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ABSTRACT 

 The Stoltz group, and moreover the synthetic community at large, has long been 

interested in the synthesis of enantioenriched compounds with interesting biological 

activities. This thesis presents three projects unified in an attempt to access compounds 

with relevance to the medicinal chemistry and natural products communities, 

encompassing reaction development, synthetic strategy and natural product synthesis. 

 A general method for the enantioselective synthesis of carbo- and heterocyclic 

carbonyl compounds bearing fluorinated α-tetrasubstituted stereocenters using 

palladium-catalyzed allylic alkylation is described. These fluorinated, stereochemically 

rich building blocks hold potential value in medicinal chemistry and are prepared using 

an orthogonal and enantioselective approach into such chiral moieties compared to 

traditional approaches, often without the use of electrophilic fluorinating reagents.  

The synthesis of a variety of enantioenriched 2,2-disubstituted pyrrolidines is 

described. A stereogenic quaternary center is first formed utilizing an asymmetric allylic 

alkylation reaction of a benzyloxy imide, which can then be reduced to a chiral 

hydroxamic acid. This compound can then undergo a thermal “Spino” ring contraction to 

afford a carbamate protected 2,2-disubstituted pyrrolidine stereospecifically, allowing 

access to new molecules that could be useful in the medicinal chemistry community. 

Finally, we have developed a synthesis of an enantioenriched [7,7]paracyclophane 

compound using sequential C-H functionalization reactions, including selective Rh-

catalyzed C-H insertion reactions developed by the Davies group at Emory University. 

Investigations are currently ongoing into potential antimicrobial activity of different 

[7,7]paracyclophanes and the total synthesis of naturally occurring [7,7]paracyclophanes. 
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CHAPTER 1 

Palladium-Catalyzed Enantioselective 

 Csp3–Csp3 Cross-Coupling for the Synthesis 

 of (Poly)fluorinated Chiral Building Blocks* 

 

1.1   INTRODUCTION: 

Organofluorine compounds often play a critical role in the lead optimization 

phase of drug discovery, due to their impact on various physico-chemical properties such 

as absorption, distribution, metabolitic stability, and excretion.  Consequently, more than 

20% of marketed pharmaceuticals contain C–F motifs, despite the fact that 

organofluorinated compounds are exceedingly rare in nature.1 Recently, molecules with 

tetrasubstituted stereocenters have attracted the interest of medicinal chemists aiming to 

incorporate three-dimensionality and added novelty. 2  Importantly, there are many 

successful marketed pharmaceuticals bearing fluorinated tetrasubstituted stereocenters 

(1–3, Figure 1.1.1). For these reasons, there has been renewed interest in the synthesis of 

fluorinated tetrasubstituted stereocenters for use in drug discovery, and in particular, 

access to new classes of fluorinated analogs. Therefore, we believe that a general method 

                                                
* This research was performed in collaboration with Yanhui Lu, an alumni of the Stoltz group.  
Additionally, this research has been published and adapted with permission Lu, Y.; Goldstein, E. L.; Stoltz, 
B. M. Org. Lett. 2018, 20, 5657–5660. 
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for the construction of fluorine-containing tetrasubstituted stereocenters will be of 

particular interest to chemists in the area of drug discovery and development.   

Figure 1.1.1. Marketed Active Pharmaceutical Ingredients Bearing Fluorinated 

Tetrasubstitued Stereocenters. 

  

Methods to construct fluorine-containing α-tetrasubstituted ketones have been the 

subject of intense investigation over the past decade.  The most prevalent strategy for 

fluorine incorporation is intermolecular catalytic asymmetric electrophilic fluorination (or 

trifluoromethylation) of enolates (Scheme 1.1.1A).3  Despite their potential utility in 

organic synthesis, the relatively low abundance of cheap, commercially available 

electrophilic fluorinating and trifluoromethylating reagents prohibit their widespread 

usage.   As far back as 2005, the Stoltz and Nakamura groups independently reported the 

intramolecular asymmetric allylic alkylation of prochiral enolates derived from the 

decarboxylation of 1,3-dicarbonyl substrates (Scheme 1.1.1B).4,5 Using this strategy, 

several optically active α-fluoro α-tetrasubstitued cyclic carbonyl derivatives have been 

synthesized in high yield and enantioselectivity.  

While stereogenic C–F moieties have been previously investigated, the 

compatibility of fluoroalkyl groups in palladium-catalyzed asymmetric allylic alkylation 

has remained unknown until recently.  In 2011, Shibata and coworkers reported the first 
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example of the construction of trifluoromethyl-bearing quaternary centers by 

intramolecular decarboxylative allylic alkylation of α-trifluoromethyl β-ketoesters 

(Scheme 1.1.1C).6  Unfortunately, attempts to render their reaction enantioselective were 

unsuccessful.  Due to our interest in the field of asymmetric allylic alkylation, we 

endeavored to build on these previous reports and investigate a number of fluoroalkyl and 

fluoroallyl derivatives in asymmetric allylic alkylation reactions. Herein, we report the 

first general method for the construction of carbo- and heterocyclic carbonyl derivatives 

bearing α-fluoro-, α-fluoroalkyl-, or α-(2-fluoro)allyl substituents using palladium-

catalyzed enantioselective decarboxylative allylic alkylation (Scheme 1.1.1D).  

Scheme 1.1.1. Asymmetric Construction of Fluorine-Containing α-Tetrasubstitued 

Ketones 
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1.2.  SYNTHESIS OF FLUORINATED ALLYLIC ALKYLATION 

SUBSTRATES  

 Importantly, with this strategy, a number of fluorinated alkyl and allyl groups are 

introduced into the substrate via standard 1,3-dicarbonyl chemistry (thermal, acidic or 

basic conditions) to produce racemic mixtures of compounds that serve as substrates for 

the mild and neutral asymmetric allylic alkylation reaction. In some cases, these 

fluorinated substrates are synthesized without the use of electrophilic fluorinating 

reagents. Furthermore, this allows for the non-asymmetric formation of the C–F or C–

CF3 bonds, which are significantly more developed than their asymmetric equivalents. 

For example, 1,1,1,-trifluoropropyl groups can be installed using standard β-keto ester 

alkylation conditions utilizing 1,1,1-trifluoropropyl iodide  and  base in moderate yields 

(Scheme 1.2.1A). The synthesis of 1,1,1-trifluoroethyl substituted β-keto esters 

proceeded smoothly with the use of 2,2,2-Trifluoroethyl (mesityl)iodonium 

trifluoromethanesulfonate 7  (available in 2 steps from commercial materials) in the 

presence of LiHMDS. (Scheme 1.2.1B) During the preparation of this manuscript, a 

report using 2,2,2-Trifluoroethyl(mesityl) iodonium trifluoromethanesulfonate  for the 

alkylation of 1,3-dicarbonyls was disclosed using similar conditions.8 

In addition to α-fluoroalkyl groups, a number of 2-fluoro allyl substrates were 

prepared without the use of electrophilic fluorinating reagents. Starting from 

commercially available Methyl 2-fluoroacrylate, reduction of the ester to the alcohol, 

followed by treatment with 1,1’-carbonyldiimidazole (CDI) resulting in the formation of 

an acylating reagent (Scheme 1.2.1C). This reagent could then be used as previously 

reported9 to form a β-keto ester (Scheme 1.2.1D), which can be subsequently alkylated 
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or fluorinated.4,5  Additionally, using known chemistry, α-fluoro β-keto esters can be 

synthesized using Selectfluor5d and α-trifluoromethyl β-keto esters can be synthesized 

using Umemoto’s Reagent10, both of which are commercially available. 

Scheme 1.2.1. Synthesis of Fluorinated β-Ketoesters 

 

1.3  INITIAL REACTION OPTIMIZATION 

Initial reaction optimization started with trifluoroethyl substituted β-ketoester 4a 

using catalytic Pd2(dba)3 at 23 °C in diethylether in the presence of a chiral PHOX ligand 

toward the synthesis of ketone 5a. (Table 1.3.1).11  Employing the classic (S)-t-BuPHOX 
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ligand 6, the desired product was formed in 88% yield and 85% ee (entry 1).  Switching 

to the electron deficient (S)-(CF3)3-t-BuPHOX  ligand 7, the desired product was 

furnished in an improved 99% yield and 90% ee (entry 2).  Solvent effects were not very 

significant (entries 3–5), however THF gave a decreased ee of 86% (entry 3), while the 

less polar TBME and non-polar toluene performed similarly to diethyl ether.  Based on 

these results, we determined that using Pd2(dba)3 (5.0 mol %) with (S)-(CF3)3-t-BuPHOX 

in toluene (0.033 M) at room temperature proved optimal. 12 

Table 1.3.1. Optimization of Conditions for Enantioselective Palladium-Catalyzed 

Allyllic Alkylationa 

 a Conditions: β-ketoester 4a (0.1 mmol), Pd2(dba)3 (5.0 mol %), 
ligand (12.5 mol %), toluene (3 mL). b Determined by analytical 
chiral SFC. 
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substituents to deliver five- and six-membered ketone and lactam products bearing 

fluorinated tetrasubstituted stereocenters in high yields and enantioselectivities.  

Trifluoropropyl substituted 4b exhibited similar enantio-induction as 4a to furnish 5b in 

92% ee and an extremely high yield.  α-Fluoro tetrasubstituted compounds, which are 

usually introduced by direct fluorination with fluorine reagents and chiral catalysts,3 were 

prepared in a very efficient manner with high enantioselectivity (5c, 5d), even in the 

presence of a chloroallyl substituent (5d).  Surprisingly, 2-fluoroallyl groups survived the 

palladium-catalyzed allylic alkylation even at elevated temperatures (40 °C),13 albeit in a 

slightly decreased enantioselectivity (5e).  Recently, Shibata and coworkers described 

that enantioenriched indanone α-trifluoromethyl β-ketoesters lost their optical activity 

under the palladium-catalyzed allylic alkylation reaction conditions in the presence of 

achiral ligands to deliver a racemic α-quaternary ketone, and when they tried to render 

the transformation enantioselective, they were unsuccessful.6   However, we were pleased 

to see that α-trifluoromethyl substituted tetralone substrate 4f reacted to furnish 5f with a 

moderate level of enantioselectivity.   Generally, five membered cyclic β-ketoesters have 

performed worse than the corresponding 6-membered ring substrates, often providing the 

α-tetrasubstituted ketone products in comparatively low ee.4k Under these conditions, 

alkylation of the five membered indanone substrates 4g and 4h occurred with levels of 

enantioinduction similar to those observed for the tetralone substrates, with only a 

slightly diminished 87% ee for trifluoropropyl-substituted indanone 5h. Indanone 

substrates bearing a 2-fluoroallyl substituent proceeded in high yield, but only moderate 

enantioselectivity, to form products 5i and 5j, following the trend of the 2-fluoroallyl 

tetralone substrates. Gratifyingly, lactam substrates were also well tolerated in the 
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reaction.  Trifluoropropyl-substituted N-benzoyl δ-valero-lactam (5k) was obtained in 

94% yield, and 89% ee.  Surprisingly, in contrast to the negative influence of the 2-

fluoroallyl substituent on substrates 5e, 5i, and 5j, the fluorine on the allyl group of N-

benzoyl δ-valerolactam 4l enhanced the enantioselectivity, providing 5l in 97% ee.  

Additionally, trifluoropropyl-substituted N-benzyloxy glutarimide was furnished in 89% 

ee with high yield.  Finally, N-benzoyl pyrrolidinone 5n was obtained in diminished yield 

and ee. 
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Table 1.4.1. Substrate Scope of Fluorine-Containing compounds in Enantioselective 

Allylic Alkylation 

 

a Unless otherwise noted, all reported yields are isolated yields. 
Enantiomeric excess (ee) was determined by chiral SFC. Standard 
conditions: β-ketoester 5 (0.1 mmol), Pd2(dba)3 (5 mol %), (S)-
(CF3)3-t-BuPHOX (12.5 mol %), toluene (3 mL), 23 °C, 24 h. 
bReaction performed at 40 °C. cReaction performed in the 
presence of Pd2(pmdba)3 instead of Pd2(dba)3. dReaction 
performed at 60 °C. e Reaction performed at 23 °C for 70 h. 
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demonstrated significant substitution tolerance to furnish a wide range of five- and six-

membered ketone and lactam products bearing fluorinated tetrasubstituted stereocenters 

in high yields and enantioselectivities.  Furthermore, we provide the first examples 

demonstrating that 2-fluoroallyl substituents can survive in the presence of certain 

palladium sources, and deliver related fluoroalkylated products in elevated enantiopurity. 

1.6  EXPERIMENTAL METHODS AND ANALYTICAL DATA 

1.6.1  MATERIALS AND METHODS 

Unless stated otherwise, reactions were performed in flame-dried or oven-dried glassware 

under an argon or nitrogen atmosphere using dry, deoxygenated solvents (distilled or 

passed over a column of activated alumina).14  Commercially obtained reagents were used 

as received with the exception of dipalladium tris(dibenzylideneacetone) (Pd2(dba)3), 

tetrakis(triphenylphosphine)palladium(0), which were stored in a nitrogen-filled 

glovebox. Dipalladium tris(para-methoxydibenzylideneacetone) (Pd2(pmdba)3),15 (S)-t-

BuPHOX,16 (S)-(CF3)3-tBuPHOX,17 were prepared by known methods. Reactions 

requiring external heat were modulated to the specified temperatures using an IKAmag 

temperature controller. Reaction progress was monitored by thin-layer chromatography 

(TLC), which was performed using E. Merck silica gel 60 F254 precoated glass plates 

(0.25 mm) and visualized by UV fluorescence quenching, potassium permanganate, or p-

anisaldehyde staining. Silicycle SiliaFlash® P60 Academic Silica gel (particle size 40-63 

nm) was used for column chromatography. 1H and 13C NMR spectra were recorded on a 

Varian Inova 500 (500 MHz and 126 MHz, respectively), and a Bruker AV III HD 

spectrometer equipped with a Prodigy liquid nitrogen temperature cryoprobe (400 MHz 

and 101 MHz, respectively) and are reported in terms of chemical shift relative to CHCl3 
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(δ 7.26 and δ 77.16, respectively). 19F NMR spectra were recorded on a Varian Inova 300 

spectrometer (282 MHz) and are reported in terms of absolute chemical shift according to 

IUPAC standard recommendations from CFCl3. Data for 1H NMR are reported as 

follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration). 

Multiplicities are reported as follows: s = singlet, d = doublet, t = triplet, m = multiplet, br 

s = broad singlet, app t = apparently triplet. Infrared (IR) spectra were recorded on a 

Perkin Elmer Paragon 1000 spectrometer using thin films deposited on NaCl plates and 

are reported in frequency of absorption (cm–1). Optical rotations were measured with a 

Jasco P-2000 polarimeter operating on the sodium D-line (589 nm), using a 100 mm 

path-length cell and are reported as: [α]D
T (concentration in g/100 mL, solvent). 

Analytical SFC was performed with a Mettler SFC supercritical CO2 analytical 

chromatography system utilizing Chiralpak (AD-H, AS-H, IC) or Chiralcel (OD-H, OJ-

H) columns (4.6 mm x 25 cm) obtained from Daicel Chemical Industries, Ltd. High 

resolution mass spectra were obtained from the Caltech Mass Spectral Facility using a 

JEOL JMS-600H. High Resolution Mass Spectrometer in fast atom bombardment 

(FAB+) ionization mode or a Agilent 6200 Series TOF with an Agilent G1978A 

Multimode source in electrospray ionization (ESI+), atmospheric pressure chemical 

ionization (APCI+), or mixed (ESI/APCI) ionization mode. Julabo Presto LH45 was used 

to control reaction temperatures inside the nitrogen-filled glovebox. 
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1.6.2  EXPERIMENTAL PROCEDURES 

 

Allyl 1-oxo-2-(2,2,2-trifluoroethyl)-1,2,3,4-tetrahydronaphthalene-2-carboxylate 

(4a): To a solution of 818 (780 mg, 3.39 mmol, 1.0 equiv) in THF (10 mL) was added 

LiHMDS (2M solution in THF, 4.0 mmol, 1.2 equiv) at 0 °C, the resulting solution was 

allowed to stir at room temperature for 15 min. Then the mixture was cooled again to 0 

°C, followed an addition of a THF solution (7 mL) of mesityl(2,2,2-trifluoroethyl)-λ3-

iodanyl trifluoromethanesulfonate19 (2.1 g, 4.4 mmol, 1.3 equiv). After 2 hours stirring at 

room temperature, the mixture was quenched with aqueous solution of NH4Cl, extracted 

with Et2O, dried over Na2SO4, filtered, and concentrated in vacuo. The crude oil was 

purified by column chromatography (SiO2, 5% EtOAc in hexane) to afford ketoester 4a 

(570 mg, 54% yield) as a white solid; Rf = 0.43 (10:1 Hexane:EtOAc); 1H NMR (500 

MHz, CDCl3) δ 8.06 (dd, J = 7.9, 1.4 Hz, 1H), 7.50 (app td, J = 7.5, 1.5 Hz, 1H), 7.33  

(app t, J = 7.7 Hz, 1H), 7.24 (d, J = 7.7 Hz, 1H), 5.82 – 5.74 (m, 1H), 5.20 – 5.13 (m, 

2H), 4.66 – 4.54 (m, 2H), 3.26 – 3.16 (m, 1H), 3.10 – 3.00 (m, 1H), 2.98 – 2.91 (m, 2H), 

2.74 (dt, J = 14.0, 4.3 Hz, 1H), 2.35 – 2.30 (m, 1H). 13C NMR (101 MHz, CDCl3) δ 

192.29, 169.54, 143.06, 134.14, 131.25, 131.05, 128.94, 128.54, 127.08, 126.02 (q, JC-F = 

278.5 Hz, 1C), 118.94, 66.58, 54.70 (q, JC-F = 1.8 Hz, 1C), 37.35 (q, JC-F = 29.3 Hz, 1C), 

29.74 (q, JC-F = 1.7 Hz, 1C), 25.83. 19F NMR (282 MHz, CDCl3) δ -59.46 (t, J = 11.1 Hz, 

3F).  IR (thin film, NaCl) 1737, 1693, 1601, 1260, 1134 cm -1. HRMS (APCI/ESI) m/z 

calc’d for C16H16F3O3 [M+H]+: 313.1046, found: 313.1044. 

O
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CF3
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(1.3 eq.)

LiHMDS (1.2 eq.)
THF, 0 °C -> rt., 2 h

I
Mes

OTf
CF3

4a8



Chapter 1:Palladium-Catalyzed Enantioselective Csp3–Csp3 Cross Coupling for the 
Synthesis of (Poly)fluorinated Chiral Building Blocks 

13 

 

Allyl 1-oxo-2-(3,3,3-trifluoropropyl)-1,2,3,4-tetrahydronaphthalene-2-carboxylate 

(4b): To a suspension of NaH (60% in oil, 72 mg, 1.8 mmol, 1.2 equiv) in THF (2 mL) 

was added a THF solution of 8 (345 mg, 1.5 mmol, 1.0 equiv), the mixture was allowed 

to stir at room temperature for 15 minutes followed the addition of 1,1,1-trifluoro-3-

iodopropane. The resulting mixture was allowed to heat at 60 °C for 24 hours. After 

cooling to room temperature, quenched with aqueous solution of NH4Cl, extracted with 

Et2O, dried over Na2SO4, filtered, and concentrated in vacuo. The crude oil was purified 

by column chromatography (SiO2, 10% Et2O in hexane) to afford ester 4b (148 mg, 30% 

yield) as a colorless oil; Rf = 0.43 (10:1 Hexane:EtOAc); 1H NMR (500 MHz, CDCl3) δ 

8.05 (dd, J = 7.9, 1.4 Hz, 1H), 7.49 (app td, J = 7.5, 1.5 Hz, 1H), 7.33 (dd, J = 7.9 Hz, 

1H), 7.23 (d, J = 7.6 Hz, 1H), 5.79 (ddt, J = 17.6, 10.1, 5.6 Hz, 1H), 5.26 – 5.09 (m, 2H), 

4.70 – 4.51 (m, 2H), 3.14 – 3.05 (m, 1H), 2.96 (dt, J = 17.4, 5.0 Hz, 1H), 2.59 (dt, J = 

13.6, 4.9 Hz, 1H), 2.47 – 2.30 (m, 1H), 2.28 – 2.06 (m, 4H). 13C NMR (101 MHz, CDCl3) 

δ 194.82, 171.10, 142.74, 133.93, 131.89, 131.25, 128.89, 128.17, 127.13, 127.09 (q, JC-F 

= 277.4 Hz, 1C), 118.87, 66.08, 56.26, 31.62, 29.80 (q, JC-F = 29.1 Hz, 1C), 26.67 (q, JC-F 

= 3.2 Hz, 1C), 25.90. 19F NMR (282 MHz, CDCl3) δ -66.78 (t, J = 11.1 Hz, 3F).  IR (thin 

film, NaCl) 1735, 1670, 1602, 1258, 1228 cm-1. HRMS (APCI/ESI) m/z calc’d for 

C17H18F3O3 [M+H]+: 327.1203, found: 327.1204. 

 

 

O
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O
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ONaH (1.2 eq.)
CF3CH2CH2I (1.5 eq.)

THF (0.5 M), 60 °C, 24 h
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Allyl 2-fluoro-1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate (4c): The title 

compound 4c was synthesized according to the known method as describe. All 

spectroscopic data were in agreement with the literature.20 1H NMR (500 MHz, CDCl3) δ 

8.07 (d, J = 7.9 Hz, 1H), 7.55 (app td, J = 7.5, 1.4 Hz, 1H), 7.36 (m, 1H), 7.28 (d, J = 7.8 

Hz, 1H), 5.91 – 5.82 (m, 1H), 5.30 – 5.22 (m, 2H), 4.76 – 4.68 (m, 2H), 3.19 (dt, J = 

17.2, 5.2 Hz, 1H), 3.08 (ddd, J = 17.1, 7.8, 5.0 Hz, 1H), 2.79 – 2.70 (m, 1H), 2.60 – 2.52 

(m, 1H). 13C NMR (101 MHz, CDCl3) δ 188.51 (d, JC-F = 19.0 Hz, 1C), 167.05 (d, JC-F = 

25.9 Hz, 1C), 143.17, 134.66, 130.81, 130.47, 128.84, 128.37 (d, JC-F = 0.94 Hz, 1C), 

127.29, 119.12, 93.25 (d, JC-F = 194.2 Hz, 1C), 66.56, 31.87 (d, JC-F = 22.6 Hz, 1C), 24.83 

(d, JC-F = 7.24 Hz, 1C).  19F NMR (282 MHz, CDCl3) δ -164.16 (ddd, J = 22.8, 11.0, 1.2 

Hz, 1F). 

 

 

2-chloroallyl 2-fluoro-1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate (4d): 

To the mixture of 1,1-carbonyldiimidazole (CDI) (4.86 g, 30 mmol) and THF (15 mL) 

was added a solution of 2-chloro allyl alcohol (20 mmol) in 15 mL of CH2Cl2 at 0 °C 

slowly, the resulting mixture was allowed to stir for 3 h at the same temperature. Most 
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solvent was removed in vacuo and the crude product was purified by column 

chromatography (SiO2, 35% EtOAc in hexane) to afford 2-chloroallyloxycarbonyl 

imidazole (9) (3.2 g, 86% yield) as a white solid; Rf = 0.15 (3:1 Hexane:EtOAC); 1H 

NMR (500 MHz, CDCl3) δ 8.18 (m, 1H), 7.46 (m, 1H), 7.10 (dd, J = 1.6, 0.8 Hz, 1H), 

5.61 (dt, J = 2.1, 1.0 Hz, 1H), 5.55 (d, J = 2.0 Hz, 1H), 4.97 (dd, J = 1.1, 0.4 Hz, 2H). 13C 

NMR (101 MHz, CDCl3) δ 148.11, 137.27, 134.40, 131.05, 117.35, 117.24, 69.30. IR 

(thin film, NaCl) 3137, 3122, 1755, 1650, 892, 758 cm-1. HRMS (APCI/ESI) m/z calc’d 

for C7H8ClN2O2 [M+H]+: 187.0269, found: 187.0265. 

To a solution of Tetralone (585 mg, 4 mmol, 1.0 equiv) in THF (8 mL) was added 

LiHMDS (2M solution in THF, 4.4 mmol, 1.1 equiv) at -78 °C, the resulting solution was 

allowed to stir at the same temperature for 15 min. Then a THF solution (7 mL) of 2-

chloroallyloxycarbonyl imidazole (9) (896 mg, 4.8 mmol, 1.2 equiv) was added. After 2 

hours stirring at room temperature, the mixture was quenched with aqueous solution of 

NH4Cl, extracted with Et2O, dried over Na2SO4, filtered, and concentrated in vacuo. The 

crude oil was purified by column chromatography (SiO2, 5% EtOAc in hexane) to afford 

10 (718 mg, 67% yield) as a light yellow oil; Rf = 0.41 (10:1 Hexane:EtOAc); Mixture of 

enol ketone form (3/2).  1H NMR (500 MHz, CDCl3): for enol form:  δ 12.22 (s, 0.6H), 

7.81 (dd, J = 7.6, 1.4 Hz, 0.6H), 7.36 – 7.25 (m, 1.2H), 7.20 – 7.18 (m, 0.6H), 5.70 – 5.37 

(m, 1.2H), 4.77 – 4.72 (m, 1.2H), 2.85 (dd, J = 8.8, 6.7 Hz, 1.2H), 2.64 (dd, J = 8.8, 6.6 

Hz, 1.2H); for ketone form δ 8.05 (dd, J = 7.9, 1.4 Hz, 0.4H), 7.51 (app td, J = 7.5, 1.5 

Hz, 0.4H), 7.36 – 7.25 (m, 0.4H), 5.67 – 5.37 (m, 0.8H), 4.80 (s, 0.8H), 3.70 (dd, J = 

10.8, 4.7 Hz, 0.4H), 3.29 – 2.93 (m, 0.8H), 2.55 (dddd, J = 13.4, 10.9, 9.6, 5.0 Hz, 0.4H), 

2.48 – 2.36 (m, 0.4H). 13C NMR (101 MHz, CDCl3): for enol form: δ 169.44, 166.16, 
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139.61, 135.95, 130.94, 129.81, 128.95, 127.59, 126.73, 114.82, 96.44, 65.84, 27.78, 

26.47; for ketone form: 13C NMR (101 MHz, CDCl3) δ 192.86, 171.65, 143.67, 135.29, 

134.13, 131.71, 127.84, 127.07, 124.57, 115.07, 66.40, 54.60, 27.75, 20.50. IR (thin film, 

NaCl) 1750, 1686, 1651, 1617, 1597, 1569, 1266, 1212, 1132, 1085 cm-1. HRMS 

(APCI/ESI) m/z calc’d for C14H14ClO2 [M+H]+: 265.0626, found: 265.0627. 

Neat TiCl4 (10 μL, 0.09 mmol, 0.09 equiv) was added to a solution of 10  (265 mg, 1.0 

mmol, 1.0 equiv) in CH3CN (5 mL), resulting in an immediate color change from pale 

yellow to dark orange-brown. After 5 min, Selectfluor (425 mg, 1.2 mmol, 1.2 equiv) was 

added in one portion. The mixture was stirred vigorously at room temperature for 2 h, 

during which time the dark orange-brown color faded to yellow. The reaction was 

quenched by addition of H2O, extracted with Et2O, dried over Na2SO4, filtered, and 

concentrated in vacuo. The crude oil was purified by column chromatography (SiO2, 10% 

EtOAc in hexane) to afford ester 4d (217 mg, 77% yield) as a colorless oil;7 Rf = 0.12 

(10:1 Hexane:EtOAc); 1H NMR (500 MHz, CDCl3) δ 8.08 (dd, J = 7.9, 1.4 Hz, 1H), 7.56 

(app td, J = 7.5, 1.4 Hz, 1H), 7.38 (app t, J = 7.8 Hz, 1H), 7.29 (d, J = 7.7 Hz, 1H), 5.49 – 

5.34 (m, 2H), 4.79 (dd, J = 13.7, 41.56 Hz, 2H), 3.22 (ddd, J = 17.2, 7.7, 5.7 Hz, 1H), 

3.11 (ddd, J = 17.2, 7.4, 5.0 Hz, 1H), 2.86 – 2.69 (m, 1H), 2.67 – 2.53 (m, 1H). 13C NMR 

(101 MHz, CDCl3) δ 188.16 (d, JC-F = 18.5 Hz), 166.56 (d, JC-F = 26.8 Hz, 1C), 143.18, 

134.78, 134.35, 130.30, 128.88, 128.37 (d, JC-F = 1.2 Hz, 1C), 127.32, 115.82, 93.22 (d, 

JC-F = 194.0 Hz, 1C), 66.96, 31.79 (d, JC-F = 22.2 Hz, 1C), 24.67 (d, JC-F = 7.1 Hz, 1C). 19F 

NMR (282 MHz, CDCl3) δ -164.46 (dd, J = 23.7, 11.3 Hz, 1F). IR (thin film, NaCl) 

1764, 1701, 1600,1272, 1184, 1084 cm-1. HRMS (APCI/ESI) m/z calc’d for C14H13ClFO3 

[M+H]+: 283.0532, found: 283.0530. 
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2-fluoroallyl 2-methyl-1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate (4e): 

The procedure for preparation of 2-fluoroprop-2-en-1-ol was adapted from the work of 

Herzon and coworkers.21 

Solid aluminum chloride (1.0 g, 8.78 mmol, 1.0 equiv) was added portion-wise over 10 

min to a solution of lithium aluminum hydride (1.17 g, 26.3 mmol, 3.0 equiv) in Et2O (20 

mL) at 0 °C. The resulting mixture was stirred for 30 min at 0 °C. Methyl 2-

fluoroacrylate (820 μL, 8.78 mmol, 1.0 equiv) was then added dropwise via syringe to the 

mixture. The reaction mixture was stirred for 1 h at 0 °C at atmosphere of nitrogen. 

Distilled water (1.0 mL) and 15% aqueous sodium hydroxide solution (1.0 mL) were then 

added in sequence dropwise via syringe over 20 min (10 min addition of each reagent). A 

second portion of distilled water (3.0 mL) was then added dropwise via syringe over 5 

min. The resulting mixture was stirred for 10 min at 0 °C. The heterogeneous mixture 

was filtered through a Buchner funnel, and the filter cake was rinsed with Et2O (100 mL). 

The filtrates were combined and and dried over anhydrous MgSO4. The dried solution 

was filtered and the filtrate was concentrated (150 torr, 0 °C).  The product is very 

volatile; therefore Et2O was not completely removed. The solution of 2- fluoroallyl 

alcohol in Et2O was used directly and immediately in the following step. 

To the mixture of 1,1-carbonyldiimidazole (CDI)(1.3 g, 8 mmol) and CH2Cl2 (5 mL) was 

added a solution of 2- fluoroallyl alcohol from last step in Et2O at 0 °C slowly, the 
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resulting mixture was allowed to stir for 3 h at the same temperature. Most solvent was 

removed in vacuo and the crude product was purified by column chromatography (SiO2, 

50% EtOAc in hexane) to afford 2-flouroallyloxycarbonyl imidazole (11) (1.3 g, 86% 

yield over two steps) as a white solid; Rf = 0.43 (1:1 Hexane:EtOAC); 1H NMR (500 

MHz, CDCl3) δ 8.16 (m, 1H), 7.44 (dd, J = 2.8, 1.4 Hz, 1H), 7.09 (m, 1H), 4.96 (ddd, J = 

15.1, 3.5, 1.2 Hz, 1H), 4.92 (d, J = 15.5 Hz, 2H), 4.79 (dd, J = 46.2, 3.5 Hz, 1H). 13C 

NMR (101 MHz, CDCl3) δ 158.55 (d, JC-F = 258.7 Hz, 1C), 148.26, 137.29, 131.05, 

117.26, 96.83 (d, JC-F = 16.9 Hz, 1C), 64.73 (d, JC-F = 32.7 Hz, 1C).  19F NMR (282 MHz, 

CDCl3) δ -105.69 – -106.02 (m, 1F). IR (thin film, NaCl) 1766, 1682, 1408, 1384, 1316, 

1295, 1242, 1168, 997 cm-1. HRMS (APCI/ESI) m/z calc’d for C7H7FN2O2 [M+H]+: 

171.0564, found: 171.0564. 

To a solution of Tetralone (585 mg, 4 mmol, 1.0 equiv) in THF (8 mL) was added 

LiHMDS (2M solution in THF, 4.8 mmol, 1.2 equiv) at -78 °C, the resulting solution was 

allowed to stir at the same temperature for 15 min. Then a THF solution (7 mL) of 2-

fluoroallyloxycarbonyl imidazole (11) (817 mg, 4.8 mmol, 1.2 equiv) was added. After 2 

hours stirring at room temperature, the mixture was quenched with aqueous solution of 

NH4Cl, extracted with Et2O, dried over Na2SO4, filtered, and concentrated in vacuo. The 

crude oil was purified by column chromatography (SiO2, 10% Et2O in hexane) to afford 

12 (417 mg, 42% yield) as a light yellow oil; Rf = 0.43 (10:1 Hexane:EtOAc); Mixture of 

enol ketone form (3/2). 1H NMR (500 MHz, CDCl3): for enol form: δ 12.22 (s, 0.6H), 

7.86 – 7.76 (m, 0.6H), 7.42 – 7.27 (m, 1.2H), 7.22 – 7.15 (m, 0.6H), 4.86 (dd, J = 16.0, 

3.2 Hz, 0.6H), 4.79 – 4.69 (m, 1.8H), 2.90 – 2.78 (m, 1.2H), 2.69 – 2.57 (m, 1.2H); for 

ketone form: δ 8.09 – 8.00 (m, 0.4H), 7.51 (dd, J = 7.5, 1.5 Hz, 0.4H), 7.38 – 7.28 (m, 
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0.8H), 4.83 (dd, J = 16.3, 3.3 Hz, 0.4H), 4.74 – 4.64 (m, 1.2H), 3.69 (dd, J = 11.0, 4.7 

Hz, 0.4H), 3.13 – 2.99 (m, 0.8H), 2.57 – 2.49 (m, 0.4H), 2.44 – 2.36 (m, 0.4H). 13C NMR 

(101 MHz, CDCl3): for enol form δ 169.69, 166.15, 160.39 (d, JC-F = 257.9 Hz, 0.6C), 

139.69, 130.97, 129.87, 128.97, 127.63, 124.62, 96.51, 94.56 (d, JC-F = 17.1 Hz, 0.6C), 

61.31 (d, JC-F = 34.4 Hz, 0.6C), 27.84, 26.48; for ketone form: δ 192.88, 171.88, 159.94 

(d, JC-F = 257.9 Hz, 0.4C), 143.70, 134.17, 131.75, 127.93, 127.13, 126.77, 94.63 (d, JC-F 

= 16.8 Hz, 0.4C), 61.89 (d, J = 34.8 Hz, 0.4C), 54.66, 27.84, 20.55. 19F NMR (282 MHz, 

CDCl3) δ -105.33 – -105.98 (m, 1F).  IR (thin film, NaCl) 1749, 1686, 1651, 1617, 1598, 

1569, 1263, 1210, 1198, 1132, 1085 cm-1. HRMS (APCI/ESI) m/z calc’d for C14H14FO3 

[M+H]+: 249.0921, found: 249.0923. 

