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ABSTRACT

This thesis presents two projects related to large-scale extracellular recordings of
neural signals. The first project asks how the brain sifts the onslaught of sensory
information to identify the few bits that are relevant for guiding behavior. This
question is studied in the context of the looming reaction, an innate defensive
behavior against an approaching aerial predator. Interestingly, the mouse responds
very selectively to the looming stimulus regardless of changes in orthogonal features,
such as its position. The neural basis of this phenomenon is investigated with
extracellular recordings in the superior colliculus, a midbrain visual area known to
mediate the looming reaction. A detailed analysis of the difference between the
superficial and deeper layers of the superior colliculus highlights a core function of
visual processing: to discard information intelligently.

The second project presents electrode pooling, a novel method to increase the
yield of extracellular recordings with the modern silicon electrode array. The
fundamental constraint of wire volume in these devices is identified, and a solution
that makes use of the switching circuitry and the sparseness of the neural signal
in the time axis is described. Specifically, the method proposes to intelligently
choose many recording sites that carry signal and connect them to a single wire
via manipulating the switches. This pooled recording is subsequently un-mixed
by a spike-sorting algorithm. The method is implemented in a state-of-the-art
silicon neural probe, and its effect on signal and noise is analyzed by theory and
experiment. Recommendations on the design of silicon devices aremade to facilitate
the incorporation of this method in the future.
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C h a p t e r 1

INTRODUCTION

This thesis presents two projects that are related by a widely used method in neuro-

science: extracellular recording of neural signal. In this chapter, I brie�y introduce

both projects and provide relevant background information.

1.1 Sifting of visual information in the superior colliculus

One striking observation in sensory neuroscience is the appearance of neurons that

select for a speci�c stimulus feature while ignoring others. They are particularly

impressive given the almost in�nite number of unique stimuli that the brain might

face. A classic example of this phenomenon is the face cell in the inferotemporal

cortex of the primate brain. These neurons respond only to images of faces, and do

so regardless of their view angle, illumination, or position [10]. Like a miner who

sifts through a slew of dirt in search of a few nuggets of gold, these neurons discard

all but the few bits of information important for guiding behavior. Neuroscientists

have marveled at this phenomenon for a long time, and some have even proposed

that our conscious perceptual experience is nothing more than the �ring of these

neurons [1].

Despite the enduring interest in this topic, we still know very little about how this

computation is implemented by biological neurons. The goal of the �rst project is

to open up a new approach to solving this problem by investigating it in an area

that has often been neglected by sensory neuroscientists: the superior colliculus.

Chapter 2 will discuss the angle of attack we have chosen, the main results of the

experiments, and the major lessons learned. The remaining parts of this section will

provide further background information about selectivity and invariance in sensory

processing.

Losing information intelligently

Before pressing on, it is worth clarifying what makes selectivity and invariance

interesting phenomena. After all, one could argue that these apply trivially to any

neuron. Just consider the way a neuron generates an output: it integrates dendritic

inputs and �res action potentials when they cross the spiking threshold. So at an

abstract level, any neuron is selective to stimuli that cause a suprathreshold combi-
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nation of inputs and invariant to every other stimuli. Even the lowly photoreceptor

is selective to a change in light intensity in its narrow receptive �eld and invariant

to everything else that happens outside of it [17].

Furthermore, the fact that neurons farther removed from the sensory periphery

convey less information about the stimulus is completely expected from the data

processing inequality theorem [7]: given a Markov chain- ! . ! / , � ¹ - ; . º �

� ¹- ; / º, i.e. the information about- can only decrease as one goes down the

processing chain. Another way to see this is by the following thought experiment:

imagine that you give a photo of the Beckman Lawn to Alice to draw it; then

Alice gives her drawing to Bob to produce his own drawing, and Bob gives his

drawing to Charlie, and so on. We can expect that by the time we compare Charlie's

drawing to the original photo, much of the pixel-level information about Beckman

Lawn would have been lost, even if some of the participants are expert artists. So

what is interesting about the fact that the neurons of the inferotemporal cortex have

discarded most of the information present in the photoreceptor layer?

The answer, of course, lies in the nature of the few bits of information that are

retained. What's surprising is not that the face cell only responds to a narrow

class of stimuli and ignores others; it is that the stimuli it cares about happen to

be faces, which are obviously important for the monkey's survival. Remarkably,

evolution has generated a nervous system that loses information intelligently. So

truly appreciating selectivity and invariance requires understanding the ecological

problems the animal must solve. This focus on the reduction of information di�ers

sharply from previous work that seeks to decode of variables of interest from the

sensory system (e.g. [6, 25]). While sensory neurons may carry such information,

these studies neglect the fact that the ultimate goal of sensory processing is to inform

behavior, which takes place at a much lower information rate than the input.

Selectivity and invariance: What is known?

This section will brie�y review previous studies on neural computations of selectiv-

ity and invariance. The literature is truly vast and covers many sensory modalities.

Here the focus is to highlight a few illuminating examples and the computational

strategies they uncover.

As mentioned before, one area in which the issue of selectivity and invariance has

been studied is the primate inferotemporal cortex. In addition to face cells, this

region harbors neurons that are tuned to the identity of speci�c objects [8]. How
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does such a response property arise? Because the ventral stream of the primate

visual pathway consists of many cortical areas, experimental elucidation of how the

input is transformed at each successive stage has been di�cult. One recent approach

that has received much attention is to train deep convolutional neural networks on

object recognition tasks and �look under the hood� to see if the intermediate layers

of the model can explain the neural activity found in intermediate visual cortical

areas [18, 22, 27]. These models indeed are more successful than previous ones

[27], but what does it tell us about the mechanism for selectivity and invariance?

