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ABSTRACT

The first main result of this thesis is the proof of the integral coefficient geometric
Satake equivalence in mixed characteristic setting. Our proof can be divided into
three parts: the construction of the monoidal structure of the hypercohomology
functor on the category of integral coefficient equivariant perverse sheaves on the
mixed characteristic affine Grassmannian; a generalized Tannakian formalism; and,
the identification of group schemes. In particular, our proof does not employ
Scholze’s theory of diamonds.

We derive a geometric construction of the Jacquet-Langlands transfer for weighted
automorphic forms as an application of the geometric Satake equivalence in the
above setting. Our strategy follows the recent work of Xiao-Zhu [XZ17]. We
relate the geometry and (ℓ-adic) cohomology of the mod ? fibers of the canonical
smooth integral models of different Hodge type Shimura varieties, and obtain a
Jacquet-Langlands transfer for weighted automorphic forms.
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C h a p t e r 1

INTRODUCTION

The geometric Satake equivalence establishes an equivalence between two sym-
metric monoidal categories which are of great importance in algebraic geometry,
representation theory, and number theory. The first category is RepΛ(�̂), the cate-
gory of finitely generated �̂-modules overΛ for a connected reductive group�; and
the second category is P!+� (�A� ,Λ), the category ofΛ-coefficient !+�-equivariant
perverse sheaves on the affine Grassmannian �A� of �. This equivalence may be
regarded as a categorification of the classical Satake isomorphism for connected
reductive groups.

The geometric Satake equivalence in equal characteristic setting [Lus], [Gin95],
[BD91], [MV07] and in mixed characteristic setting with Q̄ℓ-coefficient [Zhu17]
have foundmany significant applications. For example, V. Lafforgue proved the "au-
tomorphic toGalois" direction of the Langlands correspondence over global function
fields in his groundbreaking work [Laf18]. The geometric Satake equivalence in
the equal characteristic is used to transfer the representations of the Langlands dual
group to the perverse sheaves on the moduli of Shtukas. Another noticeable ex-
ample is a recent work of Xiao-Zhu [XZ17], in which they use the Q̄ℓ-coefficient
geometric Satake equivalence in mixed characteristic to prove the "generic" cases
of Tate conjecture for the mod ? fibers of many Shimura varieties. It is desirable
to obtain an integral coefficient version of this equivalence in mixed characteristic
setting. In this thesis, we give a new construction of the hypercohomology functor
on P!+� (�A� ,Λ) which allows us to apply a generalized Tannakian formalism to
establish the geometric Satake equivalence in the desired setting.

Let� and�′ be two algebraic groups overQ. We assume that they are isomorphic at
all finite places of Q, but not necessarily at infinity. Roughly speaking, the Jacquet-
Langlands correspondence predicts, in many cases, the following phenomenon:
there exists a natural map between the set of automorphic representations of � and
that of �′ such that if c′ is the automorphic representation of �′ which corresponds
to an automorphic representation c of �, then ca is isomorphic to c′a at all finite
places a. It is considered as one of the first examples of the Langlands philosophy
that maps between !-groups induce maps between automorphic representations.
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The classical way of establishing this correspondence is via a comparison of the
trace formulas for � and �′. This approach allows us to conclude a map between
suitable spaces of automorphic forms for � and �′ as abstract representations.
However, the resulting map is not canonical, and we, therefore, hope to have a
more natural way of understanding this correspondence. Alternative geometric
approaches of establishing the Jacquet-Langlands correspondence were first noticed
by Ribet [Rib+89] and Serre [SL96], and later followed by Ghitza [Ghi03], [Ghi05],
and Helm [Hel+10] [Hel12].

Our second main result in this thesis is a geometric construction of the Jacquet-
Langlands transfer for weighted automorphic forms by relating the geometry and
(ℓ-adic) cohomology of the mod ? fibres of different Hodge type Shimura varieties
following the idea of Xiao-Zhu [XZ17]. The integral coefficient geometric Satake
equivalence in mixed characteristic plays an indispensable role in this construction.

1.1 The Integral Coefficient Geometric Satake Equivalence in Mixed Char-
acteristic

Main Result
Consider an algebraically closed field : of characteristic ? > 0 and denote by
, (:) its ring of Witt vectors. Let � denote a totally ramified finite extension of
, (:) [1/?] and O the ring of integers of �. Let � be a connected reductive group
over O and �A� be the Witt vector affine Grassmannian defined as in [Zhu17]. In
this paper, we consider the category P!+� (�A� ,Λ) of !+�-equivariant perverse
sheaves in Λ-coefficient on the affine Grassmannian �A� for Λ = Fℓ and Zℓ, where
ℓ is a prime number different from ?. We call this category the Satake category
and sometimes write it as Sat�,Λ for simplicity. The convolution product of sheaves
equips the Satake category with a monoidal structure. Let �̂Λ denote the Langlands
dual group of �, i.e. the canonical smooth split reductive group scheme over Λ
whose root datum is dual to that of �. Our main theorem is the geometric Satake
equivalence in the current setting.

Theorem1.1.1. There is an equivalence ofmonoidal categories between%!+� (�A� ,Λ)
and the category of representations of the Langlands dual group �̂Λ of� on finitely
generated Λ-modules.

We mention that Peter Scholze has announced the same result as part of his work
on the local Langlands conjecture for ?-adic groups using his beautiful theory of
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diamonds.

The equal characteristic counterpart of the geometric Satake equivalence was previ-
ously achieved by theworks ofBeilinson-Drinfeld, Ginzburg, Lusztig, andMirkovic-
Vilonen(cf. [BD91], [Gin95], [Lus], [MV07]). Later, Zhu [Zhu17] considered the
category of !+�-equivariant perverse sheaves in Q̄ℓ-coefficient on themixed charac-
teristic affine Grassmannian �A� and established the geometric Satake equivalence
in this setting.

In the equal characteristic case, the Beilinson-Drinfeld Grassmannians play a crucial
role in establishing the geometric Satake equivalence. In fact, they can be used to
construct the monoidal structure of the hypercohomology functor

H∗ : %!+� (�A� ,Λ) −→ ModΛ

and the commutativity constraint in the Satake category by interpreting the convo-
lution product as fusion product. In mixed characteristic, Peter Scholze’s theory of
diamonds allows him to construct an analogue of the Beilinson-Drinfeld Grassman-
nian and prove the geometric Satake equivalence in this setting in a similar way as in
[MV07]. Our approach of constructing the geometric Satake equivalence makes use
of some ideas in [Zhu17]. However, our situation is different from loc.cit and new
difficulties arise. For example, the Satake category in Q̄ℓ-coefficient is semisimple,
while, in our case, the semisimplicity of the Satake category fails. In addition, the
monoidal structure of the hypercohomology functor was constructed by studying
the equivariant cohomology of (convolutions of) irreducible objects in the Satake
category in [Zhu17]. Nevertheless, in our situation, the equivariant cohomology
may have torsion. Thus the method in loc.cit does not apply to our case directly.

Strategy of the Proof
The first key ingredient of the proof is the following proposition.

Proposition 1.1.2. The hypercohomology functor H∗ : P!+� (�A� ,Λ) −→ ModΛ is
a monoidal functor.

We study the G<-action (in fact, we consider the action of the perfection of the
group scheme G<) on the convolution Grassmannian �A�×̃�A� . Applying the
Mirković-Vilonen theory for mixed characteristic affine Grassmannians established
in [Zhu17] and Braden’s hyperbolic localization functor, we can decompose the
hypercohomology functor H∗ : P!+� (�A�×̃�A� ,Λ) → Mod(Λ) into a direct sum
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of compactly supported cohomologies. Each direct summand can be further realized
as the tensor product of two compactly supported cohomologies on �A� by the
Künneth formula. Putting these together completes the proof of Proposition 1.1.2.
In particular, the monoidal structure constructed by our approach is compatible with
that obtained in [Zhu17].

We further notice that as in the cases discussed in [MV07] and [Zhu17], the hyper-
cohomology functor is representable by projective objects when restricting to full
subcategories of the Satake category. In addition, these projective objects are iso-
morphic to the projective objects studied in [Zhu17] after base change to Q̄ℓ. This,
together with Proposition 1.1.2, allows us to directly construct a Λ-algebra �(Λ) as
in [MV07]. The compatibility of the monoidal structure of H∗ and the projective
objects constructed in our case with those obtained in [Zhu17] enable us to inherit
a commutative multiplication map of �(Λ) from that of �(Q̄ℓ). The commutative
multiplication map of �(Q̄ℓ) comes from the commutativity constraint of Sat�,Q̄ℓ
constructed in loc.cit. In other words, we derive the following proposition.

Proposition 1.1.3. TheΛ-algebra �(Λ) admits the structure of a commutative Hopf
algebra with an antipode.

The general Tannakian construction (cf.[MV07]) yields an equivalence of tensor
categories

%!+� (�A� ,Λ) ' RepΛ(�̃Λ),

where �̃Λ := Spec�(Λ) is an affine flat group scheme and RepΛ(�̃Λ) denotes
the category of �̃Λ-modules which are finitely generated over Λ. We give two
approaches identifying �̃Λ with �̂Λ and conclude the proof of the theorem by the
use of the following result of Prasad-Yu [PY06] on quasi-reductive group schemes.

Theorem 1.1.4. Let G be a quasi-reductive group scheme over '. Then

(1) G is of finite type over '

(2) G is reductive

(3) G^ is connected.

In addition, if

(4) the type of G ̄ is of the same type as that of (G ¯̂)◦red,
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then G is reductive.

1.2 A Geometric Jacquet-Langlands Transfer
Main Result
Let (�1, -1) and (�2, -2) be two Hodge type Shimura data equipped with an
isomorphism \ : �1,A 5 ' �2,A 5 . Assume that there exists an inner twist Ψ : �1 →
�2 which is compatible with \. We assume that  8 ⊂ � (A 5 ) to be sufficiently small
such that \ 1 =  2. In addition, we assume that ? is an unramified prime. Then
 1,? (and therefore  2,?) is hyperspecial. Let�8 be the integral model of�8,Q? over
Z? determined by  8,?. Then �1 ' �2, and we can thus identify their Langlands
dual groups, which we denote by �̂Qℓ . We further fix a pinning (�̂, �̂, )̂ , -̂) of �̂.
Choose an isomorphism ] : C ' Q̄?. Let {`8} denote the conjugacy class of Hodge
cocharacters determined by -8.

Let +8 = +`8 denote the irreducible representation of �̂Qℓ of highest weight `8. Let
a | ? be a place of the compositum of reflex fields �1�2 of (�1, -1) and (�2, -2)
determined by our choice of isomorphism ]. Write :a for the residue field of �1�2

at a. Results of Kisin [Kis10] and Vasiu [Vas07] state that there exists a smooth
canonical integral model of Sh (�8, -8) over O�,(a) . Let 38 = dimSh (�8, -8)
and Sh`8 denote the mod ? fiber of this canonical integral model, base changed to
:̄a. Our assumption on ? implies that the action of the Galois group Gal(Q̄?/Q?)
on (�̂, �̂, )̂ , -̂) factors through some finite quotient Gal(F?=/F?) for some finite
field F?= which contains :a. Write f ∈ Gal(F?=/F?) for the arithmetic Frobenius.
Consider the conjugation action of �̂Qℓ on the (non-neutral) component �̂Qℓf ⊂
�̂Qℓ o 〈f〉. Denote by Coh�̂ (�̂f) the abelian category of coherent sheaves on the
quotient stack [�̂Qℓf/�̂Qℓ ].

To each representation, of �Qℓ , we can attach an ℓ-adic étale local system L8,,,Qℓ
on Sh`8 (see §12.1) by varying the level structure at ℓ. The natural projection
[�̂Qℓf/�̂Qℓ ] → B�̂Qℓ attaches to each representation + of �̂Qℓ a vector bundle +̃
on [�̂Qℓf/�̂Qℓ ]. Denote the global section of the structure sheaf on the quotient
stack [�̂f/�̂] by J , and the prime-to-? Hecke algebra byH ?. Fix a half Tate twist
Qℓ (1/2).

We state our main theorem.

Theorem 1.2.1. Let L8 := L8,,,Qℓ [38] (38/2). Under a mild assumption,
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(1) there exists a map

Spc : HomCoh�̂ (�̂f) (+̃1, +̃2) → HomH ?⊗J (H∗2 (Sh`1 ,L1),H∗2 (Sh`2 ,L2)),
(1.1)

which is compatible with compositions in the source and target.

(2) the ring of endomorphisms End[�̂f/�̂] (O[�̂f/�̂]) acts on the compactly sup-
ported cohomology H∗2 (Sh`8 ,L8) via Spc and this action can be identified
with the classical Satake isomorphism if Sh (�1, -1) = Sh (�2, -2) is a
Shimura set.

This is a Jacquet-Langlands transfer for automorphic forms of higher weights which
generalizes a previous construction given in [XZ17]. We briefly discuss the proof
of Theorem 1.1.

Strategy of the Proof
Let Λ = Zℓ, Fℓ. The following theorem plays an essential role in the proof of the
main result.

Theorem 1.2.2. For any projective objects Λ1,Λ2 ∈ RepΛ(�̂Λ), we choose ap-
propriate integers (<1, =1, <2, =2) and a dominant coweight _, and consider the
following Hecke correspondence

Shtloc(<1,=1)
Λ1

Sht_,loc(<1,=1)
Λ1 |Λ2

Shtloc(<2,=2)
Λ2

ℎ←
Λ1

ℎ→
Λ2

. (1.2)

Then there exists the following map

SΛ1,Λ2 : HomCoh�̂Λ (�̂Λf)
(Λ̃1, Λ̃2) −→ HomD(Shtloc(<1 ,=1)

Λ1 |Λ2
)

(
(ℎ←Λ1
)∗((Λ̃1), (ℎ→Λ2

)!((Λ̃2)
)
,

(1.3)
which is independent of auxiliary choices.

We remark that the target ofSΛ1,Λ2 can be understood as limits of the cohomological
correspondence between (Shtloc(<1,=1)

Λ1
, ((Λ̃1)) and (Shtloc(<2,=2)

Λ2
, ((Λ̃2)) supported

on the Hecke correspondence (1.2). In [XZ17], Xiao-Zhu construct the maps
S+,, for Q̄ℓ-representations in a categorical way. In fact, they define the category
PHk(Shtloc, Q̄ℓ). Its objects are exactly the same as those of P(Shtloc, Q̄ℓ), and its
spaces of morphisms are given by (limits of) cohomological correspondences sup-
ported on Hecke correspondences of restricted local Shtukas. It receives a canonical
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functor from the category P(Shtloc, Q̄ℓ), and this functor has a f-twisted trace struc-
ture. Hence, the universal property of categorical traces asserts that it admits a func-

tor from the f-twisted categorical trace Trf (Rep(�̂Q̄ℓ )) � Coh
�̂Q̄ℓ
fr (�̂Q̄ℓf) in the

sense of [Zhu18]. Here, the latter category is the full subcategory of Coh�̂Q̄ℓ (�̂Q̄ℓf)
generated by objects coming from RepQ̄ℓ (�̂Q̄ℓ ). This idea is made more explicit in
loc.cit.

The above strategy does not carry over in our situation. To calculate the left
f-twisted categorical trace of RepZℓ (�̂Zℓ ), we need to appeal to a more general
construction of the tensor product for finitely cocomplete categories. In addition,
the correspondence category PCorr(Shtloc,Zℓ) is not finitely cocomplete any more
and the desired maps S therefore cannot be obtained by the universal property of
the categorical trace. One possible way to overcome this difficulty is to upgrade
PCorr(Shtloc,Zℓ) to a higher category.

Instead of pursuing this idea, we take a more concrete approach. We note that there
is a natural isomorphism

HomCoh�̂Λ (�̂Λf)
(Λ̃1, Λ̃2) � Hom�̂Λ

(Λ1,O� ⊗ Λ2),

where O� denotes the regular representation of �̂Λ. By the Peter-Weyl theorem,
O� admits a filtration with associated graded ⊕_, ⊗ ((_∗) where , denotes the
Schur module of �̂Λ. For each a ∈ Hom�̂ (+,, ⊗ ((_∗) ⊗,), we use the integral
coefficient geometric Satake equivalence discussed in §8 to construct a cohomolog-
ical correspondence on restricted local Hecke stacks of � × �. The maps S+,, are
constructed by first pulling this cohomological correspondence back to a cohomo-
logical correspondence on restricted local Hecke stacks and then pulling it back to
a cohomological correspondence on restricted local Shtukas.

1.3 Notations
In this section, we fix notations for later use.

Ring of Witt Vectors
Let � be a mixed characteristic local ring with ring of integers O and residue field
: = F@. We write f for the arithmetic Frobenius of F@. For any :-algebra ', its
ring of Witt vectors is denoted by

, (') = {(A0, A1, · · · ) | A8 ∈ '}.
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We denote by ,ℎ (') the ring of truncated Witt vectors of length ℎ. For perfect
:-algebra ', we know that ,ℎ (') = , (')/?ℎ, ('). We define the ring of Witt
vectors in ' with coefficient in O as

,O (') := , (')⊗̂, (:)O := lim←−−
=

,O,= ('), and,O,= (') = , (') ⊗, (:) O/s=.

We define the (=-th) formal unit disk and formal punctured unit disk to be

�=,' := Spec,O,= ('), �' := Spec,O ('), �×' := Spec,O (') [1/s],

respectively.

Reductive Group Schemes
Let ! be the completion of the maximal unramified extension of �. Denote by O!
its ring of integers, and we fix a uniformizer s ∈ O! . We will assume � to be
an unramified reductive group scheme over O. We denote by ) the abstract Cartan
subgroup of �. Let ( ⊂ ) denote the maximal split subtorus. In the case where
� is a split reductive group, we will choose a Borel subgroup � ⊂ � over O and
a split maximal torus ) ⊂ �. When we need to embed ) (or () into � as a (split)
maximal torus, we will state it explicitly.

Let X• denote the coweight lattice of ) and X• the weight lattice. Let Δ ⊂ X•

(resp. Δ∨ ⊂ X•) the set of roots (resp. coroots). A choice of the Borel subgroup
� ⊂ � determines the semi-group of dominant coweights X+• ⊂ X• and the set of
positive roots Δ+ ⊂ Δ . In fact, X+• and Δ+ are both independent of the choice of �.
The @-power (arithmetic) Frobenius f acts on (X•,Δ ,X•,Δ∨) preserving X+• . The
Langlands dual group of � is denoted by �̂.

Let 2d ∈ X• be the sum of all positive roots. Define the partial order “ ≤ ” on
X• to be such that _ ≤ ` if and only if ` − _ equals a non-negative integral linear
combination of positive coroots. For any ` ∈ X•, denote s` by the image of `
under the composition of maps

G< → ) ⊂ �.

Let � be a reductive group over a field  . We write �ad for its adjoint group, �der

for its derived group, and �sc for the simply connected cover of �ad.

Let ) ⊂ � be a maximal torus, and we denote by )ad its image in the quotient �ad.
We also write )sc for the preimage of ) in �sc.
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Algebraic Geometry
We denote by E0 the trivial �-torsor. For any perfect :-algebra ', the arithmetic
Frobenius f induces an automorphism f ⊗ id of the �'. Let E be a �-torsor over
�', and we denote the �-torsor (f ⊗ id)∗E by fE.

Let - be an algebraic space over : . We write f- for the absolute Frobenius
morphism of - . We denote by - ?∞ := lim←−−f- - the perfection of - .

Let ℓ ≠ ? be a prime number. Fix a half Tate twist Zℓ (1/2). We write 〈3〉 :=
[3] (3/2). Let - and . be two algebraic stacks which are perfectly of finitely
presentation in the opposite category of perfect :-algebras. For each 5 : - → .

being a perfectly smooth morphism of relative dimension 3, we write 5★ := 5 ∗〈3〉.

Throughout the thesis, we writeΛ for Zℓ and Fℓ and � for Zℓ unless otherwise stated.
For stacks -1, -2, and perverse sheaves F8 ∈ P(-8,Λ), we sometimes write the space
of cohomological correspondences Corr- ((-1, F1), (-2, F2)) as Corr- (F1, F2) for
simplicity.

Let - be a stack, we denote by l- ∈ �2
1
(-, �) the dualizing sheaf of - in the

bounded derived category of sheaves on - . For a perfect pfp algebraic space
(cf.[XZ17, A.1.7]) - over : , we denote by H�"

8 (-:̄ ) := H−8 (-:̄ , lG (−8/2)) the 8th
Borel-Moore homology of -:̄ .

1.4 Summary of the Contents
In §2, we define the affine Grassmannian in mixed characteristic and briefly discuss
its geometry.

In §3, we define the Satake category and endow it with a monoidal structure.

In §4 and §5 discuss the semi-infinite orbits in mixed characteristic affine Grass-
mannians and the weight functors.

Chapter 6 is devoted to construct the monoidal structure of the hypercohomology
functor on the Satake category.

In §7, we construct a Λ-coalgebra by studying the cohomology of projective objects
in the Satake category and we endow it with the structure of a commutative Hopf
algebra with an antipode.

In §8, we identify the group scheme arising from the previous construction with the
Langlands dual group of the connected reductive group scheme we start with. This
completes the proof of our first main result in this thesis.
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Sections §9 and §10 introduce the localHecke stacks and themoduli of local Shtukas.
We discuss their geometry and define the categories of perverse sheaves on them.