The mixture of 12 (451 mg, 1.81 mmol, 1.0 equiv), cesium carbonate (1.29 g, 3.92 mmol, 

2.0 equiv) and MeI (244 mL, 3.92 mmol, 2.0 equiv) in CH3CN was heated at 50 °C for 12 

hours. After cooling, the solution was filtered and concentrated in vacuo. The crude 

product was purified by column chromatography (SiO2, 10% Et2O in hexane) to furnish 

β-ketoester 4e (370 mg, 78% yield) as a colorless oil; Rf = 0.28 (10:1 Hexane:EtOAC); 

1H NMR (500 MHz, CDCl3) δ 8.06 (dd, J = 7.8, 1.4 Hz, 1H), 7.48 (app td, J = 7.5, 1.5 

Hz, 1H), 7.32 (app t, J = 7.8 Hz, 1H), 7.23 (d, J = 7.8 Hz, 1H), 4.72 (dd, J = 16.1, 3.3 Hz, 

1H), 4.69 – 4.54 (m, 2H), 4.48 (dd, J = 3.3, 47.7 Hz, 1H), 3.06 (ddd, J = 17.4, 9.3, 4.9 

Hz, 1H), 2.97 (dt, J = 17.3, 5.5 Hz, 1H), 2.70 (ddd, J = 13.6, 6.2, 4.8 Hz, 1H), 2.15 (ddd, 

J = 13.9, 9.2, 4.9 Hz, 1H), 1.54 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 195.79, 172.35, 

159.79 (d, JC-F = 258.7 Hz, 1C), 143.16, 133.76, 131.59, 128.90, 128.22, 127.02, 94.15 

(d, JC-F = 16.5 Hz, 1C), 61.72 (d, JC-F = 35.2 Hz, 1C), 54.07, 33.81, 25.95, 20.47. 19F 

NMR (282 MHz, CDCl3) δ -106.01 – -106.32 (m, 1F). IR (thin film, NaCl) 1738, 1682, 
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1601, 1227, 1164 cm-1. HRMS (APCI/ESI) m/z calc’d for C15H16FO3 [M+H]+: 263.1078, 

found: 263.1078. 

 

 

allyl 1-oxo-2-(trifluoromethyl)-1,2,3,4-tetrahydronaphthalene-2-carboxylate (4f): 

The procedure for preparation of 4f was adapted from the work of Shibata and 

coworkers.22 

To a stirred solution of methyl 1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate23 (224 

mg, 1.1 mmol, 1.0 equiv) in CH3CN (11 mL) was added DBU (328 mL, 2.2 mmol, 2.0 

equiv) at room temperature. After stirring at room temperature for 15 min, the mixture 

was cooled down to 0 °C and a solution of the trifluoromethylating reagent (561 mg, 1.65 

mmol, 1.5 equiv.) in acetonitrile (11 mL) was added dropwise at the same temperature. 

Reaction mixture was stirred 10 min, and then warmed up to room temperature, the 

solvent was evaporated, after which the crude product was purified by column 

chromatography (SiO2, 10% EtOAc in pentane) to furnish α-trifluoromethyl-β-ketoester 

13 (281mg, 94% yield) as a colorless oil; Rf = 0.18 (10:1 Hexane:EtOAc).  

To a stirred solution of 13 (281mg, 1.03 mmol, 1.0 equiv) in allyl alcohol (30.0 equiv.) 

was added Ti(OiPr)4 (2.0 equiv) at 80 °C under nitrogen atmosphere. After reaction 

mixture was stirred at the same temperature for 24 h, it was cooled down to room 

temperature and quenched with aqueous solution of NH4Cl. Aqueous layer was extracted 

with CH2Cl2 (20 mL x 4), and the combined organic layers was washed with brine, dried 
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over Na2SO4, filtered, and concentrated in vacuo. The crude oil was purified by column 

chromatography (SiO2, 10% EtOAc in hexane) to afford 4f (242 mg, 74% yield) as a light 

yellow oil; Rf = 0.50 (5:1 Hexane:EtOAc); All spectroscopic data were in agreement with 

the literature.9 1H NMR (500 MHz, CDCl3) δ 8.12 (dd, J = 7.8, 1.4 Hz, 1H), 7.53 (app td, 

J = 7.5, 1.4 Hz, 1H), 7.38 –7.32 (m, 1H), 7.24 (d, J = 7.8 Hz, 1H), 5.92 – 5.67 (m, 1H), 

5.32 – 5.07 (m, 2H), 4.84 – 4.56 (m, 2H), 3.22 – 2.97 (m, 2H), 2.85 (dt, J = 13.6, 4.2 Hz, 

1H), 2.50 (ddd, J = 13.6, 10.3, 6.7 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 187.09, 

165.11 (q, JC-F = 1.9 Hz, 1C), 142.14, 134.44, 131.62 (q, JC-F = 1.5 Hz, 1C), 130.53, 

128.82, 128.54, 127.44, 123.95 (q, JC-F = 284.0 Hz, 1C), 119.28, 67.09, 62.15 (q, JC-F = 

24.1 Hz, 1C), 27.83 (q, JC-F = 2.3 Hz, 1C), 25.19. 19F NMR (282 MHz, CDCl3) δ -68.73 

(s, 3F). 

 

 

Allyl 1-oxo-2-(2,2,2-trifluoroethyl)-2,3-dihydro-1H-indene-2-carboxylate (4g): was 

synthesized using the same method with 4a from allyl 1-oxo-2,3-dihydro-1H-indene-2-

carboxylate (14).24 The crude oil was purified by column chromatography (SiO2, 50% 

CH2Cl2 in hexane) to afford 4g (110 mg, 37% yield) as a light yellow oil; Rf = 0.38 (1:1 

Hexane:CH2Cl2); 1H NMR (500 MHz, CDCl3) δ 7.78 (dd, J = 7.7, 0.9 Hz, 1H), 7.66 (app 

td, J = 7.5, 1.2 Hz, 1H), 7.53 (app dt, J = 7.7, 1.0 Hz, 1H), 7.42 (app td, J = 7.9, 0.9 Hz, 

1H), 5.81 (ddt, J = 17.2, 10.5, 5.6 Hz, 1H), 5.39 – 5.15 (m, 2H), 4.64 – 4.53 (m, 2H), 3.88 

(d, J = 17.3 Hz, 1H), 3.52 – 3.15 (m, 2H), 2.66 (dq, J = 15.5, 10.5 Hz, 1H). 13C NMR 
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(101 MHz, CDCl3) δ 199.24, 168.43, 153.15, 136.10, 133.83, 131.18, 128.20, 126.50, 

126.10 (q, JC-F = 277.7 Hz, 1C), 125.32, 118.86, 66.91, 57.37 (q, JC-F = 1.9 Hz, 1C), 37.62 

(q, JC-F = 29.1 Hz, 1C), 35.34 (q, JC-F = 1.7 Hz 1C). 19F NMR (282 MHz, CDCl3) -60.61 

(t, J = 10.5 Hz, 3F).  IR (thin film, NaCl) 1745, 1719, 1608, 1257, 1169 cm-1. HRMS 

(APCI/ESI) m/z calc’d for C15H14F3O3 [M+H]+: 299.0890, found: 299.0898. 

 

 

Allyl 1-oxo-2-(3,3,3-trifluoropropyl)-2,3-dihydro-1H-indene-2-carboxylate (4h): The 

mixture of allyl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate (14) (216 mg, 1.0 mmol, 1.0 

equiv), Cesium carbonate (652 mg, 2.0 mmol, 2.0 equiv) and 1,1,1-trifluoro-3-

iodopropane (447 mL, 2.0 mmol, 2.0 equiv) in CH3CN (5 mL) was heated at 50 °C for 48 

hours. After cooling, the solution was filtered and concentrated in vacuo. The crude 

product was purified by column chromatography (SiO2, 50% CH2Cl2 in hexane) to furnish 

β-ketoester 4h (98 mg, 31% yield) as a colorless oil; Rf = 0.37 (1:1 Hexane:CH2Cl2); 1H 

NMR (500 MHz, CDCl3) δ 7.80 (ddd, J = 7.7, 1.3, 0.8 Hz, 1H), 7.66 (app td, J = 7.5, 1.2 

Hz, 1H), 7.50 (app dt, J = 7.7, 0.9 Hz, 1H), 7.44 (ddd, J = 7.9, 7.2, 0.9 Hz, 1H), 5.83 (ddt, 

J = 17.1, 10.4, 5.6 Hz, 1H), 5.34 – 5.14 (m, 2H), 4.69 – 4.54 (m, 2H), 3.73 (d, J = 17.2 

Hz, 1H), 3.06 (d, J = 17.2 Hz, 1H), 2.39 – 2.24 (m, 2H), 2.22 – 2.06 (m, 2H). 13C NMR 

(101 MHz, CDCl3) δ 201.52, 170.28, 152.45, 135.93, 134.96, 131.37, 128.34, 126.89 (q, 

JC-F = 275.9 Hz, 1C), 126.58, 125.20, 118.83, 66.36, 58.81, 37.62, 29.70 (q, JC-F = 29.2 

Hz, 1C), 27.16 (q, JC-F = 3.3 Hz, 1C).  19F NMR (282 MHz, CDCl3) δ -66.70 (t, J = 10.1 
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Hz, 3F).  IR (thin film, NaCl) 1741, 1711, 1255, 1141 cm-1. HRMS (APCI/ESI) m/z 

calc’d for C16H16F3O3 [M+H]+: 313.1046, found: 313.1040. 

 

 

2-Fluoroallyl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate (15): was synthesized using 

the same method with 11 from 1-Indanone and 14. The crude oil was purified by column 

chromatography (SiO2, 20% Et2O in hexane) to afford 15 (515 mg, 73% yield) as a 

colorless oil; Rf = 0.28 (10:1 Hexane: EtOAc); Mixture of enol ketone form (1/4). 1H 

NMR (300 MHz, CDCl3): ketone form δ 7.82 – 7.74 (m, 0.8H), 7.69 – 7.59 (m, 0.8H), 

7.56 – 7.47 (m, 0.8H), 7.47 – 7.36 (m, 0.8H), 4.95 – 4.57 (m, 3.2H), 3.79 (dd, J = 8.3, 4.2 

Hz, 0.8H), 3.70 – 3.51 (m, 0.8H), 3.49 – 3.30 (m, 0.8H). 13C NMR (101 MHz, CDCl3): 

ketone form δ 199.00, 168.60, 159.81 (d, JC-F = 257.5 Hz, 0.8C), 153.54, 135.70, 135.23, 

128.06, 126.70, 124.92, 94.69 (d, JC-F = 16.6 Hz, 0.8C), 62.20 (d, JC-F = 35.1 Hz, 0.8C), 

53.16, 30.38. 19F NMR (282 MHz, CDCl3) δ -105.40 – -105.71 (m, 0.2F), -105.72 – -

106.08 (m, 0.8F).  IR (thin film, NaCl) 1745, 1713, 1685, 1204, 1150, 761 cm-1; HRMS 

(APCI/ESI) m/z calc’d for C13H10FO3 [M-H]–: 233.0619, found: 233.0618. 

2-Fluoroallyl 2-fluoro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4i): was 

synthesized using the same method with 4d from 15. The crude oil was purified by 

column chromatography (SiO2, 10% EtOAc in hexane) to afford 4i (176 mg, 70% yield) 

as a pale solid; Rf  = 0.28 (10:1 Hexane:EtOAc);  1H NMR (500 MHz, CDCl3) δ 7.85 (dd, 

J = 7.7, 0.7 Hz, 1H), 7.72 (app td, J = 7.5, 1.2 Hz, 1H), 7.55 – 7.43 (m, 2H), 4.85 – 4.64 

(m, 3H), 4.60 (dd, J = 47.0, 3.5 Hz, 1H), 3.82 (dd, J = 17.7, 11.7 Hz, 1H), 3.48 (dd, J = 

TiCl4 (0.09 eq.)
select-fluor (1.2 eq.)

CH3CN, rt., 2 h
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23.3, 17.6 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 194.81 (d, J C-F = 18.2 Hz, 1C), 166.79 

(d, J C-F = 28.5 Hz, 1C), 158.91 (d, JC-F = 257.6 Hz, 1C), 150.85 (d, J C-F = 3.4 Hz, 1C), 

137.02, 133.20, 128.88, 126.76 (d, JC-F = 1.3 Hz, 1C), 125.87 (d, JC-F = 1.1 Hz, 1C), 95.41 

(d, J = 16.6 Hz, 1C), 94.57 (d, JC-F = 202.0 Hz, 1C), 62.67 (d, JC-F = 34.7 Hz, 1C), 38.33 

(d, JC-F = 23.8 Hz, 1C). 19F NMR (282 MHz, CDCl3) δ -106.19 – -106.51 (m, 1F), -

164.54 (dd, J = 23.3, 11.9 H, 1F).  IR (thin film, NaCl) 1771, 1724, 1600, 1282, 1184, 

1071 cm-1. HRMS (APCI/ESI) m/z calc’d for C13H11F2O2 [M+H]+: 253.0671, found: 

253.0672. 

 

 

2-Fluoroallyl 2-methyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4j): was 

synthesized using the same method with 4e from 15. The crude oil was purified by 

column chromatography (SiO2, 100% CH2Cl2) to afford 4j (170 mg, 69% yield) as a 

colorless oil; Rf = 0.34 (10:1 Hexane:EtOAc); 1H NMR (500 MHz, CDCl3) δ 7.80 (dd, J 

= 7.7, 0.5 Hz, 1H), 7.64 (app td, J = 7.5, 1.2 Hz, 1H), 7.49 (app dt, J = 7.7, 1.0 Hz, 1H), 

7.45 – 7.40 (m, 1H), 4.75 (dd, J = 16.1, 3.3 Hz, 1H), 4.70 – 4.47 (m, 3H), 3.74 (dd, J = 

17.1, 0.9 Hz, 1H), 3.04 (dq, J = 17.0, 0.7 Hz, 1H), 1.55 (s, 3H). 13C NMR (101 MHz, 

CDCl3) δ 203.01, 171.38, 159.77 (d, JC-F = 257.4 Hz, 1C), 152.58, 135.62, 134.61, 

128.07, 126.63, 125.18, 94.21 (d, JC-F = 16.6 Hz, 1C), 61.90 (d, JC-F = 35.4 Hz, 1C), 

56.08, 40.04, 21.13.  19F NMR (282 MHz, CDCl3) δ -106.09 – -106.41 (m, 1F). IR (thin 

film, NaCl) 1748, 1712, 1606, 1280, 1156, 1091 cm-1; HRMS (APCI/ESI) m/z calc’d for 

C14H14FO3 [M+H]+: 249.0921, found: 249.0919. 

Cs2CO3 (2 eq.)
MeI (2 eq.)

CH3CN (0.2 M)
50 °C, on.

O
O

O
F

O
O

O
F

Me
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Allyl 1-benzoyl-2-oxo-3-(3,3,3-trifluoropropyl)piperidine-3-carboxylate (4k): was 

synthesized using the same method as 4b from allyl 1-benzoyl-2-oxopiperidine-3-

carboxylate (16) 12. The crude oil was purified by column chromatography (SiO2, 100% 

CH2Cl2) to afford 4k (142 mg, 37% yield) as a colorless oil; Rf = 0.54 (3:1 

Hexane:EtOAc); 1H NMR (500 MHz, CDCl3) δ 7.75 – 7.70 (m, 2H), 7.52 – 7.48 (m, 

1H), 7.41 – 7.38 (m, 2H), 5.99 (ddt, J = 17.2, 10.4, 6.1 Hz, 1H), 5.43 (dq, J = 17.1, 1.4 

Hz, 1H), 5.37 (dq, J = 10.4, 1.1 Hz, 1H), 4.76 (dq, J = 6.1, 1.1 Hz, 2H), 3.87 – 3.25 (m, 

2H), 2.52 – 2.40 (m, 1H), 2.42 – 2.28 (m, 1H), 2.18 – 1.99 (m, 5H), 1.87 (ddd, J = 13.7, 

9.6, 5.9 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 174.99, 171.51, 171.21, 135.65, 132.12, 

131.09, 128.31 (2C), 128.22 (2C), 126.89 (q, JC-F = 276.4 Hz, 1C), 120.47, 67.02, 55.42, 

46.71, 31.71, 29.97 (q, JC-F = 29.0 Hz), 28.41 (q, JC-F = 3.3 Hz, 1C), 20.24. 19F NMR (282 

MHz, CDCl3) δ -66.79 (t, J = 10.1 Hz, 3F). IR (thin film, NaCl) 1735, 1685, 1451, 1393, 

1276, 1256, 1147 cm-1. HRMS (APCI/ESI) m/z calc’d for C19H21F3NO4 [M+H]+: 

384.1417, found: 384.1414. 

 

 

2-Fluoroallyl 1-benzoyl-2-oxopiperidine-3-carboxylate (17): was synthesized using the 

same method as 10 from 1-benzoylpiperidin-2-one and 9. The crude oil was purified by 

column chromatography (SiO2, 100% CH2Cl2) to afford 17 (482 mg, 53% yield) as a 

BzN

O

O

O
BzN

O

O

O

CF3
16 4k

NaH (1.2 eq.)
CF3CH2CH2I (1.5 eq.)

THF (0.5 M), 60 °C, 24 h
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colorless oil; Rf = 0.37 (3:1 Hexane: EtOAc); 93% purity, ketone form. 1H NMR (500 

MHz, CDCl3) δ 7.73 – 7.64 (m, 2H), 7.52 – 7.46 (m, 1H), 7.42 – 7.36 (m, 2H), 4.87 (ddd, 

J = 15.6, 3.4, 0.6 Hz, 1H), 4.78 – 4.64 (m, 3H), 3.95 – 3.78 (m, 2H), 3.64 (t, J = 6.6 Hz, 

1H), 2.39 – 2.32 (m, 1H), 2.26 – 2.18 (m, 1H), 2.14 – 2.06 (m, 1H), 2.03 – 1.93 (m, 1H). 

13C NMR (101 MHz, CDCl3) δ 174.60, 169.34, 169.05, 159.56 (d, JC-F = 258.1 Hz, 1C), 

135.46, 132.06, 128.33 (2C), 128.29 (2C), 95.53 (d, JC-F = 16.9 Hz, 1C), 62.51 (d, JC-F = 

33.1 Hz, 1C), 51.03, 46.40, 25.59, 20.75.  19F NMR (282 MHz, CDCl3) δ -105.57 (dq, J = 

46.2, 15.1 Hz, 1F). IR (thin film, NaCl) 1744, 1682, 1449, 1394, 1283, 1257, 1151, 1114 

cm-1. HRMS (APCI/ESI) m/z calc’d for C16H17FNO4 [M+H]+: 306.1136, found: 

306.1131. 

2-Fluoroallyl 1-benzoyl-3-methyl-2-oxopiperidine-3-carboxylate (4l): was synthesized 

using the same method as 4e from 17. The crude oil was purified by column 

chromatography (SiO2, 100% CH2Cl2) to afford 4l (186 mg, 56% yield) as light yellow 

oil; Rf = 0.30 (3:1 Hexane:EtOAc); 1H NMR (500 MHz, CDCl3) δ 7.73 – 7.66 (m, 2H), 

7.52 – 7.45 (m, 1H), 7.41 – 7.35 (m, 2H), 4.90 (dd, J = 15.5, 3.4 Hz, 1H), 4.82 – 4.63 (m, 

3H), 3.89 (dt, J = 12.8, 7.1 Hz, 1H), 3.83 – 3.76 (m, 1H), 2.68 – 2.43 (m, 1H), 2.12 – 1.96 

(m, 2H), 1.91 – 1.80 (m, 1H), 1.52 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 175.06, 

172.57, 172.32, 159.58 (d, JC-F = 258.4 Hz, 1C), 135.91, 131.84, 128.22 (2C), 128.06 

(2C), 95.76 (d, JC-F = 17.0 Hz, 1C), 62.63 (d, JC-F = 32.5 Hz, 1C), 52.99, 46.91, 33.87, 

22.58, 20.25. 19F NMR (282 MHz, CDCl3) δ-105.20 – -105.53 (m, 1F). IR (thin film, 

NaCl) 1718, 1684, 1458, 1390, 1276, 1189, 1127 cm-1; HRMS (APCI/ESI) m/z calc’d for 

C17H19FNO4 [M+H]+: 320.1293, found: 320.1298. 
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Allyl 1-(benzyloxy)-2,6-dioxo-3-(3,3,3-trifluoropropyl)piperidine-3-carboxylate 

(4m): was synthesized using the same method with 4h from allyl 1-(benzyloxy)-2,6-

dioxopiperidine-3-carboxylate (18)25 except that the temperature was 70 °C and reaction 

time was 24 hours. The crude oil was purified by column chromatography (SiO2, 50% 

EtOAc in hexane) to afford 4m (120 mg, 30% yield) as a colorless oil; Rf = 0.28 (3:1 

Hexane: EtOAc); (99.7% purity determined by 19F NMR). 1H NMR (500 MHz, CDCl3) δ 

7.53 – 7.49 (m, 2H), 7.40 – 7.34 (m, 3H), 5.87 (ddt, J = 16.5, 10.3, 6.0 Hz, 1H), 5.36 (dq, 

J = 17.2, 1.4 Hz, 1H), 5.32 (dq, J = 10.4, 1.1 Hz, 1H), 5.02 (s, 2H), 4.69 (d, J = 6.1 Hz, 

2H), 2.81 (ddd, J = 18.1, 5.0, 3.3 Hz, 1H), 2.69 (ddd, J = 18.0, 12.6, 5.3 Hz, 1H), 2.49 – 

2.30 (m, 1H), 2.29 – 1.98 (m, 4H), 1.90 (td, J = 13.2, 5.0 Hz, 1H). 13C NMR (101 MHz, 

CDCl3) δ 169.37, 166.85, 166.65, 133.69, 130.52, 130.24 (2C), 129.44, 128.60 (2C), 

126.64 (q, JC-F = 276.4 Hz, 1C), 120.74, 77.98, 67.29, 54.56, 30.21, 29.58 (q, JC-F = 29.5 

Hz, 1C), 27.82 (q, J C-F = 3.3 Hz, 1C), 26.30. 19F NMR (282 MHz, CDCl3) δ -66.78 (t, J = 

10.1 Hz, 3F). IR (thin film, NaCl) 1738, 1710, 1454, 1258, 1189, 1160, 1000, 977 cm-1. 

HRMS (APCI/ESI) m/z calc’d for C19H21F3NO5 [M+H]+: 400.1366, found: 400.1379. 
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Allyl 1-benzoyl-2-oxo-3-(3,3,3-trifluoropropyl)pyrrolidine-3-carboxylate (4n): was 

synthesized using the same method with 4h from allyl 1-benzoyl-2-oxopyrrolidine-3-

carboxylate (19).26 The crude oil was purified by column chromatography (SiO2, 25% 

EtOAc in hexane) to afford 4n (170 mg, 46% yield) as a colorless oil; Rf = 0.50 (3:1 

Hexane: EtOAc); 1H NMR (500 MHz, CDCl3) δ 7.62 – 7.59 (m, 2H), 7.57 – 7.52 (m, 

1H), 7.44 – 7.39 (m, 2H), 5.92 (ddt, J = 17.1, 10.3, 5.8 Hz, 1H), 5.37 (dq, J = 17.1, 1.4 

Hz, 1H), 5.32 (dq, J = 10.4, 1.2 Hz, 1H), 4.71 (dt, J = 5.8, 1.3 Hz, 2H), 4.08 (ddd, J = 

11.4, 8.7, 3.6 Hz, 1H), 3.96 (ddd, J = 11.4, 8.2, 7.7 Hz, 1H), 2.63 (ddd, J = 13.3, 7.7, 3.7 

Hz, 1H), 2.54 – 2.36 (m, 1H), 2.28 – 1.97 (m, 3H). 13C NMR (101 MHz, CDCl3) δ 

171.49, 170.34, 169.63, 133.73, 132.44, 130.95, 128.94 (2C), 128.05 (2C), 126.74 (q, JC-F 

= 276.0 Hz, 1C), 119.86, 66.89, 56.37, 43.49, 29.41 (q, JC-F = 29.4 Hz, 1C), 28.62, 26.64 

(q, JC-F = 3.4 Hz, 1C).  19F NMR (282 MHz, CDCl3) δ -66.79 (t, J = 9.9 Hz, 3F). IR (thin 

film, NaCl) 1748, 1731, 1682, 1449, 1293, 1253, 1218, 1131 cm-1. HRMS (APCI/ESI) 

m/z calc’d for C18H19F3NO4 [M+H]+: 370.1261, found: 370.1254. 

 

Representative Procedure 1: Enantioselective Allylic Alkylation. 

Oven-dried half-dram vials were charged with the palladium source (Pd2dba3 or 

Pd2pmdba3, 0.005 mmol, 0.05 equiv) and  (S)-(CF3)3-tBu-PHOX (7.4 mg, 0.0125 mmol, 

0.125 equiv) and toluene (2 mL) in a nitrogen-filled glovebox. After stirring at ambient 

glovebox temperature (~28 °C) for 30 min, solutions of the substrates (0.1 mmol, 1.0 

BzN
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O BzN
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50 °C, 48 h
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equiv) in 1 mL of toluene were added. The reaction vials were tightly capped and 

removed from the glovebox. After 24 hours at ambient temperature or heating at the 

desired temperatures, the solvent was removed by vacuo. The crude mixture were 

separated on the preparative thin layer plate, filtered, washed with Et2O, removed solvent 

and analyzed for enantiomeric excess and optical rotations (see Methods for the 

Determination of Enantiomeric Excess).  

Representative Procedure 2: Racemic Allylic Alkylation. 

Oven-dried half-dram vials were charged with the Pd(PPh3)4 (0.1 equiv) and substrate 

(1.0 equiv) and toluene (0.1 M) in a nitrogen-filled glovebox. The reaction vials were 

tightly capped and removed from the glovebox. After 24 hours at ambient temperature or 

heating at the desired temperatures, the solvent was removed by vacuo. The crude 

mixture were separated on the preparative thin layer plate, filtered, washed with Et2O, 

removed solvent to give the desired racemic products. 

Representative Procedure 3: Racemic Allylic Alkylation. 

Oven-dried half-dram vials were charged with the palladium source (Pd2dba3 or 

Pd2pmdba3, 0.05 equiv) and Gly-PHOX (0.125 equiv) and toluene (0.1 M) in nitrogen-

filled glovebox. After stirring at ambient glovebox temperature (~28 °C) for 30 min, 

solutions of the substrates (1.0 equiv) in toluene were added. The reaction vials were 

tightly capped and removed from the glovebox. After 24 hours at ambient temperature or 

heating at the desired temperatures, the solvent was removed by vacuo. The crude 

mixture was separated on the preparative thin layer plate, filtered, and washed with Et2O, 

and the solvent removed to give desired racemic products. 
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Representative Procedure 4: Preparatory Scale Reaction. 

An oven-dried 250 mL Schlenck flask was charged with Pd2dba3 (94 mg, 0.103 mmol, 

0.05 equiv) and  (S)-(CF3)3-t-Bu-PHOX (152 mg, 0.26 mmol, 0.125 equiv) and toluene 

(12 mL) in a nitrogen-filled glovebox. After stirring at ambient glovebox temperature 

(~28 °C) for 30 min, a solution of 4c (512 mg, 2.06 mmol, 1.0 equiv) in 50 mL of toluene 

was added. The reaction vessel was sealed and removed from the glovebox. After 24 

hours at ambient temperature the solvent was removed in vacuo. The product was 

purified by column chromatography (SiO2,  5% EtOAc in hexanes) to afford 5c (419 mg, 

99% yield, 92% ee). 

 

 

(S)-2-allyl-2-(2,2,2-trifluoroethyl)-3,4-dihydronaphthalen-1(2H)-one (5a): 26.5 mg, 

99% yield; colorless oil; Rf = 0.47 (10:1 Hexane:EtOAc); 1H NMR (500 MHz, CDCl3) δ 

8.07 (dd, J = 7.9, 1.4 Hz, 1H), 7.50 (app td, J = 7.5, 1.5 Hz, 1H), 7.33 (app t, J = 7.6 Hz, 

1H), 7.24 (d, J = 7.8 Hz, 1H), 5.72 (ddt, J = 17.4, 10.1, 7.4 Hz, 1H), 5.19 (d, J = 10.1 Hz, 

1H), 5.12 (dd, J = 16.9, 1.6 Hz, 1H), 3.14 (ddd, J = 16.9, 11.6, 4.9 Hz, 1H), 3.00 – 2.82 

(m, 2H), 2.49 (dd, J = 14.3, 7.4 Hz, 1H), 2.41 – 2.24 (m, 3H), 2.17 (dt, J = 14.0, 4.4 Hz, 

1H). 13C NMR (101 MHz, CDCl3) δ 198.27, 142.73, 133.72, 132.15, 130.92, 128.88, 

128.58, 127.08, 126.79 (q, JC-F = 277.8 Hz, 1C), 120.17, 45.95, 38.58, 37.54 (d, JC-F = 

28.8 Hz, 1C), 29.60 (q, JC-F = 1.7 Hz, 1C), 24.88. 19F NMR (282 MHz, CDCl3) δ -58.69 

(t, J = 11.7 Hz, 3F). IR (thin film, NaCl) 1683, 1600, 1256, 1130, 740 cm-1. HRMS 

(FAB) m/z calc’d for C15H16F3O [M+H]+: 269.1148, found: 269.1159. 

O CF3
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(R)-2-allyl-2-(3,3,3-trifluoropropyl)-3,4-dihydronaphthalen-1(2H)-one (5b): 27.4 mg, 

97% yield; colorless oil; Rf = 0.50 (10:1 Hexane:EtOAc); 1H NMR (500 MHz, CDCl3) δ 

8.04 (ddd, J = 7.9, 1.4, 0.5 Hz, 1H), 7.49 (app td, J = 7.5, 1.5 Hz, 1H), 7.32 (app t, J = 7.6 

Hz, 1H), 7.24 (d, J = 7.5 Hz, 1H), 5.75 (ddt, J = 16.8, 10.2, 7.4 Hz, 1H), 5.23 – 5.04 (m, 

2H), 3.07 (ddd, J = 17.5, 7.9, 5.6 Hz, 1H), 2.99 (dt, J = 17.5, 6.0 Hz, 1H), 2.45 (ddt, J = 

14.2, 7.3, 1.2 Hz, 1H), 2.33 (ddt, J = 14.1, 7.4, 1.2 Hz, 1H), 2.24 – 2.01 (m, 4H), 1.97 (td, 

J = 13.7, 4.4 Hz, 1H), 1.79 (td, J = 13.5, 4.2 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 

200.39, 142.94, 133.64, 132.82, 131.53, 128.91, 128.23, 127.42 (q, JC-F = 276.9 Hz, 1C), 

127.02, 119.27, 46.63, 38.72, 31.04, 28.93 (q, JC-F = 28.8 Hz, 1C), 26.54 (q, JC-F = 3.3 Hz, 

1C), 24.99. 19F NMR (282 MHz, CDCl3) δ -66.62 (t, J = 10.4 Hz, 3F). IR (thin film, 

NaCl) 1682, 1601, 1259, 1136, 743 cm-1. HRMS (APCI/ESI) m/z calc’d for C16H18F3O 

[M+H]+: 283.1304, found: 283.1305.  

 

(R)-2-allyl-2-fluoro-3,4-dihydronaphthalen-1(2H)-one (5c)27, 28: 20.3 mg, 99% yield; 

colorless oil; Rf = 0.28 (10:1 Hexane:EtOAc); 1H NMR (500 MHz, CDCl3) δ 8.06 (dd, J 

= 7.8, 1.4 Hz, 1H), 7.52 (app td, J = 7.5, 1.5 Hz, 1H), 7.35 (app td, J = 7.5, 1.1 Hz, 1H), 

7.28 – 7.24 (m, 1H), 5.95 – 5.84 (m, 1H), 5.25 – 5.07 (m, 2H), 3.19 – 3.07 (m, 1H), 3.02 

O
CF3
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(ddd, J = 17.3, 9.6, 5.3 Hz, 1H), 2.77 – 2.66 (m, 1H), 2.64 – 2.49 (m, 1H), 2.48 – 2.26 

(m, 2H). 13C NMR (101 MHz, CDCl3) δ 194.12 (d, JC-F = 17.6 Hz, 1C), 142.82, 134.20, 

130.97 (d, JC-F = 4.1 Hz, 1C), 128.87, 128.40, 128.39, 127.23, 120.01, 95.11 (d, JC-F = 

185.0 Hz, 1C), 38.09 (d, JC-F = 23.5 Hz, 1C), 32.01 (d, JC-F = 22.6 Hz, 1C), 26.01 (d, JC-F 

= 10.1 Hz, 1C). 19F NMR (282 MHz, CDCl3) δ -159.85 – -160.09 (m, 1F). IR (thin film, 

NaCl) 1678, 1602, 1221, 930, 741 cm-1. HRMS (APCI/ESI) m/z calc’d for C13H14FO 

[M+H]+: 205.1023, found: 205.1023.  

 

 

(R)-2-(2-chloroallyl)-2-fluoro-3,4-dihydronaphthalen-1(2H)-one (5d): 22.9 mg, 96% 

yield; colorless oil; Rf = 0.43 (10:1 Hexane:EtOAc); 1H NMR (500 MHz, CDCl3) δ 8.06 

(dd, J = 7.8, 1.3 Hz, 1H), 7.54 (app td, J = 7.5, 1.5 Hz, 1H), 7.36  (app t, J = 7.8 Hz, 1H), 

7.28 (d, J = 7.8 Hz, 1H), 5.45 (d, J = 1.2 Hz, 1H), 5.39 (d, J = 0.7 Hz, 1H), 3.24 – 3.01 

(m, 3H), 2.90 (dd, J = 27.4, 15.3 Hz, 1H), 2.60 – 2.42 (m, 2H).  13C NMR (101 MHz, 

CDCl3) δ 192.92 (d, JC-F = 18.5 Hz, 1C), 142.94, 134.78 (d, JC-F = 2.6 Hz, 1C), 134.41, 

130.74, 128.88, 128.60 (d, JC-F = 1.2 Hz, 1C), 127.31, 118.62 (d, JC-F = 1.1 Hz, 1C), 94.03 

(d, JC-F = 185.8 Hz, 1C), 42.67 (d, JC-F = 24.4 Hz, 1C), 31.69 (d, JC-F = 22.3 Hz, 1C), 

26.00 (d, JC-F = 9.9 Hz, 1C). 19F NMR (282 MHz, CDCl3) δ -158.17 – -158.43 (m, 1F).  

IR (thin film, NaCl) 1680, 1631, 1602, 1223, 743 cm-1. HRMS (APCI/ESI) m/z calc’d for 

C13H13ClFO [M+H]+: 239.0633, found: 239.0633. 
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(S)-2-(2-fluoroallyl)-2-methyl-3,4-dihydronaphthalen-1(2H)-one (5e): 20.0 mg, 92% 

yield; colorless oil; Rf = 0.53 (10:1 Hexane:EtOAc); 1H NMR (500 MHz, CDCl3) δ 8.04 

(dd, J = 7.9, 1.4 Hz, 1H), 7.47 (app td, J = 7.4, 1.5 Hz, 1H), 7.31 (app t, J = 7.5 Hz, 1H), 

7.23 (d, J = 7.7 Hz, 1H), 4.64 (dd, J = 17.2, 2.6 Hz, 1H), 4.32 (dd, J = 49.5, 2.6 Hz, 1H), 

3.09 – 2.94 (m, 2H), 2.66 (dd, J = 20.5, 14.6 Hz, 1H), 2.50 (dd, J = 25.1, 14.6 Hz, 1H), 

2.17 (dddd, J = 14.4, 9.1, 5.2, 1.3 Hz, 1H), 2.04 (dddd, J = 13.8, 6.0, 5.0, 1.1 Hz, 1H), 

1.26 (d, J = 0.9 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 201.14, 164.07 (d, JC-F = 157.8 

Hz, 1C), 143.28, 133.41, 131.34, 128.81, 128.28, 126.86, 93.85 (d, JC-F = 20.2 Hz, 1C), 

44.26 (d, JC-F = 3.3 Hz, 1C), 39.39 (d, JC-F = 25.7 Hz, 1C), 33.30 (d, JC-F = 1.8 Hz, 1C), 

25.48, 21.94 (d, JC-F = 1.5 Hz, 1C).  19F NMR (282 MHz, CDCl3) δ -88.59 – -88.99 (m, 

1F). IR (thin film, NaCl) 1680, 1601, 1222, 741 cm-1. HRMS (APCI/ESI) m/z calc’d for 

C14H16FO [M+H]+: 219.1180, found: 219.1185. 

