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ABSTRACT 

The direct dehydroaromatization of C(sp3)–H alkanes may seem conceptually simple 

but in fact is a challenging transformation.  Industrially practiced methods utilize 

energy-intensive processes operating at high pressures and temperatures due to the 

requirement of such conditions to overcome the endergonic and unreactive nature of alkanes.  

Chapter 1 briefly discusses early and recent achievements in the field of alkanes 

dehydrogenation by Ir pincer ligated complexes.  While there has been great advancement in 

the dehydrogenation transformation recently, the direct dehydroaromatization of 

heterocyclic substrates generating functionalized aromatics is significantly underdeveloped.  

In Chapter 2, we successfully extended the applicability of Ir-catalyzed dehydrogenation 

systems using pincer ligated complexes on a diverse collection of heterocyclic alkanes with 

functionalities known to be strongly coordinating and poorly compatible with (PCP)–Ir type 

catalysts.  Carbo- and heteroarenes containing oxygen and nitrogen can be synthesized in 

moderate to excellent yields up to 99%, and the reaction tolerates functional groups such as 

bromides and fluorides.  In Chapter 3, we demonstrate the efficient disproportionation of 

cycloalkenes to the corresponding arenes and cycloalkanes with up to 100% conversion, 

which has been a long-standing challenge in the field of pincer-ligated Ir-catalyzed 

dehydrogenation studies.  For example, 1-cyclohexene was disproportionated to benzene and 

cyclohexane and 1-4-vinyl-1-cyclohexene was disproportionated to ethylbenzene and 

ethylcyclohexane.  We also demonstrate that a key mechanistic feature of our system is a 

lack of catalyst inhibition by arenes.  In addition, our method is advantageous to previous 

reports as no sacrificial olefin is used, thereby circumventing the requirement for exogeneous 

hydrogen acceptors.  Our studies presented in Chapter 2 and Chapter 3 provides a novel 
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and a complementary pathway to access important aromatic building blocks and may help 

create alternative routes to complex molecules via late stage dehydrogenation without the 

need of stoichiometric oxidants.  
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CHAPTER 1 

ALKANE C(SP3)–H DEHYDROGENATION CATALYZED BY 

SINGLE-SITE IRIDIUM CATALYSIS 

  

1.1               INTRODUCTION  

Olefins and aromatics are common cores in organic chemistry and serve as building 

blocks for the synthesis of complex molecules in pharmaceuticals and polymers.  In addition, 

benzene, toluene, and xylenes are among the six most important feedstock chemicals that are 

not naturally occurring (Figure 1.1a).1  The current industrial production of these building 

blocks is through dehydrogenating aliphatic hydrocarbons from crude oil feedstock using 

heterogeneous catalysts, which is an energy-intensive process operating at high pressures up 

to 60 bar and temperatures up to 900 °C (Figure 1.1b).2  Additionally, isomerization occurs 

at such high temperatures, which lowers product selectivity making such processes 

inefficient.   
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Figure 1.1 Most Important Building Blocks and Current Industrial Production  
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Figure 1.2 Substituted Aromatics in Drugs and Industrial Synthesis  
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Hence, there is a great interest in developing and identifying methods for the 

synthesis of substituted and unsubstituted aromatics with milder conditions.  Ideally, such 

a method would occur under acid-free and redox-neutral conditions, and would tolerate a 

much broader range of functional groups, making itself attractive for fine chemical 

manipulation.  Dehydrogenating C(sp3)–H alkanes using homogenous transition metal 

catalysis could ideally be used to generate functionalized aromatic systems such as 

quinolines and naphthalenes from aliphatic precursors, which is the focus of our work in 

the subsequent chapters (Figure 1.3).   

 

 

Figure 1.3 Examples of Presented Work in Chapters 2 and 3 
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localized C−C and C−H sigma bonds and coordinate weakly to metals with bond enthalpies 

of < 15 kcal/mol. making them poor nucleophiles and difficult to activate.13-15   

Generally, C−H bonds in alkanes have high bond dissociation energies (BDE), in the 

range of 90-100 kcal/mol.9  Activating terminal C−H bonds in alkanes are preferred, but 

differing BDE between secondary and primary alkanes can affect the selectivity of the 

reaction, which imposes an additional challenge.  Generally, terminal C−H positions have 

higher BDEs than internal positions (Scheme 1.1).1, 16  However, terminal C−H bond 

activation using transition-metal complexes is generally kinetically and thermodynamically 

favorable over secondary and tertiary C−H bonds.10-12  One explanation for this observation 

is the bulky ligands around the metal center make C−H metal coordination more facile on 

the terminal position.  In less sterically encumbered complexes, this effect may not be as 

strong and must be monitored.   

 

Figure 1.4 s-Bonds vs. π-Bonds Molecular Orbitals 
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Scheme 1.1 Representative Bond Dissociation Energies of Alkanes 

 

In addition, specific to C(sp3)−H dehydrogenation process, the chemical inertness 

increases as the hydrocarbon chain length decreases due to thermodynamic equilibrium, 

making it even more challenging to convert small chain alkanes to alkenes (Figure 1.5).17-19  

Hence, high temperatures are necessary in dehydrogenation because one needs to amplify 

the entropic term to offset the strong endergonic nature of dehydrogenation.   

Furthermore, strong binding of the a-olefin or arene products to homogeneous 

catalysis can generate either a p-complex or a vinyl hydride with the catalyst, and thus 

dehydrogenation products may inhibit their catalytic activity.24   

 

Figure 1.5 Thermodynamic Equilibrium Conversion of n-Alkane Dehydrogenation17 
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1.3               EARLY EXAMPLES OF C(SP3)−H DEHYDROGENATION USING 

IRIDIUM HOMOGENEOUS CATALYSTS 

Alkane dehydrogenation has received increased attention over the last decade due to 

the synthetic versatility of olefins and aromatics.  However, this conceptually simple process 

is difficult to implement in practice due to the requirement of activation of strong C−H bonds.  

Hence, most of the reported systems require a sacrificial olefin that serves as a hydrogen 

acceptor to render the overall reaction exothermic.20  Crabtree and co-workers reported the 

first example of stoichiometric alkane dehydrogenation using the cationic Ir(III) complex 

[(acetone)2(PPh3)2−IrH2]+ c1 with cyclohexane yielding a 1,3-cyclohexadiene−Ir complex 

(Scheme 1.2a).  More significantly, two important findings of the Crabtree studies were that 

cyclopentane and cyclooctane (COA) were dehydrogenated to cyclopentadienyl hydride and 

1,5-cyclooctadiene complexes, respectively, in the presence of 3,3-dimethyl-1-butene 

commercially known as t-butylethylene (TBE) (Scheme 1.2b/1.2c).19, 21-22 

Concurrently but independently, Felkin and co-workers reported the 

dehydrogenation of cycloalkanes using Re and Ir metal complexes.  Felkin reported the 

transfer dehydrogenation of the COA/TBE system by complex (i-Pr3P)2−IrH5 c2 with 

turnover numbers (TONs) up to 70 when increasing reaction temperature to 150 °C (Scheme 

1.3).23-24  
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Scheme 1.2 First Reported Stoichiometric Alkane Dehydrogenation Examples by Crabtree 

 

Scheme 1.3 Example of COA/TBE Dehydrogenation by Felkin  
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The transfer dehydrogenation reaction of TBE/COA has a substantial negative 

enthalpy (ca. -7 kcal/mol) due to the low dehydrogenation enthalpy of COA (+22.4 kcal/mol) 

relative to other alkanes (ca. 30 kcal/mol).20  Hence, the TBE/COA system soon became the 

benchmark reaction for screening conditions and catalysis at play in transfer 

dehydrogenation studies.  

 

1.4               RECENT EXAMPLES OF C(SP3)−H DEHYDROGENATION USING 

IRIDIUM PINCER LIGATED COMPLEXES 

Most of the early examples of studied complexes showed poor thermal stability at 

the temperatures needed to achieve reasonable reaction rates.  Pincer ligated complexes, 

however, were found to be thermally stable at these elevated temperatures, making them 

useful for this transformation.25  These complexes are stable due to the tridentate 

coordination of ligands with the metal center.  In 1996, Jensen and co-workers reported the 

first thermally stable pincer ligated complex used as dehydrogenation catalysts, (t-Bu4PCP)–

Ir c3.26-27  Complex c3 proved to be robust and reactive when employed on the COA/TBE 

system, yielding a maximum of 230 TONs.26, 28-29  Since then, variations of complex c3 have 

been reported with different aryl backbones, various linkers, and ligating groups (Figure 

1.6).30-52  That being said, it was found that varying the electronics around the metal center 

is not as effective as varying the geometry around the metal center in improving catalytic 

activity.42  The complexes that showed high catalytic activity in most reactions were 

(t-Bu4POCOP)–Ir c13, (i-Pr4PSCOP)–Ir c22, and (i-Pr4anthraphos)–Ir c24. 
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While most of the previous studies focused on investigating these Ir pincer ligated 

complexes as dehydrogenation catalysts on the COA/TBE system, there were several studies 

that investigated other substrates.  In 2012, Brookhart and co-workers reported the 

disproportionation of 1-hexene to 2,4-hexadiene and n-hexane using different Ir pincer 

ligated complexes.  It was found that the (i-Pr4anthraphos)–Ir complex c24 had the highest 

catalytic activity generating 777 TONs (Scheme 1.4a).53  In a subsequent study, Brookhart 

and co-workers reported the synthesis of piperylene from n-pentane.  Complex c24 resulted 

in the highest activity generating 19.5 TONs even with employing TBE as the H2 acceptor.  

One possible explanation for the lower catalytic activity of complex c24 is that binding 

affinity of the product increases as the hydrocarbon chain length becomes smaller (Scheme 

1.4b).54  These examples demonstrate how catalytic activity vary significantly depending on 

the substrate investigated for dehydrogenation, even if it is only a change in carbon chain 

length.   



Chapter 1: Alkane C(sp3)–H Dehydrogenation Catalyzed by Single-Site Ir Catalysis 
 

 

11 

 

Figure 1.6 Recent Developments in Iridium Pincer Ligated Complexes 

Scheme 1.4 Selected Recent Examples of n-Alkanes Dehydrogenation   
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1.5               PINCER-LIGATED IRIDIUM-CATALYZED C(SP3)−H 

DEHYDROGENATION MECHANISM  

The widely accepted mechanism for the (t-Bu4PCP)–Ir c3 catalytic dehydrogenation 

of the COA/TBE system occurs via an Ir(III)/Ir(I) catalytic cycle (Scheme 1.5).55-57  The 

first step of the catalytic cycle starts with the insertion of TBE followed by a reductive 

elimination to generate the catalytically active 14-electron three-coordinate Ir(I) species B.  

Then an oxidative addition of COA followed by a b-hydride elimination furnishes the 

dehydrogenated product to close the catalytic cycle (Scheme 1.5).  The resting state for 

(t-Bu4PCP)–Ir c3 at low concentrations of TBE is believed to be the Ir(III) hydrido-vinyl 

complex D. 
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Scheme 1.5 Mechanism for (t-Bu4PCP)–Ir-Catalyzed Dehydrogenation of COA 
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Scheme 1.6 Mechanism for Pincer-Ligated Iridium-Catalyzed Dehydrogenation of n-Alkanes 
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normal and cyclic alkanes to olefins.  The field of dehydrogenating functionalized substrates 

that could lead to important building blocks is lacking and remains significantly 

underdeveloped due to the strong coordination of many functionalities to metal centers 

leading to catalysis inhibition.  Hence, our work in the subsequent chapters focuses on 

investigating dehydrogenating a diverse collection of substrates by Ir pincer ligated 

complexes with an emphasis on a variety of functional groups that are known to be strongly 

coordinating and poorly compatible with (PCP)–Ir type catalysts.  
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 CHAPTER 2 

C(SP3)–H DEHYDROAROMATIZATION OF CYCLIC AND 

HETEROCYCLIC ALKANES CATALYZED BY IRIDIUM PINCER 

LIGATED COMPLEXES  

 

2.1               INTRODUCTION 

Functionalized aromatic skeletons constitute a large variety of important organic 

compounds’ substructures and serve as building blocks for the synthesis of complex 

molecules in pharmaceuticals and monomers for the production of polymers.  As noted in 

Chapter 1, the synthesis of substituted aromatics and fused arenes can be cumbersome, 

often requiring harsh conditions such as strongly acidic environments or highly toxic 

chemicals that generate large amounts of waste.  Hence, there is a great interest in 

developing and identifying methods for the synthesis of substituted and unsubstituted 

aromatics under milder conditions.   
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While the previous chapter discussed the substantial efforts in the past twenty years 

on C(sp3)–H dehydrogenation by Ir pincer ligated complexes, only a few examples reported 

the direct dehydroaromatization of heteroatomic hydrocarbons precursors.  Additionally, 

the scope of such reactions is fairly narrow due to the Lewis basic nature of the 

heteroatoms, particulary by binding of dehydrogenated functionalized species to (PCP)–Ir 

type catalysts.1   

The purpose of the work presented in this chapter is to first expand the scope of 

dehydroaromatization beyond hydrocarbon substrates to generate heteroaromatics with an 

emphasis on a variety of functional groups that are known to be poorly compatible and 

strongly coordinating with (PCP)–Ir type catalysts, including halogens, ketones, arenes, 

and ethers.  Second, we want to explore the effects of steric crowding on the ability of Ir 

pincer ligated complexes to accomplish these transformations. 

 
2.2               RELATED LITERATURE  

Since the first reports of Jensen and co-workers of the “parent catalyst” complex 

(t-Bu4PCP)–Ir c3 for transfer dehydrogenating the cyclooctane/3,3-dimethyl-1-butene 

(COA/TBE) system2-3 many studies have utilized Ir pincer ligated complexes for 

dehydrogenating alkanes to alkenes.2-8  Amongst the different variations of complex c3 

reported, complexes (t-Bu4POCOP)–Ir c13, (i-Pr4PSCOP)–Ir c22, and (i-Pr4anthraphos)–Ir c24 

have been shown to exhibit high catalytic activity as dehydrogenation catalysts (Figure 2.1).   
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Figure 2.1 Ir Pincer Ligated Complexes Utilized as Dehydrogenation Catalysts  

However, only a few studies have investigated the direct dehydroaromatization of 

heteroatom substituted alkanes by Ir pincer ligated complexes due to significant product 

inhibition by coordination to the Ir metal center.  Early reports by Jensen and Kaska and 

co-workers in 1997 reported low activity of complex (t-Bu4PCP)–Ir c3 to catalyze the transfer 

dehydrogenation of tetrahydrofuran (THF) and using TBE as the H2 acceptor (Scheme 

2.1a).1, 8   
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Scheme 2.1 Selected Examples of Cyclic Ethers Transfer Dehydrogenation Ir Complexes 

 

Even though this reaction is thermodynamically favorable, only partial 

hydrogenation of TBE occurred to yield 14% of furan, demonstrating the difficulty of such 

reactions.  Further investigations using Ir pincer ligated complexes for dehydrogenating 

THF were not reported for over a decade afterward.  Later in 2014, Huang and co-workers 

reported the transfer dehydrogenation of a broad scope of cyclic ethers including THF 

using (i-Pr4PSCOP)–Ir c22 (Scheme 2.1b).5  Later, Brookhart and Nozaki and co-workers 

reported dehydrogenation of linear and cyclic ethers using (i-Pr4anthraphos)–Ir c24 and other 

variations of Ir pincer ligated complexes, and only limited examples exhibited the direct 

dehydroaromatization from its alkane precursor substrate (Scheme 2.1c/Scheme 2.1d).9-10  
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Goldman and co-workers attempted the transfer dehydrogenation of cyclohexanone using 

complex (t-Bu4PCP)–Ir c3 and found that catalysis was greatly inhibited by coordination of 

the phenol product (Scheme 2.2).11  

Scheme 2.2 Pincer-Ligated Ir Catalysis Inhibition by Coordination of Product  

 

Other than oxygenated substrates, Goldman and Huang and co-workers also 

reported the dehydrogenation of amines using complexes (t-Bu4PCP)–Ir c3 and 

(i-Pr4PSCOP)–Ir c22 (Scheme 2.3).5, 12-13  The only report for complex (t-Bu4POCOP)–Ir c13 

as a dehydrogenation catalyst for functionalized substrates has been on indolic and carbazolic 

derivatives in the context of hydrogen storage by Brayton and co-workers in 2014 (Scheme 

2.4).14   
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Scheme 2.3 Selected Examples of Amines Transfer Dehydrogenation 

 

Scheme 2.4 The Only Example of Dehydrogenating Heteroatomic Substrates by (t-Bu4POCOP)–

Ir c13 

 

While these examples show significant achievements in the past twenty years, to date 

the direct dehydroaromatization of substrates containing a diverse collection of functional 

groups remains limited and significantly underdeveloped, mainly due to strong coordination 
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and product inhibition.  Hence the purpose of this study is to investigate Ir pincer ligated 

complexes as dehydrogenation catalysts to access substituted fused aromatics with an 

emphasis on tolerating diverse functional groups (Scheme 2.5).  This study presents novel 

and complementary routes to complex molecules via late stage dehydrogenation without the 

need of lengthy synthetic sequences, which would be useful for pharmaceuticals as well as 

materials applications. 

Scheme 2.5 Transfer Dehydrogenation of Broad Range of Substrates with Functional Groups 

by Ir Pincer Ligated Complexes 
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2.3              IRIDIUM PINCER LIGATED COMPLEXES SYNTHESIS AND 

APPLICATION ON COA/TBE SYSTEM  

The synthetic routes toward four known complexes, (t-Bu4PCP)–Ir c3, (t-Bu4POCOP)–

I c13, (i-Pr4PSCOP)–Ir c22, and (i-Pr4anthraphos)–Ir c24, are discussed in this section.  

 

2.3.1 Synthesis of (t-Bu4PCP)–Ir Complex c3 

 

Jensen and co-workers first reported complex (t-Bu4PCP)–Ir c3, which is referred to 

as the “parent catalyst.”3  Complex c3 achieved a maximum turnover numbers (TONs) of 

230 on the COA/TBE system and was found to exhibit a low catalytic activity when 

dehydrogenating n-alkanes.15  Although other complexes such as (i-Pr4PSCOP)–Ir c22 

performed better when applied on the COA/TBE system (maximum of 2,900 TONs)5, 

complex c3 was synthesized to replicate the transfer dehydrogenation results of the 

COA/TBE system as a control experiment before attempting to dehydrogenate alternative 

systems. 
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Scheme 2.6 Synthesis of (t-Bu4PCP)–Ir Complex c3 

 

The hydrido chloride complex c3a was first synthesized from metalating the 

commercially available 2,6-Bbis[(di-t-butylphosphino)methyl]phenyl ligand (1) in refluxing 

toluene under an argon atmosphere (Scheme 2.6).2-3, 16  The diagnostic NMR signals for 

complex c3a are the hydride shift observed at -42.50 ppm in the 1H NMR spectrum and the 

phosphines signal observed at 67.09 ppm in the 31P NMR spectrum.  Then, complex c3a was 

treated with LiBEt3H under an H2 atmosphere generating the dihydride (t-Bu4PCP)–IrH2 

complex c3.  It was found that the tetrahydride (t-Bu4PCP)–IrH4 complex c3b was in 

equilibrium with complex c3 and the diagnostic 1H NMR shift for complex c3b was observed 

at -9.11 ppm.  The energy barrier for the interconversion between the tetrahydride and 

dihydride species is almost negligible and the dehydrogenative catalytic activity for the 

dihydride and tetrahydride complexes are believed to be similar.12, 17  Hence, for consistency, 

we will refer to the mixture of theses complexes as (t-Bu4PCP)–Ir c3. 
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2.3.2 Synthesis of (t-Bu4POCOP)–Ir  Complex c13/c13a 

 

Complex (t-Bu4POCOP)–Ir c13a was first reported by Brookhart and co-workers.18-21  

Notably, complex c13a showed higher activity compared to the parent catalyst c3 by 

achieving a maximum of turnover frequency (TOF) of 6,900 h-1 when applied on the 

COA/TBE dehydrogenation system.  This complex has been shown to exhibit higher activity 

when dehydrogenating cycloalkanes relative to n-alkanes.  Since we are interested in 

developing a method to directly dehydroaromatize heterocyclic alkanes, it is of interest to 

synthesize the (t-Bu4POCOP)–Ir complex c13a.1, 15 

The t-Bu4POCOP ligand 2 was synthesized from treating resorcinol (1) with 

(t-Bu)2PCl, and DBU (Scheme 2.7).  The diagnostic signal of the t-Bu4POCOP ligand 2 is the 

phosphinite shift at 153.22 ppm in 31P NMR spectrum.  Ligand 2 was then cyclometalated 

with half an equivalent of [Ir(COD)Cl]2 in refluxing toluene under an argon atmosphere to 

obtain the t-Bu4POCOP hydrido chloride complex c13.  It is worth noting that unlike most 

pincer ligated-Ir complexes, c13 is air stable.  The diagnostic NMR signals of c13 are the 

hydride shift at -40.69 ppm in the 1H NMR spectrum and the phosphinite shift at 175.34 ppm 

in the 31P NMR spectrum.  Lastly, the ethylene complex c13a was generated by treating c13 

with NaOt-Bu under an ethylene atmosphere overnight.  The diagnostic 31P NMR shift for 

Ir
O

(t-Bu)2P
O
P(t-Bu)2

c13a
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the phosphinite was observed at 181.00 ppm.  Both c13 and c13a are active precatalysts and  

believed to be similar in transfer dehydrogenation systems.  

