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ABSTRACT

The Hecke orbit conjecture plays an important role in understanding the geometric
structure of Shimura varieties. First postulated by Chai and Oort in 1995, the
Hecke orbit conjecture predicts that prime-to-p Hecke correspondences on mod p
reductions of Shimura varieties characterize the foliation structure formed by Oort’s
central leaves. In other words, every prime-to-p Hecke orbit is Zariski dense in the
central leaf containing it. Roughly speaking, a central leaf is the locus in a Shimura
variety consisting of all points whose corresponding Barsotti-Tate groups belong to
a fixed geometric isomorphism class. On the other hand, the prime-to-pHecke orbit
of a closed point x is the (countable) set consisting of all points y such that there is
a prime-to-p quasi-isogeny from x to y.

In 2005, Chai andYu proved theHecke orbit conjecture forHilbertmodular varieties,
followed by a proof for Siegel modular varieties by Chai and Oort in the same year.
The major purpose of the present work is to generalize the method of Chai and Oort
to Shimura varieties of PEL type. We show that the Hecke orbit conjecture holds for
points in certain irreducible components of Newton strata under our assumptions.
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C h a p t e r 1

INTRODUCTION

1.1 Motivation and history.
Shimura varieties are higher dimensional analogues of modular curves. They arise
as moduli spaces of abelian varieties and play significant roles in the Langlands
program. In the 1960s, Langlands conjectured that there is a correspondence
between arithmetic data encoded by finite dimensional Galois representations of
number fields and algebraic data arising from harmonic analysis via automorphic
representations. Oftentimes, this correspondence is realized by geometric objects
such as Shimura varieties. For example, a key problem in the global Langlands
program is to realizeGalois representations inside the l-adic cohomology of Shimura
varieties. On the other hand, local Shimura varieties are expected to realize the local
Langlands correspondences in some cases.

The Hecke orbit conjecture, proposed by C.-L. Chai and F. Oort in 1995 [EMO01,
Problem 18], gives a lot of insight into the geometry of mod p reductions of Shimura
varieties. The conjecture predicts that on the mod p reduction of a Shimura variety,
any prime-to-pHecke orbit is dense in the central leaf containing it. In the 90s, Oort
came up with the idea of studying the locus defined by the geometric isomorphism
type of a Barsotti-Tate group. Such a locus is called a “central leaf”, also known as
an“Oort’s leaf". A central leaf is stable under prime-to-pHecke correspondences and
naturally contains the prime-to-p Hecke orbit of any point in it. On the other hand,
an isogeny leaf is an orbit by geometric p-isogenies. Oort showed that central leaves
and isogeny leaves almost give a product structure on an irreducible component of a
Newton polygon stratum. Moreover, central leaves define a partition of its ambient
Newton stratum by (possibly infinitely many) locally-closed, smooth subvarieties.
Within any givenNewton stratum, all central leaves have the same dimension and are
related to each other via finite isogeny correspondences. In this sense, central leaves
form a “foliation" on a given Newton stratum. So do isogeny leaves. Therefore,
isogeny leaves and central leaves lie transversely to each other and characterize the
geometry of the Newton stratum they are in.

Given any closed geometric point on a Shimura variety, its orbit under prime-to-p
Hecke correspondences naturally sits inside the central leaf passing through that



2

point. The Hecke orbit conjecture draws a parallel between central leaves and
isogeny leaves: just as each isogeny leaf coincides with a fixed geometric p-isogeny
class, central leaves should also almost coincide with a fixed prime-to-p isogeny
class. More precisely, the Zariski closure of every prime-to-p Hecke orbit should
contain the central leaf. The conjecture also implies that central leaves are minimal
among subvarieties that are stable under all prime-to-p Hecke correspondences.

From a historical perspective, central leaves were not yet defined for more general
Shimura varieties when the conjecture was coined. Hence the original statement was
made for Siegel modular varieties. Now, with substantial development in the theory
of Shimura varieties over the past two decades, we may consider the conjecture
in more general settings. The properties of central leaves and the almost product
structure on Newton strata mentioned above were extended to Shimura varieties
of PEL type by the work of Mantovan [Man05]. In the present work, we focus
on Shimura varieties of PEL type. They arise as subvarieties of Siegel modular
varieties cut out by the extra condition of having an action by a fixed Q-algebra on
the abelian varieties.

Conjecture 1.1.1. [Cha06, Conjecture 3.2] Every prime-to-pHecke orbit on a PEL
type Shimura variety over k is dense in the central leaf containing it.

In 1995, Chai proved the conjecture for ordinary points ([Cha95, Theorem 2]) on
Siegel modular varieties. In 2019, following a strategy similar to that in [Cha95],
Rong Zhou ([Zho19, Theorem 3.1.3]) proved the Hecke orbit conjecture for the
µ-ordinary locus on quaternionic Shimura surfaces and their associated unitary
Shimura varieties.

The first known case of the full conjecture is proven by C.-F. Yu for Hilbert modular
varieties [Yu06]. Using the statement of Hilbert modular varieties, Chai and Oort
proved in 2005 that the conjecture holds for Siegel modular varieties ([Cha05b,
Theorem 13.1]).

The present paper concerns the case of Shimura varieties of PEL type. They
are moduli spaces of abelian varieties in characteristic p with prescribed additional
structures: polarization, action by a finite dimensionalQ-algebra, and level structure.
We generalize the method in [Cha05b] to applicable situations for PEL type Shimura
varieties.
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1.2 Overview of results.
We fix an integer prime p and let k be an algebraically closed field of characteristic
p. Let D = (B,OB, ∗, V, (·, ·), h) be a Shimura datum of PEL type (see 2.1 and
[Kot92] for details) for which p is an unramified prime of good reduction.

The main result of this paper is the following theorem. We refer the readers to
Theorem 7.0.1 for the precise statement.

Theorem 1.2.1. Let S be the reduction modulo p of a Shimura variety of PEL type
A or C over k for which p is an unramified prime of good reduction. Let N be a
Newton stratum. Assume

1. N contains a B-hypersymmetric point x0;

2. either p is totally split inF/F0 and theNewton polygon ofN satisfies condition
(*), or p is inert in F/F0.

Write N 0 for the irreducible component of N containing x0. Then Hp(x) is dense
in C(x) ∩ N 0 for every x ∈ N 0(k). Moreover, if N is not the basic stratum, then
C(x) ∩N 0 is irreducible.

Assumption 2 only occurs in the case of PEL type A. Condition (*) (see Definition
3.2.1) amounts to a mild condition on the slope data of the Newton polygon attached
to N . In particular, if p is inert in F/F0, then there is no condition on the Newton
polygon. Condition (*) is only necessary for proving the main theorem for points
that are not B-hypersymmetric when B is not a totally real field. Theorem 5.0.1,
Theorem 6.0.1, and Proposition 7.1.3 are independent of this assumption.

The condition that N is not the basic stratum has to do with a monodromy result
(Theorem 4.0.4) used in proving the additional result (Theorem 5.0.1) that any
C(x) ∩ N 0 in such a situation is geometrically irreducible (or equivalently, geo-
metrically connected). A straightforward consequence of Theorem 4.0.4 is that, if
we further assume N is smooth, then the assumption that N is geometrically irre-
ducible is equivalent to the condition thatHΣ (see the beginning of section 4 for the
definition of Σ) acts transitively on the set of geometrically irreducible components
of N . See Remark 4.0.6 for more on the smoothness condition. We obtain the
following corollary.
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Corollary 1.2.2. Assumptions as in Theorem 1.2. Further assume thatN is smooth
and that the prime-to-Σ Hecke correspondences act transitively on π0(N ). Then
the Hecke orbit conjecture holds for N .

A key input in the proof strategy is B-hypersymmetric points. Hypersymmetric
abelian varieties are mod-p analogues of CM abelian varieties in characteristic 0.

Originally developed by Chai and Oort (see [CO06]), the notion refers to abelian
varieties that admit as many endomorphisms as allowed by their associated Barsotti-
Tate groups. In Chapter 3, we discuss the details regarding the existence of B-
hypersymmetric points in relation to the shape of Newton polygons. In Section
3.3, we restrict our attention to the µ-ordinary locus in Shimura varieties of PEL
type A. We deduce two sufficient conditions for a Newton stratum to contain a
B-hypersymmetric point. These conditions combined with the main theorem imply
the following (notations as in Section 2.1).

Corollary 1.2.3 (Corollary 7.3.1). 1. Suppose p is inert in F . If every slope
of the Newton polygon attached to N has the same multiplicity, then the
Hecke Orbit conjecture holds for any irreducible component ofN containing
a B-hypersymmetric point.

2. Suppose the center of B is a CM field. Assume that the signature of S has
no definite place, and that p is a prime of constant degree in the extension
F/Q. Further assume assumption 2 of the main theorem is satisfied. Then
the Hecke orbit conjecture holds for every irreducible component of the µ-
ordinary stratum.

The statement of ourmain theorem is restricted to irreducible components ofNewton
strata which contain B-hypersymmetric points. In general, it is not known whether
Newton strata in Shimura varieties of PEL type are irreducible for or not. On the
other hand, it is well-known that if the basic locus coincides with the supersingular
locus, then it is discrete; otherwise, the basic locus may be of positive dimension.

Oort and Chai proved in [CO11, Theorem A] that every non-supersingular Newton
stratum in a Siegel modular variety is irreducible. Siegel modular varieties classify
abelian varieties equipped with a principal polarization. However, the statement is
not correct if the polarization is not principal (see [CO11]).

For Shimura varieties of PEL type, the only irreducibility result that we are aware
of is [Ach14, Theorem 1.1], where Achter proved for a special class of PEL type
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Shimura varieties that all Newton strata are irreducible. His result allows us to
deduce the following consequence.

Corollary 1.2.4 (Corollary 7.3.2). Let L be an imaginary quadratic field inert at
the rational prime p. The Hecke Orbit conjecture holds for the moduli space of
principally polarized abelian varieties of dimension n ≥ 3 over k equipped with an
action by OL of signature (1, n− 1).

1.3 Overview of strategy.
Ageneral strategy for attackingConjecture 1.1.1 is to break it down into the following
two parts as in [Cha05b, Conjecture 4.1]. It is clear that the conjecture is equivalent
to their conjunction.

• The discrete part: the prime-to-p Hecke orbit of x meets every irreducible
component of the central leaf C(x) passing through x;

• The continuous part: the Zariski closure of the prime-to-p Hecke orbit of x in
C(x) has the same dimension as C(x).

In this section, we first give a brief description for Chai and Oort’s strategy for
proving the Hecke orbit conjecture for Siegel modular varieties in [Cha05b]. Then
we highlight the differences as well as new ideas in our approach.

For the discrete part, Chai and Oort proved a stronger result that every central leaf
not contained in the supersingular stratum is irreducible. This is a consequence of
the fact that on a Siegel modular variety, every non-supersingular Newton stratum
on a Siegel modular variety is irreducible ([CO11, Theorem A]), and every Newton
stratum contains a hypersymmetric point ([CO06, Theorems 5.4]).

For the continuous part, one analyzes the formal completion of C(x) at a split
hypersymmetric point. A point is called split if the corresponding abelian variety
is isogenous to a product of abelian varieties with at most two slopes. It turns out
that the formal completion of the Zariski closure of the prime-to-p Hecke orbit of
a split hypersymmetric point y in C(x) is a formal Barsotti-Tate subgroup of the
formal completion of C(x). Furthermore, the action of the local stabilizer group of
y on C(x)/x ∼= C(x)/y underlies an absolutely irreducible representation. Thus the
conjecture is true for any split hypersymmetric point. To deduce the statement for
arbitrary geometric points, one uses the Hecke orbit conjecture for Hilbert modular
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varieties to find a split hypersymmetric point in the interior of the closure of any
prime-to-p Hecke orbit in its central leaf. This completes the proof in the Siegel
case.

Shimura varieties of PEL type are subvarieties of Siegel modular varieties cut out
by the condition of having an action by the ring of integers in a prescribed finite
dimensional semisimple Q-algebra B. Although many of the ingredients used in
[Cha05b] are known for PEL type Shimura varieties, there are two major things that
do not work the same way.

First, B-hypersymmetric points on PEL type Shimura varieties are not as abundant
as in the Siegel case. Not every Newton stratum contains a hypersymmetric point
(see [Zon08, Example 5.3] and Example 3.3.2). A rephrase of Zong’s main result
[Zon08, Theorem 5.1.1] says that a Newton stratum contains a B-hypersymmetric
point if and only if the associated Newton polygon is B-symmetric (see Theorem
3.1.2).