 

(R)-2-allyl-2-(trifluoromethyl)-3,4-dihydronaphthalen-1(2H)-one (5f)29: 22.8 mg, 90% 

yield; colorless oil; Rf = 0.36 (10:1 Hexane:EtOAc); 1H NMR (500 MHz, CDCl3) δ 8.07 

(dd, J = 7.9, 1.4 Hz, 1H), 7.51 (app td, J = 7.5, 1.5 Hz, 1H), 7.34 (app t, J = 7.6 Hz, 1H), 

7.25 (d, J = 7.9 Hz, 1H), 5.87 – 5.65 (m, 1H), 5.21 – 5.11 (m, 2H), 3.10 (dt, J = 17.5, 6.7 

Hz, 1H), 3.02 (dt, J = 17.3, 6.1 Hz, 1H), 2.76 (dd, J = 14.3, 7.3 Hz, 1H), 2.59 (dd, J = 

14.3, 2.6 Hz, 1H), 2.43 – 2.25 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 192.89, 143.09, 
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134.20, 131.84, 131.57 (d, J = 1.5 Hz), 128.88, 128.50, 127.18, 126.57 (q, JC-F = 285.3 

Hz, 1C), 120.08, 53.58 (q, JC-F = 22.3 Hz, 1C), 35.56 (q, JC-F = 2.2 Hz, 1C), 26.47 (q, JC-F 

= 2.0 Hz, 1C), 24.71. 19F NMR (282 MHz, CDCl3) δ -69.26 (s, 3F). IR (thin film, NaCl) 

1688, 1601, 1161, 741cm-1. 

 

 

(R)-2-allyl-2-(2,2,2-trifluoroethyl)-2,3-dihydro-1H-inden-1-one (5g): 21.8 mg, 86% 

yield; colorless oil; Rf = 0.40 (10:1 Hexane:EtOAc); 1H NMR (500 MHz, CDCl3) δ 7.77 

(d, J = 7.7 Hz, 1H), 7.62 (app td, J = 7.5, 1.2 Hz, 1H), 7.45 (d, J = 7.7 Hz, 1H), 7.40 (app 

t, J = 7.4 Hz, 1H), 5.58 – 5.47 (m, 1H), 5.19 – 4.96 (m, 2H), 3.36 (d, J = 17.6 Hz, 1H), 

3.14 (d, J = 17.6 Hz, 1H), 2.64 – 2.48 (m, 2H), 2.45 (dd, J = 13.7, 6.7 Hz, 1H), 2.34 (dd, 

J = 13.7, 8.0 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 207.28, 152.43, 135.55, 135.38, 

131.99, 127.87, 126.60 (q, JC-F = 278.7 Hz, 1C), 126.59, 124.51, 119.93, 49.03 (d, JC-F = 

1.7 Hz, 1C), 42.44, 39.20 (q, JC-F = 27.7 Hz, 1C), 36.24 (q, JC-F = 1.9 Hz, 1C). 19F NMR 

(282 MHz, CDCl3) δ -59.71 (t, J = 11.3 Hz, 3F). IR (thin film, NaCl) 1715, 1608, 1258, 

1122 cm-1. HRMS (FAB+) m/z calc’d for C14H14F3O [M+H]+: 255.0991, found: 255.0995. 

 

 

(R)-2-allyl-2-(3,3,3-trifluoropropyl)-2,3-dihydro-1H-inden-1-one (5h): 24.8 mg, 92% 

yield; colorless oil; Rf = 0.41 (10:1 Hexane:EtOAc); 1H NMR (500 MHz, CDCl3) δ 7.75 
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(app dt, J = 7.6, 0.9 Hz, 1H), 7.62 (app td, J = 7.5, 1.2 Hz, 1H), 7.45 (app dt, J = 7.7, 0.9 

Hz, 1H), 7.39 (app t, J = 7.6 Hz, 1H), 5.53 (dddd, J = 16.8, 10.1, 8.0, 6.7 Hz, 1H), 5.12 

(dq, J = 16.9, 1.5 Hz, 1H), 5.03 (dd, J = 10.1, 1.0 Hz, 1H), 3.17 (dd, J = 17.4, 0.9 Hz, 

1H), 2.91 (d, J = 17.4 Hz, 1H), 2.42 (ddt, J = 13.7, 6.6, 1.3 Hz, 1H), 2.34 (ddt, J = 13.7, 

8.1, 1.0 Hz, 1H), 2.16 – 1.90 (m, 3H), 1.86 – 1.74 (m, 1H). 13C NMR (101 MHz, CDCl3) 

δ 209.23, 152.52, 136.37, 135.51, 132.76, 127.92, 127.09 (q, JC-F = 276.0 Hz, 1C), 

126.67, 124.31, 119.33, 50.95, 41.37, 37.27, 31.54 – 27.19 (m, 2C). 19F NMR (282 MHz, 

CDCl3) δ -66.65 (t, J = 10.3 Hz, 3F). IR (thin film, NaCl) 1709, 1608, 1256, 1150 cm-1. 

HRMS (APCI/ESI) m/z calc’d for C15H16F3O [M+H]+: 269.1148, found: 269.1158. 

 

 

(R)-2-fluoro-2-(2-fluoroallyl)-2,3-dihydro-1H-inden-1-one (5i): 20.0 mg, 96% yield; 

colorless oil; Rf = 0.30 (5:1 Hexane:EtOAc); 1H NMR (500 MHz, CDCl3) δ 7.82 (ddd, J 

= 7.7, 1.3, 0.7 Hz, 1H), 7.67 (App td, J = 7.5, 1.3 Hz, 1H), 7.50 – 7.40 (m, 2H), 4.71 (dd, 

J = 17.0, 3.0 Hz, 1H), 4.48 (dd, J = 49.1, 3.0 Hz, 1H), 3.61 (ddt, J = 17.8, 13.7, 0.7 Hz, 

1H), 3.40 (dd, J = 23.7, 17.8 Hz, 1H), 3.00 (ddd, J = 22.5, 15.1, 10.7 Hz, 1H), 2.77 – 2.63 

(m, 1H). 13C NMR (101 MHz, CDCl3) δ 199.64 (d, JC-F = 17.6 Hz, 1C), 160.59 (dd, JC-F = 

257.4, 7.6 Hz, 1C), 150.61 (d, JC-F = 3.4 Hz, 1C), 136.67, 133.63 (d, JC-F = 1.2 Hz, 1C), 

128.49, 126.85 (d, JC-F = 1.2 Hz, 1C), 125.33, 95.17 (dd, JC-F = 18.7, 1.3 Hz, 1C), 94.75 

(dd, JC-F = 188.4, 2.4 Hz, 1C), 37.73 (dd, JC-F = 24.6, 2.3 Hz, 1C), 37.28 (t, JC-F = 27.1 Hz, 

1C). 19F NMR (282 MHz, CDCl3) δ -92.01 – -92.40 (m, 1F), -154.37 – -154.65 (m, 1F). 
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IR (thin film, NaCl) 1732, 1608, 1227, 730 cm-1. HRMS (APCI/ESI) m/z calc’d for 

C12H11F2O [M+H]+: 209.0772, found: 209.0770. 

 

 

(S)-2-(2-fluoroallyl)-2-methyl-2,3-dihydro-1H-inden-1-one (5j): 21.8 mg, 97% yield; 

colorless oil; Rf = 0.33 (10:1 Hexane:EtOAc); 1H NMR (500 MHz, CDCl3) δ 7.76 (dt, J = 

7.6, 1.0 Hz, 1H), 7.60 (app td, J = 7.4, 1.2 Hz, 1H), 7.44 (dt, J = 7.7, 1.0 Hz, 1H), 7.38 

(app td, J = 7.4, 0.9 Hz, 1H), 4.58 (ddd, J = 17.3, 2.8, 0.7 Hz, 1H), 4.30 (ddd, J = 49.6, 

2.8, 0.7 Hz, 1H), 3.36 (d, J = 17.3 Hz, 1H), 2.93 (d, J = 17.3 Hz, 1H), 2.58 – 2.45 (m, 

2H), 1.25 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 209.74, 164.02 (d, JC-F = 258.2 Hz, 1C), 

152.63, 135.20, 127.66, 126.76, 124.62, 93.46 (d, JC-F = 19.9 Hz, 1C), 47.85 (d, JC-F = 2.8 

Hz, 1C), 43.62 – 34.74 (m, 2C), 24.19. 19F NMR (282 MHz, CDCl3) δ -91.35 – -91.74 

(m, 1F).  IR (thin film, NaCl) 1732, 1608, 1227, 730 cm-1. HRMS (APCI/ESI) m/z calc’d 

for C13H14FO [M+H]+: 205.1023, found: 205.1022.  

 

 

(R)-3-allyl-1-benzoyl-3-(3,3,3-trifluoropropyl)piperidin-2-one (5k): 27.4 mg, 94% 

yield; colorless oil; Rf = 0.37 (3:1 Hexane:EtOAc); 1H NMR (500 MHz, CDCl3) δ 7.55 – 

7.47 (m, 3H), 7.40 – 7.38 (m, 2H), 5.72 (ddt, J = 17.4, 10.2, 7.3 Hz, 1H), 5.22 – 5.15 (m, 

2H), 3.84 – 3.71 (m, 2H), 2.55 (ddt, J = 13.9, 7.2, 1.2 Hz, 1H), 2.38 (ddt, J = 13.9, 7.5, 
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1.2 Hz, 1H), 2.21 – 1.93 (m, 5H), 1.93 – 1.86 (m, 2H), 1.84 – 1.77 (m, 1H). 13C NMR 

(101 MHz, CDCl3) δ 177.21, 175.61, 136.46, 132.11, 131.79, 128.44 (2C), 127.47 (2C), 

127.23 (q, JC-F = 276.9 Hz, 1C), 120.09, 47.20, 46.09, 41.13, 31.62, 29.32, 29.13 (q, JC-F = 

28.8 Hz, 1C), 19.41. 19F NMR (282 MHz, CDCl3) δ -66.53 (t, J = 10.5 Hz, 3F). IR (thin 

film, NaCl) 2950, 1682, 1258, 1149 cm-1; HRMS (APCI/ESI) m/z calc’d for C18H21F3NO2 

[M+H]+: 340.1519, found: 340.1519. 

 

(S)-1-benzoyl-3-(2-fluoroallyl)-3-methylpiperidin-2-one (5l): 23.5 mg, 85% yield; 

colorless oil; Rf = 0.52 (3:1 Hexane:EtOAc); 1H NMR (500 MHz, CDCl3) δ 7.55 – 7.50 

(m, 2H), 7.49 – 7.44 (m, 1H), 7.41 – 7.35 (m, 2H), 4.67 (ddd, J = 17.3, 2.7, 0.7 Hz, 1H), 

4.32 (ddd, J = 49.7, 2.7, 0.5 Hz, 1H), 4.00 – 3.84 (m, 1H), 3.79 – 3.62 (m, 1H), 2.76 (dd, 

J = 19.4, 14.6 Hz, 1H), 2.41 (ddd, J = 24.8, 14.6, 0.8 Hz, 1H), 2.19 – 1.95 (m, 3H), 1.93 – 

1.75 (m, 1H), 1.42 (s, 3H).  13C NMR (101 MHz, CDCl3) δ 176.80 (d, JC-F = 289.8 Hz, 

1C), 163.47 (d, JC-F = 258.1 Hz, 1C), 136.47, 131.55, 128.28 (2C), 127.52 (2C), 94.42 (d, 

JC-F = 20.0 Hz, 1C), 47.16, 43.60 (d, JC-F = 3.1 Hz, 1C), 41.10 (d, JC-F = 25.5 Hz, 1C), 

33.28 (d, JC-F = 1.9 Hz, 1C), 25.83 (d, JC-F = 1.5 Hz, 1C), 19.72. 19F NMR (282 MHz, 

CDCl3) δ -89.31 – 89.70 (m, 1F).  IR (thin film, NaCl) 2942, 1697, 1672, 1277, 1144 cm-

1. HRMS (APCI/ESI) m/z calc’d for C16H19FNO2 [M+H]+: 276.1394, found: 276.1397. 
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(R)-3-allyl-1-(benzyloxy)-3-(3,3,3-trifluoropropyl)piperidine-2,6-dione (5m): 33.0 mg, 

93% yield; colorless oil; Rf = 0.24 (3:1 Hexane:EtOAc); 1H NMR (500 MHz, CDCl3) δ 

7.51 – 7.46 (m, 2H), 7.40 – 7.34 (m, 3H), 5.61 (ddt, J = 17.4, 10.1, 7.4 Hz, 1H), 5.25 – 

5.06 (m, 2H), 5.02 (s, 2H), 2.83 – 2.70 (m, 2H), 2.39 (ddt, J = 14.2, 7.3, 1.2 Hz, 1H), 2.30 

(ddt, J = 14.2, 7.4, 1.1 Hz, 1H), 2.09 – 1.94 (m, 2H), 1.90 – 1.80 (m, 2H), 1.78 – 1.66 (m, 

2H).  13C NMR (101 MHz, CDCl3) δ 171.63, 167.45, 133.67, 131.03, 130.38 (2C), 

129.45, 128.54 (2C), 126.88 (q, JC-F = 275.9 Hz, 1C), 120.75, 78.04, 45.18, 39.76, 29.22, 

28.75 (q, JC-F = 29.2Hz, 1C), 27.76 (q, J = 3.0 Hz, 1C), 25.35. 19F NMR (282 MHz, 

CDCl3) δ -66.56 (t, J = 10.1 Hz, 3F).  IR (thin film, NaCl) 1741, 1702, 1258, 1184 cm-1. 

HRMS (APCI/ESI) m/z calc’d for C18H21F3NO3 [M+H]+: 356.1468, found: 356.1470. 

 

 

(R)-3-allyl-1-benzoyl-3-(3,3,3-trifluoropropyl)pyrrolidin-2-one (5n): 26.7 mg, 82% 

yield; colorless oil; Rf = 0.35 (5:1 Hexane:EtOAc); 1H NMR (500 MHz, CDCl3) δ 7.58 – 

7.51 (m, 3H), 7.45 – 7.39 (m, 2H), 5.76 (dddd, J = 17.1, 10.2, 7.8, 7.0 Hz, 1H), 5.29 – 

5.16 (m, 2H), 3.96 – 3.85 (m, 2H), 2.38 (ddt, J = 13.8, 7.0, 1.3 Hz, 1H), 2.34 – 2.28 (m, 

1H), 2.28 – 2.06 (m, 3H), 1.95 (ddd, J = 13.3, 8.3, 6.4 Hz, 1H), 1.86 – 1.81 (m, 2H). 13C 

NMR (101 MHz, CDCl3) δ 176.93, 170.74, 134.18, 132.23, 131.91, 128.90 (2C), 128.00 

(2C), 127.0 (q, JC-F = 276.9 Hz, 1C), 120.39, 48.44, 42.96, 39.93, 28.94 (q, JC-F = 29.2 Hz, 
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1C), 28.02 (q, JC-F = 3.0 Hz, 1C), 27.60.  19F NMR (282 MHz, CDCl3) δ -66.60 (t, J = 

10.4 Hz, 3F). IR (thin film, NaCl) 1738, 1678, 1305, 1258, 1138 cm-1. HRMS 

(APCI/ESI) m/z calc’d for C17H19F3NO2 [M+H]+: 326.1362, found: 326.1352. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.6.3  METHODS FOR THE DETERMINATION OF ENANTIOMERIC 

EXCESS 
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 Figure A1.2. Infrared spectrum (Thin Film, NaCl) of compound 4a. 
 

	Figure A1.3. 13C NMR (101 MHz, CDCl3) of compound 4a. 
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Figure A1.4. 19F NMR (282 MHz, CDCl3) of compound 4a.	
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 Figure A1.6. Infrared spectrum (Thin Film, NaCl) of compound 4b. 
 

	Figure A1.7. 13C NMR (101 MHz, CDCl3) of compound 4b. 
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Figure A1.8. 19F NMR (282 MHz, CDCl3) of compound 4b.	
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 Figure A1.10. Infrared spectrum (Thin Film, NaCl) of compound 4c. 
 

	Figure A1.11. 13C NMR (101 MHz, CDCl3) of compound 4c. 
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Figure A1.12. 19F NMR (282 MHz, CDCl3) of compound 4c.	
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 Figure A1.14. Infrared spectrum (Thin Film, NaCl) of compound 9. 
 

	Figure A1.14. 13C NMR (101 MHz, CDCl3) of compound 9. 
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 Figure A1.17. Infrared spectrum (Thin Film, NaCl) of compound 10. 
 

	Figure A1.18. 13C NMR (101 MHz, CDCl3) of compound 10. 
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 Figure A1.20. Infrared spectrum (Thin Film, NaCl) of compound 4d. 
 

	Figure A1.21. 13C NMR (101 MHz, CDCl3) of compound 4d. 
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Figure A1.22. 19F NMR (282 MHz, CDCl3) of compound 4d.	
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 Figure A1.24. Infrared spectrum (Thin Film, NaCl) of compound 11. 
 

	Figure A1.25. 13C NMR (101 MHz, CDCl3) of compound 11. 
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Figure A1.26. 19F NMR (282 MHz, CDCl3) of compound 11.	



Appendix 1 – Spectra Relevant to Chapter 1 
	

66	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

O

O

O

F

12

	Fig
ur

e 
A

1.
27

. 1 H
 N

M
R

 (5
00

 M
H

z,
 C

D
C

l 3
) o

f c
om

po
un

d 
12

. 
	



Appendix 1 – Spectra Relevant to Chapter 1 
	

67	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

 Figure A1.28. Infrared spectrum (Thin Film, NaCl) of compound 12. 
 

	Figure A1.29. 13C NMR (101 MHz, CDCl3) of compound 12. 
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Figure A1.30. 19F NMR (282 MHz, CDCl3) of compound 12.	
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 Figure A1.32. Infrared spectrum (Thin Film, NaCl) of compound 4e. 
 

	Figure A1.33. 13C NMR (101 MHz, CDCl3) of compound 4e. 
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Figure A1.34. 19F NMR (282 MHz, CDCl3) of compound 4e.	
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 Figure A1.35. Infrared spectrum (Thin Film, NaCl) of compound 4g. 
 

	Figure A1.36. 13C NMR (101 MHz, CDCl3) of compound 4g. 
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Figure A1.36. 19F NMR (282 MHz, CDCl3) of compound 4g.	
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 Figure A1.40. Infrared spectrum (Thin Film, NaCl) of compound 4h. 
 

	Figure A1.41. 13C NMR (101 MHz, CDCl3) of compound 4h. 
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Figure A1.42. 19F NMR (282 MHz, CDCl3) of compound 4h.	
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 Figure A1.44. Infrared spectrum (Thin Film, NaCl) of compound 15. 
 

	Figure A1.45. 13C NMR (101 MHz, CDCl3) of compound 15. 
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Figure A1.46. 19F NMR (282 MHz, CDCl3) of compound 15.	
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 Figure A1.48. Infrared spectrum (Thin Film, NaCl) of compound 4i. 
 

	Figure A1.49. 13C NMR (101 MHz, CDCl3) of compound 4i. 
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Figure A1.50. 19F NMR (282 MHz, CDCl3) of compound 4i.	
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 Figure A1.52. Infrared spectrum (Thin Film, NaCl) of compound 4j. 
 

	Figure A1.53. 13C NMR (101 MHz, CDCl3) of compound 4j. 
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Figure A1.54. 19F NMR (282 MHz, CDCl3) of compound 4j.	
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 Figure A1.56. Infrared spectrum (Thin Film, NaCl) of compound 4k. 
 

	Figure A1.57. 13C NMR (101 MHz, CDCl3) of compound 4k. 
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Figure A1.58. 19F NMR (282 MHz, CDCl3) of compound 4k.	
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 Figure A1.60. Infrared spectrum (Thin Film, NaCl) of compound 17. 
 

	Figure A1.61. 13C NMR (101 MHz, CDCl3) of compound 17. 
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Figure A1.62. 19F NMR (282 MHz, CDCl3) of compound 17.	
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 Figure A1.64. Infrared spectrum (Thin Film, NaCl) of compound 4l. 
 

	Figure A1.65. 13C NMR (101 MHz, CDCl3) of compound 4l. 
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Figure A1.66. 19F NMR (282 MHz, CDCl3) of compound 4l.	
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 Figure A1.68. Infrared spectrum (Thin Film, NaCl) of compound 4m. 
 

	Figure A1.69. 13C NMR (101 MHz, CDCl3) of compound 4m. 
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Figure A1.70. 19F NMR (282 MHz, CDCl3) of compound 4m.	



Appendix 1 – Spectra Relevant to Chapter 1 
	

99	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Bz
N

O

O

O CF
3

4n

	Fig
ur

e 
A

1.
71

. 1 H
 N

M
R

 (5
00

 M
H

z,
 C

D
C

l 3
) o

f c
om

po
un

d 
4n

. 
	



Appendix 1 – Spectra Relevant to Chapter 1 
	

100	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

 Figure A1.72. Infrared spectrum (Thin Film, NaCl) of compound 4n. 
 

	Figure A1.73. 13C NMR (101 MHz, CDCl3) of compound 4n. 
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Figure A1.74. 19F NMR (282 MHz, CDCl3) of compound 4n.	
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 Figure A1.76. Infrared spectrum (Thin Film, NaCl) of compound 5a. 
 

	Figure A1.77. 13C NMR (101 MHz, CDCl3) of compound 5a. 
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Figure A1.78. 19F NMR (282 MHz, CDCl3) of compound 5a.	
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 Figure A1.80. Infrared spectrum (Thin Film, NaCl) of compound 5b. 
 

	Figure A1.81. 13C NMR (101 MHz, CDCl3) of compound 5b. 
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Figure A1.82. 19F NMR (282 MHz, CDCl3) of compound 5b.	



Appendix 1 – Spectra Relevant to Chapter 1 108	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

O
F

5c

	Fig
ur

e 
A

1.
83

. 1 H
 N

M
R

 (5
00

 M
H

z,
 C

D
C

l 3
) o

f c
om

po
un

d 
5c

. 
	



Appendix 1 – Spectra Relevant to Chapter 1 109	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

 Figure A1.84. Infrared spectrum (Thin Film, NaCl) of compound 5c. 
 

	Figure A1.85. 13C NMR (101 MHz, CDCl3) of compound 5c. 
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Figure A1.86. 19F NMR (282 MHz, CDCl3) of compound 5c.	
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 Figure A1.88. Infrared spectrum (Thin Film, NaCl) of compound 5d. 
 

	Figure A1.89. 13C NMR (101 MHz, CDCl3) of compound 5d. 
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Figure A1.90. 19F NMR (282 MHz, CDCl3) of compound 5d.	
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 Figure A1.92. Infrared spectrum (Thin Film, NaCl) of compound 5e. 
 

	Figure A1.93. 13C NMR (101 MHz, CDCl3) of compound 5e. 
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Figure A1.94. 19F NMR (282 MHz, CDCl3) of compound 5e.	
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 Figure A1.96. Infrared spectrum (Thin Film, NaCl) of compound 5f. 
 

	Figure A1.97. 13C NMR (101 MHz, CDCl3) of compound 5f. 
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Figure A1.98. 19F NMR (282 MHz, CDCl3) of compound 5f.	
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 Figure A1.100. Infrared spectrum (Thin Film, NaCl) of compound 5g. 
 

	Figure A1.101. 13C NMR (101 MHz, CDCl3) of compound 5g. 
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Figure A1.102. 19F NMR (282 MHz, CDCl3) of compound 5g.	
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 Figure A1.104. Infrared spectrum (Thin Film, NaCl) of compound 5h. 
 

	Figure A1.105. 13C NMR (101 MHz, CDCl3) of compound 5h. 
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Figure A1.106. 19F NMR (282 MHz, CDCl3) of compound 5h.	
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 Figure A1.108. Infrared spectrum (Thin Film, NaCl) of compound 5i. 
 

	Figure A1.109. 13C NMR (101 MHz, CDCl3) of compound 5i. 
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Figure A1.110. 19F NMR (282 MHz, CDCl3) of compound 5i.	
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 Figure A1.112. Infrared spectrum (Thin Film, NaCl) of compound 5j. 
 

	Figure A1.113. 13C NMR (101 MHz, CDCl3) of compound 5j. 
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Figure A1.114. 19F NMR (282 MHz, CDCl3) of compound 5j.	
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 Figure A1.116. Infrared spectrum (Thin Film, NaCl) of compound 5k. 
 

	Figure A1.117. 13C NMR (101 MHz, CDCl3) of compound 5k. 
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Figure A1.118. 19F NMR (282 MHz, CDCl3) of compound 5k.	
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 Figure A1.120. Infrared spectrum (Thin Film, NaCl) of compound 5l. 
 

	Figure A1.121. 13C NMR (101 MHz, CDCl3) of compound 5l. 
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Figure A1.122. 19F NMR (282 MHz, CDCl3) of compound 5l.	
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 Figure A1.124. Infrared spectrum (Thin Film, NaCl) of compound 5m. 
 

	Figure A1.125. 13C NMR (101 MHz, CDCl3) of compound 5m. 
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Figure A1.126. 19F NMR (282 MHz, CDCl3) of compound 5m.	
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 Figure A1.128. Infrared spectrum (Thin Film, NaCl) of compound 5n. 
 

	Figure A1.129. 13C NMR (101 MHz, CDCl3) of compound 5n. 
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	 Figure A1.130. 19F NMR (282 MHz, CDCl3) of compound 5n.	
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CHAPTER 2 

Synthesis of enantioenriched 2,2-disubstituted 

 pyrrolidines via sequential asymmetric allylic  

alkylation and ring contraction* 

 

2.1   INTRODUCTION 

More than half of current FDA approved drug molecules contain at least one 

nitrogen containing heterocycle, with the most common motifs (in order) being 

piperidine, pyridine, piperazine, cephem and pyrrolidine.1  Additionally, it has been 

demonstrated that three-dimensionality, particularly in the form of stereogenic centers, is 

of great interest to the medicinal chemistry community.2 For these reasons, unsaturated 

nitrogen heterocycles containing tetrasubstituted chiral centers have proven desirable. 

Looking more closely at the pyrrolidine containing drug molecules, it is quickly apparent 

that none contain tetrasubstituted centers (e.g. Figure 2.1.1, 20–24), and many are derived 

from the amino acid proline 20, such as 21, 22, and 23.1 We envisioned an opportunity to 

                                                
* This research was performed in collaboration with Hirokazu Takada, Yuji Sumii and Katsuaki Baba, all 
alumni of the Stoltz group.  
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bring novelty to this motif in pharmaceutical compounds by developing a divergent 

approach to related molecules containing tetrasubstituted stereocenters. 

Figure 2.1.1 Pharmaceutical compounds containing chiral pyrrolidines 

 

Much progress has been made in the synthesis of proline derivatives as 

demonstrated by the prevalence of that motif in pharmaceutical compounds. In fact, the 

synthesis of chiral proline derivatives was described in a review by Cativiela,3 of which 

an example is highlighted in Scheme 2.1.1 from the pioneering work of Seebach et al.4 

Starting from proline 20, condensation affords oxazolidinone 25, which can undergo 

enolate formation followed by alkylation resulting in 26. Hydrolysis of the resulting 

oxazolidinone then affords the proline derivative 27 in good yield and high ee. While this 

method is successful for the synthesis of a number of interesting molecules, it is limited 

to the synthesis of proline derivatives. Additionally, deprotection of the oxazolidinone 

can require harsh conditions, which may not be amenable to all substrates. We believed 

that a catalytic, enantioselective method toward the synthesis of 2,2-disubstituted chiral 
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pyrrolidines would allow for the synthesis of previously unknown compounds that would 

be of interest to the medicinal chemistry and natural products communities. 

Scheme 2.1.1 Synthesis of tetrasubstituted proline derivatives by Seebach et al.4 

 

Our overall strategy toward the synthesis of chiral 2,2-disubstituted pyrrolidines is 

summarized in Scheme 2.1.2.  The imides 28 can be synthesized in a known procedure 

from glutaric anhydride, followed by a decarboxylative asymmetric allylic alkylation as 

described previously to afford 29. These imides can then undergo a series of functional 

group manipulations to afford hydroxamic acids 30, which we propose would undergo a 

stereospecifc ring contraction to afford chiral 2,2-disubstituted pyrrolidines 31. The final 

ring contraction, pioneered by Spino,5 has previously not been investigated with respect 

to stereochemical fidelity, although we hypothesized that it would be stereospecific. 

Scheme 2.1.2 Proposed synthesis of chiral 2,2-disubstituted pyrrolidines 

 

2.2  SYNTHESIS OF CHIRAL BENZYLOXYIMIDES 

Our lab has a long-standing interest in allylic alkylation reactions for the synthesis 

of quaternary centers, having reported the first asymmetric variant of the classic Tsuji 
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reaction in 2004 using cyclic enol carbonates or enol silanes to afford α-quaternary 

ketone products under palladium catalysis utilizing chiral phosphinooxazaline (PHOX) 

ligand 6 (Scheme 2.2.1A–B) 6. A year later, we demonstrated the decarboxylative 

asymmetric allylic alkylation reaction of cyclic β-keto esters, affording the same α-

quaternary ketone products (Scheme 2.2.1C).7  Since those initial reports, we have 

significantly expanded the scope of this reaction to include various ring sizes and 

heterocycles, particularly following our development of an electron deficient PHOX 

ligand (7).8 Of particular note is the advancement in the realm of nitrogen heterocyles, 

including both lactams and imides, in the decarboxylative allylic alkylation reaction.9 We 

were pleased to note that a variety of β-amidoesters were tolerated in this reaction with 

only small changes to the reaction conditions (Scheme 2.2.1D). We believed that we 

could use some of these products as intermediates for the synthesis of chiral 2,2-

disubstituted pyrrolidines in a catalytic asymmetric manner.  
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Scheme 2.2.1 Progression of the asymmetric allylic alkylation reaction in the Stoltz 

laboratory 

 

The substrates for this reaction, as mentioned above, can be synthesized from 

glutaric anhydride 32 in a previously reported four-step procedure, involving 

condensation of O-benzylhydroxylamine with glutaric anhydride followed by enolate α–

acylation and alkylation events (Scheme 2.2.2A). 10  During the course of our 

investigations, we discovered a number of small changes to this procedure that improved 

material throughput (Scheme 2.2.2B). First, we determined that O-benzyloxyimide 33 

could be isolated by recrystallization, affording the product in an improved yield over 

column chromatography. Second, we noted that use of allylchloroformate in the acylation 
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reaction instead of allylcyanoformate afforded a better yield of the desired α–carboxy 

lactams 28. In addition to the higher material throughput, use of commercially available 

allylchloroformate is preferable to the use of allylcyanoformate. The latter must be 

prepared from allylchloroformate and involves the use of cyanide, which necessitates 

more complicated workup and waste disposal procedures.  We were able to use 

conditions optimized for the synthesis of 28a to access a number of β-amidoesters for the 

asymmetric allylic alkylation reaction, as shown in Scheme 2.2.2C. 

Scheme 2.2.2 Synthesis of β-amidoesters 

 

With a reliable synthesis of substrates in hand, we turned our attention to the 

asymmetric allylic alkylation reaction. While we had previously reported similar 

chemistry on this class of substrates,9 we aimed to improve a couple of aspects, 

particularly with regard to larger scale reactions. Specifically, we pursued a lower 

catalyst loading and an increased concentration of the reaction. We first started by 

reproducing the previously reported results to afford 29a (Entry 1, Table 2.2.1). We were 
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very pleased to note that reducing the catalyst loading in half did not adversely effect the 

enantioselectivity of the reaction (Entry 2). We previously reported conditions with low 

catalyst loadings that utilize Pd(OAc)2, instead of Pd2(dba)3 or Pd2(pmdba)3, and TBME 

(tert-butyl methyl ether) instead of toluene. So, we continued our investigations with 

these two changes (Entry 3),11 and were pleased to note that the yield and selectivity 

remained the same. Increasing the concentration to 0.1 M resulted in a slightly 

accelerated reaction with similar selectivity and yield (Entry 4), but increasing the 

concentration further resulted in lower yields and selectivities (Entry 5–6). Lowering the 

catalyst loading even further (Entry 7-9) resulted in similar selectivity and reactivity, 

although extended reaction times and elevated temperatures were required. Thus, we 

decided that the best overall combination of reactivity and catalyst loading is achieved in 

Entry 7.  

Table 2.2.1 Asymmetric allylic alkylation optimization 

 
(a) Pd2(pmdba)3, toluene, 50 °C, (b) Pd2(pmdba)3 (c) 60 °C, 51 hr 
then 70 °C (d) Based on recovered starting material: 84% 
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With these optimized conditions in hand, we turned our attention to investigating 

the reactivity of the other substrates, one of which had never been investigated in an 

asymmetric allylic alkylation reaction. We were pleased again to observe good reactivity 

and selectivity for the parent substrate 29a on a larger scale, up to 11 g of substrate 

(Table 2.2.2). Additionally, compound 29b also performed well under these conditions. 

Unfortunately, the enantioselectivity was diminished when slightly more complex 

substrates (29c, 5m) were investigated, though the reactivity remained good. While this 

was somewhat disappointing, we were able to demonstrate that both of those substrates 

could be synthesized in good enantiomeric excess when the previously reported 

conditions for 5m were applied to both substrates (Entry B).12 With all four of our desired 

compounds in hand, we turned our attention to advancing the compounds toward chiral 

pyrrolidines.  

Table 2.2.2 Scope of the asymmetric allylic alkylation reaction 

  a) previously reported in Reference 10. 
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2.3   REDUCTION OF BENZYLOXY IMIDE TO HYDROXAMIC ACID 

In order to test the ring contraction reaction, a number of functional group 

manipulations were required. We were pleased to discover that a three-step sequence of 

reactions afforded the desired hydroxamic acids 30a–d (Scheme 2.3.1). First, a selective 

carbonyl reduction proceeded with good yield in the presence of DIBAL-H to afford 

alcohols 34a–d as a mixture of diastereomers. A subsequent dehydroxylation afforded 

lactams 35a–d in nearly quantitative yield upon treatment with a mixture of triethylsilane 

and trifluoroacetic acid (TFA). Finally, the protected hydroxamic acids underwent 

debenzylation with boron trichloride to afford the free hydroxamic acids 30a–d. This 

sequence of reactions was highly scalable and has been performed on up to 6 g scale on 

substrate 29a (R=Me). 

Scheme 2.3.1 Synthesis of chiral hydroxamic acids 

 

2.4   THERMAL RING CONTRACTION OF HYDROXAMIC ACID 

Spino and coworkers have previously reported the ring contraction of lactams to 

pyrrolidines in either a photochemical process from N–chloro5a (Scheme 2.4.1a) or N–
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mesyloxy5b (Scheme 2.4.1b) lactams, or a thermal process from hydroxamic acids 

through a N–trifloxy lactam5c (Figure 2.4.1c). These reactions are proposed to occur via 

an isocyanate-like intermediate in a manner similar to that proposed for the Hofmann 

rearrangement (Scheme 2.4.1d).5  As the Hofmann rearrangement is known to proceed in 

a stereospecific fashion, we envisioned that the Spino reaction would also display the 

same specificity, and we were poised to address this fundamental question. With our 

enatioenriched lactams 30a–d in hand and Spino’s effort on the ring contraction of 

lactams in mind, we proceeded to investigate the stereospecificity of that ring contraction 

for the synthesis of asymmetric 2,2-disubstituted pyrrolidines. 

Scheme 2.4.1 Ring contraction reactions as reported by Spino et al.5 

 

With a number of substrates in hand, we first began investigating the thermal ring 

contraction of parent substrate 30a (Scheme 2.4.2). We were very pleased to discover that 

using the conditions developed by Spino and coworkers, we observed an 83% yield of the 

desired pyrrolidine product 31a over the two steps. Additionally, we found that column 
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chromatography of the N-trifloxylactam 36a was unnecessary to obtain good yields, 

allowing for a more streamlined synthesis.  

Scheme 2.4.2 Thermal ring contraction of chiral hydroxamic acid 

 

At this stage, owing to our interest in further functionalizing these pyrrolidines, 

we investigated the removal of the methyl carbamate group to afford free pyrrolidine 37. 

