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ABSTRACT 

The emergence of microfluidic technologies has enabled the miniaturization of cell 

analysis processes, including nucleic acid analysis, single cell phenotypic analysis, single 

cell DNA and RNA sequencing, etc. Traditional chip fabrication via soft lithography cost 

thousands of dollars just in personnel training and capital cost. The design of these systems 

is also confined to two dimensions limited by their fabrication. To address the needs of 

smooth transition from technology to adoption by end-users, less complexity is urgently 

needed for microfluidics to be applied in pathogen detection under low-resource settings and 

more powerful integration of analyses to understand single cells. This dissertation presents 

my explorations in 3D microfluidics involving simulation-aided design of pretreatment 

devices for pathogen detection, fabrication through 3D printing, utilization of alternative 

commercial parts, and the combination with hydrogel material to link phenotypic analysis 

with in situ molecular detection for single cells. The main outputs of this dissertation are as 

follows: 

1) COMSOL Multiphysics® was used to aid the design and understanding of 

microfluidic systems for environmental pathogen detection. In the development of 

an asymmetric membrane for concentration and digital detection of bacteria, the 

quantification requires Poisson distribution of cells into membrane pores; the flow 

field and particle trajectories were simulated to validate the cell distribution in 

capturing pores. In electrochemical bacterial DNA extraction, the hydroxide ion 

generation, species diffusion, and cation exchange were modeled to understand the 

pH gradient within the chamber. To address the overestimated risk by polymerase 

chain reactions (PCR) that detects all target nucleic acids regardless of cell viability, 

we developed a microfluidic device to carry out on-chip propidium monoazide 

(PMA) pretreatment. The design utilizes split-and-recombine (SAR) mixers for 

initial PMA-sample mixing and a serpentine flow channel containing herringbone 

structures for dark and light incubation. Ten SAR mixers were employed based on 

fluid flow and diffusion simulation. High-resolution 3D printing was used for 
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prototyping. On-chip PMA pretreatment to differentiate live and dead 

bacterial cells in buffer and natural pond water samples was experimentally 

demonstrated. 

2) Water-in-oil droplet-based microfluidic platforms for digital nucleic acid analysis 

eliminates the need for calibration that is required for qPCR-based environmental 

pathogen detection. However, utilizing droplet microfluidics generally requires 

fabrication of sub-100 µm channels and complicated operation of multiple syringe 

pumps, thus hindering the wide adoption of this powerful tool. We designed a 

disposable centrifugal droplet generation device made simply from needles and 

microcentrifuge tubes. The aqueous phase was added into the Luer-Lock of the 

commercial needle, with the oil at the bottom of the tube. The average droplet size 

was tunable from 96 μm to 334 μm and the coefficient of variance (CV) was 

minimized to 5%. For droplets of a diameter of 175 μm, each standard 20 μL reaction 

could produce ~104 droplets. Based on this calculated compartmentalization, the 

dynamic range is theoretically from 0.5 to 3×103 target copies or cells per μL, and 

the detection limit is 0.1 copies or cells per μL.  

3) Based on the disposable droplet generation device, we further developed a novel 

platform that enables both high-throughput digital molecular detection and single-

cell phenotypic analysis, utilizing nanoliter-sized biocompatible polyethylene glycol 

(PEG) hydrogel beads. The crosslinked hydrogel network in aqueous phase adds 

additional robustness to droplet microfluidics by allowing reagent exchange. The 

hydrogel beads demonstrated enhanced thermal stability, and achieved 

uncompromised efficiencies in digital PCR, digital loop-mediated isothermal 

amplification (dLAMP), and single cell phenotyping. The crosslinked hydrogel 

network highlights the prospective linkage of various subsequent molecular analyses 

to address the genotypic differences between cellular subpopulations exhibiting 

distinct phenotypes. This platform has the potential to advance the understanding of 

single cell genotype-to-phenotype correlations.  
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4) For effective sorting of the hydrogel beads after single cell phenotyping, a 

gravity-driven acoustic fluorescence-based hydrogel beads sorter was developed. 

The design involves a 3D-printed microfluidic tube, two sequential photodetectors, 

acoustic actuator, and a control system. Instead of bulky syringe pumps used in 

traditional cell or droplet sorting, this invention drives beads suspended in heavier 

fluorinated oil simply by buoyancy force to have the beads float through a vertical 

channel. Along the channel, sequential photodetectors quantify the bead acceleration 

and inform the action of downstream acoustic actuator. Hydrogel beads with different 

fluorescence intensity level were led into different collection chambers. The 

developed sorter promises cheap instrumentation, easy operation, and low 

contamination for beads sorting, and thus the full establishment of the single cell 

phenotype-genotype link. 

In summary, the work in this dissertation established a) the simulation-aided design 

and 3D printing to reduce the complexity of microfluidics, and thus lowered its barrier for 

environmental applications, b) a simple and disposable device using cheap commercial 

components to produce monodispersed water-in-oil droplets to enable easy adoption of 

droplet microfluidics by non-specialized labs, c) a hydrogel bead-based analysis platform 

that links single-cell phenotype and genotype to open new research avenues, and d) a gravity-

driven portable bead sorting system that may extend to a broader application of hydrogel 

microfluidics to point of care and point of sample collection. These simple-for-end-user 

solutions are envisioned to open new research avenues to tackle problems in antibiotic 

heteroresistance, environmental microbial ecology, and other related fundamental problems. 
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C h a p t e r  1  

CHAPTER 1: INTRODUCTION 

1.1 Waterborne bacterial pathogen diseases: Problems and needs 

Waterborne diseases, including diarrhea, cholera, typhoid, and polio, claim millions 

of lives every year (Troeger et al., 2018), especially in developing countries and countries in 

conflicts (Figure 1.1). In 2016, it was estimated that 829,000 deaths resulted from diarrhea, 

and 1.9% of the global burden of disease in Disability-Adjusted Life Years (DALY) were 

attributed to water, sanitation, and hygiene (Prüss-Ustün et al., 2019). Waterborne pathogens 

include bacteria, fungi, viruses, protozoa, and helminths (Nwachcuku & Gerba, 2004). 

Among them, gram-negative bacteria and viruses are most common causes of death for 

children and the elderly (Figure 1.2). Transmission of waterborne pathogens from a water 

environment may occur through direct contact or indirect consumption such as via fecal-oral 

route or inhalation of aerosols (Leclerc et al., 2002).  

Figure 1.1  Annual death rate from diarrheal diseases per 100,000 people in 2017. Reproduced from

OurWorldInData.org (Dadonaite et al., 2020), which is available under the terms of Creative Commons 

Attribution License (CC BY).  
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Figure 1.2  Number of death attributable to each pathogen in (a) children under 5 and (b) people aged 

70+. Reproduced from OurWorldInData.org (Dadonaite et al., 2020), which is available under the terms 

of Creative Commons Attribution License (CC BY).  
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To decrease disease burden with the ultimate goal of eradication, there are 

global efforts in the development of vaccines and treatments, as well as in environmental 

monitoring (BMGF, 2019). However, despite advances in point-of-care diagnostics, there is 

a lack of sensitive, specific, and rapid tool for monitoring of bacterial pathogens at point-of-

sample-collection where equipment and personnel are limited (Li et al., 2020). Such tools 

are essential for the water quality assessment and environmental surveillance, which are keys 

in understanding disease burden, preventing infectious disease outbreaks, improving strategy 

of vaccine distribution, and advising healthcare policy making (Carey et al., 2019). 

As the most important treatment for bacterial infections, antibiotics are medications 

that selectively destroy or interfere with bacterial structures or functional molecules 

(Kohanski et al., 2010). The fast emergence and spread of antibiotic resistance (Table 1.1) 

hampers effective antibiotic treatment and causes increased mortality due to common 

bacterial infections, such as multidrug-resistant (MDR) Acinetobacter and methicillin-

resistant Staphylococcus aureus (MRSA) (Baym et al., 2016; CDC, 2019; Ventola, 2015). It 

was estimated by WHO’s Global Antimicrobial Surveillance System (GLASS) that 

antibiotic resistance widely occurred across 22 countries with suspected bacterial infections 

in 500,000 people (WHO, 2017). Many genes responsible for conveying the resistance have 

been identified (Frieri et al., 2017; Giedraitienė et al., 2011), however, we still lack a 

thorough understanding of how the resistance evolves and spreads.  

The widely observed antibiotic heteroresistance phenomenon further complicates the 

issue (Andersson et al., 2019; Nicoloff et al., 2019). Within a cell community, impressive 

means of bacterial collaboration against antibiotic stress are being discovered. For example, 

Vibrio cholerae was observed to be able to ‘grab’ and incorporate a piece of exotic DNA 

fragment with pili (Ellison et al., 2018), implying potential hazards posed by antibiotic genes 

that are present in the environment (Martínez, 2008; Rodriguez-Mozaz et al., 2015). In 

another case, under exposure to an antibiotic, the subpopulation of cells that acquired 

resistant mutation was found to secret molecules to protect the non-resistant cells and gain 

nutrients from them to cover the additional fitness cost (Lee et al., 2010). Moreover, 
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accumulating evidence has shown that the genetic diversity and varying level of 

antibiotic resistance of clonal bacterial cells may increase resistance to antibiotic stress at a 

community level (Lee et al., 2010). Therefore, other than developing new antibiotics and 

characterizing newly evolved antibiotic resistance, it is imperative to understand the 

evolution of antibiotic resistance, in order to provide insights in our future efforts preventing 

the approach of the post-antibiotic era, where common bacterial pathogen kills again.     

Table 1.1 Major types of resistance developed after approval and release of antibiotics or antifungals

over time. Reproduced from CDC report (CDC, 2019). 
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1.2 Bacterial pathogen detection and analysis methods 

Bacterial pathogen detection and analysis methods can usually be classified into 

phenotypic methods and molecular methods. Phenotypic methods in this context are mainly 

based on culture of bacteria and the observation of their growth. For detection of bacterial 

pathogens, culture-based methods that observe the occurrence and characteristics of colony 

formation remain the gold standard (Meals et al., 2013; Teunis & Schijven, 2019). Although 

generally cost-effective and low in requirement for training and instrumentation, culture-

based methods often take days to give a qualitative positive result and even longer to confirm 

a negative one. For bacterial analysis with clinical relevance, antibiotic susceptibility tests 

(AST) are usually conducted to guide antibiotic prescription (Syal et al., 2017). Conventional 

AST used to help prescribe the type and concentration of antibiotic is based on bulk culture 

phenotyping. It takes days from sample collection to results, which only yield a population-

averaged minimum inhibitory concentration (MIC). Such an MIC is not sensitive to rare but 

clinically more important resistant strains, leading to treatment failure and exacerbating the 

global AMR crisis. In addition, days of sample culture under antibiotic exposure may induce 

evolution of antibiotic resistance (Baym et al., 2016; Lee et al., 2010; Zhang et al., 2011), 

leading to biased AST results that do not accurately reflect the in-host antibiotic 

susceptibility.  

Nucleic acid tests (NAT), as a representative class of molecular methods, target 

characteristic or functional nucleic acid molecules inside bacterial cells. The targeted gene 

sequences are specific to the target bacteria for detection purposes, or have been identified 

to be associated with antibiotic resistance for AST (Syal et al., 2017). NAT is becoming 

increasingly standardized for microbial monitoring since the advent of polymerase chain 

reaction (PCR) in 1980s (Kralik & Ricchi, 2017). NAT generally involves nucleic acid 

extraction, purification, amplification of the target sequence, and signal detection. PCR 

process creates copies of target amplicons by DNA denature, primer annealing, and 

extension, facilitated by thermocycling. PCR takes a few hours to generate enough 

amplification product for signal reading. The need for precise temperature manipulation 
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requires specialized instruments and hinders its easy adaptation for portable 

applications or in resource-limited settings. To address the problems above, a few isothermal 

amplification methods, including loop-mediated isothermal amplification (LAMP) (Hara-

Kudo et al., 2005), and recombinase polymerase amplification (RPA) (Armes & Stemple, 

2007), etc., have been developed to eliminate the need for thermocycling. These methods are 

innovative in primer design or employ novel enzymes to produce a much larger number of 

amplicons in a shorter period of time. Compared to traditional culture-based methods, NAT 

significantly improves the accuracy and sensitivity of pathogen detection. The analytical time 

is reduced from days to hours (Girones et al., 2010) and even possibly within 0.5 hour for 

novel isothermal amplifications (Lutz et al., 2010).  

Other important molecular methods mainly include next-generation sequencing 

(NGS) and biosensors. NGS, which generates high-throughput sequence reading of DNA or 

RNA, has been an advanced nucleic acid analysis tool that accelerates discoveries in 

antibiotic resistance. Combining phenotypic screening and NGS, functional genomics and 

transcriptional profiling have shown success in identifying novel antibiotic resistance genes 

(ARGs) and thus facilitating resistance mechanism elucidation (Cui et al., 2005; Telke & 

Rolain, 2015; Torres-Cortés et al., 2011). NGS have also enabled discoveries of omnipresent 

ARGs by surveying environmental metagenomic DNA libraries, such as from aerosol (Li et 

al., 2018), soil (Allen et al., 2009), and wastewater (Guo et al., 2017). Biosensors, which are 

widely developed for pathogen detection,  generally target specific protein molecules using 

recognition molecules and transducing the signal produced by the interaction between the 

recognition molecules and the specific target. Comprehensive reviews on biosensors for 

waterborne microbial pathogen detection are available (Justino et al., 2017; Kumar et al., 

2018). In this dissertation, NGS and biosensors are not further discussed in detail. 

For the methods discussed above, we have reviewed available technologies for point-

of-sample-collection microbial pathogen detection (Appendix D).   
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1.3 Microfluidic toolbox 

The emergence of microfluidic technologies has enabled the miniaturization of  cell 

detection and analysis. Miniaturized cell analysis has the advantage of smaller reagent 

volumes, increased sensitivity, less liquid handling time, and less manual labor (Asiello & 

Baeumner, 2011; Castillo-León, 2015). Figure 1.3 highlights the milestones in the field of 

microfluidics (that were deemed relevant for this dissertation), along with the development 

of key microfluidic fabrication technologies and biological analysis methods.  

Since Manz et al. brought up the concept of miniaturized total chemical analysis 

systems (µ-TAS) (Manz et al., 1990), innovations in microfluidic designs have achieved a 

wide range of fluid manipulations including mixing, sorting, valving, etc. (Lee et al., 2011; 

Oh & Ahn, 2006; Zhang et al., 2016). The powerful fluid control capacity enabled the 

translation of newly developed biological assays onto lab-on-a-chip (LOC). For example, 

Figure 1.3  Timeline highlighting the emergence of key technologies in microfluidic fabrication, the

main advances in biological analysis technology, the milestones in the field of microfluidics, and the first 

applications in environmental microbiology. 
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studies have demonstrated automated PCR and LAMP systems that integrate DNA 

extraction, thermal cycling or heating, and results reading (Huang et al., 2017; Kopp et al., 

1998; Lee et al., 2006). These integrated nucleic acid analysis systems have shown great 

potential for microfluidics to be applied in waterborne pathogens analysis in low-resource 

settings. However, those technologies are still not widely applied due to the complicated 

fabrication and operation of such devices, as well as expensive and bulky instrumentation. 

The polydimethylsiloxane (PDMS) based technologies and traditionally fabricated lab-on-a-

disc systems easily cost thousands of dollars just in personnel training and capital cost (Kim 

et al., 2014; Sun et al., 2015; Tian et al., 2015). Also, the designs of those systems are 

confined to two-dimensions limited by their fabrication.  

3D printing microfluidics, instead, generally requires less personnel training in 

design and prototyping. The advent of 3D printing allows more freedom in design by the use 

of the third dimension in the design philosophy. Although initially the low resolution of 3D 

printing limited its applicability in microfluidic fabrication (Castillo-León, 2015), recent 

development in 3D printing techniques and materials has achieved micrometer-resolution 

(Lee et al., 2015; Sweet et al., 2017). A plethora of innovations have demonstrated powerful 

applications of 3D-printed microfluidics (Lee et al., 2015; Sweet et al., 2017), which shows 

potential of immediate application for end-users from diverse fields. 
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1.4 Towards minimal instrumentation  

Microfluidics has developed from its origin in inkjet printing to a variety of fields, 

including biological analysis, over the past decades. However, it could take about 10 years 

to translate a new technology, such as PCR or LAMP, into the first PDMS-based microfluidic 

chip, and 10 more years to be adapted for environmental applications. For environmental 

microbial analysis, the adaptation of microfluidic technologies has enabled automated 

detection tools (Altintas et al., 2018; Besmer et al., 2014; Nguyen et al., 2018) and revealed 

new observations of intriguing phenomena (Ahmed et al., 2010; Deng et al., 2019; Singh & 

Olson, 2012). But these systems have shown little success in commercialization or they can 

be hard to be adopted for labs with a different range of expertise. Thus, microfluidics for end 

users in environmental microbiology has not reached its full potential. 

Building upon the development of 3D printing technologies and the advanced 

understanding of microfluidic systems, increasing efforts in the field are focused on 

promoting the accessibility of microfluidics to potential end users. Specifically, through 

minimizing the required instrumentation, novel microfluidic systems are emerging to ease 

the demands in skills and facilities for design, fabrication, and operation. For example, the 

development of 3D printing allows end-users to easily tailor existing designs for their own 

specific purposes and produce prototype without cleanroom facilities (Hu & Jiang, 2017). 

Lab-on-a-disk (LOD) systems, as another example, incorporate fully integrated designs and 

are intended as pre-packed products (Huang et al., 2017; Kim et al., 2013; Sayad et al., 2018). 

The fluids in LOD systems are driven by centrifugal force, so that complicated operations of 

multiple syringe pumps are eliminated.  

Another class of microfluidic innovation with minimal instrumentation drops the idea 

of using traditional microfluidic channels or wells. Novel substrates are used instead to 

realize the physics of traditional microfluidic systems. For example, the asymmetric 

membranes, developed by Lin et al. as discussed in detail in Chapter 2.3, achieved reliable 

compartmentalization, which is usually done by creating water-in-oil emulsions, using 
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commercially available membranes (Lin et al., 2018). Hydrogels provide another 

novel substrate. Hatori et al. used hydrogel particles as templates and produced water-in-oil 

emulsion for digital analysis via vortex emulsification (Hatori et al., 2018). Moreover, a 

variety of technologies has been developed to produce hydrogel beads with complex 

designed structures and/or preloaded contents, in order to enable advanced functions, such 

as cell shape-compatible cultivation and barcoding for single cell sequencing, and meanwhile 

allow easy adoption by end users (Wu et al., 2018; Wu et al., 2015; Zilionis et al., 2017).   
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1.5 Thesis overview 

In this thesis, I explore novel microfluidic fabrication techniques that utilize 3D 

printing, the use of hydrogel materials, and numerical simulations to guide microbial 

analytical device design. The roadmap of this thesis is shown in Figure 1.4. 

Chapter 2 describes the use of multiphysics simulation in the development of several 

novel 3D microfluidic devices for nucleic acid-based pathogen detection in environmental 

water samples. The developed simulation models aided the design of a microfluidic chip for 

live versus dead cell differentiation, the understanding of DNA extraction performance in a 

milliliter-chamber device for electrochemical cell lysis, and the validation of cell distribution 

on an asymmetric membrane for integrated digital detection. 

Chapter 3 describes the development of a hydrogel bead-based (Gelbead) platform 

that links single cell phenotypic and molecular analysis. In this chapter, I describe how 

needles and microcentrifuge tubes were adapted into 3D microfluidic devices for 

monodispersed droplet generation. The disposable device enabled the combination of fast-

crosslinking biocompatible hydrogel with droplet microfluidics. The hydrogel bead-based 

Figure 1.4  Roadmap of this dissertation.  
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assays were established for cell viability assessment, digital PCR, digital LAMP, 

and in situ PCR, following cell viability assessment.  

Chapter 4 describes the ongoing work of developing a bead sorter that is a portable 

and affordable solution for benchtop and potentially point-of-care bead analysis and sorting. 

The hydrogel beads are interrogated individually, and are sorted by acoustophoretic force 

based on the fluorescence intensity for downstream analysis such as PCR or sequencing. The 

sorter system has been designed and prototyped, and its feasibility was studied through 

COMSOL simulation.  

Chapter 5 describes the provisional work based on the development reported in 

previous chapters. The proposed work includes the development of DropTube, which is a 

fully integrated centrifugal device for various in-field pathogen analysis, and the 

investigation of AMR evolution kinetics through the Gelbead platform. 
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C h a p t e r  2  

CHAPTER 2: MULTIPHYSICS SIMULATION IN 
MICROFLUIDIC PATHOGEN DETECTION 

3D microfluidic systems often involve multiple physics processes simultaneously. 

Laminar flow regimes and well-controlled fluidic conditions in 3D microfluidic systems 

allow for insightful theoretical analysis. The design of microfluidic devices and gaining an 

understanding of their performance capabilities can be facilitated by numerical simulation. 

COMSOL provides a powerful interface to conduct the multiphysics simulation for versatile 

3D geometries. Herein, I have employed COMSOL Multiphysics® to simulate processes 

including fluid flow, ion diffusion, reaction, particle tracing, etc. The development of the 

simulation models contributed to the design of a 3D-printed microfluidic chip for PCR 

pretreatment that enables differentiation between live and dead cells, understanding the DNA 

extraction performance of an electrochemical cell lysis device, and validating key 

assumptions of uniform cell distributions on an asymmetric membrane for integrated digital 

detection. 
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2.1 Designing a 3D-printed microfluidic device for efficient PCR 
determination of ‘live versus dead’ microbial cells 

Reproduced from the article below with permission from the Royal Society of Chemistry. 

Zhu, Y., Huang, X., Xie, X., Bahnemann, J., Lin, X., Wu, X., Wang, S., and Hoffmann, M. 

R (2018). Propidium monoazide pretreatment on a 3D-printed microfluidic device 

for efficient PCR determination of ‘live versus dead’ microbial 

cells. Environmental Science: Water Research & Technology, 4(7), 956-963. 

https://doi.org/10.1039/C8EW00058A. 

2.1.1 Abstract 

Waterborne microbial pathogen detection via nucleic acid analysis on portable 

microfluidic devices is a growing area of research, development, and application. Traditional 

polymerase chain reaction (PCR) based nucleic acid analysis detects total extracted DNA, 

but cannot differentiate live and dead cells. A propidium monoazide (PMA) pretreatment 

step before PCR can effectively exclude DNA from nonviable cells, as PMA can selectively 

diffuse through compromised cell membranes and intercalate with DNA to form DNA-PMA 

complex upon light exposure. The complex strongly inhibits the amplification of the bound 

DNA in PCR, and thus, only cells with intact cell membranes are detected. Herein, this study 

reports the development of a microfluidic device to carry out on-chip PMA pretreatment. 

Chip design was guided by computer simulations, and prototypes were fabricated using a 

high-resolution 3D printer. The optimized design utilizes split and recombine mixers for 

initial PMA-sample mixing and a serpentine flow channel containing herringbone structures 

for dark and light incubation. On-chip PMA pretreatment to differentiate live and dead 

bacterial cells in buffer and natural pond water samples was successfully demonstrated. 
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Image reproduced by permission of Dr. Michael R. Hoffmann and the Royal Society 

of Chemistry from Environmental Science: Water Research & Technology, 2018, 4, 956-

963, https://doi.org/10.1039/C8EW00058A. 
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2.1.2 Introduction 

Due to poor water and sanitation conditions, outbreaks of waterborne diseases claim 

millions of lives per year in many developing countries and countries in conflicts (e.g., the 

cholera epidemics in Yemen and Haiti) (Ashbolt, 2004; Gleick, 2002). Compared to 

traditional culture-based methods, polymerase chain reaction (PCR) technology significantly 

improves the accuracy and sensitivity of pathogen detection and it reduces the analytical time 

from days to hours (Girones et al., 2010). In recent years, the emergence of microfluidic 

technologies has enabled the miniaturization of PCR processes onto chip-based devices. 

Studies have demonstrated automated PCR systems that integrate DNA extraction, thermal 

cycling, and results reading (Huang et al., 2017; Kopp et al., 1998; Lee et al., 2006). These 

portable systems have shown great potential in waterborne pathogens detection and 

monitoring, especially in low-resource settings.  

Bacterial cells, constituting a major category of waterborne pathogens, can exist in 

three states characterized by distinct cell behaviors in traditional culture-based methods. The 

three states are culturable, dead, and a dormancy state called viable but non-culturable 

(VBNC) (Oliver, 2005). Pathogenic bacterial cells in both culturable and VBNC states pose 

potential risks to public health, thus should be considered as “live” cells in environmental 

monitoring and microbial risk analysis. Culture-based methods obviously tend to 

underestimate the pathogen concentrations due to the presence of VBNC cells under various 

environmental stresses (Oliver et al., 2005; Oliver et al., 1995). However, the differentiation 

between live and dead cells is even more challenging without cultivation. Although PCR is 

becoming the new standard in environmental microbial detection, it cannot differentiate live 

and dead pathogens, since it indiscriminately detects all target DNA fragments in a sample. 

Studies have shown that a considerable fraction of pathogens in environmental water samples 

may have lost viability, but their DNA may still be present and detectable by PCR for several 

weeks. This would likely result in an overestimation of potential health risks (Josephson et 

al., 1993). A few studies showed that dielectrophoresis can separate live and dead cells based 

on the different induced electrophoretic forces on the cells (Lapizco-Encinas et al., 2004; 
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Markx et al., 1994; Shafiee et al., 2010). The viability of cells may also be assessed 

by the integrity of their plasma membranes. A combination of two fluorescent dyes SYTO-

9 (stains all cells in green) and propidium iodide (only penetrates cells with damaged 

membranes and labels them in red) has been widely used for microscopic and flow-

cytometric live versus dead cell determination (Berney et al., 2007; Boulos et al., 1999; Giao 

et al., 2009).  

Using the membrane exclusion properties of live cells, propidium monoazide (PMA), 

a DNA intercalating dye, has been coupled with PCR to detect only live cells (Cawthorn & 

Witthuhn, 2008). The aforementioned dye is able to penetrate the compromised cell 

membranes of dead cells but not those of the live cells. With light exposure, the azide group 

on the dye molecule is converted into a reactive nitrene intermediate, which irreversibly 

forms C-N covalent bonds with adjacent DNA (Hixon et al., 1975). Dye-bound DNA loses 

its ability to bind PCR primers and thus cannot be amplified during PCR cycles. The excess 

dye molecules react with water during light incubation and lose their ability to bind amplified 

DNAs (Nocker et al., 2007). This method intrinsically enables selective detection of live cells 

including those in VBNC state. It should be noted that the efficacy of PMA pretreatment is 

not universal among all microorganisms. Some live cells, such as Bacillus subtilis and 

Staphylococcus epidermidis, have been shown to have a non-negligible PMA permeability, 

and thus the PMA method may underestimate the number of live cells of such species 

(Kobayashi et al., 2009; Xie et al., 2016). Moreover, not all dead cells exhibit a higher PMA 

permeability than the live ones. This is particularly true in the case of UV disinfection 

process, in which the cell death is mainly induced by damages to DNA/RNA instead of to 

cell membranes. The intact membranes of such dead cells could obstruct the permeation of 

PMA, leading to an overestimation of live cell concentration. Nevertheless, PMA 

pretreatment is still an applicable and possibly the most rapid method to differentiate 

live/dead cells when the assay is properly designed.  

Traditional PMA pretreatment is performed in-tube by adding PMA into samples, 

followed by a brief vortex, a given time of dark incubation, and then a light incubation (Bae 



 

 

25

& Wuertz, 2009). Performing PMA pretreatment on a microfluidic chip can 

eliminate the need of multiple manual pipetting steps with the advantage of accuracy and 

reproducibility. Moreover, an on-chip PMA pretreatment may also benefit for the future 

design of an integrated PMA-PCR microfluidic system. In a microfluidic chip with limited 

channel volume, sufficient incubation time requires relatively low flowrates. However, mass 

transport under these conditions is dominated by diffusion due to small Reynold’s and Peclet 

numbers. To ensure the effective diffusion of PMA into compromised cells, a split and 

recombine (SAR) mixer can be used to shorten the mixing channel lengths (Lin, 2011). 

However, the multilayer structure of such mixers poses a major challenge for chip 

fabrication. Conventional fabrication methods such as soft lithography or direct etching are 

essentially 2-dimensional, which limit the multi-dimensional design. Furthermore, bonding 

of corresponding channels leads to low turnover rates and poor prototype consistency (Au et 

al., 2016).  

The overall goal of this project is to develop a microfluidic chip to simplify PMA 

pretreatment in PCR-based live/dead bacterial cell differentiation. COMSOL Multiphysics® 

simulation software was employed to guide the chip design by modeling the fluidic behavior 

under experimental conditions. High-resolution 3D printing techniques were used to 

fabricate chips with complicated 3D structures without using traditional clean room facilities. 

PMA pretreatment to differentiate live and dead bacterial cells in buffer and natural pond 

water samples was successfully demonstrated using the prototype chip. 
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2.1.3 Materials and methods 

2.1.3.1 Flow simulation 

The number of split and recombine (SAR) mixer units required for adequate mixing 

were determined by flow simulation in COMSOL Multiphysics® (COMSOL Multiphysics, 

2015). The inlet PMA concentration was set as 400 µM, while its concentration at the sample 

inlet side was set as zero. The fluid properties of bacterial suspension were assumed to be 

the same as water. The geometry of 15 SAR mixers was assembled in COMSOL and the 

cross-sectional PMA concentration profiles were simulated at the end of each mixer. 

COMSOL solves the laminar flow profile of the system and then solves the transport of dilute 

species. With a PMA to sample flowrate ratio set at 1:4, total flowrates of 7.5, 12.5, 25, 50, 

100, and 150 µL/min were tested. At the cross-sections after each mixer unit, the values of 

|CPMA - 80 µM| were calculated and averaged for all mesh points in the plane, which 

represents the cross-sectional averaged absolute difference between actual PMA 

concentration (CPMA) and target PMA concentration (80 µM). The effectiveness of mixing 

after certain number of mixers (N) was quantified by percentage mixing, calculated by 

Equation 2.1: % Mixingே = 1 − (|ುಾಲି଼ ఓெ|సಿ)ೝೞೞషೞೌ ೌೡೝೌ(|ುಾಲି଼ ఓெ|సబ)ೝೞೞషೞೌ ೌೡೝೌ  (Eq. 2.1) 

The design of mixers is based on the simulated percentage of mixing values, which 

approaches 100% when the fluids are perfectly mixed. 

2.1.3.2 Chip design, fabrication and characterization 

The PMA pretreatment chip was fabricated using a high-resolution 3D printer (3D 

systems ProJet™ MJP 2500 Plus, Rock Hill, SC) with clear plastic 3D printing material 

(Visijet M2 RCL, 3D Systems). After printing was completed, the chip was cleaned in hot 

mineral oil bath and the channel was flushed with hot mineral oil to remove the supporting 

wax outside and inside the chip. A schematic diagram and a photograph of the chip are shown 

in Figure 2.1a-d. The microfluidic chip contains 10 SAR mixers followed by a serpentine-
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shaped incubation channel. Herringbone structures were also incorporated into the 

incubation channel to reduce the residence time difference caused by the parabolic flow 

profile (Rajabi et al., 2014).  

Figure 2.1  Microfluidic chip design and prototype. (a-c) Chip design: top view (a) with a zoomed-in 

3D view of an SAR mixing unit (b) and the herringbone structures (c). The injected cell sample and 

PMA solution are continuously mixed in the SAR mixers and then enter the incubation channel with

herringbone structures. The darker shade indicates that part of the chip is covered by aluminum foil for

dark incubation. (d) Photo of the 3D-printed chip prototype. 
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The channel width of the SAR mixer is 500 µm, while that of the 

incubation section is 2 mm. The total void volume within the chip was calculated to be 138 

µL. The thickness of the covering layer above the incubation channel was 0.8 mm. To test 

the channel integrity and quality, a 500 µm-thick slice was printed with square holes with 

sides of 500 µm and was viewed under a microscope (Leica M205FA, Buffalo Grove, IL). 

The light transmittance of the material was assessed by UV-vis spectrometer (Shimadzu UV-

2101PC, Kyoto, Japan) over the wavelength range from 200 to 700 nm. A 0.8 mm-thick 

slide, which has the same thickness as the top cover layer over the channels, was printed. 

The slide was measured with one side rubbed with mineral oil facing the light source, in 

order to simulate the chip layer above the fluid during light incubation.  

2.1.3.3 Cell cultures and natural water samples 

Escherichia coli (E. coli, ATCC 10798) were employed as model bacteria and 

cultivated in Luria-Bertani (LB) broth in an incubator shaking at 200 rpm for ~16 h at 37 °C. 

E. coli cells were harvested and washed 3 times with 1× phosphate-buffered saline (PBS) 

and used as stock solution. Buffer samples were prepared with 7×108 CFU/mL live E. coli 

cells spiked in PBS, as estimated by plate counts. To prepare dead cell samples, the stock 

solution was heat-treated in 90°C water bath for 10 minutes, and the cell inactivation by this 

heating protocol was verified by Xie et al.  

 To investigate the performance of PMA chip in real water samples, environmental 

water samples were collected from the Turtle Pond in Caltech. The basic water quality 

parameters are presented in Table S1. 

2.1.3.4 PMA pretreatment on the prototype chip 

The inlets, SAR mixers, and part of the incubation channel were covered with 

aluminum foil for dark incubation, while the rest of the incubation channel was left 

uncovered for light exposure (1100 W/m2, ABET Sun 2000, Milford, CA). The chip surface 

facing the light source was rubbed with mineral oil in order to enhance the light 

transmittance. 400 µM PMA solution (Biotium Inc.) and the water sample were introduced 
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into each inlet via microfluidic connectors (Dolomite M1 4-way linear connector, 

Royston, UK) with a flowrate ratio of 1:4, and the flows were controlled by syringe pumps 

(Cole-Parmer 74905-02, Vernon Hills, IL). Depending on the flow rate, usually 1-10 mL cell 

sample was loaded for each experiment. After injection, the PMA solution and E. coli were 

mixed in the SAR mixers, followed by dark incubation to allow the diffusion of PMA 

molecules through dead cell membranes, and then light exposure to induce the reaction 

between PMA and adjacent DNA. Samples (100 µL/sample) were collected from the outlet 

in triplicates after the flow reached steady state.  

The on-chip PMA pretreatment was first tested with PBS buffer seeded with all dead 

cells at total flow rates of 7.5, 12.5, 25, 50, 100, and 150 µL/min, corresponding to light 

exposure time (1/2 total residence time) of 9.17, 5.50, 2.75, 1.38, 0.69, and 0.46 minutes. 

Control experiments without PMA treatment were performed, in which the PMA solution 

was substituted by Milli-Q water, with all other conditions kept the same. For in-tube PMA 

pretreatment, 20 µL 400 mM PMA solution was mixed with 80 µL cell solution. Then the 

samples were incubated in dark for a designated time before light incubation. The dark/light 

incubation conditions tested were the same as the on-chip experiments.  

At the optimal flowrate for dead cell discrimination, live and dead E. coli cell 

mixtures (100% live, 10% live, and 100% dead) in PBS were tested on-chip and in-tube. For 

natural pond water, a mixed sample with 90% heat-treated pond water and 10% non-treated 

pond water is prepared. The mixed pond water samples were tested under the optimal flow 

condition on-chip with PMA, in-tube with PMA, and on-chip without PMA.   

2.1.3.5 PCR assays 

  Sample DNAs were extracted with a commercial DNA extraction kit following the 

instructions (PureLink® Genomic DNA Mini Kit, ThermoFisher Scientific) and quantified 

by real-time PCR following the similar protocol as Xie et. al (Eppendorf 6300 Realplex 2, 

Hamburg, Germany). Each 20 µL reaction mixture consists of 10 µL PerfeCTa® qPCR 

ToughMix® (Quanta BioSciences Inc.), 0.25 μM forward primer, 0.25 μM reverse primer, 
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0.25 μM TaqMan probe, 2 µL DNA sample, and nuclease free water. The real-

time PCR analysis was targeting the universal bacterial 16s rRNA gene. The sequences of 

the primers and the probe used are listed in SI. 