Scheme 2.7 Synthesis of (t-Bu4POCOP)–Ir Complex c13a 

  

 

2.3.3 Synthesis of (i-Pr4PSCOP)–Ir  Complex c22 

 

Complex (i-Pr4PSCOP)–Ir c22 was first reported by Huang and co-workers in 2014.5  

Complex c22 exhibited high catalytic activity on the COA/TBE system and generated a 

maximum TONs of 5901 in 7.5 h.  Given its high catalytic activity, we were interested to test 

it and investigate it on underexplored systems for dehydrogenation.  This complex was 

synthesized by Dr. Michael Haibach in the Grubbs group following literature protocols 
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(Scheme 2.8).5  Similar to the previous complexes, the PSCOP ligand 5 was first synthesized 

from deprotonating meta-mercaptophenol (4) with NaH followed by diphosphorylation with 

(i-Pr2)2PCl.  The characteristic phosphinite shift is expected at 150.40 ppm and the phosphine 

sulfide shift is expected at 68.70 ppm in the 31P NMR spectrum.  Then the obtained ligand 5 

was cyclometalated with half an equivalent of [Ir(COD)Cl]2 in refluxing toluene affording 

complex c22.  The diagnostic NMR signal of 22 is the hydride shift and expected at -37.06 

ppm in the 1H NMR spectrum.  

Scheme 2.8 Synthesis of (i-Pr4PSCOP)–Ir Complex c22 
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2.3.4 Synthesis of (i-Pr4Anthraphos)–Ir  Complex c24 

 

Complex (i-Pr4anthraphos)–Ir c24 was first reported by Haenel et al. in 2001 for 

alkanes dehydrogenation.22  Complex c24 was found to have higher thermal stability (up to 

250 °C) relative to other Ir pincer ligated complexes and exhibited high catalytic activity 

when used as a dehydrogenation catalyst on the COA/TBE system.  This complex was 

synthesized by Dr. Michael Haibach following literature protocols (Scheme 2.9).23-24  The 

anthraphos ligand 9 was first synthesized from  commercially available 1,8-

dichloroanthraquinone (6) followed by fluorination generating 7 and then reduction to 1,8-

difluoroanthracene (8).  Then 8 was treated with (i-Pr2)2PK affording the desired anthraphos 

ligand 9.  Finally, cyclometallation with half an equivalent of [Ir(COD)Cl]2 in refluxing 

toluene generates the desired complex c24.  The diagnostic NMR signals of 24 are the 

hydride shift expected at -35.90 ppm in the 1H NMR spectrum and the phosphine shift 

expected at 61.00 ppm in the 31P NMR spectrum.23 
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Scheme 2.9 Synthesis of (i-Pr4Anthraphos)–Ir Complex c24 

 

 

2.3.5 COA/TBE Transfer Dehydrogenation System and Reaction Set-Up Investigation 

After synthesizing complexes (t-Bu4PCP)–Ir c3 and (t-Bu4POCOP)–Ir c13, 

dehydrogenation reactions were performed on the COA/TBE system to validate the 

complexes activity as dehydrogenation catalysts.   

Following the Jensen and Brookhart transfer dehydrogenation of COA/TBE system 

published procedures we tested the complexes in a degassed 0.4 mM stock solution under an 

argon atmosphere and the reaction mixture was prepared in a sealed vial inside the glovebox 

(setup a).3, 19  The transfer dehydrogenation of COA/TBE system was first investigated with 

the parent complex (t-Bu4PCP)–Ir c3 using the hydrogenated version and precatalyst (Table 

2.1 entry 1 and 2).  Only 7.0 and 64.8 TONs were obtained and 16.2% to 17.6% of TBE was 

hydrogenated.   
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Table 2.1 COA/TBE Transfer Dehydrogenation Reactions with Complexes (t-Bu4PCP)–Ir c3 and 

(t-Bu4POCOP)–Ir c13 

 

entry  cat. loading 
(mol.%) TON TBE 

conv. 
set 
upa 

1 

 

(c3)IrH2 0.11  7.0 16.2% a 

2 (c3)IrHCl 0.08 64.8 17.6% a 

3 (c3)IrH2 0.18  9.4 30.4% b 

4 (c3)IrH2 0.14 12.5 25.7% b 

5 (c3)IrHCl 0.15  24.8 15.9% b 

6 (c3)IrHCl 0.11  20.9 27.2% c 

7 (c3)IrHCl 0.13  28.3 28.2% d 

8 

 

(c13)Ir(C2H2) 0.09  13.2b 11.3% a 

9 (c13)Ir(C2H2) 0.22  23.5 35.4% b 

10 (c13)Ir(C2H2) 0.15  24.7 26.8% b 

11 (c13)Ir(C2H2) 0.14  11.4 22.5% c 

12 (c13)IrHCl 0.15  5.3 13.8% c 

13 (c13)IrHCl 0.34  11.4 28.3% c 
[a] set up conditions: a = sealed vial, b = sealed vial with new COA, c = sealed Schlenk 
pressure flask with new COA + TBE, d = J. Young Tube with new COA + TBE. [b] 
reaction was run overnight. 

 

Then, we investigated complex (t-Bu4POCOP)–Ir c13 catalytic activity using the 

ethylene species. Only 13.2 TONs were achieved and TBE was partially hydrogenated 

(Table 2.1 entry 8).  In contrast to the literature reports, these complexes exhibited low 
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catalytic activity and the results were not consistent with literature values.  A new COA/TBE 

stock solution was prepared and reaction mixtures were mixed in a sealed vial inside an argon 

glovebox (setup b).  The obtained TONs with setup b with complexes c3 and c13 were again 

very low and exhibited low catalytic activity (Table 2.1 entries 3-5, and 9-10).   

 

The dehydrogenation reactions of COA/TBE run at 150 °C, and there is a possibility 

that the vial cap was not sealing properly due to the high vapor pressure from the reaction 

mixture.  Hence, a new reaction setup was investigated that replaced the sealed vial with a 

sealed Schlenk pressure flask (setup c).  The transfer dehydrogenation of COA/TBE system 

was tested with setup c using complexes c3 and c13 (Table 2.1 entries 6, 11-13) and low 

TONs were still observed.  We performed 31P NMR spectroscopy of complex 

(t-Bu4PCP)IrHCl c3 to investigate the reasons behind the observed low catalytic activity.  The 

diagnostic phosphine shift of complex c3 is 67.02 ppm in the 31P NMR spectrum and we 

found that the complex had become significantly oxidized while being exposed to the 

glovebox atmosphere (Figure 2.2a).  Hence, we investigated the transfer dehydrogenation of 

COA/TBE system with the same complex in a J. Young NMR tube (set up d) (Table 2.1 

entry 7).  After heating the reaction mixture to the required temperature for dehydrogenation, 

31P NMR revealed that the all of the complex had oxidized product (Figure 2.2b).   

It was concluded that rigorous air-free conditions were needed for the catalytic 

activity for dehydrogenation type reactions and even low ppm oxygen levels from the 

glovebox resulted in inhibition of catalytic activity.  This conclusion is in agreement with 
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previous reports by Jensen and Yamashita that reported (PCP)–Ir type pincer catalysts can 

be inhibited by small amounts of impurities.25-26  

 

Figure 2.2 (a) 31P NMR of (t-Bu4PCP)IrHCl c3 Before the Reaction (b) 31P NMR of (t-Bu4PCP)IrHCl 

c3 After Heating the Reaction Mixture in Table 2.1 Entry 7 

Hence, all dehydrogenation reactions must be performed in a flame-dried sealed 

Schlenk pressure flask with rigorously distilled, degassed via performing freeze-pump-thaw 

x5 cycles, and dried solvents with molecular sieves, NaH, or Na-K alloy.  We have observed 

improved catalytic activity of the Ir pincer ligated complexes when these preparations were 

made.   

 

 

 

(a) before the reaction: (t-Bu4PCP)IrHCl in argon glovebox

(b) (t-Bu4PCP)IrHCl after heating the reaction mixture
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2.4              TRANSFER DEHYDROGENATION OF HETEROCYCLIC ALKANES 

CATALYZED BY IRIDIUM PINCER LIGATED COMPLEXES 

2.4.1 6-Methoxy-1,2,3,4-Tetrahydronaphthalane Transfer Dehydrogenation  

A. Introduction 

Substituted naphthalene derivatives are important building blocks in 

pharmaceuticals and in many biologically active compounds that possess antibiotic and 

anticancer activities.27-31 In addition, substituted naphthalene derivatives have found 

applications due to their desired optical and electronic characteristics.32-34  There have been 

great efforts in developing new methods for the synthesis of naphthalene skeletons in the 

recent years.  However, the synthesis of substituted naphthalenes can be cumbersome and 

is difficult via conventional electrophilic aromatic substitution owing to the poor 

regioselectivity.35  Hence, it is of interest to develop new facile regioselective methods 

towards the synthesis of such molecules without lengthy synthetic sequences.  For 

example, constructing substituted naphthalenes from corresponding cyclohexanes via 

C(sp3)–H dehydrogenation by Ir pincer ligated complexes can be an attractive method to 

access such compounds.   

Once we had established a successful rigorous air-free reaction set up and 

conditions for dehydrogenation systems by Ir pincer ligated complexes, the next part of our 

study focused on investigating the catalytic activity of synthesized Ir pincer ligated 

complexes towards transfer dehydrogenative aromatization by using 
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6-methoxy-1,2,3,4-tetrahydronaphthalaene (10) to 2-methoxynaphthalene (11) as a model 

substrate (Scheme 2.10).  

Scheme 2.10 Transfer Dehydrogenation of 6-Methoxy-1,2,3,4-Tetrahydronaphthalene 

Catalyzed by Ir Pincer Ligated Complexes 

 

B. Catalyst Screening and Reaction Optimization 

We began reaction optimization on 6-methoxy-1,2,3,4-tetrahydronaphthalaene (10) 

using complexes (t-Bu4POCOP)–Ir c13, (i-Pr4PSCOP)–Ir c22, and (i-Pr4anthraphos)–Ir c24 and 

3,3-dimethyl-1-butene (TBE) as an H2 acceptor (Table 2.2).  The reactions were carried 

out neat under an argon atmosphere at 200  °C.  We first conducted a control experiment 

where only KOt-Bu was added without the Ir pincer ligated complex to ensure desired 

product is not generated from this mild base alone (Table 2.2 entry 1); product was not 

observed in the absence of Ir.   

We found that complexes c13 and c24 were the most active in dehydrogenating 10 

and up to 52.5% of 2-methoxynaphthol (11) was generated and up to 96.5% of TBE was 

hydrogenated (Table 2.2 entry 2 and 4), while complex c22 showed modest activity even 

when running the reaction for longer times (Table 2.2 entry 3).   
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Table 2.2 Catalyst and Acceptor Screening of 6-Methoxy-1,2,3,4-Tetrahydronaphthalene 

Transfer Dehydrogenation  

 

entry cat. loading 
(mol.%) 

H2 
acceptor 

equiv. of 
acceptor 

acceptor 
conv. 11 yieldb TONc 

1 - - TBE 1.0 - 0.2% - 

2 c13 0.13 TBE 1.0 96.5% 52.5% 404 

3 c22 0.36 TBE 1.0 37.9% 33.2%d 92 

4 c24 0.24 TBE 1.0 90.5% 49.8% 207 

5 c13 0.12 NBE 1.0 98.3% 44.0% 293 

6 c13 0.15 NBE 2.5 87.5% 63.9% 426 

7 c13 0.25 HEX 1.0 82.9% 48.6% 194 

8 c13 0.63 HEX 2.5 94.5% 67.1% 106 

[a] Conditions: 3.2 mmol of 10, Ir cat. with at least 1.2 equiv. KOt-Bu. [b] Conversion 
determined by GC. [c] TON per dehydrogenation.  [d] reaction carried for 48 h. 

 

In all cases, only the fully dehydroaromatized product 2-methoxynaphthalene (11) 

was observed and no olefinic product was observed corresponding to one dehydrogenation 
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cycle.  Compared to the other complexes, (t-Bu4POCOP)–Ir c13 affords better access to the 

metal site attributed to the more open geometry of P–Ir–P acute angle and the shorter C–O 

and P–O bond lengths of the POCOP ligand.36-37  For instance, (t-Bu4POCOP)–Ir c13 has 

bite angle of 157.55(3)° and complex (t-Bu4PCP)–Ir c3 has bite angle of 164.510(8)°. 

In addition, complex c13 is air-stable which is advantageous relative to the other 

complexes.  Thus, we selected it to further optimize the reaction conditions for 

dehydroaromatizing 10.   

We next examined 1-hexene (HEX) and norbornene (NBE) as alternative H2 

acceptors due to their economic advantage compared to TBE.  However, TBE ultimately 

proved to be the best H2 acceptor as determined by yield of 11 under similar conditions for 

10 (Table 2.2 entries 5-8).  In addition, when higher catalyst loading and equivalence of 

acceptor was used, only a modest increase of Ir catalytic activity was observed (Table 2.2 

entry 6 and 8).  Hence, we decided to further optimize the dehydrogenation of 10 using 

TBE only as an acceptor (Table 2.3).  While increasing either the equivalence of TBE or 

the catalyst loading alone had minimal effect on increasing the yield (Table 2.3 entry 1 and 

2), higher conversions were achieved when both parameters are increased simultaneously 

(Table 2.3 entry 3 and 4).  However, excessively high TBE to catalyst ratio deteriorated 

the catalytic activity (Table 2.3 entry 5).  A likely explanation is that the TBE inhibits the 

catalyst by binding to it and favoring the resting state vinyl complex H shown in Scheme 

1.6 in Chapter 1.  Further optimization resulted in 99% yield of 2-methoxynaphthalene (11) 

(Table 2.3 entry 6).   
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Next the effect of temperature on the catalytic activity of (t-Bu4POCOP)–Ir c13 was 

studied (Figure 2.3).  The transfer dehydrogenation of 10 using TBE was run at 150 °C and 

120 °C for longer times, while keeping all other conditions constant (Table 2.3 entries 7-9).  

It was observed that lowering the temperature decreased catalytic activity.   

Table 2.3 Reaction Optimization of 6-Methoxy-1,2,3,4-Tetrahydronaphthalene Transfer 

Dehydrogenation Using Complex (t-Bu4POCOP)–Ir c13 

 

entry cat. loading 
(mol.%) equiv. of TBE TBE conv. 11 yieldb TONc 

1 0.15 1.5 73.0% 41.6% 277 

2 0.15 2.0 51.1% 53.2% 341 

3 0.26 2.0 51.4% 56.3% 198 

4 0.40 2.0 97.9% 72.9% 182 

5 0.41 3.0 44.9% 54.7% 133 

6 0.59d 3.0 75.8% 99.0% 169 

7* 0.16 1.0 78.6% 39.2% 245 

8* 0.16 1.0 100.0% 38.2% 242 

9** 0.16 1.0 60.5% 17.1% 107 
[a] Conditions: 3.2 mmol of 10, precatalyst with at least 1.2 equiv. KOt-Bu. [b] Conversion 
determined by GC 1H NMR using cis-1,4-diacetoxy-2-butene as an internal standard. [c] TON 
per dehydrogenation. [d] c13 (t-Bu4POCOP)–Ir–C2H4 ethylene version was used. *entries 10 
and 11 were run at 150 °C for 22 h and 48 h. ** entry 12 was run at 120 °C for 72 h. 

 

When the reaction was run at 150 °C and reaction time was increased from 22 h to 

48 h, the maximum TONs achieved was 245.  Similarly, when the reaction was run at 120 

O
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 c13
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°C for 72 h, complex c13 exhibited low catalytic activity, achieving a maximum of 107 

TONs.  Hence, we conclude that carrying the reaction at 200 °C is necessary for achieving 

optimal conversions.  In all cases, only the fully dehydroaromatized product 11 was observed 

and we do not observe an olefinic intermediate, hence we conclude that the direct 

dehydroaromatization of 10 is selective to the desired product. 

 

Figure 2.3 Temperature Effect on (t-Bu4POCOP)–Ir c13 Catalytic Activity as Dehydrogenation 

Catalyst of 6-Methoxy-1,2,3,4-Tetrahydronaphthalene 10  

 

2.4.2 Indane Transfer Dehydrogenation  

A. Introduction 

Many indene derivatives have interesting biological activity and have applications in 

material science.38-42  The traditional approaches of indene syntheses include intramolecular 

electrophilic substitution reaction or cyclization induced by a nucleophilic attack to a suitable 
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functional group.43-45  These synthetic methods require highly functionalized arenes, which 

can be cumbersome to prepare industrially.  Here, we present an alternative and 

complementary approach to prepare indene via the direct dehydroaromatization of indane 

using complex (t-Bu4POCOP)–Ir c13 (Table 2.4).   

 

B. Reaction Optimization 

Having established optimized reaction conditions in the previous section 2.4.1, we 

used similar condition and carried out the reactions neat under an argon atmosphere after 

drying and distilling all reagents.  The transfer dehydrogenation of indane (12) was 

investigated using TBE as the H2 acceptor at 200 °C (Table 2.4 entry 1).  The reaction 

successfully generated indene (13) with a yield of 42.3% and TONs of 184.  Replications of 

the reactions with TBE or HEX as H2 acceptors generated no product and formed black 

carbonaceous deposits in the flask (Table 2.4 entry 2 and 3).  It is not fully understood why 

the results could not be replicated.  One possibility is that both 12 and 13 are acidic, and at 

high temperatures other side reactions such as polymerization may occur.   

Alternatively, the reaction was investigated at lower temperatures 180 °C and 150 

°C, while carrying out the reactions for longer times (48 h) (Table 2.4 entries 4-7).  In 

contrary to the transfer dehydrogenation of 10 to 11 results observed in the previous section 

2.4.1, we found that complex (t-Bu4POCOP)–Ir c13 catalytic activity increased when 

decreasing the temperature.  When the transfer dehydrogenation of indane (12) was 

investigated at 180 °C, the obtained yield of indene (13) was 47.5% (Table 2.4 entry 4).   
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Table 2.4 Transfer Dehydrogenation of Indane to Indene by Complex (t-Bu4POCOP)–Ir c13 

 

entry 
cat. 

loading 
(mol.%) 

H2 
acceptor 

equiv. of 
acceptor 

temperature 
(°C) 

conv of 
acceptor 

13 
yieldb TONc 

1 0.23  TBE 1 200 42.0% 42.3% 184 

2 0.24  TBE 1 200 96.5% - - 

3 0.23  HEX 1 200 24.6% - - 

4 0.26  TBE 1 180 95.5% 47.5% 182 

5 0.24  TBE 1 150 98.3% 60.8% 253 

6 0.26  HEX 1 150 73.0% 27.1% 104 

7 0.26  NBE 1 150 51.1% 58.1% 224 

8 0.59 TBE 2.5 150 45.4% 95.8% 162 
[a] Conditions: 3.2 mmol of 12, precatalyst with at least 1.2 equiv. KOt-Bu. [b] Yield 
determined by GC and 1H NMR using cis-1,4-diacetoxy-2-butene as an internal 
standard. [c] TON per dehydrogenation.  