In our hands, this proved to be a challenge, as described in Table 2.4.1. A variety of basic 

conditions (Entries 1-3), acidic conditions (Entries 5-6), and other previously reported 

conditions (Entries 7-9) mostly displayed low conversion to product, and when 

significant reactivity was detected, decomposition or undesired byproduct 38 were 

observed. In fact, only when subjecting the substrate to concentrated KOH in a mixture of 

water and 1,2-propanediol under microwave irradiation at 200 °C for an hour were we 

able to finally detect our desired product, which upon exposure to anhydrous HCl could 

be isolated as an HCl salt.13 
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Table 2.4.1 Removal of methyl carbamate group 

 
*Desired compound 37 was isolated as an HCl salt. 

While we were in fact able to isolate the pyrrolidine 37 as an HCl salt, we 

believed the harsh conditions required were not ideal for more functionalized substrates, 

and the necessity of microwave irradiation proved to be a bottleneck when applied to 

larger scales. With these thoughts in mind, we wondered whether it would be possible to 

synthesize other carbamates through a similar procedure, such as benzyl or tert-butyl 

(Cbz and Boc, respectively), which have more well known reactivity and are often used 

as protecting groups. Returning our attention to the proposed mechanism for the reaction, 

we were reminded that the methyl carbamate arose due to the methanol solvent, and 

decided to investigate the use of benzyl or tert-butyl alcohol as a solvent. We were 

pleased to discover that using a 3:1 mixture of toluene and the desired alcohol, we could 

synthesize both the Cbz and Boc protected pyrrolidines (Table 2.4.2, 31b and 31c, 

respectively) in good yield when slightly longer reactions times were applied. 

Additionally, we were able to use these conditions to access Cbz protected pyrrolidines 

31d–f in good to moderate yield from the corresponding hydroxamic acid precursors.  

N
MeO2C

N
H

O N

O

Entry Conditions

NaOH, MeOH

KOH, N2H4•H2O, ethylene glycol

KOH, H2O, 1,2-propanediol

KOH, H2O, 1,2-propanediol

4N HCl aq.

6N HCl-dioxane

NaI, TMSCl, CH3CN

n-BuLi, DIBAL-H, toluene

LiI, DMF

1

2

3

4

5

6

7

8

9

26 h

18 h

15 h

1 h

18 h

18 h

2.5 h

15 h

28 h

reflux

110 °C

reflux

200 °C (µ wave)

reflux

reflux

23 °C to reflux

23 °C

80 °C

no reaction

low conversion

low conversion

37: 95%*

no reaction

38: 87%

low conversion

low conversion

no reaction

Time Temperature Result

383731



Chapter 2: Synthesis of enantioenriched 2,2-disubstitutedpyrrolidines via sequential 
asymmetric allylic alkylation and ring contraction 

156	

Table 2.4.2 Synthesis of chiral 2,2-disubstituted pyrrolidines 

 

With the synthesis of these compounds completed, we proceeded to investigate 

our hypothesis that this reaction proceeds with stereoretention. Our development of the 

synthesis of Cbz protected pyrrolidines proved to expedite this process significantly, as 

we could use super-critical fluid chromatography (SFC) to determine the enantiomeric 

excess of pyrrolidine 31b. We began by synthesizing racemic allylic alkylation product 

29a and advancing it toward pyrrolidine 31b via the synthetic sequence described in this 

paper (Scheme 2.4.3A). Upon SFC analysis, we were able to determine that both 

compounds had 0% ee. We then proceeded to follow the same sequence again, except 

utilizing enantioenriched allylic alkylation product 29a (92% ee, Scheme 2.4.3B). We 

were pleased to observe that pyrrolidine product 31b derived from enantioenriched 29a 

also retained the same enantiomeric excess (92% ee). Therefore, we could conclude that 

this reaction does indeed proceed with retention of stereochemistry. 
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Scheme 2.4.3 Investigation of stereochemistry 

 

2.5   REACTIONS OF HYDROXAMIC ACID PRODUCTS 

With this new method for synthesizing chiral pyrrolidines in hand, we sought to 

apply our new strategy toward the synthesis of a natural product. We believed that 

tylohirsuticine 39, a seco-phenanthroindolizidine alkaloid, would serve as a good target 

for synthesis (Scheme 2.5.1).14 Retrosynthetically, we believed that a cross-coupling 

reaction of indolizidine 40 with an arene would result in the natural product. That mono-

arylated indolizidine 40 could arise from a ring closing metathesis (RCM) of 41, which 

could itself arise from an N-alkylation of 37 (which we have previously demonstrated the 

synthesis of) and known allyl bromide 42.15 
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Scheme 2.5.1 Retrosynthetic analysis of tylohirsuticine 

  

In the forward sense, starting from the HCl salt of pyrrolidine 37 and allyl 

bromide 42, N-alkylation proceeded smoothly to afford 41 in good yield in the presence 

of potassium carbonate in refluxing acetonitrile (Scheme 2.5.2).  With diallyl 41 in hand, 

we were pleased to observe promising reactivity under standard RCM conditions using 

Grubbs II catalyst 44 to afford desired product 40 (Table 5), though incomplete 

conversion and the presence of undesired isomerization byproduct 43 resulted in the need 

for some optimization (Entry 1). Switching to the Hoveyda-Grubbs II catalyst 45 

provided higher reactivity, but the undesired isomerization product was still observed 

(Entry 2), and the addition of 1,4-benzoquinone proved only to favor isomerization 

(Entry 3). However, when we applied conditions disclosed by Lindsley and coworkers 

(Entry 4) we were delighted to observe an 85% yield of our desired product 40, and no 

observed isomerization product.16 As they believed that this difference in reactivity was 

due to the formation of a TFA salt, we also performed the reaction using the same 

conditions with the exception of TFA (Entry 5). In this case, we again saw significant 

amounts of isomerization, which supports their hypothesis that the TFA is integral to the 
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selectivity in this reaction. With this indolizidine compound 40 in hand, we began our 

investigation into the total synthesis of tylohirsuticine, which is currently ongoing. 

Scheme 2.5.2 N–alkylation of chiral pyrrolidine 

 

Table 2.5.1 Optimization of ring-closing metathesis 

 

2.6   CONCLUSIONS 

The first catalytic enantioselective method for the synthesis of chiral 2,2-

disubstituted pyrrolidines is reported, consisting of an asymmetric allylic alkylation 

reaction to set the stereochemistry, followed by a stereoretentive ring contraction reaction 
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to afford the desired products. A number of compounds were synthesized using this 

method to afford products with three different carbamate protecting groups on 

pyrrolidine, which could prove useful for further derivitization of these compounds. 

Furthermore, we demonstrated that one of these substrates can be further elaborated to 

form a new indolizidine compound, which we hope to further advance to the natural 

product tylohirsuticine in the future. 

2.7  EXPERIMENTAL METHODS AND ANALYTICAL DATA 

2.7.1  MATERIALS AND METHODS 

Unless stated otherwise, reactions were performed in flame-dried or oven-dried 

glassware under an argon or nitrogen atmosphere using dry, deoxygenated solvents 

(distilled or passed over a column of activated alumina).17  Commercially obtained 

reagents were used as received with the exception of dipalladium 

tris(dibenzylideneacetone) (Pd2(dba)3), tetrakis(triphenylphosphine)palladium(0), which 

were stored in a nitrogen-filled glovebox. Dipalladium tris(para-

methoxydibenzylideneacetone) (Pd2(pmdba)3),18 (S)-t-BuPHOX,19 (S)-(CF3)3-tBuPHOX,20 

were prepared by known methods. Reactions requiring external heat were modulated to 

the specified temperatures using an IKAmag temperature controller. Reaction progress 

was monitored by thin-layer chromatography (TLC), which was performed using E. 

Merck silica gel 60 F254 precoated glass plates (0.25 mm) and visualized by UV 

fluorescence quenching, potassium permanganate, or p-anisaldehyde staining. Silicycle 

SiliaFlash® P60 Academic Silica gel (particle size 40-63 nm) was used for column 

chromatography. 1H and 13C NMR spectra were recorded on a Varian Inova 500 (500 
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MHz and 126 MHz, respectively), and a Bruker AV III HD spectrometer equipped with a 

Prodigy liquid nitrogen temperature cryoprobe (400 MHz and 101 MHz, respectively) 

and are reported in terms of chemical shift relative to CHCl3 (δ 7.26 and δ 77.16, 

respectively). 19F NMR spectra were recorded on a Varian Inova 300 spectrometer (282 

MHz) and are reported in terms of absolute chemical shift according to IUPAC standard 

recommendations from CFCl3. Data for 1H NMR are reported as follows: chemical shift 

(δ ppm) (multiplicity, coupling constant (Hz), integration). Multiplicities are reported as 

follows: s = singlet, d = doublet, t = triplet, m = multiplet, br s = broad singlet, app t = 

apparently triplet. Infrared (IR) spectra were recorded on a Perkin Elmer Paragon 1000 

spectrometer using thin films deposited on NaCl plates and are reported in frequency of 

absorption (cm–1). Optical rotations were measured with a Jasco P-2000 polarimeter 

operating on the sodium D-line (589 nm), using a 100 mm path-length cell and are 

reported as: [α]D
T (concentration in g/100 mL, solvent). Analytical SFC was performed 

with a Mettler SFC supercritical CO2 analytical chromatography system utilizing 

Chiralpak (AD-H, AS-H, IC) or Chiralcel (OD-H, OJ-H) columns (4.6 mm x 25 cm) 

obtained from Daicel Chemical Industries, Ltd. High resolution mass spectra were 

obtained from the Caltech Mass Spectral Facility using a JEOL JMS-600H. High 

Resolution Mass Spectrometer in fast atom bombardment (FAB+) ionization mode or a 

Agilent 6200 Series TOF with an Agilent G1978A Multimode source in electrospray 

ionization (ESI+), atmospheric pressure chemical ionization (APCI+), or mixed 

(ESI/APCI) ionization mode. Julabo Presto LH45 was used to control reaction 

temperatures inside the nitrogen-filled glovebox. 
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2.7.2  EXPERIMENTAL PROCEDURES 

1-(benzyloxy)piperidine-2,6-dione (33)  

 

O-Benzyloxyamine hydrochloride (10.30 g, 64.57 mmol, 1.1 equiv) in a 500 mL round-

bottom flask was taken up in CH2Cl2 (117 mL) and saturated aqueous K2CO3 (117 mL) 

and stirred for 1 hour. The mixture was transferred to a separatory funnel and the phases 

were separated. The aqueous phase was extracted twice with dichloromethane (120 mL), 

the combined organic phases were washed with brine (120 mL), dried over Na2SO4, 

filtered, and concentrated under reduced pressure. The resulting crude colorless oil was 

diluted with dichloromethane (58.7 mL, 1.0 M) in a 250 mL round-bottom flask and 

glutaric anhydride 32 (6.70 g, 58.7 mmol, 1.00 equiv) was added. An exotherm was 

observed, and the mixture was immediately concentrated under reduced pressure. The 

resulting residue was taken up in EtOAc (78.3 mL, 0.75 M) and acetyl chloride (11.6 mL, 

164.36 mmol, 2.81 equiv) was added. A water condenser was affixed and the reaction 

was heated to a gentle reflux (oil bath, 85 °C) for 12 h. The reaction was diluted with 

EtOAc (30 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure. 

The residue was purified by recrystallization in a 1:1 mixture of CH2Cl2/hexanes to afford 

N-benzyloxyimide 33 (12.77 g, 99% yield) as a white solid. Spectral data were in 

agreement with the literature.10 
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allyl 1-(benzyloxy)-3-methyl-2,6-dioxopiperidine-3-carboxylate (28a) 

 

A flame-dried flask charged with a magnetic stir-bar, imide 33 (12.5 g, 57.0 mmol, 1.0 

equiv), and THF (570 mL) was lowered into a –78 °C bath. A flame-dried 250 mL round-

bottom flask was cycled into a glove box and loaded with LiHMDS (16.21 g, 96.9 mmol, 

1.7 equiv). The flask was removed from the glove box, reconnected to a manifold, and 

charged with THF (96.9 mL, 1 M). This 1 M solution of LiHMDS was added to the flask 

containing imide 17 dropwise. After 1 h at –78 °C, allylchloroformate (6.08 mL, 57.0 

mmol, 1 equiv) was added dropwise and the reaction was stirred for 5 min before being 

quenched with saturated aqueous ammonium chloride and transferred to a separatory 

funnel, where the aqueous layer was extracted with ether (500 mL). The combined 

organics were washed with brine, dried over Na2SO4, filtered, and concentrated under 

reduced pressure. The resulting crude oil was purified by flash column chromatography 

(SiO2, CH2Cl2 to 10% Et2O in CH2Cl2) to afford 18 as a yellow oil (14.26 g, 83% yield). 

Spectral data were in agreement with the literature.10 

The resulting yellow oil was taken up in acetonitrile (156 mL, 0.3 M) in a flame-dried 

250 mL Schlenck flask equipped with a magnetic stir bar. Cs2CO3 (19.8 g, 60.84 mmol, 

1.30 equiv) and methyl iodide (8.74 mL, 140.4 mmol, 3.00 equiv) were added and the 

reaction was heated to 50 °C and stirred for 10 h. The reaction was diluted with 50 mL 

EtOAc, filtered over Celite, and concentrated under reduced pressure. The resulting crude 
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oil was purified by flash column chromatography (SiO2, 20% to 33% EtOAc in hexanes) 

to afford imide 28a (14.25 g, 96% yield) as a pale yellow oil. Spectral data were in 

agreement with the literature.10 

allyl 1-(benzyloxy)-3-ethyl-2,6-dioxopiperidine-3-carboxylate (28b) 

  

Compound 28b was prepared according to the procedure for 28a using Ethyl iodide. The 

crude product was purified by column chromatography (SiO2, 20% EtOAc in hexanes) to 

furnish 28b (888 mg, 81% yield). Spectral data were in agreement with the literature.10 

allyl 3-benzyl-1-(benzyloxy)-2,6-dioxopiperidine-3-carboxylate (28c) 

  

Compound 28c was prepared according to the procedure for 28a using benzyl bromide. 

The crude product was purified by column chromatography (SiO2, 15% EtOAc in 

hexanes) to furnish 28c (367 mg, 81% yield) as a white solid. Rf = 0.67 (hexanes/EtOAc 

= 2:1); IR (neat film, NaCl) 3528, 3031, 2945, 1734, 1707, 1496, 1454, 1232, 1175, 993, 

972, 941, 749, 700; 1H NMR (500 MHz, CDCl3) δ 7.53 (dq, J = 8.1, 4.5, 4.0 Hz, 2H), 

7.41 (ddd, J = 6.3, 4.7, 2.5 Hz, 4H), 7.38 – 7.31 (m, 4H), 7.29 – 7.25 (m, 2H), 5.95 (ddt, J 

= 16.4, 10.3, 5.9 Hz, 1H), 5.46 – 5.34 (m, 2H), 4.99 (s, 2H), 4.76 – 4.73 (m, 2H), 3.72 (d, 
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J = 13.7 Hz, 1H), 3.28 (d, J = 13.7 Hz, 1H), 2.75 – 2.68 (m, 2H), 2.25 – 2.18 (m, 1H), 

1.89 (ddd, J = 13.9, 11.2, 7.0 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 169.90, 167.12, 

166.56, 140.91, 134.72, 133.75, 130.85, 130.70, 129.98, 129.09, 128.55, 128.39, 127.61, 

127.48, 126.96, 120.08, 77.84, 66.99, 65.34, 56.93, 40.22, 30.13, 24.78.; HRMS (m/z): 

[M+H]+ calcd for C23H24NO5, 394.1649; found, 394.1662. 

allyl 1-(benzyloxy)-2,6-dioxo-3-(3,3,3-trifluoropropyl)piperidine-3-carboxylate (4m) 

 

Compound 4m was prepared according to the procedure for 10a using trifluoropropyl 

iodide. The crude product was purified by column chromatography (SiO2, 33% EtOAc in 

hexanes) to furnish 4m (723 mg, 30% yield). Spectral data were in agreement with the 

literature.12 

 (S)-3-allyl-1-(benzyloxy)-3-methylpiperidine-2,6-dione (29a)  

 

An oven-dried scintillation vial was cycled into a glove box and loaded with Pd(OAc)2 (2 

mg, 0.008 mmol, 0.01 equiv), (S)-(CF3)3-t-BuPHOX (14 mg, 0.023 mmol, 0.03 equiv), 

and TBME (1.6 mL). The flask was stirred for 30 min. Imide 28a (242 mg, 0.76 mmol, 1 

equiv) was taken up in TBME (6 mL), and added to the reaction mixture. The reaction 
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was stirred at 65 °C for 66 hours. The reaction mixture was then cooled, concentrated, 

and purified by flash column chromatography (SiO2, 20% EtOAc in hexanes) to afford 

imide 29a as a pale yellow oil (182 mg, 88% yield, 92% ee). Spectral data were in 

agreement with the literature.10 

Gram Scale Reaction: 

A flame-dried 500 mL Schlenck tube was cycled into a glove box and loaded with 

Pd(OAc)2 (79 mg, 0.35 mmol, 0.01 equiv), (S)-(CF3)3-t-BuPHOX (621 mg, 1.05  mmol, 

0.03 equiv), and TBME (50 mL). The flask was stirred for 30 min. Imide 28a (11.1 g, 35 

mmol, 1 equiv) was taken up in TBME (200 mL), and added to the reaction mixture. The 

reaction was stirred at 65 °C for 66 hours. The reaction mixture was then cooled, 

concentrated, and purified by flash column chromatography (SiO2, 20% EtOAc in 

hexanes) to afford imide 29a as a pale yellow oil (7.71 g, 81% yield, 92% ee). Spectral 

data were in agreement with the literature. 

(S)-3-allyl-1-(benzyloxy)-3-ethylpiperidine-2,6-dione (29b) 

 

Compound 29b was prepared from 28b according to the procedure for 29a. The crude 

product was purified by column chromatography (SiO2, 20% EtOAc in hexanes) to 

furnish 29b (216 mg, 86% yield, 94% ee). Spectral data were in agreement with the 

literature.10 
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(S)-3-allyl-3-benzyl-1-(benzyloxy)piperidine-2,6-dione (29c) 

  

An oven-dried 100 mL Schlenck flask was cycled into a glove box and loaded with 

Pd2(dba)3 (46 mg, 0.051 mmol, 0.05 equiv), (S)-(CF3)3-t-BuPHOX (75 mg, 0.126 mmol, 

0.015 equiv), and toluene (11 mL). The reaction mixture was stirred 30 min. Imide 28c 

(398 mg, 1.01 mmol, 1 equiv) was taken up in 20 mL toluene, and added to the reaction 

mixture. The reaction was stirred at 40 °C for 66 hours. The reaction mixture was then 

cooled, concentrated, and purified by flash column chromatography (SiO2, 20% EtOAc in 

hexanes) to afford imide 29c as a white solid (311 mg, 89% yield, 86% ee). Rf = 0.44 

(hexanes/EtOAc = 4:1); [α]25
D +25.3˚ (c 1.00, CHCl3); IR (neat film, NaCl) 3063, 3031, 

2941, 1739, 1698, 1454, 1173, 991, 742, 701; 1H NMR (500 MHz, CDCl3) δ 7.52 – 7.45 

(m, 2H), 7.36 (dp, J = 4.8, 1.9 Hz, 3H), 7.33 – 7.26 (m, 3H), 7.19 – 7.13 (m, 2H), 5.69 

(ddt, J = 17.2, 10.0, 7.3 Hz, 1H), 5.21 – 5.10 (m, 2H), 4.99 – 4.91 (m, 2H), 3.29 (d, J = 

13.6 Hz, 1H), 2.74 (d, J = 13.6 Hz, 1H), 2.68 (ddd, J = 17.8, 8.5, 5.6 Hz, 1H), 2.59 – 2.48 

(m, 2H), 2.27 (dd, J = 13.9, 7.9 Hz, 1H), 1.83 – 1.69 (m, 2H).; 13C NMR (126 MHz, 

CDCl3) δ 172.37, 167.75, 136.05, 133.85, 132.08, 130.52 (2C), 130.14 (2C), 129.14, 

128.55 (2C), 128.42 (2C), 127.22, 120.22, 78.05, 47.81, 42.42, 41.68, 29.49, 24.00.; 

HRMS (m/z): [M+H]+ calcd for C22H24NO3, 350.1751; found, 350.1758. 

 

 

N

O
BnO

Bn
O

O

N

O
BnO

Bn

O O

Pd2(dba)3 (5 mol %)
 ligand 15 (12.5 mol %)

toluene, 40 °C

28c 29c



Chapter 2: Synthesis of enantioenriched 2,2-disubstitutedpyrrolidines via sequential 
asymmetric allylic alkylation and ring contraction 

168	

 (R)-3-allyl-1-(benzyloxy)-3-(3,3,3-trifluoropropyl)piperidine-2,6-dione (5m) 

 

Compound 5m was prepared from 4m according to the procedure for 29c. The reaction 

mixture was then cooled, concentrated, and purified by flash column chromatography 

(SiO2, 20% EtOAc in hexanes) to afford imide 5m (307 mg, 80% yield, 84% ee). Spectral 

data were in agreement with the literature.12 

(3S)-3-Allyl-1-(benzyloxy)-6-hydroxy-3-methylpiperidin-2-one (34a) 

 

To a 10 mL round bottom flask charged with a magnetic stirring bar and a solution of 29a 

(50.4 mg, 184 µmol) in CH2Cl2 (1.84 mL) was slowly added DIBAL-H in CH2Cl2 (1.0 M, 

239 µL, 239 µmol) at –78 ˚C under N2 atmosphere. After being stirred at –78 ˚C for 15 

min, the reaction mixture was quenched with saturated aq. Rochelle salt (2.0 mL) and 

vigorously stirred at room temperature. Resultant two layers were separated and the 

aqueous phase was extracted with CH2Cl2 (3.0 mL × 1). The combined organic layers 

were washed with brine (5.0 mL × 1), dried over sodium sulfate, filtered, and 

concentrated under reduced pressure to afford the crude product. The residue was 

purified by silica gel flash column chromatography (SiO2, 15% EtOAc in hexanes) to 
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afford inseparable mixture 34a (d.r. = 1:1, 37.8 mg, 75%) as a colorless oil; Rf = 0.42 

(hexanes/EtOAc = 1:1); [α]25
D –174.2 (c 1.00, CHCl3); IR (neat film, NaCl) 3367, 3069, 

2942, 1638, 1455, 1286, 1081, 1006, 920, 748, 699; 1H NMR (500 MHz, CDCl3) δ 7.45-

7.42 (complex m, 2H), 7.40-7,34 (complex m, 3H), 5.77 (m, 1H), 5.13-5.06 (complex m, 

2H), 4.98-4.88 (complex m, 3H), 3.19 (br s, 1/2H), 3.03 (br s, 1/2H), 2.57 (app ddd, J = 

13.7, 6.5, 1.4 Hz, 1/2H), 2.33 (app dd, J = 7.5, 1.2 Hz, 1/2H), 2.22 (app dd, J = 13.7, 8.3 

Hz, 1/2H), 2.13 (app dt, J = 13.4, 3.9 Hz, 1/2H), 2.05-1.91 (complex m, 1H), 1.88-1.78 

(complex m, 2H), 1.60 (m, 1/2H), 1.31 (app ddd, J = 13.9, 4.2, 4.2 Hz, 1/2H); 1.22 (s, 

1.5H), 1.21 (s, 1.5H); 13C NMR (126 MHz, CDCl3) δ 174.9 (1/2C), 174.3 (1/2C), 135.5 

(1/2C), 135.4 (1/2C), 133.9 (1/2C), 133.4 (1/2C), 129.8, 129.7 (1/2C), 129.7 (1/2C), 

128.9 (1/2C), 128.9 (1/2C), 128.6, 128.6, 118.6 (1/2C), 118.6 (1/2C), 82.8 (1/2C), 82.5 

(1/2C), 76.9, 43.6 (1/2C), 43.2 (1/2C), 43.2 (1/2C), 43.0 (1/2C), 27.6 (1/2C), 27.0 (1/2C), 

26.4 (1/2C), 26.4 (1/2C), 24.9 (1/2C), 23.9 (1/2C); HRMS (m/z): [M–H2O] calcd for 

C16H19NO2, 258.1489; found, 258.1477. 

(3S)-3-allyl-1-(benzyloxy)-6-hydroxy-3-ethylpiperidin-2-one (34b) 

 

Compound 34b was prepared from 29b according to the procedure for 34a. The residue 

was purified by silica gel flash column chromatography (SiO2, 15% EtOAc in hexanes) to 

afford inseparable mixture 34b (d.r. = 1:1, 49 mg, 60% yield) as a colorless oil; Rf =  0.42 

(hexanes/EtOAc = 4:1); [α]25
D –37.7˚ (c 1.00, CHCl3); IR (neat film, NaCl) 3382, 3073, 

N
BnO

O

O
Et

DIBAL-H

CH2Cl2, –78 °C
N

BnO

HO

O
Et

29b 34b



Chapter 2: Synthesis of enantioenriched 2,2-disubstitutedpyrrolidines via sequential 
asymmetric allylic alkylation and ring contraction 

170	

2963, 2938, 1650, 1643, 1455, 1284, 1080, 979, 916, 751, 698; 1H NMR (500 MHz, 

CDCl3) δ 7.43 (ddt, J = 8.0, 6.3, 1.9 Hz, 2H), 7.40 – 7.32 (m, 3H), 5.83 – 5.72 (m, 1H), 

5.12 – 5.05 (m, 2H), 4.99 – 4.87 (m, 3H), 3.17 (br s, 1H), 2.55 (ddt, J = 13.8, 6.2, 1.4 Hz, 

1/2H), 2.35 (ddt, J = 7.7, 6.5, 1.2 Hz, 1H), 2.24 – 2.16 (m, 1/2H), 2.12 – 1.93 (m, 1 

1/2H), 1.89 – 1.79 (m, 2H), 1.74 – 1.56 (m, 1H), 1.53 – 1.41 (m, 1 1/2H) 0.91 (td, J = 7.5, 

1.6 Hz, 3H).; 13C NMR (126 MHz, CDCl3) δ 174.23 (1/2C), 173.78 (1/2C), 135.44, 

134.19, 133.80, 129.71, 128.93, 128.88, 128.62 (1/2C), 128.58 (1/2C), 118.40 (1/2C), 

118.26 (1/2C), 82.74 (1/2C), 82.62 (1/2C), 47.00 (1/2C), 46.60 (1/2C), 42.26, 40.45, 

30.24 (1/2C), 29.60 (1/2C), 26.17 (1/2C), 26.07 (1/2C), 24.45 (1/2C), 23.73 (1/2C), 8.51 

(1/2C), 8.44 (1/2C).; HRMS (m/z): [M+H]+ calcd for C17H24NO3, 290.1762; found, 

290.1762. 

(3S)-3-allyl-3-benzyl-1-(benzyloxy)-6-hydroxypiperidin-2-one (34c) 

 

Compound 34c was prepared from 29c according to the procedure for 34a. The residue 

was purified by silica gel flash column chromatography (SiO2, 15% EtOAc in hexanes) to 

afford inseparable mixture 34c (d.r. = 1:1, 111 mg, 37% yield) as a white solid; Rf = 0.44 

(hexanes/EtOAc = 2:1); [α]25
D +29.1˚ (c 1.00, CHCl3); IR (neat film, NaCl) 3390, 3063, 

3028, 2939, 1671, 1495, 1453, 1299, 1071, 997, 919, 750, 700; 1H NMR (400 MHz, 

CDCl3) δ 7.44 – 7.32 (m, 5H), 7.33 – 7.25 (m, 3H), 7.23 – 7.14 (m, 2H), 5.90 – 5.74 (m, 

1H), 5.19 – 4.78 (m, 5H), 3.30 (d, J = 13.4 Hz, 1/2H), 3.18 (d, J = 13.3 Hz, 1/2H), 2.95 
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(dd, J = 3.3, 1.2 Hz, 1/2H), 2.77 – 2.66 (m, 1 1/2H), 2.61 (d, J = 3.8 Hz, 1/2H), 2.49 (ddt, 

J = 13.8, 7.1, 1.3 Hz, 1/2H), 2.35 (dd, J = 13.9, 7.6 Hz, 1/2H), 2.13 – 1.94 (m, 2H), 1.75 

– 1.63 (m, 1 1/2H), 1.53 – 1.41 (m, 1H).; 13C NMR (126 MHz, CDCl3) δ 172.87 (1/2 C), 

172.86 (1/2 C), 137.43 (1/2 C), 137.30 (1/2 C), 135.54 (1/2 C), 135.50 (1/2 C), 133.84 

(1/2 C), 133.68 (1/2 C), 130.98, 130.69, 129.81, 129.79, 129.07 (1/2 C), 129.05 (1/2 C), 

128.76, 128.73, 128.36, 128.26, 126.93 (1/2 C), 126.69 (1/2 C), 119.12 (1/2 C), 118.94 

(1/2), 82.68 (1/2 C), 82.46 (1/2 C), 48.01 (1/2 C), 47.99 (1/2 C), 44.24, 42.90, 42.72 (1/2 

C), 42.61 (1/2 C), 26.53 (1/2 C), 26.45 (1/2 C), 23.70 (1/2 C), 23.18 (1/2 C). HRMS 

(m/z): [M+H]+ calcd for C22H26NO3, 351.1907; found, 351.1915. 

 (3R)-3-allyl-1-(benzyloxy)-6-hydroxy-3-(3,3,3-trifluoropropyl)piperidin-2-one (34d)  

 

Compound 34d was prepared from 5m according to the procedure for 34a. The residue 

was purified by silica gel flash column chromatography (SiO2, 15% EtOAc in hexanes) to 

afford inseparable mixture 34d (d.r. = 1:1, 125 mg, 41% yield) as a colorless oil;. Rf = 

0.27 (hexanes/EtOAc = 3:1); [α]25
D +15.0˚ (c 1.00, CHCl3); IR (neat film, NaCl) 3390, 

3063, 3028, 2939, 1671, 1495, 1453, 1299, 1071, 997, 919, 750, 700; 1H NMR (500 

MHz, CDCl3) δ 7.47 – 7.29 (m, 5H), 5.72 (dddd, J = 16.7, 15.0, 10.2, 7.8 Hz, 1H), 5.21 – 

5.08 (m, 2H), 4.98 – 4.84 (m, 3H), 3.21 (br s, 1H), 2.51 (ddt, J = 13.9, 6.3, 1.5 Hz, 1/2H), 

2.44 – 2.32 (m, 1H), 2.26 (dd, J = 14.0, 8.4 Hz, 1/2H), 2.23 – 2.12 (m, 2H), 2.12 – 1.93 

(m, 2 1/2H), 1.95 – 1.81 (m, 1 1/2H), 1.66 (td, J = 13.3, 4.6 Hz, 1/2H), 1.60 – 1.48 (m, 
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1H), 1.42 (dt, J = 14.1, 4.2 Hz, 1/2H).; 13C NMR (126 MHz, CDCl3) δ 173.49, 135.24, 

132.84, 132.51, 129.84 (2C), 129.18, 128.77 (1/2C), 128.75 (1/2C), 127.29 (q, J = 276.5 

Hz), 119.55 (1/2C), 119.52 (1/2C), 82.68, 45.95 (1/2C), 45.23 (1/2C), 42.46 (1/2C), 

40.20 (1/2C), 29.24 (q, J = 29.1 Hz), 29.12 (q, J = 3.0 Hz), 26.15, 25.96 (1/2C), 25.84 

(1/2C), 24.24.; 
19F NMR (282 MHz, CDCl3) δ -66.48 – -66.68 (m, 3F); HRMS (m/z): 

[M+H]+ calcd for C18H23F3NO3, 358.1625; found, 358.1641. 

 (S)-3-Allyl-1-(benzyloxy)-3-methylpiperidin-2-one (35a) 

  

To a 250 mL round bottom flask charged with a magnetic stirring bar and a solution of 

34a (1.53 g, 5.56 mmol) in CH2Cl2 (55.6 mL) was added Et3SiH (1.77 mL, 11.1 mmol) 

and TFA (8.51 mL, 111 mmol) at room temperature under N2 atmosphere. After being 

stirred at ambient temperature for 5 min, the reaction mixture was evaporated in vacuo. 

The residue was purified by flash column chromatography (SiO2, 20% EtOAc in 

hexanes) to afford 35a (1.45 g, quant.) as a colorless oil; Rf = 0.38 (hexanes/EtOAc = 

2:1); [α]25
D –36.3˚ (c 1.00, CHCl3); IR (neat film, NaCl) 3069, 2944, 2873, 1774, 1654, 

1456, 1324, 1207, 1171, 998, 918, 750, 700; 1H NMR (500 MHz, CDCl3) δ 7.46-7.41 

(complex m, 2H), 7.39-7.32 (complex m, 3H), 5.74 (m, 1H), 5.12-5.05 (complex m, 2H), 

4.95 (d, J = 10.6 Hz, 1H), 4.91 (d, J = 10.5 Hz, 1H), 3.41-3.30 (complex m, 2H), 2.49 

(dd, J = 13.7, 6.8 Hz, 1H), 2.24 (dd, J = 13.7, 8.0 Hz, 1H), 1.82-1.69 (complex m, 3H), 

1.43 (m, 1H), 1.21 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 172.9, 135.3, 133.9, 129.7 
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(2C), 128.8, 128.5 (2C), 118.6, 75.6, 51.1, 43.7, 43.0, 31.9, 25.1, 19.6; HRMS (m/z): 

[M+H]+ calcd for C16H22NO2, 260.1645; found, 260.1630. 

(S)-3-allyl-1-(benzyloxy)-3-ethylpiperidin-2-one (35b) 

 

Compound 35b was prepared from 34b according to the procedure for 35a. The residue 

was purified by silica gel flash column chromatography (SiO2, 20% EtOAc in hexanes) to 

afford inseparable mixture 35b (60 mg, 94% yield) as a colorless oil; Rf = 0.42 

(hexanes/EtOAc = 4:1); [α]25
D –30.5˚ (c 1.00, CHCl3); IR (neat film, NaCl) 3069, 3032, 

2941, 2879, 1777, 1659, 1454, 1308, 1207, 1169, 998, 975, 918, 749, 699; 1H NMR (500 

MHz, CDCl3) δ 7.46 – 7.39 (m, 2H), 7.39 – 7.32 (m, 3H), 5.75 (dddd, J = 16.9, 10.4, 8.0, 

6.8 Hz, 1H), 5.10 (q, J = 1.4 Hz, 1H), 5.07 (dq, J = 10.7, 1.5 Hz, 1H), 4.92 (s, 2H), 3.42 – 

3.34 (m, 2H), 2.49 (ddt, J = 13.7, 6.8, 1.4 Hz, 1H), 2.27 – 2.20 (m, 1H), 1.80 (dddd, J = 

8.8, 7.4, 6.1, 4.9 Hz, 2H), 1.77 – 1.71 (m, 1H), 1.68 – 1.60 (m, 2H), 1.60 – 1.54 (m, 1H), 

0.90 (t, J = 7.5 Hz, 3H).; 13C NMR (126 MHz, CDCl3) δ 172.71, 135.14, 133.99, 129.69 

(2C), 128.84, 128.50 (2C), 118.50, 75.83, 51.01, 46.45, 42.02, 30.57, 28.19, 19.59, 8.53.; 

HRMS (m/z): [M+H]+ calcd for C17H24NO2, 274.1802; found, 274.1813. 
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(S)-3-allyl-3-benzyl-1-(benzyloxy)piperidin-2-one (35c) 

 

Compound 35c was prepared from 34c according to the procedure for 35a. The residue 

was purified by silica gel flash column chromatography (SiO2, 20% EtOAc in hexanes) to 

afford inseparable mixture 35c (75 mg, 79% yield) as a colorless oil; Rf = 0.36 

(hexanes/EtOAc = 4:1); [α]25
D +15.4˚ (c 1.00, CHCl3); IR (neat film, NaCl) 3065, 3029, 

2943, 2875, 1777, 1651, 1603, 1454, 1209, 1166, 994, 919, 751, 702; 1H NMR (500 

MHz, CDCl3) δ  7.42 – 7.25 (m, 10H), 5.84 (dddd, J = 16.8, 10.1, 8.1, 6.6 Hz, 1H), 5.23 

– 5.12 (m, 2H), 5.01 – 4.85 (m, 2H), 3.39 – 3.31 (m, 2H), 3.19 (ddd, J = 11.6, 6.7, 5.2 

Hz, 1H), 2.75 – 2.66 (m, 2H), 2.27 (dd, J = 13.6, 8.1 Hz, 1H), 1.81 – 1.72 (m, 1H), 1.72 – 

1.66 (m, 2H), 1.61 – 1.53 (m, 1H).; 13C NMR (126 MHz, CDCl3) δ 171.73, 137.35, 

135.10, 133.48, 130.79 (2C), 129.69 (2C), 128.85, 128.51 (2C), 128.26 (2C), 126.71, 

119.20, 76.01, 50.95, 47.61, 43.68, 43.30, 27.60, 19.53.; HRMS (m/z): [M+H]+ calcd for 

C22H26NO2, 336.1958; found, 336.1973. 

