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ABSTRACT

In the past couple of decades, non-smooth convex optimization has emerged as a
powerful tool for the recovery of structured signals (sparse, low rank, etc.) from
noisy linear or non-linear measurements in a variety of applications in genomics,
signal processing, wireless communications, machine learning, etc.. Taking advan-
tage of the particular structure of the unknown signal of interest is critical since
in most of these applications, the dimension ? of the signal to be estimated is
comparable, or even larger than the number of observations =. With the advent
of Compressive Sensing there has been a very large number of theoretical results
that study the estimation performance of non-smooth convex optimization in such a
high-dimensional setting.
A popular approach for estimating an unknown signal V0 ∈ R? in a generalized
linear model, with observations y = 6(XV0) ∈ R=, is via solving the estimator
V̂ = arg minV L(y,XV) + _ 5 (V). Here, L(·, ·) is a loss function which is con-
vex with respect to its second argument, and 5 (·) is a regularizer that enforces the
structure of the unknown V0. We first analyze the generalization error performance
of this estimator, for the case where the entries of X are drawn independently from
real standard Gaussian distribution. The precise nature of our analysis permits an
accurate performance comparison between different instances of these estimators,
and allows to optimally tune the hyperparameters based on the model parameters.
We apply our result to some of the most popular cases of generalized linear models,
such asM-estimators in linear regression, logistic regression and generalizedmargin
maximizers in binary classification problems, and Poisson regression in count data
models. The key ingredient of our proof is the Convex Gaussian Min-max Theorem
(CGMT), which is a tight version of the Gaussian comparison inequality proved by
Gordon in 1988. Unfortunately, having real iid entries in the features matrix X is
crucial in this theorem, and it cannot be naturally extended to other cases.
But for some special cases, we prove some universality properties and indirectly
extend these results to more general designs of the features matrix X, where the en-
tries are not necessarily real, independent, or identically distributed. This extension,
enables us to analyze problems that CGMT was incapable of, such as models with
quadratic measurements, phase-lift in phase retrieval, and data recovery in massive
MIMO, and help us settle a few long standing open problems in these areas.
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C h a p t e r 1

INTRODUCTION

Data in today’s technology and industry work is indispensable. Most organizations
now understand that if they gather all the data that is available to them, they can
analyze and get significant value from it. As a result, the last decade has seen a
sustained exponential growth rate in data stored and used. This has led to an immense
interest in the buzz words such as "Big Data" and "Statistical Inference", where the
question is how to efficiently deduce the most information about the unknown
variables of interest. Classical estimation theory has extensively investigated this
question under various models, when the number of unknown variables is small
compared to collected data. But in many modern applications (e.g. financial
data, machine learning, wireless communications, sensor networks, genome signal
processing, image processing, DNA sequencing, etc.), the number of unknown
variable of interest has become larger and larger. Therefore, a lot of classical tools
in estimation theory fail to address the same questions, with the dimensionality
explosion that we experience in today’s applications.
More importantly, in many of these applications, the number of unknown variables
is even larger than the number of observations (or measurements) we have (e.g.
consider the DNA sequencing where the unknown data is the human genome, or in
image processing where the unknown is a large scale image, or in finance). Consider
the following simple but fundamental example to make our idea concrete. We would
like to recover an unknown vector V ∈ R? from the system of linear equations below,
with = equations,

y = XV ∈ R= , (1.1)

where y ∈ R= and X ∈ R=×? are given. Obviously, when we do not have any other
information about the unknown V, it is necessary to have more measurements than
unknowns for a consistent recovery (= should be greater than or equal to ?). But in
many applications, the unknown V is constrained by some structure (e.g. sparsity,
where only a limited unknown number entries of V are non-zero, or the case where
the entries of V are chosen from a finite alphabet like ±1.) In these examples,
although the unknown data is ?-dimensional with ? ≥ =, it lies on a lower dimen-
sional manifold with a lower degree of freedom, which may make recovery of the
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unknown data feasible. These examples, give rise to problems like, how to exploit
the given structure to efficiently recover the unknown?, or under what conditions are
our estimators consistent? Among different estimation methods, convex estimators
are popular as they exhibit numerical stability, and more flexibility. Besides, they
are more tractable when it comes to computational analysis.
In the past couple of decades, non-smooth convex optimization has emerged as a
powerful tool for the recovery of structured signals (sparse, low rank, etc.) from
generalized linear measurements in a variety of applications in genomics, signal
processing, wireless communications, machine learning, etc.. How to take advan-
tage of the particular structure of the unknown signal of interest is critical since
as explained, in most of these applications, the dimension ? of the signal to be
estimated is comparable, or even larger than the number of observations = ([40]
and references therein). With the advent of Compressive Sensing there has been
a very large number of theoretical results that study the estimation performance of
non-smooth convex optimization in such a high-dimensional setting.

1.1 Generalized Linear Models
Linear models describe a continuous output variable as a function of the predictors,
and are widely used in statistical data analysis. But in practice, the underlying
models can be much more complicated than a simple linear model. In this thesis,
we focus on a special class of models, known as the generalized linear models. In
this section, we define the set up for thesemodels, mention some of their applications
and state of the art, and finally explain the thesis organization.

Mathematical Formulation
Consider the problem of recovering a ?-dimensional signal V0 ∈ R?, from = mea-
surements of the form

H8 = 68 (xT
8 V0), 8 = 1, . . . , = . (1.2)

Here 68 (.) is a known or unknown link function, and may include a random com-
ponent such as noise. For instance, in the case of linear measurements we may
have,

H8 = xT
8 V0 + I8 , (1.3)

where I8’s are the unknown noise entries. Our goal is to recover the vector V0, given
the measurements H8’s, the feature vectors x8’s and depending on the problem, some
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information about the link function 68 (.) or the structure of the unknown vector V0.
Henceforth, let

y =


H1
...

H<

 ∈ R
= , X =


xT

1
...

xT
<

 ∈ R
=×? , 6(x) =


61(G1)
...

6< (G<)

 ∈ R
= . (1.4)

Here, y denotes the vector of = measurements, X is the features matrix, and 6 :
R= → R= is the link function for which

y = 6(XV0) (1.5)

Our model so far is very general as we did not impose any assumptions on any of
the parameters. Thus, to answer "how to recover the unknown vector?", we have to
make the model more clear, define the tools we would like to work with, and our
performance measures.

1.2 The Link Function in the Generalized Linear Models
The link function 6(·), plays a major role in how we approach this problem. We will
explain a few important and popular cases of the link function.

Linear Inverse Problems in Compressed Sensing
The idea in compressed sensing is to recover a signalwith low-dimensional structures
from high dimensional measurements. The structured signal can be a sparse vector
[38], a low rank matrix [135], a vector chosen from a finite alphabet[166], etc.
There has been tremendous research under the name of compressed sensing in the
last decades [6, 40, 42, 61, 73, 129, 165, 179].
The classical setting of linear inverse problems considers recovering an unknown
V0 ∈ R?, given linear noisey measurements of the form

y = XV0 + z ∈ R= , (1.6)

where the measurements y ∈ R= and the features matrix X ∈ R=×? are given.
Convex estimators are a popular method of recovering the unknown in these prob-
lems. Especially, for the case of structured V0, there are principled ways to recover
the unknown using a convex estimator, based on the idea of atomic decomposition
[40] and also othermethods in [10, 15], as well as non-convexmethods such as [122].
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Classification Problems
Logistic regression is the most commonly used statistical model for predicting di-
chotomous outcomes [85]. It has been extensively employed in many areas of
engineering and applied sciences, such as in the medical [27, 181] and social sci-
ences [96]. As an example, in medical studies logistic regression can be used to
predict the risk of developing a certain disease (e.g. diabetes) based on a set of
observed characteristics from the patient (age, gender, weight, etc.)
Linear regression is a very useful tool for predicting a quantitive response. How-
ever, in many situations the response variable is qualitative (or categorical) and
linear regression is no longer appropriate [89]. This is mainly due to the fact that
least-squares often succeeds under the assumption that the error components are
independent with normal distribution. In categorical predictions, however, the error
components are neither independent nor normally distributed [124].
In logistic regression we model the probability that the label, . , belongs to a cer-
tain category. When no prior knowledge is available regarding the structure of the
parameters, maximum likelihood is often used for fitting the model. Maximum
likelihood estimation (MLE) is a special case of maximum a posteriori estimation
(MAP) that assumes a uniform prior distribution on the parameters.
In this problem, we assume the the measurements are given by the following model,

y = 6(x) = Sign(d(x) − n) , d(G) = 4G

4G + 4−G , n8 ∼ Bernouli(%) .

In this case, each measurement, H8, will be +1 or −1 with probability d(G8) or
1 − d(G8), respectively.

Phase Retrieval Problem
The fundamental problemof recovering a signal frommagnitude-onlymeasurements
is known as phase retrieval. This problem has a rich history and occurs in many
areas in engineering and applied physics such as astronomical imaging [69], X-ray
crystallography [116], medical imaging [55], and optics [191]. In most of these
cases, measuring the phase is either expensive or even infeasible. For instance, in
some optical settings, detection devices like CCD cameras and photosensitive films
cannot measure the phase of a light wave and instead measure the photon flux.
The goal is to recover an unknown data V0 from the magnitude only measurements
of the form,

y = |XV0 | ∈ C= , (1.7)

where y and X are given and | · | is the element-wise absolute value operator.
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Poisson Regression in Count Data Models
Poisson regression assumes that the observations H8 take a Poisson distribution with
mean xTV0,

H8 = Pois
(
xT
8 V0

)
, 8 = 1, . . . , = . (1.8)

Poisson distribution has applications in many areas such as telecommunications
(number of arriving calls in a system), Biology (number of mutations on a DNA),
Finance and insurance (number of losses or claims in a period of time), etc..

1.3 High Dimensional Regime
In the classical regime, the common modeling assumption was that the number of
unknown variables, ?, is fixed, while the number of measurements, =, grow large.
This problem is well studied for the cases of linear regression, classification prob-
lems and some other cases. But with the rise of big data, the number of unknowns
in modern applications of statistical inference could grow as large as the number of
observations. This new assumption, requires a difference performance analysis for
the previous problems. There has been a lot of effort in the last decade, to answer
the same questions in the classical regime, under this new assumption, which we
will mention in Section 2.1, for different applications.
Throughout this thesis, we are especially interested in the over-parameterized
regime, where the number of measurements, =, is less than the number of un-
knowns, ?. This problem is usually ill-posed unless some prior information about
the structure of the unknown data in given. For instance, sometimes the true un-
known data, lies on a low-dimensional manifold in its original ?-dimensional space.
One of the most famous structures is data sparsity. In this case, most of the entries
of the unknown data is zero, but of course the indices of the zero entries are un-
known. Other popular structures includes, signals that are block sparse [152, 160],
signals with entries drawn from a finite alphabet [166, 174], low rank matrices
[135], or sometime vectors or matrices that exhibit a few simultaneous structures
[128]. Recently there has been a unifying framework that can extend the analy-
sis techniques that were initially developed for the sparse signal recovery, to other
structures [18, 56, 63, 165].
Formally, most of the results of this Thesis will be applied to a sequence of problem
instance {V0,X, 6(·),L(·, ·), 5 (·)}?∈N, indexed by ?, such that the properties we
mentioned and our assumptions hold for all members of this sequence. We will not
write the subscript = for arguments to avoid overloading notations. Our results are
asymptotic and hold as =→∞.
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1.4 Convex Recovery Method and Performance Measure
Among various recovery methods, we focus on convex optimization based estima-
tions. Convex methods are often preferred as they exhibit numerical stability, and
more flexibility. Besides, they are more tractable when it comes to computational
or performance analysis.
These convex methods estimate the unknown vector V0, by solving the following
convex optimization problem,

V̂ = arg min
V
L(XV, y) + _ 5 (V) . (1.9)

Here, L(XV, y) is a loss function that penalizes the residual, and is convex with
respect to its first argument. The function 5 (·) (which we call the regularizer) is a
convex function that enforces the structure of the unknown vector V0, to the final
estimation V̂. The positive parameter _, is a regularization parameter that balances
the cost function and the regularizer. This form includes a lot of famous estimators
including ℓ1-regularized least squares (aka the LASSO), penalized least absolute
devations estimator (aka LAD), ridge regression, maximum-likelihood estimators,
Support vector machine or perceptron or logistic regression in classification prob-
lems, etc.
There are standard solvers for each one of these examples, all of which benefit from
the convex nature of this estimator. In this thesis, our focus is on the recovery per-
formance of such estimators, rather than algorithmic issues. So our main question
will be, how well the optimization (1.9) can estimate the unknown data V0?

Performance Measures If we want to measure the recovery performance of the
estimator (1.9), we need to define our performance measure first. For now, we keep
our performance measure general in the form of

k( V̂, V0) , (1.10)

where k(·) is a function that is supposed to measure the deviance of V̂ from V0, in
our desired way depending on our application. For instance, in the classification
problems, the performance measure could be the generalization error, which is

k( V̂, V0) = Prob
(
Sign

(
d(xT V̂) − n

)
≠ Sign

(
d(xTV0) − n

))
,

d(C) = 4C

4C + 4−C , n ∼ Unif(0, 1), x ∼ N(0, I) . (1.11)
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We will impose some natural assumptions on the function k(·, ·) later for our anal-
ysis.

1.5 Design of the Features Matrix, X
Performance of the estimator (1.9) depends on all problem parameters, including
properties of the featuresmatrixX. As themost basic example, consider the problem
of recovering V0 ∈ R? from the system of linear equations

y = XV0 ∈ R? . (1.12)

We need the features matrix X to be full rank for a consistent recovery of V0. So
in a worst case scenario analysis of the recovery performance for this problem, we
should make sure X is full rank. But in practice, if we assume a random ensemble
for the entries of X, the probability of X being singular may be very small. For
example, in the case that the entries of X are independently drawn from a continuous
probability distribution, the probability of X being singular world be zero.
Besides, it has been observed that randomly generated features matrices can yield
good estimates in the high dimensional regime [26, 68, 72]. Besides, assuming
a random ensemble for the features matrix enables us to analyze the average case
performance, or high probability performance in high dimensional regime. In
particular, matrices sampled fromGaussian distribution has been traditionally useful
in the performance analysis of estimators in compressed sensing [38]. Recently,
with the development of two frameworks known as AMP [56] and CGMT [165],
researchers have been able to answer most of the previously unknown questions
in compressed sensing and classification. For these frameworks, the it is essential
to assume that the entries of the features matrix X, are independently drawn from
standard real Gaussian distribution. Although their analysis answered a lot of
open questions in compressed sensing and classification problems, the Gaussian
assumption is very restrictive when it comes to practical problems.

Universality As discussed, assuming a randomly drawn features matrix X with iid
Gaussian entries, has several benefits. First, it enables us to utilize a wide set of tools
in probability. And second, we will not have to consider the worst case scenarios
in the design of the features matrix. But even more importantly, this can be a good
start in the analysis of such complex problems. Once we have a clear understanding
of how the estimator behaves with an iid Gaussian features matrix, we can move
forward and investigate how general these results are and how can one extend them
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to other cases.
As a matter of fact, some of the results that hold under this Gaussian assumption,
enjoy a remarkable universality property in high dimensions, that extend the same
result to a wide variety of other distributions. Donoho and Tanner in [58] and Bayati
et al, [17] were first to observe and show some universality in phase transition of
an special case of estimator (1.9). Later, Oymak and Tropp [130] showed this
universality for a wider range of problems and distributions. But in most of these
cases, having real independent entries in the features matrix was essential. Although
these works are of great interest, the independence assumption on the entries of the
measurement vectors can be restrictive. In certain applications in communications,
phase retrieval, covariance estimation, the entries of the measurement matrix have
correlations. In this thesis, we show a much stronger universality result which holds
for a broader class of measurement distributions. Here is some of the applications
in which at least one of the key assumptions on the features matrix (real and iid
entries) does not hold.

Quadratic Measurements

Consider the case, where we wish to recover an unknown matrix �0, from measure-
ments of the form,

H8 = aT
8 �0a8 + I8 , 8 = 1, . . . , = , (1.13)

where the features vectors a8’ and measurements H8’s are given. In this example, the
measurements are still linear with respect to the unknown matrix �0, but quadratic
with respect to the features vectors a8’s. We define V0 = ®�0 and x8 = ®a8aT

8
, where ®·

is the vectorized version of a matrix. Then we have

H8 = xT
8 V0 + I8 , 8 = 1, . . . , = , (1.14)

Obviously, even by imposing a generic iid distribution on the entries of a8’s, the
entries of x8 will be highly dependent. Therefore, one cannot simply apply the
classical result on this new problem.
This problem shows up in many applications such as Covariance sketching for data
streams [44, 120], non-coherent energy measurements in communications [180],
phase retrieval problem, [36, 86, 148, 190] etc.
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Data Recovery in Massive MIMO

Here, the goal is to recover a ?-dimensional vector V0 ∈ C? where the entries of V0

are independently drawn from the discrete set S ⊂ C with distribution V0,8 ∼ ?V.
The set S defines the modulation used for data transmission (e.g. QAM, PSK, etc.).
For this purpose, we are given the noisy multiple-input multiple-output (MIMO)
relation of the form

y = XV0 + z ∈ C=, (1.15)

where X ∈ C=×? is the known MIMO channel matrix with i.i.d. entries drawn
from NC(0, 1

?
) and z ∈ C= is the unknown noise vector with i.i.d. random complex

Gaussian NC(0, f2) entries. The important question here would be does the same
performance analysis techniques in real case hold for the case of complex features
matrix as well?
Interestingly, we show that the same results and techniques are not necessarily
applicable to the case of a complex features matrix, as we will have examples of
both scenarios in future chapters.

1.6 Organization of the Thesis
In this thesis, we investigate various scenarios for the generalized linear model in
(1.9). In Chapter 2, we impose an iid standard Gaussian distribution on the entries
of the features matrix X, and analyze the performance of the general estimator in
(1.9). Then we will apply our analysis of some interesting examples of generalized
linear models such as M-estimators (Linear Regression models), binary classifica-
tion problem (such as logistic regression and generalized margin maximizers), and
also in data recover in massive MIMO with a real channel. In Chapter 3, we apply
our result to the square-root LASSO problem with a general performance function
k(·).
Later in Chapter 4, we investigate the problem of covariance estimation with
quadratic measurements of the form (1.13). We show some universality properties
that enables us to use the same methods as in Chapter 2 to analyze the performance
of convex estimators in such scenario. In Chapter 5, we propose a fast algorithm for
covariance estimation in graphical models with theoretical guarantees.
In Chapter 6, we prove a universality result for the phase transition of the linear
inverse problems with a wide range of distribution for the features matrix X. As a
result, we show that the phase transition in successful recovery of the unknown data,
depends only on the first and second order statistics of the rows of the features ma-



10

trix X. As an application, we show that the minimum number of random quadratic
measurements (also known as rank-one projections) required to recover a low rank
positive semi-definite matrix is 3=A , where = is the dimension of the matrix and A is
its rank. As a consequence, we settle the long standing open question of determining
the minimum number of measurements required for perfect signal recovery in phase
retrieval using the celebrated PhaseLift algorithm, and show it to be 3=.
Chapter 7, investigates the problem of data recovery in massive MIMO, and shows
that under specific conditions on the constellation (among other conditions) and after
some modifications of the original problem, we can come up with an equivalent real
estimation problem that can be analyzed by the tools introduced in Chapter 2. We
use these results in Chapter 8, and propose a two-step algorithm for a near-maximum
likelihood data recovery in massive MIMO. As Chapter 9 derives a phase transition
in perfect recovery in complex phase-max problem, it concludes that universality
does not always holds from problems with complex features matrices to their corre-
sponding real problems. Finally, we gather some of the proofs of previous sections
in the Appendix.
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C h a p t e r 2

PRECISE PERFORMANCE ANALYSIS OF GENERALIZED
LINEAR MODELS

In this chapter1, we first summarize the problem setup and introduce our assump-
tions, and then state the main theorem. We would like to recover the ? dimensional
vector V from measurements of the form

y = 6(XV0) ∈ R= . (2.1)

We are given the observation vector y and the features matrix X and sometimes
some information about the link function g(·). We do so by solving the following
convex optimization,

V̂ = arg min
V
L(XV, y) + _ 5 (V) . (2.2)

Here the loss function L(·, ·) is convex with respect to its first argument, and the
regularizer 5 (·) is also convex. In this section, our goal is to analyze performance
of the optimization (2.2), in terms of

k( V̂, V0) , (2.3)

where k(·, ·) is a function that measures the distance between V0 and V̂. As already
noted in the introduction, this performance measure depends on all the problem
parameters including design properties of the features matrix X, distribution of the
noise and the underlying vector V0, properties of the loss function and the regularizer
function, etc.
In this section, we focus on the case that the features matrix X has iid standard
Gaussian entries. We will generalize the model in the next chapters.
The performance of this optimization, depends on the Loss function, the regularizer,
distribution of the link function g(·), and distribution (or properties) of the unknown
data V0 through the following Moreau envelope transformation. The Moreau en-
velopes of the loss function L(·, ·) and the regularizer function 5 (·) are respectively
defined as

eL (x, y, g) := min
v

1
2g
‖v − x‖2 + L(v, y) ,

e 5 (x, g) := min
v

1
2g
‖v − x‖2 + 5 (x) . (2.4)

1Some of the materials of this chapter are based on the works in [143, 165, 166]
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Similarly, the proximal operator is defined as the minimizers of the above optimiza-
tions,

ProxL (x, y, g) := arg min
v

1
2g
‖v − x‖2 + L(v, y) ,

Prox 5 (x, g) := arg min
v

1
2g
‖v − x‖2 + 5 (x) . (2.5)

Note that since the loss function takes two input variable, its corresponding Moreau
envelope takes three input, whearas the corresponding Moreau envelope for the
regularizer takes only two inputs.
Assumption 1, introduces an essential functional, through which the performance
of the convex optimization depends on the loss function, the regularizer, and distri-
bution and properties of the link function and unknown data.

Assumption 1 (Functionals ! and �) We say that Assumption 1 holds for the func-
tions L and 5 , and for the distributions ?g(·) and ?V0 , if for all 21, 22 ∈ R and g > 0,
there exist continuous functions ! : R × R × R>0 → R and � : R × R × R>0 → R
such that

eL (21 h1 + 22 XV0 , g(XV0) , g)
%−→ ! (21, 22, g) and

e 5 (21 h2 + 22 V0 , g)
%−→ � (21, 22, g) . (2.6)

where, the convergence is in probability over distribution of the function g(·),
distribution (or properties) of the unknown data V0, the random matrix X ∈ R=×?

with iid standard Gaussian entries, and the random vectors h1 ∈ R= and h2 ∈ R?

with iid standard Gaussian random entries.

Assumption 1 holds naturally for a wide range of norms, loss functions, and regular-
izers, due to the law of large numbers. In Section 2.1, we will derive the funcionals
! and � for some interesting examples.
The second assumption we introduce is related to the performance function k(·, ·),
which measures how well the optimization works.

Assumption 2 (Performance Function k(·, ·)) We say that Assumption 2 holds for
the function k(·, ·) and for the distributions ?V0 , if for all 21, 22 ∈ R and g > 0,
there exist continuous function Ψ : R × R × R>0 → R such that

k(Prox 5 (21V0 + 22h2 , g) , V0)
%−→ Ψ(21, 22, g) . (2.7)
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where, the convergence is in probability over the distribution (or properties) of
the unknown data V0, and the random vector h2 ∈ R? with iid standard Gaussian
random entries.

Assumption 2 is valid for a wide range of function k. Simple instances include
?-norms, for which the assumption holds by the law of large numbers when the
entries V0 are drawn independently from the same distribution.
Out main theorem, analyzes the convex estimator (2.2), in its most general form.
The proof of Theorem 1 is deferred to Section 2.6, as well as explanation about the
CGMT framework, which is the main tool that we use to prove this theorem.

Theorem 1 Let V̂ be the solution the convex estimator (2.2), which is an estimation
of the unknown data V0, where the entries of the features matrix X ∈ R=×? are drawn
independently from standard Gaussian distribution. Also Assumptions 1 and 2 hold
with functionals !, � and Ψ, X = =/? and ^ = ‖V0‖/

√
?. Consider the following

min-max optimization over 6 scalars (U, f, g1, g2, C, W),

min
U∈R
f,g1≥0

max
C,g2≥0
W∈R

C

2g1
− f

2g2
− fg2C

2

2X
+ fg2W

2^2

2
+ ! (f, U, 1

Cg1
) + � (−fg2C√

X
, U − fg2W, fg2) .

(2.8)

If this min-max has a unique solution, (Û, f̂, ĝ1, ĝ2, Ĉ, Ŵ), then as ? and = grow to
infinity with X = ?/=, we have

lim
?,=→∞

k( V̂, V0) = Ψ(Û − f̂ĝ2Ŵ,
f̂ĝ2Ĉ√
X
, f̂ĝ2) . (2.9)

Theorem 1 derives a precise analysis for the performance of the convex estimator
(2.2). A few remarks are in place. As discussed earlier, the result of this theorem
applies to a sequence of problem instances of the convex estimator, with growing
dimensions = and ?, such that =/? = X. Then, the convergence in theorem is in
probability over the randomness of the features matrix X, distribution of the link
function g and unknown data V0 (if there’s any).
We now investigate two classes of popular models with this theorem. First, we
consider the case when the link function g, simply adds a random noise to its input,
as in linear models. Second, we analyze the case of binary classification.

2.1 Linear Models and M-Estimators
We consider the standard problem of recovering an unknown signal V0 ∈ R? from
a vector y ∈ R= of = noisy, linear observations given by y = XV0 + z ∈ R=.
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Here, X ∈ R=×? is the (known) measurement matrix, and, z ∈ R= is the noise
vector; the latter is generated from some distribution density in R=, say ?z. Our
focus is on the high-dimensional regime where both the dimensions of the ambient
space = and the number of measurements < are large [60, 146]. This is different
than the classical one, where ? is small and fixed and only = is assumed large.
Of special interest is the scenario of compressed measurements, in which ? < =.
In principle, such inverse problems are ill-posed, unless the unknown vector is
somehow structurally constrained to only have very few degrees of freedom relative
to its ambient space. Such signals are called structured signals; popular examples
of such structure include sparsity, block-sparsity, low-rankness, etc. [10, 40]. We
model such structural information on V0 by assuming that it is sampled from an
=-dimensional probability density ?V0 .

Regularized M-estimators. The most widely used approach to obtain an estimate
x̂ of the unknown V0 from the vector y of observations is via solving the convex
program

V̂ := arg min
V
L(y − XV) + _ 5 (V). (2.10)

The loss function L : R= → R measures the deviation of XV̂ from the observations
y, the regularizer 5 : R? → R aims to promote the particular structure of V0, and,
the regularizer parameter _ > 0 balances between the two. Henceforth, both L
and 5 are assumed to be convex. Also, 5 will typically be non-smooth. We refer
to the minimization problems of the form in (2.10) as regularized M-estimators.
Different choices of the loss function and of the regularizer give rise to a number of
well-known estimators. A few concrete examples might suffice: (i) the LASSO [176]
corresponds to (2.10) with L(v) = 1

2 ‖v‖
2
2 and 5 (x) = ‖x‖1. General choices of the

regularizer for the same loss function lead to the Generalized LASSO [129, 133] (ii)
The regularized-LAD [192] minimizes an ℓ1-loss function. (iii) The (generalized)
square-root LASSO [22] solves (2.10) for L(v) = ‖v‖2. In the first two examples
the loss function is separable over its entries, i.e. L(v) = ∑=

9=1 ℓ(v 9 ) for convex
ℓ : R → R; in contrast, the square-root LASSO does not belong to this category.
Accordingly, the regularizer function might be separable (e.g. ℓ1-norm) or not (e.g.
nuclear-norm).

Prior Work
With the advent of Compressed Sensing there is a very large number of theoretical
results that have appeared in recent years in place for various types of regularized
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M-estimators. The vast majority of those results hold under standard incoherence
or restricted eigenvalue conditions on the measurement matrix X 2, but they are
order-wise in nature, i.e., they characterize the error performance only up to loose
constants. While this line of work includes unifying frameworks for the analysis of
general instances of (2.10), the loose constants involved in the error bounds do not
permit any accurate comparisons among the different instances (e.g. [14, 106, 123,
189] and references therein); therefore, they cannot be used to answer optimality
questions of the nature discussed in this Section.

This section derives precise characterizations of the error behavior (ones that do not
involve unknown constants). Results of this nature have appeared in the literature
under the additional assumption of an iid Gaussian distribution imposed on the
entries of the matrix X. The inspiration behind these studies can be traced back to
the seminal work of Donoho [57, 59] on the phase-transition of ℓ1-minimization in
the Compressed Sensing problem. This and the extensive follow-up literaturemostly
focused on the noiseless signal recovery problem. More recently, researchers have
initiated the study of the exact reconstruction error of instances of (2.10) in the
presence of noise. Unfortunately, no unifying treatment that holds for general
instances has hitherto been available. To the best of our knowledge, our work is the
first to obtain precise characterizations of the error performance of (2.10) for general
convex loss functions, convex regularizers, and noise and signal distributions under
a Gaussian assumption on the random measurement matrix X. In the rest of this
section, we briefly outline the relevant literature.

The first precise results on the performance of non-smooth convex optimization
methods appear in the literature in the context of noiseless linear inverse problems
that arise in Compressed Sensing. Here, the vector of measurements of the unknown
structured signal V0 takes the form y = XV0 ∈ R= and recovery is attempted
via solving miny=XV 5 (V), for an appropriately chosen convex regularizer 5 . In
the absence of noise, the standard measure of performance becomes that of the
minimum number of measurements required for exact recovery of V0. By now,
there is an elegant and complete theory that precisely characterizes this number
when X has entries iid Gaussian. The theory was built in a series of recent papers
[6, 17, 40, 57, 129, 153, 156]. Our work extends the analysis to the noisy setting.
In the presence of noise, the analysis is inherently more challenging since: (a)

2Such conditions have been shown to be satisfied by a wide class of randomly designed measure-
ment matrices, (e.g. [50, 68, 72] and references therein). A more recent line of works obtains similar
order-wise bounds under evenweaker assumptions on the randomness properties ofX [101, 150, 178].
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one needs to characterize the precise value of the estimation error, rather than just
discriminating between exact recovery or not; (b) the performance depends not
only on the number of measurements but also on the noise and signal statistics.
Also, it naturally includes the results of the noiseless case as special instances.
However, many of the ideas, analytical tools and concepts developed in the works
[6, 40, 153, 156] have proved to be useful in extending the results to the noisy setting.

In the noisy setting, the first precise results analyzed the error performance of
regularized least-squared (a.k.a. generalized-LASSO) under an iid gaussianity as-
sumption on the noise distribution [18, 63, 129, 154, 168, 172, 173]. It has been
only very recently, that El Karoui [65, 95], and, Donoho and Montanari [56, 64]
were able to rigorously3 predict the error performance of M-estimators under more
general assumptions on the loss function and on the noise distribution. However, the
papers by Donoho and Montanari assume no regularization and El Karoui considers
the special case of ridge regularization. Finally, the very recent paper [29] builds
upon [56] and extends the study to the case of ℓ1-regularization. In short, our work
achieves by several means a more complete and transparent treatment of the subject,
overcoming the limitations of previous endeavors as follows: (i) We consider arbi-
trary convex regularizers, (ii) We identify minimal and generic assumptions under
which the general result holds, (iii)We remove any smoothness and strong-convexity
assumptions on the loss function, which are required in all previous works. Also, the
loss function (and regularizer) need not be separable (e.g., we allow L(v) = ‖v‖2
or ‖v‖∞), and, the distributions need not be iid. (iv) We remove boundedness as-
sumptions on the moments of the noise distribution. Notably, our proof technique is
fundamentally different than that of [65] and [56], and, it appears to be more direct
and insightful in several ways.

Applying Theorem 1 to M-Estimators
In order to apply Theorem 1, we first need to translate Assumption 1 and 2 to this
special case. Note that theMoreau envelope for this subtractive case of loss function
in (2.10) becomes

eL (x, y, g) = min
v

1
2g
‖v − x‖2 + L(v, y) = min

v

1
2g
‖v − x‖2 + L̄(v − y)

= min
v

1
2g
‖v − (x − y)‖2 + L̄(v) (2.11)

3The study of high-dimensional M-estimators has been previously considered in [19, 66]. How-
ever, those results are only based on heuristic arguments and simulations.
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Recall from Assumption 1, that the link function and the loss function affect the
estimation performance through the link function ! that depends on the Moreau
envelope as follows,

! (21, 22, g) = lim
=,?→∞

eL (21 h1 + 22 XV0 , g(XV0) , g)

= lim
=,?→∞

min
v

1
2g
‖v − (21 h1 + (22 − 1) XV0 − z)‖2 + L̄(v) (2.12)

Note that X is a random matrix with iid standard Gaussian entries. Thus, XV0 can
be replaces with h̃ ‖V0‖, where h̃ is a random vector with iid standard Gaussian
entries. Finally, 21 h1 + (22 − 1)XV0 can be replaces by

√
22

1 + (22 − 1)2‖V0‖2h,
where h is a random standard Gaussian vector. Therefore, the functional ! (21, 22, g)
is simply a function of g and

√
22

1 + (22 − 1)2‖V0‖2. If we use this new function in
the equations of Theorem 1, we can derive the result of [165], after a few changes
of variables.
We specialize the general result of Theorem 1 to the popular case where the loss
function L and the regularizer 5 are both separable, and the noise vector and signal
V0 both have entries iid. To make things concrete, assume4

L(v) =
=∑
9=1
ℓ(v 9 ) and I 9

iid∼ ?/ , 9 = 1, . . . , =.

5 (x) =
?∑
8=1

5 (G8) and V08
iid∼ ?G , 8 = 1, . . . , =.

Henceforth, both ℓ and 5 are proper closed convex functions. Also, it is further
assumed that

ℓ(0) = 0 = min
E
ℓ(E) and 5 (0) = 0. (2.13)

Satisfying Assumption 1
To apply Theorem 1, we first need to verify that Assumption 1 holds for both
the loss function and the noise distribution, and, for the regularizer and the signal
distribution.

4Note the slight abuse of notation here in using 5 to denote both the vector-valued and scalar
regularizer function.
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Loss function and noise distribution

In the separable case Assumption 1 essentially translate to the following requirement
on ℓ and ?/ :

E
[
|ℓ′+(2� + /) |2

]
< ∞, for all 2 ∈ R. (2.14)

where the expectation is over / ∼ ?/ and � ∼ N(0, 1). This is shown in Lemma 1
below.

Lemma 1 (Expected Moreau envelope–Loss fcn) If ℓ and ?/ satisfy (2.14), then,
Assumption 1 hold with

! (2, g) = E [eℓ (2� + /, y, g) − ℓ(/)] . (2.15)

This lemmas is simply a result of the law of large numbers.

Regularizer and Signal Distribution

Not surprisingly, the required condition on 5 and ?G becomes

E
[
| 5 ′+(2� + V0) |2

]
< ∞, for all 2 ∈ R. (2.16)

where the expectation is over V0 ∼ ?G and � ∼ N(0, 1). Additionally, the following
mild assumptions are required:

∃ V+ > 0, V− < 0 such that 0 ≤ 5 (G±) < ∞ and EV2
0 < ∞. (2.17)

Lemma 2 (Expected Moreau Envelope–Regularizer fcn) If 5 and ?G satisfy (2.16)
and (2.17), then, Assumption 1 hold with

� (2, g) = E
[
e 5 (2� + V0, g) − 5 (-0)

]
. (2.18)

The Expected Moreau Envelope
If conditions (2.14), (2.16) and (2.17) are satisfied, then Theorem 1 is applicable
with ! and � given as in (2.15) and (2.18), respectively. We call those functions,
the Expected Moreau Envelopes. It is apparent from Theorem 1 that they play a
key role in determining the error performance of the corresponding M-estimators.
Moreover, they possess two key features, namely, smoothness and strict convexity;
we elaborate on these here.
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Lemma 3 (Smoothness) Suppose ℓ is a closed proper convex function and ?/ a
noise density such that (2.14)holds. Then, the function ! (2, g) := E [eℓ (2� + /, g) − ℓ(/)]
is differentiable in R × R>0 with

m!

m2
= E

[
e′ℓ (2� + /; g)�

]
and

m!

mg
= −1

2
E

[ (
e′ℓ (2� + /; g)

)2
]
.

Note that ! is smooth, regardless of any non-smoothness of ℓ. This is a well-
known fact about Moreau envelope approximations, and also, one of the primal
reasons behind the important role those functions play in convex analysis [136].
The property is naturally inherited to the Expected Moreau envelopes as revealed
by the lemma above.

Lemma 4 (Strict Convexity) Suppose ℓ is a closed proper convex function and ?/
a noise density such that (2.14) holds and the following are satisfied:

1. Either there exists G ∈ R at which ℓ is not differentiable, or, there exists
interval I ⊂ R where ℓ is differentiable with a strictly increasing derivative,

2. Var(/) ≠ 0 5, and, at each I ∈ R, ?/ (I) is either a Dirac delta function or it
is continuous.

Then, ! (2, g) := E [eℓ (2� + /, g) − ℓ(/)] is jointly strictly convex in R>0 × R>0.

Remark 1 The function ! is strictly convex, without requiring any strong or strict
convexity assumption on ℓ. Interestingly, this property is not in general true for
Moreau envelope approximations, but, it turns out to be the case for the Expected
Moreau envelope !. The fact that the latter further involves taking an expectation
over 2� + / , with � having a nonzero density on the entire real line, turns out to be
critical.

We are now ready to state our main result of this section which characterizes the
squared error of separable M-estimators. This is essentially a corollary of Theorem
1.

5We require that there exist at least two values of I ∈ R for which ?/ (I) > 0. In particular, there
is no requirement that Var(/) be defined, e.g. Cauchy distribution is allowed.
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Theorem 2 Suppose ℓ and ?/ satisfy (2.14), and, the two conditions of Lemma 4.
Further assume that 5 , ?G satisfy (2.16) and (2.17). Let V̂ be any minimizer of the
separable M-estimator, and consider the problem in (2.8) with ! and � given as in
(2.15) and (2.18), respectively. If the solution to the (2.8) is unique and bounded,
then it holds in probability that

lim
=→∞

1
?
‖ V̂ − V0‖22 = U

2
★ .

where U★ is the solution to the system of equations in (2.19), in 4 unknowns U, W, a, ^.

As a system of nonlinear equations

Theorem 2 predicts the error of the M-estimator as the optimizer U★ to a convex-
concave optimization problem with four optimization variables. Equivalently, U★
can be expressed via the first-order optimality conditions (stationary equations)
corresponding to this optimization. Recall from Lemma 3 that ! and � are differ-
entiable (irrespective of smoothness of ℓ and 5 ). The solution to the (2.8) can be
derived by taking derivative of the objective function of (2.8). This results in the
following system of non-linear equations.

U2 = E

[(
_

a
· e′5

(
W

a
� + -0;

_

a

)
− W
a
�

)2
]
,

W2 = X · E
[ (

e′ℓ (U� + /, ^)
)2

]
,

aU = X · E
[
e′ℓ (U� + /, ^) · �

]
,

^W =
W

a
− _
a
· E

[
e′5

(
W

a
� + -0;

_

a

)
· �

]
.

(2.19)

Here, 4′
5
and 4′

ℓ
, denote the first derivatives of the Moureau envelopes with respect

to their first argument.

Remark 2 The system of equations in (2.19) can be easily reformulated in terms of
the proximal operator of 5 and ℓ, using

e′ℓ (j, g) =
1
g
(j − proxℓ (j; g)),

and similar for 5 (see Lemma 40(iii)). In the case of additional smoothness as-
sumptions on the loss function and/or the regularizer, further reformulations are
possible. For example, if ℓ is two times differentiable, then using Stein’s formula for
Normal random variables we can make the following substitution in (2.19):

E
[
e′ℓ (U� + /, ^) · �

]
= U · E

[
e′′ℓ (U� + /, ^)

]
, (2.20)
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where the double-prime superscript denotes the second derivative with respect to
the first argument. Such reformulations, are often convenient for analysis purposes;
see for example Remark 6.

Remark 3 The system of equations in (2.19) comprises of four nonlinear equations
in four unknowns. Setting t = (U, V, a, ^) for the vector of unknowns, the system of
equations in (2.19) can bewritten as t = ((t), for appropriately defined ( : R4 → R4.
We have empirically observed that a simple recursion t:+1 = ((t: ), : = 0, 1, . . .
converges to a solution t∗ satisfying t∗ = ((t∗). This observation is particularly
useful since it allows for efficient numerical experimentations, cf. Section 2.1. It
is certainly an interesting and practically useful subject of future work to identify
analytic conditions under which such simple recursive schemes provide efficient
means of solving (2.19).

Remark 4 The results of this section extend naturally, and without any extra effort,
to the case of “block-seperable" loss functions and/or regularizers. A popular
example that falls in this category is ℓ1,2-regularization, which is typically used for
the recovery of block-sparse signals. In such a case 5 (x) = ∑1

8=1 ‖ [x]8‖2, where
[x]8 = [x(8−1)C+1, x(8−1)C+2, . . . , x(8−1)C+C], 8 = 1, . . . , 1 is the 8th block of x. Here, 1
is the number of blocks and C is the length of each block. In the proportional high-
dimensional regime, one would assume 1 growing linearly with ? with a constant
ratio of 1/C.

Next, we explore some popular examples, where we can apply Theorem 2.

No Regularization
Consider an M-estimator without regularization, i.e.,

V̂ := arg min
V

=∑
9=1
ℓ(y 9 − x)9 V 9 ). (2.21)

For simplicity, we consider z 9
iid∼ ?/ and a separable loss function. Assuming that ℓ

and ?/ satisfy the assumptions of Theorem 2, and, noting that 5 = 0 =⇒ � (2, g) =
0, the squared error of (2.21) is predicted by theminimizer U∗ of the following (SPO)
problem

inf
U≥0
g6>0

sup
W≥0

Wg6

2
+ X! (U,

g6

W
) − UW, (2.22)
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where we have performed the (straightforward) optimization over gℎ: infgℎ>0
gℎ
2 +

W2

2gℎ = W.Wemay equivalently express U∗ as the solution to the first-order optimality
conditions of (2.22). In particular, the stationary equations (see (2.19)) simplify in
this case to the following system of two equations in two unknowns:

U2 = X^2E
[ (

e′ℓ (U� + /, ^)
)2

]
,

U = X^ · E
[
e′ℓ (U� + /, ^) · �

]
.

(2.23)

Starting from (2.23), some interesting conclusions can be drawn regarding the per-
formance of M-estimators without regularization, which we gather in the following
remarks.

Remark 5 It follows from (2.23) that in the absence of regularization, it is required
that the number of measurements = is at least as large as the dimension of the
ambient space ? (X ≥ 1), in order for the recovery to be stable, i.e. the error
be finite. To see this, assume stable recovery, then there exists (U∗, ^∗) satisfying
(2.23). Starting from the second equation, applying the Cauchy-Schwarz inequality
and substituting back the first equation we find:

U∗ = X^∗ · E
[
e′ℓ (U∗� + /, ^∗) · �

]
≤ X^∗ ·

√
E

[(
e′
ℓ
(U∗� + /, ^∗)

)2
)
]
= X^∗

U∗√
X^∗

⇒ X ≥ 1. (2.24)

Remark 6 Assume 4ℓ is two times differentiable (e.g., this is the case if ℓ is two
times differentiable). Then, applying Stein’s formula (2.20), a simple rearrangement
of (2.23) shows that

U2
∗ =

1
X

E
[ (

e′
ℓ
(U∗� + /, ^∗)

)2
]

(
E

[
e′′
ℓ
(U∗� + /, ^∗)

] )2 . (2.25)

The formula above coincides with the corresponding expression in [56], but the
latter requires additional smoothness and strong-convexity assumptions on ℓ, which
are not necessary for (2.23) to hold. The proof of [56] is based on the AMP
framework [62].

Remark 7 The simplest instance of the general M-estimator is the Least-squares,
i.e. V̂ := minV ‖y − XV‖22 . Of course, in this case, V̂ has a closed form expression
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which can be directly used to predict the error behavior [170]. However, for
illustration purposes, we show how the same result can be also obtained from
(2.23). This is also one of the few cases where U∗ can be expressed in closed form.
Assume X > 1 and z 9

iid∼ ?/ with bounded second moment, i.e. 0 < E/2 = f2 < ∞.
Then, it can be readily checked that all assumptions hold for 1

2 (·)
2, ?I. Also,

4′1
2 (·)2
(j; g) = j

1+g and 4
′′
1
2 (·)2
(j; g) = 1

1+g . Solving for the second equation in (2.23)

gives ^∗ = 1
X−1 . Substituting this into the first, we recover the well-known formula

U2
∗ = f

2 1
X − 1

. (2.26)

Ridge Regularization

A popular regularizer in the machine learning and statistics literature is the ridge
regularizer (also known as Tikhonov regularizer), i.e.

V̂ := arg min
V

=∑
9=1
ℓ(y 9 − x)9 V 9 ) + _

‖V‖22
2

. (2.27)

We specialize Theorem 1 to that case. For simplicity, we assume a separable loss
function, and, z 9

iid∼ ?/ and V08
iid∼ ?- .

We will apply Theorem 2. Suppose that ℓ satisfies the assumptions. Also, assume
EV2

0 = f
2
V
< ∞. Then, for 5 = 1

2 (·)
2, it is easily verified that E[( 5 ′(2� + V0))2] =

E[(2� + V0)2] < ∞. Hence, the squared-error of (2.27) is predicted by U∗, the
unique solution to (2.19) with

� (2, g) =
22 + f2

V

2(g + 1) − f
2
V .

The first-order optimality conditions (see (2.19)) of this problem simplify after some
algebra to the following two equations in two unknowns:{

U2 = X^2 · E
[
e′ℓ (U� + /, ^)

2] + _2^2f2
V ,

U (1 − _^) = X^ · E
[
e′ℓ (U� + /, ^) · �

]
.

(2.28)

Remark 8 Assume proxℓ (G; g) is two times differentiable with respect to 2 (e.g., this
is the case if ℓ is two times differentiable), and write prox′

ℓ
(G, g) for the derivative

with respect to G. Applying (2.20), a simple rearrangement of (2.28) yields the
following equivalent system of equations

X − 1 + ^_ = X · E
[
prox′ℓ (U� + /; ^)

]
,

U2 = XE
[ (
U� + / − proxℓ (U� + /; ^)

)2
]
+ _2^2f2

V .
(2.29)



24

The formula above coincides with the corresponding expression in [95, Thm. 2.1]6.
The result in [95] requires additional smoothness assumptions on ℓ. Our result
holds under relaxed assumptions and has been derived as a corollary of Theorem
1. On the other hand, [95, Thm. 2.1] is shown to be true for design matrices X with
iid entries beyond Gaussian, e.g. sub-Gaussian.

Remark 9 Consider a least-squares loss function where ℓ(G) = 1
2G

2 and a noise
distribution of variance E/2 = f2

I < ∞. Then proxℓ (G; g) = G
1+g and prox′

ℓ
(G; g) =

1
1+g . Substituting in (2.29) gives

1 − ^_ = X^

1 + ^ ,

U2(1 − X · ^2

(1 + ^)2
) = X · ^2

(1 + ^)2
f2
I + _2^2f2

V .

(2.30)

Now, we can solve these to get the following closed form expression for U∗:

U2 =

(
X · ^2

(1 + ^)2
· f2

I + _2f2
V^

2
)
·
(
1 − X · ^2

(1 + ^)2

)−1

, (2.31)

where

^ =
1 − X − _ +

√
(1 − X − _)2 + 4_
2_

. (2.32)

Observe that letting _ → 0 (which would correspond to ordinary least-squares)
and assuming X > 1, ^ in (2.32) approaches 1/(X − 1) and the optimal U2 in (2.31)
becomes f2

I /(X − 1), which agrees with (2.26), as expected.

Remark 10 Let a Gaussian input distribution V0,8
iid∼ N(0, 1) and any noise dis-

tribution of power E/2 = f2
I < ∞. We show that a ridge-regularized M-estimator

with a least-squares loss function and optimally tuned _ achieves asymptotically the
Minimum Mean-Squared Error (MMSE) of estimating V0 from y = XV0 + z.

First, we use the results of Remark 9 to calculate the achieved error of the M-
estimator optimized over the values of the regularizer parameter:

>∗ := inf
_>0

lim
?→∞

1
?
‖ V̂ − V0‖22 = inf

_>0

{
U2(^(_), _) as in (2.31) | ^(_) satisfies (2.32)

}
.

(2.33)
6In comparing (2.29) to [95, Eqn. (4)], due to some differences in normalizations the following

“dictionary" needs to be used to match the results: U↔ Ad (^), ^ ↔ 2d (^), X−1_↔ g and X−1 ↔ ^.
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The optimization over _ is possible as follows. From (2.30), we find

X

( ^

^ + 1

)2
=
(1 − ^_)2

X
. (2.34)

Substituting this in (2.31), and denoting V = ^_, gives

U2 =
XV2 + f2(1 − V)2
X − (1 − V)2

. (2.35)

Minimizing U2 over _ > 0 in (2.33) is equivalent to minimizing the fraction above
over 0 < V < 1, since there always exist ^, _ satisfying V = ^_ and (2.34). Thus,
performing the optimization over 0 < V < 1 in (2.35) we find

>∗ =
1
2

(
1 − f2 − X +

√
(1 − X)2 + 2f2(X + 1) + f4

)
. (2.36)

To complete the proof of the claim, we combine this with [196, Thm. 8, Eqn. (56)],
where it is shown that theMMSE is given by the same expression as in the right-hand
side above.

Cone-constrained M-estimators
Constrained M-estimators solve

V̂ = arg min
V∈C

=∑
9=1
ℓ(y 9 − x)9 V), (2.37)

for some set V ∈ C. The role of the regularizer in (2.10) is played here by the
constraint V ∈ C. In particular, it is common that C takes the form C = {V | 6(V) ≤
6(V0)}, i.e., it is chosen as the set of descent directions of some convex function
6. In this setting, V0 is assumed to be a structured signal (e.g. sparse, low-rank)
and 6 is chosen to promote the particular structure (e.g. ℓ1-norm, nuclear-norm)
[40, 73, 129, 133]. Of course, such a formulation assumes prior knowledge of the
value of 6 at V0. Also, in this case, there exists by Lagrangian duality a value of _
for which the regularized M-estimator with 5 (G) = 6(G) is equivalent to (2.37).

A relaxation that is often undertaken to facilitate the analysis of (2.37) involves
substituting C by its conic hull, which is also known as the tangent cone of 6 at V0

(e.g. [40]). We call the resulting program, a cone-constrained M-estimator. For
the special case of an ℓ2-loss function, the squared error performance of constrained
M-estimators has been previously considered in [129, 154] (also, see Remark 12



26

below). The analysis was performed in the high-SNR regime, where noise variance
approaches zero. In this regime it was shown that the conic-relaxation above is
exact. In this section, we analyze the error performance of cone-constrained M-
estimators with general loss functions and derive some interesting conclusions.
Before proceeding further, observe that (2.37) is an instance of (2.10) with a non-
separable regularizer; hence, it also serves to showcase the applicability of Theorem
1 to such settings.

Consider solving (2.37) with

C = K + V0 := {_h | _ ≥ 0, 6(V0 + h) ≤ 6(V0)} + V0

and 6 a proper, closed, convex function. Here,K is the tangent cone of 6 at V0, and V0

is assumed fixed. The constrained minimization above can be written in the general
form of regularized M-estimators in (2.10)LASSO by choosing the regularizer to
be the indicator function for the cone, i.e. 5 (V) = %{V∈C}. Let DistC (v), denote the
distance of a vector v to a set C. We have,

e%{V∈C} (2h + V0; g) = 1
2g

min
v∈C−V0

‖2h − v‖22 =
1

2g
Dist2K (2h) =

22

2g
Dist2K (h).

In the last equality above we have used the homogeneity of the cone K. Let K◦

denote the polar cone of K, and,

�K := E
[
Dist2K◦ (h)

]
= E

[
‖h‖22 − Dist

2
K (h)

]
.

This quantity is known as the statistical dimension [6] of the cone K, or, as the
Gaussian distance squared [129]. It can be though of as a measure of the size of the
cone, and also, it is very closely related to the gaussian width of K[6]. We assume
that

�K
?
→ �K ∈ (0, 1). (2.38)

This translates to an assumption on the degrees of freedom of the structured signal V0

being proportional to its dimension. For example, for a :-sparse V0 and 6(V) = ‖V‖1,
(2.38) is satisfied for : = d?, d ∈ (0, 1).

