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ABSTRACT

This thesis presents two projects related to large-scale extracellular recordings of
neural signals. The first project asks how the brain sifts the onslaught of sensory
information to identify the few bits that are relevant for guiding behavior. This
question is studied in the context of the looming reaction, an innate defensive
behavior against an approaching aerial predator. Interestingly, the mouse responds
very selectively to the looming stimulus regardless of changes in orthogonal features,
such as its position. The neural basis of this phenomenon is investigated with
extracellular recordings in the superior colliculus, a midbrain visual area known to
mediate the looming reaction. A detailed analysis of the difference between the
superficial and deeper layers of the superior colliculus highlights a core function of

visual processing: to discard information intelligently.

The second project presents electrode pooling, a novel method to increase the
yield of extracellular recordings with the modern silicon electrode array. The
fundamental constraint of wire volume in these devices is identified, and a solution
that makes use of the switching circuitry and the sparseness of the neural signal
in the time axis is described. Specifically, the method proposes to intelligently
choose many recording sites that carry signal and connect them to a single wire
via manipulating the switches. This pooled recording is subsequently un-mixed
by a spike-sorting algorithm. The method is implemented in a state-of-the-art
silicon neural probe, and its effect on signal and noise is analyzed by theory and
experiment. Recommendations on the design of silicon devices are made to facilitate

the incorporation of this method in the future.
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Chapter 1

INTRODUCTION

This thesis presents two projects that are related by a widely used method in neuro-
science: extracellular recording of neural signal. In this chapter, I briefly introduce

both projects and provide relevant background information.

1.1 Sifting of visual information in the superior colliculus

One striking observation in sensory neuroscience is the appearance of neurons that
select for a specific stimulus feature while ignoring others. They are particularly
impressive given the almost infinite number of unique stimuli that the brain might
face. A classic example of this phenomenon is the face cell in the inferotemporal
cortex of the primate brain. These neurons respond only to images of faces, and do
so regardless of their view angle, illumination, or position [10]. Like a miner who
sifts through a slew of dirt in search of a few nuggets of gold, these neurons discard
all but the few bits of information important for guiding behavior. Neuroscientists
have marveled at this phenomenon for a long time, and some have even proposed
that our conscious perceptual experience is nothing more than the firing of these

neurons [1].

Despite the enduring interest in this topic, we still know very little about how this
computation is implemented by biological neurons. The goal of the first project is
to open up a new approach to solving this problem by investigating it in an area
that has often been neglected by sensory neuroscientists: the superior colliculus.
Chapter 2 will discuss the angle of attack we have chosen, the main results of the
experiments, and the major lessons learned. The remaining parts of this section will
provide further background information about selectivity and invariance in sensory

processing.

Losing information intelligently

Before pressing on, it is worth clarifying what makes selectivity and invariance
interesting phenomena. After all, one could argue that these apply trivially to any
neuron. Just consider the way a neuron generates an output: it integrates dendritic
inputs and fires action potentials when they cross the spiking threshold. So at an

abstract level, any neuron is selective to stimuli that cause a suprathreshold combi-
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nation of inputs and invariant to every other stimuli. Even the lowly photoreceptor
is selective to a change in light intensity in its narrow receptive field and invariant

to everything else that happens outside of it [17].

Furthermore, the fact that neurons farther removed from the sensory periphery
convey less information about the stimulus is completely expected from the data
processing inequality theorem [7]: given a Markov chain X —» Y — Z, I(X;Y) >
I(X;Z), i.e. the information about X can only decrease as one goes down the
processing chain. Another way to see this is by the following thought experiment:
imagine that you give a photo of the Beckman Lawn to Alice to draw it; then
Alice gives her drawing to Bob to produce his own drawing, and Bob gives his
drawing to Charlie, and so on. We can expect that by the time we compare Charlie’s
drawing to the original photo, much of the pixel-level information about Beckman
Lawn would have been lost, even if some of the participants are expert artists. So
what is interesting about the fact that the neurons of the inferotemporal cortex have

discarded most of the information present in the photoreceptor layer?

The answer, of course, lies in the nature of the few bits of information that are
retained. What’s surprising is not that the face cell only responds to a narrow
class of stimuli and ignores others; it is that the stimuli it cares about happen to
be faces, which are obviously important for the monkey’s survival. Remarkably,
evolution has generated a nervous system that loses information intelligently. So
truly appreciating selectivity and invariance requires understanding the ecological
problems the animal must solve. This focus on the reduction of information differs
sharply from previous work that seeks to decode of variables of interest from the
sensory system (e.g. [6, 25]). While sensory neurons may carry such information,
these studies neglect the fact that the ultimate goal of sensory processing is to inform

behavior, which takes place at a much lower information rate than the input.

Selectivity and invariance: What is known?

This section will briefly review previous studies on neural computations of selectiv-
ity and invariance. The literature is truly vast and covers many sensory modalities.
Here the focus is to highlight a few illuminating examples and the computational

strategies they uncover.

As mentioned before, one area in which the issue of selectivity and invariance has
been studied is the primate inferotemporal cortex. In addition to face cells, this

region harbors neurons that are tuned to the identity of specific objects [8]. How
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does such a response property arise? Because the ventral stream of the primate
visual pathway consists of many cortical areas, experimental elucidation of how the
input is transformed at each successive stage has been difficult. One recent approach
that has received much attention is to train deep convolutional neural networks on
object recognition tasks and “look under the hood” to see if the intermediate layers
of the model can explain the neural activity found in intermediate visual cortical
areas [18, 22, 27]. These models indeed are more successful than previous ones
[27], but what does it tell us about the mechanism for selectivity and invariance?
The convolution operation in these models can be interpreted in two ways. If the
previous layer consists of elementary features, then taking their convolution can
be viewed as implementing a coincidence detector (an AND gate) that becomes
active only when multiple such features are present. This confers selectivity. If the
previous layer, on the other hand, consists already of complex feature detectors, then
taking their convolution is akin to pooling over them across space (an OR gate).
This confers local invariance to position. A neuron can switch between these two
functions by controlling its nonlinearity: generally an AND operation would require
a higher threshold than an OR operation. By repeatedly stacking these AND and
OR operations [8, 17], these models are able to achieve a high degree of selectivity

at the output that is tolerant to changes in orthogonal features.

This basic idea is consistent with examples where the circuit is better understood
experimentally, such as the jamming avoidance response of the weakly electric fish.
These animals use an electric organ to discharge electric field and sense its distortion
with electroreceptors on their skin to identify nearby objects. This requires having a
good internal model of what is expected from its own electric discharge [11]. When
a conspecific is nearby, however, the interference from the jamming signal (the
electric discharge of the other fish) disrupts this expectation, and the fish modulates
the frequency of its own discharge to make it more different; e.g. when the jamming
signal is higher in frequency, the fish lowers the frequency of its own discharge. This
requires detecting the difference in the frequency of the electric discharge regardless
of the orientation of the jamming signal. The fish seems to solve this problem by
first combining the patterns of change in amplitude and phase locally at each sensory
location, and then pooling them across space [20]: another instance of an AND-OR
cascade. A more recent study has reported that the fish may use a similar strategy for

other invariant representations, such as the phase of a communication signal [14].

Is there another way to build selectivity and invariance? One notable proposal
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comes from [16], in which an attention-like mechanism is used to dynamically route
the input to a central pattern detector. This is done by modulating the synaptic
weights of the network at different stages with a set of control neurons, whose linear
combination produces the desired pattern of connectivity. By adjusting the position
and the size of the attentional window, this model achieves invariance to position
and scale. It also completely separates invariance from selectivity: the few neurons
with high selectivity are at the top of the network, and the inputs are switched by
synaptic modulations. In general, distinguishing this model from the one previously
discussed may be difficult. The work presented in Chapter 2, however, will be able

to do so, thanks to an additional feature.

Superior colliculus and looming reaction

Here I provide a brief background on the looming reaction and the role of the
superior colliculus in controlling it, which motivates the project described in Chapter
2. Although the looming reaction is widely observed across many species, including

invertebrates [5], I focus on what is known about it in the mouse.

The looming reaction is a defensive behavior in response to an approaching aerial
predator. It is observed even in the laboratory mouse that has never faced threats
of predation [28], which suggests that the behavior is mediated by a stereotyped
and dedicated circuit. Although the actual hunting patterns of aerial predators (e.g.
owls) can vary [24], the looming reaction is reliably triggered by a dark expanding
disk presented above the mouse with an LCD monitor. The behavioral output is
twofold: the animal either rapidly flees to the nest (when it is present) with a latency
of a few tenths of a second, or freezes in place for a prolonged period (> 10s)
[28]. An intriguing feature of this behavior is its specificity to the black expanding
disk. Other similar stimuli, such as the white receding disk that shares moving dark
edges, are much less effective at driving the behavior [28]. Furthermore, behavioral
response is similar regardless of the position of the looming stimulus in the upper
visual field. This combination of selectivity and invariance is reminiscent of the

face cell discussed earlier.

The neural substrate most closely associated with this behavior is the superior
colliculus (SC), a midbrain area that is conserved across vertebrates. It consists of
anatomically distinct layers, with the superficial layers receiving input from retinal
ganglion cells, and projecting to the deeper layers that integrate other sensory

modalities to issue behavioral commands [2]. Most previous studies of the SC
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are devoted to its role in controlling eye movement [12], although recent work has

expanded the scope to attention, a form of mental orienting [13].

Electrical stimulations of the SC [21], as well as optogenetic stimulations of certain
collicular cell types [23, 26], lead to an escape or freezing response, implying that
the SC may control this behavior. One recent report has shown that the escape
probability varies with the contrast of the looming stimulus [9]. Based on this
observation, the authors modeled the behavior as a form of evidence accumulation:
the stimulus is scaled by its contrast and drives an increase in an internal variable
(“threat”) represented by neurons in the deeper SC. When this rises above a threshold,
a motor output is triggered by a downstream brain area (PAG). Though intriguing,
this proposal is unconvincing for several reasons. First, it seems inconsistent with
the short latency of the behavior. Animals begin flight within 250 ms of stimulus
onset, when the looming disk is only about 10° wide. So in the normal mode
of operation, there is just not enough time to accumulate threat, and the reduced
escape probability to low contrast stimuli could simply reflect a reduced sensory
drive that requires a greater number of repetitions to be detected. Furthermore, the
differential equation governing the time evolution of threat incorporates the stimulus
simply as its diameter multiplied by the contrast. By this logic, a large flashing dark
disk would be more effective than the looming stimulus, as it immediately reaches
maximal diameter at maximal contrast. But such a stimulus rarely induces flight. In
any case, none of these studies have addressed the central mystery of the looming
reaction: how does the animal selectively respond to the looming stimulus while
ignoring others that share similar features, across a large swath of its visual field?

Chapter 2 delves into this question.

1.2 Electrode pooling

The second project develops electrode pooling, a novel method to boost the yield of
extracellular neural recordings. A detailed introduction to the project can be found
in Chapter 3. Here I provide a few remarks on extracellular electrophysiology that

sets the stage for a more detailed description of the work.

What are we measuring?

Recording extracellular signal in the brain is an old technique, but one that has
received a lot of attention, as it enables the recording of many neurons at a high
spatiotemporal resolution. But what exactly does it measure? The short answer is

the electric potential created by transmembrane currents through ion channels [4],
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the most important of which are action potentials. Consider a situation where a
recording electrode is placed near a neuron’s cell body, and a reference electrode is
placed farther away, closer to the dendrites. Shortly after the neuron’s membrane
potential passes a spiking threshold, sodium current rushes into the cell body. This
causes the intracellular membrane potential (compared to the reference electrode
outside the cell) to become more positive, which generates a capacitive current
that moves from the dendrites back to the cell body to balance the sodium influx.
This implies that the voltage at the extracellular electrode is more negative (again,
compared to the reference electrode by the dendrites), and we see this as a downward
deflection. During the hyperpolarization phase, this cycle runs in reverse: potassium
current rushes out of the cell and is offset by the capacitive current returning to the
dendrites, making the intracellular potential more negative and the extracellular

potential more positive (we see this as an upward deflection back to baseline).

What factors influence our measurement?

Extracellular recording is affected by a number of factors, many of which cannot be
controlled by the experimenter. The amplitude of the signal is influenced by variables
such as the size of the neuron and the distance between the neuron and the electrode.
Typically the larger the neuron and closer the electrode, the larger the signal . This
is because a larger neuron has a larger surface area and a greater number of ion
channels, which together conduct a larger current. Placing the electrode closer to
the neuron also helps, because most of the voltage drop occurs right at the cell
body where the capacitive currents from the dendrites accumulate. The shape of
the signal (i.e. the waveform of the action potential) is affected by the kinds of ion
channels expressed by the cell, which determines the dynamics of transmembrane
currents [3], as well as the geometry of the dendritic and axonal processes, which
determines how the transmembrane currents sum in the extracellular space. The
placement of the electrode is also important. Axonal spikes, for example, tend to be
triphasisc because the electrode detects the outward capacitive current as the axon
segment charges up before the downward deflection driven by the sodium current.
The shape of the signal is important for spike-sorting, a pre-processing step that
assigns spikes detected by the electrode to distinct single units.

What about the noise? One source of noise is the electrode impedance. When a metal

I'This also points to a limitation of extracellular recording: small neurons such as the cerebellar
granule cells are largely invisible to the extracellular electrode because they do not generate a
sufficiently strong extracellular field.
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electrode is placed in a conductive medium, a thin layer of positive charge forms at
the interface to balance the negatively charged electrode. This “double-layer” at the
metal-liquid junction behaves like a RC circuit [15, 19]. Along with the resistance
due to the extracellular solution between the recording and reference electrodes, it
generates thermal noise. Another source of noise is the neurons whose signals are
too far from the electrode to be detected as action potentials. Their superposition
generates “biological noise,” which is often the largest source of noise. Finally, there
is noise from the recording electronics that are downstream of the electrode, such as
the amplifier, digitizer, and multiplexer. Although this electronic noise is typically
negligible compared to the other sources, it can be significant in some recording

systems, as we will see in Chapter 3.
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SIFTING OF VISUAL INFORMATION IN THE SUPERIOR
COLLICULUS
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2.1 Abstract

Much of the early visual system is devoted to sifting the visual scene for the few
bits of behaviorally relevant information. In the visual cortex of mammals, a hierar-
chical system of brain areas leads eventually to the selective encoding of important
features, like faces and objects. Here we report that a similar process occurs in
the other major visual pathway, the superior colliculus. We investigate the visual
response properties of collicular neurons in the awake mouse with large-scale elec-
trophysiology. Compared to the superficial collicular layers, neuronal responses
in the deeper layers become more selective for behaviorally relevant stimuli; more
invariant to location of stimuli in the visual field; and more suppressed by repeated
occurrence of a stimulus in the same location. The memory of familiar stimuli per-
sists in complete absence of the visual cortex. Models of these neural computations

lead to specific predictions for neural circuitry in the superior colliculus.

