
Exact bosonization in all dimensions: the duality
between fermionic and bosonic phases of matter

Thesis by
Yu-An Chen

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2020
Defended May 25, 2020



ii

© 2020

Yu-An Chen
ORCID: 0000-0002-8810-9355

All rights reserved



iii

ACKNOWLEDGEMENTS

My time at Caltech has been exciting and rewarding. It is a pleasure to work with
so many talented and friendly people.

First, I want to thank my advisor Prof. Anton Kapustin. His deep mathematical
knowledge and clear physical intuition always fascinate me. I wouldn’t have been
able to build my solid background in both physics and mathematics without his
guidance. I thank him for teaching the way of thinking on dealing with the most
abstract and hardest problems, especially as a pioneer in our field. To complete
my Ph.D. thesis, I needed to explore and combine different fields. My ability was
nurtured with his helpful advising. He also gave me a lot of freedom to study
everything I am interested in. With his support, I was able to be an intern in the
Google Quantum AI team, which developed the latest quantum computers. The best
decision I have ever made at Caltech was to choose him as my advisor.

I am also influenced by many other professors at Caltech. I am grateful to Prof.
Xie Chen for her advice on teaching, research, and life. I was lucky to be a TA
in her course. During the quarter, I learned how to organize a course and to give
excellent lectures. She shared her opinion on my future directions as well, and this
helped my career. She is very kind and makes me feel like she is my “elder sister”.
I am inspired by Prof. Alexei Kitaev. By taking his classes and talking with him
during lunch, I learned many things from him. I admire his vision of physics and his
continually pioneering works. It is also my honor to have many conversations with
Prof. Jason Alicea and Prof. Olexei Motrunich. They gave me my first guidance in
the field of condensed matter theory.

MyPh.D. lifewouldn’t have been enjoyablewithoutmeetingmany students and post-
docs at Caltech. I first thank Hsiao-Yi Chen for many discussions and for helping
me get through my dark first year. I thank group members Alex Turzillo and Miny-
oung You for collaboration. As the latest one to join this small group, I am greatly
enlightened by them. I also thank Tyler Ellison and Nathanan Tantivasadakarn for
the wonderful collaborating. The project represents the most important work I have
completed in my last two years. Finally, I had stimulating discussions with many
people, and I appreciate their help during my Ph.D.: Boqiang Shen, Ying-Hsuan
Lin, Po-Shen Hsin, Bowen Yang, Zitao Wang, Baoyi Chen, Yunxuan Li, Kuan-Yu
Lin, Hung-I Yang, Jayden Ooi, Junyu Liu, Wilbur Shirley, Pouria Dadras, Djordje



iv

Radicevic, Wenjie Ji, Yu-Ping Lin, and Su-Kuan Chu.

Lastly, I thank my parents for their enormous support and love for me. They make
me pursue my dream without any pressure.



v

ABSTRACT

We describe an =-dimensional (= ≥ 2) analog of the Jordan-Wigner transformation,
which maps an arbitrary fermionic system to Pauli matrices while preserving the
locality of the Hamiltonian. When the space is simply-connected, this bosonization
gives a duality between any fermionic system in arbitrary = spatial dimensions and a
new class of (=−1)-form Z2 gauge theories in = dimensions with a modified Gauss’s
law. We describe several examples of 2d bosonization, including free fermions
on square and honeycomb lattices and the Hubbard model, and 3d bosonization,
including a solvable Z2 lattice gauge theory with Dirac cones in the spectrum.
This bosonization formalism has an explicit dependence on the second Stiefel-
Whitney class and a choice of spin structure on the manifold, a key feature for
defining fermions. A new formula for Stiefel-Whitney homology classes on lattices
is derived. We also derive the Euclidean actions for the corresponding lattice gauge
theories from the bosonization. The topological actions containChern-Simons terms
for (2 + 1)D or Steenrod Square terms for general dimensions. Finally, we apply
the bosonization to construct various bosonic or fermionic symmetry-protected-
topological (SPT) phases. It has been shown that supercohomology fermionic SPT
phases are dual to bosonic higher-group SPT phases.

Keywords: bosonization, lattice gauge theory, spin systems, SPT phases
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C h a p t e r 1

INTRODUCTION

The first part of this thesis is bosonization in all dimensions. It is well known that
the Jordan-Wigner transformation establishes an equivalence between the quantum
Ising chain in a transverse magnetic field and a system of free spinless fermions on
a 1d lattice. This equivalence is very useful and is the quickest way to solve the
2D Ising model.1 The use of the Jordan-Wigner transformation is not limited to the
quantum Ising chain. It establishes a very general kinematic equivalence between
1d fermionic systems and 1d spin chains with a Z2 spin symmetry. One can regard
it as a very special isomorphism between the algebra of fermionic observables with
trivial fermion parity and the Z2-even subalgebra of the algebra of observables in a
spin chain. Its distinguishing feature is that it maps local observables2 with trivial
fermion parity on the fermionic side to local observables that commute with the
total spin parity

(−1)(I =
∏
8

(−1)(
I
8

on the bosonic side ((I
8
= 0, 1). Thus any local Hamiltonian for a 1d fermionic

system can be mapped to a local spin chain Hamiltonian which preserves (I modulo
2. In this sense, the Jordan-Wigner transformation is local.

There are several ways to generalize the Jordan-Wigner transformation to 2d lattice
systems. One obvious approach is to take a square lattice, represent it as a 1d system
by picking a lattice path that snakes through the whole lattice and visits each site
once, and apply the 1d Jordan-Wigner transformation. This leads to a bosonization
map which maps some, but not all, local observables with a trivial fermion parity to
local observables with trivial (I. The lack of 2d locality causes problems since even
very simple fermionic Hamiltonians are mapped to non-local spin Hamiltonians and
vice versa. But there are interesting exceptions [1], the Kitaev honeycomb model
[2] being among them [3–5]. Another approach to 2d bosonization is to use flux
attachment [6, 7]: a fermion is represented by a boson interacting with a Chern-
Simons gauge field. Related ideas in the continuum have been the focus of much
recent interest [8–19]. However, it is hard to make this precise on the lattice, due

12D here means “two Euclidean space-time dimensions.”
2That is, observables that act nontrivially on a finite number of lattice sites.
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to well-known difficulties with defining a lattice Chern-Simons theory. A popular
strategy is to eliminate the Chern-Simons gauge field by solving its equations of
motion, but this again leads to a non-local map.

A very interesting example of exact 2d bosonization, or rather fermionization, was
presented by A. Kitaev in his paper on the honeycomb model [2]. At first it appears
quite special, but in fact, it provides a method for mapping an arbitrary system of
Majorana fermions on a trivalent lattice to a system of bosonic spins on the same
lattice. The spin Hilbert space is not a tensor product over all sites, but rather a
subspace defined by a set of commuting constraints. There is one constraint for each
face of the lattice, indicating that the dual bosonic system is a gauge theory. But it
is a very unusual gauge theory since the gauge field is a composite of spins.

The starting point of this paper is to describe a 2d analog of the Jordan-Wigner
transformation, which obeys locality, and to give some examples of 2d bosonization.
We will show that any 2d fermionic system on a lattice can be mapped to a system of
bosons. On a topologically trivial space, this map is an equivalence, and every local
fermionic Hamiltonian is mapped to a local spin Hamiltonian. The main novelty
compared to the 1d case is that the bosonic system is a Z2 gauge theory. This means
that the Hilbert space is not a tensor product of local Hilbert spaces, but a subspace
in such a tensor product defined by a set of commuting local constraints. They can
be interpreted as Gauss law constraints.

Our bosonization procedure shares some similarities both with the flux-attachment
approach and with Kitaev’s approach. It follows the same strategy as the flux-
attachment approach but uses a lattice Z2 gauge field in place of a * (1) Chern-
Simons gauge field. There is no problem writing down a Chern-Simons-like term
for a Z2 gauge field. An additional benefit is that we do not need to introduce
separate bosonic degrees of freedom to which the flux is attached: we make use only
of degrees of freedom that are already present in the gauge field. Our bosonization
procedure is completely general and local, just like in Kitaev’s approach, but there
are a couple of differences too: (1) the fermions are complex rather than Majorana,
so that the fermionic Hilbert space is naturally a tensor product over all sites; (2)
the bosonic variables live on edges rather than on sites, and the gauge field is
fundamental rather than composite.

The connection between gauge symmetry and bosonization rests on the observation
made in [20] that 2d bosonization should map fermionic systems to bosonic systems
with a global 1-form Z2 symmetry and a suitable ’t Hooft anomaly. On a lattice,
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global 1-form symmetries can exist only in gauge theories. The proposal of [20]
was made concrete in [21] for topological systems (that is, spin-TQFTs), but it was
implicit in that paper that the same strategy should apply for general fermionic
systems on a lattice. In this thesis, we make this completely explicit. Namely, we
show that on a simply-connected space one can isomorphically map the bosonic
subalgebra of the algebra of local fermionic observables to the algebra of local
gauge-invariant observables in a suitable Z2 lattice gauge theory. The bosonization
map is not canonical and depends on some additional choices which depend on the
type of lattice. We discuss two kinds of lattices in =-dimension: the =-dimensional
cubic lattice and an arbitrary triangulation endowed with a branching structure. In
either case, the fermions live on the =-cells, i.e., fermions at faces for 2d lattices.

Gauss law constraints for gauge theories dual to fermionic systems are not standard.
Their meaning becomes clearer if we discretize time and consider the corresponding
Euclidean lattice partition function. It turns out that the unusual Gauss law arises
from a Chern-Simons-like term 8c

∫
� ∪ X� in the spacetime action. These terms

necessarily break invariance under the cubic symmetry (if one starts from a 2d
square lattice).

This approach can be generalized to 3d [22]. Every fermionic lattice system in
3d is dual to a Z2 2-form gauge theory with an unusual Gauss law. Here “2-
form gauge theory” means that the Z2 variables live on faces (2-simplices), while
the parameters of the gauge symmetry live on edges (1-simplices). 2-form gauge
theories in 3+1D have local flux excitations, and the unusual Gauss law ensures that
these excitations are fermions. This Gauss’s law can be described by the "Steenrod
square" topological action 8c

∫
� ∪ � + � ∪1 X�. The form of the modified Gauss

law was first observed in [20]: a bosonization of fermionic systems in = dimensions
must have a global (= − 1)-form Z2 symmetry with a particular ’t Hooft anomaly.
The standard Gauss law leads to a trivial ’t Hooft anomaly, so bosonization requires
us to modify it in a particular way.

We further extend the result to arbitrary = dimensions. We show that every fermionic
lattice system in =-dimension is dual to a Z2 (= − 1)-form gauge theory with a
modified Gauss law. Our bosonization map is kinematic and local in the same sense
as the Jordan-Wigner map: every local observable on the fermionic side, including
the Hamiltonian density, is mapped to a local gauge-invariant observable on the Z2

gauge theory side. In the Euclidean picture, we show explicitly that our bosonization
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map is equivalent to introducing the topological term in the action:

(top = 8c

∫
.

(�=−1 ∪=−3 �=−1 + �=−1 ∪=−2 X�=−1), (1.1)

where �=−1 is (= − 1)-form gauge fields, a (= − 1)-cochain �=−1 ∈ �=−1(.,Z2),
and . is (= + 1)-dimensional spacetime manifold. When �=−1 is closed (a cocycle),
this term reduces to the Steenrod square operator [23]. This “Steenrod square” term
appears in the construction of fermionic symmetry-protected-topological phases
[24].

The second part of the thesis is about constructions of symmetry protected topolog-
ical (SPT) phases. A major goal in condensed matter is the classification of phases
given a certain symmetry. For quantum phases of matter, there are a class of gapped
symmetric phases which have a unique ground state on a closed manifold known as
symmetry protected topological (SPT) phases [25, 26]. In studying these phases,
there have been two main programs that have evolved in tandem. The first is how
to classify such phases given a symmetry group �. There are two main classes of
phases. One is where the constituents are purely bosonic (bSPTs), and those that
have physical fermions as excitations (fSPTs). For an onsite and unitary symmetry
group, interacting bSPTs and fSPTs, are now believed to be classified by oriented
cobordism [27] and spin cobordism [28] respectively. These classifications can also
be obtained from a generalized cohomology theory [29–31].

The second is to construct Hamiltonians which realizes these phases. For bosonic
SPTs, a successful class ofmodels have been constructed using group cohomology[32].
Outside of this class, though they are predicted to exist usingfield theory arguments[30,
33] only a few phases “beyond” group cohomology have been constructed as exactly
solvable lattice models[34–36]. For fermionic SPTs, a large class of models can be
realized via free fermion models[37–39]. However, there are also certain interacting
models that have no free-fermion counterpart[40].

In this thesis, we consider a large class of models that realize interacting fSPTs
known as group supercohomology SPTs [41]. Using input data that characterize
these models, we construct exactly solvable Hamiltonians that realize these phases
and also construct their symmetric gapped boundaries, which exhibit topological
order. The construction of exactly solvable Hamiltonians for fSPTs in (2+1)D
[42, 43] and (3+1)D will be shown explicitly in this paper. The construction
exploits a duality which relates the ground state of the fSPT to the ground state of
a certain auxillary bSPT. In particular, gauging the Z2 (= − 2)-form symmetry of



5

this auxiliary bSPT (in = spatial dimensions) gives rise to a =− 1-form gauge theory
with emergent fermions. We then use the boson-fermion duality developed in Part
I to obtain the wavefunction and Hamiltonian for the fSPT in = spatial dimensions.
This picture is summarized in Figure 1.1.

We remark that although there are previous works which construct exactly-solvable
fSPT phases, some of which are outside supercohomology [21, 41, 44–49], our
construction of fSPT phases gives an expression for the disentangler for the ground
statewavefunction. Specifically, in the absence of symmetry, we are able to explicitly
trivialize the fSPT wavefunction using a Finite Depth Quantum Circuit (FDQC)
which commutes with the symmetry as a whole. Furthermore, the group structure
(or stacking rule) of the fSPT phases can be obtained explicitly by a composition of
disentangling unitaries. Having an explicit disentangler also allows us to construct a
Hamiltonian realizing the phasewhere every eigenstate is itself an SPT, and therefore
allowing the Hamiltonian to be many-body localized by introducing disorder.

Figure 1.1: To construct a � 5 = � × Z 52 supercohomology SPT model in = spatial
dimensions, we start with a model for a particular (= − 1)-group SPT phase deter-
mined by the supercohomology data (d, a). Next, we gauge the Z2 (= − 2)-form
symmetry of the (= − 1)-group to build the shadow model. We then condense the
fermion in the shadow model, or apply the fermionization duality, to obtain a model
for the supercohomology SPT phase corresponding to (d, a).

This thesis is organized as follows. In Part I, we construct the 2d bosonization map
on the kinematic level, i.e. on the level of the algebras of observables in Section 2.
We give several examples of bosonization for concrete fermionic systems, such as
free fermions and the Hubbard model. Conversely, we describe the fermionization
of the simplest lattice gauge theories with a non-standard Gauss law, which are
dual to free fermionic theories and thus are integrable. The Euclidean partition
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function for the gauge theories is derived in Section 2.4. In Section 3, we explicitly
construct the 3d bosonization in both cubic lattice and general triangulation, which
utilizes the mathematical tools in algebraic topology: higher cup products. As in
the 2d case, many examples and the spacetime action are discussed. The complete
generalization for the bosonization in all dimensions is derived in Section 4. The
formalism comes from comparing the formula between 2d and 3d bosonization,
which can be extended to their general form directly.

In Part II, we begin by reviewing the construction of (2+1)D bSPTs [32] and su-
percohomology fSPTs [42] in Section 5. In Section 5.2, we construct an exactly
solvable lattice Hamiltonian and the corresponding groundstate wavefunction of
a fermionic SPT protected by an onsite finite unitary group �. We achieve this
by using the supercohomology data to construct an auxiliary bSPT protected by a
symmetry �̃, which is an extension of the � symmetry by a Z2 symmetry. The
fSPT is obtained by first gauging the Z2 symmetry followed by fermionization. The
ground state wavefunction has an explicit disentangling circuit, which trivializes the
SPT phase in the absence of symmetry. We use the circuit to derive the stacking
rule for supercohomology phases. In Section 6, similar scheme applies to (3+1)D
fSPTs. The only difference is that the auxiliary bSPT is now protected by a 2-
group symmetry[50], which is an extension of a 0-form � symmetry by a 1-form
Z2 symmetry. In Section 6.1, we review the basic properties for 2-group, 2-group
extension, and 2-gauge theory. In Section 6.2, we use these concepts to construct a
“2-group” bSPT. After gauging the 1-form symmetry, it becomes a Z2 gauge theory,
which is fermionizable. In Section 6.3, the fSPT wavefunction and its Hamiltonian
are derived.

Notations and Coventions
This subsection introduces the notations and conventions adopted for this thesis.
The more details for algebraic topology and the definition of (higher) cup products
is included in Appendix A. In this paper, we will always work with an arbitrary
triangulation of a simply-connected =-dimensional manifold "= equipped with a
branching structure (orientations on edges without forming a loop in any triangle).
The vertices, edges, faces, and tetrahedra are denoted E, 4, 5 , C, respectively. The
general 3-simplex is denoted as Δ3 . We can label the vertices of Δ3 as 0, 1, 2, . . . , 3
such that the directions of edges are from the small number to the larger number.
We denote this 3-simplex as Δ3 = 〈01 . . . 3〉. Its boundaries are (3 − 1)-simplices
〈0, . . . , 8̂, . . . , 3〉 for 8 = 0, 1, . . . , 3, where 8̂ means 8 is omitted. A formal sum of
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3-simplices modulo 2 forms an element of the chain �3 ("=,Z2).

For every E, we define its dual 0-cochain v, which takes value 1 on E, and 0
otherwise, i.e. v(E′) = XE,E′. Similarly, e is an 1-cochain e(4′) = X4,4′, and so forth,
i.e. �3 being a 3-cochain �3 (Δ′3) = XΔ3 ,Δ ′3 . All dual cochains will be denoted in
bold. An evaluation of a cochain c on a chain 2′ will sometimes be denoted

∫
2′
c.

When the integration range is not written, c is assumed to be the top dimension and∫
c ≡

∫
"=

c. A 3-cochain c3 ∈ �3 ("=,Z2) can be identified as Z2 fields living on
each 3-simplex Δ3 , with the value c3 (Δ3). The cup product ∪ of a ?-cochain U?
and a @-cochain V@ is a (? + @)-cochain defined as

[U? ∪ V@] (〈0, 1, . . . , ? + @〉) = U? (〈01 . . . ?〉)V@ (〈?, ? + 1, . . . , ? + @〉)
= U? (0 ∼ ?)V@ (? ∼ ? + @).

(1.2)

The definition of the higher cup product [20, 23] is

[U? ∪0 V@] (0, 1, · · · , ? + @ − 0) =∑
0≤80<81<···<80≤?+@−0

U? (0 ∼ 80, 81 ∼ 82, 83 ∼ 84, · · · ) × V@ (80 ∼ 81, 82 ∼ 83, · · · ), (1.3)

where 8 ∼ 9 represents the integers from 8 to 9 , i.e. 8, 8 + 1, . . . , 9 , and {80, 81, . . . , 80}
are chosen such that the arguments of U? and V@ contain ? + 1 and @ + 1 numbers
separately.

The boundary operator is denoted by m. For an =-simplex Δ=, mΔ= consists of all
boundary (= − 1)-simplices of Δ=. The coboundary operator is denoted by X (not
to be confused with the Kronecker delta previously). On a 0-cochain v, Xv is an
1-cochain acting on edges, and is 1 if m4 contains E and 0 otherwise:

Xv(4) = v(m4) = XE,m4 .

It is similar for simplices in any dimension.

Finally, Δ1
= ⊃ Δ2

=′ or Δ
2
=′ ⊂ Δ1

= means that the simplex Δ1
= contains Δ2

=′ as a
subsimplex. A general rule of thumb is that the subset symbol always points to one
higher dimension.
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Bosonization

8
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C h a p t e r 2

BOSONIZATION ON TWO-DIMENSIONAL LATTICES

2.1 Square lattice
We first introduce our bosonization method on an infinite 2d square lattice. Suppose
that we have a model with fermions living at the centers of faces. Let us describe
the generators and relations in the algebra of local observables with trivial fermion
parity (the even fermionic algebra for short).

On each face 5 we have a single fermionic creation operator 2 5 and a single fermionic
annihilation operator 2†

5
with the usual anticommutation relations. The fermionic

parity operator on face 5 is % 5 = (−1)2
†
5
2 5 . It is a “Z2 operator” (i.e. it squares

to 1). All operators % 5 commute with each other. The even fermionic algebra is
generated by these operators and the operators 2†

5
2 5 ′, 2 5 2 5 ′, and their Hermitean

conjugates, where 5 and 5 ′ are two faces which share an edge. Overall, we get four
generators for each edge and one generator for each face.