With (2.38), Assumption 1(a) holds with � (2, g) = 22

2g (1 − �K). For this, it is
straightforward to check that Assumption 1(b) is also satisfied. Overall, if ℓ, ?/
satisfy the conditions of Theorem 2 and 6, V0 are such that (2.38) holds, then
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Theorem 1 applies, and the squared error of the cone-constrained M-estimator in
(2.37) is predicted by the unique minimizer U∗ of the (SPO) problem below:

inf
U≥0
g6>0

sup
W≥0

Wg6

2
+ X · E

[
eℓ

(
U� + /; g6/W

)
− ℓ(/)

]
− UW

√
�K . (2.39)

Compared to (2.8) (which involves six optimization variables), we have performed

the (straightforward) optimization over gℎ: infgℎ>0
gℎ
2 +

W2�
2
K

2gℎ = W�K .

Remark 11 Starting from (2.39) we can conclude on the minimum number of mea-
surements required for stable recovery. We show that the normalized number of
measurements X need to be at least as large as �K , in order for the error to be finite.
This is to be compared with the case where no regularization is used that required
X ≥ 1 > �K (see Remark 5). To prove the claim, assume finite error, then the value
where it converges is predicted by (2.39). Standard first-order optimality conditions
give7

W − X
W
E

[ (
e′ℓ (U� + /; g6/W)

)2
]
≥ 0, (2.40a)

XE[e′ℓ (U� + /; g6/W) · �] − W
√
�K ≥ 0, (2.40b)

g

2
+ Xg

2W2E
[ (

e′ℓ (U� + /; g6/W)
)2

]
− U

√
�K ≤ 0. (2.40c)

Starting from the second equation, applying the Cauchy-Schwarz inequality and
substituting back the first equation we conclude as follows:

W

√
�K ≤ XE[eℓ (U� + /; g6/W) · �] ≤ X

√
E[

(
e′
ℓ
(U� + /; g6/W)

)2
] ≤ X W√

X
⇒ X ≥ �K .

(2.41)

Remark 12 Consider a least-squares loss function and a noise distribution of vari-
ance E/2 = f2 < ∞. Then, the solution to (2.39) admits an insightful closed form
expression. First, in (2.39) perform the optimization over g6. Equating (2.40a) to 0,
gives g6 =

√
X
√
U2 + f2 − W. Substituting this in (2.39), we are left to solve for

inf
U≥0

sup
W≥0

W

(√
X
√
U2 + f2 − U

√
�K

)
− W

2

2
.

7 The three equations in (2.40) correspond to differentiation of the objective of (2.39) with respect
to g, U and W, respectively. If any of the variables is zero at the optimal, then, the corresponding
equation holding with an inequality is necessary and sufficient. On the other hand, if the optimal is
strictly positive, then the equation should hold with equality.
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It can be easily checked that if X > �K , then the optimal U∗ is

U2
∗ = f

2 �K

X − �K
. (2.42)

It is insightful to compare this with (2.26), the corresponding error formula for
least-suares: the only difference is that 1 is substituted with the statistical dimension
�K . Also, verifying the conclusion of the previous remark, we now require X > �K
instead of X > 1, implying that recovery is in general possiblewith lessmeasurements
than the dimension of the signal.

The result in (2.42) was first proved for ℓ1-regularization in [154], and, was later
generalized in [129, 169] (also, [170]). In contrast to the lengthy treatments in
those references, the result was derived here as a simple corollary of Theorem 1.

Remark 13 In (2.40b) apply Stein’s inequality and combine it with (2.40a) to yield

U2 ≥ �K
X

W2/X
E

[
e′′
ℓ
(U� + /; g6/W)

] ≥ �K
X

E
[ (

e′
ℓ
(U� + /; g6/W)

)2
]

E
[
e′′
ℓ
(U� + /; g6/W)

] . (2.43)

For the first inequality above, we have assumed that at the optimal,E
[
e′′
ℓ
(U� + /; g6/W)

]
<

∞. When this holds, (see Remark 14 for an instance where this is not the case) we
can use the above to lower bound the error performance in terms of the Fisher
information of the noise. Based on a result of [109], Donoho and Montanari prove
in [56, Lem. 3.4,3.5] that the right-hand side in (2.43) is further lower bounded by
� (/)/(1+U2� (/)), where � (/) = E

(
m
mI

log ?/ (I)
)2

denotes the Fisher information
of the random variable / , which is assumed to have a differentiable density. Using
this and solving for U2, we conclude with

U2 ≥ �K

X − �K
1

� (/) . (2.44)

For Gaussian noise of variance f2, we have 1/� (/) = f2. In this case the lower
bound in (2.44) coincides with the error formula of the least-squares loss function,
thus proving optimality of the latter.

Remark 14 The lower bound in (2.44) only holds if the optimal U∗ in (2.39) is
strictly positive. This is not always the case: under circumstances, it is possible
to choose the loss function such that the resulting cone-constrained M-estimator is
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consistent, i.e. U∗ = 0. Theorem 1 is the starting point to identifying such interesting
scenarios.

Here, we illustrate this through an example: we assume a sparse gaussian-noise
model and use a Least Absolute Deviations (LAD) loss function. More precisely,
?/ (/) = B̄X0(/) + (1 − B̄) 1√

2c
exp(−/2/2), B̄ ∈ (0, 1) and ℓ(E) = |E |. In Section .3

we prove that when B̄, X and �K are such that

X ≥ �K +min
^>0

{
B̄(1 + ^2) + (X − B̄)

√
2
c

∫ ∞

^

(� − ^)2 exp(−�2/2)d�
}
, (2.45)

then the first-order optimality conditions in (2.40) are satisfied for U → 0, g6 → 0
and some W > 0. Thus, when the number of measurements is large enough such that
(2.45) holds, then U∗ = 0, and, V0 is perfectly recovered8.

Generalized LASSO
The generalized LASSO solves

V̂ := arg min
V

1
2
‖y − XV‖22 + _ 5 (V). (2.46)

For simplicity, suppose that 5 is separable and satisfies the assumptions of Theorem
2. Also, assume z 9

iid∼ ?/ such that 0 < E/2 =: f2 < ∞. Then, for ℓ = 1
2 (·)

2,
it is easily verified that E[(ℓ′(2� + /))2] = E[(2� + /)2] < ∞. Hence, the
squared-error of (2.46) is predicted by U∗, the unique solution to the (2.19) with
! (2, g) = 22+f2

2(g+1) − f
2.

Equivalently, the error is predicted by the solution to the stationary equations in
(2.19) with 4′1

2 (·)2
(j; g) = j

1+g . The second and third equations in (2.19) give

W2(1 + ^)2 = X(U2 + f2),
a(1 + ^) = X.

8 In the context that it appears here, the perfect recovery condition in (2.45) has been shown
previously in [167]. The problem is very closely related to the demixing problem in which one aims
to extract two (or more) constituents from a mixture of structured vectors [112]. In that context,
recovery conditions like the one in (2.45) have been generalized to other kinds of structures beyond
sparsity [73, 112, 113]. Our purpose here has been to illustrate how Theorem 1 can be used to
derive such results. Besides, the generality of the paper’s setup offers the potential to extend such
consistency-type results beyond cone-constrained M-estimators and beyond fixed signals V0. This is
an interesting direction for future research.
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Solving these for ^ and a, and substituting them in the remaining two equations
results in the following system of two nonlinear equations in two unknowns

X U2

U2+f2 = E

[(
_
W
4′
5

(√
U2+f2√
X
� + V0, _

√
U2+f2

W
√
X

)
− �

)2
]
,

W(1 − X) + W2
√
X√

U2+f2 = _E
[
4′
5

(√
U2+f2√
X
� + V0, _

√
U2+f2

W
√
X

)
· �

]
.

(2.47)

For the special case of ℓ1-regularization, the result above was proved by Bayati and
Montanari [18] using the AMP framework. In the generality presented here, the
result appears to be novel.

Remark 15 An interesting observation from (2.47) is that the generalized LASSO
cannot achieve perfect recovery, irrespective of the choice of the regularizer function.

To see this, the first equation in (2.47) forU = 0 givesE
[(
_
W
4′
5
( f√

X
� + V0,

_f

W
√
X
) − �

)2
]
=

0. Then, it must hold, almost surely, that the argument under the expectation sign
be equal to zero. Evaluating the derivative of the envelope function, this becomes
equivalent to V0 = prox 5

(
f√
X
� + V0; _f

W
√
X

)
. This, when combined with the optimality

conditions for the Moreau envelope gives that almost surely f√
X
� ∈ m 5 (V0). Thus,

we have reached a contradiction because � can take any real value as a Gaussian
random variable.

Square-root LASSO
The (Generalized) Square-root LASSO (also known as ℓ2-LASSO [129]) solves9

V̂ := arg min
V

√
?‖y − XV‖2 + _ 5 (V). (2.48)

In contrast to the other examples in this section, the square-root LASSO is an
instance of (2.10) with a non-separable loss function. Observe the normalization of
the loss function with a √?-factor. This is to make the loss function of the same
order as the regularizer.

One can show that when L(v) = √?‖v‖2 and z ∼ ?z with E
[
‖z‖22/=

]
= f2 ∈

(0,∞), then Assumption 1(a) holds with

! (U, g) =


1√
X
(
√
U2 + f2 − f) − g

2X , if
√
X
√
U2 + f2 ≥ g,

1
2g (U

2 + f2) − f√
X

, otherwise.
(2.49)

9We refer the interested reader to [22, 129, 169] for a discussion on the similarities and differences
between (2.48) and the Generalized LASSO in (2.46).



31

Also, Assumption 1(b) is trivially satisfied. Thus, considering any regularizer that
satisfies Assumptions 1(b), Theorem 1 applies, and predicts the squared error of
(2.48) as the unique minimizer U∗ to the following optimization:

inf
U≥0

sup
W≥0
gℎ>0

− Ugℎ
2
− UW

2

2gℎ
+ _ · �

(
UW

gℎ
,
U_

gℎ

)
+


W
√
X
√
U2 + f2 , if W ≤ 1

√
X
√
U2 + f2 , otherwise

.

(2.50)

To arrive to (2.50) starting from (2.8), we have replaced ! with (2.49) and have
performed the minimization over g6 as shown below:

inf
g6≥0


Wg6
2 −

g6
2W +
√
X
√
U2 + f2 , if X(U2 + f2) ≥ g2

6

W2

WX

2g6 (U
2 + f2) + Wg6

2 , otherwise.
=


V
√
X
√
U2 + f2 , if W ≤ 1

√
X
√
U2 + f2 , otherwise

.

(2.51)

The optimization in (2.51) can be simplified one step further. One can easily show
that −UW

2

2gℎ + _�
(
UW

gℎ
, U_
gℎ

)
is a non-increasing function of W for W > 0. Therefore, the

(SPO) becomes equivalent to the following

inf
U≥0

sup
0≤W≤1
gℎ≥0

W
√
X
√
U2 + f2 − Ugℎ

2
− UW

2

2gℎ
+ _ · �

(
UW

gℎ
,
U_

gℎ

)
. (2.52)

The fact that the optimization in (2.52) predicts the squared error of (2.48), has been
recently shown by the authors in [164]. That work only considers the square-root
LASSO10, while here, we have (re)-derived the result as a corollary of the general
Theorem 1.

Heavy-tails
In this section, we investigate instances where the noise distribution has unbounded
moments. In the presence of (say) heavy-tailed noise, it is a common practice to use
a loss function that grows to infinity no faster than linearly. This is also suggested by
Assumption 1(a) (cf. (2.16) for the separable case), as has already been discussed.

For a mere illustration, we assume z iid∼ Cauchy(0, 1) and consider two examples of
loss functions for which we show that Theorem 1 is applicable.

10Note however, that [164] considers a more general measurement model than the one of the
current paper, one that allows for nonlinearities.
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LAD
As a first example, consider the regularized-LAD estimator:

V̂ = arg min
V
‖y − XV‖1 + _ 5 (V). (2.53)

The loss function is separable, with ℓ(E) = |E |. Easily, for all 2 ∈ R

E
[
|ℓ′+(2� + /) |2

]
= E

[
|sign(2� + /) |2

]
= 1 < ∞,

satisfying the assumption in (2.14). Also, E/2 is undefined, but, supE
ℓ(E)
|E | = 1 < ∞,

thus, (2.16) holds. Finally, | · | is not differentiable at zero satisfying the conditions
of Lemma 4. With these, Theorem 2 is applicable.

Huber-loss
The Huber-loss function with parameter d > 0 is defined as

ℎd (E) =

E2

2 , |E | ≤ d,

d |E | − d2

2 , otherwise.
(2.54)

Consider a regularized M-estimator with ℓ(E) = ℎd (E). We show here that this
choice satisfies the Assumptions of Theorem 2. Indeed, for all 2 ∈ R

E
[
|ℓ′+(2� + /) |2

]
≤ E

[
|2� + / |

�� |2� + / | ≤ d] + E [
d

�� |2� + / | > d] < ∞,
(2.55)

satisfying the assumption in (2.14). Also, supE
ℓ(E)
|E | = d < ∞, thus, (2.16) holds. Fi-

nally, ℎd is differentiable with a strictly increasing derivative in the interval [−d, d].
With these, Theorem 2 is applicable. Figure 2.3 illustrates the validity of the
prediction via numerical simulations.

Numerical Simulations
Wehave performed a fewnumerical simulations on specific instances ofM-estimators
that were previously discussed in Section 2.1. Their purpose is to illustrate the valid-
ity of the prediction of Theorem 1, and of the remarks that followed as a consequence
of it.

Figure 2.1 . We consider the regularized LAD estimator of (2.53) under an iid
sparse-Gaussian noise model. The unknown signal is also considered sparse, which
leads to the natural choice of ℓ1 regularization, i.e. 5 (V) = ‖V‖1. Apart from the
very close agreement of the theoretical prediction of Theorem 1 to the simulated
data, the following facts are worth observing.
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Figure 2.1: Squared error of the ;1-RegularizedLADwithGaussian (◦) andBernoulli (�)measure-
ments as a function of the regularizer parameter _ for two different values of the normalized number
of measurements, namely X = 0.7 and X = 1.2. Also, V0,8

iid∼ ?G (G) = 0.9X0 (G) + 0.1q(G)/
√

0.1 and
z 9

iid∼ ?I (I) = 0.7X0 (I) + 0.3q(I) for q(G) = 1√
2c
4−G

2/2. For the simulations, we used ? = 768 and
the data were averaged over 5 independent realizations.
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Figure 2.2: Comparing the squared error of the ℓ1-Regularized LAD with the corresponding error
of the LASSO. Both are plotted as functions of the regularizer parameter _, for two different values
of the normalized measurements, namely X = 0.7 and X = 1.2. The noise and signal are iid sparse-
Gaussian as follows: V0,8

iid∼ ?G (G) = 0.9X0 (G) + 0.1q(G)/
√

0.1 and z 9 ∼ ?I (I) = 0.9X0 (I) + 0.1q(I)
with q(G) = 1√

2c
4−G

2/2. For the simulations, we used ? = 768 and the data were averaged over 5
independent realizations.
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Figure 2.3: Squared error of the ℓ1-Regularized M-Estimator with Huber-loss as a function
of the regularizer parameter _. Here, X = 0.7, V0

iid∼ ?G (G) = 0.9X0 (G) + 0.1q(G)/
√

0.1 and
?I (I) = 0.9X(I) + 0.1[(I) with q(G) = 1√

2c
4−G

2/2 and [(I) = 1
c (1+I2) . For the simulations, we used

? = 1024 and the data are averaged over 5 independent realizations.
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Figure 2.4: Squared error of the ℓ1,2-Regularized Lasso for group sparse signal composed of 512
blocks of size 3 each, as a function of the regularizer parameter _. Here, X = 0.75, each block is
zero with probability 0.95, otherwise its entries are i.i.d. N(0, 1) and z 9

iid∼ ?I (I) = 0.3q(I) with
q(G) = 1√

2c
4−G

2/2. The simulations are averaged over 10 independent realizations.
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- When the number of measurements = gets large enough, then, for an appro-
priate range of values of the regularizer parameter, the estimator is consistent,
i.e. the unknown signal V0 is perfectly recovered. This is relevant to Remark
14 where we proved this to be the case for the closely related cone-constrained
LAD estimator. For that, we were able to quantify how large = should be as a
function of the sparsities of the noise and of the signal, see (2.45).

- The prediction of Theorem 1 remains accurate when the measurement matrix
has entries iid Bernoulli ({±1}). This suggests that the error behavior (at least
of this specific instant ofM-estimator) undergoes some universality properties.

Figure 2.2 . The model for both the noise and for the unknown signal here is the
same as in Figure 2.1, i.e. both are iid sparse. We use ℓ1-regularization, and, two
different loss functions, namely, a least-absolute-deviations one and a least-squares
one, corresponding to a LAD and a LASSO estimator, respectively. The figure aims
to compare the performance of the two. Intuition suggests that the LAD is more
appropriate for a sparse noise model, since ℓ1 promotes sparsity. This is indeed the
case, in the sense that for good choices of the regularizer parameter _, the LAD
outperforms by far the LASSO. However, it is worth observing that for a different
and relatively big range of values of _, the LASSO performs better. This indicates
the importance of the correct tuning of the regularizer parameter, to which the
predictions of Theorem 1 can offer valuable guidelines and insights.

Figure 2.3 . For this figure, we have assumed an ℓ1-regularized estimator with
Huber-loss ℓ(E) = ℎ1(E) (see (2.54)). The noise is iid Cauchy(0, 1). In Section 2.1
it was shown that all the assumptions of Theorem 2 are satisfied in this setting. The
figure, validates the prediction. To obtain the prediction we numerically solved the
corresponding system of nonlinear equations (see (2.19)) using the efficient iterative
scheme described in Remark 3.

Figure 2.4 . We include this as an example of an M-estimator with non-separable
loss function. For the plot, we use the square-root LASSO with ℓ1,2-regularization.
The analytical prediction was derived solving (2.52).

2.2 BER Analysis of the Box Relaxation for BPSK Signal Recovery
The problem of recovering an unknown BPSK vector from a set of noise corrupted
linearly related measurements arises in numerous applications, such as Massive
MIMO [41, 121, 126, 193]. As a result, a large host of exact and heuristic optimiza-
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tion algorithms have been proposed. Exact algorithms, such as sphere decoding
and its variants, become computationally prohibitive as the problem dimension
grows. Heuristic algorithms such as zero-forcing, MMSE, decision-feedback, etc.,
[71, 81, 83] have inferior performances that are often difficult to precisely charac-
terize. One popular heuristic is the so called "Box Relaxation" which replaces the
discrete set {±1}= with the convex set [−1, 1]= [108, 162, 198]. This allows one to
recover the signal via convex optimization followed by hard thresholding. Despite
its popularity, very little is known about the performance of this method. In this
section, we exactly characterize its bit-wise error probability in the regime of large
dimensions and under Gaussian assumptions.

Setup
Our goal is to recover an =-dimensional BPSK vector x0 ∈ {±1}= from the noisy
multiple-input multiple output (MIMO) relation y = Ax0+z ∈ R<,where A ∈ R<×=

is the MIMO channel matrix (assumed to be known) and z ∈ R< is the noise vector.
We assume that A has entries iid N(0, 1/=) and z has entries iid N(0, f2). The
normalization is such that the reciprocal of the noise variance f2 is equal to the
Signal-to-Noise Ratio, i.e. SNR = 1/f2.

Our goal is to recover an =-dimensional BPSK vector x0 ∈ {±1}=11 from the noisy
multiple-input multiple output (MIMO) relation y = Ax0+z ∈ R<,where A ∈ R<×=

is the MIMO channel matrix (assumed to be known) and z ∈ R< is the noise vector.
We assume that A has entries iid N(0, 1/=) and z has entries iid N(0, f2). The
normalization is such that the reciprocal of the noise variance f2 is equal to the
Signal-to-Noise Ratio, i.e. SNR = 1/f2.

TheMaximum-Likelihood (ML) decoder. The ML decoder which maximizes the
probability of error (assuming the x0,8 are equally likely) is given by minx∈{±1}= ‖y−
Ax‖2. Solving the above, is often computationally intractable, especially when = is
large, and therefore a variety of heuristics have been proposed (zero-forcing, mmse,
decision-feedback, etc.) [185].

Box Relaxation Optimization. The heuristic we shall use, we refer to it as Box
Relaxation Optimization (BRO). It consists of two steps. The first one involves
solving a convex relaxation of the ML algorithm, where x ∈ {±1}= is relaxed to
x ∈ [−1, 1]=. The output of the optimization is hard-thresholded in the second step

11For this sectoin, we are going to use the conventional notations in communications for consis-
tency with related works. In these works, the dimension of the unknown signal is = (instead of ?),
while the number of measuements is < (instead of =)
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to produce the final binary estimate. Formally, the algorithm outputs an estimate x∗

of x0 given as

x̂ = arg min
−1≤x8≤1

‖y − Ax‖2,

x∗ = sign(x̂), (2.56)

where the sign function returns the sign of its input and acts element-wise on input
vectors.

Bit error probability. We evaluate the performance of the detection algorithm by
the bit error probability %4, defined as the expectation of the Bit Error Rate ��' .
Formally,

��' :=
1
=

=∑
8=1

1{x∗
8
≠x0,8}, (2.57a)

%4 := E [��' ] = 1
=

=∑
8=1

Pr
(
x∗8 ≠ x0,8

)
. (2.57b)

Our main result analyzes the %4 of the BRO in (2.56). We assume a large-system
limit where <, = → ∞ at a proportional rate X. The SNR is assumed constant; in
particular, it does not scale with =. Let &(·) denote the Q-function associated with
the standard normal density ?(ℎ) = 1√

2c
e−ℎ2/2.

Theorem 3 (%4 of the BRO) Let %4 denote the bit error probability of the detection
scheme in (2.56) for some fixed but unknown BPSK signal x0 ∈ {±1}=. For constant
SNR and <

=
→ X ∈ ( 12 ,∞), it holds:

lim
=→∞

%4 = &(1/g∗),

where g∗ is the unique solution to

min
g>0

g

2

(
X − 1

2

)
+ 1/SNR

2g
− g

2

∫ ∞

2
g

(
ℎ + 2

g

)2
?(ℎ) 3ℎ. (2.58)

Theorem 3 derives a precise formula for the bit error probability of the (BRO).
The formula involves solving a convex and deterministic minimization problem in
(2.58).
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Figure 2.5: BER Performance of the Boxed Relaxation: %4 as a function of SNR for different
values of the ration X = d</=e. The theoretical prediction follows from Theorem 3. For the
simulations, we used = = 512. The data are averages over 20 independent realizations of the channel
matrix and of the noise vector for each value of the SNR.

Computing g∗. It can be shown that the objective function of (2.58) is strictly convex
when X > 1

2 . When X < 1
2 , it is well known that even the noiseless box relaxation

fails [40]. (In fact, X = 1
2 is the recovery threshold for this convex relaxation.) Thus,

(2.58) has a unique solution g∗. Observe that the problem parameters X and SNR
appear explicitly in (2.58); naturally then g∗ is indeed a function of those. The
minimization in (2.58) can be efficiently solved numerically. In addition, owing to
the strict convexity of the objective function, g∗ can be equivalently expressed as the
unique solution to the corresponding first order optimality conditions.

Numerical illustration. Figure 2.5 illustrates the accuracy of the prediction of
Theorem 3. Note that although the theorem requires = → ∞, the prediction is
already accurate for = ranging on a few hundreds.

%4 at high-SNR. It can be shown that when SNR � 1, then g∗ = 1/
√
(X − 1/2)(#'.

This can be intuitively understood as follows: at high-SNR, we expect g∗ to be going
to zero (correspondingly %4 to be small). When this is the case, the last term in
(2.58) is negligible; then, g∗ is the solution to ming>0

g
2

(
X − 1

2

)
+ 1/SNR

2g which gives
the derided result. Hence, for SNR � 1,
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Figure 2.6: Bit error probability of the BoxRelaxationOptimization (BRO) in (2.56) in comparison
to the Matched Filter Bound (MFB) for X = 0.7 (dashed lines) and X = 1 (solid lines). The red curves
follow the formula of Thm. 3, the green ones correspond to (2.59), and, %"��4 of (2.60) is in blue.

lim
=→∞

%4 ≈ &(
√
(X − 1/2) · SNR). (2.59)

In Figure 2.6 we have plotted this high-SNR expression for the log10(%4) vs its
exact value as predicted by Theorem 3. It is interesting to observe that the former
is actually a very good approximation to the latter even for small practical values of
SNR. The range of SNR values for which the approximation is valid becomes larger
with increasing X. Heuristically, for X > 0.7 the expression in (2.59) is a good proxy
for the true probability of error at practical SNR values.

Comparison to the matched filter bound. Theorem 3 gives us a handle on the %4
of BRO in (2.56) and therefore allows to evaluate its practical performance. Here,
we compare the performance to an idealistic case, where all =−1, but 1, bits of x0 are
known to us. As is customary in the field, we refer to the bit error probability of this
case as thematched filter boundMFB and denote it by %"��4 . TheMFB corresponds
to the probability of error in detecting (say) x0,= ∈ {±1} from: ỹ = x0,=a= + z, where
ỹ = y −∑=−1

8=1 x0,8a8 is assumed known, and, a8 denotes the 8Cℎ column of A.

The ML estimate is just the sign of the projection of the vector ỹ to the direction of
a=. Without loss of generality assume that x0,= = 1. Then, the output of the matched
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filter becomes sign( -̃), where -̃ = ‖a=‖2+f2a,where a ∼ N(0, 1). When =→∞,
‖a=‖2

%−→ X12 . Hence, with probability one,

lim
=→∞

%"��4 = lim
=→∞
P( -̃ < 0) = &(

√
X · SNR). (2.60)

A direct comparison of (2.60) to (2.59) shows that at high-SNR, the performance of
the BRO is 10 log10

X
X−1/2 dB off that of the MFB. In particular, in the square case

(X = 1), where the number of receive and transmit antennas are the same, the BRO
is 3 dB off the MFB. When the number of receive antennas is much larger, i.e. when
X→∞, then the performance of the BRO approaches the MFB.

Next, we would like to apply our main Theorem 1 to binary classification problems.

2.3 Binary Classification
Classical results in logistic regression mainly concern the regime where the sample
size, =, is overwhelmingly larger than the feature dimension ?. It can be shown
that in the limit of large samples when ? is fixed and = → ∞, the maximum like-
lihood estimator provides an efficient estimate of the underlying parameter, i.e.,
an unbiased estimate with covariance matrix approaching the inverse of the Fisher
information [103, 183]. However, in most modern applications in data science, the
datasets often have a huge number of features, and therefore, the assumption =

?
� 1

is not valid. Sur and Candes [37, 157, 159] have recently studied the performance
of the maximum likeliood estimator for logistic regression in the regime where = is
proportional to ?. Their findings challenge the conventional wisdom, as they have
shown that in the linear asymptotic regime the maximum likelikehood estimate is
not even unbiased. Their analysis provides the precise performance of the maximum
likelihood estimator.
There have been many studies in the literature on the performance of regularized
(penalized) logistic regression, where a regularizer is added to the negative log-
likelihood function (a partial list includes [30, 94, 182]). These studies often require
the underlying parameter to be heavily structured. For example, if the parameters
are sparse the sparsity is taken to be >(?). Furthermore, they provide orderwise
bounds on the performance but do not give a precise characterization of the quality
of the resulting estimate. A major advantage of adding a regularization term is that
it allows for recovery of the parameter vector even in regimes where the maximum
likelihood estimate does not exist (due to an insufficient number of observations.)

12We use
%−→ to denote convergence in probability with =→∞.
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In this section, we study regularized logistic regression (RLR) for parameter es-
timation in high-dimensional logistic models. Inspired by recent advances in the
performance analysis of M-estimators for linear models [56, 66, 165], we precisely
characterize the assymptotic performance of the RLR estimate. Our characterization
is through a system of six nonlinear equations in six unknowns, through whose so-
lution all locally-Lipschitz performance measures such as the mean, mean-squared
error, probability of support recovery, etc., can be determined. In the special case
when the regularization term is absent, our 6 nonlinear equations reduce to the 3
nonlinear equations reported in [157]. When the regularizer is quadratic in parame-
ters, the 6 equations also simplifies to 3. When the regularizer is the ℓ1 norm, which
corresponds to the popular sparse logistic regression [98, 99], our equations can be
expressed in terms of @-functions, and quantities such as the probability of correct
support recovery can be explicitly computed. Numerous numerical simulations val-
idate the theoretical findings across a range of problem settings. To the extent of
our knowledge, this is the first work that precisely characterizes the performance of
the regularized logistic regression in high dimensions.

Mathematical Setup
Consider the scenario when the observations H8 are binary in the following form,

H8 =


+1 w.p. d(xT

8
V0)

−1 w.p. 1 − d(xT
8
V0)

(2.61)

where d : R → [0, 1]. In practice, the function d is often unknown, but choices
like Hyperbolic tangent or tangent inverse functions are made for recovery of the
separating hyper plane V0. In this case, the link function g is

6(x) = Sign(d(x) − n) , , n8 ∼ Unif(0, 1) .

where n has a uniform distribution between 0 and 1. It’s not hard to check that the
output of the link function will be 1 with probability d(x), and −1 with probability
1 − d(x).
The performance of the convex estimator (2.2) has been analyzed for a wide variety
of loss functions and regularizers.
Schur et al. [158] analyzed this optimization for the case of logistic loss function,
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where there is no regularization function 5 . The logistic loss function is defined as

L(XV, y) =
=∑
8=1
−;>6

(
4x8V + 4−x8V

)
+ H8 x8V . (2.62)

It’s not hard to see that this loss function is the maximum likelihood estimator of V0

in model (2.61), where the function d is the Hyperbolic tangent function which is

d(G) = 4G

4G + 4−G . (2.63)

Salehi et al. [143], analyzed the same problem for the regularized case in their work
using CGMT framework.
One interesting result that is not derived in these series of works is the performance
analysis of Support Vector Machine and the Perceptron method. In support vector
machine, the loss function for classification is define as

L(+" (XV, y) =
=∑
8=1

max
(
0, 1 − H8 xT

8 V

)
. (2.64)

For the Perceptron method, the loss function is defined as

L%4A24?CA>= (XV, y) =
=∑
8=1

max
(
0,−H8 xT

8 V

)
. (2.65)

Performance Analysis of Logistic Regression
Assume we have = samples from a logistic model with parameter V∗ ∈ R?. Let
D = {(x8, H8)}=8=1 denote the set of samples (a.k.a. the training data), where for
8 = 1, 2, . . . , =, x8 ∈ R? is the feature vector and the label H8 ∈ {0, 1} is a Bernouli
random variable with,

P[H8 = 1|x8] = d′(x)8 V∗) , for 8 = 1, 2, . . . , = , (2.66)

where d′(C) := 4C

1+4C is the standard logistic function. The goal is to compute an
estimate for V∗ from the training dataD. The maximum likelihood estimator, V̂"! ,
is defined as,

V̂"! = arg max
V∈R?

=∏
8=1
PV (H8 |x8) = arg max

V∈R?

=∏
8=1

4H8 (x
)
8
V)

1 + 4x)
8
V

= arg min
V∈R?

=∑
8=1

d(x)8 V) − H8 (x)8 V) .
(2.67)
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Where d(C) := log(1+4C) is the link functionwhich has the standard logistic function
as its derivative. The last optimization is simply minimization over the negative log-
likelihood. This is a convex optimization program as the log-likelihood is concave
with respect to V.
In many interesting settings the underlying parameter possesses cerain structure(s)
(sparse, low-rank, finite-alphabet, etc.). In order to exploit this structure we assume
5 : R? → R is a convex function that measures the (so-called) "complexity" of
the structured solution. We fit this model by the regularized maximum (binomial)
likelihood defined as follows,

V̂ = arg min
V∈R?

1
=
·
[ =∑
8=1

d(x)8 V) − H8 (x)8 V)
]
+ _
?
5 (V) . (2.68)

Here, _ ∈ R+ is the regularization parameter that must be tuned properly. In this
section, we study the linear asymptotic regime in which the problem dimensions
?, = grow to infinity at a proportional rate, X := =

?
> 0. Our main result characterizes

the performance of V̂ in terms of the ratio, X, and the signal strength, ^ = | |V
∗ | |√
?

. For
our analysis we assume that the regularizer 5 (·) is separable, 5 (w) = ∑

8 5̃ (F8), and
the data points are drawn independently from the Gaussian distribution, {x8}=8=1

i.i.d.∼
N(0, 1

?
I?). We further assume that the entries of V∗ are drawn from a distribution

Π. Our main result characterizes the performance of the resulting estimator through
the solution of a system of six nonlinear equations with six unknowns. In particular,
we use the solution to compute some common descriptive statistics of the estimate,
such as the mean and the variance.

As we will see in Theorem 4, given the signal strength ^, and the ratio X, the
asymptotic performance of RLR is characterized by the solution to the following
system of nonlinear equations with six unknowns (U, f, W, \, g, A).
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

^2U = E
[
V Prox_fg 5̃ (·)

(
fg(\V + A

√
X
/)

) ]
,

W =
1
A
√
X
E
[
/ Prox_fg 5̃ (·)

(
fg(\V + A

√
X
/)

) ]
,

^2U2 + f2 = E
[
Prox_fg 5̃ (·)

(
fg(\V + A

√
X
/)

)2]
,

W2 =
2
A2 E

[
d′(−^/1)

(
^U/1 + f/2 − ProxWd(·) (^U/1 + f/2)

)2]
,

\W = −2 E
[
d′′(−^/1)ProxWd(·)

(
^U/1 + f/2

) ]
,

1 − W

fg
= E

[ 2d′(−^/1)
1 + Wd′′

(
ProxWd(·) (^U/1 + f/2)

) ] .
(2.69)

Here /, /1, /2 are standard normal variables, and V ∼ Π, where Π denotes the
distribution on the entries of V∗. The following remarks provide some insights on
solving the nonlinear system.

Remark 16 (Proximal Operators) It is worth noting that the equations in (2.69)
include the expectation of functionals of two proximal operators. The first three
equations are in terms of Prox 5̃ (·) , which can be computed explicitly for most widely
used regularizers. For instance, in ℓ1-regularization, the proximal operator is the
well-known shrinkage function defined as [(G, C) := G

|G | ( |G | − C)+. The remaining
equations depend on computing the proximal operator of the link function d(·). For
G ∈ R, ProxCd(·) (G) is the unique solution of I + Cd′(I) = G.

Remark 17 (Numerical Evaluation) Define v := [U, f, W, \, g, A]) as the vector
of unknonws. The nonlinear system (2.69) can be reformulated as v = ((v) for a
properly defined ( : R6 → R6. We have empirically observed in our numerical
simulations that a fixed-point iterative method, vC+1 = ((vC), converges to v∗, such
that v∗ = ((v∗).

We are now able to present our main result. Theorem 4 below describes the average
behavior of the entries of V̂, the solution of the RLR. The derived expression is in
terms of the solution of the nonlinear system (2.69), denoted by (Ū, f̄, W̄, \̄, ḡ, Ā).
An informal statement of our result is that as = → ∞, the entries of V̂ converge as
follows,

V̂ 9
3→ Γ(V∗9 , /) , for 9 = 1, 2, . . . , ? , (2.70)
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where / is a standard normal random variable, and Γ : R2 → R is defined as,

Γ(2, 3) := Prox_f̄ḡ 5̃ (·)
(
f̄ḡ(\̄2 + Ā

√
X
3)

)
. (2.71)

In other words, the RLR solution has the same behavior as applying the proximal
operator on the "perturbed signal", i.e., the true signal added with a Gaussian noise.

Theorem 4 Consider the optimization program (2.68), where for 8 = 1, 2, . . . , =,
x8 has the multivariate Gaussian distribution N(0, 1

?
I?), and H8 = �4A (x)

8
V∗),

and the entries of V∗ are drawn independently from a distribution Π. Assume the
parameters X, ^, and _ are such that the nonlinear system (2.69) has a unique
solution (Ū, f̄, W̄, \̄, ḡ, Ā). Then, as ? → ∞, for any locally-Lipschitz13 function
Ψ : R × R→ R , we have,

1
?

?∑
9=1
Ψ( V̂ 9 , V∗9 )

P−→ E
[
Ψ

(
Γ(V, /), V

) ]
, (2.72)

where / ∼ N(0, 1), V ∼ Π is independent of / , and the function Γ(·, ·) is defined
in (2.71).

Correlation and variance of the RLR estimate
As the first application of Theorem 4 we compute common descriptive statistics of
the estimate V̂. In the following corollaries, we establish that the parametrs Ū, and f̄
in (2.69) correspond to the correlation and the mean-squared error of the resulting
estimate.

Corollary 1 As ? →∞, 1
| |V∗ | |2 V̂

) V∗
%−→ Ū .

Proof 1 Recall that | |V∗ | |2 = ?^2. Applying Theorem 4 with Ψ(D, E) = DE gives,

1
| |V∗ | |2

V̂) V∗ =
1
^2?

?∑
9=1

V̂ 9 V
∗
9

%−→ 1
^2E

[
V Prox_f̄ḡ 5̃ (·)

(
f̄ḡ(\̄ V + Ā

√
X
/)

) ]
= Ū ,

(2.73)
where the last equality is derived from the first equation in the nonlinear sys-
tem (2.69), along with the fact that (Ū, f̄, W̄, \̄, ḡ, Ā) is a solution to this system.

13A function Φ : R3 → R is said to be locally-Lipschitz if,

∀" > 0, ∃!" ≥ 0, such that ∀x, y ∈
[
− ", +"

]3 : |Φ(x) −Φ(y) | ≤ !" | |x − y| | .
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Corollary 1 states that upon centering V̂ around ŪV∗, it becomes decorrelated from
V∗. Therefore, we define a new estimate Ṽ := V̂

Ū
and compute its mean-squared error

in the following corollary.

Corollary 2 As ? →∞, 1
?
| | Ṽ − V∗ | |2 %−→ f̄2

Ū2 .

Proof 2 We appeal to Theorem 4 with Ψ(D, E) = (D − ŪE)2,
1
?
| | Ṽ−V∗ | |2 = 1

Ū2

( 1
?
| | V̂−ŪV∗ | |2

) %−→ 1
Ū2E

[ (
Prox_f̄ḡ 5̃ (·)

(
f̄ḡ(\̄ V+ Ā√

X
/)

)
−ŪV

)2]
=
f̄2

Ū2 ,

(2.74)
where the last equality is derived from the third equation in the nonlinear sys-
tem (2.69) together with the result of Corollary 1.

In the next two sections, we investigate other properties of the estimate V̂ under ℓ1

and ℓ2 regularization.

RLR with ℓ2
2-regularization

The ℓ2 norm regularization is commonly used in machine learning applications
to stabilize the model. Adding this regularization would simply shrink all the
parameters toward the origin and hence decrease the variance of the resulting model.
Here, we provide a precise performance analysis of the RLR with ℓ2

2-regularization,
i.e.,

V̂ = arg min
V∈R?

1
=
·
[ =∑
8=1

d(x)8 V) − H8 (x)8 V)
]
+ _

2?

?∑
8=1

V2
8 . (2.75)

To analyze (2.75), we use the result of Theorem 4. It can be shown that in the
nonlinear system (2.69), \̄, ḡ, Ā can be derived explicitely from solving the first three
equations. This is due to the fact that the proximal operator of 5̃ (·) = 1

2 (·)
2 can be

expressed in the following closed-form,

ProxC 5̃ (·) (G) = arg min
H∈R

1
2C
(H − G)2 + 1

2
H2 =

G

1 + C . (2.76)

This indicates that the proximal operator in this case is just a simple rescaling.
Substituting (2.76) in the nonlinear system (2.69), we can rewrite the first three
equations as follows, 

\ =
U

WX
,

g =
XW

f
(
1 − _XW

) ,
A =

f

W
√
X
.

(2.77)
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(a) (b)

(c)

Figure 2.7: The performance of the regularized logistic regression under ℓ2
2 penalty (a) the

correlation factor Ū (b) the variance f̄2, and (c) the mean-squared error 1
?
| | V̂ − V∗ | |2. The

dashed lines depict the theoretical result derived from Theorem 5, and the dots are the result
of empirical simulations. The empirical results is the average over 100 independent trials
with ? = 250 and ^ = 1 .

Therefore we can state the following Theorem for ℓ2
2-regularization:

Theorem 5 Consider the optimization (2.75) with parameters ^, X, and W, and the
same assumptions as in Theorem 4. As ? → ∞, for any locally-Lipschitz function
Ψ(·, ·), the following convergence holds,

1
?

?∑
9=1
Ψ( V̂ 9 − ŪV∗9 , V∗9 )

P−→ E
[
Ψ

(
f̄/, V

) ]
, (2.78)

where / is standard normal, V ∼ Π, and Ū,f̄ are the unique solutions to the
following nonlinear system of equations,

f2

2X
= E

[
d′(−^/1)

(
^U/1 + f/2 − ProxWd(·) (^U/1 + f/2)

)2]
,

− U
2X
= E

[
d′′(−^/1)ProxWd(·)

(
^U/1 + f/2

) ]
,

1 − 1
X
+ _W = E

[ 2d′(−^/1)
1 + Wd′′

(
ProxWd(·) (^U/1 + f/2)

) ] .
(2.79)
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The proof is deferred to the Appendix. Theorem 5 states that upon centering the
estimate V̂, it becomes decorrelated from V∗ and the distribution of the entries
approach a zero-mean Gaussian distribution with variance f̄2.
Figure 2.7 depicts the performance of the regularized estimate for different values of
_. As observed in the figure, increasing the value of _ reduces the correlation factor
Ū (Figure 2.7a) and the variance f̄2 (Figure 2.7b). Figure 2.7c shows the mean-
squared-error of the estimate as a function of _ . It indicates that for different values
of X there exist an optimal value _opt that achieves the minimummean-squared error.

Sparse Logistic Regression
In this section we study the performance of our estimate when the regularizer is the
ℓ1 norm. In modern machine learning applications the number of features, ?, is
often overwhelmingly large. Therefore, to avoid overfitting one typically needs to
perform feature selection, that is, to exclude irrelevant variables from the regression
model [89]. Adding an ℓ1 penalty to the loss function is the most popular approach
for feature selection.
As a natural consequence of the result of Theorem 4, we study the performance
of RLR with ℓ1 regularizer (referred to as "sparse LR") and evaluate its success in
recovery of the sparse signals. In Section 2.3, we extend our general analysis to the
case of sparse LR. In other words, we will precisely analyze the performance of the
solution of the following optimization,

V̂ = arg min
V∈R?

1
=
·
[ =∑
8=1

d(x)8 V) − H8 (x)8 V)
]
+ _
?
| |V | |1 . (2.80)

In Section 2.3, we explicitly describe the expectations in the nonlinear system (2.69)
using two @-functions14. In Section 2.3, we analyze the support recovery in the
resulting estimate and show that the two @-functions represent the probability of on
and off support recovery.

Convergence behavior of sparse LR
For our analysis in this section, we assume each entry V∗

8
, for 8 = 1, . . . , ?, is sampled

i.i.d. from a distribution,

Π(V) = (1 − B) · X0(V) + B ·
(q( V√̂B )
√̂
B

)
, (2.81)

14The @-function is the tail distribution of the standard normal r.v. defined as, &(C) :=∫ ∞
C

4−G
2/2

√
2c

3G .
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(a) (b)

(c)

Figure 2.8: The performance of the regularized logistic regression under ℓ1 penalty (a) the
correlation factor Ū (b) the variance f̄2, and (c) the mean-squared error 1

?
| | V̂ − V∗ | |2. The

dashed lines are the theoretical result derived from Theorem 4, and the dots are the result
of empirical simulations. For the numerical simulations, the result is the average over 100
independent trials with ? = 250 and ^ = 1 .

where B ∈ (0, 1) is the sparsity factor, q(C) := 4−C
2/2
√

2c
is the density of the standard

normal distribution, and X0(·) is the Dirac delta function. In other words, entries
of V∗ are zero with probability 1 − B, and the non-zero entries have a Gaussian
distribution with appropriately defined variance. Although our analysis can be
extended further, here we only present the result for a Gaussian distribution on
the non-zero entries. The proximal operator of 5̃ (·) = | · | is the soft-thresholding
operator defined as, [(G, C) = G

|G | (G−C)+ . Therefore, we are able to explicitly compute
the expectations with respect to 5̃ (·) in the nonlinear system (2.69). To streamline
the representation, we define the following two proxies,

C1 =
_√

A2

X
+ \2^2

B

, C2 =
_
A√
X

. (2.82)

In the next section, we provide an interpretation for C1 and C2. In particular, we will
show that &(C̄1), and &(C̄2) are related to the probabilities of on and off support
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recovery. We can rewrite the first three equations in (2.69) as follows,

U

2fg
= \ · &(C1) ,

XW

2fg
= B · &

(
C1
)
+ (1 − B) · &

(
C2
)
,

^2U2 + f2

2f2g2 =
XW_2

2fg
+ WA

2

2fg
+ ^2\2 · &

(
C1
)
− _2(B · q(C1)

C1
+ (1 − B) · q(C2)

C2
) .
(2.83)

Appending the three equations in (2.83) to the last three equations in (2.69) gives
the nonlinear system for sparse LR. Upon solving these equations, we can use the
result of Theorem 4 to compute various performance measures on the estimate
V̂. Figure 2.8 shows the performance of our estimate as a function of _. It can
be seen that the bound derived from our theoretical result matches the empirical
simulations. Also, it can be inferrred from Figure 2.8c that the optimal value of _
(_opt that achieves the minimum mean-squared error) is a decreasing function of X.

Support recovery
In this section, we study the support recovery in sparse LR. As mentioned earlier,
sparse LR is often used when the underlying paramter has few non-zero entries. We
define the support of V∗ as Ω := { 9 |1 ≤ 9 ≤ ?, V∗

9
≠ 0}. Here, we would like to

compute the probability of success in recovery of the support of V∗.
Let V̂ denote the solution of the optimization (2.80). We fix the value n > 0 as a
hard-threshold based on which we decide whether an entry is on the support or not.
In other words, we form the following set as our estimate of the support given V̂,

Ω̂ = { 9 |1 ≤ 9 ≤ ?, | V̂ 9 | > n} (2.84)

In order to evaluate the success in support recovery, we define the following two
error measures,

�1(n) = Prob{ 9 ∈ Ω̂| 9 ∉ Ω} , �2(n) = Prob{ 9 ∉ Ω̂| 9 ∈ Ω} . (2.85)

In our estimation, �1 represents the probability of false alarm, and �2 is the prob-
ability of misdetection of an entry of the support. The following lemma indicates
the asymptotic behavior of both errors as n approaches zero .

Lemma 5 (Support Recovery) Let V̂ be the solution to the optimization (2.80), and
the entries of V∗ have distribution Π defined in (2.81). Assume _ is chosen such that
the nonlinear system (2.69) has a unique solution (Ū, f̄, W̄, \̄, ḡ, Ā). As ? → ∞ we
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(a) (b)

Figure 2.9: The support recovery in the regularized logistic regression with ℓ1 penalty for
(a) �1: the probability of false detection, (b) �2: the probability of missing an entry of the
support. The dashed lines are the theoretical results derived from Lemma 5, and the dots are
the result of empirical simulations. For the numerical simulations, the result is the average
over 100 independent trials with ? = 250 and ^ = 1 and n = 0.001 .

have,
lim
n↓0

�1(n)
%−→ 2 &

(
C̄1
)
where, C̄1 =

_
Ā√
X

, and,

lim
n↓0

�2(n)
%−→ 1 − 2 &

(
C̄2
)
where, C̄2 =

_√
Ā2

X
+ \̄2^2

B

.
(2.86)

2.4 Generalized Margin Maximizers
Machine learning models have been very successful in many applications, rang-
ing from spam detection, face and pattern recognition, to the analysis of genome
sequencing and financial markets. However, despite this indisputable success, our
knowledge on why the various machine learning methods exhibit the performances
they do is still at a very early stage. To make this gap between the theory and the
practice narrower, researchers have recently begun to revisit simple machine learn-
ing models with the hope that understanding their performance will lead the way to
understanding the performance of more complex machine learning methods.
More specifically, studies on the performance of diffrent classifiers for binary classi-
fication dates back to the seminal work of Vapnik in the 1980’s [184]. In an effort to
find the ”optimal” hyperplane that separates the data, he presented an upper bound
on the test error which is inversely proportional to the margin (minimum distance
of the datapoints to the separating hyperplane), and concluded that the max-margin
classifier is indeed the desired classifier. It has also been observed that to construct
such optimal hyperplanes one only has to take into account a small amount of the
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training data, the so-called support vectors [46].
In this section, we challenge the conventional wisdom by showing that when the un-
derlying parameter has certain structure one can come upwith classifiers that outper-
form the max-margin classifier. We introduce the Generalized Margin Maximizer
(GMM) which takes into account the structure of the underlying parameter as well
as the minimimum distance of the datapoints to the separating hyperplane. We
provide sharp asymptotic results on various performance measures (such as the
generalization error) of GMM and show that an appropriate choice of the potential
function can in fact improve the resulting estimator.

Prior work
There have been many recent attempts to understand the generalization behavior
of simple machine learning models [16, 21, 84, 114, 197]. Most of these studies
focus on the least-squares/ridge regression, where the loss function is the squared
ℓ2-norm, and derive sharp asymptotics on the performance of the estimator. In
particular, in [84, 97] the authors have shown that the minimum-norm least square
solution demonstrates the so-called "double-descent" behavior [20].
A more recent line of research studies the generalization performance of gradient
descent (GD) for binary classification. It has been shown [151]) that for a sepa-
rable dataset, GD (when applied on the logistic loss) converges in direction to the
max-margin classifier (a.k.a. hard-margin SVM). The performance of max-margin
classifier has been recently analyzed in two independent works [51, 118].

State of the Art
We analyze the performance of GMM in the high-dimensional regime where both
the number of parameters, ?, and the number of samples = grows, and analyze the
asymptotic performance as a function of the overparameterization ratio X := ?

=
> 0.

First, we provide the phase transition condition for the separability of data (i.e.,
derive the exact value of X∗ such that the data is separable for all X > X∗15.) Con-
sequently, we analyze the performance in the interpolating regime (X > X∗). To
the best of our knowledge, this is the first theoretical result that provides sharp
asymptotics on the performance of GMM classifiers on separable data. For our
analysis, we exploit the Convex Gaussian Min-max Theorem (CGMT) [155, 171]
which is a strengthened version of a classical Gaussian comparison inequality due

15Concurrent to the submission of this paper, a similar phase transition has been demonstrated
in [97] for a somewhat different model.
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to Gordon [79]. This framework replaces the original optimization with another
optimization problem that has a similar performance, yet is much simpler to analyze
as it becomes nearly separable. Previously, the CGMT has been successfully applied
to derive the precise performance in a number of applications such as regularized
M-estimators [165], analysis of the generalized lasso [117, 171], data detection in
massive MIMO [1, 9, 175], and PhaseMax in phase retrieval [54, 141, 142].
More recently, this framework has been employed in a series of works by multiple
groups of researchers to characterize the performance of the logistic loss minimizer
in binary classification [143, 161]. Furthermore, in an analogous avenue of re-
search, the CGMT framework has been utilized to study the generalization behavior
of the gradient descent algorithm in the interpolating regime, where there exists a
(nonempty) set of parameters that perfectly fit the training data [51, 118].

Mathematical setup
We consider the problem of binary classification, having a set of training data,
D = {(x8, H8)}=8=1, where each of the sample points consists of a ?-dimensional
feature vector, x8, and a binary label, H8 ∈ {±1}. We assume that the dataset D is
generated from a logistic-type model with the underlying parameter w★ ∈ R?. This
means that

H8 ∼ Rad(d(x)8 w★)) , 8 = 1, . . . , = , (2.87)

where d : R → [0, 1] is a non-decreasing function and is often referred to as the
link function. A commonly-used instance of the link function is the standard logistic
function defined as d(C) := 1

1+4−C .
When =/? is sufficiently large, i.e., when we have access to a sufficiently large num-
ber of samples, the maximum-likelihood estimator( ŵ"!) is well-defined. In such
settings, the MLE is often the estimator of choice due to its desirable properties in
the classical statistics. Sur and Candès [157] have recently studied the performance
of theMLE in logistic regression in the high-dimensional regime, where the number
of observations and parameters are comparable, and show, among other things, that
the maximum likelihood estimator is biased. Their results have been extended to
regularized logistic regression [143], assuming some prior knowledge on the struc-
ture of the data. In particular, it has been observed that, when the regularization
parameter is tuned properly, the regularized logistic regression can outperform the
MLE.
Inspired by the recent results on analyzing the generalization error of machine learn-
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ing models, in this section, we study the generalization error of binary classification,
in a regime of parameters known as the interpolating regime. Here, the assumption
is that there exists a parameter vector that can perfectly fit (interpolate) the data, i.e.,

∃w0 s.t. Sign(w)
0 x8) = H8, for 8 = 1, 2, . . . , =. (2.88)

LetW denote the set of all the parameters that interpolate the data.

