
From Restoring Human Vision to Enhancing Computer
Vision

Thesis by
Yang Liu

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2020
Defended June 2, 2020

ii

© 2020

Yang Liu
ORCID: 0000-0002-8155-9134

All rights reserved

iii

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation for my adviser Dr. Markus Meister,
who offered tremendous support and mentorship during my my entire PhD study
at CalTech. I’m particularly thankful for his help with the conceptualization of the
first project, which started my journey in vision research. I am also grateful for the
freedom that Markus gave me to explore projects of different flavors.

I would also like thank my thesis committee chair, Dr. Pietro Perona, and committee
members, Dr. Thanos Siapas and Dr. Yisong Yue, for their support, advice, and
mentorship. I have enjoyed taking classes from each of them, and the knowledge
from these classes helped me in building a firm foundation for my graduate research.

I would like to thank my family, lab members, classmates, and friends for their
continued support, and for making my time at CalTech enjoyable. Last but not least,
I would like to fiancée Dr. Kristina Dylla for always being there for me.

iv

ABSTRACT

The central theme of this work is enabling vision, which includes two subtopics:
restoring vision for blind humans, and enhancing computer vision models in visual
recognition. Chapter 1 first provides a gentle introduction to relevant high level
principles of human visual computations and summarizes two fundamental ques-
tions that vision answers: “what" and “where." Chapters 2, 3, and 4 contain three
published projects that are anchored by those two fundamental questions.

Chapter 2 introduces a cognitive assistant to restore visual function for blind humans
by focusing on an interface powered by audio augmented reality. The assistant
communicates the “what" and “where" aspects of visual scenes by a combination of
natural language and spatialized sound. We experimentally demonstrated that the
assistant enables many aspects of visual functions for naive blind users.

Chapters 3 and 4 develop data augmentationmethods to address the data inefficiency
problem in neural network based computer visual recognition models. In Chapter
3, a 3D-simulation based data augmentation method is developed for improving
the generalization of visual classification models for rare classes. In Chapter 4, a
fast and efficient data augmentation method is developed for the newly formulated
panoptic segmentation task. The method improves performance of state-of-the-art
panoptic segmentation models and generalizes across dataset domains, sizes, model
architectures, and backbones.

v

PUBLISHED CONTENT AND CONTRIBUTIONS

Beery, Sara et al. (Mar. 2020). “Synthetic Examples Improve Generalization for
Rare Classes”. In: The IEEE Winter Conference on Applications of Computer
Vision (WACV). url: http://openaccess.thecvf.com/content_WACV_
2020/papers/Beery_Synthetic_Examples_Improve_Generalization_
for_Rare_Classes_WACV_2020_paper.pdf.
Y.L participated in the conceptualization of the project, developed the data simu-
lation pipeline, participated in training and evaluation of networks, data analysis
and visualization, and writing of manuscript.

Liu, Yang, Pietro Perona, and Markus Meister (2019). “PanDA: Panoptic Data
Augmentation”. In: arXiv preprint arXiv:1911.12317. url: https://arxiv.
org/abs/1911.12317.
Y.L participated in all aspects of this project.

Meister, Markus and Yang Liu (July 2019). Systems and methods for generating spa-
tial sound information relevant to real-world environments. USPatent 10,362,429.
Y.L participated in the conceptualization of the project, experimental design,
hardware setup, software implementation, investigation, data analysis and visual-
ization, and writing of manuscript.

Liu, Yang, Noelle RB Stiles, and Markus Meister (2018). “Augmented reality pow-
ers a cognitive assistant for the blind”. In: eLife 7, e37841. doi: 10.7554/eLife.
3784.
Y.L participated in the conceptualization of the project, experimental design,
hardware setup, software implementation, investigation, data analysis and visual-
ization, and writing of manuscript.

http://openaccess.thecvf.com/content_WACV_2020/papers/Beery_Synthetic_Examples_Improve_Generalization_for_Rare_Classes_WACV_2020_paper.pdf
http://openaccess.thecvf.com/content_WACV_2020/papers/Beery_Synthetic_Examples_Improve_Generalization_for_Rare_Classes_WACV_2020_paper.pdf
http://openaccess.thecvf.com/content_WACV_2020/papers/Beery_Synthetic_Examples_Improve_Generalization_for_Rare_Classes_WACV_2020_paper.pdf
https://arxiv.org/abs/1911.12317
https://arxiv.org/abs/1911.12317
https://doi.org/10.7554/eLife.3784
https://doi.org/10.7554/eLife.3784

vi

TABLE OF CONTENTS

Acknowledgements . iii
Abstract . iv
Published Content and Contributions . v
Table of Contents . v
List of Illustrations . vii
List of Tables . xvi
Chapter I: Introduction . 1
Abstract . 2

1.1 Human Vision and Blindness . 3
1.2 Enabling Vision for the Blind with Computer Vision 4
1.3 Enhancing Computer Vision with Data Augmentation 6

Chapter II: Augmented Reality Powers a Cognitive Assistant for the Blind . . 9
Abstract . 10

2.1 Introduction . 11
2.2 Results . 12
2.3 Discussion . 21
2.4 Supplementary Materials . 22

Chapter III: Synthetic Examples Improve Generalization for Rare Classes . . 37
Abstract . 38

3.1 Introduction . 39
3.2 Related work . 40
3.3 Data and Simulation . 43
3.4 Experiments . 47
3.5 Conclusions and Future Work . 54
3.6 Supplementary Materials . 55

Chapter IV: PanDA: Panoptic Data Augmentation 65
Abstract . 66

4.1 Introduction . 67
4.2 Related Work . 68
4.3 Panoptic Data Augmentation . 70
4.4 Experiments . 72
4.5 Discussion . 80
4.6 Conclusions . 82
4.7 Supplementary Materials . 82

Bibliography . 89

vii

LIST OF ILLUSTRATIONS

Number Page
2.1 Hardware platform and object localization task. (A) The Mi-

crosoft HoloLens wearable augmented reality device. Arrow points
to one of its stereo speakers. (B) In each trial of the object localiza-
tion task, the target (green box) is randomly placed on a circle (red).
The subject localizes and turns to aim at the target. (C) Object local-
ization relative to the true azimuth angle (dashed line). Box denotes
s.e.m., whiskers s.d. (D) Characteristics of the seven blind subjects. . 13

2.2 Spatial memory task. (A) Five objects are arranged on a half-
circle; the subject explores the scene, then reports the recalled object
identities and locations. (B) Recall performance during blocks 1
(left) and 2 (right). Recalled target angle potted against true angle.
Shaded bar along the diagonal shows the 30 deg width of each object;
data points within the bar indicate perfect recall. Dotted lines are
linear regressions. (C) Slope and (D) correlation coefficient for the
regressions in panel (B). 15

2.3 Direct navigation task. (A) For each trial, a target chair is randomly
placed at one of four locations. The subject begins in the starting
zone (red shaded circle), follows the voice of the chair, and navigates
to the target zone (green shaded circle). (B) All raw trajectories from
one subject (#6) including 1 s time markers. Oscillations from head
movement are filtered out in subsequent analysis. (C) Filtered and
aligned trajectories from all trials of 3 subjects (#3, 4, 7). Arrow
highlights a trial where the subject started in the wrong direction.
(D) Trajectories of subjects performing the task with only a cane
and no HoloLens. (E) Deviation index, namely the excess length of
the walking trajectory relative to the shortest distance between start
and target. Note logarithmic axis and dramatic difference between
HoloLens and Cane conditions. (F) Speed of each subject normalized
to the free-walking speed. 16

viii

2.4 Long-range guided navigation task. (A) 3D reconstruction of the
experimental spacewith trajectories fromall subjects overlaid. (B and
C) 2D floor plans with all first trial trajectories overlaid. Trajectories
are divided into three segments: lobby (Start – Start 2), stairwell (Start
2 – Start 3), and hallway (Start 3 – Destination). Red arrows indicate
significant deviations from the planned path. (D) Deviation index
(as in Fig. 3E) for all segments by subject. Outlier corresponds to
initial error by subject 7. Negative values indicate that the subject cut
corners relative to the virtual guide. (E) Duration and (F) normalized
speed of all the segments by subject. 17

2.5 Benchmark testing environment. (A) A virtual living room in-
cluding 16 pieces of furniture and other objects. (B) Localization
of a randomly chosen object relative to the true object location (0
deg, dashed line) for four subjects using CARA (C) or vOICe (V).
Box denotes s.e.m., whiskers s.d. For all subjects, the locations
obtained with vOICe are consistent with a uniform circular distri-
bution (Rayleigh z test, p>0.05). (C) Navigation toward a randomly
placed chair. Trajectories from one subject using CARA (left) and
vOICe (middle), displayed as in Fig. 2.3C. Right: Number of trials
completed and time per trial (mean ±s.d.). (D) Navigation toward a
randomly placed key on the floor (small green circle). Trajectories
and trial statistics displayed as in panel C. 20

2.6 Obstacle avoidance utility and active scene exploration modes.
(A) to (C) An object avoidance system is active in the background at
all times. Whenever a real scanned surface or a virtual object enters
a danger volume around the user (red in A), a spatialized warning
sound is emitted from the point of contact (B). The danger volume
expands automatically as the usermoves (C), so as to deliver warnings
in time. (D) to (E) Active exploration modes. In Scan mode (D),
objects whose azimuthal angles fall in a certain range (e.g. between
-60 and +60 deg) call themselves out from left to right. In Spotlight
mode (E), only objects within a narrow cone are activated, and the
object closest to the forward-facing vector calls out. 23

ix

2.7 Process of scene sonification. The acquisition system should parse
the scene (A) into objects and assign each object a name and a voice
(B). In our study, this was accomplished by a combination of the
HoloLens and the experimenter. The HoloLens scans the physical
space (C) and generates a 3D mesh of all surfaces (D). In this digi-
tized space (E) the experimenter can perform manipulations such as
placing and labeling virtual objects, computing paths for navigation,
and animating virtual guides (F). Because of the correspondence es-
tablished in D, these virtual labels are tied to the physical objects in
real space. 24

2.8 Mental imagery task supplementary data. Spatial memory data
(Fig. 2.2) from blocks 1 (left) and 2 (right) by subject. Shaded areas
indicate the true azimuthal extent of each object. Markers indicate
recalled location. Most recalled locations overlap with the true extent
of the object. Subjects 8–10 were normally sighted and performed
the exploration phase using vision. 25

2.9 Direct navigation task extended data. Trial distance (A) and trial
duration (B) for the first 20 trials of all subjects. A modest effect
of practice on task duration can be observed across all subjects (B).
(C) Low-pass filtered, aligned trajectories of all subjects. In most
trials, subjects reach the target with little deviation. (D) Dynamics of
navigation, showing the distance to target as a function of trial time
for one subject. (E) Head orientation vs distance to target for two
subjects. Note Subject 6 begins by orienting without walking, then
walks to the target. Subject 2 orients and walks at the same time,
especially during early trials. 33

x

2.10 Additional experimental functions. (A) to (B) Automated sign
recognition using computer vision. Using Vuforia software (Vuforia
n.d.), the HoloLens recognizes a men’s room sign (A) (image is
viewed through HoloLens), and installs a virtual object (cube, arrow)
next to the sign. (B) This object persists in the space even when the
sign is no longer visible. (C) Automated wayfinding. The HoloLens
generates a path to the target (door) that avoids the obstacle (white
box). Then a virtual guide (orange balloon) can lead the user along the
path. See Videos 2–3. (D) Navigation in the presence of obstacles.
The subject navigates from the starting zone (red circle) to an object
in the target zone (green circle) using calls emitted by the object.
Three vertical columns block the path (black circles), and the subject
must weave between them using the obstacle warning system. Raw
trajectories (no filtering) of a blind subject (5) are shown during
outbound (left) and return trips (right), illustrating effective avoidance
of the columns. This experiment was performed with a version of
the apparatus built around the HTC Vive headset. (E) Orienting
functions of the virtual guide. In addition to spatialized voice calls,
the virtual guide may also offer turning commands toward the next
waypoint. In the illustrated example, the instruction is, “In x meters,
turn right." (F) Real-time object detection using YOLO (Redmon and
Farhadi, 2018). Left: A real scene. Note even small objects on a
textured background are identified efficiently based on a single video
frame. Right: A virtual scene from the benchmarking environment,
rendered by Unity software. 34

2.11 Guided navigation trajectories. (A) 3D model of the experimental
space as scanned by the HoloLens. (B) Subject and guide trajectories
from the long-range guided navigation task. Note small differences
between guide trajectories across experimental days, owing to varia-
tions in detailed waypoint placement. 35

2.12 Benchmark tests in a virtual environment. Trajectories of three
additional subjects. (A) Navigation to a randomly placed chair, using
either CARA or vOICe, displayed as in Fig. 2.5C. Subject 4 exhibited
some directed navigation using vOICe. (B) Finding a dropped key,
as in Fig. 2.5D . 36

xi

3.1 Day (top) andnight (bottom) examples for each simulationmethod.
We compare four different simulation methods and compare the ef-
fects of each on classification performance. 40

3.2 Cis vs. Trans: The cis-test data can be very similar to the training
data: animals tend to behave similarly at a single location even across
different days, so the images collected of each species are easy to
memorize intra-location. The trans data has biases towards specific
angles and lighting conditions that are different from those in the cis
locations, and as such is very hard to learn from the training data.
iNaturalist data represents a domain shift to human-curated images. . 44

3.3 (Top) Number of training examples for each class. Deer are rare
in the training locations from the CCT-20 data split. We focus on
deer as a test species in order to investigate whether we can improve
performance on a “rare" class. Since deer are not rare at other
camera locations within the CCT dataset, we have enough test data
to thoroughly evaluate the effect. (Bottom) Number of examples
for each data split, for deer and other classes. In the CCT-20 data
split, there were no trans examples of deer. We added annotations to
the trans val and test sets for an additional 16K images across 65 new
locations from CCT, including 6K examples of deer. We call these
augmented sets trans+. 45

3.4 Error as a function of number of simulated images seen during
training. We divide this plot into three regions. The leftmost
region is the baseline performance with no simulated data, shown at
x=0 (Note x-axis is in log scale). In the middle region, additional
simulated training data increases performance on the rare class and
does not harm the performance of the remaining classes (trend lines
are visualized). The rightmost region, where many simulated images
are added to the training set, results in a biased classifier, hurting the
performance of the other classes (see Fig.3.5 (b-c) for details). We
compare the class error for “deer" and “other classes" in both the
“cis" and “trans+" testing regimes. Lines marked “deer" use only
the deer test images for the error computation. Lines marked “other
classes" use all the images in the other classes (excluding deer) for
the error computation. Error is defined as the number of incorrectly
identified images divided by the number of images. 48

xii

3.5 (a) Trans+ PR curves for the deer class: Note the development of
a biased classifier as we add simulated training data. The baseline
model (in blue) has high precision but suffers low recall. The model
trained with 1.4M simulated images (in grey) has higher recall, but
suffers a loss in precision. (b-c) Evidence of a biased classifier:
Compare the deer column in the confusionmatrices, themodel trained
with 1.4M simulated images predicts more test images as deer. 49

3.6 Error as a function of variability of simulated images seen during
training: 100K simulated deer images. Error is calculated as in
Fig.3.4, and all data is from TrapCam-Unity. Trans+ deer perfor-
mance is highlighted. In the legend, “CCT" means the model was
trained only on the CCT-20 training set with no added simulated dta.
“P" means “pose," “L" means “lighting," and “M" means “model,"
while the prefix “f" for “fixed" denotes which of these variables were
controlled for a particular experiment. For example “fPM" means
the pose and the animal model were held fixed, while the lighting
was allowed to vary. The variability of simulated data is extremely
important, and that while all axes of variability matter, simulating
nighttime images has the largest effect. 50

3.7 Error as a function of simulated data generation method: 100K
simulated deer images. Per-class error is calculated as in Fig.3.4.
Trans+ deer performance is highlighted. Oversampling decreases
performance, and there is a large boost in performance from incor-
porating real segmented animals on different backgrounds (Real on
Empty). TrapCam-Unity with everything allowed to vary (model,
lighting, pose, including nighttime simulation) gives us slightly bet-
ter trans+ performance, without requiring additional segmentation
annotations. Combining Real on Empty with TrapCam-Unity (50K
of each) gives us the best trans+ deer performance. 51

xiii

3.8 Visualization of network activations: more deer are classified
correctly as we add synthetic data, despite the synthetic data
being clustered separately. The pink points are real deer, the brown
are simulated day images and the grey are simulated night images.
Large markers are points that are classified correctly, while small
markers are points classified incorrectly. The plots were generated
by running 200-dimensional PCA over the activations at the last pre-
logit layer of the network when running inference on the test sets, and
then running 2-dimensional tSNE over the resulting PCA embedding. 52

3.9 Error as a function of day or night simulated images: 100K
simulated deer images. Error is calculated as in Fig. 4 in the main
paper. Trans+ deer performance is highlighted. Models trained on
added night- or day-only simulated data perform better on trans deer
than CCT alone, but the best trans deer performance comes from the
50/50 day/night split of added simulated data. 57

3.10 Error as a function of deer or coyote simulated images: 100K
simulated images. Error is calculated as in Fig. 4 in the main paper.
Trans+ deer and coyote performance are highlighted. 58

3.11 Wolves and coyotes are visually similar. 58
3.12 Sim and Real on Empty Generation. (a),(c),(e) demonstrate the

process of overlaying a simulated deer on top of an empty back-
ground image from the CCT dataset. (b),(d),(f) show the process of
overlaying a cropped real deer on top of an empty background image
from the CCT dataset. 60

3.13 TrapCam-AirSim environment. The TrapCam-Airsim envionment
was designed to be modular and randomizeable, which allows a va-
riety of biomes to be synthesized within a limited simulated area. . . 61

3.14 Models of deer andwolves. In TrapCam-Unity, we used 17 different
models of deer from 5 different artists and 5 models of wolves from
5 different artists. We used the wolf models as proxies for coyotes
(see Section 3.6). Model details are available in section 3.6. 62

3.15 TrapCam-Unity environment. The Book of The Dead environment
is a large natural environment with diverse sub regions. 63

3.16 Example of eyeshine simulation. 64

xiv

4.1 Schematics of PanDA. Foreground and background segments are
greatly simplified for clear demonstration of the image decomposi-
tion and synthesis process. Note that background in the panoptic
segmentation task usually takes a small percentage of pixels in an
image . 70

4.2 Examples of original cityscapes images (top row) and PanDA gen-
erated images (bottom row). 71

4.3 Model performance vs training set size on Cityscapes. We train
UPSNet-50 models on various Cityscapes subsets ranging from 10
to 2,975 images. PQ: panoptic quality. AP: mean average precision
of instance segmentation evaluated at 0.5:0.95. AP box: mean aver-
age precision of detection evaluated at 0.5:0.95. Dashed curves are
log-linear fits. Panoptic segmentation, instance segmentation, and
instance detection performance are summarized by PQ, AP, and AP
box, respectively. 74

4.4 Examples of image with decreasing levels realism. (a) Original
image. (b) Image with dropout only. The dominant segment - road is
dropped out to balance per class pixel count. The composition of the
picture is largely preserved and many objects still appear in realistic
contexts. (c) Image with dropout, resize, and shift. In addition to
dropout as seen in (b), segments are resized and moved to create new
contexts. The additional operations make the new image unrealistic. . 80

4.5 Treemap views of average pixel count by class per image of
Cityscapes training set. Class 20 is the background which is con-
sidered out of area of interest. Classes 1 and 3 together occupy the
majority of the non-background pixels of an image in the original
Cityscapes, and make up less than half the non-background pixels. . 83

4.6 Per class pixel percentage per image. Bar graph of average per class
pixel percentage of non-background classes per image. Each bar is
computed by dividing the average number of pixels of a given class
by the sum of the average number of non-background pixels. Pixel
percentages of common classes are reduced and those of rare classes
are increased, making the synthetic images more class-balanced. . . . 84

xv

4.7 Results on Cityscapes. In each case, data augmentation with PanDA
improves performance. PQ: panoptic quality. PQ things: PQ for
things classes. PQ stuff : PQ for stuff classes. mIoU: mean inter-
section over union. AP: segmentation average precision evaluated at
0.5:0.95. AP1>G: bounding box average precision evaluated at 0.5:0.95. 84

4.8 Model performance vs training set size on Cityscapes. We train
UPSNet-50 models on various Cityscapes subsets ranging from 10
to 2,975 images. PQ: panoptic quality. AP: instance segmentation
average precision evaluated at 0.5:0.95. AP box: bounding box
average precision evaluated at 0.5:0.95. Dashed curves are log-
linear fits of baseline experiments, solid curves are fits of PanDA
experiments. Panoptic segmentation, instance segmentation, and
instance detection performance are summarized by PQ, AP, and AP
box, respectively. PanDA enhanced models consistently outperform
original models across scales in all metrics. Data efficiency (DE)
corresponds to the amount of right shift of PanDA curves to account
for the improved performance with PanDA. 86

4.9 Examples of original and PanDA Cityscapes images with ground
truth annotation. Left two columns: original Cityscapes images
and ground truth annotation images. Right two columns: PanDA
generated images and ground truth annotation images. 87

4.10 Examples of original and PanDA COCO images with ground
truth annotation. Left two columns: original COCO images and
ground truth annotation images. Right two columns: PanDA gener-
ated images and ground truth annotation images. 88

xvi

LIST OF TABLES

Number Page
3.1 Error for different architectures. Error is defined as the number

of incorrectly identified images divided by the number of images for
each test set, where “Deer" contains only deer images and “Other"
contains all non-deer images. 56

3.2 Error with and without the 44 real deer examples when adding
100K simulated deer images. Error is computed as in Table 3.1. . . 57

4.1 Results on Cityscapes. PanDA augmented Cityscapes datasets gen-
erated with a single frozen set of parameters improve all perfor-
mance of UPSNet-50, UPSNet-101, SSS-50. PQ: panoptic quality.
SQ: segmentation quality. RQ: recognition quality. PQCℎ: PQ for
things classes. PQBC : PQ for stuff classes. mIoU: mean intersection
over union. AP: mean average precision of instance segmentation
evaluated at 0.5:0.95. AP1>G: mean average precision of detection
evaluated at 0.5:0.95. 76

4.2 PanDA generalization results. We used the same set of parameters
for all experiments in this section. As shown in the table, PanDA
generalizes well not only across scales of Cityscapes subsets, but also
to COCO subsets that are 10 times larger than the original Cityscapes
dataset. 77

4.3 Data efficiency. Three sets of estimates of effective training set sizes
are made per experiment with PQ, AP, and AP box, respectively. #
original images: number of original images used in training. �� :
data efficiency in percent. #: number of effective training images
estimated by model performance. Superscripts orig. and aug denote
model trained with original images only or original and PanDA im-
ages. Subscripts denote which performancemetric is used to estimate
or �� . 78

4.4 Ablation study on Cityscapes dataset. Training on the original
dataset for more iterations does not improve model performance.
Best performance is achieved by combining dropout, resize, and shift. 79

xvii

4.5 Extended Results on Cityscapes. Despite the fact that our baseline
performance (best of 5 runs) is lower than that reported in the original
UPSNet paper Xiong et al., 2019, our models trained on PanDA aug-
mented datasets outperform the original UPSNet-50 model without
COCO pretraining in all metrics. PanDA 1x consists of 3,000 orig-
inal Cityscapes images plus 3,000 PanDA synthetic images, PanDA
2x consists of 3,000 original Cityscapes images plus 6,000 PanDA
images. PQ: panoptic quality. SQ: segmentation quality. RQ: recog-
nition quality. PQCℎ: PQ for things classes. PQBC : PQ for stuff
classes. mIoU: mean intersection over union. AP: segmentation av-
erage precision evaluated at 0.5:0.95. AP1>G: bounding box average
precision evaluated at 0.5:0.95. 85

4.6 Per class instance segmentation results on Cityscapes. Segmenta-
tion AP are reported. We observe not only large relative improvement
on rare classes such as train and bicycle (18.4% and 13.1%, respec-
tively), but also small gains on common classes such as car and person
(3.5% and 3.5%, respectively). 85

4.7 Per class detection results on Cityscapes. AP box are reported. . . 85

1

C h a p t e r 1

INTRODUCTION

2

ABSTRACT

This thesis consists of three main chapters. Each is a published research article with
appropriate sections from introduction to conclusions. This introductory chapter
provides a high-level introduction and overview of the common theme that con-
nects the three research articles, namely enhancing human and computer vision.
The chapter first briefly introduces some high-level principles of the human visual
computation and challenges to restore vision. It then provides an overview of ex-
isting approaches to help people with vision loss and why they fail. In the second
section, the idea of using modern computer vision to guide the blind is explained.
An assistant for restoring visual functions of blind humans with a focus on intuitive
low bandwidth user interface is proposed. In the last section, we identify the data
inefficiency problem in modern computer visual recognition problems and two data
augmentation methods are proposed to address the problem.

