Applied Safety Critical Control

Thesis by
Thomas Gurriet

In Partial Fulfillment of the Requirements for the
Degree of
Doctor of Philosophy

Caltech

CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2020
Defended April 27", 2020

© 2020

Thomas Gurriet
ORCID: 0000-0002-5240-3720

All rights reserved except where otherwise noted.

11

To Amandine...

111

v

ABSTRACT

There is currently a clear gap between control-theoretical results and the real-
ity of robotic implementation, in the sense that it is very difficult to transfer
analytical guarantees to practical ones. This is especially problematic when
trying to design safety-critical systems where failure is not an option. While
there is a vast body of work on safety and reliability in control theory, very
little of it is actually used in practice where safety margins are typically em-
piric and/or heuristic. Nevertheless, it is still widely accepted that a solution
to these problems can only emerge from rigorous analysis, mathematics, and
methods. In this work, we therefore seek to help bridge this gap by revis-
iting and expanding existing theoretical results in light of the complexity of

hardware implementation.

To that end, we begin by making a clear theoretical distinction between sys-
tems and models, and outline how the two need to be related for guarantees
to transfer from the latter to the former. We then formalize various imper-
fections of reality that need to be accounted for at a model level to provide
theoretical results with better applicability. We then discuss the reality of dig-
ital controller implementation and present the mathematical constraints that
theoretical control laws must satisfy for them to be implementable on real
hardware. In light of these discussions, we derive new realizable set-invariance
conditions that, if properly enforced, can guarantee safety with an arbitrary
high levels of confidence. We then discuss how these conditions can be rig-
orously enforced in a systematic and minimally invasive way through convex
optimization-based Safety Filters. Multiple safety filter formulations are pro-
posed with varying levels of complexity and applicability. To enable the use
of these safety filters, a new algorithm is presented to compute appropriate
control invariant sets and guarantee feasibility of the optimization problem
defining these filters. The effectiveness of this approach is demonstrated in
simulation on a nonlinear inverted pendulum and experimentally on a simple
vehicle. The aptitude of the framework to handle a system’s dynamics uncer-
tainty is illustrated by varying the mass of the vehicle and showcasing when
safety is conserved. Then, the aptitude of this approach to provide guaran-
tees that account for controller implementation’s constraints is illustrated by

varying the frequency of the control loop and again showcasing when safety is

conserved.

In the second part of this work, we revisit the safety filtering approach in a
way that addresses the scalability issues of the first part of this work. There
are two main approaches to safety-critical control. The first one relies on com-
putation of control invariant sets and was presented in the first part of this
work. The second approach draws from the topic of optimal control and re-
lies on the ability to realize Model-Predictive-Controllers online to guarantee
the safety of a system. In that online approach, safety is ensured at a plan-
ning stage by solving the control problem subject for some explicitly defined
constraints on the state and control input. Both approaches have distinct ad-
vantages but also major drawbacks that hinder their practical effectiveness,
namely scalability for the first one and computational complexity for the sec-
ond one. We therefore present an approach that draws from the advantages of
both approaches to deliver efficient and scalable methods of ensuring safety for
nonlinear dynamical systems. In particular, we show that identifying a backup
control law that stabilizes the system is in fact sufficient to exploit some of
the set-invariance conditions presented in the first part of this work. Indeed,
one only needs to be able to numerically integrate the closed-loop dynamics
of the system over a finite horizon under this backup law to compute all the
information necessary for evaluating the regulation map and enforcing safety.
The effect of relaxing the stabilization requirements of the backup law is also
studied, and weaker but more practical safety guarantees are brought forward.
We then explore the relationship between the optimality of the backup law
and how conservative the resulting safety filter is. Finally, methods of select-
ing a safe input with varying levels of trade-off between conservativeness and
computational complexity are proposed and illustrated on multiple robotic
systems, namely: a two-wheeled inverted pendulum (Segway), an industrial

manipulator, a quadrotor, and a lower body exoskeleton.

3]

4]

5]

7l

vi

PUBLISHED CONTENT AND CONTRIBUTIONS

Juan-Pablo Afman, John Franklin, Mark L. Mote, Thomas Gurriet, and
Eric Feron. On the design and optimization of an autonomous micrograv-
ity enabling aerial robot. arXiv preprint arXiv:1611.07650, 2016. T.G.
participated in the conception of the project, developed the sizing tool,
and participated in the writing of the manuscript.

Juan-Pablo Afman, Laurent Ciarletta, Eric Feron, John Franklin, Thomas
Gurriet, and Eric N. Johnson. Towards a new paradigm of uav safety.
arXiv preprint arXiv:1803.09026, 2018. T.G. participated in the con-
ception of the project, designed and built the Optimal Active Breaking
Braking System, and participated in the writing of the manuscript.

Thomas Gurriet and Laurent Ciarletta. Towards a generic and modular
geofencing strategy for civilian uavs. In 2016 International Conference
on Unmanned Aircraft Systems (ICUAS), pages 540-549. IEEE, 2016.
doi: 10.1109/ICUAS.2016.7502603. T.G. developed the mathematical
methods and algorithms use in this work and participated to the writing
of the manuscript.

Thomas Gurriet, Mark L. Mote, Aaron D. Ames, and Eric Feron. Estab-
lishing trust in remotely reprogrammable systems. In Proceedings of the
International Conference on Human-Computer Interaction in Aerospace,
pages 1-4, 2016. doi: 10.1145/2950112.2964573. T.G. participated in the
writing of the manuscript.

Thomas Gurriet, Sylvain Finet, Guilhem Boeris, Alexis Duburcq, Ayonga
Hereid, Omar Harib, Matthieu Masselin, Jessy Grizzle, and Aaron D.
Ames. Towards restoring locomotion for paraplegics: Realizing dynami-
cally stable walking on exoskeletons. In 2018 IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 2804-2811. IEEE, 2018.
doi: 10.1109/ICRA.2018.8460647. T.G. participated in the experiments
as well as the writing of the manuscript.

Thomas Gurriet, Mark L. Mote, Aaron D. Ames, and Eric Feron. An
online approach to active set invariance. In 2018 IEEE Conference
on Decision and Control (CDC), pages 3592-3599. IEEE, 2018. doi:
10.1109/CDC.2018.8619139. T.G. developed the mathematical methods
and algorithms use in this work and participated in the writing of the
manuscript.

Thomas Gurriet, Andrew Singletary, Jacob Reher, Laurent Ciarletta, Eric
Feron, and Aaron D. Ames. Towards a framework for realizable safety
critical control through active set invariance. In 2018 ACM/IEEE 9th

8]

191

[10]

[11]

[12]

[13]

vil
International Conference on Cyber-Physical Systems (ICCPS), pages 98—
106. IEEE, 2018. doi: 10.1109/ICCPS.2018.00018. T.G. developed the

mathematical methods and algorithms use in this work and participated
in the experiments as well as the writing of the manuscript.

Thomas Gurriet, Mark L. Mote, Andrew Singletary, Eric Feron, and
Aaron D. Ames. A scalable controlled set invariance framework with
practical safety guarantees. In 2019 IEEFE 58th Conference on Decision
and Control (CDC), pages 2046-2053, Dec 2019. doi: 10.1109/CDC40024.
2019.9030159. T.G. developed the mathematical methods and algorithms
use in this work and participated in the experiments as well as the writing
of the manuscript.

Thomas Gurriet, Petter Nilsson, Andrew Singletary, and Aaron D. Ames.
Realizable set invariance conditions for cyber-physical systems. In 2019
American Control Conference (ACC), pages 3642-3649. IEEE, 2019. doi:
10.23919/ACC.2019.8815332. T.G. developed the mathematical methods
and algorithms use in this work and participated in the writing of the
manuscript.

Thomas Gurriet, Maegan Tucker, Alexis Duburcq, Guilhem Boeris, and
Aaron D. Ames. Towards variable assistance for lower body exoskeletons.
IEEE Robotics and Automation Letters, 5(1):266-273, 2019. doi: 10.
1109/LRA.2019.2955946. T.G. developed the mathematical methods and
algorithms use in this work and participated in the experiments as well
as the writing of the manuscript.

Thomas Gurriet, Maegan Tucker, Claudia Kann, Guilhem Boeris, and
Aaron D. Ames. Stabilization of exoskeletons through active ankle com-
pensation. arXiv preprint arXiv:1909.11848, 2019. T.G. developed the
mathematical methods and algorithms use in this work and participated
in the experiments as well as the writing of the manuscript.

Omar Harib, Ayonga Hereid, Ayush Agrawal, Thomas Gurriet, Sylvain
Finet, Guilhem Boeris, Alexis Duburcq, M. Eva Mungai, Mattieu Mas-
selin, Aaron D. Ames, et al. Feedback control of an exoskeleton for
paraplegics: Toward robustly stable, hands-free dynamic walking. I[FEE
Control Systems Magazine, 38(6):61-87, 2018. doi: 10.1109/MCS.2018.
2866604. T.G. participated in the conception of the project, participated
in the experiments, and participated in the writing of the manuscript.

Andrew Singletary, Petter Nilsson, Thomas Gurriet, and Aaron D.
Ames. Online active safety for robotic manipulators. 2019. doi:
10.1109/IR0OS40897.2019.8968231. T.G. participated in the conception
of the project, coded the Safety Filtering algorithm, and participated in
the writing of the manuscript.

viii

[14] Andrew Singletary, Thomas Gurriet, Petter Nilsson, and Aaron D. Ames.
Enabling rapid aerial exploration of unknown environments. In To ap-
pear in the proceedings of the 2020 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2020. T.G. participated in the
conception of the project, setup the simulation environment, coded the

Performance Filter, Safety Filter, and Velocity Controller, and partici-
pated in the writing of the manuscript.

1X

TABLE OF CONTENTS

Abstract iv
Published Content and Contributions vi
Bibliography vi
Table of Contents ix
List of Illustrations X
List of Tables xiii
Chapter I: Foundations 1
1.1 Introduction 1
1.2 Modeling Cyber-Physical Systems 4
1.3 Outline 12
Chapter II: Explicit Safety Filtering 14
2.1 Set Invariance Conditions 14
2.2 Realizable Set Invariance for Cyber Physical System 19
2.3 Safety Filtering L 23
2.4 Regulation Kernel Algorithm 33
2.5 Simulation of an Inverted Pendulum 45
2.6 Hardware Implementation 51
Chapter III: Implicit Safety Filtering 71
3.1 Introduction o 71
3.2 Implicit Safety Filtering 72
3.3 Finite Time Safety Guarantees 79
3.4 Optimality of the Backup Controller 83
3.5 Scalable Implicit Safety Filter 86
3.6 Applications 88
Chapter IV: Conclusions 137
4.1 Summaryo ... 137
4.2 Improvements in Regulation Kernel Computations 138
4.3 Beyond Interval Arithmetic 139
4.4 More Practical Implicit Safety Filtering 139
4.5 Quantifying Model Validity 139

Bibliographyo 141

LIST OF ILLUSTRATIONS

19

21
23

35

43

47

48

55

o6

o7

o8

29

60
61

Number

1.1 Typical digital control loop timing structure.

2.1 Tlustration of the subtangentiality condition for exact models. .

2.2 Tllustration of the subtangentiality condition for inexact models.

2.3 Illustration of the realizable subtangentiality condition for inex-

act models. Lo

2.4 Local reachable sets to consider for the realizable subtangential-

ity condition.

2.5 Safety filtering control structure.

2.6 TIllustration of the polytopic parameterization of S for the regu-

lation kernel algorithms.00

2.7 TIlustration of the sets of neighboring facets to consider for the

realizable regulation kernel algorithm.

2.8 Set after initialization of the regulation kernel algorithm for an

inverted pendulum. Lo

2.9 Regulation kernel for an exact model of inverted pendulum. . .
2.10 Trajectories of an inverted pendulum under a relaxed safety filter. 54

2.11 Regulation kernels for various inexact models of an inverted pen-

dulum.

2.12 Trajectories of inverted pendulums under a relaxed robust safety

filter.

2.13 Trajectories of an inverted pendulum under a relaxed robust

safety filter.o

2.14 Trajectories of an inverted pendulum under a scalable relaxed

robust safety filter. oL

2.15 Realizable regulation kernels inexact models of an inverted pen-

dulum.

2.16 Trajectories of an inverted pendulum under a realizable safety

filter and state uncertainty. L.

2.17 Realizable vs Robust-only safety filters.

2.18 Trajectories of an inverted pendulum under various realizable

safety filters and with various sampling frequencies.

2.19
2.20
2.21
2.22
2.23

2.24

2.25

2.26

3.1
3.2
3.3
3.4
3.5

3.6
3.7

3.8
3.9

3.10
3.11
3.12
3.13
3.14
3.15

3.16

3.17

Picture of the segway vehicle used for implementation. 63
CAD models of the inertial measurement test beds. 64
Picture of the segway vehicle on the center of mass test bed. . . 65
Picture of the segway vehicle on the inertia test bed. 66

Experimental trajectories of a double integrator under a scalable
relaxed robust safety filter. L. 67
Experimental trajectories of different double integrators under a
scalable relaxed robust safety filter.. 68
Experimental trajectories of a double integrator under a scalable
scalable realizable safety filter. 69
Experimental trajectories of a double integrator under a scal-

able scalable realizable safety filter and for different control loop

frequencies. 70
Implicit control invariant sets. 108
Plot of the SBI for different backup gains. 109
Plot of the SBI for different time horizons 110
Trajectories of the system under implicit safety filtering. 111

Comparison between safe backward image and safe backward
reachableset.o 112
Trajectories of the system under finite-time implicit safety filtering.113
Comparison between the safe backward images of a linear backup
control law, the optimal control law, and a Neural Network ap-
proximation. Lo oo 114
Trajectories of the system under a scalable implicit safety filter 115

Trajectories of the system under a scalable implicit safety filter

for different switching functions. 116
Segway vehicle used for experiments. L. 117
Pictures of the implicit filtering Segway experiment. 118
Results of the implicit filtering Segway experiments. 119
The IRB 6640 robotic. 120
[lustration of time varying uncertain environment. 121

Block diagram of the ROS nodes used in the manipulator simu-
lations.o 122
Value of the Barrier Function with and without ASIF engaged
for the manipulator. 122
Exploded view of the Atalante exoskeleton. 123

3.18
3.19
3.20
3.21
3.22
3.23

3.24

3.25

3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33

3.34
3.35

xii
Schematic representation of the Atalante exoskeleton. 124
Architecture of the variable assistance framework. 124
Variable assistance experimental results with empty exoskeleton. 125
Variable assistance experimental results with loaded exoskeleton. 126
Simplified model of the exoskeleton and its swing leg. 127
Foot level variable assistance experimental results with empty
exoskeleton. 128
Foot level variable assistance experimental results with loaded
exoskeleton. 129

Foot level variable assistance experimental results with loaded

exoskeleton 2. Lo Lo 130
UAV simulation environment. 131
Safety filtering control structure for UAV exploration. 132
Hlustration of the UAV safety filter. 132
Ilustration of the UAV backup law. 133
[Mlustration of the UAV performance filter. 133
Hlustration of the UAV recursive feasibility issue. 134
Pictures of the cave exploration by the UAV. 134
[lustration of the issue when using a mapping sensor with re-

stricted field of view.o 134
[lustration of the UAV mapping process. 135

Image of the mapping process in the UAV simulation environment. 136

LIST OF TABLES

Number
3.1 Computation time for IRB 6640 in Pinocchio

xlil

Chapter 1

FOUNDATIONS

1.1 Introduction

Safety is arguably one of the most critical issues hindering the democratization
of autonomous systems. Even though safety is fairly well understood at a
theoretical level, solutions that are both rigorous and practical have yet to be
realized [17, 52, 70]. In this work, we will explore approaches to help us design

and build safer systems.

At the core of System Design is the concept of requirements and specifications.
There are many approaches to requirements [54], but they all converge on the
idea of a hierarchy between requirements and specifications. A design always
begins with "high-level" requirements expressing the purpose of the system,
and how it shall behave. Finding a physical realization of the system that
satisfies requirement is what the bulk of the design work is about. The precise
nature of this realization is captured into specifications about the different
physical components constituting the system. Controller Design constitutes
one level in the requirement /specification pyramid. The idea of controlling a
system arises when the system’s behaviors are dynamic. This is, for example,
the case with autonomous cars, as their behaviors are highly dynamic and it is
necessary to have a way to regulate these behaviors to avoid potential disasters.
Closed-loop control—simply referred to as control from now on—leverages in-
teractions between parts of the system and its environment to achieve desired
behaviors. Figuring out what this coupling needs to be in order to achieve the
desired behaviors is what Control Theory tries to achieve by relying on math-
ematical abstractions of reality and rigorous deduction to translate high level
behavior requirements into precise specification on the coupling between parts
of the system. Ways to physically realize this coupling can vary widely and
mechanical solutions have progressively made way for electro-mechanical and
digital ones. With the advent of general purpose computing, the possibilities
for what this coupling can be are becoming almost endless. One must however
be careful and realize that the mathematical descriptions of this coupling—

namely control laws—bare weight on the entire physical realization of the

2

system. As we will see later, there is a tight coupling between the knowledge
of the system’s dynamics, the control law implementation (the controller),

and the control law itself.

It is possible to classify requirements about the behavior of a system into two
categories: performance and safety. Performance requirements address what a
system shall do, and safety what it shall not do. The naming of these two cat-
egories can be controversial as safety is usually associated with the idea of not
causing harm to living beings. But for simplicity’s sake, we will use this term
here in a more generic way and describe any undesirable behavior as unsafe.
To design safe systems, the most common approach is to choose performance
requirements that are intrinsically safe—meet the safety requirements. Then
all one has to focus on is make sure the performance requirements are met.
This approach is satisfactory when the desired behavior of the system is fixed
and known at the design state. This is for example the case of most industrial
manipulators that only have to repeatedly follow prescribed trajectories that
have been designed ahead of time by an expert so as to avoid any collision
with its surroundings. But what about autonomous cars for which the trajec-
tory and the environment is not known at design time? There lies the issue of
this approach: if the desired behavior of the robot changes, these trajectories
have to be re-designed and re-validated to be safe, which is difficult and time
consuming. This approach is therefore not viable when trying to design dy-
namic systems where desired behaviors and environments change constantly,
hence the current confinement of most autonomous robots to repetitive tasks
in factories. To be able to design and operate robotic systems in truly dynamic
contexts, we have no choice but to decouple the enforcement of safety from
the quest for performance. Instead of finding a special case of safe behaviors
satisfying the performance requirement, we need to characterize the essence
of all safe behaviors for a given system and find a way to enforce safety on
the fly, in a way that maximizes the performances of the system—follow the
desired trajectory as closely as possible, for example. This approach to safety

of controlled systems is known as Run-time Assurance.

At a mathematical level, this approach is associated with the concept of set
invariance [14]—given a desired safety set, ensuring safe system operation is
equivalent to making sure that this system remains inside a safety set at all

times. This is usually done in two stages. First, the parts of the safety set

3

from where future safety violations are unavoidable are identified, which is
done by computing a control invariant subset of the safety set |8, 13, 14].
Many approaches have been proposed for finding such a subset: discretized
solutions of Hamilton-Jacobi equations [64], SOS optimization [88], sampling
[28], and many others [62]. Secondly, a control law that renders the control
invariant subset forward invariant is designed. In this second step, two differ-
ent approaches are usually considered. In [10, 58, 74|, a control structure is
proposed that switches between a nominal controller designed for performance
and a "safe" controller designed for set-invariance. Whereas in [4, 5, 85, con-
tinuous optimization-based filtering of the control input is performed so as
to enforce set invariance in a minimally invasive way. Regardless of the cho-
sen approach, all strategies realise, at a fundamental level, the enforcement of

Nagumo’s subtangentiality condition [8] with varying degrees of conservatism.

What we set to achieve is fundamentally deductive: derive a specification that,
if satisfied, guarantees the satisfaction of the safety requirements. However,
we know that one can only reason inductively about reality—predictions can
only be extrapolation of observations. The hard truth is that we cannot prove
anything about reality. We can only observe reality over a small region of
space-time and extrapolate what it most likely will be in a region of space-
time we have not explored yet. This is the idea of creating a model of reality.
Such models are therefore fundamentally uncertain, and the confidence in a
theoretical prediction made from a model is fundamentally correlated to the
confidence we have in the validity of the model itself. Despite solid theoretical
underpinnings, the practical effectiveness of the body of work on controlled
invariance is hindered by the use of idealistic models and assumptions. Inclu-
sion of more realistic representations in the context of set invariance is a hard
problem and has not yet been fully addressed. Additive uncertainty has been
considered [68, 72|, as well as generic parametric uncertainty [38], including for
hybrid models [20], whereas |21, 65] deals with sampled data models. But even
with these robust approaches, systematic and unfailing run-time assurance has
yet to be demonstrated on real hardware, although there have been promising
cases of experimental success through reasonable usage of the aforementioned
methods [38, 84].

To achieve the goal of translating theoretical guarantees to hardware, we argue

that these aforementioned approaches must be revisited in light of the com-

4

plexity of reality and the constraints it imposes on control laws for them to
be realizable. To that end, we begin by making a clear conceptual distinction
between a system and a model, and outline how the two need to be related for

guarantees to transfer from the latter to the former.

1.2 Modeling Cyber-Physical Systems
While physical systems, control systems, and models of systems are treated
interchangeably in much of the existing literature, at the core of this work is

the clear distinction between these fundamentally different concepts.

1.2.1 Control Systems as Abstractions of Physical Reality

Before talking about models of systems, we need to understand what we mean
by system. It all begins with the Physical Reality. Its essence is inaccessible
to us—at least for now, and probably forever—but we can nonetheless inter-
act with it, and from these experiences, we can create representations of the
Physical Reality that make sense to us: Homo Sapiens. We will talk about the
physical system to refer to the part of the physical reality we are focusing

on.

Science strives to provide a coherent representation and description of this
physical reality. At the core of this enterprise is the notion of measurement,
which is our only rigorous access point to Reality. A measurement is the
process of mapping elements of Reality to mathematical objects. Depending
on the physical system, some mathematical representations are more relevant
than others. Most of the physical systems we care about in engineering are of
macroscopic scale, where reality is mostly Euclidean and deterministic, and can
therefore be represented fairly well with real numbers and their evolution with
time. But at the microscopic level, probability distributions are better suited
to represent phenomena as the field of quantum mechanics illustrates in the
case of elementary particles. When a measurement is sufficiently representative
of reality we talk about a physical quantity. Let us now define the notion

of a Control System.

Terminology 1. A Classical Control System ¥ = (z,u) is a collection
of values and u resulting from the perfect and continuous measurements of

some physical quantities.

Terminology 2. We will call state of the system the function z : R — R"

and input of the system the function u : R — R".

The word classical is used here to imply that the state and input are finite
dimensional vectors of real numbers and that they can be defined uniquely
with respect to time. Indeed, when measuring a physical quantity, the result
of this measurement is always tainted with noise and uncertainty. But if the
measurement is representative of the physical reality, successive measurements
of the same reality tend to aggregate around a unique value. It is this value
we refer to as the result of a perfect measurement. The notion of time is
also fundamental in this definition. The word classical is therefore also used to
imply the continuity and monotonicity of time in the physical system we are
trying to represent, hence the notion of continuous measurement as the
limit of a series of individual measurements when the time interval between

them becomes infinitesimally small.

The split between states and inputs can seem somewhat arbitrary as they both
are of the same nature: physical quantities. The choice of this split is driven by
the physical reality of the system we want to control. Controlling a system is
choosing a coupling between the states and input in such a way that the system
will exhibit the desired behavior. However, some couplings are easier to realize
than others, hence the importance of the choice of states and inputs. Some
physical quantities are also more fundamental than others, and most of the
physical quantities at a macro-level tend to be aggregate of micro-level ones.
The quality of a system’s physical quantities to be representative of reality
will be referred to as the representativity of the system. Understanding
the representativity of a system is the first key in translating mathematical

results into practical ones.

1.2.2 Models of Control Systems

Once a control system has been defined, one is then naturally interested in
the dynamics of that system, i.e. how it evolves with time and how these
variations are coupled with the values of the state and input. We will therefore
define a model of a system as a mathematical representation of the evolution

of the state of that system.

Their exist many types of models, depending on the system we are trying
to describe. In this work, we focus on engineering systems whose behaviors

unfold on fairly uniform timescales. For such systems, the dynamics are usu-

6

ally described by an Ordinary Differential Equation (ODE). However, such
ideal representation can only approximate the true system’s behavior and
are therefore not suited to effectively translate mathematical guarantees into
practical ones. We will therefore focus on models that can capture the sys-

tem’s behavior.

Terminology 3. A Classical Model M = (X, U, F') of a control system %
consists of sets X C R™ and & C R™ and a set-valued function (also called
map) F : X x U — R" describing the effect of the state and input over the
variation of the state with respect to time. We refer the reader to [9] for more

details on set-valued analysis.

Terminology 4. The map F will be called the dynamics of the control

system.

Terminology 5. The set X x U will be called the domain of definition
of model M. It represents the values of the states and inputs for which the

dynamics is well defined from a mathematical standpoint.

We will use the term of solutions of the model to refer to the possible trajec-

tories described by the model.

Terminology 6. A practical solution of a model M is a trajectory pair
(x,u) : R - X x U, with z piecewise differentiable and u piecewise locally
Lipschitz continuous, that satisfies the differential inclusion ‘fl—f € F(x,u) for

almost all ¢t € R.

We will denote by S (M) the set of practical solutions of model M.

Terminology 7. Functions z and u that are solutions of the model will be

respectively called a state and input of the model.

Remark 1. If their is no ambiguity on whether we are talking about model’s

state/input or system’s state/input, we will abbreviate and talk about state /input.

Solutions of a model are abstract mathematical objects and have no intrinsic
value to describe the system. We will therefore use the notion of validity to

describe the quality of a model in describing the behavior of a control system.

7

Terminology 8. A model M is a valid representation of control system X
over X x U if for all system’s state z € X and inputs u € U the following

holds:
dz

E S
Remark 2. The set X x U will be called the domain of validity of model
M.