W = {w ∈ R? : Sign(w)x8) = H8 , for 1 ≤ 8 ≤ =.}. (2.89)

It has been observed that in many machine learning tasks, the iterative solvers
that minimize the loss function often converge to one of the points in the setW
(the training error converges to zero). Therefore, one can (qualitatively) pose the
following important (yet still mysterious) question:

Which point(s) inW is (are) ”better” estimator(s) of the actual parameter, w★?

In an attempt to find an answer to this question, we focus on the simple (yet funda-
mental) model of binary classification. We assume that the underlying parameter,
w★ possesses certain structure (sparse, low-rank, block-sparse, etc.), and consider a
locally-Lipschitz and convex function k : R? → R which encourages this structure.
We introduce the Generalized Margin Maximizer (GMM) as the solution to the
following optimization:

min
w∈R?

k(w)

s.t. H8 (x)8 w) ≥ 1, for 1 ≤ 8 ≤ =.
(2.90)

It is worth noting that the condition on the separability of the dataset is crucial for
the optimization program (2.90) to have a feasible point.

Remark 18 It can be shown that when k(·) is absolutely scalable16, the GMM can
be found by solving the following equivalent optimization program,

max
w∈R3

k(w)
min

1≤8≤=
H8 (x)8 w)

= max
w∈R3

‖w‖
min

1≤8≤=
H8 (x)8 w)

× k(w)‖w‖ . (2.91)

The first multiplicative term on the right indicates the margin associated with the
separator w, and the second term, k(w)

‖w‖ takes into account the structure of the
16A function 5 : R3 → R is absolutely scalable when,

∀v ∈ R3 ,∀U ∈ R, 5 (Uv) = |U | 5 (v).

All ℓ? norms, for example, are absolutely scalable.
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model. Hence, we refer to the objective function in the optimization (2.91) as the
generalized margin, and the solution to this optimization is called the generalized
margin maximizer (GMM).

In this section, we study the linear asymptotic regime in which the problem dimen-
sions ?, = grow to infinity at a proportional rate, X := ?

=
> 0. Our main result

characterizes the performance of the solution of (2.90), ŵ, in terms of the ratio,
X, and the signal strength, ^ := ‖w

★‖√
?
. We assume that the datapoints, {x8}=8=1, are

drawn independently from the Gaussian distribution. Our main result characterizes
the performance of the resulting estimator through the solution of a system of five
nonlinear equations with five unknowns. In particular, as an application of our main
result, we can accurately predict the generalization error of the resulting estimator.

Main Results
In this section, we present the main results of the paper, that is the characterization of
the performance of the generalized margin maximizers. Our results are represented
in terms of a summary functional, 2C (·, ·), which incorporates the information about
the underlying model.

Definition 1 For the parameter C > 0, the function 2C : R × R+ → R+ is defined as,

2C (B, A) = E
[
(1 − CB/1. − A/2)2+

]
, (2.92)

where /1, /2
i.i.d.∼ N(0, 1), and . ∼ Rad(d(C/1)).

Asymptotic phase transition
Here, we provide the necessary and sufficient condition for the separability of the
data.

Theorem 6 (Phase transition) Consider the generalized max margin optimization
defined in Section 2.4. As =, ? → ∞ at a fixed overparameterization ratio X := ?

=
∈

(0,∞), this optimization program (almost surely) has a solution (or equivalenty, the
setW is nonempty) if and only if,

X > X∗ = X∗(^) := inf
B,A≥0

2^ (B, A)
A2 . (2.93)

Remark 19 Theorem 6 indicates the necessary and sufficient condition for the
existense of GMM. It is worth mentioning that this condition, which is simply the
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Figure 2.10: The phase transition, X∗, for the separability of the dataset, where the
feature vector, x8 is drawn from the Gaussian distribution,N(0, 1

?
I?), and the labels

are H8 ∼ Rad
(
d(x)

8
w★)

)
, for d(I) = 4C

4C+4−C . The empirical result is the average over
20 trials with ? = 150, and the theoretical results are from Theorem 6.

condition on separability of the dataset D, does not depend on the choice of the
potential function k(·).

Remark 20 The phase transition (2.93), is valid for any link function d(·). This
generalizes the former results in [37]. Note that the summary functional, 2^ (·, ·),
contains the choice of the link function and can be computed numerically.

The following lemma explains the behavior of X∗ as ^ varies.

Lemma 6 X∗ is a decreasing function of ^, with X∗(0) = 1
2 and lim^→+∞ X∗(^) = 0.

The result of Lemma 6 can be intuitively verified. Recall that ^ = ‖w★‖√
?

and
H8 ∼ Rad(d(x)

8
w★)). Therefore, ^ → ∞ translates to having H8 = Sign(x)

8
w★). In

this case our training data is always separable for any number of observations =.
Besides, the case of ^ = 0 corresponds to having random labels assigned to feature
vectors x8. [47] showed that in this case, as ? → ∞, X > 0.5 is the necessary and
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sufficient condition for the separability of the data set.
Figure 2.10 provides a comparison between the theoretical result in Theorem 6, and
the empirical results derived from numerical simulations for ? = 150 and 20 trials.
As seen in this plot, the theory matches well with the empirical simulations.

A nonlinear system of equations
Our main result in Section 2.4 precisely characterizes the performance of GMM in
terms of a system of 5 nonlinear equations with 5 unknowns, (U, f, V, W, g), defined
as follows,

1
?
E
[
w★)Proxfgk(·)

(
(U − fgW)w★ + Vfg

√
Xh

) ]
= U^2,

1
?
E
[
h)Proxfgk(·)

(
(U − fgW)w★ + Vfg

√
Xh

) ]
=

√
2^ (U,f)

X
,

1
?
E




Proxfgk(·) ((U − fgW)w★ + Vfg
√
Xh

)


2
= U2^2 + f2,

m2^ (U,f)
mU

=
2^2W
V

√
2^ (U, f),

m2^ (U,f)
mf

=
2
√
2^ (U,f)
Vg

.

(2.94)

Remark 21 The first three equations in the nonlinear system (2.94) capture the role
of the potential function, via its proximal operator. When k(·) is separable, these
functions can further be reduced to the proximal operator of a real-valued function.
For instance, when k(·) = ‖·‖1, the proximal operator is simply equivalent to
applying the well known shrinkage (defined as [(G, C) = G

|G | ( |G | − C)+) on each entry.
For more information on the proximal operators, please refer to [132].

Asymptotic performance of GMM
Weare now ready to present themain result of the paper. Theorem7 characterizes the
asymptotic behavior ofGMM, that is the solution to the optimization program (2.90).
It connects the performance of GMM to the solution of the nonlinear system of
equations (2.94), and informally states that,

ŵ �→ Γ(w★, h), as ? →∞, (2.95)

where h ∈ R? has standard normal entries, and Γ : R? × R? → R? is defined as,

Γ(v1, v2) = Proxf̄ḡk(·)
(
(Ū − f̄ḡW̄)v1 + V̄f̄ḡ

√
Xv2

)
, (2.96)

where (Ū, f̄, V̄, W̄, ḡ) is the solution to the nonlinear system (2.94).
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Theorem 7 Let ŵ be the solution of the GMM optimization (2.90), where for
8 = 1, 2, . . . , =, x8 has the multivariate Gaussian distribution N(0, 1

?
I?), and

H8 ∼ Rad(d(x)
8

w★)), and w★ is drawn from a distribution Π with ^ =
‖w★‖√

?
.

As =, ? → ∞ at a fixed overparameterization ratio X = ?

=
> X∗(^), the nonlinear

system (2.94) has a unique solution (Ū, f̄, V̄, W̄, ḡ). Furthermore, for any locally-
Lipschitz function � : R? × R? → R, we have,

� (ŵ,w★) %→ E[� (Γ(w, h),w)], (2.97)

where h ∈ R? has standard normal entries, w ∼ Π is independent of h, and the
function Γ(·, ·) is defined in (2.96).

In short, we introduce dual variables and write down the Lagrangian which contains
a bilinear form with respect to a matrix with i.i.d. Gaussian entries. Exploiting the
CGMT framework, we then analyze the nearly-separable auxiliary optimization to
find its optimal value, and show that the nonlinear system (2.94) corresponds to its
optimality condition.

Remark 22 The result in Theorem 7 is stated for a general locally-Lipschitz function
� (·, ·). To evaluate a specific performance measure, one can appeal to this theorem
with an appropriate choice of �. As an example, the function � (u, v) = 1

?
‖u − v‖2

gives the mean-squared error (MSE).

Generalization error
Theorem 7 can be utilized to derive useful information on the performance of the
classifier. In fact, using this theorem one can show that the parameters Ū, and f̄
respectively correspond to the correlation (to the underlying parameter) and the
mean-squared error of the resulting estimator.
An importantmeasure of performance is the generalization error, which indicates the
success of the trained model on unseen data. Here, we compute the generalization
error of the GMM classifier. We do so, by appealing to the result of Theorem 7.

Definition 2 The generalization error for a binary classifier with parameter ŵ is
defined as,

�� ŵ = Px{Sign(x) ŵ) ≠ Sign(x)w★)}, (2.98)

where the probability is computed with respect to the distribution of the test data.
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It can be shown that when the distribution of the test data is rotationally invariant
(e.g., Gaussian, uniform dist. on the unit-sphere), GE only depends on the an-
gle between ŵ and w★. The following lemma provides sharp asymptotics on the
generalization error of the GMM classifier.

Lemma 7 (Generalization Error) Let ŵ be the GMM classifier defined in Sec-
tion 2.4. Assume X > X∗, and the (test) data is distributed according to the multi-
variate Gaussian distribution N(0, 1

?
I?). Then, as ? →∞, we have,

��ŵ
%→ 1
c
acos( ^Ū

√
^2Ū2 + f̄2

), (2.99)

where Ū and f̄ are derived by solving the nonlinear system (2.94).

Proof 3 We first note that when the data is normally distributed, the generalization
error for ŵ is defined as,

��ŵ =
1
c
acos( ŵ)w★

‖w★‖ ‖ŵ‖ ). (2.100)

We appeal to the result of Theorem 7 with two different functions. Using �1(u, v) =
1
?
v)u in (2.97) will give,

1
?

ŵ)w★ %→ 1
?
E
[
w★)Proxf̄ḡk(·)

(
(Ū − f̄ḡW̄)w★ + V̄f̄ḡ

√
Xh

) ]
. (2.101)

Since (Ū, f̄, V̄, W̄, ḡ) is the solution to the nonlinear system, we can replace the
expectation from the first equation in (2.94),which gives the following,

1
?

ŵ)w★ %→ ^2Ū. (2.102)

Similarly, using the result of Theorem 7 for the measure function �2(u, v) = 1
?
‖u‖2,

along with the third equation in (2.94) gives,
1
√
?
‖ŵ‖ %→

√
^2Ū2 + f̄2 . (2.103)

The proof is the consequence of (2.100), (2.102), and (2.103), along with the
continuity of the function acos(·).

GMM for Various Structures
As explained earlier, the potential function k(·) is chosen to encourage the structure
of the underlying parameter. In this section, we investigate the performance of the
GMM classifier for some common structures and the corresponding choices of the
potential function.



60

Max-margin classifier (ℓ2-GMM)
The ℓ2-norm regularization is commonly used in machine learning applications to
stabilize the model. Here, we study the performance of the GMM classifier when
k(·) = 1

2 ‖·‖
2
2, i.e., the solution to the following optimization program,

min
w∈R?

1
2
‖w‖22

s.t. H8 (x)8 w) ≥ 1, for 1 ≤ 8 ≤ =.
(2.104)

The optimization program (2.104) is called the hard-margin SVM and the cor-
responding solution is the max-margin classifier, as it maximizes the minimum
distance (margin) of the datapoints from the separating hyperplane. The conven-
tional justification for using such a classifier is that the risk of a classifier is inversely
proportional to its margin. The performance of ℓ2-GMM (2.104), has been earlier
analyzed in [51] and [118]. The form we present below in (2.106), differes in ap-
pearance to the results of [51], but can be shown to be equivalent.
When k(·) = 1

2 ‖·‖
2
2, the proximal operator has the following closed-form,

Prox C
2 ‖·‖

2 (u) = 1
1 + Cu. (2.105)

By replacing the proximal operator in the nonlinear system (2.94), we can explicitly
find two of the variables (V, and W) and reduce it to the following system of three
nonlinear equations in three unknowns,

√
2^ (U, f) = f

√
X,

m2^ (U, f)
mU

=
−2^2UgfX

1 + fg ,

m2^ (U, f)
mf

=
2fX

1 + fg .

(2.106)

Sparse classifier (ℓ1-GMM)
In today’s machine learning applications, typically the number of available features,
?, is overwhelmingly large. To reduce the risk of overfitting in such settings,
feature selection methods are often performed to exclude irrelevant variables from
the model [89]. Adding an ℓ1 penalty is the most popular approach for feature
selection.
As a natural consequence of our main result in Theorem 7, here we analyze the
asymptotic performance of GMM when the potential function is the ℓ1 norm, and
evaluate its success on the unseen data (i.e., the test error) when the underlying
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parameter, w★, is sparse.

min
w∈R?

‖w‖1

s.t. H8 (x)8 w) ≥ 1, for 1 ≤ 8 ≤ =.
(2.107)

In this case, the proximal operator of the potential function (‖·‖1) is basically
equivalent to applying the soft-thresholding operator, on each entry, i.e.,

ProxC‖·‖1 (u) = [(u, C), (2.108)

where [(G, C) := G
|G | ( |G | − C)+ is the soft-thresholding operator. Here, for a sparsity

factor B ∈ (0, 1], we assume the entries of w★ are sampled i.i.d. from the following
distribution,

ΠB (F) = (1 − B) · X0(F) + B ·
(q( F√̂B )
√̂
B

)
, (2.109)

where X0(·) is the Dirac delta function, and q(C) := 4
− C

2
2√

2c
is the density of the standard

normal random variable. This means that each of the entries of w★ are zero with
probability 1 − B, and the nonzero entries have independent Gaussian distribution
with variance ^2

B
. Having this assumption we can further simplify the first three

equations in the nonlinear system (2.94), and present them in terms of q-functions.
To streamline our representation, we introduce the following proxies,

C1 =
fg√

^2

B
(U − fgW)2 + V2f2g2X

, C2 =
1
V
√
X
. (2.110)

We also define the function j : R→ R+ as,

j(C) = E
[
(/ − C)2+

]
, / ∼ N(0, 1)

= &(C) (1 + C2) − Cq(C),
(2.111)

Where &(C) :=
∫ ∞
C
q(G)3G denotes the tail distribution of standard normal random

variable. We are now able to simplify the first three equations in (2.94) and derive
the following nonlinear system,

&(C1) = U
2(U−fgW) ,

B · &(C1) + (1 − B) · &(C2) =
√
2^ (U,f)
2VfgX ,

B

C21
· j(C1) + (1−B)C22

· j(C2) = ^2U2

2f2g2 + 1
2g2 ,

m2^ (U,f)
mU

=
2^2W
V

√
2^ (U, f),

m2^ (U,f)
mf

=
2
√
2^ (U,f)
Vg

.

(2.112)
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The nonlinear system (2.112) can be solved via numerical methods. For our nu-
merical simulations in Section 2.4 we exploit accelerated fixed-point methods to
solve the nonlinear system. Using the result of Lemma 7, we can compute the
generalization error.
Another important measure in this setting (when w★ is sparse) is the probabil-
ity of error in support recovery. Let Ω ⊆ [?] denote the support of w★ (i.e.
Ω = { 9 : w★

9
≠ 0}.) For a pre-defined threshold n , we form the following estimate

of the support,
Ω̂n = { 9 : 1 ≤ 9 ≤ ?, |ŵ 9 | > n}. (2.113)

The following lemma establishes the success in the support recovery:

Lemma 8 (Support Recovery) For a sparsity factor B ∈ (0, 1], let the entries of
w★ have distribution ΠB defined in (2.109), and ŵ be the solution to the optimiza-
tion (2.107). Then, as ? →∞, we have,

lim
n↓0

%1(n) := P
{
9 ∉ Ω̂n | 9 ∈ Ω

} %→ 1 − 2&(C̄1)

lim
n↓0

%2(n) := P
{
9 ∈ Ω̂n | 9 ∉ Ω

} %→ 2&(C̄2) ,
(2.114)

where C̄1 and C̄2 are defined as in (2.110), with variables derived from solving the
nonlinear system (2.112).

Binary classifier (ℓ∞-GMM)
As the last example of structured classifiers, here we study the case where w★ ∈
{±}?. To encourage this structure, the potential function is chosen to be the ℓ∞
norm. In linear regression, ‖·‖∞ is used to recover the binary signals, i.e., when
w★ ∈ {±1}? [40]. This problem arises in integer programming and has some
connections to the Knapsack problem [110]. Here, we consider analyzing the
performance of the solution of the following optimization program,

min
w∈R?

‖w‖∞

s.t. H8 (x)8 w) ≥ 1, for 1 ≤ 8 ≤ =.
(2.115)

It can be shown that the proximal operator of the ℓ∞-norm can be derived by
projecting the points onto the ℓ1-ball. We use this connection to present the proximal
operator in this case in terms of the soft-thresholding operator [(·, ·).
For a vector w whose entries are drawn independently from a distribution Π, we can
present the following formula for the proximal operator:

ProxC ?‖·‖∞ (w) = w − Prox_‖·‖1 (w), (2.116)
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Figure 2.11: Generalization error of the general max margin classifier under three
penalty functions, ℓ1 norm with the red line (ℓ1-GMM), ℓ2 norm with the blue line
(ℓ2-GMM), and ℓ∞ norm with the black line (ℓ∞-GMM). In this figure, the entries
of w★ are drawn independently fromN(0, ^2) Gaussian distribution. Solid lines
correspond to the theoretical results derived from Theorem 7, while the circles are
the result of empirical simulations. For the numerical simulations, the result is the
average over 100 independent trials with ? = 200 and ^ = 2.

where _ := _(C) is the smallest nonnegative number that satisfies,

E
[
|[(,, _) |

]
= E

[
( |, | − _)+

]
≤ C. (2.117)

Here, the expectation is with respect to , ∼ Π. Note that _ is a non-increasing
function of C, and _ = 0 whenever C ≥ E|, |.
Similar to the case of ℓ1-GMM, here we can use the closed-form of the proximal
operator to simplify the first three equations in the nonlinear system (2.94). For our
numerical simulations in the next section, we have done the computations for three
different distributions: (1) The i.i.d. Gaussian distribution, (2) the sparse distribution
defined in (2.109), and (3) the uniform binary distribution, Π = Unif

(
{±1}?

)
.

Numerical Simulations
In this section, we investigate the validity of our theoretical results with multiple
numerical simulations applied to the three different cases of GMM classifiers elab-
orated in Section 2.4. For each of the three potentials discussed in the paper (i.e., ℓ1,
ℓ2, and ℓ∞ norms) we perform numerical simulations for three different models on
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Figure 2.12: Generalization error of the general max margin classifier under three
penalty functions, ℓ1 normwith the red line (ℓ1-GMM), ℓ2 normwith the blue line (ℓ2-
GMM), and ℓ∞ norm with the black line (ℓ∞-GMM). In this figure, the underlying
vector w★ is B-sparse, where the non-zero entries are drawn independently from
N(0, ^2/B) Gaussian distribution. Solid lines correspond to the theoretical results
derived from Theorem 7, and the circles are the result of empirical simulations. For
the numerical simulations, the result is computed by taking the average over 100
independent trials with ? = 200, B = .1 and ^ = 2.

the distribution ofw★. In other words, we change the distribution of the entries ofw★

and evaluate the performance of the aforementioned classifiers on each model. As
will observed in our numerical simulations, the appropriate choice of the potential
function in the GMM optimization (2.90) has an impact on the generlization error
of the resulting classifier. The three different distribution that we choose for the
underlying parameter are as follows:

Gaussian: in the first model, we assume that the entries of w★ are drawn from
a zero-mean Gaussian distribution, N(0, ^2). In this model, the direction of w★

(which indicates the separating hyperplane) is distributed uniformly on the unit
sphere. Figure 2.11 gives the generalization error when w★ has Gaussian distri-
bution. The solid lines show the theoretical results derived from Theorem 7 and
Lemma 7. The circles depict empirical results that are computed by taking the
average over 100 trials with ? = 200 and ^ = 2. Although our theory provides the
generalization error in the asymptotic regime, it appropriately matches the result of
empirical simulations in our simulations in finite dimensions. It can be observed



65

1 2 3 4 5 6 7 8 9 10

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.5 1 1.5

0.15

0.2

0.25

0.3

0.35

0.4

Figure 2.13: Generalization error of the general max margin classifier under three
penalty functions, ℓ1 norm with the red line (ℓ1-GMM), ℓ2 norm with the blue line
(ℓ2-GMM), and ℓ∞ norm with the black line (ℓ∞-GMM). In this figure, the entries
of w★ are drawn independently from ^ ∗ Rad(0.5) Rademacher distribution.
Solid lines correspond to the theoretical results derived from Theorem 7, and the
circles are the result of empirical simulations. For the numerical simulations, the
result is the average over 100 independend trials with ? = 200 and ^ = 2.

in this figure that the max-margin classifier (ℓ2-GMM) outperforms the other two
classifiers. We should also note that as the overparameterization ratio, X, grows the
generalization error increases which indicates that the estimator is not reliable for
large values of X.
Sparse: here, we assume that the entries ofw★ are drawn from the sparse distribution
represented in (2.109), i.e., each entry is nonzero with probability B, and the nonzero
entries have i.i.d. Gaussian distribution with appropriately-defined variance. Fig-
ure 2.12 demonstrates the result of the numerical simulations for this model for the
three different classifiers of interest. The empirical result is the average over 100
trials with ? = 200, B = 0.1, and ^ = 2. Similar to the previous case, the empirical
results match the theory. Also, it can be observed that the ℓ1-GMM outperforms the
two other classifiers in the regime of X that the classifiers performs well (i.e. X w 6.)
Similarly, we can observe that for large values of X all the classifiers perform poorly.
Binary: in this model the entries of w★ are independently drawn from {+^,−^},

i.e., w★ is uniformly chosen on the discrete set {±^}?. Figure 2.13 shows the result
of numerical simulations under this model. Similar to previous cases the empirical



66

results (^ = 2, ? = 200)match the theory. Also, the ℓ∞-GMMclassifier outperforms
the other two classifiers for X < 1 (which corresponds to the underparameterized
setting). However, the max-margin classifier performs better for larger values of X.

2.5 Highlight of the Proof and CGMT Framework
Developed by Thrampoulidis et al., ConvexGaussianMin-MaxTheorem (CGMT) is
a noble framework that enables us to analyze a wide variety of problems, including
the convex estimator (2.2), and is the main idea behind the proof of Theorem
1. The CGMT is an extension of a Gaussian comparison inequality proved by
Gordon in 1988 [79, 80]. Starting with the works of Rudelson and Vershynin [139],
Stojnic [153], Oymak [127], Chandrasekaran [40] and also Amelunxen, Maccoy [6]
Gordon’s original theorem has played a key role in the analysis of (underdetermined)
noiseless linear inverse problems. We refer the interested reader to [165, 171] for
more details and a discussion on the relation of the CGMT to the result by Gordon.
Before going through the technicalities of CGMT,we present a simple understanding
of how CGMT framework can be applied in practice. Recall the convex estimator
(2.2)

V̂ = arg min
V
L

(
XV/√?, g(XV0/

√
?)

)
+ _ 5 (V) . (2.118)

After a couple of steps that we will explain shortly, we can rewrite this optimization
in the form of the followingmin-max optimizations, whichwe refer to as thePrimary
Optimization (PO),

Φ(X) := min
V∈SV

max
u∈Su

uTXV + Ψ(V, u) . (2.119)

This is a more complicated form of our initial optimization, because of the extra
maximization. Besides, as we go more through the technical details, we can see
that one of the main restrictions in the analysis of this optimization, in how the
variables u and V are coupled through the features matrix X. If we were somehow
able to decouple these two, the analysis would get much easier. This is what CGMT
actually does.
The Convex Gaussian Min-max Theorem associates with the primary optimization
(PO) problem a simplified Auxiliary Optimization (AO) problem, from which we
can tightly infer properties of the original (PO), such as the optimal cost, the optimal
solution, etc.. In the other words, CGMT introduces another optimization that is
much simpler to analyze, and its solution has the same properties as the solution to
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the PO. Specifically, the Auxiliary optimization is given as follows

q(h1, h2) := min
V∈SV

max
u∈Su

‖V‖2hT
1u + ‖u‖2hT

2w + Ψ(V, u) . (2.120)

As you see, the auxiliary optimization is the same as the primary optimization,
except the bi-linear form uTXV which is replaces by two two terms ‖V‖2hT

1u and
‖u‖2hT

2w. This simple change will significantly help us later in the analysis.
In the other words, we will be able to analyze the properties of the solution to the
auxiliary optimization using techniques in convex analysis and high dimensional
probability and random matrix theory (which are not applicable to the primary
optimization). Afterwards, the CGMT tells us that the primary and auxiliary opti-
mizations shares some properties, including those of our interest. Next, we will go
through a precise analysis of our theorem, using the CGMT framework.

2.6 Proof of Theorem 1
In this section, we rigorously prove Theorem 1. Recall the convex estimator (2.2),

V̂ = arg min
V
L

(
XV/√?, g(XV0/

√
?)

)
+ _ 5 (V) . (2.121)

Note that the entries of X are independently drawn from N(0, 1). Now, we rewrite
the optimization by introducing a new variable,

min
V∈R?

w=XV0/
√
?

L
(
w, g(XV0/

√
?)

)
+ _ 5 (V) . (2.122)

In the next step, we bring the constraint over w in the objective function using
Lagrange multiplier,

min
V∈R?
w∈R=

max
u∈R=

L
(
w, g(XV0/

√
?)

)
+ _ 5 (V) + 1

=
uT(XV/√? − w) . (2.123)

Note that the two terms XV0 and uTXV are dependent. We would like to decompose
the later term in such a way that one becomes independent of the other. This will
help us use CGMT, as you will see later. To do so, we decompose the variable V
into its projection in the direction of V0 and the subspace orthogonal to V0. In the
other words, we rewrite V = UV0 + Ṽ, where Ṽ⊥V0. The optimization becomes,

min
Ṽ∈R?
w∈R=
U∈R

1
?
ṼTV0=0

max
u∈R=

L
(
w, g(XV0/

√
?)

)
+ _ 5 ( Ṽ + UV0) +

1
=

uT(XṼ/√? + UXV0/
√
? − w) .

(2.124)
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Now, since the matrix X is Gaussian with iid entries, the variables XV0 and XṼ are
independent. We reorder the term on optimization to get

min
Ṽ∈R?
w∈R=
U∈R

1
?
ṼTV0=0

max
u∈R=

1
=
√
?

uTXṼ +
(
L

(
w, g(XV0/

√
?)

)
+ _ 5 ( Ṽ + UV0) +

1
=

uT(UXV0/
√
? − w)

)
.

(2.125)

Now, the first bi-linear term uTXṼ is independent of the rest of the objective function.
Up to now, it seems like we’ve build a more difficult optimization to analyze by
introducing new variables and a maximization. But the point of every step up to
now was simply to utilize the CGMT framework. Note that what we have in (2.125)
is in the form of the primary optimization (2.119), in the CGMT framework. Next,
we give a precise statement of the CGMT framework and apply it to the optimization
(2.125).

The Convex Gaussian Min-max Theorem
Consider the primary optimization (PO) and the Auxiliary optimization (AO) below,

Φ(X) := min
V∈SV

max
u∈Su

uTXV + Ψ(V, u) , (PO) (2.126a)

q(h1, h2) := min
V∈SV

max
u∈Su

‖V‖2hT
1u + ‖u‖2hT

2w + Ψ(V, u) , (AO) . (2.126b)

where X ∈ R=×?, h1 ∈ R=, h2 ∈ R?, Su ⊂ R=,SV ⊂ R? and Ψ : R? × R= → R. We
denote VΦ := VΦ(X) and Vq := Vq (h1, h2) any optimal minimizers in (2.126a) and
(2.126b), respectively. Then, we have the following result.

Theorem 8 (CGMT) In (2.126), let SV,Su be compact sets, Ψ be continuous on
SV × Su, and, X, h1 and h2 all have entries iid standard normal. The following
statements are true:

1. For all 2 ∈ R:
P( Φ(X) < 2 ) ≤ 2P( q(h1, h2) ≤ 2 ).

2. Further assume that SV,Su are convex sets and k is convex-concave on
SV × Su. Then, for all 2 ∈ R,

P( Φ(X) > 2 ) ≤ 2P( q(h − 1, h2) ≥ 2 ).
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In particular, for all ` ∈ R, C > 0, P( |Φ(X) −` | > C ) ≤ 2P( |q(h1, h2) −` | ≥
C ).

3. Let S be an arbitrary open subset of SV and S2 = SV/S . Denote qS2 (h1, h2)
the optimal cost of the optimization in (2.126b) when the minimization over
w is now constrained over w ∈ Sc. If there exist constants q, qSc and [ > 0
such that

a) qS2 ≥ q + 3[,

b) q(h1, h2) < q + [ with probability at least 1 − ?,

c) qS2 (h1, h2) > qS2 − [ with probability at least 1 − ?,

then,
P(VΦ(X) ∈ S) ≥ 1 − 4?.

The first two statements of Theorem 8 are identical to [171, Thm. 3], and, a proof is
included therein.
The second statement of the theorem states that under the theorem assumption, the
values of the optimal objective functions Φ(X) and q(h1, h2) converge to the same
values (if the later converges).
Using the third statement, we show that if the optimal solution of the (AO) lies
within some set S with probability approaching to 1 (as the dimensions ? and =
increase), and optimizing (AO) over the set Sc will result in a strictly larger optimal
objective value, then the optimal solution in (PO) will be also in the set S with
probability approaching to 1. Using this, we would like to show that the optimal
values for U, and ‖ Ṽ‖2 will converge to the same value for (AO) and (PO). To do so,
we show that these terms in (AO) converge to a unique value, and so will they in
the (PO). Rigorously applying this theorem to the primary optimization is discussed
in the proof of Theorem 2 in the Appendix. For now, let’s apply CGMT to the
optimization (2.125), and get the auxiliary optimization from it.
Clearly, the optimization (2.125) has the desired format of (PO) in the CGMT.
Therefore, the corresponding Auxiliary Optimization will be

min
Ṽ∈R?
w∈R=
U∈R

1
?
ṼTV0=0

max
u∈R=

1
=
√
?
‖ Ṽ‖hT

1u + 1
=
√
?
‖u‖hT

2 Ṽ + L
(
w, g(XV0/

√
?)

)
+ _ 5 ( Ṽ + UV0)

+ 1
=

uT(UXV0/
√
? − w) . (2.127)
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Corollary 3 (Asymptotic CGMT) Using the same notation as in Theorem 8, sup-
pose there exists constants q < qSc such that q(g, h) %−→ q and qSc (g, h) %−→ qSc .
Then,

lim
=→∞
P(wΦ(G) ∈ S) = 1.

Analysis of the AO
Out next step would be to analyze the auxiliary optimization. The idea is to use
dimension reduction techniques to reduce the optimization (2.127) to an optimization
over scalars. To do so, for most of the high dimensional variables, we would like to
do the optimization over their direction first.
In the first step, we would like to optimize over the direction of u. In the other
words, we rewrite u/

√
= = C · ũ, where ‖ũ‖ = 1 and C ≥ 0. Then, if we solve the

optimization over ũ, we get

min
Ṽ∈R?
w∈R=
U∈R

1
?
ṼTV0=0

max
C≥0

C
√
=
‖ ‖ Ṽ‖√

?
h1 +

U
√
?

XV0 − w‖ + C
√
?=

hT
2 Ṽ + L

(
w, g(XV0/

√
?)

)

+ _ 5 ( Ṽ + UV0) . (2.128)

Next, we would like to do the same trick for Ṽ, but it also exists inside the function
5 . We can pull it out using the same trick that we used to pull out XV out of the loss
function. By introducing new variable v to rewrite the optimization as

min
v,Ṽ∈R?
w∈R=
U∈R

1
?
ṼTV0=0

v=Ṽ+UV0

max
C≥0

C
√
=
‖ ‖ Ṽ‖√

?
h1 +

U
√
?

XV0 − w‖ + C
√
?=

hT
2 Ṽ + L

(
w, g(XV0/

√
?)

)

+ _ 5 (v) . (2.129)

And then, using Lagrange multiplier x and W to bring the constraints over Ṽ to the
objective function.

min
v,Ṽ∈R?
w∈R=
U∈R

max
C≥0
W∈R

x∈R?

C
√
=
‖ ‖ Ṽ‖√

?
h1 +

U
√
?

XV0 − w‖ + C
√
?=

hT
2 Ṽ + L

(
w, g(XV0/

√
?)

)
+ _ 5 (v) + 1

?
xT( Ṽ + UV0 − v) + W

?
ṼTV0 . (2.130)

Now, we would like to solve the optimization over the direction of Ṽ as we did so for
u. But the optimization above doesn’t look convex concave with respect to its vari-
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ables and we are not by default allowed to switch minimization and maximization.

At this point, recall that the (PO) in (2.125) is itself convex. In fact, for it, all
conditions of Sion’s min-max Theorem [149] are met, thus, the order of min-max
operations can be flipped. According to the CGMT, the (PO) and the (AO) are tightly
related in an asymptotic setting. We use this, to translate the convexity properties
of the (PO) to the (AO). In essence, we show that when dimensions grow, the order
of min-max operations in the (AO) can be flipped. Thus, we will instead consider
the following problem as the (AO):

min
vR?

w∈R=
U∈R
f≥0

max
C≥0
W∈R

x∈R?

min
f=
‖ Ṽ ‖√
?

C
√
=
‖ ‖ Ṽ‖√

?
h1 +

U
√
?

XV0 − w‖ + C
√
?=

hT
2 Ṽ + L

(
w, g(XV0/

√
?)

)
+ _ 5 (v) + 1

?
xT( Ṽ + UV0 − v) + W

?
ṼTV0 . (2.131)

Observe that the objective function remains the same; it is only the order of min-max
operations that is slightly modified. Since the objective function is not necessarily
convex-concave in its arguments, there is no immediate guarantee that the two
problems in (2.130) and (2.131) are equivalent for all realizations of h1 and h2.
However, the lemma below essentially shows that such a strong duality holds with
high probability over h1 and h2 in high dimensions. Hence, the problem in (2.131)
can be as well used, instead of the one in (2.130), in order to analyze the (PO). For
this reason, henceforth, we refer to (2.131) as the (AO) problem.

Lemma 9 Let ˆ̃V(X) denote an optimal solution of (2.125). Consider the (AO)
problem in (2.131). Let f∗ be the value that the optimal f in (2.131) converges to.
For any n > 0 define the set S := { Ṽ | |‖ Ṽ‖2 − f∗ | < n}, and, qS2 (h1, h2) be the
optimal cost of the same optimization as in (2.131), only this time the minimization
over Ṽ is further constrained such that Ṽ ∉ S. Then,

lim
?→∞
P

(
|‖ ˆ̃V(X)‖2 − f∗ | < n

)
= 1.

This lemma and its proof is similar to Lemma A.3 in [165]. Now we solve the
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optimization over the direction of Ṽ and let f := ‖ Ṽ‖√
?
. We get

min
v∈R?
w∈R=

U∈R,f≥0

max
C≥0
W∈R

x∈R?

C
√
=
‖fh1 +

U
√
?

XV0 − w‖ − f
√
?
‖WV0 + x + C

√
X

h2‖

+ 1
?

xT(UV0 − v) + L
(
w, g(XV0/

√
?)

)
+ _ 5 (v) . (2.132)

Now, we have gotten closer to our goal which is to build an optimization over scalars.
In the next step, we would like to do the optimization over x. What helps us next, is
the following trick,

G = min
g≥0

1
2g
+ G

2g

2
. (2.133)

Using this trick, we would like to square the ‖ · ‖2 norms in the optimization and get

min
v∈R?
w∈R=
U∈R
f,g1≥0

max
C,g2≥0
W∈R

x∈R?

C

2g1
+ Cg1

2=
‖fh1 +

U
√
?

XV0 − w‖2 − f

2g2
− fg2

2?
‖WV0 + x + C

√
X

h2‖2

+ 1
?

xT(UV0 − v) + L
(
w, g(XV0/

√
?)

)
+ _ 5 (v) . (2.134)

Now we can simply do the optimization over x and get

min
v∈R?
w∈R=
U∈R
f,g1≥0

max
C,g2≥0
W∈R

C

2g1
+ Cg1

2=
‖fh1 +

U
√
?

XV0 − w‖2 − f

2g2
+ 1

2fg2?
‖(U − fWg2)V0 +

Cg2f√
X

h2 − v‖2

− fg2

2?
‖WV0 +

C
√
X

h2‖2 + L
(
w, g(XV0/

√
?)

)
+ _ 5 (v) . (2.135)

Now, we use the Monreau envelope notation defined in (2.4), for the minimization
over v and w. Recall that the Monreau envelope is defined as

eL (x, y, g) := min
v

1
2g
‖v − x‖2 + L(v, y) ,

e 5 (x, g) := min
v

1
2g
‖v − x‖2 + 5 (x) . (2.136)

(2.137)

Also let ^ = ‖V0‖/
√
?. We can replace XV0/

√
? with ^h3, where h3 is a random

vector with iid standard Gaussians. Replacing these in (2.135) yields,

min
U∈R
f,g1≥0

max
C,g2≥0
W∈R

C

2g1
− f

2g2
− fg2

2?
‖WV0 +

C
√
X

h2‖2

+ eL
(
fh1 + U^h3, g(^h3),

1
Cg1

)
+ e 5

(
−fg2C√

X
h2 + (U − fg2W)V0, fg2

)
.

(2.138)
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Up to now, analysis of the Auxiliary optimization was precise without letting the
problem dimensions grow or applying any convergence lemma. Now, we would like
to replace the Monreau envelope functions and and the norm of the random vector
above (third term) with their corresponding point-wise convergence functions. But
since these functions are inside the min-max, we are typically not allowed to do so.
But in this case, we would like to use the following lemma in convex analysis which
will make this possible.

Lemma 10 Consider a sequence of proper, convex stochastic functions "= :
(0,∞) → R, and, a deterministic function " : (0,∞) → R, such that:

1. "= (G)
%−→ " (G), for all G > 0,

2. there exists I > 0 such that " (G) > infG>0 " (G) for all G ≥ I.

Then, infG>0 "= (G)
%−→ infG>0 � (G).

It’s not hard to check that the objective function in (2.138) satisfies the assumptions of
lemma10. By applying this lemma consecutively on (2.138), and usingAssumptions
1, we can do the following replacements in the objective function of (2.138),

fg2

2?
‖WV0 +

C
√
X

h2‖2
%−→ fg2C

2

2X
+ fg2W

2^2

2

eL
(
fh1 + U^h3, g(^h3),

1
Cg1

)
%−→ ! (f, U, 1

Cg1
)

e 5
(
−fg2C√

X
h2 + (U − fg2W)V0, fg2

)
%−→ � (−fg2C√

X
, U − fg2W, fg2) , (2.139)

where the functionals ! and � are defined in Assumption 1. Therefore, (2.138)
becomes

min
U∈R
f,g1≥0

max
C,g2≥0
W∈R

C

2g1
− f

2g2
− fg2C

2

2X
+ fg2W

2^2

2
+ ! (f, U, 1

Cg1
) + � (−fg2C√

X
, U − fg2W, fg2) .

(2.140)

This is the scalar optimization in Theorem 1. Let’s denote its solutions with the
scalars (Û, f̂, ĝ1, ĝ2, Ĉ, Ŵ). Then, if one follows the steps of the analysis of the (AO),
it can be observed that the final solution V̂ in the Auxiliary optimization (2.127) in
terms of the scalars (U, f, g1, g2, C, W), is

V̂(AO) = Prox 5
(
(Û − f̂ĝ2Ŵ)V0 + (

f̂ĝ2Ĉ√
X
)h2 , f̂ĝ2

)
(2.141)



74

Therefore, using Assumption 2, for the auxiliary optimization, we have

lim
?,=→∞

k( V̂(AO), V0) = Ψ(Û − f̂ĝ2Ŵ,
f̂ĝ2Ĉ√
X
, f̂ĝ2) . (2.142)

Now, let’s define the set S to be

S = {(U, f, g1, g2, C, W) s.t. |Ψ(U − fg2W,
fg2C√
X
, fg2) − Ψ(Û − f̂ĝ2Ŵ,

f̂ĝ2Ĉ√
X
, f̂ĝ2) | < n}

(2.143)

Since the solution to the optimization (2.140) is unique, if we optimize the auxiliary
optimization over Sc, the value of optimal objective is going to increase. Thus, we
can utilize the third part of Theorem 8 to show that the same convergence happens
in Primary Optimization and we will have

lim
?,=→∞

k( V̂(PO), V0) = Ψ(Û − f̂ĝ2Ŵ,
f̂ĝ2Ĉ√
X
, f̂ĝ2) . (2.144)

This concludes the proof.
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C h a p t e r 3

GENERAL PERFORMANCE METRICS FOR THE LASSO

In this chapter1, we extend the applicability of the CGMT framework and the
precise results that it yields to more general performance metrics. For concreteness,
we focus primarily on the problem of sparse recovery under ℓ1-regularized least-
squares (a.k.a LASSO). We also discuss how the results extend to more general
structured signal recovery problems and to awide family of convex recoverymethods
known as regularized M-estimators. We establish accurate predictions of a wide
range of performance metrics that have a Lipschitz property. For illustration,this
result can be used to accurately predict the probability that the LASSO successfully
identifies the non-zero entries of the unknown signal; specializing the result to the
high-SNR regime yields bounds that are geometric in nature and admit insightful
interpretations.

There is an increasing line of work on the precise analysis of regularized M-
estimators. Please see [165, Sec. 7] for an exhaustive review. We have already
referred to the works that use the CGMT framework [129, 154, 165, 171]. The most
general result is included in [165] which characterizes the ℓ2-reconstruction error of
general regularized M-estimators under very generic settings; yet, no other perfor-
mance metrics have been considered thus far. A different line of works is based on
a state evolution framework for an iterative Approximate Message Passing (AMP)
algorithm inspired by statistical physics ([18, 63] and the references therein). To the
best of our knowledge, the AMP framework has not been used to analyze general
regularized M-estimators. Nonetheless, [18, 63, 119] have considered Lipschitz
performance metrics for the LASSO; our result extends the formulae to general
regularized M-estimators. Overall, the two methods of analysis are very different
(and of their own value each); this is the first time that the CGMT framework is used
for general performance metrics.

3.1 Problem Setup
Consider the problem of recovering a sparse signal V0 ∈ R? comprised of only :
non-zero measurements from = noisy linear observations of the form y = XV0 + z ∈
R=, where X is the measurement matrix and z is the noise vector. The typical

1This chapter is mostly based on [4]
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approach to produce an estimate V̂ of V0 is by solving an ℓ1-regularized least-squares
minimization, as follows:

V̂ = arg min
V
‖y − XV‖2 +

_
√
?
‖V‖1. (3.1)

Here, _ > 0 is a regularization parameter. (The normalization with √? is for
convenience in the analysis). This method is known as row Square-root LASSO
in the statistics literature [22], and is a slight variation of the popular LASSO; see
[129] for a discussion. Our analysis applies to both instances, but we focus on the
former for concreteness. Also, for convenience, we shall often refer to (3.1) simply
as the LASSO.

Measuring Performance
A “good estimate" might translate to a variety of different desired attributes associ-
ated with V̂. This translates to a variety of different performance metrics, which we
discuss here.

ℓ2-reconstruction error: A standard and somewhat generic measure of performance
is the ℓ2-reconstruction error, which measures the deviation of V̂ from the true signal
V0 in the ℓ2-norm. Formally, the metric acts on the reconstruction error vector
ŵ := V̂ − V0 and returns its Euclidean norm, i.e., Ψℓ2 (ŵ) := ‖ŵ‖2 = ‖ V̂ − V0‖2.
The ℓ2-error in estimating the coefficients of V0 also controls the mean squared
prediction error, i.e. the error in predicting a (future) response to a fresh (random)
measurement (e.g. [130, Sec. 8.1]).

Lipschitz Metrics: Beyond the ℓ2-reconstruction error, we consider performance
metrics Ψ : R? → R that act on the error vector ŵ := V̂ − V0 and which satisfy a
Lipschitz property, i.e. |Ψ(x) − Ψ(y) | ≤ ! · ‖x − y‖2 for all x, y ∈ R? and some !.
One common such metric is Ψ(w) = ‖w‖1, [123].

Support Recovery: In the problem of sparse recovery a natural performance metric
that arises in a variety of contexts (e.g. subset selection in regression, structure
estimation in graphical models, sparse approximation [188]) is that of support
recovery, i.e. identifying whether an entry of the unknown signal V0 is on the
support (aka is non-zero), or it is off the support (aka is zero). We take a decision
based on the solution V̂ of the LASSO: declare the 8Cℎ entry to be on the support
iff | V̂8 | ≥ n . Here n > 0 is a user-defined threshold imposed on V̂; such a hard-
thresholding operation is practical due to machine precision inaccuracies in solving
(3.1).
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In Theorem 10 we accurately predict the (per-entry) rate of successful on-support
and off-support recovery. Formally, let

Φn,on( V̂) =
1
:

∑
8∈((V0)

1{| V̂8 |≥n} (3.2a)

Φn,off( V̂) =
1

= − :
∑

8∉((V0)
1{| V̂8 |≤n}, (3.2b)

where 1S is the indicator function of a set S. The metric Φn,on( V̂) (resp. Φn,off( V̂))
measures the ratio of the non-zero (reps. zero) entries of V0 that are properly
identified to be on (resp. off) the support.

An equivalent way to interpret the metrics defined above is to consider their ex-
pectation. For instance, E[Φn,on( V̂)] = (1/:)

∑
8∈S(V0) P( | V̂8 | ≥ n) measures the

average probability that a single non-zero entry of V0 is correctly identified to be
on the support. In particular, if the entries of V̂ are iid, then in the limit Φn,on( V̂)
converges to the probability that a single on-support entry is correctly identified.

Working Hypothesis
The unknown signal V0 ∈ R? is k-sparse: its first : entries are sampled iid from
a distribution ?V0 of zero mean and of unit variance (E[(V0)28 ] = 1), and the rest
of them are zero. The measurement matrix X ∈ R=×? has entries iid zero mean
Gaussian random variables with variance 1

?
(denote N(0, 1/?)). The noise vector

z ∈ R= has entries iid N(0, f2). We study the linear asymptotic regime in which
the problem dimensions ?, = and : all grow to infinity at proportional rates 2:
:/? → d ∈ (0, 1) and =/? → X ∈ (0,∞). Also, the regularizer parameter _ in
(3.1) is considered to be constant, in particular independent of ?. Under the current
setting, the Signal to Noise Ratio (SNR) becomes SNR := d/f2.

3.2 Results
We gather our main results in this section. For a sequence of random variables
{X (?)} and a constant 2, {X (=)} %−→ 2 denotes convergence in probability as ? →∞.
We reserve the letters� and -0 to denote (scalar) randomvariableswith distributions
N(0, 1) and ?V0 , respectively.

2 The results of Section 3.2 apply on a sequence of problem instances {V0,X, z, =, :}? indexed
by ? ∈ N such that the properties mentioned hold for all members of the sequence for all ?. To keep
notation clear we do not explicitly use the subscript ? for symbols of the sequence.
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ℓ2-reconstruction Error
The precise characterization of the ℓ2-reconstruction error has been performed in
[164, 172] via the CGMT framework (also, [18, 63] have analyzed the problem via
an alternative framework called AMP). We include a statement of the result here
since it helps us set up some necessary definitions for the presentation of the more
general result that follows in the next section.

k-distance functional: For a function k : R → R, let Distk(.) (·, ·) : R × R>0 → R
be defined as

Distk(.) (^, _) := d · E[k(-0 − [(^� + -0, ^_))] (3.3)

+ (1 − d) · E[k([(^�, ^_))],

where the expectation is over both -0 ∼ ?V0 and � ∼ N(0, 1), and [(-, g) =
(-/|- |)max{|- |−g, 0} denotes the soft-thresholding operator. The function returns
the distance, with respect to the functionk(.), between a r.v. -0 and the soft threshold
operator applied to the random variable itself after adding a Gaussian noise to it.
This motivates the terminology used. Also, note the implicit dependence of the
functional on the rest of the problem parameters, namely d, X and f.

noindent_crit: There exists a critical value of the regularizer parameter, namely _crit,
such that the error behavior is different when _ ≤ _crit compared to _ > _crit [129].
Define the pair (Ucrit, _crit) as the solution to the following system of equations:

U2
crit = Dist(.)2 (^crit, _crit),

X = d · P {|^� + -0 | ≥ _crit^2A8C} + 2(1 − d)&(_crit),
(3.4)

where ^2A8C =
√
(U2

crit + f2)/X and &(·) is the standard Q-function. It is shown in
[164, Sec. 2.C] that if X ≤ 1, then (3.4) has a unique solution. Otherwise, define
_crit = 0. With these we are ready to state the first lemma.

Lemma 11 ([164]) Under the working hypothesis of Section 3.1 and for any fixed
_ > 0, defineU := U(_) as the unique solution to the equationU2 = Dist(.)2 (

√
(U2 + f2)/X, _),

if _ ≥ _crit, and, as U = Ucrit, otherwise. Then, it holds in probability that
lim?→∞

1
?
‖ V̂ − V0‖22 = U

2.

Extensive empirical evidence suggest that the system of the two nonlinear equations
in two unknowns in (3.4) can be solved numerically very efficiently using a simple
iterative fixed-point method (see also [165, Rem. 4.3.3]). Figure 3.1 below illustrates
the accuracy of the lemma.
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Lipschitz Performance Metrics
Theorem 9 below generalizes Lemma 11 to metrics that attain a Lipschitz property.
Assumption 3 below formally defines the required properties of such metrics.

Assumption 3 (Lipschitz metrics) We say Assumption 3 holds for the Lipschitz
function Ψ : R? → R if

• For all constants 2 > 0, there exists a constant � > 0 such that for all V ∈ R? that
‖V‖ ≤ 2√?, we have |Ψ(V) | ≤ �√?.

• For all x, y ∈ R?, |Ψ(x) − Ψ(y) | ≤ !√
?
‖x − y‖2, for a constant ! independent on

?.

• For all U, _ > 0 and h ∼ N(0, I?), there exists function Γ : R>0 × R>0 → R such
that

Ψ(V0 − [(^h + V0, _^))
%−→ Γ(^, _). (3.5)

Here, [ is the “vector" soft-threshold operator acting element-wise on the entries of
its first argument.

The first is a simple scaling requirement such that Ψ(x) = O (1). The second
imposes a growth condition on the Lipschitz constant with respect to ? (this is
necessary for the asymptotic analysis but can potentially be relaxed). The third
requirement of Assumption 3 is easier to interpret in the “separable-case" in which
Ψ(x) = (1/1)∑8 k(x8) for some !-Lipschitz scalar function k. Then, condition
(3.5) holds by the WLLN for Γ(^, _) = Distk (^, _) (recall (3.3)).

Theorem 9 (Lipschitz performance of LASSO) Under the working hypothesis of
Section 3.1 and with U and _crit defined as in Lemma 11, fix _ > 0, let _̂ =

<0G{_, _crit} and ^ =
√
U2 + f2/

√
X. Then, for any Lipschitz function Ψ(G) that

satisfies Assumption 3, it holds in probability that, lim?→∞Ψ( V̂ − V0) = Γ(^, _̂).