2.2 Introduction

Even though the human eye takes in about one gigabit of raw visual information
every second, we end up using only a few tens of bits to guide our behavior [52].
Of course, those bits are carefully selected from the scene, and which specific bits
get used depends entirely on the context and goals. All this happens in a processing
time of about a tenth of a second [65, 68]. How the visual brain sifts the onslaught of
visual data for the few behaviorally relevant nuggets has been an enduring mystery.
Much research in this area has focused on the primate visual system, and specifically
the phenomena of invariant object recognition. For example, certain neurons in the

inferotemporal cortex respond selectively to a specific individual’s face regardless
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of its position or view angle [18], or to the concept of a specific celebrity regardless
of how that concept arises [53]. An impressive body of theory and computational
modeling has been developed to explain how this sifting for important bits from the
retinal output may be implemented [12, 63]. However, empirical evidence regarding

the actual biological microcircuits has been difficult to obtain.

In rodent vision, a prominent example of visual sifting is the defensive reaction
of a mouse to an approaching aerial predator [10, 75]. Freezing or escape can be
triggered reliably by an overhead display of an expanding dark disk. Effectively, the
alarm circuits in the mouse’s visual system extract from the overall visual display just
one or two bits of information needed to initiate action. To function properly, such an
alarm system must be highly selective for the trigger feature. Indeed, the mouse does
not respond to expanding white disks, or to dimming dark disks, or to contracting
white disks [75]. All these innocuous stimuli share some low-level features with the
expanding dark disk, but not the overall configuration. Furthermore, the behavior
is invariant to irrelevant features. For example a mouse will freeze in response to
looming stimuli presented anywhere in the upper visual field. It is unknown how
this invariance to location arises, and how it can coexist with high selectivity for the

local stimulus features.

Recent research on rodents suggests that the visual drive for these defensive be-
haviors arises not in the thalamo-cortical pathway but in the superior colliculus
[16, 64]. The superior colliculus (SC) is an evolutionarily ancient midbrain struc-
ture that mammals share with birds, fish, and amphibians [3, 6]. The superficial
layers receive inputs from the retina and in mammals also from the visual cortex,
organized in a precise retinotopic map [62]. Neurons there project to the deep
layers of the SC as well as other brain areas including the lateral geniculate nucleus
and pulvinar. The deep layers also receive signals from other sensory modalities
including hearing and touch. Neurons in the deep SC represent pre-motor signals
and project broadly to many brain areas in both ascending and descending path-
ways. Generally speaking, neural processing in the SC identifies salient points in
the environment and coordinates the orienting of the animal towards or away from
such locations. In the primate brain, this has been studied extensively for the special
case of eye movements [34], but the primate SC also helps control head, arm, and
body movements. Furthermore, the SC contributes to a type of “internal” orienting,
namely when we direct our attention to a specific part of the scene without overt eye

movements [35].
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To better understand how visual sifting proceeds in the SC, we recorded spike
trains simultaneously from neurons throughout all layers of this structure in the
awake mouse. The set of visual displays included visual threats that reliably elicit
defensive reactions, and closely related stimuli that do not. We report on three kinds
of neural computations that separate behaviorally relevant from irrelevant stimuli,
and we trace their emergence from the superficial to the deep layers of the SC:
(1) an increasing selectivity for the threat stimulus; (2) an increasing invariance to
location of that stimulus; and (3) the suppression of neural responses to a familiar
stimulus. In particular, this memory of familiar stimuli is stimulus-specific, lasts for
a behaviorally relevant timescale, and does not require input from the visual cortex.
To explain these computations, we consider several circuit models, some of which
can be eliminated based on the population recordings. These results suggest how
circuits of the SC can effectively distill the ecologically relevant information that

guides behavior.

2.3 Results

Emergence of new response properties from superficial to deep layers

To track visual computations in the mouse SC, we recorded from hundreds of
neurons simultaneously in all layers of the structure using multi-electrode silicon
prongs [14]. The animal was head-fixed, awake, and moving on a running wheel, but
not trained to perform any specific task, so we could best observe the autonomous
visual functions of the SC. The recording electrodes were aimed at the dorso-medial
portion of the SC, which processes stimuli in the upper visual field. Over the
course of several hours we presented a battery of visual displays, ranging from
abstract stimuli like flickering checkerboards to those with ecological significance,

like overhead looming disks.

In analyzing neuronal responses to these stimuli we observed a systematic progres-
sion from the superficial layers that receive retinal input to the deep layers of the
SC. To illustrate the dramatic change in how stimuli are represented, Figure 2.1
compares recordings from two sample neurons, one in the superficial SC and the
other in the deep SC.

The superficial neuron responded well to many different kinds of displays, such as
an expanding dark disk (the classic “looming” stimulus), a contracting white disk,
a moving disk, or a dimming disk. By contrast, the deep neuron was quite selective

for the looming stimulus (Figure 2.1C). Second, the superficial neuron had a small
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and precisely circumscribed receptive field roughly 10° in diameter. It responded
only when the stimulus invaded that region. By contrast the deep neuron responded
strongly to any looming stimulus presented over a wide region that encompasses
much of the visual hemifield (Figure 2.1D). Third, the superficial neuron responded
reliably to repeated presentation of the identical stimulus. By contrast the deep
neuron fired only on the first presentation and failed to respond entirely to the

subsequent ones (Figure 2.1C, top row).

The three characteristics found in the deep SC neuron’s responses — selectivity for
the looming feature, spatial invariance, and habituation to familiar stimuli — are
all distinct from the signals transmitted by the retina. For example, an "approach-
sensitive" retinal ganglion cell (RGC) has been reported in the mouse retina [46],
but later studies have found that it is actually the Off-transient alpha cell [56] that
responds to many other Off-type stimuli in addition to the looming stimulus [36].
RGC:s also have local receptive fields ranging up to 10° at most [36], which can be
readily mapped with white noise stimuli such as flickering checkerboards or bars
[76]. Finally, although RGCs show complex adaptation properties, the timescale
of adaptation is typically on the order of 0.1-10s [2, 72], whereas the habituation
we find in the deep SC lasts on the order of minutes. In the following sections, we

elaborate on these response properties and how they may arise in the circuitry of the
SC.

Selectivity for looming stimuli

In an attempt to measure the visual receptive fields of all the recorded neurons, we
applied a flickering checkerboard stimulus and then computed the spike-triggered
average (STA) stimulus [8]. This is a common procedure that works well for retinal
ganglion cells and neurons in the early stages of visual cortex [45, 47]. In the
superficial SC, the STA analysis yielded linear receptive fields that resembled those
of retinal ganglion cells (Figure 2.2A-B). They were sharply defined in space, with
the smallest only ~5° across. They frequently showed an antagonistic and delayed
surround, and some displayed orientation- and direction-selectivity [17, 28]. The
great majority of these neurons (~90 %) were Off cells based on the shape of the
STA. By contrast, neurons in the deep SC did not produce sustained responses to
the flickering checkerboard (Figure 2.2A), and thus contained no structure in the
STA (Figure 2.2B). Nevertheless these same deep SC neurons did respond strongly
to certain figural stimuli, like the expanding dark disk (Figure 2.2A, C-D).



15

Among the various figural stimuli we tested, many neurons showed some selective
tuning (Figure 2.1C, Figure 2.2D, Supplementary Figure S2.2). We focus here on
the comparison of an expanding dark disk with a contracting white disk (Figure
2.2D). These two stimuli are closely related in terms of local features: both contain
an advancing dark edge. But the ecological interpretations are quite different: one
indicates an approaching dark object and the other a receding white object. Freely
moving mice take an evasive action to an expanding dark disk, but are unimpressed
by a contracting white disk [75]. Compared to superficial SC, neurons in the deep
SC indeed became more selective for the expanding dark disk (Figure 2.2D). This
can be seen as sifting what is likely the most behaviorally relevant signal in the

upper visual field from other distracting stimuli.

Invariance to stimulus position

Whereas superficial SC neurons often had sharp receptive fields just 5-10° in
diameter, deep SC neurons generally responded to stimuli over a large part of
the visual field. We probed this tendency with expanding dark disks presented at
many different locations, as these were the most effective stimuli in the deep SC.
With increasing depth in the SC, neurons showed larger receptive fields, growing by
a factor of 6 in area or more (Figure 2.3A-B). Note that the resolution of the receptive
field measurement with expanding dark disks is ~15°, and as a result these receptive

fields are larger than those measured by the flickering checkerboard (Figure 2.2B).

Despite this wide spatial range, deep SC neurons responded with a remarkably short
latency to looming stimuli at any location (Figure 2.3A). By the time such a neuron
starts firing, the expanding dark disk has only covered a few retinal ganglion cells.
In contrast, for superficial neurons the latency varied depending on the location of
the expanding disk stimulus and it often exceeded the latency of deep SC neurons.
(Figure 2.3A). Figure 2.3C plots this variation in the latencies across the SC depth.
One possible interpretation is that a widefield neuron in the deep SC pools over many
local neurons in the superficial SC, such that it becomes sensitive with the same
latency at every point in its receptive field. Indeed, such an interlaminar pathway
has been demonstrated previously in slice preparations [23, 38]. We consider this

possibility more thoroughly below.

In any case, it appears that certain widefield neurons in the deep SC have solved
the problem of threat detection to a large degree: they signal the looming stimulus

rapidly and sensitively without false alarms from stimuli that share some low-level
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features but not the behavioral significance.

Habituation to familiar stimuli

Neurons in the superficial layers generally produced a spike burst of comparable
firing rate with every repeat of the stimulus (Figure 2.1C). By contrast, some neu-
rons in the deep layers responded with a sharp burst only to the first presentation;
the response to all subsequent repeats was suppressed (Figure 2.4A). The degree
of habituation to repeated stimuli was greater in the deeper SC compared to the
superficial SC (Figure 2.4B).

The onset of this habituation is immediate and already affects the response ~1 s later
(Figure 2.1C, Figure 2.4A). The suppression then lasts for minutes: many deep SC
neurons showed less than 50 % recovery even after ~120 s (Figure 2.4D). While we
have not measured the exact time course of recovery, we found that the suppression
was not permanent. In general, neurons recovered the full sensitivity to the first
presentation when probed again about an hour later (Supplementary Figure S2.3).
Furthermore, the burst of spikes was not driven simply by a change in locomotor
output or pupil size as a secondary consequence of the visual threat (Supplementary
Figure S2.4).

Remarkably, this habituation was strictly specific to the stimulus that caused the
response. As reported above, widefield neurons in the deep SC can be triggered
by looming disks at many different locations (Figure 2.1C, Figure 2.3A). Figure
2.4C shows the response of a single neuron to a looming stimulus whose location
was chosen randomly on every trial. By comparing the sequence of responses at
one location to that at another one can test whether the habituation transfers across
space. As shown in the bottom left panel of Figure 2.4C, a stimulus at one location
did not suppress the subsequent response of the same neuron to a stimulus at another
location, even separated by as little as 15°. One interpretation is that the habituation
takes place in local circuits spanning ~15° in width before their output gets pooled

by the widefield neuron.

Given that the memory for familiar stimuli can last two minutes or longer, we
considered whether the hippocampus or the neocortex play a role in storing this
information, perhaps by modulating the gain of collicular signals through the ex-
tensive projections from visual cortex [77]. Thus we repeated the experiments in
a mutant mouse that lacks all of the dorsal forebrain, including the hippocampus

and most of the neocortex [31] (Supplementary Figure S2.5). Intriguingly, the mu-
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tant also showed long-lasting suppression of repeated stimuli in deep neurons of
the SC (Figure 2.4E), to a degree that matched the suppression seen in the normal
mouse (Figure 2.4C bottom right and Figure 2.4D). This is consistent with a local

mechanism for habituation within the SC.

The preceding analyses of single-neuron responses suggest that the neural population
deep in the SC selectively represents those bits of information that may be of
immediate relevance to defensive reactions, while other aspects of the visual display
get discarded. To test this directly, we applied a linear decoder to the population
vector from neurons in superficial and deep SC. From single stimulus trials, the
decoder easily read out the precise location of a visual stimulus from the population
in superficial SC, but much less so from neurons in deep SC (Figure 2.5, left).
By contrast, the deep SC represented explicitly whether a stimulus appeared at a
novel or a familiar location, whereas that information was barely available in the
superficial SC (Figure 2.5, right). Of course a decoder with access to the entire
history of responses could decode stimulus novelty also from the superficial SC. By
contrast, in the deep SC that information is available on individual trials. In the next
section we explore how the information about stimulus history may be stored by the

collicular circuit.

A working model for circuit mechanisms of visual sifting

The microcircuitry of the SC is still poorly understood, at least compared to that of
the retina. One can distinguish about 5 to 10 neuronal types based on morphology
and gene expression [5, 19], but their synaptic connectivity is largely unknown. Fur-
thermore the SC interacts through long-range connections with other brain regions,
notably the visual cortex [62]. Nevertheless, it is useful to consider what circuit
mechanisms may produce the observed visual responses of SC neurons. The func-
tional evidence we have gathered here makes some potential explanations unlikely,
and supports others as a guide in future studies of synaptic connectivity. Here we
focus on explaining three aspects of visual processing encountered in some deep
SC neurons: the selectivity for looming stimuli, the invariance to spatial location,
and the long-lasting stimulus-specific habituation. None of these phenomena occur
in responses of retinal ganglion cells, and thus they must arise from post-retinal

circuitry.

One circuit model that accounts for all the observed effects is shown in Figure

2.6A (“the working model”). It starts with input signals from retinal ganglion cells.
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Those are combined to produce neurons selective for a local looming stimulus. The
outputs of many such local looming detectors are pooled to produce neurons with
widefield sensitivity and position invariance. Finally the input synapses to those
widefield neurons undergo a short-term synaptic depression that accounts for the

stimulus-selective habituation.

To simulate the function of this circuit we modeled each of the neurons as a Linear-
Nonlinear element [8], and the synapses according to a widely used formalism
for short-term plasticity [69]. This model correctly recapitulates the preference for
looming over other stimuli (Figure 2.6E); the position invariance; and the habituation
to familiar stimuli (Figure 2.6F). It even accounts for detailed dynamics of the
looming response in deep neurons, such as the short latency (Figure 2.3A) and the
rapid quenching of the response caused by synaptic depression (Figure 2.1C, Figure
2.4A).

While a successful circuit model seems promising, one learns something useful
only from comparing different explanations. Here we consider several alterna-
tive microcircuits to account for the looming selectivity and the stimulus-selective

habituation.

The working model (Figure 2.6A) builds on local looming-selective neurons. We
encountered multiple cells in the superficial SC that match this profile: a local
receptive field, looming selectivity, and little habituation (Supplementary Figure
S2.6). In the working model this selectivity is achieved by combining signals
from retinal ganglion cells (RGCs) with different dynamics: excitation from a
fast and transient Off-cell forms the receptive field center, and inhibition from
slow and sustained Off-cells forms the surround. Since RGCs are excitatory, the
inhibition requires interneurons in the SC, and the slow dynamics of the surround
may well result from filtering by those interneurons. In either case the concentric
organization of fast excitation and slow inhibition produces selectivity for looming

over contracting white or moving or dimming stimuli (Figure 2.6E).