Secondly, Chai and Oort’s approach depends on the Hilbert trick, which refers to
the property that every point on a Siegel modular variety comes from a Hilbert
modular variety (see [Cha05b, Section 9]). The application of this fact is two-fold:
(1) to find a hypersymmetric point inside the closure of every Hecke orbit inside
its central leaf and (2) to show that one can take such a hypersymmetric point to
be split, thereby reducing the continuous part into the two-slope case. The Hilbert
trick is true for PEL type C only, where the Hecke correspondences also come from
a symplectic group. For a general simple Q-algebra B, we deduce the conjecture
under mild conditions from the conjecture for the Shimura variety attached to F0,

the maximal subfield ofB fixed under the positive involution ∗ ofB.We bypass the
second usage of the Hilbert trick by leveraging on the fact that the formal completion
of a central leaf on a PEL type Shimura variety admits a cascade structure built up
from Barsotti-Tate formal groups. The formal completion of the Zariski closure of a
prime-to-pHecke orbit, as a subscheme of the formal completion of the central leaf,
is then determined by its image in the two-slope components of the cascade. We
thereby reduce to an analogue of a step in the proof of the Siegel case, establishing
the desired equality at the level of two-slope components, fromwhich the continuous
part follows by an inductive argument.

Remark 1.3.1. We exclude PEL type D in this paper, in which case the algebraic
groupG is disconnected. We expect to extend the method to cover case D with extra
work in the future.
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Remark 1.3.2. Sug-Woo Shin [Shi19] announced a proof for the irreducibility of
central leaves on Shimura varieties of Hodge type. His proof relies on the theory
of automorphic forms, and, unlike Chai and Oort’s approach, is independent of the
irreducibility of Newton strata. Since our proof of the continuous part also does not
depend on the irreducibility of Newton strata, Shin’s result combined with Theorem
1.2 will yield the following.

Theorem 1.3.3. Let S the reduction modulo p of a Shimura variety of PEL type A
or C over k for which p is an unramified prime of good reduction. Let N 0 be an
irreducible component of a Newton stratum.

1. Assume N 0 contains a B-hypersymmetric point x0;

2. either p is totally split in F/F0 and the Newton polygon of N 0 satisfies
condition (*), or p is inert in F/F0.

Then Hp(x) is dense in C(x) for every x ∈ N 0(k).

1.4 Structure of the thesis.
We briefly discuss the organization of this paper.

Chapter II gives an overview of various definitions and results on Shimura varieties
of PEL type that are relevant to our context, including Shimura datum of PEL type
and the moduli interpretation, Newton stratification, foliations and Hecke orbits.

Chapter III begins with a summary of the theory of B-hypersymmetric abelian
varieties studied by Zong in [Zon08]. We then rephrase his main result in simpler
language and derive conditions on the existence of B-hypersymmetric points in
special cases relevant to our applications.

Chapter IV contains the proof of a monodromy result that serves as a key input the
proof of the irreducibility of C ∩ N 0. This result generalizes [Cha05b, Theorem
5.1] and the main result of [Kas12].

Chapters V-VII contain our main results. Chapter V contains the proof of the
discrete part of the main theorem. In Chapter VI, we prove the continuous part for
B-hypersymmetric points, which then culminates in Chapter VII with a reduction
argument proving the theorem at general points. We restrict our attention to Cases
A and C in Chapters V and VII.
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C h a p t e r 2

PRELIMINARIES

In this chapter, we recall various definitions and results on Shimura varieties of PEL
type.

2.1 Shimura varieties of PEL type.
Fix a prime number p throughout the rest of this paper. We are interested in moduli
problems of PEL type as given in Kottwitz [Kot92, §5].

Let D = (B,OB, ∗, V, (·, ·), h) be a Shimura datum of PEL type consisting of the
following information:

• B, a finite dimensional semi-simple Q-algebra;

• OB, a maximal Z(p)-order of B;

• ∗, a positive involution on B preserving OB;

• V , a nonzero finitely generated left B-module such that VQp contains a self
dual lattice preserved by OB;

• (·, ·), a Q-valued nondegenerate hermitian form on V such that (bv, w) =

(v, b∗w) for all v, w ∈ V and all b ∈ B;

• a homomorphismh : C→ EndB⊗QR(V⊗QR) such that (v, w) 7→ (v, h(
√
−1)w)

is a positive definite symmetric form on VR.

We assume in addition that p is an unramified prime of good reduction for the
Shimura datumD. Equivalently,BQp is a product of matrix algebras over unramified
extensions of Qp. Let F denote the center of B. Then the unramified condition
implies in particular that the number field F is unramified at p.

One associates to the Shimura datum D linear algebraic groups G and G1. For any
Q-algebra R, we have

G(R) = {x ∈ EndB(V )⊗Q R|xx∗ ∈ R×},
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and
G1(R) = {x ∈ EndB(V )⊗Q R|xx∗ = 1}.

The homomorphism h gives a decomposition of theBC-module VC as VC = V1⊕V2,
where V1 (resp. V2) is the subspace on which h(z) acts by z (resp. by z). It follows
from the definition that V1 and V2 are BC-submodules of VC. The field of definition
of the isomorphism class of the complex representation V1 of B, denoted by E, is
called the reflex field of D.

By the Albert classification of endomorphism rings of abelian varieties (see for
example [EVdGM12]), such a data falls into three categories. We follow the
convention in [Kot92] and briefly recall the three cases below.

The maximal subfield of B fixed under the positive involution ∗ is a totally real
field, which we denote by F0. There exists an algebraic group G0/F0 such that
G1/Q arises from G0/F0 via restriction of scalars. If F = F0, this algebraic group
G0 is of type An−1, where n =

√
dimF EndB(V )/2. This is referred to as Case

A. If F 6= F0, then F is an imaginary quadratic extension of F0. In this case, the
algebraic group G0 is either a symplectic group of type Cn or an orthogonal group
of type Dn where n =

√
dimF EndB(V ). The first case is called Case C and the

second Case D.G is connected in cases A and C, and is disconnected with 2[F0 : Q]

connected components in case D. In Case D we assume p 6= 2 so that the integral
model is smooth (see [Kot92, Section 5]).

Now we describe the following moduli problem associated to the Shimura datum
D as given in [Kot92, Section 5]. Let Ap

f denote the ring of finite adeles attached
to Q with trivial p-component. Let K = KpK

p ⊆ G(Af ) be a subgroup, with Kp

being a fixed hyperspecial maximal compact subgroup of G(Qp), and Kp being a
compact open subgroup of G(Ap

f ).

Consider the contravariant functor from the category of locally-Noetherian schemes
S over OE,(p) := OE ⊗Z Z(p) that associates to S the set of isomorphism classes of
quadruples (A, λ, i, η), where

• A is an abelian scheme over S;

• λ is a prime-to-p polarization of A;

• i : OB ↪→ End(A)⊗ZZ(p) is amorphism ofZ(p)-algebras such thatλ◦i(α∗) =

i(α)∨ ◦ λ and det(b,Lie(A)) = det(b, V1) for all α ∈ OB;
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• η is a prime-to-p level Kp structure in the following sense. Let s be a
geometric point of S. Denote by As the fiber of A over s and let H1(As,Ap

f )

denote its Tate Ap
f -module. A level structure of typeKp on A is aKp-orbit η

of isomorphisms η : VAp
f
→ H1(As,Ap

f ) as skew-Hermitian B-modules such
that η is fixed by π1(S, s).

Two quadruples (A, λ, i, η) and (A′, λ′, i′, η′) are said to be isomorphic if there exists
a prime-to-p isogeny f : A→ A′ such that λ = rf∨◦λ′◦f for some positive integer
r ∈ Z×(p), f ◦ i = i′ ◦ f and η′ = f ◦ η.

When the compact open subgroup Kp is sufficiently small, this functor on the
category of locally-Noetherian schemes over OE,(p) is representable by a smooth
quasi-projective scheme SKp defined over OE,(p) (see [Kot92, Section 5]).

As the levelKp varies, the varieties SKp form an inverse system that carries a natural
action by G(Ap

f ).

From now on we fix a prime v of E over p with residue field κ and denote by

SKp := SKp ⊗ κ

the special fiber of SKp over v.

Example 2.1.1 (Siegel modular varieties). Let g be a positive integer, and let n ≥ 3

be a positive integer co-prime to p. The Siegel modular variety Ag,n over k is
the moduli space classifying isomorphism classes of triples (A, λ, η) where A is
an abelian variety over k of dimension g with a principle polarization λ and a
symplectic level-n structure η. In this case, G = GSp2g and B = Q. Hence there
trivially exists an injective morphism from Z into End(A) ⊗Z Z(p) for any such
abelian variety A.

Example 2.1.2. [Cha06, Example 2.4.2] Let n ≥ 3 be a positive integer co-prime to
p. Let F1, · · · , Fm be totally real number fields, and letE = F1×· · ·×Fm. LetD be
the PEL datum given by takingB = E, ∗ = idE and V a rank 2 freeE-module. The
Hilbert modular varietyME,n over k is the moduli space of isomorphism classes
of quadruples (A, λ, i, η), where:

• A is an abelian variety over k of dimension g = dimQE;

• λ : A→ A∨ is a prime-to-p polarization;
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• i : OE =
∏m

i=1OFi
↪→ End(A) ⊗Z Z(p) is an injective homomorphism

compatible with λ;

• η is an OE-linear level-n structure.

In this case, the algebraic group G associated to the PEL datum is the kernel of the
composition

m∏
i=1

ResFi/QGL2
det−→

m∏
i=1

ResFi/QGm

∏m
i=1 NmFi/Q−−−−−−−→ Gm,

where ResFi/Q denotes the Weil restriction of scalars from Fi to Q, NmF/Q stands
for the field norm of the extension Fi/Q, and Gm is the multiplicative group of m
elements.

2.2 Newton stratification and foliations.
For the rest of this section, we fix a level Kp and let A denote the universal abelian
variety over S := SKp . Let X = A[p∞] be the Barsotti-Tate group of A. Then
X inherits a quasi-polarization and an OBQp

-action, where BQp denotes the p-adic
completion ofOB inBQp . Throughout this paper, we mean by a Barsotti-Tate group
with additional structures a Barsotti-Tate group equipped with a quasi-polarization
and a compatible BQp-action.

The geometry of S is determined by the Barsotti-Tate group with additional struc-
tures X . More specifically, isogeny classes of the fibers of X at geometric points
determine a stratification of S by closed subschemes called Newton strata. Such
phenomena were first studied by Grothendieck and Katz (see [Gro74] and [Kat79]).

Oort came up with the idea of studying on any given Newton stratum the loci
defined by fixing an isomorphism class of the geometric fibers of X . Such loci are
called Oort’s central leaves. Central leaves give rise to a foliation structure on each
Newton stratum. Similarly, fixing the p-isogeny class of the geometric fibers gives
rise to another foliation by the so-called isogeny leaves. Central leaves and isogeny
leaves lie transversely to each other in the sense that they are fixed under prime-to-p
isogenies and p-isogenies respectively, and give an almost product structure on the
Newton stratum. In this section, we give an overview of the theory of Newton
stratification and foliations.

WriteW = W (k) for the Witt ring of k and L the fraction field ofW. By an abuse
of notation, we use σ to denote both the Frobenius on k and that of L over Qp.We
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define the set B(G) of σ-conjugacy classes of G(L) by

B(G) = {[b]|b ∈ G(L)},

where
[b] = {g−1bσ(g)|g ∈ G(L)}.

An F -isocrystal over k is a finite dimensional vector space V over L with a σ-linear
automorphism F : V → V. An F -isocrystal with G-structure is an exact faithful
tensor functor

RepQp
(G)→ F-Isoc(k).

For each b ∈ G(L), there is an associated F -isocrystal with G-structure Nb given
byNb(W, ρ) = (WL, ρ(b)(idW ⊗σ)) (see [RR96, §3.4]). The isomorphism class of
Nb is fixed under σ-conjugation in G(L). Hence the set B(G) is identified with the
set of isomorphism classes of F -isocrystals with G-structures.

Example 2.2.1. Let G = GLn. An F -isocrystal with G-structure is a pair (V,Φ),

where V is an n-dimensional vector space over L and Φ is the Frobenius automor-
phism of V. Here the setB(G) can be identified with the set of isomorphism classes
of classical F -isocrystals of dimension n.

According to the Dieudonné-Manin classification, the category of F -isocrystals is
semi-simple, where the simple objects are parametrized by rational numbers called
slopes.

Let D be the diagonalizable pro-algebraic group over Qp with character group Q.
The set of Newton points of G is defined as the set of σ-invariant G(L)-conjugacy
classes of homomorphisms DL → GL :

N (G) := (Int G(L)\HomL(D, GL))〈σ〉.

