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ABSTRACT

In this paper, we study finite transitive permutation groups in
which only the identity fixes as many as three letters, and in which
the éubgroup fixing a letter is self normalizing. I G is such a

group, the principal results concern the case when G

.
s simple.

le

In this case, H, the subgroup fixing a lettcr, is a Frobenius
group, MQ, with kernel M and complement Q. If |H| is even
"we show that either G is doubly transitive cr permutation isomorphic

to the representation of A5 on ten letters.

If |H| is odd we prove that Q is cyclic, M is a p-group,

e

and G has a2 single class of involutions, Furthermore, the number
of groups for whichk H has a given positive number of regulars orbits

is finite.



I. INTRODUCTION

In recent years modern techniques have made it possible to
determine all finite simple groups which satisfy some elementary
set of conditions. One example of such a result is the determination

of all simple permutation groups G satisfying:

(1) G is doubly transitive;

(2) Only the identity element of G f{fixes as many as three letters.

It ie well known that the linear fractional groups LF(2,q),
where q is a prime powef, have doubly transitive permutation
representations such that only the identity fixes as many as three
letters. It was felt for some time that these were the only simple
groups satisfying (1) and (2). Indeed, the work of Zassenhaus [17],
and Feit [ 4], demonstrated that under fairly general assumptions
this is true.

However, Suzuki [11] found another class of simple groups
satistying (1) and (2), and his work [13], together with that of
Ito [ 8], completed the study, showing that other than the linear
fractional‘ groups the only simple groups satisfying (1) and (2) are
the Suzuki groups.

Since solution of this problem produced a new class of simple
groups there has been considerable interest in finding all simple
groups satisfying a weaker set of Bypothese.q. Suzuki [14], ;.nd
Ree [ 9], have pursued such a course, retaining (1) and weakening

(2) appropriately.
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It is the purpose of this thesis to study permutation groups

G satisfying:

(1') G is transitive and the subgroup fixing a letter is self normalizing;

(2) Only the identity element of G fixes as many as three letters.

If a group | G satisfying (1') and (2) has a regular normal
subgroup, it is easily demonstrated that G is either Frobenius or
at least solvable with a quite elementary structure. If G has no
regular normal subgroup the problem is quickly reduced to the
study of a simple group satisfying (1') and (2).

In this case the subgroup of G fixing a letter is a Frobenius
group MQ of order mg, with kernel M and complement Q. If
mq is even it is easily shown that G 1is either doubly transitive,
or G is permutation isomorphic to the representation of A5 on
ten letters.

Thus the major portion of our effort is spent in analyzing
the case when G 1is simple and mq is odd. In this case we prove
that Q is cyclic and M is a p-group. Furthermore, G has a
single class of involutions. |

Finally, for any fixed positive integer (, there are only
finitely many groups G, satisfying (1') and (2) for which MQ has
P regular orbits.

We shall now give a more detailed account of our approach
to the problem. Section II will be devoted to indicating the notation

which we will use throughout the paper.
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In‘section III we derive some general properties of groups
satisfying (1') and (2), and we show what happens when such groups
have a regular normal subgroup. We show that in this case G is
either Frobenius or has a regular normal 2-subgroup and the sub-
grbup of G fixing a letter is a meta-cyclic Frobenius group.

In section iV we count involutions, as Suzuki does in [12], to
show that if G has no regular normal subgroups, and mgq is even,
then G is either doubly transitive or is permutation isomorphic
with the representation of Ag on ten letters.

The purpose of section V is to reduce our work, in the case
when mgq is odd, to the study of a simple group. We accomplish
this by showing that G is either simple or has a Hall normal sub-
group N which is simple. N satisfies (1') and (2), and G/N is
cyclic or meta-cyclic.

If G is a simple group satisfying (1') and (2) with mq odd,
we show in section V that Q is cyclic and has a dihedral norrﬁalizer
of order 2q.

This structure is used in section VI to ascertain some infor-
mation about the characters of. G. The information obtained in
this section is then used to find ‘ce rtain coefficients of the class
algebra in section VII. Using these coefficients we prove that G
has a single class of involutions.

In section VIII, employing the work of Feit [ 5] on exceptional
characters, we prove that M must be a p-group. Hence, to a large

extent, any group satisfying (1') and (2) has very similar properties
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to a group satisfying (1) and (2).

If a simple group G satisfying (1') and (2), with mgq odd;
is not doubly transitive, it has B > 0 regular orbits. In section IX
we use the results we have obtained about characters of G to
prove that there are only finitely many such groups for a fixed

integer p > 0.



II. NOTATION

Throughout the course of this paper the notation used will be
standard in most cases, and can be found in Hall [ 7] or Curtis and
Reiner [ 3].

A few notations which we will use that are not quite so
standard are: S# for the set of group elements S with the identity
deleted; H™ = x—le; |S| for the number of elements in S; and
<S> for the subgroup generated by S, a subset of a group.

I G is a group and H a subgroup of G we write ¥ [G for
the character of G induced by a character X of H. If G is the
group under inve stigation we write x* =X IG. If N is the nor-
malizer of H we write ;( =X IN.

If X is any character of the group G we write X5 for the
restriction of ¥ to H. All characters and representations of G

are assumed to be over the complex numbers.

If X2 X, are characters of G,

X ) = 1T ), X B8
xeG

denotes the scalar product of X4 and ¥ 2

Finally, if G is a permutation group and x is an element
of G, then we use the functional notation x(i) to indicate the image
of the point i under x.

Any other notation which is not standard will be defined in the

text itself.
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III. GENERAL PROPERTIES

In this section we derive a few elementary properties of
groups satisfying (1') and (2). These properties include results on
the structure of the subgroup fixing a letter and the distribution of
invoiutions in the cosets of certain subgroups. We also give a
brief analysis of groups which satisfy (1') and (2) and have a regular
normal subgroup. The results obtained here are not exhaustive
but include only observations both simply obtained and necessary
in the sequel.

We establish some notation which will be used throughout the

thesis by formulating an assumption.
Definition 3.1. A finite group G is said to satisfy (Al) if

(i) G is a permutation group on the set {1,2,...,n}, where n>1;
(ii) H is the subgroup fixing 1;

(iii) G satisfies (1') and (Z)'.

Our first theorem is a general theorem on permutation groups
in which only the identity fixes as many as two letters. We will

apply the results to H.

Theorem 3. 2. If X is any permutation group in which only the
identity fixes as many as two letters, then there is at most one orbit
on which X is not regular. If such an orbit exists, it either con-
sists of a single letter, or X is faithfully represented on it as a

Frobenius group.
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Proof. Suppose O is an orbit of X containing more than one
letter, on which X is not regular. Certainly 1 is the only per-
mutation of X fixing as many as two letters in O. Since X is not
regular on O it must therefore be represented as a Frobenius
group on O. Since .O contains more than one letter, and only 1

fixes as many as two letters, X 1is represented faithfully on O.

Suppose O and O' are two orbits of X on which X is not
regular. If either one contains just one letter any element of X#
fixing a letter of the other arhit fixes two letters. This is impossible.
Therefore X is represented faithfully as a Frobenius group on both
O and O'. The Frobenius kernel K of X is uniquely determined
by any faithful Frobenius representation of X. If x is any element

in X but not in K, x fixes a letter in O and O'. This is again

a contradiction and the theorem is proved.

Corollary 3.3. If G is a group satisfying (Al) then either G is
Frobenius or H has exactly one orbit O# {1} on which it is
represented faithfully as a Frobenius group. On any other orbit

different from {1}, H is regular.