As an alternative explanation, could the looming selectivity already originate in
RGCs? As we noted previously, the “approach-sensitive” Off-cell that has been
previously reported [46] is now known to correspond to the Off-transient alpha cell
[56] which — while sensitive to looming stimuli — responds equally well to dimming
and flashing spots [36]. Therefore these RGCs do not qualify as the local looming
detectors.
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Another possibility is that looming selectivity results from a radial organization of
direction-selective (DS) neurons, each of which reports a segment of the advancing
dark edge (Figure 2.6B). Supposing those DS inputs come from the retina, the only
candidates are the On-Off DS RGCs [60], which would be equally sensitive to On
edges. Thus the looming detectors in the SC should respond to an expanding white
disk as well, unlike what we observed (Figure 2.1C). If, on the other hand, the DS
signals are generated de novo in the SC, one would expect to find such interneurons
with all possible preferred directions. Instead, DS neurons in a given region of the
superficial SC have a strong bias for just one or two preferred directions [11]. In
summary, both of the considered alternative microcircuits for looming selectivity

seem unlikely given the available evidence.

In the working model (Figure 2.6A), the stimulus-selective habituation is produced
by activity-dependent depression of the synapses that convey the local looming
signals to the widefield neuron. A plausible alternative mechanism would involve
long-lasting inhibition of the looming detector from a neuron triggered by that
same local stimulus (Figure 2.6C). This neuron would need to exhibit a sustained
activity following a single stimulus. In our database of collicular recordings, we
never encountered a neuron that matches this description. Another possibility is
that local looming detectors — in addition to exciting the widefield neuron — also
inhibit it via an interneuron (Figure 2.6D). Then the long-lasting habituation could
be explained by the potentiation of the inhibitory synapse, rather than depression
of the excitatory synapse. In that case, one might expect that repeated looming
stimuli should produce a suppression of the ongoing baseline firing during later
stimulus periods. We never observed such a suppression (Figure 2.4A). Instead
the firing generally increased during stimulus intervals (rgim) compared to inter-
stimulus intervals (ris;) (for 15 deep SC neurons with baseline firing > 10 spikes/s,
median rgim /risi: 1.28, 25th-75th percentile range: 1.03-1.85).

In summary, several alternative explanations for the basic phenomena observed in
deep SC neurons seem less likely than the working model that we propose, based on
our database of extracellular recordings. We suggest that the key components of the
working model in Figure 2.6A, namely the microcircuit for looming selectivity and

the long-lasting synaptic depression, are fruitful targets for further investigation.
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2.4 Discussion

Summary

The superior colliculus (SC) presents an interesting interface between purely sensory
representations and pre-motor signals. Our goal here was to follow systematically
how the sensory inputs from the retina get digested and filtered in the SC. As
a guiding problem we chose a robust visually-triggered behavior: the defensive
reaction elicited by an overhead looming stimulus. By following visual responses
of neurons from superficial to deep layers we documented three aspects of the
sifting process: (1) an increasing selectivity for the behaviorally relevant looming
stimulus over other innocuous stimuli with similar low-level features (Figure 2.2);
(2) an increasing invariance to other aspects of the visual display, such as the precise
location of the threat stimulus (Figure 2.3); and (3) an increasing selectivity for novel
over familiar stimuli (Figure 2.4). We considered how this filtering may be achieved
by neural circuits and arrived at a plausible model of circuitry in the SC (Figure
2.6) that accounts for all three of the phenomena of visual sifting considered here.
Moreover, several alternative circuit-level mechanisms were found to be inconsistent

with the neural signals we encountered.

Relation to earlier work

Some of the phenomena reported here have been described before in a wide range
of species. A common theme is that neurons in deep SC respond over larger
regions of the visual field, while retaining a preference for small stimulus features
within that region [9, 13, 21, 27, 29]. Also, the remarkably persistent habituation
to repeated stimuli has been noted previously, even in the earliest recordings from
optic tectum [9, 13, 25, 39, 54, 67, 74]. Another repeated observation is that the
visual cortex appears dispensable for many aspects of visual processing in the SC
[24,27,43], although it does play a subtle modulatory role [77]. Looming stimuli are
particularly effective for many neurons in the superficial SC [77]. Interestingly the
early literature missed this, perhaps because of the technical difficulty of generating
an expanding dark disk with the commonly used hand-held slide projector [13]. Our
present report places these disjoint observations into a common context, namely the
animal’s need to distill a specific signal of ecological value from the broad range of
visual stimuli. We show that SC neurons are not only sensitive to looming stimuli but
become increasingly selective in deep layers, an essential requirement for an alarm
system. Further we analyze the neural code at the population level throughout this

brain region, which reveals the gradual progression of stimulus filtering. Finally
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we consider how these aspects of neural representation relate to neural circuitry,
and evaluate alternative hypotheses for such circuits. The results allow a broader
consideration of how selectivity and invariance come about in brain processing, to

be pursued further below.

Ethological significance

The present study focused on stimuli presented in the upper visual field and record-
ings performed from the corresponding medial region of the SC. Arguably the most
behaviorally relevant event in the upper visual field is the impending arrival of a
bigger animal, such as an aerial predator. The imminent threat that these events pose
may account for the profuse responses to dark looming stimuli among SC neurons
in this region (Figure 2.2, [77]). Of course the threats must be distinguished from
innocuous events, like the movement of overhead foliage, or the obscuring of the sky
when the animal moves under shelter. The increased selectivity to the expanding
dark disk in the deeper SC can account for that selectivity (Figure 2.2C, Figure
2.4B).

How should one interpret the profound habituation to repeated stimuli in this context?
For one, the habituation does not interfere with the alarm response, since the animal
must react to the first occurrence of a clear looming stimulus [75]. If the animal
escapes or freezes, and the predator approaches a second time, this is likely in
a different part of the visual field, and thus unaffected by the location-specific
habituation. On the other hand, if the same stimulus recurs periodically in the same
location, it is more likely caused by a leaf waving in the wind. Thus the habituation
can be seen as another processing strategy to reject innocuous events from the alarm

pathway.

In the lower visual field the animal has different behavioral needs, such as picking
out seeds against a cluttered background, following small moving prey [26], perhaps
identifying urine marks [30], and tracking optic flow. Furthermore the connectivity
between SC and other brain areas seems to differ in the upper and lower visual fields
[61]. Thus one expects a corresponding difference in the rules by which visual

stimuli are sifted there, a fertile area for future study.

Selectivity, invariance, and habituation
One remarkable phenomenon in sensory processing is the emergence of neuronal
responses that are both highly selective and broadly invariant. For example, certain

“face cells” in the primate visual cortex respond selectively to one person’s face



22

regardless of the view angle, scale, or illumination [18]. How do these seemingly
conflicting characteristics arise within sensory circuits? In the working model we
propose here (Figure 2.6A) the answer is “first selectivity, then invariance.” An AND
operation across input neurons with different dynamics generates a local looming-
selective neuron. These pattern detectors are distributed across the visual field.
Then an OR operation pools across many local pattern detectors to produce the

position-invariant response of the widefield neurons (Figure 2.7A).

This seems to be the scheme in other neural systems where the circuitry is under-
stood. For example, in the auditory brain of the barn owl certain high-order neurons
are selective for a particular interaural time delay, but invariant to the frequency of
the sound [33]. These appear to arise from OR pooling over lower-order neurons
that are selective for the same time delay but still tuned to different frequency bands.
Those delay detectors in turn arise from an AND combination of signals derived
from the two ears [7]. A similar processing scheme applies in the electrolocation
circuits of weakly electric fish that exhibit a jamming avoidance response sensitive

to frequency but invariant to many other parameters of the electric field [22].

However, this is not the only solution. In the case of face recognition, for example, it
seems implausible that the brain should build separate pattern detectors for each face
ateachretinal location, and then pool over those to achieve invariance. An alternative
scheme produces invariance first and then selectivity (Figure 2.7B). Here there exists
only a single pattern detector. But the inputs to this neuron are routed to “look at”
different spatial locations through a shifting circuit. The sudden appearance of any
stimulus could engage these shifter circuits to route the corresponding low-level

visual signals into the pattern detector [48, 71].

The observation of habituation and its specificity to location seems to greatly favor
one of these schemes. Recall that habituation is seen prominently among neurons
in the deep SC that are already highly pattern-selective. The ‘“selectivity first”
scheme places the gain modulation somewhere prior to the output of the pattern
detector, which is the last spatially localized signal (Figure 2.7A). By contrast, the
“invariance first” scheme requires the gain modulation to occur in low-level visual
neurons that are not yet pattern-selective (Figure 2.7B). This conflicts with our
observations of neurons in the superficial SC that do not show location-specific
habituation (Figure 2.4B). In summary, the robust observation of location-selective
habituation in neurons of the deep SC favors a circuit model that develops selectivity

before invariance.
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Of course, one can also envision intermediate solutions. For example, there is
speculation that the visual cortex implements an alternation of AND and OR stages
through a hierarchy of anatomical areas [12, 55]. Seeing that most vertebrate
species do not have a neocortex, yet must solve the same problems of invariant
pattern recognition, the SC seems like a promising arena for the study of high-level

visual processing.

Circuit mechanisms of sensory sifting

While it is tempting to suppose that the observed reduction of visual data is in fact
performed within the SC, such anatomical localization is not a binding conclusion.
In the extreme, the neurons of the deep SC, with their selectivity for fine spatio-
temporal features and localized habituation, may simply reflect the output of a
computation that occurs elsewhere. The SC interacts with many other anatomical
structures [3, 61], often in a reciprocal fashion. The most prominent such input,
namely from the visual cortex, is likely not required for the essentials of visual
sifting, based on our results with mutant mice (Figure 2.4E) and prior work with
cortical silencing [77] and ablation [24, 27]. To contribute to sifting, the partner
areas should retain a spatial resolution of the stimulus on the order of 10°. This
constraint eliminates some small nuclei, but leaves several candidates in place, for
example the thalamic area LP [1] and the parabigeminal nucleus. Given the position
of the SC as a hub of brain pathways, it is an open question whether one can

ultimately assign discrete computational functions to discrete anatomical areas.

On a finer level, one may ask how the circuit models of Figure 2.6 map onto neuron
types in the SC. About five cell types have been distinguished in the superficial
SC of mammals based on morphology alone [37, 44], and more recent studies
have connected these types to visual responses and electrophysiological properties
[19]. The most compelling by their visual appearance are the so-called widefield
or bottlebrush neurons. These cells have a dendritic fan that extends towards the
surface of the SC and spreads out laterally to cover a large area in the retinorecipient
layers. Each dendrite terminates in a bottlebrush-shaped ending, and the overall
morphology is startlingly similar across birds and mammals [40, 42]. The widefield
neurons of mammals project to the pulvinar, and the axon forms multiple collaterals

in the SC that could propagate the output to the deep layers [3, 42].

By virtue of their broad dendritic tree, these widefield neurons offer themselves as

the substrate for pooling across spatial locations, as in the working model of Figure
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2.6A. Two further features recommend such an identification: First, the dendrites of
widefield neurons generate spikes that propagate to the soma [15, 41]. In this way,
the neuron truly implements an OR operation across its inputs (Figure 2.7A): when
any of its inputs fire, the output will fire. Second, experiments on chick tectum
showed that each dendritic input undergoes a profound synaptic depression that
lasts several seconds, but does not affect the function at another dendrite [41]. This
could account for the location-specific habituation as in the model of Figure 2.6A.
However, there is some question whether this synaptic depression also happens
in the mouse [20]. Also we found a substantial increase of invariance below the

anatomical stratum where the widefield neurons reside (Figure 2.3).

In summary, the visual response properties of deep SC cells differ dramatically
from any signal that emerges from the retina, and it is tempting to associate this
transformation with the bottlebrush neuron that is shaped unlike anything in the
retina. Some caution is in order, of course. The diagram of Figure 2.6A should
be viewed as a conceptual scheme rather than an explicit circuit with one-to-one
corresponding real neurons. Perhaps the selectivity and invariance are accomplished
in multiple stages, or with the contribution of other brain areas. Or the local looming
detectors may be nonlinear dendrites, and ion channels with long-lasting inactivation
[70] may play the role of depressing synapses. The increasing availability of genetic
handles for cell types in the SC [5, 19] should help in cracking some of these

microcircuits.

2.5 Figures
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Figure 2.1: The emergence of selectivity, invariance, and stimulus-specific habituation along
the depth of SC. (A) Left: Experimental setup. Silicon neural probes with 128 channels
were implanted into the SC of a headfixed mouse viewing visual stimuli. The mouse
was free to run on a circular treadmill. Middle: Diagram of a coronal section showing
the anatomically defined layers of the SC (from [50]). sSC: superficial SC; dSC: deep
SC. Right: Corresponding histological section recovered after neural recording, showing
tracks of two electrode prongs. Magenta: Dil; white: anti-Calbl. (B) Extracellular spike
waveforms of sample sSC (red) and dSC (blue) neurons recorded simultaneously on the
silicon probe. Dots indicate the location of recording sites. Dashed line indicates boundary
along the electrode array between sSC and dSC (see Methods and Supplementary Figure
S2.1). (C) Response of neurons from (B) to visual stimuli. The sSC neuron (middle)
responds to many types of figural stimuli (left icons: expanding black, expanding white,
contracting black, contracting white, dimming, and moving black disk), whereas the dSC
neuron (right) is highly selective to the expanding black disk. The sSC neuron responds
robustly to every trial, whereas the dSC neuron responds primarily to the first presentation.
(D) In an experiment in which looming stimuli appear from many locations (left), the sSC
neuron from (B) (middle) is driven only by stimuli that cross its receptive field, whereas
the dSC neuron from (B) (right) responds to stimuli placed at many more locations. White:
final size of looming stimuli that elicited significant response from the cell; red: 1 standard
deviation outline of spatial receptive field recovered by spike-triggered average method.
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Supplementary Figure S2.1: Histological and electrophysiological identification of SC
layers. (Top) Brain section (coronal, 100 um thick) showing the recorded area from an
experiment. (Bottom left) Boxed area in the top panel is enlarged. The probe track is
marked with Dil (magenta). The anti-Calbl antibody (green) stains superficial gray layer
(SGS) and upper parts of the intermediate gray layer but does not stain the optic layer (SO).
White lines mark the top and bottom outline of the SGS and SO. (Bottom right) Current
source density analysis of the same recording displayed at the same spatial scale as the
section on the left. Looming stimulus was delivered during the time window shaded in gray.
Dashed line marks the inflection point that separates current sink (blue) below and current
source (red) above. This corresponds to the lowermost point of SGS, as previously reported
by [66].
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Figure 2.2: Selectivity to looming stimulus. (A) Response of sample sSC (middle) and dSC
(right) neurons to looming stimulus (top) and flickering checkerboard (bottom). sSC neuron
is driven strongly by both, but dSC neuron is almost completely silent to the checkerboard
stimulus. (B) Spatial (top) and temporal (bottom) receptive fields of the sSC (left) and dSC
(right) neurons in (A) based on spike-triggered average analysis. In each subpanel, left:
spatial center; right: spatial surround; bottom blue: temporal center; bottom red: temporal
surround. In the temporal RF panels, the vertical line represents the time of the spike. (C)
Population summary of selectivity to looming stimulus over checkerboard stimulus along
the depth of SC. Horizontal dashed line indicates the boundary between sSC and dSC.
Vertical dashed line separates neurons with high selectivity index (>0.75) from others. The
p-value (two-sample Kolmogorov-Smirnov test) indicates that the distributions of sSC and
dSC neurons differ significantly. (D) Same as (C), comparing responses to looming stimulus
and contracting white disk. Selectivity index is defined as (rp — ro)/(rL + ro) where rp,
refers to response to looming stimulus and ro refers to response to checkerboard stimulus
(C) or contracting white disk (D).
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Supplementary Figure S2.2: Distribution of looming selectivity index for neurons in the
superficial and deep SC vs. expanding white disk, receding dark disk, moving disk, and
dimming disk. Dotted line separates neurons with high looming selectivity index (>0.75)

