. 2.

After analyzing FQE under this Bellman realizable setting, we will turn to error
bound for general, non-realizable setting in theorem A.5.1 (also theorem 2.4.2 in
the main body of the thesis chapter 2). The main difference in the non-realizable
setting is the appearance of an extra term 3cF our final bound.

Error bound for single iteration - Bellman realizable case
Assumption 4 (Bellman evaluation realizability). We consider function classes F
sufficiently rich so that @ 5 ,Tc 5 P F .

We begin with the following result bounding the error for a single iteration of FQE,
under “training” distribution ` „ c�

Proposition A.5.3 (Error bound for single iteration). Let the functions in F also be
bounded by s�, and let dimF denote the pseudo-dimension of the function class F .
We have with probability at least 1´ X:

}&: ´ T
c&:´1}` ă n

158

when = ě 24¨214¨ s�4

n2

´

log 1
X
` dimF log 320 s�2

n2 ` logp144pdimF ` 1qq
¯

Remark. Note from proposition A.5.3 that the dependence of sample complexity =
here on n is r$p 1

n2 q, which is better than previously known analysis for Fitted Value
Iteration (Munos and Szepesvári, 2008) and FittedPolicyQ (continuous version of
Fitted Q Iteration (Antos et al., 2008a)) dependence of r$p 1

n4 q. The finite sample
analysis of LSTD (Lazaric et al., 2010) showed an r$p 1

n2 q dependence using linear
function approximation. Here we prove similar convergence rate for general non-
linear (bounded) function approximators.

Proof of Proposition A.5.3. Recall the training target in round : is H8 “ 28 `

W&:´1pG
1
8
, cpG1

8
qq for 8 “ 1, 2, . . . , =, and &: P F is the solution to the following

regression problem:

&: “ arg min
5 PF

1
=

=
ÿ

8“1
p 5 pG8, 08q ´ H8q

2

Consider random variables pG, 0q „ ` and H “ 2pG, 0q ` W&:´1pG
1, cpG1qq where

G1 „ ?p¨|G, 0q. By this definition, Tc&:´1 is the regression function that minimizes
square loss min

ℎ:R-ˆ� ÞÑR
E|ℎpG, 0q ´ H |2 out of all functions ℎ (not necessarily in F).

This is due to pTc&:´1qpG̃, 0̃q “ E rH|G “ G̃, 0 “ 0̃s by definition of the Bellman
operator. Consider &:´1 fixed and we now want to relate the learned function
&: over finite set of = samples with the regression function over the whole data
distribution via uniform deviation bound. We use the following lemma:

Lemma A.5.4 ((Györfi et al., 2006), theorem 11.4. Original version (Lee et al.,
1996), theorem 3). Consider random vector p-,.q and = i.i.d samples p-8, .8q. Let
<pGq be the (optimal) regression function under square loss <pGq “ Er. |- “ Gs.
Assume |. | ď � a.s. and � ď 1. Let F be a set of function 5 : R3 ÞÑ R and let
| 5 pGq| ď �. Then for each = ě 1

P
"

D 5 P F : E| 5 p-q ´ . |2 ´ E|<p-q ´ . |2

´
1
=

=
ÿ

8“1

`

| 5 p-8q ´ .8 |2 ´ |<p-8q ´ .8 |2
˘

ě

n ¨
`

U ` V ` E| 5 p-q ´ . |2 ´ E|<p-q ´ . |2
˘

*

ď 14 sup
G=1

N1

ˆ

Vn

20�
, F , G=1

˙

exp
ˆ

´
n2p1´ nqU=

214p1` nq�4

˙

where U, V ą 0 and 0 ă n ă 1{2

159

To apply this lemma, first note that sinceTc&:´1 is the optimal regression function1,
we have

E`
“

p&:pG, 0q ´ Hq
2‰
“ E`

”

p&:pG, 0q ´ T
c&:´1pG, 0q ` T

c&:´1pG, 0q ´ Hq
2
ı

“ E`

”

p&:pG, 0q ´ T
c&:´1pG, 0qq

2
s ` E`rpT

c&:´1pG, 0q ´ Hq
2
ı

thus

}&: ´ T
c&:´1}

2
` “ E

“

p&:pG, 0q ´ T
c&:´1pG, 0qq

2‰

“ E
“

p&:pG, 0q ´ Hq
2‰
´ E

“

pTc&:´1pG, 0q ´ Hq
2‰

where by definition

E
“

p&:pG, 0q ´ T
c&:´1pG, 0qq

2‰
“

ż

p&:pG, 0q ´ T
c&:´1pG, 0qq

2
`p3G, 30q

“

ż

p&:pG, 0q ´ T
c
pG, 0qq2`Gp3GqcDp0|3Gq

1It is easy to see that if <pGq “ ErH|Gs is the regression function then for any function 5 pGq, we
have E rp 5 pGq ´ <pGqqp<pGq ´ Hq “ 0s

160

Next, given a fixed data set r�: „ `

P

}&: ´ T
c&:´1}

2
` ą n

(

“

P
"

E
“

p&:pG, 0q ´ Hq
2‰
´ E

“

pTc&:´1pG, 0q ´ Hq
2‰
ą n

*

ď P
"

E
“

p&:pG, 0q ´ Hq
2‰
´ E

“

pTc&:´1pG, 0q ´ Hq
2‰

´ 2 ¨

˜

1
=

=
ÿ

8“1
p&:pG8, 08q ´ H8q

2
´

1
=

=
ÿ

8“1
pTc&:´1pG8, 08q ´ H8q

2

¸

ą n

*

(A.18)

“ P
"

E
“

p&:pG, 0q ´ Hq
2‰
´ E

“

pTc&:´1pG, 0q ´ Hq
2‰

´
1
=

=
ÿ

8“1

“

p&:pG8, 08q ´ H8q
2
´ pTc&:´1pG8, 08q ´ H8q

2‰

ą
1
2
pn ` E

“

p&:pG, 0q ´ Hq
2‰
´ E

“

pTc&:´1pG, 0q ´ Hq
2‰
q

*

(A.19)

ď P
"

D 5 P F : E
“

p 5 pG, 0q ´ Hq2
‰

´ E
“

pTc&:´1pG, 0q ´ Hq
2‰

´
1
=

=
ÿ

8“1

“

p 5 pG8, 08q ´ H8q
2
´ pTc&:´1pG8, 08q ´ H8q

2‰

ě
1
2
p
n

2
`
n

2
` E

“

p 5 pG, 0q ´ Hq2
‰

´ E
“

pTc&:´1pG, 0q ´ Hq
2‰
q

*

ď 14 sup
G=1

N1

ˆ

n

80 s�
, F , G=1

˙

¨ exp
ˆ

´
=n

24 ¨ 214 s�4

˙

(A.20)

Equation (A.18) uses the definition of &: “ arg min
5 PF

1
=

ř=
8“1p 5 pG8, 08q ´ H8q

2 and

the fact that Tc&:´1 P F , thus making the extra term a positive addition. Equa-
tion (A.19) is due to rearranging the terms. Equation (A.20) is an application of
lemma A.5.4. We can further bound the empirical covering number by invoking the
following lemma due to Haussler (Haussler, 1995):

Lemma A.5.5 ((Haussler, 1995), Corollary 3). For any set - , any points G1:= P

X=, any class F of functions on - taking values in r0, s�s with pseudo-dimension
dimF ă 8, and any n ą 0

N1pn, F , G=1q ď 4pdimF ` 1q
ˆ

24 s�
n

˙dimF

161

Applying lemma A.5.5 to equation (A.20), we have the inequality

P

}&: ´ T
c&:´1}

2
` ą n

(

ď 14¨4¨pdimF`1q
ˆ

320 s�2

n

˙dimF

¨exp
ˆ

´
=n

24 ¨ 214 s�4

˙

(A.21)
We thus have that when
= ě 24¨214¨ s�4

n2

´

log 1
X
` dimF log 320 s�2

n2 ` logp144pdimF ` 1qq
¯

, then:
}&: ´ T

c&:´1}d ă n with probability at least 1 ´ X. Notice that the dependence
of sample complexity = here on n is r$p 1

n2 q, which is better than previously known
analyses for other approximate dynamic programming algorithms such as Fitted
Value Iteration (Munos and Szepesvári, 2008), FittedPolicyQ (Antos et al., 2008b,a)
with dependence of $p 1

n4 q.

Error bound for single iteration - Bellman non-realizable case
We now give similar error bound for the general case, where Assumption 4 does not
hold. Consider the decomposition

}&: ´ T
c&:´1}

2
` “ E

“

p&:pG, 0q ´ Hq
2‰
´ E

“

pTc&:´1pG, 0q ´ Hq
2‰

“

"

E
“

p&:pG, 0q ´ Hq
2‰
´ E

“

pTc&:´1pG, 0q ´ Hq
2‰

´ 2 ¨

˜

1
=

=
ÿ

8“1
p&:pG8, 08q ´ H8q

2
´

1
=

=
ÿ

8“1
pTc&:´1pG8, 08q ´ H8q

2

¸

*

`

"

2 ¨

˜

1
=

=
ÿ

8“1
p&:pG8, 08q ´ H8q

2
´

1
=

=
ÿ

8“1
pTc&:´1pG8, 08q ´ H8q

2

¸

*

“ component_1` component_2

Splitting the probability of error into two separate bounds. We saw from the previous
section (equation (A.21)) that

Ppcomponent_1 ą n{2q ď 14 ¨4 ¨ pdimF `1q
ˆ

640 s�2

n

˙dimF

¨exp
ˆ

´
=n

48 ¨ 214 s�4

˙

(A.22)
We no longer have component_2 ď 0 since Tc&:´1 R F .
Let 5 ˚ “ arg inf

5 PF
} 5 ´ Tc&:´1}

2
`. Since

&: “ arg min
5 PF

1
=

ř=
8“1p 5 pG8, 08q ´ H8q

2, we can upper-bound component_2 by

component_2 ď 2 ¨

˜

1
=

=
ÿ

8“1
p 5 ˚pG8, 08q ´ H8q

2
´

1
=

=
ÿ

8“1
pTc&:´1pG8, 08q ´ H8q

2

¸

162

We can treat 5 ˚ as a fixed function, unlike random function &: , and use standard
concentration inequalities to bound the empirical average from the expectation. Let
random variable I “ ppG, 0q, Hq, I8 “ ppG8, 08q, H8q, 8 “ 1, . . . , = and let

ℎpIq “ p 5 ˚pG, 0q ´ Hq2 ´ pTc&:´1pG, 0q ´ Hq
2

We have |ℎpIq| ď 4 s�2. We will derive a bound for

P

˜

1
=

=
ÿ

8“1
ℎpI8q ´ EℎpIq ą

n

4
` EℎpIq

¸

using Bernstein inequality(Mohri et al., 2012). First, using the relationship ℎpIq “
p 5 ˚pG, 0q`Tc&:´1pG, 0q´2Hqp 5 ˚pG, 0q´Tc&:´1pG, 0qq, the variance of ℎpIq can
be bounded by a constant factor of EℎpIq, since

VarpℎpIqq ď EℎpIq2 ď 16 s�2E
“

p 5 ˚pG, 0q ´ Tc&:´1pG, 0qq
2‰

“ 16 s�2 `E
“

p 5 ˚pG, 0q ´ Hq2
‰

´ E
“

pTc&:´1pG, 0q ´ Hq
2‰˘ (A.23)

“ 16 s�2EℎpIq (A.24)

Equation (A.23) stems from Tc&:´1 being the optimal regression function. Now
we can apply equation (A.24) and Bernstein inequality to obtain

P

˜

1
=

=
ÿ

8“1
ℎpI8q ´ EℎpIq ą

n

4
` EℎpIq

¸

ď P

˜

1
=

=
ÿ

8“1
ℎpI8q ´ EℎpIq ą

n

4
`

VarpℎpIqq
16 s�2

¸

ď exp

¨

˚

˝
´

=

´

n
4 `

Var
16 s�2

¯2

2Var` 24 s�2

3

´

n
4 `

Var
16 s�2

¯

˛

‹

‚

ď exp

¨

˚

˝
´

=

´

n
4 `

Var
16 s�2

¯2

´

32 s�2 ` 8 s�2

3

¯´

n
4 `

Var
16 s�2

¯

˛

‹

‚
“ exp

¨

˝´

=

´

n
4 `

Var
16 s�2

¯

32 s�2 ` 8 s�2

3

˛

‚

ď exp

˜

´
1

128` 32
3
¨
=n

s�2

¸

Thus

P

˜

2 ¨

«

1
=

=
ÿ

8“1
ℎpI8q ´ 2EℎpIq

ff

ą
n

2

¸

ď exp
ˆ

´
3

416
¨
=n

s�2

˙

(A.25)

163

Now we have

component_2 ď 2 ¨
1
=

=
ÿ

8“1
ℎpI8q “ 2 ¨

«

1
=

=
ÿ

8“1
ℎpI8q ´ 2EℎpIq

ff

` 4EℎpIq

Using again the fact that Tc&:´1 is the optimal regression function

EℎpIq “ E�
“

p 5 ˚pG, 0q ´ Hq2
‰

´ E�
“

pTc&:´1pG, 0q ´ Hq
2‰

“ E�
“

p 5 ˚pG, 0q ´ Tc&:´1pG, 0qq
2‰

“ inf
5 PF

} 5 ´ Tc&:´1}
2
` (A.26)

Combining equations (A.22), (A.25) and (A.26), we can conclude that

P

}&: ´ T
c&:´1}

2
` ´ 4 inf

5 PF
} 5 ´ Tc&:´1}

2
` ą n

(

ď 14 ¨ 4 ¨ pdimF ` 1q
ˆ

640 s�2

n

˙dimF

¨ exp
ˆ

´
=n

48 ¨ 214 s�4

˙

` exp
ˆ

´
3

416
¨
=n

s�2

˙

thus implying

P

}&: ´ T
c&:´1}` ´ 2 inf

5 PF
} 5 ´ Tc&:´1}` ą n

(

ď 14 ¨ 4 ¨ pdimF ` 1q
ˆ

640 s�2

n2

˙dimF

¨ exp
ˆ

´
=n2

48 ¨ 214 s�4

˙

` exp
ˆ

´
3

416
¨
=n2

s�2

˙

(A.27)

We now can further upper-bound the term
2 inf 5 PF } 5 ´ Tc&:´1}` ď 2 sup 5 1PF inf 5 PF } 5 ´ Tc 5 1}` “ 23cF (the worst-case
inherent Bellman evaluation error), leading to the final bound for the Bellman
non-realizable case.

One may wish to further remove the inherent Bellman evaluation error from our
error bound. However, counter-examples exist where the inherent Bellman error
cannot generally be estimated using function approximation (see section 11.6 of
(Sutton and Barto, 2018b)). Fortunately, inherent Bellman error can be driven to be
small by choosing rich function class F (low bias), at the expense of more samples
requirement (higher variance, through higher pseudo-dimension dimF).

While the bound in (A.27) looks more complicated than the Bellman realizable case
in equation A.21, note that the convergence rate will still be $p 1

=2 q.

164

Bounding the error across iterations
Previous sub-sections A.5 and A.5 have analyzed the error of FQE for a single
iteration in Bellman realizable and non-realizable case. We now analyze how errors
from different iterations flow through the FQE algorithm. The proof borrows the
idea from lemma 3 and 4 of (Munos and Szepesvári, 2008) for fitted value iteration
(for value function+ instead of&), with appropriate modifications for our off-policy
evaluation context.

Recall that �c, &c denote the true value function and action-value function, respec-
tively, under the evaluation policy c. And � “ Er& pG, cpGqqs denote the value
function associated with the returned function & from algorithm 3. Our goal is
to bound the difference �c ´� between the true value function and the estimated
value of the returned function & .

Let the unknown state-action distribution induced by the evaluation policy c be d.
We first bound the loss }&c ´& }d under the “test-time ”distribution d of pG, 0q,
which differs from the state-action ` induced by data-generating policy cD. We will
then lift the loss bound from & to � .

Step 1: Upper-bound the value estimation error

Let n:´1 “ &: ´ T
c&:´1 P Xˆ A, sC. We have for every : that

&c
´&: “ T

c&c
´ Tc&:´1 ` n:´1 p&c is fixed point of)cq

“ W%cp&c
´&:´1q ` n:´1

Thus by simple recursion

&c
´& “

 ´1
ÿ

:“0
W ´:´1

p%cq ´:´1n: ` W

p%cq p&c

´&0q

“
1´ W `1

1´ W
“

 ´1
ÿ

:“0

p1´ WqW ´:´1

1´ W `1 p%cq ´:´1n:`

p1´ WqW

1´ W `1 p%
c
q

p&c

´&0q
‰

“
1´ W `1

1´ W

«

 ´1
ÿ

:“0
U:�:n: ` U � p&

c
´&0q

ff

(A.28)

where for simplicity of notations, we denote

U: “
p1´ WqW ´:´1

1´ W `1 for : ă , U “
p1´ WqW

1´ W `1

�: “ p%
c
q
 ´:´1, � “ p%

c
q

165

Note that �: ’s are probability kernels and U: ’s are deliberately chosen such that
ř

: U: “ 1.

We can apply point-wise absolute value on both sides of (A.28) with | 5 | being
the short-hand notation for | 5 pG, 0q| and inequality holds point-wise. By triangle
inequalities:

|&c
´& | ď

1´ W `1

1´ W

«

 ´1
ÿ

:“0
U:�: |n: | ` U � |&c

´&0 |
ff

(A.29)

Step 2: Bounding }&c ´& }d for any unknown distribution d. To handle
distribution shift from ` to d, we decompose the loss as follows:

}&c
´& }

2
d “

ż

dp3G, 30q p&c
pG, 0q ´& pG, 0qq

2

ď

„

1´ W `1

1´ W

2 ż

dp3G, 30q

«˜

 ´1
ÿ

:“0
U:�: |n: | ` U � |&c

´&0 |
¸

pG, 0q

ff2

(fromp�.29qq

ď

„

1´ W `1

1´ W

2 ż

dp3G, 30q

«

 ´1
ÿ

:“0
U:p�:n:q

2
` U p� p&

˚
´&0qq

2

ff

pG, 0q

(Jensen)

ď

„

1´ W `1

1´ W

2 ż

dp3G, 30q

«

 ´1
ÿ

:“0
U:�:n

2
: ` U � p&

˚
´&0q

2

ff

pG, 0q (Jensen)

Using assumption 3 (assumption 1 of the main thesis chapter 2), we can bound each
term d�: as

d�: “ dp%cq ´:´1
ď `V`p ´ : ´ 1q (definition A.4.3)

Thus

}&c
´& }

2
d ď

„

1´ W `1

1´ W

2 « 1
1´ W `1

 ´1
ÿ

:“0
p1´ WqW ´:´1V`p ´ : ´ 1q }n:}2` ` U p2 s�q

2

ff

Assumption 3 (stronger than necessary for proof of FQE) can be used to upper-bound
the first order concentration coefficient:

p1´ Wq
ÿ

<ě0
W<V`p<q ď

W

1´ W

«

p1´ Wq2
ÿ

<ě1
<W<´1V`p<q

ff

“
W

1´ W
V`

166

This gives the upper-bound for }&c ´& }
2
d as

}&c
´& }

2
d ď

„

1´ W `1

1´ W

2 „
W

p1´ Wqp1´ W `1q
V` max

:
}n:}

2
` `

p1´ WqW

1´ W `1 p2
s�q2



ď
1´ W `1

p1´ Wq2

„

W

1´ W
V` max

:
}n:}

2
` ` p1´ WqW

p2 s�q2



ď
W

p1´ Wq3
V` max

:
}n:}

2
` `

W

1´ W
p2 s�q2

Using 02 ` 12 ď p0 ` 1q2 for nonnegative 0, 1, we conclude that

}&c
´& }d ď

W1{2

p1´ Wq3{2

˜

a

V` max
:
}n:}` `

W {2

p1´ Wq1{2
2 s�

¸

(A.30)

Step 3: Turning error bound from& to |�c´� | Now we can choose d to be the
state-action distribution by the evaluation policy c. The error bound on the value
function � follows simply by integrating inequality (A.30) over state-action pairs
induced by c. The final error across iterations can be related to individual iteration
error by

|�c ´ � | ď
W1{2

p1´ Wq3{2

˜

a

V` max
:
}n:}` `

W {2

p1´ Wq1{2
2 s�

¸

(A.31)

Finite-sample guarantees for Fitted Q Evaluation
Combining results from (A.21), (A.27) and (A.31), we have the final guarantees for
FQE under both realizable and general cases.

Realizable Case - Proof of theorem A.5.2. From (A.21), when
= ě 24¨214¨ s�4

n2

´

log
X
` dimF log 320 s�2

n2 ` logp144pdimF ` 1qq
¯

, we have }n:}` ă n

with probability at least 1 ´ X{ for any 0 ď : ă . Thus we conclude that for
any n ą 0, 0 ă X ă 1, after iterations of Fitted Q Evaluation, the value estimate
returned by & satisfies:

|�c ´ � | ď
W1{2

p1´ Wq3{2

˜

a

V`n `
W {2

p1´ Wq1{2
2 s�

¸

holds with probability 1´ X when
= ě 24¨214¨ s�4

n2

´

log
X
` dimF log 320 s�2

n2 ` logp144pdimF ` 1qq
¯

. This concludes
the proof of theorem A.5.2.

167

Non-realizable Case - Proof of theorem A.5.1 and theorem 2.4.2 of chapter 2.
Similarly, from (A.27) we have

P

}&: ´ T
c&:´1}` ´ 2 inf

5 PF
} 5 ´ Tc&:´1}` ą n

(

(A.32)

ď 14 ¨ 4 ¨ pdimF ` 1q
ˆ

640 s�2

n2

˙dimF

¨ exp
ˆ

´
=n2

48 ¨ 214 s�4

˙

` exp
ˆ

´
3

416
¨
=n2

s�2

˙

Since inf 5 PF } 5 ´ Tc&:´1}` ď supℎPF inf 5 PF } 5 ´ Tcℎ}` “ 3cF (the inherent
Bellman evaluation error), similar arguments to the realizable case lead to the
conclusion that for any n ą 0, 0 ă X ă 1, after iterations of FQE:

|�c ´ � | ď
W1{2

p1´ Wq3{2

˜

a

V`p23cF ` nq `
W {2

p1´ Wq1{2
2 s�

¸

holds with probability 1 ´ X when = “ $
`

s�4

n2 plog
X
` dimF log s�2

n2 ` log dimF q
˘

,
thus finishes the proof of theorem A.5.1.

Note that in both cases, the r$p 1
n2 q dependency of = is significant improvement

over previous finite-sample analysis of related approximate dynamic programming
algorithms (Munos and Szepesvári, 2008; Antos et al., 2008b,a). This dependency
matches that of previous analysis using linear function approximators from (Lazaric
et al., 2012, 2010) for LSTD and LSPI algorithms. Here our analysis, using similar
assumptions, is applicable for general non-linear, bounded function classes. , which
is an improvement over convergence rate of $p 1

=4 q in related approximate dynamic
programming algorithms (Antos et al., 2008a,b; Munos and Szepesvári, 2008).

168

A.6 Analysis of Fitted Q Iteration
Algorithm and Discussion

Algorithm 15 Fitted Q Iteration with Function Approximation: FQIp2q (Ernst et al.,
2005)
Input: Collected data set D “ tG8, 08, G18 , 28u

=
8“1. Function class F

1: Initialize &0 P F randomly
2: for : “ 1, 2, . . . , do
3: Compute target H8 “ 28 ` Wmin0 &:´1pG

1
8
, 0q @8

4: Build training set rD: “ tpG8, 08q, H8u
=
8“1

5: Solve a supervised learning problem:
&: “ arg min

5 PF

1
=

ř=
8“1p 5 pG8, 08q ´ H8q

2

6: end for
Output: c p¨q “ arg min

0

& p¨, 0q (greedy policy with respect to the returned

function &)

The analysis of FQI (algorithm 15) follows analogously from the analysis of FQE
from the previous section (Appendix A.5). For brevity, we skip certain detailed
derivations, especially those that are largely identical to FQE’s analysis.

To the best of our knowledge, a finite-sample analysis of FQI with general non-
linear function approximation has not been published (Continuous FQI from (Antos
et al., 2008a) is in fact a Fitted Policy Iteration algorithm and is different from algo
15). In principle, one can adapt existing analysis of fitted value iteration (Munos
and Szepesvári, 2008) and FittedPolicyQ (Antos et al., 2008b,a) to show that under
similar assumptions, among policies greedy w.r.t. functions in F , FQI will find n´
optimal policy using = “ r$p 1

n4 q samples. We derive an improved analysis of FQI
with general non-linear function approximations, with better sample complexity of
= “ r$p 1

n2 q. We note that the appendix of (Lazaric and Restelli, 2011) contains
an analysis of LinearFQI showing similar rate to ours, albeit with linear function
approximators.

In this section, we prove the following statement:

Theorem A.6.1 (Guarantee for FQI - General Case (theorem 2.4.3 in chapter 2)).
Under Assumption 3, for any n ą 0, X P p0, 1q, after iterations of Fitted Q
Iteration (algorithm 15), for = “ $

`

s�4

n2 plog
X
`dimF log s�2

n2 ` log dimF q
˘

, we have
with probability 1´ X:

�˚ ´ �pc q ď
2W

p1´ Wq3
`a

V` p23F ` nq ` 2W {2 s�
˘

169

where c is the policy greedy with respect to the returned function & , and �˚ is
the value of the optimal policy.