Evaluating the prediction only involves identifying the function Γ as per Assumption
3, and calculating the parameters U and _crit as per Lemma 11. Of course, Lemma
11 follows from Theorem 9 when applied for Ψ( V̂ − V0) = 1√

?
‖ Ṽ − V0‖2, since

the latter is easily shown to satisfy Assumption 3 for Γ(^, _) =
√

Dist(.)2 (^, _). A
different Lipschitz performance metric that is often of interest in practice is the ℓ1-
reconstruction errofΨ( V̂− V0) = (1/?)‖ V̂− V0‖1. This is an example of a separable
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Figure 3.1: Performance of Square root Lasso with respect to Ψ(x) = 1√
?
‖x‖2 (Red Line) and

Ψ(x) = 1
?
‖x‖1 (Blue line) as a function of _. The theoretical prediction comes from Theorem 9.

For the simulations, we used ? = 256, X = 0.8, d = 0.1, SNR=0.5 and the data are averaged over 5
independent realization of the Problem.

metric, thus it satisfies Assumption 3 for Γ(^, _) = Dist|·| (^, _). See Figure 3.1 for
an illustration. Observe that the prediction of the theorem (although asymptotic) is
accurate for problem dimensions of only a few hundreds. Also, the precise nature
of the predictions allows optimal tuning of the regularizer parameter _, the number
of measurements X, etc..

Support Recovery
Theorem 10 below characterizes the support recovery metrics introduced in (3.2).
Recall that n > 0 is a fixed hard threshold imposed on the entries of the solution V̂
to the LASSO in order to decide whether an entry is on or off the support.

Theorem 10 (Probability of support recovery) Under the working hypothesis of
Section 3.1 and with U and _crit defined as in Lemma 11, fix _ > 0, let ^ =√
(U2 + f2)/X and _̂ = max{_crit, _}. Then, for any n > 0, it holds in probability

that lim?→∞Φn,on( V̂) = P{|^� + -0 | ≥ n + _̂^} and



81

lim?→∞Φn,off( V̂) = P{|^� | ≤ n + _̂^}.

The metrics in (3.2) are not Lipschitz. Hence, they don’t satisfy all requirements of
Assumption 3 of Section 3.2, and Theorem 9 is not directly applicable.

Nonetheless, the core idea behind the proof of the theorem is similar to that of
Theorem 9 and requires only a few extra arguments (see Section 3.3). Figure 3.2
illustrates the validity of the prediction.

Remark 23 (Off-support) When n � _̂^, the formula of the theorem for Φn,off( V̂)
reduces to P{|^� | ≤ n + _̂^} ∼ P{|� | ≤ _̂}, which is independent of the problem
parameters X, d and SNR. This simple observation is verified in Figure 3.2: the
off-support recovery probability is the same for different values of under-sampling
parameter X as long as _ ≥ _crit.

Remark 24 (Large/Small _) It is easy to conclude from Theorem 10 that as _
becomes large Φn,off (reps. Φn,on) converge to one (resp. zero). Of course, this
behavior is expected since large values for the regularizer parameter put more
emphasis on the ℓ1-regularization term in (3.1), thus promoting sparser solutions.
Reversed behavior is observed when _ takes values close to zero.

Remark 25 (Optimal _) A natural question becomes that of determining the op-
timal value of the regularizer parameter. In order to balance between on- and
off- support recovery probabilities a reasonable performance metric becomes Φn =
lΦn,on + (1 − l)Φn,off for l ∈ [0, 1]. Theorem 10 precisely characterizes the
behavior of this as a function of _; thus, it determines the optimal value of _ that
minimizes Φn .

Remark 26 (High-SNR Regime) Here, we analyze the probability of support re-
covery at SNR � 1 (eqv. f2 → 0). In this regime, _crit takes a simple form: if
X < 1, then _crit = &−1( X−d

2(1−d) ) where &
−1 is the inverse Q-function, otherwise,

_crit = 0 [129, Sec. 8]. Let us first examine the behavior of “off-support" recovery
probability. When f2 � 1, the formula of Theorem 10 reduces to the following
simpler one:

lim
?→∞

Φn,off( V̂) ∼ 1 − 2&
(
_̂ + n

f

√
X − � (_̂)

)
, (3.6)



82

λ

0 0.5 1 1.5 2 2.5 3

P
ro

b
. 

o
f 

S
u

c
c
e

s
s
fu

l 
R

e
c
o

v
e

ry

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Probability of Successful On and Off Support Recovery

On Support

Off Support

λ
Crit

Figure 3.2: Probability of successful detection of support and off support entries as a function of
_ for two different problem setup. The theoretical prediction (Solid and dashed lines) comes from
Theorem10. For the simulations (Squares and Circles), we used ? = 256, SNR= 0.5, n = 10−3,
d = 0.1 and the data are averaged over 5 independent realizations of problem. For solid lines and
squares and circles, we used X = 0.8, while for dashed lines and empty squares and circles X = 1.2.

for _ such that X > � (_̂), _̂ = max{_, _crit}, and

� (_) = d · E[(� − _)2
��� > 0] + (1 − d) · E[[2(�, _)] .

Several remarks are in place here. First, when the threshold n does not scale
with f and f → 0, then naturally the probability converges to one. The same is
true as _ grows large, which is again expected. Finally, the term � (_) is known
as the “Gaussian squared distance" in the relevant literature of noiseless linear
inverse problems and admits insightful geometric interpretations [6, 73, 129]. In
particular, min_>0 � (_) is known to be an asymptotically tight approximation of the
exact phase transition threshold of ℓ1-minimization [6, 153]. This can also be seen
in (3.6) which requires X > min_>0 � (_). Also, the formula is valid for _ such that
X > � (_̂).

For the on-support probability, we can show that it behaves as lim?→∞Φn,On( V̂) ∼
P

{
| ˆ̂� + -0 | ≥ n + _̂ ˆ̂

}
for ˆ̂ = f/

√
X − � (_̂). Similar remarks can be made.
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Generalizations
The results of Section 3.2 on Lipschitz-like performance metrics for the LASSO
extend to general regularized M-estimators. We outline the result here and defer a
detailed treatment to the extended version of the paper. Regularized M-estimators
solve

V̂ = arg min
V
L(y − XV) + _ 5 (V), (3.7)

where L : R= → R is a proper continuous convex loss function and 5 a convex
regularizer. Clearly, the LASSO is an instance of (3.7) for L(·) = ‖ · ‖2 and
5 (·) = ‖ · ‖1. Depending on the noise distribution and on the particular structure of
V0, different choices for the loss and regularizer function might be more appropriate
[165]. Here, for simplicity we focus on separable functions of the form L(x) =
(1/?)∑=

8=1 ℓ(x8) (wlog, ℓ(0) = 0) and 5 (x) = (1/?)∑?

8=1 5̃ (x8) for non-negative
convex functions 5̃ , ℓ : R × R. Also, extending on the assumption of Section 3.1
we assume that the entries of the noise vector z are sampled iid from a distribution
?/ (not necessarily Gaussian). We only require the (rather mild) assumptions
E

[
|ℓ′(2� + Z) |2

]
< ∞ and E

[�� 5̃ ′(2� + -0)
��2] < ∞ (see [165, Sec. 4] for details).

where the expectations are taken over / ∼ ?/ , -0 ∼ ?- and �,� ∼ N(0, 1). Here,
5̃ ′(G) = supB∈m 5̃ (G) |B | where m 5̃ (G) is the subdifferential of 5̃ at G, and similar for
ℓ′.

We also need to recall the notion of the Moreau Envelope function. For a convex
function q : R→ R, theMoreau Envelope function of q at G with parameter g > 0 is
defined as e 5 (G; g) := minH 1

2g ‖G−H‖
2+q(H)Wedenote the optimal value of H above

as proxq (G, g). With these, [165, Thm. 4.1] characterizes the ℓ2-reconstruction error
of general regularized M-estimators as follows. There exists a unique U for which
it holds in probability that lim?→∞

1
?
‖ V̂ − V0‖2 = U2, where U is the solution to the

following system of four equations in four unknowns (if such a solution does not
exist then U = 0):



U2 = E

[(
-0 − prox 5 (

W

a
� + -0; _

a
)
)2

]
W2 = XE

[ (
e′
ℓ
(U� + Z; ^)

)2
]

aU = XE
[
� · e′

ℓ
(U� + Z; ^)

]
^W = E

[
� · prox 5 (

W

a
� + -0; _

a
)
]

(3.8)
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Imposing an extra requirement that the loss function be strongly convex and fol-
lowing similar steps as in the proof of Theorem 9 (see Section 3.3), we extend
the result to Lipschitz performance metrics. In particular, for any Ψ satisfying
Assumption 3 it holds in probability lim?→∞Ψ( V̂ − V0) = Γ 5 (W/a, _/W), where
(U, W, a, ^) are as in (3.8) and the function Γ 5 : R>0 × R>0 → R is defined as
Ψ(-0 − prox 5 (^� + -0;_) %−→ Γ 5 (^, _).

3.3 Proof Outline
Our analysis is based on the recently developed ConvexGaussianMin-max Theorem
(CGMT) framework [165, 171]. The following lemma specializes the general result
of [165, Thm. 6.1] to the LASSO method in (3.1).

Theorem 11 (CGMT for LASSO) Let X, z, V0 be as in Section 3.1, g ∈ R=, h ∈
R? have entries iid N(0, 1) and all be independent of each other. Consider the
optimizations:

min
w

1
√
?
‖z − Xw‖2 +

_

?
‖V0 + w‖1, (3.9)

min
w

max
0<W≤1

W
‖g‖2√
?

√
‖w‖22
?
+ f2 − Wh)w

√
?
+ _
?
‖V0 + w‖1. (3.10)

Denote q(g, h) the optimal cost of the latter. Further, for an open set S ⊂ R=

denote qSc (g, h) its optimal cost when the minimization over w is now constrained
over w ∈ S. Suppose there exists constants q < qS such that q(g, h) %−→ q

and qSc (g, h) %−→ qSc . Then, for any minimizers wΦ and wq of (3.9) and (3.10),
respectively, the events {wq ∈ S} and {wΦ ∈ S} occur with probability 1 in the
limit of ? →∞.

The minimization in (3.9) corresponds to the LASSO, only now the optimization
variable is the error vector w := V − V0. To see how the theorem is applicable,
suppose we are interested in showingΨ( V̂−V0)

%−→ U∗ (eqv. Ψ(wΦ)
%−→ 3∗) for some

constant 3∗. Then, we need to apply Theorem for the setSΨ := {w
��|Ψ(w)−3∗ | < X},

where X > 0 is an arbitrarily small constant. The theorem suggests that 3∗ is the
converging limit of Ψ(wq), the solution to the Auxiliary Optimization (AO) in
(3.10). The strategy becomes now clear [165]. First, we need to analyze the (AO)
problem in (3.10) and find the converging limit of Ψ(wq), say 3∗. The second step
consists of showing that the objective function of the (AO) strictly increases when
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w is constrained such that Ψ(wq) is far from 3∗. Of course, the premise of this
machinery is that these two tasks are much simpler to complete for the (AO) rather
than for the original LASSO minimization [165]. The basics of these steps are
outlined in the next two sections; details are deferred to the extended version of the
paper.

Proving Theorem 9
It is shown in [164] that wq,8 = V0,8 − [(^(g, h)h8 + V0,8, ^(g, h) ·_) where ^(g, h) :=√
U2(g, h) + f2/

√
X and U(g, h) can be expressed as the minimizer of a random

optimization problem (e.g. [164, eqn. (46)]). Moreover, it is shown in [164] that
U(g, h) converges to U as this is defined in Lemma 11. Conditioning on the h.p.
event that U(g, h) → U, we show that Ψ(wq,8)

%−→ Ψ(V0 − −→[ (^h + V0, ^ · _)). But
the latter term converges to Γ(^, _) by assumption, thus showing that the formula of
Theorem 9 holds for the solution of the (AO) problem. It is also worth mentioning
that the above argument shows the entries of wq to be asymptotically iid.

Next, we need to verify that the objective function of the (AO) strictly increases
when w is such that |Ψ(w) − Γ(^, _) | > 2X > 0. First, if w is such, then using the
result of the previous section it follows that |Ψ(w) − Ψ(wq) | > X with probability
approaching 1. Then, the Lipschitzness property ofΨ implies that ‖w−wq‖2/

√
? >

X/!. The desired conclusion then follows by showing that the objective function
in (3.10) is strongly convex in w and recalling optimality of wq. In particular,

W‖g‖2
√
‖w‖22/= + f2 is strongly convex with coefficient g/? for some constant

g > 0 (independent of p). Thus for the objective function of the optimization in
(3.10) (say � (·)) it holds � (w) ≥ � (wq) + �

‖w−wq ‖22
?

≥ � (wq) + gX
!
.

On the Support Recovery
The two metric defined in (3.2) do not satisfy the Lipschitz property. Nevertheless
the proof of Theorem 10 follows from Theorem 9 when combined with a weak-
convergence argument. Let k : R → R be arbitrary !-Lipschitz function. By
Theorem 9, (1/?)∑8 k(wΦ,8)

%−→ Distk (^, _). Since this holds for all Lipschitz
functions, the empirical probability measure of wΦ converges [25, Thm. 25.8].
Hence, it follows (almost identically as in [25, Thm. 19]) thatΨn,>=

%−→ Γ(^, _), where
Γ as in Assumption 3 for the function Ψ(w) = 1/: ∑:

8=1 1{|w8−V0,8 |≥n}. Simplifying
the “Γ(^, _)-term" yields the statement of Theorem 10.
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C h a p t e r 4

SPARSE COVARIANCE ESTIMATION FROM QUADRATIC
MEASUREMENTS: A PRECISE ANALYSIS

The problem of covariance estimation1 arises in many areas of modern statistics and
information processing systems such as finance [5], when the underlying signal is
high-dimensional, and/or thememory or computation power is limited. Therefore, in
the current big data era, finding an efficient algorithm (in terms of sample complexity
and memory requirements) to accurately estimate the covariance matrix is of great
importance.

Recently, in [44, 48, 145], a framework for covariance estimation using phaseless,
or energy measurements has been proposed. This type of measurements find ap-
plications in covariance estimation of data streams [44, 120], spectrum estimation
of stochastic processes from energy measurements, noncoherent subspace detection
from energy measurements [145], and others. Mathematically, given an unknown
covariance matrix �0 ∈ R?×?, the problem reduces to estimating �0 from a number
of< quadratic samples of the form aT

8
�0a8+I8, 8 = 1, . . . , <. Here, themeasurement

vectors a8’s are given and I8’s represent noise. [44, 48, 145] provide different convex
and non-convex optimization algorithms for the recovery of �0. in this section, we
provide a convex optimization formulation that is similar to that of [44], and pre-
cisely characterize its performance. Moreover, in the noiseless setting, our analysis
framework provides the exact phase transition, i.e., the necessary and sufficient
number of measurements for perfect recovery of the underlying covariance matrix.
We are particularly interested in analyzing the underdetermined case, where we have
= <

?(?+1)
2 measurements and = denotes the number of variables. In such settings,

the problem is ill-posed and the recovery is not possible unless the covariance matrix
belongs to a low-dimensional set.

In many practical settings, the covariance matrix possesses certain structures. For
instance, one common assumption is that the pairwise correlation has small mag-
nitude for many pairs of entries of the underlying random vector, and hence, the
covariance matrix has many (near)zero entries. in this section, we focus on the
problem of recovery of a sparse covariance matrix. The convex optimization formu-

1This chapter in mainly based on the work in [2]
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lation includes a regularization term that only enforces sparsity on the non-diagonal
entries of the matrix. We then analyze the error performance of the solution. An
order-wise analysis of a similar convex estimator for this problem exists in the works
of [44, 48]. However, they provide upper bounds on the error of the estimated covari-
ance matrix, with order-wise phase transitions. The key contribution of this section
is to precisely characterize the error in the estimate and to present the necessary and
sufficient number of measurements required for perfect recovery of the covariance
matrix. In practice, having a precise theoretical understanding is extremely useful
in designing the proper measurement settings.

The organization of this chapter is as follows. In Section 4.1 we introduce the
main notations and mathematically set up the problem. Section 4.2 includes the
main result of the paper followed by discussions and numerical simulations. In this
section, we also present a major outcome of our main theorem which is the the
characterization of the phase transition in the noiseless setting. Finally, Section 4.3
concludes the paper by describing the key steps of the proof of our main theorem.

4.1 Problem Setup
Notations
We gather here the basic notations that are used throughout the paper. Bold lower
letters are reserved for vectors and upper letters are used for matrices. For a vector
v, E8 denotes its 8th entry and ‖v‖ is its ℓ2-norm. (·)T is used to denote the transpose.
- ∼ ?- implies that the random variable - has a density ?- , E[-] denotes
its expected value. For a sequence of random variables {- (8)}8∈N , - (8)

P→ �

indicates convergence in probability, i.e., lim
8→∞
P{|- (8) − � | > n} = 0 . N(`, Σ)

denotes the multivariate Gaussian distribution, with mean ` and covariance matrix
Σ. I3 represents the identity matrix in dimension 3. S? refers to the set of ? × ?
symmetric matrices. For X ∈ S?, ‖X‖� , Tr(X) and ‖X‖0, respectively represent
the Frobenius norm, the trace, and the number of non-zero entries. We also define
‖X‖−1 =

∑
8≠ 9 |-8, 9 | as the ℓ1-norm of the non-diagonal entries of matrix X. The

function k : S? → R is said to be Lipschitz if |k(X) − k(Y) | ≤ !
?
‖X − Y‖� , for

some constant ! > 0. For a function 5 : S → R, we define its proximal operator as
following,

Prox 5 (v, C) = arg min
x∈S

1
2C
‖x − v‖2 + 5 (x), ∀v ∈ S, C ∈ R+.
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Setup
Following [44], we consider the problem of recovering an unknown symmetric
matrix �0 ∈ S?, from = (noise-corrupted) quadratic measurements of the form,

H8 =
1
?

a)8 �0a8 + I8 =
1
?
Tr

(
�0a8aᵀ8

)
+ I8, 8 = 1 . . . , = , (4.1)

where {a8 ∈ R?}=8=1, is the set of knownmeasurement vectors, and z = [I1, I2, . . . , I<]T ∈
R= is the noise vector. Throughout this section, for our analysis purposes, we assume
that a8’s are independently drawn from the Gaussian distribution with mean zero
and covariance matrix I?, the noise vector is independent of all the measurement
vectors, and has independent zero mean entries with variance f2. The normal-
ization 1

?
in (4.1) ensures that the measurement matrices a8aᵀ8 are approximately

unit-(Frobenius)norm.

Our result is asymptotic which assumes a fixed oversampling ratio, X := 2=
?(?+1) ∈

(0,∞), while ? →∞. Our interest is in studying the case where X < 1, in which the
problem is ill-posed. Therefore, one needs to efficiently exploit the low-dimensional
structure of the underlying covariance matrix, �0. Here, we focus on the setting
where the covariance matrix is sparse, i.e., it has a few non-zero entries and define
^ =

‖S? ‖0
?2 as the sparsity factor. This happens in practical applications when a

large number of entries have small pairwise correlations. We analyze the following
convex optimization formulation for recovery of a sparse covariance matrix,

�̂ = arg min
�∈S?

1
2=

=∑
8=1

(
H8 −

1
?

a)8 �a8
)2
+ _

?2 ‖�‖
−
1 . (4.2)

Recall from our notations in Section 4.1, the regularization term, ‖�‖−1 , enforces
sparsity only on the non-diagonal entries of �, as the diagonals of a covariance
matrix consist of positive entries. Due to the positive-definiteness of the covariance
matrix, researchers often restrict the optimization program to the cone of positive
semidefinite matrices [36, 44]. Here, we relax that constraint and let the feasible set
contain all symmetric matrices. This relaxation not only simplifies the optimization
program (by removing some constraints), but at the same time we will show that,
when _ is tuned properly, it will provide a positive-definite estimate for �0, which
indeed is equal to the solution of the semidefinite program.

Contribution
The optimization (4.2) resembles the well-known LASSO problem in the litera-
ture [176]. When the measurement matrix in LASSO is Gaussian, there exist
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powerful tools such as CGMT [165] and AMP [62] that could precisely analyze its
performance. For example, the CGMT framework has been successfully applied
to analyze the performance in a number of applications including analysis of regu-
larized M-estimators [165], massive MIMO [1, 166, 174], and PhaseMax in phase
retrieval[54, 142]. Roughly speaking, for a convex optimization problem over an
instance of a Gaussian process, the CGMT associates a secondary optimization with
similar performance yet often much simpler to analyze.
Unfortunately, these frameworks do not apply to (4.2), because the measurement
matrix is a8aᵀ8 whose entries are neither Gaussian nor independent. To provide a
precise analysis, we introduce a novel comparison lemma, that associates an equiv-
alent optimization with our initial optimization problem (see Lemma 12). The
equivalent optimization has i.i.d. Gaussian entries in its measurement, which makes
it suitable to analyze via CGMT. Lemma 12 claims that under some conditions,
the performance of these two optimizations is asymptotically the same. Therefore,
analysis of the equivalent optimization via CGMT, characterizes the performance
of our initial problem. To the best of our knowledge, this is the first work that
introduces an equivalent optimization to analyze the performance of the problem of
signal reconstruction from quadratic Gaussian measurements.

4.2 Main Results
The goal is to analyze the performance of our estimate, �̂ in (4.2). Let q(·)
be a function which is Lipschitz and either convex or concave. Popular convex
instances include q(X) = 1

?2 ‖X‖1, and q(X) = ‖X‖�/?, and a concave one is
q(X) = _min(X). Our result is asymptotic in the sense that given a sequence of
problem instances indexed by ?,

(
�(?)0 , {a(?)

8
}=
8=1, z

(?) )
?∈N, it characterizes the error

performance as the limiting behavior of the sequence {q(�̂(?) − �(?)0 )}?∈N. To
streamline the notations, we often drop the superscript (?) when understood from
the context.

Let Σ0 = [f8, 9 ] ∼ ?�0 , where ?�0 denote the distribution of the underlying co-
variance matrix, which also incorporates the sparsity structure of �0. For instance,
one can assume that the off-diagonal entries of �0 are non-zero with probability
^ ∈ [0, 1], so that the average sparsity of the resulting covariance is ^ · ?(? − 1). It
will be observed in Theorem 12, that ?�0 plays a role in the performance of (4.2)
via the summary functionals �_ (·, ·), �_ (·, ·), and Φ_ (·, ·), as follows.

Assumption 4 Let �0 ∼ ?�0 , and H = [ℎ8, 9 ] such that ℎ8, 9 = ℎ 9 ,8
i.i.d.∼ N(0, 1),
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for 1 ≤ 8 ≤ 9 ≤ =. We say that Assumption 4 holds, if there exist functions
�_ : R × R+ → R+, �_ : R × R+ → R, and Φ_ : R × R>0 → R such that for all
B ∈ R and g > 0,

1
?2 ‖Prox‖·‖−1

(
�0 + BH, _g

)
− �0‖2�

P−→ �_ (B, g),

1
?2 Tr

(
H · Prox‖·‖−1

(
�0 + BH, _g

) ) P−→ �_ (B, g), and,

q

(
Prox‖·‖−1

(
�0 + BH, _g

)
− �0

)
P−→ Φ_ (B, g), (4.3)

where the convergence is in probability, over the distributions of �0 and H.

Later in this section, we argue that Assumption 4 holds under very generic settings,
and the the functions, �_, �_, andΦ_, capture the role of_ and ?�0 in our analysis of
error performance. We now present the main result of the paper which characterizes
the limiting behavior of q(�̂ − �0) in terms of X and f.

Theorem 12 Let Assumption 4 holds, and �̂ ∈ S? denote the solution to the convex
optimization (4.2), given = quadratic observations of the form (4.1). Then, as
? →∞,

q(�̂ − �0)
P−→ Φ_

(√
f2 + 2U★2

2X
,

√
f2 + 2U★2

2V★

)
, (4.4)

where (U★, V★) is the unique solution to the following system of non-linear equations
with two unknowns, U and V,

U2 = �_

(√
f2+2U2

2X ,
√
f2+2U2

2V

)
,

V =
√
f2 + 2U2 −

√
2
X
· �_

(√
f2+2U2

2X ,
√
f2+2U2

2V

)
,

(4.5)

and the functions �_ (·, ·) and �_ (·, ·) are defined in (4.3).

A few remarks are in place regarding Theorem 12:

[Frobenius Norm of the Error] Here, we show that the parameter U★ in the
Theorem 12, represents the limiting value of the Frobenius of the error of (4.2),
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1
?
‖�̂ − S? ‖� . Since, by choosing q(X) = 1

?2 ‖X‖2� , from the definitions of Φ_ (B, g)
and �_ (B, g) in (4.3), we get

Φ_ (B, g) = �_ (B, g). (4.6)

Therefore, applying Theorem 12, the error performance can be computed as follows,

1
?2 ‖�̂ − �0‖2�

?
−→ Φ_

(√
f2 + 2U★2

2X
,

√
f2 + 2U★2

2V★

)
(4.7)

= �_

(√
f2 + 2U★2

2X
,

√
f2 + 2U★2

2V★

)
= U★

2
,
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Figure 4.1: Performance of the optimization (4.2) with respect to q(W) = ‖W‖�/?,
as a function of _. Circles represent numerical simulations, and solid lines are
theoretical predictions from Theorem 12. For simulations, we used ? = 120, X = .8,
E[I2

8
] = 1, and three choices of sparsity factor; ^ = .05 in red, ^ = .1 in blue, and

^ = .2 in black. The results are averaged over 80 random realizations of data. For
_ > _+, the output of (4.2) will be positive definite.

where the last two equalities come from (4.6) and (4.5). Figure 4.1 demonstrates
that the empirical result well matches the theoretical result derived from Theorem 12
. For our numerical simulations, the underlying covariance matrix, �0, is chosen to
be a (uniformly) subsampled symmetric Gaussian matrix added by a multiple of the
identity matrix (such that _min(Σ0) = 0.1 and ^ = ‖S? ‖0

?2 ).



92

[Tuning _] In order to guarantee that the solution of (4.2) is positive definite, we
need to tune the regularization parameter _. Here, we show that if _ is chosen such
that the matrix M̂ := Prox‖·‖−1 (�0 + B★ ·H, _g★) is positive definite, then Ŝ will also

be positive definite. Here B★ =
√
f2+2U★2

2X , and g★ =
√
f2+2U★2

2V★ , with (U★, V★) being
the solution of (4.5).

To show this, we define the performance measure of optimization (4.2) to be the
concave Lipschitz function q(X) = 1√

?
_min(X + �0). Applying Theorem 12 yields,

1
√
?
_min(Ŝ) −

1
√
?
_min

(
Prox‖·‖−1

(
�0 + B★ ·H, _g★

) ) P−→ 0 ,

As a result, when _ is tuned properly such that M̂ := Prox‖·‖−1 (�0 + B★ ·H, _g★) � 0,
then Ŝ would be a positive definite matrix.

Computing the appropriate range of _ for an arbitrary distribution of ?�0 is beyond
the scope of this thesis. For the case where �0 is chosen as the addition of a
subsampled Gaussian plus a multiple of identity, using results from random matrix
theory, we can show that _ > � log( ?

_min (�0) ), where � is a constant independent of
? and �0, is sufficient for Ŝ being PD. Figure 4.1 also specifies the range of _ under
which the estimate Ŝ is positive definite, for three choices of the sparsity factor, ^.

Phase Transition
Using the result of Theorem 12, we are able to characterize the phase transition of our
convex optimization program, which provides us with the necessary and sufficient
number of measurements for the perfect recovery of the underlying covariance
matrix. Here, we assume that the measurements are noiseless (z = 0). The goal
is to identify Xrec = 2=rec

?(?+1) that indicates the exact phase transition, such that , as
? →∞, X > Xrec is the necessary and sufficient condition for perfect recovery of �0.
We state the following corollary (without proof) that characterizes the exact phase
transition of the the optimization program (4.2):

Corollary 4 Consider the optimization program (4.2), given = noiseless measure-
ments (z = 0) of the form (4.1). For a fixed oversampling ratio X = 2=

?(?+1) and the
sparsity factor ^ = ‖S0‖0

?2 , the optimization program (4.2) perfectly recovers the true
covariance matrix (in the sense that lim?→∞ P{| |�̂ − �0 | | > n} = 0, for any fixed
n > 0), if and only if X > Xrec, where Xrec is the unique solution of the following



93

0.1 0.2 0.3 0.4 0.5 0.6

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Theory

Figure 4.2: Phse transition regimes for the optimization (4.2), in terms of the
oversampling ratio X = 2=

?(?+1) , and the sparsity factor ^. Solid line comes from
(4.8). For the empirical results, we used ? = 40. The results are averaged over 20
independent realization of measurement vectors.

equation,

X &−1
(
2X − ^
2 − 2^

)
= (1 − ^)i

(
&−1

(
2X − ^
2 − 2^

))
. (4.8)

Here, i(G) = 4−G
2/2
√

2c
, and &(G) =

∫ ∞
G
i(I)3I, represent the probability density and

the tail distribution of the standard normal distribution, respectively.

Corollary 4 specifies that the optimization (4.2) achieves perfect recovery w.p.a. 1,
if and only if = > Xrec · ?(? + 1)/2. Note that Xrec is only a function of the sparsity
factor ^, and is independent of other statistics of S0. Figure 4.2 illustrates validity
of the Corollary 4. For numerical simulations, we used the same model to general
�0, as for the Figure 4.1. As observed in the figure, the error becomes zero only in
the regime where = > Xrec · ?(? + 1)/2.

4.3 Proof Outline
The complete proof of this theorem can be found in the (15) and (16).
Here, we outline the fundamental ideas behind the proof of Theorem 12. Consider
the optimization problem (4.2). To get a direct handle on the error term, it is
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convenient to rewrite the optimization in terms of a new variable, W := Σ − �0.
Thus, (4.2) is equivalent to the following,

min
W∈S?

1
2=

=∑
8=1

(
I8 −

1
?
Tr(WA8)

)2
+ _

?2 ‖W + �0‖−1 , (4.9)

where A8 = a8a)8 , and the goal is to analyze q(Ŵ). To have a simpler notation, we
rewrite the optimization in a vectorized format. Let,

A =


Vecᵀ(A1)

...

Vecᵀ(A<)

 , w = Vec(W), x0 = Vec(�0) , (4.10)

where Vec(X) is the vectorization of X and Mat(x) is its inverse transform. For a
vector x, we also define ‖x‖−1 = ‖Mat(x)‖−1 . Using these notations, (4.9) can be
rewritten as

Ψ(A) = min
Mat(w)∈S=

k(A,w) = 1
2=
‖z − 1

?
Aw‖2 + _

?2 ‖w + x0‖−1 ,

Ŵ(A) = Mat
(
arg min

Mat(w)∈S?
q(A,w)

)
. (4.11)

We proceed onward by analyzing the optimization (4.11) which is similar to the
popular LASSO problem. As stated before, the main bottleneck in analyzing this
optimization is the fact that the entries of A are not i.i.d. Gaussian. Instead, we
prove the desired indirectly, via the following two steps. First, we show that the
properties of Ψ(·) are preserved asymptotically, as we replace A, with a carefully-
designed Gaussian matrix B with independent entries. In other words, Ŵ(A) and
Ŵ(B) have the same asymptotic performance. Consequently, we utilize the CGMT
framework to analyze Ŵ(B). Leaving some technical details for section (15) and
(16), the mechanics are easy to explain and provide valuable intuition regarding our
approach.
Step 1. We start by introducing some new notations. Let G8, for 8 = 1, 2, . . . , =,
be a symmetric matrix whose diagonal and (upper) non-diagonal entries are drawn
independently from distributions N(1, 2) and N(0, 1), respectively. Also, define,

B =


Vecᵀ(G1)

...

Vecᵀ(G=)

 ∈ R
=×?2

. (4.12)

The following comparison lemma forms the heart of our proof, allowing us to have
the same performance replacing A with B in (4.11).
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Lemma 12 Consider the functionsΨ(.) and Ŵ(.) defined in (4.11) and the random
matrices A and B from (4.10) and (4.12). Let the assumptions in Theorem 12 hold
and both parameters k(W(A)) and k(W(B)) converge in probability as ? → ∞.
Then, k

(
W(A)

)
− k

(
W(B)

) P−→ 0.

Lemma 12 essentially states that replacing matrices a8aT
8
, for 8 = 1, 2, . . . , =, in

the optimization (4.9) with Gaussian matrices G8 does not alter the performance
measure. It is worth noting that the stated result is only valid when all the stated
conditions hold. We defer the technical details in the proof to (15) and (16), but
once it is established we only need to analyze the performance of W(B).
Step 2. We utilize the CGMT framework to analyze the performance of W(B).

Lemma 13 Let (U★, V★) be the unique solution to the system of equations (4.5),
then as ? →∞, we have

q(W(B)) P−→ Φ

(√
f2 + 2U★2

2X
,

√
f2 + 2U★2

2V★

)
. (4.13)

To show this lemma we need to apply the CGMT. We refer the interested reader
to section V.D. of [165]. So in the next section, we will focus on the proof of the
Lemma 12.

Proof of Lemma 12
Proving that k(Ŵ(A)) and k(Ŵ(B)) converge to the same value is one step away
from proving that for every � > 0�������� min

Mat(w)∈S?
1

2?2 ‖w‖2≤�

k(A,w) − min
Mat(w)∈S?

1
2?2 ‖w‖2≤�

k(B,w)

��������
?
−→ 0 . (4.14)

Once we have this lemma, if 1
2?2 ‖Ŵ(A)‖2� and 1

2?2 ‖,̂1(B)‖2� converge to different
values B1 and B2, choosing � = (B1 + B2)/2 in (4.14) results in a contradiction.
Thus 1

2?2 ‖W(A)‖2� and 1
2?2 ‖W(B)‖2� converge to the same value. Then, using

Lipschitsness and convexity of q(.) and the same set of arguments as in the Section
IV-B of [4] shows that k(W(A)) and k(W(B)) converge to the same value.
It remains to prove (4.14). We define

[(G) =

|G | if |G | > 1
3
8 +

6
8G

2 − 1
8G

4 o.w.
. (4.15)
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[(.) can be also applied to matrices, where it acts element-wise. It is twice differ-
entiable and convex. Besides, C · [(X/C) is jointly convex in X and C > 0, since it is
the perspective function of [(·). Next, we introduce a new optimization,

ΨC,n (A) = min
W∈S?

1
2=
‖z − 1

?
Aw‖2 + _C

?2 · [
(w + x0

C

)
+ n

2?2 ‖w‖
2 . (4.16)

This function is convex in C and concave in n . Furthermore,

inf
C>0

sup
n>0
−�n + ΨC,n (A) = min

W∈S?
1

2?2 ‖w‖2≤�

k(A,w) . (4.17)

Thus, if we show that ��ΨC,n (A) − ΨC,n (B)�� ?
−→ 0 , (4.18)

we can apply Lemma 14 on (4.17), twice, to prove (4.14). The key ingredient of
proving (4.18) is the Lindeberg replacement principle and the strong convexity of
the regularizer in (4.16). We omit the details due to the limited space, but such
similar results has been shown in [130, 131]. We now present lemma bellow which
is also known as the convexity lemma in the literature [136].

Lemma 14 Consider a series of convex functions 5? : R>0 → R that converges
point-wise to the function 5 : R>0 → R. Besides, there exists " > 0 such
that for all G > " , we have 5 (G) > infB>0 5 (B). Then 5 (.) is also convex and
infB>0 5? (B)

?
−→ infB>0 5 (B).
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C h a p t e r 5

SCALABLE COVARIANCE ESTIMATION IN GRAPHICAL
MODELS WITH PROVABLE GUARANTEES

5.1 Introduction
variance matrices play a fundamental role in behavioral analysis of multivariate
randomvariables in a variety of fields including finance and economics, engineering,
and environmental and physical sciences. In modern such inference applications,
one is faced with the problem of estimating covariance matrices associated with
data, of a very large dimension ?, from a few (and potentially less than ?), number
of observations =. Also, it is often the case that the true unknown matrix possesses
some low-dimensional structure. This might be a property directly associated
with the covariance matrix (examples including sparse or approximately low-rank
covariance matrices), but it can also arise in an indirect form. For example, a
very well-encountered structural model, which is relevant to graphical models for
Gaussian random variables, is one in which the inverse of the covariance matrix
(rather than itself), also termed the precision matrix, is sparse. Here, the sparsity
pattern of the concentration matrix implies the structure of the associated graph in
the Gaussian Markov Random Field (GMRF), and is thus critical to estimate.

Overall, modern inference procedures for covariance estimation need to have the
following favorable properties:

• on the statistical/theoretical side, it is important that they provably reveal
the underlying structures of the true desired matrices (such as the support
pattern of the precision matrix) while having access to only few number of
observations.

• on the computational side, it is critical that their computational complexity
scaleswith the increasing problemdimensions, thus allowing to solve practical
instances in which = and ? are on the range of (at least) a few hundrends. In
a similar flavor, algorithms that allow performing operations in a parallel
fashion on different machines thus speeding up the total performance are also
desirable.
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in this section, we consider the classical problem of estimating the sparse preci-
sion matrix of a multivariate zero-mean random variable, given = iid observations
{x8}8=1,...,= ∈ R?. While this problem has attracted lots of attention over the past
decade or so, and several algorithms have been proposed and analyzed in the relevant
literature, it appears that none of them enjoys both the computational and the the-
oretical features discussed above. We propose a novel algorithm that combines all
these; specifically, it (i) is scalable, (ii) is parallelizable, and (iii) provably estimates
the desired structure of the underlying graphical model from only a few number of
observations.

Background and Motivation
We consider the problem of estimating the covariance matrix Σ of a multivariate
zero-mean random variable, given = i.i.d. observations {x8}8=1,...,= ∈ R?. We
focus on the regime of high-dimensions in which both = and ? are large. Of
particular, interest is the case of limited number of observations = � ?. In this
high-dimensional setting the classical sample covariance estimator R =

∑=
8=1 x8xT

8

has been shown to perform poorly[92][93]. Besides, it cannot accommodate for
any prior knowledge on the structure of Σ. Many different kinds of structures have
been considered in the literature. For example, for the case of banded covariance (or
concentration) matrices, where the entries decrease as a function of their distance
from the diagonal, popular estimators include banded estimators [195][24][32], and
shrinkage estimators [102][76].

in this section, we focus on a widely-studied model where the concentration matrix
Σ−1 is sparse. This model shows up in graphical models for Gaussian random
variables. It is classically known that in graphical models, the sparsity pattern of the
concentration matrix implies the structure of the associated graph in the Gaussian
Markov random field (GMRF).

ℓ1-penalized log det-optimization. A popular approach to estimate a sparse preci-
sion matrix is via solving the following convex optimization program:


̂ = arg min

�0

Tr(
R) − log det(
) + _‖
−‖1, (5.1)

where recall that R := 1
=

∑=
8=1 x8xT

8
is the sample correlation matrix, and ‖
−‖1 =∑

8≠ 9 |
8 9 | is the ℓ1-norm of the off-diagonal entries of its argument. When the
observations are generated from a Gaussian distribution, then the objective function
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in (5.1) is nothing but the ℓ1-penalized (negative) log-likelihood function. The
ℓ1-regularization is known to promote sparse solutions under several settings [68].

On the analysis side, taking advantage of the convex nature of (5.1), the estimator

̂ has been well-analyzed in the literature and it has been proved to enjoy favorable
properties. When the x8’s are Gaussian, Rothman et al. [138] showed, under

standard assumptions on Σ, that ‖
̂−Σ−1‖2
�
≈ O(

√
(B+?) log ?

=
), where B denotes the

number of non-zero non-diagonal entries in the concentration matrix; this implies
consistency in a Frobenius-norm sense, as long as = > O((B + ?) log ?). Later in
2008, Lam and Fan [100] further showed that (5.1) additionally recovers the sparsity
pattern of the concentration matrix as long as B = O(√?) and = = Ω((B + ?) log ?).
Since then, Ravikumar et. al. [134] have extended these results beyond Gaussians
to a general class of random variables with appropriate tail bounds (which includes
sub-Gaussians and random variables with bounded moments), under additional
coherence assumptions on Σ. Importantly, they proved consistency with respect to
the stronger notion of the max-norm ‖
̂ − Σ−1‖max = max8, 9 | (
̂ − Σ−1)8, 9 |.

These rich set of performance guarantees apply to the solution 
̂ of the convex
optimization (5.1). However, the computational task of obtaining (n-close approx-
imations of) 
̂ via standard generic convex solvers, such as interior point methods
and other second-order-methods [28], does not scale well with the problem dimen-
sions, which makes solving (5.1) prohibitive in any practical scenario where ? is on
the order of even a few hundreds!

GLASSO. The computational challenge of scaling theminimization in (5.1), has led
to significant research activity on deriving fast alternative algorithms [49][199][75].
A very popular method towards this direction is the Graphical LASSO (GLASSO)
[75]. GLASSO is an iterative algorithm, which starts with an initialization (say)
�̄, and at each step, it solves a specific LASSO problem (aka ℓ1-regularized least-
squares) with the goal of updating a specific row/column of this matrix. After ?
iterations the entire matrix is updated once and the process continues until con-
vergence (in the sense that the updated matrix remains in some n-neighborhood of
the previous estimate). While the details of the updates are not important for our
discussion, it should be emphasized that solving LASSO problems can be done very
efficiently using off-the-shelf solvers (e.g. [74]). Hence, GLASSO is scalable and
is used in practice, instead of (5.1).

Unfortunately, despite its obvious algorithmic advantages when compared to (5.1),
no matching theoretical guarantees for GLASSO exist in the literature. This is
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despite the fact that GLASSO can be interpreted as a block-wise coordinate descent
approach for solving (5.1). For example, the answers to the following questions are
unknown: “What is the rate of convergence of GLASSO?", or “If you were to run the
algorithm for (say) ? steps (during which the entire initial matrix �̄ is updated once),
how good an estimate is obtained?". It should also be mentioned that more recent
proposed extensions of GLASSO such as the P-GLASSO and DP-GLASSO [111],
although apparently faster, still suffer by the lack of any analytical guarantees on
their rate of convergence and on the performance after a fixed number of iterations.

Adding to this, note that even though GLASSO is scalable, it is not parallelizable
since solving the LASSO at each iteration depends on the previous one.

Contribution
In this chapter, we propose a new algorithm that combines the virtues of both
GLASSOand of the convex estimator in (5.1), i.e., it is fast and scalablewith problem
dimensions, and it provably attains the same order-wise statistical guarantees as
(5.1). Moreover, it involves solving only ? independent LASSO problems which
can be performed on different machines; thus it is also parallelizable.

The algorithm starts with a shrinkage estimator �̄ of Σ1. Then, it solves ? indepen-
dent LASSO problems. Each LASSO problem uses �̄ to obtain an estimate of the
8th row/column of the concentration matrix. These ? estimates are combined in the
last step to obtain a final estimate 
̂ of the concentration matrix 
 = Σ−1. We give
the details in Section 5.2.

The scalability of the algorithm is obvious: its computational complexity is the
same as that of solving ? LASSO problems. On top of that (something that is
not true for GLASSO), the LASSO problems are independent of each other, thus
they can be run over parallel machines to achieve further improved computational
performance. Finally, when the random variables are Gaussians, we prove recovery
bounds that coincide with state of the art corresponding results on the performance
of the convex program in (5.1). In particular, we show that with the correct tuning
of the input parameters, the algorithm exactly recovers the zero-pattern of the
concentration matrix, which here corresponds to the structure of the underlying
Gaussian graphical model. Furthermore, we provide consistency guarantees on the
max-norm as in [134].

1Other appropriate initializations are also possible, we discuss these in later sections.
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Paper Organization
The rest of the paper is organized as follows. In Section 5.2 we describe how
the proposed algorithm operates, and we present its computational features and
accompanying theoretical results on its statistical performance. A more detailed
discussion, a thorough comparison of the results to the relevant literature and nu-
merical simulations are included in Section 5.3. The proofs, and also an illustration
of the intuition behind the algorithm are deferred to the Appendix.

5.2 The Algorithm: Computational & Statistical Guarantees
For convenience, denote the concentrationmatrix as
 := Σ−1 and [?] = {1, . . . , ?}.
For a matrix M and a vector v we denote M:,ℓ and v: the (:, ℓ)Cℎ entry of M and
the : Cℎ entry of v, respectively.

FGL Algorithm
We call our algorithm the Fast Graphical-LASSO (FGL) algorithm. In this section,
we describe how the algorithm operates.

Initialization. Let R = 1
=

∑=
8=1 x8xT

8
be the sample covariance matrix and DR be a

diagonal matrix with the same diagonal entries as R. For a constant 0 ≤ ` ≤ 1, the
shrinkage estimator R` of Σ is defined as

R` := `DR + (1 − `)R. (5.2)

Of course, R0 = R. Further note that R` is always positive definite for all 0 < ` ≤ 1,
even in the regime of few observations = < ?. We will see that this property is
critical for the satisfactory performance of the algorithm in the presence of few
observations.

FGL takes as input a parameter ` and utilizes �̄ = R` as an estimate of Σ. Our main
theorem specifies appropriate values for tuning ` that guarantee good statistical
performance. (For example, we will see that naively setting ` = 0, eqv. initializing
the FGL with just R, guarantees good performance only in the case = > ?).

? independent LASSOs. The main body of the algorithm is solving ? independent
LASSO optimization problems. Each one of them uses the initialization R` and
outputs an estimate of a certain row/column of the precision matrix (a total ? of
them).

Each one of the ? main operations of the algorithm is independent of one other, but
can all be described in a common language. For this, fix any 8 = 1, . . . , ?.
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Construct matrix �̄(8) by permuting the 8th and ?th rows and columns of �̄ such that
the 8th (resp. ?th) row and column of �̄(8) is the ?th (resp. 8th) row and column of �̄ 2

Consider the following partition of �̄(8):

�̄(8) =

[
�̄11 2̄12

2̄T
12 f̄22

]
, (5.4)

where we have suppressed the dependence of the elements of the partition on the
index 8 in order to keep the notation simple. Using this notation, and for an input
parameter _ > 0, solve the following LASSO problem,

V̂(i) := arg min
V

1
2
VT�̄11V + 2̄T

12V + _‖V‖1. (5.5)

Observe that V̂ ∈ R?−1. Use this to construct 8(8) ∈ R? as follows

8(8)
:

:= (f̄22 + V̂T�̄11 V̂)−1 ×


1, : = 8,

V̂
(8)
8
, : = ?,

V̂
(8)
:
, : ∉ {8, ?},

: = 1, . . . , ?. (5.6)

Output. The FGL algorithm outputs an estimate 
̂ of the precision matrix 
,
based on the previously computed vectors 8(8) , 8 = 1, . . . , ? as follows:


̂:,ℓ := (8(:)
ℓ
+ 8(ℓ)

:
)/2, :, ℓ = 1, . . . , ?. (5.7)

All these are outlined in Algorithm 1 below.

Algorithm 1 FGL Algorithm
Input: Observations {x 9 ∈ R?} 9=1,...,=. Parameters 0 ≤ ` ≤ 1, _ > 0.
Output: Estimate 
̂ of the precision matrix 
 = Σ−1.

Set �̄ = R` = `DR + (1 − `)R as in (5.2).
for all 8 = 1, . . . , ? do

Solve the LASSO problem in (5.5) to find V̂(8) , where �̄11 and 2̄12 are as in
(5.4).

Use V̂(8) to form 8(8) as in (5.6).
end for
Using the 8(8)’s, construct 
̂ as in (5.7).

2Formally, define permutation matrices P(8) , 8 = 1, . . . , ? such that

P(8)
:,ℓ
=


1, : = ℓ ∉ {8, ?},
1, (:, ℓ) ∈ {(8, ?), (?, 8)},
0, else.

(5.3)

Then, �̄(8) = P(8) �̄P(8) .
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Computational Performance
It is clear that the main computational burden of the FGL algorithm is that of solving
? LASSO problems. This makes the algorithm scalable. Moreover, observe that
the LASSO problems are all independent of each other. The outputs V̂(8) of each
are combined only at the last step of the algorithm to form the final estimate 
̂.
Thus, each LASSO problem can be solved separately on a different machine. Each
machine needs only have access to the matrix �̄ computed at the first stage of the
algorithm. (See however Section 5.3 where it is shown that storing �̄ is not necessary
and all operations can be performed via sole access to the observation vectors, when
= > ?).

Statistical Performance
Aside from the obvious computational virtues discussed above, it is further shown
in this section that the FGL algorithm enjoys provable performance guarantees.

As is typical, the guarantees require some conditions on the true unknown covariance
matrix Σ. We start with these and state the main result in Theorem 13. The theorem
holds for the case ofGaussian randomvariables, butwe expect the result to generalize
to wider classes, such as sub-gaussians and variables with bounded moments. We
leave these to a future long version of the paper.

Some notation&Assumptions LetM ∈ R?×?. For setsS,R ⊆ [?], MS,R denotes
a sub-matrix ofMwith entries (M8, 9 )8∈S, 9∈R . Also, wewrite ‖M‖max = max8, 9 |"8, 9 |
for the maximum element-wise norm of M and ‖M‖∞ = max8

∑?

9=1 |M8, 9 | for the
induced infinity norm.

Our analysis keeps explicit track of the positive quantities ^, W, _̄ and _ defined
below, so that they can scale in a non-trivial manner with the problem dimension p.

• First we define the parameter ^ > 0 that corresponds to the diagonal dominance
of the covariance matrix. We have,

∀8 ∈ [?],
∑
9≠8

|
8, 9 | ≤ ^
8,8 . (5.8)

• We also define W > 0 such that

∀8 ∈ [?], ‖(ΣS8 ,S8 )−1‖∞ ≤ W,

corresponding to the ℓ∞-norm of the inverse sub-covariance matrices.
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• We use 0 < _ ≤ _̄ < ∞ to denote the minimum and maximum eigenvalues of Σ,

_<0G{Σ} ≤ _̄
_<8={Σ} ≥ _.

We require the following assumption on the covariance matrix. See Section 5.3 for
a discussion of its interpretation.

Assumption 5 There exists a constant 0 < U < 1 such that,

∀8 ∈ [?], ‖ΣS̄8 ,S8 (ΣS8 ,S8 )
−1‖∞ ≤ 1 − U.

Main Result. We are now ready to present our main theorem characterizing the
statistical performance of the FGL algorithm in terms of both support recovery and
max-norm consistency.

Theorem 13 (Zero-pattern & max-norm Guarantees) Let the observations {x8}8=1,...,=

follow a zero mean Gaussian distribution of covariance Σ ∈ R?×? that further sat-
isfies Assumption 5. Let
 = Σ−1, and 
̂ be the output of the FGL Algorithm 1 with
input parameters ` = `★ defined in (5.11) and _ = 8−2U

U
(^ + 1)_̄

√
g log ?
=

. Then, for
any g > 2, the following statements hold with probability at least 1 − 5/?g−2.

(i) Supp(
̂) ⊆ Supp(
).

(ii) Further suppose that

= > "

(
(4 − U)_̄W(�1 + ^)

U_

)2

32g log ?, (5.9)

for some constant " and �1 = 1 + (8−2U) (^+1)
U

. Then,

‖
̂ −
‖max ≤ �2

√
g log ?
=

, (5.10)

for �2 =
2_̄
_
W(�1 + ^) + _̄^(1 + ^ + ^2 + �1(2^ + 1)).

In the statement of the theorem, the bounds and the value of the regularizer parameter
_ are both specified in terms of a parameter g > 2. Larger values of g lead to looser
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bounds on the error performance, but yield faster rates of probability convergence.
Further, we suggest the following tuning for ` 3

`★ = min

{
0.5,

40
√

2_̄
max8≠ 9 {|Σ8, 9 |}

√
g log ?
=

, 16
√
?g log ?

=

}
. (5.11)

Statement (i) of the theorem guarantees recovery of the zero pattern of the precision
matrix 
. Equivalently, for Gaussian graphical models, it guarantees recovery of
the structure of the underlying graphical model. A further refinement of this result
to perfect signed-support recovery is possible with an additional assumption on the
minimum on-support entry of 
, as stated in Corollary 5 in Section 5.3.

The second statement of Theorem 13 proves consistency of the FGL estimate in the
max-norm sense as long as = = O(log ?). This is the same order-wise result as the
one obtained by Ravikumar et al. [134] regarding the log det-minimization in (5.1);
see Section 5.3. Also, the bound of Theorem 13(ii) can be further used to conclude
bounds on the Frobenius and on the Spectral norm of the error. We discuss these in
Section 5.3.