from others.
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Figure 2.3: Invariance to stimulus position. (A) Raster plot of sample sSC (left) and dSC
(right) neurons recorded simultaneously during an experiment in which looming stimuli
appear randomly in one of 25 locations (small black dots in cartoon) in each trial. These
locations are ~15° apart. The dSC neuron responds to many more locations than the sSC
neuron and with an invariant latency. Bottom: The response amplitude at each location is
reported by the brightness of the circle. X indicates a location that received no stimulus. (B)
Population summary of receptive field size estimated from the experiment in (A). Vertical
dashed line is at 60°. (C) Population summary of variability in the timing of the first spike
from the experiment in (A). Vertical dashed line is at 75ms. In both (B) and (C), the
horizontal dashed line separates sSC and dSC. The red and blue circles denote the sSC and
dSC neurons from (A). The p-values (two-sample Kolmogorov-Smirnov test) indicate that

the distributions of sSC and dSC neurons differ significantly.
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Figure 2.4: Stimulus-specific habituation. (A) Response of a sample dSC neuron to a series
of 10 looming stimuli. The first and the 10th trials are shaded in blue. Note that this neuron
has a maintained baseline firing rate, which is unchanged by the stimulus on all but the first
trial. (B) Population summary of habituation to repeated looming stimulus. The habituation
index is defined as 1 — r|/rjo where r; refers to the number of spikes fired in in i-th trial
after subtracting background activity. The horizontal dashed line separates sSC and dSC.
The vertical dashed line is at 0.75. The blue circle is the sample dSC neuron from (A). The
p-value (two-sample Kolmogorov-Smirnov test) indicates that the distributions of sSC and
dSC differ significantly from each other. (C) Response of a sample dSC neuron to ~100
presentation of looming stimuli delivered in random sequence. Each subpanel represents
response to stimuli at one of the 25 locations. Bottom left: two of the response traces
from above. Even after the neuron has habituated to stimuli at one location (magenta), it
responds strongly to the first stimulus at another location (blue). Bottom right: response of
all dSC neurons in this recording, normalized by response to first trial of the magenta trace.
Data points are medians and error bars range from 25th to 75th percentiles. (D) Summary
of time to recover from habituation for a group of simultaneously recorded sSC and dSC
neurons. Even after ~120 s, dSC neurons do not recover beyond 50% of the initial response.
Data points are medians and error bars range from 25th to 75th percentiles. (E) Sample
sSC (top right) and dSC (middle right) neurons recorded in a mutant mouse that does not
develop the neocortex or the hippocampus (left). The dSC neuron in the mutant mouse also
shows habituation. Bottom: population response of dSC neurons to 10 presentations of
the looming stimulus, normalized by the response to the first presentation. Data points are
medians and error bars range from 25th to 75th percentiles.
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Supplementary Figure S2.3: Suppression of a familiar stimulus is not permanent. The
response of a sample dSC neuron to looming stimuli that were presented in the beginning
(left) and the end (right) of a recording. Other stimuli (e.g. checkerboard) were presented to
the animal in the ~50 min that separates these two blocks. Note that this neuron eventually
does recover (24 vs. 26 spikes to the first presentation), indicating that the memory of
looming stimulus is not permanent.
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Supplementary Figure S2.4: Enhanced response to first stimulus is not a simple conse-
quence of motor activity. The response of three sample dSC neurons from Figure 2.1 (A),
Figure 2.3A (B), and Figure 2.4A (C) to no stimulus (top), checkerboard stimulus (middle),
and looming stimulus (bottom) are shown, along with simultaneously recorded locomotion
(cyan) and pupil diameter (magenta). The neurons are silent during no stimulus and checker-
board stimulus even though the locomotion and pupil size are modulated. This suggests that
the strong response in the first presentation of the looming stimulus is not simply a result
of motor output or change in arousal level in the absence of visual threat. In one case (C,
bottom), the burst of firing to the looming stimulus precedes a significant change in the pupil
size, suggesting an increased level of arousal.
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Supplementary Figure S2.5: A mutant mouse that lacks the neocortex and the hippocampus.
A series of Emx 1-Cre:Pals 171X mouse brain coronal sections (100 um thick), labeled from
most anterior (1) to most posterior (9). The left half of panel 7 shows a corresponding wild-
type mouse coronal section with a fully developed neocortex and hippocampus. Note that
these structures are lacking in the mutant mouse. Autofluorescence (green, red), DAPI
(blue).
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Figure 2.5: Population decoding of distinct stimulus features. Linear decoders were trained
with simultaneously recorded sSC and dSC neurons to predict location (left) and novelty
(i.e. whether the stimulus has appeared at a location for the first time) (right) of stimuli in
the experiment described in Figure 2.3. Dashed line: chance performance; error bars: 1
standard deviation across different subsamples of cells.
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Figure 2.6: Model of selectivity, invariance, and stimulus-specific habituation. (A) The
“working model” of how selectivity, invariance, and habituation arise in the dSC. Looming
selectivity is generated by combining fast and slow Off-type retinal inputs (green and pink)
in the local looming detector (purple) in sSC. Inset on right shows spatial layout of these
inputs. Invariance arises from pooling these local looming detectors to a single global
looming detector (cyan) in the deep layers. The stimulus-specific habituation is achieved
by synapses that undergo activity-dependent short-term depression (red downward arrows).
Solid circles: excitation; open circles: inhibition. (B) An alternative model of looming
selectivity based on pooling directionally tuned inputs. (C, D) Alternative models of
stimulus-specific habituation: the same input as the excitation drives a persistent inhibition
(C) or a facilitating inhibitory synapse (D). (E) Simulation of responses to various figural
stimuli. Green: excitation from center; red: inhibition from surround; shaded black: net
response. (F) Simulation of stimulus-specific habituation. Each local looming detector
connects to the global looming detector with a synapse whose strength w decays rapidly and
recovers slowly.
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Supplementary Figure S2.6: One of several putative local looming detector identified in
the superficial SC (A), with a local receptive field (B) and selectivity for looming stimulus
without a significant habituation to repeated stimuli (C). Dashed line: boundary between
sSC and dSC.
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Figure 2.7: The logic of selectivity and invariance. In (A) feature selectivity is accomplished
by combining local input signals (red and green) with AND logic (X). Then invariance arises
from combining many of those feature signals with OR logic (+). In (B) there is only a
single feature computation (X). Invariance is achieved by routing its inputs to local signals
in different parts of the visual field. Arrows indicate where the stimulus-specific habituation
must take place.



38
2.6 Methods

Mouse, surgery, neural recording and spike-sorting

We used C57BL/6 mice (RRID:IMSR_JAX:000664) aged 3—10 months (both males
and females, Jackson Labs) for electrophysiological recordings. To prepare an
animal for an experiment, we first implanted a metal headplate to the skull with a
dental adhesive (3M Scotchbond) under anesthesia (2 % isoflurane). After three days
of recovery, the animal was habituated to being head-fixed on a circular treadmill
for ~30 min/day for three days. On the day of recording, the animal was again
anesthetized and a craniotomy (< 1 mm diameter) was made over the SC (0.2—
0.4 mm anterior to lambda, ~0.5 mm lateral from midline). A small hole was made
over the cerebellum to insert a silver reference wire. The craniotomy was then
closed with a silicone elastomer (Kwik-Cast, WPI). After 68 hours of recovery, the
animal was head-fixed and the craniotomy was exposed. A silicon neural probe was
then lowered slowly into the brain (< 5 um/s) and the depth from brain surface was
recorded. The craniotomy was then covered with mineral oil to prevent drying of the
exposed tissue. We waited a short period (15-30 min) for signals to stabilize before
starting the recording. A typical recording session lasted 2—3 hours. All procedures
were performed in accordance with institutional guidelines and approved by the
Caltech IACUC.

The silicon neural probes were obtained from Sotiris Masmanidis (UCLA) [14].
For the majority of experiments, probe types 128A, 128 AN, and 128DN were used.
For data acquisition we used the RHD2000 128-channel amplifier board and the
RHD2000 USB interface board (Intan). Auxiliary signals including the movement
of the running wheel, timing of the stimulus, and timing of pupil video recording
were collected concurrently with the neural signal. We used KiloSort [49] for spike-
sorting of the data. The output of the automatic template-matching algorithm of

KiloSort was visualized and manually curated on Phy [57, 58].

To test if the long-lasting stimulus-specific habituation requires the neocortex and
the hippocampus, we also recorded in mutant mice that developmentally lack these
brain areas [31]. These animals were bred by conditional knockout of exon 3 of
Pals1 gene in cortical progenitor cells during embryonic development, achieved
by crossing Pals11o¥/°% mice with LoxP sites inserted upstream and downstream
of exon 3 with Emx1-Cre animals (Jackson Labs, Strain 005628) expressing Cre
recombinase in the cortical progenitor cells. Conditional knockout of both copies

of Pals1 due to Cre-mediated recombination during development resulted in Emx1-
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Cre:Pals11°¥1X homozygous progeny used in this study (Supplementary Figure
S2.5).

Behavioral measures

The animal’s pupil diameter and locomotion on the circular treadmill were recorded
along with the neural signals. The animals were not trained in any particular task
and varied in their tendency to run on the treadmill. When looming stimuli were
presented, the animals sometimes reacted by stopping (if the stimulus had arrived
during a movement bout) or showing an increase in the pupil size (Supplementary
Figure S2.4C), but no characteristic behavioral output was consistently observed.
However, we could rule out the possibility that the strong response of deep SC
neurons to the first presentation of the looming stimulus is a simple consequence of
motor output or change in pupil size, as they were usually not modulated by these
factors in the absence of the looming stimulus (Supplementary Figure S2.4). We
also tracked the position of the pupil to monitor the eye movements. In many cases
the eyes were very stable, as demonstrated by the sharp (~5°), circular receptive
fields we recovered (Figure 2.2B) in the superficial SC by spike-triggered average
analysis.

Post-hoc identification of the recorded brain area

Prior to implanting into the brain, the tip of the silicon probe was covered with
fluorescent lipophilic dye (DiD or Dil, Invitrogen). Immediately after recording,
the animal was anesthetized and perfused with saline and 4 % PFA. The brain was
harvested and fixed with 4 % PFA (Electron Microscopy Sciences) for 24-48 hours
at 4 °C, after which it was sectioned coronally at 100 um thickness with a vibratome
(Leica). The sections were then stained with anti-Calb1 antibody (Swant, CB-38a,
1:1000 dilution), which has been previously reported to label the superficial gray lay-
ers of the SC [59]. Following secondary antibody staining (AlexaFluor 488, donkey-
anti-rabbit, 1:1000 dilution), sections were mounted with Vecta-Shield:DAPI and
imaged using a confocal microscope (LSM800, Zeiss). From this, the location of
the probe relative to SC layers could be estimated (Supplementary Figure S2.1).
This histology-based method of localizing the probe relative the SC layers was
complemented with current source density (CSD) analysis. First, the raw, broad-
band recording was low-pass filtered (150 Hz cutoff) to isolate the LFP band. Then
the Laplacian of a column of spatially contiguous electrodes was computed and

smoothed with a Gaussian kernel. This revealed a series of current sources and
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sinks in response to visual stimulation (Supplementary Figure S2.1). By comparing
this CSD analysis to the histological localization, we confirmed the results from [66]
that the inflection point between the current source and sink marks the bottom of the
superficial gray layer (SGS). We then defined the boundary between the superficial
and deep layers as 100 um below the inflection point (corresponding to O depth in
Figure 2.2C-D, Figure 2.3B-C, and Figure 2.4B) to account for the thickness of the

optic layer.

Stimuli

Visual stimuli were programmed using the Psychtoolbox [4, 32] package in MAT-
LAB (Mathworks) and presented on a gamma-corrected monitor (IPS231, LG) at
baseline luminance of ~25 cd/m?. The position of the monitor was slightly adjusted
in each experiment such that the receptive fields of the neurons being recorded were
located near the center of the monitor. Usually this was at ~35° in elevation and
~45° in azimuth (to the left) from the rostro-caudal axis of the animal. The monitor
was located 15-20 cm from the animal and covered ~120° of the horizontal field
of view. The visual stimuli were synchronized to the neural recording by using a

photodiode to send timing pulses from the monitor to the data acquisition board.

Before presenting the stimuli, we used a small flickering spot to map the part of the
monitor that elicited strong neural responses (“‘response zone”). Figural stimuli were
then presented at these locations. The following is a description of each stimulus

type during the stimulus period.

Definition of stimulus period

Throughout this report, the periods during which the stimulus was presented on the
screen are called stimulus periods and are marked as pink sections in the PSTHs.

Outside the pink sections, the screen was uniformly gray.

Looming stimulus

The looming stimulus expanded from 0° to ~30° at a linear expansion rate of ~30—
60 °/s and then remained stationary for another 250 ms before disappearing. It was
presented at the full contrast achievable by the monitor. This repeated for 5-10 trials
at the same location. The inter-stimulus interval was 1-3 s, except when the time to

recover from habituation was explicitly tested (Figure 2.4D).
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Other figural stimuli

The contracting black, expanding white, and contracting white disks were presented
with similar parameters as the looming stimulus. The stationary period of 250 ms
was always at the end of the expansion or the contraction. The dimming and the
moving dark disks were the same size as the final size of the looming stimulus. The
rate of change in contrast of the dimming disk and the trajectory and the speed of
the moving dark disk were set such that they had roughly the same duration as the
looming stimulus. The moving dark disk traveled at ~40-70 °/s, with the response
zone in the middle of the trajectory. Several different movement directions were
tried.

Flickering checkerboard

During the flickering checkerboard stimulus, the entire screen was divided into
square checkers (~3°) whose intensity changed randomly between black and white
in every frame at a refresh rate of 60 Hz. The duration ranged from 300 to 600,

but often 300 s was enough for the spike-triggered average analysis.

Random loom

In the “random loom™ experiment, 25 locations (in a 5x5 grid) around the response
zone were selected, with ~15° between adjacent locations (measured from center to
center). In each trial, one looming stimulus was presented in one of these locations
with the parameters described above. The sequence of stimulus locations was
determined with a pseudorandom number generator. The inter-stimulus interval

was 3 s and ~60-120 trials were presented in total.

Analysis

The progression of visual response properties with depth in the SC was discovered
in early exploratory experiments. A subsequent round of recordings was performed
to validate the initial observations. The present manuscript analyzes data from
only these replication experiments. All analysis scripts were written in MATLAB
R2016b (Mathworks) unless otherwise noted.