In fact, one can make do with a single generator for each edge and a single generator
for each face, provided we choose a consistent orientation of all faces and arbitrary
orientations of all edges. We introduce Majorana fermions

W 5 = 2 5 + 2†5 , W′5 = (2 5 − 2
†
5
)/8. (2.1)

The algebra of Majorana fermions is

{W 5 , W 5 ′} = {W′5 , W
′
5 ′} = 2X 5 , 5 ′, {W 5 , W′5 ′} = 0, (2.2)

where {�, �} = �� − �� is the anti-commutator. Then the operators

% 5 = −8W 5 W′5

and
(4 = 8W! (4)W

′
'(4)

are Z2 operators and generate the even algebra. Here ! (4) and '(4) are faces to the
left and to the right of the edge 4 with respect to the chosen orientations.1 We will

1That is, ! (4) is the face which induces the same orientation on 4 as the given orientation of 4,
while '(4) is the face which induces the opposite orientation.
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1 2 3

4 5 6

7 8 9

a b

cd

Figure 2.1: Bosonization on a square lattice requires constraints on vertices.

refer to (4 as the hopping operator for edge 4. It anticommutes with % 5 if 5 = ! (4)
or 5 = '(4) and commutes with all other % 5 .

Other relations depend on the choice of orientations. We will choose the usual
(counterclockwise) orientation of the plane and point all horizontal edges to the
east, and all vertical edges to the north; see Fig. 2.1. Then it is easy to see that (4
and (4′ may fail to commute only if 4 and 4′ share a point and are perpendicular. If
4 and 4′ share a point and are perpendicular, then in the notation of Fig. 2.1 we have

[(56, (58] = [(25, (45] = 0, {(25, (56} = {(58, (45} = 0. (2.3)

In other words, (4 and (4′ anticommute if 4 and 4′ issue from the same vertex and
point either east and south, or north and west. They commute in all other cases.

Additional relations emerge if we consider the product of four hopping operators
corresponding to all edges issuing from a vertex. This corresponds to an operator
taking a fermion full circle around the vertex. The resulting operator commutes
with % 5 for all 5 and thus must be some function of these operators. Indeed, a short
calculation shows that

(58(56(25(45 = (8W3W′2) (8W2W′1) (8W0W
′
1) (8W3W

′
0)

= (8W′0W0) (8W′2W2)
= %0%2 .

(2.4)

It is clear intuitively and can be shown rigorously (see Appendix for a sketch of
a proof) that these are all relations between our chosen generators if the lattice is
infinite, or if it is finite but topologically trivial.
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The dual description will consist of bosonic spins living on edges of the same lattice.
The operators acting on each edge 4 are Pauli matrices fG4 , f

H
4 , and fI4 . To reduce

notation clutter, we denote them -4, .4, and /4.

-4 =

[
0 1
1 0

]
, .4 =

[
0 −8
8 0

]
, /4 =

[
1 0
0 −1

]
. (2.5)

This is the usual operator algebra of the toric code.

We have two kinds of edges: edges oriented east and edges oriented north. If 4 is
oriented east (resp. north), let A (4) be the edge which points north (resp. east) and
ends where 4 begins. In the notation of Fig. 2.1, A (456) = 425, A (458) = 445. It will
be useful to define the composite operator

*4 = -4/A (4) . (2.6)

In the toric code language, *4 is the operator moving the n-particle across edge 4.
We also define the “flux operator” at each face 5 to be

, 5 =
∏
4⊂ 5

/4 . (2.7)

Our bosonization map is defined as follows:

1. We identify the fermionic states |% 5 = 1〉 and |% 5 = −1〉 with bosonic states
for which, 5 = 1 and, 5 = −1, respectively. This amounts to dualizing

% 5 = −8W 5 W′5 ←→ , 5 . (2.8)

2. The fermionic hopping operator (4 is identified with*4 defined above,

(4 = 8W! (4)W
′
'(4) ←→ *4 . (2.9)

All operator relations discussed above are preserved under this map. The only
exception is the relation (2.4), which is absent on the bosonic side. Instead, the
product (58(56(25(45 maps to

*58*56*25*45 = , 50

∏
4⊃E5

-4 . (2.10)

To get an algebra homomorphism, we must impose a constraint on the bosonic
variables at vertex 5, namely

, 52

∏
4⊃E5

-4 = 1. (2.11)
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For a general vertex E, the constraint is

,NE(E)
∏
4⊃E

-4 = 1, (2.12)

where NE(E) is the face northeast of E.

We interpret this as a Gauss law for the bosonic system. The presence of the Gauss
law means that we are dealing with a gauge theory. Since the constraint at each
vertex is a Z2 operator, this is a Z2 gauge theory. The algebra of gauge-invariant
observables on the bosonic side (i.e. the algebra of local observables commuting
with all Gauss law constraints) is generated by operators *4 and, 5 , and there are
no further relations between them apart from those which exist between (4 and % 5 .
Thus the abovemap is an isomorphism and defines a 2d version of the Jordan-Wigner
transformation.

The constraint (2.12) couples the electric charge at a vertex E to the magnetic flux
at face NE(E). Thus our modified Gauss law implements charge-flux attachment,
and it is not surprising that operators *4 which move the flux behave as fermionic
bilinears.

Note also that the total fermion number operator2

� =
∑
5

1
2
(1 + 8W 5 W′5 )

is mapped to the net magnetic flux∑
5

1
2
(1 −, 5 ).

While the fermion number operator is ultra-local (it is a sum of operators each of
which acts nontrivially only on fermions at a particular site), its bosonized version
is not ultra-local.

2.2 Triangulation
The bosonization method described above also works for any triangulation ) with
a branching structure.3 The main idea of this approach was previously described in

2Not to be confused with the fermion parity operator
∏
5 % 5 .

3A branching structure on a triangulation is an orientation for every edge such that for every
face the oriented edges do not form an oriented loop. A branching structure specifies an ordering of
vertices of every face: on each face 5 there will be exactly one vertex (denoted 50) with two edges
of 5 oriented away from the vertex, one vertex ( 51) with one edge of 5 entering it and one leaving it,
and another vertex ( 52) with two edges of 5 oriented towards it.
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[21]. We will review this material first and then describe a general way to perform
bosonization on a 2d triangulation.

We assume again that we are given a global orientation and for an edge 4 define
! (4) and '(4) to be the faces to the left and to the right of 4, just as for the square
lattice. On a face 5 we have fermionic operators 2 5 , 2†5 , or equivalently a pair of
Majorana fermions W 5 , W′5 . They are generators of a Clifford algebra. The fermion
parity on face 5 is % 5 = −8W 5 W′5 . A Z2 fermionic hopping operator on an edge 4
can again be defined by (4 = 8W! (4)W′'(4) .

The even fermionic algebra is generated by % 5 and (4 for all faces and edges. The
relations between them can also be described. Obviously, these operators are Z2,
and (4 anticommutes with % 5 whenever 4 ⊂ 5 and commutes with it otherwise. The
operators (4 and (4′ sometimes commute and sometimes anticommute. To describe
the commutation rule more precisely, it is convenient to use the cup product on
Z2 1-cochains. Recall that a Z2 ?-cochain is a Z2-valued function on ?-simplices
of the triangulation. In our case, ? can be 0, 1, or 2, corresponding to functions
on vertices, edges, and faces respectively. The cup product of two 1-cochains is a
2-cochain defined as follows:

(U ∪ V) (〈012〉) = U(〈01〉)V(〈12〉).

Here U and V are arbitrary 1-cochains with values in Z2, and 0, 1, and 2 are vertices
of a face 〈012〉, ordered in accordance with the branching structure. 〈01〉 (resp.
〈12〉) is the edge from 0 to 1 (resp. from 1 to 2). The cup product is not commutative
(or supercommutative, which is the same thing since we are working modulo 2).
Let e be the 1-cochain which takes value 1 on the edge 4 and value 0 on all other
edges. Then the commutation rule for (4 and (′4 is

(4(4′ = (−1)
∫
e∪e′+e′∪e(4′(4 . (2.13)

Here the integral of a 2-cochain is simply the sum of its values on all faces of the
space manifold ": ∫

e ∪ e′ + e′ ∪ e =
∑
5 ∈"
(e ∪ e′ + e′ ∪ e). (2.14)

In other words, if 4 and 4′ are distinct edges, (4 and (4′ anticommute if 4 and 4′

belong the same face 5 = 〈012〉 and their union contains edges 〈01〉 and 〈12〉 of
that face, {4, 4′} = {〈01〉, 〈12〉}. They commute otherwise.
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Figure 2.2: A branching structure on a general triangulation.

There is also a relation for each vertex E, analogous to (2.4), which reads∏
4⊃E

(4 ∼
∏
5 ⊃�02

E

% 5 , (2.15)

where �02
E is the set of those faces 5 = 〈012〉 for which E is either 0 or 2. The product

of hopping terms equal to the product of fermion parity on these faces up to a sign.
Its explicit form will be derived later.

To reproduce these relations in a bosonic model, we again introduce a spin variable
for every edge and let -4, .4, /4 be the corresponding Pauli matrices. We let

, 5 =
∏
4⊂ 5

/4, (2.16)

as before. This operatormeasures flux through face 5 . We anticipate that the bosonic
model will be a gauge theory, and thus the algebra of gauge-invariant observables
will be generated by, 5 and Z2 operators*4 which anticommute with, 5 if 4 ⊂ 5

and commute with, 5 otherwise. We also anticipate that in order for *4 to behave
as fermion hopping operators, we must implement charge-flux attachment. Our
convention will be that if , 5 = −1 for some face 5 = 〈012〉, then electric charge
will be sitting at the vertex 0. Then the flux hopping operator will take the form

*4 = -4

∏
5 ∈{! (4), '(4)}

/
e( 512)
501

, (2.17)

where 58 9 denotes the edge of 5 = 〈8 9 :〉 connecting vertices 58 and 5 9 . Eq. (2.17)
means that*4 implements the motion of the magnetic flux across edge 4 accompa-
nied by the electric charge moving along edges 501 of those faces for which 4 = 512.
For example, in Figure 2.2, we have*35 = -35/23/13,*13 = -13/01, and*03 = -03.
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We can simplify Eq. (2.17) using the cup product notation:

*4 = -4 (
∏
4′
/

∫
e′∪e

4′ ). (2.18)

With this form, we can easily check that the operators *4 satisfy the same commu-
tation relations as (4.

*41*42 = -41 (
∏
4′1

/

∫
e′1∪e1

4′1
)-42 (

∏
4′2

/

∫
e′2∪e2

4′2
)

= (−1)
∫
e2∪e1+e1∪e2-42 (

∏
4′2

/

∫
e′2∪e2

4′2
)-41 (

∏
4′1

/

∫
e′1∪e1

4′1
)

= (−1)
∫
e2∪e1+e1∪e2*42*41 .

(2.19)

One can check that if we impose a Gauss law of the form∏
4⊃E

-4 =
∏
5 ∈�0 (E)

, 5 , (2.20)

where �0(E) is the set of faces such that E = E0 for that face, then*4 satisfy a relation
very similar to that of (4: ∏

4⊃E
*4 ∼

∏
5 ⊃�02

E

, 5 . (2.21)

The equality holds up to a E-dependent sign.

To be precise about the sign, around each vertex E, we formulate the fermionic
identity (2.15) precisely:

(−1)
∫
F2

v
(Xv

∏
5

%

∫
v∪ f+ f∪v

5
= 1, (2.22)

where
∏

5 %

∫
v∪ f+ f∪v

5
=

∏
5 ⊃�02

E
% 5 by the definition of the cup product and (Xv

is the product of hopping terms on edges around E, similar to (2.15). To avoid
sign ambiguity due to the ordering of the product, we defined the hopping term for
1-cochains. In general, for any 1-cochains , and ,′,

(_+_′ ≡ (−1)
∫
,∪,′(_′(_. (2.23)

For example, (41+42 = (−1)
∫
e2∪e1(41(42 = (−1)

∫
e1∪e2(42(41 , which is independent

from the ordering between 41 and 42. The sign is related to F2 ∈ �0("2,Z2),
which is the 0-chain (a formal sum of vertices) which is Poincaré dual to the second
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Stiefel–Whitney cohomology classw2("2). The explicit expression ofF2 is derived
in Appendix B:

F2 =
∑
E

E +
∑

5=〈012〉∈−triangle
〈1〉, (2.24)

which is the formal sum (mod 2) of all vertices and vertex 1 for each “−”-oriented
triangle 〈012〉. The sign (−1)

∫
F2

v is defined by∫
F2

v = v(F2) =


1, if F2 contains E

0, if F2 doesn’t contain E
(2.25)

The second Stiefel-Whitney class is the obstruction to a spin structure. The fermion
can only be define on a manifold which admits spin structure � ∈ �1("2,Z2) such
that m� = F2.One can interpret the 1-chain � as a lattice representation of a spin
structure. Indeed, in the context of Riemannian geometry it is well-known that
the 2nd Stiefel-Whitney class w2(") ∈ �2(",Z2) is an obstruction for defining
a lift of the structure group of the tangent bundle from ($ (=) to (?8=(=). Thus
any trivialization of this class leads to a lift of the structure group to (?8=(=) and
enables one to define spinors. Since � is a trivialization of the homology 0-cycle
Poincaré-dual to w2("), a choice of � is equivalent to a choice of a trivialization
of w2(") and thus can be thought of as implicitly defining a spin structure. It is
remarkable that although we are dealing with spinless fermions, a choice of spin
structure is still required in order to construct the bosonization map.

This fermionic identity (2.22) is proved inAppendixC, including higher dimensional
versions. Under the mapping (−1)

∫
�
e(4 → *4 and % 5 → , 5 , it gives gauge

constraints for bosonic operators:

�E = *Xv

∏
5

,

∫
v∪ f+ f∪v

5

=
∏
4⊃E

-4 (
∏
4′
/

∫
Xv∪e′

4′ ),
(2.26)

where we have used the property *_ =
∏
4 -

_(4)
4

∏
4′ /

∫
e′∪_

4′ , which can be derived
from the definition:

*_+_′ ≡ (−1)
∫
_∪_′*_′*_. (2.27)
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Therefore, our complete bosonization map is

, 5 =
∏
4⊂ 5

/4 ←→ % 5 = −8W 5 W′5 ,

*4 = -4 (
∏
4′
/

∫
e′∪e

4′ ) ←→ (−1)
∫
�
e(4 = (−1)

∫
�
e8W! (4)W

′
'(4) ,

�E =
∏
4⊃E

-4 (
∏
4′
/

∫
Xv∪e′

4′ ) ←→ (−1)
∫
F2

v
(Xv

∏
5

%

∫
v∪ f+ f∪v

5
= 1,∏

5

, 5 = 1←→
∏
5

% 5

(2.28)

On the bosonic side, the gauge constraint�E = 1 is required. On the fermionic side,
total parity must be even.

2.3 Examples
Spinless fermion on a square lattice
As a first example of the bosonization map, consider the theory of complex fermions
on a square lattice with nearest-neighbor hopping and an on-site chemical potential
`. The Hamiltonian is

� = C
∑
4

(2†
! (4)2'(4) + 2

†
'(4)2! (4)) + `

∑
5

2
†
5
2 5 . (2.29)

To apply our bosonization procedure, we first express (2.29) in terms of Majorana
operators,

� =
C

2

∑
4

(8W! (4)W′'(4) + 8W'(4)W
′
! (4)) +

`

2

∑
5

(1 + 8W 5 W′5 )

=
C

2

∑
4

(
8W! (4)W

′
'(4) − 8(W! (4)W

′
'(4)) (−8W! (4)W

′
! (4)) (−8W'(4)W

′
'(4))

)
+ `

2

∑
5

(1 + 8W 5 W′5 ).

(2.30)

The bosonized Hamiltonian that follows from (3.2) and (3.3) is a Z2 gauge theory
with Hamiltonian

� =
C

2

∑
4

-4/A (4) (1 −,! (4),'(4)) +
`

2

∑
5

(1 −, 5 ) (2.31)

and a gauge constraint (∏4⊃E -4),NE(E) = 1 on each vertex.
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Figure 2.3: A branching structure on triangular lattice.

Spinless fermion on a honeycomb lattice
Next, consider fermions living on the faces of a triangular lattice (or on the vertices
of a honeycomb lattice), shown on Fig. 2.3. We consider again the nearest neighbor
hopping Hamiltonian

� = C
∑
4

(2†
! (4)2'(4) + 2

†
'(4)2! (4)) + `

∑
5

2
†
5
2 5 . (2.32)

The hopping operators map as

(4 = 8W! (4)W
′
'(4) ←→ (−1)

∫
�
e*4 (2.33)

for a suitably chosen sign � . The sign is chosen so that the vertex relations between
(4 and *4 are identical. For the branching structure shown in Fig. 2.3 one can
choose � = 0 (� contains no edge at all), so that the bosonization map is simply

(4 ←→ *4 . (2.34)

With this choice, for the explicitly denoted edges on Fig. 2.3 the operators*4 defined
by (2.17) are

*58 = -58,

*57 = -57/45,

*56 = -56/35,

(2.35)

and other edges are defined by translation. The bosonized Hamiltonian is

� =
C

2

∑
4

*4 (1 −,! (4),'(4)) +
`

2

∑
5

(1 −, 5 ) (2.36)

with gauge constraint (∏4⊃E -4),NE(E),SE(E) = 1 (i.e. (∏4⊃E5 -4),<,= = 1) on
each vertex.
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It is well known that on the honeycomb lattice the Hamiltonian (2.32) gives rise to
a dispersion law which has two Dirac points in the Brillouin zone. This is highly
non-obvious for the equivalent gauge theory Hamiltonian (2.36).

Any fermionic operator with vanishing net fermion parity can be written in terms
of (4 and % 5 and thus have a bosonic counterpart. We start from simple examples.
To bosonize 2†

:
2; from Fig. 2.3, we express it via Majorana operators as

2
†
:
2; =

1
4
(W:W; + W′:W

′
; + 8W:W

′
; + 8W;W

′
: ), (2.37)

and then map these Majorana operators in the usual way,

W:W; = (8W:W′9 ) (8W;W′9 ) ←→ *24*45,

W:W
′
; = 8(W:W;) (−8W;W

′
;) ←→ 8*24*45,; ,

W;W
′
: = (−8) (W:W;) (−8W:W

′
: ) ←→ −8*24*45,: ,

W′:W
′
; = (−8) (W;W

′
: ) (−8W;W

′
;) ←→ −*24*45,:,; .

(2.38)

This way we obtain

2
†
:
2; =

1
4
*24*45(1 +,: ) (1 −,;). (2.39)

Next, consider the operator 2†
8
2; =

1
4 (W8W; + W

′
8
W′
;
+ 8W8W′; + 8W8W

′
;
). Its first term is

W8W; = (8W 9W′8 ) (8W;W′9 ) (−8W 9W′9 ) (−8W8W′8 )) ←→ *25*45, 9,8, (2.40)

and the other terms can be computed the same way, giving

2
†
8
2; =

1
4
*25*45, 9,8 (1 +,8) (1 −,;)

=
1
4
*25*45, 9 (1 +,8) (1 −,;).

(2.41)

Generalizing from (2.39) and (2.41), the rule for bosonization of a fermion bilinear
2
†
021 can be stated as follows. First choose an arbitrary path from face 0 to face 1.

Start with (1+,0) (1−,1)/4, and follow the path. When the path passes through a
face 5 by crossing two edges with different orientations, we need to multiply by, 5 .
Then, for each edge 4 the path crosses, we multiply by *4. For example, following
the path < → ; → : → 8, we can write down

2
†
8
2< =

1
4
*25*45*57, 9 (1 +,8) (1 −,<). (2.42)

If we use another path < → =→ ? → 8, it becomes

2
†
8
2< =

1
4
*35*56*58,= (1 +,8) (1 −,<). (2.43)

The above two formulas only differ by a gauge transformation.
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The Hubbard model on a square lattice
The Hamiltonian of Hubbard model (with fermions on faces of a square lattice) is

� = C
∑
4, f

(2†
! (4), f2'(4), f + ℎ.2.) +*

∑
5

= 5 ↑= 5 ↓, (2.44)

where f ∈ {↑, ↓} and = 5 = 2†5 2 5 . It can be viewed as two copies of the nearest
neighbor hopping Hamiltonian with an interaction on each face. Similar to (2.36),
the bosonized system is a Z2×Z2 gauge theory on the dual lattice with a Hamiltonian

� =
C

2

∑
4, f

-f4 /
f
A (4) (1 −,

f
! (4),

f
'(4)) +

*

4

∑
5

(1 −,↑
5
) (1 −,↓

5
) (2.45)

with gauge constraints (∏4⊃E -
f
4 ),f

NE(E),
f
SE(E) = 1 for f =↑, ↓ at each vertex. On

each edge, there are two species of spins labeled by ↑ and ↓.

Note that the (* (2) spin symmetry is not manifest in this bosonized description.
There exists a version of our bosonization procedure where the (* (2) symmetry is
manifest. In that description, one of the Z2 gauge fields is replaced with a bosonic
spin which lives on the vertices of the dual lattice. The (* (2) symmetry acts only
on this spin variable.

Some soluble 2+1D lattice gauge theories
We have seen a couple of examples where a simple theory of free fermions on a
lattice can be rewritten as a rather complicated Z2 lattice gauge theory on the dual
lattice. Conversely, one can start with some simple Z2 gauge theory and ask if it can
be rewritten as a theory of free fermions.