3

1.1 Human Vision and Blindness
About 216 million people are visually impaired globally, of which 36 million are
blind (R. Bourne et al., 2017; Seth R Flaxman et al., 2017). For most sighted people
like ourselves to appreciate the importance of our vision, one needs no more than
to try a few minutes of simple daily routines, like having lunch and reading news,
with eyes closed. Consistent with our subjective experience, studies have shown
that vision loss drastically impacts people’s quality of life (Evans, 1989; Frick et al.,
2007).

To develop a deep understanding of visual impairment, it is useful to understand
normal human vision first. There aremanyways to understand biological vision, and
a relevant, classic definition from David Marr describes vision as “knowing what
is where by looking." (Marr, 1982) Much of vision neuroscience research has been
inspired by this succinct definition of vision. Thewell-known two-stream hypothesis
(Goodale, Milner, et al., 1992) argues that the human visual system has two separate
streams of process that answer the "what" and "where" questions respectively. The
ventral pathway that leads to the temporal lobe is primarily responsible for visual
recognition and identification, and the dorsal pathway that leads to the parietal lobe
processes the spatial location of objects relative to the viewer. Chapters in the rest
of the thesis are anchored by answering the two fundamental questions of vision for
either blind humans or computers.

Despite the ostensible straightforwardness of “what" and “where" questions, the
underlying computation performed by our brain to answer these two questions is
complex. From an information processing point of view, the human visual system
takes in about 1 gigabit of raw image information every second at the the first stage
– the retina. In sharp contrast, it is estimated that only tens of bits of information are
extracted to guide our thoughts and actions (Pitkow and Meister, 2014). To perform
this eight orders of magnitude information extraction, the human brain dedicates a
large proportion of its cortical area to visual processing (Kandel et al., 2000).

With the dominant causes of blindness worldwide being age-related diseases of the
eye, the normal flow of visual data from the eye to the brain is blocked, leaving
the sophisticated visual area largely out of action despite the cortical plasticity.
The number of people affected by the common causes of vision loss has increased
substantially as the population increases and ages (Seth R Flaxman et al., 2017).
A straightforward idea to fix blindness caused by malfunctioning eyes is to try
and repair the eye. The first option is to repair the eye biologically, and a wide

4

range of treatments involving gene therapy, stem cells, or transplantation are being
explored(Scholl et al., 2016). The second option is to bring the image into the brain
through alternate means. The most direct route is electrical stimulation of surviving
cells in the retina (Stingl and Zrenner, 2013; Weiland and Humayun, 2014) or of
neurons in the visual cortex (Dobelle, Mladejovsky, and Girvin, 1974). The clear
advantages of such methods are that they make the powerful visual areas in the brain
useful again and can potentially restore natural visual perception. However, such
methods are likely to remain decades away from being widely accessible by the
blind. Because, in addition to the need of further technological development, such
methods are generally invasivemedical procedures and therefore require government
agency approval, and may come at prohibitively high cost.

A second class of approaches seeks to restore visual functions such as "knowing
what is where" rather than visual sensation itself. This approach involves rerouting
visual information to a different sensory channel, such as hearing(Meijer, 1992;
Auvray, Hanneton, and O’Regan, 2007; Capelle et al., 1998) and touch (Stronks
et al., 2016). Such approaches can often be made non-invasive, therefore they are
generally safer and cheaper. However, two major challenges are present. First,
the required bit rate of for raw visual imagery transmission is exceptionally high,
and other sensory modalities often have lower bandwidths. Second, despite the
adaptive plasticity of the human cortex, non-visual cortical areas are ill-equipped
to process information in a raw imagery format. Due to a lack of sophisticated
algorithms, all of the aforementioned approaches apply naive and aggressive pixel-
space down sampling to reduce bandwidth to match that of the receiving channel.
A lot of useful visual information is lost during this simple-minded down-sampling
process. In addition, the down-sampled information often maintains the original
format of images, which is unintuitive to understand and learn. In summary, these
approaches failed to deliver any practical restoration of visual functions to the blind.
It is apparent that a more intelligent way is needed to both reduce the data rate and
translate the information into an intuitive format.

1.2 Enabling Vision for the Blind with Computer Vision
Fortunately, one of the major goals of computer vision is to engineer computer
systems that understand high-level information as the human visual system does.
This means translating visual images to descriptions of the world that can be used
to guide behaviors. Since its inception in 1960s, computer vision has developed
into a large scientific discipline that consists of many subdomains such as image

5

restoration, scene reconstruction, and event detection.

In the past two decades, the thanks to the exponential growth of computational
power, the development and popularization of various flavors of artificial neural
networks, and the availability of large-scale annotated datasets, computer vision
systems have seen revolutionary improvements. Modern deep convolutional neural
network (DCNN) powered models often yield top performance across many com-
puter vision benchmarks (Olga Russakovsky et al., 2014; K. He, X. Zhang, et al.,
2015). In certain visual recognition tasks, they can even rival or outperform humans
(Olga Russakovsky et al., 2014; K. He, X. Zhang, et al., 2015). Although, a general
purpose computer vision model that matches every aspect of human vision has yet
to be invented. Many domain-specific visual recognition models have proven useful
in a wide range of real world applications, including agriculture (Barth et al., 2018),
medicine (Poh, McDuff, and Picard, 2010; Litjens et al., 2017), wildlife preservation
(Beery, Van Horn, and Perona, 2018), manufacturing (Lee, Cheon, and Kim, 2017),
and transportation (B. Wu et al., 2017).

In 1985, long before the advent of powerful deep neural network based computer
vision models which rival human performance, Collins (Collins, 1985) envisioned
a future of assistive technology for the blind with the help of computer vision:

For the ideal mobility system of the future, I strongly believe that
we should take a more sophisticated approach, utilizing the power of
artificial intelligence for processing large amounts of detailed visual
information in order to substitute for the missing functions of the eye
and much of the visual pre-processing performed by the brain. We
should off-load the blind traveler’s brain of these otherwise slow and
arduous tasks which are normally performed effortlessly by the sighted
visual system.

Decades later, this work aims to revitalize the prophetic idea from Collins with the
help of modern computer vision. Specifically, the proposed system that helps the
blind can be broken down to two components: 1) a front-end computer visionmodel
that extracts high-level information from the scene, and 2) a back-end user interface
that communicates such information to the blind user at a comfortable bandwidth and
in an intuitive format. The next three chapters contain three independent projects that
focus on the two components: restoration of human vision and enhancing computer
vision.

6

In Chapter 2, we asked the question of what auditory user interface is efficient and
intuitive for communicating visual information to the blind, given that all relevant
information has already been extracted and made available by a hypothetical front-
end system. Specifically, the interface uses natural language to communicate the
identities of objects, which answers the “what" question of vision, and spatialized
sound to inform object locations, which answers the“where" aspect of vision. The
hardware platform is a self-contained wearable computer that not only serves as a
surrogate of the hypothetical front-end system by provided simulate information, but
also powers a real world cognitive augmented reality assistant (CARA) for the blind
by being able to sample and store real world information. Behavior experiments
were conductedwith blind human subjects to test the efficacy of the proposed system.
The system supports many aspects of visual cognition for the blind without training:
from obstacle avoidance to formation and recall of spatial memories, to line-of-sight
and multi-story building navigation.

1.3 Enhancing Computer Vision with Data Augmentation
Having established the effectiveness of CARA, a system focusing on the back-end
user interface component, Chapters 3 and 4 move forward to improve the front-end
component, namely computer vision models that extract high level information from
the visual scene. This line of research is motivated not only by the special need of a
front-end for the blind, but also the author’s general interest in enabling a computer
to see as humans do.

Among many tasks of computer vision, visual recognition (Jia Deng et al., 2009;
Olga Russakovsky et al., 2014) is a the classical one that aims to answer the “what"
aspect of an image: to assign a class or category to the image. Its generalized
variants such as object detection and segmentation also answer the “where" aspect of
vision by localizing objects or points of interest in the form of indicating locations,
boundaries, or providing pixel-level labels of object classes and identities (Lin,
Maire, et al., 2014; Kirillov et al., 2019; Krasin et al., 2017). Together, these
computer vision tasks and models are of particular interest to assisting the blind
since they answer the fundamental “what" and “where" problems of vision.

The availability of high-quality, large-scale annotated datasets such as ImageNet
(Jia Deng et al., 2009) and Microsoft COCO (Lin, Maire, et al., 2014) has been an
indispensable driving force for supervised computer vision models. The quality and
scale of the dataset often have decisive impact on computer vision models. Studies

7

have shown that even mild label corruption can significantly reduce the generaliza-
tion performance of DCNN-based models (C. Zhang et al., 2016; Sukhbaatar et al.,
2014). State-of-the-art models in many visual benchmarks often need thousands of
training samples to reach desirable performance (Xiong et al., 2019; Porzi et al.,
2019; K. He, X. Zhang, et al., 2015; Szegedy, Ioffe, et al., 2017). Additionally,
many real-world visual recognition problems have long-tailed (Van Horn and Per-
ona, 2017) class distributions, and generalization performance is usually poor for
rare classes (Beery, Y. Liu, Morris, Piavis, Kapoor, Joshi, et al., 2020).

In general, there are several approaches to address the “data hunger" issue. First,
a technique called transfer-learning can be used to store knowledge gained while
solving one problem and applying it to a related problem. Specifically, for visual
recognition tasks such as object detection, image segmentation, and action recog-
nition, a widely used method is to pre-train on large datasets such as ImageNet
and fine-tune on target task datasets. In fact, many state-of-the-art visual recogni-
tion models are obtained with the help of this approach (Lin, Goyal, et al., 2018;
Redmon and Farhadi, 2018; K. He, Gkioxari, et al., 2017; Xiong et al., 2019;
Porzi et al., 2019). Second, more data efficient models that are capable of learning
visual concepts from a few examples are being developed (Li, Fergus, and Per-
ona, 2006). Several models have shown promising results on simple benchmarks
with low capacity models (Hariharan and Girshick, 2017; Pahde et al., 2019) but
have yet to prove their usefulness on state-of-the-art high-capacity models. Finally,
data augmentation methods aim to supplement limited datasets by generating new
data. This is usually achieved by either directly generating new data with additional
resources, such as simulation and generative models (Varol, Romero, X. Martin,
Mahmood, Michael J. Black, et al., 2017a; Pepik et al., 2015; Hinterstoisser et al.,
2019; Rajpura, Bojinov, and Hegde, 2017; Goodfellow et al., 2014; Shrivastava
et al., 2017; Stephan R. Richter et al., 2016a; Peng et al., 2018; Hattori et al., 2015),
or synthesizing data by applying invariant transforms to existing data (Bousmalis
et al., 2017; Gregor et al., 2015; Im et al., 2016; Radford, Metz, and Chintala, 2015;
Tran et al., 2017; Luan et al., 2017; J.-Y. Zhu et al., 2017). In Chapters 3 and 4,
two data augmentation methods were developed to improve state-of-the-art models
(Beery, Y. Liu, Morris, Piavis, Kapoor, Joshi, et al., 2020; Y. Liu, Perona, and
Meister, 2019).

Chapter 3 is focused on the data imbalance issue of real-world visual classification
problems. Specifically, our testbed is animal species classification, which has a real-

8

world long-tailed distribution. Driven largely by the entertainment industry, modern
3D game development engines can render near photo-realistic 3D environments in
real time and can rapidly generate large-scale, high quality images with ground
truth. Two natural world simulators powered by such game engines are developed,
and effects of different axes of variation in simulation, such as pose, lighting, model,
and simulation method, are analyzed. In addition, we prescribe best practices for
efficiently incorporating simulated data for real-world performance gain. Experi-
ments revealed three main conclusions: 1) synthetic data can significantly reduce
error rates for rare classes, 2) target class error decreases as more simulated data are
added to the training, and 3) high variation of simulated data provides maximum
performance gain.

Chapter 4 addresses the data deficit problem of the newly formulated panoptic
segmentation task which unifies semantic segmentation and instance segmentation
tasks (Kirillov et al., 2019). The panoptic data augmentation (PanDA) method is
inspired by two observations: 1) humans takes advantage of motion parallax cues
for segmenting foreground from background, and 2) the unexpected effectiveness
of pasting cropped foreground images on empty background images in Chapter 3.
PanDA takes advantage of semantic- and instance-invariant transformations in pixel
space and generates fully annotated new training images from the original training
dataset without any additional data input. Unmodified state-of-the-art panoptic
segmentation models were retrained on PanDA augmented datasets generated with a
single frozen set of parameters. We experimentally showed robust performance gains
in panoptic segmentation, instance segmentation, as well as object detection tasks
across models, backbones, dataset domains, and scales. An important additional
insight originating from the unrealistic-looking images generated by PanDA, which
is in sharp contrast with existing data augmentation methods in this domain (S. Liu
et al., 2019; Beery, Y. Liu, Morris, Piavis, Kapoor, Meister, et al., 2019; H.-S. Fang
et al., 2019; R. Shetty, Schiele, and Fritz, 2019; Dvornik, Mairal, and Schmid,
2019). The effectiveness of such unrealistic-looking images suggests that photo-
realism is not necessary for synthesis by data augmentation, and one should rethink
optimizing for image realism for future data augmentation methods.

9

C h a p t e r 2

AUGMENTED REALITY POWERS A COGNITIVE ASSISTANT
FOR THE BLIND

Liu, Yang, Noelle RBStiles, andMarkusMeister (2018). “Augmented reality powers
a cognitive assistant for the blind”. In: eLife 7, e37841. doi: 10.7554/eLife.
3784.

https://doi.org/10.7554/eLife.3784
https://doi.org/10.7554/eLife.3784

10

ABSTRACT

To restore vision for the blind, several prosthetic approaches have been explored
that convey raw images to the brain. So far, these schemes all suffer from a lack of
bandwidth and the extensive training required to interpret unusual stimuli. Here we
present an alternate approach that restores vision at the cognitive level, bypassing
the need to convey sensory data. A wearable computer captures video and other
data, extracts the important scene knowledge, and conveys that through auditory
augmented reality. This system supports many aspects of visual cognition: from
obstacle avoidance to formation and recall of spatial memories, to long-range navi-
gation. Neither training nor modification of the physical environment are required:
blind subjects can navigate an unfamiliar multi-story building on their first attempt.
The combination of unprecedented computing power in wearable devices with aug-
mented reality technology promises a new era of non-invasive prostheses that are
limited only by software.

11

2.1 Introduction
About 36 million people are blind worldwide (R. Bourne et al., 2017). In industrial-
ized nations, the dominant causes of blindness are age-related diseases of the eye, all
of which disrupt the normal flow of visual data from the eye to the brain. In some of
these cases, biological repair is a potential option, and various treatments are being
explored involving gene therapy, stem cells, or transplantation (Scholl et al., 2016).
However, the dominant strategy for restoring vision has been to bring the image into
the brain through alternate means. The most direct route is electrical stimulation
of surviving cells in the retina (Stingl and Zrenner, 2013; Weiland and Humayun,
2014) or of neurons in the visual cortex (Dobelle, Mladejovsky, and Girvin, 1974).
Another option involves translating the raw visual image into a different sensory
modality (Loomis, Klatzky, and Giudice, 2012; Maidenbaum, Abboud, and Amedi,
2014; Proulx et al., 2016), such as touch (Stronks et al., 2016) or hearing (Auvray,
Hanneton, and O’Regan, 2007; Capelle et al., 1998; Meijer, 1992). So far, none
of these approaches has enabled any practical recovery of the functions formerly
supported by vision. Despite decades of effort, all users of such devices remain
legally blind (Luo and Da Cruz, 2016; Katarina Stingl et al., 2017; Striem-Amit,
Guendelman, and Amedi, 2012; Stronks et al., 2016). While one can certainly hope
for progress in these domains, it is worth asking what the fundamental obstacles to
restoration of visual function are.

The human eye takes in about 1 gigabit of raw image information every second,
whereas our visual system extracts from this just tens of bits to guide our thoughts
and actions (Pitkow and Meister, 2014). All the above approaches seek to transmit
the raw image into the brain. This requires inordinately high data rates. Further,
the signal must arrive in the brain in a format that can be interpreted usefully
by the visual system or some substitute brain area to perform the key steps of
knowledge acquisition, like scene recognition and object identification. None of the
technologies available today deliver the high data rate required to retain the relevant
details of a scene, nor do they produce a neural code for the image that matches
the expectations of the human brain, even given the prodigious degree of adaptive
plasticity in the nervous system.

Three decades ago, one of the pioneers of sensory substitution articulated his vision
of a future visual prosthesis (Collins, 1985):

I strongly believe that we should take a more sophisticated approach,
utilizing the power of artificial intelligence for processing large amounts

12

of detailed visual information in order to substitute for the missing func-
tions of the eye and much of the visual pre-processing performed by the
brain. We should off-load the blind travelers’ brain of these otherwise
slow and arduous tasks which are normally performed effortlessly by
the sighted visual system.

Whereas at that time the goal was hopelessly out of reach, today’s capabilities
in computer vision, artificial intelligence, and miniaturized computing power are
converging to make it realistic.

Here, we present such an approach that bypasses the need to convey the sensory
data entirely, and focuses instead on the important high-level knowledge, presented
at a comfortable data rate and in an intuitive format. We call the system CARA: a
cognitive augmented reality assistant for the blind.

2.2 Results
Design Principles
CARA uses a wearable augmented reality device to give voices to all the relevant
objects in the environment (Fig. 2.1A). Unlike most efforts at scene sonification
(Bujacz and Strumiłło, 2016; Csapó andWersényi, 2013), our system communicates
through natural language. Each object in the scene can talk to the user with a voice
that comes from the object’s location. The voice’s pitch increases as the object
gets closer. The user actively selects which objects speak through several modes of
control (Fig. 2.6): In Scan mode, the objects call out their names in sequence from
left to right, offering a quick overview of the scene. In Spotlight mode, the object
directly in front speaks, and the user can explore the scene by moving the head. In
Target mode, the user selects one object that calls repeatedly at the press of a clicker.
In addition, any surface in the space emits a hissing sound as a collision warning
when the user gets too close (Fig. 2.6).

The system is implemented on the Microsoft HoloLens (Fig. 2.1A), a powerful
head-mounted computer designed for augmented reality (Hoffman et al., 2016). The
HoloLens scans all surfaces in the environment using video and infrared sensors,
creates a 3D map of the surrounding space, and localizes itself within that volume
to a precision of a few centimeters (Fig. 2.7). It includes a see-through display for
digital imagery superposed on the real visual scene; open-ear speakers that augment
auditory reality while maintaining regular hearing; and an operating system that

13

Figure 2.1: Hardware platform and object localization task. (A) The Microsoft
HoloLens wearable augmented reality device. Arrow points to one of its stereo
speakers. (B) In each trial of the object localization task, the target (green box) is
randomly placed on a circle (red). The subject localizes and turns to aim at the
target. (C) Object localization relative to the true azimuth angle (dashed line). Box
denotes s.e.m., whiskers s.d. (D) Characteristics of the seven blind subjects.

implements all the localization functions and provides access to the various sensor
streams.

Any cognitive assistant must both acquire knowledge about the environment and
then communicate that knowledge to the user. Tracking and identifying objects
and people in a dynamic scene still presents a challenge, but those capabilities are
improving at a remarkable rate (Jafri et al., 2014; Verschae and Ruiz-del-Solar,
2015), propelled primarily by interests in autonomous vehicles (see also Technical
extensions below). Anticipating that the acquisition problems will be solved shortly,
we focus here on the second task, the interface to the user. Thus, we populated the
real-space volume scanned by theHoloLenswith virtual objects that interact with the
user. The applications were designed using the Unity game development platform
which allows tracking of the user’s head in the experimental space; the simulation
of virtual objects; the generation of speech and sounds that appear to emanate from
specific locations; and interaction with the user via voice commands and a clicker.

Human Subject Tests
After a preliminary exploration of these methods, we settled on a fixed experimental
protocol and recruited seven blind subjects (Fig. 2.1D). Subjects heard a short

14

explanation of what to expect, then donned the HoloLens and launched into a
series of four fully automated tasks without experimenter involvement. No training
sessions were provided, and all the data were gathered within a 2 hr visit.

Object Localization

Here, we tested the user’s ability to localize an augmented reality sound source
(Fig. 1B). A virtual object placed randomly at a 2 m distance from the subject
called out “box" whenever the subject pressed the clicker. The subject was asked
to orient the head towards the object and then confirm the final choice of direction
with a voice command. All subjects found this a reasonable request and oriented
surprisingly well, with an accuracy of 3–12 deg (standard deviation across trials,
Fig. 2.1C). Several subjects had a systematic pointing bias to one or the other side of
the target (9 to +13 deg, Fig. 2.1C), but no attempt was made to correct for this bias.
These results show that users can accurately localize the virtual voices generated by
HoloLens, even though the software used a generic head-related transfer function
without customization.

Spatial Memory

Do object voices help in forming a mental image of the scene (Lacey and Lawson,
2013) that can be recalled for subsequent decisions? A panel of five virtual objects
was placed in the horizontal plane 2 m from the subject, spaced 30 degrees apart
in azimuth (Fig. 2A). The subject scanned this scene actively using the Spotlight
mode for 60 s. Then the object voices were turned off, and we asked the subject
to orient towards the remembered location of each object, queried in random order.
All subjects performed remarkably well, correctly recalling the arrangement of all
objects (Fig. 2.2B, Fig. 2.8) with just one error (1/28 trials). Even the overall scale
of the scene and the absolute positions of the objects were reproduced well from
memory, to an average accuracy of 15 deg (rms deviation from true position, Fig.
2.2C–D). In a second round, we shuffled the object positions and repeated the task.
Here three of the subjects made amistake, presumably owing to interference with the
memory formed on the previous round. Sighted subjects who inspected the scene
visually performed similarly on the recall task (Fig. 2.8). These experiments suggest
that active exploration of object voices builds an effective mental representation of
the scene that supports subsequent recall and orientation in the environment.

15

Figure 2.2: Spatial memory task. (A) Five objects are arranged on a half-circle; the
subject explores the scene, then reports the recalled object identities and locations.
(B) Recall performance during blocks 1 (left) and 2 (right). Recalled target angle
potted against true angle. Shaded bar along the diagonal shows the 30 deg width
of each object; data points within the bar indicate perfect recall. Dotted lines are
linear regressions. (C) Slope and (D) correlation coefficient for the regressions in
panel (B).

Direct Navigation

Here, the subject was instructed to walk to a virtual chair, located 2 m away at a
random location (Fig. 2.3A). In Target mode, the chair called out its name on every
clicker press. All subjects found the chair after walking essentially straight-line
trajectories (Fig. 2.3B–C, Fig. 2.9). Most users followed a two-phase strategy: first
localize the voice by turning in place, then walk swiftly toward it (Fig. 2.9D–E). On
rare occasions (5 of 139 trials), a subject started walking in the opposite direction,
then reversed course (Fig. 2.9C), presumably owing to ambiguities in azimuthal
sound cues (McAnally and R. L. Martin, 2014). Subject seven aimed consistently
to the left of the target (just as in the task of Fig. 2.1) and thus approached the chair
in a spiral trajectory (Fig. 2.3C). Regardless, for all subjects, the average trajectory
was only 11–25% longer than the straight-line distance (Fig. 2.3E, Fig. 2.9A).

For comparison, we asked subjects to find a real chair in the same space using only
their usual walking aid (Fig. 2.3D). These searches took on average eight times
longer and covered 13 times the distance needed with CARA. In a related series of

16

Figure 2.3: Direct navigation task. (A) For each trial, a target chair is randomly
placed at one of four locations. The subject begins in the starting zone (red shaded
circle), follows the voice of the chair, and navigates to the target zone (green shaded
circle). (B) All raw trajectories from one subject (#6) including 1 s time markers.
Oscillations fromheadmovement are filtered out in subsequent analysis. (C) Filtered
and aligned trajectories from all trials of 3 subjects (#3, 4, 7). Arrow highlights a
trial where the subject started in the wrong direction. (D) Trajectories of subjects
performing the task with only a cane and no HoloLens. (E) Deviation index, namely
the excess length of the walking trajectory relative to the shortest distance between
start and target. Note logarithmic axis and dramatic difference between HoloLens
and Cane conditions. (F) Speed of each subject normalized to the free-walking
speed.

experiments, we encumbered the path to the target with several virtual obstacles.
Using the alarm sounds, our subjects weaved through the obstacles without collision
(Fig. 2.10D). Informal reports from the subjects confirmed that steering towards a
voice is a natural function that can be performed automatically, leaving attentional
bandwidth for other activities. For example, some subjects carried on a conversation
while following CARA.