The convolution operation in these models can be interpreted in two ways. If the

previous layer consists of elementary features, then taking their convolution can

be viewed as implementing a coincidence detector (an AND gate) that becomes

active only when multiple such features are present. This confers selectivity. If the

previous layer, on the other hand, consists already of complex feature detectors, then

taking their convolution is akin to pooling over them across space (an OR gate).

This confers local invariance to position. A neuron can switch between these two

functions by controlling its nonlinearity: generally an AND operation would require

a higher threshold than an OR operation. By repeatedly stacking these AND and

OR operations [8, 17], these models are able to achieve a high degree of selectivity

at the output that is tolerant to changes in orthogonal features.

This basic idea is consistent with examples where the circuit is better understood

experimentally, such as the jamming avoidance response of the weakly electric �sh.

These animals use an electric organ to discharge electric �eld and sense its distortion

with electroreceptors on their skin to identify nearby objects. This requires having a

good internal model of what is expected from its own electric discharge [11]. When

a conspeci�c is nearby, however, the interference from the jamming signal (the

electric discharge of the other �sh) disrupts this expectation, and the �sh modulates

the frequency of its own discharge to make it more di�erent; e.g. when the jamming

signal is higher in frequency, the �sh lowers the frequency of its own discharge. This

requires detecting the di�erence in the frequency of the electric discharge regardless

of the orientation of the jamming signal. The �sh seems to solve this problem by

�rst combining the patterns of change in amplitude and phase locally at each sensory

location, and then pooling them across space [20]: another instance of an AND-OR

cascade. A more recent study has reported that the �sh may use a similar strategy for

other invariant representations, such as the phase of a communication signal [14].

Is there another way to build selectivity and invariance? One notable proposal
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comes from [16], in which an attention-like mechanism is used to dynamically route

the input to a central pattern detector. This is done by modulating the synaptic

weights of the network at di�erent stages with a set of control neurons, whose linear

combination produces the desired pattern of connectivity. By adjusting the position

and the size of the attentional window, this model achieves invariance to position

and scale. It also completely separates invariance from selectivity: the few neurons

with high selectivity are at the top of the network, and the inputs are switched by

synaptic modulations. In general, distinguishing this model from the one previously

discussed may be di�cult. The work presented in Chapter 2, however, will be able

to do so, thanks to an additional feature.

Superior colliculus and looming reaction

Here I provide a brief background on the looming reaction and the role of the

superior colliculus in controlling it, which motivates the project described in Chapter

2. Although the looming reaction is widely observed across many species, including

invertebrates [5], I focus on what is known about it in the mouse.

The looming reaction is a defensive behavior in response to an approaching aerial

predator. It is observed even in the laboratory mouse that has never faced threats

of predation [28], which suggests that the behavior is mediated by a stereotyped

and dedicated circuit. Although the actual hunting patterns of aerial predators (e.g.

owls) can vary [24], the looming reaction is reliably triggered by a dark expanding

disk presented above the mouse with an LCD monitor. The behavioral output is

twofold: the animal either rapidly �ees to the nest (when it is present) with a latency

of a few tenths of a second, or freezes in place for a prolonged period (>10 s)

[28]. An intriguing feature of this behavior is its speci�city to the black expanding

disk. Other similar stimuli, such as the white receding disk that shares moving dark

edges, are much less e�ective at driving the behavior [28]. Furthermore, behavioral

response is similar regardless of the position of the looming stimulus in the upper

visual �eld. This combination of selectivity and invariance is reminiscent of the

face cell discussed earlier.

The neural substrate most closely associated with this behavior is the superior

colliculus (SC), a midbrain area that is conserved across vertebrates. It consists of

anatomically distinct layers, with the super�cial layers receiving input from retinal

ganglion cells, and projecting to the deeper layers that integrate other sensory

modalities to issue behavioral commands [2]. Most previous studies of the SC
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are devoted to its role in controlling eye movement [12], although recent work has

expanded the scope to attention, a form of mental orienting [13].

Electrical stimulations of the SC [21], as well as optogenetic stimulations of certain

collicular cell types [23, 26], lead to an escape or freezing response, implying that

the SC may control this behavior. One recent report has shown that the escape

probability varies with the contrast of the looming stimulus [9]. Based on this

observation, the authors modeled the behavior as a form of evidence accumulation:

the stimulus is scaled by its contrast and drives an increase in an internal variable

(�threat�) represented by neurons in the deeper SC. When this rises above a threshold,

a motor output is triggered by a downstream brain area (PAG). Though intriguing,

this proposal is unconvincing for several reasons. First, it seems inconsistent with

the short latency of the behavior. Animals begin �ight within250 msof stimulus

onset, when the looming disk is only about10° wide. So in the normal mode

of operation, there is just not enough time to accumulate threat, and the reduced

escape probability to low contrast stimuli could simply re�ect a reduced sensory

drive that requires a greater number of repetitions to be detected. Furthermore, the

di�erential equation governing the time evolution of threat incorporates the stimulus

simply as its diameter multiplied by the contrast. By this logic, a large �ashing dark

disk would be more e�ective than the looming stimulus, as it immediately reaches

maximal diameter at maximal contrast. But such a stimulus rarely induces �ight. In

any case, none of these studies have addressed the central mystery of the looming

reaction: how does the animal selectively respond to the looming stimulus while

ignoring others that share similar features, across a large swath of its visual �eld?

Chapter 2 delves into this question.

1.2 Electrode pooling

The second project develops electrode pooling, a novel method to boost the yield of

extracellular neural recordings. A detailed introduction to the project can be found

in Chapter 3. Here I provide a few remarks on extracellular electrophysiology that

sets the stage for a more detailed description of the work.

What are we measuring?