Let T ⊆ G is a maximal torus with Weyl group Ω. Write (X∗,Φ, X∗,Φ
∨) for the

root datum associated to T. Then we have

N (G) = (X∗(T )Q/Ω)Γ,

where Γ is the absolute Galois group of Qp.

The set of Newton points N (G) admits a partial order � given as follows. We
endow the set X∗,R with a partial order given by α �′ α′ if and only if α′ − α is a
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non-negative linear combination of positive coroots. Each orbit in X∗,R under the
action of Ω corresponds to a unique element of the closed Weyl chamber of T. Thus
�′ induces a partial order on X∗,R, which further restricts to a partial order � on
(X∗(T )Q/Ω)Γ.

Kottwitz classfied points in B(G) by associating to each σ-conjugacy class [b] ∈
B(G) a Newton point and a Kottwitz point (for details see [Kot85], [Kot97], and
[RR96]) via the two maps

νG : B(G)→ N (G), and κG : B(G)→ π1(G)〈σ〉.

These are called the Newton map and the Kottwitz map ofG, respectively. Kottwitz
proved that the map νG× κG is injective. This implies that every σ-conjugacy class
[b] ∈ B(G) is determined uniquely by the corresponding Newton point and Kottwitz
point.

Example 2.2.2. Let G = GLn and b ∈ GLn(L). Let Nb = (V,Φ) be the F -
isocrystal associated to b.ThenV admits a decompositionVL = ⊕ni=1Vi intoΦ-stable
subspaces Vi, which uniquely determine rational numbers λ1 < λ2 < · · · < λn

called slopes of V. The associated Newton point is given by the conjugacy class
of the homomorphism ⊕ni=1λi · idVi : DL → GL. This data determines a convex
polygon with slopes λi, called the Newton polygon of Nb.

For two conjugacy classes [b], [b′] ∈ B(GLn),we have νG([b]) � νG([b′]) if and only
if the Newton polygon associated to [b] lies below that of [b′].

Let µ be a conjugacy class of dominant cocharacters of G. Define

µ =
1

r

r−1∑
i=0

σi(µ) ∈ N (G),

where r is an integer such that σr fixes µ, and let µ\ ∈ π1(G)〈σ〉 be the image of µ
under the natural projection

X∗ → π1(G)〈σ〉.

An element [b] ∈ B(G) is said to be µ-admissible if νG � µ and κG([b]) = µ\. The
set B(G, µ) of µ-admissible elements of B(G) inherits the partial order� since the
Newtonmap is injective. The setB(G, µ) is finite with a unique minimum called the
basic element, and a unique maximum called the µ-ordinary element (see [Kot97]).
An F -isocrystal with G-structure over k is said to be µ-ordinary (resp. basic) if
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its corresponding σ-conjugacy class [b] is the µ-ordinary (resp. basic) element in
B(G, µ).

From now on, we write b for the conjugacy class [b] ∈ B(G). For any geometric
point x ∈ S , let Xx be the fiber of the universal Barsotti-Tate group at x. Write
Nx for the F -isocrystal associated to Xx, then Nx uniquely determines an element
bx ∈ B(GQp , µQp

).The following result is due to Rapoport and Richartz (see [RR96,
Theorem 3.6]).

For b ∈ B(GQp), the set

S (� b) = {x ∈ S |bx � b}

is a closed subscheme ofS called the closed Newton stratum attached to b. The sets
S (� b) form the Newton stratification of S by closed subschemes of S indexed
by b ∈ B(GQp).

The open Newton stratum attached to b ∈ B(GQp) is defined as

Nb = S (� b)− ∪b′�bS (� b′).

It is a locally-closed reduced subscheme of S . Moreover, the stratum Nb is non-
empty if and only if b ∈ B(GQp , µQp

) (see [VW13, Theorem 1.6]). Moreover, in
the situations of interest to us, this stratification coincides with the classical Newton
stratification determined by the isogeny class of the geometric fibers of the universal
Barsotti-Tate group (see [RR96, Theorem 3.8]). The strata corresponding to the
µ-ordinary element and the basic element are called the µ-ordinary stratum and the
basic stratum respectively.

Now we fix a conjugacy class b in B(GQp , µQp
) and write X for a corresponding

Barsotti-Tate group with GQp-structure. A Barsotti-Tate group X′ over k is geomet-
rically isomorphic to X (denoted X′ ∼=g X) if X′ and X become isomorphic over an
extension of k. The central leaf associated to X is defined as

CX = {x ∈ S |Xx
∼=g X},

where X stands for the universal Barsotti-Tate group. By definition, we have
CX ⊆ Nb. Moreover, CX is a locally-closed smooth subscheme of the Newton
stratum Nb (see [Oor04] and [Man05, Proposition 1]).

For a geometric point x ∈ S (k), we say C(x) := CXx is the central leaf passing
through x.
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On any fixed Newton stratum Nb, central leaves give rise to a foliation structure,
called the central foliation, in the following sense. Any closed point x ∈ Nb is
contained in exactly one central leaf. Moreover, if x, x′ are two points in Nb,
there exists a scheme T and finite surjective morphisms C(x) � T � C(x′). In
particular, dimC(x) = dimC(x′) (see [Oor04, §2 and §3]).

On the other hand, let b be a fixed conjugacy class in B(GQp , µQp
) and x ∈ Nb(k) a

closed geometric point of the associated Newton stratum. Let Ax be the fiber of the
universal abelian variety at x with additional structures. Then Ay for y ∈ Nb(k) is
geometrically p-isogenous toAx (denotedAy ∼g Ax) if there exists a field extension
of k over which Ay and Ax are related by a p-power isogeny compatible with their
additional structures. The isogeny leaf passing through X is the locus defined as

I(x) = {x ∈ S (k)|Ay ∼g Ax}.

By definition, we have I(x) ⊆ Nb.Moreover, I(x) is a closed subscheme ofNb. On
any given Newton stratum Nb, isogeny leaves also form a foliation structure called
the isogeny foliation. Any closed point x ∈ Nb is contained in exactly one isogeny
leaf. Moreover, if x, x′ are two points in Nb, there exists a scheme S and finite
surjective morphisms I(x) � S � I(x′). In particular, dim I(x) = dim I(x′)

([Oor04, Section 4] and [Man05, Section 5]).

2.3 Hecke symmetries and Hecke orbits.
As Kp varies over all sufficiently small compact open subgroups of G(Ap

f ), the
Shimura varieties SKp form an inverse system lim←−Kp

SKp . If Kp
1 ⊆ Kp

2 are
compact open subgroups of G(Ap

f ), there is an étale covering SKp
1
→ SKp

2
given

by (A, λ, i, (η)1) 7→ (A, λ, i, (η)2), where (η)i denotes the Kp
i -orbit of η and the

map is given by extending (η)1 to the Kp
2 -orbit.

The inverse system lim←−Kp
SKp admits a natural right action by G(Ap

f ). For g ∈
G(Ap

f ), the corresponding map

SKp → Sg−1Kpg

is given by
(A, λ, i, η) 7→ (A, λ, i, ηg).

For a fixed Kp, the action of G(Ap
f ) induces a family of finite étale algebraic

correspondences on SKp called the prime-to-p Hecke correspondences. Namely,
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for g ∈ G(Ap
f ), we have

SKp
a←− SKp∩gKpg−1

b−→ SKp ,

where b is the covering map SKp∩gKpg−1 → SKp induced by the inclusion of
Kp into gKpg−1 ⊆ Kp, and a is the composition of the covering map for the
inclusion g−1(Kp ∩ gKpg−1)g ⊆ Kp with the isomorphism between SKp∩gKpg−1

and Sg−1(Kp∩gKpg−1)g.

Let x ∈ SKp(k) be a closed geometric point, and let x̃ ∈ S (k) be a geometric
point of the tower S (k) above x. The prime-to-p Hecke orbit of x in SKp(k),
denoted by Hp(x), is the countable set consisting of all points that belong to the
image of G(Ap

f ) · x̃ under the projection S (k) → SKp(k). For a prime l 6= p, the
l-adic Hecke orbit, denoted byHl(x), is defined to be the projection of G(Ql) · x̃ to
SKp(k), where the action is given via the canonical injection G(Ql) ↪→ G(Ap

f ). It
is clear from the definition that bothHp(x) andHl(x) are independent of the choice
of x̃.

By definition, for any x ∈ SKp(k), its prime-to-p Hecke orbit Hp(x) sits inside
the central leaf C(x) passing through x. The Hecke orbit conjecture suggests that
Hp(x) is as large as possible.

Conjecture 1.1.1. [Cha06, Conjecture 3.2] Every prime-to-p Hecke orbit on SKp

is dense in the central leaf containing it.

Classically, the Hecke orbit conjecture is split into the continuous part and the
discrete part. Clearly, the Hecke orbit conjecture is equivalent to the conjunction of
these two parts.

Conjecture 2.3.1 (The continuous part). [Cha06, Section 3.2] The closure of any
prime-to-p Hecke orbit in the central leaf C containing it is a union of irreducible
components of C.

Conjecture 2.3.2 (The discrete part). [Cha06, Section 3.2] Every prime-to-pHecke
orbit in a central leaf C meets every irreducible component of C.

Here are several known cases of the Hecke orbit conjecture.

Theorem 2.3.3. [Cha95, Theorem 2] The prime-to-p Hecke orbit of any ordinary
point of a Siegel modular variety Ag is Zariski dense in Ag.
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Theorem 2.3.4. [Cha06, Theorem 3.4] The Hecke orbit conjecture holds for Siegel
modular varieties.

Theorem 2.3.5. [Cha06, Theorem 3.5] The Hecke orbit conjecture holds for Hilbert
modular varieties attached to a finite product F1 × · · · × Fr of totally real fields.
Here the prime p may be ramified in any or all of the totally real fields F1, · · · , Fr.

Theorem 2.3.6. [Zho19, Theorem 3.1.3] Every ordinary prime-to-p Hecke orbit
coming from the derived group of G on a quaternionic Shimura variety is dense in
the Shimura variety.
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C h a p t e r 3

HYPERSYMMETRIC ABELIAN VARIETIES

Hypersymmetric abelian varieties were first studied by Chai and Oort in [CO06] as
a tool for proving the Hecke Orbit conjecture for Siegel modular varieties. Y. Zong
studied the more general version for PEL type Shimura varieties in his dissertation
[Zon08] and gave necessary and sufficient conditions on the Newton polygon for the
existence of simple hypersymmetric points. While the existence of such points has
applications in proving the irreducibility of central leaves and Igusa towers [EM,
Proposition 3.3.2], hypersymmetric points are also of their own interests as mod-p
analogues of CM abelian varieties in characteristic 0.

Recall that an abelian variety A of dimension g over a field K is said to be of
CM-type if End(A)⊗Z Q contains a semi-simple commutative sub-algebra of rank
2g over Q. In a moduli space of abelian varieties over a field of characteristic zero,
points of CM-type are special. However, Tate proved that if the base field is of
positive characteristic, every abelian variety is of CM-type [Tat66]. In this sense,
CM-type abelian varieties are no longer special.

Notations as in Section 2.1. Fixing a level structureKp, we may consider geometric
points in the moduli space S := SKp which correspond to abelian varieties that
have as many endomorphisms as allowed by their Barsotti-Tate groups. As it
turns out, such points are indeed special in the positive characteristic setting. Not
every point satisfy this condition (see [CO06, Remark 2.4]). Moreover, in Shimura
varieties of PEL type, not every Newton stratum contains such a point.

Definition 3.0.1. 1. [CO06, Definition 6.4] AB-linear polarized abelian variety
A over k is B-hypersymmetric if

EndB(A)⊗Z Qp
∼= EndB(A[p∞])⊗Zp Qp.

2. We say a point x ∈ S (k) is B-hypersymmetric if the corresponding abelian
variety Ax is B-hypersymmetric.
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3.1 New formulation of the characterization of B-hypersymmetric abelian
varieties.

Given a Shimura variety S := SKp over k, we are interested in the existence of
B-hypersymmetric points in any central leaf or prime-to-p Hecke orbit. On Siegel
modular varieties, a Newton stratum contains a hypersymmetric point if and only
if its Newton polygon is symmetric [CO06, Corollary 4.8]. This is true for every
Newton stratum on a Siegel modular variety due to the presence of polarization.
For PEL type Shimura varieties, Zong showed in [Zon08] that the existence of
B-hypersymmetric points depends only on the shape of the corresponding Newton
polygon, i.e. a Newton stratum contains simple B-hypersymmetric points precisely
when the corresponding Newton polygon satisfies “supersingular restriction" (see
[Zon08, Theorem 5.1]). We remark that for the purpose of our paper, the conditions
that the Newton polygon of a non-empty Newton stratum admits a “CM-type parti-
tion" (see [Zon08, Definition 4.1.8]) is redundant due to the non-emptiness. Hence,
for convenience, in the present paper we develop an easier language to describe the
shape of Newton polygons whose strata containB-hypersymmetric points, although
it is not necessary to do so.

