
Reduced-order model for dynamic soil-pipe
interaction analysis

Thesis by
Kien Trung Nguyen

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2020
Defended May 15th, 2020



ii

© 2020

Kien Trung Nguyen
ORCID: 0000-0001-5761-3156

All rights reserved



iii

Acknowledgements

First and foremost, I would like to express my deepest appreciation to my advisor, Professor
Domniki Asimaki, for her support through my Caltech graduate journey. Domniki has
given me the motivation and the freedom to pursue my research. Her guidance has signifi-
cantly deepened my experience into the field of site response and geotechnical earthquake
engineering. The problem-solving skills that I learn from her will absolutely benefit my
future careers. I am also thankful for the excellent exemplar of a successful professor that
she has provided.

Next, I would like to thank Professor José Andrade, Professor John Hall, and Professor
Chiara Daraio for serving on my thesis committee, for generously offering their time and
support throughout the review of this thesis, and for their insightful comments.

I would like to acknowledge Dr. Craig Davis, previously at the Los Angeles Department of
Water and Power role, in motivating this work.

I would also like to acknowledge the postdoctoral researchers and PhD students in my
research group, for good advice as well as collaboration and friendships. Apart from my
own group, I have also learned a lot from other PhD students and professors at Caltech
during my coursework, which have provided me with a solid background necessary to
conduct my research. For this, I very much appreciate.

Thanks should also go to the administrative staff at the Mechanical and Civil Engineering
Department, International Student Programs, and Graduate Studies Office for always being
so helpful and friendly.

To my roommates, friends, and V-League group, thank you for spending time with me,
offering me advice, and helping me during my time at Caltech.

Lastly, I am deeply indebted to my family and in-laws for all their love and encouragement,
despite the long distance between us. And I would like to thank, with love, my wife Phuong
for her understanding, constant support, and unconditional love.



iv

Abstract

Pipelines are very vulnerable infrastructure components to geohazard-induced ground de-
formation and failure. How soil transmits loads on pipelines and vice versa, known as
soil-pipe interaction (SPI), thus is very important for the assessment and design of resilient
pipeline systems.

In the first part, this work proposes a simplified macroelement designed to capture SPI in
cohesionless soils subjected to arbitrary loading normal to the pipeline axis. We present the
development of a uniaxial hysteresis model that can capture the smooth nonlinear reaction
force-relative displacement curves (FDCs) of SPI problems. Using the unscented Kalman
filter, we derived the model parameter ^ that controls the smoothness of the transition zone
from linear to plastic using published experimental data. We extended this uniaxial model
to biaxial loading effects and showed that the macroelement can capture effects such as
pinching and shear-dilation coupling. The model input parameters were calibrated using
finite element (FE) analyses validated by experiments. The FDCs of the biaxial model were
verified by comparison with FE and smoothed-particle hydrodynamic (SPH) simulations
for different loading patterns: cyclic uniaxial, 0-shaped, 8-shaped, and transient loading.
Accounting for smooth nonlinearity, hysteresis, pinching, and coupling effects, the proposed
biaxial macroelement shows good agreement with FE and SPH analyses, while maintain-
ing the computational efficiency and simplicity of beam-on-nonlinear-Winkler foundation
models, as well as a small number of input parameters.

Next, this work presents analytical solutions for computing frequency-domain axial and in-
plane soil impedance functions (SIFs) for an infinitely long rigid circular structure buried
horizontally in homogeneous elastic half-space. Using Hankel– and Bessel–Fourier series
expansion, we solved a mixed-boundary-value problem considering a harmonic displace-
ment at the structure boundary and traction-free boundary condition at the half-space free
surface. We then verified our analytical solutions using results obtained from FE simula-
tions. The SIFs of a buried structure in a homogeneous elastic half-space calculated by these
two approaches are in perfect agreement with each other. In addition, we used analytical
solutions and FE simulations to comprehensively investigate factors that affect the SIFs in
homogeneous and two-layered half-spaces, respectively. The parametric study shows that
SIFs of buried structures in elastic half-space primarily depend on frequency of excitation,
shear modulus and Poisson’s ratio of the half-space, burial depth and radius of the structure.
In a two-layered soil domain, SIFs depend also on material contrast and the distance from
the structure location to the interface between soil layers.
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Lastly, it demonstrates how the SIFs obtained previously can be incorporated into a reduced-
order model to analyze SPI problems, specifically a straight pipe subjected to Rayleigh
surface wave propagating through homogeneous and heterogeneous elastic half-spaces.
Calculated displacement time histories at the control points are shown to agree well with
those computed by direct two-dimensional FE analyses.
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1.1 Pipelines and seismic actions
Buried pipeline networks are used for the transportation of water, natural gas, fuel, and
oil, and are very important lifelines of modern societies. According to the US Central
Intelligence Agency (CIA, 2018), the total length of pipelines globally is approximately
3, 500, 000 km. In 2018 alone, operators installed approximately 24, 000 km of oil and gas
pipelines worldwide, twice the length installed in 2017 (Smith, 2018), and this volume is
expected to increase because the rapid increase in global demand for water and energy has
prioritized the installation, operation and resilience requirements of transmission networks.

Frequently, pipelines are structures that extend over long distances, and cross various geo-
logic units and geohazard zones, such as faults and liquefaction- and landslide-susceptible
sites. Extensive data from past earthquakes have shown that geohazard-induced ground
deformation often drives the risk to pipeline networks. According to the guidelines of
the American Society of Civil Engineers (ASCE, 1984), the Pipeline Research Council
International (PRCI, 2004), the American Lifeline Alliance (ALA, 2005), and the European
Committee for Standardization (CEN, 2006), two types of primary earthquake hazards are
relevant to the structural integrity of pipelines: (1) transient ground deformation (TGD),
which is ground shaking induced by wave propagation; and (2) permanent ground de-
formation (PGD), namely ground failures resulting from fault ruptures, lateral spreading,
landslides, and slope movements. The illustration of these seismic hazards is shown in
Fig. 1.1.

buried pipe

buried pipe

P-wave

extension

compression

buried pipe

(a)

(b) (c)

Figure 1.1: Pipe damage by: (a) landslide; (b) lateral spreading; and (c) P-wave propagation.
(Adapted from Highland et al. 2008.)

Post-earthquake observation data have repeatedly demonstrated that pipe damage is mainly
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caused by PGD (Hamada, 1992; O’Rourke and Nordberg, 1992; O’Rourke and Palmer,
1996; Tang and Eidinger, 2013; Uckan, 2013; Davidson and Poland, 2016), occurring in
isolated areas with high damage rates. In contrast to common belief, TGD can potentially
induce undesirable deformations in pipeline networks, especially in heterogeneous soil
mediums. There is convincing evidence that TGD has considerably contributed to the pipe
damage (Sakurai andTakahashi, 1969;Ayala et al., 1989;LundandCooper, 1995;O’Rourke
and Palmer, 1996;O’Rourke, 2009; Tang and Eidinger, 2013;Uckan, 2013; Esposito et al.,
2013). The damage due to TGD usually happens over much larger geographic areas but
with lower rates compared with that due to PGD (O’Rourke and Liu, 1999).

1.2 Methods for soil-pipe interaction analysis

complexity

ideal accuracy

neglecting considering

soil-pipe interaction soil-pipe interaction

M1

M3

M2

y

xz
y

xz

it
h  se

gm
en

t

free-field

Figure 1.2: Methods for SPI analysis.

How soil transmits loads on pipelines and vice versa, known as SPI, is very important for
the assessment and improvement of a pipeline system’s resilience — and by extension, for
performing cost-benefit analyses as part of the commodity distribution sustainability. In
general, methods to analyze SPI problems can be categorized based on their complexity and
ideal accuracy: model neglecting SPI (M1), reduced-order (simplified) beam-on-Winkler-
foundation model considering SPI (M2), and full three-dimensional (3D) model of soil and
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pipe (M3), as shown in Fig. 1.2. The following subsections present the overview of these
models.

1.2.1 Model neglecting soil-pipe interaction
The most straightforward method to analyze pipeline seismic response is the one that
neglects SPI phenomenon, in which pipe is assumed to be much softer than soil and cannot
provide any resistance to ground motions. Hence, the pipe perfectly conforms to free-
field ground motions, which are the soil displacements induced by seismic waves in the
absence of excavations and structures. Despite its simplicity and simplifying assumption,
such method can provide a first-order approximation of the structure deformation (Hashash
et al., 2001).

Newmark (1968) was among the first to provide the fundamentals of this approach. By
solving a harmonic wave propagating problem in a homogeneous elastic medium, he derived
a simplified, closed-form solution for estimating the maximum axial strain and curvature in
underground extended structures, such as tunnels or pipelines. In a similar manner, Kuesel
(1969) proposed the earthquake-resistant design for the San Francisco Bay Area Rapid
Transit System, considering harmonic incident waves parallel and oblique to the structure
axis. The maximum combined strain in structure, in conforming to wave deformation, is
obtained at the critical incident angle and used as a design criteria. Meanwhile, based
on Newmark’s approach, St John and Zahrah (1987) calculated the strains and stresses
experienced by structures under P-, S-, and Rayleigh waves propagation.

However, this method is limited to very stiff soils and highly flexible pipes. In case of
soft soil condition, where the free-field deformation is generally larger and the stiffness of
pipe prevents it from conforming to ground motion during seismic excitation, such method
potentially leads to over-conservative design (Hashash et al., 2001).

1.2.2 Beam-on-Winkler-foundation model considering soil-pipe inter-
action

This method is based onWinkler’s hypothesis, which states that soil reaction at any point on
the base of pipe beam depends only on the deformation at that point. Vesic (1961) showed
that such a hypothesis is practically satisfied for infinite beams. This enables us to replace
each soil segment surrounding the structure with a set of springs and dashpots formulated to
represent its macroscopic reaction to differential deformations between soil and structure.
For instance, the 8Cℎ soil segment is replaced with a set of springs with stiffness : 8G , : 8H,
: 8I and dashpots with damping coefficient 28G , 28H, 28I along x-, y-, and z-axes, as shown in
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Fig. 1.3. The pipe, meanwhile, is represented by either beam or shell elements.

y

xz
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it

h  se
gm
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t

Figure 1.3: Beam-on-Winkler-foundation model based on Winkler’s hypothesis.

In one-dimensional treatment of a 3D problem, the absolute axial and transverse vertical
displacements, denoted as F and D, are governed by (Hindy and Novak, 1980)

<
m2F

mC2
+ 2I

mF

mC
+ :IF − ��

m2F

mI2 = 2I
mF6

mC
+ :IF6 , (1.1)

<
m2D

mC2
+ 2H

mD

mC
+ :HD + ��

m4D

mI4 = 2H
mD6

mC
+ :HD6 , (1.2)

where F6 and D6 are the imposed ground motions along axial and transverse vertical
directions, < is the distributed pipe mass, C is time, � is the Young modulus, � and � are
the area and the area moment of inertia of the pipe cross section, :I, :H and 2I, 2H are
the spring stiffnesses and dashpot damping coefficients along axial and transverse vertical
directions, respectively.

This method is sufficiently reliable, easy to implement, and computationally inexpensive.
Hence, it has been used extensively over the years by many researchers and structural design
codes (ASCE, 1984; PRCI, 2004; ALA, 2005; CEN, 2006; PRCI, 2009). Table 1.1 provides
a (not intended to be exhaustive) list of published studies using this approach from the 1970s
to the present.

In this method, accurate estimation of spring stiffness and dashpot damping coefficient is a
top priority, which affects significantly the computation of internal loads and design of the
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Reference Soil Pipe Axis Excitation
Sakurai and Takahashi (1969) spring, elastic beam A harmonic
Shinozuka and Koike (1979) spring, slippage beam A plane wave
Hindy and Novak (1979) spring, dashpot beam A, L San Fernando
Hindy and Novak (1980) spring, dashpot beam A, L random
Muleski and Ariman (1985) spring shell A, L harmonic
O’Rourke and El Hmadi (1988) spring, slippage beam A Rayleigh wave
Mavridis and Pitilakis (1996) spring, dashpot beam A, L S-wave
Ogawa and Koike (2001) spring, slippage beam A Rayleigh wave
Anastasopoulos et al. (2007) spring, dashpot,

slider
beam A, L actual records

Joshi et al. (2011) spring beam A, L reverse fault
Saberi et al. (2013) spring beam, shell A Chichi, Northridge
Liu et al. (2016) spring shell A, L strike-slip fault
A: axial, L: lateral

Table 1.1: A non-exhaustive list of published studies using beam-on-Winkler-foundation
approach.

buried structures (Pitilakis and Tsinidis, 2014). In the literature, these values are mainly
computed by two approaches, namely mathematical models and experimental data.

As regards the mathematical models, St John and Zahrah (1987) numerically integrated the
solution of Kelvin’s and Flamant’s problems, which are in turn the problems of a static load
point applied within an infinite and semi-infinite homogeneous elastic media, to obtain the
wavelength-dependent values of spring stiffness, expressed as

:I = :G =
16c(1 − a)
(3 − 4a)

��

_
, (1.3)

:H =
2c

1 − a
��

_
, (1.4)

where � is the pipe outer diameter, _ is the wavelength of the incident sinusoidal wave,
and a and � are the Poisson’s ratio and shear modulus of the medium. Hindy and Novak
(1979); Datta and Mashaly (1986, 1988) combined the solution by Mindlin (1964), for
static displacements within elastic half-space due to a concentrated load, with the solution
by Novak et al. (1978), for dynamic plane-strain soil reactions to the harmonic motion of
an embedded cylindrical body, to obtain dynamic soil spring stiffness and dashpot damping
coefficient in their lumped-mass models for pipelines buried in elastic half-space.

Regarding experimental data, one of the first known experiment test to investigate SPI
problems was conducted by Audibert and Nyman (1977), in which the transverse horizontal
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response of steel pipe in loose and dense sand was investigated with a wide range of burial
depth and pipe diameter. Trautmann (1983) performed a series of experiments to evaluate
the response of buried pipes to lateral and uplift movements of loose, medium, and dense
sands, with the burial depth-to-pipe diameter ratio ranging from 1.5 to 13. Later, El Hmadi
and O’Rourke (1988) back-calculated the experimental data provided by Colton (1981) to
achieve the bound values of axial spring constant, expressed as 1.57� ≤ :I ≤ 1.70�.
Other experimental work is mentioned in Section 2.2 of this thesis.

ASCE (1984) provided the first guidelines on earthquake analysis and design of buried
pipelines, describing nonlinear force-displacement curves (FDCs) of soil springs in axial,
transverse horizontal, vertical upward, and vertical downward directions. Typically, these
curves are ideally assumed to be elastic-perfectly plastic. Thus, only ultimate soil resistance
and displacement, computed in Table 1.2, are required for the curves identification. This
document is the basis for the guidelines by ALA (2005); PRCI (2004, 2009), which jointly
provide the most comprehensive set of provisions for this subject.

1.2.3 Full three-dimensional model considering soil-pipe interaction
3DFEmodel constitutes a rigorous numerical tool to analyze SPI problems. This approach is
applicable to most practical problems with complex geometries and material nonlinearities,
rigorously describing distortion of pipe cross section as well as soil-pipe interface behavior.
Pipe is typically represented by shell elements, while continuum soil medium is simulated
using 3D solid elements. Some studies used this method include Vazouras et al. (2010,
2015); Robert et al. (2016a); Vazouras and Karamanos (2017); Psyrras et al. (2019), among
many others.

However, the ability of full 3D analysis to improve on simplified method solution lies in
the uncertainties of input parameters. The physical problem of SPI is sophisticated and
uncertain, and includes, among other phenomena, the effects of nonlinear soil behavior, soil
heterogeneity, pipe defects and/or degradation due to aging, and incoherent ground shaking.
In such situations, a complex full 3D model does not necessarily produce more accurate
results than a simplified one does. Depending on the problem at hand and the focus of the
analysis, one might choose to adopt either simplified assumptions of pipe and soil behaviors
or a full model to perform the task.

Furthermore, the 3D FE analyses are computationally expensive. Particularly in case of
TGD with a large number of full dynamic time histories analyses, as well as the spatial
extension of buried pipeline networks, it is computationally impossible to implement a 3D
FE model to analyze such an infrastructure.
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Component Soil type Ultimate resistance Ultimate displacement

Axial sand
c�

2
W̄ℎ(1 +  0) tan X 3–5 mm for dense to loose

clay c�U(D 5–10 mm for stiff to soft
Horizontal sand W̄ℎ#@ℎ� 0.07–0.10 (ℎ + �/2) for loose

0.03–0.05 (ℎ + �/2) for medium
0.02–0.03 (ℎ + �/2) for dense

clay (D#2ℎ� 0.03–0.05 (ℎ + �/2) for stiff to soft
Upward sand W̄ℎ#@E� 0.01–0.015ℎ for dense to loose

clay (D#2E� 0.1–0.2ℎ for stiff to soft
Downward sand W̄ℎ#@� + 0.5W�2#W 0.10–0.15�

clay (D#2� 0.10–0.15�
�: pipe outer diameter.
ℎ: burial depth.
X: interface angle of friction between soil and pipe.
W̄: effective unit weight of soil.
W: total unit weight of soil.
 0: coefficient of soil pressure at rest.
(D: undrained soil shear strength.
U: empirical coefficient varying with (D .
#@ℎ and #2ℎ: horizontal bearing capacity factors for sand and clay.
#@E and #2E : vertical uplift factors for sand and clay.
#2 , #@, and #W: vertical downward factors for sand and clay.
Note: ultimate resistances are per unit length of pipe.

Table 1.2: Ultimate resistance and ultimate displacement by ASCE (1984).

1.3 Challenges in soil-pipe interaction analysis
This thesis focuses on the reduced-order beam-on-Winkler-foundation approach. As pre-
viously mentioned, the cornerstone of such an approach is the estimation of soil spring
stiffness and dashpot damping coefficient, i.e., the relationship between reaction force that
soil exerts on pipe and relative displacement between them. This relationship is referred to
as FDC.

One challenge lies in the simplifications associated with FDC. Most of the aforementioned
work has been based on an assumption of linear or elastic-perfectly plastic idealization of
a true nonlinear FDC. This idealization overlooks also hysteresis characteristics of soil in
cyclic loading, which frequently exists in seismic hazards. Furthermore, published experi-
mental and numerical studies have shown the coupling between directional components of
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soil-pipe motion, which cannot be reflected using independent soil springs. Our efforts in
addressing this challenge are presented in Chapter 2.

The other challenge is the lack of knowledge about soil spring stiffness and dashpot damping
coefficient, a.k.a SIF, in dynamic loading scenarios. The frequency-dependent SIFs for the
design of shallow and deep foundations have been established and widely accepted by
the profession. However, there are no equivalent methods to account for the frequency
dependence of SIFs in case of horizontally oriented buried structures. Experimental tests
dealing with the derivation of equivalent soil springs are usually conducted in quasi-static
loading conditions, which fail to notice the frequency dependence of spring stiffness. In
view of this, our efforts to compute dynamic axial and in-plane SIFs for an infinitely long
rigid circular pipe buried in elastic half-space are presented in Chapter 3 and 4, respectively.

1.4 Organization of the text
The remainder of this thesis is divided into five chapters.

Chapter 2 presents a mechanics-based reduced-order method to capture SPI under biaxial
loading on a two-dimensional plane perpendicular to the pipe axis. This simplifiedmethod is
able to account for the true smooth nonlinearity, the hysteresis loop, pinching phenomenon,
and the coupling between lateral and vertical soil-pipe motions of the soil spring FDC.
Results of the proposed method are compared with those of FE and SPH approaches for
different cases of loading patterns.

Chapter 3 and 4 derive analytical solutions for computing the frequency-domain axial and
in-plane SIFs, respectively, for a rigid circular structure buried in homogeneous elastic
half-space. Meanwhile, FE analyses are used to calculate those impedance functions in
case of two-layered1 elastic half-space. Parametric study is conducted to investigate the
dependence of SIFs on frequency of excitation, shear modulus of soil, and burial depth and
dimension of the structure.

Chapter 5 demonstrates a reduced-order model to analyze pipe subjected to Rayleigh surface
wave propagating through homogeneous and heterogeneous elastic half-spaces, in which
the soil spring stiffness and dashpot damping coefficient are chosen based on the SIFs
obtained in Chapters 3 and 4. Calculated displacement time histories at the control points
are compared against those computed by direct two-dimensional FE analyses.

Chapter 6 summarizes the whole thesis and proposes potential future research directions.

1In the context of this thesis, a two-layered half-space refers to a single layer over a half-space.
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2.1 Introduction
The beam-on-nonlinear-Winkler foundation (BNWF) model has been used extensively to
analyze SPI problems, in which pipe and soil are represented by beam and elastic-perfectly
plastic spring elements, respectively. SPI is accounted for through soil springs distributed
along the pipe axis that simulate soil reaction from the pipe perspective.

The cornerstone of the BNWFmethod is the relationship between the reaction force (�) that
the soil exerts on the pipe and the relative displacement between them (D); this relationship
typically is referred to as FDC. Although the BNWFmodel and the FDC are well-known and
widely used concepts, the simplifications associated with them lead to certain limitations

• Most of the previous work has been based on the assumption of a linear or elastic-
perfectly plastic idealization of the true nonlinear FDC.

• The linear or elastic-perfectly plastic soil springmodel is applicable only tomonotonic
PGD problems. It does not account for the hysteresis characteristics of soil in case of
cyclic loading, which frequently exists in TGD.

• In the conventional BNWF, the vertical soil reaction is represented by uplift and
bearing soil springs. Those springs are active in compression but inactive in tension
(Kouretzis et al., 2015), which causes a sharp change in the FDC stiffness in the
vicinity of equilibrium. However, in cyclic loading tests, closing of the gap between
soil and pipe during the unloading phase occurs through a smooth change from uplift
stiffness  H1, through 0, to bearing stiffness  H2 at zero deformation (H = 0), known
as the pinching effect (Fig. 2.1). Experimental data were reported by Finch (1999).

• Published experimental and numerical studies (Nyman, 1984; Hsu, 1996; Yimsiri
et al., 2004; Guo and Stolle, 2005; Daiyan, 2013; Jung et al., 2016) have shown that
to achieve a realistic approximation of soil reactions using soil springs, the springs
should be coupled instead of acting independently, as is assumed by BNWF theory.

Although axial strains are clearly dominant in pipe response to ground deformation, Yan
et al. (2018) showed that bending strains become important for non-uniform excitation
caused by, for example, propagation of surface waves across sedimentary basins (Ayoubi
et al., 2018). Accordingly, this chapter focused on the coupled reaction forces of the soil
when the pipe moves obliquely on a two-dimensional (2D) vertical plane perpendicular
to the pipe axis. The approach presented here is capable of simulating the true nonlinear
FDC, hysteresis of the soil reaction force in dynamic cyclic loading, pinching effects upon
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Figure 2.1: Pinching effect observed from vertical cyclic pipe loading.

unloading, and coupling effects between lateral and vertical soil springs. The proposed
model was systematically verified and validated by comparison with published experimental
and numerical data, as well as numerical simulations carried out by the authors. The
limitations of the approach are that it currently is applicable to the case of rigid (or nearly
rigid) pipes, and that it cannot capture the post-peak (softening) behavior of FDC, which
has been observed for dense to very dense sands.

