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ABSTRACT 

Analysis of live-cell imaging experiments at the resolution of single cells provides            

exciting insights into the inner workings of biological systems. Advances in biological            

imaging and computer vision allow for segmentation of natural images with a high             

degree of accuracy. However, automation of the segmentation pipeline at the single cell             

resolution remains a challenging task. Complex deep learning models require large,           

well-annotated datasets that are rarely available in biology. In this research, we explore             

various methods that optimize state of the art deep learning frameworks, despite limited             

resources. We trained a large permutation of models to quantify their capacity and to              

measure the effects of temporal information, spatial awareness and transfer learning on            

model performance. We find that, although training set size is most impactful in             

improving model accuracy, we can leverage techniques like spatial awareness and           

transfer learning to obtain reasonable performance when training data is sparse. These            

insights show that, with an abundance of data, light-weight models can be as performant              

as their heavy-weight counterparts in cellular analysis.  
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Chapter 1 

INTRODUCTION 

1.1 Background 

 

Live-cell imaging experiments, in which individual cells are identified and tracked over            

time, reveal the spatial temporal information of cellular processes and provide a            

quantitative understanding of cellular dynamics. The analysis of such dynamic data           

involves three main phases: cleaning the fluorescent or bright-field microscopy images           

through background subtraction and drift correction, segmenting each cell across all           

frames of the time series data, and finally linking cell segmentations to their identities to               

determine their lineage. Prior work has demonstrated that deep learning techniques are            

advantageous in automating this pipeline to create more quantitative and cohesive records            

of biological images at the resolution of single cells. Moreover, these methods are             

proving useful for analyzing other categories of biological imaging experiments,          

including multiplexed imaging of tissues. 

Recent advances in deep learning methods now allow us to perform image segmentation             

with impressive levels of accuracy. In this thesis, we explore the performance of deep              

learning methods for instance segmentation - i.e. class agnostic classification and           

identification of objects at the pixel-level - as this is the category single cell segmentation               

belongs to. A variety of deep learning methods and architectures have arisen in recent              

years, and broadly speaking they vary by post-processing method and architecture.           

Pixelwise segmentation methods assign each pixel as being either inside a cell, outside a              

cell, or at the cell boundary; thresholding is used to transform these predictions into              

instance labels. Deep watershed segmentation treats the image as a topographic map            

where detections are basins - deep learning serves to transform the raw images into              

 



2 
exactly such a topographic map. Mask R-CNN models generate proposals of object            

locations then use these proposals to predict the object class, refine the bounding box, and               

create a pixel-level mask of the object. Vector embedding methods use low-dimensional,            

learned continuous vector representations of discrete variables to cluster neighbors in the            

embedding space. The architectures that implement these different approaches for          

segmentation of medical and natural images vary and include U-Net, Feature Pyramid            

Networks (with a variety of backbones), and DeepLab.  

Ongoing efforts in the field have sought to improve model accuracy by modifying the              

model architecture ​[3]​, finding alternative representations for cell segmentations ​[18]​, or           

by using model ensembles ​[12]​. While model accuracy is important, it is only one aspect               

of what makes a model useful. A model’s memory footprint and its inference speed are               

important considerations for deployment, as they limit which hardware a model can be             

deployed on. The approaches to model development mentioned above often lead to bulky             

models that have reduced inference speeds. Here, we propose that an alternative path to              

model development is through big data. As demonstrated in this thesis, light-weight            

models can be as performant as large ones if trained on a sufficiently large and diverse                

dataset. These models can circumvent the myriad of issues that arise when deploying             

larger models. While the lack of training data has made such an approach impossible,              

recent work by our lab has resulted in a dataset of sufficient size to explore the value of                  

big data for developing deep learning models for segmenting live-cell imaging data. Our             

dataset consists of movies of over 10,000 unique cells where each movie is 30 frames and                

is annotated at the pixel level to provide lineage information of appearing cells. In total,               

our dataset contains 191,608 instance segmentations. 