5.3 Discussion and Numerical Experiments
We start in Section 5.3 with a couple of extensions of Theorem 13 to signed-support
recovery and bounds on the Frobenius and on the spectral norm. In Section 5.3,
(i) we discuss the main differences of the proposed algorithm to the GLASSO,
(ii) we compare Theorem 13 to corresponding results on the performance of the
convex log det minimization (5.1) derived in[75, 102, 134] and show that the FGL
algorithm enjoys the same order-wise guarantees as the latter and (iii) we provide
an interpretation of Assumption 5. Finally, in Section 5.3 we present the results of
numerical experiments.

Extensions
Signed-support Recovery. A further refinement of Theorem 13(i) to perfect
signed-support recovery is possible with an additional assumption on the minimum
on-support entry of 
 as shown in the corollary 5 below.

3 It turns out from the analysis that the initial matrix �̄ of Algorithm 1 needs be positive definite.
As discussed, the shrinkage estimators R` enjoys that property even when = � ?. The larger the
value of ` is the better the bound on the minimum eigenvalue of R`, but at the same time as the
parameter ` increases, we loose control of error of the estimator in terms of the operator norm and
element-wise maximum norm. It turns out that the tuning suggested in (5.11) serves both of the
aforementioned goals well enough.
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Corollary 5 (Perfect signed-support recovery) In addition to the assumptions of
Theorem 13, suppose that = and ? further satisfy �2

√
g log ?
=
≤ min
8, 9≠0

8≠ 9

|
8, 9 |.

Then, with probability at least 1− 5
?g−2 , we achieve perfect signed-support recovery,

i.e., sign(
̂8, 9 ) = sign(
8, 9 ),∀(8, 9).

Rates in spectral and Frobenius norms. The bound on the max-norm of Theorem
13(ii) can be used to derive bounds on the Frobenius and spectral norms of the error,
as well.

Corollary 6 (Spectral and Frobenius norm bounds) Under the same setup and
assumptions as in Theorem 13(ii), with probability at least 1 − 5

?g−2 , it holds

‖
̂ −
‖� = O
(√
(B + ?)g log ?

=

)
and

‖
̂ −
‖2 = O
(√

min{(B + ?), 32}g log ?
=

)
. (5.12)

Using bounds on spectral norm, we can also provide guarantees for positive defi-
niteness of the matrix. Note that the covariance matrix 
 is positive definite with
_<8={
} ≥ _̄−1. Thus, any matrix 
̂ for which ‖
̂ − 
‖2 < _̄

−1 holds, is also
positive definite. This in turn implies that, if _̄ is constant, then enough samples on
the order of O(min{B + ?, 32}g log ?) guarantee that 
̂ is positive definite. In this
case, it can be inverted to further obtain an estimate of the covariance matrix.

Further remarks
On Initializations of �̄. Theorem 13 characterizes the performance of the FGL
algorithm under the initialization �̄ = R` for appropriate tuning of the parameter
` as in (5.11). It turns out from the analysis that the same desired performance is
attained as long as the initialization �̄ is positive definite, and is appropriately close
to the true Σ in both the spectral norm and the max-norm. For example, the sample
covariance matrix R satisfies these conditions, but only when = > ?. This suggests,
that R, which otherwise might have been a standard candidate for initialization
of such an iterative covariance estimation algorithms, is a good initialization only
when the number of observations is relatively large. However, when this is the
case, initializing with R leads to reduced space complexity . To see this note that
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calculating the LASSO objective in (5.5) does not require computing and storing
R, but rather, it can be done directly solely via access on the x8’s since for any two
vectors u and v, it holds uTRv = 1

=

∑=
8=1(uTx8) (vTx8), and Rv = 1

=

∑=
8=1(vTx8)x8 .

Comparison to theGLASSO. TheGraphical-LASSO algorithm [75] is an iterative
algorithm. It starts with an initial estimate �̄0 (say) of Σ and it iteratively updates
its rows and columns. At each iteration, it solves a LASSO problem (as the name of
the algorithm suggests). This is similar to the LASSO problem in (5.5) of the FGL
algorithm, but other than that there are important differentiating features between
the two algorithms as discussed next. First, the GLASSO at each iteration updates
the last (after permutation) row/column of the covariance estimate �̄. Instead, the
FGL algorithm never operates directly on �̄, but rather outputs an estimate of the
precision matrix. Each iteration of the GLASSO results in the last row/column of
the �̄−1 that is sparse (owing to the structure-promoting nature of the LASSO), but
at the same time it ruins any structure of the rest of the blocks of �̄−1 obtained
in previous iterations. In contrast, since the FGL algorithm operates directly on
the precision matrix, it does not suffer from this issue. Besides, updating �̄ at
each iteration makes the analysis of the GLASSO hard. The fact that the solutions
of the LASSO problems in our algorithm are independent allows us to obtain the
theoretical guarantees in Theorem 13. To the best of our knowledge, analogous
results for the GLASSO are not available in the literature

Regarding time complexity, both the algorithms are scalable. Yet, FGL is a “one-
shot" algorithm in the sense that it only requires solving ? LASSO problems.
Algorithms like the GLasso [75], the P-GLasso and the DP-Glasso [111] require at
least the same complexity. An additional feature of FGL, as mentioned before, is the
fact that it can be parallelized over different machines for even faster performance.

Comparison with existing guarantees on the log det-optimization. As discussed
in the introduction, the convex nature of the estimator in (5.1) allows analyzing
its statistical performance [134, 138]. In particular, Ravikumar et al.[134, Thm. 1]
used a primal-dual witness approach to prove that, under an appropriate incoherence
assumption on the Hessian of the log det term and under enough number of obser-
vations = > �32g log ? (for some � a constant that depends on the incoherence

parameter), the optimal solution 
̂ of (5.1) satisfies ‖
̂ −
‖max ≤ "3

√
g log ?
=
,

with probability at least 1 − 1
?g−2 . Here, "3 depends on the model parameters

such as W, ^, etc. (for example, when these are constants then ‖
̂ − 
‖max =

O(
√
(g log ?)/=)). Of course, this bound coincides with the result of Theorem
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13(ii). Moreover, it is shown in [134] that Supp(
̂) ⊆ Supp(
), which is also
guaranteed by Theorem 13(i). Hence, for Gaussian random variables, Theorem
13 shows that the FGL algorithm attains the same order-wise performance bounds
as state-of the-art corresponding results on the convex optimization in (5.1). It
should be noted however that the results in [134] go beyond Gaussians; we defer
such extensions for our setting to future work. Also, the two results hold under
different incoherent conditions (compare Assumption 5 to [134, Ass. 1]), which are
not directly comparable. Please refer to the new remark for a discussion on the
interpretation of Assumption 5.

It is worth mentioning that the error bound on the Frobenius norm derived in
Corollary 6 also coincides with corresponding best known results in the literature.
In particular, Rothman et al. [138] showed that under a mild restriction on the
minimum eigenavalue of the covariance matrix it holds with high probability that

‖
̂ −
‖� ≤ "1

√
(B+?) log ?

=
, for " depending on the parameters _̄ and _.

Overall, it has been shown that the algorithm proposed in this section enjoys per-
formance guarantees (at least in the Gaussian case), which are as strong as the best
known ones in the literature regarding the performance of the ℓ1-regularized log det
minimization. However, the former has superior computational performance and
can scale with increasing high-dimensions of modern applications.

On Assumption 5. The incoherence Assumption 5 is similar (but not the same)
to standard assumptions imposed on Σ in the performance analysis of the LASSO
[115, 177]. Intuitively, this assumption limits the influence between different random
variables in the following form. Suppose x is a zero-mean Gaussian random vector
with covariance Σ. Then Assumption 5 is equivalent to the following,

∀8 ∈ [?], max
‖xS8 ‖∞≤1

‖E
[
xS̄8 |xS8

]
‖∞ ≤ 1 − U. (5.13)

Since E[xS̄8 ] = 0, this can be interpreted as a requirement that the influence of the
variables in S8 on the variables in S̄8 is not large.

Numerical Experiments
In this section, we illustrate the validity of the predictions of Theorem 13 via
numerical simulations. For two different structures of the underlying graphical
model, namely a line-graph and a star-graph, and for varying parameters ? and
=, we produce realizations of Gaussian observations and report the probability
of successful signed-support recovery (see Corollary 6) and the max-norm of the
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estimation error. The structure of the underlying graph determines the sparsity
pattern of the concentration matrix.

Chain graph. For the chain graph, the precision matrix 
 has non-zero entries
only on the diagonal and on the upper and lower diagonals, i.e., it is tri-diagonal.
For the simulations, we set 
8, 9 = 0.5 for |8 − 9 | = 1 and 
8,8 = 2. Note that for the
chain graph 3 = 2, and for the specific values of the precision matrix, Assumption
5 is satisfied with parameter U = 0.732.

For each one of the simulated values of pairs (=, ?), we draw # = 40 batches of =
Gaussian random observations with covarianceΣ = Ω−1. We run the FGL algorithm

on each data batch with input parameters _ =
√

log ?
=

and ` =
√

log ?
=

(in consistency
with the scaling suggested by Theorem 13.). In Figure 5.1a we have plotted the
probability of signed support recovery as a function of the number of observations.
As expected, more samples are needed as the problem size ? increases. In Figure
5.1b the data are plotted against the rescaled sample size =/log ?. As suggested by
Corollary 5, the curves corresponding to different values of ? pile up, verifying that
a sample size of O(32 log ?) is sufficient for successful signed support recovery.

Star graph. We build the star graph by connecting its central node (first random
variable) to ?/10 other nodes and the rest of the nodes are disconnected. In fact, in
the first row/column of the concentration matrix we set the first ?/10 entries to be
0.5 and similarly, we add a scaled identity matrix to make the smallest eigen value
to 1. Thus, for the star graph 3 = ?/10, and for the specific values of the precision
matrix, Assumption 5 is satisfied with parameter U = 0.8.

5.4 Proof of the Main Results
Proof of Theorem 13

Proof 4 In this section we prove Theorem 13 through several steps and lemmas.
Before anything, we mention this result which is a simple modification of the results
in [187, Proposition 2.1] and [134, Lemma 1.]

Lemma 15 Consider a zero-mean Gaussian random variable with covariance ma-
trix Σ where _max(Σ) = _̄. Given observations {x8}8=1,...,= of the random variable,
we construct the sample covariance as R = 1

=

∑=
8=1 x8x)8 . Then with probability at
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Figure 5.1: Plots of the probability of signed support recovery of the precision matrix
corresponding to a chain graph, and for different values of ? as a function of (a) the number
of observations =, and, (b) of the scaled sample size =/log ?. The different curves pile up
in (b) as predicted by Corollary 5. Each simulation point corresponds to an average over
# = 40 points.
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Figure 5.2: Plots of the probability of signed support recovery of the precision matrix
corresponding to a star graph with parameter 3 = ?/10, and for two different values of
? as a function of (a) the number of observations =, and, (b) of the scaled sample size
=/log ?/3. The different curves pile up in (b) as predicted by Corollary 5. Each simulation
point corresponds to an average over # = 40 points.

least 1 − 5
?g−2 we have

‖R − Σ‖max ≤ 80
√

2_̄
√
g log ?
=

,

‖RS8 ,S8 − ΣS8 ,S8 ‖2 ≤ 32_̄
√
|S8 |g log ?

=
, (5.14)
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if = satisfies (5.9).

In the next step, we desire to get similar bounds on the error of the shrinkage
estimator with parameter chosen as in (5.11). We prove the following lemma,

Lemma 16 Consider a zero-mean Gaussian random variable with covariance ma-
trix Σ where _max(Σ) = _̄. Given observations {x8}8=1,...,= of the random variable,
we construct the shrinkage estimator with parameter ` set to be as in (5.11). Then
with probability at least 1 − 5

?g−2 we have

‖R` − Σ‖max ≤ 160
√

2_̄
√
g log ?
=

,

‖R`,(S8 ,S8) − ΣS8 ,S8 ‖2 ≤ 96_̄
√
|S8 |g log ?

=
,

if = satisfies (5.9).

Proof 5 First, we desire to bound ‖R − Σ‖max. Note that due to (5.2) we have,

‖R` − Σ‖max ≤ `‖DR − Σ‖max + (1 − `)‖R − Σ‖max

≤ `max
{
‖R` − Σ‖max,max

8, 9
|Σ8, 9 |

}
+ ‖R − Σ‖max

≤ 160
√

2_̄
√
g log ?
=

(5.15)

where the last inequality is due to lemma 15 and the way we chose ` in (5.11). Now
for the spectral norm we have,

‖R`,(S8 ,S8) − ΣS8 ,S8 ‖2 ≤ `‖DR,(S8 ,S8) − ΣS8 ,S8 ‖2
+ (1 − `)‖RS8 ,S8 − ΣS8 ,S8 ‖2
≤ `

(
‖ΣS8 ,S8 ‖2 + ‖DR,(S8 ,S8) − DΣ,(S8 ,S8) ‖2

+ ‖DΣ,(S8 ,S8) ‖2
)
+ ‖RS8 ,S8 − ΣS8 ,S8 ‖2

≤ `
(
2_̄ + ‖RS8 ,S8 − ΣS8 ,S8 ‖2

)
+ ‖RS8 ,S8 − ΣS8 ,S8 ‖2

≤ 96_̄
√
|S8 |g log ?

=
(5.16)

where the last inequality is due to lemma 15 and the value of ` in (5.11).
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In the next step, we prove that the shrinkage estimator R` has similar assumptions
as Σ including the incoherence assumption.

Lemma 17 Consider a zero-mean Gaussian random variable with covariance ma-
trixΣ where _max(Σ) = _̄. Given observations {x8}8=1,...,= of the random variable, we
construct the shrinkage estimator with parameter ` set to be as in (5.11). Suppose
that Σ satisfies assumption [A1] with parameter U. Then with probability at least
1 − 5

?g−2 the shrinkage estimator satisfies assumption [A1] with parameter U/2 and
also inequality (5.8) with parameter 2W if = satisfies (5.9).

Proof 6 According to lemma 16 with probability at least 1 − 5
?g−2 we have

‖R` − Σ‖max ≤ 160
√

2_̄
√
g log ?
=

,

‖R`,(S8 ,S8) − ΣS8 ,S8 ‖2 ≤ 96_̄
√
|S8 |g log ?

=
. (5.17)

Let us denote E := R` − Σ and rename �̄ := R` to avoid unnecessary notations.
Then for all 8 we have

‖�̄S̄8 ,S8 (�̄S̄8 ,S8 )
−1‖∞ = ‖(ES̄8 ,S8 + ΣS̄8 ,S8 ) (ES8 ,S8 + ΣS8 ,S8 )

−1‖∞
≤ ‖ΣS̄8 ,S8 (ΣS̄8 ,S8 )

−1‖∞.‖(I + (ΣS8 ,S8 )−1ES8 ,S8 )−1‖∞
+ ‖ES̄8 ,S8 ‖∞‖(�̄S8 ,S8 )

−1‖∞

≤ (1 − U). 1
1 − ‖(ΣS8 ,S8 )−1ES8 ,S8 ‖∞

+ 2W.|S8 |‖ES̄8 ,S8 ‖max (5.18)

Now we bound each term above, (note that |S8 | ≤ 3)

‖(ΣS8 ,S8 )−1ES8 ,S8 ‖∞ ≤
√
3‖(ΣS8 ,S8 )−1ES8 ,S8 ‖2

≤ ‖(ΣS8 ,S8 )−1‖2‖ES8 ,S8 ‖2

≤ 96_̄
√
3

_

√
3g log ?

=
≤ 3U

4 − U (5.19)

where the last inequality is because of (5.9). On the other hand,

2W.|S8 |‖ES̄8 ,S8 ‖max ≤ 320
√

2W3_̄
√
g log ?
=
≤ U

4
(5.20)

And the last inequality is due to the choice of = (5.9) for large enough constant " .
Now, combining (5.18), (5.19) and (5.20) implies the following,

‖�̄S̄8 ,S8 (�̄S̄8 ,S8 )
−1‖∞ ≤ 1 − U

2
(5.21)
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as desired. Now we just need to bound the following

‖(�̄S̄8 ,S8 )
−1‖∞ ≤ ‖(ΣS̄8 ,S8 )

−1‖∞.‖(I + (ΣS8 ,S8 )−1ES8 ,S8 )−1‖∞

≤ W 1
1 − ‖(ΣS8 ,S8 )−1ES8 ,S8 ‖∞

(5.22)

Now we need to bound the later term,

‖(ΣS8 ,S8 )−1ES8 ,S8 ‖∞ ≤
√
3‖(ΣS8 ,S8 )−1ES8 ,S8 ‖2

≤ ‖(ΣS8 ,S8 )−1‖2‖ES8 ,S8 ‖2

≤ 96_̄
√
3

_

√
3g log ?

=
≤ 1

2
(5.23)

and the last inequality is similarly due to the choice of =. Combining (5.22) and
(5.23) leads to

‖(�̄S̄8 ,S8 )
−1‖∞ ≤ 2W (5.24)

Now from now on suppose �̄ = R` and with probability at least 1 − 5
?g−2 , lemma

17 holds. Recall that the FGL algorithm performs ? steps of iterations 8 = 1, . . . , ?
and in the step 8, it estimates the 8Cℎ row/column of the concentration matrix 
. All
these steps are independent and can be performed in parallel. Thus, we just analyze
how well the algorithm performs in recovering the ?BC row/column of 
 and then
the same goes for the other steps as well. So for now assume that the we are in the
?Cℎ step of the algorithm that recovers ?Cℎ row/column of 
. The algorithm first
solves the following Lasso problem,

V̂ = arg min
V

1
2
VT�̄11V + 2̄T

12V + _‖V‖1. (5.25)

Recall that the output of this problem was supposed to be an estimation V̂ of the
quantity V0 := l12

l22
and now we analyze its performance in recovering the structure

of V0 and also in terms of the maximum norm of the error ‖ V̂ − V0‖<0G .

Performance of the Lasso

To analyze the Lasso problem (5.25), we utilize a well-known technique called
primal-dual witness. Note that based of the assumption [B2], �̄11 is positive definite
which implies strict convexity of the objective function in (5.25) and also uniqueness
of the optimizer V̂. Besides, V̂ satisfies the optimality condition

�̄11 V̂ + 2̄12 + _x̂ = 0, x̂ ∈ m‖ V̂‖1, (5.26)
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where m‖ V̂‖1 is sub-differential of the ℓ1-norm calculated at V̂. Now we proceed by
constructing a pair ( Ṽ, G̃) that satisfies (5.26) and due to uniqueness of the optimizer
Ṽ = V̂. We are going to do this in two steps, first constructing the pair ( Ṽ, G̃) and
then proving that this pair satisfies (5.26).

1. Constructing the pair ( Ṽ, G̃): We denote support of the vector V0 by S and its
compliment by S2 and for a vector v ∈ R?−1, vS ∈ R|S| is a sub-vector of v with
entries {E8}8∈S.
In order to construct ( Ṽ, G̃), we set ṼS2 = 0 and

ṼS = arg min
VS

1
2
VT

S�̄S,SVS + f̄T
12 SVS + _‖VS‖1.

Thus ṼS satisfies the following optimality condition,

�̄S,S ṼS + f̄12 S + _G̃S = 0, G̃S ∈ m‖ ṼS‖1. (5.27)

Note that in (5.27) we also set G̃S. At last we choose G̃S2 to be

G̃S2 = −
1
_
(�̄S2 ,S ṼS + f̄12 S2 ). (5.28)

Because of the way we constructed the pair ( Ṽ, G̃), we already have

�̄11 Ṽ + f̄12 + _G̃ = 0, G̃S ∈ m‖ ṼS‖1.

We just need to check if G̃S2 ∈ m‖ ṼS2 ‖1 or equivalently if ‖G̃S2 ‖∞ ≤ 1 because ṼS2 = 0.

2. Verifying Optimality Conditions: First we define error of estimation in �̄ to be
Z := �̄ − Σ and also Δ := �̄11 Ṽ − �11V0. Thus

ΔS = �̄S,S( ṼS − V0 S) + ZS,SV0 S

ΔS2 = �̄S2 ,S( ṼS − V0 S) + ZS2 ,SV0 S

⇒ ΔS2 = WΔS −WZS,SV0 S + ZS2 ,SV0 S, (5.29)

whereW := �̄S2 ,S(�̄S,S)−1. Now, combining (5.28), (5.29) and f̄12 S2 = −ΣS2 ,SV0 S+
z12 S2 implies the following,

G̃S2 =
1
_

WΔS +
1
_

WZS,SV0 S −
1
_

ZS2 ,SV0 S −
1
_

z12 S2 . (5.30)
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We also make use the equation (5.27) and f̄12 S = −ΣS,SV0 S + z212 S to rewrite
(5.30) as

G̃S2 =
1
_

Wz12 S +WG̃S +
1
_

WZS,SV0 S −
1
_

ZS2 ,SV0 S

− 1
_

z12 S2 . (5.31)

We desire to bound ‖G̃S2 ‖∞ and so

‖G̃S2 ‖∞ ≤
1
_
‖W‖∞‖z12 S‖∞ + ‖W‖∞‖G̃S‖∞

+ 1
_
‖W‖∞‖ZS,S‖<0G ‖V0 S‖1

+ 1
_
‖ZS2 ,S‖<0G ‖V0 S‖1 +

1
_
‖z12 S2 ‖<0G . (5.32)

From the assumptions we have a bound on all the variables above including
‖Z‖<0G ≤ 5 (=, ?), ‖W‖∞ ≤ 1 − Ū, ‖V0‖1 ≤ ^ and _ = 4−2Ū

Ū
(^ + 1) 5 (=, ?)

that we can use in (5.32) which results in ‖G̃S2 ‖∞ ≤ 1.
3. Deriving Performance of the Lasso: The previous two steps showed that
V̂ = Ṽ is the unique answer to the lasso problem (5.25) with the property that
Support{ Ṽ} ⊂Support{V0}. This already proves the first part of the theorem Since
in the way we estimate 8̂12 from V̂ in the algorithm, Support{ Ṽ} ⊂Support{V0}
implies Support{8̂12} ⊂Support{l12}.
On the other hand, due to equation (5.26)

Δ + z12 + _Ĝ = 0⇒ ‖Δ ‖∞ ≤ _ + ‖z12‖∞ ≤ �1 5 (=, ?), (5.33)

where �1 = 1 + (4−2Ū) (^+1)
Ū

. We also can rewrite (5.27) as

�̄S,S ṼS − �̄S,SV0 S + �̄S,S Ṽ0 S + f̄12 S + _G̃S = 0⇒
ṼS − V0 S = �̄−1

S,SZS,SV0 S − �̄−1
S,Sz12 S − _�̄−1

S,SG̃S.

Thus,

‖ Ṽ − V0‖∞ = ‖ ṼS − V0 S‖∞ ≤ W(^ + 1) 5 (=, ?)

+ W(^ + 1) (4 − 2Ū)
Ū

5 (=, ?) = W(�1 + ^) 5 (=, ?), (5.34)

wherewe used ṼS2 = V0 S2 = 0 and ‖�̄−1
S,S‖∞ ≤ W from the assumptions. Besides, ( Ṽ−

V0) has at most B = |S| non-zeros entries because Support{ Ṽ} ⊂ S =Support{V0},
so

‖ Ṽ − V0‖1 ≤ B‖ Ṽ − V0‖∞ ≤ BW(�1 + ^) 5 (=, ?) ≤ 1, (5.35)

where last inequality is because of the additional assumption in the theorem.
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Estimating l12 and l22 from l12
l22

We know from previous section that how well the Lasso problem (5.25) performs
in estimating l12

l22
. The FGL algorithm uses the following equations to estimate l12

and l22 using the answer V̂ to (5.25),

l̂22 =
1

f̄22 + V̂T�̄11 V̂
,

8̂12 =
V̂

f̄22 + V̂T�̄11 V̂
. (5.36)

We are interested in bounding the error terms |l̂22 − l22 | and 8̂12 − l12‖∞‖. As
the first step,

(f22 + VT
0�11V0) − (f̄22 + V̂T�̄11 V̂) = (f22 − f̄22)

+ 2VT
0Δ + ( V̂ − V0)TΔ

+ VT
0 (�̄11 − �11)V0 + VT

0 (�̄11 − �11) ( V̂ − V0)

Therefore, Cauchy–Schwarz and triangle inequality implies

| (f22 + VT
0�11V0) − (f̄22 + V̂T�̄11 V̂) | ≤ |f22 − f̄22 |

+ 2‖V0‖1‖Δ ‖∞ + ‖ V̂ − V0‖1‖Δ ‖
+ ‖V0‖21 ‖�̄11 − �11‖<0G + ‖V0‖1‖�̄11 − �11‖<0G ‖ V̂ − V0‖1
≤ (1 + 2^�1 + �1 + ^2 + ^) 5 (=, ?) (5.37)

On the other hand, because of the extra assumption in the theorem |f̄22 − f22 | ≤
5 (=, ?) ≤ _/2 and therefore

(f̄22 + V̂T�̄11 V̂) ≥ f̄22 ≥ f22 − |f̄22 − f22 |
≥ _ − _/2 = _/2 (5.38)

Now, combining (5.37) and (5.38) gives us the following

l̂22 − l22 =
1

f̄22 + V̂T�̄11 V̂
− 1
f22 + VT

0�11V0

≤ 2
_2 (1 + 2^�1 + �1 + ^2 + ^) 5 (=, ?) (5.39)

Finally,

‖8̂12 − l12‖∞ = ‖ V̂l̂22 − V0l̂22 + V0l̂22 − V0l22‖∞
≤ ‖ V̂ − V0‖∞l̂22 + |l̂22 − l22 |‖V0‖∞

≤ 2
_
W(�1 + ^) 5 (=, ?) + ^(1 + 2^�1 + �1 + ^2 + ^) 5 (=, ?), (5.40)
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where the last inequality is from (5.38), (5.34) and (5.39). This implies our final
result in the theorem,

‖8̂12 − l12‖∞

≤
(

2
_
W(^ + �1) + ^(1 + ^ + ^2 + �1(2^ + 1))

)
5 (=, ?). (5.41)
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C h a p t e r 6

UNIVERSALITY IN LEARNING FROM LINEAR
MEASUREMENTS

Recovering1 a structured signal from a set of linear observations appears in many
applications in areas ranging from finance to biology, and from imaging to signal
processing. More formally, the goal is to recover an unknown vector x0 ∈ R?, from
observations of the form H8 = aT

8
x0, for 8 = 1, . . . , =. In many modern applications,

the ambient dimension of the signal, ?, is often (overwhelmingly) larger than the
number of observations, ?. In such cases, there are infinitely many solutions that
satisfy the linear equations arising from the observations, and therefore to obtain
a unique solution one must assume some prior structure on the unknown vector.
Common examples of structured signals are sparse and group-sparse vectors [35, 61],
low-rank matrices [34, 135], and simultaneously-structured matrices [39, 128]. To
this end, we use a convex penalty function 5 : R? → R, that captures the structure
of the structured signal, in the sense that signals that do not adhere to the desired
structure will have a higher cost. Therefore, the following estimator is used to
recover x0,

x̂ = arg min
x

5 (x) subject to, H8 = aT
8 x, 8 = 1, . . . , = . (6.1)

Popular choices of 5 (·) include the ℓ1-norm for sparse vectors [176], and the nuclear
norm for low-rank matrices [135]. A canonical question in this area is “how
many measurements are needed to recover x0 via this estimator?" This question
has been extensively studied in the literature (see [6, 40, 156] and the references
therein.) The answer depends on the a8 and is very difficult to determine for any
given set of measurement vectors. As a result, it is common to assume that the
measurement vectors are drawn randomly from a given distribution and to ask
whether the unknown vector can be recovered with high probability. In the special
case where the entries of the measurement matrix are drawn iid from a Gaussian
distribution, the minimum number of measurements for the recovery of x0 with
high probability is known (and is related to the concept of the Gaussian width
[6, 40, 156]). For instance, it has been shown that 2: log(?/:) linear measurements

1This chapter is mainly based on the work in [3]
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is required to recover a :−sparse signal [58], and 3A ? measurements suffice for the
recovery of a symmetric ? × ? rank-A matrix [40, 127]. Recently, Oymak et al
[130] showed that these thresholds remain unchanged, as long as the entries of each
a8 are i.i.d and drawn from a "well-behaved" distribution. It has also been shown
that similar universality holds in the case of noisy measurements [131]. Although
these works are of great interest, the independence assumption on the entries of the
measurement vectors can be restrictive. In certain applications in communications,
phase retrieval, covariance estimation, the entries of the measurement vectors a8
have correlations. in this section, we show a much stronger universality result
which holds for a broader class of measurement distributions. Here is an informal
description of our result:

Assume the measurement vectors a8 are drawn iid from some given
distribution. In other words, the measurement vectors are iid random,
but their entries are not necessarily so. Then the minimum number
of observations needed to recover x0 from (6.1) with high probability,
depends only on the first two statistics of the a8, i.e., their mean vector
`, and covariance matrix �.

We anticipate that this universality result will have many practical ramifications. in
this section we focus on the ramifications to the problem of recovering a structured
matrix, X0 ∈ R?×?, from quadratic measurements (a.k.a. rank-one projections). In
this problem, we are given observations of the form H8 = aT

8
X0a8 = Tr(X0(a8aT

8
)) =

vec(-)Cvec(a8aC8) for 8 = 1, . . . , <.2 Such measurement schemes appear in a variety
of problems [31, 44, 104, 105, 194]. An interesting application of learning from
quadratic measurements is the PhaseLift algorithm [36] for phase retrieval. In phase
retrieval, the goal is to recover the signal x0 from quadratic measurements of the
form, H8 = |aT

8
x0 |2 = aT

8
(x0xT

0)a8. Note that x0xC0 is a low-rank (in this case rank-1)
matrix and PhaseLift relaxes this constraint to a non-negativity constraint and min-
imizes nuclear norm to encourage a low rank solution. Quadratic measurements
also appears in non-coherent energy measurements in communications and signal
processing [8, 180], sparse covariance estimation [44, 194], and sparse phase re-
trieval [104, 147]. Recently, Chen et al [44] proved sufficient bounds on the number
of measurements for various structures on the matrix X0. However, to the best of
our knowledge, prior to this work, the precise number of required measurements for

2The reader should pardon the abuse of notation as the measurement vectors are now vec(a8aC8 ).
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perfect recovery was unknown.
For example, when the a8 have iid Gaussian entries (note that the measurement
vectors, which are now vec(a8aC8), are no longer iid Gaussian) we show that 3?A
measurement is necessary and sufficient for the perfect recovery of a rank-A matrix
from quadratic measurements. In the special case of phase retrieval, we therefore
demonstrate that 3? measurements is necessary and sufficient for perfect recovery
of x0, which settles the long standing open question of the recovery threshold for
PhaseLift. In particular, this indicates that 2? extra phaseless measurements is all
that is needed to compensate the missing phase information.

The remainder of the paper is structured as follows. The problem setup and def-
initions are given in Section 6.1. In Section 6.2, we introduce our universality
framework, which states that the number of required observations for the recovery
of an unknown model depends only on the first two statistics of the measurement
vectors. As an applications, in Section 6.3, we apply this universality theorem to
derive tight bounds (i.e., necessary and sufficient conditions) on the required number
of observations for matrix recovery via quadratic measurements.

6.1 Preliminaries
Notations
We start by introducing some notations that are used throughout the paper. Bold
lower letters x, y, . . . are used to denote vectors, and bold upper letters X,Y, . . .
are for matrices. For a matrix X ∈ R=×?, Vec(X) ∈ R?= returns the vectorized
form of the matrix. ‖X‖2, ‖X‖� , ‖X‖★ and Tr(X) represent the operator norm, the
Frobenius norm, the nuclear norm and the trace of the matrix X, respectively. ‖x‖ℓ?
denotes the ℓ?-norm of the vector x and for matrices, ‖X‖ℓ? = ‖Vec(X)‖ℓ? . For
both vectors and matrices, ‖ · ‖0 indicates the number of non-zero entries. The set
of ? × ? positive definite matrices and positive semi-definite matrices are denoted
by S?++ and S=+, respectively. The letters g and G are reserved for a Gaussian random
vector and matrix with i.i.d. standard normal entries. The letter H is reserved
for a random Gaussian Wigner matrix, that is a symmetric matrix whose upper-
diagonal entries drawn independently from N(0, 1) whose its diagonals entries are
drawn independently from N(0, 2). Finally, the letter I is reserved for the identity
matrix. For a random vector a, E[a] and Cov[a] represent the expected value and
the covariance matrix of a.



121

Problem Setup
We consider the problem of recovering the unknown vector x0 ∈ S ⊆ R? from =

observations of the form H8 = aT
8
x0, 8 = 1, . . . , =. Here, the knownmeasurement vec-

tors a8 ∈ R?’s are drawn independently and identically from a random distribution.
These observations can be reformulated as

y = Ax0 , (6.2)

where y = [H1, . . . , H=]T ∈ R= and A = [a1, . . . , a=]T ∈ R=×?. We focus on the
high-dimensional setting where both = and ? grow large. We use the notation
= = \ (?), to fix the rate at which = grows compared to ?. Of special interest is
the underdetermined case where the number of measurement is smaller than the
ambient dimension. In this case, the problem of signal reconstruction is generally
ill-posed unless some prior information is available regarding the structure of x0.
Some popular cases of structures include, sparse vectors, low-rank matrices, and
simultaneously-structured matrices.
Convex estimator: To recover the structured vector x0, we minimize a convex
function 5 : R? → R that enforces this structure. We do this minimization for all
feasible points x ∈ S, that satisfy y = Ax. We formally define such estimators as
follows,

Definition 3 Let x0 ∈ S where S ⊆ R? is a convex set. For a convex function
5 : R? → R and a measurement matrix A ∈ R=×?, we define the convex estimator
E{x0,A,S, 5 (·)} as following,

x̂ = arg min
x∈S

Ax=Ax0

5 (x) . (6.3)

We say E{x0,A,S, 5 (·)} has perfect recovery if and only if x̂ = x0.

Note that we are given the observation vector y = Ax0 in the constraint of (6.3). We
aim to characterize the perfect recovery criteria for this estimator. Given a structured
vector x0, the perfect recovery of an estimator E{x0,A,S, 5 (·)} depends on three
factors; the number of observations = compared to the dimension of the ambient
space ?, properties of the measurement vectors {a8}=8=1, and the penalty function,
5 (·). We briefly explain each factor, below.
The rate function \ (·): We work in the high dimensional regime where both =
and ? grow to infinity with a fixed rate = = \ (?). Finding the minimum number of
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measurements to recover x0 via (6.3), translates to finding the smallest rate function
\★(·), for which our estimator has perfect recovery. This optimal rate function
depends on the problem settings and varies in different problems. For instance, in
order to recover a rank-A matrix in S?+ , we will need the measurements to be of order
= = O(?), while in the case of :-sparse matrices, the measurements will be of order
= = O(: log(?2/:)), where in many applications : is a fraction of ?2.

The penalty function: We use a convex function 5 (·) that promotes the particular
structure of x0. Exploiting a convex penalty for the recovery of structured signals has
been studied extensively [6, 33, 40, 62, 156, 165]. Chandrasekaran et. al. [40] in-
troduced the concept of the atomic norm, which is a convex surrogate defined based
on a set of (so-called) "atoms". For instance, the corresponding atomic norm for
sparse recovery is the ℓ1-norm and for low-rank matrix recovery the nuclear norm.
Another interesting scenario is when the underlying parameter x0 simultaneously
exhibits multiple structures such as being low-rank and sparse. For simultaneously
structured signals building the set of atoms is often intractable. Therefore, it has
been proposed [43, 128] to use a weighted sum of corresponding atomic norms for
each structure as the penalty.

The measurement vectors: We consider a random ensemble, where the vectors
{a8}=8=1 are drawn independently and identically from a random distribution. Later
in Section 6.1, we formally present the required assumptions on this distribution. It
has been observed that the estimator (6.3) exhibits a phase transition phenomenon,
i.e., there exist a phase transition rate \★(?), such that when = > \★(?) the op-
timization program (6.3) successfully recover x0 with high probability, otherwise,
when = < \★(?) it fails with high probability [6, 40]. The question is that how is
this phase transition is related to the properties of the measurement vectors a8’s?

Universality in learning: Directly calculating the precise phase transition behavior
of the estimator E(x0,A,S, 5 (·)), for a general random distribution on the measure-
ment vectors is very challenging. Recently, as an extension of Gaussian comparison
lemmas due to Gordon [79, 80] and earlier work in [6, 40, 153, 156], a new frame-
work, known as CGMT [165, 171], has been developed which made this analysis
possible when the measurement vectors {a8}=8=1, are independently drawn from the
Gaussian distribution, N(0, I?). Another parallel work that makes this analysis
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possible under the same conditions is known as AMP [62]. However, the Gaussian
assumption is critical in the analysis through these frameworks, which restricts us
from investigating a vast variety of practical problems.
As our main result, we show that, for a broad class of distributions, the phase tran-
sition of E(x0,A,S, 5 (·)) depends only on the first two statistics of the distribution
on the measurement vectors {a8}=8=1. As a result, the phase transition of the estimator
remains unchanged when we replace the measurement vectors with the ones drawn
from a Gaussian distribution with the same mean vector and covariance matrix. As
the phase transition is the same as the one with Gaussian measurements, we can use
the CGMT framework to analyze the latter and get the desired result.
Equivalent Gaussian Problem: Let ` := E[a8] and �̄ := Cov[a8] for 8 =
1, 2, . . . , =, and consider the following problem:

1. We are given = observations of the form H̃8 = gT
8
x0 and the measurement

vectors {g8}=8=1.

2. The rows of the measurement matrix G = [g1, . . . , g=]T ∈ R=×? are indepen-
dently drawn from the multivariate Gaussian distribution N(`, �̄).

3. We use the estimator E(x0,G,S, 5 (·)), as in Definition 3, to recover x0.

InTheorem14, we show that under certain conditions, the two estimatorsE(x0,A,S, 5 (·))
and E(x0,G,S, 5 (·)) asymptotically exhibit the same phase transition behavior. Be-
fore stating our main result in Section 6.2, we discuss the assumptions needed for
our universality to hold.

Assumptions
We show universality for a wide range of distributions on the measurement vector
as well as a broad class of convex penalties. Here, we give the conditions needed
for the measurement matrix,

Assumption 6 [The Measurement Vectors] We say the measurement matrix A =

[a1, . . . , a=]T ∈ R=×? satisfies Assumption 6 with parameters ` ∈ R? and �̄ ∈ R?×?,
if the followings hold true.

1. [Sub-Exponential Tails] The vectors a8’s are independently drawn from a
random sub-exponential distribution, with mean ` and covariance �̄ � 0.
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2. [BoundedMean] For some constants 21, g1 > 0, we have ‖`‖22
E[‖a8−`‖2]

≤ 21 ·?−g1 ,
for all 8.

3. [Bounded Power] For some constants 22, g2 > 0, we have Var(‖a8 ‖2)
E2 [‖a8−`‖2]

≤
22 · ?−g2 for all 8 .

Assumption 6 summarizes the technical conditions that are essential in the proof
of our main theorem. The first assumption on the tail of the distribution enables
us to exploit concentration inequalities for sub-exponential distributions. We allow
the vector a8 to have a non-zero mean in Assumption 1.2. Yet we require the power
of its mean to be small compared to the power of the random part of the vector.
Intuitively, one would like the measurement vectors to sample diversely from all the
directions inR?, and not be biased towards a specific direction. Finally, Assumption
1.3 is meant to control the dependencies among the entries of a8 and is used to prove
concentration of 1

?
aT
8
Ma8 around its mean, for a matrix M with bounded operator

norm. For instance, for a Gaussian vector g ∼ N(0, I), we have Var[‖g‖2] = 2?
and E2 [‖g‖2] = ?2. So Assumption 1.3 is satisfied with 22 = 2 and g2 = 1. We will
examine these assumptions for the applications discussed in Section 6.3.
In addition, we need to enforce a few conditions on the penalty function 5 (·) as
follows,

Assumption 7 [The Penalty Function]We say the funtion 5 (·) satisfies Assumption
2, if the following holds true.

1. [Separablity] 5 (·) is continuous, convex and separable, where 5 (x) = ∑?

8=1 58 (G8)
.

2. [Smoothness] The functions { 58 (·)} are three times differentiable everywhere,
except for a finite number of points.

3. [Bounded Third Derivative] For any � > 0, there exists a constant 2 5 > 0,
such that for all 8, we have | m

3 58 (G)
mG3 | ≤ 2 5 , for all smooth points in the domain

of 58 (·) such that |G | < �.

As observed in the Assumption 2.1, we only consider the special (yet popular) case
of separable penalty functions. Common choices include ‖x‖ℓ1 and ‖x‖2ℓ2 for vectors,
and ‖X‖ℓ1 , ‖X‖� and Tr(X) (which is equivalent to the nuclear norm of X when
X ∈ S+) for matrices. We can also apply our theorem for ℓ?-norm. This is due to
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the fact that replacing ‖ · ‖ℓ? with ‖ · ‖
?

ℓ?
does not change our estimate, and the latter

is a separable function.

6.2 Main Result
In this section, we state our main theorem which shows that the performance of
the convex estimator E(x0,A,S, 5 (·)), is independent of the distribution of the
measurement vectors. So we can replace them with the Gaussian random vectors
with the same mean and covariance. Next, using CGMT framework [165, 171], we
analyze the phase transition in the case with Gaussian measurements, in Corollary
7. Later, we will apply this result to some well-known problems in Section 6.3.

Universality Theorem

Theorem 14 [non-Gaussian=Gaussian] Consider the problem of recovering x0 ∈
S ⊆ R? from the measurements y = Ax0 ∈ R=, using a convex penalty function 5 (·)
in the estimator E{x0,A,S, 5 (·)} in (6.3). Assume S is a convex set and ? and =
are growing to infinity at a fixed rate = = \ (?). Also assume that

1. 5 : R? → R is a convex function that satisfies Assumption 7.

2. The measurement matrix A = [a1, . . . , a=]T satisfies Assumption 6, with ` :=
E[a8] and �̄ := Cov[a8] for all 8 = 1, . . . , = .

3. G = [g1, . . . , g=]T ∈ R=×? is a random Gaussian matrix with independent
rows drawn from Gaussian distribution N(`, �̄) .

Then the estimator E{x0,A,S, 5 (·)} (introduced in Definition 3) succeeds in recov-
ering x0 with probability approaching one (as ? and = grow large), if and only if
the estimator E{x0,G,S, 5 (·)} succeeds with probability approaching one.

Theorem 14 shows that only the mean and covariance of the measurement vectors a8
affect the required number of measurements for perfect recovery in (6.3). Although
Theorem 14 holds for = and ? growing to infinity, the result of our numerical
simulations in Section 6.2, indicates the validity of universality for values of ? and
= ranging in the order of hundreds.

Analysis of the Gaussian Estimator

Theorem 14 shows the equivalence of the convex estimator E{x0,A,S, 5 (·)} and
the Gaussian estimator E{x0,G,S, 5 (·)}. We can utilize the CGMT framework to
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analyze the perfect recovery conditions for E{x0,G,S, 5 (·)}. Before doing so, we
need the definition of the descent cone,

Definition 4 [Descent Cone] The descent cone of a convex function 5 (·) at point
x0 is defined as

D 5 (x0) = Cone ({y : 5 (y) ≤ 5 (x0)}) , (6.4)

which is a convex cone. Here, Cone(S) denotes the conic-hull of the set S.

Corollary 7 Consider the problem of recovering the vector x0 ∈ S, given the
observations y = Gx0 ∈ R=, via the estimator E{x0,G,S, 5 (·)} introduced earlier.
Assume that the rows of G are independent Gaussian random vectors with mean `
and covariance �̄ = MMT. Let X := =/? and the set S and the penalty function 5 (·)
be convex. E{x0,G,S, 5 (·)} succeed in recovering x0 with probability approaching
one (as ? and = grow to infinity), if and only if

√
X >
√
X★ = E

 max
w∈(S−x0)∩� 5 (x0)

1√
?

MTw∈(?−1

wTg

?

√
1 + 1

?
(wT`)2

 (6.5)

where (?−1 is the ?-dimensional unit sphere, and the expected value is over the
Gaussian vector g ∼ N(0, �̄).

["Pseudo Gaussian Width"] When ` = 0 and �̄ = I, the expected value in (6.5)
resembles the definition of the Gaussian width [139]. It has been shown that when
the measurements are i.i.d. Gaussian, the square of the Gaussian width indicates the
phase transition for linear inverse problems [6, 40, 156]. The Gaussian width has
been computed for several interesting examples, such as sparse recovery, and low-
rank matrix recovery. Using our universality result in Theorem 14, we can state that
the square of the Gaussian width indicates the phase transition in the non-Gaussian
setting as well.

Numerical Results
To validate the result of Theorem 14, we performed numerical simulations under
various distributions for the measurement vectors. For our simulations in Figure 6.1,
we use the estimator E{x0,A,R?, ‖ · ‖ℓ1} to recover a :-sparse signal x0 under three
random ensembles for the measurement vectors {a8}=8=1. In each of the three plots,
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we computed the norm of the estimation error E{x0,A,R?, ‖ · ‖ℓ1}, for different over
sampling ratios X = =/? and multiple sparsity factors B = :/?. We generated the
measurement vectors {a8}=8=1 for each figure, as follows,

• For each trial, we generate a random matrix M ∈ R?×?, with i.i.d. standard
Gaussian random variables. �̄ = MMT will play the role of the covariance
matrix of the measurement vectors.

• For Figure 6.1a, {a8}=8=1 are drawn independently from the Gaussian distribu-
tion N(0, �̄).

• For the measurement vectors of the Figure 6.1b, we first generate i.i.d centered
bernouli vectors Ber(.8), and multiply each vector by M.

• For the measurement vectors of the Figure 6.1c, we first generate i.i.d centered
j1 vectors, and multiply each vector by M.

The blue line in the figures shows the theoretical phase transition derived as a result
of Corollary 7. It can be observed that the phase transition for all the three random
schemes is the same, as predicted by Theorem 14. It also matches the theoretical
phase transition derived from Corollary 7.

Next, to illustrate the applicability and the implications of the results, we present
some examples where our universality theorem can be applied.

6.3 Applications: Quadratic Measurements
In this section we consider the problem of recovering a matrix from (so-called)
quadratic measurements. The goal is to reconstruct a symmetric matrix X0 ∈ R?×?

in a convex set S, given = measurements of the form,

H8 = aT
8 X0a8 = Tr

(
X0 · (a8aT

8 )
)
, 8 = 1, . . . , = . (6.6)

Depending on the application, the matrix X0 may exhibit various structures. Similar
to (6.3), we use the convex penalty function 5 : R?×? → R, to enforce this structure
via the following convex estimator,

X̂ = arg min
X∈S

5 (X)

subject to: aT
8 Xa8 = aT

8 X0a8, 8 = 1, . . . , = . (6.7)
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Figure 6.1: Phase transition regimes for the estimator E{x0,A,R?, ‖ · ‖ℓ1}, in terms of
the oversampling ratio X = =

?
and B = ‖x0 ‖0

?
, for the cases of (a) Gaussian measurements

and (b) Bernoulli measurements and (c) j2 measurements. The blue lines indicate the
theoretical estimate for the phase transition derived from Corollary 7. In the simulations we
used vectors of size ? = 256. The data is averaged over 10 independent realization of the
measurements.
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Note that the measurements in (6.6) are linear with respect to the matrix X0,
yet quadratic with respect to the measurement vectors a8. We can define x̃0 :=
Vec(X0) ∈ R?

2 and ã8 := Vec(a8aT
8
) ∈ R?2 , such that the measurements take the

familiar form, H8 = ãT
8
x̃0. In order to apply the result of Theorem 14, one should

check if the vectors {ã8}=8=1 satisfy Assumption 6.
It can be shown that if the vectors {a8}=8=1 satisfy the following conditions, then
Assumption 6 holds true for {ã8 = Vec(a8aT

8
)}=
8=1 .

Assumption 8 We say vectors {a8}=8=1 satisfy Assumption 3, if

1. a8’s are drawn independently from a sub-Gaussian distribution.

2. For each 8, the entries of a8 are independent, zero-mean and unit-variance.

In particular, this assumption is valid when {a8}’s have i.i.d. standard normal
entries. Therefore, when Assumption 8 holds, we can apply Theorem 14 to show
that the required number of measurements for perfect recovery in (6.7) is equal to
the required number of measurements for the success of the following estimator,

X̂ = arg min
X∈S

5 (X)

subject to: Tr ((H8 + I)X) = Tr ((H8 + I)X0) , 8 = 1, . . . , = , (6.8)

where I is the ? × ? identity matrix and H8’s are independent Gaussian Wigner
matrices (defined in Section 6.1). Corollary 8 presents a formal statement.

Corollary 8 Consider the problem of recovering the matrix X0 ∈ S ⊆ R?×?, from
= quadratic measurements of the form (6.6), using the estimator (6.7). Let S and
5 (·) be convex set and function satisying Assumption 7. Assume,

• The measurement vectors {a8}=8=1 satisfy Assumption 8, and,

• {H8 ∈ R?×?}=8=1 is a set of independent Gaussian Wigner matrices.

Then, as = and ? grow to infinity at a fixed rate = = \ (?), the estimator (6.7)
perfectly recovers X0 with probability approaching one if and only if the estimator
(6.8) perfectly recovers X0 with probability approaching one.
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Therefore, in order to find the phase transition, it is sufficient to analyze the equivalent
optimization (6.8) which is possible via the CGMT framework. Proceeding onward,
we exploit the CGMT framework along with Corollary 7 to find the required number
of measurements for the recovery of X0 in two specific applications.

Low-rank Matrix Recovery
Assume the unknownmatrixX0 � 0 has rank A, where A is a constant ( i.e., A does not
grow with problem dimensions =, ?.) Such matrices appear in many applications
such as traffic data monitoring, array signal processing and phase retrieval. The
nuclear norm, | | · | |★, is often used as the convex surrogate for low-rank matrix
recovery [135]. Hence, we are interested in analyzing the optimization (6.7), with
the choice of 5 (X) = ‖X‖★, where the optimization is over the set of PSD matrices.
Note that Tr(·) = | | · | |★ within this set, which satisfies Assumption 7.
According to Corollary 8, the perfect recovery in (6.7) is equivalent to perfect
recovery in (6.8), where the same choice of 5 (X) = Tr(X). The analysis of the later
through CGMT yields the following corollary.

Corollary 9 Consider the optimization program (6.7), where the matrix X0 � 0 has
rank A, 5 (X) = Tr(X), the setS is the PSD cone and the measurement vectors {a8}=8=1
satisfy Assumption 8. Assume ?, =→∞ at the proportional rate X := =

?
∈ (0, +∞).

The estimator perfectly recovers X0 if X > 3A .

Corollary 9 indicates that 3A ? measurements is needed to perfectly recover a rank-A
PSD matrix X0, from quadratic measurements. Although, the error of estimation
gets extremely small, much before the threshold = = 3?A . To the extent of our
knowledge, this is the first work that precisely computes the phase transition of low-
rank matrix recovery from quadratic measurements. Figure6.2 depicts the result of
numerical simulations. For different values of A and X, the Frobenius norm of the
error of the estimators (6.7) and (6.8) has been computed, which shows the same
phase transition in both cases.

Phase Transition of PhaseLift in Phase Retrieval

An important application for the result of Corollary 9, is when the underlying matrix
X0 is of rank 1. This appears in the problem of phase retrieval, where X0 = x0xT

0 is
the lifted version of the signal. The optimization program (6.7) with 5 (X) = Tr(X)
in this case, is known as PhaseLift [36]. Corollary 9 states that the phase transition of
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Figure 6.2: Phase transition regimes for both estimators 6.7 and (6.8), with 5 (X) = Tr(X),
in terms of the oversampling ratio X = =

?
and A = Rank(X0), for the cases of (a) estimator

(6.7) with quadratic measurements and (b) estimator (6.8) with Gaussian measurements. In
the simulations we used matrices of size ? = 40. The data is averaged over 20 independent
realization of the measurements.

the PhaseLift algorithm happens at X★ = 3, i.e., = > 3? measurements is needed for
the perfect signal reconstruction in PhaseLift. We should emphasize the significance
of this result as establishing the exact phase transition of the PhaseLift algorithm
was long an open problem.