This chapter is organized as follows. In Section 2.2, we derive a uniaxial hysteretic model
to capture the true nonlinear FDC for monotonic loading. Section 2.3 extends the model
to biaxial hysteretic, considering the pinching effect and coupling between the lateral and
vertical directions of loading. Finally, in Section 2.4, results of the biaxial model are verified
by comparison with finite element method (FEM), SPH simulations, and BNWF method
with elastic-perfectly plastic soil springs calculated following ASCE (1984) guidelines.

2.2 Uniaxial hysteresis model
The formulation of our uniaxial hysteretic model is based on the work by Bouc (1971)
and Wen (1976) on nonlinear hysteretic systems. The so-called Bouc–Wen (BW) model is
applicable to SPI problems, in which the soil reaction force � per unit length of the pipe
associated with the relative soil-pipe displacement D is calculated as

� = U D + (1 − U)�DZ (2.1)

where U is the ratio of post-yield to initial stiffness of the soil,  is the soil initial stiffness,
�D is the ultimate soil reaction force (yield strength), and Z is a dimensionless hysteresis
parameter.
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In the original BWmodel, the parameter Z is governed by the nonlinear differential equation
¤Z =

(
1 − |Z |=

(
V sgn ( ¤DZ) + W

) )
¤D/D0, where D0 = �D/ is the yield displacement, V and

W control the unloading-reloading stiffness (V + W = 1), = controls the smoothness of the
transition zone (between the linear and asymptotic sections of the FDC), and sgn is the sign
function. However, using the preceding definition of Z , the model has limited flexibility to
capture force-displacement nonlinearity (depicted as the shaded area between = = +∞ and
= = 1 in Fig. 2.2), and Nguyen and Asimaki (2018) demonstrated that representative FDCs
for SPI problems require a more versatile function (especially for the case of loose sands).
To overcome this limitation, we used the modified Bouc–Wen (MBW) equation, originally
proposed by Varun and Assimaki (2012) and subsequently used by Asimaki et al. (2019), to
express the variation of Z with relative displacement

¤Z = 1
D0

(
1 − tanh(^ |Z |)

tanh ^
(
V sgn ( ¤DZ) + W

) )
¤D (2.2)

where ^ is a dimensionless constant that controls the smoothness of the transition zone in
lieu of =, but with a broader range of nonlinearity (Fig. 2.2).
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Figure 2.2: Smoothness of FDC depending on ^. (Reprinted from Nguyen and Asimaki
2018, © ASCE.)

Nguyen and Asimaki (2018) determined the values of ^ for transverse lateral SPI in dry sand:
^ = 1.2–1.9 and ^ = 0.0–0.2 for loose and dense sand, respectively. In this study, we derived
^ for combined vertical–transverse displacement of the pipe on a plane normal to the pipe
axis, in loose, medium, and dense sand with relative density �� = 0–35%, 35%–65%, and
65%–100%, respectively. The embedment ratio (�/�) cases in this study varied from 1.0 to
12.5, where� is the burial depth to the pipe centerline and � is the pipe diameter. The value
of ^ was back-calculated from the FDCs of published physical experiments (Audibert and
Nyman, 1977; Trautmann, 1983; Dickin, 1994; Hurley and Phillips, 1999; Bransby et al.,
2001; Hsu et al., 2001; Di Prisco and Galli, 2006; Karimian et al., 2006; Olson, 2009;
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Daiyan, 2013; Robert and Thusyanthan, 2015; Burnett, 2015; Robert et al., 2016b) using
the unscented Kalman Filter (UKF), an optimal estimator through which we extracted the
unknown variables (Simon, 2006). From Eqs. (2.1) and (2.2), the discrete-time nonlinear
system for ^ estimation is

Z=+1 = Z= +
 

�D

(
1 − tanh(^= |Z= |)

tanh ^=

(
V sgn

(
(D=+1 − D=)Z=

)
+ W

))
(D=+1 − D=) + F=

^=+1 = ^= + F′=
�= = (1 − U)�DZ= + U D= + E=

(2.3)
where subscripts = and = + 1 indicate state parameters at time step C= and C=+1, respectively;
F= and F′= are process noises; and E= is measurement noise.

One parameter needs to be estimated: ^. The perfectly plastic (with no hardening) behavior
of the FDC at large displacements indicates that the post-yield stiffness of the soil is 0,
and thus U = 0. We used experimental results from Robert et al. (2016b) to demonstrate
how we derived ^. Fig. 2.3(a) presents the experimentally measured lateral FDC for dry
medium Cornell sand, with relative density �� = 35.5% and for the case of �/� = 5.3.
Because the MBW model cannot capture the post-peak behavior of the FDC, only the
monotonically increasing resistance-displacement part of the FDC was used as input in the
optimization scheme, �= - D=, for Eq. (2.3). For this curve, sgn

(
(D=+1 − D=)Z=

)
= 1, and

hence V sgn
(
(D=+1 − D=)Z=

)
+ W = V + W = 1. The values of �D and  were determined

directly from the FDC, �D = 20 kN and  = 4.5 kN/mm. The process and measurement
noise for the UKF were chosen as random signals with 0-mean and standard deviation 10−3

and 1.0, respectively. Fig. 2.3(b) shows the estimated values of ^ converging to 1.1 as more
data points are recursively included in UKF. In this example, the estimated value ^ = 1.1
was used in the MBW to generate the FDC and confirm the excellent fit of the experimental
data to the idealized MBW model with estimated parameter ^, as shown in Fig. 2.3(a).

It should be noticed that ^ is a dimensionless parameter. Although the input FDC, �= - D=,
is dimensional, it is implicitly normalized in Eq. (2.3), e.g., �=/�D and (D=+1−D=)/(�D/ ).

In the same way, we used UKF estimation to obtain ^ from an extensive set of experimental
data available in the literature. Because of a lack of experimental results in some cases,
we used validated FE simulations, which are described in detail in Section 2.4. Results are
summarized in Fig. 2.4, which shows that ^ for lateral and uplift displacements depends
on �/� for dense, medium and loose sand. Results show that ^ is most sensitive to the
variation of�/� for loose sands, and least sensitive to the variation of�/� for dense sands.
From a physical point of view, softer soil requires larger relative displacement to reach the
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Figure 2.3: Estimating ^ by UKF method: (a) FDC and MBW (data from Robert et al.
2016b); and (b) ^ estimation.

ultimate soil reaction force. The transition zone in this case is longer and smoother, and
accordingly, ^ is larger. A similar trend was observed for medium-dense sands. For dense
sands, ^ ≈ 0, indicating an abrupt change from the linear regime to the peak strength over
a small soil-pipe relative displacement increment.
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Figure 2.4: ^ for loose sand �� = 0–35%, medium sand �� = 35%–65%, dense sand
�� = 65%–100% for lateral and uplift pipe movement.

As a function of embedment depth, ^ increases gradually with �/� up to a maximum value
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near �/� = 6–8. For larger embedment depths, ^ remains constant. This trend of ^ is
directly related to the failure mechanism of SPI (Nguyen and Asimaki, 2018). For shallow
buried pipelines, the soil failure follows a "passive-wedge" mode, in which the shear band
develops and reaches the soil surface. The change from linear to the asymptote region is
not very smooth, which translates to a small ^. As the pipe embedment depth increases,
the transition zone becomes smoother, and ^ is larger. This corresponds to the transition
of the soil failure from a "passive-wedge" to a "plow-through" mode at a critical depth
�/� = 6–8. This critical depth is consistent with experimental data by Trautmann (1983)
for loose and medium sands.

Similarities in trend and values of ^ for lateral and uplift cases suggest that a biaxial model
with a single value of ^ should be sufficient to simulate SPI problems. Although the
MBWmodel cannot capture the post-peak behavior, this limitation is not expected to affect
pipeline design significantly. The model still can capture the ultimate soil reaction force
that determines the upper bound of the force acting on a pipe, and the response envelope
which the pipeline will be designed to withstand is independent of the post-peak section of
FDC.

2.3 Biaxial hysteresis model
For the uniaxial model described in Eqs. (2.1) and (2.2), the direction of incremental
reaction force ®d� (i.e., the direction of ®dZ when U = 0) is parallel to that of the incremental
relative displacement ®dD. For the case of bilateral loading, Varun and Assimaki (2012)
showed that ®d� (denoted ®d? in that paper) depends not only on ®dD but also on the plastic
region developing around the pipe (current ®Z). For example, in Fig. 2.5(a) the pipe is
continuously pushed in one direction, ®dD ‖ ®Z (the symbol ‖ is used to denote "parallel to"),
so ®d� ( ®dZ) ‖ ®dD. If, however, as shown in Fig. 2.5(b), the pipe is loaded at an angle k
relative to the direction of first loading ( ®Z) after a plastic zone forms, the soil stress state is
no longer symmetric, so ®d� ( ®dZ) ∦ ®dD. In local coordinates, as in Fig. 2.6, ®dZ is projected
onto ®dD and its perpendicular direction

®dZ =


dZ88

dZ8 9

 =

:88 :8 9

:8 9 :88




dD

0


1
D0
= K

®dD
D0

(2.4)

where :88 = 1 − 5Z (V cosk + W) is the diagonal stiffness term, :8 9 = 2 5Z sink is the cross-
stiffness term, K is the stiffness matrix, 5Z = tanh(^ | ®Z |)/tanh ^, cosk = ( ®Z · ®dD)/(| ®Z | | ®dD |),
sink = ( ®Z× ®dD)/(| ®Z | | ®dD |), and 2 is a coefficient controlling the degree of coupling between
the two directions.
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Figure 2.5: Incremental reaction force as a function of nonlinearity: (a) ®dD ‖ ®Z ; and (b)
®dD ∦ ®Z . (Adapted from Varun and Assimaki 2012.)
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ψ
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Figure 2.6: Transformation from local to global coordinate system. (Adapted from Varun
and Assimaki 2012.)

 ζ

+ =u1

ζ

u

Hysteresis spring

 ζ

u2

Slip-lock element

Figure 2.7: Hysteresis spring in series with slip-lock element.

Eq. (2.4) captures the relationship between ®d� and ®dD without considering the pinching
effect. During cyclic loading, however, the FDCmay exhibit pinching due to the gap formed
between soil and pipe that needs to close before any resistance is offered by the soil upon
stress reversal. To account for this phenomenon, ®dD is decomposed into two components:
one corresponding to a nonlinear, hysteresis spring ®dD1; and the other corresponding to a
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slip-lock element ®dD2. So ®dD = ®dD1 + ®dD2. Fig. 2.7 shows the general form of the FDC
when a hysteresis spring is put in series with a slip-lock element. Similar to Eq. (2.4), in
local coordinates, the dimensionless hysteresis parameter is

®dZ =


dZ88

dZ8 9

 =

:88 :8 9

:8 9 :88




dD1

0


1
D0

(2.5)

For the slip-lock element, the equation of motion has similar form with the one-dimensional
(1D) equation by Baber and Noori (1985), and preserves the same ratio between diagonal
and off-diagonal elements of the tangent stiffness tensor in Eq. (2.5)

®dZ =


dZ88

dZ8 9

 =
1
?Z


1

:8 9

:88
:8 9

:88
1




dD2

0


1
D0

(2.6)

where

?Z =
1
2
(1 − sgn ¤DH)

√
2
c

B

f
exp

(
− 1

2

( Z
f

)2
)

(2.7)

where B and f control the length and sharpness of pinching, respectively. For a system that
deteriorates, B is assumed to be a function of cumulative damage measure, in which the
maximum displacement and dissipated energy are among the most frequently used (Wang
and Chang, 2007). The present work used the following relation:

B = XB
(DH<0G
D0

)2 (2.8)

where XB is a coefficient, and DH<0G is the maximum relative displacement that has occurred
in the process of cyclic loading in the vertical direction. Due to gravity, the gap between
soil and pipe can appear only below the pipe; hence, the factor (1 − sgn ¤DH) in Eq. (2.7)
indicates that pinching appears only when the pipe moves downward.

From Eqs. (2.5) and (2.6), simple algebraic manipulation obtains
dZ88

dZ8 9

 =
1

1 + :88?Z


:88 :8 9

:8 9 :88




dD

0


1
D0

(2.9)

In global coordinates (Fig. 2.6), obtained using a transformation tensor, Eq. (2.9) becomes

®dZ =


dZG

dZH

 =
1

1 + :88?Z


:88 cos \ dD − :8 9 sin \ dD

:8 9 cos \ dD + :88 sin \ dD


dD
D0

(2.10)
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where \ dD is the angle between ®dD and G-axis. Eq. (2.10) is rewritten in differential form as
¤ZG

¤ZH

 =
1

1 + :88?Z


:88 ¤DG − :8 9 ¤DH

:8 9 ¤DG + :88 ¤DH


1
D0

(2.11)

If XB = 0 then ?Z = 0, and Eq. (2.11) is identical to the corresponding formulation of Varun
and Assimaki (2012).

Eq. (2.11) is applicable only to isotropic, symmetric cases, namely for cases where the
ultimate reaction force �D and initial stiffness  of the soil are independent of direction, and
the magnitude of positive ultimate reaction force equals that of negative ultimate reaction
force. Use of this formulation in SPI problems, therefore, required modifications because
(1) along the vertical axis, the magnitude of the ultimate positive reaction �DH1 (uplift
resistance capacity) is smaller than that of the ultimate negative reaction �DH2 (downward
bearing capacity), i.e., the FDC is asymmetric along the vertical axis; (2) the initial soil
stiffness for upward pipe movement  H1 and downward pipe movement  H2 are unequal; (3)
the soil stiffness  G and ultimate reaction force �DG along the horizontal axis are not equal
to  H and �DH along the vertical axis, i.e., the soil stiffness and strength are anisotropic, and
(4) ®d� depends not only on the plastic zone as mentioned previously, but also on the initial
anisotropy of geostatic stresses.

To account for the aforementioned complexities associated with SPI problems, we made the
following modifications:

1. �DH was modified to: �DH =
(
(1 + sgn ZH)�DH1 + (1 − sgn ZH)�DH2

)
/2.

2. Fig. 2.8 schematically depicts the soil stiffness that characterizes the branches of a
load-unload-reload FDC cycle for vertical loading (ABCDEB): for the first loading
branch, AB, the pipe moves upward and the soil has initial stiffness  H1. A gap
is formed below the pipe. In branch BC, the pipe moves downward, but does not
touch the soil below. Due to gravity, the upper soil remains in contact with the
pipe, so the initial stiffness is continually  H1. For branch CD of the FDC, the pipe
continues to move downward and touches the soil below, which now has stiffness
 H2. Upon load reversal (branch DEB), the pipe travels upward, loses contact with
the lower soil, and comes in contact with upper soil again, and the stiffness is once
again  H1. As a result, the stiffness along the H-axis can be idealized as  H =
 H1 + (1 − sgn ZH) (1 − sgn ¤DH) ( H2 −  H1)/4.



20

Fy(ζy)

uy

Fuy1

Fuy2

Ky1Ky1

Ky2

Ky1

A

B

C

D

E

Figure 2.8: Initial stiffness in different parts of FDC.

3. We used the following transformation to make the problem isotropic: D′H = D0GDH/D0H,
where D0G = �DG/ G and D0H = �DH/ H. In global coordinates, the dimensionless
hysteresis parameters are calculated as follows in the transformed domain:

¤ZG =
1

D0G (1 + :88?Z )

(
:88 ¤DG − :8 9

D0G
D0H
¤DH

)
¤ZH =

1
D0G (1 + :88?Z )

(
:8 9 ¤DG + :88

D0G
D0H
¤DH

) (2.12)

4. The cross-stiffness component 2 5Z sink represents the directional difference between
®d� ( ®dZ) and ®dD due to the formation of a plastic zone, assuming that prior to the
first loading (under geostatic stresses), the soil stiffness and strength are isotropic.
If the pipe is pushed monotonically along a fixed direction in the isotropic medium
under geostatic conditions, k = 0 and :8 9 = 0, and ®dZ ‖ ®dD. However, geostatic
stresses introduce anisotropy and further separate the direction ®d� ( ®dZ) and ®dD. In
these conditions, even if the pipe is pushed along one fixed direction, the direction
of ®d� ( ®dZ) still is different than that of ®dD by an angle j, which is attributed to the
anisotropy of geostatic stresses.

Fig. 2.9 introduces the variation of jwith loading direction of the pipe: If \ dD = ±90◦,
then j = 0 because geostatic stresses are symmetric about the off-plane horizontal
H-axis. If \ dD = 0◦, then j = j0, where j0 can be estimated from experiments or
numerical simulations (Section 2.4). Because j depends only on \3D, we propose the
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bell-shaped curve in Fig. 2.9:

j =


j0

(
4
c2

)4 ((
\3D +

c

2

) (
− \3D +

c

2

))4
if − c

2
≤ \3D ≤

c

2

−j0

(
4
c2

)4 ((
\3D −

c

2

) (
− \3D +

3c
2

))4
if
c

2
< \3D ≤

3c
2

(2.13)

The cross-stiffness :8 9 is modified by adding one component :8 91 to account for the
anisotropic state of geostatic stresses: :8 9 = 2 5Z sink+ :8 91. When k = 0, :88 = 1− 5Z
and :8 9 = :8 91. From Eq. (2.9), :8 9/:88 = dZ8 9/ dZ88 = − tan j (where j = \ dD − \ dZ ).
Therefore, :8 91 = −(1 − 5Z ) tan j. Next, to ensure that :8 91 = 0 when Z = 0, :8 91
is multiplied by the weight function 5Z , so that :8 9 = 2 5Z sink − 5Z (1 − 5Z ) tan j.
Because j is small, we approximate tan(j) ≈ j to simplify the differential equation
at hand; the error introduced is approximately 4% for j = 20◦. Consequently, :8 9 is
expressed as: :8 9 = 2 5Z sink − 5Z (1 − 5Z )j.
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Figure 2.9: Values of j for variation of \3D.

The final system of equations (expressed in global coordinates) for the smooth nonlinear,
hysteretic, biaxial MBW model with pinching that has been presented so far (henceforth
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referred to as BMBW) is:

�G = U GDG + (1 − U)�DGZG
�H = U HDH + (1 − U)�DHZH
�DH =

1
2
(
(1 + sgn ZH)�DH1 + (1 − sgn ZH)�DH2

)
 H =  H1 + 1

4 (1 − sgn ZH) (1 − sgn ¤DH) ( H2 −  H1)

D0G = �DG/ G; D0H = �DH/ H
:88 = 1 − 5Z (V cosk + W)

:8 9 = 2 5Z sink − 5Z (1 − 5Z )j
¤ZG and ¤ZH are determined by Eq. (2.12)

(2.14)

The physical interpretation of this reduced-order model, relative to the continuum model, is
demonstrated in Fig. 2.10. The model inputs were classified into three groups: physical pa-
rameters, shape-control parameters of the hysteresis loop, and pinching-control parameters.
The model input parameters are summarized in Table 2.1.

Fy-uy

y

Fx-ux

x

H

D

Ground surface

y

x

continuum

Figure 2.10: Schematic illustration of continuum and proposed reduced model.

2.4 Numerical verification
This section presents results of the verification analyses we conducted to evaluate the pro-
posed BMBWmethod; comparison of our model predictions with FEM and SPH numerical
analyses were necessary due to the scarcity of experimental data on pipe response to biaxial
cyclic loading in dry sands. The FEM and SPH simulations were validated using available
experimental results for lateral loading, and subsequently were used to generate FDCs for
different cases of pipe loading to verify the proposed model.
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Category Input parameter Description
Physical quantities U ratio of post-yield to initial stiffness of soil

 G ,  H1,  H2 initial soil stiffness along transverse lateral, up-
ward vertical, and downward vertical directions

�DG , �DH1, �DH2 ultimate soil reaction force along transverse lat-
eral, upward vertical, and downward vertical di-
rections

2 coefficient of cross-stiffness term in biaxialmodel
j0 angle between incremental relative displacement

and incremental reaction force at \ dD = 0
Shape of hysteresis loop ^ smoothness of transition zone

V, W general shape of hysteresis loop, V + W = 1
Pinching control XB coefficient of pinching length

f coefficient of pinching sharpness

Table 2.1: Summary of input parameters for the proposed BMBW model.

Trautmann (1983) conducted experiments to study SPI under lateral and uplift loading in
dry loose, medium, and dense sand, for �/� varying from 1.5 to 13. We used data from
Test 20 as the benchmark to validate our numerical models. In that test setup, the 102-mm-
outer-diameter pipe was embedded at �/� = 5.5 and pushed laterally in dry loose Cornell
filter sand which had density WB = 14.8 kN/m3, friction angle obtained from direct shear
test q′

3B
= 31◦, and relative density �� = 0%.

2.4.1 Finite element method
The FEM analyses were conducted using 3D LS-DYNA R10.0.0. The pipe was modeled as
a rigid cylinder, with an outside diameter � = 100 mm. The soil medium was represented
by constant stress hexahedron elements, and an elastic-perfectly plastic constitutive model
with the Mohr–Coulomb failure criterion. For loose sand, the dilation angle was assumed
to be kB = 0. Olson (2009) reported that the plane-strain friction angle is q′

2A8C
= 38.6◦,

considering themaximumstress obliquity in the soilmedium. A small value of cohesion, 2 =
0.1 kPa, which had negligible effect on the result, was applied to increase the stability of the
numerical model. The interface between soil and pipe was modeled by automatic-surface-
to-surface contact, allowing separation and slip. The friction at the interface followed the
Coulomb friction model with friction angle 0.6q′

2A8C
(Trautmann, 1983). The Poisson’s

ratio was a = 0.3. O’Rourke (2010) suggested an empirical equation for Young’s modulus
used in plane-strain simulation: � = 2 × 10−13.97(WBf0.0378

E2 )13.7, where fE2 is the vertical
overburden stress at the pipe centerline. The shear modulus� initially was calculated based



24

on that equation. It then was calibrated to better fit the FDC of Test 20. Eventually,� = 230
kPa was taken at the pipe centerline. An approximately linear variation of shear modulus
with depth then assumed m�/mH = −400 kPa/m to reflect the dependency of shear modulus
on the soil overburden pressure.

The geometry mesh and boundary conditions for the FEMmodel are shown in Fig. 2.11(a).
The side nodes were constrained along x-direction, whereas the bottom nodes were pinned.
To ensure plane-strain conditions, all nodes were constrained in the out-of-plane direction.
The numerical simulation was executed in two stages. First, the model with soil and pipe
was analyzed under gravity loading to generate the initial (geostatic) stress state. Second,
the desired pipe movement was imposed in a displacement-controlled manner.
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Element size 40mm

H

D=0.1m

pipe 
movement

θu

0.55m
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Figure 2.11: Geometry of the numerical models (not to scale): (a) FEM model; and (b)
SPH model.