In §11, we construct a map from the space of morphisms between two coherent
sheaves on the stack of unramified local Langlands parameters to the space of
cohomological correspondences supported on the Hecke correspondence of moduli
of local Shtukas. This is a key theorem in the proof of our second main theorem.

In §12, we study the cohomological correspondences between the mod ? fibres of
two different Shimura varieties and prove our second main theorem.
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C h a p t e r 2

THE MIXED CHARACTERISTIC AFFINE GRASSMANNIANS

In this chapter, we review the construction of affine Grassmannians in mixed char-
acteristic and summarize their geometric properties which will be used later. Most
properties appearing in this section have analogies in the equal characteristic setting,
and we refer to [MV07] for a detailed discussion.

2.1 Preliminaries
We start this section by defining ?-adic jet spaces that are similar to their equal
characteristic counterparts. Let X be a finite type O-scheme. We consider the
following two presheaves on the category of affine :-schemes defined as follows

!+?X(') := X(,O (')), and !ℎ?X(') := - (,O,ℎ (')),

which are represented by schemes over : . Their perfections are denoted by

!+X := (!+?X)?
−∞
, and !ℎX := (!ℎ?X)?

−∞

respectively, and we call them p-adic jet spaces.

Let - be an affine scheme over �. We define the ?-adic loop space !- of - as the
perfect space by assigning a perfect :-algebra ' to the set

!- (') = - (,O (') [1/?]).

2.2 The Mixed Characteristic Affine Grassmannian
Let X = � be a smooth affine group scheme over O. We write � (0) = � and define
the ℎ-th congruence group scheme of� over O, denoted by� (ℎ) , as the dilatation of
� (ℎ−1) along the unit. The group !+� (ℎ) can be identified with ker(!+� → !ℎ�)
via the natural map � (ℎ) → �. Then !+� acts on !� by multiplication on the
right. We define the affine Grassmannian �A� of � to be the perfect space

�A� := [!�/!+�]

on the category of perfect :-algebras.

In the work of Bhatt-Scholze [BS17], the functor �A� is proved to be representable
by an inductive limit of perfections of projective varieties.

We recall the following proposition in [Zhu17] for later use.
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Proposition 2.2.1. Let d : � → �!= be a linear representation such that �!=/�
is quasi-affine. Then d induces a locally closed embedding �A� → �A�!= . If in
addition, �!=/� is affine, then �A� → �A�!= is in fact a closed embedding.

Explicitly, the affine Grassmannian �A� can be described as assigning a perfect
:-algebra ' the set of pairs (%, q), where % is an !+�-torsor over Spec' and
q : % → !� is an !+�-equivariant morphism. It is clear from the definition that
!� → �A� is an !+�-torsor and !+� naturally acts on �A� , then we can form the
twisted product which we also call the convolution product in the current setting

�A�×̃�A� := !� ×!+� �A� := [!� × �A�/!+�],

where !+� acts on !�×�A� anti-diagonally as 6+·( [61], [62]) := ( [61(6+)−1], [6+62]).

As in the equal characteristic case, the affine Grassmannians can be interpreted as
the moduli stack of �-torsors on the formal unit disk with trivialization away from
the origin. More precisely, for each perfect :-algebra ',

�A� (') =
{
(E, q)

����E → �' is a �-torsor, and

q : E|�×
'
' E0 |�×

'

}
.

Let E1 and E2 be two �-torsors over �', and let V : E1 |�×
'
' E2 |�×

'
be an

isomorphism. One can define the relative position Inv(V) of V as an element in X+•
as in [Zhu17].

Definition 2.2.2. For each ` ∈ X+• , we define

(1) the (spherical) Schubert variety

�A≤` := {(E, V) ∈ �A� |Inv(V) ≤ `},

(2) the Schubert cell

�A` := {(E, V) ∈ �A� |Inv(V) = `}.

Proposition 2.2.3. (1) Let ` ∈ X+• , ands` ∈ �A� be the corresponding point in
the affine Grassmannian. Then the map

8` : !+�/(!+� ∩s`!+�s−`) −→ !�/!+�, such that 6 ↦−→ 6s`

induces an isomorphism

!+�/(!+� ∩s`!+�s−`) ' �A` .
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(2) �A` is the perfection of a quasi-projective smooth variety of dimension (2d, `).

(3) �A≤` is the Zariski closure of �A` in �A� , and therefore is perfectly proper
of dimension (2d, `).

The convolution Grassmannian�A�×̃�A� admits a moduli interpretation as follows

�A�×̃�A� (') =
{
(E1, E2, V1, V2)

����E1, E2 are � − torsors on �', and

V1 : E1 |�∗
'
' E0 |�∗

'
, V2 : E2 |�∗

'
' E1 |�∗

'

}
.

Via this interpretation, we define the convolution morphism as in the equal charac-
teristic case

< : �A�×̃�A� −→ �A� ,

such that
(E1, E2, V1, V2) ↦−→ (E2, V1V2).

Note that there is also the natural projection morphism

?A1 : �A�×̃�A� −→ �A� ,

such that
(E1, E2, V1, V2) ↦−→ (E1, V1).

It is clear to see that (?A1, <) : �A�×̃�A� ' �A� × �A� is an isomorphism.

One can define the =-fold convolution Grassmannian �A�×̃ · · · ×̃�A� in a similar
manner as follows

�A�×̃ · · · ×̃�A� :=

{
(E8, V8)

����E8 is a �-torsor over �', and

V8 : E8 |�∗
'
' E8−1 |�∗

'

}
.

We define the morphism

<8 : �A�×̃ · · · ×̃�A� −→ �A�

such that
(E8, V8) ↦−→ (E8, V1V2 · · · V8 : E8 |�∗

'
' E0 |�∗

'
).

As for the 2-fold convolution Grassmannian, we have an isomorphism

(<1, <2, · · · , <=) : �A�×̃ · · · ×̃�A� ' �A� × · · · × �A� .

We also call the map <= the convolution map.
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Given a sequence of dominant coweights `• = (`1, · · · , `=) of �, we define the
following closed subspace of �A�×̃ · · · ×̃�A� ,

�A≤`• := �A≤`1×̃ · · · ×̃�A≤`= := {(E8, V8) ∈ �A�×̃ · · · ×̃�A� |Inv(V8) ≤ `8}.

For a perfect :-algebra ', �A≤`• classifies isomorphism classes of modifications of
�-torsors over �'

E= E=−1 · · · E0 = E0,
V1 V=−1 V1 (2.1)

where Inv(V8) ≤ `8. We define�A (∞)≤`• as the !
+�-torsor over�A≤`• which classifies

a point in �A≤`• as (2.1) together with an isomorphism E= ' E0. For any integer
=, we define �A (=)≤`• to be the !=�-torsor over �A≤`• which classifies a point in
�A≤`• together with an isomorphism E= |�=,'' E0 |�=,' . For any < < =, there is
an isomorphism

�A≤`• ' �A≤`1,··· ,`<×̃�A≤`<+1,··· ,`= := �A (∞)≤`1,··· ,`< ×
!+� �A≤`<+1,··· ,`= .

Many of the constructions in later sections make use of the following lemma [Zhu17,
Lemma 3.1.7]:

Lemma 2.2.4. For any sequence of dominant coweights `• = (`1, `2, · · · , `=),
there exists a non-negative integer <, such that for any non-negative integer =, the
action of !<+=� on �A≤`• is trivial. In other words, the natural action of !+� on
�A≤`• factors through the finite type quotient !<+=�.

We will call such an integer < a `•-large. We also call a pair of non-negative
integers (<, =) (< = ∞ allowed) to be `•-large if < − = is a `•-large integer.

Replacing �A≤`8 by �A`8 , we can similarly define �A`• := �A`1×̃ · · · ×̃�A`= . By
Proposition 2.3, we have

�A≤`• = ∪`′•≤`•�A`′• , (2.2)

where `′• ≤ `• means `′
8
≤ `8 for each 8. This gives a stratification of �A`• .

As in [Zhu17], we let |`• | :=
∑
`8. Then the convolution map induces the following

morphism
< : �A≤`• −→ �A≤|`• |,

such that
(E8, V8) ↦−→ (E=, V1 · · · V=).
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Let a• be another sequence of dominant coweights. We define the following stack

�A0
`• |a• := �A≤`• ×<`• ,�A� ,<a• �A≤a• .

Write the natural projections from �A`•×<`• ,�A� ,<a• to �A≤`• and �A≤a• as ℎ←`• and
ℎ→a• , respectively. We call the following diagram

�A≤`• Gr0
`• |a• �A≤a•

ℎ←`• ℎ→a• (2.3)

the Satake correspondence.

Definition 2.2.5. An irreducible component of Gr0
`• |a• of dimension (d, |`• | + |a• |)

is called a Satake cycle. Denote the set of Satake cycles of Gr0
`• |a• by S`• |a• . For

a ∈ S`• |a• , write Gr
0,a
`• |a• for the Satake cycle labelled by a.

It is clear that Gr0
`• |a• � �A

0
a• |`• , and we conclude that

S`• |a• = Sa• |`• . (2.4)
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C h a p t e r 3

THE SATAKE CATEGORY

In this chapter, we first define the Satake category Sat�,Λ as the category of !+� ⊗
:̄-equivariant Λ-coefficient perverse sheaves on �A� ⊗ :̄ . We then define the
convolution map which enables us to equip the Satake category with a monoidal
structure.

3.1 The Satake Category as an Abelian Category
We know that c0(�A� ⊗ :̄) ' c1(�) (cf. [Zhu17, Proposition 1.21]). The affine
Grassmannian �A� ⊗ :̄ has the decomposition into connected components

�A� ⊗ :̄ = tb∈c1 (�)�Ab .

Recall our discussion in §2.1. We have

�Ab = lim−−→̀
∈b
�A`,

where ` ∈ b means that the natural map X• → c1(�) sends ` to b. The connecting
morphism 8`,a : �A` → �Aa is a closed embedding if ` ≤ a. For < ≤ <′ be
integers such that !+� acts on �A` through !<� and !<′�, there is a canonical
equivalence

%!<�⊗ :̄ (�A`,Λ) � %!<′�⊗ :̄ (�A`,Λ).

We define the category of !+� ⊗ :̄-equivariant Λ-coefficient perverse sheaves on
�A� ⊗ :̄ as

P!+�⊗ :̄ (�A� ⊗ :̄ ,Λ) :=
⊕

b∈c1 (�)
P!+�⊗ :̄ (�Ab ,Λ),

P!+�⊗ :̄ (�Ab ,Λ) := lim−−→
(`,<)

%!<�⊗ :̄ (�A`,Λ).

Here, the limit is taken over the pairs {(`, <) | ` ∈ b, < is large enough} with
partial order given by (`, <) ≤ (`′, <) if ` ≤ `′ and < ≤ <′. The connecting
morphism is the composition

P!<�⊗ :̄ (�A`,Λ) � P!<′�⊗ :̄ (�A`,Λ)
8∗
`,`′−−−→ P!<′�⊗ :̄ (�A`′,Λ)
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which is a fully faithful embedding. We also call this category the Satake category
and sometimes denote it by Sat�,Λ for simplicity. We denote by IC` for each ` ∈ X+•
the intersection cohomology sheaf on �A≤`. Its restriction to each open strata �A`
is constant and in particular, IC` |�A`' Λ[(2d, `)].

3.2 The Monoidal Structure of the Satake Category
With the above preparation, we can define the monoidal structure in Sat�,Λ by
Lusztig’s convolution of sheaves as in the equal characteristic counterpart. Consider
the following diagram

�A� × �A�
?
←− !� × �A�

@
−→ �A�×̃�A�

<−→ �A� ,

where ? and @ are projection maps. We define for any A1,A2 ∈ %!+� (�A� ,Λ),

A ★A2 := '<!(A1�̃A2),

where A1�̃A2 ∈ %!+� (�A�×̃�A� ,Λ) is the unique sheaf such that

@∗(A1�̃A2) ' ?∗(?H0(A1 �A2)).

Unlike the construction in %!+� (�A� , Q̄ℓ), we emphasize that taking the 0-th per-
verse cohomology ?H(•) in the above definition is necessary. This is because when
we work with Zℓ-sheaves, the external tensor productA1�A2 may not be perverse.
In fact,A1 �A2 is perverse if one of H∗(A8) is a flat Zℓ-module. For more details,
we refer to [MV07, Lemma 4.1] for a detailed explanation.

The following proposition is called a "miraculous theorem" of the Satake category
in equal characteristic (cf.[BD91]).

Proposition 3.2.1. For any A1,A2 ∈ %!+� (�A� ,Λ), the convolution product
A1 ★A2 is perverse.

Proof. Note by [Zhu17, Proposition 2.3] that the convolution morphism < is a
stratified semi-small morphism with respect to the stratification (2.1). Then the
proposition follows from [MV07, Lemma 4.3] �

We can also define the =-fold convolution production in Sat�,Λ

A1 ★ · · ·★A= := '<!(A1�̃ · · · �̃A=),
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where A1�̃ · · · �̃A= is defined in a similar way as A1�̃A2. By considering the
following isomorphism:

?H0(A1 � (?H0(A2 �A3)) ' ?H0(A1 �A2 �A3) ' ?H0(?H0(A1 �A2) �A3),

we conclude that the convolution product is associative:

(A1 ★A2) ★A3 ' '<!(A1�̃A2�̃A3) ' A1 ★ (A2 ★A3).

Thus, the category (Sat�,Λ, ★) is a monoidal category.



19

C h a p t e r 4

SEMI-INFINITE ORBITS AND WEIGHT FUNCTORS

In this section, we review the construction and geometry of semi-infinite orbits of
�A� . By studying a G<-action on the affine Grassmannian �A� , we realize the
semi-infinite orbits as the attracting loci of the G<-action in the sense of [DG14].
We also define the weight functors and relate them to the hyperbolic localization
functors and study their properties.

4.1 The Geometry of Semi-infinite Orbits
We fix embeddings ) ⊂ � ⊂ � and let* be the unipotent radical of �. Since*\�
is quasi-affine, recall Proposition 2.2.1 we know that that �A* ↩→ �A� is a locally
closed embedding. For any _ ∈ X•, define

(_ := !*s_

to be the orbit ofs_ under the !*-action. Then (_ = s_�A* , and therefore is locally
closed in �A� via the embedding �A* ↩→ �A� . By the Iwasawa decomposition for
?-adic groups, we know that

�A� = ∪_∈X•(_.

Similarly, consider the opposite Borel �− and let *− be its unipotent radical. We
also define the opposite semi-infinite orbits

(−_ := !*−s_.

for _ ∈ X•

Recall the following closure relations as in [Zhu17, Proposition 2.5] (the equal
characteristic analogue of this statement is proved in [MV07, Proposition 3.1].

Proposition 4.1.1. Let _ ∈ X•, then (≤_ := (_ = ∪_′≤_(_′ and (−≤_ := (−
_
=

∪_′≤_(−_′.

Applying the reduction of structure group to the !+�-torsor !� → �A� to (`,
we obtain an !+*-torsor !* → (`. This allows us to construct the convolution
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of semi-infinite orbits (`1×̃(`2×̃ · · · ×̃(`= . Let `• = (`1, · · · , `=) be a sequence of
(not necessarily dominant) coweights of �. We define

(`• := (`1×̃(`2×̃ · · · ×̃(`= ⊂ �A�×̃�A�×̃ · · · ×̃�A� .

The morphism
< : (`• −→ (`1 × (`1+`2 × · · · × ( |`• |

given by

(s`1G1, s
`2G2, · · ·s`1=G=) ↦−→ (s`1G1, s

`1+`2 (s−`2G1s
`2G2), · · · , s |`• | (s−|`• |+`1G1 · · ·s`=G=))

is an isomorphism. The morphism < fits into the following commutative diagram

(≤`0 (`1 × (`2 × · · · × (`=

�A�×̃�A�×̃ · · · ×̃�A� �A� × �A� × · · · × �A� .

<

(<1,...,<=)

We also note that there is a canonical isomorphism

((a1 ∩ �A≤`1)×̃((a2 ∩ �A≤`2)×̃ · · · ×̃((a= ∩ �A≤`=) ' (a• ∩ �A≤`• . (4.1)

4.2 The Weight Functors
Similar to the equal characteristic situation (cf. [MV07] (3.16), (3.17)), the semi-
infinite orbits may be interpreted as the attracting loci of certain torus action which
we describe here.

Let 2d∨ be the sum of all positive coroots of � with respect to � and regard it
as a cocharacter of �. The projection map !+?G< → G< admits a unique section
G< → !+?G< which identifies G< as the maximal torus of !+?G<. This section
allows us to define a cocharacter

G< −→ !+G<
!+ (2d∨)
−→ !+) ⊂ !+�.

Then the G<-action on �A� is induced by the action of !+� on �A� . Under this
action by G<, the set of fixed points are precisely ' := {s_ |_ ∈ X•}. The attracting
loci of this action are semi-infinite orbits i.e.

(_ = {6 ∈ �A� | lim
C→0

!+(2d∨(C)) · (6) = s_ for C ∈ G<}.
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The repelling loci are the opposite semi-infinite orbits

(−_ = {6 ∈ �A� | limC→∞
!+(2d∨(C)) · (6) = s_ for C ∈ G<}.

Recall that if - is a scheme and 8 : . ↩→ - is an inclusion of a locally closed
subscheme, then for any F ∈ �1

2 (-,Λ), the local cohomology group is defined as
H:
. (-, F ) := H: (., 8!F ).

Proposition 4.2.1. For any F ∈ %!+� (�A� ,Λ), there is an isomorphism

H:
2 ((`, F ) ' H:

(−`
(F ),

and both sides vanish if : ≠ (2d, `).

Proof. The proof is similar to the equal characteristic case (cf. [MV07, Theorem
3.5]) as the dimension estimation of the intersections of the semi-infinite orbits and
Schubert varieties are established in [Zhu17, Corollary 2.8]. Since F is perverse,
then for any a ∈ X+• , we know that F |�Aa ∈ �≤− dim(�Aa) = �≤−(2d,a) . By [Zhu17,
Corollary 2.8], we know that H:

2 ((` ∩ �A≤a, F ) = 0 if : > 2 dim((` ∩ �A≤a) =
(2d, ` + a). Filtering �A� by �A≤`, we apply a dévissage argument and conclude
that

H:
2 ((`, F ) = 0 if : > (2d, `).

An analogous argument proves that

H:
(−`
(F ) = 0

if : < (2d, `).

Now by regarding (` and (−` as the attracting and repelling loci of the G<-action,
we apply the hyperbolic localization as in [DG14] and obtain

H:
2 ((`, F ) ' H:

(−`
(F ).

The proposition is thus proved. �

Let ModΛ denote the category of finitely generatedΛ-modules andMod(X•) denote
the category of X•-graded finitely generated Λ-modules.

Definition 4.2.2. For any ` ∈ X•, we define
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(1) the weight functor

CT` : %!+� (�A� ,Λ) −→ Mod(X•),

by
CT` (F ) := H(2d,`)2 ((`, F ),

(2) the total weight functor

CT :=
⊕̀

CT` : %!+� (�A� ,Λ) −→ Mod(X•),

by
CT(F ) :=

⊕̀
CT` (F ) :=

⊕̀
H(2d,`)2 ((`, F ).

We denote by � the forgetful functor from Mod(X•) to ModΛ.

Proposition 4.2.3. There is a canonical isomorphism of functors

H∗(�A� , •) � � ◦ CT : %!+� (�A� ,Λ) −→ ModΛ.

In addition, both functors are exact and faithful.

Proof. By the definition of the semi-infinite orbits and the Iwasawa decomposition,
we obtain two stratifications of �A� by {(` | ` ∈ X•} and {(−` | ` ∈ X•},
respectively. The first stratification induces a spectral sequence with �1-terms
H:
2 ((`, F ) and abutment H∗(�A� , F ). This spectral sequence degenerates at the

�1-page by Proposition 4.2.1. Thus, there is a filtration of H∗(�A� , F ) indexed by
(X•, ≤) defined as

Fil≥`H∗(�A� , F ) := ker(H∗(�A� , F ) −→ H∗((<`, F )),

where (<` := ∪`′<`(`′. Direct computation yields that the associated graded of the
above filtration is

⊕
` H
(2d,`)
2 ((`, F ).

Consider the second stratification of�A� . It also induces a filtration of H∗(�A� , F )
as

Fil′<`H: (�A� , F ) := Im(H∗(−≤` (F ) −→ H∗(�A� , F )),

where (−<` := ∪`′<`(−`′.

Now, by Proposition 4.2.1, the two filtrations are complementary to each other and
together define the decomposition H∗(�A� , •) '

⊕
` H
(2d,`)
2 ((`, •).



23

Next, we prove that the total weight functor CT is exact. To do so, it suffices to show
that the weight functor CT` is exact for each ` ∈ X•. Let

0 −→ F1 −→ F2 −→ F3 −→ 0

be an exact sequence in %!+� (�A� ,Λ). It is given by a distinguished triangle

F1 −→ F2 −→ F3
+1−→

in �1
2 (�A� ,Λ). We thus have a long exact sequence of cohomology

· · · −→ H:
2 ((`, F1) −→ H:

2 ((`, F2) −→ H:
2 ((`, F3) −→ H:

2 ((`, F3) −→ H:+1
2 ((`, F1) −→ · · · .

Then Proposition 4.2 gives the desired exact sequence

0 −→ CT` (F1) −→ CT` (F2) −→ CT` (F3) −→ 0.