Sparse Matrix Recovery
Let X0 � 0 represent the covariance matrix of a set of random variables. In certain
applications, the covariance matrix has many near-zero entries as the correlations
are small for many pairs of random variables. Such matrices arise in applications in
spectrum estimation, biology and finance [44, 67]. We are interested in analyzing
estimator (6.7), where 5 (X) = ‖X‖ℓ1 promotes the sparsity in the optimization. As
‖ · ‖ℓ1 satisfies Assumption 7, applying the result of Corollary 8, the perfect recovery
in (6.7) is equivalent to the perfect recovery in the estimator (6.8), with the same
penalty function. Analyzing the optimization (6.8) via CGMT leads to the following
result:

Corollary 10 Let X := =

?2 , B := ‖X0‖0
?2 . As ? → ∞, the optimization program (6.7),

with 5 (X) = ‖X‖ℓ1 can successfully recover the signal iff X > X★, where X★ is the
unique solution to the following nonlinear equation,

G · &−1
(
2G − B
2 − 2B

)
= (1 − B)q

(
&−1

(
2G − B
2 − 2B

))
, (6.9)
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Figure 6.3: Phase transition regimes for both estimators (6.7) and (6.8), with 5 (X) = ‖X‖ℓ1 ,
in terms of the oversampling ratio X = =

?2 and B = ‖X0 ‖0
?2 , for the cases of (a) estimator (6.7)

with quadratic measurements and (b) estimator (6.8) with Gaussian measurements. The
blue lines indicate the theoretical estimate for the phase transition derived from equation
(6.9). In the simulations we used matrices of size ? = 40. The data is averaged over 20
independent realization of the measurements.

Model Penalty function 5 (·) No. of required measurements
: sparse matrix ‖ · ‖ℓ1 ?2X★ defined in (6.9)
Rank-A PSD matrix Tr(·) 3pr
S&L (:, A) matrix Tr(·) + _‖ · ‖1 O(min(:2, A ?))

Table 6.1: Summary of the parameters that are discussed in this section. The last
row is for a ? × ? rank-A matrix whose smallest sub-matrix with non-zero entries
is : by : . The third column shows the number of required quadratic measurements
for perfect recovery.

where q(G) = exp(−G2/2)/
√

2c and &−1(·) is inverse of the Q-function.

Figure 6.3b compares the empirical result with the theoretical phase transition
derived from Corollary 10 Each plot shows the norm of the error with respect to
the sparsity of the matrix X0 and the ratio X = =

?2 . A comparison between the two
plots indicates that the phase transitions of the two estimators (6.7) and (6.8) with
5 (X) = ‖X‖ℓ1 match.

6.4 Simultaneously Sparse and Low-rank Matrices
Another interesting example is where the unknown matrix X0 � 0 is simultaneously
sparse and low rank. To recover X0, we would like to simultaneously minimize the
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penalty functions 5 (1) (X) = ‖X‖ℓ1 and 5 (2) (X) = ‖X‖★, for all feasible matrices
X ∈ S that align our measurements in (6.6). Here, each function 5 (8) (·) enforces
one of the structures on X. So, a natural choice for the regularizer function in
(6.7) would be 5 (X) = 5 (1) (X) + _ 5 (2) (X), where _ is a regularizing parameter.
Oymak et al [128] studied phase transition for perfect recovery of simultaneously
structured matrices. Their results are based on Gordon’s comparison lemma which
is only applicable to the cases of linear Gaussian measurements. We can use the
result of Corollary 8 to extend their result to settings with quadratic measurements,
as the phase transition regime is equivalent in both cases. Let X0 ∈ R?×? be a
rank-A PSD matrix. Also assume that the largest sub-matrix in X0 that contains all
non-zero entries is : by : . If we choose 5 (X) = ‖X‖ℓ1 + _Tr(X), they show that
O(min(:2, A ?)) measurements is required for perfect recovery.

Conclusion
We have investigated an estimation problem under linear observations. We aimed to
characterize the minimum number of observations that are needed for perfect recov-
ery of the unknown model. Our main result indicated that this phase transition, only
depends on the first two statistics of the measurement vector. Therefore, it remains
unchanged as we replace these vectors with the Gaussian one, with the same mean
vector and covariance matrix. The later can be analyzed through existing frame-
works such as CGMT. As one of the applications of this universality, we investigated
the case of matrix recovery via the so called quadratic measurements, and derived
the minimum number of observations required for the recovery of a structured ma-
trix. Due to the space constraint, we moved the discussions regarding the case of
simultaneously structured matrices to the appendix. Table 6.1, summarizes these
results for the cases of three structures.

Proof of Theorem 14
Consider the following optimization

Φ1 = min
Ax0=Ax

5 (x) , (6.10)

Without loss of generality, assume that 5 (0) = 0. We change the variable to
w = x − x0, which gives the following

Φ1 = min
Aw=0

5 (w + x0) , (6.11)

This optimization has perfect recovery, iff ŵ = 0, or equivalently iff Φ1 = 0. We
would like to show that if Φ1 = 0 with probability converging to 1, then the same
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holds if we replace the measurements vectors a8, with another set of measurement
vectors with the same mean and covariance. We rewrite this optimization in the
form of this min-max optimization,

Φ1 = sup
_>0

min
w

_

2
‖Aw‖2 + 5 (w + x0)

= sup
_>0

min
`>0

min
w

_

2
‖Aw‖2 + 5 (w + x0) +

1
2`
‖w‖2

= sup
_>0

_ ·min
`>0

min
w

1
2
‖Aw‖2 + 1

_
5 (w + x0) +

1
2_`
‖w‖2 (6.12)

Informally, we first show that for fixed values of _ and `, the values of last mini-
mization remains unchanged as we change the random measurement vectors inside
it (as ? and = grow to infinity). Next, we use Lemma 18 (See [165] Section A.4 and
B.5) to switch the min-max over ` and _, with the limit over ? and =.
By fixing the values of _ and `, from now on, we redefine the function 5 (·) to
be 1

_
5 (w + x0) + 1

2_` ‖w‖
2, which is strongly convex. Note that we would like the

following assumptions holds for these two set of random measurement vectors.
Assumption 1: Assume A = [a1, . . . , a=]T ∈ R=×? and B = [b1, . . . , b=]T ∈ R=×?

are two random matrices, such that

e = E [a8] = E [b8] ∀8
� = E

[
a8aT

8

]
= E

[
b8bT

8

]
∀8

lim
?→∞

‖e‖2
?2 = 0, (6.13)

Besides, there exists g > 0 such that for any matrix M ∈ R?×? such that ‖M‖2 ≤ ^,
there exists some 2 that only depends on ^ that

1
?2Var

(
aT
8 Ma8

)
≤ 2 · ?−g and,

1
?2Var

(
bT
8 Mb8

)
≤ 2 · ?−g . (6.14)

Now we want to investigate equivalence of the following two optimizations. Let
A = [a1, . . . , a=] and B = [b1, . . . , b=] be = by ? measurement matrices and

ΦB = min
w

1
2=

=∑
8=1

(
I8 − wTa8

)2
+ 5 (w + x0) ,

ΦA = min
w

1
2=

=∑
8=1

(
I8 − wTb8

)2
+ 5 (w + x0) . (6.15)
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Theorem 15 Consider the optimizations in (6.15). If

lim
=,?→∞

|E [ΦB −ΦA] | = 0 , (6.16)

and if for constants � and X > 0,

Pr ( |ΦA − � | > X)
P−→ 0 , (6.17)

as =, ? →∞. Then,

Pr ( |ΦB − � | > 3X) P−→ 0 , (6.18)

Proof 7 We first define the function 6 : R→ R as follows.

6(G) =



0 if |G | ≤ 1,

( |G | − 1)2 if 1 < |G | ≤ 2,

2 − (|G | − 3)2 if 2 < |G | ≤ 3,

2 if |G | > 3 .

(6.19)

Note that 6(.) is continuously differentiable with its first derivative bounded by 2.
Now,

Pr {|ΦB − � | > 3X} = Pr
{
6

(
ΦB − �
X

)
> 2

}
≤ 1

2
E

[
6

(
ΦB − �
X

)]
≤ 1

2
E

[
6

(
ΦA − �
X

)]
+ 1

2

����E [
6

(
ΦA − �
X

)
− 6

(
ΦB − �
X

)] ����
≤ Pr {|ΦA − � | > X} +

1
2

����E [
6′(Z) ·

(
ΦA − �
X

− ΦB − �
X

)] ����
≤ Pr {|ΦA − � | > X} +

1
X
|E [ΦA −ΦB] |

=,?→∞
−−−−−−→ 0 (6.20)

Theorem 16 Consider the optimizations in (6.15). If A, B and 5 (.) satisfy Assump-
tion 6 and 7, respectively, then

lim
=,?→∞

|E [ΦA] − E [ΦB] | → 0 . (6.21)

Proof 8 For : = 0, . . . , =, we define

Φ: := min
w

1
2=

:∑
8=1

(
I8 − aT

8 w
)2
+ 1

2=

=∑
8=:+1

(
I8 − bT

8 w
)2
+ 5 (w + x0) . (6.22)
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We have

|E [ΦA −ΦB] | = |E [Φ= −Φ0] | ≤
=∑
:=1
|E [Φ: −Φ:−1] | . (6.23)

Now it suffices to show that there exists a constant 2, such that for any : ,

|E [Φ: −Φ:−1] | ≤ 2 =−(1+g/2) , (6.24)

for some positive constant g. Since, then combining (6.24) and (6.23) yields,

|E [ΦA −ΦB] | ≤
=∑
:=1
|E [Φ: −Φ:−1] | ≤ 2 =−g/2 → 0 . (6.25)

Let

M: = [a1, . . . , a:−1, b:+1, . . . , b=]T ∈ R(=−1)×?, and,

z: = [I1, . . . , I:−1, I:+1, . . . , I=]T ∈ R=−1 . (6.26)

This helps us rewrite Φ: and Φ:−1 as

Φ: = min
w

1
2=
‖z: −M:w‖2 +

1
2=

(
I: − aT

:w
)2
+ 5 (w + x0) ,

Φ:−1 = min
w

1
2=
‖z: −M:w‖2 +

1
2=

(
I: − bT

:w
)2
+ 5 (w + x0) . (6.27)

As of this point, we fix : and drop the subscript : from I: , z: , M: , a: and b: for
simplicity. The expectation in (6.24) is over the randomness in I, z, M, a and b,
which can be written as

|E [Φ: −Φ:−1] | =
��E{M,z}

[
E{I,a,b}

[
Φ: −Φ:−1

��{M, z}
] ] ��

≤ E{M,z}

[����E{I,a,b}��{M,z} [Φ: −Φ:−1]
����] . (6.28)

We first fix M and z, and bound the inner expectation in (6.28). Now let,

q(a, I,w) = 1
2=
‖z −Mw‖2 + 1

2=

(
I − aTw

)2
+ 5 (w + x0) ,

Φ(a, I) = min
w

q(a,w) ,

Φ̄ = Φ(0, 0), and, w̄ = arg min q(0, 0,w) . (6.29)
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With these new definitions, we have Φ: = Φ(a, I) and Φ:−1 = Φ(b, I) and thus,��E{I,a,b} [Φ: −Φ:−1]
�� = ��E{I,a,b} [Φ(a, I) −Φ(b, I)]��
≤

������E{I,a}
Φ(a, I) − Φ̄ −

f2 + ‖w̄‖
2

=

2=(1 + E[bT
b])


������

+

������E{I,b}
Φ(b, I) − Φ̄ −

f2 + ‖w̄‖
2

=

2=(1 + E[bT
b])


������ (6.30)

So since E[bT
b] = E[aT
a], it remains to show that for positive constants 2 and
g, ������E{I,a}

Φ(a, I) − Φ̄ −
f2 + ‖w̄‖

2

=

2=(1 + E[aT
a])


������ ≤ 2 =−(1+g/2) , and,������E{I,b}

Φ(b, I) − Φ̄ −
f2 + ‖w̄‖

2

=

2=(1 + E[bT
b])


������ ≤ 2 =−(1+g/2) . (6.31)

We show the later, and the proof of the first is similar. Define v = m 5 (w̄+x0)
mw and

V =
m2 5 (w̄+x0)

mw2 and

k(b, I,w) = 1
2=
‖z −Mw‖2 + 1

2=

(
I − bTw

)2
+ 5 (w̄ + x0) + vT(w − w̄)

+ 1
2
(w − w̄)TV( w − w̄) ,

Ψ(b, I) = min
w

k(b, I,w) , and, w̃ = arg min k(b, I,w) . (6.32)

Note that by writing the optimality conditions, it is easy to show that Ψ(0, 0) =
Φ(0, 0) = Φ̄. Thus,

E{I,b}

������
Φ(b, I) − Φ̄ −

f2 + ‖w̄‖
2

=

2=(1 + E[bT
b])


������ ≤ E{I,b} [|Φ(b, I) − Ψ(b, I) |]

+

������E{I,b}
Ψ(b, I) − Ψ(0, 0) −

f2 + ‖w̄‖
2

=

2=(1 + E[bT
b])


������ . (6.33)

So we have to bound the two terms on the right hand side of (6.33). We start with
bounding E{I,b} [|Φ(b, I) − Ψ(b, I) |]. Note that for any w we have

|k(b, I,w) − q(b, I,w) | ≤
� 5

=
‖w − w̄‖33 . (6.34)
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Besides, due to strong convexity of 5̄ (.) we have,

|k(b, I,w) − Ψ(b, I) | ≥ n
=
‖w − w̃‖22 . (6.35)

We have two cases.

First if ‖w̃ − w̄‖3 ≤ n
9 � 5 . Consider the set S = {w : ‖w − w̃‖3 = ‖w̃ − w̄‖3}. For

any w in the set S we have

q(b, I,w) − q(b, I, w̃) ≥ k(b, I,w) − k(b, I, w̃) −
� 5

=

(
‖w − w̄‖33 + ‖w̃ − w̄‖33

)
≥ n
=
‖w − w̃‖22 −

� 5

=

(
‖w − w̄‖33 + ‖w̃ − w̄‖33

)
≥ n
=
‖w − w̃‖23 −

� 5

=

(
4 ‖w − w̄‖33 + 5 ‖w̃ − w̄‖33

)
=

9 � 5

=
‖w̃ − w̄‖23

(
n

9 � 5

− ‖w̃ − w̄‖3
)
≥ 0 . (6.36)

This means that the optimal value of q(b, I,w) lies within S. Now if wq =

arg min q(b, I,w),

Ψ(b, I) −Φ(b, I) =
(
k(b, I, w̃) − k(b, I,wq)

)
+

(
k(b, I,wq) − q(b, I,wq)

)
≤

(
k(b, I,wq) − q(b, I,wq)

)
≤
� 5

=
‖wq − w̄‖33

≤
4 � 5

=

(
‖wq − w̃‖33 + ‖w̃ − w̄‖33

)
≤

8 � 5

=
‖w̃ − w̄‖33 . (6.37)

And,

Φ(b, I) − Ψ(b, I) =
(
q(b, I,wq) − q(b, I, w̃)

)
+ (q(b, I, w̃) − k(b, I, w̃))

≤ (q(b, I, w̃) − k(b, I, w̃)) ≤
� 5

=
‖w̃ − w̄‖33 . (6.38)

Thus, (6.37) and (6.37) implies that

|Φ(b, I) − Ψ(b, I) | ≤
8 � 5

=
‖w̃ − w̄‖33 . (6.39)

Case 2 if ‖w̃ − w̄‖3 ≥ n
9 � 5 .

Φ(b, I) − Ψ(b, I) =
(
q(b, I,wq) − q(b, I, w̄)

)
+ (q(b, I, w̄) − q(0, 0, w̄))

+ (k(0, 0, w̄) − k(b, I, w̄)) + (k(b, I, w̄) − k(b, I, w̃))

≤ k(b, I, w̄) − k(b, I, w̃) ≤ 1
2=

(
I − bTw̄

)2
. (6.40)
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Ψ(b, I) −Φ(b, I) ≤ (k(b, I, w̃) − k(b, I, w̄)) + (k(b, I, w̄) − k(0, 0, w̄))
+ (q(0, 0, w̄) − q(0, 0, w̄))

≤ 1
2=

(
I − bTw̄

)2
. (6.41)

So finally,

|Ψ(b, I) −Φ(b, I) | ≤ 1
2=

(
I − bTw̄

)2
. (6.42)

So by combining the two cases, we get

|Φ(b, I) − Ψ(b, I) | ≤ 1‖w̃−w̄‖3≤ n
9 � 5

(
8 � 5

=
‖w̃ − w̄‖33

)
+ 1‖w̃−w̄‖3> n

9 � 5

(
1

2=

(
I − bTw̄

)2
)
.

(6.43)

Therefore,

E [|Φ(b, I) − Ψ(b, I) |]

≤ E
[
1‖w̃−w̄‖3≤ n

9 � 5

(
8 � 5

=
‖w̃ − w̄‖33

)]
+ E

[
1‖w̃−w̄‖3> n

9 � 5

(
1

2=

(
I − bTw̄

)2
)]

≤
8� 5

=
E

[
‖w̃ − w̄‖33

]
+ 1

2=

√
Pr

{
‖w̃ − w̄‖3 ≥

n

9 � 5

}
E[

(
I − bTw̄

)4]

≤
8� 5

=
E

[
‖w̃ − w̄‖33

]
+ 1

2=

√√√
E

[
‖w̃ − w̄‖33

]
( n

9� 5 )
3 E[

(
I − bTw̄

)4]

≤ �

=5/4 (6.44)

On the other hand, it is easy to see that

Ψ(b, I) − Ψ(0, 0) = (I − bTw̄)2
2=(1 + bT
−1b)

, (6.45)

where 
 = V +MTM. Note that������E
Ψ(b, I) − Ψ(0, 0) −

f2 + ‖w̄‖
2

=

2=(1 + E[bT
b])


������

=

������E

(I − bTw̄)2

2=(1 + bT
−1b)
−

f2 + ‖w̄‖
2

=

2=(1 + E[bT
b])


������

≤ 1
2=
E

[
(I − bTw̄)2

��bT
b − E[bT
b]
��]

≤ 1
2=

√
E

[
(I − bTw̄)4

]
E

[ (
bT
b − E[bT
b]

)2
]

≤ �

=1+g/2 . (6.46)
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Now putting (6.44) and (6.46) in (6.33), results in������E{I,b}
Φ(b, I) − Φ̄ −

f2 + ‖w̄‖
2

=

2=(1 + E[bT
b])


������

≤
8� 5

=
E

[
‖w̃ − w̄‖33

]
+

27�3/2
5

2=n3/2

√
E

[
‖w̃ − w̄‖33

]
E[

(
I − bTw̄

)4]

+ 1
2=

√
E

[
(I − bTw̄)4

]
E

[ (
bT
b − E[bT
b]

)2
]

(6.47)

2 =−(1+g/2) (6.48)

It remains to bound E
[
(I − bTw̄)4

]
and E

[
‖w̃ − w̄‖33

]
. For the first one, let 1

?
e =

E[b] and b̃ = b − 1
?
e. Then,

E
[
(I − bTw̄)4

]
= E[I4] + 6E[I2] E[(bTw̄)2] + E[(bTw̄)4]

= E[I4] + 6E[I2]
?
(E[(b̃Tw̄)2] + (eTw̄)2) + E[(b̃Tw̄)4]

+ 6E[(b̃Tw̄)2] (eTw̄)2 + (eTw̄)4

≤ �1 + �2‖w̄‖2 + �3‖w̄‖4 . (6.49)

On the other hand, let 
−1 = [l1 . . . , l?]T. Since 
−1 � 1/n ,

E
[
‖w̃ − w̄‖33

]
= E

[



 (I − bTw̄)
(1 + bT
−1b)


−1b




3

3

]
≤ E

[

(I − bTw̄) 
−1b


3

3

]
≤ 4 E

[

(I − bTw̄) 
−1b̃


3

3

]
+ 4
?3E

[

(I − bTw̄) 
−1e


3

3

]
≤ 4

√
E

[
(I − bTw̄)6

]
E

[


−1b̃


6

3

]
+ 4
?3




−1e


3

3

√
E

[
(I − bTw̄)6

]
≤ 4

√√√
E

[
(I − bTw̄)6

]
E

[∑
:

|lT
:
b̃|3

]2

+ 4
?3




−1e


3

2

√
E

[
(I − bTw̄)6

]
≤ ( �

?n3 +
4‖e‖32
n2?3 )

√
E

[
(I − bTw̄)6

]
(6.50)

which concludes the proof.

Theorem 17 let WA and WB bt the optimal solutions to (6.15). If for any function
5 (.), that satisfies our conditions,

ΦA −ΦB → 0 , (6.51)
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then,

1
?2 ‖WA‖2� −

1
?2 ‖WB‖2� → 0 . (6.52)

Proof 9 Assume that 1
?2 ‖WA‖2� and 1

?2 ‖WB‖2� converge to difference values of �A

and �B. Choose � = (�B + �A)/2 and consider the following optimization,

Φ̄A = min
1
?2 ‖W‖2�≤�

W∈H?

1
2=

=∑
8=1
(I8 − Tr(A8 ·W))2 + 5 (W) ,

Φ̄B = min
1
?2 ‖W‖2�≤�

W∈H?

1
2=

=∑
8=1
(I8 − Tr(B8 ·W))2 + 5 (W) . (6.53)

We show that the two should converge to the same value, which is a contradiction
since 5 (.) is strongly convex and one should converge to ΦA and the other should
be larger that ΦB. Using min-max theorem, they can be rewritten as

Φ̄A = sup
_>0
− _ � + min

W∈H?

1
2=

=∑
8=1
(I8 − Tr(A8 ·W))2 + 5 (W) +

_

?2 ‖W‖
2
� ,

Φ̄B = sup
_>0
− _ � + min

W∈H?

1
2=

=∑
8=1
(I8 − Tr(B8 ·W))2 + 5 (W) +

_

?2 ‖W‖
2
� . (6.54)

Due to the assumption of the theorem, the two inside converge to the same value
for any fixed _. So the concave version of Lemma 18 shows that Φ̄A and Φ̄B also
converge to the same value which is a contradiction.

Lemma 18 Consider a series of convex functions 5? : R>0 → R that converges
point-wise to the function 5 : R>0 → R. Besides, there exists " > 0 such that
for any G > " , we have 5 (G) > infB>0 5 (B). Then 5 (.) is also convex and
infB>0 5? (B)

?
−→ infB>0 5 (B).

Lemma 19 Let w̄ be the optimal solution to the optimization

min
w

1
2
‖z − Aw‖2 + 5 (w + x0) , (6.55)

where 5 (.) is strongly convex with constant n . Then

‖w̄‖ ≤ 2
n
(‖ATz‖ + ‖∇ 5 (x0)‖) (6.56)
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Proof 10 let

q(A,w) = 1
2
‖z − Aw‖2 + 5 (w + x0) . (6.57)

We have

0 > q(A, w̄) − q(A, 0) ≥ w̄T
(
−ATz + ∇ 5 (x0)

)
+ n

2
‖w̄‖2 .

Therefore,

n

2
‖w̄‖2 ≤

���w̄T
(
−ATz + ∇ 5 (x0)

)��� ≤ ‖w̄‖ (
‖ATz‖ + ‖∇ 5 (x0)‖

)
, (6.58)

which concludes the proof. Now let w̄ be the optimizer of q(A,w) and E[A] = 1eT.
Due to optimality we have,

0 = AT(Aw̄ − z) + ∇ 5 (x0 + w̄) (6.59)

Lemma 20 Let w̄ be the optimal solution to the optimization

min
w

1
2
‖z − Aw‖2 + 5 (w + x0) , (6.60)

where 5 (.) is strongly convex with constant n and A ∈ R=×? is a random value with
E[A] = 1eC and B = A − 1eC . Then

‖w̄‖ ≤ 2
n
(‖ATz‖ + ‖∇ 5 (x0)‖) (6.61)

Proof 11 We have,

q(A, 0) ≥ q(A, w̄) = 1
2
‖z − Bw̄ − 1eTw̄‖2 + 5 (w̄ + x0)

≥ =
2
(eTw̄)2 + (eTw̄) · 1T(Bw̄ − z) (6.62)

Therefore,

(eTw̄)2 + 2
=
(eTw̄) · 1T(Bw̄ − z) − 2

?
q(A, 0) ≤ 0 (6.63)

This results in

|eTw̄| ≤ 2
=

��1T(Bw̄ − z)
�� + 2

=
q(A, 0) ≤ 2

=
|1Tz| + 2

=
‖w̄‖ · ‖BT1‖ + 2

=
‖z‖2 + 5 (x0)

≤ 2
=
|1Tz| + 4

=n

(
‖ATz‖ + ‖∇ 5 (x0)‖

)
· ‖BT1‖ + 2

=
‖z‖2 + 5 (x0) (6.64)
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Some notes on the Corollary 9

Out goal is to analyze the following optimization and see under what conditions it
will succeed.

min
1
?
Tr

(
(A8
√

2+I)X0

)
= 1
?
Tr

(
(A8
√

2+I)X
)
, ∀8

Tr(X − X0) , s.t. X � 0 . (6.65)

Here, we initially assume that X0 = x0xT
0 is a rank-one matrix where 1

?
‖x0‖2 = 1.

This optimization succeeds in recovering X0, if and only if the optimal value of
objective function is zero (and it fails if the optimal value is negative).
Now, assuming an iid standard Gaussian distribution for the entries of the matrices
A8, we can use the proof of Theorem 1 and CGMT framework, and get the following
optimization.

min
U≥0
C∈R

max
V,g≥0
W∈R

√
V
√
X
√

2U2 + C2 − U

2g
+ W(C + 1) + 1

2Ug
− 1

− 1
2Ug





( 1
?

x0xT
0 +

UgV
√
?

H + Ug(W − 1)I
)
+





2

�

, (6.66)

where H is a Wigner randommatrix, and (·)+ is the positive definite part of a matrix.
We will have perfect recovery if and only if this optimization is non-negative. First
step of understanding this optimization, would be to analyze the high dimensional
behavior of the positive part of the matrix

1
?

x0xT
0 +

UgV
√
?

H + Ug(W − 1)I . (6.67)

We know that the eigenvalue distribution of matrix H follows the semi-circular law
and has eigenvalues from −2 to 2. Besides, adding a rank-one matrix x0xT

0/?, affects
this eigen-value distribution only if the coefficient of this rank one distortion is more
than the coefficient of H/√?. Meaning that if UVg < 1 we will have an extra
eigenvalue at 1 + U2g2V2. Otherwise, the eigenvalues of 1

?
x0xT

0 +
UgV√
?

H will have

the same distribution of the eigenvalues of UgV√
?

H which is semi-circular. Besides,
in optimization (6.66), we should always have Ug(W − 1 + 2V) < 0. Otherwise, the
positive part of the matrix in (6.67) will have an infinitely large Frobenius norm,
which the minimization will avoid. Therefore, we sould always have W−1−2V < 0.
Considering this constraint, if we solve this optimization over W and the optimization
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becomes,

min
U≥0
C∈R

max
V≥0



V(
√
X
√

2U2 + C2 −
√

2(U2 − C2) (1 + C)) + C if C2 < U2 < C2 + 2(C + 1) (1 −
√

1 + C)2 ,

V(
√
X
√

2U2 + C2 − Uq1(U, C) − 2C) + C if C2 + 2(C + 1) (1 −
√

1 + C)2 < U2 < 1 ,

V(
√
X
√

2U2 + C2 − 2C − 2) + C if U2 > 1 ,

∞ if U2 ≤ C2 .
(6.68)

where the function q(·, ·) is defined as

q1(U, C) = min
1−
√

1+C
U
≤g≤ 1

U

1
2g
+ 3g − 2Ug2 + U

2g3

2
. (6.69)

So we would like to see under what conditions, the optimization (6.68) will be
negative, which means the initial optimization (6.65) will fail in recovering X0. The
optimization (6.68) will be negative, if there exists a negative C < 0 that makes the
coefficient of V negative.
It’s not hard to see that the minimization over U and C in (6.68) happens when both U
and C go to zero. Thus, it’s the ratio of U/C will define the result of this optimization.
A closer look at this optimization shows that it will be minimized when U2 > 3

2 C
2,

especially, when C/U− → 0. In this scenario, the second case in the objective
function of (6.68) holds, and the objective function will converge to VU(

√
2X =

√
6)

which is always positive if X > 3. In the other words, this optimization is zero if
X ≥ 3, otherwise, there exists negative values of C that makes it negative. Thus we
have perfect recovery iff X > 3.
This proof was for the case that rank of the unknown matrix X0 was one. For the
case of a rank A matrix, the proof will be the same, expect that X0 =

∑A
8=1 x8xT

8
. So in

the matrix (6.67), we will have a rank A distortion of a Wigner matrix, and following
the same steps, we can show that if X > 3A, the objective function always remains
non-negative.
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C h a p t e r 7

PERFORMANCE ANALYSIS OF CONVEX DATA DETECTION
IN MIMO

7.1 Introduction
We consider the problem of recovering a transmit signal1, V0 ∈ D ?, form = (noisy)
linear observations of the form y = XV0 + z, where D ⊂ C denotes the discrete
transmit constellation, and z ∈ C= is the noise vector. This problem has a pivotal
role in signal detection in multiple-input, multiple-output (MIMO) communication
systems [90, 91, 126], where X ∈ C=×?, often referred to as the channel state
information, is a known matrix. In such settings, = and ? correspond to the number
of transmit and receive antennas, respectively.

The Maximum Likelihood(ML) estimator is the desirable theoretical solution for
this problem. There has been numerous studies to investigate algorithms that can
generate exact or approximate solutions for this problem. Due to the combinatorial
nature [185] of the problem, exact algorithms (e.g. sphere decoding [83]) are
computationally prohibitive, especially in a very large system (e.g. massive MIMO)
[140]. Therefore, various heuristics have been proposed and used in practice [71, 81]
to approximate the ML solution. Despite tractable computational complexity, the
precise performance analysis of such methods are often challenging.

Due to the practical advantages of convex algorithms, one conventional approach
to solve this problem is to relax the discrete set �2 to a continuous convex set S
and utilize convex programming to search over S instead ofD [108, 162, 198]. The
performance of this method for data recovery has been investigated in the works
of [9, 91, 166] for the real valued constellations, specifically, BPSK and PAM when
the channel matrix is Gaussian. To do so, Thrampoulidis et. al. [166] utilized a
framework that they had developed, known as the CGMT framework [4, 165]. The
CGMT framework has been successfully applied to analyze the performance in a
number of other applications including analysis of regularized M- estimators [165],
and PhaseMax in phase retrieval [53, 141, 142]. Unfortunately, The CGMT frame-
work can not be readily extended to the complex settings (which indeed is the
desirable case in many practical applications).

1 This chapter is mainly based on the work in [1]
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The major result of this section is to introduce a new comparison lemma for complex
Gaussian processes to study the convex detection problem for complex constella-
tions. In particular, we precisely characterize the symbol error rate performance
of the convex method, for a general constellation D and a convex relaxation S.
Our theorem also allows us to derive the necessary and sufficient number of an-
tennas, =, required for data recovery in the high-SNR regime which enables us to
precisely characterize the phase-transition regions. Through our analysis, we can
further observe the relationship between the choice of the convex relaxation with its
corresponding phase transition. As an example, we analyze the loss in performance
when choosing a relaxation that is easier to implement in a convex program for the
case of PSK modulation.

7.2 Problem Setup
Notations We gather here the basic notations that are used throughout this section.
We reserve the letter 9 for the complex unit. For a complex scalar G ∈ C, GRe and GIm
correspond to the real are imaginary parts of G, respectively and |G | =

√
G2
Re + G

2
Im.

N(`, f2) denotes real Gaussian distribution with mean ` and variance f2. Simi-
larly, NC(`, f2) refers to a complex Gaussian distribution with real and imaginary
parts drawn independently from N(`Re, f2/2) and N(`Im, f2/2), respectively.
- ∼ ?- implies that the random variable - has a density ?- . We reserve the letters
� and � to denote (scalar) standard normal random variables. Similarly, �C is
reserved to denote a complex NC(0, 2) random variable. The bold lower letters are
reserved for vectors and for a vector v, v8 denotes its 8th entry. Finally, for a convex
set S ⊂ C, the projection and distance functions with respect to D are defined as

PS(x) := arg min
y∈S
‖x − y‖

PS(x) := min
y∈S
‖x − y‖. (7.1)

Setup Our goal is to recover an ?-dimensional vector V0 ∈ C? where the entries of
V0 are independenty drawn from the discrete setD ⊂ C with distribution x0,8 ∼ ?- .
The setD defines the modulation used for data transmission (e.g. QAM, PSK, etc.).
For this purpose, we are given the noisy multiple-input multiple-output (MIMO)
relation of the form

y = XV0 + z ∈ C=, (7.2)
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where X ∈ C=×? is the known MIMO channel matrix with i.i.d. entries drawn
from NC(0, 1

?
) and z ∈ C= is the unknown noise vector with i.i.d. random complex

Gaussian NC(0, f2) entries.
Estimator The ML estimator of x0 in this scenario is

V̂ = arg min
V∈D ?

1
2=
‖y − XV‖2. (7.3)

Since solving (7.3) is computationally intractable, a variety of heuristic methods,
such as zero-forcing, MMSE, decision-feedback, have been proposed. In this sec-
tion, we make use of convex programming to estimate V0. In the first step, we relax
D to a convex set S and minimize the objective function of (7.3) over this relaxed
convex set,

Ṽ = arg min
V∈S?

1
2=
‖y − XV‖2. (7.4)

Next, we map each entry of Ṽ to the closest point in D to build our final estimation
of V0,

V̂8 = arg min
V∈D
|V − Ṽ8 |, 8 = 1, . . . , ?. (7.5)

We refer to this method as the Convex Decoder Algorithm (CDA). In this section,
we will precisely analyze the performance of the CDA as a function of the problem
parameters such as f, =/?, D and S. Note that the performance of CDA depends
on the constellation D and the way we relax it to the convex set S. Later in Section
7.3, we observe the impact of choosing two different relaxations on the performance
of CDA and its phase-transition regions with the help of our main theorem.
Symbol error probabilityWe characterize the performance of CDA in terms of the
symbol error probability, defined as the expected value of the Symbol Error Rate
(SER) where,

(�' :=
1
?

?∑
8=1

1V̂8≠V0,8
,

%4 := E[(�'] = 1
?

?∑
8=1
P

(
V̂8 ≠ (V0)8

)
. (7.6)



148

Here V̂ is the output of CDA in (7.5), 1E is the indicator of the event E and the
probability P(·) is over the randomness of X, z and V0. We introduce the notation SG
for G ∈ D, as the set of all points in S that will be mapped to V in (7.5). Equivalently,

SV := {V′ ∈ S : ∀y ∈ D, |14C0′ − 14C0 | < |14C0′ − H |}. (7.7)

This notation helps us interpret our main theorem more clearly. Using this notation,
we can rewrite the symbol error probability defined in (7.6) as

%4 =
1
?

?∑
8=1
P

(
Ṽ8 ∉ S(V0)8

)
, (7.8)

where Ṽ is the minimizer of (7.4).
Assumptions We impose two mild assumptions on the problem. First, we assume
that the entries of V0 are i.i.d. randomvariableswith V0,8 ∼ ?V and alsoPV (A1+ 9A2) =
PV (A2 + 9A1), ∀A1, A2 ∈ R. Second, we want the convex set to be symmetric in the
sense that if (A1 + 9A2) ∈ S, then also (A2 + 9A1) ∈ S.

Modulations
Using our main theorem, we can precisely analyze the SER of the CDA in terms of
the SER for a constellation D which we relax to an arbitrary convex set S. For a
better understanding of the theorem and to show how to apply it to different schemes,
we will work with two conventional modulations; Phase-Shift Keying (PSK) and
Quadrature Amplitude Modulation (QAM).

#-PSK Constellation: In the #-PSK constellation, each entry of V0 is randomly
drawn from D =

{
4
92c
#
8 : 8 = 0, . . . , # − 1

}
. The entries of D are distributed over

the unit circle in the complex space and therefore the Signal to Noise Ratio (SNR)
will be 1/f2. Next, we need an appropriate convex relaxation of D for CDA. We
suggest two candidates for this purpose and compare their performances later in
Section 7.3. In one which we will refer to as the Circular Relaxation (CR), we
choose the set S(CR) = {V ∈ C : |V | ≤ 1} as the convex set in (7.4). The simple
structure of S(CR) makes its implementation easier in the convex program (7.4). In
another scenario, we consider the convex hull of D as the relaxed set S and refer
to it as Convex Hull Relaxation (CHR). Thus, S(CHR) = Conv(D) will be used in
(7.4) which might be harder to implement compared to S(CR) . But we will show
that since (CHR) is a tighter relaxation, its corresponding CDA performs better in
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terms of SER.

#2-QAMConstellation: Wealso briefly talk about the #2-QAMmodulationwhere

D =

{
(A + 9 B) − # − 1

2
(1 + 9) : A, B ∈ {0, . . . , # − 1}

}
.

Under this constellation the SNR will be # (#2−1)
6f2 . The relaxation that is often used

for this modulation is known as the Box Relaxation (BR) [166] which is

S =
{
(G + 9 H) ∈ C : |G | ≤ # − 1

2
, |H | ≤ # − 1

2

}
(7.9)

Using our main theorem, we can calculate the SER of CDA under box relaxation
and rederive the results of [91, 166].

7.3 Main Result
Our main result explicitly characterizes the limiting behavior of the symbol error
rate of the convex decoder algorithm, under the high dimensional regime where
=, ? →∞ with a constant ratio X := =/?.

Theorem 18 (SER analysis of CDA) Let SER denote the symbol error rate of the
Convex Decoder Algorithm (CDA), for random signal V0 ∈ D with entries drawn
independently from the distribution ?- . Let S be a convex relaxation of D and S
and ?- satisfy the assumptions in Section 7.2. Fix (#' and X = =/? and consider
the optimization

min
g>0

X − 1
2gX

+ f
2g

4
+ g

4
E[Dist2S(- +

�C

g
√
X
)] . (7.10)

If (7.10) has a unique answer g∗, then in the limit of ?, =→∞

lim
?,=→∞

%4 = P

(
PS(- +

�C

g∗
√
X
) ∉ S-

)
. (7.11)

The expected value and probability in (7.10) and (7.11) are over - ∼ ?- and
�C ∼ NC(0, 2), respectively.



150

Figure 7.1: SER Performance of the Circular Relaxation (CR) for 16-PSK: %4 as a
function of SNR for the two cases where X = .8 and X = 1. The theoretical prediction
follows from Theorem 18 and the high-SNR analysis comes from Section 7.3. For
the simulation, we used signals of size ? = 128 with each entry chosen randomly
uniform from the set S%( =

{
4
9 c

8 8 : 8 = 0, . . . , 15
}
. The data are averages over 30

independent realizations of the channel matrix and the noise vector.

Theorem 18 provides a formula to calculate the SER of the convex decoder, under
a general constellation in the high dimensional regime.

Theorem 18 provides a formula to calculate the SER of the convex decoder, under
a general constellation in the high dimensional regime.

Remark 27 (Computing g∗) The objective function in (7.10) is convex and only
involves one scalar variable. Thus, g∗ can, in principle, be efficiently numerically
computed. It can be shown that g∗ is the minimizer of (7.10) if and only if it is the
answer to the corresponding first-order optimality condition,

1
g∗2

=
1
2

(
f2 + E

[����- − PS(- +
�C

g∗
√
X
)
����2]) . (7.12)

Although, this does not provide us with a closed form formula to calculate g∗, in
all our simulations a fixed-point iterative method converges to g∗ over a handful of
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iterations. It can be also shown that (7.12) has a unique solution if X > X∗ for some
X∗ ∈ (0, 1) which depends on S.

Next, we apply Theorem 18 to the #-PSK and #2-QAM modulations introduced in
Section 7.2 to calculate their corresponding symbol error probabilities and phase-
transition thresholds in the high-SNR regime. Figures 1 and 2 verify the accuracy of
the prediction of Theorem 18 for 16-PSK and 16-QAM modulations, respectively.
Note that although the theorem requires ? →∞ , the prediction is already accurate
for ? = 128. In these figures, we have also plotted the high-SNR expressions for
SER that we derive in the next Section for both modulations. Interestingly, we
observe that this high-SNR expression gives us a good enough approximation of the
exact value of SER, even for small practical values of SNR.

#-PSK Constellation
Under the #-PSK setup, the setD is defined in Section 7.2. We investigate the error
performance of the convex decoder algorithm for two different convex relaxations
for the set D; Circular Relaxation (CR) and Convex-Hull Relaxation (CHR). The
effect of using different relaxations shows up in the projection function in equations
(7.12) and (7.11). Define S(SR) = {2 ∈ C : |2 | ≤ 1} as the circular relaxation of D.
The projection function on this set has the following form,

PS(CR) (V) =

V if |V | ≤ 1

V/|V | otherwise.
(7.13)

Therefore, g∗ can be efficiently calculated using a fixed-point iterative method to
solve (7.12). Furthermore, due to the symmetric nature of the #-PSK constellation,
the probability of error for each symbol inD can be derived in the following closed
form,

%4 = P
(
|� | > tan( c

#
) (� + g∗

√
X)

)
, (7.14)

where � and � are i.i.d. N(0, 1).

High-SNRAnalysis Let S(CR) and S(CHR) denote the circular relaxation and convex-
hull relaxation of the set S. It can be shown that for SNR � 1, g∗ grows large
proportional to

√
SNR. As a consequence, the last term in (7.10) can be approxi-

mated by 1
8gX and

#+4
8#gX for the cases of (CR) and (CHR), respectively. This results
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Figure 7.2: SER Performance of the Box Relaxation for 16-QAM: %4 as a function
of SNR for the two cases where X = .8 and X = 1. The theoretical prediction
follows from Theorem 18 and the high-SNR analysis comes from Section 7.3. For
the simulation, we used signals of size ? = 128 with each entry chosen uniformly at
random in the set S&�" = {±1,±3}2 . The data are averages over 30 independent
realizations of the channel matrix and the noise vector.

in g∗ =
√

2SNR(X−3/4)
X

for (CR) and g∗ =
√

2SNR(X−3/4+1/#)
X

for (CHR). Putting these
values for g∗ in (7.14) yields their corresponding high-SNR symbol error probabil-
ities,

%
(CR)
4 = P

(
|� | > tan( c

#
) (� +

√
2SNR · (X − 3/4))

)
, (7.15)

%
(CHR)
4 = P

(
|� | > tan( c

#
) (� +

√
2SNR · (X − 3/4 + 1/#))

)
. (7.16)

The difference between phase-transitions of these two cases can be observed from
equations (7.15) and (7.16). While for (CR) we need X > 3/4 for consistent data
recovery, this threshold changes to X > (3/4 − 1/#) for (CHR). This essentially
means that ?/# additional MIMO receivers is required at the expense of having
a simpler convex set. This verifies the fact that while the optimization over S(CR)

might be done faster over the Circular Relaxation due to its simple structure, we
need more measurements (or higher SNR) to get the same performance for (CR)
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compared to (CHR). In other words, the performance of (CR) is 10 log10(
X−3/4+1/?
X−3/4 )

off that of (CHR).

Comparison to the matched filter bound. The matched filter is the ideal impracti-
cal case where we assume to have the first ?−1 entries of V0 and we want to recover
the last entry. We compare the symbol error probability of this scenario, referred to
as the Matched Filter Bound (MFB), with the %4 of the convex decoder that can be
derived from Theorem 18. The matched filter bound corresponds to the probability
of error in detecting - ∈ D from ỹ = -x + z, where x ∈ C? with Gaussian entries
drawn from NC(0, 1√

?
), and z is the noise vector with entries NC(0, f2). Then, the

probability of error of the ML estimator of - in #-PSK will be

P
(
|� | > tan( c

#
) (� +

√
2SNR · X)

)
. (7.17)

Comparison of (7.15) with (7.17) shows that in the high-SNR regime the perfor-
mance of (CR) is 10 log10( X

X−3/4 )dB off from the (MFB). In particular, in the square
case (X = 1), where the number of receive and transmit antennas are the same, the
(CR) is 6dB off the (MFB). Besides, as X→∞ (meaning that the number of anten-
nas grows largecompared to users), the performance of (CR) and (CHR) approaches
(MFB).

#2-QAM Constellation
In #2-QAM, each entry of V0 is randomly chosen from the setD defined in Section
7.2 with distribution ?- . The conventional relaxation for this constellation is the
Box Relaxation (BR) [108, 162, 198] defined in (7.9). Similar to the previous
section, In order to use Theorem 18, we need to form the projection function to S
in (7.1) which is straightforward for a box set. Once g∗ is obtained using equation
(7.12) (or recruiting other methods to solve (7.10)), we shall use (7.11) to calculate
%4 of #2-QAM constellation. Here, unlike the #-PSK case, the probability of error
in the recovery is not the same for different symbols in D.

Using the same set of arguments in Section 7.3, it can be shown that in the high-
SNR regime, the last term in the objective function of (7.10) approaches 1

2gX# .

Therefore the answer to the minimization problem will be g∗ =
√

2SNR(X−(#−1)/#)
X

.
This implies that X★ = #−1

#
is the recovery threshold for the Box Relaxation of the

set D. It can also be shown that for X > X★, the problem (7.10) is strictly convex
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and therefore has a unique solution. This is consistent with the result of [91] which
proves the same phase-transition region for the Box Relaxation.

7.4 Proof Outline
In this section we introduce the main ideas used in the proof of Theorem 18. The
goal is to analyze the performance of the following optimization problem:

V̂ = arg min
V∈S?

1
2=
| |y − XV | |2 (7.18)

We rewrite (7.18) by changing variable to vector w = V − V0

ŵ = arg min
w∈S?−V0

1
2=
| |z − Xw| | (7.19)

Now let X̃ = [X',X� ;−X� ,X'] ∈ R2=×2? and z′ = [z'; z�] ∈ R2=, where X' and
z' (X� and z�) are the real (imaginary) parts of X and z, respectively. Now (7.19)
can be written as

w★ = arg min
w∈R112?

w8+ 9w=+8∈S−(V0)8

1
4=
| |z′ − 1√

2?
x̃ · w| |2 . (7.20)

This optimization is difficult to analyze and current methods for asymptotic analysis
of such optimizations fail here, because of the dependence between the entries of
X̃. The main step of our proof is to show that in the asymptotic regime when
?, = =→ ∞ with =/? = X, the SER in the optimization (7.19) converges to the one
in the following.

w★ = arg min
w∈R2?

w8+ 9w?+8∈S−(V0)8

1
4=
| |z′ − 1√

2?
B · w| |2 . (7.21)

Here, z′ ∈ R2= is a vector with i.i.d. N(0, f2/2) entries and B ∈ R(2=)×(2?)

is a matrix whose entries are independently drawn from N(0, 1). To do so, we
first show this in the case that both the objective functions have an extra strongly
convex term n ‖w‖2/2. Under this scenario, we can utilize the Lindeberg method
as in [3, 130]. In equations (6.15) followed by Theorems 15 and 16 we prove that
these two optimizations converge to the same value (with the difference that for our
optimizations we should change two dependent rows of B with two dependent rows
of X̃).
The idea is to replace the rows of X̃ to B in = steps. In each step, we replace the
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rows 8 and ? + 8 in the X̃ (that are independent from the rest of X̃) with the the
rows 8 and 8 + ? in the B. We can show that each step changes the SER on the
order of O(?5/4). So as = → ∞, the SER doesn’t change. Next, we use the RIP
condition for Gaussian matrices to show that removing the extra n ‖w‖2/2 term in
the optimization does not affect the SER for small enough n (See Sections 3.1 and
3.3.2 in the appendix of [131] for more details regarding these two steps). Then,
we just need to analyze performance of (7.21) instead of (7.19). For the rest of the
proof, we apply the CGMT framework and the same tools as in [165](Section 5.3).
The idea is to rewrite (7.21) as the following min-max problem,

min
w8+ 9w?+8∈S−(V0)8

max
u∈R2=

1
√

2=
uCz′ − 1

2√?=uCBw − 1
2
| |u| |2 , (7.22)

This enables us to apply the CGMT which associates with (7.22), the following
simplified optimization whose analysis provides us with the desired properties of
the initial optimization.

min
w8+ 9w?+8∈S−(V0)8

max
u

1
√

2=
uCz′ − 1

2
| |u| |2

+ 1
2√?= (g

Cu| |w| | + hCw0 | |u| |) ,

where g ∈ R2= and h ∈ R2? have i.i.d. standard Gaussian entries. It can be shown
that the optimization over u results in

min
w8+ 9w?+8∈S−(V0)8

1
√

2=
| |z′ + ||w| |√

2?
g| | + 1

2√?=hCw . (7.23)

Using
√
G = ming>0

1
2g +

gG
2 , optimization (7.23) can be written as

min
g>0

1
2g
+ g‖z

′‖2
4=

+ min
w8+ 9w?+8∈S−(V0)8

g | |w| |2‖g‖2
8=?

+ 1
2√?=hCw. (7.24)

Using dimension reduction techniques, we can show that from the following deter-
ministic optimization, we can tightly infer the properties of (7.24).

min
g>0

1
2g
+ gf

2

4
+ min

w8+ 9w?+8∈S−(V0)8

g | |w| |2
4?

+ 1
2√?=hCw. (7.25)

A completion of squares in the minimization over w, the weak law of large numbers
and convex techniques (See Section A.3 in [165] to see how WLLN can be applied
here) results in the final deterministic optimization

min
g>0

X − 1
2gX

+ f
2g

4
+ g

4
E[Dist2S(- +

�2

g
√
X
)] . (7.26)
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Besides, the optimal w can be obtained by putting the optimizer of (7.26) in the min-
imization over w in the last term of the (7.25). Similar to the proof of [166](section
3), SER of w∗ derived here is equal to the one from (7.19) which is

%4 → P
(
PS(- +

�C

g∗
√
X
) ∉ S-

)
(7.27)
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C h a p t e r 8

ACHIEVING NEAR MAXIMUM-LIKELIHOOD
PERFORMANCE IN MASSIVE MIMO

8.1 Introduction
The last several decades has seen a sustained exponential growth rate in wire-
less traffic (known as Cooper’s law). Due to increasing applications of wireless
networks, such as real-time video, wireless gaming, virtual reality, the emerging
internet-of-things, etc., this exponential growth is forecast to continue unabatedly
into the future. The goal of the upcoming 5G standard is to enable reliable com-
munication at these higher data rates (often 100 Mbits/sec and beyond). One of
the most promising technologies suggested for 5G is Massive MIMO, where each
base station is equipped with a very large number of antennas (many tens to even
hundreds). This increases the capacity of the network many-fold (ideally, by the
number of base station antennas) without adding new base stations or increasing the
frequency spectrum.
in this section, we address the signal processing challenge in Massive MIMO [126,
185], where the base station is confronted with a deluge of data, coming from
potentially several hundred independent streams, and is required to reliably and
efficiently recover the data. The maximum-likelihood (ML) estimator, which is the
desireable theoretical solution for this problem, can not be computed exactly due to
its combinatorial nature [83, 185]. Various heuristics, with tractable computational
complexities, have been proposed to approximate the ML solution often have per-
formance quite distant from ML.

Due to practical advantages, convex-optimization-basedmethods have gained signif-
icant attenstions in the recent years. The performance of convex relaxation for signal
recovery in MIMO communication systems have been analyzed in [9, 166, 174] for
real-valued constellations (e.g. BPSK, PAM), and very recently, in [1], it has been
extended to the complex-valued constellations (e.g. PSK, QAM).
Here, we develop an algorithm that employs a combination of convex and non-
convex techniques. Our proposed method essentially exploits the solution of a
convex optimization as the initial point for a local search method. We provide the-
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oretical bounds on the performance of symbol update as the post-processing local
search method. Combining this with the theoretical guarantees on the performance
of the convex optimization, we will find the regimes of SNR under which our pro-
posed method has a performance very close to the ML estimate. Our numerical
simulations validates this result by showing that the proposed method has a perfor-
mance very close to the matched filter bound (which itself is a lowerbound on the
performance of the ML estimate.)

8.2 Problem Formulation
NotationsWe gather here the notations that are used throughout the paper. The bold
lower letters are reserved for vectors and upper letters are used for matrices. For a
vector v, v8 represent its 8th entry, and for a matrix M, M: represent its : th column.
We reserve the letter 9 for the complex unit. For a complex scalar G ∈ C, Re{G},
and Im{G} correspond to its real and imaginary part, and |G | is its absolute value.
NC(`, f2) denotes the complex Gaussian distribution, with real and imaginary parts
drawn independently fromN(`Re, f2/2), andN(`Img, f

2/2). &(·) denotes the tail
distribution of standrad normal distribution, and

%→ indicates convergence in prob-
ability. - ∼ ?- implies that the random variable - has a density ?- . For a set S,
conv(S) denotes its convex hull.