2.4.2 Smoothed-particle hydrodynamics
SPH is a mesh-free particle method based on the Lagrangian formulation. The problem
domain is discretized into a set of arbitrarily distributed particles without connectivity. Pos-
sessing material properties, these particles represent the state of the system (e.g., density,
velocity) and move accordingly to the governing conservation equations. The state function
and its derivatives in continuous form are written as integral representation, which subse-
quently is approximated by summation of the neighboring particles. Interested readers can
refer to Liu and Liu (2010).
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SPH is a mesh-free approach by nature, and hence does not suffer from mesh distortion
as in FEM for problems that involve large displacements, at the expense of computational
efficiency. To take advantage of both SPH and FEM approaches, the soil domain near the
pipe (large deformation region) was simulated with SPH particles, whereas the far-field
soil domain (small deformation region) and the pipe were modeled by FEM. The element
type and input parameters for FEM pipe and FEM soil were identical with those of the
FEM model. The elastic-perfectly plastic constitutive model with Mohr–Coulomb failure
criterion used for FEM soil also was used for the SPH soil particles.

The interface between FEM soil and SPH soil particles should guarantee displacement
compatibility. A tied-nodes-to-surface-constrained-offset contact was used to constrain the
SPH soil particles to move with FEM soil element surfaces. Another interface between
the SPH soil particles and the FEM pipe was represented by automatic-nodes-to-surface
contact. This contact allows separation and sliding between slave nodes (SPH soil particles)
and master surface (FEM pipe surface). The sliding obeyed the Coulomb’s friction law
with the contact friction angle being 0.6q′

2A8C
. Fig. 2.11(b) shows the geometry mesh and

boundary conditions of the SPH model. The boundary conditions and the loading phases
were exactly the same as those imposed on the FEM model.

The smoothing Kernel function chosen was the cubic B-spline, which is the most commonly
used by the SPH community. It is defined for a 3D problem as

, (', ℎ) = 1
cℎ3


1 − 3

2
'2 + 3

4
'3 0 ≤ ' < 1

1
4
(2 − ')3 1 ≤ ' < 2

0 ' ≥ 2

(2.15)

where ℎ is the smoothing length; and ' = 38 9/ℎ, where 38 9 is the distance between two
particles. The constant applied to smoothing length was ^(%�ℎ = 1.2ℎ. The renormalized
formulation (FORM = 1) was chosen for particle approximation theory. More details of
the SPH method in LS-DYNA were given by Hallquist (2006).

2.4.3 Validation of the FEM and SPH models
Fig. 2.12 shows the relation between normalized force �G/(WB��!) and normalized relative
displacement DG/�, obtained from Test 20, the FEM model, and the SPH model. The
FEM model validation for dense sand in Tests 22, 23, 24, 25, and 32 also is displayed.
The constitutive model with strain softening behavior for dense sand used for this set
of simulations was described by Nguyen and Asimaki (2018), and is not presented here.
Clearly, there was good agreement, which proves the fidelity of the numerical simulations.
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The FEM and SPHmodels for Test 20 subsequently were used to generate FDCs �G - DG and
�H - DH for different pipe-loading patterns to verify the proposed BMBW model.
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Figure 2.12: Validation of FEM and SPH models.

2.4.4 Parameter calibration for BMBW model
For the physical quantities, U = 0, as mentioned previously, and 2 = 0.25, as suggested
by Varun and Assimaki (2012).  G ,  H1,  H2, �DG , �DH1, and �DH2 were calibrated by
performing FEM simulations of a pipe moving monotonically along three directions. The
soil springs stiffness for the ASCE bilinear model also was chosen from the same FEM
results. They were taken as the secant stiffness  70G ,  70H1, and  70H2, which corresponds
to 70% of the ultimate forces. Fig. 2.13 shows the values of  G ,  H1, and  H2 for the BMBW
model, and  70G ,  70H1, and  70H2 for the ASCE bilinear model. �DG , �DH1, and �DH2 were
identical for both models. As shown in Fig. 2.13(d), in the FEM simulation of the lateral
test, while the pipe was pushed laterally without being constrained along the H-axis, �H = 0
and the pipe was moving obliquely with respect to the G-axis. j0 ≈ −15◦.

For the parameters that control the shape of the hysteresis loop, ^ was chosen from Fig. 2.4 as
a function of the sand relative density and pipe embedment ratio. As mentioned previously,
one value of ^ is sufficient for all pipe-loading directions in 2D SPI problems. Here, V andW
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Figure 2.13: Calibration from numerical results: (a) lateral loading; (b) upward vertical
loading; (c) downward vertical loading; and (d) pipe trajectory in lateral loading for j0.

were taken so that V + W = 1, V > 0, and W > 0. Furthermore, to ensure the physical
rationality, for example, that maximum loads do not exceed the ultimate value or that soil
stiffness decreases as the degree of nonlinearity increases, the following conditions were
imposed: V ∈ [0, 0.5], and 2 ∈ [V/2, V] (Varun and Assimaki, 2012).

For the pinching-control parameters, XB = 0.150 and f = 0.050 were chosen.

The input parameters that we used for the proposed BMBW model and ASCE model are
listed in Table 2.2. These parameters were used consistently for all cases of pipe loading in
the subsequent sections. Eq. (2.14) is a stiff differential equation for which some explicit
time integration methods give numerically unstable results. The implicit time integration
methods generally give better results. In this study, under displacement-controlled loading,
the implicit trapezoidal rule was used to solve the system of equations.
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Model Parameter Value
BMBW  G 0.65

 H1 0.75
 H2 0.65
�DG 8.0
�DH1 2.7
�DH2 18.0
U 0
2 0.25
j0 −15.0
^ 1.88
V 0.4
W 0.6
XB 0.150
f 0.050

ASCE  70G 0.20
 70H1 0.22
 70H2 0.18
�DG 8.0
�DH1 2.7
�DH2 18.0

[Stiffness] = kN/mm, [Force] = kN/m length,
[j0] = deg, others are dimensionless

Table 2.2: Input parameters for the proposed BMBW model and ASCE model.

2.4.5 Uniaxial cyclic loading
The pipe was pushed cyclically along one direction that was inclined at an angle \D
relative to the G-axis (Fig. 2.11). In this case of loading, loading or unloading takes
place concurrently along two directions. The pipe displacement was a 3-cycle sinu-
soidal signal, D = D= sin (2cC/10), where D= is the amplitude, C is the time (0–30 s),
\D = {0, 30◦, 45◦, 60◦, 90◦}, and D=/� = {0.1, 0.3}. The soil experienced weak nonlin-
earity when D=/� = 0.1, whereas it experienced strong nonlinearity when D=/� = 0.3.

Figs. 2.14, 2.15, 2.16, and 2.17 present the results of BMBW, FEM, SPH, and the ASCE-
recommended bilinear method. Overall, the FEM and SPH results agreed well with each
other and jointly showed that the FDCs were indeed smooth, nonlinear curves. The ASCE
bilinear method generated straight lines with slopes  70. The proposed BMBW method
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produced true smooth curves which adequately matched those of the numerical simulations.

Finch (1999) conducted a centrifuge experiment showing typical patterns of the FDC
for vertical cyclic loading, as shown in Fig. 2.1. The loading, unloading, and reloading
phases jointly create a hysteresis loop. The pinching phenomenon only appears during the
unloading phase because the gap forms only below the pipe. The FDCs obtained from FEM
and SPH in Figs. 2.14, 2.15, 2.16, and 2.17 clearly depict the hysteresis loops and pinching
phenomenon. In those figures, the BMBW method is capable of generating both the loops
and pinching zones, in contrast to the ASCE-recommended bilinear method.
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Figure 2.14: �G - DG for small pipe displacement D=/� = 0.1.
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Figure 2.15: �H - DH for small pipe displacement D=/� = 0.1.

In general, the pinching is clearer along the H-axis than along the G-axis. Specifically, the
pinching length in the �H - DH curves is larger than that in the �G - DG curves (Figs. 2.14, 2.15,
2.16, and 2.17). The reason is obvious: the gap between pipe and soil causing pinching is
due to gravity, which acts vertically. On the G-axis, when \D = 0◦, there is no pinching,
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Figure 2.16: �G - DG for large pipe displacement D=/� = 0.3.
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Figure 2.17: �H - DH for large pipe displacement D=/� = 0.3.

as shown in Figs. 2.14 and 2.16. When \D = 30◦, 45◦, and 60◦, the pinching occurs. The
appearance of pinching is attributed to the effect of DH, demonstrating the coupling effect
between vertical and horizontal directions. For both �G - DG , �H - DH, the pinching length
increases with displacement D= and angle \D. The BMBW results captured this trend well.

Whereas the secant stiffness and ultimate reaction force in the ASCE uncoupled bilinear
model remained unchanged, FEM and SPH results showed that they indeed change depend-
ing on \D. Taking �G - DG in Fig. 2.16 as an example, the ultimate reaction forces were about
8, 4, 3, and 2 kN/m when \D = 0◦, 30◦, 45◦, and 60◦, respectively. The BMBW had similar
results as the numerical simulations, indicating that it captures the coupling when the pipe
moves obliquely.

Additionally, the coupling effect between two directions is illustrated by drawing the lateral
uplift failure envelope, as in Fig. 2.18, in which �DG\ and �DH\ are the ultimate reaction
forces along the G- and H-axes corresponding to pipe movement angle \D. These forces
are normalized by the ultimate reaction forces corresponding to purely lateral and uplift
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pipe movements, �DG0 and �DH90. When the inclination angle \D increased, the ultimate
normalized horizontal reaction forces decreased and the vertical reaction forces increased,
indicating the coupling effect of pipe displacements in the lateral and vertical directions.
The envelope of the proposed BMBW method was close to that of the FEM simulations.
The analytical results of Nyman (1984), and the FEM results of Guo (2005) and Daiyan
(2013) also are plotted in Fig. 2.18 for comparison.
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Figure 2.18: Lateral uplift failure envelope.

2.4.6 0-Shaped loading
In 0-shaped loading, as shown in Fig. 2.19(a), the loading phase occurs in one direction and
the unloading phase occurs in another direction. Because the lateral displacement usually
is dominant over the vertical displacement in earthquakes, two ratios of displacement
amplitude were considered, namely DH/DG = 0.25 and 0.5. The displacement amplitude
along the G-axis is D=, where D=/� = 0.1 and 0.3.
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Figure 2.19: Cyclic displacement loading patterns: (a) 0-shape loading; and (b) 8-shape
loading.
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Again, in Figs. 2.20 and 2.21, contrary to the oversimplified bilinear ASCE model, the
BMBWproduced smooth nonlinear curves and captured the dissipated energy via hysteresis
loops. The areas of hysteresis loops were narrow for D=/� = 0.1 and fatter for D=/� = 0.3,
indicating that more energy is dissipated for higher degree of soil nonlinearity.
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Figure 2.20: �G - DG and �H - DH for 0-shape loading and small pipe displacement D=/� = 0.1.
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Figure 2.21: �G - DG and �H - DH for 0-shape loading and large pipe displacement D=/� = 0.3.

When the pipe was pushed horizontally along branch$� in Fig. 2.19(a), the ASCE method
predicted �H = 0, whereas the FEM, SPH, and BMBW results were non-zero values for
�H (hysteresis loop branch $� in Figs. 2.20 and 2.21). The �H value of the BMBW was
different from that of the FEM and SPHmodels because the simplified assumed function for
j( 5Z , \3D) does not exactly capture the variation of j in numerical simulations. However,
the difference is acceptable considering the simplicity and computational efficiency that the
BMBW offers while reproducing the trend of �H - DH.

In Figs. 2.20 and 2.21, as DH/DG increases from 0.25 to 0.5, the corners of �G - DG become
rounder, namely the effect of DH on DG becomes increasingly noticeable. In addition, when
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D= increases, the coupling effect is more pronounced. This is indicated by the rounder
corners of �G - DG and �H - DH curves in Fig. 2.21 compared with the corresponding corners
in Fig. 2.20.

2.4.7 8-Shaped loading
In 8-shaped loading, as displayed in Fig. 2.19(b), both loading and unloading along the
H-axis occur in either loading or unloading along the G-axis. Figs. 2.22 and 2.23 show
results for D=/� = 0.1, 0.3 and DH/DG = 0.25, 0.5. Similar to the case of 0-shaped loading,
the hysteresis loops were thinner for D=/� = 0.1 and fatter for D=/� = 0.3. This reconfirms
that energy dissipation increases with the degree of soil nonlinearity. Moreover, when
DH increased, it increasingly affected �G - DG , creating a bulkier hysteresis loop. The FDC
predicted by the BMBW model was in good agreement with the results of FEM and SPH.
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Figure 2.22: �G - DG and �H - DH for 8-shape loading and small pipe displacement D=/� = 0.1.
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Figure 2.23: �G - DG and �H - DH for 8-shape loading and large pipe displacement D=/� = 0.3.

In Fig. 2.23, there are two points at the corners of �G - DG , and one point at �H = 0 of �H - DH
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where the slope of FDC becomes discontinuous. This occurs because at those points,
ZH switches between positive and negative values, leading to changes in �DH and  H, as
in Eq. (2.14). Subsequently, this causes discontinuities in ¤ZG and ¤ZH. This is inevitable
when �DH1,  H1 and �DH2,  H2 are combined into one single spring. Nevertheless, the
discontinuities vanish when �DH1/ H1 = �DH2/ H2. Furthermore, this happens only at
isolated points on the FDC and does not affect the general trend of �G - DG and �H - DH.

2.4.8 Transient loading
The reaction force of the soil acting on the pipe was investigated for the case of biaxial
transient loading. The 1995 Kobe earthquake ", 6.9 ground motions at OSAJ station, 8.5
km from the fault rupture, were used for this purpose (Ancheta et al., 2013). Fig. 2.24 shows
the time histories and pattern of displacement. The lateral displacement was dominant,
with a peak value of 88 mm, whereas the peak vertical displacement was 23 mm. The SPH
method was chosen for the reference simulations to appropriately model large displacement
of the pipe. Fig. 2.25 compares the response time histories �G - C and �H - C predicted using
the BMBW, SPH, and ASCE bilinear model. The proposed BMBW method captured the
responses obtained by SPH to a high degree of accuracy. In contrast, the ASCE model
tended to overestimate the �G in regions of large lateral displacement and ignored the
coupling effect. Accordingly, �H was considerably different from the values predicted
by SPH and BMBW. Fig. 2.26 shows the FDCs �G - DG and �H - DH estimated using the
aforementioned three methods. Clearly, the shape of FDC from the BMBW matched well
that from SPH, with round corners expressing the coupling between lateral and vertical
directions.
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Figure 2.24: Kobe earthquake signal.
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Figure 2.25: �G - C and �H - C from BMBW, SPH, and ASCE model for Kobe earthquake.

2.4.9 Suggestions for input parameters
In general, the input parameters for the proposed BMBWmethods are suggested as follows:

1. U = 0.

2.  G ,  H1,  H2, �DG , �DH1, and�DH2 are chosen by performing simple FEM simulations
as in the preceding section. Alternatively, ASCE (1984) provides formulas to calculate
�DG , �DH1, and�DH2. It also provides the hyperbolic form of the FDC � = D/(�+ �D)
where � and � are case-specific coefficients for lateral, vertical uplift, and vertical
downward pipe movements. Therefore, the initial soil stiffness  G ,  H1,  H2 can be
estimated as (m�/mD) |D→0 = 1/�.

3. 2 = 0.25, as suggested by Varun and Assimaki (2012).

4. j0 can be chosen from FEM simulations or experimental data. The authors used
FEM simulations to generate j0 for practical design purposes. The FEM models
were conducted for dense, medium, and loose sands, whose direct shear test peak
friction angle and relative densitywere q′

3B−? = 44◦, 36◦, and 31◦ and �� = 80%, 45%,
and 0%, respectively. The embedment ratio �/� ranged from 1.5 to 11. The results
are shown in Fig. 2.27.
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Figure 2.26: �G - DG and �H - DH from BMBW, SPH, and ASCE model for Kobe earthquake.

5. ^ is taken from Fig. 2.4.

6. V and W satisfy the equality V + W = 1.0. The general shape of the hysteresis loop
is not very sensitive with respect to V and W. Normally, (V, W) = (0.5, 0.5) or
(V, W) = (0.4, 0.6) is suggested.

7. XB and f are case-specific parameters. They can be calibrated from cyclic experimen-
tal data or simple FEM simulations for cyclic loading. The FEM models also were
used to generate the FDCs for cyclic vertical loading; for example, �H - DH for \D = 90◦

in Fig. 2.17 was predicted by the FEM model for loose sand with �/� = 5.5. Values
of XB andf then were derived by fitting �H - DH curves of the proposed BMBWmethod
to those of the FEM models. The results are shown in Fig. 2.28. When no cyclic
experiment data or FEM simulations are available, using XB and f from Fig. 2.28 can
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Figure 2.27: j0 for various embedment ratios �/� and sand types.

provide a good first approximation.
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Figure 2.28: XB and f for various embedment ratios �/� and sand types.

2.5 Conclusions
This chapter presents a mechanics-based reduced-order method to capture SPI under biaxial
loading on a 2D vertical plane. Unlike themost widely usedASCE bilinearmodel, this novel
method is able to take into consideration the true smooth nonlinearity, the hysteresis loop,
pinching phenomenon, and the coupling between lateral and vertical displacement. Results
of the proposed method showed great agreement with those of numerical simulations by
FEM and SPH. In summary, our study showed/confirmed that

1. For loose and medium sand, ^ = 0.5–2.2, and for dense sand, ^ ≈ 0.0; ^ follows
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the same variation with �/� and relative density for both lateral and uplift pipe
displacement.

2. Hysteresis is more pronounced for higher degree of soil nonlinearity (large pipe
displacement).

3. Pinching mainly occurs in �H - DH due to gravity. Similar behavior in �G - DG results
from the effect of coupling.

4. Coupling becomes more pronounced for larger displacement amplitude.

Despite some limitations, namely the applicability for rigid (or nearly rigid) pipe, and the
inability to capture the post-peak behavior of FDC, this study is a first step toward building
a reduced-order 3D hysteresis model to incorporate soil springs along lateral, vertical, and
longitudinal directions of pipeline-soil interaction models. Our work will provide a tool to
investigate cyclic/dynamic SPI, which we envision integrating in large-scale soil-structure
interaction models.
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C h a p t e r 3

Dynamic axial soil impedance function for rigid
circular structures buried in elastic half-space
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3.1 Introduction
The spatial distribution of underground buried structures, such as tunnels, pipelines, and
culverts, makes them more prone to seismic damage induced by geohazards. It is therefore
critical to accurately quantify dynamic soil-buried structure interaction (SbSI) effects in
designing earthquake-resistant structures. Generally, seismic analyses of SbSI are carried
out by either a fully three-dimensional simulation (direct method) or a reduced-order model
(substructure method). The highly computational cost of direct method hinders it from
routine use for deterministic and especially stochastic design procedures. Meanwhile, the
reduced-order model is computationally effective and has been extensively used over the
years by many researchers and structural design codes. State-of-the-art reduced-order SbSI
models of buried structures are based on the theory of beam on dynamicWinkler foundation,
where the soil surrounding the structure is replaced by a set of springs and dashpots (aka
SIFs) formulated to represent its macroscopic reaction to differential deformations between
soil and structure. In such amethod, estimation of SIF (spring stiffness and dashpot damping
coefficient) is a top priority, which significantly affects the computation of internal loads
and design of the buried structures (Pitilakis and Tsinidis, 2014).

Since the 1960s, quite a number of studies have been carried out to investigate the dy-
namic SIF of different types of foundation. For example, Karasudhi et al. (1968); Luco
and Westmann (1972); Gazetas (1980); Hryniewicz (1981) studied the dynamic response
of a surface rigid strip foundation (Fig. 3.1a), while Rajapakse and Shah (1988); Israil and
Ahmad (1989); Ahmad and Bharadwaj (1991); Bharadwaj and Ahmad (1992) examined
the dynamic behavior of embedded rigid strip foundation (Fig. 3.1b). Novak et al. (1978);
Novak and Aboul-Ella (1978); Padrón et al. (2012); Goit and Saitoh (2013), meanwhile,
derived the SIF for pile foundation (Fig. 3.1c) in homogeneous and layered soil domain.
Nevertheless, the SIFs for spatially distributed buried structures (Fig. 3.1d) have not been
properly addressed until now, even in the current guidelines of the American Society of
Civil Engineers (ASCE, 1984), the American Lifeline Alliance (ALA, 2005), the European
Committee for Standardization (CEN, 2006), and the Pipeline Research Council Interna-
tional (PRCI, 2009). Due to this lack of information, throughout the years, many researchers
have to use rough estimation of SIF in their reduced-order models when dealing with SbSI
problems. Hindy and Novak (1979); Datta and Mashaly (1986, 1988) used approximation
method, which is a combination of the static solution by Mindlin (1964) with the dynamic
plane-strain solution by Novak et al. (1978) to derive SIF in their lumped-mass models for
underground pipelines. Or in the development of an analytical solution to estimate the upper
bounds of stresses and strains for soil-pipeline interaction, Mavridis and Pitilakis (1996)
used directly the dynamic SIF originally for pile foundation. Recently, when performing
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the risk assessment of the pipeline network under earthquake scenario, the SIF is chosen as
static stiffness following the American Lifelines Alliance guideline (e.g., Lee et al., 2009;
Nourzadeh and Takada, 2013; Saberi et al., 2013), or as static stiffness of a long rectangular
tunnel (e.g., Anastasopoulos et al., 2007), or obtained as a frequency-independent constant
(e.g., Hsu, 2020). Most, if not all, of the mentioned work, ignores the dynamic nature of

Pile foundationStrip foundation Embedded foundation Buried structure

(a) (b) (c) (d)

Figure 3.1: Schematics of: (a) strip foundation; (b) embedded foundation; (c) pile founda-
tion; and (d) buried structure.

seismic loading, and resorts to frequency-independent SIFs that cannot account for transient
differential strains induced by wave passage effects (e.g., surface waves from basin effects).
Besides, a small number of recent studies (Seylabi et al., 2016; Seylabi, 2016) have showed
that in SSI problems of buried structures, frequency dependency of SIF is more important
than in the case of either shallow or deep foundations, because the free surface distorts the
path of radiated energy away from the vibrating tunnel or pipeline (Fig. 3.2).

Although the axial strain is dominant in buried structures response, very little research has
been done to determine the dynamic axial SIF for this type of structure. Some experiments
were done in the past to study dynamic axial response of underground structures during
seismic ground motion (e.g., Sakurai and Takahashi, 1969; Nasu et al., 1974), but almost
no information about soil spring stiffness or dashpot damping coefficient was drawn from
these experiments. Colton et al. (1982) conducted dynamic tests to measure the soil-pipe
axial interactions in sand backfill at frequencies from 0.1 to 12 Hz. Their results were then
used by El Hmadi and O’Rourke (1988) to back-calculate the axial soil spring stiffness via
a pseudo-static model. Lately, Liu et al. (2018) proposed an experimental method to obtain
the axial soil spring stiffness of ductile cast iron and welded steel pipes through artificial
earthquake. Generally, all mentioned work only focused on axial soil spring stiffness,
although the results are sparse, while neglecting the dashpot damping coefficient.