We conclude the proof by showing that CT is faithful. Since CT is exact, it suffices
to prove that CT maps non-zero objects to non-zero objects. Let F ∈ Sat�,Λ be a
nonzero object. Then supp(F ) is a finite union of Schubert cells �Aa. Choose a to
be maximal for this property. Then F |�Aa ' Λ⊕= [(2d, a)] for some natural number
= and it follows that CTa (F ) ≠ 0. Thus the functor H∗ is faithful. �

Remark 4.2.4. Theweight functor is in fact independent of the choice of themaximal
torus ) . The proof for this is analogous to the equal characteristic case (cf. [MV07,
Theorem 3.6]).

We note that the analogue of [Zhu17, Corollary 2.9] also holds in our setting. In
particular, H∗(IC`) is a free Λ-module for any ` ∈ X+• .

We end this section by proving a weaker statement of [MV07, Proposition 2.1]
which will be used in the process of identification of group schemes in §8.

Lemma 4.2.5. There is a natural equivalence of tensor categories

U : %!+� (�A� ,Λ) � %!+ (�//) (�A� ,Λ),

where / is the center of �.

Proof. We first note that the category %!+ (�//) (�A� ,Λ) can be identified as a full
subcategory of %!+� (�A� ,Λ). Let - ⊂ �A� be a finite union of !+�-orbits. Since



24

!+/ acts on �A� trivially, the action of !+� on �A� factors through the quotient
!+(�//). In other words, the following diagram commutes

!+� × - -

!+(�//) × -

01

@
02

where 01 and 02 are the action maps and @ is the natural projection map. In addition,
the following diagram is clearly commutative.

!+� × - -

!+(�//) × -

?1

@
?2

It follows that any F ∈ %!+ (�//) (�A� ,Λ), F is !+�-equivariant by checking the
definition directly.

Thus it suffices to prove reverse direction. We prove by induction on the number
of !+�-orbits in - as in the proof of [MV07, Proposition A.1]. First, we assume
that - contains exactly one !+�-orbit. Write - = �A` for some ` ∈ X+• . Recall
Proposition 2.2.3.(1) and [Zhu17, p. 1.4.4]. There is a natural projection with fibres
isomorphic to the perfection of affine spaces

c` : �A` ' !+�/(!+� ∩s`!+�s−`) −→ (�/%`)?
−∞

(6C` mod!+�) ↦−→ (6̄ mod%?
−∞

` )

where %` denotes the parabolic subgroup of � generated by the root subgroups
*U of � corresponding to those roots U satisfying

〈
U, `

〉
≤ 0, and %` denotes

the fibre of %` at O/s. Assume that !+� acts on (�/%`)?
−∞ by a finite type

quotient !=�. Since the stabilizer of this action of !+� is connected, we have a
canonical equivalence of categories (cf. [Zhu17, A.3.4]) %!+� ((�/%`)?

−∞
,Λ) '

%!=� ((�/%`)?
−∞
,Λ). Finally, we note that %!=� ((�/%`)?

−∞
,Λ) is equivalent

to ModΛ, and we conclude that %!+� (�A`,Λ) ' ModΛ(B!=�). A completely
similar argument implies that %!+ (�//) (�A`,Λ) ' ModΛ(B!=�) which concludes
the proof in the case - = �A`.

Now we treat the general - . Choose ` ∈ X+• such that �A` ⊂ - is a closed
subspace, and let* := -\�A`. By induction hypothesis, we know that %!+� (*,Λ)
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is equivalent to %!+ (�//) (*,Λ). Denote by 8 : �A` ↩→ - and 9 : * ↩→ - the closed
and open embeddings, respectively. Let �̃A` := !+(�//)×�A`, -̃ := !+(�//)×- ,
and *̃ := !+(�//) × *. Denote by 9̃ : *̃ ↩→ -̃ the open embedding. The
stratification on - induces a stratification on -̃ which has strata equal to products of
!+(�//) with strata in - . Restricting to *̃, we get a stratification of *̃. Considering
the action of !+� on -̃ and *̃ by left multiplication on the second factor, we can
define categories %!+� ( -̃,Λ) and %!+� (*̃,Λ). Define the functor

C̃T` : %!+� ( -̃,Λ) −→ LocΛ(!+(�//))

C̃T` (F ) := H (2d,`)+dim !+ (�//) (c!8̃
∗(F ))

for any F ∈ %!+� ( -̃,Λ), where 8̃ : !+(�//) × ((` ∩ -) ↩→ -̃ is the locally
closed embedding, c : !+(�//) × ((` ∩ -) → !+(�//) is the natural projection,
and LocΛ(!+(�//)) denotes the category of Λ-local systems on !+(�//). A
completely similar argument as in Proposition 4.2.1 shows that C̃T` is an exact
functor. Let �̃1 := C̃T` ◦ ? 9̃!, �̃2 : C̃T` ◦ ? 9∗ : %!+� (*̃,Λ) → LocΛ(!+(�//)).
Finally let )̃ := C̃T` (? 9̃! → ? 9̃∗). Then as in [MV07, Appendix A], we get an
equivalence of abelian categories

�̃ : %!+� ( -̃,Λ) ' C(�̃1, �̃2, )̃)

where the second category in the above is defined in loc.cit. Note that any F ∈
%!+ (�//) ( -̃,Λ) is G<-equivariant. The same argument in [MV07, Proposition A.1]
applies here and gives

�̃ (0∗2F ) ' �̃ (?
∗
2F ).

Then we deduce an isomorphism 0∗2F ' ?
∗
2F and the lemma is thus proved. �

4.3 Notations
We close this chapter by introducing the following notations. For any ` ∈ X+•
and a ∈ X•, the irreducible components of the intersection �A≤` ∩ (a are called
the Mirković-Vilonen cycles. We denote the set of Mirković-Vilonen cycles by
MV(`) (a). For each a ∈ MV` (a), we write (�A≤` ∩ (a)a for the irreducible
component of �A≤` ∩ (a labelled by a.
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C h a p t e r 5

REPRESENTABILITY OF WEIGHT FUNCTORS AND THE
STRUCTURE OF REPRESENTING OBJECTS

In chapter 4, we constructed the weight functors and the total weight functor

CT`,CT : %!+� (�A� ,Λ) → ModΛ.

We will prove in this section that both functors are (pro)representable, so that
we can apply the (generalized) Deligne and Milne’s Tannakian formalism as in
[MV07, §11]. In the following, we will recall the induction functor (cf. [MV07])
to explicitly construct the representing object of each weight functor and use the
representability of the total weight functor to prove that the Satake category has
enough projective objects. At the end of this section, we give a few propositions of
the representing objects which will be used later when we apply the (generalized)
Tannakian formalism.

Let / ⊂ �A� be a closed subspace which is a union of finitely many !+�-orbits.
Choose = ∈ Z large enough so that !+� acts on / via the quotient !=�. Let a ∈ X•.
As in [MV07, §9], we consider the following commutative diagram

(−a ∩ / !=� × ((−a ∩ /) /

/ !=� × / /

8

0̃

?

0

where 8 is the locally closed embedding, 0 and 0̃ are the action maps, and ? is the
projection map. Then we define

%/ (a,Λ) := ?H0(0!?
!8!Λ(−a∩/ [−(2d, a)]).

The following two results are analogues of the equal characteristic counterparts and
can be proved exactly in the same manner. We omit the proofs and refer readers to
[MV07, Proposition 9.1, Corollary 9.2] for details.

Proposition 5.0.1. The restriction of the weight functor CTa to %!+� (/,Λ) is
represented by the projective object %/ (a,Λ) in %!+� (/,Λ).
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Corollary 5.0.2. The category %!+� (/,Λ) has enough projectives.

Let %/ (Λ) := ⊕a%/ (a,Λ). We note the following mixed characteristic analogues of
results of the projective objects in the equal characteristic (cf [MV07, Proposition
10.1]) hold in our setting.

Proposition 5.0.3. (1) Let . ⊂ / be a closed subset which is a union of !+�-
orbits. Then

%. (Λ) = ?H0(%/ (Λ) |. ),

and there is a canonical surjective morphism

?/. : %/ (Λ) −→ %. (Λ).

(2) For each !+�-orbit �A_, denote by 9_ : �A_ ↩→ �A� the inclusion map. The
projective object %/ (Λ) has a filtration with associated graded

6A (%/ (Λ)) '
⊕
�A_⊂/

CT(? 9_,∗Λ�A_ [(2d, _)])
∗ ⊗ ? 9_,!Λ�A_ [(2d, _)] .

In particular, H∗(%/ (Λ)) is a finitely generated free Λ-module.

(3) For Λ = Q̄ℓ and Fℓ, there is a canonical isomorphism

%/ (Λ) ' %/ (Zℓ) ⊗!Zℓ Λ.

Again, as the proof in [MV07, Prp.10.1] extends verbatim in our setting, we refer to
loc.cit for details.

For the rest of this section, we set Λ = Zℓ.

Proposition 5.0.4. Let F ∈ %!+� (/,Λ) be a projective object. Then H∗(F ) is a
projective Λ-module. In particular, H∗(F ) is torsion-free.

Proof. Since Hom(%/ (Λ), •) is exact and faithful, the object %/ (Λ) is a projective
generator of %!+� (/,Λ). Then each object in the Satake category admits a resolution
by direct sums of %/ (Λ). Choose such a resolution for F

%/ (Λ)⊕< −→ F −→ 0. (5.1)

In this way, F can be realized as a direct summand of %/ (Λ)⊕<. By Proposition
5.0.3 (2), we notice thatH∗(%/ (Λ)⊕<) is a finitely generated freeΛ-module. Finally,
by the exactness of the global cohomology functor H∗(•), we conclude that H∗(F )
is a direct summand of H∗(%/ (Λ)⊕<) and is thus a projective Λ-module. �
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Remark 5.0.5. The results established in Proposition 5.0.4 become immediate once
the geometric Satake equivalence is established.
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C h a p t e r 6

THE MONOIDAL STRUCTURE OF H∗

In this section, we study theG<-action on�A�×̃�A� and apply the hyperbolic local-
ization theorem to prove that the hypercohomology functor H∗ : %!+� (�A� ,Λ) →
Mod(Λ) is amonoidal functor. Thenwe study the relation between the global weight
functor CT and the global cohomology functor H∗. At the end of this section, we
prove that the monoidal structure on H∗ we constructed is compatible with the one
constructed in [Zhu17].

6.1 Weight Functors on the Convolution Grassmannian
Recall the action of G< on �A� defined in §4, and let G< act on �A� × �A�
diagonally. Then,

' × ' := {(61, 62) ∈ �A� × �A� |!+(2d∨(C)) · (61, 62) = (61, 62)},

(`1 × (`2 = {(61, 62) ∈ �A� × �A� | lim
C→0

!+(2d∨(C)) · (61, 62) = (s`1 , s`2)},

and

(−`1 × (
−
`2 = {(61, 62) ∈ �A� × �A� | lim

C→∞
!+(2d∨(C)) · (61, 62) = (s`1 , s`2)}

are the stable, attracting, and repelling loci of the G<-action, respectively. We write
(61×̃62) ∈ �A�×̃�A� for (?A1, <)−1( [61], [6162]). Define the action of G< on
�A�×̃�A� by C (61×̃62) := (C61×̃6−1

1 62) for any C ∈ G<. Then the isomorphism
(?A1, <) : �A�×̃�A� ' �A� × �A� is automatically G<-equivariant. The stable
loci, attracting, and repelling loci of the G<-action on �A�×̃�A� are

'×̃' = {(s`1×̃s`2−`1) |`1, `2 ∈ X+•},

(`1×̃(`2−`1 = {(61×̃62) ∈ �A�×̃�A� | lim
C→0

!+(2d∨(C)) · (61×̃62) = (s`1×̃s`2−`1)},

and

(−`1×̃(
−
`2−`1 = {((61×̃62) ∈ �A�×̃�A� | lim

C→∞
!+(2d∨(C))·(61×̃62) = (s`1×̃s`2−`1)},

respectively.
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Lemma 6.1.1. For any F ,G ∈ Sat�,Λ, we have the following isomorphisms

H∗
(−`1 ×̃(

−
`2−`1
(�A�×̃�A� , F �̃G) ' H∗2 ((`1×̃(`2−`1 , F �̃G) ' H∗2 ((`1 , F )⊗H∗2 ((`2−`1 ,G).

(6.1)
In addition, the above cohomology groups vanish outside degree (2d, `2).

Proof. By our discussion on the G<-action on �A�×̃�A� above, the first isomor-
phism can be obtained by applying Braden’s hyperbolic localization theorem as in
[DG14]. Therefore, we are left to prove the second isomorphism and the vanishing
property of the cohomology. We first establish a canonical isomorphism

H∗2 ((`1×̃(`2−`1 , F �̃G) � H∗2 ((`1 × (`2−`1 ,
?H0(F �̃G)).

The idea of constructing this isomorphism is completely similar to the one that
appears in [Zhu17, Coro.2.17], and we sketch it here.

Assume !* acts on (`1 via the quotient !=* for some positive integer =. Denote
by ((=)`1 the pushout of the !+*-torsor !* → (`1 along !+* → !=*. Then
c : ((=)`1 → (`1 is an !=*-torsor. Denote by c∗F the pullback of F along c. Then
we have the following projection morphisms

(`1 × (`2−`1

c×id←− ((=)`1 × (`2−`1

@
−→ (`1×̃(`2−`1 .

Since !=* is isomorphic to the perfection of an affine space of dimension = dim*,
we have the following canonical isomorprhisms

H∗2 ((`1×̃(`2−`1 , F �̃G)
�H∗2 ((

(=)
`1 × (`2−`1 , @

∗(F �̃G))
�H∗2 ((

(=)
`1 × (`2−`1 , (c × id)∗(?H0(F � G)))

�H∗2 ((`1 × (`2−`1 ,
?H0(F � G)).

Next, we prove that there is a natural isomorphism

H∗2 ((`1 × (`2−`1 ,
?H0(F � G)) � H∗2 ((`1 , F ) ⊗ H∗2 ((`2−`1 ,G). (6.2)

Assume that G is a projective object in the Satake category. Then by Proposition
5.4 and discussion in §2, we have ?H0(F � G) = F � G and (6.2) thus holds.
Now we come back to the general situation. Note that there is always a map
from H∗2 ((`1 , F ) ⊗ H∗2 ((`2−`1 ,G) to H∗2 ((`1 × (`2−`1 ,

?H0(F � G)). In fact, let
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0 ∈ H<2 ((`1 , F ) and 1 ∈ H=2 ((`2−`1 ,G) be two arbitrary elements in the cohomology
groups. Then 0 and 1 may be realized as

0 : Λ(`1
→ F [<], and 1 : Λ(`2−`1

→ G[=] .

These two morphisms together induce a morphism

0 � 1 : Λ(`1×(`2−`1
−→ F � G[< + =] .

Since F � G concentrates in non-positive perverse degrees, we can compose the
above morphism with the natural truncation morphism to get the following element

0 � 1 : Λ(`1×(`2−`1
−→ ?H0(F � �) [< + =]

of H<+=2 ((`1 × (`2−`1 ,
?H0(F � G)).

By Corollary 5.2, we can find a projective resolution · · · → F2 → F1 → F → 0 for
F . Since the functor ?H0(•�G) is right exact, we get the following exact sequence

· · · −→ ?H0(F2 � G) −→ ?H0(F1 � G) −→ ?H0(F � G) −→ 0. (6.3)

Recall the diagonal action of G< on �A� × �A� . We can apply the same argument
as in Proposition 4.2.3 to show that

H∗(�A� × �A� , •) ' ⊕H∗2 ((`1 × (`2−`1 , •)

is an exact functor. As a result, the functor

H∗2 ((`1 × (`2−`1 , •) : %!+�×!+� (�A� × �A� ,Λ) −→ ModΛ

is also exact. Applying this functor to (6.3) gives an exact sequence

· · · → H∗2 ((`1 , F2)⊗H∗2 ((`2−`1 ,G) → H∗2 ((`1 , F1)⊗H∗2 ((`2−`1 ,G) → H∗2 ((`1×(`2−`1 ,
?H0(F�G)) → 0.

Comparing the above exact sequence with the one obtained from tensoring the
following exact sequence

H∗2 ((`1 , F2) −→ H∗2 ((`1 , F1) −→ H∗2 ((`1 , F ) −→ 0

with H∗2 ((`2−`1 ,G), we complete the proof of (6.2).

Finally, consider Proposition 4.0.2 together with (6.2), and we conclude the proof
of the lemma. �
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The previous lemma motivates us to study the analogue of the total weight functor

CT′ :=
⊕

`1,`2∈X•
H∗2 ((`1×̃(`2−`1 , •) : %!+� (�A� ,Λ) ×%!+� (�A� ,Λ) −→ Mod(X•).

Recall that we denote � : Mod(X•) → ModΛ to be the forgetful functor.

Proposition 6.1.2. There is a canonical isomorphism

H∗(�A�×̃�A� , F �̃G) � �◦CT′(F �̃G) : %!+� (�A� ,Λ)×%!+� (�A� ,Λ) → ModΛ,
(6.4)

for all F , � ∈ %!+� (�A� ,Λ).

Proof. The convolution Grassmannian �A�×̃�A� admits a stratification by the
convolution of semi-infinite orbits

{(`1×̃(`2−`1 |`1, `2 ∈ X•}.

For anyF ,G ∈ %!+� (�A� ,Λ), there is a spectral sequencewith�1-termsH∗2 ((`1×̃(`2−`1 , F �̃G)
and abutment H∗(�A�×̃�A� , F �̃G). By the above lemma, it degenerates at the �1

page. Hence, there exists a filtration

Fil≥`1,`2H
∗(F �̃G) := ker(H∗(F �̃G) → H∗((<`1,<`2 , F �̃G)),

where (<`1,<`2 := ∪
a1<`1,a1+a2<`2

(a1×̃(a2−a1 . It is clear that the associated graded of

this filtration is ⊕`1,`2∈X•H∗2 ((`1×̃(`2−`1 , F �̃G).

Similarly, consider the stratification {(−`1×̃(
−
`2−`1 |, `1, `2 ∈ X•} of �A�×̃�A� . It

also induces a filtration

Fil′<`1,`2H
∗(F �̃G) := Im(H∗)<`1 ,<`2

(F �̃G) → H∗(F �̃G))

on H∗(�A�×̃�A� , F �̃G) where )<`1,<`2 := ∪
a1<`1,a1+a2<`2

)a1×̃)a2−a1 . The two fil-
trations are complementary to each other by Lemma 6.1.1 and the proposition is
proved. �

6.2 Monoidal Structure of the Hypercohomology Functor

Proposition 6.2.1. Under the canonical isomorphism

H∗(�A� , F ★G) � H∗(�A�×̃�A� , F �̃G),
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the weight functor decomposition of the hypercohomology functor obtained in
Proposition 4.2.3 and the analogous decomposition given by Proposition 6.1.2
are compatible. More precisely, for any F ,G ∈ %!+� (�A� ,Λ) and any `2 ∈ X•,
we have the following isomorphism

H∗2 ((`2 , F ★G) '
⊕̀

1

H∗2 ((`1×̃(`2−`1 , F �̃G), (6.5)

which identifies both sides as direct summands of the direct sum decomposition of
H∗(�A� , F ★G) and H∗(�A�×̃�A� , F �̃G), respectively.

Proof. Consider the following commutative diagram

<−1((`2) �A�×̃�A�

(`2 �A� .

<1

5̃ +

<

5 +

Here, 5 and 5̃ + are the natural locally closed embeddings. The morphism <1 is the
convolution morphism < restricted to <−1((`2).

Consider the G<-equivariant isomorphism (?A1, <) : �A�×̃�A� ' �A� × �A� .
The preimage of (`2 along < can be described as

(?A1, <) : <−1((`2) ' �A� × (`2 .

As before, the diagonal action ofG< on�A�×(`2 induces aG<- action on<−1((`2)
with invariant loci {(s`1 , s`2) |`1 ∈ X•}. Via the isomorphism (?A1, <)−1, the
attracting and repelling loci for (s`1×̃s`2−`1) in <−1((`2) are

(`1×̃(`2−`1 ,

and
)`1,`2 := (?A1, <)−1((−`1 × {s

`2}),

respectively. Applying the hyperbolic localization theorem to <−1((`2), we have
the following isomorphism

H∗2 ((`1×̃(`2−`1 , F �̃G) ' H∗)`1 ,`2
(F �̃G). (6.6)

By Lemma 6.1.1, the above cohomology groups concentrate in a single degree.
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Filtering the space <−1((`2) by {(`1×̃(`2−`1 |`1 ∈ X•}, we get a spectral sequence
with �1-terms H∗2 ((`1×̃(`2−`1 , F �̃G). As noticed in Lemma 6.1.1, this spectral
sequence degenerates at �1-page. Then, there exists a filtration

Fil`1,`
′
2

:= Ker(H∗(<−1((`2), F �̃G) → H∗(∪`′1<`1(`′1×̃(`2−`′1 , F �̃G))

with associated graded ⊕̀
1

H∗2 ((`1×̃(`2−`1 , F �̃G).

Similarly, filtering <−1((`2) by {)`1,`2 |`1 ∈ X•}, we get an induced spectral se-
quence with �1-terms H∗)`1 ,`2

(F �̃G). This spectral sequence also degenerates at
the �1-page and there is an induced filtration

Fil′`1,`2 := Im(H∗)<`1 ,`2
(F �̃G) → H∗(F �̃G)),

where )<`1,`2 := ∪`′1<`1)`′1,`2 . The two filtrations are complementary to each other
by (6.6) and together define the decomposition

H∗2 ((`2 , F ★G) '
⊕̀

1

H∗2 ((`1×̃(`2−`1 , F �̃G).