The standard 2+1D Z2 lattice gauge theory introduced by F. Wegner [51] can be
written in the Hamiltonian form as follows [52]. There is a spin on every edge 4,
with Pauli matrices -4, .4, /4. The physical Hilbert space is a subspace of the tensor
product space defined by the Gauss law constraints∏

4⊃E
-4 = 1, ∀E. (2.46)

The Hamiltonian is
� = 62

∑
4

-4 +
1
62

∑
5

, 5 , (2.47)

where , 5 is given by Eq. (2.16), as usual. This theory is not integrable and is
related by Kramers-Wannier duality to the 3D Ising model.
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Figure 2.4: Fermions at the center of faces form a honeycomb lattice. The vectors are
defined as ®X1 = (0,−

√
3

3 ), ®X2 = (−1
2 ,
√

3
6 ), ®X3 = ( 12 ,

√
3

6 ) and ®01 = ®X2 − ®X1 = (−1
2 ,
√

3
2 ),

®02 = ®X3 − ®X1 = ( 12 ,
√

3
2 ).

To get a Z2 gauge theory which is dual to a fermionic theory, we need to replace
Eq. (2.46) with the modified Gauss law (2.12) on a square lattice, or with (2.20)
on a general triangulation. The second (potential) term in Eq. (2.47) is still gauge-
invariant, but the first (kinetic) term is not. To fix this problem we simply replace
each -4 with*4 = -4/A (4) , which is gauge-invariant by construction, and let

�′ = 62
∑
4

*4 +
1
62

∑
5

, 5 . (2.48)

Since , 5 maps to −8W 5 W′5 , and *4 maps to 8W! (4)W′'(4) , the fermionic dual of this
gauge theory is a theory of free fermions.

To analyze this fermionic theory in more detail, let us specialize to the case of a
regular triangular lattice (Fig. 2.4), so that fermions live on the vertices of a regular
honeycomb lattice. By bosonization map (2.33), the Hamiltonian (2.48) is (up to a
constant) equivalent to

�′5 = C
∑
4

(2! (4)2'(4) − 2†! (4)2
†
'(4) + 2

†
! (4)2'(4) + 2

†
'(4)2! (4)) + `

∑
5

2
†
5
2 5 , (2.49)

where C = 62 and ` = 2/62. After the usual Fourier transform 2®G =
1√
#

∑
®: 4

8®: ·®G2®: ,
the Hamiltonian becomes

�′5 =
∑
®:

(Δ : 2®:,02−®:,1 + h.c.) +
∑
®:

(n®: 2
†
®:,0
2®:,1 + h.c.) + `

∑
®:

(2†®:,02®:,0 + 2
†
®:,1
2®:,1),

where Δ ®: = C (4
−8®: · ®X1 − 4−8®: · ®X2 − 4−8®: · ®X3) and n®: = C (4

8®: · ®X1 + 48®: · ®X2 + 48®: · ®X3). We can
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(a) For `/C = 2, the band gap closes at ®: = (±2c
3 , 0), which form two Dirac cones.

(b) Another viewpoint from the top. Two Dirac cones lie in the first Brillouin zone (the
hexagon).

Figure 2.5: (Color online) Band structure of �BdG(equivalent to �′5 ).

write this using the Bogoliubov-de-Gennes (BdG) formalism as

�′5 =
1
2

∑
®:

Ψ
†
®:
�BDG ( ®:)Ψ®: (2.50)

with

�BDG ( ®:) =


` −Δ∗®: n®: 0
−Δ ®: −` 0 −n®:
n∗®:

0 ` −Δ∗®:
0 −n∗®: −Δ ®: −`


, Ψ®: =



2®:,0
2
†
−®:,1
2®:,1
2
†
−®:,0


. (2.51)

The eigenvalues are � ( ®:) = ±
√
|Δ ®: |2 + (|n®: | + `)2, ±

√
|Δ ®: |2 + (|n®: | − `)2. The

gap closes at : = (±2c
3 , 0) and `/C = 2 (6 = 1). The spectrum is shown in Fig. 2.5.
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2.4 Euclidean 3D gauge theories and their fermionic duals
In this section, we will derive the Euclidean 3D actions for gauge theories dual to
some fermionic systems. Before considering the nearest neighbor hopping Hamil-
tonian (2.30), let us first look at the simpler Majorana hopping Hamiltonian on the
square lattice,

� = −�
∑
4

8W! (4)W
′
'(4) − �

∑
5

(−8W 5 W′5 ), (2.52)

whose bosonic dual is a gauge theory with a Hamiltonian

� = −�
∑
4

-4/A (4) − �
∑
5

, 5 . (2.53)

Without loss of generality, we can assume � > 0. The Gauss law constraint is

�E ≡
(∏
4⊃E

-4

) ∏
4′⊂NE(E)

/4′ = 1. (2.54)

The partition function is
Z = Tr 4−V� = Tr )" , (2.55)

where ) is the transfer matrix defined as

) =

(∏
E

X� ′E ,1

)
4−Xg� . (2.56)

The prime on �E means that it acts to bra on the left, which will be clear in later
calculations. The first factor projects to the gauge-invariant sector of the Hilbert
space. We can rewrite it using a Z2 Lagrange multiplier field _E as

X� ′E ,1 =
1
2
(1 + �′E) =

1
2

∑
_E=±1

(−1)
1−_E

2
∑
4⊃E

1−-4
2 (−1)

1−_E
2

∑
4′⊂NE(E)

1−/4′
2 . (2.57)

Let us define |<(g)〉 = |{(4}〉 as the configuration of spins (in the /4 basis). To
evaluate the matrix element 〈<′(g + Xg) |) |<(g)〉, we insert the “decomposition of
unity” in terms of a full basis of -4 (momentum) eigenstates, using the identity

〈(I′| 5 (fG , fI) |(I〉 = 1
2

∑
(G=±1

5 ((G , (I) (−1) 1−(G
4 (2−(

I′−(I) , (2.58)

where we assume fG is always left to fI in 5 (fG , fI). The matrix element is

〈<′(g + Xg) |) |<(g)〉

∝
∑
{_E }

[∏
E

(−1)
1−_E

4
∑
4′⊂NE(E) (1−(I′4′) 4�Xg

∏
4′⊂NE(E) (

I

4′

]
×

×

∏
4

∑
(G4=±1

(−1)
1−(G4

4 [2−(
I′
4 −(I4+

∑
E ′⊂4 (1−_E ′)] 4�Xg(

G
4 (
I
A (4)

 .
(2.59)
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The next order of business is to integrate out the intermediate momentum fields,
i.e. to perform the sum over the (G in the second bracket. This bracket equals∏
4 (4

�Xg(I
A (4) + 4−�Xg(

I
A (4)(I4

′(I4
∏
E′⊂4 _E′). To simplify it, we need to consider two

cases: (I
A (4) = 1 and (I

A (4) = −1. First, for (I
A (4) = 1, we can simply write

4
�Xg(I

A (4) + 4−�Xg(
I
A (4)(I4

′
(I4

∏
E′⊂4

_E′ = 4
�Xg + 4−�Xg(I4′(I4

∏
E′⊂4

_E′

= �4�(
I
4
′
(I4

∏
E ′⊂4 _E ′ ,

(2.60)

where �2 = 2 sinh(2�Xg) and tanh � = 4−2�Xg. For the other case (I
A (4) = −1,

4
�Xg(I

A (4) + 4−�Xg(
I
A (4)(I4

′
(I4

∏
E′⊂4

_E′

= �4�(
I
4
′
(I4

∏
E ′⊂4 _E ′ (−1) 1

2 [2−(
I′
4 −(I4+

∑
E ′⊂4 (1−_E ′)] .

(2.61)

We can combine (2.60) and (2.61) into the single equation

4
�Xg(I

A (4) + 4−�Xg(
I
A (4)(I4

′
(I4

∏
E′⊂4

_E′

= �4�(
I
4
′
(I4

∏
E ′⊂4 _E ′ (−1)

1
4 [2−(

I′
4 −(I4+

∑
E ′⊂4 (1−_E ′)] (1−(IA (4) ) .

(2.62)

We can now substitute (2.62) back to (3.51) and write the matrix element in the
suggestive form

〈<′(g + Xg) |) |<(g)〉

∝
∑
{_E }

∏
E,4

4 
∏
4′⊂NE(E) (

I

4′+�(
I
4
′
(I4

∏
E ′⊂4 _E ′ (−1)

1
2 (1−_E )

∑
4′⊂NE(E)

1
2 (1−(

I′
4′)

× (−1)
1
2 (1−(

I
A (4) )[ 1

2 (1−(
I′
4 )+ 1

2 (1−(
I
4)+

∑
E ′⊂4

1
2 (1−_E ′)] ,

(2.63)

where  ≡ �Xg.

We can interpret _E as gauge fields on temporal links. Therefore, the first, expo-
nential term can be thought of as the exponential of the anisotropic Wegner action
[51, 52] ∑

5

� 5

∏
4⊃ 5

(4, (2.64)

where � 5 is different for spatial and temporal faces of the 3d lattice. The rest can be
thought of as a topological factor in the partition function which gives the correct
anomaly factors of −1 for fermionic statistics. Let 08 ∈ �0(!,Z2) be the 0-cochain
on the 8-th layer with value 1

2 (1− _E) on vertex E. We regard it as the Z2 gauge field
on temporal links between the 8-th and (8 + 1)-th layers. Let U8 ∈ �1(!,Z2) be the
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1-form on the 8-th layer that represents the values of (I4 on the 8-th layer. Then we
can express the “topological” factors in the last line of (2.63) as∏

E, 4

(−1)
1−_E

2
∑
4′⊂NE(E)

1
2 (1−(

I′
4′) (−1)

1
2 (1−(

I
A (4) ) [

1
2 (1−(

I′
4 )+ 1

2 (1−(
I
4)+

∑
E ′⊂4

1
2 (1−_E ′)]

≡ (−1)08 (Δ (XU8+1)) (−1)U8 (Δ (U8+1+U8+X08)) , (2.65)

whereΔ (G) is the Poincaré dual of G at relative position (−1
2 ,−

1
2 ) (i.e.Δ (XNE(E)) = E

and Δ (X4) = A (4)). This expression is invariant (up to boundary terms) under the
gauge transformation 08 → 08 + 58 + 58+1 and U8 → U8 + X 58.

If we put the Hamiltonian (2.52) on a general triangulation instead of a square lattice,
its bosonic dual is

� = −�
∑
4

*4 − �
∑
5

, 5 . (2.66)

Its partition function is

/ =
∑
(I , _

4−(topo 4 
∑
5B
(I
5B
+�∑

5g
(I
5g , (2.67)

where 5B and 5g are faces of spatial and temporal types, (I
5
≡∏

4⊂ 5 (
I
4, and

4−(topo = (−1)
∑
8 [
∫
08∪XU8+1+

∫
U8∪(U8+U8+1+X08)] . (2.68)

Notice that (2.68) is analogous to Chern-Simon action on a general triangulation of
3d manifold

(CS = 8c

∫
0 ∪ X0. (2.69)

This kind of topological term results in charge-flux attachment and generates
fermionic degrees of freedom.

Now, let us go back to the usual fermionic hopping Hamiltonian on a general
triangulation

� = −2�
∑
4

(2†
! (4)2'(4) + 2

†
'(4)2! (4)) + 2�

∑
5

2
†
5
2 5 , (2.70)

and its bosonic dual (up to some constant)

� = −�
∑
4

*4 (1 −,! (4),'(4)) − �
∑
5

, 5 (2.71)

with gauge constraints on vertices (∏4⊃E -4) (
∏

5 ,

∫
XE∪X 5

5
) = 1. The only differ-

ence from the Majorana hopping Hamiltonian is the factor (1 −,! (4),'(4)). With
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some careful calculations, one can show the partition function is

/ =
∑
(I , _

4−(topo 4 
∑
5B

∏
4⊂ 5B (

I
4+�

∑
5g

∏
4′⊂ 5g (

I

4′

× 4− �−ln 2
2

∑
4B
[1+(∏4⊂! (4B ) (

I
4) (

∏
4⊂' (4B ) (

I
4)]

× 4−;
∑
4B
[1+(∏4⊂! (4B ) (

I
4) (

∏
4⊂' (4B ) (

I
4)] (1−(I4B

′
(I4B

∏
E⊂4B _E ) , (2.72)

where ; is taken to be infinity and 4B is a edge on a spatial slice. Taking ; → ∞
imposes additional gauge constraints to the previous lattice gauge theory (2.67), and
the topological term is not affected.
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C h a p t e r 3

BOSONIZATION ON THREE-DIMENSIONAL LATTICES

3.1 Cubic lattices
Next, we introduce our bosonization method on an infinite 3d cubic lattice. Suppose
that we have a model with fermions living at the centers of cubes. Let us describe
the generators and relations in the algebra of local observables with trivial fermion
parity (the even fermionic algebra for short).

On each cube C we have a single fermionic creation operator 2C and a single fermionic
annihilation operator 2†C with the usual anticommutation relations. The fermionic
parity operator on cube C is %C = (−1)2†C 2C . All operators %C commute with each
other. We work in the Majorana basis

WC = 2C + 2†C , W′C = (2C − 2†C )/8. (3.1)

The even fermionic algebra is generated by 8W! ( 5 )W′'( 5 ) and −8WCW
′
C where each face

is assigned an orientation from cube ! ( 5 ) to cube '( 5 ).

To illustrate the definition of these operators, we draw the dual lattice of the original
lattice. In Fig. 3.1, fermions live on vertices and the orientations of each dual edge
(face of the original lattice) are taken to be along +G, +H, and +I directions. The
Majorana hopping operator is defined by ( 5 = 8W! ( 5 )W′'( 5 ) , where ! ( 5 ) and '( 5 )
are source and sink (starting and ending points) of dual edge 5 in the dual lattice.
( 58 and ( 5 9 anti-commute only when both dual edges 58 and 5 9 start from the same
point or both end at the same point.

The dual bosonic system has Z2 spins living on faces of the original lattice (or
equivalently, on edges of the dual lattice). To define bosonic hopping operators* 5 ,
we need to choose a framing for each edge of the dual lattice, i.e. a small shift
of each dual edge along some orthogonal direction. We also assume that when
projected on some generic plane (such as the plane of the page) a shifted dual edge
intersects all dual edges transversally. For example, in Fig. 3.1 such a framing is
indicated by red, green, and blue lines (for dual edges along G, H and I directions,
respectively), and the shift of the dual edge 1 intersects dual edges 3 and 4 1. Now

1There are many choices of framing, and accordingly many versions of the bosonization map.
By construction, they are related by automorphisms of the algebra of observables.
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Figure 3.1: (Color online) For edges in the dual lattice, the "framing" is defined by
green, red, and blue edges, which is a small shift of duel edges [53]. Given a dual
edge 5 , the operator * 5 is defined as - 5 times / 5 ′ for those 5 ′ which intersect the
framing of 5 when projected to the plane (i.e. * 51 = -1/3/4, * 52 = -2/7/8, and
* 53 = -3/5/6 ).

we define* 5 as a product of - 5 with all / 5 ′ such that 5 ′ intersects the framing of 5
when projected to the plane of the page. For example, the hopping operator for the
dual edge 1 is *1 = -1/3/4. Notice that *1, *3, and *4 anti-commute with each
other and*3,*5, and*6 anti-commute with each other, while*2 and*3 commute,
and*1 and*8 commute.

One can check that ( 5 and* 5 have the same commutation relations. Therefore, the
bosonization map in 3D can be defined as follows:

1. For any cube C let ,C ≡
∏

5 ⊂C / 5 . We identify the fermionic states |%C = 1〉
and |%C = −1〉 with bosonic states for which,C = 1 and,C = −1, respectively.
Thus

%C = −8WCW′C ←→ ,C . (3.2)

2. The fermionic hopping operator ( 5 is identified with* 5 defined above:

( 5 = 8W! ( 5 )W
′
'( 5 ) ←→ * 5 . (3.3)

As in 2d, the bosonic operators satisfy some constraints. In Fig. 3.2, we calculate
the product of ( 5 around the red square on the dual lattice:
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Figure 3.2: (Color online) The framing of the hopping term defined previously is
indicated by the green square, while the gauge constraint involves the / operators
in the opposite framing (blue dashed square).

( 51( 52( 53( 54

=(8W3W′2) (8W1W′2) (8W0W′1) (8W0W
′
3)

= − (−8W1W′1) (−8W3W
′
3)

= − %1%3 ←→ −,1,3 .

(3.4)

Its bosonic dual defined by (3.3) is the product of the corresponding operators * 5 .
Their definition involves a framing of the red square given by the green square:

* 51* 52* 53* 54

=(-1/2/6) (-2/12/13) (-3/11/14) (-4/3/5)
= − -1-2-3-4/5/6(/2/3/11/12/13/14)
= − -1-2-3-4/5/6,1 .

(3.5)

Comparing (3.4) and (3.5), we get the constraint

1 =-1-2-3-4/5/6,3

=-1-2-3-4/1/4/5/6/7/8/9/10
(3.6)

The operators /’s are the edges crossed by dashed square in Fig. 3.2. The framing
for gauge constraints is opposite to the framing used to define hopping operators.
We have a gauge constraint for each face of dual lattice. In terms of the original
lattice, there is one gauge constraint for each edge. All these constraints commute
and thus define a Z2 2-form gauge theory with an unusual Gauss law.

3.2 Triangulation
The bosonization method described above also works for any triangulation. For
an arbitrary triangulation ) of a 3d manifold "3, we choose a branching structure.
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0

1 2

3

Figure 3.3: (Color online) A branching structure on a tetrahedron. The orientation
of each face is determined by the right-hand rule. We defined this as the “+”
tetrahedron, the directions of faces 012 and 023 are inward (blue)while the directions
of faces 123 and 013 are outward (red). The directions of faces are reversed in the
“−” tetrahedron (mirror image of this tetrahedron).

A branching structure is a choice of an orientation on each edge such that there is
no oriented loop on any triangle. One simple way is to label vertices by different
numbers and assign the direction of an edge from the vertex with smaller number
to the vertex with larger number (see Fig. 3.3). Each tetrahedron has two inward
faces and two outward faces (by right-hand rule). We place fermions at the centers
of tetrahedra. Each tetrahedron C contains Majorana operators WC and W′C . We define
the fermionic hopping operator on each face 5 as

( 5 = 8W! ( 5 )W
′
'( 5 ) , (3.7)

where ! ( 5 )/'( 5 ) is the tetrahedron with 5 as a outward/inward face. Notice that
( 5 and ( 5 ′ anti-commute only when 5 and 5 ′ share a tetrahedron with both 5 and 5 ′

inward or outward. To express this property mathematically, we introduce (higher)
cup product used in algebraic topology. The definition and properties of the (higher)
cup products are described in Section A. If V1 and V2 are 2-cochains, then

V1 ∪1 V2(0123) = V1(023)V2(012) + V1(013)V2(123). (3.8)

Therefore, the commutation relations can be expressed as

( 5 ( 5 ′ = (−1)
∫

f∪1 f
′+ f ′∪1 f ( 5 ′( 5 , (3.9)

where the notation f ∈ �2(),Z2) denotes the 2-cochain with value 1 on face 5

and 0 otherwise, and the integral represents the sum over all tetrahedra. The even
fermionic algebra is generated by the operators ( 5 for all faces and the fermionic
parity operators %C for all tetrahedra.
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The dual bosonic variables are Z2 spins which live on faces of the triangulation. As
before, the flux operator

,C =
∏
5 ⊃C

- 5

corresponds to %C under the bosonization map.

Next we need to find bosonic operators * 5 which have the same commutation
relation as fermionic operators ( 5 . We should define * 5 as - 5 times / 5 ′ for some
faces 5 ′ which share a tetrahedron with 5 and have the same orientation with respect
to the tetrahedron. One way to define* 5 is

* 5 = - 5

∏
C∈{! ( 5 ),'( 5 )}

/
f (C012)
C023

/
f (C123)
C013

= - 5

∏
5 ′
/

∫
f ′∪1 f

5 ′ . (3.10)

* 5 satisfy the commutation relation

* 5* 5 ′ = (−1)
∫

f∪1 f
′+ f ′∪1 f* 5 ′* 5 (3.11)

which is the same as (3.9).

