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ABSTRACT

Tensegrity structures and lattices have been of interest in engineering applications for
decades, with their dynamics becoming a thriving field of study. Tensegrities consist
of structural members under purely axial loading, either tension or compression,
and obtain their stability from prestress. They possess unique characteristics such
as high strength-to-weight ratio, nonlinear behavior, and elastic response under
severe deformation. Tensegrity lattices (or metamaterials) have been shown to
exhibit appealing dynamic attributes such as continuous tunability with prestress,
impact mitigation, energy trapping and lensing, and nonlinear wave propagation, to
name a few. However, their pin-jointed and prestressed nature presents significant
manufacturing limitations, especially in the formation of lattices with large numbers
of tessellated unit cells. Therefore, experimental validation of the dynamics of
tensegrity metamaterials has remained elusive. For lattices with tensegrity-like
characteristics to be manifested for real-world applications, a method for producing

tensegrity-like metamaterials at multiple length scales is needed.

In this thesis, we present a design for a 3D-printable tensegrity-inspired structure
with the equivalent strain energy capacity and stress-strain response as a pin-jointed
tensegrity. Using this structure as a building block for multidimensional lattices,
we subject them to a range of dynamic loading conditions to study their response.
First, we perform experiments and simulations to obtain the dispersion relations for
1D and 3D lattices. We demonstrate the lattices’ ability to continuously tune the
dispersion characteristics (e.g., band gap and wave speed) under precompression.
This trait shows potential for acoustic lensing and dispersive wave propagation. In
3D, we show that the lattice shows the same type of unique properties, such as
faster shear speed than longitudinal speed, as pin-jointed tensegrity lattices. Next,
we study the lattices under impact loading. Long-duration impact experiments on
baseline unit cells and 1D lattices show their resilience to repeated deformation,
elasticity, and load limitation behaviors. Short-duration impulse experiments and
simulations exhibit a wealth of desirable properties, such as high force transmis-
sion reduction, highly dispersive wave propagation, tunable wave speeds, energy
trapping, and redirection of energy. We demonstrate that these tensegrity-inspired
metamaterials not only exhibit and experimentally demonstrate tensegrity-like char-
acteristics, but open a new range of lightweight metamaterials with unprecedented

dynamic properties.
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Chapter 1

INTRODUCTION

This thesis presents the design and dynamic investigation of a new type of lightweight,
3D-printable, periodic lattice, which we term “tensegrity-inspired metamaterials.”
Tensegrity structures are a type of structural system where the structural members
carry pure axial loads and the system derives its stability from member prestress.
They have been shown to be very appealing for both static and dynamic applica-
tions due to their unique properties. The structures’ geometric complexities make
them difficult to manufacture, so using them in a range of real-world applications
has remained either complex or infeasible. In this work, we present the design of
a 3D-printable structure that exhibits the desirable characteristics and mechanical
behaviors of tensegrity structures. Then we examine the dynamics of multidimen-
sional periodic lattices with tensegrity-inspired building blocks, exhibiting their
extraordinary tensegrity-like properties that present themselves, experimentally and
numerically, in both vibration and impact scenarios. In this introduction, we give an
overview of tensegrity structures and their use in dynamic applications, the motiva-
tion to develop 3D-printable lattices with tensegrity characteristics, and an overview
of the goals and organization of this thesis.

1.1 Background and Motivation
1.1.1 Introduction to Tensegrity Structures

The term “tensegrity,” coined by Buckminster Fuller, is acquired from the com-
bination of “tension + integrity.” This indicates that the structural integrity of a
tensegrity structure is derived from the balance of its tensile members [1]], which,
under prestress, hold the compressive members stable. Thus, tensegrity structures
have been described as islands of compression among a sea of tension [2]. An
example of a tensegrity structure is shown in Figure [I.T] They consist of two types
of axially-loaded, pin-jointed members: isolated, rigid struts in compression and a
continuous arrangement of cables in tension. Tensegrity structures appear similar
to truss structures, but have the important difference that they must carry prestress

in the members to carry external load [3].

In the 1960’s, Kenneth Snelson created several new art sculptures that employed

the tensegrity concept, and it took off as an art form [4]]. New types of civil



Figure 1.1: An example of a tensegrity structure, held by Buckminster Fuller who
coined the term “tensegrity.”

engineering structures such as bridges began being built with tensegrity members
instead of traditional truss members. It soon became recognized that the tensegrity
concept was a good model of several biological systems, such as bones and tendons
in the body, as well as biological cellular structures [5H7]. In fact, tensegrity has been
called the “architecture of life,” as its set of structural rules seem to guide the design
of organic structures, ranging from carbon compounds to large scale biological
structural components [8]. Why, then, did nature choose tensegrity structures as
its structural basis for life? Studies of these structures for the last several decades
have continued to show their advantages: they are self-stable, extremely lightweight
(very important for space applications), energy and mass efficient, can store strain
energy for deployment, robust to failure, can undergo multiple loading cycles, and
able to withstand large deformations while remaining elastic [9H22]]. It is clear,
then, that tensegrity structures have been very appealing for mechanical structural

applications for several decades.

Tensegrities used as load-bearing structures can achieve high load capacity with
a minimal amount of building materials [8, 11, 23]. Their quasistatic response
naturally exhibits nonlinearity; this is due to rigid rotation of the struts and effects
from prestress [16]. This nonlinearity leads to unusual properties, like extreme
softening/stiffening, high tunability with prestress, and even locomotion [16] 24
29]. Until the last decade or so, tensegrity structures remained in the realm of

load-bearing and quasistatic mechanical systems. However, in recent years the
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unique characteristics of tensegrities have greatly increased the interest and study

of tensegrity structures for dynamic applications, which we describe next.

1.1.2 Dynamics of Tensegrity Structures and Lattices

In the arena of dynamics, structures and materials are called upon to protect
sensitive objects from damaging loads, be it vibrational or impact loads. Tensegrity
structures have a unique capacity to achieve this end by means of their nonlinear-
ity, low densities, reusability, and other exceptional properties. A straightforward
example of their use in this area is for planetary landers. For the last few years,
significant studies of tensegrity structures as potential landers for extra-terrestrial
applications has been of great interest [23, 30-35]. Tensegrity landers present sig-
nificant advantages over other lander systems (e.g., balloons, parachutes) because
they are robust to failure, carry distributed load throughout the structure (character-
istic of tensegrities), are tunable, can impact at any angle, are lightweight, and are
deployable [36]]. For an impact landing, the kinetic energy from impact is stored
as elastic strain energy, instead of inducing plasticity or damage [23]. Thus, if an
object, such as a camera, was suspended in the center of the tensegrity, it could be
protected, as well as being able to “see” out of the tensegrity [36]. An example of
this is seen in Figure [I.2} a tensegrity lander impacts the ground with a protected
payload at the center. Because of the high stored elastic strain energy, the tensegrity
bounces several times before stopping, allowing it to not only withstand impact, but

also traverse terrain passively.

Figure 1.2: A rendering of a tensegrity planetary lander impacting the ground,
suspending a protected payload (e.g., a camera) in the center [32, 36].

Tensegrity structures have been of interest in the dynamic regime not only as single
structures but also as periodic lattices. Lattices are lightweight structural systems
featuring architected assemblies of simple structural elements [37]]. Metamaterials
refer to structural systems/materials that exhibit properties not found in natural
materials or structures. Thus, if they exhibit such properties, periodic lattices are

often referred to as metamaterials. Structured metamaterials composed of periodic
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arrays of architected building blocks have been recently explored as alternatives to
stochastic foams in energy absorption and impact mitigation applications [38-41].
Metamaterial building blocks exploit local deformations, like buckling of members,
to convey unique global properties to the bulk lattice. Metamaterials are of interest
for the aim of creating mechanical material-like devices that exhibit tunable acoustic
band gaps, shock protection, energy lensing/focusing, impact mitigation, and energy
trapping for a wide range of applications [42-47]. The selection of appropriate
building block geometries allows tailoring the mechanical properties to achieve

desired characteristics.

Periodic metamaterials also present interesting elastic wave dispersion character-
istics. For example, they can be engineered to propagate elastic waves at desired
direction-dependent wave speeds [48-H52], and they can be designed to feature
bandgaps, i.e., frequency ranges of strong wave attenuation [48}, 49,|53H55]]. In clas-
sical periodic lattices, bandgaps are predominantly of the Bragg scattering type [48]]:
when lattices feature additional/auxiliary structural elements located within each
unit cell, they also feature locally-resonant bandgaps at the resonance frequencies
of said auxiliary microstructures [54, 56, 57]. Typically, the wave properties of
lattices are set in stone after fabrication. This limitation can be lifted for specific
lattice structures, typically made of soft materials, that display buckling-induced
phase transitions and therefore can change shape in response to external mechanical
forces [58-62]]. These lattices typically feature a discrete degree of tunability, since
they can only transform into a finite number of geometrical configurations. More-
over, their soft nature makes practical realizations challenging [61]], since damp-
ing tends to dominate these systems’ wave response [63]. Continuous tunability,
whereby the wave properties can be swept within a geometry-dependent interval, is
usually not attainable in lattice structures, unless they are soft [64]], or endowed with
multifunctional capabilities and the tunability is induced by an external stimulus

such as an electric field [65,|66], temperature [67,|68] or a magnetic field [69} 70].

The unique static and dynamic behavior of tensegrity structures make them ap-
pealing as metamaterial building blocks, and so they are gaining increasing attention
in this area [23],71,[72]]. Tensegrity structures can be tessellated into lattices that are
extremely lightweight, featuring unique characteristics such as the ability to support
large global prestrains [17], and to function as effective energy absorbers [73]. They
have also been shown to exhibit load-limiting, non-linear characteristics when the

bars are designed to elastically buckle [23]. This greatly influences the dynamic
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characteristics of lattices formed with these tensegrity unit cells. One-dimensional
chains of tensegrity unit cells have been shown to possess unique nonlinear wave
propagation, such as highly localized solitary waves [7/4-77]. Under dynamic load-
ing, tensegrity lattices have been shown to be impact tolerant and possess unique

nonlinear responses [23| 78-84]].

Tensegrity lattices also display phononic characteristics and Bragg scattering
bandgaps. Most importantly, they present extra-ordinary tunability attributes: their
dispersion characteristics can be altered by varying the degree of pre-tension of the
cables [72,85-87]], or by applying a global prestrain to the whole lattice [[86]. With
respect to other lattice architectures that feature mechanically-tunable bandgaps,
tensegrity lattices are particularly appealing for their large degree of tunability,
stemming from the fact that they can sustain large prestrains, and for their continuous

tuning attributes.
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Figure 1.3: Load displacement plot for a titanium strut with density of 4480 kg /m>,
Young’s modulus of 91 G Pa, external diameter of 19 mm, and thickness of 1 mm.
The results are shown for the elastic continuum solution and the discrete buckling
model developed in [23]].

The traditional definition of a tensegrity structure assumes that the struts are rigid,
are not free to buckle, and do not store energy [35,/88-95]]. Tensegrity structures with
elastically buckling struts have been recently studied using physics-based reduced-
order models, and their mechanical response has been characterized under static
and dynamic loads [23]. In this case, the struts undergo large deformation due

to buckling, contributing to the strain energy of the structure. There are many
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advantageous properties associated with this. First, the load is distributed among
all the members in the structure, increasing structural efficiency. Second, the
strain energy capacity of the structure (the area under the stress-strain curve) is
dramatically increased because the stress-strain curve plateaus due to buckling in
the struts. Finally, the structure can undergo severe deformation and recover its

initial configuration upon unloading due to elastic buckling in the struts [23]].

Lattices formed by tessellating these buckling tensegrity structures in 1, 2, and
3 dimensions have been shown to possess superior static and dynamic mechanical
properties [/1} [87]. Under impact loading, wave propagation is highly dispersive
and asymmetric in these lattices, and show potential for stress-wave management
and energy mitigation [71]. Multidimensional lattices formed with these buckling
tensegrity unit cells also exhibit unique dispersion characteristics, which are con-
tinuously tunable with prestress [[87]. Such characteristics include very low wave
speeds, sharp phase transitions, existence of flat bands and zero energy modes, and

faster shear wave speeds than longitudinal speeds.

Despite these sought-after dynamic characteristics, experimental studies on the
dynamic behavior of tensegrity metamaterials are virtually nonexistent. This orig-
inates from the fact that (i) they are difficult to fabricate and assemble due to their
pin-jointed and prestressed nature, (ii) assembled systems can introduce spurious
propagation modes if cables and bars are not properly bonded, (iii) accurately apply-
ing local or global prestrains without affecting the quality of the measurements can
be challenging. A way to manufacture such lattices for applications and experimen-
tally corroborate existing theoretical studies on these structures has thus remained
elusive. Most work has relied on manual prestress and assembly [18, |35, 80, 96].
However, in multidimensional lattices, especially at decreasing length scales and

with potentially thousands of members, this approach quickly becomes impractical.

1.2 Goals and Organization

We recognize the great potential that tensegrity metamaterials hold for dynamic
applications, but, from what we can find in the literature, studies have almost
exclusively remained in the realm of numerical and theoretical studies to this point.
If tensegrity-like characteristics are to be manifested for real-world applications,
and the research has indicated this desire, a method for producing tensegrity-like
structures as multidimensional lattices at multiple lengths scales is required. It

may be possible to mimic pin-jointed behavior and control prestress using multiple
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materials [27], shape memory materials [97]], differential thermal expansion from
multiple materials [98]], or induced residual stresses from varying laser intensity
[99]]. However, all these options require some type of post-processing or a certain
manufacturing method. An ideal solution to this manufacturing issue would rely on
3D-printing with a single material and no post-processing, which would enable the
production of lattices with a variety of fabrication methods at a large range of length

scales.