 

However, when the reaction was carried under similar conditions at 150 °C, 60.8% 

of indene (13) was generated (Table 2.4 entry 5).  It is worth noting that using HEX as an H2 

acceptor was worse than TBE or NBE in this dehydrogenation system (Table 2.4 entry 6 and 
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7).  After reaction optimization using complex c13, 13 was generated in excellent yields 

showing that this catalytic system is highly effective (Table 2.4 entry 8).  In all cases, only 

indene (13) and the hydrogenated olefin was observed and no side products were generated.  

Given that (i-Pr4anthraphos)–Ir c24 exhibited high catalytic activity when used as a 

catalyst for transfer dehydrogenating 10 to 11 in the previous section 2.4.1, we employed it 

to transfer dehydrogenate 12 to 13 with TBE as the H2 acceptor (Scheme 2.11).  As we 

expected, complex c24 achieved excellent yields generating 97.3% of 13 and 335 TONs.  In 

summary, both complexes c13 and c24 exhibited high catalytic activity when 

dehydrogenating 12 to 13 and in all cases, the catalytic systems was selective to indene (13). 

 

Scheme 2.11 Transfer Dehydrogenation of Indane Catalyzed by Complex (i-Pr4Anthraphos)–Ir 

c24 
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2.4.3 6-Methoxy-1,2,3,4-Tetrahydroquinoline Transfer Dehydrogenation  

A. Introduction 

Substituted quinoline scaffolds are important compounds that have been shown to 

possess a critical and a diverse range of biological activities such as antimalarial, 

antimicrobial, anti-inflammatory, and many other characteristics.46-50  In addition, some of 

these scaffolds have found applications as functional materials for organic light-emitting 

diodes.51-53 

Owing to their great synthetic utility and useful properties, there has been great 

interest in finding new methods for the synthesis of quinoline scaffolds in the recent years.  

However, most of the current methods that synthesize substituted quinolines suffer from 

harsh and toxic conditions, requiring an oxygen atmosphere, and complex raw reagents.50  

The direct dehydroaromatization from alkane precursors can be an alternative and a 

complementary method to the current approaches.  Here we present the synthesis of 6-

methoxyquinoline and via C(sp3)–H dehydrogenation of 6-methoxy-1,2,3,4-

tetrahydroquinoline by Ir pincer ligated complexes. 

B. Catalyst Screening and Reaction Optimization 

We commenced investigating the transfer dehydrogenation of 

6-methoxy-1,2,3,4-tetrahydroquinoline (14) using complex (t-Bu4POCOP)–Ir c13 and TBE 

as the H2 acceptor at 200 °C (Table 2.5, entry 1).  The reactions were carried out neat under 

an argon am atmosphere after drying and distilling all reagents.  Surprisingly, the complex 
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exhibited modest catalytic activity at the investigated initial conditions (cat. loading 1.38 

mol.%) and reaction time (19 h) and only 29.9% of 6-methoxyquinoline (15) was generated.   

Table 2.5. Transfer Dehydrogenation of 6-Methoxy-1,2,3,4-Tetrahydroquinoline by Complex 

(t-Bu4POCOP)–Ir c13 

 

entry cat. loading 
(mol.%) H2 acceptor equiv. of 

acceptor 
temperature 

(°C) 
reaction 

time 
15 

yieldb TONc 

1 1.38  TBE 3.0 200 19 h 29.9% 21 

2 1.62  TBE 5.0 200 43 h 50.9% 31 

3 1.98  TBE 5.0 150 48 h 16.7% 9 

4 1.80  HEX 5.0 200 22 h 70.2% 39 

5 4.09  HEX 6.0 200 22 h 93.5% 22 

6 4.06  HEX 6.0 160 96 h 68.1% 17 
[a] Conditions: 3.2 mmol of 14, precatalyst with at least 1.2 equiv. KOt-Bu. [b] Yield determined 
by GC and 1H NMR using cis-1,4-diacetoxy-2-butene as an internal standard. [c] TON per 
dehydrogenation.  

 

Hence, we carried out the reaction for longer time (43 h) and slightly increasing the 

cat. loading to 1.62 mol.%, and we observed increased yield of 15 to 50.9% (Table 2.5 entry 

2).  It is evident that the transfer dehydrogenation of 14 with TBE as an H2 acceptor is slower 
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compared to previously discussed substrates 6-methoxy-1,2,3,4-tetrahydronaphthalenea (10) 

(section 2.4.1) and indane (12) (section 2.4.2).  Since we obtained better results when 

lowering the temperature for the transfer dehydrogenation of 12, we also lowered the 

temperature to 150 °C when investigating the transfer dehydrogenation of 14 and increasing 

the catalyst loading to 1.98 mol.% (Table 2.5 entry 3).  However, the yield of 15 was 

significantly deteriorated and only 16.7% was obtained.  

Alternatively, the dehydrogenation reaction of 14 was investigated using HEX as the 

H2 acceptor instead of TBE.  We were delighted to find that the catalytic activity of c13 was 

higher and 70% of 15 was generated when the reaction was carried out under similar 

conditions at 200 °C (Table 2.5 entry 4).  Increasing the catalyst loading while maintaining 

all the other parameters similar generated optimized reaction conditions and excellent yields 

up to 93.5% of 15 (Table 2.5 entry 5).  We then investigated lowering the temperature to 160 

°C when using HEX as the H2 acceptor but we found that the catalytic activity was poor even 

when carrying out the reaction for 96 h (Table 2.5 entry 6).  It is not fully understood why 

using HEX was a better H2 acceptor compared to TBE and generated better yields of 15.  

This finding is contrary to literature reports where (PCP)–Ir pincer type complexes have been 

shown to have greater binding affinity to terminal and linear olefins relative to TBE. The 

greater steric hinderance of TBE is known to mitigate the binding of dehydrogenated 

products to the Ir metal center, thereby increasing (PCP)–Ir pincer complexes’ catalytic 

activity.1, 54 
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Given that Huang and co-workers reported good catalytic activity of (i-Pr4PSCOP)–Ir 

c22 when dehydrogenating N-heterocyclic alkanes,5 we investigated dehydrogenating 14 to 

15 using complex c22 (Scheme 2.12).  However, we observed lower catalytic activity 

comparable to complex c13 when the reaction was run under similar conditions with TBE 

as the H2 acceptor and only 28.3% of 15 was generated.  Hence, further optimization with 

complex c22 was not performed.  In all cases, the investigated transfer dehydrogenation 

reactions of 14 generated the fully dehydroaromatized substrate 15 as the only product and 

no side reactions were observed.  

Scheme 2.12 Transfer Dehydrogenation of 6-Methoxy-1,2,3,4-Tetrahydroquinoline d by 

Complex (i-Pr4PSCOP)–Ir c22 

 

 

2.4.4 7-Bromo-1,2,3,4-Tetrahydroisoquinoline Transfer Dehydrogenation 

A. Introduction 

Isoquinoline skeletons constitute important structural framework in natural 

products, pharmaceuticals, and functional materials.55-59  In addition, brominated 

isoquinoline derivatives are extremely useful synthetic blocks that are used to synthesize 
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novel isoquinoline derivatives with fluorescence properties (Scheme 2.13).60-63  Hence, 

there has been significant interest in constructing isoquinoline scaffolds.  Classical methods 

involve Bischler-Napieralski and Pictet-Spengler reactions which require harsh acidic 

conditions limiting their practical usage.64-65  In addition, selective bromination of 

quinolines is cumbersome and require lengthy reaction periods and difficult work up.66-68   

Scheme 2.13 Selected Examples of Brominated Isoquinoline Synthetic Utility  

 

Herein, we present an alternative and complementary facile method of the synthesis 

of 7-bromoisoquinoline via the direct C(sp3)–H dehydrogenation of 

7-bromo-1,2,3,4-tetrahydroisoquinoline by Ir pincer ligated complexes. 
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B. Reaction Optimization 

We began investigating the transfer dehydrogenation of 

7-bromo-1,2,3,4-tetrahydroisoquinoline (16) using complex (t-Bu4POCOP)–Ir c13 and TBE 

as the H2 acceptor at 200 °C (Table 2.6, entry 1).  The reactions were carried out neat under 

an argon atmosphere after drying and distilling all reagents.  The complex exhibited good 

catalytic activity at the investigated conditions and 66.7% of 7-bromoisoquinoline (17) was 

generated.  In an attempt to optimize the product yield, we carried out the reaction with excess 

TBE and longer reaction times up to 144h, we only observed 50.1% and 49.1% of 17 

however (Table 2.6 entry 2 and 3).  Similar to what we observed in the previous section 2.4.3 

when investigating the transfer dehydrogenation of 14, we found that high concentrations of 

TBE limited the catalytic activity of complex c13 due to the possibility of shifting the binding 

equilibrium at higher concentrations.  Hence, alternatively we investigated the transfer 

dehydrogenation of 16 with HEX as the H2 acceptor (Table 2.6 entry 4).  We optimized 

reaction conditions with HEX and we achieved excellent yields up to 91.4% of 17 was 

generated.  In all cases, only the fully dehydroaromatized product 17 was observed and no 

side reactions were detected, thus providing a new complementary and an alternative 

selective method toward the synthesis of brominated isoquinoline skeletons.  
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Table 2.6 Transfer Dehydrogenation of 7-Bromo-1,2,3,4-Tetrahydrisoquinoline by Complex 

(t-Bu4POCOP)–Ir c13 

 

entry cat. loading 
(mol.%) H2 acceptor equiv. of 

acceptor 
reaction 

time 
17 

yieldb TONc 

1 3.42 TBE 1.0 24 h 66.7% 20 

2 8.27 TBE 10.0 45 h 50.1% 6 

3 8.75 TBE exs 144 h 49.1% 6 

4 6.24 HEX exs 24 h 91.4% 15 
[a] Conditions: 3.2 mmol of 16, precatalyst with at least 1.2 equiv. KOt-Bu. [b] Yield determined 
by GC and 1H NMR using cis-1,4-diacetoxy-2-butene as an internal standard. [c] TON per 
dehydrogenation.  

 

   

2.4.5 Tetralone Derivatives Transfer Dehydrogenation 

A. Introduction 

Naphthol derivatives serve as important  building blocks  in pharmaceuticals, 

agrochemicals, polymers, and natural products.69-71  Classical industrial methods to make 

naphthol compounds rely on the alkali fusion of naphthalene sulfuric acid or 
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a-naphthylamine hydrolysis at elevated temperatures and high pressures (Scheme 2.14).72  

Due to their synthetic utility, alternative approaches have been reported utilizing the direct 

dehydrogenation of 1-tetralone to 1-naphthol via heterogeneous catalysis at high 

temperatures or via photocatalytic continuous flow technology (Scheme 2.15).73-76   

Scheme 2.14 Industrial Methods for the Synthesis of a-Naphthol  

 

 

Scheme 2.15 Selected Examples of 1-Tetralone Dehydrogenation  

 

While these methods are promising, they suffer from the requirement of high 

temperatures and aerobic conditions.  In addition, the requirement of a photocatalyst system 
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applicability.  Here we present an alternative and complementary method of 1-tetralone (18) 

transfer dehydrogenation to 1-naphthol (19) using Ir pincer ligated complexes.  In addition, 

fluorinated phenol skeletons are synthetically useful and often encountered in biologically 

active molecules and in pharmaceuticals.77-80  Thus, we also present the transfer 

dehydrogenation of 7-fluoro-1-tetralone (20) to 7-fluoro-1-naphthalenol (21). 

B. Reaction Optimization of 1-Tetralone Transfer Dehydrogenation 

We began investigating the transfer dehydrogenation of 1-tetralone (18) using 

complex (t-Bu4POCOP)–Ir c13 and TBE as the H2 acceptor at 200 °C (Table 2.7, entry 1 and 

2).  The reactions were carried out neat under an argon atmosphere after drying and distilling 

all reagents.  The complex exhibited good catalytic activity at the investigated conditions and 

47.6% of 1-naphthol (19) was generated.  In an attempt to optimize the product yield, we 

carried out the reaction with higher equivalence of TBE and found that the yield of 19 was 

increased to 62.3% (Table 2.7 entry 4).  We also investigated using HEX as an alternative 

acceptor under similar conditions to entry 2 and observed similar yields and up to 46.9% was 

generated (Table 2.7 entry 3).  Overall, the catalytic activity of complex c13 did not change 

when changing the H2 acceptor in this system.  That being said, we found that annulene and 

tetralin were generated as by-products in both cases. 
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Table 2.7 Transfer Dehydrogenation of 1-Tetralone by Complex (t-Bu4POCOP)–Ir c13 

 

entry cat. loading 
(mol.%) H2 acceptor equiv. of 

acceptor 
reaction 

time 
19 

yieldb TONc 

1 - TBE 1.4 24 h - - 

2 1.59 TBE 1.8 24 h 47.6% 30 

3 1.00 HEX 1.8 45 h 46.9% 47 

4 1.60 TBE 3.1 24 h 62.3% 39 
[a] Conditions: 3.2-4.0 mmol of 18, precatalyst with at least 1.2 equiv. KOt-Bu. [b] Yield 
determined by GC and 1H NMR using cis-1,4-diacetoxy-2-butene as an internal standard. [c] 
TON per dehydrogenation.  

 

C. Reaction Optimization of 7-Fluoro-1-Tetralone Transfer Dehydrogenation 

Similarly, we began investigating the transfer dehydrogenation of 

7-fluoro-1-tetralone (20) using TBE as the H2 and complex (t-Bu4POCOP)–Ir c13 given its 

superior performance relative to the other investigated complexes shown in the previous 

sections.  The reactions were carried out neat at 200 °C under an argon atmosphere after 

drying and distilling all reagents (Table 2.8).  We found that the complex exhibited low 

catalytic activity even when carrying the reaction for 48 h and up to 17.9 % of 

TBE HEX

O OH

R+ R+

18 19

cat. KOt-Bu

Ir
O

(t-Bu)2P
O
P(t-Bu)2

c13
HCl

200 °C



Chapter 2: C(sp3)–H Dehydroaromatization Of Cyclic and Heterocyclic Alkanes Catalyzed by Ir Pincer 
Ligated Complexes 
 

 

58 

7-fluoronaphthalen-1-ol (21) was generated (Table 2.8 entries 1-3).  Increasing the catalyst 

loading 4.61 mol.% increased the yield of 21 up to 20.6% (Tables 2.8 entry 4 and 5).  It is 

evident that complex c13 exhibits very low TOF in this system and a substantial increase of 

catalyst loading and reaction time is required to generate reasonable yields of 21.   

Therefore, we then investigated HEX as the H2 acceptor and found that c13 catalytic 

activity was higher and up to 36.6% of 21 was generated (Tables 2.8 entry 6 and 7).  We do 

not fully understand why the catalytic activity increased with HEX, and one possible 

explanation is that HEX binding affinity to the complex may be higher than the product 

itself, leading to releasing it faster from the metal complex. 

Alternatively, we investigated the transfer dehydrogenation of 20 to 21 using 

complexes (i-Pr4PSCOP)–Ir c22 and (i-Pr4anthraphos)–Ir c24 given that reported studies with 

these complexes exhibited high catalytic activity when employed on dehydrogenating 

heteroatomic systems.  Complex c22 exhibited similar low catalytic activity to c13 under the 

same conditions and only up to 12.2% of 21 was generated (Table 2.8 entry 8).  In contrary, 

complex c24 exhibited excellent catalytic activity and up to 80.6% of 21 was generated 

(Table 2.8 entry 9).   
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Table 2.8 Transfer Dehydrogenation of 7-Fluoro-1-Tetralone Transfer Dehydrogenation by Ir 

Pincer Ligated Complexes 

 

entry cat. / loading 
(mol.%) H2 acceptor equiv. of 

acceptor 
reaction 

time 
19 

yieldb TONc 

1 c13d/1.07 TBE 4.2 20 h 14.5% 13 

2 c13/1.67 TBE 3.7 15 h 12.6% 7 

3 c13/1.78 TBE 4.0 48 h 17.9% 10 

4 c13/3.47 TBE 4.8 24 h 12.3% 3 

5 c13d/4.61 TBE 4.0 24 h 20.6% 4 

6 c13/1.99 HEX 5.1 24 h 23.4% 12 

7 c13/4.04 HEX 6.8 24 h 36.6% 9 

8 c22/1.33 TBE 3.6 24 h 12.2% 9 

9 c24/1.14 TBE 4.9 24 h 80.6% 71 
[a] Conditions: 3.2 mmol of 20, precatalyst with at least 1.2 equiv. KOt-Bu. [b] Yield determined 
by GC and 1H NMR using cis-1,4-diacetoxy-2-butene as an internal standard. [c] TON per 
dehydrogenation. [d] c13 (t-Bu4POCOP)–Ir–C2H4 ethylene version was used.  

 

TBE HEX

O OH

R+ R+

20 21

cat. KOt-Bu
Ir cat.F F

200 °C

Ir(i-Pr)2P P(i-Pr)2Ir
S

(i-Pr)2P
O
P(i-Pr)2

HCl
c24c22

HCl
Ir

O
(t-Bu)2P

O
P(t-Bu)2

c13
HCl
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Despite the similarity of the tridentate pincer structure of complexes c13, c22, and 

c24, the transfer dehydrogenation of 20 to 21 epitomizes how these complexes offer 

unexpected reactivities in different systems.  We suspect that c13 may form a more stable 

adduct with the naphthol product than the more sterically hindered c24 given the more open 

geometry of P–Ir–P and shorter C–O and P–O bond lengths.  Similarly, we believe the 

geometry of c22 may account for its low catalytic activity.  In all cases, we observed 

unidentified aromatic and olefinic side products and some decomposed starting material in 

reactions subjected to c22.   

 

2.4.6 Acenaphthene Transfer Dehydrogenation 

A. Introduction 

Polycyclic aromatic hydrocarbons (PAHs) generally exhibit attractive electron-

donating properties or electron-accepting properties making them useful in various 

applications.  Such applications include functional dyes, semiconductors, and fluorescent 

materials.81-86  Specifically, acenaphthylene is considered a versatile building block for 

constructing PAHs owing to its highly reactive C–C double bond ascribed to the ring strain 

of the fused cyclopentane ring.87  

Acenaphthylene is more expensive than acenaphthene and its derivatives are 

synthetically useful and serve as a versatile building block in organic reactions and materials 

applications owing to their capability to undergo ozonolysis or silylation reactions or to 

perform Diels-Alder reactions (Scheme 2.16).87-93  Hence, there has been a great interest in 
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finding and developing methods for the preparation of acenaphthylene and its derivatives 

(Scheme 2.17).   

Scheme 2.16 Selected Examples Manifesting Acenaphthylene Synthetic Utility  

 

  

Industrially, the only method of producing acenaphthylene is from dehydrogenating 

acenaphthene using heterogeneous catalysts at elevated temperatures up to 900 ºC (Scheme 

2.17a).94-95  Alternatively, there has been reports of synthetic approaches to acenaphthylene 

via dibromination of acenaphthene using two equivalents of N-bromosuccinimide (NBS) 

followed by debromination using zinc and an alcohol, or via vapor phase pyrolysis (Scheme 

2.17b).96  These approaches suffer from the use of stoichiometric toxic reagents or from 

highly energy intensive pyrolysis at up to 500 °C.  We present the direct 

dehydroaromatization of acenaphthene to acenaphthylene without the need of stoichiometric 

Ozonolysis

OO

Me3Si SiMe3

S
S8, Δ

Silylation
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reagents or oxidants, and with milder conditions relative to industry practice by using Ir 

pincer ligated complexes. 