F(z,u). (1.1)

The validity of a model is a property that can only be verified experimentally
through measurements. But like any experimental result, it is uncertain, and
the validity can only be verified probabilistically. One can therefore never
be certain about the validity of a model and can only have a finite level of

confidence in this validity.

Note also that the ability to determine the validity of a model is fundamentally
coupled with the quality of the chosen states to represent the complexity of
the reality of the system. We will use the term of relevance to describe the
quality of a system to represent a given reality in the sense that the choice of
states and inputs is sufficiently rich to allow for precise models to be derived

with high levels of validity.

To summarize, a control system is a mathematical representation of a physical
system, and a model is a mathematical description of the behavior of a control
system. A classical control system has a unique state and input given by the
perfect and continuous measurements of the physical quantities of interest,
whereas a model can have many possible states and inputs. A model is valid
if the system’s state and input are a solution of the model. In the rest of this
work, we will use the notation T to refer to the system’s state, T to refer to
an estimate of the system’s state, and x to refer to a state of a model of the

system (and similarly for u).

1.2.3 Uncertainty in Models

1.2.3.1 Precision of models

Since we can not hope to obtain an exact mathematical description of the
behavior of control systems, we resort to the idea of finding models that over-
approximate it. Constructing an over-approximating model for a real system
is of course a very challenging task that involves a trade-off between the con-

fidence in the the validity of the model and the precision of the model.

8

Definition 1. A model M; = (X}, U, F}) is less precise than (or equivalently
over-approximates) a model My = (X, Us, F3), written My = My, if there
exist (projection) maps I'* and T¥ such that X; D 'Y (&), Uy D T¥(Usy) and
for all x € X, and u € U,

Fy (DY (), T%(w) 2 T,TY (Fy (z,u)), (1.2)

where T,I'¥ is the tangent map of I'* at x.

Combined, these conditions imply that the dynamics of Ms via the projection
maps can be embedded in the space of M; in a way so that all behaviors of

M, are captured also by M.

Terminology 9. A model will be called exact when its dynamics F' are single

valued, and inexact when they are not.

Terminology 10. Models that are either exact or inexact but valid will be

called respectively perfect and imperfect models.

1.2.3.2 White-box modeling

Often in engineering, models can be derived from domain specific laws. These
laws are usually exact models that have been validated up to high enough lev-
els of confidence. However, models derived this way require parameters that
represent physical properties of the system in question. But even if assum-
ing that there exists such an exact description of the behavior of the system,
finding the exact values of these parameters is fundamentally impossible. So
the first step in building a model that has a chance of being valid is to ac-
knowledge the uncertainty about these model parameters and consider their

probable values.

In particular, let us consider an exact dynamical model of the form fl—f =
f (z,u, p), with p the parameters of the model. As it is hard if not impossible
to find values for the parameters that make this model valid, we can consider

a model of the form % € F (z,u) where:

Ve e X,VYueU, F(x,u)={f(z,u,p)|péeP}. (1.3)

It is important to understand that the size of P can be driven by both uncer-

tainty and design choices. In the context of a commercial aircraft, for example,

9

the parameters could be the mass of the aircraft, but also the drag coefficient
of the aircraft or the force and direction of the wind. The first one is variable
as the aircraft burns fuel, the second is fixed but uncertain, and the third one
is variable and uncertain. In the first case, the choice of P would come from
an educated knowledge about the system and its operation. In the second
case, P could come from testing in wind tunnels and associated measurement
uncertainty. And in the third case, the choice of P would come from a decision
on the allowed operational conditions for this aircraft. The larger P is, the
more likely the model is to be valid, but the more conservative we will have

to be in the control strategy as we will discuss in more detail.

When the model dynamics is described in such a way, we will denote the
resulting model by M = (X,U, P, f). Note that we use X instead of X to

indicate that we consider the model over its domain of validity only.

1.2.4 Digital Controller Implementation

Control system models describe the effect of the state and input on the behav-
ior of the system. Our goal being to regulate this behavior, we are interested
in finding how we can couple the input to the state in a way that achieve the
desired behaviors. A mathematical relation between the model input and state
will be called a control law. When the desired behavior is not fixed at design
time, it needs to be considered as an external input of the control law itself.
We will call it the command, and denote it by ¢md(t). The command cmd
is a mathematical representation of a desired behavior, and in most cases will
be a vector of real numbers representing a desired state to be reached. The
control law then needs to be designed such that the behavior of the system
corresponds to the one represented by the command. We usually work with
static control laws of the form u(t) = k(z(t),cmd(t)), but ones depending on

the history of the system can also be considered.

Designing a control law consists in characterizing what the coupling between
state and input need to be to achieve the desired behavior. To make use of a
control law on the physical system, this control law has to be implemented.
The result of this implementation is a controller, i.e. a physical realization of
the control law. In this sense, control laws are just models of controllers, even
though we do not usually think of them in this way. Nevertheless, it is funda-

mental, like with system models, to understand the relation between control

10

laws and their physical counterparts. From a control design perspective, this
is captured by the idea that not all control laws are realizable, and it is im-
portant to be aware of the technological reality of controller implementation

and how it translates to realizability constraints for the control laws.

1.2.4.1 Sensing and Actuation Uncertainty

The first constraint on control law realizability is the fundamental one about
uncertainty. If state and input are defined by perfect measurements, getting
access to the values of these perfect measurements is impractical, if not im-
possible. The best we can hope for is to be able to capture the values of the
states and inputs. For the purpose of providing results applying to the control

system, we will consider the following implementation assumptions.

Assumption 1. If the state of the system is Z(t) € S, we have access to an
estimate Z(t) of that state such that:

z(t) € 2(t) ® Ay, Ap CR™ (1.4)
Remark 3. Here & will be used to denote the Minkowski addition of two sets:
AdB={a+b|Vaec A, Vbe B}, (1.5)

and & will denote the Minkowski difference of two sets:
AcB={a—-b|Vae€ A, Vbe B}. (1.6)
If the set on the left is a singleton, we will write {a} ® B as a® B for simplicity.

This assumption relates directly to the accuracy of the sensors, as well as to
the accuracy of the state estimation method. And similarly to model valid-
ity, these assumptions can only be met probabilistically. For linear systems,
it is known how this type of robust state-valued observers can be synthe-
sized |76], but optimal observers can be arbitrarily complex whereby more
practical alternatives have been proposed [15]. In this setting, the resulting
probability distribution can be converted into a chance constraint set A, with
Plz(t) —z(t) € A;] > 1 -0, and A, can be taken as the state estimate. This
results in guarantees that hold with high probability.

The next assumption reflects noise and unmodeled dynamics between the con-

troller output a(t) and the actual value of the system input u(t).

11

State Sensing Input Change
State Control Input
Com. Delay Estimation Calculation Com. Delay | Other tasks
| |
t, t+ad, by

Figure 1.1: Typical digital control loop timing structure.

Assumption 2. For a desired input u(t) to the system, the actual system’s

input (t) is such that:

a(t) € a(t) ® A,, A, CR™. (1.7)

There are many reasons as to why a desired input might not be perfectly
achievable on the physical system. For instance, in many cases the computed
input is passed to an Electronic Control Unit (ECU) that acts as a closed-
loop controller around the property of interest (e.g. servo angle, torque, or
speed). In that case, transients in the ECU control loop might cause the input
to deviate from the desired value. In low-powered embedded systems there
may also be quantization effects that result in small but sometime significant

discrepancies between the desired and actual inputs.

1.2.4.2 Time Quantization and Delays in Digital Computing

If one were to try to implement a control law of the form u(t) = k (Z(t)), he
would need to have access to continuous measurements of the state and have
the capability to continuously modify the inputs. This is certainly possible
through means of analog electronics, however, the flexibility and performances
provided by digital electronics overwhelmingly outweigh the continuity ben-
efits of such an analog controller. With digital controllers, estimates of the
states are available only at discrete time instances, and the input is modified
at discrete points in time. Furthermore, the time between receiving a state
estimate and applying a computed control input is non-negligible. Therefore,
we need to account for this constraint when designing control laws that have
to be digitally implemented. For that, we consider the typical timing structure

of digital control systems depicted in Fig. 1.1 and assume the following.

Assumption 3. The digital controller implementation operates at a fixed loop

frequency 1/A4;. Each control loop starts at time t;, k& € N with an estimate

12

Tr = T(tg) of the state as in Assumption 1. This estimate is then used to
compute a subsequent control action 1, that is realized at time t, + a4; for
a€[0,1].

With this approach, the continuous time assumption is replaced by a more
realistic validity assumption on the timing of the control loop. Rather than
incorporating these discrete components into the model of the system, we
choose to address them at the control law level and provide results with respect
to continuous-time control systems (cf. Sampled Data Systems). We refer the
reader to the real-time computing literature for more details on the complex

issue of guaranteeing a bounded computing time [24].

1.3 Outline

This work is divided into two main chapters. In the first part, we derive new
realizable set-invariance conditions that, if properly enforced, can guarantee
safety with arbitrarily high levels of confidence. We then discuss how these
conditions can be rigorously enforced in a systematic and minimally invasive
way through convex optimization based Safety Filters. Multiple safety filter
formulations are proposed with varying levels of complexity and applicabil-
ity. To enable the use of these safety filters, a new algorithm is presented
to compute appropriate control invariant sets and guarantee feasibility of the
optimization problem defining these filters. Finally, the proposed framework
effectiveness is demonstrated in simulation on an inverted pendulum and ex-
perimentally on a Segway vehicle. The aptitude of the framework to handle
system’s dynamics uncertainty is illustrated by varying the inertial proprieties
of the vehicle and verifying that safety is maintained. Then, the aptitude of
the framework to provide guarantees that account for controller implementa-
tion’s constraints is illustrated by varying the frequency of the control loop

and observing that safety is also conserved.

In the second part, we propose to unify set-based and trajectory-based safety
critical control approaches and show that they are really just two sides of
the same coin. We present a safety critical control framework that combines
the strengths of both approaches to deliver efficient and scalable methods
of ensuring safety for complex dynamical systems. First, we show how it is
possible to systematically define a control-invariant subset of the safety set,
namely a Safe Backward Image (SBI) of the backup set. This set is defined

13

implicitly from a backup control law and a backup set, and the implementation
details of a safety filter in that context are then presented. We then show that
one can relax the stability requirement on the backup control law and still
get meaningful albeit weaker safety guarantees. In a following section, we
explore the relation between optimality of the backup control law and size of
the Safe Backward Image. In the case of linear systems, we show that it is
possible to implement and couple a Model Predictive Controller and a Safety
Filter to obtain the largest possible Safe Backward Image. Finally, methods of
selecting a safe input with varying levels of trade-off between conservativeness
and computational complexity are proposed and illustrated on relevant systems
and applications, namely: a two-wheeled inverted pendulum (Segway), an

industrial manipulator, a quadrotor, and a lower body exoskeleton.

14
Chapter 2

EXPLICIT SAFETY FILTERING

2.1 Set Invariance Conditions
We are now properly set to start reasoning rigorously about the system and

its behavior. In this work, we will focus on safety and define it as follow:

Definition 2. Given a safety set S € R", a control system ¥ = (7,) is safe
at a time ¢ if its state at that time ¢ is in the safety set, i.e. Z(t) € S.

As discussed in the introduction, our goal is to characterize what needs to be
done for the system to stay safe during its operation. Therefore, we first need

to derive sufficient conditions under which the system is safe.

2.1.1 Control Invariant Sets
In order to understand the nature of these conditions, we need to understand
the structure of safety sets. The following results will be given without proof

and we refer the reader to [8, 14] for more details.

We will denote by Ly the set of piecewise locally Lipschitz continuous scalar
functions taking values in set U and start by introducing these ideas in the
case where we have access to an exact model of the system and without any
consideration about realizability. Let us therefore consider an exact model

M = (X, U, F) with single valued control affine dynamics:

F(z,u) = f(z)+ g (x)u. (2.1)

For any given input v € Ly, there is a unique state x forming a practical
solution to M and defined for all time [26].

Remark 4. In this work, we will derive all results for control affine models, but

the results can be extended to more generic models.

If the safety set S is chosen arbitrarily, then there will almost always exist
a subset S; of S that has finite escape time, i.e. if 2(ty) € S,, = Vu €
Ly, 3. > to, x(t) ¢ S. In other words, if the system finds itself in S, then

no control policy can constrain solutions of M to remain inside S for all times

Figure 2.1: Ilustration of the subtangentiality condition for exact models.

in the future. The main difficulty in controlling the system to remain in S is

therefore to avoid this dangerous subset of the safety set.

The largest subset of a given safety set that does not contain any such danger-
ous region is usually referred to as the viability kernel [8|. This property of
a set to not contain dangerous states is called controlled invariance. Remain-
ing in the safety set for all time is therefore equivalent to staying inside the

viability kernel for all time.

Definition 3. A closed set S is control invariant for an exact model M if
for any z (t9) € S, their exist a control input u € Ly such that the associated
state solution to M satisfies: Vt > g, z(t) € S.

Definition 4. A closed set S is invariant for an exact model M under a
policy u € Ly if for any z (ty) € S, the associated state solution to M satisfies:
Vit Z t(), l’(t) eS.

Staying inside the viability kernel of the safety set is necessary to remain safe,
but staying inside a control invariant subset of the safety set is sufficient. And
as we will now see, having access to a control invariant subset of the safety set

is actually the key that will allow us to characterize safe input law.

2.1.2 Regulation Map for Exact Models
Let Ts(x) denote the contingent cone to a set S at x as defined in [8, 14]:

16

Definition 5 (Contingent Cone). Given a closed set S, the contingent cone

to S at x is given by:

dist
Ts(z) = {z e R | lim infSStEHT25) 0} , (2.2)
70 T
with:
dist (y,5) = ingHy — w|l., (2.3)
we
for any relevant norm || - ||..

The contingent cone is therefore the set of directions that "point towards the
inside" of set S. It is empty outside of S, equal to R™ in the interior of S,
and only non-trivial on the boundary of S. With that in mind, we can present

Nagumo’s theorem.

Theorem 1. Given model (2.1) and a control input w € Ly, a set S is in-

variant if and only if for any x(tg) € S and almost all t > tq:
f(a(t) + g(@(@)u(t) € Ts(x(t)). (2.4)

This subtangentiality condition is actually fairly intuitive as it essentially
means that the dynamics has to be "pointing" towards the "inside" of the
set S (cf. Fig. 2.1). Nagumo’s theorem therefore gives us a local condition
relating state and input and can hence be used to design safe control laws.
Indeed, if the set S is a control invariant subset of the safety set, then it is
possible to find inputs that regulate a safe solution for model (2.1), and these
inputs are the one satisfying (2.4). It naturally follows the definition of a reg-
ulation map (the term regulation map being borrowed from [8] and specialized

for our application).

Definition 6. The regulation map of a closed set S for a model M is defined
by:
Us(x) 2 {ucU]|F(z)+Gx)u C Ts(x)}. (2.5)

In the exact model case, it is given by:

Us(z) ={ueU| f(z) +g(z)u € Ts(x)}. (2.6)

Therefore, as long as the input takes values in the regulation map of subset of

the safety set, the state is guaranteed to remain inside that set. This regulation

17

map is however non-empty in all of S only if S is a control invariant set, hence
the necessity of considering control invariant subsets of the safety set. The

notion of safe input follows naturally.

Definition 7. Let M be a model of a control system > and S be a closed
subset of the safety set S. Then u is a safe input at time t if u(t) € Ug (x(t))

for some solution (z,u) of M.

Remark 5. If u(t) € Ug (Z(t)), we will say that the system’s input is safe at

time ¢.

Finally, if the model is valid, safe inputs can be used to guarantee safety of

the system itself.

Proposition 1. Let M be an exact model of a control system ¥ and S be
closed subset of the safety set S. If M is valid, Z(to) € S and for all t > t,,
the system’s input u 1s safe, then for all t > toy, ¥ will be safe.

Proof. From the Def. 7 of a safe input, and Thm. 1, we know that state
solutions to M starting in S at ¢y and whose associated input is safe, are
themselves safe for all ¢ > ¢;. Since M is valid, (Z,u) is a solution of M, so
because Z(tg) € S and for all ¢t > t¢, the system’s input @ is safe, then Z is safe
for all t > t,.]

We now understand why it is important for S to be a control invariant subset
of the safety, as otherwise % can never be chosen safe and the conditions of
Prop. 1 can never be met. Similarly and as we have already discussed, it
is essentially impossible to verify that an exact model is valid. Therefore, we
need to revisit this set invariance condition in the more relevant case of inexact

model.

2.1.3 Robust Invariant Sets

Let us consider an inexact model M = (X, U, F') with control affine dynamics:
F(z,u) = F (z) + G () u. (2.7)

Definition 8. A closed set S is robust control invariant for a model M
if for any z (ty) € S, there exist a control input u € Ly such that all the
associated state solutions to M satisfies: Vt > to, z(t) € S.

18

v

Fla)+G(z)u € T (z)

X

Fz)+G(z)u € T (z)

Figure 2.2: Illustration of the subtangentiality condition for inexact models.

Definition 9. A closed set S is robust invariant for a model M under a
policy u € Ly if for any z (ty) € S, all the associated state solutions to M
satisfies: Vt > tg, z(t) € S.

2.1.4 Regulation Map for Inexact Models

We can now present the robust counterpart of Nagumo’s theorem (cf. [8] for

more details and proof).

Theorem 2. Given model (2.7) and a control input u € Ly, then a set S is

robust invariant if and only if for any z(tg) € S and almost all t > ty:

F(a(t)) + Ga@))u(t) € Ts(2(t)). (2.8)

Again, this robust subtangentiality condition is fairly intuitive and can be
visualized in Fig. 2.2. It essentially means that all the possible single valued
dynamics captured by the model have to be "pointing" towards the "inside"
of the set S. Similarly to the exact model case, if the model is valid, these safe

input laws can be used to guarantee safety of the system.

Definition 7 remains valid in this imperfect model case and Prop. 1 becomes :

Proposition 2. Let M be a model of a control system > and S be a closed
subset of the safety set S. If M is valid, (ty) € S and for all t > t,, the
system’s input u 1s safe, then for all t > ty, > will be safe.

Proof. From the Def. 7 of a safe input, and Thm. 2, we know that state

solutions to M starting in S at ¢ty and whose associated input is safe, are

19

v

Vo € 3®A, F(z)+G(z)u C T ()

F#)+G(Z)u C T (7)
but Flz*)+G(z*)u € T (%) X

Figure 2.3: Illustration of the realizable subtangentiality condition for inexact
models.

themselves safe for all ¢ > 5. Since M is valid, (Z,u) is a solution of M, so
because Z(tg) € S and for all t > t¢, the system’s input @ is safe, then Z is safe
for all t > t,.]

The confidence we can have in the safety of a system is therefore no lower than

the confidence we have in the validity of its model.

2.2 Realizable Set Invariance for Cyber Physical System

2.2.1 Realizable Regulation Map

The safety guarantees provided by Prop. 2 are contingent on the system’s input
being safe. But as discussed in Sec. 1.2.4, guaranteeing safety of the input is
not that simple, and one has to account for many physical and technological

constraints.

So to benefit from the safety guarantees claimed by Prop. 2, one needs to

design control laws such that once implemented:

u(t) € Us (z(t)), Vt > to, (2.9)

which is essentially a validity constraint on the control law as a model of the
controller. We therefore need to define a new type of regulation map in light
of the implementation constraint discussed in Sec. 1.2.4 to make it realizable.
In particular, we do not have access to the state and input of the system, but

only to imperfect measurements of these physical quantities. Let us therefore

20

design a regulation map that is only expressed as function of such estimates z

and .

Definition 10. The realizable regulation map of a closed set S for a model
M with state uncertainty A, and input uncertainty A, is defined by:
Us.apa, (1) £
{ueU|Ve, € Ay, Fx+6e,)+G(r+e)ua CTs(x+e,)}, (2.10)

A
where up = ud A,.

We can now use this realizable regulation map to ensure the system’s input

safety from state estimate and desired inputs.

Proposition 3. If u(t) € ﬁS,ADAu (z(t)), M is valid, and assumptions 1 and
2 hold, then the system’s input is safe, i.e. u(t) € Ug (Z(t)) for all time.

Proof. The proof follows directly from definition 10 of realizable regulation
map and assumptions 1 and 2. Indeed, if @(t) € Usa, a, (Z(t)), then for all
e, € Ay and g, € Ay:

F(@+4e)+G@+e,)(u+e,) CTs(T+es). (2.11)

If assumptions 1 and 2 hold, then there exists &, € A, and &, € A, such that

T=2T+¢&, and u = u+ &,. So in particular:

F(+&)+G@+¢&)(a+e,) CTs(T+¢&,), (2.12)

hence:
F(z)+G(z)uCTs(2), (2.13)
and (t) € Us (Z(2)). O

Ensuring that the desired inputs always belong to the realizable regulation
map is therefore sufficient for the system’s input to belong to the regulation
map and to get the safety guarantees provided by Prop. 2. This result is also
fairly intuitive and illustrated in Fig. 2.3, the idea being to ensure safety of

the system’s input for all possible values of the state at a given instant.

Note however that for this realizable regulation map to be usable, it must
never be empty, which constrains what the set S can be. We will call the sets
for which the associated realizable regulation map is never empty realisable
robust control invariant set. We will see in Sec. 2.4 how one can compute

such a set.

21

'%k:-#l@(A.t@ﬁg.(m-%—l)At)

Figure 2.4: Local reachable sets to consider for the realizable subtangentiality
condition.

2.2.2 State Uncertainty for Digital Implementation

As discussed in Sec. 1.2.4.2, when control laws are implemented using digital
computers, the state estimates are only known at discrete times, and changes to
the input can only be made with a non-zero delay after the state sample times.
Therefore, it is impractical to directly enforce that @(t) € Usa, a, (E(t)) for
all t > t.

The issue in terms of input safety is that decisions taken at discrete instants
have to carry over these safety guarantees to the time intervals between the
discrete state sampling instants. In other words, the input has to be safe for

all states along the system’s trajectory between these discrete instants.

In order to achieve such guarantees, we will consider the realizable regula-
tion map formulation (10) with an added state uncertainty corresponding to
the possible variations of the system’s state due to its evolution between the

discrete sampling instants.

To characterise these possible variations, we will utilize reachable sets (see [61]

for methods to compute such sets).

Definition 11. The reachable set for a model M with input u € Ly, de-
noted RY, (A), is the set of states reachable from A in time ¢:

RY (A) 2 {x(ty +1) | Vto €R, Y(z,u) € S (M) s.t. x(ty) € A}. (2.14)

Similarly:

Definition 12. The interval reachable set for a model M, denoted RY, (A),

22

is the set of states reachable in time up to t, i.e.:

RY, (4)2 | RY,(4). (215)
]

T€[0,t

Let us now introduce the idea of the local reachable set.

Definition 13. The Local Reachable Set over a set S for a model M with

input u € Ly and for a time horizon 4, is the set:

Rya 2| (RY,, (1) 0x). (2.16)

TE€S

In other words, the local reachable set is the largest neighborhood that can be
visited by the system over an interval A; for any states in S. It is therefore

easy to see that the following proposition holds.

Proposition 4. If given a valid model M such that assumptions 1, 2, and 3
hold, and for some k > 0:

uy, € ﬁS,Aj;,Au (@) , (2.17)

with:
A2 A& RY 0y (218)

then for allt € [ty + ady, tpyr + ady:

u(t) € Us (z(t)) . (2.19)
Proof. From assumption 1 and 3, and from Def. 13, we know that for all
t € [tr,tps1 + @], T(t) € T & Al hence this holds in particular for all
t € [ty + oy, tir1 + ady]. Soif ay, € ﬁSAi,Au (Zk), then for all ¢, € A} and

Eu € Ay:
F(Zr+e,)+G (T +ey) (tp+eu) € Ts (T +e2), (2.20)

and therefore for all ¢ € [ty + ad, tpy1 +ady] and €, € A,
F(z(t))+ G (x(t)) (tg +eu) € Ts (2()) . (2.21)
From assumptions 2 and 3, we know that for all t € [ty + ad, tpr1 + @y

u(t) = g + &, (2.22)

23

Actuation
cmd u, . u_, i
------------ » Controller [-**» SF |-*——e——5 System >
x x -
---------- Digital SOOI DU RS
fmeloy Sensing

Figure 2.5: Safety filtering control structure.

for some &, € A,, so for all t € [ty + @, tpr1 + ad]:
F(z(t)+ G (z(t)u(t) C Ts (z(t)) . (2.23)

]

This proposition (illustrated in Fig. 2.4) gives a way to ensure safety of the
system’s input over the entire trajectory of the system by only having to change
the desired input at discrete instants. It also characterizes the necessary trade-
off between controller frequency and added conservatism as if 4; increases, so

does the size of RY ,, which in turn makes the size of Ug 4+ 4 decrease.

2.3 Safety Filtering

The controller design task generally consists of finding a control policy that
maximizes some performance criteria while ensuring safety of the system.
Finding a high performing policy that is safe by construction is difficult. Sys-
tem performance and safety are often conflicting goals, and guarantees on
safety of the system generally become much more challenging to get as com-
plexity of the controller increases. As an alternate paradigm, we consider the
control structure depicted in Fig. 2.5. The idea here is to decouple perfor-
mance from the enforcement of hard safety constraints in such a way that
prioritizes the latter over the former. Given a nominal controller that pro-
cesses commands and focuses on performing the desired task, a safety filter
can be used to preempt these desired inputs in a way that ensures safety of the
system when necessary (see [16, 38, 85| for application examples). Ideally, the
filter is minimally invasive to the desired input, i.e. uqes is left unmodified as
long as the signal is not compromising to system safety. We will now present

a way to realize such a filter.