In an attempt to find the analytical solution for axial SIF of infinitely long circular hole in half-
space soil domain, Matsubara and Hoshiya (2000) solved a Neumann boundary condition
problem, with stress ? applied at the hole circumference and the approximate displacement
calculated by averaging the displacement of nodes around the circumference. While the
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Figure 3.2: Geometry to compute SIF of a cross section: (a) full-space for pile foundation;
and (b) half-space for buried structure.

stress boundary conditions at free surface (traction free) and at the hole circumference
(pressure ?) are satisfied, the displacement of nodes around the hole circumference is
unconstrained. It means that the nodes at the interface are able to move freely, and as a
result, the stiffness of the pipe is not taken into account. This underlying assumption is not
physically appropriate, because the soil particles at the circumference and the pipe usually
conform to each other, especially in small displacement regime. Moreover, the relatively
high stiffness of the structure with respect to the near-surface soil (which is usually soft
soil) making the assumption of rigid buried structures is more appropriate. Besides, the
analytical solution of Matsubara and Hoshiya only considers the participant of the first
mode shape by using the second kind of Hankel’s function of only zero order � (2)0 (:A1).

It appears necessary to obtain an analytical solution which is mathematically exact for axial
SIF of spatially distributed buried structures. This solution should precisely account for
the energy reflected from the soil free surface and yield constant displacement around the
structure boundary. It is also important to build a high-fidelity numerical model to estimate
SIF, which can be generalized to any geometry of underground structure or soil strata. In
this chapter, we devised an analytical solution for dynamic axial SIF of rigid cylinder buried
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in homogeneous elastic half-space by solving a mixed-boundary-value problem, in which
the displacement is prescribed at the circular buried structure boundary and traction-free
condition is satisfied at the soil free surface. We further used FE analyses to accurately
extract the axial SIF of rigid cylinder in homogeneous and two-layered soil half-space.
While the work here focuses on the rigid circular interface, the FE approach can apply well
to more general shape and flexibility of the underground structures. Finally, we performed
the parametric studies to investigate the effects of cylinder burial depth and material contrast
on the SIFs of homogeneous and two-layered half-space.

The remainder of this chapter is organized as follows: In Section 3.2, we reviewed some
basics of the SIF. In Section 3.3, we derived the analytical solution for homogeneous
half-space, using Hankel–Fourier series expansion. We also described the FE modeling
procedure to generate SIFs for homogeneous and two-layered half-spaces in Section 3.4.
In Section 3.5, we verified the analytical solution and the FE approach by comparing their
results with each other. Sections 3.6 and 3.7 present the SIFs and the effect of cylinder burial
depth on SIFs in case of homogeneous and two-layered half-space, respectively. The effect
of material contrast also was investigated in two-layered half-space. Concluding remarks
were provided in Section 3.8.

3.2 Review of axial soil impedance function
An important step to evaluate the SbSI is to calculate the SIF for the "associated" massless
structure as a function of frequency. The associated structure is identical to the actual one
in terms of geometry and material properties, but has no mass. Technically, the SIF is a
Dirichlet-to-Neumann mapping function, which relates the displacements (at soil-structure
interface) and the interacting forces that soil domain exerts on the structure.

For a given angular frequency l ∈ R+ from the steady-state harmonic excitation, the
dynamic SIF is defined as the ratio between the force (or moment) and the resulting
displacement (or rotation) at the centroid of rigid body (Gazetas, 1983). In this work, we
focused on the axial impedance  ̂I computed in the frequency domain as follows:

 ̂I (l) =
�̂I (l)
F̂ (l) , (3.1)

where the complex-valued functions �̂I (l), F̂(l) : R → C are the applied force and
resulting uniform harmonic displacement at the centroid of the soil-structure interface. The
real-valued functions �I (C), F(C) : R→ R are their counterparts in the time domain, which
are illustrated in Fig. 3.3. Because all the SIFs in this chapter are in frequency domain only,
the hat superscript "ˆ" of SIFs is henceforth omitted for simplicity,  ̂I is rewritten as  I.
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Figure 3.3: The rigid axial displacement.

The soil impedance in Eq. (3.1) is thus a complex-valued function that can be written
as  I = <( I) + 8=( I), where 82 = −1 is the imaginary unit, <( I) is the real part
representing the mass inertia and stiffness, and =( I) is the imaginary part reflecting the
radiational and material damping of the soil domain (Gazetas, 1983). The complex value
of SIF physically implies that the applied force and the resulting displacement are out of
phase.

3.3 Analytical solution for soil impedance function of ho-
mogeneous half-space

3.3.1 Assumptions
The following assumptions were employed to obtain the analytical solution for the axial
SIF:

• The soil domain is half-space, homogeneous, isotropic, and linear elastic.

• The buried structure (cylinder) is rigid, circular, massless and infinitely long.

• The cylinder and soil medium are fully bonded.

• The displacements are small.
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3.3.2 Governing equation
The governing equation for a general linear elastodynamics problem, in the absence of body
forces, is

`∇2u + (_ + `) ∇ (∇ · u) = d ¥u in ΩB , (3.2)

whereΩB ⊆ R3 is the soil half-space domain, _ and ` are the Lamé constants, u : ΩB → R3

is the displacement vector field, and d is the mass density of soil medium.

To find the axial impedance, unitary displacement along z-direction F = 48lC is imposed
on Γ1, which is the circumference of the rigid cylinder. On Γ1, A1 = 0, where 0 is the
outer radius of the cylinder. Because the polarization of the imposed vibration is parallel to
the lengthwise direction of the infinitely long cylinder, the reflected SH wave from the free
surface and the scattered SH wave from the cylinder boundary have the same polarization.
The problem falls into the category of anti-plane strain, in which only displacement along z-
direction F is non-zero, in other words the displacement field u(D, E, F) = (0, 0, F). Using
cylindrical coordinate (A1, \1, I) and Cartesian coordinate (G1, H1, I) systems as shown in
Fig. 3.4, the governing equation and boundary conditions for this particular problem can be
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rewritten as

m2F

mA2
1
+ 1
A1

mF

mA1
+ 1
A2

1

m2F

m\2
1
=

1
22
V

m2F

mC2
in ΩB , (3.3)

fGI = 0 on ΓB , (3.4)

F = 48lC on Γ1 , (3.5)

where ΓB is the soil traction-free surface and 2V =
√
`/d is the shear wave velocity. On ΓB,

G1 = ℎ, where ℎ is the burial depth of the cylinder.

3.3.3 Solution
For simplicity, the time factor 48lC is henceforth omitted. We first consider the case of a
full-space problem, where only Eq. (3.3) needs to be satisfied. Using separation of variables
in cylindrical coordinate, Mow and Pao (1971) proposed the following general solution

F1 (A1, \1) =
∞∑
<=0

�
(2)
< (:A1) [�< cos (<\1) + �< sin (<\1)] , (3.6)

where : = l/2V is the wave number, �< and �< are complex coefficients, and < ∈ Z is an
integer. Note that the Hankel function of the second kind � (2)< (:A1) was used in order to
satisfy the Sommerfeld radiation condition because the cylindrical SH waves scatter from
the cylinder boundary.

Regarding the half-space problem, the solution is obtained from the full-space solution
combined with image technique to satisfy traction-free boundary condition. The imaginary
cylinder is symmetric with the actual cylinder with respect to the free surface as shown in
Fig. 3.4. The cylindrical SH waves scattering from the imaginary cylinder can be written
as:

F2 (A2, \2) =
∞∑
<=0

�
(2)
< (:A2) [�< cos (<\2) + �< sin (<\2)] . (3.7)

The total displacement in the half-space soil domain is thus the superposition F = F1 +F2,
for which F1 represents the wave scattering from the vibrating cylinder, and F2 represents
the wave reflected from the half-space free surface. The general solution for the half-space
problem is

F =

∞∑
<=0

{[
�
(2)
< (:A1) cos (<\1) + � (2)< (:A2) cos (<\2)

]
�<+[

�
(2)
< (:A1) sin (<\1) + � (2)< (:A2) sin (<\2)

]
�<

}
. (3.8)
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We see that due to the symmetry, at the free surface F1 = F2 and fGI = `mF/mG1 = 0.
The displacement field is uniquely described if the complex coefficients �< and �< are
obtained.

The boundary condition at the cylinder circumference is used to establish a set of equations
with variables �< and �<. Because F1 and F2 are written with respect to two different
coordinate systems, F2 is transformed from (A2, \2) to (A1, \1). Considering a point Q in
the half-space, a geometrical triangle 4QO1O2 with lengths of sides {A1, A2, 2ℎ} is created.
As shown in Fig. 3.5, the triangle 4QO1O2 is scaled by a factor of : , which is the wave
number.

r1
θ1

r2

θ2

2h

kr2kr1

2kh
θ1 θ2

similar triangle

Q

O1

O2

Figure 3.5: Geometry of Graf’s addition theorem.

The Graf’s addition theorem (Abramowitz and Stegun, 1948) is written for this similar
triangle as

�= (:A2)� (=\2) =
∞∑

<=−∞
�=+< (2:ℎ) �< (:A1)� (<\1) , for |:A1 | < |2:ℎ| , (3.9)

where = ∈ Z, �= (·) denotes the Bessel function or Hankel function of the first or second
kind �= (·), .= (·), � (1)= (·), � (2)= (·), or any nontrivial linear combination of these functions,
and � (·) denotes sin (·) or cos (·) function. It should be noticed that the theorem holds
when |A1 | < 2ℎ. From Eq. (3.9), we have

�
(2)
= (:A2)� (=\2) =

∞∑
<=−∞

�
(2)
=+< (2:ℎ) �< (:A1)� (<\1) . (3.10)
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With �−< (:A1) = (−1)<�< (:A1), cos (−<\1) = cos (<\1), and sin (−<\1) = − sin (<\1),
Eq. (3.10) is rewritten as

�
(2)
= (:A2)� (=\2) =

∞∑
<=0

�< (:A1)� (<\1)
[
�
(2)
=+< (2:ℎ) ± (−1)<� (2)=−< (2:ℎ)

] n<
2
,

(3.11)
where

n< =


1, for < = 0

2, for < ≥ 1.

Let '±<= (2:ℎ) =
n<

2

[
�
(2)
=+< (2:ℎ) ± (−1)<� (2)=−< (2:ℎ)

]
, in which plus sign '+<= (2:ℎ) is

chosen when� (·) denotes cos (·) function, whereas minus sign '−<= (2:ℎ) is chosen when
� (·) denotes sin (·) function. Eq. (3.11) is written as

�
(2)
= (:A2)� (=\2) =

∞∑
<=0

�< (:A1)� (<\1) '±<= (2:ℎ) . (3.12)

Replacing index < with = in Eq. (3.7) and using relation in Eq. (3.12), we have

F2 (A2, \2) =
∞∑
==0

�
(2)
= (:A2) [�= cos (=\2) + �= sin (=\2)]

=

∞∑
==0

[
�=�

(2)
= (:A2) cos (=\2) + �=� (2)= (:A2) sin (=\2)

]
=

∞∑
==0

[
�=

∞∑
<=0

�< (:A1) cos (<\1) '+<= (2:ℎ) +

�=

∞∑
<=0

�< (:A1) sin (<\1) '−<= (2:ℎ)
]

=

∞∑
<=0

�< (:A1)
[
�∗< cos (<\1) + �∗< sin (<\1)

]
= F2 (A1, \1) , (3.13)

where

�∗< =
∞∑
==0

'+<= (2:ℎ)�=, (3.14)

�∗< =
∞∑
==0

'−<= (2:ℎ)�=. (3.15)

The total displacement (valid only in the half-space region that A1 < 2ℎ) is now written as

F (A1, \1) = F1 (A1, \1) + F2 (A1, \1)

=

∞∑
<=0

{[
�
(2)
< (:A1) �< + �< (:A1) �∗<

]
cos (<\1) +[

�
(2)
< (:A1) �< + �< (:A1) �∗<

]
sin (<\1)

}
. (3.16)
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A unitary displacement F = 1 was imposed at the cylinder circumference Γ1, where
Eq. (3.16) holds because A1 = 0 < 2ℎ. When F is a constant, all the coefficients for sine and
cosine functions in the right hand side of Eq. (3.16) are zeros, except at < = 0. Therefore,
we have the following set of equations

�
(2)
0 (:0) �0 + �0 (:0) �∗0 = 1 for < = 0, (3.17)

�
(2)
< (:0) �< + �< (:0) �∗< = 0 for < ≥ 1, (3.18)

�
(2)
< (:0) �< + �< (:0) �∗< = 0 for < ≥ 1. (3.19)

If we now truncate < ∈ N, for instance < = # , we have 4 × (# + 1) unknown coefficients
�<, �<, �

∗
<, and �∗<. Meanwhile, we have 2× (# +1) equations coming from traction-free

condition at the free surface as in Eqs. (3.14) and (3.15). Other 2× (# + 1) equations come
from theDirichlet boundary condition at the cylinder circumference as in Eqs. (3.17), (3.18),
and (3.19). Solving this system of equations, we get the complex coefficients �< and �< to
uniquely prescribe the displacement field of the soil domain via Eq. (3.8). In this problem,
the geometry and the vibrating source are symmetric with respect to the G-axis, therefore
the displacement function F is an even function of \. This reasoning leads to �< = �∗< = 0.
Obviously, solving the system of equations in Eqs. (3.15) and (3.19) gives identical results.
Due to the symmetry, there are 2 × (# + 1) unknown coefficients �< and �∗< remaining.

The soil impedance per unit length at the circumference of the cylinder is

 I (l) = −
∫ 2c

0
fA1I

��
A1=0

0 d\

= −
∫ 2c

0
`
mF

mA1

����
A1=0

0 d\

= −0`
∞∑
<=0

{[
m�
(2)
< (:A1)
mA1

�����
A1=0

�< +
m�< (:A1)
mA1

����
A1=0

�∗<

] ∫ 2c

0
cos (<\1) d\1

}
= −2c0`

[
m�
(2)
0 (:A1)
mA1

�����
A1=0

�0 +
m�0 (:A1)
mA1

����
A1=0

�∗0

]
= 2c0`:

[
�
(2)
1 (:0) �0 + �1 (:0) �∗0

]
. (3.20)

3.3.4 Truncation errors
The analytical solution is based on the infinite series expansion, which is approximated
by truncating the series at a chosen order # . The value of # is determined by the series
terms that do not contribute considerably to the computed displacements and stresses at the
cylinder circumference. Generally, the higher the complexity of the displacements is, the
more mode shapes are required, and thus the larger the value of # becomes.
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We tested the rate of convergence of the solutions by solving the problem with different
values of # . For instance, SIFs of burial depth ℎ/0 = 2.36 were obtained with # =

{3, 4, .., 10}. The shear modulus, Poisson’s ratio, and density of soil domain are ` = 4.5
MPa, a = 0.25, and d = 1800 kg/m3, respectively. The outside radius of the cylinder is
0 = 1.28 m. The normalized SIFs are expressed as a function of dimensionless frequency
00 = 0l/2V. As shown in Fig. 3.6, for low frequency, accurate results are obtained, even
with # = 3. For higher frequency, larger # is required to achieve satisfactory results. The
SIFs with # = 5, 8, 10 cannot be visually distinguished, which proves the convergence of
the truncating solution.
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Figure 3.6: Convergence of series truncation: (a) real part; and (b) imaginary part.

To evaluate the rate of convergence, we calculated the !2-norm of the error. The analytical
solution is evaluated at dimensionless frequency 0 90 = 9Δ00, where Δ00 = 0.01 and
9 = {1, 2, ..., 400}. From the previous observation, # = 10 can be chosen as the exact
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solution.  #I denotes the SIF, either real or imaginary part, obtained by truncating the
series at chosen order # . For each # , the !2-norm of the error, denoted as |� |!2 , is
determined as

|� |!2 =
1
`

√√√ 400∑
9=1

[
 #I (0 90) −  

10
I (0 90)

]2
Δ00. (3.21)

Fig. 3.7 shows the errors for different values of # . The least-squares regression line shows
that the error decays rapidly with increasing # , and the error is approximately O(10−#+3).
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Figure 3.7: Rate of convergence.

Clearly, the truncation yielded highly accurate results for # = 10. Therefore, the solution
with # = 10 was used as the reference/analytical solution from now on.

3.4 Finite element analysis for soil impedance functions
of homogeneous and two-layered half-spaces

3.4.1 Numerical computation of impedance function
Seylabi et al. (2016) developed a method to extract the impedance functions of a semi-
infinite half-space from a FE model. The approach is general enough that can be applied
equally well to flexible interfaces as well as 3D problems. This study considers a rigid
interface and an anti-plane-strain problem as in Fig. 3.8.

Recall in Eq. (3.1), the axial SIF is defined in frequency domain. Normally, the frequency
domain FE solver is used to obtain the ratio of reactions to prescribed displacements, which
directly yields SIF for a specific frequency. This procedure must be repeated for different
frequencies to get the impedance spectra, in which the number of simulations depends on
the desired resolution of the spectra. In contrast, Seylabi et al. (2016) showed that only one
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Figure 3.8: Numerical model for the estimation of SIF: (a) infinite half-space FE model;
and (b) truncated half-space FE model using perfectly matched layer (PML) elements.

simulation is required to find SIF in time domain FE analysis. Therefore, we choose the
latter approach to perform the SIF calculation. The motion of a rigid cylinder in an anti-
plane-strain setting is shown in Figure 3.8. The SIF can be computed using the following
procedure:

1. Apply the force time history �I (C) to the centroid of rigid interface. Except transla-
tional motion along the I-axis, all other degrees of freedom are constrained.

2. Record the resulting axial displacement time history F(C).

3. Use Fourier transform to compute �̂I (l).

4. Use Fourier transform to compute F̂(l).

5. Compute impedance function  I (l) = �̂I (l) /F̂ (l).

It should be noted that this is a single-degree-of-freedom problem, therefore there is
not much difference between stiffness method (applying unit displacement) and flexibil-
ity method (applying unit force) because only a simple division is required instead of taking
the inverse of the compliance matrix to get the stiffness matrix. Besides, it may be necessary
to apply zero-padding to time signals of the applied force and resulting displacement before
performing Fourier transform to increase the resolution of the calculated impedance.



53

3.4.2 Finite element models
3.4.2.1 Input time signal

To achieve SIF over a wide range of frequency, the energy of the input time history force
should be distributed over the corresponding frequency band. A Ricker wavelet was chosen
to fulfil this requirement, with the applied force in time � (C) is calculated as

� (C) = �0
[
2c2 5 2

2 (C − C0)2 − 1
]
4−c

2 5 2
2 (C−C0)2 . (3.22)

In Eq (3.22) �0 is the amplitude of the applied force, 52 is the central frequency of the
signal, and C0 is the time when the maximum amplitude occurs. This study used �0 = 1 kN,
52 = 15 Hz, and C0 = 0.2 sec. The generated Ricker wavelet using these values is shown in
Fig. 3.9. As one may see, the signal energy is distributed over a broad band from 0 to 40
Hz, which will finally yield the SIF over this frequency band.
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Figure 3.9: The applied force in time and frequency domain.

3.4.2.2 Spatial-temporal discretization

The FE method was used to discretize the infinite half-space model. The anti-plane-
strain soil domain is truncated using absorbing boundaries conditions, provided to limit the
occurrence of spurious waves that are reflected from the far-field boundaries. To avoid the
fictitious energy bouncing back to the interested domain, we used PML elements (Basu,
2009) as shown in Fig. 3.8. The FE analyses were conducted using 3D LS-DYNA R10.0.0.

Element dimensions are chosen based on the highest frequency ( 5<0G) and shear wave
velocity of soil medium (2V). Large mesh plays a role of low-pass filter and removes
short-wavelength (high-frequency) energy, whereas excessively small mesh can generate
numerical instability and require much more computational effort. The approximate dimen-
sion of element 34 is calculated as 34 = _<8=/=4?F, where _<8= = 2V/ 5<0G is the minimum
wavelength , =4?F is the number of elements per wavelength. In wave propagation prob-
lem, =4?F is typically chosen from 6 to 10. To ensure high accuracy and computational
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efficiency, we used unstructured quadrilateral grid mesh with =4?F = 40 near the cylinder
circumference and =4?F = 15 near the boundary of truncated domain.

We used the explicit central difference time integration method, which is conditionally
stable. Therefore, the time increment must be chosen carefully to maintain the numerical
stability and accuracy. The critical time step ΔC2 is based on the Courant–Friedrichs–Lewy1
condition and calculated as ΔC2 = 34/2U, where 2U is the compression wave velocity. In
this work we used a time step size of ΔC = 0.9ΔC2. Besides, the time step is related to the
sampling rate at which the resulting displacement is calculated. This sampling rate must be
sufficiently high to adequately reconstruct the highest frequency in the signal. According
to Nyquist–Shannon sampling theorem2 we enforced ΔC < 0.5/ 5<0G .

Furthermore, termination time should be chosen to consider the SH waves bouncing back
and forth between the free surface and the cylinder. The termination time must be long
enough so that the cylinder displacement signal completely returns to zero. In other words,
the bouncingwavesmust vanish, meaning that the amplitude (energy) of the bouncingwaves
is small enough that it can be negligible. If the termination time is short, the signal (at later
time) of the bouncing waves cannot be recorded, some energy of the frequency spectrum
is thus removed. That will, in turn, lead to disparities in the frequency content of the
displacement signal. Fig. 3.10(a) shows an example of a 3.0-second resulting displacement
in time domain for ℎ/0 = 16 with the effect of bouncing waves from the free surface.
Whereas, Fig. 3.10(b) illustrates the frequency domain of the displacement signals, which
are truncated at 1.0, 1.5, and 2.0 sec from the original displacement signal. Obviously, when
the termination time is 1.0 sec, some of the displacement time histories and thus the energies
are missing, causing discrepancy in frequency domain between the 1.0-second truncated
signal and the 3.0-second signal. When the displacement is calculated up to 1.5 sec, the
first bouncing wave is fully accounted for, and the frequency spectrum closely approaches
that of the 3.0-second signal. If the termination time is 2.0 sec, the second bouncing wave
also is included, the frequency domains of 2.0-second and 3.0-second signals are identical.
Apparently, the displacement signal should consist of at least two bouncing waves to achieve
adequate results. Moreover, the excitation force needs to be loaded and totally unloaded
within termination time, which can be roughly taken as 1.0 sec. To that end, we chose
termination time as 5ℎ/2V or 1.0 sec, whichever is larger.

For homogeneous half-space soil domain, the shear modulus, Poisson’s ratio, and density
1The Courant–Friedrichs–Lewy (CFL) condition is a necessary condition for convergence of hyperbolic

PDEs, which arises from studying the numerical domain of dependence.
2The Nyquist–Shannon sampling theorem provides a sufficient condition for the sample rate that allows a

discrete sequence of samples to capture all the information from a continuous-time signal of finite bandwidth
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Figure 3.10: Displacement signal for ℎ/0 = 16 in: (a) time domain; and (b) frequency
domain.

are ` = 4.5 MPa, a = 0.25, and d = 1800 kg/m3, respectively. The outside radius of the
cylinder is 0 = 1.28 m.

3.5 Verification
The analytical solution derived in Subsection 3.3.3 as well as the FE analysis discussed
in Subsection 3.4.1 for the axial SIFs in homogeneous half-space were compared with the
impedance formula proposed by Matsubara and Hoshiya (2000). The cases ℎ/0 = 2.36
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and ℎ/0 = 5 were chosen for verification purpose.

0 1 2 3 4

-2

0

2

4

6

8

10

0 1 2 3 4
0

5

10

15

20

25

30

Analytical solution

FE analysis

Matsubara and Hoshiya (2000)

Figure 3.11: SIFs for ℎ/0 = 2.36: (a) real part; and (b) imaginary part.
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Figure 3.12: SIFs for ℎ/0 = 5: (a) real part; and (b) imaginary part.