The goal of this research was to develop a method to obtain an “equivalent” 3D-
printable, fixed-jointed structure as a pin-jointed, buckling tensegrity, tessellate the
structure into multidimensional lattices, and investigate their dynamic characteristics
under both vibration and impact loads. When we refer to the 3D-printed structure
being “equivalent” to a pin-jointed tensegrity, this means that the two structures
have equivalent strain energy capacity and compressive response. By doing this, we
fill the gap in the literature and provide an experimental manifestation of the unique
characteristics of tensegrity structures and lattices that have been discovered in re-
cent years. We note here that although the 3D-printed lattices we design are inspired
by tensegrity structures and exhibit remarkable tensegrity-like characteristics, our
lattices can best be thought of as a new type of extremely lightweight, nonlinear,
energy absorbing metamaterial in its own right. This is because the structure is fun-
damentally different (bending dominated) and shows desirable characteristics that
tensegrity structures do not. Tensegrities provide the jumping-off point for obtain-
ing a new class of 3D-printable periodic lattices with properties not yet obtained by
traditional designs. In this thesis, we refer to the 3D-printable, tensegrity equivalent

lattices as “tensegrity-inspired” lattices.

This thesis is organized such that it progresses systematically from building block
design and quasistatic response to increasingly complex lattices and their response
to various dynamic loads. To begin, Chapter 2 provides a toolset for understanding
this range of studies we performed on the tensegrity-inspired structures. We give a
detailed description of all numerical and experimental methods we used throughout
the thesis. The majority of studies are performed and validated with both experi-
ments and simulations, except for the most complex dynamic loading case. In that

case, the validated simulations are used to infer the behavior of the lattices.

In Chapter 3, we provide a detailed description of the design methodology we
developed to produce 3D-printable tensegrity-inspired baseline unit cell structures.

We find the equivalent buckling tensegrity response using a reduced-order model
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for these structures, developed by our collaborators at Georgia Tech [23]. ABAQUS

simulations are used to find the quasistatic response of the structure; simulations are
validated with quasistatic compression experiments on the 3D-printed structures.
We give a description of the process used to form representative volume elements
(RVEs) that tessellate the tensegrity-inspired structure into multidimensional lat-

tices, and provide the quasistatic characteristics of each RVE type.

In Chapter 4, we begin the dynamic investigation of these structures by exam-
ining them under frequency excitation. Dispersion curves are obtained for 1D and
3D lattices using both COMSOL frequency simulations and experiments. Since
continuous tunability of metamaterials is a desirable characteristics, we study the
tunability of 1D lattice dispersion characteristics under global precompression. The
band gap and wave speed vary significantly with precompression level. The COM-
SOL simulations provide insight into the evolution of non-longitudinal mode shapes
with precompression for a complete understanding of the dynamics. Finally, we ob-
tain the dispersion characteristics of a 3D lattice in COMSOL. We see the unique
result that diagonal and shear waves travel faster than longitudinal waves, as also
observed for buckling tensegrity lattices [87]. These results give a foundation for

understanding the subsequent behaviors of the lattices under impact loading.

In Chapter 5, we dive into the dynamics of the tensegrity-inspired structures by
studying their response under impact. We begin with experiments and simulations
of long-duration drop weight tests on single baseline unit cells. We demonstrate the
resilience of the structure to repeated loading, its load-limiting ability, slow wave
speed, elastic response, and high energy absorption ability. We increase the structure
size to a 1D lattice and perform drop weight impact tests on these. Since these
long-duration tests are decoupled from the dynamic effects of high-frequency/high-
impulse loading, we can observe how the wave propagation is affected solely by the
nonlinearity in the structure’s response. Next, we perform sample drop tests and
short-duration impulse tests on 1D, 3D1D, and 3D bulk lattices. The lattices are
loaded by a high-frequency pulse that induces a highly dispersive response in the
lattice. We observe significant energy trapping, wave guiding, and force reduction

abilities in the tensegrity-inspired lattices.

Finally, in Chapter 6, we provide a summary of the results of this thesis and give
a perspective outlining potential extensions of this work as well as future directions

for tensegrity-inspired lattices.



Chapter 2

METHODS

We used several numerical and experimental tools in this thesis to study tensegrity-
inspired 3D-printable metamaterials. Both types of tools were vital in different ways.
The numerical methods provided two main outcomes: (i) preliminary estimates to
narrow the range of parameters and variables before experiments were performed,
and (ii) detailed exploration of underlying physics and extrapolation of cases beyond
the results attainable from the experiments. The experiments provided validation
for the simulations, as well as gave insight into how the 3D-printed structures ac-
tually behave under the loading conditions explored. This is important in applying
our structures to real-world applications, where all systems inherently deviate from
nominal conditions. Since a significant contribution of this thesis is the assertion
that tensegrity-like structures with desirable characteristics can be fabricated and
employed in physical systems, experimental tests are paramount. In this chapter,

we explain both the numerical and experimental methods used throughout this thesis.

Some content of this chapter has been partially adapted from:

K. Pajunen, P. Celli, and C. Daraio. “Experimental evidence of analog prestrain-
induced bandgap tuning in 3D-printed tensegrity-inspired lattices”. In: Extreme
Mechanics Letters (2020). In Press.

K. Pajunen et al. “Design and impact response of 3D-printable tensegrity-inspired
structures”. In: Materials & Design 182 (2019), p. 107966.

2.1 Numerical Methods
2.1.1 ABAQUS Finite Element Modeling

We used the commercial finite element software ABAQUS for all quasistatic
and impact simulations. For both cases, we employed ABAQUS/Standard, which
uses an implicit integration scheme. ABAQUS/Explicit is well suited for highly
transient dynamic problems, problems at high strain rates, and rapidly evolving
contact problems [100]]. Since our simulations do not exhibit these characteristics,
ABAQUS/Standard was the computationally efficient choice and allowed straight-

forward transition from quasistatic to dynamic modeling.
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Material Model

As we explain in Chapter 3, we chose to fabricate all our samples with the polyamide
EOS PA2200 material from Shapeways.com®. The manufacturer’s published prop-
erties [101]] include only the basic material properties useful for our simulations
(i.e., Young’s modulus, density, and tensile strength). To form a more complete ma-
terial model for our simulations, we characterized the polyamide material via ASTM
D638 tensile tests on ASTM D638 Type IV test specimens. We performed the tests
at various strain rates using an Instron E3000°. The results of three representative

tests are given in Figure[2.1]

50
Q) X
40 r X
S 30 ¢
=3
@ X Rupture
o O End region for hyperelastic model
on 20
10 | Slope, E
s ().2 mMm/min
e 1 1 MM/min
5 mm/min (ASTM D638)
O 1 1 1 1 1
0 0.05 0.1 0.15 0.2

Strain

Figure 2.1: Stress-strain response of the EOS PA2200 polyamide material used for
the structures in this thesis. The results at three strain rates (0.2, 1.1, and 5 mm /min)
are shown. The 5 mm /min test follows ASTM standards for strain rate and was thus
used to obtain the material properties. For this test, the sample ruptures at about
0.19 strain. The hyperelastic Marlow model requires strictly increasing values of
stress and strain, so for the model we input only the region from O to 0.13 strain. The
slope of the initial region gives the Young’s Modulus, E. This slope is equivalent
for all three strains rates tested.

Testing the material at three strain rates gives insight into the viscoelasticity of the
material. For a viscoelastic material, the initial slope (Young’s modulus), maximum

strength, and rupture strain can change considerably with strain rate [[102, [103].
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We see in Figure [2.1] that for the PA2200 polyamide material, the rupture strain
is lower for the lowest strain rate (0.2 mm/min), which is observed in viscoelastic
materials [[102,|103]. However, the initial slope remains constant for the three strain
rates tested, and the maximum strength varies by only about 2 M Pa. We observe that
the material does exhibit some viscoelasticity, but it is not significantly prominent

in the material’s stress-strain response.

The 5 mm /min test follows the ASTM D638 standards, and thus it was used to
determine the material properties. The Young’s modulus (E), given by the initial
slope in Figure [2.1] is 1.29 GPa. The Poisson’s ratio was found to be 0.3 using
a laser extensometer which tracked transverse and axial reflective strips during the

tensile test.

We use the hyperelastic Marlow model to represent the constitutive material in

ABAQUS. The Marlow model strain energy potential is given by [100]:
U = Ugev (I_l)"‘Uvol (Jel) (2.1)

where U is the strain energy per unit reference volume, Uy, is the deviatoric part,
U, is the volumetric part, I; is the first deviatoric strain invariant, and J,; is the

elastic volume ratio. I is defined as [[100]:
L= +5+4 (2.2)

- 1
where A; = J734;. J is the total volume ratio, and A; are the principal stretches. Uy,
is defined by providing test data, either uniaxial, biaxial, or planar. U,,; is defined
by the Poisson’s ratio, volumetric test data, or lateral strains coupled with the test
data.

The Marlow model is unlike other hyperelastic models because it has no material
coefficients. Instead of determining coefficients to define the deviatoric part of
the strain energy potential, it must be defined with test data. The strain energy
potential is constructed within ABAQUS to exactly reproduce the test data and
provide reasonable behavior in all deformation modes [[100]. For our material, we
provide the uniaxial tensile test data shown in Figure [2.T]for the deviatoric part and
Poisson’s ratio of 0.3 for the volumetric part of the strain energy potential. The
tensile test data provided is from O to 0.13 strain because the Marlow model requires

monotonically increasing test data.

In summary, the material properties implemented in ABAQUS are a hyperelastic

Marlow model with the uniaxial stress-strain data, a Poisson’s ratio of 0.3, and a
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density of 930 kg/m?>. Simulations using these properties provide well-matching
results with experiments throughout this thesis. In addition, for the purpose of
calculating strut diameters in the elastically buckling range (Chapter 3), we need a
value for yield strength (o). Since yield strength is not well-defined for hyperelastic

materials, we estimate a value of 29.1 M Pa using the linear elastic 0.5% offset rule.

It is useful to note that we compared the results of this hyperelastic model with
an elastic-plastic model. We found that the elastic-plastic model consistently gave
results with characteristics not seen in the experiments, such as much too low
stiffness and showing permanent plastic deformation when no plasticity was ob-
served in experiments. So, we chose to use the hyperelastic model. A downside
of the hyperelastic model is that it is not able to model hysteresis simultaneously
in ABAQUS with beam elements. Since the material is viscoelastic, hysteresis is a
factor in the dynamic experiments. We see in Chapter 5 that even with awareness of
this assumption, the hyperelastic model still gives the best numerical result for our

studies.

3D Solid Model

Before we arrived at the final design of our tensegrity-inspired baseline structure, we
went through iterations of the design which required full 3D modeling in ABAQUS.
Thus, we developed a model which was then used for both quasistatic and dynamic
analyses of the baseline tensegrity-inspired structure. A 3D rendering was con-
structed in Solidworks, imported into ABAQUS, and meshed using about 100,000
3D stress quadratic tetrahedral elements (element type C3D10) which captured the
response well with minimal runtime. Tetrahedral elements best conformed to the
geometry, while quadratic elements produced better resolution of the bending within
the structure with less elements than linear elements. A rendering of the solid model
and boundary conditions is shown in Figure 2.2l We henceforth refer to this struc-
ture as the baseline unit cell or baseline structure, which is the basic building block

for all subsequent lattice structures.

The baseline structure is 48.3 mm from top to bottom nodes with cable diameters
of 1.2 mm, strut diameters of 1.73 mm, and sphere diameters of 5.7 mm. This
choice of design and dimensions will be explained in Chapter 3. Note: The terms
“cables” and “struts” describe the tensile and compressive members of pin-jointed
tensegrity structures, respectively. However, the members in our fixed-jointed struc-

ture undergo bending and are not under pure tension and compression. For sake of



13

Top Reference Point

48.3 mm

Bottom Reference Point

Figure 2.2: A 3D rendering of the tensegrity-inspired structure in ABAQUS. Bound-
ary conditions are placed on top (displacement only in y-direction) and bottom
(fixed) reference points (blue circles), which are located along the vertical y-axis
and each centered on the plane of the top and bottom face nodes. The top and bottom
face nodes (orange dots) are kinematically coupled to the top and bottom reference
points (orange lines), such that they are vertically constrained like the reference
points, but are able to rotate freely around the vertical axis.

simplicity and easy comparison with the corresponding tensegrity, in this thesis we

also refer to the members of our fixed-jointed structure as cables and struts.

To allow rotation of the top and bottom nodes as the structure is compressed
(like in the experiments), two reference points, each located at the center of the top
and bottom face nodes, are kinematically coupled to their respective face nodes.
The top reference point moves downward only, and the bottom reference point is
fixed. The coupling constrains the vertical displacement of the 4 top face nodes to
the displacement of the reference node, and keeps the 4 bottom face nodes fixed
vertically. At the same time, the face nodes are allowed to rotate around their
reference points, so they rotate freely around the vertical axis like in the experiment.
Nonlinear geometry is used in the full Newton solver to capture the large deformation

buckling response.

For quasistatic simulations, a ““Static, general” solution step ramps linearly over a

certain vertical compressive displacement of the top reference point. For dynamic
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drop weight simulations, a “Dynamic, implicit” step is used with “moderate dissi-
pation” activated, which is recommended for impact problems. The top reference
point is assigned a point mass and a predefined negative vertical velocity. It can still

only displace in the vertical direction.

Beam Element Model

A beam element model was also developed in ABAQUS for static and dynamic
analyses of these structures. The deformation of each member in the baseline
structure can be modeled as a beam with constant cross section that undergoes only
simple bending, torsion, and tension/compression. Also, since using beam elements
greatly simplifies the physics problem being solved, the beam element simulations
are computationally much more inexpensive than the full 3D model (20x’s less
runtime for the beam element simulation). We compared the results of the beam
element simulation and the full 3D simulation for quasistatic compression of the
baseline unit cell, as well as for a drop weight impact of the baseline cell. With
the results matching considerably well, and full 3D modeling being unnecessary
and impractical for lattice simulations, the beam element model was used for all
subsequent dynamic analyses. The beam element simulation was thus employed for:
baseline unit cell drop weight, 1D lattice drop weight, 1D lattice sample fall, 3D1D
lattice sample fall, 3D bulk sample fall, 1D lattice short duration impulse, 3D1D
lattice short duration impulse, and 3D bulk short duration impulse simulations.