Proof. As a permutation group oun {2,3,...,0}, H satisfies the
hypothesis of the theorem. Hence there is at most one orbit of H
in {2,3,...,n} on which H is not regular. If H is regular on
cvery orbit then either H =1 or G is Frobenius. Since N(H) - H,
H =11implies G =1 which we ruled out by assuming G was a

transitive group on n >1 letters. Thus H has exactly one orbit
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different from {1} on which it is not regular. If this orbit con-
sisted of a single letter, say i, then any element x with x(1) =1
normalizes H. This contradicts the fact that N(H) = H. Therefore
H has exactly one orbit O# {1} on which H is not regular, and on
this orbit vl—l is represented faithfully as a Frobenius group. This

completes the proof.

We now give a brief analysis of groups satisfying (Al) which

have regular normal subgroups.

Theorem 3.4. If G is a group satisfying (Al) and G has a regular

either

L

ig Frobeniug or R is a 2-group and

H is a meta-cyclic Frobenius group.

Proof. Suppose G is not Frobenius. Then by Corollary 3.3, H

- has exactly one orbit on which it is represented faithfully as a
Frobenius group. Let M be the Frobenius kernel of H and Q its
complement. Obviously the elements of M# fix only the letter 1.
Hence MR is a Frobenius group with kernel R. By a theorem of
Thompson [16], the kernel of a Frobenius group is nilpotent. Hence
both M and R are nilpotenf groups.

Now suppose p is a prime dividing the order of R, and P
is a Sylow p-subgroup of R. P is characteristic in R and hence
normal in G. Q normalizes MP. If Q centralizes no element of
P# then Q clearly acts as a fixcd point free automorphism group on

MP under conjugation. Thus MP is nilpotent, contradicting the fact

that MP is Frabenius. Hence some element in P# centralizes Q.
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Any element of Q# fixes 1 and a letter in the Frobenius orbit of
H. Any element in P# centralizing Q must interchange these two
letters and thus have order divisible by 2. Hence p =2 and R is
a 2-group.

It is well known that in a Frobenius group the complement has
cyclic Sylow p-subgroups for odd primes p and either a cyclic,
quaternion or generalized quaternion Z-subgroup. A proof can be
constructed using [ 2], section 248, where it is proved that every
subgroup of order p2 is cyclic for any prime p, and [ 7], Theorem
12. 5. 2.

Since M is nilpotent and the complement in the Frobenius
group MR, M is cyclic. This follows since |M| .must be odd
and so M is the direct product of cyclic Sylow subgroups. Since
M is cyclic Q is abelian. Therefore the Sylow subgroups of Q
are cyclic since it is the complement of M in H. Therefore Q

is cyclic and the theorem is proved.

We note that groups satisfying these conditions do exist.
Consider all semi-linear transformations ax’ +b on the field
with 211 elements, where a% 0 and o is any automorphism of the
field. As a permutation group on the elements of the field it is
easily seen that this group satisfies (Al). If we restrict a to the
multiplicative subgroup of order 23, we get a group satisfying (Al)
which is not doubly transitive.

In the remainder of this paper we assume that G has no

regulai‘ normal subgroup. In this case Corollary 3.3 indplies that
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H has exactly one orbit on which it is represented faithfully as a

Frobenius group.
Definition 3.5, A group G is said to satisfy (A2) if

(i) - G satisfies (Al);

(ii) G has no regular normal subgroup:

(iii) H is represented faithfully as a Frobenius group on {2,3,..., m%l};
(iv) M is the Frobenius kernel of H and has order m;

(v) Q is the subgroup of H fixing 2 and has order q;

(vi) There are B orbits of H on which H is regular, where p#0.

We have assumed P # 0 since the case in which G is doubly
transitive was completely characterized previously. We mentioned
the results in the introduction,

We gather some results on M, the Frobenius kernel of H,

in the form of a lemma.
Lemma 3. 6. If G satisfies (A2) then

{i) The elements of M# fix only the letter 1;
(i) N(M) = H;
(i) MN M =1 if x isin G but notin H;

(iv) M is a Hall subgroup of G,

Proof. (i) is clear, since M is regular on every orbit different
from {1}. By (i), any element of G normalizing M must fix 1,

and therefore must belong to H. Since M is normal in H we
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have (i1). Suppose x is in G but not in H. Any element of
MN M® fixes 1 and x(1). By (i) the only such element is 1.
Hence (iii) is established. Now |G| =nmg. Since M is regular
on every orbit different from {1}, n=1 (mod m). Since H is
Frobenius vwith kernel M and complement Q, m =1 (mod q).
Therefore (m,nq) =1, and M is a Hall subgroup of G. This

proves (iv) and completes the lemma.

In[1], Brauer and Fowler showed that much could be learned
about groups of even order by careful consideration of the elements
of order two., Suzuki also demonstrated the significance of such
elements in his work on ZT-groups and CN-groups in [12]. Here
we prove two lemmas which are much the same as lemmas used by

Suzuki.

Definition 3.7, I x# 1 is a group element such that XZ =1 we call
x an involution. If S is a subset of a finite group G, then by

v{S) we me an the number of involutions in S.
Lemma 3.8, Let G be a finite group satisfying (A2). Then
v(G) = v(H) + (n-1)q .

Proof. Let Mx be a coset of M in G such that Mx C+l H. Suppose
s and t are involutions in M=x., x(1) # 1, since x is not in H.
Since s and t are in the same coset of M they are in the same

coset of H. Therefore s and t both interchange 1 and x(1).
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Therefore st fixes two letters and is in M., Thus st =1 by
Lemma 3.6 (i). So s =t. Therefore we have v{Mx) =1 for
Mx (;Z H. There are (n-1)g such cosets of M in G, Hence

v(G) = v(H) + (n-1)q, as was asserted.

Lemma 3.9. Let G be a finite group satisfying (A2). Then if

x(1) >m +1, v(Hx)=<1. Furthermore

v(G) = v(M) + (BH)maq .

Proof. Let x be any element such that x(1) > m +1. By
Corollary 3.3 the subgroup of H fixing x(1) is trivial. If s and
t are involutions in Hx, their product fixes x and x(l1) and hence
must be 1. Therefore s =t and v(Hx) =1 as asserted.

Since Hx is the union of ¢q cosets of M in G, and since
these cosets are not in H for Hx # H, we have for such cosets
v(Hx) = g by Lemma 3. 8.

There are m cosets of H corresponding to the Frobenius
orbit of H., There are Bmgq whose coset representatives satisfy

x(1) > m +1. Hence

v(G) = v(M) + mq + Bmgq = v{M) + {fHl)mqg .

This completes the proof.
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IV. ON GROUPS SATISFYING (A2) FOR WHICH |H| IS EVEN
In this section we prove the following theorem:

Theorem 4.1. I G is a group satisfying (A2) and mgq is even then
G= A5. The representation of A5 abtained is of degree 10 over a

Frohenius subgroup of order 6.

Proof. The proof will be divided into two parts. We first will
suppose that m is even and arrive at a contradiction. Then under
the hypothesis that g is even we show that G is A5. The case
where m is even could be eliminated by applying Theorem 1 of [15].

However we give a proof here as the details simplify in our situation.

Case 1. Suppose m is evemn.

By Lemma 3.6, M is a Hall subgroup of G and thus con-
tains a Sylow 2-subgroup of G, Hence every involution occurs in
some conjugate of M. By Lemma 3.6 (iii), no involution occurs in
two distinct conjugates of M, and since M has n conjugates we get
v{G) = nv(M), Since H is Frobenius with kernel M, every involution

in H isin M and so v(H) = v(M). Therefore, by Lemma 3.8
nv(H) = v(H) + (n-1)q

from which we get immediately v(H) = q. Since the action of Q on
M wunder conjugation is fixed point free, M must have at least ¢
involutions and so v(H) = q. Thus v(G) = ng. By Lemma 3.9 we

have
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ng = q +(p +1)mq
from which we get immediately
n=1+{(p+1)m=1+m +pm,
But.
n=1+m t fmg

which is contradictory since B# 0 and q# 1.