24
2.3.1 Sub-Regulation Map for Exact Models

As discussed in the previous section, for a safety filter to be effective at guar-
anteeing safety of the system, it has to constrain the system’s input to remain
safe, i.e. to be inside the regulation map. Depending on the type of set con-
sidered, there are different ways of expressing the regulation map. Practical
sets—as defined in [14]—are suitable for most realistic cases and make it con-
venient to express the contingent cone. To describe such sets, one only needs

to consider N, continuously differentiable functions h; : R* — R such that ! 2:

S={zxeR"|Vie[l,Ns], h;(z) >0}

(2.24)
0S={xeS|Fie[l,Ng, h;(x) =0}.
For such sets, the contingent cone can be expressed as:
Ts(z) = {z € R" | Vi € Act(x), Vh;(x).2 > 0}, (2.25)
with:
Act(z) = {i € [1,N] | hi(x) = 0}. (2.26)
In that case, the subtangentiality condition (2.4) can be written as
TCZ (il?, U) £ thl<x) + Lgh’l@j)ua (227)

for all x € 05, and i € Act(x). Here, Lyh and L,h denote the Lie derivatives

of h along f and g, respectively. The regulation map then becomes:

Us (z) = {u € U | Vi€ Act(z), TC; (x,u) > 0}. (2.28)

The subtangentiality condition is however not very practical as it only defines
a non-trivial set of admissible inputs when the system is on the boundary of
S, i.e. Act(z) =0 if z ¢ 95, which leads to a discontinuous regulation of the
control input. Furthermore, it is not defined outside of S which makes any
real implementation essentially impossible. One solution to smooth out the
regulated input and make the safety filter implementation possible is explored
in [8]—further developed in [5]. It consists of considering a strengthening term

in (2.27) and of imposing barrier conditions:

BC; (x,u) £ Lihi(z) + Lyhi(2)u + a; (hi(z)), (2.29)

1See [14, p. 103] for all conditions under which S is practical.
2[m,n] will denote the set of integers from n to m

25

for all z € S, i € [1, Ns] with the extended class K strengthening functions
a; : R — R. This barrier condition defines a sub-regulation map Ug of

admissible inputs:
Us(z) 2 {ueU|Vie[l,N,], BC;(z,u)>0}. (2.30)

In the rest of this work, we will use the term sub-regulation map (borrowed
again from [8]) to refer to any map whose image is contained inside a particular

regulation map.

Because for all z € S, Us (z) C Ug (x), enforcing that the input stays inside
a sub-regulation map is therefore sufficient to ensure safety of the input, and
this holds for any sub-regulation map, i.e. map whose image is a subset of the

regulation map.

Note, however, that special care must be take to ensure that a sub-regulation
map does not take empty value, otherwise it will not be usable for filtering
desired inputs. In this particular case, one has to choose the strengthening
functions «a; accordingly, as discussed in [8, 38|, which is always possible under

the present assumptions.

2.3.2 Safety Filter as a Quadratic Program

In light of these results, it is now possible to realize a safety filter that can
enforce input’s safety, hence system’s safety, synergistically with the perfor-
mance goals of the system. Given a desired input uges provided by a nominal
controller (cf. Fig. 2.5), enforcing safety in a minimally invasive way can

be naturally formulated as the following quadratic program:

Safety Filter QP

Ut (t,) = argmin ||uqes () — u||2
wel (2.31)
s.t. BC; (x,u) >0, Vi € [1, Ng].

If S is control invariant, Ug has non-empty compact convex values, but it is
not necessarily the case for Ug. As discussed before, this can be addressed
by either choosing a control invariant set S and then finding the «; functions
accordingly so as to ensure that Ug is never empty, or by first choosing the «;

functions and then computing a set S over which Ug is never empty.

26

Alternatively, given a control invariant set S, barrier conditions can be used
along with their smoothing action without having to carefully choose the «;
by using the following safety filter formulation. Given aqes; desired smoothing
factors and a relaxation penalty factor M > 0, we can define a relaxed safety
filter:

Relaxed Safety Filter QP

N
Uner (t,) = argmin |[uges (1) — wf* + MY (qges — 1)’
aiggldjcs,i =1

s.t. Lehi(z) + Lyhi(z)u + a;hi(x) >0
Vi € [1, Ng].

(2.32)

This way, the slowing down effect of a barrier condition can be chosen and
followed if possible, but otherwise relaxed in a way that still ensures that the
resulting filtered input is in Ug. Note also that it is possible to only consider
a single a; to relax all of the constraints at once, this way reducing the size of
the resulting QP which can be beneficial on embedded systems with limited

computational capabilities.

2.3.3 Safety Filter for Inexact Models
Let us now look at how to express the sub-regulation map for inexact models,
and in particular for parametric models as defined in (1.3). In this case, a

robust barrier condition can be defined of the form:
RBOZ (Ia u,p) = thl(x7p) + Lghl($ap)u + al(hl($))a (233)
and the associated sub-regulation map is:

Us(z) ={ueU]|Vie[l,Ns], Vp e P, RBC;(z,u,p) > 0}. (2.34)

Therefore, an associated robust safety filter can be formulated as:

27

Robust Safety Filter

Unet (L,) = argmin ||uqes (t) — uH2
uelU

s.t. RBC; (z,u,p) > 0, (2.35)
Vi e [1,Ns], Vp € P.

This optimization problem, however, belongs to the class of robust optimiza-
tion problems|[11, 12|. In general, the dependency in the uncertainty terms
is nonlinear making the problem numerically intractable. The fundamental
idea that will allow us to overcome this issue is that by over-approximating
the effect of uncertainty on the barrier condition, we can under-approximate

the sub-regulation map.

The key to this approach is the following Lemma.

Lemma 1. Let f : R — R and g : R* — R™ be any two continuous

functions. Let A € R™ be a compact set and:

B2 {g(x) eR™|xc A}
C2{f(y)eR|ye B DB}
D2{fog(z)eR |z e A},

where B’ is compact, then:

s (/)| <0 = [max(Fog (o] <o (2:36)

yeB’

Since:
Vp € P, RBC; (z,u,p) >0

A (2.37)
[max (—Lghi(z,p)u — Lhi(x,p) — al(hz(m)))} <0,

peP

given maps A and BY such that for all x € S:

AF (x) 2 {=Lghi(x,p)" | Vp € P}

(2.38)
Bf (z) 2 {~Lyhi(z,p) — ci(hi(z)) | Vp € P},

28

it follows from Lemma 1 that:

max (aiTu + bi) <0,

a;€AF (2)
bieB] (@) (2.39)
—
max (—Lghi(x, p)u — Lehi(z,p) — a;(hi(z)))| <O0.

peP

The key to making a robust and tractable safety filter is therefore to find
AP and B maps that have polytopic images. If one is able to provide such
an over-approximation, then the difficult optimization problem (2.35) can be
transformed into a QP with polytopic constraints that is easy to solve using
available numerical solvers as in such case, it is possible to rewrite this linear

program as:
ci(z) =max (c¢fv
(@) = masc(ev) (2.40)
]T and v 2 [u|1]", and with d; (z) and D; (z) encoding the
polytopic constraints a; € AP (z) and b; € B} ().

A
where ¢; = [aﬂbi

Assuming (2.40) is a feasible linear program, strong duality holds and:

c(x) =min (\'d; (x
o) =min (ds (@) .
st. AN Di(z)=v".

Therefore, we have that:

min [tges (£) — ul

Hg} [|tqes (t) — u||2 i-EZO
“ T
st. () <0, = st Adi(x) <0 , (2.42)
T T
Vi € [1,N,] Ai Di(z) =v
Vi€ [1,N],

which allows us to define the following robust safety filter that guarantees

input safety and is tractable:

29

Robust Safety Filter QP

Uaet (t,) = argmin ||uqes () — uH2

520
s.t. A di (z) <0 (2.43)
N Dy (r)=v"
Vi e [1,N,].

One must be careful now since the polytopic sub-regulation map defined by
(2.43):

Us(z)={ueU|Vie[1,N], Va; € A (z), ¥b; € B (), a] u+0b; <0}
(2.44)
has images strictly smaller than the ones of the regulation map not just in
the interior of S, but also on the boundary of S, i.e. for all x € 95, Ug(x) C
Us(x) = Us(x). Tt is therefore impossible in general to find «; functions that

make (2.43) feasible everywhere in S.

To ensure feasibility of (2.43), one needs to find a subset of the safety set S
where there exists function «a; such that the sub-regulation map is non-empty.
We will call such a set a Regulation Kernel, and it immediately follows that
regulation kernels are also robust control invariant sets. We will see in Sec.
2.4 how to compute such sets when using interval arithmetic [66] to define the

AP and BY maps.

Finally, note that a relaxed version of (2.43) can be formulated without any
added difficulty. For that, let us define modified versions of the maps (2.38):

AP (z) D {—Lghi(x,p)T ’ Vp € P}

(2.45)
B (z) 2 {—Lshi(x,p) | Vp € P}.
In this case, the top inequality in (2.39) can be written as:
max (a] u+b;)| < ahi(2), (2.46)
a; €A (z)
biEBf)(ZE)

and so (2.43) can be written as:

30

Relaxed Robust Safety Filter QP

N
Unet(t, 2) = argmin ||uqes (t) — ul|”> + M Z (Qtgess —)’
uelU —
>\’LZO =1

aizades,i

st A\ 6; () < aihi(x)
N Dj(x)=0"
Vi € [1, Ng|

(2.47)

which is indeed a QP where ¢; and D; now encode the polytopic constraints

a; € AP (x) and b; € BF (x).

2.3.4 Realizable Safety Filter

Let us now look at how to express the realizable sub-regulation map (2.10).
The difficulty in this case comes from expressing the uncertainty in the con-
tingent cone at a given point of the regulation map resulting from state un-
certainty: Tg (T + A,). In particular, for a given state measurement Z, the
dynamics have to be contained in the intersection of all the possible tangent

cones in the neighborhood of Z:

Us.a,.n, (2) =
{ueU|Vxeid A, Vie Act(z), Vp € P, Ve, € A,,
Lyshi(z,p) + Lohi(z, p)(u+¢e,) > 0}. (2.48)

Similarly to the inexact model case, this sub-regulation map is in general not
polytopic because of the nonlinear dependence in parameters p, but moreover
because of the nonlinear dependence in state x. We, therefore, define the

following polytopic realizable sub-regulation map:

Usa, , (8) =
{u eU ’ Va € APA=u(3), Wb e BP?+(%), a'u+b < 0}, (2.49)
with:
APAwu (7) D { = Lyhi(w,p,e,)" |V € 2@ A,
Vi € Act(z), Vp € P, Ve, € Au}
BPAsw (7) D { = Lihi(z,p,e.) | Vo € 2 ® A,,
Vi € Act(z), Vp € P, Ve, € A, }.

(2.50)

31

The resulting safety filter is given by:

Realizable Safety Filter QP

Uact (£, T) = argmin ||uges (1) — uH2
uelU
A>0
s.b. Ad (%) <0

AN D(E)=v"

(2.51)

which is a QP with a single constraint where d and D now encode the polytopic

constraints a € AP and b € BPAww,

Contrary to the regulation map (2.28) for ideal models, (2.48) and (2.49) are
non-trivial on a neighborhood of S and not just on the boundary itself, which
makes (2.51) practical. However, the region where the sub-regulation map is
non-trivial is essentially of size A,, which one would want to keep as small
as possible for minimum conservatism, which conflicts with having a large
region where the regulation map is non-trivial for maximum robustness of

implementation.

Therefore, we propose a more practical realizable safety filter that provides

more control over the behavior of the system inside of S:

Relaxed Realizable Safety Filter QP

N
Tact(t, @) = argmin ||uges (t) — ul]® + MZ €
%<0 =t
€;>0
s.t. ATJ(JE) <0
AN D(E)=v"
BC™ (Z,u) > —e€;, Vi € [1,N4]

(2.52)

where:
BC" (z,u) £ Lihi(z,p™) + Lghi(z,p™)(u + €})') + Qgesi (hi(z)) , (2.53)

for some mean values of the uncertainties p™ € P and €)' € A,. Indeed, in this

safety filter formulation, the constraints BC!™ (Z,u) > —¢; can be arbitrarily

32

relaxed, so if U s.A,.A, 18 never empty in S, (2.52) is always feasible. Therefore,
by choosing M and ages,; properly, it is possible to control the behavior of the
system inside of S and not just near its boundary, while guaranteeing feasibility
of the safety filter.

2.3.5 Scalable Safety Filter

Even though the sub-regulation map (2.29) has many advantages over the
regulation map (2.28), as we talked about, it has one major inconvenient over
the latter, namely that when the number N; of parts of S gets large, the QP
(2.31) becomes more time consuming to solve. Indeed, with this formulation,
all the parts of S are considered in the QP, even though all that is necessary
for safety is to consider the active set of parts of S when the system is on the

boundary of S, which in practice consist of much fewer parts.

To address this issue, let Z/\f\s be a number greater than the maximum number

of active constraints for any given point in 0S:

N, >]m 2 max |Act(x)]. (2.54)
z€0S
Then:
Us (z) 2 {u € U | Vi € Actg (z), BC; (z,u) >0}, (2.55)

with Actg (7) being the set of indices of the N,-th smallest elements in the
set {h1(x),...,hn,(x)}, is a sub-regulation map. Therefore, the advantages
of (2.55) are that it is defined everywhere and piecewise smooth like (2.29),
and also that it leads to a safety filter QP with a fixed and small number of

constraints]/\7\3 which makes its implementation very efficient:

Scalable Safety Filter QP

Unet(t, ©) = argmin ||uges () — u||2
ueU (2.56)
s.t. BC; (z,u) > 0, Vi € Actg ().

The same approach can be carried out without additional difficulty for a re-
laxed safety filter (2.32), a robust safety filter (2.43), a relaxed robust safety
Filter (2.47) and a relaxed realizable safety filter (2.52).

33

2.4 Regulation Kernel Algorithm

2.4.1 The Viability Kernel

As discussed in the previous section, in order to use a safety filter, we need
to find control invariant subsets of the safety set that are as large as possible,
the largest possible subset being the Viability Kernel. As explained in [8],
states that are inside the safety set but outside the viability kernel have finite
escape time, i.e. for each of these dangerous states, all the possible emerging

trajectories leave the safety set after some finite time.

The viability kernel can therefore be characterize as the solution to a reacha-
bility problem [64]. In particular, it is a solution to a continuous differential
game where the player is trying to reach the complement of the safety set and
an adversary is trying to keep the system inside the safety set through the sys-
tem’s control input. In this same paper, it is shown that the viability kernel
can therefore be described as the solution to an Hamilton-Jacobi partial dif-

ferential equation [64] in terms of the sublevel set of a function v : X xR — R:

Viab = tlim {z € X |v(z,t) <0}, (2.57)
——00
that is solution to the terminal value HJI PDE:
% + min {0, H (a; %)} —0, (2.58)

with terminal condition:

v(x,0) = h(z), (2.59)

for any function h describing the safety set:
S={z€ X |h(z)>0}. (2.60)

Here, the Hamiltonian for (2.1) is given by:

H(x,z) =min 2" (f(z)+ g(z)u). (2.61)

uclU
In this next section, existing approaches for computing the viability kernel, or
at least a large control invariant subsets of the safety set, are reviewed.
2.4.2 Existing Computational Approaches

2.4.2.1 Level Set Methods

A level set toolbox for MATLAB® was designed to directly find solutions to

(2.58), hence allowing it to approximate viability kernels for generic non-linear

34

systems [63]. The main drawback of this method is its exponential scaling with

the dimension of the system, due to the required gridding of the state-space.

2.4.2.2 Parametric Methods

More recent algorithms based on parametric set representations, shown in [62],
have also been used to approximate viability kernels of higher-dimensional
linear systems. The general idea behind the algorithm is to begin with an
over-approximation K, of the viability kernel I, and iteratively decrease the

size through the following:

Kni1 = KoN{xz | Ju,z(p) € K.} (2.62)

2.4.2.3 SOS Optimization Methods

Another recent approach to compute control invariant sets is SOS optimiza-
tion. Interested readers can find more details in [47, 59, 80]. A polynomial
p is a sum of squares (SOS) if there exist polynomials {g;}?, such that
p = XN, ¢?. Using the Lyapunov asymptotic stability theorem, we can char-

acterize a region of attraction by:
B2 {x eR" |V (x) <v, and VV (z) f (z) <0}, (2.63)

with V' (z) a positive definite function. Therefore, given a polynomial Lya-
punov function and dynamics, one can formulate an SOS program that checks
if:

Vee{z|V(x) <~v}, VV (2)f(x) <0, (2.64)
for a given v > 0. The positivstellensatz characterization of polynomials (or

S-procedure) tells us that if there exists a polynomial s that is SOS such that:
—(VV(z)- f+s(y—V(x))) is SOS,

then the contractiveness condition (2.64) is satisfied. Checking that a poly-
nomial is SOS being equivalent to solving an SDP program, the problem is
therefore a convex program. MATLAB® toolboxes such as SOSTOOLS and
SPOT exist for these methods, which convert SOS or modified SOS constraints
into an SDP problem. However, SDP solvers are still relatively slow and better-
scaling method of checking SOS based on diagonally-dominant sum of squares

optimization are presented in [60].

35

Figure 2.6: Illustration of the polytopic parameterization of S for the regula-
tion kernel algorithms.

Similarly to viability algorithms, it is interesting to try and find the largest
ROA possible. In that case, the problem becomes non-linear, but iterative ap-
proaches exist to try and overcome this increase in complexity by sequentially

searching for a Lyapunov function and a region of attraction [47].

2.4.3 Regulation Kernel Algorithm

As discussed above, we need to find the largest subset of the safety set such
that the sub-regulation map (2.44) is never empty. The main issue with all
these approaches is that they do not factor in the added conservativeness of
sub-regulation maps. They therefore cannot be used in the context of a robust
safety filter for example. To find a regulation kernel, we propose a nonlinear
optimization problem formulation that directly accounts for sub-regulation

maps relying on interval arithmetic [66].

To that end, we first need to choose a type of set representation. In this work,
we choose to work with polytopic sets S that are compact and convex (cf. Fig.

2.6). This representation makes it easy to express S as in (2.24) where:

hi(x) =1—n; (x — s0), (2.65)

36

for all facets of S and with n, being an outward facing normal of that facet
satisfying n, (r — sg) = 1 for any x on that facet and given a chosen center
for S: so € R™ (cf. Fig. 2.6).

As explained in the previous section, the barrier condition constraints that
make S a regulation kernel only matter on the boundary of S, as the «;
functions can be chosen to arbitrarily relax the barrier conditions in the interior
of S. Therefore, a regulation kernel is a set for which the sub-regulation map

(2.44) is non-empty on the boundary of S.

The benefit of such a set representation is that it is easy to divide 95 into
finitely many elements where the associated active constraints set 2.26 is con-
stant. In particular, these elements are all the faces of the polytope and the

associated constraint sets correspond to their respective incident facets.

Let:
FT5 £ [1,N,]., (2.66)

be the set of facet indices of S and:
FS &1, Ny], (2.67)
be the set of face indices of S. Let furthermore:
FT? 2 {g € i-th facet of S}, (2.68)
denote the i-th facet of S and:
FS & [z € i-th face of S}, (2.69)

denote the i-th face of S. Let finally V;° denote the set of vertices of face i

and VTjS denote the set of vertices of facet j.

Then for all face indices i € F° and for all z € FiS :
Act(z) ={j € FT® | FT N F’ # 0}, (2.70)

which does not depend on x along that face. We will therefore denote by Act;
the set of active constraints for face i. Note that for all i € F° and for all
J € Act;:

Vo CVTY (2.71)

37

Finding a regulation kernel can be achieved by finding a set for which for all
face indices i € F'®, there exist an input u; € U such that for all j € Act;:
T
ireligsg (aj u;+b;) <0, (2.72)

aj EAf(m)

b;eBY (z)
in the context of (2.38). In particular, for S defined by (2.65) we have that
for all x € Fjs :

a; (map>T = n;l—g<$7p)

2.73
bj (l‘,p) :anf(gj’p), ()

To formulate the associated optimization problem, it is necessary to choose a
parameterization of S. There exist multiple ways to parameterize polytopes,
but in this work we will focus on a vertex-based parameterization for reasons
that will become clear later. For the rest of this work, N, will denote the

chosen number of vertices of S.

One could at first be tempted to use the cartesian coordinates of the ver-
tices as optimization variables. However, such a parameterization not only
scales poorly with the state-space dimension, but also requires the constant
re-computation of a triangulation of the vertices to determine what are the
faces and facets of S. To avoid such repeated costly computations, we limit
ourselves to a simpler parameterization where each vertex is defined by a fixed
unit vector v; € R™ and a variable radius r; > 0 (cf. Fig. 2.6). This way, a
triangulation of the vertices for r; = 1 for all i € [[1, N,] is still valid for any

combination of r; > 0. Let us now present the different steps of the algorithm.

2.4.3.1 Algorithm Inputs

The inputs to the algorithm are as follow:

e Input bounds vectors: upy;, € R™ and up., € R™

e Safety set state bounds vectors: 25 € R" and 25

min max

e R”

e Dynamics of the system and their gradients: f, g, Df, and Dg.

e Description functions of the safety set and their gradients: hf , and th ,
i€ [1,Ng].

38
2.4.3.2 Initialization

e Our algorithm therefore starts by generating the set of unit vectors v; €
R™. There exist multiple ways to do so, the most basic one being to

randomly pick vectors on the unit sphere.

e Then, upper bounds 7,,x; are computed for the optimization variables
r; such that for all 7 € [1, N,]:

0 S T S 7ﬁmax,i
— (2.74)

Toin < S0+ v < @

min max

e Then, the face lattice is generated [49]. This is accomplished by first
generating a triangulation of the vertices, and then enumerating the
polytope faces of lower and lower dimensions recursively. Several pieces
of information are precomputed at this stage for later algorithmic effi-
ciency like the face to incident facets map and some matrices inverse to

compute the normal vector of the facets for given radiuses.

S

e Upper bounds 7, ; on the radiuses r; are also computed from z;);, and

3 ce .
xo . to accelerate the optimization.

e Convexity constraints are prepared. In particular, for every facet, the
indices of the vertices exactly one edge away in the face lattice are de-

termined.

e The radius optimization variables r; are initialized to the same value:

the smallest ryax ;.

e Finally, all the vertices of the input bounds box are explicitly determined
and the input optimization variables u; are initialized so as to minimize
the left side of (2.72).

39

2.4.3.3 Nonlinear Optimization Problem

Given the chosen setup, finding the largest regulation kernel can be formulated

as the following conceptual nonlinear optimization problem:

Ny

maximize E r?
T1enTNy 20 4
ul,...,uNfEU i=1

s.t. all vertices of S are in S (2.75)
S is convex

(2.72) satisfied on all faces.

Containment Constraint. Constraining S to be a subset of S is imposed
by the bounds on 7; (2.74) and by the constraints:

hS (s + riv;) > 0, (2.76)

for all i1, Ng] and j € [1, N5]. The gradient of this constraint with respect
to r; is:
th(so + 70 ;. (2.77)

Note that these constraints are sufficient to ensure that S C S only if S is
convex. Otherwise, the right side of (2.76) has to be a strictly positive value

carefully chosen.

Convexity Constraint. Constraining the set S to be convex can be achieved
by ensuring that for all facets of S, all vertices of S be on the inner side of that
facet, as any points in S is a convex combination of its vertices. However, this
formulation leads to a very high number of constraints. Fortunately, it can be
showed that imposing for every facet that vertices exactly one edge away from
the facet be on the inner side of that facet is sufficient. More formally, S must
be such that for all ¢ € F'Ts and for all j in the set of neighbouring vertices of
facet i:

n)rjv; < 1. (2.78)
This way, the number of constraints necessary to express convexity is drasti-

cally reduced. The gradient of this constraint with respect to r; is n; v;.

Subtangentiality Constraint. The key constraint imposing that S be a
regulation kernel is (2.72). As discussed in Sec. 2.3, it is fundamental for

the maps A; and B, to have polytopic images. Furthermore, it is important

40

that these maps can be evaluated explicitly quickly. To that end, a tool of
choice is Interval Arithmetic [66] (abbreviated IA). IA is a numerical approach
that allows one to evaluate an over-approximation of the image of an interval
through any function. In particular, IA tools allow to quickly compute a
hyper-box containing the image of any nonlinear function. For our algorithm,
we will use Affine Arithmetic (abbreviated AA), which is a variation of IA that
reduces some of the conservativeness of IA at the expense of slightly longer

computation times (see [22]).

One other benefit of TA is that it makes it easy to find an upper bound on the
left side of (2.72). Therefore, at the cost of added conservatism, it is possible

to enforce constraints (2.72) by enforcing that:

STCi’j(T, UZ) < O, (279)
where:
STC; j(r,u;) > max (ajTui + bj) (2.80)
z€F}
ajGAf(ac)
b;€BY (z)

is computed quickly using AA for all faces © € Fg and j € Act;. Note that we

will denote the vector of radiuses by:

r&ry, .l (2.81)

In order to compute ST'C; ;(r,u;), it is however necessary to express the sets

F? in terms of intervals. Indeed, the basic definition of a face i is:

Ff=Sso+ > Ny |VieVE Nelo]y, (2.82)

1
jevy

which is not suited for computing STC; ;(r, u;) using IA or AA. Therefore, we

choose to represent a face ¢ as:

XF = {U(Vf)l}’ and

-1

FZ-S = {SO @XFiV'S

XFl = NXFlal- A v(s) 5 Y € 0, 1]}- (2.83)

One issue with this approach though is that neither (2.72) nor (2.79) are

smooth with respect to the decision variables r; and u;. Therefore, (2.75)

41

is not a smooth optimization problem. This is not fundamentally an issue
as there exist numerical solvers that can handle such non-smooth nonlinear
problems. As an alternative, we also propose a sequential solving approach

that has been observed to work well for this algorithm.