�

By the above proposition, Proposition 6.1.2 induces a monoidal structure of the
functor H∗.

Proposition 6.2.2. The hypercohomology functor H∗(�A� , •) : %!+� (�A� ,Λ) →
ModΛ is a monoidal functor. In addition, the obtained monoidal structure is
compatible with the weight functor decomposition established in Proposition 4.2.1

Proof. Recall for F ,G ∈ %!+� (�A� ,Λ), the convolution product F ★G is defined
as F ★ G = '<!(F �̃G). Then by Lemma 6.1.1 and Proposition 6.1.2, there are
canonical isomorphisms

H∗(�A� , F ★G)
�H∗(�A�×̃�A� , F �̃G)
�

⊕̀
1,`2

H∗2 ((`1×̃(`2−`1 , F �̃G)

�
⊕̀

1,`2

(
H∗2 ((`1 , F ) ⊗ H∗2 ((`2−`1 ,G)

)
�
( ⊕̀

1

H∗2 ((`1 , F )
)
⊗

( ⊕̀
2

H∗2 ((`2 ,G)
)

�H∗(F ) ⊗ H∗(G).
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Note that by Proposition 4.2.3, we have the decomposition of the total weight
functor into direct sum of weight functors H∗(�A� , F ★ G) ' ⊕_H∗2 ((_, F ★ G).
Proposition 6.3 then shows that the monoidal structure obtained above is compatible
with the weight functor decomposition. Finally, we need to show that the monoidal
structure of H∗ is compatible with the associativity constraint. This can be proved
by considering the G<- action on �A�×̃�A�×̃�A� induced by the diagonal action
of G< on �A� × �A� × �A� via the isomorphism

(<1, <2, <3)−1 : �A� × �A� × �A� ' �A�×̃�A�×̃�A� .

Note that in this casewe can still split the intersection ((a1×̃(a2×̃(a3)∩(�A≤`1×̃�A≤`2×̃�A≤`3)
by (4.1). This allows us to apply the hyperbolic localization theorem and a similar
spectral sequence argument as before. We obtain the desired compatibility property
and the proposition is thus proved.

�

With the monoidal structure of H∗ established above, we are now ready to prove the
following results.

Proposition 6.2.3. For any F ∈ Sat�,Λ, the functors (•) ★F and F ★ (•) are both
right exact. If in addition F is a projective object, then these functors are exact.

Proof. Let
0→ G′→ G → G′′→ 0 (6.7)

be an exact sequence in Sat�,Λ. By Proposition 4.2.3, taking global cohomology
gives an exact sequence

H∗(G′) −→ H∗(G) −→ H∗(G′′) −→ 0. (6.8)

Tensoring (6.8) with H∗(F ) gives the exact sequence

H∗(G′) ⊗ H∗(F ) −→ H∗(G) ⊗ H∗(F ) −→ H∗(G′′) ⊗ H∗(F ) −→ 0. (6.9)

By proposition 6.3, (6.9) is canonically isomorphic to the following sequence

H∗(G′ ★ F ) −→ H∗(G ★ F ) −→ H∗(G′′ ★ F ) −→ 0. (6.10)

Notice that by Proposition 4.2.3, the global cohomology functor H∗(•) is faithful,
then the exactness of (6.9) implies that the sequence

G′ ★ F −→ G ★ F −→ G′′ ★ F −→ 0
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is also exact. The right exactness for F ★ (•) can be proved similarly.

Now, assume F to be a projective object in the Satake category. By Proposition
5.4, we know that the functors (•) ⊗ H∗(F ) and H∗(F ) ⊗ (•) are both exact. Then
arguing as before and using the monoidal structure and the faithfulness of the functor
H∗(•), we conclude the proof. �

We conclude the discussion on the monoidal structure of H∗ by identifying it with
the one constructed in [Zhu17]. For this purpose, we briefly recall the construction
in loc.cit.

Let F ,G ∈ %!+� (�A� , Q̄ℓ). Assume that !+� acts on supp(G) via the quotient
!+� → !<�. Define supp(F )×̃supp(G) := supp(F ) (<)×!<� supp(G) and denote
by c the projection morphism supp(F ) (<) → supp(F ). Then we have an !+� ×
!<�-equivariant projection morphism

? : supp(F ) (<) × supp(G) −→ supp(F )×̃supp(G)

where !+� acts on supp(F ) (<) by multiplication on the left and !<� acts on
supp(F ) (<) × supp(G) diagonally from the middle. Then ? induces a canonical
isomorphism of the !+�-equivariant cohomology (cf. [Zhu17] A.3.5)

H∗!+� (supp(F )×̃supp(G), F �̃G) � H∗!+�×!<� (supp(F )
(<) × supp(G), c∗F �G).

(6.11)
By the equivariant Künneth formula (cf. [Zhu16, A.1.15] ), there is a canonical
isomorphism

H∗!+�×!<� (supp(F )
(<) × supp(G), c∗F � G) (6.12)

�H∗!+�×!<� (supp(F )
(<) , F ) ⊗ H∗!+�×!<� (supp(G),G).

Combine (6.11) with (6.12), and we conclude a canonical isomorphism

H∗!+� (supp(F )×̃supp(G), F �̃G) � H∗!+� (supp(F ), F ) ⊗ H∗!+� (supp(G),G).
(6.13)

We denote by �Q̄ℓ the base change of � to Q̄ℓ. Let '
�,ℓ

:= Sym(gQ̄ℓ (−1))�Q̄ℓ
denote the algebra of invariant polynomials on the Lie algebra gQ̄ℓ (−1). Then
(6.13) induces an isomorphism of '

�,ℓ
-bimodules. In addition, the two '

�,ℓ
-

module structures coincide ([Zhu17, Lemma 2.19]) and the base change of (6.13)
along the argumentation map '

�,ℓ
→ Q̄ℓ, the canonical isomorphism

H∗!+� (F ) ⊗'�,ℓ Q̄ℓ ' H∗(F ) (6.14)



37

gives the monoidal structure of H∗ in the Q̄ℓ-case ([Zhu17], Proposition 2.20).

Then to identify the monoidal structures, it suffices to prove the following proposi-
tion.

Proposition 6.2.4. Let F ,G ∈ %!+� (�A� ,Zℓ) be two projective objects. We denote
F ⊗Q̄ℓ andG⊗Q̄ℓ byF ′ andG′, respectively. Then the following diagram commutes

H∗
!+� (supp(F ′)×̃supp(G′), F ′�̃G′) ⊗'�,ℓ Q̄ℓ H∗(F ′�̃G′)

(H∗
!+� (F ′) ⊗'�,ℓ H

∗
!+� (G′)) ⊗'�,ℓ Q̄ℓ

⊕
`1,`2

H∗2 ((`1×̃(`2−`1 , F ′�̃G′)

(H∗
!+� (F ′) ⊗'�,ℓ Q̄ℓ) ⊗Q̄ℓ (H

∗
!+� (G′) ⊗'�,ℓ Q̄ℓ) (

⊕
`1
H∗2 ((`1 , F ′)) ⊗Q̄ℓ (

⊕
`2
H∗2 ((`2−`1 ,G′))

(6.14)

(6.13) U

� V

'

(6.15)
where the morphisms U and V are the base change of isomorphisms (6.4) and (6.1)
to Q̄ℓ, respectively.

Proof. Consider the filtrations

Fil≥`1,`2H
∗(F ′�̃G′), Fil≥`H∗(F ′), and Fil≥`H∗(G′)

defined as in Proposition 6.1.2 and Proposition 4.2.3. To prove the proposition,
it suffices to prove that these filtrations respect (6.13). Then taking the Verdier
dual (note now H∗(F ′�̃G′), H∗(F ′), and H∗(G′) are all Q̄ℓ-vector spaces) implies
that the complementary filtrations Fil′<`1,`2 and Fil

′
<` also respect (6.13). This will

provide the commutativity of (6.15).

The approach we will use is similar to the one given in [Zhu16, Proposition 5.3.14],
and we sketch it here. Although the semi-infinite orbit (` does not admit an
!+�-action, it is stable under the action of the constant torus ) ⊂ !+) ⊂ !+�.
Then so is the convolution product of semi-infinite orbits (`1×̃(`2−`1 . Stratifying
�A�×̃�A� by {(`1×̃(`2−`1 | `1, `2 ∈ X•}, we get a spectral sequence with �1-terms
H∗),2 ((`1×̃(`2−`1 , F ′�̃G′) which abuts to H∗) (F ′�̃G′). By [Zhu17, Proposition 2.7],
the spectral sequence degenerates at the �1-page and the filtration Fil≥`1,`2 thus lifts
to a new filtration of H∗)

Fil≥`1,`2H
∗
) (F ′�̃G′) := ker(H∗) (F ′�̃G′) → H∗) ((<`1×̃(<`2−`1 , F ′�̃G′)).
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Using a similar argument as in the proof of Proposition 6.1.2, the associated graded
of this filtration equals

⊕
`1,`2

H∗),2 ((`1×̃(`2−`1 , F ′�̃G′). Note that all the terms
in this filtration and the associated graded are in fact free '

),ℓ
-modules, then base

change to Q̄ℓ along the argumentationmap '
),ℓ
→ Q̄ℓ recovers our original filtration

Fil≥`1,`2 . Similarly, we can define the filtrations Fil≥`H∗) (F ′) and Fil≥`H∗) (G′)
which recover the original filtrations Fil≥`H∗(F ′) and Fil≥`H∗(G′) in the same
way.

Since
H∗) (•) ' H∗!+� (•) ⊗'�,ℓ '),ℓ : %!+� (�A� , Q̄4;;) −→ VectQ̄ℓ ,

then (6.13) induces a monoidal structure on the )-equivariant cohomology

H∗) (F ′ ★�′) ' H∗) (F ′) ⊗ H∗) (G′). (6.16)

Then we are left to show that (6.16) is compatible with the filtrations Fil≥`1,`2 and
Fil≥`. It suffices to check the compatibility with filtrations Fil≥`1,`2H∗) and Fil≥`H

∗
)

over the generic point of Spec'
),ℓ

. Denote

H_ := H∗) ⊗') ,ℓ &

where & is the fraction filed of '
),ℓ

. By the equivariant localization theorem, we
have isomorphisms

H_ (F ′�̃G′) '
⊕̀

1,`2

H_ (F ′�̃G′|(s`1 ×̃s`2−`1 ))

and
H∗_ ((<`1,<`2 F ′�̃G′) '

⊕
a1<`1,a2<`2

H_ (F ′�̃G′|(sa1 ×̃sa2−a1 )).

Then it follows that

Fil≥`1,`2H_ (F ′�̃G′) := Fil≥`1,`2H
∗
) (F ′�̃G′)⊗') ,ℓ& '

⊕
a1≥`1,a2≥`2

H_ (F ′�̃G′|(sa1 ×̃sa2−a1 )).

Applying the equivariant localization theorem again gives isomorphisms

H_ (F ′) '
⊕̀

H_ (F ′|s` )

and
H_ ((<`, F ′) '

⊕
a<`

H_ (F ′|sa ).

Similarly, we get a filtrationFil≥`H_ (F ′) ' ⊕a≥`H_ (F ′|sa ) induced byFil≥`H∗) (F ).
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Notice that as for H∗
!+� (•), the monoidal structure (6.16) is defined via the compo-

sition of the following isomorphisms

Fil≥`1,`2H_ (F ′�̃G′)
'

⊕
a1≥`1,a2≥`2

H_ (F ′�̃G′|(sa1 ×̃sa2−a1 ))

'
⊕

a1≥`1,a2≥`2

H_ (F ′|sa1 ) ⊗ H_ (G′|sa2−a1 )

'
⊕
a1≥`1

H_ (F ′|sa1 ) ⊗
⊕

a2≥`2−`1

H_ (G′|sa2 )

'Fil≥`1H_ (F ′)
⊗

Fil≥`2−`1H_ (G′)

where the second isomorphism is obtained by an analogue of (6.13) for)-equivariant
cohomology and the equivariant Künneth formula. Note that the monoidal structure
of the total weight functor CT is compatible with that of the hypercohomology
functor H∗ by Proposition 6.3. We thus conclude the proof. �
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C h a p t e r 7

TANNAKIAN CONSTRUCTION

Let / ⊂ �A� denote a closed subspace consisting of a finite union of !+�-orbits.
Then any F ∈ %!+� (/,Λ) admits a presentation

%1 −→ %0 −→ F −→ 0,

where %1 and %0 are finite direct sums of %/ (Λ).

Write �/ (Λ) for End%!+� (/,Λ) (%/ (Λ))>?. By Proposition 5.0.3.(2), �/ (Λ) is
a finite free Λ-module, and any finitely generated �/ (Λ)-module is also finitely
presented. Now we recall the following version of Gabriel and Mitchell’s theorem
as formulated in [BR18, Theorem 9.1].

Theorem 7.0.1. Let C be an abelian category. Let % be a projective object and
write � = EndC (%)>?. Denote M to be the full subcategory of C consisting of
objects " which admits a presentation

%1 −→ %0 −→ " −→ 0,

where %1 and %0 are finite direct sums of %. Let M′
�
be the category of finitely

presented right A-modules. Then

(1) there is an equivalence of abelian categoriesM 'M′ induced by the functor
HomC (%, •),

(2) there is a canonical isomorphism between the endomorphism ring of the
functor HomC (%, •) and �>?.

The above theorem and the discussion before it enable us to deduce an equivalence
of abelian categories

�/ : %!+� (/,Λ) ' M′�/ (Λ) .

Let 8 : . ↩→ / be an inclusion of closed subsets consisting of !+�-orbits, then
we have the functor 8∗ : %!+� (.,Λ) → %!+� (/,Λ). In addition, 8∗ induces a
functor (8/

.
)∗ : M′

�. (Λ) → M
′
�/ (Λ) which in turn gives a ring homomorphism
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8/
.

: �/ (Λ) → �. (Λ). Note for any 0 ∈ �/ (Λ) and F ∈ %!+� (.,Λ), we have
canonical isomorphisms

0 · �/ (8∗F )
'0 · Hom(%/ (Λ), 8∗F ))
'0 · (8/. )∗(Hom(%/ (Λ), 8∗F ))
'8/. (0) · Hom(%. (Λ), F ))
'8/. (0) · �. (F ).

Define �/ (Λ) := Hom(�/ (Λ),Λ)). Since �/ (Λ) is a finite free Λ-module, then so
is �/ (Λ) and we have the following canonical equivalence of abelian categories

M′
�/ (Λ) ' Comod�/ (Λ) .

The dual map of 8/
.
gives a map ].

/
: �. (Λ) → �/ (Λ). Let �(Λ) = lim−−→ �/ (Λ), we

conclude that Sat�,Λ ' Comod�(Λ) as abelian categories. Moreover, by Proposition
5.0.3.(3) we know that

�(Λ) ' �(Zℓ) ⊗Zℓ Λ (7.1)

for Λ = Q̄ℓ and Fℓ.

Take any ` ∈ X+• , and write �` (Λ) and �` (Λ) for ��A≤` (Λ) and ��A≤` (Λ), respec-
tively. For any `, a ∈ X+• such that ` ≤ a, use notations 8a` and ]`a for 8�A≤a

�A≤`
and

]
�A≤`
�A≤a

, respectively. Also, we denote by %\ (Λ) the projective object %�A≤\ (Λ) for any
\ ∈ X+• . Note the following canonoical isomorphism by the monoidal structure of
H∗ established by Proposition 6.2.2

Hom(%`+a (Λ), %` ★ %a)
'H∗(%` ★ %a)
'H∗(%`) ⊗ H∗(%a)
'Hom(%` (Λ), %` (Λ)) ⊗ Hom(%a (Λ), %a (Λ)).

Then, the element 83%` (Λ) ⊗ 83%a (Λ) ∈ Hom(%` (Λ), %` (Λ)) ⊗Hom(%a (Λ), %a (Λ))
gives rise to a morphism

5`,a : %`+a (Λ) −→ %` (Λ) ★ %a (Λ).

Applying the functor H∗ and dualizing, we get a morphism

6`,a : �` (Λ) ⊗ �a (Λ) → �`+a (Λ).
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We check that the multiplication maps 6•,• are compatible with the maps ]•• i.e. for
any ` ≤ `′, a ≤ a′ ∈ X+• , the following diagram commutes

�` (Λ) ⊗ �a (Λ), �`+a (Λ)

�`′ (Λ) ⊗ �a′ (Λ) �`′+a′ (Λ).

6`,a

]
`

`′⊗]
a
a′ ]

`+a
`′+a′

6`′,a′

(7.2)

By the constructions of 6’s and ]’s, it suffices to check the commutativity for

%`′+a′ (Λ) %`′ (Λ) ★ %a′ (Λ)

%`+a (Λ) %` (Λ) ★ %a (Λ),

5`′,a′

?
`′+a′
`+a ?

`′
` ★?

a′
a

5`,a

(7.3)

Here, maps ?•• appearing in the above diagram are the maps ?•• in Proposition
5.0.3.(1). The construction of 5 ’s implies that we are left to show that the following
diagram commutes

H∗(%`′ (Λ) ★ %a′ (Λ)) H∗(%`′ (Λ)) ⊗ H∗(%a′ (Λ))

H∗(%` (Λ) ★ %a (Λ)) H∗(%` (Λ)) ⊗ H∗(%a (Λ))

H∗ (?`
′
` ★?

a
a′)

�

H∗ (?`
′
` )⊗H∗ (?a

′
a )

�

By the monoidal structure of H∗, the above diagram commutes and so is diagram
(9.2). Taking direct limit, the morphisms 6`,a give a multiplication map on �(Λ)
by the above discussion. Our observation at the end of §3 ensures the multiplication
on �(Λ) is associative.

Note clearly that �0(Λ) = Λ and the canonical map �0(Λ) → �(Λ) gives the
unit map for �(Λ). Now to endow �(Λ) with a bialgebra structure in the sense
of [DM82, §2], it suffices to prove the multiplication on �(Λ) is commutative and
�(Λ) admits an antipode. The later statement can be proved in a completely similar
manner as in [BR18, Proposition 13.4] once the former statement is proved. Thus it
suffices to prove the commutativity of the multiplication of �(Λ) .

First by the compatibility of morphisms 6•,• with ]••, it suffices to prove for each
` ∈ X+• that the multiplication on �` (Λ) is commutative. Consider the following
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diagram
�` (Λ) ⊗ �` (Λ) �2` (Λ)

�` (Q̄ℓ) ⊗ �` (Q̄ℓ) �2` (Q̄ℓ).

3

3
′

(7.4)

The vertical arrows are inclusions by noting (7.1) and the fact that �` (Λ) is a finite
free Λ-module. The map 3 is defined to map 11 ⊗ 12 to 6`,` (11 ⊗ 12) − 6`,` (12 ⊗
11). The map 3′ is defined similarly. By Proposition 6.2.4 and isomorphism
(7.1), diagram (7.4) is commutative. By the construction of the commutativity
constraint in %!+� (�A� , Q̄ℓ) in [Zhu17], we conclude that 3 is the zero map and
the multiplication map in �(Λ) is thus commutative. Thus, by a complete similar
argument as in [DM82, Proposition 2.16], the category Comod�(Λ) can be equipped
with a commutativity constraint. This commutativity constraint then induces that
of Sat�,Λ. Thus we have endowed Sat�,Λ with a tensor category structure. Then a
complete similar argument as in [BR18, Proposition 13.4] shows that �(Λ) admits
an antipode.
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C h a p t e r 8

IDENTIFICATION OF GROUP SCHEMES

With thework in previous chapters, we have constructed the category %!+� (�A� ,Λ),
and equipped it with

(1) the convolution product ★ and an associativity constraint,

(2) the hypercohomology functor H∗ : %!+� (�A� ,Λ) → ModΛ which is Λ-
linear, exact, and faithful,

(3) a commutativity constraint which makes Sat�,Λ a tensor category,

(3) a unit object IC0,

(4) a bialgebra �(Λ) such that Sat�,Λ is equivalent to Comod�(Λ) as tensor cate-
gories.

Note that by Proposition 5.0.3 (2), H∗(%/ (Zℓ)) is a freeZℓ-module for any / ⊂ �A�
consisting of a finite union of !+�-orbits / . We also know that the representing ob-
ject %/ (Zℓ) is stable under base change by Proposition 5.0.3 (3). By our discussion
in the previous section, we have the following generalized Tannakian construction
similar to [MV07, Proposition 11.1]

Proposition 8.0.1. The category of representations of the group scheme �̃Zℓ :=
Spec(�(Zℓ)) which are finitely generated over Zℓ, is equivalent to %!+� (�A� ,Zℓ)
as tensor categories. Furthermore, the coordinate ring of �̃Zℓ is free over Zℓ and
�̃Fℓ = Spec(Fℓ) ×Zℓ �̃Zℓ .

We are left to identify the group scheme �̃Zℓ with the Langlands dual group �̂Zℓ .

Note that reductive group schemes over Zℓ are uniquely determined by their root
datum. Then it suffices to prove the followings for our purpose

(1) �̃Zℓ is smooth over Zℓ,

(2) the group scheme �̃Fℓ is reductive,
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(3) the dual split torus )̂Zℓ is a maximal torus of �̃Zℓ .