(R)-3-allyl-1-(benzyloxy)-3-(3,3,3-trifluoropropyl)piperidin-2-one (35d) 

 

Compound 35d was prepared from 34d according to the procedure for 35a. The residue 

was purified by silica gel flash column chromatography (SiO2, 20% EtOAc in hexanes) to 
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afford inseparable mixture 35d (45 mg, 54% yield) as a colorless oil; Rf = 0.34 

(hexanes/EtOAc =4:1); [α]25
D –4.0˚ (c 0.50, CHCl3); IR (neat film, NaCl) 3068, 3033, 

2952, 2875, 1658, 1454, 1324, 1259, 1149, 983, 919, 750, 699; 1H NMR (500 MHz, 

CDCl3) δ 7.41 (dq, J = 5.4, 3.3, 2.6 Hz, 2H), 7.37 (dt, J = 4.4, 2.9 Hz, 3H), 5.70 (dddd, J 

= 16.9, 10.1, 7.8, 6.9 Hz, 1H), 5.18 – 5.09 (m, 2H), 4.96 – 4.88 (m, 2H), 3.40 (t, J = 6.1 

Hz, 2H), 2.46 (ddt, J = 13.8, 6.8, 1.3 Hz, 1H), 2.30 (dd, J = 13.8, 7.8 Hz, 1H), 2.20 – 2.05 

(m, 2H), 1.90 – 1.78 (m, 3H), 1.74 (ddt, J = 13.6, 11.1, 4.7 Hz, 2H), 1.54 (ddd, J = 13.8, 

8.3, 3.6 Hz, 1H).; 13C NMR (126 MHz, CDCl3) δ 171.52, 134.79, 132.59, 129.73 (2C), 

129.34 (q, JC-F = 276.3 Hz), 129.02, 128.54 (2C), 119.55, 75.77, 50.86, 44.92, 41.44, 

29.53, 29.52 (q, JC-F = 3.4 Hz), 29.15 (q, JC-F = 28.8 Hz), 19.23.; 19F NMR (282 MHz, 

CDCl3) δ -66.54 (t, J=10.7 Hz, 3F);  HRMS (m/z): [M+H]+ calcd for C18H23F3NO2, 

342.1675; found, 342.1692. 

(S)-3-Allyl-1-hydroxy-3-methylpiperidin-2-one (30a) 

 

To a 250 mL round bottom flask charged with a magnetic stirring bar and a solution of 

35a (1.39 g, 5.01 mmol) in CH2Cl2 (50.1 mL) was added BCl3 in CH2Cl2 (1.0 M, 6.01 

mL, 6.01 mmol) dropwise over 10 min at –78 ˚C under N2 atmosphere. After being 

stirred at 0 ˚C for 10 min, the solvent was removed in vacuo. The residue was diluted 

with hexanes/Et2O (v/v = 10/1, 30 mL) and 1N NaOH (30 mL) was carefully added to 

adjust the pH to >14. Resultant two layers were separated and the organic phase was 

washed with aqueous 1N NaOH (20 mL × 2). Concentrated HCl was added to adjust the 
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pH to <1, followed by addition of CH2Cl2 (60 mL). The two layers were separated and 

the aqueous phase was extracted with CH2Cl2 (50 mL × 1). The combined organic layers 

were washed with brine (120 mL × 1), dried over sodium sulfate, filtered, and 

concentrated under reduced pressure to afford pure hydroxamic acid 30a (773 mg, 91%) 

as a pale orange crystal, which was used in the next reaction without further purification; 

Rf = 0.38 (CH2Cl2/MeOH = 8:1); mp = 41-42 ˚C; [α]25
D –68.0˚ (c 1.00, CHCl3); IR (neat 

film, NaCl) 3073, 2938, 2869, 1628, 1456, 1329, 1021, 999, 919; 1H NMR (500 MHz, 

CDCl3) δ 5.72 (m, 1H), 5.13-5.05 (complex m, 2H), 3.62 (app t, J = 6.2 Hz, 2H), 2.47 

(app dd, J = 13.7, 6.8 Hz, 1H), 2.27 (dd, J = 13.7, 8.0 Hz, 1H), 1.99-1.92 (complex m, 

2H), 1.83 (m, 1H), 1.53 (m, 1H), 1.23 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 170.0, 

133.9, 118.6, 49.6, 43.6, 41.4, 31.9, 24.7, 19.0; HRMS (m/z): [M+H]+ calcd for 

C9H16NO2, 170.1176; found, 170.1167. 

(S)-3-allyl-3-ethyl-1-hydroxypiperidin-2-one (30b) 

 

Compound 30b was prepared from 35b according to the procedure for 30a. The residue 

was concentrated under reduced pressure to afford pure hydroxamic acid 30b (13 mg, 

62%) as a pale orange solid, which was used in the next reaction without further 

purification; Rf = 0.45 (hexanes/EtOAc = 1:1); [α]25
D –40.7˚ (c 1.00, CHCl3); IR (neat 

film, NaCl) 3076, 2941, 2879, 1626, 1455, 919; 1H NMR (500 MHz, CDCl3) δ 7.26 (br s, 

1H), 5.73 (dddd, J = 16.8, 10.5, 8.0, 6.7 Hz, 1H), 5.12 – 4.99 (m, 2H), 3.61 (td, J = 6.2, 
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1.8 Hz, 2H), 2.46 (ddt, J = 13.8, 6.7, 1.4 Hz, 1H), 2.25 (dd, J = 13.8, 7.9 Hz, 1H), 2.04 – 

1.87 (m, 2H), 1.71 (ddd, J = 12.1, 9.6, 6.4 Hz, 3H), 1.58 (dq, J = 14.6, 7.4 Hz, 1H), 0.88 

(t, J = 7.4 Hz, 3H).; 13C NMR (126 MHz, CDCl3) δ 168.86, 134.07, 118.33, 48.75, 44.67, 

41.71, 30.24, 28.49, 18.88, 8.57; HRMS (m/z): [M+H]+ calcd for C10H18NO2, 184.1332; 

found, 184.1331. 

(S)-3-allyl-3-benzyl-1-hydroxypiperidin-2-one (30c) 

 

Compound 30c was prepared from 35c according to the procedure for 30a. The residue 

was concentrated under reduced pressure to afford pure hydroxamic acid 30c (33 mg, 

80%) as a pale orange solid, which was used in the next reaction without further 

purification; Rf = 0.55 (hexanes/EtOAc = 1:1); [α]25
D +18.0˚ (c 1.00, CHCl3); IR (neat 

film, NaCl) 3076, 3029, 2926, 2869, 1624, 1453, 917, 703; 1H NMR (500 MHz, CDCl3) 

δ 7.37 – 7.25 (m, 3H), 7.24 – 7.17 (m, 2H), 5.81 (dddd, J = 16.6, 10.1, 8.3, 6.3 Hz, 1H), 

5.21 – 5.11 (m, 2H), 3.60 (ddd, J = 12.2, 7.3, 5.3 Hz, 1H), 3.48 (dt, J = 11.0, 5.4 Hz, 1H), 

3.31 (d, J = 13.3 Hz, 1H), 2.74 (d, J = 13.4 Hz, 1H), 2.69 (ddt, J = 13.7, 6.3, 1.4 Hz, 1H), 

2.24 (dd, J = 13.6, 8.3 Hz, 1H), 1.88 (ddtd, J = 13.3, 8.4, 5.5, 2.1 Hz, 1H), 1.81 – 1.63 

(m, 3H).; 13C NMR (126 MHz, CDCl3) δ 167.69, 137.37, 133.74, 130.47 (2C), 128.24 

(2C), 126.65, 118.97, 48.32, 45.78, 43.49, 43.06, 27.96, 18.82.; HRMS (m/z): [M+H]+ 

calcd for C15H20NO2, 246.1489; found, 246.1487. 
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(R)-3-allyl-1-hydroxy-3-(3,3,3-trifluoropropyl)piperidin-2-one (30d) 

 

Compound 30d was prepared from 35d according to the procedure for 30a. The residue 

was concentrated under reduced pressure to afford pure hydroxamic acid 30d (30 mg, 

81%) as a pale yellow solid, which was used in the next reaction without further 

purification; Rf = 0.60 (hexanes/EtOAc = 1:1); [α]25
D –16.9˚ (c 1.00, CHCl3); IR (neat 

film, NaCl) 3080, 2926, 2855, 1633, 1454, 1324, 1260, 1118, 981, 916; 1H NMR (500 

MHz, CDCl3) δ 9.08 (br s, 1H), 5.70 (dddd, J = 16.9, 10.1, 7.8, 6.9 Hz, 1H), 5.22 – 5.00 

(m, 2H), 3.64 (t, J = 6.2 Hz, 2H), 2.46 (ddt, J = 13.9, 6.8, 1.4 Hz, 1H), 2.33 (dd, J = 13.9, 

7.8 Hz, 1H), 2.26 – 2.09 (m, 2H), 2.07 – 1.92 (m, 2H), 1.90 – 1.73 (m, 3H), 1.63 (ddd, J 

= 13.9, 8.4, 3.8 Hz, 1H).; 13C NMR (126 MHz, CDCl3) δ 167.54, 132.62, 127.15 (q, J = 

276.2 Hz), 119.51, 48.69, 43.14, 41.19, 29.72, 29.29 (q, J = 3.0 Hz), 29.27 (q, J = 28.8 

Hz), 18.55. ; 19F NMR (282 MHz, CDCl3) δ -66.56 (t, J=10.6 Hz, 3F); HRMS (m/z): 

[M+H]+ calcd for C11H17F3NO2, 252.1206; found, 252.1203. 

 (S)-3-Allyl-3-methyl-2-oxopiperidin-1-yl trifluoromethanesulfonate (36a) 

 

To a 100 mL round bottom flask charged with a magnetic stirring bar and a solution of 

30a (771 mg, 4.56 mmol) in CH2Cl2 (45.6 mL) was added Et3N (948 µL, 6.84 mmol) and 
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Tf2O (898 µL, 5.47 mmol) at 0 ˚C under N2 atmosphere. After being stirred at 0 ˚C for 5 

min, the reaction mixture was quenched with saturated aq. NH4Cl (50 mL). Resultant two 

layers were separated and the aqueous phase was extracted with CH2Cl2 (50 mL × 1). The 

combined organic layers were washed with brine (100 mL × 1), dried over sodium 

sulfate, filtered, and concentrated under reduced pressure to afford the crude product. 

This resulting triflate 36a was used in the next reaction without further purification due to 

it’s instability; Rf = 0.48 (hexanes/EtOAc = 2:1). 

Methyl (S)-2-allyl-2-methylpyrrolidine-1-carboxylate (31a) 

 

To a 100 mL round bottom flask charged with a magnetic stirring bar and a solution of 

fleshly prepared 36a in freshly distilled MeOH (30.4 mL) was added Et3N (1.26 mL, 9.12 

mmol) at room temperature under N2 atmosphere and the stirred mixture was heated to 

reflux and stirred for 50 min. The reaction mixture was cooled to room temperature 

before the solvent was removed under reduced pressure. The residue was purified by 

flash column chromatography (SiO2, 5% EtOAc in hexanes) to afford 31a (695 mg, 83%) 

as a yellow oil; Rf = 0.48 (hexanes/EtOAc = 2:1); [α]25
D –70.3˚ (c 1.00, CHCl3); IR (neat 

film, NaCl) 2961, 2927, 2871, 1700, 1444, 1375, 1212, 1189, 1082, 912, 772, 694; 1H 

NMR (500 MHz, CDCl3) δ Rotamer A: 5.70 (m, 1H), 5.11-5.01 (m, 2H), 3.70 (s, 3H), 

3.58 (m, 1H), 3.37 (m, 1H), 2.56 (dd, J = 13.7, 6.9 Hz, 1H), 2.37 (dd, J = 13.7, 7.8 Hz, 

1H), 2.00 (m, 1H), 1.80-1.71 (complex m, 2H), 1.65 (m, 1H), 1.30 (s, 3H); Rotamer B: 

N
TfO

O
Et3N

MeOH, reflux N
MeO2C

36a 31a



Chapter 2: Synthesis of enantioenriched 2,2-disubstitutedpyrrolidines via sequential 
asymmetric allylic alkylation and ring contraction 

180	

5.70 (m, 1H), 5.11-5.01 (m, 2H), 3.64 (s, 3H), 3.47 (m, 1H), 3.31 (m, 1H), 2.68 (dd, J = 

13.6, 6.8 Hz, 1H), 2.51 (dd, J = 13.6, 8.0 Hz, 1H), 1.95 (m, 1H), 1.80-1.71 (complex m, 

2H), 1.60 (m, 1H), 1.37 (s, 3H); 13C NMR (126 MHz, CDCl3) δ Rotamer A: 155.7, 134.5, 

118.0, 62.3, 51.9, 49.1, 43.6, 38.9, 25.9, 21.7; Rotamer B: 154.4, 134.8, 117.9, 63.0, 51.7, 

48.1, 42.5, 37.8, 24.7, 22.2; HRMS (m/z): [M+H]+ calcd for C10H18NO2, 183.1259; found, 

183.12. 

benzyl (S)-2-allyl-2-methylpyrrolidine-1-carboxylate (31b) 

 

To a 5 mL round bottom flask charged with a magnetic stirring bar and a solution of 

fleshly prepared 36a (0.21 mmol, 1 equiv) in a 3:1 mixture of toluene and benzyl alcohol 

(1.42 mL, 0.15 M) was added Et3N (0.059 mL, 0.18 mmol, 2 equiv) at room temperature 

under N2 atmosphere and the stirred mixture was heated to reflux and stirred for 3 hours. 

The reaction mixture was cooled to room temperature before the solvent was removed 

under reduced pressure. The residue was purified by flash column chromatography (SiO2, 

5% EtOAc in hexanes) to afford 31b (31 mg, 56% yield, 92% ee) as a orange oil; Rf = 

0.75 (hexanes/EtOAc = 2:1); [α]25
D –90.9˚ (c 1.00, CHCl3); IR (neat film, NaCl) 3068, 

3032, 2966, 2875, 1698, 1453, 1403, 1353, 1213, 1128, 1068, 914, 769, 697; 1H NMR 

(500 MHz, CDCl3) δ 7.40 – 7.27 (m, 5H), 5.76 – 5.61 (m, 1H), 5.20 – 4.96 (m, 4H), 3.65 

– 3.52 (m, 1H), 3.39 (tt, J = 10.8, 7.4 Hz, 1H), 2.66 (dddt, J = 63.2, 13.7, 6.8, 1.4 Hz, 

1H), 2.52 (dd, J = 13.6, 7.9 Hz, 1H), 2.06 – 1.94 (m, 1H), 1.82 – 1.73 (m, 2H), 1.64 (tt, J 
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= 12.5, 6.2 Hz, 1H), 1.36 (d, J = 40.5 Hz, 3H).; 13C NMR (126 MHz, CDCl3) δ Rotamer 

A: 153.77, 137.45, 134.79, 128.51 (2C), 128.20, 127.74 (2C), 118.06, 66.08, 63.24, 

48.30, 42.51, 37.85, 24.83, 22.25. Rotamer B: 155.05, 136.93, 134.47, 128.58 (2C), 

128.01, 127.83 (2C), 118.18, 66.98, 62.58, 49.32, 43.69, 39.03, 26.15, 21.83. HRMS 

(m/z): [M+H]+ calcd for C16H22NO2, 260.1645; found, 260.1656. 

tert-butyl (S)-2-allyl-2-methylpyrrolidine-1-carboxylate (31c) 

 

To a 50 mL round bottom flask charged with a magnetic stirring bar and a solution of 

fleshly prepared 36a (1.93 mmol, 1 equiv) in a 3:1 mixture of toluene and tert-butyl 

alcohol (13 mL, 0.15 M) was added Et3N (0.53 mL, 3.85 mmol, 2 equiv) at room 

temperature under N2 atmosphere and the stirred mixture was heated to reflux and stirred 

for 3 hours. The reaction mixture was cooled to room temperature before the solvent was 

removed under reduced pressure. The residue was purified by flash column 

chromatography (SiO2, 5% EtOAc in hexanes) to afford 31c (280 mg, 65% yield) as a 

yellow oil;. Rf = 0.32 (hexanes/EtOAc = 19:1); [α]25
D –55.4˚ (c 1.00, CHCl3); IR (neat 

film, NaCl) 3078, 2970, 2928, 2870, 1697, 1457, 1387, 1170, 1066, 912, 771; 1H NMR 

(400 MHz, CDCl3) δ  5.70 (dddd, J = 17.6, 9.8, 8.0, 6.7 Hz, 1H), 5.06 (dt, J = 15.6, 3.7 

Hz, 2H), 3.48 (ddt, J = 39.8, 12.0, 6.1 Hz, 1H), 3.28 (ddt, J = 25.5, 10.7, 7.4 Hz, 1H), 

2.61 (dd, J = 13.7, 6.5 Hz, 1H), 2.33 (dd, J = 13.7, 8.0 Hz, 1H), 2.08 – 1.84 (m, 1H), 1.77 

– 1.66 (m, 2H), 1.61 (tt, J = 12.0, 5.6 Hz, 1H), 1.46 (d, J = 17.4 Hz, 9H), 1.28 (d, J = 19.6 
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Hz, 3H).; 13C NMR (101 MHz, CDCl3) δ Rotamer A: 154.49, 134.90, 117.91, 79.41, 

61.98, 48.73, 43.81, 39.12, 28.76 (3C), 26.11, 21.67. Rotamer B: 13C NMR (101 MHz, 

CDCl3) δ 153.57, 135.14, 117.80, 78.58, 62.65, 48.66, 42.64, 38.07, 28.76 (3C), 25.03, 

22.13.  

(S)-3-allyl-3-ethyl-1-hydroxypiperidin-2-one (31d) 

 

Compound 36b was prepared from compound 30b according to the procedure for 36a, 

and was used without further purification. Compound 31d was prepared from 36b 

according to the procedure for 31b. The residue was purified by flash column 

chromatography (SiO2, 5% EtOAc in hexanes) to afford 31d (90 mg, 66% yield) as a 

colorless oil;. Rf = 0.65 (hexanes/EtOAc = 4:1); [α]25
D –69.5˚ (c 1.00, CHCl3); IR (neat 

film, NaCl) 3069, 3032, 2968, 2877, 1702, 1455, 1403, 1356, 1338, 1214, 1123, 1071, 

914, 768, 697; 1H NMR (500 MHz, CDCl3) δ Rotamer A: 7.39 – 7.33 (m, 4H), 7.33 – 

7.27 (m, 1H), 5.77 – 5.62 (m, 1H), 5.20 – 5.12 (m, 1H), 5.11 (d, J = 2.5 Hz, 1H), 5.09 – 

4.94 (m, 2H), 3.55 – 3.41 (m, 2H), 2.79 (ddt, J = 13.4, 6.8, 1.4 Hz, 1H), 2.36 (dd, J = 

13.5, 7.9 Hz, 1H), 2.07 (dq, J = 13.5, 7.4 Hz, 1H), 1.94 – 1.78 (m, 2H), 1.74 (tdd, J = 

12.4, 8.8, 5.5 Hz, 2H), 1.66 (dt, J = 14.7, 7.4 Hz, 1H), 0.82 (t, J = 7.4 Hz, 3H),; Rotamer 

B: 7.39 – 7.33 (m, 4H), 7.33 – 7.27 (m, 1H), 5.77 – 5.62 (m, 1H), 5.20 – 5.12 (m, 1H), 

5.11 (d, J = 2.5 Hz, 1H), 5.09 – 4.94 (m, 2H), 3.55 – 3.41 (m, 2H), 2.61 (ddt, J = 13.5, 

6.7, 1.4 Hz, 1H), 2.26 (dd, J = 13.7, 7.9 Hz, 1H), 1.94 – 1.78 (m, 3H), 1.74 (tdd, J = 12.4, 
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8.8, 5.5 Hz, 2H), 1.56 (dq, J = 14.6, 7.4 Hz, 1H), 0.78 (t, J = 7.4 Hz, 3H).; 13C NMR (126 

MHz, CDCl3) δ Rotamer A: 153.63, 137.44, 134.73, 128.42 (2C), 128.15, 127.56 (2C), 

117.89, 66.45, 65.97, 48.84, 41.69, 33.66, 29.98, 22.45, 8.60. Rotamer B: 154.99, 136.84, 

134.45, 128.48 (2C), 127.93, 127.71 (2C), 117.99, 66.90, 65.77, 49.82, 43.13, 35.02, 

31.21, 22.00, 8.47.; HRMS (m/z): [M+H]+ calcd for C17H24NO2, 274.1777; found, 

274.1812. 

(S)-3-allyl-3-benzyl-1-hydroxypiperidin-2-one (31e) 

 

Compound 36c was prepared from compound 30c according to the procedure for 36a, 

and was used without further purification. Compound 31e was prepared from 36c 

according to the procedure for 31b. The residue was purified by flash column 

chromatography (SiO2, 5% EtOAc in hexanes) to afford 31e (14 mg, 54% yield) as a 

yellow solid;. Rf = 0.78 (hexanes/EtOAc = 2:1); [α]25
D +88.6˚ (c 1.00, CHCl3); IR (neat 

film, NaCl) 3063, 3029, 2954, 2927, 2876, 1697, 1454, 1402, 1357, 1336, 1210, 1103, 

917, 748, 700; 1H NMR (500 MHz, CDCl3) δ 7.49 – 7.30 (m, 5H), 7.25 – 7.14 (m, 3H), 

7.09 – 7.00 (m, 2H), 5.80 – 5.62 (m, 1H), 5.34 – 5.19 (m, 1H), 5.15 – 5.10 (m, 1H), 5.08 

(tdd, J = 6.1, 3.9, 2.3 Hz, 1H), 3.53 (d, J = 13.2 Hz, 1H), 3.34 – 3.21 (m, 2H), 3.15 (ddd, 

J = 10.5, 8.0, 4.4 Hz, 1H), 3.01 (ddt, J = 13.5, 6.5, 1.4 Hz, 1H), 2.67 (t, J = 13.8 Hz, 1H), 

2.44 (dd, J = 13.6, 8.2 Hz, 1H), 1.95 – 1.85 (m, 2H), 1.46 (dddd, J = 14.2, 12.1, 5.8, 4.3 

Hz, 1H), 0.98 – 0.87 (m, 1H).; 13C NMR (126 MHz, CDCl3) δ Rotamer A: 153.81, 
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138.33, 137.49, 134.20, 130.45 (2C), 128.45 (2C), 128.02 (2C), 127.83, 127.80 (2C), 

126.16, 118.46, 66.64, 66.09, 48.69, 42.42, 42.27, 33.82, 21.82. Rotamer B: 154.81, 

138.00, 136.60, 133.78, 130.29 (2C), 128.60 (2C), 128.52 (2C), 128.20 (2C), 128.16, 

126.40, 118.61, 67.24, 65.91, 49.72, 43.92, 43.57, 35.25, 21.34.; HRMS (m/z): [M+H]+ 

calcd for C22H26NO2, 336.1958; found, 336.1966. 

(R)-3-allyl-1-hydroxy-3-(3,3,3-trifluoropropyl)piperidin-2-one (31f) 

 

Compound 36d was prepared from compound 30d according to the procedure for 36a, 

and was used without further purification. Compound 13f was prepared from 36d 

according to the procedure for 31b. The residue was purified by flash column 

chromatography (SiO2, 5% EtOAc in hexanes) to afford 31f (21 mg, 44% yield) as a 

colorless oil;. Rf = 0.73 (hexanes/EtOAc = 2:1); [α]25
D –21.1˚ (c 0.33, CHCl3); IR (neat 

film, NaCl) 3074, 2925, 2852, 1698, 1455, 1403. 1341, 1261, 1142, 1019, 919, 771, 696; 

1H NMR (400 MHz, CDCl3) δ 7.45 – 7.27 (m, 5H), 5.77 – 5.59 (m, 1H), 5.20 – 4.95 (m, 

4H), 3.60 – 3.38 (m, 2H), 2.76 (ddt, J = 13.6, 7.0, 1.3 Hz, 1H), 2.47 – 2.24 (m, 2H), 2.10 

– 1.90 (m, 3H), 1.90 – 1.66 (m, 4H).; 13C NMR (101 MHz, CDCl3) δ Rotamer A: 153.82, 

137.19, 133.75, 128.59 (2C), 128.37, 127.84 (2C), 127.46 (q, J = 276.0 Hz), 118.96, 

66.48, 64.99, 48.75, 41.64, 34.51, 29.76 (q, J = 2.7 Hz), 29.48 (q, J = 28.6 Hz), 22.28. 

Rotamer B: 154.76, 136.36, 133.44, 128.72 (2C), 128.37, 128.03 (2C), 127.46 (d, J = 

N
TfO

O
Et3N, BnOH

PhMe, 75 °C N
BnO2C

N
HO

O Tf2O
Et3N

CH2Cl2, 0 °C

30d 36d 31f

CF3 CF3
CF3
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276.0 Hz), 119.08, 67.47, 64.22, 49.76, 43.39, 35.75, 29.76 (d, J = 2.7 Hz), 29.48 (d, J = 

28.6 Hz), 21.91.; 19F NMR (282 MHz, CDCl3) δ -66.24 (dt, J = 17.7, 10.5 Hz).;  

(2S)-2-methyl-2-(2-propene-1-yl)-pyrrolidine hydrochloride (37) 

 

To a 10-20 mL microwave vial charged with a magnetic stirring bar and a solution of 31a 

(299 mg, 1.63 mmol) in 1,2-propanediol (12.5 mL) was added KOH (4.12 g, 73.4 mmol) 

and H2O (1.63 mL) at room temperature, after which an exotherm was observed. The 

reaction mixture was submitted to microwave irradiation for 1 h at 200 ˚C. The reaction 

mixture was diluted with H2O (15 mL) and extracted with CH2Cl2 (30 mL × 2). The 

combined organic layers were washed with brine (100 mL × 1), dried over sodium 

sulfate, and filtered, followed by the addition of a solution of HCl in Et2O (2.0 M, 2.45 

mL, 4.89 mmol) to form the HCl salt. This resulting mixture was concentrated under 

reduced pressure to afford 37 (257 mg, 98%) as a hygroscopic pale brown solid which 

was carried on without further purification; Rf = 0.27 (CH2Cl2/MeOH/NH4OH = 6:1:0.1); 

 

 

 

  

N
MeO2C

N
H
3731a

KOH, H2O
1,2-propanediol

1 h, 200 °C, µwave
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(S)-2-Allyl-1-{2-(3,4-dimethoxyphenyl)allyl}-2-methylpyrrolidine (41)  

 

To a 100 mL round bottom flask charged with a magnetic stirring bar and a solution of 37 

(606 mg, 3.75 mmol) in CH3CN (27.5 mL) was added K2CO3 (2.07 g, 15.0 mmol) and a 

solution of freshly prepared allyl bromide 4215 (1.93 g, 7.50 mmol) in CH3CN (10.0 mL) 

at room temperature under N2 atmosphere. The mixture was heated to reflux and stirred 

for 10 hours, and then the reaction mixture was cooled to room temperature before the 

solvent was removed under reduced pressure. The residue was diluted with Et2O (40 mL), 

washed with H2O (40 mL × 1) and brine (40 mL × 1), dried over sodium sulfate, filtered, 

and concentrated under reduced pressure to afford the crude product. The residue was 

purified by flash column chromatography (SiO2, CH2Cl2 to 10% EtOAc in CH2Cl2) to 

afford 41 (939 mg, 83%) as an orange oil; Rf = 0.50 (hexanes/EtOAc = 2:1); [α]25
D –17.8˚ 

(c 1.00, CHCl3); IR (neat film, NaCl) 3074, 2959, 2833, 1579, 1516, 1463, 1257, 1222, 

1144, 1028, 904, 809, 766; 1H NMR (500 MHz, CDCl3) δ 7.12 (d, J = 2.1 Hz, 1H), 7.07 

(dd, J = 8.3, 2.1 Hz, 1H), 6.82 (d, J = 8.3 Hz, 1H), 5.83 (m, 1H), 5.30 (app s, 1H), 5.20 

(app s, 1H), 5.07-4.97 (complex m, 2H), 3.89 (s, 3H), 3.88 (s, 3H), 3.56 (d, J = 13.2 Hz, 

1H), 3.26 (d, J = 13.3, 1H), 2.82 (m, 1H), 2.54 (m, 1H), 2.20 (d, J = 7.3 Hz, 2H), 1.79 (m, 

1H), 1.65 (complex m, 2H), 1.46 (m, 1H), 1.00 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 

148.5, 148.5, 145.9, 136.2, 133.8, 118.8, 116.7, 113.0, 110.7, 110.0, 62.4, 55.9, 55.9, 

HN
•HCl

MeO

MeO

Br
+

MeCN, reflux
N

OMe
MeO

K2CO3

37 42 41
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53.5, 50.7, 42.6, 36.8, 20.8, 19.9; HRMS (m/z): [M+H]+ calcd for C19H28NO2, 302.2115; 

found, 302.2117. 

(S)-6-(3,4-Dimethoxyphenyl)-8a-methyl-1,2,3,5,8,8a-hexahydroindolizine (40) 

 

To two 10-20 mL microwave vial charged with a magnetic stirring bar and a solution of 

41 (445 mg, 1.48 mmol) in toluene (29.5 mL) were added TFA (126 mL, 1.63 mmol) at 

room temperature followed by addition of Grubbs 2nd generation catalyst (126 mg, 148 

µmol). The reaction mixture was submitted to microwave irradiation for 1 h at 100 ˚C. 

Aqueous 1N HCl (30 mL) was added to the reaction mixture to adjust the pH to <1. 

Resultant two layers were separated and the organic phase was washed with 1N HCl (30 

mL × 1). Aqueous 6N NaOH was added to the combined aqueous layers to adjust the pH 

to >14, and the mixture was extracted with CH2Cl2 (60 mL × 1). The combined organic 

layers were washed with brine (150 mL × 1), dried over sodium sulfate, filtered, and 

concentrated under reduced pressure to afford the crude product. The residue was 

purified by flash column chromatography (SiO2, 2% to 5% to 10% MeOH in CH2Cl2, 

0.3% Et3N) to afford 40 (411 mg, 92%) as a pale brown solid; Rf = 0.50 (hexanes/EtOAc 

= 2:1); mp = 51-53 ˚C; [α]25
D +51.8˚ (c 1.00, CHCl3); IR (neat film, NaCl) 2923, 2853, 

1602, 1518, 1456, 1251, 1213, 1168, 1146, 1024, 794, 732; 1H NMR (500 MHz, CDCl3) 

δ 6.92-6.88 (complex m, 2H), 6.82 (d, J = 8.6 Hz, 1H), 6.02 (m, 1H), 3.90 (s, 3H), 3.88 

N

MeO

N

OMe
MeO

OMe

40

Grubbs II, TFA

41

1 h, 100 °C, µwave,
toluene
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(s, 3H), 3.66 (d, J = 16.8 Hz, 1H), 3.47 (d, J = 16.9, 1H), 3.04 (m, 1H), 2.77 (m, 1H), 

2.32 (d, J = 17.8 Hz, 1H), 2.13 (ddd, J = 17.5, 5.9, 2.7 Hz, 1H), 1.93-1.83 (complex m, 

2H), 1.79 (m, 1H), 1.69 (m, 1H), 1.02 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 148.8, 

148.3, 133.2, 133.1, 120.7, 117.2, 111.0, 108.5, 57.0, 55.9, 55.9, 50.4, 47.9, 38.5, 35.8, 

20.0, 17.2; HRMS (m/z): [M+H]+ calcd for C17H24NO2, 274.1802; found, 274.1817. 
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 Figure A2-1.2. Infrared spectrum (Thin Film, NaCl) of compound 28c. 
 

	Figure A2-1.3. 13C NMR (126 MHz, CDCl3) of compound 28c. 
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 Figure A2-1.5. Infrared spectrum (Thin Film, NaCl) of compound 29c. 
 

	Figure A2-1.6. 13C NMR (126 MHz, CDCl3) of compound 29c. 
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 Figure A2-1.8. Infrared spectrum (Thin Film, NaCl) of compound 34a. 
 

	Figure A2-1.9. 13C NMR (126 MHz, CDCl3) of compound 34a. 
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 Figure A2-1.11. Infrared spectrum (Thin Film, NaCl) of compound 34b. 
 

	Figure A2-1.12. 13C NMR (126 MHz, CDCl3) of compound 34b. 
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 Figure A2-1.14. Infrared spectrum (Thin Film, NaCl) of compound 34c. 
 

	Figure A2-1.15. 13C NMR (126 MHz, CDCl3) of compound 34c. 
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 Figure A2-1.17. Infrared spectrum (Thin Film, NaCl) of compound 34d. 
 

	Figure A2-1.18. 13C NMR (126 MHz, CDCl3) of compound 34d. 
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Figure A2-1.19. 19F NMR (282 MHz, CDCl3) of compound 34d.	
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 Figure A2-1.21. Infrared spectrum (Thin Film, NaCl) of compound 35a. 
 

	Figure A2-1.22. 13C NMR (126 MHz, CDCl3) of compound 35a. 
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 Figure A2-1.24. Infrared spectrum (Thin Film, NaCl) of compound 35b. 
 

	Figure A2-1.25. 13C NMR (126 MHz, CDCl3) of compound 35b. 
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 Figure A2-1.27. Infrared spectrum (Thin Film, NaCl) of compound 35c. 
 

	Figure A2-1.28. 13C NMR (126 MHz, CDCl3) of compound 35c. 
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 Figure A2-1.30. Infrared spectrum (Thin Film, NaCl) of compound 35d. 
 

	Figure A2-1.31. 13C NMR (126 MHz, CDCl3) of compound 35d. 
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Figure A2-1.32. 19F NMR (282 MHz, CDCl3) of compound 35d.	
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 Figure A2-1.34. Infrared spectrum (Thin Film, NaCl) of compound 30a. 
 

	Figure A2-1.35. 13C NMR (126 MHz, CDCl3) of compound 30a. 
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 Figure A2-1.37. Infrared spectrum (Thin Film, NaCl) of compound 30b. 
 

	Figure A2-1.38. 13C NMR (126 MHz, CDCl3) of compound 30b. 
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 Figure A2-1.40. Infrared spectrum (Thin Film, NaCl) of compound 30c. 
 

	Figure A2-1.41. 13C NMR (126 MHz, CDCl3) of compound 30c. 
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 Figure A2-1.43. Infrared spectrum (Thin Film, NaCl) of compound 30d. 
 

	Figure A2-1.44. 13C NMR (126 MHz, CDCl3) of compound 30d. 
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Figure A2-1.45. 19F NMR (282 MHz, CDCl3) of compound 30d.	
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 Figure A2-1.47. Infrared spectrum (Thin Film, NaCl) of compound 31a. 
 

	Figure A2-1.48. 13C NMR (126 MHz, CDCl3) of compound 31a. 
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 Figure A2-1.50. Infrared spectrum (Thin Film, NaCl) of compound 31b. 
 

	Figure A2-1.51. 13C NMR (126 MHz, CDCl3) of compound 31b. 
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 Figure A2-1.53. Infrared spectrum (Thin Film, NaCl) of compound 31c. 
 

	Figure A2-1.54. 13C NMR (101 MHz, CDCl3) of compound 31c. 
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 Figure A2-1.56. Infrared spectrum (Thin Film, NaCl) of compound 31d. 
 