For Shimura varieties of PEL type, we introduce an analogue of the notion of being
symmetric for a Newton polygon, in order to draw an explicit analogy with the
terminologies in the Siegel case.

Recall that for a point x ∈ S , the F -isocrystalM associated to Ax admits a unique
decompositionM =

⊕
λ∈QM(λ) whereM(r) denotes the largest sub-isocrystal of

slope λ. IfM is further equipped with an action by a finite dimensional Q-algebra
B, thenM =

⊕
v∈SpecOF ,v|pMv(λv), where F is the center of B. The slopes λv of

Mv are called the slopes ofM at v. The multiplicity of the slope λv is given by

mv(λv) =
dimL(k) Mv(λv)

[Fv : Qp][B : F ]1/2
.

Let ν denote a Newton polygon that comes from aB-linear polarized abelian variety.
Then ν can be written as ν =

∑
v∈SpecOF ,v|p νv, where

νv =
Nv∑
i=1

mv,iλv,i

for positive integers nv,mv,i. In the above notation, we use λv,i to denote the distinct
slopes of ν at a place v of F above p, andmv,i is the multiplicity of λv,i.
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Definition 3.1.1. 1. A Newton polygon ν that comes from a B-linear polarized
abelian variety is B-balanced if there exist positive integers n,m such that
nv = n for all primes v of F above p andmv,i = m for all v and i.

2. Two Newton polygons are disjoint if they have no common slope at the same
v|p of F.

3. A Newton polygon µ is B-symmetric if it is the amalgamation of disjoint
B-balanced Newton polygons.

In other words, for any B-symmetric Newton polygon µ, there exists a positive
integer n and a multi-set S such that for all v|p of F , nv = n and {mv,i}nv

i=1 = S as
multi-sets for all v|p of F.

It is clear from the definition that every B-balanced polygon is B-symmetric. Con-
versely, a B-symmetric polygon is naturally an amalgamation of uniquely deter-
mined disjoint B-balanced polygons.

We rephrase Zong’s main theorem [Zon08, Theorem 5.1] into a simplified version
as follows:

Theorem 3.1.2. A Newton stratumN contains a simple B-hypersymmetric point if
and only if its Newton polygon is B-balanced.

We remark that Theorem 3.1.2 follows from the proof but not the statement of
[Zon08, Theorem 5.1.1]. To make the present paper self-contained, we reproduce
Zong’s argument in the Appendix. The following corollary is an immediate conse-
quence of Theorem 3.1.2.

Corollary 3.1.3. N contains a B-hypersymmetric point if and only if its Newton
polygon is B-symmetric.

WhenB = Q, the condition of beingB-symmetric becomes empty, so Zong’s result
recovers [CO06, Corollary 4.8].

3.2 Hypersymmetricity over a subfield.
Recall from the notation of Section 2.1 that F0 is the maximal totally real field of
the center F of the simpleQ-algebraB. For the proof of the main theorem, we need
to understand when a F -hypersymmetric is also F0-hypersymmetric.
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Definition 3.2.1. Let b ∈ B(G, µ) and let ζ be the Newton polygon corresponding
to b.Write ζ = ⊕u|pζu for primes u|p of F.We say ζ satisfies the condition (*) if for
any u 6= u′ of F sitting above the same prime v of F0 above p, the Newton polygons
ζu and ζu′ have no common slope.

Weprove the following consequence of Zong’s criterion of hypersymmetry ([Zon08,
Proposition 3.3.1]).

Proposition 3.2.2. 1. Let L/K be a finite extension of number fields such that
every prime of K above p is inert in L/K. Let A be an L-hypersymmetric
abelian variety defined over Fp, then A is K-hypersymmetric.

2. Let K be a totally real field. Let L/K be an imaginary quadratic extension
where p splits completely. Let A be an L-hypersymmetric abelian variety
defined over Fp. Suppose the Newton polygon of A satisfies the condition (*).
Then A is K-hypersymmetric.

Proof. Let A′ be an abelian variety over some Fpa such that A′ ⊗ Fp ∼= A. Let π
denote the Fpa-Frobenius endomorphism ofA′ and let ζ denote the Newton polygon
ofA. Then EndL(A)⊗ZQ = EndL(A′)⊗ZQ, the center of which is identified with
L(π). Since A is L-hypersymmetric, there exists a positive integer n such that ζ has
n slopes at each p|w of L. By [Zon08, Proposition 3.3.1],

L(π)⊗L Lw ∼=
∏

Lw,

with the number of factors equal to n.

(1) Suppose L/K is inert. Let u be the prime of K below w. Then [Lw : Ku] = 1,

so
dimK K(π) = dimL L(π) = n = nu[Lw : Ku] = nu,

where nu stands for the number of slopes of ζ at u.

Therefore we have K(π) ⊗K Kv
∼=

∏
Kv with the number of factors being equal

to u. Since this holds for any u|p ofK, by [Zon08, Proposition 3.3.1], we conclude
that A is K-hypersymmetric.

(2) Suppose K is totally real and L/K is imaginary quadratic. Condition (*)
implies nu = 2n for any u|p of K. Since every prime above p splits in L/K, we
have dimK K(π) = 2 dimL L(π). Again, this allows us to conclude by [Zon08,
Proposition 3.3.1] that A is K-hypersymmetric.
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Remark 3.2.3. In the case of F/F0, where F0 is totally real and F is a quadratic
imaginary extension of F0, if the conditions in Proposition 3.2.2 are not satisfied, an
F -balanced Newton polygon may not be F0-balanced. Consider the following two
examples:

1. Suppose [F0 : Q] = 2, p = v1v2 in F0 and v1 = u1u
′
1, v2 = u2u

′
2 in F. Then

the slope data 

λ, 1− λ at u1

λ, 1− λ at u′1
µ, ν at u2

1− µ, 1− ν at u′2
where µ 6= ν gives a F -balanced Newton polygon, but its restriction to F0

given by 2(λ), 2(1− λ) at v1

µ, ν, 1− µ, 1− ν at v2

is not F0-balanced.

2. Suppose [F0 : Q] = 4, p = v1v2 in F0, v1 = u1u
′
1 and v2 is inert in F/F0.

Then the slope data 
0 at u1

1 at u′1
1/2 at v2

where µ 6= ν gives a F -balanced Newton polygon, but its restriction to F0

given by 0, 1 at v1

2(1/2) at v2

is not F0-balanced.

3.3 Hypersymmetric points in the µ-ordinary stratum in PEL type A.
The µ-ordinary locus is the largest locus on a Shimura variety. Moreover, it is
well-known that the µ-ordinary locus is dense and hence is irreducible in any given
irreducible component of the Shimura variety. It is therefore interesting to investigate
under what conditions we may prove the Hecke orbit conjecture for points in the µ-
ordinary locus. Therefore we study necessary conditions on the µ-ordinary Newton
polygon to guarantee the existence of a B-hypersymmetric point.
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For this section, we restrict our attention to Shimura varieties of PEL typeA.Namely,
we assume F is a CM field. Write d = [F : Q]. Moonen explicitly computes the
µ-ordinary polygon in [Moo04] in terms of the multiplication type. Let T denote
the set of complex embeddings of F and O denote the set of σ-orbits of elements
in T . There is a bijection between O and the set of primes of F above p. Let f
denote the multiplication type as defined in [Moo04, Section 0.4]. For each σ-orbit
o of complex embeddings of F, the corresponding µ-ordinary Newton polygon has
slopes (see [Moo04, Section 1.2.5] and [EM, Definition 2.6.2]):

a0j =
1

#o
#{τ ∈ o|f(τ) > d− j} for j = 1, · · · , d.

For any λ that occurs as a slope, the multiplicity of λ is given by

mλ = #{j ∈ {1, · · · , d|aoj = λ}.

Moonen’s result makes it convenient to check the existence of B-hypersymmetric
points. In particular, Example 3.3.2 demonstrates that not every µ-ordinary stratum
contains a B-hypersymmetric point.

Example 3.3.1. Suppose [F : Q] = 4. If o1 = {τ1, τ2}, o2 = {τ ∗1 , τ ∗2 }with signature
(3, 0), (1, 4) respectively, then p splits into vv∗ in F and µ(v) = µ(o1) = (0)1 +

(1/2)3 and µ(v∗) = µ(o2) = (1/2)3 +(1)1. This µ-ordinary stratum is F -symmetric
and contains a hypersymmetric point.

Example 3.3.2. Suppose [F : Q] = 4. If o1 = {τ1, τ
∗
1 }, o2 = {τ2, τ

∗
2 } with

signature (3, 1), (0, 4) respectively, then p splits into two real places v, v′ in F and
µ(v) = µ(o1) = (0)1 + (1/2)2 + (1)1 and µ(v′) = µ(o2) = (0)2 + (1)2. This
µ-ordinary stratum contains no B-hypersymmetric point because the number of
isotypic components above v and v′ are different.

Below we give a sufficient condition for the µ-ordinary stratum to contain a B-
hypersymmetric point.

Corollary 3.3.3. 1. Assume p is inert in F . If every slope of the Newton polygon
attached toN has the samemultiplicity, thenN contains aB-hypersymmetric
point.

2. Assume that the signature ofSKp has no definite place, and that p is a prime of
constant degree in the extension F/Q. Then the µ-ordinary stratum contains
a B-hypersymmetric point.
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Proof. (1) If p is inert, there is only one σ-orbit. Thus the conditions of being B-
balanced reduces to the condition that every slope has the same multiplicity, which
is true by assumption.

(2) If f has no definite place, f only takes values in [1, d − 1]. In this case, for any
σ-orbit o, the number of values that f takes in [1, d− 1] is precisely one less than the
number of slopes of the µ-ordinary polygon at the corresponding prime of F above
p. Hence when the degree of p is constant, the µ-ordinary polygon has the same
number of slopes at each prime of F above v and is therefore B-balanced.
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C h a p t e r 4

MONODROMY.

An important ingredient in [Cha05b] for proving the discrete part of the Hecke
orbit conjecture is a monodromy result for Hecke invariant subvarieties ([Cha05c,
Proposition 4.1, Proposition 4.4]; c.f. [Cha05b, Theorem 5.1]). In this section, we
present a generalization to all Shimura varieties of PEL type. Proposition 4.0.4 is a
more general version of the main theorem in [Kas12], which only holds if no simple
factor of D is of type D. The key difference is that in the case of PEL type A and
C, the derived group of G is simply connected. In the case of PEL type D we need
to work with the simply connected cover of Gder instead. The proofs we present in
this section are closely related in that of loc. cit.

We first fix some notations for this section. Let SKp and G be as given in Section
2.1. Let G′ := Gsc

der denote the simply connected cover of the derived group of G.

Let Σ be the finite set consisting of p and the primes p′ such that some simple
component of G′ is anisotropic over Qp′ . For a prime l 6= p, let Z ⊆ SKp be
a smooth locally-closed subvariety stable under all l-adic Hecke correspondences
coming from G′. Let Z0 be a connected component of Z with generic point z.We
use z to denote a geometric point of Z above z. Let AZ0 denote the restriction to
Z0 of the universal abelian scheme over SKp . Let Kl be the image of Kp under
Kp ↪→ G(Ap

f ) � G(Ql) and let ρl : π1(Z0, z)→ Kl denote the l-adic monodromy
representation attached to AZ0 . LetM = ρl(π1(Z0, z)) be the image of ρ.

As N varies over all subgroups of Kp for which Kp/N is trivial away from l, we
obtain the following pro-étale coverings:

(SN)N → SKp ,

Y := (SN ×SKp Z
0)N → Z0,

and
Z̃ := (SN ×SKp Z)N → Z,

where the first two admit Kl action via l-adic Hecke correspondences, and the
third one admits a natural G′(Ql) action. Observe that AutSKp ((SN)N) = Kp

by construction. Hence π1(Z0, z) acts on Y via the composition of morphisms
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π1(Z0, z) → π1(S 0
Kp , z) → AutSKp ((SN)N) = Kp, where S 0

Kp stands for the
connected component of SKp containing Z0. Let z̃ ∈ Y be a geometric point above
z and write Y 0 for the connected component of Y passing through z̃.

Lemma 4.0.1. 1. There is a homeomorphism π0(Y ) ∼= Kl/M.

2. There is a homeomorphism π0(Z̃) ∼= G′(Ql)/ StabG′(Y
0).

Proof. The arguments in [Cha05c, Section 2.6, 2.7 and Lemma 2.8] also work in
the present situation. We remark that this is where the assumption of the transitivity
of Hecke correspondences is used.