Long Range Guided Navigation

If the target object begins to move as the subject follows its voice, it becomes a
“virtual guide". We designed a guide that follows a precomputed path and repeatedly
calls out “follow me". The guide monitors the subject’s progress, and stays at most
1 m ahead of the subject. If the subject strays off the path, the guide stops and waits

17

Figure 2.4: Long-range guided navigation task. (A) 3D reconstruction of the
experimental space with trajectories from all subjects overlaid. (B and C) 2D floor
plans with all first trial trajectories overlaid. Trajectories are divided into three
segments: lobby (Start – Start 2), stairwell (Start 2 – Start 3), and hallway (Start 3
– Destination). Red arrows indicate significant deviations from the planned path.
(D) Deviation index (as in Fig. 3E) for all segments by subject. Outlier corresponds
to initial error by subject 7. Negative values indicate that the subject cut corners
relative to the virtual guide. (E) Duration and (F) normalized speed of all the
segments by subject.

for the subject to catch up. The guide also offers warnings about impending turns or
a flight of stairs. To test this design, we asked subjects to navigate a campus building
that had been pre-scanned by the HoloLens (Fig. 2.4A, Fig. 2.11). The path led
from the ground-floor entrance across a lobby, up two flights of stairs, around several
corners and along a straight corridor, then into a second floor office (Fig. 2.4B–C).
The subjects had no prior experience with this part of the building. They were told
to follow the voice of the virtual guide, but given no assistance or coaching during
the task.

All seven subjects completed the trajectory on the first attempt (Fig. 2.4B–C).
Subject seven transiently walked off course (Fig. 2.4B), due to her left-ward bias
(Fig. 2.1C and Fig. 2.3C), then regained contact with the virtual guide. On a
second attempt, this subject completed the task without straying. On average, this
task required 119 s (range 73–159 s), a tolerable investment for finding an office in

18

an unfamiliar building (Fig. 2.4E). The median distance walked by the subjects was
36 m (Fig. 2.4D), slightly shorter (1%) than the path programmed for the virtual
guide, because the subjects can cut corners (Fig. 2.4C). The subjects’ speed varied
with difficulty along the route, but even on the stairs they proceeded at 60% of their
free-walking speed (Fig. 2.4F). On arriving at the office, one subject remarked,
”That was fun! When can I get one?” Other comments from subjects regarding user
experience with CARA are provided in Supplementary Observations.

Technical Extensions

As discussed above, the capabilities for identification of objects and people in a dy-
namic scene are rapidly developing. We have already implemented real-time object
naming for items that are easily identified by the HoloLens, such as standardized
signs and bar codes (Sudol et al., 2010) (Fig. 2.10A–B). Furthermore, we have
combined these object labels with a scan of the environment to compute in real time
a navigable path around obstacles toward any desired target (Fig. 2.10C). In the few
months since our experimental series with blind subjects, algorithms have appeared
that come close to a full solution. For example, YOLO (Redmon and Farhadi,
2018) will readily identify objects in a real time video feed that match one of 9000
categories. The algorithm already runs on the HoloLens, and we are adopting it for
use within CARA (Fig. 2.10F).

An Open-source Benchmarking Environment for Assistive Devices

The dramatic advances in mobile computing and machine vision are enabling a
flurry of new devices and apps that offer assistive functions for the vision impaired.
To coordinate these developments, one needs a reliable common standard by which
to benchmark and compare different solutions. In several domains of engineering,
the introduction of a standardized task with a quantitative performance metric has
stimulated competition and rapid improvement of designs (Berens et al., 2018;
Russakovsky et al., 2015).

On this background, we propose a method for the standardized evaluation of dif-
ferent assistive devices for the blind. The user is placed into a virtual environment
implemented on the HTC Vive platform (HTC Vive n.d.).This virtual reality kit is
widely used for gaming and is relatively affordable. Using this platform, researchers
anywhere in the world can replicate an identical environment and use it to bench-

19

mark their assistive methods. This avoids having to replicate and construct real
physical spaces.

At test time, the subject dons a wireless headset and moves freely within a physical
space of 4 m x 4 m. The Vive system localizes position and orientation of the
headset in that volume. Based on these data, the virtual reality software computes
the subject’s perspective of the virtual scene, and presents that view through the
headset’s stereo goggles. An assistive device of the experimenter’s choice can use
that same real-time view of the environment to guide a blind or blind-folded subject
through the space. This approach is sufficiently general to accommodate designs
ranging from raw sensory substitution – like vOICe (Meijer, 1992) and BrainPort
(Stronks et al., 2016) – to cognitive assistants like CARA. The tracking data from
the Vive system then serve to record the user’s actions and evaluate the performance
on any given task.

To illustrate this method, we constructed a virtual living room with furniture (Fig.
5A). Within that space, we defined three tasks that involve (1) scene understanding,
(2) short-range navigation, and (3) finding a small object dropped on the floor.
To enable blind subjects in these tasks we provided two assistive technologies:
(a) the high-level assistant CARA, using the same principle of talking objects as
described above on the HoloLens platform; and (b) the low-level method vOICe that
converts photographs to soundscapes at the raw image level (Meijer, 1992). The
vOICe system was implemented using software provided by its inventor (Seeing
with Sound n.d.).

Here, we report performance of four subjects, all normally sighted. Each subject
was given a short explanation of both CARA and vOICe. The subject was allowed
to practice (10 min) with both methods by viewing the virtual scene while either
CARA or vOICe provided translation to sound delivered by headphones. Then, the
subjects were blindfolded and performed the three tasks with sound alone. Each
task consisted of 20 trials with randomly chosen goals, and a time limit of 60 s was
applied to each trial.

On the first task, the subject stood in the middle of the virtual living room and
was asked to locate one of the objects and point at it with the head. With CARA,
subjects mostly used the Target mode to efficiently find the desired object, and
located it based on the 3D sound cues, with a typical aiming error of 10 degrees
(Fig. 2.5B, bias of 0.2–13 deg, accuracy 4.5–27 deg). With vOICe, subjects
reported great difficulty with identifying objects, despite the earlier opportunity to

20

Figure 2.5: Benchmark testing environment. (A) A virtual living room including
16 pieces of furniture and other objects. (B) Localization of a randomly chosen
object relative to the true object location (0 deg, dashed line) for four subjects using
CARA (C) or vOICe (V). Box denotes s.e.m., whiskers s.d. For all subjects, the
locations obtained with vOICe are consistent with a uniform circular distribution
(Rayleigh z test, p>0.05). (C) Navigation toward a randomly placed chair. Trajec-
tories from one subject using CARA (left) and vOICe (middle), displayed as in Fig.
2.3C. Right: Number of trials completed and time per trial (mean ±s.d.). (D) Navi-
gation toward a randomly placed key on the floor (small green circle). Trajectories
and trial statistics displayed as in panel C.

practice with visual feedback. Their aiming choices were statistically consistent
with a uniform random distribution (Fig. 2.5B).

On the second task, the subject was asked towalk from themiddle of the arena toward
a chair placed randomly in one of four locations, as in the directed navigation task
of Fig. 2.3. Using CARA, subjects found the chair efficiently, requiring only 10 s
on average (Fig. 2.5C). Using vOICe, most subjects meandered through the arena,
on occasion encountering the chair by accident. Only one subject was able to steer
toward the chair (Fig. 2.12). None of the subjects were able to complete 20 trials
within the 60 s time limit.

On the third task, the subject was asked to find a key that had fallen on the floor
of the arena. To complete the task, the subject’s head had to point toward the key

21

at <1 m distance. Under those conditions, one can readily reach out and grasp the
object. Using CARA, subjects found the key efficiently (Fig. 2.5D). Using vOICe,
none of the subjects were able to locate the key (Fig. 2.5D), although two of them
encountered it once by accident (Fig. 2.12).

These experiments illustrate the use of a standardized testing environment. Naive
subjects performedwell on these real-world tasks using CARA, but not using vOICe.
It should be said that interpreting the vOICe sounds is very non-intuitive. Our sub-
jects received the basic instructions offered on the vOICe web site and the Exercise
mode of vOICe (Seeing with Sound n.d.), followed by a short period of practice.
Extensive training with vOICe confers blind subjects with some ability to distin-
guish high contrast shapes on a clean background (Auvray, Hanneton, and O’Regan,
2007; Striem-Amit, Guendelman, and Amedi, 2012). Conceivably, an experienced
vOICe user might perform better on the tests described here. Other investigators
can attempt to demonstrate this using our published code and specifications (Y. Liu
and Meister, 2018).

2.3 Discussion
Some components of what we implemented can be found in prior work (Botezatu
et al., 2017; Ribeiro et al., 2012; Wang et al., 2017). Generally, assistive devices
have been designed to perform one well-circumscribed function, such as obstacle
avoidance or route finding (Loomis et al., 2012; Roentgen et al., 2008). Our main
contribution here is to show that augmented reality with object voices offers a
natural and effortless human interface on which one can build many functionalities
that collectively come to resemble seeing. Our developments so far have focused
on indoor applications to allow scene understanding and navigation. Blind people
report that outdoor navigation is supported by many services (access vans, GPS,
mobile phones with navigation apps), but these all fall away when one enters a
building (Karimi, 2015). The present cognitive prosthesis can already function in
this underserved domain, for example as a guide in a large public building, hotel, or
mall. The virtual guide can be programmed to offer navigation options according
to the known building geometry. Thanks to the intuitive interface, naïve visitors
could pick up a device at the building entrance and begin using it in minutes. In this
context, recall that our subjects were chosenwithout prescreening, including cases of
early and late blindness and various hearing deficits (Fig. 1D): they represent a small
but realistic sample of the expected blind user population. The functionality of this
prosthesis can be enhanced far beyond replacing vision, by including information

22

that is not visible. As a full service computer with online access, the HoloLens
can be programmed to annotate the scene and offer ready access to other forms of
knowledge. Down the line, one can envision a device that is attractive to both blind
and sighted users, with somewhat different feature sets, which may help integrate
the blind further into the community. By this point, we expect that the reader already
has proposals in mind for enhancing the cognitive prosthesis. A hardware/software
platform is now available to rapidly implement those ideas and test themwith human
subjects. We hope that this will inspire developments to enhance perception for both
blind and sighted people, using augmented auditory reality to communicate things
that we cannot see. “Seeing is knowing what is where by looking” (Marr, 1982).
The prosthesis described here conveys “what” by the names of objects and “where”
by the location from where each object calls. “Looking” occurs when the user
actively requests these calls. The principal reason sighted people rely on vision
much more than audition is that almost all objects in the world emit useful light
signals almost all the time, whereas useful sound signals from our surroundings are
few and sporadic. Our prosthesis can change this calculus fundamentally, such that
all the relevant objects emit useful sounds. It remains to be seen whether prolonged
use of such a device will fundamentally alter our perception of hearing to where it
feels more like seeing.

2.4 Supplementary Materials
Materials and Methods
General Implementation of CARA

The hardware platform for the cognitive assistant is the Microsoft HoloLens De-
velopment Edition, without any modifications. This is a self-contained wearable
augmented reality (AR) device that can map and store the 3D mesh of an indoor
space, localize itself in real time, and provide spatialized audio and visual display
(Hoffman et al., 2016). We built custom software in Unity 2017.1.0f3 (64-bit) with
HoloToolkit-Unity-v1.5.5.0. The scripts are written in C with MonoDevelop pro-
vided by Unity. The experiments are programmed on a desktop computer running
Windows 10 Education and then deployed to Microsoft HoloLens. The software
is versatile enough to be easily deployed to other hardware platforms, such as AR
enabled smart phones.

23

Figure 2.6: Obstacle avoidance utility and active scene exploration modes. (A)
to (C) An object avoidance system is active in the background at all times. Whenever
a real scanned surface or a virtual object enters a danger volume around the user
(red in A), a spatialized warning sound is emitted from the point of contact (B).
The danger volume expands automatically as the user moves (C), so as to deliver
warnings in time. (D) to (E) Active exploration modes. In Scan mode (D), objects
whose azimuthal angles fall in a certain range (e.g. between -60 and +60 deg)
call themselves out from left to right. In Spotlight mode (E), only objects within a
narrow cone are activated, and the object closest to the forward-facing vector calls
out.

User Interface

Before an experiment, the relevant building areas are scanned by the experimenter
wearing the HoloLens, so the system has a 3Dmodel of the space ahead of time. For
each object in the scene, the system creates a voice that appears to emanate from the
object’s location, with a pitch that increases inversely with object distance. Natural
spatialized sound is computed based on a generic head-related transfer function
(Wenzel et al., 1993); nothing about the software was customized to individual
users. Object names and guide commands are translated into English using the text-
to-speech engine from HoloToolkit. The user provides input by moving the head
to point at objects, pressing a wireless clicker, or using hand gesture commands or
English voice commands.

In addition to instructions shown in the main body of the article, non-spatialized
instructions are available at the user’s request by voice commands. The user can
use two voice commands (e.g. “direction", “distance") to get the direction of the
current object of interest or its distance. Depending on the mode, the target object

24

Figure 2.7: Process of scene sonification. The acquisition system should parse the
scene (A) into objects and assign each object a name and a voice (B). In our study,
this was accomplished by a combination of the HoloLens and the experimenter.
The HoloLens scans the physical space (C) and generates a 3D mesh of all surfaces
(D). In this digitized space (E) the experimenter can perform manipulations such as
placing and labeling virtual objects, computing paths for navigation, and animating
virtual guides (F). Because of the correspondence established in D, these virtual
labels are tied to the physical objects in real space.

can be the object label of user’s choice (Target mode) or the virtual guide. “Turn-
by-turn" instructions can be activated by voice commands (e.g. “instruction"). The
instruction generally consists of two parts, the distance the user has to travel until
reaching the current target waypoint, and the turn needed to orient to the next
waypoint (Fig. 2.10E).

Experimental Design
All results in Figures 1–4 were gathered using a frozen experimental protocol,
finalized before recruitment of the subjects. The tasks were fully automated, with
dynamic instructions from the HoloLens, so that no experimenter involvement was
needed during the task. Furthermore, we report performance of all subjects on all
trials gathered this way. Some incidental observations and anecdotes from subject
interviews are provided in Supplementary Observations. All procedures involving
human subjects were reviewed and approved by the Institutional Review Board at
Caltech. All subjects gave their informed consent to the experiments, and where
applicable, to publication of videos that accompany this article.

25

Figure 2.8: Mental imagery task supplementary data. Spatial memory data (Fig.
2.2) from blocks 1 (left) and 2 (right) by subject. Shaded areas indicate the true
azimuthal extent of each object. Markers indicate recalled location. Most recalled
locations overlap with the true extent of the object. Subjects 8–10 were normally
sighted and performed the exploration phase using vision.

Measurement

Timestamps are generated by the internal clock of the HoloLens. The six parameters
of the subject’s head location and orientation are recorded at 5 Hz from the onset
to the completion of each trial in each task. All performance measures are derived
from these time series. Localization errors of the HoloLens amount to <4 cm (Y.
Liu, Dong, et al., 2018), which is insignificant compared to the distance measures
reported in our study, and smaller than the line width in the graphs of trajectories in
Fig. 2.3 and 2.4.

26

Task Design

Task 1, object localization (Fig. 2.1): In each trial, a single target is placed 1
m from the subject at a random azimuth angle drawn from a uniform distribution
between 0 and 360 deg. To localize the target, the subject presses the clicker to
hear a spatialized call from the target. After aiming the face at the object the
subject confirms via a voice command (“Target confirmed"). When the location is
successfully registered, the device plays a feedback message confirming the voice
command and providing the aiming error. The subject was given 10–15 practice
trials to learn the interaction with CARA, followed by 21 experimental trials. To
estimate the upper limit on performance in this task, two sighted subjects performed
the task with eyes open: this produced a standard deviation across trials of 0.31 and
0.36 degrees, and a bias of 0.02 and 0.06 degrees. That includes instrumentation
errors as well as uncertainties in the subject’s head movement. Note that these error
sources are insignificant compared to the accuracy and bias reported in Fig. 2.1 and
2.2.

Task 2, spatial memory (Fig. 2.2): This task consists of an exploration phase in
which the subject scans the scene, followed by a recall phase with queries about the
scene. Five objects are placed two meters from the subject at azimuth angles of 60
deg, 30 deg, 0 deg, 30 deg, 60 deg from the subject’s initial orientation. Throughout
the experiment, a range between 7.5 deg and 7.5 deg in azimuth angle is marked
by “sonar beeps" to provide the subject a reference orientation. During the 60 s
exploration phase, the subject uses Spotlight mode: This projects a virtual spotlight
cone of 30° aperture around the direction the subject is facing and activates object
voices inside this spotlight. Typically subjects scan the virtual scene repeatedly,
while listening to the voices. In the recall phase, Spotlight mode is turned off, and
the subject performs four recall trials. For each recall trial, the subject presses the
clicker, then a voice instruction specifies which object to turn to, the subject faces
in the recalled direction, and confirms with a voice command (“Target confirmed").
The entire task was repeated in two blocks that differed in the arrangement of the
objects. The object sequence from left to right was “piano," “table," “chair," “lamp,"
“trash bin" (block 1), and “trash bin," “piano," “table," “chair," “lamp" (block 2).
The center object is never selected as a recall target because 0 deg is marked by
sonar beeps and thus can be aimed at trivially.

Task 3, direct navigation (Fig. 2.3): In each trial, a single chair is placed at 2 m
from the center of the arena at an azimuth angle randomly drawn from four possible

27

choices: 0°, 90°, 180°, 270°. To start a trial, the subject must be in a starting zone of
1 m diameter in the center. During navigation, the subject can repeatedly press the
Clicker to receive a spatialized call from the target. The trial completes when the
subject arrives within 0.5 m of the center of the target. Then the system guides the
subject back to the starting zone using spatialized calls emanating from the center
of the arena, and the next trial begins. Subjects performed 19–21 trials. All blind
subjects moved freely without a cane or guide dog during this task.

To measure performance on a comparable search without CARA, each subject
performed a single trial with audio feedback turned off. A real chair is placed at one
of the locations previously used for virtual chairs. The subject wears the HoloLens
for tracking and uses a cane or other walking aid as desired. The trial completes
when the subject touches the target chair with a hand. All blind subjects used a cane
during this silent trial.

Task 4, long-range guided navigation (Fig. 2.4): The experimenter defined a guide
path of 36 m length from the first-floor lobby to the second-floor office by placing
nine waypoints in the pre-scanned environment. In each trial, the subject begins in
a starting zone within 1.2 m of the first waypoint, and presses the Clicker to start. A
virtual guide then follows the trajectory and guides the subject from the start to the
destination. The guide calls out “follow me" with spatialized sound every 2 s, and
it only proceeds along the path when the subject is less than 1 m away. Just before
waypoints 2–8, a voice instruction is played to inform the subject about the direction
of turn as well as approaching stairs. The trial completes when the subject arrives
within 1.2 meters of the target. Voice feedback (“You have arrived") is played to
inform the subject about arrival. In this task, all blind subjects used a cane.

Free walking: To measure the free walking speed, we asked subjects to walk for 20
m in a straight line in an unobstructed hallway using their preferred walking aid.
Subjects 1 and 2 used a guide dog, the others a cane.

Data Analysis and Visualization
MatLab 2017b (Mathworks) and Excel (Microsoft) were used for data analysis and
visualization. Unity 5.6.1f1 was used to generate 3D cartoons of experiments and to
visualize 3D trajectories. Photoshop CC 2017 was used for overlaying trajectories
on floor plans.

Aiming: In Tasks 1 and 2, aiming errors are defined as the difference between
the target azimuth angle and the subject’s front-facing azimuth angle. In Task 2,

28

to correct for the delay of voice command registration, errors are measured at 1 s
before the end of each trial.

Trajectory smoothing: The HoloLens tracks its wearer’s head movement, which
includes lateral movements perpendicular to the direction of walking. To estimate
the center of mass trajectory of the subject, we applied a moving average with 2 s
sliding window to the original trajectory.

Length of trajectory and deviation index: In the directed navigation task and the
long-range guided navigation task, we computed the excess distance traveled by the
subject relative to an optimal trajectory or the guide path. The deviation index, DI,
is defined as

�� =
!4G? − !A4 5

!A4 5
(2.1)

where L4G? is the length of the trajectory measured by experiment, and LA4 5 is the
length of the reference trajectory. A value near 0 indicates that the subject followed
the reference trajectory well.

In the direct navigation task, we divided each trial into an orientation phase where
the subject turns the body to face the target, and a navigation phase where the
subject approaches the target. We calculated head orientation and 2D distance to
target in each frame, andmarked the onset of the navigation phase when the subject’s
distance to target changed by 0.3 m. Note that with this criterion, the navigation
phase includes the occasional trajectory where the subject starts to walk in the wrong
direction. In this task, LA4 5 is defined as the length of the straight line from the
subject’s position at the onset of the navigation phase to the nearest point of the
target trigger zone.

In the long-range guided navigation task, LA4 5 is the length of the guide trajectory.
Due to variability in placing waypoints and tracking, the length of guide trajectories
varied slightly across subjects (LA4 5 =36.4 ± 0.7 m, mean ±s.d.). Negative DI values
are possible in this task if the subject cuts corners of the guide trajectory.

Speed: Speed is calculated frame-by-frame using the displacements in the filtered
trajectories. For the long-range guided navigation task, which includes vertical
movements through space, the speed of translation is computed in three dimensions,
whereas for the other tasks that occur on a horizontal plane, we did not include the

29

vertical dimension. For all tasks, we estimated walking speed by the 90th percentile
of the speed distribution, which robustly rejects the phases where the subject chooses
an orientation. The normalized speed is obtained by dividing this value by the free
walking speed.

Supplementary Observations
Here, we report incidental observations during experiments with CARA that were
not planned in the frozen protocol, and comments gathered from blind subjects in
the course of the experiments.

Subject 1: During navigation with the virtual guide, says, “Seems to me the ‘follow
me’ sound means keep going straight.” Thinks addition of GPS services could make
the system useful outdoors as well. Suggests experimenting with bone conduction
headphones. Offers us 1 hr on his radio show.

Subject 2: During direct navigation, says, “Pitch change [with distance] was in-
formative.” During navigation with the virtual guide says, “’Follow me’ was too
much information.” Prefers to follow the explicit turn instructions. She could then
transmit those instructions to her guide dog.

Subject 3: In addition to object voices, he likes instructions of the type “keep going
forward for xxmeters."During a previous visit using a similar system, he commented
on possible adoption by the blind community: “I could see people spending in 4
figures for [something] light and reliable, and use it all the time.” Also supports the
concept of borrowing a device when visiting a public building or mall. Devices in
the form of glasses would be better, preferably light and thin. “Use the computing
power of my phone, then I don’t have to carry anything else.” Likes the external
speakers because they don’t interfere with outside sound. Finds it easy to localize
the virtual sound sources.

Subject 4: After navigation with the virtual guide says, “That was fun. When can
I get one?” Primarily used the “follow me" voice and the cane to correct for small
errors. Reports that the turn instructions could be timed earlier (this is evident also
in Video 1). On a previous visit using a similar system: “I’m very excited about all
of this, and I would definitely like to be kept in the loop.” Also suggests the system
could be used in gaming for the blind.

Subject 5: During navigation with the virtual guide, realized she made a wrong turn
(see Fig. 4C) but the voice made her aware and allowed her to correct. Reports that
the timing of turn instructions is a little off.

30

Subject 6: After all tasks says, “That was pretty cool,” and, “The technology is
there.”

Subject 7: On the second trial with the virtual guide, reports that she paid more
attention to the “follow me" sound (she strayed temporarily on the first trial, Fig.
4B).Wonders whether the object voices will be strong enough in a loud environment.

Benchmarking Platform Using Virtual Reality
The benchmarking platform runs on the HTC Vive VR headset and a Windows 10
desktop computer. A TPCast wireless adapter (CE-01H, https://www.tpcastvr.com/)
replaces the standard headset cable so the subject can move freely within the 4 m
x 4 m square arena. An Xbox One S controller is connected wirelessly to the host
computer for the subject to start trials, confirm aiming, and control the modes of
CARA.Audio is delivered by a pair ofwireless headphones (SONYWH-1000XM2).
All code and data to replicate this environment and the reported tests is publically
available at https://github.com/meisterlabcaltech/CARA_Public.