Definition of neural response and background activity

Throughout our analysis, the neural response is defined as the number of spikes that

a neuron fired during the stimulus period (as described above). Some neurons had a
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maintained baseline firing rate. The background activity is defined as the expected
number of spikes contributed by the baseline firing rate during the stimulus period.
To compute this, we estimated the baseline firing rate by counting the spikes fired
during the ~5-10s-long period just preceding the stimulus and dividing by length
of this period. We then multiplied this by the stimulus period to get the background
activity. The background activity was used to test if the neural response was visually

driven (see below).

Identification of visually responsive neurons

Many of the recorded neurons had no clear response to visual stimuli. In a typical
neurophysiology experiment, visually responsive neurons can be separated from
others by presenting the stimulus many times and choosing only those that respond
consistently across repetitions. In our experiments, we did not have the luxury of
repeating the stimuli, as many neurons (esp. in the deep SC) showed significant
habituation after just a single presentation (Figure 2.4A-B). To identify visually
responsive neurons from single trials, we instead used a statistical method. First,
we computed the neural response and the background activity (see above). We then
computed a p-value for the neural response based on a Poisson noise model whose
mean was the background activity. If the p-value was less than the pre-set cutoff
of 0.005, we considered the response to be visually driven. In cases where the
background activity was very low (< 1 spike), the mean of the Poisson model was
set to 1 so that chance firing of 1-2 spikes during the stimulus period would not be

considered as a visual response.

This significance criterion was used to select neurons to include in the analysis
shown in Figure 2.2, Figure 2.3, and Figure 2.4 (see below). When computing
quantities of interest (e.g. selectivity index), we first subtracted the background
activity from the neural response. In Figure 2.3, the analysis required identification
of significant responses from a series of stimulus presentations. To compensate
for this multiple comparison, we applied a Bonferroni correction by dividing the

p-value cutoff by the number of stimulus presentations.

Receptive field analysis with flickering checkerboard

To measure the spatio-temporal receptive field (Figure 2.2B), we computed the
spike-triggered average stimulus (STA) with the neural response to the flickering

checkerboard [45]. In many neurons that had a strong STA, we could separate
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the center and the surround of the receptive field by performing singular value
decomposition (SVD) on the STA [73]. SVD expresses the spatio-temporal STA as
a sum of terms, each of which is a product of a purely spatial and a purely temporal
function. The terms are ordered by decreasing contribution to the overall variance
in the STA data. We found that often the first term corresponded to the spatial and
temporal profile of the center, and the second term to those of the surround.

Stimulus selectivity

To analyze the selectivity to a looming stimulus over other stimuli (Figure 2.2C,
D), we computed the looming selectivity index defined as (r; —ro)/(rp +ro) with
r = r’ — u, where r’ refers to the number of spikes that a neuron fired during the
first presentation of the stimulus, u refers to the number of spikes expected during
the stimulus period from the neuron’s baseline firing rate, and the subscripts L
and O refer to the looming stimulus and another stimulus (e.g. contracting white
disk), respectively. For the comparison to flickering checkerboard (Figure 2.2C),
ro = {rc)ty — u, where (r¢) is the average firing rate of the neuron during flickering
checkerboard and 7/ is the duration of the looming stimulus. Only neurons that were
significantly responsive to either of the two stimuli being compared based on the

Poisson significance criterion outlined above were included in the analysis.

Position invariance

To analyze the invariance to stimulus location (Figure 2.3B), we estimated the
receptive field of recorded neurons from the results of the “random loom” experiment
in which looming stimuli appeared randomly at one of 25 locations (5x5 grid) in each
presentation. The looming stimulus was chosen because unlike the checkerboard
stimulus, it reliably drove both sSC and dSC neurons. First, we defined the function
r(x) that specifies the maximum response (in spikes) of a neuron to a stimulus at
location x = (x1,x2). Then we (1) set to zero the responses that did not deviate
significantly from baseline activity; and (2) subtracted the expected number of spikes
during stimulus period due to baseline activity from r(x). To capture the width of
the receptive field given by the remaining responses, we computed the mean radial
distance A = (2 ||x — ¢||r(x)) /X r(x) where ¢ = (), xr(x)) />, r(x) is the center
of mass of the receptive field and || - || is the Euclidean distance. Then we defined
the receptive field size as 2A, i.e. twice the mean radial distance from the center of

mass. Based on this method, neurons that respond to stimuli at only a single location
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would have a receptive field size of zero, as A = 0. We corrected this by adding the
inter-center distance between stimuli (often ~15°) to the estimated receptive field

size of all neurons, as this determined the spatial resolution of our experiment.

Variability in response latency

In addition, we analyzed the variability of response latency during this experiment
(Figure 2.3C). We defined the latency as the timing of the first spike during the
stimulus period. We included only the neurons that met the following conditions:
(i) background activity (as defined above) is less than 1; and (ii) shows statistically
significant response to at least five trials in the random loom experiment. Condition
(i) is required by our definition of latency. Condition (ii) is required because we
define the variability of latency as the standard deviation of the timing of first spike,
and this requires some number of samples to compute. 41 sSC and 128 dSC neurons
that met condition (ii) but not (i) were discarded, and the final plot in Figure 2.3C
shows 37 sSC and 70 dSC neurons. Finally, to avoid including spikes not due to
visual stimulation, we required the first spike to not occur earlier than 30 ms since

stimulus onset.

Stimulus-specific habituation

To analyze the stimulus-specific habituation (Figure 2.4B), we computed the habit-
uation index defined as 1 — r;/ry where r; = r — u refers to the number of spikes a
neuron fired in the i-th repetition of the looming stimulus (7)) after subtracting the
expected number of spikes due to baseline activity (¢). Analysis with i =4, 7, and
10 did not yield significantly different results (Figure 2.4B uses i = 10). Only the
neurons whose initial response to the looming stimuli met the significance criterion

were included in the analysis.

Statistical test

Furthermore, we tested if the empirical distributions of sSC and dSC neurons differ
significantly from each other in Figure 2.2C-D, Figure 2.3B-C, and Figure 2.4B.
To do so we applied the two-sample Kolmogorov-Smirnov test using the MATLAB
function kstest2. In all cases the computed p-values were less than the pre-set

cutoff of 0.005 and were reported within the figure panels.
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Recovery from habituation

To analyze the time to recover from the habituation (Figure 2.4D), a series of looming
stimuli was presented at a single location with inter-stimulus intervals of 1.5, 2, 6,
11, 21, 61, and 121 s, in this order. The extent of recovery was defined as r;/r
where r; = r/ — u refers to the number of spikes a neuron fired in the i-th repetition of
this series (r7) after subtracting expected number of spikes due to baseline activity
(). This was done for simultaneously recorded sSC and dSC neurons that met
the significance criterion. The 25th, 50th (median), and 75th percentiles were then

computed separately for sSC and dSC neurons and plotted in Figure 2.4D.

Decoding analysis

We analyzed the population of neurons from superficial and deep SC to decode
stimulus variables in the “random loom” experiment (Figure 2.5). Specifically, we
asked if the population activity contains information about the location (i.e. in
which of the 25 possible locations did the stimulus appear?) and novelty (i.e. is this

the first stimulus to appear at a location?) of the stimuli.

To do so, we first pooled neurons from three recordings that used similar parameters
of the “random loom” experiment. Because of retionotopy in the SC, superficial
SC neurons recorded by a single shank of the silicon probe tend to have overlapping
receptive fields. As a result, decoding stimulus location from the superficial SC
neurons requires sampling them throughout the retinotopic map, which is difficult
to do experimentally. Working on the assumption that different parts of the map
contain equivalent neural representations, we augmented the data by generating
virtual neurons whose response profiles were spatially shifted copies of actual
neural responses. Specifically, each copy shifted the response profile to one of the
8 adjacent locations in a 3x3 grid with the original response profile in the center.
The neurons were then divided into two groups (sSC and dSC) based on the depth
of the channel with maximum waveform. This augmentation process increased the
number of neurons used in this analysis from 106 (38 sSC and 68 dSC) to 963 (342
sSC and 621 dSC). Some neurons whose response profile after shifting lay outside

the stimulus presentation area were discarded.

After this, the data consisted of neural response of the augmented sSC and dSC
populations in each of the ~100 trials. In the case of the location decoder, the labels
were multi-class and ranged from 1 to 25 (one for each stimulus location). In the

case of the novelty decoder, the labels were binary (stimuli that were novel, i.e. the
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first to appear at a location, were 1; others were 0). The performance measure was
the mean four-fold cross validation score. The chance performance for the location
decoder is the maximum of the number of times the stimulus appeared at each of
the 25 locations, divided by the total number of presentations (i.e. max;{n;/; n;},
where n; refers to the number of times the stimulus appeared at location 7). In our
data, this was roughly 10%. The chance performance for the novelty decoder is
the number of non-novel presentations divided by the total number of presentations.

Given that there were 25 possible locations and 100 trials, this was roughly 75 %.

We then subsampled sets of 5, 10, 30, 70, 150, and 300 neurons from each of the
two groups and used their responses to train the location and novelty decoders. This
was done with the LogisticRegression class in the scikit-learn package [51] in
Python using the following parameters: penalty = ‘12°, C = 1.0, max_iter=5000.
This process was repeated with 100 random subsamples, and the mean and standard

deviation of this ensemble were computed and plotted in Figure 2.5.

Model
In the circuit of Figure 2.6A, we modeled each input neuron as a linear-nonlinear

(LN) element. The neuron’s response was calculated as

r(t) = N(g(1)) 2.1)

where
t
g(t) =s(x,y,t) x k(x,y,t) = /// s(x,y, )k(x,y,t —t)dt’ dydx (2.2)
x Jy Jt/=—c0

is the convolution of the stimulus s with the spatio-temporal receptive field k. The

receptive field k(x, y, t) was parametrized as

k(x,y,t) = F(x,y)T(t) (2.3)

x2 +y2)

F(x,y) = exp (_W (2.4)

t\" r\"
T(t) = (T—l) exp (-ni(t/T1 1)) = b (T_z) exp (—na(t/m2 — 1)) (2.5)
The nonlinear transformation was a half-wave rectifier:
N(g) = max(0,mg — 0) (2.6)

where 6 is a threshold and m is a scaling factor. The firing rate of the local looming

detector neuron (LD) was computed from the difference between the responses of
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the center and surround neurons:

rLp(1) = N(re(t) —rs(1)) 2.7

and the response of the widefield neuron (WF) was computed from the various local

detectors as

rwr(t) = Z wirLp,i(1) (2.8)

where w; is the synaptic weight from local neuron i onto the widefield neuron. We
modeled the habituation in the synapse between local detectors and the widefield
neuron with a differential equation of three parameters for short-term synaptic
depression and recovery:

d 1-w

—w=———a(W—wnin)r(?) (2.9)

dr T
where 7 is the time constant for synaptic recovery, a is a gain factor for depression,
and wpiy, is a floor on synaptic strength. The simulation in Figure 2.6F used a = 1

and wpi, = 0.

The temporal kernels used for the center and surround neurons feeding the local
looming detector were taken from the measured receptive fields of mouse alpha
retinal ganglion cells [36]. Table 2.1 lists the parameter values chosen. We arranged
local looming detectors on a grid with 15° spacing between the centers of adjacent

cells.
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Table 2.1: Parameter values used for the model in Figure 2.6, as defined by Eqns
2.1-2.9.

Receptive field (Egns 2.3-2.5)

Parameter Center Surround
o 4.00° 10.0°
T1 104 ms 84.6 ms
ni 2.77 1.24
™ 91.2ms 79.7 ms
no 3.94 1.87
b 1.34 1.33
Nonlinearity (Eqn 2.6)
Parameter Value
m 1
6 0
Synaptic depression (Eqn 2.9)
Parameter Value
a 1

Wmin 0
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Chapter 3

ELECTRODE POOLING

Kyu Hyun Lee, Yu-Li Ni, and Markus Meister. Electrode pooling: How to
boost the yield of switchable silicon probes for neuronal recordings. bioRxiv,
2019. doi: 10.1101/851691.

K.H.L. participated in the conception of the project, performed the experi-
ments, analyzed the data, and wrote the manuscript.

3.1 Abstract

State-of-the-art silicon probes for electrical recording from neurons have thousands
of recording sites, but only a fraction of them can be used simultaneously due to the
forbiddingly large volume of the associated wires. To overcome this fundamental
constraint, we propose a novel method called electrode pooling that uses a single
wire to serve many recording sites. Multiple electrodes are connected to a single
wire through a set of controllable switches. Here we present the framework behind
this method and an experimental strategy to support it. We then demonstrate its
feasibility by implementing electrode pooling on the Neuropixels electrode array and
characterizing its effect on signal and noise. Finally we use simulations to explore
the conditions under which electrode pooling saves wires without compromising
the content of the recordings. We make recommendations on the design of future

devices to take advantage of this strategy.

3.2 Introduction

Understanding brain function requires monitoring the complex pattern of activity
distributed across many neuronal circuits. To this end, the BRAIN Initiative has
called for the development of technologies for recording “dynamic neuronal activity
from complete neural networks, over long periods, in all areas of the brain,” ide-
ally “monitoring all neurons in a circuit” [S]. Recent advances in the design and
manufacturing of silicon-based neural probes have answered this challenge with
new devices that have thousands of recording sites [6, 12, 23, 31]. But in many
such devices, only a small fraction of the recording sites can be used at once. The
reason is that neural signals must be brought out of the brain via wires, which take

up much more volume than the recording sites themselves. For example, in one
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state-of-the-art silicon shank, each wire displaces thirty times more volume than a
recording site once the shank is fully inserted in the brain [12]. The current silicon
arrays invariably displace or destroy more neurons than they record, and thus the
goal of "monitoring all neurons" seems unattainable by simply scaling the present
approach !. Clearly we need a way to increase the number of neurons recorded

while avoiding a concomitant increase in the number of wires that enter the brain.

Time-division multiplexing

A common approach by which a single wire can convey multiple analog signals is
"time-division multiplexing" [20]. A rapid switch cycles through the N input signals
and connects each input to the output line for a brief interval (Figure 3.1A). At the
other end of the line, a synchronized switch or sampling system can demultiplex
the N signals again. In this way, a single wire carries signals from all its associated
electrodes interleaved in time. The cycling rate of the switch is constrained by the
sampling theorem [29]: it should be at least twice the highest frequency component
present in the signal. The raw voltage signals from extracellular electrodes include
thermal noise signals that extend far into the Megahertz regime. Therefore an
essential element of any such multiplexing scheme is an analog low-pass filter
associated with each electrode. This anti-alias filter removes the high-frequency
noise above a certain cut-off frequency. In practice, the cut-off is chosen to match
the bandwidth of neuronal action potentials, typically 10 kHz. Then the multiplexer

switch can safely cycle at a few times that cut-off frequency.

Given the ubiquity of time-division multiplexing in communication electronics,
what prevents its use for neural recording devices? One obstacle is the physical size
of the anti-alias filter associated with each electrode. When implemented in CMOS
technology, such a low-pass filter occupies an area much larger than the recording
site itself [28], which would force the electrodes apart, and thus prevent any high-
density recording 2. What if one simply omitted the low-pass filter? In that case,
aliasing of high-frequency thermal fluctuations will increase the noise power in the
recording by a factor equal to the number of electrodes N being multiplexed. One
such device with a multiplexing factor of N = 128 has indeed proven unsuitable for
recording action potentials, as the noise drowns out any signal [8]. A recent design

with a more modest N = 8 still produces noise power 4-15 times higher than in

'But see [13] for a wildly optimistic proposal.
2One recent report claims to implement a 4 kHz low-pass filter with an electrode spacing of just
28 um, but the underlying circuit has never been revealed [1]
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comparable systems without multiplexing [22].