Lemma 4.0.2. SupposeM is infinite. ThenM contains an open subgroup of Kl.

Proof. Let H denote the neutral component of the Zariski closure ofM in G. Let
m denote the Lie algebra ofM as an l-adic Lie group. By [Bor12, Corollary 7.9],m
coincides with the Lie algebra ofM , som contains the commutator subgroup of the
Lie algebra H . Thus, if we can show H = G′, thenM contains an open subgroup
ofG′, which impliesM contains an open subgroup ofKl.We do so by investigating
the normalizer of H in G′ and show that H is in fact normal in G′.

By the same argument as in [Cha05c, Proposition 4.1],H is semisimple, soH ⊆ G′.

Let N be the normalizer of H in G′ and N0 its neutral component. The proof of
[Cha05c, Lemma 3.3] shows thatN0 is reductive.

Now we showN contains a nontrivial normal connected subgroup of G′Ql
. There is

a natural inclusion StabG′(Y ) ⊆ N(Ql),which gives rise to a continuous surjection
G′(Ql)/ StabG′(Y ) � G′(Ql)/N(Ql). By Lemma 4.0.1, the set on the left is
profinite and in particular compact, so the group on the right is also compact. Thus
G′(Ql)/N

0(Ql) is compact. By [BT65, Proposition 9.3], N0 contains a maximal
connected solvable subgroup A of G′Ql

. By the assumption on l, G′Ql
is isotropic,

so [BT65, Propositions 8.4, 8.5] imply that the set of unipotent elements Au is the
unipotent radical of a minimal parabolic subgroup of G′Ql

. Hence, Au is nontrivial,
connected, and normal.

Therefore, we must haveN0 = N = G′Ql
andH is a normal subgroup of G′ having

infinite intersections with all simple components of G′. We conclude that H = G′,

which completes the proof.

Proposition 4.0.3. Notations and conditions as in Proposition 4.0.4. SupposeM is
infinite. Then Z is connected.
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Proof. By Lemma 4.0.2, M contains an open subgroup of Kl. Hence, Kl/M is
finite. By Lemma 4.0.1, π0(Y ) is also finite. Since Z is quasi-projective, it has
finitely many connected components, π0(Z̃) is finite as well. Again by Lemma
4.0.1, this implies that G′(Ql)/ StabG′(Y

0) is finite.

If G′(Ql)/ StabG′(Y
0) 6= {1}, then StabG′(Y

0) would be a non-trivial subgroup
of finite index. The Kneser-Tits conjecture for simple and simply connected Ql-
isotropic groups implies that none of the simple components of G′ has non-trivial
non-concentral normal subgroups ([PR92, Theorem 7.1, 7.6]), and hence, no non-
trivial subgroup of finite index. This is a contradiction. We conclude π0(Z̃) =

G′(Ql)/ StabG′(Y
0) = {1}. In particular, Z is connected.

The following proposition, generalizing the main theorem of [Kas12], is the upshot
of this section.

Proposition 4.0.4. Suppose that the prime-to-ΣHecke correspondences fromG′ act
transitively on the set of connected components of Z. If z is not in the basic stratum,
then Z is connected.

Proof. By Proposition 4.0.3, it suffices to show that M = ρl(π1(Z0, z)) is infinite
for all l /∈ Σ. Suppose towards a contradiction that M is finite for some l. By
[Oor74, Theorem 2.1], there exists a finite surjective base change Z ′ → Z0 such
that AZ0 ×Z0 Z ′ is isogenous to an isotrivial abelian schemeA defined over Fp. By
[FC13, Proposition I.2.7], the isogeny AZ0 ×Z0 Z ′ → A×Fp

Z ′ over Z ′ extends to
an isogeny over Z ′. Hence, Z0 lies in a single Newton stratum. We claim that Z0

contains a basic point, which contradicts the assumption that the generic point of
Z0 lies outside the basic stratum.

We first show that Z0 is a proper scheme over Fp. Let R be a discrete valuation ring
overOE⊗ZZ(p) with fraction fieldK, and let (A, λ, i, η) be aK-valued point of Z0.

Then the Néron model ofA overR is in fact an abelian scheme. It is straightforward
to check that λ, i and η give a PEL structure on the Néron model of A. Hence,
(A, λ, i, η) extends to an R-valued point of Z0 and Z0 is proper by the valuative
criterion of properness.

Nowwe follow closely the proof of [Cha95, Proposition 6] to show thatZ0 contains a
basic point. By assumption, the generic point z ofZ0 is not in the basic stratum, soZ0

is positive dimensional. Since each Ekedahl-Oort stratum is quasi-affine, Z0 cannot
be contained in the generic Ekedahl-Oort stratum. Hence, it must intersect some
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smaller stratum Sω1 .By definition, each Ekedahl-Oort stratum is closed under l-adic
Hecke correspondences, so Z0 ∩ Sω1 is closed under l-adic Hecke correspondences
as well. IfZ0∩Sω1 is not 0-dimensional, then its closuremeets some smaller stratum
Sω2 .Wecan repeat this argument, and eventually reach a stratumSω such thatZ0∩Sω

is non-empty, 0-dimensional, and closed under l-adicHecke correspondences. Thus,
Z0 contains a point whose l-adic Hecke orbit is finite. By [Yu05, Proposition 4.8],
this point must be basic. This completes the contradiction and the proof of our
proposition.

We apply Proposition 4.0.4 toNewton strata and central leaves to obtain the following
corollary.

Corollary 4.0.5. 1. SupposeN is a non-basic Newton stratum. Further assume
N is smooth. Then the prime-to-Σ Hecke correspondences from G′ act
transitively on π0(N ) if and only if N is irreducible.

2. Let C ⊆ SKp be a central leaf not contained in the basic stratum. Then the
prime-to-Σ Hecke correspondences from G′ act transitively on π0(C) if and
only if C is irreducible.

Remark 4.0.6. Shen and Zhang [SZ17, Proposition 6.2.7] proved that non-basic
Newton strata on Shimura varieties of abelian type are smooth if the pair (G, µ) is
fully Hodge-Newton decomposable. Görtz and He classified such pairs in [GHN19,
Theorem 3.5].



29

C h a p t e r 5

THE DISCRETE PART.

In this section, we restrict to cases A and C. We prove the discrete part of the
Hecke Orbit conjecture under the assumption that the Newton stratum in question
is irreducible and contains a B-hypersymmetric point. Namely,

Theorem 5.0.1. Suppose N is a Newton stratum. Further assume that N contains
a B-hypersymmetric point x0 in some irreducible component N 0. Then Hp acts
transitively on Π0(C(x) ∩ N 0) for any x ∈ N 0. Moreover, if N is not the basic
stratum, then C(x) ∩N 0 is irreducible.

Lemma 5.0.2. Let (A, λ, i, η) be an abelian variety with PEL structure over k.
Let IB be the unitary group attached to (End0

B(A), ∗) where ∗ denotes the Rosati
involution, i.e. for every commutative algebra R,

IB(R) = U(EndB(A)⊗R, ∗) = {u|u · u∗ = 1 = u∗ · u}.

Then IB satisfies weak approximation.

Proof. Let I denote the unitary group attached to (End0(A), ∗). Then I is connected
(see the proof of [CO11, Lemma 4.5]). By [Hum11, §2.11], IB is connected. By
[CO11, Lemma 4.6], I isQ-rational, so is IB. Then [PR92, Proposition 7.3] implies
IB satisfies weak approximation.

Now we are ready to prove Theorem 5.0.1. The key idea of the proof is as follows.
Denote by N 0 the irreducible component of N containing x0. For a central leaf C
in N such that C ∩ N 0 is nonempty, write C0 = C ∩ N 0.We first use the almost
product structure on Newton strata to show that there exist mutually isogenous B-
hypersymmetric points on each irreducible component of C0. We then show that
these points are in the same prime-to-p Hecke orbit. This proves the first statement.
Then we check the conditions of Corollary 4.0.5 are satisfied and use it to conclude
C0 is irreducible.

Proof. Step 1. Denote by {C0
j }j∈J the set of irreducible component of C0. By the

product structure of Newton polygon strata (see [Oor04, Theorem 5.3] and [Man04,
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§4]), for N,m, n, d large enough, there is a finite surjective morphism

πN : Igm,X ×M
n,d

X → N 0

such that for some closed geometric point t ofMn,d

X , πN restricts to a finite surjective
morphism

qm : Igm,X × {t} → C0.

For any fixed j ∈ J, let (sj, tj) ∈ Igm,X ×MX be such that (sj, tj) ∈ π−1
N (x0) and

sj ∈ q−1
m (C0

j ), then yj = qm(sj) is a point in C0
j related to x0 by a quasi-isogeny φ.

Thus we obtain a set of points {yj ∈ C0
j }j that are mutually isogenous. Note that yj

are B-hypersymmetric because the property of being hypersymmetric by definition
is preserved under isogenies.

Step 2. Now we show that the yj’s in Step 1 are related by prime-to-p isogenies.
For any i, j ∈ J, let Ai and Aj denote the abelian varieties with additional structure
corresponding to yi and yj , respectively. By construction, there exists an isogeny
φ : Ai → Aj. Since yi and yj belong to the same central leaf C, there exists an
isomorphism θp : Ai[p

∞]
∼−→ Aj[p

∞]. Let ψp : Ai[p
∞] → Ai[p

∞] be given by the
composition φ−1

p ◦ θp,where φp denotes the isogeny of Barsotti-Tate groups induced
by φ, then we have ψp ∈ U(EndB(Ai[p

∞]), ∗). Since Ai is hypersymmetric, the
latter group is isomorphic to IB⊗Qp. By weak approximation for algebraic groups,
there exists ψ ∈ IB(Ap

f ) that induces the same isogeny as ψp on the Barsotti-Tate
groups. Hence, φ ◦ ψ : Ai → Aj is an isogeny that induces an isomorphism on the
Barsotti-Tate groups. Thus, any yi and yj are in the same prime-to-p Hecke orbit.
Therefore, Hp acts transitively on the set of irreducible components of C0.

In particular, since the Hecke symmetries on the connected component of SKp

comes from the adjoint group Gad of G, and Gder is a covering of Gad (see [Moo98,
1.6.5] and [Del71]), we may take the isogenies in Step 1 to be fromGder. Moreover,
using weak approximation, we may take these isogenies to be prime-to-Σ, where Σ

is as defined in the beginning of Chapter IV. We conclude by Corollary 4.0.5(2) that
C0 is irreducible.
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C h a p t e r 6

THE CONTINUOUS PART.

In this section, we prove the discrete part of the Hecke orbit conjecture for B-
hypersymmetric points. For this result, we do not need to assume working in an
irreducible (component of a) Newton stratum.

Theorem6.0.1. LetN be aNewton stratum. SupposeN contains aB-hypersymmetric
x0. Let C = C(x0) denote the central leaf containing x0. Let H denote the Zariski
closure of Hp(x0) inside C. Then dimH = dimC.

Remark 6.0.2. We remark that H is smooth. Indeed, by generic smoothness, each
connected component ofH has a smooth open dense subscheme, but each connected
component of H is by definition the union of prime-to-p Hecke translates of that
smooth open dense subscheme and therefore is smooth. Furthermore, by Proposition
4.0.4,H is connected. Therefore,H lies inside a single connected component of C.

In the case of Siegel modular varieties, the continuous part (see [Cha05b, Theorem
10.6] uses the “Hilbert trick” ([Cha05b, Proposition 9.2]) to find a point in N
isogenous to a product of abelian varieties with at most two slopes - such a point is
called “split", thereby reducing the proof to the case where x0 has at most two slopes.
The Hilbert trick does not hold for PEL type in general. We observe that it is not
necessary to work with a split point. We work instead with the full cascade structure
on the formal completion of a central leaf and reduce to a statement analogous to
what appears in the proof in the case of split points.

6.1 The cascade structure on central leaves.
In [Moo04], Moonen generalizes classical Serre-Tate theory to µ-ordinary points
on PEL type Shimura varieties. He proves that the local deformation space at a
generic point on a PEL type Shimura variety is built up from Barsotti-Tate groups
via a system of fibrations over the Witt ring of k. For points outside the generic
Newton stratum, Chai develops an analogous theory in the case when one restricts
to a central leaf (see [Cha06, Sections 4.3, 4.4]). In this section, we give a brief
overview of the theory following loc. cit.
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Let A→ C be the restriction to C of the universal abelian variety, and let X be its
Barsotti-Tate groupwith action byOB⊗ZZp. ThenX admits a unique slope filtration
0 = X0 ⊆ X1 ⊆ · · · ⊆ Xr = A[p∞] such that each Yi = Xi/Xi−1 is a non-trivial
isoclinic Barsotti-Tate group ([Cha06, Proposition 4.1]). For 1 ≤ i < j ≤ r, we
useDE(i, j) to denote the deformation space of the filtered Barsotti-Tate group 0 ⊆
Yi ⊆ Yi×Yj with action byOB⊗ZZp, and letDef(i, j) denote the deformation space
of the filtered Barsotti-Tate group 0 ⊆ Xi/Xi−1 ⊆ Xi+1/Xi−1 ⊆ · · · ⊆ Xj/Xi−1

with action by OB ⊗Z Zp. By definition, we have Def(i, i + 1) = DE(i, i + 1) for
any i.