	Figure A2-1.57. 13C NMR (126 MHz, CDCl3) of compound 31d. 
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 Figure A2-1.59. Infrared spectrum (Thin Film, NaCl) of compound 31e. 
 

	Figure A2-1.60. 13C NMR (126 MHz, CDCl3) of compound 31e. 
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 Figure A2-1.62. Infrared spectrum (Thin Film, NaCl) of compound 31f. 
 

	Figure A2-1.63. 13C NMR (101 MHz, CDCl3) of compound 31f. 
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Figure A2-1.64. 19F NMR (282 MHz, CDCl3) of compound 31f.	
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 Figure A2-1.66. Infrared spectrum (Thin Film, NaCl) of compound 41. 
 

	Figure A2-1.67. 13C NMR (126 MHz, CDCl3) of compound 41. 
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 Figure A2-1.69. Infrared spectrum (Thin Film, NaCl) of compound 40. 
 

	Figure A2-1.70. 13C NMR (126 MHz, CDCl3) of compound 40. 
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Appendix 2-2 

Progress Toward the Total  

Synthesis of Tylohirsuticine† 

 

A2-2.1   INTRODUCTION: 

As described in Chapter 2, we proposed utilizing our method for the synthesis of 

stereogenic 2,2-disubstituted pyrrolidines to access the natural product tylohirsuticine 

(39). Tylohirsuticine (39) was originally isolated from the aerial parts of Tylophora 

hirsuta and characterized in 1987 by Bhutani and coworkers.1 Tylophora hirsuta has 

been utilized in Indian traditional medicine for treating asthma, high blood pressure, 

diarrhea, rheumatism, and other allergic conditions.2 The Tylophora genus of plants has 

been found in previous studies to have laxative, expectorant, diaphoretic, and purgative 

properties, as well as antiasthmatic, anti-arthritic, and anti-cancer properties.3 Further 

studies by Bashir and coworkers have shown that extracts from Tylophora hirsuta show 

significant antileishmanial (antiplasmodial) activity and moderate antifungal and 

insecticidal activity.1  

 Tylohirsuticine (39) is a member of the phenanthroindolizidine family of natural 

products, which consist of a phenanthrene core fused to an indolizidine bicycle (Figure 

A2-2.1.1). Tylohirsuticine (39) itself stands out from many of the other members in two 
																																																								
†	This	research	was	performed	in	collaboration	with	Hirokazu	Takada,	Yuji	Sumii	and	Katsuaki	
Baba,	all	alumni	of	the	Stoltz	group.	
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ways. First, tylohirsuticine (39) is a seco-derivative of the class of natural products, 

meaning it does not have a fully fused phenanthrene core. Second, while most of these 

natural products have an α-secondary amine stereocenter, tylohirsuticine (39) contains a 

tetrasubstituted α-tertiary amine stereocenter. 

Septicine (46) is another example of a seco-phenanthroindolizidine natural 

product, 4  which has been synthesized twice previously by Comins and Reddy. 5 

Hypoestatin 1 (47),6 which includes another example of this α-tertiary amine motif can 

be seen in which has been synthesized once in racemic form in 2007 by Ishibashi,7 and 

then again in an enantioselective sense in 2012 by Wang.8  

Figure A2-2.1.1 Phenanthroindolizidine alkaloids  

 

Septicine (46), was synthesized by Reddy and coworkers from the chiral 

pyroglutamic acid 48 via a known derivative (49, Scheme A2-2.1.1).5b The formation of 

the tetrasubstituted olefin proceeds via a McMurry coupling reaction of dione 50.  This 

dione was synthesized via N–alkylation of pyroglutamic acid derivative 49 to form 1,3-

dithiane 51, which could be elaborated to the dione 50. 
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Scheme A2-2.1.1 Synthesis of septicine by Reddy et al.5b 

 

Hypoestatin 1 (47) is the only phenanthroindolizidine natural product containing 

an α-tertiary amine that has been synthesized previously. The first reported synthesis 

formed the α-tertiary amine via a radical cyclization reaction of bromide 52.7 (Scheme 

A2-2.1.2A) Five years later, the first asymmetric synthesis of hypoestatin 1 was   

reported.8 (Scheme A2-2.1.2B) The synthesis of this natural product proceeded from 

amino acid 53, which was elaborated to Seebach alkylation substrate 54. This Seebach 

alkylation substrate could be coupled to a functionalized phenanthrene core (55) to form 

the α-tertiary amine stereocenter in 56. Hydrolysis of the product results in the formation 

of methyl ester 57, and a Pictet–Spengler reaction affords the natural product 47.  
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Scheme A2-2.1.2 Synthesis of hypoestatin 1 by Ishibashi7 and Wang8 

 

A2-2.2  ORIGINAL RETROSYNTHETIC ANALYSIS 

 Our discussion will encompass our efforts toward the synthesis of tylohirsuticine 

(39) from indolizidine 40. Our early investigations into the synthesis of 40 are described 

in Chapter 2.5 and will not be discussed further. For purposes of review, our original 

retrosynthetic analysis has also been included here (Scheme A2-2.2.1).  
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Scheme A2-2.2.1 Retrosynthetic analysis of tylohirsuticine 

 

With olefin 40 in hand, we began to investigate the installation of the final ring. 

In the interest of efficiency, we first tried coupling the final aryl group directly to 

compound 40 through a Heck-type reaction (Table A2-2.2.1). Unfortunately, the use of 

canonical Heck conditions (Entry 1) and oxidative Heck conditions (Entry 2),9 showed 

no reaction. 

Table A2-2.2.1: Investigation of Heck conditions 

 
 

Therefore, we turned to the next most efficient route, direct bromination of the 

olefin 40 to form alkenyl bromide 58 followed by a subsequent coupling reaction (Table 

A2-2.2.2).  The use of N-bromosuccinimide under multiple reaction conditions resulted 

in decomposition or no product formation (Entry 1, 2, and 4). Reaction of the olefin with 
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Py•HBr3 resulted in no desired product, though a small amount of a dibrominated 

product was observed by LCMS (Entry 3). 

Table A2-2.2.2: Bromination of the olefin 

 
 

As our most efficient routes had been unsuccessful, we turned to more indirect 

methods of installing the aryl group. Epoxidation of olefin 40 to afford epoxide 59 

(Scheme A2-2.2.2), followed by epoxide opening with a nucleophile and dehydration 

could afford our desired product 39. Unfortunately, the use of m-CPBA as oxidant, 

either alone (Table A2-2.2.3, Entry 1) or in the presence of Na2CO3 (Entry 2) or TFA 

(Entry 3) as additives yielded no desired product. Furthermore, use of urea hydrogen 

peroxide (UHP) as an oxidant, along with TFAA (trifluoroacetic anhydride) and TFA as 

additives, also formed none of the desired product (Entry 4). Attempts to dihydroxylate 

the olefin using OsO4 with NMO as the stoichiometric oxidant to afford 60 also resulted 

in no reaction (Scheme A2-2.2.3). 

Scheme A2-2.2.2 Proposed epoxidation strategy 
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N-bromosuccinimide (1.1 equiv), NaHCO3 (2.2 equiv), CH2Cl2, 23 °C decomposition

3 Py•HBr3 (1.1 equiv), CH2Cl2, 23 °C no desired product
N-bromosuccinimide (1.1 equiv), CH3CN, 0 °C4 no desired product
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Table A2-2.2.3 Epoxidation of the olefin 

 
Scheme A2-2.2.3 Dihydroxylation of the olefin 

 
 Following our lack of success in forming the desired intermediates, we 

investigated the oxidation of olefin 40 to form ketone 61 with the goal of producing enol 

triflate 62. This compound could then be screened with a variety of cross-coupling 

conditions (Scheme A2-2.2.4). 

Scheme A2-2.2.4 Plan for the installation of the final ring 

 
We proposed the oxidation of the olefin via a hydroboration/oxidation sequence, 

first affording alcohol 63 which could subsequently be oxidized to ketone 61. Initial 

attempts to hydroborate the olefin using 9-Borabicyclo[3.3.1]nonane (9-BBN) resulted 

in no product formation (Table A2-2.2.4, Entry 1). The use of slight excess of BH3•THF 

N Conditions

OMe
MeO

N

OMe
MeO

Entry Conditions Result

O

1 m–CPBA (1.2 equiv), CH2Cl2, 23 °C No desired product

m–CPBA (1.2 equiv), Na2CO3, CH2Cl2/H2O (5:1), 23 °C No desired product2

m–CPBA (2.4 equiv), TFA (1.1 equiv) CH2Cl2, 23 °C3 No desired product

4 UHP (20 equiv), TFAA (6 equiv), TFA (1.1 equiv), CH2Cl2, 23 °C No desired product

40 59

N
OsO4 (0.1 equiv)
NMO (1.1 equiv)

OMe
MeO

N

OMe
MeO

HO
HO

40

H2O, Me2CO
0 °C → 23 °C

60

N

OMe
MeO

O

N

OMe
MeO

TfO

N

OMe
MeO

OH
MeO

Coupling

61 62 39



Appendix 2-2 – Progress Toward the Total Synthesis of Tylohirsuticine 
	

246	

(or BH3•DMS) resulted in no product formation, which we hypothesized was due to the 

complexation of BH3 with the tertiary amine (Entry 2). Gratifyingly, increasing the 

loading of BH3•THF to 15 equiv resulted in the formation of the desired product 63, 

though it was difficult to purify via chromatography or other methods (Entry 3). 

Table A2-2.2.4 Hydroxylation of the olefin 

 

Nevertheless, we decided to continue investigating this route further through 

oxidation of crude alcohol 63 to ketone 61 (Table A2-2.2.5). The use of Swern 

conditions resulted in detection of the desired product (61) by LCMS but the product 

could not be isolated (Entry 1). Use of Parikh–Doering oxidation conditions also resulted 

in product formation, though in low yields (15% from 40, Entry 2). Unfortunately, the 

use of pyridimiun chlorochromate (PCC, Entry 3) and a combination of TPAP 

(Tetrapropylammonium perruthenate) and NMO (N-Methylmorpholine N-oxide, Entry 

6) resulted in no desired product formation.  When PCC was employed in the presence 

of SiO2 as a drying agent; however, the product was formed in 25% yield over two steps 

from 40 (Entry 5). It was also found that the use of DMP (Dess–Martin periodinane) as 

oxidant resulted in approximately 25% yield from 40 (Entry 4). As these results were not 

as high yielding as desired, and any attempts to further functionalize these products 

proved futile, we decided to instead revise our retrosynthetic proposal. 

N Conditions

OMe
MeO

N

OMe
MeO

Entry Conditions Result

HO

1 9–BBN (1.5 equiv), THF, H2O2, 23 °C no desired product

2 BH3 • THF (1.5 equiv), NaBO3•4H2O (5 equiv), THF, H2O, 23 °C no desired product

BH3 • THF (15 equiv), NaBO3•4H2O (50 equiv), THF, H2O, 23 °C3 product observed

40 63
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Table A2-2.2.5 Oxidation of the alcohol 

 
 
A2-2.3.  SUBSTITUTED ALLYLIC ALKYLATION SUBSTRATES 
 
 Due to a lack of success in functionalizing indolizidine 40, we instead turned our 

attention to other methods of introducing the challenging tetrasubstituted olefin. In order 

to accomplish this, we proposed introducing susbstituted allylic alkylation precursors. 

One such strategy is described in Scheme A2-2.3.1, using the same key disconnections 

with a 2-allyl substituent in place on compound 68: this would then proceed through the 

same asymmetric allylic alkylation, ring contraction, N–alkylation, and RCM sequence. 

Scheme A2-2.3.1 Revised retrosynthetic analysis 
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In order to test our new retrosynthetic proposal, we first needed to synthesize our 

desired asymmetric allylic alkylation substrate with a 2-allyl substituent (Scheme A2-

2.3.2). Starting with commercially available 5-bromo-2-methoxyphenol 69, TBS 

protection first afforded 70. This was used to form a Grignard reagent, which upon 

addition of CuI and propargyl alcohol afforded homo-allylic alcohol 71 in moderate 

yield. When treated with carbonyl diimidizole (CDI), acylation substrate 72 was formed, 

which was then utilized to acylate O-benzyloxylimide 33 to yield 73. A final alkylation 

with methyl iodide afforded allylic alkylation substrate 68.  

Scheme A2-2.3.2 Synthesis of 2–allyl substituted asymmetric allylic alkylation 

substrate 

 

 With compound 68 in hand, we began to investigate its reactivity of in the 

asymmetric allylic alkylation. We were very pleased to note that using the conditions 

optimized for compound 74, as described in chapter 2.2, proceeded in good yield and 

excellent stereoselectivity (Table A2-2.3.1) 
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Table A2-2.3.1 Asymmetric allylic alkylation reaction of 2–allyl substituted 

substrate 

 

 Following our successful synthesis of 74, we proceeded to investigate the 

viability of this substrate in the ring contraction (Scheme A2-2.3.3). Treatment of 

compound 74 with DIBAL-H afforded selective mono-reduction to imide 75, which 

could then undergo reduction in the presence of sodium cyanoborohydride and BF3•Et2O 

to yield 76 in good yield. Unfortunately, all attempts to remove the benzyl protecting 

group on the hydroxamic acid were met with either no reaction or decomposition, and so 

we were never able to investigate further. 

Scheme A2-2.3.3 Selective reduction of imide 

 

 While we were disappointed in these results, we thought a similar strategy might 

still be plausible. To that end, we proposed another retrosynthetic analysis (Scheme A2-

2.3.4). In particular, we were interested in using a different 2-allyl substituted allylic 

alkylation substrate (2-chloroallyl substrate 81) due to previous success with similar 

substrates. The overall strategy is again the same as those previously investigated, 
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though this time there is a different functional handle in place to enable the end-game 

strategy.  

Scheme A2-2.3.4 Alternative retrosynthetic proposal 

 

 We started our investigation again by synthesizing the desired allylic alkylation 

substrate 81 (Scheme A2-2.3.5). Having successfully used this method in the synthesis 

of 68, we treated commercially available 2-chloroallyl alcohol 82 with CDI to afford 

acylating agent 83. This reagent was then utilized in an enolate α–acylation yielding 84 

followed by alkylation to afford allylic alkylation substrate 81 in good yield. 

Scheme A2-2.3.5 Synthesis of 2–chloroallyl asymmetric allylic alkylation substrate 
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 We then proceeded to investigate the reactivity of this substrate toward 

asymmetric allylic alkylation (Table A2-2.3.2). Beginning with our previously optimized 

conditions, we were disappointed to find no reaction was observed under these low 

catalyst loading conditions (Entries 1–2). We proceeded to investigate whether reactivity 

would be observed under standard conditions (Entries 3–4).10 While we were finally able 

to observe some formation of 85, the reaction proceeded slowly and required long 

reaction times and high temperatures. Even after seven days, the reaction had not 

proceeded to full conversion. Additionally, attempts to selectively reduce the resulting 

imide proved unsuccessful, and so we had to again revise our retrosynthetic proposal. 

Table A2-2.3.2 Asymmetric allylic alkylation reaction of 2–chloroallyl substrate 

 

 A2-2.4  FURTHER RETROSYNTHETIC STRATEGIES 
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to all these approaches was an N-alkylation event of pyrrolidines 31a–c. 
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Scheme A2-2.4.1 Alternative retrosynthetic proposal 

 

 In the forward sense, we, we demonstrated that compound 31a underwent an 

oxidative cleavage reaction with good yield to afford 90, which could undergo an 

organolithium addition and oxidation sequence to yield 88a (Scheme A2-2.4.2). 

Unfortunately, we were never able to remove the methyl carbamate protecting group 
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Scheme A2-2.4.2 Synthesis of aryl ketone compound 

 

We then proceeded to functionalize 31b–c (Scheme A2-2.4.3) to facilitate 

deprotection. We had previously demonstrated the oxidative cleavage of 31a, and found 

the reaction to proceed smoothly on both the Boc and Cbz protected pyrrolidines as well 

to afford 91a–b. Following the report of Cossy,11 we were able to remove one additional 

methylene under oxidative conditions to yield 92a–b. Unfortunately, we were again 

unable to advance either of these intermediates to the natural product, as the aldehyde 

proved unstable to deprotection conditions. 

 

N

OMe
MeO

MeO
OH

N
X

OMe
MeO

X

MeO

TBSO

N

X

RO2C

X

Br
MeO

OMe
MeO

TBSO

N
RO2C

X=CH2, O

39 86a X=CH2
86b X=O

31a R=Me
31b R=Bn
31c R=t-Bu

88a R=Me,   X=O
88b R=Bn,   X=O
88c R=t-Bu, X=O
89a R=Me,   X=CH2
89b R=Bn,   X=CH2
89c R=t-Bu, X=CH2

42 X=CH2
87 X=O

RCM
or 

McMurry N-alkylation Addition

N
MeO2C

K2OsO4•2H2O (10 mol %)
NMO (5 equiv); 
NaIO4 (5 equiv)

THF, H2O (1:1), 23 °C,
3 h; overnight

80% yield

N
MeO2C

O 1. 70 (3 equiv), n-BuLi (3 equiv)
 THF, –78 °C, 2 h

~30% yield over 2 steps

2. DMP, NaHCO3, CH2Cl2, 1 h N
MeO2C

O

MeO
OTBS

31a 90 88a



Appendix 2-2 – Progress Toward the Total Synthesis of Tylohirsuticine 
	

253	

Scheme A2-2.4.3 Synthesis of aldehyde compounds 
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remains elusive, we hope that the lessons learned throughout our investigations will 

continue to instruct future synthetic efforts towards phenanthroindolizidine alkaloids and 

their analogues. 
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CHAPTER 3 

Synthesis of 

[7,7]paracyclophanes† 

 

 

3.1   INTRODUCTION 

Paracyclophanes are a class of molecules that were first described by Cram and 

Steinberg as far back as 1951.1  Cyclophanes (Figure 3.1.1) are macrocyclic molecules 

that contain two aromatic rings within the macrocyclic structure.2  

Figure 3.1.1 Structure of Cyclophanes 

 

                                                
† This research was performed in collaboration with Aaron T. Bosse, Kuangbiao Liao, Wenbin Liu, Zhi 
Ren, John Bacsa, Djamaladdin G. Musaev, and Huw M. L. Davies at Emory University through the Center 
for C-H functionalization. Additionally, parts of this chapter have been published and adapted with 
permission from Liu, W. B.; Ren, Z.; Bosse, A. T.; Liao, K. B.; Goldstein, E. L.; Bacsa, J.; Musaev, D. G.; 
Stoltz, B. M.; Davies, H. M. L. J. Am. Chem. Soc. 2018, 140, 12247-12255. 
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In 1990, the first naturally occurring cyclophane was isolated from the 

Nostocaceae species Cylindrospermum licheniforme, and so named cylindrocyclophane 

A.3 (Figure 3.1.2) Two years later, cylindrocyclophanes B–F were isolated from the same 

species of algae.4 A further 10 cylindrocyclophanes (A1–A4, C1–C4, F4 and AB4) were 

isolated from a new species of Nostocaceae that was discovered on a parkway in 

Chicago.5 Since the discovery of the cylindrocyclophane class of [7,7]paracyclophanes, a 

number of related classes have been isolated, namely the nostocyclophanes, 6 

ribocyclophanes,7 carbamidocyclophanes,8 and merocyclophanes.9 

Figure 3.1.2 Structures of [7,7]paracyclophanes 
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 These [7,7]paracyclophanes have drawn attention recently due to their 

antimicrobial activity. Increasing rates of bacterial resistance have led to a need for new 

types of antimicrobial agents. Some [7,7]paracyclophanes have been demonstrated to 

display MIC values in the range of 0.1-0.2 µM toward drug resistant strains of the gram-

positive bacteria, MRSA,10 along with activity against S. pneumoniae and E. faecalis with 

MIC’s between 0.2-3 µM.11 While these initial results are very promising, limited 

biological evaluations have occurred to date, focusing on isolated natural products and a 

few derivatives. A streamlined synthesis of [7,7]paracyclophanes allowing for access to 

new derivatives would enable more comprehensive biological evaluations and SAR 

(structure activity relationship) studies. 

 Due to the promising biological activity and interesting structural motif, there has 

been previous interest in the synthesis of [7,7]paracyclophanes, though to date only 

cylindrocyclophanes A and F have succumbed to synthesis. The predominant approach 

has been to use a convergent strategy bringing two identical components together, either 

by means of metathesis,12 the Horner-Wadsworth-Emmons reaction,13 or the Ramberg-

Bäcklund reaction14 (Scheme 3.1.1). While these approaches can afford fairly efficient 

syntheses (15-23 steps), the use of dimerization strategies on advanced fragments only 

leads to synthesis of symmetrical [7,7]paracyclophanes and complicates derivatization. 

We decided to utilize a strategy more suited for synthesizing a number of 

[7,7]paracyclophanes (natural and unnatural) from an advanced common intermediate. In 

particular, we believed C-H functionalization would be a useful strategy to afford a 

variety of  [7,7]paracyclophanes in an efficient and divergent manner. 
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Scheme 3.1.1 Previous synthetic strategies toward cylindrocyclophanes 

 

3.2  RETROSYNTHETIC ANALYSIS OF CYLINDROCYCLOPHANE A 
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into olefin 102.16 This would be one of the most elaborate C–H functionalization based 

strategies reported to date. 

Scheme 3.2.1 Retrosynthetic proposal for cylindrocyclophane A 
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in mind, we proceeded to develop conditions that would selectively functionalize 

unactivated secondary C-H bonds in the presence of activated benzylic C-H bonds 

(Scheme 3.3.1C).18 Crucial to this selectivity was the development of a new catalyst 105. 

Further details on the development of this reaction can be found in reference 18. 

Scheme 3.3.1 Development of C-H insertion reaction 
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donor/acceptor carbene transformations. The beginning palladium-catalyzed reaction of 

trifluoroethyl diazoacetate (107) with the aryl iodide 106 generated the aryldiazoacetate 

108 in 87% yield, followed by Rh2(R-2-Cl-5-BrTPCP)4-catalyzed intermolecular C−H 

functionalization of 1-heptyl-4-iodobenzene 106  with 108  to obtain the desired product 

(−)-109  in 83% yield, without any evidence of a structurally isomeric product. 

Furthermore, (−)-109 was formed with good diastereoselectivity (26:1 dr) and 

enantioselectivity (91% ee). A second palladium-catalyzed cross-coupling between (−)-

109 and the same diazoacetate 107 proceeded with an 81% yield to access the 

aryldiazoacetate (−)-110. Finally, a Rh2(R-2-Cl-5-BrTPCP)4-catalyzed intramolecular 

C−H functionalization of 110  formed (−)-111  cleanly with exceptional site selectivity 

and asymmetric induction (>30:1 rr, > 99% ee) and moderate diastereoselectivity (5.6:1 

dr) without enantioenrichment of 109  or 110. Though macrocyclization by means of 

C−H functionalization has been reported for macrolide formation, palladium-catalyzed 

allylic oxidation, sp3 C−H arylation, and via sp2 C−C coupling, the study reported here is 

the first example of an enantioselective macrocyclization by C−H functionalization of 

unactivated sp3 C−H bonds. The initial studies on the macrocyclization sequence utilized 

Rh2(S-2-Cl-5-BrTPCP)4  to obtain the enantiomeric macrocyclic product (+)-111, whose 

absolute and relative stereochemistry was confirmed by X-ray crystallography. 
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Scheme 3.3.2 Synthesis of [7,7]paracyclophane 
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[7,7]paracyclophanes due to the antimicrobial activity demonstrated by some members of 

this class of compounds. We have developed a retrosynthetic proposal that we believe 

could lead to the efficient and divergent synthesis of many [7,7]paracyclophanes utilizing 

C-H functionalization. In an effort to prove the feasibility of this strategy, we first 

demonstrated the synthesis of a relatively unfunctionalized [7,7]paracyclophane in an 

efficient and selective manner. Efforts are currently underway to advance this strategy 

toward the synthesis of a naturally occurring [7,7]paracyclophane and eventually 

additional members of the [7,7]paracyclophane family for the development of new 

antimicrobial agents. 

CF3H2CO2C N2

Rh2(R-2-Cl-5-BrTPCP)4

CH2Cl2, 39 °C, 4Å MS
83% yield, >30:1 r.r.

26:1 d.r., 91% ee

CF3H2CO2C

I

CF3H2CO2C

CO2CH2CF3N2

Rh2(R-2-Cl-5-BrTPCP)4

CH2Cl2, 39 °C, 4Å MS
68% yield, 

5.6:1 d.r., >99% ee

CF3H2CO2C

CO2CH2CF3

H CO2CH2CF3

N2

Pd(PPh3)4, PPh3,
Ag2CO3, Et3N, PhMe

87% yield

I

(3 equiv) I

H

H

H CO2CH2CF3

N2

Pd(PPh3)4, PPh3,
Ag2CO3, Et3N, PhMe

81% yield

Ph
Ph

O

O

Cl

Rh

Rh

4
Br

Rh2(R-2-Cl-5-BrTPCP)4, 105

106 108

106

109 110

111

107

107



Chapter 3 – Synthesis of [7,7]paracyclophanes 
 

264 

3.5  EXPERIMENTAL METHODS AND ANALYTICAL DATA 

3.5.1  MATERIALS AND METHODS 

All solvents were purified and dried by a Glass Contour Solvent System unless otherwise 

stated. The dichloromethane used for the C–H Functionalization was dried and degassed 

at reflux over activated 4 A ̊ molecular sieves for 1 hours under argon, then stored with 

activated 4 molecular sieves under argon atmosphere and was used directly. 1H and 13C 

NMR spectra were recorded at 600 MHz (13C at 150 MHz) on Bruker-600 spectrometer 

or Varian IVONA-600 spectrometer, or 500 MHz (13C at 126 MHz) on Varian INOVA-

500 spectrometer, or 300 MHz (19F at 282 MHz) on Varian Mercury-300. Unless 

otherwise stated, NMR spectra were run in solutions of deuterated chloroform (CDCl3) 

with residual chloroform taken as an internal standard (7.26 ppm for 1H, and 77.16 ppm 

for 13C), and were reported in parts per million (ppm). Abbreviations for signal 

multiplicity are as follow: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, 

dd = doublet of doublet, etc. Coupling constants (J values) were calculated directly from 

the spectra. IR spectra were collected on a Nicolet iS10 FT-IR spectrometer. Mass 

spectra were taken on a Thermo Finnigan LTQ-FTMS spectrometer with APCI, ESI or 

NSI. Thin layer chromatographic (TLC) analysis was performed with aluminum-sheet 

silica gel plates, visualizing with UV light and/or staining with aqueous KMnO4 stain. 

Melting points (mp) were measured in open capillary tubes with a Mel-Temp 

Electrothermal melting points apparatus and are uncorrected.  Optical rotations were 

measured on Jasco P-2000 polarimeters. Analytical enantioselective chromatographs 

were measured on either Varian Prostar instrument or Agilent- 1100 series instrument, 

and used isopropanol/hexane as gradient. Chiral HPLC conditions were determined by 
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obtaining separation of the racemic products using Rh2(R/S-o-ClTPCP)4 as catalyst for C2 

insertion products.  

The substrates and reagents were purchased from the following suppliers and used 

without further purification (unless otherwise stated): Sigma-Aldrich: 

Triphenylphosphine; Acros Organic: Silver carbonate. Fisher Scientific: Triethylamine. 

Strem: Pd(PPh3)4; Rh2(OAc)4. The following substrates were prepared by procedures 

adapted from literatures: Rh2(S-2-Cl-5-BrTPCP)4.19  

3.5.2  EXPERIMENTAL PROCEDURES 

2,2,2-Trifluoroethyl 2-diazo-2-(4-heptylphenyl)acetate (108)  

 

The procedure is adapted from the literature:20 A 250-ml round-bottom flask with stir bar 

was flame dried under vacuum. Once cool enough all solids were added first: PPh3 (1.65 

mmol, 0.1 equiv.), Pd(PPh3)4 (0.825 mmol, 0.05 equiv.) and Ag2CO3 (8.25 mmol, 0.5 

equiv.). After solids added, the reaction vessel was purged with argon three times. Next 

the liquids were added: toluene (66 ml), Et3N (21.5 mmol, 1.3 equiv.), aryl iodide 106 

(16.5 mmol, 1 equiv.), and finally the 2,2,2-trifluoroethyl 2-diazoacetate 107 (21.5 mmol, 

1.3 equiv.) was added last. The resulted mixture was stirred at room temperature (23 °C) 

for 5 h and then, filtered through a short silica plug (3.5 cm diameter, 5 cm height), 

eluting with ethyl acetate until elutes clear. The crude product was concentrated and 

CF3H2CO2C N2

H CO2CH2CF3

N2

Pd(PPh3)4, PPh3,
Ag2CO3, Et3N, PhMe

I

106 108

107
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purified by column chromatography (5% ether in pentane) to afford 108 as a yellow oil in 

85% yield. Rf = 0.71 (pentane/diethyl ether = 9:1); 1H NMR (600 MHz, CDCl3) δ 7.36 

(d, J = 8.3 Hz, 2H), 7.22 (d, J = 8.2 Hz, 2H), 4.65 (q, J = 8.4 Hz, 2H), 2.60 (t, J = 7.6 Hz, 

2H), 1.63 – 1.57 (m, 2H), 1.36 – 1.22 (m, 8H), 0.87 (t, J = 6.6 Hz 3H); 13C NMR (125 

MHz, CDCl3) δ 163.4, 141.5, 129.1, 124.3, 122.9 (q, J = 277.6 Hz), 121.3, 60.3 (q, J = 

36.9 Hz), 35.4, 31.7, 31.2, 29.1, 29.1, 22.6, 13.9 (The resonance resulting from the diazo 

carbon was not observed); 19F NMR (282 MHz, CDCl3) δ -73.9 (t, J = 8.4 Hz); IR (neat) 

2957, 2927, 2856, 2089, 1715, 1515, 1456, 1410, 1350, 1280, 1242, 1167, 1137, 1074, 

1020, 974, 923, 839, 810, 733, 653; HRMS (+p NSI) calcd for C17H22F3N2O2 (M+H)+ 

343.1628 found 343.08576.  

2,2,2-Trifluoroethyl(2R,3S)-2-(4-heptylphenyl)-8-(4-iodophenyl)-3 methyloctanoate 

(109) 

  

The procedure is adjusted from the general procedure for C–H functionalization 

reactions: A 50-ml flame-dried round-bottom flask with condenser was charged with 4 Å 

MS and Rh2(R-2-Cl-5-BrTPCP)4 (0.02 mmol, 1.0 mol%) and then, purged three times 

with argon. 1-n-Heptyl-4-iodobenzene 106 (6.29 mmol, 3.0 equiv.) and distilled CH2Cl2 

(8 ml) were added next, then the mixture was heated to 40 °C and refluxed for at least 15 

min before addition of the diazo compounds. Next, 108 (2.09 mmol, 1.0 equiv.) was 

CF3H2CO2C N2

Rh2(R-2-Cl-5-BrTPCP)4

CH2Cl2, 39 °C, 4Å MS

CF3H2CO2C

I

(3 equiv) I

H

108

106

109
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purged under argon in a 20-mL scintillation vial, then diluted with distilled CH2Cl2 (8 

ml). Then, under reflux conditions and argon atmosphere, the diazo solution was added to 

the reaction vessel dropwise via syringe pump over 3 h. The reaction mixture was stirred 

at 40 °C for another 30 min, and concentrated under vacuum for crude 1H NMR. The 

crude product was purified by flash column chromatography (3% ether in pentane) to 

afford (-)-109 as an opaque oil in 62% yield. Note: Solvent must be carefully dried 

(distilled over CaH2 and stored on activated 4 Å MS). Rf = 0.71 (pentane/diethyl ether = 

19/1);[α]20
D: -18.6°(c = 1.00, CHCl3, 91% ee);  1H NMR (600 MHz, CDCl3) δ 7.56 (d, J 

= 8.2 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 7.12 (d, J= 8.0 Hz 2H), 6.86 (d, J= 8.1 Hz, 2H), 

4.55 (dq, J = 8.5, 4.1 Hz, 1H), 4.29 (dq, J = 8.5, 4.2 Hz, 1H), 3.32 (d, J = 10.9 Hz, 1H), 

2.57 (t, J= 7.6 Hz, 2H), 2.45 (t, J = 7.7 Hz, 2H), 2.23 – 2.16 (m, 1H), 1.63 – 1.56 (m, 

2H), 1.51 – 1.41 (m 2H), 1.34 – 1.23 (m, 10H), 1.22 – 1.09 (m, 4H), 1.00 (d, J = 6.7 Hz, 

3H), 0.88 (t, J = 6.7 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 172.5, 142.3, 137.2, 134.1, 

130.5, 128.6, 128.4, 123.0 (q, J = 277.2 Hz), 90.5, 60.2 (q, J = 36.5 Hz), 57.9, 36.2, 35.6, 

35.3, 33.1, 31.8, 31.3, 31.0, 29.3, 29.2, 29.0, 26.0, 22.7, 17.7, 14.1; 19F NMR (282 MHz, 

CDCl3) δ -73.7 (t, J = 8.5 Hz); IR (neat) 2927, 2855, 1753, 1484, 1464, 1400, 1278, 

1165, 1128, 1061, 1006, 979, 824, 793, 737; HRMS (+p NSI) calcd for C30H41O2IF3 

(M+H)+ 617.2098 found 617.20986; HPLC (R,R-Whelk column, 0 % i-propanol in 

hexane, 1 mL min-1, 1 mg mL-1, 30 min, UV 210 nm) retention times of 14.9 min (major) 

and 17.6 min (minor) 91% ee with Rh2(R-2-Cl-5-BrTPCP)4.  

 

 



Chapter 3 – Synthesis of [7,7]paracyclophanes 
 

268 

2,2,2-Trifluoroethyl(2R,3S)-8-(4-(1-diazo-2-oxo-2-(2,2,2-trifluoroethoxy) 

ethyl)phenyl)-2-(4-heptylphenyl)-3-methyloctanoate (110) 

  

The procedure is adapted from literatures: A 50-ml round-bottom flask with stir bar was 

flame dried under vacuum. Once cool enough all solids were added first: PPh3 (0.129 

mmol, 0.1 equiv.), Pd(PPh3)4 (0.065 mmol, 0.05 equiv.) and Ag2CO3 (0.645 mmol, 0.5 

equiv.). After solids added, the reaction vessel was purged with argon three times. Next 

the liquids were added: toluene (5.2 ml), Et3N (1.67 mmol, 1.3 equiv.), aryl iodide 109 

(27, 1.29 mmol, 1 equiv.), and finally the 2,2,2-trifluoroethyl 2- diazoacetate 107 (1.67 

mmol, 1.3 equiv.) was added last. The resulted mixture was stirred at room temperature 

(23 °C) for 5 h and then, filtered through a short silica plug (3.5 cm diameter, 5 cm 

height), eluting with ethyl acetate until elutes clear. The crude product was concentrated 

and purified by column chromatography (2% ether in pentane) to afford product (-)-110 

as a yellow oil in 81% yield. Rf = 0.45 (pentane/diethyl ether = 9/1); 1H NMR (600 MHz, 

CDCl3) δ 7.34 (d, J = 8.3 Hz, 2H), 7.21 (d, J = 8.1 Hz, 2H), 7.16 (d, J = 8.3 Hz, 2H), 7.12 

(d, J = 8.1 Hz, 2H), 4.64 (q, J = 8.4 Hz, 2H), 4.55 (dq, J = 12.7, 8.5 Hz, 1H), 4.29 (dq, J 

= 12.7, 8.5 Hz, 1H), 3.32 (d, J = 10.5 Hz, 1H), 2.57 (t, J= 7.6 Hz, 2H), 2.51 (t, J = 7.7 Hz, 

2H), 2.23 – 2.15 (m, 1H), 1.62 – 1.56 (m, 2H), 1.52 – 1.44 (m, 2H), 1.35 – 1.24 (m, 10H), 

1.22 – 1.11 (m, 4H), 1.00 (d, J = 6.5 Hz, 3H), 0.87 (t, J = 7.0 Hz, 3H); 13C NMR (125 

CF3H2CO2C

I

CF3H2CO2C

CO2CH2CF3N2

H

H CO2CH2CF3

N2

Pd(PPh3)4, PPh3,
Ag2CO3, Et3N, PhMe

109 110

107



Chapter 3 – Synthesis of [7,7]paracyclophanes 
 

269 

MHz, CDCl3) δ 172.5, 142.3, 141.3, 134.1, 129.2, 128.6, 128.4, 124.2, 123.0 (q, J= 277.7 

Hz), 122.9 (q, J= 277.7 Hz), 121.3, 60.3 (q, J= 36.9 Hz), 60.2 (q, J= 36.6 Hz), 57.9, 36.2, 

35.6, 35.3, 33.1, 31.8, 31.3, 31.1, 29.3, 29.2, 29.1, 26.0, 22.7, 17.7, 14.1; 19F NMR (282 

MHz, CDCl3) δ -73.7 (t, J = 8.5 Hz), -73.9 (t, J = 8.3 Hz); IR (neat) 2928, 2856, 2090, 

1753, 1717, 1514, 1456, 1409, 1350, 1279, 1242, 1165, 1135, 1074, 976, 923, 839, 733; 

HRMS (+p NSI) calcd for C34H41O4N2F6 (M-H)- 655.2976 found 655.29807.  