Case 2, Suppose ¢ is even.

Then Q contains an involution y. Since y fixes only 1 and
2, any element centralizing y must fix or interchange 1 and 2.
Since the product of any two elements interchanging 1 and 2 fixes
them there are just two cosets of Cly) N Q in Cly) and so

|C(y)| = 29q. Thus we have

- mng . mn
. 2) W& = TET 7o

Since H is a Frobenius group any involution in Q has a
fixed point free action on M under conjugation. It is well known
that any involution in Q must take every element of M into its
inverse under conjugation. Hence y is the only involution in Q.
It is then obvious that the involutions of H are precisely the
elements of the coset My in H and therefore Vv{H) = m.

Applying Lemma 3.5 we get
v(G) =m + (n-1)q .

Thus by (4. 2) we have
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r-%g =m + (n-1l)q .

Therefore
m - — <
n-1 2q .

Since f+# 0, m <n -1, Therefore 29 >m - 1, and hence 29> m
since m is odd. But since Q has a fixed point free action on M
under conjugation, m =1 (mod q). Therefore g =m - 1.
Substituting m -1 for q and m for v(H) in Lemma 3.9
we get
v(G) = m + (BH)m(m-1) .

Now n=1+m +fmg=1+m + fm(m-1), and v(G) = -I—I;-I—} . Thus

we have

Z[1+m+sm(m-1)] = m + (pH)m(m-1)

2 -_ »
Multiplying on both sides by % and subtracting 2 we get

m - 1+ Bm(m-1) = 2 (H)(m-1}.

Dividing both sides by (m-1)p we get

+m =

™
-+

1
p

or

Now m is odd andnot 1 so m =3 and B =1. This gives
q=m-1=2, and n=1+m + pmqg =10, Therefore |G| is 60, H

is the normalizer of M, the Sylow 3-subgroup of G. If K is a
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subgrouprof G containing H, [K:H] =1 (mod 3). Hence G is the
only subgroup properly containing H and therefore H is maximal.
Thus G is a primitive group. Since the degree is not a prime
power, G 1is not solvable. Since IGI = 60, this impli’es G = A5.
| To complete the proof we need only show that A5 has a repre-

sentation of the désired type on 10 letters.

Consider the set S = {1, 2,3,4,5}, Let K be the set
of all subsets of S with two elements. A5 is represented as a
permutaﬁon group on K by x({a, b}) = {x(a), x(b)}, where x is
any element of A; and {a, b} is any element in K. This repre-
sentation is certainly transitive since Ay is doubly transitive on
five letters. The subgroup fixing {1, 2} is 1, (345), (354), (12) (34),
(12) (35), and (12)(45). It is easily seen that only 1 fixes three
elvements of K. The representation is on 10 letters and is not doubly
transitive since 9 ,}’ 60. It is easily seen that the subgroup fixing
{1, 2} is self-normalizing. |

Thus we have shown that precisely one group exists satisfying

(A2) when mgq is even.
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V. GROUPS SATISFYING (A2) WHEN |H| IS ODD

In the last section we proved that if G is a group satisfying
(A2), and |[H| is even, then G is A In this section we begin to
study the case when |H| is odd. We will show that although G may
not be simple, G has a Hall normal subgroup N which is simple and
G/N is either cyclic or meta-cyclic. Furthermore we show that N
satisfies {(A2). On the basis of this result we then restrict our

attention to simple groups satisfying (A2).

Lemma 5.1. There exists an involution w normalizing Q and

IN(Q) | = 2q.

Proof., Let P be a Sylow p-subgroup of Q for some prime p
dividing gq. Since {m,q) =1, P is a Sylow p-subgroup of H. Each
element of P# fixes precisely the letters 1 and 2. By [7],
Theorem 5.7.1, N{(P) must be transitive on {1, 2}. Therefore,
there exists an element interchanging 1 and 2, and normalizing P,
This element is obviously of even order, and therefore some power
of it must be an involution. Let this involution be called w. w must
interchange 1 and 2 sincevq is odd.

Now w normalizes Q since Q consists of all permutations
fixing 1 and 2. Furthermore, any permutation normalizing Q
must fix or interchange 1 and 2, and therefore must belong to Q

or Qw. This completes the lemma.

. Since Q acts as a fixed point [ree automorphism group on
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M, and ¢ is odd, Q has cyclic Sylow p-subgroups for every prime
p dividing q.

Thus N(Q) has cyclic Sylow p-subgroups for every prime p
dividing its order. By Theorem 11, p. 175 of [18], N(Q) = AB, where
A and B are cyclic, {(|A|, [B|)=1, ANB-=1, and A is the
derived group of N(Q). Now since N(Q)/Q is abelian, 2| |[B].

We can now prove the results promised at the beginning of

this section.

Theorem 5.2. If G is a group satisfying (A2), G has a normal
subgroup N satisfying (A2) such that N is a Hall subgroup of G,

G/N is cyclic or meta-cyclic, and CN(\Q(w) =1,

Proof., Let Pl’ PZ’ ou ey Pj be the Sylow subgroups of B for all
odd primes dividing the order of B.

Since every element of Q# fixes just the letters 1 and 2,
n= 2 {mod q). Since Q is odd (n,qg) =1. Hence m, n, and q
are pair-wise relatively prime. Since (|A], |B|) =1, P, isa
Sylow pi-—subgroup of G for i=1,2,...,). Anyelementof G
which normalizes Pi is in .N(Q)e Any element in N(Q) which
normalizes Pi must centralize it. Hence by Burnside's Theorem,
Theorem 14. 3.1 of [ 7], Pi has a normal complement Ti for
i=12,...,]0

J
Let T= N Ti' Then TN N(Q) = A <w>,

i=1

Now let Pj+1’ Pj+2’ ey Pj+k

centralized by . By applying Burnside's Theorem again, we get

be the Sylow subgroups of A
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Pj+i has a normal complement T. in T for i=1,2,...,k.

j+i
Since Ti is a Hall subgroup for every i, Tj+l’ Tj+2’ o Tj+k are
characteristic in T and hence normal in G.
jtk
Let N= N Ti' N is clearly a normal Hall subgroup of G
i=1

such that G/N is cyclic or meta-cyclic.

Clearly [G:N] =[Q:NN Q] so that a system of coset
representatives for NN Q in Q is a system of coset representa-
tives for N in G, Such a system of coset representatives must
permute the orbits of N transitively. But since each representative
is in Q it fixes 1 and therefore the orbit of N containing 1. Hence
N is transitive. Certainly 1 is the only clement of N fixing as
many as three letters. If N had a regular normal subgroup it
would be a Hall subgroup and hence characteristic. Therefore it
would be a regular normal subgroup of G which is impossible,

Since N must contain M, N M H is self-normalizing. Therefore
N satisfies (A2). Since N has no regular normal subgroup,

NN Q#1, Also, CN ﬂQ(cu) =1.

Corollary 5.3. NM Q is cyclic and w carries every element of

N M Q into its inverse under conjugation.

Proof. This follows immediately from the fact that CNmQ(w) = 1.