The central leaf C is homogeneous in the sense that formal completions of C at any
two points are non-canonically isomorphic. Thus it suffices to study what happens
at the point x0 ∈ C. The formal completion C/x0 is contained in the deformation
space of the above-mentioned slope filtration, which admits a r-cascade structure in
the sense of [Moo04, Definition 2.2.1]. Denote this r-cascade by MDE(X). For
1 ≤ i < j ≤ r, the group constituents of MDE(X) are given by DE(i, j), and the
(i, j)-truncations are given by Def(i, j). The r-cascade structure can be expressed
in the following commutative diagram:

Def(1, r)

Def(1, r − 1) Def(2, r)

Def(1, r − 2) Def(2, r − 1) Def(3, r)

· · · · · · · · · · · ·

Here eachDef(i, j) is a bi-extension of (Def(i, j−1),Def(i+1, j))byDE(i, j)×Spec(k)

Def(i+ 1, j − 1).

For a smooth formal group G, we denote by Gpdiv its maximal Barsotti-Tate sub-
group. We writeMDE(X)pdiv to mean the sub-cascade ofMDE(X) whose group
constituents are DE(i, j)pdiv. Then C/x0 ⊆ MDE(X) is precisely the sub-cascade
ofMDE(X)pdiv fixed under the involution induced by the polarization of x [Cha06,
Section 4.4]. We denote this sub-cascade by MDE(X)λpdiv; its group constituents
areDE(i, j)λpdiv when i+ j = r+ 1 andDE(i, j)pdiv otherwise. This cascade struc-
ture on C/x0 allows us to reduce the proof of Theorem 6.0.1 to Proposition 6.1.2
below, which is an analogue of [Cha05b, Theorem 7.3] used in the Siegel case.

For the rest of this subsection, we study the group constituents ofMDE(X)λpdiv. Let
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X, Y be isoclinic Barsotti-Tate groups over k with OB ⊗Z Zp-action such that the
slope of X is smaller than that of Y. Let DE(X, Y ) denote the deformation space
of the filtered Barsotti-Tate group 0 ⊆ X ⊆ X × Y.

Notation 6.1.1. IfG is a Barsotti-Tate group, writeM(G) for the Cartier module of
G. For a polarization λ, we write G(λ) to mean Gλ when the induced action of λ on
G is nontrivial and G otherwise. We also recall that W = W (k) denotes the Witt
ring of k and L denotes the fraction field ofW.

Proposition 6.1.2. 1. There is a natural isomorphism of V -isocrystals

M(DE(X, Y )pdiv)⊗W L ∼= HomW (M(X),M(Y ))⊗W L.

2. Let λ be a principal quasi-polarization onX × Y. There is a natural isomor-
phism of V -isocrystals

M(DE(X, Y )λpdiv)⊗W L ∼= Homλ
W (M(X),M(Y ))⊗W L,

where by abuse of notation we use λ to denote the involutions induced by λ
on the respective spaces.

Proof. This clearly follows from [Cha05a, Theorem 9.6], where the same statements
are proved without assuming the presence of OB ⊗Z Zp-action.

6.2 Proof of the continuous part at B-hypersymmetric points.
Notations as in Theorem 6.0.1. The key idea in proving Theorem 6.0.1 is to study
the action of the local stabilizer group at x0 and show that the formal completion
H/x0 ⊆ C/x0 in fact coincides with C/x0 .

Definition 6.2.1. [Cha06, Section 6.1] Let x = [(Ax, λx, ιx, ηx)] ∈ S (k) be a
geometric point. Let Ux be the unitary group attached to the semisimple algebra
with involution (EndOB

(Ax)⊗Z Q, ∗), where ∗ is the Rosati involution attached to
λx. We call Ux(Zp) the local stabilizer group at x.

By the assumption of Theorem 6.0.1, x0 isB-hypersymmetric, soUx0(Zp) coincides
with IB(Zp) for the group IB defined in Lemma 5.2. By deformation theory, there is
a natural action of Ux0(Zp) on the formal completion S

/x0 and hence on its closed
formal subschemes Def(1, r)

(λ)
pdiv and H/x0 .

Recall that the maps in the cascade structure of MDE(X) are given by [Moo04,
Proposition 2.1.9] (see also [Moo04, 2.3.6]). These maps give rise to a group action
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of Ux0(Zp) on each Def(i, j)pdiv in an inductive way. We describe this action in the
next paragraph.

Suppose that for the triple Def(i, j − 1)pdiv
p←− Def(i, j)pdiv

r−→ Def(i + 1, j)pdiv

we have an action of Ux0(Zp) on Def(i, j)pdiv. Define an action of Ux0(Zp) on
Def(i, j − 1)pdiv by u · X := p(u · X̃) for any u ∈ U(Zp) and X ∈ Def(i, j − 1)pdiv,

where X̃ is any pre-image of X in Def(i, j)pdiv under p. For any other choice of
pre-image X̃′, by the biextension structure onDef(i, j)pdiv, X̃ and X̃′ are in the same
DE(i + 1, j − 1)pdiv-orbit in Def(i, j)pdiv. Hence, u · X̃ and u · X̃′ are also in the
same DE(i + 1, j − 1)pdiv-orbit, which implies that their images under p coincide.
Therefore this action of Ux0(Zp) on Def(i, j − 1)pdiv is well-defined. One defines
the action on Def(i+ 1, j)pdiv in the obvious analogous way.

In the following, we study how H/x0 behaves with respect to the cascade structure
of C/x0 ∼= MDE(X)λpdiv.

For 1 ≤ i ≤ r− 1, letHi,i+1 denote the image ofH/x0 insideDE(i, i+ 1)
(λ)
pdiv under

the maps in the cascade structure of C/x0 .

For 1 ≤ i < j − 1 ≤ r, we use the biextension structure of Def(i, j)
(λ)
pdiv and define

Hi,j as the quotient Def(i, j)
(λ)
pdiv/(Hi,i+1 × Hj−1,j). By [Mum69, Section2], there

is a non-canonical injection DE(i, j)
(λ)
pdiv ×Spec(k) Def(i+ 1, j − 1) ↪→ Hi,j .

Lemma 6.2.2. For 1 ≤ i ≤ r − 1, Hi,i+1 is a formal Barsotti-Tate subgroup of
DE(i, i+ 1)

(λ)
pdiv.

Proof. By definition, H is stable under all prime-to-p Hecke correspondences.
Then [Cha06, Proposition 6.1] implies H/x0 is stable under the action of Ux0(Zp);
hence, so are the Hi,i+1’s. As explained in Remark 6.2, H is smooth, so H/x0 is
formally smooth and hence irreducible. The action of Ux0(Zp) on DE(i, i + 1)

(λ)
pdiv

gives a homomorphism from Ux0(Zp) ⊗Zp Qp to the unitary group attached to
End(DE(i, i + 1)pdiv)

(λ) ⊗Zp Qp. Applying [Cha08, Theorem 4.3] finishes the
proof.

Lemma 6.2.3. For 1 ≤ i ≤ r − 1, Hi,i+1 = DE(i, i+ 1)
(λ)
pdiv.

Proof. The natural action ofUx0(Zp) onHi,i+1 restricts to an action onM(Yi)⊗W L.
Since x0 is B-hypersymmetric, we have Ux0(Zp) = IB(Zp). Thus Ux0(Zp) acting
onM(Yi)⊗W L is isomorphic to the standard representation Std of GLdimYi .
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If the polarization λ := λx0 is nontrivial on DE(i, i + 1)pdiv, we obtain a dual-
ity pairing between M(Yi) and M(Yi+1). In this case, the action of Ux0(Zp) on
M(Yi+1) ⊗W L is isomorphic to the dual of Std. Thus, the action of Ux0(Zp) on
Homλ

W (M(Yi),M(Yi+1)) ⊗W L is isomorphic to Sym2Std, which is irreducible.
By Proposition 6.1.2(2), the action of Ux0(Zp) on M(DE(i, i + 1)λpdiv) ⊗W L is
isomorphic to an irreducible representation.

On the other hand, if the polarization is trivial on DE(i, i + 1)pdiv, the action of
Ux0(Zp) on HomW (M(Yi),M(Yi+1))⊗W L is the tensor product representation of
the standard representations of GLdimYi and GLdimYi+1

, which is irreducible. By
Proposition 6.1.2(1), the action of Ux0(Zp) on M(DE(i, i+ 1)pdiv) ⊗W L is again
isomorphic to an irreducible representation.

By Lemma 6.2.2, it makes sense to consider the Cartier moduleM(Hi,i+1). We have
M(Hi,i+1)⊗W L as a non-trivial sub-representation ofM(DE(i, i+ 1)pdiv)

(λ)⊗W L
which is irreducible, so we obtain the desired equalities.

Proof of Theorem 6.0.1. We show inductively that Lemma 6.2.3 implies Hx0 =

C/x0 .

When r = 2, C/x0 = DE(1, 2)λpdiv and there is nothing to prove.

When r = 3, C/x0 = Def(1, 3)λpdiv is a biextension of (DE(1, 2)pdiv,DE(2, 3)pdiv)

by DE(1, 3)λpdiv. The equalities in Lemma 6.5 induces an isomorphism realized via
H1,3 = Def(1, 3)λpdiv/(H1,2×H2,3) = Def(1, 3)λpdiv/(DE(1, 2)pdiv×DE(2, 3)pdiv) ∼=
DE(1, 3)λpdiv. Thus, the only candidate for the subscheme H/x0 of Def(1, 3)λpdiv is
Def(1, 3)λpdiv itself.

When r ≥ 3, let H i,j denote the image of H/x0 in Def(i, j)λpdiv. By induction we
have equalities H i,j = Def(i, j)

(λ)
pdiv for all (i, j) 6= (1, r). In particular, H1,r−1 =

Def(1, r − 1)pdiv and H2,r = Def(2, r)pdiv together imply

H1,r = Def(1, r)λpdiv/(DE(1, r − 1)pdiv ×DE(2, r)pdiv),

so we obtain H/x0 = Def(1, r)λpdiv = C/x0 .
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C h a p t e r 7

PROOF OF THE MAIN THEOREM

The main theorem of our paper is the following.

Theorem 7.0.1. Let D = (B,OB, ∗, V, 〈·, ·〉, h) be a Shimura datum of PEL type A
or C, for which p is an unramified prime of good reduction. Let F be the center of
B and F0 its maximal totally real subfield. Let S denote the reduction modulo p
of the Shimura variety associated to D of level Kp ⊆ G(Ap

f ). Let N be a Newton
stratum on S . Assume

1. N contains a hypersymmetric point x0,

2. either (i) p is totally split in F/F0 and the Newton polygon of N satisfies the
condition (*) in Definition 3.2.1; or (ii) p is inert in F/F0.

Write N 0 for the irreducible component of N containing x0. Then Hp(x) is dense
in C(x) ∩ N 0 for every x ∈ N 0(k). Moreover, if N is not the basic stratum, then
C(x) ∩N 0 is irreducible.

Weobserve that Theorem 5.0.1 implies that for anyx ∈ N 0,C(x)∩N 0 is irreducible
and hence coincides with the irreducible component of C(x) containing x. We
denote this component by C0(x). Moreover, Theorem 5.0.1 and Theorem 6.0.1
together imply that the Hecke orbit conjecture holds for any B-hypersymmetric
point. Then the key in deriving Theorem 7.0.1 from Theorem 5.0.1 and Theorem
6.0.1 lies in showing the existence of a B-hypersymmetric point in Hp(x) ∩ C0(x)

for every x ∈ N 0.

7.1 The case of B = F .
We consider first the situation where B = F is a totally real field. In this case, our
PEL datum is of type C. The algebraic group G is symplectic, and the Hilbert trick
still applies. We use theHilbert trick to embed aHilbert modular varietywhere every
central leaf in the Newton strata corresponding to N contains B-hypersymmetric
point.