Scheme 2.17 Selected Methods of Acenaphthylene Synthesis 

 

B. Reaction Optimization 

We began investigating the transfer dehydrogenation of acenaphthene (22) using 

complex (t-Bu4POCOP)–Ir c13 and TBE as the H2 acceptor at 200 °C (Table 2.9, entry 1).  

The reactions were carried out neat at 200 °C under an argon atmosphere after drying and 

distilling all reagents.  The complex exhibited low catalytic activity at the investigated 

conditions and only 20.3% of acenaphthylene (23) was generated.  Alternatively, we 

performed the reaction using HEX as the H2 acceptor and observed an increase in yield of 

23 and up to 49.2% was generated (Table 2.9 entry 2 and 3).  Steric hindrance of 22 is 

suspected to be responsible for the moderate catalytic activity in this system.  We then 

investigated the catalytic activity of (i-Pr4PSCOP)–Ir c22 in transfer dehydrogenating 22 to 

up to 900 °C
heterogeneous catalysts

a.

b.

1. dibromination, NBS
2. reduction, Zn/alcohol

O
O

vapor phase pyrolysis 
up to 500 °C

O3

OO
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23 using TBE as the H2 acceptor (Table 2.9 entry 4).  We observed poor catalytic activity of 

c22 and only trace amounts of product were observed.  In all cases only the desired product 

23 was observed along with remaining unreacted starting material. 

Table 2.9 Transfer Dehydrogenation of Acenaphthene using (t-Bu4POCOP)–Ir c13 and 

(i-Pr4PSCOP)–Ir c122  

 

entry cat./loading 
(mol.%) 

H2 
acceptor 

equiv. of 
acceptor 

reaction 
time 

19 
yieldb TONc 

1 c13/1.78 TBE 3.5 24 h 20.3% 11 

2 c13/3.22 HEX 4.2 20 h 41.5% 13 

3 c13/4.21 HEX 6.2 24 h 49.1% 13 

4 c22/1.07 TBE 4.0 48 h 2.6% 2 
[a] Conditions: 3.2 mmol 22, precatalyst with at least 1.2 equiv. KOt-Bu. [b] Yield determined 
by GC and 1H NMR using cis-1,4-diacetoxy-2-butene as an internal standard. [c] TON per 
dehydrogenation.  

 

 

TBE HEX

R+ R+

22

cat. KOt-Bu
Ir cat.

200 °C

Ir
S

(i-Pr)2P
O
P(i-Pr)2

HCl
c22
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O

(t-Bu)2P
O
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c13
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2.5              SUMMARY AND CONCLUSIONS 

Aromatic frameworks are a core building block in organic chemistry and have been 

found in diverse applications such as pharmaceuticals and materials due to their synthetic 

utility.  The direct dehydroaromatization of C(sp3)–H alkanes may seem conceptually 

simple but in fact is a challenging trasnformation.  Industrially practiced methods utilize 

energy-intensive processes operating at high pressures and temperatures to overcome the 

endergonic and unreactive nature of alkanes.  While there has been great advancement in 

the dehydrogenation transformation recently, the direct dehydroaromatization of 

substituted substrates generating functionalized aromatics is significantly underdeveloped.  

Hence, there is a great interest in developing methods for the synthesis of functionalized 

aromatics under milder conditions.   

We have successfully extended the applicability of Ir-catalyzed dehydrogenation 

systems using pincer ligated complexes on substituted heterocyclic alkanes with 

functionalities known to be strongly coordinating and poorly compatible with (PCP)–Ir 

type catalysts (Table 2.10).  For example, synthetically useful compounds such as 

fluorinated naphthol and brominated hydroisoquinoline were obtained in excellent yields 

up to 91%.  Functional groups tolerated by our conditions include ketones, ethers, and 

fused arenes.  We found that in most cases, c13 and c24 had higher catalytic activity relative 

to c22.  In addition, in some cases using HEX as the H2 acceptor instead of TBE generated 

higher yields, which is considerably more economical.   
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In all cases except with 20, the fully dehydroaromatized substrate was the only 

observed product.  Hence, our method provides a new selective and complementary route 

to these important and synthetically useful building blocks.  
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Table 2.10 Successfully Optimized Studied Dehydroaromatized Substrates by Ir Pincer Ligated 

Complexes  

Substrate Product yield cat./mol.% H2 
acceptor 

temp 
(Cº) TONc 

 

 
10 11 

99.0% c13d/0.59 TBE 200 169 

 

 
12 

 
13 

95.8% c13/0.59 TBE 150 162 

 

 
14 

15 

93.5% c13/4.09 HEX 200 22 

 

 
16 17 

91.4% c13/6.24 HEX 200 15 

 

 
18 

 
19 

62.3% c13/1.60 TBE 200 39 

 

 
20 

 
21 

80.6% c24/4.09 TBE 200 71 

 

 
22 

 
23 

49.1% c13/4.21 HEX 200 13 

 

[a] Conditions: 3.2 – 4.0 mmol, precatalyst with at least 1.2 equiv. KOt-Bu. [b] Yield determined 
by GC and 1H NMR using cis-1,4-diacetoxy-2-butene as an internal standard. [c] TON per 
dehydrogenation. [d] t-Bu4POCOP)Ir(C2H4) ethylene version of c13. 
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 APPENDIX 1 

EXPERIMENTAL SECTION AND SPECTRA RELEVANT TO 

CHAPTER 2 

 

A1.1              MATERIALS AND METHODS  

Unless noted in the specific procedure, reactions were performed in oven-

dried glassware. All dehydrogenation reactions were degassed by freeze-pump-thaw 

x 5 cycles and were carried out under air-free conditions in an oven-dried glassware. 

All liquid reagents were purified by distillation and dried using molecular sieves, 

NaH, or Na-K alloy.  For all the investigated dehydrogenation systems, the substrate 

was mixed with the H2 acceptor in a 4 mL sealed Schlenk pressure flask under an 

argon atmosphere.  Then synthesized Ir pincer complexes were added to the reaction 

mixture with at least 1.2 equivalents of the Ir pincer complexes of KOt-Bu when the 

Ir–HCl version of precatalyst is used.   

1H and 31P NMR spectra were recorded on a Varian spectrometer 400 MHz 

with broadband auto-tune OneProbeor or on a Bruker AV III HD 400 MHz 

spectrometer equipped with a Prodigy liquid nitrogen temperature cryoprobe, and are 
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reported in terms of chemical shift relative to residual CHCl3 (δ 7.26).  19F NMR 

spectra were recorded on Varian 400 MHz spectrometer.  Dehydrogenation 

conversions were determined using 1H NMR with cis-1,4-diacetoxy-2-butene 

standard.   

In addition, the conversions were determined using an Agilent 6850 

GC-FID equipped with a Supelco column (SPBTM-1, fused silica capillary column, 

30 m x 0.25 µm film thickness) and using methods with temperature programs 

shown in Tables A1.1 and A1.2 and inlet program showed in Table A1.3.  The 

obtained products were also confirmed by spiking the reaction with a commercial 

sample of the product. 

Table A1.1 ZAS2 General Method Temperature Ramping Program for 10, 14, 16, 18, 

20, and 22 Transfer Dehydrogenation 

Oven Ramp  °C/min Next °C Hold min 

Initial - 38 1.50 

Ramp 1 10.00 150 0.00 

Ramp 2 20.00 250 5.00 

 
Table A1.2 ZAS_INDANE Method GC Temperature Ramping Program for Indane 12 

to Indene 13 Transfer Dehydrogenation 

Oven Ramp  °C/min Next °C Hold min 

Initial - 38 1.50 

Ramp 1 5.00 50 5.00 

Ramp 2 10.00 100 0.00 

Ramp 3 5.00 170 5.00 

Ramp 4 20.00 250 0.00 
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Table A1.3 Inlet Parameters used in All Methods 

Inlet Setting 

Mode Split 

Gas He 

Heater 250 °C 

Pressure 9.52 psi 

Total Flow 82.2 

Split Ratio 100:1 

Split Flow 78.5 mL/min 
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A1.2              KNOWN IRIDIUM PINCER LIGATED COMPLEXES 

GENERAL SYNTHESIS PROCEDURE 

A1.2.1 Synthesis of (t-Bu4PCP)IrHCl c3 and (t-Bu4PCP)IrH4 c3b Complexes  

 

0.240 g of the commercially available t-Bu4PCP ligand 1 and 0.5 equivalent of 

[Ir(COD)Cl]2, 0.224 g, were added in 10 mL toluene and heated to reflux for 72 h 

under argon atmosphere.  After cooling the reaction mixture to room temperature, 

the mother liquor was evaporated under vacuum.  Complex (t-Bu4PCP)IrHCl c3a was 

extracted with pentane (60 mL x 3) via a cannula and the combined pentane solutions 

were evaporated to obtain the red-orange crystalline product.  Then complex c3a 

(0.150 g) was dissolved in pentane (100 mL), and a 1.0 M solution (in THF) of 

LiBEt3H (0.29 mL) was added dropwise via syringe under H2 atmosphere, causing 

the red solution to turn a pale orange brownish.  The reaction mixture was stirred for 

2 h and then dried over vacuum and then dissolved in pentane and filtered in a syringe 

obtaining the (t-Bu4PCP)IrH4 complex c3b. Complex  c3b is air and nitrogen sensitive 

so it should only be kept in an argon glovebox.1  (t-Bu4PCP)IrHCl c3a: 1H NMR (400 

MHz, Benzene-d6) δ 7.03 (d, 2H, Ar–H), 7.96 (m, 1H, Ar–H), 3.25 – 3.06 (m, 4H, 

CH2), 1.36 (dt, J = 6.7 Hz, 36H, 2x P(t-Bu)2), -42.50 (t, J = 12.6 Hz, 1H, Ir-H).  31P 

NMR (162 MHz, Benzene-d6) δ 67.09 (s).  13C NMR (101 MHz, Benzene-d6) δ 

151.48 (t, Ar–C), 122.58, 121.07 (t, 4 Ar–C), 33.59 (m, 2 x CH2), 29.65 (t, 4x t-Bu4), 

28.06 (t, 4x CH3).  (t-Bu4PCP)IrH4 c3b:  1H NMR (400 MHz, Benzene-d6) δ 7.09 (s, 

Ir(t-Bu)2P P(t-Bu)2
HCl

c3a

Ir(t-Bu)2P P(t-Bu)2
HH

c3

Ir(t-Bu)2P P(t-Bu)2
HH

c3b

HH
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3H, Ar–H), 3.26 (t, J = 3.9 Hz, 4H, 2x CH2), 1.43 – 1.06 (m, 36H, t-Bu4), -9.11 (t, J 

= 9.8 Hz, 2H).  31P NMR (162 MHz, Benzene-d6) δ 72.41 (s).   

A1.2.2 Synthesis of (t-Bu4POCOP)IrHCl c13 and (t-Bu4POCOP)IrC2H4 c13a 

Complexes  

 

Synthesis of (t-Bu4POCOP) Ligand 3.  

0.500 g of resorcinol 2 was dissolved in 45 mL THF.  Then two equivalents of DBU 

and (t-Bu)2PCl were added slowly.  The reaction mixture was run at room 

temperature stirring overnight.  After cooling the reaction mixture to room 

temperature, the mother liquor was evaporated under vacuum.  The ligand 

(t-Bu4POCOP) 3 was extracted with pentane via a cannula and filtered over a pad of 

Celite under vacuum.  The pentane solution was dried over vacuum and the 3 was 

obtained.2  1H NMR (400 MHz, Chloroform-d) δ 7.10 (td, J = 8.4, 2.8 Hz, 1H, Ar-

H), 6.96 (p, J = 2.1 Hz, 1H, Ar-H), 6.77 (dp, J = 8.4, 2.1 Hz, 2H, Ar-H), 1.66 – 0.75 

(m, 36H, 2x P(t-Bu)2).  31P NMR (162 MHz, Chloroform-d) δ 153.22. (s).  13C 

NMR (101 MHz, Chloroform-d) δ 161.23 (d, J = 9.7 Hz, 2C, Ar-C), 129.85, 111.61 

(d, J = 10.9 Hz, 3C, Ar-C), 108.82 (t, J = 11.5 Hz, 1C, Ar-C), 35.39 (d, J = 26.7 

Hz, 4C, P-C), 27.22 (d, J = 15.7 Hz, 12C, C-C) 

 

Ir
O

(t-Bu)2P
O
P(t-Bu)2

c13a

Ir
O

(t-Bu)2P
O
P(t-Bu)2

HCl

c13
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Synthesis of (t-Bu4POCOP)IrHCl 13 and (t-Bu4POCOP)Ir(C2H4) 13a Complexes 

1.0143 g of the of the (t-Bu4POCOP) ligand and 0.5 equivalents [Ir(COD)Cl]2, 

0.8505 g, were added in 30 mL toluene and heated to reflux for 72 h under argon 

atmosphere.  After cooling the reaction mixture to room temperature, the mother 

liquor was evaporated under vacuum.  The obtained crystalline powder was filtered 

in air and washed with pentane.  (t-Bu4POCOP)IrHCl 13a is air stable and can be 

stored in vial on the shelf.  Then for (t-Bu4POCOP)IrH(C2H4) 13 synthesis, 0.260 g 

of 13a and 1.2 equivalents of NaOt-Bu were dissolved in 40 mL degassed toluene.  

It’s important to ensure that the solvent is nitrogen free as the complex is air and 

nitrogen sensitive.  The resulting suspension was stirred for 10 min at room 

temperature.  Ethylene was bubbled through the solution overnight. Then, solution 

was cannula-filtered through a pad of Celite, volatiles were evaporated under 

vacuum, and the resulting red solid was dried under vacuum and kept in argon 

glovebox.2  ).  (t-Bu4POCOP)IrHCl 13a: 1H NMR (400 MHz, Benzene-d6) δ 6.81 – 

6.68 (m, 3H, Ar-H), 1.24 (dt, J = 7.3 Hz, 36H, 2x P(t-Bu)2), -40.69 (t, J = 13.1 Hz, 

1H, Ir-H).  31P NMR (162 MHz, Benzene-d6) δ 175.34 (d, J = 6.0 Hz).  

(t-Bu4POCOP)IrH(C2H4) 13:  1H NMR (400 MHz, Benzene-d6) δ 7.04 – 6.98 (m, 

1H, Ar-H), 6.91 (s, 1H, Ar-H), 6.89 (d, J = 0.9 Hz, 1H, Ar-H), 3.07 (t, J = 2.6 Hz, 

4H, C2H4), 1.21 (m, 36H, 2x P(t-Bu)2).  31P NMR (162 MHz, Benzene-d6) δ 181.13 

(s). 
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A1.4              RELEVANT SPECTRA 
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Figure A1.3 31P NMR (400 MHz, C6D6) of Complex c3a 

 

Figure A1.4 31P NMR (400 MHz, C6D6) of Mixture of Complexes c3/c3b 
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Figure A1.6 31P NMR (400 MHz, C6D6) of Ligand 3  
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Figure A1.8 31P NMR (400 MHz, C6D6) of Complex c13 

 

Figure A1.9 31P NMR (400 MHz, C6D6) of Complex c13a 
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Figure A1.10 Table 2.3 Entry 6 1H NMR (400 MHz, Chloroform-d) of 11 (Isolated with 
10), Yield Calculated with Cis-1,4-Diacetoxy-2-Butene Standard  
 
 
 

 

Figure A1.11 GC Spectra of 10 Crude Reaction: Showing Full Conversion to 
11@18.68 Using ZAS2 Method in Table A1.1, 10 rt is Typically@18.25  

 

O

11 
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Figure A1.12 Table 2.4 Entry 8 1H NMR (400 MHz, Chloroform-d) of Indene (13) 
(Isolated with Indane (12)), Yield Calculated with Cis-1,4-Diacetoxy-2-Butene 
Standard 

 

 

Figure A1.13 GC Spectra of 12 Crude Reaction: 12@18.29 and 13@18.64 Using 
ZAS_Indane Method in Table A1.2 

13 
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Figure A1.14 Table 2.5 Entry 5 1H NMR (400 MHz, Chloroform-d) of Crude Reaction, 
Yield Calculated with Cis-1,4-Diacetoxy-2-Butene Standard 

 

  

Figure A1.15 GC Spectra of 14 Crude Reaction: 15@19.80 and 14@19.20 Using 
ZAS2 Method in Table A1.1 

 
 

15 

NO
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Figure A1.16 Table 2.6 Entry 4 1H NMR (400 MHz, Chloroform-d) of Crude Reaction, 
Yield Calculated with Cis-1,4-Diacetoxy-2-Butene Standard 

 

 

Figure A1.17 GC Spectra of 16 Crude Reaction: Showing Full Conversion: 17@20.18, 
16 rt is Typically@19.51 Using ZAS2 Method in Table A1.1  

 
 
 

17 

N
Br



Appendix 1: Experimental Section and Relevant Spectra to Chapter 2 
 

 

94 

 

 

Figure A1.18 Table 2.7 Entry 4 1H NMR (400 MHz, Chloroform-d) of Crude Reaction 

 

 

Figure A1.19 GC Spectra of 18 Crude Reaction: 18@17.94 and 19@18.22 Using 
ZAS2 Method in Table A1.1 
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Figure A1.20 Table 2.8 Entry 9 19F NMR (376 MHz, neat reaction) of Crude Reaction, 
Yield Calculated with  a,a,a-Trifluorotoluene as in Internal Standard  

 

Figure A1.21 GC Spectra of 20 Crude Reaction: 20@17.26 and 21@19.12 Using 
ZAS2 Method in Table A1.1 
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Figure A1.22 Table 2.9 Entry 3 1H NMR (400 MHz, Chloroform-d) of Crude Reaction, 
Yield Calculated with Cis-1,4-Diacetoxy-2-Butene Standard 

 
 

 

Figure A1.23 GC Spectra of 22 Crude Reaction: 23@18.46 and 22@18.87 Using 
ZAS2 Method Table A1.1 

 

23 
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 APPENDIX 2 

C(SP3)–H DEHYDROGENATION ATTEMPTS OF 

CHALLENGING HETEROCYCLIC ALKANES BY IRIDIUM 

PINCER LIGATED COMPLEXES 

 

A2.1               INTRODUCTION 

In Chapter 2, we successfully demonstrated Ir pincer-catalyzed C(sp3)–H 

transfer dehydrogenation of a diverse collection of substrates bearing functional 

groups that are typically known to strongly coordinate to transition-metal centers 

and inhibit catalysis.  In efforts to expand the application of Ir pincer ligated 

complexes as transfer dehydrogenation catalysts and explore their reactivity, we 

extended the investigated heterocyclic substrate scope to additional functionalities 

containing sulfur and chlorine heteroatoms, and silane and cyano groups .  That 

being said, the dehydrogenative transformation of these substrates proved to be 

challenging.  In this appendix, we present our attempts in dehydrogenating these 
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additional heterocyclic substrates by Ir pincer ligated complexes and provide 

insights to the substrates with functionalities that could be promising in optimizing 

this transformation.  

A2.2               ATTEMPTS TO TRANSFER DEHYDROGENATE PIPERIDINE 

AND N-METHYLPIPERIDINE 

Pyridine and its derivatives are of great synthetic interest owing to their 

properties and applications in organometallic chemistry, biologically active systems, 

and materials.1  Goldman in 2003 and Huang in 2014 reported the transfer 

dehydrogenation of secondary and tertiary amines using Ir pincer ligated complexes 

(t-Bu4POCOP)–Ir c13 and (i-Pr4PSCOP)–Ir c22 in moderate to excellent yields 

(Scheme 2.3 in Chapter 2).2,3  Given the importance of pyridine and the promising 

relevant reported examples, we were interested in investigating the application of Ir 

pincer ligated complexes as potential catalysts for the direct transfer 

dehydroaromatization of piperidine (24) to pyridine (25).  We commenced the 

investigation using complex (t-Bu4POCOP)–Ir c13 and TBE as the H2 acceptor (Table 

A2.1, entries 1-4).  The reactions were carried out neat at 200 °C under an argon 

atmosphere after drying and distilling all reagents.  We observed that c13 was not 

catalytically active and only trace amounts were generated even when increasing the 

catalyst loading from 0.21 to 0.63 mol.% and reaction time from 21 h to 48 h.  