Figs. 3.11 and 3.12 show that the results from analytical solution and FE analysis agree
very well, whereas the results from Matsubara and Hoshiya (2000) are different. This
discrepancy is understandable because Matsubara and Hoshiya solved the problem with
Neumann boundary condition by applying shear stress at the soil-cylinder interface, rather
than Dirichlet boundary condition as it was done in this work. Despite the mathematical
correctness, their solution is an approximation in the sense that the resulting displacement
was achieved by averaging the displacement of all the nodes along the circular interface
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and the stiffness (rigidity) of the cylinder cannot be taken into account. Because of the
averaging nature, their solution can yield reasonable SIF in case of low-frequency loading,
but inaccurate SIF in high-frequency excitation. In the low-frequency excitation zones, the
displacements of interface nodes are not much different, which roughly represents the rigid
body motion. Hence, the results of Matsubara and Hoshiya coincide with the proposed
analytical solutions and FE analyses, as shown in Figs. 3.11 and 3.12. But, when it comes
to higher frequency excitation, the displacements of those nodes evolve differently, causing
the deviation of Matsubara and Hoshiya solutions from the other two solutions.

3.6 Homogeneous half-space
We used the analytical solution obtained in Subsection 3.3.3 to generate SIFs for different
cases of burial depth. This approach was chosen because it requires less computational
effort.

Fig. 3.13 illustrates the real and imaginary parts of SIFs for ℎ/0 = {4, 8, 12, 16,∞}. The
SIF for full-space problem by Novak et al. (1978) also is plotted for comparison. Overall,
the half-space SIFs for different burial depths oscillate about an average curve, which in this
case is the SIF for the full-space. These oscillations are attributed to the reflected SH waves
from the half-space free surface, which propagate through the burial depth ℎ and strike the
cylinder. The constructive or destructive interference of waves occurring within the region
between the soil free surface and the cylinder leads to the amplification or reduction of the
reaction at the cylinder boundary.

As a result, the characteristic of this oscillation significantly depends on ℎ. The amplitude of
the oscillation for the case ℎ/0 = 4 yields the largest value when it is compared against the
burial depth ℎ/0 = {8, 12, 16}. When the location of the cylinder is deeper, this amplitude
gradually decreases, indicating that the influence of reflected waves on the stresses at the
cylinder circumference decreases. This fact makes sense, because the reflected SH waves
radiate energy along their propagation paths. The further they travel, the more energy
lost. Consequently, those waves with low levels of remaining energy are not strong enough
to considerably interfere with the pre-existing displacements and stresses at the cylinder
boundary. In terms of frequency, the SIFs oscillation closely resembles the ideally simplified
problem of the interference of two point sources with equal amplitude and same phases,
in which the net disturbance at a point % is proportional to cos (Δq/2), where Δq is the
phase difference between the signals arriving at % from two sources (Towne, 1988). If
the distance between two sources is 2ℎ and % coincides with one source, Δq = 2:ℎ, and
thus the disturbance is proportional to cos (:ℎ), a sinusoidal function of wavenumber :
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Figure 3.13: SIFs for different cases of burial depth: (a) real part; and (b) imaginary part.

with frequency ℎ. Although the actual and imaginary cylinders have finite lengths and the
wave amplitude of the imaginary cylinder is attenuated when reaching the actual cylinder
boundary, the SIFs of half-space look roughly like oscillating sinusoidal functions with
frequency proportional to ℎ. The smallest burial depth ℎ/0 = 4 generates oscillation of
SIFs with lowest frequency, whereas the larger burial depths produce oscillations with
higher frequencies (Fig. 3.13). Observably, the preceding variation patterns of oscillatory
amplitude and frequency occur in both real and imaginary parts of the SIFs.
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Clearly, the differences between SIFs of half-space domain and that of full-space domain
are considerable. Even with ℎ/0 = 16, the percentage difference is up to 50% in the high
dimensionless frequency region. As a result, these differences must be accounted for in the
design process of underground buried structures.

When ℎ/0 is very large ℎ/0 → ∞, e.g., ℎ/0 = 105, the reflected waves lose almost all of
their energy and virtually disappear before impinging on the cylinder. The half-space SIF
should, therefore, converge to its full-space counterpart. As shown in Fig. 3.13, the SIFs
for half-space when ℎ/0 →∞ perfectly match the full-space SIFs.

3.7 Two-layered half-space
In this section, we used the FE analysis approach to generate SIFs for two-layered soil
stratum. The geometry of the problem is displayed in Fig. 3.14, in which ℎ1 and ℎ2 are
the distances from the center of the cylinder to the surface of the soil layer 1 and layer
2, respectively. Both soil layers have same values of mass density d = 1800 kg/m3 and
Poisson’s ratio a = 0.25, but different values of shear modulus, `1 compared with `2. For
the soil layer 1, the shear modulus is `1 = 4.5 MPa. The outside radius of the cylinder is
0 = 1.28 m. The effects of material contrast ratio `1/`2 and structure location ℎ1/0 and
ℎ2/0 on the axial SIF are investigated.

soil layer 1
ρ, ν, μ1 

h1

x

y a
h2

soil layer 2
ρ, ν, μ2 

Figure 3.14: Geometry of two-layered half-space.

3.7.1 Effect of material contrast
Two configurations ℎ1/0 = 2ℎ2/0 = 4 and ℎ1/0 = ℎ2/0 = 4 are considered to investigate
the effect of material contrast. Figs. 3.15 and 3.16 show the normalized real and imaginary
parts of SIFs for a material contrast `1/`2 = {0.10, 0.25, 0.50, 0.75, 1.00} as a function
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of dimensionless frequency 00 = 0l/2V1, where 2V1 =
√
`1/d is the shear wave velocity

of soil layer 1. In these figures, the analytical results for homogeneous half-space (i.e.,
`1/`2 = 1.00) also were displayed in black dashed-line. In general, the material contrast
affects the SIFs in a similar manner in two cases of burial depth, where the SIFs of
two-layered soil domains show some deviations from that of the homogeneous half-space
because of the reflection from the interface between soil layers. The smallest material
contrast ratio `1/`2 = 0.10 produces the largest deviation. When this ratio becomes larger,
the impedance curve becomes closer to that of the homogeneous half-space. This is not
particularly surprising because a smaller contrast ratio implies a higher percentage of energy
entrapment in layer 1, and lower energy leakage into layer 2. The reflected waves from the
soil layer interface, consequently, strike the cylinder harder and generate more variations
in SIFs. When `1/`2 becomes larger and approaches 1, the energy entrapment becomes
smaller and totally escapes from the top soil layer, the SIF of two-layered domain finally
coincides with that of homogeneous half-space.

0 1 2 3 4

-2

0

2

4

6

8

10

0 1 2 3 4
0

10

20

30

0.10

0.25

0.50

0.75

1.00

1.00 - Analytical

1
 / 

2

Figure 3.15: SIFs for ℎ1/0 = 4 and ℎ2/0 = 2 depending on material contrast ratio: (a) real
part; and (b) imaginary part.
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Figure 3.16: SIFs for ℎ1/0 = 4 and ℎ2/0 = 4 depending on material contrast ratio: (a) real
part; and (b) imaginary part.
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`1
`2
= 0.10 `1

`2
= 0.25 `1

`2
= 0.50 `1

`2
= 0.75 `1

`2
= 1.00

ℎ1/0 = 4 ℎ2/0 = 2 5.67 3.47 1.73 0.71 0

ℎ2/0 = 4 3.64 2.29 1.17 0.49 0

ℎ2/0 = 8 2.70 1.71 0.88 0.37 0

ℎ2/0 = 16 2.03 1.29 0.66 0.28 0

ℎ1/0 = 8 ℎ2/0 = 2 5.67 3.52 1.76 0.73 0

ℎ2/0 = 4 3.73 2.34 1.19 0.49 0

ℎ2/0 = 8 2.95 1.86 0.96 0.40 0

ℎ2/0 = 16 2.02 1.29 0.66 0.28 0

Table 3.1: Dimensionless area A between SIF curves of two-layered domain and that of
homogeneous half-space.

Furthermore, to quantify the difference between the SIF of a two-layered domain and that
of a homogeneous half-space, we calculated the dimensionless area bounded by the curves
of real parts of these two SIFs. In a two-layered domain problem, the dimensionless area
A of the SIF curve is defined as

A =
1
`1

∫ 4

0.05

���< ( I) − < (
 ℎ>I

)��� d00, (3.23)

where  I is the SIF of a two-layered domain with `1/`2 = {0.10, 0.25, 0.50, 0.75} and
 ℎ>I is the SIF of homogeneous half-space with `1/`2 = 1.00. Note that the geometry
ℎ1/0 must be the same for generating  I and  ℎ>I . Table 3.1 presents the values of A
for different configurations, in which large A means large difference in the SIF between
two-layered domain and homogeneous half-space, and vice versa. The values of A are
considerably larger when `1/`2 = {0.10, 0.25}. Whereas, there are only slight differences
in SIFs between homogeneous half-space and two-layered domains if the material contrast
ratio is less than 0.5. This observation is consistent with the energy entrapment explained
previously.

3.7.2 Effect of structure location
The ratio ℎ1/0 is physically related to the effect of the reflection from the free surface, while
the ratio ℎ2/0 is associated with the reflection from the interface between two soil layers.
The effect of ℎ1/0 on SIFs was already explained in Section 3.6, hence the effect of ℎ2/0
on SIFs is analyzed in this section.
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Table 3.1 also shows the general effect of cylinder location on the SIFs of a two-layered
domain. For each material contrast ratio `1/`2 and burial depth ℎ1/0, the dimensionless
area A gradually decreases with increased values of ℎ2/0. This implies the two-layered
domain SIFs are approaching the homogeneous half-space SIFs. The SH waves reflected
from the soil layer interface dissipate energy along their propagation paths, similarly to
the reflected ones from the free surface. When ℎ2/0 is larger, the impact of soil interface
reflection on the cylinder isweaker and eventually becomes insignificant. Figs. 3.17 and 3.18
show the SIFs for ℎ1/0 = 4 and ℎ1/0 = 8, respectively. For each burial depth, five lines
are plotted, four of two-layered domain with ℎ2/0 = {2, 4, 8, 16} and `1/`2 = 0.25 and
another of homogeneous half-space `1/`2 = 1.00 where ℎ2 plays no role. Evidently, the
distance ℎ2/0 has a similar effect on the SIFs as the burial depth ℎ1/0, in which an increase
in ℎ2 leads to an increase in frequency but a decrease in amplitude of the fluctuation of
two-layered domain SIF about an average curve. For the SIF of a two-layered domain,
the average curve is the SIF of the corresponding homogeneous half-space, which has the
same value of ℎ1/0. This similarity is as expected because both effects are related to phase
difference and energy loss during wave propagation. When ℎ2/0 = 16, the SIFs of two-
layered domains fluctuate with highest frequency but smallest amplitude around the SIF
of corresponding homogeneous half-space. Accordingly, two-layered SIFs can be replaced
with that of corresponding homogeneous half-space for practical design purposes when
ℎ2/0 is large enough, e.g., ℎ2/0 ≥ 16.
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Figure 3.17: SIFs for ℎ1/0 = 4 in two-layered domain (`1/`2 = 0.25) and homogeneous
half-space (`1/`2 = 1.00): (a) real part; and (b) imaginary part.

3.8 Conclusions
This chapter presents an analytical solution to compute the axial SIFs of buried structures
in homogeneous elastic half-space. The mixed-boundary-value problem was solved in the
frequency domain using Hankel–Fourier series expansion and Graf’s addition theorem. We
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Figure 3.18: SIFs for ℎ1/0 = 8 in two-layered domain (`1/`2 = 0.25) and homogeneous
half-space (`1/`2 = 1.00): (a) real part; and (b) imaginary part.

also used a numerical approach based on FE analysis in time domain to generate the axial
SIFs for those structures in homogeneous and layered elastic half-space. For homogeneous
half-space, results of the devised analytical solution showed a complete agreement with
those of the FE analysis. In summary, our study showed/confirmed that

1. In SSI problems of buried structures, the frequency dependence of SIFs is more
pronounced than in the case of either shallow or deep foundations because of the
wave interference occurring within the region between the soil free surface and the
structures. This phenomenon must be considered in the design process of buried
structures, in particular for spatially distributed ones.

2. Overall, the SIF of a buried structure depends mostly on the excitation frequency, the
shear modulus of soil domain, and the burial depth and dimension of the structure.
In a layered soil domain, the SIF depends also on material contrast and the distance
from the structure to the interface between soil layers.

3. We showed that a number of # = 10 modes in the Hankel–Fourier series are enough
to accurately approximate the SIF of a buried structure. Moreover, we showed that
the error of the truncation of infinite series decays rapidly with increasing # , and the
error is approximately O(10−#+3).

4. The SIFs of homogeneous half-space oscillate around the SIFs of homogeneous full-
space because of the reflection from the free surface. When the burial depth increases,
this oscillation undergoes an increase in frequency but a decrease in amplitude. The
half-space SIFs converge to full-space SIFs if the burial depth is very large.

5. Analogously, the SIFs of two-layered half-space oscillate around the SIFs of corre-
sponding homogeneous half-space because of the reflection from the interface be-
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tween soil layers. The distance from cylinder center to soil layer interface ℎ2 affects
SIFs in a similar manner that the burial depth ℎ1 does.

6. The difference between SIFs of two-layered half-space and that of corresponding
homogeneous half-space depends primarily on the material contrast `1/`2 and the
distance from cylinder center to soil layer interface ℎ2. This discrepancy becomes
larger when smaller value of material contrast `1/`2 (high energy entrapment) and
smaller value of ℎ2 (less energy dissipated along wave propagation path) are consid-
ered.

7. If `1/`2 ≥ 0.50 or ℎ2/0 ≥ 16, the SIFs of a two-layered half-space can be replaced
with that of the corresponding homogeneous half-space for practical design purpose.

Despite some limitations, namely the applicability for rigid (or nearly rigid) circular struc-
tures and for elastic domains with small displacements, this study is an important step
toward building a reduced-order model to investigate SbSI problems. Our work provides
useful information about initial spring stiffness and dashpot damping coefficient in axial
direction, which we envision integrating in large-scale SbSI models, e.g., reduced-order
model to study soil-pipeline interaction presented in Nguyen and Asimaki (2018, 2020);
Asimaki et al. (2019).
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4.1 Introduction
As mentioned in Chapter 3, it is crucial to accurately calculate the SIFs, taking into account
the energy reflected from the free surface of a half-space domain. Chapter 3 presents
the results for dynamic SIFs in axial direction. In order to complement the results in
three-dimensional space, this chapter studies the dynamic in-plane SIFs.

In this chapter, we derive an analytical solution for the dynamic in-plane SIFs of an infinitely
long rigid cylinder buried in homogeneous elastic half-space. We solved a mixed-boundary-
value problem, where a harmonic displacement is prescribed at the structure boundary and
traction-free condition is satisfied at the free surface. The analytical approach yields
closed-form solutions with high accuracy and relatively simple numerical implementation,
providing the benchmark to verify other approximate solutions. However, the applicability
of this method is in general limited to simple geometries with linear elastic or viscoelastic
material. In this regard, the computational approach is applicable tomost practical problems
withmore complex geometries andmaterial nonlinearities. We used high-fidelity numerical
models to accurately extract the dynamic in-plane SIFs, which can be generalized to any
geometry of underground structure or soil strata. FE analyses were used to perform the
SIFs calculation for homogeneous and two-layered half-spaces. Finally, we conducted a
parametric study to investigate the effects of geometric and mechanical factors, such as
burial depth, Poisson’s ratio, material contrast, and structure location, on the dynamic
in-plane SIFs of homogeneous and two-layered half-spaces.

The remainder of this chapter is organized as follows: In Section 4.2, we reviewed some
basics of the dynamic in-plane SIFs. In Section 4.3, we used Hankel– and Bessel–Fourier
series expansion of the displacement potentials, together with numerical evaluation of
the contour integrals to derive the analytical solution for homogeneous half-space. In
Section 4.4, we also described the FE modeling procedure to generate the dynamic in-
plane SIFs for homogeneous and two-layered half-spaces. In Section 4.5, we verified the
results obtained by analytical and FE approaches for homogeneous half-space. Section 4.6
presents the effect of cylinder burial depth and Poisson’s ratio on the SIFs of homogeneous
half-space, while Section 4.7 shows the impact of material contrast and structure location
on SIFs of two-layer half-space. Concluding remarks were provided in Section 4.8.

4.2 Review of in-plane soil impedance functions
To investigate the SbSI problems, an important task is to compute the SIF for the "associated"
massless structure as a function of frequency. The "associated" structure is identical to the
actual one in terms of geometry and material properties, but has no mass. Technically,
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the SIF describes the relationship between displacements (at soil-structure interface) and
interacting forces that soil domain exerts on structure. For a given steady-state harmonic
excitation, the dynamic SIF is defined as the ratio between the force (or moment) and the
resulting displacement (or rotation) at the centroid of rigid body (Gazetas, 1983).

The motion of a rigid cylinder interface in an in-plane setting is shown in Fig. 4.1. It is
defined by three degrees of freedom: the horizontal, the vertical, and rotational motions
denoted here by D̂x1, D̂y1, and \̂1, respectively. The force-displacement relations for L̂(l) ∈
C

3, K̂(l) ∈ C3×3, and û(l) ∈ C3, over the rigid interface, in the frequency domain can
be written as

L̂(l) = K̂(l) û(l) , (4.1)

where l ∈ R is the angular frequency, L̂(l) is the applied force vector, K̂(l) is the soil
impedance matrix, and û(l) is the displacement vector at the centroid of the cylinder.
Equation (4.1) can be written in matrix form as

�̂y1

�̂x1

"̂/0


=


 ̂yy 0 0

0  ̂xx  ̂x\

0  ̂\x  ̂\\




D̂y1

D̂x1

0 \̂1


, (4.2)

where �̂x1 and �̂y1 are the resultant applied forces in x1 and y1 directions, respectively. The
characteristic length 0, i.e., the outside radius of the cylinder, is used for normalizing "̂
and \̂1 which denote the moment and the rotation angle with respect to the centroid of the
cylinder. Each component of the symmetric impedance matrix K̂(l) is a complex-valued
function, where the real part represents the mass inertia and stiffness, while the imaginary
part reflects the radiational and material damping of the soil domain (Gazetas, 1983). The
complex value of SIF physically implies that there is time delay between the applied force
and the resulting displacement. Because all the SIFs in this work are in frequency domain
only, the hat superscript " ˆ" of SIFs is henceforth omitted for simplicity, for instance,  ̂yy

is rewritten as  yy.

4.3 Analytical solution for soil impedance functions of ho-
mogeneous half-space

4.3.1 Assumptions
We used the following assumptions to devise the analytical solution for the SIFs:
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Figure 4.1: Rigid cylinder kinematics for the definition of SIFs.

• The soil domain is half-space, homogeneous, isotropic, and linear elastic.

• The buried structure (cylinder) is rigid, circular, massless, and infinitely long.

• The cylinder-soil interface is fully bonded.

• The displacements and strains are small.

4.3.2 Governing equation
y
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y1h
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Figure 4.2: The problem configuration.

The governing equation for a general linear elastodynamics problem (Kausel, 2006; Graff ,
2012), in the absence of body forces, is

`∇2u + (_ + `) ∇ (∇ · u) = d ¥u in ΩB, (4.3)

whereΩB ⊆ R3 is the soil half-space domain, _ and ` are the Lamé constants, u : ΩB → R3

is the displacement vector field, and d is the mass density of soil medium.
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Using Helmholtz decomposition (Helmholtz, 1858), the displacement vector field is written
as u = ∇q +∇×7, where q is a scalar potential, 7 is a vector potential satisfying ∇ ·7 = 0.
Eq. (4.3) turns into two uncoupled equations 22

U∇2q = ¥q and 22
V
∇27 = ¥7 (Graff , 2012),

where 2U =
√
(_ + 2`) /d and 2V =

√
`/d are the compression and shear wave velocities,

respectively. For plane-strain cases, only out-of-plane component k of vector7 is non-zero,
hence the equation of vector potential 7 reduces to 22

V
∇2k = ¥k.

Fig. 4.2 shows the geometry of the problem with the cylindrical coordinate (A1, \1, I) and
Cartesian coordinate (G1, H1, I), (G, H, I) systems. The governing equation and traction-free
boundary condition can be expressed as

m2q

mA2
1
+ 1
A1

mq

mA1
+ 1
A2

1

m2q

m\2
1
=

1
22
U

m2q

mC2
in ΩB , (4.4)

m2k

mA2
1
+ 1
A1

mk

mA1
+ 1
A2

1

m2k

m\2
1
=

1
22
V

m2k

mC2
in ΩB , (4.5)

fHG = fHH = 0 on ΓB , (4.6)

where ΓB is the free surface of soil medium. On ΓB, H1 = ℎ, where ℎ is the burial depth of
the cylinder.

To find the in-plane SIFs, a harmonic unitary displacement is imposed on Γ1, which is
the circumference of the rigid cylinder. On Γ1, A1 = 0, where 0 is the outer radius of the
cylinder. To find the values of  yy,  xx, and  \x, the Dirichlet boundary conditions are

DG1 = DH1 = 4
−8lC on Γ1 , (4.7)

\̂1 = 0 on Γ1 . (4.8)

To find the values of  x\ and  \\ , the Dirichlet boundary conditions are

DG1 = DH1 = 0 on Γ1 , (4.9)

\̂1 = 4
−8lC on Γ1 . (4.10)

4.3.3 Displacement potentials
For simplicity, the time factor 4−8lC is henceforth omitted. Using separation of variables
in cylindrical coordinate, Mow and Pao (1971) proposed a general form of solution for the
scalar displacement potential

q (A1, \1) =
∞∑

==−∞

[
�1=�

(1)
= (:UA1) + �2=�

(2)
= (:UA1)

]
48=\1 , (4.11)
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where :U = l/2U is the wavenumber, �1= and �2= are complex coefficients. Either Hankel
functions� (1)= (:UA1),� (2)= (:UA1) orBessel functions �= (:UA1),.= (:UA1) are possible forms,
which ones are chosen depending on the ease of algebraic calculation. The solution for k
has similar form, except that :U is replaced with :V = l/2V.

The presence of the buried cylinder results in P- and SV-waves scattering from the structure
interface. These scattered waves are represented by the Hankel functions of the first kind,
which satisfy the Sommerfeld’s radiation condition and correspond to the outgoing wave
(recall that time factor is 4−8lC). The potentials of the scattering P- and SV-waves are

qB1 (A1, \1) =
∞∑

==−∞
�1=�

(1)
= (:UA1) 48=\1 , (4.12)

kB1 (A1, \1) =
∞∑

==−∞
�1=�

(1)
=

(
:VA1

)
48=\1 . (4.13)

The P- and SV-waves propagate to the half-space free surface and then they get reflected.
The reflection waves are represented by the Bessel functions of the first kind, which are
finite at the origin. The potentials of the reflected P- and SV-waves are

qB2 (A1, \1) =
∞∑

==−∞
�2=�= (:UA1) 48=\1 , (4.14)

kB2 (A1, \1) =
∞∑

==−∞
�2=�=

(
:VA1

)
48=\1 . (4.15)

The total displacement potentials of P- and SV-waves in the homogeneous half-space are

q (A1, \1) = qB1 (A1, \1) + qB2 (A1, \1) =
∞∑

==−∞

[
�1=�

(1)
= (:UA1) + �2=�= (:UA1)

]
48=\1 ,

(4.16)

k (A1, \1) = kB1 (A1, \1) + kB2 (A1, \1) =
∞∑

==−∞

[
�1=�

(1)
=

(
:VA1

)
+ �2=�=

(
:VA1

) ]
48=\1 .