The key steps to the proof follow similar scheme to the proof of FQE. We first
bound the error for each iteration, and then analyze how the errors flow through the
algorithm.

Single iteration error bound }&: ´ T&:´1}`

Here ` is the state-action distribution induced by the data-generating policy cD.

We begin with the decomposition:

}&: ´ T&:´1}
2
` “ E

“

p&:pG, 0q ´ Hq
2‰
´ E

“

pT&:´1pG, 0q ´ Hq
2‰

“

"

E
“

p&:pG, 0q ´ Hq
2‰
´ E

“

pT&:´1pG, 0q ´ Hq
2‰
´

2 ¨

˜

1
=

=
ÿ

8“1
p&:pG8, 08q ´ H8q

2
´

1
=

=
ÿ

8“1
pT&:´1pG8, 08q ´ H8q

2

¸

*

`

"

2 ¨

˜

1
=

=
ÿ

8“1
p&:pG8, 08q ´ H8q

2
´

1
=

=
ÿ

8“1
pT&:´1pG8, 08q ´ H8q

2

¸

*

“ component_1` component_2

For T the Bellman (optimality) operator (equation A.16), T&:´1 is the regres-
sion function that minimizes square loss min

ℎ:R-ˆ� ÞÑR
E|ℎpG, 0q ´ H |2, with the ran-

dom variables pG, 0q „ ` and H “ 2pG, 0q ` Wmin01 &:´1pG
1, 01q where G1 „

?pG1|G, 0q. Invoking lemma A.5.4 and following the steps similar to equations
(A.18),(A.19),(A.20) and (A.21) from appendix A.5, we can bound the first compo-
nent as

Ppcomponent_1 ą n{2q ď 14 ¨4 ¨ pdimF `1q
ˆ

640 s�2

n

˙dimF

¨exp
ˆ

´
=n

48 ¨ 214 s�4

˙

(A.33)
Let 5 ˚ “ arg inf

5 PF
} 5 ´ T&:´1}

2
`. Since &: “ arg min

5 PF

1
=

ř=
8“1p 5 pG8, 08q ´ H8q

2, we

can upper-bound component_2 by

component_2 ď 2 ¨

˜

1
=

=
ÿ

8“1
p 5 ˚pG8, 08q ´ H8q

2
´

1
=

=
ÿ

8“1
pT&:´1pG8, 08q ´ H8q

2

¸

Let random variable I “ ppG, 0q, Hq, I8 “ ppG8, 08q, H8q, 8 “ 1, . . . , = and let

ℎpIq “ p 5 ˚pG, 0q ´ Hq2 ´ pT&:´1pG, 0q ´ Hq
2

170

We have |ℎpIq| ď 4 s�2. We can derive a bound for
P
`1
=

ř=
8“1 ℎpI8q ´ EℎpIq ą

n
4 ` EℎpIq

˘

using Bernstein inequality, similar to equa-
tions (A.23) and (A.24) from appendix A.5 to obtain:

P

˜

2 ¨

«

1
=

=
ÿ

8“1
ℎpI8q ´ 2EℎpIq

ff

ą
n

2

¸

ď exp
ˆ

´
3

416
¨
=n

s�2

˙

(A.34)

Now we have

component_2 ď 2 ¨
1
=

=
ÿ

8“1
ℎpI8q “ 2 ¨

«

1
=

=
ÿ

8“1
ℎpI8q ´ 2EℎpIq

ff

` 4EℎpIq

Since

EℎpIq “ E
r�:

“

p 5 ˚pG, 0q ´ Hq2
‰

´ E
r�:

“

pT&:´1pG, 0q ´ Hq
2‰

“ E
r�:

“

p 5 ˚pG, 0q ´ T&:´1pG, 0qq
2‰

“ inf
5 PF

} 5 ´ T&:´1}
2
` (A.35)

Combining equations (A.33), (A.34) and (A.35), we obtain that

P

}&: ´ T&:´1}
2
` ´ 4 inf

5 PF
} 5 ´ T&:´1}

2
` ą n

(

ď

14 ¨ 4 ¨ pdimF ` 1q
ˆ

640 s�2

n

˙dimF

¨ exp
ˆ

´
=n

48 ¨ 214 s�4

˙

` exp
ˆ

´
3

416
¨
=n

s�2

˙

(A.36)

Propagation of error bound for }&˚ ´&c }d

The analysis of error propagation for FQI is more involved than that of FQE, but the
proof largely follows the error propagation analysis in lemma 3 and 4 of (Munos and
Szepesvári, 2008) in the fitted value iteration context (for + function). We include
the & function’s (slighly more complicated) derivation here for completeness.

Recall that c is greedy wrt the learned function & returned by FQI. We aim to
bound the difference �˚ ´ �c between the optimal value function and that c .
For a (to-be-specified) distribution d of state-action pairs (different from the data
distribution `), we bound the generalization loss }&˚ ´&c }d

Step 1: Upper-bound the propagation error (value). Let n:´1 “ &: ´ T&:´1.

171

We have that

&˚ ´&: “ T
c˚&˚ ´ Tc

˚

&:´1 ` T
c˚&:´1 ´ T&:´1 ` n:´1

ď Tc
˚

&˚ ´ Tc
˚

&:´1 ` n:´1 (b/c T&:´1 ě T
c˚&:´1)

“ W%c
˚

p&˚ ´&:´1q ` n:´1

Thus by recursion&˚´& ď
ř ´1
:“0 W

 ´:´1p%c
˚

q ´:´1n: `W
 p%c

˚

q p&˚´&0q

Step 2: Lower-bound the propagation error (value). Similarly

&˚ ´&: “ T&
˚
´ Tc:´1&˚ ` Tc:´1&˚ ´ T&:´1 ` n:´1

ě Tc:´1&˚ ´ T&:´1 ` n:´1 (as T&˚ ě Tc:´1&˚)

ě Tc:´1&˚ ´ Tc:´1&:´1 ` n:´1 (b/c c:´1 greedy wrt &:´1q

“ W%c:´1p&˚ ´&:´1q ` n:´1

And by recursion

&˚ ´& ě

 ´1
ÿ

:“0
W ´:´1

p%c ´1%c ´2 . . . %c:`1qn:`

W p%c ´1%c ´2 . . . %c0qp&˚ ´&0q

Step 3: Upper-bound the propagation error (policy). Beginning with a decom-
position of value wrt to policy c

&˚ ´&c “ Tc
˚

&˚ ´ Tc
˚

& ` T
c˚& ´ T

c & ` T
c & ´ T

c &c

ď pTc
˚

&˚ ´ Tc
˚

& q ` pT
c & ´ T

c &c q

p since Tc
˚

& ď T& “ T
c & q

“ W%c
˚

p&˚ ´& q ` W%
c p& ´&

c q

“ W%c
˚

p&˚ ´& q ` W%
c p& ´&

˚
`&˚ ´&c q

Thus leading to p� ´ W%c qp&˚ ´&c q ď Wp%c
˚

´ %c qp&˚ ´& q The operator
p� ´ W%c q is invertible and p� ´ W%c q´1 “

ř

<ě0 W
<p%c q< is monotonic. Thus

&˚ ´&c ď Wp� ´ W%c q´1
p%c

˚

´ %c qp&˚ ´& q

“ Wp� ´ W%c q´1%c
˚

p&˚ ´& q ´ Wp� ´ W%
c q

´1%c p&˚ ´& q

(A.37)

172

Applying inequalities from Step 1 and Step 2 to the RHS of (A.37), we have

&˚ ´&c ď p� ´ W%c q´1
„ ´1
ÿ

:“0
W ´:

´

p%c
˚

q
 ´:

´ %c %c ´1 . . . %c:`1
¯

n:

` W `1
´

p%c
˚

q
 `1

´ p%c %c ´1 . . . %c0q

¯

p&˚ ´&0q



(A.38)

Next we apply point-wise absolute value on RHS of (A.38), with |n: | being the short-
hand notation for |n:pG, 0q| point-wise. Using triangle inequalities and rewriting
(A.38) in a more compact form ((Munos and Szepesvári, 2008)):

&˚ ´&c ď
2Wp1´ W `1q

p1´ Wq2

«

 ´1
ÿ

:“0
U:�: |n: | ` U � |&˚ ´&0 |

ff

where U: “
p1´WqW ´:´1

1´W `1 for : ă , U “
p1´WqW
1´W `1 and

�: “
1´ W

2
p� ´ W%c q´1

”

p%c
˚

q
 ´:

` %c %c ´1 . . . %c:`1
ı

for : ă

� “
1´ W

2
p� ´ W%c q´1

”

p%c
˚

q
 `1

` %c %c ´1 . . . %c0
ı

Note that �: ’s are probability kernels that combine the %c8 terms and U: ’s are chosen
such that

ř

: U: “ 1.

Step 4: Bounding }&˚ ´&c }
2
d for any test distribution d.

This step handles distribution shift from ` to d (similar to Step 2 from sub-section
A.5 of appendix A.5)

}&˚ ´&c }
2
d ď

„

2Wp1´ W `1q

p1´ Wq2

2

ˆ

ż

dp3G, 30q

«

 ´1
ÿ

:“0
U:�:n

2
: ` U � p&

˚
´&0q

2

ff

pG, 0q (twice Jensen)

Using assumption 3 (assumption 1 in chapter 2), each term d�: is bounded as

d�: “
1´ W

2
dp� ´ W%c q´1

”

p%c
˚

q
 ´:

` %c %c ´1 . . . %c:`1
ı

“
1´ W

2
ÿ

<ě0
W<dp%c q<

”

p%c
˚

q
 ´:

` %c %c ´1 . . . %c:`1
ı

ď p1´ Wq
ÿ

<ě0
W<V`p< ` ´ :q` (def A.4.3)

173

Thus

}&˚ ´&c }
2
d ď

„

2Wp1´ W `1q

p1´ Wq2

2

ˆ (A.39)
«

1
1´ W `1

 ´1
ÿ

:“0
p1´ Wq2

ÿ

<ě0
W<` ´:´1V`p< ` ´ :q }n:}

2
` ` U p2 s�q

2

ff

ď

„

2Wp1´ W `1q

p1´ Wq2

2 „ 1
1´ W `1 V` max

:
}n:}

2
` `

p1´ WqW

1´ W `1 p2
s�q2



(assumption 3)

ď

„

2Wp1´ W `1q

p1´ Wq2

2 „ 1
1´ W `1 V` max

:
}n:}

2
` `

W

1´ W `1 p2
s�q2



ď

„

2W
p1´ Wq2

2 „

V` max
:
}n:}

2
` ` W

p2 s�q2



Using 02 ` 12 ď p0 ` 1q2 for nonnegative 0, 1, we thus conclude that

}&˚ ´&c }d ď
2W

p1´ Wq2

ˆ

a

V` max
:
}n:}` ` 2W {2 s�

˙

(A.40)

Step 5: Bounding�˚´�c Using the performance difference lemma (lemma 6.1 of
(Kakade and Langford, 2002), which states that�˚´�c “ ´ 1

1´WEG„3c
0„c

�˚ rG, 0s.

We can upper-bound the performance difference of value function as

�˚ ´ �c “
1

1´ W
EG„3c
0„c

r�˚pGq ´&˚pG, 0qs

“
1

1´ W
EG „3c r�

˚
pGq ´&˚pG, c pGqqs

ď
1

1´ W
EG „3c r&

˚
pG, c˚pGqq ´& pG, c

˚
pGqq `& pG, c pGq ´&

˚
pG, c pGqqs

(greedy)

ď
1

1´ W
EG „3c |&

˚
pG, c˚pGqq ´& pG, c

˚
pGqq| ` |& pG, c pGq ´&

˚
pG, c pGqq|

ď
1

1´ W

´

}&˚ ´&c }3c ˆc
˚ ` }&

˚
´&c }3c ˆc

¯

(upper-bound 1-norm by 2-norm)

ď
2W

p1´ Wq3

ˆ

a

V` max
:
}n:}` ` 2W {2 s�

˙

(A.41)

Note that inequality (A.41) follows from (A.40) by specifying d “ j%c %c
˚ and

d “ j%c %c , respectively (j is the initial state distribution).

174

Finite-sample guarantees for Fitted Q Iteration
From (A.36) we have:

P

}&: ´ T&:´1}` ´ 2 inf
5 PF

} 5 ´ T&:´1}` ą n
(

(A.42)

ď 14 ¨ 4 ¨ pdimF ` 1q
ˆ

640 s�2

n2

˙dimF

¨ exp
ˆ

´
=n2

48 ¨ 214 s�4

˙

` exp
ˆ

´
3

416
¨
=n2

s�2

˙

Note that inf 5 PF } 5 ´ T&:´1}` ď supℎPF inf 5 PF } 5 ´ Tℎ}` “ 3F (the inherent
Bellman error from equation A.16). Combining with equation (A.41), we have the
conclusion that for any n ą 0, 0 ă X ă 1, after iterations of Fitted Q Iteration,
and for c the greedy policy wrt & :

�˚ ´ �c ď
2W

p1´ Wq3
´

a

V`p23F ` nq ` 2W {2 s�
¯

holds with probability 1´ X when = “ $
`

s�4

n2 plog
X
` dimF log s�2

n2 ` log dimF q
˘

.

Note that compared to the Fitted Value Iteration analysis of (Munos and Szepesvári,
2008), our error includes an extra factor 2 for 3F .

Statement for the Bellman-realizable Case
To facilitate the end-to-end generalization analysis of theorem 2.4.4 in chapter 2,
we include a version of FQI analysis under Bellman-realizable assumption in this
section. The theorem is a consequence of previous analysis in this section.

Assumption 5 (Bellman evaluation realizability). We consider function classes F
sufficiently rich so that @ 5 ,T 5 P F .

Theorem A.6.2 (Guarantee for FQI - Bellman-realizable Case). Under Assumption
3 and 5, for any n ą 0, X P p0, 1q, after iterations of Fitted Q Iteration, for = ě
24¨214¨ s�4

n2

`

log
X
` dimF log 320 s�2

n2 ` logp144pdimF ` 1qq
˘

, we have with probability
1´ X:

�˚ ´ �pc q ď
2W

p1´ Wq3
`a

V`n ` 2W {2 s�
˘

where c is the policy greedy with respect to the returned function & , and �˚ is
the value of the optimal policy.

175

A.7 Additional Instantiation of Meta-Algorithm
We provide an additional instantiation of the meta-algorithm described in chapter 2,
with Online Gradient Descent (OGD) (Zinkevich, 2003) and Least-Squares Policy
Iteration (LSPI) (Lagoudakis and Parr, 2003b) as subroutines. Using LSPI requires
a feature map q such that any state-action pair can be represented by : features.
The value function is linear in parameters represented by q. Policy representation
is simplified to a weight vector F P R: .

Similar to our main algorithm 2, OGD updates require bounded parameters _. We
thus introduce hyper-parameter � as the bound of _ in ℓ2 norm. The gradient update
is projected to the ℓ2 ball when the norm of _ exceeds � (line 15 of algo 16).

Algorithm 16 Batch Learning under Constraints using Online Gradient Descent
and Least-Squares Policy Iteration
Input: Dataset D “ tG8, 08, G

1
8
, 28, 68u

=
8“1 „ cD. Online algorithm parameters: ℓ2

norm bound �, learning rate [
Input: Number of basis function : . Basis function q (feature map for state-action

pairs)
1: Initialize _1 “ p0, . . . , 0q P R<
2: for each round C do
3: Learn FC Ð LSPIp2 ` _JC 6q // LSPI with cost 2 ` _JC 6
4: Evaluate p�pFCq Ð LSTDQpFC , 2q // Algo 18 with cC , cost 2
5: Evaluate p�pFCq Ð LSTDQpFC , 6q // Algo 18 with cC , cost 6
6: pFC Ð

1
C

řC
C1“1 FC1

7: p�ppFCq Ð
1
C

řC
C1“1

p�pFC1q, p�ppFCq Ð 1
C

řC
C1“1

p�pFC1q

8: p_C Ð
1
C

řC
C1“1 _C1

9: Learn rF Ð LSPIp2 ` p_JC 6q // LSPI with cost 2 ` p_JC 6

10: Evaluate p�prFq Ð LSTDQprF, 2q, p�prFq Ð LSTDQprF, 6q

11: pLmax “ max
,}}2ď�

´

p�ppFCq ` _
Jp p�ppFCq ´ gq

¯

12: pLmin “ p�prFq ` p_JC p
p�prFq ´ gq

13: if pLmax ´ pLmin ď l then
14: Return pcC greedy w.r.t pFC

`

i.e., pcCpGq “ arg min0PA pFJC qpG, 0q @G
˘

15: end if
16: _C`1 “ Pp_C ´ [p p�pcCq ´ gqq where projection Pp_q “ � _

maxt�,}_}2u
17: end for

176

Algorithm 17 Least-Squares Policy Iteration: LSPIp2q (Lagoudakis and Parr,
2003b)
Input: Stopping criterion n
1: Initialize F1 Ð F0
2: repeat
3: F Ð F1

4: F1 Ð LSTDQpF, 2q
5: until }F ´ F1} ď n

Output: Policy weight F
`

i.e., cpGq “ arg min0PA FJqpG, 0q @G
˘

Algorithm 18 LSTDQpF, 2q (Lagoudakis and Parr, 2003b)
1: Initialize Ã Ð 0 // : ˆ : matrix
2: Initialize 1̃ Ð 0 // : ˆ 1 vector
3: for each pG, 0, G1, 2q P D do
4: 01 “ arg min0̃PA FJqpG1, 0̃q
5: Ã Ð Ã` qpG, 0q

`

qpG, 0q ´ WqpG1, 01q
˘J

6: 1̃ Ð 1̃ ` qpG, 0q2

7: end for
8: F̃ Ð Ã´11̃

Output: F̃

177

A.8 Additional Experimental Details
Environment Descriptions and Procedures

Figure A.1: Depicting the FrozenLake and CarRacing environments.

Frozen Lake. The environment is a 8x8 grid as seen in Figure A.1 (left), based on
OpenAi’s FrozenLake-v0. In each episode, the agent starts from (and traverse to
goal �. While traversing the grid, the agent must avoid the pre-determined holes
denoted by �. If the agent steps off of the grid, the agent returns to the same
grid location. The episode terminates when the agent reaches the goal or falls into a
hole. The arrows in Figure A.1 (left) is an example policy returned by our algorithm,
showing an optimal route.

Denote Xℎ>;4B as the set of all holes in the grid and X6>0; “ tG6>0;u is a singleton
set representing the goal in the grid. The contrained batch policy learning problem
is:

min
cPΠ

�pcq “ ErIpG1 R X6>0;Bqs “ PpG1 R tG6>0;uq

s.t. �pcq “ ErIpG1 P Xℎ>;4Bqs “ PpG1 P Xℎ>;4Bq ď g

(A.43)

We collect 5000 trajectories by selecting an action randomly with probability .95
and an action from a DDQN-trained model with probability .05.Furthermore we set
� “ 30 and [“ 50, the hyperparameters of our Exponentiated Gradient subroutine.
We set the threshold for the constraint g “ .1.

Car Racing. The environment is a racetrack as seen in Figure A.1 (right), modified
from OpenAi’s CarRacing-v0. In each state, given by the raw pixels, the agent has
12 actions: 0 P � “ tp8, 9 , :q|8 P t´1, 0, 1u, 9 P t0, 1u, : P t0, .2uu. The action
tuple p8, 9 , :q cooresponds to steering angle, amount of gas applied and amount
of brake applied, respectively. In each episode, the agent starts at the same point
on the track and must traverse over 95% of the track, given by a discretization of
281 tiles. The agent recieves a reward of `1000

281 for each unique tile over which
the agent drives. The agent receives a penalty of ´.1 per-time step. Our collected

178

dataset takes the form: D “ tpGC´6, GC´3, GCq, 0C , pGC´3, GC , GC`3q, 2C , 60,C , 61,Cu where
G8 denotes the image at timestep 8 and 0C is applied 3 times between GC and GC`3.
This frame-stacking option is common practice in online RL for Atari and video
games.In our collected dataset D, the maximum horizon is 469 time steps.

The first constraint concerns accumulated number of brakes, a proxy for smooth
driving or acceleration. The second constraint concerns how far the agent travels
away from the center of the track, given by the Euclidean distance between the agent
and the closest point on the center of the track. Let #C be the number of tiles that is
collected by the agent in time C. The constrained batch policy learning problem is:

min
cPΠ

Er
8
ÿ

C“0
WCp´

1000
281

#C ` .1qs

s.t. �0pcq “ Er
8
ÿ

C“0
WCIp0C P A1A0:8=6qs ď g0

�1pcq “ Er
8
ÿ

C“0
WC3pDC , ECqs ď g1

(A.44)

We instatiate our subroutines, FQE and FQI, withmulti-layered CNNs. Furthermore
we set � “ 10 and [“ .01, the hyperparameters of our Exponentiated Gradient
subroutine. We set the threshold for the constraint to be about 75% of the value
exhibited by online RL agent trained by DDQN (Van Hasselt et al., 2016).

Figure A.2: (First and Second figures) Result of 2-D grid-search for one-shot,
regularized policy learning for LSPI (left) and FQI (right). (Third and Fourth
figures) value range of individual policies in our mixtured policy and data generating
policy c� for main objective (left) and cost constraint (right)

179

Additional Discussion for the Car Racing Experiment
Regularized policy learning and grid-search. We perform grid search over a
range of regularization parameters _ for both Least-Squares Policy Iteration - LSPI
((Lagoudakis and Parr, 2003b)) and Fitted Q Iteration - FQI ((Ernst et al., 2005)).
The results, seen from the the first and second plot of Figure A.2, show that one-shot
regularized learning has difficulty learning a policy that satisfies both constraints.
We augment LSPI with non-linear feature mapping from one of our best performing
FQI model (using CNNs representation). While both regularized LSPI and regular-
ized FQI can achieve low main objective cost, the constraint cost values tend to be
sensitive with the _ step. Overall for the whole grid search, about 10% of regularized
policies satisfy both constraints, while none of the regularized LSPI policy satisfies
both constraints.

Mixture policy and de-randomization. As our algorithm returned a mixture pol-
icy, it is natural to analyze the performance of individual policies in the mixture. The
third and fourth plot from Figure A.2 show the range of performance of individual
policy in our mixture (purple band). We compare individual policy return with
the stochastic behavior of the data generation policy. Note that our policies satisfy
constraints almost always, while the individual policy returned in the mixture also
tends to outperform c� with respect to the main objective cost.

Off-policy evaluation standalone comparison. Typically, inverse propensity scor-
ing based methods call for stochastic behavior and evaluation policies (Precup et al.,
2000; Swaminathan and Joachims, 2015). However in this domain, the evaluation
policy and environment are both deterministic, with long horizon (the max horizon
is D is 469). Consequently Per-Decision Importance Sampling typically evaluates
the policy as 0. In general, off-policy policy evaluation in long-horizon domains is
known to be challenging (Liu et al., 2018c; Guo et al., 2017). We augment PDIS
by approximating the evaluation policy with a stochastic policy, using a softmin
temperature parameter. However, PDIS still largely shows significant errors. For
Doubly Robust and Weighted Doubly Robust methods, we train a model of the
environment as follows:

• a 32-dimensional representation of state input is learned using variational au-
toencoder. Dimensionality reduction is necessary to aid accuracy, as original
state dimension is 96ˆ 96ˆ 3

• an LSTM is used to learn the transition dynamics %pIpG1q|IpGq, 0q, where IpGq

180

is the low-dimensional representation learned from previous step. Techni-
cally, using a recurrent neural networks is an augmentation to the dynamical
modeling, as true MDPs typically do not require long-term memory

• the model is trained separately on a different dataset, collected indendently
from the dataset D used for evaluation

The architecture of our dynamics model is inspired by recent work in model-based
online policy learning (Ha and Schmidhuber, 2018). However, despite our best
effort, learning the dynamics model accurately proves highly challenging, as the
horizon and dimensionality of this domain are much larger than popular bench-
marks in the OPE literature (Jiang and Li, 2016a; Thomas and Brunskill, 2016b;
Farajtabar et al., 2018a). The dynamics model has difficulty predicting the future
state several time steps away. Thus we find that the long-horizon, model-based
estimation component of DR and WDR in this high-dimensional setting is not suffi-
ciently accurate. For future work, a thorough benchmarking of off-policy evaluation
methods in high-dimensional domains would be a valuable contribution.

