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ABSTRACT

Recent advances in optomechanical systems have led to a series of scientific and
technical advances. In addition, they have demonstrated macroscopic quantum phe-
nomena, including probabilistic preparation of quantum states, squeezed light, and
coherent transduction between photons with different energies. There are advan-
tages in using phonons within a quantum information network. Within the solid
state, all optical and electronic phenomena strongly depend on the local distortions
of the crystal lattice, i.e. mechanical phonons, hence could connect dissimilar de-
grees of freedom such as superconducting qubits operating at gigahertz frequencies
with atomic/optical states. Also, unlike photons, phonons do not radiate into free
space. Energy damping of phonon can occur through radiation into bulk struc-
ture which support the mechanical resonator, through impurities and defects in the
material, and due to the inherent anharmonic motion of atoms within solid-state
materials. In this thesis, we explore the limits of acoustic damping and coherence
of a microwave-frequency acoustic nanocavity with a phononic crystal shield that
possesses a wide bandgap for all polarizations of acoustic waves. The nanocavity
is formed from an optomechanical crystal (OMC) nanobeam resonator. It supports
an acoustic breathing mode at ≈ 5 GHz and a co-localized telecom optical resonant
mode which allows us to excite and readout mechanical motion using radiation
pressure from a pulsed laser source. This minimally invasive pulsed measurement
technique avoids a slew of parasitic damping effects − typically associated with
electrode materials and mechanical contact, or probe fields for continuous readout
− and allows for the sensitive measurement of motion at the single phonon level.
The results of acoustic ringdown measurements at millikelvin temperatures show
that damping due to radiation is effectively suppressed by the phononic shield, with
breathing mode quality factors reaching mechanical quality factor Q = 4.9 × 1010,
corresponding to an unprecedented frequency-Q product of f -Q = 2.6 × 1020 and
an effective phonon propagation length of several kilometers. Measurement of the
frequency jitter of the acoustic resonance is also performed, indicating telegraph-
like noise corresponding to a coherence time of ≈ 130 µs. The observed breathing
mode behavior can be explained by TLS interactions when taking into account the
highly modified density of phonon states in the shielded OMC cavity, which are
most likely present in the amorphous etch-damaged region of the silicon surface.
In particular, we find that damping due to nearly resonant TLS is suppressed due to
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the bandgap of the phononic shield, and that relaxation damping from non-resonant
TLS can explain the magnitude, low temperature dependence of the breathing mode
damping, and lack of saturation of the damping with both temperature and acoustic
amplitude. The extremely small motional mass and narrow linewidth of the OMC
cavity make it ideal for precision mass sensing and in exploring limits to alterna-
tive quantum collapse models. Our mechanical modes exist in the same frequency
range as common superconducting qubits, suggesting a possibility for creating a
hybrid quantum architecture consisting of acoustic and superconducting quantum
circuits, where the small scale, reduced cross-talk, and ultralong coherence time
of quantum acoustic devices may provide significant improvements in connectivity
and performance of current quantum hardware. A proposal of mechanical quantum
memory based on ultra-high-Q mechanical model and piezo-electrical coupling is
also discussed in this work.

One remaining roadblock, which significantly compromises the utility of OMCs
integration with superconducting circuits, is the very weak, yet non-negligible par-
asitic optical absorption, which is thought to occur due to surface defect states, and
together with inefficient thermalization can yield significant heating of the hyper-
sonic mechanical mode of the device at ultralow temperatures, where microwave
systems can be reliably operated as quantum devices. In 1D OMC experiments,
the quantum cooperativity (Ceff), which corresponds to the standard photon-phonon
cooperativity divided by the Bose factor of the thermal bath and is the most relevant
figure-of-merit for operation of optomechanical systems at ultralow temperatures,
was lower than unity for all but a microsecond around the time an optical pulse is
applied. This limits quantum optomechanical experiments to schemes with short
pulses. Increased Ceff can be achieved with improved thermalization, for example,
by employing a two-dimensional (2D)OMC cavity. In this thesis, we demonstrate an
improved silicon quasi-2D OMC with an over 50-fold improvement in back-action
per photon over previous reports. We are able tomeasure the dynamics of the internal
cavity acoustic modes of both 1D nanobeam and quasi-2D OMCs. Quasi-2D OMC
shows much lower bath occupancy compared to 1D structures. Most importantly,
quasi-2D OMCs demonstrated a Ceff greater than unity under steady-state optical
pumping, a crucial threshold for realizing a variety of optomechanical applications.
For example, bi-directional transduction or amplification of continuous quantum
signals require the optomechanical device to be operated in a continuous mode. An
analysis of piezo-optomechanical bi-directional microwave to optics transducer is
also presented in this thesis.
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PREFACE

After four years in college working on electromagnetics related projects, mostly
in microwave domain, I decided to work on something with shorter wavelengths
during my gap year before I started my graduate school, which were photovoltaics
and plasmonics. At the time I joined the Painter group, my impression of the group
was all about quantum optics, however, I realized there were on-going projects inte-
grating mechanics and superconducting microwave circuits, and soon a significant
portion of the group became superconducting qubits and related topics. I started
my research in the Painter group on a project combining microwave and optics, a
first attempt for a quantummicrowave-to-optics transducer followingMahmoud and
Paul, with some side projects on designs of on-chip microwave circuits and topo-
logical optomechanics. During the same time, Greg and I started initial numerical
simulations of an optomechanics project using silicon nanobeams. Later, I realized
my interest was still with those shorter wavelength projects, and settled on the silicon
nanobeam project in Dilution Fridge with Greg, assisted heavily in the beginning
by Roger and Justin. At that time a demonstration of phonon intensity interferom-
etry at room temperature had already been achieve by Justin, Sean and Greg. The
phonon-counting technique and pulsed excitation measurements have been mostly
built in the lab. Greg and I were motivated to investigate high mechanical quality
factors in a nanobeam OMC with acoustic shields. In order to do that, we started
with a more careful numerical investigation of the acoustic shields. SEM image of
fabricated devices were fitted and fed back to the next round of fabrication, and all
the details in the fitted geometry were also considered in numerical simulation in
order to know the real bandgap of the realized structure. In the first few fabrication
iterations, even with the misalignment of the bandgap and the mechanical mode
frequency due to subtleties of the lithography in fabrication, we observed a few
devices with mechanical Q-factors above 1 billion. Knowing there was substantial
room for improvement, more numerical optimization on the acoustic design, as well
as iterations of lithography feedback were done. The acoustic bandgap size was
further increased to the fabrication limitations and it was optimally centered around
the mechanical resonance frequency.

After all these optimizations, later measurements of the mechanical lifetime showed
a much clearer trend of mechanical-Q versus acoustic shield, and saturated to
extremely large mechanical-Q factors on the order of 50 billion.
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Figure 0.1: Summary of f Q products for mechanical oscillators in cavity op-
tomechanics and related systems. Results in cavity optomechanics are represented
by circles, with data adapted from Ref. [1]. Diamonds represent electromechani-
cal/piezoelectric coupling to bulk acoustic modes, possessing some of the highest
f Q products of any bulk material phonon modes prior to this work [2, 3]. Experi-
ments presented in this work are represented by squares. Items (1) represent the 1D
nanobeam OMC work presented in this thesis, and items (2) represent the quasi-2D
OMC work presented in this thesis.

50 billion is a very encouraging number, and the corresponding f Q-product is an
important figure of merit of a system protected from interactions with its thermal
environment which causes decoherence. Figure 0.1 summarizes the f Q products
realized for the mechanical element in various state-of-the-art optomechanical and
electromechanical systems ([1, 2, 3]). The nanobeam devices with 5 GHz acoustic
modes in our measurements reached an unprecedented energy coherence, reaching
f − Q = 2.6 × 1020 and thermal decoherence times as large as τth = 1.5 seconds,
corresponding to an effective phonon propagation length of several kilometers.

On the other hand, we realized that the parasitic optical absorption in the silicon
material can be a roadblock for further quantum applications. Due to the reduced
thermal conductivity of silicon at low temperature and the 1D nature of nanobeam
device, optical absorption on the surface of silicon can cause significant damping
of the breathing mechanical mode. Around that time, we upgraded the optical setup
capabilities such that we can use two pulsed lasers to probe the mechanical mode
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with large phonon amplitude, as well as using pump-probe techniques to perform
fast spectral analyze. Measurements include the dependence of the mechanical
linewidth and frequency upon laser power and temperature. Based on these spectral
analyses together with energy decay temperature dependencies, we proposed that the
mechanical dissipation and decoherence is mainly because of coupling to material
defect two-level-systems residing in etch-damaged silicon surface layer.

In the meantime, a quasi-2D OMC design was investigated with the purpose of
increased thermal conductance to the bulk substrate. Similar measurements were
performed on these quasi-2D OMC devices, and significant improvement on quan-
tum capabilities were observed in these devices, while still maintaining a relatively
low intrinsic mechanical damping rate.

Similar nanobeam OMC devices combined with piezoelectric materials were also
brought up for a new design of quantum microwave-to-optics transducer, which will
be introduced in detail in this thesis, with the quasi-2D OMC design as a potentially
better performance candidate. The ultra high-Q mechanical mode, combining with
piezoelectric materials, is also a promising candidate in hybrid quantum systems
together with GHz frequency superconducting qubits. These new hybrid platforms
requires developing a newmaterial system, which is AluminumNitride (AlN) in our
choice. The efforts of growing and patterning AlN are detailed in Roger’s thesis. A
mechanical quantum memory proposal is also briefly introduced in this thesis and
elaborated in Roger’s thesis. These OMC platforms with high-Q, large quantum
cooperativity, and ability to integrate with piezoelectric materials, which form the
bulk of this thesis, show the possibility of creating hybrid quantum architectures,
consisting of acoustic, optics and superconducting quantum circuits, where the small
scale, reduced cross-talk, and ultralong coherence time of quantum acoustic devices
may provide significant improvements in connectivity and performance of current
quantum hardware.

On the way of developing these hybrid quantum systems, I also learned the nano-
fabrication method for superconducting qubits fromMohammad, Michael and Vini-
cius, which lead to an idea of hardware efficient programmable superconducting
quantum logic circuit architecture with Roger, which is a promising platform for
various research directions in quantum floquet engineering, topological photonic
lattice, and even demonstration of small-size fault-tolerant protocols. Some initial
results of a four-qubit device to create a synthetic quasi-3D tetrahedron interacting
photonic lattice are shown in Roger’s thesis.
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Other collaborative projects I was involved in are mostly related to optomechanics,
such as a collaborationwith industry on optomechanical accelerometers and a project
on acoustic topological insulators.
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Chapter 1

CAVITY OPTOMECHANICS AND OPTOMECHANICAL
CRYSTALS

In this chapter, an introduction to optomechanical resonators will be provided, fo-
cusing on optomechanical crystals and sideband-resolved cavity optomechanical
systems, which is the platform for experiments in this thesis. Device design con-
siderations, including optical coupling, optomechanical coupling rate optimization
and impact of randomness in fabrication process on optical cavity and mechanical
resonators, will be introduced in this chapter. A detailed design example on a quasi-
2D Optomechanical Crystals (OMC) cavity based on these design principles will be
discussed in Chapter 2. As the fundamental of optomechanics has already been pre-
sented in a previous thesis from the Painter group [4, 5, 6] and in review papers [7],
this chapter will aim to present enough material to support the experimental work
and new materials of latest design works, while avoiding redundant details.

1.1 Cavity Optomechanics

As shown in Figure 1.1, the canonical model of a cavity optomechanical system
is modeled to be a Fabry-Perot cavity, with one end-mirror of the cavity is me-
chanically compliant. The optical cavity has resonance frequency ωc. The moving
end-mirror has mass m, mechanical resonance frequency ωm, zero-point motion
xzpf =

√
~/(2mωm), and position operator x̂ = xzpf(b̂† + b̂). b̂ (b̂†) is the bosonic

annihilation (creation) operator for the mechanical degree of freedom, and â (â†) is
the bosonic annihilation (creation) operator of optical mode. The bare Hamiltonian
of the optomechanical system considering the absence of optomechincal or noise
interaction is:

Ĥ = ~ωcâ†â + ~ωmb̂†b̂, (1.1)

The Hamiltonian describing this system should also include optomechanical interac-
tion, intrinsic losses to environment and coupling to an external optical pump. The
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Figure 1.1: Canonical cavity-optomechanical system. An optomechanical system
can bemodeled by a Fabry-Perot cavity with two end-mirrors and coupling to optical
waveguide, with one mirror being movable. The effective length of the Fabry-Perot
cavity is Leff, and the optical cavity frequency is ωc. The moving mirror has mass
m, mechanical resonance frequency ωm, zero-point motion xzpf =

√
~/(2mωm), and

the position operator x̂ = xzpf(b̂† + b̂). b̂ is the bosonic annihilation operator for
the mechanical degree of freedom, and â is the bosonic annihilation operator of
optical mode. âin and âout are used to describe optical input and output to the
optomechanical system using the input-output formalism in open quantum systems.

optomechanical interaction part can be derived frommodulation of cavity frequency
ωc by position of end-mirror x̂. The optical resonance ωc = nc/2Leff, where n is an
integer and c is the speed of light in vacuum. Upon the position of the end-mirror
changing by a smaller amount x̂ � Leff, to the first order

ωc(x̂) = ω0 +
ωc

Leff
x̂ (1.2)

the Hamiltonian with the optomechinical interaction becomes

Ĥ = ~ωcâ†â + ~ωmb̂†b̂ + ~g0(b̂† + b̂)â†â, (1.3)

where we have used g0 ≡ ωc/Leff x̂, x̂ = xzpf(b̂† + b̂) and xzpf =
√
~/(2mωm). Here,

xzpf is the zero-point fluctuation of the mechanical oscillator, and g0 is defined as
the vacuum optomechanical coupling rate of the system.
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While Equation 1.3 is derived from a Fabry-Perot cavity model, in general, all
optomechanical systems, where the motion of a mechanical oscillator changes the
resonance frequency of an electromagnetic cavity, have interaction of this form to
the lowest order [8], where g0 needs to be replace by the general expression,

g0 ≡ xzpf
∂ω0

∂ x̂
. (1.4)

Adding noise from the environment into consideration, the full Hamiltonian can be
written as:

H = ~ωcâ†â + ~ωmb̂†b̂ + ~g0(b̂† + b̂)â†â

− ~
κ

2
iâ†â − ~

γi
2

ib̂†b̂

− ~
√
κei(âinâ† + â†inâ) − ~

√
κii(âi â† + â†inâ)

− ~
√
γii(b̂i b̂† + b̂†i b̂).

(1.5)

where κ = κi + κe is the total optical loss rate (linewidth) of the optical mode, κi is
the intrinsic optical cavity loss rate, and κe is the coupling rate to pump waveguide.
γi is the intrinsic loss rate of the mechanical resonator into its environment.

In our experiment, we pump the optomechanical system with a pump laser at
frequency ωL, and we define the detuning of the pump laser to the cavity frequency
by ∆ = ωL − ωc,

âe−iωLt = âe−i(ωc−∆)t,

b̂e−i(ωL+ωm)t = b̂e−i(ωc−∆+ωm)t .
(1.6)

∆ is chosen to be comparable to ωm in our experiments. Some of the product terms
in the Hamiltonian will be rapidly-varying at twice the optical frequency, while
some will be slowly-varying on the scale of ωm. We then make a rotating wave
approximation by neglecting the rapidly-varying terms in the Hamiltonian. We also
relabel some of the terms in the Equation 1.5 in the rotated frame, eiωLt âin → âR

in
and eiωLt âi → âR

i , the Hamiltonian in the rotated frame is
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H = ~∆â†â + ~ωmb̂†b̂ + ~g0(b̂† + b̂)â†â

− ~
κ

2
iâ†â − ~

γi
2

ib̂†b̂

− ~
√
κei(âinRâ† + â†in

Râ) − ~
√
κii(âi

Râ† + â†in
Râ)

− ~
√
γii(b̂i b̂† + b̂†i b̂)

(1.7)

In the Heisenberg picture where the time evolution of an operator Â is given by
Û̂A = −(i/~)[Â, Ĥ] + ∂ Â/∂t, we arrive at the full Heisenberg-Langevin equations for
the photon and phonon annihilation operators:

Û̂a = −i(∆ −
κ

2
i)â − ig0(b̂ + b̂†)â +

√
κeâR

in +
√
κiâR

i (1.8)

Û̂b = −i(ωm −
γi
2

i)b̂ − ig0â†â +
√
γib̂i (1.9)

For an optiomechanical system like ours (and all current realizations of the op-
tomechnical systems), we are working in the vacuum weak coupling regime, where
g0 is smaller than optical damping. The optical field composes a large coherent am-
plitude and a small fluctuating part, such that the mechanical oscillator experiences
a static radiation pressure force. Since the fluctuations of the field are comparably
smaller compared to the coherent terms, we make the substitutions to linearize 1.8

â −→ α + â

b̂ −→ β + b̂.
(1.10)

α and β are the classical coherent parts of the optical field and the mechanical field
where

α =

√
κeαin

i∆ + κ
2 i

(1.11)

b̂ =
g0 |α |

2

ωm −
γi
2 i
. (1.12)

Ignoring the terms corresponding to the product of quantum noise operators (â2,
â†2 and â†â in Hamiltonian), the linearized Heisenberg-Langevin equations are
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Û̂a = −i(∆ −
κ

2
i)â − ig0α(b̂ + b̂†) +

√
κeâR

in +
√
κiâR

i (1.13)

Û̂b = −i(ωm −
γi
2

i)b̂ − ig0(α∗â + αâ†) +
√
γib̂i . (1.14)

Taking the Fourier Transform of the above equations, we can solve for the field
amplitudes in the frequency domain

â(ω) =
−iG(b̂†(ω) + b̂(ω)) +

√
κeâin(ω) +

√
κiâi(ω)

i(∆ − ω) + κ/2
, (1.15)

b̂(ω) =
√
γib̂in(ω) − iG(â(ω) + â†(ω))

i(ωm − ω) + γi/2
(1.16)

where we have used G = g0α as the parametrically-enhanced optomechanical cou-
pling rate. We can further obtain the expression for the mechanical fluctuations in
terms of optical inputs by inserting Eqnation 1.15 into Eqnation 1.16,

b̂(ω) =
1

i(ωm − ω) + γi/2

(
√
γi b̂in(ω)

− iG
[
−iG(b̂†(ω) + b̂(ω)) +

√
κeâin(ω) +

√
κiâi(ω)

i(∆ − ω) + κ/2

+
iG(b̂†(ω) + b̂(ω)) +

√
κeâ
†

in(−ω) +
√
κiâ
†

i (−ω)

−i(∆ − ω) + κ/2

] )
.

(1.17)

Regrouping of the terms in Equation 1.17 gives renormalized mechanical frequency
ω′m ≡ ωm + δωm, where mechanical fluctuations are peaked, as well as the loss rate
γ = γi + γOM with

δωm(∆) = G2Im
{

1
i(∆ − ωm) + κ/2

−
1

−i(∆ + ωm) + κ/2

}
, (1.18)

γOM(∆) = 2G2Re
{

1
i(∆ − ωm) + κ/2

−
1

−i(∆ + ωm) + κ/2

}
. (1.19)
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1.1.1 Sideband Resolved Regime

The sideband resolved (unresolved) regime corresponds to the case that κ � ωm

(κ � ωm). The OMC devices we used here have microwave frequency mechanical
resonances (typically 5 - 10 GHz) with sideband resolution ratio of κ/(2ωm) < 10%,
placing us in the resolved sideband regime. In later experiments, we are most
interested in two detuning scenarios, which wewill refer to as red- and blue-detuned,
∆ = ±ωm. The optomechanical coupling rate in these two cases are

γOM(∆ = ±ωm) = ±
4G2

κ
. (1.20)

Similar to Raman scattering, in cavity optomechanics incident photons are scattered
by optomechanical interaction and generate Stokes and anti-Stokes motional optical
sidebands. In the red-detuned (blue-detuned) case, the Stokes-like (anti-Stokes-like)
sideband will be suppressed by the reduced cavity susceptibility. Pump photons will
absorb a phonon and scatter into the cavity frequency ωc, cooling and damping
the mechanical resonator for red-detuned pump, while blue-detuned pump photons
emit a phonon and scatter into the cavity frequency, amplifying and heating the
mechanical resonator. The interaction Hamiltonian can be expressed as,

Ĥint =


~G(â†b̂† + âb̂) if ∆ = −ωm

~G(â†b̂ + âb̂†) if ∆ = +ωm

.

The average phonon occupancy 〈n〉 = 〈b̂†b̂〉 is a very importance aspect of the
optomechanical system, and 〈n〉 below unity is an important prerequisite of utilizing
optomechanical resonators in quantum experiments [9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19]. Cooling of 〈n〉 with red-detuned pump in continuous wave (CW) has
been of a great interest [20, 21, 22]. Phonon occupancy as well as effective quantum
cooperativity of the OMC system will be analyzed in detail in later chapters.

1.2 Optomechanical Crystals

The physics of cavity optomechanics applies to any mechanical motion couples to
the electromagnetic field in a cavity. Different systems have been explored across
a large range of mass scales, as small as cold atomic traps, as large as reflective
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micromechanical membranes, microdisks and superconducting microwave circuits.
According to the expression of g0, in the case of a simple Fabry-Perot cavity,

g0 ≡ ωc/Leff x̂, (1.21)

we can see that the smaller the size of optical cavity and the smaller motional mass,
the larger the vacuum optomechanical coupling rate. And this is in general true for
all systemswheremechanical motion couples to the frequency of an electromagnetic
cavity. Here comes the benefit of Optomechanical Crystals (OMCs) cavities, where
effective cavity volumes can be miniaturized to close to the theoretical minimum
value of λ/2n. Here λ is the wavelength of electromagnetic wave and n is the
effective dielectric constant of the electromagnetic cavity. In addition, a simultane-
ous phononic cavity can be also engineered into the same cavity, and thus an ultra
high-Q mechanical resonator can be confined, which is one of the main focuses of
this work.

1.2.1 Photonic Crystal

Periodic potentials in solids give rise to dispersion and propagation of electrons,
which create gaps in allowed frequencies for the propagating electronic waves.
Similarly, periodic changes of refractive index in a dielectric material will affect
the allowed propagating solutions of an electromagnetic wave, and can give rise
to electromagnetic bandgaps, in which certain frequencies of the electromagnetic
wave cannot propagate [23, 24].

Starting from Maxwell’s equation in a structure with periodic relative permittivity,

ε(r) = ε(r + R), (1.22)

the master equation for the magnetic field can be shown as

∇ ×

[
1
ε(r)
∇ ×H(r)

]
=

(
ω

c

)2
H(r). (1.23)

The solution to Eqn. 1.23 takes this form according to Bloch’s Theorem [25]

H(r, t) = H0eik·rhr(r), (1.24)
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where k is the wave-vector and hr (r) is a periodic function on the lattice. The
spatial mode profiles for frequencies can be calculated using Equation 1.23, and
catalogue the solutions to their spatial wave-vector eigenvalue k, eventually yielding
a band structure diagram for a periodic structure if all k are solved, describing the
relationship between frequency and wave-vector for each normal mode. Figure 1.2
shows an example of an one-dimensional photonic crystal. For electromagnetic
fields of certain frequencies in the bandgap of the structure, field intensity attenuate
very fast in the photonic crystal and can be reflected on the boundaries.
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Figure 1.2: One dimensional photonic crystal. Periodic regions of high and low
refractive indeceswith certain lattice constants can lead to constructive or destructive
interference of electromagnetic waves.

In this work, both quasi-one-dimensional nanobeam type of photonic crystals and
quasi-two-dimensional ‘snowflake‘ type of photonic crystals are used. We etch
holes into dielectric (usually silicon) membranes, where holes can be elliptical,
‘snowflake‘ or other optimized shapes. The etched area provides a lower effective
refractive index and the unetched area provides a higher effective refractive index.

1.2.2 Phononic Crystal

An engineered periodic structure can also be used in trapping and guiding me-
chanical waves propagating in solids. Similarly to photons and electrons, on the
periodically patterned dielectric, it also produces nontrivial bandgaps which pro-
hibits the propagation of elastic waves. The speed of light and speed of sound
in dielectric material are different, such that an optical cavity design for near-IR
photons yields bandgaps for phonons on the order of GHz.

In this work, both one-dimensional phononic crystals and two-dimensional phononic
crystals are used. The one-dimensional nanobeam type of phononic crystals have
mechanical bandgaps only in even-z-symmetry, contrary to the photonic crystal cav-
ity casewhere the two-dimensional ‘cross‘ and ‘snowflake‘ type of phononic crystals
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have full mechanical bandgaps in all symmetries. Unlike electromagnetic waves,
mechanical waves of any frequency cannot propagate in vacuum around the struc-
ture. Based on the property of this full bandgap, a nano-mechanical GHz resonator
with an unprecedented quality factor around 50 billion at cryogenic environment
was realized, which will be discussed in later chapters.

1.2.3 Optomechanical Crystals Cavity

Similarly to a Fabry-Perot cavity discussed in the previous section, a photonic/phononic
cavity can be formed with two mirrors, where photonic crystal and phononic crystal
with appropriate photonic and phononic bandgaps are worked as these two mirrors.
By creating a defect in the lattice, it perturbs the crystal symmetry and forms a
resonant cavity. The defect can be simply removing a hole from an uniform crystal
structure or change the dimensions of an one unit cell slightly. The breaking of sym-
metry by the defect here can host modes at frequencies within the bandgap, which
can only be localized in the defect region since mode frequencies are prohibited in
surrounding photonic/phononic crystals. Figure 1.3 shows an example of creating
a defect cavity in a perfect one-dimensional periodic structure by replacing several
higher index periods with lower index periods.
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Figure 1.3: One dimensional photonic crystal cavity. An optical cavity is con-
structed by two end-mirror regions, while several higher index periods are replaced
by lower index periods in central region. optical field of certain frequencies can be
localized in the center defect region.

Care needs to be taken in building the defect. Firstly, electromagnetic waves can
be scattered into the surrounding vacuum (if the photonics crystal is not three-
dimensional), some of the designs of defect region need to be adiabatic tailored.
Secondly, optimization of optomechanical coupling requires better overlap of inten-
sity of optical field and mechanical displacement field, which can also be tuned by
defect cavity design. More details of cavity design is discussed in Chapter 2 with a
design example of quasi-2D OMC cavity.
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1.2.4 Optomechanical Coupling

In a Fabry-Perot cavity model as described in the previous section, distance between
the two end-mirrors is modulated by circulating photons reflected on the mirrors.
The mechanism is different in OMC cavity. There are two coupling mechanisms.
First, a ‘moving boundry‘ where the mechanical motion displaces the boundaries of
the dielectric structure, second, a ‘photoelastic‘ effect where the strain field in the
dielectric can change the dielectric constant of the material. Both mechanisms can
cause the frequency of optical mode to shift.

Optomechanical coupling rate gOM is the rate of change of the optical resonance
frequency overmechanical displacement. For amechanical displacement amplitude,
β, gOM = ∂ωc/∂β. The optical mode energy density depends on the electric field
E and dielectric constant ε(r), to first order in perturbation theory, the change in
energy can be calculated using the unperturbed eigenvectors [26, 27]

gOM =
∂ωc

∂β
= −

ωc

2

∫
d3r E∗(r) · ∂ε(r)∂β E(r)∫
d3r E∗(r) · ε(r)E(r)

. (1.25)

For the ‘moving boundary‘ part of gOM, strain-induced components in ε are ignored
and calculated as

gOM,bnd = −
ωc

2

∫
dA q(r) · n̂(r)(∆ε〈E‖(r)〉2 − ∆ε−1〈D⊥(r)〉2)∫

d3rε(r)〈E(r)〉2
, (1.26)

whereq(r) is the normalizedmechanical displacement field,∆ε = εdielectric−εvacuum,
n̂ is surface normal vector, and E‖ and E⊥ represent the parallel and perpendicular
components of the electromagnetic fields. Similarly, for calculation of ‘photoelastic‘
component of gOM, the boundary is assumed to be static and gOM,ph is calculated
according to [28]:

gOM,ph =
ε0ε

2
r ωc

2

∫
dVE∗i (r)Ej(r)pijklSkl(r)∫

d3rε(r)|E(r)|2
, (1.27)

where S is defined as the strain tensor in terms of the displacement field, Sij =(
∂qi
∂rj
+

∂qj
∂ri

)
, and p is the rank-four photoelastic tensor of the material. The vacuum

optomechanical coupling rate is expressed as
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g0 = xzpfgOM (1.28)

= xzpf(gOM,ph + gOM,bnd), (1.29)

where xzpf is the zero-point fluctuation of mechanical mode. Therefore g0 describes
the optical cavity frequency shift due to the zero-point mechanical fluctuation, and
it can be calculated from unperturbed mechanical and optical eigenmodes if optical
and mechanical properties of the material are known.

1.3 1D Nanobeam OMC, Quasi-2D OMC and Cross Phononic Crystal

1.3.1 1D Nanobeam OMC Cavity

In this work, two kinds of OMC cavities are used. One is one-dimensional OMC and
the other is quasi-two-dimensional OMC. The 1D nanobeam OMC cavity is used in
this work for ‘Ultra high-Q mechanical resonator’. In a beam formed by patterning a
suspended thin-film (220 nm) Si layer, dielectric material is removed into elliptical
holes periodically as shown in Figure 1.4. The ‘mirror‘ unit cell (Figure 1.4a)
has a bandstructure as shown in Figure 1.4b, and a pseudo-bandgap exists around
ωc/2π = 194 THz. In the quasi-2D OMC devices, confinement in the transverse
(ŷ) is achieved by ‘snowflake‘ crystals, but in nanobeam devices, the transverse
(ŷ) and out-of-plane (ẑ) confinements are achieved by total internal reflection due
to index contrast between Si and the surrounding vacuum. However, the bands
of other polarization and presence of the light cone [27] can couple strongly to
radiation modes, this is why the photonic bandgap of the mirror region is called a
pseudo-bandgap.

In order to form a cavity from the optomechanical crystals, both the lattice constant
and elliptical hole geometry are modulated adiabatically along the length of the
beam in the nanobeam OMC. A symmetric optical potential [27] is formed in
the cavity central defect region of the nanobeam, in which there exists a confined
optical mode. Finite-element method (FEM) simulation of the transverse in-plane
electric field magnitude |Ey | for the fundamental optical mode at ωc/2π = 194 THz
(free-space wavelength λc ≈ 1550 nm) is shown in Figure 1.4c.

A FEM simulation of the displacement field magnitude of the breathing acoustic
mode at ωm/2π = 5.0 GHz is also shown in Figure 1.4d. Similarly to quasi-2D
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Figure 1.4: NanobeamOMC. a, A unit cell of the end-mirror portion of a nanobeam
OMC, and b, the photonic band structure of the mirror. A pseudo-bandgap exists
near ω/2π = 200 THz, and dashed black line indicates the defect cavity frequency.
Bands shown in red (blue) corresponds to odd (even) y-symmetry. c, Finite-element
method (FEM) simulation of the transverse in-plane electric field magnitude |Ey |

for the fundamental optical mode at ωc/2π = 194 THz (free-space wavelength
λc ≈ 1550 nm). d, FEM simulation of the displacement field magnitude of the
"breathing" acoustic mode at ωm/2π = 5.0 GHz.

OMC device, the central defect region of the nanobeam is tailored from phononic
unit cells, which provide a pseudo-bandgap as detailed [27].

1.3.2 Optical Coupling to 1D Nanobeam OMC Cavity with Side-Coupling

In order to route light in and out of nanobeam OMC, we employ a lensed optical
fiber in an End-Fire configuration. The lensed-fiber focuses the ∼ 8 µm diameter
Gaussian mode of a single-mode fiber to a beam waist of 2.5 µm at a working
distance of approximately 14 µm from an on-chip waveguide 1D coupling facet.
Single-pass coupling efficiencies as high as 72% are realizable [29]. For routing
light from the on-chip 1D coupling waveguide to the optical cavity itself, a side-
coupling technique is employed.

In the side-coupling method, the waveguide mode is evanescently coupled to a
nanobeam optical cavity located adjacent to the waveguide, as shown in a later
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section (Figure 1.15). The cavity loading efficiency ηκ is tunable through the gap
size between the nanobeam and waveguide beam. The extrinsic optical quality
factor Qe ≡ ωc/κe increases exponentially with the gap size. This scheme also
allows placement of a nanobeam cavity on both sides of the waveguide, doubling
the number of devices which can be measured by a single lensed fiber alignment.

1.3.3 Quasi-2D OMC Cavity

A significant roadblock of 1D nanobeam OMC cavities for quantum applications is
the very weak, yet non-negligible parasitic optical absorption in current devices [9,
10, 11, 12, 13]. Optical absorption, thought to occur due to surface defect states [30,
31], together with inefficient thermalization (due to the 1D nature of silicon OMC
crystals currently in use) can yield significant heating of the hypersonic (> GHz)
mechanical mode of the device. At ultralow temperatures (. 0.1 K), where mi-
crowave systems can be reliably operated as quantum devices, this absorption leads
to significant heating of the local phonon bath within a microsecond upon applying
an optical pulse with a power large enough to detect single phonons at appreciable
rates [9]. Moreover, this hot bath can persist even after the removal of the light field
for timescales on order of the achievable decoherence times for superconducting
microwave qubits, significantly compromising the utility of OMCs integration with
superconducting microwave systems.

A new quasi-2DOMC cavity is designed in this work in order to increase the thermal
conductance from the cavity region to bulk substrate, such that the mechanical mode
of interest experiences much lower bath occupancy compared to 1D structures with
the same number of intracavity photons (nc). We demonstrate an over 50-fold
improvement in back-action per photon over previous reports [32, 33]. The quasi-
2D OMC design will be discussed in more detail in Chapter 2 with design process
and device fabrication considerations.

1.3.4 Cross Phononic Crystal

Due to the fact that neither the nanobeam cavity nor the quasi-2D cavity does not
provide full three-dimensional mechanical bands, the breathing mechanical reso-
nance can still couple to leaky mechanical modes in the mirror region and leak to the
bulk Si substrate. Also, fabrication imperfections can break the ẑ-symmetry of the
device, which will further cause some overlap with the mode profile of propagating
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modes in themirror portion of the nanobeam, and thus increase the intrinsic damping
of the breathingmode. The impact of fabrication imperfections will be discussed in
the following sections. In this work, the mechanical loss rate of the OMC structure
needs to be minimized. To minimize mechanical clamping losses, the quasi-2D and
nanobeam OMC are surrounded by a periodic mechanical shield structure, designed
to have a complete phononic bandgap at the quasi-2D or nanobeam OMC mechan-
ical frequency [34, 35]. As the phonons are also prohibited from radiating into
the ẑ direction, the bandgap is fully three-dimensional. Geometrically, the structure
consists of a square lattice of cross-shaped holes, or equivalently, an array of squares
connected to each other via narrow bridges. The phononic bandgap in this mechan-
ical shield structure comes from the frequency separation between the resonances
of the individual squares, which is at higher frequencies, and lower frequency bands
with frequencies strongly dependent on the width of the connecting narrow bridges,
ac-hc, where ac is lattice constant and hc is the height of cross holes as indicated in
Fig. 1.6a and Fig. 1.5b. We analyze SEM images of realized structures to provide
parameters for our FEM simulation. We also include filleting of the inner and outer
corners (r1 and r2 in Fig. 1.5b and Fig. 1.6a) in our simulations, arising from the
technical limitations of state-of-the-art nanofabrication techniques. For the ‘cross‘
shield used in quasi-2D OMC, a bandgap > 4 GHz is achieved centered ∼ 10 GHz,
through tuning of the cross lattice constant ac, cross height hc and width wc (as
shown in Fig. 1.6b). For the ‘cross‘ shield used in nanobeam OMC, a bandgap
> 3 GHz is achieved centered ∼ 5 GHz (as shown in Fig. 1.5a).



15

r1
r2

wc

hc

0

1

2
3

4
5
6
7

8
9

10

 a
co

us
tic

 fr
eq

ue
nc

y 
 (G

H
z)

b

Γ X M Γ

z-even
z-odd

a c

Figure 1.5: Phononic shield design for 5GHz. a, SEM image showing the
nanobeam clamping geometry. b, SEM image of an individual unit cell of the cross-
crystal acoustic shield. The dashed lines show fitted geometric parameters used in
simulation, including cross height (hc = 474 nm), cross width (wc = 164 nm), inner
fillet radius (r1), and outer fillet radius (r2). c, Simulated acoustic band structure of
the realized cross-crystal shield unit cell, with the full acoustic bandgap highlighted
in pink. Solid (dotted) lines correspond to modes of even (odd) symmetry in the
direction normal to the plane of the unit cell. The dashed red line indicates the
mechanical breathing-mode frequency at ωm/2π = 5.0 GHz.
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Figure 1.6: Phononic shield design for 10GHz. a SEM image of an individual
unit cell of the cross-crystal acoustic shield. The dashed lines show fitted geometric
parameters used in simulation, including cross height (hc = 223 nm), cross width
(wc = 75 nm), inner fillet radius (r1), and outer fillet radius (r2). b band structure of
the realized cross-crystal shield unit cell, with the full bandgap highlighted in pink.
Solid (dotted) lines correspond to modes of even (odd) symmetry in the direction
normal to the plane of the unit cell. The dashed red line indicates the mechanical
breathing-mode frequency at ωm/2π = 10.27 GHz.
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1.4 Impact of Fabrication Imperfections on Optical Mode

In this work, the nanobeam OMCs usually have a simulated optical quality factor
exceeding 1 × 106 and the quasi-2D OMCs have an even higher simulated optical
quality factor exceeding 2×107 due to the additional confinement from 2D photonic
crystals. However, the experimentally measured values are regularly at least one
order of magnitude smaller even for well established structures [35, 36]. The reason
for this is due to imperfections of the fabricated devices, because of which the mode
of interest can couple to the bands of other polarization and the light cone [27]. To
increase the yield for fabricating higher quality devices and to develop improved
fabrication procedures, it is key to determine the impacts of different fabrication
imperfections and figure out the bottlenecks for the current device optical quality
factors.

To analyze the impact of occurring fabrication imperfections, here FEM simula-
tions [37] of the optical properties is performed on a ‘flower‘ OMC cavity. The
‘flower‘ OMC is a variation of ‘snowflake‘ OMC developed in collaboration with
Hannes Pfeifer [38], and the cavity used in this case is built using the same principle
as the quasi-2D OMC cavity. Optical and mechanical mode profiles of ‘flower‘
OMC cavity are shown in Fig. 1.7.

The fabrication imperfections introduced during the fabrication processes have both
systematic and random effects onto the resulting device geometry. Systematic devi-
ations can thereby be investigated by single simulations, while quantifying random
effects requires the simulation of ensembles of imperfect device geometries. The
simulation domain is embedded inside a 4.5 µm air filled margin before scattering
boundaries are applied. Within the thin silicon film plane, six and five rows of iso-
lating mirror cells were used towards the 2D crystal and the waveguide, respectively.

Five common imperfections are investigated in this section. Tilted side-walls,
boot features at the edge profiles, deviations of the silicon thin film thickness are
considered systematic effects due to fabrication condition. Random disorders for
both position and shape of fabricated geometry features are introduced due to
technical limitations of the overall accuracy of electron beam lithography which
are considered random effects.