Renderings of these different lattice types are shown later in this section.

Beam elements in ABAQUS are one-dimensional line elements with a certain
length and an assigned constant cross section. In our case, all cross sections are
circular. It is clear that the cables and struts can thus be modeled simply with
beam elements. They are given a circular cross-section matching the 3D model and
modeled using the Shapeways polyamide material. However, the spheres require

some extra thought to be modeled correctly.

As can be seen in Figure each spherical joint at each node connects four
members (3 cables, and 1 strut). The spheres are essentially rigid and deform
insignificantly during deformation of the structure. Because of this trait, we model
each sphere as 4 “edges,” each the length of the radius of the sphere, and each
connecting the end of each member to the node. Each edge is given a single
element, and the material assigned to this element has a Young’s modulus (stiffness)

of 291 G Pa (approximately that of aluminum, and two orders of magnitude larger
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Edge Member Parameters for Beam Model

Young’s Modulus 291 GPa
Poisson’s Ratio 0.3
Density 456.6 kg/m>
Total Moment of Inertia 4.04x 10710 kg - m?
Total Mass 0.096 g
Radius of Each Edge Member 2.4 mm

Table 2.1: The final parameters used in the beam element simulation for the edge
members. Four edge members at each node model a sphere in the full 3D structure,
as seen in Figure[2.2] The total moment of inertia and total mass given in this table
are the combined values for 4 edge members and match that of the real sphere.

than the stiffness of the constitutive material). By doing so, the edges do not deform
during deformation of the structure. Additionally, we must assign a circular cross-
section to the edges, which must be carefully chosen to match the physics of the
spheres. The spheres have a certain mass and moment of inertia, both of which
significantly influence their dynamic response. The mass of each sphere is 0.096
g, and its moment of inertia is 4.04x1071° kg - m? (given by I = %msphere’"?phere)'
Thus, the combined edge members at each node in the beam simulation must have
this mass and moment of inertia. Solidworks was used to calculate the moment
of inertia of the combined edge members: a total mass of 0.096 g was assigned,
and the member radius was adjusted until the combined moment of inertia matched
that of the sphere. Then, the material density required was calculated by dividing
the total mass by the total volume of the combined edge members. The final edge
member parameters are given in Table 2.1 Also, a rendering of the beam element
model is given in Figure [2.3] where (a) shows the wire rendering and (b) shows the
rendering with the cross-sectional areas shown. The gold members are the struts,

blue members are the cables, and green members are the edges.

The beam element type we use is B32, a 3-node quadratic Timoshenko beam
element. These allow for transverse shear deformation and large strains, so they
are chosen over Euler-Bernoulli elements. Due to the simple nature of the beam
element simulation, only 540 elements are needed (less than 1% of the number of
elements used for the 3D model). We used a mesh refinement study to choose a
number of elements that appropriately weighed the accuracy of the solution with
the computational cost. For the baseline quasistatic and dynamic drop weight sim-

ulations, the same boundary conditions, coupling constraints, and step parameters
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(a) (b)

Figure 2.3: Beam element rendering of the tensegrity-inspired baseline unit cell
with (a) wire elements and (b) beam element cross sections visualized. The struts
are displayed as the gold members, the cables are the blue members, and the edges
(4 of which together simulate a sphere at each node) are the green members.

were used that were employed in the 3D simulation (see Figure [2.2)).

Lattice simulations are easily set up in ABAQUS using the beam element modeling
method described. The baseline cell is simply tessellated in space appropriately for
each lattice case. However, for lattice simulations, the boundary conditions are
slightly altered. Instead of top and bottom reference points that couple with the top
and bottom face nodes, we model analytical rigid plates that interface with the top
and bottom face nodes. We do this because of two reasons: (i) for short duration
impact, separation of the top rigid surface occurs early in the simulation, and (ii)
as the number of top and bottom face nodes moves beyond 4, as is the case for
higher dimensional lattices, kinematic coupling with a reference point is no longer
physically valid. We set up node-to-surface contact interactions between the top
and bottom plates and the top and bottom face nodes that they interact with. The
interaction property models frictionless tangential behavior and hard contact and

allows separation of the rigid surfaces after contact.

Both analytical rigid surfaces have reference points at their center (corresponding
to the center of the top or bottom face nodes) where boundary conditions are applied.
Again, the bottom reference point is fixed. The top reference point is assigned a point
mass and a predefined negative vertical velocity. It can only displace in the vertical

direction. For sample drop simulations, the lattice itself is assigned a predefined
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Figure 2.4: Example ABAQUS renderings of (a) 1D, (b) 3DID, and (c) 3D bulk
lattices with top and bottom analytical rigid surfaces used for impact simulations.

negative vertical velocity, and there is no top analytical rigid surface. In that case,
the bottom rigid surface remains fixed. As explained in Chapter 3, different lattice
types have representative volume elements (RVEs) that have different numbers of
baseline unit cells. A 1D lattice RVE has 2 baseline unit cells and a 3D RVE has 8
baseline unit cells. We define a 3D1D lattice as a lattice that tessellates 3D RVEs
in only one direction. Example renderings of 1D, 3D1D, and 3D bulk lattices with

the analytical rigid surfaces are shown in Figure 2.4]

As the lattices and strain rates become larger, the computational cost of the
simulations greatly increases, but also convergence of the solution steps become
more difficult due to the complexity of the deformation. This manifested most
particularly in the 3D bulk simulations. To overcome this, we had to use hybrid
elements and a quasi-Newton solver for the 3D bulk models. The hybrid formulation
for beam elements overcomes the difficulty of computing axial and shear forces in
geometrically nonlinear analyses by using a more general finite element formulation
that treats these forces as primary variables [[100]. Hybrid elements are best used
in cases with very slender beams (D /L < 1/15) and very rigid axial and transverse
shear deformation (bending deformation dominant) [100]. It is true that bending
deformation is dominant in our structures, but axial and transverse shear still play
a role, especially in the cables which have a length-to-diameter ratio of 0.1 (the
struts have an D /L of 0.04). When we compared 1D lattice results with hybrid
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vs. non-hybrid elements, the non-hybrid elements provided better resolution of
complexities in the response at smaller time steps, but the hybrid elements still

captured the overall response well.

The quasi-Newton solver in ABAQUS employs an inexpensive stiffness matrix
update for most solver iterations rather than factorizing a new stiffness matrix for
every iteration, as is done in the full Newton solver. In large models, stiffness matrix
factorization is complex and can dominate the solution time, so the quasi-Newton
solver is recommended for large models, especially for nonlinear dynamic situations
(as is the case for us). We found that without employing hybrid elements or the
quasi-Newton solver, 3D bulk simulations did not converge. But with their addition,
the simulations ran successfully. We believe that the physics are still captured well

for the 3D bulk simulations even with these alterations.

Pin-Jointed Tensegrity Model

As a complement to the ABAQUS simulations and experiments of baseline unit
cells, we also find the response of corresponding pin-jointed tensegrities. To do
this, we use a numerical model developed at Georgia Tech by the Rimoli group to
generate quasistatic and dynamic responses of pin-jointed tensegrity baseline unit
cells [23, [/1}, 87, [104]. The numerical model is patented [104] and the MATLAB
files are available on the Rimoli group website (as of 3/10/2020) at: http://

rimoli.gatech.edu/docs/pal_rimoli_code.zip.

Although any tensegrity structure configuration can be implemented in this model
for the single unit cell case, the truncated octahedron tensegrity unit cell is the default
(and patented) configuration due to its ability to be tessellated into 3D lattices. The
form-finding for this structure was performed in [23]] using the method described
in [105]]. We base our tensegrity-inspired structure off of this truncated octahedron

tensegrity configuration.

The model uses a reduced-order approach to modeling the response of tensegrity
structures with buckling struts. The struts are discretized as a set of four masses,
three linear springs, and two angular springs (which capture the buckling of the
strut). The cables are discretized as a set of four masses, three linear springs,
and no angular springs, since the cables undergo pure tension [23]. The dynamic
response is found through an explicit, second order accurate, central-difference
time integration scheme. Contact is modeled through a penalty approach, and
friction forces are neglected [23]. Both the dynamic and quasistatic responses of

a tensegrity structure are captured well with this model. We use this code to find
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a corresponding tensegrity structure to our tensegrity-inspired structure. We then
perform both quasistatic and drop weight simulations on that structure to compare

with our ABAQUS and experimental results in this work.

2.1.2 COMSOL Finite Element Modeling

COMSOL was used to simulate the frequency dynamics of 1D and 3D RVEs,
consisting of 2 and 8 baseline unit cells, respectively. Within its Solid Mechanics
module, COMSOL has readily available tools to find dispersion curves and transmis-
sion characteristics in the frequency domain. ABAQUS does not contain such tools;
calculating dispersion curves can only be found using complex user-defined scripts.
COMSOL contained all that was necessary to perform dispersion and transmission
analyses on our unstressed as well as prestressed (using a quasistatic compression
step before the frequency step) tensegrity-inspired structures. Therefore, we chose
to use COMSOL for this portion of the thesis.

Dispersion

First, we construct a COMSOL model which simulates an infinite lattice to extract
the dispersion curve. We build a 3D model of a 1D RVE in Solidworks, import it
into COMSOL, and mesh it with quadratic tetrahedral volume elements. Although
we know that the polyamide material behaves as a hyperelastic material, only the
linear elastic material model was available to us in COMSOL. For low amplitude
waves, the structure deforms only slightly corresponding to oscillations around a
small area of the stress-strain curve. Thus, for low levels of precompression, the
linear elastic model is a good assumption. Deviance from the linear elastic model
only becomes an issue at higher levels of precompression (10%—20% global strain
levels). We see this deviance in the simulations, but as we will see in Chapter 4, the
simulation captures the experimental response fairly well even with this assumption.
Thus, we use a linear elastic material with Young’s Modulus of 1.29 G Pa, Poisson’s
ratio of 0.3, and density of 930 kg/m? for the polyamide material that the samples

are fabricated from.

To calculate the dispersion relation of the 1D lattice, we use an eigenfrequency
step with Bloch periodic boundary conditions, thus simulating the response of an
infinite lattice. The Bloch theorem states that for a travelling wave u(7r), there

— -
exists a wave vector k, such that translating it by the lattice vector R is the same as
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Figure 2.5: A rendering of the solid model of a 1D RVE in COMSOL. We make a
cut through the top and bottom faces on the horizontal planes that intersect the center
axes of the cables, creating flat surfaces to apply the Bloch boundary conditions.
The RVE has a total height of 96.6 mm in the y-direction.

multiplying the wave by a phase factor [106]:
u(r +7€)):eik'Ru(7). (2.3)

For our 1D case, tessellating in the vertical (y) direction, this reduces to u;,, =
Uporrome*®, where k is the wavenumber and a is the length of the RVE. To create a
tessellatable unit, we make a cut through the top and bottom faces on the horizontal
planes that intersect the center axes of the cables. In this way, we create flat surfaces
on which to apply the periodic boundary conditions in the vertical direction. The
1D RVE has a total height of two baseline cells (96.6 mm). A rendering of the solid
model in COMSOL is shown in Figure 2.5]

To produce the dispersion curves, we implement a linear eigenfrequency step
where the software solves an eigenvalue problem for the first 20 eigenvalues at
each wavenumber value k in the first Brillouin zone (0, 7/a rad/m), where a
is the length of the RVE. To calculate the dispersion curves for varying levels of
precompression, we first use a stationary step to solve for the quasistatic compressive
response with geometric nonlinearity taken into account. In this step, a quasistatic
periodic boundary condition is applied to the top and bottom face surfaces. The

bottom surface remains fixed, and the top surface undergoes vertical compression,
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as in the experiment. Then, the final conditions from the stationary step (including
the stresses arising from precompression) are set as the initial conditions for the
subsequent linear eigenfrequency step, and the boundary conditions are switched to
those of the eigenfrequency step. This small-on-large approach is standard procedure
when modeling bandgap tunability due to mechanical forces 60].

0.06

- 0.04

n 0.02

-0.02

Figure 2.6: A rendering of the solid model of a 3D RVE in COMSOL. We make a
cut through the 24 external faces to create flat surfaces on which to apply the Bloch
boundary conditions.

We also perform a dispersion analysis on a 3D RVE, but only for the unstrained
case. In this case, we make a cut through all right and left (x-axis), top and bottom
(y-axis), and front and back (z-axis) faces, for a total of 24 faces, in the same way as
for the 1D case. Bloch boundary conditions in each dimension are applied on these
faces. An eigenvalue problem is solved for the first 20 eigenvalues at each wave
vector combination in the first Brillouin zone for a simple cubic lattice. This wave

vector sweep is described in detail in Chapter 4.

Transmission

Finally, a finite lattice with 3 RVEs (289.8 mm height) is simulated in COMSOL
in order to find the longitudinal frequency transmission response to compare with

experiments (see Figure[2.7). Since this simulation takes into account the finite size
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Figure 2.7: A finite 3 RVE 1D lattice is modeled in COMSOL to find the longitudinal
frequency transmission response. Displacement amplitudes are extracted from
the input and output locations (orange and green circles, respectively) to find the
transmissibility ratio at approximately the same locations as in the experiments.

and boundaries of the experiment, we expect it to capture the experimental response
better than the numerical dispersion curves. In this case, the lattice with 3 RVEs
is modeled with the same element type as the unit cell model. We then perform a
harmonic analysis (from 0 to 500 Hz) by applying a base excitation with amplitude
of 1 mm to the bottom face surface, while the top face surface is kept fixed as in the
experiment. The input and output vertical displacement amplitudes are extracted
at approximately the same locations as the first and last measurement points in the
experiment. In the simulations with precompression, the nonlinear quasistatic step

is performed before the harmonic analysis.
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2.2 Experimental Methods
2.2.1 Sample Fabrication

We designed several experiments in order to study the response of 3D-printed
tensegrity-inspired structures under both static and dynamic loading. In all experi-
ments, samples were 3D-printed using the EOS PA2200 nylon polyamide material
from Shapeways.com®. The manufacturing process used is Selective Laser Sin-
tering, or SLS. With this method, a high-powered laser selectively fuses small
particles of polymer powder together, layer by layer. The part being constructed is
surrounded by powder at all times, eliminating the need for support structure. This
manufacturing method was chosen for several reasons. With SLS, this structure is
manufacturable with relative ease, having no support structure and no post-curing
processes. The lack of post-curing also produces consistent structures with the
desired constitutive material properties and mechanical responses. The chosen
member diameters and aspect ratios fit well within the manufacturable limits of
the SLS manufacturing method for the chosen material. We note that other 3D
manufacturing approaches may also be suitable for fabrication, e.g. stereolithogra-
phy (SLA), material jetting (MJ), fused deposition modeling (FDM), digital light
processing (DLP), and 2-photon polymerization. We have also successfully printed

this structure with SLA and 2-photon polymerization.