Recording extracellular signal in the brain is an old technique, but one that has

received a lot of attention, as it enables the recording of many neurons at a high

spatiotemporal resolution. But what exactly does it measure? The short answer is

the electric potential created by transmembrane currents through ion channels [4],
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the most important of which are action potentials. Consider a situation where a

recording electrode is placed near a neuron's cell body, and a reference electrode is

placed farther away, closer to the dendrites. Shortly after the neuron's membrane

potential passes a spiking threshold, sodium current rushes into the cell body. This

causes the intracellular membrane potential (compared to the reference electrode

outside the cell) to become more positive, which generates a capacitive current

that moves from the dendrites back to the cell body to balance the sodium in�ux.

This implies that the voltage at the extracellular electrode is more negative (again,

compared to the reference electrode by the dendrites), and we see this as a downward

de�ection. During the hyperpolarization phase, this cycle runs in reverse: potassium

current rushes out of the cell and is o�set by the capacitive current returning to the

dendrites, making the intracellular potential more negative and the extracellular

potential more positive (we see this as an upward de�ection back to baseline).

What factors in�uence our measurement?

Extracellular recording is a�ected by a number of factors, many of which cannot be

controlled by the experimenter. The amplitude of the signal is in�uenced by variables

such as the size of the neuron and the distance between the neuron and the electrode.

Typically the larger the neuron and closer the electrode, the larger the signal1. This

is because a larger neuron has a larger surface area and a greater number of ion

channels, which together conduct a larger current. Placing the electrode closer to

the neuron also helps, because most of the voltage drop occurs right at the cell

body where the capacitive currents from the dendrites accumulate. The shape of

the signal (i.e. the waveform of the action potential) is a�ected by the kinds of ion

channels expressed by the cell, which determines the dynamics of transmembrane

currents [3], as well as the geometry of the dendritic and axonal processes, which

determines how the transmembrane currents sum in the extracellular space. The

placement of the electrode is also important. Axonal spikes, for example, tend to be

triphasisc because the electrode detects the outward capacitive current as the axon

segment charges up before the downward de�ection driven by the sodium current.

The shape of the signal is important for spike-sorting, a pre-processing step that

assigns spikes detected by the electrode to distinct single units.

What about the noise? One source of noise is the electrode impedance. When a metal
1This also points to a limitation of extracellular recording: small neurons such as the cerebellar

granule cells are largely invisible to the extracellular electrode because they do not generate a
su�ciently strong extracellular �eld.
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electrode is placed in a conductive medium, a thin layer of positive charge forms at

the interface to balance the negatively charged electrode. This �double-layer� at the

metal-liquid junction behaves like a RC circuit [15, 19]. Along with the resistance

due to the extracellular solution between the recording and reference electrodes, it

generates thermal noise. Another source of noise is the neurons whose signals are

too far from the electrode to be detected as action potentials. Their superposition

generates �biological noise,� which is often the largest source of noise. Finally, there

is noise from the recording electronics that are downstream of the electrode, such as

the ampli�er, digitizer, and multiplexer. Although this electronic noise is typically

negligible compared to the other sources, it can be signi�cant in some recording

systems, as we will see in Chapter 3.
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2.1 Abstract

Much of the early visual system is devoted to sifting the visual scene for the few

bits of behaviorally relevant information. In the visual cortex of mammals, a hierar-

chical system of brain areas leads eventually to the selective encoding of important

features, like faces and objects. Here we report that a similar process occurs in

the other major visual pathway, the superior colliculus. We investigate the visual

response properties of collicular neurons in the awake mouse with large-scale elec-

trophysiology. Compared to the super�cial collicular layers, neuronal responses

in the deeper layers become more selective for behaviorally relevant stimuli; more

invariant to location of stimuli in the visual �eld; and more suppressed by repeated

occurrence of a stimulus in the same location. The memory of familiar stimuli per-

sists in complete absence of the visual cortex. Models of these neural computations

lead to speci�c predictions for neural circuitry in the superior colliculus.

2.2 Introduction

Even though the human eye takes in about one gigabit of raw visual information

every second, we end up using only a few tens of bits to guide our behavior [52].

Of course, those bits are carefully selected from the scene, and which speci�c bits

get used depends entirely on the context and goals. All this happens in a processing

time of about a tenth of a second [65, 68]. How the visual brain sifts the onslaught of

visual data for the few behaviorally relevant nuggets has been an enduring mystery.

Much research in this area has focused on the primate visual system, and speci�cally

the phenomena of invariant object recognition. For example, certain neurons in the

inferotemporal cortex respond selectively to a speci�c individual's face regardless
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of its position or view angle [18], or to the concept of a speci�c celebrity regardless

of how that concept arises [53]. An impressive body of theory and computational

modeling has been developed to explain how this sifting for important bits from the

retinal output may be implemented [12, 63]. However, empirical evidence regarding

the actual biological microcircuits has been di�cult to obtain.

In rodent vision, a prominent example of visual sifting is the defensive reaction

of a mouse to an approaching aerial predator [10, 75]. Freezing or escape can be

triggered reliably by an overhead display of an expanding dark disk. E�ectively, the

alarm circuits in the mouse's visual system extract from the overall visual display just

one or two bits of information needed to initiate action. To function properly, such an

alarm system must be highly selective for the trigger feature. Indeed, the mouse does

not respond to expanding white disks, or to dimming dark disks, or to contracting

white disks [75]. All these innocuous stimuli share some low-level features with the

expanding dark disk, but not the overall con�guration. Furthermore, the behavior

is invariant to irrelevant features. For example a mouse will freeze in response to

looming stimuli presented anywhere in the upper visual �eld. It is unknown how

this invariance to location arises, and how it can coexist with high selectivity for the

local stimulus features.