  The software (Eppendorf Inc.) accompanied the real-time PCR instrument was used 

to evaluate threshold cycle (Ct values). The sample DNA concentrations are reflected by 

threshold cycle (Ct) values, where larger Ct value indicates lower DNA concentration. The 

effectiveness of on-chip PMA pretreatment, as well as in-tube pretreatment, was showed by 

ΔCt, which was calculated by subtracting the Ct value of the cell sample before PMA 

treatment (𝐶௧) from the Ct values of the sample after PMA treatment (C௧୭୳୲) (corrected by 

the dilution ratio of 5/4), as represented by Equation 2.2: ∆C௧ = (C௧୭୳୲ − logଶ ቀହସቁ) − 𝐶௧     (Eq. 2.2) 
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2.1.4 Results and discussions 

2.1.4.1 Simulation of PMA-sample mixing by SAR mixers 

The SAR mixers aid diffusion by “folding” the joined flows, as demonstrated by 

Figure 2.2a (Glatzel et al., 2008). The mixers utilize the no-slip boundary characteristic of 

laminar flow to re-orient the split flows by a 90° turn, which forces the concentrated side to 

meet with the diluted side when the flows recombine. The required diffusion length to 

achieve a well-mixed state is then reduced to facilitate the diffusive transport of PMA 

molecules. The cross-sectional PMA concentration profiles after 1, 2, 5, 10, and 15 SAR 

mixers are shown in Figure 2.2b. The mixing effectiveness is visually represented by the 

uniformity of blue color. At the same geometric position (e. g, Figure 2.2b, N=2), fluids 

under a slower flowrate displayed better-mixed concentration profiles, but the time required 

to achieve good mixing was much longer. 

The tradeoff between time effectiveness and number of mixing units required is 

demonstrated quantitatively in Figure 2.2c-d. Percentages of mixing extent were plotted 

against the number of mixing units passed and total retention time in the mixing section, 

respectively. For the same amount of time, higher flowrates result in more efficient mixing, 

due to more mixing units passed with enhanced advection. However, the optimal flowrate 

should also take residence time into consideration, since optimal pretreatment requires proper 

dark and light incubation times for PMA-DNA interaction. Ideally, the design of the mixers 

needs to provide complete mixing under a range of flow conditions. For the flowrate range 

of 7.5 to 150 µL/min, which corresponds to a reasonable incubation time range of 9.17 min 

to 0.46 min (Xie et al., 2016), at least 10 mixers were required to reach a plateau with a 

98.5% mixing level. Therefore, 10 mixers were employed in our prototype for additional 

experiments. 
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Figure 2.2  Simulation of SAR mixers. (a) Demonstration of SAR mixing mechanism: simulated cross-

sectional concentration of inlet and the first two mixers at a flowrate of 150 μL/min. (b) Simulated 

PMA concentration profiles at cross sections after 1,2,5,10, and 15 SAR mixers at flowrates ranging 

from 7.5 to 150 μL/min. (c-d) Simulated percentage of mixing plotted over (c) number of mixing 

units passed and (d) total retention time in the mixers. 
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2.1.4.2 Chip fabrication 

The resolution of the 3D printer is 800×900×790 DPI, which converts to approximate 

dimensions of 32×28×32 µm (3D Systems, 2017). The smallest feature of the chip is the 

SAR channels with 500 µm in size. As shown in Figure 2.3a, the 3D printer can create 

channels with sides as small as 400 µm and surface roughness less than 30 μm. This 

demonstrates the feasibility of using the 3D printer to realize the current design of the PMA 

pretreatment chip as well as some other chips with more complicated microscale structures.  

Figure 2.3  3D printing material characterization. (a) 3D printed channels at designed sizes of (from 

left to right) 500 μm, 400 μm, 300 μm, 200 μm, and 100 μm. (b) Light transmittance of the 3D 

printed chip, with and without rubbing mineral oil onto surface, over 200 to 700 nm wavelength range.
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The light transmittance of the 3D printing material was characterized to 

test its effect on radiation available to the fluids. The freshly printed chip is visually opaque 

before any surface treatment, due to light scattering by the rough surface produced from 3D 

printing. Demonstrated in Figure 2.3b, the test chip without surface treatment allows less 

than 30% light transmitted at the optimum wavelength of 470 nm. In contrast, the surface-

treated chip has enhanced light transmittance of approximately 80% at the same wavelength. 

With the surface roughness mostly overcome by applying an oil layer, the loss of transmitted 

radiation was likely due to absorption by the 3D printing material.      

It should be noted that the device is not autoclavable, as the 3D printing material is 

subject to heat distortion at elevated temperatures. However, the material is resistant to 

common solvents like ethanol and isopropanol, which can be used for cleaning and 

sterilization purposes (3D Systems, 2017). The material cost of a single microfluidic chip is 

around $5. Compared to traditional microfluidic chip fabrication methods, 3D printing 

provides a fast and cost-effective way for prototyping.    
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2.1.4.3 Performance of on-chip PMA pretreatment 

Figure 2.4 shows the dead cell discrimination was achieved with the designed chip. 

ΔCt values for various dark/light incubation times are reported along with those acquired for 

in-tube and on-chip no-PMA control experiments. The higher ΔCt value indicates larger PCR 

signal reduction (dead cells’ DNA was successfully blocked). For in-tube experiments, the 

peak ΔCt observed was at an incubation time of 1.38 minutes. A similar maximum ΔCt value 

was also observed by Xie et al. at a light incubation time of 2 min, while the ΔCt declines 

with extended light exposure likely due to the degradation of the PMA-DNA complexes. A 

similar trend was observed in on-chip experiments, with the optimal performance (ΔCt = 7.41 

± 0.85) at the incubation time of 2.75 minutes (corresponding to the flowrate of 25 µL/min).  

Figure 2.4  The effectiveness of dead cell discrimination with PMA treatment. The experimental

results were quantified by real-time PCR and expressed as the differences in the cycle number (ΔCt) 

for samples before and after PMA pretreatment. The performance was tested under various flowrates, 

which corresponds to different light incubation times. The error bars represent the Standard Error (SE) 

of ΔCt. 
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The result was not significantly different (t-test, p>0.5) from the optimal 

performance in the in-tube pretreatment (ΔCt = 6.88 ± 0.31 at 1.38 min). The slight delay in 

attainment of an optimal performance is likely related to the light exposure efficiency. The 

tubes employed in in-tube experiments were made of highly transparent polypropylene 

(Thermo Fisher Scientific, 2015), while the roughness and light absorbance of the 3D 

printing material compromised a small fraction of radiation, so that longer incubation time 

was required to obtain the optimal on-chip PMA pretreatment. In on-chip no-PMA control 

experiments, the ΔCt values were close to 0. This result implies that very few dead cells were 

lost during on-chip treatment due to trapping and sedimentation. Therefore, the observed ΔCt 

values in on-chip PMA treatment can be attributed to PMA pretreatment. 

At the optimal flowrate (25 µL/min), the on-chip differentiation of live and dead 

bacterial cells in the spiked buffer samples and natural pond water samples is demonstrated 

in Figure 2.5. For 100% live cells, on-chip PMA treatment resulted in a ΔCt of 1.77 ± 0.43. 

This value is significantly smaller (t-test, p < 0.01) in comparison to the ΔCt observed in 

dead-cell-only samples (ΔCt = 7.41 ± 0.85). This indicates that the on-chip pretreatment 

significantly discriminated dead cells while causing much smaller change in the reading of 

live cells. For a mixed cell sample with 10% live cells and 90% dead cells, deactivation of 

90% initial DNA templates would result in a ΔCt of 3.3 theoretically. The on-chip 

pretreatment leads to a ΔCt of 4.57 ± 0.58, with the elevated ΔCt likely attributed to the fact 

that some of the live cells were also blocked by PMA.  

For the pond water, the total indigenous microbial population was analyzed as the 

PCR primers targeted at the universal bacterial 16s rDNA. The preliminary result showed 

that ΔCt was in the range of 0.58 to 1.28, which may not be reliable as it runs close to the 

detection limit of the assay. Real-time PCR analysis can differentiate as little as two-fold 

target gene changes. In PMA pretreatment, this indicates that dead cells in the sample have 

to be more than 50% (total DNA: live cell DNA>2:1), corresponding to a ΔCt increase larger 

than 1 after PMA pretreatment. Therefore, a mixture of heated and unheated (v/v =9:1) pond 

water sample was prepared to better demonstrate the on-chip PMA treatment. PMA 



 

 

37

pretreatment on-chip yields ΔCt of 2.88 ± 0.65, indicating dead cells constitute 

89.6% - 91.3% of the total microbial population. This result generally agrees with the 

preliminary estimation that 90 - 96% cells were dead in the sample. The slight deviation from 

prediction might be due to insufficient PMA pretreatment as the pretreatment conditions 

were not optimized for the variety of bacterial species present. Hence, species-specific and 

matrix-specific optimization would benefit environmental application. 

  

Figure 2.5  The on-chip PMA pretreatment performance, as well as no-PMA control, for live cells, 

dead cells, 10% live cell samples, and 10 % live pond water samples under the optimal incubation time

as previously determined. The results for dead cells under the same condition are plotted as a 

comparison. The error bars represent the SE of ΔCt. 
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2.1.5 Conclusions 

The on-chip PMA pretreatment achieves effective dead cell discrimination against 

live cells in the tested buffer and environmental water samples. Despite discussed limitations, 

on-chip PMA pretreatment has the advantage of less manual labor required and the potential 

to be incorporated into an integrated microfluidic system for high throughput, accurate, 

sensitive, and efficient pathogen detection. The research presented here demonstrates the 

capability of high resolution 3D printing as a microfluidic prototyping method for new chip 

design and fabrication. The approach has the advantage of easy design and operation, high 

fidelity, and quick turnover rates (Au et al., 2016). However, wider microfluidic application 

of 3D printing would call for development of new materials, better knowledge of material 

properties, and standardization of surface treatment techniques to cater to various demands 

(Au et al., 2016; Bhattacharjee et al., 2016). The combination of COMSOL and 3D printing 

technologies reduces the complexity of microfluidic chip design and prototyping, and 

therefore lowers the barrier of microfluidics for environmental applications. 
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2.1.7 Supplementary Information 

The PCR thermocycling involves 3 minutes of initialization at 95 °C, and 42 cycles 

of denaturation at 95 °c for 15 seconds followed by annealing/extension at 55 °C for 30 

seconds. The primers and probe are targeting the universal bacterial 16s rRNA gene (Suzuki 

et al., 2000). The sequences are listed in Table 2.1.  

 Sequence 
Forward primer 5’CGGTGAATACGTTCYCGG3’ where Y is either C or T 
Reverse primer 5’GGWTACCTTGTTACGACTT3’, where W is either A or T 
TaqMan probe FAM-5’CTTGTACACACCGCCCGTC3’ 

Table 2.1  The sequences of primers and probes.  

For the tested pond water, the water quality parameters, including pH, electrical 

conductivity, UV254, and COD, are listed in Table 2.2.  

pH 7.75  
Electrical Conductivity 925.9 μS/cm 

UV254 0.003  
COD 74.7 mg/L 

Table 2.2  Water quality parameters of the pond water tested.   
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2.2 Understanding DNA extraction performance of electrochemical lysis 

Adapted from the article below which is available under the terms of Creative 

Commons Attribution License (CC BY). 

Wang, S., Zhu, Y., Yang, Y., Li, J. and Hoffmann, M. R. (2020) Electrochemical cell lysis 

of gram-positive and gram-negative bacteria: DNA extraction from environmental 

water samples. Electrochimica Acta, 135864. 

https://doi.org/10.1016/j.electacta.2020.135864 

2.2.1 Introduction 

As a sample preparation step for PCR-based waterborne pathogen detection, cell lysis 

is required to release the nucleic acids from membrane-encapsulated cells. Membrane 

disruption or destruction can be achieved chemically (e.g. alkaline lysis), mechanically (e.g. 

beads beating), electrically (e.g. electroporation), etc. (Shehadul Islam et al., 2017). In this 

study, we focus on electrochemical cell lysis (ECL). ECL disrupts microbial cell membranes 

by generating hydroxide ions at the cathode, which creates a local high pH and breaks the 

fatty acid-glycerol ester bonds in membrane phospholipids (Di Carlo et al., 2005; Nevill et 

al., 2007). Compared to electroporation which generally requires a high voltage of 500 V 

(Wang et al., 2006), ECL uses a conveniently low voltage in the range of 2-5 V (Di Carlo et 

al., 2005; Jha et al., 2012; Jha et al., 2011; Lee et al., 2010; Nevill et al., 2007). The low 

working voltage avoids joule heating so as to better preserve the released nucleic acid 

molecules, and can be easily applied in resource limited settings. However, previous studies 

on ECL were mainly focused on clinical samples (Di Carlo et al., 2005; Nevill et al., 2007). 

Thus, the reported device development was with micro- or nano-liter throughput, and the 

validation was only in well-controlled systems with purified buffers. To adapt ECL for wider 

applications, such as in environmental or agricultural microbial analysis, it is essential to 

assess the performance of ECL for the interested type of cells in complex matrices with a 

throughput relevant to the application. 
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This work reports the development of a novel ECL device with ~1mL 

capacity that targets in-field application for environmental samples under resource-limited 

settings. With model gram-negative bacteria (Escherichia coli and Salmonella Typhi) and 

gram-positive bacteria (Enterococcus durans and Bacillus subtilis), the DNA extraction 

performance was characterized in lab buffer and environmental samples, including turtle 

pond water and untreated latrine wastewater. COMSOL Multiphysics simulation was 

employed to better understand the observed performance.  
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2.2.2 Device design and DNA extraction performance 

The ECL device design is shown in Figure 2.6a. The design consists of a 

dimensionally stable IrO2/Ti anode (Yang et al., 2016), a Ti cathode, and a cation exchange 

membrane. The material of the reactor was polycarbonate. The configuration and the 

reactions involved in ECL are illustrated in Figure 2.6b. The cathodic chamber of 0.8 mL 

and the anodic chamber of 1.6 mL were separated by the cation exchange membrane. A gas 

ventilation outlet was located at the top of each chamber. For ECL reaction experiments, 50 

mM Na2SO4 and bacterial suspensions were syringe-injected from the bottom into the anodic 

and cathodic chamber, respectively. A constant direct current of 40 mA was applied. The 

cathodic effluents were collected with syringes after each reaction for downstream PCR 

analysis.  

Figure 2.6  ECL device design. (a) Major structures of the ECL device shown in an exploded view.

(b) Schematic of electrochemical cell lysis processes involved inside the device. Adapted from Wang et

al. 
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The DNA extraction performance by ECL with treatment time varying 

from 30 s to 10 min was evaluated for the 4 model bacteria. The treated samples were further 

analyzed in qPCR, which reports the cycle number (CT) that the fluorescence signal 

associated with the PCR amplification products exceeds the fluorescence threshold. The 

DNA extraction efficiency for each ECL run was quantified by ΔCT, which was calculated 

by subtracting CT values of the suspended DNA in the ECL treated samples from those in 

the untreated ones. For all 4 model bacteria, the highest ΔCT values of the ECL were in the 

range of 6.5 - 9.8, and were observed with 1 min of ECL treatment. After this optimized 

treatment duration, the DNA extraction efficiencies generally decrease after 2 min of ECL. 

Since plausible PCR inhibition caused by electrolyzed cathodic effluents was ruled out 

experimentally (as discussed in the supporting information of the published article), it is 

supposed that the decreased efficiency in prolonged ECL could be mainly due to DNA 

damage by the high pH. 

As a reference of the pH effect, direct alkaline lysis experiments were conducted for 

E. coli at varying pH created by homogenous NaOH at concentrations of 0.1 mM – 1 M. The 

results suggest that the optimal pH for DNA extraction of the tested bacteria lies between 12 

and 13. This optimal pH range agrees with the previously reported optimal pH range of 11.5-

12.5 for cell lysis (Harrison, 1991; Lee et al., 2010). The bulk pH (12.47-12.76) measured 

under optimized conditions for ECL extraction also sits within the optimal alkaline lysis pH 

range. With a pH higher than 13, the decrease in ΔCT indicates that DNA might be damaged, 

which is consistent with the DNA damage observed in the samples treated by more than 2 

min of ECL. The highest 𝛥CT value achieved by alkaline lysis was at 4.2, far less than the 𝛥CT of 9.8 with the optimized ECL treatment. ECL was also observed to be capable of lysing 

gram-positive bacteria E. durans while conventional alkaline lysis was not effective, with 𝛥CT values all below 3.0. The results highlight that, compared to the most commonly used 

alkaline cell lysis, ECL is a faster and much more efficient DNA extraction method for gram-

negative and gram-positive bacterial cells. 
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2.2.3 Understanding ECL performance through pH profile simulation 

To gain more insight in the observed ECL performance, COMSOL Multiphysics® 

was employed to simulate the fluidic motion and pH distribution in the cathodic chamber 

solution. As indicated by the calculated flow field shown in the Figure 2.7a, gas evolution 

helps mixing the solution in the simulated cathodic chamber. In the superimposed 2D arrow 

plot of velocity field, it is observed that upward fluid momentum close to the electrode 

surface (the right edge) was induced by gas motion, and that downward motion on the other 

side was driven by mass conservation. The fluid in the upper volume was notably accelerated 

and would boost convective transport of OH- ions. Under the simulated flow fields, the pH 

profiles for the vertical mid-plane of the cathodic chamber were simulated for different 

contact times and are shown in Figure 2.7b. These simulations show that the local pH value 

near the cathode surface increases rapidly within 1 min of ECL and that an ideal pH range 

for cell lysis (pH 12-13) is predicted. The gas evolution-induced mixing leads to a larger 

volume that has a suitable pH for cell lysis after 30 s and 1 min of operation.  

After 2 min of ECL operation, the pH in most of the upper volume reaches 13. This 

simulation is consistent with the DNA loss observed during ECL tests on different bacteria. 

Hydrogen gas is also generated, as protons are consumed and OH- is produced at the cathode 

surface. The simulated pH profiles for the bulk-phase cathodic solutions as a function of time 

is shown in Figure 2.7c. The simulation results are in line with the measured bulk pH values 

of the cathodic effluents during different ECL tests. The results also highlight that there is a 

higher pH at the cathode surface than in the bulk electrolyte. It is speculated that cells were 

efficiently lysed near the cathode surface. The released DNA molecules with negative charge 

were likely repelled from the cathode, and subsequently preserved in the bulk electrolyte at 

a lower pH. This may explain the much more efficient DNA extraction by ECL than that by 

direct alkaline lysis (vide supra). 
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Figure 2.7  Simulation of gas evolution and pH profiles. (a) Simulated steady-state flow field of the 

vertical mid-plane across the electrode and the membrane. The gas fraction and velocity field shown in

the plot rapidly reached steady-state within 0.1 s, the shortest time step in the simulation. The color

surface represents the volume fraction of gas phase. (b) Simulation of pH value distribution for the 

vertical mid-plane in the cathodic chamber with the cation exchange membrane on the left and the

cathode on the right. (c) Modeled and measured pH for the cathode effluents as a function of

electrochemical reaction time. Adapted from Wang et al. 
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2.2.4 Simulation methods 

COMSOL Multiphysics (COMSOL Multiphysics, 2015), a commercial finite 

element modeling software, was used to study the fate and transport of hydroxide ions inside 

the cathodic chamber. The fluid in the cathodic chamber was modeled as a 3 × 5 × 50 mm3 

block, with the electrode surface and the cation exchange membrane represented by the two 

5 × 50 mm2 sides. The gas vent hole on the top was represented by a cylindrical extrusion 

with a diameter of 1 mm and a height of 0.1 mm. OH- and H+ are generated with the hydrogen 

and oxygen evolution reactions at the cathode and anode, respectively:  

Anode:      2H2O ⇌ 4H+ + 4ē + O2 (Eq. 2.3) 

Cathode:   4H2O + 4ē  ⇌ 4OH- (Eq. 2.4) 

The generation and venting of H2 during electrolysis induce fluid movements in the 

cathodic chamber. The time-dependent flow field within the cathodic chamber was simulated 

by laminar bubbly-flow module, which calculates the fluid movement induced by the 

generation and venting of H2 during electrolysis. The convective and diffusive OH- transport 

under the calculated flow field was then modeled by transport of dilute species module. Free 

tetrahedral mesh calibrated for fluid dynamics was used with predefined element size, which 

was set as fine for all boundary surfaces and as normal for the rest of the geometry. 

For flow field simulation, laminar bubbly-flow module uses Euler-Euler model to 

solve two-phase flow macroscopically by tracking phase averaged parameters and volume 

fraction of each phase (Vera & Ruiz, 2012). Molar influx of H2 gas at the cathode surface 

was theoretically half of the OH- generation rate Rin
cat, which was calculated by Equation 2.5 

(Bard et al., 1980): 

                                                                                   (Eq. 2.5) 

where i is the supplied current (40 mA), n is the number of electrons used to generate a 

hydroxide ion, which is 1, F is the Faraday constant, and A is the surface area. The bubble 

 
nFA

iRcat
in =



 

 

47

diameter was set at 100 µm which is a typical size reported in literature 

(Matsushima et al., 2006; Matsushima et al., 2009). 

For transport of dilute species interface, OH- generation from the cathodic electrode 

surface was represented by a uniform inward flux of Rin
cat, calculated by Equation 2.5 at 1.66 

× 10-3 mol/(s·m2). Simultaneously, in the anodic chamber with 50 mM Na2SO4 buffer 

solution, H+ ions were produced from the anode surface at the same rate as OH- generation, 

and cations were forced across the cation exchange membrane. It was assumed that sodium 

ions were the dominant species transported across the membrane due to their concentration 

dominance over protons, until sodium ions were transferred down to a concentration 

comparable to the proton; at this point, protons are the preferred ions for membrane transport 

due to their smaller size. For the cathodic chamber, the influx of H+ was considered as the 

sink of OH- and the contribution of water dissociation was negligible to mass transfer through 

the membrane (Krol et al., 1999; Simons, 1979; Tanaka et al., 2012).Therefore, the flux of 

hydroxide ions at the membrane, Rin
mem,  was approximated as a step function:  

Rin
mem =

0 t < tc

−Rin
cat t ≥ tc





  (Eq. 2.6) 

where t is time and tc is the critical time when protons become favored for cross membrane 

transport. The value of tc was approximated by the time of complete consumption of sodium 

ion in the anodic chamber. The initial pH was set at 7.5. The time-dependent concentration 

profile of OH- was analyzed with the diffusion coefficient of OH- in water set at 5×10-5 cm2/s 

(Lee & Rasaiah, 2011). From the simulated hydroxide ion concentrations, the transient pH 

profiles of the cut plane across the electrode and the membrane were generated, while the 

bulk solution pH was estimated from the volume average of [OH-].  
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2.3 Validating cell distribution on an asymmetric membrane for integrated 
digital detection  

Adapted from the article below with permission from American Chemical Society. 

Further permissions related to the material adapted should be directed to the ACS. 

Lin, X., Huang, X., Zhu, Y., Urmann, K., Xie, X., & Hoffmann, M. R. (2018). Asymmetric 

membrane for digital detection of single bacteria in milliliters of complex water 

samples. ACS nano, 12(10), 10281-10290. 

https://pubs.acs.org/doi/abs/10.1021/acsnano.8b05384 

2.3.1 Asymmetric membrane for digital cell detection directly from 

environmental samples 

Compartmentalization of cells of nucleic acid molecules is an essential step for digital 

detection, which runs the assay in thousands of parallel reactors with volumes of nano- or 

pico- liter. Common compartmentalization methods include emulsification into water-in-oil 

droplets, etching or machining wells or microchannels, hydrogel-based virtual microfluidics, 

etc. (Samiei et al., 2016; Xu et al., 2016). The complex operation and instrumentation 

involved in these methods hinder their application under resource-limited conditions. 

Furthermore, for in-field environmental applications, low concentration of pathogens present 

in environmental samples generally requires an additional step of sample concentration 

before successful nucleic acid detection (Wu et al., 2020). In this work, we developed a novel 

asymmetric membrane design that, besides being an easy compartmentalization solution, is 

capable of integrating bacterial cell capture, concentration, purification, and digital LAMP. 

With a sample size of 1 mL, absolute quantification of E. coli and Salmonella from 0.3 to 

10,000 cell/mL was achieved in unprocessed environmental beach water and pond water 

within 1 hour. 

The workflow of using the asymmetric membrane is shown in Figure 2.8. The 

asymmetric membrane is made of two pieces of commercial polycarbonate membranes, one 
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with dense vertical nanochannels and the other with uniform micropores. The two 

membranes could be assembled easily by heat treatment within 1 min. During filtration, a 

sacrificial pre-filter removes large particles and positively charged matters, while bacteria 

were forced through and captured homogeneously inside each micropore of the upper 

membrane layer. Meanwhile, the nanochannels on the bottom membrane layer allow elution 

of small molecules of amplification inhibitors in the environmental samples, such as proteins, 

organics, and heavy metals (Schrader et al., 2012). The strong sealing and vertical orientation 

of nanochannels ensure isolation of each pore without cross-contamination. After filtration, 

optimized assay reagents were introduced into an asymmetric membrane for rapid and 

isothermal amplification of target nucleic acids of single bacteria within each pore.  

  

Figure 2.8  Schematic illustration of heterogeneous micro/nanochannel membrane for single bacteria

detection from crude environmental samples. 
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2.3.2 Validating the random particle distribution assumption 

The interpretation of the digital single cell detection and analysis using Poisson 

Distribution is based on the assumption that the targets are randomly distributed before the 

reaction. In this case, it means that the cell is assumed to disperse homogeneously on the 

entire membrane. To verify this assumption, we conducted finite element analysis using 

COMSOL to simulate fluid flow and particle trajectories through the asymmetric membrane. 

The simulated flow field inside the filter is shown in Figure 2.9a. The fluid scattered 

across the asymmetric membrane before passing through. The transmembrane flow was then 

quantitatively investigated by comparing the flow rate at varying x-positions across the 

membrane, as shown in Figure 2.9b. The peaks represent the flow rate through one 

micropore. The flat-shaped peaks without any sign of bell-curve indicate that the flow rate 

was identical for all the micropores. Since bacterial cells experience additional drag force 

and inertial force compared to water or small molecules, the cell distribution was assessed 

by simulating particle trajectories under the calculated flow field. The particle properties 

were set to reflect those of E. Coli cells. A large number of particles were released at the 

inlet, and the portion of particles across the varying positions of the membrane is observed 

to be nearly constant (Figure 2.9c). The results indicate that theoretically the cells are 

distributed evenly across the asymmetric membrane, so that cells have an equal chance of 

partitioning into each micropore during filtration. With exceptional performance of 

concentrating cells from the water sample, the random distribution assumption is still 

fulfilled for valid downstream digital analysis.  
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Figure 2.9  Simulation and experiments for the capture and partition of bacteria. (a) Numerical 

simulation of fluidic flow profile inside the filter when asymmetric membrane present. (b) Simulated 

flow rate at each x position of the asymmetric membrane. Each peak represents the flow rate through

one micropore. (c) Simulated number of particles at each x-position range across the asymmetric 

membrane. Adapted from Lin et al. 
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2.3.3 Simulation methods 

We performed finite element modeling using COMSOL Multiphysics® (COMSOL 

Multiphysics, 2015). The fluid regime above the asymmetric membrane was modeled to 

resemble the geometry inside the membrane fitter used in the experiments. A cylindrical fluid 

regime connected to the outlet was below the asymmetric membrane. The asymmetric 

membrane was modeled as two layers of fluid separator, each with a thickness of 25 µm and 

a diameter of 13 mm. The micropores in the upper layer are 25 µm diameter, with the center-

to-center distance at 225 µm. For the bottom membrane layer, the nanochannels are 400 nm 

in diameter with the center-to-center distance at 2 µm. The fluid was simulated with 

properties of water, with a density of 1 × 103 kg⸱m−3, and a dynamic viscosity μ of 1 × 10−3 

Pa⸱s. The inlet fluid was set as a normal flow with a velocity of 0.0318 m/s, which was 

approximately calculated by the experimental rate of fluid injection via syringe.  

The laminar flow module was used first to solve the steady-state Navier–Stokes 

equations. Under the calculated flow field throughout the modeled fluid regime containing 

the membrane, the time-dependent particle movement along the fluid was simulated using 

the particle tracing under fluid flow module. To qualitatively determine if the cells can be 

uniformly distributed into the micropores, thousands of particles were set to be released from 

the inlet, and their trajectories were calculated. The movement of the particles was dominated 

by the drag force exerted by the fluid flow. The particles were set to freeze upon contacting 

the walls inside the millipores, so that the distribution pattern of all the particles could be 

assessed by the final x-position. The particle diameter was set to 1.1 µm, and the density was 

set to 1100 kg/m3, based on the properties of E. coli (Martinez-Salas et al., 1981).  
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C h a p t e r  3  

CHAPTER 3: A HYDROGEL BEAD-BASED PLATFORM 
FOR LINKING SINGLE-CELL PHENOTYPIC ANALYSIS 

AND DIGITAL MOLECULAR DETECTION 

Zhu, Y., Li, J., Lin, X., Huang, X., and Hoffmann, M.R. (2019). A hydrogel beads based 

platform for single-cell phenotypic analysis and digital molecular detection. bioRxiv: 

848168. https://doi.org/10.1101/848168  (A revised version is submitted for journal 

publication.) 

3.1 Abstract 

Cell heterogeneity such as antibiotic heteroresistance and cancer cell heterogeneity 

has been increasingly observed. To probe the underlying molecular mechanisms in the 

dynamically changing heterogeneous cells, high throughput platform is urgently needed to 

establish single cell genotype-phenotype correlations. Herein, we report on the development 

of an analytical platform that combines single-cell viability phenotypic analysis with digital 

molecular detection for bacterial cells. The platform utilizes biocompatible polyethylene 

glycol hydrogel beads (Gelbeads) produced by a novel disposable droplet generation device. 

Gelbead-based single cell viability and molecular detection assays were established. 

Enhanced thermal stability and uncompromised efficiency were achieved in digital 

polymerase chain reaction (PCR) and digital loop-mediated isothermal amplification. The 

reagent exchange for in situ PCR following viability phenotypic analysis was demonstrated. 

The combined analyses may address the genotypic differences between cellular 

subpopulations exhibiting distinct phenotypes. The platform promises new perspectives in 

mechanism elucidation of environment-evolution interaction, and might be extended to other 

cell types for medical research.   
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3.2 Introduction 

Microfluidic single cell techniques have enabled observations of rare genotypes or 

phenotypes within a cell population and thus ubiquitous cell heterogeneity (Buenrostro et al., 

2015; Cheow et al., 2016; F. J. Lyu et al., 2018). The phenotypic diversity exhibited by 

supposedly genetically identical cells boosts the population adaptability under selection 

pressures, and thus raises concerns in fields spanning from clinical practice to medical 

research on infectious diseases and cancers, etc. (Ben-David et al., 2018; Claudi et al., 2014) 

For example, less susceptible pathogenic bacterial subpopulations originally consist 10-2 to 

10-6 of the overall population that can be amplified during antibiotic exposure. The 

subsequent increase in the resistant subpopulation may eventually lead to the failure of an 

antibiotic treatment (Andersson et al., 2019). Hypotheses for the underlying molecular 

mechanisms involving the stochasticity of genetic mutation, gene expression, and protein 

regulation (Avery, 2006; Ben-David et al., 2018; Nicoloff et al., 2019), however, remain hard 

to test in dynamically changing cell subpopulations, partly due to the absence of an 

appropriate single cell experimental technique (Takhaveev & Heinemann, 2018). The need 

to better understand cell heterogeneity motivates the development of new techniques that 

link the single-cell viability phenotype with its in situ molecular information. 

As an emerging class of technologies, water-in-oil droplet-based microfluidic 

platforms have been well developed for high-throughput phenotypic and molecular analyses 

at single cell or single molecule resolution (F. Lyu et al., 2018; F. J. Lyu et al., 2018; Ottesen 

et al., 2006). Nonetheless, due to the rare and transient nature of cell heterogeneity events, 

population-averaged molecular analyses would most likely fail to directly explain the 

characterized phenotypes, even if all analyses are conducted at single cell or molecular 

resolution (Andersson et al., 2019; Marusyk et al., 2012). Meanwhile, incorporating a 

crosslinked hydrogel network into the aqueous phase theoretically provides a droplet-based 

platform with additional robustness by allowing reagent exchange (Li et al., 2018). This 

strategy, therefore, has been explored for a range of hydrogel materials and crosslinking 

chemistry, including cooling-induced formation of agarose beads for digital droplet 
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polymerase chain reaction (ddPCR) (Zhu et al., 2012), ionic crosslinking of 

alginate beads for cell encapsulation and DNA extraction (Tan & Takeuchi, 2007; Zimny et 

al., 2018), and UV-initiated polyethylene glycol (PEG) beads for cell encapsulation (Young 

et al., 2012). Such platforms have demonstrated to be effective in either phenotyping or 

molecular analysis, while the material and/or initiation method would be intrinsically 

incompatible with the combination of both. For example, temperature manipulation or UV 

radiation might affect the phenotype and genotype of encapsulated cells (Ikehata & Ono, 

2011), and alginate is a well-known PCR inhibitor (Wadowsky et al., 1994). PEG crosslinked 

by a thiol-Michael addition reaction between the bioinert acrylate and thiol groups has been 

attempted in bulk analyses and is among the most promising solutions (Huang et al., 2018; 

Xu et al., 2016), but it is yet to be developed for our specific purpose. The main obstacle may 

lie in the fast and spontaneous gelation, which would be detrimental to traditional expensive 

microfluidic droplet generation approaches. 

Herein, we report a novel PEG hydrogel bead-based platform for linking single-cell 

phenotypic analysis and in situ molecular detection (Figure 3.1a-b). To solve the challenge 

posed by the fast thiol-Michael addition gelation chemistry, we developed a disposable 

centrifugal device for droplet generation (Figure 3.1c). With generated droplets further 

spontaneously crosslinked into PEG hydrogel beads (Gelbeads), we established single cell 

encapsulation and effective viability phenotyping within 4 hours for the tested bacteria. 

Gelbead-based assays were also developed for nucleic acid amplification detections, 

including PCR and loop-mediated isothermal amplification (LAMP). Compared to droplet 

digital PCR and LAMP (ddPCR and ddLAMP), Gelbead-based digital PCR and LAMP 

(gdPCR and gdLAMP) exhibited enhanced thermal stabilities and uncompromised 

amplification efficiencies. Phase transfer and reagent infusion for in situ PCR following 

Gelbead-based viability phenotyping were successfully conducted. The Gelbead platform 

reported here has the potential to extend to study of other types of cells and promises 

unprecedented capabilities for investigation of cell heterogeneity, and thus will be of broad 

interest to many fundamental biological research fields. 
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Figure 3.1  Schematic of this study. A hydrogel bead (Gelbeads)-based cell analysis platform was 

developed for (a) single-cell phenotypic analysis and (b) digital molecular detection including PCR and 

LAMP. The compartmentalization was realized by (c) a disposable centrifugal droplet generation 

device. The dashed-line arrow indicates that the immediate potential of linking cell phenotype with in 

situ DNA/RNA characterization at single-cell resolution. 
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3.3 Results 

3.3.1 Development of the disposable droplet generation device 

Microfluidic-based droplet generation methods generally require special fabrication 

facilities to fabricate sub-100 µm channels and involve complicated operations, such as 

syringe pump-driven T-junctions fabricated by photolithography and centrifugally driven 

labs-on-a-disc fabricated by micro milling and hot embossing (Schuler et al., 2015; Tan et 

al., 2006). These traditional methods are not compatible with the Gelbead generation due to 

fast clogging imposed by the thiol-Michael addition chemistry. The bulk PEG crosslinking 

experiments showed that the time frame for droplet generation before gelation was as short 

as 8.5 min with the chosen hydrogel concentration at 7.5 w/v% (Supplementary Note 3.7.1, 
Table 3.1).  In order to easily generate Gelbeads within minutes without clogging the 

expensive microfluidic equipment, we designed a disposable device using affordable 

commercial components (Figure 3.2a). The device utilized a dispensing blunt needle with a 

bent tip. The bent-tipped needle was then set into a 1.5-mL microcentrifuge tube with oil to 

establish the physics for centrifugal droplet generation. With centrifugal acceleration, the 

aqueous phase is forced into the fluorinated oil phase by the elevated pressure difference 

between the reservoir surface and the narrow inlet. The fluorinated oil phase with a higher 

density pinches off the aqueous droplets, which then float to the air-oil interface. Ten needles 

were randomly selected after droplet generation, and the length of the bent tip was measured 

to be 1.8±0.1 mm, indicating that this manual fabrication could actually be fairly consistent.   