2.4.3.4 Sequential Solving

In order to solve the non-smooth problem (2.75), we propose to solve a se-
quence of smooth nonlinear optimization problems (NLP) whose solutions con-
verge to the solution of (2.75). In particular, we substitute the sub-tangentially
constraint (2.72) for the following smooth one where for all face indices i € F°,
J € Act;:

STCT(r,wi) £ nf f(@,p") +nj g(@f, p"™ i < —ei5, (2.84)

J

where p™ € P is a constant value of the parameters in the parameter set P (for
example the center of P), ¢, ; is a constant value whose purpose will become

clear later, and where z]" is the middle of face ¢:

1
‘T;n = Sg + _S| Z TrjV;j. (285)

Because for any j € FT7:

nj = M:'R;, (2.86)
where:
R; = 1/7’(VTJ_S>1, ce 1/T<VTJS)‘VTJS|] , (2.87)
and:
M] = [”(VTJS); . ,U<VTJS)|VT]S|] : (2.88)

the gradient of (2.84) can be expressed as:
OSTCY(r, u;)

T mo.m
and for all k € VTjS :
OSTC™(r, u;) on OF™(r,u;)
LI\ — m AT T i) 2.
87"k 7 (T7 U’J) 87"k n] aT’k) (90)

where:
™ (r,uy) & f(ap™) + g(@, p™ us. (2.91)

42
Therefore, for all k € V%

aﬂm(r7uj) _ 1 ?}T(
oy VA

Df(z,p™) + Dg(«}", p™)u;) (2.92)

and for all k € VT

8nj T 1
0 — _(pY il
ark ()*,K T.i’
where (M), . is the K-th column of M~ for K being such that (VT7) . =
k.

(2.93)

It is therefore easy to solve (2.75) where (2.72) is replaced by (2.84):

Ny
maximize 7
715Ny 20
U1, uN, €U i=1
s.t. all vertices of S are in S (2.94)

S 1s convex

(2.84) satisfied on all faces
as it is now a smooth optimization problem.

Given a solution:
g a {r; T ,u}‘\,f} (2.95)

to (2.94), it is now possible to evaluate ST'C; ;(S*), which will evidently be

strictly positive for some ¢ and j if ¢; ; = 0.

The idea is therefore to begin with 5?4- = 0, compute S, and then let:

et = ST, ;(S7) — STC(S?) + % (2.96)

L

where € > 0 is a chosen tolerance for the convergence of the algorithm. By

proceeding this way recursively, STC; ;(S)) will in practice converge to values
i
algorithm is considered to have successfully converged when all € ; € [—¢,0).

ef . € [—¢,0), although we do not provide any guarantees it will do so. The

Finally, note that in some cases, the convergence of this scheme has been ob-
served to be more reliable by choosing 52 ; to be strictly positive and gradually
decreasing these values over the first couple of iterations until resuming the

recurrence relationship (2.96).

£
~
.

Figure 2.7: Tlustration of the sets of neighboring facets to consider for the
realizable regulation kernel algorithm.

2.4.3.5 Algorithm Output

The output of this algorithm is the normal vectors n; describing a regulation
kernel S as in (2.65). The interest of the safety filter formulation (2.56) be-
comes apparent in this case where one would want to use as many vertices as

possible to describe S.

2.4.3.6 C+-+ Implementation

This algorithm and the next one have been implemented in C++ to produce
the results presented in the following sections. It uses the CGAL library [81]
to perform the random sampling of points on the unit sphere and the initial
triangulation. The nonlinear solver used is IPOPT [83]. The affine arithmetic
library used is Libaffa [27]. The linear algebra library used is Eigen [29].

2.4.4 Realizable Regulation Kernel Algorithm
The algorithm presented above can be extended to find realizable regulation
kernels, but first we need to choose expressions of APAsu and BPAsu that

can be evaluated in real time for the safety filter. In this case, we will define

44

them as follow. Let F i(i) be the set of facet indices intersecting the state

uncertainty set for a given state measurement 7:
Fi@)&{ieFP|(@®A)NF’ #0}, (2.97)
and:

APAeu (7) = L — Lyhj(z,p,e.)" | Vi € F5 (7),
Vo € FT, Vj € ActFT;, Vp € P, Ve, € A, }, (2.98)

BPAsu (§) = { — Lyhj(a,p,e,) | Vi € F5 (7),
Vo € FT?, Vj € ActFT;, Vp € P, Ve, € A}, (2.99)
where:
ActFT; = {j € FT® | FT' N FT} # 0} (2.100)
is the set of possible active constraints for states on facet :.
The main difficulty in this extension resides in the fact that enumerating all
possible combinations F3 () for all Z € S is totally impractical given how big
this number is even for sets with a modest number of facets. We will therefore

formulate the regulation kernel algorithm in a way that is practical, at the

obviously expense of added conservatism.

Let us restrict ourselves to Ny, sets FT'N; comprised of all facet indices j &
FT% for which there exist # € S such that (cf. Fig. 2.7):

FTrn(z® A,) #0
and (2.101)
FT; N (2@ A,) # 0.

Computing these sets is achieved by checking, for each facet i, the feasibility
of the Ny, — 1 linear programs for all facets j #

min 0
0<A}<1
0<A2<1

s.t. Z Ao=1
k=1
Y x=1
k=1
(Z Moz, 2 Ai“(vf)k) €24,
k=1 k=1

(2.102)

45
where 2A, = A, ® A,.

It is casy to see that for any & € S such that F3 (Z) # 0, there exist i € FTN®
such that F gm () € FTN;. We can therefore find a regulation kernel for a
realizable sub-regulation map defined by (2.98) by imposing that for i € FT%,
there exist an input u; € U such that for all j € F'T'N; and for all k € ActF'Tj:

max_ (a,u; +bg) <0, (2.103)
TeFT?

akeAf’A“ (z)
breB A (z)

where:
APA (1) = { = Lyhi(z.p.2.) | Vp € P, Ve, € A, }

- (2.104)
B, () = { — Lihy(z,p,e4) | Vp € P, Ve, € Au}.

Therefore, it is possible to use the same approach as above, and by replacing
(2.72) with (2.103), compute a realizable regulation kernel. The derivation of
STCY . (r,u;) is in this case identical to (2.84) and below, only with different
sets of facets and constraints to consider.

An important point to address in this realizable version of the regulation kernel
algorithm is that the F'T'N; sets depend on the values of the radiuses r; defining
S. It is therefore impossible to precompute the FTN; sets as they change
during the optimization process and so the constraint bound update law (2.96)
cannot be implemented as is. To address this issue, the sequential solving

approach of Algo. 1 is proposed.

Note finally that by considering A, = {0}, this version of the algorithm can be
used to reduce the computation time for computing a simple regulation kernel

(i.e. not realizable) at the obvious expense of added conservatism.

2.5 Simulation of an Inverted Pendulum
2.5.1 Problem Setup
We will now apply this framework to a simple example of nonlinear inverted

pendulum. This system is defined by the state z = [0, 0} and the dynamics:
0
T= , (2.105)
sin(0) +p-u

with a saturated input u € [Umin, Umaz] With Upm; = —1.5 and Upe, = 1.5.

Here, p € P is a constant parameter. This pendulum is upright at an unstable

46

Algorithm 1: Sequential NLP solving

Data: € and tpax
Result: Radiuses r; of Realizable Regulation Kernel S*
Initialize r;, u; and FTN;;

L4+ 0;
while true do
€ijk <— O;
while true do
i, u; <— NLP (2.94) solution;
Compute ST'C; jj, from 7; and w;;
Update €; ;1 as in (2.96);
if —e < maz(e; ;) <0 then
Determine new F'T'N! from new 7;;
if Vi, FTN! # FTN, then
Compute STC; 1, from r; and u;;
if —e < maz(e; i) <0 then

‘ Return r;;
end
FTN; < FTN/;
end
go to 21;
end

end
L1+ 1;
if © > 1,4, then
‘ Return Failure;
end

end

equilibrium when # = 0. The safety set S is chosen to be a box centered at

the origin and of edge size 27 (cf. Fig. 2.8).

In the following simulations, the safety filters are implemented in C+-+ using
the OSQP solver [79] and run on an Intel i7-6820HQ processor.

2.5.2 Exact Model Results

For this example, we first assume an exact model: P = [1.0,1.0]. The algo-
rithm is initialized as discussed in Sec. 2.4.3.2 with a set Sy centered at the
origin and made up of 150 vertices uniformly spread over the unit circle. The
result of this initialization phase is showed in Fig. 2.8. As expected, not all

STC; ;(So) are negative at this stage. The sequential optimization approach

47

STClas(S*) = 3.610 - 1071 STC(S")

3t s

10.2
21

10
1t 0.2

0 || i
0f i; 0.4
1t 0.6
216 -0.8
3L -1
-2 0 2

0

Figure 2.8: Set S for an exact model (2.105) after the initialization phase.
The safety set is in red. The facets and vertices of S are displayed with colors
corresponding to the maximum value of the subtangentiality condition for that
face. The arrows correspond to the directions of the dynamics at the vertices
for the initial inputs w;.

discussed in 2.4.3.4 is performed with € = 107% and the result of this process
after convergence can be seen in Fig. 2.9. As expected, all ST'C; ;(Sx) are
sticky between 0 and —e, and the resulting set is close to the largest possible
convex set contained inside the viability kernel for this setup. Note that for
this particular example, the algorithm takes on average 2s and 9 sequential

NLP solving steps to converge.

Given this control invariant set, relaxed safety filters (2.32) are implemented

with a single relaxation term ag4.s and different values of age.s. The relaxation

48

STCyas(S*) = —5.000 - 1077 STC(S")
RAN S
- A S
- \\] -0].
. ~ ~
2+ = S o - - -0.2
= ~
- RN 0.3
L \
..) -0.4
Yol ,1
! I -0.5
\ ::
-1r 28 S -0.6
~ SRS
Ty 3
21 RN =] -0.7
~ -
AN] -0.8
-3t N J
| 1 1 —0.9
-2 0 2

Figure 2.9: Regulation kernel for an exact model (2.105) after convergence
of the proposed algorithm. The safety set is in red. The viability kernel is
the black dashed line. The facets and vertices of S are displayed with colors
corresponding to the maximum value of the subtangentiality condition for that
face. The arrows correspond to the directions of the dynamics at the vertices
for the optimal inputs u}.

penalty factor is chosen to be M = 1. The pendulum is initialized at x(ty) =
0.5, 0]T and left to fall freely: ug4.s = 0. The resulting system trajectories are
shown in Fig. 2.10. As expected, the system remains inside the safety set,
and the smaller a4 is, the more invasive the resulting filtering is. It can also
be seen that « is also relaxed at times because of the small chosen value of
M. Higher values of M would result in less relaxation, but still guarantee

feasibility of the filter inside the regulation kernel.

49
2.5.3 Inexact Model Results

In a second phase, the uncertainty associated with p is increased and the re-
sulting regulation kernels can be seen in Fig. 2.11 for various sizes of that
uncertainty. As expected, the higher the uncertainty is, the smaller the result-
ing kernel becomes. Note also that increasing the uncertainty does not have

any perceptible effect on the convergence time of the algorithm.

Given the regulation kernel associated with P = 1.0 + 0.2, a relaxed robust
safety filter (2.47) is implemented with a single relaxation term ag.s = 5.
The relaxation penalty factor is chosen to be M = 50. The pendulum is
initialized at z(to) = [0.5,0]" and left to fall freely: ugs = 0. The resulting
system trajectories are shown in Fig. 2.12 for different actual values of p. As

expected, the system remains inside the safety set for all values p € [0.8,1.2].

Then, given this same regulation kernel associated with P = 1.040.2, relaxed
robust safety filters (2.47) are implemented with different uncertainty associ-
ated with p, while the actual value of the parameter is set to p = 1.0. Again,
the relaxation term is chosen to be ag4.s = 5, the relaxation penalty factor is
chosen to be M = 50, and the pendulum is initialized at z(t) = [0.5,0]" and
left to fall freely: wgs = 0. The resulting system trajectories are shown in
Fig. 2.13. As expected, the regulation kernel associated with P = 1.0 + 0.2
is also a regulation kernel for smaller size of uncertainty associated with P.
The system therefore remains inside the safety set for all the different values
of the uncertainty associated with p while being more conservative when this

uncertainty set is large.

Finally, given this same regulation kernel associated with P = 1.0 4= 0.2, scal-
able relaxed robust safety filters (cf. Sec. 2.3.5) are implemented with different
values of]/\7\5 > 2 as in this 2D case, the maximum number of active constraint
is N/s;(= 2. Again, the parameter is set to p = 1.0, ages = 5, M = 50, and
the pendulum is initialized at z(ty) = [0.5, O]T and left to fall freely: uge, = 0.
The resulting system trajectories are shown in Fig. 2.14. As expected, the
system remains inside the safety set for all the different values of]/V\s, and larger
values of]/\7\5 yield smoother input filtering, but at the expense of computational

time.

50
2.5.4 Realizable Results

Finally, the effect of state uncertainty on safety filtering is showcased. In
particular, state uncertainty A, is introduced and the resulting realizable reg-
ulation kernels for P = 1.0 & 0.1 can be seen in Fig. 2.15 for various sizes of
that uncertainty. As expected, the higher the uncertainty is, the smaller the
resulting kernel becomes. Note also that this time, increasing the uncertainty
does have a noticeable effect on the overall convergence time of the algorithm
as the higher the uncertainty is, the more constraints the successive NLPs

have.

As discussed previously, the realizable kernel algorithm 2.4.4 can be used to
more quickly compute simple regulation kernels at the expense of added con-
servatism. This is showcased in Fig. 2.15 where the black set computed with
the simple algorithm 2.4.3 is larger than the blue set computed with the real-
izable algorithm 2.4.4 for a state uncertainty set A = 0.

An example of realizable safety filter using these computed sets can be seen
in Fig. 2.16. In this case, the inverted pendulum is controlled by a realizable
safety filter based on an inexact measurement of the state. In particular, the
measurement Z(t) is smooth, but different from z(t) by at most £0.2. As can
be seen in these graphs, a realizable formulation of the safety filter is effective

at keeping the system safe inside the regulation kernel.

In order to evaluate the APA=u and BPAwu maps online, one need to be able
to evaluate F i (z). This is done in 2 steps. First, facets that potentially
constitute F3 (Z) are determined by checking for intersection between z + A,
and the bounding boxes of all the facets of S. Then, the actual F3 () set
is determined by checking the feasibility of the following LP for all of these

pre-selected facets i:

St) M= (2.106)

Z)\k’U(V'S)k cT+ A,

k=1

The importance of the realizability of the filter is highlighted in Fig. 2.17 where

trajectories of the inverted pendulum presented in the previous section can be

ol

observed for a robust safety filter and a realizable safety filter working with a
realizable safety kernel. In this scenario, the control loop rate is A, = 0.1s and
as expected, a simple robust safety filter fails in preventing the system from
leaving the regulation kernel. On the other hand, a realizable safety kernel is

effective at keeping the system safe despite this low control loop rate.

The behavior of realizable safety filters with different control loop rates can

be seen in Fig. 2.18 for a given realizable regulation kernel.

2.6 Hardware Implementation

2.6.1 Hardware Setup

The Segway platform used here began as a Ninebot E+. All of the electronics,
including sensors and motor controllers, were removed, as well as the steering
column. The steering column and human rider were replaced by a steel column
with adjustable weights and height at its top. The original motor controller
was replaced by a set of Elmo Gold Solo Twitters, which provide direct cur-
rent control of the motors (cf. Fig. 3.10). The onboard state estimation is

performed using wheel encoders and a VectorNav VN-100 IMU.

A Teensy 3.5 reads and processes the sensor data and sends the state infor-
mation to the main computer onboard, a Jetson TX2, which computes the
control action that is sent to the motor controllers. The TX2 runs Ubuntu
18.04 LTS and the ERIKAS real-time operating system concurrently through
the Jailhouse hypervisor. The Linux OS runs ROS, which allows external com-
munication and logging of all of the necessary data. The real-time operating
system handles the communication with the Teensy and the computation of
the state observer and control actions. These two operating systems are able
to share information through a shared memory interface. The safety filters
implementation is the same as the one used for the simulations of the inverted

pendulum.

2.6.2 System Identification

In order to translate these simulation results to hardware, confidence in the
validity of the model is fundamental as discussed presently. To that end, we
developed two test beds to accurately identify the inertial parameters of the
segway vehicle (cf. Fig. 2.20). The first test bed (on the right in Fig. 2.20)
is able to measure the position of the center of mass of any object in a given

plane by using 3 load-cells whose positions are accurately known. The second

o2

test bed (on the left in Fig. 2.20) is able to measure the inertia of any object
along a given axis by measuring the oscillations of that object when attached
to a rotational spring. Then, by combining several such measurements for
various orientations of the object on the test beds, it is possible to estimate
all the inertial properties of this object (mass, position of the center of mass,

inertia matrix) with a high level of accuracy.

This process was therefore carried out for the segway vehicle in order to derive
the models that will be used in the rest of this work (cf. Fig. 2.21 and Fig.
2.22).

2.6.3 Model and Formulation

For this demonstration, the Segway is fitted with a 3rd wheel and only con-
trolled longitudinally so that it can be modeled as a double integrator with
viscous friction. The state is therefore defined by longitudinal position and
velocity of the vehicle x = [p, v] with input u € [—20, 20] being the total motor

current. The identified model is:

a'c:[o] (2.107)

_f.
m-Ru m v

where m € 73+ 1kg is the equivalent mass of the vehicle (accounting for wheel
inertia), R € 0.2 £ 0.01m is the wheel radius, £ € 1.2 £ 0.1Nm/A the wheel
level torque constant, and f € 23 + 2N /(m/s) the global friction coefficient.

The safety set is defined as p € [—3,3]m and v € [—3, 3|m/s.

2.6.4 Robustness to Mass Variability

First, the effectiveness of the robust approach is demonstrated by computing
a regulation kernel assuming the identified measurements and bounds m €
[70,75]kg and running a scalable relaxed robust safety filter (2.47) assuming
these same bounds. Two runs are performed, one with the vehicle empty, and
one with the vehicle loaded with a 57kg weight (cf. Fig. 2.19). For each run,
the vehicle is started at the origin of the state space and the desired input is set
to a constant uqes = 20A. The results of these experiments are reported in Fig.
2.23. As expected, when the vehicle is empty and the identified model is (most
likely) valid, the vehicle remains inside the regulation kernel and therefore the

safety set. However, when the model is not valid, the system cannot be kept

93

inside the regulation kernel and safety set. Note that when the safety filter

becomes infeasible in this latter case, the input is set to v = —20 - tanh (10v).

When a safety kernel is computed assuming m € [70, 130]kg, the safety filter
is effective at keeping the system safe with or without additional mass as
reported in Fig. 2.24. For the case with no additional mass, two safety filters
assuming respectively 75kg and 135kg maximum vehicle mass are tested on the
m € [70, 130]kg safety kernel, and as expected, both perform well with minimal
performance difference. Note that for all these experiments, the safety filter is
ran at 800Hz.

2.6.5 Robustness to Controller Frequency

Now, the effectiveness of the proposed framework to address state uncertainty
is showcased with the same experimental setup and scenario as previously.
In particular, the capability of this framework to explicitly account for time
sampled sensing and control is highlighted by altering the frequency at which
the safety filter is ran.

At first, a realizable safety kernel is computed for the identified model (2.107)
with A, = 0.01s which correspond to At = {£0.031,+0.028} . Scalable real-
izable safety filters (2.52) are implemented with a variable loop rate satisfying
A; < 0.01s, and with a fixed loop rate A; = 0.1 in its relaxed and non-relaxed

version.

As can be seen in Fig. 2.25, the system is only kept inside the regulation kernel
when A; < 0.01s, as anticipated. The result of the same experiments but for
a realizable safety kernel corresponding to A; = 0.1s can be seen in Fig. 2.26.

As expected, all the trajectories remain safe in this case.

54

Ugct

—_— Ui w

1.5 ' ' ' ' ' '
0 1 2 3 4 5) 6

t

5

3 e —____
0 I I I I I 1
0 1 2 3 4 5) 6

t

Figure 2.10: Relaxed safety filter for an exact model (2.105) with M =1 and
various values of desired relaxation factor ag.;. The circular markers along the
trajectories are spaced 1s apart. The safety set is in red and the regulation
kernel in blue.

55

3L P=10%£0.0

——P=10+0.1

P=10+0.2
2L
1k
90_
1t
21
3t

-3 -2 -1 0 1 2 3

0

Figure 2.11: Regulation kernels for various inexact models (2.105) after con-
vergence of the proposed algorithm. The safety set is in red.

56

E
S
-1r = = =Udes
= Umin
1.5 - - - - - -
0 1 2 3 4 5 6

Figure 2.12: Relaxed robust safety filter for an inexact model (2.105) assuming
P =1.0+0.2, and with M = 50 and ag4.s = 5. The regulation kernel in blue
corresponds to P = 1.0 £ 0.2. The different trajectories correspond to various
actual values of the parameter p. The circular markers along the trajectories
are spaced 1s apart. The safety set is in red.

57

27 |
——P=1.0+00
——P=1.0+0.1
1.5 P=10+0.2

Ugct

Figure 2.13: Relaxed robust safety filters for an inexact model (2.105) assuming
different values of P, and with M = 50 and ag.s = 5. The regulation kernel
in blue corresponds to P = 1.0 4+ 0.2. The actual value of the parameter is
p = 1.0. The circular markers along the trajectories are spaced 1s apart. The
safety set is in red.

58

2r 1
—J/\/'\s = 2, dt = 30us
—— N, =76, dt = 36ms

—

N, = 150, dt = 123ms

1.5

0.5

Ugct

Figure 2.14: Scalable relaxed robust safety filter for an inexact model (2.105)
assuming P = 1.0 £ 0.2, and with M = 50, ages = 5 and p = 1. The regu-
lation kernel in blue corresponds to P = 1.0 £ 0.2. The different trajectories
correspond to various values of N,. The reported dt correspond to the average
computation time for the safety filters on an Intel i7-6820HQ. The circular
markers along the trajectories are spaced 1s apart. The safety set is in red.

59

3L no A,
A, = =£0.0

-3 -2 -1 0 1 2 3
0

Figure 2.15: Realizable regulation kernels of inexact models (2.105) with P =
1.0+ 0.1 and various value of state uncertainty A,. The safety set is in red. In
black is the regulation kernels computed with the regulation kernel algorithm
2.4.3. The dotted squares in the middle correspond to the size of the state
uncertainty set A,

60

Realizable SF, x(t)
———Realizable SF, z(t)
Relaxed Realizable SF, x(t)
Relaxed Realizable SF ()

1.51

0.5

1

S

Ot
T

Ugct

-1.5

Figure 2.16: Realizable safety filter and scalable relaxed realizable safety filter
with varDelta, = £0.2, Ny =5, M = 50 and ages = 1.

Ugct

Robust Safety Filter
Realizable Safety Filter
L5+ X Robust Safety Filter Infeasible

3
0 S - e
-0.5+
L = = s
=y Mo || | A
0 1 2 3 4 5

Figure 2.17: Realizable vs Robust-only safety filters.

62

27 I
— A, = 0.01s, A, =+ [0.032, 0.027]
— A, = 0.025, A, +[0.164,0.133]
1.5} A, = 0.1s, A, + [0.341,0.266]

Ugct

Ugct

1

S

Ot
T

Ugct

-1.5

0 1 2 3 4 S
t

Figure 2.18: Trajectories of an inverted pendulum under various realizable
safety filters and with various sampling frequencies.

Figure 2.19: Picture of the segway vehicle used for implementation.

63

Figure 2.20: CAD models of the inertial measurement test beds.

64

65

Figure 2.21: Picture of the segway vehicle on the center of mass test bed.

Figure 2.22: Picture of the segway vehicle on the inertia test bed.

66

67

Regulation Kernel for m € [70, 75]kg

2.5

Ugct
(@)
T
L~

= = =Udes

= Uminy Umazx

-20 - - -
0 1 2 3 4
t

Figure 2.23: Implementations of a Scalable relaxed robust safety filter with
valid models and non valid models for 2 different system. N, =5, M = 50,
and oges = .

68

Regulation Kernel for m € [70,135]kg

|
——m = 73kg (Myqe = 75kg)
——m = 73kg (Mmyq: = 135kg)
m = 130kg

0.5

Uget
o
T

= = = Udes

= Uminy Umaz

-20 - .
0 1 2 3
t

Figure 2.24: Implementations of a scalable relaxed robust safety filter with
valid models for 2 different systems. The value of 17,4, correspond the model
used for the safety filter, Ny =5, M = 50, and ages = 5.

69

Regulation Kernel for A; = 0.01s

2.5 I
——dt< 0.01s
——dt=0.1s
2 dt= 0.1s, not relaxed
15}
0
1E
3
0.5 \\1
N\
i
0 I I I I I]S
0 0.5 1 1.5 2 2.9 3
0
20
10} EBBBBBt - -
5 o |
10 F|= = = Udes e I
= Umin, Umax L . i
-20 - - -
0 1 2 3 4
t

Figure 2.25: Implementations of a scalable realizable safety Filter with various
control loop timing resulting in valid and non valid control law realizations.
Ny, =2, M =100, and ages = 15.

70

o Regulation Kernel for A; = 0.1s

——dt< 0.1s
——dt=0.1s
2 dt= 0.1s, not relaxed

1.5+

0.5/

20

10 -

Ugct
(@)
T

= Umin, Umazx =2

-20

Figure 2.26: Implementations of a scalable realizable safety filter with various
control loop frequencies resulting in valid control law realizations. Ny, = 2,
M = 100, and ages = 15.

71
Chapter 3

IMPLICIT SAFETY FILTERING

3.1 Introduction

As discussed in the previous chapter, finding explicit representations of large
control invariant sets makes it easy to then filter unsafe inputs. Unfortu-
nately, these algorithms take substantial time to run and can only handle high
dimensional systems at the expense of conservative results, leading to small
operational regions and degraded performances for the system. However, com-
puting viable sets is only one possible approach for ensuring safe operation of
a system. Another popular class of methods relies on predicting systems’ tra-
jectories to guarantee safety. A backup strategy is chosen, and the trajectory
of the system under that backup control law is computed online at every in-
stant. Guaranteeing safety of the system can then be achieved by switching
between the nominal and backup controller intelligently based on the safety of
the backup trajectory [10, 42]. Multiple backup strategies can also be chosen
from on the fly with a similar underlying switching strategy [57, 67]. Fur-
thermore, the backup strategy can be determined on the fly so as to adapt to
the situation and be as minimally invasive as possible [44, 71, 74]. This last
methodology is at the heart of path planning and optimal control research, but
even though it potentially yields the best system performances, its complexity

makes practical applications favor the simpler alternatives discussed before.