In this thesis, we make use of this novel dataset to understand the impact of 6 different                 

factors on model performance - temporal information, spatial awareness, transfer          

learning, segmentation schema, model capacity, dataset size. Temporal information is          

challenging to incorporate into model training as it requires whole movies to be             
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annotated frame-by-frame. Fortunately, we have exactly such a dataset. To measure its            

importance, we create models with convolutional-recurrent layers that encode temporal          

information and train them with sequences of frames, with the hope that information from              

previous frames will better inform its prior for subsequent frames. Spatial awareness is             

another aspect we explore - it is known that deep learning models only make use of local                 

information and are unaware of spatial relationships within images. This weakness can be             

mitigated by appending a positional encoding image to input data; we explore the impact              

of that approach here.  

Transfer learning, in which models are initially trained on a large dataset and then fine               

tuned on a smaller dataset, is a simple method to boost model performance. Transfer              

learning is effective because natural datasets share many similarities in terms of shape,             

textures, and movement patterns. It is relatively simple to implement, as it involves using              

models with defined architectures and pre-trained weights. However, this method          

significantly limits innovation on the model architecture. As mentioned previously,          

segmentation schema is another area that merits investigation. Here, we explore three            

different schemas - pixelwise classification [​16​, ​21​], MaskR-CNN ​[5]​, and a deep            

watershed approach ​[8]​. Model capacity is another variable we investigate by training            

models with backbones with low (MobilenetV2) and high (Resnet50) model capacity.           

Lastly, we explore the impact of dataset size. Unfortunately, this can only be done              

retrospectively as studying the impact of big data requires big data. While training data              

remains a limitation for a variety of biological image types, the dataset collected by my               

colleagues is of sufficient size to explore the impact of dataset size and diversity. 

In the following section, we describe how we train models on defined dataset splits and               

benchmark their accuracy across different permutations of the above parameters. We           

show that endowing deep learning models with spatial awareness, using transfer learning            

with model backbones pre-trained on ImageNet, and using larger sets of training data are              

effective methods of boosting model performance. We also investigate synergies that           
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exist between these explored parameters. We also show that some approaches like using             

convolutional-recurrent layers have little impact on model performance.  

1.2 Related Work 

 
Here we provide an overview of prior work from others on segmentation schema for              

instance segmentation, incorporating spatial awareness into deep learning models, and          

measuring the impact of dataset size. 

Cell Segmentation Methods 

Initial cell segmentation methods, like U-Net and Deepcell, perform classifications at the            

pixel level to predict cell boundaries, cell interiors and the background [​16​, ​21​, ​10​]. This               

pixel-wise method thresholds the final probability maps to obtain segmentation masks.  

Instead of thresholding, deep learning can learn the distance transform, the distance            

between a pixel and the image background, to use a watershed method that is common in                

computer vision. Here, each object instance is represented as an energy basin.            

Components are linked by performing a cut at a single energy level. The deep watershed               

transform is particularly attractive as it offers a constant runtime regardless of the number              

of object instances ​[1]​. It allows for end-to-end training and fast estimates. Another more              

recent deep watershed approach is deep distance, which predicts both an inner distance             

(distance to cell center of mass) and outer distance (distance to cell boundary - e.g. the                

energy basin in the previous approach) transform of the instance masks. By using the              

inner distance prediction to identify cell centroids, they further reduce over segmentation            

that can arise from having multiple extrema in a cell’s energy basin representation.  

Object-detection-based methods have been adapted for cell segmentations. These         

methods predict bounding boxes for all objects in an image and use non-max suppression              

(NMS) to remove redundant boxes. The Mask-RCNN model, developed in 2017 for            
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semantic segmentation and natural object segmentation, is one of the most accurate            

methods with a bounding box approach. It extends the Fast-RCNN model with an             

ROI-Align layer that preserves exact spatial locations ​[7]​. The output of the ROI-Align             

layer allows for accurate construction of segmentation masks, and with a new mask head,              

which enables independent mask and class predictions. Mask-RCNN models with          

ResNet-50 or ResNet-101 based feature pyramid network (FPN) backbones have been           

shown to have greater speed and accuracy ​[6]​.  