The final step is to determine the constraints on bosonic variables. There is one
such constraint for each edge 4. In the product

∏
5 ⊃4 ( 5 , the only surviving terms

are −8WCW′C with one face going inward and one face going outward of C. Therefore,
the product can be written as∏

5 ⊃4
( 5 ∼

∏
C |4=C01,C03,C12,C23

%C , (3.12)

where ∼ means that it is equal up to a sign, which will be treated carefully in the
next paragraph. This produce the gauge constraints for bosonic operators:∏

5 ⊃4
* 5 ∼

∏
C |4=C01,C03,C12,C23

,C . (3.13)

For a tetrahedron C containing an edge 4 with adjacent faces 51 and 52, consider the
following product which gives,C for 4 = C01, C03, C12, C23 and 1 otherwise:

/ 51/ 52

∏
5 ′⊂C

/
( f 1+ f 2)∪1 f

′+ f ′∪1 ( f 1+ f 2)
5 ′

=


,C , if 4 = C01, C03, C12, C23

1, otherwise

(3.14)

Substituting this into (3.13), we have∏
5 ⊃4

* 5 ∼
∏
5 ⊃4

∏
5 ′
/

∫
f ′∪1 f+ f∪1 f

′

5 ′ =
∏
5 ′
/

∫
f ′∪1Xe+Xe∪1 f

′

5 ′ . (3.15)
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On the other hand, the product
∏

5 ⊃4* 5 is∏
5 ⊃4

* 5 ∼
∏
5 ⊃4

- 5

∏
5 ′
/

∫
f ′∪1 f

5 ′ = (
∏
5 ⊃4

- 5 )
∏
5 ′
/

∫
f ′∪1Xe

5 ′ . (3.16)

Identifying (3.15) and (3.16) gives

(
∏
5 ⊃4

- 5 )
∏
5 ′
/

∫
Xe∪1 f

′

5 ′ = 1. (3.17)

This is the modified Gauss law (gauge constraint) on each edge 4. One can check
that constraints for different edges 41 and 42 commute since∫

(Xe1 ∪1 Xe2 + Xe2 ∪1 Xe1) =

=

∫
(e1 ∪ Xe2 + Xe2 ∪ e1 + e2 ∪ Xe1 + Xe1 ∪ e2) = 0, (3.18)

where we have used the property
∫
Xe1 ∪1 Xe2 =

∫
(e1 ∪ Xe2 + Xe2 ∪ e1).

To be more precise about the signs in (3.15) and (3.16), we give the definition of (V
for a 2-cochain V ∈ �2(),Z2):

(V(V′ = (−1)
∫
V′∪1V(V+V′ . (3.19)

We can also define*V in the same way. It can be checked that

*V =
∏
5

-
V( 5 )
5

∏
5 ′
/

∫
f ′∪1V

5 ′ . (3.20)

For example, we have*X4 = (
∏

5 ⊃4 - 5 )
∏

5 ′ /

∫
f ′∪1Xe

5 ′ . The explicit formula for the
identity in fermionic evn algebra is

(−1)
∫
F2

e
(Xe

∏
C

%

∫
e∪1 t+t∪1e

C = 1 (3.21)

which is derived in Appendix C. The 1-chain F2 consists of all edges of the trian-
gulation, together with the (02) edge for all “+” tetrahedra and the (13) edge for all
“−” tetrahedra:

F2 =
∑
4

4 +
∑

C∈+tetrahedra
C02 +

∑
C∈−tetrahedra

C13. (3.22)

This is exactly the 1-chain which is Poincaré-dual to the second Stiefel-Whitney
class. It is a 1-cycle modulo 2 (that is, its boundary is trivial when regarded as
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a 0-chain with coefficients in Z2). If the topological space corresponding to the
triangulation is simply-connected, then any 1-cycle is a boundary of some 2-cycle
2. Thus we can define

(�V = (−1)
∫
�
V(V, (3.23)

where � is a 2-chain such that m� = F2. Such a � is not unique, but any two choices
differ by a 2-cycle.

We see that if we identify (�
5
and* 5 , then the bosonic variables must satisfy a gauge

constraint (3.17). The 3d bosonization map can be summarized as follows:

,C =
∏
5 ⊂C

/ 5 ←→ %C = −8WCW′C ,

* 5 = - 5 (
∏
5 ′
/

∫
f ′∪1 f

5 ′ ) ←→ (−1)
∫
�

f ( 5 = (−1)
∫
�

f 8W! ( 5 )W
′
'( 5 ) ,

�4 =
∏
5 ⊃4

- 5 (
∏
5 ′
/

∫
Xe∪1 f

′

5 ′ ) ←→ (−1)
∫
F2

e
(Xe

∏
C

%

∫
e∪1 t+t∪1e

C = 1,∏
C

,C = 1←→
∏
C

%C ,

(3.24)

where F2 is defined in (3.22) and � satisfies m� = F2.

The modified Gauss law looks complicated, but it can be written down more con-
cisely if we describe the spin configurations by a 2-cochain � ∈ �2(),Z2). Our
convention is that �( 5 ) = 1 if / 5 = −1 and �( 5 ) = 0 if / 5 = 1. Thus the
unconstrained Hilbert space is spanned by vectors |�〉 for all �. A 2-form gauge
transformation has a 1-cochain Λ as a parameter and acts by � ↦→ � + XΛ. For a
general Λ, the Gauss law constraint is given by

©«
∏
5 ∈XΛ

- 5
ª®¬ ©«

∏
5 ′
/

∫
XΛ∪1 f

′

5 ′
ª®¬ (−1)

∫
Λ∪XΛ = 1. (3.25)

2Actually, one can show that the second Stiefel-Whitney class of any oriented 3-manifold is
trivial, and therefore the above 1-cycle is a boundary even in the non-simply-connected case. Our
bosonization procedure works also for non-simply-connected spaces. The only difference is that
apart from local Gauss law constraints one also needs to impose non-local constraints, one for each
non-trivial class in�1 (-,Z2). For example, for a 3-torus one would need to impose three constraints,
one for each direction G, H, I. These constraints on the bosonic side are needed to reproduce the
freedom to impose either periodic or anti-periodic boundary conditions on the fermions. But in this
paper we limit ourselves to topologically-trivial (simply-connected) spaces.
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This formula is proved by
∫
e ∪ Xe = 0 and induction:

(
∏
51∈XΛ1

- 51) (
∏
5 ′1

/
XΛ1∪1 f

′
1

5 ′1
) (−1)

∫
Λ1∪XΛ1 (

∏
52∈XΛ2

- 52) (
∏
5 ′2

/
XΛ2∪1 f

′
2

5 ′2
) (−1)

∫
Λ2∪XΛ2

=
©«

∏
5 ∈X(Λ1+Λ2)

- 5
ª®¬ ©«

∏
5 ′
/
X(Λ1+Λ2)∪1 f

′

5 ′
ª®¬ (−1)

∫
Λ1∪XΛ1+Λ2∪XΛ2 (−1)

∫
XΛ1∪1XΛ2

=
©«

∏
5 ∈X(Λ1+Λ2)

- 5
ª®¬ ©«

∏
5 ′
/
X(Λ1+Λ2)∪1 f

′

5 ′
ª®¬ (−1)

∫
(Λ1+Λ2)∪X(Λ1+Λ2) ,

(3.26)

where we use the identity
∫
XΛ1∪1 XΛ2 =

∫
Λ1∪XΛ2+XΛ2∪Λ1 in the last equality.

Eq. (3.25) can be concisely written as

©«
∏
5 ∈XΛ

- 5
ª®¬ (−1)

∫
Λ∪XΛ+XΛ∪1� = 1, (3.27)

where � is an arbitrary 2-cochain with values in Z2.

Consider now the following 2-form gauge theory defined on a general triangulated
4D manifold . :

((�) =
∑
C

|X�(C) | + 8c
∫
.

(� ∪ � + � ∪1 X�). (3.28)

Here � ∈ �2(.,Z2) is a Z2 field living at each face, and the gauge symmetry acts by
� → � + XΛ for an arbitrary 1-cochain Λ. The second term is the Steenrod square
topological action [23], which is used in [24] to construct fermionic topological
phases. The action is gauge-invariant up to a boundary term:

((� + XΛ) − ((�) =
∫
m.

(Λ ∪ XΛ + XΛ ∪1 �). (3.29)

This boundary term determines the Gauss law for the wave-function Ψ(�) on the
spatial slice - = m. :

Ψ(� + XΛ) = (−1)l(Λ,�)Ψ(�), (3.30)

where l(Λ, �) =
∫
-
(Λ ∪ XΛ + XΛ ∪1 �). The Gauss law is the same as the gauge

constraint (3.27). In Section 3.4, we use this observation to construct a 4D lattice
action for particular Hamiltonian gauge theories with the modified Gauss law.

3.3 Examples
In this section, we describe examples for the bosonization map in (3+1)D.
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Soluble 3+1D lattice gauge theories
The standard Gauss law for a 2-form Z2 gauge theory is

∏
5 ⊃4 - 5 = 1. Such a

bosonic gauge theory is dual to a theory of bosonic spins living on the vertices of
the dual lattice. In particular, the quantum Ising model can be described by a Z2

2-form gauge theory with the Hamiltonian

��B8=6 = 6
2
∑
5

- 5 +
1
62

∑
C

,C . (3.31)

This model is not soluble.

If we impose the modified Gauss law (3.6) instead, the simplest analogous gauge-
invariant Hamiltonian is

�1 = 6
2
∑
5

* 5 +
1
62

∑
C

,C . (3.32)

The first and second term can be thought of as the kinetic and potential energies,
respectively. This is dual to the fermionic Hamiltonian

� 5 =C
∑
5

(
2! ( 5 )2'( 5 ) − 2†! ( 5 )2

†
'( 5 )

+ 2†
! ( 5 )2'( 5 ) + 2

†
'( 5 )2! ( 5 )

)
+ `

∑
C

2
†
C 2C ,

(3.33)

where C = 62 and ` = 2
62 . The fermionic Hamiltonian is free and thus soluble. By

Fourier transform 2®G =
1√
#

∑
®: 4

8®: ·®G2®: , the fermionic Hamiltonian becomes

� 5 =
∑
®:

n®:2
†
®:
2®: +

∑
®:

(Δ ®:2®:2−®: + h.c.) (3.34)

with n®: = ` + 2C (cos :G + cos :H + cos :I) and Δ ®: = C (4
−8:G + 4−8:H + 4−8:I ). The

Hamiltonian (3.34) can be written in the Bogoliubov-de-Gennes (BdG) formalism
as

� 5 =
1
2

∑
®:

Ψ
†
®:
�BDG ( ®:)Ψ®: (3.35)

with

�BDG ( ®:) =
[
n®: −Δ∗®:
−Δ ®: −n®:

]
, Ψ®: =

[
2®:
2
†
−®:

]
. (3.36)

The spectrum is

�2 =

C2(3 + 2 cos(:G − :H) + 2 cos(:G − :I) + 2 cos(:H − :I))
+ [` + 2C (cos :G + cos :H + cos :I)]2.

(3.37)

Notice that for ` = 0 the gap closes for ®: = (@, @ + 2c
3 , @ +

4c
3 ) for arbitrary @.
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Bosonic model with Dirac cones
Using the bosonization map (3.2) and (3.3), we can construct an equivalent bosonic
model for any arbitrary fermionic model. For instance, Ref. [54] constructs a
fermionic model on a cubic lattice with Dirac cones:

� = −C
∑
®A
(BG (®A)2†®A+Ĝ2®A + BH (®A)2

†
®A+Ĥ2®A + BI (®A)2

†
®A+Î2®A + h.c.) (3.38)

with BG (®A), BH (®A), and BI (®A) defined as

BG (8, 9 , :) = 1

BH (8, 9 , :) = (−1)8

BI (8, 9 , :) = (−1)8+ 9 .

(3.39)

It is a model with nearest neighbor hopping. The spectrum is

� = ±2C
√

cos2 :G + cos2 :H + cos2 :I (3.40)

with two Dirac cones at ®: = (c/2, c/2, c/2) and ®: = (3c/2, c/2, c/2). Applying
the bosonization map, the corresponding bosonic Hamiltonian is

� = − C
2

∑
5G

BG (! ( 5G))* 5G (1 −,! ( 5G),'( 5G))

− C
2

∑
5H

BH (! ( 5H))* 5H (1 −,! ( 5H),'( 5H))

− C
2

∑
5I

BI (! ( 5I))* 5I (1 −,! ( 5I),'( 5I)),

(3.41)

where 5G , 5H, 5I refer to faces normal to G, H, I-directions, with gauge constraints
(3.6). On the bosonic side, it is very nontrivial to see that the model describes Dirac
cones.

3.4 Euclidean 3+1D gauge theories with fermionic duals
In the previous section we constructed a 3d bosonization map which works on the
kinematic level (that is, is independent of the Hamiltonian). In this section we
apply it to some specific models of free fermions and describe the corresponding
dual gauge theories. We then construct Euclidean formulations of these gauge
theories. We will make use of cup products, and thus will assume that the 3d space
is triangulated, as in section 3.2. Accordingly, the (3+1)D lattice will be the product
of the 3d triangulation and discrete time. As explained in the Appendix, (higher) cup
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products can also be defined on the 3d cubic lattice, thus similar considerations can
be used to find the Euclidean formulation of gauge theories constructed in Section
3.1.

Consider the simplest gauge-invariant Hamiltonian compatible with the modified
Gauss law:

� = −�
∑
5

* 5 − �
∑
C

,C . (3.42)

The gauge constraint is

�4 ≡
©«
∏
5 ⊃4

- 5
ª®¬
∏
5 ′
/

∫
Xe∪1 f

′

5 ′ = 1. (3.43)

The partition function can be calculated by transfer matrix method:

Z = Tr 4−V� = Tr )" , (3.44)

where ) is the transfer matrix defined as

) =

(∏
4

X�4,1

)
4−Xg� , (3.45)

where Xg ≡ V/" , and " � 1 is a large positive integer. The first factor arises from
the gauge constraints on the Hilbert space. For calculation purposes, we can rewrite
it as

X�4,1 =
1
2
(1 + �4)

=
1
2

∑
_4=±1

(−1)
1−_4

2
∑
5 ′∈NE(4)

1−/ 5 ′
2 · (−1)

1−_4
2

∑
5 ⊃4

1−- 5
2

(3.46)

with NE(4) ≡ { 5 |
∫
X4∪1 5 = 1}. Here _4 is the Lagrange multiplier on each edge 4

of the spatial manifold" and will be consider as Z2 fields living on “temporal” faces
later. To calculate the partition function (3.44), the completed bases are inserted
between ) . Define |<(g)〉 = |{( 5 }〉 as the configuration of spins (in / 5 basis).
Then the matrix elements of ) are

〈<′(g + Xg) |) |<(g)〉

= 〈<′(g + Xg) |
(∏
E

X�4,1

)
4−Xg� |<(g)〉.

(3.47)
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Next we need to use an identity

〈(I′| 5 (fG , fI) |(I〉

=
1
2

∑
(G=±1

5 ((G , (I) (−1) 1−(G
2 (

1−(I ′
2 + 1−(I

2 ) ,
(3.48)

where we assume that fG is to the right of fI in the function 5 (fG , fI). Plugging
this into (3.47), we get

〈<′(g + Xg) |
(∏
4

X�4,1

)
4−Xg� |<(g)〉

= 〈<′(g + Xg) |
(∏
4

X�4,1

) ©«
∏
5

∑
(G
5
=±1
|(G5 〉〈(

G
5 |
ª®¬ 4−Xg� |<(g)〉

∼

∑
_4=±1

(−1)
1−_4

2

(∑
52⊃4

1−(G
52

2 +∑ 53∈NE(4)
1−(I

53
′

2

)
(−1)

∑
_4,_4′=−1

∫
4∪X4′


∏
5

∑
(G
5
=±1
(−1)

1−(G
5

2

(
1−(I

5
′

2 +
1−(I

5

2

)
4
�Xg(G4

∏
51∈Δ ( 5 ) (

I
51


(∏
C

4
�Xg

∏
54⊂C (

I
54

)
,

(3.49)

where Δ ( 5 ) ≡ { 5 ′|
∫

f ′ ∪1 f = 1} and the term (−1)
∑
_4,_4′=−1

∫
e∪Xe′ comes from

pushing all - 5 operators to the right, which is the same as the last factor of Eq.
(3.25). This term can be expressed as

8c
∑
8

∫
08 ∪ X08 (3.50)

if we define 08 ∈ �1(",Z2) as 1-cochain on the spacetial manifold " (8Cℎ layer)
with 08 (4) = 1 for _4 = −1 and 08 (4) = 0 for _4 = 1. We can interpret 08 at the 8Cℎ

layer as a 2-cochain which lives on the “temporal” faces between the 8Cℎ and (8 +1)Cℎ

layers.
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After extracting this factor, the remaining terms are∑
_4=±1

(∏
4

(−1)
1−_4

2
∑
53⊂NE(4)

1−(I
53
′

2

) (∏
C

4
�Xg

∏
54⊂C (

I
54

)

∏
5

∑
(G
5
=±1
(−1)

1−(G
5

2

(
1−(I

5
′

2 +
1−(I

5

2 +
∑
4⊂ 5

1−_4
2

)
· 4�Xg(

G
4

∏
51∈Δ ( 5 ) (

I
51


=

∑
_4=±1

(∏
4

(−1)
1−_4

2
∑
53⊂NE(4)

1−(I
53
′

2

) (∏
C

4
�Xg

∏
54⊂C (

I
54

)

∏
4

(4�Xg
∏
51∈Δ ( 5 ) (

I
51 + 4−�Xg

∏
51∈Δ ( 5 ) (

I
51(I

5

′
(I
5

∏
4⊂ 5

_4)


∼
∑
_4=±1

(∏
4

(−1)
1−_4

2
∑
53⊂NE(4)

1−(I
53
′

2

) (∏
C

4
�Xg

∏
54⊂C (

I
54

)

∏
5

4
�(I

5

′
(I
5

∏
4⊂ 5 _4 (−1)

(∑
51∈Δ ( 5 )

1−(I
51

2

) (
1−(I

5
′

2 +
1−(I

5

2 +
∑
4⊂ 5

1−_4
2

)
=

∑
_4=±1

(−1)
∑
4

(
1−_4

2
∑
53⊂NE(4)

1−(I
53
′

2

)
+∑ 5

(∑
51∈Δ ( 5 )

1−(I
51

2

) (
1−(I

5
′

2 +
1−(I

5

2 +
∑
41⊂ 5

1−_41
2

)

4
�
∑
5 (

I
5

′
(I
5

∏
41⊂ 5 _41+�Xg

∑
C

∏
54⊂C (

I
54 ,

(3.51)

where tanh � = 4−2�Xg. The last line is the usual action for a 4D Z2 gauge theory
except for some sign factors. We regard these factors as coming from a topological
action (top. From the penultimate line in (3.51), we see that (top contains

8c


∑
4

1 − _4
2

∑
53⊂NE(4)

1 − (I
53

′

2
+

∑
5

©«
∑

51∈Δ ( 5 )

1 − (I
51

2
ª®¬ · ©«

1 − (I
5

′

2
+

1 − (I
5

2
+

∑
41⊂ 5

1 − _41

2
ª®¬
 .

(3.52)

The first term is ∑
4

1 − _4
2

∑
5 ⊃4

∑
5∪1 53=1

1 − (I
53

′

2

=
∑
5

( ∑
4⊂ 5

1 − _4
2

) ( ∑
5∪1 53=1

1 − (I
53

′

2

) (3.53)
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which is equal to
∫
X08 ∪1 18+1 if we define 18 as a 2-cochain on the 8th layer with

18 ( 5 ) =
1−( 5

2 . The second term is∑
5

( ∑
51 |

∫
51∪1 5=1

1 − (I
51

2

)
·
(1 − (I

5

′

2
+

1 − (I
5

2
+

∑
41⊂ 5

1 − _41

2

)
(3.54)

which is
∫
18 ∪1 (18 + 18+1 + X08). Collecting all terms in (3.50), (3.53), and (3.54),

we get

(top({08}, {18}) =8c
∑
8

∫
08 ∪ X08 + X08 ∪1 18+1

+ 18 ∪1 (18 + 18+1 + X08).
(3.55)

The usual term 4
�
∑
5 (

I
5

′
(I
5

∏
41⊂ 5 _41+�Xg

∑
)

∏
54⊂) (

I
54 can be written as the exponential

of (up to an unimportant constant)

(4D gauge({08}, {18})

=
∑
8

(
− 2�

∑
5

|18 ( 5 ) + 18+1( 5 ) + X08 ( 5 ) |

− 2�Xg
∑
C

|X18 (C) |
)
,

(3.56)

where | · · · | gives the argument’s parity 0 or 1. Combining (3.55) and (3.56), the
Euclidean action becomes (up to an additive constant)

(({08}, {18}) = (top({08}, {18}) + (4D gauge({08}, {18}), (3.57)

which is analogous to generalized Steenrod square action:

8c

∫
.

(� ∪ � + � ∪1 X�). (3.58)

We will verify that these two actions produce the same boundary term under gauge
transformation.

This action is gauge-invariant (up to boundary terms) under gauge transformations

18 → 18 + X_8, 08 → 08 + X`8 + _8 + _8+1, (3.59)
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where _8 are arbitrary 1-cochains and `8 are arbitrary 0-cochains. Indeed, the change
in the action is

Δ(top

(8c) =
∑
8

∫
(08 +���>

0
X`8 + _8 + _8+1) ∪ (X_8 + X_8+1)

+ (���>
0

X`8 + _8 + _8+1) ∪ X08 + (X_8 + X_8+1) ∪1 18+1 + X08 ∪1 X_8+1

+ (X_8 +����:0
X_8+1) ∪1 X_8+1 + X_8 ∪1 (18 + 18+1 + X08)

=
∑
8

∫
08 ∪ (X_8 + X_8+1) + (_8 + _8+1) ∪ (X_8 + X_8+1)

+ (_8 + _8+1) ∪ X08 + 08 ∪ X_8+1 + X_8+1 ∪ 08 + _8 ∪ X_8+1 + X_8+1 ∪ _8
+ 08 ∪ X_8 + X_8 ∪ 08

=
∑
8

∫
_8 ∪ X_8 + _8+1 ∪ X_8+1 = 0,

(3.60)

where the terms with the same colors cancel out. In the above computation we
assumed periodic time, so that there are no boundary terms. If we do not identify
time periodically, the variation is a boundary term∫

(_0 ∪ _0 + X_0 ∪1 10) + (_# ∪ _# + X_# ∪1 1# ), (3.61)

which is the same as the boundary term (3.29) in the previous section.