Problem Setup Consider the problem of recovering a transmitted data vector V0 ∈
D ?, where ? is the number of data streams and D ⊂ C defines the transmit
constellation (QAM, PSK, etc.) for the streams. In our setting, ? can be considered
to be the number of mobile users operating in a cell at a certain frequency band.
Assuming that the base station is employing = receive antennas, we seek to recover
V0 ∈ D ? from the noisy linear relation y =

√
SNR
?

XV0 + z ∈ C=, where, X ∈ C=×?

is the known MIMO channel matrix and z ∈ C= is the unknown noise vector. We
consider a random setup where the entries of X and z are both random. The noise
vector z has i.i.d. zero-mean unit-variance circularly-symmetric complex Gaussian
(NC(0, 1)) entries. In our analysis, we will also assume that the entries of X are
i.i.d. NC(0, 1), in which case SNR is, in fact, the signal-to-noise-ratio. This is a
reasonable assumptionwhen the environment is rich-scattering and there is sufficient
separation between the receive antennas.

When the symbols of V0 are chosen uniformly at random, the estimator that min-
imizes the block probability of error is the maximum-likelihood (ML) estimator
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Figure 8.1: The proposed two-pronged algorithm.

which is given by

V̂ML = arg min
V∈D ?

1
2=






y −

√
SNR
?

XV







2

. (8.1)

This problem is computationally intractable (in fact, known to be NP hard) when
? and = are large. As a result, many computationally-efficient heuristics have been
proposed to approximately solve (8.1), including zero-forcing, mmse, and decision-
feedback-equalization. Unfortunately, these methods underperform ML by quite
a bit (especially when ? and = are large). Furthermore, they often lack rigorous
performance analysis, especially in the case of decision-feedback-equalization. An
exact method for solving (8.1) is the sphere decoder [70]. While it has reasonable
complexity when ? and = are small, it cannot be scaled to the dimensions encoun-
tered in massive MIMO [83].

We propose a two-pronged attack to develop methods that can efficiently achieve
near ML performance. However, before doing so, let us examine more closely
the performance of (8.1). This will give us a benchmark against which we can
compare our methods. As mentioned, computing the ML solution of (8.1) is
practically impossible. Furthermore, a rigorous formula for the SER (symbol-error-
rate) corresponding to (8.1) is not known. Using the heuristic replica method from
statistical physics, Tanaka [163] gave a formula for the SER of (8.1) when the
modulation is BPSK, i.e., D = {±1} and all signals are real. Since we cannot be
certain of the validity of that formula, we use a rigorous lower bound on the SER
of the ML estimator which is called the matched filter bound (MFB). This bound
is obtained by assuming that a genie provides the receiver with the correct value
of all symbols in V0 except for the first one, and we use the maximume-likelihood
estimator for just the first symbol (instead of the whole block). This is a lower bound
on the SER of any estimator and we shall use it for comparison purposes.
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Figure 8.2: SER Performance of the convex relaxation (Blue line), After doing the local
search (Green line) and the Matched Filter Bound (Red line) for 8-PSK: SER as a function
of SNR for the two cases. For the simulation, we used signals of size n = 128 with each
entry chosen randomly uniform from 8-PSK constellation. The data are averages over
100 independent realizations of the channel matrix and the noise vector. The left figure
corresponds to X = .9 and for the right figure X = 1.1 .

Two-step Algorithm
Our two-step algorithm computes the solution to a convex optimization and then
perform a local search to further improves the performance. We mathematically
present our proposed method in Algorithm 2. The convex optimization (8.2) ini-
mizes the loss function in (8.1) over the set C, where C is a convex set that contains
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all the constellation points. After finding the solution to the optimization program,
we map it to closest point in the constellation. This step can be done entrywise and
therefore efficiently.
In the second step of the algorithm, we perform a local search method. For our anal-
ysis, we use a simple symbol update algorithm, which iteratively checks if changing
a certain entry can lower the cost function. Note that the optimization program (8.3)
has only |D| feasible points.
Figure 8.2 shows the performance of our two step algorithm, in terms of the symbol-
error-rate (SER),with respect to SNR, for PSKandQAMconstellations. As depicted
in the figure, the second step makes considerable contribution to the performance,
especially for larger values of SNR. Besides, we see that the performance of the
two-step algorithm gets stupendously close to MFB for larger SNR values.

Algorithm 2 Two-pronged Algorithm
Step 1: Convex Relaxation

� Choose a convex set C, such that D ? ⊆ C,

� Solve the following convex optimization problem,

V̂ = arg min
V∈C

1
2=
| |y −

√
SNR
?

XV | |2, (8.2)

� Map the result to the closest point in constellation, i.e., for 8 = 1, 2, . . . , ?, i.e.
Ṽ8 := arg minV∈D |V − V̂8 |.

Step 2: Local Search (Symbol Update)

� For 8 = 1, 2, . . . , ?:

V̄8 = arg min
V∈D ?

| |y −

√
SNR
?

XV | | (8.3)

s.t. V 9 = Ṽ 9 , ∀ 9 ≠ 8.

Analysis of the convex relaxation
The convex-optimization-based methods [108, 162, 198] have gained significant
attentions in recent years mainly due to the availability of fast convex solvers as
well as the theoretical guarantees that can be provided on their performance. The
difficulty in solving (8.1) is the nonconvexity of the constraint set D ? (the set is, in
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fact, discrete). One approach to approximating (8.1) is to relax the discrete set to a
convex one. If we remove the constraint entirely and write

ṼZF = @
©­«arg min

V

1
2=






y −

√
SNR
?

XV







2ª®¬ , (8.4)

where @ simply quantizes each entry of its argument to the closest constellation
point in D, we obtain the zero-forcing equalizer. Similarly, if we relax D ? to the
ball ‖V‖ ≤ 2, for an appropriate constant 2, then the MMSE equalizer can be written
as

ṼMMSE = @
©­«arg min

‖V‖≤2

1
2=






y −

√
SNR
?

XV







2ª®¬ . (8.5)

For example, for BPSK we should take 2 = √?.
Clearly, neither of the above relaxations are the best convex relaxations that one can
use. The best would be to relax D to its convex hull, S = conv(D), in which case
the estimator becomes,

Ṽconv = @
©­«arg min

V∈S?
1

2=






y −

√
SNR
?

XV







2ª®¬ . (8.6)

Many efficient methods for solving the above convex optimization problem exist
[23, 28].

While these relaxations have been extensively used, analyzing their performance
was, for a long time, an open problem. In the past 4-5 years, the performance of the
convex relaxation methods have been analyzed for real-valued constellation in the
works of [9, 91, 166, 174]. More specifically, Thrampoulidis et. al. [174] exploited a
framework known as theConvexGaussianMin-max Theorem (CGMT) [165, 171]
to compute the performance of the box relaxation method for BPSK and PAM
modulations. More recently, in [1], the authors of this paper have extended the
previous results and provided a precise performance analysis for a complex-valued
constellation, D ⊂ C, a general convex set C such that D ? ⊂ C.
In order to compare performance of different convex relaxations, let us consider
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8-PSK constellation as an example, where D8-PSK =
{
4 9

2c
8 8 |8 = 0, . . . , 7

}
. Using

Theorem 3.1 in [1], the symbol error rate for the aforementioned relaxations can be
bounded as follows,

SERZF ≤ 16 · &
(√

SNR · (X − 1)
)
.

SERConv ≤ 16 · &
(√

SNR · (X − 5
8
)
)

and,

SERMFB ≤ 16 · &
(√

SNR · X
)
. (8.7)

Here, SERZF, SERConv and SERMFB correspond to the symbol error rate of
zero-forcing, convex hull relaxation and matched filter bound, respectively.
More importantly, this result allows one to say something about the distribution of
errors in a single block of transmission. It turns out that the number of errors in each
block of data, i.e., the number of errors in Ṽ, concentrates around ?SER [165]. This
is a remarkable result and tells us that we have a very good idea about the number
of errors that appear in the output of the convex optimization step. This knowledge
will be critical in developing the second step of our approach.

Analysis of the post processing (symbol update)
In this section we analyze the performance of the post-processing local search
method. The goal of this step is to reduce the number of erronous symbols in
the result of the first step. As depicted in Figure 8.1, the symbol update method
receives an input x̃ ∈ D ?, which is the result of the first step of the algorithm. Using
the measurement matrix, X, and the measurement vector y, it updates the symbols
one-by-one as in (8.3), to reduce the the objective value, | |y − XV | |. We analyze
this step to realize the number errors this step is able to correct, in terms of a few
problem parameters that we will define next.
For a constellation set D ⊂ C, we define 3min = 3min(D) := minB1≠B2∈D |B1 − B2 |,
and 3max = 3max(D) := maxB1,B2∈D |B1 − B2 |. We assume the entries of Ṽ are
independently distributed such that, (V∗

8
, Ṽ8) ∼ ?3 , for 8 = 1, 2, . . . , ?. Here, ?3

denotes a probability mass function (PMF) overD2. We use ?3 to define the average
error distance, as follows,

Definition 5 Let % : D2 → [0, 1] be a probability mass function over D2. The
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average error distance �̄ is defined as,

�̄ := �̄ (%) :=
√
E(G,H)∼% [|G − H |2] (8.8)

Theorem 19 provides an upper bound on the SER of the output of the symbol update
algorithm, in terms of the parameters �̄ and 3min.

Theorem 19 Consider the symbol update algorithm as in (8.3). Let X has i.i.d.
complex normal entries, and for 8 = 1, 2, . . . , ?, (V∗

8
, Ṽ8) i.i.d.∼ ?3 , where ?3 is a

probability mass function over D2. Then, as ?, = → ∞ with the fixed ratio X := =
?
,

the symbol-error-rate of the output, V̄, can be bounded almost surely as,

SER ≤ (|D| − 1)&
(3min√

2

√
X · SNR

1 + SNR · �̄2

)
. (8.9)

Before stating the proof, the following remark is in place.

Remark 28 It is worth nothing that the probability of error in the input, Ṽ , lies
whitin the PMF ?3 and consequently �̄. Parameter �̄ is only defined for a tighter
analysis of this step and can be simply bounded as �̄ ≤ SERṼ · 3max, where SERṼ is
the symbol-error-rate of the input signal Ṽ. Therefore, we have the following,

SER ≤ (|D| − 1)&
(3min√

2

√
X · SNR

1 + SNR · 3max · SERṼ
)
. (8.10)

Proof 12 (outline) As ? →∞, the WLLN asserts,

SER =
1
?

?∑
8=1

1V̄8≠V∗8
%→ P( V̄1 ≠ V

∗
1). (8.11)

Recall that V̄1 is the output of the symbol update which is computed via solving the
following optimization,

¯̃V1 = arg min
B∈D
| |y −

√
SNR (

XṼ + (B − Ṽ1)X1
)
| | . (8.12)

Replacing y =
√
SNR
?

XV∗ + z would result,

V̄1 = arg min
B∈D
| |

√
SNR
?
(B − V∗1)X1 + v| |, (8.13)
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where v ∈ C= is defined as,

v :=

√
SNR
?

?∑
8=2
( Ṽ8 − V∗8 )X8 − z . (8.14)

Exploiting the assumption that the entries of X8’s and z are independently drawn
from NC(0, 1) distribution and (V∗8 , Ṽ8)

i.i.d.∼ ?3 , we have the followig via WLLN,

| |v| | →
√
=(1 + SNR · �̄2) . (8.15)

Next, choose B ∈ D − {V∗1}. We have,

P( V̄1 = B) ≤ P(

√
S#'
?
|B − V∗1 |

2 | |X1 | |2 (8.16)

+2Re{(B − V∗1)v
★X1} < 0) .

It can be shown that the expression in the right-hand-side of (8.16) converges in
probability to,

RHS→ &
( |B − V∗1 |√

2

√
X · SNR

1 + SNR · �̄2

)
. (8.17)

Since 3min ≤ |B − V∗1 |, we can get an upper bound by replacing |B − V∗1 | with 3min.
The result (upper bound on SER) is then derived by taking a union bound over all
B ∈ D − {V∗1}.

The following proposition can be proved by combining the results of Theorem 2.1,
with theoretical guarantees on the first step that are derived in [1].

Proposition 1 Consider the assumptions of Theorem 19. Also assume that SNR
goes to infinity as ? → ∞ (with any order larger than constant). Then the relative
gap between the performance of the MFB (SER"��) and our two step algorithm
(SER�;6) goes to zero, i.e.

SER�;6 − SER"��
SER"��

→ 0 . (8.18)

This Proposition simply states that the proposed algorithm achives the matched filter
bound (MFB) when the SNR grows at a rate greater than a constant. Due to lack of
space, we defer the proof, which is a combination of Theorem 19 and performance
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Figure 8.3: SER performance of our two-step algorithm with respect to SNR,
for three choises of convex relaxation; Zero-Forcing (Red lines), MMSE (Black
lines) and Convex Hull relaxation (Blue lines). The green curve corresponds to the
performance of the Matched Filter Bound. Solid lines represent the performance of
the first steps only, and the dashed lines are the final performance of the two-step
algorithm. For our simulations we used ? = 128 with =

?
= 1.1. The results is

averaged over 200 random independent realization of the channel matrix and noise
vector.

analysis of the first step, to an extended version of this paper.
We conclude the section by presenting some numerical simulations that verify the
validity of our proposition. Figure 8.3 shows the SER of our two-step algorithmwith
respect to SNR, for various convex relaxations in the first step. We used zero-forcing,
MMSE, and Convex Hull relaxation for recovering an 8-PSK signal as the first step.
As seen in the figure, applying the symbol update considerably improves the SER of
the convex relaxation in the large SNR regime. We also reach theMFB performance
as the SNR gets reasonably large. Besides, the best performance corresponds to the
tightest relaxation. The convex hull relaxation performs better than MMSE which
itself outperforms the Zero-Forcing.



167

C h a p t e r 9

A PRECISE ANALYSIS OF PHASEMAX IN PHASE RETRIEVAL

9.1 Introduction
The1 fundamental problem of recovering a signal from magnitude-only measure-
ments is known as phase retrieval. This problem has a rich history and occurs in
many areas in engineering and applied physics such as astronomical imaging [69], X-
ray crystallography [116], medical imaging [55], and optics [191]. In most of these
cases, measuring the phase is either expensive or even infeasible. For instance, in
some optical settings, detection devices like CCD cameras and photosensitive films
cannot measure the phase of a light wave and instead measure the photon flux.

Reconstructing a signal from magnitude-only measurements is generally very dif-
ficult due to loss of important phase information. Therefore, phase retrieval faces
fundamental theoretical and algorithmic challenges and a variety of methods were
suggested [86]. Convex methods have recently gained significant attention to solve
the phase retrieval problem. These methods are mainly based on semidefinite
programming by linearizing the resulting quadratic constraints using the idea of
lifting [11, 13, 36, 77, 87, 88, 128, 144, 190]. Due to the convex nature of their
formulation, these algorithms usually have rigorous theoretical guarantees. How-
ever, semidefinite relaxation squares the number of unknowns which makes these
algorithms computationally complex, especially in large systems. This caveat makes
these approaches intractable in real-world applications.

Introduced in two independent works [12, 78], PhaseMax is a recently proposed
convex formulation for the phase retrieval problem in the original =−dimensional
parameter space. This method maximizes a linear functional over a convex feasible
set. The constrained set in this optimization is obtained by relaxing the non-convex
equality constraints in the original phase retrieval problem to convex inequality
constraints. To form the objective function, PhaseMax relies on an initial estimate
of the true signal which must be externally provided.

The simple formulation of the PhaseMax method makes it appealing for practical
applications. In addition, existing theoretical analysis indicates this method achieves
perfect recovery for a nearly optimal number of randommeasurements. The analysis

1This chapter is mainly based on the work in [142]
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in [12, 78, 82] suggests that < > �=, where � is a constant that depends on the
quality of initial estimate (xinit), is the sufficient number of measurements for perfect
signal reconstruction when the measurement vectors are drawn independently from
the Gaussian distribution. The exact phase transition threshold, i.e. the exact value
of the constant �, for the real PhaseMax has been recently derived in [52, 53].
However, for the practical case of complex signals, previous results could only
provide an upper bound on �.

In this paper, we characterize the phase transition regimes for the perfect signal
recovery in the PhaseMax algorithm. Our result is asymptotic and assumes that
the measurement vectors are derived independently from Gaussian distribution. To
the extent of our knowledge, this is the first work that computes the exact phase
transition bound of the (complex-valued) PhaseMax in phase retrieval.

In our analysis, we utilize the recently developed Convex Gaussian Min-max The-
orem (CGMT) [165] which uses Gaussian process methods. CGMT has been
successfully applied in a number of different problems including the performance
analysis of structured signal recovery in M-estimators [4, 165], massive MIMO
[1, 166] and etc. CGMT has been also used by Dhifallah et. al. [53] to analyze the
real version of the PhaseMax. But unfortunately, the complex case does not directly
fit into the framework of CGMT. Therefore, in this paper we introduce a secondary
optimization that provably has the same phase transition bounds as PhaseMax and
that also can be analyzed by CGMT.

The organization of the chapter is as follows. In section 9.2 we introduce the main
notations and mathematically setup the problem. In section 9.3, we present our
main result followed by discussions and the result of numerical simulations. Finally,
section 9.4 includes an outline of the proof of the main theorem.

9.2 Problem Setup
Notations
Wegather here the basic notations that are used throughout this paper. We reserve the
letter 9 for the complex unit. For a complex scalar G ∈ C, GRe and GIm correspond to
the real and imaginary parts of G, respectively, and |G | =

√
G2
Re + G

2
Im . N(`, f2) de-

notes real Gaussian distribution with mean ` and variance f2. Similarly,NC(`, f2)
refers to a complex Gaussian distribution with real and imaginary parts drawn inde-
pendently fromN(`Re, f2/2) andN(`Im, f2/2), respectively. R(2f2) denotes the
Rayleigh distribution with second moment equal to 2f2. - ∼ ?- implies that the
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random variable - has a density ?- . Bold lower letters are reserved for vectors and
upper letters are used for matrices. For a vector v, E8 denotes its 8th entry and | |v| |
is its ;2 norm. (·)★ is used to denote the conjugate transpose. For a complex vector
v, vRe and vIm denotes its real and complex parts, respectively. Also, v(: : ;) is a
column vector consisting of entries with index from : to ; of v. We use caligraphy
letters for sets. For set S, cone(S) is the closed conical hull of S.

Setup
Let x0 ∈ C= denote the underlying signal. We consider the phase retrieval problem
with the goal of recovering x0 from < magnitude-only measurements of the form,

18 = |a★8 x0 |, 8 = 1, . . . , <. (9.1)

Throughout this paper we assume that {a8 ∈ C=}<8=1 is the set of known measure-
ment vectors where the a8’s are independently drawn from the complex Gaussian
distribution with mean zero and covariance matrix I.

As mentioned earlier, the PhaseMax method relies on an initial estimate of the true
signal. xinit ∈ C= is used to represent this initial guess. We assume both x0 and xinit
are independent of all the measurement vectors. The PhaseMax algorithm provides
a convex formulation of the phase retrieval problem by simply relaxing the equality
constraints in (9.1) into convex inequality constraints. This results in the following
convex optimization problem:

Ĝ = arg max
x∈C=

Re{xinit★ x}

subject to: |a★8 x| ≤ 18 , 1 ≤ 8 ≤ <.
(9.2)

This optimization searches for a feasible vector that posses the most real correlation
with xinit. Note that because of the global phase ambiguity of the measurements in
(9.1), we can estimate x0 up to a global phase. Therefore, we define the following
performance measure for the PhaseMax method,

Dist(Ĝ, x0) = min
q∈[−c,c]

‖Ĝ4 9q − x0‖
‖x0‖

. (9.3)

Under this setting, a perfect recovery of x0 means Dist(Ĝ, x0) = 0. In this paper
we investigate the necessary and sufficient conditions under which the optimization
program (9.2) perfectly recovers the true signal.
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9.3 Main Result
In this section, we present the main result of the paper which provides us with the
necessary and sufficient number of measurements for the perfect recovery of the
PhaseMax method in (9.2) under different scenarios. Our result is asymptotic which
assumes a fixed oversampling ratio X := <

=
∈ [0,∞), while = → ∞. In theorem

20, we introduce Xrec which depends on the problem parameters and prove that the
condition X > Xrec, is necessary and sufficient for perfect recovery. Our result reveals
significant dependence between Xrec and the quality of the initial guess. We use the
following similarity measure to quantify the caliber of the initial estimate:

dinit := max
0≤q<2c

Re(4 9q x★init x0)
| |x0 | | | |xinit | |

. (9.4)

Note that the multiplication by a unit amplitude scalar in the above definition is due
to the global phase ambiguity of the phase retrieval solution (the true phase of x0

is dissolved in the absolute value in (9.1)). Therefore, for convenience we assume
both xinit and x0 are aligned unit norm vectors (| |x0 | | = | |xinit | | = 1), which results
in dinit = x★init x0. We also define \ as the angle between xinit and x0, and therefore,
dinit = cos \. We now present the main result of the paper which characterizes the
phase transition regimes of PhaseMax for perfect recovery, in terms of X and dinit.

Theorem 20 Consider the PhaseMax problem defined in section 9.2. For a fixed
oversampling ratio X = <

=
> 4, the optimization program (9.2) perfectly recovers the

true signal (in the sense that lim=→∞ P(Dist(Ĝ, x0) > n) = 0, for any fixed n > 0) if
and only if,

X > Xrec :=
4

cos2 \
=

4
d2
init

, (9.5)

where dinit is defined in (9.4).

Theorem 20 establishes a sharp phase transition behavior for the performance of
PhaseMax. The inequality (9.5) can also be rewritten in terms of \ (or dinit) when
the oversampling ratio, X, is fixed,

dinit = cos \ >
√

4
X
. (9.6)

The proof of Theorem 20 consists of two main steps. First, we introduce a real
optimization program with 2= − 1 variables and prove that it has the same phase
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transition bounds as PhaseMax in (9.2). The point of this step is that this new
real optimization is especially built in a way that its performance can be precisely
analyzed using well known tools like CGMT. Therefore, the next step would be to
apply the CGMT framework to the new real optimization and to derive its phase
transition bounds. We postpone a detailed version of the proof to section 9.4.

Remark 29 The condition X > 4 is proven to be fundamentally necessary for the
phase retrieval problem under generic measurements to have a unique solution
[45]. This is consistent with Theorem 20 where you can observe that even in the
best scenario where xinit is aligned with x0, we still need < > 4= measurements
for PhaseMax to have x0 as the solution. On the other hand, in the case where
xinit carries no information about x0 (xinit is orthogonal to x0), recovery of x0 by
PhaseMax is not guaranteed regardless of the number of measurements.

Remark 30 It is shown in the work of Goldstein et. al. [78] that X > 4
1−2\/c is

sufficient for perfect recovery of x0. This bound is compared to our result in Fig. 9.1
which shows phase transition regions of PhaseMax derived from empirical results.
Although the simulations are run on the signals of size = = 128, one can see that the
blue line that comes from Theorem 20, perfectly predicts phase transition boundary.

9.4 Proof Outline
In this part we introduce the main ideas used in the proof of Theorem 20. As
mentioned earlier in section 9.3, we assume x0 is a unit norm vector alignedwith xinit.
Due to rotational invariance of the Gaussian distribution, without loss of generality,
we assume x0 = e1, the first vector of the standard basis in C=. Furthermore, the
optimization program (9.2) is scalar invariant. So, we can assume ‖xinit‖ = 1.

The proof consists of two main steps: In the first step, we analyze the complex
optimization problem (9.2) and find the necessary and sufficient condition under
which x̂ = x0. Consequently, we use this condition to build an equivalent real
optimization problem. Lemma 24 introduces this equivalent real optimization ERO,
in R2=−1, and states that the perfect recovery in the PhaseMax algorithm occurs if
and only if zero is the unique minimizer of the ERO.

In the second step, we adopt the CGMT framework to analyze the ERO and inves-
tigate the conditions on dinit (or \) under which the unique answer to the ERO is
0. Therefore ,as a result of Lemma 24, these conditions will guarantee the perfect
recovery in the initial PhaseMax optimization (9.2).



172

4 4.5 5 5.5 6 6.5 7 7.5 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 (
ra

d
)

Theorem 1

GS Bound

Figure 9.1: Phase transition regimes for the PhaseMax problem in terms of the
oversampling ratio X = </= and \, the angle between x0 and xinit. For the empirical
results, we used signals of size = = 128. The data is averaged over 10 independent
realization of the measurement vectors. The blue line indicates the sharp phase
transition bounds derived in Theorem 20 and the red line comes from the results of
[78], which is referred to as the GS Bound.

Introducing the Real Optimization ERO
We define the error vector w := x − x0 and rewrite (9.2) in terms of w,

max
w∈C=

Re{xinit★ w}

subject to: |a★8 (e1 + w) | ≤ 18 , 1 ≤ 8 ≤ <.
(9.7)

For 8 = 1, 2, . . . , < , we use q8 := phase(ai
★x0) to define aligned measurement

vectors ã8 := 4 9q8a8. Therefore, we have,

18 = ã★8 x0 = (ã8)1, for 8 = 1, 2, . . . , < , (9.8)

where (ã8)1 is the first entry of ã8. LetD := {w ∈ C= : Re{x★init w} ≥ 0} be the set of
all vectors w with nonnegative objective value and F := {w ∈ C= : |a★

8
(e1 + w) | ≤

18, for 8 = 1, 2, . . . , <} be the feasible set of the optimization problem (9.7). The
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following lemmas prove necessary and sufficient conditions for perfect recovery in
PhaseMax, based on these notations.

Lemma 21 x0 is the unique optimal solution of (9.2) if and only if D
⋂F = {0}.

Proof 13 For w ∈ D⋂F , x0 + w is a solution of (9.2) with an objective value
greater than the value for x0. Therefore,D

⋂F = {0} is equivalent to x0 be a local
minimum of (9.2) which is also a global minimum due to convexity of (9.2).

Lemma 22 D⋂F = {0} if and only if D⋂
cone(F ) = {0}.

Proof 14 Note that D ⊂ C= is a convex cone and F ⊂ C= is a convex set. The
proof is the consequence of the following equality,

D
⋂

cone(F ) = cone(D
⋂
F ).

Lemma 23 cone(F ) = ⋂<
8=1{w ∈ C= : Re{ã★

8
w} ≤ 0}.

Proof 15 Let d ∈ F ,

|18 + ã★8 d| ≤ 18 , for 8 = 1, 2, . . . , <. (9.9)

Therefore,

Re{ã★8 d} = Re{18 + ã★8 d} − 18 ,
≤ |18 + ã★8 d| − 18 , (9.10)

≤ 0 .

This shows that cone(F ) ⊆ ⋂<
8=1{w ∈ C= : Re{ã★

8
w} ≤ 0}. To show the other

direction, choose d ∈ C= such that: Re{ã★
8
d} < 0, for 8 = 1, 2, . . . , <. One

can show that there exists ' > 0, such that for all A ≤ ', Ad ∈ F . Therefore,
d ∈ cone(F ). This concludes the proof.

Wehave the following corollary as a result of Lemma 21, Lemma 22, and Lemma 23.

Corollary 11 x0 is the unique optimal solution of (9.2) if and only if,

{w : Re{x★initw} ≥ 0 Re{ã★8 w} ≤ 0, for 1 ≤ 8 ≤ <} = {0}. (9.11)
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We are now ready to establish the equivalent real optimization ERO. We will show
that the ERO has the exact phase transition bounds as PhaseMax in (9.2).

max
w′∈R2=−1

[) w′

subject to: |a′)8 (e1 + w′) | ≤ 18 , 1 ≤ 8 ≤ <,
(9.12)

where e1 is the first vector of the standard basis in R2=−1, [ and {a′
8
}<
8=1 are (2= − 1)

dimensional real vectors defined as,

[ :=

[
Re{xinit}

−Im{xinit(2 : =)}

]
and a′8 :=

[
Re{ã8}

−Im{ã8 (2 : =)}

]
, ∀8. (9.13)

Here Im{ã8 (2 : =)} is the imaginary part of the last =− 1 entries of ã8. We conclude
this step of the proof with the following lemma:

Lemma 24 x0 is the unique optimal solution of the PhaseMax method if and only
if w′ = 0 is the unique optimal solution of (9.12).

The proof of Lemma 24 is straightforward by defining

w′ =
[

Re{w}
Im{w(2 : =)}

]
∈ R2=−1 , (9.14)

and then showing that the optimality conditions for w′ = 0 in (9.12) is equivalent to
(9.11).

It is worthmentioning that the result of Lemma 24 is valid for any set ofmeasurement
vectors {a8}. In the next part, we use this result to compute the phase transition
of PhaseMax when the measurement vectors are drawn independently from the
Gaussian distribution.

Convex Gaussian Min-Max Theorem
Our analysis is based on the recently developed ConvexGaussianMin-max Theorem
(CGMT) [165]. The CGMT associates with a Primary Optimization (PO) problem
an Auxiliary Optimization (AO) problem from which we can investigate various
properties of the primary optimization, such as phase transitions. In particular, the
(PO) and the (AO) problems are defined respectively as follows:

Φ(G) := min
w∈Sw

max
u∈Su

u)Gw + k(u,w), (9.15a)

q(g, h) := min
w∈Sw

max
u∈Su

‖w‖g)u − ‖u‖h)w + k(u,w), (9.15b)
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where G ∈ R<×=, g ∈ R<, h ∈ R=, Sw ⊂ R=,Su ⊂ R< and k : R= × R< → R.
Denote wΦ := wΦ(G) and wq := wq (g, h) any optimal minimizers in (9.15a) and
(9.15b), respectively. The following lemma is a result of CGMT [165].

Lemma 25 Consider the two optimizations (9.15a) and (9.15b). Let Sw,Su be
convex and compact sets, k be continuous and convex-concave on Sw × Su, and,
G, g and h all have entries iid standard normal. Suppose there exist U such that in
the limit of = → ∞ it holds in probability that ‖wq (g, h)‖ → U. Then, the same
holds for wΦ(G) and we have ‖wΦ(G)‖ → U.

In the next section, first we will rewrite the ERO in the form of the optimization
(9.15a). This enables us to apply Lemma 25 to the ERO and derive an Auxiliary
Optimization in the form of (9.15b). This lemma indicates that if ‖wq (g, h)‖ → 0
for the (AO), then ‖wΦ(G)‖ → 0 for the ERO and we have perfect recovery. (AO)
can be analyzed using the conventional concentration results in high dimensions.

Computing the Phase Transition for PhaseMax
In this part we adopt the CGMT framework along with the result of Lemma 24 to
compute the exact phase transition of the PhaseMax algorithm under the Gaussian
measurement scheme.

We start by calculating the distribution of the entries of a′
8
that are defined in (9.13).

Recall that a8’s are independently drawn from the complex Gaussian distribution
with mean zero and covariance matrix I. Therefore, the distribution of the entries
of ã8’s that were defined in section 9.4, is as follows:

1. The first entry of ã8 is the absolute value of the first entry of the a8. Therefore,
it has a Rayleigh distribution, i.e.,

(ã8)1 ∼ R(1), (9.16)

2. The remaining entries of ã8 remain standard Gaussian random variables,

(ã8): ∼ NC(0, 1), for 2 ≤ : ≤ = , (9.17)

3. The entries of ã8 remain independent.

This implies that all the entries of a′
8
are independent, the first entry of a′

8
has a R(1)

distribution and the rest of the entries have Gaussian distributionN(0, 1
2 ). We form
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the measurement matrix A ∈ R<×(2=−1) by stacking vectors {ai
) , 1 ≤ 8 ≤ <}. Let

A1 ∈ R< be the first column of A, and Ã ∈ R<×(2=−1) be the remaining part (i.e.,
A = [A1 Ã]). x0 = e1 implies that A1 = [11, 12, . . . , 1<]) , where 18’s are defined
in (9.1). Using the Lagrange multipliers, we can reformulate (9.12) as the following
minmax program,

min
F1∈R

w̃∈R2=−2

max
_,`∈R<+

(
− [)w + (_ − `)) Ãw̃

− (_ + `))A1 + (_ − `))A1(1 + F1)
)
, (9.18)

where F1 denotes the first entry of w and w̃ is the remaining part. Define v := _−` .
It can be shown that optimal values of (9.18) satisfy _ + ` = |_ − ` |. Here, | · |
denotes the component-wise absolute value. Therefore, (9.18) can be rewritten as
an optimization over v ∈ R< and w ∈ R2=−1 in the following form:

min
F1∈R

w̃∈R2=−2

max
v∈R<
− [)w + v) Ãw̃ + v)A1(1 + F1) − |v|)A1. (9.19)

Note that Ã has i.i.d. standard normal entries. One can check that (9.19) satisfies
the condition of Lemma 25. Hence, we can form the (AO) as follows,

min
F1∈R

w̃∈R2=−2

max
v∈R<
− [)w + v)g| |w̃| | + | |v| |h) w̃

+ v)A1(1 + F1) − |v|)A1,

(9.20)

where g ∈ R< and h ∈ R2=−2 with entries drawn independently from standard
normal distribution. Analysis of (9.20) is similar to [53]. Due to lack of space, we
defer technical details to the full version of the paper.

We conclude the paper with a theorem that characterizes the performance of the
ERO. Let w∗ be the optimizer of (9.20). Define B∗ := 1 + F∗1 and C

∗ := | |w̃∗ | |.

Theorem 21 In the asymptotic regime where <, = → ∞, and X := <
=
, B∗ and C∗

converges to the solution of the following deterministic optimization,

max
B∈[−1,1], C≥0

dinit B +
√

1 − dinit2
√
C2 − X

2
?(C, B)

subject to: ?(C, B) ≤ 2C2

X
.

(9.21)
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In the above optimization, ?(C, B) is define as,

?(C, B) =C2 + (1 + B) [1 + B −
√
C2 + (1 + B)2]

+ (1 − B) [1 − B −
√
C2 + (1 − B)2] (9.22)

It can be shown that dinit > 2√
X
is the necessary and sufficient condition for (C∗, B∗) =

(0, 1) to be the unique solution of (9.21) which is equivalent to the perfect recovery
in the ERO.
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C h a p t e r 10

CONCLUSION AND FUTURE WORK

Wewill concludewith some brief remarks n the results of this thesis, andmentioning
a few related directions that worth further exploration.

The universality results we showed were for a few special, but useful and practi-
cal cases, and does not always hold. For instance, in the last chapter we observe
that the phase transition we achieve for complex phase retrieval with phase-max, is
not simply equivalent to the case where we replace the complex Gaussian matrix,
with its corresponding real Gaussian matrix, as we did for massive MIMO. Also in
Chapter 6, we have observed that the assumptions we mentioned for the regularizer
are necessary. For instance, universality will not hold by choosing a nuclear norm
as the regularizer, without being constraint to PSD matrices. Note that if we are
constrained to PSD matrices, the nuclear norm simply becomes the trace function,
which satisfies the assumptions of the Chapter 6.

The precise analysis we proposed in Chapter 2, paved the way for a few possible fu-
ture directions. Calculating the best regularizer parameter _ and choosing the right
loss function and regularizer based on the problem parameters are two interesting
directions that we would like to consider as future work. Besides, the universality
results enables us to go further, and analyze the best designs for the feature matrices
X. This can be helpful in the applications that we can manipulate the features matrix
for the best performance.

Another area that has not been investigated yet, is the analysis of the count data
models, such as Poisson regression. These models are very popular with tens of
applications in telecommunications (number of arriving calls in a system), Biology
(number of mutations on a DNA), Finance and insurance (number of losses or claims
in a period of time), etc.. Using the results of Chapter 2, we can easily analyze their
performance and derive results on consistency of count data models under various
conditions.
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Finally, new applications of generalized linear models and also non-linear models,
always leads to new research directions where CGMT and such universality results
framework are applicable. We hope that this thesis was a practical guide in using
CGMT framework and corresponding universality results to those new directions.
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.1 Proof of Theorem 2
Here, we prove Theorem 2. The proof consists of several steps and intermediate
results, that are stated as lemmas. The proofs of those are all deferred to Appendix
.2.
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Preliminaries

V̂ := arg min
V
L(y − XV) + _ 5 (V).

Recall that y = XV0 + z. Our goal is to characterize the nontrivial limiting behavior
of ‖ V̂ − V0‖2/

√
?. We start with a simple change of variables w := (V − V0)/

√
?,

to directly get a handle on the error vector w. Also, we normalize the objective by
dividing with ? so that the optimal cost is of constant order. Then,

ŵ := arg min
w

1
?

{
L

(
z − √?Xw

)
+ _ 5

(
V0 +
√
?w

)}
. (1)

Instead of the optimization problem above, we will analyze a simpler Auxiliary
Optimization (AO) that is tightly related to the Primary Optimization (PO) in (1)
via the CGMT.

The CGMT for M-estimators
In this section, we show how the CGMT Theorem 8 can be applied to predict
the limiting behavior of the solution ‖ŵ‖2 to the minimization in (1). The main
challenge here is to express (1) as a (convex-concave) minimax optimization in
which the involved random matrix (here X) appears in a bilinear form, exactly as in
(2.126a). Also, some side technical details need to be taken care of. For example,
in (2.126a) the optimization constraints are required by Theorem 8 to be bounded,
which is not the case with (1). We start with addressing this immediately next.

Boundedness of the Error

The constraint set over which w is optimized in (2.126a) is unbounded. We will
introduce “artificial" boundedness constraints that allow applying Theorem 8, while
they do not affect the optimization itself. For this purpose, recall our goal of proving
that ‖ŵ‖2 converges to some (finite) U∗ defined in Theorem 2. Define the set
Sw = {w | ‖w‖2 ≤  U}, where

 U := U∗ + Z (2)

for a constant Z > 0, and, consider the “bounded" version of (1):

ŵ� := arg min
w∈Sw

1
?

{
L

(
z − √?Xw

)
+ _ 5

(
V0 +
√
?w

)}
. (3)
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We expect that the additional constraintw ∈ Sw in (3) will not affect the optimization
with high probability when ? is large enough. The idea here is that the minimizer
of the original unconstrained problem in (1) satisfies ‖ŵ‖2 ≈ U∗ <  U w.h.p.. Of
course, this latter statement is yet to be proven; but onnce this is done, we can
return and confirm that our initial expectation is met. Lemma 26 below shows that
if ‖ŵ�‖ %−→ U∗ <  U, then, the same is true for the optimal of (1).

Lemma 26 For the two optimizations in (1) and (3), let ŵ and ŵ� be optimal
solutions. Also, recall the definition of  U in (2). If ‖ŵ�‖2

%−→ U∗, then ‖ŵ‖2
%−→ U∗.

Owing to the result of the lemma, henceforth, we work with the bounded optimiza-
tion in (3). Using some abuse of notation, we will refer to optimal solution of (3) as
ŵ, rather than ŵ�.

Identifying the (PO)

Here, we bring the minimization in (3) it in the form of the (PO) in (2.126a). For
this purpose, we will use Lagrange duality. Note that the former can be equivalently
expressed as

ŵ = arg min
w∈Sw,v

1
?

{
L(√?v) + _ 5 (V0 +

√
?w)

}
subject to v = z − √?Xw.

Associating a dual variable u to the equality constraint above, we write it as

ŵ = arg min
w∈Sw,v

max
u

1
√
?

{
−u) (√?X)w + u)z − u)v

}
+ 1
?

{
L(v) + _ 5 (V0 +

√
?w)

}
.

(4)

It takes no much effort to check that the objective function above is in the desired
format of (2.126a): the random matrix X appears in a bilinear term u)Xw, and,
the rest of the terms form a convex-concave function in u,w. Furthermore, we can
use Assumption 1 to show that the optimal u∗ is bounded, which is a requirement
of Theorem 8. In the same lines as in Section .1, we henceforth work with the
“bounded" version of (4), namely,

ŵ = arg min
w∈Sw,v

max
u∈Su

1
√
?

{
−u) (√?X)w + u)z − u)v

}
+ 1
?

{
L(v) + _ 5 (V0 +

√
?w)

}
.

(5)

for Su := {u | ‖u‖2 ≤  V} and  V > 0 a sufficiently large constant.
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Lemma 27 If Assumption 1(b) holds, then there exists sufficiently large constant
 V, such that the optimization problem in (5) is equivalent to that in (3), with
probability approaching 1 in the limit of ? →∞.

As a last step, before writing down the corresponding (AO) problem, it will be useful
for the analysis of the latter, to express 5 in a variational form through its Fenchel
conjugate, which gives,

ŵ = arg min
w∈Sw,v

max
u∈Su,s

1
√
?

{
−u) (√?X)w + u)z − u)v

}
+ 1
?

{
L(v) + _s) V0 + _

√
?s)w − _ 5 ∗(s)

}
. (6)

The (AO)

Having identified (6) as the (PO) in our application, it is straightforward to write the
corresponding (AO) problem following (2.126b):

min
w∈Sw,v

max
u∈Su,s

1
√
?

{
‖w‖2g)u − ‖u‖2h)w + u)z − u)v

}
+ 1
?

{
L(v) + _s) V0 + _

√
?s)w − _ 5 ∗(s)

}
. (7)

Once we have identified the (AO) problem, Corollary 3 suggests analyzing that one
instead of the (PO). Our goal is showing that ‖ŵ‖2

%−→ U∗. For this, we wish to apply
the corollary to the following set

S = {w | |‖w‖2 − U∗ | > n},

for arbitrary n > 0.

Asymptotic min-max property of the (AO)

It turns out that verifying the conditions of the corollary for the (AO) as it appears
in (7) is not directly easy. In short, what makes the analysis cumbersome is the fact
that the optimization in (7) is not convex (e.g. if g)u is negative, then ‖w‖2g)u is
not convex). Thus, flipping the order of min-max operations that would simplify
the analysis is not directly justified.

At this point, recall that the (PO) in (6) is itself convex. In fact, for it, all conditions
of Sion’s min-max Theorem [149] are met, thus, the order of min-max operations
can be flipped. According to the CGMT, the (PO) and the (AO) are tightly related in
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an asymptotic setting. We use this, to translate the convexity properties of the (PO)
to the (AO). In essence, we show that when dimensions grow, the order of min-max
operations in the (AO) can be flipped. Thus, we will instead consider the following
problem as the (AO):

q(g, h) := max
0≤V≤ V

s

min
‖w‖2≤ Uv

max
‖u‖2=V

1
√
?
(‖w‖2g + z − v))u − 1

√
?
‖u‖2h)w

+ 1
?
L(v) + _

?
s) V0 +

_
√
?

s)w − _
?
5 ∗(s).

(8)

Observe that the objective function remains the same; it is only the order of min-max
operations that is slightly modified compared to (7). Since the objective function
is not necessarily convex-concave in its arguments, there is no immediate guarantee
that the two problems in (7) and (8) are equivalent for all realizations of g and h.
However, the lemma below essentially shows that such a strong duality holds with
high probability over g and h in high dimensions. Hence, the problem in (8) can be
as well used, instead of the one in (7), in order to analyze the (PO). For this reason,
henceforth, we refer to (8) as the (AO) problem.

Lemma 28 Let ŵ(X) denote an optimal solution of (1). Consider the (AO) problem
in (8). Let U∗ be as defined in Theorem 2. For any n > 0 define the set S :=
{w | |‖w‖2 − U∗ | < n}, and, qS2 (g, h) be the optimal cost of the same optimization
as in (8), only this time the minimization over w is further constrained such that
w ∉ S. Assume that for any  U > U∗ and for any sufficiently large  V, there exist
constants q < qSc such that for all [ > 0, with probability approaching one in the
limit of ? →∞ the following hold:

1. q(g, h) < q + [,

2. qSc (g, h) > qSc − [.

Then,
lim
?→∞
P ( |‖ŵ(X)‖2 − U∗ | < n ) = 1.

In view of Lemma 28, what remains in order to prove Theorem 2 is satisfying the
conditions of the lemma. This involves a thorough analysis of the (AO) problem in
(8), which is the subject of the next few sections.
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Scalarization
Observe that the optimization in (8) is over vectors. The purpose of this section
is to simplify the (AO) into an optimization involving only scalar variables. Of
course, one of this has to play the role of the norm of w, which is the quantity of
interest. The main idea behind the “scalarization" step of the (AO) is to perform
the optimization over only the direction of the vector variables while keeping their
magnitude constant. This is already hinted by the rearrangement of the order of
min-max operations going from (7) to (8). Also, this process is facilitated by the
following two:

1. The bilinear term u)Xw that appears in the (PO) conveniently “splits" into
the two terms ‖w‖2g)u and ‖u‖2h)w in the (AO),

2. The term involving the regularizer, i.e. 5 (V0 + w) has been expressed in a
variational form as sups s) V0 + s)w − 5 ∗(s).

The details of the reduction step are all summarized in Lemma 29 below which
shows that the (AO) reduces to the following convex minimax problem on four
scalar optimization variables:

inf
0≤U≤ U
g6>0

sup
0≤V≤ V
gℎ>0

Vg6

2
+ 1
?

eL
(
Ug + z;

g6

V

)

−

Ugℎ

2 +
V2U
2gℎ
‖h‖2
?
− _ · 1

?
e 5

(
VU

gℎ
h + V0; U_

gℎ

)
, U > 0

_
?
5 (V0) , U = 0

, (9)

where recall that
el (u; g) := min

v
{ 1

2g
‖u − v‖22 + l(v)}

denotes the (vector) g-Moreau envelope of a function l : R3 → R evaluated at
u ∈ R3 .

Lemma 29 (Scalarization of the (AO)) The following statements are true regard-
ing the two minimax optimization problems in (8) and (9):

1. They have the same optimal cost.

2. The objective function in (9) is continuous on its domain, (jointly) convex in
(U, g6) and (jointly) concave in (V, gℎ).

3. The order of inf-sup in (9) can be flipped without changing the optimization.
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Convergence Analysis
The goal of this section is to show that the (AO) satisfies the conditions of Lemma
28. This requires a convergence analysis of its optimal cost. We work with the
scalarized version of the (AO) that was derived in the previous section:

q(g, h, z, V0) = inf
0≤U≤ U
g6>0

sup
0≤V≤ V
gℎ>0

R? (U, g6, V, gℎ; g, h, z, V0), (10)

R? =
Vg6

2
+ 1
?

{
eL

(
Ug + z;

g6

V

)
− L(z)

}
−


Ugℎ

2 +
V2U
2gℎ
‖h‖2
?
− _

?

{
e 5

(
VU

gℎ
h + V0; U_

gℎ

)
− 5 (V0)

}
, U > 0

0 , U = 0
.

Here, when compared to (9), we have subtracted from the objective the terms L(z)
and 5 (V0), which of course does not affect the optimization. The optimization is of
course random over the realizations of g, h, z and V0, and, by theWLLN, it is easy to
identify the converging value of the objective function R? for fixed parameter values
U, g6, V, gℎ. For our goals, we need to show that minimax of the converging sequence
of objectives converges to the minimax of the objective of the (SOP). Convexity of
R? plays a crucial role here since is being use to conclude local uniform convergence
from the pointwise convergence. Uniform convergence is a requirement to conclude
the desired.1

Lemma 30 (Convergence properties of the (AO)) Let

R? (U, g6, V, gℎ) := R? (U, g6, V, gℎ; g, h, z, V0)

be defined as in (10), and,

qA := qA (g, h, z, V0) := inf
U∈A
g6>0

sup
0≤V≤ V
gℎ>0

R? (U, g6, V, gℎ), (11)

for A ⊆ [0,∞). Further consider the following deterministic convex program

qA := inf
U∈A
g6>0

sup
V≥0
gℎ>0

D(U, g6, V, gℎ) :=


Vg6
2 + X · !

(
U,

g6
V

)
, V > 0

−X · !0 , V = 0
−


Ugℎ

2 +
UV2

2gℎ − _ · �
(
UV

gℎ
, U_
gℎ

)
, U > 0

0 , U = 0
.

(12)
1Interestingly, some of the tools used for this part of the proof are similar to those classically

used for the study of consistency of "-estimators in the classical regime where ? is fixed and = goes
to infinity, see for example the Arg-min theorem in [107, Thm. 7.70], [125, Thm. 2.7].



201

where ! and � as in Theorem 2. If Assumption 1 hold, then,

1. R= (U, g6, V, gℎ)
%−→ D(U, g6, V, gℎ), for all (U, g6, V, gℎ), and, D(U, g6, V, gℎ)

is convex in (U, g6) and concave in (V, gℎ).

2. Assume U∗ is the unique minimizer in (12) with A := [0,∞). For any n > 0,
define Sn := {U | |U − U∗ | < n}. Then, for any sufficiently large constants
 U > U∗ and  V > 0, and for all [ > 0, it holds with probability approaching
1 as ? →∞:

a) q[0, U] < q[0,∞) + [,

b) q[0, U]\Sn ≥ q[0,∞)\Sn − [,

c) q[0,∞)\Sn > q[0,∞) .

Putting all the Pieces Together
We are now ready to conclude the proof of Theorem 2.

Proof 16 (Proof of Theorem 2) Fix any n > 0. Consider the set Sn = {w | |‖w‖2−
U∗‖2 < n as in Lemma 28. We use the same notation as in the lemma. Let
 U > U∗ and arbitrarily large (but finite)  V > 0. From Lemma 29(i) q(g, h) is
equal to the optimal cost of the optimization in (9). But, from Lemma 30(b)(i),
the latter converges in probability to some constant q (see Lemma 30 for the exact
value constant). The same line of arguments applies to qS2n (g, h), showing that it
converges to another constant qS2n . Again from Lemma 30(iii): qS2n > q. Thus,
the conditions of Lemma 28 are satisfied, and, it implies that the magnitude of any
optimal minimizer (say) ŵ(%$) of the (PO) problem in (6) satisfies ŵ(%$) ∈ S in
probability, in the limit of ? →∞.
Once, we have a min-max optimization that consits of only scalars, we only have to
investigate the optimality conditions to get to the system of non-linear equations in
Theorem 2.

.2 Proofs for Section .1
Proof of Theorem 8(iii)
Consider the following event

E = {ΦS2 (G) ≥ qSc − [ , Φ(G) ≤ q + [}.
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In this event, it is not hard to check using assumption (a) that ΦSc > Φ, or equiv-
alently wΦ ∈ S. Thus, it suffices to show that E occurs with probability at least
1 − 4?.

Indeed, from statement (i) of the theorem and assumption (c),

P(ΦS2 (G) < qSc − [) ≤ 2P(qS2 (g, h) ≤ qSc − [) ≤ 2?.

Also, from statement (ii) of the theorem and assumption (b),

P(Φ(G) > q + [) ≤ 2P(q(g, h) ≥ q + [) ≤ 2?.

Combining the above displays the claim follows from a union bound.

Proof of Corollary 3
Call [ := (qSc − q)/3 > 0. By assumption, for any ? > 0 there exists # := # ([, ?)
such that the events {q < q + [} and {qSc > qSc − [} occur with probability at
least 1 − ? each, for all ? > # . Then, for all ? > # , we can apply Theorem 8(iii)
to conclude that wΦ(G) ∈ S with probably at least 1 − 4?. Since this holds for all
? > 0, the proof is complete.

Proof of Lemma 26
For convenience, denote with " (w) the objective function in (1). For some n > 0
such that U+ n <  U (e.g. n = Z/2 in (2)), denoteD := {w | U− n ≤ ‖w‖2 ≤ U+ n}.
By assumption, with probability approaching 1 (w.p.a. 1).

ŵ� ∈ D . (13)

For the shake of a contradiction, assume that there exists optimal solution ŵ of (1)
such that ŵ ∉ D w.p.a. 1. Clearly,

" (ŵ) ≤ " (ŵ�). (14)

Suppose ŵ ∈ Sw, then ŵ is optimal for (3) and satisfies (13), which contradicts our
assumption. Thus, ŵ ∉ Sw. Next, let w\ := \ŵ + (1 − \)ŵ� for \ ∈ (0, 1) such
that w\ ∉ D and w\ ∈ SF (always possible, by definition of D). By the convexity
of � and (14), it follows that " (ŵ\) ≤ " (ŵ�). Hence, ŵ\ is optimal for (3) and
satisfies (13), which, again, is a contradiction. This completes the proof.
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Proof of Lemma 27
It suffices to prove the equivalence of the optimization (4) and (5). Let w∗, v∗, u∗ be
optimal in (4). To prove the claim, we show that u∗ ∈ Su

(
⇔ ‖u∗‖2 ≤  V

)
w.p.a. 1.