2.2.2 Static Compression Tests

To characterize the mechanical response of the tensegrity-inspired 3D-printed
baseline structure, we performed quasistatic compression experiments using an
Instron E3000° with a 500 N load cell. The chosen structure height of 48.3 mm was
a practical size for the compression experiments. The samples were loaded on the
top face and compression was applied using displacement control at 1.1 mm /min.
The test was stopped when densification (inner struts begin to touch) occurred. The
top and bottom faces were allowed to rotate during compression, which naturally

occurs due to asymmetry of the face nodes. The experimental setup is shown in

Figure[2.§]

2.2.3 Dynamic Impact Testing

Several types of impact experiments were performed on the tensegrity-inspired
structures. All of them used the same basic setup, where a high-speed camera tracks
nodal displacements and a force sensor measures the reaction force on the bottom of

the structure during an impact. The setup and its variations were designed and built
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Figure 2.8: Quasistatic compression tests were performed on baseline unit cell
samples using an Instron E3000°. The bottom plate remains fixed, while the top
plate displaces the structure vertically using displacement control. The structure
faces are allowed to rotate during the compression.

for this thesis. It was used to test baseline unit cells, 1D lattices, and 3D1D lattices.

Drop Weight: Baseline Unit Cell

To examine the dynamic response of a baseline unit cell, we designed and built a
drop weight testing system, shown schematically in Figure [2.9(a) and physically in
Figure[2.9(b). A low-friction, stiff vertical rod guides a free-falling striker mass with
a flat bottom surface that impacts the 3D-printed samples. The mass is custom-made
from steel, with the outer diameter chosen to be large enough to impact all top face
nodes of the structure, but narrow enough to minimize the transverse moment of
inertia. We fabricated two different strikers with masses of 100 g (exact: 109.0 g)
and 200 g (exact: 197.54 g). The impact velocity of the mass is controlled varying
the height of the striker above the sample. An accelerometer is placed on top of
the mass to record when it first touches the structure as well as the deceleration of
the mass during impact. It is a triaxial ceramic shear ICP® accelerometer with a
sensitivity of 0.47 mV /(m/s?). The voltage is recorded with an oscilloscope. Since
the accelerometer has a mass of 1.0 g, a counterweight is placed opposite on the
mass surface. To allow the natural rotation of the sample, the guiding metal rod

runs through the center of the structure.

The structure sits on top of a glass sheet, which serves as a stiff surface extension
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Figure 2.9: Dynamic drop weight test setup for a baseline unit cell. A schematic is
shown in (a), and a picture of the physical setup is shown in (b).

for the force sensor under it. The metal rod is suspended just above the glass plate,
so it does not affect the force, but also does not allow the structure to slip out of its
vertical axis. The force sensor measures the reaction force on the bottom face. It is
an Impact ICP® quartz force sensor with a sensitivity of 11241 mV /kN. To reduce
friction between the structure and the glass sheet, a thin liquid layer of acetone is

dispensed on the glass sheet shortly before the test.

A PHANTOM® high-speed camera with a framerate of 1000 fps is used to
capture the displacement of the falling mass, and thus the top face nodes of the
structure. The camera can be see on the lower left of Figure 2.9(b). A macro
flashlight is used to achieve suitable exposure of light. Sufficient light is needed in
order to track the markers (black markers of a white background) fixed on the weight
during the fall using the Phantom Camera Control (PCC) software. Calibration of
the displacement data in the PCC Software is done using a ruler placed in the
same focal plane as the markers. Finally, to ensure synchronized time measurement
between the camera and oscilloscope data, a switch is triggered when the mass

begins to fall, zeroing the time for the oscilloscope and camera.

We developed a customized MATLAB code to process the data from the oscil-
loscope and camera. Only the first impact is analyzed for each test. Data from the

force sensor has a sampling frequency of 4000 Hz and is smoothed using moving
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average filter with a span of 5. The force on the top spheres is calculated from
the accelerometer data and the impacting mass. Since the accelerometer data was
inherently very noisy, we apply a 3rd order digital lowpass Butterworth filter with
a normalized cutoff frequency of 0.5. A high cutoff frequency of 1000 Hz is used
to filter high frequencies while retaining the desired data representing the physical

response. These MATLAB codes are provided in Appendix A.

Drop Weight: 1D Lattice

The drop weight testing system was readily adaptable for 1D lattices. The setup is
shown in Figure 2.10] For drop weight experiments on 1D lattices, we use samples

Impacting Mass

Displacement
tracking

Ruler

Force sensor

Figure 2.10: Dynamic drop weight test setup for a 5 baseline unit cell 1D lattice.

with 5 baseline unit cells, for which we are able to capture the wave propagation
characteristics. A few adjustments had to be made to the test setup. First, the
PHANTOME® camera frame rate needed to be increased to 3000 fps in order to
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sufficiently capture the wave propagation dynamics. To do this, more light was
needed to increase exposure, so we added two LED lights on either side of the
camera and pointing toward the sample. An even higher frame rate was desired but

was not achievable due to lighting constraints.

Also, we track the displacement of not just the impacting mass, but also nodes at
each intersection of the unit cells and the top of the lattice (see Figure[2.10). By doing
this, we obtain displacement data for each unit cell and can readily differentiate this
to obtain the velocity of each unit cell. The accelerometer is, thus, not used for these
tests because the wave speed is easily calculated from just the displacement tracking.
Even with a frame rate of 3000 f ps, when we differentiate the displacement data, the
velocity data is very noisy. So, we employ the same type of Butterworth filter as was
used for the accelerometer to smooth the displacement data before differentiating.
Finally, we note that the rod through the center of the lattice and mass is important
for these tests for another reason: to keep the lattice straight and from buckling
out-of-axis during impact. All other setup details and the data processing are the

same as for the baseline unit cell.

Sample Drop Tests

The final type of impact experiments performed were sample drop tests. For these
tests, the impacting mass is not used, but the lattices themselves are dropped from
a height to achieve a certain impact velocity as it hits the glass plate. We tested
both 1D and 3D1D lattices with 3 RVEs. Because the 3D1D lattice had a bottom
contact face with a significantly larger area than the 1D lattice, a larger glass plate
was obtained from MacMaster Carr. It is a borosilicate glass sheet, 7" x 7" and
3/16" thick with a very smooth finish. As in the 1D drop weight setup, we track
multiple locations on the lattice with the camera. A schematic of the setup and
displacement tracking points are shown for the 3D1D lattice in Figure 2.11] Two
points are tracked at each horizontal section, one inner point and one outer point, and
these two points are averaged to get a good estimate of the displacement and velocity
at each horizontal intersection location. After averaging, 7 “effective” points are
tracked. For the 1D lattice, 7 points are directly tracked: at the top, bottom, and
intersection of each baseline unit cell. Wave propagation information through the

lattice is obtained through these measurements.

As in the drop weight tests, a rod also must be run through the center of the

lattice. As in the drop weight case, it keeps the 1D sample from buckling during
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Figure 2.11: Schematic showing the sample drop test of a 3D1D lattice, with
displacement tracking points shown.

impact (the 3D1D lattice is too thick to have buckling problems). However, it is
also imperative to keep the lattice falling on a straight path during its descent. Since
we drop the samples from up to a height of 12 f7 (i.e., an impact velocity of 8.5
m/s), without the rod, the sample would easily topple out-of-axis from drag and
impact velocities would not be consistent. It was difficult to find a rod long enough
and sturdy enough to meet the requirements of the experiment, while still hovering
over the force sensor, but we found one: a 16-foot long tent pole. The tent pole
was heavy enough to not sway much and also stay relatively straight (although some
error unavoidably occurred from these factors). Also, intersections between the tent
pole sections were very smooth, and the tension rope within the pole kept the pole
together very well. A picture of the entire test setup, capturing the height of the
setup as well as a zoomed-in picture is shown in Figure[2.12] Again, all else remains

the same from the previously described drop weight testing setup.



Figure 2.12: Picture taken of the entire sample drop test setup, with the total height
seen in the left panel and the zoomed-in image of the lights, sample, ruler, etc. in
the right panel.

2.2.4 Frequency Transmission Experiments

The final type of experiments we performed were frequency transmission tests on
1D lattices to reconstruct the dispersion curves, measure wave speeds, and determine
the transmissibility characteristics of the lattice. Tests were performed at varying
levels of compressive longitudinal prestrain to observe the tunability of the lattice

response.

We use two one-dimensional lattice specimens, with 5 and 3 RVEs, fabricated
with the same polyamide material and same baseline unit cell dimensions as all
other experiments. Assessing the dispersion properties of the lattice required us to
measure the response at multiple locations along the direction of wave propagation at
each RVE. A theoretical dispersion curve is a representation of an infinite medium;
thus, when reconstructing a dispersion curve from experimental data, it is desirable

to have as many unit cells as possible to avoid truncation-induced features and to
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minimize the influence of the boundaries. Also, the wavenumber resolution of
the experimental dispersion curve directly relates to the number of RVEs. Due to
fabrication limitations, a lattice with 5 RVEs (10 baseline cells) was the largest we
could produce reliably. We fabricated the lattice with a plate on the bottom face,
intersecting the four spherical nodes, to secure its attachment to the wave source
transducer. The 5 RVE lattice was used for the case with no precompression, and

the 3 RVE lattice was used for the tests where precompression was applied.

To study the dynamic frequency response of the tensegrity-inspired structure, we

use the experimental setup shown in Figure[2.13] To experimentally reconstruct the

Compression
Mechanism

Laser
Vibrometer

Sample

Signal Generator

Oscilloscope

]
o Amplifier

Transducer

Figure 2.13: Schematic of the experimental setup used to study the spectro-spatial
wave characteristics of a tensegrity-inspired 1D lattice.

dispersion characteristics of the lattice, the plate on the bottom of the sample is fixed
to a piezoelectric transducer (Panametrics V1011). We excite the bottom plate of
the specimen with a one-cycle burst having carrier frequency of 200 Hz and a wide
frequency bandwidth (to test a large frequency range with a compact signal). Small

strips of retro-reflective tape are placed on top of the nodes at the intersection of each
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baseline cell and on the bottom plate, for a total of 10 strips on the 5-RVE lattice
and 6 strips on the 3-RVE cell lattice. The single-point Laser Doppler Vibrometer
(LDV, Polytec CLV-2534) records the velocity time history at each of the reflective
tape locations, repeating the measurement 128 times at each location and averaging
to improve the signal-to-noise ratio. Note that the vibrometer is reoriented after each
measurement to point it towards another measurement location. We also employ
a high-pass filter to eliminate all ambient noise at frequencies lower than 100 Hz.
These filtering steps are required since the waves imparted by the transducer onto
the specimen are weak, owing to the fact that we are operating the transducer very
far from its peak frequency (100 kHz). Once we collect the measured data into
a time-space matrix, we obtain a frequency-wavenumber data matrix by using a
2D Discrete Fourier transform (2D-DFT); we zero-pad the data prior to performing
the 2D-DFT operation, to interpolate along the wavenumber direction and improve

results visualization despite having only few spatial samples.

We devised a compression apparatus to study the effect of global longitudinal
prestrain on the dynamic response of the structure. A 90-degree metal bracket
moves continuously in the vertical direction on a manually-operated linear stage
(Velmex MN10). The flat surface of the bracket compresses the top face of the
structure. We can thus directly control the applied longitudinal strain. Our samples
are long and slender. For example, the 5-RVE lattice has a slenderness ratio of
about 0.1 and a low lateral stiffness of about 58 kPa. When compressing them, we
can expect them to undergo global lateral buckling. An analysis of this is given in
Chapter 4. To prevent this undesired behavior and to compress the structure to high

longitudinal strains, we can only compress 3-RVE-long specimens.

Even with the shorter specimen, global buckling was an issue (see Figure[2.14{(a)).
So, we constructed an apparatus that can hold the structure in its axis. We tie
four strings onto four vertical, stiff rods equidistant from each other and from the
structure, as illustrated in Fig. [2.14(b). The other extremity of each string is tied
onto the structure at the nearest node at the intersection between the third and fourth
baseline unit cells (at approximately half the overall length of the structure). The
strings are tensioned so that they are parallel to the top compression plate. Note
that we move the strings vertically along the rod as compression changes, to keep
them horizontal. The four strings hold the center of the structure in-axis, preventing
the first global buckling mode to take place. Four strings are needed so that there

is no direction out-of-axis for the structure to move without being held in place by
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Figure 2.14: (a) Global buckling is apparent in the 3 RVE lattice even at low
compression levels. Thus, we devised an apparatus using strings and rods (b) to
hold the structure in its axis and prevent first mode buckling. The transmissibility
is calculated by dividing the velocity amplitude at the output (green dot) by the
velocity amplitude at the input (orange dot), as in the simulations.

another string. The strings only prevent movement out-of-axis, and do not provide
resistance vertically. Thus, the strings only minimally influence waves propagating

longitudinally along the structure’s axis.