Bis(2,2,2-trifluoroethyl)(2R,3S,10R,11S)-3,11-dimethyl-1,9(1,4)dibenzenacyclo 

hexadecaphane-2,10-dicarboxylate (111) 

 

The procedure is adjusted from the general procedure for C–H functionalization 

reactions: A 100-ml flame-dried round-bottom flask with condenser were charged with 4 

Å MS and Rh2(R-2-Cl-5-BrTPCP)4 (0.01 mmol, 1.0 mol%), then purged three times 

under argon. Distilled CH2Cl2 (10.5 ml) was added using oven dried syringes, then the 

mixture was heated to 40 °C and refluxed for at least 15 min before addition of the diazo 

compounds. Next, (-)-110 (1.04 mmol, 1.0 equiv.) was purged under argon in a 20-mL 

scintillation vial, then diluted with distilled CH2Cl2 (10.5 ml). Then, under reflux 

conditions and argon atmosphere, the diazo solution was added to the reaction vessel 

dropwise via syringe pump over 3 h. The reaction mixture was stirred at 40 °C for 

another 30 min, and concentrated under vacuum for crude 1H NMR. The crude product 

CF3H2CO2C

CO2CH2CF3N2

Rh2(R-2-Cl-5-BrTPCP)4

CH2Cl2, 39 °C, 4Å MS

CF3H2CO2C

CO2CH2CF3

H

110 111
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was purified by flash column chromatography (3% ether in pentane) to afford the product 

(-)-111 as a white solid in 68% yield. Note: Solvent must be carefully dried (distilled over 

CaH2 and stored on activated 4 Å MS). m.p. 141-143 °C Rf = 0.45 (pentane/diethyl ether 

= 9/1); [α]20
D: -11.0 °(c = 1.00, CHCl3, 5.6:1 d.r., >99% ee); 1H NMR (600 MHz, CDCl3) 

δ 7.16 (d, J = 8.0 Hz, 4H), 7.01 (d, J = 8.1 Hz, 4H), 4.55 (dq, J = 12.7, 8.5 Hz, 2H), 4.27 

(dq, J = 12.7, 8.4 Hz, 2H), 3.21 (d, J = 11.4 Hz, 2H), 2.58 (dt, J = 13.1, 6.4 Hz, 2H), 2.42 

(dt, J = 13.6, 7.6 Hz, 2H), 2.19 – 2.09 (m, 2H), 1.48 – 1.27 (m, 6H), 1.12 – 0.96 (m, 

10H), 0.96 – 0.85 (m, 4H), 0.80 – 0.68 (m, 2H); 13C NMR (151 MHz, CDCl3) δ 172.7, 

141.8, 134.4, 128.8, 128.2, 122.95 (q, J = 277.3 Hz), 60.21 (q, J = 36.5 Hz), 58.3, 36.4, 

35.5, 32.7, 30.8, 28.3, 26.0, 17.7; 19F NMR (282 MHz, CDCl3) δ -73.7 (t, J = 8.5 Hz); IR 

(neat) 2929, 2856, 1748, 1403, 1385, 1347, 1303, 1275, 1225, 1160, 1123, 1052, 981, 

909, 838, 822, 740, 661; HRMS (+p NSI) calcd for C30H42O2IF3 (M)+ 628.2987 found 

628.29995; HPLC [for better separation, the ester product was reduced to 

((2R,3S,10R,11S)-3,11-dimethyl-1,9(1,4)-dibenzenacyclohexadecaphane-2,10-diyl) 

dimethanol, and the pure major diastereomer of the alcohol derivative was obtained via 

prep HPLC (Ascentis® C18 column, 80% acetonitrile in H2O with 0.1% trifluoroacetic 

acid)] (ADH column, 10 % i-propanol in hexane, 1.0 mL min-1, 1 mg mL-1, 80 min, UV 

210 nm) retention times of 28.69 min (major) and 60.71 min (minor) >99% ee with 

Rh2(R-2-Cl-5-BrTPCP)4.  
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	Figure A3-1.2. 13C NMR (125 MHz, CDCl3) of compound 108. 
	

Figure A3-1.3. 19F NMR (282 MHz, CDCl3) of compound 108.	
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	Figure A3-1.5. 13C NMR (125 MHz, CDCl3) of compound 109. 
	

Figure A3-1.6. 19F NMR (282 MHz, CDCl3) of compound 109.	
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	Figure A3-1.8. 13C NMR (125 MHz, CDCl3) of compound 110. 
	

Figure A3-1.6. 19F NMR (282 MHz, CDCl3) of compound 110.	
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	Figure A3-1.11. 13C NMR (125 MHz, CDCl3) of compound 111. 
	

Figure A3-1.12. 19F NMR (282 MHz, CDCl3) of compound 111.	
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S-328 
 

13. X-Ray Crystallographic Data for (+)-29 

 
Crystal Data and Experimental 

 

 
Experimental. Single colorless needle-shaped crystals of 
Aaron-macrocycle were recrystallized from hexane by slow 
evaporation. A suitable crystal 0.57×0.06×0.04 mm3 was 
selected and mounted on a loopon a XtaLAB Synergy, 
Dualflex, HyPix diffractometer. The crystal was kept at a 
steady T = 100(2) K during data collection.The structure was 
solved with the ShelXT (Sheldrick, 2015) structure solution 
program usingthe Intrinsic Phasing solution method and by 
using Olex2 (Dolomanov et al., 2009) as the graphical 
interface. The model was refined with version 2018/3 of 
ShelXL (Sheldrick, 2015)using Least Squares minimisation. 
Crystal Data. C34H42F6O4, Mr = 628.67, monoclinic, P2 (No. 
3), a = 25.1525(4) Å, b = 5.53398(4) Å, c = 27.2474(4) Å, 

 = 117.4652(19)°,  =  = 90°, V = 3365.19(9) Å3, T = 
100(2) K, Z = 4, Z' = 2, (CuK ) = 0.866 mm-1, 42058 
reflections measured, 10947 unique (Rint = 0.0510) which 
were used in all calculations. The final wR2 was 0.0885 (all 
data) and R1 was 0.0363 (I > 2σ(I)). 

Compound  Aaron-macrocycle  
    
Formula  C34H42F6O4  
Dcalc./ g cm-3  1.241  

/mm-1  0.866  
Formula Weight  628.67  
Colour  colourless  
Shape  needle  
Size/mm3  0.57×0.06×0.04  
T/K  100(2)  
Crystal System  monoclinic  
Flack Parameter  -0.02(6)  
Hooft Parameter  -0.00(5)  
Space Group  P2  
a/Å  25.1525(4)  
b/Å  5.53398(4)  
c/Å  27.2474(4)  

/°  90  
/°  117.4652(19)  
/°  90  

V/Å3  3365.19(9)  
Z  4  
Z'  2  
Wavelength/Å  1.54184  
Radiation type  CuK   
min/°  1.980  
max/°  73.814  

Measured Refl.  42058  
Independent Refl.  10947  
Reflections with I > 
2σ(I)  

9975  

Rint  0.0510  
Parameters  797  
Restraints  1  
Largest Peak  0.323  
Deepest Hole  -0.205  
GooF  0.985  
wR2 (all data)  0.0885  
wR2  0.0853  
R1 (all data)  0.0412  
R1  0.0363  

A3-2.1   X-RAY CRYSTAL STRUCTURE ANALYSIS OF CYCLOPHANE 111 
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Structure Quality Indicators 
Reflections: 

 

Refinement: 
 

A colourless needle-shaped crystal with dimensions 0.57×0.06×0.04 mm3 was mounted on a loop. Data were 
collected using an XtaLAB Synergy, Dualflex, HyPix diffractometer equipped with an Oxford Cryosystems low-
temperature device operating at T = 100(2) K. 
Data were measured using  scans with a narrow frame width of 0.5° per frame for 3.5/3.7/10.0 s using CuK  
radiation. The total number of runs and images was based on the strategy calculation from the program CrysAlisPro 
(Rigaku, V1.171.39.43c, 2018). The maximum resolution that was achieved was  = 73.814°. 
The diffraction pattern was indexed using CrysAlisPro (Rigaku, V1.171.39.43c, 2018) and the unit cell was refined 
using CrysAlisPro (Rigaku, V1.171.39.43c, 2018) on 24772 reflections, 59% of the observed reflections. 
Data reduction, scaling and absorption corrections were performed using CrysAlisPro (Rigaku, V1.171.39.43c, 
2018). The final completeness is 98.70 % out to 73.814° in . A numerical absorption correction based on Gaussian 
integration over a multifaceted crystal model was applied using CrysAlisPro 1.171.39.43c (Rigaku Oxford 
Diffraction, 2018). An empirical absorption correction using spherical harmonics as implemented by SCALE3 
ABSPACK algorithm was applied. The absorption coefficient  of this material is 0.866 mm-1 at this wavelength 
(  = 1.54184Å) and the minimum and maximum transmissions are 0.487 and 1.000. 
The structure was solved and the space group P2 (# 3) determined by the ShelXT (Sheldrick, 2015) structure solution 
program using Intrinsic Phasing and refined by Least Squares using version 2018/3 of ShelXL-2014 (Sheldrick, 
2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated 
geometrically and refined using the riding model.Hydrogen atom positions were calculated geometrically and refined 
using the riding model. 
The value of Z' is 2. This means that there are two independent molecules in the asymmetric unit. 
The Flack parameter was refined to -0.02(6). Determination of absolute structure using Bayesian statistics on Bijvoet 
differences using the Olex2 results in -0.00(5). Note: The Flack parameter is used to determine chirality of the crystal 
studied, the value should be near 0, a value of 1 means that the stereochemistry is wrong and the model should be 
inverted. A value of 0.5 means that the crystal consists of a racemic mixture of the two enantiomers. 
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Figure S13.5: The asymmetric unit contains two molecules of the compound. 

 

 

Figure S13.6:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The asymmetric unit contains two molecules of the compound. 

Figure A3-2.1.1 X-ray crystal structure of cyclophane 111 
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Figure S13.7:  

 

 

Figure S13.8:  
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Data Plots: Diffraction Data 

    

    

  

 

Data Plots: Refinement and Data 

    
Reflection Statistics 
 
Total reflections (after filtering)  42062  Unique reflections  10947  
Completeness  0.804  Mean I/   16.19  
hklmax collected  (30, 6, 33)  hklmin collected  (-30, -6, -33)  
hklmax used  (27, 6, 33)  hklmin used  (-30, -6, 0)  
Lim dmax collected  100.0  Lim dmin collected  0.77  
dmax used  22.32  dmin used  0.8  
Friedel pairs  5250  Friedel pairs merged  0  
Inconsistent equivalents  10  Rint  0.051  
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Rsigma  0.0423  Intensity transformed  0  
Omitted reflections  0  Omitted by user (OMIT hkl)  4  
Multiplicity  (6310, 4911, 3058, 1507, 1006, 

519, 204, 88, 40, 7, 2)  
Maximum multiplicity  18  

Removed systematic absences  0  Filtered off (Shel/OMIT)  0  
 

 
 
 
 
 
 
Images of the Crystal on the Diffractometer 

 

Table S13.24: Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement Parameters (Å2×103) for 
Aaron-macrocycle_P2. Ueq is defined as 1/3 of the trace of the orthogonalised Uij. 
 
Atom x y z Ueq 
F1 3107.8(7) -1535(3) 3482.8(6) 40.3(4) 
F2 2927.5(7) -699(4) 4163.9(7) 43.1(5) 
F3 3029.6(8) 2168(3) 3682.3(7) 44.3(5) 
F4 6931.1(8) 10422(4) 11116.2(8) 54.0(5) 
F5 6790.1(7) 13309(3) 11567.5(6) 34.1(4) 
F6 7051.5(9) 14083(5) 10937.5(8) 63.2(7) 
O1 4027.6(8) 1790(3) 4704.1(7) 24.9(4) 
O2 4161.9(10) -1186(3) 5309.5(8) 34.6(5) 
O3 6006.0(8) 12270(3) 10110.3(7) 24.8(4) 
O4 5755.0(8) 8401(3) 10163.3(7) 26.6(4) 
C1 3780.7(11) 2906(5) 5830.5(10) 22.6(5) 
C2 4251.8(11) 2953(5) 5616.8(10) 21.2(5) 
C3 4891.6(11) 2815(5) 6079.4(10) 19.9(5) 
C4 5096.8(12) 917(5) 6458.4(10) 23.7(6) 
C5 5675.7(12) 905(5) 6887.6(10) 24.0(6) 
C6 6074.6(11) 2778(5) 6953.4(10) 21.4(5) 
C7 6704.0(11) 2795(5) 7419.2(10) 27.1(6) 
C8 6739.8(12) 2951(5) 7994.2(10) 27.6(6) 
C9 6465.4(12) 5221(5) 8095.4(10) 23.7(6) 
C10 6516.9(12) 5313(5) 8675.3(10) 24.1(5) 
C11 6212.8(12) 7497(5) 8772.7(10) 24.6(6) 
C12 6209.5(11) 7575(5) 9334.4(9) 21.0(5) 
C13 5839.4(11) 9758(5) 9353.0(10) 20.3(5) 
C14 5191.4(11) 9689(5) 8912.1(10) 20.0(5) 
C15 4964.7(12) 11456(5) 8505.7(11) 25.0(6) 
C16 4377.1(12) 11353(5) 8087.6(11) 26.2(6) 
C17 3996.1(11) 9483(5) 8059.1(10) 20.1(5) 
C18 3362.9(11) 9314(5) 7599.5(10) 23.9(6) 
C19 3252.2(12) 7142(5) 7217.6(11) 25.3(6) 
C20 3625.5(12) 7131(5) 6911.5(11) 26.0(6) 
C21 3517.0(12) 4965(5) 6538.5(11) 25.0(6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A3-2.1.1 Fractional Atomic Coordinates (x104) and Equivalent Isotropic Displacement Parameters 
(Å2x103) for Aaron-macrocycle_P2. Ueq is defined as 1/3 of the trace of the orthogonalised Uij. 
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Atom x y z Ueq 
C22 3874.2(12) 5034(5) 6215.9(11) 24.8(6) 
C23 5287.2(11) 4679(5) 6142.9(10) 22.6(5) 
C24 5865.8(12) 4667(5) 6573.4(10) 23.7(5) 
C25 4809.6(11) 7819(5) 8889.4(10) 23.6(5) 
C26 4225.4(11) 7726(5) 8470.6(10) 23.9(5) 
C27 3147.2(12) 2864(6) 5349.5(11) 35.0(7) 
C28 4147.1(11) 936(5) 5211.2(10) 21.4(5) 
C29 3900.7(12) 18(5) 4278.4(10) 26.0(6) 
C30 3240.7(12) -13(6) 3906.9(11) 32.9(7) 
C31 6844.6(11) 7687(6) 9811.7(10) 31.4(6) 
C32 5860.6(11) 9970(5) 9917.2(10) 20.3(5) 
C33 6063.6(11) 12761(5) 10649.8(10) 24.3(5) 
C34 6708.7(12) 12639(5) 11063.1(11) 29.0(6) 
F1B 1848.2(8) 11712(3) 49.8(7) 39.7(4) 
F2B 2053.5(8) 10844(4) 890.5(7) 53.2(6) 
F3B 1882.0(8) 7990(3) 307.4(7) 43.7(4) 
F4B -2001.3(8) -248(4) 4376.9(8) 50.5(5) 
F5B -1810.7(7) -2763(3) 5035.6(6) 32.3(4) 
F6B -1985.5(8) -4054(4) 4231.7(8) 51.2(5) 
O1B 934.2(8) 8649(3) 534.8(7) 23.6(4) 
O2B 917.9(10) 11669(3) 1080.3(8) 33.4(5) 
O3B -990.6(8) -1732(3) 4282.2(7) 22.4(4) 
O4B -804.5(8) 2223(3) 4505.0(7) 26.6(4) 
C1B 1271.4(11) 7679(5) 1922.1(10) 21.6(5) 
C2B 793.8(11) 7555(5) 1304.6(10) 20.6(5) 
C3B 155.1(11) 7692(5) 1223.3(9) 20.3(5) 
C4B -47.0(12) 9629(5) 1421.8(10) 22.4(5) 
C5B -630.8(12) 9684(5) 1349.5(10) 24.4(6) 
C6B -1030.0(11) 7828(5) 1080.7(9) 22.0(5) 
C7B -1664.2(11) 7860(5) 1009.2(10) 26.5(6) 
C8B -1693.1(11) 7697(5) 1557.4(10) 24.2(5) 
C9B -1433.2(11) 5398(5) 1880.1(10) 22.5(5) 
C10B -1508.1(12) 5231(5) 2401.0(10) 22.6(5) 
C11B -1201.5(12) 3046(5) 2755.0(10) 24.1(5) 
C12B -1242.2(11) 2857(5) 3298.8(10) 20.4(5) 
C13B -849.3(11) 741(5) 3648.3(9) 18.1(5) 
C14B -199.2(11) 914(4) 3765.3(9) 17.7(5) 
C15B 47.6(12) -830(5) 3567.6(10) 22.8(5) 
C16B 638.0(12) -664(5) 3658.9(11) 24.7(6) 
C17B 1001.5(11) 1259(4) 3953.6(10) 19.3(5) 
C18B 1643.5(11) 1494(5) 4061.0(10) 23.3(5) 
C19B 1755.6(11) 3697(5) 3779.4(10) 21.7(5) 
C20B 1415.4(12) 3584(5) 3151.1(10) 23.7(5) 
C21B 1548.4(12) 5680(5) 2863.7(10) 23.4(5) 
C22B 1177.7(12) 5569(5) 2236.1(10) 23.1(5) 
C23B -247.0(11) 5842(5) 950.0(10) 22.5(5) 
C24B -828.8(12) 5903(5) 881.9(10) 24.0(6) 
C25B 163.1(11) 2841(5) 4062.7(10) 23.3(5) 
C26B 749.2(11) 3003(5) 4151.5(10) 23.4(5) 
C27B 1901.1(12) 7665(6) 1970.6(11) 33.0(6) 
C28B 890.5(12) 9560(5) 978.9(10) 21.7(5) 
C29B 1057.3(12) 10354(5) 202.4(10) 25.5(6) 
C30B 1713.3(13) 10234(6) 369.5(11) 33.1(7) 
C31B -1887.4(12) 2491(6) 3189.4(11) 31.1(6) 
C32B -879.9(11) 590(4) 4189.4(10) 19.0(5) 
C33B -1060.2(11) -2166(5) 4766.7(10) 21.9(5) 
C34B -1714.1(12) -2286(5) 4600.9(10) 27.8(6) 
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Table S13.25: Anisotropic Displacement Parameters (×104) Aaron-macrocycle_P2. The anisotropic displacement 
factor exponent takes the form: -2 2[h2a*2 × U11+ ... +2hka* × b* × U12] 
 
Atom U11 U22 U33 U23 U13 U12 
F1 28.1(9) 59.4(12) 28.7(8) -19.7(8) 9.1(7) 0.2(8) 
F2 27.6(9) 68.3(13) 39.7(10) -10.2(9) 21.0(8) -6.9(9) 
F3 40.1(11) 53.9(12) 37.5(10) 7.1(9) 16.6(8) 20.2(9) 
F4 39.0(11) 61.0(13) 43.9(11) -12.8(10) 3.6(9) 25.4(10) 
F5 36.5(9) 41.8(10) 18.0(7) -5.3(7) 7.4(7) 3.0(8) 
F6 46.0(12) 105.8(19) 36.2(10) -6.7(11) 17.7(10) -38.8(12) 
O1 32.9(11) 22.1(9) 22.0(9) 0.3(7) 14.5(8) 0.7(8) 
O2 54.7(14) 16.9(10) 29.3(10) -1.3(8) 16.8(10) -1.8(9) 
O3 33.2(11) 21.3(9) 19.2(9) -2.1(7) 11.6(8) -1.9(8) 
O4 34.1(11) 25.2(10) 23.5(9) 0.3(8) 15.9(8) -5.2(8) 
C1 21.1(13) 24.2(13) 20.9(12) -2.6(11) 8.2(11) -0.1(11) 
C2 21.6(13) 20.5(12) 20.7(12) 0.1(10) 9.2(11) 0.2(11) 
C3 20.2(13) 22.0(12) 18.5(11) -4.1(10) 9.9(10) 1.0(11) 
C4 24.9(15) 22.7(13) 24.7(13) -3.7(11) 12.3(12) -3.6(11) 
C5 31.0(15) 20.8(13) 21.8(12) 3.5(10) 13.6(12) 5.5(11) 
C6 21.6(13) 24.1(13) 20.5(12) -3.5(11) 11.4(11) 2.4(11) 
C7 22.3(14) 34.1(15) 22.5(13) -4.3(12) 8.3(11) 6.3(12) 
C8 27.9(15) 32.6(15) 18.6(12) 1.8(11) 7.7(11) 8.8(12) 
C9 25.7(14) 25.8(14) 19.4(12) 0.3(11) 10.1(11) 4.1(12) 
C10 24.2(14) 29.1(14) 19.3(12) 1.2(11) 10.3(11) 1.7(11) 
C11 25.9(14) 27.7(14) 19.9(12) 1.0(11) 10.4(11) 3.5(12) 
C12 18.4(12) 27.5(13) 17.2(11) 0.0(10) 8.2(10) 1.2(11) 
C13 20.8(13) 23.6(13) 16.1(12) -0.3(10) 8.3(11) -3.1(11) 
C14 20.1(13) 22.8(13) 17.2(12) -4.3(10) 8.7(11) 0.5(10) 
C15 24.9(15) 21.2(13) 26.5(13) 2.5(11) 9.7(12) 0.3(11) 
C16 27.6(15) 24.3(14) 22.7(13) 4.1(11) 8.1(12) 3.2(12) 
C17 19.4(13) 24.8(13) 16.8(12) -3.9(10) 9.0(11) 4.0(11) 
C18 18.1(13) 28.1(14) 24.0(13) -1.3(11) 8.4(11) 3.3(11) 
C19 21.0(14) 29.5(15) 23.8(13) -2.2(11) 9.2(11) -0.6(11) 
C20 22.9(14) 30.3(15) 25.1(13) -3.4(11) 11.4(12) -0.9(11) 
C21 24.1(14) 27.7(14) 21.8(13) -2.1(11) 9.4(12) 1.0(11) 
C22 22.0(14) 26.5(14) 25.8(13) -3.4(11) 11.0(12) 0.3(11) 
C23 24.9(14) 21.1(12) 22.3(13) 2.5(10) 11.4(12) 2.2(11) 
C24 23.1(14) 22.8(13) 26.5(13) -0.6(11) 12.6(12) -1.8(11) 
C25 25.1(14) 24.7(13) 19.3(12) 5.2(11) 8.9(11) 2.4(11) 
C26 20.0(13) 29.3(14) 22.6(12) -2.0(11) 10.0(11) -5.5(12) 
C27 22.9(14) 52.3(19) 28.1(14) -11.8(14) 10.4(12) -3.4(14) 
C28 18.8(13) 23.8(14) 19.3(12) 2.4(10) 7.0(11) 2.7(10) 
C29 28.5(15) 32.3(15) 20.6(13) -7.7(11) 14.2(12) -1.8(12) 
C30 24.8(15) 49.4(19) 26.5(14) -9.8(13) 13.6(13) -0.6(14) 
C31 21.5(14) 48.2(18) 22.0(13) -2.5(13) 7.7(12) 5.9(13) 
C32 16.9(13) 23.8(13) 18.8(12) -1.7(10) 7.0(11) -0.3(11) 
C33 28.6(14) 25.0(13) 18.5(12) -2.4(11) 10.2(11) 2.8(12) 
C34 29.8(15) 34.0(15) 23.7(13) -3.8(12) 12.7(12) -1.1(13) 
F1B 38.2(10) 52.4(11) 34.2(9) 6.0(8) 21.7(8) -8.8(8) 
F2B 37.3(11) 92.0(16) 23.4(8) -7.7(10) 8.3(8) -25.9(11) 
F3B 38.2(10) 50.4(11) 49.1(10) 11.1(9) 25.6(9) 12.8(9) 
F4B 39.5(11) 60.0(12) 61.5(12) 34.4(10) 31.4(10) 23.2(9) 
F5B 33.3(9) 40.6(10) 31.5(8) 7.2(7) 22.1(7) 1.0(7) 
F6B 40.4(11) 73.9(14) 41.0(10) -22.3(10) 20.3(9) -26.3(10) 
O1B 30.8(10) 23.9(9) 19.2(8) -2.0(7) 14.1(8) -1.5(8) 
O2B 60.9(14) 17.3(9) 35.3(11) -0.6(8) 33.5(11) -0.6(9) 
O3B 32.1(10) 18.1(9) 21.2(9) 1.5(7) 15.9(8) -1.6(8) 
O4B 35.2(11) 24.0(10) 24.3(9) -5.2(8) 16.8(9) -3.6(8) 
C1B 22.4(13) 20.6(12) 21.2(12) 1.5(10) 9.5(11) 0.0(11) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A3-2.1.2 Fractional Atomic Coordinates (x104) Aaron-macrocycle_P2. The anisotropic displacement 
factor exponent takes the form: -2 2[h2a*2 x U11+…2hka* x b* x U12] 
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Atom U11 U22 U33 U23 U13 U12 
C2B 23.0(13) 18.3(12) 20.8(12) 0.7(10) 10.3(11) 0.1(11) 
C3B 24.2(13) 19.8(12) 15.0(11) 5.0(10) 7.4(10) 3.0(11) 
C4B 27.5(15) 18.8(13) 20.4(12) -1.6(10) 10.5(12) -2.2(11) 
C5B 30.8(15) 22.1(13) 23.1(13) 3.8(11) 14.6(12) 5.9(11) 
C6B 22.8(13) 25.5(13) 15.1(11) 8.0(10) 6.7(10) 4.3(11) 
C7B 22.2(13) 34.2(15) 21.2(12) 9.7(12) 8.4(11) 4.6(12) 
C8B 21.1(13) 27.8(14) 22.9(12) 4.8(11) 9.5(11) 4.1(11) 
C9B 22.6(14) 25.2(13) 19.1(12) 2.6(11) 9.0(11) 4.1(11) 
C10B 24.5(14) 22.3(13) 19.8(12) -0.9(10) 9.3(11) 1.4(11) 
C11B 26.1(14) 26.8(14) 20.6(12) 1.0(11) 11.7(11) 4.4(11) 
C12B 20.5(13) 21.6(12) 19.6(12) 2.4(10) 9.7(10) 3.7(11) 
C13B 19.2(13) 18.2(12) 16.9(11) -1.8(10) 8.5(10) -1.4(10) 
C14B 17.3(13) 19.8(12) 15.4(11) 4.7(10) 7.1(10) 1.9(10) 
C15B 23.7(14) 18.3(13) 25.2(13) -1.8(10) 10.2(12) -0.7(10) 
C16B 23.2(14) 22.7(13) 30.8(14) 1.0(11) 14.8(12) 5.8(11) 
C17B 16.8(13) 23.6(13) 16.6(11) 7.1(10) 7.0(11) 3.6(10) 
C18B 18.4(14) 28.9(14) 20.9(12) 4.7(11) 7.6(11) 3.6(11) 
C19B 18.4(13) 24.7(13) 20.9(12) 0.6(10) 8.2(11) 0.8(11) 
C20B 25.2(14) 24.0(13) 20.4(12) 1.3(11) 9.0(11) -2.7(11) 
C21B 23.8(14) 24.0(13) 22.9(13) 1.3(11) 11.3(11) -0.4(11) 
C22B 25.2(14) 21.7(13) 21.0(12) 1.2(11) 9.6(12) -2.2(11) 
C23B 26.9(15) 19.1(12) 19.3(12) -0.2(10) 8.8(11) 2.3(11) 
C24B 24.3(15) 22.2(13) 21.4(13) 0.1(11) 7.1(12) -2.4(11) 
C25B 26.9(14) 24.9(13) 22.3(12) -3.2(11) 15.0(11) 0.0(12) 
C26B 22.4(13) 26.8(13) 21.3(12) -5.6(11) 10.4(11) -5.9(11) 
C27B 23.8(15) 45.9(18) 27.8(14) 6.3(14) 10.4(12) -4.1(14) 
C28B 24.0(14) 20.3(13) 21.7(13) -0.2(10) 11.3(11) 3.1(11) 
C29B 31.3(16) 28.1(14) 19.4(12) 1.3(11) 13.8(12) -1.2(12) 
C30B 31.0(16) 45.9(18) 22.1(14) 1.6(13) 11.9(13) -6.7(14) 
C31B 23.8(14) 42.4(17) 28.2(14) 9.0(13) 12.9(12) 6.4(13) 
C32B 16.8(13) 20.0(12) 19.6(12) 2.1(10) 7.9(10) 1.2(10) 
C33B 26.8(14) 23.0(13) 17.8(12) 3.4(10) 11.7(11) -0.3(11) 
C34B 27.1(14) 34.8(15) 23.0(13) 3.9(12) 12.7(12) -1.9(13) 

Table S13.26: Bond Lengths in Å for Aaron-macrocycle_P2. 
 
Atom Atom Length/Å 
F1 C30 1.342(3) 
F2 C30 1.328(3) 
F3 C30 1.347(4) 
F4 C34 1.328(3) 
F5 C34 1.345(3) 
F6 C34 1.331(3) 
O1 C28 1.356(3) 
O1 C29 1.438(3) 
O2 C28 1.201(3) 
O3 C32 1.361(3) 
O3 C33 1.435(3) 
O4 C32 1.199(3) 
C1 C2 1.543(3) 
C1 C22 1.522(4) 
C1 C27 1.527(4) 
C2 C3 1.521(3) 
C2 C28 1.506(3) 
C3 C4 1.394(4) 
C3 C23 1.388(4) 
C4 C5 1.385(4) 

Atom Atom Length/Å 
C5 C6 1.395(4) 
C6 C7 1.505(4) 
C6 C24 1.393(4) 
C7 C8 1.530(3) 
C8 C9 1.518(4) 
C9 C10 1.525(3) 
C10 C11 1.517(4) 
C11 C12 1.535(3) 
C12 C13 1.540(3) 
C12 C31 1.527(3) 
C13 C14 1.515(3) 
C13 C32 1.518(3) 
C14 C15 1.388(4) 
C14 C25 1.393(4) 
C15 C16 1.390(4) 
C16 C17 1.388(4) 
C17 C18 1.508(4) 
C17 C26 1.392(4) 
C18 C19 1.529(4) 
C19 C20 1.516(3) 
C20 C21 1.513(4) 
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Atom Atom Length/Å 
C21 C22 1.520(3) 
C23 C24 1.385(4) 
C25 C26 1.385(4) 
C29 C30 1.494(4) 
C33 C34 1.490(4) 
F1B C30B 1.347(3) 
F2B C30B 1.319(3) 
F3B C30B 1.348(4) 
F4B C34B 1.326(3) 
F5B C34B 1.341(3) 
F6B C34B 1.342(3) 
O1B C28B 1.361(3) 
O1B C29B 1.437(3) 
O2B C28B 1.194(3) 
O3B C32B 1.363(3) 
O3B C33B 1.430(3) 
O4B C32B 1.201(3) 
C1B C2B 1.554(3) 
C1B C22B 1.528(3) 
C1B C27B 1.527(3) 
C2B C3B 1.519(3) 
C2B C28B 1.509(3) 
C3B C4B 1.398(3) 
C3B C23B 1.390(4) 
C4B C5B 1.389(3) 
C5B C6B 1.386(4) 

Atom Atom Length/Å 
C6B C7B 1.515(3) 
C6B C24B 1.392(4) 
C7B C8B 1.531(3) 
C8B C9B 1.513(4) 
C9B C10B 1.518(3) 
C10B C11B 1.517(4) 
C11B C12B 1.535(3) 
C12B C13B 1.545(3) 
C12B C31B 1.522(3) 
C13B C14B 1.518(3) 
C13B C32B 1.514(3) 
C14B C15B 1.384(3) 
C14B C25B 1.394(4) 
C15B C16B 1.391(3) 
C16B C17B 1.391(4) 
C17B C18B 1.508(3) 
C17B C26B 1.393(3) 
C18B C19B 1.534(3) 
C19B C20B 1.522(3) 
C20B C21B 1.520(3) 
C21B C22B 1.525(3) 
C23B C24B 1.388(4) 
C25B C26B 1.382(3) 
C29B C30B 1.497(4) 
C33B C34B 1.493(3) 

 

Table S13.27: Bond Angles in ° for Aaron-macrocycle_P2. 
 