For the remainder of this section, we fix a point x = [(Ax, λx, ιx, ηx)] ∈ N (Fp).
There is a decompositionAx ∼F -isog A

e1
1 ×· · ·×Aenn into F -simple abelian varieties
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Ai such that Ai and Aj are not F -isogenous whenever i 6= j. For each i, let
Ei ⊆ EndF (Ai) ⊗Z Q be the maximal totally real subalgebra fixed under the
involution given by the polarization of Ai induced by λx, then Ei/F is a totally
real field extension of degree dim(Ai)/[F : Q]. Define E :=

∏n
i=1Ei, then E is a

subalgebra of EndF (Ax)⊗Z Q of dimension dim(A).

This construction relies on the assumption that x is defined over Fp, so the method in
this section only applieswhen k = Fp.However, by [Poo17, Theorem2.2.3], to prove
the Hecke orbit conjecture over any algebraically closed field k of characteristic p,
it suffices to prove it over Fp.

Lemma 7.1.1. Let F be a totally real number field and d a positive integer. Let
u1, · · · , un be the places of F above p. Suppose that for each i, there is a finite sep-
arable extension Ki/Fui of degree d. Then there exists a totally real field extension
L of F of degree d such that all the ui’s are inert in L/F and Lwi

∼= Ki over Fui for
wi of L above ui.

Proof. For a place ui of F above p, we have Ki
∼= Fui(αi), where αi is a root

of some irreducible separable monic polynomial f ′i ∈ Fui [X] of degree d. By
Krasner’s lemma, we can approximate f ′i by some irreducible separable monic
polynomial fi ∈ F [X] such that Fui [X]/(fi) ∼= Fui [X]/(f ′i)

∼= Ki. Let v1, · · · , vm
denote the archimedean places of F and let gi =

∏d
j=1(X−βij) for distinct βij ∈ F,

so Fvi [X]/(gi) ∼= R[X]/(gi) ∼= Rd since F is totally real. By weak approximation,
there exists some monic f ∈ F [X] that is ui-close to fi for each i and vi-close to gi
for each i. In particular, f = fi for some i, so f is irreducible in Fui [X] and hence
irreducible in F.

Let L = F [X]/(f), then L/F is separable of degree d. Moreover, for each ui, we
have ∏

w|ui

Lw ∼= Fui ⊗ L ∼= Fui [X]/(f) ∼= Ki.

This implies that there is a unique place wi of E above ui and Lwi
∼= Ki. Similarly,

for each archimedean place vi, we have
∏

w|vi Lw
∼= Fvi⊗L ∼= Rd. Thus, L is totally

real.

Lemma 7.1.2. The closure of the prime-to-pHecke orbit of x inS contains a super-
singular point z = [(Az, λz, ιz, ηz)]. Moreover, there exists a product of totally real
fields L =

∏
i,j Li,j and an injective ring homomorphism α : L→ EndF (Az)⊗Z Q

such that
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• for every i, j, F ⊆ Li,j and Li,j/F is inert at every prime of F above p;

• dimQ L = dimAz; and

• the Rosati involution induced by λz acts trivially on the image α(L).

Proof. First of all, the same argument as in the last paragraph of the proof of
Proposition 4.0.4 shows Hp(x) contains a basic point z = [(Az, λz, ιz, ηz)]. Since
B = F is a totally real number field, z is supersingular. Indeed, let d = [F : Q],

then F = Q(x) where x is the root of some degree d monic irreducible polynomial
f ∈ Q. Then endomorphism ring of a d-dimensional supersingular abelian variety
is isomorphic to Matd(Dp,∞), where Dp,∞ denotes the quaternion algebra over Q
ramified exactly at p and∞, andMatd(Dp,∞) clearly contains the companion matrix
of f .

By assumption, N admits an F -hypersymmetric point, so its Newton polygon ζ is
F -symmetric, i.e. ζ is the amalgamation of disjoint F -balanced Newton polygons
ζ1, · · · , ζa for some a. By [Zon08, Definition 4.4.1], for any j, ζj either has no slope
1/2, or only has slope 1/2. Hence, there exist positive integers mj, hj such that at
every prime u of F above p, ζj has exactly hj symmetric components with at most
2 slopes, and each component has multiplicitymj.

Write X = Ax[p
∞], then the above decomposition of ζ gives a decomposition

X =
⊕a

j=1 Xj, where Xj is the Barsotti-Tate group corresponding to ζj. Further, for
each fixed j, the numerical properties of ζj mentioned above gives a decomposition

Xj =
⊕
u|p

hj⊕
i=1

Xu
j,i

into Barsotti-Tate groups of at most 2 slopes.

Hence,

EndF (X)⊗Zp Qp
∼=

∏
u|p

a∏
j=1

hj∏
i=1

EndFu(Xu
j,i).

Its subalgebra E ⊗Q Qp similarly admits a decomposition

E ⊗Q Qp =
∏
u|p

a∏
j=1

hj∏
i=1

Eu
j,i

into local fields. Note that this has to coincide with the decomposition E ⊗ Qp
∼=∏n

i=1 Ei ⊗Qp =
∏n

i=1

∏
w|pEw.
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Now we regroup the local data {Eu
j,i/Fu}j,i,u to construct totally real extension of

F. Notice that for a fixed j, the numerical conditions on ζj implies that for any fixed
i,

• #{Eu
j,i}u|p = hj, and

• [Eu
j,i : Fu] = [Eu′

j,i : Fu′ ] = dim(Xu
j,i)/[F : Q] for any primes u, u′ of F above

p.

By Lemma 7.1.1, for a fixed pair (j, i), the data {Eu
j,i}u|p gives rise to a totally real

field extension Li,j/F with [Li,j : Q] = dim(Xj,i) such that all primes of F above
p are inert and {(Li,j)w}w|p = {Eu

i,j}u|p as multi-sets.

Taking L =
∏

i,j Li,j, it is easy to see that dimQ L
′ = dimAz.

In general, OE ∩ EndF (Az) ⊆ OE is of finite index. Following the argument
in [Cha05b, Theorem 11.3], up to an isogeny correspondence, we may assume
EndF (Az) contains OE. Similarly, we may and do assume OL ⊆ EndF (Az).

By construction, we then have OE ⊗Z Zp ∼= OL ⊗Z Zp as maximal orders of
EndF (Az) ⊗Z Zp, so the Noether-Skolem theorem implies that E = γLγ−1 for
some γ in the local stabilizer gorup of z. Then α := Ad(γ) satisfies the property in
the statement of this lemma.

Proposition 7.1.3. Theorem 7.0.1 holds when B = F is a totally real field.

Proof. If x is (isogenous to) a F -hypersymmetric point, the desired statement
follows immediately from Theorems 5.0.1 and 6.0.1, so we assume x is not F -
hypersymmetric.

We use an idea analogous to that of [Cha05b, Section 10] and show thatHp(x)∩C0

contains an F -hypersymmetric point t. Then we have Hp(t) ∩ C0 ⊆ Hp(x) ∩ C0,
but Hp(t) ∩ C0 = C0 since t is F -hypersymmetric, and we are done.

Let E be as given in the beginning of this section, and letME denote the Hilbert
modular variety attached to E. In general, E ∩ EndFp

(Ax) is an order of the ring
OE.However, up to an isogeny correspondence, we may assumeOE ⊆ EndFp

(Ax).

Then there exists a finite morphism ME → S passing through x, compatible
with the prime-to-p Hecke correspondence onME and S and such that for each
geometric point ofME, the map induced by f on the strict henselizations is a closed
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embedding (for details, see [Cha05b, Proposition 9.2] and the proof of [Cha05b,
Theorem 11.3]).

Let L =
∏

i Li and γ be as given by Lemma 7.1.2. Again, up to an isogeny
correspondence, we may assume OL ⊆ EndFp

(Az). Similarly, there is a finite
natural morphism g : ML → S passing through z, such that g is compatible
with the Hecke correspondences on either side and at every geometric point ofML

induces a closed embedding on the strict henzelizations. Moreover, writing Hp
E(x)

for the prime-to-p Hecke orbit of x in ME, we have γ/z(Hp
E(x)) ⊆ g/z(M/z

L )

and γ/z(Hp
E(x)) ⊆ γ/z(Hp(x)

/z
). By [Cha06, Proposition 6.1], Hp(x)

/z
is stable

under the action of the local stabilizer group of z, so γ/z(Hp(x)
/z

) = Hp(x)
/z

and we obtain γ/z(Hp
E(x)

/z
) ⊆ g/z(M/z

L ) ∩ Hp(x)
/z
. Therefore the fiber product

ML ×SF
(Hp(x) ∩ C0(x)) is nonempty.

Now let ỹ be an Fp-point of ML ×SF
(Hp(x) ∩ C0) with image y ∈ ML(Fp)

and image y ∈ (Hp(x) ∩ C0)(Fp). By definition, we have g(y) = y. Moreover,
Hp(x) ∩ C0 contains the image under g of the smallest Hecke-invariant subvariety
ofML passing through y, which by the Hecke orbit conjecture for Hilbert modular
varieties [Cha05b, Theorem 4.5] is precisely the central leaf CL(y). Therefore, if
we can show CL(y) contains a point isogenous to a product of Li-hypersymmetric
points, then Proposition 3.2.2 implies that CL(y) contains a F -hypersymmetric
point, and so does Hp(x) ∩ C0.

To see that CL(y) contains a point isogenous to a product of Li-hypersymmetric
points, consider the canonical decompositionML

∼=
∏
MLi

and the corresponding
Newton stratumdecompositionNL ∼=

∏
NLi

. By the construction ofLi, theNewton
polygon ofNLi

either has exactly two slopes at every prime ofLi above p, or only has
slope 1/2. In either case,NLi

admits an Li-hypersymmetric point. By the existence
of finite correspondences between central leaves on NLi

(see [YCO, Section 1.3]),
each central leaf of NLi

contains a Li-hypersymmetric point. This completes our
proof.

7.2 Proof of the general case.
In this section, we complete the proof of Theorem 7.0.1.

Proof of Theorem 7.0.1. Again, we only need to prove the statement when x is not
B-hypersymmetric.

Case 1. When B is totally real, see Proposition 7.1.3.



41

Case 2. Suppose B = F is a CM field.

Let D′ be the Shimura datum given by replacing B by its maximal totally real
subfield F0 in the definition of D. Let S ′ denote the Shimura variety arising from
D′. Then there is an embedding S → S ′ given by sending any [(A, λ, ι, η)]

to [(A, λ, ι|F0 , η)]. Let x = [(A, λ, ι, η)] ∈ N 0 be any point, and we denote its
image in S ′ also by x. By assumption,N 0 contains a F -hypersymmetric point x0.
Proposition 3.2.2 implies x0 is alsoF0-hypersymmetric. WriteHp′(x) for the prime-
to-p Hecke orbit of x in S and C0′ for the irreducible component of the central leaf
in S ′ passing through x. Then by Proposition 7.1.3, Hp′(x) ∩ C0′ = C0′.

Now we show that Hp′(x) ∩ C0 = Hp(x). Let x′ = [(A′, λ′, ι′, η′)] ∈ Hp′(x), then
there is a prime-to-pF0-isogeny f between x and x′.By definition, f◦ι|F0 = ι′|F0◦f .
Since F/F0 is a quadratic imaginary extension, f extends to an F -isogeny between
x and x′.

Finally, we haveHp(x)∩C0 = Hp′(x) ∩ C0∩C0 = Hp′(x)∩C0 = Hp′(x)∩C0′∩
C0 = C0′ ∩ C0 = C0.

Case 3. Now we are ready to show the statement for a general B.

Let D′ be the Shimura datum given by replacing B by its center F in the defini-
tion of D. Let S ′ denote the Shimura variety arising from D′. Then there is an
embedding S → S ′ given by sending [(A, λ, ι, η)] to [(A, λ, ι|F , η)]. Let x ∈ N 0

be any point, and we denote its image in S ′ also by x. By assumption, N 0

contains a B-hypersymmetric point x0. By [Zon08, Proposition 3.3.1], x0 is also
F -hypersymmetric. WriteHp′(x) for the prime-to-p Hecke orbit of x in S and C0′

for the irreducible component of the central leaf in S ′ passing through x. Then by
the previous two cases, Hp′(x) ∩ C0′ = C0′.

Now we show that Hp′(x) ∩ C0 = Hp(x). Let x′ = [(A′, λ′, ι′, η′)] be a closed
geometric point of S such that there is an prime-to-p F0-isogeny f from x =

[(A, λ, ι, η)] to x′. Then f induces a morphism f : End(A) → End(A′) such that
f ◦ ι|F = ι′|F ◦ f on F. By the Skolem-Noether Theorem, f ◦ ι|F = ι′|F ◦ f extends
to an inner automorphism ϕ : B → B. Hence, f extends to a B-isogeny between x
and x′.

By an argument analogous to the last part of Case 2, we conclude Hp(x) ∩ C0 =

C0.
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7.3 Special cases of the main theorem.
Based on the discussions in Section 3, we prove the following corollaries of the
main theorem.