Alternatively, we investigated the dehydrogenation of 24 using complexes 

(i-Pr4PSCOP)–Ir c22 and (i-Pr4anthraphos)–Ir c24  with TBE as the H2 acceptor (Table 

A2.1 entry 5 and 6).  However, we observed that complexes c22 and c24 were also 

not catalytically active in transfer dehydrogenating 24 to 25.   
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Table A2.1 Investigated Conditions of Piperidine Transfer Dehydrogenation Attempts by 

Ir Pincer Ligated Complexes 

 

entry cat./(mol.%) equiv. of 
acceptor reaction time 25 yieldb TONc 

1 c13/0.22 1.0 21 h - - 

2 c13/0.21 1.0 48 h 1.2% 6 

3 c13d/0.42 1.0 25 h 0.5% 1 

4 c13d/0.63 2.5 24 h - - 

5 c22/0.16 1.8 48 h - - 

6 c24/0.16 1.5 42 h 0.7% 4 
[a] Conditions: 3.2-4.0 mmol of 24, precatalyst with at least 1.2 equiv. KOt-Bu. [b] Yield 
determined by GC and 1H NMR using cis-1,4-diacetoxy-2-butene as an internal 
standard. [c] TON per dehydrogenation.  

 

We believe 24 likely inhibits catalysis due to its Lewis basic nature in the 

form of an unprotected secondary amine.  Hence, we then investigated the transfer 

dehydrogenation of N-methylpiperidine (26) to methylpyridine (27) using complex 

c13 and TBE as the H2 acceptor (Scheme A2.1).   
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Scheme A2.1 Attempts to Transfer Dehydrogenate N-Methylpiperidine by Complex 

(t-Bu4POCOP)–Ir c13 

 

 

Unfortunately, we found that c13 was not catalytically active and did not 

observe any activation of 26.  This result is in agreement with previous reposts by 

Goldman where no catalytic activity was observed when attempting the 

dehydrogenation of 26 by complex (t-Bu4PCP)–Ir c3 (Figure A2.1).3  

 

Figure A2.1 Complex (t-Bu4PCP)–Ir c3 Chemical Structure 

 

A2.3               ATTEMPTS TO TRANSFER DEHYDROGENATE 

FIVE-MEMBERED RING DERIVATIVES 

Pentene and five-membered ring skeletons are found especially in 

organometallic applications.4,5  Owing to their importance, we were interested to 

investigate the dehydrogenation of a diverse collection of five-membered ring 

derivatives using Ir pincer ligated complexes to provide facile and complimentary 
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methods to the current approaches.  In this section we discuss our attempts in 

dehydrogenating 5-methoxy-1-indanone, 1-chlorocyclopentene, 5-iodo-2,3,-

dihydrobenzofuran, and 4-aminoindan. 

A2.3.1 Investigations of 5-Methoxy-1-Indanone Transfer Dehydrogenation 

We began our investigation of the transfer dehydrogenation of 

5-methoxy-1-indanone (28) using complex (t-Bu4POCOP)–Ir c13 and TBE as the H2 

acceptor (Scheme A2.2).  The reactions were carried out neat at 200 °C under an 

argon atmosphere after drying and distilling all reagents.  We did not observe any 

product and we believe 28 was decomposing since we did not observe any indicative 

aromatic peaks in the 1H NMR spectrum.  We also investigated using HEX as an 

alternative acceptor but observed similar findings and no dehydrogenated product 

was generated.  

Scheme A2.2 Attempts to Transfer Dehydrogenate 5-Methoxy-1-Indanone by Complex 

(t-Bu4POCOP)–Ir c13 
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A2.3.2 Investigations of 1-Chlorocyclopentene Transfer Dehydrogenation  

We began our investigation of the transfer dehydrogenation of 

1-chlorocyclopentene (30) using complex (t-Bu4POCOP)–Ir c13 and TBE as the H2 

acceptor (Scheme A2.3).  The reactions were carried out neat at 180 °C under an 

argon atmosphere after drying and distilling all reagents.  We did not observe the 

desired product 1-clorocyclopentadiene (31).  The substrate 30 was unreactive and 

may have inhibited catalysis by coordinating to the Ir metal center.  We also 

investigated the disproportionation of 30 to 31 and 1-chlorocyclopentane without 

using an H2 acceptor but we did not observe any conversion. 

Scheme A2.3 Attempts to Transfer Dehydrogenate 1-Chlorocyclopentene by Complex 

(t-Bu4POCOP)–Ir c13 

 

A2.3.3 Investigations of 5-Iodo-2,3-Dihydrobenzofuran Transfer 

Dehydrogenation  

We began our investigation of the transfer dehydrogenation of 

5-iodo-2,3-dihydrobenzofuran (32) using complex (t-Bu4POCOP)–Ir c13 and TBE as 

the H2 acceptor (Table A2.2).  The reactions were carried out neat at 200 °C under 

an argon atmosphere after drying and distilling all reagents.  We believe the reaction 
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generated 5-iodobenzofuran (33) in modest yield (30%).  We observed other 

unidentified products in the aromatic region in the 1H NMR spectrum.  Although this 

transformation seems promising, further investigations are required to validate the 

observed findings and optimize reaction conditions upon successful confirmation.  

Table A2.2 Investigated Conditions of 5-Iodo-2,3-Dihydrobenzofuran Transfer 

Dehydrogenation by Ir Pincer Ligated Complexes 

 

entry cat./(mol.%) equiv. of 
acceptor reaction time 33 yieldb TONc 

1 c13/5.50% exs 21 h 25.9% 5 

2 c13/7.26% exs 24 h 30.0% 4 
[a] Conditions: 3.2-4.0 mmol of 32, precatalyst with at least 1.2 equiv. KOt-Bu. [b] Yield 
determined by GC and 1H NMR using cis-1,4-diacetoxy-2-butene as an internal 
standard. [c] TON per dehydrogenation.  

 

A2.3.4 Investigations of 4-Aminoindan Transfer Dehydrogenation  

We investigated the transfer dehydrogenation of 4-aminoindan (34) using 

complex (t-Bu4POCOP)–Ir c13 and TBE as the H2 acceptor (Scheme A2.4).  The 

reactions were carried out neat at 200 °C under an argon atmosphere after drying and 

distilling all reagents.  We believe the dehydrogenated substrate 35 was generated in 

yields up to 15%.  However, we observed other unidentified products in the aromatic 
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region in the 1H NMR spectrum and we could not identify which isomer was 

generated.  Further investigations are necessary to confirm the obtained isomer of the 

product and optimize reaction conditions upon successful confirmation.   

Scheme A2.4. Attempts to Transfer Dehydrogenate 4-Aminoindan by Complex 

(t-Bu4POCOP)–Ir c13 

 

 

 

A2.4               ATTEMPTS TO TRANSFER DEHYDROGENATE CARBONYL 

CONTAINING CYCLIC ALKANE DERIVATIVES  

Aromatic and olefinic carbonyl skeletons constitute a common substructure 

of a large variety of biologically active substances and materials with unique 

properties.6-9  In addition, carbonyl derivatives can participate in nucleophilic 

addition reactions, the Wittig reaction, condensation reactions, and silylation 

reactions, and hence are a useful functional handle for a variety of organic 

reactions.10-13  Owing to their properties and synthetic utility, it is of interest to 

dehydrogenate cyclic carbonyl derivatives using Ir pincer ligated complexes as 

dehydrogenation catalysts, in attempt to provide an alternative and complementary 

method to the current approaches.  In this section we discuss our attempts at 

dehydrogenating 7-bromo-1-tetralone, tetrahydrothiopyran-4-one, 

cat. KOt-Bu

24 h, 200 °C
+

TBE

+

c13 (5.0 - 6.0 mol.%)NH2 NH2

~15%
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4-methoxy-5,6,7,8-tetrahydronaphthalene-1-carbaldehyde,8-fluoro-1-benzosuberoe, 

5,6,7,8-tetrahydro-2-naphthoic acid, 1-acetylcyclohexene, 3-(4-bromo-2-

fluorophenyl)cyclohexan-1-one, and 6-methoxy-3,4-dihydronaphthalen-1(2H)-one. 

A2.4.1 Investigations of 7-Bromo-1-Tetralone Transfer Dehydrogenation  

We began our investigation of the transfer dehydrogenation of 

7-bromo-1-tetralone (36) using complex (t-Bu4POCOP)–Ir c13 and using both TBE 

and HEX as H2 acceptors (Scheme A2.5).  The reactions were carried out neat at 200 

°C under an argon atmosphere after drying and distilling all reagents.  We found that 

an aromatic product was generated based on the 1H NMR spectrum observed ppm 

shifts, however it was not the desired 7-bromo-1-naphthol (37) dehydrogenated 

product.  After further investigation, we found that a debrominated naphthol 19 is 

generated instead, along with the decomposed 36 to 1-tetralone (18) (Scheme A2.6).   

Scheme A2.5 Attempts to Transfer Dehydrogenate 7-Bromo-1-Tetralone  by Complex 

(t-Bu4POCOP)–Ir c13 

 TBE HEX

+ R + R
cat. KOt-Bu

24 h, 200 °C

Br
O

Br
OH

Ir
O

(t-Bu)2P
O
P(t-Bu)2

c13 (2.5 - 8.5 mol.%)
HCl
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Scheme A2.6 Debromination of  7-Bromo-1-Tetralone and Transfer Dehydrogenation 

by Complex (t-Bu4POCOP)–Ir c13 

 

 

A2.4.2 Investigations of Tetrahydrothiopyran-4-one Transfer Dehydrogenation  

We investigated the transfer dehydrogenation of tetrahydrothiopyran-4-one 

(38) using complex (t-Bu4POCOP)–Ir c13 and TBE as the H2 acceptor (Scheme A2.7).  

The reactions were carried out neat at 200 °C under an argon atmosphere after drying 

and distilling all reagents.  We did not observe the desired product 39 and we believe 

38 likely inhibited catalysis by coordinating to the Ir metal center via the thioether.   

Scheme A2.7 Attempts to Transfer Dehydrogenate Tetrahydrothiopyran-4-one by 

Complex (t-Bu4POCOP)–Ir c13 

 

 

 

cat. KOt-Bu

24 h, 200 °C

Br
O OH

36 19

c13, H2 acceptor O

+

-HBr 18

S

O

TBE

+ +
cat. KOt-Bu

c13 (1.1- 2.5 mol.%)

24 h, 200 °CS

O

Ir
O

(t-Bu)2P
O
P(t-Bu)2

HCl

38 39



Appendix 2: C(sp3)–H Dehydrogenation Attempts of Challenging Heterocyclic Alkanes by Ir 
Pincer Ligated Complexes 
 

 

107 

A2.4.3 Investigations of 4-Methoxy-5,6,7,8-Tetrahydronaphthalene-1-

Carbaldehyde Transfer Dehydrogenation 

We investigated the transfer dehydrogenation of 

4-methoxy-5,6,7,8-tetrahydronaphthalene-1-carbaldehyde (40) using complex 

(t-Bu4POCOP)–Ir c13 and both TBE and HEX as H2 acceptors (Scheme A2.8).  The 

reactions were carried out neat at 200 °C under an argon atmosphere after drying and 

distilling all reagents.  We did not observe the desired product 41 and we believe 40 

likely inhibited catalysis by coordinating to the Ir metal center.   

 

A2.4.4 Investigations of 8-Fluoro-1-Benzosuberone Transfer Dehydrogenation  

We investigated the transfer dehydrogenation of 8-fluoro-1-benzosuberone 

(42) using complex (t-Bu4POCOP)–Ir c13 and both TBE and HEX as H2 acceptors 

(Scheme A2.9).  The reactions were carried out neat at 200 °C under an argon 

atmosphere after drying and distilling all reagents.  We believe we observed trace 

amounts of 43, however further investigations are required to validate our findings 

and confirm that the desired product was obtained.  Upon successful confirmation, 

reaction conditions will be optimized to achieve higher yields of 43. 
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Scheme A2.8 Attempts to Transfer Dehydrogenate 

4-Methoxy-5,6,7,8-Tetrahydronaphthalene-1-Carbaldehyde by Complex (t-Bu4POCOP)–

Ir c13 

 

Scheme A2.9 Attempts to Transfer Dehydrogenate 8-Fluoro-1-Benzosuberone by 

Complex (t-Bu4POCOP)–Ir c13 
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A2.4.5 Investigations of 5,6,7,8-Tetrahydro-2-Naphthoic Acid Transfer 

Dehydrogenation  

We investigated the transfer dehydrogenation of 

5,6,7,8-tetrahydro-2-naphthoic acid (44) using complex (t-Bu4POCOP)–Ir c13 and 

both TBE and HEX as H2 acceptors (Scheme A2.10).  The reactions were carried 

out neat at 200 °C under an argon atmosphere after drying and distilling all reagents.  

We did not observe the desired dehydrogenated product 45.  We are not surprised by 

this result as this substrate contains a carboxylic acid moiety; however, we wanted to 

explore complex c13 catalytic activity in harsh environments given that we 

successfully transfer dehydrogenated substrates containing acidic functionalities in 

excellent yields, as presented in Chapter 2.  

Scheme A2.10 Attempts to Transfer Dehydrogenate 5,6,7,8-Tetrahydro-2-Naphthoic 

Acid by Complex (t-Bu4POCOP)–Ir c13 
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A2.4.6 Investigations of 1-Acetylcyclohexene Transfer Dehydrogenation  

We investigated the transfer dehydrogenation of 1-acetylcyclohexene (46) 

using complex (t-Bu4POCOP)–Ir c13 and both TBE and HEX as H2 acceptors 

(Scheme A2.11).  The reactions were carried out neat at 200 °C under an argon 

atmosphere after drying and distilling all reagents.  We varied the catalyst loading 

between 1.0 to 2.0 mol.% but we did not observe the desired dehydrogenated product 

methylbenzoate (47).  We also investigated the disproportionation of 46 to 47 without 

using an olefinic acceptor but did not observe any conversion.  It is likely that 46 

inhibit catalysis by coordinating to the Ir metal center. 

Scheme A2.11 Attempts to Transfer Dehydrogenate 1-Acetylcyclohexene by Complex 

(t-Bu4POCOP)–Ir c13 
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A2.4.7 Synthesis of 3-(4-Bromo-2-Fluorophenyl)Cyclohexan-1-one and 

Transfer Dehydrogenation Attempts 

We were interested in transfer dehydrogenating a substrate with multiple 

functionalities to investigate the tolerance of Ir pincer ligated complexes in such 

systems.  Hence, we synthesized 3-(4-bromo-2-fluorophenyl)cyclohexan-1-one (50) 

from 4-bromo-2-fluorobenzeneboronic acid (48) and 2-cyclohexenone (49) utilizing 

rhodium catalyzed 1,4-conjugate addition following literature procedures.14,15  

Scheme A2.12 3-(4-Bromo-2-Fluorophenyl)Cyclohexan-1-one Synthesis via Rhodium 

Catalyzed 1,4-Conjugate Addition 

 

After successfully synthesizing 50 we investigated its transfer 

dehydrogenation using complex (t-Bu4POCOP)–Ir c13 and TBE as the H2 acceptor to 

4’-bromo-2’-fluoro-[1,1’-biphenyl]-3-ol (51) (Scheme A2.13).  The reactions were 

carried out neat at 200 °C under an argon atmosphere after drying and distilling all 

reagents.  We could not identify the product as there were several peaks observed in 

the aromatic region in the 1H NMR spectrum.  However, the diagnostic peak of 50 at 

3.20 ppm was no longer observed, indicating full conversion of the starting material.  

Further investigations are necessary to identify the products and optimize reaction 

conditions upon successful confirmation.   
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Scheme A2.13 3-(4-Bromo-2-Fluorophenyl)Cyclohexan-1-one Transfer 

Dehydrogenation Attempts by Complex (t-Bu4POCOP)–Ir c13 

 

 

A2.4.8 Investigations of 6-Methoxy-3,4-Dihydronaphthalen-1(2H)-one Transfer 

Dehydrogenation  

We investigated the transfer dehydrogenation of 

6-methoxy-3,4-dihydronaphthalen-1(2H)-one (52) using complex (t-Bu4POCOP)–Ir 

c13 and TBE as the H2 acceptor (Scheme A2.14).  The reactions were carried out 

neat at 200 °C under an argon atmosphere after drying and distilling all reagents.  We 

did not observe the desired dehydrogenated product 53.  That being said, we believe 

this reaction is promising and increasing the catalyst loading and or experimenting 

with other Ir pincer ligated complexes may generate conversion given that we’ve 

seen high catalytic activity of investigated Ir pincer ligated complexes when 

dehydrogenating tetralone derivatives in Chapter 2.  Hence, further investigations are 

required to study this system.   
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Scheme A2.14 6-Methoxy-3,4-Dihydronaphthalen-1(2H)-one Transfer 

Dehydrogenation Attempts by Complex (t-Bu4POCOP)–Ir c13 

 

 

A2.5               ATTEMPTS TO TRANSFER DEHYDROGENATE 

CYCLOHEXYL DERIVATIVES   

Functionalized arenes and olefins are found as substructures in many organic 

compounds that are synthetically useful and have biological and physical 

properties.16-21  Hence it is of interest to use Ir pincer ligated complexes as 

dehydrogenation catalysts to dehydrogenate cyclohexyl derivatives to functionalized 

arenes and olefins as a new and complementary method to the current approaches.  

in this section, we present our attempts in transfer dehydrogenating 1,4-thioxane, 

2-cyclohexene-1-acetonitrile, phenylcyclohexane, 1-bromo-4-cyclohexylbenzene, 

3-bromocyclohexene, chlorocyclohexane, 1-(trimethylsiloxy)cyclohexene, 

julolidine, and paroxetine by Ir pincer ligated complexes.  

 

 

52 53
O

OH

O

O

TBE

cat. KOt-Bu

200 °C

+

c13 (0.5 mol.%)

+

Ir
O

(t-Bu)2P
O
P(t-Bu)2

HCl



Appendix 2: C(sp3)–H Dehydrogenation Attempts of Challenging Heterocyclic Alkanes by Ir 
Pincer Ligated Complexes 
 

 

114 

A2.5.1 Investigations of 1,4-Thioxane Transfer Dehydrogenation  

We investigated the transfer dehydrogenation of 1,4-thioxane (54) using 

complex (t-Bu4POCOP)–Ir c13 and TBE as the H2 acceptor (Scheme A2.15).  The 

reactions were carried out neat at 200 °C under an argon atmosphere after drying and 

distilling all reagents.  We observed trace amounts of the olefinic product 55, 

however further investigations are required to validate our findings and optimize 

reaction conditions upon successful confirmation of the desired product.  In all cases, 

we did not observe what would be the fully dehydrogenated product 1,4-oxathiline. 

Scheme A2.15 1,4-Thioxane Transfer Dehydrogenation Attempts by Complex 

(t-Bu4POCOP)–Ir c13 
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A2.5.2 Investigations of 2-Cyclohexene-1-Acetonitrile Transfer 

Dehydrogenation  

We investigated the transfer dehydrogenation of 

2-cyclohexene-1-acetonitrile (56) using complex (t-Bu4POCOP)–Ir c13 and using 

both TBE and HEX as H2 acceptors (Scheme A2.16).  The reactions were carried 

out neat at 200 °C under an argon atmosphere after drying and distilling all reagents.  

In all cases, we did not observe the desired dehydrogenated product 57.  Instead, we 

observed isomerization of 56.  We also investigated the disproportionation of 56 to 

57 and similarly observed isomerization of 56.  It is likely that operating the reaction 

at the required high temperatures for dehydrogenation is causing isomerization, and 

hence this substrate is not ideal for such transformation.  