Other segmentation methods that make use of NMS include StarDist which localizes cell             

nuclei via star-convex polygons ​[18]​. StarDist does not have an explicit segmentation            

step. Instead, the segmentation is obtained by combining distances from the detected            

center to boundaries in 32 radial directions. Like Mask-RCNN, it uses NMS to suppress              

overlapping detections. However, this method provides a finer shape representation than           

bounding boxes does and does not require shape refinement.  

 

It is also possible to treat the cell segmentation problem as a vector embedding problem               

[15]​. A discriminative loss function assigns pixels in the same instance to the same vector               

and pixels in different instances to different vectors. These vectors are then clustered in              

the embedding space to identify objects. 

A recent algorithm that falls within this vector-embedding category is Cellpose ​[20]​,             

which applies a reversible transform to instance masks to create vector flows and then              

uses a deep learning model to predict this vector flow field directly from images. Their               

approach makes use of a diverse set of cellular segmentations, as they sought to segment               

brightfield and fluorescent cytoplasmic images of cells rather than the cell nuclei.  

Improving Spatial Awareness 

Deep convolutional networks generally lack spatial awareness which can result in blurry            

edges and noisy segmentations. Most approaches tune the network architecture to           
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combine low-level features with high-level features to improve boundary detection. Other           

methods track object centers and regress a vector pointing to the instance’s centroid for              

each pixel ​[1]​. This allows class and spatial relationship information to be determined for              

each pixel in each object for instance segmentation. This information can also be             

encapsulated by creating spatial embeddings of pixels and using a loss function that             

clusters together vectors belonging to the same instance ​[14]​. Here, center localization            

and clustering is performed in post processing. 

Analysis of Dataset Size on Model Performance 

It is generally accepted the deep learning models trained on more data outperform those              

trained on less data ​[13]​. Previous research has shown that high quality data can              

significantly benefit cell segmentation accuracy ​[2]​. The analysis was performed on           

23,165 cells from the BBBC021 dataset. With our large training set of 191,608             

annotations, we extend upon this analysis.  

With crowd sourcing and annotation, many digital image collections have increased           

rapidly in size ​[4]​. However, for tasks like cell segmentation, the amount of publicly              

available data remains scarce. Techniques like geometric transformations, image mixing          

and general adversarial network (GAN) based augmentations have been used to expand            

limited datasets to take advantage of the capabilities of big data ​[19]​. 
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Chapter 2 

METHODS 

2.1 Data Annotation and Splitting 

We trained our models using fluorescent cytoplasm images of four different cell lines --              

RAW264, HeLa S3, NIH 3T3 and HEK293. For the temporal analysis, we trained models              

on each of the cell lines. For the other analyses, we combined all four cell lines into a                  

single dataset consisting of 191608 unique cells.  

With the combined nuclear data, we first randomized the data with one of three fixed               

seeds. After performing the train-test split, we selected the first n movies in the training               

set for training. Here, n/N is our desired dataset fraction with N being the total number of                 

movies in our entire nuclear training set. For example, a larger dataset fraction of 0.5               

would contain all the movies in a smaller dataset fraction of 0.25. Doing the data split in                 

this manner ensured that dataset diversity was a monotonically increasing function of            

dataset size. Alternative approaches to splitting do not have this guarantee. Once split, the              

datasets were resized into 128x128 tiles, with overlaps. For each seed and each dataset              

fraction, we evaluated the performance of each model based on the number of unique              

annotations (the number of cells across all frames prior to resizing).  

2.2 Model Architecture  

All models are composed of a backbone attached to a Feature Pyramid Network (FPN)              

head ​[9]​. The FPN architecture features top-down and bottom-up pathways with lateral            

connections (Fig 1). The bottom-up pathway computes feature maps at multiple scales. In             

the top-down pathway, higher resolution features are upsampled from spatially coarser,           

but semantically stronger, feature maps from higher pyramid levels. Lateral connections           
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merge the feature maps of the same spatial size from the two pathways. A 3x3               

convolution is applied to the merged maps to reduce the aliasing from upsampling.  