Recent research on rodents suggests that the visual drive for these defensive be-

haviors arises not in the thalamo-cortical pathway but in the superior colliculus

[16, 64]. The superior colliculus (SC) is an evolutionarily ancient midbrain struc-

ture that mammals share with birds, �sh, and amphibians [3, 6]. The super�cial

layers receive inputs from the retina and in mammals also from the visual cortex,

organized in a precise retinotopic map [62]. Neurons there project to the deep

layers of the SC as well as other brain areas including the lateral geniculate nucleus

and pulvinar. The deep layers also receive signals from other sensory modalities

including hearing and touch. Neurons in the deep SC represent pre-motor signals

and project broadly to many brain areas in both ascending and descending path-

ways. Generally speaking, neural processing in the SC identi�es salient points in

the environment and coordinates the orienting of the animal towards or away from

such locations. In the primate brain, this has been studied extensively for the special

case of eye movements [34], but the primate SC also helps control head, arm, and

body movements. Furthermore, the SC contributes to a type of �internal� orienting,

namely when we direct our attention to a speci�c part of the scene without overt eye

movements [35].
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To better understand how visual sifting proceeds in the SC, we recorded spike

trains simultaneously from neurons throughout all layers of this structure in the

awake mouse. The set of visual displays included visual threats that reliably elicit

defensive reactions, and closely related stimuli that do not. We report on three kinds

of neural computations that separate behaviorally relevant from irrelevant stimuli,

and we trace their emergence from the super�cial to the deep layers of the SC:

(1) an increasing selectivity for the threat stimulus; (2) an increasing invariance to

location of that stimulus; and (3) the suppression of neural responses to a familiar

stimulus. In particular, this memory of familiar stimuli is stimulus-speci�c, lasts for

a behaviorally relevant timescale, and does not require input from the visual cortex.

To explain these computations, we consider several circuit models, some of which

can be eliminated based on the population recordings. These results suggest how

circuits of the SC can e�ectively distill the ecologically relevant information that

guides behavior.

2.3 Results

Emergence of new response properties from super�cial to deep layers

To track visual computations in the mouse SC, we recorded from hundreds of

neurons simultaneously in all layers of the structure using multi-electrode silicon

prongs [14]. The animal was head-�xed, awake, and moving on a running wheel, but

not trained to perform any speci�c task, so we could best observe the autonomous

visual functions of the SC. The recording electrodes were aimed at the dorso-medial

portion of the SC, which processes stimuli in the upper visual �eld. Over the

course of several hours we presented a battery of visual displays, ranging from

abstract stimuli like �ickering checkerboards to those with ecological signi�cance,

like overhead looming disks.

In analyzing neuronal responses to these stimuli we observed a systematic progres-

sion from the super�cial layers that receive retinal input to the deep layers of the

SC. To illustrate the dramatic change in how stimuli are represented, Figure 2.1

compares recordings from two sample neurons, one in the super�cial SC and the

other in the deep SC.

The super�cial neuron responded well to many di�erent kinds of displays, such as

an expanding dark disk (the classic �looming� stimulus), a contracting white disk,

a moving disk, or a dimming disk. By contrast, the deep neuron was quite selective

for the looming stimulus (Figure 2.1C). Second, the super�cial neuron had a small
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and precisely circumscribed receptive �eld roughly10° in diameter. It responded

only when the stimulus invaded that region. By contrast the deep neuron responded

strongly to any looming stimulus presented over a wide region that encompasses

much of the visual hemi�eld (Figure 2.1D). Third, the super�cial neuron responded

reliably to repeated presentation of the identical stimulus. By contrast the deep

neuron �red only on the �rst presentation and failed to respond entirely to the

subsequent ones (Figure 2.1C, top row).

The three characteristics found in the deep SC neuron's responses � selectivity for

the looming feature, spatial invariance, and habituation to familiar stimuli � are

all distinct from the signals transmitted by the retina. For example, an "approach-

sensitive" retinal ganglion cell (RGC) has been reported in the mouse retina [46],

but later studies have found that it is actually the O�-transient alpha cell [56] that

responds to many other O�-type stimuli in addition to the looming stimulus [36].

RGCs also have local receptive �elds ranging up to10° at most [36], which can be

readily mapped with white noise stimuli such as �ickering checkerboards or bars

[76]. Finally, although RGCs show complex adaptation properties, the timescale

of adaptation is typically on the order of0•1� 10 s[2, 72], whereas the habituation

we �nd in the deep SC lasts on the order of minutes. In the following sections, we

elaborate on these response properties and how they may arise in the circuitry of the

SC.

Selectivity for looming stimuli

In an attempt to measure the visual receptive �elds of all the recorded neurons, we

applied a �ickering checkerboard stimulus and then computed the spike-triggered

average (STA) stimulus [8]. This is a common procedure that works well for retinal

ganglion cells and neurons in the early stages of visual cortex [45, 47]. In the

super�cial SC, the STA analysis yielded linear receptive �elds that resembled those

of retinal ganglion cells (Figure 2.2A-B). They were sharply de�ned in space, with

the smallest only ~5° across. They frequently showed an antagonistic and delayed

surround, and some displayed orientation- and direction-selectivity [17, 28]. The

great majority of these neurons (~90 %) were O� cells based on the shape of the

STA. By contrast, neurons in the deep SC did not produce sustained responses to

the �ickering checkerboard (Figure 2.2A), and thus contained no structure in the

STA (Figure 2.2B). Nevertheless these same deep SC neurons did respond strongly

to certain �gural stimuli, like the expanding dark disk (Figure 2.2A, C-D).
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Among the various �gural stimuli we tested, many neurons showed some selective

tuning (Figure 2.1C, Figure 2.2D, Supplementary Figure S2.2). We focus here on

the comparison of an expanding dark disk with a contracting white disk (Figure

2.2D). These two stimuli are closely related in terms of local features: both contain

an advancing dark edge. But the ecological interpretations are quite di�erent: one

indicates an approaching dark object and the other a receding white object. Freely

moving mice take an evasive action to an expanding dark disk, but are unimpressed

by a contracting white disk [75]. Compared to super�cial SC, neurons in the deep

SC indeed became more selective for the expanding dark disk (Figure 2.2D). This

can be seen as sifting what is likely the most behaviorally relevant signal in the

upper visual �eld from other distracting stimuli.