Their impact on the reachable optical quality factor was simulated for different sizes
of the respective effect. Tilted side-walls and boot features both appear due to non-
ideal conditions within the reactive ion etching of the silicon layer. Tilts thereby
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a

b

Figure 1.7: Flower OMC mode profile. a FEM-simulated mode profile (Ey

component of the electric field) of the fundamental optical resonance ωo/2π =
200 THz, with red (blue) corresponding to positive (negative) field amplitude. b
Simulated displacement profile of fundamental mechanical resonance at ωo/2π =
11.3 GHz.

manifest themselves by an angle of the etched shape that is approximated here by
a scaling of the geometry features between the top and the bottom surface of the
device layer. Boots arise from etch rate variations at the end of the etch process,
when the buried oxide layer of the silicon on insulator (SOI) wafer is reached. They
appear as a small necking at the base of the device layer. Variations of the thickness
of the silicon device layer can stem both from variations in the manufacturing of
SOI wafers and from silicon surface treatments that are used to clean and smoothen
the surface [39]. They usually consist of an oxidization and a subsequent HF etch
step that removes the oxidized layer and terminates the surface with hydrogen bonds
that lead to reduced absorption from adsorbed water molecules [36, 39, 40, 41]. The
results of the simulations are shown in Fig. 1.8. None of the individual imperfections
has a large effect on the reachable quality factors for small to moderate sizes of the
resulting geometry imperfection. If they are combined, they can however give a
considerable contribution to the degradation of the reachable optical quality factor
of the fabricated optomechanical crystal cavities.
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Figure 1.8: Systematic imperfections of optical mode. Sketches of simulated ge-
ometry imperfections (left) and the corresponding internal quality factor dependence
as retrieved from FEM simulations. a, The impact of tilted side-walls generated by
a scaling of geometry features between the top and bottom face of the silicon device
layer. Common tilts correspond to scaling & 0.95. b, The effect of boot features
with a square type profile at the base of the device layer. The smallest mesh edge of
the simulations was in this case reduced to 5 nm (usual boot sizes around 5 nm). c,
The effect of the device layer thicknesses on the optical quality factors. On the left
is a sketch of a surface treatment used to clean the surface from dirt and cracks by
an oxidization and a subsequent HF treatment.
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For the random disorder of both position and shape of fabricated geometry features,
the investigated geometry imperfections include deviations of the position and the
shape of the flower features in the optomechanical crystal cavity design. The
deviations from the perfect feature geometry are normally distributed to reflect the
random nature of the fabrication imperfections. The probability density P for a
certain shift or deformation δ is therefore given by

P(δ) =
1

√
2πσP

exp

(
−
δ2

2σ2
P

)
. (1.30)

The standard deviation σP defining the width of the distribution gives a measure
of the uncertainty of shape or position. Within a single simulation P(δ) represents
the distribution of all deviations of all features within the simulated geometry. For
the case of the position disorder, the uncertainty relates to the full displacement
of the flower features from the perfect position meaning that σP =

√
σ2

P,x + σ
2
P,y,

where σP,x/y specify the standard deviation in the respective in-plane direction.
The deviations of the flower shape includes 12 independent shifts δi of the flower
boundary at each petal or notch of each flower feature in the geometry. Unrealistic
sharp steps in the contours are avoided by a smooth build-up and decrease of the
deviation within its surrounding 60° angle ϕ segment of the flower. It follows
a displaced cosine, as δi(ϕ) = δi · θ(ϕ) · θ(60° − ϕ) · (1 + cos(3π + 6ϕ))/2, for
the deformation δi appearing at ϕ = 30°. θ(◦) denotes the Heaviside function.
Schematics of the different imperfection types are shown on the left of Fig. 1.9.

In order to get statistical data for the impact of the different imperfections, 10
individual structures were simulated per value ofσP. The average values Q̄, standard
deviations σQ and results of the individual simulations of the internal quality factors
are shown on the right of Fig. 1.9. As shown in [42], the effect of the imperfections
on the average reached Q-factor can be understood in terms of an additional loss
channel scaling with σ2

P, which can be expressed as

Q̄(σP) =
1

1
Qideal
+ Aimpσ

2
P

. (1.31)

Aimp is thereby a constant specific to a geometry imperfection and cavity geometry
that describes the sensitivity of the structure towards the respective imperfection. It
can be retrieved by a fit of data from the simulated ensembles as shown in Fig. 1.9.
Here Aimp values for position, shape and combined are fitted to be 5.4 × 10−7 1/nm2,
7.55 × 10−7 1/nm2, 1.35 × 10−6 1/nm2 correspondingly.
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Figure 1.9: Random imperfections of optical mode. Sketches of simulated geom-
etry imperfections (left) and the corresponding internal quality factor dependence
as retrieved from FEM simulations of ensembles. Red geometries in the sketches
represent the disordered geometry, gray geometries indicate the unperturbed struc-
ture. The rows correspond to a, position, b, shape and c, combined disorder of the
flower features, where the σP of both disorder types were set equal in c. Within the
quality factor dependence graphs the errorbars around the mean quality factors Q̄
of the ensembles indicate the standard deviation ±σQ at each uncertainty.
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1.5 Impact of Fabrication Imperfections on Mechanical Mode

Apart from the effect of fabrication imperfections on the optical modes, they also
affect the acoustic properties of optomechanical structures. A degradation of the
mechanical quality factor can however be compensated by an increasing number of
shielding acoustic mirror cells [43, 44], since no radiation into the free space occurs.
In this section, a study on how disorder can weaken acoustic shields is introduced.

Similar to the study in the previous section on impact of fabrication imperfection on
optical modes, we consider several systematic and random disorder effects of both
position and size of fabricated geometry features, with a nanobeam OMC cavity
surrounded by ‘cross‘ acoustic shields. The bandgaps of designed cross acoustic
shields used in this work are ∼ 3 GHz centered around the mode of interest of
nanobeam OMC (∼ 5 GHz). The gap of cross shields may decrease if the size of
cross holes fabricated are different from design. Thus the effect of acoustic shield
gap size and the mismatch between the nanobeam OMC mechanical frequency and
center frequency of cross acoustic shields are also studied in this section.

Tilted side-walls and boot features both appear due to non-ideal conditions within
the reactive ion etching of the silicon layer. Variations of the thickness of the silicon
device layer can stem both from variations in the manufacture of SOI wafers and
from silicon surface treatments that are used to clean and smoothen the surface [39].
However, simulations show that all these systematic fabrication imperfections have
negligible impact on the mechanical quality factor of nanobeam OMC surrounded
by cross acoustic shields.

For the random disorder for both position and size of fabricated geometry features,
the investigated geometry imperfections include deviations of the position and the
size of nanobeam elliptical holes, acoustic shields cross holes, as well as roughness
in the beam. In investigating the roughness in the beam, ∼ 40 points are randomly
selected on the beam edge along the length of the nanobeam, and position of these
points are randomized the same way as position of elliptical and cross holes. The
deviations from the perfect feature geometry are normally distributed to reflect the
random nature of the fabrication imperfections. The probability density P for a
certain shift or deformation δ is the same as in the previous section. Within a single
simulation, P(δ) represents the distribution of all deviations of all features within
the simulated geometry. For the case of the position disorder, the uncertainty relates
to the full displacement of the elliptical holes, cross holes, or beam edge points
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from the perfect position meaning that σP =
√
σ2

P,x + σ
2
P,y, where σP,x/y specify

the standard deviation in the respective in-plane direction. The deviations of the
elliptical holes include two independent shifts of the size of elliptical holes which
are the two axes of ellipse. The deviations of the size of cross holes include four
independent shifts which are the length and width of two rectangles.

In order to get statistical data for the impact of the different imperfections, 10
individual structures were simulated per value ofσP. The average values Q̄, standard
deviations σQ and results of the individual simulations of the mechanical quality
factors are shown in of Fig. 1.10. Results show that positions of nanobeam elliptical
holes, acoustic shields cross holes and roughness in the beam are themajor reason for
mechanical quality factor degradation, while the size of nanobeam holes elliptical
and acoustic shields cross holes have negligible impact on mechanical quality factor.
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Figure 1.10: Random imperfections ofmechanicalmode. a, combined position of
elliptical holes, cross holes and beam edge points, as well as b, size of elliptical holes
and ‘cross‘ holes disorder of the nanobeam surrounded by cross features, where the
σP of both disorder types were set equal in a. Within the quality factor dependence
graphs, the errorbars around the mean quality factors Q̄ of the ensembles indicate
the standard deviation ±σQ at each uncertainty.

Although the small randomness in the sizes of acoustic shield cross holes has
negligible effects on the mechanical quality factor of OMC cavity, the acoustic
bandgap size does change if cross holes systematical deviate the optimized design.
Mechanical quality factor of nanobeam breathingmode are simulated with different
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cross geometries and thus different bandgap sizes. The band structures are plotted in
Fig. 1.11, with bandgaps of ∼ 2GHz, ∼ 1GHz, and no bandgap. The corresponding
mechanical quality factor versus different number of acoustic shield periods are also
plotted on the right side of Fig. 1.11.

Similarly, the center of bandgaps of acoustic shields and the nanobeam breathing
mode frequency can change if hole sizes have systematical deviations from the op-
timized design. The impact from mismatch between the center of acoustic bandgap
frequency and nanobeam breathing mode frequency are also studied and plotted in
Fig. 1.12. Band structures and indicators of nanobeam breathing mode frequency
are plotted on the left and corresponding mechanical quality factor versus different
numbers of acoustic shield periods plotted on the right side of Fig. 1.12. Results
in Fig. 1.12a show that the mechanical quality factor starts to decrease only if the
nanobeam breathing mode frequency becomes much higher (∼ 1.5 GHz) than the
higher edge of bandgap, while results in Fig. 1.12b show that the mechanical quality
factor slowly decreases if the nanobeam breathing mode frequency approaches the
lower edge of bandgap, although it is still in the bandgap. The different behavior
of mismatch between bandgap center frequency and nanobeam breathingmode fre-
quency may come from the nature of different individual bands in the band structure
of the cross. The degradation of the mechanical quality factor due to fabrication
imperfections comes from the fact that the fabrication randomness will introduce
coupling of modes between different symmetries. The nanobeam breathing mode
couples to the bulk silicon substrate very weakly due to acoustic bandgap of cross.
Different bands in the band structure of the nanobeam and crosses have distinct cou-
pling rate with bulk silicon substrate, the breathing mode coupling to other modes
thus leads to mechanical damping of the breathing mode.

Here in this work, we explore the limits of acoustic damping and coherence of a
microwave acoustic nanocavity with the cross phononic crystal shield. The results
of acoustic ringdown measurements at millikelvin temperatures show that damping
due to radiation is effectively suppressed by the phononic shield, with breathing
mode quality factors reaching Q = 4.9×1010. In order to achieve this, radiation loss
of mechanical mode of interest (the breathing mode) is effectively suppressed. In
Chapter 4, there is a more detailed discussion of impact of fabrication imperfections
on the mechanical quality factor of the specific nanobeam OMC devices used in this
work.
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Figure 1.11: Effects of acoustic bandgap size. Mechanical quality factor versus
different number of acoustic shield periods on the right side, with corresponding
band structures on the left side for a, large bandgap (∼ 2 GHz), b, small bandgap
(∼ 1 GHz) and c, no bandgap (= 0 GHz). Selected position uncertainty of σ =
2, 4, 6 nm are plotted for different bandgap sizes.
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Figure 1.12: Effects of acoustic bandgap frequency mismatch. a, Effects of
center frequency of acoustic bandgap mismatches with nanobeam breathing mode
frequency for acoustic shields with bandgap ∼ 2 GHz. a, Mechanical quality factor
versus different numbers of acoustic shield periods for nanobeam breathing modes
higher than the center frequency of acoustic bandgap. Bandgaps and breathingmode
frequencies are indicated in the left plot. b, Mechanical quality factor versus different
number of acoustic shield periods for nanobeam breathingmodes lower than center
frequency of acoustic bandgap. Bandgaps and breathing mode frequencies are
indicated in the left plot.
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1.6 Nanofabrication Methods of OMC Devices

In this work, all of the OMC devices and superconducting circuits presented in
later chapters were performed in the Painter Group 10,000/1,000 cleanroom and
at the shared campus cleanroom Kavli Nanoscience Institute (KNI). In summary,
the nanobeam OMC devices and quasi-2D OMC devices were fabricated using a
silicon-on-insulator wafer with a silicon (Si) device layer thickness of 220 nm and
buried-oxide layer thickness of 3 µm. The device geometry was defined by electron-
beam lithography followed by inductively coupled plasma reactive ion etching (ICP-
RIE) to transfer the pattern through the 220 nm Si device layer. Photoresist was then
used to define a ‘trench‘ region of the chip to be etched and cleared for fiber access
to device waveguides. In the unprotected trench region of the chip, the buried-oxide
layer is etched using a highly anisotropic plasma etch, and the handle Si layer is
cleared to a depth of 100 µm using an isotropic plasma etch. The devices were
then undercut using a vapor-HF etch and cleaned in a piranha solution before a
final vapor-HF etch to remove the chemically-grown oxide. In fabrication, devices
were spatially grouped into arrays in which the number of acoustic radiation shield
periods is scaled while all other geometric parameters are held nominally identical.

Two kinds of silicon-on-insulator (SOI) wafers were used in this work. Wafer from
Soitec has a Si device layer thickness 220 nm, buried oxide (BOX) layer 3 µm, handle
Si thickness 500 µm, crystal orientation 〈1, 0, 0〉, resistivity ρ ∼ 5−15Ω · cm, diced
into dies of either 5 × 13 mm or 5 × 10 mm. Wafer from SEH has a device layer
Si thickness 220 nm, buried oxide (BOX) layer 3 µm, handle Si thickness 725 µm,
crystal orientation 〈1, 0, 0〉, resistivity ρ > 3000 Ω · cm, diced into dies of either
10 × 10 mm or 5 × 10 mm.

The fabrication process for end-fire OMCs is a two layer process. However, testing
devices, which only need to be suspended and can be optically addressed by a
tapered fiber or other out-of-plane mechanism (such as an on-chip grating), do not
need the 1D optical coupling waveguide for coupling to lensed fiber. Thus testing
devices can be fabricated with a single layer process. An overview of the single
layer process is shown in Figure 1.13, and a summary of major steps is listed here
for single layer process. More detailed fabrication processes can be found in [45],

1. Pre-cleaning of the substrate chip before application of resist. A solvent rinse
in acetone (ACE) followed by isopropanol (IPA) is used to remove protective
photoresist coating or an adhesive film added in the wafer dicing process.
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e-

Silicon (220 nm device layer, 750 μm handle)
Buried oxide (BOX), 3 μm 
ZEP-520A E-beam resist

(1) Pre-cleaning (2,3) E-beam lithography

(5) ICP-RIE etch device layer (6) Cleaning of remaining resist (7) Device layer HF release

(4) Resist development 

Figure 1.13: Single-layer process flow of SOI. Numbering in the single layer
process flow is corresponding to steps listed in the text. After spinning and baking
of e-beam resist, it is patterned via e-beam lithography to define the OMC. Plasma
etching (ICP-RIE) is used to transfer the pattern into the 220 nm silicon device
layer. After the resist is cleaned, the buried oxide layer is removed via HF etching
to suspend the optical structures.

2. Spinning and baking of electron beam lithography resist. After a pre-baking
of the pre-cleaned chip using a hotplate, ZEP-520A e-beam resist is spinning
applied to the surface of the chip, it is used in this work for defining OMCs
because of its high e-beam resolution. Then, the resist is hardened by post-
baking using a hotplate.

3. Electron beam lithography. The OMC devices patterns are defined in the
resist using e-beam lithography.

4. Development of e-beam resist. Chips after e-beam lithography are submerged
in a ZED-N50 (a development solvent) for development of resist, and then
rinsed in Methyl isobutyl ketone (MIBK).

5. Reactive-ion etching. Inductively-coupled plasma reactive-ion etching (ICP-
RIE) is used to etch the exposed area by e-beam lithography, thus transfer the
OMC device pattern from the e-beam resist to the top 220 nm silicon layer.
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Combination of reactive species C4F8 and SF6 are used in this work which is
a standard pseudo-Bosch etching process [46].

6. Cleaning of remaining resist. Remaining e-beam resist is removed by sub-
merging the chip in a strong solvent, typically Trichloroethylene (TCE) solu-
tion.

7. Device layer release. The buried oxide underneath the OMC device needs to
be removed in order to release the device silion layer. Hydrofluoric acid (HF),
either vapor-HF or 40% aqueous solutions is used as etchant for SiOx.

Additional steps are needed for End-fire optical coupling. In order for a lensed
fiber to access the 1D coupling waveguide in End-Fire devices, the center of fiber
(with a diameter of ∼ 128 µm) needs to be aligned with device layer of chip.
After transferring the OMC patterns from e-beam resist to silicon device layer,
patterning lithography (photo-lithography is preferred here since a large area needs
to be patterned) step followed by a deep etch into the handle silicon wafer in the
region abutting the 1D coupling waveguide, forming a trench in the silicon.

Photoresist (Megaposit SPR220-7.0) is used to mask the devices during the dry
plasma etch into the handle silicon layer. A flow of the two-layer fabrication process
is shown in Figure 1.14 and Table 1.1.

In addition to the first 6 steps for Single layer process, before Step 7, the following
steps are added as the second layer process:

1. Spinning and baking of photolithography resist. After a pre-baking of the pre-
cleaned chip using a hotplate, Megaposit SPR220-7.0 photoresist is spinning
applied to the surface of the chip to an average thickness of 7 µm, it is used in
this work for defining deep etching region for End-fire process. The resist is
hardened by post-baking using a hotplate.

2. Photolithography. The photoresist is exposed using UV light (365 nm i-line
exposure) using a Karl Suss MA6 Mask Aligner to form a simple rectangular
mask pattern which covers all the devices on the chip and leaves the trench
region of the substrate unmasked.

3. Development of photoresist.
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Table 1.3: ICP-RIE optimized etch recipe parameters.

Parameter Substrate SOI layer
Device-layer Si SiO2 Handle Si

C4F8 flow (sccm) 84 70 0
SF6 flow (sccm) 30 0 300
O2 flow (sccm) 0 5 0
RF power (W) 15.5 150 0
ICP power (W) 600 2200 1200
D.C. bias (V) 76 165 0
Chamber pressure (mTorr) 15 10 100
Helium pressure (Torr) 10 5 10
Helium flow (sccm) 5.0-6.0 5.0-6.0 5.0-6.0
Table temperature (◦C) 15 15 20
Etch rate (nm/min) 45 220 2500

4. Reactive-ion etching. First, the silicon device layer is etched using a recipe
identical to the single layer process. Second, the BOX layer is etched
anisotropically using a high-DC-bias (> 150 V) plasma etch using C4F8

and O2. Lastly, the silicon handle is etched with an isotropic plasma etch
using pure SF6 and no DC bias.

5. Cleaning of remaining photoresist. Remaining photoresist is removed by
submerging the chip in a strong solvent, typically N-Methyl-2-pyrrolidone
(NMP) solution, followed by a piranha (3:1 sulfuric acid to hydrogen peroxide)
cleaning step.

6. Device layer release. The buried oxide underneath the OMC device needs
to be removed in order to release the device silicon layer. Hydrofluoric acid
(HF), either vapor-HF or 40% aqueous solution, is used as etchant for SiOx.

The result of the two-layer process is shown in Figure 1.15. Arrays of OMC devices
are fabricated in the silicon device layer, where the deep trench allows an optical
fiber to address the arrays of 1D coupling waveguides. A zoom-in of an individual
End-fire coupled nanobeam is also plotted in Figure 1.15. More details about the
individual End-fire coupled nanobeam will be discussed in Chapter 4.

Among all the steps in both the single layer process and two-layers process, the most
critical steps are patterning the OMC patterns into device layers, which includes
e-beam lithography and ICP-RIE etching. There are systematic deviations between
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Silicon (220 nm device layer, 750 μm handle)
Buried oxide (BOX), 3 μm 
Megaposit SPR220-7.0 photoresist

(0) Cleaning of e-beam resist (1,2) Photolithography

(4) ICP-RIE etch 3 layers (5) Cleaning of remaining resist (6) Device layer HF release

(3) Resist development 

UV

Figure 1.14: End-fire device two layer process flow. Numbering in the single
layer process flow is corresponding to steps listed in the text. Illustration begins
with a patterned silicon device layer of an SOI sample. A 7 µm-thick photoresist
(Megaposit SPR220-7.0) is used in a photolithography layer to protect the device
region of the chip while exposing a trench region to subsequent etches. A highly
anisotropic ICP-RIE etch is used to etch the device layer and buried oxide in the
trench region, and a further deep etch is performed to clear the handle silicon to a
depth of ∼ 100 µm in order to allow fiber access to waveguides patterned in the
device layer. The deep etch may be either (1) an isotropic SF6 etch with no DC
voltage bias, or (2) a standard Bosch etch using C4F8 and SF6 in alternation. The
photoresist is then stripped and the sample is cleaned in piranha solution. Finally, a
vapor-HF undercut releases the End-fire devices.

the CAD designs sent to e-beam lithography tool. If all the process steps are kept
unchanged, these systematic deviations are also kept constant between fabrication
runs. In order to find these systematic deviations, SEM images of previous fabrica-
tion run were taken and fitted. Differences between the SEM images and optimized
design were extracted from fitting, and then feedback to the next fabrication itera-
tion. More details of the SEM images fitting feedback method will be introduced
together with the quasi-2D OMC design in Chapter 2.
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Figure 1.15: End-fire device illustration. Scanning electron microscope (SEM)
image of nanobeam devices sample fabricated using the End-fire process outlined
in Table 1.1. a, Side-view of an isotropically etched trench, with curved profile
in the handle silicon, BOX layer was removed by HF. b, Front-view of part of a
devices array patterned in the silicon device layer. The center of optical fiber will be
aligned to the same height of the device and swept along the device layer between
individual devices during measurements. c, Top-view of the device array. d, An
individual End-fire nanobeam device with a nanobeam OMC on either side of a
central coupling waveguide.
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Chapter 2

DESIGN AND FABRICATION CONSIDERATIONS OF A
QUASI-2D OMC CAVITY

The principle of building a defect cavity in photonic/phononic crystals was briefly
introduced in Chapter 1. In this Chapter, design procedures of OMC cavities will
be discussed in details with an example of quasi-two-dimensional OMC cavity with
simulated optical scattering quality factor Qscat > 20 × 106 and high vacuum op-
tomechanical coupling rate g0 ≈ 1.4 MHz. The quasi-2DOMC devices have several
key improvements over 1D nanobeam OMC devices, such as a potentially higher
loaded optical quality factor Qo in the fabricated devices and higher optomechanical
coupling due to better confinement of the optical field by photonic crystals in lateral
direction, easier for planar integration of optomechanical circuits, as well as better
thermal conductance to the surrounding substrate due to better connectivity. As
will be discussed in detail in Chapter 6, optical pump causes parasitic heating in the
OMC cavity, which decreases the effective quantum cooperativity Ceff of the sys-
tem. A highly desirable route toward minimizing the effects of optical-absorption
heating in thin-film semiconductor OMCs is planar quasi-2D OMCs, as opposed to
1D OMCs such as the nanobeam, in order to increase thermal conductance between
the cavity and the surrounding cold fridge-temperature bath. In the quasi-2D device
presented in this work, the thermal contact area between the cavity and the surround-
ing substrate is increased by a factor of ∼ 40 relative to the nanobeam, allowing
the optically-excited bath of hot phonons to dissipate faster and lower the effective
hot phonon bath temperature experienced by the cavity mode. Further more, Ceff is
directional proportional to g2

0 and loaded optical quality factor Qo. The increased
g0 and optical quality factor of quasi-2D OMC also benefit Ceff of the system.

2.1 Design of a Quasi-Two-Dimensional Optomechanical Crystals Cavity

Our quasi-2D optomechanical crystal defect cavities were designed around the
silicon-on-insulator (SOI) materials platform, which naturally provides for a thin
Si device layer of a few hundred nanometers in which both microwave-frequency
acoustic modes and near-infrared optical modes can be guided in the vertical di-
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rection [34]. Here, we focus on the fundamental transverse-electric-like (TE-like)
optical modes and the fundamental vertically guided acoustic modes of even parity
about the center of the thin Si slab (vector mirror symmetry σz = +1). The cavity
design consists of three major steps.

500nm

x

y

a
a

r w

wo

ho

d wi

hi

Figure 2.1: Quasi-2D OMC unit cell. Unit cell schematic of a linear waveguide
formed in the snowflake crystal. Guided modes of the waveguide propagate along
the x-axis.

First, we start with a periodically patterned quasi-2D slab structure with both
phononic and photonic bandgaps in which to host the optomechanical cavity. Here,
we use the ‘snowflake’ crystal with a hexagonal lattice [34] as shown in Fig. 2.1. The
snowflake crystal provides a pseudo-bandgap for TE-like optical guided waves and a
full bandgap for all acousticmode polarizations. Finite-element-method (FEM) sim-
ulations of the optical and acoustic modes of the snowflake crystal were performed
using the COMSOL software package [37], with nominal snowflake parameters
corresponding to a Si slab thickness of t = 220 nm and (a, r,w) = (500, 205, 75) nm,
resulting in a TE-like guided mode photonic band gap extending over optical fre-
quencies of 180 - 240 THz (vacuum wavelength 1250 - 1667 nm) and an acoustic
bandgap covering 8.85 - 11.05 GHz.

Second, we created a line-defect in the snowflake lattice by replacing one row of
snowflake unit cells with a customized unit cell that localizes mechanical and optical
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Figure 2.2: Quasi-2D OMC band structure. Photonic (left) and phononic (right)
band structure of the linear waveguide (only modes of even symmetry about the
center of the silicon slab are shown for photonic band structure). The solid blue
curves are waveguide bands of interest; dashed lines are the other guided modes;
shaded light blue regions are band gaps of interest; green tick mark indicates the
cavity mode frequencies; gray regions denote the continua of propagating modes
outside of the snowflake crystal band gap. (Green dashed lines indicate even σz and
odd σy modes, yellow dashed lines denote odd σz modes.)

modes to the line-defect, and crucially, produces a large optomechanical coupling
between the co-localized waves. The line-defect in the snowflake lattice acts as
a waveguide for photon and phonon modes that lie within the bandgaps of the
surrounding snowflake lattice. For the design studied here, we replaced one row
of snowflakes with a set of ‘C’-shaped holes. This design took inspiration from
the one-dimensional nanobeam OMCs reported in Ref. [35], in which a mechanical
breathing mode of the nanobeam is strongly coupled to a co-localized photonic
mode. Optomechanical coupling in this sort of design is a result of both bulk
(photoelastic) [47] and surface (moving boundary) [48] effects. The ‘C’ shape
allows for large overlap of the stress induced by the acoustic mode with the optical
mode intensity in the bulk of the Si device layer, while also focusing the optical mode
at the air-Si boundary which greatly increases the moving boundary contribution to
the optomechanical coupling. The guided-mode vacuum coupling rate of a unit cell
for the line-defect waveguide (g∆) was calculated, and iteration in the waveguide unit
cell designwas performed to optimize g∆ prior to forming a full cavity structure [34].
Photonic and phononic bandstructure diagrams of the optimized waveguide unit
cell are shown in Figs. 2.2a and 2.2b, respectively. From these bandstructures,
we see that there is a guided-mode bandgap for the fundamental, σz = +1 optical
modes which extends over optical frequencies from 190 THz to 210 THz (vacuum
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wavelength 1430 to 1580 nm), while simultaneously there exists an acoustic guided-
mode bandgap for σz = +1 acoustic modes covering frequencies from 10 GHz to
10.6 GHz. These two guided-mode bandgaps of the line-defect waveguide are used
in the next design step to form localized cavity resonances along the length of the
line-defect waveguide.

Figure 2.3: Quasi-2D OMC mode profile. FEM-simulated mode profile (Ey

component of the electric field) of the fundamental optical resonance ωo/2π =
194 THz, with red (blue) corresponding to positive (negative) field amplitude.
Simulated displacement profile of fundamental mechanical resonance at ωo/2π =
10.27 GHz. Here, the magnitude of the displacement is represented by color (large
displacement in red, zero displacement in blue).

The final step in the cavity design involves introducing a tapering of the line-defect
waveguide properties along the waveguide propagation direction (x-axis). Here,
we utilize a modulation of the ‘C’-shape parameters that increase quadratically
in amplitude with distance along the x-axis of the line-defect waveguide from a
designated center position within the waveguide (the center of the cavity). This
introduces an approximate quadratic shift of the frequency of the waveguide modes
with distance from the cavity center. For waveguide modes near a band-edge, this
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can result in the localization of the modes as these modes are pushed into a bandgap
away from the cavity center. As detailed in Supplementary Note 2, a Nelder-
Mead simplex search algorithm was used to obtain a tapered cavity structure with
simultaneously high optical Q-factor and large optomechanical coupling between
co-localized optical and acoustic modes. Figures 2.3a and 2.3b display the resulting
simulated field profiles of the fundamental optical resonance (ωc/2π = 194 THz,
λc = 1550 nm) and coupled acoustic resonance (ωm/2π = 10.27 GHz) of the
optimized 2D OMC cavity, respectively. The co-localized modes have a theoretical
vacuum optomechanical coupling rate of g0/2π = 1.4 MHz, and the optical mode
has a theoretical scattering-limited quality factor of Qscat = 2.1 × 107 in a cavity
structure with seven rows of snowflakes at each side of the line-defect waveguide
and seven mirror unit cells of the waveguide at each end of the cavity.

2.2 Design Optmization of Quasi-Two-Dimensional OMC Cavity

Finite element method (FEM) simulations of the OMC cavity geometry are used to
determine the optical andmechanical cavity mode frequencies (ωo andωm), vacuum
optomechanical coupling rate, g0, and scattering-limited optical quality factor, Qs.
To maximize γOM = 4g2

0nc/κ, we would like to maximize both the g0 and loaded
Q-factor Qopt. Intrinsic quality factors of fabricated devices rarely get higher than
Qi ∼ 106, due to fabrication imperfections and optical absorption. Also, simulated
Qs is generally high (Qs > 5 × 106) for a properly formed optical cavity due to two-
dimensional mirrors in quasi-2D OMC cavities. Therefore, we restrict simulated
Qs to be larger than 2× 106 to prevent radiative scattering from harming the quality
factor in the realized device. We assign each design a fitness value simply given
by F ≡ −|g0 |. We have here a 9 parameter optimization problem, which are d, hi,
wi, ho, wo, hi,c, wi,c, ho,c, wo,c, where hi,c, wi,c, ho,c, wo,c are the parameters of the
‘C‘-shape holes in the center of the cavity. Parameters of the other cavity ‘C’-shape
holes between the mirror and the center on both sides are quadratically modulated
toward the center holes. Note that a, r and w are previously optimized for the large
optical and mechanical bandgaps, and the thickness of the device layer, t, is fixed by
the choice of substrate.

For a computationally expensive fitness function with a large parameter space, a
good choice of optimization algorithm is the Nelder-Mead method [49]. A simplex
search algorithm does not have smoothness requirements for the fitness function,
such that it is quite resistant to simulation noise. A modern variant of this method
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Figure 2.4: DesignOptmization ofQuasi-Two-DimensionalOMCCavityNelder-
Mead simplex search pattern. A slice of the multidimensional parameter space
explored by theNelder-Meadminimizationmethod. The color of the points indicates
the normalized value of the fitness function. This slice includes multiple Nelder-
Mead search runs with randomly generated starting points and convergence to
multiple hot-spots in the two-dimensional space of hi,c and ho,c.

is also implemented in the fminsearch function of MATLAB. An optimization for
quasi-2D OMC design is created as follow:

1. To ensure that realizable geometry is generated in a simulation, the parameter
sets need to meet certain conditions. For example, ho − hi ≥ 60 nm (55 nm
for some of the iterations) and wo/2 − wi/2 ≥ 60 nm, where 60 nm is a
conservative gap size we can realize with the limits of our device fabrication.
Therefore, parameter sets are bounded for the generation of initial values and
intermediate steps with the Nelder-Mead method.

2. Randomly generate an initial parameter set (d, hi, wi, ho, wo, hi,c, wi,c, ho,c,
wo,c) within the bounds we set in step 1.



40

3. Run the optical simulation to determine the optical wavelengths (ωo) of all
the optical modes near 1550 nm with scattering-limited Q-factors larger than
a threshold value (in practice only the fundamental mode we are interested in
for most cases). If this fails, set F = 0 and go to step 6.

4. Scale all parameters except t, including a, r , and w, to move the optical mode
with highest Qscat to approximately 1550 nm.

5. Run the optical simulation again, in addition to the mechanical simulation,
with scaled parameters, to determine ωo, ωm and g0, and compute the fitness
of the current scaled parameter set. If F did not change appreciably over the
last few iterations, we reached a local minimum. Otherwise, we choose a new
initial point by going to step 6.

6. Generate a new parameter set via the Nelder-Mead method and go to step 3.

By continually repeating the optimization algorithm, we mitigate the problem of
converging on the local minimum. A visual representation of the search pattern is
shown in supplementary figure 2.4. We follow these steps until we have a designwith
a g0 and Qs that we are satisfied with. The visual representation of supplementary
figure 2.4 is formed by ∼ 5000 individual simulations (each individual simulation
is defined after step 5 has finished successfully). We slice the multidimensional
parameter space with hi,c, ho,c, since the gap formed by these two parameters is
where both mechanical displacement and optical field are most concentrated. Note
that mechanical resonance ωm also highly depends on hi,c. Indeed, we notice that
most of the local minima lie on the line formed by ho,c−hi,c = 60 nm. This is because
the intensity of the optical field on the boundaries of the gap becomes stronger as
the gap becomes narrower, hence the larger g0 by moving boundary effects due to
higher overlap between optical and mechanical fields. This means, if we can create
a narrower gap in the realized devices, we can potentially get an even higher g0, but
for current measurements, we chose a conservative gap value of ho,c − hi,c ≥ 60 nm.

2.3 Optical Coupling to Quasi-Two-Dimensional Optomechanical Crystals
Cavity

The device sample is mounted at the mixing chamber of the dilution refrigerator,
with fiber-to-chip coupling achieved by an End-fire coupling scheme with an anti-
reflection-coated tapered lensed fiber [29]. The tapered lensed fiber is placed on a
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a

1D waveguide ntrans nmirr photonic
crystal
cavity

b

Figure 2.5: Optical coupler design. a Schematic and b SEM image shows design
of full device, including OMC cavity (black), 1D coupling waveguide (blue) and 2D
coupling waveguide (red).

position encoded piezo xyz-stage in close proximity to the device chip. After cooling
the experiment from room temperature to≈ 10mK,we optimize the fiber tip position
relative to a 1D tapered waveguide coupler on the device layer by monitoring the
reflected optical power on a slow photodetector.

The design of the tapered waveguide coupler is similar to Ref. [50] and [29]. The
tip of the waveguide is designed to mode match the field of the waist of lensed fiber.
The major distinction for the 2D case from 1D nanobeam design is the other side
of the tapered waveguide coupler which is also designed to mode match the line
defect waveguide in the 2D region as shown in Fig. 2.5a and b. The mirror in the 2D
line defect waveguide region is introduced gradually to avoid excess scattering in
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Figure 2.6: Optical coupler Simulation. a Broadband reflection spectrum of
the optimized coupling waveguide design. b Estimate (blue solid) and measured
(dashed black) single-pass coupling efficiency ηcpl .

this region. The shape of the center of the line defect waveguide is slowly changed
from a geometry that provides no photonic bandgap, over a number of periods ntrans,
to the ‘C’ shape which provides a photonic bandgap. Following ntrans, there are
a variable number of mirror periods nmirr. Reducing nmirr will make a partially
transparent mirror which serves as one side of the cavity’s end-mirrors. In this
way, a controllable amount of the incident light is permitted to leak through to the
cavity region, while both of the mirror and defective region of the cavity are highly
reflective for off-resonant frequencies. The coupling rate between the waveguide
and cavity is exponentially dependent on nmirr since light attenuates exponentially
in the photonic crystal bandgap.

Figure 2.6a shows the broadband reflection spectrum of the optimized coupler, cal-
culated by a finite-difference-time-domain simulation [51]. The amplitude and free
spectral range of fringes in the spectrum are consistent with a low finesse Fabry-
Pérot cavity formed by weak waveguide air interface reflection R ≈ 0.6%, and
the near unity reflectivity photonic crystal mirror at the 2D line defect waveguide.
Single-pass coupling efficiency ηcpl can be estimated from fringe visibility of broad-
band reflection spectrum, as shown in Fig.2.6b. The actual measured single-pass
efficiencies are ηcpl ≈ 60.7% for a 0-shield device and ηcpl ≈ 59.7% for an 8-shield
device. The difference between simulations and measurements is attributed to slight
fabrication offsets—a small difference on the scale of several nanometers for the
two sides of 1D tapered waveguide coupler may cause significant mode mismatch
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on both sides.

2.3.1 1D Waveguide to 2D Waveguide Coupling

The fiber to 1D waveguide coupling as well as the adiabatic tapering of the 1D
waveguide in this quasi-2D OMC cavity device is very similar as in [6]. In this
subsection, details about the 1D waveguide to 2D line-defect waveguide coupling
will be discussed. Once the light has been coupled into the 1D waveguide, the
optical mode needs to be subsequently coupled to 2D line-defect waveguide in order
for ‘end coupling’ into the quasi-2D cavity. The design of ‘end coupling’ method
will be introduced in the next subsection.
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1-D coupling waveguide width
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Figure 2.7: End coupling overlap. a, 1D Waveguide to 2D waveguide coupling
efficiency ηoverlap as a function of the 1D waveguide width (width of the side con-
necting 2D waveguide). b, FEM-simulated mode profiles of optical power in 1D
waveguide and 2D waveguide.

For the quasi-2D photonic crystal structures used in this work, to which we wish to
couple, only possess bandgaps for the TE-like polarizations where the electric field
lies predominantly in the plane of the device layer (the z = 0 plane). Thus, we need
only consider a single bound mode of each waveguide, with transverse field vectors
E1D and E2D for the input 1D waveguide and output 2D waveguide, respectively.
The 1D waveguide to 2D waveguide coupling efficiency ηoverlap can be derived to be

ηoverlap = Re
[
|
∫

dA(E1D ×H2D
∗) · x̂ |2∫

dA(E2D ×H2D
∗) · x̂

]
1

Re[
∫

dA(E1D ×H1D
∗) · x̂]

(2.1)
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where x̂ is the direction of propagation. The guided modes were calculated with
FEM methods [37].In this work, the device layer has a fixed thickness (220nm
Silicon), and the design of 2D waveguide is mostly decided by optomechanical
crystal unit cell design. Thus optimization of the coupling efficiency only involves
computed ηoverlap as a function of width of 1D waveguide.

In Fig. 2.7a, ηoverlap versus width of 1Dwaveguide is plotted, and we extract the max-
imum overlap integral efficiency of this 1D to 2D junction is 94%. Note that a small
amount of reflection is neglected in this efficiency estimation, however, this small
reflection together with the small reflection from fiber to 1D waveguide junction
and reflection of mirrors in 2D line-defect waveguide create a weak resonant cavity,
which will contribute to extra parasitic optical heating at milliKelvin temperature
for quasi-2D devices in this work. This small reflection will be addressed in detail
in Chapter 6. FEM-simulated mode profiles of optical power in 1D waveguide and
2D waveguide are also plotted in Fig. 2.7b and c.

2.3.2 Butt-Coupling from 2D Waveguide to Cavity

In this subsection, coupling from 2D waveguide to quasi-2D OMC cavity will be
briefly introduced. Once the light has been coupled into the 2D waveguide, two
approaches exist in order to further couple light into OMC cavity, either ‘side-
coupling’ as designed in 1D nanobeam devices, or ‘butt-coupling’ used in quasi-2D
devices. In this subsection, only the ‘butt-coupling’ approach will be discussed.
As shown in Fig. 2.5 and already briefly discussed in the previous subsection, the
mirror in the 2D line defect waveguide region is introduced gradually to avoid excess
scattering in this region. The shape of the center of the line defect waveguide is
slowly changed from a geometry that provides no photonic bandgap, over a number
of periods ntrans, to the ‘C’ shape which provides a photonic bandgap. A controllable
amount of the incident light is permitted to leak through to the cavity region. Since
the cavity region is still highly reflective for non-resonant light, cavity region works
as perfect mirror for light detuned from cavity resonance. Coupling rate between
the waveguide and cavity (κe) is exponentially dependent on nmirr and ntrans since
light is attenuated exponentially in the mirror region.