Standard 20 µL LAMP mix with unquenched calcein was dispersed in fluorinated oil 

(see methods) and characterized using a fluorescence microscope to study the droplet 

generation performance of the device (Figure 3.2b). The average droplet size was tunable 

from 99 µm to 334 µm and the coefficient of variance (CV) was minimized to 5%, by varying 

the oil phase volume, centrifugal acceleration, and the needle gauge as shown in Figure 3.2c-
f. Smaller droplets with slightly larger size distribution (Figure 3.2e) were produced by 

increasing the centrifugal acceleration, which provided a greater pressure difference to drive 
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the aqueous phase inflow. The larger CV in Figure 3.2e was likely due to the unstable flow 

during initial acceleration, which can be alleviated by adding more oil (Figure 3.2c) to 

reduce the oil phase height variation and limit the amount of aqueous phase inlet during 

acceleration. Among all tested conditions, the optimal CV was  found to be a combination 

of 34 Ga needles, 80 µL oil phase, and 150 g centrifugation run for 5 min and droplets were 

produced at an average diameter of 175 µm in 5 min with minor trial-to-trial difference, 

which was found to be comparable to other microfluidic methods such as centrifugal lab-on-

Figure 3.2  Development and evaluation of disposable microfluidics for centrifugal droplet generation.

(a) The device setup consisting of a 1.5-mL microcentrifuge tube holding the oil phase and a needle 

with bent tip holding the aqueous reaction mixture in the Luer-lock. (b) A representative fluorescence 

microscope image of generated droplets extracted into a viewing chamber. The two large bright circles 

are ports on the viewing chamber for liquid loading Scale bar, 1 mm. (c-f) Mean droplet size (black 

circles) and CV (blue circles) of droplets produced under varying parameters including (c) oil phase 

volume, (d) needle inner diameter, (e) centrifugal acceleration, and (f) oil volume added to the Luer-

lock. Error bars represent standard deviation from independent triplicates. 
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a-disk (Schuler et al., 2015) and polymer-tube micronozzles (Supplementary 
Note 3.7.2) (Haeberle et al., 2008). The average diameter of 175 µm is a reasonable size for 

this study, as droplets of 100 to 200 µm diameters are commonly used for cell analysis 

(Brouzes et al., 2009; Schuler et al., 2015). For droplets with this size, each standard 20 µL 

reaction could theoretically produce ~104 droplets. Based on this calculated 

compartmentalization, the dynamic range is theoretically from 0.5 to 3×103 target copies or 

cells per µL, and the detection limit is 0.1 copies or cells per µL (Kreutz et al., 2011). It 

should be noted that the bent needle tip, the viscosity of water phase, and the volume of water 

phase may also affect the droplet size generated from this device. The application of this 

device thus may need optimization for new aqueous and oil phase recipes.  
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3.3.2 Gelbead generation and thermal stability characterization 

The Gelbead and droplet generation performance were assessed using various 

reaction matrices including culture media, PCR mix, and LAMP mix, under the optimized 

condition reported in the previous section (Figure 3.3a). The average diameter of generated 

Gelbeads was found to range from 145 µm to 217 µm with a CV from 3.6 % to 7.6 %. The 

observed variations were likely due to viscosity differences and interfacial property changes 

in different reaction matrices. It should be noted that the culture media alone was not able to 

be sustained as droplets or Gelbeads in the fluorinated oil by 5% FluoroSurfactant. Bovine 

serum albumin (BSA), a protein commonly used as an additive to protect essential molecules 

(fatty acids, amino acids, etc.) in culture media (Francis, 2010), was added to the aqueous 

phase as an additional surfactant to modify interfacial properties and thus prevent the droplet 

merging. For the PCR reaction matrix, the generated Gelbeads had a larger CV than droplets. 

We assume that the presence of PEG hydrogel may have disturbed the surfactant-stabilized 

aqueous-oil interface, by inducing interfacial adsorption of additional charged species such 

as thiolate, magnesium ions, etc. In summary, the observed sizes and CVs of droplets and 

Gelbeads were considered acceptable for our assays. In general, this generation device fulfills 

the requirements for Gelbead generation. The simple generation device may be used for 

applications for which a simple yet powerful compartmentalization method is needed. 

The effect of PEG crosslinking on stabilizing the aqueous-in-oil compartments was 

evaluated. Thermodynamic instability of water-in-oil droplets may impair the reliability of 

amplification processes such as PCR and LAMP that require extensive heating (Schuler et 

al., 2016). Heating accelerates droplet merging and evaporation, which would affect the 

fluorescence reading by modifying concentrations of targets and reagents (e.g., salts and 

fluorescent dyes). In this context, the compartmental heat stability manifests through the 

dispersion of droplet/Gelbead sizes before and after heating. The sizes were investigated for 

droplets and Gelbeads before and after common heating protocols respectively for PCR and 

LAMP (see methods, Figure 3.3b). Compared to those before heating, droplets that had 

undergone PCR and LAMP heating increased in their CVs by 6.2% and 3.5%, respectively. 
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Figure 3.3  Size characterization of droplets and Gelbeads. The size distribution of droplets and 

Gelbeads (a) generated in reaction matrices including PCR mix, LAMP mix, and culture media mix,

and (b) before and after heating program designated for PCR and LAMP. The line inside each box

represents the mean diameter; the lower and upper edges of each box respectively represent 25% and

75% percentiles; the vertical bars below and above each box respectively indicate 90th and 10th

percentiles. The lower and upper red dots stand for outliers, which are points located outside the

whiskers. 
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In addition, the heating resulted in a noticeably larger population with both larger 

and smaller outlier sizes implying that extensive merging and evaporation had occurred. 

Following the same heating protocol as for the droplets, the Gelbeads exhibited much less of 

a change in size distribution (CV increased by 1.9% for PCR and 1.6% for LAMP). However, 

the average Gelbead diameter decreased slightly. These results indicate that the stabilization 

effect achieved by crosslinked PEG was mainly by preventing merging of compartments, 

and lessen the extent of aqueous evaporation. The effect of mild aqueous evaporation in 

Gelbeads can be compensated by optimization of assay recipes. Gelbeads used for the LAMP 

procedure had a more significant improvement in thermal stability due to PEG crosslinking 

than for the PCR procedure. We assume that, in the case of the PCR recipe, the combination 

of SuperMix and the oil phase from BioRad were chemically well-optimized for interfacial 

stability, leaving limited room for improvement. This result therefore indicates that, other 

than modifying the surfactant composition or increasing surfactant concentration, hydrogel 

crosslinking could be an alternative strategy for maintaining the emulsion. Our results 

demonstrate that Gelbeads are a reliable platform for standalone heated digital analysis in 

terms of enhanced individual compartment integrity.  
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3.3.3 Gelbeads for cell viability phenotyping  

To obtain the optimal single cell encapsulation efficiency, we first characterized the 

distribution of cells in Gelbeads using Salmonella Typhimurium with green fluorescent 

protein (S. Typhimurium GFP). The cells were diluted to an average of 1 cell per Gelbead 

for counting the number of cells in each Gelbead (Figure 3.4b). At this cell concentration, 

theoretically, 34% of the compartments were occupied by single cells, which was the 

maximum following a Poisson distribution, 29% of the compartments encapsulated more 

than 1 cell, and 37% of the compartments contained no cells. As shown in Figure 3.4a, the 

observed number of encapsulated cells was close to the theoretical distribution. The number 

of Gelbeads containing high cell numbers was slightly less than predicted, possibly because 

some cells were located out of focus when imaged in spherical compartments at a high 

microscope objective. Since high throughput detection of stained cells within spherical 

compartment droplets or Gelbeads was challenging for fluorescence microscope imaging, 

we then employed cell metabolism indicator dye in Gelbead viability phenotyping 

experiments.  

Gelbead-based viability phenotyping performance was investigated by co-incubation 

of alamarBlue and S. Typhi in the culture media. As a resazurin-based dye used in bulk 

phenotyping assays of a wide range of cell lines, alamarBlue can be reduced by actively 

metabolizing cells into resorufin, whose bright red fluorescence can stain the whole 

compartment for visualization (Xu et al., 2015). The fluorescence of Gelbeads was monitored 

during the incubation for up to 4 hrs (Figure 3.4d-h). It was observed that Gelbeads appeared 

to be much brighter than the droplets were before incubation (Figure 3.7); this was possibly 

due to additional reduction of resazurin by thiol group (Neufeld et al., 2018). We suppose 

that the interference by thiol groups would not affect the phenotyping results since the 

monomers were rigorously mixed and evenly distributed into Gelbeads. Gelbeads containing 

live cells would exhibit even brighter fluorescence in the presence of sufficient AlamarBlue.  
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Figure 3.4  Single cell encapsulation validation and viability phenotyping performance in Gelbeads. (a) 

Number of cells encapsulated in each Gelbead counted and represented by occurrence frequency. The 

dashed lines represent theoretical values based on Poisson distribution. (b) Example fluorescence image 

of encapsulated S. Typhimurium GFP cells (circled) for counting. Scale bar, 100 μm. (c) The observed 

fraction of bright Gelbeads with varying incubation time, with the dashed line representing 63% as

Poisson distribution predicted based on the input cell concentration. Error bars represent standard

deviation from independent triplicates. (d-h) Example images of Gelbeads containing S. typhi at the 

same input concentration incubated for 0, 2, 3, 4, 5 hrs. Scale bars, 500 μm. 



 

 

71

The quantitative performance of viability phenotyping with Gelbeads was 

assessed by analysis of observed fractions of bright fluorescent Gelbeads (see methods and 

Figure 3.8 for thresholding) compared to the theoretical value, as shown in Figure 3.4c. 

According to theoretical estimation, 63% of Gelbeads were supposed to contain greater than 

or equal to 1 cell and thus to be bright. The observed positive fraction of 62.0±1.5% after 4 

hours of incubation matched well with the theoretical value of 63%. It was also noticed that, 

after 3 hours of incubation, the positive Gelbead fraction was 36.4±8.1%, which corresponds 

well with the theoretical fraction of Gelbeads (26%) encapsulating more than 1 cell. Based 

on the linear response of alamarBlue to the number of cells within the compartment 

(Shemesh et al., 2014),  our results reasonably indicate that effective single cell phenotyping 

in Gelbeads is achievable within 4 hrs. However, 5 hr incubation lead to overly bright 

fluorescence and 92.9±2.7% bright Gelbeads, which was likely attributed to excessive 

incubation and the diffusion of metabolized fluorescent resorufin across the aqueous-oil 

interfacial barrier. This observation indicates that the optimization of incubation time is a 

race between cross-talking and cell proliferation. Considering the intrinsic difference in 

proliferation rate between bacterial species, the observed incubation time for distinction of 

positive and negative compartments was comparable to the results by Lyu et al., who 

achieved Escherichia coli (E. coli) phenotyping with alamarBlue in 85 pL droplets with a 2 

hr incubation.  

In summary, Gelbeads synthesized in this study could act as a platform for 

characterizing phenotypic cell heterogeneity if co-encapsulated with antibiotics or drugs. The 

cell viability detection strategy demonstrated with Gelbeads has been proven to apply well 

to a wide range of cells in bulk assays and droplet microfluidics (F. J. Lyu et al., 2018; 

Shemesh et al., 2014; Xu et al., 2015). We note that here the single cell encapsulated 

Gelbeads were at the highest yield under Poisson distribution so that they theoretically 

comprised the majority (59%) of the bright Gelbeads in the current set up. The input cell 

concentration can be diluted to increase the single cell encapsulation among positive 

Gelbeads to above 99% (Collins et al., 2015), or the single cell encapsulated Gelbeads could 
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potentially be sorted out through on-chip imaging of the Gelbeads to count the 

fluorescence labeled cells (Cao et al., 2013). 

3.3.4 Gelbead digital PCR (gdPCR) 

To establish a reliable gdPCR assay, we investigated the amplification efficiency of 

gdPCR compared to digital PCR performed in droplets generated from a commercial recipe 

(represented as ddPCR, hereinafter) with DNA extracted from cultured Salmonella Typhi (S. 

Typhi). Previous use of hydrogels and PCR utilized polyacrylamide in the form of either a 

bulk phase hydrogel membrane as a quasi-digital PCR platform (Mitra & Church, 1999) or 

using hydrogel beads as a substrate for surface coating of primers (Spencer et al., 2016; 

Zilionis et al., 2017), which is an approach different from our concept. To the best of our 

knowledge, performing PCR inside crosslinked hydrogel beads has not been reported to date. 

Even in bulk membrane form, only 80% amplification efficiency was observed, which may 

be partially attributed to template damage by free radicals as suggested (Mitra & Church, 

1999). In this study, a similar drop in amplification efficiency was observed in the Gelbeads 

compared to that in droplets (Figure 3.5a), even though the Michael addition chemistry 

between acrylate and thiol used in this study does not involve free radical formation. In this 

case, the crosslinked hydrogel network may be responsible for the observed inhibition by 

limiting the diffusion of functional components such as ions, nucleic acids, and proteins, 

where the extent of the limitation relates to the size and charge of the component (Weber et 

al., 2009; Wu et al., 2009).  

From effective diffusivity modeling (Figure 3.9), we reasoned that the most affected 

functional component might be DNA polymerase, which is the relatively large protein (~6 

nm) responsible for building amplicons. For a fixed template concentration of 200 copies/µL 

estimated by ddPCR, gdPCR assay performance was assessed with additional OneTaq 

polymerase supplied at varying concentrations of 0.025, 0.05, 0.1, 0.2 Units per reaction, as 

shown in Figure 3.5a. Results showed that an additional 0.025 Unit per reaction, 5% of the 

recommended OneTaq polymerase concentration per reaction, boosted the amplification 
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efficiency the most. OneTaq polymerase concentrations supplied more or less than 

that showed inhibition to amplification efficiency, and gdPCR assay with additional 0.2 Unit 

per reaction was shown to be completely inhibited. We speculate that the observed trend was 

mainly due to the commercial SuperMix buffer conditions not optimized for the supplied 

OneTaq polymerase. While some additional polymerase compensated the reduced diffusivity 

of the SuperMix polymerase in hydrogel, the excess additional OneTaq polymerase might 

scavenge the essential ions for the original polymerase from SuperMix leading to 

amplification failure.  

With the optimized additional polymerase, gdPCR assays for serially diluted DNA 

with concentrations ranging from 2.5 to 600 copies/µL were then performed; typical images 

are shown in Figure 3.5c-h (Supplementary Note 3.7.3). The image analysis results 

demonstrated that the amplification efficiency of gdPCR was comparable (k = 0.98 ± 0.02, 

R2 = 0.9979) to that of ddPCR with the recipe adjustment (Figure 3.5b). The quantification 

results also correlated well with input DNA concentration (Figure 3.10a). It should be noted 

that the crosslinking inhibition effect eliminated in this case was for a 131 bp target gene 

(Tran et al., 2010), a typical size for detection of specific bacteria. Further optimization in 

polymerase or Supermix concentration would be required for other applications if a larger 

DNA fragment is targeted.  
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Figure 3.5  Optimization and performance of gdPCR. (a) The concentration estimations of gdPCR 

assays for a fixed input S. Typhi DNA concentration (200 copies/μL) with varying concentrations of

additional polymerase. The green dashed line and the green area represent mean concentration

estimation with standard deviation of ddPCR assays from independent triplicates. (b) With the 

optimized additional polymerase concentration (0.025 Units per reaction), the correlation between

gdPCR and ddPCR estimation for serial diluted target templates. Error bars represent standard

deviations from independent triplicates. (c-h) Example gdPCR fluorescent images for no DNA input, 

and with 24000, 1500, 600, 300, 100 times dilution of harvested S. Typhi DNA. Scale bars, 500 μm.
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3.3.5 Gelbeads digital LAMP (gdLAMP) 

Gelbead-based molecular analysis with LAMP was also investigated. LAMP has 

been an attractive emerging platform for molecular detection since it eliminates the need for 

thermocycling by utilizing a combination of 4 or 6 primers to achieve fast and specific 

detection (Notomi et al., 2000). The heating protocol of LAMP was fairly mild, however, 

severe Gelbead aggregation occurred for samples with target DNA but not for no-template 

controls (Figure 3.11) in preliminary experiments. This was supposedly due to the fact that 

LAMP produces a much larger amount of amplification products than PCR (Notomi et al., 

2000).The negatively charged amplified DNA may have affected interfacial tension when 

adsorbed to the interface. Aggregated Gelbeads showed apparent crosstalking, which 

rendered the assay invalid since the compartment independence assumption required for 

Poisson statistics was contradicted. The problem was relieved by adding 1.5 mg/mL BSA, a 

common real-time PCR additive, to prevent surface adsorption. However, it was still 

observed that positive Gelbeads tended to stick next to each other (Figure 3.6a). The 

observed radiative patterns in Gelbeads manifested the differential diffusivity of 

amplification products of varying size in crosslinked hydrogel network. A similar radiative 

pattern was observed by Huang et al. in LAMP performed in a hydrogel membrane (Huang 

et al., 2018). In our case, neither of the two radiative centers were at the connected interface, 

indicating that the stickiness may not have led to false positive Gelbeads within the time 

frame tested. The connection of positive Gelbeads was most likely the result of a change in 

interfacial tension caused by large amount of the negatively charged DNA produced during 

amplification. Further crosslinking breaking through the oil barrier would only occur when 

the positive Gelbeads encounter each other. In summary, the connected interface should not 

affect the quantification results.  
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Figure 3.6  Performance of gdLAMP. (a) Connection of two positive Gelbeads after the gdLAMP

assay. Scale bar, 100 μm. (b) The correlation between concentration estimations of gdLAMP and

ddLAMP assays for serial diluted target templates. Error bars represent standard deviation from

independent triplicates. (c-h) Example gdLAMP fluorescent images for no DNA input, and with 200,

100, 50, 20, 5 times dilution of harvested S. Typhi DNA. The two large bright circles on each image 

are ports on the viewing chamber for liquid loading. Scale bars, 1 mm.  
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The gdLAMP quantifications for no-template control and serial diluted S. 

Typhi DNA ranging from 300 to 1.2 × 104 copies/µL were then verified. Example images 

are shown in Figure 3.6c-h. The image analysis results demonstrated that the amplification 

efficiency of gdLAMP was similar (k = 1.01 ± 0.01, R2 = 0.9996) to that of ddLAMP (Figure 
3.6b). However, both ddLAMP and gdLAMP gave concentration estimations lower than 

input DNA concentration (Figure 3.10b). Further increases in the amplification efficiency 

would likely require an improved primer design, which is out of the scope of this study. In 

summary, the results confirmed our hypothesis that the stickiness of positive Gelbeads do 

not considerably affect gdLAMP quantification, and demonstrated that the hydrogel network 

had a negligible inhibition effect on the digital LAMP assays that were performed. 

3.3.6 Reagent exchange for in situ PCR following viability phenotyping 

With reagent exchange enabled by the crosslinked network of hydrogel, our Gelbead-

based platform has the immediate potential to link phenotyping and in situ molecular 

detection for single cells. Here we develop the reagent exchange protocol to demonstrate the 

feasibility to combine Gelbead-based S. Typhi viability phenotyping and in situ PCR for S. 

Typhi-specific STY0201 gene using assays established in previous sections. The key to 

linking the analyses lies in the effective phase transfer and reagent infusion. After single cell 

phenotyping (Figure 3.12a), successful phase transfer was conducted (Figure 3.12b-h) with 

little loss of Gelbeads and minimal emulsified aqueous reagent leftover. The challenge posed 

by the possibly denser interfacial hydrogel network, which might have hindered the inward 

diffusion of essential PCR macromolecules, was overcome by a freeze-thaw treatment 

(Supplementary Note 3.7.4). Resuspended Gelbeads remained intact after subsequent PCR 

and allowed for fluorescence analysis (Figure 3.12i). The fluorescence intensity profiles for 

randomly analyzed 5 positive and 5 negative Gelbeads were statistically distinguishable, with 

40% significant difference (p < 0.001, one-way ANOVA) in mean fluorescence intensity 

(Figure 3.13, Supplementary Note 3.7.5). The results suggest that, after phase transfer 

protocol, the PCR reagents were successfully infused into Gelbeads for target amplification 

to proceed inside. It is thus feasible to combine single cell phenotype-genotype analysis using 
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our developed platform. However, to generate new knowledge and deepen our 

phenotype-genotype understanding such as probing the correlation of an antibiotic-resistant 

phenotype and the presence or absence of a gene that might be essential to resistance, bead 

sorting that separates varying phenotypes prior to molecular analysis would be indispensable.  

3.4 Discussion 

The developed Gelbeads platform promises a robust analysis tool that could 

potentially link single-cell phenotypic analysis with in situ molecular detection. Besides the 

advantages presented, we acknowledge the following limitations. First, the dynamic range in 

our study was restricted by the size of the compartments generated by our device. Further 

reductions in size would result in larger size variations, and the surfactant might have to be 

changed or adjusted if higher uniformity is required. Second, given the use of fluorescence 

microscopic imaging of the compartments inside a viewing chamber, the Gelbead imaging 

approach employed could probe only a limited viewing area, and the resolution could be 

affected by the focus. The fluorescence characterization may be further improved by 

interrogating single Gelbead with fluorescence-activated bead sorter or in double emulsion 

with flow cytometry.  

In this work, a disposable centrifugal device was developed for Gelbead generation 

using highly biocompatible PEG monomers spontaneously crosslinked with no free-radical, 

UV-induced or heat-induced initiation. Our design allows for easy adoption of droplet 

microfluidics without expensive and complicated equipment, which could be useful for 

applications other than Gelbeads generation. In addition to single cell phenotyping, the 

Gelbeads showed enhanced thermal stability coupled with high amplification efficiency for 

dPCR and dLAMP. Widely available qPCR and LAMP assays can therefore be easily 

transferred into digital assays by this Gelbead approach. The unique structural stability of the 

hydrogel network allows for easy manipulation of the Gelbeads that may have many 

possibilities for other upstream and downstream analyses. The reagent exchange protocol 

was developed for in situ PCR following Gelbead single cell viability phenotyping to 
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demonstrate the feasibility of combining multiple analyses with Gelbeads. The 

Gelbead platform will be further developed for fluorescence-based Gelbead sorting and 

downstream sequencing, etc. Since the cells are encapsulated into individual compartments, 

the viability phenotype can be observed independent of intercellular collaboration, which is 

common for bacterial cells under pressure (Lee et al., 2010; Yurtsev et al., 2016). After the 

Gelbeads containing cells of similar phenotype are sorted together, the differential genotypic 

trait may then be directly analyzed in situ with high throughput. We envision that the 

potential of our Gelbeads platform in generating genetic and gene expression data with 

phenotyped single cells will help narrow the genotype-phenotype knowledge gap, and thus 

offer exciting new insights in cell heterogeneity studies. 

3.5 Materials and methods 

3.5.1 PEG crosslinking and characterizations 

PEG hydrogel monomers included 4-arm PEG-acrylate [molecular weight (MW) of 

10 000, Laysan Bio, Arab, AL, USA] and thiol-PEG-thiol (MW of 3400; Laysan Bio), with 

acrylate and thiol mixed at a molar ratio of 1:1 for crosslinking. For sol-gel transition time 

characterization, 7.5 w/v% and 10 w/v% PEG hydrogel were respectively tested in PCR mix, 

LAMP mix, and culture media mix. PEG monomers were weighed to make 10× monomer 

solutions for PEG-acrylate and PEG-thiol separately. The weighed monomers were then 

dissolved either in water (Molecular Biology Grade Water™, Corning, Acton, MA, USA) 

for PCR and LAMP mix, or in TSB (BD™ Bacto™ Tryptic Soy Broth, Becton Dickinson 

and Company, Franklin Lakes, NJ, USA) for culture media mix. In addition to 2 µL of each 

10× PEG monomer solution, for each 20 µL reaction mix, PCR mix contained 10 µL 

ddPCR™ Supermix for Probes (BioRad, Hercules, CA, USA) and 6 µL water; LAMP mix 

contained 10 µL 2×WarmStart® LAMP Mastermix (New England Biolabs, Ipswich, MA, 

USA) and 6 µL water; culture media mix contained 16 µL TSB. The reaction mix was briefly 

vortexed. The sol-gel transition was considered to have started when lifting the pipette tip 
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could draw filaments out of the reaction mix, and the transition was considered to 

have ended when the reaction mix formed a gelatinous lump. 

3.5.2 Development of the disposable droplet generation device  

Each droplet generation device consisted of a 1.5 mL DNA LoBind tube (Eppendorf, 

Hamburg, Germany) and a blunt tip dispensing needle (LAOMA Amazon, Seattle, WA, 

USA) with the tip bent by a tweezer (VWR, Radnor, PA, USA). The tweezer and the needles 

were autoclaved (2540EP, Heidolph Brinkmann, Schwabach, Germany) prior to use. The oil 

phase was added to the bottom of the microcentrifuge tube, and the aqueous reaction mix 

was added to the Luer-lock of the needle. The device was then centrifuged (Centrifuge 

5430R, Eppendorf) for 5 min. For optimization of droplet generation, fluorinated oil (HFE-

7500 3M® Novec® Engineering Fluid, 3M, Maplewood, MN, USA) supplied with 5% 

FluoroSurfactant (RAN Biotechnologies, Beverly, MA, USA) was added into the oil phase. 

The 20-µL aqueous phase contained 1×WarmStart® LAMP Mastermix and 50 μM calcein 

(Sigma-Aldrich, St. Louis, MO, USA). Four parameters including oil phase volume, needle 

inner diameter, centrifugal acceleration and oil volume added to the Luer-lock were 

investigated. Specific variables in details were as follows: 1) the oil phase volume of 40, 60, 

80, and 100 µL, respectively, at the bottom of the tube in  34 Ga needles under 250 g 

centrifugation; 2) needles of 30, 32, and 34 Ga (corresponding to an inner diameter of around 

160, 110, and 80 µm) under the condition of 250 g centrifugation and 80 µL oil phase 

volume; 3) the centrifugal accelerations of 50, 150, 250, 500, 1000 g with 34 Ga needles and 

80 µL oil phase; 4) additional oil phase added into the Luer-lock of 0, 10, and 20 µL in  34 

Ga needles under 250 g centrifugation with 80 µL oil phase. Ten needles that generated 

droplets were randomly selected to measure the length of the bent tip by a ruler. 

3.5.3 Gelbead generation and thermal stability characterization  

In all the following experiments, the device configuration was fixed with 34 Ga 

needles, 80 µL oil phase, no additional oil at the Luer-lock, and 150 g centrifugation run for 

5 min. The droplet and Gelbead generation using the described device was respectively 
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characterized with PCR mix, LAMP mix, and culture media mix. In each 20 µL 

reaction, the PCR mix contained 1× ddPCR™ Supermix and 50 μM calcein; the LAMP mix 

contained 1×WarmStart® LAMP Mastermix, and 50 μM calcein; the culture media mix was 

TSB with 1 mg/mL BSA (New England Biolabs®) and 50 μM calcein. The mix was briefly 

pipette-mixed. The reaction mix for Gelbead generation contained 7.5 w/v% PEG hydrogel, 

added as 10× PEG monomers. For dispersion of PCR mix as droplets and Gelbeads, Droplet 

Generation Oil for Probes (BioRad) was used instead of fluorinated oil with 5% 

FluoroSurfactant.  

For thermal stability characterizations, generated droplets or Gelbeads were extracted 

into PCR tubes (0.2 mL individual PCR tubes, BioRad) and incubated in a thermal cycler 

(T100, BioRad). The thermocycling protocol for PCR included 10 min of initiation at 95 °C, 

followed by 40 cycles of denaturation at 94 °C for 30 s, annealing at 52 °C for 60 s, and 

extension at 65 °C for 30 s. For LAMP heating, droplets or Gelbeads were incubated at 65 

°C for 1 hour.  

3.5.4 Bacterial cell culture and DNA preparation 

Salmonella Typhi (S. Typhi, CVD 909), obtained from American Type Culture 

Collection (ATCC, Manassas, VA, USA), was employed as the model strain. S. Typhi was 

cultivated in TSB supplied with 1 mg/L of 2,3-dihydroxybenzoate (DHB, Sigma-Aldrich) in 

an incubator (Innova® 42, New Brunswick Scientific, Edison, NJ, USA) shaking at 200 rpm 

at 35 °C for 14-16 hours. The concentration of cultivated cells was estimated by OD 600 

(NanoDrop™ 2000c Spectrophotometer, Thermo Scientific™, Barrington, IL, USA). DNA 

was harvested using PureLink® Genomic DNA Mini Kits (Fisher Scientific, Waltham, MA, 

USA) following the manufacturer’s instructions. For the single cell encapsulation test, 

Salmonella Typhimurium GFP (ATCC 14028GFP) was cultivated in nutrient broth (Difco™ 

23400, Becton Dickinson and Company) supplied with 100 mcg/ml Ampicillin (Sigma-

Aldrich) in an incubator shaking at 200 rpm at 37 °C for 14-16 hours. The cell concentration 
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was estimated by counting under a fluorescence microscope (Leica DMi8, 

Wetzlar, Germany). 

3.5.5 Gelbeads for cell viability phenotyping 

For the single cell encapsulation efficiency test, the cultivated Salmonella 

Typhimurium GFP (S. Typhimurium GFP) was diluted 600 times for Gelbeads generation. 

The dilution factor was estimated from prior knowledge of harvested cell concentration and 

Gelbead volume. The number of cells encapsulated in each Gelbead was analyzed by 

fluorescence microscope imaging with a 20× objective. 79 Gelbeads were analyzed from 15 

fluorescent images. For phenotyping experiments, 1mL of overnight cultured S. Typhi was 

freshly cultivated for 3 hours in 5mL TSB supplied with 1 mg/L of DHB in an incubator 

shaking at 200 rpm at 35 °C. The cell concentration was verified to be around 0.135 by OD 

600. AlamarBlue™ (Invitrogen, Carlsbad, CA, USA) was employed as the cell viability 

indicator. To address the fluctuation of excitation intensity and emission detection within a 

microscopic view, calcein was used as a reference dye. Each 20 μL reaction consisted of 1× 

AlamarBlue, 50 μM calcein, 1 mg/mL BSA, diluted S. Typhi cells, and the rest of the volume 

filled with DHB supplied TSB. 7.5 w/v% PEG hydrogel was added as 10× PEG monomers 

dissolved in DHB supplied TSB. After Gelbead generation, the Gelbeads were incubated at 

37 °C for 0-5 hrs, and were extracted for imaging after 0, 1, 2, 3, 4 hrs of incubation.  

3.5.6 Gelbead digital PCR (gdPCR) assay 

The thermocycling protocol of gdPCR assay was the same as described in the thermal 

stability characterization. Each 20 µL reaction consisted of 1× ddPCR Supermix, 900 nM 

forward primer, 900 nM reverse primer, 250 nM probe, and 2 µL DNA sample or water. 

Additional 7.5 w/v% PEG hydrogel was added as 10× PEG monomers for gdPCR assays. 

The primers and probe were ordered from Integrated DNA Technologies (IDT, Coralville, 

IA, USA), with sequences (Supplementary Table S1) designed for specific detection of S. 

Typhi, targeting a region in gene STY0201 for an amplicon size of 131 bp (Tran et al., 2010). 

For gdPCR optimization, the same DNA template concentration (600 times dilution from 
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harvested) was added for gdPCR assays and ddPCR control. Optimal 

concentration of additional polymerase (OneTaq® DNA polymerase, New England Biolabs) 

was investigated by supplying various concentrations to the described reaction mix 

incrementally at 0.025, 0.5, 0.1, and 0.2 U/reaction. For quantification assays, harvested 

DNA sample were serial diluted 100, 300, 600, 1500, and 24000 times for ddPCR and 

gdPCR. The reactions were prepared on iceblock (Carolina® Chill Block, Burlington, NC, 

USA) and centrifugation temperature was set at 4 °C. Droplets or Gelbeads were generated 

in BioRad droplet generation oil, and were then extracted into PCR tubes for thermocycling. 

No-template controls were examined for each tested condition.  

3.5.7 Gelbead digital LAMP (gdLAMP) assay 

The reagents for LAMP were acquired from New England BioLabs if not indicated 

otherwise. Each 20 μL of modified LAMP mix for digital single bacteria LAMP contained 

1× isothermal buffer, 6 mM total MgSO4, 1.4 mM dNTP, 640 U/mL Bst 2.0 WarmStart® 

polymerase, 1.6 μM FIB and BIP, 0.2 μM F3 and B3, 0.8 μM LF and LB, 1.5 mg/mL BSA, 

1× LAMP dye (Lin et al., 2019; Lin et al., 2018). For gdLAMP assays, 7.5 w/v% PEG 

hydrogel was added as 10× PEG monomers. The primers, ordered from IDT with the 

sequences shown in Supplementary Table S1, were targeting a 196 bp region within the S. 

Typhi specific gene STY1607 (Fan et al., 2015). For gdLAMP and ddLAMP assays, 

harvested DNA was serial diluted 5, 20, 50, 100, and 200 times. The reactions were prepared 

on iceblock and centrifuged into 5% FluoroSurfactant supplied fluorinated oil at 4 °C. 

Droplets or Gelbeads were then extracted into PCR tubes for 30 min heating at 65 °C 

followed by 5 min polymerase deactivation at 80 °C. No-template controls were examined 

under the same protocol.  

3.5.8 Combined phenotyping and gdPCR for antibiotic resistance analysis 

S. Typhi cells were cultivated, encapsulated, and phenotyped following the same 

procedure as described in the section of Gelbeads for cell viability phenotyping. The 

phenotyped Gelbeads were subject to phase transfer and reagent infusion in preparation for 
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in situ PCR. The chemical emulsion breaker was prepared by diluting 

1H,1H,2H,2H-perfluorooctanol (PFO, Sigma-Aldrich) with HFE 7500 oil to make 20 vol % 

PFO stock. Excess oil below the Gelbeads was extracted and discarded. After 10 µL PBS 

was added and briefly vortexed, 40 µL of 20 vol % PFO was added to the top and the tube 

was mildly vortexed for 10 sec. The mixture was then briefly centrifuged. All the liquids 

were drained with a pipette sticking to the bottom of the tube. Then 40 µL of water was added 

to the Gelbeads and the mixture was frozen at -20 °C for approximately 16 hours. After 

thawing, the volume of the Gelbeads was roughly estimated by comparing the interface level 

of the total mixture and the pipette-removed water with the interface level of known volume. 

Concentrated PCR reagent mixture was added to the drained Gelbeads at twice their 

estimated volume. The concentrated PCR mixture was prepared 1.5 times the final 

component concentrations, which were similar to the recipe in gdPCR with doubled primers 

and probe concentration. The aqueous mixture of Gelbeads and PCR reagents was allowed 

to sit for 60 min. Gelbeads were then washed with oil for 3 times to eliminate remaining free 

aqueous phase. During each washing cycle, the mixture was pipette-mixed with additional 

20 µL BioRad droplet generation oil, and the fluids were pipette-drained. The washed 

Gelbeads were resuspended in 80 µL of BioRad droplet generation oil for PCR 

thermocycling. Before imaging, the Gelbeads were washed again with the oil to eliminate 

possible interference from the remaining aqueous droplets.    