181

A p p e n d i x B

APPENDIX TO CHAPTER 3

182

B.1 Notations
Table B.1: Glossary of terms for Chapter 3

Acronym Term

-, �, %, ' State, Action, Dynamics, Reward
W Discount Factor
30 Initial State Distribution
� Dataset
g Trajectory/Episode
) Horizon/Episode Length
Number of episodes in �
c1 , c4 Behavior Policy, Evaluation Policy
+,& Value and Action-Value Function, ex: +pc4q, &pG, c4q
d8
9: 91 Cumulative Importance Weight,

śminp 91 ,)´1q
C“ 9

c4p0
8
C |G

8
C q

c1p0
8
C |G

8
C q

IPS Inverse Propensity Scoring
DM Direct Method
HM Hybrid Method
IS Importance Sampling
PDIS Per-Decision Importance Sampling
WIS Weighted Importance Sampling
PDWIS Per-Decision Weighted Importance Sampling
PDWIS Per-Decision Weighted Importance Sampling
FQE Fitted Q Evaluation (Le et al., 2019a)
IH Infinite Horizon (Liu et al., 2018b)
Q-Reg Q Regression (Farajtabar et al., 2018b)
MRDR More Robust Doubly Robst (Farajtabar et al., 2018b)
AM Approximate Model (Model Based)
&p_q & cp_q (Harutyunyan et al., 2016)
'p_q Retracep_q (Munos et al., 2016)
Tree Tree-Backupp_q (Precup et al., 2000)
DR Doubly-Robust (Jiang and Li, 2016b; Dudík et al., 2011a)
WDR Weighted Doubly-Robust (Dudík et al., 2011a)
MAGIC (Thomas and Brunskill, 2016a)
Graph Graph Environment
Graph-MC Graph Mountain Car Environment
MC Mountain Car Environment
Pix-MC Pixel-Based Mountain Car Environment
Enduro Enduro Environment
Graph-POMDP Graph-POMDP Environment
GW Gridworld Environment
Pix-GW Pixel-Based Gridworld Environment

183

B.2 Ranking of Methods
Amethod that is within 10% of the method with the lowest Relative MSE is counted
as a top method, called Near-top Frequency, and then we aggregate across all
experiments. See Table B.2 for a sorted list of how often the methods appear within
10% of the best method.

Table B.2: Fraction of time among the top estimators across all experiments

Method Near-top Frequency

MAGIC FQE 0.300211
DM FQE 0.236786
IH 0.190275
WDR FQE 0.177590
MAGIC & cp_q 0.173362
WDR & cp_q 0.173362
DM & cp_q 0.150106
DR & cp_q 0.135307
WDR R(_) 0.133192
DR FQE 0.128964
MAGIC R(_) 0.107822
WDR Tree 0.105708
DR R(_) 0.105708
DM R(_) 0.097252
DM Tree 0.084567
MAGIC Tree 0.076110
DR Tree 0.073996
DR MRDR 0.073996
WDR Q-Reg 0.071882
DM AM 0.065539
IS 0.063425
WDR MRDR 0.054968
PDWIS 0.046512
DR Q-Reg 0.044397
MAGIC AM 0.038055
MAGIC MRDR 0.033827
DM MRDR 0.033827
PDIS 0.033827
MAGIC Q-Reg 0.027484
WIS 0.025370
NAIVE 0.025370
DM Q-Reg 0.019027
DR AM 0.012685
WDR AM 0.006342

Empirical Support for Decision Tree Guideline
Tables B.3-B.10 provide a numerical support for the decision tree in the main paper
(Figure 3.2). Each table refers to a child node in the decision tree, ordered from

184

left to right, respectively. For example, Table B.3 refers to the left-most child node
(propery specified, short horizon, small policy mismatch) while Table B.10 refers
to the right-most child node (misspecified, good representation, long horizon, good
c1 estimate).

Table B.3: Near-top Frequency among the properly specified, short horizon, small
policy mismatch experiments

DM Hybrid

Direct DR WDR MAGIC

AM 4.7% 4.7% 3.1% 4.7%
Q-Reg 0.0% 4.7% 6.2% 4.7%
MRDR 7.8% 14.1% 7.8% 7.8%
FQE 40.6% 23.4% 21.9% 34.4%
Rp_q 17.2% 20.3% 20.3% 14.1%
Qcp_q 21.9% 18.8% 18.8% 17.2%
Tree 15.6% 12.5% 12.5% 14.1%
IH 17.2% - - -

IPS

Standard Per-Decision

IS 4.7% 4.7%
WIS 3.1% 3.1%
NAIVE 1.6% -

Table B.4: Near-top Frequency among the properly specified, short horizon, large
policy mismatch experiments

DM Hybrid

Direct DR WDR MAGIC

AM 20.3% 1.6% 0.0% 7.8%
Q-Reg 1.6% 1.6% 3.1% 1.6%
MRDR 3.1% 1.6% 6.2% 1.6%
FQE 35.9% 14.1% 17.2% 37.5%
Rp_q 23.4% 14.1% 20.3% 23.4%
Qcp_q 15.6% 15.6% 14.1% 20.3%
Tree 21.9% 12.5% 18.8% 21.9%
IH 29.7% - - -

IPS

Standard Per-Decision

IS 0.0% 0.0%
WIS 0.0% 1.6%
NAIVE 3.1% -

185

Table B.5: Near-top Frequency among the properly specified, long horizon, small
policy mismatch experiments

DM Hybrid

Direct DR WDR MAGIC

AM 6.9% 0.0% 0.0% 5.6%
Q-Reg 0.0% 1.4% 1.4% 1.4%
MRDR 1.4% 0.0% 1.4% 2.8%
FQE 50.0% 22.2% 23.6% 50.0%
Rp_q 13.9% 12.5% 11.1% 9.7%
Qcp_q 20.8% 18.1% 18.1% 18.1%
Tree 2.8% 1.4% 0.0% 2.8%
IH 29.2% - - -

IPS

Standard Per-Decision

IS 0.0% 0.0%
WIS 0.0% 0.0%
NAIVE 5.6% -

Table B.6: Near-top Frequency among the properly specified, long horizon, large
policy mismatch, deterministic env/rew experiments

DM Hybrid

Direct DR WDR MAGIC

AM 3.5% 3.5% 1.8% 1.8%
Q-Reg 3.5% 1.8% 0.0% 0.0%
MRDR 3.5% 1.8% 0.0% 0.0%
FQE 15.8% 17.5% 29.8% 28.1%
Rp_q 1.8% 3.5% 0.0% 0.0%
Qcp_q 22.8% 15.8% 38.6% 24.6%
Tree 3.5% 3.5% 1.8% 1.8%
IH 21.1% - - -

IPS

Standard Per-Decision

IS 5.3% 3.5%
WIS 0.0% 8.8%
NAIVE 0.0% -

186

Table B.7: Near-top Frequency among the properly specified, long horizon, large
policy mismatch, stochastic env/rew experiments

DM Hybrid

Direct DR WDR MAGIC

AM 14.6% 0.0% 0.0% 8.3%
Q-Reg 4.2% 2.1% 0.0% 2.1%
MRDR 4.2% 2.1% 0.0% 0.0%
FQE 31.2% 2.1% 0.0% 25.0%
Rp_q 4.2% 6.2% 0.0% 0.0%
Qcp_q 2.1% 0.0% 0.0% 2.1%
Tree 4.2% 6.2% 0.0% 0.0%
IH 41.7% - - -

IPS

Standard Per-Decision

IS 25.0% 4.2%
WIS 0.0% 0.0%
NAIVE 2.1% -

Table B.8: Near-top Frequency among the potentially misspecified, insufficient
representation experiments

DM Hybrid

Direct DR WDR MAGIC

AM - - - -
Q-Reg 3.9% 13.7% 25.5% 6.9%
MRDR 0.0% 18.6% 15.7% 5.9%
FQE 0.0% 5.9% 13.7% 24.5%
Rp_q - - - -
Qcp_q - - - -
Tree - - - -
IH 6.9% - - -

IPS

Standard Per-Decision

IS 10.8% 8.8%
WIS 9.8% 13.7%
NAIVE 3.9% -

187

Table B.9: Near-top Frequency among the potentially misspecified, sufficient
representation, poor c1 estimate experiments

DM Hybrid

Direct DR WDR MAGIC

AM 0.0% 0.0% 0.0% 0.0%
Q-Reg 0.0% 0.0% 3.3% 0.0%
MRDR 13.3% 6.7% 0.0% 0.0%
FQE 0.0% 3.3% 6.7% 10.0%
Rp_q 16.7% 0.0% 6.7% 20.0%
Qcp_q 6.7% 0.0% 0.0% 3.3%
Tree 20.0% 0.0% 6.7% 6.7%
IH 0.0% - - -

IPS

Standard Per-Decision

IS 3.3% 0.0%
WIS 0.0% 0.0%
NAIVE 0.0% -

Table B.10: Near-top Frequency among the potentially misspecified, sufficient
representation, good c1 estimate experiments

DM Hybrid

Direct DR WDR MAGIC

AM 0.0% 0.0% 0.0% 2.8%
Q-Reg 0.0% 0.0% 0.0% 0.0%
MRDR 0.0% 5.6% 0.0% 5.6%
FQE 8.3% 8.3% 25.0% 11.1%
Rp_q 2.8% 8.3% 8.3% 19.4%
Qcp_q 5.6% 5.6% 8.3% 0.0%
Tree 5.6% 8.3% 16.7% 5.6%
IH 0.0% - - -

IPS

Standard Per-Decision

IS 0.0% 0.0%
WIS 0.0% 0.0%
NAIVE 0.0% -

188

B.3 Challenging Common Wisdom - Supporting Data
The following tables represent the numerical support for how horizon and policy
difference affect the performance of the OPE estimators when policy mismatch is
held constant. Notice that the policy mismatch for table B.12 and B.13 are identical:
`

.124573...
.1

˘100
“
`

.9

.1
˘10. What we see here is that despite identical policy mismatch,

the longer horizon does not impact the error as much (compared to the baseline,
Table B.11) as moving c4 to .9, far from .1 and keeping the horizon the same.

Table B.11: Graph, relative MSE.) “ 10, # “ 50, c1p0 “ 0q “ 0.1, c4p0 “ 0q “
0.1246. Dense rewards. Baseline.

DM Hybrid

Direct DR WDR MAGIC

AM 1.9E-3 4.9E-3 5.0E-3 3.4E-3
Q-Reg 2.4E-3 4.3E-3 4.2E-3 4.5E-3
MRDR 5.8E-3 8.9E-3 9.4E-3 9.2E-3
FQE 1.8E-3 1.8E-3 1.8E-3 1.8E-3
Rp_q 1.8E-3 1.8E-3 1.8E-3 1.8E-3
Qcp_q 1.8E-3 1.8E-3 1.8E-3 1.8E-3
Tree 1.8E-3 1.8E-3 1.8E-3 1.8E-3
IH 1.6E-3 - - -

IPS

Standard Per-Decision

IS 5.6E-4 8.4E-4
WIS 1.4E-3 1.4E-3
NAIVE 6.1E-3 -

Table B.12: Graph, relative MSE.) “ 100, # “ 50, c1p0 “ 0q “ 0.1, c4p0 “
0q “ 0.1246. Dense rewards. Increasing horizon compared to baseline, fixed c4.

DM Hybrid

Direct DR WDR MAGIC

AM 5.6E-2 5.9E-2 5.9E-2 5.3E-2
Q-Reg 3.4E-3 1.1E-1 1.2E-1 9.2E-2
MRDR 1.1E-2 2.5E-1 2.9E-1 3.1E-1
FQE 6.0E-2 6.0E-2 6.0E-2 6.0E-2
Rp_q 6.0E-2 6.0E-2 6.0E-2 6.0E-2
Qcp_q 6.0E-2 6.0E-2 6.0E-2 6.0E-2
Tree 3.4E-1 7.0E-3 1.6E-3 2.3E-3
IH 4.7E-4 - - -

IPS

Standard Per-Decision

IS 1.7E-2 2.5E-3
WIS 9.5E-4 4.9E-4
NAIVE 5.4E-3 -

189

Table B.13: Graph, relative MSE.) “ 10, # “ 50, c1p0 “ 0q “ 0.1, c4p0 “ 0q “
0.9. Dense rewards. Increasing c4 compared to baseline, fixed horizon.

DM Hybrid

Direct DR WDR MAGIC

AM 6.6E-1 6.7E-1 6.6E-1 6.6E-1
Q-Reg 5.4E-1 6.3E-1 1.3E0 9.3E-1
MRDR 5.4E-1 7.3E-1 2.0E0 2.0E0
FQE 6.6E-1 6.6E-1 6.6E-1 6.6E-1
Rp_q 6.7E-1 6.6E-1 9.3E-1 1.0E0
Qcp_q 6.6E-1 6.6E-1 6.6E-1 6.6E-1
Tree 6.7E-1 6.6E-1 9.4E-1 1.0E0
IH 1.4E-2 - - -

IPS

Standard Per-Decision

IS 1.0E0 5.4E-1
WIS 2.0E0 9.7E-1
NAIVE 4.0E0 -

190

B.4 Methods
Below we include a description of each of the methods we tested. Let)̃ “) ´ 1.

Inverse Propensity Scoring (IPS) Methods

Table B.14: IPS methods. Dudík et al. (2011b); Jiang and Li (2016a)

Standard Per-Decision

IS
ř#
8“1

d8
0:)̃
#

ř)̃
C“0 W

CAC
ř#
8“1

ř)̃
C“0 W

C d
8
0:C
#
AC

WIS
ř#
8“1

d8
0:)̃
F0:)̃

ř)̃
C“0 W

CAC
ř#
8“1

ř)̃
C“0 W

C d
8
0:C
F0:C

AC

Table B.14 shows the calculation for the four traditional IPS estimators: +�(, +%��(,
+,�(, +%�,�(. In addition, we include the following method as well since it is a
Rao-Blackwellization Liu et al. (2018b) of the IPS estimators:

Hybrid Methods
Hybrid rely on being supplied an action-value function p&, an estimate of &, from
which one can also yield p+pGq “

ř

0P� cp0|Gq
p&pG, 0q. Doubly-Robust (DR):

Thomas and Brunskill (2016a); Jiang and Li (2016b)

+�' “
1
#

#
ÿ

8“1

p+pG80q`

1
#

#
ÿ

8“1

8
ÿ

C“0
WCd80:CrA

8
C ´

p&pG8C , 0
8
Cq ` W

p+pG8C`1qs

Weighted Doubly-Robust (WDR): Thomas and Brunskill (2016a)

+,�' “
1
#

#
ÿ

8“1

p+pG80q`

#
ÿ

8“1

8
ÿ

C“0
WC
d80:C
F0:C

rA8C ´
p&pG8C , 0

8
Cq ` W

p+pG8C`1qs

MAGIC: Thomas and Brunskill (2016a) Given 6� “ t68|8 P � Ď NY t´1uu where

6 9p�q “

#
ÿ

8“1

9
ÿ

C“0
WC
d80:C
F0:C

A8C `

#
ÿ

8“1
W 9`1 d

8
0:C
F0:C

p+pG89`1q´

#
ÿ

8“1

9
ÿ

C“0
WCp

d80:C
F0:C

p&pG8C , 0
8
Cq ´

d80:)̃
F0:)̃

p+pG8Cqq,

191

then define 38BCpH, /q “ minIP/ |H ´ I| and

p1=p 9q “ 38BCp6�9 p�q, ��p6
8
p�q, 0.5qq

pΩ=p8, 9q “ �>Ep6
�
8 p�q, 6

�
9 p�qq

then, for a |�|´simplex Δ|�| we can calculate

pG˚ P arg min
GPΔ|� |

G) rpΩ= ` p1p1) sG

which, finally, yields
+"���� “ ppG

˚
q
)6� .

MAGIC can be thought of as a weighted average of different blends of the DM and
Hybrid. In particular, for some 8 P �, 68 represents estimating the first 8 steps of
+pc4q according to DR (or WDR) and then estimating the remaining steps via p&.
Hence, +"���� finds the most appropriate set of weights which trades off between
using a direct method and a Hybrid.

Direct Methods (DM)
Model-Based

Approximate Model (AM): Jiang and Li (2016b) An approach to model-based
value estimation is to directly fit the transition dynamics %pGC`1|GC , 0Cq, reward
'pGC , 0Cq, and terminal condition %pGC`1 P -C4A<8=0; |GC , 0Cq of the MDP using some
for of maximum likelihood or function approximation. This yields a simulation
environment from which one can extract the value of a policy using an average
over rollouts. Thus, +pcq “ Er

ř)
C“1 W

CApGC , 0Cq|G0 “ G, 00 “ cpG0qs where the
expectation is over initial conditions G „ 30 and the transition dynamics of the
simulator.

Model-Free

Every estimator in this section will approximate & with p&p¨; \q, parametrized by
some \. From p& the OPE estimate we seek is

+ “
1
#

#
ÿ

8“1

ÿ

0P�

c4p0|Bq p&pB
8
0, 0; \q

Note that Ec4&pGC`1, ¨q “
ř

0P� c4p0|GC`1q&pGC`1, 0q.

192

Direct Model Regression (Q-Reg): Farajtabar et al. (2018b)

p&p¨, \q “ min
\

1
#

#
ÿ

8“1

)̃
ÿ

C“0
WCd80:C

´

'8
C:)̃ ´

p&pG8C , 0
8
C ; \q

¯2

'8
C:)̃ “

)̃
ÿ

C1“C

WC
1´Cd8

pC`1q:C1A
8
C1

Fitted Q Evaluation (FQE): Le et al. (2019a) p&p¨, \q “ lim:Ñ8
p&: where

p&: “ min
\

1
#

#
ÿ

8“1

)̃
ÿ

C“0
p p&:´1pG

8
C , 0

8
C ; \q ´ H8Cq2

H8C ” A
8
C ` WEc4

p&:´1pG
8
C`1, ¨; \q

Retrace(_) (R(_)), Tree-Backup (Tree), &cp_q: Munos et al. (2016); Precup et al.
(2000); Harutyunyan et al. (2016) p&p¨, \q “ lim:Ñ8

p&: where

p&:pG, 0; \q “ p&:´1pG, 0; \q`

Ec1 r
ÿ

Cě0
WC

C
ź

B“1
2BHC |G0 “ G, 00 “ 0s

and
HC “ A

C
` WEc4

p&:´1pGC`1, ¨; \q ´ p&:´1pGC , 0C ; \q

2B “

$

’

’

’

&

’

’

’

%

_minp1, c4p0B|GBq
c1p0B|GBq

q 'p_q

_c4p0B|GBq)A44

_ &cp_q

More Robust Doubly-Robust (MRDR): Farajtabar et al. (2018b) Given

Ωc1pGq “ 3806r1{c1p0|Gqs0P� ´ 44)

4 “ r1, . . . , 1s)

'8
C:)̃ “

)̃
ÿ

9“C

W 9´Cd8
pC`1q: 9ApG

8
9 , 0

8
9q

and

@\pG, 0, Aq “ 3806rc4p0
1
|Gqs01P�r p&pG, 0

1; \qs01P�
´ Ar1t01 “ 0us01P�

193

where 1 is the indicator function, then

p&p¨, \q “ min
\

1
#

#
ÿ

8“1

)̃
ÿ

C“0
W2C
pd80:)̃q

2
ˆ

d8C@\pG
8
C , 0

8
C , '

8

C:)̃q
)Ωc1pG

8
Cq@\pG

8
C , 0

8
C , '

8

C:)̃q

State Density Ratio Estimation (IH): Liu et al. (2018b)

+�� “

#
ÿ

8“1

)̃
ÿ

C“0

WClpB8CqdC:CA
8
C

ř#
81“0

ř)̃
C1“1 W

C1lpB8
1

C1
qdC1:C1

lpB8Cq “ lim
CÑ8

ř)
C“0 W

C3c4pB
8
Cq

ř)
C“0 W

C3c1pB
8
Cq

where c1 is assumed to be a fixed data-generating policy, and 3c is the distribution
of states when executing c from B0 „ 30. The details for how to find l can be found
in Algorithm 1 and 2 of Liu et al. (2018b).

B.5 Environments
For every environment, we initialize the environment with a fixed horizon length) .
If the agent reaches a goal before) or if the episode is not over by step) , it will
transition to an environment-dependent absorbing state where it will stay until time
) . For a high level description of the environment features, see Table 3.1.

Environment Descriptions
Graph

Figure B.1 shows a visualization of the Toy-Graph environment. The graph is
initialized with horizon) and with absorbing state G01B “ 2) . In each episode, the
agent starts at a single starting state G0 “ 0 and has two actions, 0 “ 0 and 0 “ 1.
At each time step C ă) , the agent can enter state GC`1 “ 2C ` 1 by taking action
0 “ 0, or GC`1 “ 2C` 2 by taking action 0 “ 1. If the environment is stochastic, we
simulate noisy transitions by allowing the agent to slip into GC`1 “ 2C` 2 instead of
GC`1 “ 2C` 1 and vice-versa with probability .25. At the final time C “) , the agent
always enters the terminal state G01B. The reward is `1 if the agent transitions to an
odd state, otherwise is´1. If the environment provides sparse rewards, then A “ `1
if G)´1 is odd, A “ ´1 if G)´1 is even, otherwise A “ 0. Similarly to deterministic
rewards, if the environment’s rewards are stochastic, then the reward is A „ #p1, 1q
if the agent transitions to an odd state, otherwise A „ #p´1, 1q. If the rewards are

194

0

1

2

3

4

2T-3

2T-2

R = +1 or R ~((+1,1)

R = −1 or R ~((−1,1)

a=0

a=1

a=0

a=1

a=1

a=0

ABS

Figure B.1: Graph Envi-
ronment

0

1-1

-10 10

11
a=0

ABS

R=+
1

a=0

a=1

a=0

a=1

a=1

Figure B.2: Graph-MC
Environment

Figure B.3: MC Envi-
ronment, pixel-version.
The non-pixel version in-
volves representing the
state of the car as the po-
sition and velocity.

Figure B.4: Enduro En-
vironment

0

1

2

3

4

2T-3

2T-2

a=0

a=1

a=0

a=1

a=1

a=0

ABS

o=0 o=1 o=T-1

Figure B.5: Graph-
POMDP Environment.
Model-Fail Thomas and
Brunskill (2016a) is a
special case of this envi-
ronment where T=2. We
also extend the environ-
ment to arbitrary horizon
which makes it a semi-
mdp.

S S S S S S S S

S F H

S H F

S F H F

S H F

S H H F H

S H H H

S H F G

Figure B.6: Gridworld
environment. Blank
spaces indicate areas of
a small negative reward,
S indicates the starting
states, F indicates a field
of slightly less negative
reward, H indicates a
hole of severe penalty, G
indicates the goal of pos-
itive reward.

sparse and stochastic then A „ #p1, 1q if G)´1 is odd, otherwise A „ #p´1, 1q and
A “ 0 otherwise.

Graph-POMDP

Figure B.5 shows a visualization of the Graph-POMDP environment. The underly-
ing state structure of Graph-POMDP is exactly the Graph environment. However,
the states are grouped together based on a choice of Graph-POMDP horizon length,
�. This parameter groups states into � observable states. The agent only is able
to observe among these states, and not the underlying MDP structure. Model-
Fail Thomas and Brunskill (2016a) is a special case of this environment when
� “) “ 2.

195

Graph Mountain Car (Graph-MC)

Figure B.2 shows a visualization of the Toy-MC environment. This environment is
a 1-D graph-based simplification of Mountain Car. The agent starts at G0 “ 0, the
center of the valley and can go left or right. There are 21 total states, 10 to the left
of the starting position and 11 to the right of the starting position, and a terminal
absorbing state G01B “ 22. The agent receives a reward of A “ ´1 at every timestep.
The reward becomes zero if the agent reaches the goal, which is state G “ `11. If
the agent reaches G “ ´10 and continues left then the agent remains in G “ ´10.
If the agent does not reach state G “ `11 by step) then the episode terminates and
the agent transitions to the absorbing state.

Mountain Car (MC)

We use the OpenAI version of Mountain Car with a few simplifying modifications
Brockman et al. (2016); Sutton and Barto (2018a). The car starts in a valley and
has to go back and forth to gain enough momentum to scale the mountain and reach
the end goal. The state space is given by the position and velocity of the car. At
each time step, the car has the following options: accelerate backwards, forwards
or do nothing. The reward is A “ ´1 for every time step until the car reaches the
goal. While the original trajectory length is capped at 200, we decrease the effective
length by applying every action 0C five times before observing GC`1. Furthermore,
we modify the random initial position from being uniformly between r´.6,´.4s to
being one of t´.6,´.5,´.4u, with no velocity. The environment is initialized with
a horizon) and absorbing state G01B “ r.5, 0s, position at .5 and no velocity.

Pixel-based Mountain Car (Pix-MC)

This environment is identical to Mountain Car except the state space has been modi-
fied from position and velocity to a pixel based representation of a ball, representing
a car, rolling on a hill, see Figure B.3. Each frame 5C is a 80 ˆ 120 image of
the ball on the mountain. One cannot deduce velocity from a single frame, so we
represent the state as GC “ t 5C´1, 5Cu where 5´1 “ 50, the initial state. Everything
else is identical between the pixel-based version and the position-velocity version
described earlier.

196

Enduro

We use OpenAI’s implementation of Enduro-v0, an Atari 2600 racing game. We
downsample the image to a grayscale of size (84,84). We apply every action one
time and we represent the state as GC “ t 5C´3, 5C´2, 5C´1, 5Cu where 58 “ 50, the
initial state, for 8 ă 0. See Figure B.4 for a visualization.

Gridworld (GW)

Figure B.6 shows a visualization of the Gridworld environment. The agent starts at
a state in the first row or column (denoted S in the figure), and proceeds through the
grid by taking actions, given by the four cardinal directions, for) “ 25 timesteps.
An agent remains in the same state if it chooses an action which would take it out
of the environment. If the agent reaches the goal state �, in the bottom right corner
of the environment, it transitions to a terminal state G “ 64 for the remainder of
the trajectory and receives a reward of `1. In the grid, there is a field (denoted F)
which gives the agent a reward of ´.005 and holes (denoted H) which give ´.5.
The remaining states give a reward of ´.01.