FEM simulation of total load opticalQ-factor (Qt) and extrinsicQ-factor (Qe) versus
ntrans and for different nmirr are plotted in Fig. 2.8a. FEM-simulated mode profiles of
optical power for selected ntrans are also plotted in Fig. 2.8b. Note that the intrinsic
Q-factor (Qi) is not observed to be affected over a wide range of ntrans and nmirr. The
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Qi of fabricated devices in this work is mainly limited by fabrication imperfections
and was discussed in Chapter 1. FEM simulations show that, with modest Qe values
from 5 × 105 to 2 × 106, Qi is limited to ≈ 5 × 106, where fabrication imperfection
usually limit realized Qi to below 1 × 106 in this work.

a

b

Figure 2.8: 2D waveguide to cavity extrinsic coupling. a, 2D waveguide to cavity
extrinsic coupling quality factor (QE) as a function of ntrans for different number
nmirr. b, FEM simulation of the optical field intensity for a butt-coupled quasi-2D
cavity, normalized to its maximum and displayed on a logarithmic scale.
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2.4 Imaging Feedback in Fabrication for Quasi-2D OMC Devices

The minimum critical features sizes in the quasi-2D devices are kept as 60 nm, for
example, ho − hi ≥ 60 nm, where 60 nm is a conservative gap size we can realize
with the limits of our device fabrication. This minimum size is limited by the size
requested using the e-beam pattern generator (EBPG) [52] plus a blow-out due to
enlargement of features sizes comes from back-scattering of electrons during e-bean
lithography and anisotropicity in the plasma etching. This blow-out value varies on
different edges of the structure, therefore, it is necessary to figure out corresponding
blow-out values in order to make sure the fabricated devices match the optimized
design parameters.

Between fabrication iterations, SEM images of multiple realized devices are ana-
lyzed and the geometrical parameters are fitted and fed back into the next fabri-
cation iteration in order to make the fabricated devices as close as possible to the
simulation-optimized design parameters. Some examples of fitted ‘C’-shape and
snowflake holes are shown (red solid lines) in Fig. 2.9b, and corresponding fitted
parameters are also plotted in Fig. 2.9b.
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Figure 2.9: Device fabrication feedback for quasi-2D devices. a SEM image of
the center of a OMC cavity with examples of fitting geometries (red solid lines)
for ‘C’ shape holes and snowflake holes. b Examples of designed (solid lines) and
fitted (dots) geometry parameters in the SEM-fitting feedback method, for hi (blue),
ho (cyan), wi/2 (red), and wo/2 (green).
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2.5 Device Characterization

Fabricated devices are characterized at room temperature (300K). A dimpled optical
fiber was used to evanescently couple light into and out of a 1D tapered coupling
waveguide for each device tested. From the normalized optical spectrum (see
Fig. 2.10a), we determine the wavelength of the fundamental optical resonance of
the quasi-2D OMC to be λo = 1558.8 nm, with a loaded (intrinsic) optical Q-
factor of Qt = 3.90 × 105 (Qi = 5.30 × 105). We measured the optomechanically
coupled mechanical resonance using a pump-probe scheme with an optical pump
frequency at the red motional sideband of the optical cavity [53], fromwhich we find
a mechanical frequency of ωm/2π = 10.21 GHz (see Fig. 2.10b). From fitting the
mechanical damping rate, γ, versus applied intra-cavity photon nc (see Fig. 2.10b
inset), we extract a vacuum coupling rate of g0/2π = 1.09 MHz.
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Figure 2.10: Device characterization of Quasi-2D OMC device. a Normalized
wavelength scan of the optical mode of a quasi-2D OMC device with no phononic
shielding (‘zero-shield’). The wavelength of the fundamental optical resonance of
the 2D OMC is determined to be λo = 1558.8 nm, with a loaded (intrinsic) optical
Q-factor of Qopt,loaded = 3.90 × 105 (Qi = 5.30 × 105). b Normalized EIT scan of
the mechanical mode of interest centered aroundωm/2π = 10.21 GHz at intracavity
photons nc = 33 (light blue), nc = 104, and nc = 330 (dark blue). Inset shows
mechanical mode linewidth versus nc. Vacuum coupling rate g0/2π is extracted to
be 1.09 MHz.
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Chapter 3

OPTICAL MEASUREMENTS TECHNIQUES AT
LOW-TEMPERATURE

In this chapter, multiple techniques and experimental methods used in the OMC
device characterization at low temperature are presented.

3.1 Measurement Setup At Low-Temperature

3.1.1 Measurement Setup For 1D Nanobeam OMC

The full measurement setup used for 1D nanobeam OMC device characterization
is shown in Fig. 3.1. The light source is a fiber-coupled tunable external-cavity
diode laser, of which a small portion is sent to a wavemeter (λ-meter) for frequency
stabilization. The light is then sent to high-finesse tunable fiber Fabry-Perot filter
(Micron Optics FFP-TF2, bandwidth 50 MHz, FSR 20 GHz) to reject laser phase
noise at the mechanical frequency, which can contribute to noise-photon counts on
the SPDs. After this prefiltering, the light is routed to an electro-optic phase modu-
lator (φ-mod) which is driven by an RF signal generator at the mechanical frequency
to generate optical sidebands used for locking the detection-path filters. The light
is then directed via 2×2 mechanical optical switches into a "high-extinction" path
consisting of a series of modulator components which are driven by a digital pulse
generator to generate high-extinction-ratio optical pulses. The digital pulse gener-
ator is used to synchronize the switching of the modulation components as well as
to trigger the time-correlated single-photon-counting (TCSPC) module. Of these
modulation components, two are electro-optic intensity modulators which together
provide ∼60 dB of fast extinction (∼20 ns rise and fall times), and two are Agiltron
NS 1×1 switches (rise time 100 ns, fall time ∼30 µs) which provide a total of 36
dB of additional extinction. The total optical extinction used to generate our optical
pulses is approximately 96 dB, which is greater than the cross-talk specification
of our mechanical optical switches. For this reason we use two 2×2 switches in
parallel to isolate the high-extinction path to ensure that our off-state optical power
is limited by our high-extinction modulation components rather than by cross-talk
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through the mechanical switches. The light is then passed through a variable optical
attenuator (VOA) to control the input pulse on-state power level to the cavity, and
sent to a circulator which directs the light to a lensed-fiber tip for end-fire coupling
to devices inside a dilution refrigerator. The reflected signal is then routed back to
either one of two detection setups. The first includes an erbium-doped fiber ampli-
fier (EDFA) and a high-speed photodetector (PD) connected to a spectrum analyzer
(SA) and a vector network analyzer (VNA). The second detection path is used for
the phonon counting measurements. Here, the light passes through three cascaded
high-finesse tunable fiber Fabry-Perot filters (Micron Optics FFP-TF2) inside an
insulating housing and then to the SPD inside the dilution refrigerator.

The cascaded fiber Fabry-Perot (FP) filters are aligned to the optical cavity resonance
frequencyωc during measurement such that the signal reaching the SPDs consists of
sideband-scattered photons and a small contribution of laser-frequency pump-bleed-
through. In total the filters suppress the pump by >100 dB. This bleed-through is
calibrated by positioning the laser far off-resonance of the optical cavity, such that
the device acts simply as a mirror, while fixing the relative detuning of the filters
and the pump laser at the mechanical frequency ωm/2π and measuring the photon
count rate on the SPDs as a function of laser power.

Additionally, both the FP-filters and the EOMs will drift during measurement and
must be periodically re-locked. We therefore regularly stop the measurement and
perform a re-locking routine. First, we re-lock the EOMs by applying a sinusoidal
dithering signal of ∼1 V to them while monitoring the optical transmission, then
decrease the dithering amplitude gradually to lock to the minimum of transmission.
Next we switch out of the high-extinction pulse path (SW-2A,2B) and out of the SPD
path (SW-5), drive the phase modulator with a large RF power at ωm/2π to generate
large optical sidebands at the cavity resonance frequency, and send this light into the
FP-filter stack. The transmission through each filter is monitored while a dithering
sinusoidal voltage is applied to each filter successively, and the amplitude and DC
offset of the dithering signal are adjusted until the optical transmission signal at
the desired sideband is maximized. The offset voltage is then held fixed during the
subsequent measurement run. The filters will drift due to both thermal fluctuations
and acoustic disturbances in their environment, so in order to further improve the
filters’ stability we have placed them inside a custom-built insulated housing.
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Figure 3.1: Pulsed-excitation phonon counting measurement setup. Simplified
diagram of the experimental setup used for low-temperature optomechanical device
characterization and phonon-counting measurements. Lasers A and B are passed
through 50 MHz-bandwidth filters to suppress broadband spontaneous emission
noise. Both lasers are equipped with modulation components (AOM, Ag.) for gen-
erating high-extinction optical pulses. The modulation components are triggered by
a digital delay generator (Laser B components are triggered by the ‘master’ Laser A
generator). Upon reflection from the device under test, a circulator routes the out-
going light to either (1) an EDFA and spectrum analyzer, or (2) a sideband-filtering
bank consisting of three cascaded fiber Fabry-Perot filters (Micron Optics FFP-TF2)
and the SPD operated at ∼ 760 mK. λ-meter: wavemeter, φ-m: electro-optic phase
modulator, EOM: electro-optic intensity modulator, AOM: acousto-optic modula-
tor, Ag.: Agiltron 1x1 MEMS switch, SW: optical 2 × 2 switch, VOA: variable
optical attenuator, EDFA: erbium-doped fiber amplifier, VNA: vector network ana-
lyzer, SPD: single photon detector, TCSPC: time-correlated single photon counting
module (PicoQuant PicoHarp 300).
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Figure 3.2: Simplified diagram of the experimental setup used for 2D OMC.
Setup used for low-temperature optomechanical device characterization, hetero-
dyne spectroscopy and phonon-counting measurements. A 1550nm optical signal
is passed through 50 MHz-bandwidth filters to suppress broadband spontaneous
emission noise, after which it can be switched between heterodyne spectroscopy
or phonon-counting path. In the phonon-counting path, a modulation component
(AOM, Ag.) is used for generating high-extinction optical pulses. The modulation
components are triggered by a digital delay generator. In the heterodyne spec-
troscopy path, the light is divided into two paths, one path is passed through an
electro-optic intensity modulator (EOM) and a filter to generate the local oscillator
(LO) signal, the other path is sent to the optomechanical device. Upon reflection
from the device under test, a circulator routes the outgoing light to either (1) an
EDFA, tunable variable optical coupler, balanced photodiodes (BPD) and spectrum
analyzer, or (2) a sideband-filtering bank consisting of three cascaded fiber Fabry-
Perot filters (Micron Optics FFP-TF2) and the SPD operated at ∼ 760 mK. λ-meter:
wavemeter, EOM: electro-optic intensity modulator, AOM: acousto-optic modula-
tor, Ag.: Agiltron 1x1 MEMS switch, SW: optical 2 × 2 switch, VOA: variable
optical attenuator, EDFA: erbium-doped fiber amplifier, BPD: balanced photodi-
odes, SPD: single photon detector, TCSPC: time-correlated single photon counting
module (PicoQuant PicoHarp 300).
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3.1.2 Measurement Setup for 2D OMC

The measurement setup used for 2D OMC device characterization is very similar to
1D nanobeam OMC device as shown in Fig. 3.2.

After prefiltering, the light can be switched by 2×2 mechanical optical switches
between two paths, a "CW" path which detects the mechanical motion via balanced
heterodyne detection of the scattered light, or a "pulsed" path using single-photon
detectors. For the CW path, a 90/10 beam-splitter divides the laser source into local
oscillator (LO, 90%, 0.5 - 1 mW) and signal (10%) beams. The LO is modulated
by an electro-optic modulator (EOM) to generate a sideband at δ/2π = 50 MHz
from the mechanical frequency and is selected by high-finesse tunable Fabry-Perot
filter before recombining it with the signal. The signal path is then sent to a variable
optical attenuator and optical circulator which directs the laser to devices under test
in the dilution refrigerator. The reflected signal beam carrying mechanical noise
sidebands atωL±ωm is recombinedwith the LO on a tunable variable optical coupler
(VC, not shown), the outputs of which are sent to a balanced photodetector (BPD).
The detected difference photocurrent will contain a beat note with an approximate
bandwidth γ near the LO detuning δ, chosen to lie within the detection bandwidth
of the BPD. The pulsed path is the same as the setup used for 1D nanobeam OMC
characterization as discussed in the previous section.

3.2 Calibration of Optomechanical Coupling Rate at Low Temperature

In this section, the method used for the calibration of optomechanical coupling rate
at milikelvin remperature is introduced, and quasi-2D OMC measurement data is
used as an example.

The measurements presented in this work rely on an accurate calibration of the
parametric optomechanical coupling rate γOM = 4g2

0nc/κ, where g0 is vacuum op-
tomechanical coupling rate, κ is the total optical decay rate and nc is the intracavity
photon number. The photon number nc at a given power and detuning depends on
the single pass fiber-to-waveguide coupling efficiency ηcpl and waveguide-to-cavity
coupling efficiency ηκ = κe/κ. The fiber-to-waveguide coupling efficiency ηcpl

is determined by measuring the calibrated reflection level far off-resonance with
the optical cavity on the optical power meter, and is found to be ηcpl = 0.59 for
a zero-shield device and ηcpl = 0.6 for an eight-shield device. The waveguide-to-
cavity coupling efficiency ηκ is measured by placing the frequency of the laser far
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off-resonance, using the VNA to drive an EOM and sweeping an optical sideband
through the cavity frequency. Optical response is measured on a high-speed pho-
todiode connected to the VNA signal port. The amplitude and phase response of
the cavity is obtained, which are fitted to determine ηκ and κ. We measured κ/2π =
1.11 GHz and ηκ = 0.41 for a zero-shield device, and κ/2π = 1.19 GHz ηκ = 0.19
for an eight-shield device. With these three parameters measured, it is possible to
determine nc for an arbitrary input power to the cavities.

nc =
Pin

~ωL

κe

∆2 + (κ/2)2
. (3.1)

To extract the vacuum optomechanical coupling rate g0, we measure the photon
scattering rate per phonon in the mechanical mode. The photon count rate at the
SPD for a red- or blue-detuned pump is C.9.

Here, ΓSB,0 = ηdetηcplηκγOM is the detected photon scattering rate per phonon on
the SPD with experimental set-up efficiencies included. Here, ηdet is the measured
overall detection efficiency of the set-up, including losses in the fibers inside and
outside of the dilution refrigerator, fiber unions and circulator, insertion losses in
the filters and the detection efficiency of the SPD (ηSPD). We can then calibrate
ΓSB,0 using a pulsed blue-detuned laser pump (∆ = −ωm). Repetition time (τper) of
the blue-detuned pulses is selected to be much longer than 1/γ0, such that in the
beginning of the pulse, the sideband photon count rate is estimated to be Γ ≈ ΓSB,0
(provided ΓDCR+Γpump is much smaller than ΓSB,0 for relatively large nc). Figure 3.3
shows an example measurement of calibrating ΓSB,0 and g0. Using a measurement
photon number of nc = 57, a ΓSB,0 of 2.887×103 is measured and g0/2π = 1.18MHz
is extracted. Data is taken from a quasi-2D zero shield device.
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Figure 3.3: Blue-detuned calibration of sideband photon scattering rate. a,
Plot of photon count rate during optical pulse for ∆ = −ωm, nc = 57 and Tper =
0.2 ms. The count rate of the initial measurement bin during the optical pulse,
marked by the let gray vertical line, corresponds to scattered photon count rate of
ΓSB,0 = 2.887×103 c.p.s per phonon. During the pulse, optomechanical back-action
amplifies the mechanical occupancy at a rate γOM − γi, while in the pulse-off state
the mechanics undergoes free decay to a local fridge bath temperature with effective
bath occupancy n0 ∼ 10−3. Measurements performed on a zero-shield quasi-2D
device with parameters (κ, κe, g0, ωm, γ0) = 2π(1.11 GHz, 455 MHz, 1.18 MHz,
10.238 GHz, 21.8 kHz).
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3.3 Mode Thermalization Measurements

The mode of interest in 1D nanobeam OMC and quasi-2D OMC thermalizes to a
base bath temperature Tb which is related to the applied DR temperature Tf through
the thermal conductance Cthm of the structure as described in chapter 6. This
yields an effective temperature offset between the DR temperature and the bath
temperature.

The base bath temperatures of 1D nanobeam OMC devices and quasi-2D OMC
devices are both measured and shown in this section. For the quasi-2D OMC,
measurement of this base bath temperature uses a low-power (nc = 9.9) red-detuned
pulsed probe and a device with relatively high mechanical damping γ0 = 21.8 kHz
(Qm = 4.69× 105) to reduce data integration time. With relatively high mechanical
damping, the mechanical mode can quickly be thermalized to its base temperature
between subsequent incident optical pulses, such that a rapidmeasurement repetition
rate 1/τper (τper � γ−1

0 ) can be chosen. The initial mode occupancy during the pulse
then approximately corresponds to bath occupancy n0. However, as the optical probe
turns on during the first several time bins of the pulse, the mode is heated such that
the initial observed occupancy exceeds n0. We therefore extract n0 by fitting the
pulse on-state occupancy data to the full dynamical heating and damping model,
and extrapolate the fit back to Tpulse = 0 to estimate the true bath occupancy n0.

Fig.3.4 shows a fit of bath temperature of quasi-2D OMC, which yieldsTb = 63 mK,
corresponding to a base mode occupation of n0 = 4 × 10−4. Calculated curves for
Tb = 11 mK (red), 31 mK (yellow), 95 mK (green), 129 mK (cyan) are also plotted
for reference.

For the 1D nanobeam OMC, measurement of this base bath temperature is very
similar to the quasi-2D case, where fitting data is shown in Fig.3.5, which yields
a best fit value Tb = 35.6 mK, corresponding to an initial fridge bath occupancy
of n0 = 1.1 × 10−3. Bounds on the bath temperature are also shown in the figure,
where the lower bound of 10 mK is set by the minimum applied fridge temperature,
and the upper bound 60 mK corresponds to the directly observed occupancy value
in the initial measurement bin.
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Figure 3.4: Measurement of the base occupancy of the quasi-2D OMC phonon
mode at an applied DR temperature of Tf ∼ 10 mK. Readout photon number
is chosen to be small (nc = 9.9) to minimize parasitic heating during the initial
time bins of the pulse. Other measurement parameters are τpulse = 10 µs, τper =
250 µs, bin size 25.6 ns. Measurement is performed on the zero-shield device with
parameters (κ, κe, g0, ωm, γ0) = 2π(1.11 GHz, 455 MHz, 1.18 MHz, 10.238 GHz,
21.8 kHz). The heating model best-fit corresponds to a base mode temperature of
Tb = 63 mK (n0 = 4 × 10−4, blue solid line). Calculated curves for Tb = 11 mK
(red), 31 mK (yellow), 95 mK (green), 129 mK (cyan) are also plotted for reference.
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Figure 3.5: Base occupancy measurement and pulse turn-on dynamics. Mode
occupancy during the pulse on-state of the zero-shield device (device A). The photon
number nc = 10 is chosen to be small to minimize parasitic heating during the initial
time bins of the pulse (bin size is 10.24 ns.). The model best-fit corresponds to
Tb = 35.6 mK. Bounding curves to the fit are shown for Tb = 60 mK (orange dashed
line) and Tb = 10 mK (green dotted line). Inset: Overlay plot of the initial time bins
of the mode occupancy curve and the input optical pulse (purple squares). Time
bins earlier than 51.2 ns occur during the fast rise of the pulse, which occurs at a
timescale set by the rise of the EOMs and optical switches. The first measurement
bin is chosen at t = 51.2 ns, where the input optical pulse has reached > 70% of
its nominal on-state value (here nc = 10). For 10.24 ns binning as shown here, the
initial measurement bin is bin #5. For 25.6 ns binning as shown in the Main Text
figures, the initial bin is bin #2.
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3.4 Thermal Ringdown Measurement of Mechanical Resonator

τoff

ni nf... ...
Time

exp[-γ0τoff]heating

Figure 3.6: Diagram of a thermal ringdownmeasurement performed using red-
detuned (∆ = +ωm) excitation and readout. The delay τoff between subsequent
pulses is varied. In the pulse-on state (blue), back-action cools the mode in the
beginning of pulse from an initial mode occupancy. The optical-absorption-induced
bath simultaneously heats the mode at a rate γpnp, such that at later of the pulse a
steady-state mode occupancy is reached. In the pulse-off state (τoff), the residual
phonon bath continues to heat the mode (dotted black line). γp(t) is explicitly time
dependent and will decay away on the time scales of 10 ms, then, mode occupancy
further decays at a rate of γ0 (dotted red line).

In order to measure the intrinsic mechanical Q-factor of a 1D nanobeam or quasi-
2D OMC device by ringdown of the mechanical mode, we use a pulsed optical
excitation and photon counting technique as presented in [54, 55]. A laser probe
is red- or blue-detuned from the optical cavity by ∆ = ωc − ωl = ±ωm produces
scattering sidebands at ωc and ωc ∓ 2ωm due to emission or absorption of phonons.
In a sideband resolved system such as ours (ωm > κ, where κ is the optical cavity
linewidth), an intracavity photon number nc at the laser frequency produces an
effective optomechanical damping rate γOM = ±4g2

0nc/κ in the case of red- or blue-
detuning, respectively. After filtering the cavity reflection to suppress the pump, we
perform photon counting of the Stokes or anti-Stokes sidebands. Because phonon
emission and absorption events are correlated with the generation of a scattered
photon, photon counting of the cavity frequency sideband is equivalent to phonon
counting of the mechanical mode. For a red (blue) detuned pump, the anti-Stokes
(Stokes) photon count rate is given by ηγOM〈n〉 (ηγOM(〈n〉 + 1)), where η is the
total detection efficiency of sideband-scattered photons and 〈n〉 is the mechanical
mode occupancy. This phonon-counting technique then allows for vacuum-noise
calibrated thermometry of the mechanical mode as a function of time during an
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optical excitation pulse by measuring photon count rates.

We perform ringdownmeasurements on an eight-shield device by impinging a series
of red-detuned (∆ = ωm) optical excitation pulses on the device. Light is pulsed
on for a duration τpulse = 10 µs and then off for a variable time τoff. The reflected
photons due to anti-Stokes scattering of the probe laser, which are on-resonance
with the optical cavity, are then filtered from the probe laser and sent to a single
photon detector producing a photon count rate to be used for phonon counting.

At milliKelvin temperatures, the dynamics of 〈n〉 during the pulse is dominated
by two processes: back-action cooling via the red-detuned pump, and parasitic
optical-absorption heating which has previously been characterized in similar de-
vices at milliKelvin temperatures [29, 56]. The optical absorption can be modeled
phenomenologically as introducing an effective hot phonon bath of occupancy np
which couples to the mode of interest at a rate γp. Thus, during the pulse-on state,
the total mechanical damping rate is γ = γ0 + γp + γOM, where γ0 is the intrinsic
damping rate to the local milliKelvin DR bath of occupancy n0. Thus, the steady-
state occupancy can be expressed as nf = (γpnp + γ0n0)/γ. The hot phonon bath
does not leave the cavity instantaneously after the pulse is turned off, but rather
introduces a transient heating lasting several microseconds, resulting in heating to
a peak occupancy npeak. At longer times τoff in the pulse-off state, the mechanics
undergoes free exponential decay such that

ni,k+1 = npeak,k e−γ0τoff, (3.2)

where the subscript k labels the k th pulse. For each pulse off period τoff, the
photon count rate during the pulse is averaged over many cycles to generate a
histogram of 〈n〉 as a function of time τpulse in the pulse-on state. The initial mode
occupancy during the pulse (ni) for different τoff are fitted to obtain an intrinsic decay
rate γ0 as shown in a later chapter, from which we extract an intrinsic decay rate
γ0/2π = 8.28 Hz, corresponding to a mechanical Q-factor of 1.2×109 for quasi-2D
OMC device, and mechanical Q-factors as high as 5× 1010 for 1D nanobeam OMC
devices.
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3.5 Coherent Excitation Methods

3.5.1 Low-Threshold Acoustic Self-Oscillation

Owing to the extremely slow intrinsic damping rate γ0 observed in the ultra-high-Q
nanobeam devices at low temperatures, it is possible to drive the mechanics into the
regime of self-sustained oscillations with a blue-detuned pumping laser at very low
input optical powers, or equivalently, a very low rate of measurement back-action.
The total effective damping rate experienced by the mechanics in the presence of a
blue-detuned drive laser is γ = γi−γOM, where the intrinsic damping rate γi = γ0+γp
includes damping γ0 from both the cold fridge bath (with occupancy n0 ≈ 10−3) and
from the optical absorption-induced phonon bath at rate γp. The usual condition for
self-oscillation is that the damping rate is matched by the back-action amplification
rate γOM:

γOM = γ0 + γp. (3.3)

We observe the onset of mechanical self-oscillation at Tf = 10 mK, in which a CW
blue-detuned pump laser drives the cavity and the sideband filters are aligned to
the cavity resonance (∆ = 0). The scattered photon count rate ΓSB,0 is measured in
steady-state. In the setup configuration used for these measurements, an additional
VOA is placed in the optical path, elevating the measured SPD dark count rate to
10.8 c.p.s. Sweeping the input power (photon number) nc results in a sharp increase
in detected count rate at the self-oscillation threshold nc,thresh = 2 × 10−3 as shown
in Figure 3.7, where we estimate the resulting steady-state phonon occupancy to
be of order 〈n〉 ∼ 5 × 104. At the threshold nc,thresh, we can estimate the back-
action amplification rate γOM/2π = 4g2

0nc,thresh/κ ≈ 8 Hz from the known optical
device parameters, indicating that the intrinsic damping γi is dominated by the bath
damping rate: γp(nc,thresh) = γOM(nc,thresh) − γ0 ≈ 2π(7.9 Hz), in good quantitative
agreement with the trend measured on a similar device discussed in later chapters.

Upon decreasing the driving power (green data in Figure 3.7), self-oscillation ap-
pears to relax at a decreased threshold of nc = 1.4 × 10−3, indicating a hysteresis
in the measured count rates as a function of input power. This apparent hysteresis
likely arises from a change in the true intracavity photon number as a function of
driving power Pin. We have so far adhered to Equation 3.1 in determining the nc as a
function of Pin; this expression is used to generate the horizontal axis of Figure 3.7,
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Figure 3.7: Low-temperature measurement of the self-oscillation threshold in
a high-Q nanobeam at Tf = 10 mK. Under blue-detuned (∆ = −ωm) driving the
self-oscillation threshold is reached when γOM = γi, here for nc,thresh = 2 × 10−3, or
γOM/2π = 8 Hz, for increasing optical power (orange points). Measurements were
performed on 1D nanobeam OMC device D.

and so does not represent the true intracavity photon number. However, in order to
unambiguously calculate nc in the presence of large phonon amplitude 〈n〉, a more
thorough calculation is needed which accounts for the effective optical reflection
profile in the presence of strong modulation by the mechanical motion.

3.5.2 Electromagnetically Induced Transparency Mechanical Spectroscopy

Electromagnetically induced transparency (EIT) in optomechanical systems allows
for a spectral measurement of the mechanical response via observation of a trans-
parency window in the optical reflection spectrum. A pump laser tone at ωL is
amplitude modulated to generate a weak probe tone at ωs,± = ωL ± ∆p. If the
pump-cavity detuning is fixed on either the red- or blue-side of the optical cavity
(∆ = ±ωm), the optical susceptibility of the cavity strongly suppresses one of the
probe sidebands (atωs,∓) and only the other probe sideband will have an appreciable
intracavity population. For a red-detuned pump, starting fromHeisenberg-Langevin
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the back-action damping rate γOM = 4g2

0nc/κ, from which we extract an estimated
g0/2π = 1.15 MHz. Measurements are performed on Device D.
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equations ofmotion for the optical andmechanical fields (Replacing (â, b̂) −→ (α, β)
and (âin, b̂in) −→ (αin, βin) since we only focus on coherent fields here.):

Ûα = −

(
i∆ +

κ

2

)
α − ig0α(β∗ + β) +

√
κeαin, (3.4)

Ûβ = −

(
iωm +

γi

2

)
β − ig0 |α |2 +

√
γiβin, (3.5)

take into account:

α ≈ α0 + α−e−i∆pt + α+ei∆pt, (3.6)

β ≈ β0 + β−e−i∆pt + β+ei∆pt . (3.7)

|α± | � |α0 | (3.8)

r(∆, δ) = 1 −
κe

κ/2 + i(∆ − (δ + ωm)) +
|G |2

−iδ+γi/2

, (3.9)

for optical sideband generated in the optical path, we arrive at:

−i∆pα± = −
(
i∆ +

κ

2

)
α± − ig0α0β± +

√
κeαin,±, (3.10)

−i∆pβ− = −
(
iωm +

γi

2

)
β− − ig0(α∗0α− + α0α

∗
+) +
√
γiβin,-. (3.11)

For the red-detuned case where ∆ = +ωm > 0, in the rotating wave approximation
we arrive at

β− =
−ig0(α∗0α−) +

√
γiβin,-

−i(∆p − ωm) +
γi
2

, (3.12)

α− =

(
i(∆ − ∆p) +

κ

2
+

|G |2

−i(∆p − ωm) + γi/2

)−1 ( iG
√
γiβin,-

−i(∆p − ωm) + γi/2
−
√
κeαin,-

)
,

(3.13)
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with input-output formalism boundary condition

αout,- = αin, - −
√
κeα−, (3.14)

and we derive the interaction of the pump tone and mechanics with the probe
sideband yielded reflection coefficienct r(∆, δ) for the probe which contains a trans-
parency window having a width on the scale of the mechanical mode linewidth:

r(δ) =
αout,-

αin,-
= 1 −

κe

i(∆ − (δ + ωm)) +
κ
2 +

|G |2
−iδ+γi/2

, (3.15)

where we have defined δ ≡ ∆p − ωm and G ≡ g0
√

nc.

Wemeasure the reflection amplitude R = |r |2 by driving an EOMweakly to generate
a probe tone and observing the count rates of sideband-scattered probe photons. The
pump is locked at ∆ = +ωm and the cascaded filter stack is locked to the cavity
frequency. The RF modulation power is chosen to generate a sideband intracavity
photon number much smaller than the carrier photon number (nc,+ � nc) while
maintaining a large count rate ∼ 105 c.p.s. at the SPDs to minimize data integration
times. This corresponds to modulation indices in the range of β ∼ 10−3 for our
system parameters (measurements were performed on 1D nanobeam OMC device
D). Themodulation frequency∆p is swept over a range of about 1MHz tomap out the
transparency window. This range is large enough to include the optomechanically-
broadened mechanical linewidth which sets the width of the transparency window,
but much narrower than the bandwidth of the FFP filters (≈ 50 MHz), allowing for
the filters to be stably locked at a single position in the center of the optical cavity
line. Figure 3.8 shows the normalized reflection level for various optical probe
power levels nc, as well as fits to the data. The extracted total mechanical linewidth
γ = γi+γp+γOM is plotted in Fig. 3.8. At low probe-power, γ/2π saturates to a value
≈ 4 kHz, which represents time-averaged broadening of the intrinsic mechanical
linewidth due to mechanical frequency jitter. With κ and nc calibrated, the linear
portion of the curve which is dominated by back-action damping is fitted to extract
the optomechanical coupling rate g0/2π = 1.15 MHz.

Same method can also be used for individual fast frequency sweep measurements.
Figure. 3.9 shows 4 normalized individual spectrum of rapid frequency sweeps,
and each sweep take about 8 seconds in these plots. Jitter of the fast mechanical
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frequency during this measurement time for each plot appears as one or many
individual narrow mechanical response peaks, with each peak bandwidth . 500 Hz.
Even faster sweeps and more detailed analysis of EIT sweeps will be discussed in
later chapters.
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Figure 3.9: Individual spectrum of rapid frequency sweeps. Four normalized
individual spectrum of rapid frequency sweeps. Data were taken with pump power
nc,pump = 0.1, probe power nc,probe = 10−2, frequency resolution 100 Hz, and
frequency step dwell time 10 ms.

3.6 Blue-Detuned Pumping and Ringdown

In the limit of high phonon amplitude, we perform ringdown using a pulse sequence
consisting of a blue-detuned excitation pulse followed by a red-detuned readout (or
probe) pulse. Two separate laser sources are usedfor generating the excitation and
readout pulses in order to allow a fixed detuning of each laser to avoid instabilities
associatedwith rapid stabilization of the laser frequency on the timescale of the pulse
sequencing (tens of µs). Owing to the extremely narrow instantaneous mechani-
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Figure 3.10: Measurement of themode occupancyduring excitation and readout
pulses for high-amplitude ringdown. a, A blue-detuned (∆ = −ωm) laser with
pulse-on photon number nc,blue = 0.15 drives the mechanics into self-oscillation in
a timescale of 2 ms, with a saturated phonon occupancy 〈n〉 ≈ 5 × 104. b, A red-
detuned (∆ = +ωm) probe laser with pulse-on photon number nc,red = 0.30 serves
to read out the mode occupancy after a variable delay time τoff. Measurements are
performed on the 1D nanobeam OMC Device D.

cal mode linewidth, a very small back-action amplification rate γOM/2π . 8 Hz
is required to drive the mechanics into the self-oscillation regime. This enables
operation at low driving pulse photon number nc,blue = 0.15 � nc,thresh = 2 × 10−3,
in order to minimize the effective temperature and coupling rate of the absorption-
induced phonon bath. The steady-state phonon amplitude in the presence of the
driving pulse is saturated to 〈n〉 ≈ 5 × 104. The driving pulse is turned off, and
after a variable delay time τoff, a red-detuned pulse from the readout laser is used to
probe the mode occupancy.

The readout photon number nc,red = 0.30 is again chosen small to minimize absorp-
tion bath effects, as well as to give a total count rate Γ ∝ ΓSB,0〈n〉 ∝ nc〈n〉 within
the dynamic range of the single-photon detector, which in our amplifier setup has a
sensitivity to a maximum count rate of ∼ 2 × 106 c.p.s. With the present setup effi-
ciencies and device parameters (see caption of Figure 3.10), the detected count rate
is approximately Γ = 31 c.p.s. per phonon per photon at ∆ = ±ωm, and the resulting
effective upper bound on nc,red at which the SPD can efficiently detect is 2.2 pho-
tons. Now, after the readout pulse is used to probe the mode occupancy, the mode
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Figure 3.11: Diagram of coherent excitation and readout pulses for high-
amplitude ringdown. Acoustic excitation is performed coherently by using either
a, a blue-detuned pump to drive the breathing mode into self-oscillation, or using
b, an RF-modulated red-detuned pump [53] (lower diagram).

occupancy is cooled via dynamical back-action to near its local bath temperature
in preparation for the subsequent series of driving and readout pulses (effectively
‘re-setting’ the measurement). In practice, a single red-detuned pulse is used for
both readout and cooling (re-setting). In Figure ?? we show the phonon occupancy
during both the driving pulse and the readout pulse. Note that the excited occupancy
saturates to 〈n〉 ≈ 5 × 104 from an initial occupancy 〈n〉 . 1 × 103, corresponding
to our estimated decay ratio of 50 from one pulse period to the next. A diagram of
blue pump excitation and readout pulses for high-amplitude ringdown is shown in
Figure 3.11 a.
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3.7 Modulated Pump-Probe Excitation and Ringdown

For a finer control of the mechanical mode amplitude during excitation, microwave-
frequency modulation of the excitation pulse was used to amplify the mechanics to a
fixed phonon amplitude which is tunable by the depth of optical modulation placed
on the pump laser tone. This technique allows us to probe the intrinsic energy decay
constant γ0 in the regime lying intermediate between the level of single-phonons
and the saturated high-phonon-amplitude limit of self-oscillation.

As shown in Figure 3.11b, in this measurement scheme, a radio-frequency (RF)
signal generator is used to drive an electro-optic intensity modulator (EOM) at
the mechanical resonance frequency ωm/2π to generate the probe sideband. The
excitation pulse consists of a red-detuned pump carrier tone which is weakly mod-
ulated (RF driving power −4 dBm applied to an EOM with Vπ = 4.1 V, giving a
modulation index β = 0.11) to generate a probe sideband at the cavity resonance
frequency. Interference between the pump carrier and probe sideband generates a
time-dependent radiation pressure force at the difference frequency ωm/2π, which
resonantly excites the acoustic mode. A second pulsed laser source is then used to
generate the readout optical pulse, which is a red-detuned pulse of fixed frequency
and power.

In both the cases of blue-detuned driving and RF-modulated driving ring-up tech-
niques, the total repetition rate of the pulse sequence 1/τper is fixed while only the
variable delay τoff between the driving pulse and readout pulse is varied. This fixing
of the overall duty-cycle of the pulse sequence is performed to eliminate systematic
variations in the local absorption-induced bath temperatureTbwhich, in steady-state,
is expected to depend on the average power circulating in the cavity (see Fig. 6.4).
We find that the measured ringdown time constant is approximately consistent over
more than three orders of magnitude in starting phonon population, from 〈n〉 . 10
in the case of thermally-excited ringdown measurements to 〈n〉 > 2 × 104 in the
case of coherently-excited phonon populations.
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Chapter 4

PHONONIC BANDGAP NANO-ACOUSTIC CAVITY WITH
ULTRALONG PHONON LIFETIME

Critical to applications such as time keeping and sensing, is the ability of a mechan-
ical resonator to store vibrational energy at a well defined frequency of oscillation
with minimal damping. Here, we present measurements at millikelvin temperatures
of the microwave-frequency acoustic properties of a crystalline silicon nanobeam
cavity incorporating a phononic bandgap clamping structure. Utilizing pulsed laser
light to excite a co-localized optical mode of the cavity, we measure the internal
acoustic modes with single-phonon sensitivity, yielding a phonon lifetime of up to
τph,0 ≈ 1.5 seconds (Q = 5 × 1010) and a coherence time of τcoh,0 ≈ 130 µs for
bandgap-shielded cavities. Potential applications of these ultra-coherent nanoscale
resonators range from tests of various collapse models of quantum mechanics to
miniature quantum memory elements in hybrid superconducting quantum circuits.

In optics, geometric structuring at the nanoscale has become a powerful method for
modifying the electromagnetic properties of a bulk material, leading to metamate-
rials capable of manipulating light in unprecedented ways [57]. In the most extreme
case, photonic bandgaps can emerge in which light is forbidden from propagating,
dramatically altering the emission of light from within such materials [58]. More
recently, a similar phononics revolution [59] in the engineering of acoustic waves
has led to a variety of new devices, from thermal crystals for controlling the flow of
heat [59] to phononic topological insulators for scattering-free transport of acoustic
waves [60].

Phononic bandgap structures, similar to their electromagnetic counterparts, can
be used to modify the emission or scattering of phonons. These ideas have re-
cently been explored in quantum optomechanics [35, 61, 62, 63] and electrome-
chanics [64] experiments to greatly reduce the mechanical coupling to the thermal
environment through acoustic radiation. At ultrasonic frequencies and below, one
can combine phononic bandgap clamping with a form of ‘dissipation dilution’ in
high stress films to realize quality (Q) factors in excess of 108 in two-dimensional
nanomembranes [62] and approaching 109 in one-dimensional strain-engineered
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nanobeams [63]. At higher, microwave frequencies, the benefit of stress-loading of
the film fades as local strain energy dominates [63]. and one is left once again to
deal with intrinsic material absorption.

To date, far less attention has been paid to the impact of geometry and phononic
bandgaps on acoustic material absorption [65, 66]. Fundamental limits to sound
absorption in solids are known to result from the anharmonicity of the host crystal
lattice [67, 68]. At low temperatures T , in the Landau-Rumer regime (ωτth � 1)
where the thermal phonon relaxation rate (τ−1

th ) is much smaller than the acous-
tic frequency (ω), a quantum model of 3-phonon scattering can be used to de-
scribe phonon-phononmixing that results in damping and thermalization of acoustic
modes [67, 68]. Landau-Rumer damping scales approximately as Tα, where α ≈ 4
depends upon the phonon dispersion and density of states (DOS) [68]. At the very
lowest lattice temperatures (. 10 K), where Landau-Rumer damping has dropped
off, a residual damping emerges due to material defects. These two-level system
(TLS) defects [69], typically found in amorphous materials, correspond to a pair
of nearly degenerate local arrangements of atoms in the solid which can have both
an electric and an acoustic transition dipole, and couple to both electric and strain
fields. Recent theoretical analysis shows that TLS interactions with acoustic waves
can be dramatically altered in a structured material [65].