Other issues further limit the use of time-division multiplexing: the requirement for
amplification, filtering, and rapid switching right next to the recording site means
that electric power gets dissipated on location, which leads to local heating of exactly
the neurons one wants to monitor. Furthermore, the active electronics in the local
amplifier are sensitive to light. This can produce artifacts when combined with

bright light flashes for optogenetic stimulation [12, 14].

Static selection

An alternative approach involves static electrode selection (Figure 3.1B). Again,
there is an electronic switch that connects the wire to one of many electrodes.
However the switch setting remains unchanged during the electrical recording. In
this way, the low-pass filtering and amplification can occur at the other end of
the wire, outside the brain, where the base of the shank expands to offer virtually
unlimited silicon space. The switch itself requires only minimal circuitry that fits
comfortably under each recording site, even at a pitch of 20 um or less. Because
there is no local amplification or dynamic switching, the issues of heat dissipation
or photosensitivity do not arise. This method has been incorporated recently into
flat electrode arrays [19] as well as silicon prongs [12, 17]. It allows the user to
choose one of many electrodes intelligently, for example because it carries a strong
signal from a neuron of interest. However, it does not serve to increase the number

of neurons per wire.

Electrode pooling

On this background, we introduce a third method of mapping electrodes to wires:
selecting multiple electrodes with suitable signals and connecting them to the same
wire (Figure 3.1C). Instead of rapidly cycling the intervening switches, as in multi-
plexing, simply leave all those switches closed. This creates a "pool" of electrodes
whose signals are summed and transmitted on the same wire. At first, this approach
seems counterproductive, as it mixes together recordings that one would like to ana-
lyze separately. How can one ever reconstruct which neural signal came from which
electrode? Existing multi-electrode systems avoid this signal mixing at all costs,
often quoting the low cross-talk between channels as a figure of merit. Instead, we
will show that the pooled signal can be unmixed if one chooses the switch settings
carefully during the recording session. Under suitable conditions, this method can

record many neurons per wire without appreciable loss of information.
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3.3 Results

Motivation for electrode pooling: Spike trains are sparse in time

A typical neuron may fire ~10 spikes/s on average [2]. Each action potential lasts
for ~1 ms. Therefore this neuron’s signal occupies less than 1% of the time axis
in an extracellular recording (e.g., see Figure 3.5). Sometimes a second neuron
lies close enough to the same electrode to produce a large spike. That still leaves
98 % of the time axis to transmit the action potentials of other neurons. Electrode
pooling gives the experimenter the freedom to add more neurons to that signal
by choosing other electrodes that carry large spikes. Eventually a limit will be
reached when the spikes of different neurons collide and overlap in time so they
can no longer be distinguished. Fundamentally electrode pooling works because
extracellular recordings are naturally sparse in time. The method can be seen as
a variant of compressed sensing, which similarly relies on sparsity and randomly
mixes multiple dimensions of sparse data into a common signal [9]. However, one
benefits greatly from setting the switches intelligently, rather than leaving them up

to random chance.

The effects of pooling on spikes and noise

What signal actually results when one connects two electrodes to the same wire?
Figure 3.2 shows the relevant circuit for a hypothetical electrode array that allows
electrode pooling. Here the common wire is connected via programmable switches
to two recording sites. At each site 7, the extracellular signal of nearby neurons
reaches the shared wire through a total impedance R;. This electrode impedance
has contributions from the CMOS switch, the metal/bath interface, and the external
electrolyte bath [24, 27]. The CMOS switches themselves have low impedance,
typically Rgyi ~ 100Q [27]. The metal/bath interface is typically modeled as an
RC element with a total impedance on the order of Rj,; = 100k€2 [24, 27]. Finally
the external bath impedance is typically a smaller term, on the order of tens of kQ
for an electrode of size ~ 10 um. This circuit acts as a simple voltage divider. If
a total of M electrodes are connected to the shared wire, the output voltage (Vp) is
the average of the signals at the recording sites, weighted inversely by the electrode

impedances,

Ve = Z Vi 3.1)
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where

¢ = R (3.2)

M
2 1/R;

J

is defined as the pooling coefficient for electrode i. If all electrodes have the same
size and surface coating, they will have similar impedance, and in that limit one

expects the simple relationship

| M
Vo= Z; Vi, (3.3)
Thus an action potential that appears on only one of the M electrodes will be

attenuated in the pooled signal by a factor %

In order to understand the trade-offs of this method, we must similarly account for
the pooling of noise (Figure 3.2). There are three relevant sources of noise: (1)
thermal ("Johnson") noise from the impedance of the electrode; (2) biological noise
("hash") from many distant neurons whose signals are too small to be resolved; and
(3) electronic noise resulting from the downstream acquisition system, including
amplifier, multiplexer, and analog-to-digital converter. The thermal noise is private
to each electrode, in the sense that it is statistically independent of the noise at
another electrode. The biological noise is similar across neighboring electrodes that
observe the same distant populations [10]. For widely separated electrodes the hash
will be independent and thus private to each electrode, although details depend on
the neuronal geometries and the degree of synchronization of distant neurons [25].
Finally the noise introduced by the amplifier and data acquisition is common to all

the electrodes that share the same wire.

For any given electrode i the thermal noise and biological noise are additive and
statistically independent, so they sum in quadrature to a total private noise with
RMS amplitude

Npri,i: N2 .+1\72

ele,i bio,i*

(3.4)

In the course of pooling, this signal gets attenuated by the pooling coefficient c;

(Eqn 3.2). Then it gets added to the common noise from data acquisition, which
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again is statistically independent of the other noise sources. Thus the total noise at
the output has RMS amplitude

i°prii”

M
Niot = 4| N2up + Z ¢2N2 (3.5)
i=1

If all electrodes have similar noise properties and impedances, this simplifies to

N = \/Ngmp + N2 M. (3.6)

Theoretical limits of pooling

Now we are in a position to estimate the maximal possible benefits from electrode
pooling. Suppose that using conventional split recording (1 electrode per wire,
M = 1), we find a range of spikes on the electrode array: from the largest, with spike
amplitude Spax, to the smallest that can still be sorted reliably from the noise, with
amplitude Spin. To create an effective pool, we find the electrodes with the largest
spikes and add them to the pool. Eventually, the spikes in the pooled signal will be
so attenuated that they are no longer sortable from the noise. Pooling is beneficial
as long as the signal-to-noise ratio of spikes in the pooled signal is larger than that
of the smallest sortable spikes in a split-mode recording, namely

Smax /M Smin

> . (3.7)
\/chom + N2, /M \/chom +N2,
This leads to a limit on the pool size M,
2)\2 2
M < My = \/(%) +(1+p%)a? - '% (3.8)
where
@ = Smax/Smin, = Npri/Ncom (3.9)

So the maximal beneficial pool size depends on two parameters: the ratio of private
to common noise, and the ratio of largest to smallest useful spike amplitudes. These

parameters vary across applications, because they depend on the target brain area, the
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recording hardware, and the spike-sorting software. In general, users can estimate
the parameters @ and 8 from their own experience with conventional recordings,

and find Mpy,«x from the lookup table in Figure 3.3.

Note these calculations focus on the discrimination of spikes from noise, not on dis-
tinguishing different spikes. As more neurons join the pool, two different cells may
produce spikes with similar waveforms that are difficult to separate. Furthermore,
as the combined firing rate of all neurons increases, action potentials start to overlap
in time. These issues are difficult to capture analytically but will be explored in
simulation (Figure 3.9). For now, the above expression for M,,x (Eqn 3.8) should

be considered an upper bound on the optimal pool size.

Acquisition and analysis of pooled recordings

As mentioned above, a key requirement for this method to work is that the exper-
imenter can control the switches that map electrodes to wires. This map should
be adjusted to the unpredictable contingencies of any particular neural recording
session. In fact the experimenter will benefit from using different switch settings

during the same session.

In Figure 3.4 we propose an overall workflow for experiments using electrode
pooling. A recording session begins with a short period of acquisition in "split
mode" with only one electrode per wire. The purpose is to acquire samples of the
spike waveforms from all neurons that might be recorded by the entire array. If
the device has E electrodes and W wires, this sampling stage will require E/W
segments of recording to cover all electrodes. For each segment the switches are
reset to select a different batch of electrodes. Each batch should cover a local group

of electrodes, ensuring that the entire "footprint" of each neuron can be captured.

After this sampling stage the experimenter performs a quick analysis to extract the
relevant data that will inform the pooling process. In particular this yields a catalog
of single neurons that can be extracted by spike-sorting. For each of those neurons
one has the spike waveform observed on each electrode. Finally, for every electrode,
one gets the private noise Npi. The common noise N¢om can be assessed ahead
of time, because it is a property of the recording system. Thus the experimenter
now has all the information needed to form useful electrode pools. Below are some

principles one should consider in this process:

1. Pool electrodes that carry large signals.
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2. Pool electrodes with different spike waveforms.
3. Don’t pool neighboring electrodes that share the same hash noise.

4. Don’t pool electrodes that carry dense signals with high firing rates.

After allocating the available wires to effective electrode pools one begins the main
recording session in pooled mode. Ideally this phase captures all neurons with spike

signals that are within reach of the electrode array.

In analyzing these recordings the goal is to detect spikes in the pooled signals and
assign each spike correctly to its electrode of origin. This can be achieved by using
the split-mode recordings from the early sampling stage of the experiment. From the
spike waveforms obtained in split-mode one can predict how the corresponding spike
appears in the pooled signals. Here it helps to know all the electrode impedances R;
so the weighted mix can be computed accurately (Eqn 3.1). This prediction serves

as a search template for spike-sorting the pooled recording.

By its very nature electrode pooling produces a dense neural signal with more
instances of temporal overlap between spikes than the typical split-mode recording.
This places special demands on the methods for spike detection and sorting. The
conventional cluster-based algorithm (peak detection - temporal alignment - PCA -
clustering) does not handle overlapping spikes well [16]. It assumes that the voltage
signal is sparsely populated with rare events drawn from a small number of discrete
waveforms. Two spikes that overlap in time produce an unusual waveform that
cannot be categorized. Recently some methods have been developed that do not
force these assumptions [21, 32]. They explicitly model the recorded signal as an
additive superposition of spikes and noise. The algorithm finds an efficient model
that explains the signal by estimating both the spike waveform of each neuron and
its associated set of spike times. These methods are well suited to the analysis of

pooled recordings.

Because the spike templates are obtained from split-mode recordings at the begin-
ning of the experiment, they are less affected by noise than if one had to identify
them de novo from the pooled recordings. Nonetheless it probably pays to monitor
the development of spike shapes during the pooled mode recording. If they drift
too much, for example because the electrode array moves in the brain [11], then a

recalibration by another split-mode session may be in order (Figure 3.4).
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Electrode pooling with the Neuropixels probe

To test the biophysical assumptions underlying electrode pooling in vivo, we used
the Neuropixels probe version 3B1 [12, 17]. This electrode array has a single silicon
shank with 960 recording sites that can be connected to 384 wires via controllable
switches (Figure 3.5). The electrodes are divided into three banks (called Bank 0,
Bank 1, and Bank 2 from the tip to the base of the shank). Banks 0 and 1 contain
384 recording sites, while Bank 2 contains only 192. Each electrode has a dedicated
switch by which it may connect to an adjacent wire. Each wire is assigned to either
2 or 3 electrodes at the same relative location within a bank, for example the bottom
left recording sites in each bank share one wire. Under conventional operation of
Neuropixels [12] each wire connects to only one electrode at a time. However, with
modifications of the firmware on the device and the user interface we engineered
independent control of all the switches. This made electrode pooling possible.
Specifically the first 192 wires can pool up to 3 electrodes (one in each of the banks)

and the remaining wires can pool up to two electrodes.

Given this geometry of the Neuropixels probe, one needs to implant more than
one bank into the brain in order to accomplish any electrode pooling. In the pilot
experiment analyzed here, the probe was inserted into the brain of a head-fixed,
awake mouse to a depth of approximately 6 mm. This corresponds to all of Bank
0 and roughly half of Bank 1, and covered numerous brain areas from the medial
preoptic area at the bottom to retrosplenial cortex at the top. Following the work
flow proposed in Figure 3.4, we then recorded for ~10 min each from Bank 0 and
Bank 1 in split mode (without pooling), followed by ~10 min of recording from both

banks simultaneously in pooled mode.

Unmixing the pooled signal

Each of the three recordings (split Bank 0, split Bank 1, and pooled Banks 0 + 1) was
then processed by spike-sorting to isolate single units. Then we paired each pooled-
mode unit with the split-mode unit that had the most similar waveform, based on
the cosine similarity of their waveform vectors (Figure 3.6B-C). In most cases the
match was unambiguous, even when multiple units were present in the two banks
with similar electrode footprints (Figure 3.6A). Generally the second-best match of
a waveform was considerably worse. The matching algorithm proceeded iteratively
until the similarity score for the best match dropped below 0.9 (Figure 3.6C). All
remaining units in the pooled recording were omitted from further analysis. We

corroborated the resulting matches by comparing other statistics of the identified
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units, such as the mean firing rate and inter-spike-interval distribution (Figure 3.6A).

When spike-sorting the pooled-mode recording there is of course a strong expecta-
tion for what the spike waveforms will be, namely some combination of spikes from
the two split-mode recordings. This suggests that one might jump-start the sorting
of the pooled signal by building in the prior knowledge from sorting the split-mode
recordings. Any such regularization could be beneficial, not only to accelerate the
process but to compensate for the lower SNR in the pooled signal. We explored this
possibility by running the template-matching function of KiloSort2 on the pooled-
mode recording with templates from split-mode recordings ("hot sorting"). Then we
compared the outcomes of three procedures (Figure 3.6D): (1) sorting each record-
ing separately, using KiloSort]l with manual curation ("manual"); (2) sorting each
recording separately using KiloSort2 with no manual intervention ("cold sorting");
and (3) cold sorting split-mode recordings first and then using their templates to
sort the pooled-mode recordings ("hot sorting"). The new "hot sorting" procedure
greatly outperformed the other methods, recovering ~ 60% more neurons from the
pooled recordings without manual intervention. The above sequence of operations
demonstrates that the pooled-mode recording can be successfully unmixed and the

resulting units assigned to their locations along the multi-electrode shank.

Characterization of signal pooling

While the present Neuropixels device is rather limited in its options for electrode
pooling, it does allow a detailed characterization of what happens to signals and
noise, and a cross-check with the expectations from the simple circuit diagram in
Figure 3.2. In that circuit the impedances of the two pooled electrodes act like a
voltage divider. The pooled signal is a weighted average of the signals at the two
sites, with the pooling coefficients determined by the relative impedances (Eqn 3.2)
and summing to 1. For example, if two recording sites have the same impedance,

their weights in the pooled signal should each be 0.5.