Pixel-Gridworld (Pixel-GW)

This environment is identical to Gridworld except the state space has been modified
from position to a pixel based representation of the position: 1 for the agent’s
location, 0 otherwise. We use the same policies as in the Gridworld case.

B.6 Experimental Setup
Description of the policies
Graph, Graph-POMDP and Graph-MC use static policies with some probability of
going left and another probability of going right, ex: cp0 “ 0q “ ?, cp0 “ 1q “
1´ ?, independent of state. We vary ? in our experiments.

GW, Pix-GW, MC, Pixel-MC, and Enduro all use an n´Greedy policy. In other
words, we train a policy &˚ (using value iteration or DDQN) and then vary the
deviation away from the policy. Hence n ´�A443Hp&˚q implies we follow a mixed
policy c “ arg max0 &˚pG, 0q with probability 1 ´ n and uniform with probability
n . We vary n in our experiments.

197

Enumeration of Experiments
Graph

See Table B.15 for a description of the parameters of the experiment we ran in the
Graph Environment. The experiments are the Cartesian product of the table.

Table B.15: Graph parameters

Parameters

W .98
N 23:11

T t4, 16u
c1p0 “ 0q t.2, .6u
c4p0 “ 0q .8
Stochastic Env {True, False}
Stochastic Rew {True, False}
Sparse Rew {True, False}
Seed {10 of random(0 : 216)}
ModelType Tabular
Regress c1 False

Graph-POMDP

See Table B.16 for a description of the parameters of the experiment we ran in the
Graph-POMDP Environment. The experiments are the Cartesian product of the
table.

Table B.16: Graph-POMDP parameters

Parameters

W .98
N 28:11

(T,H) tp2, 2q, p16, 6qu
c1p0 “ 0q t.2, .6u
c4p0 “ 0q .8
Stochastic Env {True, False}
Stochastic Rew {True, False}
Sparse Rew {True, False}
Seed {10 of random(0 : 216)}
ModelType Tabular
Regress c1 False

198

Gridworld

See Table B.17 for a description of the parameters of the experiment we ran in the
Gridworld Environment. The experiments are the Cartesian product of the table.

Table B.17: Gridworld parameters

Parameters

W .98
N 26:11

T 25
n ´ Greedy, c1 t.2, .4, .6, .8, 1.u
n ´ Greedy, c4 .1
Stochastic Env False
Stochastic Rew False
Sparse Rew False
Seed {10 of random(0 : 216)}
ModelType Tabular
Regress c1 True

Pixel-Gridworld (Pix-GW)

See Table B.18 for a description of the parameters of the experiment we ran in the
Pix-GW Environment. The experiments are the Cartesian product of the table.

Table B.18: Pix-GW parameters

Parameters

W .96
N 26:9

T 25
n ´ Greedy, c1 t.2, .4, .6, .8, 1.u
n ´ Greedy, c4 .1
Stochastic Env {True, False}
Stochastic Rew False
Sparse Rew False
Seed {10 of random(0 : 216)}
ModelType NN
Regress c1 {True, False}

199

Graph-MC

See Table B.19 for a description of the parameters of the experiment we ran in the
TMC Environment. The experiments are the Cartesian product of the table.

Table B.19: Graph-MC parameters

Parameters

W .99
N 27:11

T 250

pc1p0 “ 0q, c4p0 “ 0qq tp.45, .45q, p.6, .6q, p.45.6q
p.6, .45q, p.8, .2q, p.2, .8qu

Stochastic Env False
Stochastic Rew False
Sparse Rew False
Seed {10 of random(0 : 216)}
ModelType Tabular
Regress c1 False

Mountain Car (MC)

See Table B.20 for a description of the parameters of the experiment we ran in the
MC Environment. The experiments are the Cartesian product of the table.

Table B.20: MC parameters

Parameters

W .99
N 27:10

T 250

n ´ Greedy, pc1, c4q
tp.1, 0q, p1, 0q
p1, .1q, p.1, 1qu

Stochastic Env False
Stochastic Rew False
Sparse Rew False
Seed {10 of random(0 : 216)}
ModelType {Tabular, NN}
Regress c1 False

200

Pixel-Mountain Car (Pix-MC)

See Table B.21 for a description of the parameters of the experiment we ran in the
Pix-MC Environment. The experiments are the Cartesian product of the table.

Table B.21: Pix-MC parameters

Parameters

W .97
N 512
T 500

n ´ Greedy, pc1, c4q
tp.25, 0q, p.1, 0q
p.25, .1qu

Stochastic Env False
Stochastic Rew False
Sparse Rew False
Seed {10 of random(0 : 216)}
ModelType {Tabular, NN}
Regress c1 False

Enduro

See Table B.22 for a description of the parameters of the experiment we ran in the
Enduro Environment. The experiments are the Cartesian product of the table.

Table B.22: Enduro parameters

Parameters

W .9999
N 512
T 500

n ´ Greedy, pc1, c4q
tp.25, 0q, p.1, 0q
p.25, .1qu

Stochastic Env False
Stochastic Rew False
Sparse Rew False
Seed {10 of random(0 : 216)}
ModelType {Tabular, NN}
Regress c1 False

201

Representation and Function Class
For the simpler environments, we use a tabular representation for all the methods.
AM amounts to solving for the transition dynamics, rewards, terminal state, etc.
through maximum likelihood. FQE, Retrace(_), &cp_q, and Tree-Backup are all
implemented through dynamics programming with Q tables. MRDR and Q-Reg
used the Sherman Morrison Sherman and Morrison (1950) method to solve the
weighted-least square problem, using a basis which spans a table.

In the cases where we needed function approximation, we did not directly fit the
dynamics for AM; instead, we fit on the difference in states)pG1 ´ G|G, 0q, which is
common practice.

For the MC environment, we ran experiments with both a linear and NN function
class. In both cases, the representation of the state was not changed and remained
[position, velocity]. The NN architecture was dense with [16,8,4,2] as the layers.
The layers had relu activations (except the last, with a linear activation) and were all
initialized with truncated normal centered at 0 with a standard deviation of 0.1.

For the pixel-based environments (MC, Enduro), we use a convolutional NN. The
architechure is a layer of size 8 with filter (7,7) and stride 3, followed by maxpooling
and a layer of size 16with filter (3,3) and stride 1, followed bymax pooling, flattening
and a dense layer of size 256. The final layer is a dense layer with the size of the
action space, with a linear activation. The layers had elu activations and were all
initialized with truncated normal centered at 0 with a standard deviation of 0.1. The
layers also have kernel L2 regularizers with weight 1e-6.

When using NNs for the IH method, we used the radial-basis function and a shallow
dense network for the kernel and density estimate respectively.

Choice of hyperparameters
Many methods require selection of convergence criteria, regularization parameters,
batch sizes, and a whole host of other hyperparameters. Often there is a trade-
off between computational cost and the accuracy of the method. Hyperparameter
search is not feasible in OPE since there is no proper validation (like game score
in learning). See Table B.23 for a list of hyperparameters that were chosen for the
experiments.

202

Table B.23: Hyperparameters for each model by Environment

Method Parameter Graph TMC MC Pix-MC Enduro POMDP GW Pix-GW

AM

Max Traj Len T T 50 50 - T T T
NN Fit Epochs - - 100 100 - - - 100
NN Batchsize - - 32 32 - - - 25
NN Train size - - .8 .8 - - - .8
NN Val size - - .2 .2 - - - .2
NN Stop delta - - 1e-4 1e-4 - - - 1e-4

Q-Reg

Omega regul. 1 1 - - - 1 1 -
NN Fit Epochs - - 80 80 80 - - 80
NN Batchsize - - 32 32 32 - - 32
NN Train size - - .8 .8 .8 - - .8
NN Val size - - .2 .2 .2 - - .2
NN Stop delta - - 1e-4 1e-4 1e-4 - - 1e-4

FQE

Convergence n 1e-5 1e-5 1e-4 1e-4 1e-4 1e-5 4e-4 1e-4
Max Iter - - 160 160 600 - 50 80
NN Batchsize - - 32 32 32 - - 32
Optimizer Clipnorm - - 1. 1. 1. - - 1.

IH
Quad. prog. regular. 1e-3 1e-3 - - - 1e-3 1e-3 -
NN Fit Epochs - - 10001 10001 10001 - - 1001
NN Batchsize - - 1024 128 128 - - 128

MRDR

Omega regul. 1 1 - - - 1 1 -
NN Fit Epochs - - 80 80 80 - - 80
NN Batchsize - - 1024 1024 1024 - - 32
NN Train size - - .8 .8 .8 - - .8
NN Val size - - .2 .2 .2 - - .2
NN Stop delta - - 1e-4 1e-4 1e-4 - - 1e-4

'p_q

_ .9 .9 .9 - - .9 .9 .9
Convergence n 1e-3 2e-3 1e-3 - - 1e-3 2e-3 1e-3
Max Iter 500 500 - - - 500 50 -
NN Fit Epochs - - 80 - - - - 80
NN Batchsize - - 4 - - - - 4
NN Train Size - - .03 - - - - .03
NN ClipNorm - - 1. - - - - 1.

&cp_q

_ .9 .9 .9 - - .9 .9 .9
Convergence n 1e-3 2e-3 1e-3 - - 1e-3 2e-3 1e-3
Max Iter 500 500 - - - 500 50 -
NN Fit Epochs - - 80 - - - - 80
NN Batchsize - - 4 - - - - 4
NN Train Size - - .03 - - - - .03
NN ClipNorm - - 1. - - - - 1.

Tree

_ .9 .9 .9 - - .9 .9 .9
Convergence n 1e-3 2e-3 1e-3 - - 1e-3 2e-3 1e-3
Max Iter 500 500 - - - 500 50 -
NN Fit Epochs - - 80 - - - - 80
NN Batchsize - - 4 - - - - 4
NN Train Size - - .03 - - - - .03
NN ClipNorm - - 1. - - - - 1.

203

B.7 Additional Supporting Figures for Chapter 3

Figure B.7: Enduro DM vs IPS. c1 is a policy that deviates uniformly from a trained
policy 25%of the time, c4 is a policy trainedwith DDQN. IH has relatively low error
mainly due to tracking the simple average, since the kernel function did not learn
useful density ratio. The computational time required to calculate the multi-step
rollouts of AM, Retrace(_), &cp_q, Tree-Backup(_) exceeded our compute budget
and were thus excluded.

Figure B.8: MC comparison. # “ 256. c1 is a uniform random policy, c4 is a
policy trained with DDQN

204

Figure B.9: Enduro DM vs HM. c1 is a policy that deviates uniformly from a trained
policy 25% of the time, c4 is a policy trained with DDQN.

Figure B.10: Comparison of Direct methods’ performance across horizon and
number of trajectories in the Toy-Graph environment. Small policy mismatch under
a deterministic environment.

Figure B.11: (Graph domain) Comparing DMs across horizon length and number
of trajectories. Large policy mismatch and a stochastic environment setting.

205

Figure B.12: Comparing DM to DR in a stochastic environment with large policy
mismatch. (Graph)

Figure B.13: Comparison between FQE, IH and WIS in a low data regime. For low
policy mismatch, IPS is competitive to DM in low data, but as the policy mismatch
grows, the top DM outperform. Experiments ran in the Gridworld Environment.

FigureB.14: Comparison between IPSmethods and IHwith dense vs sparse rewards.
Per-Decision IPS methods see substantial improvement when the rewards are dense.
Experiments ran in the Toy-Graph environment with cp0 “ 0q “ .6, c4p0 “ 0q “ .8
See Tables B.27, B.28, B.29, B.24, B.25, B.26

206

Figure B.15: Exact vs Estimated c1. Exact c1 “ .2´Greedy(optimal), c4 “
.1´Greedy(optimal). Min error per class. (Pixel Gridworld, deterministic)

Figure B.16: Exact vs Estimated c1. Exact c1 “uniform, c4 “

.1´Greedy(optimal). Min error per class. (Pixel Gridworld, deterministic)

Figure B.17: Hybrid Method comparison. c1p0 “ 0q “ .2, c4p0 “ 0q “ .8. Min
error per class. (Graph-MC)

207

Figure B.18: Hybrid Method comparison. c1p0 “ 0q “ .8, c4p0 “ 0q “ .2. Min
error per class. (Graph-MC)

Figure B.19: Hybrid Method comparison. c1p0 “ 0q “ .6, c4p0 “ 0q “ .6. Min
error per class. (Graph-MC)

Figure B.20: Hybrid Method comparison. Exact c1 “ .2´Greedy(optimal), c4 “
.1´Greedy(optimal). Min error per class. (Pixel Gridworld)

208

Figure B.21: Hybrid Method comparison. c1 “ .8´Greedy(optimal), c4 “
.1´Greedy(optimal). Min error per class. (Pixel Gridworld)

Figure B.22: Class comparison with unknown c1. At first, HM underperform DM
because c1 is more difficult to calculate leading to imprecise importance sampling
estimates. Exact c1 “ .2´Greedy(optimal), c4 “ .1´Greedy(optimal). Min error
per class. (Pixel Gridworld, stochastic env with .2 slippage)

Figure B.23: Class comparison with unknown c1. At first, HM underperform DM
because c1 is more difficult to calculate leading to imprecise importance sampling
estimates. Exact c1 “ .6´Greedy(optimal), c4 “ .1´Greedy(optimal). Min error
per class. (Pixel Gridworld, stochastic env with .2 slippage)

209

Figure B.24: Class comparison with unknown c1. At first, HM underperform DM
because c1 is more difficult to calculate leading to imprecise importance sampling
estimates. Exact c1 “uniform, c4 “ .1´Greedy(optimal). Min error per class.
(Pixel Gridworld, stochastic env with .2 slippage)

Figure B.25: AM Direct vs Hybrid comparison for AM. (Gridworld)

Figure B.26: FQE Direct vs Hybrid comparison. (Gridworld)

Figure B.27: MRDR Direct vs Hybrid comparison. (Gridworld)

210

Figure B.28: Q-Reg Direct vs Hybrid comparison. (Gridworld)

Figure B.29: &cp_q Direct vs Hybrid comparison. (Gridworld)

Figure B.30: Retracep_q Direct vs Hybrid comparison. (Gridworld)

Figure B.31: Tree-Backup Direct vs Hybrid comparison. (Gridworld)

211

Figure B.32: DR comparison with c1 “ .2´Greedy(optimal), c4 “

1.´Greedy(optimal). (Pixel Gridworld)

Figure B.33: WDR comparison with c1 “ .2´Greedy(optimal), c4 “

1.´Greedy(optimal). (Pixel Gridworld)

Figure B.34: MAGIC comparison with c1 “ .2´Greedy(optimal), c4 “

1.´Greedy(optimal). (Pixel Gridworld)

212

Figure B.35: DR comparison with c1 “ .8´Greedy(optimal), c4 “

1.´Greedy(optimal). (Pixel Gridworld)

Figure B.36: WDR comparison with c1 “ .8´Greedy(optimal), c4 “

1.´Greedy(optimal). (Pixel Gridworld)

Figure B.37: MAGIC comparison with c1 “ .8´Greedy(optimal), c4 “

1.´Greedy(optimal). (Pixel Gridworld)

213

B.8 Additional Supporting Tables to Chapter 3
Table B.24: Graph, relative MSE.) “ 16, # “ 256, c1p0 “ 0q “ 0.2, c4p0 “
0q “ 0.8. Sparse rewards.

DM Hybrid

Direct DR WDR MAGIC

AM 2.4E-3 2.4E1 7.3E0 3.2E-2
Q-Reg 9.3E-1 1.2E1 1.2E1 8.4E-1
MRDR 8.6E-1 4.6E0 1.5E2 1.5E2
FQE 5.1E-5 5.1E-5 5.1E-5 5.1E-5
Rp_q 1.0E0 9.3E-1 2.0E0 2.2E0
Qcp_q 5.1E-5 5.1E-5 5.1E-5 5.0E-5
Tree 1.0E0 9.3E-1 2.0E0 2.2E0
IH 1.5E-1 - - -

IPS

Standard Per-Decision

IS 9.3E-1 9.3E-1
WIS 2.0E0 2.0E0
NAIVE 4.0E0 -

Table B.25: Graph, relative MSE.) “ 16, # “ 512, c1p0 “ 0q “ 0.2, c4p0 “
0q “ 0.8. Sparse rewards.

DM Hybrid

Direct DR WDR MAGIC

AM 1.6E-3 1.8E1 4.6E0 2.6E-2
Q-Reg 1.7E1 9.2E2 6.1E2 2.4E1
MRDR 9.5E0 9.6E2 3.7E2 1.3E2
FQE 5.0E-6 5.0E-6 5.0E-6 5.0E-6
Rp_q 1.0E0 1.6E1 1.9E0 1.6E0
Qcp_q 5.0E-6 1.1E-5 5.0E-6 5.0E-6
Tree 1.0E0 1.6E1 1.9E0 1.6E0
IH 8.4E-2 - - -

IPS

Standard Per-Decision

IS 1.6E1 1.6E1
WIS 1.9E0 1.9E0
NAIVE 3.9E0 -

214

Table B.26: Graph, relative MSE.) “ 16, # “ 1024, c1p0 “ 0q “ 0.2, c4p0 “
0q “ 0.8. Sparse rewards.

DM Hybrid

Direct DR WDR MAGIC

AM 1.8E-3 2.3E3 2.7E0 3.2E-3
Q-Reg 1.2E3 2.2E3 2.5E1 1.3E3
MRDR 1.8E4 2.5E4 1.4E2 9.6E2
FQE 2.4E-5 2.4E-5 2.4E-5 2.4E-5
Rp_q 1.0E0 1.1E3 2.5E0 1.0E0
Qcp_q 2.4E-5 2.3E-5 2.4E-5 2.4E-5
Tree 1.0E0 1.1E3 2.5E0 1.0E0
IH 2.6E-2 - - -

IPS

Standard Per-Decision

IS 1.1E3 1.1E3
WIS 2.5E0 2.5E0
NAIVE 3.9E0 -

Table B.27: Graph, relative MSE.) “ 16, # “ 256, c1p0 “ 0q “ 0.6, c4p0 “
0q “ 0.8. Dense rewards.

DM Hybrid

Direct DR WDR MAGIC

AM 5.8E-4 1.5E-3 1.6E-3 6.5E-4
Q-Reg 1.8E-2 2.3E-3 9.4E-4 9.9E-4
MRDR 1.4E-2 3.7E-2 2.5E-2 1.7E-2
FQE 1.0E-6 1.0E-6 1.0E-6 1.0E-6
Rp_q 1.0E-6 1.0E-6 1.0E-6 1.0E-6
Qcp_q 1.0E-6 1.0E-6 1.0E-6 1.0E-6
Tree 3.0E-3 2.6E-4 2.4E-4 2.4E-4
IH 3.4E-4 - - -

IPS

Standard Per-Decision

IS 2.6E-1 2.0E-2
WIS 1.6E-2 1.8E-3
NAIVE 4.5E-1 -

215

Table B.28: Graph, relative MSE.) “ 16, # “ 512, c1p0 “ 0q “ 0.6, c4p0 “
0q “ 0.8. Dense rewards.

DM Hybrid

Direct DR WDR MAGIC

AM 5.0E-5 3.3E-3 3.3E-3 1.5E-3
Q-Reg 4.5E-3 7.7E-5 3.3E-5 4.5E-5
MRDR 5.0E-3 2.6E-3 2.7E-3 5.7E-3
FQE 7.7E-7 7.7E-7 7.7E-7 7.7E-7
Rp_q 8.1E-7 8.0E-7 7.9E-7 8.1E-7
Qcp_q 7.6E-7 7.7E-7 7.7E-7 7.6E-7
Tree 2.2E-3 1.2E-4 1.1E-4 1.1E-4
IH 1.7E-4 - - -

IPS

Standard Per-Decision

IS 4.0E-2 4.7E-3
WIS 4.0E-3 6.0E-4
NAIVE 4.5E-1 -

Table B.29: Graph, relative MSE.) “ 16, # “ 1024, c1p0 “ 0q “ 0.6, c4p0 “
0q “ 0.8. Dense rewards.

DM Hybrid

Direct DR WDR MAGIC

AM 4.8E-5 4.7E-4 4.8E-4 7.2E-5
Q-Reg 2.1E-3 1.4E-5 1.0E-5 2.9E-5
MRDR 2.9E-3 5.0E-4 4.6E-4 9.6E-4
FQE 2.7E-7 2.7E-7 2.7E-7 2.7E-7
Rp_q 2.9E-7 2.8E-7 2.8E-7 2.9E-7
Qcp_q 2.7E-7 2.7E-7 2.7E-7 2.7E-7
Tree 1.8E-3 7.7E-5 5.8E-5 5.8E-5
IH 9.6E-5 - - -

IPS

Standard Per-Decision

IS 1.7E-2 2.1E-3
WIS 1.8E-3 2.9E-4
NAIVE 4.4E-1 -

216

A p p e n d i x C

APPENDIX TO CHAPTER 4

C.1 Detailed Theoretical Analysis and Proofs
Proof of lemma 4.5.1

Lemma Statement. (Lemma 4.5.1) For a fixed G, define cprG, 0sq fi ip0q. If i is
non-negative and �-smooth w.r.t. 0., then:

@0, 01 :
`

ip0q ´ ip01q
˘2
ď 6�

`

ip0q ` ip01q
˘ ›

›0 ´ 01
›

›

2
.

The proof of Lemma 4.5.1 rests on 2 properties of �-smooth functions (differen-
tiable) in R1, as stated below

LemmaC.1.1 (Self-bounding property of Lipschitz-smooth functions). Let q : RÑ
R be an�-smooth non-negative function. Then for all 0 P R: |∇qp0q| ď

a

4�qp0q

Proof. By mean value theorem, for any 0, 01 we have D [P p0, 01q (or p01, 0q) such
that qp01q “ qp0q ` ∇qp[qp01 ´ 0q. Since q is non-negative,

0 ď qp01q “ qp0q ` ∇qp0qp01 ´ 0q
` p∇qp[q ´ ∇qp0qqp01 ´ 0q

ď qp0q ` ∇qp0qp01 ´ 0q ` � |[´ 0 | |01 ´ 0 |
ď qp0q ` ∇qp0qp01 ´ 0q ` � |01 ´ 0 |2

Choosing 01 “ 0 ´
∇qp0q

2� proves the lemma.

Lemma C.1.2 (1-d Case (Srebro et al., 2010)). Let q : R Ñ R be an �-smooth
non-negative function. Then for all 0, 01 P R:

`

qp0q ´ qp01q
˘2
ď 6�

`

qp0q ` qp01q
˘ `

0 ´ 01
˘2

Proof. As before, D[P p0, 01q such that qp01q ´ qp0q “ ∇qp[qp01 ´ 0q. By
assumption of q, we have |∇qp[q´∇qp0q| ď � |[´0 | ď � |01´0 |. Thus we have:

|∇qp[q| ď |∇qp0q| ` � |0 ´ 01 | (C.1)

Consider two cases:

217

Case 1: If |0 ´ 01 | ď |∇qp0q|
5� , then by equation C.1 we have |∇qp[q| ď 6{5|∇qp0q|.

Thus

`

qp0q ´ qp01q
˘2
“ p∇qp[qq2

`

0 ´ 01
˘2

ď
36
25
p∇qp0qq2

`

0 ´ 01
˘2

ď
144
25

�qp0q
`

0 ´ 01
˘2

by lemma C.1.1. Therefore:

`

qp0q ´ qp01q
˘2
ď 6�qp0q

`

0 ´ 01
˘2
ď 6�

`

qp0q ` qp01q
˘ `

0 ´ 01
˘2

Case 2: If |0 ´ 01 | ą |∇qp0q|
5� , then equation C.1 gives |∇qp[q| ď 6� |0 ´ 01 |. Once

again

`

qp0q ´ qp01q
˘2
“
`

qp0q ´ qp01q
˘

∇qp[q
`

0 ´ 01
˘

ď |
`

qp0q ´ qp01q
˘

| |∇qp[q| |
`

0 ´ 01
˘

|

ď |
`

qp0q ´ qp01q
˘

|
´

6�
`

0 ´ 01
˘2
¯

ď 6�
`

qp0q ` qp01q
˘ `

0 ´ 01
˘2

Proof of Lemma 4.5.1. The extension to the multi-dimensional case is straight-
forward. For any 0, 01 P R: , consider the function q : R Ñ R such that
qpCq “ ipp1 ´ Cq0 ` C01q, then q is a differentiable, non-negative function and
∇CpqpCqq “ x∇ip0 ` Cp01 ´ 0qq, 01 ´ 0y. Thus:

|q1pC1q ´ q1pC2q| “ |x∇ip0 ` C1p01 ´ 0qq´
∇ip0 ` C2p01 ´ 0qq, 01 ´ 0y|

ď
›

›∇ip0 ` C1p01 ´ 0qq ´ ∇ip0 ` C2p01 ´ 0qq
›

›

˚

›

›01 ´ 0
›

›

ď � |C1 ´ C2 |
›

›0 ´ 01
›

›

2

Therefore q is an � }0 ´ 01}2-smooth function in R. Apply lemma C.1.2 to q, we
have:

pqp1q ´ qp0qq2 ď 6�
›

›0 ´ 01
›

›

2
pqp1q ` qp0qq p1´ 0q2

which is the same as pip0q ´ ip01qq2 ď 6�pip0q ` ip01qq }0 ´ 01}2

218

Proof of lemma 4.5.2

Lemma Statement. (Lemma 4.5.2) Given any starting state B0, sequentially execute
c34C and cBC> to obtain two separate trajectories A “ t0Cu)C“1 and Ã “ t0̃Cu)C“1 such
that 0C “ c34CpBCq and 0̃C “ cBC>pB̃Cq, where BC “ rGC , 0C´1s and B̃C “ rGC , 0̃C´1s.
Assuming the policies are stable as per Condition 1, we have EÃr0̃Cs “ 0C @C “

1, . . . ,) , where the expectation is taken over all random roll-outs of cBC>.