Here, we explore the limits of acoustic damping and coherence of a microwave
acoustic nanocavity with a phononic crystal shield that possesses a wide bandgap
for all polarizations of acousticwaves. Our nanocavity, formed from an optomechan-
ical crystal (OMC) nanobeam resonator [35], supports an acoustic breathing mode
at ωm/2π ≈ 5 GHz and a co-localized optical resonant mode at ωc/2π ≈ 195 THz
(λc ≈ 1550 nm) which allows us to excite and readout mechanical motion using
radiation pressure from a pulsed laser source. This minimally invasive pulsed mea-
surement technique avoids a slew of parasitic damping effects − typically associated
with electrode materials and mechanical contact [70], or probe fields for continuous
readout − and allows for the sensitive measurement of motion at the single phonon
level [54]. The results of acoustic ringdown measurements at millikelvin tempera-
tures show that damping due to radiation is effectively suppressed by the phononic
shield, with breathing mode quality factors reaching Q = 4.9× 1010, corresponding
to an unprecedented frequency-Q product of f -Q = 2.6×1020. Measurement of the
frequency jitter of the acoustic resonance is also performed, indicating telegraph-like
noise corresponding to a coherence time of τcoh,0 ≈ 130 µs.



71

b

2 μm

coupling waveguide

acoustic shielding

nanobeam OMC

hh

wh

coupling waveguide

c

a

Figure 4.1: Nanobeam optomechanical crystal design. a, Scanning electron
microscope (SEM) image of a full nanobeam optomechanical crystal (OMC) device
fabricated on SOI with N = 7 periods of acoustic shielding. A central coupling
waveguide allows for fibre-to-chip optical coupling as well as side-coupling to
individual nanobeamOMCcavities. b, SEM image of an individual nanobeamOMC
and the coupling waveguide, with enlarged illustration of an individual unit cell in
the end-mirror portion of the nanobeam. c, FEM simulations of the mechanical (top;
total displacement) and optical (bottom; transverse electric field) modes of interest
in the nanobeam. Distortion of the mechanical displacement profile is exaggerated
for clarity.
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The temperature and amplitude dependence of the residual acoustic damping is con-
sistent with relaxation damping of non-resonant TLS, modeling of which indicates
that not only does the phononic bandgap directly eliminate the acoustic radiation
of the breathing mode but it also reduces the phonon damping of TLS in the host
material. The anomalously high measured acoustic Q-factors are thus likely a re-
sult of the suppression of phonon emission by TLS, in analogy to the quantum
electrodynamics of an atom in a photonic bandgap [58].
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Figure 4.2: Phononic shield design. a, SEM image showing the nanobeam clamp-
ing geometry. b, SEM image of an individual unit cell of the cross-crystal acoustic
shield. The dashed lines show fitted geometric parameters used in simulation, in-
cluding cross height (hc = 474 nm), cross width (wc = 164 nm), inner fillet radius
(r1), and outer fillet radius (r2). c, Simulated acoustic band structure of the realized
cross-crystal shield unit cell, with the full acoustic bandgap highlighted in pink.
Solid (dotted) lines correspond to modes of even (odd) symmetry in the direction
normal to the plane of the unit cell. The dashed red line indicates the mechanical
breathing-mode frequency at ωm/2π = 5.0 GHz.
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4.1 Device Design

The devices studied in this work are designed from the 220 nm device layer of a
silicon-on-insulator (SOI) microchip. In Figs. 4.1(a-b) we show scanning electron
microscope images of a single fabricated device, which consists of a coupling optical
waveguide, the nanobeam OMC cavities that support both the microwave acoustic
and optical resonant modes, and the acoustic shield that connects the cavity to
the surrounding chip substrate. Fig. 4.1(c) shows finite-element method (FEM)
simulations of the microwave acoustic breathing mode and fundamental optical
mode of the nanobeam cavity. We use the on-chip coupling waveguide to direct
laser light to the nanobeam OMC cavities. A pair of cavities with slightly different
opticalmode frequencies are evanescently coupled to eachwaveguide. An integrated
photonic crystal back mirror in the waveguide allows for optical measurement in a
reflection geometry. The design of the OMC cavities, detailed in Ref. [35], uses
a tapering of the etched hole size and shape in the nanobeam to provide strong
localization and overlap of the breathing mode and the fundamental optical mode,
resulting in a vacuum optomechanical coupling rate [35] between photons and
phonons of g0/2π ≈ 1 MHz.
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Figure 4.3: Mode profile of fabrication imperfections. FEM simulation of the
breathing-mode mechanical displacement field for a nanobeam OMC with N = 6
periods of acoustic shielding, illustrating localization of the vibrational energy. The
geometry in the simulation consists of the nanobeam OMC, acoustic shielding, and
the surrounding Si substrate. The borders of the simulation geometry are modeled
as an absorbing perfectly-matched layer. The insets show critical parameters of
the device geometry. To introduce disorder into the simulations, each of these
geometric parameters is drawn from independent Gaussian distributions centered
on the nominal design parameter value with standard deviation σpos. for the center
positions and σsize for the diameter or length of holes.

In order to minimize mechanical clamping losses, the nanobeam is anchored to
the Si bulk with a periodic cross structure which is designed to have a complete
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phononic bandgap at the breathing mode frequency [35]. Through tuning of the
cross height hc and width wc (c.f., Figs. 4.2(a-b)), bandgaps as wide as ∼ 3 GHz can
be achieved as shown in Fig. 4.2. We analyze SEM images of realized structures
to provide accurate structure dimensions for our FEM models, and in particular,
we include in our modeling a filleting of the inner and outer corners (r1 and r2 in
Fig. 4.2c) of the crosses arising from technical limitations of the patterning of the
structure.
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Figure 4.4: Impact of fabrication imperfections. a, Plot of the simulated mechani-
cal Q-factor due to acoustic radiation from the cavity through the acoustic shielding.
The straight lines are exponential fits to the mean data points of the simulation
(the error bars indicate the standard deviation of an ensemble of simulations for
each shield number and disorder level). b, Plots of the normalized acoustic energy
densityW along a line cut through the center of the beam for σpos. = 0 nm (black
triangles), 4 nm (blue circles), and 8 nm (red squares).

The use of a phononic bandgap shield is necessitated by the lack of a full gap for the
nanobeam cavity. Finite-element method (FEM) numerical modeling indicates that
the addition of the cross shield provides significant protection against nanometer-
scale disorder which is inherently introduced during device fabrication. In Fig. 4.3
and Fig. 4.4, we present a numerical study of the effects of random fabrication
imperfections on the radiative damping of the shielded OMC cavity mode. In this
analysis, the center and size of each feature in the etched holes in the cross shield
and the nanobeam cavity are drawn from independent random distributions around
the mean design values as indicated in the figure caption. We compare in Fig. 4.4(a)
the simulated acoustic Q-factor of the ideal, unperturbed cavity structure to that of
cavity structures with a fixed level of disorder in the hole sizes (standard deviation,
σsize = 4 nm) and varying levels of disorder in the hole centers (σpos. = 2, 4, 8 nm).



76

Note that the same level of disorder is applied to both the nanobeam and acoustic
shield. An absence of perturbations to the nanobeam cavity, even without any
shielding, yields large radiation-limited Q-factors in excess of 1010. This is a result
of the quasi-bandgap that exists in the nanobeam mirror section for modes of a
specific symmetry about the center-line of the beam; however, any perturbation that
breaks this symmetry results in a compromised quasi-bandgap in the nanobeam
(Q drops from & 1010 to . 105 for nanometer-scale perturbations). Conversely,
the exponential trend of the radiation-limited Q-factor with the number of shield
periods is consistently a factor of ×5.5 per additional period, independent of the
disorder level. Plots in Fig. 4.4(b) compare the linear acoustic energy density along
the axis of the nanobeam,W, for the mode of the unperturbed cavity and the modes
of two different realizations of disordered cavities (and shield), highlighting the
effectiveness of the acoustic bandgap shield even in the presence of disorder. We
plot a line cut of the integrated acoustic energy densityW along the longitudinal
(x̂) direction of the nanobeam. The partial bandgap of the mirror unit cells of
the nanobeam provides some localization of the acoustic energy density, with a
simulated cavity-mode mechanical Q-factor on the order of 105 for σposn = 2 nm,
in reasonable agreement with measured values of Q ≈ 4× 105. The acoustic energy
density decays rapidly in the full-bandgap shield region. Here the modeling results
yield a scaling Q ∝ e1.7×Nshield , where Nshield is the discrete number of cross shield
periods. Numerically this trend of exponential increase of Q with shield period
number continues to larger Nshield, though, as we will detail below, material limits
to the mechanical losses become relevant for Nshield > 4.

In this analysis, the unit cells of the acoustic radiation shield are parameterized by
nominal parameters hc and wc as introduced above, as well as a nominal center
coordinate cc. Similarly, the unit cells of the nanobeam OMC are parameterized by
the elliptical hole height hh, width wh, and center coordinate ch. A given instance
of the cavity structure is then generated by each of these geometric parameters for
every unit cell from an independent Gaussian distribution centered on the nominal
design value and having standard deviation σ in units of nm (the center coordinates
with standard deviation σpos. and the hole-size with σsize).
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Figure 4.5: Thermal ringdown measurements of the acoustic breathing mode.
Ringdown measurements of a 7-shield device (1D nanobeam OMC device C) for
readout pulse amplitude of nc = 320. The series of inset panels show the measured
(and fit; solid blue curve) anti-Stokes signal during the optical pulse at a series of
pulse delays.
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4.2 Ringdown measurements of ultra high-Q acoustic modes

To investigate the efficacy of the acoustic shielding in practice, we have fabricated
and characterized arrays of devices with a scaling of the cross period number
from Nshield = 0 to 10, with all other design parameters held constant. Optical
measurements of the acoustic properties of the OMC cavity were performed at
millikelvin temperatures in a dilution refrigerator. The sample containing an array
of different OMC devices was mounted directly on a copper mount attached to
the mixing chamber stage of the fridge, and a single lensed optical-fiber was used
positioned using a 3-axis stage to couple light into and out of each device [54].
In a first set of measurements of acoustic energy damping, we employ a single
pulsed laser scheme to perform both excitation and readout of the breathing mode
(as described in Chapter 3).

Plotting the initial mode occupancy at the beginning of the fit readout pulse (nim)
versus delay time τoff between pulses, we plot the ringdown of the stored phonon
number in the the breathingmode as displayed in Fig. 4.5 for a devicewith Nshield = 7.

Performing a series of ringdown measurements over a range of devices with varying
Nshield, and fitting an exponential decay curve to each ringdown we produce the Q-
factor plot in Fig. 4.6. We observe an initial trend in Q-factor versus shield number
which rises on average exponentially with each additional shield period, and then
saturates for Nshield ≥ 5 to Qm & 1010. As indicated in Fig. 4.5 these Q values
correspond to ringdown of small, near-single-phonon level amplitudes. We also
perform ringdown measurements at high phonon amplitude using two additional
methods as discussed in the previous chapter. These methods use two laser tones
to selectively excite the acoustic breathing mode using a ×1000 weaker excitation
and readout optical pulse amplitude (nc . 0.3). The measured ringdown curves,
displayed in Fig. 4.5, show the decay from initial phonon occupancies of 103-104

of an 8-shield device (1D nanobeam OMC device D; square purple data point in
Fig. 4.6). The two methods yield similar breathing mode energy decay rates of
γ0/2π = 0.108 Hz and 0.122 Hz, the smaller of which corresponds to a Q-value
of Qm = 4.92+0.39

−0.26 × 1010 and a phonon lifetime of τph,0 = 1.47+0.09
−0.08 s. Comparing

all three excitation methods with widely varying optical-absorption-heating and
phonon amplitude, we consistently measure Qm & 1010 for devices with Nshield ≥ 5.



79

0 1 2 3 4 5 6 7 8 9 10
acoustic shield periods

105

106

107

108

109

1010

1011

Q
m

measured
sim. (σ = 4 nm)

𝜏 (s)t (μs)

Figure 4.6: Q-factor versus number of acoustic shield periods. Plot of the
measured breathing mode Q-factor versus number of acoustic shield periods Nshield.
The solid green line is a fit to the corresponding simulated radiation-limitedQ-factor
for devices with standard deviation (SD) σ = 4 nm disorder in hole position and
size, similar to the value measured from device SEM image analysis. The shaded
green region is corresponding to the range of simulated Q values (ensemble size 10)
within one SD of the mean.
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Figure 4.7: Coherent ringdown measurements of the acoustic breathing mode.
Ringdown measurements performed on an eight-shield device (device D) at large
phonon amplitude. For blue-detuned driving (red squares) the fit decay rate is
γ0/2π = (0.122 ± 0.020) Hz. For modulated-pump driving (purple circles) the fit
decay rate is γ0/2π = (0.108 ± 0.006) Hz. The error bars are the 90% confidence
intervals of the measured values of nim. The shaded regions are the 90% confidence
intervals for the exponential fit curves.
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4.3 Origin of the Residual Damping

In order to understand the origin of the residual damping for large Nshield we also
measured the temperature dependence of the energy damping rate, breathing mode
frequency, and full width at halfmaximum (FWHM) linewidth of the breathingmode
for the highest Q 8-shield device (1D nanobeam OMC device D). In Fig. 4.8(a) we
plot the energy damping ratewhich shows an approximately linear rise in temperature
up to Tf ≈ 100 mK, and then a much faster ∼ (Tf)2.4 rise in the damping. Using
the two-tone coherent excitation method [53], we plot in Fig. 4.8(b) the measured
breathing mode acoustic spectrum at Tf = 7 mK and pump power nc = 0.1. The top
plot shows rapid spectral scans (40 ms per scan) in which the probe frequency is
swept across the acoustic resonance. These rapid scans show a jittering acoustic line
with a roughly ∆ωm/2π ≈ 1 kHz linewidth, consistent with the predicted magnitude
of optical back-action (γOM/2π ≈ 820 Hz) and hot bath damping (γp/2π ≈ 120 Hz)
at the nc = 0.1 measurement power. An ensemble average of these scans, taken over
several minutes, yields a broadened and reduced contrast acoustic line of FWHM
∆1/2/2π = 4.05 kHz.

Note that in Fig. 4.8(b) we are measuring the acoustic line with the laser light on, as
opposed to the ringdown measurements of Fig. 4.6, Fig. 4.5 and Fig. 4.7, in which
the laser light is off. Lowering the optical pump power to reduce back-action and
absorption-induced damping limits further the already low signal-to-noise ratio, and
scanning more slowly begins to introduce frequency jitter into the measured line.
As such, we can only bound the intrinsic low temperature coherence time of the
breathing mode to τcoh,0 & 2/∆ωm ≈ 0.3 ms.

As will be detailed in the next chapter, estimates of the magnitude of Landau-Rumer
damping of the breathing mode indicate that 3-phonon scattering in Si is far too
weak at Tf . 1 K to explain the measured damping. Analysis of the interactions
of TLS with the localized acoustic modes of the confined geometry of the OMC
cavity structure, however, show that TLS interactions can explain all of the observed
breathing mode behavior.

Utilizing the advanced methods of nanofabrication and cavity optomechanics has
provided a new toolkit to explore quantum acoustodynamics in solid-state materials.
Continued studies of the behavior of TLS in similar engineered nanostructures to
the OMC cavity of this work may lead to, among other things, new approaches
to modifying the behavior of quasi-particles in superconductors [71], mitigating
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decoherence in superconducting [72] and color center [73] qubits, and even new
coherent TLS-based qubit states in strong coupling with an acoustic cavity [74].
The extremely small motional mass (meff = 136 fg [35]) and narrow linewidth of
the OMC cavity also make it ideal for precision mass sensing [75] and in exploring
limits to alternative quantum collapse models [76]. Perhaps most intriguing is the
possibility of creating a hybrid quantum architecture consisting of acoustic and su-
perconducting quantum circuits [77, 78], where the small scale, reduced cross-talk,
and ultralong coherence time of quantum acoustic devices may provide significant
improvements in connectivity and performance of current quantum hardware.
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Figure 4.8: Temperature dependence of acoustic damping and frequency jitter.
a, Plot of the measured breathing mode energy damping rate, γ0/2π, as a function
of fridge temperature (Tf). Dashed green (magenta) curve is a fit with temperature
dependence γ0 ∼ T1.01

f (γ0 ∼ T2.39
f ). Error bars are 90% confidence intervals of the

exponential fit to measured ring down curves. b, Two-tone coherent spectroscopy
signal. Upper plot: three individual spectrum of rapid frequency sweeps with a
frequency step size of 500 Hz and dwell time of 1 ms (RBW ≈ 0.5 kHz). Lower
plot: average spectrum of rapid scan spectra taken over minutes, showing broadened
acoustic response with FWHM linewidth of ∆1/2/2π = 4.05 kHz. The large on-
resonance response corresponds to an estimated optomechanical cooperativity of
C ≡ γOM/(γ0 + γp) & 1.1, consistent with the predicted magnitude of back-action
damping γOM/2π ≈ 817 Hz and bath-induced damping γp/2π ≈ 120 Hz at the
measurement pump power level nc = 0.1. Data presented in (a-b) are for device D.
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4.4 Summary of Device Parameters
For reference, here we provide a look-up table for each of these devices and their
measured optical and mechanical properties.
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4.5 Ringdown Measurements of Ultra High-Q Acoustic Modes in Quasi-2D
Devices

Ultra-high mechanical quality factors are also observed in the quasi-2D OMC de-
vices. In order to measure the intrinsic mechanical Q-factor of a quasi-2D OMC
device, the same thermal ringdown method was used as the 1D nanobeam OMC
devices. We used the pulsed optical excitation and photon counting techniques as
presented in Chapter 3. We performed ringdown measurements on a device which
had a phononic shield composed of eight cross unit cells (see Section 1.3.4), by
impinging a series of red-detuned (∆ = ωm) optical excitation pulses on the device.
The laser was pulsed on for a duration τpulse = 10 µs and then off for a variable time
τoff. The initial mode occupancy during the pulse (ni) for different τoff is fitted to
obtain an intrinsic decay rate γ0 as shown in Fig. 4.9c, from which we can extract
an intrinsic decay rate γ0/2π = 8.28 Hz, corresponding to a mechanical Q-factor of
1.2 × 109 and f -Q product of 1.2 × 1019.
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Figure 4.9: Ringdown measurement of quasi-2D OMC device. Thermal ring-
down measurement performed on an eight-shields device. The initial phonon occu-
pancy ni (orange squares) is measured for τoff = (0.4, 0.8,
1.67, 3.33, 6.66, 13.33, 25, 100) ms using a readout photon number nc = 60. The
phonon amplitude decay is fitted to extract an intrinsic mechanical damping rate
γ0 = 8.28 Hz, corresponding to a mechanical Q-factor of 1.217 × 109. Inset shows
the measured occupancy during the pulse-on at each τoff value; blue circles are data
and solid lines are fits. The eight-shield device has parameters (κ, κe, g0, ωm, γ0) =
2π(1.187 GHz, 181 MHz, 1.182 MHz, 10.02 GHz, 8.28 Hz).
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Chapter 5

PHONON DAMPING AND DECOHERENCE AT SUB-KELVIN
TEMPERATURE

The origin of the residual damping for large Nshield was briefly discussed in the previ-
ous chapter. In this chapter, we will explore the origins of acoustic energy damping
and phonon decoherence in general and in OMC devices at low temperature. We
will mostly ignore the phonon energy damping by radiation of ballistic phonons into
the bulk material through the acoustic bandgap shield in this chapter, but mainly
focus on Landau-Rumer damping of the breathing mode and the interactions of
TLS with the localized acoustic modes of the confined geometry of the OMC cavity
structure in different temperature regimes.

In the previous chapter, we discussed that the intrinsic low temperature coherence
time of the breathing mode can only be bounded to τcoh,0 & 130 µs. Further infor-
mation can, however, be gleaned bymeasuring the linewidth and center frequency of
the ensemble averaged spectrum as a function of nc (Fig. 5.1(a)) and Tf (Fig. 5.1(b)).
The width of the frequency jitter spectrum, averaged over minutes, is roughly in-
dependent of optical pump power and temperature down to the lowest measurable
pump powers (nc = 0.02) and up to Tf = 800 mK. The center frequency, on the
other hand, shifts up in frequency with both temperature and optical power. The
frequency shift versus Tf is consistent with the frequency shift versus nc if the hot
bath temperature is used as a proxy for the fridge temperature.

Estimates of the magnitude of Landau-Rumer damping of the breathing mode in-
dicate that 3-phonon scattering in Si is far too weak at Tf . 1 K to explain the
measured damping. Analysis of the interactions of TLS with the localized acous-
tic modes of the confined geometry of the OMC cavity structure, however, show
that TLS interactions can explain all of the observed breathing mode behavior. In
this analysis, detailed in the following sections, FEM simulation is used to find
the frequencies and radiation-limited damping rates of the acoustic quasi-normal
modes of the OMC cavity structure. An estimate of the spectral density of TLS
within the breathing mode volume (Vm ≈ 0.11 (µm)3) is ascertained from estimated
surface oxide (∼ 0.25 nm [79]) and etch-damage (∼ 15 nm [80]) layer thicknesses
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in the Si device, and bulk TLS density found in amorphous materials [69]. Using
the resulting effective spectral density of interacting TLS, n0,m ≈ 20 GHz−1, and
average TLS transverse and longitudinal deformation potentials of M̄ ≈ 0.04 eV
and D̄ ≈ 3.2 eV, respectively, yields breathing mode damping and frequency shifts
which are in excellent agreement with the measured data. The estimated level of
frequency jitter is also found in agreement with the measured value, assuming all
TLS are being pumped via the same optical absorption that drives the hot bath.

Several key observations can be drawn from the TLS damping modeling. The first
is that the typical T3 dependence of TLS relaxation damping of acoustic waves is
dependent on the phonon bath DOS into which the TLS decay [65, 66]. In the OMC
cavity the phonon DOS is strongly modified from a three-dimensional bulk material.
This directly results in the observed weak temperature dependence of the acoustic
damping for Tf . 100 mK, where the thermally activated TLS interact resonantly
with an approximately one-dimensional phonon DOS. A second point to note is
that the TLS resonant damping is strongly suppressed due to the phononic bandgap
surrounding the OMC cavity. Estimates of the phonon-induced spontaneous decay
rate of TLS in the bandgap is on the order of Hz; combined with the discrete number
of TLS in the small mode volume of the breathing mode, acoustic energy from the
breathing mode cannot escape via resonant coupling to TLS. The observed lack
of saturation of the breathing mode energy damping with either temperature or
phonon amplitude is further evidence that non-resonant relaxation damping − due
to dispersive coupling to TLS − is dominant [69]. Finally, the small average number
of estimated TLS in Vm which are thermally activated at the lowest temperatures
(∼ 2), leads to significant variation in the simulated TLS relaxation damping at
Tf ∼ 10 mK. This is consistent with the observed fluctuations from device-to-device
in the low-temperature Qm for devices with Nshield > 5 (see Fig. 4.6).

Several subtle points regarding the energy decay and coherence measurements
should be noted. First, the breathing mode spectral linewidth, and thus the co-
herence time, is measured in the presence of a (albeit weak) laser pump field. This
is in contrast to the energy decay measurements which are performed with the
laser pulsed off. Although we did not observe a power dependence at low optical
power to the measured long-time FWHM of the acoustic linewidth, the influence
of the laser field on the acoustic mode coherence time (through inadvertent pump-
ing of TLS for instance) cannot be ruled out. Second, the pump-probe technique
used to measure the acoustic spectrum excites the breathing mode to an estimate
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mode occupancy of order 1000; the single-phonon coherence time of relevance
to many quantum applications may be reduced from the measured high-phonon
number. With the recent demonstration of strong dispersive coupling of a super-
conducting qubit to similar nanomechanical acoustic cavities [78], measurement
of single-phonon coherence time in the absence of light fields should be possible.
Additionally, the low-frequency character of the breathing mode frequency noise
measured in this work indicates that the effective acoustic coherence time may be
substantially increased towards the energy decay time through techniques such as
dynamic decoupling. Finally, the attribution of the residual damping and the fre-
quency jitter noise to TLS, and in particular TLS at the Si surface of the etched
nanoscale devices, indicates that further study of the dependence of the acoustic
damping and coherence on surface preparation and surface damage removal may
prove particularly fruitful.
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Figure 5.1: Temperature dependence of acoustic frequency jitter. a, Plot of
the measured breathing mode energy damping rate, γ0/2π, as a function of fridge
temperature (Tf). Dashed green (magenta) curve is a fit with temperature dependence
γ0 ∼ T1.01

f (γ0 ∼ T2.39
f ). Error bars are 90% confidence intervals of the exponential

fit to measured ringdown curves. b, Two-tone coherent spectroscopy signal. Upper
plot: three individual spectrum of rapid frequency sweeps with a frequency step size
of 500 Hz and dwell time of 1 ms (RBW ≈ 0.5 kHz). Lower plot: average spectrum
of rapid scan spectra taken over minutes, showing broadened acoustic response
with FWHM linewidth of ∆1/2/2π = 4.05 kHz. The large on-resonance response
corresponds to an estimated optomechanical cooperativity of C ≡ γOM/(γ0 + γp) &
1.1, consistent with the predicted magnitude of back-action damping γOM/2π ≈
817 Hz and bath-induced damping γp/2π ≈ 120 Hz at the measurement pump
power level nc = 0.1. Data presented in (a-b) are for device D.
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5.1 3-Phonon-Scattering Damping Model

The anharmonicity of the atomic lattice in solid-state materials leads to frequency
mixing of the approximate harmonic modes (the phonons) of the lattice. This fre-
quency mixing - of all different orders - within a continuum of modes leads to
different forms of phonon damping depending on the damped phonon frequency
(ωs), wavelength (λqs ), and the lattice temperature [68, 81]. At low temperatures
where phonon relaxation times (τ) are long, and at relatively high phonon fre-
quencies, the dominant source of phonon damping due to the anharmonic lattice
potential results from 3-phonon scattering processes in the so-called Landau-Rumer
limit (ωsτ � 1) [67, 82]. In this limit a single-mode relaxation time (SMRT)
approximation [68] can be made in which only the damped phonon mode under
consideration is disturbed from equilibrium and the other two phonon modes in-
volved in the scattering are assumed to be frozen at their equilibrium occupancies.
Using the SMRT approximation one can calculate the 3-phonon-scattering damping
rate from second-order perturbation theory of the quantum mechanical model of the
anharmonic lattice. At higher temperatures where the thermal phonon relaxation
rate (1/τ) is very fast, or for very low frequency phonons, this approximation breaks
down and one enters the Akhiezer limit of phonon damping where ωsτ � 1 [83].
In this limit a phenomenological model is employed in which the strain wave of
a phonon mode induces a redistribution of thermal phonons via the lattice anhar-
monicity, and damping occurs due to relaxation of the thermal phonons back towards
thermal equilibrium. If in addition the phonon wavelength is long relative to the
mean free path of thermal phonons (lth), then a local temperature can be defined and
damping can also occur via diffusion of thermal phonons. In this limit, ωsτ � 1
and lth/λqs � 1, energy in the acoustic wave is carried away in heat flow due to
temperature gradients on the scale of λqs , and the resulting relaxation process is
called thermoelastic damping [84].

As we are concerned with microwave frequency acoustic waves and sub-Kelvin
temperatures, the dominant phonon-phonon scattering damping is expected to arise
from 3-phonon scattering under the SMRT approximation. In what follows we
present a model of such Landau-Rumer damping utilizing leaky quasi-modes [85].
This quasi-mode picture arises naturally in the context of the OMC cavity structure,
in which localized acoustic modes are weakly coupled to the continuum of phonon
modes in the surrounding substrate via the peripheral clamping of the Si device
layer to the underlying Si dioxide BOX layer (c.f., Fig. 5.4). We follow closely the
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derivation of 3-phonon scattering inRef. [68], althoughwith slight adjustments to the
notation to accommodate the use of quasi-normal modes. The notation developed
here will also be used in the analysis of two-level system damping described in the
next section.

For a displacement vector field uα(r), with u the local amplitude of atomic displace-
ment in direction α from equilibrium, the stored potential energy to second and third
order in the displacement field can be written as,

V2 ≡ 2nd-order elastic (potential) energy (5.1)

=
1
2

∫
d3r Jαγβδ

∂uα
∂rβ

∂uγ
∂rδ

, (5.2)

and

V3 ≡ third-order elastic (potential) energy (5.3)

=
1
3!

∫
d3r Almn

i jk
∂ul

∂ri

∂um

∂r j

∂un

∂rk
. (5.4)

Here, Jαγβδ is in general a rank 4 tensor whose coefficients are the 2nd-order elastic
coefficients of the material which relate strain to stress and have units of energy
density. Almn

i jk is a rank 6 tensor with coefficients arising from the lowest order
anharmoniticity of the lattice. ∂uα/∂rβ is a rank 2 tensor representing the local strain
created by the displacement vector field uα(r).

From these expressions we can define the total elastic energy density for a classical
acoustic wave oscillating harmonically in mode s as,

h( ¯̄es(r)) ≡ (classical) strain field elastic energy density (5.5)

=
1
2

Jαγβδ (es(r)) β
α

(
(es(r)) δγ

)∗
, (5.6)

where ¯̄es(r) is a complex strain tensor field related to the real (physical) strain tensor
field by,
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∂ (us(r))i
∂r j

≡ (classical) strain tensor field of mode s (5.7)

≡ Re
(
(es(r)) j

i

)
(5.8)

= Re
( ¯̄es(r)

)
. (5.9)

Note that we have used the fact that for a harmonic wave the cycle averaged potential
and kinetic energies are equal (and thus the total wave energy is twice the potential
energy), and h( ¯̄es(r)) should therefore be strictly considered as the energy density
averaged over a single cycle in time and a single wavelength in space. We also
define a normalized complex strain field for mode s having a peak strain value
of approximately unity (exactly unit for tensor-averaged fields) and a peak energy
density of J̄,

¯̄es(r) ≡ normalized classical strain field for mode s (5.10)

=
(J̄)1/2 ¯̄es(r)(

max[h( ¯̄es(r))]
)1/2 , (5.11)

where J̄ is the tensor-average of the harmonic elastic coefficients,

J̄ ≡ tensor-averaged 4th-order elastic tensor (5.12)

=

〈
1
2

¯̄J
〉
t
=

1
2 · 34

( ∑
α,γ,β,δ

(
Jαγβδ

)2
)1/2

. (5.13)

The effective mode volume over which the strain energy of mode s is localized can
also be defined as,

Vs ≡ effective mode volume of mode s =

∫
h( ¯̄es(r))d3r

max[h( ¯̄es(r))]
. (5.14)

The peak strain amplitude of mode s containing half a quanta of energy, i.e., the
‘vacuum’ strain level, is given by,
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evac,s ≡ vacuum strain field amplitude for mode s (5.15)

=

√
~ωs

2J̄Vs
, (5.16)

where ~ωs is themode s energy quantum. From the peak strain amplitude of vacuum
and the normalized strain field we can define a quantum strain field operator,

ˆ̄̄es(r) ≡ quantum strain tensor field operator for mode s (5.17)

= (evac,s)
[
b̂s ¯̄es(r) + b̂†s

(
¯̄es(r)

)∗]
(5.18)

where b̂s and b̂†s annihilate and create individual phonon quanta in mode s. The
corresponding quantum interaction Hamiltonian for 3-phonon scattering can then
be written in terms of triplets of quantum strain field operators directly from the
third-order elastic potential energy relation in Eq. (5.4),

Ĥ3-ph ≡ 3-phonon interaction Hamiltonian (5.19)

=
1
3!

∑
s s′s′′

∫
d3r

(
Almn

i jk

) (
ˆ̄̄es(r)

) i

l

(
ˆ̄̄es′(r)

) j

m

(
ˆ̄̄es′′(r)

) k

n
. (5.20)

5.1.1 Type-I Scattering Processes

3-phonon scattering, as it pertains to damping of a particular mode s, can be
categorized into two classes of processes [68]. Type-I scattering involves the mode
of interest, mode s, as a ‘daughter’ phonon which combines with another ‘sibling’
phonon (mode s′) to create a higher frequency ‘parent’ phonon (mode s′′). The
reverse process is also of type-I. Type-II scattering has the mode s of interest as the
high frequency parent phonon.
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Figure 5.2: 3-phonon-scattering damping processes. 3-phonon-mixing decay
processes may be either Type I or Type II. Due to the reduced density of states at
low frequency in the quasi-1D nanobeam structure, Type I processes are expected
to dominate over Type II.

The 3-phonon interaction Hamiltonian for type-I scattering is given in terms of
phonon creation and annihilation operators as,

Ĥ
3-ph
s+s′
s′′ ≡ As′′

ss′ b̂s b̂s′ b̂
†

s′′ + Ass′
s′′ b̂
†
s b̂†s′ b̂s′′, (5.21)

where

As′′

ss′ =
(
Ass′

s′′

)∗
(5.22)

≡
[
(evac,s)(evac,s′)(evac,s′′)

] ∫ (
Almn

ijk

) (
¯̄es(r)

) i

l

(
¯̄es′(r)

) j

m

((
¯̄es′′(r)

)∗) k

n
d3r . (5.23)

Calculating to 2nd-order in perturbation theory, the energy shift in the phonon Fock
state |ns, ns′, ns′′〉 is given by,

〈(
δEns,ns′,ns′′

) I
3-ph

〉
=

∑
s′s′′


���〈ns − 1, ns′ − 1, ns′′ + 1|As′′

ss′ b̂s b̂s′ b̂
†

s′′ |ns, ns′, ns′′
〉���2

~ ((ωs + ωs′ − ωs′′) − i(Γs + Γs′ − Γs′′))

+

���〈ns + 1, ns′ + 1, ns′′ − 1|Ass′

s′′ b̂†s b̂†s′ b̂s′′ |ns, ns′, ns′′
〉���2

~ ((ωs′′ − ωs − ωs′) − i(Γs′′ − Γs − Γs′))

 . (5.24)

Note that we have used a modified form of non-Hermitian perturbation theory [85,
86], suitable for leaky quasi-normal modes, in which the finite linewidth of the
phonon quasi-modes are included in the denominator of Eq. (5.24). Also implicit
in our use of 2nd-order perturbation theory is that the phonon-phonon coupling is
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weak. Collecting terms and specifically identifying mode s as the breathing acoustic
mode of the OMC cavity (labeled by m), we have for the complex level shift,

〈(
δEnm,ns′,ns′′

) I
3-ph

〉
=

∑
s′s′′

( ��As′′
m s′

��2 [nmns′(ns′′ + 1) − (nm + 1)(ns′ + 1)ns′′]

~ ((ωm + ωs′ − ωs′′) − i(Γm + Γs′ − Γs′′))

)
.

(5.25)

We now invoke the single mode relaxation time approximation, and assume that
only mode m is perturbed from equilibrium,

〈(
δEm,s′,s′′

) I
3-ph

〉
smrt
=

∑
s′s′′

( ��As′′

ms′

��2 [(n̄m + δnm)n̄s′(n̄s′′ + 1) − (n̄m + δnm + 1)(n̄s′ + 1)n̄s′′]
~ ((ωm + ωs′ − ωs′′) − i(Γm + Γs′ − Γs′′))

)
,

(5.26)

where n̄ are the thermal equilibrium mode occupancies and δnm is the perturbation
in phonon number of the breathing mode from equilibrium. Taking the difference
between the complex level shift for δnm + 1 and δnm, we find for the single photon
energy shift in mode m,

〈
~ (δω̃m)

I
3-ph

〉
smrt
=

∑
s′s′′

( ��As′′
m s′

��2 [n̄s′ − n̄s′′]

~ ((ωm + ωs′ − ωs′′) − i(Γm + Γs′ − Γs′′))

)
. (5.27)

Assuming the phonon mode linewidths are energy-damping limited (Γs = γs/2), we
find for the change in the energy damping rate of mode m due to type-I 3-phonon
scattering,

〈
(δγm)

I
3-ph

〉
smrt
≡

−2Im
〈
~ (δω̃m)

I
3-ph

〉
smrt

~δnm
(5.28)

=
1
~2

∑
s′s′′

( ��As′′
m s′

��2 (γs′′ − γs′ − γm) [n̄s′ − n̄s′′]

(ωm + ωs′ − ωs′′)
2 + (

γm+γs′−γs′′
2 )2

)
≈

1
~2

∑
s′s′′

( ��As′′
m s′

��2 (γs′′) [n̄s′ − n̄s′′]

(ωm + ωs′ − ωs′′)
2 + (

γm+γs′−γs′′
2 )2

)
, (5.29)

where in the last approximate equality we have neglected the unperturbed damping
of the two ‘child’ phonons (m and s′) and only included the quasi-mode damping of
the ‘parent’ phonon (s′′) into which the mode m decays in the type-I process.
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Equation (5.29) can be approximately evaluated using the relation between the
‘mode-averaged’ (〈·〉m) third-order elastic constants and the Grüneisen parame-
ter [68],

〈���Almn
i jk

���2〉
m
≡ mode-averaged 3-phonon scattering strength ≈ 4ρ2

Siv
4
Siγ

2
G (5.30)

where mode averaging is taken over different bulk phonon mode directions and
polarizations. This allows us to write for the 3-phonon scattering amplitude,

As′′
ms′ ≈

(
2ρSiv2

SiγG

) [
(evac,m)(evac,s′)(evac,s′′)

] (
F s′′

m s′Vm

)
, (5.31)

in which F s′′
m s′ is a mode overlap factor, or equivalently, for plane wave modes, a

phase-matching term. The mode overlap factor is less than or equal to unity and
depends approximately upon the tensor-averaged normalized strain fields of each of
the three modes participating in the scattering process,

F s′′
m s′ =

1
Vm

∫ (〈
¯̄em(r)

〉
t

) (〈
¯̄es′(r)

〉
t

) (〈
¯̄es′′(r)

〉
t

)∗
d3r . 1. (5.32)

As with the elastic constants, we define a tensor-averaged strain field as,

〈 ¯̄es(r)〉t ≡ tensor-averaged local strain field amplitude of mode s (5.33)

=
1
32

(∑
i, j

(
es(r) j

i

)2
)1/2

. (5.34)

5.1.2 Type-II Scattering Processes

Following a similar procedure for type-II scattering (m 
 s′ + s′′) yields a complex
energy level shift in Fock state |nm, ns′, ns′′〉,

〈(
δEm,s′,s′′

) II
3-ph

〉
=

1
2

∑
s′s′′

( ��Am
s′s′′

��2 [ns′ns′′(nm + 1) − (ns′ + 1)(ns′′ + 1)nm]

~ ((ωs′ + ωs′′ − ωm) − i(Γs′ + Γs′′ − Γm))

)
.

(5.35)
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Assuming the SMRT approximation and taking the difference between the energy
level shifts for displaced phonon numbers of δnm + 1 and δnm yields the single
photon complex energy level shift,

〈
~ (δω̃m)

II
3-ph

〉
smrt
=

1
2

∑
s′s′′

( ��Am
s′s′′

��2 [−(1 + n̄s′ + n̄s′′)]

~ ((ωs′ + ωs′′ − ωm) − i(Γs′ + Γs′′ − Γm))

)
, (5.36)

and the perturbation in the energy damping rate of mode m due to type-II 3-phonon
scattering,

〈
(δγm)

II
3-ph

〉
smrt
=

1
2~2

∑
s′s′′

( ��Am
s′s′′

��2 (γs′ + γs′′ − γm) [1 + n̄s′ + n̄s′′]

(ωs′ + ωs′′ − ωm)2 + (
γs′+γs′′−γm

2 )2

)
. (5.37)

In Section 5.3 we use Eqs. (5.29) and (5.37) to numerically evaluate the expected
damping of the breathing mode due to 3-phonon scattering with numerically simu-
lated quasi-normal modes of the OMC cavity.