3.5.9 Droplets and Gelbeads imaging and analysis 

The droplets or Gelbeads to be analyzed were transferred into a viewing chamber 

made by adhering SecureSeal™ Hybridization Chamber (9 mm DIA × 1.0 mm Depth, Grace 

Bio-Labs, Bend, OR, USA) to a glass slide (VistaVision® Microscope slides, VWR). The 

chambers were imaged under the fluorescence microscope using a 1.25× objective for 

droplets/Gelbeads generation, characterizations, and gdLAMP. For each sample in gdPCR 

and single cell phenotyping, five images of different area in the viewing chamber were taken 

using a 5× objective. Fluorescein isothiocyanate (FITC) filter was used, except for 

phenotyping experiments where Texas Red (TXR) filter was used in addition. In phenotyping 
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experiments, the image data collected through TXR channel was normalized using 

the image data collected through FITC channel. For analysis of bright Gelbeads fraction, the 

data of each pixel was the intensity ratio of TXR channel to FITC channel. All images were 

analyzed using customized MATLAB scripts (Supplementary Files). For droplets and 

Gelbeads generation as well as thermal stability characterizations, the images were analyzed 

for individual compartment diameters. The diameters were further analyzed to calculate 

average compartment diameter and coefficient of variation (CV). For gdPCR, gdLAMP, and 

phenotyping assays, in addition to size analysis, the images were also analyzed for number 

of positive and negative compartments by setting a bright-dark threshold. Using the ratio of 

negative compartments to total compartments, the input DNA or cell concentrations were 

estimated by Poisson distribution (Pinheiro et al., 2012). For images from phenotyping 

assays, since the distinction of dark and bright Gelbeads was hard to inspect visually, 

Gaussian fitting was used to advise the threshold (Figure 3.8).   
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3.7 Supplementary notes 

3.7.1 Characterization of PEG hydrogel crosslinking 

To identify the reasonable time frame for Gelbead generation, PEG gelation time in 

our targeted reaction matrices by bulk phase sol-gel transition experiments (see methods) 

was first measured. Ideally the compartmentalization process should be completed before the 

sol-gel transition starting, after which further crosslinking would considerably alter fluid 

properties such as viscosity and surface tension. For the three types of reaction matrix 

examined, results showed that the sol-gel transition start time spanned from 4.5 min to 43.0 

min, and the crosslinking was accelerated by higher pH and higher monomer concentration 

(Table 3.1). Accordingly, the gelation time might be further extended by decreasing the 

crosslinking temperature (Pritchard et al., 2011). We then estimated if the lower gel 

concentration considerably affects the hydrogel properties. The theoretical pore sizes for our 

crosslinked PEG were close for 7.5% and 10% gel (Table 3.1). Both would allow diffusion 

of functional molecules in our applications including water, ions, small DNA fragments, and 

proteins that size from below an angstrom to ~ 6 nm (Wu et al., 2009). This estimation 

neglects non-ideality such as dangling ends or monomer self-interlinking, which might result 

in larger actual pore size (Raeber et al., 2005). Using the same PEG monomers, 10 w/v% 

hydrogel concentration has been utilized in cell encapsulation, multiple displacement 

amplification (MDA), and LAMP (Huang et al., 2018; Xu et al., 2016). We reason that 

lowering the hydrogel concentration to 7.5 w/v% would benefit our applications by allowing 

more time for Gelbead generation and creating looser hydrogel network for reagent diffusion. 

Therefore, 7.5 w/v% PEG was used in further experiments. 
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3.7.2 Droplet generation performance and sources of error 

To achieve high throughput analysis of droplets with limited available instruments, 

we chose to analyze droplets through fluorescence imaging. As in the reported protocol, 

droplets were extracted into a viewing chamber, made by bonding a commercial plastic 

chamber onto a glass slide, for fluorescence imaging at 1.25× objective. We acknowledge 

that this protocol might have introduced systematic error in size characterizations by 1) 

pipetting droplets from the microcentrifuge tube into the viewing chamber, 2) noise 

difference from focus point to the edges within an image, and 3) image processing bias by 

MATLAB when identifying the circular-shaped edges. These sources of error would lead to 

overestimation of size distribution. Therefore, it is anticipated that the actual CV of the 

generated droplets or Gelbeads should be lower than reported. Generally, the reported sizes 

and CVs of generated droplets, optimized at 175 µm diameter with CV of 5%, are 

comparable to those generated by centrifugal microfluidics reported in literature. For 

example, Haeberle et al. used polymer-tube micronozzles for alginate bead generation, and 

reported beads generated at diameters tunable from 180 to 800 μm with CV of 7–16%. As 

another example, using a lab-on-a-disk centrifugal droplet generation, Schuler et al. reported 

droplet diameters of 120 to 170 μm with CV of 2–4%. It should be noted that these values 

represent only 20 measurements of droplet under high microscope objective. 
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3.7.3 Microscope objective choice 

For ddPCR and gdPCR, 5× objective was used in fluorescent microscope imaging to 

more accurately capture the assay quantification performance. Taqman probe, commonly 

used in PCR for enhanced detection specificity by hydrolysis upon encounter of specific 

sequence target, was employed in our PCR assay recipe. In this case, the fluorescence 

exhibited by negative compartments was too low to be distinguishable from the oil phase 

under 1.25× objective. To be able to count negative compartments, a zoomed-in view using 

5× objective had to be used instead of 1.25× objective, which was employed to image 

ddLAMP and gdLAMP results. A commercial DNA-intercalating dye was used in LAMP 

so that the higher background fluorescence was observed in negative compartments. 1.25× 

objective could image an area of 0.785 cm2 to include the whole viewing chamber at one 

image shot. The smaller view at 5× objective was compensated by taking 5 images of 

different areas in the viewing chamber. A similar strategy was applied in Gelbeads imaging 

for phenotyping experiments to better distinguish the Gelbeads with varying fluorescence 

levels.  
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3.7.4 Overcoming challenges of PCR reagent infusion for Gelbeads 

Initial attempts on PCR reagent infusion for phenotyped Gelbeads failed to yield any 

bright Gelbeads, despite the visually successful Gelbead phase transfer from oil to aqueous 

phase and then back to the oil phase. Hydrogel network has been reported to possibly form 

smaller pores on the side of higher interfacial tension (Savina et al., 2011). It was thus 

suspected that, during Gelbead crosslinking in fluorinated oil, the aqueous-oil interface might 

have smaller pore sizes. The surface barrier then might have hindered the inward diffusion 

of essential PCR macromolecules when the Gelbeads were transferred into aqueous phase. 

To overcome the Gelbead surface barrier, we performed a freeze-thaw treatment on the 

phenotyped Gelbeads prior to reagent infusion. The overnight freezing of the Gelbeads in 

water was intended for expanding the pores through ice crystal formation, which has been 

utilized to fabricate macroporous hydrogel for biomedical applications (Oxley et al., 1993). 

After adding the freeze-thaw treatment while other protocols remained unchanged, the 

Gelbead in situ PCR showed successful amplification.   

It was observed that the contrast between positive and negative Gelbeads was less 

visually apparent than in direct gdPCR (Figure 3.5d-h), likely due to enlarged pore size. In 

our experiments, the fluorescence intensity difference was distinguishable for positive and 

negative Gelbeads, but the larger pore size might cause potential problems. For example, the 

viability phenotyping assay with other fluorescence dyes, such as PrestoBlue, that are more 

soluble in fluorinated oil thus easier to cross the interfacial barrier might have more 

crosstalking. It was also observed that, after phase transfers even without freeze-thaw 

treatment, the diameter of the Gelbead increased approximately from 160 µm to 220 µm. 

Gelbead swelling during the phase transfer process should not affect the interpretation of 

downstream PCR results, since the positive or negative reading on a Gelbead only reveals 

the molecular information of its own encapsulated cells since phenotyping. However, the 

actual volume of the swollen Gelbeads needs to be cautiously estimated while preparing the 

concentrated PCR reagent mixture, so that the final component concentrations can be 

achieved accurately. 
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3.7.5 In situ PCR results 

The fraction of positive Gelbeads was observed to be 43%, which falls below the 

theoretical value of 63%, the percentage of Gelbeads containing at least one S. Typhi cell. 

Imminent systematic optimization of the recipe is needed to establish the quantitative 

accuracy of downstream in situ molecular analysis.  



 

 

91

3.8 Supplementary illustrations 

3.8.1 Tables 

 LAMP mix PCR mix TSB media 

pH 8.8 8.3 7.3 

7.5 w/v% 

Sol-Gel 

transition time 

[min] 

7.0 11.5 43.0 

8.5 13.5 53.0 

Pore size 27nm 

10 w/v% 

Sol-Gel 

transition time 

[min] 

4.5 8.5 18.0 

5.5 10.0 23.5 

Pore size 25nm 

Table 3.1  PEG hydrogel crosslinking characterization in bulk for LAMP mix, PCR mix, and TSB 

media. Sol-Gel transition time was experimentally determined (See Methods). The pH values were 

supplied by the manufacturers. The pore sizes were theoretically estimated for our gel concentration 

by scaling from experimentally measured mesh sizes, assuming a simplified hydrogel architecture 

(Raeber et al., 2005). 
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PCR 

Forward 

primer 
5’ CGCGAAGTCAGAGTCGACATAG 3’ 

Reverse 

primer 
5’ AAGACCTCAACGCCGATCAC 3’ 

Probe 5’ FAM AAGACCTCAACGCCGATCAC 3’ 

 

LAMP 

FIP 5’ AACTTGCTGCTGAAGAGTTGGACCGAATGACTCGACCATC 3’ 

BIP 5’ CCTGGGGCCAAATGGCATTATGCACTAAGTAAGGCTGG 3’ 

F3 5’ GACTTGCCTTTAAAAGATACCA 3’ 

B3 5’ AGAGTGCGTTTGAACACTT 3’ 

LF 5’ TCGGATGGCTTCGTTCCT 3’ 

LB 5’ CAAGGGTTTCAAGACTAAGTGGTTC 3’ 

Table 3.2  Sequences of primers and probe for PCR and LAMP assays. PCR primers and probes target 

a region in gene STY0201 specific for S. Typhi for an amplicon size of 131 bp (Tran et al., 2010). LAMP 

primers target a 196 bp region within the S. Typhi specific gene STY1607 (Fan et al., 2015). The target 

regions for PCR and LAMP were both found to occur at one copy per cell, by searching the sequences 

within the complete genome of S. Typhi strain CT18 (Accession no. NC_003198) using Basic Local 

Alignment Search Tool (BLAST) (Coordinators, 2018). 
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3.8.2 Figures 

 

  

Figure 3.7  Example images of preliminary cell phenotyping experiments. With alamarBlue and media 

only and without incubation, Gelbeads appeared to be much brighter than (a) droplets even though (b) 

Gelbeads were imaged under a lower fluorescence (300 ms exposure for droplets and 25 ms exposure

for Gelbeads). Scale bars, 500 μm. 
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Figure 3.8  MATLAB analysis and threshold setting for images from phenotyping experiments. (a) An 

example image of phenotyping assay analyzed in MATLAB. Scale bar, 500 μm. The blue circles

represent identified dark Gelbeads, and the red circles represent identified bright Gelbeads. (b) The 

histogram presents the occurrence probability of mean normalized intensity of Gelbeads analyzed based

on the source image of (a). Gaussian fitting of the occurrence probability data generated two peaks, 

represented by the blue and red curves. The threshold suggested by this MATLAB script was set as the

average of the mean (μ) of two peaks. This threshold was used to categorize negative and positive

Gelbeads and produced the identification results on the left. We note that for 2 hours and 5 hours of

incubation, the differences in normalized intensity of Gelbeads were too small for this thresholding

method. In these cases, threshold enumeration and visual inspection were used instead for an 

approximately appropriate threshold.   



 

 

95

  

Figure 3.9  Estimated DNA concentration by (a) ddPCR for 24000, 1500, 600, 300, 100 times 

dilution of harvested S. Typhi DNA and (b) ddLAMP for 200, 100, 50, 20, 5 times dilution of harvested 

S. Typhi DNA compared with input DNA concentration. Input DNA concentration was calculated

from dilution factor and OD600 measurement of cultured cells before DNA extraction using

commercial kit. The dashed lines reference an exact match with input DNA concentration. 

Figure 3.10  Calculated effective diffusivity (De) of solute in 7.5 w/v% PEG hydrogel matrix based 

on Weber et al. (Weber et al., 2009) and diffusivity in aqueous phase (Daq) at 37 °C based on Stokes-

Einstein equation as a function of solute hydrodynamic radius (a) from 0-1 nm and (b) from 1-7 nm. 

For functional molecules in the molecular assays, approximate sizes reported in or calculated from 

literature (Wu et al., 2009; Fujimoto et al., 1994) are indicated on the plots. 
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Figure 3.11  Gelbead aggregation was observed exclusively in positive samples during preliminary

gdLAMP experiments. Example fluorescent images of Gelbeads with (a) no target template and (b) 

100 times dilution of harvested S. Typhi DNA. Scale bars, 1 mm. For preliminary gdLAMP 

experiments, LAMP MasterMix was used (New England BioLabs) instead of the customizable LAMP

recipe specified in Materials and Methods. Each 20 μL of reaction mix contained 1× LAMP MasterMix, 

1.6 μM FIB and BIP, 0.2 μM F3 and B3, 0.8 μM LF and LB, 1× LAMP dye. 7.5 w/v% PEG hydrogel 

was added as 10× PEG monomers. The heating protocol involved 65 °C for 30 min and then 80 °C for

5 min. Aggregation of Gelbeads observed for positive samples, but not for no-template controls. The 

extent of aggregation indicates occurrence of severe crosstalking. 
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Figure 3.12  Combined phenotyping and in situ PCR. (a) Example fluorescence image of the Gelbeads 

after phenotyping. (b) The phenotyped Gelbeads were subject to reagent exchange, involving (c) 

breaking the emulsion with PFO, (d) facilitating phase separation by centrifugation, (e) removing all 

the liquid and adding water to freeze overnight, (f) draining the water with pipette, (g) incubating with 

concentrated PCR reagents, and (i) washing the Gelbeads with BioRad oil and resuspending for PCR.

(j) Example fluorescence image of the Gelbeads that were further analyzed through in situ gdPCR. Scale 

bars, 500 μm. 
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(Captions next page)  
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Figure 3.13  Fluorescence analysis of Gelbeads after in situ PCR. A fluorescence image was analyzed 

in the software (Leica Application Suite X) accompanied by the fluorescence microscope. (a) The 

fluorescence image with 10 bright and dark Gelbeads circled as region of interest (ROIs) to be analyzed. 

Bright Gelbeads (ROI1-5) are marked by red circles, and the dark ones (ROI6-10) are marked by blue 

circles. The ROIs were selected as pairwise neighboring bright and dark Gelbeads to limit the

interference of the focus effect. Scale bar, 500 μm. (b) The mean fluorescence intensity within the 

ROIs were significantly different (p < 0.001, one-way ANOVA) for the analyzed bright and dark 

Gelbeads. The averaged mean fluorescence intensity of the bright Gelbeads was 40% higher than the 

dark ones. Error bars represent standard deviation for the 5 ROIs in each group. (c) Histograms of 

fluorescence intensity counts for the ROIs.   
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C h a p t e r  4  

CHAPTER 4: SORTING HYDROGEL BEADS WITH A 
GRAVITY DRIVEN FLUORESCENCE ACTIVATED 

ACOUSTIC ACTUATED BEAD SORTING 

 

This chapter is in preparation for publication. 

 

4.1 Abstract 

Hydrogel beads, which combine water-in-oil droplets and structurally stabilizing 

hydrogel materials, have been developed for encapsulation and analysis of various cells and 

molecules. However, a portable, affordable, and easy-to-operate system is not yet available 

to decentralize fluorescence-activated sorting of beads in oil. Herein, we developed a 

versatile fluorescence-activated bead sorter with minimal instrumentation (MiniFABS) that 

uses gravity as the fluid driving force and acoustic actuation for high-throughput bead 

manipulation. We demonstrate via numerical simulation that simply using gravity as a 

driving force allows for predictable particle spacing. Furthermore, application of acoustic 

pressure forces the beads into a separate collection chamber within the spacing defined by 

gravity. With the fabricated MiniFABS prototype, we will perform extensive 

characterization and optimization of its sorting performance. The sorting accuracy and 

throughput will be experimentally optimized and characterized. The effect of the 

piezoelectric voltage on potential targets, including cells, nucleic acids, and proteins, will 

also be tested.  
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4.2 Introduction 

Hydrogel microfluidics, which is the combination of hydrogel material and water-in-

oil droplet microfluidics, have been widely developed for cell encapsulation, single cell 

analysis, and single molecule analysis (Li et al., 2018; Zhu et al., 2019; Zhu & Yang, 2017). 

To investigate the cells or molecules encapsulated in the hydrogel beads, fluorescent dyes 

and probes are usually employed as indicators of interested characteristics, such as high cell 

metabolism (Zhu et al., 2019) or proliferation rate (Li et al., 2018) and secretion of proteins 

(Chokkalingam et al., 2013; Hsu et al., 2018). The reagent exchange capacity of the 

crosslinked hydrogel network promises in situ downstream analysis (Zhu et al., 2019). 

Therefore, the capability of selecting sub-populations of beads from the carrying oil based 

on their fluorescence intensity could provide more robust hydrogel microfluidic tools for use 

in mechanistic studies, drug screening, diagnostics, etc. (Le Goff et al., 2015; Zhu et al., 

2019; Zimny et al., 2018).  

Fluorescence-activated cell sorting (FACS) is a commercially available standard 

technique for fluorescent particle separation (Naeem et al., 2017; Tang et al., 2019). 

However, FACS is generally incompatible with an oil phase, making it unsuitable for our 

targeted application, since the oil phase is responsible for holding the fluorescent dyes within 

each bead. In addition, FACS primarily handles particle diameters below 50 µm (Yang et al., 

2018), while hydrogel microfluidics may often deal with compartments of larger diameters 

above 100 µm. A few commercial FACS systems handle larger particles, but the high capital 

costs (>$250,000), high maintenance cost, and intricate operation limit their application into 

centralized facilities with highly trained personnel (Aubry et al., 2015; Li et al., 2018). 

Miniaturization of FACS onto microfluidic chips (µFACS) has shown successes on high-

throughput, low cost, and convenient separation of cells as well as droplets (Lee et al., 2017; 

Xi et al., 2017). Although such devices theoretically could be adapted for bead sorting, the 

distinctive structural stability of hydrogel beads may allow further advance in the 

miniaturized sorting.   
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Other than an apparatus for fluorescence excitation and detection, a 

fluorescence-based particle sorting system needs to be powered in order to exert a driving 

force, an actuating force for fluid control, and particle manipulation, respectively. 

Hydrodynamic fluid control by syringe pumps, most commonly used in traditional µFACS, 

focuses the sample flow with 1-2 continuous phase inflow to achieve an accurate known 

velocity of particles and spacing in between. Researchers have been pushing for more 

convenience by utilizing passive fluid control with capillary force (Cho et al., 2003; Tirapu-

Azpiroz et al., 2017), gravity (Huh et al., 2007; Yao et al., 2004), and vacuum (Xu et al., 

2015). Among the strategies above, gravity as a driving force has the advantage of requiring 

no power input, but can process less than 100 cells per min (Yao et al., 2004). In our case, 

the larger density difference in a bead-in-oil system than in a cell-buffer system promises 

higher throughput. For the particle manipulation, no-contact actuation strategies using 

magnetic force (Yang et al., 2016), electrophoretic force (Fiedler et al., 1998), optical tweezer 

(Landenberger et al., 2012), surface acoustic wave (Jakobsson et al., 2014), and 

acoustophoretic force (Yang & Soh, 2012) have been explored. Recently, Bachman et al. has 

demonstrated cell manipulation in an open well using low frequency flexural wave generated 

by cheap commercial buzzers (Bachman et al., 2020). This acoustic actuation technique 

represents a simple, low-cost, portable option for hydrogel bead sorting.  

Herein, we present a novel combination of gravitational driving force and acoustic 

actuation for high-throughput fluorescence-based bead sorting with minimal instrumentation 

and training required (MiniFABS, schematic shown in Figure 4.1). The hydrogel beads 

suspended in heavier fluorinated oil are driven by buoyancy force to float through a vertical 

channel. We suppose that the challenge for using gravity as the driving force in high-

throughput bead sorting lies in imposing the downstream actuation with accurate timing and 

strength. Two sequential photodetectors are thus employed along the channel, in order to 

detect the fluorescence intensity, quantify the bead acceleration, and inform downstream 

actuation. The piezoelectric transducer provides the necessary acoustophoretic force 

deflection of the targeted bead into a different collection chamber. We have designed a 
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MiniFABS system and conducted a feasibility study through numerical 

simulation. The design was prototyped by assembly of in-house designed parts fabricated by 

high-resolution 3D printing and commercially available components. MiniFABS provides a 

portable and affordable solution for potentially point-of-care and point-of-sample-collection 

analysis and sorting of hydrogel beads.  

Figure 4.1  Schematic of the MiniFABS system. (a) Illustrations of sample loading, oil addition, and 

tube tilting to initiate floating of beads. (b)The fluorescence intensity (FI) of each bead is detected by

two sequential photodetectors. The time difference (∆t) of the same bead passing through, along with

the FI are analyzed to actuate the acoustic actuator for a bead with FI above a certain threshold. The

positive bead moves in the direction perpendicular to the channel so that it enters a different collection 

chamber. 
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4.3 Results and discussion 

4.3.1 Design and prototype of MiniFABS 

The system involves a microfluidic tube (design shown in Figure 4.2a), two 

sequential photodetectors, two excitation lasers, an acoustic actuator, and a control system. 

The hydrogel beads suspended in heavier fluorinated oil are held in the bottom of the 

microfluidic tube. After sealing with the upper part and resting tilted at the position shown 

in Figure 4.2b, sorting can be initiated by adding oil and reversing the tube tilting direction 

(Figure 4.2c). The hydrogel beads are individually driven by buoyancy force through the 

channel, which has a side length of 800 µm. Along the channel, the sequential photodetectors 

monitor the fluorescence intensity (FI) for the control system to detect the passing bead, 

quantify its bead acceleration, and determine when the piezoelectric transducer is triggered 

if the FI of the bead exceeds the set threshold. The main hub and the microfluidic tubes were 

fabricated in house by high-resolution 3D printing, which can create channels with sizes 

larger than 400 µm on each side with high fidelity (Zhu et al., 2018). For red fluorescence-

based sorting as our model system, the MiniFABS prototype has been assembled (photo 

shown in Figure 4.2d) with commercial light emitted diodes (LEDs), avalanche 

photodiodes (APDs), and a piezoelectric transducer all connected to a Raspberry Pi 

computer. The total cost of the prototype was below $500. 
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Figure 4.2  Detailed design of the MiniFABS prototype. (a) The microfluidic tube consisting of a 

bottom part for sample loading and an upper part for sorting and sample collection. The two parts are 

sealed with O-ring and magnets. (b-c) The system design containing the main hub for holding the 

control system with the microfluidic tube resting in (b) pre-initiation position and (c) sorting position. 

(d) Photo of the 3D printed prototype with LEDs, APDs etc. 
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4.3.2 Bead spacing in MiniFABS 

The feasibility of the MiniFABS design was first investigated by exploring the bead 

spacing enabled by gravitational acceleration. The particle trajectories driven by gravity and 

drag force were simulated for two beads that are sequentially released from the bottom of the 

channel, as shown in Figure 4.3a-b. With a total channel length of 30 mm, the distance 

between the two beads is near linearly increased, and reaches ~6 mm when the first particle 

exits. This ∆z grants a reasonable length for the sorting region, so that the particle deflection 

force could actuate without affecting the next bead. The results also indicate that the channel 

may be extended should more spacing be needed for sufficient acoustic deflection.

Figure 4.3  Temporal profiles (a) of vertical positions of two sequentially released beads under drag

force and gravity and (b) of vertical distance between the two particles. 
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4.3.3 Acoustic actuation in MiniFABS 

The feasibility of the MiniFABS design was first investigated by exploring the 

acoustic pressure field exerted by the piezoelectric transducer and its effect on a passing 

particle. For a particle moving upward into the sorting region, the acoustophoretic force 

ideally would move the particle in x-direction during the timeframe of particle crossing the 

sorting region. Therefore, it is essential for the piezoelectric transducer to generate a pressure 

gradient within the region. For the fluid in the sorting region and the solid of the underlying 

3D printing material, the acoustic pressure induced by the piezoelectric transducer was 

simulated with varying frequencies including 40 kHz, 113 kHz, and 1.65 MHz as shown in 

Figure 4.4a-c. According to the simulation results, the 40 kHz transducer fails to impose 

noticeable acoustic pressure and pressure gradient in the fluid regime due to the low flexural 

wave energy. The high frequency (1.65 MHz) transducer generates a chaotic pressure field 

likely due to the densely packed pressure nodes (Bachman et al., 2020). The intermediate 

frequency of 113 kHz provides a pressure gradient. Moreover, this gradient would plausibly 

Figure 4.4  Simulated acoustic pressure field for the fluid in the sorting region exerted by applying 5V 

voltage on (a) 40 kHz, (b) 113 kHz, and (c) 1.65 MHz piezoelectric transducer. The square area 

represents the 1-mm thick wall. 



 

 

115

favor particle deflection towards +x direction, with the current relative position 

of the sorting region fluid and the underlying transducer (invisible in this view). 

The particle trajectory under the acoustic pressure (Figure 4.5a-b) was calculated 

with the simulated acoustic pressure fields. In this set of simulations, the particle under the 

acoustic pressure of 1.65 MHz transducer did not enter the sorting region, so its trajectory is 

not shown. The negligible particle deflection caused by the 40 kHz transducer was expected 

due to the lack of pressure gradient generated. For the 113 kHz transducer, the pressure field 

exerted is able to exert a discernible particle deflection in x-direction. If the sorting region 

length is taken as 5 mm, which is the bead spacing granted by gravitational acceleration after 

the ~24 mm channel, the simulated deflection (∆x) is at 2 mm. This deflection informs the 

upper limit of the distance between the collection chamber divider and the wall on the left. 

The designs will be experimentally tested and optimized for sorting accuracy. 

Figure 4.5  Particle trajectory simulated in the sorting region under drag force and acoustophoretic

force under the simulated acoustic pressure fields for (a) 40 kHz and (b) 113 kHz piezoelectric 

transducers. The underlying grey area represents the corresponding front view of the sorting region. 
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4.4 Conclusions 

We have demonstrated through numerical simulation that gravity, as a driving force, 

is capable of predictable particle spacing. Moreover, given the timeframe for the bead to 

cross the sorting region, the applied acoustic pressure can force the bead into a separate 

collection chamber. A full system prototype has been assembled. The control algorithm for 

fluorescence analysis and acoustic actuation is under development, and the bead sorting 

performance of the MiniFABS will be tested experimentally. The MiniFABS system 

promises cheap instrumentation, easy operation, and low contamination risk for hydrogel 

beads sorting.  By connecting with other processes, MiniFABS has the potential to extend 

the application of  hydrogel microfluidics to a point of care or in field.   
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4.5 Experimental section 

4.5.1 Numerical simulation for gravity-driven bead movement 

The spacing between two sequential particles while moving along the channel was 

studied by simulation in COMSOL Multiphysics® (COMSOL Multiphysics, 2015). The 

channel geometry was created with square cross-section of 800 µm sides and a total length 

of 30 mm. The particle tracing for fluid flow module was used to solve the time-dependent 

particle trajectory. Two particles were set to consecutively release from the center of the 

channel bottom with zero initial velocity. The particle diameter was set to 200 µm. It was 

assumed that the density of the bead resembles that of water. The dynamic viscosity and 

density of the oil phase was set to 1614 kg⸱m3 and 7.7×10-7 Pa⸱s, respectively, based on 

properties of HFE 7500 oil (Rausch et al., 2015). The drag force exerted by the stationary oil 

phase was calculated by Stoke’s Law, and the gravity force was set based on the tilt angle of 

60°. For mesh setting, predefined fine-sized free tetrahedral mesh calibrated for fluid 

dynamics was used for all boundary surfaces,  and normal-sized one was used for the rest of 

the geometry.   

4.5.2 Numerical simulation for acoustic actuation in the sorting region 

The acoustic actuation of particles was studied by COMSOL simulation. The 

acoustic pressure field generated by the piezoelectric transducer was first simulated using the 

multiphysics module acoustic-piezoelectric interaction, frequency domain. The geometry of 

the sorting region fluid, the underlying 3D printing material, and a piezoelectric transducer 

at bottom, as shown in Figure 4.6a. The thickness of the three layers were 800 µm, 1mm, 

and 300 µm, respectively. The module first simulates the piezoelectric effect of the 

transducer by solving the coupled constitutive equations with the Solid mechanics and 

electrostatics modules. For the transducer geometry (Figure 4.6b), an electric potential of 

5V was supplied to the center region of its bottom and the outer circle was grounded. The 

multiphysics module then solves the scalar wave equation and the Helmholtz equation with 
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the pressure acoustics, frequency domain module for the geometries of the fluid 

and 3D printing material. The properties involved were approximated by the built-in 

materials, using acrylic plastic for the proprietary 3D printing material and aluminum nitride 

for the piezoelectric transducer. The speed of sound for the sorting region fluid was set to 

658.8 m⸱s-1 according to experimental measurement of HFE 7500 oil (Muñoz-Rujas et al., 

2017). 

The particle trajectory under the simulated acoustic pressure field was then modeled 

by particle trajectory for fluid flow module. Acoustophoretic force was calculated in addition 

to the drag force exerted by the stationary oil phase and gravity for the tilted tube. The particle 

inlet velocity in z-direction was approximated by a constant velocity of 0.3 m⸱s-1, which is 

the particle velocity after upward transporting for 24 mm in the channel as simulated in 

Section 4.5.2.  

Figure 4.6  The geometry with key parameters for the simulation of acoustic actuation of particles. (a) 

isometric view including the sorting region fluid on top, underlying 3D printing material, and a 

piezoelectric transducer at bottom. (b) Bottom view of the geometry showing the piezoelectric 

transducer with concentric regions marked for imposing electric potential of 5V (red) and ground

(purple). 
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4.5.3 Prototype fabrication 

The main hub and the two microfluidic tube parts were fabricated using a high-

resolution 3D printer (3D systems ProJet™ MJP 2500 Plus, Rock Hill, SC) with clear plastic 

3D printing material (Visijet® M2 RCL, 3D Systems). After printing was completed, the chip 

was cleaned in hot mineral oil bath and the channel was flushed with hot mineral oil to 

remove the supporting wax outside and inside the parts. The two microfluidic tube parts were 

sealed with O-ring and 4 ⌀2mm magnets. The steady positioning of the tube was facilitated 

by another 4 ⌀2mm magnets that held the tube at the two tilted positions against the 

supporting structures of the main hub. The assembly of prototype also included a Raspberry 

Pi (4, model B) with a 3.5” LCD touchscreen (UCTRONICS, Nanjing, China) as a control 

system and a power source for the electrical parts. The general-purpose input/output (GPIO) 

pins of the Pi were connected to two 650 nm red laser modules (Light99 Amazon, Seattle, 

WA, USA), two silicon Avalanche Photodiodes (Si APDs, S12053-02, Hamamatsu, 

Hamamatsu City, Japan), and a piezoelectric transducer (20mm 113KHz ultrasonic atomizer, 

WHDTS Amazon, Seattle, WA, USA). The LEDs and APDs were carefully wrapped with 

parafilm to ensure a tight fit into their slots.  
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C h a p t e r  5  

CHAPTER 5: PROSPECTIVE DEVELOPMENT AND APPLICATIONS 

 

5.1 DropTube: Integrated centrifugal device for in-field pathogen analysis 

5.1.1 Introduction 

The development of a disposable device for centrifugal droplet and Gelbead 

generation was described in Chapter 3. The device uses a needle with a bent tip and a 

microcentrifuge tube, and the droplet generation can be conveniently driven by a common 

lab centrifuge. The successful generation of monodispersed water-in-oil droplets with the 

needle-in-a-tube geometry demonstrates the potential to develop a centrifuge-driven 

DropTube. Other than a long channel acting like the bent-tip needle, a variety of 3D 

microfluidic structures may be contained in DropTube to perform integrated fluid handling 

for digital nucleic acid analysis of waterborne pathogen. Therefore, we propose a further 

development of this platform, with a model application of in-field S. Typhi analysis. 

Specifically, the proposed work focuses on serovar-specific quantitative detection and 

antimicrobial resistance (AMR) characterization of S. Typhi. However, the development of 

this idea will be contingent upon the progress of 3D printing technologies, which is essential 

for prototyping the DropTube designs. Efforts of prototyping with various methods of 3D 

printing all failed due to the inability to produce the long narrow channel for droplet 

generation. However, mass production using injection molding should be feasible through 

injection molding (McCormick et al., 1997), upon successful design optimization with 3D 

printed prototypes. It is envisioned that this microfluidic DropTube can be developed into a 

simple, yet highly robust and versatile platform, which will finally eliminate the barriers for 

researchers to utilize microfluidics. 
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5.1.2 Integration of functional structures in DropTube  

An in-tube droplet reading platform would significantly improve the applicability of 

the microfluidic tube since it eliminates multiple pipetting steps and avoids DNA 

contamination caused by opening the tube. The additional reading platform is designed to be 

a flat sidewall of the tube above the top of the liquid-air interface after droplet generation. 

After heating the droplets in-tube for LAMP, the tube can be laid flat so that the droplets, 

along with the carrier oil, would be drawn into the droplet reading platform, the rectangular 

slice of space, by capillary force. The droplets are gathered into single layer arrays, and can 

then be easily imaged by a fluorescent microscope or smartphone. The integrated design is 

created in Solidworks, as shown in Figure 5.1a-c, and is ready to be fabricated by 3D 

printing. 

Figure 5.1  3D model of the design incorporating droplet generation structure and droplet reading

platform: (a) isometric view, (b) front view, and (c) side view. 
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5.1.3 DropTube for serovar-specific quantitative detection 

Serovar-specific detection is crucial in environmental surveillance because typhoidal 

Salmonella poses distinctive risks when compared to other Salmonella serovars. Typhoidal 

Salmonella is characteristic of being non-diarrheal and human-restricted. Salmonella carries 

the invA gene that codes for proteins responsible for invading intestinal epithelial mediated 

by M-cell (Crump, 2015). For non-typhoidal Salmonella, invasion of epithelial cells 

stimulates the release of cytokines which induce an inflammatory reaction causing diarrhea 

(Dougan & Baker, 2014). Typhoidal Salmonella, after entering mucosa tissue, cover the 

surface antigens with Vi-antigen when interacting with human macrophage cells (Dougan & 

Baker, 2014). S. Typhi rapidly becomes nonmotile, noninvasive, and capsulated after its 

transition through the intestinal epithelium into the mucosal tissue. From there, it enters the 

bloodstream and disseminates all over the body. It is human-restricted mainly due to specific 

interactions with human cells in the aforementioned pathogenic process. S. Typhi survives 

in human macrophages, but not in other species. Moreover, S. Typhi expresses the pilV gene 

to synthesize type IVB pili, which specifically interact with the human cystic fibrosis 

transmembrane conductance receptor (CFTR) proteins. These proteins act as a chloride 

channel on the membrane of human epithelial cells in many organs (Pier et al., 1998). Also, 

when S. Typhi enters human cells, it starts to upregulate typhoid toxin production which is 

highly immunogenic and pyrogenic. Some individuals who are infected with S. Typhi or 

recover from typhoid may become asymptomatic life-long carriers that serve as the reservoir 

for these pathogens. 