Theorem 5.4. If G is a group satisfying (A2), and if there exists
an involution w in N(Q) carrying every element of Q into its

inverse under conjugation, then G is simple.
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Proof. Let S# 1 be a maximal normal subgroup of G. We assert
that S(MH=#1. I SMH=1, MS is represented as a Frobenius
group on the orbit of S containing 1. Every element of MS is

in S or some conjugate of M. Q normalizes SM and if Q
centralizes no element of S# it clearly acts fixed point free on SM
under conjugation. This would imply SM is nilpotent by Thompson
[16], which is impossible since SM is Frobenius. Hence Q
centralizes a non-identity element of S, Such an element must
interchange 1 and 2 since it normalizes Q. By Lemma 5.1 and
the hypothesis that an involution w exists carrying every element of
Q into its inverse, N(Q) is dihedral and no involution in N(Q)

4
centralizes an element of Q". The contradiction implies that

SNH+1,

We now assert that SA M# 1., If SN Q=1 then SNQ*=1
for every x in G because S is normal in G. Since SMNH=# I,
this implies SNM=#1l, If SN Q#1 let y be an element o:f
S0 Q# and x be an element of M#. Clearly y_lyX is in 'M#
and in S, Hence, SN M=#1,

Let SM M= D, Since. S is normal in G, and H = N(M),
H CN{(D). Since MM M* =1 if x isnotin H, H = N(D). Hence
D has n conjugates in G, all of which are in S since S is normal.
The number of subgroups conjugate to D in S is [S:NS(D)] =
[ S:S M H]. This numberis a divisor of n and hence prime to mg.

If D* is any conjugate of D in G, it permutes the conjugates of D

in S. Since |D¥| does not divide [S:S M H], some element p#1
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in D® normalizes a conjugate of D in S. Since the only conjugate
of D in G which is normalized by p is D*, D* is conjugate

to D in S. Hence all n conjugates of D in G are conjugate in

S. I D* is the conjugate of D in G which fixes i, then there
must be an element of G in S taking 1 to i. Hence we have shown
that S is transitive,

Since S 1is transitive G = HS. Therefore,
G/S = (HS)/S = H/HN S.

Since G/S is simple H/HMN S is simple. Ilence MC HMN S, and
H/H N S must be cyclic of prime order p, where p divides g. Let
v be a generator of Q, which is cyclic since N(Q) is dihedral.
Clearly Sv # S. Since p is odd SwSw= S implies w is in S.

Since SvS = Sv, wvw = v—1 is in Sv. Hence SvSv = SVSV_l =S,
contradicting the fact that G/S is of odd order.

Hence, G has no maximal normal subgroup different from 1,

and is therefore simple,

Corollary 5.5. If G is a group satisfying (A2) then G has a Hall
normal subgroup N, such that N is simple and G/N is cyclic or

meta-cyclic,

Proof. Let N be the subgroup of G constructed in Theorem 5, 2.
By Theorem 5.2 and Corollary 5.3 N satisfies the hypothesis of
Theorem 5.4. Hence N is simple. The other conclusions of the

corollary follow from Theorem 5. 2.
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In the remainder of this paper we consider groups satisfying

a new assumption based on the work of this section.
Definition 5.5. A group G is said to satisfy (A3) provided

(i) G satisfies (A2);

(ii) mq 1is odd;

(iii) G is simple;

(iv) w is an involution normalizing Q and mapping every element
of Q onto its inverse under conjugation;

(v) L = N(Q} is a dihedral group of order 2q.
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VI. ON EXCEPTIONAL CHARACTERS OF G ASSOCIATED WITH Q

In this section we begin a study of the characters of G. The
work in the remainder of this paper will make considerable use of

a theorem due to Feit [ 5].

Theorem 6.1 (Feit) Let G be a finite group and let X be a sub-

group of G satisfying the following hypotheses

() I xex', Clx) S X;

(1) XM xY =1 if y- is in G but not in N(X):
(iil) X# N(X)# G

(iv) [N(X):X] # [X]| -1

(v) X is not a non-abelian p-group with [ X:X'] < 4[ N(X):X] 2,

Let ;o =1, 4‘1’ e gk be all the irreducible characters of X, and let
C,i(l) =z Let the character of N(X), G induced by gi be denoted

e
3k

by §;, L, respectively. Let [ N(X):X] = w.
Then the notation can be chosen so that él’ QZ, ey ék/w are
. . . . sk ke 3k
distinct irreducible characterg of N(X) and {.,1 , {,2, vees t‘:’k/w are
distinct characters of G,

Also, %v > 1 and there exist irreducible characters
Xp2Xpreee ’Xk/w of G and a sign € = *1 such that
ZJél - Zng = E(Zin - ZiX. J)
for 0<i,j = k

" Finally there exists a rational integer c, such that
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X ;) = €l;(x) +zgc

for any x in X#, 0<i= %v If x 1is an irreducible character
of G distinct from XX e Xk/w’ then the restriction of ¥ to

X# is a constant.

Definition 6. 2. The characters X1 X pseeesX K /w constructed in
Theorem 6.1 are called the exceptional characters of G associated

with X.

As the title indicates, in this section we construct the col-
lection of exceptional characters of G associated with Q. In addition
we find another character of G which is closely related to these
cxceptional charactecrs. Other than this family of characters and
the trivial character, every other irreducible character of G will
be shown to vanish on Q# and have degree divisible by q. This
will allow ns to calculate certain coefficients of the class algebra
in the next section.

Throughout this section we assume G satisfies (A3).
Lemma 6.3. Q satisfies the hypotheses of Theorem 6.1.

Any element of G centralizing an element of Q# must
either fix or interchange 1 and 2. Any such element normalizes
Q and is in L. Since L. is dihedral of order 2q, CL(X) =Q if
x is in Q’. Hence Q satisfies (i).

If x¢ L the set {1,2,x(1),x(2)} contains at least three

distinct elements. Every element of Q fixes 1 and 2. Every
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element of QF fixes x(1) and x(2). Since only the identity fixes
as many as three letters, Q()Q* =1. Therefore Q satisfies (ii).
Q obviously satisfies (iii).
If [1:Q] =q -1, then q =3, since [L:Q] =2, If q=3
G is a simple group with a self-centralizing element of order three.

A theorem of Feit and Thompson, | 6] states:

If G is a non-cyclic simple group which contains a self-
centralizing subgroup of order three, then G 1is either LF(2,5)

or LF(2,7).

Since |LF(2,5)| is 3-4-5, if LF(2,5) were to satisfy (A3)
we would have mq =15 and n =4, This is impossible since n > mgq.
The order of LF(2,7) is 3-7-8. If LF(2,7) were to satisfy (A3)
we would have mq = 21 and n = 8, which is again a contradiction to
the fact that n > mq. Hence q# 3 and Q satisfies (iv).

Since Q 1is abelian, Q satisfies (v). This completes the

lemmea.

Let Yo = 1, AERERE Y(q—'l)/Z’Yl’YZ’ “eey Y(q-l)/Z be the irre-
ducible characters of Q. Note that these are linear characters
since Q is abelian, and are distinct since q is odd. Furthermore
it is easily seen from the fact that I. is dihedral, that \71, ;2, e

Y(q—l)/Z are distinct irreducible characters of 1. and that

v; (%) = v,(x) +7G)

for x € Q#, and :i.=1,2,‘...,—9il .
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By Theorem 6.1, there exist irreducible characters

PP ¢(q—1)/2 of G, and a sign € =1 such that

Ao e

(6' 3) Yi - YJ = 6((Pi - (PJ)

for 0<4i,j= ﬂi—l— . Furthermore, there exists a rational integer c,

such that

qoi(x) = e;i(x) +ec

for any er#, i=1,2,..., 3‘51—

Finally, every other irreducible character of G is constant

on Q#.

Lemma 6.4. There is exactly one non-trivial character Py such
that @, # ?; i=1,2,..., 9-—%-1—, and such that ?q does not vanish
# #

on Q. Furthermore c =0, so that qoi(x) = E\N/i(x) if xeQ".

First we show that there is at least one such character. Let
yf‘: €y, + A, By Frobenius rociprocity (1,yf<)G = (vgr ¥)q = O-
Therefore (1,A)CT = 0. Let ch =1+ ¢ +A. By Frobenius reci-
procity (1, Y?;)G = (yo, YO)Q = 1. Since (1,A)G =0 we have {1, QJ)G: 0.