Invariance to stimulus position

Whereas super�cial SC neurons often had sharp receptive �elds just5� 10° in

diameter, deep SC neurons generally responded to stimuli over a large part of

the visual �eld. We probed this tendency with expanding dark disks presented at

many di�erent locations, as these were the most e�ective stimuli in the deep SC.

With increasing depth in the SC, neurons showed larger receptive �elds, growing by

a factor of 6 in area or more (Figure 2.3A-B). Note that the resolution of the receptive

�eld measurement with expanding dark disks is ~15°, and as a result these receptive

�elds are larger than those measured by the �ickering checkerboard (Figure 2.2B).

Despite this wide spatial range, deep SC neurons responded with a remarkably short

latency to looming stimuli at any location (Figure 2.3A). By the time such a neuron

starts �ring, the expanding dark disk has only covered a few retinal ganglion cells.

In contrast, for super�cial neurons the latency varied depending on the location of

the expanding disk stimulus and it often exceeded the latency of deep SC neurons.

(Figure 2.3A). Figure 2.3C plots this variation in the latencies across the SC depth.

One possible interpretation is that a wide�eld neuron in the deep SC pools over many

local neurons in the super�cial SC, such that it becomes sensitive with the same

latency at every point in its receptive �eld. Indeed, such an interlaminar pathway

has been demonstrated previously in slice preparations [23, 38]. We consider this

possibility more thoroughly below.

In any case, it appears that certain wide�eld neurons in the deep SC have solved

the problem of threat detection to a large degree: they signal the looming stimulus

rapidly and sensitively without false alarms from stimuli that share some low-level
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features but not the behavioral signi�cance.

Habituation to familiar stimuli

Neurons in the super�cial layers generally produced a spike burst of comparable

�ring rate with every repeat of the stimulus (Figure 2.1C). By contrast, some neu-

rons in the deep layers responded with a sharp burst only to the �rst presentation;

the response to all subsequent repeats was suppressed (Figure 2.4A). The degree

of habituation to repeated stimuli was greater in the deeper SC compared to the

super�cial SC (Figure 2.4B).

The onset of this habituation is immediate and already a�ects the response ~1 slater

(Figure 2.1C, Figure 2.4A). The suppression then lasts for minutes: many deep SC

neurons showed less than50 %recovery even after ~120 s(Figure 2.4D). While we

have not measured the exact time course of recovery, we found that the suppression

was not permanent. In general, neurons recovered the full sensitivity to the �rst

presentation when probed again about an hour later (Supplementary Figure S2.3).

Furthermore, the burst of spikes was not driven simply by a change in locomotor

output or pupil size as a secondary consequence of the visual threat (Supplementary

Figure S2.4).

Remarkably, this habituation was strictly speci�c to the stimulus that caused the

response. As reported above, wide�eld neurons in the deep SC can be triggered

by looming disks at many di�erent locations (Figure 2.1C, Figure 2.3A). Figure

2.4C shows the response of a single neuron to a looming stimulus whose location

was chosen randomly on every trial. By comparing the sequence of responses at

one location to that at another one can test whether the habituation transfers across

space. As shown in the bottom left panel of Figure 2.4C, a stimulus at one location

did not suppress the subsequent response of the same neuron to a stimulus at another

location, even separated by as little as15°. One interpretation is that the habituation

takes place in local circuits spanning ~15° in width before their output gets pooled

by the wide�eld neuron.

Given that the memory for familiar stimuli can last two minutes or longer, we

considered whether the hippocampus or the neocortex play a role in storing this

information, perhaps by modulating the gain of collicular signals through the ex-

tensive projections from visual cortex [77]. Thus we repeated the experiments in

a mutant mouse that lacks all of the dorsal forebrain, including the hippocampus

and most of the neocortex [31] (Supplementary Figure S2.5). Intriguingly, the mu-
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tant also showed long-lasting suppression of repeated stimuli in deep neurons of

the SC (Figure 2.4E), to a degree that matched the suppression seen in the normal

mouse (Figure 2.4C bottom right and Figure 2.4D). This is consistent with a local

mechanism for habituation within the SC.

The preceding analyses of single-neuron responses suggest that the neural population

deep in the SC selectively represents those bits of information that may be of

immediate relevance to defensive reactions, while other aspects of the visual display

get discarded. To test this directly, we applied a linear decoder to the population

vector from neurons in super�cial and deep SC. From single stimulus trials, the

decoder easily read out the precise location of a visual stimulus from the population

in super�cial SC, but much less so from neurons in deep SC (Figure 2.5, left).

By contrast, the deep SC represented explicitly whether a stimulus appeared at a

novel or a familiar location, whereas that information was barely available in the

super�cial SC (Figure 2.5, right). Of course a decoder with access to the entire

history of responses could decode stimulus novelty also from the super�cial SC. By

contrast, in the deep SC that information is available on individual trials. In the next

section we explore how the information about stimulus history may be stored by the

collicular circuit.

A working model for circuit mechanisms of visual sifting

The microcircuitry of the SC is still poorly understood, at least compared to that of

the retina. One can distinguish about 5 to 10 neuronal types based on morphology

and gene expression [5, 19], but their synaptic connectivity is largely unknown. Fur-

thermore the SC interacts through long-range connections with other brain regions,

notably the visual cortex [62]. Nevertheless, it is useful to consider what circuit

mechanisms may produce the observed visual responses of SC neurons. The func-

tional evidence we have gathered here makes some potential explanations unlikely,

and supports others as a guide in future studies of synaptic connectivity. Here we

focus on explaining three aspects of visual processing encountered in some deep

SC neurons: the selectivity for looming stimuli, the invariance to spatial location,

and the long-lasting stimulus-speci�c habituation. None of these phenomena occur

in responses of retinal ganglion cells, and thus they must arise from post-retinal

circuitry.