We note that the transmissibility through the structure is readily calculated by
dividing the velocity amplitude at the output location (green dot in Figure 2.14(b))
by the velocity amplitude at the input location (orange dot in Figure [2.14(b)). Also,
dispersion curves (frequency vs. wavenumber), frequency transmission data, and
space-time diagrams are obtained through post-processing of the output velocity
data in MATLAB; these codes are provided in Appendix A.
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Chapter 3

DESIGN OF TENSEGRITY-INSPIRED STRUCTURES

In this chapter, we describe the method we developed to obtain a 3D-printable
tensegrity-inspired structure with the equivalent strain energy capacity and global
longitudinal stress-strain quasistatic response as a buckling pin-jointed tensegrity.
A truncated octahedron tensegrity is used as the baseline, but we infer that the
method can be applied to other types of tensegrity structures as well. We obtain a
structure which possesses several desirable and unique characteristics of buckling
tensegrity structures that make them appealing for dynamic applications. The struc-
ture is 3D-printable with a single material, and its quasistatic nonlinear response is
geometrically-driven, thus allowing it to be manufactured at multiple length scales
with a variety of printing methods. We also show how this structure is tessellated
into three dimensions to form multidimensional architected lattices, creating a new

type of lightweight, energy absorbing metamaterial.

Some content of this chapter has been partially adapted from:

K. Pajunen et al. “Design and impact response of 3D-printable tensegrity-inspired
structures”. In: Materials & Design 182 (2019), p. 107966.

3.1 Design Methodology
3.1.1 Target Baseline Tensegrity and Initial Design Iteration

The tensegrity structure described in [23]] was used as the baseline pin-jointed
tensegrity for this work. The structure’s geometry, which is based on a truncated
regular octahedron, was derived using the form-finding method described in [[107].
We chose this specific architecture because it has 6 square, orthogonal “faces,”
which, with certain reflections required to accommodate asymmetry of the faces,
allows tessellation in three-dimensional lattices [[71]]. We initially use the geometry
of the un-prestressed tensegrity, noting that the geometric configuration changes

based on the level of prestress applied to the cables.

The tensegrity structure is shown in Figure[3.I[(a). The structure has 12 struts and
36 cables. There are no strut-to-strut connections, defining the structure as a ““class

17 tensegrity [[108]]. In choosing the size of the baseline tensegrity, we kept in mind
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Figure 3.1: (a) Pin-jointed truncated octahedron tensegrity with 6 orthogonal faces,
which we refer to as shown in the image. This is the baseline tensegrity structure
we model after in this thesis. (b) The initial iteration for a 3D-printable structure,
which is fixed-jointed structure overlapping members at the nodes.

the manufacturing and testing constraints of the structure that we would 3D-print
using the tensegrity’s geometry, as described later in this section. We chose a height
of 48.3 mm from the “top face” nodes to the “bottom face” nodes, which gives a
cable length of 17.4 mm and a strut length of 44.2 mm. We chose the cables to have
a diameter of 1.37 mm and the struts a diameter of 3.05 mm, giving a strut-to-cable
diameter ratio (d;/d.) of 2.23. We ensure that the chosen strut diameter allows
elastic buckling by using the Euler-Johnson relation [109]:

2nE
Ty

L
-2 3.1
P

where L is the length of the strut, p is the strut’s radius of gyration, E is the Young’s
modulus of the material, and o is the yield strength of the material. L is 44.2 mm,
E is 1.29 GPa, and oy is 29.1 M Pa. The material we chose for the structures in

this thesis was described in Chapter 2.

At this point, we note that this initial pin-jointed geometry was chosen due to
manufacturing constraints and to provide elastically buckling struts, not to obtain
a “target” mechanical response. Because of this, the member diameters are altered
throughout the design process as defined by the ratio d,/d.. For clarity, we refer to
this initial member geometry as Geometry #1, which as stated has a dg/d, of 2.23.

To find an analogous 3D-printable structure, we initially fabricated Geometry

#1 with rigidly overlapped members at the nodes, as shown in Figure [3.1(b). The
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samples were printed with the polyamide PA2200 material from Shapeways.com®

using selective laser sintering (SLS). All experimental samples in this thesis use
this material. As described in Chapter 2, this manufacturing method and material is
appealing for this application because it requires no support structure and no post-
curing, with consistent mechanical properties. Also, the slenderness of the structural
members fit well within manufacturing limits for this method. Before deciding on
this material, we iterated on a few other materials and manufacturing methods, most
notably the “Tough” photopolymer from Formlabs®, which is a stereolithography
(SLA) printing system. This material required both a support structure and post-
curing, which added difficulties such as accidentally cutting a cable and inconsistent
curing. The Shapeways material also was much less viscoelastic compared to the
Formlabs material, which made the Shapeways material more appealing for our
dynamic applications. In Appendix B, we compare these two materials and provide

results of relaxation tests we performed on them to study their viscoelasticity.

To characterize the mechanical response of the fixed-jointed structure, we per-
formed quasistatic longitudinal compression experiments using an Instron E3000°.
The chosen structure height of about 2 inches was a practical size for the compression
experiments. The samples were loaded on the top face and compression was applied
using displacement control. The top and bottom faces were allowed to rotate during
compression, which naturally occurs (also for the pin-jointed tensegrity structure)

due to asymmetry of the face nodes.

We developed a quasistatic model to simulate the experiment using the finite
element software ABAQUS/STANDARD, which uses full 3D stress tetrahedral ele-
ments. We described this in detail in Chapter 2. We iterated through a few material
models to describe the response of the structure, and found that a hyperelastic Mar-
low model best represented the response of the polyamide material. Since there is
no clear yield stress for elastic polymer materials, it is often defined as the peak
stress [[110]], which in this case is well past the linear region of the stress-strain curve
(see Chapter 2). An elastic-plastic model in ABAQUS showed too low stresses as
well as nonphysical permanent plastic deformation, which would greatly influence
the wave propagation characteristics in subsequent dynamic analyses. Thus, the
hyperelastic material provided a continuously elastic response that still followed the

stress-strain path of the constitutive polymer material.

Note: Henceforth in this thesis, unless otherwise stated, “stress’” and ‘“strain”
refer to the effective longitudinal global stress and strain in the given struc-
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Figure 3.2: Global compressive stress-strain curves showing the 3D stress ABAQUS
simulation and representative experimental responses of the 3D-printable, fixed-
jointed structure, as well as the response of the corresponding pin-jointed structure.
All member diameters correspond to Geometry #1. The pin-jointed structure ex-
hibits a clear buckling point around 0.3 longitudinal strain, whereas the fixed-jointed
structure does not exhibit a buckling point, but ruptures around 0.3 strain. The stiff-
ness of the fixed-jointed structure is much higher than the pin-jointed stiffness. This
fixed-jointed structure is thus inadequate to represent the pin-jointed response.

ture. That is, stress is defined as the applied compressive load divided by the
structure’s projected square cross-sectional area that intersects the face nodes.
Strain is defined as the vertical displacement, A /2, divided by the original height,
h, of the structure from the bottom to the top face nodes.

The longitudinal stress-strain results of the ABAQUS simulation, the pin-jointed
model, and a representative experiment are shown in Figure 3.2l The effective
compressive stress-strain responses of the pin-jointed structure was found using a
reduced-order model described in [23]] that allows the struts to buckle and captures
its nonlinear quasistatic and dynamic responses. The ABAQUS simulation and
experiment are in good agreement. Both curves show a slightly nonlinear behavior,
due to the relative rotation of the top and bottom faces during compression. The

structures rupture at 0.3 strain, before reaching buckling, because of the high local
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strains at the joints.

The pin-jointed response differs significantly from the fixed-jointed structure.
Without member prestress, the pin-jointed structure behaves as a rigid body mecha-
nism until reaching a critical strain (in this case, 0.25), where the members begin to
carry force and deform. We subtracted this onset longitudinal strain from the strain
values in order to obtain the compressive stress-strain curve reported in Figure[3.2]
The pin-jointed response has a much lower stiffness than the printed structure, and
distinctly buckles at around 0.3 strain. One important difference between the fixed-
jointed and the pin-jointed structures is the distribution of load. The fixed-jointed
structure has complex local material stress states that affect the stiffness and prevent
the onset of buckling. On the contrary, the members of the pin-jointed structure
are loaded purely axially and hence buckle more easily. To capture the buckling
response exhibited by the pin-jointed structure, a different design approach for the

3D-printable structures was needed.

3.1.2 Conversion Method Between the Fixed and Pin-jointed Structure

To find a design for a 3D-printable structure with a comparable global compres-
sive stress-strain response as the pin-jointed structure, we took note of a few key
characteristics of tensegrity structures and attempted to maintain those characteris-
tics in our 3D-printable structure design. We noted that in pin-jointed tensegrity
structures, the nodal locations, member lengths, and independence of the members
at the nodes are key characteristics that determine the response. In the initial fixed-
jointed structure design (Figure [3.3(b)), these characteristics are not maintained.
The effective lengths of all the members are shorter than in the pin-jointed coun-
terpart due to the overlap of the members at the nodes. The cables intersect the
struts at different angles, producing varying cable lengths and large stress concen-
trations. The effective buckling length of the struts is thus significantly shorter than
in the pin-jointed counterpart. This greatly increases the buckling load of each strut.
These attributes produce the structure’s high stiffness and non-buckling behavior

compared to the pin-jointed counterpart.

Therefore, we redesigned the 3D-printable structure in the following way. First,
we scale the nodal coordinates up by 1.5 times while still maintaining the cable
lengths (Figure [3.3[c)). Then, at each node we insert spheres that rigidly connect
all of the corresponding members at the node (Figure [3.3(d)). The spheres have
a diameter of 8.7 mm, sized such that the original cable lengths (17.4 mm) are
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Figure 3.3: (a) Pin-jointed truncated octahedron tensegrity with 6 faces. (b) 3D-
printable, fixed-jointed structure with overlapping members. In the updated design,
nodal locations and cable lengths are maintained by (c) scaling up the structure
while keeping cable lengths constant and (d) inserting spheres at the nodes.

maintained and such that the members do not intersect with each other. Note that
the entire structure, including the spheres, is fabricated in a single print with the
same material. With this design, all the cables are the same length and all the struts
are the same length, and each intersects normal to the sphere. With this change,
the compressive response changes dramatically. The structure’s stiffness is greatly

reduced, as are the maximum local strains from stress concentrations.

We performed compression tests on the spherically-jointed structure. Comparing
the deformation of the compressed structure (Figure[3.4f(a)) with the results obtained
with ABAQUS 3D simulations (Figure [3.4(b)), we notice that each member in the
structure behaves like a beam: it undergoes bending, axial loading, and torsion
(Figure [3.4(c)). Each has a constant cross section and connects perpendicularly to

the spheres. Because of these characteristics, we developed a simpler finite element



39

model using beam elements. A beam element model allows easy modification of
the member diameters for geometric iterations and analysis. Timoshenko beam
elements, which allow for transverse shear deformation and large strains, are used
rather than Euler-Bernoulli elements. The type of element used is B32, which is the

3-node quadratic Timoshenko beam.

© (d)

Figure 3.4: (a) Spherically-jointed structure compressed during an experiment.
(b) ABAQUS rendering of compression of the spherically-jointed structure. (c)
Representation of the mechanical deformation modes exerted on the members of
the spherically-jointed structure. (d) ABAQUS beam element rendering of the
compression of the spherically-jointed structure.

In the spherically-jointed configuration, each node connects four members. To
model the spheres using beam elements, a single element with the length of the
radius of the sphere connects the end of each member to the node. This element is
given a very large stiffness and appropriately sized cross section and density values,
as fully described in Chapter 2. The top and bottom reference points and coupling
with the top and bottom face nodes are the same as in the 3D stress simulation. The

compressed structure with the beam element simulation is shown in Figure [3.4(d).

Recall that a key objective is that the 3D-printable structure is to be used as
a building block for impact absorbing periodic lattices. Although our objective
for this work is not to optimize the structure for energy absorption capacity, we
needed to adjust the member diameters of the spherically-jointed structure to obtain

a longitudinal stress-strain curve and elastic energy capacity that would be useful
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for dynamic analyses. We increased the cable diameter to raise the stiffness of the
structure, and increased the strut diameter to raise the buckling load and reduce the

global buckling strain.

The final 3D-printable, spherically-jointed design has a strut diameter of 2.6
mm and a cable diameter of 1.8 mm for the 1.5 scaled structure, giving a d;/d,
of 1.44. We define this d;/d. as Geometry #2. A complete explanation of the
reasoning behind these final member diameters is given in Appendix B. For the
purposes of 3D-printing, we size the structure as 48.3 mm in height again, scaling
the structure back down by 2/3.

The corresponding spherically-jointed structure longitudinal stress-strain curve
(ABAQUS beam element simulation) is seen in Figure[3.5]as the dashed purple line.
The initial stiffness increased to 48 kPa. The structure has no distinct buckling point,
but asymptotically approaches the buckling stress. Thus, the structure exhibits load
limitation at the structure’s buckling load. The strain energy density is the area
under the longitudinal stress-strain curve. By 0.4 strain, this structure absorbs 3.1
times greater strain energy than the original tensegrity structure (dashed-dotted line
in Figure[3.2).

The full ABAQUS 3D stress element simulation response is shown as the purple
dotted line in Figure [3.5] The beam element simulation presents a slightly stiffer
response, with a final stress 5.6% higher than the full 3D stress simulation. This
difference is likely because beam elements present a simplified model of deforma-
tion, not taking into account sources of deformation that the 3D stress model is able
to capture. The beam element simulation also assumes very slender beams and has
sharp transitions connecting the edge elements (representing the spheres) to the ca-
ble/strut members. These assumptions cause the beam element simulation to exhibit
higher stiffness. The beam element simulation has several advantages, however, over
the 3D stress model. The runtime with 8 CPUs for the beam element model is about
6 minutes, where as for the full 3D stress model it is around 20 times longer. It
should be noted that this runtime difference significantly compounds with dynamic
simulations (Section 3) and with forthcoming lattice simulations. Easy member
diameter modification also makes geometry iterations much more straightforward

with the beam element model.