 

Fig 1. Feature Pyramid Network from Lin et al. ​[9] 

Pixelwise and deep watershed models have semantic heads, which take as input the top of               

the feature pyramid and produce an output (via multiple rounds of upsampling and             

convolutions) with the same dimensions as the input image. The top layer of a semantic               

head has either a relu activation or softmax activation for regression and classification             

tasks respectively. For RetinaMask models, the FPN is extended with two 1x1            

convolutions after the 3x3 convolutions to create classification and regression heads. The            

object detection criterion and bounding box regression target are defined with respect to             

predefined anchors. Anchors are boxes of a given size that tile an image and the               

classification head of a RetinaMask model seeks to identify which anchors contain an             

object and which ones do not. We used anchor sizes of 16 and 32 pixels in P3 and P4                   

layers, respectively. We use the criteria from the original RetinaNet paper to identify             

anchors that contain objects; anchors that have an intersection over union (IoU) greater             

than 0.5 with a ground truth object’s bounding box are considered positive, anchors with              
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an IoU less than 0.4 are considered negative, and all other anchors are ignored for the                

purposes of model training. 

Each of the aforementioned models has a backbone architecture of either ResNet50 ​[6] or              

MobileNetV2 ​[17]​. ResNet features residual blocks with skip connections that add           

outputs of previous layers with stacked layers. MobileNetV2 is more lightweight than            

ResNet. It has three-layer residual blocks with depthwise separable convolutions. There           

are bottlenecks between each block and shortcuts between these bottlenecks to add the             

input of one bottleneck to the output of another. Both types of backbones are effective               

feature extractors; benchmarking from ImageNet demonstrates that ResNet50 has higher          

model capacity at the cost of reduced inference speed. 

2.3  Model Training 

For each segmentation schema, we train the models a different, but relevant, loss function              

but otherwise equal training parameters. For deep watershed models, we use the Mean             

Squared Error (MSE). Pixelwise models are trained using weighted categorical cross           

entropy. The weights for the three classes are computed on-the-fly and are used to              

weight the Keras categorical cross-entropy. Formally, we define this as, 

 og(p )L =  − ∑
C

c=1
w yc *  i, c * l i,c  (1) 

Where is the number of classes, is the weight of class , is a binary indicator C       wc      c  yi,c     

denoting the class of the sample and is the predicted probability between 0 and 1 for       pi,c           

that class and sample. For the RetinaMask models, we use a focal loss for the               

classification head, a smooth L1 loss for the regression head, and a binary cross-entropy              

for the mask prediction head. Each loss is given equal weight, but is normalized by the                

number of positive anchors. 
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For all models, we used the Adam optimizer with a learning rate of 10​−5 and clip norm of                  

0.001, batch size of 4, and L2 regularization strength of 10​−5​. For the temporal analysis,               

models trained for 10 epochs, and for all other analyses models trained for 15 epochs on a                 

NVIDIA V100 graphics card. 

We trained the following models for our analyses: 

● Temporal information analysis 

○ RetinaMask models trained on four different nuclear datasets (NIH 3T3,          

HEK 293, HeLa S3, Raw 264) with convolutional modes of None, Gated            

Recurrent Units (GRU), Long Short Term Memory (LSTM) and time-axis          

convolution (Conv3D) 

● Spatial awareness analysis 

○ Watershed models trained on the full dataset without and without location           

layer for three seeds 

● Transfer learning analysis 

○ Pixelwise, RetinaMask and Watershed models trained on the full dataset          

without and without ImageNet weights for three seeds 

● Dataset analysis 

○ Pixelwise, RetinaMask and Watershed models for dataset fractions of         

0.01, 0.1, 0.25, 0.5 and 1 for three seeds 

2.4  Benchmarking 

We post-processed model predictions with and without removing small objects.          