(4.17)

The displacement field is uniquely described if we can determine the complex coefficients
�1=, �1=, �2=, and �2=.

4.3.4 Traction-free condition at H = 0
Lin et al. (2010) used the inverse Fourier transform from wavenumber domain into spatial
domain to represent a Hankel function:

�
(1)
= (:0A1) 48=\1 =

∫ ∞

−∞

[(
8−=

8ca0

) (
: − a0
:0

)=]
48:G1−a0 |H1 |d: , (4.18)
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where a0 =
√
:2 − :2

0 and (:0, a0) represents either (:U, aU) or (:V, aV). To apply the zero-
stress boundary condition, they transformed the representation of scattering and reflecting
wave potentials in the domain −ℎ ≤ H ≤ 0 (or 0 ≤ H1 ≤ ℎ) from cylindrical to rectangular
coordinates as follows

qB1(A1, \1) =
∞∑

==−∞
�1=�

(1)
= (:UA1) 48=\1 = qB1(G, H)=

∫ ∞

−∞
01 (:) 48:G−aUHd: , (4.19)

kB1(A1, \1) =
∞∑

==−∞
�1=�

(1)
=

(
:VA1

)
48=\1 = kB1(G, H)=

∫ ∞

−∞
11 (:) 48:G−aVHd: , (4.20)

qB2(A1, \1) =
∞∑

==−∞
�2=�= (:UA1)48=\1 = qB2(G, H) =

∫ ∞

−∞
02(:)48:G+aUHd: , (4.21)

kB2(A1, \1) =
∞∑

==−∞
�2=�= (:VA1)48=\1 = kB2(G, H) =

∫ ∞

−∞
12(:)48:G+aVHd: , (4.22)

where 
01(:)

11(:)

 =
∞∑

==−∞

8−=

8c


ZU= (ℎ)/aU 0

0 ZV= (ℎ)/aV



�1=

�1=

 , (4.23)


�2=

�2=

 =
∫ ∞

−∞
8=


ZU= (ℎ) 0

0 ZV= (ℎ)



02(:)

12(:)

 d: , (4.24)

ZU= (ℎ) =
(
: − aU
:U

)=
4−aUℎ , (4.25)

ZV= (ℎ) =
(
: − aV
:V

)=
4−aVℎ . (4.26)

At the free surface H = 0 (or H1 = ℎ), zero-stress condition is written as
fHH

fGH


�������
H=0

=


_∇2q + 2`

(
m2q

mH2 −
m2k

mGmH

)
`

(
2m2q

mGmH
+ m

2k

mH2 −
m2k

mG2

) 
��������
H=0

=


0

0

 . (4.27)

Plugging Eqs. (4.19), (4.20), (4.21), and (4.22) into Eq. (4.27) to yield the relation between
(01(:), 11(:)) and (02(:), 12(:)), in combination with Eqs. (4.23) and (4.24), we obtain
a system of equations (Lin et al., 2010):

�2=

�2=

 =
∞∑

<=−∞
J(m, n)


�1<

�1<

 , (4.28)
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where

J(m, n) =
8=−<

8c

∫ ∞

−∞

1
'(:)


%11ZU=ZU</aU %12ZU=ZV</aV

%21ZV=ZU</aU %22ZV=ZV</aV

 d: , (4.29)

'(:) = (2:2 − :2
V)2 − 4:2aUaV ,

%11 = %22 = −
(
(2:2 − :2

V)2 + 4:2aUaV

)
,

%12 = −48: (2:2 − :2
V)aV ,

%21 = 48: (2:2 − :2
V)aU ,

in which '(:) is the familiar Rayleigh function.

4.3.5 Dirichlet boundary condition at cylinder interface
From the displacement potentials in Eqs. (4.16) and (4.17), the displacements are calculated
as follows


DA1

D\1

 =

mq

mA1
+ 1
A1

mk

m\1
1
A1

mq

m\1
− mk
mA1

 =
∞∑

==−∞
M(n)



�1=

�2=

�1=

�2=


48=\1 , (4.30)

where

M(n) =


m/mA1 8=/A1

8=/A1 −m/mA1



�
(1)
= (:UA1) �= (:UA1) 0 0

0 0 �
(1)
= (:VA1) �= (:VA1)

 . (4.31)

To find the impedance components  yy,  xx, and  \x, boundary conditions as in Eqs. (4.7)
and (4.8) are considered, which is a unitary displacement DG1 = DH1 = 1 being imposed at
the circumference (A1 = 0) of the cylinder. Coordinate transformation gives

DA1

D\1


�������
A1=0

=


cos \1 sin \1

− sin \1 cos \1



DG1

DH1


�������
A1=0

=


cos \1 + sin \1

cos \1 − sin \1


=

1
2


(1 + 8)4−8\1 + (1 − 8)48\1

(1 − 8)4−8\1 + (1 + 8)48\1

 . (4.32)
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At A1 = 0, matching each coefficient to the 48=\1 term in Eqs. (4.30) and (4.32), we obtain a
system of equations

M(n) |A1=0



�1=

�2=

�1=

�2=


=

1
2


(1 + 8)X(−1) (=) + (1 − 8)X(1) (=)

(1 − 8)X(−1) (=) + (1 + 8)X(1) (=)

 for each = ∈ Z , (4.33)

where X(−1) (=) and X(1) (=) are the Kronecker delta functions.

To find the impedance components  x\ and  \\ , boundary conditions as in Eqs. (4.9)
and (4.10) are considered, which is a unitary torsional angle \1 = 1 being imposed. Because
D\1 = A1\1, we have 

DA1

D\1


�������
A1=0

=


0

0

 . (4.34)

At A1 = 0, matching each coefficient to the 48=\1 terms in Eqs. (4.30) and (4.34), we have a
system of equations

M(n) |A1=0



�1=

�2=

�1=

�2=


=


0

0X(0) (=)

 for each = ∈ Z , (4.35)

where X(0) (=) is the Kronecker delta function.

If the infinite series are truncated with = ∈ [−#, #], we have 4 × (2# + 1) unknown
coefficients �1=, �1=, �2=, and �2=. 2 × (2# + 1) equations come from the zeros-stress
boundary condition in Eq. (4.28) while other 2× (2# +1) equations come from the Dirichlet
boundary condition in Eq. (4.33) or (4.35). Solving this system of equations, we uniquely
determine the displacement and stress fields of the soil domain.
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4.3.6 Calculation of in-plane soil impedance functions
The stresses in the soil domain are computed as


fAA

fA\

 =


(
_∇2q + 2`

m2q

mA2
1

)
+ 2`
A2

1

(
A1

m2k

mA1m\1
− mk

m\1

)
2`
A2

1

(
A1

m2q

mA1m\1
− mq

m\1

)
+ `

(
1
A2

1

m2k

m\2
1
+ 1
A1

mk

mA1
− m

2k

mA2
1

)

. (4.36)

After solving the system of equations for �1=, �1=, �2=, and �2=, then substituting the
displacement potentials in Eqs. (4.16) and (4.17) into Eq. (4.36) yields

fAA

fA\

 =
2`
A2

1

∞∑
==−∞


(2= (B=

) 2= ) B=




cos (=\1)

sin (=\1)

 , (4.37)

where 
(2=

) B=

 = E
(3)
+ (r1, n)


�1=

8�1=

 +E
(1)
+ (r1, n)


�2=

8�2=

 , (4.38)


(B=

) 2=

 = E
(3)
− (r1, n)


8�1=

�1=

 +E
(1)
− (r1, n)


8�2=

�2=

 . (4.39)

For 9 = {1, 3}, according to Mow and Pao (1971), we have

E
( j)
± (r1, n) =


�
( 9)
11,= ±� ( 9)12,=

±� ( 9)21,= �
( 9)
22,=

 , (4.40)

where

�
( 9)
11,= =

(
=2 + = − :2

VA
2
1/2

)
�
( 9)
= (:UA1) − :UA1�

( 9)
=−1(:UA1) ,

�
( 9)
12,= = −

(
=2 + =

)
�
( 9)
= (:VA1) + =:VA1�

( 9)
=−1(:VA1) ,

�
( 9)
21,= =

(
=2 + =

)
�
( 9)
= (:UA1) − =:UA1�

( 9)
=−1(:UA1) ,

�
( 9)
22,= = −

(
=2 + = − :2

VA
2
1/2

)
�
( 9)
= (:VA1) + :VA1�

( 9)
=−1(:VA1) , (4.41)

with �
( 9)
= representing the Bessel and Hankel functions: �(1)= = �= and �(3)= = �

(1)
= .
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The resultant forces and moment per unit length at the centroid of the cylinder are computed
by integrating the stresses at the cylinder boundary

�G1 =

∫ c

−c
(fAA cos \1 − fA\ sin \1) |A1=0 0d\1 ,

�H1 =

∫ c

−c
(fAA sin \1 + fA\ cos \1) |A1=0 0d\1 ,

" =

∫ c

−c
fA\ |A1=0 0

2d\1 . (4.42)

Substituting Eq. (4.37) into Eq. (4.42) and using the orthogonality property of sine and
cosine, we obtain after integration

�G1 =
2c`
0

(
(2−1 + (

2
1 + )

B
−1 − )

B
1
)
,

�H1 =
2c`
0

(
−(B−1 + (

B
1 + )

2
−1 + )

2
1
)
,

" = 4c`) 20 . (4.43)

Clearly, only the modes with = = ±1 contribute to resultant forces �G1 and �H1, whereas
only the mode with = = 0 contributes to resultant moment " . Note that �G1, �H1, and "
are complex numbers.

Solving the problem with boundary conditions in Eqs. (4.7) and (4.8), we get  yy = �H1,
 xx = �G1, and  \x = "/0. Whereas, solving the problem with boundary conditions in
Eqs. (4.9) and (4.10), we get  x\ = �G1/0 and  \\ = "/02.

4.3.7 Integration contour
The primary task here is to evaluate the integrals appeared in the matrix J(m, n) in
Eq. (4.29), which are technically the inverse Fourier transform from wavenumber domain
into spatial domain. The main difficulty in the integral evaluation arises from the existence
of branch points and poles. The branch points are due to the square roots a0 =

√
:2 − :2

0
where (:0, a0) represents either (:U, aU) or (:V, aV). The poles, meanwhile, arise from
the roots of Rayleigh function '(:) = (2:2 − :2

V
)2 − 4:2aUaV, denoted as ±:'.

To evaluate the integral, contour integration along the real axis should be performed in the
complex k-plane. Due to branch points, a physical Riemann surface with branch cuts must
be defined to make the integrands unique. To this end, we let a0 = aA + 8a8, : = :A + 8:8, :0 =

bA + 8b8, where aA , a8, :A , :8, bA , b8 ∈ R and bA , b8 > 0. We then plug these relations into
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a0 =
√
:2 − :2

0, square and equalize the real and imaginary parts to obtain

a2
A − a2

8 = :
2
A − :2

8 − b2
A + b2

8 , (4.44)

aAa8 = :A :8 − bAb8 . (4.45)

From the representation of Hankel function in Eq. (4.18), the physical and causal reasoning
lead to aA > 0 (the wave cannot grow exponentially) and a8 < 0 (outgoing cylindrical wave,
recall that the time factor is 4−8lC). Physical Riemann sheet requires aA > 0, with the branch
cuts defined by aA = 0 (DeSanto, 1992), then Eq. (4.45) yields :A :8 = bAb8. The branch
cuts lie on two hyperbolas passing through the branch points ±:0. With aA = 0 and a8 < 0,
Eq. (4.44) leads to :2

A − :2
8
− b2

A + b2
8
< 0, thus we choose the branches of hyperbolas having

:8 approaching ±∞, which are displayed in solid lines in Fig. 4.3(a).
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Figure 4.3: The branch cuts and the integration contour.

In the limit at b8 → 0, the branch points and branch cuts are shown in Fig. 4.3(b). In the first
and third quadrants, :A :8 − bAb8 > 0, Eq. (4.45) results in aAa8 > 0. Whereas in the second
and fourth quadrants, :A :8 − bAb8 < 0, thus aAa8 < 0. The proper regions satisfying physical
and causal reasoning must have aAa8 < 0, therefore, the contour �0 for the integration lies
on the second and fourth quadrants (see Fig. 4.3b). Along the real axis, the single-value
function of a0 on the physical Riemann surface is defined as:

a0 =


√
:2 − :2

0 for |: | > :0

−8
√
:2

0 − :2 for |: | < :0
. (4.46)

4.3.8 Direct evaluation of the integral
Because the branch cuts are not straightforward and Jordan’s Lemma does not hold, there
is no benefit trying to close the contour and indirectly evaluate the integrals in Eq. (4.29)
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via residue theorem. Instead, we calculated the integrals directly along the real axis of
wavenumber. The singularities caused by the branch points ±:U and ±:V were removed
by changing of variables. Lin et al. (2010) used L’Hopital’s rule to approximate the
principle value of the integral around Rayleigh poles ±:', considering a discontinuous
integration path along the real axis of wavenumber. However, the integration path should
be a continuous one on the complex-plane of the wavenumber : , and thus the integral
around Rayleigh poles was incorrectly estimated by using the principle value. This study
used Cauchy’s residue theorem to compute the integral along the semi-circles centered at
Rayleigh poles ±:' (Fig. 4.3b).

I42 I1 I2 I3 I5

I41

C2

C1

Figure 4.4: The integration components.

One element of J(m, n) was chosen to illustrate the calculation procedure:

�11 =

∫ ∞

−∞

1
'(:)

%11ZU=ZU<
aU

d: . (4.47)

Fig. 4.4 displays the integration components over different regions with corresponding
values of aU and aV. Eq. (4.47) is rewritten as

�11 =

(∫ −:'−X

−∞
+
∫
�2

+
∫ −:V

−:'+X
+
∫ −:U

−:V
+
∫ :U

−:U
+
∫ :V

:U

+
∫ :'−X

:V

+
∫
�1

+
∫ ∞

:'+X

)
(·)

=

∫ :U

−:U
(·)︸   ︷︷   ︸

�1

+
(∫ −:U

−:V
+
∫ :V

:U

)
(·)︸                  ︷︷                  ︸

�2

+
(∫ −:V

−:'+X
+
∫ :'−X

:V

)
(·)︸                      ︷︷                      ︸

�3

+
∫
�1

(·)︸ ︷︷ ︸
�41

+
∫
�2

(·)︸ ︷︷ ︸
�42

+

(∫ −:'−X

−∞
+
∫ ∞

:'+X

)
(·)︸                      ︷︷                      ︸

�5

= �1 + �2 + �3 + �41 + �42 + �5 , (4.48)

where �1 and �2 are semi-circles with very small radius X.

For �1, aU = −8
√
:2
U − :2 and aV = −8

√
:2
V
− :2. Let b = :/:U and A0 = :V/:U, �1 is
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rewritten as

�1 =

∫ 1

−1

−8√
1 − b2

(
2b2 − A2

0

)2
− 4b2

√
1 − b2

√
A2

0 − b2(
2b2 − A2

0

)2
+ 4b2

√
1 − b2

√
A2

0 − b2

(
b + 8

√
1 − b2

)=+<
482ℎ:U

√
1−b2db .

(4.49)

�1 has weight function 1/
√

1 − b2 and normally can be evaluated with Gauss–Chebyshev
quadrature rule. This study used nested Gauss–Kronrod quadrature rule (Kronrod, 1965),
which is computationally cheaper because the higher-order estimates are computed by
reusing the function values at nodes of the lower-order estimates. The nested rule also
provides the approximation error by computing the difference between higher- and lower-
order estimates.

For �2, simple algebraic manipulation yields

�2 =

∫ :V

:U

−

(
2:2 − :2

V

)2
+ 4:2aUaV(

2:2 − :2
V

)2
− 4:2aUaV

4−2ℎaU

aU

[(
: − aU
:U

)=+<
+

(
−: − aU
:U

)=+<]
d: , (4.50)

where aU =
√
:2 − :2

U and aV = −8
√
:2
V
− :2. The singularity at :U is removed by change

of variable. We let a =
√
:2 − :2

U = aU. Thus, : =
√
a2 + :2

U and d: = ada√
a2+:2

U

. �2 is then
expressed as
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∫ √
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U
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U
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U

)
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(
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√
:2
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U
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2
(
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U
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V
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U
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√
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V
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U

)×
4−2ℎa

[(√
a2 + :2

U − a
:U
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+

(
−
√
a2 + :2

U − a
:U

)=+<]
da√
a2 + :2

U

, (4.51)

and subsequently computed by Gauss–Kronrod quadrature rule.

For �3, �41, �42, and �5, aU =
√
:2 − :2

U and aV =
√
:2 − :2

V
. There is no singularity

in the integrand of �3 , thus no further manipulation is required and �3 was calculated
directly by Gauss–Kronrod quadrature rule. As regards the improper integral �5, numerical
calculations showed that it is convergent and the integral exists, therefore it was estimated
also by Gauss–Kronrod quadrature rule. Whereas, the counterclockwise integral �41 and
clockwise integral �42 were computed by Cauchy’s residue theorem as

�41 = 8c0−1 , (4.52)

�42 = −8c0∗−1 , (4.53)
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where 0−1 and 0∗−1 are the residues at the simple poles :' and −:', respectively. They are
computed as

0−1 =

(
1

m'(:)/m:
%11ZU=ZU<

aU

)����
:=:'

, (4.54)

0∗−1 =

(
1

m'(:)/m:
%11ZU=ZU<

aU

)����
:=−:'

. (4.55)

Other elements of J(m, n) were calculated in a similar manner.

In this study, the absolute and relative error tolerance in the Gauss–Kronrod quadrature rule
are 10−10 and 10−6, respectively. The radius of two semi-circles �1 and �2 are X = 10−8 m.

For cylinders with very large burial depth ℎ, the integrals �1 and �2 in Eq. (4.48) contain
exponential functions with large imaginary exponents and evolve into high oscillatory
integrals. Such high oscillatory integrals cannot be evaluated using classical Gaussian
quadrature rule because of the highly computational cost. Instead, we used the asymptotic
method, presented in Appendix A.

4.3.9 Truncation errors
The analytical solution is based on theHankel– andBessel–Fourier infinite series expansion.
We truncated the series at a chosen value of # and solved a system of equations of 4×(2#+1)
unknown coefficients to obtain the approximated solution. The value of # is determined by
the series terms that have negligible effect on the computed displacement and stress fields.
When # is larger, the approximated solution converges to the exact solution of SIFs.

We tested the convergence rate of the solution with respect to # for the case: ℎ/0 = 2.36,
` = 4.5 MPa, a = 0.25, d = 1800 kg/m3, and 0 = 1.28 m. Fig. 4.5 shows the normalized
impedance GG calculatedwith different value of # as a function of dimensionless frequency
00 = 0l/2V. Observably, the solutions converge quickly with increasing value of # , in
which those obtained with # = 5, # = 8, and # = 10 are visually indistinguishable.

To quantify the rate of convergence, we computed the !2-norm of the error |� |!2 , expressed
as

|� |!2 =
1
`

√√√ 400∑
9=10

[
 # (0 90) −  10(0 90)

]2
Δ00 , (4.56)

where  # (0 90) is the value of the impedance component { HH,  GG ,  \\ ,  G\ ,  \G}, either
real or imaginary part, obtained by truncating the series at # .  # (0 90) is evaluated at
0
9

0 = 9Δ00, where Δ00 = 0.01. From the previous observation, solution with # = 10,
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Figure 4.5: Convergence of series truncation for real and imaginary parts of  GG .

denoted as  10(0 90), was chosen as the exact solution. Fig. 4.6 shows the errors of real and
imaginary parts of five impedance components for different values of # (10 error values
for each #). The least-squares regression line illustrates that the error decays rapidly with
increasing # . Besides, the truncation yielded highly accurate results with # = 8 and,
therefore, it was used as the reference/analytical solution from now on.

4.4 Finite element analysis for soil impedance functions
of homogeneous and two-layered half-spaces

4.4.1 Numerical computation of in-plane soil impedance functions
Seylabi et al. (2016) developed a method to extract the impedance functions of a semi-
infinite half-space from a FE model in time domain. The approach is general enough to be
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applied equally well to flexible interfaces as well as three-dimensional problems. This study
considered a rigid interface and a two-dimensional plane-strain problem as in Fig. 4.7.
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Figure 4.7: Numerical model for the estimation of SIFs: (a) infinite half-space FE model;
and (b) truncated half-space FE model using PML elements.

We used flexibility method to compute the compliance matrix, in which force-displacement
relations are expressed in matrix form in frequency domain as

�̂yy 0 0

0 �̂xx �̂x\

0 �̂\x �̂\\




�̂y1

�̂x1

"̂/0


=


D̂y1

D̂x1

0 \̂1


, (4.57)

Each component of the compliance matrix was computed using a time domain FE analysis.
To do so, we applied force time histories �y1(C), �x1(C), and " (C), and recorded the
resulting displacements Dy1(C), Dx1(C) and the rotation \1(C). The following procedure
should be performed:
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1. Apply �y1(C) ≠ 0, �x1(C) = 0, and " (C) = 0; then record Dy1(C). Use Fourier
transform (FT) to compute �̂y1 and D̂y1. Compute �̂yy = D̂y1/�̂y1.

2. Apply �y1(C) = 0, �x1(C) ≠ 0, and " (C) = 0; then record Dx1(C) and \1(C). Use FT to
compute �̂x1, D̂x1 and \̂1. Compute �̂xx = D̂x1/�̂x1 and �̂\x = 0\̂1/�̂x1.

3. Apply �y1(C) = 0, �x1(C) = 0, and " (C) ≠ 0; then record Dx1(C) and \1(C). Use FT to
compute "̂ , D̂x1 and \̂1. Compute �̂x\ = 0D̂x1/"̂ and �̂\\ = 0

2\̂1/"̂ .

4. Inverse compliance matrix to obtain impedance matrix.

Note that it may be necessary to apply zero-padding to time signals of the applied force and
resulting displacement before performing FT to increase the resolution of the calculated
impedance.