One circuit model that accounts for all the observed e�ects is shown in Figure

2.6A (�the working model�). It starts with input signals from retinal ganglion cells.
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Those are combined to produce neurons selective for a local looming stimulus. The

outputs of many such local looming detectors are pooled to produce neurons with

wide�eld sensitivity and position invariance. Finally the input synapses to those

wide�eld neurons undergo a short-term synaptic depression that accounts for the

stimulus-selective habituation.

To simulate the function of this circuit we modeled each of the neurons as a Linear-

Nonlinear element [8], and the synapses according to a widely used formalism

for short-term plasticity [69]. This model correctly recapitulates the preference for

looming over other stimuli (Figure 2.6E); the position invariance; and the habituation

to familiar stimuli (Figure 2.6F). It even accounts for detailed dynamics of the

looming response in deep neurons, such as the short latency (Figure 2.3A) and the

rapid quenching of the response caused by synaptic depression (Figure 2.1C, Figure

2.4A).

While a successful circuit model seems promising, one learns something useful

only from comparing di�erent explanations. Here we consider several alterna-

tive microcircuits to account for the looming selectivity and the stimulus-selective

habituation.

The working model (Figure 2.6A) builds on local looming-selective neurons. We

encountered multiple cells in the super�cial SC that match this pro�le: a local

receptive �eld, looming selectivity, and little habituation (Supplementary Figure

S2.6). In the working model this selectivity is achieved by combining signals

from retinal ganglion cells (RGCs) with di�erent dynamics: excitation from a

fast and transient O�-cell forms the receptive �eld center, and inhibition from

slow and sustained O�-cells forms the surround. Since RGCs are excitatory, the

inhibition requires interneurons in the SC, and the slow dynamics of the surround

may well result from �ltering by those interneurons. In either case the concentric

organization of fast excitation and slow inhibition produces selectivity for looming

over contracting white or moving or dimming stimuli (Figure 2.6E).

As an alternative explanation, could the looming selectivity already originate in

RGCs? As we noted previously, the �approach-sensitive� O�-cell that has been

previously reported [46] is now known to correspond to the O�-transient alpha cell

[56] which � while sensitive to looming stimuli � responds equally well to dimming

and �ashing spots [36]. Therefore these RGCs do not qualify as the local looming

detectors.
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Another possibility is that looming selectivity results from a radial organization of

direction-selective (DS) neurons, each of which reports a segment of the advancing

dark edge (Figure 2.6B). Supposing those DS inputs come from the retina, the only

candidates are the On-O� DS RGCs [60], which would be equally sensitive to On

edges. Thus the looming detectors in the SC should respond to an expanding white

disk as well, unlike what we observed (Figure 2.1C). If, on the other hand, the DS

signals are generatedde novoin the SC, one would expect to �nd such interneurons

with all possible preferred directions. Instead, DS neurons in a given region of the

super�cial SC have a strong bias for just one or two preferred directions [11]. In

summary, both of the considered alternative microcircuits for looming selectivity

seem unlikely given the available evidence.

In the working model (Figure 2.6A), the stimulus-selective habituation is produced

by activity-dependent depression of the synapses that convey the local looming

signals to the wide�eld neuron. A plausible alternative mechanism would involve

long-lasting inhibition of the looming detector from a neuron triggered by that

same local stimulus (Figure 2.6C). This neuron would need to exhibit a sustained

activity following a single stimulus. In our database of collicular recordings, we

never encountered a neuron that matches this description. Another possibility is

that local looming detectors � in addition to exciting the wide�eld neuron � also

inhibit it via an interneuron (Figure 2.6D). Then the long-lasting habituation could

be explained by the potentiation of the inhibitory synapse, rather than depression

of the excitatory synapse. In that case, one might expect that repeated looming

stimuli should produce a suppression of the ongoing baseline �ring during later

stimulus periods. We never observed such a suppression (Figure 2.4A). Instead

the �ring generally increased during stimulus intervals (Astim) compared to inter-

stimulus intervals (Aisi) (for 15 deep SC neurons with baseline �ring > 10 spikes/s,

medianAstim•Aisi: 1•28, 25th-75th percentile range:1•03-1•85).

In summary, several alternative explanations for the basic phenomena observed in

deep SC neurons seem less likely than the working model that we propose, based on

our database of extracellular recordings. We suggest that the key components of the

working model in Figure 2.6A, namely the microcircuit for looming selectivity and

the long-lasting synaptic depression, are fruitful targets for further investigation.
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2.4 Discussion

Summary

The superior colliculus (SC) presents an interesting interface between purely sensory

representations and pre-motor signals. Our goal here was to follow systematically

how the sensory inputs from the retina get digested and �ltered in the SC. As

a guiding problem we chose a robust visually-triggered behavior: the defensive

reaction elicited by an overhead looming stimulus. By following visual responses

of neurons from super�cial to deep layers we documented three aspects of the

sifting process: (1) an increasing selectivity for the behaviorally relevant looming

stimulus over other innocuous stimuli with similar low-level features (Figure 2.2);

(2) an increasing invariance to other aspects of the visual display, such as the precise

location of the threat stimulus (Figure 2.3); and (3) an increasing selectivity for novel

over familiar stimuli (Figure 2.4). We considered how this �ltering may be achieved

by neural circuits and arrived at a plausible model of circuitry in the SC (Figure

2.6) that accounts for all three of the phenomena of visual sifting considered here.

Moreover, several alternative circuit-level mechanisms were found to be inconsistent

with the neural signals we encountered.