There is a lack of easy and field-ready methods capable of S. Typhi detection at 

serovar-level in environmental samples. The existing methods that detect at serovar-level are 

very time consuming, and involve complicated steps that require a fully equipped laboratory 

and corresponding expertise. The USEPA’s standard analysis of S. Typhi in drinking water 

involves multiple steps of enrichment culturing and selective culturing, followed by at least 

5 tests for serovars verification, taking more than 5 days to confirm a positive strain (EPA., 
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2010). Molecular analysis has been widely researched and commercial kits are 

available to detect Salmonella at a genus level, which shortens the sample-to-result time to 

2-3 days (Abirami et al., 2016; Francois et al., 2011; George, 2011; Hara-Kudo et al., 2005; 

Lim et al., 2015; Ohtsuka et al., 2005). Commercial kits are available, but generally target 

the invA gene common for all Salmonella serovars. Differentiation of species and serovars 

by molecular analysis are rarely reported, likely due to the genetic similarity within the genus. 

Also, the main limitation in environmental sample molecular analysis lies in the enrichment 

step. Enrichment by culture is slow and is highly likely limited by background microbiota 

(Abirami et al., 2016; Lim et al., 2015).  

Here we propose to develop a DropTube device for quantitative serovar-specific S. 

Typhi detection, building upon the integrated digital LAMP DropTube (as described in 

Section 5.1.2). The established integrated digital LAMP DropTube will perform DNA 

extraction, purification, droplet generation, and digital LAMP. An additional enrichment step 

before cell lysis may enable selective concentration of S. Typhi from 1ml to ~5 µl, which is 

a typical sample volume. While keeping the cells intact for molecular analysis, it is possible 

to perform serovar-selective enrichment by specific recognition of certain cell membrane 

proteins by aptamer coated magnetic beads or antibody coated porous materials (Davies & 

Wray, 1997; Jyoti et al., 2011). The serovar-specific enrichment step, as an addition to the 

digital LAMP microfluidic tube, will enable quantitative serotype level detection of 

typhoidal Salmonella. The design will have the potential to be used broadly since it can easily 

be adapted for the detection of other serovars, species, etc. with modifications to the 

capturing aptamer or antibody.   

5.1.4 DropTube for AMR characterization 

Another great challenge in controlling typhoid outbreaks lies in the emergence and 

fast spreading of antibiotic resistant S. Typhi strains. Multidrug resistant H58 lineages of S. 

Typhi (resistant to 1st line antibiotics amoxicillin, chloramphenicol, and cotrimoxazole) has 

rapidly gained domination over other clades since its first isolation in 1970s (Crump, 2015; 
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Feasey et al., 2015; Olarte & Galindo, 1973; Yan et al., 2016). The shift of 

treatment strategy to 3rd generation antibiotics was followed by the emergence of strains 

displaying reduced susceptibility to fluoroquinolones (Wain et al., 1997). Antibiotic 

resistance can be characterized by phenotyping or genotyping. Phenotyping involves 

cultivation of S. Typhi on antibiotic-containing media and is usually time-consuming, taking 

several days to confirm a resistant strain. Genetic detection of the antibiotic resistance genes 

(ARG) shortens the time to hours, but is highly relying on available knowledge of the ARG 

sequences and risks missing new resistant strains due to mutation. Fast and reliable antibiotic 

resistance characterization remains a challenge.       

To overcome these barriers, DropTube can also be adapted into a digital AMR 

characterization device. Schoepp et. al demonstrated AMR characterization of E. coli 

enabled by PCR recognition of DNA replication after 15 min incubation with antibiotics 

(Schoepp et al., 2016). The DropTube for digital LAMP can be modified to generate 

hydrogel droplets, which could encapsulate cells while remaining permeable to small 

molecules and biological reagents. Gelled droplets, compared to liquid droplets, enable the 

exchange of reagents, are more stable for amplification inside, and grant the possibility of 

downstream analysis of specific droplets of interest. The cell-containing sample will be 

compartmentalized into hydrogel droplets with the target antibiotic to incubate shortly. 

Subsequently, reagents will be exchanged before molecular detection of RNA production to 

indicate the live/dead status of the cells.  

5.2 Gelbead-based AMR evolution kinetics study 

5.2.1 Mutation induced fast emergence and evolution of AMR  

Ubiquitous cell heterogeneity, such as antibiotic heteroresistance and cancer stem 

cell heterogeneity, has long been observed and raises concerns in various fields. Microfluidic 

single cell techniques have enabled identification of rare genotypes or phenotypes within a 

cell population. To understand the cell heterogeneity and tackle the problem it poses, it would 
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be essential to identify single cell genotype-to-phenotype correlations. However, 

the analysis tool capable of establishing such correlations is not available yet.  

The PEG hydrogel bead-based platform (Gelbeads) was validated for both single-

cell phenotypic analysis and molecular detection, with demonstrated potential of linking both 

for single cell analysis (as described in Chapter 3). Here we propose to probe the molecular 

mechanism of antibiotic resistance evolution using the Gelbead platform. Bacteria are known 

to exhibit remarkable adaptability under exposure to antibiotics. Previous studies have shown 

that the genetic and phenotypic diversity of bacterial cells led to increased resistance to 

antibiotic stress as a community (Lee et al., 2010; Yurtsev et al., 2016). Under exposure to 

antibiotic, the subpopulation acquired resistant mutation was found to secret molecules to 

protect the non-resistant and gain nutrients from them to cover the additional fitness cost 

(Lee et al., 2010). A few possibly functional alleles have been identified for resistance 

evolution (Zhang et al., 2011). However, these studies only reported phenotypic observations 

of such evolution and deduced mechanism through sequencing of the end-point bacterial 

isolates. The kinetics of the SNP emergence and its correlation with the cell community 

dynamics during antibiotic resistance evolution remain poorly understood. 
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5.2.2 Provisional study workflow 

During co-incubation of bacteria and target antibiotic, the proposed study will 

investigate the emergence of resistant subpopulation and corresponding temporal profiles of 

significant SNPs. Salmonella Typhimurium can be employed as a model strain, with 

ciprofloxacin as a model fluoroquinolone antibiotic. The study involves the following 

milestones: a) determine single nucleotide polymorphisms (SNPs) significant in antibiotic 

resistance evolution by end point single cell sequencing, b) design and test PCR primers 

specifically targeting the SNPs, c) develop the fluorescence activated beads sorter and 

validate Gelbead multiplex PCR after sorting, and d) antibiotic resistance evolution 

experiments. The schematic of the study is shown in Figure 5.2.  

Target SNPs will be identified using methods similar to literature (Zhang et al., 

2011). Bacteria and antibiotic will be co-incubated, and a small portion of the cells will be 

Figure 5.2  Schematic of the proposed study on antibiotic resistance evolution kinetics. 
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tested for viability. After acquired resistance is observed, the whole genome 

sequence will be examined to understand what mutations occurred and spread within the 

population. The sequences of single cells phenotyped in Gelbeads will also be examined to 

exclude mutations induced by the Gelbead phenotyping process. SNP will be identified by 

comparing the sequencing data with wild-type bacteria sequences. The significant SNPs 

(ideally one seems directly related to resistance and one seems irrelevant) will be selected as 

the targets of PCR assays. The primers amplifying the genes containing the SNP will be 

either found in literature or designed using BLAST. Molecular beacon specifically targeting 

the SNPs will be designed (Mhlanga & Malmberg, 2001). The assays will be optimized with 

qPCR and verified in gdPCR. Multiplexing will be attempted to include 16s rDNA detection 

as a reference for cell presence.  

For the experiments, during the co-incubation of bacteria and the antibiotic, cell 

samples will be extracted and washed prior to entering the single cell analysis workflow. The 

sampling time points will be determined based on the timeframe observed in 2.1. The cell 

samples will be resuspended in the mixture for phenotyping and compartmentalized into 

Gelbeads, which then are sorted into positive and negative beads. Each population of beads 

is then analyzed by PCR for SNPs. The results will be collectively analyzed for temporal 

profiles of quantitative resistance phenotype emergence and the presence of SNPs in each 

phenotypic population. The analysis will likely generate information as shown in Figure 5.3. 

The PCR profiles would inform which SNP appears first. The timing of emergence SNPs 

relative to the temporal profile of the resistant subpopulation may inform the role of SNP in 

antibiotic resistance and single cell fitness. Collectively, the above information may suggest 

the role of these molecular variations in antibiotic resistance evolution as a community. 
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The completion of this study will hopefully be able to answer the following questions 

about the crucial SNPs during antibiotic heteroresistance evolution: a) What is the order of 

their occurrence during the evolution, and are their kinetics interdependent? b) what are their 

roles in cell fitness? and c) what are their roles in the evolving community? The answers to 

these questions will have implications in modulation of antibiotic treatments for enhanced 

efficacy and resistance prevention. Once the workflow is established, its application can be 

extended to studies of complicated heterogeneous cell systems such as in microbial ecology 

and oncology.  

 

  

Figure 5.3  Provisional obtainable information from the designed experiments. 
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C h a p t e r  6  

CHAPTER 6: CONCLUSIONS AND OUTLOOKS 

The work in this dissertation sets forth an exploration in the nexus of 3D printing, 

polymer engineering, microfluidics, and life science, with potential applications that 

transcend disciplines. In an effort to develop simple solutions for environmental bacterial 

detection and analysis, this dissertation delivers: 

(1) Simulation-aided designs and understanding of 3D microfluidic systems on 
unconventional substrates. The development of the simulation models supported the design 

of a 3D-printed microfluidic chip for live and dead cell differentiation prior to PCR detection, 

understanding of the DNA extraction performance observed for an electrochemical lysis 

device, and the validation of homogeneous cell dispersion onto an asymmetric membrane 

for integrated digital detection.  

(2) A disposable droplet generation solution. The droplet generation device made 

simply from needles and microcentrifuge tubes was capable of producing monodispersed 

water-in-oil droplets. It demonstrates the potential of developing fully integrated 

microfluidic tubes that run in common lab centrifuges and incorporate sample preparation 

steps, digital results reading, etc.  

(3) A hydrogel bead-based platform for probing single cell phenotype-to-
genotype correlations. The  hydrogel bead-based cell analysis platform, along with the bead 

sorter, establishes single-cell genotype-phenotype correlations, which would help answer 

important scientific questions in cell heterogeneity, including the mutation dynamics and 

their functions in the fitness of individual cells and cell communities. The understanding of 

these questions is indispensable in the combat against the global AMR crisis. 

(4) A bead sorting system complementary to the hydrogel bead-based platform. 
The design minimizes instrumentation requirements by utilizing gravity as driving force and 
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commercial acoustic buzzer as actuator. The developed bead sorter provides a 

portable, affordable, and easy-to-operate solution to decentralize fluorescence-activated 

sorting of beads in oil. 

In summary, our work shows the robustness of 3D microfluidics that uses novel 

materials, alternative fabrication methods, etc., often with advanced understanding through 

numerical simulations, to achieve fast, sensitive microbial detection and analysis with 

minimal instrumentation.   

The approach explored in this dissertation also highlights a few remaining problems 

to be solved in the future. One such problem is that the standardization of these 3D 

microfluidic devices might be compromised due to the nature of the simple and non-standard 

fabrication process. For example, the consistency of the disposable devices from trial to trial 

may need to be more rigorously characterized and improved. The improvement of 

consistency may be achieved through stringent quality control of the commercial starting 

materials, such as the porous membranes discussed in Chapter 2.3 and the needles discussed 

in Chapter 3, and through automated robotic fabrication. However, these efforts may 

complicate the processes involved in using 3D microfluidics, which is against the essential 

goal of making the technologies effortless to use for end users. Moreover, wide adoption of 

technologies requires mass production. The most common mass fabrication of traditional 

microfluidic chip is through injection molding, which molds the chip material and then bond 

to the other layer to assemble into a closed chip. Thus, scaling up might not be guaranteed 

feasible for some of the 3D microfluidic systems with convoluted structures. Collective 

efforts in mass production method innovation might be needed to boost the field of 

microfluidics. 

The interdisciplinary research of environmental microbiology and 3D microfluidics 

remains a thriving field with exciting upcoming advances and developments. It has been a 

great pleasure to have made this expedition, which intrigued me in how microbial life 

evolves, and potentially utilize this understanding to solve modern health problems.
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Cell lysis is an essential step for the nucleic acid-based surveillance of bacteriological water quality.
Recently, electrochemical cell lysis (ECL), which is based on the local generation of hydroxide at a cathode
surface, has been reported to be a rapid and reagent-free method for cell lysis. Herein, we describe the
development of a milliliter-output ECL device and its performance characterization with respect to the
DNA extraction efficiency for gram-negative bacteria (Escherichia coli and Salmonella Typhi) and gram-
positive bacteria (Enterococcus durans and Bacillus subtilis). Both gram-negative and gram-positive bac-
teria were successfully lysed within a short but optimal duration of 1 min at a low voltage of ~5 V. The
ECL method described herein, is demonstrated to be applicable to various environmental water sample
types, including pond water, treated wastewater, and untreated wastewater with DNA extraction effi-
ciencies similar to a commercial DNA extraction kit. The ECL system outperformed homogeneous
chemical lysis in terms of reaction times and DNA extraction efficiencies, due in part to the high pH
generated at the cathode surface, which was predicted by simulations of the hydroxide transport in the
cathodic chamber. Our work indicates that the ECL method for DNA extraction is rapid, simplified and
low-cost with no need for complex instrumentation. It has demonstrable potential as a prelude to PCR
analyses of waterborne bacteria in the field, especially for the gram-negative ones.
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

During water electrolysis, the micro-environment at the elec-
trode/electrolyte interface has different properties compare to that
of the bulk electrolyte. The cathodic proton reduction to hydrogen
significantly increases the pH at the surface of cathode. This
mechanism plays important roles in various physio-chemical pro-
cesses such as NH3 stripping [1], phosphate recovery [2] and
enhanced CO2 reduction [3]. However, the application of this
mechanism in biomolecular analysis, especially the detection of
waterborne bacteria was relatively less explored.

In recent years, the application of biomolecular techniques such
as polymerase chain reaction (PCR) has resulted in rapid, accurate,
and sensitivemethods for the quantification of waterborne bacteria
[4e6]. The initial step before actual PCR analysis is cell lysis for the
extraction of nucleic acids. One of the most common cell lysis
technique for microbial quantification is chemical lysis, which
employs an alkaline buffer or other lytic reagents to disrupt cell
).

r Ltd. This is an open access article
walls. This technique requires an array of essential instruments and
multi-step reagent additions which are time-consuming and labor-
intensive. In addition, removal of the reagents after cell lysis is
required in order to avoid interference with downstream detection
[7,8]. Electroporation uses the sharp potential gradient to break
down cell membrane. It is fast and agent-free, and it is able to leave
intracellular components intact [9e18]. The downside of electro-
poration, however, is the use of high electric fields to achieve
irreversible electroporation (e.g., 10 kV/cm [14]). High power and
voltage required to generate the high electric field, also leads to
joule heating of the fluid [14,19e22]. Lower electroporation volt-
ages can be realized using nano-structured electrodes coupled with
microfluidic devices. However, this approach would require a
complicated fabrication process and precise operation
[11,13e15,17,23e25].

Electrochemical cell lysis (ECL) relies on the cathodically
generated hydroxide (i.e., localized high pH) to disrupt microbial
cell membranes by breaking fatty acid-glycerol ester bonds in
phospholipids [7,26]. In contrast to high-voltage electroporation
(e.g., 500 V [27]), ECL requires significantly lower voltages (e.g.,
2e5 V [7,8,26,28,29]), which avoids joule heating, and thereby, can
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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be easily applied under resource limited conditions encountered in
remote field sampling locations. However, we note that the afore-
mentioned studies of ECL were mainly focused on clinical samples
(e.g., human cells [7,26]), and conducted in well-controlled systems
with purified buffers. Furthermore, all of these studies highlighted
in the development of micro-scale devices with microliter or even
nanoliter throughput. It is important to understand if ECL can be
used for other target cells with more common throughput that are
related to more extensive applications, e.g., environment, food and
agriculture, etc.

Herein, we now report on the development and application of
an ECL device that functions using a small sample volume (~1 mL).
Our overarching goal is to determine the DNA extraction effi-
ciencies as a function of the key operational parameters (i.e., pH
ranges with varied treatment durations) for the use of ECL, as
applied to DNA extraction and PCR amplification of gram-positive
and gram-negative bacteria in real surface water and wastewater.

2. Experimental

2.1. Reagents

Sodium sulfate (Na2SO4) was purchased from EMD Millipore
Corporation (Germany). Hydrochloric acid (HCl) and sodium hy-
droxide (NaOH) were purchased from Sigma-Aldrich (USA). 50 mM
Na2SO4, HCl with varied concentrations (0.1 mM, 1 mM, 10 mM,
100 mM and 1 M) and NaOH with varied concentrations (0.1 mM,
1 mM, 10 mM, 100 mM and 1 M) were prepared using � 18 MU
Milli-Q water produced from a Millipore system (Millipore Co.,
USA). PBS (Gibco™, 1�, pH 7.2) was purchased from Thermo Fisher
Scientific (USA). Luria-Bertani (LB) Broth, Tryptic Soy Broth (TSB),
Brain Heart Infusion (BHI) Broth and Nutrient Broth (NB) were
purchased from Becton, Dickinson and Company (USA). Nuclease
freewater for PCRwas purchased from Promega Corporation (USA).

2.2. Bacterial sample preparation

The gram-negative bacteria species, Escherichia coli (ATCC
10798, E. coli), Salmonella Typhi (ATCC CVD909, S. Typhi), and gram-
positive bacteria species, Bacillus subtilis (ATCC 6051, B. subtilis) and
Enterococcus durans (ATCC 6056, E. durans) were cultivated at
200 rpm (Innova 42 Incubator Shaker, New Brunswick Scientific,
USA) for 12e14 h to log-phase growth at the optical density at
l ¼ 600 nm (OD600) of 0.6e1.0. E. coli, S. Typhi and E. durans were
grown at 37 �C in LB, TSB and BHI media, respectively. B. subtiliswas
grown at 30 �C in NB media. After incubation, the bacterial cells
were harvested by centrifugation (Eppendorf, Germany) at
5000 rpm, washed twice and resuspended in 50 mM Na2SO4 to a
concentration of ~108 cells/mL (estimated by OD600 values).

2.3. Electrochemical cell lysis experiment

The ECL device consists of a dimensionally stable IrO2/Ti anode
(synthesis was reported previously [30]), a Ti cathode, and a cation
exchange membrane (Nafion 117, Dupont, USA), as shown in Fig. 1a.
This is a typical configuration for water electrolysis. The reactor was
made of polycarbonate and a photograph of the ECL device is also
shown in Fig. S1. The mechanism on the breakdown of microbial
cell membrane by ECL is illustrated in Fig. 1b and c. The membrane
separates the device into an anodic chamber (1.6 mL) and a
cathodic chamber (0.8mL). One outlet was added on the top of each
chamber to enable gas ventilation. For ECL reactions, 50 mM
Na2SO4 and bacterial suspensions were injected from the bottom
into the anodic and cathodic chamber, respectively, using syringes.
A constant direct current of 40 mA (16 mA/cm2, Potentiostat,
BioLogic Science Instruments, France) was applied for 30 s�10min.
The cathodic effluents were collected, using syringes, after each
reaction and the chambers were washed three times with DI water
between each reaction. The pH values were measured for all
cathodic effluents and initial samples with a pH meter (Orion Star
A215, Thermo Fisher Scientific, USA) containing a semi-micro pH
probe (Orion 9110DJWP, Thermo Fisher Scientific, USA).

2.4. Analysis of cell lysis by fluorescent microscope

Following ECL reaction, a 500 mL aliquot of each bacterial sample
was harvested by centrifugation at 10,000g for 10 min at 20 �C. The
resulting pellets were then washed with PBS three times and
resuspended in PBS to a final volume of 500 mL. The Live/Dead
Baclight Viability kit (Invitrogen by Thermo Fisher Scientific, USA)
was used for bacterial staining. Two staining dyes are included in
this kit, the green-fluorescent nucleic acid stain Syto9, which stains
both live and dead cells, and the red-fluorescent nucleic acid stain
propidium iodide (PI), which can penetrate and stain only dead
cells due to their compromised membrane [31]. The viability of
bacterial cells was monitored by these two dyes. PI-staining of dead
cells does not indicate the complete rupture of cell membranes, but
merely their permeability for PI. Since completely lysed cells cannot
be stained by Syto9, the extent of cellular lysis was measured by
counting cells stained by Syto9 before and after ECL, as shown in Eq.
(1) below:

Lysis efficiency ð%Þ¼Ntotal cells in initial sample � Ntotal cells in ECL sample

Ntotal cells in initial sample

� 100

(1)

where N is the counted number of the cells that stained by Syto9.
According to the manufacturer’s instruction, equal volumes (1.5 mL)
of Syto9 (0.33 mM) and PI (2 mM) were added into each 100 mL
sample. Each stained sample was added onto a glass slide with
cover and examined under a fluorescence microscope (Leica DMi8,
Germany). An objective with � 20 magnification was used for an-
alyses. Five images were randomly taken from different areas on
each slide and counted by ImageJ software (National Institute of
Health, USA).

2.5. DNA quantification by qPCR

To measure the DNA released by ECL, the suspended DNA was
collected from the supernatant of each sample by centrifugation at
10,000g for 10 min. As a negative control, an aliquot of the initial
sample without ECL was treated in the same way to remove all the
cells. Another aliquot of the initial sample was extracted for each
bacterial strain using a commercial DNA extraction kit (PureLink®
Genomic DNAMini Kit, Invitrogen by Thermo Fisher Scientific, USA)
as a positive control. Real-time PCR (qPCR, MasterCycler RealPlex 4,
Eppendorf, USA) was used to quantify the presence of the universal
bacterial 16S rRNA gene and to analyze DNA extraction efficiency
for all the above samples. Each sample was tested in triplicates,
using a similar protocol as reported previously [3,32]. The protocol
was also briefly described in the Supporting Information, along
with other necessary information for qPCR quantification including
amplification curves (Fig. S2), qPCR standard curves and PCR effi-
ciencies (Fig. S3). The cycle numbers above the background fluo-
rescence threshold (CT) were directly measured and analyzed after
PCR reaction, using instrument specific software (Eppendorf, USA).
The higher the DNA concentration in the template, the lower the CT
value because the background threshold can be reached with less



Fig. 1. Device and mechanism of electrochemical cell lysis. (a) Electrochemical cell lysis device. (b) Schematics of electrochemical cell lysis with cation exchange membrane between
anodic and cathodic chambers. (c) Phospholipid bilayer, the major component of bacterial cell membranes, and the chemical structure of phospholipids. The fatty acid-glycerol ester
bonds in phospholipids (highlighted in red box) can be hydrolyzed by the locally generated OH� at cathode. (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)
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cycles of PCR amplification. To evaluate the DNA extraction effi-
ciency, DCT values of the ECL treated samples were calculated by
subtracting CT values of the suspended DNA in the ECL treated
samples from those in the untreated ones. With a comparison, DCT
values of the samples extracted by the commercial kit were
calculated similarly, by subtracting CT values of the total DNA
extracted by the commercial kit from those of the suspended DNA
in the untreated samples. For each bacterial strain, the higher DCT
values were expected for higher DNA extraction efficiency.
2.6. pH effect tests

The investigation of pH effects on cell lysis was conducted for
one gram-negative bacterial species (E. coli) and one gram-positive
species (E. durans) without ECL reaction. E. coli and E. durans were
cultivated as described above. Then, several aliquots of 1 mL bac-
teria suspensions were harvested by centrifugation at 5000 rpm to
obtain pellets. After removal of the culture media, 500 mL of NaOH
with different concentrations (0.1 mM, 1 mM, 10 mM, 100 mM and
1 M) were directly added to the cell pellets, respectively, and
resuspended immediately. As a negative control, 1 mL of 50 mM
Na2SO4 was added to the cell pellets of initial samples for both
species and mixed well. 500 mL of HCl with varied concentrations
(0.1 mM, 1 mM, 10 mM, 100 mM and 1 M) were then added to
neutralize the alkaline samples, correspondingly, after different
sample contact times with alkaline solution (30 s, 1 min, 2 min,
5 min and 10 min). All the neutralized samples were centrifuged at
10,000g for 10 min to remove all the intact cells. The supernatants
were then purified by the PureLink® Genomic DNA Mini Kit. An
aliquot of the control was extracted by the same commercial DNA
extraction kit as a comparison. Another aliquot was treated the
same as other samples after alkaline lysis. Then all the purified
samples were quantified by qPCR and DCT values were calculated
with the same methods described in the section of DNA quantifi-
cation by qPCR.
2.7. Electrochemical cell lysis of bacteria in environmental water
samples

Three different environmental water samples were tested to
evaluate the performance of the ECL technique on DNA extraction
of bacteria from ambient environmental water. Pond water was
collected from the turtle pond at Caltech campus (Pasadena, CA).
The treated and untreated latrine wastewater was collected from a
previously described solar-powered recycling electrochemical
toilet system located at Caltech with 550 mg/L of chemical oxygen
demand (COD) and 28 mM NH4

þ as major pollutants [33,34]. The
latrine wastewater was treated by an electrochemical oxidation
process to remove >90% of NH4

þ and COD. Effluent was collected
and denoted as “treated water” in this study. Pond water was
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directly added into the cathodic chamber for ECL reaction, without
any pretreatment while 50 mM Na2SO4 was added into the anodic
chamber. Both types of wastewater samples were first filtered,
using sterilized filter papers with 8.0 mm pore size (diameter,
55 mm; Cat No., 1002 055; Whatman) to remove big particles and
to enhance the reproducibility between each experiment. Then the
filtered wastewater was added into cathodic chamber for ECL re-
action while 50 mM Na2SO4 was added into the anodic chamber.
The suspended DNA of total bacteria from all the environmental
water samples were then collected by centrifugation at 10,000g for
10 min. All the above environmental water samples were also
extracted by the same commercial DNA extraction kit (PureLink®
Genomic DNA Mini Kit) as the positive control. The same qPCR
method was used for DNA quantification and evaluation of DNA
extraction efficiency.
3. Theory and simulations

COMSOL Multiphysics (COMSOL Inc., USA), a commercial finite
element modeling software, was used to study the fate and trans-
port of hydroxide ions inside the cathodic chamber. The fluid in the
cathodic chamber wasmodeled as a 3� 5� 50mm3 block, with the
electrode surface and the cation exchange membrane represented
by the two 5 � 50 mm2 sides. The gas vent hole on the top was
represented by a cylindrical extrusionwith a diameter of 1 mm and
a height of 0.1 mm. OH� and Hþ are generated with the hydrogen
and oxygen evolution reactions at the cathode and anode,
respectively:

anode: 2H2O44Hþ þ 4e� þ O2 (2)

cathode: 4H2Oþ4e�44OH� þ 2H2 (3)

The generation and venting of H2 during electrolysis induces
fluid movements in the cathodic chamber. The resulting flow field
was first calculated and then, the convective and diffusive OH�

transport was simulated. Molar influx of H2 gas at the cathode
surfacewas theoretically half of the OH� generation rate Rcatin , which
was calculated by Ref. [35]:

Rcatin ¼ i
nFA

(4)

where i is the supplied current (40 mA), n is the number of elec-
trons used to generate a hydroxide ion, which is 1, F is the Faraday
constant, and A is the surface area. Simultaneously, Hþ was pro-
duced at the anode surface at the same rate as OH� was generated,
and cations were forced across the cation exchange membrane. It
was assumed that sodium ions were the dominant species trans-
ported across the membrane due to their concentration dominance
over protons, until sodium ions were depleted to a concentration
comparable to the protons; at this point protons were the preferred
ions for membrane transport due to their smaller size. For the
cathodic chamber, the influx of Hþ was considered as the sink of
OH� and the contribution of water dissociation was negligible to
mass transfer trough the membrane [36e38]. With the initial pH
set at 7.5, time-dependent OH� concentration profiles were simu-
lated over the whole geometry. The transient pH profiles of the
vertical mid-plane across the electrode and the membrane were
generated, while the bulk solution pH was estimated from the
volume average of [OH�]. More details on the modules and equa-
tions used in this simulation are shown in the Supporting
Information.
4. Results and discussion

4.1. Electrochemical cell lysis of different bacteria

Four different bacteria, E. coli, S. Typhi, B. subtilis and E. durans,
with the initial concentrations of approximately 108 cells/mL were
effectively lysed using the ECL method at different durations. DCT
values of 4 different bacteria treated by ECL with 30 s-10 min are
shown in Fig. 2, along with a comparison of those extracted by the
commercial kit. After 30 s of ECL, the averaged DCT values of all the
bacterial strains were significantly increased to 3.6e8.1. The highest
DCT values of the ECL treated bacterial samples all lied in the
duration of 1 min as the optimized ECL condition, with the range of
6.5e9.8. In general, the DNA extraction efficiencies of all the bac-
terial cells decreases after 2 min of ECL. This could be mainly due to
DNA damage during ECL process (e.g., the local high pH which will
be further discussed later with simulation in this study), as we
preclude PCR inhibition caused by electrolyzed cathodic effluents.
The details are described in Supporting Information, Fig. S4 and
Fig. S5. The pH of the catholyte increased rapidly from the average
of 7.4 (±0.2) to 12.5 (±0.1) after 1 min of ECL, which is consistent
with the increase of DCT values. It confirms that the generation of
OH� at cathode is the mechanism of ECL. All the PCR mixtures
containing cathodic effluents (after ECL) were able to be adjusted to
a pH range of 8.4e8.7 by the PCR reagents prior to qPCR mea-
surements. Thus no additional neutralization step was necessary
before detection. The optimized ECL duration of 1 min is much
faster than most of the commercial DNA extraction kits based on
chemical lysis (e.g., at least 30 min for lysis step with the PureLink®
Genomic DNA Mini Kit) [39]. The optimal processing time by ECL is
also faster than the typical processing time of 5e30min by the bead
beating method, when using a flat pad vortex mixer, which is the
least expensive bead beating technique [40,41]. In addition, the
required voltage input is ca. 5 V, which is ~10e1000 fold lower than
that of electrical lysis, reported previously [17,42e44].

DNA extraction by ECL was especially efficient for the 2 gram-
negative bacterial strains. The averaged DCT values increased to 9.8
and 9.7 with 1 min of ECL for E. coli and S. Typhi, respectively. There
is no significant difference between the DCT values of the samples
treated by 1 min of ECL and of those extracted by the commercial
kit (P ¼ 0.72 for E. coli and P ¼ 0.48 for S. Typhi). Lower DNA
extraction efficiencies were observed for the 2 gram-positive bac-
terial strains with the optimized 1 min of ECL. Compared to the
samples extracted by the commercial kit, the differences of DCT
values (¼ DCT, commercial kit - DCT, 1 min of ECL) are 1.8 and 2.9 for
B. subtilis and E. durans, respectively. However, the DCT values after
1 min of ECL were still increased significantly to 7.9 and 6.5 for
B. subtilis and E. durans, respectively, which was sufficient for
downstream qPCR detection in this study. The lower lysis efficiency
for gram-positive bacteria than for gram-negative bacteria was not
only observed by using ECL in our present study, but also by other
lysis methods reported previously. For example, a lysis method
based on cold atmospheric-pressure plasma was reported to have
only 0.6 log10 reduction for B. subtilis after 10 min treatment, while
3.3e3.6 log10 reduction for other 3 gram-negative bacteria with the
same treatment duration [45]. And 10e100 times higher detection
limits were determined for gram-positive bacteria than for gram-
negative bacteria by applying a hybrid chemical/mechanical lysis
method on a microfluidic chip [46]. The differences in DNA
extraction efficiency between the gram-positive and gram-negative
bacteria can be explained by their different cell wall structures. The
cell walls of gram-negative bacteria are composed of phospholipid
bilayers (i.e., cell membranes) that can be readily hydrolyzed by
hydroxide ions, while the cell walls of the gram-positive bacteria
are predominantly composed of multilayers of peptidoglycan,



Fig. 2. DCT values of 4 different bacterial cells lysed by ECL as a function of times ( ) and of those extracted by a commercial DNA extraction kit ( ) as a comparison; and the
average pH values measured in the cathodic effluents ( ). For the ECL treated samples, DCT values were calculated by subtracting CT values of the suspended DNA in ECL treated
samples from those in the untreated samples. For the samples extracted by the commercial kit, DCT values were calculated by subtracting CT values of the total DNA extracted by the
commercial kit from those of the suspended DNA in the untreated samples.
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which provide stronger protection for gram-positive bacteria
[47e49]. In addition, the cell wall thickness of gram-positive bac-
teria (e.g., ~55.4 nm for B. subtilis [50e52]) is generally much higher
than that of gram-negative bacteria (e.g., ~8.2 nm for Enterobacter
cloacae [53,54]) as well.

The successful cell lysis by ECL was further confirmed for all the
bacteria via fluorescence microscopy. The fluorescence images
visualizing the bacteria viability with ECL treatment, monitored by
PI (in red) and Syto9 (in green), are shown for E. coli as an example
in Fig. 3. It was observed clearly that cells were completely lysed by
ECL after the cell death. Because the number of dead cells (in red)
Fig. 3. Fluorescent microscope images of E. coli cells stained by Syto9 (green) and PI (red) wit
legend, the reader is referred to the Web version of this article.)
significantly increased after only 30 s of ECL, but reduced after
1 min. So did most of the total intact cells (in green) disappear after
1 min, which is an evidence for complete cell wall breakdown. The
images in fluorescent green also show that the number of total
intact cells decreased significantly after 30 s of ECL and only a few
can be observed after 1 min, which has an agreement with the
increase ofDCT valuesmeasured by qPCR. The cell numbers for both
live and dead cells were calculated for all the bacteriawith different
ECL durations and are shown in Fig. S6. For gram-negative bacteria,
the lysis efficiencies are close to 100% after 2 min of ECL, while
efficiencies over 50% for both of the gram-positive bacteria were
h different durations of ECL. (For interpretation of the references to colour in this figure
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obtained after 5 min. The lysis efficiencies keep increasing over
time until an apparent equilibrium is achieved. Apparently, the cell
number measurement by fluorescent microscope showed the
efficient performance of ECL on cell lysis more straightforwardly,
due to the absence of complex factors related to DNA detection, e.g.,
potential DNA damage after release from cells and PCR inhibition.

4.2. pH effects on cell lysis and DNA extraction

To further understand how pH affects cell lysis and DNA
extraction, bacterial cells were treated by homogeneous alkaline
lytic reagent at various pH values, i.e., NaOH with varied concen-
trations of 0.1 mMe1 M, without ECL. E. coli and E. durans were
selected as models for gram-negative and gram-positive bacteria,
respectively. Homogeneous alkaline lysis is not efficient for
E. durans at all investigated pH values (10e14). The DCT values of
E. durans treated by NaOHwere all lower than 3.0 (data not shown),
while those extracted by the commercial kit were 11.6 as an
average. The DCT values of E. coli cells treated by NaOH at varied pH
from 10 to 14 as a function of contact times, are shown in Fig. 4.
E. coli cells were barely lysed at pH 10 with DCT values close to 0,
while higher DNA extraction efficiency was observed at pH 11 with
DCT values around 2. Among all the conditions, the highest DNA
extraction efficiency for E. coli cells was achieved at pH 13 with an
averaged DCT value of 5.6 at 2 min contact time. However, DCT
values decreased at contact times longer than 2 min. When pH
increased to an even higher level, i.e., at pH 14, CT values of NaOH
treated cells were even lower than initial samples after 2 min of
contact time, although the samples were neutralized after a defined
contact time. Consequently, DCT values were negative and cannot
be seen in Fig. 4. This suggests that the DNA might be damaged by
high pH conditions above pH 13, which has an agreement with the
DNA damage observed in the ECL experiments with longer dura-
tions than 2 min. On the other hand, there was no decrease of DCT
values observed for NaOH treated E. coli cells at pH 12 within
contact times of 10 min. The DCT values at pH 12 were quite close to
those at pH 13 after 5 min of contact time and even out performed
those at pH 13 later on. Therefore, it appears that a pH between 12
and 13 may provide optimal conditions for DNA extraction from
bacterial cells; this result is consistent with a previously reported
optimal pH range of 11.5e12.5 for cell lysis [8,55]. Plasmid DNA
isolation via alkaline lysis was also previously reported to be most
efficient within a pH range of 12.0e12.6 [56,57]. These values are
also in good agreement with the bulk pH (12.47e12.76) measured
under optimized conditions during ECL extraction.