All three benchmarking tasks are set in a 10 m x 10 m virtual environment that
simulates a living room with 16 objects labeled with sound tags. The rendered
scenes are close to photo-realistic, and computer vision algorithms trained on real
scenes will correctly identify objects in the virtual scene as well (Fig. 2.10F). The
first benchmark task (Fig. 2.5B) resembles Task 1 (see section on Task Design
above), except that the aiming target is chosen at random from the 16 objects in
the studio. CARA users have access to Spotlight and Target mode. The second
benchmark task (Fig. 2.5C) resembles Task 3 with a 60 s time limit on each trial.
CARA users only have Target mode available for this task. To facilitate detection
with vOICe, the chair was made white and left unoccluded by any other objects.
The third benchmark task (Fig. 2.5D) replaces the chair in the second benchmark
task with a key on the floor. Within CARA, Target mode and Spotlight mode can
be used in this task. Two conditions have to be met to finish a trial: (1) the head of
the subject is within 1 m of the key and (2) the subject faces within 30 degrees of
the key. To accomplish this, the subject must bend down or kneel facing the key. At
this point, a simple reach with the hand would allow grasping a real object. A trial
fails if not finished within 60 s. To avoid excess frustration among the subjects, a
task is terminated after five failed trials.

https://github.com/meisterlabcaltech/CARA_Public

31

Voice Control on CARA
In addition to the Clicker, subjects can also use natural language (e.g. English) as
input to the system. Two subsystems of voice input are implemented: 1) keyword
recognition (PhraseRecognitionSystem) monitors in the background what the user
says, detects phrases thatmatch the registered keywords, and activates corresponding
functions on detection of keyword matches, and 2) dictation (DictationRecognizer)
records what the user says and converts it into text. The first component enables
subjects to confirm their aiming in the object localization task and mental imagery
task with the voice command “target confirmed.” It also enables the experimenter
to control the experiment at runtime.

Keywords and their functions are defined through adding keywords to the keyword
manager script provided by HoloToolkit and editing their responses. The Keywor-
dRecognizer component starts at the beginning of each instance of the application
and runs in the background throughout the instance of the application except for the
time period in which dictation is in use.

To allow users to create object labels, the DictationRecognizer provided by Holo-
Toolkit is used to convert natural language spoken by the user to English text. Due
to the mutual exclusivity, KeywordRecognizer is shut down before DictationRecog-
nizer is activated, and restarted after the dictation is finished.

Automated Wayfinding
In addition to hand-crafting paths, we implemented automated wayfinding by taking
advantage of Unity’s runtime NavMesh “baking." which calculates navigable areas
given a 3D model of the space. At runtime, we import and update the 3D mesh of
the scanned physical space and use it to bake the 3D mesh. When the user requests
guided navigation, a path from the user’s current location to the destination of choice
is calculated. If the calculated path is valid, the virtual guide guides the user to the
destination using the computer-generated path.

Cost of the CARA System
The hardware platform used in the research – Microsoft HoloLens Development
Edition – currently costs $ 3000. Several comparable AR goggles are in develop-
ment, and one expects their price to drop in the near future. In addition, smart
phones are increasingly designed with AR capabilities, although they do not yet
match the HoloLens in the ability to scan the surrounding space and localize within
it.

32

Battery and Weight

The current HoloLens weighs 579 g. Like all electronic devices, this will be further
miniaturized in the future. The current battery supports our system functions for
2–5 hr, sufficient for the indoor excursions we envision in public buildings, led by
the “virtual guide". A portable battery pack can extend use to longer uninterrupted
sessions.

Tracking Robustness

While for most indoor scenarios that we have tested, the tracking of HoloLens
was reliable and precise, but we have encountered occasional loss of tracking or
localization errors. This occurs particularly when the environment lacks visual
features, such as a narrow space with white walls.

Extensions

Because this cognitive assistant is largely defined by software, its functionalities are
very flexible. For example, the diverse recommendations from subjects noted above
(Supplementary Observations) can be implemented in short order. In addition,
one can envision hardware extensions by adding peripherals to the computer. For
example, a haptic belt or vest could be used to convey collision alarms (Adebiyi
et al., 2017), thus leaving the auditory channel open for the highly informative
messages.

33

Figure 2.9: Direct navigation task extended data. Trial distance (A) and trial
duration (B) for the first 20 trials of all subjects. A modest effect of practice
on task duration can be observed across all subjects (B). (C) Low-pass filtered,
aligned trajectories of all subjects. In most trials, subjects reach the target with
little deviation. (D) Dynamics of navigation, showing the distance to target as a
function of trial time for one subject. (E) Head orientation vs distance to target for
two subjects. Note Subject 6 begins by orienting without walking, then walks to the
target. Subject 2 orients and walks at the same time, especially during early trials.

34

Figure 2.10: Additional experimental functions. (A) to (B) Automated sign
recognition using computer vision. Using Vuforia software (Vuforia n.d.), the
HoloLens recognizes a men’s room sign (A) (image is viewed through HoloLens),
and installs a virtual object (cube, arrow) next to the sign. (B) This object persists
in the space even when the sign is no longer visible. (C) Automated wayfinding.
The HoloLens generates a path to the target (door) that avoids the obstacle (white
box). Then a virtual guide (orange balloon) can lead the user along the path. See
Videos 2–3. (D) Navigation in the presence of obstacles. The subject navigates
from the starting zone (red circle) to an object in the target zone (green circle) using
calls emitted by the object. Three vertical columns block the path (black circles),
and the subject must weave between them using the obstacle warning system. Raw
trajectories (no filtering) of a blind subject (5) are shown during outbound (left) and
return trips (right), illustrating effective avoidance of the columns. This experiment
was performed with a version of the apparatus built around the HTC Vive headset.
(E) Orienting functions of the virtual guide. In addition to spatialized voice calls,
the virtual guide may also offer turning commands toward the next waypoint. In the
illustrated example, the instruction is, “In x meters, turn right." (F) Real-time object
detection using YOLO (Redmon and Farhadi, 2018). Left: A real scene. Note even
small objects on a textured background are identified efficiently based on a single
video frame. Right: A virtual scene from the benchmarking environment, rendered
by Unity software.

35

Figure 2.11: Guided navigation trajectories. (A) 3D model of the experimental
space as scanned by the HoloLens. (B) Subject and guide trajectories from the long-
range guided navigation task. Note small differences between guide trajectories
across experimental days, owing to variations in detailed waypoint placement.

36

Figure 2.12: Benchmark tests in a virtual environment. Trajectories of three
additional subjects. (A) Navigation to a randomly placed chair, using either CARA
or vOICe, displayed as in Fig. 2.5C. Subject 4 exhibited some directed navigation
using vOICe. (B) Finding a dropped key, as in Fig. 2.5D

.

37

C h a p t e r 3

SYNTHETIC EXAMPLES IMPROVE GENERALIZATION FOR
RARE CLASSES

Beery, Sara et al. (Mar. 2020). “Synthetic Examples Improve Generalization for
Rare Classes”. In: The IEEE Winter Conference on Applications of Computer
Vision (WACV). url: http://openaccess.thecvf.com/content_WACV_
2020/papers/Beery_Synthetic_Examples_Improve_Generalization_
for_Rare_Classes_WACV_2020_paper.pdf.

http://openaccess.thecvf.com/content_WACV_2020/papers/Beery_Synthetic_Examples_Improve_Generalization_for_Rare_Classes_WACV_2020_paper.pdf
http://openaccess.thecvf.com/content_WACV_2020/papers/Beery_Synthetic_Examples_Improve_Generalization_for_Rare_Classes_WACV_2020_paper.pdf
http://openaccess.thecvf.com/content_WACV_2020/papers/Beery_Synthetic_Examples_Improve_Generalization_for_Rare_Classes_WACV_2020_paper.pdf

38

ABSTRACT

The ability to detect and classify rare occurrences in images has important applica-
tions – for example, counting rare and endangered species when studying biodiver-
sity, or detecting infrequent traffic scenarios that pose a danger to self-driving cars.
Few-shot learning is an open problem: current computer vision systems struggle
to categorize objects they have seen only rarely during training, and collecting a
sufficient number of training examples of rare events is often challenging and expen-
sive, and sometimes outright impossible. We explore in depth an approach to this
problem: complementing the few available training images with ad-hoc simulated
data.

Our testbed is animal species classification, which has a real-world long-tailed
distribution. We present two natural world simulator and analyze the effect of dif-
ferent axes of variation in simulation, such as pose, lighting, model, and simulation
method, and we prescribe best practices for efficiently incorporating simulated data
for real-world performance gain. Our experiments reveal that synthetic data can
considerably reduce error rates for classes that are rare, that as the amount of simu-
lated data is increased, accuracy on the target class improves, and that high variation
of simulated data provides maximum performance gain.

39

3.1 Introduction
In recent years, computer vision researchers have made substantial progress towards
automated visual recognition across a wide variety of visual domains (Russakovsky
et al., 2015; Esteva et al., 2017; Poplin et al., 2018; Van Horn, Mac Aodha, et
al., 2017; Norouzzadeh et al., 2017; van Horn et al., 2017; Beery, Van Horn,
and Perona, 2018). However, applications are hampered by the fact that in the real
world, the distribution of visual classes is long-tailed, and state-of-the-art recognition
algorithms struggle to learn classes with limited data (Van Horn and Perona, 2017).
In some cases (such as recognition of rare endangered species) classifying rare
occurrences correctly is crucial. Simulated data, which is plentiful and comes with
annotation “for free," has been shown to be useful for various computer vision tasks
(Varol, Romero, X. Martin, Mahmood, Michael J. Black, et al., 2017a; Pepik et al.,
2015; Hinterstoisser et al., 2019; Rajpura, Bojinov, and Hegde, 2017; Goodfellow
et al., 2014; Shrivastava et al., 2017; Stephan R. Richter et al., 2016a; Peng et al.,
2018; Hattori et al., 2015; Han et al., 2017; Ji et al., 2019). However, an exploration
of this approach in a long-tailed setting is still missing (see Section 3.2).

As a testbed, we focus on the effect of simulated data augmentation on the real-world
application of recognizing animal species in camera trap images. Camera traps are
heat- or motion-activated cameras placed in the wild to monitor animal populations
and behavior. The processing of camera trap images is currently limited by human
review capacity; consequently, automated detection and classification of animals is
a necessity for scalable biodiversity assessment. A single sighting of a rare species
is of immense importance. However, training data of rare species is, by definition,
scarce. This makes this domain ideal for studying methods for training detection
and classification algorithms with few training examples. We utilize a technique
from (Beery, Van Horn, and Perona, 2018) which tests performance at camera
locations both seen (cis) and unseen (trans) during training in order to explicitly
study generalization (see Section 3.3 for a more detailed explanation).

We introduce two novel natural world simulators based on popular 3D game devel-
opment engines for generalizable, realistic, and efficient synthetic data generation.
We investigate the use of simulated data as augmentation during training, and how
to best combine real data for common classes with simulated data for rare classes
to achieve optimal performance across the class set at test time. We consider four
different data simulation methods (see Fig.3.1) and compare the effects of each
on classification performance. Finally, we analyze the effect of both increasing

40

the number of simulated images and controlling for axes of variation to provide
best practices for leveraging simulated data for real-world performance gain on rare
classes.

(a) Real Camera Traps (b) TrapCam-Unity (c) TrapCam-AirSim (d) Sim on Empty (e) Real on Empty

Figure 3.1: Day (top) and night (bottom) examples for each simulation method.
We compare four different simulation methods and compare the effects of each on
classification performance.

3.2 Related work
Visual Categorization Datasets
Large and well-annotated public datasets allow scientists to train, analyze, and
compare the performance of different methods, and have provided large performance
improvements over traditional vision approaches (Szegedy, Vanhoucke, et al., 2016;
J. Huang et al., 2017; K. He, X. Zhang, et al., 2016). The most popular datasets
used for this purpose are ImageNet, COCO, PascalVOC, and OpenImages, all of
which are human-curated from images scraped from the web (J. Deng et al., 2009;
Lin, Maire, et al., 2014; Everingham et al., 2010; Krasin et al., 2017). These
datasets cover a wide set of classes across both the manufactured and natural world,
and are usually designed to provide “enough" data per class to avoid the low-data
regime. More recently, researchers have proposed datasets that focus specifically
on long-tailed distributions (Van Horn, Mac Aodha, et al., 2017; Beery, Van Horn,
and Perona, 2018; Kumar et al., 2012). The Caltech Camera Traps dataset (Beery,
Van Horn, and Perona, 2018) introduced the challenge of learning from limited
locations, and generalizing to new locations.

41

Handling Imbalanced Datasets
Imbalanced datasets lead to bias in algorithm performance toward well-represented
classes (Buda, Maki, and Mazurowski, 2018). Algorithmic solutions often use
a non-uniform cost per misclassification via weighted loss (Elkan, 2001; H. He
and Garcia, 2008; H. He, Bai, et al., 2008). One example, focal loss, was recently
proposed to deal with the large foreground/background imbalance in detection (Lin,
Goyal, et al., 2018).

Data solutions employ data augmentation, either by 1) over-sampling the minority
classes, 2) under-sampling the majority classes, or 3) generating new examples for
the minority classes. When using mini-batch gradient descent, oversampling the
minority classes is similar to weighted loss. Under-sampling the majority classes is
non-ideal, as this reduces information about common classes. Our paper falls into the
third category: generating new training data for rare classes. Data augmentation via
pre-processing, using affine and photometric transformations, is a well-established
tool for improving generalization (Krizhevsky, Sutskever, and G. E. Hinton, 2012;
Howard, 2013). Data generation and simulation have begun to be explored as data
augmentation methods, see Section 3.2.

Algorithmic and data solutions for imbalanced data are complementary, algorithmic
advances can be used in conjunction with augmented training data.

Low-shot Learning
Low-shot learning attempts to learn categories from few examples (Li, Fergus, and
Perona, 2006). Wang and Herbert (Wang and Hebert, 2016) do low-shot clas-
sification by regressing from small-dataset classifiers to large-dataset classifiers.
Hariharan and Girshick (Hariharan and Girshick, 2017) look specifically at Ima-
geNet, using classes that are unbalanced, some with large amounts of training data,
and some with little training data. Metric learning learns a representation space
where distance corresponds to similarity, and uses this as a basis for low-shot so-
lutions (Cui, F. Zhou, et al., 2016). We consider the low-shot regime with regard
to real data for our rare target class, but investigate the use of added synthetic data
based on a human-generated articulated model of the unseen class during training
instead of additional class-specific attribute labels at training and test time. This
takes us outside of the traditional low-shot framework into the realm of domain
transfer from simulated to real data.

42

Data Augmentation via Style Transfer, Generation, and Simulation
Image generation via generative adversarial networks (GANs) and recurrent neural
networks (RNNs), as well as style transfer and image-to-image translation have all
been considered as sources for data augmentation (Bousmalis et al., 2017; Gregor
et al., 2015; Im et al., 2016; Radford, Metz, and Chintala, 2015; Tran et al., 2017;
Luan et al., 2017; J.-Y. Zhu et al., 2017). These techniques require large amounts
of data to generate realistic images, making them non-ideal solutions for low-data
regimes. Though conditional generation allows for class-specific output, the results
can be difficult to interpret or control.

Graphics engines such an Unreal (UNREAL Game Engine n.d.) and Unity (Unity
Game Engine n.d.) leverage the expertise of human artists and complex physics
models to generate photorealistic simulated images, which can be used for data
augmentation. Because ground truth is known at generation, simulated data has
proved particularly useful for tasks requiring detailed and expensive annotation,
such as keypoints, semantic segmentations, or depth information (Varol, Romero,
X. Martin, Mahmood, Michael J. Black, et al., 2017a; Pepik et al., 2015; Hinter-
stoisser et al., 2019; Rajpura, Bojinov, and Hegde, 2017; Goodfellow et al., 2014;
Shrivastava et al., 2017; Stephan R. Richter et al., 2016a; Peng et al., 2018; Hat-
tori et al., 2015). Varol et al. (Varol, Romero, X. Martin, Mahmood, Michael J.
Black, et al., 2017a) use synthetically-generated humans placed on top of real image
backgrounds as pretraining for human pose estimation, and suggest fine-tuning a
synthetically-trained model on real data. (Shrivastava et al., 2017) use a combina-
tion of unlabeled real data and labeled simulated data of the same class to improve
real-world performance on an eye-tracking task by using GANs (Goodfellow et al.,
2014). This method requires a large number of unlabled examples from the target
class. (Pepik et al., 2015; Hinterstoisser et al., 2019; Rajpura, Bojinov, and Hegde,
2017) find that simulated data improves detection performance, and the degree of
realism and variability of simulation affects the amount of improvement. They
consider only small sets of non-deformable man-made objects. Richter (Stephan R.
Richter et al., 2016a) showed that a segmentation model for city scenes trained with
a subset of their real dataset and a large synthetic set outperforms a model trained
with the full real dataset. (Peng et al., 2018) proposes a dataset and benchmark
for evaluating models for unsupervised domain transfer from synthetic to real data
with all-simulated training data, as opposed to simulated data only for rare classes.
While this literature is encouraging, a number of questions are left unexplored. The
first is a careful analysis of when simulated data is useful and, in particular, if it is

43

useful in generalizing to new scenarios. Second is whether simulated data can be
useful in highly complex and relatively unpredictable scenes such as natural scenes,
as opposed to indoors and urban scenes. Third is whether it is just the synthetic
objects or also the synthetic environments that contribute to learning.

Simulated Datasets
Previous efforts on synthetic dataset generation focus on non-deformable man-made
objects and indoor scenes (S. Song et al., 2017; Savva et al., 2017; Y.Wu et al., 2018;
Hinterstoisser et al., 2019; Rajpura, Bojinov, and Hegde, 2017; Kolve et al., 2017),
human poses/actions (Varol, Romero, X.Martin, Mahmood, Michael J. Black, et al.,
2017a; Souza12 et al., 2017), or urban scenes (Ros et al., 2016; Gaidon et al., 2016;
Stephan R. Richter et al., 2016a; Dosovitskiy et al., 2017; Han et al., 2017; Ji et al.,
2019).

Bondi (Bondi et al., 2018) previously released the AirSim-w data simulator within
the domain of wildlife conservation, focused on creating aerial infrared imagery.
The resolution and quality of the assets is designed to replicate data from 100 meters
in the air, but is not realistic close-up. We contribute the first image data generators
specifically for the natural world with the ability to recreate natural environments
and generate near-photorealistic images of animals within the scene, including real-
world nuisance factors such as challenging pose, lighting, and occlusion.

3.3 Data and Simulation
Real Data
Our real-world training and test data comes from the Caltech Camera Traps (CCT)
dataset (Beery, Van Horn, and Perona, 2018). CCT contains 243, 187 images from
140 camera trap locations covering 30 classes of animals, curated from data pro-
vided by the United States Geological Survey and the National Park Service. We
follow the CCT-20 data split laid out in (Beery, Van Horn, and Perona, 2018),
which was explicitly designed for in-depth generalization analysis. The split uses a
subset of 57, 868 images from 20 camera locations covering 15 classes in CCT to
simultaneously investigate performance on locations seen during training and gen-
eralization performance to new locations. Bounding-box annotations are provided
for all images in CCT-20, whereas the rest of CCT has only class labels. In the
CCT-20 data split, cis-locations are defined as locations seen during training and
trans-locations as locations not seen during training (see Fig.3.3). Nine locations
are used for trans-test data, one location for trans-validation data, and data from the

44

remaining 10 locations is split between odd and even days, with odd days as cis-test
data and even days as training and cis-validation data (a 95% of data from even days
for training, 5% for testing).

(a) Training images (b) Cis test images (c) Trans+ test images (e) iNaturalist images

Figure 3.2: Cis vs. Trans: The cis-test data can be very similar to the training data:
animals tend to behave similarly at a single location even across different days, so
the images collected of each species are easy to memorize intra-location. The trans
data has biases towards specific angles and lighting conditions that are different
from those in the cis locations, and as such is very hard to learn from the training
data. iNaturalist data represents a domain shift to human-curated images.

To study the effect of simulated data on rare species, we focus on deer, which are
rare in CCT-20, with only 44 deer examples out of the 13, 553 images in the training
set (see Fig.3.3). To focus on the performance of a single rare class, we remove
the other two rare classes in CCT-20: badgers and foxes. We note that there are
no deer images in the established CCT-20 trans sets. In reality, deer are far from
uncommon: unlike a truly rare species, there exist sufficient images of deer in the
CCT dataset outside of the CCT-20 locations to rigorously evaluate performance.
To facilitate deeper investigation of generalization, we have collected bounding-box
annotations for an additional 16K images from CCT across 65 new locations, which
we add to the trans-validation and trans-test sets to cover a wider variety of locations
and classes (including deer). We call this augmented trans set trans+ (see Fig.3.3)
and will release the annotations at publication. To further analyze generalization,
we also test on data containing deer from the iNaturalist 2017 dataset (Van Horn,
Mac Aodha, et al., 2017), which represents a domain shift to human-captured and
human-selected photographs. We consider Odocoileus hemionus (mule deer) and
Odocoileus virginianus (white-tailed deer) images from iNaturalist, the two species

45

op
os

su
m

ra
bb

it

co
yo

te ca
t

sq
ui

rr
el

ra
cc

oo
n

do
g

bo
bc

at

bi
rd

ro
de

nt

sk
un

k

de
er

Classes

102

103

N
um

be
r o

f t
ra

in
in

g
im

ag
es Other Classes

Deer

Tr
ai

n

C
is

 V
al

C
is

 T
es

t

Tr
an

s V
al

Tr
an

s T
es

t

Tr
an

s+
 V

al

Tr
an

s+
 T

es
t

Data Split

101

102

103

104

N
um

be
r o

f i
m

ag
es

Figure 3.3: (Top) Number of training examples for each class. Deer are rare in
the training locations from the CCT-20 data split. We focus on deer as a test species
in order to investigate whether we can improve performance on a “rare" class. Since
deer are not rare at other camera locations within the CCT dataset, we have enough
test data to thoroughly evaluate the effect. (Bottom) Number of examples for each
data split, for deer and other classes. In the CCT-20 data split, there were no
trans examples of deer. We added annotations to the trans val and test sets for an
additional 16K images across 65 new locations from CCT, including 6K examples
of deer. We call these augmented sets trans+.

of deer seen in the CCT data. In Supplementary Material, we show results of an
additional class, wolf.

46

Synthetic Data
To assess generality, we leverage multiple collections of woodland and animal
models to create two simulation environments, which we call TrapCam-Unity and
TrapCam-AirSim. Both simulation environments and source code to generate im-
ages will be provided publicly, along with the data generated for this paper. To
synthesize daytime images, we varied the orientation of the simulated sun in both
azimuth and elevation. To create images taken at night, we used a spotlight attached
to the simulated camera to simulate a white-light or IR flash and qualitatively match
the low color saturation of the nighttime images. To simulate animals’ eyeshine (a
result of the reflection of camera flash from the back of the eye), we placed small
reflective balls on top of the eyes of model animals.

TrapCam-AirSim. We create a modular natural environment within Microsoft
AirSim (Shah et al., 2018) that can be randomly populated with flora and fauna.
The distribution and types of trees, bushes, rocks, and logs can be varied and
randomly seeded to create a diverse set of landscapes, from an open plain to a
dense forest. We used various off-the-shelf components such as an animal pack
from Epic Studios (Epic Studios n.d.) (Animals Vol 01: Forest Animals by GiM
(Forest Animals by GiM n.d.)), background terrain also from Unreal Marketplace
(UNREAL Game Engine n.d.), vegetation from SpeedTree (SpeedTree n.d.), and
rocks/obstructions from Megascans (Quixel Megascans Library n.d.). The actual
area of the environment is small, at 50 meters, but the modularity allows many
possible scenes to be built.

TrapCam-Unity. Unity 3D game development engine is a popular game devel-
opment tool that offers realistic graphics, real time performance, and abundant 3D
assets. We take advantage of the “Book of The Dead" environment (Unity Book
of the Dead n.d.), a near-photorealistic, open-source forest environment published
by Unity to demonstrate its high definition rendering pipeline. This off-the-shelf
environment is large and rich in details, and it has a diversity of subregions with
significantly different statistics. We change the lighting and move throughout this
large, static environment to collect data with various background scenes. We make
use of 17 animated deer models from five off-the-shelf model sets, purchased from
Unity Asset Store and originally developed for game development, including the
GiM models used in TrapCam-AirSim. A single gaming PC (Core i7 5820K, 16GB
RAM, GTX 1080Ti) generates over 300,000 full-HD images with pixel-level in-
stance annotation per day and the throughput linearly scales to additional machines.