We can also check that the action is invariant under a 2-form global symmetry

�→ � + V, (3.62)

where a closed 2-cochain V can be represented by 2-cochains V8 (one for each time
slice) and 1-cochains U8 satisfying V8 + V8+1 + XU8 = 0. Using a gauge transformation
(4.30) with

_8 =

8−1∑
9=0
U 9 , `8 = 0 (3.63)

for 8 = 0, 1, ..., # − 1, we can see that V′
8
= V0, which is independent of 8, and

U′
#−1 =

∑#−1
9=0 U 9 with other U′

8
= 0. Notice that U′

#−1 is closed since V′
8
= V′

8+1.
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Under this 2-form symmetry transformation V′, the action changes by

Δ(top

(8c) =
∫
��

���
���:0

U′#−1 ∪ X0#−1 +
∑
8

X08 ∪1 V0

+ V0 ∪1 (
��

��
�
��*

0∑
8

18 + 18+1) +
∑
8

V0 ∪1 X08

=
∑
8

∫
08 ∪ V0 + V0 ∪ 08 + V0 ∪ 08 + 08 ∪ V0 = 0.

(3.64)

Thus the action is invariant under a global 2-form symmetry, as expected.

3.5 Gauging fermion parity
We have shown that a lattice fermionic system in 3d is dual to a bosonic spin system
with the Gauss law constraints. In this section we show how to get rid of the
constraints at the expense of coupling fermions to a Z2 gauge field.

Our bosonization map is

−8WCW′C ←→ ,C ≡
∏
5 ⊂C

/ 5

(−1)
∫
�
5 (8W! ( 5 )W′'( 5 )) ←→ * 5 ≡ - 5

∏
5 ′
/

∫
f ′∪1 f

5 ′

(3.65)

with gauge constraints ©«
∏
5 ⊃4

- 5
ª®¬
∏
5 ′
/

∫
Xe∪1 f

′

5 ′ = 1. (3.66)

Now, we introduce new Z2 fields (spins), with operators -̃ , .̃ , and /̃ , which live on
faces and couple to fermions via a Gauss law constraint

(−1)�C =
∏
5 ⊂C

/̃ 5 . (3.67)

The fermionic hopping operator must be modified to

(�5 = (−1)
∫
�
5 (8W! ( 5 )W′'( 5 )) -̃ 5 (3.68)

in order to commute with the Gauss law constraint (3.67). The bosonization map
becomes

−8WCW′C =
∏
5 ⊂C

/̃ 5 ←→ ,C ≡
∏
5 ⊂C

/ 5

(−1)
∫
�
5 (8W! ( 5 )W′'( 5 )) -̃ 5 ←→ * 5 ≡ - 5

∏
5 ′
/

∫
f ′∪1 f

5 ′

(3.69)
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and, similarly, the gauge constraints become∏
5 ⊃4

-̃ 5 ←→
©«
∏
5 ⊃4

- 5
ª®¬
∏
5 ′
/

∫
Xe∪1 f

′

5 ′ . (3.70)

The equations (3.69) and (3.70) define a bosonization map for fermions coupled
to a dynamical Z2 gauge field. In this case, their is no constraint on the bosonic
variables.

We can apply this modified boson/fermion map to a Z2 version of the Levin-Wen
rotor model [53] on general triangulation:

� = −
∑
C

&C −
∑
4

�4 (3.71)

with

&C =
∏
5 ⊂C

/ 5

�4 =
∏
5 ⊃4

©«- 5
∏
5 ′
/

∫
f∪1 f

′

5 ′
ª®¬

=
©«
∏
5 ⊃4

- 5
ª®¬
∏
5 ′
/

∫
Xe∪1 f

′

5 ′ .

(3.72)

Since&C and �4 are just,C and (
∏

5 ⊃4 - 5 )
∏

5 ′ /

∫
X4∪1 5

′

5 ′ , the above bosonic model
is equivalent to a model of a Z2 gauge field coupled to fermions and a Hamiltonian

� = −
∑
C

∏
5 ⊂C

/̃ 5 −
∑
4

∏
5 ⊃4

-̃ 5 . (3.73)

The fermions are static, since the above Hamiltonian does not include fermionic
hopping terms. The only interaction between the fermions and the gauge field is via
the Gauss law constraint ∏

5 ⊂C
/̃ 5 = (−1)�C . (3.74)

Thus a complicated model bosonic model is mapped to a simple Z2 lattice gauge
theory coupled to static fermions.

As another application of the modified bosonizationmap, consider again the bosonic
gauge theory on a cubic lattice with the Hamiltonian (3.41)

� = − C
2

∑
8=G,H,I

∑
58

B8 (! ( 58))* 58 (1 −,! ( 58),'( 58)) (3.75)
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and a gauge constraint (3.6). This constrained model is dual to a model of free
fermions with Dirac cones. After coupling the fermions to a Z2 gauge field and
applying the modified map, we find that the bosonic model (3.75) without any gauge
constraints is equivalent to a fermionic model with the Hamiltonian

� = −C
∑
®A

(
BG (®A) -̃G (®A)2†®A+Ĝ2®A + BH (®A) -̃H (®A)2

†
®A+Ĥ2®A

+ BI (®A) -̃I (®A)2†®A+Î2®A + h.c.
) (3.76)

with (−1)2†C 2C = ∏
5 ⊂C /̃ 5 . The operators ,̃4 ≡

∏
5 ⊃4 -̃ 5 commute with the Hamil-

tonian, so we can project the Hilbert space into sectors with fixed ,̃4 (,̃4 is arbitrary
±1 as long as it satisfies

∏
4⊃E ,̃4 = 1). In the sector ,̃4 = 1 for all 4, the Hamilto-

nian (3.76) returns to (3.38). Themodel of unconstrained spinswith theHamiltonian
(3.75) thus can be regarded as a 3d analog of Kitaev’s honeycomb model.
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C h a p t e r 4

EXACT BOSONIZATION IN = DIMENSIONS

4.1 Triangulation
From the 2d and 3d formulae (2.28) and (3.24), it is very natural to conjecture the
=-dimensional boson-fermion duality. The fermions live at the center =-simplices,
i.e. WΔ= , W′Δ= for each Δ=. The Pauli matrices live on (= − 1)-simplices, i.e. -Δ=−1

and /Δ=−1 for each Δ=−1. The =-dimensional boson-fermion duality should be

,Δ= ≡
∏

Δ=−1⊂Δ=
/Δ=−1 ←→ %C = −8WΔ=W′Δ= ,

*Δ=−1 ≡ -Δ=−1
©«
∏
Δ=−1

′
/

∫
�n−1

′∪=−2�n−1
Δ=−1

′
ª®¬

←→ (−1)
∫
�
�n−1(Δ=−1 = (−1)

∫
�
�n−18W! (Δ=−1)W

′
'(Δ=−1) ,

�Δ=−2 ≡
∏

Δ=−1⊃Δ=−2

-Δ=−1
©«
∏
Δ=−1

′
/

∫
X�n−2∪=−2�n−1

′

Δ=−1
′

ª®¬
←→ (−1)

∫
F2

�n−2
(X�=−2

∏
Δ=

%

∫
�n−2∪=−2�n+�n∪=−2�n−2

Δ=
= 1,

∏
Δ=

,Δ= = 1←→
∏
Δ=

%Δ= ,

(4.1)

where F2 ∈ �=−2("=,Z2) is the chain representative of the second Stiefel–Whitney
class, � ∈ �=−1("=,Z2) denotes a choice of spin structure (m� = F2), and for
general (= − 1)-cochain ,=−1 and ,′=−1, the product of ( operators is defined as

(_=−1+_′=−1
≡ (−1)

∫
,=−1∪=−2,

′
=−1(_′

=−1
(_=−1 . (4.2)

This =-dimensional boson-fermion duality (4.1) is the most crucial result of this
paper, which will be proved by the end of this section.

Commutation relations
Consider an =-simplex Δ= = 〈012 . . . =〉. Its boundary contains all (= − 1)-simplex
(mΔ=)8 = 〈0 . . . 8̂ . . . =〉 where 8̂ means the vertex 8 is omitted. We define the
orientation of (mΔ=)8 as$ ((mΔ=)8) = (−1)8. For “+”-orientedΔ=, if$ ((mΔ=)8) = 1,
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the boundary (mΔ=)8 is outward, and if $ ((mΔ=)8) = −1, the boundary (mΔ=)8 is
inward. For “−”-oriented Δ=, the inward and outward boundaries are opposite.
(Δ=−1 and (Δ ′

=−1
anti-commute only when Δ=−1 and Δ′

=−1 are both inward or both
outward boundaries of some =-simplex, i.e. Δ=−1,Δ

′
=−1 ∈ mΔ=. We are going to

prove that this is equivalent to

(Δ=−1(Δ ′=−1
= (−1)

∫
�n−1∪=−2�′n−1+�

′
n−1∪=−2�n−1(Δ ′

=−1
(Δ=−1 . (4.3)

From the definition of the higher cup product (A.2), we have

[�n−1 ∪=−2 �
′
n−1] (0, 1, · · · , =)

=
∑

0≤80<81<···<8=−2≤=
�n−1(0 ∼ 80, 81 ∼ 82, 83 ∼ 84, · · · )�′n−1(80 ∼ 81, 82 ∼ 83, · · · )

=
∑

0≤ 91< 92≤=| 91, 92∈even
�n−1(〈0 . . . 9̂2 . . . =〉)�′n−1(〈0 . . . 9̂1 . . . =〉)

+
∑

0≤:1<:2≤=|:1,:2∈odd
�n−1(〈0 . . . :̂1 . . . =〉)�′n−1(〈0 . . . :̂2 . . . =〉).

(4.4)

The ∪=−2 only contains the product of boundaries Δ 8
=−1 with the same orientation

(inward or outward) and each pair of Δ 8
=−1,Δ

8′

=−1 with the same orientation appears
exactly once. Therefore, the ∪=−2 expression in (4.3) captures the commutation
relations of fermionic hopping operators (Δ=−1 . It is easy to check that bosonic
operators*Δ=−1 satisfy the same commutation relations:

*Δ=−1*Δ ′=−1
= (−1)

∫
�n−1∪=−2�′n−1+�

′
n−1∪=−2�n−1*Δ ′

=−1
*Δ=−1 . (4.5)

Therefore, {(Δ=−1 , %Δ=} and {*Δ=−1 ,,Δ=} in (4.1) have the same commutation
relations.

Gauge constraints
In Appendix C, the identity for fermionic operators is derived:

(−1)
∫
F2

�=−2
(XΔ=−2

∏
Δ=

%

∫
�=−2∪=−2�=+�=∪=−2�=−2

Δ=
= 1. (4.6)

We can modify the sign of (Δ=−1 as

(�Δ=−1
≡ (−1)

∫
�
�=−1(Δ=−1 , (4.7)

where � ∈ �=−1("=,Z2) is a choice of spin structure satisfying m� = F2. In these
modified operators, the constraint on the fermionic operator becomes

(�XΔ=−2

∏
Δ=

%

∫
�=−2∪=−2�=+�=∪=−2�=−2

Δ=
= 1, (4.8)
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which is mapped to

�Δ=−2 =*XΔ=−2

∏
Δ=

,

∫
�=−2∪=−2�=+�=∪=−2�=−2

Δ=

=
∏

Δ=−1⊃Δ=−2

-Δ=−1 (
∏
Δ=−1

′
/

∫
X�n−2∪=−2�n−1

′

Δ=−1
′ ).

(4.9)

We need to impose this gauge constraint �Δ=−2 = 1 on bosonic operators for every
(= − 2)-simplex Δ=−2.

We also need to impose the even total parity constraint for fermions∏
Δ=

%Δ= = 1 (4.10)

since it is mapped to the bosonic operator
∏
Δ=
,Δ= = 1. After imposing the gauge

constraints, the =-dimensional boson-fermion duality (4.1) is completed.

4.2 Modified Gauss’s law and Euclidean action
Gauss’s law as boundary anomaly
First, we consider the standardZ2 lattice gauge theory on the =-dimensionalmanifold
"=:

�0 = −�
∑
Δ=−1

-Δ=−1 − �
∑
Δ=

,Δ= (4.11)

with the gauge constraint (Gauss’s law)

�0
Δ=−2

=
∏

Δ=−1⊃Δ=−2

-Δ=−2 = 1. (4.12)

It is well-kwown that its Euclidean theory is (= + 1)-dimensional Ising model (with
some choice of � and �) [55]:

(Ising(�=−1) = −�
∑
Δ=⊂.

|X�=−1(Δ=) |, (4.13)

where � ∈ �=−1(.,Z2) is a (= − 1)-cochain on the spacetime manifold . . In this
case, (Ising is invariant under the gauge transformation �=−1 → �=−1 + XΛ=−2 for
arbitrary (= − 2)-cochain Λ=−2 ∈ �=−2(.,Z2). Therefore, (Ising has no boundary
anomaly under the standard Gauss’s law.

Now, we propose a new class of Z2 lattice gauge theory:

� = −�
∑
Δ=−1

*Δ=−1 − �
∑
Δ=

,Δ= (4.14)
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with the modified Gauss’s law (gauge constraints) at (= − 2)-simplices

�Δ=−2 =
∏

Δ=−1⊃Δ=−2

-Δ=−1 (
∏
Δ=−1

′
/

∫
X�n−2∪=−2�n−1

′

Δ=−1
′ ) = 1. (4.15)

This model describes a free fermion system, since it is dual to

� 5 = −�
∑
Δ=−1

(−1)
∫
�
Δ=−18W! (Δ=−1)W

′
'(Δ=−1) − �

∑
Δ=

(−8WΔ=W′Δ=)

= −�
∑
Δ=−1

(�Δ=−1
− �

∑
Δ=

%Δ= .
(4.16)

The modified Gauss’s law (4.15) on a (= − 2)-simplex Δ=−2, or equivalently on
the dual (= − 2)-cochain �=−2, can be generalized to an arbitrary (= − 2)-cochain
_=−2 =

∑
8 �

8
=−2, the Gauss’s law is

�_=−2 =
∏
8

�Δ 8
=−2

=(
∏

�=−1∈X_=−2

-Δ=−1) (
∏
Δ=−1

′
/

∫
X_=−2∪=−2�n−1

′

Δ=−1
′ ) (−1)

∫
_=−2∪=−4_=−2+_=−2∪=−3X_=−2

=1,

(4.17)

where the sign comes from anti-commutation of - and / on the same simplex. The
derivation uses the following property of higher cup products:

� ∪0 � + � ∪0 � = � ∪0+1 X� + X� ∪0+1 � + X(� ∪0+1 �). (4.18)

Consider now the following (= − 1)-form gauge theory defined on a general trian-
gulated (= + 1)-dimensional manifold . :

((�=−1) = −
∑
Δ=⊂.

|X�=−1(Δ=) | + 8c
∫
.

(�=−1∪=−3 �=−1 + �=−1∪=−2 X�=−1), (4.19)

where �=−1 ∈ �=−1(.,Z2), and the gauge symmetry acts by �=−1 → �=−1 + XΛ=−2

for Λ=−2 ∈ �=−2(.,Z2). The second term is the generalized Steenrod square term
defined in [24]. The action is gauge-invariant up to a boundary term:

((�=−1 + XΛ=−2) − ((�=−1)

=8c

∫
m.

(Λ=−2 ∪=−4 Λ=−2 + Λ=−2 ∪=−3 XΛ=−2 + XΛ=−2 ∪=−2 �=−1)

=8c

∫
m.

(Λ ∪=−4 Λ + Λ ∪=−3 XΛ + XΛ ∪=−2 �),

(4.20)
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where we have omited the subscript of �=−1 and Λ=−2 for simplicity. This boundary
term determines the Gauss law for the wave-function Ψ(�) on the spatial slice
" = m. :

Ψ(� + XΛ) = (−1)l(Λ,�)Ψ(�), (4.21)

where l(Λ, �) =
∫
"
(Λ ∪=−4 Λ + Λ ∪=−3 XΛ + XΛ ∪=−2 �). The Gauss law is the

same as the gauge constraint (4.17) if we identify /Δ=−1 as (−1)�=−1 (Δ=−1) and -Δ=−1

acts as the transformation �=−1 → �=−1 + �=−1. The modified Gauss’s law (4.15)
represents the boundary anomaly of topological action (4.19) as we claimed.

In the following section, we derive the Euclidean action of the modified Z2 lattice
gauge theory (4.14) explicitly, which is analogous to (4.19).

Euclidean path integral of lattice gauge theories
Start with the Hamiltonian of modified Z2 lattice gauge theory:

� = −�
∑
Δ=−1

*Δ=−1 − �
∑
Δ=

,Δ=

= −�
∑
Δ=−1

-Δ=−1 (
∏
Δ=−1

′
/

∫
�n−1

′∪=−2�n−1
Δ=−1

′ ) − �
∑
Δ=

∏
Δ=−1⊂Δ=

/Δ=−1

(4.22)

with gauge constraints

�Δ=−2 =
∏

Δ=−1⊃Δ=−2

-Δ=−1 (
∏
Δ=−1

′
/

∫
X�n−2∪=−2�n−1

′

Δ=−1
′ ) = 1. (4.23)

The partition function is:

Z = Tr 4−V� = Tr )" , (4.24)

where we use Trotter-Suzuki decomposition in imaginary time direction and ) is
the transfer matrix defined as

) =

(∏
Δ=−2

X�Δ=−2 ,1

)
4−Xg� . (4.25)

The first factor arises from the gauge constraints on the Hilbert space. The spacetime
manifold consists of many time slices labelled by layers {8}. In the 8th layer, we
insert a complete basis (in Pauli matrix /Δ=−1): 18=−1 ∈ �

=−1("=,Z2) (Z2 fields on
each Δ=−1 of the spatial manifold "= such that /Δ=−1 = (−1)18=−1 (Δ=−1)). The transfer
matrix ) between the 8th layer and the (8 + 1)th layer contains gauge constraints on
every spatial (= − 2)-simplex Δ=−2:

X�Δ=−2 ,1 =
1 + �Δ=−2

2
=

1
2

∑
0
8+1/2
=−2 =0,1

(�Δ=−2)0
8+1/2
=−2 , (4.26)
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where we introduce the Lagrangian multiplier 08+1/2
=−2 ∈ �

=−2("=,Z2) (Z2 fields on
each Δ=−2 of the spatial manifold "=). Notice that 08+1/2=−2 defined between two time
slices lives on the spatial (= − 2)-simplex Δ=−2, which can be interpreted as the
spacetime (= − 1)-simplex between the two layers. From the same calculation in
Section 3.4, we have

Z =
∑

{{08+1/2
=−2 },{1

8
=−1}}

exp( [(Ising + (top] ({{08+1/2=−2 }, {1
8
=−1}})), (4.27)

where

(Ising({{08+1/2=−2 }, {0
8
=−1}})

=
∑
8

(
−�B

∑
Δ=

|X18=−1(Δ=) | − �g
∑
Δ=−1

|
[
18=−1 + 1

8+1
=−1 + X0

8+1/2
=−2

]
(Δ=−1) |

)
(4.28)

and

(top({{08+1/2=−2 }, {1
8
=−1}})

= 8c
∑
8

∫
"=

0
8+1/2
=−2 ∪=−4 0

8+1/2
=−2 + 0

8+1/2
=−2 ∪=−3 X0

8+1/2
=−2

+ X08+1/2
=−2 ∪=−2 1

8+1
=−1 + 1

8
=−1 ∪=−2 (18=−1 + 1

8+1
=−1 + X0

8+1/2
=−2 ).

(4.29)

Here �B, �g are constants depending on �, �, Xg in the original Hamiltonian and we
assume �B = �g = � for simplicity. | · · · | gives the argument’s parity 0 or 1. The
gauge transformations act as

08=−1 → 08=−1 + X_
8,

0
8+1/2
=−2 → 0

8+1/2
=−2 + X`

8 + _8 + _8+1,
(4.30)

where _8 are arbitrary (= − 2)-cochains and `8 are arbitrary (= − 3)-cochains.

If we interpret 08+1/2
=−2 as spacetime (= − 1)-cochains, we can rewrite

{{08+1/2
=−2 }, {1

8
=−1}} → �=−1 ∈ �=−1(.,Z2), (4.31)

which is Z2 fields on (= − 1)-simplices in spacetime manifold . . It is natural to
write (Ising in (4.28) as

(Ising = −
∑
Δ=⊂.

|X�=−1(Δ=) |. (4.32)

The spacetimemanifold. = "=× [−∞, 0] (spatial and temporal parts) is not a trian-
gulation, since we only triangularize the spatial manifold "= under the discretized
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time. The (higher) cup products are not well-defined in . . However, we can still
write an expression

(top = 8c

∫
. ′
(�=−1 ∪=−3 �=−1 + �=−1 ∪=−2 X�=−1) (4.33)

in (=+1)-dimensional triangulation. ′ such that. ′ is a refinement of. . We can check
that (4.29) and (4.33) produce the same boundary term under gauge transformations.