From the first order optimality conditions in (4), we find that

u∗ ∈
1
√
?
mL(v∗) (15)

v∗ = z − √?Xw∗. (16)

Recall Assumption 1 and consider two cases. First, if supv∈R= sups∈mL(v) ‖s‖2 < ∞,
the claim follows directly by (15). Next, assume that w.h.p., ‖z‖2 ≤ �1

√
? for

constant �1 > 0. Also, a standard high probability bound on the spectral norm of
Gaussian matrices gives ‖X‖2 ≤ �2, e.g. [186]. Using these, boundedness of w∗
and (16), we find that ‖v∗‖2 ≤ �3

√
? w.h.p.. Then, the normalization condition

1√
?

sups∈mL(v) ‖s‖2 ≤ � for all ‖v‖2 ≤ 2
√
? and all ? ∈ N, yields the desired, i.e.

‖u∗‖2 ≤ � holds with probability approaching 1 as ? →∞.

Proof of Lemma 28
Let w∗ denote an optimal solution of the “bounded" optimization in (6). It will
suffice to prove that w∗ ∈ S in probability. To see this, recall from Lemma 27
that (6) is asymptotically equivalent to (3). Then, Lemma 26 and the assumption
U∗ <  U guarantee that ŵ(X) ∈ S in probability, as desired.

Denote Φ := Φ(X) the optimal cost of the minimization in (6) and ΦS2 := ΦS2 (X)
the optimal cost of the same problem when the minimization is further restricted to
be over the set w ∈ S2. Note that w∗ ∈ S iff ΦS2 (X) > Φ(X); hence, it will suffice
to prove that the latter event occurs in probability.

We do so by relating the (PO) in (6) to the Auxiliary Optimization (AO) in (8) using
Theorem 8. For concreteness, denote the objective function in (8) with �(w, v, u, s),
and, recall Sw := {w | ‖w‖2 ≤  U}, Su := {u | ‖u‖2 ≤  V}. With these, define

q% := q% (g, h) := min
w∈Sw,v

max
u∈Su,s

�(w, v, u, s) and

q� := q� (g, h) := max
u∈Su,s

min
w∈Sw,v

�(w, v, u, s). (17)

Observe here that the order of min-max in q% is exactly as in the original formulation
of the CGMT, cf. (2.126b); q� is the dual of it, while q in (8) involves yet another
change in the order of the optimizations. The reason we prefer to work with the
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later problem, is that this particular order allows for a number of simplifications
performed in Section .1.

As done before, denote with q%S2 , q
�
S2 the optimal costs of the optimization

problems in (17) under the additional constraint w ∈ S2. The two problems in (17)
are related to the one in (8) as follows:

q%S2 = min
w∈Sw,v
w∈S2

max
u∈Su,s

�(w, v, u, s) = min
w∈Sw,v
w∈S2

max
V,s

max
‖u‖2=V

�(w, v, u, s)

≥ max
V,s

min
w∈Sw,v
w∈S2

max
‖u‖2=V

�(w, v, u, s) = qS2 , (18)

where the inequality follows from the min-max inequality [136, Lem. 36.1]. Simi-
larly,

q� = max
u∈Su,s

min
w∈Sw,v

�(w, v, u, s) = max
V,s

max
‖u‖2=V

min
w∈Sw,v

�(w, v, u, s)

≤ max
V,s

min
w∈Sw,v

max
‖u‖2=V

�(w, v, u, s) = q. (19)

Furthermore, they are related to the (PO) via the CGMT. From Theorem 8(i), for all
2 ∈ R:

P(ΦS2 < 2) ≤ 2P(q%S2 ≤ 2). (20)

Also, from Theorem 8(ii)2:

P(Φ > 2) ≤ 2P(q� ≥ 2). (21)

The remaining of the proof is in the same lines as the proof of 8(iii), but is included
for clarity. Let [ := (qSc − q)/3 > 0. We may apply (20) for 2 = qS2 − [ and
combine with (18) to find that

P(ΦS2 < qS2 − [) ≤ 2P(q%S2 ≤ qS2 − [) ≤ 2P(qS2 ≤ qS2 − [). (22)

From assumption (b) the last term above tends to zero as ? →∞. In a similar way,
combining (21), (19) and assumption (a), we find that

P(Φ > q + [) ≤ 2P(q� ≥ q + [) ≤ 2P(q ≥ q + [), (23)

goes to zero with ? → ∞. Denote the event E = {ΦS2 ≥ qS2 − [ and Φ ≤ q + [}.
From (22) and (23) the event occurs with probability approaching 1. Furthermore,
in this event, after using assumption (a), we have Φ1S2 ≥ qS2 − [ > q + [ ≥ Φ1;
equivalently, the optimal minimizer satisfies w∗ ∈ S, which completes the proof.

2more precisely, please refer to equation (32) in [171].
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Proof of Lemma 29
(i) We start by showing how the vector optimization in (8) can be reduced to the
scalar one that appears in (9). This requires the following steps.

Optimizing over the direction of u: Performing the inner maximization is easy. In
particular, using the fact that max‖u‖2=V u) t = V‖t‖2 for all V ≥ 0 the problem
simplifies to a max-min one:

max
0≤V≤ V ,s

min
‖w‖≤ U,v

V
√
?
‖ ‖w‖2g + z − v ‖2 −

V
√
?

h)w

+ 1
?
L(v) + _

?
s)x0 +

_
√
?

s)w − _
?
5 ∗(s), (24)

Optimizing over the direction of w: Next, we fix ‖w‖2 = U, and, similar to what
was done above, minimize over its direction:

max
0≤V≤ V ,s

min
0≤U≤ U,v

V
√
?
‖ Ug + z − v ‖2 +

1
?
L(v) − U

√
?
‖Vh − _s‖2 +

_

?
s)x0 −

_

?
5 ∗(s).

(25)

Changing the orders of min-max: Denote with " (U, V, v, s) the objective function
above. It can be checked that " is jointly convex in (U, v) and jointly concave in
(V, s) (cf. Lemma 34). Thus, minv " is convex in U and jointly concave in (V, s).
Furthermore, the constraint sets are all convex and the one over which minimization
over U occurs is bounded. Hence, as in [149, Cor. 3.3] we can flip the order of
maxV,s minU, to conclude with

min
0≤U≤ U

max
0≤V≤ V

max
s

min
v
" (U, V, v, s).

Also, observe that the order of optimization among v and s does not affect the
outcome.

The square-root trick: We apply the fact that √j = infg>0{ g2 +
j

2g } to both the terms
1√
?
‖Ug + z − v‖2 and 1√

?
‖Vh − _s‖2:

min
0≤U≤ U

max
0≤V≤ V

inf
g6>0

sup
gℎ>0

Vg6

2
+ 1
?

min
v

{
V

2g6
‖ Ug + z − v ‖22 + L(v)

}
− Ugℎ

2
− 1
?

min
s

{
U

2gℎ
‖Vh − _s‖22 − _s)x0 + _ 5 ∗(s)

}
.

(26)

Identifying the Moreau envelope: Arguing as before, we can change the order of
optimization between V and g6. Also, it takes only a few algebra steps and using
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basic properties of Moreau envelope functions (in particular, Lemma 35(ii)) in order
to rewrite the last summand in (26) as below. If U > 0, then,

min
s

{
U

2gℎ
‖Vh − _s‖22 − _s)x0 + _ 5 ∗ (s)

}
= − gℎ

2U
‖x0‖22 − Vh)x0 + _ · e 5 ∗

(
V

_
h + gℎ

U_
x0;

gℎ

U_

)
(27)

=
V2U

2gℎ
‖h‖2 − _ · e 5

(
VU

gℎ
h + x0;

U_

gℎ

)
. (28)

Otherwise, if U = 0, then the same term equals −_ 5 (x0) since maxs s)x0 − 5 ∗(s) =
5 (x0).

(ii) The continuity of the objective function in (9) follows directly from the continuity
of the Moreau envelope functions, cf. [137, Lem. 1.25, 2.26]. In particular,
regarding the two branches of the objective: it can be checked, using the continuity
of the Moreau envelope, that the limit of the RHS in (28) as U → 0 evaluates to
−_ 5 (x0). (In fact, this is the unique extension of the upper branch to a continuous
finite convex function on the whole U ≥ 0, g > 0, as per [136, Thm. 10.3]).

Convexity of (9) can be checked from (26). By applying Lemma 34, after mini-
mization over v the Moreau Envelope remains jointly convex with respect to U and
g6 and concave in V. The same argument (and similar lemma) holds for the last term
of (26) in which after minimization over s it remains jointly convex in V and gℎ and
concave in U. Then the negative sign before this term makes it jointly concave in V
and gℎ and convex over U.

Proof of Lemma 30
(a) By Assumption 1 the normalized Moreau envelope functions in (10) converge
in probability to ! and �, respectively. Also, ‖h‖22/?

%−→ 1 by the WLLN. This
proves the convergence part.

Lemma 29(i) showed R? to be convex-concave. Then, the same holds for D by
point-wise convergence and the fact that convexity is preserved by point wise limits.

(b) Call

"= (U) = sup
0≤V≤ V
gℎ>0

inf
g6>0
R= (U, g6, V, gℎ) and " (U) = sup

0≤V
gℎ>0

inf
g6>0
D= (U, g6, V, gℎ).

(29)
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The bulk of the proof consists of showing that the following two statements hold

∀ compact susets A ⊂ (0,∞) and sufficiently large  V :=  V (A) > 0

: inf
U∈A

"= (U)
%−→ inf

U∈A
" (U) (30)

and,

∀n > 0,w.p.a.1 : "= (0) < " (0) + n . (31)

Before proceeding with the proof of those, let us show how the conclusion of the
lemma is reached once (30) and (31) are established.

Using (30) and (31) to prove the lemma : Fix  U > U∗, any X > 0 such that A :=
[U∗ − 2X, U∗ + 2X] ⊂ (0,  U] and  V > 0 large enough such that (30) and (31) both
hold. Then, for all n > 0, w.p.a.1:

min
0≤U≤ U

"= (U) ≤ min
U∈A

"= (U) ≤ "= (U∗) < " (U∗) + n . (32)

For the last inequality above: if U∗ = 0, it follows from (31), or otherwise from (30).

Next, consider the compact set A; = {U > 0 | U ∈ [U∗ − 2X, U − X] } and AA =

{U > 0 | U ∈ [U∗ + X, U + 2X] }. (Note that if U∗ = 0, thenA; is empty.) From (30),
we know that for all n > 0, w.p.a.1

min
U∈A;

"= (U) > min
U∈A;

" (U) − n and min
U∈AD

"= (U) > min
U∈AD

" (U) − n .

Let A;D = A; ∪ AD and combine the above to find

min
UA;D

"= (U) > min
U∈A;D

" (U) − n . (33)

By assumption on uniqueness of U∗ and on convexity of " , we have

" (U∗) < min
U∈A;D

" (U) (34)

and" (U∗) = minU∈A " (U). Thus, Applying (32) and (33) for n = (minU∈A;D " (U)−
" (U∗))/3 yields w.p.a.1 :

min
U∈A;D

"= (U) > min
U∈A;D

" (U) − n > " (U∗) + n > min
U∈[U∗−2X,U∗+2X]

"= (U). (35)

Thus, w.p.a.1,
Û= := arg min

U∈A
"= (U) ∈ (U∗ − X, U∗ + X).
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In this event, for any U ∉ A, there is a convex combination U\ := \Û= + (1 − \)U,
(\ < 1) that equals either U∗ − 2X or U∗ + 2X. By convexity,

"= (U\) ≤ \"= (Û=) + (1 − \)"= (U)

Also, from (35), "= (Û=) < "= (U\). Combining those, we find "= (Û=) < "= (U),
implying that Û= is the minimizer of "= over the entire [0,  U] w.p.a.1. In other
words, for all n w.p.a. 1,

min
U∈[0, U]\(U∗−X,U∗+X)

"= (U) ≥ min
U∈A;D

"= (U) > min
U∈A;D

" (U) − n . (36)

To establish a connection with the three statements (i)-(iii) of the lemma, observe
that q[0,∞) = " (U∗). Also, q[0,∞)\SX = minU∈A;D " (U) (by convexity). With these,
(i) corresponds directly to (32), (ii) to (36), and, (iii) to (34).

Proof of (30) and (31) : From the first statement of the lemma, the objective function
R= of the (AO) converges point-wise toD. Wewill use this to show that theminimax
value of R? converges to the corresponding minimax ofD. The proof is based on a
repeated use of Lemma 31 below, about convergence of the infimum of a sequence
of convex converging stochastic processes. This fact is essentially a consequence of
what is known in the literature as the convexity lemma, according to which point wise
convergence of convex functions implies uniform convergence in compact subsets.
Please refer to Section .2 for the proof.

Lemma 31 (Min-convergence – Open Sets) Consider a sequence of proper, con-
vex stochastic functions "= : (0,∞) → R, and, a deterministic function " :
(0,∞) → R, such that:

1. "= (G)
%−→ " (G), for all G > 0,

2. there exists I > 0 such that " (G) > infG>0 " (G) for all G ≥ I.

Then, infG>0 "= (G)
%−→ infG>0 � (G).

1) Fix U ≥ 0, V > 0, and, gℎ > 0. Consider

"
U,V,gℎ
= (g6) := '= (U, g6, V, gℎ), (37)

"U,V,gℎ (g6) := D(U, g6, V, gℎ). (38)
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The functions {"=} are convex. Furthermore, "U,V,gℎ
= (g6)

%−→ "U,V,gℎ (g6) point
wise in g6. Next, we show that"U,V,gℎ is level-bounded, i.e. it satisfies condition (b)
of Lemma 31. In view of Lemma 32, it suffices to show that limg6→∞ "

U,V,gℎ (g6) =
+∞, or limg6→∞

(
V

2 + X ·
! (U,g6/V)

g6

)
> 0. By assumption 1, limg6→∞ ! (U, g6/V) =

−!0. There is two cases to be considered. Either !0 < ∞, or else, Assumption 1
holds. Either way, limg6→∞ ! (U, g6/V)/g6 = 0 and we are done. Now, we can apply
Lemma 31 to conclude that

inf
g6>0

"
U,V,gℎ
= (g6)

%−→ inf
g6>0

"U,V,gℎ (g6). (39)

2)

Next, again for fixed U ≥ 0, gℎ > 0, consider (we use some abuse of notation here,
with the purpose of not overloading notation)

"U,gℎ
= (V) := inf

g6>0
"
U,V,gℎ
= (g6)

"U,gℎ (V) := inf
g6>0

"U,V,gℎ (g6)

The functions {"U,gℎ
= } are concave in V, as the point wise minima of concave

functions. Furthermore, "U,gℎ
= (V) %−→ "U,gℎ (V) point wise in V > 0, by (39).

U > 0: For now and until further notice, restrict attention to the case U > 0. Also,
consider first V > 0. We show that "U,gℎ is level-bounded, i.e. it satisfies condition
(b) of Lemma 31. In view of Lemma 32, it suffices to show that limV→+∞ "U,gℎ (V) =
−∞, or limV→+∞ infg6>0 "

U,V,gℎ (g6) = −∞. This condition is equivalent to the
following

(∀" > 0) (∃� > 0)
[
V > �⇒ (∃{g6}: ) [� (U, g6, V, gℎ) < −"]

]
. (40)

First, we show that

lim
V→+∞

UV2

2gℎ
− _ · �

(
UV

gℎ
,
U_

gℎ

)
= +∞ (41)

This follows by Assumption 1 when applied for 2 = UV/gℎ and g = U_/gℎ (recall
here that U > 0).

Next, choose {g6}: → 0. For that choice, Vg62 + ! (U, g6/V) → limg→0 ! (U, g) < ∞,
where boundedness follows by Assumption 1. Thus, (40) is correct and we may
apply Lemma 31 to conclude that

sup
V>0

"U,gℎ
= (V) %−→ sup

V>0
"U,gℎ (V). (42)
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Now, we investigate the case V = 0. We have, "U,gℎ
= (0) = − 1

?
L(z) − Ugℎ

2 +
_
?

(
e 5

(
x0; U_

gℎ

)
− 5 (x0)

)
and "U,gℎ

= (0) = −X!0 − Ugℎ
2 + � (0,

U_
gℎ
).

If !0 < ∞, then by assumption, "U,gℎ
= (0) %−→ "U,gℎ (0). Combined with (42), we

find

sup
V≥0

"U,gℎ
= (V) %−→ sup

V≥0
"U,gℎ (V). (43)

Now, consider the case !0 = +∞. Clearly, the optimal V for "U,gℎ is not at
zero; thus, supV≥0 "

U,gℎ (V) = supV>0 "
U,gℎ (V). Also, by assumption, for all " ,

lim?→∞ P
(

1
?
L(z) > "

)
= 1. Letting, n > 0 and " := − supV>0 "

U,gℎ (V) + n +
Ugℎ

2 − � (0,
U_
gℎ
), then w.p.a.1, "U,gℎ

= (0) < supV>0 "
U,gℎ (V) − n ≤ supV>0 "

U,gℎ
= (V),

where the last inequality follows because of (42). Again, this leads to (43). To sum
up, (43) holds for all U > 0.

U = 0: We show that for all n > 0, the following holds w.p.a.1:

sup
V≥0

"U=0,gℎ
= (V) < sup

V≥0
"U=0,gℎ (V) + n . (44)

To begin with, note that for all ?,

sup
V≥0

"U=0,gℎ
= (V) ≤ sup

V>0
lim
g6→0

Vg6

2
+ 1
?

min
v

{
V

2g6
‖z − v‖22 + L(v) − L(z)

}
= 0,

(45)

where we have used Lemma 40(ix). Next, we show that

"U=0,gℎ (V) = 0. (46)

UsingAssumption 1 on the non-negativity of !0 andAssumption 1 that limg→0 ! (2, g) =
0, it follows that "U=0,gℎ (V) ≤ supV>0 limg6→0

Vg6
2 + ! (0, g6/V) = 0. Thus, it will

suffice for the claim if we prove

lim
V→∞

inf
g6>0

Vg6

2
+ ! (0, g6/V) = 0, (47)

or equivalently,

lim
V→∞

inf
^>0

^

(
V2

2
+ ! (0, ^)

^

)
= 0.

Fix some V > 0. Note that lim^→0
^V2

2 +! (0, ^) = 0, wherewe have usedAssumption
1 that limg→0 ! (0, g) = 0. Also, lim^→∞ ^

(
V2

2 +
! (0,^)
^

)
= +∞, using Assumption
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1 this time. Now, consider only V >
√
−!2,+(0, 0) (see Assumption 1). Then, the

function ^V2

2 + ! (0, ^) has a positive derivative at ^ → 0+. From this and convexity,
it follows that for all ^ > 0,

^V2

2
+ ! (0, ^) ≥ lim

^→0

^V2

2
+ ! (0, ^) = 0.

This proves (47) as desired.

To complete the argument, (44) follows by (45) and (46), and with this we have
completed the proof of (31).

3) Keep U > 0 fixed and consider

"U
= (gℎ) := sup

V≥0
"U,gℎ
= (V),

"U (gℎ) := sup
V≥0

"U,gℎ (V),

The functions {"U
= } and � are all concave in gℎ, as the point wise maxima of

jointly concave functions. Furthermore, "U
= (gℎ)

%−→ "U (gℎ) point wise in gℎ, by
(43). Next, we show that "gℎ is level-bounded, i.e. it satisfies condition (b) of
Lemma 31. In view of Lemma 32, it suffices to show that limgℎ→∞ "

U (gℎ) = +∞,
or limgℎ→∞ supV>0 infg6>0D(U, g6, V, gℎ) = −∞. This is equivalent to the following

(∀" > 0) (∃) > 0)
[
gℎ > ) ⇒ (∀{V}: ) (∃{g6}: ) [� (U, g6, V, gℎ) < −"]

]
.

(48)

Consider the function

H(V, gℎ) :=
Ugℎ

2
+ UV

2

2gℎ
− _ · � (UV

gℎ
,
U_

gℎ
).

We show that

H(V, gℎ) ≥
Ugℎ

2
.

To see this note that e 5 (2h + x0; g) ≤ 22‖h‖2
2g + 5 (x0).Thus, 1

?

{
e 5 (2h + x0; g) − 5 (x0)

}
≤

22‖h‖2
2g? . The LHS converges to � (2, g) by Assumption 1 and the RHS converges to
22

2g . Therefore, � (2, g) ≤ 22

2g . Applying this for 2 = UV

gℎ
and g = U_

gℎ
, we have that

UV2

2gℎ − _ · � (
UV

gℎ
, U_
gℎ
) ≥ 0, as desired.

Then,

D(U, g6, V, gℎ) ≤
Vg6

2
+ X · !

(
U,
g6

V

)
− Ugℎ

2
.
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Also, note that for all V > 0, we can choose (sequence) of g6, such that Vg6,
g6
V
→ 0.

Then, Vg62 + X · !
(
U,

g6
V

)
→ limg→0 ! (U, g) =: � < ∞. It can then be seen that (48)

holds for (say) ) := ) (") = 4(� + ")/U.

We can apply Lemma 31 to conclude that

sup
gℎ>0

"U
= (gℎ)

%−→ sup
gℎ>0

"U (gℎ). (49)

4) Finally, consider
"= (U) := sup

gℎ>0
"U
= (gℎ),

" (U) := sup
gℎ>0

"U (gℎ). (50)

The functions {"=} and � are all convex in gℎ, as the point wise maxima of
convex functions. Furthermore, "= (U)

%−→ " (U) point wise in U, by (49). By
assumption of the lemma, � has a unique minimizer U∗, which of course implies
level boundedness. Thus, we can apply Lemma 10 to conclude that

inf
U>0

"= (U)
%−→ inf

U>0
" (U). (51)

Besides, pointwise convergence "? (U)
%−→ " (U) translates to uniform convergence

over any compact subset A ⊂ (0,∞) by the Convexity lemma [7, Cor.. II.1] ,[107,
Lem. 7.75]. Hence,

inf
U∈A

"= (U)
%−→ inf

U∈A
" (U).

This is of course same as the desired in (30). Recall, (31) was established in
(44). The only thing remaining is showing that there exists an optimal V∗ in
supV≥0 "

U,gℎ (V) that is bounded by some sufficiently large  V (A). This follows
from the level-boundedness arguments above as detailed immediately next.

Boundedness of solutions : For a compact subset A ⊂ (0,∞), we argue that there
exists bounded V∗ and sequences {g6∗}: , {gℎ∗}: such that (U∗, {g6∗}: , V∗, {gℎ∗}: )
approaches
minU∈A supgℎ>0

V≥0
infg6>0D(U, g6, V, gℎ). This follows from thework above. In partic-

ular, at each step in the proof of (30) above, we showed level-boundedness of the cor-
responding functions. For example, (48) shows that there exists (sufficiently large)
)ℎ (U) > 0 such that supgℎ>0 "

U (gℎ) is equal to sup)ℎ (U)≥gℎ>0 "
U (gℎ). This holds

for all U; so, in particular, is true for )ℎ := maxU∈A )ℎ (U). Next, from (41) there
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exists  V (U,)ℎ), such that supV≥0 "
U,gℎ (V) is equal to sup V (U,)ℎ)≥V≥0 "

U,gℎ (V).
Again, this holds for all U ∈ A, thus there exists sufficiently large  V > 0 such that
(see also Lemma 33)

min
U∈A

sup
gℎ>0
V≥0

inf
g6>0
D(U, g6, V, gℎ) = inf

U∈A
sup
gℎ>0

 V≥V≥0

inf
g6>0
D(U, g6, V, gℎ)

The objective functionD above is convex-concave. Also, the constraint sets over U
and V are compact. Furthermore, the optimization ofD over g6 and gℎ is separable.
With these and an application of Sion’s minimax theorem, the order of inf–sup
between the four optimization variables can be flipped arbitrarily without affecting
the outcome. Thus, for example,

inf
U∈A

sup
gℎ>0
V≥0

inf
g6>0
D(U, g6, V, gℎ) = inf

U∈A
g6>0

sup
gℎ>0
≥V≥0

D(U, g6, V, gℎ)

The same is of course true for the corresponding randomoptimizations (also, Lemma
29(iii)).

Auxiliary Lemmas
Proof 17 (Proof of Lemma 31) First, convexity is preserved by point wise limits,
so that � (G) is also convex. Using this and level-boundedness condition (b) of the
lemma, it is easy to show that infG>0 � (G) > −∞. Since � is proper and (lower)
level-bounded, the only way infG>0 � (G) = −∞ is if limG→0 � (G) = −∞. But, this
is not possible as follows: Fix 0 < G1 < G2 < G3. Then, for any 0 < G < G1 and
\ := G3−G2

G3−G , convexity gives

� (G) ≥ 1
\
� (G2) −

(
1 − 1

\

)
� (G3) ≥ −

G3 − G1

G3 − G2
|� (G2) | −

G2 − G1

G3 − G2
|� (G3) |.

Next, we show that for sufficiently small n > 0, there exist G0 > Gn > 0:

inf
G>0

� (G) ≤ � (Gn ) ≤ inf
G>0

� (G) + n and � (Gn ) < � (G0). (52)

We show the claim for all 0 < n < n1 := (� (I) − infG>0 � (G)). Since infG>0 � (G)
is finite, there exists Gn > 0 such that � (Gn ) − n ≤ infG>0 � (G). Without loss of
generality, Gn < I. Pick any G0 > I. For the shake of contradiction, assume
� (G0) ≤ � (Gn ). Then, by convexity, for some \ ∈ (0, 1)

� (I) ≤ \� (Gn ) + (1 − \)� (G0) ≤ � (Gn ) ≤ inf
G>0

� (G) + n < � (I).



214

Thus, � (Gn ) < � (G0).

In order to establish the desired, it suffices that for all arbitrarily small X > 0, w.p.a.
1,

| inf
G>0

�= (G) − inf
G>0

� (G) | < X. (53)

Fix some 0 < n < min{n1, X} such that (52) holds, and, also some

0 < n′ < min{(� (G0) − � (Gn ))/4, X/4, X − n}. (54)

Let  = [0, 1] ⊂ (0,∞) be compact subset such that 0 < Gn < G0 ≤ 1 and
0 = X−2n ′

2X−n ′Gn . The functions {�?} are convex and they converge point wise to �
in the open set (0,∞). This implies uniform convergence in compact sets by the
Convexity lemma [7, Cor.. II.1] ,[107, Lem. 7.75]. That is, there exists sufficiently
large #1 such that the event

sup
G∈ 
|�= (G) − � (G) | < n′ (55)

occurs w.p.a. 1, for all ? > #1. In this event,

inf
G>0

�= (G) ≤ �= (Gn ) < � (Gn ) + n′ ≤ inf
G>0

� (G) + n + n′ ≤ inf
G>0

� (G) + X

It remains to prove the other side of (53). In what follows, take ? ≥ #1 and condition
on the high probability event in (55).

Let us first show level-boundedness of �=. Consider the event infG>G0 �= (G) <
infG≤G0 �= (G). If this happens, then, infG>G0 �= (G) < �= (Gn ), in which case there
exists (by continuity of �=), G= > G0 such that �= (G=) < �= (Gn ). But then, convexity
implies that for some 0 < \= < 1,

�= (G0) ≤ \=�= (G=) + (1 − \=)�= (Gn ) < �= (Gn ) ≤ � (Gn ) + n′ < � (G0) − n′, (56)

where we also used (55) and (54). Of course, this contradicts (55). Thus,

inf
G>0

�= (G) = inf
G≤G0

�= (G). (57)

Using (57), convexity and properness of {�=}, it can be shown that infG>0 �= (G) >
−∞. The argument is the same as the one used in the beginning of the proof for �,
thus is omitted for brevity.
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Overall, for all ? > #1, conditioned on (55), there is some 0 < G= ≤ G0 such that

inf
G>0

�= (G) ≥ �= (G=) − n′. (58)

If 0 ≤ G= ≤ 1, then a direct application of (55) gives the desired

�= (G=) ≥ � (G=) − n′ ≥ inf
G>0

� (G) − n ′⇒ inf
G>0

�= (G) ≥ inf
G>0

� (G) − 2n′ ≥ inf
G>0

� (G) − X.

Next, assume that 0 < G= < 0. There exists \= ∈ (0, 1) such that \=G=+(1−\=)Gn = 0.
In fact,

\= =
Gn − 0
Gn − G=

≥ (1 − 0/Gn ) =
X − 2n ′

2X − n′ . (59)

Then, by convexity and (55), �= (0) ≤ \=�= (G=) + (1− \=)�= (Gn ). Rearranging and
using (55)

�= (G=) ≥
1
\=
�= (0) −

1 − \=
\=

�= (Gn )

≥ 1
\=
(� (0) − n′) − 1 − \=

\=
(� (Gn ) + n′)

≥ 1
\=

(
inf
G>0

� (G) − n
)
− 1 − \=

\=

(
inf
G>0

� (G) + X
)

Combining thiswith (58) and (59), yields the desired infG>0 �= (G=) ≥ infG>0 � (G)−X.

Lemma 32 (Level-bounded convex fcns) Let � : (0,∞) → R be convex. Then, the
following two statements are equivalent:

1. There exists I > 0 such that � (G) > infG>0 � (G) for all G ≥ I.

2. limG→∞ � (G) = +∞.

Proof 18 (a)⇒(b): Clearly, there exists 0 < G0 < I, such that � (I) > � (G0). Then,
by convexity, for all G > I it holds

� (G) ≥ � (I) + � (I) − � (G0)
I − G0︸           ︷︷           ︸
>0

(G − I).

Taking limits of G →∞ on both sides above, proves the claim.

(a)⇐(b): A a proper functions, � has a nonempty domain in (0,∞). Hence,
infG>0 � (G) < ∞ and can choose some " > infG>0 � (G). From (b), there exists
I > 0 such that � (G) ≥ " for all G ≥ I, as desired.
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Lemma 33 (Saddle-points) For a convex-concave function � : R × R → R, con-
sider the minimax optimization infG supH � (G, H). Let �, � be compact subsets such
that there exists at least one saddle point (G∗, H∗) ∈ � × �. Then,

inf
G

sup
H

� (G, H) = inf
G∈�

sup
H∈�

� (G, H).

Proof 19 First observe that,

inf
G

sup
H

� (G, H) = inf
G∈�

sup
H

� (G, H)

Since � has a saddle-point, the LHS above is equal to supH infG � (G, H) [136,
Lem. 36.2]. Also, fromSion’sminimax theorem, theRHS is equal to supH infG∈� � (G, H).
Thus, it suffices to prove that

sup
H

inf
G∈�

� (G, H) = sup
H∈�

inf
G∈�

� (G, H).

Clearly, this holds with a “≥" sign. To prove equality, let (G∗, H∗) be a saddle point.
Then,

sup
H

inf
G∈�

� (G, H) = inf
G∈�

sup
H

5 (G, H) ≤ sup
H

5 (G∗, H) ≤ 5 (G∗, H∗) = sup
H∈�

inf
G∈�

� (G, H).

Lemma 34 The function ℎ(U, g, v) = 1
2g ‖Ux + z − v‖22 is jointly convex in its

arguments.

Proof 20 The function ‖Ux − v‖22 is trivially jointly convex in U and v. So its
perspective function which is 1

g
‖Ux− v‖22 is also jointly convex in all its arguments,

same as its shifted version which is ℎ(U, g, v).

Lemma 35 Let 5 : R? → R be convex. Then,

1. prox 5 (x; g) + g · prox 5 ∗
(
x/g; g−1) = x,

2. e 5 (x; g) + e 5 ∗ (x/g; 1/g) = ‖x‖
2

2g .
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.3 Proof of Auxiliary Lemmas
Proof of Lemma 10

First, convexity is preserved by point wise limits, so that � (G) is also convex.
Using this and level-boundedness condition (b) of the lemma, it is easy to show
that infG>0 � (G) > −∞. Since � is proper and (lower) level-bounded, the only way
infG>0 � (G) = −∞ is if limG→0 � (G) = −∞. But, this is not possible as follows: Fix
0 < G1 < G2 < G3. Then, for any 0 < G < G1 and \ := G3−G2

G3−G , convexity gives

� (G) ≥ 1
\
� (G2) −

(
1 − 1

\

)
� (G3) ≥ −

G3 − G1

G3 − G2
|� (G2) | −

G2 − G1

G3 − G2
|� (G3) |.

Next, we show that for sufficiently small n > 0, there exist G0 > Gn > 0:

inf
G>0

� (G) ≤ � (Gn ) ≤ inf
G>0

� (G) + n and � (Gn ) < � (G0). (60)

We show the claim for all 0 < n < n1 := (� (I) − infG>0 � (G)). Since infG>0 � (G)
is finite, there exists Gn > 0 such that � (Gn ) − n ≤ infG>0 � (G). Without loss
of generality, Gn < I. Pick any G0 > I. For the shake of contradiction, assume
� (G0) ≤ � (Gn ). Then, by convexity, for some \ ∈ (0, 1)

� (I) ≤ \� (Gn ) + (1 − \)� (G0) ≤ � (Gn ) ≤ inf
G>0

� (G) + n < � (I).

Thus, � (Gn ) < � (G0).

In order to establish the desired, it suffices that for all arbitrarily small X > 0, w.p.a.
1,

| inf
G>0

�= (G) − inf
G>0

� (G) | < X. (61)

Fix some 0 < n < min{n1, X} such that (60) holds, and, also some

0 < n′ < min{(� (G0) − � (Gn ))/4, X/4, X − n}. (62)

Let  = [0, 1] ⊂ (0,∞) be compact subset such that 0 < Gn < G0 ≤ 1 and
0 = X−2n ′

2X−n ′Gn . The functions {�=} are convex and they converge point wise to �
in the open set (0,∞). This implies uniform convergence in compact sets by the
Convexity lemma ,[107, Lem. 7.75]. That is, there exists sufficiently large #1 such
that the event

sup
G∈ 
|�= (G) − � (G) | < n′ (63)
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occurs w.p.a. 1, for all = > #1. In this event,

inf
G>0

�= (G) ≤ �= (Gn ) < � (Gn ) + n′ ≤ inf
G>0

� (G) + n + n′ ≤ inf
G>0

� (G) + X (64)

It remains to prove the other side of (61). In what follows, take = ≥ #1 and condition
on the high probability event in (63).

Let us first show level-boundedness of �=. Consider the event infG>G0 �= (G) <
infG≤G0 �= (G). If this happens, then, infG>G0 �= (G) < �= (Gn ), in which case there
exists (by continuity of �=), G= > G0 such that �= (G=) < �= (Gn ). But then, convexity
implies that for some 0 < \= < 1,

�= (G0) ≤ \=�= (G=) + (1 − \=)�= (Gn ) < �= (Gn ) ≤ � (Gn ) + n′ < � (G0) − n′, (65)

where we also used (63) and (62). Of course, this contradicts (63). Thus,

inf
G>0

�= (G) = inf
G≤G0

�= (G). (66)

Using (66), convexity and properness of {�=}, it can be shown that infG>0 �= (G) >
−∞. The argument is the same as the one used in the beginning of the proof for �,
thus is omitted for brevity.

Overall, for all = > #1, conditioned on (63), there is some 0 < G= ≤ G0 such that

inf
G>0

�= (G) ≥ �= (G=) − n′. (67)

If 0 ≤ G= ≤ 1, then a direct application of (63) gives the desired

�= (G=) ≥ � (G=) − n′ ≥ inf
G>0

� (G) − n′⇒ inf
G>0

�= (G) ≥ inf
G>0

� (G) − 2n′ ≥ inf
G>0

� (G) − X.

Next, assume that 0 < G= < 0. There exists \= ∈ (0, 1) such that \=G=+(1−\=)Gn = 0.
In fact,

\= =
Gn − 0
Gn − G=

≥ (1 − 0/Gn ) =
X − 2n ′

2X − n′ . (68)

Then, by convexity and (63), �= (0) ≤ \=�= (G=) + (1 − \=)�= (Gn ). Rearranging and
using (63)

�= (G=) ≥
1
\=
�= (0) −

1 − \=
\=

�= (Gn )

≥ 1
\=
(� (0) − n′) − 1 − \=

\=
(� (Gn ) + n′)

≥ 1
\=

(
inf
G>0

� (G) − n
)
− 1 − \=

\=

(
inf
G>0

� (G) + X
)

Combining this with (67) and (68), yields the desired infG>0 �= (G=) ≥ infG>0 � (G) −
X.
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Lemma 36 (Level-bounded convex fcns) Let � : (0,∞) → R be convex. Then, the
following two statements are equivalent:

1. There exists I > 0 such that � (G) > infG>0 � (G) for all G ≥ I.

2. limG→∞ � (G) = +∞.

Proof 21 (a)⇒(b): Clearly, there exists 0 < G0 < I, such that � (I) > � (G0). Then,
by convexity, for all G > I it holds

� (G) ≥ � (I) + � (I) − � (G0)
I − G0︸           ︷︷           ︸
>0

(G − I).

Taking limits of G →∞ on both sides above, proves the claim.

(a)⇐(b): A a proper functions, � has a nonempty domain in (0,∞). Hence,
infG>0 � (G) < ∞ and can choose some " > infG>0 � (G). From (b), there exists
I > 0 such that � (G) ≥ " for all G ≥ I, as desired.

Lemma 37 (Saddle-points) For a convex-concave function � : R × R → R, con-
sider the minimax optimization infG supH � (G, H). Let �, � be compact subsets such
that there exists at least one saddle point (G∗, H∗) ∈ � × �. Then,

inf
G

sup
H

� (G, H) = inf
G∈�

sup
H∈�

� (G, H).

Proof 22 First observe that,

inf
G

sup
H

� (G, H) = inf
G∈�

sup
H

� (G, H)

Since � has a saddle-point, the LHS above is equal to supH infG � (G, H) [136,
Lem. 36.2]. Also, fromSion’sminimax theorem, theRHS is equal to supH infG∈� � (G, H).
Thus, it suffices to prove that

sup
H

inf
G∈�

� (G, H) = sup
H∈�

inf
G∈�

� (G, H).

Clearly, this holds with a “≥" sign. To prove equality, let (G∗, H∗) be a saddle point.
Then,

sup
H

inf
G∈�

� (G, H) = inf
G∈�

sup
H

5 (G, H) ≤ sup
H

5 (G∗, H) ≤ 5 (G∗, H∗) = sup
H∈�

inf
G∈�

� (G, H).



220

Lemma 38 The function ℎ(U, g, v) = 1
2g ‖Ux + z − v‖22 is jointly convex in its

arguments.

Proof 23 The function ‖Ux − v‖22 is trivially jointly convex in U and v. So its
perspective function which is 1

g
‖Ux− v‖22 is also jointly convex in all its arguments,

same as its shifted version which is ℎ(U, g, v).

Lemma 39 Let 5 : R= → R be convex. Then,

1. prox 5 (x; g) + g · prox 5 ∗
(
x/g; g−1) = x,

2. e 5 (x; g) + e 5 ∗ (x/g; 1/g) = ‖x‖
2

2g .

Properties of the Moreau envelope:

In this section we have gathered some very useful properties of Moreau envelopes
of convex functions. We have made heavy use of those results for the proofs of
Theorem (1) and (2). Some of the results are standard, while others are more
tailored towards our interests.

Lemma 40 (Properties of the Moreau envelope) Let ℓ : R → R be a proper,
closed, convex function. For g > 0, consider its Moreau envelope function and its
proximal operator:

eℓ (j; g) := min
E

1
2g
(j − E)2 + ℓ(E), (69a)

proxℓ (j; g) := arg min
1

2g
(j − E)2 + ℓ(E) (69b)

The following statements are true:

1. proxℓ (j; g) is single valued and continuous. Furthermore,

ℓ′j,g :=
1
g
(j − proxℓ (j; g)) ∈ mℓ(proxℓ (j; g)). (70)

2. eℓ (j; g) is jointly convex in (j, g).

3. eℓ (j; g) is continuously differentiable with respect to both G and g. The
gradients are given by:

�1(j, g) :=
m4ℓ

mj
=

1
g
(j − proxℓ (j; g)) = ℓ′j,g, (71)

�2(j, g) :=
m4ℓ

mg
= − 1

2g2 (j − proxℓ (j; g))2 = −1
2

(
ℓ′j,g

)2
. (72)
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4. Fix j and g > 0. Consider the function Δ : R × (−g,∞) → R:

Δ (G, H) := (�1(j + G, g + H) − �1(j, g))G + (�2(j + G, g + H) − �2(j, g))H

Then,

Δ (G, H) ≥
(
g + H

2

)
(ℓ′j+G,g+H − ℓ′j,g)2. (73)

5. eℓ (G; g) is non-increasing in g.

6. limg→∞ eℓ (G; g) = minE ℓ(E).

7. limg→∞
1
g
|G − proxℓ (G; g) | = 0.

8. If0 ∈ arg minE ℓ(E), thenproxℓ (G; g) G ≥ 0, |proxℓ (G; g) | ≤ |G | and |ℓ′proxℓ (G;g),g | ≤
|ℓ′G,g |.

9. eℓ (G=; g=) → ℓ(G) whenever G= → G while g= → 0+ in such a way that the
sequence {|G= − G |/g=}=∈N is bounded.

Proof 24 (i) From [137, Thm. 2.26(a)], proxℓ (j; g) is known to be continuous
single valued mapping. Besides, from standard optimality conditions:

1
g
(j − proxℓ (j; g)) ∈ mℓ(proxℓ (j; g)) (74)

For convenience, we have define ℓ′j,g := 1
g
(j − proxℓ (j; g) ∈ mℓ(proxℓ (j; g)).

Note that if ℓ is differentiable at proxℓ (j; g), then ℓ′j,g is the derivative of ℓ at that
point.

(ii) Trivially, ℎ(j, E) := (j − E)2 is a jointly convex function of E and G. Thus, its
perspective function gℎ( j

g
, E
g
) = 1

g
(j− E)2 is also jointly convex over g, G and E and

so after minimization over E, the function remains jointly convex over G and g (cf.
[137, Prop. 2.22]).

(iii) See [137, Thm. 2.26(b)] for differentiability with respect to G. Next, we mimic
the argument to conclude about differentiability with respect to g. It suffices to
show that ℎ(H) := eℓ (j; g + H) − eℓ (j; g) + H

2g2 (j − proxℓ (j; g))2 is differentiable
at H = 0 with mℎ

mH
= 0. We know eℓ (j; g) = 1

2g (j − proxℓ (j; g))2 + ℓ(proxℓ (j; g)),
whereas eℓ (j; g + H) ≤ 1

2(g+H) (j − proxℓ (j; g))2 + ℓ(proxℓ (j; g)). Thus,

ℎ(H) ≤ 1
2(g + H) (j − proxℓ (j; g))2 − 1

2g
(j − proxℓ (j; g))2 + H

2g2 (j − proxℓ (j; g))2

=
H2

2g2(g + H)
(j − proxℓ (j; g))2. (75)
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Besides because of convexity of ℎ(H), 0 = ℎ(0) ≤ 1
2ℎ(H) +

1
2ℎ(−H) or equivalently

ℎ(H) ≥ −ℎ(−H). Thus, (75) gives:

ℎ(H) ≥ H2

2g2(g − H)
(j − proxℓ (j; g))2. (76)

Combining (75) and (76) leads to the following

H2

2g2(g − H)
(j − proxℓ (j; g))2 ≤ ℎ(H) ≤ H2

2g2(g + H)
(j − proxℓ (j; g))2 (77)

Here, ℎ(H) is sandwiched between two continuously differentiable functions at 0
with zero derivatives. This completes the proof.

(iv) From (71) and (72), we have

Δ (G, H) = (ℓ′j+G,g+H − ℓ′j,g)G −
(
ℓ′2(j + G, g + H) − ℓ′2(j, g)

) H
2

(78)

= (ℓ′j+G,g+H − ℓ′j,g)
(
G − H

2

(
ℓ′j+G,g+H + ℓ′j,g

))
. (79)

On the other hand, due to optimality conditions in (70),

proxℓ (j + G; g + H) − proxℓ (j; g) = G − (g + H)ℓ′j+G,g+H + gℓ′j,g
=

(
G − H

2
(ℓ′j+G,g+H + ℓ′j,g)

)
− (g + H

2
) (ℓ′j+G,g+H − ℓ′j,g).

(80)

Finally, from convexity of ℓ, it follows from the monotonicity property of the subdif-
ferential that

(ℓ′j+G,g+H − ℓ′j,g) (proxℓ (j + G; g + H) − proxℓ (j; g)) ≥ 0.

Combining the three displays above gives the desired inequality.

(v) This follows directly by non-positivity of the derivative as in (72).

(vi) Using the decreasing nature of eℓ (G; g) w.r.t. g, we have

lim
g→∞

eℓ (G; g) = infg>0 min
E

1
2g
(G−E)2+ℓ(E) = min

E
infg>0

1
2g
(G−E)2+ℓ(E) = min

E
ℓ(E).
(81)

(vii) Fix an n > 0. Since limg→∞ eℓ (G; g) = minE ℓ(E), there exist ) ′n such that for
all g ≥ )n := max{2, ) ′n },

|eℓ (G; g) −min
E
ℓ(E) | = 1

2g
(G − proxℓ (G; g))2 + (ℓ(proxℓ (G; g)) −min

E
ℓ(E)) < n2

(82)
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Then, 1
2g (G − proxℓ (G; g))2 < n2, which gives

1
g
|G − proxℓ (G; g) | < n

√
2
g
≤ n

√
2
)n
≤ n (83)

Therefore, limg→∞
1
g
|G − proxℓ (G; g) | = 0.

(viii) By (70) and the assumption 0 ∈ arg minE ℓ(E), we find proxℓ (0; g) = 0. Mono-
tonicity of the prox operator [137, Prop. 12.19], gives (proxℓ (G; g)−proxℓ (0; g))G ≥
0, which then shows proxℓ (G; g) G ≥ 0. Also, monotonicity of the subdifferential of
ℓ gives ℓ′G,gG ≥ 0. Those two, when combined with optimality conditions in (70) give

G − proxℓ (G; g) = gℓ′G,g =⇒ G2 ≥ proxℓ (G; g) G =⇒ |G | ≥ |proxℓ (G; g) G |.

It remains to show thatmaxB∈mℓ(proxℓ (G;g)) |B | ≤ maxB∈mℓ(G) |B |. Since0 ∈ arg minE ℓ(E),
it follows by convexity that

(0 ≤ G1 ≤ G2 or G2 ≤ G1 ≤ 0) =⇒ max
B∈mℓ(G1)

|B | ≤ max
B∈mℓ(G2)

|B |

Observe that the LHSof the implication above is equivalent to ( |G2 | ≥ |G1 | and G1G2 ≥
0). Then apply it for G1 = proxℓ (G; g) and G2 = G, to conclude.

(ix) Please see [137, Thm. 1.25].

On Remark 14
Substituting the envelope function of | · | in (2.40) gives:

V

2
+ B̄E


− V(U�+/)

2

2g2 , |U� + / | ≤ g
V

− 1
2V , otherwise

+ (X − B̄)E

− VU

2�2

2g2 , |U� | ≤ g
V

− 1
2V , otherwise

≥ 0,

(84a)

B̄E


V� (U�+/)

2 , |U� + / | ≤ g
V

� sign(U� + /) , otherwise
+ (X − B̄)E


U�2V
g

, |U�‖ ≤ g
V

� sign(�) , otherwise
− V

√
�K ≥ 0,

(84b)

g

2
+ B̄E


(U�+/)2

2g , |U� + / | ≤ g
V

− g2 , otherwise
+ (X − B̄)E


U2�2

2g , |U� | ≤ g
V

− g2 , otherwise
− U

√
�K ≤ 0.

(84c)

Define ^ := g
VU

and d := g
V
. In order to find a sufficient condition for U to be zero,

we assume U → 0, g → 0, d → 0 and ^ ≥ 0 and look for conditions under which
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the equations in (84) are consistent. Under these assumptions, one can check that
(84c) is satisfied (the argument converges to zero), while, (84b) and (84a) become

2
(X − B̄)
^

∫ ^

0
�2q(�)d� + (X − B̄)

∫ ∞

^

�q(�)d� ≥ V
√
�K , (85a)

V2 ≥ B̄ + 2
X − B̄
^2

∫ ^

0
�2q(�)d� + 2(X − B̄)

∫ ∞

^

q(�)d�, (85b)

where q(�) = 4−�2/2/
√

2c and we multiplied (84a) by V2 to get (85b). Observe that
(85a) upper bounds V while (85b) derives a lower bound on it. Thus, consistency of
the set of equations (85) is achieved if the following holds:

1
�K
(2 (X − B̄)

^

∫ ^

0
�2q(�)d� + (X − B̄)

∫ ∞

^

�q(�)d�)2

≥ B̄ + 2
X − B̄
^2

∫ ^

0
�2q(�)d� + 2(X − B̄)

∫ ∞

^

q(�)d�.

Or, equivalently,

�K ≤
(2 (X−B̄)

^

∫ ^

0 �2q(�)d� + (X − B̄)
∫ ∞
^
�q(�)d�)2

B̄ + 2 X−B̄
^2

∫ ^

0 �2q(�)d� + 2(X − B̄)
∫ ∞
^
q(�)d�

. (86)

Thus if maximum of the right side of (86) with respect to ^ is greater than �K , all
our variables satisfy (2.40) and the optimal value in (2.39) occurs when U → 0,
g → 0 and g

UV
→ ^ which means U∗ = 0. We will show that

max
^>0

(2 (X−B̄)
^

∫ ^

0 �2q(�)d� + (X − B̄)
∫ ∞
^
�q(�)d�)2

B̄ + 2 X−B̄
^2

∫ ^

0 �2q(�)d� + 2(X − B̄)
∫ ∞
^
q(�)d�

≥ X −min
^>0

B̄(1 + ^2) + 2(X − B̄)
∫ ∞

^

(� − ^)2q(�)d� (87)

If both this and (2.45) are true then, there will be a ^ for which (86) holds and as we
discussed, this implies U∗ = 0.

For convenience, we define �^ =
∫ ∞
^
�2q(�)d�, �^ =

∫ ∞
^
�q(�)d� and �^ =∫ ∞

^
q(�)d�. The optimal ^ for the right side of (87) satisfies the following due to

the first optimality condition

2(X − B̄) ˆ̂� ˆ̂ − 2(X − B̄) ˆ̂2� ˆ̂ = ˆ̂2 B̄ (88)
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For this value of ^, the left side of (87) becomes

(2 (X−B̄)ˆ̂

∫ ˆ̂
0 �2q(�) 3� + (X − B̄)

∫ ∞
ˆ̂ �q(�) 3�)2

B̄ + 2 X−B̄ˆ̂2

∫ ˆ̂
0 �2q(�) 3� + 2(X − B̄)

∫ ∞
ˆ̂ q(�) 3�

= (X − B̄) (1 − 2� ˆ̂ + 2 ˆ̂� ˆ̂)

= X − B̄ − 2(X − B̄) ˆ̂� ˆ̂ + 2(X − B̄) ˆ̂2� ˆ̂ − 2(X − B̄)� ˆ̂ + 4(X − B̄) ˆ̂� ˆ̂ − 2(X − B̄) ˆ̂2� ˆ̂

= X − B̄(1 + ˆ̂2) − 2(X − B̄) (� ˆ̂ − 2� ˆ̂ + ˆ̂2� ˆ̂) = X − B̄(1 + ˆ̂2)

+ 2(X − B̄)
∫ ∞

ˆ̂
(� − ˆ̂)2q(�) 3�,

where the first and third equalities follow after substituting B̄ using (88). This proves
(87) as desired to conclude the claim of the remark.

Satisfying Assumption 1(a) on Section 2.1

It only takes a few calculations to show that

1
=

e√?‖·‖2 (Ug + z; g) =


1√
=X
‖Ug + z‖2 − g

2X , if
√
X‖Ug+z‖2√

=
≥ g,

1
2g
‖Ug+z‖22

=
, otherwise.

(89)

Assume that 0 < E ‖z‖
2
2

=
=: f2 < ∞. From (89), it can be seen that 1

=
e√?‖·‖2 (Ug + z; g)

is a Lipschitz convex function of ‖Ug+z‖√
=

. Also, ‖Ug+z‖√
=

converges in probability to
√
U2 + f2, thus

1
=
(e√?‖·‖2 (Ug + z; g) − ‖z‖2

√
?) → ! (U, g) =


√
U2+f2−f√

X
− g

2X , if X(U2 + f2) ≥ g2,

1
2g (U

2 + f2) − f√
X

, otherwise.