One can assess those pooling coefficients from in vivo recordings by measuring
how much an action potential gets attenuated from split mode to pooled mode
(Figure 3.7). For all the recording sites observed this way, the pooling coefficients
fluctuated around 0.5. Furthermore, the weights of corresponding electrodes that
contribute to the same pool summed to 1 to good approximation (Figure 3.7B). This
is consistent with the description of pooling as a two-resistor voltage divider (Figure

3.2). For example, if the common wire in Figure 3.2 had introduced a significant
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capacitive shunt, because it runs the full length of the silicon prong, then the pooling

coeflicients would sum to more than 1.

Interestingly, the pooling coefficients were spread over a wide range and they were
systematically larger in bank O than in bank 1 (Figure 3.7C). The electrode impedance
in these devices has been reported as 149 + 6 kQ2 when measured in saline [12].
Based on this 4% standard deviation in impedance across electrodes one expects
the pooling coefficients to vary with a standard deviation of only 0.03, whereas the
observed variation is much larger (for Bank 0, mean = 0.59, SD = 0.13; Figure
3.70).

To investigate this issue further, we measured the pooling coefficients in saline (Sup-
plementary Figure S3.1) where the environment is more tightly controlled. Using
a pair of flat electrodes we produced several voltage gradients along the electrode
array and recorded them in both split and pooled mode. The pooling coefficients still
differed systematically between Banks O and 1, but their variance was now consid-
erably smaller (for Bank 0, mean = 0.60, SD = 0.06; Supplementary Figure S3.1C).
This suggests that the higher variance of pooling coefficients measured in vivo is
due to the interaction with brain tissue. For example some inactive element, such
as a glial cell, may bind tightly to the electrode surface and thus raise the effective
impedance. This would lower the pooling coefficient of the affected electrode and
raise that of its partners. In any case, the experimenter will benefit from measuring
these pooling coeflicients rather than simply assuming they are 0.5. This will enable
a more precise matching of unit waveforms obtained in pooled-mode and split-mode

recordings.

Characterization of noise pooling

In Section 3.3 we described a noise model that takes into account three sources
of noise: thermal noise at the electrodes, biological noise from distant neurons,
and electronic noise from the acquisition system. By manipulating these sources
independently we were able to test the predicted effects of noise pooling (Figure
3.8).

We began by measuring the noise with the electrode array immersed in saline using
split-mode recording. One can vary the impedance of all electrodes by simply
changing the concentration of saline, as this changes the bath resistance. Indeed, at
low concentrations the noise increased dramatically (Figure 3.8A), and this reflects

the thermal noise Ne. At high concentrations the noise approached an asymptotic
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level of 5-8 uV. We interpreted this as the electronic noise N.om that originates in
the acquisition system. If this is the case, one predicts that the asymptotic noise level
at high saline concentration should be identical across two electrodes that share the

same wire, and that was indeed confirmed to high accuracy (Figure 3.8B).

Having established the independent measurements of N.j. for each electrode and
Ncom for each wire, one can now predict the noise that should be observed in a
pooled recording, based on Eqn 3.6. These predictions agreed remarkably well with
the measurements in pooled mode (Figure 3.8C). One surprising outcome from this
analysis is that the electronic noise is remarkably high and varies considerably across
wires (Figure 3.8B). It greatly exceeds the contribution from thermal noise at each
electrode (Figure 3.8B). This differs from the behavior of other electrode record-
ing systems where electronic noise tends to be negligible (e.g. Intan’s RHD2132

amplifier chip has input-referred RMS noise of 2.4 uV).

In addition, we also quantified the thermal noise present at 1X PBS by subtracting
from it the noise at 10X PBS, which we assumed to be the electronic noise. The

distribution of thermal noise is shown in Figure 3.8D.

We performed a similar analysis for noise measured in vivo. After spike-sorting, we
identified recording sites that contained no spikes and analyzed the effect of pooling
on the measured noise. Again, the additive model of Eqn 3.6 accounted well for the
total noise values after pooling (Figure 3.8E). In addition, we used N oy and Neje
to estimate the biological noise Ny;,. Figure 3.8F shows a distribution of the RMS
biological noise, which had different amplitude on the two different banks (some

3.8 mm apart) and exceeded both the thermal and electronic noise.

With these insights about the behavior of signal and noise in the switched Neu-
ropixels device we can reconsider the limits on beneficial pooling. The above
measurements of noise contributions suggest that for this electrode array g < 1.
Regarding the range of usable signal amplitudes we inspected public data from the
Allen Institute from neurons recorded with Neuropixels arrays (Supplementary Fig-
ure S3.2): Across several brain areas the sortable spikes ranged in amplitude from
50uV to 400 uV, suggesting that @ = 8. Under those conditions Eqn 3.8 predicts
that the maximal useful pool size should be 7-8.

Simulations of pooling
How many electrodes could an experimenter pool and still sort every neuron with

a high accuracy? In Section 3.3 we derived a theoretical limit to electrode pooling
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based solely on the amplitude of signal and noise. To explore the influence of other
factors, we turned to simulations, where we have perfect control over all aspects of
the recording. We began by simulating data from a groups of 4 electrodes (“tetrode”)
that together carry spikes from a single neuron. The tetrode was then pooled, channel
by channel, with another tetrode, and spike-sorted with KiloSort2 to determine the
number of cells that can be recovered with an accuracy greater than 0.8. We repeated
this by iteratively pooling more tetrodes up to 12. Results are summarized in Figure
3.9. Importantly, we tested the effect of varying key parameters, such as the spike
amplitude, firing rate, and the level of biological noise. This showed that across a
diverse set of conditions, we could consistently recover 3-7 units (Figure 3.9B-D).
This agrees well with the theoretical prediction based on the estimated signal and

noise ratios in Section 3.3.

3.4 Discussion

Summary of results

This work presents the concept of electrode pooling as a way to multiply the yield of
large electrode arrays. We show how the signals from many recording sites can be
combined onto a small number of wires, and then recovered by a combination of ex-
perimental strategy and powerful spike-sorting software. The reduced requirement
for wires coursing through the brain will lead to slender array devices that cause less
damage to the neurons they are meant to observe. We developed the theory behind
electrode pooling, analyzed the trade-offs of the approach, derived a mathematical
limit to pooling, and developed a recipe for experiment and analysis that implements
the procedure (Section 3.3). We also verified the basic assumptions about signal
mixing and unmixing using a real existing device: the Neuropixels probe (Section
3.3). We showed that signals from different neurons can be reliably disambiguated
and assigned back to the electrodes of origin. We also used simulations to show
that under conditions that resemble real recordings, the spike-sorting algorithm can
identify every neuron from a pool of 3-7 electrodes with a high accuracy. We
surveyed publicly available data sets from the Allen Brain Observatory and derived
spike amplitude distributions in different brain regions. Depending on the experi-
menters’ region of interest, the corresponding amplitude statistics would affect the
ideal pool number. Nonetheless, electrode pooling of 3-7 should be a realistic range
in practice, which agrees with our theoretical predictions. For the optimal design of
electrode pools and to analyze the resulting data, it is advantageous to gather precise

information about impedance and noise properties of the device.
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Future developments

Hardware

The ability to service multiple recording sites with a single wire opens the door for
much larger electrode arrays that nevertheless maintain a slim form factor and don’t
require any onboard signal processing. In the current version of the Neuropixels
device [12] the ratio of electrodes to wires is only 2.5, and thus there is little
practical benefit to be gained from electrode pooling. In most circumstances the
user can probably use static selection to pick 40% of the electrodes and still monitor
every possible neuron. However, devices are already under development with an
electrode:wire ratio of 10 or greater. With pooled recording in mind one should

contemplate future devices with much higher ratios still (see Figure 3.3 for guidance).

The design of effective electrode pools requires some flexibility in how recording
sites are connected to wires. In the current Neuropixels each electrode has only one
associated switch, and thus only one candidate wire. Electrode pools are limited to
sites spaced 3.8 mm apart. The CMOS switch itself is small, but the local memory
to store the switch state occupies some silicon space [26]. Nonetheless one can
implement 3 switches per electrode even on a very tight pitch [7]. When arranged
in a hierarchical network [19], these switches could generate a rich diversity of
pooling schemes adapted to the specifics of any given experiment (Figure 3.10). For
example, one could route any one electrode among a group of four to any one of
three wires with two 1:4 switches (Figure 3.10C). This requires just 1 bit of storage

per electrode, as in the current Neuropixels probe [12].

Another hardware design feature could greatly increase the capacity for electrode
pooling: An optional inverter at each electrode (Figure 3.10D). This is a simple
CMOS circuit that changes the sign of the waveform [3] depending on a local switch
setting. If half of the electrodes in a pool use the inverter, that helps to differentiate
the spike shapes of different neurons. Because extracellular signals from cell bodies
generally start with a negative voltage swing, this effectively doubles the space of
waveforms that occur in the pooled signal. In turn this would aid the spike-sorting

analysis, ultimately allowing even more electrodes to share the same wire.

Software

Electrode pooling will also benefit from further developments in spike-sorting al-
gorithms. For example, as we discussed, a promising strategy is to acquire all the

spike shapes present on the electrode array using split-mode recordings, compute
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the expected pooled-mode waveforms, and use those as templates in sorting the
pooled signals. We have implemented this method in KiloSort2 and have shown
that this can greatly increase the number of split-mode cells that are found in the
pooled recordings (Figure 3.6). This idea may also be extended to clustering-based
sorting algorithms, e.g. by guiding the initialization of the clustering step. Indeed,
knowing which waveforms to look for in the recording would help any spike-sorter.
We expect this method will also improve resolution of temporally overlapping spike

waveforms.

Another interesting software challenge lies in the optimal design of electrode pools.
As one envisions experiments with 10,000 or more recording sites, it becomes
imperative to automate this process, so that the user wastes no time before launching
into pooled recording. In Section 3.3 we lay out some heuristic rules one might
follow, but turning these into an effective algorithm, and making use of the full noise

and impedance specifications of the device, remains an open problem.

General strategies for using switchable probes

The switching circuitry in today’s silicon probes opens up new ways of operating
these devices. Static switching, time-division multiplexing, and electrode pooling
are just a few of many possible modes of operation (Figure 3.1). Although this
chapter focused on the benefits of electrode pooling, experimenters and hardware
designers could in principle mix and match these strategies. Indeed they are fully
complementary: static switching takes advantage of the redundancy in the neural
signal across neighboring electrodes; time-division multiplexing uses the fact that
a wire has much higher bandwidth than a neuron; and electrode pooling exploits
the sparseness of spiking neural signals on the time axis. Exploring the best com-
bination of these strategies for each use case may dramatically enhance the yield of

extracellular recordings in the future.

3.5 Figures
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Figure 3.1: Strategies for using a single wire to serve many recording sites in switchable
silicon probes. (A) Time-division multiplexing. Rapidly cycling the selector switch allows
a single wire to carry signals from many recording sites interleaved in time. Triangles
represent anti-aliasing filters. (B) Static switching. A single wire connects to one of many
possible recording sites through a selector switch. (C) Electrode pooling. Many recording
sites are connected to a single wire through multiple controllable switches.
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Figure 3.2: Pooling of signal and noise. An equivalent circuit model for two electrodes
connected to a common wire along with downstream components of the signal chain, such
as the amplifier, multiplexer, and digitizer. R, R,: total impedance for electrodes 1 and 2,
with contributions from the switch (R,yi), the metal/bath interface (Rj,), and the external
bath (Rpy). Noise sources include biological noise from distant neurons (Ny;,); thermal
noise from the total electrode impedance (Nel), and common electronic noise from the
amplifier and downstream components (Ncom)
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Figure 3.3: Maximal pool size Mpax as a function of the parameters @ and S that characterize
spike signals and noise.
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Figure 3.5: Overview of electrode pooling in the Neuropixels probe. Recording sites (black
squares, numbered from 1 to 4) in the same relative location of each bank can be pooled
to a single wire by closing the switches (yellow). This generates the pooled signal (black),
which is a weighted average of the signals detected in each bank (red and blue traces). From
the pooled signal, distinct spike shapes are recovered by spike-sorting. A comparison to the
spike shapes observed in split-mode recordings allows the correct allocation of each spike
to the electrodes of origin.
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Figure 3.6: Unmixing pooled signal. (A) Examples of matches between cells from split-
and pooled-mode recordings. Top: Waveforms of two sample units (middle, black) detected
by an overlapping set of electrodes. They have been sorted and matched to a unit from Bank
0 (red) and a unit from Bank 1 (blue) based on the shape of their waveforms. Bottom: the
mean firing rates as well as the interspike-interval distributions are also similar between the
matched pairs. (B) Matrix of the cosine-similarity between units recorded in pooled mode
and in split mode. The rows and columns are ordered from the best match to the worst. (C)
Distribution of the cosine similarity. Dotted line is at 0.9. (D) Sorting pooled recording
with templates from split-mode recordings. The number of cells from split-mode recordings
whose matches were found in the pooled recording are plotted for three different sorting
conditions: sorting all recordings by KiloSort1 followed by manual curation (left), sorting
all recordings by KiloSort2 (middle), and sorting the pooled recording by KiloSort2 with
templates initialized from the split recordings (right).
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Figure 3.7: Characterization of signal pooling in vivo. (A) The spike waveforms from two
neurons recorded on corresponding electrodes in Banks 0 and 1. Red, blue: Split-mode
recordings from each bank. Black: Pooled-mode recording from both banks, with the two
neurons separated by spike-sorting. The numbers next to the waveform at each recording
site denote the pooling coefficients, namely the amplitude ratio of the pooled-mode signal to
the corresponding split-mode signal. (B) Pooling coefficients for the recording sites shown
in panel (A). Dotted lines are at 0.5 and 1. (C) Distribution of pooling coefficients from 50
pairs of sites in Bank 0 (red) and Bank 1 (blue).
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Supplementary Figure S3.1: Measurement of pooling coefficient in saline. (A) Setup used to
generate a voltage gradient in saline with annular electrodes. (B) Signal amplitude detected
at every recording site of the Neuropixels probe when the gradient was applied from the top
(left) and the bottom (right). (C) Distribution of the pooling coefficients of recording sites
from in vivo recording (red and blue, same as in Figure 3.7C) and in saline (black). Text

label is mean + standard deviation.
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Figure 3.8: Characterization of noise pooling. (A) Noise measured at 12 recording sites in
different concentrations of PBS. (B) The electronics noise, defined as the noise level at 10X
PBS in (A) at both Bank 0 and Bank 1. (C) Prediction of the pooled noise in PBS from
noise measured on each bank prior to pooling. (D) Distribution of thermal noise. (E) Same
as (C), in vivo. (F) Distribution of biological noise.
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Figure 3.9: Simulation of pooling. (A) Schematic of the simulation. Each set of four
electrodes (“tetrodes”) carries signal from one simulated unit. Pooling of up to 12 of these
tetrodes is simulated with a realistic level of noise and sorted with KiloSort2. Spike trains
of the sorted units are then matched with the ground truth and given an accuracy score.
Units with accuracy > 0.8 are defined as being above the quality threshold. (B-D) Number
of units recovered after pooling under different conditions. Each parameter combination
was simulated 3 times by resampling the noise. Error bars are standard deviations.
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Supplementary Figure S3.2: Distribution of spike amplitudes in three brain regions from
the Allen Institute Brain Observatory dataset [30]. VISp, primary visual cortex; SUB,
Subiculum; VPM, ventral posteromedial nucleus of the thalamus.
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Figure 3.10: Hardware schemes for flexible connection between electrodes and wires. (A)
In the current Neuropixels array, each electrode can be connected to just one wire with
a controllable switch. (B) Two switches per electrode would allow a choice of 2 wires,
enabling many more pooling configurations. (C) Because neighboring electrodes often
carry redundant signals, one may want to choose just one from every group of 4. This
switch circuit matches that choice with one of 3 (or no) wires. (D) An optional inverter for
each electrode, controlled by a local switch.
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3.6 Methods
All analysis was performed with Matlab R2016b (Mathworks) unless otherwise
stated.