In this chapter, we propose to unify both set-based and trajectory-based ap-
proaches and show that they are really just two sides of the same coin. We
present a safety critical control framework that combines the strengths of both
approaches to deliver efficient and scalable methods of ensuring safety for com-
plex dynamical systems. First, we will present the safety-filtering methodology
from a set-based perspective. We will then show how it is possible to sys-
tematically define a control-invariant subset of the safety set, namely a Safe
Backward Image (SBI) of the backup set. This set is defined implicitly from
a backup control law and a backup set, and the implementation details of a
safety filter in that context are then presented. We then show that one can

relax the stability requirement on the backup control law and still get mean-

72

ingful albeit weaker safety guarantees. In the following section, we explore
the relation between optimality of the backup control law and size of the Safe
Backward Image. In the case of linear systems, we show that it is possible
to implement and couple a Model Predictive Controller and a Safety Filter
to obtain the largest possible Safe Backward Image. Finally, methods of se-
lecting a safe input with varying levels of trade-off between conservativeness
and computational complexity are proposed and illustrated on relevant sys-
tems and applications, namely: a two-wheeled inverted pendulum (Segway),

an industrial manipulator, a quadrotor, and a lower body exoskeleton.

3.2 Implicit Safety Filtering

The key to our approach is to realise that, in practice, an explicit representa-
tion of a control invariant set S is not necessary. If S is practical and can be
defined as in (2.24), then one only needs to be able to numerically evaluate
hi(z) and Vh;(z) for any given state € S quickly enough for the safety filter
to run in real-time. We therefore propose a way to systematically define a

control invariant subset of S.

3.2.1 Implicit Control Invariant Set

Our approach for defining such a set is inspired by [46]. The idea is to start
with a “seed of safety”. the backup set, that is easy to compute explicitly
and provide infinite time horizon guarantees, i.e it is control invariant. Ideally,
this backup set would be big enough so that we can use it directly for safety
filtering, but as discussed previously, explicit safe sets are hard to compute
which leads to conservative results and poor performance for high-dimensional
systems. Therefore, we chose to “implicitly expand” the backup set over an
additional finite time horizon through the flow of the system under a care-
fully chosen backup control law. This way, if this implicit expansion is
constructed properly, we get access to a larger control invariant subset of the
safety set without going through the time-consuming process of computing an
explicit representation of this large set. We will call this implicit expansion
of the backup set the safe backward image of the backup set. Indeed, as
we are about to see, the key for defining a set that is control invariant is to

consider all the states that can safely reach the backup set.

For the exposition of this framework, we will only address the perfect model

case. Let therefore start with some further assumptions about the perfect

73

model:

Assumption 4. The functions f and g defined on a compact set X C R"
are continuously differentiable. The control policies are restricted to be func-
tions u : R* x X — R™ Lipschitz continuous in state over X and piecewise
continuous in time over R™. We furthermore define by U C R™ the compact
and convex set of admissible inputs for this system, i.e. Vo € X and Vi € R™,
u(t,x) e U.

Assumption 5. Let U be the set of all continuously differentiable backup
control laws taking values in the set of admissible inputs: u; : R™ — U. Under
Assumptions 4, we know that for all u, € U, there exists a solution to (2.1)
that is unique and defined for all times when solutions to (2.1) stay in X.
Therefore, one can define ¢™ : [0, Tx] x X — R" to be the flow of (2.1) under
the control law u,. Under all these assumptions, the map ¢;* : X — R" defined
by ¢ (x) = ¢"(t,x) is a homeomorphism of X (cf. [53]) for all ¢ € [0, T%].
We will denote by S, C S the non-empty compact backup set as depicted in
Fig. 3.1. We furthermore assume that S, is practical and can be represented

as the super level set of a smooth function h;, : R" — R.

Definition 14. We define the safe backward image of the backup set to be
the set Sy £ Ry N 27" where:

R 2 {a e X | 6 () € i} (3.1)

is a set encoding the reachability of the backup set under the backup control
law and:

Q2 {zeS|Vte|0,T], ¢;* (x) € S} (3.2)

is a set encoding the safety of the corresponding backup trajectory.

Because RY = (¢%)"(S,) and ¢% (R%) = S}, the definition of forward in-
variance can be reformulated in terms of the flow. Indeed, z (ty) € S =
Vit > to, x(t) € S is equivalent to ¥Vt > 0, ¢;* (S) C S. Hence the following

propositions.

Proposition 5. If Sy, is forward invariant under u, € U, then for all T > 0,

R} is forward invariant.

74

Proof. Let us reason by contraction and assume that Ry’ is not forward in-
variant. That means there exist * € R7* and t* > 0 such that ¢, (z*) ¢ R7.
Let & £ ¢ (z*). By property of the flow, ¢7° (2) = ¢ (7", (2)) . But

W (3) = o (2%) £ 1y, € Sy So ¢ (T) = ¢ (1) € Sy since Sy is forward
invariant. This implies that & € R}, hence the contradiction that proves the

proposition. O

Proposition 6. The set S, is forward invariant under u, € U if and only if
Sy € R for all T > 0.

Proof. Let us first assume that for all 7' > 0, S, C R7*. By definition of R7
and because ¢5° is a homeomorphism, VI' > 0, ¢5° (R?) = Sp. So for all
T >0, ¢5* (Sp) € S, which proves the necessity of forward invariance. The

sufficiency of forward invariance follows directly from Prop. 5, as for all 7" > 0,
7 (Ry) = Sy and ¢ (RyY) € Ry so S, € Ry m

These two propositions are actually fairly intuitive as they indicate that if the
backup control law stabilizes the backup set, then the backward reachable set
of the backup set is an invariant set larger than the backup set. Let us now

see how we can analytically describe this set.

Proposition 7. Given u, € U and a forward invariant set S, = {x € R™ | hy (x) > 0},
then:
R = {z € R | hyo o (x) > 0} (33)

Proof. Consider # € Ry, then ¢7° () € Sp. So hy (¢7° (x)) > 0, hence = €
{x € R" | hy (¢7° (z)) > 0} . Let us now consider x € {x € R" | hy (¢ (x)) > 0},
then ¢7° (x) € S, hence x € R, O

The description for (27 is similar.

Proposition 8. Given w, € U and S described as in (2.24), then:
2= () {z€X | hiog(z) >0, i€ [1,N]}, (3.4)

t€[0,T

or equivalently:

2p = {v e X | hg(x) = 0}, (3.5)
with:
A
hew (2) £ min hio ¢* (z). (3.6)

1€[1,Ns]

75

Proof. This follows directly from the definition of 24 and the expression of S

as a practical set. O

We can now state the core theoretical proposition of this work.

Proposition 9. If S, C S is forward invariant under w, € U, then for all
T > 0, the safe backward image S7* is a subset of S that is forward invariant

under that control law.

Proof. The fact that S7* C S follows trivially from the definition of 27°. Let
us reason by contradiction and assume that S;* is not forward invariant. This
means that there exist z* € S7* and t* > 0 such that ¢, (z*) ¢ S7*. But from
Prop. 5, we know that R} is forward invariant so ¢, (z*) € Ry’ and ¢ (z*) ¢
27", This implies that there exists t# > 0 such that ¢;2 (z*) ¢ S. But
¥ € (7%, s0 t# > T, i.e. there exists ¢’ > 0 such that ¢} (¢7° (z*)) ¢ S. But
z* € Ry, so ¢pf (2*) € Sy and because Sy, is forward invariant, ¢ (¢7" (z*)) €
Sy, which contradicts S, C S. O

It trivially follows from this last proposition that S;* is a control invariant
subset of S, so it can be used to define a non-empty sub-regulation map U §to-
The challenge now is to be able to evaluate this regulation map, as it only has
an implicit expression inherited from the implicit nature of the construction

of S7*. Let us now see how we can tackle this issue.

3.2.2 Implicit Safety Filter
3.2.2.1 Implicit Sub-Regulation Map

In order to realize a safety filter, one must be able to evaluate the regulation
map Ug (z). This is easy if S has an explicit representation, which is why
so much effort has been focused on finding such a representation. In our
framework however, S7" is defined as a function of ¢;* for which we do not

have an explicit representation, hence the implicit nature of S7’.

The sub-regulation map U S evaluated at a current state zq is equal to the
set of u € U such that:

{ Vhy (x7) D7’ (20) fo (u) + oo (hy (27)) = 0 (3.7)
. >0 ’

76
for all i € [1, N], all t, € [0,T], and with z, £ ¢, (zo) and fo (u) = f(z0) +
g(xo)u.

Two issues arise at the sight of this expression of the sub-regulation map. First,
the gradient of the low—whose existence is guaranteed from the smoothness
assumptions in 4 and 5—needs to be computed. Second, because t;, lives in
the interval [0, 7], the images of U g are formed by an uncountable set of
constraints, which elevates the safety filter’s underlying optimization problem
into the class of robust optimization problems, which is hard, if not im-
possible to solve in real-time. Let us therefore see how we can address these

issues.

3.2.2.2 Numerical Approximation of the Sub-Regulation Map

The practical solution to these issues is to recourse to numerical integration
tools. By numerically integrating (2.1) forward in the interval [0,7] under
the backup law w, ¢’ (2¢) can be numerically evaluated a discrete times
{tbo,...,tyn, }- It is therefore possible to approximate U gt (x0) by consid-
ering the countable set of constraints at these different times t;;; the more

points being considered, the tighter the approximation becomes.

Then, to compute D@} (70), one only needs to integrate along with (2.1) a
sensitivity matrix Q(ty, o). As explained in |75], the square matrix Q (¢, zo)

solution of the following differential equation:

dQ (ta xD)

dt, Dfa (¢4 (x0)) Q (ty, o) , (3.8)

with Q(0, z¢) = I and where f, (z) 2 f(x)+ g(x)u, (x) is exactly the Jacobian
of the flow ¢, at xo:
Q (ty, x0) = D@L (w0) . (3.9)

Note that it is important for the backup control law used to smooth, which
means that in the case of finite input bounds, a smooth saturation function

has to be used for the expression of ().

3.2.2.3 Under-Approximation of the Sub-Regulation Map

We now turn to the issue of having an infinite number of functions defining

the set. In practice, we can only enforce positivity of a finite number of the

7

functions in (3.7), and therefore propose a safety filter that enforces positivity

of a finite subset of e-tightened constraints evenly spaced in time:
Vhy(z7)Déy (o) fo(u) + ao(hs(ar)) > 0, (3.10a)
Vhi(:ctb,k)DqSZf’k(xo)fo(u) + o (hy(y,,,) — €) >0, (3.10Db)
for i € [1, N5 and k € [0, N,].

Although this just enforces positivity of a finite number of constraints, under
some regularity conditions and appropriate margins ¢;, we expect that this
should be sufficient to guarantee positivity of the whole family of functions.

We make this more precise below via the following lemma.

Lemma 2. Let L, be the Lipschitz constant of a function h with respect to the

Fuclidean norm and let:

Ly = sup || f(x) + g(z)up(2)]l2, (3.11)

T€S

be the maximal velocity of the backup vector field. Then:

‘hoqagB(x) —hogb;‘B(x)‘ < LyLylt — s|. (3.12)

Proof. Assume WLOG that t > s and let y = ¢ (z). Then:

oot (@) = ho ot ()] < Ln |01 (@) — 02 (@)
’lLB
= Lu|oi) — v, < DLl = sl
since L, is the maximal velocity of the vector field. m

It follows that invariance of S7" can be enforced via the finite subset of con-

straints in (3.10) provided that the times ¢, are spaced tightly enough.

Theorem 3. Let 1; = maxpeq,n,—1] tok+1 — tox be the granularity of the time
discretization. If for all i it holds that ¢; > Ly, Lg%k, then (3.10) enforce

invariance of Sy'.

Proof. By the same reasoning as before, the constraints (3.10) imply that
hi(zy,,) = hjo ¢ (x) > € for all k € [1,N;] for all times. Therefore, by
Lemma 2, we can for each t € [0, 7] find a k* such that:

i

‘hl(‘rt) - hi@’ﬂ,k*) < LhiL¢§’ (313)

78

meaning that:

hi(z,) > € — LhiL(ﬁ% > 0. (3.14)

Thus all the functions defining S;* are positive, and hence S5 is invariant. [

3.2.3 Numerical Example
We now illustrate these ideas on a simple example of nonlinear inverted pen-

AT
dulum. This system is defined by the state x = [9, 9} and the dynamics:

(3.15)

. 0
T=
sin (0) + u
with a saturated input u € [—Umaz, Umaz] With Upme, = 1.5. This pendulum is

upright at an unstable equilibrium when # = 0. The safety set is chosen to be

a box centered at the origin and of edge size 27 (cf. Fig. 3.2).

The first step is to choose a backup control law and a backup set. In this

example, we consider linear backup laws that stabilize the system to the origin:
up(z) = —K.x (3.16)

for some gain vector K. A backup set can then be carefully chosen as a level
set of a quadratic Lyapunov function of the linearized dynamics of the system
around the origin. As hinted at before, higher backup gains yield in general
a larger SBI, as illustrated in Fig. 3.2. It is therefore important to choose a

good backup law as we will discuss further in Sec. 3.4.

Given a backup control law, a backup horizon T" has to be chosen. As one can
expect, the larger this time horizon is, the larger the resulting SBI also is, as
illustrated in Fig. 3.3.

Given a choice of backup law, set, and horizon, a safety filter can be imple-
mented using numerical integration as explained in Sec. 3.2.2.2. At each safety
filter iteration, the dynamics of the system are integrated under the backup
law over a time horizon T'. From the discrete values of the state and sensitivity
matrix over this backup trajectory, a set of linear constraints approximating
the regulation map can be constructed. Finally, a quadratic program can be
solved to find the best input satisfying the safety constraint encoded by the
regulation map. Some trajectories of the system under this safety filter can
be seen in Fig. 3.4. In this illustration, the pendulum is started from various

initial angles with zero velocity.

79

The value of the backup horizon therefore has a crucial impact on the appli-
cability of the method as one has to be able to do the numerical integration
and the QP solving fast enough for the safety filter to run in real time. Note
also that the computational complexity of the backup law and the dynamics
of the system have a non negligible impact on the speed of the safety filter
computations as they have to be evaluated numerous times for the integration

of the backup trajectory.

Finally, it is important to note that, although we compute the SBI explicitly
in this example for the purpose of illustration, at no point it is required to do
so for the safety filter to operate. Through the numerical scheme we propose,
we can render the SBI forward invariant without having to find an explicit
representation of it. This makes this framework applicable to nonlinear sys-
tems and does not require any particular analytical structure for the dynamics
of the system. As we will see in Sec. 3.6, not having to explicitly compute a

control invariant set has important advantages in practice.

3.3 Finite Time Safety Guarantees

So far, the backup policy and the backup set cannot be chosen arbitrarily
as the former has to be invariant under the latter, which still hinders the
scalability of the proposed approach. This comes from our desire for the safe
backward image to be a control invariant set, i.e. a set in which the system
can remain and evolve forever. In practice however, safety requirements often
do not necessitate that the system be able to run forever, but only that the
system be able to safely stop or terminate. In this section, we discuss an
extension to the proposed approach that allows a safety filter to be used to
enforce such safety requirements. As we will see, this extension allows for the
backup controller and backup set to be chosen independently which makes our

approach truly scalable in this case.

3.3.1 Reformulation of the Reachability Constraint

The idea here is to relax the reachability constraint of R7*. For that, we will
restrict ourselves to backup sets that can be represented as the upper level-set
of a single function h, twice differentiable. In that context, we define the

notion of time to safety.

Definition 15. Given a backup control law u, € U, the time to safety

80
T, : X — R is given by:

Ty(x) =min{t > 0: hy (¢, (x)) = 0}. (3.17)

When z € Sy, we choose T}, () = 0, and when z ¢ S, and a solution to (3.17)

does not exist, we choose Ty, (x) = +00.

Let us now consider the set R_%b given by the closure:

Ry &£{re X |0<Ty(x) <T}, (3.18)

with T'> 0 and u, € U.

The interest of considering such a set becomes clear when realizing that if S,
is not invariant under u,, Sp is not a subset of Ry (cd. Fig. (3.1c)). This
makes the set R;* unusable as it is not even guaranteed that Ry’ NS # {0}
and that S;* is not empty. The set R_;b on the other hand will at least contain
part of the boundary S (provided the backup set is not completely repulsive)
and to grow monotonically with 7" (cf. Fig. (3.1d)).

3.3.2 Augmented Regulation Map

Similarly to Sec. 72, we would like to regulate safe solutions using the sub-
regulation map Ug while utilizing this new set R_;b The barrier condition
(2.29) for set RY evaluated at a state x5 € Ry for a given backup control law

up € U is given by
— VT (20) f (w0, u) + o (T — Ty (z0)) > 0, (3.19)

where f (o, u) 2 f(z0) + g(xo)u. As demonstrated in [41]:

Yk @) DT(w)
V) =G @) T @ @) 20

with 7 £ ;’;(xo). One will immediately notice that this gradient is only defined

when Vhy (Z) - f(Z,u, (T)) does not vanish. States for which this happens
should therefore be avoided to allow the regulation of safe solutions using Ug
with R_?’ Let us therefore consider the following extension of the safe backward

image of the backup set—the safe backward reachable set of the backup set:

S =R N QW N O, (3.21)

81
with
Cp & {Io € R_;b | cos (z0) > 5b} , (3.22)

a small constant €, > 0, and

5 (zg) 2 — Y0 (@)
VR ()]

f w (7)) (3.23)

(.
f @ @)

Proposition 10. IfR_%b s not empty, then for all xy € S_;f” \ Sy, there exist
strengthening functions o; such that Ugs (z0) # {0}
T

Proof. First, note that VT}, is not defined on 0.5y, hence considering only states

in S%\ S,. Then, Ugmy evaluated at a given state zo € S\ Sy is equal to the
T

set of u € U such that

Vhi (24,) Doy (o) f (o,) + a; (hy (w1,) 2 0
VT (o) F (0,) + (T — Ty (w0)) > 0 (3.24)
Veos (xg) f (2o, u) + v (cos (zg) — &) > 0

with i € {1,..., Ny}, t, € [0, T}, (20)], 7 = ¢;* (20), B and 7 extended class K
functions, and f (zo,u) 2 f(zo) + g(xo)u. Firstly, as DT (z0) f (o, us (z0)) =
f (T, uy (T)), we have

VT (o) f (20, up (20)) = —1. (3.25)

This is fairly intuitive as (3.25) is the time derivative of the time to safety
when the system is evolving along the backup trajectory. Secondly, because
for all ¢, € [0, T} (o)), T (¢4 (z0)) = T (x0),

Véos (o) f (o, up (10)) = 0. (3.26)

Finally, because zy € S5° D 02, for all ¢, € [0, T} (z0)], ¢1* (x0) € S. So by
continuity of all the functions involved, the «; can be chosen (cf. |5, 38]) such
that for all 2o € St

Vhi (x1,) Doy (o) f (w0, us) + i (hi (24,)) > 0.

So all conditions in (3.24) can be simultaneously satisfied in S_Eﬁ” by choosing

u (z9) = up (o), hence Ugy is well defined and non-empty over all of Sw. O
T

Remark 6. The extended class K functions § and v can be chosen arbitrarily.

82

Remark 7. Computing Vcos (zg) requires the evaluation of the hessian of h,
at xg, but that otherwise U@ can be evaluated using the same technique as in
Sec. 3.2.2 without any change in complexity of the algorithms. Also note that
this new formulation of the sub-regulation map creates additional algorithmic
challenges in reliably finding T but the details of these numerical issues are

outside the scope of this paper.

3.3.3 Weaker but Practical Safety Guarantees
Let us now study what guarantees we get when regulating the system in S_;ﬁb

using USTb
T

Theorem 4. [fR_;b is not empty, x (0) € S_%b, and for almost all t € RT,
u(t,x(t)) € Ugm, then there exist Ty € [0,+0c] such that for all t € [0,T5),
T

Pt (1) € S Furthermore, if Ty < 400, QS;it’x(t)) (x) € Sp.

Proof. From Prop. 10, we know that U@ is non-empty on S_rf,‘f’ \ Sy so the
sub-tangentiality condition is satisfied on the boundary of that set. Hence
from [8, Prop. 4.3.7|, we know that the system will never cross the boundary
of S_;‘f’\ Sp. So if the system ever leaves the compact set S_;ﬁb it will be through
S N Sy which is never empty Ry O

Concretely, this means that regulating the inputs using Ugwy (with safety filter
T

(2.31) for example) will guarantee that—if the system starts in S¥ but outside
of S, it will either stay in S and within reach of the backup set S, within a
finite time 7', or reach the backup set in finite time (cf. Fig. 3.1d). These
guarantees may seem weak compared to the ones in (3.2), but they are actually

very relevant in practice.

For autonomous systems for example, the priority is (almost) always given to
the avoidance of human casualty over the integrity of the system. Being able
to safely terminate the system is often all that is requested (cf. [1] for more
details in the case of UAVs). For commercial aviation and transoceanic flights,
being able to safely reach an airfield within a set amount of time is the safety
criterion used by the Federal Aviation Administration (cf. ETOPS). In this
case, the modality of landing the plane—what happens once the system has

reached the backup set—can be handled separately.

33

Finally, it will not be proven here but, it is easy to verify that (R_%b U Sb) DRy
and that under some mild assumptions, when 5}, is forward invariant under wuy,
(R_%b U Sb) = R} (cf. Fig. 3.1b). Therefore, when S}, is forward invariant (and
gp small enough), the present approach yields the original safety guarantees of
Sec. (3.2), i.e. the system remains in S for all times. Hence the soundness of
this approach that provides weak but practical safety guarantees without the
challenge of having to verify the forward invariance of the backup set under
up, but also provides strong safety guarantees when the backup set is actually

forward invariant under u;, (cf. Fig. 3.1).

3.3.4 Numerical Example

We now illustrate this approach on the nonlinear inverted pendulum of Sec.
3.2.3. In this case, we assume that the pendulum shall not go past § = —7
on one side, but that there is a hard stop on the other side at ¢ = 7 that

the system can run into to safely stop. The backup set is therefore chosen to

™

be a narrow band around # = 7, and the safety set is a rectangle with edges

0 = —% and 6 = +7%, so opened towards the edge ¢ = 7 (cf. Fig. 3.5). The
backup policy is chosen to be uy(z) = 10 ({5 — 0) such as to drive the system

back towards the hard stop.

In this case, the backup set is certainly not invariant under the backup policy,
so it is not the safe backward image of the backup set as illustrated in Fig.
3.5. The safe backward reachable set on the other end is well suited for this
scenario where only finite time safety is required. Indeed, as can be seen in
Fig. 3.5, the safe backward reachable set fully captures the set of safe states
and allows for safe operations. As illustrated in Fig. 3.6, if the pendulum is
left to fall towards negative fs, the associated safety filter slows it down so
that it stops before § = —7, but if it is left to fall towards positive s, the

filter makes sure the system safely reaches the backup set.

3.4 Optimality of the Backup Controller

3.4.1 Model Predictive Backup Controller

In light of the results illustrated in Fig. 3.2, a natural question that arises
is “what is the best backup control law to choose”, that is, a control law that
maximizes the size of the safe backward image for a given backup set and

backup horizon.

84

To address this question, let us consider the control law u* given by
u* (z9) = uy, (0) (3.27)

with u; being the control policy solution to the following optimal control

problem:
Backup MPC
wr £ argmax J (z(t), u(t))
uEUTr
st. &= f(x)+ g(x)u

©(0) = (3.28)

u(t) e U, Vt € [0,T]

x(t) €S, Vte[0,T]

hy (x (1)) > 0

for some cost function J and where Uz denotes the set of all piecewise contin-

uous control policies.

Remark 8. The time in (3.28) is shifted so that o = x (tz) = 2 (0) as only

time-invariant control systems are considered in this section.

Remark 9. Solutions to (3.28) might not be unique for a given zy, in which
case the right-hand side of (3.28) is chosen to be any element in the set of

solutions.

It immediately follows that

(3.29)

. w0 (1) ES, Vte [0, T
S%:{xoeXlﬂueuT,s.t.x°<) []},

and z,, (T) € S

where x,,(t) is the solution to (2.1) starting at zp at ¢ = 0 under the time

based control policy u(t).

Therefore, for all u, € U, S;* C S7*. We can therefore conclude that u, is an
optimal backup law in the sense that it yields an upper bound on the largest
possible safe backward image for a given backup set, as illustrated in Fig. 3.7.

However, u, is not well suited for the current framework.

A couple of points are important to address if one wants to use the u* law in

the proposed framework. First, the cost function J has to be chosen preferably

85

so as to stabilise S, (see [46] for such conditions). Secondly, v* must be smooth
(or at least continuous if one uses the filtering approach of Sec. 3.5), which is
rarely the case in general. Finally, if one is able to make u* smooth, solving a
nonlinear MPC online is not an easy task, and is even harder when one has to

compute the gradient of the flow under u* along with the optimal trajectory.

In some cases, these issues can be successfully addressed and an MPC backup
controller can be used directly as showcased in [37]. Nevertheless, in the
general case, it is not possible to use an MPC backup controller online, and
we have to default to a more offline approach. In particular, it is possible to get
near-optimal safe backward images by finding a smooth explicit approximation

of the optimal backup control law.

3.4.2 Neural Network Approximation of the MPC

In practice, one can use any functional basis of choice to fit the optimal backup
policy, provided that it is fast enough to numerically compute along with
its gradient. A smooth functional basis for approximating complex functions
can be found with feedforward neural networks, whose recent popularity has
made the associated tools very efficient. In particular, evaluating gradients of

feedforward neural network is computationally easy.
Indeed, for simple neural networks with recursion law:
Yir1 = f(wiyi +bi), (3.30)

the gradient of the entire neural network can be computed in the same forward

pass with the following recursion law:

dyi+1 = diag (%) w;dy;, (3-31)

with dyo being the identity matrix of size n (state dimension).