As a comparison, the highest averaged DCT value achieved by
alkaline lysis (pH 13, 2 min) is 4.2 less than of that measured after
Fig. 4. DCT values of E. coli cells under varied pH conditions as a function of contact times, w
ECL.
1 min of ECL, as highlighted in Fig. 4. And E. coli cells extracted by
the commercial kit in this pH test were detected as similar DCT
values (9.7 ± 0.3) to those treated by 1 min of ECL. Besides, ECL is
also capable of lysing gram-positive bacteria while conventional
alkaline lysis cannot. Although the released DNA could be damaged
by the high pH raised with longer ECL duration, the lysis of bacterial
cells could also be benefited from the local high pH generated at
cathode during ECL process. These results emphasize that the ECL
method is faster and much more efficient for DNA extraction from
gram-negative and gram-positive bacterial cells, compared to
alkaline cell lysis.

4.3. Simulations of pH profiles at the cathode

To gain more mechanistic insight of the ECL process, pH profiles
for the vertical mid-plane of the cathodic chamber were simulated
for different contact times and are shown in Fig. 5a. These simu-
lations show that the local pH value near the cathode surface in-
creases rapidly within 1 min of ECL and that an ideal pH range for
cell lysis (pH 12e13) is predicted. After 2 min of ECL operation, the
pH in most of the upper volume reaches 13. This simulation is
consistent with the DNA loss observed during ECL tests on different
bacteria. Hydrogen gas is also generated, as protons are consumed
and OH� is produced at the cathode surface. Gas evolution helps
mixing the solution (the calculated flow field is shown in Fig. S7),
which in turn leads to a larger volume that has a suitable pH for cell
lysis after 30 s and 1 min of operation (Fig. 5a). The simulated pH
profiles for the bulk-phase cathodic solutions as a function of time
is shown in Fig. 5b. The simulation results are in line with the
measured bulk pH values of the cathodic effluents during different
ECL tests. The results also highlight that there is a higher pH at the
cathode surface than in the bulk electrolyte. It is speculated that
cells were efficiently lysed near the cathode surface as we discussed
earlier in this study. The released DNA molecules with negative
charge were likely repelled from the cathode, and subsequently
preserved in the bulk electrolyte at a lower pH. This may explain
the much more efficient DNA extraction by ECL than that by direct
alkaline lysis, which was found in the pH effect tests (vide supra).
Detailed understanding of this phenomenon awaits further study.

4.4. Electrochemical cell lysis in environmental water

Fig. 6 shows the optimal DCT values of total bacteria in natural
pond water, treated and untreated latrine wastewater treated by
ECL, with the comparison of those of E. coli (~108 cells/mL) in
50 mM Na2SO4 treated by ECL (vide supra). The initial cell con-
centrations of total bacteria were approximately 8.0 � 105,
ith comparison of those extracted by the commercial DNA extraction kit and 1 min of



Fig. 5. Computational simulation results for the distribution of pH in the cathodic ECL chamber and corresponding pH values of cathodic effluents. (a) Simulation of pH value
distribution for the vertical mid-plane in the cathodic chamber with the cation exchange membrane on the left and the cathode on the right. (b) Modeled and measured pH for the
cathode effluents as a function of electrochemical reaction time.

Fig. 6. DCT values of bacterial cells in 50 mM Na2SO4, pond water (PW), treated
wastewater (treated WW) and untreated wastewater (untreated WW) extracted by
ECL and the commercial kit.
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3.0 � 106, 2.1 � 107 cells/mL for pond water, treated and untreated
wastewater, respectively, as measured by qPCR with the calibration
curve of E. coli (shown in Fig. S3). The optimal DNA extraction ef-
ficiency achieved DCT values of 4.4 ± 0.4 for pond water after 1 min
of ECL. For the treated and the untreated wastewater samples, the
optimal DCT values of 2.6 ± 0.3 and 4.1 ± 0.2 were obtained after
10 min and 15 min of ECL, respectively. These results show that the
bacteria in both pond water and wastewater were rapidly and
efficiently lysed by ECL with DCT values comparable to those ob-
tained with the commercial kit. The differences of DCT values be-
tween ECL and the commercial kit are generally less than 0.3 for
different water types. Clearly, the required lysis/extraction times for
environmental water samples are longer than those for pure cell
samples reported herein. It could be mainly taken account of the
more complex composition in real environmental water samples
which has buffer capacity. Therefore, it takes longer reaction time
to achieve the ideal pH range for cell lysis in the cathodic chamber.
For example, it was reported previously that there was 17 mM of
HCO3

� þ CO3
2�, 0.6 mM of total phosphate and 13 mM of NH4

þ, with
buffer capacity of 0.79, 0.09 and 2.71 mequiv/(L, pH), respectively,
for the wastewater collected from the same onsite electrochemical
wastewater treatment system as this study [58]. However, the ECL
process is still much faster than most of the conventional DNA
extraction kits (vide supra), additionally with muchmore simplified
operational procedure.

The optimized DNA extraction efficiencies for the environ-
mental water samples by ECL treatment were in a pH range from 12
to 13. These results suggest that the pH can be used as an indicator
to determine the optimal residence time of ECL for DNA extraction
in the field. Additionally, in this study, a centrifugation step (at
10,000g for 10min) was applied after each ECL reaction because the
cell lysis by PCR process needs to be excluded for measuring the
DNA extraction efficiency by ECL per se. The thermal cycling process
of PCR could also cause some of the cells lysed and thereby
increased the DNA extraction efficiency. Fig. S8 shows that the qPCR
CT values are 0.4e1.0 lower for different environmental water
samples without any further treatment after the optimized ECL
than with the centrifugation step. This result is somewhat counter-
intuitive since higher CT values (lower DNA concentrations) were
expected for the samples without post-ECL treatment due to the
potential inhibitors in environmental samples. However, any post-
treatments after lysis could also cause sample loss, which might
explain the lower CT values (higher DNA concentrations) detected
in this study. Therefore, for application of ECL in the field, the
centrifugation after ECL might not be necessary. In case that a
treatment might be necessary to reduce PCR inhibition, a filtration
step with a 0.2 mm syringe filter (13 mm, nylon, Pall Corporation,
USA) was also tested after ECL as an alternative post-treatment to
centrifugation. Because it is much easier to be realized in the field.
Centrifugation and filtration as a post-ECL step resulted in no sig-
nificant differences of qPCR CT values (P ¼ 0.62, 0.25 and 0.48 for
pondwater, treated and untreatedwastewater, respectively) for the
three different types of environmental water samples (shown in
Fig. S8).
5. Conclusion

In summary, we developed an ECL device for the rapid extrac-
tion of DNA from waterborne bacteria, using low-cost materials.
The efficient cell lysis by ECL was demonstrated for both gram-
positive and gram-negative bacteria with a short but optimal lysis
duration of 1 min, at a constant DC of 40 mA (~5 V of voltage).
Extraction by ECL was more efficient and quicker than direct
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alkaline lysis. The successful application of ECL on different envi-
ronmental water samples suggests the potential application of ECL
as a rapid and reagent-free sample preparation technique with a
low voltage requirement for microbial monitoring in the field. In
addition, ECL as applied to cell lysis has the potential to significantly
reduce the overall cost for nucleic acid-basedmicrobial monitoring.
For example, a conventional DNA extraction kit, based on chemical
lysis, e.g., PureLink® Genomic DNAMini Kit, costs approximately $3
per preparation, using the required instrumentation (e.g., centri-
fuge ($2000e20,000 provided by Eppendorf) and vortex mixer
(>$300 available through VWR)). The bead beating method costs
ca. $2 per sample prep using 0.1 mm diameter beads (Gene Rite,
LLC) and a bead milling instrument with a price range from $300 to
$12,000 [59e63]. The ECL device developed in this study, on the
other hand, can be produced for as little as $4.20 per unit. The
estimated total cost includes a) polycarbonate reactor ($0.44), b) an
anode ($0.8 for an IrO2/Ti anode with an estimated lifetime of
4.3 yrs at 25 mA/cm2, as reported previously [30]), c) $0.54 for the
Ti-cathode and, d) a cation exchange membrane ($2.42 for Nafion
117 with estimated lifetime of >60,000 h [64,65]). For field sam-
pling, the ECL device can be powered by 4 AA batteries that should
cost less than $1 for typical alkaline batteries.
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ABSTRACT: In this work, we introduce an asymmetric
membrane as a simple and robust nanofluidic platform for
digital detection of single pathogenic bacteria directly in 10
mL of unprocessed environmental water samples. The
asymmetric membrane, consisting of uniform micropores
on one side and a high density of vertically aligned
nanochannels on the other side, was prepared within 1 min
by a facile method. The single membrane covers all the
processing steps from sample concentration, purification,
and partition to final digital loop-mediated isothermal
amplification (LAMP). By simple filtration, bacteria were
enriched and partitioned inside the micropores, while inhibitors typically found in the environmental samples (i.e.,
proteins, heavy metals, and organics) were washed away through the nanochannels. Meanwhile, large particles, indigenous
plankton, and positively charged pollutants in the samples were excluded by using a sacrificial membrane stacked on top.
After initial filtration, modified LAMP reagents, including NaF and lysozyme, were loaded onto the membrane. Each pore
in the asymmetric membrane functioned as an individual nanoreactor for selective, rapid, and efficient isothermal
amplification of single bacteria, generating a bright fluorescence for direct counting. Even though high levels of inhibitors
were present, absolute quantification of Escherichia coli and Salmonella directly in an unprocessed environmental sample
(seawater and pond water) was achieved within 1 h, with sensitivity down to single cell and a dynamic range of 0.3−10000
cells/mL. The simple and low-cost analysis platform described herein has an enormous potential for the detection of
pathogens, exosomes, stem cells, and viruses as well as single-cell heterogeneity analysis in environmental, food, and
clinical research.
KEYWORDS: asymmetric membrane, nanofluidics, pathogen detection, digital LAMP, single-molecule counting

Intestinal parasitic infections and diarrheal diseases, which
are caused by waterborne pathogens, have become a
leading cause of morbidity and mortality, owing to

insufficient hygiene and poor sanitation.1,2 More than 2.2
million people die each year because of waterborne pathogen
infections, with a resulting economic loss of nearly 12 billion
U.S. dollars annually worldwide.3 Given the low infectious
dose of many waterborne pathogens, the presence of even a
single bacterium in the environment may pose a serious health
risk.4 According to the U.S. Environmental Protection Agency
(EPA), the concentration of Escherichia coli (E. coli) and
Enterococci in environmental recreational samples should be
less than 1.26 and 0.35 CFU/mL, respectively.5 These strict
standards require a detection method that is not only
ultrasensitive but also quantitative and precise.

Culture-based methods remain the “gold standard” for
bacteria identification and titration, although they require days
to obtain the results and hardly differentiate bacteria at the
species levels.6 Quantitative real-time polymerase chain
reactions (PCR) can shorten the time to several hours, but it
requires expensive instrumentation and is poorly suited for
absolute quantification.7 Droplet-based microfluidics have
emerged as promising methods for digital cell quantification,
as well as single-cell heterogeneity analysis.8,9 In this case, each
cell is encapsulated into an individual droplet, and the specific
cell information (e.g., specific DNA,10−18 RNA,19−23 pro-
teins,24−26 enzymes,27 metabolism,28,29 and antibodies30,31)
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will be converted to a fluorescence signal and thus enable
direct counting.32 This “digital format” allows simple, rapid,
and multiplexed detection of specific cell strains in the samples
from commensal ones.33 However, the concentration of
pathogenic bacteria in environmental samples is typically
beyond the detection limit of most microfluidic devices due to
their limitation to microliter samples. To detect bacteria less
than 1 cell per mL, at least several milliliters of samples have to
be analyzed, no matter how sensitive the detection method is.
For most chips, it would take several hours or days for bulk
sample loading (even more for nanofluidics), which is not only
a waste of time and precious bioreagents but also inactivate
biochemical reaction.34,35 In addition, multiple sample
pretreatment steps are still required for crude samples to

remove inhibitors, exclude particles, enrich bacteria, or extract
DNA before ultimate analysis. Furthermore, accessing micro-
fluidics, especially nanofluidics, typically calls for elaborate chip
fabrication and sophisticated fluid control (e.g., pump, vacuum,
centrifuge, or valve), limiting their accessibility to users
without related expertise and instruments.36

In this work, instead of using conventional micro/nano-
fluidic chips, we report on the use of a membrane for the
digital detection of single bacteria in 10 mL of unprocessed
environmental water samples within 1 h. The complete
heterogeneous membrane system is composed of a sacrificial
prefilter and an asymmetric micro/nanochannel membrane, as
illustrated in Figure 1. The asymmetric membrane, containing
highly ordered micropores (25 μm) on the top and a high

Figure 1. Schematic illustration of heterogeneous membrane for digital bacteria detection from complex environmental samples.

Figure 2. (a) Photograph of the asymmetric membrane. (b) SEM top-view image of the asymmetric membrane. (c) High-magnification top-
view SEM image of one micropore. The inset shows the magnified image with a scale bar of 1 μm. (d) Cross-sectional SEM image of the
asymmetric membrane. The inset shows the magnified image of the vertically aligned nanochannels. (e−h) Top-view SEM images of
asymmetric membranes with other pore size combinations, 10 μm/200 nm (e), 25 μm/1 μm (f), 25 μm/2 μm (g), and 25 μm/8 μm (h). The
scale bars are 5 μm. (i) Fluorescence microscope image of an asymmetric membrane after sample loading.
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density of vertically aligned nanochannels (400 nm) on the
bottom, was prepared within 1 min by glass-transition-induced
bonding. The strong sealing and vertical orientation of
nanochannels ensure the perfect isolation of each pore without
cross-contamination. During the filtration, large particles and
positively charged pollutants are removed by the sacrificial
prefilter on the top, while bacterial cells can pass through and
then concentrate inside the micropores. Meanwhile, small
inhibitors typically found in environmental samples, such as
proteins, humic acids, organics, and heavy metals, passed
through the nanochannels and washed away. After initial
filtration, modified loop-mediated isothermal amplification
(LAMP) or reverse transcription-LAMP (RT-LAMP) reagents,
including NaF and lysozyme, are loaded into the asymmetric
membrane for direct, rapid, and efficient amplification of a
single bacterium within the isolated pores. By direct counting
of positive pores, absolute quantification of E. coli and
Salmonella in unprocessed seawater and pond water samples
was achieved within 1 h, with a dynamic range from 0.3 to
10000 cells/mL. In contrast, direct bacteria detection in these
environmental samples by conventional methods completely
failed. Furthermore, the membranes are inexpensive (less than
0.1 U.S. dollar) and easily prepared on a large scale. Therefore,
they can be thrown away (disposable) after each use, avoiding
subsequent LAMP contamination.

RESULTS AND DISCUSSION
Asymmetric Membrane Preparation. The asymmetric

membrane with large micropores on one side and high-density
nanochannel arrays on the other side is the key component of
the complete heterogeneous membrane system. To function as
a nanofluidic system for digital bacteria counting, the
asymmetric membrane should share the following features:
(i) All the uniform micro/nanochannels should be vertically
aligned without interconnection. (ii) The micropores on one
side of membrane should be large enough (>20 μm) for visual
counting, and the nanochannels on other side should be
smaller than 400 nm for bacteria capture. (iii) A strong
bonding is necessary between the microchannels and nano-
channels. (iv) To enable rapid manual filtration, a high density
of nanochannels was required to lower the applied pressure
and increase the flow rate. (v) The membrane should possess
excellent mechanical/chemical/thermal stability.
Track-etching technique has become the main route for

preparing symmetric membranes containing numerous verti-
cally aligned nanochannels.37 To obtain asymmetric mem-
branes, many strategies have been employed, such as
asymmetric etching,38,39 asymmetric modification,40,41 or
asymmetric combination.42,43 However, most preparation
processes are complicated and not suitable for conventional
laboratories. Herein, we report a simple and robust method for
the preparation of asymmetric membranes utilizing conven-
tional symmetric track-etched membranes. Two symmetric
track-etched polycarbonate (PC) membranes (commercially
available) are stacked together and then heated at 165 °C on a
hot plate for 1 min (see schematic illustration in Figure S1 and
details in the Experimental Section). After the short heating
duration, the two membranes are irreversibly bonded together.
Figure 2a shows a photograph of an asymmetric membrane
with perfect sealing. We attribute the bonding mechanism to
the glass transition properties of the thermoplastic material.
The polycarbonate has a glass transition temperature of ∼150
°C.44 Above this temperature, the membranes undergo a

transition from a glassy state to a rubbery state, where they
become soft while the micro/nanostructure remains un-
changed. The long-range motion of the polymer chains in
the rubbery state facilitates the tight adhesion of two
membranes. Figure 2b shows a top-view scanning electron
microscopy (SEM) image of the asymmetric membrane,
confirming the presence of uniform micropores on its top
surface. The pore size was measured to be 25 μm, and the pore
density was about 104 pores/cm2. The pore size was uniform,
as confirmed by the size distribution results (see Figure S2).
Magnification of the images reveals the high density of
nanochannels, with diameters of 400 nm, within each
micropore (Figure 2c). Compared to the original membranes,
the morphology of micropores and nanochannels has not
changed after the heat treatment (see detailed characterization
in Figure S3). The cross-sectional view SEM image of the
asymmetric membrane also demonstrates the presence of
micropores on the top and vertically aligned nanochannels at
the bottom, as shown in Figure 2d. The two membranes were
indeed bonded tightly without any gap. It should be noted
that, in these experiments, a strong bonding is crucial for the
asymmetric membrane to prevent it from splitting during
filtration with applied pressure. The successful sealing and
parallel perpendicular nanochannels ensure the isolation of
each pore and prevent cross-contamination. In addition to the
mentioned size and materials, the asymmetric membranes
combined with other pore size (range from 200 nm to 30 μm)
and other materials (polyester) could also be successfully
prepared, as shown in Figure 2e−h and Figure S4.
The wettability of membranes before and after thermal

treatments was also tested, as shown in Table S1. The contact
angle of LAMP solution on PC membranes increased slightly
after thermal bonding, from 40 ± 3 to 50 ± 2° for membranes
with 25 μm pore size and from 47 ± 3 to 54 ± 4° for
membranes with 400 nm pore size. The low contact angles
indicate that solutions can easily enter the micropores and
nanochannels. Reagents could be loaded into each pore of the
prepared asymmetric membrane, as illustrated in Figure S5
(see also the Experimental Section for details). Twenty-five
microliters of sample was added onto the asymmetric
membrane. Due to the capillary forces, the pores were easily
wetted. The wetted membrane was then sealed between two
polydimethylsiloxane (PDMS) films to remove residual
reagents from the membrane surface. In order to prevent
water evaporation, the top piece of PDMS was peeled off,
followed by addition of mineral oil to cover the whole
membrane. As shown in the fluorescence image (Figure 2i),
each pore was filled with 13 pL of sample solution. A wide-
view image is also shown in Figure S6, illustrating the
successful loading and partitioning of the sample. To verify
that no cross-contamination exists between pores, photo-
bleaching tests were conducted.12 Membranes loaded with
fluorescent solution were exposed to UV light for 3 min,
resulting in a patterned area with relatively weak fluorescence
(see Figure S7). If cross-contamination occurred, dye
molecules would diffuse between pores and the bleached
pattern would vanish with time. However, in our case, the
pattern did not change after the illumination and an extended
period of observation. We repeated these experiments several
times, using different membranes at different positions, and
similar results were obtained. The perfect isolation of pores can
also be proven by the following LAMP experiments on
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asymmetric membranes, as discussed later, at low bacteria
concentration (see Figure S8).
Filtration. The asymmetric membrane was applied for the

filtration of an E. coli sample using a syringe pushed by hand.
Due to the high density of microchannels and nanochannels,
water passed through the membrane rapidly, and a 1 mL
sample was filtered within 5 s. The air in the syringe behind the
solution could push all the sample out of the filter without a
dead volume. Meanwhile, the numerous parallel nanochannels
in the membrane also alleviated clogging, as the occlusion of
any single nanopore resulted in the diversion of the flow to
nearby pores.45 After filtration, E. coli were randomly captured
inside each micropore, whereas proteins, organics, nucleic acid,
ions, and other small molecules passed through the nano-
channels and were washed away.46,47 Figure 3a shows stained
E. coli (green dots) within the circular micropores. All the
bacteria were captured and distributed randomly inside the
micropores. No bacteria were found outside the pores, even if a
relatively high concentration was used (Figure S9). At this
concentration, an average of 2.2 E. coli were trapped in a single
pore, and the statistic number of E. coli in each pore was also fit
well with Poisson distribution (see Figure 3b). To test the
capture efficiency, we measured the concentration of E. coli in
the original sample, as well as in the filtrate, by standard
bacteria culture and fluorescence enumeration (see Exper-
imental Section). Results show that nearly 99.9% of E. coli were
captured on the membrane (Figure S10). This excellent
capture efficiency resulted from the outstanding size exclusion
and electrostatic repulsion of the nanochannels, even under
high flow rates.
In addition to bacterial enrichment, the membrane also

provides an easy way for sample purification. During filtration,
small inhibitors or interference molecules in the samples could
be washed away through the nanochannels. However, for

complex environmental samples, the presence of various large
particles and organisms would easily block the asymmetric
membrane or inhibit the following enzyme-driven nucleic acid
amplification processes. To solve this challenge, a sacrificial
track-etched PC membrane with uniform microchannels and
negatively charged channel surface was introduced and stacked
above the asymmetric membrane for sample prefiltration. The
function of this sacrificial layer was to exclude all large particles
and adsorb positively charged matters but not to obstruct the
passage of target bacteria. Therefore, we tested the E. coli
permeation rate through the prefilter. As shown in Figure 3c
(blue circles), the track-etched PC membranes exhibit a nearly
100% permeation rate for E. coli, even when their pore size was
only 2 μm, which was only slightly larger than the size of E. coli
(∼1 μm). Upon further decrease of the pore size to 1 μm, the
permeation of E. coli was significantly decreased to 5%,
exhibiting a perfect cutoff curve for bacterial sieving. This sharp
cutoff property was indeed a characteristic behavior of
isoporous membranes (membranes with highly ordered
channels),48 as track-etched PC membranes have ideal cylinder
channel arrays and well-defined pore sizes. In contrast,
conventional nylon membranes and PES membranes, which
have irregular and intercrossed pore structures, show a poor
cutoff performance. Bacteria were easily trapped within the
pore networks of the nylon and PES membranes even when 5
μm pore size membranes were used (see Figure 3c). The sharp
cutoff provided by PC membranes also offers the opportunity
to collect bacteria/viruses/exosomes at different layers if
membranes with different channel sizes were to be connected
in sequence.49

For digital single-cell detection and analysis, the cells should
be dispersed homogeneously on the entire asymmetric
membrane. To verify this, we conducted finite element
analysis, using COMSOL to compute the flow field, as well

Figure 3. Bacteria capture, purification, and partition by sample filtration. (a) E. coli capture images. Green dots represent the stained E. coli,
and the circles are the micropores. (b) Comparison between theoretical Poisson distribution and experimental E. coli distribution results in
each pore. (c) E. coli permeation rate versus pore size. The blue points refer to PC membranes, and the green and brown points refer to PES
and Nylon membranes, respectively. (d) Numerical simulation of fluidic flow profile inside the filter through the asymmetric membrane. (e)
Simulated flow rate at each x position of the asymmetric membrane. Each peak represents the flow rate through one micropore. (f)
Simulated statistical number of particles at each x position of the asymmetric membrane.
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as particle trajectories when a solution passes through the
asymmetric membrane. Figure 3d shows the flow profile inside
the filter. The fluidic flow was dispersed before being passed
through the asymmetric membrane. To quantitatively inves-
tigate the transmembrane flow, the flow rates across the
membrane were recorded at each position. As shown in Figure
3e, a pulse-shaped curve was found, which can be attributed to
the water flow through the porous membrane. Each peak
represents the flow rate through one micropore. It can be seen
that the fluidic flow rate through all the pores was found to be
equal. However, other than water or small molecules, the cells
in the fluid are subject to additional drag force and inertial
force, resulting in different cell motion profiles. Therefore,
particle trajectories were also simulated. The size of particles
was set to 1 μm, and density was 1100 kg/m3, similar to the
parameters of E. coli.50 After particles were introduced at the
inlet, they dispersed well under the flow profile and were
captured inside the micropores (see Movie S1). The particle
counts along the membrane are almost constant, indicating
uniform distribution (Figure 3f). All of the results above
demonstrate that the micro/nanochannel membrane can be
applied for bacterial capture, concentration, purification, and
homogeneous partition via one-step simple filtration. In typical
droplet-based assays, cell encapsulation requires several hours,
especially for large sample volumes, causing cell sedimentation,
protein inactivation, or cell damage.34 The membrane filtration
here was completed within 5 s, which significantly reduces the
waiting time and circumvents these problems.
Digital Single Bacteria LAMP. After initial one-step

filtration, the prefilter was thrown away, and a LAMP reagent
mix (25 μL) was loaded inside each pore of the asymmetric
membrane as discussed above for in situ E. coli LAMP (see
Experimental Section). During 65 °C incubation, each pore of
the asymmetric membrane functioned as an individual
nanoreactor for template amplification, generating a bright
fluorescence if a target bacterium was inside. We chose LAMP
because it is fast and robust, without the need for thermal
cycling.51,52 However, as opposed to PCR, which applies a
preheating (95 °C) step to denature proteins or lyse cells, the
Bst polymerase used in the LAMP cannot withstand high
temperature. Therefore, single E. coli LAMP in an ultrasmall
nanoreactor was easily inhibited (Figure S11). Herein, we
report a modified assay for one-step single bacteria LAMP
within each pore.

To investigate in detail, we performed real-time LAMP
experiments in a tube, followed by polyacrylamide gel
electrophoresis. In order to mimic the concentration of
bacteria inside the pores, samples with high concentrations
of 108 cells/mL were used. As seen in Figure 4a, the reaction
for E. coli shows a very weak fluorescence, similar to that of the
negative control background. However, the gel electrophoresis
results indicate the target E. coli DNA was indeed successfully
amplified (Figure S12). A similar phenomenon was also
observed when attempting to detect Salmonella (Figure 4a).
Thus, false-negative results were likely caused by inhibitors in
the bacterial lysate, which attenuates the fluorescence signal. In
our current LAMP assay, a calcein-Mn2+ indicator was
employed for fluorescence reading because of its high signal-
to-background ratio. Before amplification, the calcein dye was
quenched by the Mn2+ and a weak fluorescence was observed.
After successful amplification, a large amount of DNA was
synthesized, yielding a substantial pyrophosphate as a by-
product. The pyrophosphate ions cause the precipitation of
Mn2+ and the subsequent release of calcein, thus generating a
bright fluorescence. We suppose that the false-negative results
were attributed to the pyrophosphatase found in bacteria. The
pyrophosphatase is a ubiquitous enzyme existing in most
organisms for energy metabolism.53 It is capable of hydrolyzing
pyrophosphate ions to phosphate ions, and thus Mn2+ will no
longer be precipitated.54 Therefore, the fluorescence of calcein
was always quenched. This assumption was confirmed by the
observation that no turbidity was observed for bacteria LAMP,
although its DNA was successfully amplified. The activity of
pyrophosphatase can be inhibited by fluoride ions.55 As shown
in Figure 4a, fluorescence was restored for E. coli and
Salmonella samples after including 2 mM NaF into the
LAMP reaction, which is nearly 10-fold higher compared to
the nontemplate negative control.
Robust single bacteria LAMP also requires efficient cell lysis.

Lysozyme is known for its ability to degrade the
peptidoglycans of the bacteria cell wall.56 However, the
presence of lysozyme in the reaction inhibits the PCR process
and should be removed before amplification.57 By including
lysozyme into the LAMP reaction, the bacterial lysis proceed
simultaneously during the isothermal amplification. Effective
lysis was proved by the real-time fluorescence results, which
shows a coincident amplification curve and the same time-to-
detection value for E. coli and its extracted DNA when
lysozyme was included (Figure 4b). Meanwhile, the

Figure 4. Single bacteria LAMP. (a) Fluorescence intensity after LAMP reaction in tube with different targets. Positive control used purified
E. coli DNA, and negative control had no template. (b) Real-time fluorescence measurements of the LAMP reaction in a tube with E. coli or
extracted DNA (by bead beating). Lysozyme was included in this reaction with a concentration of 0.1 mg/mL. (c) End-point fluorescence
image of membrane after LAMP using modified reagents.
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fluorescence enumeration results also demonstrate that almost
all of the E. coli disappeared after incubation with lysozyme in
the tube at 65 °C (see Figure S13). However, for the sample
containing lower bacterial concentration, lysozyme may not
work well and lysis efficiency decreased (Figure S14). This
issue can be addressed by the membrane system, as each single
bacterium encapsulated inside a small pore has an ultrahigh
concentration, regardless of the bulk bacteria concentration.
The modified LAMP mix including 2 mM NaF and 0.1 mg/

mL lysozyme was loaded onto the asymmetric membrane for
digital E. coli LAMP. As shown in Figure 4c, LAMP was
successfully performed on the membrane. The pores with
target bacteria inside generated a bright fluorescence, whereas
those without target bacteria showed a weak background
signal. The concentration of target bacteria in the sample can
be obtained by direct counting of the positive pores and
calibrated by Poisson distribution. The success rate for single
E. coli LAMP was as high as 97% (Figure S15). Nucleic acid
amplification in an ultrasmall chamber, especially with
nanoporous structures, is particularly challenging due to severe
adsorption of macromolecules or DNA.12 However, digital
nucleic acid amplification was still successfully performed in
our nanofluidic partitioned system with a high density of
nanochannels. As the bacteria were captured inside the pores
first and LAMP reagents were loaded subsequently, the lysis
process is restricted to each isolated pore, avoiding prerelease
of cell information. All these results demonstrate the successful

one-step single bacteria LAMP within each pore using a
modified LAMP mixture.

Anti-inhibition and Performance in Unprocessed
Samples. Raw environmental samples typically contain a
variety of complex chemical and biological components that
will affect the LAMP process. Direct detection of trace
amounts of bacteria in these unprocessed samples is difficult
and challenging. Herein, we attempted to detect and quantify
an extremely low concentration of spiked E. coli in a 10 mL
environmental sample directly, using the asymmetric mem-
brane LAMP system (mLAMP). Seawater samples were
collected from the Pacific Ocean near Santa Monica, CA.
When the sample was analyzed by mLAMP, the large particles,
sand, and planktons in the sample were retained by the
prefilter on top of the asymmetric membrane (Figure S16),
whereas the small inhibitory molecules were washed away
through the underlying nanochannels. Meanwhile, the trace
amounts of E. coli were concentrated in the micropores.
Successful quantification of the spiked E. coli in seawater was
achieved by mLAMP with a high recovery rate of 95%, as
shown in Figure 5a (mLAMP column). The high recovery rate
is attributed to full integration of the entire procedure on a
membrane system, which minimizes potential sample loss.
Meanwhile, no inhibition from the complex seawater matrix
was observed, as there were no significant differences for E. coli
quantification in seawater or in distilled water (p > 0.05). For
comparison, conventional digital LAMP was also performed

Figure 5. mLAMP performance in unprocessed environmental seawater samples. (a) Recovery of E. coli for different quantification methods
in DI water, seawater, or 10× diluted seawater. Recovery was defined as the percentage of E. coli detected in comparison to the originally
spiked concentration. The concentration of spiked E. coli in the sample was 50 cells/mL for mLAMP and digital LAMP, whereas that for
real-time LAMP was 5 × 104 cells/mL. (b) Comparison of measured E. coli concentrations to the spiked concentrations. The black points
were measured using 10 mL of seawater, and the blue point was obtained using only 1 mL of seawater. (c−g) End-point fluorescence images
of membranes after mLAMP analysis of seawater with a series of spiked E. coli concentrations. All the scale bars are 0.5 mm.
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for E. coli quantification in seawater. In this case, 22.5 μL of
LAMP reagent was mixed with 2.5 μL of the seawater sample
first and then loaded inside the pores of the membrane for
digital amplification. As seen in Figure 5a (digital LAMP
column), the LAMP reaction was completely inhibited, and
not a single positive pore was observed. This effect may be due
to the presence of high levels of inhibitors (heavy metals or
organic matters) in seawater. It should be noted that, in this
case, the concentration of inhibitors was already diluted 10
times by the LAMP reagents. The inhibition effect is still
significant when a further diluted seawater sample (10 times
dilution, abbreviated as 0.1×) was used. Only 50% of pores
show successful single bacteria LAMP, and the observed final
fluorescence was lower than normal. A severe inhibition
pattern was also observed for real-time LAMP performed in a
tube. Due to the poor sensitivity of real-time LAMP, a high
concentration of E. coli (5 × 104 cells/mL) was spiked in the
sample. However, the LAMP reaction was still totally inhibited
when raw seawater was used (Figure 5a, real-time LAMP
column). When a 10-fold diluted seawater sample was used,
the fluorescence appeared but with a significant time delay.
This delayed amplification resulted in an increased time-to-
detection value and, therefore, underestimated the target
concentration in the sample. All of these results demonstrate
the excellent performance of our mLAMP in terms of anti-
inhibition for direct digital bacteria detection in complex
samples.
mLAMP exhibits excellent performance toward absolute

quantification of E. coli at extremely low concentrations,
ranging from 0.3 to 10000 cells/mL, in seawater, with single-
cell sensitivity. As shown in Figure 5b−g, with more E. coli in
the sample, the membrane shows more positive pores. A good
linear correlation was observed between the detected absolute
number of E. coli and the actual number of cells spiked into the
sample. Because there is a large error for preparing a single cell
in the sample, the lower detection limit (LDL) is defined as the
concentration which would have a 95% chance of having at
least one bacterium in the sample and equals the concentration
of three bacteria per sample.58 The LDL in our case was 0.3
cells/mL. At this concentration, there were around three
positive pores visible on the whole membrane, corresponding
to 3 bacteria in the 10 mL sample (see Figure S17).
In addition, the detection of pathogenic Salmonella in turtle

pond water was also demonstrated by membrane-based RT-
LAMP (mRT-LAMP). Reptiles, like turtles, may carry
Salmonella bacteria, which cause diarrhea, stomach pain,
nausea, vomiting, fever, and headaches.59 Indeed, the multi-
state outbreak of Salmonella in the United State during 2015
and 2017 was linked to contact with turtles carrying
Salmonella.60 We collected the sample from the California
Institute of Technology (Caltech) turtle pond. The turtle pond
water was more turbid with suspended green algae and mud.
These particles were successfully removed by the prefilter and
nanochannels (see Figure S16). Primers specific to the gene
marker STY1607 were used to detect the corresponding
mRNA as well as DNA.61 Due to the variations of mRNA
copies from cell to cell, it is hard to quantify target cells by
detecting the number of mRNAs. However, mRT-LAMP
circumvents these difficulties as each Salmonella bacterium was
encapsulated inside a single pore, and thus, the contained
nucleic acids, no matter how many, were amplified, resulting in
a bright fluorescence. Absolute quantification of spiked

Salmonella in pond water was realized for 3−10000 cells/mL,
as shown in Figure S18.