47

Simulated animals on empty images. Similar to the data generated in (Varol,
Romero, X. Martin, Mahmood, Michael J. Black, et al., 2017a), we generate syn-
thetic images of deer by rendering deer on top of real camera trap images containing
no animals, which we call Sim on Empty (see Fig.3.1). We first generate animal
foreground images by randomizing the location, orientation in azimuth, pose, and
illumination of the deer, then paste the foreground images on top of the real empty
images. A limitation is that the deer are not in realistic relationships or occlusion
scenarios with the environment around them. We also note that the empty images
used to construct this data come from both cis and trans locations, so Sim on Empty
contains information about test-set backgrounds unavailable in the purely simulated
sets. This choice is based on current camera trap literature, which first detects the
presence of any animal, and then determines animal species (Norouzzadeh et al.,
2017; Beery, Van Horn, and Perona, 2018). After the initial animal detection step,
the empty images are known and can be utilized.

Segmented animals on empty images. We manually segment the 44 examples of
deer from the training set and paste them at random on top of real empty camera trap
images, whichwe callReal onEmpty (see Fig.3.1). This allows us to analyzewhether
the generalization challenge is related to memorizing the training deer+background
or memorizing the training deer regardless of background. Similar to the Sim on
Empty set, these images do not have realistic foreground/background relationships,
and the empty images come from both cis and trans locations.

3.4 Experiments
Beery, (Beery, Van Horn, and Perona, 2018) showed that detecting and localizing
the presence of an “animal" (where all animals are grouped into a single class)
both generalizes well to new locations and improves classification performance.
We focus on classification of cropped ground-truth bounding boxes as opposed to
training multi-class detectors in order to disambiguate classification and detection
errors. We specifically investigate how added synthetic training data for rare classes
effects model performance on both rare and common classes.

We find that the Inception-Resnet-V2 architecture (Szegedy, Ioffe, et al., 2017)
works best for the cropped-box classification task, based on performance comparison
across architectures (see Supplementary Material). Most classification systems are
pretrained on Imagenet, which contains animal classes. To ensure that our “rare"
class is truly something the model is unfamiliar with, as opposed to something seen

48

0 ... 101 102 103 104 105 106

Number of simulated images

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r
Trans+ deer
Trans+ other classes
Cis deer
Cis other classes
iNat deer

Figure 3.4: Error as a function of number of simulated images seen during
training. Wedivide this plot into three regions. The leftmost region is the baseline
performance with no simulated data, shown at x=0 (Note x-axis is in log scale). In
the middle region, additional simulated training data increases performance on the
rare class and does not harm the performance of the remaining classes (trend lines
are visualized). The rightmost region, where many simulated images are added to
the training set, results in a biased classifier, hurting the performance of the other
classes (see Fig.3.5 (b-c) for details). We compare the class error for “deer" and
“other classes" in both the “cis" and “trans+" testing regimes. Lines marked “deer"
use only the deer test images for the error computation. Linesmarked “other classes"
use all the images in the other classes (excluding deer) for the error computation.
Error is defined as the number of incorrectly identified images divided by the number
of images.

in pretraining, we pretrain our classifiers on no-animal ImageNet, a dataset we define
by removing the “animal" subtree (all classes under synset node n00015388) from
ImageNet. We use an initial learning rate of 0.0045, RMSprop with a momentum
of 0.9 (Tieleman and G. Hinton, 2012), and a square input resolution of 299. We
employ random cropping (containing at least 65% of the region), horizontal flipping,
color distortion, and blur as data augmentation. Model selection is performed using
early stopping based on trans+ validation set performance (Bengio, 2012).

49

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

0
5
17
120
5K
22K
100K
325K
830K
1.4M

(a) Trans+ deer precision-recall curves

(b) Confusion matrix: 100K (c) Confusion matrix: 1.4M
Figure 3.5: (a) Trans+ PR curves for the deer class: Note the development of a
biased classifier as we add simulated training data. The baseline model (in blue)
has high precision but suffers low recall. The model trained with 1.4M simulated
images (in grey) has higher recall, but suffers a loss in precision. (b-c) Evidence of
a biased classifier: Compare the deer column in the confusion matrices, the model
trained with 1.4M simulated images predicts more test images as deer.

Effect of increase in simulated data
We explore the trade-off in performance when increasing the number of simulated
images, from5 to 1.4million, spanning 5 log units (see Fig.3.4). Very little simulated
data is needed to see a trans+ performance boost: with as few as 5 simulated images,
we see a 10% decrease in per-class error on trans+ deer, with < 0.5% increase
in average per-class error on the other trans+ classes. As we increase the number
of simulated images, trans+ performance improves: with 100K simulated images,
we see a 39% decrease in trans+ deer error, with < 0.5% increase in error for the

50

trans+
deer

cis
deer

trans+
other
(avg)

cis
other
(avg)

Test set

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

CCT
fPLM
fPM
fLM
fPL
fPM with night
Vary all

Figure 3.6: Error as a function of variability of simulated images seen during
training: 100K simulated deer images. Error is calculated as in Fig.3.4, and all
data is from TrapCam-Unity. Trans+ deer performance is highlighted. In the legend,
“CCT" means the model was trained only on the CCT-20 training set with no added
simulated dta. “P" means “pose," “L" means “lighting," and “M" means “model,"
while the prefix “f" for “fixed" denotes which of these variables were controlled for
a particular experiment. For example “fPM" means the pose and the animal model
were held fixed, while the lighting was allowed to vary. The variability of simulated
data is extremely important, and that while all axes of variability matter, simulating
nighttime images has the largest effect.

other trans classes. There exists some threshold (> 325K) where, if passed, an
increase in simulated data noticeably biases the classifier towards the deer class
(see Fig.3.5): with 1.4 million simulated images, our trans+ deer error decreases by
88%, but it comes at the cost of a 13% increase in average per-class error across the
other classes. At this point, there is an overwhelming class prior towards deer: the
next-largest class at training time would be opossums with 2, 514 images, 3 orders
of magnitude less.

Unsurprisingly, cis deer performance decreases with added simulated data. Al-
though the images were taken on different days (train from even days, cis-test from
odd days) the animals captured were to some extent creatures of habit. Thus, training
and test images can be nearly identical from within the same locations (see Fig.3.2).
Almost all cis test deer images have at least one visually similar training image. As
simulated data is added at training time, the model is forced to learn a more complex,

51

trans+
deer

cis
deer

trans+
other
(avg)

cis
other
(avg)

Test set

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

CCT
CCT oversample
Real on Empty
Sim on Empty
TrapCam-AirSim
TrapCam-Unity
TrapCam-Unity+
Real on Empty

Figure 3.7: Error as a function of simulated data generation method: 100K
simulated deer images. Per-class error is calculated as in Fig.3.4. Trans+ deer
performance is highlighted. Oversampling decreases performance, and there is a
large boost in performance from incorporating real segmented animals on different
backgrounds (Real on Empty). TrapCam-Unity with everything allowed to vary
(model, lighting, pose, including nighttime simulation) gives us slightly better trans+
performance, without requiring additional segmentation annotations. Combining
Real on Empty with TrapCam-Unity (50K of each) gives us the best trans+ deer
performance.

varied representation of deer. As a result, we see cis deer performance decrease. To
quantify robustness, we ran the 100K experiment three times. We found that trans+
deer error had a standard deviation of 2% and cis deer error had a standard deviation
of 4%, whereas the average error across other classes had a standard deviation of
0.2% for both cis and trans.

We also investigate performance on deer images from iNaturalist (Van Horn, Mac
Aodha, et al., 2017), which are individually collected by humans and are usually
relatively centered and well-focused (and therefore easier to classify) but represent
a domain shift (see Fig.3.2). Adding simulated data improves performance on the
iNaturalist deer images (see Fig.3.4), demonstrating the robustness and generality
of the representation learned.

52

bird (trans)
bobcat (trans)
cat (trans)
coyote (trans)
dog (trans)
opossum (trans)
rabbit (trans)
raccoon (trans)
rodent (trans)
skunk (trans)
squirrel (trans)

sim deer day
sim deer night
deer_inat
deer (cis)
deer (trans)

bird (cis)
bobcat (cis)
cat (cis)
coyote (cis)
dog (cis)
opossum (cis)
rabbit (cis)
raccoon (cis)
rodent (cis)
skunk (cis)
squirrel (cis)

No simulated deer 1.4M simulated deer

Figure 3.8: Visualization of network activations: more deer are classified cor-
rectly as we add synthetic data, despite the synthetic data being clustered
separately. The pink points are real deer, the brown are simulated day images and
the grey are simulated night images. Large markers are points that are classified
correctly, while small markers are points classified incorrectly. The plots were
generated by running 200-dimensional PCA over the activations at the last pre-logit
layer of the network when running inference on the test sets, and then running
2-dimensional tSNE over the resulting PCA embedding.

Effect of variation in simulation
In order to understand which aspects of the simulated data are most beneficial, we
consider three dimensions of variation during simulation: pose, lighting, and animal
model. Using the TrapCam-Unity simulator, we generate 100K daytime simulated
images for each of these experiments. As a control, we create a set of data where
the pose, lighting, and animal model are all fixed. We then create sets with varied
pose, varied lighting, and varied animal model, each with the other variables held
fixed. An additional set of data is generated varying all of the above. Unsurprisingly,
widest variation results in the best trans+ deer performance. The individual axes of
variation do have an effect of performance, and some aremore “valuable" than others
(see Fig.3.6). There are many more dimensions of variation that could be explored,
such as simulated motion blur or variation in camera perspective. For CCT data,
we find adding simulated nighttime images has the largest effect on performance.
We have determined that for deer 49% of training images, 53% of cis test images,
and 56% of trans+ test images were captured at night, using either IR or white flash.
Simulating only daytime images injects a prior towards deer being seen during the
day. By training on half day and half night images, we match the day/night prior
for deer in the data. Not all species occur equally during the day or night, some

53

are strictly nocturnal. Our results suggest that a good strategy is to determine the
appropriate ratio of day to night images using your training set and match that ratio
when adding simulated data.

Comparing simulated data generation methods
We compare performance gain from 4 methods of data synthesis, using 100K added
deer images for each (see Fig.3.7. The animal model is controlled (each simulated
set uses the same GiM deer model for these experiments) for fair comparison of
the efficacy of each generation method. As an additional control, we consider
oversampling the rare class. This creates the same sampling prior towards deer
without introducing any new information. Oversampling performs worse than just
training on the unbalanced training set by causing the model to overfit the deer class
to the training images. Bymanually segmenting out the deer in the 44 training images
and randomly pasting them onto empty backgrounds, we see a large improvement
in performance. Cis error goes down to 6% with this method of data augmentation,
which makes sense in the view of the strong similarities between the training and
cis-test data (see Fig.3.2).

Real on Empty and Sim on Empty are able to approximate both “day" and “night"
imagery, a deer pasted onto a nighttime empty image is actually a reasonable ap-
proximation of an animal illuminated by a flash at night (see Fig.3.1). They also
have the additional benefit of using backgrounds from both cis and trans sets, giving
them trans information not provided by the simulated datasets. TrapCam-Unity
with all variability enabled is our best-performing model without requiring addi-
tional segmentation annotations. If segmentation information is available, Real on
Empty combined with TrapCam-Unity (50K of each) improves both cis and trans
deer performance: trans deer error decreases to 36% (a 54% decrease compared to
CCT only), with < 2% increase in error on trans other classes.

Visualizing the representation of data
In order to visualize how the network represents simulated data vs. real data, we
use PCA and tSNE (Maaten and G. Hinton, 2008) to cluster the activations of
the final pre-logit layer of the network. These visualizations can be seen in Fig.3.8.
Interestingly, themodel learns “deer" bimodally: simulated deer are clustered almost
entirely separately from real deer, with a few datapoints of each ending up in the
opposite cluster. Even though those clusters overlap only slightly, the network is
surprisingly able to classify more deer images correctly.

54

3.5 Conclusions and Future Work
We present two fast, realistic natural world data simulators based on popular 3D
game development engines. Our simulators have 3 major advantages. First, they
are generalizable. Thanks to the abundant 3D assets available online in the game
development community, integrating a new species in a new environment from
off the shelf assets is simple and fast. Second, not only are the graphics near-
photorealistic, the pipeline also generates animals with realistic pose, animation,
and interactions with the environment. Third, data generation is efficient. A
single gaming PC generates over 300,000 full-HD images with pixel-level instance
annotation per day and the throughput linearly scales to additional machines.

We explore using the simulated data to augment rare classes during training. To-
wards this goal, we compare multiple sources of natural-world data simulation,
explicitly measure generalization via the cis-vs-trans paradigm, examine trade-offs
in performance as the number of simulated images seen during training is increased,
and analyze the effect of controlling for different axes of variation and data generation
methods.

From our experiments, we draw three main lessons. First: using synthetic data
can considerably reduce error rates for classes that are rare, and with segmentation
annotations we can reduce error rates even further by additionally randomly pasting
segmented images of rare classes on empty background images. Second: as the
amount of simulated data is increased, accuracy on the target class improves. How-
ever, with 1000x more simulated data than the common classes, we see negative
effects on the performance of other classes due to the high class imbalance. Third:
the variation of simulated data generated is very important, and maximum variation
provides maximum performance gain.

While an increase in simulated data corresponds to an increase in target class per-
formance, the representation of simulated data overlaps only rarely with real data
(see Fig.3.8). It remains to be studied whether embedding techniques (Schroff,
Kalenichenko, and Philbin, 2015), domain adaptation techniques (Ganin and Lem-
pitsky, 2015; Zou et al., 2018), or style transfer (Goodfellow et al., 2014; Shrivastava
et al., 2017) could be used to encourage a higher overlap in representation between
the synthetic and real data, and if that overlap would lead to an increase in cat-
egorization accuracy. Additionally, the bias induced by adding large amounts of
simulated data could be addressed with algorithmic solutions such as those in (Cui,
Jia, et al., 2019; Elkan, 2001; H. He and Garcia, 2008; H. He, Bai, et al., 2008). We

55

have not discussed the drawbacks related to model training with large quantities of
synthetic data (epoch time, data storage, etc.). In the future, we will explore merging
the simulator and classifier so that highly variable synthetic data could be requested
“online” without storing raw frames.

Simulation is a fast, interpretable, and controllable method of data generation that
is easy to use and easy to adapt to new classes. This allows for an integrated
and evolving training pipeline with new classes of interest: simulated data can
be generated iteratively based on needs or gaps in performance. Our analysis
suggests a general methodology when using simulated data to improve rare-class
performance: 1) generate small, variable sets of simulated data (even small sets
can drive improvement), 2) add these sets to training and analyze performance to
determine ideal ratios and dimensions of variation, and 3) take advantage of ease and
speed of generation to create an abundance of data based on this ideal distribution,
and determine an operating point of number of added simulated images to optimize
performance between rare target class and other classes based on the project goal.

Further, the performance gains we have demonstrated, alongwith the data generation
tools we contribute to the community, will allow biodiversity researchers focused
on endangered species to improve classification performance on their target species.
Adding each new species to the simulation tools currently requires the assistance
of a graphics artist. However, automated 3D modeling techniques, such as those
proposed in (Kanazawa et al., 2018; Reinert, Ritschel, and Seidel, 2016; Cashman
and Fitzgibbon, 2013; Pahde et al., 2019), might eventually become an inexpensive
and practical source of data to improve few-shot learning.

The improvement we have found in rare-class categorization is encouraging, and
the release of our data generation tools and the data we have generated will provide
a good starting point for other researchers studying imbalanced data, simulated data
augmentation, or natural-world domains.

3.6 Supplementary Materials
Architecture Selection
To select a single classification architecture to use across our experiments, we trained
three classifiers: ResNet-101 V2, Inception V3, and Inception-ResNet V2. All
three classifiers were pretrained on no-animal ImageNet then trained on the Caltech
Camera Traps (CCT) training set (described in the main paper, section 3.1) with no
added simulated images. We found that Inception-ResNet V2 performed best on

56

deer in cis and trans scenarios (see Table 3.1), so we decided to use Inception-ResNet
V2 as the base architecture for all further experiments.

Table 3.1: Error for different architectures. Error is defined as the number of
incorrectly identified images divided by the number of images for each test set,
where “Deer" contains only deer images and “Other" contains all non-deer images.

Cis Test Trans+ Test
Architecture Deer Other Deer Other
Resnet 101 V2 47.86 11.18 88.63 29.76
Inception V3 50.00 11.74 81.73 32.74

Inception Resnet V2 29.28 10.17 77.69 31.07

Additional analysis
Analyzing the value of real images

We find that our simulated data is sufficient to learn to recognize some deer even
without real examples, though the real examples give a large boost in performance.
The performance breakdown can be seen in Table 3.2. These results are promising
for both researchers studying zero-shot learning and biologists studying highly
endangered species: it is possible to learn a species with no real training data. This
avenue remains open for further study.

Comparing night and day performance

We further analyze the effect of day and night simulation by comparing three
experiments: one trained with only simulated daytime images, one trained with
only simulated nighttime images, and one trained with half day and half night (see
Fig 3.9). Wefind that themodels trained on only day and only night perform similarly
on trans deer, and that the 50/50 split performs best on trans deer (highlighted region
in Fig 3.9). Training on day or night alone gives us a 20% performance boost on
trans deer, while training on both gives us a 40% performance boost. This suggests
that the day and night simulated images help the classifier in complementary ways:
day helps with day images and night helps with night images. Performance on other
classes is not strongly effected. Cis performance is quite noisy, and performs best
with no added simulated data, see Fig. 2 in the main paper for further analysis.

57

Table 3.2: Error with and without the 44 real deer examples when adding 100K
simulated deer images. Error is computed as in Table 3.1.

Cis Test Trans+ Test
Real Training Data Deer Other Deer Other
CCT train w/o deer 94.29 18.64 68.56 34.42
CCT train w/ deer 52.14 10.91 44.05 30.47

% decrease from real deer 44.7 41.5 35.7 11.5

trans+
deer

cis
deer

trans+
other
(avg)

cis
other
(avg)

Test set

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

CCT
Day sim only
Night sim only
Night+day sim

Figure 3.9: Error as a function of day or night simulated images: 100K sim-
ulated deer images. Error is calculated as in Fig. 4 in the main paper. Trans+
deer performance is highlighted. Models trained on added night- or day-only sim-
ulated data perform better on trans deer than CCT alone, but the best trans deer
performance comes from the 50/50 day/night split of added simulated data.

Investigating the effect of adding simulated data for a common class

In order to investigate how added simulated data might effect a common class, as
opposed to a rare one, we created “coyote" simulated data with TrapCam-Unity,
using rendered models of wolves as a proxy for coyotes. Off-the-shelf, high-quality
wolf models were more widely available, and wolves and coyotes are visually very
similar (see Fig.3.11). This is a coarse-grained experiment, and it remains to be
seen what would happen if simulated data from two visually similar classes (wolves
and coyotes) was added at the same time.

We find that adding simulated “coyote" data improves trans+ coyote performance
slightly, while cis coyote performance remains the same. Unsurprisingly, for the

58

deer class (which has few training examples) adding a large amount of simulated
coyote data harms both cis and trans+ deer performance.

trans+
deer

cis
deer

trans+
coyotes

cis+
coyotes

Test set

0.0

0.2

0.4

0.6

0.8

1.0
Er

ro
r

CCT
Deer sim
Coyote sim

Figure 3.10: Error as a function of deer or coyote simulated images: 100K
simulated images. Error is calculated as in Fig. 4 in the main paper. Trans+ deer
and coyote performance are highlighted.

Coyote (Coyote in a camera trap n.d.) Wolf (Wolf in a camera trap n.d.)

Figure 3.11: Wolves and coyotes are visually similar.

Creating Sim and Real on Empty Data
Alternative to the full synthetic methods of data generation with AirSim and Unity,
we generated synthetic images by overlaying either simulated deer or real cropped
deer on real empty background images from the CCT dataset (see Fig. 3.12).

59

For the Sim on Empty dataset generation, we posed either a stag or a doe deer
from the GiM model set in front of a simulated camera in Unity. We randomized
the animation, orientation in azimuth (0-360 degrees), position, direction of light
orientation in azimuth (0-360 degrees), and elevation (20-90 degrees).

For the Real on Empty dataset, we manually segmented and cropped out the 44
instances of deer from the CCT training set. Then we pasted the cropped deer
foreground images on top of empty camera trap images in random locations.

TrapCam-AirSim Details
It took time and thought to derive the overall requirements for the AirSim TrapCam
environment. With a sizable number of potential biomes globally, we narrowed the
scope of what we intended to build to a SW United States environment similar to
what is seen in the CCT data. Eventually we settled on a sub-alpine woodland scene
that is readily found across most of theWestern/ Southwest US. Amajor requirement
and challenge was how to get the most data out of a relatively small, but detailed,
area – this was key to the project without expanding the size of the area of interest.
The overall intent was to leverage Microsoft AirSim’s computer vision mode to
move a pre-configured camera around the scene, providing varied background.

We used various off-the-shelf components such as an animal pack from Epic Studios
(Epic Studios n.d.) (Animals Vol 01: Forest Animals by GiM (Forest Animals by
GiM n.d.)), background terrain from Unreal Marketplace (UNREAL Game Engine
n.d.), vegetation from SpeedTree (SpeedTree n.d.), and rocks/obstructions from
Megascans (Quixel Megascans Library n.d.). In other AirSim environments, the
general scenery is fairly static with exception of particle effects (snow/rain/dust/etc).
For this effort, we wanted a method to vary the background, to replicate a variety
of terrains within a single environment (see Fig.3.13). The actual area of the
environment is small, at 50 meters long, but the modularity allows many possible
scenes to be constructed. The randomization was designed to facilitate artists by
allowing them to make a list of different objects to randomize from. Those objects
are prioritized based on their order on the list. The BiomeTerrain class generates
them by tracing random areas across the field based on a global seed. If there’s space
available it spawns the desired object. There are a number of object types available
in TrapCam-AirSim; animal type, rocks, logs, grasses, shrubs, trees, and each type
can be varied by density and distribution. Additionally, we provide 9 GiM animal
models: deer (doe/stag), wolf, fox, rat, spider, bear, raccoon, and buffalo. The doe

60

Simulated deer foreground Cropped real deer foreground

Empty background from CCT Empty background from CCT

Sim on empty overlay Real on empty overlay

Figure 3.12: Sim and Real on Empty Generation. (a),(c),(e) demonstrate the
process of overlaying a simulated deer on top of an empty background image from
the CCT dataset. (b),(d),(f) show the process of overlaying a cropped real deer on
top of an empty background image from the CCT dataset.

model was created by removing the antlers from the stag model with Maya (Maya
n.d.), a common modeling tool. All animal objects were assigned segmentation IDs
for efficient ground truth extraction.

We created a simple UI to vary parameters, along with a command line API for

61

Figure 3.13: TrapCam-AirSim environment. The TrapCam-Airsim envionment
was designed to be modular and randomizeable, which allows a variety of biomes
to be synthesized within a limited simulated area.

parameter configuration. The UI was constructed with Unreal Motion Graphics
(UMG) Widgets and allows for future flexibility for modifications, DPI resolutions
and platforms. The main core functionalities were created with C++ for better
performance as a parent class for data-only blueprints, which allows the technical
artists to easily swap assets for different environments without re-compiling the C++
code.

We started the requirements and scoping in mid-August 2018 with a go-ahead of
approximately September 6, and produced a working prototype two weeks later,
with continued development and refining through mid-October. A second phase
late in the year modified the camera system to include flash capability, and animals
were updated to provide eye-shine, and the UI was modified to include variability
for that eye-shine.

62

Models of deer

Models of wolves
Figure 3.14: Models of deer and wolves. In TrapCam-Unity, we used 17 different
models of deer from 5 different artists and 5 models of wolves from 5 different
artists. We used the wolf models as proxies for coyotes (see Section 3.6). Model
details are available in section 3.6.

TrapCam-Unity Details
The “Book of The Dead" environment (Book of the Dead Environment n.d.) we
use is published for free by Unity. As shown in Fig.3.15, the near-photorealistic
environment simulates a large patch of forest in a valley with volumetric grass, a
variety of high definition trees, logs, and bushes, as well as rocks and terrain. The
environment is a irregular area of roughly 20,000 <2. It runs on a desktop PC in
real time and enables us to generate large amounts of images efficiently.

63

Figure 3.15: TrapCam-Unity environment. The Book of The Dead environment
is a large natural environment with diverse sub regions.

To create daytime images, we varied the orientation of the simulated sun in both az-
imuth and elevation. To create images taken at night, we created a spotlight attached
to the simulated camera to simulate a white-light or IR flash and qualitatively match
the low color saturation of the night time images. To simulate animals’ eyeshine (a
result of the reflection of camera flash from the tapetum lucidum), we placed small
reflective balls on top of the eyes of model animals (see Fig.3.16).