Proof. Given a starting state B0, we prove by induction that EÃr0̃Cs “ 0C .

It is easily seen that the claim is true for C “ 1.

Now assuming that EÃr0̃C´1s “ 0C´1. We have

EÃr0̃Cs “ EÃrEr0̃C |B̃Css

“ EÃrVĉpB̃Cq ` p1´ VqcpB̃Cqs

“ VEÃrĉpB̃Cqs ` p1´ VqEÃrcpB̃Cqs

Thus:

}EÃr0̃Cs ´ 0C} “ }EÃr0̃Cs ´ VĉpBCq ´ p1´ VqcpBCq}

“ }VEÃrĉpB̃Cqs ` p1´ VqEÃrcpB̃Cqs

´ VĉpBCq ´ p1´ VqcpBCq}

ď V }EÃrĉpB̃Cqs ´ ĉpBCq}

` p1´ Vq }EÃrcpB̃Cqs ´ cpBCq}

ď V }EÃr0̃C´1s ´ 0C´1}

` p1´ Vq }EÃr0̃C´1s ´ 0C´1}

“ 0

per inductive hypothesis. Therefore we conclude that EÃr0̃Cs “ 0C @C “ 1, . . . ,)

Proof of theorem 4.5.6 and corollary 4.5.7 - Main policy improvement results
In this section, we provide the proof to theorem 4.5.6 and corollary 4.5.7.

Theorem Statement. (theorem4.5.6) Assume ℓ is convex and !-Lipschitz-continuous,
and Condition 2 holds. Let n “ max

B„3c
}ĉpBq ´ cpBq}. Then for V P p0, 1q:

ℓc1pc
1
q ´ ℓcpcq ď

VWn!

p1´ Vqp1´ Wq
` Vpℓcpĉq ´ ℓcpcqq.

219

Proof. First let’s review the notations: let) be the trajectory horizon. For a policy
c in the deterministic policy class Π, given a starting state B0, we roll out the full
trajectory B0

c
ÝÑ B1

c
ÝÑ . . .

c
ÝÑ B) , where BC “ rGC , cpBC´1qs, with GC encodes the

featurized input at current time C, and cpBC´1q encodes the dependency on previous
predictions. Let ℓpcpBqq be the loss of taking action cpBq at state B, we can define
the trajectory loss of policy c from starting state B0 as

ℓpc|B0q “
1
)

)
ÿ

C“1
ℓpcpBCqq

For a starting state distribution `, we define policy loss of c as the expected loss
along trajectories induced by c: ℓcpcq “ EB0„`rℓpc|B0qs. Policy loss ℓcpcq can be
understood as

ℓcpcq “

ż

B0„`

E
GC„X

1
)

«

)
ÿ

C“1
ℓpcpBCqq

ff

3`pB0q

To prove policy improvement, we skip the subscript of algorithm 4 to consider
general policy update rule within each iteration:

c1 “ c=4F “ Vĉ ` p1´ Vqc (C.2)

where c “ c>;3 is the current policy (combined up until the previous iteration), ĉ is
the trained model from calling the base regression routine TrainpS, pA|ℎq. Learning
rate (step-size) V may be adaptively chosen in each iteration. Recall that this update
rule reflects deterministic interpolation of two policies.

We are interested in quantifying the policy improvement when updating c to c1.
Specifically, we want to bound

Γ “ ℓc1pc
1
q ´ ℓcpcq

where ℓcpcq (respectively ℓc1pc1q) denotes the trajectory loss of c (respectively c1)
on the state distribution induced by c (resp. c1)

We will bound the loss difference of old and new policies conditioned on a common
starting state B0. Based on update rule (C.2), consider rolling out c1 and c from
the same starting state B0 to obtain two separate sequences c1 ÞÝÑ tB0 Ñ B11 . . . Ñ

B1
)
u and c ÞÝÑ tB0 Ñ B1 . . . Ñ B)u corresponding to the same stream of inputs

220

G1, . . . , G) .

ΓpB0q “
1
)

)
ÿ

C“1
ℓpc1pB1Cqq ´ ℓpcpBCqq

“
1
)

)
ÿ

C“1
ℓpc1pB1Cqq ´ ℓpc

1
pBCqq ` ℓpc

1
pBCqq ´ ℓpcpBCqq (C.3)

Assume convexity of ℓ (e.g. sum of square losses):

ℓpc1pBCqq “ ℓpVĉpBCq ` p1´ VqcpBCqq

ď VℓpĉpBCqq ` p1´ VqℓpcpBCqq

Thus we can begin to bound individual components of ΓpB0q as

ℓpc1pB1Cqq ´ ℓpcpBCqq ď ℓpc1pB1Cqqq ´ ℓpc
1
pBCqq

` V rℓpĉpBCqq ´ ℓpcpBCqqs

Since ℓ is !-Lipschitz continuous, we have

ℓpc1pB1Cqq ´ ℓpc
1
pBCqq ď !

›

›c1pB1Cq ´ c
1
pBCq

›

›

ď !W
›

›B1C ´ BC
›

› (C.4)

where (C.4) is due to the smoothness condition [2] of policy classΠ. Given a policy
class Π with W ă 1, the following claim can be proved by induction:
Claim: }B1C ´ BC} ď

Vn

p1´Vqp1´Wq

Proof. For the base case, given the same starting state B0, we have B11 “ rG1, c
1pB0qs

and B1 “ rG1, cpB0qs. Thus
›

›B11 ´ B1
›

› “
›

›c1pB0q ´ cpB0q
›

› “ }VĉpB0q ` p1´ VqcpB0q ´ cpB0q}

“ V }ĉpB0q ´ cpB0q} ď Vn ď
Vn

p1´ Vqp1´ Wq

In the inductive case, assume we have
›

›

›
B1
C´1 ´ BC´1

›

›

›
ď

Vn

p1´Vqp1´Wq . Then similar to

221

before, the definition of B1C and BC leads to
›

›B1C ´ BC
›

› “
›

›

“

GC , c
1
pB1C´1q

‰

´ rGC , cpBC´1qs
›

›

“
›

›c1pB1C´1q ´ cpBC´1q
›

›

ď
›

›c1pB1C´1q ´ c
1
pBC´1q

›

›`
›

›c1pBC´1q ´ cpBC´1q
›

›

ď W
›

›B1C´1 ´ BC´1
›

›` V }ĉpBC´1q ´ cpBC´1q}

ď W
Vn

p1´ Vqp1´ Wq
` Vn

ď
Vn

p1´ Vqp1´ Wq

Applying the claim to equation (C.4), we have

ℓpc1pB1Cqq ´ ℓpc
1
pBCqq ď

VWn!

p1´ Vqp1´ Wq

which leads to

ℓpc1pB1Cq ´ ℓpcpBCqqq ď
VWn!

p1´ Vqp1´ Wq
` VpℓpĉpBCqq ´ ℓpcpBCqqq (C.5)

Integrating (C.5) over the starting state B0 „ ` and input trajectories tGCu)C“1, we
arrive at the policy improvement bound:

ℓc1pc
1
q ´ ℓcpcq ď

VWn!

p1´ Vqp1´ Wq
` Vpℓcpĉq ´ ℓcpcqq

where ℓcpĉq is the expected loss of the trained policy ĉ on the state distribution
induced by policy c (reduction term, analogous to policy advantage in the traditional
MDP terminologies (Kakade and Langford, 2002))

This means in the worst case, as we choose V Ñ 0, we have rℓc1pc1q ´ ℓcpcqs Ñ 0,
meaning the new policy does not degrade much for a small choice of V. However
if ℓcpĉq ´ ℓcpcq ! 0, we can choose V to enforce monotonic improvement of the
policy by adaptively choosing V that minimizes the right-hand side. In particular, let
the reduction term be Δ “ ℓcpcq ´ ℓcpĉq ą 0 and let X “ Wn!

1´W , then for V “
Δ´X
2Δ we

have the following monotonic policy improvement:

ℓc1pc
1
q ´ ℓcpcq ď ´

pΔ´ Xq2

2pΔ` Xq

222

Proof of theorem 4.5.5 -)-dependent improvement

Theorem Statement. (theorem 4.5.5) Assume ℓ is convex and !-Lipschitz, and
Condition 1 holds. Let n “ max

B„3c
}ĉpBq ´ cpBq}. Then:

ℓc1pc
1
q ´ ℓcpcq ď Vn!) ` V pℓcpĉq ´ ℓcpcqq .

In particular, choosing V P p0, 1{)q yields:

ℓc1pc
1
q ´ ℓcpcq ď n! ` V pℓcpĉq ´ ℓcpcqq .

Proof. The proof of theorem 4.5.5 largely follows the structute of theorem 4.5.6,
except that we are using the slighty weaker Condition 1 which leads to weaker bound
on the policy improvement that depends on the trajectory horizon) . For any state
B0 taken from the starting state distribution `, sequentially roll-out policies c1 and
c to receive two separate trajectories c1 : B0 Ñ B11 Ñ . . . Ñ B1

)
and c1 : B0 Ñ

B1 Ñ . . . Ñ B) . Consider a pair of states B1C “ rGC , c1pB1C´1qs and BC “ rGC , cpBC´1qs

corresponding to the same input feature GC , as before we can decompose ℓpc1pB1Cqq´
ℓpcpBCqq “ ℓpc1pB1Cqq ´ ℓpc1pBCqq ` ℓpc1pBCqq ´ ℓpcpBCqq ď ! }c1pB1Cq ´ c

1pBCq} `

VpℓpĉpBCqq ´ ℓpcpBCqqq due to convexity and !-Lipschitz continuity of ℓ.

Condition 1 further yields: ℓpc1pB1Cqq ´ ℓpcpBCqq ď ! }B1C ´ BC} ` VpℓpĉpBCqq ´

ℓpcpBCqqq. By the construction of the states, note that
›

›B1C ´ BC
›

› “
›

›c1pB1C´1q ´ cpBC´1q
›

›

ď
›

›c1pB1C´1q ´ c
1
pBC´1q

›

›`
›

›c1pBC´1q ´ cpBC´1q
›

›

ď
›

›B1C´1 ´ BC´1
›

›` Vp}ĉpBC´1q ´ cpBC´1q}q

ď
›

›B1C´1 ´ BC´1
›

›` Vn

(by condition 1 and definition of n).

From here, one can use this recursive relation to easily show that }B1C ´ BC} ď VnC

for all C P r1,)s.

Averaging over the) time steps and integrating over the starting state distribution,
we have:

ℓc1pc
1
q ´ ℓcpcq ď Vn!p) ` 1q{2` Vpℓcpĉq ´ ℓcpcqq

ď Vn!) ` Vpℓcpĉq ´ ℓcpcqq

In particular, V P p0, 1{)q yields ℓc1pc1q ´ ℓcpcq ď n! ` Vpℓcpĉq ´ ℓcpcqq.

223

Proof of proposition 4.5.8 - smooth expert proposition

Proposition Statement. (Proposition 4.5.8) Letl be the average supervised training
error from F , i.e. l “ min

5 PF
EG„X r} 5 prG, 0sq ´ 0˚}s. Let the rolled-out trajectory

of current policy c be t0Cu. If the average gap between c and c˚ is such that
EC„Uniformr1:)s r}0

˚
C ´ 0C´1}s ě 3l ` [p1 ` _q, then using t0˚C u as feedback will

cause the trained policy ĉ to be non-smooth, i.e.:

EC„Uniformr1:)s r}0̂C ´ 0̂C´1}s ě [,

for t0̂Cu the rolled-out trajectory of ĉ.

Proof. Recall that Π_ is formed by regularizing a class of supervised learners F
with the singleton class of smooth functionH fi tℎp0q “ 0u, via a hyper-parameter
_ that controls the trade-off between being close to the two classes.

Minimizing over Π_ can be seen as a regularized optimization problem:

ĉpG, 0q “ arg min
cPΠ

ℓpcprG, 0sqq

“ arg min
5 PF ,ℎPH

p 5 pG, 0q ´ 0˚q2 ` _p 5 pG, 0q ´ ℎp0qq2

“ arg min
5 PF

p 5 pG, 0q ´ 0˚q2 ` _p 5 pG, 0q ´ 0q2 (C.6)

where hyper-parameter _ trades-off the distance of 5 pG, 0q relative to 0 (smoothness)
and 0˚ (imitation accuracy), and 0 P R1.

Such a policy c, at execution time, corresponds to the regularized minimizer of:

0C “ cprG, 0C´1sq

“ arg min
0

}0 ´ 5 prGC , 0C´1sq}
2
` _ }0 ´ 0C´1}

2

“
5 prGC , 0C´1sq ` _0C´1

1` _
(C.7)

where 5 P F is the minimizer of equation C.6

Thus we enforce smoothness of learning policy from Π_ by encouraging low first
order difference of consecutive actions of the executed trajectory t0Cu. In prac-
tice, we may contrain this first order difference relative to the human trajectory
1
)

ř)
C“1 }0C ´ 0C´1} ď [, where [9 1

)

ř)
C“1

›

›

›
0˚C ´ 0

˚
C´1

›

›

›
.

Consider any given iteration with the following set-up: we execute old policy c “
c>;3 to get rolled-out trajectory t0Cu)C“1. Form the new data set asD “ tpBC , 0

˚
C qu

)
C“1

224

with predictors BC “ rGC , 0C´1s and feedback labels simply the human actions 0˚C .
Use this data set to train a policy ĉ by learning a supervised 5̂ P F fromD. Similar
to c, the execution of ĉ corresponds to 0̂C where:

0̂C “ ĉprGC , 0̂C´1sq

“ arg min
0

›

›0 ´ 5̂ prGC , 0̂C´1sq
›

›

2
` _ }0 ´ 0̂C´1}

2

“
5̂ prGC , 0̂C´1sq ` _0̂C´1

1` _
(C.8)

Denote by 50 the "naive" supervised learner from F . In other words, 50 “

arg min
5 PF

)
ř

C“1
} 5 prGC , 0sq ´ 0˚C }

2. Let l be the average gap between human trajec-

tory and the rolled-out trajectory of 50, i.e.

l “
1
)

)
ÿ

C“1
} 50prGC , 0sq ´ 0˚C }

Note that it is reasonable to assume that the average errors of 5 and 5̂ are no worse
than 50, since in the worst case we can simply discard the extra features 0C´1 (resp.
0̂C´1) of 5 (resp. 5̂) to recover the performance of the naive learner 50:

1
)

)
ÿ

C“1
} 5 prGC , 0C´1sq ´ 0

˚
C } ď l

1
)

)
ÿ

C“1

›

› 5̂ prGC , 0̂C´1sq ´ 0
˚
C

›

› ď l

Assume that the old policy c “ c>;3 is "bad" in the sense that the rolled-out
trajectory t0Cu)C“1 differs substantially from human trajectory t0˚C u)C“1. Specifically,
denote the gap:

1
)

)
ÿ

C“1
}0˚C ´ 0C´1} “ Ω " l

This means the feedback correction 0˚C to BC “ rGC , 0C´1s is not smooth. We will
show that the trained policy ĉ from D will not be smooth.

From the definition of 0C and 0̂C from equations C.7 and C.8, we have for each C:

0C ´ 0̂C “
_

1` _
p0C´1 ´ 0̂C´1q `

5 prGC , 0C´1sq ´ 5̂ prGC , 0̂C´1sq

1` _
Applying triangle inequality and summing up over C, we have:

1
)

)
ÿ

C“1
}0C ´ 0̂C} ď 2l

225

From here we can provide a lower bound on the smoothness of the new trajectory
0̂C , as defined by the first order difference 1

)

ř)
C“1 }0̂C ´ 0̂C´1}. By definition of 0̂C :

}0̂C ´ 0̂C´1} “

›

›

›

›

›

5̂ prGC , 0̂C´1sq ´ 0̂C´1

1` _

›

›

›

›

›

“

›

›

›

›

›

5̂ prGC , 0̂C´1sq ´ 0
˚
C ` 0

˚
C ´ 0C´1 ` 0C´1 ´ 0̂C´1

1` _

›

›

›

›

›

ě
}0˚C ´ 0C´1} ´

›

› 5̂ prGC , 0̂C´1sq ´ 0
˚
C

›

›´ }0C´1 ´ 0̂C´1}

1` _

Again summing up over C and taking the average, we obtain:

1
)

)
ÿ

C“1
}0̂C ´ 0̂C´1} ě

Ω´ 3l
1` _

Hence for Ω " l, meaning the old trajectory is sufficiently far away from the ideal
human trajectory, setting the learning target to be the ideal human actions will cause
the learned trajectory to be non-smooth.

C.2 Imitation Learning With Smooth Regression Forests
Variant of SIMILE Using Smooth Regression Forest Policy Class
We provide a specific instantiation of algorithm 4 that we used for our experiment,
based on a policy class Π as a smooth regularized version of the space of tree-based
ensembles. In particular, F is the space of random forests and H is the space of
linear auto-regressors H fi tℎp0C´1:C´gq “

řg
8“1 280C´8u. In combination, F and

H form a complex tree-based predictor that can predict smooth sequential actions.

Empirically, decision tree-based ensembles are among the best performing super-
vised machine learning method (Caruana and Niculescu-Mizil, 2006; Criminisi
et al., 2012). Due to the piece-wise constant nature of decision tree-based predic-
tion, the results are inevitably non-smooth. We propose a recurrent extension based
on H , where the prediction at the leaf node is not necessarily a constant, but rather
is a smooth function of both static leaf node prediction and its previous predictions.
By merging the powerful tree-based policy class with a linear auto-regressor, we
provide a novel approach to train complex models that can accommodate smooth
sequential prediction using model-based smooth regularizer, at the same time lever-
aging the expressiveness of complex model-free function class (one can similarly
apply the framework to the space of neural networks). Algorithm 19, which is based
on SIMILE, describes in more details our training procedure used for the automated

226

Algorithm 19 Imitation Learning for Online Sequence Prediction with Smooth
Regression Forest
Input: Input features X “ tGCu

)
C“1, expert demonstration A˚ “ t0˚C u

)
C“1, base

routine Forest, past horizon g, sequence of f P p0, 1q
1: Initialize A0 Ð A˚, S0 Ð t

”

GC:C´g, 0
˚
C´1:C´g

ı

u,

ℎ0 “ arg min
21,...,2g

)
ř

C“1

`

0˚C ´
řg
8“1 280

˚
C´8

˘2

2: Initial policy c0 “ ĉ0 ÐForestpS0,A0| ℎ0q
3: for = “ 1, . . . , # do
4: A= “ t0

=
C u Ð tc=´1p

”

GC:C´g, 0
=´1
C´1:C´g

ı

qu

//sequential roll-out old policy
5: S= Ð tB=C “

”

GC:C´g, 0
=
C´1:C´g

ı

u //Form states
in 1d case

6: pA= “ tp0=C “ f0=C ` p1´ fq0˚C u @B=C P S=
// collect smooth 1-step feedback

7: ℎ= “ arg min
21,...,2g

)
ř

C“1

`

0̂=C ´
řg
8“1 28 0̂

=
C´8

˘2 //update 28
via regularized least square

8: ĉ= ÐForestpS=, pA=| ℎ=q // train with smooth
decision forests. See section C.2

9: V Ð
errorpcq

errorpĉq`errorpcq
//set V to weighted
empirical errors

10: c= “ Vĉ= ` p1´ Vqc=´1 // update policy
11: end for
output Last policy c#

camera planning experiment. We first describe the role of the linear autoregressor
classH , before discussing how to incorporateH into decision tree training to make
smooth prediction (see the next section).

The autoregresor ℎcp0´1, . . . , 0´gq is typically selected from a class of autoregres-
sors H . In our experiments, we use regularized linear autoregressors asH .

Consider a generic learning policy c with a rolled-out trajectory A “ t0Cu
)
C“1

corresponding to the input sequence X “ tGCu)C“1. We form the state sequence S “
tBCu

)
C“1 “ trGC , . . . , GC´g, 0C´1, . . . , 0C´gsu

)
C“1, where g indicates the past horizon

that is adequate to approximately capture the full state information. We approximate
the smoothness of the trajectory A by a linear autoregressor

ℎc ” ℎcpBCq ”

g
ÿ

8“1
280C´8

for a (learned) set of coefficients t28ug8“1 such that 0C « ℎc pBCq. Given feedback

227

target pA “ t0̂Cu, the joint loss function thus becomes

ℓp0, 0̂Cq “ ℓ3p0, 0̂Cq ` _ℓ'p0, BCq

“ p0 ´ 0̂Cq
2
` _p0 ´

g
ÿ

8“1
280C´8q

2

Here _ trades off between smoothness versus absolute imitation accuracy. The
autoregressor ℎc acts as a smooth linear regularizer, the parameters of which can be
updated at each iteration based on feedback target pA according to

ℎc “ arg min
ℎPH

›

›

›

pA´ ℎppAq
›

›

›

2

“ arg min
21,...,2g

p

)
ÿ

C“1
p0̂C ´

g
ÿ

8“1
28 0̂C´8q

2
q, (C.9)

In practice we use a regularized version of equation (C.9) to learn a new set of
coefficients t28ug8“1. The Forest procedure (Line 8 of algorithm 2) would use
this updated ℎc to train a new policy that optimizes the trade-off between 0C « 0̂C

(feedback) versus smoothness as dictated by 0C «
řg
8“1 280C´8.

Smooth Regularization with Linear Autoregressors

Our application of Algorithm 1 to realtime camera planning proceeds as follows: At
each iteration, we form a state sequence S based on the rolled-out trajectory A and
tracking input data X such that BC “ rGC , . . . , GC´g, 0C´1, . . . , 0C´gs for appropriate g
that captures the history of the sequential decisions. We generate feedback targets pA
based on each BC P S following 0̂C “ f0C ` p1´ fq0˚C using a parameter f P p0, 1q
depending on the Euclidean distance between A and A˚. Typically, f gradually
decreases to 0 as the rolled-out trajectory improves on the training set. After
generating the targets, a new linear autoregressor ℎc (new set of coefficients t28ug8“1)
is learned based on pA using regularized least squares (as described in the previous
section). We then train a new model ĉ based on S, pA, and the updated coefficients
t28u, using Forest - our recurrent decision tree framework that is capable of
generating smooth predictions using autoregressor ℎc as a smooth regularizer (see
the following section for how to train smooth decision trees). Note that typically
this creates a "chicken-and-egg" problem. As the newly learned policy ĉ is greedily
trained with respect to pA, the rolled-out trajectory of ĉ may have a state distribution
that is different from what the previously learned ℎc would predict. Our approach
offers two remedies to this circular problem. First, by allowing feedback signals

228

to vary smoothly relative to the current rolled-out trajectory A, the new policy ĉ
should induce a new autoregresor that is similar to previously learned ℎc. Second,
by interpolating distributions (Line 10 of Algorithm 2) and having pA eventually
converge to the original human trajectory A˚, we will have a stable and converging
state distribution, leading to a stable and converging ℎc.

Throughout iterations, the linear autoregressor ℎc and regularization parameter _
enforces smoothness of the rolled-out trajectory, while the recurrent decision tree
framework Forest learns increasingly accurate imitation policy. We generally
achieve a satisfactory policy after 5-10 iterations in our sport broadcasting data sets.
In the following section, we describe the mechanics of our recurrent decision tree
training.

Smooth Regression Tree Training
Given states B as input, a decision tree specifies a partitioning of the input state space.
Let � “ tpB<, 0̂<qu

"
<“1 denote a training set of state/target pairs. Conventional

regression tree learning aims to learn a partitioning such that each leaf node, node,
makes a constant prediction via minimizing the squared loss function:

0̄node “ arg min
0

ÿ

pB,0̂qP�node

ℓ3p0, 0̂q

“ arg min
0

ÿ

pB,0̂qP�node

p0̂ ´ 0q2, (C.10)

where �node denotes the training data from � that has partitioned into the leaf node.
For squared loss, we have:

0̄node “ mean t0̂ |pB, 0̂q P �node u . (C.11)

In the recurrent extension to Forest, we allow the decision tree to branch on the
input state B, which includes the previous predictions 0´1, . . . , 0´g. To enforcemore
explicit smoothness requirements, let ℎcp0´1, . . . , 0´gq denote an autoregressor that
captures the temporal dynamics of c over the distribution of input sequences 3x,
while ignoring the inputs G. At time step C, ℎc predicts the behavior 0C “ cpBCq

given only 0C´1, . . . , 0C´g.

Our policy class Π of recurrent decision trees c makes smoothed predictions by
regularizing the predictions to be close to its autoregressor ℎc. The new loss function
incorporates both the squared distance loss ℓ3 , as well as a smooth regularization

229

loss such that:

L�p0q “
ÿ

pB,0̂qP�

ℓ3p0, 0̂q ` _ℓ'p0, Bq

“
ÿ

pB,0̂qP�

p0 ´ 0̂q2 ` _pH ´ ℎcpBqq
2

where _ is a hyper-parameter that controls how much we care about smoothness
versus absolute distance loss.