Referring back to the nonlinear inverted pendulum of Sec. 3.2.3, we can see in
Fig. 3.7 that the optimal safe backward image is larger than the largest SBI
we found using linear feedback for the backup controller (cf. Fig. 3.2).

We first solve the OCP (3.28) with the cost function:

T (x(t),u(t)) = / ' (0.1u(t)2 +100(1) + 9(t)2> dt (3.32)

over a grid of size 200 x 200 using GPOPS-II [69]. We then fit a neural network

with 2 hidden layers, each of size 35, and with a hyperbolic tangent activation

36

function over the generated data. The resulting safe backward image of this
approximately optimal policy, as can be seen in Fig. 3.7, captures most of the
optimally of the OCP, but, is actually usable in the proposed framework. This
method is applied on a larger dimensional system in Sec. 3.6 and similarly

strong results are observed.

3.5 Scalable Implicit Safety Filter

So far, we have been able to use an optimization-based safety filter by relying
on our ability to numerically evaluate the sub-regulation map at any given
state. Although this approach is optimal in terms of filtering, it comes at the
cost of having to compute the gradient of the flow along the backup trajec-
tories. The dimension of the system to integrate is therefore n + n?, which
can become a computational bottleneck for higher dimensional systems. It is
however, possible to sacrifice optimally of the safety filter for better scalability.
The key is that by construction, the backup law evaluated at the current
state is always an element of the image of the regulation map for that state.
In other words, if the backup policy is followed for the initial conditions inside

S72, the system will remain in the safety set for all time.

3.5.1 Smooth Switching to the Backup Control Law

This idea is at the core of a lot of alternative approaches to safety filtering
[10, 42, 44, 57, 67, 71, 74]. In most of these methods though, the safety filter
just operates a simple switch between nominal and backup controller until the

system has reached the backup set, which in practice is fairly intrusive.

The natural evolution of this idea is to implement a smooth transition be-
tween desired and backup inputs. To that end, let us look at the following

proposition.

Proposition 11. Given a nonlinear control system (2.1) with a corresponding
backup controller u, € U and a continuous function o : R xR x X xR — U,
the control law defined by

us(t,z) 2 a (t, Uaes (1), T, hS;b(x)) (3.33)

s a continuous selection of US;b if for allt > 0 and x € S7°, Uges is continuous
and:
a (t, Uges(t), ,0) = up(z). (3.34)

87

Proof. This follows trivially from the fact that for all x € S7*, wy(x) € U 5

and that Uge is non-trivial only when hgu (x) =0. O

This means that by choosing a switching function « appropriately, it is
possible to mimic the behavior of a QP-based safety filter without the added
computational complexity. Note, however, that this approach is fundamentally
more conservative than with a QP-based filter as when hg (x) = 0, it enforces
Uget(z) = up(x) whereas with a QP-based filter, ugq(x) € U s which is in
general larger than the singleton u,(z). Nonetheless, it is possible with a proper
choice of filtering function to get good performances in practice. Especially
since on a significant part of the boundary of the viability kernel of S, U St is

actually reduced to a singleton [64].

3.5.2 Numerical Example

We now illustrate this approach on the nonlinear inverted pendulum of Sec.
3.2.3. The safety specifications are the same as in Sec. 3.2.3. The switching
function is first chosen to be a basic ramp up of the backup input near the

boundary of the safe backward image:

o (12 hgu (@) = (1 hg (:::))6 w(z). (3.35)

Some trajectories of the system under this scalable safety filter can be seen
in Fig. 3.8. As expected, this safety filter is more conservative than the QP-
based one of Fig. 3.4, which often translates into an oscillatory behavior near
the boundary of the safe backward image. However, it is possible to mitigate
this behavior with a better choice of filtering function. For example, let us

consider the switching function defined by:

a (t, z, hS;b(x)> = ol (M(@) + (1 = Mx)Aa(t)) up () (3.36)

with ;
Az) & (1 - hS;b(x)) , (3.37)

L dhg(a(t)
Alt) = —C———, (3.38)

and o} the saturation function between 0 and 1. As illustrated in Fig. 3.9,
adding such a damping term can help reduce the oscillatory nature of such
scalable filters. A further approach for enhancing the performance and appli-

cability of these scalable safety filters will be presented in Sec. 3.6.4.

38

3.6 Applications
3.6.1 Two-Wheeled Inverted Pendulum (Segway)
3.6.1.1 Hardware Setup

The Segway platform used here began as a Ninebot E+. All of the electronics,
including sensors and motor controllers, were removed, as well as the steering
column. The steering column and human rider were replaced by a steel column
with weights near the top, to simulate the mass and inertia of a human. The
original motor controller was replaced by a set of Elmo Gold Solo Twitters,
which provide direct current control of the motors. The onboard sensing is
performed using wheel incremental encoders and a VectorNav VN-100 IMU.

A Teensy 3.5 reads the sensor data and acts as the state observer for the robot.

The Teensy sends the state information to the main computer onboard, a
Jetson TX2, which computes the control action that is sent to the motor con-
trollers. The TX2 runs standard Linux and the ERIKA3 real-time operating
system concurrently through the Jailhouse hypervisor. The Linux OS runs
ROS, which allows external communication and logs all of the necessary data.
The real-time operating system handles the communication with the Teensy
and the computation of the control actions. These two operating systems are
able to share information through a shared memory interface. All of the code

running on the Segway is written in C++.

3.6.1.2 Segway Test

In order to test the implicit safety filter on the Segway, a model of the dynamics
is required. The equations of motion are derived via Newton-Euler method,
treating the Segway as a two-wheeled inverted pendulum with torque inputs
at each wheel. For this experiment, the planar model is used, consisting of
four states: position (p), velocity (p), pitch angle (1), and angular rate (¢))
(cf. Fig. 3.10a). Since the motor controllers command current, the motor
torque constant is estimated via system identification. The other necessary
parameters, including the mass and inertia properties of the Segway frame

and wheels, were measured using various testbeds.

The next step is to define the safety set for the test. This is simply defined
as bounds on all of the states, with p € [~1,1] m, and ¢ € [, Z] rad. The
input bounds are u € [—20, 20]A.

89

After identifying the system dynamics and determining a safety set, a backup
set and backup controller must be generated. The backup set must be a subset
of the safety set that is invariant under the backup controller. Thus, we choose
a backup controller that stabilizes the Segway to the origin at its equilibrium
angle. This is achieved with a simple LQR controller. To obtain the backup
set, we compute a small region of attraction for this controller about the origin
in the form of a level set of a quadratic Lyapunov function of the linearized

dynamics of the system.

To implement the safety filter, a C+-+ implementation of the proposed safety
filter was developed. The library requires an expression for the dynamics, the
backup controller, the gradient of the closed-loop dynamics, the backup set,
the safety set, and the gradient of the safety set. The library integrates the
dynamics using an Euler scheme. The resulting quadratic program is solved
using a modified version of OSQP [79] that can be compiled on the real-time

operating system.

To showcase the effectiveness of the proposed approach, a simple scenario is
executed on the Segway with and without an implicit safety filter. The nominal
controller is a simple LQR that can be commanded a desired position. A
sequence of desired positions outside of the safety set are commanded, and
as can be seen in Fig. 3.12 and Fig. 3.11, without safety filter, the system
blithely breaches the safety set to the point where it falls to the ground when
the command is too aggressive. On the other hand, with the proposed implicit
safety filter, the system stably remains inside the safety set despite the unsafe
desired inputs. Note that for this experiment, the filter ran at 800Hz on the
embedded hardware with a backup horizon 7' = 1s and an integration time-

step of 0.01s. A video of this experiment can be found in [31].

3.6.2 Industrial Manipulator in Time Varying Environment

Next, we apply the infinite-time implicit safety method described in Section
3.2 to the problem of collision avoidance in a dynamic environment. The global
industrial robot market has more than doubled in the past five years, and the
International Federation of Robotics expected almost two million new robot
installations in factories by 2020 [45]. However, concern for the safety of their
human counterparts grows along with the density of robots in factories. As a

result, in heavy manufacturing, machines and humans are mostly separated.

90

This makes the process rigid: it becomes spatially constrained and manual in-
tervention in the vicinity of a robot may require halting the process altogether.
To reduce downtime and allow for more human-robot interaction, we would
like to be able to ensure that these robots cannot collide with human oper-
ators under any circumstances while also avoiding having to stop the robot
altogether when a worker is in its vicinity. More information about this work
can be found in [77].

3.6.2.1 Problem Formulation

This problem is complex because human workers can move around the robot
in a somewhat unpredictable manner. In order to guarantee that no collision
can occur with such dynamic and uncertain targets, their is no choice but
to assume all possible movements of the workers and avoid all of them. In
other words, the safety set in this scenario has to be the complement of the
forward reachable set of the human workers. Such a set spans space and
time, so the state of the system has to be augmented to include this time
dependency. Furthermore, the forward reachable set, and so the safety set,
has to be periodically updated to account for the actual movement of the

worker and avoid very punitive conservativeness.

A major advantage of our implicit safety filtering over explicit safety filtering
is that the safety set can be changed on the fly without any additional compu-
tations, whereas with an explicit safe set approach, if the safety set changes,
a new safe set has to be computed, which is time consuming and represent
a real bottleneck that hinder the capability of these explicit approaches to

handle practical scenarios such as this one.

Let us consider the 6-link IRB 6640 manipulator from ABB depicted in Figure
3.13 that has six degrees of freedom. The dynamics of this robotic arm can be

written in a classic manipulator equations form:
M(q)q+C(q,9)d+ G(a) =, (3.39)

where ¢ describes the joint angles and 7 is a vector of applied torques.

For manipulators with many degrees of freedom, the explicit expressions for
M(q), C(q,q) and G(q) are very complicated. As an alternative, they can
be evaluated at given points via the Articulated Body Algorithm (ABA) that

steps over links of the manipulator in a recursive fashion [25]. Only having

91

“black-box” access to the equations of motion would pose a problem for most
methods for finding invariant sets, but the implicit method proposed in this
paper only requires access to the numerical values of the dynamics and its
derivatives. As discussed above, the state of the system is extended to contain

time which makes the overall system’s state 13-dimensional:
v = [g,6,4]T. (3.40)
A point in the Cartesian and time space will be denoted by:

k= [a,b,c,t]". (3.41)

3.6.2.2 Safety and Backup Sets

The backup set is considered to be a vertical tube around the robot. In
practice, this would be a small closed-off area that is inaccessible to the human.
For this implementation, it is described by angle constraints on the second and
third joints (the joints being enumerated from the base to the end effector):
4 € [T]
Sy =< xcR® gr 1257T : (3.42)
43 {_E’ _E]

The safety set is then simply the union of the backup set and complement of
the reachable set of the human in space-time over the duration of the backup
maneuver. For the purpose of this demonstration, the human is modeled as a
single integrator with a maximum velocity vy.y, meaning that the size of its
reachable set grows linearly in time. By adding time as a state, we prevent the
filter from being overly conservative, which would be the result if we only used

the reachable set of the human over the time horizon of the backup controller.

If (ag, bo) is the current horizontal Cartesian position of the human, the reach-
able set of the human can be simply expressed as an n-cylinder [51] centered
at (ag,bo, H/2) in Cartesian space, where H is the height of the human. We
can then write this set as the lower-level set of a time-dependent differentiable
function h, : R* — R defined by:

he(k) = (a — ag)® + (b — by)?

n (C — \/E)ng + Umaxt)2 (343)

— (7’0 + 'Umaxt)Z.

92

Thus, for the robot to not come in contact with the human, h,.(k) must be
positive for all physical points £ along the robot. However, because the dy-
namics of the robot are defined in joint space and the safety set is defined in
Cartesian space, one must be careful when using the h,. Let us denote our
forward kinematics function that takes a point from joint and time space to
Cartesian and time space, by K : R® — R*. The gradient of h, with respect

to the states is:

Ohy(k) _ Ohy(K(2)) _ Ohe(K(2)) 9K (@)

ox ox ok ox '’ (3.44)
where:

OK(x) ok ox ox] _ |/ 0 Jg

= _97@_45}_661’ (3.45)

with the kinematic Jacobian J being computed numerically.

The safe set h is then defined as the union of h, and the backup set, Sy, in
order to avoid issues with the reachable set of the human intersecting with the

backup set, which is not possible in reality.

Finally, as the system evolves, the reachable set of the worker gets larger in
the Cartesian space. It is therefore important to update this reachable set
when a new measurement (ag, by) is available so as to avoid the reachable set
filling the entire work envelope of the robot. A fundamental constraint for this
update to be possible is that the resulting safety set must be larger after the
update than before. In our case, this is guaranteed by the fact that any new
position of the human will be contained in its reachable set (cf. Fig. 3.14), so
the safety set grows in the full state space, even though it does not when only

looking at Cartesian space.

3.6.2.3 Backup Controller

For the backup controller, we leverage the power of the Recursive Newton-
Euler Algorithm (RNEA) [50], which provides the necessary joint torques to
generate desired joint accelerations. The flexibility of this method is again
showcased by the fact that we do not need an analytic expression for the

backup controller, as long as we know its gradient.

There are only two joints that require actuation to reach the backup set. A

simple PD controller is used to obtain desired joint accelerations for these

93
Table 3.1: Computation time for IRB 6640 in Pinocchio

Expression Time (us)

Affine forward dynamics (f(x) and g(z)) 4
Gradient of closed-loop forward dynamics 42
Backup controller 5
Gradient of backup controller 31

joints, which is fed into the RNEA that generates the control inputs, as well

as their gradient. The controller is of the form:

aaes(q,4) = —kp(q — qa) — ka(q),

(3.46)
Ub(QaQ) = RNEA(Q7Q7ades<Q7Q>>‘

The gradient of this backup controller, which is required to evaluate the sub-

regulation map, is described by:

Oup ORNEA =~ ORNEA daqes ORNEA k ORNEA

aq B aq + aa'des aq B 8q o 8ades
du, ORNEA N ORNEA dages _ ORNEA _ ORNEA
oG 94 dages 04 0d e
8ub .

Since the RNEA provides the exact torques needed to achieve desired joint
accelerations, the forward invariance of the backup controller is guaranteed

under the proper choice of desired joint accelerations.

3.6.2.4 Simulation

The rigid body algorithm library used for this simulation is Pinocchio [19].
This C++ library has been shown to be the fastest of its kind, with the Table
3.1 showcasing the average computation times of each necessary expression for
the robot.

A ROS environment was created to simulate the system, with V-REP used
as a visualizer. The ROS package consisted of five nodes: the robotic arm
(PLANT), the task giver (TASK), a nominal controller (CONT), the human
(HUMAN), and the safety filter (ASIF), connected as shown in Figure 3.15.
Each component of the system ran at 200 Hz on a desktop PC with an Intel

8700k processor. The dynamics were integrated in the plant node via the

94

ODEint C++ library, with the runge_kutta_doprib scheme over a timestep

of 5 ms.

The controller node tracked a sequence of desired end-effector positions given
to it by the task giver node. Once the system reached the desired position, the
task giver would send a new desired location to the system to mimic a typical
operational cycle for such robot. The RNEA approach is also used for this
tracking controller. The human node allowed the user to joystick a human,

modeled as a single integrator, around the factory floor.

Lastly, the safety filter node handles safety for the system. It takes in the
state from the robot and the desired inputs from the controller, and outputs

the actual inputs that is used for integration by the plant.

The ASIF uses an adaptive-step RK4 scheme for integration under the backup
controller, and the resulting quadratic program is solved by the OSQP library
[79].

Figure 3.16 shows the value of the ASIF when a human attempts to pass
through the working area of the arm. This image well illustrates the minimally
invasive property of the ASIF, as the filter keeps the value of h(x) just barely
above zero. For a video demonstration of the filter’s capabilities, please see
[32].

3.6.3 Variable Assistance for Lower Body Exoskeletons

Next, we apply this framework, and more specifically the approach of Sec. 3.5,
to the problem of variable assistance for lower body exoskeletons. Contrary to
most common applications of this framework, this particular one is not about
safety. The main focus of this application is exoskeleton technology aimed
at restoring locomotion for people with a leg pathology. A general review
of control strategies for lower-limb assistive devices is given in [6, 48, 82|.
Most current approaches to control powered leg devices are driven by finite-
state machines with each phase defined using heuristic parameters. These
approaches typically require the use of additional stability aids such as arm-
crutches. Recently, dynamically stable crutch-less exoskeleton walking has
been demonstrated for patients with paraplegia by leveraging the full nonlinear
dynamics of the system and generating dynamically stable gaits [36]. While
this approach enables crutch-less exoskeleton walking, it is no longer optimal

when exoskeleton technology is extended to patients who are recovering muscle

95

functionality.

For patients who are trying to strengthen recovering muscles, partial assistance
would be more appropriate than full assistance. A previous study showed that
permitting partial assistance and variability during step training enhanced
stepping recovery after a complete spinal cord transection in adult mice [18].
As we are about to see, the framework presented in this paper can be used to
enable assist-as-needed strategies while guaranteeing coherence of the walking
pattern. The method presented here allows users to control their own motions
when they are performing well, but intervene when they are not, so as to
maintain a functional walking pattern. More details about this method can
be found in [30].

3.6.3.1 Atalante Exoskeleton Design

The exoskeleton used for this work, named Atalante, was developed by the
French startup company Wandercraft and has already demonstrated its ability
to perform crutch-less dynamic walking with patients with paraplegia [36]. As
shown in Fig. 3.18, this lower-body exoskeleton has 12 actuated joints. Each
leg of the exoskeleton consists of three actuated joints controlling the spherical
motion of the hip, a single actuated joint for the flexion/extension motion of
the knee, and two actuated joints for the hinge motion (inversion/eversion,
dorsiflexion/plantarflexion) at the ankle. The joints controlling the motion
of the hip and the knee are each actuated by a brushless DC motor. The
ankle joints have a more complex actuation mechanism that provides rotation
in the sagittal plane and about the henke axis. The position and velocity
of each actuated joint is measured using a digital encoder. Additionally, the
exoskeleton has four Inertial Measurement Units (IMUs) that are positioned on
the torso, the pelvis, the left shank, and the right shank. These IMUs are used
to provide additional information about the attitude of the robot with respect
to the world. To detect ground contact, four 3-axis force sensors are attached
to the bottom of each foot. All of the actuators and sensors are controlled by

an embedded computer unit running a real-time operating system.

Other components of the exoskeleton include secure loops for mounting the
exoskeleton to an overhead hoist, buttons to change the operating mode of the
exoskeleton, a connection port to connect the exoskeleton to a computer, han-

dles on either side of the exoskeleton for the operator to assist the exoskeleton

96

if needed, thigh and shank harnesses to secure a patient to the exoskeleton,
thigh and shank length adjustments to change the dimensions of the exoskele-
ton to match that of a patient, and a torso harness that a patient wears to

secure their torso to the exoskeleton (cf. Fig. 3.17).

3.6.3.2 Patient-Exoskeleton Model Generation

A model of each patient is generated to account for each person’s unique
physical characteristics. Key measurements of each patient are made such
as: height, mass, thigh length, and shank length. The thigh length is ap-
proximated by the measurement between the gluteus maximus and the patella
when the patient is in a seated position. The shank length is approximated as
the measurement between the femoral condyles and the ground when the pa-
tient is in a seated position. The measured thigh length and shank length are
used to adjust the leg lengths of the exoskeleton to match that of the patient.
The patient model is then created as follows. First, the total height of the
patient is used to extrapolate the length of each segment of the patient model.
The segments were chosen to be: Head, Arms and Trunk (HAT); Pelvis; Left
Thigh; Left Shank; Left Foot; Right Thigh; Right Shank; Right Foot. These
extrapolations were first derived by Drillis and Contini [23]. Using these seg-
ment lengths, the center of mass (COM) and inertial for each body segment are
then calculated using anthropometric data [87]. The inertia and COM of each
segment is given with respect to the proximal end of that segment. The inertia
and COM of each segment are then combined with those of the corresponding
segments of the rigid body exoskeleton model to form the patient-exoskeleton

system.

This combined human-exoskeleton system can be mathematically represented
as a rigid body system. A floating-base generalized coordinate system is con-
structed as ¢ = (p, ¢, q) € Q € R, where p € R and ¢ € SO® denote
the position and orientation of the exoskeleton’s base frame with respect to
the world frame. The relative angles of the actuated joints are denoted by
q € R'2. In total, the system has 18 degrees of freedom, and is fully actuated

when one foot is flatly in contact with the ground.

97

3.6.3.3 Variable Assistance Framework

As discussed in [18], the correct muscle activation pattern is an important
criterion for the spinal learning process. To that end, we utilise the proposed
set invariance framework to precisely control how much freedom is granted to
the user, as the better the motricity of the patient is, the more he or she can
be relied on to execute a stable walking pattern. First, we choose joints that
we want to let the user control: the assisted joints. All the other joints will be
rigidly controlled. In this work, we choose to only assist the sagittal hip and
sagittal knee of the swing leg (cf. Fig. 3.18).

The architecture of the variable assistance framework, as shown in Fig. 3.19,
contains four main components. First, a nominal gait is obtained from a neural
network based library built from PHZD trajectories (cf. |2, 3, 36, 39, 40,
86]). This trajectory is modulated by a deadbeat mechanism. This deadbeat
mechanism is critical in this case because the nominal joint trajectory will not

be followed very accurately when the user is in control of the assisted joints.

The filtered trajectory qges(+) is then fed into two separate controllers. One is
the baseline controller that plays back the trajectory and generates position
and velocity targets qqes(t — t;) and ¢, (t — t;) for the PID controllers that in
turn generate tracking torques w;(¢). The flatfoot ankle controller separately
computes targets for the swing leg ankle that are then substituted in place of

the nominal ones.

The other controller is the variable assistance controller. This controller
is the heart of this variable assistance approach and leverages the proposed
controlled invariance framework. The variable assistance controller has three
subcomponents: joint idealization, feedforward assistance, and virtual guide
filter.

The joint idealization component computes the torques required to com-
pensate for gravity and friction in the assisted joints. The goal is to make
these joints as transparent as possible such that when there is no assistance,
the user does not feel any resistance that would impede his ability to walk
freely. This joint idealization component is, however, not sufficient to make
the exoskeleton fully transparent as the inertia of the exoskeleton is not com-
pensated for, which makes the user’s legs harder to move. The feedforward

assistance component therefore provides feedforward torques us(t) — calcu-

98

lated during the PHZD gait generation process [36] — to obtain a first-order
level of compensation for the inertia of the assisted joints. This does not truly
compensate for inertia, but at least provides enough assistance for the user to
move the exoskeleton legs along the desired trajectory. The intensity of both
idealization and feedforward components can be adjusted to produce varying

levels of user effort.

The virtual guide filter computes the joint torques u,(t) required to limit the
discrepancy between the actual and desired trajectory of the assisted joints.
To that end, we will explore two approaches. First, the discrepancy limit is
described by a tube around the desired trajectory: a virtual guide. The shapes
and sizes of the virtual guides can be chosen almost arbitrarily. In a second
time, the discrepancy will be characterised by the position of the swing foot

with respect to a nominal trajectory.

Finally, an impact detection block also records which leg of the exoskeleton
is in stance or swing, and generates an "assisted joints selection matrix" that
controls which joints are being assisted at a given instant. Only these joints are
assigned the assistive torques. The remaining joints are assigned the baseline
tracking torques. The merging of these torques comprises the final joint torques

u(t) that are commanded to the exoskeleton.

3.6.3.4 Joint-Based Virtual Guide Filter

Formulation. In this first approach, each joint is idealized so that it can
be handled independently of the rest of the system. We therefore consider the

following dynamics for each joint:

JG=uy +up(t —t;) + Uear, (3.47)

where J is the inertia at the joint, u, is the torque the virtual guide filter can
apply, uy(t) the feedfoward torque applied to the joint, and w.,; the torque ap-
plied by the exoskeleton user on the joint. The state of the system is therefore

x=lq.4".

The virtual guide S we want to constrain the joint to stay in is characterized

by: ,
hit,z)=1— (q"‘fs(t —h) = Q(t)) (3.48)

Qbound<t - tz)

99

for some properly chosen @pouna to achieve the desired shape of the guide (cf.
Fig. 3.20 for examples of shapes). Note that this is a time varying set, so the

propositions of Sec. 3.5 have to be modified as done in [30].

Because u,,; is not known ahead of time, a robust version of the method
presented in 3.5 has to be used. The key is that system (3.47) is monotone
[7]. In this case, the safe backward image is characterized by:

R (t,x) = min h o gtvtent (q) (3.49)

T7€[0,T—1]

min max
Uext € {uezt » Uegt

man
ext

max

nar are the extreme values of the disturbance the user can

where u%" and u
generate. So in order to evaluate hi(t,q), the numerical integration of the
dynamics only has to be performed twice each time assuming the extremal

values of the disturbance. The backup policy is chosen to be:

up(t,) =Kp(qaes(t — ;) — q) + Ka(daes(t — ti) — q) (3.50)

for some properly chosen gains K, and K,. For this work, these gains were

chosen to be the same as the one used for the PIDs of the baseline controller.

Finally, the filtering law is given by:

uy(t,) = (Mt,q) + (1 — A(t, @) Aalt, @) up(t,), (3.51)

where A(t,q) = (1 — h¥(t,q))3 and A\g(t,q) = C@ for some derivative

gain (. The usage of this derivative term helps dampen the behavior of the
safety filter.

Experiments. The validation experiments were performed on the empty
exoskeleton as it hung in the air in an effort to show the behavior of the filter
without user perturbations and without feedforward torque. The plots of the
experimental results, shown in Fig. 3.20, illustrate the actual joint angles over
30 steps with each step overlaid on top of each other. It can be seen that for
all tube shapes, the actual joint angles remained inside of the bounds and the

filter only acts when necessary.