4.4.2 Finite element models
4.4.2.1 Input signal for time domain analyses

To achieve SIF over a wide range of frequency, the energy of the input force (or moment)
signal should be distributed over the corresponding frequency band. A Ricker wavelet was
chosen to fulfil this requirement, with the applied force (or moment) time histories � (C)
calculated as

� (C) = �0
[
2c2 5 2

2 (C − C0)2 − 1
]
4−c

2 5 2
2 (C−C0)2 , (4.58)

where �0 is the amplitude of the applied force (or moment), 52 is the central frequency of
the signal, and C0 is the time when the maximum amplitude occurs. This study used �0 = 1
kN (or kN.cm), 52 = 15 Hz, and C0 = 0.2 sec. The generated Ricker wavelet using these
values is shown in Fig. 4.8. As one may see, the signal energy is distributed over a broad
band from 0 to 40 Hz, which will eventually yield the SIF over this frequency band.
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Figure 4.8: The applied force (or moment) in time and frequency domain.
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4.4.2.2 Spatial-temporal discretization

The plane-strain infinite half-space was discretized and truncated by FE approach in combi-
nation with absorbing boundaries. To avoid the spurious waves reflected from the far-field
boundaries, we used PML elements (Basu, 2009) as in Fig. 4.7. The analyses were con-
ducted with 3D LS-DYNA R10.0.0 solver.

In wave propagation problems, large mesh size removes short-wavelength (high-frequency)
energy, whereas excessively small size results in high computational cost and numerical
instability. Therefore, the element dimension 34 must be chosen appropriately as 34 =
_<8=/=4?F, where _<8= is the minimum wavelength and =4?F is the number of elements per
wavelength. The minimum wavelength is calculated as _<8= = 2V/ 5<0G , where 5<0G is the
highest frequency of the interested signal. Previous studies have used at least =4?F = 10
to adequately simulate the wave problems (Seron et al., 1996). To achieve higher accuracy
while maintaining the computational efficiency, we adopted unstructured quadrilateral grid
mesh having =4?F = 40 near the cylinder boundary and =4?F = 15 near the boundary of the
truncated domain.

Time integration was evaluated with the explicit central difference scheme, in which the
critical time step ΔC2 was chosen based on the Courant–Friedrichs–Lewy condition ΔC2 =
34/2U. This study used a time step size of ΔC = 0.9ΔC2. Moreover, the sampling rate of
discrete displacements computed at each time step should be sufficiently dense to capture
all the information of the interested signal up to the highest frequency. According to
Nyquist–Shannon sampling theorem, we enforced ΔC < 0.5/ 5<0G .

Furthermore, termination time should be long enough to include the P- and SV-waves
bouncing back and forth between the free surface and the cylinder boundary until they
become negligible. To stress the importance of the later statement, we consider a cylinder
with outside radius of 0 = 1.28 m, a shear modulus, Poisson’s ratio, and density of
homogeneous half-space of ` = 4.5 MPa, a = 0.25, and d = 1800 kg/m3, respectively.
In Fig. 4.9, we present a possible error in the frequency spectrum of displacement time
history due to insufficiently recorded response. Fig. 4.9(a) shows a 3.0-second resulting
displacement in time domain for ℎ/0 = 16, while Fig. 4.9(b) shows the frequency domain
of the displacement signals truncated at 1.0, 1.5, 2.0, and 3.0 sec from the original signal.
Clearly, the 1.0-second truncated signalmisses some energy from thefirst and second bounce
of P- and SV-waves from the free surface, causing the discrepancy in the frequency content.
When the displacement is recorded up to 1.5 and 2.0 sec, the first and second bounce,
respectively, are completely accounted for, the frequency spectra closely approach that of
the 3.0-second signal. Because P-waves are faster than SV-waves, the termination time
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Figure 4.9: Displacement signal for ℎ/0 = 16 in: (a) time domain; and (b) frequency
domain.

should be enough for the displacement signal to consist at least two bounces of SV-waves.
Whereas, the excitation force needs to be loaded and totally unloaded within termination
time, roughly taken as 1.0 sec. Therefore, termination time was chosen as 5ℎ/2V or 1.0 sec,
whichever is larger.

4.5 Verification
For the FE analyses in Section 4.5 and Section 4.6, the input parameters are as follows: the
outside radius of the cylinder is 0 = 1.28 m; the shear modulus, Poisson’s ratio, and density
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of homogeneous half-space are taken as ` = 4.5 MPa, a = 0.25, and d = 1800 kg/m3,
respectively, unless otherwise noticed.

Case 1: ℎ/0 = 2.36. The analytical solution in Section 4.3 and the FE analysis in Section 4.4
for the SIFs of homogeneous half-space were compared with the results by Seylabi et al.
(2016). Fig. 4.10 shows that those results agree very well.  \G =  G\ was verified and
therefore it was unnecessary to plot  \G .

Case 2: ℎ/0 → ∞. Fig. 4.11 shows the SIFs obtained by the analytical solution in
Section 4.3 for ℎ/0 → ∞, e.g., ℎ/0 = 106. It also shows the horizontal impedance  ℎ and
torsional impedance C of plane-strain full-space problems, proposed byNovak et al. (1978).
When the burial depth is very large, the reflected P- and SV-waves from the free surface
have negligible effect on the cylinder. As expected, the half-space problem converges to the
full-space problem with  HH =  GG =  ℎ and  \\ =  C . Meanwhile, there is no coupling
between horizontal and torsional motions because of the symmetry of geometry and applied
load, leading to  G\ =  \G = 0 as shown in the graphs.

4.6 Homogeneous half-space
We used the analytical solution in Section 4.3 to investigate the effect of burial depth and
Poisson’s ratio on the SIFs of homogeneous linear half-space.

4.6.1 Effect of burial depth
Fig. 4.12 shows the real and imaginary parts of SIF components  GG ,  HH,  \\ , and  G\ for
ℎ/0 = {4, 8, 12, 16,∞} and Poisson’s ratio a = 0.25. SIFs of homogeneous full-space by
Novak et al. (1978) also are plotted for comparison.

Overall, the SIF components of half-space oscillate about their counterparts of full-space.
These oscillations are attributed to the reflected P- and SV-waves from the half-space free
surface, in which wave interference within the region between the cylinder and free surface
leads to the constructive and destructive effects of the SIFs. Therefore, the characteristic
of this oscillation substantially depends on the burial depth ℎ. For each of the impedance
components in Fig. 4.12, the amplitude of the oscillation gradually decreases with the
increasing burial depth. It is because the reflected waves dissipate their energy while
propagating and could not considerably alter the pre-existing displacement and stress fields
around the cylinder. Besides, the frequency of oscillation is lowest in case of smallest
burial depth ℎ/0 = 4. At the cylinder boundary Γ1, the phase difference between the
vibrating source (the imposed vibration at Γ1) and the reflected waves from the free surface
is larger with larger burial depth, causing the SIFs to oscillate with higher frequencies.
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Figure 4.10: The SIFs for ℎ/0 = 2.36.

When ℎ/0 → ∞, e.g., ℎ/0 = 106, the effect of reflected waves is negligible, each of the
SIF components  GG ,  HH, or  \\ converges to its full-space counterpart, as displayed in
Fig. 4.12.

One case of burial depth ℎ/0 = 4, where the largest constructive and destructive effects oc-
cur, is analyzed. The constructive effect might induce an increase in translational impedance
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Figure 4.11: The SIFs for ℎ/0 →∞.

<( GG) and <( HH) up to approximately 3 times and 2.5 times, respectively, compared
with that of full-space domain. Whereas, a smaller increase, up to 1.5 times, is observed for
torsional impedance<( \\). Similar trend occurs in other cases of burial depth, in which
the constructive and destructive effects are more pronounced for translational impedance
than for torsional one. Accordingly, the translational impedance is more sensitive to the
burial depth.

For each impedance component  GG ,  HH, and  \\ , the fluctuation amplitude of real part
around corresponding full-space impedance is more considerable than that of imaginary
part. It indicates that the burial depth impacts the real part (soil stiffness) to a greater extent
than the imaginary part (dashpot damping coefficient). However, the fluctuation amplitude
is similar in both real and imaginary parts for  G\ , demonstrating the same level of impact
that burial depth has on those real and imaginary parts.

Additionally, because of half-space configuration, there is geometric coupling behavior
between translational motion along x-axis and torsional motion about the centroid of the
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Figure 4.12: The SIFs for a = 0.25 and different values of burial depth ℎ/0.

cylinder, indicated by non-zero values of  G\ =  \G . For a particular configuration of ℎ/0,
the real and imaginary parts of coupling components are generally much smaller than that
of translational and torsional components. Besides, the coupling is small in low-frequency
regime, e.g., 00 < 0.5, but becomes considerable with higher frequency. When burial depth
is very large, the geometry becomes symmetric with respect to x-axis, and thus the coupling
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disappears  G\ =  \G = 0, which is similar to the full-space problem.

4.6.2 Effect of Poisson’s ratio
In this section, we investigated the sensitivity of SIFs to Poisson’s ratio. Fig. 4.13 shows the
SIFs for different values of Poisson’s ratio a = {0.25, 0.30, 0.35, 0.40, 0.45} and ℎ/0 = 4.
While the Poisson’s ratio significantly affects the translational impedance GG and HH, it has
almost no impact on the torsional impedance  \\ . This phenomenon is associated with the
type of wave propagating in the half-space. The translational impedance is mostly related
to the propagation of P-wave whose velocity is a function of Poisson’s ratio. Whereas, the
torsional impedance is mainly associated with the propagation of SV-wave whose velocity
does not depend on Poisson’s ratio. Besides, in low dimensionless frequency regime,
e.g., 00 < 0.5, the variation in Poisson’s ratio does not have any significant effect on
SIF components  GG ,  HH,  \\ , and  G\ . When the frequency is larger, the translational
impedance  GG and  HH are more sensitive to the variation of Poisson’s ratio compared with
the case of lower frequency.

4.7 Two-layered half-space
In this section, we used the FE approach described in Section 4.4 to generate SIFs for
two-layered soil stratum. The geometry of the problem is displayed in Fig. 4.14, in which
ℎ1 and ℎ2 are the distances from the center of the cylinder to the top of soil layer 1 and layer
2, respectively.

To investigate the effect of two-layered half-space, we consider both soil layers to have same
values of mass density d = 1800 kg/m3 and Poisson’s ratio a = 0.25, but different values of
shear modulus, `1 compared with `2. In addition, to quantify the discrepancy between the
in-plane SIFs of a two-layered domain and that of a homogeneous half-space, we calculated
the dimensionless area A bounded by these two curves. Without loss of generality, we
considered the real part of  HH with the area A expressed as

A =
1
`1

∫ 4

0.1

���< (
 HH

)
−<

(
 ℎ>HH

)��� d00, (4.59)

where  HH is the impedance component of a two-layered domain and  ℎ>HH is the component
of the corresponding homogeneous half-space. This dimensionless area A is physically
illustrated by the shaded area in Fig. 4.15, and its values are quantified in Table 4.1 for
different configurations of ℎ1/0, ℎ2/0, and `1/`2 with fixed values of `1 = 4.5 MPa and
0 = 1.28 m.
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Figure 4.13: The SIFs for ℎ/0 = 4 and different values of Poisson’s ratio.

The SIFs of two-layered domain depend on the burial depth ℎ1, distance from the cylinder
to the soil layers interface ℎ2, soil Poisson’s ratio a, and material contrast `1/`2. The
effect of ℎ1 and a on two-layered domain impedance follows a same mechanism with the
homogeneous case and thus is not presented here. We focused on the effect of material
contrast ratio `1/`2 and structure location ℎ2/0.
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Figure 4.14: Geometry of two-layered half-space.

Figure 4.15: Physical illustration of the dimensionless area.

4.7.1 Effect of material contrast
Effect of material contrast was investigated for ℎ1/0 = 4 and ℎ2/0 = 2. Fig. 4.16
shows the normalized real and imaginary parts of SIFs for the material contrast `1/`2 =

{0.10, 0.25, 0.50, 0.75, 1.00} as a function of dimensionless frequency 00 = 0l/2V1, where
2V1 =

√
`1/d is the shear wave velocity of soil layer 1. In these figures, the analytical results

for homogeneous half-space, i.e., `1/`2 = 1.00, were also displayed in black dashed-line.
The results for homogeneous half-space by FE method agree well with that by analytical
solution, once again confirming the accuracy of both approaches.

Overall, both real and imaginary parts of  GG ,  HH,  \\ , and  G\ of two-layered domain
deviate from that of homogeneous half-space because of the P- and SV-waves reflected
from the interface between two soil layers, resulting in the dependence of deviation on the
material contrast between these layers. When the soil layer 1, a.k.a the slow medium, is
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`1
`2
= 0.10 `1

`2
= 0.25 `1

`2
= 0.50 `1

`2
= 0.75 `1

`2
= 1.00

ℎ1/0 = 4 ℎ2/0 = 2 11.86 7.92 4.19 1.77 0

ℎ2/0 = 4 7.24 4.53 2.30 0.96 0

ℎ2/0 = 8 4.93 3.11 1.57 0.67 0

ℎ2/0 = 16 3.44 2.18 1.11 0.48 0

ℎ1/0 = 8 ℎ2/0 = 2 11.70 7.81 4.12 1.75 0

ℎ2/0 = 4 6.98 4.38 2.22 0.94 0

ℎ2/0 = 8 4.76 3.01 1.55 0.64 0

ℎ2/0 = 16 3.41 2.17 1.13 0.49 0

Table 4.1: Dimensionless area A between <( HH)/`1 curve of two-layered domain and
that of homogeneous half-space.

much softer than soil layer 2, a.k.a the fast medium, the amplitude of the reflection is much
larger, meaning that much larger energy is trapped in the soil layer 1 to alter the cylinder
response. Accordingly, for all SIF components, the smallest contrast ratio `1/`2 = 0.10
generates furthest deviation. When the material contrast ratio `1/`2 becomes larger,
the amplitude of waves reflected from the soil interface is smaller. The SIFs of two-
layered domain correspondingly approach and, in case `1/`2 = 1.00, coincide with that of
homogeneous half-space, as shown in Fig. 4.16. This fact is indicated also by the values
of the dimensionless area A in Table 4.1, which reflect the difference in<

(
 HH

)
between

a two-layered domain and a homogeneous half-space. For each row of the table, i.e., for
each case of (ℎ1/0, ℎ2/0), the values ofA decrease with increasing ratio `1/`2 andA = 0
when `1/`2 = 1.00.

However, the deviation is not intense, implying that the SIFs are not very sensible to material
contrast. Especially when `1/`2 ≥ 0.50, as indicated in Table 4.1, the SIFs of a two-layered
domain are very similar to that of the corresponding homogeneous case, allowing us to use
the latter for practical design purposes.

4.7.2 Effect of structure location
To what extent the reflected waves from the half-space free surface and from the soil layers
interface impact the SIFs mainly depends on the ratios ℎ1/0 and ℎ2/0, respectively. The
effect of ℎ1/0 on SIFs was investigated in Subsection 4.6.1, hence only the effect of ℎ2/0
on SIFs is analyzed in this section. Fig. 4.17 shows the SIFs for ℎ1/0 = 4, `1/`2 = 0.25,
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Figure 4.16: SIFs for ℎ1/0 = 4 and ℎ2/0 = 2 depending on material contrast ratio `1/`2.

and different cases of ℎ2/0 = {2, 4, 8, 16}. It also shows the SIFs of the corresponding
homogeneous half-space with the same ratio ℎ1/0 = 4 for comparison.

Generally, all of SIF components  GG ,  HH,  \\ , and  G\ , either real or imaginary parts,
show a deviation from that of the corresponding homogeneous half-space, as a result of the
reflection from the soil layers interface. This deviation is largest for the smallest value of
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Figure 4.17: SIFs for ℎ1/0 = 4 in two-layered domain (`1/`2 = 0.25) and homogeneous
half-space (`1/`2 = 1.00).

ℎ2/0, because the least energy of the reflected waves is dissipated along the shortest path of
propagation from the soil layers interface to the cylinder. When ℎ2/0 is larger, more energy
is dissipated when P- and SV- waves travel from the soil interface to the cylinder. Therefore,
the impact of soil interface reflection on the cylinder is weaker and the two-layered domain
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SIFs are approaching the homogeneous half-space SIFs. The values of dimensionless area
A in Table 4.1 reflect this fact as well. For each column of the table, i.e., for each case
of (ℎ1/0, `1/`2), A decreases with increasing value of ℎ2/0, meaning less difference in
<

(
 HH

)
between a two-layered domain and a homogeneous half-space.

For practical design, the effect of reflected waves from the soil interface can be negligible
because the SIFs of a two-layered domain and that of the corresponding homogeneous
half-space are very similar, especially when ℎ2/0 ≥ 8.

4.8 Conclusions
This chapter provides a closed-form solution for the dynamic in-plane SIFs of an infinitely
long rigid circular structure buried in linear elastic half-space. The derived analytical result
provides practitioners with high-fidelity values of spring stiffness and dashpot damping
coefficient that can be used in seismic design of spatially distributed underground structures.
The solution assumed both a homogeneous elastic half-space, and a harmonic displacement
at the structure boundary with traction-free boundary condition at the free surface. In
such a solution, the displacement potentials were expressed as Hankel– and Bessel–Fourier
series expansion and the contour integrals on the physical Riemann sheet were numerically
evaluated by nested Gauss–Kronrod quadrature rule and Cauchy’s residue theorem. In
addition, we used FE analyses in time domain and the FT technique to compute the dynamic
compliance matrices, which were subsequently inverted to obtain dynamic SIFs of the rigid
cylinder in homogeneous and two-layered linear elastic half-spaces. Parametric studies
were performed to examine the effect of geometric and mechanical factors on that dynamic
SIFs. In summary, our study showed/confirmed that

1. A number of # = 8 modes in the Hankel– and Bessel–Fourier series are sufficient
to accurately approximate the SIFs of a buried structure in homogeneous half-space.
Moreover, we showed that !2-norm of the error due to the series truncation decays
rapidly with increasing # , approximately O(102−# ).

2. For homogeneous elastic half-space, results obtained by analytical and numerical
approaches showed a complete agreement with each other. As expected, when the
burial depth ℎ/0 is very large, the half-space SIFs converge to the solution of Novak
et al. (1978) for full-space SIFs.

3. Overall, all the SIF components  GG ,  HH,  \\ , and  G\ depend on the excitation
frequency, the shear modulus and Poisson’s ratio of soil domain, the burial depth, and
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the structure dimension. In a layered soil domain, they depend also on the material
contrast and the distance from the structure to the interface between soil layers.

4. Because of the asymmetric geometry, there is coupling behavior between translational
motion along x-axis and torsional motion about the cylinder centroid, indicated
by non-zero values of  G\ =  \G . The coupling impedance is generally much
smaller than translational and torsional impedance. Also, the coupling impedance is
small in low-frequency regime, e.g., 00 < 0.5, while being considerable in higher
frequency regime. When ℎ/0 → ∞, the geometry becomes symmetric, and thus
 G\ =  \G → 0, similar to the full-space problems.

5. All the SIF components of homogeneous half-space oscillate about their counterparts
of homogeneous full-space, because of the constructive and destructive effects ofwave
interference in the region between cylinder location and free surface. With increasing
burial depth ℎ/0, the oscillation amplitude gradually decreases while the oscillation
frequency gradually increases. The translational impedance  GG and  HH are more
sensitive to the variation of burial depth than the torsional impedance  \\ . Besides,
for  GG ,  HH, and  \\ , the effect of burial depth variation on the real part (spring
stiffness) is stronger than that on the imaginary part (dashpot damping coefficient).

6. The translational impedance  GG and  HH depend significantly on Poisson’s ratio of
the soil domain, while the torsional impedance  \\ almost does not. Moreover, in
low-frequency regions, e.g., 00 < 0.5, variation in Poisson’s ratio does not have any
noticeable effect on all SIF components.

7. In two-layered half-space, all SIF components  GG ,  HH,  \\ , and  G\ deviate from
that of the corresponding homogeneous half-space because of the reflected P- and
SV-waves from the soil layers interface. This deviation depends on the material
contrast ratio `1/`2, in which the smallest ratio yields furthest deviation because the
energy entrapment in the top soil layer is largest.

8. In two-layered half-space, the distance ℎ2 fromcylinder centroid to soil layers interface
affects SIFs in a similar manner that the burial depth ℎ1 does, because both ℎ1 and ℎ2

are linked to the energy dissipation along propagation path and the phase difference
between vibrating sources.

9. If `1/`2 ≥ 0.50 or ℎ2/0 ≥ 8, the SIFs of a two-layered half-space can be approxi-
mately replaced with that of the corresponding homogeneous half-space for practical
design purpose.
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Despite some limitations, namely the applicability for rigid (or nearly rigid) circular struc-
tures and for elastic domains with small displacements, this study is an important step
toward building a reduced-order model to investigate SbSI problems. Our work provides
useful information about initial in-plane spring stiffness and dashpot damping coefficient,
which we envision integrating in large-scale SbSI models, e.g., reduced-order model to
study soil-pipeline interaction presented in Nguyen and Asimaki (2018, 2020); Asimaki
et al. (2019).



98

C h a p t e r 5

Application: Reduced-order modeling of buried
pipe subjected to the propagation of Rayleigh

surface wave
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5.1 Introduction
Spatial variation of earthquake ground motion (SVEGM) is interpreted as the differences
in seismic ground motion, e.g., amplitude, frequency, and phase, measured at different
locations along the structure dimensions. This variation is mainly attributed to: (1) wave
passage effect in which the seismic wave arrives at different times at different recording
stations because of the finite wave velocity, (2) incoherence effect caused by the extended
source and the inhomogeneities along the propagation path, and (3) local site effect which
is the differences in local soil conditions at each stations. Given the spatial extent of the
buried pipeline networks, it is very important to consider the SVEGM in seismic design of
such structures to safeguard the structural integrity.

This chapter presents an application of the SIFs derived in Chapters 3 and 4 to build a
reduced-order model to analyze the SPI problems. Fig. 5.1 illustrates the configuration of
the problem, in which a straight pipe is subjected to the propagation of Rayleigh surface
wave. The buried pipe and two soil domains are assumed to be linear elastic materials.

Two cases of SVEGM are investigated: (1) wave propagation time delay when the pipe
is buried in a homogeneous half-space and (2) wave propagation time delay and local site
effect when the pipe is buried in a heterogeneous half-space, e.g., an ellipse basin.

Soil 2

Rayleigh Buried pipe

Soil 1

Figure 5.1: Schematic geometry of a buried pipe subjected to the Rayleigh surface wave.

5.2 Models for soil-pipe interaction analysis
5.2.1 Model neglecting soil-pipe interaction
Pipe is assumed to be much softer than soil and cannot provide any resistance to ground
motions. Hence, the pipe perfectly conforms to free-field groundmotions, which are the soil
displacements induced by the propagation of seismic waves in the absence of excavation and
structures. The free-field ground motions can be computed by either analytical solutions or
numerical simulations.
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5.2.1.1 Rayleigh surface wave in a homogeneous half-space by analytical expression

Let l is the angular frequency, 2U, 2V, and 2' are the phase velocities of compressional,
shear, and Rayleigh waves, respectively. :U = l/2U, :V = l/2V, and :' = l/2' are the
corresponding wavenumbers. The displacements along x and y axes of Rayleigh surface
wave, denoted as DG and DH, are expressed as (Viktorov, 1967)

DG = �:'

(
4@'H − 2@'B'

:2
'
+ B2

'

4B'H

)
sin (:'G − lC) , (5.1)

DH = −�@'

(
4@'H −

2:2
'

:2
'
+ B2

'

4B'H

)
cos (:'G − lC) , (5.2)

where A is an arbitrary constant, @' =
√
:2
'
− :2

U, B' =
√
:2
'
− :2

V
, and C is time.