In §7, we showed that �(Zℓ) is a free Zℓ-modules. As a result, the group scheme �̃Zℓ
is affine flat over Zℓ. Then the affineness of �̃Zℓ together with the statements (1) and
(2) in this paragraph amount to the definition of a reductive group over Zℓ. Recall
in [PY06], a group scheme G over a discrete valuation ring ' with uniformizer c,
field of fractions  , and residue field ^ is said to be quasi-reductive if

(1) G is affine flat over ',

(2) G := G ⊗'  is connected and smooth over  ,

(3) G^ := G ⊗' ^ is of finite type over ^ and the neutral component (G ¯̂)◦red of the
reduced geometric fibre is a reductive group of dimension equals dimG .

Wewillmake use of the following theorem for quasi-reductive group schemes proved
in loc.cit.

Theorem 8.0.2. Let G be a quasi-reductive group scheme over '. Then

(1) G is of finite type over '

(2) G is reductive

(3) G^ is connected.

In addition, if

(4) the type of G ̄ is of the same type as that of (G ¯̂)◦red,

then G is reductive.

As noted above, the requirement (1) of quasi-reductiveness is satisfied by �̃Zℓ . In
addition, by [Zhu17], the group scheme �̃Qℓ is connected reductive with root datum
dual to that of � and the condition 2 of quasi-reductiveness is met.

Lemma 8.0.3. The group scheme �̃ F̄ℓ is connected.
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Proof. Note that the same proof as in [MV07, §12] and [BR18, Lemma 9.3] applies
in our setting to show that the Satake category %!+� (�A� , F̄ℓ) has no object F such
that the subcategory 〈F 〉, which is the strictly full subcategory of %!+� (�A� , F̄ℓ)
whose objects are those isomorphic to a subquotient of F★= for some = ∈ N, is
stable under ★. This is equivalent to the fact that there does not exist an object
- ∈ RepF̄ℓ (�̃ F̄ℓ ) such that 〈-〉 is stable under

⊗
via Proposition 8.1. Then by

[BR18, Corollary 2.11.2], we conclude our proof. �

From now on, let ^ = F̄ℓ. We have proved in Proposition 6.2.4 that the monoidal
structure of H∗ is compatible with the weight functor decomposition. In other words,
we get a monoidal functor

CT : Sat�,Zℓ −→ ModZℓ (X•) ' Sat),Zℓ .

Base change to ^, the same reasoning yields a monoidal functor

CT : Sat�,^ −→ Mod^ (X•) ' Sat),^ .

Applying the construction in §7 to the above two Satake categories, we get a natu-
ral homomorphism )̂ → �̃. Note that by [Zhu17, Corollary 2.8] and Proposition
5.0.3.(2), any " ∈ Mod^ (X•) can be realized as a subquotient of some projective
object in Sat�,^. It then follows from [DM82, Proposition 2.21(b)] that the homo-
morphism )̂ → �̃ is in fact a closed embedding, which realizes the dual torus )̂^ as
a subtorus of �̃^. In addition, since �̃Zℓ is flat, the same argument in [MV07, §12]
applies to give the following dimension estimate

dim� = dim �̃Qℓ ≥ dim(�̃^)red. (8.1)

We can write �̃^ = lim←−− �̃
∗
^ where �̃∗^ satisfies the following conditions

(1) �̃∗^ is of finite type,

(2) the canonical map Irr
�̃∗^
→ Irr

�̃^
is a bijection, where Irr denotes the set of

irreducible representations.

In addition, we require that the transition morphisms are surjective. The first
requirement may be satisfied since any group scheme is a projective limit of group
schemes of finite type. To ensure that condition (2) can be satisfied, it is enough to
choose �̃∗^ sufficiently large so that the irreducible representations ! ([) associated
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to a finite set of generators [ of the semigroup of dominant cocharacters X+• , are
pull-backs of representations of �̃∗^. For any `, a ∈ X+• , the sheaf IC`+a supports on
�A≤`+a and hence is a subquotient of IC`★ICa. Thus all irreducible representations
of �̃^ come from �̃∗^. By our choice of the finite type quotients, we have (�̃^)red =
lim←−−(�̃

∗
^)red. In addition, the composition of maps )̂^ → �̃^ → �̃∗^ is a closed

embedding.

We claim that

Each finite type quotient �̃∗^ is connected, reductive, and isomorphic to �̂^ .

(8.2)
If (8.2) holds, then the arguments in [MV18] apply and yield �̃∗^ = (�̂)^. Thus we
deduce that condition (3) of the quasi-reductiveness and condition (4) in Theorem
8.2 are satisfied by �̃^ and we complete the identification of group schemes by
Theorem 8.2. Next, we prove (8.2) following the approach given in [MV07, §12].

Write � for the reductive quotient of (�̃∗^)red, and we have that )̂^ → � is a closed
embedding. Note that any irreducible representation of (�̃∗^)red is trivial on the
unipotent radical. We then have:

The canonical map Irr� → Irr(�̃∗^ )red is a bijection. (8.3)

We first note the following lemma.

Lemma 8.0.4. The subtorus )̂^ is a maximal subtorus of �.

Proof. Choose a maximal torus )� for � and denote its Weyl group ,� . Then
the irreducible representations of � are parametrized by X•()�)/,� . On the
other hand, write the Weyl group for � by ,� , then Proposition 2.3 implies that
X•()^)/,� parametrizes Schubert cells in �A�^ . The IC-sheaf attached to each
Schubert cell is an irreducible object in the Satake category, and thus gives rise to an
irreducible representation of �̃^. By our choice of �̃∗^ and (8.3), we get a bijection
X•()�)/,� ' X•())/,� . Hence, )�/,� ' )̂^/,� . Note that the Weyl group
acts faithfully on the maximal torus, and we conclude that X•()�) = X•()) and )̂^
is a maximal torus in �.

�

From now on, we write,� for the Weyl group of � with respect to )̂^. Recall that
a (co)character of a reductive group is called regular if the cardinality of its orbit
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under the Weyl group action attains the maximum. Then 2d is a regular character
in � with respect to ) . By the proof of Lemma 8.4, it is a cocharacter in � with
respect to )̂^. In addition, the proof of Lemma 8.4 also shows that,� ·2d = ,� ·2d
and thus the Weyl group orbit ,� · 2d has maximal cardinality and it follows that
2d is a regular cocharacter in �. Thus 2d fixes a Borel �� which only depends on
the Weyl chamber containing 2d. It also fixes a set of positive roots.

From the proof of Lemma 8.4, we deduce the followings

the (dominant) weights of (�, �� , )̂^) coincide with (dominant) coweights of �.
(8.4)

,� coincides with,� together with their subsets of simple reflections identified.
(8.5)

To show (8.2), we hope to prove the following:

Δ (�, �� , )̂^) = Δ∨(�, �,)) and Δ∨(�, �� , )̂^) = Δ (�, �,)). (8.6)

We first prove a weaker version of (8.6).

Lemma 8.0.5. Assume � to be semisimple, then statement (8.6) holds.

Proof. Since � is assumed to be semisimple, then Q · X+• ()) = Q · Δ∨(�, �,)).
Hence,

Z≥0 · Δ B (�, �,)) = {U ∈ X•()) |
〈
U, _

〉
≥ 0 for all _ ∈ X+• ())}. (8.7)

On the other hand, it follows from (8.5) that,� and,� have the same cardinality.
Together with (8.4), we conclude that � is also semisimple. Thus,

Z≥0 · Δ∨B (�, �� , )̂^) = {U∨ ∈ X•()̂^) |
〈
U, _

〉
≥ 0 for all _ ∈ X•+()̂^)}. (8.8)

Comparing (8.7) and (8.8), we have

Z≥0 · Δ B (�, �,)) = Z≥0 · Δ∨B (�, �� , )̂^).

Thus,Δ B (�, �,)) = Δ∨B (�, �� , )̂^) andwe conclude thatΔ (�, �,)) = Δ∨(�, �� , )̂^)
by noting (8.5). Finally, since for a semisimple reductive group, the coroots are
uniquely determined by roots and vice versa, we also conclude that Δ∨(�, �,)) =
Δ (�, �� , )̂^). �
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In fact, Lemma 8.0.5 may be proved following the idea of [BR18, §14]1 and [MV07,
§12] and, we sketch this approach here.

Lemma 8.0.6. We have the following inclusion of lattices

Z · Δ (�, )̂^) ⊆ Z · Δ∨(�,)) (8.9)

for general �.

Proof. The proof is similar to that for [MV07, (12.21)] and we sketch it here. Note
that the Satake category Sat�,^ is equipped with a grading by c0(�A�) ' c1(�) =
X•())/Z · Δ∨(�,)) by [Zhu17, Proposition 1.21]. In addition, this grading is
compatible with the tensor structure in Sat�,^. Write / for the center of �, then it
can be identified with the group scheme

Hom(X•())/Z · Δ∨(�,)),G<,^). (8.10)

Our previous observation implies that the forgetful functor

Sat�,^ ' Rep^ (�̃^) −→ Rep^ (/)

is compatible with the grading considered above. In this way, / is realized as a
central subgroup of �̃^. Since )̂^ → � is a closed embedding, / is also contained
in the center of �. Finally, note that the center of � can be identified with the group
scheme

Hom(X•()̂^)/Z · Δ∨(�, )̂^),G<,^). (8.11)

Our discussion together with (8.10) and (8.11) completes the proof of the lemma.
�

Lemma 8.0.7. The set of dominant weights of (�, )̂^) is equal to X+• ()) ⊂ X•()) =
X•()̂^).

Proof. By our construction, we have a bijection between the set of irreducible
representations of �̃^ and that of �̃∗^. Since irreducible representations restrict
trivially to the unipotent radical, we get a bijection between the set of irreducible

1We note that the situation considered in [BR18, §14] is slightly different from ours. In the equal
characteristic case, the group scheme �̃ ^ is proven to be algebraic by directly exhibiting a tensor
generator in the Satake category. Then, there is no need to pass to finite type quotient �̃∗^ as we do
in this section.
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representations of �̃^ and that of �. Thus, the dominant weights of (�, )̂^) equal
that of (�̃^, )̂^).

Let _ ∈ X•()) be a dominant weight of (�̃^, )̂^) and write the !�̃^ (_) for the
irreducible representation of �̃^ associated to _. Assume ` ∈ X+• ()) be a dominant
coweight of � such that the simple perverse sheaf corresponding to ! (_) is IC`.
Note that in the Grothendieck group of Sat�,^, we have

[IC`] =
[
? 9`,∗^�A` [(2d, `)]

]
+

∑
a∈X+• ()),a<`

0
`
a

[
? 9a,!^�Aa [(2d, a)]

]
.

Then we conclude that _ = ` ∈ X+• ()).

On the other hand, if ` ∈ X+• ()), then the weights of the �̃^-representation which
correspond to ? 9`,!^�A` are independent of the coefficient ^ by [MV07, Proposition.
8.1]. Hence, they are weights of the irreducible �̂Q̄ℓ -representation of highest
weight `. Thus ` is a dominant weight of (�̃^, )̂^). �

Lemma 8.0.8. The Weyl groups ,� and ,� coincide when considered as au-
tomorphism groups of X•()), and their subsets of simple reflections (� and (�
coincide.

Proof. The proof of this lemma is completely similar to the proof of [BR18, Lemma
14.9] and we sketch it here. For any _ ∈ X+• ()), we consider it as a dominant weight
of (�, )̂^). Then the orbit,� ·_ is the set of extremal points of the convex polytope
consisting of the convex hull of weights of the irreducible �-representation !� (_).
Since the set of irreducible representations of � are bijective to that of �̃^, we
conclude that

,� · _ = ,� · _. (8.12)

For any _ ∈ X+• ()), we call _ regular if it is not orthogonal to any simple root of
(�,)). Then for a regular _ ∈ X+• ()), the orbit (� ·_ ⊂ , ·_ is the subset of,� ·_
consisting of elements ` such that the line segment connecting _ and ` is extremal
in the convex hull of,� · _. By (8.12), we have the same description for the orbit
(� · _. Thus,

(� · _ = (� · _. (8.13)

Choose an arbitrary B� ∈ (� . For any _ ∈ X+• ()) regular, by (8.13) there exists
B� ∈ (� such that B� · _ = B� · _. In addition, the direction of the line segment
connecting _ with B� · _ is determined by the line segment joining the coroot of
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� associated with B� with the root of � associated with B� . Thus for any other
_′ ∈ X+• ()) regular, we also have B� · _′ = B� · _′. It follows that B� = B� and thus
(� = (� . Thus, we deduce that,� = ,� . �

Lemma 8.0.9. We have the following inclusion of lattices

Z · Δ (�,)) ⊆ Z · Δ∨(�, )̂^).

Proof. The proof is similar to the one for [BR18, Lemma 14.10] and we sketch it
here. Firstly, we observe by Lemma 8.0.7 that

Q+ · Δ∨B (�, �� , )̂^) = Q+ · Δ B (�, �,)). (8.14)

This is because both sets consist of extremal rays of the rational convex polyhedral
cone determined by {_ ∈ Q ⊗Z X•()) | for any ` ∈ X+• ()),

〈
_, `

〉
≥ 0}. For

` ∈ Δ B (�, �,)), it follows from (8.14) that there exists 0 ∈ Q+\{0} such that
0` ∈ Δ∨B (�, �� , )̂^). Lemma 8.8 then implies that

id −
〈
`∨, •

〉
= id −

〈
(0`)∨, •

〉
(0`)

as an automorphism of X•()) = X•()̂^). Thus, (0`)∨ = 1
0
`∨. Note that Lemma

8.0.6 shows that 0` ∈ Z·Δ∨(�,)). Thus, 1
0
∈ Z and ` = 1

0
(0`) ∈ Z·Δ∨(�, )̂^). �

The arguments above prepare us for a second proof of Lemma 8.0.5 as follows.

Proof. If � is in particular semisimple of adjoint type, then Z · Δ (�,)) = X∗()).
Lemma 8.0.9 then implies that Z · Δ (�,)) = Z · Δ∨(�, )̂^). Then the arguments
in the proof of Lemma 8.0.9 imply that Δ B (�,)) = Δ∨B (�, )̂^). In addition,
Δ∨B (�, �,)) = Δ B (�, �� , )̂^), and the canonical bijections between the roots and
coroots of � and� coincide. It then follows from Lemma 8.0.8 thatΔ (�, �� , )̂^) =
Δ∨(�,)) and Δ∨(�, )̂^) = Δ (�,)). Thus, the root datum of � with respect to )̂^
is dual to that of (�,)). Then the dimension estimate (8.1) concludes the proof of
the lemma in the semisimple of adjoint type case.

Assume � is a general semisimple reductive group scheme. Recall notations in
§1.3. We denote by �ad the adjoint quotient of � and by )ad the quotient of the
maximal torus ) . The construction in §7 goes through and we get the group scheme
(�̃ad)^. As noted in the proof of Lemma 8.0.6, the Satake category Sat�ad,^ admits
a grading by the finite group c1(�ad)/c1(�) which is compatible with the tensor
structure of Sat�ad,^. By Lemma 4.6, the category Sat�,^ can be realized as a tensor
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subcategory of Sat�ad,^ corresponding to the identity coset of c1(�). Thus, we have
a surjective quotient

(�̃)ad,^ � �̃^

with finite central kernel given by Hom(c1(�ad)/c1(�),G<,^). Hence, �̃^ is
reductive and in particular semisimple. The result for � being semisimple of
adjoint type applies here to complete the proof. �

Lemma 8.0.10. Let � be a general connected reductive group, then the same result
as in Lemma 8.0.5 holds.

Proof. We sketch a proof similar to the arguments for [MV07, §12] and [BR18,
Lemma 14.13]. Denote by / (�) the center of � and let � = / (�)◦. Then � is a
torus and �/� is semisimple. As in loc.cit, the exact sequence

1→ �→ � → �/� −→ 1

induces maps
�A�

8−→ �A�
c−→ �A�/�

which exhibit �A� as a trivial �A�-cover over �A�/�. This induces an exact
sequence of functors

%!+� (�A�, ^)
8∗−→ %!+� (�A� , ^)

c∗−→ %!+�/� (�A�/�, ^). (8.15)

Note that (�A�)red is a set of discrete points indexed by X+• (�), then taking pushfor-
ward along 8 gives a fully faithful functor 8∗ : %!+� (�A�, ^) → %!+� (�A� , ^). The
functor c∗ is made sense by Lemma 4.6 and is essentially surjective.

Applying the Tannakian construction as in §7, we get flat affine group schemes
�̃^ and �(�/�)^. Lemma 8.0.5 implies that �̃^ and �(�/�)^ are isomorphic to the
dual groups of � and �/� respectively. The same arguments in [MV07, §12] and
[BR18, §14] apply here to deduce that the sequence

1 −→��/�^ −→ �̃^ −→ �̃^ −→ 1

induced by (8.9) is exact. Then �̃^ is identified as the extension of smooth group
schemes �̃^ and ��/�^, and is thus also smooth. Moreover, the unipotent radical
of �̃^ has trivial image in the torus �̃^. Hence it is included in ��/�^. Since the
latter group is semisimple, it follows that �̃^ is also reductive. Arguing as in [BR18,
Lemma 14.14], we complete the proof of the lemma. �
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Thus we identify the group scheme �̃Zℓ which arises from the general Tannakian
construction with the Langlands dual group �̂Zℓ . We have our main theorem.

Theorem8.0.11. There is an equivalence of tensor categories between%!+� (�A� ,Λ)
and the category of Λ-representations of the Langlands dual group �̂Λ of � which
are finitely generated over Λ for Λ = Fℓ, and Zℓ.

Now, we complete the final step of identifying the group schemes.

Lemma 8.0.12. Let � be a general connected reductive group, then the same result
as in Lemma 8.0.6 holds.

Proof. We sketch a proof similar to the arguments for [MV07, §12] and [BR18,
Lemma 14.13]. Denote by / (�) the center of � and let � = / (�)◦. Then � is a
torus and �/� is semisimple. As in loc.cit, the exact sequence

1→ �→ � → �/� −→ 1

induces maps
�A�

8−→ �A�
c−→ �A�/�

which exhibit �A� as a trivial �A�-cover over �A�/�. This induces an exact
sequence of functors

%!+� (�A�, ^)
8∗−→ %!+� (�A� , ^)

c∗−→ %!+�/� (�A�/�, ^). (8.16)

Note that (�A�)red is a set of discrete points indexed by X+• (�), then taking pushfor-
ward along 8 gives a fully faithful functor 8∗ : %!+� (�A�, ^) → %!+� (�A� , ^). The
functor c∗ is made sense by Lemma 4.6 and is essentially surjective.

Applying the Tannakian construction as in §7, we get flat affine group schemes
�̃^ and �(�/�)^. Lemma 8.0.5 implies that �̃^ and �(�/�)^ are isomorphic to the
dual groups of � and �/� respectively. The same arguments in [MV07, §12] and
[BR18, §14] apply here to deduce that the sequence

1 −→��/�^ −→ �̃^ −→ �̃^ −→ 1

induced by (8.9) is exact. Then �̃^ is identified as the extension of smooth group
schemes �̃^ and ��/�^, and is thus also smooth. Moreover, the unipotent radical
of �̃^ has trivial image in the torus �̃^. Hence it is included in ��/�^. Since the
latter group is semisimple, it follows that �̃^ is also reductive. Arguing as in [BR18,
Lemma 14.14], we complete the proof of the lemma. �
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Thus we identify the group scheme �̃Zℓ which arises from the general Tannakian
construction with the Langlands dual group �̂Zℓ . We have our main theorem.

Theorem8.0.13. The hypercohomology functorH∗ : %!+�⊗ :̄ (�A�⊗ :̄ ,Λ) → ModΛ
lifts to a natural equivalence of monoidal categories

H∗ : %!+�⊗ :̄ (�A� ⊗ :̄ ,Λ) → RepΛ(�̂Λ).

From now on, we will write the inverse of the geometric Satake equivalence as Sat.

Remark 8.0.14. As explained in [Zhu16, §5.5], the Galois group Gal(F̄?/F?) acts
on the Satake category Sat�,Λ by tensor auto-equivalences. It, in turn, induces
an action of Gal(F̄?/F?) on �̂ which preserves (�̂, �̂, )̂). Let + ∈ RepΛ(�̂) and
W ∈ Gal(F̄?/F?). We write W+ for the representation

�̂
W−1

−−→ �̂ → �!Λ(+)

of �̂.

For three sequences of dominant weight `1•, `2•, and `3•, the following lemma is
an immediate consequence of Theorem 8.0.13.

Corollary 8.0.15. We have the following natural isomorphism

Hom�̂ (+`8• , +` 9•) � Corr�A0
`8• |` 9•

((�A≤`8• , IC`8•), (�A≤` 9• , IC` 9•)), (8.17)

such that the natural composition on the left hand

Hom�̂ (+`1• , +`2•) ⊗ Hom�̂ (+`2• , +`3•) → Hom�̂ (+`1• , +`3•)

is compatible with the composition of cohomological correspondences on the right
hand side

Corr�A0
`1• |`2•

((�A≤`1• , IC`1•), (�A≤`2• , IC`2•)) ⊗ Corr�A0
`2• |`3•

((�A≤`2• , IC`2•), (�A≤`3• , IC`3•))

→Corr�A0
`1• |`3•

((�A≤`1• , IC`1•), (�A≤`3• , IC`3•))

which is obtained by pushing forward the cohomological correspondences along
the map

�A0
`1• |`2•

×�A`2•
�A0

`2• |`3•
→ �A0

`1• |`3•
.