Then, the variable assistance framework was tested with a subject inside the
exoskeleton and walking on a treadmill. The required assistive torque as well
as the trajectory tracking are presented in Fig. 3.21. It can be observed that

when the subject is passive under partial assistance, the joint trajectories tend

100

to group near the virtual guides as expected. Alternatively, when the subject
is active under partial assistance, the actual joint trajectories tend to span
more of the virtual guide as the subject is actively trying to avoid hitting the
bounds of the guide. In all cases, the trajectories stay contained within the

virtual guides. For a video of these experiments please see [33].

3.6.3.5 Feature-Based Virtual Guide Filter

One of the issues with this first approach is that the subject has to follow
the nominal trajectory which in practice is not particularly anthropomorphic.
This makes it difficult for the subject to perform well. So to make the variable
assistance more permissive while still ensuring coherent walking if the subject is
not performing well, we propose to extend the previous approach to a feature-
based constraint instead of a joint-based one. Here, we propose to constrain the
trajectory of the swing foot to ensure a correct ground clearance and forward
motion. This way, the user has more freedom on individual joints trajectories

which allows him to perform more natural steps.

For this approach, the controller architecture remains the same as in Fig. 3.19.
Only the formulation of the virtual guide filter is changed from the previous

section.

Formulation. This time, we consider a simplified model of the swing leg
as a whole. In particular, we model the swing leg as a double pendulum
whose joints corresponds the sagittal hip and knee, the ankle joints being
assumed locked (cf. Fig. 3.22). The state of the system is now 4-dimensional:
ST . T
v =[q,q] with ¢ = [q1,¢]
filtered concurrently. For simplicity, the torso pitch angle ¢qq is fixed at the

, and both hip and knee joint torques are being

desired angle chosen to generate the nominal trajectory. The dynamics can be

found using classical Euler-Lagrange formalism and is of the form:

M(q)G =u—C(q,q) — 9(q), (3.52)

where u = [u1, us] " is the vector of joint torques.

The virtual guide is now characterized by the forward position of the swing

foot with respect to the nominal trajectory (cf. Fig. 3.22):

h(t,x) = ps (q(t) — P (Qaes(t — t;)) + €x. (3.53)

101

In other words, the swing foot is constrained to move forward at least as fast

as it does in the nominal trajectory.

The backup policy is chosen to be the same as for the joint-based virtual
guides—PID tracking of the nominal trajectory—and similarly with the filter-
ing law. The constant ¢, is chosen so as to allow the backup law to steer the

system away from the boundary of the virtual guide.

Experiments. The validation experiments were performed on the empty
exoskeleton as it hung in the air. The plots of the experimental results, shown
in Fig. 3.23, illustrate the foot position and constraints over several steps. It
can be seen that in the absence of user effort, the proposed formulation results

in the actual foot trajectory following closely the nominal one.

Then, this approach was tested with a subject inside the exoskeleton and
walking on a treadmill. The results are presented in Fig. 3.24 and 3.25. It
can be observed that in this case, the subject can freely execute a gait with
longer step length if he desires (cf. Fig. 3.25), while still guaranteeing that a
minimum step stride is respected if the subject is not able to perform longer
steps (cf. Fig. 3.24).

3.6.4 Safe Exploration of Unknown Environments with a Quad-
copter UAV
Finally, we apply this controlled set invariance framework to the problem
of safe exploration of an unknown environment (note that more information
about this work can be found in [78]). This task is particularly relevant for
drones whose usage is becoming prevalent for tasks such as autonomous de-
liveries, aerial surveillance, or disaster relief. Most of these missions involve
navigating through unknown or uncertain environments. Due to the altitude
of the vehicles and their often exposed propellers, collisions are catastrophic for
the drone and might also be dangerous for its surroundings. For this reason,
collision avoidance techniques are crucial to further the use of these systems

in everyday life.

In typical drone flight, collision avoidance is the topic of navigating safely
through an environment. This usually translates into creating and tracking
trajectories that take the drone through the surrounding free space and that
avoid occupied or uncertain space. While this approach to collision avoidance

can be effective in practice, as evidenced in [44, 55, 56|, its computational com-

102

plexity necessitates simplified abstractions of the model and obstacles. Couple
to that the inherent uncertainty associated with mapping an environment and
it is easy to see why such approaches are typically conservative, which can lead
to slow mobility, while still lacking guarantees of collision-free tracking of the

trajectories.

The authors therefore believe that trajectory planning is not the most effective
layer in which to enforce safety. Planner updates are too infrequent, and
there is too much uncertainty stemming from the aforementioned hurdles to
be able to provide rigorous guarantees of safety with such a method. Instead,
we propose an approach leveraging the proposed set invariance framework
to ensure collision avoidance enforced at a control level while relying solely
on local sensing information (i.e. no mapping is required). This approach
can be applied in conjunction with any planning algorithm (or even a human
operator), which means that it allows for planning algorithms that are more
aggressive, since they do not need to guarantee collision avoidance or dynamic

feasibility.

The planner used for this work is designed to work in tandem with the Octomap
mapping library [43| to represent the environment map. The path planning
is a basic implementation of the A* algorithm that searches for a path to a
nearby frontier cluster. The search algorithm runs directly on the octomap,
which is possible via implementation of algorithms that enumerate neighbors
in a 3D octree [73]. Special heuristics encourages the planner to visit large
clusters that are close to the current position of the drone. After a global
plan is achieved, the local planner creates a spline and continuously updates a
target point on this spline in front of the UAV. The position of this target point
in the UAV frame is then used as the desired velocity V., for the performance
filter (cf. Fig. 3.27).

3.6.4.1 Collision Avoidance Framework

The goal of this Collision Avoidance Framework is to allow the vehicle to safely
navigate around any unknown environment. As discussed above, we want to
only rely on local sensing information, i.e. no mapping will be performed. It
is therefore fundamental that the sensing method used allows full 360 degrees
coverage of the vehicle surroundings. The goal is to define the safety set as an

envelope around the UAV in which we know there is no obstacles.

103

For this scenario, the environment is assumed to be static, and we will use
a point-cloud representation of the environment. We will assume that this
point-cloud is obtained from a ray-based method of sensing such that all seg-
ments between the vehicle and the points of the point-clouds corresponds to
unoccupied space (i.e. does not go through any obstacles). Points therefore
correspond to the boundary between free space and either physical obstacles
or unknown space (cf. Fig. 3.31). The safety set will hence be described as in
(2.24) with:

b= lp - pil — A2, (3.54)

where p is the position of the UAV in cartesian space, p; are the points of the
point-cloud, and A, a hard margin introduced to account for the size of the
vehicle (cf. Fig. 3.28).

Most ray-tracing sensors available to date do not enjoy the same high update
rate as the sensors necessary for low level control (i.e. IMU, visual odometry,
etc...). Therefore, the position of the UAV only has to be tracked between
each environment sensor update. This is one of the main advantages of the
proposed framework over the ones requiring global planning and positioning.
Only local positioning over a duration corresponding to the update period of

the environment sensor is required.

Similarly to Sec. 3.6.2, the safety set is continuously changing as the envi-
ronment gets explored. However, contrary to Sec. 3.6.2, the time dependency
of the safety set is not known ahead of time and so the safety set does not
necessarily always grow inside the state space (cf. Fig. 3.31). Furthermore,
it is not trivial to find an efficient backup policy for all the possible shapes
of safety set that can arise during exploration. Finally, embedded systems
for UAVs do not quite have the computational capabilities to run a QP-based
safety filter as for Sec. 3.6.2, especially at the control rates necessary for such

agile vehicles.

To tackle this problem, we will therefore take the same approach as in Sec.
3.6.3 and use the scalable safety filter of Sec. 3.5. The filtering law is chosen
to be:

Vsafe(®) = AM@)Upers () + (1 = A(z)) vb (), (3.55)
with

— up (T Asz
M) = 1= ¢ Mm@/ @=dn) (3.56)

104
where A, is the soft margin (cf. Fig. 3.28).

A key difference with the work presented so far though is that the safety filter
is placed before a velocity controller (cf. Fig. 3.27). This velocity controller
closes the loop around desired velocities in the world frame. In this work, it
is a simple Velocity-Attitude-Rates cascade PID controller, but any controller
that can track a desired velocity would work in this framework. This has two
effects: first it makes the overall system more robust to model uncertainty.
Secondly, it allows us to think about backup policies in a space that is simpler
to grasp than the actuator space (in that case a 3D velocity space). Therefore,

efficient backup policies can be constructed more easily.

The backup policy chosen for this application is inspired by previous work
on a geofencing for civilian UAVs [35]. The idea is to slow down to a halt
while steering the vehicle away when getting close to obstacles. This can be
achieved by commanding V. = 0 unless the vehicle is between the soft and
hard margins, in which case the V. vector is pointed away from the nearest

obstacles as depicted in Fig. 3.29.

The effect of that backup policy in conjunction with the filtering law is de-
picted in Fig. 3.28. However, even though this approach guarantees safety
of the system, it yields poor performances in some circumstances. In partic-
ular, it does not allow the system to smoothly glide along obstacles as the
backup policy is intermittently switched to and from, leading to very oscilla-
tory behaviors. Therefore, in order to increase the overall performance of the
system, another component is used to filter the velocity inputs commanded by
the planner in order to minimize the interventions from the safety filter: the

performance filter.

The base of this performance filter is the same as the one of the backup policy
(cf. [35]). The desired velocity is altered in a way that slows down convergence
to the obstacles when getting close to it, and incentivizes divergence when
past the soft margin. However, the closest point considered for the filtering
of Vs 18 not based on the distance between the current drone position and
the obstacles, but the shortest distance between the drone position along
the backup trajectory and the obstacles (cf. Fig. 3.30). Furthermore, the
distance to this closest point is the shortest distance between the drone position
along the backup trajectory and the obstacles. This way, the performance filter

is able to better anticipate incoming obstacles which leads to less intrusions

105

of the backup trajectory into the soft margin, which in turn leads to less
interventions of the safety filter. In the end, these 3 components work together
to provide a filter with minimal conservativeness and with guaranteed collision
avoidance (cf. Fig. 3.27).

3.6.4.2 Recursive Feasibility

As discussed before, at each update of the environment sensors, a new safety
set is redefined. This means that after an update, the system could end up
outside of S7* as illustrated in Fig. 3.31. To address this use, there are two

approaches.

A first approach it to check for each update whether or not the system would
end up inside of S7* with this new safety set. If it does, then the update
can be carried out, otherwise this new safety set is discarded and the current
one continues to be used until the next update. This approach carries a non-
negligible computational weight as the safety filter has to be ran twice when
an update is not successful. One must also be careful because when safety set
updates are skipped, the system only relies on localisation data whose drift

can become substantial.

A second approach is to rely on the backup policy to bring the system to a
stop if the system ends up outside of S7* after a safety set update. Indeed,
even though the system is outside of S7*, it is not before the update, which
means that the backup policy can safely bring the system to a stop. As the
slowing down occurs, the safety set can continue to be updated in hope to
regain feasibility of the safety filter. In practice, feasibility is regained quickly

and this is the approach we take for the following simulations.

3.6.4.3 Simulation

The simulation environment is a ROS-based C++ environment. The point
cloud data is obtained from a modified Velodyne LIDAR sensor inside of the
Gazebo simulator at a frequency of 10 hz. The simulation, including visual-
ization in Gazebo and RVIZ, was able to run at a frequency of 300 Hz on a

modern laptop computer.

The cave environment to explore was a large 240m by 460m structure with

one entrance and one exit (cf. Fig. 3.32 and Fig. 3.26). The cave height

106

is constant at roughly 3m, but the width is constantly changing, and gets as

small as 0.5m with several protruding areas.

The quadrotor was able to explore the entire 240m by 460m cave in just under
28 minutes (cf. Fig. 3.32). The maximum allowable speed from the planner
was 5 m/s, which the drone reached during open areas of the cave. The average
desired speed sent from the planner was 4.09 m/s, and the average speed of
the drone after the safety filter was 3.28 m/s.

A positive value of the barrier functions was maintained throughout, meaning
the quadrotor never went closer than the minimum allowed distance from a
point in the point cloud, which was set at A, = 0.2m meters. For a video of

these simulations please see [34].

3.6.4.4 Restricted Field of View

So far, we required that the vehicle be equipped with sensors that cover all
of the UAV surroundings. Even though this is possible with available tech-
nology, such a sensing capability would be fairly expensive and would require
a large enough vehicle to carry the sensors as well as an embedded computer
capable of processing that much data. Therefore, we propose to extend the
proposed approach for vehicle equipped with only partial sensing of the vehicle
surrounding. This is for example the case of most UAVs that are equipped

with a single forward-facing depth-sensing camera.

In that case, each individual sensor point-cloud is not sufficient to create a
safety set that envelops the vehicle as illustrated in Fig. 3.33. It is therefore
necessary to implement a mapping strategy to create a safety set envelope
that the vehicle can evolve in. Note, however, that for the first iteration
of the algorithm, the vehicle is not inside the safety set, so an assumption
must be made that the immediate surroundings of the vehicle are safe for this
Ist iteration (cf. Fig. 3.33). During subsequent iterations, mapping can be
performed based only on new sensor data and a safety set can be progressively
built as illustrated in Fig. 3.34.

To implement this approach in a way that leverages the precision and efficiency
of a point-cloud representation of the safety set, we propose an algorithm that
combines point-cloud and voxel representations of the environment. A naive

approach would be to just fusion the point-clouds given by the sensor, however

107

this would only define the boundary between free and occupied space, but
not between free and unknown space. One could therefore rely on a voxel-
based representation of the environment, but this would come at the cost of
conservatism on the location of the obstacle. One way to address this issues

is therefore to combine both approaches.

Point-cloud data is therefore used to generate a voxel map of the environment,
but point-cloud data is also conserved to refine the position of the frontier
between free and occupied space (cf. Fig, 3.35). Successive point-clouds are
merged together and the resulting point-cloud is down-sampled using the gen-
erated voxel map such that each voxel contains only one point. The position of
this point is then associated with the corresponding voxel. A point-cloud of the
safety set envelope is then generated by using the down-sampled point-cloud
augmented by another point-cloud of the centers of all voxels on the frontier
between free and unknown spaces. The rest of the safety filtering algorithm is

the same as in the previous section.

The simulated cave environment is explored again using an Intel Realsense as
the only source of environmental data. This time, the yaw of the vehicle is
controlled so as to point forward with respect to the path. As expected, the

UAV is able to explore the cave safely, but does so more slowly overall.

108

(a) The backup set is forward invariant under u.

(b) The backup set is forward invariant under w,.

|

(c) The backup set is not forward invariant under wp.

(d) The backup set is not forward invariant under wp.

Figure 3.1: Safety Set in red, Backup Set in black, and Implicit Control In-
variant set in blue. The backup trajectory under the backup control law wu, is
in green.

109

Safety Set
Backup Set

= = Viability Kernel
—SBI, K=[1.2,1.2]
——SBI, K=[1. 52[5]
SBI, K=[3.0,3.0]
SBI, K= WOGN

-3 -2 —1

Figure 3.2: Plot of the SBI for different backup gains K with 7" = 5.

110

——— Dynamics under wuy
Safety Set
Backup Set
= = Viability Kernel
——3SBI, T=1
——SBI, T=3
———SBI, T=6
3 SBI, T=12
I S

-3 -2 -1

Figure 3.3: Plot of the SBI for different time horizons 7.

111

1.5 %\

0.5 ——— Dynamics under
Safety Set
\/ Backup Set
4l Y Safe Bacsz.ird Inilage
——— System Trajectories
! ! A i |
0 1 2 3

0

Figure 3.4: Trajectories of the system with ugs = 0,7 = 5 and K = [3,3]. The
color of the trajectories indicate the magnitude of u,., green corresponding to
Uget = Uges = 0 and red t0 |[Uger| = Upaz = 1.5.

112

VR N
1 1|~ Dynamics under w, \
Safety Set
0.8 L Backup Set \
0.6
0.4+
0.2+ 1
0 Of
-0.2 F
0.4 '
-0.6 \ |
-0.8 -
Safe Backward Image
-Lr .\ Safe Backward Reachable Set
| | | | | \ ll
-1.5 -1 -0.5 0 0.5 1 1.5
0

Figure 3.5: Comparison between safe backward image and safe backward

reachable set for 7' = 11 and uy(z) = 10 * ({5 — 0).

113

L ' \ N
1 1|~ Dynamics under w,
Safety Set
08 L Backup Set \
0.6
0.4+
0.2+ 1
0 Of
-0.2 F
0.4 f '

-0.6 \ |

-0.8

Safe Backward Reachable Set
-Lr \ System Trajectories
1 1 1 1 1 \ ll
-1.5 -1 -0.5 0 0.5 1 1.5
0

Figure 3.6: Trajectories of the system with ugs, = 0, T' = 11 and uy(x) =
10 ({5 —0). The color of the trajectories indicate the magnitude of 4., green
corresponding to Uger = Uges = 0 and red to |Uget| = Umaz = 1.5.

00

114

Safety Set
Backup Set

= = Viability Kernel
——SBI, K=[3.0,3.0]
——SBI, u*
——SBI, uyy

-3 -9 -1

Figure 3.7: Comparison between the safe backward images of a linear backup
control law (3.16), the optimal control law (3.27), and a Neural Network ap-
proximation of it, with T" = 5.

115

2
1.5k
1L
. 0.5
6 \
R
0L
_0.5 ||~ Dynamics under u,
. Safety Set
Backup Set
Safe Backward Image M
-1r —— System Trajectories
| N |
0

Figure 3.8: Trajectories of the system under a scalable implicit safety filter
with uges = 0, T = 5 and K = [3,3]. The color of the trajectories indicate
the magnitude of u,., green corresponding to . = uges = 0 and red to
|Uact] = Umaz = 1.5.

116

05 ——— Dynamics under wu;
. Safety Set
Backup Set

Safe Backward Image %

——— System Trajectories
| | \ |

0 1 2 3
0

Figure 3.9: Trajectories of the system under a scalable implicit safety filter
with uges = 0, T = 5, K = [3,3] and different switching functions. The
color of the trajectories indicate the magnitude of u,., green corresponding to
Uget = Uges = 0 and red to |Uget| = Upmaz = 1.5.

117

(a) General view of the hardware and parameterization of the state

(b) Custom made electronics

Figure 3.10: Segway vehicle used for experiments.

118

(d)t=15

Figure 3.11: Pictures of the implicit filtering Segway experiment.

119

_2 C | il A = |
0 5 10 15
(0
0.5
0 _/ b ; z >q z x __’ \/y
= 0.5 h
—
1t
_1-5 - 1 1 1
0 5 10 15
h(x
1 | /mi;
. \/\/\ ,
-1 ! . .
0 5 10 15

t(s)

Figure 3.12: Results of the implicit filtering Segway experiments with and
without safety filter. The nominal controller is an LQR driven by a desired
position Zges.

120

Figure 3.13: The IRB 6640 robotic arm along with the reachable sets for a
human worker at ¢t = 0s in purple and ¢ = 1s in yellow.

—

0 0.2 0.4 0.6

t=1.0

08—

0.6 L ——IBackup Set
Unsafe Set, t =0

0.4 || |Unsafe Set, t = 0.4
[Unsafe Set, t = 0.8 \
0.2 ={—— System Trajectory

0.8

—

/

—— Obstacle Trajectory

Sc~— —

0 0.2 0.4 0.6
t

0.8

—

121

Figure 3.14: Ilustration of time varying uncertain environment. The obstacle
moves with time (red line) but its position is only measured at specific times
(0.4,0.8,1.0). The safety set is the complement of the unsafe set, which is the
forward reachable set of the obstacle minus the backup set. The system has to
remain outside of the unsafe set, which shrinks for each obstacle measurement.

TASK HUMAN

Udes

CONT » ASIF

Ugct

PLANT

122

q,q

Figure 3.15: Block diagram of the ROS nodes used in the simulations.

1.4 Y

1.2F

[— ASIF
—— No ASIF

min(h(x))

-0.2 .

Y

Figure 3.16: Value of the Barrier Function with and without ASIF engaged.

123

Mounting location for overhead hoist Torso harness

Connection

QO rt

. Mounting

location for IMU

Control boards

Shank harness ﬂ

A~)

Thigh length
adjustment

Thigh harness

|

)
(
|||

kj Ankle joint
[mechanism
Shank
length
adjustment Mount for foot

. adjustments

3-axis force sensors (m

Figure 3.17: Exploded view of the Atalante exoskeleton.

124

RFH < > | FH
RTH LTH
RSH LSH
Joints with
variable assistance
shown in red

RSK LSK
RSA LSA
RHA LHA

Figure 3.18: Schematic representation of the Atalante exoskeleton. In red are
the joints that will be used for variable assistance.

Baseline Controller

Filtered Joint Joint
Trajectory Targets T"’“’ (t
Impact — — > T:;tclmz
Feet Force Sensors —» Detection Gates(+) Gaea(t — i) q'ies(t 4i) r.,rque?

e Tibia IMU J Assisted Joints Matrix Joint L(t)
Event Torques
ﬁ_ Assistance Factor Feedforward Torques u (1) Assistive
Gait Neural Tm;edory Deadbeat = | ol Torques
Network qﬂ,,m(Filtering Ly aealization™ . ta(t)
Gaes (") Torques
Virts Torques Uy, ({

Variable Assistance Controller

Figure 3.19: Architecture of the variable assistance framework.

125

0 : 0
——— Desired
-0.2F —— Bounds 1
ES Actual
0.4} ﬁ
-0.6 ; ; ; 1 | ! | 1
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

rad

rad

-0.6

: : -0.6 : :
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

Phase Variable Phase Variable

Figure 3.20: Left hip positions joint angles for the Exoskeleton empty and
hanging in the air. The plots corresponds to 30 right steps and each subplot
correspond to a different virtual guide shape.

Left Sagittal Hip

0.6}
0.4}

0.2

Left Sagittal Knee

Desired

200

0

(aYAYA\

Actual |5 0,;75

FeedForward

Idealization

Assistive b75

126

Full Assist

025 05 075

0 025 05 0.75

Passive

Patial Assist

Full Assist

025 05 075
Phase Variable

-200

0 025 05 0.75

Phase Variable

Active

Patial Assist

Figure 3.21: Comparison at the joint level between a subject actively trying to
walk and being passive under both full and partial assistance of the exoskele-
ton. Because of early striking, most steps ended before the phase variable
reached 1, unlike in Fig. 3.20 where the exoskeleton was in the air.

127

Figure 3.22: Simplified model of the exoskeleton and its swing leg.

128

Forward Foot Motion

0.2
—— Nominal
—— Bounds
g 0.1+ Actual
0 | | |
0 0.2 0.4 0.6 0.8 1

Hip Torque

20 \
0 — S
ZE -90 FeedForward
Idealization
-40 — Assistive
0 0.2 0.4 0.6 0.8 1

Knee Torque

Lambda

Phase Variable

Figure 3.23: Foot level variable assistance for the Exoskeleton empty and
hanging in the air.

Forward Foot Motion

129

0.15¢
——— Nominal
0.1 - |—— Bounds
g
0.05
0 = 1 1 1 1 I
0 0.2 0.4 0.6 0.8 1
Hip Torque
= 50| \\\V,,\\\\ 45{///4/’///’/' 2 FeedForward
\J’i \ .!/"{4%, Idealization
-100+ {f# ——— Assistive
0 0.2 0.4 0.6 0.8 1
Knee Torque
100 -
E 0 1 —
Z.
-100 -
0 0.2 0.4 0.6 0.8 1
] Lambda
0.5} //’;&\\
| LA A\
AT /',/;":§‘\\ \\\
0 = ~ .
0 0.2 0.4 0.6 0.8 1

Phase Variable

Figure 3.24: Foot Level Assistance for an able-bodied subject being passive.

130

0.4 Forward Foot Motion

— Nominal
——— Bounds

= 0.2 — Actual
0 = 1 1 1 |
0 0. 0.4 0.6 0.8 1
Hip Torque
100 p q
E‘ 0 FeedForward
Idealization
100 — Assistive
0 0.2 0.4 0.6 0.8 1

Knee Torque

0.8 1

Phase Variable

Figure 3.25: Foot Level Assistance for an able-bodied subject actively trying
to take long steps.

131

Figure 3.26: Simulation environment. The top shows the desired and filtered
velocity commands based on the closest point in the point cloud. The bottom
shows the drone navigating through the cave.

132

f Ves [Planner] X Drone }Uﬁ

LIDAR

Performance|Ve:| Safety |Ve:| Velocity
Filter Filter Controller

Figure 3.27: Safety filtering control structure for UAV exploration.

2% V
98% Vbak
' \ 98% V.
: \ X\ 2% Vha‘k
Soft Margin - - A\~ .
: i J:_ : / I/ !
H a r‘d M a rg | nhlni‘;;-(j:g.g. H“-I;I;;-()I:Q.B- }.1 .!r;l.n:.o.'.().é }jl ;];1;‘:.0:62 . .}.1.11.‘1.‘1.;()..98

|Obstac|esI|"||||"||||"I""""""""I""
IRRRRENEN

Figure 3.28: Illustration of the safety filter. From left to right is a depiction
of the evolution of the drone as it gets close to the obstacles. In yellow to
blue are the backup trajectories. In grey are the hypothetical positions of the
drone if it were to follow the backup trajectory. The size of the drone icon
corresponds to its velocity.

133

10585
- ’6 Q‘\(\t

Obstacles
EEEREEEER

Figure 3.29: Ilustration of the UAV backup law.

Obstacles
EEENNNEER

Figure 3.30: Ilustration of the UAV performance filter.

134

v AR
Update
Update

Figure 3.31: Illustration of the UAV recursive feasibility issue.

Figure 3.32: Pictures of the cave (in red) and the octomap (in yellow) being
built throughout the 28 minutes it takes for the drone to completely explore
the cave.

N

Figure 3.33: ITlustration of the issue when using a mapping sensor with re-
stricted field of view. An assumption about the safety of the vehicle has to be
made at the initialization of the mapping in the form of a bubble of free space
around the vehicle. The black line around the UAV represent the boundary
between free and either unknown or occupied space

135

3

Figure 3.34: Illustration of the mapping process. The black line around the
UAV represent the boundary between free and either unknown or occupied
space.