CONCLUSION
In this work, we present the rapid, sensitive, and precise
quantification of single pathogenic bacteria in milliliters of
unprocessed environmental samples on an asymmetric
membrane through simple filtration and LAMP amplification.
An asymmetric membrane with micropores on one side and
nanochannels on the other side was prepared within 1 min
without the need for specialized equipment or harsh
conditions. The membrane was capable of bacteria capture,
concentration, purification, partition, lysis, and digital LAMP
without off-membrane sample treatments. Even in unprocessed
environmental sea and pond water with a high level of
inhibitors, direct quantification of E. coli and Salmonella was
realized with a sensitivity down to single cell and dynamic
range of 0.3−10000 cells/mL.
Compared with other digital single-cell detection methods,

the membrane LAMP system, mLAMP, exhibits many
advantages: (i) Ten milliliter samples can be processed on
the membrane within seconds, while still keeping minimum
consumption of precious bioreagents. (ii) All assay steps
including bacteria capture, concentration, purification, parti-
tion, and digital LAMP were integrated onto a piece of
membrane without the need for off-membrane sample
treatments. This significantly reduces potential sample loss
and simplified the entire procedure. (iii) With the modified
assay, mLAMP could quantify bacteria at concentrations down
to 0.3 cells/mL in unprocessed environmental samples within
1 h, even though a relatively high level of inhibitors was
present. (iv) All experiments were performed on low-cost and
disposable commercial membranes without requiring elaborate
chip fabrication or material design. (v) No pump, vacuum,
centrifuge, or other laboratory hardware is required for field
analysis.
We believe this simple membrane system offers many

promising opportunities for laboratories, even without micro-
fabrication facilities, to perform digital quantification, single-
cell analysis, and other biochemical assays with high
throughput. In the future, membranes could be directly sealed
by an adhesive film and imaged by a smartphone to increase
the system simplicity for point-of-care diagnostics.62,63 In
addition, advanced micro/nanochannel membranes with novel
functions could also be integrated into the digital membrane
system, like nanopore-based DNA sequencing, DNA trans-
location, molecular exchange, cell electroporation, or cell
lysis.64 Furthermore, the asymmetric membrane could be
paired with paper-based analytical devices for complex sample
manipulation and detection.62,65 We believe the heterogeneous
membrane can serve as an ideal low-cost and simple platform
for the rapid detection and analysis of any markers in biological
samples, including nucleic acids, bacteria, circulating tumor
cells, stem cells, exosomes, viruses, and proteins.

EXPERIMENTAL SECTION
Chemicals and Materials. All LAMP reagents were purchased

from New England Biolabs (Ipswich, MA), and all primers were
ordered from Integrated DNA Technologies (Coralville, IA), unless
otherwise mentioned. Calcein, MnCl2, as well as acids were purchased
from Sigma-Aldrich (St. Louis, MO). Lysozyme, SYBR Green, and
culture media were obtained from ThermoFisher Scientific (San Jose,
CA). Track-etched PC membranes, PES membranes, and Nylon
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membranes were purchased from Sterlitech Corporation (Kent, WA).
Sylgard 184 silicon elastomer kit, consisting of a prepolymer base and
a curing agent, was obtained from Dow Corning (Midland, MI).
Cell Culture. All bacterial strains were purchased from the

American Type Culture Collection (ATCC, Manassas, VA). E. coli
(ATCC 10798) was cultivated in Luria−Bertani broth in the shaking
incubator for ∼14 h at 37 °C. Salmonella typhi (CVD 909) was
cultivated in tryptic soy broth with 1 mg/L of 2,3-dihydroxybenzoate
in the incubator for ∼14 h at 35 °C. The concentration of used
bacteria suspensions was measured by fluorescence enumeration or
standard bacteria culture. For fluorescence enumeration, a bacterial
sample was first stained with 1× SYBR Green for 30 min, followed by
filtration through a commercial PC membrane with a 0.2 μm pore
size. The cell number was then counted under a fluorescence
microscope (Leica DMi8). For bacteria culture assays, bacteria
concentrations were quantified by spreading 20 μL of samples on
corresponding agar plates, incubating them for 12 h at the respective
temperature, and counting the colony-forming units (CFU). DNA
extraction was performed using a commercial bead beating tube
(GeneRite, NJ, USA) or using the PureLink DNA extraction kit
(ThermoFisher Scientific) following their instructions.
Preparation of Asymmetric Membranes. To prepare the

asymmetric membrane, two symmetric track-etched PC membranes
with channel size sizes of 25 μm and 400 nm were stacked and then
placed on the top of a thin PDMS film, as illustrated in Figure S1.
After being heated at 165 °C on a hot plate for 1 min, these two
membranes were irreversibly bonded together. The PDMS films were
used to prevent thermal deformation of the membranes at high
temperature. PDMS films were prepared by mixing their precursor
and curing agent in a ratio of 10:1 and heating the mixture to 75 °C
for 1.5 h.
Some commercial PC membranes were coated with polyvinylpyr-

rolidone (PVP). This hydrophilic coating must be removed first
because it affects the LAMP reaction. PVP removal was accomplished
by dipping membranes in 10% acetic acid for 60 min, followed by
heating to 120 °C for 30 min.66

LAMP Assay. The 25 μL of modified LAMP mix for digital single
bacteria LAMP contained 1× isothermal buffer, 6 mM total MgSO4,
1.4 mM dNTP, 640 U/mL Bst 2.0 WarmStart polymerase, 1.6 μM
FIB and BIP, 0.2 μM F3 and B3, 0.8 μM LF and LB, 1.5 mg/mL BSA,
50 μM calcein, 1 mM MnCl2, 2 mM NaF, and 0.1 mg/mL lysozyme.
For RT-LAMP, WarmStart RTx reverse transcriptase was also added
to a final concentration of 300 U/mL. The primers for E. coli were
designed to be specific to a conserved region on the malB gene,67

whereas primers for Salmonella were specific to gene marker
STY1607.61 Their sequence is shown in the Supporting Information.
Primer specificity has already been demonstrated and published.61,67

Thus, no selectivity tests (toward other bacteria) were conducted in
this study.
Digital Single Bacteria Detection on Membranes. The

asymmetric membrane with a sacrificial PC membrane (2 μm pore
size) on top was put into a commercial filter holder (Swinnex, Kent,
WA), and 1−10 mL of environmental sample with spiked bacteria was
filtered through it using a syringe pushed manually. After filtration, the
sacrificial prefilter membrane was thrown away, and 25 μL of modified
LAMP mix was added on the top of asymmetric membrane. The
wetted membrane was then sealed between two pieces of PDMS film.
Subsequently, the top PDMS was peeled off, followed by adding
mineral oil and a frame-seal (Bio-Rad, Hercules, CA) to cover the
whole membrane. The membranes were incubated at 65 °C on a hot
plate (MJ Research PTC-100, Watertown, MA) for 40 min. After
amplification, the fluorescence images of the membrane were taken by
a fluorescence microscope (Leica DMi8) using a 4× objective.
Positive pores were counted using ImageJ (NIH) software and
calibrated by Poisson distribution. The total number of pores can also
be counted using ImageJ because the negative one also shows a weak
fluorescence. However, in this study, the total number of pores was
simply estimated based on porosity (1 × 104 pores/cm2). Each sample
was tested at least three times.

For real-time LAMP performance in the tube, the LAMP assay was
premixed with 2.5 μL of seawater first and incubated at 65 °C using
an Eppendorf RealPlex2. Fluorescence intensity of the reaction was
monitored every minute for 60 min. For conventional digital LAMP,
the LAMP assay mixture (premixed with a 2.5 μL seawater sample)
was loaded into each pore of the asymmetric membrane and
incubated at 65 °C for 40 min for digital LAMP analyses.

Environmental Samples. Seawater samples were collected from
the Santa Monica beach in California. Cultured E. coli samples were
spiked with a final concentration of 0.3 to 1 × 104 cells/mL and
allowed to equilibrate for 1 h before analysis. The turtle pond water
was collected from the turtle pond at the California Institute of
Technology (Caltech), and cultured Salmonella was spiked in with a
final concentration of 3 to 1 × 104 cells/mL.

Characterization. Top-view and cross-sectional view SEM images
were obtained with a ZEISS 1550VP field-emission scanning electron
microscope. Before analysis, samples were sputtered with 10 nm Pd.
Wettability of the membrane was measured using a contact angle
goniometer equipped with an AmScope microscope camera model
MU300. A drop of LAMP mix was placed on the surface of the
membranes. After 10 s, the image was captured and then analyzed
using ImageJ.

COMSOL Simulation. Finite element modeling was carried out
using the commercial software COMSOL Multiphysics (COMSOL
Inc., Burlington, MA). In our simulations, the fluid flows were
considered as water with a density of 1 × 103 kg/m3 and a dynamic
viscosity μ of 1 × 10−3 Pa·s. The fluid geometry during sample
filtration was represented by a 2D model. The fluid flow passing
through the asymmetric membrane was represented by two layers,
each with a thickness of 25 μm and diameter of 13 mm. The diameter
and center-to-center distance of the micropores in the upper layer
were 25 and 225 μm, respectively. The diameter and center-to-center
distance of the nanochannels in the bottom layer were 400 nm and 2
μm, respectively. The velocity of fluid at the inlet was set to 0.0318
m/s. The steady-state laminar flow profile throughout the fluid
geometry was calculated first using the Navier−Stokes equation.
Subsequently, a fixed amount of 1 μm particles was placed at the
sample inlet for calculations of their trajectories using a particle
tracing model. The density of the particles was set to 1100 kg/m3,
similar to that of E. coli. The trajectories of the particles were
calculated, and thus the distribution of particles along the membrane
was measured.
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A B S T R A C T

Even though numerous methods have been developed for the detection and quantification of waterborne pa-
thogens, the application of these methods is often hindered by the very low pathogen concentrations in natural
waters. Therefore, rapid and efficient sample concentration methods are urgently needed. Here we present a
novel method to pre-concentrate microbial pathogens in water using a portable 3D-printed system with super-
absorbent polymer (SAP) microspheres, which can effectively reduce the actual volume of water in a collected
sample. The SAP microspheres absorb water while excluding bacteria and viruses by size exclusion and charge
repulsion. To improve the water absorption capacity of SAP in varying ionic strength waters (0–100 mM), we
optimized the formulation of SAP to 180 g⋅L−1 Acrylamide, 75 g⋅L−1 Itaconic Acid and 4.0 g⋅L−1 Bis-Acrylamide
for the highest ionic strength water as a function of the extent of cross-linking and the concentration of counter
ions. Fluorescence microscopy and double-layer agar plating respectively showed that the 3D-printed system
with optimally-designed SAP microspheres could rapidly achieve a 10-fold increase in the concentration of
Escherichia coli (E. coli) and bacteriophage MS2 within 20 min with concentration efficiencies of 87% and 96%,
respectively. Fold changes between concentrated and original samples from qPCR and RT-qPCR results were
found to be respectively 11.34–22.27 for E. coli with original concentrations from 104 to 106 cell·mL−1, and
8.20–13.81 for MS2 with original concentrations from 104 to 106 PFU·mL−1. Furthermore, SAP microspheres can
be reused for 20 times without performance loss, significantly decreasing the cost of our concentration system.

1. Introduction

Waterborne pathogens, including various pathogenic bacteria,
viruses, and protozoa, are responsible for a series of diseases, and thus
have been a major public health concern worldwide [1–3]. According
to the World Health Organization (WHO), global mortality attributable
to water-related diseases is currently 3.4 million per year, most of
which are children [4]. This issue is especially severe in developing
regions of the world due to the scarcity of clean water supplies and poor
sanitation conditions [1,4–6]. Sensitive detection and quantification
methods for waterborne pathogens, including traditional culture-based
methods, or more recently, nucleic acid amplification tests [3,7–10],
are thus indispensable to ensure water safety and to protect the public
health.

Testing for pathogens in environmental waters has two main chal-
lenges: (1) the concentrations of pathogens in environmental water
samples are usually magnitudes lower than those in clinical samples;
and (2) the small sample volume being analyzed in each assay makes
the direct detection of pathogens in environmental water samples

nearly impossible [1,3]. Pathogen concentrations below the detection
limit of the methods mentioned above, do not guarantee the safety of
water, as they may still pose a health risk considering their low in-
fectious doses [5,11].

Numerous techniques for pathogen concentration have been de-
veloped. Traditional techniques including polyethylene glycol (PEG)
coagulation and precipitation, membrane filtration, centrifugation, and
evaporation are most commonly used [12,13]. However, these con-
centration methods require complicated setups and are often time-
consuming, which means water samples have to be transported to
centralized laboratories with inevitable sample degradation even under
continuous cold chain [1]. For field-studies, marine biologists use three
steps of Tangential Flow Filtration (TFF) to concentrate water samples
with a volume of 120 L [14]. The use of filtration cartridges and
membranes, as well as pumping systems, are inevitable and the first TFF
step for 60-fold concentration alone takes four hours [15]. The Bag-
Mediated Filtration System (BMFS) provides another in-field con-
centration method that uses gravity as the driving force to filter and
concentrate water samples. However, filters and an elution step
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followed by PEG/NaCl precipitation were also required [16]. Some new
techniques are emerging, such as in-plane evaporation [17], magnetic
nanoparticle platform on chip [18] or magnetic separators [19,20].
However, these new methods are still limited to laboratory use and are
incapable of handling field samples with volumes of at least 1 or 2 L
[19–21].

Super-absorbent polymer (SAP) microspheres are a class of cross-
linked hydrogels that can absorb and retain water up to 1000 times the
initial dry weight of the SAP beads [22,23]. SAP materials are widely
used in personal disposable hygiene products (e.g., diapers), and for
agricultural water preservation or waste fluid spill control [24,25]. By
controlling the pore sizes of the hydrogel down to several nanometers,
SAPs can absorb water but at the same time exclude particles with sizes
above several nanometers, such as bacteria and viruses [24,26]. In
order to use SAPs for microbial sample concentration, the SAPs were
synthesized as small spherical microspheres using a milli-fluidic flow
system. Itaconic acid is added to the polymer to obtain negatively
charged polymeric microspheres that have uniform spherical shapes,
which minimize electrostatic adsorption of microorganisms on the
surface of the microspheres [27].

SAP microspheres absorb water through osmosis, which is driven by
polyelectrolyte counter ions attached to the polymer. However, the
extent of water absorption is limited by the retention force of the
polymer networks due to cross-linking. The maximum water absor-
bencies and water absorption rates of the SAPs are determined by the
equilibrium of the osmotic forces and the retention forces. For a given
SAP formulation with a fixed number of polyelectrolyte counter ions,
the osmotic force generated by the SAPs decreases with an increase of
ionic strength, which effectively lowers the maximum water absor-
bency and water absorption rate of a specific SAP formulation.
Therefore, the ionic strength of environmental water samples may have
a significant impact on the performance of the SAP microspheres.

Here we have adjusted the composition of the SAP microspheres to
achieve optimal performances in freshwater or saline waters and fur-
ther demonstrated that bacteria and viruses collected from environ-
mental water samples can be rapidly concentrated using optimized SAP
microspheres. We have further developed a 3D-printed portable, hand-
pressed centrifuge system to realize the single-step concentration using
SAP microspheres for onsite water concentration in limited-resource
settings and without trained personnel. Our study highlights that con-
centration of the microbial samples using SAPs provides an alternative
sample concentration method that avoids a typical multi-step procedure
that is often tedious, time-consuming, and inappropriate for use in
underdeveloped parts of the world.

2. Materials and methods

2.1. SAP preparation and characterization

Monomers used for synthesis of the polymeric beads were acryla-
mide and itaconic acid, which were dissolved in deionized water with
concentrations of 180 g⋅L−1 and 20 g⋅L−1, respectively. Bis-acrylamide
(4.0 g⋅L−1) was added to the monomer solution as a cross-linker and
potassium persulfate (2.6 g⋅L−1) was added as the initiator of the
polymerization reaction [27–29]. Itaconic acid in the monomer solution
was fully neutralized by sodium hydroxide prior to the polymerization.
All chemicals were purchased from Sigma-Aldrich and were used as
received.

SAP microspheres with diameter of 500 µm were prepared by a two-
step polymerization using a milli-fluidic system as shown in Fig. 1.
Droplets of the monomer solution were generated through a T-junction
with an inner diameter of 1/16 in. into the carrying silicon oil of 500
cSt. For the generation of water phase droplets, oil phase and water
phase were injected at 0.5 mL⋅min−1 and 0.2 mL⋅min−1, respectively,
using two syringe pumps (74905-02, Cole-Parmer, US), into the tubing
with 1/16-inch inner diameter. Generated droplets first underwent

preliminary polymerization in the tube for 30 s at 95 °C. Subsequently,
full polymerization of the microspheres was achieved after the micro-
spheres left the tube and settled in the hot oil bath at 95 °C for 1.5 h.
This system can generate microspheres of diameters ranging from
500 µm to 2000 µm. Another fabrication method, inverse suspension
polymerization, can be used to generate microspheres of diameters
ranging from 10 µm to 500 µm, which can be used in smaller con-
centration systems with smaller starting sample volumes (see Fig. S1).
After the polymerization, fabricated microspheres were washed using
95% ethanol to wash off residual oil. Microspheres were soaked in DI
water for 24 h to remove any remaining monomers and subsequently
dried under vacuum overnight. Weight analyses of dried SAP micro-
spheres were performed using an analytical balance (AT469, Mettler,
USA).

2.2. Water absorbency evaluation

The water absorbency Q (g/g) is defined as the swollen weight of
SAP (g) divided by the dried weight of SAP (g). To simplify the ex-
perimental procedures and to evaluate the water absorbency more ea-
sily and precisely, larger SAP blocks (~1 × 10−2 g/block) (Fig. S7)
were fabricated with varying monomer and cross-linker ratios (see
Table 1). SAP blocks were fabricated under the same condition for SAP
beads fabrication, and they share the same adsorption properties with
SAP beads. Na+ content in the polymer was changed by varying the
proportion of sodium itaconate in the monomer solution. SAP blocks
were tested for their absorbency in sodium chloride solutions with a
series of ionic strengths of 0, 100, 200 and 500 mmol⋅L−1 [30]. The
ionic strength S of all solutions was calculated using the following
equation:

∑=
=

S c z1
2 i

n
i i1

2
(1)

where c is the concentration of the dissolved salt ion in mol⋅L−1, and z

Fig. 1. A schematic illustration of the synthesis steps producing SAP micro-
spheres.

Table 1
SAP recipes with varying cross-linking degree and sodium content.

Acrylamide
(g⋅L−1)

Itaconic Acid
(g⋅L−1)

Bis-Acrylamide
(g⋅L−1)

(O1) Original
Recipe

180 20 4

C1 180 20 0.2
C2 180 20 0.4
C3 180 20 1
C4 180 20 2
S1 180 50 4
S2 180 75 4
S3 180 100 4

X. Wu, et al. Separation and Purification Technology 239 (2020) 116540

2



is the valence of the ion. For the dissolved salts, a complete dissociation
was assumed [30]. After absorbing water overnight, polymer blocks
were drained and the remaining water on the surface of the SAP was
gently removed with a paper tissue. The weight of the fully swollen SAP
blocks was determined, and their corresponding water absorbency
(gram water absorbed by gram dried polymer) was calculated.

To measure the absorption rate, completely dried SAP microspheres
were soaked in water. Their diameter changes upon swelling were re-
corded and measured with a light microscope (Leica M205FA, Leica
Co., Germany). The water absorption rates were evaluated by three
models with MATLAB (see supplementary information) and compared
to the experimental results.

2.3. Microbial sample preparation

E. coli (ATCC 10798) was used as model bacteria in this study and
cultured in Luria-Bertani broth (BD Difco™, USA). Before each con-
centration test, cells were harvested, washed and serially diluted to
104–106 cells⋅mL−1 using phosphate-buffered saline (pH 7.4)
(Corning™, USA). Coliphage MS2 (ATCC 15597-B1) was chosen as
model virus. The growth and purification procedures of MS2 are de-
scribed in our previous work [10]. Before spiking MS2 in water sam-
ples, host E. coli cells were removed through centrifugation at
12000 rpm (13523 g) for 2 min (Eppendorf 5424, US). Briefly, MS2
suspension was diluted to 105–107 PFU⋅mL−1 for seeding studies. En-
vironmental water samples were collected from a turtle pond on the
Caltech campus and from the primary effluent from a local wastewater
treatment plant (with ionic strengths of 15 and 20 mmol⋅L−1, respec-
tively [31]). The conductivities and pH values of environmental water
samples were measured with an electrical pH/conductivity meter
(Orion Star A215, Thermo Scientific, US) and ionic strengths were
quantified using Griffin’s equation [32].

2.4. Concentration experiments

A manual hand-powered tube system was designed and fabricated
for field use in resource-limited settings (see Fig. 4). A 3D-printed filter
with a mesh size of 300 µm (Fig. S4A) was inserted into a 50 mL
commercial centrifuge tube (SuperClear™ Ultra High Performance
Centrifuge Tubes, VWR, USA). The filter was fabricated using a high-
resolution 3D printer (ProJet™ MJP 2500 Plus) with Visijet M2 RCL
Clear Material (3D Systems, Rock Hill, SC). Subsequently, the tube was
divided into two chambers: the upper chamber (filled with 0.5 g SAP
microspheres) for sample concentration; and the lower chamber for
concentrated sample collection. 40 mL water sample was added into the
tube and was kept in the upper chamber. The sample water would not
enter the lower chamber through the filter due to the surface tension of
the liquid. The tube was left standing for 15 min for SAP microspheres
to absorb water. Then the residual water (~4 mL) was transferred to the
lower chamber by centrifugation (~500 rpm). The hand-press cen-
trifuge was adapted from a commercially-available salad spinner
(32480, OXO, USA). The filter and microspheres were taken out of the
centrifuge tube. Subsequently, the concentrated sample was collected
and its volume was measured. The concentrations of E. coli and MS2 in
samples before and after concentration were measured and compared
as described in Section 2.5. Concentration experiments of E. coli solu-
tions with initial concentrations of 104, 105 and 106 cell·mL−1 were
performed as independent triplicates. The difference before and after
each microsphere-concentration experiment was compared using qPCR
assays. The qPCR assays of E. coli solutions of 105, 106 and
107 cell·mL−1 were also performed as positive controls. Concentration
experiments using MS2 with initial concentrations of 105, 106 and
107 PFU·mL−1 were performed in triplicate. The RT-qPCR assays of
MS2 solutions of 106, 107 and 108 PFU·mL−1 were also performed as
positive controls.

2.5. Concentration efficiency analyses

In this study, we use concentration efficiency to evaluate the per-
formance of the concentration system. Here, we define the concentra-
tion efficiency as the percentage of microorganisms that remain in
concentrated samples. Concentration efficiencies for E. coli and MS2
were analyzed using both of microcopy and culturing methods at the
level of cell. The performance of the system was further evaluated by
the fold-change using PCR-based molecular methods. E. coli cell con-
centrations were quantified using fluorescence microscopy (Leica
DMi8, Leica Co., Germany) after SYBR-Green (Invitrogen™, USA)
staining according to the manufacturer’s protocol [10]. Fluorescence
pictures were processed and the cell numbers were counted by ImageJ
software (ImageJ 1.51j8, Wayne Rasband National Institutes of Health,
USA). The number of E. coli was also evaluated by plating on Luria-
Bertani agar (BD Difco™, USA). Colonies were counted after 14 h of
incubation at 37 °C. Total environmental bacterial concentrations in
environmental water samples (pond water and wastewater) were en-
umerated by fluorescence microscope counting and plate counting on
LBA as well. The MS2 concentration was determined by the double agar
layer method [33].

Concentration efficiencies of E. coli and MS2 were quantified by
quantitative PCR (qPCR) and quantitative reverse transcription PCR
(RT-qPCR) using a 6300 Realplex4 qPCR platform (Eppendorf,
Hamburg, Germany). Relevant primer sets and probes are listed in
Table S1. For E. coli, the qPCR assay targeting the 16 s rRNA gene was
carried out in a 20-μL reaction mixture consists of 10 μL PerfeCTa®
qPCR ToughMix® (Quanta BioSciences Inc.), 0.25 μM forward primer,
0.25 μM reverse primer, 0.25 μM TaqMan probe, 2 μL of template DNA,
and nuclease-free-water. The qPCR thermocycling involves 3 min of
initialization at 95 °C, and 40 cycles of denaturation at 95 °C for 15 s
followed by annealing/extension at 55 °C for 30 s. For MS2, the
RT‐qPCR reactions were performed using QIAGEN OneStep RT‐PCR Kit
(Germantown, MD). Each 25-µL reaction mix included 800 nM forward
and reverse primers, 300 nM TaqMan probe, 0.5 mg·mL−1 BSA, 1x
RT‐PCR buffer, 0.4 mM dNTP, 1 U enzyme mix, 3 µL of template RNA,
and nuclease-free water.[10] The RT‐qPCR thermocycling involves an
initial reverse transcription step at 50 °C for 30 min, followed by an
initial denaturation at 95 °C for 15 min, then 45 cycles of 94 °C for 15 s
and 60 °C for 60 s. The nuclease-free water was used as negative con-
trols for all qPCR and RT-qPCR assays. Here for each concentration
assay, the concentration efficiency was evaluated by the fold change
value:

= ×Fold change
C aftertheconcentration

C beforetheconcentration
( )

( )
100%

(2)

where C(before the concentration) and C(after the concentration) are concentrations
of sample before and after concentration calculated with standard
curves performed on each plate. Concentrations of E. coli and MS2
standard samples were respectively evaluated using the fluorescence
microscopy and the double-layer agar as described in Section 2.5. All
qPCR and RT-qPCR reactions performed in this study reached efficiency
between 90% and 110%, indicating the high reliability of our per-
formed assays [34]. Quantification data of samples before and after
concentration experiments for the fold change calculations for both E.
coli and MS2 can be found in Table S3 in the supporting information. All
samples were run in triplicate.

2.6. Reusability test

To reuse the SAP microspheres after the concentration tests, the
microspheres were washed under running tap water for two minutes to
remove the remaining bacteria and viruses from the surfaces of the
microspheres. The SAP microspheres were subsequently washed in
30 mL Milli-Q water and followed by being dried for subsequent reuse.
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The synthesized SAP microspheres were fully loaded with water via
absorption and then dried using a vacuum oven (VO914A, Thermo
Scientific, USA) for 20 consecutive cycles. The gross weights and water
absorbencies were measured to test their reusability after successive
swelling and drying cycles.

3. Results and discussion

3.1. Synthesis of SAP microspheres

Uniform poly (acrylamide-co-itaconic acid) (P(AM-co-IA)) micro-
spheres were fabricated using a system as illustrated in Fig. 1. Monomer
solution-in-oil droplets were generated with two syringe pumps, using a
T-junction. After the generation of monomer solution droplets, the P
(AM-co-IA) microspheres required at least 1.5 h at 95 °C to achieve
complete polymerization: the polymerization reaction was catalyzed by
free radicals from persulfate generated by heating and dissociating
potassium persulfate. The persulfate free radicals convert monomers of
acrylamide and itaconic acid with double bonds to free radicals that
react with other monomers to begin the polymerization chain reaction.
The elongating polymer chains are randomly cross-linked by bis-acry-
lamide, resulting in a gel matrix structure [35]. The two-step poly-
merization system was designed such that the polymer microspheres
would only undergo preliminary polymerization in the tube, so they
would not fuse into each other and block the tube. When the partially
polymerized microspheres left the tube, they were immersed in an oil
bath for 1.5 h allowing for complete polymerization. The characteristics
of washed and fully-dried SAP microspheres presented uniform sphe-
rical shape with a characteristic diameter of 500 ± 8 µm, white color,
and smooth surfaces as shown in Fig. 1. Each SAP microspheres have
the same formula and are formed with the same amount of monomers,
being very uniform after absorbing water. The slight difference in the
shape of the sphere when they are dried was most likely due to the
inconsistent shape change during the drying process. When the mi-
crospheres were fully dried, their density was slightly lower than that of
water due to that voids presented in the polymer structure. Variances in
the porous polymer structure during drying of each polymer micro-
spheres may also lead to slight density inconsistency between micro-
spheres, but these slight differences in shape and density would not
influence the performance of SAP microspheres on water absorption as
they became uniform after they start to absorb water. Smaller size
microspheres can be fabricated by inverse suspension polymerization
method and shared similar SAP properties (see Fig. S1B).

3.2. Optimization of SAP for various water matrices

SAP microspheres used in the previous research with fixed compo-
sition can only work in deionized water, since both the maximum ca-
pacity, and the rate of water absorption would decrease drastically in
high ionic strength water. Hence, the composition of the SAP beads
needs to be adjusted to achieve optimal performances for different
water matrices. SAP blocks fabricated according to the original
monomer solution recipe (180 g⋅L−1 AM, 20 g⋅L−1 IA and 4.0 g⋅L−1

Bis-A) could absorb water of around 80 times their own weight (water
absorbency (Q ~ 80), and a maximum absorbency of 96% was reached
under 20 min in DI water (see Fig. 2). Although the polymer is stable
and tolerant to different environmental conditions, the maximum water
absorbency and water absorption rate of the polymer were significantly
reduced in higher ionic strength water samples due to the decreased
osmotic force. For environmental waters, the average ionic strength of
freshwater and wastewater are around 5 mmol⋅L−1 and 50 mmol⋅L−1,
respectively, and can be as high as 150 mmol⋅L−1 for untreated was-
tewater [36–39]. In water with an ionic strength of 100 mmol⋅L−1, the
same SAP’s absorbency decreased to 30% of its maximum absorbency.
Less than 80% of maximum water absorbency was achieved, and
equilibrium could not be reached for more than 30 min (see Fig. 2).

Therefore, the SAP composition requires optimization to improve its
performance in saline water.

The water absorbency of SAP is determined by the balance of three
forces: (1) the osmosis potential between the solution within the
polymer network and the external solution; (2) the electrostatic re-
pulsion resulting from the fixed charges on the polymer chains; and (3)
the elastic retractile response of the polymer network [40]. Forces (1)
and (2) increase the absorption of SAP while force (3) restricts the
absorption. The high sodium cation (polyelectrolyte counter ion) con-
centration within the polymer network provides osmotic pressure,
which quickly drives water into the polymer. As the water penetrates
the polymer, the sodium cation is diluted, and the concentration of
sodium cation in the polymer decreases, leading to a decrease of os-
motic force [22,23]. At the same time, the retention force of the
polymer is increasing with the expansion of the polymer network. When
the balance between the osmotic force and retention force is reached,
the SAP is at equilibrium. For the cross-linked polymer, the water ab-
sorbency, Q, can be expressed as a function using elasticity gel theory of
Flory [35,40], which has the following form:
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where Q: maximum water absorbency (g/g); Ve/V0: crosslinking density
of polymer (amount cross-linker/total polymer); (1/2 − X1)/V1: affi-
nity between polymer and external solution (X1: interaction parameter
of polymer with solvent; V1: molar volume of solvent in a real network);
Vu: volume of structural unit; i: electronic/ionic charge present on the
polymer backbone per polymer unit; i/Vu: fixed charge per unit volume
of polymer; S: Ionic strength of external solution (mol⋅L−1). Since the
affinity of the polymer to water does not change in our case, and the
volume of the structural unit is fixed, the maximum water absorbency is
solely controlled by the crosslinking density, fixed-charge density and
external ionic strength.

Two methods were explored to improve the performance of SAP in
water at different ionic strengths: one was to reduce the retention force
of the polymer by decreasing the cross-linking degree; and the other
was to increase the osmotic pressure by increasing the sodium content
in the polymer. The recipe changes of SAP also varied the pore size of
the fabricated SAP, which was still small enough to exclude bacteria
and viruses with high concentration efficiencies (see Section 3.4 for
results and discussion).

Fig. 3 shows the change of SAP absorption performance induced by
varying cross-linking degrees and counter ion concentrations. As shown
in Fig. 3A, SAP with the lowest cross-linking degree (C1) could reach
water absorbency of 50 in the highest ionic strength solution
(500 mmol⋅L−1), while the absorbency of the original microspheres
(O1) decreased to less than 20. However, it should be noted that when

Fig. 2. Water absorbency of original microspheres (O1) and revised micro-
spheres (S2) in DI water and saline water (100 mmol⋅L−1) over time.
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loosening the structure of the polymer to reduce the retention force, the
mechanical strength of the SAP is also reduced. If the cross-linking
degree were modified to an amount smaller than 1 g Bis-A per 1000 g
total monomer, then the SAP microspheres broke easily during the
centrifugation step and the debris of the broken SAP microspheres en-
tered the residual water sample, influencing the experimental results.
Thus, broken SAP microspheres cannot be reused.

Increasing the Na+ content in the polymer also significantly im-
proved the absorption rate of SAP in saline water, by providing an in-
creased osmotic force (see Fig. 3B). Before the centrifugation step, the
microspheres needed to reach at least 90% of their maximum absor-
bency. At this stage, the absorption rate slows down and the weight of
SAP did not change a lot (Fig. 2), which was important for the following
centrifugal step. For a successful concentration step, a small volume of
sample must remain after the water absorption through SAP. Therefore,
a slow water absorption rate of SAP microspheres during centrifugation
would be desirable. Otherwise, the SAP microspheres would continue to
rapidly absorb the remaining water during centrifugation and the
sample water could be totally absorbed by SAP microspheres at a fast
absorption rate, leading to the failure of the concentration process. For
the original SAP microspheres, less than 80% of the maximum water
absorbency was obtained at 20 min in 100 mmol⋅L−1 water while still
swelling rapidly. If we were to use SAP microspheres made with this
recipe, the concentration process would take more than 30 min. How-
ever, the microspheres with the S2 recipe would reach 95% maximum
water absorbency in 20 min, which was much faster than the micro-
spheres with the original recipe (~35 min). The improvement of the
absorption rate was further confirmed using three models (see supple-
mentary information). By applying the models to our experimental data
to calculate the diffusion coefficients, all three models show the in-
crease of the diffusion coefficients by around 50% after using the op-
timized recipe. Since the resulting linear fits of Q5/3 versus the cross-
linking density and the fixed charge density (i/Vu) are consistent with
the predictions of the Flory theory [39,40] (Fig. 3), the SAP formula-
tions could be easily customized to suit different ionic strengths of the
respective water matrices.

3.3. Tube concentration system

Furthermore, the previous concentration method introduced in Xie
et al. (2015) required five manual and consecutive operations of using
pipettes to collect concentrated samples (each step concentrating about
20% of the sample volume), which made this approach tedious, time-
consuming and not applicable in field. Therefore, our study remarkably
developed a portable, hand-pressed centrifuge system with one-step
operation to facilitate the efficient use of SAP beads for onsite con-
centration for waterborne microorganism in low-resource settings, thus
allowing our concentration method to be easily performed by people
without any prior training. Fig. 4 schematically illustrates the tube

system for microbial pathogen concentration. Each tube contains 0.5 g
SAP microspheres and a 3D-printed filter. The 3D-printed filter divided
the tube into two chambers and the water samples are restricted in the
upper chamber before centrifugation by the filter due to the surface
tension of the sample. After adding the sample, the tube only need to be
left to stand for 20 min for the full absorption of water by the SAP. Non-
absorbed water is transferred to the lower chamber using a hand-press
centrifuge. After 20 min, more than 90% of the sample was adsorbed
and continued absorption became very slow. Thus, a remaining water
sample (~4 mL) could be collected by centrifugation. The hand-press
centrifuge was adapted from a salad spinner, which can reach an
average rotation speed of 500 rpm. This spinning speed was fast en-
ough, as evident, as the concentration efficiency (percentage of mi-
croorganisms recovered after concentration) did not change when using
a commercial centrifuge with up to 1200 rpm (data not shown). This
hand-pressed spinner reduced the cost of the system and made the
system totally off-grid and suitable for field use. Moreover, our system
may be a promising tool in field studies, as it can rapidly concentrate
environmental samples. One example of applications could be in-field
sequencing when coupled with the new sequencing technology,
MinION sequencer [41].