Removing small objects both removes artifacts and also removes partial cells at the             

border. While we present both sets of results here for completeness, we believe removing              

small objects represents a more realistic view of model performance in practice, as             
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images are usually considerably larger than the 128x128 patches analyzed here, and these             

partial cells are a smaller fraction of the total number of cells in these larger images. 

We used both pixel-based and object-based approaches in segmentation benchmarking.          

The object-based approach compares ground truth and prediction segmentations to          

identify segmentation errors ​[11]​. We first link prediction and ground truth segmentations            

based on object overlap, the ​iou (intersection over union of those two cells). The iou of                

leaving a ground truth cell unassigned (missed detection) or a prediction cell unassigned             

(gained detection) is 0.4. For a ground truth and predicted cell to be linked, they must                

have an iou of at least 0.6. 

All the unassigned cells are then gathered for a graph construction to classify error types               

(Table 1). A summary of this approach and a descriptive figure (Fig 2), both of which are                 

taken from our lab’s prior manuscript ​[11]​, are given below:   

“We view each cell as a node and examine all pairs of unassigned ground truth cells and                 

unassigned predicted cells; we link two cells if they have an iou greater than 0.1. We then                 

extract all the subgraphs of this graph and categorize them into three groups. The first               

group consists of all subgraphs that have a single node (i.e. the highest degree of any                

node is 0). If the node is a ground truth cell this corresponds to a missed detection (i.e. a                   

false negative); if the node is a predicted cell this corresponds to a gained detection (i.e. a                 

false positive). The next group consists of all subgraphs where the highest degree node              

has degree 1. Each subgraph in this group has one node that corresponds to a ground truth                 

cell and one node that corresponds to a prediction cell. Because these cells were not               

assigned in the first round of graph construction, they correspond to a missed detection              

and a gained detection. The third group are all subgraphs with a node that has degree > 1.                  

This group can be further divided into three subgroups based on the type and uniqueness               

of the highest degree node. If the highest degree node is a ground truth cell and is unique,                  

then it corresponds to a splitting error. If the highest degree node is a predicted cell and is                  
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unique, it corresponds to a merge error. If the highest degree node is not unique, then it                 

falls into a third class which we call catastrophes.” 

 

Fig 2. Identification of merge, split, and catastrophe errors in cell segmentations though 

subgraph classification. Reprinted from “Accurate cell tracking and lineage construction 

in live-cell imaging experiments with deep learning”  

 

Table 1. Definitions of metrics and error types used in benchmarking. TP - true positives;               

FP - false positives; FN - false negatives. 
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Chapter 3 

RESULTS 

3.1 Temporal Information 

We aimed to enhance the performance of popular deep learning algorithms in analyzing             

dynamic cellular data by modifying their architecture with various memory units. We            

postulated that temporal units allow models to stochastically retain information from           

previous frames which helps them better learn and predict on future frames. As such, we               

trained RetinaMask models with modified ResNet50, Featurenet (a conv-net in which the            

input image is convolved with a set of filters. Each filter acts as a local feature extractor)                 

[21] and MobileNetV2 backbones on a combination of cell lines and benchmarked them             

on each individual cell line. For the MobilenetV2 backbone trained with 3 frames per              

batch and the ResNet50 backbone trained with 5 frames per batch, temporal information             

provided marginal improvements across several cell lines (Tables 2 and 3). For the             

ResNet50 backbone trained with 3 frames per batch, temporal information resulted in a             

regression in performance. Overall, the addition of such temporal information in the            

training of these neural nets has no consistent effect on the accuracy of model              

predictions.  
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Table 2. Use of temporal information and model accuracy for models trained with 3 

frames per batch 
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Table 3. Use of temporal information and model accuracy for models trained with 5 

frames per batch 
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3.2 Spatial Awareness 

We initialized the watershed model with ImageNet weights and trained them with and             

without the location layer. We found that, regardless of the size of the training data,               

location information improves the performance of models with ResNet50 backbones but           

regresses that of models with MobilenetV2 backbones (Tables 4 and 5). These changes in              

performance are relatively small, which suggests that adding spatial awareness does not            

have a substantial impact on model performance.  