136

Figure 3.35: Image of the mapping process in the simulation environment.
The free space boundary is represented by a point cloud.

137
Chapter /

CONCLUSIONS

4.1 Summary

In this work, we presented a practical approach to run-time assurance to help
bridge the gap between theoretical claims and the reality of cyber-physical
systems implementation. We began by making a clear theoretical distinction
between systems and a models, and outlined how the two need to be related
for guarantees to transfer from the latter to the former. We then introduced
set-invariance conditions accounting for the complexity and intricacy of cyber-
physical system implementation. We then showed how these conditions can be
rigorously enforced in a systematic and minimally invasive way through a con-
vex optimization based Safety Filter. To guarantee the feasibility of such safety
filter, a new algorithm was presented to compute appropriate control invariant
sets. Finally, the effectiveness of this proposed framework was demonstrated
experimentally on a two-wheeled inverted pendulum. First, the aptitude of the
framework to handle system’s dynamics uncertainty was illustrated by vary-
ing the mass of the vehicle and observing that safety is conserved. Then, the
aptitude of the framework to provide guarantees that account for controller
implementation’s constraints was illustrated by varying the frequency of the

control loop and observing that safety is maintained.

In the second part of this work, a Scalable Safety Critical Control Framework is
presented. This framework makes it possible to enforce safety for high dimen-
sional nonlinear systems in a minimally invasive way. The trade-off between
computational complexity and conservativeness is analysed and approaches
with varying levels of scalability are proposed. The idea of composing backup
controllers through functional approximation of optimal policies is explored as
a potential method of combining the advantages of scalability seen in simpler
controllers with the permissiveness characterizing optimal controllers. Finally,
the effectiveness of the framework is illustrated with multiple relevant appli-
cations. In particular, we show how this framework makes it easy to address
safety in both time varying and uncertain environments. We also show how it

enables fast and safe exploration of unknown environments. Finally, we show-

138

case the effectiveness of the framework on hardware through the safe control
of a two-wheeled inverted pendulum (Segway), and with the assistive control

of a lower body exoskeleton.

4.2 TImprovements in Regulation Kernel Computations
Despite achieving the goal of computing regulation kernels, the algorithms as

presented here suffers from two majors drawbacks.

Firstly, the proposed formulation restricts itself to convex sets. However, the
fundamental constraint that actually needs to be enforced is convexity of the
regulation map. In the case of the polygonal parameterization we chose, it is
equivalent to the convexity of the set itself. Therefore, if one can find a param-
eterization where convexity of the regulation map and the set are decoupled,

it would make it possible to find potentially larger regulation kernels.

Secondly, for a given number of vertices NN,, the number of facets and faces
increases very quickly with the dimensions of the system considered. However,
the proposed algorithm has the benefit of being highly parallelizable, as most
of the optimization time is spent evaluating the constraints for every faces,

none of which are coupled.

This scalability issue can also be tackled along with the conservatism issue by
performing mesh refinement steps between the resolutions of the smooth non-
linear problems (2.94). Indeed, some conservatism is introduced by evaluating
each sub-tangentiality constraint over an entire face. The larger the face, the
more conservatism is introduced. Therefore, by modulating the size of the
faces such that they are small in regions where the dynamics varies a lot, and
large where it does not vary much, conservatism can be reduced. Furthermore,
a metric of this dynamics variation is already accessible as the width of the

computed bounds on (2.72).

Finally, the constraint bound update laws (2.96) and Algo. (1) are fairly
simplistic. The robustness in terms of convergence of this two algorithms could
most likely be improved by formulating an optimization problem and using an
evolutionary algorithm to solve for the &7 ; ; that maximize the rlrﬁl (STC; k)
such that —e < STCZj’k <0.

139
4.3 Beyond Interval Arithmetic

Aside from the possible improvements to the regulation kernel algorithm, one
of the main cause of conservatism in the proposed approach is the inter-
val arithmetic based over-approximation of the different sub-regulation maps.
Finding other methods or formulations to generate polytopic over-approximations
of the sub-regulation maps that are computationally efficient is a real challenge

that, to our knowledge, has yet to be undertaken.

Furthermore, the various safety filter proposed in this work has a tendency
to generate filtered input with high frequency oscillatory in certain cased. A
formulation allowing to explicitly trade off smoothness of the filter for perfor-
mance (with a modified cost for example) would be a useful addition to the

collection of formulations already proposed.

4.4 More Practical Implicit Safety Filtering

As discussed in the first part of this work, and touched upon in the work of Sec.
3.6.4, the extension of the implicit filtering framework to handle dynamics and
sensing uncertainty is key to providing meaningful guarantees for real world

safety critical applications.

Another challenge with safety critical control frameworks in general is the is-
sue of representing the environment in such a way that provides meaningful
guarantees when used in such framework. In Sec. 3.6.4, a discrete point-cloud
representation is used that does not actually provide guarantees of avoidance
with obstacles. Indeed, with this representation, only the parts of the obstacles
represented by the points of the point cloud will be avoided, which can be an
issue if the point cloud is not dense enough. Furthermore, in this same work,
a map of the environment that is generated from perfect estimation of the
vehicle position is used, which is obviously not realistic. Developing strategies
for obstacle mapping that are both dense and truly safe, i.e. guarantee that
no obstacles are within the free space while accounting for all sources of un-
certainties and that are not too computationally expensive is a real challenge

that deserves attention.

4.5 Quantifying Model Validity
From a more fundamental point of view, the guarantees provided by this frame-
work are contingent on the correctness of the model used. As discussed, va-

lidity of models can only be verified probabilistically. Therefore, it would be

140

interesting to quantify the probability of safety from the probability of model

correctness in a less crude way than the obvious lower bound we provided.

Following a similar train of thoughts, being able to quantify model and con-
troller validity for a given cyber-physical hardware would be very valuable in
practice. Finally, it would be interesting to characterise system representativ-
ity and get a grasp on how to choose a good system and model for a given

physical system.

1]

13l

4]

(6]

17l

[11]

[12]

141
BIBLIOGRAPHY

Juan-Pablo Afman, Laurent Ciarletta, Eric Feron, John Franklin, Thomas
Gurriet, and Eric N Johnson. Towards a new paradigm of uav safety.
arXw preprint arXiww:1803.09026, 2018.

Ayush Agrawal, Omar Harib, Ayonga Hereid, Sylvain Finet, Matthieu
Masselin, Laurent Praly, Aaron D. Ames, Koushil Sreenath, and Jessy W.
Grizzle. First steps towards translating HZD control of bipedal robots to
decentralized control of exoskeletons. IEEE Access, 5:9919-9934, 2017.
ISSN 2169-3536. doi: 10.1109/ACCESS.2017.2690407.

Aaron D Ames. Human-inspired control of bipedal walking robots. IEEE
Transactions on Automatic Control, 59(5):1115-1130, 2014.

Aaron D. Ames, Jessy W. Grizzle, and Paulo Tabuada. Control barrier
function based quadratic programs with application to adaptive cruise
control. In 53rd IEEE Conference on Decision and Control, 2014. ISBN
978-1-4673-6090-6. doi: 10.1109/CDC.2014.7040372.

Aaron D Ames, Xiangru Xu, Jessy W Grizzle, and Paulo Tabuada. Con-
trol barrier function based quadratic programs for safety critical systems.
IEEE Transactions on Automatic Control, 62(8):3861-3876, 2017. URL
http://ames.caltech.edu/ames2017cbf . pdf.

Khairul Anam and Adel Ali Al-Jumaily. Active exoskeleton control sys-
tems: State of the art. Procedia Engineering, 41:988-994, 2012.

David Angeli and Eduardo D Sontag. Monotone control systems. [EEE
Transactions on Automatic Control, 48(10):1684-1698, 2003.

Jean-Pierre Aubin. Viability theory. Springer Science, 2009.

Jean-Pierre Aubin and Héléne Frankowska. Set-valued analysis. Springer
Science & Business Media, 2009.

Stanley Bak, Deepti K Chivukula, Olugbemiga Adekunle, Mu Sun, Marco
Caccamo, and Lui Sha. The system-level simplex architecture for im-
proved real-time embedded system safety. In Real-Time and Embedded
Technology and Applications Symposium, 2009. RTAS 2009. 15th IEEFE,
pages 99-107. IEEE, 2009.

Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust
optimization. Princeton University Press, 2009.

Dimitris Bertsimas, David B Brown, and Constantine Caramanis. Theory
and applications of robust optimization. SIAM review, 53, 2011.

http://ames.caltech.edu/ames2017cbf.pdf

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

142

Franco Blanchini. Set invariance in control. Automatica, 35(11):1747—

1767, 1999.

Franco Blanchini and Stefano Miani. Set-theoretic methods in control.
Springer, 2008.

Franco Blanchini and Mario Sznaier. A Convex Optimization Approach
to Synthesizing Bounded Complexity ¢>° Filters. [EEE Trans. Autom.
Control, 57(1):216-221, 2012. doi: 10.1109/TAC.2011.2162893.

Urs Borrmann, Li Wang, Aaron D Ames, and Magnus Egerstedt. Control
barrier certificates for safe swarm behavior. IFAC-PapersOnLine, 48(27):
68-73, 2015.

Guy André Boy. From automation to tangible interactive objects. Annual
Reviews in Control, 38(1):1-11, 2014.

Lance L Cai, Andy J Fong, Chad K Otoshi, Yongqgiang Liang, Joel W
Burdick, Roland R Roy, and V Reggie Edgerton. Implications of assist-
as-needed robotic step training after a complete spinal cord injury on

intrinsic strategies of motor learning. Journal of Neuroscience, 26(41):
10564-10568, 2006.

Justin Carpentier, Guilhem Saurel, Gabriele Buondonno, Joseph Mirabel,
Florent Lamiraux, Olivier Stasse, and Nicolas Mansard. The pinocchio
c++ library: A fast and flexible implementation of rigid body dynamics
algorithms and their analytical derivatives. In 2019 IEEE/SICE Inter-
national Symposium on System Integration (SII), pages 614-619. IEEE,
2019.

Jun Chai and Ricardo G. Sanfelice. On robust forward invariance of sets
for hybrid dynamical systems. Proc. ACC, pages 1199-1204, 2017. doi:
10.23919/ACC.2017.7963116.

Charles Dabadie, Shahab Kaynama, and Claire J Tomlin. A practi-
cal reachability-based collision avoidance algorithm for sampled-data sys-
tems: Application to ground robots. In Intelligent Robots and Systems
(IROS 2014), 2014 IEEE/RSJ International Conference on, pages 4161—
4168. IEEE, 2014.

Luiz Henrique De Figueiredo and Jorge Stolfi. Affine arithmetic: concepts
and applications. Numerical Algorithms, 37(1-4):147-158, 2004.

Rudolfs Drillis, Renato Contini, et al. Body segment parameters. New
York University, School of Engineering and Science Research Division,
NY, 1966.

Xiaocong Fan. Real-Time Embedded Systems: Design Principles and En-
gineering Practices. Newnes, 2015.

143

[25] Roy Featherstone. A divide-and-conquer articulated-body algorithm for
parallel o (log (n)) calculation of rigid-body dynamics. part 1: Basic al-
gorithm. The International Journal of Robotics Research, 18(9):867-875,
1999.

[26] Aleksej Fedorovi¢ Filippov. Differential equations with discontinuous
righthand sides: control systems, volume 18. Springer Science & Busi-
ness Media, 2013.

[27] Olivier Gay, David Coeurjolly, and Nathan Hurst. Libaffa-c++ affine
arithmetic library for gnu/linux, 2006.

[28] Jeremy H Gillula, Shahab Kaynama, and Claire J Tomlin. Sampling-
based approximation of the viability kernel for high-dimensional linear
sampled-data systems. In Proceedings of the 17th international conference
on Hybrid systems, pages 173-182. ACM, 2014.

[29] Gaél ~Guennebaud, Benoit Jacob, et al. Eigen v3.
http://eigen.tuxfamily.org, 2010.

[30] T. Gurriet, M. Tucker, A. Duburcq, G. Boeris, and A. D. Ames. To-
wards variable assistance for lower body exoskeletons. IEEFE Robotics
and Automation Letters, 5(1):266-273, Jan 2020. ISSN 2377-3774. doi:
10.1109/LRA.2019.2955946.

[31] Thomas Gurriet. Experimental results for the segway:. youtu.be/
7wZJksFMAvk, 2016.

[32] Thomas Gurriet. Simulation of the robotic arm:. vimeo.com/320906655,
2019.

[33] Thomas Gurriet. Experimental results for the exoskeleton:. youtu.be/
UJC5j4BFxyo, 2019.

[34] Thomas Gurriet. Simulation of the uav:. youtu.be/MdOKY-ykCSw, 2019.

[35] Thomas Gurriet and Laurent Ciarletta. Towards a generic and modu-
lar geofencing strategy for civilian uavs. In International Conference on
Unmanned Aircraft Systems, pages 540-549. IEEE, 2016.

[36] Thomas Gurriet, Sylvain Finet, Guilhem Boeris, Alexis Duburcq, Ayonga
Hereid, Omar Harib, Matthieu Masselin, Jessy Grizzle, and Aaron D
Ames. Towards restoring locomotion for paraplegics: Realizing dynam-
ically stable walking on exoskeletons. In 2018 IEEFE International Con-
ference on Robotics and Automation (ICRA), pages 2804-2811. IEEE,
2018.

[37] Thomas Gurriet, Mark Mote, Aaron D Ames, and Eric Feron. An online
approach to active set invariance. In 2018 IEEE Conference on Decision
and Control (CDC), pages 3592-3599. IEEE, 2018.

youtu.be/7wZJksFMAvk
youtu.be/7wZJksFMAvk
vimeo.com/320906655
youtu.be/UJC5j4BFxyo
youtu.be/UJC5j4BFxyo
youtu.be/MdOKY-ykCSw

38

[39]

[40]

[41]

[42]

[43]

[44]

|45]

|46]

[47]

144

Thomas Gurriet, Andrew Singletary, Jake Reher, Laurent Ciarletta, Eric
Feron, and Aaron Ames. Towards a framework for realizable safety critical
control through active set invariance. In Proceedings of the 9th Interna-
tional Conference on Cyber-Physical Systems. IEEE, 2018.

Omar Harib, Ayonga Hereid, Ayush Agrawal, Thomas Gurriet, Sylvain
Finet, Guilhem Boeris, Alexis Duburcq, M Eva Mungai, Mattieu Mas-
selin, Aaron D Ames, et al. Feedback control of an exoskeleton for para-
plegics: Toward robustly stable, hands-free dynamic walking. IEEFE Con-
trol Systems Magazine, 38(6):61-87, 2018.

Ayonga Hereid, Eric A Cousineau, Christian M Hubicki, and Aaron D
Ames. 3D dynamic walking with underactuated humanoid robots: A di-
rect collocation framework for optimizing hybrid zero dynamics. In 2016
IEEE International Conference on Robotics and Automation (ICRA),
pages 1447-1454. IEEE, 2016.

Ian A Hiskens and MA Pai. Trajectory sensitivity analysis of hybrid
systems. [EFEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications, 47(2):204-220, 2000.

Nhut Ho, Garrett G Sadler, Lauren C Hoffmann, Kevin Zemlicka, Joseph
Lyons, William Fergueson, Casey Richardson, Artemio Cacanindin,
Samantha Cals, and Mark Wilkins. A longitudinal field study of auto-
gcas acceptance and trust: First-year results and implications. Journal
of Cognitive Engineering and Decision Making, 11(3):239-251, 2017.

Armin Hornung, Kai M Wurm, Maren Bennewitz, Cyrill Stachniss, and
Wolfram Burgard. Octomap: An efficient probabilistic 3d mapping frame-
work based on octrees. Autonomous robots, 34(3):189-206, 2013.

Stefan Hrabar. 3d path planning and stereo-based obstacle avoidance for
rotorcraft uavs. In 2008 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pages 807-814. IEEE, 2008.

IFR. International federation of robotics, 2018. URL https:
//ifr.org/downloads/press2018/Executive_Summary_WR_2018_
Industrial_Robots.pdf.

Ali Jadbabaie, Jie Yu, and John Hauser. Unconstrained receding-horizon
control of nonlinear systems. IEEE Transactions on Automatic Control,

46(5):776-783, 2001.

Zachary Jarvis-Wloszek, Ryan Feeley, Weehong Tan, Kunpeng Sun, and
Andrew Packard. Control applications of sum of squares programming.
In Positive Polynomials in Control. Springer, 2005.

https://ifr.org/downloads/press2018/Executive_Summary_WR_2018_Industrial_Robots.pdf
https://ifr.org/downloads/press2018/Executive_Summary_WR_2018_Industrial_Robots.pdf
https://ifr.org/downloads/press2018/Executive_Summary_WR_2018_Industrial_Robots.pdf

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

145

René Jimenez-Fabian and Olivier Verlinden. Review of control algorithms
for robotic ankle systems in lower-limb orthoses, prostheses, and exoskele-
tons. Medical engineering € physics, 34(4):397-408, 2012.

Volker Kaibel and Marc E Pfetsch. Computing the face lattice of a poly-
tope from its vertex-facet incidences. Computational Geometry, 23(3):
281-290, 2002.

Wisama Khalil. Dynamic modeling of robots using recursive newton-euler
techniques. In ICINC02010, 2010.

Oussama Khatib. Real-time obstacle avoidance for manipulators and
mobile robots. In Proceedings. 1985 IEEE International Conference on
Robotics and Automation, volume 2, pages 500-505. IEEE, 1985.

Edward A Lee. Cyber physical systems: Design challenges. In Object ori-
ented real-time distributed computing (isorc), 2008 11th ieee international
symposium on, pages 363-369. IEEE, 2008.

John M Lee. Smooth manifolds. In Introduction to Smooth Manifolds,
pages 1-29. Springer, 2003.

Nancy G Leveson. System safety engineering: Back to the future. Mas-
sachusetts Institute of Technology, 2002.

Yucong Lin and Srikanth Saripalli. Sampling-based path planning for
uav collision avoidance. IEEE Transactions on Intelligent Transportation
Systems, 18(11):3179-3192, 2017.

Sikang Liu, Michael Watterson, Kartik Mohta, Ke Sun, Subhrajit Bhat-
tacharya, Camillo J Taylor, and Vijay Kumar. Planning dynamically fea-
sible trajectories for quadrotors using safe flight corridors in 3-d complex
environments. [EEE Robotics and Automation Letters, 2(3):1688-1695,
2017.

Brett T Lopez and Jonathan P How. Aggressive 3-d collision avoidance
for high-speed navigation. In 2017 IEEFE International Conference on
Robotics and Automation (ICRA), pages 5759-5765. IEEE, 2017.

Lui Sha. Using simplicity to control complexity. IEEE Software, 18(4):
20-28, July 2001. ISSN 1937-4194. doi: 10.1109/MS.2001.936213.

Anirudha Majumdar, Amir Ali Ahmadi, and Russ Tedrake. Control de-
sign along trajectories with sums of squares programming. [FEFE Inter-
national Conference on Robotics and Automation (ICRA), 2013.

Anirudha Majumdar, Amir Ali Ahmadi, and Russ Tedrake. Control and
verification of high-dimensional systems with dsos and sdsos program-
ming. In Decision and Control (CDC), 2014 IEEE 53rd Annual Confer-
ence on, page 394. IEEE, 2014.

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

146

Pierre-Jean Meyer, Alex Devonport, and Murat Arcak. Tira: Toolbox for
interval reachability analysis. In Proceedings of the 22nd ACM Interna-
tional Conference on Hybrid Systems: Computation and Control, pages
224-229, 2019.

Ian Mitchell. A summary of recent progress on efficient parametric ap-
proximations of viability and discriminating kernels. In SNR@ CAV, pages
23-31, 2015.

Ian M Mitchell. The flexible, extensible and efficient toolbox of level set
methods. Journal of Scientific Computing, 35(2):300-329, 2008.

Ian M Mitchell, Alexandre M Bayen, and Claire J Tomlin. A time-
dependent hamilton-jacobi formulation of reachable sets for continuous
dynamic games. IEEE Transactions on automatic control, 2005.

Ian M Mitchell, Shahab Kaynama, Mo Chen, and Meeko Oishi. Safety
preserving control synthesis for sampled data systems. Nonlinear Analy-
sis: Hybrid Systems, 10:63-82, 2013.

Ramon E Moore, R Baker Kearfott, and Michael J Cloud. Introduction
to interval analysis, volume 110. Siam, 2009.

César Munoz, Anthony Narkawicz, and James Chamberlain. A tcas-ii
resolution advisory detection algorithm. In AIAA Guidance, Navigation,
and Control (GNC) Conference, page 4622, 2013.

Quan Nguyen and Koushil Sreenath. Optimal robust safety-critical con-

trol for dynamic robotics. International Journal of Robotics Research
(IJRR), in review, 2016.

Michael A Patterson and Anil V Rao. Gpops-ii: A matlab software for
solving multiple-phase optimal control problems using hp-adaptive gaus-

sian quadrature collocation methods and sparse nonlinear programming.
ACM Transactions on Mathematical Software (TOMS), 41(1):1, 2014.

Ragunathan Raj Rajkumar, Insup Lee, Lui Sha, and John Stankovic.
Cyber-physical systems: the next computing revolution. In Proceedings
of the 47th design automation conference, pages 731-736. ACM, 2010.

Arthur Richards and Jonathan P How. Aircraft trajectory planning with
collision avoidance using mixed integer linear programming. In Proceed-
ings of the 2002 American Control Conference (IEEE Cat. No. CH37301),
volume 3, pages 1936-1941. IEEE, 2002.

Muhammad Zakiyullah Romdlony and Bayu Jayawardhana. On the new
notion of input-to-state safety. In Decision and Control (CDC), 2016
IEEE 55th Conference on, pages 6403-6409. IEEE, 2016.

147

[73] Hanan Samet. Neighbor finding in images represented by octrees. Com-
puter Vision, Graphics and Image Processing, 46(3):367-386, 1989. ISSN
0734189X. doi: 10.1016,/0734-189X(89)90038-8.

[74] Tom Schouwenaars. Safe trajectory planning of autonomous vehicles. PhD
thesis, Massachusetts Institute of Technology, 2005.

[75] Hans Seywald and Renjith R Kumar. Desensitized optimal trajectories.
Advances in the Astronautical Sciences, 93(1):103-116, 1996.

[76] Jeff S. Shamma and Kuang Yang Tu. Set-valued observers and optimal
disturbance rejection. IEEE Trans. Autom. Control, 44(2):253-264, 1999.
doi: 10.1109/9.746252.

[77] A. Singletary, P. Nilsson, T. Gurriet, and A. D. Ames. Online active safety
for robotic manipulators. In 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 173-178, Nov 2019. doi:
10.1109/IR0OS40897.2019.8968231.

[78] A. Singletary, T. Gurriet, P. Nilsson, and A. D. Ames. Enabling rapid
aerial exploration of unknown environments. In 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2020.

[79] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. OSQP: An
operator splitting solver for quadratic programs. ArXiv e-prints, Novem-
ber 2017.

[80] Weehong Tan and Andrew Packard. Searching for control lyapunov func-
tions using sums of squares programming. In /2nd Annual Allerton Con-
ference on Communications, Control and Computing, 2004.

[81] The CGAL Project. CGAL User and Reference Manual. CGAL Editorial
Board, 5.0.1 edition, 2020. URL https://doc.cgal.org/5.0.1/Manual/
packages.html.

[82] Michael R Tucker, Jeremy Olivier, Anna Pagel, Hannes Bleuler, Mohamed
Bouri, Olivier Lambercy, José del R Millan, Robert Riener, Heike Vallery,
and Roger Gassert. Control strategies for active lower extremity prosthet-
ics and orthotics: a review. Journal of neuroengineering and rehabilita-

tion, 12(1):1, 2015.

[83] Andreas Wichter and Lorenz T Biegler. On the implementation of an
interior-point filter line-search algorithm for large-scale nonlinear pro-
gramming. Mathematical programming, 106(1):25-57, 2006.

[84] Li Wang, Aaron D. Ames, and Magnus Egerstedt. Safety Barrier Certifi-
cates for Collisions-Free Multirobot Systems. IEEE Trans. Robotics, 33
(3):661-674, 2017. doi: 10.1109/TRO.2017.2659727.

https://doc.cgal.org/5.0.1/Manual/packages.html
https://doc.cgal.org/5.0.1/Manual/packages.html

148

[85] Li Wang, Evangelos A Theodorou, and Magnus Egerstedt. Safe learning of
quadrotor dynamics using barrier certificates. In 2018 IEEFE International
Conference on Robotics and Automation (ICRA), pages 2460-2465. IEEE,
2018.

[86] Eric R Westervelt, Jessy W Grizzle, Christine Chevallereau, Jun Ho Choi,
and Benjamin Morris. Feedback control of dynamic bipedal robot locomo-
tion. CRC press, 2018.

[87] David A Winter. Biomechanics and motor control of human movement.
John Wiley & Sons, 2009.

[88] Xiangru Xu, Jessy W Grizzle, Paulo Tabuada, and Aaron D Ames. Cor-
rectness guarantees for the composition of lane keeping and adaptive
cruise control. IEEE Transactions on Automation Science and Engineer-
ing, 2017.

	Abstract
	Published Content and Contributions
	Bibliography
	Table of Contents
	List of Illustrations
	List of Tables
	Foundations
	Introduction
	Modeling Cyber-Physical Systems
	Outline

	Explicit Safety Filtering
	Set Invariance Conditions
	Realizable Set Invariance for Cyber Physical System
	Safety Filtering
	Regulation Kernel Algorithm
	Simulation of an Inverted Pendulum
	Hardware Implementation

	Implicit Safety Filtering
	Introduction
	Implicit Safety Filtering
	Finite Time Safety Guarantees
	Optimality of the Backup Controller
	Scalable Implicit Safety Filter
	Applications

	Conclusions
	Summary
	Improvements in Regulation Kernel Computations
	Beyond Interval Arithmetic
	More Practical Implicit Safety Filtering
	Quantifying Model Validity

	Bibliography