Part II

Constructions of SPT phases
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C h a p t e r 5

(2+1)D SPT CONSTRUCTIONS

In this chapter, we construct the supercohomology fSPT and its bosonic dual in
(2+1)D. The main result is shown in Fig. 5.1. To construct the supercohomology
fSPT protected by� ×Z 52 , we first consider another bSPT protected by �̃ = �oZ2.
�̃ is called Z2 extension of � and will be defined explicitly in Section 5.2. We
will show that the bSPT becomes a Z2 gauge theory after gauging the Z2 symmetry.
This Z2 gauge theory is equivalent to a fermionic theory according to the exact
bosonization developed in Part I. Therefore, from the well-known construction
of bSPT, we are able to derive the finite-depth local unitary quantum circuit for
supercohomology fSPT phases.

This section is started with the reviewing of the well-known bosonic SPT construc-
tions. We will show the correspondence between bSPT phases and fSPT phases
explicitly.

Figure 5.1: To construct a� 5 = �×Z 52 supercohomology SPTmodel in 2d, we start
with amodel for a particular bosonic SPT phase determined by the supercohomology
data (d, a). The symmetry of this bosonic SPT is �̃ = � o Z2 (� extended by //2
according to 2-cocycle = ∈ �2(��,Z2)). Next, we gauge the Z2 subgroup of �̃ to
build the shadow model, which is a Z2 lattice gauge theory. We then condense the
fermion in the shadow model, or apply the fermionization duality, to obtain a model
for the supercohomology SPT phase corresponding to (d, a).

5.1 Review of group cohomology bSPT constructions
The bosonic SPT phases are partially classified by group cohomology [32]. The
3-dimensional interacting bosonic SPT phases with symmetry � is characterized
by a ∈ �3+1(��,R/Z). Given the �-spins living at vertices, the SPT state can be
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written as

|Ψ(%) 〉 =
∑
{6E }

∏
〈E1E2···E3+1〉

exp(2c8a(1, 6E1 , 6E2 · · · 6E3+1)) |{6E}〉

≡ *
∑
{6E }
|{6E}〉,

(5.1)

where the product is over all spatial 3-simplexes. The Hamiltonian is simply

�(%) = * (−
∑
E

%E)*†, (5.2)

where %E is the projector to the state
∑
6 |6〉 at a vertex E. We can also use the

inhomogeneous form of the cocycle:

a(60, 61, · · · , 63 , 63+1) ≡ l(6−1
0 61, 6

−1
1 62, · · · 6−1

3 63+1). (5.3)

We denote the configuration of �-spins {6E} as Φ and the SPT state (5.1) becomes

|Ψ(%) 〉 =
∑
Φ

exp(
∫
�"

l(3Φ)) |Φ〉, (5.4)

where 3Φ is defined in Fig 5.2 and the integral is over spacetime manifold �" (the
"cone" of the spatial manifold ").

Figure 5.2: The configuration of �-spins and the gauging map.

5.2 Correspendence between bSPT and supercohomology fSPT
Let us start with the (2+1)D case with trivial product symmetry � × / 52 first [42].
fSPTs have supercohomology data (a, =) with a ∈ �3(��,R/Z), = ∈ �2(��,Z2).
They satisfy Gu-Wen equations:
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Xa =
1
2
= ∪ =

X= = 0.
(5.5)

The 2-cocycle = ∈ �2(��,Z2) gives the central extension

0→ Z2 → �̃ → � → 1. (5.6)

The group elements in �̃ are 60 with label 0 = 0, 1 and the group law is

6
01
1 6

02
2 = (6162)01+02+=(1,61,6162) . (5.7)

We can define a cocycle in �3(��′,R/Z) by

U3 = a +
1
2
= ∪ n1, (5.8)

where n1(601
1 , 6

02
2 ) ≡ 01 + 02 + =(1, 61, 62) is a 1-cochain in �′ satisfying Xn1 = =.

One can check that this definition is homogeneous, i.e. n1(ℎ′6′8 , ℎ′6′9 ) = n (6′8 , 6′9 ).
In inhomogeneous form of n1, the above definition for n1 is

n1((6(08)8
)−16

(0 9 )
9
) = n1((6−1

8 6 9 ) (08+0 9+=(1,68 ,6 9 )))

≡ 08 + 0 9 + =(1, 68, 6 9 ),
(5.9)

which is equivalent to n1(6(0)) = 0 (we have assumed = is normal, i.e. =(1, 1, 6) = 0).
By this U3, we can construct an auxiliary bosonic SPT (with �̃ symmetry) as

|Ψ1〉

=
∑

{6E },{0E }

∏
5=〈?@A〉

42c8U3 (1,6
0?
? ,6

0@
@ ,6

0A
A )$ ?@A |{6E}, {0E}〉

=
∑

{6E },{0E }

∏
5=〈?@A〉

[
42c8a(1,6? ,6@ ,6A )$ ?@A×

(−1)=(1,6? ,6@) (0@+0A+=(1,6@ ,6A ))
]
|{6E}, {0E}〉,

(5.10)

where 5 = 〈?@A〉 is a 2-simplex (face) and $?@A denotes the orientation of the
simplex 〈?@A〉 . This state is invariant under multiplication of constant ℎ0 on all
vertices, i.e 60EE → (ℎ6E)0E+=(1,ℎ,ℎ6E ) . In other words, the |Ψ(%) 〉 is invariant under
the symmetry action:

|{6E}, {0E}〉 → |{ℎ6E}, {0E + =(1, ℎ, ℎ6E)}〉. (5.11)
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The next step is to gauge the 0-form symmetry on {0E}. This is a duality mapping 0E
degrees of freedom on vertices to those living on edges. The procedure for gauging
the 0-form symmetry or higher-form symmetry is reviewed in Appendix D. Since
each configuration {0E} can be represented by the cochain aE, the gauging map is
defined as

Γ( |aE〉) = |XaE〉, (5.12)

where XaE are Z2 fields living on edges, i.e. XaE (48 9 ) = 08 + 0 9 , shown in Fig. D.1
in Appendix D. The bosonic shadow wavefunction is

|ΨB〉 = Γ( |Ψ1〉)

=
∑

{6E },{0E }

∏
5=〈?@A〉

(
42c8a(1,6? ,6@ ,6A )$ ?@A×

(−1)=(1,6? ,6@) (0@+0A+=(1,6@ ,6A ))
)
|{6E}, {X0E}〉

=
∑

{6E },{0E }

∏
〈?@A〉

(
42c8a(1,6? ,6@ ,6A )$ ?@A (−1)=̄?@ (0@+0A+=̄@A )

)
|{6E}, {08 + 0 9 + =(1, 68, 6 9 )}〉′,

(5.13)

where in the last line, we defined a newbasis of states |{6E}, {08 + 0 9 + =(1, 68, 6 9 )}〉′ ≡
|{6E}, {08 + 0 9 }〉 and =̄ ∈ �1(",Z2) is a 1-cochain:

=̄(48 9 ) = =̄8 9 = =(1, 68, 6 9 ). (5.14)

We can introduce the variables 14 ≡ 08 + 0 9 + =(1, 68, 6 9 ) (Z2 fields living on edges)
and Pauli operators /4 ≡ (−1)14 which measures the 14 variables. Doing so, the
symmetry action (5.11) becomes

+ (ℎ) : |{6E}, {14}〉′→ |{ℎ6E}, {14}〉′ (5.15)

which acts only on the vertex variables 6E. The action on 14 cancels because of the
cocycle condition of =. The bosonic shadow state can be written as

|ΨB〉 =
∑

{6E },{14}
X14 (〈8 9 :〉)==(68 ,6 9 ,6: )

∏
〈?@A〉

[
42c8a(1,6? ,6@ ,6A )$ ?@A×

(−1)=̄?@1@A
]
|{6E}, {14}〉′,

(5.16)

where we have assumed that the state lives on a simply connected manifold " for
simplicity. If " has noncontractible loops, there will be additional conditions on
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the holonomy of 14 fields. In this gauged state, we notice that there is an additional
symmetry:

|{6E}, {14}〉′→ (−1)
∫
=̄∪_4 |{6E}, {14} + _〉′ (5.17)

for any closed 1-cochain _ ∈ �1(",Z2) where we identify Z2 fields {14} as an
1-cochain in �1(",Z2). If we choose _4 = Xv for a vertex E. This symmetry is

|{6E}, {14}〉′→(−1)
∫
=∪v |{6E}, {14} + Xv〉′

= (
∏
4′
/

∫
Xe′∪v

4′ )
∏
4⊃E

-4 |{6E}, {14}〉′

= �̃E |{6E}, {14}〉′,

(5.18)

where we have used X14 = = and the Pauli matrices -4 and /4 act on the second
entry {14}, i.e.

-4 |{6E}, {14}〉′ = |{6E}, {14} + e〉′

/4 |{6E}, {14}〉′ = (−1)14 |{6E}, {14}〉′
(5.19)

with �̃E = (
∏
4′ /

∫
e′∪Xv

4′ )∏4⊃E -4. In other words, the bosonic wavefunction is
gauge-invariant under

�̃E |ΨB〉 = |ΨB〉 (5.20)

and we can apply our fermion-boson duality (2.28) (with a slightly different conven-
tion) to get the dual fermionic wavefunction. More explicitly, we further simplify
the state |ΨB〉 by expressing the state as Pauli matrices acting on the groundstate of
toric code:

|ΨB〉

=
∑

{6E },{0E }

∏
〈?@A〉

(
42c8a(1,6? ,6@ ,6A )$ ?@A /

=̄?@
@A

)
|{6E}, {X0E} + =̄〉′

=
∑

{6E },{0E }

∏
〈?@A〉

(
42c8a(1,6? ,6@ ,6A )$ ?@A

)
∏
4′

(
/

∫
=̄∪e′

4′

) ∏
4

-
=̄(4)
4 |{6E}, {X0E}〉′

=
∑

{6E },{0E }

∏
〈?@A〉

(
42c8a(1,6? ,6@ ,6A )$ ?@A

)
*̃=̄ |{6E}, {X0E}〉′,

(5.21)

where =̄ is the 1-cochain defined in (5.14), and |{6E}, {X0E} + =̄〉′ is the shorthand
notation of |{6E}, {08 + 0 9 + =(1, 68, 6 9 )}〉′. The bosonic hopping operator *̃4 is
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defined as
*̃4 = (

∏
4′
/

∫
e∪e′

4′ )-4 (5.22)

or more generally for any 1-cochain _ ∈ �1(",Z2):

*̃_ = (
∏
4′
/

∫
_∪e′

4′ )
∏

4 |_(4)=1
-4 . (5.23)

(5.23) can be derived from (5.22) by

*̃_+_′ ≡ (−1)
∫
_∪_′*̃_′*̃_. (5.24)

|ΨB〉 in (5.21) is still invariant under the symmetry action (5.15) since we just
reorganize the state.

The final step is to apply the fermionization map (2.28):

|ΨB〉 ←→ |Ψ 5 〉

=
∑
{6E }

∏
〈?@A〉

(
42c8a(1,6? ,6@ ,6A )$ ?@A

)
(�=̄ |{6E}, {E02}〉 5 ,

(5.25)

where (�4 = (−1)
∫
�
e8W! (4)W

′
'(4) and its definition on general 1-cochain is:

(�_+_′ ≡ (−1)
∫
_∪_′(�_′(

�
_ , (5.26)

where _, _′ ∈ �1(",Z2). The toric code groundstate (, 5 = 1 ∀ 5 ) is mapped to
the vacuum state (% 5 = 1 ∀ 5 ). The symmetry of this fermionic SPT states |Ψ 5 〉 is

|{6E}, {% 5 }〉 5 → |{ℎ6E}, {% 5 }〉 5 (5.27)

since the duality map is defined as |{6E}, {14}〉′ → |{6E}, {% 5 = X14}〉 5 (up to
a sign) and the symmetry action on the bosonic state is simply |{6E}, {14}〉′ →
|{ℎ6E}, {14}〉′ by (5.15).
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C h a p t e r 6

(3+1)D CONSTRUCTIONS

In (2+1)D, the supercohomology fSPT with symmetry group � corresponds to a
bSPT with with symmetry group �̃, where �̃ is a Z2 extension of � by 2-cocycle
= ∈ �2(��,Z2). For (3+1)D, the structure becomes more complicated. We will
show that every supercohomology fSPT with symmetry group � corresponds to
a “2-group” bSPT. The “2-group” symmetry contains both 0-form � symmetry
and 1-form Z2 symmetry, with nontrivial coupling between them. The 2-group is
formed by the group � extend by Z2 1-form symmetry, according the 3-cocycle
�3(��,Z2). The main result for the duality of 3d bSPT and fSPT phases is shown
in Fig. 6.1. In this section, we will first introduce the concepts of 2-group, 2-group
extension, and 2-gauge theory. We will use these concepts to construct 2-group
bSPT in 3d. After gauging the 1-form Z2 symmetry of this 2-group, the bSPT
becomes a Z2 gauge theory. By the bosonization in Part I, this Z2 gauge theory is
equivalent a fermionic theory, which is the desired supercohomology fSPT in 3d.

Figure 6.1: To construct a� 5 = �×Z 52 supercohomology SPTmodel in 3d, we start
with amodel for a particular 2-group SPTphase determined by the supercohomology
data (d, a). Next, we gauge the Z2 1-form symmetry of the 2-group to build the
shadow model, which is a Z2 lattice gauge theory. We then condense the fermion
in the shadow model, or apply the fermionization duality, to obtain a model for the
supercohomology SPT phase corresponding to (d, a).

6.1 2-group, 2-group extension, and 2-gauge theory
2-group and 2-group extension
A 2-group G = (�, �, C, U) is defined as below. � and � are groups, C : � → � is
a group homomorphism, and U : � → Aut(�) is an action of � on � such that it
satisfies:

C (U(6) (0)) = 6C (0)6−1, U(C (0)) (0′) = 00′0−1. (6.1)
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Given a�-module � (group� with action U(6) on a group �), we consider a double
extension:

1→ �
8−→ �′

C ′−→ �′
c−→ � → 1, (6.2)

where (�′, �′, C′, U′) is a 2-group and U′ induces the action U from � to �. By
the property of exact sequence, we have � = C′ and � = ker C′. It’s known that the
equivalence classes of the double extension are labeled by elements in �3(��, �).
We can illustrate how they are related. First, consider a section B : � → �′ and it
satisfies the group law projectively:

B(6)B(ℎ) = 5 (6, ℎ)B(6ℎ) (6.3)

with 5 : � × � → ker c. By associative property, it must satisfy

[B(6) 5 (ℎ, :)B(6)−1] 5 (6, ℎ:) = 5 (6, ℎ) 5 (6ℎ, :). (6.4)

Since we have C′ = ker c, we can lift 5 to � : � × � → �′ and (6.4) is satisfied
projectively:

[U′(B(6)) (� (ℎ, :))]� (6, ℎ:) = 8(W(6, ℎ, :))� (6, ℎ)� (6ℎ, :), (6.5)

where W ∈ /3(��, �) is a 3-cocycle. It can be shown that the cohomology class of
W labels the equivalence class of double extension (6.2).

2-gauge theory on lattice
We now define 2-gauge theory, using data (�, �, U, W) decribed in the previous
section. For simplicity, we consider � = Z2 and therefore only trivial U action (�
on Z2) exists. The field configuration is an assigenment of an element 64 ∈ � to
each edge and of an element 1 5 ∈ Z2 to each triangle. A branching structure on the
triangulation is chosen. We denote the configuration to be (6̄, 1̄) with 6̄ ≡ {64} and
1̄ ≡ {1 5 }. (6̄, 1̄) needs to satisfy some constraints. First, on each triangle Δ012, 6̄
satisfies:

601612 = 602. (6.6)

Second, on each tetrahedron, (6̄, �̄) has the following relation:

X1 = 1012 + 1013 + 1023 + 1123 = W(601, 612, 623). (6.7)

For the convenience, we will use homogeneous notation d for cocycle later, i.e.
d(1, 6, 6ℎ, 6ℎ:) = W(6, ℎ, :).
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The 0-form gauge transformation by ℎ̄ = {ℎE} (ℎE ∈ � at each vertex E) is

6̄ → 6̄ℎ : 6ℎ8 9 = ℎ
−1
8 68 9ℎ 9

1̄ → 1̄ℎ : 1ℎ8 9 : = 18 9 : + Z (68 9 , 6 9 : , ℎ8, ℎ 9 , ℎ: )
(6.8)

with Z is Z2-valued function satisfying

XZ (6̄, ℎ̄) = d(6̄ℎ) − d(6̄). (6.9)

The solution for Z always exists since we can consider d as the label for Dijkgraaf-
Witten theory and gauge transformation of � fields doesn’t change the cohomology
class of d. Our choice is Z is (derived in appendix E):

Z (612, 623, ℎ1, ℎ2, ℎ3)
=d(1, 612, 612623, 612623ℎ3) + d(1, 612, 612ℎ2, 612623ℎ3)
+ d(1, ℎ1, 612ℎ2, 612623ℎ3).

(6.10)

The 1-form symmetry depends on 1-form Z2-valued cochain _̄ = {_4}. The trans-
formation is as usual

64 → 64

1 5 → 1 5 + X_4 .
(6.11)

The theory defined above is called 2-gauge theory.

The classifying space of a 2-group G, denoted as �G, is a 2-gauge theory. It can
be described by a Δ-complex structure. �G contains one vertex and edges labelled
by 6 ∈ �. Its 2-simplices 〈012〉 are labeled by (601, 612, 602, 1012) such that
601612 = 602 and 1012 = 0, 1. Its 3-simplices 〈0123〉 contains boundary 2-simplices
〈012〉, 〈013〉, 〈023〉, and 〈123〉 such that

W(601, 612, 623) =d(1, 601, 601612, 601612623)
=1012 + 1013 + 1023 + 1123 (mod 2).

(6.12)

For = ≥ 4, we glue the =-simplex to any (= − 1)-cycle. More explicitly, we glue
the boundary of a =-simplex 〈01 . . . =〉 with (= − 1)-simplices 〈0 . . . 8̂ . . . =〉 for
8 = 0, 1, . . . , =, where 8̂ means that 8 is omitted. According to Dijkgraaf and Witten,
topological gauge theories with gauge group � in (3 + 1) spacetime dimensions
are classified by �3+1(��,* (1)). This was generalized to 2-group gauge theories
by Kapustin and Thorngren [50]: the 2-gauge theories with 2-group G in (3 + 1)
spaectime dimensions is classified by �3+1(�G,* (1)).
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6.2 Auxiliary “2-group” bSPT
In this section, we construct the supercohomology fermionic SPT phases in (3+1)-
dimensions from bosonic 2-group SPT phases. Here we give a quick introduction
to 2-group SPTs. A 2-group G = (�,Z2, W) is labelled by two usual groups �, Z2,
and a 3-cocycle W ∈ �3(��,Z2). A 2-gauge theory on a lattice has � elements
64 ∈ � on edges 4 with flat condition 601612 = 602 on each face 〈8 9 :〉 and Z2 fields
1 5 = {0, 1} on faces 5 such that on each tetrahedron 〈0123〉

W(601, 612, 623) = X1 5 (〈0123〉), (6.13)

which is the most crucial condition for 2-gauge theories.

We will construct a 2-group SPT wavefunction for a 2-group G and given U4 ∈
�4(�G,* (1)). On a spatial slice" , the “matter field”Φ contains {6E} (elements of
�) on vertices and {04} (elements of Z2) on edges. We considerΦ = ({6E}, {04}) as
a gauge transformation operator (6.8) and (6.11) with {ℎ8} = {6E} and {_4} = {04},
and apply this gauge transformation on the trivial configuration in 2-gauge theory on
the spacetime manifold �" (the "cone" of the spatial manifold "), with 64 = 1 ∀4
and 1 5 = 0 ∀ 5 [50]. We obtain a configuration 3Φ in the 2-gauge theory, as shown
as Fig. 6.2. We will evaluate the 2-group cocycle U4 ∈ �4(�G,* (1)) on this 3Φ.

Figure 6.2: We have used Z (1, 1, 1, 6, ℎ) = 0, which is equivalent to normalized d,
i.e. d(1, 1, 6, ℎ) = 0 [50].

The global symmetry transformation rules (ℎ, _) ∈ (�, /1(",Z2)) for matter fields
Φ on spatial manifold " can be written as

6E → ℎ6E

08 9 → 08 9 + _8 9 + ^ℎ (68, 6 9 ),
(6.14)



63

where 1-cochain ^ is the second descendant of W satisfying

X^ℎ = Z (1, 1, ℎ68, ℎ6 9 , ℎ6: ) − Z (1, 1, 68, 6 9 , 6: ). (6.15)

It can be checked that 3Φ is invariant under this symmetry transformation. The
global symmetry contains constant 0-form transformation by ℎ and closed 1-form
(i.e. X_ = 0) transformation by _.