For deer simulation, we used 17 animated deer models from 5 publishers on Unity
(GiM(GiM Studio n.d.), 4toon(4toon studio n.d.), Protofactor(Protofactor Inc n.d.),
Red Deer(Red Deer Studio n.d.), and Janpec(Janpec n.d.)). For coyote simula-
tion, we used 5 models from 5 publishers (GiM(GiM Studio n.d.), 4toon(4toon
studio n.d.), Protofactor(Protofactor Inc n.d.), Janpec(Janpec n.d.), and WDall-
graphics(WDallgraphics studio n.d.)). We created the GiM doe model by removing
the antlers of the GiM stag model with Blender(Blender n.d.). For each of the ani-
mated models, we included an animation controller that contains several animation
clips ranging from commonly seen behavior episodes like walking and eating, to rare

64

occurrences like attacking and sleeping. During dataset generation, we randomly
picked a clip for each instance of animals and froze it at a random time point, then we
moved the cameras around to sample a static scene with animals and environment.

Figure 3.16: Example of eyeshine simulation.

We had 300 seed locations and randomly placed animals in the vicinity of a subset
of the seed locations. This process was repeated multiple times to simulate animals
in random locations within the environment. A similar random placement process
was used to determine the locations of the cameras. All images generated are in full
HD resolution (1980 x 1080).

For ground truth generation, we turned off the lighting and rendered each instance
of the animal in a unique color by replacing the original animal shader with an unlit
shader. We then used customized python scripts to extract animal bounding boxes
by extracting pixels with these unique colors.

65

C h a p t e r 4

PANDA: PANOPTIC DATA AUGMENTATION

Liu, Yang, Pietro Perona, and Markus Meister (2019). “PanDA: Panoptic Data
Augmentation”. In: arXiv preprint arXiv:1911.12317. url: https://arxiv.
org/abs/1911.12317.

https://arxiv.org/abs/1911.12317
https://arxiv.org/abs/1911.12317

66

ABSTRACT

The recently proposed panoptic segmentation task presents a significant challenge
to image understanding with computer vision by unifying semantic segmentation
and instance segmentation tasks. In this chapter, we present an efficient and novel
panoptic data augmentation (PanDA) method which operates exclusively in pixel
space, requires no additional data or training, and is computationally cheap to imple-
ment. By retraining original state-of-the-art models on PanDA augmented datasets
generated with a single frozen set of parameters, we show robust performance
gains in panoptic segmentation, instance segmentation, as well as object detection
across models, backbones, dataset domains, and scales. Finally, the effectiveness of
unrealistic-looking training images synthesized by PanDA suggests that one should
rethink the need for image realism for efficient data augmentation.

67

4.1 Introduction
With the rapid development of convolutional neural networks (CNN) and the avail-
ability of large-scale annotated datasets like ImageNet (Russakovsky et al., 2015),
modern computer vision models have reached or surpassed human performance in
many domains of visual recognition (K. He, X. Zhang, et al., 2015; Cireşan, Meier,
and Schmidhuber, 2012). Much of the interest of the community has since shifted
from visual recognition to formulating and solving more challenging tasks such as
object detection, semantic segmentation, and instance segmentation.

Recently, (Kirillov et al., 2019) proposed the panoptic segmentation task that unifies
instance segmentation and semantic segmentation. The task requires a model to
assign each pixel of an image a semantic label and an instance ID. Several panoptic
datasets, such as the Cityscapes (Cordts et al., 2016), Microsoft COCO (Lin, Maire,
et al., 2014), ADE20K (B. Zhou et al., 2017), and Mapillary Vistas (Neuhold et al.,
2017), have been released. Much of research attention has focused on developing
new models (Xiong et al., 2019; Porzi et al., 2019; Gao et al., 2019). So far, the
best performing models on the leader boards of various major panoptic challenges
are exclusively CNN based.

In this paper, insead of developing new models, we focus on the data augmentation
aspect of the panoptic segmentation task, and develop a novel panoptic data aug-
mentation method, PanDA, that further improves the performance of original top
performing models from 2019.

We first identify the data deficiency and class imbalance problems and propose
a pixel space data augmentation method for panoptic segmentation datasets that
efficiently generates synthetic datasets from the original dataset. The method is
computationally cheap and fast, and it requires no training or additional data. To
demonstrate the robustness of PanDA, we use a single frozen set of parameters
throughout the paper except for the Ablation Study section.

Next, we experimentally demonstrate that trainingwith PanDAaugmentedCityscapes
further improves all performancemetrics of original top-performingUPSNet (Xiong
et al., 2019) and Seamless Scene Segmentation (Porzi et al., 2019) models. With
PanDA, robust boosts in panoptic segmentation, instance segmentation, and detec-
tionwithUPSNetwith ResNet-50/101 backbones and Seamless Scene Segmentation
model with ResNet-50 backbone are reported.

To further demonstrate the generalizability of PanDA across scales and domains,

68

we apply it to Cityscapes subsets with 10 to 3,000 images, as well as a 10 times
larger COCO subset with 30,000 images. We report performance gains across scales
and datasets. By quantifying the log-linear relationship between number of training
images and final performance metrics, we show that on average a PanDA generated
image is 20-40% as effective as an original image.

Finally, results from the ablation study show that, contrary to common beliefs, less
realistic looking images improve model performance more. It suggests that the level
of image realism is not positively correlated with data augmentation efficiency.

4.2 Related Work
Panoptic Segmentation
The panoptic segmentation taskwas first proposed in 2019 byKirillov et al. (Kirillov
et al., 2019) as an attempt to formulate a unified task that bridges the gap between
semantic segmentation and instance segmentation. The task divides objects in to
two super-categories: things and stuff. For classes in things, each pixel in the image
is labeled with a class ID and an instance ID. For classes in stuff, each pixel is labeled
with a class ID only. In addition to traditionalmetrics, such asmean intersection over
union (mIoU) and average precision of instance segmentation (AP), the panoptic
quality (PQ) is defined as,

%& =

∑
(?,6)∈)% �>* (?, 6)

|)% |︸ ︷︷ ︸
segmentation quality (SQ)

× |)% |
|)% | + 1

2 |�% | +
1
2 |�# |︸ ︷︷ ︸

recognition quality (RQ)

(4.1)

where true positives (TP) are predicted segments that have strictly greater than 0.5
overlap with ground truth segments. PQ is the product of segmentation quality (SQ)
and recognition quality (RQ).

Data Augmentation
Despite the efforts towards low-shot learning, modern CNN-based models are still
data-hungry in that they have very large model capacity to even memorize randomly
labeled large datasets (C. Zhang et al., 2016). One efficient way to regularize models
and promote generalization is data augmentation.

Manymethods still in use for detection and segmentationmodels (Xiong et al., 2019;
Porzi et al., 2019; Gao et al., 2019) are largely inherited from the ImageNet visual
recognition era (Krizhevsky, Sutskever, and G. E. Hinton, 2012). These methods
take advantage of object invariances in pixel space: manipulations such as crop,

69

horizontal flip, resize, color distortion, and noise injection do not usually change the
identity of the object. These methods are simple in concept and computationally
very cheap, but they do not take advantage of the more informative ground truth
labeling that accompanies the harder detection and segmentation tasks. Some recent
methods start to explore the use of bounding box and segmentation information (S.
Liu et al., 2019; Beery, Y. Liu, Morris, Piavis, Kapoor, Meister, et al., 2019; H.-S.
Fang et al., 2019; R. Shetty, Schiele, and Fritz, 2019; Dvornik, Mairal, and Schmid,
2019). InstaBoost (H.-S. Fang et al., 2019) is proposed as a method for instance
segmentation where instances are cropped out and moved to a different location
of the same image, then the hole in background is filled with a classical in-paint
network (Bertalmio, Bertozzi, and Sapiro, 2001). Shetty et al. (R. Shetty, Schiele,
and Fritz, 2019) augment images by removing certain instances that provide context
and use a CNN based in-paint model (R. R. Shetty, Fritz, and Schiele, 2018) to
fill the holes. Dvornik et al. (Dvornik, Mairal, and Schmid, 2019) use a CNN
based context model to guide the addition of instances from an “instance-database”
to original images, avoiding making holes in the original images and the need for
in-painting. The Discussion Section offers a detailed comparison relating (H.-S.
Fang et al., 2019), (R. Shetty, Schiele, and Fritz, 2019) and (Dvornik, Mairal, and
Schmid, 2019) to the present work.

Data simulation is another flavor of data augmentation. Thanks to the development
of graphical simulation engines, one can generate photo-realistic images together
with pixel perfect ground truth. The method is proven to work for many tasks such
as human pose estimate (Varol, Romero, X. Martin, Mahmood, Michael J Black,
et al., 2017b), wildlife classification (Beery, Y. Liu, Morris, Piavis, Kapoor, Meister,
et al., 2019), and object detection (Hinterstoisser et al., 2019). However, this method
often requires handcrafted 3D models, and there usually is a significant domain gap
between real images and simulated images.

Recently, with the popularization of generativemodels such as generative adversarial
networks (GAN), researchers also add images generated by GANs to the training
set (Frid-Adar et al., 2018; Bowles et al., 2018; S. Liu et al., 2019). However, as a
type of neural network based model, the GAN itself requires training, which in turn
is both computationally expensive and data hungry.

70

background

foreground segments

carperson

road

shift

dropout
resize

combinecrop foreground

cr
op

ba

ck
gr

ou
nd

se
gm

en
t

m
an

ip
ul

at
io

n

apply panoptic mask

synthetic imageoriginal image

segment manipulation

(a)

Figure 4.1: Schematics of PanDA. Foreground and background segments are
greatly simplified for clear demonstration of the image decomposition and syn-
thesis process. Note that background in the panoptic segmentation task usually
takes a small percentage of pixels in an image

4.3 Panoptic Data Augmentation
Annotating images for panoptic segmentation can be costly, since every pixel in
an image has to be semantically labeled, and pixels that belong to things classes
must have an additional instance ID associated. One could argue that it is orders
of magnitude harder for a human annotator to generate panoptic ground truth than
to assign a single class ID to an image as needed in visual recognition. But with
great challenges usually come great opportunities, PanDA takes advantage of the
rich information embedded in panoptic annotations and uses it to synthesize new
images with ground truth.

A fundamental feature that distinguishes PanDA from other data augmentation
methods is that PanDA does not aim to create images that look realistic to human
eyes. Many 3D simulation based methods (Beery, Y. Liu, Morris, Piavis, Kapoor,

71

(a) (b) (c)

(d) (e) (f)

Figure 4.2: Examples of original cityscapes images (top row) and PanDA gener-
ated images (bottom row).

Meister, et al., 2019; Stephan R Richter et al., 2016b; Varol, Romero, X. Martin,
Mahmood,Michael J Black, et al., 2017b) and cut-pastemethods (R. Shetty, Schiele,
and Fritz, 2019; Dvornik, Mairal, and Schmid, 2019; H.-S. Fang et al., 2019)
implicitly or explicitly suggest that the level of realism is key to achieving high
performances. Similary, GAN-based image synthesis methods (Frid-Adar et al.,
2018; Bowles et al., 2018; R. Huang et al., 2017) also usually optimize for realism,
since the very goal of the generator network in GANs is to synthesize images
realistic enough to fool the discriminator network into thinking that they are real
(Goodfellow et al., 2014). In contrast, PanDA takes more principled approaches to
balance classes, break local pixel structures, and increase variations of objects, and
the final images synthesized do not look fully realistic to human eyes.

As shown in Fig. 4.1, PanDA first decomposes a panoptically labeled training image
by using the segmentation ground truth to divide it into foreground and background
segments. It is worth noting that foreground segments not only include instances in
things classes, but also segments in stuff classes which are considered background
in InstaBoost (H.-S. Fang et al., 2019) and in Dvornik, Mairal, and Schmid, 2019.
Unfilled pixels are padded with white noise patterns instead of in-painting as seen
in (H.-S. Fang et al., 2019) and (R. Shetty, Schiele, and Fritz, 2019). Noise patterns
are used because they do not belong to any known categories, making ground truth
assignment unambiguous. Foreground segments are then overlaid on top of the new
background image one by one. The same manipulation is applied to the ground
truth segmentation image to generate the new ground truth segmentation.

For foreground segments, we can perform a series of pixel space operations such

72

as dropout, resize, and shift to control different aspects of each individual object
instance. Dropout is used to remove segments from an image. It serves to remove
well segmented and classfied objects from the image. The resize operation changes
the size of a segment while preserving the original aspect ratio, and it simulates
object movement in depth and introduces more size variance in objects. It resembles
zooming and multi-scale training (Xiong et al., 2019) on the individual object
level. Random shifting moves the segment in x and y in pixel space. It prevents
memorization of object locations by themodel and breaks the local pixel relationship
between the object and its background, thus creating new local contexts for the object.
Resize and shift together simulate 3D translation of objects in space, and dropout
controls the frequency of objects. Because the ground truth depth information to
recover the depth ordering of segments is not available, and we do not want larger
segments to occlude smaller ones, we sort the segments by their area and put largest
segments on the bottom layer. It is worth noting that more operations can be added
to the repertoire of the PanDA tool set, and different variants of the aforementioned
operations may also be implemented. In this paper, we limit the scope to the
operations discussed above to allow for in-depth experiments with PanDA.

4.4 Experiments
UPSNet and Seamless Scene Segmentation Models
The UPSNet model and the Seamless Scene Segmentation (SSS) models are two
independently developed top-performing panoptic segmentation models. To date,
they are also the only two models with code published to reproduce the results.

The UPSNet model (Xiong et al., 2019) is one of the top performing single models
on both Cityscapes and MS COCO panoptic challenges. It uses a shared CNN
feature extractor backbone and multiple heads on top of it. The backbone is a Mask
R-CNN feature extractor built on a deep residual network (ResNet) with a feature
pyramid network (FPN). UPSNet has an instance head which follows the Mask
R-CNN design and a semantic head that consists of a deformable convolution based
sub-network. The outputs of the two heads are then fed into the panoptic head,
which generates the final panoptic prediction.

The SSSmodel (Porzi et al., 2019), which was developed around the same time early
in 2019, roughly follows the same meta-architecture with a Mask R-CNN instance
head and a Mini Deeplab (MiniDL) semantic head taking input from a common
FPN feature extractor and feeding into a fusion head for panoptic prediction. At the

73

time of its publication, it became the top performing model in Cityscapes panoptic
challenge with a ResNet-50 backbone (Porzi et al., 2019).

We used all the original hyper-parameters of UPSNet and SSS models for training
and inference. We only scale (1) the number of training iterations to keep the
number of epochs constant across a wide range of dataset sizes and (2) the learning
rate based on the number of GPUs used in the training. All trainings start with
ImageNet pretrained ResNet-50/101 models as reported in (Xiong et al., 2019) and
(Porzi et al., 2019). The UPSNet models are trained with 8x Nvidia 2080Ti GPUs
with 11GB VRAM. The SSS experiments are conducted on Amazon Web Services
with 8x Nvidia Tesla V100 GPUs with 32GB VRAM. For the in-depth experiments,
we choose UPSNet over SSS because it fits in our server’s GPUs.

Datasets
The Cityscapes (Cordts et al., 2016) panoptic dataset has 2,975 training, 500 valida-
tion, and 1,525 test images of ego-centric driving scenes in urban environments in
many cities in Europe. Examples are shown in Fig. 4.2 (a-c). The dense annotation
covers 97% of the pixels, which consists of 9 things classes and 11 stuff classes. We
choose Cityscapes as the main testbed for PanDA for several reasons. 1) It is one of
the most popular panoptic datasets available, and it has a total of 19 diverse classes
that covers a wide range of driving related scenarios. Many modern models(Xiong
et al., 2019; Porzi et al., 2019; Gao et al., 2019) report performance on Cityscapes
and have published code available. 2) Results on a relatively small set are likely to
generalize to other specialized domains where annotated panoptic data is scarce. 3)
The small size also makes both data synthesis and training cost manageable. As a
result, it is suitable for exploratory studies like this.

To demonstrate the generalizability of PanDA, we also performed additional experi-
ments on the MS COCO dataset, which has 118K training and 5k validation images
including 53 stuff classes and 80 things classes of common objects. It is both orders
of magnitude larger in size and more diverse regarding number of classes.

Augmenting Cityscapes with PanDA
The fact that multi scale inference and pretraining with additional data improves
performance of the lightweight UPSNet-50 model suggests that model capacity is
not the major limiting factor for the final performance and that data augmentation
may further improve performance. To investigate the relationship between model
performance and size of training dataset, we trained the UPSNet-50 model from the

74

same ImageNet pretrained backbone on various subsets of the Cityscapes training
set that consist of 10, 100, 1,000, and 2,975 images. Fig. 4.3 shows near perfect
log-linear relationships between the number of training images and various perfor-
mance metrics (PQ: A2 = 0.9995, mean average precision for instance segmentation
evaluated at 0.5:0.95 (AP): A2 = 0.9744, mean average precision for detection eval-
uated at 0.5:0.95 (AP box): A2 = 0.9948). It suggests that adding training images is
likely to further improve model performance.

0.25

0.5

1

1 10 100 1000 10000

Er
ro

r

Number of training images

PQ
AP
AP box

Figure 4.3: Model performance vs training set size on Cityscapes. We train
UPSNet-50 models on various Cityscapes subsets ranging from 10 to 2,975 im-
ages. PQ: panoptic quality. AP: mean average precision of instance segmentation
evaluated at 0.5:0.95. AP box: mean average precision of detection evaluated at
0.5:0.95. Dashed curves are log-linear fits. Panoptic segmentation, instance seg-
mentation, and instance detection performance are summarized by PQ, AP, and AP
box, respectively.

To test whether adding training images indeed helps, we used PanDA to generate
synthetic images from the Cityscapes training set. A key discrepancy between
model training and and the final PQ score is that classes with large areas provide
overwhelming training signals during training and thus are favored during training,
whereas SQ, the first term of the PQ formula, weights small and large objects equally.
To mitigate the issue, we aim to balance average per class pixel count per image by
applying random dropout of segments where the dropout rate is linearly proportional
to the size of the segments. We also apply resizing and shifting to introduce size
and location variance of objects.

We performed a grid search of the parameters of PanDA to optimize PQ of UPSNet-

75

50 model on the full Cityscapes dataset. To demonstrate the generalizability and
robustness, we froze PanDA’s parameters and used it throughout the rest of the
paper with the exception of the Ablation Study section. Specifically, drop out is
performed as follows: segments with areas between 10% and 50% of an image
are dropped out with probability linearly proportional to their sizes. Segments
occupying over 50% of an image are guaranteed to drop out, and segments smaller
than 10% of the image frame are never dropped out. We couple resize and shift with
a zooming operation: enlarged segments are pushed to the periphery and shrunk
ones are pulled towards the center. This simulates an approaching motion of the
object. Each segment is resized in the range of 0.5x to 1.5x, with scales drawn from
a uniform distribution.

In original Cityscapes, road and building together occupy over 50% pixels of an
image on average which supports our observation that some large classes dominate
learning signals. While PanDA removes a large proportion of non-background
pixels on average, it significantly reduces the dominance of common large classes
while largely preserving small and rare classes (Supplementary Fig. 1 and 2).

Examples of original and synthetic image pairs are shown in Fig. 4.2 (and Sup-
plementary Fig. 4.9): some of the commonly seen classes with large area such as
road and building are more frequently dropped out and smaller instances such as
person and pole are often kept. It has caught our attention that the synthetic images
are no longer realistic and coherent scenes but rather nonsensical to human eyes.
However we show in later sections that adding these synthetic images improves
model performance.

To demonstrate the usefulness of PanDA, we first trained original UPSNet and
SSS models from ImageNet pre-trained ResNet backbones to establish baseline
performance metrics (Table 4.1). The reproduced results largely recapitulate those
published in the original papers (for details, see Supplementary Table 4.5). Then
we generated synthetic training sets with PanDA and trained original UPSNet and
SSS models on the augmented training sets. We first used PanDA to double the
Cityscapes training set and trained the original UPSNet-50 model on the PanDA
augmented Cityscapes dataset with a total of 3,000 images. The model (UPSNet-
50 with PanDA in Table 4.1 and Supplementary Fig. 4.7) outperforms the baseline
model (as well as the one reported in (Xiong et al., 2019)) in all metrics. In summary,
UPS-50 trained on PanDA augmented images improves on the baseline by 1.1 PQ,
0.9 AP, 1.1 AP box, evaluated at 0.5:0.95) and 1.1 mean Intersection over Union

76

Table 4.1: Results onCityscapes. PanDA augmented Cityscapes datasets generated
with a single frozen set of parameters improve all performance of UPSNet-50,
UPSNet-101, SSS-50. PQ: panoptic quality. SQ: segmentation quality. RQ:
recognition quality. PQCℎ: PQ for things classes. PQBC : PQ for stuff classes. mIoU:
mean intersection over union. AP: mean average precision of instance segmentation
evaluated at 0.5:0.95. AP1>G: mean average precision of detection evaluated at
0.5:0.95.

Model PanDA PQ SQ RQ PQ)ℎ PQ(C mIoU AP AP�>G

UPSNet-50 58.8 79.5 72.6 54.5 62.0 75.1 33.5 38.7
X 59.9 79.9 73.8 55.4 63.3 76.2 34.6 39.6

UPSNet-101 59.8 80.0 73.5 55.6 62.9 76.7 33.0 38.2
X 60.5 80.2 74.1 56.3 63.6 77.1 35.0 40.6

SSS-50 60.3 – – 55.5 63.8 77.4 32.4 36.3
X 60.9 – – 56.4 64.2 78.0 33.8 37.0

(mIoU) (0.7 PQ, 1.0 AP, 1.3 AP box, and 1.0 mIoU improvements over (Xiong
et al., 2019)) on the validation set. Additionally, overall and per class performance
in both instance segmentation task (Supplementary Table 4.6 and detection task
(Supplementary Table 4.7) improves upon baseline.

One commonly used method to improve model performance at the cost of increased
computation is to use a larger and deeper backbone. We trained aUPSNet-101model
which uses the deeper ResNet-101 and observed performance gain for all metrics
except for AP and AP box. We froze PanDA parameters and trained UPSNet-101
model with PanDA augmented images. Table 4.1 shows that the PanDA enhanced
UPSNet-101 model in turn outperforms all other UPSNet models. Two observa-
tions can be made from the additional experiments with UPSNet-101. First, it is
remarkable that with a half-sized back bone, the PanDA enhancedUPSNet-50model
outperforms the baseline UPSNet-101 model in five out of eight metrics: PQ, RQ,
PQ stuff, AP andAP box. Second, the fact that PanDA further improvesUPSNet-101
suggests that using a deeper backbone and training on PanDA augmented images
help the model in complementary ways. In other words, it demonstrates that PanDA
generalizes across backbones.

In addition to UPSNet, we also conducted experiments on SSS, which is the only
other model with code available to date. We trained the SSS model on PanDA
augmented images with the same frozen parameters. The last row in Table 4.1
shows all-around improvements of the SSS model trained with PanDA. Together,
the set of experiments with UPSNet-50/101 and SSS shows that PanDA is effective

77

across models and backbones.

PanDA Across Scales and Datasets
Table 4.2: PanDA generalization results. We used the same set of parameters for
all experiments in this section. As shown in the table, PanDA generalizes well not
only across scales of Cityscapes subsets, but also to COCO subsets that are 10 times
larger than the original Cityscapes dataset.

Dataset # images PanDA PQ SQ RQ PQ)ℎ PQ(C mIoU AP AP�>G

Cityscapes

10 23.0 58.1 29.6 9.2 33.1 36.3 2.9 5.5
10 X 23.5 54.9 30.3 12.5 30.3 34.3 4.6 7.6
100 37.7 72.5 48.4 26.4 45.9 52.4 10.5 16.7
100 X 40.1 70.6 51.0 29.5 47.7 54.1 12.7 19.1
1,000 52.7 77.9 65.8 45.5 57.9 68.7 25.8 31.1
1,000 X 55.0 78.4 68.5 49.1 59.2 70.1 27.3 32.5
3,000 59.3 79.7 73.0 54.6 62.7 75.2 33.3 39.1
3,000 X 59.9 79.9 73.8 55.4 63.3 76.2 34.6 39.6

COCO 30,000 36.5 76.2 45.7 41.6 28.8 45.3 26.5 29.0
30,000 X 37.4 76.9 46.6 43.2 28.7 45.9 28.0 31.2

To test how well PanDA generalizes across scales, we applied it to smaller subsets
of Cityscapes. Such generalization would be particularly useful if one develops a
new panoptic task in a new domain where annotated data is expensive and scarce.
In Table 4.2 (and Table 4.8), we show the consistent performance improvement on
UPSNet models trained with PanDA augmented Cityscapes subsets across scales of
10, 100, 1,000, and 3,000 images.