Now v (l) = yf‘(l). Therefore 1 +4{l) = € (). By (6.3),

o,(1) = g,(1) for i=1,2,..., 931— §(1) = -1 (mod ¢/(1) ). Therefore
some character of G different from @5 for any i must have a
non-zero scalar product with ¥, ILet ?0 be such a character.

Since (L, 4) =0, ¢,# 1 Now we have (9. Vo) = (pg,4) + (9, A)

while - (qoo,y;) = (qu,A). Hence (qao,yg) 2 ((PO’YT)’ or
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. #
(goOIQ,yO—yl) # 0. But ¢, is constanton Q', say . (‘pOJQ’YO-Yl) =

by (yo—yl)(x) # 0. Therefore p # 0.
x€Q :

Since ?q is constant on Q# it must be integral valued there
since (goo IQ’ 'yi) is the same for i=1,2,..., —q-;—‘—l— Since for any
character Y of G and for any xeG, ¥ (x)Xx(x) = 0. We have by

the orthogonality relations for =xe€ Q#

951
|Calx)] =q=1+e,(x)e,(x) + 0.(x) 0. (%)
G 0 0 s i i
i=1

Now since goi(x) = e;i(x) +ec for xe€ Q#, we have

2 2 2
D oo = ) eav,60 + ) ) + G5k o2
/), ey (x) = ) vy, (x)y; (=) Z cly;(x) +v;(x)) 5— C
i=1 i=1 i=1

~

But the irreducible characters of L are Vs i=1,2,..., ﬂ%-l— )

1, and a character whichis 1 on Q and -1 outside Q in L. So

by the orthogonality relations on L

a-l
2
Ci (=) =q=1+1+ z v; () v; (%)
q-1 i=1
2
Clearly, Z c(yi(x) + 'yi(x)) = ~c. Hence we have
i=1

o
D ew = q-2-c+ Gl eZ,

i=1

Siuace _guo(x) is a non-zerv inleger, (po(x) quo(x) = 1. Hence
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q21+1+q-z—c+-‘1;-c2
or

0= ﬂ-;—l-cz—c

Certainly ¢ = 0. Suppose c # 0.

9-——_2——1-CZSC

or

9-—%—1—-c51.

This implies ¢ =1 and g = 3. But as we have noted already q # 3
by a theorem of Feit and Thompson [ 6]. Hence c =0. From this

it now follows that

q=1+o4xleylx) +q-2+ ? X (%)X (%)
Lo
X.

where ¥ ranges over the remaining irreducible characters of G.
Since ¢, (x)o,(x)= 1 and ¥ (x)x (x}= 0, we have cpo(x) = %1,

and X (x) = 0 for all other X, establishing the lemma.

We now wish to relate the values of ?q to those of

?; i=1,2,...,-9':2-1—. Let yik=€<p1+a. By (6. 3) we get

‘Yi:E(pi“l‘A

for i=1,2,..., %i Let yg =1+ +4 as inthe lemma. We

wish to show that § = €p,. If ¥ is any character of G which
0 v

* Ja
vanishes on Q#, (X,yo - y;{) = 0. Hence (x,l) =0. We have

already noted that {1,y) = 0. If we consider ?; for 1=1i= 9%1—- )



(o5 vé-vf) = (o3l v ) = 1;1 ZQ (v; () Ty ) My (x) - v ) = 0

X€

if i#j. Hence (p,V) =0, i=1,2,...,9;—1. Hence y is a

multiple of P

(soo,y:;-vl*) =00 la Yo ¥ = 15 Z 9oL - y;(x) ) .

%€ Q#

#

Since ?0 is constant on Q# we get for some fixed x in Q

(goo, y(; - y:) = cpo(x) —]é—i(q—lﬂ) = goo(x). Now we noted in proving the

1ast lemma that :po(x) = *1. Since yg(l) \/;(1), ch(X)«JO(l) +1 = Ecpl(x).

So <p0(x) = € and

sk

\{0:1+€¢0+A.

0,1,..., 9*—} on Qf.

Furthermore we know by (6. 3) that gol(x) = cpi(x), i=1, if x is in

Thus we know the values of P; i

no conjugate of Q#. We now relate qol(x) to goo(x) in this case.

#

Lemma 6.5. I x is not conjugate to an element of Q,

oy (x) = ¢plx) T €

Proof. If x is not conjugate to an element of Q#
Volx) =0 =1+ epglx) + Alx)

and
vy (x) = 0 = €p (x) + Alx) .

Comparing the two equations gives the result immediately.
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We summarize the results of this section as a theorem.

Theorem 6.6. Let G be a group satisfying (A3). Then there exist

characters PorPprvee <p(q_1)/2 of G with the following properties:

(i) = I x is not in any conjugate of Q#

gal(x) = zpi(x) for i=12,..., 9—%—

<pI(x) = o;oo(x) + € where € = +1.

(ii) For i=1,2,..., -9-%1— A is an exceptional character of G

associated with Q and if x is in some conjugate of Q
¢;(x) = €y, (x)
where ’\v/i is an irreducible character of L induced from Q.

#

(iiil) If x is in some conjugate of Q
9ol = € .

(iv). I x #1 is any irreducible character of G besides the s
i= Q,l, e, 3—:1-, then if x 1is in some conjugate of Q#,

2
x (x) = 0.

Corollary 6.7. If x 1is any character of G besides 1, Por Pyt

(P(q_l)/zs q IX (1).

Proof. This is true since (yg,X)G = (YO,X IQ)Q = —1C-1-x(1) is an

integer.
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Corollary 6. 8. ¢y is integer'v'alued.

We know that <p0(1)=ﬁ 1 since G is simple and ¢, # 1. ¢0(1) #* goi(l),

?o(1) telq-1)
» q
is an integer and hence gao(l) = ¢ (mod q). By Coroullary 6.7, we

. -1 ¥
i=1,2,..., g—z—, by the theorem. (goo,yo) = (cpo IQ, yo) =

see now that every other character of G has degree different from
?q- Hence ?9 is identical with all of its algebraic conjugates and
hence must be rational. Its valucs arc rational algebraic integers
and hence, integers.

We remark that ?0 is analogous to the irreducible character
associated with the doubly transitive representation in the problem

which was previously considered.
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VII. CERTAIN COEFFICIENTS IN THE CLASS ALGEBRA AND
THEIR IMPLICATIONS

In the last section we showed that we can evaluate any

]

character of G on Q#. Now we would like to apply these results
to the calculation of certain coefficients in the class algebra.
If x is any element of G let K, be the class of G con-

taining x. Let R-X = 2 y be the class sum, an element of the
: VGKX

group algebra. Let zy = 1, Z s

G. There exist integer constants ay , such that

H 2

e B be class representatives for

: v
(7.1) K XK :25 a, K_.
: Zy\ zp ~ v Tz

There is a well known formula for a)\pv (cf. [1], p. 580)

X (zy)x (z )x (z)
- mng WX A IXAZ,
(7.2 v = TCEY1CEIT ), =54
X

where ¥ ranges over all irreducible characters of G,

It is easily seen that if Zys ZH’ or z, is in some conjugate
of Q# the calculation of a)\pv is not only possible, but fairly
simple since most of the terms in the sum vanish.