It is convenient to work with the homogeneous cocycle d, i.e. d(1, 6, 6ℎ, 6ℎ:) =
W(6, ℎ, :) with d(ℎ61, ℎ62, ℎ63, ℎ64) = d(61, 62, 63, 64). With the choice of Z in
(6.10), we have

Z (1, 1, 68, 6 9 , 6: ) = d(1, 68, 6 9 , 6: ). (6.16)

We can further define

^ℎ (61, 62) ≡ d(1, ℎ−1, 61, 62). (6.17)

This ^ℎ satisfies (6.15) by the cocycle condition of d.

We can evaluate the value of U4 on spacetime manifold �" in an identical way as
Chen-Liu-Gu-Wen’s bosonic SPT phase [32]. The groundstate wavefunction on "
can be written as

|U4〉 =
∑
Φ

exp
[
2c8

∫
�"

U4(3Φ)
]
|Φ〉. (6.18)

From [46], U4 ∈ �4(�G,* (1)) can be constructed from Gu-Wen supercohomology
data (a, d) with a ∈ �4(��,* (1)) and d ∈ /3(��,Z2) satisfying Xa = 1

2d ∪1 d:

U4 = a +
1
2
d ∪1 n2 +

1
2
n2 ∪ n2, (6.19)

where n2 is the 2-cochain in �2(",Z2) satisfying Xn2 = d. To simplify future
expressions, we introduce cochains ā ∈ �4(",R/Z) and d̄ ∈ �3(",Z/2)

ā(1234) = ā(Δ1234) ≡ a(1, 61, 62, 63, 64), (6.20)

d̄(123) = d̄(Δ1234) ≡ d(1, 61, 62, 63). (6.21)

It is important to note that these two cochains cannot be pulled-back from some
cochain on ��.

With this, we choose the cochain n2 to be

n2(Δ012) = 012 (6.22)

n2(Δ123) =X0(Δ123) + d̄(61, 62, 63) (6.23)
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for time-like faces Δ012 and spacelike faces Δ123, respectively1.

We can then use this U4 to construct the 2-group SPT wavefunction as the following:

ΨU4 (Φ = ({6E}, {04})) = exp
[
2c8

∫
�"

U4(3Φ)
]

=
∏

C=〈1234〉
42c8 a(01234)$C (−1)n2 (012)n2 (234)

(−1)d(0234)n2 (012)+d(0134)n2 (123)+d(0124)n2 (234) .

(6.24)

Inserting n2 from (6.23), the final form of the auxillary bosonic SPT in terms of
supercohomology data (a and d) is

|Ψ1〉 =
∑

{6E },{04}

∏
C=〈1234〉

42c8 ā(1234)$C (−1)0(12)X0(234)

× (−1) d̄(134) (X0(123)+d̄(123))+d̄(124) (X0(234)+d̄(234)) |{6E}, {04}〉. (6.25)

Shadow theory
The wavefunction we have written down contains the 1-form Z2 symmetry. This
guarantees that when we apply the gauging map Γ defined in (D.7), the gauged
wavefunction will be the ground state the twisted toric code enriched by �.

|ΨB〉 = Γ( |Ψ1〉)
=

∑
{6E },{04}

∏
C=〈1234〉

42c8 ā(1234)$C (−1)0(12)X0(234)

× (−1) d̄(134) (X0(123)+d̄(123))+d̄(124) (X0(234)+d̄(234)) |{6E}, {X04}〉.

(6.26)

Next, we perform a basis transformation |{6E}, {X04}〉 ≡ |{6E}, {X04} + d̄〉′. Fur-
thermore, we define Pauli matrices which acts on faces 5 (the second entry of states)
as

- 5 |{6E}, {1 5 }〉′ = |{6E}, {1 5 } + f 〉′

/ 5 |{6E}, {1 5 }〉′ = (−1)1 5 |{6E}, {1 5 }〉′.
(6.27)

1This choice is consistent with choosing the cocycle d such that d(1, 1, 61, 62) = 0 (in our
notations, the vertex 0 represents the C = −∞ point and the group element at this vertex is 1 ∈ �
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The bosonic shadow state (6.26) becomes:

|ΨB〉
=

∑
{6E },{04}

∏
C=〈1234〉

42c8 ā(1234)$C (−1)0(12)X0(234)

/
d̄(134)
123 /

d̄(124)
234 |{6E}, {X04} + d̄〉′

=
∑

{6E },{04}

∏
C=〈1234〉

(
42c8 ā(1234)$C

)
∏
5 ′

(
/

∫
d̄∪1 5

′

5 ′

) ∏
5

(
-
d̄( 5 )
5

)
(−1)

∫
04∪X04 |{6E}, {X04}〉′

=
∑

{6E },{04}

∏
C=〈1234〉

(
42c8 ā(1234)$C

)
*̃d̄ (−1)

∫
a4∪Xa4 |{6E}, {X04}〉′,

(6.28)

where the bosonic hopping operator *̃ 5 is:

*̃ 5 = (
∏
5 ′
/

∫
f∪1 f

′

5 ′ )- 5 (6.29)

or more generally for any 2-cochain # ∈ �2(",Z2):

*̃V = (
∏
5 ′
/

∫
#∪1 f

′

5 ′ )
∏

5 |#( 5 )=1
- 5 . (6.30)

(6.30) can be derived from (6.29) by

*̃V+V′ ≡ (−1)
∫
#∪1#

′
*̃V′*̃V. (6.31)

Physically, emergent fermions in the twisted toric code are decorated on to junctions
of �-domain walls according to d̄. Hence, *̃d̄ describes the hopping of such
fermions as the domain walls fluctuate.

The state (6.28) is invariant under the symmetry action:

+ (ℎ) : |{6E}, {1 5 }〉′→ |{ℎ6E}, {1 5 }〉′ (6.32)

which is derived from (6.14) and definition of states |· · ·〉′. The next step is to
fermionize the bosonic shadow state (6.28).
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6.3 Fermionic SPT
Fermionization of the bosonic shadow wavefunction
Consider a �-spin paramagnet and a decoupled copy of the twisted toric code:

�0
B = −

∑
E

%E −
∑
4

�̃4 −
∑
C

,C . (6.33)

Here %E at each vertex E is the projector onto the symmetric state 1√
|� |

∑
6E
|6E〉:

%E =
1
|� |

∑
6E ,6

′
E

|6′E〉〈6E |. (6.34)

�̃4 is defined as

�̃4 = (
∏
5 ′
/

∫
f ′∪1Xe

5 ′ )
∏
5 ⊃4

- 5 , (6.35)

which commutes with *̃ 5 and,C . �̃4 acts trivially on the state

|Ψ0
B 〉 =

∑
{6E },{04}

(−1)
∫
a4∪Xa4 |{6E}, {X04}〉′, (6.36)

i.e. �̃4 |Ψ0
B 〉 = |Ψ0

B 〉. In other words, |Ψ0
B 〉 is the groundstate of (6.33). Therefore,

�̃4 acts trivially on (6.28) (because �̃4 commutes with *̃ 5 ):

�̃4 |ΨB〉 = |ΨB〉. (6.37)

We can now apply the 3d boson-fermion duality (3.24) to |ΨB〉 in (6.28):

|Ψ1〉 ←→ |Ψ 5 〉

=
∑
{6E }

∏
C=〈1234〉

(
42c8 a(01234)$C

)
(�d̄ |{6E}, {E02}〉 5 ,

(6.38)

where (�
5
= (−1)

∫
�

f 8W! ( 5 )W
′
'( 5 ) and its definition on general 2-cochain is

(�V+V′ ≡ (−1)
∫
V∪V′(�V′(

�
V , (6.39)

where V, V′ ∈ �2(",Z2). The groundstate of twisted toric code has been mapped
to the vacuum state. The symmetry of this fermionic SPT states |Ψ 5 〉 is

|{6E}, {%C}〉 5 → |{ℎ6E}, {%C}〉 5 (6.40)

since the duality map is defined as |{6E}, {1 5 }〉′ → |{6E}, {%C = X1 5 }〉 5 (up to
a sign) and the symmetry action on the bosonic state is simply |{6E}, {1 5 }〉′ →
|{ℎ6E}, {1 5 }〉′ by (6.32).
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We are going to derive the parent Hamiltonian corresponding to the fermionic SPT
state (6.38). We start on bosonic side. The bosonic shadow state |ΨB〉 in (6.28) can
be expressed by acting finite-depth local unitary quantum circuit *̂B, which will be
defined shortly, on the twisted toric code groundstate |Ψ0

B 〉 in (6.36):

|ΨB〉 = *̂B |Ψ0
B 〉. (6.41)

Since |Ψ0
B 〉 is the groundstate of �0

B in (6.33), the parent Hamiltonian of |ΨB〉 is

�B = *̂B�
0
B *̂
†
B . (6.42)

From (6.28), the quantum circuit *̂B can be defined as

*̂B ≡
∏

C=〈1234〉

(
exp(2c8 a(01234)$C)/ d̄(134)

123 /
d̄(124)
234

)
∏
5

(
-
d̄( 5 )
5

) ∏
C=〈1234〉

(
,
d̄(123)+d̄(134)
C

)
=

∏
C=〈1234〉

(exp(2c8 a(01234)$C)) *̃d̄
∏
C

(
,

∫
d̄∪2C

C

)
,

(6.43)

where ā ∈ �3(",R/Z) is an operator (R/Z-valued function) acting on tetrahedrons
C = 〈1234〉 of the spatial manifold ": ā(C) ≡ a(1, 61, 62, 63, 64). Notice that we
have include the factor of ,C before *̃d̄. When acting on the |Ψ0

1
〉, this factor

becomes trivial since the groundstate of twisted toric code is a superposition of
states with ,C = 1 ∀C. However, this ,C will be important when we show the
symmetry property of this circuit.

Then, we can use our fermionization procedure to get the fermionic SPTHamiltonian
and wavefunction.

�0
5 = −

∑
E

%E −
∑
C

(−8WCW′C)

*̂ 5 =
∏
C

(exp(2c8 ā(C)$C)) (�d̄
∏
C

(
%

∫
d̄∪2C

C

)
=

(∏
C

exp(2c8 ā(C)$C)
)

©«(−1)
∑
5 < 5 ′∈d̄

∫
f∪1 f

′∏
5 ∈d̄

(
(−1)

∫
�
5 8W! ( 5 )W

′
'( 5 )

)ª®¬(∏
C

(−8WCW′C)
∫
d̄∪2C

)
� 5 =*̂ 5�

0
5 *̂
†
5
.

(6.44)
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As a reminder, the explicitly formula for (�d̄ is described in (3.19). 5 ∈ d̄ means that
d̄( 5 ) = 1. The product

∏
5 ∈d̄ ( 5 itself depends on the order of multiplying ( 5 since

the fermionic hopping operators don’t commute with each other. The sign factor in
front of

∏
5 ∈d̄ ( 5 resolves this ambiguity of the multiplying order. %E is the projector

to state 1√
|� |

∑
6E
|6E〉. WC and W′C are majorana fermion operators, forming a complex

fermion at each tetrahedron C. The groundstate |Ψ 5 〉 of � 5 is the groundstate |Ψ0
5
〉

of �0
5
evolved by circuit *̂ 5 . When we apply the quantum circuit *̂ 5 on |Ψ0

5
〉, we

can ignore the last factor in *̂ 5 since it’s 1. This is the (3+1)D fermionic SPT state
and Hamiltonian. The circuit is symmetric:

+ (6)*̂ 5+ (6)† = *̂ 5 (6.45)

and the stacking law of two fermionic SPT phases is

*̂ 5 (a1, d1)*̂ 5 (a2, d2) = *̂ 5 (a1 + a2 +
1
2
d1 ∪2 d2, d1 + d2). (6.46)
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C h a p t e r 7

SUMMARY

In Part I, we have described a =-dimensional (= ≥ 2) analog of the Jordan-Wigner
transformation. We started by 2d square lattice and showed the bosonization for-
malism explicitly: an arbitrary fermionic system can be mapped to Pauli matrices
while preserving the locality of the Hamiltonian. After introducing the (higher) cup
product notations, the bosonization can be extended to arbitrary triangulation in all
dimensions easily. For simply-connected space, this bosonization gives a duality
between any fermionic system in arbitrary = spatial dimensions and a new class
of (= − 1)-form Z2 gauge theories in = dimensions with a modified Gauss’s law
(gauge constraint). Several examples of 2d bosonization, including free fermions
on square and honeycomb lattices and the Hubbard model, and 3d bosonization,
including a solvable Z2 lattice gauge theory with Dirac cones in the spectrum, have
been discussed. The key property of this bosonization formalism is the explicit
dependence on the second Stiefel-Whitney class and a choice of spin structure on
the manifold, which is a feature for defining fermions. To establish this, we have
derived a new formula for Stiefel-Whitney homology classes on lattices. We also
derive the Euclidean actions for the corresponding lattice gauge theories from the
bosonization. The topological actions contain Chern-Simons terms for (2 + 1)D or
Steenrod Square terms for general dimensions.

In Part II, we apply the bosonization technique to construct various bosonic or
fermionic SPT phases. We showed that for any supercohomolgy SPTwith symmetry
�×Z 52 , we are able to find a special bosonic SPTwhich can be dualized to a fermionic
model. The bosonic SPT is protected by a different symmetry �̃. In 2d, group �̃
is simply a Z2 extension of �. In 3d, �̃ becomes a 2-group: 0-form � extended
by 1-form Z2. The bosonization developed in Part II create a duality between any
supercohomology fermionic SPT phase and a higher-group bosonic SPT phase.
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A p p e n d i x A

CHAINS AND COCHAINS NOTATIONS AND (HIGHER) CUP
PRODUCTS ON A TRIANGULATION AND A CUBIC LATTICE

In this section, we review some concepts in algebraic topology and also introduce
notations used in this paper. Wewill always work with an arbitrary triangulation of a
simply-connected =-dimensional manifold "= equipped with a branching structure
(orientations on edges without forming a loop in any triangle). The vertices, edges,
faces, and tetrahedra are denoted E, 4, 5 , C, respectively. A general 3-simplex is
denoted as Δ3 . We can label the vertices of Δ3 as 0, 1, 2, . . . , 3 such that the
orientations of edges are from the smaller number to the larger number. We denote
this 3-simplex as Δ3 = 〈01 . . . 3〉. A finite linear combination of 3-simplices with
coefficients in Z2 = {0, 1} is called a 3-chain. 3-chains form an abelian group
denoted �3 ("=,Z2). A Z2-valued 3-chain can be identified with a finite set of
3-simplices (the set consisting of those simplices whose coefficients are nonzero).
A Z2-valued 3-cochain is a function from the set of 3-simplices to Z2. The set of
all 3-cochains is an abelian group denoted �3 ("=,Z2), For example, a 0-cochain
assigns 0 or 1 to all vertices, and a 1-cochain assigns 0 or 1 to all edges. A 3-cochain
can be evaluated on any 3-chain by evaluating the cochain on each simplex of the
3-chain and adding up the results modulo 2.

For every vertex E we define its dual 0-cochain v, which takes value 1 on E, and 0
otherwise, i.e. v(E′) = XE,E′. Similarly, e is an 1-cochain e(4′) = X4,4′, and so forth.
All dual cochains will be denoted in bold. An evaluation of a cochain c on a chain 2′

will sometimes be denoted
∫
2′
c. For example, if 2′ is a 2-chain and c is a 2-cochain,∫

2′
c ≡ c(2′) = ∑

5 ∈2′ c( 5 ). When the integration range is not written, c is assumed
to be the top dimension and

∫
c ≡

∫
"=

c. A 3-cochain c3 ∈ �3 ("=,Z2) can be
thought of as a collection of Z2-valued variables, one for each 3-simplex Δ3 , whose
values given by c3 (Δ3). We will limit ourselves to the case of Z2-valued cochains,
since this is all we need in this paper.

The boundary operator is denoted by m. For an =-simplex Δ=, mΔ= consists of all
boundary (= − 1)-simplices of Δ=. The coboundary operator is denoted by X (not
to be confused with the Kronecker delta previously). For example, for a 0-cochain
v, Xv is a function on the set of edges which takes value 1 on 4 if m4 contains E, and
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takes value 0 otherwise:

Xv(48 9 ) = v(m48 9 ) = v(E8 + E 9 ) = XE,E8 + XE,E 9 .

The notation Δ1
= ⊃ Δ2

=′ or Δ
2
=′ ⊂ Δ1

= means that the simplex Δ1
= contains Δ2

=′

as one of its faces. For example, a simplex 5 = 〈012〉 contains the edges 4 =
〈01〉, 〈02〉, 〈12〉 ⊂ 5 .

In the case of a general triangulation, our bosonization procedure is based on the
properties of the cup product ∪ and the higher cup product ∪1. These mathematical
operations have been defined by Steenrod [23] (see also Appendix B in [56] for a
review) for an arbitrary simplicial complex, but not for a cubic lattice. Below we
will define these operations on a triangulation and then describe a version which
works for a cubic lattice.

On a lattice triangulation , the cup product ∪ of a ?-cochain U? and a @-cochain V@
is a (? + @)-cochain defined as [57]:

[U? ∪ V@] (〈0, 1, . . . , ? + @〉)
= U? (〈0, 1, . . . , ?〉)V@ (〈?, ? + 1, . . . , ? + @〉)
= U? (0 ∼ ?)V@ (? ∼ ? + @).

(A.1)

The definition of the higher cup product [20, 23] is

[U? ∪0 V@] (0, 1, · · · , ? + @ − 0) =∑
0≤80<81<···<80≤?+@−0

U? (0 ∼ 80, 81 ∼ 82, 83 ∼ 84, · · · )

× V@ (80 ∼ 81, 82 ∼ 83, · · · ),

(A.2)

where 8 ∼ 9 represents the integers from 8 to 9 , i.e. 8, 8 + 1, . . . , 9 , and {80, 81, . . . , 80}
are chosen such that the arguments of U? and V@ contain ? + 1 and @ + 1 numbers
separately. For arbitrary Z2-cochains � and �, the cup products satisfy this identity:

� ∪0 � + � ∪0 �
= X(� ∪0+1 �) + X� ∪0+1 � + � ∪0+1 X�

(A.3)

with ∪0 ≡ ∪ and ∪−1 ≡ 0.

To generalize these formulas to the cubic lattice, we first develop an intuition for the
cup product ∪. On a triangle Δ012, the usual cup product for two 1-cochains _ and
_′ is

_ ∪ _′(012) = _(01)_′(12). (A.4)
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We can think of it as starting from vertex 0, passing through edges 01 and 12
consecutively, and ending at vertex 2, all the while following the orientation of the
edges. Following the same logic, it is intuitive to define the cup product on a square
�0134 (the bottom face in Fig. A.1) as

_ ∪ _′(�0134) = _(01)_′(14) + _(03)_′(34). (A.5)

The two terms come from two oriented paths from vertex 0 to vertex 4. If _ and V

x

y
z

0 1

2

3 4

5

6 7
U

D

RL

F

B

Figure A.1: There are six faces for each cube 2. U,D,F,B,L,R stand for faces on
direction "up","down","front","back","left","right". We assign the face U, F, R to
be inward and D, B, L to be outward. The ∪1 product on two 2-cochain is defined
by V∪1 V

′(2) = V(!)V′(�) + V(!)V′(�) + V(�)V′(�) + V(*)V′(�) + V(*)V′(') +
V(�)V′(')

are a 1-cochain and a 2-cochain, the usual cup product is

_ ∪ V(0123) = _(01)V(123)
V ∪ _(0123) = V(012)_(23).

(A.6)

On the cubic lattice, the corresponding cup products are defined as follows:

_ ∪ V(2)
= _(01)V(�1457) + _(02)V(�2567) + _(03)V(�3467)
V ∪ _(2)
= V(�0236)_(67) + V(�0125)_(57) + V(�0134)_(47),

(A.7)

where 2 is a cube whose vertices are labeled in Fig. A.1. For a cup product involving
0-cochains U, the definition is straightforward:

U ∪ V(�0134) = U(0)V(�0134)
V ∪ U(�0134) = V(�0134)U(4)
U ∪ _(01) = U(0)_(01)
_ ∪ U(01) = _(01)U(1).

(A.8)
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With the above definitions, it can be checked that the following equalities hold for
cubic cochains of degrees 0, 1, and 2:

e1 ∪ Xe2 = Xe1 ∪ e2 + X(e1 ∪ e2)
v ∪ X f = Xv ∪ f + X(v ∪ f ).