At this point, it is important to observe where areas of high local strain occur
and the levels of local strain within the structure during compression. Local strain

distribution is obtained using the ABAQUS 3D stress element simulation. Maximum
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Figure 3.5: Global compressive stress-strain curves showing responses of the 3D
stress simulation, beam simulation, corresponding pin-jointed tensegrity simulation,
and representative experiment. All four show comparable behavior, indicating the
spherically-jointed structure’s equivalence to a corresponding pin-jointed tensegrity
structure. This is the final geometry design chosen for the studies in this thesis.

principal elastic strain within the structure at a global compression level of 0.4 is
shown in Figure 3.6l The blue-to-red rainbow colorplot ranges from the lowest
strains in blue to the highest strains in red. The highest local strains occur at the
intersection points between the cables and the spheres for the 8 cables that connect
the top/bottom faces to the side faces. Due to the sharp corner at each intersection
from member to sphere, high stress concentrations are produced at these locations.
Because the 8 cables connecting the top/bottom faces to the side faces undergo the
largest deformation of all the members, the stress concentrations produced at their

cable/sphere intersections produce the highest strains in the entire structure.

A magnification of one of these locations is shown in the inset image in the red box
in Figure [3.6] We can see that the highest strain is highly localized. The maximum
strain produced here is about 0.2. Although theoretically this strain level could
cause the structure to rupture (the material’s rupture point is around 0.2 strain), this
does not occur in our experiments. There are a few reasons for this. First, in a

3D-printed structure, the corners always will be fabricated with some amount of
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Figure 3.6: Maximum principal elastic strain within the structure at a global strain
level of 0.4. The blue-to-red rainbow colorplot ranges from the lowest strains in
blue to the highest strains in red. A magnification of one of the the highest local
strain locations is shown in the inset red box.

filleting. Even a small fillet introduced at a sharp corner can dramatically reduce the
stress concentration there. Thus, the stress concentrations in the printed structure
are likely lower than in the ABAQUS simulations. Second, the level of local strain
and area of concentration of the highest strain changes significantly with mesh size.
With a very fine mesh, the local strain approaches extremely high values over a very
small area right at the intersection of cable and sphere, approaching the analytical
solution of infinite strain for a sharp transition. This indicates that without the
sharp transition, like in the experiments, the local strains at these points could be

significantly lower than the rupture point for the material.

Overall, most of the structure shows low local strains, largely below 0.05 strain.
In the following chapters, we explore the dynamics of this structure. In those cases,
the structure undergoes high and repeated global strain and remains highly elastic.
This indicates that overall the strains remain low enough in the structure to not
only prevent rupture but also remain elastic (indicating the validity of choosing a

hyperelastic material model). In this thesis we do not set out to optimize the structure
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for low local strains, but this could be an area of interest for furthering this research.

Next, we turn our focus to obtaining a corresponding pin-jointed tensegrity struc-
ture with similar stress-strain response and strain energy capacity as the spherically-
jointed tensegrity-inspired structure. The pin-jointed and spherically-jointed struc-
tures have different deformation modes. In the spherically-jointed geometry, both
the cables and the struts simultaneously affect both the stiffness and buckling load of
the structure because they are both bending-dominated. The pin-jointed structure,
on the other hand, has purely axially-loaded members. However, when the struts
buckle, they undergo pure bending whereas the cables remain at the same axial
stress as they were just before the struts buckled. Thus, in the pin-jointed case, the
structure’s buckling load strictly depends on the strut diameter, whereas the initial
stiffness depends on both the cable and strut diameters. So, to find the pin-jointed
diameters needed to obtain a similar response to our spherically-jointed structure,
we keep the cable diameter the same as that for the spherically-jointed structure, but

solve for the strut diameter using a simple force balance.

Figure 3.7: Pin-jointed tensegrity structure, zoomed in at the top face leftmost
node. Here, we show the forces acting on this node. This enables us to solve for
the diameter of the strut needed to achieve a buckling load equal to that of the
spherically-jointed tensegrity-inspired structure.

We do this by taking a free body diagram of one of the top face nodes, as seen
in Figure 3.7} Zooming in on the left-most top face node in the image, we can see
that the node connects three cables and one strut. The top face cables all carry the
same load. So we label the force in the strut as F§, the force in the two face cables
as F.1, and the force in the other cable as F.,. We apply a total load on the top face
nodes equal to that of the buckling load we observe in the spherically-jointed 48.3
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mm tall structure (about 18.1 N). The force balance at this node is a linear system of
3 equations (forces in x, y, and z) and 3 unknowns (F;, F.1, and F,). We solve for
the unknown forces. Then, since we define the applied load (18.1 N) as the buckling
load of the structure, we solve for the diameter of the strut, d such that Fy is equal

to the buckling load:
2
El
Fo="1
L3

(3.2)

where I = d?/64 is the strut’s moment of inertia. We found d; to be 3.32 mm.

Thus, the pin-jointed tensegrity has a cable diameter of 1.8 mm and a strut
diameter of 3.32 mm, for a dy/d. of 1.84. (We define this as Geometry #3.)
We add just enough prestress (2%) so that the structure is load-bearing and the
struts just begin to bend at the onset of loading. The pin-jointed response for
this structure is shown in Figure [3.5] as the dashed-dotted line. Remarkably, the
pin-jointed tensegrity structure response matches very closely with the spherically-
jointed tensegrity-inspired structure, achieving the same strain energy capacity and

stress-strain curve.

As stated, we add just enough prestress to the pin-jointed structure that the struts
just buckle and begin to bend on the onset of loading. This creates a global response
that qualitatively mirrors that of the fixed-jointed structure, due to the following
reason. If a column is eccentrically loaded or if there is an initial bend in the
column, the transverse deflection will be nonzero. Because of this, the increase in
the load is gradual and asymptotically approaches the critical buckling load at a rate
dependent on the degree of eccentricity/initial bending [111]]. In the spherically-
jointed structure, since the joints are fixed and the “faces” rotate, the struts bend
immediately upon loading. The resulting response asymptotically approaches the
critical load of the structure. A similar response occurs with a prestressed pin-
jointed structure with struts dimensioned for elastic buckling. At a certain prestress,
the struts buckle. Thus when an external load is applied, the response of the
structure asymptotically approaches the structure’s critical load instead of having
a sharp buckling point. Thus, both the pin-jointed structure with just-buckled
struts and the fixed-jointed structure immediately undergo bending upon loading
and asymptotically approach their buckling loads. This results in both structures

having the same response.

A representative experimental compressive response of a 3D-printed tensegrity-

inspired structure (with the final Geometry #2) is shown in Figure [3.5]as the purple
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solid line. Several samples were tested, and as can be expected, slight variations in
the response result from differences in manufacturing. We explore these differences
in manufacturing thoroughly in subsequent dynamic studies. In the experiments,
the structures can be compressed to 0.48 strain when the struts begin to touch
(densification). Both experimental and numerical results agree favorably with the
pin-jointed response. With a structure height of 48.3 mm, the spherically-jointed
structure has a mass of 3.75 g, which is less than the pin-jointed structure’s mass of
5.75 g. The normalized strain energy by mass of the spherically-jointed structure is

therefore about 1.5 times greater than the counterpart pin-jointed structure.

3.1.3 Examples of the Design With Alternate Materials and Length Scales
We explored a few examples which indicate that our design method (correlating a
pin-jointed structure with a spherically-jointed tensegrity-inspired structure) applies

for other strut/cable diameters, materials, and length scales.

\

\\ /
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SE 12:14:15PM|2.00 kV| 3.0 11.4 mm 2 000 x Caltech Greer Grou

(b)

Figure 3.8: Microscale samples with a height of 120 um were fabricated with the
Nanoscribe® printing system. (a) A scanning electron microscope photograph of
a sample is shown. (b) Photograph of a compression test on a sample using the
FemtoTools™ testing system. The sample on the lower right is being compressed
by the force sensor tip, which is lowered by displacement control.

We successfully printed Geometry #2 (d;/d. of 1.44) with a height of 120 um
using the Nanoscribe® 3D laser lithography printing system. A standard material
used by this printer, IP-Dip™, has been experimentally studied in [112,|113]. In
those studies, both a long-term and instantaneous elastic modulus were extracted
due to the pronounced viscoelastic behavior of the material. The material’s pertinent
properties are a long-term modulus of 2.22 G Pa, instantaneous modulus of 2.90
G Pa, Poisson’s ratio of 0.49, and yield stress of 60 M Pa. Figure [3.8[a) shows a
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scanning electron microscope photograph of the printed structure.
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Figure 3.9: Global compressive stress-strain results of compression tests on mi-
croscale samples with a height of 120 um and dy/d. of 1.44. The results of four
samples are shown. The results show behavior similar to the 48.3 mm samples
printed with the Shapeways PA2200 material and same d,/d. value.

We performed quasistatic compression tests on these structures using the com-
mercial FemtoTools™ setup. A photograph of a compression test is given in Figure
[3.8(b). The results of the compression tests for four samples is given in Figure
We can see that the response is comparable to what we see for the macroscale
samples (Figure[3.5). There is an initial linear region followed by a region of buck-
ling. The buckling produces a plateau in the stress response. The stress levels and
buckling load are higher for this case than for the macroscale samples because this
material has a higher modulus. Also, the onset of buckling occurs distinctly around

0.1 strain, which is sooner than for the macroscale samples.

Next we give an example of a numerical simulation we ran of a macroscale
sample with a different d;/d, ratio and linear elastic material properties. We ran the
beam element ABAQUS simulation with a linear elastic material (E = 1.291G Pa,
v =0.3,and p = 930kg/m?>), a cable diameter of 1.8 mm, and a strut diameter of 1.2
mm. This gives ds/d. = 0.67. The result is shown in Figure as the solid blue
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line. Again, the sample buckles distinctly, producing a plateau in the stress-strain
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Figure 3.10: Global compressive stress-strain responses of a linear elastic
spherically-jointed structure and its corresponding pin-jointed tensegrity structure
found using our design method.

response. This indicates that this behavior can occur with our spherically-jointed
design even if the material is linear elastic. Using the force balance method for the
pin-jointed tensegrity as described earlier in this chapter, we find the pin-jointed
strut diameter to be 2.85 mm. We keep the cable diameter at 1.8 mm. The resulting
pin-jointed tensegrity response is shown in Figure [3.10]as the dashed-dotted purple
line. Again, the responses match very well. Thus, we have demonstrated that
our design method to correlate buckling tensegrity structures with a 3D-printable,
fixed-jointed structure can be implemented for a range of geometries, materials, and

length scales.

3.2 Fundamental Comparison of the Fixed and Pin-Jointed Structures
Although the pin-jointed structure and the 3D-printable, spherically-jointed struc-

ture have similar constitutive responses, they are governed by different proper-

ties: the pin-jointed structure is stretch-dominated and prestressed, whereas the

spherically-jointed structure is bending-dominated and not prestressed. Thus, the
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spherically-jointed structure does not have traditional tensegrity traits, such as pre-
stress tunability. However, the pin-jointed and spherically-jointed structures share
some useful similarities: (i) The faces rotate during compression, producing low
local strains. (ii) The slender struts undergo elastic buckling. As a note, the struts
in the final designed spherically-jointed structure also satisfy the elastic buckling
requirement of Equation[3.1] These traits allow the structure to withstand high de-
formations while remaining elastic, like a tensegrity. (iii) Strain energy is distributed
evenly throughout the structural members. (iv) The nonlinear buckling response is
load-limiting. (v) Finally, both types of structures have very low relative density,

allowing formation of extremely lightweight lattices.

Relative density is given by the density of the structure divided by the density of
the constituent material. The density of the structure is the mass located within a
representative volume element (RVE) that is used for tessellating in space, divided
by the volume of the RVE. The RVE for the baseline spherically-jointed structure
is given in Figure [3.11] The RVE is found by slicing the structure through the

48.3 mm

48.3 mm

Figure 3.11: Representative volume element of the baseline spherically-jointed,
tensegrity-inspired structure. This is used for calculating the relative density of our
structure and subsequent lattices.

center of the spheres and cables on the top, bottom, right, left, front, and back faces.
The relative density of the final designed structure (Geometry #2) is 2.5%, and the
relative density of the corresponding pin-jointed tensegrity is 4.9%. The structure is,

therefore, very lightweight, even more so than the pin-jointed tensegrity structure.

Although the spherically-jointed structure is not pin-jointed, it remains elastic
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under high deformation (up to 0.48 strain). This is due to a few reasons. First,
it achieves low local strains at the intersections between the spheres and members.
This is because the faces rotate during compression, but also because elastic buckling
occurs. Elastic buckling allows high deformation without plasticity. Second, the
cross section of the members remains constant along their length, keeping stress
concentrations low at the joints. Third, the beams are slender (d/L < 10% for
cables and < 5% for struts), which, for a certain applied deformation, produce lower
stresses than for a thicker beam. Thus, the structure’s elasticity is comparable to a

tensegrity structure while remaining easily fabricatable with standard 3D-printing.

Finally, we demonstrate that the struts in the spherically-jointed structure indeed
undergo axial buckling and not solely bending and torsion. We do this by showing
the axial force along the beam axis of a strut in the spherically-jointed structure.

In Figure [3.12] we show the force in the strut normalized by its buckling load for

0 — Strut in tensegrity-inspired structure |
., aattl Strut in pin-jointed structure
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Figure 3.12: The force in a representative strut (/) normalized by its buckling
load (F}) for both the spherically-jointed tensegrity-inspired structure and the cor-
responding pin-jointed structure, as a function of global compressive strain.

both the spherically-jointed tensegrity-inspired structure and the corresponding pin-
jointed structure, as a function of global compressive strain. We show the force
in the strut for the un-prestressed pin-jointed structure to illustrate the onset of
the buckling load in the strut. What we see is that the axial load in both struts

are negative, implying compression. Also, the tensegrity-inspired structure’s strut
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clearly undergoes buckling between 0.2-0.3 strain. The two curves show the same
behavior, indicating that the tensegrity-inspired structure indeed undergoes axial
buckling in the struts. In fact, F} for the tensegrity-inspired structure’s strut is
extracted as 4.44 N from ABAQUS. Using Euler’s buckling criteria, the buckling
load for a beam with its dimensions and properties is found to be 3.81 N for perfectly
pinned ends and 7.62 N for fixed ends. Interestingly, the strut exhibits a buckling load
much nearer to that of perfectly pinned than perfectly fixed ends. This perhaps also

contributes to our designed structure’s ability to mimic the behavior of a tensegrity.