We then ask whether the improvement with PanDA is specific to the Cityscapes
dataset. Arguably, the ego-centric driving scenarios in urban environments in
Cityscapes are a specialized domain which may raise concerns of generalizability
across domains. In addition, Cityscapes is one of the smaller panoptic datasets
available. Although previous experiments demonstrate that PanDA performs well
when the dataset scales down, it remains unknown how well it performs when
scaled up. To address the concerns, we applied PanDA to a 30,000 image subset
of COCO dataset which is obtained by going through a list of the original 118K
training set with step size 4. The COCO 30K subset will not only test whether
PanDA generalizes to a different domain (examples in Supplementary Fig. 4.10),
but also breaks the 3,000-image upper limit of Cityscapes. The bottom two rows of
Table 4.2 show that PanDA indeed works on the 10x larger COCO dataset, which
further supports the claim that PanDA generalizes well across scales and domains.

78

Data Efficiency
In this section, we explore the data efficiency of PanDA generated images. As shown
in Fig. 4.3 (and Supplementary Fig. 4.8), PQ, AP, and AP box scales linearly with
the logarithm of number of training images. The log-linear regression functions are,

%& = 6.3255;=(=) + 8.5413, (A2 = 0.9995) (4.2)

�% = 5.4384;=(=) − 11.494, (A2 = 0.9744) (4.3)

�%1>G = 5.8271;=(=) − 8.7893, (A2 = 0.9948) (4.4)

where = is the number of original images used to train the model, PQ, AP, and AP
box are respective model performance. PQ, AP, and AP box values are plugged
into the regression functions to in turn estimate effective training set size # for
experiments with either original images only or original plus PanDA images. We
define data efficiency (DE) as,

�� =
#0D6 − #>A86.

#>A86.
× 100% (4.5)

where N>A86. is the estimated effective training set size of models trained on original
images only, and N0D6 is that of models trained on original and PanDA images. The
definition is specific to the case where the ratio of original and synthetic images is
1. A higher DE suggests higher per image data efficiency, and one would expect a
DE of 100% if a synthetic image is as informative as an original image.

Table 4.3: Data efficiency. Three sets of estimates of effective training set sizes
are made per experiment with PQ, AP, and AP box, respectively. # original images:
number of original images used in training. �� : data efficiency in percent. #:
number of effective training images estimated by model performance. Superscripts
orig. and aug denote model trained with original images only or original and PanDA
images. Subscripts denote which performance metric is used to estimate # or �� .

orig. img
>A86.

%&
#
0D6

%&
��%& #

>A86.

�%
#
0D6

�%
���% #

>A86.

�%1>G
#
0D6

�%1>G
���%1>G

10 9.8 10.6 8.2 14.1 19.3 36.7 11.6 16.7 43.4
100 100.5 146.8 46.1 57.1 85.5 49.9 79.4 119.8 51.0
1000 1076.1 1547.9 43.9 951.0 1253.1 31.8 939.6 1194.8 27.2
3000 2822.6 3358.7 19.0 3918.2 4796.6 22.4 3462.4 4040.7 16.7

Two conclusions can be drawn from results in Table 4.3. First, across scales and
metrics, PanDA images are not as efficient as original images because none of DEs

79

are near 100%. However, this is expected since we only reuse the object instances in
the original images, and the synthetic images have only 40% non-background pixels
per image on average. Second, the fact that a synthetic image can be half as efficient
as a real one suggests that there is significant amount of information embedded in
the original images that is not learned by current models. One can expect superior
models to capture this additional information without the help of data augmentation.

Ablation Study

Table 4.4: Ablation study on Cityscapes dataset. Training on the original dataset
for more iterations does not improve model performance. Best performance is
achieved by combining dropout, resize, and shift.

Extra Iter. Dropout Resize Shift PQ SQ RQ PQ)ℎ PQ(C mIoU AP AP�>G

58.8 79.5 72.6 54.5 62.0 75.1 33.5 38.7
X 58.7 80.1 71.9 53.5 62.4 75.6 33.2 38.1
X X 59.3 79.6 73.1 54.1 63.1 75.8 33.4 39.2
X X X 59.0 79.8 72.6 55.3 61.7 75.8 33.4 39.3
X X X 59.3 79.9 72.8 53.9 63.2 76.0 34.1 39.4
X X X X 59.9 79.9 73.8 55.4 63.3 76.2 34.6 39.6

We conducted an ablation study to evaluate the effectiveness of the individual
operations of PanDA. We use the reproduced UPSNet-50 model trained on the
original Cityscapes training set as the baseline (first row in Table 4.4). For each
experiment group, certain subsets of PanDA image operations are ablated. We
optimized PanDA’s parameters under the ablation constraint and report the best
performance obtained. Experiment groups are trained on their respective PanDA
1x augmented Cityscapes dataset. Doubling the number of training epochs without
any augmented data (second row in Table 4.4) does not improve model performance
which suggests that the original UPSNet training parameters are near optimal.
PanDA with dropout operation only improves model performance, presumably by
mitigating the data imbalance issue (Fig. 4.5 and 4.6). Without resize or shifting,
original object relationships are preserved and thus still realistic (Fig 4.4(b)). As
more operations are included in PanDA, the level of realism of synthesized images
decreases (Fig. 4.4(c)). However, the fact that best performance is achieved with
the least realistic image set suggests that, contrary to popular belief, the level of
realism of synthetic images is not necessarily correlated with data augmentation
performance.

80

(a) Original (b) Dropout only (c) Dropout+Resize+Shift

Figure 4.4: Examples of imagewith decreasing levels realism. (a) Original image.
(b) Image with dropout only. The dominant segment - road is dropped out to balance
per class pixel count. The composition of the picture is largely preserved and many
objects still appear in realistic contexts. (c) Image with dropout, resize, and shift.
In addition to dropout as seen in (b), segments are resized and moved to create new
contexts. The additional operations make the new image unrealistic.

4.5 Discussion
Compared with GAN based and 3D simulation based data augmentation methods,
PanDA has several advantages. First of all, PanDA does not require training. GAN
based methods need to be trained to generate realistic images in the desired domain
first before the generative network can be used for data augmentation. Second, no
additional data is needed for PanDA. As mentioned before, training GANs not only
takes time but also usually requires a large unlabeled dataset from the same domain.
3D simulation based methods almost always require hand crafted 3D models of
classes of interest. Finally, it is computationally very cheap to use PanDA since
it operates exclusively in pixel space. Many image operations such as cropping
and resizing could be further parallelized and optimized, which allows for real time
image synthesis at training time in an active learning fashion.

Asmentioned in the RelatedWork section, InstaBoost (H.-S. Fang et al., 2019) relies
on two operations, transform of instance segments and in-paint of background, to
boost the performance of instance segmentation and detection. There are several
key differences between PanDA and InstaBoost. First, in the panoptic segmentation
task, a large part of the “background” in the instance segmentation task now belongs
to the stuff superclass. The “background” in the panoptic segmentation images
usually takes up less than 15% of the image, making it infeasible to use the same
in-paint process. Secondly, the motivation behind in-painting the background is not
explicitly explained and presumably exists to maintain the image’s level of realism.
In contrast, PanDA boosts panoptic segmentation performance despite losing image
realism. Finally, different from the transforms in InstaBoost, PanDA included drop
out operations which is shown to be essential for its effectiveness by the ablation

81

study (Table 4.4). The method proposed by Dvornik et al. (Dvornik, Mairal,
and Schmid, 2019) adds new instances to original images and avoids holes in the
background from removing instances as seen in InstaBoost. However, the pasting
of new instances has to be guided by a CNN-based context model to determine the
location and class of instances to add, and that model has to be trainedwhich requires
data and time. Similar to InstaBoost, the method only applies to things classes,
which take less than 50% of pixels in an image on average. Shetty et al. (R. Shetty,
Schiele, and Fritz, 2019) propose removal of objects to break context information
and help deep models to generalize in classification and semantic segmentation.
This approach relies heavily on a trainable CNN based in-paint network to fill the
holes in the background. Data and time are needed to train the in-paint CNNnetwork
in this method. Additionally, experiments in the original paper show that removing
large objects such as mountains makes it hard for the in-paint network to fill the
hole left behind and indeed hurts model performance. In contrast, PanDA removes
the large objects like road and buildings with high probabilities, and we show that
is essential for performance gain.

There are certain limitations within the current implementation of PanDA that leave
doors open for more exploration. First, the functions used in background padding,
dropout, resize, and shift can be further optimized or complemented with more
optimized functions. For example, resizing can be drawn from a normal instead of
uniform distribution. Operations such as rotation andwarping can be added. Further
optimizations can be performed in an automated way (Cubuk et al., 2018). Second,
since the 3,000 training images in Cityscapes can be divided into 78,000 segments,
if we allow the creation of hybrid images where segments in the new image can
come from different original images, we could further expand the image variation
combinatorially. Third, it remains unclear howmany useful synthetic images can be
generated with PanDA per original image. In principle, one could create an infinite
number of synthetic images from the original dataset. Due to the high computation
cost of training with very large datasets, this paper limits the scope to doubling the
number of training images. It will be an interesting direction to investigate the limit
of the number of useful synthetic images per original image.

It is worth noting that for challenges on ego-centric driving datasets like Cityscapes,
it is also possible to improve model performance by pretraining on a larger dataset
from a related domain. For example, better-performing models can be obtained
by pretraining on MS COCO and fine tuning with Cityscapes (Xiong et al., 2019).

82

However, in a new and specialized domain, there might not exist a dataset available
to pretrain on. In addition, for a large dataset like MS COCO, pretraining on smaller
datasets is unlikely to help.

Finally, althoughPanDAoperations arewell justified from the standpoint of statistics,
we were surprised that the best performing PanDA augmented datasets do not look
natural or realistic to human eyes at all. Many PanDA generated images look
qualitatively similar to the ones shown in Fig. 4.2 where positioning and occlusion
of objects are not realistic. Many objects in the synthetic images appear to be
“floating" on top of the noise background out of the original context (Fig. 4.2 (d),
Fig. 4.4 (c)); sometimes they cluster and overlap each other in the wrong depth
order (Fig. 4.2 (f)). It is known that contextual information helps human visual
detection (Neider and Zelinsky, 2006). We suspect that by taking objects out of
their original context, PanDA presents harder challenges to the model and therefore
forces the model to pay more attention to the pixels within the object foreground.
Secondly, despite the fact that PanDA drastically reduced the total non-background
pixels per synthetic image, the augmented datasets are more balanced. It suggests
that a balanced but small dataset might be more helpful than a large but unbalanced
dataset.

4.6 Conclusions
We present a simple and efficient method for data augmentation of annotated panop-
tic images to improve panoptic segmentation performance. PanDA is computa-
tionally cheap, and requires no training or additional data. After training with
PanDA augmented datasets, top performing panoptic segmentation models further
improve performance on two popular datasets, Cityscapes and MS COCO. To the
best of our knowledge, PanDA is the first pixel-space data augmentationmethodwith
demonstrated performance gain for leading models on panoptic segmentation tasks.
Further improvement is possible with fine-tuned parameters. The effectiveness of
unrealistic images suggests that we should reconsider maximizing realism in image
synthesis for data augmentation. Finally, PanDA opens new opportunities for explor-
ing efficient pixel space data augmentation methods for detection and segmentation
datasets, and we believe the community would benefit from these explorations in
data augmentation.

4.7 Supplementary Materials

83

6 pole

1 road

11 sky

16 bus

7 traffic light

2 sidewalk

12 person

17 train

8 traffic sign

3 building

13 rider

18 motorcycle

9 vegetation

4 wall

14 car

19 bicycle

10 terrain

5 fence

15 truck

20 background

6 pole

1 road

11 sky

16 bus

7 traffic light

2 sidewalk

12 person

17 train

9 vegetation

4 wall

14 car

19 bicycle

pole

road

sky

bus

traffic light

sidewalk

person

train

traffic sign

building

rider

motorcycle

vegetation

wall

car

bicycle

terrain

fence

truck

background

Original Cityscapes

pole

road

sky

bus

traffic light

sidewalk

person

train

traffic sign

building

rider

motorcycle

vegetation

wall

car

bicycle

terrain

fence

truck

background

PanDA Cityscapes

Figure 4.5: Treemap views of average pixel count by class per image of
Cityscapes training set. Class 20 is the background which is considered out of area
of interest. Classes 1 and 3 together occupy the majority of the non-background
pixels of an image in the original Cityscapes, and make up less than half the non-
background pixels.

84

0

10

20

30

40

1 3 9 14 2 11 6 12 10 5 4 8 19 15 16 17 7 13 18

Pe
rc

en
ta

ge

Class

Original Cityscapes PanDA augmented

Figure 4.6: Per class pixel percentage per image. Bar graph of average per class
pixel percentage of non-background classes per image. Each bar is computed by
dividing the average number of pixels of a given class by the sum of the average
number of non-background pixels. Pixel percentages of common classes are reduced
and those of rare classes are increased, making the synthetic images more class-
balanced.

60

60.5

61

UPS-50 baseline UPS-101 baseline SSS-50 baseline

58.5

59

59.5

60

60.5

61

PQ

53.5

54.5

55.5

56.5

57.5

PQ
 th

in
gs

61.5

62.5

63.5

64.5

PQ
 st

uf
f

74.5

75.5

76.5

77.5

78.5

m
Io

U

31.5

32.5

33.5

34.5

35.5

A
P

34.5

36.5

38.5

40.5

42.5

A
P

bo
x

60 5

61

UPS-50 w/ PanDA UPS-101 w/ PanDA SSS-50 w/ PanDA

Figure 4.7: Results on Cityscapes. In each case, data augmentation with PanDA
improves performance. PQ: panoptic quality. PQ things: PQ for things classes. PQ
stuff : PQ for stuff classes. mIoU: mean intersection over union. AP: segmentation
average precision evaluated at 0.5:0.95. AP1>G: bounding box average precision
evaluated at 0.5:0.95.

85

Table 4.5: Extended Results on Cityscapes. Despite the fact that our baseline
performance (best of 5 runs) is lower than that reported in the original UPSNet paper
Xiong et al., 2019, our models trained on PanDA augmented datasets outperform
the original UPSNet-50 model without COCO pretraining in all metrics. PanDA 1x
consists of 3,000 original Cityscapes images plus 3,000 PanDA synthetic images,
PanDA 2x consists of 3,000 original Cityscapes images plus 6,000 PanDA images.
PQ: panoptic quality. SQ: segmentation quality. RQ: recognition quality. PQCℎ:
PQ for things classes. PQBC : PQ for stuff classes. mIoU: mean intersection over
union. AP: segmentation average precision evaluated at 0.5:0.95. AP1>G: bounding
box average precision evaluated at 0.5:0.95.

Model PQ SQ RQ PQ)ℎ PQ(C mIoU AP AP�>G

UPSNet-50 Xiong et al., 2019 59.3 79.7 73.0 54.6 62.7 75.2 33.3 39.1
UPSNet-50 baseline 58.8 79.5 72.6 54.5 62.0 75.1 33.5 38.7
UPSNet-50 w/ PanDA 1x 59.9 79.9 73.8 55.4 63.3 76.2 34.6 39.6
UPSNet-50 w/ PanDA 2x 60.0 80.3 73.5 55.8 63.1 76.2 35.6 40.5
UPSNet-101 baseline 59.8 80.0 73.5 55.6 62.9 76.7 33.0 38.2
UPSNet-101 w/ PanDA 1x 60.5 80.2 74.1 56.3 63.6 77.1 35.0 40.6
SSS-50 Porzi et al., 2019 60.3 – – 56.1 63.3 77.5 33.5 –
SSS-50 baseline 60.3 – – 55.5 63.8 77.4 32.4 36.3
SSS-50 w/ PanDA 1x 60.9 – – 56.4 64.2 78.0 33.8 37.0

Table 4.6: Per class instance segmentation results on Cityscapes. Segmentation
AP are reported. We observe not only large relative improvement on rare classes
such as train and bicycle (18.4% and 13.1%, respectively), but also small gains on
common classes such as car and person (3.5% and 3.5%, respectively).

Models person rider car truck bus train motorcycle bicycle
UPSNet-50 Xiong et al., 2019 31.2 25.1 50.9 33.6 55.0 33.2 19.2 18.3
UPSNet-50 our basline 31.1 24.8 51.0 33.2 53.5 35.8 19.4 18.9
UPSNet-50 w/ PanDA 1x 31.5 25.7 52.2 34.3 54.4 37.9 20.8 20.3
UPSNet-50 w/ PanDA 2x 32.3 25.6 52.7 36.9 56.6 39.3 20.6 20.7

Table 4.7: Per class detection results on Cityscapes. AP box are reported.

Models person rider car truck bus train motorcycle bicycle
UPSNet-50 Xiong et al., 2019 38.6 42.1 56.6 33.4 56.3 27.2 28.4 30.1
UPSNet-50 our basline 38.5 41.6 56.3 33.6 55.4 26.0 27.1 31.2
UPSNet-50 w/ PanDA 1x 39.0 43.4 57.8 33.6 55.8 27.2 28.4 31.2
UPSNet-50 w/ PanDA 2x 40.1 43.4 58.6 36.3 57.5 29.3 27.4 31.7

86

0.25

0.5

1

1 10 100 1000 10000

Er
ro

r

Number of training images

PQ PQ PanDA
AP AP PanDA
AP box AP box PanDA

Figure 4.8: Model performance vs training set size on Cityscapes. We train
UPSNet-50 models on various Cityscapes subsets ranging from 10 to 2,975 images.
PQ: panoptic quality. AP: instance segmentation average precision evaluated at
0.5:0.95. AP box: bounding box average precision evaluated at 0.5:0.95. Dashed
curves are log-linear fits of baseline experiments, solid curves are fits of PanDA
experiments. Panoptic segmentation, instance segmentation, and instance detection
performance are summarized by PQ,AP, andAP box, respectively. PanDAenhanced
models consistently outperform original models across scales in all metrics. Data
efficiency (DE) corresponds to the amount of right shift of PanDA curves to account
for the improved performance with PanDA.

87

Original Original annotation PanDA PanDA annotation

Figure 4.9: Examples of original and PanDA Cityscapes images with ground
truth annotation. Left two columns: original Cityscapes images and ground truth
annotation images. Right two columns: PanDA generated images and ground truth
annotation images.

88

Original Original annotation PanDA PanDA annotation

Figure 4.10: Examples of original and PanDACOCO images with ground truth
annotation. Left two columns: original COCO images and ground truth annotation
images. Right two columns: PanDA generated images and ground truth annotation
images.

89

BIBLIOGRAPHY

4toon studio (n.d.). https://assetstore.unity.com/publishers/3695.
Accessed: 2019-03-27.

Adebiyi, Aminat et al. (2017). “Assessment of feedback modalities for wearable
visual aids in blind mobility”. In: PloS one 12.2.

Auvray, Malika, Sylvain Hanneton, and J Kevin O’Regan (2007). “Learning to per-
ceive with a visuo—auditory substitution system: localisation and object recog-
nition with ‘The Voice’”. In: Perception 36.3, pp. 416–430.

Barth, Ruud et al. (2018). “Data synthesis methods for semantic segmentation in
agriculture: A Capsicum annuum dataset”. In: Computers and electronics in
agriculture 144, pp. 284–296.

Beery, Sara, Yang Liu, Dan Morris, Jim Piavis, Ashish Kapoor, Neel Joshi, et al.
(Mar. 2020). “Synthetic Examples Improve Generalization for Rare Classes”. In:
The IEEE Winter Conference on Applications of Computer Vision (WACV). url:
http://openaccess.thecvf.com/content_WACV_2020/papers/Beery_
Synthetic_Examples_Improve_Generalization_for_Rare_Classes_
WACV_2020_paper.pdf.

Beery, Sara, Yang Liu, Dan Morris, Jim Piavis, Ashish Kapoor, Markus Meister,
et al. (2019). “Synthetic examples improve generalization for rare classes”. In:
arXiv preprint arXiv:1904.05916.

Beery, Sara, Grant Van Horn, and Pietro Perona (Sept. 2018). “Recognition in Terra
Incognita”. In: The European Conference on Computer Vision (ECCV).

Bengio, Yoshua (2012). “Practical recommendations for gradient-based training of
deep architectures”. In: Neural networks: Tricks of the trade. Springer, pp. 437–
478.

Berens, Philipp et al. (2018). “Community-based benchmarking improves spike
rate inference from two-photon calcium imaging data”. In: PLoS computational
biology 14.5, e1006157.

Bertalmio, Marcelo, Andrea L Bertozzi, and Guillermo Sapiro (2001). “Navier-
stokes, fluid dynamics, and image and video inpainting”. In: Proceedings of
the 2001 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. CVPR 2001. Vol. 1. IEEE, pp. I–I.

Blender (n.d.). https://www.blender.org/. Accessed: 2019-03-28.

Bondi, Elizabeth et al. (2018). “Airsim-w: A simulation environment for wildlife
conservation with uavs”. In: Proceedings of the 1st ACM SIGCAS Conference on
Computing and Sustainable Societies. ACM, p. 40.

https://assetstore.unity.com/publishers/3695
http://openaccess.thecvf.com/content_WACV_2020/papers/Beery_Synthetic_Examples_Improve_Generalization_for_Rare_Classes_WACV_2020_paper.pdf
http://openaccess.thecvf.com/content_WACV_2020/papers/Beery_Synthetic_Examples_Improve_Generalization_for_Rare_Classes_WACV_2020_paper.pdf
http://openaccess.thecvf.com/content_WACV_2020/papers/Beery_Synthetic_Examples_Improve_Generalization_for_Rare_Classes_WACV_2020_paper.pdf
 https://www.blender.org/

90

Book of the Dead Environment (n.d.). https : / / assetstore . unity . com /
packages / essentials / tutorial - projects / book - of - the - dead -
environment-121175. Accessed: 2019-03-27.

Bourne, RRAet al. (2017).Magnitude, temporal trends, and projections of the global
prevalence of blindness and distance and near vision impairment: a systematic
review and meta-analysis. Lancet Glob Health. 2017; 5 (9): e888-97.

Bousmalis, Konstantinos et al. (2017). “Unsupervised pixel-level domain adaptation
with generative adversarial networks”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 3722–3731.

Bowles, Christopher et al. (2018). “GAN augmentation: augmenting training data
using generative adversarial networks”. In: arXiv preprint arXiv:1810.10863.

Buda, Mateusz, Atsuto Maki, and Maciej A Mazurowski (2018). “A systematic
study of the class imbalance problem in convolutional neural networks”. In:
Neural Networks 106, pp. 249–259.

Bujacz, Michał and Paweł Strumiłło (2016). “Sonification: Review of auditory
display solutions in electronic travel aids for the blind”. In: Archives of Acoustics
41.3, pp. 401–414.

Capelle, Christian et al. (1998). “A real-time experimental prototype for enhance-
ment of vision rehabilitation using auditory substitution”. In: IEEE Transactions
on Biomedical Engineering 45.10, pp. 1279–1293.

Cashman, Thomas J and Andrew W Fitzgibbon (2013). “What shape are dolphins?
building 3dmorphable models from 2d images”. In: IEEE transactions on pattern
analysis and machine intelligence 35.1, pp. 232–244.

Cireşan, Dan, Ueli Meier, and Jürgen Schmidhuber (2012). “Multi-column deep
neural networks for image classification”. In: arXiv preprint arXiv:1202.2745.

Collins, CC (1985). “On mobility aids for the blind, in Electronic Spatial Sensing
for the Blind”. In: Warren and ER Strelow, Eds. Dordrecht, The Netherlands,
pp. 35–64.

Cordts, Marius et al. (2016). “The cityscapes dataset for semantic urban scene
understanding”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 3213–3223.

Coyote in a camera trap (n.d.). https://www.inaturalist.org/photos/
7738216. Accessed: 2019-03-28.

Csapó, Ádám and György Wersényi (2013). “Overview of auditory representations
in human-machine interfaces”. In: ACM Computing Surveys (CSUR) 46.2, pp. 1–
23.

Cubuk, Ekin D et al. (2018). “Autoaugment: Learning augmentation policies from
data”. In: arXiv preprint arXiv:1805.09501.

https://assetstore.unity.com/packages/essentials/tutorial-projects/book-of-the-dead-environment-121175
https://assetstore.unity.com/packages/essentials/tutorial-projects/book-of-the-dead-environment-121175
https://assetstore.unity.com/packages/essentials/tutorial-projects/book-of-the-dead-environment-121175
 https://www.inaturalist.org/photos/7738216
 https://www.inaturalist.org/photos/7738216

91

Cui, Yin, Menglin Jia, et al. (2019). “Class-Balanced Loss Based on Effective
Number of Samples”. In: arXiv preprint arXiv:1901.05555.

Cui, Yin, Feng Zhou, et al. (2016). “Fine-grained categorization and dataset boot-
strapping using deep metric learning with humans in the loop”. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1153–
1162.