In addition, there is a canonical isomorphism

HomP(�A�) (<`•∗IC`• , <a•∗ICa•) � HBM
(2d,|`• |+|a• |) (�A

0
`• |a•). (8.18)

Proof. The lemma can be proved exactly as [Zhu17, Corollary 3.4.4], and we refer
to loc.cit for details of the proof. �
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C h a p t e r 9

LOCAL HECKE STACKS

We review the definition of local Hecke stacks and study their geometric properties
in this section. All results are proved in [XZ17], and we refer to loc.cit for proofs.

Definition 9.0.1. Let `• = (`1, `2, · · · , `=) be a sequence of dominant coweights
of �. The local Hecke stack Hkloc`• is defined as the moduli problem which assigns
to each perfect :-algebra ' the groupoid of chains of modifications of �-torsors

E= E=−1 · · · E0 (9.1)

over �' of relative positions ≤ `=, · · · , ≤ `1, respectively.

It may also be understood as the homogeneous space [!+�\�A`≤•]. Similarly, we
define

Hk0,loc
`• |a• := [!+�\�A0

`• |a•]

as the stack which classifies for each perfect :-algebra ' the rectangles of modifi-
cations

E= · · · E0

E′< · · · E′0,

of �-torsors over �' with modifications in the upper (resp. lower) row bounded by
`• (resp. a•).

Taking quotient of the Satake correspondence (2.3) of affine Grassmannians by
!+�, we get the Satake correspondence for local Hecke stacks,

Hkloc`• Hk0,loc
`• |a• Hkloca• .

ℎ←`• ℎ→a• (9.2)

It is clear from the definition that these stacks are not of finite type, thus we need their
finite dimensional quotient to apply the ℓ-adic formalism. We recall the following
definition as in [Zhu17].

Definition 9.0.2. For a sequence of dominant coweights `• = (`1, `2, · · · , `=),
choose a `•-large integer <, and we define the <-restricted local Hecke stack to be
the stack

Hkloc(<)`• := [!<�\�A≤`] .



56

Similarly, choose < large enough for `• and a•, for example, < is taken to be
(`•, a•)-large, and we define Hk0,loc(<)

`• |a• := [!<�\�A0
`• |a•]. We have the Satake

correspondence on restricted local Hecke stacks,

Hkloc(<)`• Hk0,loc(<)
`• |a• Hkloc(<)a• .

ℎ←`• ℎ→a• (9.3)

9.1 Torsors over the Local Hecke Stacks
Let B!+� (resp. �!<� for < ∈ Z≥0) denote the moduli stack which classifies for
every perfect :-algebra ' the groupoid of �-torsors over �' (resp. �<,'). For
non-negative integers <1 ≤ <2, the natural quotient maps

!+� !<2� !<1�
res<2 :=res∞<2 res<2

<1

induce restriction maps between stacks

B!+� B!<2� B!<1�
res<2 :=res∞<2 res<2

<1
. (9.4)

Clearly, for any non-negative integers<1 ≤ <2 ≤ <3, we have res<2
<1 ◦ res

<3
<2 = res<3

<1 ,
where <3 can be taken to be∞.

Let `• = (`1, `2, · · · , `=) be a sequence of dominant coweights. We have natural
morphisms

C←, C→ : Hkloc`• → B!
+�

which send (9.1) to the torsors E= and E0, respectively.

For restricted local Hecke stacks, we choose a pair of `•-large integers (<, =). Then
the natural maps

Hkloc(<)`• ' [!<�\�A (=)≤`•/!
=�] B!=� × B!<�C←×C→

induce the !<�-torsor
�A≤`• → Hkloc(<)`• , (9.5)

and the !=�-torsor

[!<�\�A≤`•] → [!<+=�\�A≤`•] . (9.6)

Following the notations in [XZ17], we denote the two torsors by E← and E→,
respectively. For any pairs of `•-large integers (<1, =1) and (<2, =2) such that
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<1 ≤ <2 and =1 ≤ =2, denote the natural restriction map of restricted local Hecke
stacks as

res<2
<1 : Hkloc(<2)

`• → Hkloc(<1)
`• . (9.7)

It is compatible with the restriction maps in (9.4) in the sense that the following
diagram is commutative

B!=2� Hkloc(<2)
`• B!<2�

B!=1� Hkloc(<1)
`• B!<1�.

C←

res=2
=1

C→

res<2
<1 res<2

<1

C← C→

Let `• and a• be two sequences of dominant coweights. Choose non-negative
integers <1, <2, = such that (<1, <2) is `•-large and (<2, =) is a•-large. Then we
have the following isomorphism

[!<1�\�A (=)≤`•,a•] � Hkloc(<1)
`•,a• � Hkloc(<2)

a• ×
C→,B!<2�,res<1

<2◦C←
Hkloc(<1)

`• , (9.8)

which induces the following perfectly smooth morphisms

Hkloc(<1)
`•,a• → Hkloc(<2)

a• × Hkloc(<1)
`•

id×res<1
<1−<2−−−−−−−−−→ Hkloc(<2)

a• × Hkloc(<2−<1)
`• . (9.9)

9.2 Perverse Sheaves on the Moduli of Local Hecke Stacks
Let <1 ≤ <2 be two `•-large integers. The natural (twisted) pullback functor

Res<2
<1 := (res<2

<1)
★ := (res<2

<1)
∗ [3] (3/2) : P(Hkloc(<1)

`• ) → P(Hkloc(<2)
`• )

is an equivalence of categories. We define the category of perverse sheaves on the
local Hecke stack as

P(Hkloc
:̄
,Λ) :=

⊕
b∈c1 (�)

P(Hklocb ,Λ), P(Hk
loc
b ,Λ) := lim−−→

(`,<)∈b×Z≥0

P(Hkloc(<)` ,Λ).

Here the connecting morphism in the definition of P(Hkloc,Λ) is the fully faithful
embedding

P(Hkloc(<1)
`1 ,Λ) P(Hkloc<1

`1 ,Λ) P(Hkloc(<2)
`2 ,Λ).

Res<2
<1 8`1 ,`2∗

Finally, via descent, there is a natural equivalence of categories P(Hkloc(<)` , �) �
P!<� (�A≤`, �), which induces an equivalence P(Hkloc:̄ , �) � P!+�⊗ :̄ (�A� ⊗ :̄ , �).
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C h a p t e r 10

MODULI OF LOCAL SHTUKAS

In this chapter, we define different versions ofmoduli of local Shtukas and correspon-
dences between them. Using these results, we define the category of �-coefficient
perverse sheaves on the moduli of local Shtukas and their cohomological correspon-
dences. In the rest of this thesis, we will make use of the theory of cohomological
correspondences between perfect schemes and perfect pfp algebraic spaces. We
refer to [XZ17, Appendix A] for reference.

Definition 10.0.1. Let `• = (`1, `2, · · · , `=) be a sequence of dominant coweights.
The moduli of local Shtukas Shtloc`• classifies for each perfect :-algebra ' sequences
of modifications of �-torsors

E= E=−1 · · · E0 �
fE=

over �' of relative positions ≤ `=, · · · , ≤ `1 respectively.

It follows from the definition that

Shtloc`• � Hkloc`• ×C←×C→,B!+�×B!+�,id×f B!
+�.

There is a natural forgetful map kloc : Shtloc`• → Hkloc`• which forgets the isomor-
phisms E0 �

fE=. One can define the stack

Sht0,loc
`• |a•

which classifies for each perfect :-algebra ' the following rectangle ofmodifications

E= · · · E0 �
fE=

E′< · · · E′0 �
fE′<,

of �-torsors over �' with modifications in the upper (resp. lower) row bounded by
`• (resp. a•). We get the Satake correspondence for moduli of local Shtukas

Shtloc`• Sht0,loc
`• |a• Shtloca•

B←`• B→`•
.

We introduce the partial Frobenius morphism between the moduli of local Shtukas
which will play an important role in later constructions.
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Definition 10.0.2. Let `• = (`1, `2, · · · , `=) be a sequence of dominant coweights
of �. We define the partial Frobenius morphism to be

�`• : Shtloc`1,··· ,`= Shtloc
f(`=),`1,··· ,`=−1

(10.1)

(E= · · · E0 �
fE=) (E=−1 · · · fE= fE=−1).

Definition 10.0.3. Let `• and a• be two sequences of dominant coweights. For
each perfect :-algebra ', the prestack Shtloc

`• |a• classifies the following commutative
diagram of modifications of �-torsors over �'

E= · · · E0 �
fE=

E′< · · · E′0 �
fE′<,

V Vf

where the top (resp. bottom) row defines an '-point of Shtloc`• (resp. Sht
loc
a• ). Let

←−
ℎ loc
`•

(reps.
−→
ℎ loc
a• ) denote the morphism which maps the above commutative rectangle to

its upper (resp. lower) row. We define the Hecke correspondence of local Shtukas
to be to following diagram

Shtloc`• Shtloc
`• |a• Shtloca• .

←−
ℎ loc
`•

−→
ℎ loc
a• (10.2)

If in addition, the relative position of V is bounded by _, we get a closed sub-
prestack Sht_,loc

`• |a• . In particular, if _ = 0, the Hecke correspondence (4.2) reduces to
the Satake correspondence.

The Hecke correspondence can be considered as the composition of two Satake cor-
respondences and the cohomological correspondence given by the partial Frobenius
morphism. More precisely, we recall [XZ17, Lemma 5.2.14].

Lemma 10.0.4. Let `• and a• be two sequences of dominant coweights. Choose _
to be a dominant coweight such that _ ≥ |`• | + f(_) or _ ≥ |`• | + a, then we have
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the following commutative diagram of prestacks

Sht\,loc
`• |a•

Sht0,loc
`• | (f(\∗),_) Sht0,loc(_,\∗) |a•

Shtloc`• Shtf(\∗),_ Shtloc_,\∗ Shtloca• .

B←`•
B→
f (\∗) ,_

B→a•B←
_,\∗

�−1
_,\∗

In addition, the pentagon in the middle is a Cartesian square when composing
B→
f(\∗),_ with �

−1
_,\∗ .

10.1 Moduli of Restricted Local Shtukas
Let `• = 0 or more generally, a central cocharacter, Shtloc`• ' B� (O) which is not
perfectly of finite presentation as a prestack. Thus to apply the ℓ-adic formalism, it
is desirable to study the following approximation of Shtloc`• .

Definition 10.1.1. Let `• be a sequence of dominant coweights and (<, =) a pair of
`•-large integers. We define the moduli stack Shtloc(<,=)`• of (<, =)-restricted local
iterated shtukas as the stack that classifies for every perfect :-algebra ',

(1) an '-point of Hkloc(<)`• ,

(2) an isomorphism

Ψ : f (E← |�=,' ) ' (E→ |�<,' ) |�=,'

of !=�-torsos over Spec', where E← and E→ are defined in (9.5) and (9.6),
respectively.

The above definition gives a canonical isomorphism

Shtloc(<,=)`• � Hkloc(<)`• ×C←×res<= ◦C→,B!=�×B!=�,id×f B!=�.

The natural forgetful morphism kloc(<,=) : Shtloc(<,=)`• → Hkloc(<)`• is a perfectly
smooth morphism of relative dimension = dim�. For two sequences of dominant
coweights `•, a•, we define Shtloc(<,=)`• |a• to be the stackwhich classifies for each perfect
:-algebra ', an '-point of Hkloc(<,=)

`• |a• together with an isomorphism f (E← |�=,' ) '
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(E |�<,' ) |�=,' . Let (<1, =1) and (<2, =2) be two pairs of `•-large integers such
that <1 ≤ <2 and =1 ≤ =2. We define the restriction morphism

res<2,=2
<1.=1 : Shtloc(<2,=2)

`• → Shtloc(<1,=1)
`• (10.3)

as the composition of the following morphisms

res<2,=2
<1.=1 :Shtloc(<2,=2)

`• � Hkloc(<2)
`• ×

C←×res
<2
=2 ◦C→,B!

=2�×B!=2�,id×f B!
=2�

res<2
<1×res

=2
=1−−−−−−−−−→ Hkloc(<1)

`• ×
C←×res

<1
=1 ◦C→,B!

=1�×B!=1�,id×f B!
=1�

� Shtloc(<1,=1)
`• .

For (<2, =2) = (∞,∞), we write res<2,=2
<1.=1 as res<1,=1 for simplicity. For three pairs

of `•-large integers (<8, =8) such that <1 ≤ <2 ≤ <3 and =1 ≤ =2 ≤ =3, we have

res<2,=2
<1,=1 ◦ res

<3,=3
<2,=2 = res<3,=3

<1,=1 . (10.4)

The Satake correspondences for restricted local Hecke stacks and the Satake corre-
spondences for restricted local Shtukas are related by the restriction morphisms and
summarized in the following diagram

Shtloc(<2,=2)
`• Sht0,loc(<2,=2)

`• |a• Shtloc(<2,=2)
a•

Shtloc(<1,=1)
`• Sht0,loc(<1,=1)

`• |a• Shtloc(<1,=1)
a•

Hkloc(<2)
`• Hk0,loc(<2)

`• |a• Hkloc(<2)
a•

Hkloc(<1)
`• Hk0,loc(<1)

`• |a• Hkloc(<1)
a•

kloc(<2 ,=2)

res<2 ,=2
<1 ,=1 res<2 ,=2

<1 ,=1

kloc(<2 ,=2)

res<2 ,=2
<1 ,=1

qloc(<2 ,=2)

kloc(<1 ,=1) kloc(<1 ,=1) kloc(<1 ,=1)

(10.5)
where

(1) all rectangles are commutative,

(2) all rectangles are Cartesian except for the two on the left and right side of the
cuboid.

Let `• = (`1, · · · , `=) be a sequence of dominant cocharacters. We call a quadruple
of non-negative integers (<1, =1, <2, =2) `•-acceptable if
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(1) <1 − <2 = =1 − =2 are `=-large (or equivalently f(`=)-large),

(2) <2 − =1 is `•-large.

We can define the partial Frobenius morphism

�−1
`• : Shtloc(<1,=1)

f(`=),`1,··· ,`=−1
→ Shtloc(<2,=2)

`1,··· ,`2 (10.6)

for restricted local Shtukas. The construction of �−1
`• is technical and we refer to

[XZ17, Construction 5.3.12] for detailed discussion.

10.2 Perverse Sheaves on the Moduli of Local Shtukas
Let `• be a sequence of dominant coweights and (<1, =1), (<2, =2) be two pairs of
`•-large integers such that <1 ≤ <2, =1 ≤ =2, and <2 ≠ ∞. Define the functor

Res<2,=2
<1,=1 := (res<2,=2

<1.=1)
★ : P(Shtloc(<2,=2)

`• ,Λ) → P(Shtloc(<1,=1)
`•,Λ

). (10.7)

Then (10.4) yields
Res<2,=2

<1,=1 ◦ Res
<3,=3
<2,=3 = Res<3,=3

<1,=1 . (10.8)

Like Res<= , the functor Res
<8 ,=8
< 9 ,= 9 is also an equivalence of categories if < 9 > 1.

We define the category of perverse sheaves on the moduli of local Shtukas as

P(Shtloc
:̄
,Λ) :=

⊕
b∈c1 (�)

P(Shtlocb ,Λ), P(Sht
loc
b ,Λ) := lim−−→

(<,=,`)
P(Shtloc(<,=)` ,Λ) (10.9)

where the limit is taken over the triples {(<, =, `) ∈ Z2 × b | (<, =) is ` large} with
the product partial order. As in [XZ17], we call objects in P(Shtlocb ,Λ) connected
objects. The connectingmorphism is given by the composite of fully faithful functor

P(Shtloc(<1,=1)
`1 ,Λ) P(Shtloc(<2,=2)

`1 ,Λ) P(Shtloc(<2,=2)
`′1

,Λ).
Res<2 ,=2

<1 ,=1
8`1 ,`

′
1

For each dominant coweight ` and a pair of `-large integers (<, =), we define the
natural pullback functor

Ψloc(<,=) := Res<,=
<,0 : P(Hkloc(<)` ,Λ) → P(Shtloc(<,=)` ,Λ). (10.10)

We observe that Ψloc(<,=) commutes with the connecting morphism in (10.9) by
(10.8) and the proper smooth base change. Then we can take the limit and direct
sum of Ψloc(<,=) and derive the following well-defined functor

Ψloc : P(Hkloc
:̄
,Λ) → P(Shtloc

:̄
,Λ). (10.11)
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LetF8 ∈ P(Shtlocb8 , �) be connected objects. It is realized asF
(<8 ,=8)
8,`8

∈ P(Shtloc(<8 ,=8)`8 , �)
for some `8 and some pair of `8-large integers (<8, =8). We define the set of coho-
mological correspondences between F1 and F2 as

CorrShtloc (F1, F2)

:=
⊕

b∈c1 (�)
lim−−→CorrSht_,loc(<1 ,=1)

`1 |`2

(
(Shtloc(<1,=1)

`1 , F (<1,=1)
1,`1

), (Shtloc(<2,=2)
`2 , F (<2,=2)

2,`2
)
)
,

where the limit is taken over all partially ordered sextuples (`1, `2, _, <1, =1, <2, =2)
such that

• (<1, =1, <2, =2) is (`1 + _, _) and (`2 + _, _)-acceptable,

• `8 ∈ b8, for some b8 ∈ c1(�),

• _ ∈ b.

Let (`1, `2, _, <1, =1, <2, =2) ≤ (`′1, `
′
2, _
′, <′1, =

′
1, <

′
2, =
′
2) be another such sextu-

ple. The connecting morphism between the cohomological correspondences

CorrSht_,loc(<1 ,=1)
`1 |`2

(
(Shtloc(<1,=1)

`1 , F1,`1), (Sht
loc(<2,=2)
`2 , F2,`2)

)
(10.12)

and

Corr
Sht

_′,loc(<′1 ,=
′
1)

`′1 |`
′
2

(
(Shtloc(<

′
1,=
′
1)

`′1
, F1,`′1), (Sht

loc(<′2,=
′
2)

`′2
, F2,`′2)

)
(10.13)

is given by first pulling back (4.13) to the Hecke correspondence

Shtloc(<
′
1,=
′
1)

`1 Sht_,loc(<
′
1,=
′
1)

`1 |`2
Shtloc(<

′
2,=
′
2)

`2 ,

along the restrictionmorphism, then pushing it forward to theHecke correspondence

Shtloc(<
′
1,=
′
1)

`′1
Sht_

′,loc(<′1,=
′
1)

`′1 |`
′
2

Shtloc(<
′
2,=
′
2)

`′2
.

The connecting morphism is well-defined and can be composed. We refer to [XZ17,
§5.4.1] for more discussions.
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C h a p t e r 11

KEY THEOREM FOR CONSTRUCTING THE
JACQUET-LANGLANDS TRANSFER

In this chapter, we state and prove the key theorem for our construction of the
Jacquet-Langlands transfer. We will make use of the theory of the cohomological
correspondences throughout this chapter. Instead of explaining all the details, we
refer to [XZ17, Appendix A.2] for a nice discussion.

11.1 Preliminaries
Fix a half Tate twist Λ(1/2). Recall notations 〈3〉 and 5★ introduced in §1.3.
Throughout this section, we consider the Langlands dual group scheme �̂Λ over Λ
of � and its Λ-representations. The subscripts Λ will be omitted for simplicity. We
generalize a few notions introduced in previous sections for the sake of stating the
key theorem.

More on Local Hecke Stacks
Let +• := +1 � +2 � · · · � +B ∈ Rep(�̂B) and assume that for each 8, +8 has the
Jordan-H¥older factors {+`8 9 } 9 .

The integral geometric Satake equivalence (Theorem 8.0.14) Sat�B sends +• to an
(!+� ⊗ :̄)B-equivariant perverse sheaf Sat�B (+•) on (�A� ⊗ :̄)B. We write �A+•
for the support of the external tensor product Sat(+1)�̃Sat(+2)�̃ · · · �̃Sat(+B). Let
< be a non-negative integer. We call it +8-large if < is `8 9 -large for each 9 , and
we call it +•-large if < = <1 + <2 + · · · + <B such that <8 is +8-large for each
8. For a +•-large integer <, Sat�= (+•) descends to a perverse sheaf supported
on Hkloc(<)

+•
:= [!<�\�A+•]. We write ((+)loc(<) for the twist of this perverse

sheaf by 〈< dim�〉. Note that ((+•)loc(<) is isomorphic to the "★"-pullback of
((+1)loc(<1) � ((+2)loc(<2) � · · ·� ((+B)loc(<B) along the perfectly smooth morphism
Hkloc(<)

+•
→∏

8 Hk
loc(<8)
+8

constructed in (9.9).

In the case B = 1, we have

�A+1 = ∪ 9�A`1 9 , Hk
loc(<)
+1

= ∪ 9Hkloc<`1 9 .

In general, Hkloc(<)
+•

is of the form ∪`•Hk
loc(<)
`• . Via descent, Corollary 8.0.15 gives
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the following natural isomorphism:

Hom�̂ (+•,,•) � CorrHk0,loc(<)
+• |,•

(
(Hkloc(<)

+•
, Satloc(<)

�
(+•)), (Hkloc(<),•

, Satloc(<)
�

(,•))
)
.

(11.1)
Here and below, we regard +• and ,• as representations of �̂ via the diagonal
embedding �̂ ↩→ �̂B.

Let +• and ,• be two representations of �̂B. We can similarly define �A0
+• |,• :=

�A+• ×�A� �A,• and Hk
0,loc(<)
+• |,• = [!<�\�A0

+• |,•].