5.2.1.2 Rayleigh surface wave in a heterogeneous half-space by finite element
simulation

For basin configuration, the harmonic Rayleigh surface wave propagates from left to right,
originates from stiff soil (soil 2) and reaches softer soil (soil 1). The reflection at the basin
circumference and the wave interference inside the basin make the problem become more
complex. The free-field ground motions inside the basin can be computed by FE analyses.

Γe

Γ
ub
0

ue
0

Rayleigh

O

y

x
C

Figure 5.2: Geometry of the truncated domain with boundaries Γ and Γe.

In FE analyses, the effective input forces are defined as equivalent input forces which are
applied to generate a predetermined displacement field. We used the domain reduction
method proposed by Bielak et al. (2003) to compute the effective input forces of the
predetermined Rayleigh surface wave displacement field of soil 2. The configuration of the
truncated domain is shown in Fig. 5.2. The effective input forces Veff

b and Veff
e applied on
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the boundaries Γ and Γe at each time step are governed by

Veff
b = −Sbe ¥u0

e − Qbeu
0
e , (5.3)

Veff
e = Seb ¥u0

b + Qebu
0
b , (5.4)

where Sbe and Seb are the off-diagonal quadrants of the mass matrices assembled from
the single layer of finite elements between two boundaries Γ and Γe, and Qbe and Qeb are
the off-diagonal quadrants of the corresponding stiffness matrices. For lumped mass, Sbe

and Seb would be zero. u0
b and u0

e are the predetermined displacement vector of nodes on
Γ and Γe, respectively.

The Fourier transform of an unwindowed sinusoidal function with frequency l is non-zero
only at ±l. However, for the FE analyses, we consider the signal only within a finite
interval of time while implying zero values outside that time interval, which is equivalent
to multiplying the waveform with a rectangular function, leading to the spectral leakage
phenomenon. It is therefore necessary to use a windowing technique to distribute the
leakage spectrally, allowing interesting features of the signal to be observed. Moreover, the
tapering property of the window function prevents numerical artifact induced by a sudden
application of non-zero value of signal at the beginning of the FE analyses. The #-point
Tukey (a.k.a tapered cosine) window technique is used in this study, defined by

F(C) =



1
2

{
1 + cos

[
2c
U
(C − U/2)

]}
, for 0 ≤ C < U

2
1, for

U

2
≤ C < 1 − U

2
1
2

{
1 + cos

[
2c
U
(C − 1 + U/2)

]}
, for 1 − U

2
≤ C < 1

(5.5)

where C is an #-point linearly spaced time vector. The parameter U is the ratio of cosine-
tapered section length to the entire window length, henceforth taken as U = 0.5.
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Figure 5.3: Displacements of Rayleigh waves as a function of: (a) depth; and (b) time.
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The pattern of the Rayleigh wave displacements is illustrated in Fig. 5.3(a). The displace-
ment amplitudes D̂G and D̂H, normalized with D̂G0, are plotted as a function of dimensionless
depth |H |/_', where D̂G0 is the amplitude of x-displacement at the ground surface H = 0
and _' = 2c2'/l is the wavelength of Rayleigh wave. Fig. 5.3(b) shows time histories of
the displacement components at the point (G, H) = (0, 0), which are the multiplication of
harmonic Rayleigh wave in Eqs. (5.1), (5.2) and Tukey window in Eq (5.5).

The x- and y-components of the vectors u0
b and u

0
e are predetermined with Eqs. (5.1), (5.2),

and (5.5). We consider the Rayleigh wave propagates along the positive x-axis, starting at
point $ (0, 0). Because of the finite wave velocity, DG and DH at a point are zero when the
waves have not reached that point yet, i.e., when C < :'G/l.

We wrote a subroutine incorporated into LS-DYNA solver to generate the Rayleigh surface
wave propagation. The fidelity of this subroutine was verified for a case of Rayleigh
wave propagating through a homogeneous elastic half-space soil domain, where analytical
solution is available via Eqs. (5.1), (5.2), and (5.5). The input parameters for the verification
problem are as follows: l = 2c rad/s; the Poisson’s ratio, mass density, and shear modulus
of soil domain are a = 0.25, d = 1800 kg/m3, and ` = 4.5 MPa, respectively; and the
scalar � in Eqs. (5.1) and (5.2) is � = 0.5193. For FE analysis, the number of elements
per wavelength is chosen as =4?F = 50, while the time step size is based on the Courant–
Friedrichs–Lewy condition.
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Figure 5.4: DG and DH computed by analytical solution and by FE approachwith incorporated
subroutine: (a) at point $ (0, 0); and (b) at point � (125, 0).

Fig. 5.4 shows the displacements at two points $ and �, computed by analytical solution
via Eqs. (5.1), (5.2), and (5.5), and by FE approach with incorporated subroutine. The
results by these two approaches agree well with each other. Meanwhile, Fig. 5.5 illustrates
the displacement field contours of Rayleigh surface wave propagation at time C = 7.25
second. Observably, for both DG and DH, the wave envelopes travel from left to right without
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Figure 5.5: DG and DH displacement fields at C = 7.25 s.

dispersion, which is expected for fundamental mode of Rayleigh wave in homogeneous
elastic half-space soil medium.

5.2.2 Model considering soil-pipe interaction with free-field input
The reduced-order model for SPI analysis is shown in Fig. 5.6, in which the pipe is modeled
as beam elements1 and the surrounding soil is replaced by a set of springs and dashpots
formulated to represent its macroscopic reaction to differential deformations between soil
and pipe.

The spring stiffness and dashpot coefficient per unit length along x-axis, :G and 2G , and
along y-axis, :H and 2H, are computed as

: j = <
(
 jj

)
, (5.6)

2j = =
(
 jj

)
/l , (5.7)

1In the context of this chapter, a beam element refers to a beam-column element that resists both axial force
and bending moment. Each node of the beam has one rotational and two translational degrees of freedom.
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Figure 5.6: Schematic of pipe analysis.

where j = x or y, < and = represent the real and imaginary parts. The SIFs along axial
and vertical directions,  xx and  yy, were computed previously in Chapters 3 and 4 as a
function of excitation frequencyl, shear modulus and Poisson’s ratio of soil domain, burial
depth and radius of the buried pipe.

The free-field ground motions DG6 and D
H
6, obtained in the same way as in Subsection 5.2.1,

are applied at the ends of springs and dashpots as seismic excitation. The analysis was
performed using OPENSEES framework.

5.2.3 Models based on substructure and finite element methods
5.2.3.1 Review of substructure method for soil-structure interaction analysis in case

of building structures

SV

Figure 5.7: Building structure resting on spring-dashpot systems.

Until the early 1970s, many of soil-structure interaction models were restricted to systems
with foundation resting on the surface of a homogeneous half-space and the seismic ground
motions being invariant in horizontal planes, e.g., the ground motions of vertically propa-
gating SV waves. As shown in Fig. 5.7, to analyze the structures, the continuum domain
of soil was replaced with spring-dashpot systems which were subsequently excited with
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free-field ground motions. The assumption of free-field input motions in this configura-
tion was sufficient and rigorous (Kausel, 2010). However, for structures with embedded
foundations, considerable disparities were observed between the results of the classical
method with free-field input motions and those of direct numerical simulations, such as
finite elements.

kinematic interaction inertial interaction

massless structure

structure

foundation

massless foundation

complete system

soil

soil

structure

foundation

soil impedance function

Figure 5.8: Schematic of substructure method.

To accomplish fully consistent comparisons between those two methods, Kausel et al.
(1978) proposed a three-step solution based on superposition theorem. It is referred to as
substructuremethod in the guidelines ofU.S. National Institute of Standards and Technology
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(NIST , 2012). Fig. 5.8 shows the schematic of substructure method, which includes three
main steps:

1. Computing the foundation input motion (FIM), which is the motion of foundation
that accounts for the stiffness and geometry of the foundation. Notice that the FIM
is obtained by solving the problem of massless structure and massless foundation
subjected to the same seismic excitation as the direct model. This FIM generally
differs from the free-field motion, representing the effects of kinematic interaction.

2. Computing the SIF.

3. Computing the response of real structure and foundation, supported on the frequency-
dependent springs and dashpots (SIF), and subjected to the FIM at the base of spring-
dashpot systems.

It might appear that the substructure method has no advantage in the computational cost
compared with the direct FE simulation, because the former generally requires FE analyses
for the determination of FIM and SIF. However, the FIM can be obtained by transfer func-
tions available in the literature for various foundation configurations considering kinematic
interaction effects. Meanwhile, the corresponding SIF is available in the literature as well.
Those predetermined values of FIM and SIF significantly reduce the computational time
because we need to deal with only the system of structure and foundation, instead of the
whole soil-structure-foundation system. This enables the practitioners to conduct extensive
studies to account for the uncertainties in seismic design of the infrastructures.

5.2.3.2 Soil-pipe interaction model based on substructure method

The soil and pipe are true 3D elements. A 3D FE model can analyze the axial, bending, and
hoop stresses of pipe or the local buckling and ovalization of pipe cross sections, or account
for the 3D seismic excitation. However, in case of in-plane excitation and only axial and
bending demands of pipe are desired, researchers and practitioners commonly resort to a
2D FE model in which the pipe is modeled by beam elements.

Fig. 5.9 shows the configuration of 2D FEmodel in direct method for analyzing SPI problem
usingLS-DYNAR10.0.0 solver. The effective input forces Veff

b and Veff
e , obtained in the same

way as in Subsection 5.2.1, were applied on Γ and Γe at each time step via the incorporated
subroutine. The pipe was modeled as beam elements with the soil-pipe interface being
fully bonded. The outside domain Ω+ is the residual displacement field, which is the
relative displacement with respect to the reference free-field displacement. This residual
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displacement is usually small and is absorbed by the Lysmer–Kuhlemeyer dashpots (Lysmer
andKuhlemeyer, 1969) placed at the outside boundary, preventing fictitious reflectionwaves
from propagating back to the truncated domain.
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Figure 5.9: Schematic of direct method for SPI problem.
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Figure 5.10: Schematic of substructure method for SPI problem.

The reduced-order model based on substructure approach for the SPI analysis is shown in
Fig. 5.10. The pipe input motion (PIM) is the motion at the pipe nodes that accounts for
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the stiffness and geometry of the pipe structure. Such motion applies for the condition
of pipe structure having no mass, and generally differs from the free-field motion. This
type of motion is identical with the FIM in substructure method, representing the effects of
kinematic interaction. The FEmodel to compute PIM is identical with that in direct method,
except that the pipe has no mass. The time histories of x- and y-components of the PIM,
denoted as DGPIM and DHPIM, were recorded at each pipe node. The PIMs were subsequently
applied at the bases of spring-dashpot systems as seismic excitation and the pipe analysis
was performed using OPENSEES framework.

The spring stiffness and dashpot coefficient are computed from the SIF. It should be noticed
that the SIFs obtained in Chapters 3 and 4 are for the vertical plane perpendicular to the pipe
axis and therefore are consistent with the 3D FE model of soil-pipe system. For the 2D FE
model of the direct model presented here, the SIF should be calculated for the vertical plane
consisting of the pipe axis, i.e., the xy-plane, thereby making the results of substructure and
direct models consistent. However, we can use the SIF obtained in Chapters 3 and 4 as an
approximation, which eventually yields satisfactory results as shown later in Section 5.3.

5.3 Results and comparisons
The geometry of the 2D problem analyzed is shown in Fig. 5.11. We considered an ellipse
basin with major radius A1 and minor radius A2. Soil 1 and soil 2 media have the same
values of mass density d and Poisson’s ratio a, but different values of shear modulus, `1

compared with `2. The radius, thickness, length, and burial depth of the pipe are 0, C, !,
and ℎ, respectively. Three control points CP1, CP2, and CP3 for verification purpose were
chosen as depicted.

y

x

r1

r2

Soil 1: ρ, ν, μ1 

Soil 2: ρ, ν, μ2 

h

L/4L/4L/4L/4

CP1 CP2 CP3

a

t

Pipe cross section

Figure 5.11: Geometry of the problem analyzed.

We conducted the investigation by: a model neglecting SPI (M1), a reduced-order model
considering SPI with free-field input (M2), a reduced-order model considering SPI with
PIM based on substructure method (M3), and a direct model using 2D FE analyses (M4).
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Category Parameter Case 1 Case 2 Unit

Basin shape A1 100 100 [m]

A2 50 50 [m]

Rayleigh wave 52 1 1 [Hz]

� 0.1731 0.1731 -

Soil media d 1800 1800 [kg/m3]

a 0.25 0.25 -

`1 4.5 1.125 [MPa]

`2 4.5 4.5 [MPa]

Pipe 0 0.5 0.5 [m]

C 0.025 0.025 [m]

ℎ 2 2 [m]

! 199.84 199.84 [m]

dB 7850 7850 [kg/m3]

aB 0.3 0.3 -

�B 200 200 [GPa]

Springs and dashpots :G/`1 1.10 1.20 -

2Gl/`1 0.06 1.35 -

:H/`1 1.37 1.37 -

2Hl/`1 0.90 1.50 -

Table 5.1: Input parameters for case 1 (homogeneous medium) and case 2 (heterogeneous
medium).

Two cases were considered: pipe buried in a homogeneous soil medium with `1/`2 = 1.00
(case 1), and pipe buried in an heterogeneous soil medium with `1/`2 = 0.25 (case 2). The
input parameters for two cases are presented in Table 5.1. The scalar � in Eqs. (5.1) and (5.2)
was chosen so that the amplitude of DG of free-field Rayleigh wave at point$ (0, 0) is 0.01m.
Moreover, in case of heterogeneous medium, the vertical distance between pipe centroid and
the soil layer interface (ℎ2 distance in Subsections 3.7.2 and 4.7.2) is very large compared
with the pipe radius 0, enabling us to use the SIFs of the corresponding homogeneous as an
approximation. Therefore, for both case 1 and case 2, we used information from Figs. 3.13
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and 4.12, with ℎ/0 = 4, to find the values of :G , 2G , :H, and 2H. Note that these are values
per unit length of pipe.
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Figure 5.12: Displacements at CP1, CP2, and CP3 in case of homogeneous half-space.
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Figure 5.13: Displacements at CP1, CP2, and CP3 in case of heterogeneous half-space.

The x- and y-displacement components at three control points achieved through four models
are plotted in Fig. 5.12 for case 1 and in Fig. 5.13 for case 2. Generally, model M1 yields
much larger results compared with those by M2, M3, and M4, which is as expected because
M1 does not account for the resistance coming from pipe stiffness while models M2, M3,
and M4 consider the effect of SPI.
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Figure 5.14: Displacements at CP1, CP2, and CP3 by M2, M3, and M4 for homogeneous
half-space.
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Figure 5.15: Displacements at CP1, CP2, and CP3 by M2, M3, and M4 for heterogeneous
half-space.

To compare the results by M2, M3, and M4, we plot only the displacement histories
at control points computed by those three models. Fig. 5.14 shows the results for the
homogeneous half-space, while Fig. 5.15 displays those for the heterogeneous half-space.
Overall, the results computed by M2, M3, and M4 are of the same order of magnitude, for
both homogeneous and heterogeneous half-spaces. Moreover, compared with the results
by M2, displacement time histories obtained by M3 and M4 are more consistent with each
other. This is not particularly surprising because the models M3 andM4 are mathematically
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equivalent, given that the PIM and SIF are accurately determined. The differences in the
patterns of displacement histories between M2 and M3 represent the effect of kinematic
interaction, in which the existence of massless pipe beam alters the free-field ground
motions.

However, there are still some differences in the amplitude of displacement between models
M3 and M4, especially in case of the heterogeneous half-space. This is partially because of
the SIF approximation mentioned in Subsection 5.2.3. The assumption of rigid (or nearly
rigid) pipe cross section used to solve for the SIFs is also a source of error.

Despite those limitations, the reduced-order modelsM2 andM3 are capable of analyzing the
potential risk of asynchronous ground excitation and local site (basin) effect to the integrity
of extended structures. For instance, time histories of y-displacement at three control points
are fairly uniform for homogeneous half-space, as shown in Fig. 5.14. Meanwhile, for
heterogeneous medium, as shown in Fig. 5.15, y-displacements at different control points
are considerably different from each other, because of the wave interference inside the basin.
It is well-known that the differential displacement between pipe nodes causes excess strains
and stresses in pipe elements, potentially threatening the integrity of pipeline networks.

5.4 Conclusions
This chapter presents a demonstration of how to incorporate the SIFs obtained in Chapters 3
and 4 into a reduced-order model to analyze SPI problems, specifically a straight pipe
subjected to Rayleigh surface wave propagating through homogeneous and heterogeneous
elastic half-spaces. The displacements at the control points calculated by reduced-order
model, either with free-field input motion or with PIM, are of the same order of magnitude
with those by direct model using 2D FE analyses. Especially, the reduced-order model
using PIM agrees well with the direct model, sufficiently capturing the amplitude and phase
of time histories of the x- and y-displacements at three control points.

The reduced-order model, together with the derived SIFs, will benefit earthquake engineer-
ing methods by providing a versatile tool to account for the effects of spatial variability and
incoherency in the seismic demand of extended structures.
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C h a p t e r 6

Conclusions

Contents of this chapter

6.1 Summary of previous chapters . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.1 Summary of previous chapters
This thesis presents the author’s research into the reduced-order model for dynamic SPI
problems to evaluate the seismic performance of that structure.

Chapter 2 presents a mechanics-based reduced-order model to capture SPI in sandy soils
under biaxial loading on a two-dimensional plane perpendicular to the pipe axis. This
model is calibrated with published experimental data and FE analyses. For the FDC of soil
spring, unlike the most widely used ASCE bilinear model, this novel method is able to take
into consideration the true smooth nonlinearity, hysteresis loop, pinching phenomenon, and
coupling between lateral and vertical soil-pipe motions. Results of the proposed method
show great agreement with those computed by FE analyses and SPH approaches for different
cases of loading patterns. The limitations of the proposed approach are that it currently is
applicable to the case of rigid (or nearly rigid) pipes, and that it cannot capture the post-peak
(softening) behavior of FDC, which has been observed for dense to very dense sands.

Chapters 3 and 4 derive analytical solutions to compute the frequency-domain axial and
in-plane SIFs, respectively, for an infinitely long rigid cylinder buried in homogeneous
half-space. Using Hankel– and Bessel–Fourier series expansion, we solved a mixed-
boundary-value problem considering a harmonic displacement at the structure boundary
and traction-free boundary condition at the half-space free surface. We then verified our
analytical solutions using results obtained from FE simulations. The results show that SIFs
strongly vary with the frequency of excitation, because of the constructive and destructive
interference of waves occurring within the region between soil free surface and the structure.
The SIFs depend on shear modulus and Poisson’s ratio of the half-space, burial location
and dimension of structure, and also on material contrast in case of two-layered half-space.

The results from Chapters 3 and 4 will provide the community database of dynamic SIFs
in a tabulated or graphical form, to enable their use by practitioners who are interested in
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selecting the most appropriate values of springs and dashpots for this class of SPI problems.
Accordingly, Chapter 5 presents a project that exemplifies the potentials of those SIF results:
a straight pipe subjected to Rayleigh surface wave propagating through homogeneous and
heterogeneous half-spaces. We showed that the reduced-order model with appropriate
springs and dashpots yields satisfactory results of displacement time histories at the control
points, compared to those computed by direct 2D FE analyses. This reduced-order model,
together with the derived SIFs, obviously provides a robust and versatile tool to improve
the analysis of buried structures under seismic excitation, while maintaining computational
efficiency.

6.2 Future work
Aphysics-based reduced-ordermodel to analyze the SbSI problems under seismic excitation
is going to be proposed. Specifically, given the pipeline (or tunnel) network information, as
well as the seismic hazard maps, we will provide values for soil springs and dashpots to be
incorporated into a physics-based model to design or evaluate the seismic performances of
the structural system.

Furthermore, we aim to build a nonlinear reduced-order model for SPI analysis in time
domain under TGD. The proposed model is a combination of the hysteresis Bouc–Wen
model and the derived SIFs, in which it behaves similarly to a linear system of frequency-
dependent springs and dashpots for weak ground shaking while generating a nonlinear FDC
for strong ground shaking. This model is able to capture the main features of the system
with an efficient computational effort.
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A p p e n d i x A

Asymptotic method for computing high
oscillatory integrals

The asymptotic method is based on a theorem proposed by Iserles and Nørsett (2005), reads
as follows

Theorem 1 Let 5 , 6 ∈ C∞ [0, 1], 6 is strictly monotone and 6′ ≠ 0 on [0, 1]. Consider a
highly oscillatory integral

� [ 5 ] =
∫ 1

0

5 (G)48l6(G)dG .

Let

&B [ 5 ] = −
B∑
:=0

1
(−8l):+1

[
5: (1)
6′(1) 4

8l6(1) − 5: (0)
6′(0) 4

8l6(0)
]
,

where B ∈ Z+ and 5: is defined by 50(G) = 5 (G) and 5: (G) =
d
dG

5:−1(G)
6′(G) for : ≥ 1. Then,

for l→∞, � [ 5 ] = &B [ 5 ] + O(l−B−2).

Take �1 in Eq. (4.49) as an example. It is rewritten as

�1 =

∫ 1

0

−8√
1 − b2

(
2b2 − A2

0

)2
− 4b2

√
1 − b2

√
A2

0 − b2(
2b2 − A2
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√
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[(
b + 8

√
1 − b2

)=+<
+

(
−b + 8

√
1 − b2

)=+<]
482ℎ:U

√
1−b2db.

With large burial depth ℎ, the integrand of �1 oscillates rapidly. The classical Gaussian
quadrature rule requires exceedingly small subintervals. For large enough ℎ, this classical
method is useless because the error is O(1) as ℎ→∞. Instead, we used asymptotic method
based on theorem 1 to evaluate �1. By changing the variable a =

√
1 − b2, we remove the

singularity at b = 1 and ensure that 6′ ≠ 0 on [0, 1] as well, but a new singularity appears
at a = 1 (b = 0). To handle this, we write

�1 =

∫ 1

0
F (b)db =

∫ 20

0
F (b)db︸          ︷︷          ︸
�11

+
∫ 1

20

F (b)db︸         ︷︷         ︸
�12

= �11 + �12 ,
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where 20 =

√
2c=2
ℎ:U

−
(
c=2

ℎ:U

)2
. Gauss–Kronrod quadrature was used to evaluate �11, which

is the integration over the first =2 cycles of the integrand from b = 0 to b = 20. This study
used =2 = 100. For �12, let a =

√
1 − b2, we have
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Clearly, �12 is of the form �12 [ 5 ] =
∫ 1− c=2

ℎ:U

0 5 (a)48l6(a)da, with l = 2ℎ:U and 6(a) = a.
From theorem 1 with B = 2, we computed
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Note that

50 = 5 , 51 = −
6′′

6′2
5 + 1

6′
5 ′ = 5 ′, 52 =

(
36′′2

6′4
− 6
′′′

6′3

)
5 − 36′′

6′3
5 ′ + 1

6′2
5 ′′ = 5 ′′ .

The values of the function 5 and its derivatives 5 ′, 5 ′′ at a = 0 and a = 1 − c=2
ℎ:U

were
computed numerically.
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