5.1.3 3-phonon Scattering in Bulk Si

In order to compare the estimated 3-phonon scattering in the restricted geometry
of the OMC cavity to that of a bulk material, here we consider a simplified model
of 3-phonon scattering in bulk Si in which we treat Si as an isotropic acoustic
material. We are primarily interested in Normal (N ), type-I scattering processes.
N processes due to the low temperature, and thus low frequency of the acoustic
phonons involved in the scattering, and type-I scattering due to the suppression
of type-II scattering processes in the effectively one-dimensional OMC cavity for
phonon frequencies below that of the breathing mode. As derived in Ref. [68], for
such a bulk material system the acoustic damping of mode s under the single mode
relaxation time approximation can be written as,

(γs)
N−I
3-ph,bulk =

~vp 〈γG〉
2

4πρSi
〈
v2
Si
〉 ∑

p′p′′

(
v2

p′v
2
p′′

)−1

∫
R[p′,p′′]

dωs′ (ωs′)
2 (ωs′ + ωs)

2 (n̄[~ωs′/kBT] − n̄[~(ωs′ + ωs)/kBT]) , (5.38)
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where p, p′, and p′′ label the acoustic polarization of the modes s, s′, and s′′,
respectively. The region of integration, R[p, p′], depends upon the acoustic velocity
dispersion versus frequency and polarization (having assumed an isotropic bulk
model with no directional dispersion). Rewriting in terms of normalized frequencies
(y = ω(~/kBT)), yields the following simplified form of the phonon damping,

(γs)
N−I
3-ph,bulk =

~vp 〈γG〉
2 (kBT/~)5

4πρSi
〈
v2
Si
〉

∑
p′p‘

(
v2

p′v
2
p′′

)−1


∫
R[p′,p′′,T]

dys′ (ys′)
2 (ys′ + ys)

2 (n̄[ys′] − n̄[ys′ + ys])

 . (5.39)

The integral in curly brackets is unitless and depends on temperature through both
the integration range and the constant ys = ~ωs/kBT .

Neglecting frequency dispersion, R[p′, p′′] takes on a relatively simple form for the
various acoustic polarization scenarios. Due to polarization dispersion, the only
allowed Normal, type-I scattering processes are: Ls + Ls′ 
 Ls′′, Ls + Ts′ 
 Ls′′,
Ts + Ls′ 
 Ls′′, and Ts + Ts′ 
 Ls′′, where L (T) corresponds to longitudinal
(transverse/shear) polarization acoustic waves. The breathing mode is of mixed
polarization character, so all four combinations are potentially relevant for compar-
ison to the numerical calculations performed using the quasi-modes of the OMC
structure. Defining normalized wavevector magnitudes for the three acoustic waves
(x = |qs |/qD, x′ = |qs′ |/qD, x′′ = |qs′′ |/qD), the integration range R[p, p′] for x′ is
given by:

Ls + Ls′ 
 Ls′′: x′ = {0, 1 − x} → ωs′ ' {0, ωD}, (5.40)

Ts + Ls′ 
 Ls′′: x′ = {x1x, 1 − r x} → ωs′ ' {(x1/r)ωs, ωD}, (5.41)

Ts + Ts′ 
 Ls′′: x′ = {x1x, x/x1} → ωs′ ' {(x1/r)ωs, (1/x1r)ωs}, (5.42)

Ls + Ts′ 
 Ls′′: x′ = {0, x/x3} → ωs′ ' {0, (1/x3r)ωs}, (5.43)

where qD = π/a is the Debye wavevector for an atomic lattice constant a, ωD =

qD 〈vSi〉, r = vt/vl (≈ 0.69 in the [100] direction), x1 = (1 − r)/(1 + r) ≈ 0.18, and
x3 = (1 − r)/2 ≈ 0.15. For a breathing mode at 5 GHz, the corresponding lower
frequency cut-off for the integration range of both T LL and TT L scattering would
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approximately be 1.3 GHz. The upper frequency cut-off of TT L and LT L scattering
would be 40 GHz and 47 GHz, respectively. At temperatures below approximately
50mKthese processeswould turn off, and theywould saturate for temperatures above
approximately 2 K. In what follows we consider the LLL scattering combination for
comparison as it has effectively unlimited integration range and thus will contribute
at both low and high temperatures relative to T = ~ωs/kB (≈ 200 mK for the
breathing mode).
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5.2 TLS Damping Model

In addition to phonon-phonon scattering, another possible form of damping for
the acoustic breathing mode is due to coupling to tunneling states (TS) or two-
level systems (TLS). TS (or similar TLS) states correspond to a generic defect
state in a solid-state material, typically an amorphous material, in which two local
arrangements of atoms are nearly degenerate in energy. The two different atomic
arrangements can have both a permanent electric and acoustic dipole associated
with them, and atoms can tunnel between the two different arrangements. The
TS and TLS models are two different phenomelogical models that are used to
describe a wide variety of microscopic situations. Generically, in the TS model one
has an asymmetry energy ∆ which corresponds to the energy difference between
the lowest energy level in each of the local potential energy profiles defining the
two independent atomic arrangements, and a tunneling energy ∆0 related to the
energy barrier between the two local atomic arrangements (see Fig. 5.3(a)). One
diagonalizes the two lowest energy states of the two atomic arrangements into
hybridized modes |ψ1〉 and |ψ2〉, whose energy difference is dependent upon a
longitudinal dipole matrix element and which can be coupled via a transition dipole
matrix element. In the TS model the ratio of the longitudinal dipole coupling
to transition dipole coupling strength depends on the ratio of asymmetry energy
to tunneling energy. The TLS model treats the longitudinal and transition dipole
couplings as independent.

In the diagonal basis of the TS with asymmetry energy ∆ and tunneling energy ∆0,
the interaction between the TS and a stress wave of phonon mode s is,

Ĥint, TS−s ≈

(
∆0

E
σ̂x +

∆

E
σ̂z

)
γ̄TS ˆ̄es(r0), (5.44)

where r0 is the point-like location of the TS and E = (∆2+∆2
0)

1/2 is the TS transition
energy. Here we treat the stress interaction as approximately scalar, hence, γ̄TS and
ˆ̄es are the tensor-averaged deformation potential and stress operator, respectively.
The corresponding TLS interaction Hamiltonian is given by,

Ĥint, TLS−s ≈ (Mσ̂x + Dσ̂z) ˆ̄es(r0), (5.45)

where M is a transverse coupling potential and D is a longitudinal coupling potential.
We will follow a TLS model in what follows as it simplifies some of the analysis;
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however, it is important to note that the TLS model is more constrained than the
TS model in that the ratio of transverse and longitudinal coupling is fixed for a
given TLS energy. This has the effect of eliminating the wide range of possible
excited state decay rates for TS of a fixed energy. In fitting our data with a TS
model we found that a model with rather narrow ∆0 distribution whose mean scales
approximately with E fit best, which is effectively a TLS model.

We define corresponding (tensor-averaged) transverse and longitudinal vacuum cou-
pling rates as,

ḡt,s(r0) =
M
~
(evac,s)

〈
¯̄es(r0)

〉
t

(5.46)

and

ḡl,s(r0) =
D
~
(evac,s)

〈
¯̄es(r0)

〉
t

(5.47)

respectively, allowing us to write for the interaction Hamiltonian,

Ĥint, TLS−s ≈ ~
[
ḡt,s(r0)σ̂x + ḡl,s(r0)σ̂z

] (
b̂s + b̂†s

)
. (5.48)

Including the bare TLS and phonon energy terms, we have for the total Hamiltonian,

ĤTLS−s ≈
~ωTLS

2
σ̂z + ~ωs

(
b̂†s b̂s + 1/2

)
+ ~

[
ḡt,s(r0)σ̂x + ḡl,s(r0)σ̂z

] (
b̂s + b̂†s

)
,

(5.49)

where ωTLS is the bare transition frequency of the TLS (E = ~ωTLS). The σ̂x

interaction term leads to ‘resonant’ decay into the phonon bath and a bath-dependent
level shift of the TLS which can be treated using 2nd-order perturbation theory.
The σ̂z interaction term gives rise to ‘relaxation’-type processes of higher-order in
perturbation theory.

5.2.1 TLS Decay into the Phonon Bath

We first consider a single TLS interacting with the phonons as a dissipative bath
(the roles will be reversed when we consider the damping of a given phonon mode).
We assume that the TLS decay primarily through resonant σ̂x interactions with the
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phonon bath, neglecting the σ̂z interaction term. Also, owing to the finite-size of
the acoustic cavity structure studied here, we work in a discrete basis of phonon
quasi-normal modes. The bare phonon modes of the acoustic cavity have a complex
frequency due to coupling to the phonons of the substrate, ω̃s = ωs − iΓs, where
ωs is the real angular frequency and Γs = γs/2 + Γs,φ is the phonon amplitude
decoherence rate given by the sum of half the energy decay rate (γs) and the pure
dephasing rate (Γs,φ) of the phonon mode. From 2nd-order perturbation theory [85,
87] we find a complex frequency shift of the TLS transition given by,

(δω̃TLS)s ≈
(
2ḡ2

t,s(ns + 1/2)
) [

1
∆̃TLS,s

+
1

∆̃TLS,s + 2ω̃s

]
, (5.50)

where ns is the phonon occupancy of mode s and ∆̃TLS,s ≡ ω̃TLS − ω̃s is the near-
resonant complex detuning. Here we have included the non-resonant term as it
contributes non-negligibly to the TLS frequency shift (the real part of Eq. (5.50))
when summing over contributions from phonon modes of large detuning. Implicit
in our use of 2nd-order perturbation theory is that the TLS-s coupling remains
in a small coupling limit (|ḡt,s |/|∆̃TLS,s | � 1) where non-degenerate perturbation
theory is accurate. One can also utilize quasi-degenerate perturbation theory [87]
to determine the complex frequency shift without restriction on the strength of the
coupling; however, the formulae are more complex and require careful elimination
of non-physical solutions. For simplicity of presentation, here we limit ourselves to
the small coupling limit. Below, in performing numerical calculations with specific
TLS ensembles we found that the small coupling limit is adequate due to the low
spectral density of phonon quasi-modes and TLS, and consequently the very unlikely
situation where |ḡt,s |/|∆̃TLS,s | & 1.

One can arrive at a similar result in Hamiltonian form by rotating to a dressed TLS
basis that diagonalizes Eq. (5.49) in the N-excitation manifold to 2nd-order in the
small parameter ḡt,s/|ω̃TLS − ω̃s |,

Ĥ
eff,res.
TLS−s ≈ ~ (ω̃TLS)

σ̂z

2
+ ~

(
ω̃s +

ḡ2
t,s

∆̃TLS,s
σ̂z

) (
b̂†s b̂s + 1/2

)
, (5.51)

where we have included only the ‘resonant’σx interaction for now. Due to our use of
quasi-normal modes for both TLS and mode s, Ĥ eff,res.

TLS−s is an effective Hamiltonian
with complex energy eigenvalues. We see from this effective Hamiltonian that
the resonant σx interaction leads both to a dressing of the TLS and the phonon
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mode: (i) viewed as a Stark-like shift of the TLS, the dressed complex frequency
of the TLS is ω̃′TLS = ω̃TLS + (2ḡ2

t,s/∆̃TLS,s)〈b̂
†
s b̂s + 1/2〉, (ii) viewed as a TLS

state-dependent shift of the phonon frequency, the dressed complex frequency of
the mode s is ω̃′s = ω̃s + (ḡ

2
t,s/∆̃TLS,s)〈σ̂z〉. The absence of the non-resonant term

[(∆̃TLS,s+2ω̃s)
−1] in Eq. (5.51) is due to our restriction to the N-excitation manifold.

Returning to Eq. 5.50 and focusing on the damping effect of the phonon mode s

on the TLS, we extract the imaginary component of δω̃TLS corresponding to the
phonon-induced decoherence rate of the TLS,

(
δΓ2,TLS

)
s = −Im [(δω̃TLS)s] ≈

2ḡ2
t,s

(
Γs − Γ2,TLS

)
(ns + 1/2)

(ωTLS − ωs)2 + (Γ2,TLS − Γs)
2 . (5.52)

Assuming the TLS primarily decohere through the phonon bath such that the bare
Γ2,TLS ≈ 0 (neglecting other bath contributions and TLS-TLS dephasing, for in-
stance), and neglecting pure dephasing of the phonon mode (Γs,φ = 0), we can write
for the phonon-induced energy decay rate of the TLS due to mode s,

(
δΓ1,TLS

)
s ≈ 2

(
δΓ2,TLS

)
s ≈

[
ḡ2
t,s

(ωTLS − ωs)2 + (γs/2)2

]
(γs(2ns + 1)) . (5.53)

For a phonon bath in thermal equilibrium at temperature T we have that 2ns + 1 =
coth(~ωs/2kBT). Summing over the discrete set of quasi-normal phonon modes
allows us to write for the total phonon-induced Γ1,TLS as a function of phonon bath
temperature,

(
δΓ1,TLS

)
ph ≈

∑
s

[
ḡ2
t,sγs

(ωTLS − ωs)2 + (γs/2)2

]
(coth(~ωs/2kBT)) . (5.54)

One recovers the standard result for a TLS interacting with a continuum phonon
bath [69] by integrating Eq. (5.54) weighted by the appropriate phonon density of
states per unit frequency, ρph[ωs],

(
δΓ1,TLS

)
ph,cont. ≈ 2πρph[ωTLS](ḡt,s[ωTLS])

2 (coth[~ωTLS/2kBT]) . (5.55)

For a three-dimensional (3D) bulk material the (polarization-averaged) phonon
bath density of states is ρph = (V/(2π2v̄3))ω2

s , where v̄ is an average acoustic
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velocity in the material. The phonon modes of a homogeneous bulk are plane
waves with vacuum strain amplitude evac,s = (~ωs/2J̄V)1/2, where J̄ is a (2nd-order
in strain) elastic energy density coefficient or bulk modulus of the material. The
acoustic velocity and bulk modulus can be related to the bulk material mass density,
ρ̄m = J̄/v̄2. Substituting these values into Eq. (5.55) yields for an average TLS
coupled to a phonon bath in a 3D bulk,

(
δΓ1,TLS

)
ph,3D ≈

(
M̄2ω3

TLS

2π~J̄ v̄3

)
(coth[~ωTLS/2kBT]) (5.56)

=

(
M̄2ω3

TLS

2π~ρ̄mv̄5

)
(coth[~ωTLS/2kBT]) , (5.57)

where M̄ is an averaged (over TLS orientation and acoustic polarization) transverse
coupling potential. For future reference we also quote here the corresponding result
for a quasi two-dimensional (2D) material, corresponding to a plate of large area
and thickness t smaller than the acoustic wavelength,

(
δΓ1,TLS

)
ph,2D ≈

(
M̄2ω2

TLS
2~ρ̄mv̄4t

)
(coth[~ωTLS/2kBT]) , (5.58)

and a quasi one-dimensional (1D) material, corresponding to a beam of long length
and small cross-sectional dimension w̄ relative to the acoustic wavelength,

(
δΓ1,TLS

)
ph,1D ≈

(
M̄2ωTLS

2~ρ̄mv̄3w̄2

)
(coth[~ωTLS/2kBT]) . (5.59)

In a prelude to what follows, we note that the frequency scaling with bath dimension
will set the temperature scaling of the non-resonant TLS ‘relaxation’ damping of
acoustical modes; hence, a 3D phonon bath will yield a T3 dependence, a 2D bath
a quadratic T2 dependence, and a 1D bath will result in a linear T dependence.

5.2.2 ‘Resonant’TLSDamping andFrequencyShift ofAcousticCavityQuasi-
modes

In contrast to the analysis of the prior sub-section, we now reverse roles and consider
the TLS to be a bath for the acoustic phononmodes of the structure. In particular, we
are interested in the localized high-Q phonon mode which lies within the phononic
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bandgap of the acoustic radiation shield. As such, this phonon mode should have
much smaller intrinsic (radiation) damping to the substrate than the average phonon
bath mode considered in the previous sub-section. We first consider the effects
of the σ̂x TLS-phonon interaction. Referring to Eq. (5.51), the ‘resonant’ (σ̂x)
contribution to the TLS state-dependent shift in the complex phonon frequency is
given by,

(δω̃s)TLS,res ≈
(
ḡ2
t,s[rTLS]〈σ̂z〉

) [
1
∆̃TLS,s

+
1

∆̃TLS,s + 2ω̃s

]
, (5.60)

where rTLS is the spatial location of the TLS in the acoustic cavity andwe have added
in by hand the non-resonant [(∆̃TLS,s + 2ω̃s)

−1] term as found in the perturbation
analysis of Eq. (5.50). For a TLS in thermal equilibrium at temperature T one has
〈σ̂z〉 = − tanh[~ωTLS/2kBT]. Considering interaction with an ensemble of TLS and
summing over this ensemble yields for the TLS state-dependent shift in the real part
of the frequency of the phonon mode s,

(δωs)res ≈
∑
TLS

Re [(δω̃s)TLS] = −
∑
TLS

(
ḡ2
t,s[rTLS] tanh[~ωTLS/2kBT]

)
×

[
ωTLS − ωs

(ωTLS − ωs)2 + (Γ2,TLS − Γs)
2 +

ωTLS + ωs

(ωTLS + ωs)2 + (Γ2,TLS + Γs)
2

]
. (5.61)

Substituting for Γ2,TLS the estimated energy decay rate due to coupling to the rest
of the phonon bath found in Eq. (5.53) and a pure dephasing rate (Γφ,TLS), and
assuming the phonon mode m of interest has a much smaller decoherence rate than
the dressed TLS, we have that,

(δωm)res ≈ −
∑
TLS

(
ḡ2
t,m[rTLS] tanh[~ωTLS/2kBT]

)
×

[
ωTLS − ωm

(ωTLS − ωm)2 + ((δΓ1,TLS)ph/2 + Γφ,TLS)2
+

ωTLS + ωm

(ωTLS + ωm)2 + ((δΓ1,TLS)ph/2 + Γφ,TLS)2

]
.

(5.62)

Similarly, the energy damping rate of mode m due to resonant interaction processes
with the TLS bath is given by,
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(δγm)res ≈
∑
TLS
−2Im [(δω̃m)TLS] ≈

∑
TLS


(
ḡ2
t,m[rTLS] tanh[~ωTLS/2kBT]

)
(δΓ1,TLS)ph

(ωTLS − ωm)2 + ((δΓ1,TLS)ph/2 + Γφ,TLS)2

 ,
(5.63)

where we have neglected the non-resonant term [(∆̃TLS,s + 2ω̃s)
−1] due to its much

weaker contribution to the Lorentzian damping function. Note that we have not
included the Γφ,TLS contribution in the numerator of Eq. (5.63) as it adds pure
dephasing to the phonon mode m.

One recovers the standard result for damping of a phonon interacting with a contin-
uum TLS bath [69] by integrating Eq. (5.63) weighted by the TLS density of states
per unit angular frequency in the acoustic mode volume, n0,m/2π ≡ ~n0ηsurfVm,

(δγm)res, cont. ≈ (2π)(~ηsurfn0Vm)ḡ
2
t,m[rm] tanh[~ωm/2kBT] (5.64)

≈

(
πM̄2ωm

ρ̄mv̄2

)
(ηsurfn0) tanh[~ωm/2kBT], (5.65)

where ηsurfn0 is the effective bulk TLS density per unit volume per unit energy,
and the average transverse coupling rate for TLS in the acoustic mode volume is
approximately, ḡ2

t,m[rm] ≈ (M̄/~)2(~ωm/2ρ̄mv̄2Vm). Following a similar averaging
over the cavity mode volume and integration over a TLS density in Eq. (5.62), one
obtains the corresponding frequency shift of the breathing mode due to resonant
interaction with a continuum of TLS,

(δωm)res, cont. ≈ −(~ηsurfn0Vm)ḡ
2
t,m[rm]

× Re
{∫ ωmax

0
dωTLS tanh[~ωTLS/2kBT]

(
1

(ωTLS − ωm) + iΓ2,TLS
+

1
(ωTLS + ωm) − iΓ2,TLS

)}
,

(5.66)

whereωmax is the maximum transition frequency of the TLS ensemble. The integral
can be evaluated using the digamma function [88], yielding the following simplified
result,

(δωm)res, cont. ≈

(
M̄2ωm

ρ̄mv̄2

)
(ηsurfn0)

(
Re

{
Ψ

[
1
2
+ i
~ωm

2πkBT

]}
− ln

[
~ωmax

2πkBT

] )
.

(5.67)
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5.2.3 ‘Relaxation’ TLS Damping and Frequency Shift of Acoustic Cavity
Quasi-modes

Relaxation damping of acoustic cavity modes results not from direct energy ex-
change with nearly-resonant TLS, but rather from the shift in the TLS transition
frequencies due to the σz interaction of Eq. (5.45). This shift, which is linear in the
stress amplitude of the acoustic modes and oscillates in time with the frequency of
the acoustic mode, displaces the TLS from equilibrium. During this oscillatory dis-
placement out of equilibrium the TLS will relax back towards equilibrium at a rate
given by the TLS energy decay rate, stealing away energy from the acoustic mode
in the process. Microscopically this is a process involving higher-order perturbation
interactions between the TLS and the phonon bath. As such, here we follow the
standard semi-classical analysis of relaxation damping by considering the acoustic
dipole response of the TLS to a (classical) strain field [69, 88].

The magnitude of the longitudinal acoustic dipole of a TLS is given by 〈 ¯̄pa〉t ≡

D〈σ̂z〉. For a small amplitude, harmonic strain field oscillating inmode s, 〈 ¯̄es[r;ωs]〉t,
the harmonically oscillating component of the longitudinal acoustic dipole is linearly
related to the applied strain at the site of TLS through a (tensor-averaged) suscepti-
bility, 〈 ¯̄χrel[ωs]〉t ≡ 〈δ ¯̄pa[ωs]〉t/〈 ¯̄es[rTLS;ωs]〉t, where 〈δ ¯̄pa[ωs]〉t = D(δ〈σ̂z[ωs]〉),
δ〈σ̂z〉 = (〈σ̂z〉 − 〈σ̂z〉eq.), and 〈σ̂z〉eq. = − tanh[~ωTLS/2kBT] is the TLS inversion in
thermal equilibrium. Solving the Bloch equations assuming a finite relaxation rate
to equilibrium of Γ1,TLS, the displacement of the inversion from equilibrium follows
the applied harmonic strain with a phase lag,

δ〈σ̂z〉 ≈
∂〈σ̂z〉eq.

∂ωTLS

∂ωTLS

∂〈 ¯̄es〉t

(
1 − iωs(Γ1,TLS)

−1

1 + (ωs(Γ1,TLS)−1)2

)
〈 ¯̄es〉t. (5.68)

From Eq. (5.49) one can show that ∂ωTLS/∂〈 ¯̄es〉t = (2D/~), and ∂〈σ̂z〉eq./∂ωTLS =

(~/2kBT) sech2[~ωTLS/2kBT]. This yields for the relaxation susceptibility,

〈 ¯̄χrel[ωs;ωTLS]〉t =

(
D2

kBT

) (
1 − iωs(Γ1,TLS)

−1

1 + (ωs(Γ1,TLS)−1)2

)
sech2[~ωTLS/2kBT]. (5.69)

The complex energy shift of the acoustic mode due to its interaction with the TLS
is given by (δẼs)TLS ≈ 〈 ¯̄pa〉t(〈 ¯̄es[rTLS]〉t)∗. Noting the complex energy shift can be
related to a complex frequency shift in the acoustic resonance through the stored
phonon number (ns), (δẼs)TLS = ~(δω̃sns), and writing the local applied strain
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amplitude in terms of phonon number, 〈 ¯̄es[rTLS]〉t = (evac,s)(〈 ¯̄es[rTLS]〉t)
√

ns, yields
for the complex frequency shift in quasi-mode s due to relaxation interactions with
a single TLS,

(δω̃s)TLS,rel ≈
(〈 ¯̄es[rTLS]〉t)2(evac,s)2

~
〈 ¯̄χrel[ωs;ωTLS]〉t. (5.70)

For a given quasi-mode m of interest, interacting with an ensemble of TLS, the
corresponding frequency shift due to relaxation processes is given by,

(δωm)rel =
∑
TLS

Re
[
(δω̃m)TLS,rel

]
≈

∑
TLS

ωm(〈 ¯̄em[rTLS]〉t)2Re
[
〈 ¯̄χrel[ωm;ωTLS]〉t

]
2ρ̄mv̄2Vm

(5.71)

≈
∑
TLS

(〈 ¯̄em[rTLS]〉t)2D2(Γ1,TLS)
2

2ωm ρ̄mv̄2VmkBT
sech2[~ωTLS/2kBT]

=
∑
TLS

(
ḡl,m[rTLS]

ωm

)2 (
~(Γ1,TLS)

2

kBT

)
sech2[~ωTLS/2kBT].

Similarly, the relaxation energy damping rate of mode m is given by,

(δγm)rel = −2
∑
TLS

Im
[
(δω̃m)TLS,rel

]
≈ −

∑
TLS

ωm(〈 ¯̄em[rTLS]〉t)2Im
[
〈 ¯̄χrel[ωm;ωTLS]〉t

]
ρ̄mv̄2Vm

(5.72)

≈
∑
TLS

(〈 ¯̄em[rTLS]〉t)2D2Γ1,TLS

ρ̄mv̄2VmkBT
sech2[~ωTLS/2kBT]

=
∑
TLS

(
2ḡ2

l,m[rTLS]
ωm

) (
~Γ1,TLS

kBT

)
sech2[~ωTLS/2kBT].

Since we are concerned with high frequency, microwave phonon modes and TLS
at cryogenic temperatures, we have safely assumed that we are in the non-adiabatic
limit, ωmΓ

−1
1,TLS � 1.

Assuming resonant phonon damping is the dominant decay mechanism for TLS,
and substituting (δΓ1,TLS)ph,cont. for Γ1,TLS in Eqs. (5.71-5.72), yields the standard
relations for the frequency shift and energy damping for an acoustic mode inter-
acting with a TLS bath in a bulk material which supports a phonon continuum.
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For a uniform spectral density of states for the TLS, as assumed here, integrating
over ωTLS yields a phonon relaxation damping of (δγm)rel ∼ T d , where d is the
dimension of the phonon bath. This is a result of the fact that sech2[~ωTLS/2kBT]

effectively limits the TLS frequency integral to frequencies below ≈ kBT (i.e.,
relaxation damping is limited to thermally occupied TLS), and within this range
of frequencies coth[~ωTLS/2kBT] ≈ 2kBT/~ωTLS. This observation is especially
important for the nanoscale optomechanical structures under study, where at the
temperatures and corresponding frequencies considered, the relevant phonon bath
density of states varies between something approximating a 1D bath at temperatures
below 100 mK to something approximating a 2.5D bath at temperatures between
100 mK and 1 K. The influence of the geometric patterning of the optomechanical
structure also plays a role, modifying the phonon density of states in extreme ways
by introducing phononic bandgaps and flat band regions. As we will show below
using numerical methods to calculate the full spectrum of quasi-acoustic-modes of
the optomechanical structure, the temperature dependence of the relaxation damping
rate due to TLS can indeed be significantly modified from that in bulk.
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Figure 5.3: Simulation ofTLS strain coupling toOMCcavity. a, Double potential
well energy profile of a tunneling-state (TS), showing the asymmetry energy ∆
and the tunneling energy ∆0 between left and right localized potentials. b FEM-
simulatedmode profile of the breathingmode of the OMC cavity, indicating surface-
localized TS states which are strain coupled through deformation potential γ̄TLS. c,
TS energy diagram, showing the transition energy, E = (∆2 + ∆2

0)
1/2, between

hybridized modes |ψ1〉 and |ψ2〉 which are mixtures of left and right localized states
of the TS double potential well. d, Acoustic bandstructure of the OMC nanobeam,
with blue (red) bands correspond to even (odd) vector parity acoustic modes with
respect to in-plane mirror symmetry. The dashed black curve corresponds to the
localized breathing mode frequency. The shaded orange region corresponds to the
bandgap of the surrounding acoustic shield.
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5.3 Numerical Modeling of TLS Interactions and Acoustic Damping in the
OMC Cavity

In order to more accurately account for the complex geometry of the optomechanical
crystal structure studied and its impact on the phonon mode spectrum and TLS
dynamics, we have performed numerical simulations of the acoustic resonances
(quasi-modes) of the structure for frequencies below 100 GHz. One half of the
simulated structure is shown schematically in Fig. 5.3, and includes one of the pair
of OMC cavities, the optical coupling waveguide, and the phononic shield which
make up a single ‘device’. In practice, such a device is clamped from below at
its periphery through the connection of the top Si device layer to the underlying
3 µm thick SiOx buried oxide (BOX) layer, which itself is grown on top of a
thick (500 µm) Si handle layer. Simulations are performed using the COMSOL
finite-element-method solver, using the Amazon AWS cloud computing resources
to simulate various parts of the phonon spectrum in parallel. Acoustic perfectly
matched layers (PML) at the periphery of the structure are used as a radiation
boundary condition.

A series of different meshing schemes are used to cover the acoustic frequency
spectrum up to 100 GHz. For all frequencies we utilize a fine mesh with maximum
element size of 20 nm in the OMC cavity and phononic shield regions. This yields
a meshing resolution of roughly 3-4 points per wavelength even at the highest
(100 GHz) frequencies considered. As a result of memory and computing time
limitations, we adjust the meshing and structure layout as a function of frequency
in the rest of the structure outside of the OMC cavity and shield. For acoustic
frequencies below 10 GHz the full structure shown in Fig. 5.5(b) is simulated,
which includes at its periphery a micron thick (in depth and height) BOX layer
followed by the PML radiation boundary. For these frequencies a lower mesh
density (maximum mesh size of 250 nm) is utilized in the BOX and PML regions,
providing a minimum of roughly 4 points per wavelength resolution for modes up to
10 GHz. The simulated quasi-modes of the structure are therefore damped through
their acoustic radiation into the BOX layer, with no further acoustic reflections
considered (such as at the Si handle layer). For frequencies above 10 GHz we
remove the BOX clamping region and apply the PML layers right at the boundary of
the phononic shield, as shown in Fig. 5.5(c). At these higher frequencies we utilize
the same fine mesh in the PML as in the OMC cavity region (maximum mesh size
of 20 nm). The thought in doing this is that the BOX clamping region plays less
of a role for these short wavelength phonons that can effectively propagate within
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the thin Si device layer without major reflection at this boundary, hence the removal
of the BOX layer and application of the PML region in the Si device layer right at
the exit of the acoustic shield. More important is that we provide a fine mesh in
the PML to avoid unintended reflections. Beyond 100 GHz the resulting memory
requirements and computation time are prohibitive, and given the temperature range
of interest (. 1 K), 100 GHz frequency is a natural cut-off point. In addition to the
above meshing strategy, in order to reduce the memory and computation time we
apply a mirror boundary condition along the center of the structure, running down
the middle of the coupling waveguide, and double the number of modes recorded in
simulation.

For each acoustic resonance found in the simulationwe not only record the frequency
(ω) and energy damping rate (γ), but also calculate the per phonon strain tensor at
101 locations in the acoustic mode volume Vm of the high-Q breathing mode. These
locations were chosen to be in random locations in the Si device layer, but within
δw = 15 nm of the Si-air interface, as this is where we expect TLS to be located
due to etch damage. A fixed set of 101 positions are evaluated for all acoustic
modes. Plots showing the resulting energy damping rate, effective phonon mode
density, and average squared strain in the mode volume Vm as a function of phonon
frequency are shown in Figs. 5.5(a-c). Noteworthy in these plots is the position
of the fundamental phononic bandgap of the acoustic shield, which is shown as a
semi-transparent blue band from approximately 3.5 to 6.5 GHz. As can be seen, a
significant change in the local strain amplitude and mode density occurs around this
phononic bandgap. Below the bandgap, the mode density is roughly constant at 1
mode every 5 MHz (a bin size of 50 MHz was used when estimating this spectral
quasi-mode density), consistent with that of an effectively 1D system. Within the
bandgap of the acoustic shield, the mode density drops, and then above the bandgap
the mode density rises a little faster than linearly with frequency, corresponding to
that of a 2.4-D system. Below the bandgap the per-phonon strain in mode volume
Vm is quite small, and then rises within and above the phononic bandgap frequency
due to the localization of modes within the shield. The energy damping rate plot
shows that a portion of the modes become substantially less damped in and around
the bandgap as expected.

5.3.1 Numerical Simulation of 3-phonon Scattering
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dmirror boundary condition

mirror boundary condition

Figure 5.4: FEM simulation of 3-phonon scattering layout and mesh. a, Top
view of the FEM-simulated structure for phonon frequencies below 10 GHz. Blue
regions correspond to PML radiation boundaries. The structure is mirrored about
the center axis of the coupling waveguide (red arrows and label). A maximum
mesh size of 20 nm is utilized in the OMC cavity and phononic shield regions.
A maximum mesh size of 250 nm is set in the surrounding periphery and PML
regions. The mesh resolution is smoothly varied between the two regions. b,
Isometric view of the same structure in (a), showing the underlying BOX clamping
layer and the corresponding PML layers. The bottom of the BOX layer has a
fixed boundary condition applied to it. c Top view of the reduced FEM-simulation
volume for phonon frequencies between 10-100 GHz. Again, the blue region is an
acoustic PML. All other boundaries other than PML are set to free boundaries. The
maximum mesh size is now 20 nm throughout the entire structure, including the
PML. d, Zoom-in of the red box region in (c), showing the dense meshing of the
nanobeam and shield.
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Figure 5.5: Model phonon and TLS properties. In this model, phonons of
the Si optomechanical slab structure are simulated using a FEM numerical solver.
The simulation volume consists of the two optomechanical cavities, fiber coupling
waveguide, and 10 period phononic shield. As in the fabricated devices, the Si
slab is clamped at the periphery of the optomechanical structure to the underlying
SiOx BOX layer of the SOI. An acoustic radiation boundary condition consisting
of a perfectly-matched layer allows for radiation to escape into the external Si slab
and underlying substrate. All phonon resonances up to 100 GHz frequency are
calculated. The lowest phononic bandgap of the shield is shown as a transparent
blue band. a, Acoustic radiation damping rate for phonon quasi-modes of the
optomechanical structure. b, Spectral phonon mode density, spectrally averaged
over 20 MHz bin size. c, Per-phonon squared strain value within mode volume
Vm for each of the phonon-quasi modes. Here, the sum of the square of the strain
components are averaged over 201 positions within the acoustic mode volume of
the breathing mechanical mode. d, For an exemplary ensemble instance, zero
temperature TLS decay rate of each of the NTLS,m = 3920 randomly oriented and
distributed within Vm due to resonant (σ̂x) coupling to phonon quasi-modes of the
optomechanical structure.
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Figure 5.6: 3-phonon scattering model. Simulation of the acoustic damping due
to 3-phonon scattering of the localized breathing mechanical mode with other quasi-
modes of the OMC cavity structure of Fig. 5.5. Parameters used in the modeling
are listed in Tab. 5.1. Both type I (solid red curve) and type II (solid blue curve)
scattering processes involving the breathing mode are modeled. For comparison, we
also plot the estimated 3-phonon-scattering damping rate due to type-I processes for
longitudinally polarized phonons (L + L 
 L) in bulk Si. For the bulk simulation
we plot the estimated damping rate without a low-frequency cut-off (dashed black
curve), and with a low-frequency cut-off (solid cyan curve) corresponding to the
top of the first phononic bandgap (ωc/2π = 6.5 GHz). In all cases we only
include Normal scattering processes, and neglect Umklapp scattering, due to the
low temperature range considered (T . 1 K).
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Utilizing Eqs. (5.29), (5.37), and (5.39), along with the parameters listed in Tab. 5.1
and the COMSOL-simulated acoustic modes of the OMC cavity structure (c.f.,
Fig. 5.4), in Fig. 5.6 we plot the calculated acoustic damping of the localized
5 GHz breathing mode due to 3-phonon scattering at temperatures below 1 K.
The resulting temperature-dependent damping rate using the numerically computed
acoustic quasi-modes of the OMC cavity are shown as a solid red curve for N -I
processes and a solid blue curve for N -II processes. Damping arising from N -
II scattering processes is largely suppressed in the OMC cavity structure due to
the reduced density of phonon states lying below the breathing mode frequency,
a consequence of the effectively reduced dimensionality of the OMC nanobeam at
these acousticwavelengths. At temperatures belowT = ~ωm/kB ≈ 200mK theN -II
damping rate approaches the spontaneous decay rate of the breathing mode, whereas
at higher temperatures the damping rate increases linearlywith temperature. TheN -I
damping rate, on the other hand, increases rapidly towards a high temperature scaling
of ∼ T4. Again, at temperatures below T = ~ωm/kB ≈ 200 mK the N -I damping
rate drops rapidly due to the reduced density of available phonon states in the OMC
structure. This is another manifestation of the ‘phonon bottleneck’ effect discussed
above in regards to the optically-induced hot phonon bath. Energy deposited into
high frequency phonons decays to lower frequency phonons through processes like
the 3-phononmixing studied here, however, when the phonon wavelengths approach
the dimension of the structure the reduced density of phonon states results in a
precipitous drop in the nonlinear phonon scattering, effectively trapping the energy
in phonons above a certain cut-off frequency.

For comparison purposes we have plotted the estimated damping for an isotropic
Si bulk material involving L + L 
 L acoustic scattering. The black dashed curve
(solid cyan curve) is the bulk damping rate without (with) a low-frequency cut-off for
the range of integration in theN -I process. The cut-off frequency for the solid cyan
curve is ωc/2π = 6.5 GHz, chosen to match the top of the first phononic bandgap
of the acoustic shield in the OMC cavity structure (c.f., Fig. 5.5). The temperature
scaling for the bulk scattering (above cut-off) is approximately T4. An average
overlap factor

〈
F s′′

m s′
〉
= 0.01 was assumed in the quasi-mode modeling, resulting

in a reasonable correspondence with the N -I bulk damping at temperatures above
400 mK.

Although the 3-phonon scattering rapidly rises with temperature (∼ T4), for tem-
peratures below 1 K where the size-scale of the OMC cavity structure comes into
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play, the magnitude of 3-phonon scattering is estimated to be substantially smaller
than that measured in our experiment. In the following subsection we consider a
more likely source of the observed damping, two-level systems, which act as an
intermediate bath between phonons, greatly increasing the predicted damping rate.

5.3.2 Numerical Modeling of TLS-phonon Interactions in the OMC Cavity

The coupling of the high-Q acoustic breathing mode of the OMC cavity to TLS
defect states depends on a number factors. First and foremost there is the spatial
and spectral density of the TLS, which determine the number of interacting defect
states with the breathing mode. In order to constrain the TLS density to a realistic
value we consider here that the majority of the TLS are associated with defects in a
near-surface layer of the etched Si structure making up the OMC cavity. We assume
no TLS defects in the bulk of the crystalline Si layer. The thickness of the defective
surface layer of Si depends greatly on its preparation.

In our case, we have used an inductively-coupled reactive ion etch (ICP-RIE) to
pattern the 220 nm thick Si device layer. The ICP-RIE etch utilizes an SF6:C4F8

gas chemistry, with low RF power (≈ 30 W) and low DC-bias voltage (≈ 70 V),
to reduce optimize the shape of the etched sidewall and to attempt to reduce etch-
induced damage on the sidewalls of the etched Si. Nonetheless, it is well known
that these etch processes still produce a variety of damages to the exposed near-
surface layers of Si in the process. Typically in RIE etching [80, 92, 93, 94], a
surface consisting of a super-surface top layer of fluoro-carbons (∼ 5 nm) and Si-
oxygen (∼ 1.5 nm) is followed by a sub-surface heavily damaged layer containing
Si-carbon (among other impurities) that can penetrate into the bulk to depths of
tens of nanometers. Here we assume an etched sidewall damage layer thickness of
δw = 15 nm. In order to reduce Si oxide growth on the top and bottom surface
layers of the released Si device (i.e., those layers that do not see the ICP-RIE etch)
we ‘flash’ the sample with an anhydrous vapor HF etch prior to inserting it into the
vacuum of the dilution refrigerator (time between flash and vacuum pump down in
the cryostat is . 45 minutes). Ideally, this removes surface oxide layers and leaves
a hydrogen-terminated Si surface nominally free of oxides. To be conservative,
however, we also assume a δt = 0.25 nm surface oxide layer [79, 95] on the top and
bottom surfaces of the released Si device layer. This yields a volume fraction of
damaged Si in our devices which is ηsurf = 0.29.

Assuming a bulk TLS density commensurate with that in vitreous Si dioxide, n0 =
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1.04 states/J/m3 [69], this yields a spectral density of TLS that lies within the
acoustic cavity volume of the breathing mode of only n0,m ∼ 20 states/GHz. For a
TLS population that is uniformly distributed spectrally [96], this yields only ∼ 2000
TLS with transition frequencies lying below 100 GHz that are in the cavity mode
volume. Note that we simulate an ensemble TLS size of NTLS,m = 3920, taking
into account TLS that are within a spatial region of twice that of the cavity mode
volume.