Scheme A2.16 2-Cyclohexene-1-Acetonitrile Transfer Dehydrogenation Attempts by 

Complex (t-Bu4POCOP)–Ir c13 
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A2.5.3 Investigations of Phenylcyclohexane Transfer Dehydrogenation  

We investigated the transfer dehydrogenating of phenylcyclohexane (58) to 

biphenyl (59) using complex (t-Bu4POCOP)–Ir c13 and using both TBE and HEX as 

H2 acceptors (Scheme A2.17).  The reactions were carried out neat at 200 °C under 

an argon atmosphere after drying and distilling all reagents.  In all cases, we did not 

observe the desired biphenyl (59) product and 58 was unreactive.   

Scheme A2.17 Phenylcyclohexane Transfer Dehydrogenation Attempts by Complex 

(t-Bu4POCOP)–Ir c13 

 

 

A2.5.4 Investigations of 1-Bromo-4-Cyclohexylbenzene Transfer 

Dehydrogenation 

We investigated the transfer dehydrogenation of 

1-bromo-4-cyclohexylbenzene (60) to 4-bromo-biphenyl (61) using complex 

(t-Bu4POCOP)–Ir c13 and using both TBE and HEX as H2 acceptors (Scheme A2.18).  
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The reactions were carried out neat at 200 °C under an argon atmosphere after drying 

and distilling all reagents.  We did not observe the desired dehydrogenated product 

61, and 60 was unreactive. 

Scheme A2.18 1-Bromo-4-Cyclohexylbenzene Transfer Dehydrogenation Attempts by 

Complex (t-Bu4POCOP)–Ir c13 

 

A2.5.5 Investigations of 3-Bromo-Cyclohexene Transfer Dehydrogenation  

We investigated the transfer dehydrogenation of 3-bromocyclohexene (62) to 

1-bromobenzene (63) using complex (t-Bu4POCOP)–Ir c13 and using TBE as the H2 

acceptor (Scheme A2.19).  The reactions were carried out neat at 200 °C under an 

argon atmosphere after drying and distilling all reagents.  We did no observe 63 and 

instead we observed phenylcyclohexane (58), benzene, and 1-bromocyclohexane 

(64).  We investigated the disproportionation of 62 using complex (t-Bu4POCOP)–Ir 

c13 and observed similar results.  In addition, we carried out a 1:1 reaction mixture 

of 62 and benzene at 200 °C without the addition of an Ir complex or KOt-Bu and 

observed similar results (Scheme A2.20).  Hence, the generated phenylcyclohexane 

(58) is likely not catalyzed by complex c13 and possibly occurred via a Friedel-Craft 

type alkylation via electrophilic aromatic substitution followed by H atom transfer. 

Br
R

cat. KOt-Bu

24 h, 200 °C

c13 (2.0 - 3.0 mol.%)

+ R

TBE HEX

Br
+

60 61



Appendix 2: C(sp3)–H Dehydrogenation Attempts of Challenging Heterocyclic Alkanes by Ir 
Pincer Ligated Complexes 
 

 

118 

Scheme A2.19 3-Bromocyclohexene Transfer Dehydrogenation Attempts by Complex 

(t-Bu4POCOP)–Ir c13 

 

 

Scheme A2.20 3-Bromocyclohexene Reaction with Benzene without an Ir Complex 

 

 

A2.5.6 Investigations of Chlorocyclohexane Transfer Dehydrogenation  

We investigated the transfer dehydrogenation of chlorocyclohexane (65) to 

chlorobenzene (66) using complex (t-Bu4POCOP)–Ir c13 and using both TBE and 

HEX as H2 acceptors (Scheme A2.21).  The reactions were carried out neat at 200 

°C under an argon atmosphere after drying and distilling all reagents.  In all cases we 

did not observe the desired dehydrogenated product 66.  Instead we observed 

1-cyclohexene, cyclohexane, and benzene (Scheme 2.22).  1-Cyclohexene is likely 

generated from elimination of the chloride, and cyclohexane and benzene are likely 

generated from 1-cyclohexene disproportionation as we will demonstrate in Chapter 

3.  
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Scheme A2.21 Chlorocyclohexane Transfer Dehydrogenation Attempts by Complex 

(t-Bu4POCOP)–Ir c13 

 

Scheme A2.22 Chlorocyclohexane Decomposition to 1-Cyclohexene During Transfer 

Dehydrogenation Attempts 

 

 

A2.5.7 Investigations of 1-(Trimethylsiloxy)Cyclohexene Transfer 

Dehydrogenation  

We investigated the transfer dehydrogenation of 

1-(trimethylsiloxy)cyclohexene (67) to trimethyl(phenoxy)silane (68) using complex 

(t-Bu4POCOP)–Ir c13 and using TBE as the H2 acceptor (Scheme A2.23).  The 

reactions were carried out neat at 200 °C under an argon atmosphere after drying and 

distilling all reagents.  We did no observe 68 and 67 was not activated and unreactive 

toward complex c13.   
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Scheme A2.23 1-(Trimethylsiloxy)Cyclohexene Transfer Dehydrogenation Attempts by 

Complex (t-Bu4POCOP)–Ir c13 

 

A2.5.8 Investigations of Julolidine Transfer Dehydrogenation  

Julolidine (69) is a natural product that has been shown to have 

photoconductive and other useful properties along with its derivatives.22,23  We 

wanted to extend the application of Ir pincer ligated complexes as dehydrogenation 

catalysts on a natural product to demonstrate late stage dehydrogenation ability.  We 

investigated the transfer dehydrogenating of 69 using complex (t-Bu4POCOP)–Ir c13 

and using both TBE and HEX as H2 acceptors (Scheme A2.24).  However, we did 

not observe any olefinic product possibly due to steric hinderance of the investigated 

substrate and its unreactive nature toward complex c13.  

 

A2.5.9 Investigations of Paroxetine Transfer Dehydrogenation  

Paroxetine (71) is a widely used drug to treat depression and other medical 

conditions.24,25  We wanted to extend the application of Ir pincer ligated complexes 

as dehydrogenation catalysts on drug-like molecules to demonstrate the efficacy of 

late stage dehydrogenation.  We investigated the transfer dehydrogenating of 71 

using complex (t-Bu4POCOP)–Ir c13 and using both TBE and HEX as H2 acceptors 

(Scheme A2.25).  We believe we observed trace amounts of the dehydrogenated 

product 72, further investigations are required to validate our findings.  Upon 
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successful confirmation, optimization conditions will be carried out to achieve higher 

yields of 72.  

Scheme A2.24 Julolidine Transfer Dehydrogenation Attempts by Complex 

(t-Bu4POCOP)–Ir c13 

 

Scheme A2.25 Paroxetine Transfer Dehydrogenation Attempts by Complex 

(t-Bu4POCOP)–Ir c13 
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A2.6               SUMMARY AND CONCLUSIONS 

Functional aromatics and olefins constitute common substructures in a large 

variety of complex molecules, materials, and polymers.  Hence, there is a great 

interest in developing methods for the synthesis of substituted and unsubstituted 

aromatics  Utilizing Ir pincer ligated complexes to dehydrogenate functional 

cycloalkanes is attractive and can be a complementary method toward current 

approaches.  In Chapter 2, we demonstrated the successful transfer 

dehydrogenation of a diverse collection of heterocyclic alkanes containing 

functionalities known to strongly coordinate to metal centers and inhibit catalysis.  

In efforts to expand our scope of work we extended our studies to investigate 

heterocyclic substrates containing functionalities with halides, carbonyls, five- and 

six- memebered heterocyclic rings, and thiols (Figure A2.2).  However, the direct 

dehydrogenation of C(sp3)–H alkanes may seem conceptually sipmle but in fact is 

a challenging trasnformation and in some cases not feasible, especially when 

dehydrogenating heteroatomic substrates.  In the case of 26, 28, 30, 36, 38, 40, 44, 

46, 52, 56, 58, 60, 62, 65, 67 and 69, it was not possible to generate a 

dehydrogenated product due to binding to the Ir metal center, steric hindrance, the 

basic or acidic nature of the substrate, decomposition of the substrate, isomerization 

of the substrate, and or unreactivity toward the investigated Ir pincer ligated 

complexes. 

On the other hand, transfer dehydrogenating 24, 32, 34, 42, 50, 54, and 71, 

is potentially promising and further investigations are required to validate the 

obtained product.  Upon successful confirmation of the desired product, reaction 



Appendix 2: C(sp3)–H Dehydrogenation Attempts of Challenging Heterocyclic Alkanes by Ir 
Pincer Ligated Complexes 
 

 

123 

conditions will be optimized to achieve higher yields.  All in all, the obtained results 

showcased the limited capability of Ir pincer ligated complexes as dehydrogenation 

catalysts for functionalized heterocyclic substrates.   
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Figure A2.2 Summary of Investigated Substrate Scope in Appendix 2 
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APPENDIX 3 

EXPERIMENTAL SECTION AND SPECTRA RELEVANT TO 

APPENDIX 2 

 

A3.1 MATERIALS AND METHODS  

Unless noted in the specific procedure, reactions were performed in oven-

dried glassware. All dehydrogenation reactions were degassed by freeze-pump-thaw 

x 5 cycles and were carried out under air-free conditions in dry glassware. All liquid 

reagents were purified by distillation and dried using molecular sieves, NaH, or Na-K 

alloy.  For all the investigated dehydrogenation systems, the substrate was mixed 

with the H2 acceptor in a 4 mL sealed Schlenk pressure flask under an argon 

atmosphere.  Then synthesized Ir pincer complexes were added to the reaction 

mixture with at least 1.2 equivalents of the Ir pincer complexes of KOt-Bu when the 

Ir–HCl version of catalyst is used.   

1H NMR spectra were recorded on Bruker AV III HD 400 MHz spectrometer 

equipped with a Prodigy liquid nitrogen temperature cryoprobe, and are reported in 
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terms of chemical shift relative to residual CHCl3 (δ 7.26).  Dehydrogenation 

conversions were determined using 1H NMR with cis-1,4-diacetoxy-2-butene 

standard.   

In addition, the conversions were determined using an Agilent 6850 

GC-FID equipped with a Supelco column (SPBTM-1, fused silica capillary column, 

30 m x 0.25 µm film thickness) and using methods with temperature programs 

shown in Table A3.1 and inlet program shown in Table A3.2.   

Table A3.1 ZAS2 General Method Temperature Ramping Program for The 

Investigated Substrates in Appendix 2 

Oven Ramp  °C/min Next °C Hold min 

Initial - 38 1.50 

Ramp 1 10.00 150 0.00 

Ramp 2 20.00 250 5.00 

 
 
Table A3.2 Inlet Parameters used in All Methods 

Inlet Setting 

Mode Split 

Gas He 

Heater 250 °C 

Pressure 9.52 psi 

Total Flow 82.2 

Split Ratio 100:1 

Split Flow 78.5 mL/min 
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A3.2 GENERAL PROCEDURE FOR DEHYDROGENATION REACTIONS  

For all the investigated dehydrogenation systems, 3.2 to 4.0 mmol of the 

substrate was mixed with the state equivalence of the H2 acceptor in a 4 mL sealed 

Schlenk pressure flask under an argon atmosphere.  Then the synthesized Ir pincer 

ligated complex was added to the reaction mixture with at least 1.2 catalytic 

equivalents of KOt-Bu under an argon atmosphere.  The reaction mixture was then 

dried by freeze-pump-thaw method x five cycles and then backfilled with argon gas.  

Lastly, the Schlenk flask was placed in heated silicone oil stirring for the duration of 

reaction and specified temperature. 
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A3.3 SYNTHESIS PROCEDURE OF 

3-(4-BROMO-2-FLUOROPHENYL)CYCLOHEXAN-1-ONE  

 
 

An 8 mL vial was charged with 0.40 g (1.8 mmol) of 

4-bromo-2-fluorobenzeneboronic acid (48), 0.14 mL (1.2 mmol) of 2-cyclohexenone 

(49), 50 mg of [Rh(COD)Cl]2, 0.66 g (3 mmol, 3 Molar) of K3PO4 in 1 mL DI H2O, 

and 5 mL dioxane and an argon atmosphere.  Then the reaction mixture was heated 

at 80 ºC for 6 h.  After cooling the reaction mixture, the generated product 50 was 

extracted via a silica column using a 1:4 mixture of diethyl ether and pentane and 

then dried under vacuum.  The obtained product was a colorless viscous liquid.  

4’-bromo-2’-fluoro-[1,1’-biphenyl]-3-ol (51) : 1H NMR (400 MHz, Chloroform-d) δ 

7.22 – 7.18 (m, 1H), 7.16 (dd, J = 9.9, 2.0 Hz, 1H), 7.06 – 7.00 (m, 1H), 3.20 (tdd, J 

= 11.0, 5.8, 3.5 Hz, 1H), 2.50 – 2.23 (m, 4H), 2.14 – 1.88 (m, 2H), 1.89 – 1.62 (m, 

2H). 
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A3.4 1H NMR SPECTRA OF REACTIONS 

 

Figure A3.1 Table A2.1 Entry 1: Crude Reaction of Piperidine (24) Showing No 

Conversion 

 

Figure A3.2 Table A2.1 Entry 5: Crude Reaction of Piperidine (24) Showing No 

Conversion 
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Figure A3.3 Table A2.1 Entry 6: Crude Reaction of Piperidine (24) Showing Low 

Conversion 

 

Figure A3.4 Scheme A2.1: Crude Reaction of N-Methylpiperidine (26) Showing No 

Conversion 
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Figure A3.5 Scheme A2.2: Crude Reaction of 5-Methoxy-1-Indanone (28) Showing 

Decomposition 

 

Figure A3.6 Scheme A2.3: Crude Reaction of 1-Chlorocyclopentene (30) Showing No 

Conversion 
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Figure A3.7 Table A2.2 Entry 1: Crude Reaction of 5-Iodo-2,3-Dihydrobenzofuran (32) 

Showing Conversion to 5-Iodobenzofuran (33) 

 

Figure A3.8 Table A2.2 Entry 2: Crude Reaction of 5-Iodo-2,3-Dihydrobenzofuran (32) 

Showing Conversion to 5-Iodobenzofuran (33) 
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Figure A3.9 Scheme A2.4: Crude Reaction of 4-Aminoindan (34) Showing Low 

conversion to 35  

 

Figure A3.10 Scheme A2.5: Crude Reaction of 7-Bromo-1-Tetralone (36) Showing 

Debromination to 1-Tetralone (18) and Some Conversion to Naphthol (19) 

34 35
34

34
34

3535
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Figure A3.11 Scheme A2.7: Crude Reaction of Tetrahydrothiopyran-4-one (38) 

Showing No Conversion 

Figure A3.12 Scheme A2.8: Crude Reaction of 

4-Methoxy-5,6,7,8-Tetrahydronaphthalene-1-Carbaldehyde (40) Showing No 

Conversion 
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Figure A3.13 Scheme A2.9: Crude Reaction of 8-Fluoro-1-Benzosuberone (42) 

Showing Possible Trace of 43 with Olefinic Peaks at 5.69 ppm and 4.83 ppm 

 

Figure A3.14 Scheme A2.10: Crude Reaction of 5,6,7,8-Tetrahydro-2-Naphthoic Acid 

(44) Showing No Conversion 
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Figure A3.15 Scheme A2.11: Crude Reaction of 1-Acetylcyclohexene (46) Showing No 

Conversion 

 

Figure A3.16 Scheme A2.12: 1H NMR of Synthesized 

3-(4-Bromo-2-Fluorophenyl)Cyclohexan-1-one (50) 
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Figure A3.17 Scheme A2.13: Crude Reaction of 

3-(4-Bromo-2-Fluorophenyl)Cyclohexan-1-one (50) Showing Disappearance of 

Diagnostic 1H NMR Shift at 3.20 ppm 

 

Figure A3.18 Scheme A2.14: Crude Reaction of 

6-Methoxy-3,4-Dihydronaphthalen-1(2H)-one (52) Showing No Conversion 
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Figure A3.19 Scheme A2.15: Crude Reaction of 1,4-Thioxane (54) Showing Trace 

Conversion to 55 

 

Figure A3.20 Scheme A2.16: Crude Reaction of 2-Cyclohexene-1-Acetonitrile (56) 

Showing Isomerization of 56 
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Figure A3.21 Scheme A2.17: Crude Reaction of Phenylcyclohexane (58) Showing No 

Conversion 

 

Figure A3.22 Scheme A2.18: Crude Reaction of 1-Bromo-4-Cyclohexylbenzene (60) 

Showing No Conversion 
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Figure A3.23 Scheme A2.19: Crude Reaction of 3-Bromocyclohexene (62) Showing 

Conversion to 64 and 58 

 

Figure A3.24 Scheme A2.20: Crude Reaction of 3-Bromocyclohexene (62) Showing 

Conversion to 64 and 58 
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Figure A3.25 Schemes A2.21 and A2.22: Crude Reaction of Chlorocyclohexane (65) 

Decomposition to 1-Cyclohexene, Cyclohexane, and Benzene  

 

Figure A3.26 Schemes A2.23: 1-(Trimethylsiloxy)Cyclohexene (67) Showing No 

Conversion 
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Figure A3.27 Scheme A2.24: Crude Reaction of Unreacted Julolidine (69) and No 

Conversion 

 

Figure A3.28 Scheme A2.25: Crude Reaction of Paroxetine (71) Showing Trace 

Conversion to 72 
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APPENDIX 4 

PROGRESS TOWARD THE SYNTHESIS OF A NOVEL 

ASYMMETRIC NHC-PHOSPHONITE HYBRID PINCER LIGAND 

 

 

 

A4.1               INTRODUCTION  

Most of the early examples of studied complexes showed poor thermal 

stability at the temperatures needed to achieve reasonable reaction rates.  Pincer 

ligated complexes, however, were found to be thermally stable at these elevated 

temperatures, making them useful for this transformation.1  These complexes are 

stable due to the tridentate coordination of ligands with the metal center.  In 1996, 

Jensen and co-workers reported the first thermally stable pincer ligated complex, 

(t-Bu4PCP)–Ir c3.2-4  Since then, variations of complex c3 have been reported with 

different aryl backbones, various linkers, and ligating groups (Figure A4.1).5-6   
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Figure A4.1 Various Reported Ir Pincer Ligated Complexes 

 

That being said, it was found that varying the electronics around the Ir metal 

center is not as effective as varying the geometry and steric effects in improving 

catalytic activity.7  We have also demonstrated the different reactivities of 

(t-Bu4POCOP)–Ir c13, (i-Pr4PSCOP)–Ir c22, and (i-Pr4anthraphos)–Ir c24 when 

dehydrogenating heterocyclic substrates and the varying tolerance to different 

functionalities.  The results we obtained indicated varying steric hinderance around 

the Ir metal center contributed a major role in the observed variant reactivities.   

Hence, we were interested to synthesize a novel asymmetric 

NHC-phosphinite ligand and metalate it generating complex (t-Bu2Mes-NHCCOP)–

Ir c31 (Figure A4.2).  We hypothesize this complex could potentially increase Ir 

catalytic activity in dehydrogenating heterocyclic substrates to functionalized arenes 
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and unsubstituted cyclic alkanes to aromatics due to the increased steric effects and 

the geometry around the metal center from the NHC. 