3.4. Microorganism concentration performance

The concentration factor (hereinafter referred to as the ratio of the
sample volumes before and after the concentration) of SAP micro-
spheres were maintained in a range of 1.3–2.1 for each step, so that the
swollen SAP microspheres could be suspended after the concentrating
step. When the concentration factor exceeded 4, the concentration ef-
ficiency decreased substantially due to that the microorganisms trapped
in remaining liquids on the microsphere surface and/or in the voids
among the microspheres. The concentration efficiency dropped to 38%
when the concentration factor increased an order of magnitude [27].
When using the hand-pressed centrifuge centrifuging step, the con-
centrate was transferred to the collection chamber. This step sub-
stantially improved the concentration factors (the ratio of the sample
volumes before and after concentration) and concentration efficiencies.
A concentration efficiency of 87 ± 6% was achieved with a con-
centration factor of 9–10 for E. coli in DI water within 20 min (see
Fig. 5). By using different SAP formulations, we were able to achieve
similar concentration efficiencies of E. coli in water with high ionic
strengths up to 100 mmol⋅L−1. S2 SAP microspheres were used for the
concentration of E. coli in 100 mmol⋅L−1 ionic strength water and an
average of 89 ± 17% concentration efficiency was achieved. Ad-
ditionally, qPCR targeting 16S rRNA gene and RT-qPCR were respec-
tively performed to evaluate the concentration efficiencies of E. coli and
MS2. As shown in Fig. 6, the fold change values between 10-fold con-
centrated samples and original samples were found to be 11.34, 22.27
and 17.97, respectively, from E. coli solutions with initial

Fig. 3. Change of maximum water absorbency (Q) vs. ambient ionic strengths (S), and the impacts of changing cross-linking density (A) and counter ion density (B)
on maximum water absorbency. Error bars are all smaller than 1% and are not shown on graphs.
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concentrations of 104, 105 and 106 cell·mL−1. As positive controls, the
fold changes between E. coli solutions of 105 and 104, 106 and 105, 107

and 106 cell·mL−1 were 3.03, 8.50 and 9.34, respectively, which im-
plied the concentration efficiencies of SAP microsphere-based con-
centration system were respectively 275%, 162% and 92% higher than

they were supposed to be by qPCR assays. For the samples of 104, 105

and 106 cell·mL−1. Fold change values between samples of 105 (both
concentrated and serially diluted) and 104 cell·mL−1 were relatively
low because the concentration of 104 cell·mL−1 is much close to the
detection limit of 16S rRNA qPCR. Our results showed that the tube
concentration system based on SAP microspheres could achieve sa-
tisfactory concentration efficiencies of E. coli solutions with a range of
initial concentrations.

The bacterial concentrations of original samples did not affect the
concentration efficiency as evaluated by microscopic cell counts.
Experimental results showed very similar concentration efficiencies
(between 85% and 90%) for water samples with different initial con-
centrations from 104 to 108 cells⋅mL−1, thus allowing total concentra-
tion efficiencies of higher than 60% for 100- or 1000-time concentra-
tion, although 2 or 3 sequential concentration steps may be required. It
should be noted that these sequential concentration steps may require
multiple formulations of SAP microspheres due to the increasing ionic
strength during concentration. It’s extremely difficult to achieve
100–1000 times concentration in one step due to the difficulty in
concentrated sample collection and the sample loss on the micro-
spheres’ surface.

Concentration tests using bacteriophage MS2 resulted in a similar
level of concentration efficiency (see Fig. 5) evaluated by plaque
forming unit quantification. The average concentration efficiency of
one concentration step was 101 ± 12% in DI water using O1 SAP. For
a 100-mmol⋅L−1 ionic strength water sample, the concentration effi-
ciency of MS2 was 90 ± 10%, using S2 SAP microspheres (Fig. 5). The
value of> 100% was likely caused by the well-known large standard
deviation of the double agar layer method, imprecisions in

Fig. 4. The tube system designed for microbial
pathogen concentration using SAP microspheres.
The tube is composed of 0.5 g SAP microspheres
and a 3D-printed filter. After adding the water
sample, the tube is left to stand for 20 min for the
full absorption of water by SAP. Non-absorbed
water is pushed to the lower chamber using a hand-
press centrifuge.

Fig. 5. Concentration efficiencies of E. coli, MS2 and total bacteria using the
tube concentration system calculated by microscopic cell counts, plague
forming unit quantification. E. coli and MS2 were concentrated using new SAP
microspheres and recycled SAP microspheres after 20 drying- swelling cycle,
and in DI and 0.1 M ionic strength water. Total bacteria were concentrated from
pond water and wastewater samples.

Fig. 6. Fold Changes of qPCR and RT-qPCR of E. coli (A) and MS2 (B) for samples in varying magnitude of orders with serially diluted samples (red bars) and
concentrated samples (blue bars) using the tube concentration system; wherein standard deviations (error bars) were calculated from fold change values of triple
independent concentration experiments. Fold change values were calculated from quantification data according to the standard curve performed on each plate. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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experimental procedures and the MS2 aggregation during experiments.
RT-qPCR was performed to evaluate the recovery rates of MS2. As
shown in Fig. 6, the fold changes between concentrated samples and
original samples were found to be 13.81, 9.83 and 8.20, respectively,
for the samples with initial concentrations of 104, 105 and
106 PFU·mL−1. Meanwhile, the fold change values between 106 and
105, 107 and 106, 108 and 107 were 7.64, 11.22 and 10.69, respectively,
which implied the concentration efficiencies of SAP microsphere-based
concentration system were respectively 180%, 88% and 77% com-
paring to what they were supposed to be by qPCR assays. Fold change
values between 10-fold concentrated MS2 samples and original samples
are similar to fold change values of between positive control MS2
samples with 10-fold dilution, indicating high concentration effi-
ciencies of the tube concentration system. In summary, results from
qPCR and RT-qPCR assays indicate that the SAP microsphere-based
concentration method completely meets the requirements for nucleic
acid amplification-based environmental monitoring and surveillance. It
should be noted that compared to conventional virus concentration
methods, such as ultracentrifugation, electropositive or electronegative
filters or ultrafiltration [42–44], the SAP microspheres concentration
method neither uses complicated instruments or expensive filters, nor
requires the preconditioning of water samples.

Furthermore, the concentration efficiencies of SAP microspheres
used for concentrating the native bacteria in the Caltech pond water
(ionic strength 15 mmol⋅L−1, pH = 7.75) and the wastewater from the
wastewater treatment plant (ionic strength 20 mmol⋅L−1, pH = 8.02)
were investigated. As shown in Fig. 5, average bacterial concentration
efficiencies of 112% and 83%, respectively, were achieved for pond
water and wastewater samples. The concentration processes were
completed in less than 20 min. Presence of other substances in real
water samples such as natural organic matters or algae would not in-
fluence the performance of our system according to our tests on real
environmental waters, which was discussed in Section 3.4.

It should be noted that we introduced itaconic acid to our custo-
mized SAP formula to add a negative surface charge and minimize the
electrostatic adsorption of microorganisms. Although bacteria and
viruses may not always have negative surface charge in environmental
waters, which depends on their isoelectric points [45,46]. As most
bacteria have low isoelectric points and will be negatively charged in
environmental waters [45,47], they should be repelled by the SAP
beads as what happened to our model bacterium E. coli. However,
viruses have a broader range of isoelectric points [46]. Our model virus,
MS2, has a low isoelectric point (~3.5) [46] and thus, a high con-
centration efficiency is expected due to electrostatic repulsion. Al-
though accounting for a small part, there are still viruses whose surface
charges in natural water may not be strong enough for electrostatic
repulsion and therefore the concentration efficiency might be impaired,
e.g., somatic coliphage ΦX174 (isoelectric point ~ 7) [46].

3.5. Reusability of SAP microspheres

Reusing the microspheres can significantly decrease the cost of our
concentration system. After use, the microspheres can be washed and
dried for subsequent applications requiring sample concentration.
Simple washing with running tap water was sufficient for the reuse of
SAP microspheres, as no bacteria or viruses were detected using
membrane filtration from the final washing water before the next use.
For more sensitive applications, SAP microspheres could be autoclaved
as well. To demonstrate their reusability, the SAP microspheres were
dried and rehydrated for more than 20 times. Fig. S3 shows the weight
change of 100 SAP microspheres for 20 cycles of full drying and
swelling. For 20 cycles, the weight change for both dried and swollen
microspheres was less than 5%, whereas the decrease of water absor-
bency was less than 2%. The concentration efficiencies of E. coli and
MS2 using recycled microspheres (after 20 cycles) were still up to
84 ± 7% and 90 ± 11%, respectively (Fig. 5). Slight efficiency losses

during reusing recycled microspheres were most likely attributed to the
inevitable breaks of some SAP microspheres during the recycling pro-
cess, which became much more severe with the increase of recycling
times as observed. Damaged spheres might trap much more pathogens
due to the increased surface area.

4. Conclusion

In this study, tailored SAP microspheres coupled with a hand-
powered tube system were developed to achieve efficient and rapid
concentration for environmental microorganisms. In order to overcome
the performance loss of SAP in high ionic strength water samples, we
have been able to improve the water absorption ability of SAP micro-
spheres by optimizing the degree of polymer cross-linking and con-
trolling the counter ion concentrations using the Flory model as a guide.
Optimally synthesized SAP microspheres were shown to absorb more
water at higher absorption rates compared to other commercially
available water-absorbing microspheres, making our synthetically-tai-
lored SAP microspheres able to concentrate bacteria and viruses from
high ionic strength water samples and environmental water samples
within a short time. In addition, we developed a low-cost, portable,
hand-powered portable centrifuge tube system based on our tailored
SAP microspheres to facilitate concentrating water in low-resource
settings in the field. Results from our study highlight that we provide a
cost-effective, easy-to-use and off-grid system with tailored SAP mi-
crospheres for various water samples. We envision that this system
could be applied to the field for efficient microbial concentration and
promote rapid on-site microbial analysis.
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The world is currently facing a serious health burden of waterborne diseases, including diarrhea, gastrointestinal diseases, and sys-
temic illnesses. The control of these infectious diseases ultimately depends on the access to safe drinking water, properly managed 
sanitation, and hygiene practices. Therefore, ultrasensitive, rapid, and specific monitoring platforms for bacterial pathogens in am-
bient waters at the point of sample collection are urgently needed. We conducted a literature review on state-of-the-art research of 
rapid in-field aquatic bacteria detection methods, including cell-based methods, nucleic acid amplification detection methods, and 
biosensors. The detection performance, the advantages, and the disadvantages of the technologies are critically discussed. We envi-
sion that promising monitoring approaches should be automated, real-time, and target-multiplexed, thus allowing comprehensive 
evaluation of exposure risks attributable to waterborne pathogens and even emerging microbial contaminants such as antibiotic 
resistance genes, which leads to better protection of public health.

Keywords.  waterborne pathogens; exposure risk assessment; detection methods; rapidity; portability.

Access to adequate water, sanitation, and hygiene (WASH) has 
long been a significant public health concern and an interna-
tional development policy. According to the World Health 
Organization, global mortality attributable to waterborne dis-
eases is estimated to be > 2.2 million per year, among which 
about 1.4 million are children, resulting in nearly $12 billion 
per year of economic loss worldwide [1]. It is estimated that di-
arrhea alone amounts to 842 000 deaths per year due to unsafe 
WASH and includes 361 000 deaths of children < 5 years of age, 
mostly in low-income countries [2]. Ultrasensitive, rapid, and 
specific monitoring platforms for bacterial pathogens in am-
bient waters at the point of sample collection are essential for 
timely water quality surveillance and microbial risk assessment. 
Therefore, the development of such platforms plays a key role in 
predicting and assessing the risk of disease outbreaks and pro-
viding quality care in healthcare settings such as improving the 
effectiveness of vaccine distribution.

Microbial detection techniques are usually classified into 
phenotypic methods and molecular methods. Culture-based 
methods as the mainstream of phenotyping have the advan-
tages of cost-effectiveness and simplicity, and remain the gold 

standard for bacterial monitoring and identification. However, 
it requires days for culture-based methods to provide conclu-
sive results, which greatly hampers their applications in water 
quality monitoring [3]. Molecular analyses including con-
ventional polymerase chain reaction (PCR)–based methods, 
immunology-based methods, etc, however, require lengthy 
processes of sample pretreatment (eg, concentration, cell lysis, 
purification), expensive equipment, and trained personnel in 
centralized laboratory facilities. The demanding requirements 
of molecular methods represent a major disadvantage for their 
application in resource-limited communities [4, 5]. In addition, 
the majority of currently available molecular techniques have 
low precision (~20%) and are poorly suited for absolute quan-
tification, thus having limited application in low-concentration 
pathogen detection [6]. To tackle this problem, in addition to 
enhancing specificity and mitigating competitive side reactions, 
researchers have also been exploring the “digital detection” con-
cept. It realizes absolute quantification through separating the 
sample into sufficient partitions followed by individual molec-
ular reaction and endpoint counting of positive and negative 
signals in each reaction [6, 7]. In addition, biosensor is also a 
promising technique for future waterborne pathogen moni-
toring systems. Biosensor generally provides more reliable re-
sults from real-time measurements and allows rapid analysis 
without the requirement of complicated pretreatment steps 
such as the target enrichment process, which still has a lot of 
room to be developed [8–10].

Overall, microbial pathogen detection is urged to be 
ultrasensitive, rapid, simple, low-cost, field-deployable, and 
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easily operable by undertrained individuals for applications in 
environmental surveillance. Over the past years, numerous re-
search advances have been made in such integrated platform 
for detection and identification of bacterial pathogens including 
but not limited to Salmonella enterica serovar Typhi (S. typhi) in 
water. Here, we review representative technologies categorized 
into cell-based methods, nucleic acid amplification methods, 
and biosensors. We also further discuss the needs of future de-
velopments on microbial monitoring platforms in the underde-
veloped parts of the world.

CELL-BASED DETECTION METHODS

Compared to molecular-based detection platforms that target 
specific nucleic acids or proteins, cell-based detection methods 
offer direct identification and measurement with relative simple 
workflows [11]. Utilization of commercial instruments simpli-
fies the construction of cell-based detection platforms. Recent 
development of miniaturized analysis systems has further pro-
moted the efficiency and portability of cell-based detection 
methods, thus enabling complex diagnostics or monitoring 
procedures.

Miniaturized cell cultivation techniques based on 
microfluidic devices and Lab-on-a-Chip technologies consume 
less fluid, take less volume, and usually have higher tolerance 
toward ambient conditions, thus reducing the total cost and 
time for bacterial analysis [12]. One example of miniaturized 
cell cultivation is a palm-size device developed by Futai et  al 
utilizing Braille display, monolithic surface, modified culture 
media and transparent heater [13]. This device was successfully 
used to culture highly carbon dioxide (CO2)–dependent cells 
in nonpreferable growing environment with limited CO2, hu-
midity and a non-37°C temperature. Even for uncultivatable 
microbial species in various environments, an isolation chip 
with miniature diffusion chambers was developed to achieve 
parallel cultivation and isolation [14]. However, these miniatur-
ized cell cultivation routines unavoidably take a long time, can 
usually be labor intensive, and require skilled operators.

Compared to cell culture, flow cytometers (FCMs) for direct 
cell  counting enable fast quantification of the total bacterial 
community in the environment with high reproducibility and 
relatively small standard deviation. More importantly, many 
commercial FCMs are available for adaptations and the setup 
of FCM is suitable for automation, making FCM a great can-
didate for online routine bacterial monitoring [15]. Besmer 
et al used an automated in situ FCM analysis platform to help 
characterize the temporal variation of dynamic aquatic envir-
onments enabled by a commercial FCM (C6 flow cytometer, 
BD Accuri, San Jose California) coupled with a fully automated 
staining robot [16, 17]. Going one step further, Props et al com-
bined the use of real-time FCM and advanced fingerprinting 
metrics, which aided the detection and characterization of 

microbial dynamic changes with a high temporal resolution of 
10–30 seconds [18]. Nevertheless, FCM techniques have some 
major drawbacks, including difficulties in distinguishing be-
tween live and dead cells and specific strains of bacteria, and in 
discriminating bacterial aggregates and clusters. Incorporating 
microscopic imaging to FCM could boost the specificity of this 
detection platform. For example, an automatic imaging FCM 
was developed with a deep learning–based phase-recovery and 
holographic-reconstruction framework to generate pictures of 
micro-object in water samples without fluorescence triggering, 
and the pictures generated could be used for characterization 
[19]. However, current holograms taken by the microscopy and 
reconstructed images do not have a resolution high enough for 
specific bacterial pathogen characterization and thus further re-
search is needed.

Besides miniature cell cultivation and FCM, other online cell-
based sensing methods have also been developed. A  real-time 
sensor using multiangle light scattering (MALS) technology was 
developed by Sherchan et al. By comparing the light scattering pat-
terns after using a laser beam to strike particulates in water (in-
cluding organic particles and microbial cells) with light scattering 
patterns in the computerized database, data obtained was charac-
terized and the load of injected Escherichia coli was back-calculated 
[20]. Due to the existence of fluorophores in bacterial cells such 
as tryptophan, phenylalanine, or nucleic acids, which emit fluores-
cence light after excited by ultraviolet light, Simões and Dong devel-
oped an optical microfluidic sensor based on tryptophan intrinsic 
fluorescence with 3D-printing prototyping [21]. Furthermore, di-
rect 3D image recognition for online pathogen detection was en-
abled by the combination of a sample-holding flow cell and a field 
imaging system (including a light source, a magnifying lens, and 
a camera). An image analysis system was developed to analyze 59 
parameters of the images obtained and was able to distinguish be-
tween bacteria and abiotic particles. 3D image recognition analysis 
also provides quantification results, which correlates well with ac-
tual bacterial counts [22]. Tables 1 and 2 summarize specific detec-
tion parameters and comments on the application and detection 
parameters of the above-mentioned cell-based technologies.

Many methods mentioned in the section have been success-
fully implanted for days or even months with full automation, 
and can be constructed easily with commercial instruments. 
However, the sensitivity of these methods can be easily influ-
enced by different environmental factors and the detection limit 
is relatively high. Moreover, it is challenging to identify specific 
pathogens solely based on cell-level analysis, not to mention 
their genetic information. Therefore, further molecular level de-
tections are needed to secure higher sensitivity and specificity.

NUCLEIC ACID AMPLIFICATION DETECTION 
PLATFORMS

Compared to phenotyping methods, molecular methods typi-
cally based on the quantification and identification of specific  
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genomic segments of the pathogen’s genomes allow rapid, 
highly specific, and more sensitive detection, which better fit 
the expectations of timely monitoring and effective surveillance 
of aquatic pathogens in a range of water environmental settings. 
In this section, advances in monitoring methods based on PCR 
and loop-mediated isothermal amplification (LAMP) are re-
spectively discussed.

PCR-BASED METHODS

The major drawback of PCR-related methods usually lies in 
their long response time and limited portability, since they rely 
on fussy thermal cycling and require additional equipment to 

detect the amplification products [35]. Another drawback is 
that trained personnel with experimental skills are needed to 
perform the assays, thus making the PCR-based systems im-
practical in resource-limited settings [4, 5]. Therefore, there 
is an urgent demand for a mobile and automated PCR-based 
device to monitor water microbial quality. Microfluidics have 
been demonstrated to provide a higher surface-to-volume ratio 
and a higher rate of mass and heat transfer, thus offering better 
performance than conventional systems due to significantly re-
duced reaction time [36]. Zhang et al reported a microfluidic 
PCR system integrated with the sample pretreatment technique 
of coaxial channel-based DNA extraction that was able to de-
tect E. coli in milk matrix [23]. Detailed information about this 

Table 1. Pathogen Detection Methods and Their Samples Studied

Detection Method
Phenotypic or 
Genetic

Waterborne Microbial Agent 
Tested

Complex Sample Matrices 
Tested

Treated 
Volume, mL

A. Cell-based A1. Isolation chip Phenotypic Total bacteria Seawater and soil NA

A2. Online flow cytometry Phenotypic Total bacteria Drinking water, river water,  
and groundwater

0.015

A3. Real-time flow cytometry Phenotypic Total bacteria Nonchlorinated municipal 
drinking water, river water, 
and pond water

0.016/min

A4. MALS sensor Phenotypic Escherichia coli Distilled and tap water 600

A5. Optical microfluidic sensor based  
on tryptophan intrinsic fluorescence

Phenotypic E. coli and Legionella Distilled water NA

A6. Novel optical sensor Phenotypic Total particles Nonchlorinated water and  
water from cattle slaughter-
house

200

B. NAA PCR-based B1. Coaxial channel-based 
DNA extraction and 
microfluidic PCR

Genetic E. coli Milk 10

LAMP-based B2. Self-contained 
microfluidic gLAMP 

Genetic Proteus hauseri Serum NA 

Vibrio parahaemolyticus

Salmonella subsp enterica

E. coli

B3. Centrifugal microfluidic 
automatic wireless end-
point LAMP

Genetic E. coli Chicken meat NA 

Salmonella spp

Vibrio cholerae

B4. One-step single-layer 
membrane for digital 
LAMP

Genetic E. coli Culture media NA 

Salmonella Typhi

Enterococcus faecalis

B5. Asymmetric double-layer 
membrane for digital 
LAMP

Genetic E. coli Unprocessed environmental 
water

10

Salmonella Typhi

B6. In-gel LAMP Genetic MS2 Culture media NA 

C. Biosensor C1. MOF-bacteriophage biosensor Phenotypic Staphylococcus aureus Pastry cream 0.6

C2. Impedimetric paper-based biosensor Phenotypic Cultures from sewage sludge Synthetic wastewater NA

C3. Immunomagnetic separation and colori-
metric paper-based device

Phenotypic Salmonella Typhimurium Bird feces and whole milk 1

C4. Real-time amperometric immunoassay 
amplified by nanomaterial

Phenotypic E. coli Water 0.2

C5. Phage-mediated separation with quantita-
tive PCR detection

Combined E. coli O157:H7 Agricultural water and city water 1

C6. Carbon nanotube multilayer biosensors 
and on-chip LAMP

Combined E. coli O157:H7 Juice and milk 1

Abbreviations: LAMP, loop-mediated isothermal amplification; MALS, multiangle light scattering; MOF, metal-organic framework; NA, not available; NAA, nucleic acid analysis; PCR, poly-
merase chain reaction. 
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system can be found in Tables 1 and 2. Some companies have 
directly tackled the mobility issue of PCR systems by devel-
oping handheld PCR instruments as shown in Table 3. Nguyen 
et al investigated the feasibility of using the Biomeme handheld 
quantitative PCR (qPCR) system for rapid (< 50 minute) on-site 
detection and monitoring of Flavobacterium psychrophilum in 
filtered water samples [37]. The study showed a close match be-
tween the results of the Biomeme handheld qPCR system and 
those of traditional bench qPCR, highlighting the feasibility of 
field-based qPCR systems in rapidly detecting and timely moni-
toring bacterial pathogens in water.

LAMP-BASED METHODS

LAMP is one of the most commonly used isothermal amplifica-
tion methods [23, 38] and has attracted the most attention due 
to its high specificity, high amounts of amplification product, 
and superior tolerance to inhibitors [39]. Moreover, LAMP can 
be carried out at a constant temperature, so that it does not 
require a thermal cycler, which simplifies the detection pro-
cedure and allows better portability compared to PCR-based 
methods. Chen et  al introduced a self-contained microdevice 
to in-gel LAMP (gLAMP) for multiplexed pathogen detection 
in complex clinical samples such as serum [24]. Escherichia coli, 
Proteus hauseri, Vibrio parahemolyticus, and Salmonella subspe-
cies were simultaneously detected with high selectivity and sen-
sitivity, as shown in Tables 1 and 2. Another major merit of the 
detection system was that the microchip preloaded with agarose 
solution containing LAMP reagents could maintain activity for 
30  days when stored at 4°C, allowing the long-term storage 
and transportation of LAMP reagents, which is essential for 
LAMP-based point-of-use applications [24]. Sayad et al devel-
oped a wireless automatic endpoint detection system using cen-
trifugal microfluidics for food safety examination. Foodborne 
pathogenic bacteria including E.  coli, Salmonella species, and 
Vibrio cholerae in chicken meat were successfully detected with 
the sample-to-response time of < 1 hour [25]. Moreover, since 

Table 3. Summary of Commercially Available Handheld Quantitative 
Polymerase Chain Reaction Systems

Company Item Weight, kg Footprint, cm2

Chai Open quantitative PCRa 4 28.0 × 24.0

Ubiquitome Freedom 4b Not available 10.2 × 20.3

Ubiquitome Liberty 16c 3.2 21.2 × 11.0

Amplyus miniPCRb 0.45 12.7 × 5.1

Biomeme Franklinb 0.91 About the size 
of a soda can

Abbreviation: PCR, polymerase chain reaction.
aProduct information is from https://www.chaibio.com/openqpcr.
bProduct information is from Reference 35.
cProduct information is from https://insights.ubiquitomebio.com/liberty16-personal-qpcr- 
machine.

Table 2. Pathogen Detection Methods and Their Technical Characteristics

Detection 
Method Limit of Detection

Recovery  
Efficiency, 
% Dynamic Range

Time to  
Answer, h

Absolute or  
Relative  
Quantification

Trained  
Personnel  
Required

Tests at  
Species 
Level

Ready for 
Field Test

Refer-
ence

A1 NA Up to 50% ~500 cells 2 wk Relative Yes No No [14]

A2 103 cells/mL−1 NA 103–106 cells/mL−1 0.25 Absolute No No Yes [16, 17]

A3 103 cells/mL−1 NA ~103 cells/mL−1 0.25 Absolute No No Yes [18]

A4 103 CFU/mL−1 NA 103–106 CFU/mL−1 0 Relative Yes No No [20]

A5 1.4 × 103 CFU/mL−1 NA 7 × 105 to 1 × 104 CFU/mL−1 0 Relative Yes No Yes [21]

A6 1.6 × 102 particles/mL−1 NA 1.6 × 102–5 × 106 particles/
mL−1

10 Relative No No Yes [22]

B1 12 CFU/mL−1 97.4–100.6 NA 1.5 Relative No Yes No [23]

B2 3 copies/μL−1 NA 3–3000 copies/μL−1 1.2 Relative No Yes Yes [24]

3 copies/μL−1 3–3000 copies/μL−1

2 copies/μL−1 2–2000 copies/μL−1

3 copies/μL−1 3–3000 copies/μL−1

B3 3 × 10−5 ng/μL−1 or 
2.7 × 104 CFU/mL−1

NA 3 × 10−5–3 × 100 ng/μL−1 1 Relative No Yes Yes [25]

B4 11 copies/μL−1 NA 11–1.1 × 105 copies/μL−1 1 Absolute No Yes Yes [26]

B5 0.3 cells/mL−1 99.9 0.3–10 000 cells/mL−1 1 Absolute No Yes Yes [27]

3 cells/mL−1 NA 3–10 000 cells/mL−1 

B6 0.7 PFU per reaction NA 1–1000 PFU per reaction 0.5 Absolute No Yes Yes [28]

C1 31 CFU/mL−1 96–104 40–4 × 108 CFU/mL−1 0.33 Relative No Yes Yes [29]

C2 1.9 × 103 CFU/mL−1 NA 103–106 CFU/mL−1 0.75 Relative Yes No Yes [30]

C3 102 CFU/mL−1 8.84–21.3 NA 1.5 Relative Yes Yes Yes [31]

C4  50 CFU/mL−1 NA 50–107 CFU/mL−1 0.53 Relative No Yes Yes [32]

C5 102 CFU/mL−1 45.4–80.2 102–106 CFU/mL−1 2 Relative Yes Yes Yes [33]

C6 1 CFU/mL−1 101–112.1 5–105 CFU/mL−1 2 Relative Yes Yes Yes [34]

Abbreviations: CFU, colony-forming units; NA, not available; PFU, plaque-forming units.
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this system is performed in an entirely automated way with the 
help of Bluetooth wireless technology, it is accessible for field 
application in environmental water samples. However, for the 
methods described above, the adaptability to environmental 
water matrix rather than food or blood needs further inves-
tigation and validation; in addition, the above methods were 
semiquantitative and not suitable for absolute quantification. 
Hoffmann’s laboratory has done a lot of work on developing 
rapid microbial pathogen detection systems based on digital 
LAMP (dLAMP) for absolute quantification in environmental 
waters [26–28]. Lin et al demonstrated that 1-step LAMP can 
be successfully performed on single-layer commercial polycar-
bonate membrane to achieve absolute quantification of the ge-
nome DNA of E. coli, Enterococcus faecalis, and S. Typhi [26]. 
Lin et al further reported the development and validation of the 
simpler and more robust double-layer membrane for dLAMP of 
bacterial pathogens in complex environmental waters. Absolute 
quantification of E.  coli and S. Typhi spiked in unprocessed 
pond water and seawater could be completed within 1 hour 
with the sensitivity down to single cell [27]. Huang et al devel-
oped a gLAMP system enabling absolute quantification of mi-
crobial pathogens in environmental waters within 30 minutes at 
a very low cost of $5 per test. Bacteria (E. coli and S. Typhi) and 
viruses (bacteriophage MS2) were immobilized with LAMP re-
agents in polyethylene glycol hydrogel matrix and were then 
amplified [28]. Although the authors demonstrated that the 
above system could also be used for absolute quantification of 
bacterial targets including E. coli and S. Typhi, relevant detec-
tion limits were not reported, which needs further validation. 
More detailed information about all of the above-mentioned 
LAMP-based systems can be found in Tables 1 and 2. In this 
emerging field, a range of rapid and easy-to-operate platforms 
have been developed for low-concentration pathogen detection. 
It has great potential for future application in point-of-sample 
detection in field upon proper modification of consumables 
such as reagents and microchips.

BIOSENSORS

Biosensors are analytical devices that consist of target recog-
nition molecules and signal transducers to detect the interac-
tion between the recognition molecules and the specific target. 
Innovations in recognition molecules and signal transduction 
methods, as summarized in Figure 1, are emerging to achieve 
sensitive, rapid, and specific pathogen detection. We note that 
thorough reviews are available on various types of recognition 
molecules and signal transducers applicable to waterborne bac-
terial pathogen detection [40, 41]. Below we highlight novel 
biosensors that are portable for in-field applications or hold 
promise for online water quality monitoring.

The novel combination of target recognition molecules and 
new substrates for their immobilization has been demonstrated 
to boost the sensitivity of biosensors and the applicability 

in-field  applicability. For example, Bhardwaj et  al conjugated 
bacteriophage onto metal-organic framework (MOF) for spe-
cific quantification of Staphylococcus aureus [29]. The MOF, 
NH2-MIL-53(Fe), functioned as a water-dispersible and stable 
matrix, and also as an optical transducer whose reduction in 
photoluminescence was proportional to target bacterial concen-
tration. This type of stable and economical biosensor with no-
table quantification performance could be an attractive solution 
to scale up for point-of-sample-collection detection. However, 
it should be noted that such target-specific bacteriophage is not 
available for every bacterial pathogen. As an alternative class 
of recognition molecules, aptamers (synthetic single-stranded 
oligonucleotides) can fold into designed 3D structure to bind 
specific targets. The sequence of the aptamers can be selected 
in vitro through systematic evolution of ligands by exponential 
enrichment, and the easily synthesized aptamers have high sta-
bility, specificity, and affinity to the targets [43].

Integration of nanomaterials with paper microfluidics has 
led to development of convenient portable biosensor devices. 
Commercial test strips, such as RapidCheK and Watersafe, are 
available for environmental detection of E. coli and Salmonella 
Typhimurium. However, these commercial kits mainly use col-
orimetric detection based on nanoparticle aggregation caused 
by antibody–antigen reaction, which takes hours to give qual-
itative results [44]. Using an alternative detection approach, 
Rengaraj et  al conjugated concanavalin A, the recognition 
molecule binding saccharide on bacterial cell surfaces, onto 
commercial hydrophobic paper with screen-printed conduc-
tive carbon ink for impedance measurement. This device has 
potential in-field applicability in terms of portable instrumen-
tation and relative assay stability against environmental distur-
bance [30]. However, as typical to capillary force-driven paper 
microfluidics, the sample size at microliters is too small to be rel-
evant for environmental pathogen monitoring without a prior 
sample concentration step. To overcome this limitation, Srisa-
Art et  al adopted an approach combining immunomagnetic 
separation using anti-Salmonella coated Dynabeads and 
paper-based sandwich immunoassay using the detection en-
zyme β-galactosidase, which forms a red-violet product with 
chlorophenol red galactopyranoside for colorimetric detection. 
The immunomagnetic separation enabled species-specific cap-
ture and enrichment from a 1-mL sample [31]. Although the 
detection device is paper-based, laboratory equipment such as 
vortex and pipette was still required for the immunomagnetic 
separation step. To adapt paper microfluidics for in-field envi-
ronmental detection, the integration of pathogen-specific sep-
aration with biosensors represents both an opportunity and a 
challenge.

For automated and low-cost bacterial pathogen monitoring, 
immunoassay-based electrochemical biosensors are approaching 
commercialization, owing to the consistent assay performance and 
easily automated instrumentation [45]. For example, based on an 
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electrochemical biosensor, Altintas et al developed a fully automated 
portable system for real-time amperometric measurements of E. coli–
specific immunoassay on a microfluidic chip [32]. The instrument 
prototype with programmed fluid manipulation, electrochemical 
measurements, and user interface was also developed and tested, thus 
showing great promise for commercialization. However, since the 
protein-based recognition reaction is intrinsically weak and susceptible 
to matrix effect, the majority of these novel biosensors are still limited 
in sensitivity and specificity compared to nucleic acid analysis (NAA) 
methods. One solution would be to employ biosensors for target cap-
ture utilizing the specific target recognition, while using a nucleic acid–
based method to amplify target DNA or RNA for detection. Wang et al 
demonstrated this approach with bacteriophage-coated Dynabeads 
for magnetic separation of pathogenic E. coli followed by qPCR de-
tection of total bacterial DNA [33]. Li et al combined antibody-coated 
carbon nanotube multilayer biosensors for specific capture of E. coli 
and microfluidic chip-based LAMP detection [34]. The latter study 
achieved single cell detection in 1 mL complex samples such as juice 
and milk [33, 34]. More detailed information on above biosensors can 
be found in Tables 1 and 2. With the automated platforms available for 
LAMP and PCR, these studies demonstrated that coupled biosensor-
NAA would be a promising approach for further development of a fully 
automated environmental pathogen detection system.

CONCLUSIONS 

Portable systems for rapid, ultrasensitive, and specific en-
vironmental pathogen monitoring are essential in risk as-
sessment, outbreak prevention, and vaccine distribution 

for low-resource settings. Recent advances in cell-based, 
nucleic acid–based, and biosensor-based platforms are re-
viewed here, with a focus on promising solutions for bac-
terial pathogen detection in ambient waters at the point of 
sample collection. Among the reviewed technologies, mini-
aturized PCR instruments is the most well-developed and 
commercialized method that is readily deployable in field 
for sensitive and specific pathogenic bacterial detection, 
as summarized in Table  3. For biosensors, the combina-
tion of biosensor and NAA-based detection holds promise 
for improved detection efficiency and thus deserves fur-
ther research and commercial development. Overall, fu-
ture research should focus on Lab-on-a-Chip pretreatment 
approaches that can be integrated with subsequent detec-
tion [46], entirely automated devices with preloaded re-
agents, multiplex detection systems, and online real-time 
monitoring. Such platforms would benefit further com-
prehensive and timely hazard identification, exposure risk 
assessment, and pollution control and management. For 
example, to cope with the global health crisis caused by 
widespread and fast-evolving antibiotic resistance genes 
(ARGs), point-of-sample-collection gene sequencing [47] 
has been developed. This technique provides information 
on hundreds of ARG subtypes and toxin genes for a range 
of water environments. Acquiring this information in-field 
is a pressing need not only for pathogen source tracking, 
but also for preventing ARG dissemination across various 
environments.

Figure 1. Recent developments in biosensors for bacterial pathogen detection. Widely used or innovative target recognition molecules, signal transducers, and substrate 
materials are summarized based on Justino et al [40], Kumar et al [41], and Vikesland and Wigginton [42].
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