 

Table 4. Spatial awareness and performance of watershed models before removing small 

objects. 
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Table 5. Spatial awareness and performance of watershed models before removing small 

objects. 
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3.3 Transfer Learning 

To test the benefit of transfer learning, we initialized one batch of models with              

pre-trained ImageNet weights and one without. Our results are shown in Tables 6 and 7.               

We found that for all models, transfer learning significantly improves the accuracy and             

consistency of predictions. We note that the watershed model in this analysis used a              

location layer. These results demonstrate that transfer learning can be an effective means             

of improving model performance without altering model complexity or training time. 

 

Table 6. Transfer learning and model accuracy before removing small objects 
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Table 7. Transfer learning and model accuracy after removing small objects 

To understand the distinct and aggregate effects of transfer learning and spatial awareness             

on watershed models, we trained another batch with neither location layer or imagenet             

weights. The results affirm that using both location and spatial awareness is optimal for              

models with a ResNet50 backbone, but there is no ideal configuration for models with              

MobilenetV2 backbone (Table 8). 
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Table 8. Combined effects of spatial awareness and transfer learning on model accuracy 
before (top) and after (bottom) removing small objects 
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3.4 Dataset Size 

We found that training set size significantly impacts the performance of watershed and             

RetinaMask models but has variable results for pixelwise models. Our analysis also            

shows that watershed models perform the best while pixelwise models perform the worst             

across all training set sizes (Fig 3). However, we find that pixelwise models benefit the               

most from post processing like the removal of small objects. This is likely because              

pixelwise models have many artifacts in their predictions. These artifacts do not resemble             

any cellular morphology, so by removing detections of less than 100 pixels, we can              

significantly improve the accuracy by reducing the number of gained detections (Figs 4             

and 5).  
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Fig 3. Model F1 score versus dataset size before (top) and after (bottom) removing small 

objects in post processing 
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We further assessed the models performance by looking at the different types of             

segmentation errors. We found that the improved performance in watershed and           

RetinaMask models results from decreased number of merges and splits (Figs 4-5). The             

performance of pixelwise models sees limited improvements since increasing dataset size           

decreases the number of merges but increases the number of splits. The improvements in              

one category of error are counterbalanced by regressions in another (Figs 4-5). 
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Fig 4. Model performance and errors versus dataset size before removing small objects  
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Fig 5. Model performance and errors versus dataset size after removing small objects 
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Chapter 7 

CONCLUSION 

7.1 Summary 

We assessed several techniques for their ability to boost Mask R-CNN model            

performance in cell segmentation tasks. Temporal information beyond what is included in            

the dataset has marginal utility. For most datasets and ways in which temporal             

information is included, little improvement, if not regression, was shown in model            

performance. On the contrary, with transfer learning, we see improvements across all            

model types. Spatial awareness may be beneficial for deep watershed models with            

ResNet backbones. When transfer learning and spatial awareness is used together, the            

deep watershed approach can outperform RetinaMask approach in accuracy.  

We found that model performance is a monotonically increasing function of dataset size             

for all model types, however, the exact relationship depends on the model type. Pixelwise              

models reach a plateau in performance for a smaller dataset size (~0.25 dataset fraction).              

RetinaMask models see more improvement, but plateau after slightly more data (~0.5            

dataset fraction). This is likely because the RetinaMask method predicts cells within            

bounding boxes. The bounding boxes impose a prior that aids with accuracy in low data               

settings, but becomes a hindrance with big data. Deep watershed models have the best              

relationship with big data. As we increase the dataset size, we see some diminishing              

returns in the number of missed detections, but the overall accuracy increases steadily.             