The resonant interaction of those TLS that lie spatially in the breathing mode cavity
volumeVm and have their transition frequency spectrally nearby theωm/2π ≈ 5GHz
acoustic resonance frequency is determined by the magnitude of the transverse
coupling deformation potential, M . These TLS not only act as a bath to damp
the breathing mode, but their temporal fluctuations from ground to excited state
and back, lead to fluctuations in the acoustic environment of the breathing mode,
producing both a frequency jitter of the mechanical mode and an overall shift in
the resonance frequency that depends on the TLS temperature through its average
excited state population [69, 88]. The acoustic frequency shift due to non-resonant
TLS interacting through longitudinal σ̂z-coupling is negligible compared to the
resonant σ̂x-coupling term. As such, the magnitude of the transverse coupling
parameter is chosen in our model to be M = 0.07 eV, yielding an average transverse
vacuum coupling rate to the breathing mode for TLS in Vm of 〈ḡt,m/2π〉 ∼ 100 kHz.
The corresponding dispersive shift due to the nearest resonant TLS (on average) is
then approximately 〈δ fm,max〉 � n0,m(ḡt,m/2π)2 ∼ 1.5 kHz. This level of dispersive
shift is in line with both the measured frequency jitter (∆1/2 ≈ 3.5 kHz) and the
frequency shift around T ≈ ~ωm/kB for device D.

The non-resonant relaxation interactions of TLS with the breathing mode is via
a longitudinal coupling deformation potential, D. With the transverse coupling
rate set nominally by the measured frequency jitter and temperature-dependent
frequency shift of the breathing mode, the longitudinal deformation potential is
adjusted to approximatelymatch themeasured acoustic damping rate of the breathing
mode at the lowest fridge measurement temperatures (Tf ≈ 7 mK). A value of
D = 5.6 eV (angle-averaged D̄ = 3.23 eV) gives a reasonable fit to the measured
data. Typical values in the literature for averaged D and M parameters are on the
order of 1 eV [69, 96], although these values are hard to distinguish separately from
the TLS density [97]. The large value of D and small value of M indicate a set
of TLS (or TS) states which have a large asymmetry energy and small tunneling
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energy. Other parameters and their assumed values in our model are listed, along
with references and comments, in Table 5.2.

The calculated zero-temperature energy decay rate of an ensemble of 3920 TLS,
randomly chosen from 101 fixed positions within the breathing mode cavity mode
volume, with randomly oriented acoustic dipoles, and with randomly chosen fre-
quency below 100 GHz is displayed in Fig. 5.5(d). This calculation, following
Eq. (5.54), uses the simulated acoustic strain and radiative decay rate of the local-
ized quasi-mode phonons of the suspended and peripherally-clampedOMCstructure
whose properties are also displayed in Fig. 5.5. Several points are worth noting here.
The first is that the small number of TLS in the small acoustic mode volume Vm and
the small number of localized quasi-normal phonon modes at low frequency means
a significant spectral fluctuation in the decay rate of TLS with transition frequency
below ∼ 1 GHz. Within the phononic bandgap of the OMC cavity (3.5 − 6.5 GHz),
there is a dramatic reduction in the decay rate of TLS, down to levels on the order
of 1 Hz. Above the phononic bandgap, the TLS zero-temperature decay rate rises
rapidly, roughly as the cube of the TLS transition frequency, consistent with the
approximate 2D phonon quasi-mode density to which the TLS are coupled (c.f.,
Fig. 5.5(c).

Figure 5.7 displays the resulting damping (c.f., Eqs.(5.63,5.72)) and frequency shift
(c.f., Eqs.(5.62,5.71)) of the high-Q breathing mode versus temperature due to
coupling with the TLS bath in the acoustic mode volume Vm. In these simulations
we performed 500 trial runs of random TLS ensembles. Both the average and
standard deviation of the damping and frequency shift are shown. Also shown are
the effects of both ‘resonant’ σ̂x-interactions and ‘relaxation’ σ̂z-interactions with
the TLS. As can be clearly seen, the resonant TLS damping of the breathing mode
at the lowest temperatures Tf . 100 mK is predicted to be roughly an order of
magnitude smaller than the relaxation damping. In addition, as the temperature is
increased above that of ~ωm/kB ≈ 200 mK, the resonant damping term begins to
saturate due to the thermal excitation of TLS. The overall suppression of the resonant
TLS damping is due to the presence of the acoustic bandgap, which dramatically
reduces the decay rate of TLS nearly-resonant with the breathing mode due to a lack
of localized quasi-normal phonon modes in the gap. Instead, the typically weaker
relaxation damping from non-resonant TLS outside the acoustic bandgap dominates
the simulated breathing mode damping.

The correspondence of the simulated TLS relaxation damping of the breathing
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〈ḡ
l,m
/
2π
〉

av
er
ag
e
lo
ng

itu
di
na
lv

ac
uu

m
co
up

lin
g
ra
te
to

m
od

e
m
fo
rT

LS
in

V m
∼

8.
6
M
H
z

ca
lc
ul
at
ed

〈δ
f m
,m

ax
〉

av
er
ag
e
di
sp
er
si
ve

sh
ift

of
m
od

e
m
fo
rn

ea
re
st
re
so
na
nt

TL
S

∼
1.

5
kH

z
ca
lc
ul
at
ed

(�
n 0
,m
(ḡ
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Figure 5.7: Modeled breathing mode interactions with a TLS bath. Modeling
was performed using the acoustic mode and TLS properties found in Tab. 5.2. Sim-
ulations were performed using 100 ensemble instances of NTLS,m = 3920 randomly
positioned (sampled from a set of 101 fixed positions) and oriented TLS within the
breathing mode acoustic volume, Vm. The transition energy of each TLS are also
sampled from a random distribution. a, Relaxation (red curves) and resonant (blue
curves) damping of the acoustic breathing mode versus TLS bath temperature. Solid
(dashed) curves represent the average (1-σ standard deviation in log-space) of the
500 simulation trials run. Measured damping of device D is shown as filled green
circles. b, Breathing mode frequency shift versus temperature due to relaxation and
c resonant TLS interactions. The solid cyan curve is a curve resulting from single
TLS ensemble trial. Measured frequency shift of mode of device D is shown as
filled blue squares. d, Full-width half-maximum of the time-averaged frequency
jitter of the breathing acoustic mode resulting from resonant interactions with all
of the TLS for each of the 500 trial ensembles. Here we assume a ΛTLS = 2 Hz
excitation rate of each TLS due to weak optical absorption.
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Figure 5.8: Fluctuation from trial-to-trial in the simulated low temperature
damping at 7mK. a, Simulated TLS-resonant-interaction damping at temperature
T = 7 mK of breathing mode as a function of different TLS ensemble trials. b,
Simulated TLS-relaxation damping at temperature T = 7 mK of breathing mode as
a function of different TLS ensemble trials.

mode with the measured breathing mode damping is striking not only in the overall
magnitude of the predicted damping but also in its temperature dependence. At
temperatures below Tf ≈ 100 mK, where the thermally excited TLS that contribute
to relaxation damping have transition frequencies below the acoustic bandgap and
interact with a quasi-1D phonon bath, the damping is seen to have a reduced,
linear to sub-linear dependence with temperature. Above Tf ≈ 100 mK, thermal
excitation of TLS with transition frequencies above that of the acoustic bandgap
begin to contribute to the damping. In this spectral range the phonon density of
states in the OMC cavity structure is approximately linear with frequency, resulting
in TLS decay times which scale quadratically with transition frequency. This sets
the temperature scaling of the breathing mode relaxation damping, which is also
seen to scale approximately quadratically with temperature above Tf ≈ 100 mK.

Another feature of the simulated TLS damping of the breathing mode is the large
fluctuation from trial-to-trial in the low temperature (Tf . 100 mK) portion of the
damping versus temperature curve. This shows up as a large variance in magnitude
and temperature trend of the relaxation damping at these low temperatures in sim-
ulation. The dashed curves in Fig.5.7(a) represent the range of temperature curves
within one standard deviation of the mean curve on a log scale. In order to better
appreciate what the level of fluctuations in the predicted low temperature damping
are for both resonant and relaxation TLS damping of the breathing mode, we plot in
Fig. 5.8 the trial-to-trial variations of the simulated damping factors at Tf = 7 mK.
The variations are substantial, with a standard deviation in log-space of a little over
an order of magnitude. This is consistent with our measured observations, as can
be gleaned from the plot of measured breathing mode energy damping rates versus
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phononic bandgap shield number. For acoustic shield periods greater than about 6,
where radiation damping is estimated to be minimal, the measured damping rates
also range over a little over an order of magnitude. This variance is explained in the
TLS model by the very small number (handful) of TLS with transition frequency
below 100 MHz within the breathing mode volume, which owing to their random
positioning and orientation, results in a large variation in breathing mode damping.

The simulated frequency shift versus temperature, for both resonant and relaxation
interactions with the TLS ensemble, is shown in Fig. 5.7(b) and (c). In these plots
we have referenced the frequency shift to that at the lowest measured temperature
(Tf ≈ 7 mK). The relaxation component of the frequency shift is estimated to
be in the milli-Hz range, far below the kHz-scale frequency shift due to resonant
interactions with the TLS. The resonant TLS frequency shift of the breathing mode
versus temperature has a simulated mean curve averaged over the 500 ensemble
trials that roughly follows the digamma function response of Eq. (5.62), with the
breathing mode frequency initially shifting lower and then beginning to increase
around ~ωm/kB ≈ 200 mK, followed by a monotonic (logarithmic) increase in
frequency for higher temperatures. The simulated frequency shift versus temperature
curve has a large variance however (range of curves within standard deviation of
mean curve are bounded by dashed curves), depending sensitively on the magnitude
and sign of the detuning of the TLS closest to resonance with the breathing mode.
The measured frequency shift with temperature of device D is plotted alongside the
simulated resonant component of the TLS-induced frequency shift in Fig. 5.7(b),
showing good correspondence with the mean curve.

The measured frequency jitter when averaged over minutes has a spectral full-
width at half-maximum (FWHM) of ∆1/2 ≈ 3.5 kHz, approximately independent of
temperature (Tf = 7 − 850 mK) and optical probing power (nc = 0.3 − 0.02). Over
. 0.1 s timescales one can resolve this frequency jitter in the time domain. In order to
estimate the amount of frequency jitter that the acoustic breathing mode might incur
due to interactions with TLS we have assumed in our simulations that all TLS are
being excited at a rate faster than the measurement averaging time of a few minutes.
Assuming all TLS are fluctuating independently, we can then write using Eq. (5.62)
without the temperature dependence and assuming that (∆σz)

2 ≡ 〈σ̂2
z 〉 − 〈σ̂z〉

2 = 1,
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∆1/2 = 2(2 log [2])

(∑
TLS

(
ḡ2
t,m[rTLS]

)2

×

{
ωTLS − ωm

(ωTLS − ωm)2 + ((δΓ1,TLS)ph/2 + Γφ,TLS)2
+

ωTLS + ωm

(ωTLS + ωm)2 + ((δΓ1,TLS)ph/2 + Γφ,TLS)2

}2
)1/2

,

(5.73)

where the prefactor 2(2 log [2]) accounts for the conversion between the standard
deviation and the FWHM of a normal distribution.

TLS excitation occurs naturally through thermal excitation, although the rate of
excitation in that case depends strongly on temperature, which we do not observe
in our measurements. However, we also know that the optical probing of the
mechanics can lead to optical-absorption-induced excitation of a hot bath that damps
the mechanics. It seems reasonable then to assume that the same optical absorption
would also excite a broad spectrum of TLS, thus leading to their contribution to the
breathing mode frequency jitter. In the model we have taken the optical-absorption-
induced pumping rate of the TLS to be ΛTLS = 2 Hz, which for context represents
0.2% of the hot bath heating rate γpnp of the breathing mode at nc = 0.1. So even
if the TLS are driven much more weakly than the breathing mode due to optical
absorption effects, one would need to probe at lower optical probe powers than
currently accessible in our experiments (nc = 0.02) to see a reduction in the time-
averaged frequency jitter of the mechanics, where time averaging is performed over
a second or longer. Note that pumping-induced saturation effects of the TLS have
also been included in the simulation although their effects on both the damping and
the overall frequency shift is minor.

The resulting simulated frequency jitter FWHM of the breathing mode, ∆1/2, is
plotted in Fig. 5.7(d) for each of the 500 trial TLS ensembles. The variation from
trial-to-trial of the frequency jitter is substantial, with the jitter ranging from kHz
to (in rare cases) MHz. Although the measured frequency jitter of device D lies on
the low end of this spectrum at ∆1/2 ≈ 3.5 kHz, this device is also on the low end
of the range of measured values in our experience. As an example, the measured
linewidth of another high-Q device (device E) is shown in Fig. 5.9. In this case, the
linewidth at low optical probe power is found to saturate to a FWHM of ∼ 40 kHz,
closer to the mean simulated value. The large fluctuation in the measured frequency
jitter from device-to-device, consistent with the model, is again an indication of the
sensitivity of the breathing mode to a select few TLS in the near-resonant regime.
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Figure 5.9: EIT linewidth measurements of Device E at Tf = 10 mK. a, Normal-
ized reflection amplitude for probe photons as a function of pump photon number.
The reflection peak represents an EIT-like transparency window approximately cen-
tered within the bare optical cavity line (∼ 1 GHz wide). Asymmetry in the trace at
nc = 129 can be attributed to an effective detuning shift, likely caused by thermal
shifting of the cavity at high input power. These EIT measurements were performed
on a device E having seven acoustic shield periods and mechanical Q = 1.5 × 1010

measured via ringdown. b, Plot of the fit mechanical linewidth versus pump photon
number from the EIT curves of (a). At nc . 10, the time-averaged mechanical
linewidth saturates to 40 kHz due to mechanical frequency jitter. At higher nc, the
mechanical mode is broadened by optomechanical back-action, the slope of which
yields g0/2π = 833 kHz.
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Chapter 6

OPTICAL ABSORPTION INDUCED PHONON BATH AND
QUANTUM COOPERATIVITY

Recent advances in optomechanical systems, in which mechanical resonators are
coupled to electromagnetic waveguides and cavities [7, 99], have led to a series
of scientific and technical advances in precision sensing [100, 101], nonlinear op-
tics [102, 103], nonreciprocal devices [16, 104], and topological phenomena [105,
106]. In addition, such systems have demonstrated macroscopic quantum phenom-
ena, including laser cooling of mechanical resonators into their quantum ground
state [20, 21, 22], probabilistic preparation of quantum states [10, 11, 12, 13],
squeezed light [103, 107], and coherent transduction between photons with differ-
ent energies [108, 109, 110, 111, 112].

Optomechanical crystals (OMCs), where electromagnetic [23, 24] and elastic [113,
114] modes overlap within a lattice, can be fabricated in thin-film dielectrics and en-
gineered to yield strong coupling between cavity photons and phonons [7]. Previous
work has realized one-dimensional silicon OMC cavities with a vacuum optome-
chanical coupling rate greater than 1 MHz [27, 115]. There are advantages in using
phonons within a quantum information network. For example, within the solid state,
all optical and electronic phenomena strongly depend on the crystal lattice—local
distortions of the lattice, i.e. mechanical phonons, could connect dissimilar degrees
of freedom such as superconducting qubits operating at gigahertz frequencies [116,
117] with atomic/optical states. Also, unlike photons, phonons do not radiate into
free space; therefore, due to their reduced crosstalk, long lifetimes [56] and small
device footprint, it is natural to envision mechanical modes carrying and storing
quantum information [118, 119].

A significant roadblock to further application of one-dimensional (1D) OMC cavi-
ties for quantum applications is the very weak, yet non-negligible parasitic optical
absorption in current devices [9, 10, 11, 12, 13]. Optical absorption, thought to
occur due to surface defect states [30, 31], together with inefficient thermalization
(due to the 1D nature of silicon OMC crystals currently in use) can yield significant
heating of the hypersonic (> GHz) mechanical mode of the device. At ultralow tem-
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peratures (. 0.1 K), where microwave systems can be reliably operated as quantum
devices, this absorption leads to significant heating of the local phonon bath within
a microsecond upon applying an optical pulse with a power large enough to detect
single phonons at appreciable rates [9]. Moreover, this hot bath can persist even after
the removal of the light field for timescales on order of the achievable decoherence
times for superconducting microwave qubits, significantly compromising the utility
of OMCs as transducers between superconducting qubits and optical photons.

Themost relevant figure-of-merit for quantum optomechanical applications is the ef-
fective quantum cooperativity (Ceff ≡ C/nb), corresponding to the standard photon-
phonon cooperativity (C) divided by the Bose factor of the effective thermal bath
(nb) coupled to the acoustic mode of the cavity [9, 102, 110]. In previous ex-
periments with nanobeam OMC cavities at millikelvin temperatures, the quantum
cooperativity was substantially degraded due to the heating and damping caused by
the optical-absorption-induced hot bath. The heating of the acoustic cavity mode by
the optically-generated hot bath can be mitigated through several different methods.
The simplest approach in a low temperature environment is to couple the cavitymore
strongly to the surrounding cold bath of the chip, or through addition of another
cold bath as in experiments in a 3He buffer gas environment [18, 120]. This method
can be quite effective in decreasing the acoustic mode thermal occupancy in the
presence of optical absorption; however, the effectiveness of the method relies on
increasing the coupling to baths other than the optical channel, which necessarily
decreases the overall photon-phonon quantum cooperativity.

Here we employ a strategy that makes use of the frequency-dependent density of
phonon states within a phononic bandgap structure to overcome this limitation.
Using a two-dimensional (2D) OMC cavity [32, 33, 121] the thermal conductance
between the hot bath and the cold environment is greatly increased due to the larger
contact area of the 2D structure with the bath, while the acoustic mode of interest is
kept isolated from the environment through the phononic bandgap of the structure.
By keeping the intrinsic damping of acoustic mode low, this method is a promising
route to realizing Ceff > 1. Initial work in this direction, performed at room
temperature, utilized snowflake-shaped holes in a Si membrane to create a quasi-2D
OMC with substantially higher optical power handling capability, although with a
relatively low optomechanical coupling of g0/2π = 220 kHz [33].

In this Chapter, amicroscopicmodel and corresponding theory of this optical heating
bath is firstly introduced. Several measurement techniques of relative heating bath
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parameters, together with measurment data for 1D nanobeam and quasi-2D OMCs
are also discussed. This chapter demonstrates that the improved quasi-2D OMC
device has an over 50-fold improvement in back-action per photon over previous
reports [32, 33], and a much higher thermal conductance (×42) compared to 1D
structures at millikelvin temperatures. Most importantly, we demonstrate a Q-factor
of 1.2 × 109 for the 10 GHz optomechanically-coupled acoustic mode of the cavity
and a Ceff greater than unity under continuous-wave optical pumping. Ceff > 1
is a crucial threshold for realizing a variety of optomechanical applications in
silicon optomechanical crystals. For example, to efficiently gather statistics in order
to calculate quantum correlations, a continuous scheme with a large intra-cavity
photon number is critical [14, 15, 16, 17, 18, 19]. Also, it is suitable for realizing
applications such as signal transduction of itinerant quantum signals [109, 110, 111,
112].

6.1 Microscopic Model of Optical Absorption Induced Bath

<n>

γp(nc,nwg) nf(Tf)

γOM

nc

np,γp(nc,nwg)

γ0

Acoustic
shielding

10 mK

‘Hot’ bath

Optical cavityLensed fiber

Coupling waveguide

nwg

DF bath

Figure 6.1: Optical absorption heating bath. Diagram illustrating the proposed
model of heating of the mechanics due to optical absorption and the various baths
coupled to the localized mechanical mode (see text for details).

To understand the heating properties of OMC devices due to optical absorption, a
proposed microscopic model for this heating and damping [29] is illustrated in Fig
6.1. This model represents both 1D nanobeam and quasi-2D OMCs. The source of
optical absorption in our silicon OMC device is most likely due to electronic defect
states at the surface of material [30, 31]. The mechanical mode of interest is weakly
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coupled through the acoustic shielding to the surrounding DR environment with a
rate γ0, and is coupled via phonon-phonon scattering to the optically-generated high
frequency phonons (temperature Tp, occupancy np at ωm) near the OMC cavity with
a rate γp.

6.2 Theoretical Model of Optical Absorption Induced Bath

Optical absorption is found to induce additional parasitic heating and damping of the
high-Q acoustic breathing mode of the Si OMC devices at millikelvin temperatures.
This absorption heating is thought to proceed through excitation of sub-bandgap
electronic defect states at the Si surfaces which undergo phonon-assisted decay, gen-
erating a local bath of thermal phonons coupled to the high-Q breathing mode [29].
Wemay gain some understanding of the optically-induced bath by considering a sim-
ple model of phonon-phonon interactions which can couple the optically-induced
hot phonon bath to the breathing mode. As we are concerned in this work with
the phonon dynamics at low bath temperature (Tb . 10 K), and the acoustic mode
of interest is at microwave frequencies, the phonon-phonon interactions leading to
heating and damping of the breathing mode can be understood in terms of a Landau-
Rumer scattering process [68, 122]. In this context, wemay consider a simple model
in which our mode of interest at frequency ωm is coupled to higher-frequency bath
phonon modes at frequencies ω1 and ω2, with ω2 − ω1 = ωm. Then we may write
the scattering rates into and out of the mode of interest to first order in perturbation
theory [29, 68] as Γ+ = A(nm + 1)(n2 + 1)n1 and Γ− = Anmn2(n1 + 1), respectively,
where n1, n2, and nm are the number of phonons in each mode involved in the scat-
tering and A is a constant describing the Si lattice anharmonicity. Then the overall
rate of change in the occupancy of the mode of interest is

Ûnm = Γ+ − Γ− = −A(n1 − n2)nm + An2(n1 + 1). (6.1)

This expression has exactly the form of a harmonic oscillator coupled to a thermal
bath with rate γp = A(n1 − n2) and effective occupancy np = An2(n1 + 1)/γp.
Assuming thermal occupancies for each of the higher frequency phonon modes of
the hot bath, n1,2 = nB[~ω1,2/kBTp] ≡ 1/(exp

{
[~ω1,2/kBT]

}
− 1), and using the

identity nB[x + x′](nB[x] + 1) = (nB[x] − nB[x + x′])nB[x′] [68], one finds that
the mode m thermalizes with the hot bath via 3-phonon scattering to an effective
occupancy which is np = nB[~ωm/kBTp]. This result holds when the hot bath
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thermalizes to some temperature independent of the interactions with mode m.

In the real material system of the nanobeam, the local hot phonon bath at elevated
temperatureTb is expected to be generated as electronic states at∼ eV energy undergo
phonon-assisted relaxation processes, emitting a shower of high-frequency phonons
which subsequently decay by a cascade of nonlinear multi-phonon interactions into
a bath of GHz phonons. Due to the geometric aspect ratio of the thin-film nanobeam,
the local density of phonon states becomes restricted at lower frequency, decreasing
the rates of phonon-phonon scattering at low frequency relative to those of a bulk
crystal with a 3D Debye density of states. The beam thickness (t = 220 nm,
width w ≈ 560 nm, length l ≈ 15 µm) corresponds to a relatively high cutoff
frequency in the vicinity of ωco/2π ≈ vl/(2t) ≈ 20 GHz, where vl = 8.433 km/s is
the longitudinal-phonon velocity in Si. This cutoff frequency imposes an effective
phonon bottleneck preventing further rapid thermalization to lower-lying modes and
a resulting buildup in the bath phonon population above the bottleneck. For phonon
frequencies below the cutoff, where the wavelength is large enough to approach
the lattice constant of the acoustic bandgap clamping region, the reflectivity of the
clamping region increases as ballistic radiation out of the nanobeam is suppressed.
The result is a reduced density of phonon states near and below the cutoff, where
the nanobeam supports quasi-discrete (and long-lived, especially in the vicinity of
the mirror bandgap and acoustic shield bandgap) phonon modes at lower frequency
as outlined in Fig. 6.2. The phenomenological coupling rate γp describes the rate
at which the lower-lying modes—in particular the breathing mode at 5 GHz—are
coupled to the elevated-temperature bath of higher-frequency phonons above the
bottleneck.

In the context of this proposed phonon-bottleneckmodel, we now consider instead of
a discrete pair of modes n1 and n2 a quasi-continuum of high-frequency bath modes
coupled to the mode of interest via some anharmonicity matrix element A(ω;ωm).
We will assume that the thermal phonons populating the bath have sufficient time to
thermalize amongst each other before decaying, or in other words, that they couple
to each other at a mixing rate γmix much greater than their coupling rates to the
external environment or to the lower-lying phonon modes. Under this assumption,
we may define an effective local temperature Tp such that the occupancy of a bath
phonon at frequency ω is given by the Bose-Einstein occupation factor

nbath[ω; Tp] ≡ nB[~(ω − ωco)/kBTp] =
1

e~(ω−ωco)/kBTp − 1
, (6.2)
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Figure 6.2: Impact of the phonon-bottleneck on the optical-absorption bath.
a, Cross-sectional dimensions of the thin-film nanobeam. b, Absorption of sub-
Si-bandgap photons gives rise to phonon-assisted decay of THz phonons into a
local bath of GHz phonons in the nanobeam. This bath is expected to experience a
bottleneck at a cutoff frequency corresponding to the cross-sectional dimensions of
the nanobeam, such that a high-frequency phonon bath accumulates and thermalizes
among itself to a local temperature Tb at rate γmix. In the vicinity of the bottleneck
frequency the relevant normal modes of the beam are those shown in the inset (black
lines are schematics of the local strain in the beam). The lowest-lying discrete mode
(w0, t0) is a fundamental bowstring mode of the nanobeam at ∼ 20 MHz.

where ωco represents the new effective ground-state frequency due to the phonon
bottleneck effect, and nB[x] = 1/(exp[x] − 1) is the Bose distribution.

The temperature of the optically-induced hot phonon bath, Tp, can then be related
to the absorbed optical power Pabs using a model of the lattice thermal conductivity
in the low temperature limit. Assuming the optical absorption process is linear, we
can write the absorbed optical power as a fraction η of the optical pump power:
Pabs = ηPin = η′nc. In steady state, the power output into the phonon bath is
equal to its input, Pout = Pabs ∼ nc. The lattice thermal conductivity at low
temperatures, where phonon transport is ballistic, scales as a power law of the
phonon bath temperature [123, 124], Gth ∼ (Tp)α. The power law exponent α is
equal to the effective number of spatial dimensions d of the material/structure under
consideration. Effectively, the hot phonon bath radiates energy as a black body, with
radiated power scaling as (Tp)α+1 via Planck’s law. In the case of a structure with
2D phonon density of states, such as the OMC cavity in the frequency range from
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10-100 GHz (c.f., Fig. 5.5), α = d = 2 and the hot phonon bath temperature scales
as Tp ∼ P1/3

out ∼ n1/3
c . This approximate scaling is expected to be valid so long as

phonons in the hot phonon bath approximately thermalize each other upon creation
from optical absorption events, and then radiate freely (balistically) into the effective
zero temperature substrate. The picture one has then is that the hot bath phonons
make multiple passes within the OMC cavity region, scattering with other phonons
leading to thermalization, and then eventually radiating into the substrate, i.e., the
OMC cavity is still a good cavity for many phonons in the acoustic frequency region
above the phononic bandgap.

In analogy with Equation 6.1, for a phonon bath density of states ρ(ω) we can
calculate the effective coupling rate γp between the hot phonon bath and the mode
of interest due to 3-phonon scattering:

γp =

∫ ∞

ωco

dω A[ω;ωm]ρ[ω]ρ[ω + ωm] (nbath[ω] − nbath[ω + ωm]) . (6.3)

In a simple continuum elastic model [29, 68], the product of the anharmonicity
matrix element A[ω;ωm] and the density of states is taken to obey a polynomial
scaling A[ω;ωm]ρ[ω]ρ[ω+ωm] = A′(ω−ωco)

a for some constants A′ and a, where
we have introduced the cut-off frequency below which we assume the density of
states is zero. With this assumption,

γp � A′
∫ ∞

ωco

dω (ω − ωco)
a (nbath[ω] − nbath[ω + ωm]) (6.4)

= A′
∫ ∞

ωco

dω (ω − ωco)
a
(
nbath[ω + ωm](nbath[ω] + 1)

nB[~ωm/kBTp]

)
(6.5)

=
A′

nB[~ωm/kBTp] + 1

∫ ∞

ωco

dω (ω − ωco)
a (nbath[ω](nbath[ω + ωm] + 1)) , (6.6)

where in the last line we used the identity nB[x + x′](nB[x] + 1)/nB[x′] = (nB[x +
x′] + 1)nB[x]/(nB[x′] + 1). Making a change of variables to x ≡ ~(ω − ωco)/kBTp
in the integral in Eq. (6.6), we have

γp �

(
A′

nB[xm] + 1

) (
kBTp
~

)a+1 ∫ ∞

0
dx xa (nB[x](nB[x + xm] + 1)) (6.7)

where xm = ~ωm/kBTp. The integral in Equation 6.7 depends on temperature only
through xm, and in the small and large xm limit (corresponding to low and high
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temperature), is relatively independent of xm. If we assume that the anharmonicity
element A[ω;ωm] is approximately frequency independent, and the only frequency
dependence in A′(ω − ωco)

a comes from the phonon density of states, then a ≈

2(d − 1) for a phonon bath of dimension d. We can thus make a general observation
about the scaling of the bath-induced damping rate γp in the low (xm � 1) and high
(xm � 1) temperature regimes:

γp ∝


( kBTp
~

)a
∼ n2(d−1)/(d+1)

c for Tp �
~ωm

kB
,( kBTp

~

)a+1
∼ n(2d−1)/(d+1)

c for Tp �
~ωm
kB
,

(6.8)

for a generic hot phonon bath of dimension d. In a structure such as the OMC
nanobeam cavity we expect the dimensionality of the effective bath density of states
to be reduced relative to the Debye 3D density of states for a bulk crystal. Here we
will assume - consistent with numerical simulations of the OMC structure - that the
phonon bath has a two-dimensional density of states corresponding to a = 2. In this
case, we have the following scaling of the damping factor with intra-cavity photon
number,

γp ∝


( kBTp
~

)2
∼ n2/3

c for Tp �
~ωm
kB
,( kBTp

~

)3
∼ nc for Tp �

~ωm
kB
.

(6.9)

Upon thermalizing with the hot phonon bath, the effective thermal occupancy np of
the high-Q breathing mode of the acoustic cavity can be found from a similar rate
equation analysis as considered for the 3-mode scattering in Eq. (6.1). Integrating
over all the possible 3-phonon scattering events involving the mode of interest at
frequency ωm yields,

np =
1
γp

∫ ∞

ωco

dω A[ω;ωm]ρ[ω]ρ[ω + ωm]nbath[ω + ωm] (nbath[ω] + 1]) (6.10)

�
nb[ωco + ωm]A′

γp

∫ ∞

ωco

dω ωa (nbath[ω] − nbath[ω + ωm]) (6.11)

= nB[~ωm/kBTp]. (6.12)

We therefore have a characteristic scaling behavior for the effective phonon occu-
pancy np coupled to the cavity mode of interest that is,
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Figure 6.3: Measurement techniques for extracting the optical-bath-induced
damping rate γp. a, Ringdown measurement in the presence of a continuous-
wave pump laser with an average intracavity photon number of nc,CW = 10−2. The
total decay rate is γ = γp + γ0, and with γ0/2π = 0.21 Hz known from separate
measurements, γp/2π = 42.8 Hz is extracted directly from the fitted decay rate.
b, At larger nc, the bath-heating induced by the pump laser causes net heating in
the pulse-off state. Here, the heating is fitted to the phenomenological model of
Eq. (6.14) to extract γp due to the CW laser pump. Measurements were performed
on a six-acoustic-shield device (device B) with parameters (κ, κe, g0, ωm, γ0) =
2π(1.13 GHz, 605 MHz, 713 kHz, 5.013 GHz, 0.21 Hz) and with a readout photon
number nc,RO = 569.

np ∝

( kBTp
~ωm

)
∼ n1/(d+1)

c
d=2
= n1/3

c for Tp �
~ωm
kB
,

exp
{
[−~ωm/kBTp]

}
for Tp �

~ωm
kB
.

(6.13)

6.3 Measurement of Optical-Absorption-Induced Damping in 1D Nanobeam
OMC

In order to measure the additional bath-induced damping rate γp, we use a pump-
probe technique employing two laser sources. The pump laser is tuned to optical
resonance (∆ = 0) to eliminate dynamical back-action effects (γOM = 0), and
impinges on the cavity in continuous-wave (CW) operation. The pump laser gener-
ates a steady-state intracavity photon population nc,CW and an absorption-induced
bath at elevated temperature in the steady state. A second pulsed laser, the probe
laser, is tuned to the red motional sideband of the cavity (∆ = +ωm) and is used
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to periodically read out the phonon occupancy, where the scattering rate of the
probe laser at the beginning of the probe pulse provides an estimate of np due to
the CW laser alone. Application of the probe laser not only allows readout of
the breathing mode occupancy, but also produces an excess absorption-induced
bath above and beyond that of the background CW laser alone. When the read-
out probe pulse is turned off, the breathing mode initially heats due to the excess
hot bath created by the probe pulse (over several microseconds; see Fig. 6.4(c)),
and then after this excess hot bath evaporates away leaving a breathing mode oc-
cupancy of n′f, it relaxes back to its steady-state occupancy set by the CW laser,
〈n〉[nc,CW] = (γp[nc,CW]np[nc,CW] + γ0n0)/(γp[nc,CW] + γ0). The rate of relaxation
is set by the modified total damping rate of γ0 + γp[nc,CW]. By observing this
modified exponential decay rate we directly extract γp[nc,CW], with γ0 known from
independent ringdown measurements in the absence of the CW background laser.
For example, in Fig. 6.3(a) we show the measured ringdown of a high-Q six-shield
device (device B; γ0/2π = 0.21 Hz) for a CW pump laser photon number of
nc,CW = 10−2, from which we extract γp/2π = 42.8 Hz.

For large nc,CW (& 1) the steady-state occupancy of 〈n〉[nc,CW] becomes larger than
the occupancy ñfm at the end of the readout pulse. The readout pulse should cool the
breathing mode, after all, and it is only the absorption-induced heating caused by the
readout pulse itself that manifests as a ring down in absence of heating from the CW
laser. For large nc,CW then, γp is estimated by observing a ring-up in the pulse-off
state from the final pulse occupancy ñfm to the elevated 〈n〉[nc,CW]. Figure 6.3(b)
shows a representative data set for extracting γp at nc,CW > 1, where an initial fast
rise is observed in the mode occupancy in the pulse-off state from nfm to ñfm due to
the aforementioned excess bath created by the readout pulse, followed by a slower
second heating stage from ñfm to nc,CW. As discussed in more detail in Section 6.5,
we can fit the ring-up curve after the readout pulse is turned off by considering a
phenomenological model including decay of the readout-induced hot bath,

Û〈n〉 = −
{
γ0 + γp[nc,RO]e−ζγpτoff + γp[nc,CW]

}
〈n〉

+
{
γp[nc,RO]e−ζγpτoff + γp[nc,CW]

}
(np[nc,RO]e−ζnpτoff + np[nc,CW]). (6.14)

We first measure the transient readout-induced bath in the absence of the CW laser
(dark green curve in Fig. 6.3b), from which a fit to Eq. (6.14) yields np[nc,RO] = 40
phonons, γp[nc,RO]/2π = 9.55 kHz, ζγp/2π = 143 kHz, and ζnp/2π = 15.9 kHz.
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Figure 6.4: Measured steady-state properties of the optical-absorption-induced
bath. a, Plot of γp versus nc for six-shield (blue circles) and zero-shield (green
squares) devices. The solid line is a power-law fit to the six-shield device data:
γp/2π = (1.07 kHz) × n2/3

c . The zero-shield device (device A) has parameters (κ,
κe, g0, ωm, γ0) = 2π(1.507 GHz, 778 MHz, 713 kHz, 5.053 GHz, 14.1 kHz). The
six shield device (device B) has parameters (κ, κe, g0, ωm, γ0) = 2π(1.13 GHz,
605 MHz, 713 kHz, 5.013 GHz, 0.21 Hz). b, Plot of np versus nc for zero-shield
(purple symbols) and six-shield (orange circles) devices. Purple squares represent
the measured mode occupancy corrected for heating induced by the readout laser
tone. The right-hand axis gives the effective bath temperature Tp which corresponds
to the measured bath occupancy. Translucent squares show data taken in the regime
where the intrinsic decay rate γ0 is comparable to the bath-induced damping γp,
indicating that the raw measured occupancy begins to deviate substantially from the
inferred occupancy given in the plot. The solid line is a fit to the six-shield data
giving np = (7.94) × n1/3

c . c, Normalized phonon occupancy during and after the
optical pulse. Squares are data points and the solid line is a best fit to the dynamical
model. During the pulse, back-action cooling occurs at a timescale γ−1

OM ≈ 100 ns.
The optical-absorption-induced bath simultaneously heats the mode at a rate γpnp,
such that at long Tpulse a steady-state mode occupancy nf is reached. In the pulse-off
state (gray squares), the residual phonon bath heats the mode at a rate γp(t)np(t),
where the bath damping and effective occupancy are explicitly time-dependent. A
full dynamical model of the bath heating is used to generate the fit (dotted line). The
purple data point in the off-state plot (τoff = 200 µs) corresponds to off-state delay
for the measured intra-pulse data shown in the on-state plot.

With these readout-induced bath values known, Eq. (6.14) is numerically integrated
to fit the entire heating curve in the pulse-off state to extract the additional CW-
pump-induced damping γp[nc,CW].
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The results of the measured optical-absorption-induced damping γp versus nc are
summarized in Fig. 6.4(a) for measurements on both a six-shield (device B) and a
zero-shield (device A) nanobeam device. The observed power law scaling fits well
to γp/2π = (1.07 kHz) × n2/3

c , in agreement with the scaling predicted in Eq. (6.9)
for a 2D density of states for the bath phonon population. Note that the much lower
γ0 of the six-shield device allows a much wider range of γp (and thus nc) to be
explored.

6.4 Measurement ofOptical-Absorption-InducedBathOccupancy in 1DNanobeam
OMC

In order to measure the bath occupancy np, again two different methods are used to
probe the high- and low-photon-number dependencies of the bath. To measure the
bath occupancy at photon numbers nc & 1, a simple readout technique may be used
in which a single readout laser is sent to the cavity in continuous-wave operation.
The laser is tuned to cavity resonance (∆ = 0) and the resulting sideband scattered
photon count rate appearing at either the lower or upper frequency mechanical
sideband (∆ = ±ωm) will be

Γ = Γnoise +

(
κ

2ωm

)2
ΓSB,0〈n〉. (6.15)

With the sideband filters aligned to either of the mechanical sidebands of the cavity,
the observed count rate is used to extract an equivalent occupancy 〈n〉 = np at various
pump powers nc. The results are shown in Fig. 6.4b (orange circles) for a six-shield
device (device B), exhibiting a power-law scaling of np = (7.94)×n1/3

c in agreement
with the model in the limit of high bath temperature Tp � ~ωm/kB ≈ 200 mK. The
right-hand axis of Fig. 6.4 gives the effective bath temperature Tp corresponding to
the measured occupancy, indicating that the measurement regime is indeed well in
the high temperature limit.