For the remainder of this thesis, we henceforth call the designed spherically-
jointed structure the “tensegrity-inspired structure.” The un-tessellated designed

structure is referred to as the baseline tensegrity-inspired structure.

3.3 Representative Volume Elements for Tensegrity-Inspired Lattices

Since the baseline tensegrity-inspired structure has six orthogonal faces, it can be
tessellated into 3 dimensions to form tensegrity-inspired lattices. However, a series
of reflection operations must be performed to do this. These operations are per-
formed on the pin-jointed tensegrity structures in [71] to obtain multi-dimensional

lattices, and are fully described there.

The baseline structure cannot be directly tessellated because the faces are initially
rotated along their respective axes. Thus, the baseline structure has two config-
urations: a left-handed and a right-handed configuration. This is seen in Figure
[3.13] The left-handed cell has face nodes rotated counterclockwise, whereas the
right-handed cell has face nodes rotated clockwise. Thus, both the right-handed
and left-handed cells must be used to tessellate the structure to achieve periodicity
between faces. The 1D representative volume element (RVE) contains a right- and
left-handed cell. The 2D RVE contains two 1D RVEs, or 4 baseline cells. The 3D
RVE contains two 2D RVEs, or 8 baseline cells. In this thesis, we study 1D lattices
and 3D lattices formed with 1D RVEs and 3D RVEs, respectively. The 3D lattices
we study are what we term 3D 1D and 3D bulk lattices. The 3D1D lattices are simply
lattices of 3D RVEs, but only tessellated in one dimension. This is essentially a
1D lattice. The 3D bulk lattices are lattices of 3D RVEs tessellated in all three

dimensions.

Finally, we give the ABAQUS beam element stress-strain responses for the base-
line, 1D RVE, and 3D RVE in Figure[3.14] These are for the final design configu-
ration given by Geometry #2. They differ only slightly, with the baseline structure



51

1D RVE:
2 Baseline Cells

Left-Handed Right-Handed
Baseline Unit Cell Baseline Unit Cell

3D RVE:
8 Baseline Cells 2D RVE:

4 Baseline Cells

Figure 3.13: The baseline tensegrity-inspired structure has a left-handed and right-
handed configuration, and both must be used to tessellate the structure into mul-
tidimensional lattices. The representative volume elements and their number of
baseline cells are shown.

being the softest and the 3D RVE being the stiffest. The stiffness increase from base-
line to 3D is intuitive. This is because as the structure is tessellated, faces (spheres
and cables) are “shared” between neighboring baseline cells. This makes the faces

unable to rotate as naturally, so there is an additional component of stiffness.

For completeness, we found the effective Poisson’s ratio for each of the 3 RVEs
shown in Figure[3.14] This is the axial strain (the compressive strain in Figure[3.14)
divided by the transverse strain (how much the RVE expands laterally). The initial
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Figure 3.14: Global compressive stress-strain curves from ABAQUS beam element
simulations of the baseline, 1D, and 3D RVEs.

Poisson’s ratio in the linear region of the stress-strain curves is very close to 2 for
all three RVEs. The Poisson’s ratio increases significantly as the strain increases
to the nonlinear region, reaching almost 5 by densification. A large Poisson’s ratio
such as this implies higher axial deformation than transverse deformation. The
axial deformation greatly exceeds the transverse deformation as the struts buckle.
An effective Poisson’s ratio larger than 1 has also been exhibited for other types
of architected lattices [114} [115]. As we will see, this large Poisson’s ratio has a

significant effect on the dynamics of these tensegrity-inspired structures.

3.4 Chapter Summary

We have presented a method to overcome manufacturing limitations of tenseg-
rity structures by designing a 3D-printable structure with analogous strain energy
capacity and compressive global stress-strain response as a pin-jointed tensegrity
structure. The structure design uses spherical joints to separate structural members
in a way that maintains certain tensegrity characteristics, allowing the compressive
and dynamic responses to behave similarly to a counterpart prestressed buckling
tensegrity. The structure is fabricated with a single material, allowing it to be
printed with a variety of currently available 3D-printing methods. Without the need

for pin-joints or prestress, the structure presented in this paper uses geometry to
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produce tensegrity-like characteristics. Such characteristics include stability post-
buckling, resilience to severe deformation, very low density, and load-limitation.
Simple modification of the member diameters allows straightforward tunability of
the structure’s mechanical response and strain energy capacity, as the design method
is applicable for a range of materials and geometry configurations. Starting with the
baseline structure, we showed the process to form representative volume elements
that tessellate the structure in space. In the following two chapters, we study the
dynamic response of baseline unit cells and tessellated lattices designed with the

final geometry defined in this chapter.
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Chapter 4

DYNAMICS: FREQUENCY RESPONSE

4.1 Introduction to Dynamic Frequency Analysis

In Chapter 3, we presented a method for creating lightweight tensegrity-inspired
structures with unique nonlinear buckling characteristics. These structures behave
similarly to tensegrity structures in which the struts buckle elastically [23,|71]]. Our
tensegrity-inspired structure has many advantages, such as low density, high elastic
deformation, minimal local strains, high energy capacity, and load limitation. It is
also printed with a single material, so it can be fabricated with multiple 3D-printing
methods at multiple length scales. This opens the door for creating new types of

tensegrity-inspired materials with unique properties.

The quasistatic characteristics we examined in the previous chapter hold promise
for the dynamic regime. Particularly of interest is the dynamic behavior of the
structure when tessellated into lattices of multiple dimensions. In general, structural
lattices can be engineered to propagate elastic waves at desired direction-dependent
wave speeds [48H52]], and they can be designed to feature bandgaps, i.e., frequency
ranges of strong wave attenuation [48, 49, |53-55]]. bandgaps are often due to Bragg
scattering in these lattices [48]. However, once the lattices are manufactured, the
wave properties are often set in stone. There are ways to make the wave response
tunable, but it is often a discrete degree of tunability such as arising from bistable
mechanisms [116]] or an external stimulus [65, (67, 69]]. Also, tunable lattices often
use very soft materials whose dynamic response is dominated by damping, making
practical applications challenging. Tensegrity lattices have been shown to possess
exciting dynamic characteristics for both low amplitude frequency excitation [[72,
73|, 85H87, [117] and impact loading [71, [74-77, [118]. They also display Bragg
bandgaps, but present continuous tunability by adjusting prestrain in the cables
and/or global compression. This tunability has the potential for creating systems
with wave-guiding/lensing attributes. It is also useful for applications where certain
levels of wave attenuation, wave speed, or other characteristics are needed at different
times without having to replace the entire lattice. However, fabrication of tensegrity
lattices beyond a few unit cells has remained elusive due to assembly technicalities,

especially at smaller length scales.
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In this chapter, we begin to examine how our tensegrity-inspired structure behaves
in the dynamic regime by looking at its response to low amplitude frequency exci-
tation. Our structure is of interest in this area. It has tensegrity-like characteristics
that produce dynamic attributes such as continuous tunability of bandgaps and wave
speeds and rare properties not found in natural materials (e.g., faster shear wave
speeds than longitudinal). In this chapter, we provide an experimental demonstra-
tion of dynamic properties only previously discovered by numerical and theoretical
studies on tensegrity lattices. This analysis also lays a groundwork for understand-
ing subsequent dynamic impact studies on these lattices (Chapter 5). First, we
examine the frequency response of an unstrained 1D lattice. Then, we apply global
compression to the 1D lattice to study its tunability attributes. Finally, we perform a
dispersion analysis on a 3D unit cell to give insight into the dynamics of 3D lattices

and compare this to the response of buckling tensegrities [87].

Some content of this chapter has been partially adapted from:

K. Pajunen, P. Celli, and C. Daraio. “Experimental evidence of analog prestrain-
induced bandgap tuning in 3D-printed tensegrity-inspired lattices”. In: Extreme
Mechanics Letters (2020). In Press.

4.2 Unstrained Lattice
4.2.1 Dispersion Results

First, we performed numerical COMSOL simulations on a 1D representative
volume element (RVE) with a strut-to-cable diameter ratio of 1.44 using an eigen-
frequency step as described in Chapter 2. This analysis provided an estimate of the
range of frequencies and characteristics of the dispersion curve for our tensegrity-
inspired lattice before performing experiments. Two baseline unit cells comprise a
1D RVE, thus allowing periodic tessellation of the RVE into a 1D lattice. Periodic
Bloch boundary conditions are applied on the top and bottom faces of the RVE, as
shown in Figure 4.1] so an infinite 1D lattice is simulated. The RVE has a total
height of 96.6 mm, which is the height of two baseline unit cells. A linear elastic
model for the PA 2200 nylon is implemented, and the part is meshed with quadratic
tetrahedral elements. A parametric sweep is performed in the eigenfrequency step
which sweeps over values of the wavenumber, k, from O to 7/a and calculates 20

eigenfrequencies at each k value.

The resulting dispersion curve is shown in Figure d.2] The dispersion relation
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Periodic Bloch
Boundary Conditions

Figure 4.1: Setup of the 1D RVE in COMSOL for eigenfrequency analysis of an
infinite 1D lattice. Periodic Bloch boundary conditions are applied on the top and
bottom faces.

is plotted in real space, from k = 0 to 1/(2a) m~!, where a = 0.0966m. The
wavenumber is converted from rad/m to m~! with dividing by 27. Longitudinal
modes are shown as red circles, purple circles are rotational modes, green circles are
combined rotational and longitudinal modes, and blue stars are flexural and all other
combined modes. The output frequency and wavenumber values from COMSOL
do not distinguish between the different mode shapes, so we devised a method
to do this. We extracted the displacement magnitude in the vertical (y) direction
at three locations in the RVE, and the curl magnitude around the y-axis volume
averaged for the whole RVE. These locations are given by the light blue regions
in Figure .3)@)-(d). Then we establish quantitative thresholds based on the ratios
of these values to their maximum over all eigenvalues. (The MATLAB code with
the thresholds are given in Appendix A.) These thresholds give the wavenumber
and frequency values where vertical displacement and curl have a large percentage
of the total displacement. Where vertical displacement is dominant, the mode is
longitudinal; where curl is dominant, the mode is rotational; and where curl and
vertical displacement are both significant, the mode is combined longitudinal and

rotational. All other eigenvalues are flexural or other combined modes.

We needed to establish three locations for extracting the vertical displacement.
This is because if we only look at the displacement at the middle of the RVE, we miss

the cases where the vertical displacement is high, but the middle stays stationary
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Figure 4.2: Numerical dispersion relation for the unstrained 1D lattice response.
The dispersion relation is plotted in real space, from k = 0 to 1/(2a) m~!, where
a = 0.0966m. The red circular markers are longitudinal modes, the green ones are
combined longitudinal and rotational modes, the purple ones are rotational modes,
and the blue stars indicate flexural modes and modes that do not clearly belong to
any of the above categories. The red shaded region indicates a frequency region
where there are no longitudinal modes present; this is a longitudinal bandgap.

(Figure 4.3|e)). Also, if we only look at the displacement at the middle and top of
the RVE, we miss the cases where the displacement of the middle of the baseline
cells is high, but the middle and top of the RVE remain stationary (Figure {.3(f)).
Finally, we color the eigenvalue markers according to these thresholds in Figure
@, as done in [119]. The method is quantitative but slightly arbitrary; however,
it gives very good approximations for the distinction of the different mode shapes.
Examples of the different mode shapes are given in Figure 4.4} For the purposes of

the experiments, we focus on the longitudinal modes.

Looking again at the dispersion curve in Figure 4.2] we can see that there are
instances of combined rotational and longitudinal modes at the intersection of the
lower longitudinal and rotational branches, as well as above around 425 Hz. For our

tensegrity-inspired structure, we expect longitudinal and rotational modes to occur.
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Figure 4.3: The vertical displacement magnitudes are extracted from locations (a),
(b), and (c), and the curl magnitude around the vertical axis is extracted for the
volume average of the RVE (d). From these magnitudes, we establish quantitative
thresholds of these values to distinguish between mode shapes of the dispersion
curve. We also show two examples of longitudinal modes where (e) the middle of
the RVE stays stationary, but the vertical displacement is large, and (f) the middle
and top of the RVE stay stationary, but the vertical displacement of the baseline
mid-cell locations is large.