Relation to earlier work

Some of the phenomena reported here have been described before in a wide range

of species. A common theme is that neurons in deep SC respond over larger

regions of the visual �eld, while retaining a preference for small stimulus features

within that region [9, 13, 21, 27, 29]. Also, the remarkably persistent habituation

to repeated stimuli has been noted previously, even in the earliest recordings from

optic tectum [9, 13, 25, 39, 54, 67, 74]. Another repeated observation is that the

visual cortex appears dispensable for many aspects of visual processing in the SC

[24, 27, 43], although it does play a subtle modulatory role [77]. Looming stimuli are

particularly e�ective for many neurons in the super�cial SC [77]. Interestingly the

early literature missed this, perhaps because of the technical di�culty of generating

an expanding dark disk with the commonly used hand-held slide projector [13]. Our

present report places these disjoint observations into a common context, namely the

animal's need to distill a speci�c signal of ecological value from the broad range of

visual stimuli. We show that SC neurons are not only sensitive to looming stimuli but

become increasingly selective in deep layers, an essential requirement for an alarm

system. Further we analyze the neural code at the population level throughout this

brain region, which reveals the gradual progression of stimulus �ltering. Finally
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we consider how these aspects of neural representation relate to neural circuitry,

and evaluate alternative hypotheses for such circuits. The results allow a broader

consideration of how selectivity and invariance come about in brain processing, to

be pursued further below.

Ethological signi�cance

The present study focused on stimuli presented in the upper visual �eld and record-

ings performed from the corresponding medial region of the SC. Arguably the most

behaviorally relevant event in the upper visual �eld is the impending arrival of a

bigger animal, such as an aerial predator. The imminent threat that these events pose

may account for the profuse responses to dark looming stimuli among SC neurons

in this region (Figure 2.2, [77]). Of course the threats must be distinguished from

innocuous events, like the movement of overhead foliage, or the obscuring of the sky

when the animal moves under shelter. The increased selectivity to the expanding

dark disk in the deeper SC can account for that selectivity (Figure 2.2C, Figure

2.4B).

How should one interpret the profound habituation to repeated stimuli in this context?

For one, the habituation does not interfere with the alarm response, since the animal

must react to the �rst occurrence of a clear looming stimulus [75]. If the animal

escapes or freezes, and the predator approaches a second time, this is likely in

a di�erent part of the visual �eld, and thus una�ected by the location-speci�c

habituation. On the other hand, if the same stimulus recurs periodically in the same

location, it is more likely caused by a leaf waving in the wind. Thus the habituation

can be seen as another processing strategy to reject innocuous events from the alarm

pathway.

In the lower visual �eld the animal has di�erent behavioral needs, such as picking

out seeds against a cluttered background, following small moving prey [26], perhaps

identifying urine marks [30], and tracking optic �ow. Furthermore the connectivity

between SC and other brain areas seems to di�er in the upper and lower visual �elds

[61]. Thus one expects a corresponding di�erence in the rules by which visual

stimuli are sifted there, a fertile area for future study.

Selectivity, invariance, and habituation

One remarkable phenomenon in sensory processing is the emergence of neuronal

responses that are both highly selective and broadly invariant. For example, certain

�face cells� in the primate visual cortex respond selectively to one person's face
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regardless of the view angle, scale, or illumination [18]. How do these seemingly

con�icting characteristics arise within sensory circuits? In the working model we

propose here (Figure 2.6A) the answer is ��rst selectivity, then invariance.� An AND

operation across input neurons with di�erent dynamics generates a local looming-

selective neuron. These pattern detectors are distributed across the visual �eld.

Then an OR operation pools across many local pattern detectors to produce the

position-invariant response of the wide�eld neurons (Figure 2.7A).

This seems to be the scheme in other neural systems where the circuitry is under-

stood. For example, in the auditory brain of the barn owl certain high-order neurons

are selective for a particular interaural time delay, but invariant to the frequency of

the sound [33]. These appear to arise from OR pooling over lower-order neurons

that are selective for the same time delay but still tuned to di�erent frequency bands.

Those delay detectors in turn arise from an AND combination of signals derived

from the two ears [7]. A similar processing scheme applies in the electrolocation

circuits of weakly electric �sh that exhibit a jamming avoidance response sensitive

to frequency but invariant to many other parameters of the electric �eld [22].

However, this is not the only solution. In the case of face recognition, for example, it

seems implausible that the brain should build separate pattern detectors for each face

at each retinal location, and then pool over those to achieve invariance. An alternative

scheme produces invariance �rst and then selectivity (Figure 2.7B). Here there exists

only a single pattern detector. But the inputs to this neuron are routed to �look at�

di�erent spatial locations through a shifting circuit. The sudden appearance of any

stimulus could engage these shifter circuits to route the corresponding low-level

visual signals into the pattern detector [48, 71].

The observation of habituation and its speci�city to location seems to greatly favor

one of these schemes. Recall that habituation is seen prominently among neurons

in the deep SC that are already highly pattern-selective. The �selectivity �rst�

scheme places the gain modulation somewhere prior to the output of the pattern

detector, which is the last spatially localized signal (Figure 2.7A). By contrast, the

�invariance �rst� scheme requires the gain modulation to occur in low-level visual

neurons that are not yet pattern-selective (Figure 2.7B). This con�icts with our

observations of neurons in the super�cial SC that do not show location-speci�c

habituation (Figure 2.4B). In summary, the robust observation of location-selective

habituation in neurons of the deep SC favors a circuit model that develops selectivity

before invariance.
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Of course, one can also envision intermediate solutions. For example, there is

speculation that the visual cortex implements an alternation of AND and OR stages

through a hierarchy of anatomical areas [12, 55]. Seeing that most vertebrate

species do not have a neocortex, yet must solve the same problems of invariant

pattern recognition, the SC seems like a promising arena for the study of high-level

visual processing.