Making prediction: For any any tree/policy c, each leaf node is associated with
the terminal leaf node value 0̄node such that prediction 0̃ given input state B is:

0̃pBq ” cpBq “ arg min
0

p0 ´ 0̄nodepBqq
2
` _p0 ´ ℎcpBqq

2, (C.12)

“
0̄nodepBq ` _ℎcpBq

1` _
. (C.13)

where nodepBq denotes the leaf node of the decision tree that B branches to.

Setting terminal node value: Given a fixed ℎc and decision tree structure, navigat-
ing through consecutive binary queries eventually yields a terminal leaf node with
associated training data �node Ă �.

One option is to set the terminal node value 0̄node to satisfy:

0̄node “ arg min
0

ÿ

pB,0̂qP�node

ℓ3p0̃pB|0q, 0̂q

“ arg min
0

ÿ

pB,0̂qP�node

p0̃pB|0q ´ 0̂q2 (C.14)

“ arg min
0

ÿ

pB,0̂qP�node

ˆ

0 ` _ℎcpBq

1` _
´ 0̂

˙2

for 0̃pB|0q defined as in (C.13) with 0 ” 0̄nodepBq. Similar to (C.11), we can write
the closed-form solution of (C.14) as:

0̄node “ mean tp1` _q0̂ ´ _ℎcpBq |pB, 0̂q P �node u . (C.15)

When _ “ 0, (C.15) reduces to (C.11).

Note that (C.14) only looks at imitation loss ℓ3 , but not smoothness loss ℓ'. Alter-
natively in the case of joint imitation and smoothness loss, the terminal leaf node is
set to minimize the joint loss function:

230

0̄node “ arg min
0

L�nodep0̃pB|0qq

“ arg min
0

ÿ

pB,0̂qP�node

ℓ3p0̃pB|0q, 0̂q ` _ℓ'p0̃pB|0q, Bq

“ arg min
0

ÿ

pB,0̂qP�node

p0̃pB|0q ´ 0̂q2 ` _p0̃pB|0q ´ ℎcpBqq
2 (C.16)

“ arg min
0

ÿ

pB,0̂qP�node

ˆ

0 ` _ℎcpBq

1` _
´ 0̂

˙2

` _

ˆ

0 ` _ℎcpBq

1` _
´ ℎcpBq

˙2

“ mean t0̂ |pB, 0̂q P �node u , (C.17)

Node splitting mechanism: For a node representing a subset �node of the training
data, the node impurity is defined as:

�node “ L�nodep0̄nodeq

“
ÿ

pB,0̂qP�node

ℓ3p0̄node, 0̂q ` _ℓ'p0̄node, Bq

“
ÿ

pB,0̂qP�node

p0̄node ´ 0̂q
2
` _p0̄node ´ ℎcpBqq

2

where 0̄node is set according to equation (C.15) or (C.17) over pB, 0̂q’s in �node. At
each possible splitting point where �node is partitioned into �left and �right, the
impurity of the left and right child of the node is defined similarly. As with normal
decision trees, the best splitting point is chosen as one that maximizes the impurity
reduction: �node ´ |�left |

|�node | �left ´
|�right |
|�node | �right

231

A p p e n d i x D

APPENDIX TO CHAPTER 5

D.1 Theoretical Analysis
Preliminaries and Notations
We formally define an ambient control policy spaceU to be a vector space equipped
with inner product x¨, ¨y : U ˆ U ÞÑ R, which induces a norm }D} “

a

xD, Dy,
and its dual norm defined as }E}˚ “ suptxE, Dy| }D} ď 1u. While multiple ways
to define the inner product exist, for concreteness we can think of the example of
square-integrable stationary policies with xD, Ey “

ş

S DpBqEpBq3B. The addition
operator ` between two policies D, E P U is defined as pD ` EqpBq “ DpBq ` EpBq

for all state B P S. Scaling _D ` ^E is defined similarly for scalar _, ^.

The cost functional of a control policy D is defined as �pDq “
ş8

0 2pBpgq, Dpgqq3g,
or �pDq “

ş

S 2pB, DpBqq3`
DpBq, where `D is the distribution of states induced by

policy D. This latter example is equivalent to the standard notion of value function
in reinforcement learning.

Separate from the parametric representation issues, both programmatic policy class
Π and neural policy class F , and by extension - the joint policy class H , are
considered to live in the ambient vector space U. We thus have a common and
well-defined notion of distance between policies from different classes.

We make an important distinction between differentiability of �pℎq in the ambient
policy space (non-parametric), versus differentiability in parameterization (para-
metric). For example, ifΠ is a class of decision-tree based policy, policies inΠmay
not be differentiable under representation. However, policies c P Π might still be
differentiable when considered as points in the ambient vector spaceU.

We will use the following standard notion of gradient and differentiability from
functional analysis:

Definition D.1.1 (Subgradients). The subgradient of � at ℎ, denoted B�pℎq, is the
non-empty set t6 P H |@ 9 P H : x 9 ´ ℎ, 6y ` �pℎq ď �p 9qu

Definition D.1.2 (Fréchet gradient). A bounded linear operator ∇ : H ÞÑ H is
called Fréchet functional gradient of � at ℎ P H if lim

}6}Ñ0

�pℎ`6q´�pℎq´x∇�pℎq,6y
}6}

“ 0

232

The notions of convexity, smoothness and Bregman divergence are analogous to
finite-dimensional setting:

Definition D.1.3 (Strong convexity). A differentiable function ' is U´strongly
convex w.r.t norm }¨} if 'pHq ě 'pGq ` x∇'pGq, H ´ Gy ` U

2 }H ´ G}
2

DefinitionD.1.4 (Lipschitz continuous gradient smoothness). Adifferentiable func-
tion ' is !'´strongly smooth w.r.t norm }¨} if }∇'pGq ´ ∇'pHq}˚ ď !' }G ´ H}

Definition D.1.5 (Bregman Divergence). For a strongly convex regularizer ',
�'pG, Hq “ 'pGq ´ 'pHq ´ x∇'pHq, G ´ Hy is the Bregman divergence between
G and H (not necessarily symmetric)

The following standard result for Bregman divergence will be useful:

Lemma D.1.1. (Beck and Teboulle, 2003) For all G, H, I we have the identity
x∇'pGq ´ ∇'pHq, G ´ Iy “ �'pG, Hq ` �'pI, Gq ´ �'pI, Hq. Since Bregman diver-
gence is non-negative, a consequence of this identity is that �'pI, Gq ´ �'pI, Hq ď

x∇'pGq ´ ∇'pHq, I ´ Gy

Expected Regret Bound under Noisy Policy Gradient Estimates and Projection
Errors
In this section, we show regret bound for the performance of the sequence of returned
programs c1, . . . , c) of the algorithm. The analysis here is agnostic to the particular
implementation of algorithm 6 and algorithm 7.

Let ' be a U´strongly convex and !'´smooth functional with respect to norm }¨}
onH . The steps from algorithm 5 can be described as follows.

• Initialize c0 P Π. For each iteration C:

1. Obtain a noisy estimate of the gradient p∇�pcC´1q « ∇�pcC´1q

2. Update in theH space: ∇'pℎCq “ ∇'pcC´1q ´ [p∇�pcC´1q

3. Obtain approximate projection cC “ Project'c pℎCq « arg min?8PΠ �'pc, ℎCq

This procedure is an approximate functional mirror descent scheme under bandit
feedback. We will develop the following result, which is a more detailed version of
5.4.1 in the main paper.

233

In the statement below, � is the diameter onΠwith respect to defined norm }¨} (i.e.,
� “ sup }c ´ c1}). !� is the Lipschitz constant of the functional � on H . V, f2

are the bound on the bias and variance of the gradient estimate at each iteration,
respectively. U and !' are the strongly convex and smooth coefficients of the
functional regularizer '. Finally, n is the bound on the projection error with respect
to the same norm }¨}.

TheoremD.1.2 (Regret bound of returned policies). Let c1, . . . , c) be a sequence of
programmatic policies returned by algorithm 5 and c˚ be the optimal programmatic
policy. We have the expected regret bound:

E

«

1
)

)
ÿ

C“1
�pcCq

ff

´ �pc˚q ď
!'�

2

[)
`
n!'�

[
`
[pf2 ` !2

�
q

U
` V�

In particular, choosing the learning rate [“
b

1
)
`n

f2 , the expected regret is simplified
into:

(D.1)

E

«

1
)

)
ÿ

C“1
�pcCq

ff

´ �pc˚q “ $

˜

f

c

1
)
` n ` V

¸

Proof. At each round C, let s∇C “ Erp∇C |cCs be the conditional expectation of the
gradient estimate. We will use the shorthand notation ∇C “ ∇�pcCq. Denote the
upper-bound on the bias of the estimate by VC , i.e.,

›

›s∇C ´ ∇C
›

›

˚
ď VC almost surely.

Denote the noise of the gradient estimate by bC “ s∇C´ p∇C , and f2
C “ E

“

›

›

›

p∇C ´ s∇C
›

›

›

2

˚

‰

is the variance of gradient estimate p∇C .

The projection operator is n´approximate in the sense that
›

›cC ´ Project'Πp 5Cq
›

› “
›

›

›

{Project
'

ΠpℎCq ´ Project'ΠpℎCq
›

›

›
ď n with some constant n , which reflects the

statistical error of the imitation learning procedure. This projection error in general
is independent of the choice of function classes Π and F .We will use the shorthand
notation c˚C “ Project'Πp 5Cq for the true Bregman projection of ℎC onto Π.

Due to convexity of � over the spaceH (which includes Π), we have for all c P Π:

�pcCq ´ �pcq ď x∇C , cC ´ cy

234

We proceed to bound the RHS, starting with bounding the inner product where the
actual gradient is replaced by the estimated gradient.

xp∇C , cC ´ cy “
1
[C
x∇'pcCq ´ ∇'pℎC`1q, cC ´ cy (D.2)

“
1
[C

`

�'pc, cCq ´ �'pc, ℎC`1q ` �'pcC , ℎC`1q
˘

(D.3)

ď
1
[C

`

�'pc, cCq ´ �'pc, c
˚
C`1q ´ �'pc

˚
C`1, ℎC`1q ` �'pcC , ℎC`1q

˘

(D.4)

“
1
[C

`

�'pc, cCq ´ �'pc, cC`1q
loooooooooooooomoooooooooooooon

telescoping

`�'pc, cC`1q ´ �'pc, c
˚
C`1q

loooooooooooooooomoooooooooooooooon

projection error

´�'pc
˚
C`1, ℎC`1q ` �'pcC , ℎC`1q

looooooooooooooooooomooooooooooooooooooon

relative improvement

˘

(D.5)

Equation (D.2) is due to the gradient update rule in F space. Equation (D.3) is
derived from definition of Bregman divergence. Equation (D.4) is due to the general-
izedPythagorean theoremofBregmanprojection�'pG, Hq ě �'pG, Project'ΠpGqq`
�'pProject'ΠpGq, Hq. The RHS of equation (D.4) are decomposed into three com-
ponents that will be bounded separately.

Bounding projection error. By lemma (D.1.1) we have

�'pc, cC`1q ´ �'pc, c
˚
C`1q ď x∇'pcC`1q ´ ∇'pc˚C`1q, c ´ cC`1y (D.6)

ď
›

›∇'pcC`1q ´ ∇'pc˚C`1q
›

› }c ´ cC`1}˚ (D.7)

ď !'
›

›cC`1 ´ c
˚
C`1

›

›� ď n!'� (D.8)

Equation (D.7) is due to Cauchy–Schwarz. Equation (D.8) is due to Lipschitz
smoothness of ∇' and definition of n´approximate projection.

Bounding relative improvement. This follows standard argument from analysis of
mirror descent algorithm.

�'pcC , ℎC`1q ´ �'pc
˚
C`1, ℎC`1q “ 'pcCq ´ 'pc˚C`1q ` x∇'pℎC`1q, c

˚
C`1 ´ cCy

(D.9)

ď x∇'pcCq, cC ´ c˚C`1y ´
U

2
›

›c˚C`1 ´ cC
›

›

2
˚
` x∇'pℎC`1q, c

˚
C`1 ´ cCy (D.10)

“ ´[Cxp∇C , c˚C`1 ´ cCy ´
U

2
›

›c˚C`1 ´ cC
›

›

2 (D.11)

ď
[2
C

2U

›

›

›

p∇C
›

›

›

2

˚
ď
[2
C

U
pf2

C ` !2
�q (D.12)

235

Equation (D.10) is from the U´strong convexity property of regularizer '. Equation
(D.11) is by definition of the gradient update. Combining the bounds on the three
components and taking expectation, we thus have

E
”

xp∇C , cC ´ cy
ı

ď
1
[C

ˆ

�'pc, cCq ´ �'pc, cC`1q ` n!'� `
[2
C

U
pf2

C ` !2
�q

˙

(D.13)
Next, the difference between estimated gradient p∇C and actual gradient ∇C factors
into the bound via Cauchy-Schwarz:

E
”

x∇C ´ p∇C , cC ´ cy
ı

ď

›

›

›
∇C ´ Erp∇Cs

›

›

›

˚
}cC ´ c} ď VC� (D.14)

The results can be deduced from equations (D.13) and (D.14).

Unbiased gradient estimates. For the case when the gradient estimate is unbiased,
assume the variance of the noise of gradient estimates is bounded by f2, we have
the expected regret bound for all ?8 P Π

E

«

1
)

)
ÿ

C“1
�pcCq

ff

´ �pcq ď
!'�

2

[)
`
n!'�

[
`
[pf2 ` !2

�
q

U
(D.15)

here to clarify, !' is the smoothness coefficient of regularizer ' (i.e., the gradient
of ' is !'-Lipschitz, !� is Lipschitz constant of �, � is the diameter of Π under
norm }¨}, f2 is the upper-bound on the variance of gradient estimates, and n is the
error from the projection procedure (i.e., imitation learning loss).

We can set learning rate [“
b

1
)
`n

f2 to observe that the expected regret is bounded

by $pf
b

1
)
` nq.

Biased gradient estimates. Assume that the bias of gradient estimate at each round
is upper-bounded by VC ď V. Similar to before, combining inequalities from (D.13)
and (D.14), we have

E

«

1
)

)
ÿ

C“1
�pcCq

ff

´ �pcq ď
!'�

2

[)
`
n!'�

[
`
[pf2 ` !2

�
q

U
` V� (D.16)

Similar to before, we can set learning rate [“
b

1
)
`n

f2 to observe that on the expected

regret is bounded by $pf
b

1
)
` n ` Vq. Compared to the bound on (D.15), in the

biased case, the extra regret incurred per bound is simply a constant, and does not
depend on) .

236

Finite-Sample Analysis
In this section, we provide overall finite-sample analysis for Propel under some
simplifying assumptions. We first consider the case where exact gradient estimate
is available, before extending the result to the general case of noisy policy gradient
update. Combining the two steps will give us the proof for the following statement
(theorem 5.4.2 in the main paper)

Theorem D.1.3 (Finite-sample guarantee). At each iteration, we perform vanilla
policy gradient estimate of c (overH) using< trajectories and useDAgger algorithm

to collect " roll-outs. Setting the learning rate [“
c

1
f2

` 1
)
` �

"
`

b

logp){Xq
"

˘

,
after) rounds of the algorithm, we have that

1
)

)
ÿ

C“1
�pcCq ´ �pc

˚
q ď$

¨

˝f

d

1
)
`
�

"
`

c

logp){Xq
"

˛

‚

`$

˜

f

c

logp):{Xq
<

`
�� logp):{Xq

<

¸

holds with probability at least 1 ´ X, with � the task horizon, � the cardinality of
action space, f2 the variance of policy gradient estimates, and : the dimension Π’s
parameterization.

Exact gradient estimate case. Assuming that the policy gradients can be calculated
exactly, it is straight-forward to provide high-probability guarantee for the effect of
the projection error. We start with the following result, adapted from (Ross et al.,
2011b) for the case of projection error bound. In this version of DAgger, we assume
that we only collect a single (state, expert action) pair from each trajectory roll-out.
Result is similar, with tighter bound, when multiple data points are collected along
the trajectory.

Lemma D.1.4 (Projection error bound from imitation learning procedure). Using
DAgger as the imitation learning sub-routine for our Project operator in algorithm
7, let " be the number of trajectories rolled-out for learning, and � be the horizon
of the task. With probability at least 1´ X, we have

�'pc, c
˚
q ď r$p1{"q `

2ℓ<0Gp1` �q
"

`

c

2ℓ<0G logp1{Xqq
"

where c is the result of Project, c˚ is the true Bregman projection of ℎ onto Π, and
ℓ<0G is the maximum value of the imitation learning loss function �'p¨, ¨q

237

The bound in lemma D.1.4 is simpler than previous imitation learning results with
cost information ((Ross and Bagnell, 2014; Ross et al., 2011b). The reason is that
the goal of the Project operator is more modest. Since we only care about the
distance between the empirical projection c and the true projection c˚, the loss
objective in imitation learning is simplified (i.e., this is only a regret bound), and
we can disregard how well policies in Π can imitate the expert ℎ, as well as the
performance of �pcq relative to the true cost from the environment �pℎq.

A consequence of this lemma is that for the number of trajectories at each round of
imitation learning" “ $p

log 1{X
n2 q`$p�

n
q, we have�'pcC , c

˚
C q ď n with probability

at least 1 ´ X. Applying union bound across) rounds of learning, we obtain the
following guarantee (under no gradient estimation error)

Proposition D.1.5 (Finite-sample Projection Error Bound). To simplify the presen-
tation of the result, we consider !', �, !, U to be known constants. Using DAgger
algorithm to collect " “ $p

log){X
n2 q`$p�

n
q roll-outs at each iteration, we have the

following regret guarantee after) rounds of our main algorithm:

1
)

)
ÿ

C“1
�pcCq ´ �pc

˚
q ď $

ˆ

1
[)
`
n

[
` [

˙

with probability at least 1 ´ X. Consequently, setting [“
c

1
)
` �

"
`

b

logp){Xq
"

,
we have that

1
)

)
ÿ

C“1
�pcCq ´ �pc

˚
q ď $

¨

˝

d

1
)
`
�

"
`

c

logp){Xq
"

˛

‚

with probability at least 1´ X

Note that the dependence on the time horizon of the task is sub-linear. This is
different from standard imitation learning regret bounds, which are often at least
linear in the task horizon. The main reason is that our comparison benchmark c˚

does live in the space Π, whereas for DAgger, the expert policy may not reside in
the same space.

Noisy gradient estimate case. We now turn to the issue of estimating the gradi-
ent of ∇�pcq. We make the following simplifying assumption about the gradient
estimation:

238

• The c is parameterized by vector \ P R: (such as a neural network). The
parameterization is differentiable with respect to \ (Alternatively, we can view
Π as a differentiable subspace of F , in which case we haveH “ F)

• At each Update loop, the policy is rolled out < times to collect the data, each
trajectory has horizon length �

• For each visited state B „ 3ℎ, the policy takes a uniformly random action 0.
The action space is finite with cardinality �.

• The gradient ∇ℎ\ is bounded by �

The gradient estimate is performed consistent with a generic policy gradient scheme,
i.e.,

p∇�p\q “ �

<

�
ÿ

8“1

<
ÿ

9“1
∇c\p0 98 |B

9

8
, \q p&

9

8

where p&
9

8
is the estimated cost-to-go (Sutton et al., 2000).

Taking uniform randomexploratory actions ensures that the samples are i.i.d. We can
thus apply Bernstein’s inequality to obtain the bound between estimated gradient
and the true gradient. Indeed, with probability at least 1 ´ X, we have that the
following bound on the bias component-wise:

›

›

›

p∇�p\q ´ ∇�p\q
›

›

›

8
ď V when < ě

p2f2 ` 2��� V3 q log :
X

V2

which leads to similar bound with respect to }¨}˚ (here we leverage the equivalence
of norms in finite dimensional setting):

›

›

›
∇C ´ p∇C

›

›

›

˚
ď V when < “ $

˜

pf2 ` ���Vq log :
X

V2

¸

Applying union bound of this result over) rounds of learning, and combining with
the result from proposition (D.1.5), we have the following finite-sample guarantee
in the simplifying policy gradient update. This is also the more detailed statement
of theorem 5.4.2 in the main paper.

Proposition D.1.6 (Finite-sample Guarantee under Noisy Gradient Updates and
Projection Error). At each iteration, we perform policy gradient estimate using
< “ $p

pf2`���Vq log) :
X

V2 q trajectories and use DAgger algorithm to collect " “

239

$p
log){X
n2 q`$p�

n
q roll-outs. Setting the learning rate [“

c

1
f2

` 1
)
` �

"
`

b

logp){Xq
"

˘

,
after) rounds of the algorithm, we have that

1
)

)
ÿ

C“1
�pcCq ´ �pc

˚
q ď $

¨

˝f

d

1
)
`
�

"
`

c

logp){Xq
"

˛

‚` V

with probability at least 1´ X.

Consequently, we also have the following regret bound:

1
)

)
ÿ

C“1
�pcCq ´ �pc

˚
q ď$

¨

˝f

d

1
)
`
�

"
`

c

logp){Xq
"

˛

‚

`$

˜

f

c

logp):{Xq
<

`
�� logp):{Xq

<

¸

holds with probability at least 1 ´ X, where again � is the task horizon, � is the
cardinality of action space, and : is the dimension of function class Π’s parameter-
ization.

Proof. (For both proposition (D.1.6) and (D.1.5)). The results follow by taking the
inequality from equation (D.16), and by solving for n and V explicitly in terms of
relevant quantities. Based on the specification of " and <, we obtain the necessary
precision for each round of learning in terms of number of trajectories:

V “ $pf
logp:{Xq

<
`
��� logp:{Xq

<
q

n “ $p
�

"
`

c

logp1{Xq
"

q

Setting the learning rate [“
b

1
f2

` 1
)
` n

˘

and rearranging the inequalities lead to
the desired bounds.

The regret bound depends on the variance f2 of the policy gradient estimates. It
is well-known that vanilla policy gradient updates suffer from high variance. We
instead use functional regularization technique, based on CORE-RL, in the practical
implementation of our algorithm. The CORE-RL subroutine has been demonstrated
to reduce the variance in policy gradient updates (Cheng et al., 2019e).

240

Defining a consistent approximation of ∇H �pcq - Proof of Proposition 5.4.3
We are using the notion of Fréchet derivative to define gradient of differentiable
functional. Note that while Gateaux derivative can also be utilized, Fréchet deriva-
tive ensures continuity of the gradient operator that would be useful for our analysis.

Definition D.1.6 (Fréchet gradient). A bounded linear operator ∇ : H ÞÑ H is
called Fréchet functional gradient of � at ℎ P H if lim

}6}Ñ0

�pℎ`6q´�pℎq´x∇�pℎq,6y
}6}

“ 0

We make the following assumption about H and F . One interpretation of this
assumption is that the space of policies Π and F that we consider have the property
that a programmatic policy c P Π can be well-approximated by a large space of
neural policies 5 P F .

Assumption 6. � is Fréchet differentiable on H . � is also differentiable on the
restricted subspace F . And F is dense inH (i.e., the closure sF “ H)

It is then clear that @ 5 P F the Fréchet gradient ∇F �p 5 q, restricted to the subspace
F is equal to the gradient of 5 in the ambient space H (since Fréchet gradient is
unique). In general, given c P Π and 5 P F , c` 5 is not necessarily in F . However,
the restricted gradient on subspace F of �pc ` 5 q can be defined asymptotically.

Proposition D.1.7. Fixing a policy c P Π, define a sequence of policies 5: P

F , : “ 1, 2, . . . that converges to c: lim:Ñ8 } 5: ´ 6} “ 0, we then have
lim:Ñ8 }∇F �p 5:q ´ ∇H �pcq}˚ “ 0

Proof. Since Fréchet derivative is a continuous linear operator, we have
lim:Ñ8 }∇H �p 5:q ´ ∇H �pcq}˚ “ 0. By the reasoning above, for 5 P F , the
gradient ∇F �p 5 q defined via restriction to the space F does not change compared
to ∇H �p 5 q, the gradient defined over the ambient space H . Thus we also have
lim:Ñ8 }∇F �p 5:q ´ ∇H �pcq}˚ “ 0. By the same argument, we also have that for
any given c P Π and 5 P F , even if c ` 5 R F , the gradient ∇F �pc ` 5 q with
respect to the F can be approximated similarly.

Note that we are not assuming �pcq to be differentiable when restricting to the policy
subspace Π.

241

Theoretical motivation for Algorithm 6 - Proof of Proposition 5.4.4 and 5.4.5
We consider the case where Π is not differentiable by parameterization. Note that
this does not preclude �pcq for c P Π to be differentiable in the non-parametric
function space. Two complications arise compared to our previous approximate
mirror descent procedure. First, for each c P Π, estimating the gradient ∇�pcq
(which may not exist under certain parameterization, per section 5.4) can become
much more difficult. Second, the update rule ∇'pcq ´ ∇F �pcq may not be in the
dual space of F , as in the simple case where Π Ă F , thus making direct gradient
update in the F space inappropriate.

Assumption 7. � is convex in H .

By convexity of � in H , sub-gradients B�pℎq exists for all ℎ P H . In particular,
B�pcq exists for all c P Π. Note that B�pcq reflects sub-gradient of c with respect
to the ambient policy spaceH .