Control of switching circuitry

The Neuropixel probe version 3B1 has 960 recording sites that can be connected
to 384 wires via controllable switches. The conventional mode of operation (split-
mode) was to connect one electrode to one wire at a time. To implement electrode
pooling, both the API of Neuropixels and the user-interfacing software (SpikeGLX)
were modified such that more than one electrode can be connected to a single wire.

This was done by our collaborators at Janelia.

Characterization of signal pooling (Figures 3.6, 3.7, Supplementary Figure
S3.1)

In vivo recording

A Neuropixels probe [12] version 3B1 was used to record neural signals from a
head-fixed mouse (C67/BL6, male, 9 months old). The probe entered the brain at
400 um from midline and 3.7 mm posterior from bregma at ~45° and was advanced
for ~6 mm, which corresponded to all of Bank 0 and roughly half of Bank 1. This
covered many brain areas, from retrosplenial cortex at the top to medial preoptic
nucleus at the bottom. Detailed description of the mouse surgery, probe implanta-
tion, and post hoc histology and imaging of probe track can be found in a previous
report [15]. All procedures were done in accordance with institutional guidelines
and approved by the Caltech IACUC.

Once the probe was implanted, the recording was done in the following order: (1)
split-mode in Bank O (i.e. all 384 wires connected to recording sites in Bank 0); (2)
split-mode in Bank 1; (3) pooled-mode across Banks 0 and 1. Each recording lasted

for ~10 min.

Spike-sorting (Figure 3.6D)

KiloSortl (downloaded from https://github.com/cortex-1lab/KiloSort on
Apr 10, 2018) was used to sort the in vivo recordings. The automatic template-
matching step was run, followed by merging and designation of cells with high
quality by manual inspection. This was done separately for each of the three

recordings (split-mode Bank 0, split-mode Bank 1, pooled-mode). The setting for


https://github.com/cortex-lab/KiloSort
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running the automatic step was identical for all three recordings and is available in

the code accompanying this manuscript.

The “hot sorting” feature was implemented in KiloSort2 (downloaded from https:
//github.com/MouselLand/Kilosort2 on Mar 19, 2020). This had an additional
benefit of not requiring manual curation, as KiloSort2 automatically performs a
series of merges and splits after template matching. The two split-mode recordings
were first sorted, and their templates were used to initialize the fields W and U of
rez2 before running the main template-matching function on the pooled recording.
Cells designated as high quality (KSLabel of Good) by KiloSort2 were isolated and
matched by the algorithm based on cosine similarity described in Section 3.6. This
was compared with the result from “cold sorting,” in which the pooled recording
was sorted on its own, as well as to the sorting that includes a manual curation step
described in Section 3.6 (Figure 3.6D).

Unmixing pooled signal (Figures 3.6, 3.7A)

After sorting the split and pooled recordings, we computed the average waveform
of every cell. Specifically, for each cell we averaged over the first n spikes, where n
was the lesser of 7500 or all the spikes the cell fired during the recording.

We then sought to identify every cell in the pooled recordings with a cell in the

split-mode recordings. This was done by the following procedure.

Let S denote a cell sorted from the split-mode recording (S € &) and §; its waveform
at channel i. Althoughi canrange from 1 to 384 (the total number of wires available
in the Neuropixels probe), we only focus on the channels with significantly large
signal, i.e. K = {i : A(S;) > a} where A(S;) is the peak-to-peak amplitude of the
pooled waveform detected at channel 7 and a is a pre-set threshold (typically 25 uV).
We wish to find the cell P from the pooled-mode recordings (P € P) that is closest

to S. To do so, we compute the cosine similarity score for each pair (S, P):

_S.P
ISIIP]

%(S,P) (3.10)
where S and P are column vectors obtained by concatenating every S and Py
(k € K), respectively, and || - || is the £2 norm. X is a |S|-by-|#| matrix. We identify
the largest element of X, which corresponds to the most similar pair of S and P. We

then update X by removing the row and column of this largest element. We repeat
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this process until every P € P is given a best match. By manual inspection, we
found that pairs with similarity score greater than 0.9 were good matches (Figure

3.6B-C), and included only such pairs in the following analysis.

Estimating pooling coefficients in vivo and their distribution (Figure 3.7B-C)

Once each P € P was assigned a match S € S, the pooling coefficient (¢) was
computed by solving the optimization problem below for each i with a least squares
method (mldivide in Matlab).

argmin ||S; — ¢; P;|| (3.11)

Ci

Sometimes a single recording site detected action potentials from multiple cells.
As a result, its pooling coefficient could be estimated from the signal of each of
these cells. Typically, these estimates deviated from each other by less than 0.1. In
these cases, we assigned the average of these values as the pooling coefficient of the

recording site.

When two recording sites that share a wire in pooled-mode both carry significant
signal, it enables the estimation of both of their pooling coefficients. Examples of
such sites are shown in Figure 3.7A. From this, we could check whether their pooling
coeflicients sum to 1, as expected from Section 3.3 (Figure 3.7B). The distribution
in Figure 3.7C only includes pooling coeflicients of these sites (50 pairs in Banks 0
and 1).

Estimating pooling coefficient in saline (Supplementary Figure S3.1)

We estimated pooling coefficients in saline by generating a voltage gradient of a
1100 Hz sinusoidal signal with annular electrodes (1-inch outer diameter) (Supple-
mentary Figure S3.1A). We then measured the signal amplitude at each recording
site in split and pooled modes (Supplementary Figure S3.1B) by fitting a sine wave
to a 50-ms segment of the band-pass filtered voltage trace with 1sqcurvefit func-
tion in Matlab. The pooling coefficients of the recording sites in Banks O and 1 were
estimated by measuring the signal amplitude with two different voltage gradients
and then solving the following system of linear equations for each electrode with the

mldivide function in Matlab:
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Supplementary Figure S3.1C compares the distribution of pooling coeflicients from
Figure 3.7C to the distribution obtained by the above procedure at the same 50

recording sites.

Characterization of noise pooling (Figure 3.8)

A series of noise measurements in phosphate-buftered saline (Sigma-Aldrich P4417;
1X PBS contains 0.01 M phosphate buffer, 0.0027 M potassium chloride and 0.137
M sodium chloride, pH 7.4, at 25 °C) were made with the same probe used in the
in vivo recording, in both split and pooled modes at various concentrations of PBS
(1073, 1072, 107!, 1, and 10X). The RMS voltage in each condition was estimated
by computing the standard deviation of ~10 s-long recording. Based on Eq. 3.6, the
pooled noise was predicted from split-mode measurement (Figure 3.8C). To find the
distribution of the thermal noise due to Ry, the noise at 10X PBS was subtracted

from noise at 1X PBS in quadrature (Figure 3.8D).

To estimate biological noise, 12 electrodes from the in vivo recording that had no
action potentials were identified. The estimated electronic and thermal noise from
Figure 3.8B and D were subtracted from the noise at these electrodes to obtain the
distribution of the biological noise (Figure 3.8F). Again, Eq. 3.6 was used to predict
the pooled noise in vivo (Figure 3.8E).

Simulation
600-s long voltage traces from groups of 4 electrodes ("tetrodes") (Figure 3.9A).
Each tetrode carried signal from one unit. The signal (spikes) and the noise were

generated separately and pooled according to Eqgs. 3.3 and 3.6.

The spike times of the simulated unit were generated from a Poisson process with
a 2ms absolute refractory period (mean of either 10 Hz or 50 Hz). The spike
waveform for each tetrode was randomly chosen from a bank of sample waveforms
from a previous Neuropixels recording. One of the electrodes had the maximum
spike amplitude (either 100 uV or 200 uV). The spike amplitude at the each of
the other three electrodes was scaled down from the maximum by a factor chosen

randomly from a uniform distribution with support from O to 1.
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Each of the three sources of noise - Npio, Nele, Ncom - Were simulated as Gaussian
white noise. The standard deviations for Neje and N.oy were 2 uV and 5 pV respec-
tively, while two different parameters for Ny, were tried: 9 uV and 15 uV, based on
the noise measurements in Figure 3.8. N, was generated independently for each

electrode, whereas Np;, was the same for all four electrodes in a tetrode.
Each parameter combination was simulated 3 times by resampling the noise.

The simulated data was sorted by KiloSort2. When a large number of simulated
tetrodes were pooled, the signal-to-noise-ratio became too low for KiloSort2 to form
templates in the preprocessing steps and led to premature terminations. In these

cases the number of units recovered was set to zero.

Following methods in the field, [4, 18], the spike timings of the sorted units were
matched to those of the ground truth units via a confusion matrix. The accuracy for

each unit was quantified as the following:

#Match
Accuracy = - e — (3.12)
#Matches + #Misses + #False positives

Sorted units with an accuracy score greater than 0.8 were included as units above

quality threshold.
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Chapter 4

CONCLUDING REMARKS

Here I briefly summarize the main results from Chapters 2 and 3 and describe ways

to build on them in the future.

4.1 Visual sifting in the SC

In the first project, we presented the results of large-scale electrophysiology in the
SC of the head-fixed mouse, with a focus on the processing of behaviorally relevant
stimuli such as the dark expanding disk. By recording from every layer of the SC
simultaneously, we showed that compared to the superficial SC, the neurons in the
deeper SC become more selective to the looming stimulus and more invariant to
its position. Furthermore, these neurons show a rapid and strong habituation to
repeated stimuli that is specific to the stimulus position and lasts for a behaviorally
relevant timescale, even in the absence of the cerebral cortex. We have explored a
possible mechanism of this phenomenon with a simple circuit model and ruled out

several others based on our data.

Perhaps the most striking of the three response properties is the stimulus-specific
habituation. It is also the most puzzling, as it is not obvious why it should belong
with the selectivity and invariance. What function does it serve? One speculation is
that the deeper SC neurons we described not only serve as a sensory representation
(“here comes a predator”) but also a behavioral command (“here comes a predator,
so run!”). In the case of the face cell from the primate inferotemporal cortex, such
a habituation is not observed. Presumably this is because there are many ways
such a representation can be used, e.g. it can be used to identify your grandmother
from a group of people, or to draw her face in an art class. On the other hand,
the representation of an approaching predator in the the mouse brain may have
no real value other than to issue the appropriate behavioral response. And given
the need to execute this behavior particularly rapidly, the brain may have merged
the representation with its use in a single neuron, such that when triggered by a
threatening stimulus, it drives a whole cascade of motor outputs. It may also be
that once such a motor program is activated, the neuron must not issue another
command, unless a new predator appears in a different part of the visual field and

requires a course correction. This, of course, means that the fidelity of the sensory
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representation is compromised; if we equate the activity of these neurons with
“seeing” a predator, then the animal only sees it the first time it appears at a given
location. But maybe this is a reasonable trade-off, since there is no need for the
animal to see the predator once the behavioral command to flee the scene has been
issued — in fact, investing neural resources to continuously monitor the predator’s
location during escape might be wasteful. Interpreted this way, the stimulus-specific
habituation reflects a constraint on the sensory representation by the downstream

circuit that uses it 1.

There are many potential future directions to follow this project. One line of
investigation is a more in-depth analysis of the circuit described in Chapter 2.
Although the model proposed in Figure 2.6 is more likely than the alternative
mechanisms we considered, the dearth of information about cell types and their
connectivity in the SC means it remains largely a hypothesis. In particular, it would
be interesting to further study the mechanism for the long-lasting stimulus-specific
habituation. We have pointed to a particular cell type as a likely candidate for the
global looming detector, and a Cre line for this type has been previously reported [2].
This could provide a genetic handle to further investigate the circuit mechanism, for
example, by intracellularly recording the dynamics of the excitatory and inhibitory
synaptic currents, or by imaging the activity of this cell type in a freely moving

animal during the looming stimulus.

Another line of investigation is to explore other sifting functions of the SC. Given its
access to the entirety of retinal output [1], the SC is well-poised to implement many
other visual computations. As mentioned earlier, it may be involved in tracking
small moving objects like bugs in the lower visual field to guide hunting behavior
[3]. In addition, it may be involved in other high-level operations usually associated
with the cortex, such as the modulation of visual attention [5]. The presence of a
mutant mouse line that developmentally lacks the cerebral cortex [4] may be useful
for parsing the function of the SC from the reciprocally connected cortical areas.
It would also be interesting to study how the SC processes more naturalistic visual

stimuli rather than the artificial ones used to probe its function so far.

Finally, one could follow the neural processing of the looming reaction further
and ask: how is the visual information sifted by the SC converted to behavior? As

previously discussed, there are two possible responses to the looming reaction: flight

I'We refrained from this speculation in Chapter 2 because the recordings were done in head-fixed
mice and no behavioral output was consistently observed in response to the looming stimulus in that
state.
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and freezing. How the animal incorporates previous knowledge of its environment
(e.g. the presence of a nest) and makes this decision in a few tenths of a second
is unknown. Another question has to do with the planning of motor output once
the decision is made. In the case of flight, how does brain use the collicular output
to plan and execute a trajectory back to the nest? Despite intense investigations
into the neural basis of navigation, much remains unexplained and few studies have
examined such a rapid homing behavior in the mouse. This question is particularly
interesting given that the animal forms a memory of the location of the nest after
just a single visit [6]. The interplay between the SC and other brain areas such as

the hippocampus in this context would be interesting to study.

4.2 Electrode pooling

In the second project, we have presented a new method for boosting the yield of
extracellular recordings in silicon neural probes, called electrode pooling. We have
analyzed its effect on the signal and noise theoretically and verified the predictions
experimentally by implementing it in the Neuropixels probe. In addition, we have
explored the limits of electrode pooling with simulations and made suggestions on

the design of future devices to take advantage of it.

Perhaps the most important future direction is the development of an algorithm that
generates an intelligently chosen set of electrode pools during an experiment. This
would be crucial for making electrode pooling useful to the user, as silicon probes
in the future will have orders of magnitude more recording sites and any attempt
to manually pool electrodes in this setting would be futile. Although we have
identified some heuristics for intelligent pooling (e.g. pool electrodes with large,
sparse action potentials), turning them into an algorithm that performs robustly in
many physiological conditions would require a more extensive investigation both in
vivo and in silico. Details of an algorithm may also depend on what is physically
possible to pool with the hardware, so the development of both the hardware and
the software would have to move in lockstep. A new version of the Neuropixels
probe will be made available in the near future, with many more recording sites and
a greater electrode-to-wire ratio. It would be interesting to test electrode pooling in

this device and analyze the performance gains in vivo over conventional recordings.
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