More on Moduli of Local Shtukas
Let+• ∈ Rep(�̂B). For a pair of non-negative integers (<, =), we can generalize the
notion of `•-large and define the notion of +•-large. Let (<, =) be a pair of +• and
,•-large integers, we can define the moduli of restricted local Shtukas Shtloc(<,=)

+•

and Shtloc(<,=)
+• |,• . Similar to Hkloc+• , the stacks Sht

loc(<,=)
+•

and Shtloc(<,=)
+• |,• can be regarded

as unions of Shtloc(<,=)`• and unions of Shtloc(<,=)
`• |a• . We have the natural forgetful map

kloc(<,=) : Shtloc(<,=)
+•

→ Hkloc(<)
+•

. (11.2)

Choose a pair of +•-large integers (<, =) such that = > 0. Write

((+̃•)loc(<,=) := Ψloc(<,=) (Sat(+•)loc(<)) ∈ P(Shtloc(<,=) ,Λ)

for the pullback of Sat(+)loc(<) along the morphism kloc(<,=) (up to a shift and
twist). For B = 1, ((+̃)loc(<,=) represents the perverse sheaf ((+̃) := Ψ(Sat� (+)) ∈
P(Shtloc

:̄
,Λ).

Consider the front face of the diagram (10.5). The second and third vertical maps
are perfectly smooth. Pulling back the cohomological correspondence on the right
hand side of (11.1) to the upper edge and pre-composing it with (11.1), we get the
map

Cloc(<,=) : Hom�̂ (+•,,•) → CorrSht0,loc(<,=)
+• |,•

(((+̃•)loc(<,=) , ((,̃•)loc(<,=)). (11.3)

The map Cloc(<,=) is compatible with the compositions at the source and target, and
we refer to [XZ17, Lemma 6.1.8] for the proof.

Let +• ∈ Rep(�̂B) and, ∈ Rep(�̂). We call a quadruple of non-negative integers
(<1, =2, <1, =1) +• �,-acceptable if

• <1 − <2 = =1 − =2 is,-large,
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• (<2, =1) is +•-large.

For a quadruple of +• �,-acceptable integers (<1, =2, <1, =1), we can construct
the partial Frobenius morphism

�−1
+•�,

: Shtloc(<1,=1)
f,�+•

→ Shtloc(<2,=2)
+•�,

(11.4)

similar to (10.1). Here, f, is the Frobenius twist of, as in Remark 8.0.14.

Let+1, +2 ∈ Rep(�̂). For any projective object, ∈ Rep(�̂), choose a quadruple of
((+1 ⊗+2 ⊗,) �,∗)-acceptable integers (<1, =1, <2, =2). We define the following
stack

Sht,,loc(<1,=1)
+1 |+2

:= Shtloc(<1,=1)
+1 |f,∗�(f,⊗+1) ×Shtloc(<2 ,=2)

(f, ⊗+1)�, ∗
Shtloc(<1.=1)
(f,⊗+1)�,∗ |+2

. (11.5)

The Category Coh�̂ (�̂f)
Recall from Remark 8.0.14 that the Langlands dual group �̂ is naturally equipped
with an action of the arithmetic Frobenius f. Consider the f-twisted conjugation
action of �̂ on �̂. We denote by Coh�̂ (�̂f) the abelian category of �̂-equivariant
coherent sheaves on the (non-neutral) component �̂f ⊂ �̂ o f. Equivalently,
Coh�̂ (�̂f) can be regarded as the abelian category of coherent sheaves on the
quotient stack [�̂f/�̂] where �̂ acts on �̂f by the usual conjugation action.

Let + ∈ Rep(�̂) be an algebraic representation of �̂. There is an associated vector
bundle on �̂f with global section O�̂ ⊗ + . Consider the following action of �̂ on
O�̂ ⊗ + . For any 6 ∈ �̂ and ( 5 , E) ∈ O�̂ ⊗ + , 6 · ( 5 , E) := (6 5 f−1(6), 6E). The
associated vector bundle thus gives an object +̃ ∈ Coh�̂ (�̂f).

11.2 Key Theorem
The following theorem is an analogue of [XZ17, Theorem 6.0.1].

Theorem 11.2.1. Let +1, +2 ∈ Rep(�̂) be two projective Λ-modules. Then there
exists the following map

S+1,+2 : HomCoh�̂ (�̂f) (+̃1, +̃2) −→ CorrShtloc (((+̃1), ((+̃2)), (11.6)

which is compatible with the natural composition maps in the source and target.

We prove this theorem in the rest of this section.
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We give an explicit construction of S+1,+2 . Consider the following canonical iso-
morphisms

HomCoh�̂ (�̂f) (+̃1, +̃2) (11.7)

�HomO�̂f (O�̂f ⊗ +1,O�̂f ⊗ +2)�̂

�Hom(+1,O�̂f ⊗ +2)�̂

�(+∗1 ⊗ O�̂f ⊗ +2)�̂ .

Let , ∈ RepΛ(�̂Λ) be a projective Λ-module with Λ-basis {48}8 and dual basis
{4∗
8
}8. We construct the map

Θ, : Hom�̂Λ
(+1, f,

∗⊗+2⊗,) � Hom�̂ (+1,Hom(f,⊗,∗, +2)) → HomCoh�̂ (�̂f) (+̃1, +̃2),

by sending a ∈ Hom�̂Λ
(+1, f,

∗ ⊗ +2 ⊗,) to the +∗1 ⊗ +2-valued function Θ, (a)
on �̂f defined by

(Θ, (a) (6)) (E1) :=
∑
8

(a(E1)) (64∗8 ⊗ 48).

It suffices to construct the map

C, : Hom�̂ (+1, f,
∗ ⊗, ⊗ +2) → CorrShtloc (((+̃1), ((+̃2)).

for every , ∈ RepΛ(�̂Λ). Let a ∈ Hom�̂ (+1, f,
∗ ⊗ , ⊗ +2). We have the

following coevaluation and evaluation maps:

Xf, : 1→ f,∗ ⊗ f,, 4, : , ⊗,∗ → 1.

Choose a quadruple (<1, =1, <2, =2) of (+1 ⊗ +2 ⊗ ,) �,∗-large integers. Then
the map Cloc(<1,=1) defined in (11.3) sends a to the cohomological correspondence

Cloc(<1,=1) (a) : ((+̃1)loc(<1,=1) −→ ((f,̃∗ � (+̃2 ⊗ ,̃))loc(<1,=1) . (11.8)

The partial Frobenius morphism (11.4) gives rise to the cohomological correspon-
dence (cf.[XZ17, A.2.3])

DΓ∗
�−1
(, ⊗+2)�, ∗

: ((f,̃∗� (+̃2⊗,̃))loc(<1,=1) −→ (((+̃2⊗,̃)�,̃∗)loc(<2,=2) . (11.9)

Finally, Cloc(<2,=2) sends id ⊗ 4, to the cohomological correspondence

Cloc(<2,=2) (id ⊗ 4, ) : (((+̃2 ⊗ ,̃) � ,̃∗)loc(<2,=2) −→ ((+̃2)loc(<2,=2) . (11.10)
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The composition of cohomological correspondences (11.8), (11.9), and (11.10)
yields a cohomological correspondence

C, (a) ∈ CorrSht, ,loc(<1 ,=1)
+1 |+2

(((+̃1)loc(<1,=1) , ((+̃2)
loc(<2,=2)).

The construction of the map S+1,+2 can be summarized in the following diagram

HomCoh�̂ (�̂f) (+̃1, +̃2) CorrShtloc (((+̃1), ((+̃2))

Hom�̂ (+1, f,
∗ ⊗ +2 ⊗,) .

S+1 ,+2

Θ,

C,

Weprove that the cohomological correspondence constructed in the previous section
is well-defined and can be composed.

Let a′ denote the image of a under the canonical isomorphism Hom�̂ (+1, f,
∗ ⊗

+2 ⊗,) � Hom�̂ (f, ⊗ +1 ⊗,∗, +2).

Lemma 11.2.2. Let -,.,,1,,2,,
′
1,,

′
2 be representations of �̂, and 51 ⊗ 52 :

,1⊗,2 → ,′1⊗,
′
2 be a �̂×�̂-module homomorphism. Let b ∈ Hom�̂ (-, f,1⊗

. ⊗,2) and b′ ∈ Hom�̂ (. ⊗,′2 ⊗,
′
1, . ). We omit choosing appropriate integers

(<8, =8) for simplicity. Then we have

C(b′◦(id⊗ 52⊗ 51))◦DΓ∗�−1◦C(b) = C(b′)◦DΓ∗�−1◦C((f 51◦id⊗ 52)◦b). (11.11)

In particular, the cohomological correspondenceS+1,+2 (a) equals to the composition
of the following cohomological correspondences:

C(Xf, ⊗ id+1) : ((+̃1) −→ ((f,̃∗ � (f,̃ ⊗ +̃1)),
DΓ∗

�−1
(, ⊗+1)�, ∗

: ((f,̃∗ � (f,̃ ⊗ +̃1)) −→ (((f,̃ ⊗ +̃1) � ,̃∗)

C(a′) : (((f,̃ ⊗ +̃1) � ,̃∗) −→ ((+̃2).

Proof. Consider the following diagram

(( -̃) ((�f,1 ⊗ .̃ ⊗ ,̃2) ((.̃ ⊗ ,̃2 ⊗ ,̃1)

((�f,′1 ⊗ .̃ ⊗ ,̃′2) ((.̃ ⊗ ,̃′2 ⊗ ,̃
′
1) ((.̃ )

C(b)

C((f 52◦id⊗ 51)◦b)

DΓ
�−1

C(f 51⊗id⊗ 52)

C(b′◦(id⊗ 52⊗ 51))

C(id⊗ 52⊗ 51)

DΓ
�−1

C(b′)

.

(11.12)
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The bent triangles on the left and right are clearly commutative by Corollary 8.0.15.
It suffices to prove that the rectangle in the middle is commutative. But this is a
direct consequence of [XZ17, Lemma 6.1.13].

Let - = +1, . = 1, ,1 = ,
′
1 = ,

∗, ,2 = f, ⊗ +1,,
′
2 = , ⊗ +2. Write a′′

for the image of a under the canonical isomorphism Hom(f, ⊗ +1 ⊗ ,∗, +2) �
Hom(f, ⊗+1,, ⊗+2). Take b = Xf, ⊗ id, 51 = id, and 52 = a′′. Then the second
assertion follows from the above commutative diagram. �

Lemma 11.2.3. For any U ∈ Hom�̂ (+̃1, +̃2), the construction of S+1,+2 is indepen-
dent from the choice of

(1) projective Λ-modules, ∈ RepΛ(�̂Λ),

(2) a ∈ Hom�̂ (+1, f,
∗ ⊗ +2 ⊗,), such that Θ, (a) = U,

(3) (+1 ⊗ +2) ⊗, �,∗-acceptable integers (<1, =1, <2, =2).

Proof. The proof is completely similar to that of [XZ17, Lemma 6.2.5], and we
briefly discuss it here.

We start by proving the independence of (3). Choose another quadruple of (+1 ⊗
+2) ⊗, �,∗-acceptable integers (<′1, =

′
1, <

′
2, =
′
2) ≥ (<1, =1, <2, =2). We have the

following diagram of Hecke correspondences

Shtloc(<
′
1,=
′
1)

+1
Sht_,loc(<

′
1,=
′
1)

+1 |+2
Shtloc(<

′
2,=
′
2)

+2

Shtloc(<1,=1)
+1

Sht_,loc(<1,=1)
+1 |+2

Shtloc(<2,=2)
+2

.

res
<′1=
′
1

<1 ,=1 res
<′1=
′
1

<1 ,=1 res
<′2=
′
2

<2 ,=2

This is the upper face of diagram (10.5). As we discussed in §10, all the vertical
maps are smooth, the two squares are commutative, and the left square is Cartesian.
Then Cloc(<

′
1,=
′
1)

,
(a) equals the pullback of Cloc(<1,=1)

,
(a) along the vertical maps.

Next, we prove the independence of (1) and (2) simultaneously. Consider that �̂
acts on the filtration of O� by right regular representation. Then O� is realized as
an ind-object in RepΛ(�̂). Let - ∈ RepΛ(�̂) be a projective object and we denote
by - the underline �-module of - equipped with the trivial �̂-action. Consider the
following �̂-equivariant maps

a- : - → O� ⊗ -, G ↦→ a- (G) (6) := 6G,
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<- : -∗ ⊗ - → O� , (G∗, G) ↦→ <- (G∗, G) (6) := G∗(6G),

where we identify O� ⊗ - as the space of --valued functions on �̂ in the definition
of a- and <- . Taking - = , , we have the following �̂ × �̂-module maps

f,∗ ⊗ +2 ⊗,
af, ∗−−−−→ ,∗ ⊗ fO� ⊗ +2 ⊗,

<,−−−→ fO� ⊗ +2 ⊗ O� .

The map �̂ × �̂ → �̂f, (61, 62) ↦→ f(61)−1f(62)f induces a natural map 3f :
� [�̂f] → fO� ⊗ O� which intertwines the f-twisted conjugation action on
� [�̂f] and the diagonal action of �̂ onfO�⊗O� . For anyU ∈ Hom�̂ (+1,O�⊗+2),
denote by U′ the image of U under the following map

Hom�̂ (+1,O� ⊗ +2)
3f−−→ Hom�̂ (+1, fO� ⊗ +2 ⊗ O�).

Direct computation yields the followings

(<, ◦ af,∗) ◦ a′ = 3f (U′) : +1 → fO� ⊗ +2 ⊗ O� ,

and
id+2 ⊗ 4, = ev(1,1) ◦ (<, ◦ 0,∗) : +2 ⊗, ⊗,∗ → +2,

where ev(1,1) denotes the evaluation at (1, 1) ∈ �̂ × �̂. In Lemma 11.2.2, let
,1 ⊗ ,2 := , ⊗ ,∗, ,′1 ⊗ ,

′
2 := O� ⊗ O� , 51 ⊗ 52 := <, ◦ 0,∗ , b := a′, and

b′ := ev(1,1) . Then we have

C, (a) = C(id+2 ⊗ 4, ) ◦ DΓ∗�−1
(+2⊗, )�, ∗

◦ C(a′)

= C(ev(1,1)) ◦ DΓ∗�−1
(+2⊗O� )�O�

◦ C(3f (U′)).

We see from the last equality in the above that C, (a) depends only on U and the
lemma is thus proved. �

We claim that our construction of S+1,+2 is compatible with the composition of
morphisms. More precisely, we have the following lemma.

Lemma 11.2.4. For any representations +1, +2, +3, let (1, (2, (3 ∈ RepΛ(�̂Λ) be
projective Λ-modules, and we have the following commutative diagram

HomCoh�̂ (�̂f) (+̃1, +̃2) ⊗ HomCoh�̂ (�̂f) (+̃2, +̃3) HomCoh�̂ (�̂f) (+̃1, +̃3)

Hom�̂ (f(1 ⊗ +1 ⊗ (∗2, +2) ⊗ Hom�̂ (f(2 ⊗ +2 ⊗ (∗2, +3) Hom�̂ (f(2 ⊗ f(1 ⊗ +1 ⊗ (∗1 ⊗ (
∗
2, +3)

CorrShtloc (((+̃1), ((+̃2)) ⊗ CorrShtloc (((+̃2), ((+̃3)) CorrShtloc (((+̃1), ((+̃3)).

q

C(1⊗C(2

q′

C(1⊗(2

q′′

(11.13)
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Here

• the unlabelled vertical arrows are given by the Peter-Weyl theorem

• q is the compositions of morphisms in Coh�̂ (�̂f)

• q′′ is the composition described in §10.2

• q′(a1 ⊗ a2) is defined to be the homomorphism

f(2 ⊗ f(1 ⊗ +1 ⊗ (∗1 ⊗ (
∗
2

idf(2⊗a1⊗id(∗2−−−−−−−−−−−→ f(2 ⊗ +2 ⊗ (∗2
a2−→ +3.

Proof. The lemma can be proved following the same idea in the proof of [XZ17,
Lemma 6.2.7]. �

We study the endomorphism ring of the unit object in P(Shtloc
:̄
,Λ). This will be

used to prove the "( = )" theorem for Shimura sets in §12.3.

Let X1 denote the intersection cohomology sheaf IC0 on Shtloc(<,=)0 . The group
theoretic description of the moduli of restricted local Shtukas (cf. [XZ17, §5.3.2])
implies that Shtloc(<,=)0 is perfectly smooth. Thus X1 may be realized as

X
<,=

1 := Λ〈(< − =) dim�〉 ∈ P(Shtloc(<,=)0 ,Λ)

for every < ≥ =. Fix a square root @1/2.

Corollary 11.2.5. (1) There is a natural isomorphism

CorrShtloc (X1, X1) ' H�,�

whereH�,� denotes the Hecke algebra �∞2 (� (O)\� (�)/� (O), �).

(2) We denote the map

SO[�̂f/�̂ ] ,O[�̂f/�̂ ] : EndCoh�̂ (�̂f) (O[�̂f/�̂]) → CorrShtloc (X1, X1)

bySO for simplicity. Under the isomorphism in (1), themapSO⊗id� [@−1/2,@1/2]
coincides with the classical Satake isomorphism.
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Proof. Recall the definition of the Borel-Moore homology HBM
8 (-) for a perfect

pfp algebraic space which is defined over an algebraically closed field (cf. [XZ17,
A.1.3]). Assume -1 and -2 to be perfectly smooth algebraic spaces of pure dimen-
sion. Let -1 ← � → -2 be a correspondence. Then

Corr�
(
(-1, � 〈31〉), (-2, � 〈32〉)

)
(11.14)

=Hom�2
1
(�,�)

(
� 〈31〉, l� 〈32 − 2 dim -2

〉)
=HBM

2 dim -2+31−32
(�).

Then if 2 dim� = 2 dim -2 + 31 − 32, the cohomological correspondences from
(-1, � 〈31〉) to (-2, � 〈32〉) can be identified as the set of irreducible components of
� of maximal dimension.

For a perfect pfp algebraic space - of dimension 3, define � to be the set of top-
dimensional irreducible components of - . Then HBM

3
(�) is the free �-module

generated by the 3-dimensional irreducible components of - , and thus can be
identified with the space � (�, �) of �-valued functions on �. The map 5 ↦→∑
�8∈� 5 (�8) [�8] establishes a bijection

� (�, �) = HBM
3 (-). (11.15)

With the above preparations, we get an isomorphism

H�,� ' CorrShtloc (X1, X1), (11.16)

via a similar argument as for [XZ17, Proposition 5.4.4], and we finish the proof of
(1).

To prove part (2), we first note that the statement holds for � = Qℓ by [XZ17,
Theorem 6.0.1(2)]. We sketch the proof here. Let ` be a central minuscule
dominant coweight, and a be a dominant coweight such that f(a) = a. Choose
(<1, =1, <2, =2) to be (a + `, a)-acceptable. Take a ∈ Hom�̂ (+a ⊗ +` ⊗ +a∗ , +`) to
be the map induced by the evaluation map ea : +a ⊗+a∗ → 1. Consider the following
diagram

pt �A≤a∗ �A≤a∗ × �A≤a∗ �A`∗ × �A≤`∗ �A≤a∗ pt.Δ f×id Δ

Recall the cohomological correspondences XIca∗ and 4Ica∗ defined in [XZ17, §A.2.3.4].
Then Cloc(<1,=1)

+a
(a) = XICa∗ ◦ Γ∗f×id ◦ 4Ica∗ ∈ HBM

0 (�Aa∗ (:)), and the cohomologi-
cal correspondence Cloc(<1,=1)

+a
(a) can be identified with the function 5 on �Aa∗ (:)
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whose value at G ∈ �Aa∗ (:) is given by tr(qG | Sat(+a∗)Ḡ). Then up to a choice of
@1/2, the map (O,O ⊗Qℓ idQℓ [@1/2,@−1/2] coincides with the classical Satake isomor-
phism.

Now we come back to the case � = Zℓ. Write & for Qℓ [@1/2, @−1/2]. The above
argument shows that

SO ⊗ & : EndCoh�̂ (�̂f) (O[�̂f/�̂]) ⊗Zℓ & → CorrShtloc (X1, X1) ⊗Zℓ &

coincide with the classical Satake isomorphism. Note that

EndCoh�̂ (�̂f) (O[�̂f/�̂]) ⊗Zℓ & ' Zℓ [�̂]
�̂ ⊗Zℓ &,

where �̂ acts on �̂ by the f-twisted conjugation. Considering the Satake transfer
of the image of Zℓ-basis of Zℓ [�̂] (�̂) in Zℓ [�̂] (�̂) ⊗Zℓ &, we conclude the proof of
(2). �
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C h a p t e r 12

COHOMOLOGICAL CORRESPONDENCES BETWEEN
SHIMURA VARIETIES

In this section, we adapt the machinery developed in previous sections and apply it
to the study of the cohomological correspondences between different Hodge type
Shimura varieties following the idea of [XZ17].