(A.9)

The next step is to define the ∪1 product on the cubic lattice. It need not satisfy
all the properties that ∪1 has on a triangulation. The only properties of ∪1 that we
need are the anti-commutativity for faces with the same direction and the identity
we used in (3.18), (3.26), and (3.60):∫

e1 ∪ Xe2 + Xe2 ∪ e1 =

∫
Xe1 ∪1 Xe2 (mod 2). (A.10)

Therefore, we only need to define ∪1 product for two 2-cochains so that it satisfies
(A.10). Our convention for ∪1 is shown in Fig. A.1:

V ∪1 V
′(2) = V(!)V′(�) + V(!)V′(�) + V(�)V′(�)

+ V(*)V′(�) + V(*)V′(') + V(�)V′(').
(A.11)

Once the ∪ and ∪1 products are defined on the cubic lattice, the bosonization pro-
cedure on a general triangulation can be applied to the cubic lattice. The formalism
derived in Sec. 3.1 is just a special case of Sec. 3.2. In the derivation, (3.12) and
(3.14) are modified as follows:

(X4 = (−1)
∑
5 < 5 ′∈Xe f∪1 f

′ ∏
5 ∈Xe

( 5

=
∏

2 |4∈{01,14,02,47,67,26}
,2

(A.12)

/ 51/ 52

∏
5 ′⊂2

/
( f 1+ f 2)∪1 f

′+ f ′∪1 ( f 1+ f 2)
5 ′

=


,2, if 4 ∈ {01, 14, 02, 47, 67, 26}

0, otherwise

(A.13)

for faces 51 and 52 join at the edge 4. We implicitly choose F2 = 0. We can use
the ∪1 product defined above to reproduce the fermionic hopping terms defined by
framing in Fig. 3.1. The hopping term defined by Eq. (3.10) is
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x
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4
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B

Figure A.2: (Color online) We rotate the axis U,D,F,B,R,L in Fig. A.1 to match the
result in Fig. 3.1. Notice that the cube above is dual lattice and edges 1, 2, 3... in
the dual lattice represent faces in the original lattice.

* 5 = - 5

∏
5 ′
/

∫
f ′∪1 f

5 ′ . (A.14)

Fig. A.2 is dual to Fig. A.1. Therefore, faces in Fig. A.1 become edges in Fig.
A.2. Consider the hopping term along dual edge 3. On the dual vertex to the right,
it represents the face R. From terms V(�)V′(') and V(*)V′('), the hopping term
contains /5 (from F) and /6 (from U). On the dual vertex to the left, it represents
the face L. Since there is no V(�)V′(!) or V(�)V′(!) term, it contributes nothing.
So we have

*3 = -3/5/6. (A.15)

Similarly, for edge 2, the hopping term has /7 (from V(!)V′(�)) and /8 (from
V(*)V′(�))

*2 = -2/7/8. (A.16)

For edge 1, the hopping term has /3 (from V(!)V′(�)) and /4 (from V(�)V′(�))

*1 = -1/3/4. (A.17)

We get the exact same hopping terms defined by "framing" in Fig. 3.1. We can
interpret the choice of framing as a definition of ∪1 product on the cubic lattice.
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A p p e n d i x B

A FORMULA FOR STIEFEL-WHITNEY HOMOLOGY CLASSES

In this section, we prove the following Lemma:

Lemma 1. In =-dimension manifold with triangulation and branching structure, the
homology class of F2 can be represented by a (= − 2)-chain F2 ∈ �=−2("=,Z2):

F2 =
∑
Δ=−2

2(Δ=−2)Δ=−2, (B.1)

where

2(Δ=−2) =1 +
∑

“−”-oriented Δ==〈0...=〉

∑
91< 92 | 91, 92∈even

�=−2(〈0 · · · 9̂1 · · · 9̂2 · · · =〉)

+
∑

“+”-oriented Δ==〈0...=〉

∑
:1<:2 |:1,:2∈odd

�=−2(〈0 · · · :̂1 · · · :̂2 · · · =〉).
(B.2)

First, let us recall the theorem proved in [58]. Let B be a ?-simplex, say B =
〈E0, E1, . . . , E?〉. Let : be another simplex which has s as a face; i.e., B ⊂ : (B may
be equal to :). Let

�−1 = set of vertices of : less than E0,

�0 = set of vertices of : between E0 and E1,

�< = set of vertices of : between E< and E<+1,

�? = set of vertices of : greater than E?.

(B.3)

We say that B is regular in : , if #(�<) = 0 for every odd <. Let m? (:) denote
the mod 2 chain which consists of all ?-dimensional simplices B in : so that B is
regular in : . For example, 〈012〉 and 〈023〉 are regular in 〈0123〉 and therefore
m2(〈0123〉) = 〈012〉 + 〈023〉. The theorem is [58]:

Theorem 1.
∑
: | dim :≥(=−2) m=−2(:) is a (= − 2)-chain which represents F2.

In particular, for any =′-simplex Δ=′ = 〈0 . . . =′〉, all (=′ − 1)-simplices regular in
Δ=′ are

〈0 . . . 8̂ . . . =〉 ∀8 ∈ odd (B.4)
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and all (=′ − 2)-simplices regular in Δ=′ are

〈0 . . . 8̂ . . . 9̂ . . . =〉 ∀8 ∈ odd, 9 ∈ even, 8 < 9 . (B.5)

We now use this theorem to prove lemma 1.

Proof of Lemma 1. For every (= − 2)-simplex Δ=−2, it is regular in itself. This
contributes the 1 in the coefficient of 2(Δ=−2) in (B.2).

For every (= − 1)-simplex Δ=−1, it is a boundary of two =-simplices Δ!= and Δ'= ,
with Δ=−1 being an outward boundary of Δ!= and an inward boundary of Δ'= . We
define that Δ=−1 belongs to Δ'= and the summation of dim : = = − 1, = in theorem
1 can be written as:∑

Δ=−1

m=−2(Δ=−1) +
∑
Δ=

m=−2(Δ=)

=
∑
Δ=

m=−2(Δ=) +
∑

Δ=−1∈Δ= |Δ=−1 is inward
m=−2(Δ=−1)

 .
(B.6)

If Δ= = 〈0 . . . =〉 is “ + ”-oriented, the terms in the summation is

m=−2(〈0 . . . =〉) +
∑

0≤8≤=|8∈odd
m=−2(〈0 . . . 8̂ . . . =〉)

=
∑

8, 9 |8< 9 , 8∈odd, 9∈even
〈0 . . . 8̂ . . . 9̂ . . . =〉

+
∑

0≤8≤=|8∈odd
(

∑
9<8 | 9∈odd

〈0 . . . 9̂ . . . 8̂ . . . =〉 +
∑

9>8 | 9∈even
〈0 . . . 8̂ . . . 9̂ . . . =〉)

=
∑

8, 9 |8< 9 , 8∈odd, 9∈odd
〈0 . . . 8̂ . . . 9̂ . . . =〉,

(B.7)

where we have used the definition of regular simplex defined above. Similarly, we
can derive that if Δ= = 〈0 . . . =〉 is “ − ”-oriented, the term is∑

8, 9 |8< 9 , 8∈even, 9∈even
〈0 . . . 8̂ . . . 9̂ . . . =〉. (B.8)

Combining (B.7) and (B.8) with the 1 from dim : = = − 2 in theorem 1, we have

F2 =
∑
Δ=−2

2(Δ=−2)Δ=−2, (B.9)

where
2(Δ=−2) =
1 +

∑
“−”-oriented Δ==〈0...=〉

∑
91< 92 | 91, 92∈even

�=−2(〈0 · · · 9̂1 · · · 9̂2 · · · =〉)

+
∑

“+”-oriented Δ==〈0...=〉

∑
:1<:2 |:1,:2∈odd

�=−2(〈0 · · · :̂1 · · · :̂2 · · · =〉).

(B.10)
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A p p e n d i x C

IDENTITY FOR FERMIONIC ALGEBRA

In this section, we will derive the constraints on fermionic operators:

(−1)
∫
F2

�=−2
(XΔ=−2

∏
Δ=

%

∫
�=−2∪=−2�=+�=∪=−2�=−2

Δ=
= 1. (C.1)

This follows directly from the following two lemmas.

Lemma 2. The Majorana operators in (XΔ=−2 cancel out with Majorana operators
in

∏
Δ=
%

∫
�=−2∪=−2�=+�=∪=−2�=−2

Δ=
.

Lemma3. The sign difference of (XΔ=−2 and the product of%Δ= is−(−1)
∑3
8=1

∫
�8−1
=−1∪=−2�8=−1

where we order (= − 1)-simplices {Δ=−1 |Δ=−1 ⊃ Δ=−2} counterclockwise as

�1
=−1,�

2
=−1, . . . ,�

3−1
=−1 ,�

3
=−1 ≡ �0

=−1,

as shown in Fig. C.2. This sign is a chain representative of 2nd Stiefel-Whitney
class:

− (−1)
∑3
8=1

∫
�8−1
=−1∪=−2�8=−1 = (−1)

∫
F2
Δ=−2

. (C.2)

Proof of Lemma 2. Let us denote Δ= = 〈01 . . . =〉 formed by Δ=−2 and two (= − 1)-
simplex Δ!

=−1 and Δ
'
=−1, shown in Fig. C.1(a). We know that (XΔ=−2 contains WΔ=W′Δ=

if and only if Δ!
=−1,Δ

'
=−1 are one inward boundary and one outward boundary of

=-simplex Δ=, as indicated in Fig. C.1(b) and (c).

For the product of %Δ= , we simplify the integral as∫
�=−2 ∪=−2 �= + �= ∪=−2 �=−2 =

∫
X�=−2 ∪=−1 �=. (C.3)

The contribution of Δ= = 〈01 . . . =〉 to (C.3) is
[(�!=−1 + �

'
=−1) ∪=−1 �n] (〈01 . . . =〉)

=
∑

0≤80<81<···<8=−1≤=
(�!=−1 + �

'
=−1) (0 ∼ 80, 81 ∼ 82, 83 ∼ 84, · · · )�= (80 ∼ 81, 82 ∼ 83, · · · )

=
∑

0≤ 9≤=| 9∈odd
(�!=−1 + �

'
=−1) (〈0 . . . 9̂ . . . =〉)�= (〈01 . . . =〉)

=
∑

0≤ 9≤=| 9∈odd
(�!=−1 + �

'
=−1) (〈0 . . . 9̂ . . . =〉)

(C.4)
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which is 1 if and onlyΔ!
=−1,Δ

'
=−1 are one inward boundary and one outward boundary

of the =-simplex Δ=. This shows that product of %Δ= contain %Δ= ∼ WΔ=W′Δ= if and
only if Δ!

=−1,Δ
'
=−1 are one inward boundary and one outward boundary of the

=-simplex Δ=. This cancels out with (XΔ=−2 exactly. �

FigureC.1: (a) The =-simplexΔ= is formed byΔ=−2 and two (=−1)-simplexΔ!
=−1 and

Δ'
=−1. (b) The product of (Δ=−2 is (8W1W′0) (8W2W′1) = (8W2W

′
0) (−8W1W′1) = (8W2W

′
0)%1.

(c) The product of (Δ=−2 is (8W0W′1) (8W1W
′
2) = (8W0W′2) (−8W1W′1) = (8W0W

′
2)%1. (d)

The product of (Δ=−2 is (8W0W′1) (8W2W
′
1
) (8W2W′3) = 8W0W

′
3
. (e) The product of (Δ=−2 is

(8W1W′0) (8W1W′2) (8W3W′2) = 8W3W′0.

Figure C.2: By the operations defined in Fig. C.1, we can simplify the product
(Δ3

=−1
· · · (Δ2

=−1
(Δ1

=−1
= (Δ3

=−1
(Δ1

=−1

∏
Δ=≠0,1

%

∫
�=−2∪=−2�=+�=∪=−2�=−2

Δ=
.

Proof of Lemma 3. We compare the sign between

(XΔ=−2 = (−1)
∑

�=−1<�
′
=−1 |Δ=−1 ,Δ

′
=−1⊃Δ=−2 �=−1∪=−2�′=−1

∏
Δ=−1⊃Δ=−2

(Δ=−1 (C.5)

and ∏
Δ=

%

∫
�=−2∪=−2�=+�=∪=−2�=−2

Δ=
, (C.6)
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where we have used the definition of (_=−1 in (4.2). As shown in Fig. C.2,

(Δ3
=−1
· · · (Δ2

=−1
(Δ1

=−1
= (Δ3

=−1
(Δ1

=−1

∏
Δ=≠0,1

%

∫
�=−2∪=−2�=+�=∪=−2�=−2

Δ=
.

We can check that

(Δ3
=−1
(Δ1

=−1
= −(−1)

∫
�1
=∪=−2�3=+�3=∪=−2�1

=

∏
Δ==0,1

%

∫
�n−2∪=−2�=+�=∪=−2�=−2

Δ=
,

and therefore

(Δ3
=−1
· · · (Δ2

=−1
(Δ1

=−1
= −(−1)

∫
�1
=∪=−2�3=+�3=∪=−2�1

=

∏
Δ=

%

∫
�=−2∪=−2�n+�=∪=−2�=−2

Δ=
.

Together with (C.5), we have

(XΔ=−2

∏
Δ=

%

∫
�=−2∪=−2�=+�=∪=−2�=−2

Δ=

=(−1)
∫
�1
=−1∪=−2�3=−1+

∑3
8=2

∫
�8−1
=−1∪=−2�8=−1

(
−(−1)

∫
�1
=∪=−2�3=+�3=∪=−2�1

=

)
= − (−1)

∑3
8=1

∫
�8−1
=−1∪=−2�8=−1 .

(C.7)

From the definition of ∪=−2 product (4.4),

3∑
8=1

∫
�8−1
=−1 ∪=−2 �

8
=−1

=

3∑
8=1

∑
Δ=

�8−1
=−1 ∪=−2 �

8
=−1(Δ=)

=
∑

“−”-oriented Δ==〈0...=〉

∑
91< 92 | 91, 92∈even

�=−2(〈0 · · · 9̂1 · · · 9̂2 · · · =〉)

+
∑

“+”-oriented Δ==〈0...=〉

∑
:1<:2 |:1,:2∈odd

�=−2(〈0 · · · :̂1 · · · :̂2 · · · =〉).

(C.8)

The distinct orientations of “−”-oriented Δ= and “+”-oriented Δ= in the summation
come from the fact that 91, 92 and :1, :2 in (4.4) have opposite orders. Eq. (C.8) is
related to F2 by the following lemma 1 in appendix B. Therefore, we derive

− (−1)
∑3
8=1

∫
�8−1
=−1∪=−2�8=−1 = (−1)

∫
F2

�=−2
. (C.9)

�



81

A p p e n d i x D

GAUGING THE SYMMETRIES

Let’s review the gauging procedure described in [59]. In 2d, the gauging map is to
map a state |0, 1〉 on adjacent sites to a states |0 + 1〉 on the edge between this two
sites (shown as D.1). The - operator at the vertex E will be mapped to the product

Figure D.1: The gauging map is a function from a state with Z2 fields (qubits) living
on vextices to a state with Z2 fields (qubits) living on edges. We define the Hilbert
spaces asH0 andH1 [59].

of - operators on the edges connected to the vertex:

-E → �0
E ≡

∏
4⊃E

-4 . (D.1)

By noticing the summation of edges around a face is always 0, we can write down
constraints in the Hilbert spaceH1 (mapped states)

, 5 ≡
∏
4⊂ 5

/4 = 1 (D.2)

for all face 5 . As discussed in [59], the gauge map is a duality map between the
following two subspaces:

H BH<

0 = {|k〉 ∈ H0 : ( |k〉 = |k〉}, (D.3)
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where ( =
∏
E -E and

H BH<

1 = {|k〉 ∈ H1 : �(W) |k〉 = |k〉}, (D.4)

where W represents an arbitrary colosed loop on a square lattice annd �(W) =∏
4∈W /4. Consider the trivial system with Z2 symmetry:

� = −
∑
E

-E . (D.5)

The ground state of this Hamiltonian will be mapped to the groundstate of

� = −
∑
E

�0
E −

∑
5

, 5 (D.6)

which is exactly 2d toric code.

Figure D.2: Gauging 1-form symmetry [59].

For 3d lattice, [59] defined the gauging procedure in the similar way (shown in Fig.
D.2). For any 1-cochain 0 ∈ �1(",Z2) (" is a manifold with triangulation), the
gauging map Γ0 : H1 →H2 is defined as

Γ0( |0〉) = |X0〉. (D.7)

Similarly, the Hilbert spaceH2 has a constraint on each cube (tetrahedron) C

,C ≡
∏
5 ⊂C

/ 5 = 1. (D.8)
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This map Γ0 induces a duality between the following two subspaces. In H1, the
symmetric subspace is defined by

H BH<

1 = {|k〉 ∈ H1 : ((M)|k〉 = |k〉 ∀M}. (D.9)

Here the 1-form symmetry operator is written as ((M) for an arbitrary closed 2-
manifold M with Pauli -4 acting on edges intersected by M. In H2, the gauge
symmetric subspace is

H BH<

2 = {|q〉 ∈ H2 : ) (N)|q〉 = |q〉∀N}, (D.10)

where N is a closed 2-manifold consisting of faces of the lattice and N acts Pauli
/ 5 on these faces. Note that closed 2-manifoldM,N live on dual lattice and direct
lattice respectively.

The - operator on a edge 4 will be mapped to the product of - operators on faces
around the edge 4:

-4 → �0
4 ≡

∏
5 ⊃4

- 5 , (D.11)

where this mapping represents Γ0(-4 |0〉) = �0
4 |X0〉 by definition.

Therefore, the trivial Hamiltonian

� = −
∑
4

-4 (D.12)

is mapped to
� = −

∑
4

�0
4 −

∑
C

,C . (D.13)

This is (2,1)-toric code and doesn’t have any fermionic excitation.
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A p p e n d i x E

DERIVATION OF Z (FIRST DESCENDANT OF d)

In this section, we derive the choice of Z in (6.10)

Z (612, 623, ℎ1, ℎ2, ℎ3)
=d(1, 612, 612623, 612623ℎ3) + d(1, 612, 612ℎ2, 612623ℎ3)
+ d(1, ℎ1, 612ℎ2, 612623ℎ3).

(E.1)

Consider a tetrahedron 〈0123〉 with group elements 6, ℎ, : on edges 01, 12, 23. The
value of cocycle a on this tetrahedron is expressed as a(1, 6, 6ℎ, 6ℎ:). First, if we
now perform a gauge transformation on vertex 0 by group element 20 (and identity
element on all other vertices). 6, ℎ, : becomes 2−1

0 6, ℎ, : and the value of cocycle is

d(1, 2−1
0 6, 2

−1
0 6ℎ, 2

−1
0 6ℎ:) = d(20, 6, 6ℎ, 6ℎ:)

= d(1, 20, 6, 6ℎ:) − d(1, 20, 6, 6ℎ)
− d(1, 20, 6:, 6ℎ:) + d(1, 6, 6ℎ, 6ℎ:).

(E.2)

From the last line, to satisfy (6.9), we can define the gauge transformation of �8 9 : by
20 at the vertex 8 of a face 〈8 9 :〉 as d(1, 20, 68 9 , 6 9 : ) (or explicit Z (68 9 , 6 9 : , 20, 1, 1) =
d(1, 20, 68 9 , 68 96 9 : ) ).

Secondly, we perform a gauge transformation on vertex 1 by group element 21.
6, ℎ, : becomes 621, 2

−1
1 ℎ, : and the value of the cocycle is

d(1, 621, 6ℎ, 6ℎ:)
=d(1, 6, 621, 6ℎ) − d(1, 6, 621, 6ℎ:)
+ d(6, 621, 6ℎ, 6ℎ:) + d(1, 6, 6ℎ, 6ℎ:)

=d(1, 6, 621, 6ℎ) − d(1, 6, 621, 6ℎ:)
+ d(1, 21, ℎ, ℎ:) + d(1, 6, 6ℎ, 6ℎ:).

(E.3)

The first two terms in the last line indicate that the gauge transformation on the vertex
9 of a face 〈8 9 :〉 is d(1, 68 9 , 68 921, 6 9 : ) (or Z (68 9 , 6 9 : , 1, 21, 1) = d(1, 68 9 , 68 921, 6 9 : ))
and the third term in the last line is consistent with the previous case.
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Similarly for the gauge transformation on the vertex 2 by group element 22, we have

d(1, 6, 6ℎ22, 6ℎ:)
=d(6, 6ℎ, 6ℎ22, 6ℎ:) − d(1, 6, 6ℎ, 6ℎ22)
+ d(1, 6, 6ℎ22, 6ℎ:) + d(1, 6, 6ℎ, 6ℎ:)

=d(1, ℎ, ℎ22, ℎ:) − d(1, 6, 6ℎ, 6ℎ22)
+ d(1, 6, 6ℎ22, 6ℎ:) + d(1, 6, 6ℎ, 6ℎ:).

(E.4)

The second term in the last line implies Z (68 9 , 6 9 : , 1, 1, 22) = d(1, 68 9 , 68 96 9 : , 68 96 9 :22)
and the other terms are consistent with previous cases.

We can check the gauge transformation on vertex 3 of the tetrahedron. However,
it just gives us a consistence check. The previous three cases are complete gauge
transformation.

Combining previous 3 cases, we apply gauge transformation ℎ3, ℎ2, and ℎ1 on
vertices 3, 2, 1 of a face 〈123〉 in sequence. First, we add d(1, 612, 612623, 612623ℎ3)
to �123 and 612, 623 → 612, 623ℎ3. Second, we gain d(1, 612, 612ℎ2, 612623ℎ3) and
612, 623ℎ3 → 612ℎ2, ℎ

−1
2 623ℎ3. Finally, we get d(1, ℎ1, 612ℎ2, 612623ℎ3). Totally,

the gauge transformation on �123 is

Z (612, 623, ℎ1, ℎ2, ℎ3)
= d(1, 612, 612623, 612623ℎ3) + d(1, 612, 612ℎ2, 612623ℎ3)
+ d(1, ℎ1, 612ℎ2, 612623ℎ3).

(E.5)
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