Deng, J. et al. (2009). “ImageNet: A Large-Scale Hierarchical Image Database”. In:
CVPR09.

Deng, Jia et al. (2009). “Imagenet: A large-scale hierarchical image database”. In:
Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference
on. IEEE, pp. 248–255.

Dobelle, William H, MG Mladejovsky, and JP Girvin (1974). “Artificial vision
for the blind: electrical stimulation of visual cortex offers hope for a functional
prosthesis”. In: Science 183.4123, pp. 440–444.

Dosovitskiy, Alexey et al. (2017). “CARLA: An Open Urban Driving Simulator”.
In: Proceedings of the 1st Annual Conference on Robot Learning, pp. 1–16.

Dvornik, Nikita, Julien Mairal, and Cordelia Schmid (2019). “On the importance of
visual context for data augmentation in scene understanding”. In: IEEE Transac-
tions on Pattern Analysis and Machine Intelligence.

Elkan, Charles (2001). “The foundations of cost-sensitive learning”. In: Interna-
tional joint conference on artificial intelligence. Vol. 17. 1. Lawrence Erlbaum
Associates Ltd, pp. 973–978.

Epic Studios (n.d.). http://epicstudios.com/. Accessed: 2019-03-21.

Esteva, Andre et al. (2017). “Dermatologist-level classification of skin cancer with
deep neural networks”. In: Nature 542.7639, p. 115.

Evans, Timothy (1989). “The impact of permanent disability on rural households:
river blindness in Guinea”. In: IDS bulletin 20.2, pp. 41–48.

Everingham, Mark et al. (2010). “The pascal visual object classes (voc) challenge”.
In: International journal of computer vision 88.2, pp. 303–338.

Fang, Hao-Shu et al. (2019). “Instaboost: Boosting instance segmentation via prob-
ability map guided copy-pasting”. In: Proceedings of the IEEE International
Conference on Computer Vision, pp. 682–691.

Flaxman, Seth R et al. (2017). “Global causes of blindness and distance vision
impairment 1990–2020: a systematic review and meta-analysis”. In: The Lancet
Global Health 5.12, e1221–e1234.

Forest Animals byGiM (n.d.).https://www.unrealengine.com/marketplace/
en-US/animals-vol-01-forest-animals. Accessed: 2019-03-21.

http://epicstudios.com/
https://www.unrealengine.com/marketplace/en-US/animals-vol-01-forest-animals
https://www.unrealengine.com/marketplace/en-US/animals-vol-01-forest-animals

92

Frick, Kevin D et al. (2007). “Economic impact of visual impairment and blindness
in the United States”. In: Archives of ophthalmology 125.4, pp. 544–550.

Frid-Adar, Maayan et al. (2018). “GAN-based synthetic medical image augmenta-
tion for increased CNN performance in liver lesion classification”. In: Neurocom-
puting 321, pp. 321–331.

Gaidon, Adrien et al. (2016). “Virtual worlds as proxy for multi-object tracking
analysis”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4340–4349.

Ganin, Yaroslav and Victor Lempitsky (2015). “Unsupervised domain adaptation by
backpropagation”. In: International Conference on Machine Learning, pp. 1180–
1189.

Gao, Naiyu et al. (2019). “SSAP: Single-Shot Instance Segmentation With Affinity
Pyramid”. In: Proceedings of the IEEE International Conference on Computer
Vision, pp. 642–651.

GiM Studio (n.d.). https://assetstore.unity.com/publishers/18347.
Accessed: 2019-03-27.

Goodale, Melvyn A, A David Milner, et al. (1992). “Separate visual pathways for
perception and action”. In:

Goodfellow, Ian et al. (2014). “Generative adversarial nets”. In: Advances in neural
information processing systems, pp. 2672–2680.

Gregor, Karol et al. (2015). “Draw: A recurrent neural network for image genera-
tion”. In: arXiv preprint arXiv:1502.04623.

Han, Sanghui et al. (2017). “Efficient generation of image chips for training deep
learning algorithms”. In: Automatic Target Recognition XXVII. Vol. 10202. Inter-
national Society for Optics and Photonics, p. 1020203.

Hariharan, Bharath and Ross Girshick (2017). “Low-shot visual recognition by
shrinking and hallucinating features”. In: Proceedings of the IEEE International
Conference on Computer Vision, pp. 3018–3027.

Hattori, Hironori et al. (2015). “Learning scene-specific pedestrian detectorswithout
real data”. In: Computer Vision and Pattern Recognition (CVPR), 2015 IEEE
Conference on. IEEE, pp. 3819–3827.

He, Haibo, Yang Bai, et al. (2008). “ADASYN: Adaptive synthetic sampling ap-
proach for imbalanced learning”. In: 2008 IEEE International Joint Conference on
Neural Networks (IEEE World Congress on Computational Intelligence). IEEE,
pp. 1322–1328.

He, Haibo and Edwardo A Garcia (2008). “Learning from imbalanced data”. In:
IEEE Transactions on Knowledge & Data Engineering 9, pp. 1263–1284.

He, Kaiming, Georgia Gkioxari, et al. (2017). “Mask r-cnn”. In: Proceedings of the
IEEE international conference on computer vision, pp. 2961–2969.

https://assetstore.unity.com/publishers/18347

93

He,Kaiming, Xiangyu Zhang, et al. (2015). “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification”. In:Proceedings of the IEEE
international conference on computer vision, pp. 1026–1034.

– (2016). “Deep residual learning for image recognition”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 770–778.

Hinterstoisser, Stefan et al. (2019). An Annotation Saved is an Annotation Earned:
Using Fully Synthetic Training for Object Instance Detection. arXiv: 1902.09967
[cs.CV].

Hoffman, Judy et al. (2016). “Fcns in the wild: Pixel-level adversarial and constraint-
based adaptation”. In: arXiv preprint arXiv:1612.02649.

Howard, Andrew G (2013). “Some improvements on deep convolutional neural
network based image classification”. In: arXiv preprint arXiv:1312.5402.

HTC Vive (n.d.). https://en.wikipedia.org/wiki/HTC_Vive. Accessed:
2018-08-21.

Huang, Jonathan et al. (2017). “Speed/accuracy trade-offs for modern convolutional
object detectors”. In: IEEE CVPR.

Huang, Rui et al. (2017). “Beyond face rotation: Global and local perception gan for
photorealistic and identity preserving frontal view synthesis”. In: Proceedings of
the IEEE International Conference on Computer Vision, pp. 2439–2448.

Im, Daniel Jiwoong et al. (2016). “Generating images with recurrent adversarial
networks”. In: arXiv preprint arXiv:1602.05110.

Jafri, Rabia et al. (2014). “Computer vision-based object recognition for the visually
impaired in an indoors environment: a survey”. In: The Visual Computer 30.11,
pp. 1197–1222.

Janpec (n.d.). https://assetstore.unity.com/publishers/1066. Accessed:
2019-03-27.

Ji, Shunping et al. (2019). “Building Instance Change Detection from Large-Scale
Aerial Images using Convolutional Neural Networks and Simulated Samples”.
In: Remote Sensing 11.11, p. 1343.

Kanazawa, Angjoo et al. (2018). “Learning category-specific mesh reconstruction
from image collections”. In: Proceedings of the European Conference on Com-
puter Vision (ECCV), pp. 371–386.

Kandel, Eric R et al. (2000). Principles of neural science. Vol. 4. McGraw-hill New
York.

Kirillov, Alexander et al. (2019). “Panoptic segmentation”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 9404–9413.

Kolve, Eric et al. (2017). “AI2-THOR: An Interactive 3D Environment for Visual
AI”. In: CoRR abs/1712.05474. url: http://arxiv.org/abs/1712.05474.

https://arxiv.org/abs/1902.09967
https://arxiv.org/abs/1902.09967
https://en.wikipedia.org/wiki/HTC_Vive
https://assetstore.unity.com/publishers/1066
http://arxiv.org/abs/1712.05474

94

Krasin, Ivan et al. (2017). “OpenImages: A public dataset for large-scale multi-label
and multi-class image classification.” In: url: %5Curl%7Bhttps://github.
com/openimages%7D.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “Imagenet classi-
fication with deep convolutional neural networks”. In: Advances in neural infor-
mation processing systems, pp. 1097–1105.

Kumar, Neeraj et al. (Oct. 2012). “Leafsnap: A Computer Vision System for Auto-
matic Plant Species Identification”. In: The 12th European Conference on Com-
puter Vision (ECCV).

Lacey, Simon and Rebecca Lawson (2013).Multisensory imagery. Springer Science
& Business Media.

Lee, Ki Bum, Sejune Cheon, and Chang Ouk Kim (2017). “A convolutional neural
network for fault classification and diagnosis in semiconductormanufacturing pro-
cesses”. In: IEEE Transactions on Semiconductor Manufacturing 30.2, pp. 135–
142.

Li, Fei-Fei, Rob Fergus, and Pietro Perona (2006). “One-shot learning of object
categories”. In: IEEE transactions on pattern analysis and machine intelligence
28.4, pp. 594–611.

Lin, Tsung-Yi, Priyal Goyal, et al. (2018). “Focal loss for dense object detection”.
In: IEEE transactions on pattern analysis and machine intelligence.

Lin, Tsung-Yi, Michael Maire, et al. (2014). “Microsoft coco: Common objects in
context”. In: European conference on computer vision. Springer, pp. 740–755.

Litjens, Geert et al. (2017). “A survey on deep learning in medical image analysis”.
In: Medical image analysis 42, pp. 60–88.

Liu, Shuangting et al. (2019). “Pixel Level Data Augmentation for Semantic Im-
age Segmentation using Generative Adversarial Networks”. In: ICASSP 2019-
2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, pp. 1902–1906.

Liu, Yang, Haiwei Dong, et al. (2018). “Technical evaluation of HoloLens for
multimedia: a first look”. In: IEEE MultiMedia 25.4, pp. 8–18.

Liu, Yang and Markus Meister (2018). CARA. url: https://github.com/
meisterlabcaltech/CARA_Public.

Liu, Yang, Pietro Perona, and Markus Meister (2019). “PanDA: Panoptic Data
Augmentation”. In: arXiv preprint arXiv:1911.12317. url: https://arxiv.
org/abs/1911.12317.

Loomis, Jack M, Roberta L Klatzky, and Nicholas A Giudice (2012). “-Sensory
Substitution of Vision: Importance of Perceptual and Cognitive Processing”. In:
Assistive technology for blindness and low vision. CRC Press, pp. 179–210.

%5Curl%7Bhttps://github.com/openimages%7D
%5Curl%7Bhttps://github.com/openimages%7D
https://github.com/meisterlabcaltech/CARA_Public
https://github.com/meisterlabcaltech/CARA_Public
https://arxiv.org/abs/1911.12317
https://arxiv.org/abs/1911.12317

95

Luan, Fujun et al. (2017). “Deep photo style transfer”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 4990–4998.

Luo,YvonneHsu-Lin andLyndonDaCruz (2016). “TheArgus® II retinal prosthesis
system”. In: Progress in retinal and eye research 50, pp. 89–107.

Maaten, Laurens van der and Geoffrey Hinton (2008). “Visualizing data using t-
SNE”. In: Journal of machine learning research 9.Nov, pp. 2579–2605.

Maidenbaum, Shachar, Sami Abboud, and Amir Amedi (2014). “Sensory substi-
tution: closing the gap between basic research and widespread practical visual
rehabilitation”. In: Neuroscience & Biobehavioral Reviews 41, pp. 3–15.

Marr, David (1982). “Vision: A computational investigation into the human repre-
sentation and processing of visual information, henry holt and co”. In: Inc., New
York, NY 2.4.2.

Maya (n.d.). https://www.autodesk.com/products/maya/overview. Ac-
cessed: 2019-03-28.

McAnally, Ken I and Russell L Martin (2014). “Sound localization with head move-
ment: implications for 3-d audio displays”. In: Frontiers in neuroscience 8, p. 210.

Meijer, Peter BL (1992). “An experimental system for auditory image representa-
tions”. In: IEEE transactions on biomedical engineering 39.2, pp. 112–121.

Neider, Mark B and Gregory J Zelinsky (2006). “Scene context guides eye move-
ments during visual search”. In: Vision research 46.5, pp. 614–621.

Neuhold, Gerhard et al. (2017). “The mapillary vistas dataset for semantic under-
standing of street scenes”. In: Proceedings of the IEEE International Conference
on Computer Vision, pp. 4990–4999.

Norouzzadeh, Mohammed Sadegh et al. (2017). “Automatically identifying wild
animals in camera trap images with deep learning”. In: arXiv:1703.05830.

Pahde, Frederik et al. (2019). “Low-Shot Learning from Imaginary 3D Model”. In:
arXiv preprint arXiv:1901.01868.

Peng, Xingchao et al. (2018). “Syn2real: A new benchmark forsynthetic-to-real
visual domain adaptation”. In: arXiv preprint arXiv:1806.09755.

Pepik, Bojan et al. (2015). “What is holding back convnets for detection?” In:
German Conference on Pattern Recognition. Springer, pp. 517–528.

Pitkow,Xaq andMarkusMeister (2014). “Neural Computation in Sensory Systems”.
In: The Cognitive Neurosciences, p. 305.

Poh, Ming-Zher, Daniel J McDuff, and Rosalind W Picard (2010). “Non-contact,
automated cardiac pulse measurements using video imaging and blind source
separation.” In: Optics express 18.10, pp. 10762–10774.

Poplin, Ryan et al. (2018). “Prediction of cardiovascular risk factors from retinal
fundus photographs via deep learning”. In: Nature Biomedical Engineering, p. 1.

https://www.autodesk.com/products/maya/overview

96

Porzi, Lorenzo et al. (2019). “Seamless scene segmentation”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 8277–8286.

Protofactor Inc (n.d.). https://assetstore.unity.com/publishers/265.
Accessed: 2019-03-27.

Proulx, Michael J et al. (2016). “Other ways of seeing: From behavior to neural
mechanisms in the online “visual” control of action with sensory substitution”.
In: Restorative neurology and neuroscience 34.1, pp. 29–44.

Quixel Megascans Library (n.d.). https://quixel.com/megascans. Accessed:
2019-03-21.

Radford, Alec, LukeMetz, and Soumith Chintala (2015). “Unsupervised representa-
tion learning with deep convolutional generative adversarial networks”. In: arXiv
preprint arXiv:1511.06434.

Rajpura, Param S., Hristo Bojinov, and Ravi S. Hegde (2017). Object Detection
Using Deep CNNs Trained on Synthetic Images. arXiv: 1706.06782 [cs.CV].

Red Deer Studio (n.d.). https://assetstore.unity.com/publishers/12623.
Accessed: 2019-03-27.

Redmon, Joseph and Ali Farhadi (2018). “Yolov3: An incremental improvement”.
In: arXiv preprint arXiv:1804.02767.

Reinert, Bernhard, Tobias Ritschel, and Hans-Peter Seidel (2016). “Animated 3D
Creatures from Single-viewVideo by Skeletal Sketching.” In:Graphics Interface,
pp. 133–141.

Richter, Stephan R. et al. (2016a). “Playing for Data: Ground Truth from Computer
Games”. In: Lecture Notes in Computer Science, pp. 102–118. issn: 1611-3349.
doi: 10.1007/978-3-319-46475-6_7. url: http://dx.doi.org/10.
1007/978-3-319-46475-6_7.

– (2016b). “Playing for data: Ground truth from computer games”. In: European
conference on computer vision. Springer, pp. 102–118.

Ros, German et al. (2016). “The synthia dataset: A large collection of synthetic
images for semantic segmentation of urban scenes”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 3234–3243.

Russakovsky, O et al. (2015). “Imagenet large scale visual recognition challenge
IJCV”. In: arXiv preprint arXiv:1409.0575.

Russakovsky, Olga et al. (2014). ImageNet Large Scale Visual Recognition Chal-
lenge. arXiv: 1409.0575 [cs.CV].

Savva,Manolis et al. (2017). “MINOS:Multimodal Indoor Simulator for Navigation
in Complex Environments”. In: arXiv:1712.03931.

Scholl, Hendrik PN et al. (2016). “Emerging therapies for inherited retinal degener-
ation”. In: Science translational medicine 8.368, 368rv6–368rv6.

https://assetstore.unity.com/publishers/265
https://quixel.com/megascans
https://arxiv.org/abs/1706.06782
https://assetstore.unity.com/publishers/12623
https://doi.org/10.1007/978-3-319-46475-6_7
http://dx.doi.org/10.1007/978-3-319-46475-6_7
http://dx.doi.org/10.1007/978-3-319-46475-6_7
https://arxiv.org/abs/1409.0575

97

Schroff, Florian, Dmitry Kalenichenko, and James Philbin (2015). “Facenet: A
unified embedding for face recognition and clustering”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 815–823.

Seeing with Sound (n.d.). https://www.seeingwithsound.com/. Accessed:
2018-08-21.

Shah, Shital et al. (2018). “Airsim: High-fidelity visual and physical simulation for
autonomous vehicles”. In: Field and service robotics. Springer, pp. 621–635.

Shetty, Rakshith R, Mario Fritz, and Bernt Schiele (2018). “Adversarial scene edit-
ing: Automatic object removal from weak supervision”. In: Advances in Neural
Information Processing Systems, pp. 7706–7716.

Shetty, Rakshith, Bernt Schiele, and Mario Fritz (2019). “Not Using the Car to See
the Sidewalk–Quantifying and Controlling the Effects of Context in Classification
and Segmentation”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 8218–8226.

Shrivastava, Ashish et al. (July 2017). “Learning From Simulated and Unsupervised
Images Through Adversarial Training”. In: The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Song, Shuran et al. (2017). “Semantic Scene Completion from a Single Depth
Image”. In: IEEE Conference on Computer Vision and Pattern Recognition.

Souza12, César Roberto de et al. (2017). “Procedural generation of videos to train
deep action recognition networks”. In:

SpeedTree (n.d.). https://store.speedtree.com/. Accessed: 2019-03-21.

Stingl, K and E Zrenner (2013). “Electronic approaches to restitute vision in patients
with neurodegenerative diseases of the retina”. In: Ophthalmic research 50.4,
pp. 215–220.

Stingl, Katarina et al. (2017). “Interim results of a multicenter trial with the new
electronic subretinal implant alphaAMS in 15 patients blind from inherited retinal
degenerations”. In: Frontiers in neuroscience 11, p. 445.

Striem-Amit, Ella, Miriam Guendelman, and Amir Amedi (2012). “‘Visual’acuity
of the congenitally blind using visual-to-auditory sensory substitution”. In: PloS
one 7.3.

Stronks, H Christiaan et al. (2016). “Visual task performance in the blind with
the BrainPort V100 Vision Aid”. In: Expert review of medical devices 13.10,
pp. 919–931.

Sudol, Jeremi et al. (2010). “Looktel—A comprehensive platform for computer-
aided visual assistance”. In: 2010 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition-Workshops. IEEE, pp. 73–80.

Sukhbaatar, Sainbayar et al. (2014). Training Convolutional Networks with Noisy
Labels. arXiv: 1406.2080 [cs.CV].

https://www.seeingwithsound.com/
https://store.speedtree.com/
https://arxiv.org/abs/1406.2080

98

Szegedy, Christian, Sergey Ioffe, et al. (2017). “Inception-v4, inception-resnet and
the impact of residual connections on learning”. In: Thirty-First AAAI Conference
on Artificial Intelligence.

Szegedy, Christian, Vincent Vanhoucke, et al. (2016). “Rethinking the inception
architecture for computer vision”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2818–2826.

Tieleman, Tijmen and Geoffrey Hinton (2012). “Lecture 6.5-rmsprop: Divide the
gradient by a running average of its recent magnitude”. In: COURSERA: Neural
networks for machine learning 4.2, pp. 26–31.

Tran, Toan et al. (2017). “A Bayesian data augmentation approach for learning deep
models”. In:Advances in Neural Information Processing Systems, pp. 2797–2806.

Unity Book of the Dead (n.d.). https://unity3d.com/book-of-the-dead.
Accessed: 2019-03-21.

Unity Game Engine (n.d.). https://unity3d.com/. Accessed: 2019-02-05.

UNREALGameEngine (n.d.).https://www.unrealengine.com/en-US/what-
is-unreal-engine-4. Accessed: 2019-02-05.

Van Horn, Grant, Oisin Mac Aodha, et al. (2017). “The iNaturalist Challenge 2017
Dataset”. In: arXiv preprint arXiv:1707.06642.

Van Horn, Grant and Pietro Perona (2017). “The Devil is in the Tails: Fine-grained
Classification in the Wild”. In: arXiv preprint arXiv:1709.01450.

van Horn, Grant et al. (2017). The Merlin Bird ID smartphone app. url: %5Curl%
7Bhttp://merlin.allaboutbirds.org/download/%7D (visited on 2017).

Varol, Gul, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black,
et al. (July 2017a). “Learning From Synthetic Humans”. In: The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

– (2017b). “Learning from synthetic humans”. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 109–117.

Verschae, Rodrigo and Javier Ruiz-del-Solar (2015). “Object detection: current and
future directions”. In: Frontiers in Robotics and AI 2, p. 29.

Vuforia (n.d.). https://www.vuforia.com/. Accessed: 2018-08-21.

Wang, Yu-Xiong and Martial Hebert (2016). “Learning to learn: Model regression
networks for easy small sample learning”. In: European Conference on Computer
Vision. Springer, pp. 616–634.

WDallgraphics studio (n.d.). https://assetstore.unity.com/publishers/
5060. Accessed: 2019-03-28.

Weiland, James D and Mark S Humayun (2014). “Retinal prosthesis”. In: IEEE
Transactions on Biomedical Engineering 61.5, pp. 1412–1424.

https://unity3d.com/book-of-the-dead
https://unity3d.com/
https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://www.unrealengine.com/en-US/what-is-unreal-engine-4
%5Curl%7Bhttp://merlin.allaboutbirds.org/download/%7D
%5Curl%7Bhttp://merlin.allaboutbirds.org/download/%7D
https://www.vuforia.com/
 https://assetstore.unity.com/publishers/5060
 https://assetstore.unity.com/publishers/5060

99

Wenzel, Elizabeth M et al. (1993). “Localization using nonindividualized head-
related transfer functions”. In: The Journal of the Acoustical Society of America
94.1, pp. 111–123.

Wolf in a camera trap (n.d.). https://3c1703fe8d.site.internapcdn.net/
newman/csz/news/800/2018/cameratrapst.jpg. Accessed: 2019-03-28.

Wu, Bichen et al. (2017). “Squeezedet: Unified, small, low power fully convolutional
neural networks for real-time object detection for autonomous driving”. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pp. 129–137.

Wu, Yi et al. (2018). “Building generalizable agents with a realistic and rich 3D
environment”. In: arXiv preprint arXiv:1801.02209.

Xiong, Yuwen et al. (2019). “Upsnet: A unified panoptic segmentation network”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 8818–8826.

Zhang, Chiyuan et al. (2016). Understanding deep learning requires rethinking
generalization. arXiv: 1611.03530 [cs.LG].

Zhou, Bolei et al. (2017). “Scene parsing through ade20k dataset”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 633–641.

Zhu, Jun-Yan et al. (2017). “Unpaired image-to-image translation using cycle-
consistent adversarial networks”. In: Proceedings of the IEEE International Con-
ference on Computer Vision, pp. 2223–2232.

Zou, Yang et al. (2018). “Unsupervised domain adaptation for semantic segmenta-
tion via class-balanced self-training”. In:Proceedings of the EuropeanConference
on Computer Vision (ECCV), pp. 289–305.

https://3c1703fe8d.site.internapcdn.net/newman/csz/news/800/2018/cameratrapst.jpg
https://3c1703fe8d.site.internapcdn.net/newman/csz/news/800/2018/cameratrapst.jpg
https://arxiv.org/abs/1611.03530

	Acknowledgements
	Abstract
	Published Content and Contributions
	Table of Contents
	List of Illustrations
	List of Tables
	Introduction
	Abstract
	Human Vision and Blindness
	Enabling Vision for the Blind with Computer Vision
	Enhancing Computer Vision with Data Augmentation

	Augmented Reality Powers a Cognitive Assistant for the Blind
	Abstract
	Introduction
	Results
	Discussion
	Supplementary Materials

	Synthetic Examples Improve Generalization for Rare Classes
	Abstract
	Introduction
	Related work
	Data and Simulation
	Experiments
	Conclusions and Future Work
	Supplementary Materials

	PanDA: Panoptic Data Augmentation
	Abstract
	Introduction
	Related Work
	Panoptic Data Augmentation
	Experiments
	Discussion
	Conclusions
	Supplementary Materials

	Bibliography