 

Figure A4.2 Proposed Novel Asymmetric NHC-Phosphonite Complex 

(t-Bu2Mes-NHCCOP)–Ir c31 

 

A4.2               RELATED LITERATURE  

Braunstein and co-workers reported the first hybrid imidazolium-phosphinite 

(t-Bu2n-Bu-NHCCOP)–Ir c32 complex in 2013 and employed it as a dehydrogenation 

catalyst when transfer dehydrogenating the COA/TBE system in a preliminary 

investigation (Scheme A4.1).8  They found that complex c32 exhibited low catalytic 

activity and only 0.48% of cyclooctene was obtained. 
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Scheme A4.1 Reported NHC-Phosphonite Complex (t-Bu2n-Bu-NHCCOP)–Ir c32 by 

Braunstein  

 

Although Braunstein and co-workers reported low catalytic activity for their 

catalyst, they explained that the low insolubility of complex c32 in neat alkanes may 

be a factor contributing to its poor performance in dehydrogenating COA.  However, 

we believe our proposed complex c31 could be promising in this context for three 

reasons.  First, Braunstein noted that switching the NHC side group from a methyl to 

an n-Bu increased catalytic activity.  In our proposed complex c31, we propose to 

use a mesityl (Mes) NHC which would enhance solubility in neat alkanes.  Second, 

it was noted that the stronger  s-donor properties of the NHC ligands should facilitate 

the C–H oxidative addition step of the alkane while disfavoring the reductive 

elimination of the product.  We anticipate that changing the geometry around the Ir 

metal center and increasing the bulk on the NHC ligand from the Mes group could 

potentially enhance its catalytic activity by making the reductive elimination of the 

product more favorable relatively.  Third, NHC ligands generally exhibit higher 

thermal stability than their phosphine analogues, hence higher temperatures could be 

investigated in transfer dehydrogenation systems using our proposed complex c31.9   

Ir
ON
P(t-Bu)2N

n-Bu

Braunstein 2013

c32

+

TBECOA

+
10 h, 200 °C
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For these reasons we believe our proposed complex c31 could be a good 

candidate for catalyzing dehydrogenation reactions 

 

A4.3               Synthesis of t-Bu2Mes-NHCCOP Ligand 91 

Modifying the Braunstein and Heinekey published procedures, we first 

synthesized 3-hydroxybenzylbromide (88) by treating 3-hydroxybenzenealcohol 

(87) with PBr3 according to Voegtle and co-workers procedure (Scheme A4.2).8, 10-

11  Then we treated 88 with an equivalent of 1-mesitylimidazole (89) affording 

1-mesityl-3-(3-hydroxybenzyl) imidazole salt (90).  The diagnostic 1H NMR shift is 

the NCHN observed at 9.60 ppm with purity above 98%.  The purified product was 

also analyzed by LC/MS and the exact mass (293.1 g/mol) was observed.  The 

molecular weight was also confirmed with HRMS.  We then treated 90 with 

(t-Bu)2PCl and DBU which successfully afforded the desired novel 

imidazolium-phosphinite hybrid ligand 91.  However, attempts to isolate 91 and 

purify it were challenging due to the nature of insolubility of the ligand in organic 

solvents and lack of crystallinity of the ligand.  The diagnostic phosphinite peak was 

observed at 155.24 ppm in the 31P NMR spectrum.   
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Scheme A4.2 Synthesis of Novel Asymmetric NHC-Phosphonite Complex 

(t-Bu2Mes-NHCCOP)–Ir c32

 

We will investigate several methods for isolating 91 including column 

chromatography by varying polar organic solvents ratios and we will investigate 

recrystallizing the ligand to purify it by the solvent diffusion method.   

 

A4.4               SUMMARY AND FUTURE WORK 

Varying the steric effects around Ir pincer ligated complexes have been 

shown to be effective in changing its catalytic activity when employed as 

dehydrogenation catalysts.  NHC ligands have strong  s-donor properties and could 

facilitate the C–H oxidative addition step, which is typically rate determining in 

dehydrogenation mechanisms catalyzed by Ir pincer ligated complexes.  We 

proposed a novel asymmetric NHC-phosphonite ligand that could be a good 

candidate for catalyzing dehydrogenation reactions.  We successfully synthesized the 
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novel ligand; however, isolation and purification were challenging.  Once the ligand  

is purified and isolated, we envision metalation with half an equivalent [Ir(COD)Cl]2 

generating complex c31 (Scheme A4.3).  Upon successful synthesis of the desired Ir 

complex, we will then investigate its dehydrogenation catalytic activity on the 

COA/TBE system to evaluate its performance.  Then, we will expand the scope to 

include a wide array of substrates.  
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A4.6               EXPERIMENTAL SECTION AND SPECTRA 

A4.6.1 Materials and Methods 

Unless noted in the specific procedure, all liquid reagents were distilled and 

reactions were performed in an oven-dried glassware under an argon atmosphere . 

All dehydrogenation reactions were degassed by freeze-pump-thaw x 5 cycles and 

were carried out under air-free conditions in dry glassware.  1H NMR and 31P NMR 

spectra were recorded on Bruker AV III HD 400 MHz spectrometer equipped with a 

Prodigy liquid nitrogen temperature cryoprobe, and are reported in terms of chemical 

shift relative to residual CHCl3 (δ 7.26).  LC/MS was acquired with an Agilent 6140 

quadrupole LC/MS with an Agilent Eclipse Plus C18 RHHD 1.8 um column (2.1x 50, 

11,072 plates).  The method used was a standard 10-minute gradient with 5% to 95% 

acetonitrile to water (0.1% acetic acid) ratio.  HRMS were acquired using an Agilent 

6200 Series TOF with a JEOL JMS-600H in fast atom bombardment (FAB+). 
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A4.6.2 General Procedure of t-Bu2Mes-NHCCOP Ligand 91 Synthesis  

 

Synthesis of 3-(bromomethyl)phenol (88). 10.172 g of 3-hydroxybenzyl alcohol 

was suspended in 50 mL absolute chloroform.  The suspension was cooled to 0 °C 

and then 4.0 mL of PBr3 was added dropwise over a period of 2 h while stirring 

under argon.  The reaction was subsequently stirred for another 2 h and then poured 

onto ice.  The phases were separated and the organic phase was extracted twice 

with chloroform.  The extract was dried in a rotavap obtaining a yellow oil similar 

to literature reports.  However, upon 31P NMR it was discovered that phosphine 

impurities existed.  Further purification with silica gel column chromatography 

using 25% Et2O in hexanes was required to obtain a white product with a cotton-

like texture.  The product is stable and can be refrigerated for a long time.3  Rf = 0.4 

(25% Et2O in hexanes).  1H NMR (400 MHz, Chloroform-d) δ 7.24 (t, J = 7.9 Hz, 

1H, Ar-H), 6.99 (dd, J = 7.7, 1.2 Hz, 1H, Ar-H), 6.90 (dd, J = 2.6, 1.7 Hz, 1H, 

Ar-H), 6.79 (ddd, J = 8.1, 2.6, 0.9 Hz, 1H, Ar-H), 4.75 (s, br., 1H, OH), 4.46 (s, 

2H, CH2). 13C NMR (101 MHz, Chloroform-d) δ 155.62 (s, 1C, Ar-C-O), 139.44 

(s, 1C, Ar-C-C), 130.08 (s, 1C, Ar-C), 121.51 (s, 1C, Ar-C), 115.91 (s, 1C, Ar-C), 

115.53 (s, 1C, Ar-C), 33.12 (s, 1C, CH2). 

 

 

 

 

HO
OH

chloroform HO
Br

1. PBr3 dropwise 2 h, 0 °C
2. Stirring 2 h, 23 °C

44%87 88
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Synthesis of 3-(3-hydroxybenzyl)-1-mesityl-1H-imidazol-3-ium Salt 90.  This 

ligand precursor was prepared by a modification of the procedure reported by 

Braunstein and Heinekey.5,6  1.041 g of 3-(bromomethyl)phenol and 1.036 g of 1-

mesitylimidazole were refluxed in 45 mL acetonitrile overnight.  The solution was 

then dried under vacuum.  The product was then purified in a silica gel column plug 

with 10% MeOH in DCM yielding the pure product as white solid.  Rf = 0.6 (10% 

MeOH in DCM).  1H NMR (400 MHz, DMSO-d6) δ 9.69 (s, 1H, OH), 9.60 (t, J = 

1.6 Hz, 1H, im-H), 8.07 (t, J = 1.8 Hz, 1H, im-H), 7.97 (t, J = 1.8 Hz, 1H, im-H), 

7.29 – 7.22 (m, 1H, Ar-H), 7.16 (s, 2H, Mes-H), 6.85 – 6.76 (m, 3H, Ar-H), 5.45 

(s, 2H, CH2), 2.34 (s, 3H, p-Me-Mes), 2.02 (s, 6H, 2x o-Me-Mes).  13C NMR (101 

MHz, DMSO-d6) δ 158.32 (1C, C-OH), 140.76(1C, Mes-C), 138.12 (1C, NCN), 

136.54 (1C, Ar-C), 134.69 (2C, Mes), 131.60 (1C, Ar-H), 130.65 (1C, Ar-H), 

129.73 (2C, Mes-C), 124.75 (1C, Mes-C-N), 123.83 (1C, im-C), 118.67 (1C, 

im-C), 116.11 (1C, Ar-C), 115.11 (1C, Ar-C), 52.77 (1C, CH2), 21.07 (1C, p-Me-

Mes), 17.38 (2C, o-Me-Mes).  LC/MS MW = 293.1 g/mol.  HRMS (FAB+) m/z 

calc’d for C19H21N2O [M+H]+: 293.1654, found 293.1655. 

 

 

acetonitrle Δ, 8 h
OH

N

N
Mes

34% 90

N

N

HO
Br

+
88
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Synthesis of 3-(3-((di-tert-butylphosphanyl)oxy)benzyl)-1-mesityl-1H-

imidazol-3-ium Ligand 91. 0.075 g of 3-(3-hydroxybenzyl)-1-mesityl-1H-

imidazol-3-ium 23a was dissolved in 15 mL THF.  51 mL (t-Bu)2PCl was then 

added via a syringe slowly to the THF solution.  0.5 mL DBU (excess) was then 

added to the reaction mixture and it was stirred at room temperature for 21 h.  The 

solution was dried under vacuum and then washed with Et2O x 2.  The desired 

phosphonite peak was observed at 155.24 ppm, however the product shows that it 

is 70% pure based on 1H NMR.  Purification of the product is still under progress.  

31P NMR (162 MHz, Benzene-d6) δ 155.24. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

OH
N

N
Mes

1. (t-Bu)2PCl
2. DBU

THF, 23 °C, 24 h

O
N

N
Mes

P(t-Bu)2

90 9119%
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A4.6.3 NMR Spectra  
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CHAPTER 3 

C(SP3)–H DEHYDROAROMATIZATION OF 1-CYCLOHEXENE 

AND 4-VINYL-1-CYCLOHEXENE VIA DISPROPORTIONATION 

CATALYZED BY IRIDIUM PINCER LIGATED COMPLEXES 

 

3.1               INTRODUCTION 

Alkanes are a ubiquitous class of chemicals that are extracted from crude oils 

via distillation and refining processes.  They are typically considered to be inert, and 

as a result they find limited synthetic use.  Small olefins and aromatics however, are 

more reactive and allow easier functionalization to serve as building blocks in various 

applications in the preparation of complex molecules, pharmaceuticals, and 

materials.1-3  Amongst the most important industrial building blocks are benzene, 

ethylbenzene, and styrene.  However, these do not naturally exist and the current 

industrial production of small aromatics is through dehydrogenating aliphatic 

hydrocarbons from crude oil using heterogeneous catalysts, which is a highly 

energy-intensive process operating at high pressures up to 60 bar and temperatures 

up to 900 °C (Scheme 3.1).4 
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Scheme 3.1 Important Aromatics Industrial Production 

 

As shown in the previous chapters, the direct dehydrogenation of C(sp3)–H 

alkanes may seem conceptually simple but in fact it is a challenging transformation 

and is in some cases not feasible.  This transformation is difficult due to the distinct 

inert nature of alkanes and the endergonic nature of dehydrogenation, making it 

necessary to employ energy-intensive processes with high temperatures in order to 

amplify the entropic contributions to the equilibrium.  With the diminishing oil 

supply, there is a commercial need to find new routes to convert less valuable 

materials into more useful building blocks.  We were interested to investigate the 

catalytic activity of the Ir pincer complexes (t-Bu4POCOP)–Ir c13, (i-Pr4PSCOP)–Ir 

c22, and (i-Pr4anthraphos)–Ir c24 in disproportionating cyclohexenyl derivatives.   The 

advantage of our proposed system is that we do not employ a sacrificial olefin as an 

H2 acceptor, and the investigated substrates in this chapter act as both the H2 donor 

and acceptor simultaneously.  

 

3.2               RELATED LITERATURE 

There is a great interest in developing and identifying methods for the 

synthesis of unsubstituted aromatics under milder conditions.  Since the first reports 

of homogeneous transition metals as catalysts for alkane dehydrogenation by 

Crabtree and Felkin, substantial progress has been achieved in the field of 

mixture of aliphatic 
hydrocarbons

(petroleum feedstock)

heterogeneous 
catalysts

up to 900 °C
+ +

+ olefins and other arenes
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homogeneous catalytic alkane dehydrogenation using Ir pincer ligated complexes.4-

10  That being said, the direct dehydroaromatization of alkane precursors using Ir 

pincer ligated complexes remains limited due to the believed nature of arenes 

coordination to metal centers.11-12 

For example, in 1997 Kaska and Jensen reported the transfer 

dehydrogenation of ethylbenzene to styrene using complex (t-Bu4PCP)–Ir c3 and 

TBE as the H2 acceptor reporting only up to 17% conversion (Scheme 3.2).13   

Scheme 3.2 Styrene Formation via Ethylbenzene Transfer Dehydrogenation by 

Complex (t-Bu4PCP)–Ir c3 

  

Brookhart and co-workers reported a one pot method to synthesize p-xylene 

from ethylene and 1-hexene transfer dehydrogenation followed by Diels Alder 

reactions using complex (i-Pr4anthraphos)–Ir c24 (Scheme 3.3).  However, p-xylene 

was a minor product and its yield was reported as a mixture of aromatics up to 

10.3% after 192 h of reaction time.   

 

 

 

c3

TBE
1 h, 200 °C

+ +

17% conversion

Ir(t-Bu)2P P(t-Bu)2

HH

Kaska and Jensen, 1997
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Scheme 3.3 p-Xylene Formation as a Minor Product via Dehydrogenation by Complex 

(i-Pr4Anthraphos)–Ir c24 

 

To date only four previous studies reported benzene formation via 

dehydrogenation catalyzed by Ir pincer ligated complexes (Scheme 3.4).  Jensen 

and Kaska first reported the dehydrogenation of cyclohexane to benzene using TBE 

as the H2 acceptor catalyzed by complex (t-Bu4PCP)–Ir c3 (Scheme 3.4a).12, 14  TBE 

was partially hydrogenation and found to inhibit catalysis at high concentrations.  

Later in 2004, Goldman observed the formation of small amounts of benzene when 

transfer dehydrogenating n-hexane using complex (i-Pr4OMe-PCP)–Ir c9 and NBE 

as the H2 acceptor (Scheme 3.4b).15  More recently in 2011, Brookhart and 

Goldman reported the dehydroaromatization of n-hexane and n-dodecane using 

complex (i-Pr4PCOP)–Ir c21 and TBE as the H2 acceptor (Scheme 3.4c).  In the 

latter example, at least 4 equivalents of TBE were required to render the reaction’s 

thermodynamics favorable.16  In addition, these reactions are not selective for 

benzene and a complex mixture of several products consisting of dienes, trienes, 

monenes, and aromatics was generated.   

Ir(i-Pr)2P P(i-Pr)2
HCl

+ c24
192 h, 250 °C

+ + +

+ other aromatics66%
12%

10%Brookhart 2012
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Scheme 3.4 Reported Studies of Benzene Formation via Dehydrogenation by Ir Pincer 

Ligated Complexes  

 

 

Ethylbenzene formation via Ir pincer ligated catalysts has also been limited 

and only two studies were previously reported.  Kaska and Jensen reported the 

synthesis of ethylbenzene from cyclohexane transfer dehydrogenation using 

+ c3

TBE
1 h, 200 °C

+

Kaska and Jensen, 1997

120 h, 165 °C
+

TBE, 4 equiv.

+

Brookhart and Goldman, 2011

44%

c21

+

side pdts +

120 h, 165 °C
+

5%

c9

(and dienes + trienes)
+

34%NBE

+

 Goldman, 2004

TBE, 4 equiv.

+
120 h, 165 °C

c21
+ alkyl benzene 

derivatives
+

17%

a.

b.

c.

c3

Ir(t-Bu)2P P(t-Bu)2
HH

Ir(i-Pr)2P P(i-Pr)2
HH

OMe

c9

Ir(i-Pr)2P
O
P(i-Pr)2

HH
c21
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complex (t-Bu4PCP)–Ir c3 and TBE as the H2 acceptor (Scheme 3.5a).13  Goldman 

also reported the formation of ethylbenzene when studying n-octane transfer 

dehydrogenation using complex (i-Pr4PCOP)–Ir c21 and TBE as the H2 acceptor as 

the minor product(Scheme 3.5b).   

 

Scheme 3.5 Only Reported Studies of Ethylbenzene Formation via Dehydrogenation by 

Ir Pincer Ligated Complexes  

 

While the previous examples show tremendous achievements in the field, 

these methods suffer from requiring several equivalents of TBE and harsh reaction 

conditions (high temperatures, extended reaction times), making them uneconomical.  

In addition, these methods are non-selective toward dehydroaromatization and 

+

major minorTBE, 4 equiv.
118 h, 165 °C

+ +

c3

TBE
1 h, 200 °C

+

23% 7%
+

+

41%

+ isomers

Kaska and Jensen, 1997a.

Brookhart and Goldman, 2011b.

c21

c3

Ir(t-Bu)2P P(t-Bu)2
HH

Ir(i-Pr)2P
O
P(i-Pr)2

HH
c21
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generate a complex mixture of side products, imposing separation challenges and 

thus lack of industrial practicality especially at large scales.  There is a need to find 

and develop alternative methods that are more economical, selective toward 

dehydroaromatization, industrially scalable, and which operate at milder conditions 

 

Herein, we present a facile method of benzene and ethylbenzene formation 

via the disproportionation of 1-cyclohexene and 4-vinyl-1-cyclohexene and without 

the need of an exogenous H2 acceptor, at temperatures as low as 120 °C (Scheme 

3.6).   

Scheme 3.6 Our Work in Cyclohexenyl Derivatives Dehydrogenation by Ir Pincer 

Ligated Complexes  

 

 

3.3               1-CYCLOHENE DISPROPORTIONATION BY IRIDIUM PINCER 

LIGATED COMPLEXES 

We were interested to explore the reactivities and catalytic activity of 

complexes (t-Bu4POCOP)–Ir c13, (i-Pr4PSCOP)–Ir c22, and (i-Pr4anthraphos)–Ir c24 in 

Ir
O

(t-Bu)2P
O
P(t-Bu)2

c13
HCl

Ir cat.

disproportionation

R R
+

R

R = Me or H

Ir cat.
Ir(i-Pr)2P P(i-Pr)2

HCl
c24

up to 100% conversion



Chapter 3: C(sp3)–H Dehydroaromatization of 1-Cyclohexene and 4-Vinyl-1-Cyclohexene via 
Disproportionation Catalyzed by Ir Pincer Ligated Complexes 
 

 

170 

disproportionating 1-cyclohexene (77) to benzene (78) and cyclohexane (79) and 

understand how geometry may affect arenes inhibition (Table 3.1).   

 

Table 3.1 1-Cyclohexene Disproportionation Investigated by Ir Pincer Ligated 

Complexes 

 

entry cat. loading (mol.%) time 
(h) conversion 78 yieldb TONc 

1 c13 0.14 22 h 100.0% 33.0% 714 

2 c13 0.13 11 h 100.0% 33.0% 769 

3 c22 0.29 22 h 71.3% 23.1% 246 

4 c22 0.33 22 h 56.7% 13.4% 180 

5 c24 0.27 23 h 100.0% 33.0% 370 
[a] Conditions: 3.5 - 5 mmol of 78, precatalyst with at least 1.2 equiv. KOt-Bu. [b] Yield 
determined by GC and 1H NMR using hexamethylbenzene as an internal standard. [c] 
TON per conversion.  