Atom Atom Atom Angle/° 
C28 O1 C29 116.5(2) 
C32 O3 C33 117.09(19) 
C22 C1 C2 110.3(2) 
C22 C1 C27 111.9(2) 
C27 C1 C2 110.8(2) 
C3 C2 C1 112.92(19) 
C28 C2 C1 111.1(2) 
C28 C2 C3 109.3(2) 
C4 C3 C2 122.7(2) 
C23 C3 C2 119.3(2) 
C23 C3 C4 117.9(2) 
C5 C4 C3 121.0(2) 
C4 C5 C6 121.2(2) 
C5 C6 C7 121.8(2) 
C24 C6 C5 117.4(2) 
C24 C6 C7 120.8(2) 
C6 C7 C8 114.0(2) 
C9 C8 C7 114.6(2) 
C8 C9 C10 112.8(2) 
C11 C10 C9 113.5(2) 
C10 C11 C12 115.6(2) 
C11 C12 C13 109.6(2) 
C31 C12 C11 111.5(2) 
C31 C12 C13 110.5(2) 
C14 C13 C12 113.5(2) 
C14 C13 C32 109.11(19) 

Atom Atom Atom Angle/° 
C32 C13 C12 110.7(2) 
C15 C14 C13 120.7(2) 
C15 C14 C25 117.8(2) 
C25 C14 C13 121.4(2) 
C16 C15 C14 121.0(2) 
C15 C16 C17 121.5(2) 
C16 C17 C18 122.0(2) 
C26 C17 C16 117.2(2) 
C26 C17 C18 120.8(2) 
C17 C18 C19 113.9(2) 
C20 C19 C18 114.4(2) 
C21 C20 C19 114.0(2) 
C20 C21 C22 113.4(2) 
C21 C22 C1 115.8(2) 
C24 C23 C3 121.0(2) 
C23 C24 C6 121.5(2) 
C26 C25 C14 120.8(2) 
C25 C26 C17 121.7(2) 
O1 C28 C2 111.8(2) 
O2 C28 O1 122.5(2) 
O2 C28 C2 125.7(2) 
O1 C29 C30 108.6(2) 
F1 C30 F3 106.4(2) 
F1 C30 C29 110.4(2) 
F2 C30 F1 107.6(2) 
F2 C30 F3 106.9(2) 
F2 C30 C29 112.9(2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A3-2.1.4 Bond Angles in ° for Aaron-macrocycle_P2 
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Atom Atom Atom Angle/° 
F3 C30 C29 112.3(3) 
O3 C32 C13 110.0(2) 
O4 C32 O3 123.4(2) 
O4 C32 C13 126.7(2) 
O3 C33 C34 109.0(2) 
F4 C34 F5 106.6(2) 
F4 C34 F6 107.0(2) 
F4 C34 C33 112.4(2) 
F5 C34 C33 111.1(2) 
F6 C34 F5 106.6(2) 
F6 C34 C33 112.8(2) 
C28B O1B C29B 116.5(2) 
C32B O3B C33B 116.90(19) 
C22B C1B C2B 109.3(2) 
C27B C1B C2B 110.27(19) 
C27B C1B C22B 111.7(2) 
C3B C2B C1B 113.15(18) 
C28B C2B C1B 110.5(2) 
C28B C2B C3B 108.9(2) 
C4B C3B C2B 122.1(2) 
C23B C3B C2B 120.1(2) 
C23B C3B C4B 117.9(2) 
C5B C4B C3B 120.8(2) 
C6B C5B C4B 121.3(2) 
C5B C6B C7B 121.5(2) 
C5B C6B C24B 117.9(2) 
C24B C6B C7B 120.6(2) 
C6B C7B C8B 113.2(2) 
C9B C8B C7B 114.5(2) 
C8B C9B C10B 112.8(2) 
C11B C10B C9B 113.4(2) 
C10B C11B C12B 115.3(2) 
C11B C12B C13B 109.76(19) 
C31B C12B C11B 111.1(2) 
C31B C12B C13B 109.9(2) 
C14B C13B C12B 113.73(19) 
C32B C13B C12B 109.69(19) 
C32B C13B C14B 109.43(19) 

Atom Atom Atom Angle/° 
C15B C14B C13B 120.5(2) 
C15B C14B C25B 118.0(2) 
C25B C14B C13B 121.5(2) 
C14B C15B C16B 121.2(2) 
C15B C16B C17B 121.1(2) 
C16B C17B C18B 122.5(2) 
C16B C17B C26B 117.2(2) 
C26B C17B C18B 120.2(2) 
C17B C18B C19B 113.5(2) 
C20B C19B C18B 113.1(2) 
C21B C20B C19B 113.9(2) 
C20B C21B C22B 112.4(2) 
C21B C22B C1B 115.1(2) 
C3B C23B C24B 121.0(2) 
C23B C24B C6B 121.1(2) 
C26B C25B C14B 120.7(2) 
C25B C26B C17B 121.8(2) 
O1B C28B C2B 110.6(2) 
O2B C28B O1B 123.2(2) 
O2B C28B C2B 126.2(2) 
O1B C29B C30B 107.9(2) 
F1B C30B C29B 110.3(2) 
F2B C30B F1B 108.0(2) 
F2B C30B F3B 106.6(3) 
F2B C30B C29B 113.1(2) 
F3B C30B F1B 106.9(2) 
F3B C30B C29B 111.6(2) 
O3B C32B C13B 109.8(2) 
O4B C32B O3B 123.7(2) 
O4B C32B C13B 126.4(2) 
O3B C33B C34B 108.36(19) 
F4B C34B F5B 107.0(2) 
F4B C34B F6B 107.1(2) 
F4B C34B C33B 113.1(2) 
F5B C34B F6B 106.4(2) 
F5B C34B C33B 111.4(2) 
F6B C34B C33B 111.6(2) 

 

Table S13.28: Torsion Angles in ° for Aaron-macrocycle_P2. 
 
Atom Atom Atom Atom Angle/° 
O1 C29 C30 F1 176.0(2) 
O1 C29 C30 F2 -63.5(3) 
O1 C29 C30 F3 57.5(3) 
O3 C33 C34 F4 -66.4(3) 
O3 C33 C34 F5 174.3(2) 
O3 C33 C34 F6 54.6(3) 
C1 C2 C3 C4 57.5(3) 
C1 C2 C3 C23 -120.4(2) 
C1 C2 C28 O1 118.2(2) 
C1 C2 C28 O2 -61.6(3) 
C2 C1 C22 C21 -169.3(2) 
C2 C3 C4 C5 -177.3(2) 
C2 C3 C23 C24 177.3(2) 
C3 C2 C28 O1 -116.5(2) 

Table A3-2.1.5 Torsion Angles in ° for Aaron-macrocycle_P2 
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Atom Atom Atom Atom Angle/° 
C3 C2 C28 O2 63.7(3) 
C3 C4 C5 C6 -0.5(4) 
C3 C23 C24 C6 0.8(4) 
C4 C3 C23 C24 -0.7(3) 
C4 C5 C6 C7 179.7(2) 
C4 C5 C6 C24 0.5(3) 
C5 C6 C7 C8 -63.9(3) 
C5 C6 C24 C23 -0.7(3) 
C6 C7 C8 C9 -61.2(3) 
C7 C6 C24 C23 -179.9(2) 
C7 C8 C9 C10 -179.4(2) 
C8 C9 C10 C11 -176.6(2) 
C9 C10 C11 C12 175.5(2) 
C10 C11 C12 C13 -175.0(2) 
C10 C11 C12 C31 62.3(3) 
C11 C12 C13 C14 60.4(3) 
C11 C12 C13 C32 -176.5(2) 
C12 C13 C14 C15 -116.8(3) 
C12 C13 C14 C25 61.1(3) 
C12 C13 C32 O3 130.1(2) 
C12 C13 C32 O4 -51.4(3) 
C13 C14 C15 C16 177.5(2) 
C13 C14 C25 C26 -177.3(2) 
C14 C13 C32 O3 -104.2(2) 
C14 C13 C32 O4 74.3(3) 
C14 C15 C16 C17 -0.2(4) 
C14 C25 C26 C17 -0.2(4) 
C15 C14 C25 C26 0.6(4) 
C15 C16 C17 C18 -178.4(2) 
C15 C16 C17 C26 0.7(4) 
C16 C17 C18 C19 113.9(3) 
C16 C17 C26 C25 -0.5(3) 
C17 C18 C19 C20 -61.7(3) 
C18 C17 C26 C25 178.6(2) 
C18 C19 C20 C21 179.5(2) 
C19 C20 C21 C22 177.5(2) 
C20 C21 C22 C1 -179.7(2) 
C22 C1 C2 C3 59.7(3) 
C22 C1 C2 C28 -177.0(2) 
C23 C3 C4 C5 0.6(3) 
C24 C6 C7 C8 115.2(3) 
C25 C14 C15 C16 -0.4(4) 
C26 C17 C18 C19 -65.1(3) 
C27 C1 C2 C3 -175.9(2) 
C27 C1 C2 C28 -52.6(3) 
C27 C1 C22 C21 66.9(3) 
C28 O1 C29 C30 103.6(3) 
C28 C2 C3 C4 -66.7(3) 
C28 C2 C3 C23 115.4(2) 
C29 O1 C28 O2 1.7(4) 
C29 O1 C28 C2 -178.0(2) 
C31 C12 C13 C14 -176.4(2) 
C31 C12 C13 C32 -53.2(3) 
C32 O3 C33 C34 97.2(3) 
C32 C13 C14 C15 119.2(2) 
C32 C13 C14 C25 -62.9(3) 
C33 O3 C32 O4 3.4(4) 
C33 O3 C32 C13 -178.11(19) 
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Atom Atom Atom Atom Angle/° 
O1B C29B C30B F1B 176.8(2) 
O1B C29B C30B F2B -62.1(3) 
O1B C29B C30B F3B 58.1(3) 
O3B C33B C34B F4B -61.4(3) 
O3B C33B C34B F5B 178.1(2) 
O3B C33B C34B F6B 59.4(3) 
C1B C2B C3B C4B 57.0(3) 
C1B C2B C3B C23B -122.2(2) 
C1B C2B C28B O1B 126.1(2) 
C1B C2B C28B O2B -55.0(4) 
C2B C1B C22B C21B -170.6(2) 
C2B C3B C4B C5B -178.9(2) 
C2B C3B C23B C24B 178.6(2) 
C3B C2B C28B O1B -109.0(2) 
C3B C2B C28B O2B 69.9(3) 
C3B C4B C5B C6B 0.1(4) 
C3B C23B C24B C6B 0.5(4) 
C4B C3B C23B C24B -0.7(4) 
C4B C5B C6B C7B 179.0(2) 
C4B C5B C6B C24B -0.3(3) 
C5B C6B C7B C8B -65.2(3) 
C5B C6B C24B C23B 0.0(3) 
C6B C7B C8B C9B -61.8(3) 
C7B C6B C24B C23B -179.3(2) 
C7B C8B C9B C10B -176.1(2) 
C8B C9B C10B C11B -174.9(2) 
C9B C10B C11B C12B 177.5(2) 
C10B C11B C12B C13B -173.2(2) 
C10B C11B C12B C31B 65.1(3) 
C11B C12B C13B C14B 55.9(3) 
C11B C12B C13B C32B 178.8(2) 
C12B C13B C14B C15B -117.0(2) 
C12B C13B C14B C25B 61.6(3) 
C12B C13B C32B O3B 131.5(2) 
C12B C13B C32B O4B -50.3(3) 
C13B C14B C15B C16B 178.3(2) 
C13B C14B C25B C26B -178.1(2) 
C14B C13B C32B O3B -103.0(2) 
C14B C13B C32B O4B 75.1(3) 
C14B C15B C16B C17B 0.2(4) 
C14B C25B C26B C17B -0.5(4) 
C15B C14B C25B C26B 0.6(4) 
C15B C16B C17B C18B 179.9(2) 
C15B C16B C17B C26B -0.1(4) 
C16B C17B C18B C19B 115.1(3) 
C16B C17B C26B C25B 0.2(4) 
C17B C18B C19B C20B -63.6(3) 
C18B C17B C26B C25B -179.7(2) 
C18B C19B C20B C21B -176.7(2) 
C19B C20B C21B C22B -177.3(2) 
C20B C21B C22B C1B 177.7(2) 
C22B C1B C2B C3B 59.8(3) 
C22B C1B C2B C28B -177.7(2) 
C23B C3B C4B C5B 0.4(3) 
C24B C6B C7B C8B 114.1(3) 
C25B C14B C15B C16B -0.4(4) 
C26B C17B C18B C19B -64.9(3) 
C27B C1B C2B C3B -177.0(2) 
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Atom Atom Atom Atom Angle/° 
C27B C1B C2B C28B -54.6(3) 
C27B C1B C22B C21B 67.1(3) 
C28B O1B C29B C30B 99.4(3) 
C28B C2B C3B C4B -66.3(3) 
C28B C2B C3B C23B 114.5(2) 
C29B O1B C28B O2B 4.0(4) 
C29B O1B C28B C2B -177.0(2) 
C31B C12B C13B C14B 178.4(2) 
C31B C12B C13B C32B -58.7(3) 
C32B O3B C33B C34B 99.1(2) 
C32B C13B C14B C15B 119.9(2) 
C32B C13B C14B C25B -61.4(3) 
C33B O3B C32B O4B 4.5(3) 
C33B O3B C32B C13B -177.24(19) 
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Table S13.29: Hydrogen Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement Parameters 
(Å2×103) for Aaron-macrocycle_P2. Ueq is defined as 1/3 of the trace of the orthogonalised Uij. 
 
Atom x y z Ueq 
H1 3838.87 1417.26 6044.01 27 
H2 4207.62 4485.31 5421.4 25 
H4 4840.99 -360.14 6422.28 28 
H5 5801.05 -375.76 7136.72 29 
H7A 6916.88 4159.71 7370.2 33 
H7B 6906.2 1334.9 7398.66 33 
H8A 6538.59 1555.85 8047.23 33 
H8B 7157.54 2870.15 8269.03 33 
H9A 6045.69 5298.2 7825.73 28 
H9B 6663.7 6623.82 8041.48 28 
H10A 6340.63 3858.89 8736.64 29 
H10B 6937.65 5329.69 8943.77 29 
H11A 5801.39 7546.94 8483.22 30 
H11B 6410.9 8941.41 8737.19 30 
H12 6017.59 6097.78 9373.73 25 
H13 6022.18 11219.04 9293.16 24 
H15 5209.75 12729.35 8513.21 30 
H16 4236.17 12564.47 7821 31 
H18A 3269.88 10780.41 7380.3 29 
H18B 3091.16 9221.46 7761.05 29 
H19A 3335.86 5676.06 7435.97 30 
H19B 2831.8 7113.21 6948.5 30 
H20A 3539.25 8588.14 6690.01 31 
H20B 4046.03 7171.75 7180.08 31 
H21A 3093.65 4881.95 6279.45 30 
H21B 3620.75 3509.13 6761.73 30 
H22A 4296.5 5121.09 6477.84 30 
H22B 3772.08 6505.72 5998.13 30 
H23 5162.07 5955.91 5892.69 27 
H24 6120.38 5949.12 6609.47 28 
H25 4948.78 6619.38 9158.69 28 
H26 3979.76 6457.4 8463.97 29 
H27A 3082.42 4291.05 5128.85 52 
H27B 2861.64 2813.75 5491.26 52 
H27C 3099.11 1459.46 5125.95 52 
H29A 4033.67 -1564.23 4443.05 31 
H29B 4111.57 420.45 4067.88 31 
H31A 7042.46 9106.84 9774.92 47 
H31B 7063.15 6277.03 9804.09 47 
H31C 6827.48 7745.84 10156.27 47 
H33A 5836.99 11583.49 10740.57 29 
H33B 5905.86 14354.71 10655.57 29 
H1B 1216.17 9191.66 2079.88 26 
H2B 842 6011.03 1153.47 25 
H4B 212.4 10895.87 1604.28 27 
H5B -756.36 10992.28 1484.09 29 
H7BA -1884.57 6514.62 775.82 32 
H7BB -1859.37 9339.1 821.4 32 
H8BA -1479.64 9064.2 1786.17 29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A3-2.1.6 Hydrogen Fractional Atomic Coordinates (x104) and Equivalent Isotropic 
Displacement Parameters (Å2x103) for Aaron-macrocycle_P2. Ueq is defined as 1/3 of the trace 
of the orthogonalised Uij. 
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Atom x y z Ueq 
H8BB -2108.59 7825.21 1481.74 29 
H9BA -1009.95 5319.97 1980.83 27 
H9BB -1627.82 4021.27 1645.32 27 
H10C -1346.11 6682.04 2619.1 27 
H10D -1932.21 5164.79 2297.27 27 
H11C -781.77 3079.64 2841.42 29 
H11D -1376.03 1600.41 2538.96 29 
H12B -1091.09 4361.57 3506.93 24 
H13B -1015.29 -759.67 3443.49 22 
H15B -185.46 -2136.09 3370.18 27 
H16B 792.41 -1858.43 3520.68 30 
H18C 1755.56 43.85 3930.99 28 
H18D 1899.36 1608.16 4456.72 28 
H19C 1637.8 5146.66 3904.52 26 
H19D 2181.16 3813.56 3892.11 26 
H20C 1515.18 2084.57 3028.49 28 
H20D 989.07 3560.12 3038.74 28 
H21C 1970.68 5661.14 2959.15 28 
H21D 1465.5 7188.06 2996.65 28 
H22C 757.11 5506.24 2145.69 28 
H22D 1272.99 4079.35 2106.12 28 
H23B -124.41 4542.27 810.61 27 
H24B -1088.59 4636.94 700.23 29 
H25B 8.95 4029.39 4202.81 28 
H26B 981.32 4312.22 4348.7 28 
H27D 1963.79 6182.78 1821.78 50 
H27E 2191.46 7799.8 2352.75 50 
H27F 1943.79 9005.6 1767.83 50 
H29C 949.16 11971.7 260.87 31 
H29D 825.95 9956.17 -186.45 31 
H31D -2039.34 1012.82 2988.64 47 
H31E -2127.92 3820.41 2975.5 47 
H31F -1901.78 2409.07 3534.97 47 
H33C -874.84 -872.72 5031.91 26 
H33D -868.03 -3675.15 4937.83 26 

 
Citations 

CrysAlisPro Software System, Rigaku Oxford Diffraction, (2018). 

O.V. Dolomanov and L.J. Bourhis and R.J. Gildea and J.A.K. Howard and H. Puschmann, Olex2: A complete 
structure solution, refinement and analysis program, J. Appl. Cryst., (2009), 42, 339-341. 

Sheldrick, G.M., Crystal structure refinement with ShelXL, Acta Cryst., (2015), C27, 3-8. 

Sheldrick, G.M., ShelXT-Integrated space-group and crystal-structure determination, Acta Cryst., (2015), A71, 3-8. 
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#=============================================================================== 
# PLATON/CHECK-( 70414) versus check.def version of 310314   for Entry: aaron-ma 
# Data: Aaron-macrocycle_P2.cif - Type: CIF      Bond Precision   C-C = 0.0040 A 
# Refl: Aaron-macrocycle_P2.fcf - Type: LIST4                       Temp = 100 K 
#                                                X-Ray         Nref/Npar =   9.2 
# Cell  25.1525(4)  5.53398(4)  27.2474(4)           90 117.4652(19)          90 
# Wavelength 1.54184    Volume Reported    3365.19(9)   Calculated   3365.19(10) 
# SpaceGroup from Symmetry P 2        Hall: P 2y                 monoclinic 
#                 Reported P 1 2 1          P 2y                 monoclinic 
# MoietyFormula C34 H42 F6 O4 
#      Reported C34 H42 F6 O4 
#    SumFormula C34 H42 F6 O4 
#      Reported C34 H42 F6 O4 
# Mr        =    628.68[Calc],    628.67[Rep] 
# Dx,gcm-3  =     1.241[Calc],     1.241[Rep] 
# Z         =         4[Calc],         4[Rep] 
# Mu (mm-1) =     0.866[Calc],     0.866[Rep] 
# F000      =    1328.0[Calc],    1328.0[Rep]  or F000' =   1332.85[Calc] 
# Reported   T Limits: Tmin=0.487              Tmax=1.000  AbsCorr=GAUSSIAN 
# Calculated T Limits: Tmin=0.940 Tmin'=0.611  Tmax=0.968 
# Reported   Hmax= 30, Kmax=  6, Lmax= 33, Nref=  10947        , Th(max)= 73.814 
# Obs in FCF Hmax= 30, Kmax=  6, Lmax= 33, Nref=  10947[  7307], Th(max)= 73.814 
# Calculated Hmax= 31, Kmax=  6, Lmax= 33, Nref=  13617[  7546], Ratio=1.45/0.80 
# Reported   Rho(min) = -0.20, Rho(max) =  0.32 e/Ang**3 (From CIF) 
# Calculated Rho(min) = -0.19, Rho(max) =  0.31 e/Ang**3 (From CIF+FCF data) 
# w=1/[sigma**2(Fo**2)+(0.0388P)**2+  1.0793P], P=(Fo**2+2*Fc**2)/3 
# R= 0.0363(  9975), wR2= 0.0885( 10947), S = 0.985      (From CIF+FCF data) 
# R= 0.0363(  9975), wR2= 0.0885( 10947), S = 0.985      (From FCF data only) 
# R= 0.0363(  9975), wR2= 0.0885( 10947), S = 0.985, Npar=  797, Flack  -0.02(6) 
#=============================================================================== 
For Documentation: http://http://www.platonsoft.nl/CIF-VALIDATION.pdf 
#=============================================================================== 
 
#=============================================================================== 
>>> The Following Improvement and Query ALERTS were generated - (Acta-Mode) <<< 
#=============================================================================== 
Format: alert-number_ALERT_alert-type_alert-level text 
 
230_ALERT_2_C Hirshfeld Test Diff for    F3     --  C30     ..        6.0 su 
761_ALERT_1_C CIF Contains no X-H Bonds ......................     Please Check 
762_ALERT_1_C CIF Contains no X-Y-H or H-Y-H Angles ..........     Please Check 
911_ALERT_3_C Missing # FCF Refl Between THmin &amp; STh/L=  0.600         84 Why ? 
915_ALERT_3_C Low Friedel Pair Coverage ......................         60 % 
#=============================================================================== 
008_ALERT_5_G No _iucr_refine_reflections_details   in the CIF     Please Do ! 
142_ALERT_4_G su on b - Axis Small or Missing ................    0.00004 Ang. 
242_ALERT_2_G Low       Ueq as Compared to Neighbors for .....        C30 Check 
242_ALERT_2_G Low       Ueq as Compared to Neighbors for .....        C34 Check 
242_ALERT_2_G Low       Ueq as Compared to Neighbors for .....       C30B Check 
242_ALERT_2_G Low       Ueq as Compared to Neighbors for .....       C34B Check 
720_ALERT_4_G Number of Unusual/Non-Standard Labels ..........          6 Note 
791_ALERT_4_G The Model has Chirality at C1      .............          R Verify 
791_ALERT_4_G The Model has Chirality at C1B     .............          R Verify 
791_ALERT_4_G The Model has Chirality at C2      .............          S Verify 
791_ALERT_4_G The Model has Chirality at C2B     .............          S Verify 
791_ALERT_4_G The Model has Chirality at C12     .............          R Verify 
791_ALERT_4_G The Model has Chirality at C12B    .............          R Verify 
791_ALERT_4_G The Model has Chirality at C13     .............          S Verify 
791_ALERT_4_G The Model has Chirality at C13B    .............          S Verify 
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802_ALERT_4_G CIF Input Record(s) with more than 80 Characters          ! Info 
910_ALERT_3_G Missing # of FCF Reflections Below Th(Min) .....          1 Why ? 
912_ALERT_4_G Missing # of FCF Reflections Above STh/L=  0.600        147 Note 
#=============================================================================== 
 
ALERT_Level and ALERT_Type Summary 
================================== 
5 ALERT_Level_C = Check. Ensure it is Not caused by an Omission or Oversight 
18 ALERT_Level_G = General Info/Check that it is not Something Unexpected 
 
2 ALERT_Type_1 CIF Construction/Syntax Error, Inconsistent or Missing Data. 
5 ALERT_Type_2 Indicator that the Structure Model may be Wrong or Deficient. 
3 ALERT_Type_3 Indicator that the Structure Quality may be Low. 
12 ALERT_Type_4 Improvement, Methodology, Query or Suggestion. 
1 ALERT_Type_5 Informative Message, Check. 
#=============================================================================== 
 
2 Missing  Experimental  Info Issue(s) (Out of  54 Tests) -   96 % Satisfied 
0 Experimental  Data  Related Issue(s) (Out of  28 Tests) -  100 % Satisfied 
5 Structural  Model   Related Issue(s) (Out of 117 Tests) -   96 % Satisfied 
16 Unresolved or to be Checked Issue(s) (Out of 223 Tests) -   93 % Satisfied 
 
#=============================================================================== 
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APPENDIX 3-3 

Progress Toward the 

Synthesis of 

Cylindrocyclophane A* 

 

 

A3-3.1   MODEL STUDIES TOWARD CYLINDROCYCLOPHANE A 

 Due to our ambitious retrosynthetic proposal outlined in Chapter 3.2, we believed 

that it was important to probe the viability of our end-game proposal. We began by 

investigating the C–H acetoxylation reaction (Scheme A3-3.1.1A). We were pleased to 

find that under the standard conditions reported by Yu and coworkers,1 112 afforded a 

69% yield of diacetoxylated product 113 and an additional 25% of the monoacetoxylated 

product. With these results in mind, we decided to investigate further and probe the 

viability of a tetraacetoxylation reaction. We decided to investigate using previously 

                                                
* This research was performed in collaboration with Aaron T. Bosse and Huw M. L. Davies at Emory 
University and Hojoon Park and Jin-Quan Yu at The Scripps Research Institute through the Center for C-H 
functionalization.  
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synthesized [7,7]paracyclophane 111 as a precursor to Weinreb amide 114 in order to 

quickly access a tetraacetoxylation substrate. We were pleased to discover that Weinreb 

amide 114 could readily be synthesized from cyclophane 111 in good yield (Scheme A3-

3.1.1B). This diamide 114 could then be subjected to the diacetoxylation reaction with 

twice the amount of reagents to afford a moderate yield of the tetracetoxylated 

[7,7]paracyclophane 115 (Scheme A3-3.1.1C), along with significant amounts of the 

triacetoxylated, diacetoxylated and monoacetoxylated products. We believed that further 

investigation of the acetoxylation in collaboration with the Yu lab at The Scripps 

Research Institute could lead to even more promising results.   

Scheme A3-3.1.1 Investigation of acetoxylation reaction 
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  Next, we turned our investigation to the carboxy-inversion reaction (Scheme A3-

3.1.2). First, we saponified ester 111 to form 116 in good yield, which unfortunately 

resulted in some epimerization of the benzylic stereocenters. Nevertheless, we proceeded 

to investigate the oxidative decarboxylation of 116,2 which proceeded to form 117 in 

good yield; however epimerization was again observed. Further studies in this area are 

ongoing. 

Scheme A3-3.1.2 Oxidative Decarboxylation Reaction 

 

A3-3.2   PROGRESS TOWARD CYLINDROCYCLOPHANE A  

 Following our successful synthesis of a [7,7]paracyclophane through successive 

C-H functionalization and promising results for our end-game strategy on model 

compounds, we proceeded to target the total synthesis of our first naturally occurring 

[7,7]paracyclophane, cylindrocyclophane A. Our retrosynthetic proposal for this 

synthesis was described in Chapter 3, but is included again here in Scheme A3-3.2.1 for 

review. 
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Scheme A3-3.2.1 Retrosynthetic proposal for cylindrocyclophane A 

 

 We began our investigation with the primary C-H insertion of iodo diazoester 103 

into olefin 102 (Scheme A3-3.2.2).3 We were pleased to observe very good reactivity and 
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on [7,7]paracylophane 99 allows for the possibility of differentiating between them 

toward the synthesis of cylindrocyclophane A.  

Scheme A3-3.2.2 Synthesis of a [7,7]paracyclophane enroute toward 

cylindrocyclophane A  
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investigate the reactivity of this compound toward acetoxylation. We were pleased to 

observe a good yield of tetraacetoxylated compound 98 under similar conditions to those 

developed for synthesis of 115, though we believed the yield could be optimized further. 

Scheme A3-3.2.3 Investigation of acetoxylation toward cylindrocyclophane A 
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Scheme A3-3.2.4 Optimization of tetraacetoxylation reaction 

 

A3-3.3   CONCLUSIONS  

 Following our initial investigations toward the synthesis of [7,7]paracyclophanes 

described in Chapter 3, we have expanded our studies to target intermediates we consider 

capable of advancing to cylindrocyclophane A. Throughout these studies, we have 

investigated the viability of our end-game strategy involving tetraacetoxylation and 

carboxy-inversion, as well as the synthesis of a more functionalized [7,7]paracyclophane. 

In addition, we have optimized the previously disclosed acetoxylation to favor 

tetraacetoxylation of a bis-Weinreb amide. With this advanced intermediate in hand, we 

hope to complete the synthesis of our first naturally occurring [7,7]paracylophane, 

cylindrocyclophane A, in the near future. 
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APPENDIX 4 

Notebook Cross-Reference 

for New Compounds 

 

A4.1  CONTENTS 

The following notebook cross-reference provides the file name for all original 

spectroscopic data obtained for new compounds presented within this thesis. The 

information is organized by chapter and sequentially by compound number. All 1H NMR, 

13C NMR, as well as 19F NMR and any two-dimensional NMR data for Chapters 1 and 2, 

if applicable, are electronically stored on the Caltech NMR laboratory server 

(mangia.caltech.edu, most typically under the usernames ‘ylu3’, ‘htakada’, ‘egoldstei’ or 

‘egoldste’) and on the Stoltz group server. Electronic copies of all IR spectra can also be 

found on the Stoltz group server. All laboratory notebooks are stored in the Stoltz group 

archive. Researchers at Emory University obtained the data in Chapter 3. 

A4.2  NOTEBOOK CROSS-REFERENCE TABLES 

Table A4.2.1. Notebook Cross-Reference For Compounds in Chapter 2 

Compound 
1H NMR 

(instrument) 

13C NMR 
(instrument) 

19F NMR 
(instrument) IR 

4a YL-1-39-1H 
(Indy) 

YL-1-39-13C 
(Florence) 

YL-1-39-19F 
(Hg3) YL-1-39 

4b YL-1-267-1H 
(Indy) 

YL-1-267-13C 
(Florence) 

YL-1-267-19F 
(Hg3) YL-1-267 
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Compound 
1H NMR 

(instrument) 

13C NMR 
(instrument) 

19F NMR 
(instrument) IR 

4c YL-1-13-1H 
(Indy) 

YL-1-13-13C 
(Florence) 

YL-1-13-19F 
(Hg3) YL-1-13 

9 YL-1-129-1H 
(Indy) 

YL-1-129-13C 
(Florence) - YL-1-129 

10 YL-1-131-1H 
(Indy) 

YL-1-131-13C 
(Florence) - YL-1-131 

4d YL-1-159-1H 
(Indy) 

YL-1-159-13C 
(Florence) 

YL-1-159-19F 
(Hg3) YL-1-159 

11 YL-1-61-1H 
(Indy) 

YL-1-61-13C 
(Florence) 

YL-1-61-19F 
(Hg3) YL-1-61 

12 YL-1-65-1H 
(Indy) 

YL-1-65-13C 
(Florence) 

YL-1-65-19F 
(Hg3) YL-1-65 

4e YL-1-71-1H 
(Indy) 

YL-1-71-13C 
(Florence) 

YL-1-71-19F 
(Hg3) YL-1-71 

4g YL-1-97-1H 
(Indy) 

YL-1-91-13C 
(Florence) 

YL-1-97-19F_3 
(Hg3) YL-1-97 

4h YL-1-115-1H 
(Indy) 

YL-1-115-13C 
(Florence) 

YL-1-115-19F 
(Hg3) YL-1-115 

15 YL-1-145-1H 
(Indy) 

YL-1-145-13C 
(Florence) 

YL-1-145-19F 
(Hg3) YL-1-145 

4i YL-1-157-1H 
(Indy) 

YL-1-157-13C 
(Florence) 

YL-1-97-19F_2 
(Hg3) SAL-III-161 

4j YL-1-255-1H 
(Indy) 

YL-1-255-13C 
(Florence) 

YL-1-255-19F 
(Hg3) YL-1-255 

4k YL-1-268-1H 
(Indy) 

YL-1-268-13C 
(Florence) 

YL-1-268-19F 
(Hg3) YL-1-268 

17 YL-1-237-1H 
(Indy) 

YL-1-237-13C 
(Florence) 

YL-1-237-19F 
(Hg3) YL-1-237 

4l YL-1-243-1H 
(Indy) 

YL-1-243-13C 
(Florence) 

YL-1-243-19F 
(Hg3) YL-1-179 

4m YL-1-241-1H 
(Indy) 

YL-1-241-13C 
(Florence) 

YL-1-241-19F 
(Hg3) YL-1-241 

4n YL-1-119-1H 
(Indy) 

YL-1-119-13C 
(Florence) 

YL-1-119-19F 
(Hg3) YL-1-119 

5a YL-1-282-1H 
(Indy) 

YL-1-282-13C 
(Florence) 

YL-1-91-p-19F 
(Hg3) YL-1-91 

5b YL-1-274-p-1H 
(Indy) 

YL-1-274-p-13C 
(Florence) 

YL-1-274-p-19F 
(Hg3) YL-1-274 

5c YL-1-105-p-1H 
(Indy) 

YL-1-105-p-13C 
(Florence) 

YL-1-105-p-19F 
(Hg3) YL-1-105 

5d YL-1-270-p-1H 
(Indy) 

YL-1-270-p-13C 
(Florence) 

YL-1-270-p-19F 
(Hg3) YL-1-270 
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Compound 
1H NMR 

(instrument) 

13C NMR 
(instrument) 

19F NMR 
(instrument) IR 

5e YL-1-284-1H 
(Indy) 

YL-1-284-13C 
(Florence) 

YL-1-284-19F 
(Hg3) YL-1-203 

5f YL-1-283-1H 
(Indy) 

YL-1-283-13C 
(Florence) 

YL-1-283-19F 
(Hg3) YL-1-193 

5g YL-1-280-1H 
(Indy) 

YL-1-280-13C 
(Florence) 

YL-1-111-p-19F 
(Hg3) YL-1-111 

5h YL-1-281-1H 
(Indy) 

YL-1-281-13C 
(Florence) 

YL-1-121-p-19F 
(Hg3) YL-1-121 

5i YL-1264-1H 
(Indy) 

YL-1-264-p-13C 
(Florence) 

YL-1-264-p-19F 
(Hg3) YL-1-264 

5j YL-1-256-p-1H 
(Indy) 

YL-1-256-p-13C 
(Florence) 

YL-1-256-p-19F 
(Hg3) YL-1-319 

5k YL-1-273-p-1H 
(Indy) 

YL-1-272-p-13C 
(Florence) 

YL-1-273-p-19F 
(Hg3) YL-1-273 

5l YL-1-265-1H 
(Indy) 

YL-1-265-p-13C 
(Florence) 

YL-1-265-p-19F 
(Hg3) YL-1-265 

5m YL-1-258-1H 
(Indy) 

YL-1-258-13C 
(Florence) 

YL-1-258-p-19F 
(Hg3) YL-1-258 

5n YL-1-285-1H 
(Indy) 

YL-1-285-13C 
(Florence) 

YL-1-285-19F 
(Hg3) YL-1-171 

 
Table A4.2.2. Notebook Cross-Reference For Compounds in Chapter 2 

Compound 
1H NMR 

(instrument) 
13C NMR 

(instrument) 
19F NMR 

(instrument) IR 

28c elg-ix-091-char 
(Indy) 

elg-ix-091-char 
(Indy) - elg-ix-091 

29c elg-ix-163-char 
(Indy) 

elg-ix-163-char 
(Indy) - elg-ix-163 

34a HT-143-forData 
(Indy) 

HT-143-13C 
(Indy) - ht-143 

34b elg-ix-197-char 
(Indy) 

elg-ix-197-char 
(Indy) - elg-ix-197 

34c elg-ix-223-char 
(Indy) 

elg-ix-223-char 
(Indy) - elg-ix-179 

34d elg-ix-183-char 
(Indy) 

elg-ix-183-char 
(Indy) 

elg-ix-183-char 
(Hg3) elg-ix-183 

35a HT-150-forData 
(Indy) 

HT-150-13C 
(Indy) - HT-150 

35b elg-ix-181-char 
(Indy) 

elg-ix-181-char 
(Indy) - elg-ix-181 
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Compound 
1H NMR 

(instrument) 

13C NMR 
(instrument) 

19F NMR 
(instrument) IR 

35c elg-ix-181-char-2 
(Indy) 

elg-ix-181-char-2 
(Indy) - elg-ix-181 

35d elg-ix-203-char 
(Indy) 

elg-ix-203-char 
(Indy) 

elg-ix-203-char-3 
(Hg3) elg-ix-203 

30a HT-152-forData 
(Indy) 

HT-152-13C 
(Indy) - HT-152 

30b elg-ix-205-char 
(Indy) 

elg-ix-205-char-2 
(Indy) - elg-ix-205 

30c elg-ix-207-char 
(Indy) 

elg-ix-207-char-2 
(Indy) - elg-ix-207 

30d elg-ix-209-char 
(Indy) 

elg-ix-209-char 
(Indy) 

elg-ix-209-char 
(Indy) elg-ix-209 

31a 
HT-153_154-

forData 
(Indy) 

HT-153_154-
13C 

(Indy) 
- elg-ix-229 

31b elg-ix-061-char 
(Indy) 

elg-ix-061-char 
(Indy) - elg-ix-061 

31c 
elg-ix-227-char-

jan 
(Florence) 

elg-ix-227-char-
jan 

(Florence) 
- elg-ix-227 

31d elg-viii-227-char 
(Indy) 

elg-viii-227-char 
(Indy) - elg-viii-

227 

31e elg-ix-215-char 
(Indy) 

elg-ix-215-char 
(Indy) - elg-ix-215 

31f 
elg-ix-225-char-

jan 
(Florence) 

elg-ix-225-char-
jan 

(Florence) 

elg-ix-225 
(Hg3) elg-ix-225 

41 HT-161-forData 
(Indy) 

HT-161-13C 
(Indy) - HT-161 

40 
HT-163_164-

forData 
(Indy) 

HT-163_164-
13C 

(Indy) 
- elg-ix-231 
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