In this section we will calculate a when =z, and z do

_ A\pv A V!
not belong to conjugates of Q# and z, does. We use this calcu-
lation to show that G has a single class of involutions, and to

derive infdrmation about the degrees of ?0 and Py

Throughout this section G is assumed to satisfy (A3).
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Theorem 7.3. If z, and z, do not belong to conjugates of Q#

and zv does, then

mnaf ¢,(1) - ¢q(z, )1 ey(1) - wo(zu)]

7.4 v = TTICTTTICE ) (7, Mey®
Proof. By Theorem 6.6 and (7. 2)
a2
g [1 %otz )e § 01(23)0; (2 )0;(2) ]
v = TCTz, ) [1CGz 1] o) Z oD
1=

mng S aglzy ez, )e qol(zk)sol(zu)e}
" T 1R JT L” PN () RN 4}

If we take goo(l)[ qoo(l) + €] as a common denominator and

eXpress ¢, in terms of ?y when possible, we get

v T [Clz) ) T1CTz oo (e, (1)

This completes the proof.

Lemma 7.5. I p and ¢ are distinct involutions such that po fixes

two letters, then p and o are in Kw.

Proof. Suppose po fixes a and b. There exists y such that
(e} is in Q#. 07 (pa) pY = (ep)Y, the inverse of (pe)?. Since
QM Q* =1 if x¢L, p’eL. Obviously the same is true for o. Since

every involution in L 1is conjugate to w the lemma is proved.
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Theorem 7.6, If G satisfies (A3), G has a single class of

involutions.

Proof, Suppose Kz. is a class of involutions different from Kw'
Let Kz. be the clasls of an element of Q#. By (7.1) aiij‘ is the
nurﬁberJof ways zj can be written as a product of involutions in
Kzi. Since KZi # Ko.) by assumption, Lemma 7.5 implies aiij = 0,
By (7. 4) this can happen only if goo(l) - (po(zi) = 0., This is contra-
dictory because G is simple and ?0 # 1. Hence G has a single

class of involutions. ,
2
mn[ 4’0(1) - ‘Po(w)]

Theorem 7. 7. >
[Cle) [ “oq (e, (1)

Proof. We calculate aiij in two ways, where Ko.)= Kz and z.
has a conjugate in Q.

Let y be an element of Q# in Kz.' The proof of LLemma 7.5
indicates that if y is the product of two inirolutions, these involutions
are in L. I p ie any involution in L, there is a unique element o
in. L such that pe =y. Since L is dihedral of order 2q, ¢ must
be an involution. Therefore there are q ways in which y can be
written as the product of involutions. Hence aiij = q. Applying

Theorem 7.3 we now get our result immediately.
Corollary 7. 8. mlcpo(l)cpl(l) .

Proof. By‘the theorem m lC(w)lchO(l)galv(l). Any element, not 1,

centralizing w moves all letters. Hence C(w) is semi-regular on
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n letters and IC(w)I n. Since (m,n) =1, mlcpo(l)gol(l), as

asserted.
Theorem 7. 9. m]qoo(l) or m]qpl(l) .

Proof. Since qal(l) = goo(l) + €, (gal(l),goo(l)) = 1. Hence if m is
a prime power we are done since miqu(l)qal(l) by Corollary 7. 8.
If m is not a prime power, we assert that M satisfies the
hypotheses of Theorem 6. 1.

If x is in M#,-x fixes exactly one letter by Lemma 3.6,
and C(x) € M since M contains all elements fixing just the
letter 1, Thal M satisflies hypotheses (ii) and (iii) of Theorem 6.1,
follows from Lemma 3.6. Hypotheses (iv) and (v) are obvious since
mq is odd, and m is not a prime power. Thus M satisfies the
hypotheses of Theorem 6.1, as asserted.

In Theorem 6.1, suppose ?q = Xj for some j. Then for

X€E M#

9o(x) = €', lx) + 2y

where ¢ is a rational integer, €' =+1, and ZJ is a non-trivial
irreducible character of H. | Since H is of odd order, Zj is not
real and hence ?0 is not real. This contradicts Corollary 6. 8.
Hence ?9 is not an exceptional character of G associated with M
and is therefore constant on M#.

If p® is the highest power of p dividing m for some
prime p|m, then paltpo(l) or palrpl(l) since (pq(1), (1) ) =1,

and mlgoo(l)rpl(l). Since (m,nq) =1, p% is the highest power of
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p dividing the order of the group. Hence ¢g OT ¢ has defect 0

E3
for p and therefore vanishes on P", where P is the Sylow p-
subgroup of G in M (cf. [10], p. 206). Hence ?q OT @ vanishes

on M# since they are constant there.

: # #otH
If ?q vanishes on M", ((pOIM, 1)M = 0 and hence

mlcpo(l). If ¢, does not vanish on M#, @, does, and ((pllM,l)M:
#, (1)

m

Hence m lqol(l).

This completes the proof of the theorem.

Corollary 7.10. Either ?9 is 0 on M#, or qu is -€ on M#.

a .
Proof. If m = p  the result follows from the fact that either ¢q or
2 is of defect 0 for p. Otherwise it is obvious from the proof of

the theorem.
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VII. THE STRUCTURE OF M .

By a theorem of Thompson, [16], the Frobenius kernel of
a Frobenius group is nilpotent, and hence the direct product of its
Sylow p-subgroups. In this section we will show that M is not
the direct product of non-trivial Q-invariant subgroups, and thereby
conclude that. M must be a p-group.

Throughout this section we assume that G satisfies (A3).

Lemma 8.1. If M = le BZ’ whe re B1 and BZ are non-trivial Q-
invariant subgroups of M, then G satisfies the hypotheses of

Theorem 6.1,

| Since B, is Q-invariant [BT:BT'] >2q for T =1,2. There-
fore [ M:M'] > 4q2. Hence it is clear that M satisfies the hypotheseés
of Theorem 6.1, since we showed it satisfied the other hypotheses
in proving Theorem 7. 9. |

a.
- i
Let LSRR o.q be the elements of Q. a = 1. Let {.,0, Lj s

be the irreducible characters of M, where i=1,2,...,q; and
i=L2,...,r. Let Zj = t;j(l.).
By Theorem 6.1 there exist irreducible characters of G,

XpXpoeoos Xy and €' =%x1 such that
8.2 Ax =e"‘~‘.x +e'z.c
: xJ( ) éJ() ;

it

for some rational integer ¢ and every x in M



-38-

Lemma 8, 3. ]C(x)| =q +Z ZJ(X) ZJ(X) if x is in l\/[# ;
j=1

J
Proof. I x is in M' we know C(x) = CH(X). The irreducible

~

characters of H consist of 2;1, ?;2, “ees ér and ¢q 1linear characters

of H/M. By the orthogonality relations we therefore have

I
|CE) | = [Cyylmd | = a +Zl ROTHEY
J:

Lemma 8.4. If M = B1 X BZ where B1 and }3‘2 are non-trivial

O-invariant subgroups of M, then in (8. 2) c = 0.

#

Proof. By the orthogonality relations we have for x in M,

T

ICx)| =1+ ‘Z (T36) + 250)(E;(x) +250)

j=1

N — N — N
=1+ ) Zj(x)'ij(m + CZ zj(Zj(x> +Zj<x) ) + sz zj2 |

j=1 j=1 =

2y,

:1+|C(X)|—q—2C+C

Thus 2 '
cm-1)=1{(q -1+ 2c)q.

Suppose c# 0., Then we have

m - 1= (aliZe)a < (q-1+zzlc De =424 4
C C

- - _- 3 - + =
Since B'r is Q-invariant IB'rl V.4 1, ==1,2.
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m-1= (Y]_YZC.[ +Y1 +Y2)q = (q +1)q
This is contradictory since B1 and B2 are non-trivial. Hence

¢ =0 as asserted.

Theorem: 8.5. If G satisfies (A3) then M # Bl X DZ where B1

and BZ are non-trivial Q-invariant subgroups of M,

Proof. By Lemma 8.1, G satisfies the hypothesis of Theorem 6.1.
We now designate the characters of G distinct from 1, Por Ppr P
qo(q_l)/Z;X.l:Xz,-*":Xr' |

Let &1, 52, cens §S be the characters of G such that Ek is
ey #0 on M#, k=1,2,...,8. Let 91, 92, cevs 61: be the characters

of G which vanish on H# .