We will make use of the following equivalent perspective to mirror descent(Beck
and Teboulle, 2003), which consists of two-step process for each iteration C

1. Solve for ℎC`1 “ arg minℎPH [xB�pcCq, ℎy ` �'pℎ, cCq

2. Solve for cC`1 “ arg mincPΠ �'pc, ℎC`1q

We will show how this version of the algorithm motivates our main algorithm.
Consider step 1 of the main loop of Propel, where given a fixed c P Π, the
optimization problem withinH is

pOBJECTIVE_1q “ min
ℎPH

[xB�pcq, ℎy ` �'pℎ, cq (D.17)

Due to convexity of H and the objective, problem pOBJECTIVE_1q is equivalent
to:

pOBJECTIVE_1q “minxB�pcq, ℎy (D.18)

s.t. �'pℎ, cq ď g (D.19)

where g depends on [. Since c is fixed, this optimization problem can be relaxed
by choosing _ P r0, 1s, and a set of candidate policies ℎ “ c ` _ 5 , for all 5 P F ,
such that �'pℎ, cq ď g is satisfied (Selection of _ is possible with bounded spaces).
Since this constraint set is potentially a restricted set compared to the space of

242

policies satisfying inequality (D.19), the optimization problem (D.17) is relaxed
into:

pOBJECTIVE_1q ď pOBJECTIVE_2q “ min
5 PF
xB�pcq, c ` _ 5 y (D.20)

Due to convexity property of �, we have

xB�pcq, _ 5 y “ xB�pcq, c ` _ 5 ´ cqy ď �pc ` _ 5 q ´ �pcq (D.21)

The original problem OBJECTIVE_1 is thus upper bounded by:

min
ℎPH

[xB�pcq, ℎqy ` �'pℎ, cq ď min
5 PF

�
`

c ` _ 5
˘

´ �pcq ` xB�pcq, cy

Thus, a relaxed version of original optimization problem OBJECTIVE_1 can be
obtained by miniziming �pc ` _ 5 q over 5 P F (note that c is fixed). This naturally
motivates using functional regularization technique, such as CORE-RL algorithm
(Cheng et al., 2019e), to update the parameters of differentiable function 5 via policy
gradient descent update:

5 1 “ 5 ´ [_∇F_�pc ` _ 5 q

where the gradient of � is takenwith respect to the parameters of 5 (neural networks).
This is exactly the update step in algorithm6 (also similar to iterative updte of CORE-
RL algorithm), where the neural network policy is regularized by a prior controller
c.

Statement and Proof of Proposition 5.4.5

Proposition D.1.8 (Regret bound for the relaxed optimization objective). Assuming
�pℎq is !-strongly smooth over H , i.e., ∇H �pℎq is !-Lipschitz continuous, ap-
proximating UpdateH by Update� per Alg. 6 leads to the expected regret bound:
E
”

1
)

ř)
C“1 �pcCq

ı

´ �pc˚q “ $

´

_f

b

1
)
` n ` _2!2

¯

Proof. Instead of focusing on the bias of the gradient estimate ∇H �pcq, we will
shift our focus on the alternative proximal formulation of mirror descent, under
optimization and projection errors. In particular, at each iteration C, let ℎ˚

C`1 “

arg minℎPH [x∇�pcCq, ℎy`�'pℎ, cCq and let the optimization error be defined as VC
where ∇'pℎC`1q “ ∇'pℎ˚

C`1q` VC . Note here that this is different from (but related
to) the notion of bias from gradient estimate of ∇�pcq used in theorem 5.4.1 and
theorem D.1.2. The projection error from imitation learning procedure is defined

243

similarly to theorem 5.4.1: c˚
C`1 “ arg mincPΠ �'pc, ℎC`1q is the true projection,

and
›

›

›
cC`1 ´ c

˚
C`1

›

›

›
ď n .

We start with similar bounding steps to the proof of theorem 5.4.1:

x∇�pcCq, cC ´ cy “
1
[
x∇'pℎ˚C`1q ´ ∇'pcCq, cC ´ cy

“
1
[
px∇'pℎC`1q ´ ∇'pcCq, cC ´ cy ´ xVC , cC ´ cyq

“
1
[
p�'pc, cCq ´ �'pc, ℎC`1q ` �'pcC , ℎC`1qq

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

component_1

`
1
[
xVC , cC ´ cy

loooooomoooooon

component_2

(D.22)

As seen from the proof of theorem D.1.2, component_1 can be upperbounded by:
1
[

`

�'pc, cCq ´ �'pc, cC`1q
loooooooooooooomoooooooooooooon

telescoping

`�'pc, cC`1q ´ �'pc, c
˚
C`1q

loooooooooooooooomoooooooooooooooon

projection error

´�'pc
˚
C`1, ℎC`1q ` �'pcC , ℎC`1q

looooooooooooooooooomooooooooooooooooooon

relative improvement

˘

The bound on projection error is identical to theorem D.1.2:

�'pc, cCq ´ �'pc, c
˚
C`1q ď n!'� (D.23)

The bound on relative improvement is slightly different:

�'pcC , ℎC`1q ´ �'pc
˚
C`1, ℎC`1q “ 'pcCq ´ 'pc˚C`1q ` x∇'pℎC`1q, c

˚
C`1 ´ cCy

“ 'pcCq ´ 'pc˚C`1 ` x∇'pℎ
˚
C`1q, c

˚
C`1 ´ cCyq ` xVC , c

˚
C`1 ´ cCy

ď x∇'pcCq, cC ´ c˚C`1y ´
U

2
›

›c˚C`1 ´ cC
›

›

2

` x∇'pℎ˚C`1q, c
˚
C`1 ´ cCy ` xVC , c

˚
C`1 ´ cCy

“ ´[x∇�H pcCq, c˚C`1 ´ cCy ´
U

2
›

›c˚C`1 ´ cC
›

›

2
` xVC , c

˚
C`1 ´ cCy (D.24)

ď
[2

2U
}∇H �pcCq}

2
˚ ` xVC , c

˚
C`1 ´ cCy

ď
[2

2U
!2
� ` xVC , c

˚
C`1 ´ cCy (D.25)

Note here that the gradient ∇H �pcCq is not the result of estimation. Combining
equations (D.22), (D.23), (D.24), (D.25), we have:

x∇�pcCq, cC ´ cy ď
1
[

`

�'pc, cCq´�'pc, cC`1q` n!'�`
[2

2U
!2
� `xVC , c

˚
C`1´ cy

˘

(D.26)

244

Next, we want to bound VC . Choose regularizer ' to be 1
2 }¨}

2 (consistent with the
pseudocode in algorithm 6). We have that:

ℎ˚C`1 “ arg min
ℎPH

[x∇�pcCq, ℎy `
1
2
}ℎ ´ cC}

2

which is equivalent to:

ℎ˚C`1 “ cC ` arg min
5 PF

[x∇�pcCq, 5 y `
1
2
} 5 }

2

Let 5 ˚
C`1 “ arg min 5 PF [x∇�pcCq, 5 y ` 1

2 } 5 }
2. Taking the gradient over 5 , we can

see that 5 ˚
C`1 “ ´[∇�pcCq. Let 5C`1 be theminimizer ofmin 5 PF �pcC`_ 5 q. We then

have ℎ˚
C`1 “ cC` 5 ˚

C`1 and ℎC`1 “ c`_ 5C`1. Thus VC “ ℎC`1´ ℎ
˚
C`1 “ 5C`1´ 5 ˚

C`1.

On one hand, we have

�pcC ` _ 5C`1q ď �pcC ` l 5
˚
C`1q ď �pcCq ` x∇�pcCq, l 5 ˚C`1y `

!

2
›

›l 5 ˚C`1
›

›

2

due to optimality of 5C`1 and strong smoothness property of �. On the other hand,
since � is convex, we also have the first-order condition:

�pcC ` _ 5C`1q ě �pcCq ` x∇�pcCq, _ 5C`1y

Combine with the inequality above, and subtract �pcCq from both sides, and using
the relationship 5 ˚

C`1 “ ´[∇�pcCq, we have that:

x´
1
[
5 ˚C`1, _ 5C`1y ď x´

1
[
5 ˚C`1, l 5

˚
C`1y `

!l2

2
›

› 5 ˚C`1
›

›

2

Since this is true @l, rearrange and choose l such that l
[
´ !l2

2 “ ´ _
2[, namely

l “
1´
?

1´_[!
![

, and complete the square, we can establish the bound that:
›

› 5C`1 ´ 5 ˚C`1
›

› ď [p_!q2� (D.27)

for � the upperbound on } 5C`1}. We thus have }VC} “ $p[p_!q2q. Plugging the
result from equation D.27 into RHS of equation D.26, we have:

x∇�pcCq, cC ´ cy ď
1
[

`

�'pc, cCq ´ �'pc, cC`1q ` n!'� `
[2

2U
!2
�

˘

`
`

[p_!q2�
˘

(D.28)
Since � is convex in H , we have �pcCq ´ �pcq ď x∇�pcCq, cC ´ cy. Similar to
theorem 5.4.1, setting [“

b

1
_2f2 p

1
)
` nq and taking expectation on both sides, we

have:

E

«

1
)

)
ÿ

C“1
�pcCq

ff

´ �pc˚q “ $
`

_f

c

1
)
` n ` _2!2˘ (D.29)

245

Note that unlike regret bound from theorem 5.4.1 under general bias, variance
of gradient estimate and projection error, f2 here explicitly refers to the bound on
neural-network based policy gradient variance. The variance reduction of _f, at the
expense of some bias, was also similarly noted in a recent functional regularization
technique for policy gradient (Cheng et al., 2019e).

D.2 Additional Experimental Results and Details
TORCS
We generate controllers for cars in The Open Racing Car Simulator (Torcs)
(Wymann et al., 2014). In its full generality Torcs provides a rich environment
with input from up to 89 sensors, and optionally the 3D graphic from a chosen
camera angle in the race. The controllers have to decide the values of 5 parameters
during game play, which correspond to the acceleration, brake, clutch, gear and
steering of the car.

Apart from the immediate challenge of driving the car on the track, controllers also
have to make race-level strategy decisions, like making pit-stops for fuel. A lower
level of complexity is provided in the Practice Mode setting of TORCS. In this
mode all race-level strategies are removed. Currently, so far as we know, state-of-
the-art Drl models are capable of racing only in Practice Mode, and this is also the
environment that we use. Here we consider the input from 29 sensors, and decide
values for the acceleration, steering, and braking actions.

We chose a suite of tracks that provide varying levels of difficulty for the learning
algorithms. In particular, for the tracks Ruudskogen and Alpine-2, the Ddpg agent
is unable to reliably learn a policy that would complete a lap. We perform the
experiments with twenty-five random seeds and report themedian lap time over these
twenty-five trials. However we note that the Torcs simulator is not deterministic
even for a fixed random seed. Since wemodel the environment as aMarkovDecision
Process, this non-determinism is consistent with our problem statement.

For our Deep Reinforcement Learning agents we used standard open source imple-
mentations (with pre-tuned hyper-parameters) for the relevant domain.

All experiments were conducted on standard workstation with a 2.5 GHz Intel Core
i7 CPU and a GTX 1080 Ti GPU card.

The code for the Torcs experiments can be found at:
https://bitbucket.org/averma8053/propel

https://bitbucket.org/averma8053/propel

246

In Table D.1 we show the lap time performance and crash ratios of Propel agents
initialized with neural policies obtained via Ddpg. As discussed in Section 5.5,
Ddpg often exhibits high variance across trials and this adversely affects the per-
formance of the Propel agents when they are initialized via Ddpg. In Table D.2
we show generalization results for the IppgTree agent. As noted in Section 5.5, the
generalization results for IppgTree are in between those of Ddpg and IppgProgram.

Verified Smoothness Property. For the program given in Figure 2 we proved using
symbolic verification techniques, that @:,
ř:`5
8“: }peekpBrRPMs, 8 ` 1q ´ peekpBrRPMs, 8q} ă 0.003

ùñ }peekp0rAccels, : ` 1q ´ peekp0rAccels, :q} ă 0.63. Here the function
peekp., 8q takes in a history/sequence of sensor or action values and returns the
value at position 8, . Intuitively, the above logical implication means that if the sum
of the consecutive differences of the last six RPM sensor values is less than 0.003,
then the acceleration actions calculated at the last and penultimate step will not
differ by more than 0.63.

Table D.1: Performance results in Torcs of Propel agents initialized with neural
policies obtained via Ddpg, over 25 random seeds. Each entry is formatted as Lap-
time / Crash-ratio, reporting median lap time in seconds over all the seeds (lower
is better) and ratio of seeds that result in crashes (lower is better). A lap time of
Cr indicates the agent crashed and could not complete a lap for more than half the
seeds.

G-Track E-Road Aalborg Ruudskogen Alpine-2
Length 3186m 3260m 2588m 3274m 3774m

IppgProgram-Ddpg 97.76/.12 108.06/.08 140.48/.48 Cr / 0.68 Cr / 0.92
IppgTree-Ddpg 78.47/0.16 85.46/.04 Cr / 0.56 Cr / 0.68 Cr / 0.92

Classic Control
We present results from two classic control problems, Mountain-Car (with continu-
ous actions) and Pendulum, in Table D.3. We use the OpenAI Gym implementations
of these environments. More information about these environments can be found at
the links: MountainCar and Pendulum.

In Mountain-Car the goal is to drive an under-powered car up the side of a mountain
in as few time-steps as possible. In Pendulum, the goal is to swing a pendulum

https://gym.openai.com/envs/MountainCarContinuous-v0/
https://gym.openai.com/envs/Pendulum-v0/

247

Table D.2: Generalization results in Torcs for IppgTree, where rows are training
and columns are testing tracks. Each entry is formatted as IppgProgram / DDPG,
and the number reported is the median lap time in seconds over all the seeds (lower
is better). Cr indicates the agent crashed and could not complete a lap for more
than half the seeds.

G-Track E-Road Aalborg Ruudskogen Alpine-2

G-Track - 95 Cr Cr Cr
E-Road 84 - Cr Cr Cr
Aalborg 111 Cr - Cr Cr
Ruudskogen 154 Cr Cr - Cr
Alpine-2 Cr 276 Cr Cr -

Table D.3: Performance results in Classic Control problems. Higher scores are
better.

MountainCar Pendulum

Prior 00.59˘ 0.00 ´875.53˘ 0.00
Ddpg 97.16˘ 3.21 ´132.70˘ 6.44
Trpo 93.03˘ 1.86 ´131.54˘ 4.56
Ndps 66.98˘ 3.11 ´435.71˘ 4.83
Viper 64.86˘ 3.28 ´394.11˘ 4.97
IppgProgram 95.63˘ 1.02 ´187.71˘ 2.35
IppgTree 96.56˘ 2.81 ´139.09˘ 3.31

up so that it stays upright. In both the environments an episode terminates after a
maximum of 200 time-steps.

In Table D.3 we report the mean and standard deviation, over twenty-five random
seeds, of the average scores over 100 episodes for the listed agents and environments.
In Figure D.1 and Figure D.2 we show the improvements made over the prior by the
IppgProgram agent in MountainCar and Pendulum respectively, with each iteration
of the Propel algorithm.

248

0 1 2 3
Iterations

0

20

40

60

80

100

S
c
o
re

 I
m

p
ro

v
e
m

e
n
t

MountainCar

Figure D.1: Score improvements in
theMountainCar environment over it-
erations of IppgProgram.

0 1 2 3
Iterations

0

200

400

600

S
c
o
re

 I
m

p
ro

v
e
m

e
n
t

Pendulum

Figure D.2: Score improvements in
the Pendulum environment over iter-
ations of IppgProgram.

249

A p p e n d i x E

APPENDIX TO CHAPTER 6

E.1 Proofs for Chapter 6
Proof of Theorem 6.4.2. The first term)�I

full should be obvious as the expert
inspects the agent’s overall behavior in each episode. Whenever something goes
wrong in an episode, the expert labels the whole trajectory, incurring �L

full each
time. The remaining work is to bound the number of episodes where agent makes
one ormoremistakes. This quantity is bounded by the number of totalmistakesmade
by the halving algorithm, which is at most the logarithm of the number of candidate
functions (policies), log |Πfull| “ log

`

|M||Πlo|
|G|˘ “ log |M| ` |G| log |Πlo|.

This completes the proof.

Proof of Theorem 6.4.1. Similar to the proof of Theorem 6.4.2, the first term)�I
full

is obvious. The second term corresponds to the situation where Inspectfull

finds issues. According to Algorithm 9, the expert then labels the subgoals and
also inspects whether each subgoal is accomplished successfully, which incurs
�L

hi ` �hi�
I
lo cost each time. The number of times that this situation happens

is bounded by (a) the number of times that a wrong subgoal is chosen, plus (b)
the number of times that all subgoals are good but at least one of the subpolicies
fails to accomplish the subgoal. Situation (a) occurs at most log |M| times. In
situation (b), the subgoals chosen in the episode must come from Gopt, and for each
of these subgoals the halving algorithm makes at most log |Πlo| mistakes. The last
term corresponds to cost of Labello operations. This only occurs when the meta-
controller chooses a correct subgoal but the corresponding subpolicy fails. Similar
to previous analysis, this situation occurs at most log |Πlo| for each “good” subgoal
(6 P Gopt). This completes the proof.

E.2 Additional Experimental Details
In our experiments, success rate and external rewards are reported as the trailing
average over previous 100 episodes of training. For hierarchical imitation learning
experiments in maze navigation domain, the success rate is only measured on
separate test environments not used for training.

In addition to experimental results, in this section we describe our mechanism for

250

0K 50K 100K 150K 200K 250K 300K 350K 400K
RL samples at LO-level

0%

20%

40%

60%

80%

100%

su
cc

es
s

ra
te

hg-DAgger/Q vs. h-DQN
(Maze Navigation)

0K

50K

100K

150K

200K

250K

300K

350K

400K

H
I-

le
ve

l
co

st
(R

L
or

IL
)

hg-DAgger/Q
success rate
hg-DAgger/Q
HI-level IL cost
h-DQN
success rate
h-DQN
HI-level RL samples

Figure E.1: Maze navigation: hybrid IL-RL (full task) versus h-DQN (with 50%
head-start).

subgoal detection / terminal predicate for Montezuma’s Revenge and how the Maze
Navigation environments are created. Network architectures from our experiments
are in Tables E.1 and E.2.

Maze Navigation Domain
We compare hg-DAgger/Q with the hierarchical reinforcement learning baseline
(h-DQN, (Kulkarni et al., 2016)) with the same network architecture for the meta-
controller and subpolicies as hg-DAgger/Q and similarly enhanced &-learning pro-
cedure.

Similar to the Montezuma’s Revenge domain, h-DQN does not work well for the
maze domain. At the hi level, the planning horizon of 10–12 with 4–5 possible
subgoals in each step is prohibitively difficult for the hi-level reinforcement learner
and we were not able to achieve non-zero rewards within in any of our experiments.
Tomake the comparison, we attempted to provide additional advantage to the h-DQN
algorithm by giving it some head-start, so we ran h-DQN with 50% reduction in
the horizon, by giving the hierarchical learner the optimal execution of the first half
of the trajectory. The resulting success rate is in Figure E.1. Note that the hybrid
IL-RL does not get the 50% advantage, but it still quickly outperforms h-DQN,

251

Figure E.2: Maze navigation. Sample random instances of the maze domain (differ-
ent from main text). The 17 ˆ 17 pixel representation of the maze is used as input
for neural network policies.

which flattens out at 30% success rate.

Creating Maze Navigation Environments

We create 2000 maze navigation environments, 1000 of which are used for training
and 1000 maps are used for testing. The comparison results for maze navigation
(e.g., Figure 6.2) are all based on randomly selected environments among 1000 test
maps. See Figure E.2 for additional examples of the environments created. For
each map (environment instance), we start with a 17ˆ17 grid, which are divided
into 4ˆ4 room structure. Initially, no door exists in between rooms. To create
an instance of the maze navigation environment, the goal block (yellow) and the
starting position are randomly selected (accepted as long as they are not the same).
Next, we randomly select a wall separating two different room and replace a random
red block (lava) along this wall with a door (black cell). This process continues until
two conditions are satisfied:

• There is a feasible path between the starting location and the goal block
(yellow)

• The minimum distance between start to goal is at least 40 steps. The optimal
path can be constructed using graph search

Each of the 2000 environments create must satisfy both conditions. The expert
labels for each environment come from optimal policy computed via value iteration
(which is fast based on tabular representation of the given grid world).

Hyperparameters for Maze Navigation

The network architecture used for maze navigation is described in Table E.1. The
only difference between subgoal policy networks and metacontroller network is the

252

Figure E.3: Montezuma’s Revenge: Screenshots of the environment with 4 desig-
nated subgoals in sequence.

number of output class (4 actions versus 5 subgoals). For our hierarchical imitation
learning algorithms, we also maintain a small network along each subgoal policy
for subgoal termination classification (one can also view the subgoal termination
classifier as an extra head of the subgoal policy network).

The contextual input (state) to the policy networks consists of 3-channel pixel
representation of the maze environment. We assign different (fixed) values to goal
block, agent location, agent’s trail and lava blocks. In our hierarchical imitation
learning implementations, the base policy learner (DAgger and behavior cloning)
update the policies every 100 steps using stochastic optimization. We use Adam
optimizer and learning rate of 0.0005.

Table E.1: Network Architecture—Maze Domain

1: Convolutional Layer 32 filters, kernel size 3, stride 1
2: Convolutional Layer 32 filters, kernel size 3, stride 1
3: Max Pooling Layer pool size 2
4: Convolutional Layer 64 filters, kernel size 3, stride 1
5: Convolutional Layer 64 filters, kernel size 3, stride 1
6: Max Pooling Layer pool size 2
7: Fully Connected Layer 256 nodes, relu activation
8: Output Layer softmax activation

(dimension 4 for subpolicy,
dimension 5 for meta-controller)

Montezuma’s Revenge
Although the imitation learning component tends to be stable and consistent, the
samples required by the reinforcement learners can vary between experiments with
identical hyperparameters. In this section, we report additional results of our hybrid
algorithm for the Montezuma’s Revenge domain.

For the implementation of our hybrid algorithm on the gameMontezuma’s Revenge,

253

0.0M 0.5M 1.0M 1.5M 2.0M
LO-level reinforcement learning samples

0

100

200

300

400

ex
te

rn
al

re
w

ar
ds

Best 10 Trials
(hg-DAgger/Q vs. h-DQN)

hg-DAgger/Q

h-DQN

0.0M 0.5M 1.0M 1.5M 2.0M 2.5M 3.0M 3.5M 4.0M
LO-level reinforcement learning samples

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

su
bg

oa
ls

co
m

pl
et

ed
(o

ut
of

4)

Subgoals Completion over 100 Trials
(hg-DAgger/Q vs. h-DQN)

hg-DAgger/Q

h-DQN

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
LO-level reinforcement learning samples

0

20

40

60

80

100

ex
te

rn
al

re
w

ar
ds

Learning Curve for Getting Key
(hg-DAgger/Q vs. h-DQN over 100 trials)

hg-DAgger/Q 3rd quartile

hg-DAgger/Q median

h-DQN median

Figure E.4: Montezuma’s revenge: hybrid IL-RL versus hierarchical RL. (Left)
Median reward, min and max across the best 10 trials. The agent completes the
first room in less than 2 million samples. The shaded region corresponds to min
and max of the best 10 trials. (Middle) Median, first and third quartile of subgoal
completion rate across 100 trials. The shaded region corresponds to first and third
quartile. (Right) Median, first and third quartile of reward across 100 trials. The
shaded region corresponds to first and third quartile. h-DQN only considers the first
two subgoals to simplify the learning task.

0%

20%

40%

60%

80%

100%

su
cc

es
s

ra
te

Learning Progression (random trial)

0K 1K 2K 3K 4K 5K 6K 7K 8K

episode (HI-level labeling cost)

0K
200K
400K
600K
800K

1000K
1200K
1400K
1600K
1800K

L
O

-l
ev

el
sa

m
pl

es

Subgoal 1
Subgoal 2 (key)
Subgoal 3
Subgoal 4 (door)

0%

20%

40%

60%

80%

100%

su
cc

es
s

ra
te

Learning Progression (random trial)

0K 1K 2K 3K 4K 5K

episode (HI-level labeling cost)

0K

100K

200K

300K

400K

500K

L
O

-l
ev

el
sa

m
pl

es

Subgoal 1
Subgoal 2 (key)
Subgoal 3
Subgoal 4 (door)

0%

20%

40%

60%

80%

100%

su
cc

es
s

ra
te

Learning Progression (random trial)

0K 1K 2K 3K 4K 5K 6K 7K 8K

episode (HI-level labeling cost)

0K

200K

400K

600K

800K

1000K

L
O

-l
ev

el
sa

m
pl

es

Subgoal 1
Subgoal 2 (key)
Subgoal 3
Subgoal 4 (door)

Figure E.5: Montezuma’s revenge: Learning progression of Algorithm 3 in solving
the entire first room. The figures show three randomly selected successful trials.

we decided to limit the computation to 4 million frames for the lo-level reinforce-
ment learners (in aggregate across all 4 subpolicies). Out of 100 experiments, 81
out of 100 successfully learn the first 3 subpolicies, 89 out of 100 successfully learn
the first 2 subpolicies. The last subgoal (going from the bottom of the stairs to open
the door) proved to be the most difficult and almost half of our experiments did not
manage to finish learning the fourth subpolicy within the 4 million frame limit (see
Figure E.4 middle pane). The reason mainly has to do with the longer horizon of
subgoal 4 compared to other three subgoals. Of course, this is a function of the
design of subgoals and one can always try to shorten the horizon by introducing
intermediate subgoals.