12.1 Preliminaries
Let (�, -) be a Shimura datum and � be its reflex field (cf. [Mil05]). Let  ⊂
� (A 5 ) be a (sufficiently small) open compact subgroup and denote by Sh (�, -)
the corresponding Shimura variety defined over � . Fix a prime ? > 2 such that  ?
is a hyperspecial subgroup of � (Q?). We write � for the reductive group which
extends � to Z(?) and such that � (Z?) =  ?. Choose a to be a place of � lying
over ?. We write O�,(a) for the localization of O� at a. Results of Kisin [Kis10]
and Vasiu [Vas07] state that for any Hodge type Shimura datum (�, -), there is
a smooth integral canonical model S (�, -) of Sh (�, -), which is defined over
O�,(a) . Let :a denote the residue field of O�,a and fix an algebraic closure :̄a of
:a. We denote by Sh`, := (S (�, -) ⊗ :a)pf the perfection of the special fiber of
S (�, -). The perfection of mod ? fibre of Shimura varieties and moduli of local
Shtukas are related by a map loc? : Sh`, → Shtloc` . The construction of loc? is via
a �-torsor over the crystalline cite (S ,:a/O�,a)CRIS and we refer to [XZ17, §7.2.1]
for a detailed discussion. In the Siegel case, it may be understood as the perfection
of the morphism sending an abelian variety to its underlying ?-divisible group. We
need the following result of Xiao-Zhu [XZ17, Proposition 7.2.4] for our proof of
the main theorem.

Proposition 12.1.1. Let (<, =) be a pair of `-large integers. The morphism

loc? (<, =) := res<,= ◦ loc? : Sh` → Shtloc(<,=)`

is perfectly smooth.

Étale Local Systems on Sh`, 
Let ℓ ≠ ? be a prime number. Assume that d : � → �!Qℓ (,) is a Qℓ-
representation of �. If  ⊂ � (A 5 ) is sufficiently small, we associate an étale
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local system Lℓ,, on Sh`, to , following the idea of [LZ17, §4] and [Mil90,
§III.6] as follows.

Write  =  ℓ ℓ with  ℓ ⊂ � (Qℓ) and  ℓ ⊂ � (Aℓ5 ). The representation d restricts
to a representation

d ℓ :  (Qℓ) → � (Qℓ) → �! (,Qℓ ).

Note that  (Qℓ) is compact, and there exists a lattice Λ,,ℓ ⊂ ,Qℓ fixed by  (Qℓ).
Now we vary the levels at ℓ. Define

 
(=)
ℓ

:=  ℓ ∩ d−1
 (Qℓ ) ({6 ∈ �! (Λ,,ℓ) | 6 ≡ 1 mod ℓ=}).

Then we get a system of open neighborhoods of 1 ∈ � (Qℓ). For each =, the
construction of  (=)

ℓ
gives rise to a representation

d= ℓ :  ℓ/ (=)ℓ → �! (Λ,,ℓ/ℓ=Λ,,ℓ).

The natural projection map Sh
`, 

(=)
ℓ
 ℓ
→ Sh`, ℓ ℓ is a finite étale cover with the

group of deck transformations being  ℓ/ (=)ℓ . Then the trivial étale Z/ℓ=Z-local
system Sh

`, 
(=)
ℓ
 ℓ
× Λ,,ℓ/ℓ=Λ,,ℓ on Sh

`, 
(=)
ℓ
 ℓ

gives rise to the étale Z/ℓ=Z-local
system

L,,ℓ,= := Sh
`, 

(=)
ℓ
 ℓ
× ℓ/ 

(=)
ℓ Λ,,ℓ/ℓ=Λ,,ℓ .

Let
L,,Zℓ := lim←−−

=

L,,ℓ,=. (12.1)

This is an étale Zℓ-local system on Sh`, . It can be checked thatL,,Qℓ := L,,Zℓ ⊗Q
is an étale Qℓ-local system on Sh`, which is independent of the choice of Λℓ.

12.2 Main Theorem
Let (�1, -1) and (�2, -2) be two Hodge type Shimura data (cf. [Mil05]) equipped
with an isomorphism \ : �1,A 5 ' �2,A 5 . Let {`8} denote the conjugacy class of
Hodge cocharacters determined by -8 and consider them as dominant characters
of )̂ . In particular, `1 and `2 are both minuscule. Then [XZ17, Corollary 2.1.5]
implies that there is a canonical inner twist ΨR : �1 → �2 over C. Recall notations
in §1.3. We define `8,ad to be the composition of `8 with the quotient � → �ad and
consider it as a character of )̂sc. We assume that

`1,ad |
/ (�̂

ΓQ
sc )
= `2,ad |

/ (�̂
ΓQ
sc )

.
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It follows from [XZ17, Corollary 2.1.6] that ΨR comes from a unique global inner
twist Ψ : �1Q̄ → �2Q̄ such that Ψ = Int(ℎ) ◦ \, for some \ : �1,A 5 ' �2,A 5 and
ℎ ∈ �2,ad(Ā 5 ).

We assume that  8 ⊂ � (A 5 ) to be sufficiently small such that \ 1 =  2. Choose a
prime ? such that  1,? (and therefore  2,?) is hyperspecial. Let �8 be the integral
model of�8,Q? over Z? determined by  8,?. Then�1 ' �2, and we can thus identify
their Langlands dual groups (�̂, �̂, )̂). Choose an isomorphism ] : C ' Q̄?. Let
a | ? be a place of the compositum of reflex fields of (�8, -8) determined by our
choice of isomorphism ]. We write Sh`8 for the mod ? fibre of the canonical integral
model of Sh 8 (�8, -8) base change to :a. We make the following assumption

`1 |/ (�̂ΓQ? )= `2 |/ (�̂ΓQ? ) . (12.2)

The assumption guarantees the existence of the ind-scheme Sh`1 |`2 which fits into
the following commutative diagram

Sh`1, 1 Sh`1 |`2 Sh`2, 2

Shtloc`1 Shtloc
`1 |`2

Shtloc`2

←−
ℎ `1

loc?

−→
ℎ `2

loc?

←−
ℎ loc
`1

−→
ℎ loc
`2

, (12.3)

and makes both squares to be Cartesian.

Remark 12.2.1. In the case that (�1, -1) = (�2, -2), Sh`1 |`2 is the perfection of the
mod p fibre of a natural integral model of someHecke correspondence. If (�1, -1) ≠
(�2, -2), then Sh`1 |`2 can be regarded as “exotic Hecke correspondences” between
mod p fibres of different Shimura varieties. We refer to [XZ17, §7.3.3, §7.3.4] for a
detailed discussion.

Let (�8, -8) 8 = 1, 2, 3 be three Hodge type Shimura data, together with the iso-
morphisms \8, 9 : �8,A 5 ' � 9 ,A 5 satisfying the natural cocycle condition. Choose a
common level  using the isomorphism \8, 9 . Let ? be an unramified prime, such
that the assumption (12.2) holds for each pair of ((�8, -8), (� 9 , - 9 )). Choose a half
Tate twist Qℓ (1/2).

Let +8 := +`8 be the highest weight representation of �̂Qℓ of highest weight `8.
Write +̃8 ∈ Coh�̂Qℓ (�̂Qℓf) for the vector bundle associated to +8 analogous to
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§11.4. Recall from §12.1 that, to each representation , of �Qℓ , we can attach the
étale local system L,,Qℓ on Sh`8 . Let 38 = 〈2d, `8〉 = dimSh (�8, -8). Denote the
global section of the structure sheaf on the quotient stack [�̂f/�̂] by J , and the
prime-to-? Hecke algebra byH ?.

Theorem 12.2.2. There exists a map

Spc : Hom
Coh�̂Qℓ (�̂Qℓf)

(+̃1, +̃2) → HomH ?⊗J (H∗2 (Sh`1 ,L,,Qℓ 〈31〉),H∗2 (Sh`2 ,L,,Qℓ 〈32〉),
(12.4)

which is compatible with compositions on the source and target.

Proof. Choose a lattice Λ8 ∈ RepZℓ (�̂Zℓ ) in +8. We denote by Λ̃8 ∈ Coh�̂Zℓ (�̂Zℓf)
the coherent sheaf which corresponds to Λ8 as in §11.1. Then

Hom
Coh�̂Qℓ (�̂Qℓf)

(+̃1, +̃2) ' Hom�̂Qℓ
(+1, +2 ⊗ Qℓ [�̂]) (12.5)

' Hom�̂Qℓ
(Λ1 ⊗Zℓ Qℓ, (Λ2 ⊗Zℓ Zℓ [�̂]) ⊗Zℓ Qℓ)

' Hom�̂Zℓ
(Λ1,Λ2 ⊗Zℓ Zℓ [�̂]) ⊗Zℓ Qℓ

' Hom
Coh�̂Zℓ (�̂Zℓf)

(Λ̃1, Λ̃2) ⊗Zℓ Qℓ .

By Theorem 11.2.1, we get a map

SΛ1,Λ2 : Hom
Coh�̂Zℓ (�̂Zℓf)

(Λ̃1, Λ̃2) → CorrShtloc (((Λ̃1), ((Λ̃2)). (12.6)

Combining (12.5) with (12.6), we get the following map

Hom
Coh�̂Qℓ (�̂Qℓf)

(+̃1, +̃2) → CorrShtloc (((Λ̃1), ((Λ̃2)) ⊗Zℓ Qℓ . (12.7)

Choose a dominant coweight a and a quadruple (<1, =1, <2, =2) that is (`1 + a, a)-
acceptable and (`2 + a, a)-acceptable. We have the following diagram

Sh`1 Sha
`1 |`2

Sh`2

Shtloc`1 Shta,loc
`1 |`2

Shtloc`2

Shtloc(<1,=1)
`1 Shta,loc(<1,=1)

`1 |`2
Shtloc(<2,=2)

`2

←−
ℎ `1

loc? loca?

−→
ℎ `2

loc?

←−
ℎ loc
`1

res<1 ,=1

−→
ℎ loc
`2

resa<1 ,=1
res<2 ,=2

←−
ℎ
loc(<1 ,=1)
`1

−→
ℎ
loc(<2 ,=2)
`2

, (12.8)

where
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• all squares are commutative (discussions on diagram (10.5) and diagram
(12.3),

• except for the square at the down right corner, and the other three squares are
Cartesian (discussions on diagram (12.3) and diagram (12.5),

• the morphism
←−
ℎ `1 is perfectly proper ([XZ17, Lemma 5.2.12]),

• the morphisms loc? (<8, =8) are perfectly smooth (Proposition 12.1.1).

Then the morphism loca? (<1, =1) := resa<1,=1 ◦ loc
a
? is also perfectly proper. Thus

we can pullback the cohomological correspondences (cf. [XZ17, A.2.11)]) on the
right hand side of (12.6) along loca? (<1, =1) to obtain a map

loca? (<1, =1)★ : CorrShtloc (((Λ̃1), ((Λ̃2)) → CorrSha
` |`
(loc? (<1, =1)★((Λ̃1), loc? (<2, =2)★(((Λ̃2)).

Note that `8 are minuscule, then the ★-pullback of ((Λ̃8) along loc? (<8, =8) equals
Zℓ〈38〉. Next, we construct a natural map

ℭ, : CorrSha
`1 |`2

(
(Sh`1 ,Zℓ〈31〉), (Sh`2 ,Zℓ〈32〉)

)
→ CorrSha

`1 |`2

(
(Sh`1 ,L,,Zℓ 〈31〉), (Sh`2 ,L,,Zℓ 〈32〉)

)
.

(12.9)
For each = ∈ Z+, we note that there exists an ind-scheme Sh(=)

`1 |`2
which fits into the

following commutative diagram such that both squares are Cartesian

Sh
`1, 

(=)
ℓ
 ℓ

Sha,(=)
`1 |`2

Sh
`2, 

(=)
ℓ
 ℓ

Sh`1 Sha
`1 |`2

Sh`2 .

←−
ℎ
(=)
`1

?=1

−→
ℎ
(=)
`2

?= ?=2

←−
ℎ `1

−→
ℎ `2

Here the three vertical maps are the natural quotients by the finite group  ℓ/ =ℓ and
are thus étale.

Let ( 5=)= : (←−ℎ `1)∗(Z/ℓ=Z〈31〉)= → (
−→
ℎ `2)!(Z/ℓ=Z〈32〉)= be a cohomological cor-

respondence in CorrSha
`1 |`2

(
(Sh`1 ,Zℓ〈31〉), (Sh`2 ,Zℓ〈32〉)

)
. For each = ∈ Z+, the

shifted pullback (cf. [XZ17, A.2.12]) of 5= gives rise to a cohomological correspon-
dence

5̃= : (←−ℎ (=)`1 )
∗(Z/ℓ=Z〈31〉) → (

−→
ℎ
(=)
`2 )

!(Z/ℓ=Z〈32〉)
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in CorrSha, (=)
`1 |`2

(
(Sh

`1, 
(=)
ℓ
 ℓ
,Z/ℓ=Z〈31〉), (Sh`2, 

(=)
ℓ
 ℓ
,Z/ℓ=Z〈32〉)

)
. For any repre-

sentation, of�Qℓ , recall theZ/ℓ=ZmoduleΛ,,ℓ/ℓ=Λ,,ℓ constructed in §12.2. The
cohomological correspondence 5̃= gives rise to a cohomological correspondence

6̃= ∈ CorrSha, (=)
`1 |`2
(Sh

`1, 
(=)
ℓ
 ℓ
× Λ,,ℓ/ℓ=Λ,,ℓ〈31〉, Sh`2, 

(=)
ℓ
 ℓ
× Λ,,ℓ/ℓ=Λ,,ℓ〈32〉).

In addition, the cohomological correspondence 5̃= is  ℓ/ (=)ℓ -equivariant. Then it
follows that the cohomological correspondence 6̃= is also  ℓ/ (=)ℓ -equivariant and
descends to a cohomological correspondence

6= ∈ CorrSha
`1 |`2
((Sh`1 ,L,,ℓ,=〈31〉), (Sh`2 ,L,,ℓ,=〈32〉)).

Defining ℭ, (( 5=)=) := (6=)= completes the construction of ℭ, .

Compose the maps we previously construct,

CorrShta,loc(<1 ,=1)
`1 |`2

(
(Shtloc(<1,=1)

`1 , ((Λ̃1)loc(<1,=1)), (Shtloc(<2,=2)
`1 , ((Λ̃2)loc(<2,=2))

)
(12.10)

loca? (<1,=1)★
−−−−−−−−−−→CorrSha

`1 |`2
((Sh`1 ,Zℓ〈31〉), (Sh`2 ,Zℓ〈32〉))

ℭ,−−−→CorrSha
`1 |`2
((Sh`1 ,L,,Zℓ 〈31〉), (Sh`2 ,L,,Zℓ 〈32〉))

H∗2−−→HomH ? (H∗2 (Sh`1 ,L,,Zℓ 〈31〉),H∗2 (Sh`2 ,L,,Zℓ 〈32〉)).

We justify that the composition ofmaps in (12.11) factors throughCorrShtloc (((+̃1), ((+̃2)).
Note that the proof of Lemma 11.2.3.(3) and the definition of loca? (<1, =1)★ imply
that for a quadruple (<′1, =

′
1, <

′
2, =
′
2) of (`1 + a, a)-acceptable and (`2 + a, a)-

acceptable integers, the functor loca? (<1, =1)★ commutes with the connecting mor-
phism in (10.12) (with `1,`2,_ fixed). Let a ≤ a′ and (<′1, =

′
1, <

′
2, =
′
2) be a quadruple

of non-negative integers satisfying appropriate acceptance conditions. The proper
smooth base change shows that loca? (<′1, =

′
1)
★ commutes with enlarging a to a′. In

addition, the proper smooth base change together with the construction of ℭ, show
that the following diagram commutes:

CorrSha
`1 |`2
((Sh`1 ,Zℓ〈31〉), (Sh`2 ,Zℓ〈32〉)) CorrSha

`1 |`2
((Sh`1 ,L,,Zℓ 〈31〉), (Sh`2 ,L,,Zℓ 〈32〉))

CorrSha′
`1 |`2
((Sh`1 ,Zℓ〈31〉), (Sh`2 ,Zℓ〈32〉)) CorrSha′

`1 |`2
((Sh`1 ,L,,Zℓ 〈31〉), (Sh`2 ,L,,Zℓ 〈32〉)).

ℭ,

8∗ 8∗

ℭ,
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Thus the map ℭ, is compatible with the enlargement of a. Finally, by [XZ17,
Lemma A.2.8], the composition of maps H∗2 ◦ℭ, commutes with enlarging a to a′.
We complete the proof of the statement at the beginning of this paragraph.

Composing (12.7) with (12.11), we get a canonical map

Hom
Coh�̂Qℓ (�̂Qℓf)

(+̃1, +̃2) → HomH ? (H∗2 (Sh`1 ,L,,Qℓ 〈31〉),H∗2 (Sh`2 ,L,,Qℓ 〈32〉)).
(12.11)

The fact that (12.9) is compatible with the compositions of the source and target
can be proved in an analogous way as [XZ17, Lemma 7.3.12], and we omit the
details. Then the action of J naturally translates to the right hand side of (12.9)
and upgrades it to our desired map

Spc : HomCoh�̂ (�̂f) (+̃1, +̃2) → HomH ?⊗J (H∗2 (Sh`1 ,L,,Qℓ 〈31〉),H∗2 (Sh`2 ,L,,Qℓ 〈32〉)).

�

As discussed in loc.cit, the action of J on H∗2 (Sh`8 ,L,,Qℓ 〈38〉) is expected to
coincide with the usual Hecke algebra action, which may be understood as the
Shimura variety analogue of V. Lafforgue’s "( = )" theorem (cf. [Laf18]). We
prove this in the case of Shimura sets.

Proposition 12.2.3. Let Sh (�, -) be a zero-dimensional Shimura variety. Then
the action ofJ onH∗2 (Sh`8 ,L,,Qℓ 〈38〉) is given by the classical Satake isomorphism.

Proof. Let 5 ∈ J . Since the Shimura variety we consider is zero-dimensional, it
follows from [XZ17, A.2.3(5)] that the cohomological correspondence loc★? (SO ( 5 ))
can be identified with a Zℓ-valued function on Sh` |`. By our construction of the
map Spc, this function is given by the pullback of a function 5 ′ on Shtloc

` |` =

� (Z?)\� (Q?)/� (Z?). Corollary 11.2.5(2) thus implies that the function 5 ′ is
exactly the function SO ( 5 ) ∈ ��,� [?−1/2,?1/2] which is the image of 5 under the
classical Satake isomorphism.

For any = ∈ Z+, take , = Z=
ℓ
. Recall our construction of ℭ, , the cohomological

correspondence 5̃= is given by a finite direct sum of the function loc★? (SO ( 5 )) since
the Shimura variety we consider is a set of discrete points. Then the action of
Spc( 5 ) on H∗2 (Sh`8 ,L,,Qℓ 〈38〉) is given by the classical Satake isomorphism. For
general , , we take resolutions of it as in (12.10), and the statement follows from
the case, = Z=

ℓ
. �
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12.3 Non-Vanishing of the Geometric Jacquet-Langlands Transfer
In Theorem 12.2.2, we constructed the geometric Jacquet-Langlands transfer

Spc : Hom
Coh�̂Qℓ (�̂Qℓf)

(+̃1, +̃2) → HomH ?⊗J (H∗2 (Sh`1 ,L,,Qℓ 〈31〉),H∗2 (Sh`2 ,L,,Qℓ 〈32〉).

It is natural to ask when this transfer map is nonzero. We discuss this issue in this
section. The idea essentially follows from the discussion in [XZ17, §7.4], and we
briefly sketch it here.

Assume that Sh`1, 1 (�1, -1) is a zero dimensional Shimura variety. The Jacquet-
Langlands transfer map induces the following map

JL1,2(a) : H0
2 (Sh`1 ,L,,Qℓ ) → H∗2 (Sh`2 ,L,,Qℓ 〈32〉),

for a ∈ Hom
Coh�̂Qℓ (�̂Qℓf?)

(+̃1, +̃2). Let a′ ∈ Hom
Coh�̂Qℓ (�̂Qℓf?)

(+̃2, +̃1)be the mor-
phism such that the induced map

JL2,1(a′) : H∗2 (Sh`2 ,L,,Qℓ 〈32〉) → H0
2 (Sh`1 ,L,,Qℓ )

is dual to JL1,2(a) when viewing it as a cohomological correspondence (cf. [XZ17,
§A.2.18]).

The composition map JL2,1(a′) ◦ JL1,2(a) gives rise to an endomorphism of +̃`1 ∈
Coh�̂Qℓ (�̂Qℓf?). By [XZ17, Theorem1.4.1], the homspacesHom

Coh�̂Qℓ (�̂Qℓf)
(+̃1, +̃2)

and Hom
Coh�̂Qℓ (�̂Qℓf)

(+̃2, +̃1) are both finite projective J -modules. Thus it makes
sense to consider the determinant of the pairing

Hom
Coh�̂Qℓ (�̂Qℓf?)

(+̃2, +̃1) ⊗ Hom
Coh�̂Qℓ (�̂Qℓf?)

(+̃1, +̃2) → J . (12.12)

In particular, this determinant can be regarded as a regular function on the stack
[�̂Qℓf?/�̂Qℓ ]; for a detailed discussion on the pairing (12.12), see [XZ19].

By Theorem 6.1.2 in loc.cit, we conclude the following result:

Theorem 12.3.1. Let c 5 be an irreducibleH -module, and let

H0
2 (Sh`1 ,L,,Qℓ ) [c 5 ] := HomH (c 5 ,H0

2 (Sh`1 ,L,,Qℓ )) ⊗ c 5

denote the c 5 -isotypical component. Then, the map

JL1,2(a) : H0
2 (Sh`1 ,L,,Qℓ ) → H3

2 (Sh`2 ,L,,Qℓ )

restricted to H0
2 (Sh`1 ,L,,Qℓ ) [c 5 ] is injective if the Satake parameters of c 5 is

general with respect to +`2 in the sense of [XZ17].
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