-

: s
Lemma 8.6. If 9y is 0 on M#, >, ei= al o ¢y is -€ on
k=1

2
& 2
Q, Zik—q_Z-
k=1

I
Proof. By Lemma 8.4 and Lemma 8.3 P Xj(x)xj(x) = |C(x) | 2 q
j=1
for x in M. »
o . #
ase 1, ?q is 0 on M".
By the orthogonality relations
91
2 r s
[Cla) | =1+ Z o; ()o) + ) x ) }:gk(x)?—k(x)
i=1 j=1 k=1

for x in M#. Hence
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S
|C(x)] =1 + 9%1_ + |C(x)]| - q + zef{
k=1
or
s
2 _ q-1
Z °x T '972_
k=1
#

Case 2. cpois -€ on M.

By the orthogonality relations

s
Cea | =1+1+]CE)| -a+ ) of
k=1

or

s

2 = -
Zek =q- 2.
k=1
Let U,Jl, L|J2 be non-trivial linear characters of Bl’ BZ
A

respectively. Let be the character of B Q induced by b

A
for 7 =1,2. Itis clear that L{JT is an irreducible character of

B'FQ which has degree g and vanishcs outside BT'

A %k %

Let p. = (q- 1B7Q - ulJT_) for 7=1,2. Let y = PR T
vanishes outside conjugates of (B?Q)# for 7 =1,2. If some con-

jugate of an element in Bl# were in Bﬁ it would have to be a

conjugate under Q since M) M* =1 if x ¢ H. This is impossible
since B’r is Q-invariant. Hence ( vanishes outside conjugates
of Q# .

If x isin Q#,
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| 1 | |
bl =5 ) a1 oY) = F= (a- 2b,g) = 2q.
T T T
yeG
Thus
(8. 7) 1) = g (4a®)mn L) = 29 - 2

Now (‘"I": 1) (P‘l |J'2: 1) = _[_r ZG H]_ (X) Hz(X) = 'Tlﬁ'r ZGH;_::(X)(H;(X)) =
Xe X€

Y

PALE Hl)X ; HZ ;(x p«z)x
X X

where Y ranges over all irreducible characters of G.

Hence

- 9) (1) = ) = ), 66100 1)
X

The remainder of the proof consists of calculating (x, p,l)

and (x, p; ) for every irreducible character of G and obtaining

a contradiction to (8. 7) by means of (8. 8).

(8.9) (Oj, p.l*) =0 for j=1,2,...,t

*® . . .
Proof, (Oj, p.l) = (Qj lB]_Q , }.l.l)'. The result is now obvious since Gj
vanishes on H  and By vanishes on the identity.
%L

(8.10) Z(Ek,ul)(ék,uz)ﬂ“z (o5 ul)(¢,u2)=q !
- k=1 i=0 :
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Proof, (gk,pﬁ)z(gk[BZQ,pé)=(gk{BZQ,MZ) since ék is rational

on H.
(o p) = = Z € (xMq - ¢(x)]
kP bT_q XE(BTQ)# k 1
®k A CH
=qq— Z #[q- by ()] = B [(b-D)q +q] =e,
x€B
-
Therefore

s S
3k ——;E 2
Z (gk’ IJ~1 )(gk’ IJ-Z) = Z ek .
k=1 k=1

(<pi,pz)=(¢i|BzQ,p-2)=(qoilB'ZQ,pz) for i=0,1,..., , since

o

p, 'is real on  (B,Q)" for 1=0,1,..., %L .

Case 1. ?0 is 0 on LA#.

A 1 N A
(0gs ) = (94 |BTQ=HT) "4 Z oo q - ¥ (x)]
x€B_0Q

= b_:,?i [eb,(a-1)q] = (q-D)e

% 1 N A \
(o) b = (o) | B Q’ bo) = 5.9 ( /) elg - (x)) +b_ Z #soi(X)q>
T XEBT xeQ

-1 - } - -
"5 (a(b, - 1)e +eq + blq( 2€)=- €.
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s
By Lemma 8, 6, Z e'li S . Thus

2
k=1
9-1
e e + . se, e _ -1 _ 2 -1 _ 2
Z (gk’ H']_ )(gk’ |J'2) g (9‘71: }‘Ll )(Gois |J'2) = EL_Z +(q 1) +g2—-_ q--q
k=1 i=0

as asserted.

Case 2. ?0 is -€¢ on M#.

S _ _ ]_
(0 1y ) =0 ’B‘TQ’ br) = 5

(; {~e) A( )
/o ela- o dx)) +b €q
# T of

xeB
T

A 0]

T%r?l ((-e)([ b?‘_l] qtaq)t (Q'l)bTQE)

(g - 2)e

T

(@0 1) = (o, | u)=-l-> b_qe.(x) = -2¢
AN o 1B7Q’T bq_q J#Ti

xeQ
for i=1,2,..., 3:21_
S,
By Lemma 8.6 Z e12<=q- 2
k=1
q:1
S, ____ 2 o . '
> % % %y, % 2 2
LG oy )+ ) o u Mo ) =a - 2 +(q-2)" +2(gq-1) =q” - g .
k=1 i=0

This completes the proof of (8.10).
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% %
6.1 0pf) =) =g

Proof. Since 1 is real (1, p:i) = (1, p.::)
(1‘: ]J',T) = (1BTQ3 |J~',r) =q.

We have now reduced our problem to calculating (Xj’ H1=.<)

and (Xj,p;) for j=1,2,...,r. By Lemma 8.4

X = €' L) on M

BTQ #
Lemma 8.12. X5 = e',gj IBTI on (B_Q)" .

Proof. Xj vanishes on every element of (BTQ)# outside Bf_ since
B Q
#

Xj vanishes on Q. e'éj TI T obviously vanishes there. Hence
2

we need only consider x in B'r . For suchan x

& q. g, B Q
17 - e 1 S T
Xj(X) = € gJ(X) = € .Zi QJ' 1(X) = € _zi gj’l,r (X) = € gj,'r l (X)
= i=

a. o
(8.13) If leBl is not y‘llllll for some i, or 1, then (Xj,p.{ y=0.

Proof. Since M = B1 X BZ’ Lj IB is a multiple of an irreducible
1 B_O
character ’ylé . By Lemma 8.12 Xj = e'y1§| T on (BTQ)# .
b B Q
(Xj’ My ) = (xj lBlQ, p,l) = (e'le,l 1 . ul) since My vanishes on the

identity. The conclusion of (8.13) is now clear.

’ a, —=
. -1 . o
(8.14)- If C‘j ’Bz is not yquZ for some i, or 1, then. (Xj, o ) =0.
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Proof. The proof is obviously carried out in the same way as (8.13).

Now since M = B1 X BZ’ I;j is the product of an irreducible

character of B1 and an irrcducible charactecr of BZ' We have just

% S ) . —_—
shown that if (xj,pl )# 0, and (xj, pz) # 0 then Qj is either lBl- L|J2,
LIJl' 1B2’ or - LIJZ . lBl' lB2 is not possible since ?;j is not the
identity of M for j=1,2,...,r. Clearly, for each of these choices
Yy =Y, = 1 since LIJl and Lpz are linear.

— « b * - el i — 1

(8-15) I-f gj - 1B1 L!JZ (XJ) P-l) € q y (Xj, |J'2') - €.
— . * - - 1 -—i —_ 1

If L= 1B2 (xj,pl)- €', (xj,uz)—eq-

I L=y T, Kowd=-e'y Kopd=-c

j 1 2 XJ, I-ll 3 j: HZ - .