However, it is worth pointing out that even as we limit the h-DQN baseline to only 2
subgoals (up to getting the key), the h-DQNbaseline generally tends to underperform
our proposed hybrid algorithm by a large margin. Even with the given advantage
we confer to our implementation of h-DQN, all of the h-DQN experiments failed
to successfully master the second subgoal (getting the key). It is instructive to also

254

4K 6K 8K 10K 12K 14K 16K 18K
HI-level expert cost

0

5

10

15

20

25

fr
eq

ue
nc

y

HI-level Expert Cost over 100 Trials
(hg-DAgger/Q)

Figure E.6: Montezuma’s Revenge: Number of HI-level expert labels. Distribution
of Hi-level expert labels needed across 100 trials; the histogram excludes 6 outliers
whose number of labels exceeds 20K for ease of visualization

examine the sample complexity associated with getting the key (the first positive
external reward, see Figure E.4 right pane). Here the horizon is sufficiently short
to appreciate the difference between having expert feedback at the hi level versus
relying only on reinforcement learning to train the meta-controller.

The stark difference in learning performance (see Figure E.4 right) comes from the
fact that the hi-level expert advice effectively prevents the lo-level reinforcement
learners from accumulating bad experience, which is frequently the case for h-DQN.
The potential corruption of experience replay buffer also implies at in our considered
setting, learning with hierarchical DQN is no easier compared to flat DQN learning.
Hierarchical DQN is thus susceptible to collapsing into the flat learning version.

Subgoal Detectors for Montezuma’s Revenge

In principle, the system designer would select the hierarchical decomposition that
is most convenient for giving feedback. For Montezuma’s Revenge, we set up four
subgoals and automatic detectors that make expert feedback trivial. The subgoals
are landmarks that are described by small rectangles. For example, the door subgoal
(subgoal 4) would be represented by a patch of pixel around the right door (see

255

Figure E.3 right). We can detect the correct termination / attainment of this subgoal
by simply counting the number of pixels inside of the pre-specified box that has
changed in value. Specifically in our case, subgoal completion is detected if at least
30% of pixels in the landmark’s detector box changes.

Hyperparameters for Montezuma’s Revenge

Table E.2: Network Architecture—Montezuma’s Revenge

1: Conv. Layer 32 filters, kernel size 8, stride 4, relu
2: Conv. Layer 64 filters, kernel size 4, stride 2, relu
3: Conv. Layer 64 filters, kernel size 3, stride 1, relu
4: Fully Connected 512 nodes, relu,

Layer normal initialization with std 0.01
5: Output Layer linear (dimension 8 for subpolicy,

dimension 4 for meta-controller)

Neural network architecture used is similar to (Kulkarni et al., 2016). One differ-
ence is that we train a separate neural network for each subgoal policy, instead of
maintaining a subgoal encoding as part of the input into a policy neural network that
shares representation for multiple subgoals jointly. Empirically, sharing represen-
tation across multiple subgoals causes the policy performance to degrade we move
from one learned subgoal to the next (a phenomenon of catastrophic forgetting in
deep learning literature). Maintaining each separate neural network for each subgoal
ensures the performance to be stable across subgoal sequence. The metacontroller
policy network also has similar architecture. The only difference is the number
of output (4 output classes for metacontroller, versus 8 classes (actions) for each
lo-level policy).

For training the lo-level policy with &-learning, we use DDQN (Van Hasselt et al.,
2016) with prioritized experience replay (Schaul et al., 2015b) (with prioritization
exponent U “ 0.6, importance sampling exponent V0 “ 0.4). Similar to previous
deep reinforcement learningwork applied onAtari games, the contextual input (state)
consists of four consecutive frames, each converted to grey scale and reduced to size
84ˆ 84 pixels. Frame skip parameter as part of the Arcade Learning Environment is
set to the default value of 4. The repeated action probability is set to 0, thus the Atari
environment is largely deterministic. The experience memory has capacity of 500K.
The target network used in &-learning is updated every 2000 steps. For stochastic

256

optimization, we use rmsProp with learning rate of 0.0001, with mini-batch size of
128.

E.3 Additional Related Work
Imitation Learning. Another dichotomy in imitation learning, as well as in rein-
forcement learning, is that of value-function learning versus policy learning. The
former setting (Abbeel and Ng, 2004; Ziebart et al., 2008) assumes that the optimal
(demonstrated) behavior is induced by maximizing an unknown value function. The
goal then is to learn that value function, which imposes a certain structure onto the
policy class. The latter setting (Daumé III et al., 2009; Ross et al., 2011b; Ho and
Ermon, 2016) makes no such structural assumptions and aims to directly fit a policy
whose decisions well imitate the demonstrations. This latter setting is typically more
general but often suffers from higher sample complexity. Our approach is agnostic
to this dichotomy and can accommodate both styles of learning. Some instantiations
of our framework allow for deriving theoretical guarantees, which rely on the policy
learning setting. Sample complexity comparison between imitation learning and
reinforcement learning has not been studied much in the literature, perhaps with the
exception of the recent analysis of AggreVaTeD (Sun et al., 2017).

Hierarchical Reinforcement Learning. Feudal RL is another hierarchical frame-
work that is similar to howwe decompose the task hierarchically (Dayan and Hinton,
1993; Dietterich, 2000; Vezhnevets et al., 2017). In particular, a feudal system has
a manager (similar to our hi-level learner) and multiple submanagers (similar to our
lo-level learners), and submanagers are given pseudo-rewards which define the sub-
goals. Prior work in feudal RL use reinforcement learning for both levels; this can
require a large amount of data when one of the levels has a long planning horizon,
which we demonstrate in our experiments. In contrast, we propose a more general
framework where imitation learners can be used to substitute reinforcement learners
to substantially speed up learning, whenever the right level of expert feedback is
available. Hierarchical policy classes have been additional studied by (He et al.,
2010), (Hausknecht and Stone, 2016), (Zheng et al., 2016), and (Andreas et al.,
2017).

Learning with Weaker Feedback. Our work is motivated by efficient learning
under weak expert feedback. When we only receive demonstration data at the high
level, and must utilize reinforcement learning at the low level, then our setting can
be viewed as an instance of learning under weak demonstration feedback. The

257

primary other way to elicit weaker demonstration feedback is with preference-based
or gradient-based learning, studied by (Fürnkranz et al., 2012), (Loftin et al., 2016),
and (Christiano et al., 2017).

258

A p p e n d i x F

APPENDIX TO CHAPTER 7

F.1 Variational Inference Derivation for Hidden Markov Models
In this section, we provide the mathematical derivation for the structured variational
inference procedure. We focus on the training for Bayesian Hidden Markov Model,
in particular the Forward-Backward procedure to complete the description of Algo-
rithm 13. The mathematical details for other types of graphical models depend on
the family of such models and should follow similar derivations. Further relevant
details on stochastic variational inference can be found in (Hoffman et al., 2013;
Johnson and Willsky, 2014; Beal, 2003). d

Settings. Given an arbitrarily ordered set of trajectories * “ t*1, . . . ,* , �u, let
the coordination mechanism underlying each such* be governed by a true unknown
model ?, with global parameters \. We suppress the agent/policy subscript and
consider a generic featurized trajectory GC “ rDC , 2Cs @C. Let the latent role sequence
for the same agent be I “ I1:) .

At any time C, each agent is acting according to a latent role IC „ Categoricalt1̄, 2̄, . . . , ̄u,
which are the local parameters to the structured model.

Ideally, role and index asignment can be obtained by calculating the posterior
?pI|G, \q, which is often intractable. One way to infer the role assignment is via
approximating the intractable posterior ?pI|G, \q using Bayesian inference, typically
viaMCMC ormean-field variational methods. Since sampling-basedMCMCmeth-
ods are often slow, we instead aim to learn to approximate ?pI|G, \q by a simpler
distribution @ via Bayesian inference. In particular, we employ techniques from
stochastic variational inference (Hoffman et al., 2013), which allows for efficient
stochastic training on mini-batches that can naturally integrate with our imitation
learning subroutine.

Structured Variational Inference for Unsupervised Role Learning. Consider a
full probabilistic model:

?p\, I, Gq “ ?p\q

)
ź

C“1
?pIC |\q?pGC |IC , \q

259

with global latent variables \, local latent variables I “ tICu)C“1. Posterior approx-
imation is often cast as optimizing over a simpler model class Q, via searching for
global parameters \ and local latent variables I that maximize the evidence lower
bound (ELBO) L:

log ?pGq ě E@ rlog ?pI, \, Gqs ´ E@ rlog @pI, \qs

fi L p@pI, \qq .

Maximizing L is equivalent to finding @ P Q to minimize the KL divergence
KL p@pI, \|Gq||?pI, \|Gqq.

For unsupervised structured prediction problem over a family of graphical model,
we focus on the structured mean-field variational family, which factorizes @ as
@pI, \q “ @pIq@p\q (Hoffman and Blei, 2014) and decomposes the ELBO objective:

L “ E@rlog ?p\s ´ E@rlog @p\s

` E@rlogp?pI, G|\qs ´ E@rlogp@pIqqs. (F.1)

This factorization breaks the dependency between \ and I, but not between single
latent states IC , unlike variational inference for i.i.d data (Kingma and Welling,
2013).

Variational inference optimizes the objective L typically using natural gradient as-
cent over global factors @p\q and local factors @pIq. (Under mean-field assumption,
optimization typically proceeds via alternating updates of \ and I.) Stochastic vari-
ational inference performs such updates efficiently in mini-batches. For graphical
models, structured stochastic variational inference optimizes L using natural gra-
dient ascent over global factors @p\q and message-passing scheme over local factors
@pIq. We assume the prior ?p\q and complete conditionals ?pIC , GC |\q are conju-
gate pairs of exponential family, which gives natural gradient of L with respect to
@p\q convenient forms (Johnson and Willsky, 2014). Denote the exponential family
forms of ?p\q and ?pIC , HC |\q by:

ln ?p\q “ x[\ , C\p\qy ´ �\p[\q

ln ?pIC , GC |\q “ x[IGp\q, CIGpIC , GCqy ´ �IGp[IGp\qq

where [\ and [IG are functions indicating natural parameters, C\ and CIG are suf-
ficient statistics and �p¨q are log-normalizers ((Blei et al., 2017)). Note that in
general, different subscripts corresponding to [, C, � indicate different function pa-
rameterization (not simply a change in variable value assignment). Conjugacy in

260

the exponential family yields that (Blei et al., 2017):

C\p\q “ r[IGp\q,´�IGp[IGp\qqs

and that
?p\|IC , GCq9 exptx[\ ` rCIGpIC , GCq, 1s , C\p\qyu (F.2)

Conjugacy in the exponential family also implies that the optimal @p\q is in the same
family (Blei et al., 2017), i.e.

@p\q “ exptxr[\ , C\p\qy ´ �\pr[\qu

for some natural parameters r[\ of @p\q.

To optimize over global parameters @p\q, conjugacy in the exponential family al-
lows obtaining convenient expression for the gradient of L with respect to natural
parameters r[\ . The derivation is shown similarly to (Johnson and Willsky, 2014)
and (Blei et al., 2017) - we use simplified notations r[fi r[\ , [fi [\ , � fi �\ , and
CpI, Gq fi

ř)
C“1 rCIGpIC , GCq, 1s. Taking advantage of the exponential family identity

E@p\qrC\p\qs “ ∇�pr[q, the objective L can be re-written as:

L “ E@p\q@pIq rln ?p\|I, Gq ´ ln @p\qs

“ x[` E@pIqrCpI, Gqs,∇�pr[qy ´ pxr[,∇�pr[qy ´ �pr[qq

Differentiating with respect to r[, we have that

∇
r[L “

`

∇2�pr[q
˘ `

[` E@pIqrCpI, Gqs ´ r[
˘

The natural gradient of L, denoted r∇
r[, is defined as r∇r[fi

`

∇2�pr[q
˘´1 ∇

r[. And so
the natural gradient of L can be compactly described as:

r∇
r[L “ [`

)
ÿ

C“1
E@pICqtrCIGpIC , GCq, 1su ´ r[(F.3)

Thus a stochastic natural descent update on the global parameters r[\ proceeds at
step = by sampling a mini-batch GC and taking the global update with step size d=:

r[\ Ð p1´ d=qr[\ ` d=p[\ ` 1
JE@˚pICqrCpIC , GCqsq (F.4)

where 1 is a vector of scaling factors adjusting for the relative size of the mini-
batches. Here the global update assumes optimal local update @˚pIq has been
computed. In each step however, the local factors @˚pICq are computed with mean

261

field updates and the current value of @p\q (analogous to coordinate ascent). In what
follows, we provide the derivation for the update rules for Hidden Markov Models,
which are the particular instantiation of the graphical model we use to represent the
role transition for our multi-agent settings.

Variational factor updates via message passing for Hidden Markov Models.
For HMMs, we can view global parameters \ as the parameters of the underlying
HMMs such as transition matrix and emission probabilities, while local parameters
I govern hidden state assignment at each time step.

Fixing the global parameters, the local updates are based on message passing over
the graphical model. The exact mathematical derivation depends on the specific
graph structure. The simplest scenario is to assume independence among IC’s,
which resembles naive Bayes. We instead focus on Hidden Markov Models to
capture first-order dependencies in role transitions over play sequences. In this case,
global parameters \ “ p?0, %, qq where % “

“

%8 9
‰

8, 9“1 is the transition matrix with
%8 9 “ ?pIC “ 9 |IC´1 “ 8q, q “ tq8u 8“1 are the emission parameters, and ?0 is the
initial distribution.

Consider a Bayesian HMM on latent states. Priors on the model parameters
include the initial state distribution ?0, transition matrix % with rows denoted
?1, . . . , ? , and the emission parameters q “ tq8u

8“1. In this case we have the

global parameters \ “ p?0, %, qq. For Hidden Markov Model with observation
G1:) and latent sequence I1:) , the generative model over the parameters is given by
q8 „ ?pqq (i.i.d from prior), ?8 „ DirpU8q, I1 „ ?0, IC`1 „ ?IC , and GC „ ?pGC |qIC q

(conditional distribution given parameters q). We can also write the transition
matrix:

% “

»

—

—

–

?1
...

?

fi

ffi

ffi

fl

The Bayesian hierarchical model over the parameters, hidden state sequence I1:) ,
and observation sequence H1:) is

q8
iid
„ ?pqq, ?8 „ DirpU8q

I1 „ ?0, IC`1 „ ?IC , GC „ ?pGC |qIC q

ForHMMs,wehave a full probabilisticmodel: ?pI, G|\q “ ?0pI1q
ś)

C“1 ?pIC |IC´1, %q?pGC |IC , qq.
Define the likelihood potential !C,8 “ ?pGC |q8q, the likelihood of the latent sequence,

262

given observation and model parameters, is as follows:

?pI1:) |G1:) , %, qq “

exp

˜

log ?0pI1q `
)
ÿ

C“2
log %IC´1,IC `

)
ÿ

C“1
log !C,IC ´ /

¸

(F.5)

where / is the normalizing constant. Following the notation and derivation from
(Johnson and Willsky, 2014), we denote ?pI1:) |G1:) ,%,qq “ HMMp?0, %, !q. Under
mean field assumption, we approximate the true posterior ?p%, q, I1:) |G1:)q with a
mean field variational family @p%q@pqq@pI1:)q and update each variational factor in
turn while fixing the others.

Fixing the global parameters \, taking expectation of log of (F.5), we derive the
update rule for @pIq as @pI1:)q “ HMMp r%, r?0, r!q where:

r% 9 ,: “ exptE@p%q lnp% 9 ,:qu

r?0,: “ exptlnE@p?0q?0,:u

r!C,: “ exptE@pq:q lnp?pGC |IC “ :qqu

To calculate the expectation with respect to @pI1:)q, which is necessary for updating
other factors, the Forward-Backward recursion of HMMs is defined by forward
messages � and backward messages �:

�C,8 “

ÿ

9“1
�C´1, 9 r% 9 ,8r!C,8 (F.6)

�C,8 “

ÿ

9“1

r%8, 9 r!C`1, 9�C`1, 9 (F.7)

�1,8 “ ?0p8q

�),8 “ 1

As a summary, calculating the gradientw.r.t I yields the following optimal variational
distribution over the latent sequence:

@˚pIq9 exp
´

E@p%qrln ?0pI1qs `
)
ÿ

C“2
E@p%qrlog %IC´1,IC s

`

)
ÿ

C“1
E@pqq lnr?pGC |ICqs

¯

, (F.8)

263

which gives the local updates for @˚pIq, given current estimates of % and q:

r% 9 ,: “ exp
“

E@p%q lnp% 9 ,:q
‰

(F.9)

r?pGC |IC “ :q “ exp
“

�@pqq ln ?pGC |GC “ :q
‰

, (F.10)

for : “ 1, . . . , , C “ 1, . . . ,) , and then use ?0, r%, r? to run the forward-backward
algorithm to compute the update @˚pIC “ :q and @˚pIC´1 “ 9 , IC “ :q. The
forward-backward algorithm in the local update step takes $p 2)q time for a chain
of length) and hidden states.

Training to learnmodel parameters forHMMs. Combining natural gradient step
with message-passing scheme for HMMs yield specific update rules for learning the
model parameters. Again for HMMs, the global parameters are \ “ p?0, %, qq and
local variables I “ I1:) . Assuming the priors on observation parameter ?pq8q and
likelihoods ?pGC |q8q are conjugate pairs of exponential family distribution for all 8,
the conditionals ?pq8|Gq have the form as seen from equation F.2:

?pq8|Gq9 exptx[q8 ` rCG,8pGq, 1s, Cq8pq8qyu

For structured mean field inference, the approximation @p\q factorizes as
@p%q@p?0q@pqq. At each iteration, stochastic variational inference sample a se-
quence G1:) from the data set (e.g. trajectory from any randomly sampled player)
and perform stochastic gradient step on @p%q@p?0q@pqq. In order to compute the
gradient, we need to calculate expected sufficient statistics w.r.t the optimal factor
for @pI1:)q, which in turns depends on current value of @p%q@p?0q@pqq.

Following the notation from (Johnson and Willsky, 2014), we write the prior and
mean field factors as

?p?8q “ DirpU8q, ?pq8q9 exptx[q8 , Cq8pq8qyu

@p?8q “ DirprU8q, @pq8q9 exptxr[q8 , Cq8pq8qyu

Using message passing scheme as per equations (F.6) and (F.7), we define the

264

intermediate quantities:

pCG,8 fi E@pI1:) q

)
ÿ

C“1
IrIC “ 8sCG,8pGCq

“

)
ÿ

C“1
�C,8�C,8rCG,8pGCq, 1s{/ (F.11)

ppCCA0=B,8q 9 fi E@pI1:) q

)´1
ÿ

C“1
IrIC “ 8, IC`1 “ 9s

“

)´1
ÿ

C“1
�C,8 r%8, 9 r!C`1, 9�C`1, 9{/ (F.12)

ppC8=8Cq8 fi E@pI1:) qIrI1 “ 8s “ r?0�1,8{/ (F.13)

where / fi
ř
8“1 �),8 is the normalizing constant, and I is the indicator function.

Given these expected sufficient statistics, the specific update rules corresponding to
the natural gradient step in the natural parameters of @p%q, @p?0q, and @pqq become:

r[q,8 Ð p1´ dqr[q,8 ` dp[q,8 ` 1
J
pCG,8q (F.14)

rU8 Ð p1´ dqrU8 ` dpU8 ` 1
J
pCCA0=B,8q (F.15)

rU0 Ð p1´ dqrU0 ` dpU0 ` 1
J
pC8=8C,8q (F.16)

Algorithm 20 Coordinated Structure Learning: LearnStructure
t*1, . . . ,* , �, \, du ÞÑ @p\, Iq

Input: Set of trajectories* “ t*:u :“1. Context �
Previous parameters \ “ p?0, \

%, \qq, stepsize d
1: -: “ tGC,:u)C“1 “ trDC,: , 2Csu @C, : .- “ t-:u

:“1

2: Local update: Compute r% and r? per equation F.9 and F.10
and compute @pIq “ Forward-Backwardp-, r%, r?q

3: Global update of \, per equations F.14, F.15, and F.16.
output Updated model @p\, Iq “ @p\q@pIq

F.2 Experimental Evaluation
Batch-Version of Algorithm 12 for Predator-Prey

Visualizing Role Assignment for Soccer
The Gaussian components of latent structure in figure 7.7 give interesting insight
about the latent structure of the demonstration data, which correspond to a popular
formation arrangement in professional soccer. Unlike the predator-prey domain,

265

Algorithm 21 Multi-Agent Data Aggregation Imitation Learning:
Learnp�1, �2, . . . , � , �|�q

Input: Ordered actions �: “ t0C,:u)C“1 @: , context t2Cu
)
C“1

Input: Aggregating data set �1, .., � for each policy
Input: base routine Trainp(, �q mapping state to actions
1: for C “ 0, 1, 2, . . . ,) do
2: Roll-out 0̂C`1,: “ c:pB̂C,:q @ agent :
3: Cross-update for each policy : P t1, . . . , u

B̂C`1,: “ i: pr0̂C`1,1, . . . , 0̂C`1,: , . . . , 0̂C`1, , 2C`1sq
4: Collect expert action 0˚

C`1,: given state B̂C`1,: @:

5: Aggregate data set �: “ �: Y tB̂C`1,: , 0
˚
C`1,:u

)´1
C“0

6: end for
7: c: Ð Trainp�:q

output new policies c1, c2, . . . , c

however, the players are sometimes expected to switch and swap roles. Figure F.1
displays the tendency that each learning policy : would takes on other roles outside
of its dominant mode. Policies indexed 0 ´ 3 tend to stay most consistent with the

Figure F.1: Role frequency assigned to policy, according to the maximum likelihood
estimate of the latent structured model

prescribed latent roles. We observe that these also correspond to players with the
least variance in their action trajectories. Imitation loss is generally higher for less
consistent roles (e.g. policies indexed 8 ´ 9). Intuitively, entropy regularization
encourages a decomposition of roles that result in learning policies as decoupled as
possible, in order to minimize the imitation loss.

	Acknowledgements
	Abstract
	Published Content and Contributions
	Bibliography
	Table of Contents
	List of Illustrations
	List of Tables
	Introduction
	Structured Policy Learning - Definition and Classification
	Learning with Value-Based Structure
	Learning with Policy-Based Structure
	Learning with Model-Based Structure
	Overview Discussion on Existing Approaches to Policy Learning

	Policy Learning under Value-Based Constraints
	Policy Learning under Value-Based Constraints
	Problem Formulation in the Batch Setting
	Algorithms for Batch Policy Learning under Value-Based Constraints
	Theoretical Analysis of Proposed Algorithms
	Empirical Study
	Other Related Work
	Discussion

	Off-Policy Value Estimation for Reinforcement Learning
	Introduction to Off-Policy Value Estimation
	Overview of Off-Policy Value Estimators
	Experiments
	Results
	Discussion and Future Directions

	Regularized Learning with Policy-Based Structure (Smooth Imitation Learning)
	Introduction
	Formulating the Problem as Functional Regularization
	Related Work in Imitation Learning
	Algorithm for Smooth Imitation Learning Setting
	Theoretical Analysis of Reduction-Based Algorithm
	Experiments
	Discussion

	Reduction to Online Learning with Policy-Based Structure (Programmatic Reinforcement Learning)
	Introduction to Programmatic Reinforcement Learning
	Policy Learning Problem within the Structured Policy Class
	Learning Algorithm via Reduction to Online Learning
	Theoretical Analysis
	Experiments
	Related Work
	Conclusion and Future Work

	Hierarchical Imitation and Reinforcement Learning
	Introduction
	Related Work in Imitation and Reinforcement Learning
	Hierarchical Formalism
	Hierarchically Guided Imitation Learning
	Hierarchically Guided IL/RL
	Experiments
	Discussion

	Policy Learning with Latent Model
	Motivating Applications for Latent Structure
	Policy Learning Problem Formulation
	Policy Learning Algorithm with Structure Learning and Inference
	Experiments
	Related Work in Multi-Agent Learning Context
	Limitations and Discussions

	Concluding Remarks
	Bibliography
	Appendix to Chapter 2
	Equivalence between Regularization and Constraint Satisfaction
	Convergence Proofs
	End-to-end Generalization Analysis of Main Algorithm
	Preliminaries to Analysis of Fitted Q Algorithms
	Analysis of Fitted Q Evaluation
	Analysis of Fitted Q Iteration
	Additional Instantiation of Meta-Algorithm
	Additional Experimental Details

	Appendix to Chapter 3
	Notations
	Ranking of Methods
	Challenging Common Wisdom - Supporting Data
	Methods
	Environments
	Experimental Setup
	Additional Supporting Figures for Chapter 3
	Additional Supporting Tables to Chapter 3

	Appendix to Chapter 4
	Detailed Theoretical Analysis and Proofs
	Imitation Learning With Smooth Regression Forests

	Appendix to Chapter 5
	Theoretical Analysis
	Additional Experimental Results and Details

	Appendix to Chapter 6
	Proofs for Chapter 6
	Additional Experimental Details
	Additional Related Work

	Appendix to Chapter 7
	Variational Inference Derivation for Hidden Markov Models
	Experimental Evaluation