At lower photon numbers nc . 1, and corresponding lower np ≈ 〈n〉, the SNR of the
counting of photons scattered from cavity resonance into either mechanical sideband
begins to drop below 1 due to the large sideband resolution factor (2ωm/κ)

2 of the
OMC cavity (c.f., Eq. (6.15)). In this regime, an alternative measurement method is
employed in which a CWpump laser generates a steady-state optical-absorption bath
while a second pulsed readout laser is used to probe the breathing mode occupancy
(see Fig. 6.5). The background pump laser is detuned to ∆/2π = 1 GHz from the
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Figure 6.5: Pulsed measurements of the bath occupancy in a low-Q nanobeam
cavity. A continuous-wave background laser (red arrows, detuning ∆/2π ≈ 1 GHz)
is used to generate a constant stead-state absorption bath, while a pulsed readout
laser (readout nc,RO = 50.6) is used to probe the resulting bath occupancy for various
background laser powers nc,CW. The initial measured occupancy during the pulse
is given by n0

m ≈ (npγp + n0γ0)/(γp + γ0) + ñ0, where ñ0 is residual occupancy due
to the finite heating occurring before the first readout time bin. Measurements were
performed on the zero-shield device (device A) with parameters (κ, κe, g0, ωm, γ0)
= 2π(1.507 GHz, 778 MHz, 713 kHz, 5.053 GHz, 14.1 kHz).

cavity resonance to minimize back-action as well as bleed-through counts through
the sideband filters aligned at ∆ = 0. The initial measured occupancy n0

m during
the pulse is a measure of the pump-induced bath occupancy; however, it includes
a small residual occupancy ñ0 ≈ 0.04 due to heating caused by the readout laser
prior to the first measurement time bin of the pulse-on state. We define a corrected
occupancy n∗m ≡ n0

m − ñ0 which denotes the measured mode occupancy which is
coupled to the fridge bath as well as the absorption-bath induced by the pump laser:

n∗m =
npγp + n0γ0
γp + γ0

. (6.16)

With n0, γ0, and the power-dependence of γp known from independent measure-
ments, we can estimate the equivalent bath occupancy
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np[nc] =
n∗mγp[nc] + (n

∗
m − n0)γ0

γp[nc]
. (6.17)

Using this second method, over a much larger span of nc, the behavior of the
effective bath occupancy np for a zero-shield device with intrinsic damping rate
γ0/2π = 14.1 kHz is shown in Fig. 6.4b as purple squares. Note that measurement
of the very high-Q six-shield device (device B) using the pulsed readout scheme is
not practical due to the extremely long relaxation times required between readout
pulses (we did, however, verify for a few values of nc that the two schemes give
consistent results). For nc & 1, again we find good agreement for the zero-shield
device with a power-law scaling np ∝ n1/3

c for Tb � ~ωm/kB. Not only is the
scaling of np versus nc the same for both zero-shield and six-shield devices, but so
is the absolute value of np. For nc . 1, γp(nc) ≈ γ0 for the zero-shield device and
the measured occupancy n∗m deviates substantially from np as the breathing mode
thermalizes more strongly with the external substrate temperature set by the fridge
(Tf ≈ 10 mK). In this range we have plotted n∗m in translucent purple squares to
distinguish it from the region of parameter space where n∗m is expected to faithfully
represent np.

6.5 Measurement ofOptical-Absorption-InducedBathDynamics in 1DNanobeam
OMC

The hot bath created by the application of laser light resonant with the optical mode
of the OMC cavity does not instantaneously appear when the laser light is turned
on, nor does it instantaneously vanish once the laser is turned off. Rather, there
is a somewhat complicated bath dynamics that can be inferred from careful study
of the temporal variation of the scattered photon signal from the readout pulse due
to excitation of the mechanical breathing mode by the hot phonon bath. Using the
measured breathing mode occupancy as a proxy one can infer many subtle features
of the bath dynamics.

Figure 6.6(a) shows the measured scattered photon signal due to a pulsed readout
tone applied on the lower motional sideband of the optical cavity (∆ = +ωm) of a
highmechanicalQ-factor six-shieldOMCdevice (device B). Here the readout pulses
are τpulse = 4 µs long and a variable delay τoff is applied between each successive
optical readout pulse. The scattered photons from the readout pulse are filtered by
the filter bank resonantly aligned with the optical cavity resonance (∆ = 0), thus
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yielding a photon count rate throughout the readout pulse which is proportional to
the average occupancy of the mechanical breathing mode 〈n〉. This is shown in
Fig. 6.6(a) for a time bin resolution of 10.24 ns, with the first measurement bin
occurring at t = 100 ns after the pulse-on signal is applied in order to ensure that
the optical pulse amplitude has settled and reached its maximum value. In the left
panel of Fig. 6.6(b) we plot time-varying normalized breathing mode occupancy,
corresponding to the ratio of the measured signal during the pulse to that at the
very end of the pulse. This curve is not a single-shot measurement, but rather
averaged over thousands of pulses, for which the normalized signal avoids small,
slow drifts in the efficiency of the measurement apparatus. In the right panel we plot
the normalized initial measurement bin occupancy (still taken to be at 100 ns after
the readout pulse is turned on) as a function of the off-state delay time τoff between
successive pulses.

Several things are quickly evident from these plots of the measured breathing mode
occupancy during and after the applied optical pulse. During the pulse we expect the
optomechanical back-action to induce damping and cooling of the breathing mode
at a rate γOM[nc]. Without any parasitic heating effects from the applied optical
pulse, the breathing mode should cool down to its equilibrium occupancy, ideally
very close to zero at the fridge temperature (Tf = 10 mK). This does not occur, but
rather the breathing mode occupancy is seen to initially cool to a few phonons over
∼ 300 ns, and then slowly heat to a steady-state phonon occupancy at the end of the
pulse of nfm = 4.2 phonons (c.f., Fig. 6.6(a)). Similarly, once the optical pulse is
turned off and light has left the optical cavity, the breathing mode occupancy starts
to heat again, levelling off after a few microseconds following a slight overshoot
to a modified post-pulse value of 〈n〉[0] = 27 phonons (→ nim = 13.6 phonons
in the first masurement bin; c.f., Fig. 6.4(b)). This strange dynamics is a result
of the coupling of the breathing mode to the optical-absorption-induced hot bath.
The slight undershoot of the cooling and slow heating in the pulse-on state is a
result of a slow turn on of the hot bath. Similarly, the transient post-optical-pulse
heating results from the slow decay of the hot bath, now without the cooling from
optomechanical back-action.

Noticeably, the timescales for the turn on (∼ 400 ns) of the bath and the turn off
(∼ 3 µs) of the bath are different. Less evident from these plots, but nonetheless
very clear when attempting to model the hot bath dynamics, is that there seems
to be two components to the bath, one whose turn on and turn off transients are
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Figure 6.6: Measured pulse dynamics of the breathing mode occupancy and
the optical-absorption-induced bath. a, Phonon occupancy of the breathing mode
as a function of time t during the red-detuned (∆ = +ωm) optical excitation pulse.
Here, the time delay between successive pulses is τoff = 654µs. Squares are data
points and the solid line is a best fit to the dynamical model. The nanobeam device
is device B with six periods of acoustic shielding, and device parameters (κ, κe,
g0, ωm, γ0) = 2π (1.13 GHz, 605 MHz, 713 kHz, 5.013 GHz, 0.21 Hz). During
the pulse, back-action cooling occurs at a timescale γ−1

OM ≈ 100 ns. Note that the
initial mode occupancy 〈n〉[0] = 27 phonons is determined by extrapolating the
model fit back to t = 0, while the earliest measurement bin has an occupancy of
nim = 13.6 phonons. The optical-absorption-induced bath heats the mode at a rate
γp(t)np(t), such that for long enough τpulse a steady-state mode occupancy nfm is
reached. Here nfm = 4.2 phonons. The measurement time resolution bin size is
10.24 ns. b, Normalized breathing mode phonon occupancy during (left) and after
(right) the optical pulse. In the pulse-off state (gray squares), the residual phonon
bath heats the mode at a rate γp(τoff)np(τoff), where the bath damping and effective
occupancy are explicitly time-dependent. The purple data point in the off-state plot
at τoff = 200 µs indicates the pulse shown in the on-state plot. For all panels,
the measurements were performed using an on-state readout intra-cavity photon
number of nc = 569, and the solid curves correspond to the phenomenological
model including the dynamics of the optical-absorption-induced bath, fit to the data
using the parameters shown in Table 6.1.
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very rapid (effectively instantaneous with the optical field), and one with much
slower relaxation times. Even more subtle is that to get very good agreement with
the measured initial transient in the breathing mode occupancy in the immediate
aftermath of turning off the optical pulse, it seems that the hot-bath damping factor,
γp, should be modeled with a more rapid relaxation rate than that of the hot bath
occupancy, np. It may be that this is also the case in the transient dynamics during
the pulse-on state, however, in the pulse-off state the relaxation rate of the measured
breathing mode occupancy is far more sensitive to the value of γp as it dominates
the total relaxation rate of the breathing mode in the absence of appreciable γOM.

The model used to fit the data in Fig. 6.6 consists of a set of coupled differential
equations involving the breathing mode occupancy, the hot bath damping factor,
and the effective hot bath occupancy. The rate equation for the breathing mode
occupancy is given by,

Ûnm = −(γp + γOM + γ0)〈n〉 + γpnp + γ0n0 (6.18)

where in the pulse-on state γOM = γOM[nc] will take on a large value on the order of
1 MHz for a readout pulse amplitude of a few hundred intra-cavity photons, and in
the pulse-off state γOM ≈ 0 due to the large extinction (& 80 dB) and rapid timescale
of the turn-off the optical pulse ( 20 ns). During the pulse-on state the rate equations
for the fast (F) and slow (S) components of the hot bath damping factor and effective
occupancy are,

Û(γp)F(S)(t) = −(θγp)F(S)
{
(γp)F(S)(t) − (δb)F(S)γp[nc,RO]

}
, (6.19)

and

Û(np)F(S)(t) = −(θnp)F(S)
{
(np)F(S)(t) − (δb)F(S)np[nc,RO]

}
, (6.20)

where t = {0, τpulse} is the time from the start of the pulse to the end of the pulse,
(θγp)F(S) and (θγp)F(S) are the pulse-on relaxation rate constants for the damping factor
and occupancy of the two different bath components, respectively, and (δb)F(S) is the
F(S) fraction of the hot bath. γp[nc,RO] and np[nc,RO] are the steady-state bath values
reached at the end of the optical readout pulse. The corresponding rate equations
for the hot bath in the pulse-off state are,
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Û(γp)F(S)(τoff) = −(ζγp)F(S)
{
(γp)F(S)(τoff) − (δb)F(S)γp[nc,RO]

}
, (6.21)

and

Û(np)F(S)(τoff) = −(ζnp)F(S)
{
(np)F(S)(τoff) − (δb)F(S)np[nc,RO]

}
. (6.22)

where τoff is the time from the end of the optical pulse, and (ζγp)F(S) and (ζγp)F(S) are
the pulse-off relaxation rate constants for the damping factor and occupancy of the
two different bath components, respectively.

The model parameters used to fit the specific measured data for the six-shield device
(device B) presented in Fig. 6.6 are listed in Table 6.1. Similar bath dynamical
parameters are found for all of the measured devices we have studied. Independent
of the optical readout pulse power, the fraction of the bath which reacts quickly
seems to be consistently close to a value of (δb)F = 0.65. The fast component of the
bath turns on faster than we can resolve (& 50 MHz), while the slow component of
the bath turns on with a rate constant of approximately θS/2π = 600 kHz (for both
damping factor and occupancy). The fast component of the bath turns off with an
exponential rate constant of (ζγp)F/2π = 150 kHz for γp and (ζnp)F/2π = 70 kHz for
np. Even more slowly, the slow component of the bath turns off with a rate constant
of (ζγp)S/2π = 90 kHz and (ζnp)S/2π = 24 kHz for the two different bath factors.

Our ability to measure the bare damping rate of the acoustic breathing mode relies
on the fact that the hot bath evaporates prior to the actual measurement of the free
decay of the breathing mode. This means that the first ∼ 10 µs of the pulse-off
state is dead time in which the dynamics of the breathing mode occupancy is still
coupled to that of the hot bath. Crucial to the measurement of a ringdown curve
using the red-detuned optical pulse as both a readout signal and an excitation source,
is that after this dead time there remain a residual, elevated phonon occupancy of
the breathing mode from which the mode can decay. This is clearly the case for the
data measured in Fig. 6.6, and is a result of the fact that at this readout power the
peak magnitude of γp (2π(85 kHz)) is still smaller than the fastest decay of the hot
bath ((ζγp)F/2π = 150 kHz), so that the breathing mode occupancy cannot follow
that of the fast dynamics of the hot bath. This non-adiabatic quenching leaves the
breathing mode with an elevated occupancy after the dead time. At readout powers
beyond nc = 1000 this stops being the case, hence our choice of readout pulse
powers nc . 600 in the ringdown measurements.
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A few observational comments are warranted. The fact that the hot bath should
have faster pulse-on rate constants than pulse-off rate constants might be explained
by the fact that there are likely a wide spectrum of phonons which are created by
absorption of the optical pulse. This may lead to a hierarchy of phonon baths.
Consider for instance a two bath scenario, consisting of a high and a low frequency
phonon bath. The high frequency bath is assumed to be directly populated from
optical absorption events, while the low frequency bath is predominantly responsible
for coupling to the breathing mode of interest. In the high frequency phonon bath,
phonons rapidly mix with each other due to the large density of states and mode
occupancy. The high frequency phonon bath is also well thermalized to the external
substrate through acoustic radiation. Phonons in the low frequency bath are fed from
the phonon-phonon scattering processes in the high frequency phonon bath, and are
less connected via radiation to the substrate. When the optical pulse is on, the high
frequency bath is rapidly populated. The high frequency bath not only acts as a
source of phonons for the low frequency bath, but through nonlinear phonon mixing
also helps bring it into some quasi-equilibrium temperature. When the optical pulse
is turned off, the high frequency bath rapidly decays away, leaving the low frequency
bath of phonons to more slowly decay away due to the absence of the phonons in the
high frequency bath to mix with. This scenario would also explain the difference
in the decay of the low frequency bath γp damping rate, which depends on the
phonon number density, to that of the effective occupancy np, which is set by the
quasi-equilibrium temperature of the bath. The absence of the high frequency bath
could greatly slow down the low frequency bath equilibriation rate, and thus the rate
of change of the effective bath temperature, while the low frequency bath acoustic
coupling to the external substrate will provide a constant decay channel for bath
phonons and thus γp.

We should further note that the dynamical bath parameters reported in Table 6.1 are
consistent for devices fabricated from low resistivity SOI. In the case of our high
resistivity SOI samples, we have measured devices with a much slower post-read-
pulse decay of the hot bath. Hot bath decay times as long as tens of milliseconds
have been observed. Although requiring further study, we believe that this very
slow decay dynamics of the optical-absorption-induced bath indicate that phonons
are not the only parties involved in the optically-induced hot bath, but that the hot
bath is likely also composed of much longer lifetime two-level system (TLS) defects.
The high resistivity SOI seems to harbor much longer-lived TLS states, possibly due
to the reduction of electronic relaxation pathways. Our two-phonon-bath scenario
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above may in fact be a two-bath scenario consisting of one phonon bath coupled to
a longer lived TLS bath. Other evidence for this interpretation is the high values of
measured γp which is more consistent with estimated TLS damping rates (damping
due to 3-phonon scattering is shown to be too slow, at least for bath temperatures
below 1 K, in sub-Section 5.3.1).
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6.6 Quantum Cooperativity in Optomechanical System

The utility of cavity optomechanical systems to perform coherent quantum opera-
tions between the optical and mechanical degrees-of-freedom is ultimately predi-
cated by their ability to achieve 〈n〉 < 1 and large cooperativity C ≡ γOM/γb, where
γb = γ0 + γp is the total coupling rate between the mechanical resonator and its
thermal baths. In the example of coherent transfer of photons between optical and
superconducting microwave resonators mediated by optomechanical systems [109,
110, 111, 112, 125], the relevant figure of merit is the effective quantum coop-
erativity Ceff ≡ C/nb, where nb is the effective bath occupancy defined such that
γbnb = γ0n0 + γpnp [1]. Ceff must be larger than unity in order to achieve low-noise
conversion between photons of different energies [102, 110].

Explicitly, the effective cooperativity is

Ceff =
γOM

γ0(n0 + 1) + γp(np + 1)
, (6.23)

with the +1 terms in the denominator arising from spontaneous decay. With the
measured absorption-heating bath occupancy and damping rates from previous
sections, effective cooperativity can be calculated for the zero-shield and six-shield
nanobeam devices, which are plotted in Figure 6.7.

It can be seen from the calculated Ceff that it increases together with C first versus
nc at low nc, however, at relatively higher optical powers, Ceff starts to saturate.
This is because γpnp ∝ n1

c , in the mean time, γOM ∝ n1
c . The quantum effective

cooperativity saturates to Ceff = 0.21 for six-shield device. In order to achieve
Ceff > 1 in the presence of continuous-wave pumping, one or more routes can be
pursued to increase the ratio of γOM/(γpnp), thus Ceff.

1. γOM is directly proportional to the square of vacuum optomechanical coupling
rate g2

0 , thus a further optimized design of OMC cavity with higher g0.

2. γOM is inversely proportional to optical damping rate κ = κi + κe, thus the
loaded optical quality factor can be further increased in order to increase
Ceff. κe can be decreased by the optical coupling waveguide design, however,
smaller κe affects data collection efficiency in measurements.

3. Further improvements to the nanofabrication processes of such OMC devices
may enable higher intrinsic optical Q-factors κi.
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Figure 6.7: Effective cooperativity in 1D nanobeam OMCs at low temperature.
Calculated bare optomechanical cooperativityC (dotted lines) and quantum effective
cooperativity Ceff (solid lines) for a zero-shield (red lines, γ0/2π = 14.1 kHz) and
a six-shield (blue lines, γ0/2π = 0.21 Hz) device. Horizontal gray lines indicate
cooperativity of unity. C,Ceff = 1.

4. Ceff is inversely propotional to γpnp at relatively high optical power, decreasing
amplitude or scaling rate of γpnp is beneficial to Ceff.

5. Hot photon bath is generated by optical absorption at the surface of the silicon,
thus further improvements to the silicon surface passivation and cleaning
potionally decrease hot bath occupancy and damping rate (np and γp).

6. Accoding to the Landau-Rumer scattering processes described in Section 6.2,
the phonon bath is populated via phonon-assisted relaxation of the surface
electronic states, which yields a scaling of the effective bath temperature with
the material anharmonicity A(ω;ωm). The bath temperature can potentially
be decreased by choosing other substrate materials with lower anharmonicity.

Among all the 6 potential improvements, Quasi-2D OMC devices are clearly a
good choice. Quasi-2D planar photonic crystal devices have been shown to exhibit
optical Q-factors exceeding 9× 106 [126]. Photonic crystals in one more dimension
instead of index guiding also potentially further confine the optical mode volume
thus increases vacuum optomechanical coupling rate g0. Another major benefit
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of quasi-2D OMC designs is the increased thermal conductance as mentioned in
previous sections and will be also discussed in following sections, which potentially
reduces the hot photon bath.

6.7 Measurement of Optical-Absorption-Induced Bath Occupancy in Quasi-
2D OMC

With the same proposed microscopic model for the heating and damping illustrated
in Fig. 6.1, we performed a series of measurements studying the magnitude and
scaling properties of the hot phonon bath occupancy np and excess damping rate γp
in the quasi-2D OMC. In Fig. 6.8, we explore the scaling of np versus intracavity
photon number nc. Similarly, to the 1D nanobeam case, a continuous-wave laser
pump was tuned to the cavity resonance (∆ = 0), and the sideband-scattered photons
at either of themechanical sidebandswere detected at a rate Γ = η( κ

2ωm
)2γOM〈n〉with

the sideband filters aligned, where η is the total optical detection efficiency, κ is the
total optical decay rate, and γOM is the optomechanical damping rate. The observed
count rate is used to extract an equivalent measured mode occupancy (〈n〉) as shown
in Fig. 6.8. The right-hand axis of Fig. 6.8 gives the effective bath temperature
Tp corresponding to the measured occupancy. This measured occupancy is a close
approximation to the bath occupancy np at power levels where the equivalent bath
temperature Tp is much greater than the base bath temperature to which the mode
thermalizes, Tb = 63 mK (see Section 3.3).

Unlike in 1D nanobeam OMC, where the coupling waveguide is designed to be
evanescently coupled to OMC cavity, the coupling waveguide in quasi-2D devices
is designed to be physically connected to one end of the OMC cavity. There are
two ways photons may scatter energy into the phonon bath: absorption in the OMC
cavity, and absorption outside the OMC cavity in the coupling waveguide and 2D
line-defectwaveguide. Therefore, np can be expressed versus both intracavity photon
number nc and total laser power coupled into coupling waveguide Pin. Intracavity
photons nc have amuch larger energetic contribution per photon compared to photons
in the waveguide. This is due to the longer photon lifetime within the cavity giving
a larger absorption cross-section, and the close proximity of the absorption event
near the mechanical resonator.

Via finite-element simulations, this work shows that a ‘weak cavity‘ is formed
between the coupling waveguide and the OMC (see Section. 6.11), which was
probably the dominant region where cavity photons were absorbed outside of the



153

OMC cavity. Here the term effective waveguide phonons nwg (nwg ∝ Pin) is used to
represent the contribution from phonons in the weak cavity, and assumes that the
functional form of np versus nc and nwg are the same, although the heating sources
are distinctly independent. The relationship is given by,

np(nc, Pin) = np(nc + nwg)

= np(nc + βPin) (6.24)

where β is a constant that depends on the ratio of nc and nwg, and varies with laser
detuning ∆. In order to find the occupancy of the ‘hot‘ bath, the continuous-wave
laser pump was tuned to cavity resonance (∆ = 0) where a large portion of incident
photons couple into the cavity as intra-cavity photons nc; hence, in this case, the
contribution from nwg is ignored. Fitted np versus nc is plotted in Fig. 6.8, from
which we found that np approximately followed a power-law scaling of np ∝ n0.3

c .
This is consistent with the expectation that, as detailed in Section 6.2 and [56], the
finite dimensions of the thin-film OMC modify the phonon density of states of the
phonon bath at low temperature, giving rise to a quasi-discrete spectrum of bath
modes well-approximated by a 2D density of states. Values of np extracted from 1D
OMC devices in Section 6.4 and [56] are also shown as a dashed line in Fig. 6.8.
Quasi-2D OMC devices show an improvement by a factor of ∼ 7 compared with 1D
structures with a same number of intracavity photons nc in both measurement date
and numerical simulations (see Section 6.10).
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Figure 6.8: Measured steady-state optical-absorption-induced bath occupancy
of quasi-2D OMC. Plot of np versus nc for quasi-2D eight-shield device. The solid
line is a fit to the data giving np = (1.1) × n0.3

c . Dashed line indicates np versus nc
for a 1D nanobeam device for comparison.

6.8 Measurement ofOptical-Absorption-InducedDamping inQuasi-2DOMC

A more complete characterization of the ‘hot’ bath requires a measurement of the
bath-induced damping rate γp. Different from the measuement methods used in
the 1D nanobeam case, to measure this, a spectral measurement of the mechanical
response was made at sufficiently large power levels nc such that the total mechanical
linewidth γ is dominated by γp rather than by intrinsic frequency jitter or damping
due to the DR bath. The damping due to optomechanical back-action γOM is
minimized by choosing a resonant probe (∆ = 0) such that the total mechanical
linewidth extracted from mechanical NPSD in a balanced heterodyne measurement
is equal to the sum of the intrinsic linewidth Γφ and the optical absorption bath-
induced damping γp. Note that the intrinsic linewidth Γφ includes spectral diffusion
(dephasing) of the mechanical mode, and is distinct from the intrinsic energy decay
rate γ0 (dissipation). Tuning to resonance not only eliminated the optomechanical
back-action of the mechanics, but also allowed for efficient loading of the optical
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cavity. For the device parameters here, an input power of 31 µWgenerates an average
intracavity photon population of about nc ∼ 1 × 104. Measured total mechanical
linewidth γ is plotted in Fig. 6.9. Although both γ and np are assumed to depend on
the total intracavity photon number (nc + nwg), a difference in the power laws can be
seen upon fitting.

Γ(nc, Pin) = Γ(nc + nwg)

= Γ(nc + βPin) (6.25)

Similar, to np fitting, nwg is ignored in this measurement since the laser pump was
detuned to cavity resonance where the ratio of Pin to nc is minimized. At lower
powers nc ∼ 10, the linewidth is expected to be dominated by intrinsic damping and
dephasing (combined to yield Γφ) rather than bath-induced damping, such that γ
saturates to Γφ at lower powers.

The measured and fitted linewidth γ are plotted as well as calculated γp against nc
(and Pin) in Fig. 6.9. We extract that the bath-induced damping rate γp approximately
follows a power-law scaling of γp ∝ n0.61

c at lower nc (Pin) and γp ∝ n0.29
c at higher

nc (Pin). For lower laser power, this is approximately the same scaling predicted
in Section 6.2 and in reference [56] for a 2D density of states model. As going
to higher laser power, we can see from the calibration of the temperature found in
Fig. 6.8 that the rate goes from being ∝ T2 to something ∝ T1.

Determining the exact mechanism of the γp slow down versus bath temperature (or
more directly high nc and Pin) is outside the scope of this article. There are several
possible mechanisms for this slow down, from changes in the heat-carrying phonon
velocities related to phonon-frequency-dependent scattering in the nanostructure
silicon film [127, 128] to thermalization rate of phonons in the hot bath created by
optical absorption. Also, we assumed that Landau-Rumar scattering was the cause
of coherent energy loss at lower temperatures, which gives a power law ∼ n2/3

c ;
however, damping may be dominated by Akhiezer-type dissipation processes above
4K [129].

One possible reason for this crossover relates to the thermal conductance of the
nanostructured silicon film, and the transition from a diffusive phonon propaga-
tion regime to a ballistic one at higher bath temperature where shorter wavelength
phonons predominantly carry the heat and are not as prone to scattering from
the patterned surfaces. Phonons relevant to the Landau-Rumar scattering between
20GHz and 100GHz have a wavelength long compared to the small connections
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in the phononic crystals (∼ 100nm), and therefore have a high probability of scat-
tering [122, 128, 130]. However, phonons above 100GHz will not scatter off the
‘abrupt phonon junctions’ in the phononic crystal, and thus have unity transmission.
As temperature increases past 4K, the probability for the higher modes to backscatter
becomes negligible, with these modes ultimately determining the thermal conduc-
tance. Therefore, we should see a ‘slowing down’ of the thermal conductance as
temperature increases past this threshold. A second possible reason for the crossover
is that the assumption of Landau-Rumer scattering is no longer valid. Landau-Rumer
scattering is true when the time constant of the phonons within the hot bath are long
compared to the inverse frequency of themechancial mode, τpωm > 1, thus ensuring
that all phonons other than the damped phonon are within thermal equilibrium. If
this condition is not true, then the device operates within the ‘Akhiezer regime’ [129,
131], where in bulk crystals this gives a damping that goes from ∝ T4 down to ∝ T .
Future studies focusing on changes to the critical dimension of the phononic crystal
will help elucidate the microscopic origin of this effect. Also, by introducing a
thermometer at an appreciable distance from the waveguide and cavity, we may
determine the bulk temperature of the hot bath, and not just the part that is relevant
for the Landau-Rumer scattering.
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Figure 6.9: Steady-state total mechanical linewidth of quasi-2D OMC plot of
total mechanical linewidth γ (blue dots) versus nc for eight-shield device. The blue
solid line is a power-law fit to the data: Γ/2π = Γφ/2π + γp/2π = 14.54 kHz +
(1.1 kHz) × n0.61

c for low nc regime, Γ/2π = 23.91 kHz+ (9.01 kHz) × n0.29
c for high

nc regime. Red solid line is calculated γp, dashed line indicates γp versus nc for a
1D nanobeam device for comparison.

6.9 Quantum Cooperativity in Quasi-2D OMC

The utility of cavity optomechanical systems to perform coherent quantum opera-
tions between the optical and mechanical degrees-of-freedom is ultimately predi-
cated by their ability to achieve 〈n〉 < 1 and large cooperativity C ≡ γOM/γb, where
γb = γ0 + γp is the total coupling rate between the mechanical resonator and its
thermal baths. In the coherent transfer of information between quantum fields, the
relevant figure-of-merit is the effective quantum cooperativity Ceff ≡ C/nb, where
nb is the total effective bath occupancy of both fields. For example, the bi-directional
coherent transfer of photons between optical and superconducting microwave cir-
cuits mediated by optomechanical systems [102, 110] only become possible if Ceff

is larger than unity, and where γbnb = γ0n0 + γpnp [1].

A direct measurement of the cooperativity can be made by observing the cooled
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mechanical occupancy
〈n〉 =

γpnp + γ0n0
γ0 + γOM + γp

, (6.26)

in the presence of a continuous-wave pump detuned to the red sideband (∆ = ωm).
Fig. 6.10 shows the results of steady-state mechanical occupancy measurements
(blue dots) versus nc and Pin in the presence of red-detuned driving. We also
plot the predicted steady-state mechanical occupancy using the measurements of γp
and np from our device with different β values. The red line is prediction of the
occupancy for β = 0.

When measuring steady-state mechanical occupancy, the heating due to optical
absorption was much more pronounced than in previous measurements. For the
steady state occupancy, the laser pump was detuned to the red sideband (∆ = ωm)
instead of on resonance (∆ = 0); thus, much higher input laser power was needed in
order to generate the same amount of intracavity photons. In Fig. 6.10a, we allow
β to be a free parameter to fit 〈n〉, and plot β = 15 (blue solid). At lower power,
γpnp ∝ n0.91

c (∝ P0.91
in ) and γOM ∝ n1

c , thus 〈n〉 is almost flat versus nc and Pin.
However, fortunately the scaling of the damping rate changes at higher power as
mentioned in the previous section, and we gain an advantage by increasing laser
power.

We also plot the effective quantum cooperativity Fig. 6.10b using measured hot
phonon bath occupancy np and excess damping rate γp for both β = 0 (red) and
β = 15 (blue).

Ceff =
γOM

γ0(n0 + 1) + γp(np + 1)
, (6.27)

with the +1 terms in the denominator arising from spontaneous decay. These plots
indicate that both amechanical occupancy lower than unity and an effective quantum
cooperativity greater than unity are realized under steady-state optical pumping in
quasi-2D OMC devices (eight-shield device with Qopt = 1.63 × 105) in high power
regime (Pin > 400µW , nc > 900) even in the presence of extra heating from pump
photons absorbed in the weak cavity built in the coupling waveguide.

Looking forward, 〈n〉 can be further reduced and Ceff can be further increased. One
potential way to reduce optical-absorption hot phonon bath is to thermally decouple
the input couplingwaveguide fromOMCcavity. By eliminating the parasitic heating
from the nwg, we can achieve aCeff, and 〈n〉 as indicated by the red lines in Fig. 6.10a
and b. The back-action damping rate per photon can also benefit from a higher loaded
optical quality factor, quasi-2D planar photonic crystal devices have been shown to
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exhibit intrinsic optical Q-factors exceeding 9 million [126]. In Fig. 6.11, with the
measured values of γ0, g0, np and γp, we estimate how much 〈n〉 and Ceff can be
improved at different laser powers (nc) and Qopt assuming optical coupling can be
designed such that extra heating due to nwg can be eliminated (For instance, using
side-coupling instead of butt-coupling, such that coupling waveguide and OMC
cavity are thermally disconnected). Contours of selected Ceff values are also plotted
in the same figure. We find with already achieved Qopt values (zero-shield device
with Qopt = 3.90 × 105), steady-state 〈n〉 can be maintained under 0.1 and Ceff

approaches 5 even at single photon pump levels. If Qopt can be optimized to 106,
〈n〉 < 0.02 and Ceff as large as 44 can be achieved simultaneously at steady-state.
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Figure 6.10: Phonon occupancy and effective quantum cooperativity of quasi-
2D OMC. a, Plot of measured (blue circles) average phonon number, 〈n〉, in
mechanical mode at ωm/2π = 10.02 GHz, versus cooling drive-laser power (in
units of intracavity photons, nc, and optical power coupled into coupling waveguide,
Pin). Blue solid line is the estimated phonon occupancy from power-law fits of γp
and np, considering optical heating from both nc and Pin with β = 15, red solid line
only considers optical heating from nc. b Plot of quantum cooperativity Ceff versus
nc and Pin for eight-shield device. The solid blue line is calculated from power-law
fits of γp and np, considering optical heating from both nc and Pin with β = 15,
red solid line only considers optical heating from nc. The solid blue rectangles are
extracted from the measured phonon number in a. The solid line is a fit to the data
giving np = (1.1) × n0.3

c . Dashed line indicates np versus nc for a 1D nanobeam
device for comparison.
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6.10 Increased Thermal Conductance in Two-Dimensional Cavity

As pointed out in previous sections, quasi-2D OMC devices were measured to
have a lower occupancy (np) within the local hot phonon bath compared to 1D
nanobeam OMC devices [56]. This high occupation is due to optical absorption
which ultimately heats the high-Q cavity mechanical mode. In the context of
this work, the local hot phonon bath at temperature Tp is thought to be generated
as absorption of photons excited electronic states at ∼ eV energy undergo phonon-
assisted relaxation processes, emitting high-frequency phonons, which subsequently
decay by a cascade of nonlinear multi-phonon processes into a bath of GHz phonons.
For the temperature range considered in this work (T ≤ 10 K), with the acoustic
mode of interest at microwave frequencies, the damping and heating of the acoustic
mode of interest can be described by the Landau-Rumer theory [68, 122].

Here, we utilize FEM simulations to model the impact of geometry on the thermal
conductance of different OMC cavities at millikelvin temperatures. Specifically
our approach is as follows. We take previous measurements of a 1D nanobeam
OMC cavity and compare it to the results of simulations of a similar 1D OMC
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cavity geometry with variable material properties. We then find what scaling of the
material properties allows us to match experiment to simulation for the 1D OMC
cavity. Using these same scaled values of the material properties we then perform
simulations of the quasi-2DOMCcavity. Closing the loop, we find that the simulated
values of the hot bath temperature are in correspondence with the measured values
for the quasi-2D cavity. This would indicate that a simple geometric difference in
the connectivity of the 1D and 2D cavities to the external chip bath can explain the
lower measured hot bath occupancy for the quasi-2D OMC cavity, validating our
original design concept.

Under steady state conditions, the power flow from the hot bath into the DR bath,
Pthm, is equal to the power flow into the hot bath due to optical absorption. Here, we
have implicitly assumed no other sources of heating other than optical absorption
and that the hot bath loses energy via coupling to phonons which radiate into the chip
bath at the periphery of the device. Also assuming the optical absorption process is
linear, we find that the power flow into the hot bath is a fraction ηabs of the total input
optical power, such that Pthm = ηabsPin ∝ nc (we ignore nwg here for simplicity).

For the temperature range considered in this work (where phonon transport is bal-
listic), the lattice thermal conductivity scales as a power law of the phonon bath
temperature [123, 124]. We thus define the thermal conductance from the center
of OMC cavity to the DR bath of both the 1D (Cth,1D) and quasi-2D geometries
(Cth,2D) such that Cth ∝ (Tp)α. The exponent α is equal to the effective number of
spatial dimensions d of the geometry. The hot bath is assumed to thermalize at an
effective temperature Tp and to radiate energy (lattice phonons) into the periphery
of the cavity as a black body such that the power lost out of the hot bath goes as
(Tp)α+1. We can thus write a simple model for the thermal conductance between the
hot bath and the periphery of the cavity (T0),

Pthm = Cth∆T ≈ CthTp, (6.28)

where ∆T = Tp − T0 and in the range of measured np (np > 0.5,Tp > 400 mK)
∆T ≈ Tp since T0 � Tp. We define Cth as Cth = ε(Tp)α, where ε depends on the
geometry of the cavity and its material properties, which allows us to write,

Pthm = εTα+1
p = ηabsPin ∝ nc. (6.29)
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The power law exponent α in the thermal conductance model is estimated to be
α0 ≈ 2.3 from themeasured data (see Supplementary Figure 6.12). This is consistent
with a Si slab of thickness t = 220 nm that has an approximately 2D phonon density
of states for acoustic modes of frequency in the vicinity of the upper band-edge of
the phononic bandgap of the quasi-2D snowflake structure (ω/2π & 10 GHz).

Assuming a thermal conductivity for the Si slabwhich is proportional to (Tp)α0 , FEM
simulations were performed on both the 1D nanobeam and the quasi-2D snowflake
OMC cavity geometries. As a thermal excitation source we placed a heating source
in the center of both OMC cavities with size corresponding to that of the optical
mode volume of the cavity mode. The average temperatures within the optical mode
volume (Tp,(1,2)D) was then calculated versus intra-cavity photons (nc) for the 1D
nanobeam cavity. We adjusted the material properties (thermal conductivity and
absorption coefficient) in order to match the simulated curve to the measured data
of the 1D nanobeam cavity from Ref. [56]. Finally, we used these adjusted material
properties to simulate the quasi-2D cavity. All measured and simulated curves are
plotted in Fig. 6.12a. We also plot the temperature profile of the 1D and quasi-2D
OMC cavities at nc = 100 in Figs. 6.13a and 6.13b, respectively.

By comparing the simulated curves in Supplementary Figure 6.12, we estimate that
the thermal conductance of the quasi-2D and 1D structure has a ratio of ε2D/ε1D ≈
42. For the same optical pump power applied to the 1D and quasi-2D OMC cavities
we have that nc,1D = nc,2D and Pth,1D = Pth,2D. This yields the relation between
thermal conductance and acoustic mode occupancy for the two cavity geometries,

ε1D

(
~ωm,1Dnp,1D

kB

)α0+1
= ε2D

(
~ωm,2Dnp,2D

kB

)α0+1
, (6.30)

where we have assumed np ≈ kBTp/~ωm in rewriting the bath temperatures in each
cavity in terms of the bath occupancy at the acoustic cavity mode frequency. Con-
sidering that the acoustic mode of the quasi-2D OMC is at frequency ωm,2D/2π ≈
10.27 GHz while that of the 1D resonator is at half this frequency at ωm,1D/2π ≈
5GHz, we can write for the ratio of the effective bath occupancies in the two cavities,

np,1D
np,2D

≈ 2
(
ε2D
ε1D

)1/(α0+1)
= 6.2. (6.31)

This simulated ratio is in good agreement with the measured ratio of the phonon
bath occupancy of the 1D nanobeam OMC cavity in Ref. [56] and the quasi-2D
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OMC cavity of this work, np,1D/np,2D = 7.94/1.1 ≈ 7.2.
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Figure 6.12: Simulated and measured hot phonon bath occupancy FEM simu-
lated, measured and fitted np of both 1D nanobeam OMC cavity and quasi-2D OMC
cavity versus number of intracavity photons nc. Dashed lines are simulated data and
solid lines are fitted curves to measured data. To obtain the material properties used
in the simulation, we fit 1D nanobeam measurement data to a phenomenological
thermal conductance model described in the text. Same material properties were
used in the quasi-2D geometry to generate the simulated curve for the quasi-2D
OMC.
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Figure 6.13: Simulated temperature profile of OMC. Temperature profile of 1D
nanobeam OMC and quasi-2D OMC for nc = 100 are also plotted in b and c,
respectively. The area indicated by blue boxes in the center of both OMC cavities
are the heat source used in FEM simulations, where the sizes the boxes are on the
order of optical volume of cavity mode, and total heating power within the boxes
volume is Pthm. Size of a and b are not to scale.

6.11 Modeling Of Extra Heating Contributed by Weak Cavity Formed in
Coupling Waveguide

In order to investigate the source of extra optical-absorption heating in these quasi-2D
OMC devices, we performed optical FEM simulations on the full device, includ-
ing the OMC cavity, 1D coupling waveguide and 2D line-defect waveguide. The
coupling waveguide in quasi-2D devices was designed to be physically connected
to one end of the OMC cavity, instead of evanescently coupled to the OMC cavity
as in 1D nanobeam OMC devices [56, 132]. Due to the weak reflectivity of the
air-waveguide interface, a ‘weak cavity’ was formed in the waveguides. Thus, there
are two major areas of optical absorption found to be contributing to the hot phonon
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bath: intracavity photons nc being coupled into OMC cavity and photons being
coupled into the weak cavity. The occupation of the bath np can depend on both
intracavity photon number nc and total input laser power Pin. Intracavity photons
nc have a much larger energetic contribution per photon compared to photons in
the waveguide. This is due to the longer photon lifetime within the cavity giving a
larger absorption cross-section, and the close proximity of the absorption event near
the mechanical resonator. Here we use the term effective waveguide phonons nwg
(nwg ∝ Pin) to represent the contribution from photons in the weak cavity.