The improvement experienced by watershed models suggests that similar models like           

CellPose can also benefit from large data. CellPose and deep watershed may have             

different transforms, but they both rely on transformations and MSE loss.  
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We also find that big data can help lightweight models achieve accuracy on par with               

bulkier ones. We show that deep watershed models with MobileNetV2 backbones trained            

on large datasets can be as accurate as those with ResNet50 backbones trained on smaller               

datasets. These findings are insightful for future model selection and training. The            

MobileNetV2 backbones are sufficiently lightweight that they can be on CPUs and edge             

TPUs, allowing data processing to be performed locally and with low latency.  

Furthermore, from a software engineering perspective, deep watershed models hold a           

significant advantage over RetinaMask models. In image processing, deep watershed          

models can use a tiling approach while RetinaMask models require the full image and an               

additional channel (In Tensorflow, (None, None, None, 1) for RetinaMask). This makes            

deep watershed models much more efficient in processing large images. RetinaMask           

models also require relatively more post processing since they can assign the same pixel              

to two different cells -- these artifacts must be removed via post processing. In addition,               

deep watershed models have a fixed memory footprint which reduces Out Of Memory             

GPU errors and is an optimal characteristic for deployment.  

Although our models were trained on nuclear segmentation, they can also be trained for              

cytoplasm segmentation tasks (Fig 6). It would be insightful to complete analyses similar             

to what we have done here for other data types. 
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Fig 6. Nuclear (top) and cytoplasm (bottom) segmentations 

7.2 Next Steps 

Our analysis provides a limited look into different model enhancing techniques and our              

results reinforce the importance of collecting and crowdsourcing large biological          

datasets. As more datasets are built, these large-scale analyses of model performance            

would become easier and easier. It would be interesting to explore the big data impact for                

other data types, like cell cytoplasm and tissues. There are a lot of other factors and                

methods that have yet to be investigated. Architecture elements like self attention could             

provide an additional boost to model performance. We used supervised learning for all             

our models, so analysis on the impact of self-supervision can be insightful. These             
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analyses will help the biological community create more accurate and more deployable            

data processing pipelines. 

 

 

 

  

 



32 
BIBLIOGRAPHY 

1. Bai M, Urtasun R. Deep Watershed Transform for Instance Segmentation. 2017 IEEE 
Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI: 
IEEE; 2017. pp. 2858–2866. doi:​10.1109/CVPR.2017.305 

2. Caicedo JC, Cooper S, Heigwer F, Warchal S, Qiu P, Molnar C, et al. Data-analysis 
strategies for image-based cell profiling. Nature Methods. 2017;14: 849–863. 
doi:​10.1038/nmeth.4397 

3. Caicedo JC, Goodman A, Karhohs KW, Cimini BA, Ackerman J, Haghighi M, et al. 
Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl. Nat 
Methods. 2019;16: 1247–1253. doi:​10.1038/s41592-019-0612-7 

4. Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L. ImageNet: A Large-Scale 
Hierarchical Image Database. : 8. 

5. He K, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. arXiv:170306870 [cs]. 2018 
[cited 19 May 2020]. Available:​ http://arxiv.org/abs/1703.06870 

6. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. 
arXiv:151203385 [cs]. 2015 [cited 30 May 2020]. Available: 
http://arxiv.org/abs/1512.03385 

7. Johnson JW. Adapting Mask-RCNN for Automatic Nucleus Segmentation. 
arXiv:180500500 [cs]. 2020;944. doi:​10.1007/978-3-030-17798-0 

8. Koyuncu CF, Gunesli GN, Cetin-Atalay R, Gunduz-Demir C. DeepDistance: A 
Multi-task Deep Regression Model for Cell Detection in Inverted Microscopy 
Images. arXiv:190811211 [cs]. 2019 [cited 28 May 2020]. Available: 
http://arxiv.org/abs/1908.11211 

9. Lin T-Y, Dollár P, Girshick R, He K, Hariharan B, Belongie S. Feature Pyramid 
Networks for Object Detection. arXiv:161203144 [cs]. 2017 [cited 30 May 2020]. 
Available:​ http://arxiv.org/abs/1612.03144 