Corollary 7.3.1. 1. Suppose p is inert inF . If every slope of the Newton polygon
attached toN has the same multiplicity, then the Hecke orbit conjecture holds
for any irreducible component of N containing a B-hypersymmetric point.

2. Suppose the center ofB is a CM field. Assume that the signature of S has no
definite place, and that p is a prime of constant degree in the extension F/Q.
Further assume assumption 2 in Theorem 7.0.1 is satisfied. Then the Hecke
orbit conjecture holds for every irreducible component of the µ-ordinary
stratum.

Proof. ByCorollary 3.3.3, in either of the two cases, the Newton stratumN contains
a B-hypersymmetric point. In the second case, G(Ap

f ) acts transitively on Π0(S ),
so if the µ-ordinary stratum contains a B-hypersymmetric point, then it contains
a B-hypersymmetric point in each of its irreducible components. Moreover, the
assumptions satisfy the conditions of Proposition 3.2.2. Hence, we may apply
Theorem 7.0.1 and to derive the desired results.

Corollary 7.3.2. Let L be a quadratic imaginary field inert at the rational prime
p. The Hecke Orbit conjecture holds for the moduli space of principally polarized
abelian varieties of dimension n ≥ 3 equipped with an action by OL of signature
(1, n− 1).

Proof. Since p is inert, a Newton stratum contains a L-hypersymmetric point if its
Newton polygon is symmetric. By [BW06, Seciton 3.1], any admissible Newton
polygon in this case is given by N(r) + (1/2)n−2r for some integer 0 ≤ r ≤ n/2,
where

N(r) =


∅, if r = 0,

(1
2
− 1

2r
) + (1

2
+ 1

2r
), if r > 0 is even,

(1
2
− 1

2r
)2 + (1

2
+ 1

2r
)2, if r is odd.

From this description, it follows by easy computation that for each pair (n, r), 0 ≤
r ≤ n/2, the admissible Newton polygon uniquely determined by (n, r) is always
L-hypersymmetric. Indeed, when n = 3r and r is even, or when n = 4r and r is
odd, the Newton polygon consists of 3 slopes of the same multiplicity and is hence
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L-balanced. Otherwise, the Newton polygon is an amalgamation of one polygon
of slope 1/2 and one polygon of slopes 1

2
− 1

2r
, 1

2
+ 1

2r
. Clearly, each of these two

polygons is L-balanced.

It is well-known that in this case, each isogeny class of Barsotti-Tate groups consists
of a unique isomorphism class. Thus, every central leaf coincides with the Newton
polygon containing it and therefore admits a L-hypersymmetric point. Moreover,
by [Ach14, Theorem 1.1], every Newton stratum is irreducible, which then implies
that every central leaf is irreducible. Following the same argument as the proof of
Theorem 7.0.1, the irreducibility of central leaves combined with Theorem 6.0.1
yields the desired result.
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C h a p t e r 8

APPENDIX: HYPERSYMMETRIC ABELIAN VARIETIES

This appendix reproduces Zong’s proof of his main theorem [Zon08, Theorem 5.1],
of which Theorem 3.1.2 is a rephrase in our simpler terminology. As mentioned in
Section 3.3, Theorem 3.1.2 follows from the proof but not the statement of [Zon08,
Theorem 5.1]. For completeness, we reproduce his proof to make the present paper
self-contained. All the proofs in this appendix are due to Zong. Any mistake is my
own.

We remark that some of the conditions of supersingular restriction (see [Zon08,
Section 4]) come from the presence of a B-action (see in particular “CM-type
partitions” in [Zon08, Proposition 4.9]), or, in other words, from the requirement that
the Newton strata under consideration is non-empty. Since we are only interested in
non-emptyNewton strata, wemay omit those conditions to get a simpler formulation.
The proofs in this appendix are essentially the same as those given in [Zon08, §6
and §7], except that the proof of Proposition A.4 is simpler than that of [Zon08,
Proposition 7.7] by omitting the discussion of CM type partitions. Theorem 3.2
follows from Proposition A.2 and A.3.

Theorem 3.4. A (non-empty) Newton stratum N on S contains a simple B-
hypersymmetric point if and only its Newton polygon is B-balanced.

Notation 8.0.1. [Zon08, Definition 4.3.1] Let ζB denote the Newton polygon with
slope 1/2 such that at every place v of F above p, the multiplicity of 1/2 is equal to
the order of the class [Qp,∞ ⊗ F ]− [B] in the Brauer group Br(F ), where Qp,∞ is
the quaternion Q-algebra ramified exactly at p and infinity.

The following proposition is a rephrase of [Zon08, Proposition 6.1].

Proposition 8.0.2. Let A be a simple B-linear polarized abelian variety over Fp. If
A is B-hypersymmetric, then its Newton polygon ζ is either ζB or B-balanced.

Proof. Let A′ be a simple B-linear polarized abelian variety over a finite field
Fq such that A′ ⊗ Fp ∼= A. We may assume q is sufficiently divisible. A′ is
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B-simple and is isogenous to A′′ for some absolutely simple abelian variety A′′.
Let π denote the Frobenius of A′ and let K = F (π). Write D := End0

B(A′) and
Lv := Fv ⊗K(Fq).WriteM ′ for the B-linear isocrystal associated to A′. ThenM ′

decomposes as⊕v|pMv and one checks that eachMv is a free Lv-module. Let fv(T )

be the characteristic polynomial of π as an Lv-linear transformation ofMv. Since A
is B-hypersymmetric, by [Zon08, Proposition 3.4],

fv(T ) =
∏
w|v

(T − ιw(π))nw ,

where ιw : K → Fv denotes the F -embeddings of K into Fv indexed by the
place w. By Kottwitz [Kot92], each Mv has [K : F ] isotypic components. Thus
f(T ) = det(T − π|M ′) can be factored as

f(T ) =
∏
v|p

NormLv/K(Fq)fv(T ) =
∏
v|p

∏
w|v

NormFv/Qp(T − ιw(π))nw .

Consider triples u = (v, w, τ) where v is a place of F above p, w is a place of K
above v, and τ is an embedding Fv → Qp. Then the set of such triples is in 1-to-1
correspondence with the set of embeddings ιu : K → Qp. Thus

f(T ) =
∏
u

(T − ιu(π))nw .

By Katz-Messing [KM74], f(T ) ∈ Z[T ], so nw is independent of w. Hence,
nw = 2 dim(A)/[K : Q]. By [Kot92, Lemma 3.3], the multiplicity of each isotypic
component ofM is equal to

n[Lv : K(Fq)]/([B : F ]1/2[Fv : Qp]) = order([D]).

In particular, if π is totally real, A′ is a power of a supersingular elliptic curve with
Newton polygon ζB, and the order of [D] in Br(F ) is equal to [Qp,∞ ⊗ F ] − [B].

Finally, if F = F0, then [K : F ] is even and each ζv is symmetric, so ζ contains no
slope 1/2 component.

The following proposition is a rephrase of the “if” part of [Zon08, Theorem 5.1]
(see [Zon08, Section 7]).

Proposition 8.0.3. Let ζ be aB-balanced Newton polygon such that the correspond-
ing Newton stratum N is non-empty. Then there exists a hypersymmetric B-linear
polarized simple abelian variety A defined over Fp whose Newton polygon is ζ.
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Proof. Case 1: Assume F 6= F0. Since ζ is B-balanced, we may write N = Nv for
all places v of F above p. For a place v of F above p, write v′ for v|F0 . For each v,
define an (F0)v′-algebra of rank N as follows:

Tv′ =


(F0)Nv′ if v 6= v∗

(F0)v′ × F (N−1)/2
v if v = v∗, N odd

F
N/2
v if v = v∗, N even.

(8.0.1)

By Lemma 8.0.4, there is a totally real extension E/F0 of degree N such that its
normal hull has Galois group SN , and E ⊗F Fv ∼= T ′v for all v|p.

Let K = E ⊗F0 F. Then the normal hull of K/F has Galois group SN and
K ⊗F Fv ∼= FN

v . So for each v, we may index the slopes of ζv by the places of w
above v in such a way that λw + λw = 1. By Lemma 8.0.6, there is an integer a ≥ 1

and a pa-Weil number π such that ordw(π)/ordw(pa) = λw for all w.We claim that
K = F (π). Indeed, if N = 1, K = F = F (π). If N > 1, π /∈ F since ordw(π)

and ordw′(π) are distinct for any w 6= w′|p by construction, so F ( F (π) ⊆ K. By
construction, [K : F ] = N. Then Lemma 8.0.5 implies that K = F (π).

By Honda-Tate theory, there is aB-simple abelian varietyA′ over Fpacorresponding
to π. Without loss of generality, we may assume A′ is absolutely B-simple. Let
A = A′ ⊗Fpa

Fp. A is hypersymmetric by Proposition [Zon08, Proposition 3.4] and
the Newton polygon of A is ζ .

Case 2: Assume F = F0. Since ζ is balanced, N is even. By Lemma 8.0.4, there
exists a totally real extensionE ofF of degreeN such that its normal hull has Galois
group SN , and E ⊗F Fv ∼= F

N/2
v for all v|p. By Lemma 5.7 in [Cha06], there is a

totally imaginary quadratic extensionK/E such thatK⊗EEv ∼= Ev×Ev for every
v|p and K contains no proper CM extension of F. Then, similar to the previous
case, there is a hypersymmetric B-simple abelian variety A whose Newton polygon
is ζ.

Lemma 8.0.4. [Zon08, Proposition 7.2.3] Let N be a positive integer and F a
totally real number field. Let Σ be a finite set of non-archimedean places of F. For
each v ∈ Σ, let Tv be a finite étale algebra over Fv of rankN. Then there is a totally
real extensionE/F of degreeN such that its normal hull has Galois group SN , and
E ⊗F Fv ∼= Tv for all v ∈ Σ.

Proof. Let S = SpecOF , and let X ′ = S[a1, · · · , aN ] be an S-affine space. Let
Y ′ ⊆ S[t] be given by f = tN +a1t

N−1+· · ·+aN . LetR = R(f, f ′) be the resultant
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of f and its derivative. Define X = X ′ − {R = 0} and Y = Y ′ ×X′ X, then Y
is a étale cover of X of rank N. X satisfies the property of weak approximation.
The geometric fiber YK is affine of ring Γ(OYK ) = (K[a1, · · · , aN , t]/(f))R.Write
A = K[a1, · · · , aN ] and B = K[b1, · · · , bN ] where bi = ai/an for 1 ≤ i ≤ n − 1

and bn = an. Then f is Eisenstein in the ringB[t] with respect to the prime an. Thus
f is irreducible in B and hence also irreducible in A. This implies that Γ(OYK ) is
an integral domain.

LetM denote the set of rational points x ofX where Yx is connected. By Ekedahl’s
Hilbert irreducibility theorem (Theorem 1.3 in [Eke88]), M satisfies weak ap-
proximation. The requirement that E ⊗F Fv ∼= Tv for all v|p imposes a weak
approximation condition on the parameters ai ∈ K. The condition on the Galois
group of the normal hull is also a weak approximation property (see [VW13]). The
proposition follows by slightly modifying the content but not the proof of Ekedahl’s
theorem.

Lemma 8.0.5. [Zon08, Proposition 7.1.2] Let N be a positive integer, F a field,
and E/F a separable extension of degree N. If the normal hull of E/F has Galois
group SN , then E/F has no non-trivial sub-extension.

Proof. SN−1 is a maximal subgroup of SN .

Lemma 8.0.6. [Zon08, Proposition 7.1.1] Let K be a CM field. Given a set of
rational numbers {λw}w∈SpecOK ,w|p in [0, 1] such that λw + λw = 1 for all w, there
exists an integer a ≥ 1 and a pa-Weil number π such that ordw(π)/ordw(pa) = λw

for all w.

Proof. Let K0 be the maximally totally real subfield of K. For any place v of E
above p, define λv = min{λw : w ∈ SpecOK , w|v}. Let h be the ideal class number
of K. If v splits in K, let av ∈ OK be a generator of the principal ideal wh, where
w|v is a place of K; if v is inert in K, let av ∈ OK be a generator of vh.We have

(pOK)h =

 ∏
v,v splits inK

(ww)e(v|p)
∏

v, inert inK

ve(v|p)

h

=
∏
v

(awaw)e(v|p)
∏
v

ae(v|p)v ·u

for some unit u of OK .

Now let c be a sufficiently divisible positive integer and write λv = mv/(mv + nv)

with c = mv + nv,mv, nv ∈ Z. Define

π =
∏
v

(amv
w aw

nv)e(v|p)
∏
v

ace(v|p)v /2 · uc/2.
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Then ππ = phc and π is the desired phc-Weil number.
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