Simulations were performed using a geometry which was tuned to approximately
the same loaded (intrinsic) optical linewidth as the eight-shield device being used
for optical absorption bath characterization (κ, κi) = 2π(1.187 GHz, 1.006 GHz).
In the case of ∆ = 0 GHz as shown in Fig. 6.14a, a large portion of the photons that
coupled into the coupling waveguides were eventually coupled into OMC cavity,
with the energy of electromagnetic field in the OMC cavity one order-of-magnitude
higher than the energy in the weak cavity (β ≈ 0, nwg ≈ 0). However, in the case
of ∆ = 10 GHz as shown in Fig. 6.14b, a much smaller portion of photons that
coupled into coupling waveguides can be eventually coupled into OMC cavity due
to the large detuning (optical cavity linewidth κ = 1.187 GHz), with the energy of
electromagnetic field in the OMC cavity only a few percent of the energy in the
weak cavity (β ≈ 15). The dominant source of optical absorption is thought to be
surface defect states [30, 31], and thus proportional to the energy of the electrical
field. Since the nature of parasitic optical absorption in the OMC cavity and weak
cavity is the same, the functional form of np versus nc and nwg were assumed to be
the same, even though the heating sources are distinctly independent.
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Figure 6.14: FEM simulated time averaged optical field energy density of quasi-
2D OMC cavity with coupling waveguide. Optical field energy density for a,
∆ = 0 GHz and b, ∆ = 10 GHz. Both plots are plotted in logarithm scale and
normalized to maximum field density in each simulation.

6.12 Mode Thermalization Measurements

The mode of interest in quasi-2D OMC thermalizes to a base bath temperature Tb,
which is related to the applied DR temperature Tf through the thermal conductance
Cthm of the structure, as described in section 6.10. This yielded an effective temper-
ature offset between the DR temperature and the bath temperature. To measure this
base bath temperature, we used a low-power (nc = 9.9) red-detuned pulsed probe
and a device with relatively high mechanical damping γ0 = 21.8 kHz (zero-shield
device, Qm = 4.69 × 105), so that data integration time was minimized. With
relatively high mechanical damping, the mechanical mode quickly thermalized to
its base temperature between subsequent incident optical pulses, so that we could
use a rapid measurement repetition rate 1/τper (τper = τpulse + τoff � γ−1

0 ). The
initial mode occupancy during the pulse then approximately corresponded to base
bath occupancy n0. However, after the first several time bins of the pulse when
optical absorption starts to heat up the structure, the mechanical mode was heated
such that the initial observed occupancy exceeds n0. We therefore extracted n0 by
fitting the pulse on-state occupancy data to the full dynamical heating and damping
model [56], and extrapolated the fit back to the start of pulse to estimate the true
bath occupancy n0.

A fit of bath temperature of quasi-2D OMC is shown in Figure 3.4 in Chapter 3,
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which yieldsTb = 63mK, corresponding to a basemode occupation of n0 = 4×10−4.
Calculated curves for Tb = 11 mK (red), 31 mK (yellow), 95 mK (green), 129 mK
(cyan) are also plotted for reference.
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Chapter 7

APPLICATIONS OF OPTOMECHANICAL CRYSTALS AND
ULTRA-HIGH-QUALITY MECHANICAL RESONATORS

By utilizing the advanced methods of nanofabrication and cavity optomechanics,
optically-coupled high-frequency mechanical resonators with ultra high mechanical
Q, low thermal noise, deep quantum ground state mechanical thermometry and
high effective quantum cooperativity has provided a new toolkit to explore quantum
acoustodynamics in solid-state materials. It also shows the possibility of creating
a hybrid quantum architecture consisting of acoustic and superconducting quantum
circuits [77, 78], where the small scale, reduced cross-talk, and ultralong coher-
ence time of quantum acoustic devices may provide significant improvements in
connectivity and performance of current quantum hardware. These compact nano-
mechanical resonators can be viewed as promising candidates to replace the sizable
electric microwave cavities. They can serve as a compact high-quality bosonic plat-
form for storing quantum resources and performing ultra-high fidelity in-memory
two-qubit gates [133, 134, 135]. They can also be used as a nanomechanical interface
between optical photons and microwave electrical signals if combined with piezo-
electric material, coherent signal transfer between microwave and optical fields can
be achieved by parametric electro-optical coupling using a localized phonon mode.

In this chapter, several applications of optomechanical crystals in hybrid quantum
system consisting of acoustic and superconducting quantum circuits, and currently
being pursued in Painter’s research group are introduced.

7.1 Compact High-Coherence Phonon QuantumMemory for Superconduct-
ing Transmon Qubit

Superconducting Josephson junction qubits use microwave signals to control quan-
tum state, and have been widely used in quantum information processing [136,
137, 138, 139, 140, 141]. The transmon qubit has been prevailing among different
implementations of the superconducting qubits because its relatively long coherent
time (up to ∼ 100 µs) and high fabrication reproducibility. The longest coherence
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time of transmon qubits achieved used 3-D microwave cavities with size of cen-
timeters [142]. This large footprint and limited two-qubit quantum gate fidelity
< 99.9% [141] hinder large scale integration of such superconducting quantum
circuit technology which is needed for fault-tolerant quantum computing.

The mechanical resonators with ultra-compact size and ultra-high mechanical qual-
ity explored in this work is a promising candidate to replace the sizable electric
microwave cavities. They can serve as a high-quality bosonic quantum resources
storage and be used to perform ultra-high fidelity in-memory two-qubit gates [133,
134, 135].

Other than probing and controlling mechanical degree freedom with optics, su-
perconducting circuit can be used to couple to mechanical resonators with help of
piezoelectric materials. However, piezoelectric materials were found to be mechan-
ically lossy [143, 144, 145], and on-demand swapping quantum state between a
qubit and a mechanical resonator is yet to be demonstrated. In this section, a device
is proposed which can maintain ultra-high coherence with a mechanical memory
cavity, as well as realizing on-demand high-fidelity quantum state transfer between
a superconducting transmon qubit and a phononic resonator.

The proposed device contains three subsystems, as illustrated in Fig. 7.1a and c,
a superconducting transmon qubit on suspended Si membrane [146] (red box of
Fig. 7.1c), a defect phononic crystal cavity on suspended silicon membrane (blue
box), and an intermediate hybrid system (green box). These two subsystems are cou-
pled to the intermediate system via pure electric coupling Jq, and pure mechanical
piezo-memory coupling Jm, respectively. The intermediate hybrid system contains
a tunable electromagnetic resonator (Iem) with frequency ωem, and a piezoacoustic
resonator (Ipa) with frequency ωpa. Iem and Ipa are strongly coupled with piezoelec-
tric coupling strength Jp.

This hybrid system can be switch between two states, idle-state and swap-state,
and switching of theses two states is dependent on whether the intermediate system
is hybridized and qubit frequency (ωq) is tuned to align with the memory cavity
frequency (ωm). In the swap-state, ωem and ωpa are tuned to be resonant with each
other, and the superpositions of the hybridized microwave resonator mode and the
piezoacoustic mode are at frequencies ω± = ωpa ± Jp.

The mechanical memory cavity is built based on the ‘cross’ phonoic crystal. A
point defect in the 2D phononic crystal is used as a mechanical cavity to localize
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Figure 7.1: Circuit diagramof phonon quantummemory. a, The virtual coupling
model of the proposed system. mode-Q (red), mode-M (blue), and mode-Iem,pa
(green) stand for qubit mode, mechanical memory mode, and intermediate electric
and piezoacousticmodes. Decay rates of intermediate system (κem and γpa), intrinsic
decay rate of the qubit (κi), and intrinsic decay rate memory cavity(γi) are shown.
The acoustic memory mode is assumed to be almost lossless (γi/2π ∼ 1 Hz) in the
system dynamics of interest. b, Energy levels of different parts of the hybrid system.
c, Proposed circuit diagram of the hybrid system. In the red box represents the qubit,
the green box represents the high-Q memory resonator and green box represents
intermediate system. d The illustration (not to scale) of the proposed device layout
with different elements colored corresponding to a, b and c.

a mechanical mode [35, 147, 148]. A potential mechanical quality factor around
fifty-billion of such cavity leads to a phonon lifetime approximately 1.5 seconds
at a refrigerated temperature around 10 mK [56]. A schematic of this mechanical
memory cavity and its corresponding mode profile are show in Fig. 7.2.

The piezoacoustic resonator and thememory cavity are located on the same phononic
crystal membrane. Nearby mechanical cavities with frequencies around 5 GHz
can be coupled through their evanescent mechanical fields. The piezoacoustic
resonator needs to be strongly coupled to the tunable electric resonator with a large
piezoelectric coupling rate Jp, and the piezoacoustic structure should be compact
to avoid parasitic mechanical modes coupling to mechanical memory mode and
introduce extra mechanical loss. Aluminum Nitride (AlN) is used in this design as
it has a relatively low microwave loss tangent (tan δAlN ∼ 5 × 10−4) [149, 150, 151,
152, 153, 154] and well established nano-fabrication processes [150, 155, 156]. A
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Figure 7.2: Mechanical memory cavity design. a, The structure of the proposed
high-Q acoustic memory cavity which is realized as a phononic defect cavity embed-
ded in a phononic crystal. b, The wide microwave bandgap phononic bandstructure
of the phononic crystal membrane. The large bandgap in allowed mechanical wave
frequency between 4 GHz and 6 GHz is highlighted in orange. The black-dotted
line in the middle of the gap corresponds the memory cavity mode frequency
ωm/2π ∼ 5 GHz. d, Fundamental mode displacement field profile of the memory
cavity in c.

heavy superconducting metal Molybdenum (Mo) is used as electrodes [150, 155,
156] to better confine acoustic energy in the piezoelectric layer, and Al is used as
the metal leads connecting Mo electrodes for ease of fabrication. A schematic of
this piezoacoustic resonator together with memory cavity, and their corresponding
mode profile are show in Fig. 7.3. Note that the coupling strength between these
two resonators can be tuned by perturbing the ‘cross‘ unit cells between them.

As mentioned previously, there are two operation states in this proposed hybrid
system, swap-state and idle-state. The swap-state is used to perform a high-fidelity
quantum state transfer between qubits and memory cavity. The idle-state is used
to preserve ultra-high coherence quantum states that are being swapped into the
memory cavity. A virtual coupling scheme is used to perform the swap operation.
A diagram showing the energy levels used in the virtual coupling scheme is also
plotted in Fig. 7.4. The virtual coupling process can be understood as two quantum
channels connecting the qubit with mechanical memory cavity. Each channel is



173

b c

a Mo electrode
AlN active layer
Al lead
AlN seed layer

Figure 7.3: Piezoacoustic resonator design. a, The stack composition of the
piezoacoustic resonator. b and c, Simulated symmetric and anti-symmetric me-
chanical displacement field profile for coupling modes between piezoacoustic and
memory cavity.

formed by a supermode of the intermediate hybrid system which mediates the
virtual coupling, coupling rate can be expressed as Jvc,± = ±

JqJm
2(ω±−ωm)
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Figure 7.4: Virtual coupling scheme. swap-state energy level diagram of the
system with ωm/2π ∼ 5 GHz which is about 50 MHz below the lower super-mode
of the intermediate system.

On the other hand, for the idle-state, quantum state swap is turned off. A diagram
showing the energy levels used in the idle-state is plotted in Fig. 7.5.
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Figure 7.5: Idle state diagram. Energy levels of the idle-state. The qubit fre-
quency (ωq) is far detuned from the memory cavity frequency (ωm). The tunable
electric resonator in the intermediate system is also a far detuned system such
that the intermediate system is no longer hybridized. The bare frequency ωpa is
Jp/2π ' 100 MHz higher than the lower super-mode (ω−) in the swap-state and the
piezoacoustic mode is further detuned from the memory mode by ∆pa.

The qubit ωq is tuned to be far detuned from the memory frequency. Electric
coupling (Jq) is turned off between the qubit and the intermediate electric res-
onator. [108, 157, 158]. The tunable electric resonator in the intermediate system
is also detuned such that the intermediate system is no longer hybridized. The bare
frequency of the piezoacoustic cavity ωpa is ' 100 MHz higher than ω−, and the
∆pa detunning between the piezoacoustic mode and the memory mode can strongly
suppress their coupling to below ∼ 100 Hz.

This proposed superconducting circuits and high coherent nano-mechanics hybrid
system could enable new research possibilities in compact on-chip quantummemory
which can be used for scalable quantum circuits, bosonic quantum error correction,
and eventually used for fault-tolerant quantum computing architecture [133, 134,
135]. It also opens a new route to explore the quantum mechanical properties of
GHz phonon modes without the parasitic heating from optical probe as mentioned
in this work.

7.2 Piezo-Optomechanical Circuits for Quantum-State Transfer from Mi-
crowave to Optical Wavelengths

As discussed in the previous section, engineered quantum systems have been rapidly
improved in both the performance of individual qubits as well as the number of
qubits that are coupled to each other. However, lots of these systems are based on
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microwave frequency superconducting circuits. Microwave frequency photons are
difficult to transmit over long distances, which makes long-distance communication
in these superconducting systems very challenging.

On the other hand, optical fibres, which typically have losses below 0.2 dBkm−1

at telecommunication wavelengths, as well as close to zero thermal occupancy
at room temperature of optical frequency photons, make transmitting quantum
information through optical photons an apparent choice. As a result, development
of bi-directional transfer of quantum information between microwave and optical
photons, a transducer, has been investigated with a number of techniques [108, 109,
110, 111, 112].

A bi-directional microwave to optical transducer must have high quantum efficiency,
high fidelity and enough bandwidth. Ideally each input photon should produce one
output photon, and the quantum information needs to be maintained in the output
photon. Nowadays, the best decoherence times for superconducting qubits are aroud
100 µs, and transducers need enough bandwidth to transmit the information before
it losses in the quantum system. Since superconducting quantum circuits usually
operate in dilution fridges with base temperatures ∼ 10 mK in order to suppress
microwave photons, these transducers are also required to be compatible with cryo-
genic temperature. Several techniques have been investigated as transducers, such
as using electro-optic non-linearity materials such as lithium niobate, three level
systems, such as rare earth ions, and indirect coupling mediated by a third mode,
such as magnetostatic modes or mechanical resonators.

In this section, I will discuss a proposed transducer based on a mechanical resonator
being simultaneously coupled to the microwave through piezo-electric coupling,
and an optical cavity through optomechanical coupling. A transducer with unity
efficiency can be realized with an optomechanical crystal coupled to a microwave
circuit. In the rest of this section, I will present the analysis of the proposed
optomechanical crystal quantum transducer, and show how it can benefit from large
Ceff.

7.2.1 Optomechanically Mediated Coupling

Fig.7.6 shows the scheme for the transduction in the proposed piezo-optomechanical
transducer. Microwave frequency mechanical mode of the optomechanical crystal
is coupled to a tunable superconducting microwave resonator with rate Jpa. The
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Figure 7.6: Schematic of transducer. FEM-simulated mode profile (Ey component
of the electric field) of the fundamental optical resonance ωo/2π = 194 THz,
with red (blue) corresponding to positive (negative) field amplitude. Simulated
displacement profile of fundamental mechanical resonance at ωo/2π ≈ 5 GHz.
Here, the magnitude of the displacement is represented by color (large displacement
in red, zero displacement in blue). Optical cavity mode is coupled to the mechanical
mode via the optomechanical coupling. Themechanical mode is strongly hybridized
with the mechanical mode piezo-electric material (AlN here) IDE resonator.

optical cavity is coupled to the input fiber with a coupling rate κoe and it suffers
from intrinsic loss to environment with rate κoi. The superconducting microwave
resonator is coupled to a transmission line with rate κµe and it has intrinsic loss rate
κµi to the environment. The intrinsic loss channels will introduce environmental
noises (anin,b

n
in,c

n
in) into the system along with signals (ain,out and cin,out) coupled

into the system via external coupling channels to the fiber and superconducting
transmission line.

A schematic for the transduction is shown in Fig.7.6. In real implementation,
one piezoelectric transducer is strongly hybridized with Si OMC to create acoustic
super-modes (b†). Mode b† couples to both the microwave circuit and the optical
resonator. FEM simumations of the optical mode and hybridized mechanical mode
are plotted in Fig.7.7, a SEM image of fabricated device with fake colors indicating
the electrodes are also plotted in Fig.7.8.

The piezo-electric material used here is the same as the quantum memory discussed
in the previous section. Reactively sputtered oriented polycrystalline thin films
of AlN allows for strong electromechanical coupling via metallic electrodes. The
piezo-electro-mechanical transducer is design with pattern aluminum nitride (AlN)
on top of pattern Si membrane, such that the mechanical mode is strongly coupled
and hybridized with the optomechanical crystal breathing mode. The OMC is very
similar to the previous discussed High-Q nanobeam OMC devices, where breathing
mode and a localized optical mode (design to be ∼ 1550 nm) are strongly coupled.
The OMCwas optically probed through an evanescently coupled optical waveguide,
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Hybrid acoustic 
mode at 5GHz

Lensed fiber

J

κoe κμe
G

Microwave Cable

Optical mode

Figure 7.7: FEM simulation of transducer. The red mode on the left is the
optical cavity mode that is dispersively coupled to the mechanical mode (green) via
the optomechanical coupling. The mechanical mode (green) is strongly resonantly
coupled to a tunable superconducting microwave resonator/qubit (blue) in a single
photon level.

10 μm

κoe

κμe

Figure 7.8: SEM image of fabricated transducer. Scanning electron micrograph
(SEM) of a full piezo-optomechanical transducer silicon-on-insulator (SOI) with
IDE eletrods and AlN piezo-electric resonator. A coupling waveguide allows for
fiber-to-chip optical coupling as well as side-coupling to nanobeam OMC cavity.
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which is End-Fire coupled to lensed fiber. However, in transducer design, one side
mirror of the OMC cavity is mechanically less reflective in order to generate strong
coupling with the AlN-on-Si piezo-electro-mechanical transducer. AlN-on-Si is
patterned to have a periodicity on the scale of mechanical wavelength, the number
of mechanical modes in the system are effectively reduced and coupling to the
breathing mode is increased compared to surface- or bulk-acoustic wave phonons
(SAW, BAW) Lambwave IDTs. Frequency of these devices is designed to be around
5 GHz, which matches that of superconducting qubits, yielding a straightforward
integration with these superconducting quantum systems.

The electrodes for IDT are designed to be remote from the optical mode in order to
avoid optical photons which can be absorbed by superconducting electrodes leading
tomicrowave decoherence. The electrodes are alternatelywired to signal and ground
as shown in Fig. 7.8.

A piezo-optomechanical transducer is intrinsically bidirectional because of the sym-
metry between the optical and microwave fields in the system Hamiltonian (this will
be discussed in the following subsection). The intrinsic loss of such a system is
comparably low since the optical mode is well confined by optical OMC mirrors,
and mechanical modes are further protected by ‘cross’ acoustic shields as shown
in Fig.7.8, which is a necessary condition for high efficiency and low noise oper-
ation. The optomechanical coupling rate (G) and electro-mechnical coupling rate
(J) of the system are also important factors of transducor performance. In the fol-
lowing subsection, the efficiency and noise of the transducer system are analyzed,
and impact of the effective quantum efficiency of the optomechaincal side (Ceff) is
addressed, which implies that the quasi-2D OMC design can be a potential platform
for bi-directional piezo-optomechanical transducers.

7.2.2 Efficiency and Noise Analysis of Bidirectional Microwave to Optical
Transducer

The system Hamiltonian for the open quantum system can be written as (7.1)-(7.6).
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H = H0 + HDrive + HSignal + HNoise (7.1)

H0 = ~(ωo −
κo

2
i)â†â + ~(ωm −

Γ

2
i)b̂†b̂ + ~(ωµ −

κµ

2
i)ĉ†ĉ (7.2)

HInt = ~g0â†â(b̂† + b̂) (7.3)

HDrive = −~
√
κoei(α∗in(t)â + αin(t)â

†) (7.4)

HSignal = −~
√
κoei(â

†

inâ + âinâ†) − ~
√
κµei(ĉ

†

inĉ + ĉinĉ†) (7.5)

HNoise = −~
√
κoii(â

†
nâ + ânâ†) − ~

√
Γi(b̂†nb̂ + b̂nb̂†) − ~

√
κµii(ĉ

†
n ĉ + ĉnĉ†) (7.6)

where α(t) = α0 exp(−iωlt) is the optical pumping field at ωl. Taking the time
dependant unitary transformation to a rotating frame with the driving field shown
in Û = exp

(
−iωd â†ât

)
and then linearizing the Hamiltonian using â = ā + δâ with

coherent cavity amplitude ā, we can obtain the standard optomechanical interaction
Hamiltonian after rotation-wave-approximation assuming ∆o = ωo − ωd > 0

H′ = H′0 + H′Signal + H′Noise (7.7)

H′0 = ~(∆o −
κo

2
i)â†â + ~(ωm −

Γ

2
i)b̂†b̂ + ~(ωµ −

κµ

2
i)ĉ†ĉ (7.8)

H′Int = ~G(b̂
†â + b̂â†) (7.9)

H′Signal = −~
√
κoei(â

†

inâ + âinâ†) − ~
√
κµei(ĉ

†

inĉ + ĉinĉ†) (7.10)

H′Noise = −~
√
κoii(â

†
nâ + ânâ†) − ~

√
Γi(b̂†nb̂ + b̂nb̂†) − ~

√
κµii(ĉ

†
n ĉ + ĉnĉ†) (7.11)

where we relabelled δâ → â, âin exp((iωdt)) → âin, and ân exp((iωdt)) → ân.
G =
√

ncg0 is defined as the optomechanical coupling rate with intracavity photon
occupancy nc = |ā|2. With relation Û̂O = i

~

[
H′, Ô,

]
, we can derive in time domain,

Ûa = −i(∆o −
κo

2
i)â − iGb̂ +

√
κoeâin +

√
κoiân (7.12)

Ûb = −iGâ − i(ωm −
Γ

2
i)b̂ − iJĉ +

√
Γb̂n (7.13)

Ûc = −iJb̂ − i(ωµ −
κµ

2
i)ĉ +

√
κµeĉin +

√
κµiĉn. (7.14)

Frequency domain equations can be derived using Fourier Transform,

− iωã = −i(∆o −
κo

2
i)ã − iGb̃ +

√
κoeãin +

√
κoiãn (7.15)

− iωb̃ = −iGã − i(ωm −
Γ

2
i)b̃ − iJc̃ +

√
Γb̃n (7.16)

− iωc̃ = −iJb̃ − i(ωµ −
κµ

2
i)c̃ +

√
κµec̃in +

√
κµic̃n (7.17)
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which can be expressed in matrix form:


∆o − ω −

κo
2 i G 0

G ωm − ω −
Γ
2 i J

0 J ωµ − ω −
κµ
2 i



ã

b̃

c̃

 = −i


√
κoeãin +

√
κoiãn

√
Γb̃n

√
κµec̃in +

√
κµic̃n.


(7.18)

Inverting the coefficient matrix on the left, we obtain


ã

b̃

c̃

 = −iD[T]


√
κoeãin +

√
κoiãn

√
Γb̃n

√
κµec̃in +

√
κµic̃n,

 (7.19)

where

[T] =
[
(ωm −ω −

Γ
2 i)(ωµ −ω −

κµ
2 i) − J2 −G(ωµ −ω −

κµ
2 i) GJ

−G(ωµ −ω −
κµ
2 i) (∆o −ω −

κo
2 i)(ωµ −ω −

κµ
2 i) −J(∆o −ω −

κo
2 i)

GJ −J(∆o −ω −
κo
2 i) (∆o −ω −

κo
2 i)(ωm −ω −

Γ
2 i).

]
(7.20)

D =
(
(∆o − ω −

κo

2
i)(ωm − ω −

Γ

2
i)(ωµ − ω −

κµ

2
i) (7.21)

− G2(ωµ − ω −
κµ

2
i) − J2(∆o − ω −

κo

2
i)
)−1

(7.22)

For input signal from microwave transmission line (c̃in), we can obtain the signal in
the optical fiber from the input-output theorem.

ãsignalout = D
√
κoeκµeGJc̃in (7.23)

ãnoiseout = D
(
√
κoeκoi

(
(ωm − ω −

Γ

2
i)(ωµ − ω −

κµ

2
i) − J2

)
ãn

−
√
ΓκoeG(ωµ − ω −

κµ

2
i)b̃n + GJ

√
κµiκoec̃n

)
.

(7.24)

A similar analysis can be done for the input signal from the optical fiber (ãin). The
conversion number efficiency and signal-to-noise ratios for both direction ηconv can
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be shown in (7.25) to (7.27)

ηconv =

〈
ãsignal†ãsignal

〉〈
c̃†inc̃in

〉 =
��D√κoeκµeGJ

��2 (7.25)

SNRo =

〈
ãsignal†ãsignal

〉〈
ãnoise†out ãnoiseout

〉
=

κµeG2J2

κoi |(ωm−ω−
Γ
2 i)(ωµ−ω−

κµ
2 i)−J2 |

2
n̄ob

+ΓG2 |ωµ−ω−
κµ
2 i |

2
n̄mb+G2 J2κµin̄µb

(7.26)

SNRµ =

〈
c̃signal†c̃signal

〉〈
c̃noise†out c̃noiseout

〉
=

κoeG2J2

κµi |(ωm−ω−
Γ
2 i)(ωo−ω−

κo
2 i)−G2 |

2n̄µb

+ΓJ2 |∆o−ω−
κo
2 i |

2n̄mb+G2 J2κoin̄ob

(7.27)

where

d = (∆o − ω −
κo

2
i)(ωm − ω −

Γ

2
i)(ωµ − ω −

κµ

2
i) (7.28)

− G2(ωµ − ω −
κµ

2
i) − J2(∆o − ω −

κo

2
i) (7.29)

D = |d |2 (7.30)

0 =
∂D
∂ω
= 2Re

[
∂d
∂ω

d∗
]
. (7.31)

Note that the denominator of the conversion efficiency can be minimized with
respect to the frequency ω by looking for the extrema points of the denominator in
(7.30) according to (7.31) with solutions in (7.34) and (7.35) assuming the resonant
condition that ∆0 = ωm = ωµ.
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ζ =

(
16G4 + 32G2J2 + 16J4 − 16G2γ2 − 16J2γ2 + γ4

− 24G2γκo − 16G2κ2
o + 8J2κ2

o − γ
2κ2

o

+ κ4
o − 24J2γκu + 8G2κ2

u − 16J2κ2
u

− γ2κ2
u − κo

2κ2
u + κ

4
u

)1/2

(7.32)

β = 8G2 + 8J2 − γ2 − κ2
o − κ

2
u (7.33)

ωµ=±1,ν=±1 = ωm + µ

√
β + νζ

2
√

3
(7.34)

ωµ=0 = ωm. (7.35)

For expressions in (7.34), we can notice that typical parameters have κo ∼ 2π×1GHz,
κu ∼ 2π × 10 kHz, Γ ∼ 2π × 1 kHz, Γ ∼ 2π × 1 kHz, J ∼ 2π × 10 MHz, and
G = g0

√
nc ∼ 2π × 10 MHz. These typical parameters lead to b < 0. Thus only

ωµ=±1,ν=1 andωµ=0 are valid real solutions. It can also be shown thatωµ=0 leads to a
maximal point of D and a local minimal point in (7.25). ωµ=±1,ν=1 are the maximal
points of (7.25).

To highlight the importance of quantum cooperativity for optomechanical and piezo-
electric interactions we can further simplify equations for SNRo←µ and SNRo→µ at
the maximum conversion efficiency points,

SNRo←µ =
κµeJ2

γAn̄mb

=
κµeκµ

4A
Ceff
µ,m,

(7.36)

SNRo→µ =
κoeG2

γBn̄mb

=
κoeκo
4B

Ceff
o,m

(7.37)

where the quantum cooperativities are defined as Ceff
µ,m = Cµ,m/n̄mb and Ceff

o,m =

Com/n̄mb, with standard cooperativities at the microwave and optical ports given
as Cµ,m = 4J2/γκµ and Com = 4G2/γκo, respectively. In the above equations,
A ≡

��ωµ − ω −
κµ
2 i

��2 and B ≡
��∆o − ω − κo

2 i
��2, and we have dropped terms related

to n̄µb and n̄ob since they are very small in the system discussed here (milliKelvin
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temperatures). We have also neglected spontaneous scattering noise (quantum
noise) in the optomechanical interaction [102] due to the very large sideband ratio
that we have in our 2D OMC system. From these simple relations we can see the
importance of the quantum cooperativity for quantum transduction applications. In
order to transduce single photons with SNR greater than unity one needs Ceff

µ,m and
Ceff
o,m to be larger than unity (the pre-coefficients in Eqs. (7.36) and (7.37) are always

less than or equal to unity, depending on the level of overcoupling to the optical and
microwave external lines).
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Appendix A

POWER SPECTRAL DENSITY OF THE MECHANICAL MODE

A.1 Definition of Fourier Transforms and Power Spectral Density

Definition of Fourier transforms for time-dependent quantumoperators and variables
throughout this thesis is following,

Â(ω) =
∫ ∞

−∞

dt
√

2π
Â(t)eiωt, (A.1)

Â(t) =
∫ ∞

−∞

dω
√

2π
Â(ω)e−iωt . (A.2)

For the conjugate of Â,

Â†(ω) =
∫ ∞

−∞

dt
√

2π
Â†(t)eiωt, (A.3)

Note that this implies the relation Â†(ω) = (Â(−ω))†. The quantum power spectral
density of the operator Â(t) is defined as,

SÂÂ(ω) =

∫ ∞

−∞

dτ eiωτ〈Â†(t + τ)Â(t)〉 (A.4)

=

∫ ∞

−∞

dω′

2π
〈Â†(ω)Â(ω′)〉, (A.5)

where 〈·〉 denotes the quantum expectation value.

A.2 Mechanical Power Spectral Density

Without optomechanical coupling, the spectral density of the mechanical mode only
considering thermal phonon bath is,
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Û̂b(t) = −
(
iωm +

γi

2

)
b̂(t) +

√
γi b̂in(t), (A.6)

Same as in the previous section, the spectral density of the mechanical resonator
annihilation operator can be computed by transferring A.6 to the frequency domain
and use Equ. A.5:

Sb̂b̂(ω) =

∫ ∞

−∞

dω′
(

−
√
γi

−i(ωm + ω) + γi/2

) (
−
√
γi

i(ωm − ω′) + γi/2

)
〈b̂†in(ω)b̂in(ω

′)〉

(A.7)

= γinb

∫ ∞

−∞

dω′
(

1
−i(ωm + ω) + γi/2

) (
1

i(ωm − ω′) + γi/2

)
δ(ω + ω′)

(A.8)

=
γinb

(ωm + ω)2 + γ
2
i /4

. (A.9)

For the case with optomechanical coupling, there are 〈n〉 phonons in the mechanical
mode of the optomechanical system, an analogous spectral density functions in
terms of the shifted ωm and total damping rate γcan be defined as,

Sb̂b̂(ω; 〈n〉) =
γ〈n〉

(ωm + ω)2 + γ/2
, (A.10)

Similarly, the corresponding spectral density for the creation operator is found to be

Sb̂† b̂†(ω; 〈n〉) =
γ(〈n〉 + 1)

(ωm − ω)2 + γ/2
. (A.11)

Note that these spectral densities can be integrated and phonon number 〈n〉 can be
extracted,

∫ ∞

−∞

dω
2π

Sb̂b̂[ω; 〈n〉] = 〈n〉, (A.12)∫ ∞

−∞

dω
2π

Sb̂† b̂†[ω; 〈n〉] = 〈n〉 + 1. (A.13)
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Appendix B

BALANCED HETERODYNE DETECTION

Heterodyne detection measures a photocurrent proportional to the squared field
amplitudes incident on a photon detector. In heterodyne detection setups such as
shown in Section 3.1.2, a strong local oscillator (L.O.) is used to amplify a signal
tone and mixes it into a frequency range which is convenient for detection (usually
decided by the bandwidth of photo detectors used).

Balanced heterodyne detection is a method which uses two photon detectors, by
subtracting photon currents from two detectors, common mode noise terms coming
from the local oscillator can in principle be eliminated. The output field âout from
a cavity-optomechanical system is sent to an idealized beam-splitter along with a
strong L.O. tone. The difference photocurrent Î−(t) between the two output port
photocurrents is measured.

Defining the time domain signal as â(t) and the L.O. as âLO(t), where

âLO(t) = αLOe−iωLOt + δâLO(t), (B.1)

β ∈ C is the square root of the average L.O. photon flux, and δ̂b(t) is the noise
from the L.O. oscillator. We make the substitution â(t) = ˜̂a(t)e−iωLOt where ˜̂a(t) is
the slowly-varying parts of the relevant fields relative to the L.O.. The difference
photocurrent can be written as

Î−(t) � i |αLO |

(
e−iφLO ˜̂a(t) − eiφLO ˜̂a†(t)

)
. (B.2)

The power spectral density of the difference photocurrent of a sideband-resolved
system under red-detuned (∆ = +ωm) driving as measured on a balanced heterodyne
detection setup can be derived as

SÎ− Î−[ω]

����
∆=+ωm

= 2π |αLO |
2
(
1 + 2

κe
κ
γOMS̄b̂b̂[ω; nb]

)
, (B.3)
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where S̄b̂b̂ is the power spectral density of b̂. Similarly, for the case of blue detuning
(∆ = −ωm), the power spectral density of difference photocurrent is

SÎ− Î−[ω]

����
∆=−ωm

= 2π |αLO |
2
(
1 + 2

κe
κ
γOMS̄b̂† b̂†[ω; nb]

)
. (B.4)

Note that in B.3 and B.4, the efficiency of the optical path and detector are assumed
to be unity. These derivations show the principle of measuring the mechanical
noise power spectral density base on the intracavity light field detected on a photon
detector. The focus of this work is using Balanced Heterodyne Detection for the
linewidth of mechanical noise power spectral density (mechanical damping rate),
where exact efficiency of Balanced Heterodyne Detection setup is not required.
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Appendix C

PHONON COUNTING TECHNIQUE

C.1 Single-Photon Detector

The SPDs used here are amorphous WSi-based superconducting nanowire single-
photon detectors developed in collaboration between the Jet Propulsion Laboratory
andNIST [159]. The SPDs are designed for awavelength range λ = 1520−1610 nm,
with maximum count rates as large as 107 counts per second (c.p.s.) [159]. The
SPDs are mounted on the still stage of the dilution refrigerator at ∼ 700 mK. Single-
mode optical fibers are passed into the refrigerator through vacuum feedthroughs
and coupled to the SPDs via a fiber sleeve attached to each SPD mount. The radio-
frequency output of each SPD is amplified by a cold-amplifier mounted on the 50 K
stage of the dilution refrigerator as well as a room-temperature amplifier, then read
out by a triggered PicoQuant PicoHarp 300 time-correlated single photon counting
module. After filtering out the long wavelength blackbody radiation inside the DR
through a bandpass filter and isolating the input optical fiber from environmental
light sources at room temperature, we observed SPD dark count rates as low as
∼ 1 (c.p.s.) and a SPD quantum efficiency ηSPD ' 60% (see Figure. C.1).
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SPD dark count rate Γdark ~ 1—2  c.p.s.

Operating point

Figure C.1: Single-photon detector calibration curve. Efficiency calibrations for
an SPD used in this work, plotted against the D.C. bias current applied through the
nanowire. At high bias current (Ibias & 2.5 µA), the SPD switches into a normal state
and its response is no longer linear. We operate in the saturated region of the curve,
where the linear efficiency ηSPD of the SPD is not sensitive to small fluctuations in
bias current. Here η includes all losses from the input fiber to the dilution fridge to
the SPD. Note that through fiber-coiling techniques, black-body radiation isolation,
and minimization of stray light entering the optical path, we are able to operate the
SPDs with ultra-low intrinsic dark-count rates around 1 to 2 c.p.s.

C.2 Phonon Counting

Other than heterodyne detection of a quantum mechanical system coupled to optical
or electrical field [100], probing the quantum dynamics of the coupled optome-
chanical system by photon counting is particularly suitable for optomechanical
systems [160, 161]. This kind of intensity interferometry technique has been widely
used in measurements of particle and molecular motion in materials [162].

In our experiments, we have a high-Q, GHz-frequency mechanical resonator cou-
pling to an optical nanocavity. Phonon-photon coupling is enhanced and we collect
the scattered photons into a preferred optical mode to study the dynamics of me-
chinical renonator. By counting the photons collected on a single-photon-detector,
we are effectively counting phonons in the mechanical resonator. In this section, the
basics of phonon counting is briefly introduced for red-detuned (∆ = +ωm) driving
case in a sideband-resolved optomechincal system.
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With the driving laser parked at red-detuned frequency, the optical field amplitudes
in the frequency domain is

â(ω) =
−iG(b̂†(ω) + b̂(ω)) +

√
κeâin(ω) +

√
κiâi(ω)

i(∆ − ω) + κ/2
, (C.1)

b̂(ω) =
√
γib̂in(ω) − iG(â(ω) + â†(ω))

i(ωm − ω) + γi/2
. (C.2)

The scattered photons to the optical cavity frequency by mechanical resonance is
then filtered out by band-pass filterswith the bandwidthmuch smaller then the optical
cavity linewidth, where the filtering can be expressed by following the transmission
function:

Ff(ω;ωf) =
κf/2

i(ω − ωf) + κf/2
, (C.3)

where κf is the bandwidth of the filter and ωf is the center frequency of the filter. in
order to filter out the scattered photons mentioned above, filter center frequency is
set to ωf = ωm.

âfilt(ω)
����
∆=+ωm

= Ff(ω;ωm)â(ω)
����
∆=+ωm

. (C.4)

The photon count rate detected on SPD after the filter is

Γ(t) = 〈â†filt(t)
����
∆=+ωm

âfilt(t)
����
∆=+ωm

〉

=
1

2π

∫ ∞

−∞

dω
∫ ∞

−∞

dω′ei(ω+ω′)t 〈â†filt(ω)âfilt(ω
′)〉.

(C.5)

Here, we ignore the vacuum noise terms âin and âi, and count-rate can be expressed
as

Γ(t) =
1

2π

(
|Ff(0;ωm)|

2 |αout |
2 +

κe
κ
γOM

∫ ∞

−∞

dω |Ff(ω;ωm)|
2Sb̂b̂[ω; 〈n〉]

)
(C.6)

=
1

2π

(
|Ff(0;ωm)|

2 |αout |
2 +

κe
κ
γOM〈n〉

)
(C.7)

≈ Atten|αout |2 +
κe
κ
γOM〈n〉, (C.8)
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where Ff(ωm;ωm) = 1 in Equation C.8, since filter bandwidth is much larger than
mechanical linewidth. Atten ≡ |Ff(0;ωm)|

2/(2π) in the attenuation factor of the
driving frequency laser set by the filter.

Assuming Atten is very small and accounting for the noise terms (rejection of pump
photon by filtering, pump noise photon count rate Γpump = ηA|αout |2 + Γnoise, where
detection efficiency η models the optical losses in the detection optical path.), the
real scattered signal photon count rate is directly proportional to 〈n〉, therefore, by
counting photons on a single-photon-detector, we can equivalently count phonons
in the mechanical resonator.

The final measured count rate single-photon-detector also includes a dark-count
rate Γdark, which describes both dark counts of the single-photon-detector as well
as counts arising from stray radiation (e.g. due to thermal blackbody radiation
inside the fridge to the filters inside the fridge or directly to single-photon-detector).
Finally, for red- and blue-detuning, the total measured output photon count rate is

Γ(∆ = ±ωm) = ΓDCR + Γpump + ΓSB,0(〈n〉 +
1
2
(1 ∓ 1)), (C.9)

where the 〈n〉 −→ 〈n〉 + 1 for blue detuning comes from integral of Sb̂† b̂†[ω; 〈n〉].
ΓSB,0 ≡ η

κe
κ γOM is defined as the count rate per phonon.

C.2.1 Noise in Phonon Counting

The noise (in units of mechanical occupation quanta) in phonon counting can be
characterized by dividing the total noise floor by the per-phonon count rate:

nNEP =
ΓDCR + Γpump

ΓSB,0
. (C.10)

Substituting γOM = 4g2
0nc/κ, and ΓSB,0 = η |γOM |, this yields

nNEP(nc) =
κ2Γdark

4ηκeg2
0nc
+ A

(
κωm

2κeg0

)2
. (C.11)

From the above equation, we can see that large cavity-enhanced optomechanical
coupling g0 is critical for both low power sensitivity, which is limited by detector
dark counts, and the high power sensitivity, which is limited by pump bleed-through.
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