 

https://doi.org/10.1109/CVPR.2017.305
https://doi.org/10.1038/nmeth.4397
https://doi.org/10.1038/s41592-019-0612-7
http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://doi.org/10.1007/978-3-030-17798-0
http://arxiv.org/abs/1908.11211
http://arxiv.org/abs/1908.11211
http://arxiv.org/abs/1612.03144


33 
10. Moen E, Bannon D, Kudo T, Graf W, Covert M, Van Valen D. Deep learning for 

cellular image analysis. Nature Methods. 2019;16: 1233–1246. 
doi:​10.1038/s41592-019-0403-1 

11. Moen E, Borba E, Miller G, Schwartz M, Bannon D, Koe N, et al. Accurate cell 
tracking and lineage construction in live-cell imaging experiments with deep learning. 
bioRxiv. 2019; 803205. doi:​10.1101/803205 

12. Moshkov N, Mathe B, Kertesz-Farkas A, Hollandi R, Horvath P. Test-time 
augmentation for deep learning-based cell segmentation on microscopy images. 
Scientific Reports. 2020;10: 1–7. doi:​10.1038/s41598-020-61808-3 

13. Najafabadi MM, Villanustre F, Khoshgoftaar TM, Seliya N, Wald R, Muharemagic 
E. Deep learning applications and challenges in big data analytics. Journal of Big 
Data. 2015;2: 1. doi:​10.1186/s40537-014-0007-7 

14. Neven D, De Brabandere B, Proesmans M, Van Gool L. Instance Segmentation by 
Jointly Optimizing Spatial Embeddings and Clustering Bandwidth. 2019 [cited 4 Jun 
2020]. Available:​ https://arxiv.org/abs/1906.11109v2 

15. Payer C, Štern D, Neff T, Bischof H, Urschler M. Instance Segmentation and 
Tracking with Cosine Embeddings and Recurrent Hourglass Networks. In: Frangi AF, 
Schnabel JA, Davatzikos C, Alberola-López C, Fichtinger G, editors. Medical Image 
Computing and Computer Assisted Intervention – MICCAI 2018. Cham: Springer 
International Publishing; 2018. pp. 3–11. doi:​10.1007/978-3-030-00934-2_1 

16. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical 
Image Segmentation. arXiv:150504597 [cs]. 2015 [cited 4 Jun 2020]. Available: 
http://arxiv.org/abs/1505.04597 

17. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C. MobileNetV2: Inverted 
Residuals and Linear Bottlenecks. arXiv:180104381 [cs]. 2019 [cited 30 May 2020]. 
Available:​ http://arxiv.org/abs/1801.04381 

18. Schmidt U, Weigert M, Broaddus C, Myers G. Cell Detection with Star-convex 
Polygons. arXiv:180603535 [cs]. 2018 [cited 19 May 2020]. 
doi:​10.1007/978-3-030-00934-2_30 

 

https://doi.org/10.1038/s41592-019-0403-1
https://doi.org/10.1101/803205
https://doi.org/10.1038/s41598-020-61808-3
https://doi.org/10.1186/s40537-014-0007-7
https://arxiv.org/abs/1906.11109v2
https://doi.org/10.1007/978-3-030-00934-2_1
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1801.04381
https://doi.org/10.1007/978-3-030-00934-2_30


34 
19. Shorten C, Khoshgoftaar TM. A survey on Image Data Augmentation for Deep 

Learning. J Big Data. 2019;6: 60. doi:​10.1186/s40537-019-0197-0 

20. Stringer C, Michaelos M, Pachitariu M. Cellpose: a generalist algorithm for cellular 
segmentation. bioRxiv. 2020; 2020.02.02.931238. doi:​10.1101/2020.02.02.931238 

21. Valen DAV, Kudo T, Lane KM, Macklin DN, Quach NT, DeFelice MM, et al. Deep 
Learning Automates the Quantitative Analysis of Individual Cells in Live-Cell 
Imaging Experiments. PLOS Computational Biology. 2016;12: e1005177. 
doi:​10.1371/journal.pcbi.100 

 

https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1101/2020.02.02.931238
https://doi.org/10.1371/journal.pcbi.1005177