 

We commenced the investigations with complex c13 and found that it was 

catalytically active and achieved 100% conversion of 77 and 33% of 78 and 66% of 

79 was generated when the reaction was carried at 200 °C for 22 h (Table 3.1 entry 

1).  We carried the reaction again with a shorter reaction period , 11 h, and observed 

similar results (Table 3.1 entry 2).  We then investigated the reactivity of complex 

Ir(i-Pr)2P P(i-Pr)2
HCl

c24

Ir
O

(t-Bu)2P
O
P(t-Bu)2

c13
HCl

Ir
S

(i-Pr)2P
O
P(i-Pr)2

HCl
c22

Ir cat.
cat. KOt-Bu +

77 78 79
200 °C
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c22 under similar conditions and found that it was not as catalytically active as 

complex c13 in disproportionating 77 to 78 and 79, even when increasing the catalyst 

loading compared to c13 from 0.14 mol.% to 0.33 mol.%, and only up to 71.3% 

conversion was achieved (Table 3.1 entry 3 and 4).  We also investigated the catalytic 

activity of complex c24 and found that it was very active in disproportionating 77 to 

78 and 79 and 100% conversion was achieved and up to 33.0% of benzene (78) was 

generated (Table 3.1 entry 5). 

Given complex (t-Bu4POCOP)–Ir c13 has exhibited superior catalytic activity 

when dehydrogenating 77 and  various substrate systems in Chapter 2, we decided to 

optimize reaction conditions using it as a catalyst as the next step (Table 3.2).    We 

wanted to investigate the effect of lowering the temperature on complex c13 catalytic 

activity.  We investigated the disproportionation of 77 to 78 and 79 at 100 °C while 

extending the reaction time to 28 h, and observed 100.0% conversion of 77 (Table 

3.2 entry 1).  We also carried the reaction again under similar conditions but for a 

shorter period of time, 6 h, and observed slightly lower conversion of 77 up to 92.6% 

(Table 3.2 entry 2).   We found optimal conditions were achieved when carrying the 

reaction at 120 °C for 4 h and adding 0.52 mol.% of complex c13 (Table 3.2 entry 

3).  In all cases, we only observed 78 and 78 and we did not observe any 

cyclohexadiene intermediates even when we did not obtain full conversion of 77.  
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Table 3.2 Optimizing 1-Cyclohexene Disproportionation by Complex (t-Bu4POCOP)–Ir 

c13 

 

entry loading 
(mol.%) 

time 
(h) temperature (°C) conversion 78 yieldb TONc 

1 0.20 28 h 100 100.0% 33.0% 278 

2 0.36 6 h 100 92.6% 30.5% 463 

3 0.52 4 h 120 100.0% 33.0% 192 
[a] Conditions: 3.5 mmol of 78, precatalyst with at least 1.2 equiv. KOt-Bu. [b] Yield 
determined by GC and 1H NMR using hexamethylbenzene as an internal standard. 
[c] TON per conversion.  

 

The inhibition of (t-Bu4PCP)–Ir c3 by benzene and other arenes was noted by 

Kaska and Jensen, and formation of a C–H addition complex to (PCP)-Ir type 

catalysts has been described by Goldman.12, 14, 17  We thus investigated the time 

course of the reaction and catalytic activity over time to gain an insight of the 

mechanism of 77 disproportionation by complex c13.  We looked at the reaction 

products over a period of 6 hours every 10 minutes for the first 30 minutes and then 

every 30 minutes for the remaining 5.5 hours (Table 3.3).  In all cases, we only 

observed 78 and 79 and remaining unreacted 77.  It’s evident that the second 

dehydrogenation of 77 is very fast because we did not observe any hexadiene 

intermediates even within the first 10 minutes of reaction time (Scheme 3.7).   

 

cat. KOt-Bu
+

77 78 79

Ir
O

(t-Bu)2P
O
P(t-Bu)2

c13
HCl
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Scheme 3.7 1-Cyclohexene Disproportionation Pathway  

 

We also observed that around 60% conversion of 77 was achieved within the 

first hour of reaction time.  These data show that the initial dehydrogenation of 

1-cyclohexene is faster than the subsequent dehydrogenations which is in agreement 

with previous reports by Jensen, and was explained by catalyst inhibition by the arene 

products.14    

Hence, we then investigated the disproportionation of 77 with spiking the 

reaction initially with 20 mol.% and 50 mol.% benzene (Table 3.3).  Surprisingly, we 

did not observe significant catalyst inhibition of (t-Bu4POCOP)–Ir c13 (Figure 3.1) .  

It appears that the high activity for the disproportionation of 1-cyclohexene (77) 

catalyzed by c13 may be enabled by its ability to operate in the presence of arene 

products.  These results indicate that a key mechanistic feature of our system is a lack 

of catalyst inhibition by arenes. 
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Table 3.3 Kinetics Investigation of 1-Cyclohexene Disproportionation by Complex 

(t-Bu4POCOP)–Ir c13 

 

entry time AVG 77 
conversion 

spiked with 20% 
benzene 

spiked with 50% 
benzene 

1 10 min 18.2% 10.71% 16.67% 

2 20 min 31.4% 21.67% 27.53% 

3 30 min 41.4% 30.07% 40.83% 

4 1.0 h 63.7% 51.06% 64.49% 

5 1.5 h 79.1% 65.20% 74.57% 

6 2.0 h 88.1% 75.23% 80.70% 

7 2.5 h 93.3% - 85.50% 

8 3.0 h 96.5% 86.18% 88.95% 

9 3.5 h 98.2% 89.98% 91.85% 

10 4.0 h 100.0% 92.44% 94.07% 

11 4.5 h - 94.08% 95.34% 

12 5.0 h - 95.74% 96.28% 

13 6.0 h - 96.85% 97.95% 

[a] Conditions: 3.5 mmol of 78, precatalyst with at least 1.2 equiv. KOt-Bu. [b] Yield 
determined by GC and 1H NMR using hexamethylbenzene as an internal standard.  

cat. KOt-Bu
+

77 78 79

Ir
O

(t-Bu)2P
O
P(t-Bu)2

c13 (0.52 mol.%)
HCl

120 °C
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Figure 3.1 1-Cyclohexene Disproportionation Conversion by Complex (t-Bu4POCOP)–Ir 

c13 

 

3.4               4-VINYL-1-CYCLOHEXENE DISPROPORTIONATION TO BY 

COMPLEX (t-Bu4POCOP)–Ir c13 

Following the same approach, we were interested in disproportionating 

4-vinyl-1-cyclohexene (81).  We subjected 81 to the disproportionation conditions 

using complex (t-Bu4POCOP)–Ir c13 (Table 3.4).  We expected that we would make 

styrene, however after optimizing reaction conditions, we observed 100% conversion 

and only ethylbenzene (82) and ethylcyclohexane (83) was observed with a statistical 

distribution of 2:1 respectively (Table 3.4 entry 3). 18  In all cases, no styrene product 

was generated. 
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Table 3.4 Optimizing 4-Vinyl-1-Cyclohexene Disproportionation by Complex 

(t-Bu4POCOP)–Ir c13 

 

entry loading 
(mol.%) 

time 
(h) temperature (°C) conversion 78 yieldb TONc 

1 0.47 28 h 200 98.2% 61.8% 209 

2 0.52 4 h 120 92.6% 62.7% 178 

3 0.52 6 h 120 100.0% 63.8% 192 
[a] Conditions: 3.0 mmol of 78, precatalyst with at least 1.2 equiv. KOt-Bu. [b] Yield 
determined by GC and 1H NMR using hexamethylbenzene as an internal standard. 
[c] TON per conversion.  

 

We investigated ethylbenzene (82) transfer dehydrogenation by complex c13 

and using TBE as the H2 acceptor (Scheme 3.8).  We did not observe styrene and 

complex c13 was not catalytically active in this system; perhaps styrene is not 

thermodynamically favored.   

A plausible reaction pathway for the disproportionation of 

4-vinyl-1-cyclohexene (81) disproportionation starts with the transfer hydrogenation 

between 2 equivalents of 81 to provide 85 and 86 (Scheme 3.9).  The transfer of one 

equivalent of H2 between 85 and 81 generates 86 and 83.  The isomerization of 86 to 

cat. KOt-Bu
+

82 83
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O
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O
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c13
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82 completes the transformation.  This reaction pathway explains the observed 2:1 

ratio of 82 to 83. 

Scheme 3.8 Attempts to Transfer Dehydrogenate Ethylbenzene to Styrene 

 

Scheme 3.9 Plausible Reaction Pathway of 4-Vinyl-1-Cyclohexene Disproportionation 

 

 

3.5               SUMMARY AND CONCLUSIONS 

Benzene and ethylbenzene are among the most important industrial building 

blocks.  The direct dehydroaromatization of C(sp3)–H alkanes and alkenes to 

aromatics may seem conceptually simple but in fact is a challenging transformation.  

The current industry practice utilizes energy-intensive processes operating at high 
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pressures and temperatures due to the requirement of such conditions to overcome 

the endergonic and unreactive nature of alkanes.  Previous reports utilizing Ir pincer 

ligated complexes in the context of dehydrogenating alkanes to benzene and other 

aromatics have been limited.  Our study provides a novel pathway to access important 

aromatic building blocks like benzene and ethylbenzene without the need of a 

sacrificial olefin.   

We demonstrated the disproportionation of 1-cyclohexene to benzene and 

cyclohexane, and the disproportionation of 4-vinyl-1-cyclohexene to ethylbenzene 

and ethylcyclohexane with complex  (t-Bu4POCOP)–Ir c13 (Scheme 3.10).  In both 

cases we obtained 100.0% conversion at significantly lower temperatures relative to 

previous reports.  We observed lower catalytic activity when complex (i-Pr4PSCOP)–

Ir c22 was employed as a dehydrogenation catalyst when disproportionating 

1-cyclohexene.  The lower catalytic activity is indicative that steric hinderance 

around the Ir metal center likely mitigates arene inhibition.  We further investigated 

this hypothesis by spiking the reaction initially with benzene and did not observe 

significant catalyst inhibition of (t-Bu4POCOP)–Ir c13.  These results indicate that a 

key mechanistic feature of our system is a lack of catalyst inhibition by arenes. 
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Scheme 3.10 Industrially Relevant Disproportionation via Dehydrogenation Forming 

Benzene and Ethylbenzene by Complex (t-Bu4POCOP)–Ir c13 

 

Overall, we provided a new route to access important building blocks like 

benzene and ethylbenzene.  85% of styrene commercial production comes from the 

direct dehydrogenation of ethylbenzene, and hence our method has promising 

commercial applications and could be supported with heterogeneous catalysis as a 

second step to make styrene, providing a new method to its synthesis.19   
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APPENDIX 5 

EXPERIMENTAL SECTION AND SPECTRA RELATED TO 

CHAPTER 3 

 

A5.1              MATERIALS AND METHODS  

Unless noted in the specific procedure, reactions were performed in oven-

dried glassware. All dehydrogenation reactions were degassed by freeze-pump-thaw 

x 5 cycles and were carried out under air-free conditions in dry glassware. All liquid 

reagents were purified by distillation and dried using molecular sieves, NaH, or Na-

K alloy.  For all the investigated dehydrogenation systems, the substrate was mixed 

with the H2 acceptor in a 4 mL sealed Schlenk pressure flask under an argon 

atmosphere.  Then synthesized Ir pincer complexes were added to the reaction 

mixture with at least 1.2 equivalents of the Ir pincer complexes of KOt-Bu when the 

Ir–HCl version of catalyst is used.   

1H spectra were recorded on a Varian spectrometer 400 MHz with broadband 

auto-tune OneProbeor or on a Bruker AV III HD 400 MHz spectrometer equipped 
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with a Prodigy liquid nitrogen temperature cryoprobe, and are reported in terms of 

chemical shift relative to residual CHCl3 (δ 7.26).   

In addition, the conversions were determined using an Agilent 6850 

GC-FID equipped with a Supelco column (SPBTM-1, fused silica capillary column, 

30 m x 0.25 µm film thickness) and using methods with temperature programs 

shown in Tables A5.1 and A5.2 and inlet program showed in Table A1.3.  The 

obtained products were also confirmed by spiking the reaction with a commercial 

sample of the product.   

Table A5.1 ZAS_Cyclohexene General Method Temperature Ramping Program for 

1-Cyclohexdene (77) Disproportionation 

Oven Ramp  °C/min Next °C Hold min 

Initial - 38 1.50 

Ramp 1 5.00 50 5.00 

Ramp 2 10.00 100 0.00 

Ramp 3 5.00 170 5.00 

Ramp 4 20.00 250 0.00 
 
Table A5.2 ZAS2 General Method Temperature Ramping Program for 

4-Vinyl-1-Cyclohexdene (81) Disproportionation 

 
Oven Ramp  °C/min Next °C Hold min 

Initial - 38 1.50 

Ramp 1 10.00 150 0.00 

Ramp 2 20.00 250 5.00 
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Table A5.3 Inlet Parameters used in All Methods 

Inlet Setting 

Mode Split 

Gas He 

Heater 250 °C 

Pressure 9.52 psi 

Total Flow 82.2 

Split Ratio 100:1 

Split Flow 78.5 mL/min 
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A5.2              Relevant Spectra  

 
 

 

Figure A5.1 Table 3.2 Entry 3 1H NMR (400 MHz, Neat Reaction) of Crude Reaction 
Showing Full Conversion to Benzene (78) and Cyclohexane (79), Yield Calculated with 
Hexamethylbenzene as an Internal Standard 

 

 
 

Figure A5.2 GC Spectra of 77 Crude Reaction: 78@6.92 and 79@7.29 Using 
ZAS_Cyclohexene Method in Table A5.1 

78 79
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Figure A5.3 Table 3.3 Entry 1 (AVG 77 Conversion) 1H NMR (400 MHz, Neat 
Reaction) of Crude Reaction, Yield Calculated with Hexamethylbenzene as an Internal 
Standard 

 

 

Figure A5.4 Table 3.3 Entry 2 (AVG 77 Conversion) 1H NMR (400 MHz, Neat 
Reaction) of Crude Reaction, Yield Calculated with Hexamethylbenzene as an Internal 
Standard 
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Figure A5.5 Table 3.3 Entry 3 (AVG 77 Conversion) 1H NMR (400 MHz, Neat 
Reaction) of Crude Reaction, Yield Calculated with Hexamethylbenzene as an Internal 
Standard 

 

 

Figure A5.6 Table 3.3 Entry 4 (AVG 77 Conversion) 1H NMR (400 MHz, Neat 
Reaction) of Crude Reaction, Yield Calculated with Hexamethylbenzene as an Internal 
Standard 



Appendix 5: Experimental Section and Spectra Related to Chapter 3 
 

 

188 

Figure A5.7 Table 3.3 Entry 5 (AVG 77 Conversion) 1H NMR (400 MHz, Neat 
Reaction) of Crude Reaction, Yield Calculated with Hexamethylbenzene as an Internal 
Standard 

 

 

Figure A5.8 Table 3.3 Entry 6 (AVG 77 Conversion) 1H NMR (400 MHz, Neat 
Reaction) of Crude Reaction, Yield Calculated with Hexamethylbenzene as an Internal 
Standard 
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Figure A5.9 Table 3.3 Entry 7 (AVG 77 Conversion) 1H NMR (400 MHz, Neat 
Reaction) of Crude Reaction, Yield Calculated with Hexamethylbenzene as an Internal 
Standard 
 
 

 
Figure A5.10 Table 3.3 Entry 8 (AVG 77 Conversion) 1H NMR (400 MHz, Neat 
Reaction) of Crude Reaction, Yield Calculated with Hexamethylbenzene as an Internal 
Standard 
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Figure A5.11 Table 3.3 Entry 9 (AVG 77 Conversion) 1H NMR (400 MHz, Neat 
Reaction) of Crude Reaction, Yield Calculated with Hexamethylbenzene as an Internal 
Standard 
 
 

Figure A5.12 Table 3.3 Entry 10 (AVG 77 Conversion) 1H NMR (400 MHz, Neat 
Reaction) of Crude Reaction, Yield Calculated with Hexamethylbenzene as an Internal 
Standard 
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Figure A5.13 (Spiked With 50% Benzene) @ 0 Min 1H NMR (400 MHz, Neat Reaction) 
of Crude Reaction, Yield Calculated with Hexamethylbenzene as an Internal Standard 
 
 

 
Figure A5.14 Table 3.3 Entry 1 (Spiked With 50% Benzene) 1H NMR (400 MHz, Neat 
Reaction) of Crude Reaction, Yield Calculated with Hexamethylbenzene as an Internal 
Standard 
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Figure A5.15 Table 3.3 Entry 2 (Spiked With 50% Benzene) 1H NMR (400 MHz, Neat 
Reaction) of Crude Reaction, Yield Calculated with Hexamethylbenzene as an Internal 
Standard 
 
 

 
Figure A5.16 Table 3.3 Entry 3 (Spiked With 50% Benzene) 1H NMR (400 MHz, Neat 
Reaction) of Crude Reaction, Yield Calculated with Hexamethylbenzene as an Internal 
Standard 
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Figure A5.17 Table 3.3 Entry 4 (Spiked With 50% Benzene) 1H NMR (400 MHz, Neat 
Reaction) of Crude Reaction, Yield Calculated with Hexamethylbenzene as an Internal 
Standard 
 
 

 
Figure A5.18 Table 3.3 Entry 5 (Spiked With 50% Benzene) 1H NMR (400 MHz, Neat 
Reaction) of Crude Reaction, Yield Calculated with Hexamethylbenzene as an Internal 
Standard 
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Figure A5.19 Table 3.3 Entry 6 (Spiked With 50% Benzene) 1H NMR (400 MHz, Neat 
Reaction) of Crude Reaction, Yield Calculated with Hexamethylbenzene as an Internal 
Standard 
 
 

 
Figure A5.20 Table 3.3 Entry 7 (Spiked With 50% Benzene) 1H NMR (400 MHz, Neat 
Reaction) of Crude Reaction, Yield Calculated with Hexamethylbenzene as an Internal 
Standard 
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Figure A5.21 Table 3.3 Entry 8 (Spiked With 50% Benzene) 1H NMR (400 MHz, Neat 
Reaction) of Crude Reaction, Yield Calculated with Hexamethylbenzene as an Internal 
Standard 
 
 

 
Figure A5.22 Table 3.3 Entry 9 (Spiked With 50% Benzene) 1H NMR (400 MHz, Neat 
Reaction) of Crude Reaction, Yield Calculated with Hexamethylbenzene as an Internal 
Standard 
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Figure A5.23 Table 3.3 Entry 10 (Spiked With 50% Benzene) 1H NMR (400 MHz, Neat 
Reaction) of Crude Reaction, Yield Calculated with Hexamethylbenzene as an Internal 
Standard 
 
 

 
Figure A5.24 Table 3.3 Entry 11 (Spiked With 50% Benzene) 1H NMR (400 MHz, Neat 
Reaction) of Crude Reaction, Yield Calculated with Hexamethylbenzene as an Internal 
Standard 
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Figure A5.25 Table 3.3 Entry 12 (Spiked With 50% Benzene) 1H NMR (400 MHz, Neat 
Reaction) of Crude Reaction, Yield Calculated with Hexamethylbenzene as an Internal 
Standard 
 
 

 
Figure A5.26 Table 3.3 Entry 13 (Spiked With 50% Benzene) 1H NMR (400 MHz, Neat 
Reaction) of Crude Reaction, Yield Calculated with Hexamethylbenzene as an Internal 
Standard 
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Figure A5.27 Table 3.4 Entry 3 1H NMR (400 MHz, Neat Reaction) of Crude Reaction 
Showing Full Conversion to Ethylbenzene (82) and Ethylcyclohexane (83), Yield 
Calculated with Cis-1,4-Diacetoxy-2-Butene as an Internal Standard – 97% Purity. 

 

Figure A5.28 GC Spectra of 81 Crude Reaction: 83 @8.63 and 82@9.03 Using ZAS2 
Method in Table A5.2 

 
 
 
 

82 83
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Figure A5.29 Scheme 3.7 1H NMR (400 MHz, Neat Reaction) of Crude Reaction 
Showing No Conversion 
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