Circuit mechanisms of sensory sifting

While it is tempting to suppose that the observed reduction of visual data is in fact

performed within the SC, such anatomical localization is not a binding conclusion.

In the extreme, the neurons of the deep SC, with their selectivity for �ne spatio-

temporal features and localized habituation, may simply re�ect the output of a

computation that occurs elsewhere. The SC interacts with many other anatomical

structures [3, 61], often in a reciprocal fashion. The most prominent such input,

namely from the visual cortex, is likely not required for the essentials of visual

sifting, based on our results with mutant mice (Figure 2.4E) and prior work with

cortical silencing [77] and ablation [24, 27]. To contribute to sifting, the partner

areas should retain a spatial resolution of the stimulus on the order of10°. This

constraint eliminates some small nuclei, but leaves several candidates in place, for

example the thalamic area LP [1] and the parabigeminal nucleus. Given the position

of the SC as a hub of brain pathways, it is an open question whether one can

ultimately assign discrete computational functions to discrete anatomical areas.

On a �ner level, one may ask how the circuit models of Figure 2.6 map onto neuron

types in the SC. About �ve cell types have been distinguished in the super�cial

SC of mammals based on morphology alone [37, 44], and more recent studies

have connected these types to visual responses and electrophysiological properties

[19]. The most compelling by their visual appearance are the so-called wide�eld

or bottlebrush neurons. These cells have a dendritic fan that extends towards the

surface of the SC and spreads out laterally to cover a large area in the retinorecipient

layers. Each dendrite terminates in a bottlebrush-shaped ending, and the overall

morphology is startlingly similar across birds and mammals [40, 42]. The wide�eld

neurons of mammals project to the pulvinar, and the axon forms multiple collaterals

in the SC that could propagate the output to the deep layers [3, 42].

By virtue of their broad dendritic tree, these wide�eld neurons o�er themselves as

the substrate for pooling across spatial locations, as in the working model of Figure
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2.6A. Two further features recommend such an identi�cation: First, the dendrites of

wide�eld neurons generate spikes that propagate to the soma [15, 41]. In this way,

the neuron truly implements an OR operation across its inputs (Figure 2.7A): when

any of its inputs �re, the output will �re. Second, experiments on chick tectum

showed that each dendritic input undergoes a profound synaptic depression that

lasts several seconds, but does not a�ect the function at another dendrite [41]. This

could account for the location-speci�c habituation as in the model of Figure 2.6A.

However, there is some question whether this synaptic depression also happens

in the mouse [20]. Also we found a substantial increase of invariance below the

anatomical stratum where the wide�eld neurons reside (Figure 2.3).

In summary, the visual response properties of deep SC cells di�er dramatically

from any signal that emerges from the retina, and it is tempting to associate this

transformation with the bottlebrush neuron that is shaped unlike anything in the

retina. Some caution is in order, of course. The diagram of Figure 2.6A should

be viewed as a conceptual scheme rather than an explicit circuit with one-to-one

corresponding real neurons. Perhaps the selectivity and invariance are accomplished

in multiple stages, or with the contribution of other brain areas. Or the local looming

detectors may be nonlinear dendrites, and ion channels with long-lasting inactivation

[70] may play the role of depressing synapses. The increasing availability of genetic

handles for cell types in the SC [5, 19] should help in cracking some of these

microcircuits.

2.5 Figures
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Figure 2.1: The emergence of selectivity, invariance, and stimulus-speci�c habituation along
the depth of SC. (A) Left: Experimental setup. Silicon neural probes with 128 channels
were implanted into the SC of a head�xed mouse viewing visual stimuli. The mouse
was free to run on a circular treadmill. Middle: Diagram of a coronal section showing
the anatomically de�ned layers of the SC (from [50]). sSC: super�cial SC; dSC: deep
SC. Right: Corresponding histological section recovered after neural recording, showing
tracks of two electrode prongs. Magenta: DiI; white: anti-Calb1. (B) Extracellular spike
waveforms of sample sSC (red) and dSC (blue) neurons recorded simultaneously on the
silicon probe. Dots indicate the location of recording sites. Dashed line indicates boundary
along the electrode array between sSC and dSC (see Methods and Supplementary Figure
S2.1). (C) Response of neurons from (B) to visual stimuli. The sSC neuron (middle)
responds to many types of �gural stimuli (left icons: expanding black, expanding white,
contracting black, contracting white, dimming, and moving black disk), whereas the dSC
neuron (right) is highly selective to the expanding black disk. The sSC neuron responds
robustly to every trial, whereas the dSC neuron responds primarily to the �rst presentation.
(D) In an experiment in which looming stimuli appear from many locations (left), the sSC
neuron from (B) (middle) is driven only by stimuli that cross its receptive �eld, whereas
the dSC neuron from (B) (right) responds to stimuli placed at many more locations. White:
�nal size of looming stimuli that elicited signi�cant response from the cell; red: 1 standard
deviation outline of spatial receptive �eld recovered by spike-triggered average method.
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Supplementary Figure S2.1: Histological and electrophysiological identi�cation of SC
layers. (Top) Brain section (coronal, 100µm thick) showing the recorded area from an
experiment. (Bottom left) Boxed area in the top panel is enlarged. The probe track is
marked with DiI (magenta). The anti-Calb1 antibody (green) stains super�cial gray layer
(SGS) and upper parts of the intermediate gray layer but does not stain the optic layer (SO).
White lines mark the top and bottom outline of the SGS and SO. (Bottom right) Current
source density analysis of the same recording displayed at the same spatial scale as the
section on the left. Looming stimulus was delivered during the time window shaded in gray.
Dashed line marks the in�ection point that separates current sink (blue) below and current
source (red) above. This corresponds to the lowermost point of SGS, as previously reported
by [66].
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