B,Q
Proof. (X ) = (X iBlg, b = (e'%| 1 aly o ) which gives the

results for scalar products with pll.
* - T\ 1 2 - - . .

(Xj’ MZ) = (Xj IBZQ, pz) = (e__g_l . qleQ ¢2) which gives the results

for scalar products with p;:.

Combining the results of (8. 9) through (8.15) and substituting

in (8. 8) we get
(8.16) (¢,1)=q2—q+q2—q-q+1=2q2—3q+1

Together with (8. 7) this implies 2q2 - 29 = 2q2 -3g+1 or q=1

which is impossible. This completes the proof of the theorem.

Corollary 8.17. M is a p-group.
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Proof. As we commented in the introduction, M is nilpotent by
a theorem of Thompsoh. Hence it is the product of its Sylow p-

subgroups. The theorem now gives the result.
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IX. ON THE ORDER OF GROUPS SATISFYING (A3).

As was indicated in the introduction, there are infinitely
many doubly transitive groups satisfying (Al). If a group satisfies
(Al) and is not doubly transitive we have shown that H has B orbits
on which it is represented regularly, where B # 0. We have shown
that only one group exists satisfying (Al) with mq even and B # O.

In this section we will show that for B # 0 and fixed, there
exist only a finite number of groups satisfying {A3). In fact their
order is bounded by (312. However we have not concentrated on
trying to establish a good bound, but only a bound -- assuring that

the number of groups for B +# 0 and fixed is finite.

Theorem 9.1. Suppose G satisfies (A3). Let (cpo,lf{) = a. Then

m+1=<f or a=1 and m = -%q'i-l.

Proof. The proof is divided into four cases, according as € = 1

and m divides ¢,(1) or ¢.(l). These are the only alternatives by
0 1

Theorem 7. 9.
Case 1. Suppose € =1 and m[goo(l)n

Since m[goo(l), ¢y is 0 on M#. Combining this information

with € = +1 we get

2 = (0g 1) =log g pp) = sl oM +mia-1)]

Hence

mga = ¢o(1) + m(q - 1)
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or
<p0(1) =mq(a -1) +m.
Thus we have
qol(l) =mg(a-1) +tm +1.
It is easily seen that q ,}’ cpl(l)a Hence cpl(l) Imn Since
(cpl(l),m) =1, gol(l) ln. cpl(l) <n, since otherwise <pl(1)2 > mngq,

which is impossible. Therefore there exists an integer k> 0

such that
(9.2) (kem + 1) (a-1)mqg +m +1] = n = fpmq + m + 1.

1) If a=1 we get
(km +1 +k)m = (Bg +1)m .
This implies

k(m +]_)=[3q.

Now q|m-1. Therefore (q,m+1) =1, since q is odd. Thus q]k

and (m+1)|{p. Certainly m+1 = since P# 0.
2) If a>1 (9.2) yiélds
(a-1)mgk + mk +k +(a-1)g+1=pq +1
by subtracting 1 from both sides and dividing by m. Thus

(a-l)mq+m§ L&:—lf—iﬁq-kl.

Therefore
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(:,1—1)m<fi‘k—"“fr—1 =p-atl=g.

Hence

mt+l=8.
Case 2. Suppose € = -1, and mlqoo(l) .

We have immediately that ?0 is 0 on M# and hence

?oW) - mlg-1)
a= (990 ,H’lH) =

mq
From this we get

¢o{1) = mg(a+1) - m

and

p/(1) =(a+l)mg - m - 1.

As in the previous case qol(l) |n and (pl(l) <n., Hence k>0 exists

such that
(km - D[ (a+l)mg - m -1] = fmq +m +1.
Subtracting 1 from both sides and dividing by m we get

Bq +1 = (a+l)kmg-km - k - (a+l)g *+1
or

kK[(a+l)mg-m -1] = (B +a +t1)q.

Since qf (m+1), qlk. Hence

(atl)mg - m-1<B+a+l,
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Thus

mg-m-1<pg+1
or

m+1=p,
Case 3. Suppose € = -1, and mlgol(l) .

Since m|¢1(1), and €=-1, ¢5 is 1 on M*. Thus

_ <p0(1) +im-1 - m(q - 1)

mq

a

This gives
¢o(1) = mq(atl) - 2m +1.
As in the previous case, <p0(1) |n. Therefore an integer k exists
such that
[(a+1)mqg - 2m + 1] (km +1) = (Bq +1)m +1 .
Subtracting 1 from both sides and dividing by m we get
(a t1)mgk - 2mk +k + (a+1)g - 2= Bq *+1
or
kK[ (at+l)mq - 2m +1] = (p- a - 1)g + 3.

If we consider the last equation (mod q) we get

k= - 3 (mod q)

1) If k > q, then



-5]-
(atl)mg-2m +1<pB-a.

This gives
[ (a+tDa-2]lm<p -1

or
m+1<p.
2) If k=q -3, k#0 since g# 3. We get
(a+1)mq—2m+1=[3-—a—1+3—((;L__-_,?—) .
Now
m(q - 2) = m[ (a+1)q - 2] =£3~a—2+—3-%3—:—%) 5;3‘-2+%ﬁ_—3 .
Hence -
m = 23 (q-s‘”ﬁq-f b 2+8 - 26- 3.

Therefore we have
mt+tl=8,.
Case 4, Suppose € =1 and mlrpl(l), In the same manner as in

the previous cases we get

¢g(1) = mq(a-1) + 2m - 1.
We must have qoo(l) In and 9"0(1)2 < mng. Therefore there exists
k>0 such that

[(a-1)mg+2m-1][km-1] = (Bq +1)m +1 .
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This yields
(a—l)mkq+2km—k—(a—l)q=ﬁq+3.
1) If a>1 we get
{a-D(mk-1) +1<p.

Thus

mk < p

and

m+l1=8,

2) Suppose a =1. Then

2km - k = Bq + 3

implies k =3 (mod q). k# 0 since q# 3. We have

Zm:.mlzﬁ +1.
If k>q,

m<%+1
or

m+i=§.
¥ k=3

m = -gq-l-l.

This completes the proof of Theorem 9.1.
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In the case where k=3 and m = '(% g 1 we extend our
analysis. Since m is odd and m =1 (mod q) we get easily that

12|B. Let p=26. Then m = 26q +1. We have

n=1+28q+1+126f 26q +1]q .,
Simple calculation gives
n = 2(36q +1)(48q +1)

goo(l) =46q+1

and

¢(1) = 2(28q +1).

In this case we would like to show that q is bounded by a

simple function of .
Lemma 9. 3. In the situation just described, q <43 + 8.
Proof, By Theorem 7.7,

mnf (1) - 9o ()] 2 = |C(0) |20, (e, 1) -
Substituting and simplifying aclcordingly we get

|G |2 = (35 D 9, (1) - o(w)] ©
By Lemma 3.9,
[Kw] =< mgqgf[126 +1] .
This gives

n=< [Clw}]@25 +1).
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Substituting, we get

1
2(36q +1)q46q +1) = (990(1) —¢O(w)(126 +1) .

Now
? o) -2 y(w) = 20,(1) = 2(40q *+1) .
Thus
i

(36 +1)* =128 +1
or

(gqﬂ)s BZ +2p +1.
This gives

q=4p + 8

and the proof is complete.

Theorem 9.4. If G satisfies (A3), |G| < 512, that is, there are at

most a finite number of groups satisfying (A3) for fixed f # 0.

Proof. TEither q<m <, or q= 4p + 8 < B2 since B =12 in this
case., Hence g < Bz in any case. Either m<p or m = -2 qtl=
(g% +1=p> since p=12 inthis case. Inany event, m = p’,

7

n=1+m+ Bmqg is even and hence B is even. Thus nSB+B6SB .

Hence |G| = mnq= [312, and the proof is complete.
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