This is because as the structure is compressed vertically, vertical deformation is
inherently coupled with rotation of the faces, as described in Chapter 3 and [[120].
Thus, it makes sense that the green coupling modes occur at the intersections of
the longitudinal and rotational modes in the dispersion curve. As we apply global
compression to the lattice, we will see how this coupling evolves. The longitudinal
(red) branches follow an unambiguous path, and clearly show a bandgap from 351
to 425 Hz, which is shown by the shaded region in Figure 4.2

Next, we experimentally reconstructed the dispersion characteristics of the un-
strained lattice. To do this, we excited the bottom plate (fabricated through the
four spherical nodes on the bottom face) of the 5-RVE 1D lattice specimen with a

one-cycle burst. The burst has a carrier frequency of 200 Hz and a wide frequency
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(d)

Figure 4.4: Mode shapes for the 1D RVE are shown. (a) Longitudinal, (b) rotational,
(c) flexural, (d) combined rotational and longitudinal, where both rotation along the
vertical axis and motion vertically are prevalent.

bandwidth, which tests a large frequency range with a compact signal. The laser
vibrometer recorded the velocity time history at each of the reflective tape locations,
repeating the measurement 128 times at each location and averaging to improve the
signal-to-noise ratio. The reflective tapes were placed at the intersection of each
baseline unit cell, as well as on the bottom plate, for a total of 10 measurement points.
We also employed a high-pass filter to eliminate all ambient noise at frequencies
lower than 100 Hz. This filtering step was required since the waves imparted by
the transducer onto the specimen are weak, owing to the fact that we are operating
the transducer very far from its peak frequency (100 kHz). Once we collected
the measured data into a time-space matrix, we obtained a frequency-wavenumber
data matrix by using a 2D discrete Fourier transform (2D-DFT). We performed
a zero-padding operation to the data prior to performing the 2D-DFT operation.
This interpolates along the wavenumber direction and improves visualization of the
results despite having only few spatial samples. The experimental dispersion curve

is given by the grayscale colormap of Figure 4.5

The dispersion branches of the experimental results are expected to connect
the locations of high velocity amplitude; those locations correspond to structural
resonances of the finite specimen [121]]. Since we have two measurement points per
RVE, one every a/2, the plot extends to k = 1/a instead of 1/(2a). Thus, prior to
overlapping the numerical longitudinal dispersion points onto the experimental data,
we “unwrap” the numerical curve about 1/(2a) [[122], obtaining the red markers
of Figure 4.5] The experimental and numerical results agree, with the numerical

dispersion following the maxima of the colormap (dark grey/black regions). In
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Figure 4.5: The colormap shows the experimentally-reconstructed dispersion plot
for longitudinal wave motion of the 5-RVE 1D lattice. We expect the dispersion
branches to follow the maxima of the colormap [121]]. We see a frequency region of
very low amplitude on the colormap from about 350 to 430 H z, indicating a bandgap.
The red circles indicate the “unwrapped” longitudinal wave mode locations from
the numerical COMSOL simulations.

particular, the slopes of the lower branch coincide. The bandgap region, highlighted
in the experimental plot by the absence of dark regions for vast frequency ranges,
fall in a similar range of frequencies. Note that the low velocity amplitude region
below 100 Hz is affected by high-pass filtering, and thus a clear trend is not seen in

this region.

The morphology of the modes before and after the gap highlight that the bandgap
is due to Bragg scattering effects [[123]: (i) the branch below the gap veers to zero
slope near a characteristic point of the Brillouin zone, and (ii) the two branches
delimiting the gap have opposite slopes. Bragg scattering produces bandgaps in
periodic systems when the wavelength approaches multiples of twice the size of
a characteristic repeating unit cell (i.e., RVE) [124]]. This occurs due to the fact
that two neighboring RVEs act as two identical scatterers in the lattice at a distance
a from each other. As an incoming wave with a certain frequency interacts with
two identical scatterers a distance a, the radiated waves from the scatterers interfere

destructively at certain wavelengths. The Bragg condition indicates when this is the
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case [124]:
nd =2a. “4.1)

Here, n is an integer. Thus, in our case, the Bragg bandgap appears at a wavelength
the same size as the RVE (1 = 0.0966m, or k = 10.352m™"), where n = 2.

4.2.2 Wave Speed Analysis and Comparison with Other Lattices

The longitudinal low-frequency wave speed of the 1D lattice can be readily
determined from both the experimental and numerical results. The numerical wave
speed is calculated by taking the slope of the dispersion curve in the low frequency
region where the curve is linear. Here, the group velocity is equal to the phase
velocity. The group velocity is the velocity of the wave packet of superimposed
propagating waves with different values of k, and is the slope of the dispersion
curve at any point. The phase velocity is the velocity of the phase of the wave with
the w and k of a point on the dispersion curve, and is calculated as Aw/Ak. We
calculate the phase velocity, which is the longitudinal wave speed, at k = 2.588m ™!
and w = 108.19Hz as 41.8 m/s.

The experimental (phase) velocity is measured from the velocity time histories
recorded at the first and last measurement locations on the lattice; we divide the
spatial distance between those locations by the difference between time of occurrence
of the same feature of the wave packet (in this case, a peak). Since the packet is
centered at 200 Hz, and since Figure {.2] shows that dispersive features appear
around 300 Hz, we expect this speed to be characteristic of the non-dispersive part
of the branch. An illustration of this calculation is shown in the x-t diagram of
the wave propagation in Figure 4.6l In this case, x indicates the spatial location of
the measurement points. The 10 measurement points are given on the horizontal
axis, and time is recorded on the vertical axis. The colormap shows the amplitude
of the laser vibrometer measurements. We zoom in on the first propagated wave
on the inset plot. Next, we find the times at the first and last locations where the
same feature of the wave packet has a maximum (red lines). From this, we calculate
the wave speed as 41.8 m/s. Hence, the simulation and experimental wave speeds
are extremely close in value. Considering that the numerical simulation models
an infinite lattice and the experiment uses a finite lattice, both the dispersion and
wave speed results match very well. Effects from the experimental setup are likely
minimal, and viscoelastic effects from the material do not contribute significantly,

which would manifest as observable energy loss in the waves [1235]].
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Figure 4.6: A position-time (x-t) diagram showing how the velocity amplitude
measurements from the laser vibrometer (given by the grayscale colormap) vary
with measurement location and time. This provides an experimental estimate of the
long-wavelength, low frequency wave speed. The inset plot zooms in on the first
propagated wave through the lattice, where we find the times at the first and last
locations where the same feature of the wave packet has a maximum (red lines).
The physical distance between these locations divided by the time difference gives
the wave speed.

It is useful to compare how this longitudinal wave speed compares with other lat-
tices with the same relative density and material properties as our tensegrity-inspired
lattice. Values for the longitudinal wave speed for a simple cubic, body-centered
cubic, face-centered cubic, octet, and Kelvin lattice with a relative density of 2.5%
and the same material properties as our structure are given in Table {.1][[126, [127].
All but the Kelvin lattice wave speeds are calculated from dispersion diagrams
in the same way we do in this work. The bulk wave speed in an isotropic, linear
elastic material is given by [[128]:

4.2)

E
co = —_
P

where E is the modulus of elasticity and p is the density of the material. For

lattice materials, this is a good approximation of the longitudinal wave speed at low
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Lattice Type Longitudinal Wave Speed (/)
Simple Cubic 943.8
Body-Centered Cubic 736.3
Face-Centered Cubic 654.1
Octet 437.5
Kelvin 195.0
Tensegrity-Inspired Structure 41.8

Table 4.1: Longitudinal low frequency wave speeds for other lattice types with the
same relative density and material properties as our tensegrity-inspired lattice. All
but the Kelvin lattice wave speeds are calculated from dispersion diagrams [[127]],
and the Kelvin wave speed is calculated from Equation §.2] [126].

frequencies where dispersive effects are negligible and the material behaves linear
elastically. This is used to calculate the wave speed of the Kelvin lattice in Table
4.1} whose relationship between density and modulus is given in [126]. As a simple
check, the value of the wave speed for our tensegrity-inspired lattice calculated from
Equation[4.2]is 46.4 m/s. This is comparable to the value of 41.8 m/s we extracted

from the experiment.

As we can see, the wave speed for our tensegrity-inspired structure is considerably
lower than the other lattices identified. It is only 3.5% of the constitutive material
wave speed (around 1180 m/s). The first four lattice types in Table are stretch-
dominated lattices, in that the members undergo stretch-dominated deformation.
The Kelvin lattice and our lattice are bending-dominated lattices. It is the case that
wave speeds are slower in bending-dominated lattices than stretch-dominated ones
for the same density. This is because the stiffness is higher for stretch-dominated lat-
tices, which is for a few reasons. First, in the stretch-dominated cases, the structural
members are aligned close to parallel to the longitudinal loading direction. In the
bending-dominated cases (Kelvin and ours), all of the members are at a steep angle
to the longitudinal direction. This produces a greater stiffness in the longitudinal di-
rection for the stretch-dominated cases. Second, the stiffness of a stretch dominated
lattice varies linearly with density for small densities (less than 10%); this is because
they can be approximated as trusses with no moments at the joints where Young’s
modulus and density vary linearly [129]. If a structure is bending-dominated, there
are moments at the joints, so Young’s modulus varies with a higher power than 1,
n, with respect to the density. So, when calculating the low frequency wave speed,

Equation 4.2]is a constant for stretch-dominated structures, but is a constant times
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density to the power n for bending dominated structures [[129]. This makes the wave
speeds considerably faster in stretch-dominated than in bending-dominated lattices

for the same low density.

The tensegrity-inspired structure wave speed is still lower than for a Kelvin lattice.
This is likely because the tensegrity-inspired structure also exhibits rotation of the
faces as is it compressed longitudinally, which creates a softening mechanism. It still
maintains stiffness, however, even with this softening, because it has the inclusion
of the struts under compression running through the interior of the unit cell. A
slow wave speed for lattices is desirable for dynamic applications because a slowly
propagating wave allows more time for dissipation to occur in the structure, due to
material and/or nonlinear effects. In impact cases, for example, the slow wave speed

allows more time for impacting accelerations and energy to be mitigated.

4.3 Tunability with Compression

The tensegrity-inspired lattice holds potential for continuous tunability of the
dispersion characteristics with global compression. The baseline structure exhibits
a non-linear, load-limiting response as it is compressed. The baseline unit cell
response varies slightly from the 1D RVE response, so in Figure we give the
global compressive stress-strain response of the 1D RVE with 3D stress elements
in ABAQUS. This best indicates how the lattice we are working with in this section
behaves under compression. With increasing compression, the structure deforms
dramatically, the struts buckle, and the stiffness of the structure plateaus to almost
zero. Thus, we expect the dispersion characteristics of the 1D lattice to change with

increasing axial compression.

To perform experiments with varying global compression, we needed to switch
to a 3-RVE lattice and support it with anti-buckling strings as described in Chapter
2. The 1D lattice effectively behaves as a slender beam (L/D = 10) with low
stiffness, corresponding to a low elastic buckling load and buckling strain. We
performed a simple linear perturbation on the 5-RVE lattice with the ABAQUS
beam element model to see this more clearly, as seen in Figure 4.8] With fixed top
and bottom nodes (as in the experiment), the buckling load for the first mode is 6.9
N, corresponding to a buckling strain of 5.3% (Figure [4.8(a)). When attempting
to compress the physical 5-RVE lattice, it visibly buckled before 5% strain. The
3D-printed structure inherently has imperfections, inducing buckling before the

theoretical load. The 2nd buckling mode (i.e., the first possible buckling mode
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Figure 4.7: The global compressive stress-strain curve of the 1D RVE under com-
pression, as outputted from the ABAQUS 3D stress element simulation. This best
indicates how the lattice we are working with in this section behaves under com-
pression. A visual depiction of the deformation in the structure is shown at 0, 0.2,
and 0.4 global compressive strain.

when the support strings are added at the center), has a theoretical buckling load
of 12.1 N, corresponding to a strain of 12% (Figure 4.8(b)). Again, the 3D-printed
structure with support strings would likely enter the 2nd buckling mode before 12%
strain due to manufacturing imperfections. Since our goal was to compress the

structure to 20% strain, we needed to reduce the size of the lattice.

Thus, we use a lattice with 3 RVEs and add strings at the center that connect
to four vertical, rigid rods. Both of these operations prevent the global buckling
of the lattice with compression. The strings prevent out-of-axis deformation, but
do not prevent movement in the longitudinal direction. They only prevent the
first buckling mode; the second buckling mode, the “s-shape” mode, occurs after

significant compression with the strings.

We performed the experiments at 0%, 5%, 10%, 15%, and 20% global com-
pressive prestrains. Above 20%, the structure globally visibly deforms into its
second buckling mode. Note that for future studies, second mode buckling could
be prevented by adding additional support strings. Another valuable metric for the

response of the lattice with tuning is transmissibility. The transmissiblity is the
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Figure 4.8: Linear perturbation buckling analysis of the 5-RVE lattice in ABAQUS
to show the loads and global strains for the (a) first and (b) second buckling modes.

ratio of the velocity amplitude at the output (last) measurement point to the velocity
amplitude at the input (first) measurement point for each frequency. When the input
and output have the same amplitude, the transmissibility is 1. For regions of high
amplitude attenuation, the transmissibility dips significantly below 1. The trans-
missibility plots are a better comparison between simulation and experiment for a
3-RVE lattice; they both compare finite lattices, rather than an infinite and a finite
lattice like for the dispersion plots. The experimental and numerical dispersion
curves and transmissibility plots are shown in Figure 4.9] for (a) 0%, (b) 5%, and
(c) 10% strain. Numerical results are shown in red, and the experimental results in
black.

Looking at the numerical dispersion we clearly see that, with increased com-
pressive strain, the bandgap width reduces and the slope of the acoustic branch
decreases, lowering the onset of the bandgap. The signature of bandgap closure that

can be read from the experimentally-reconstructed dispersion is the narrowing of
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Figure 4.9: Precompression-induced tunability. The left panel of each subfigure
represents the experimentally-reconstructed dispersion curve (gray colormap), with
overlapped circular markers corresponding to the numerical dispersion relation. The
right panel is the transmissibility plot, where the experimental curves are black and
the numerical ones are red. The dashed vertical line indicates a transmissibility of
1. The shaded gray and red regions serve as a guide to the eye and indicate what we
identify as bandgaps for the experimental and numerical curves, respectively. (a)
Lattice compressed to 0% global strain, (b) 5% global strain, and (c) 10% global
strain.

the peakless frequency region that extended from 340 to 440 Hz in Figure 4.9(a)
for 0% strain. Keep in mind that a perfect match is not attainable here, owing to the
fact that the numerics represent the response of an infinite lattice. A 3-RVE lattice
particularly produces noise in the experimental response; because of interference
from the close boundaries, multiple wave packets interfere with each other, making
distinguishing between them difficult and affecting the wave attenuation region. It
is clear that the longer, 5-RVE lattice produces a better match with the simulation
for 0% prestrain than the 3-RVE lattice, when comparing Figure 4.9(a) with Figure

The transmissibility plots, being representative of a finite-lattice response, show
an even better match between numerics and experiments. We first analyze the 0%
strain case of Figure [4.9(a), where we can see that the structural resonance peaks
between black and red curves almost coincide (with a minimal shift of 8 Hz). The
experimental response appears to be stiffer, likely due to differences in manufactur-

ing from the nominal geometry and material properties. The noisy nature of the
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experimental response below 100 Hz is again due to high-pass filtering. A strong
anti-resonance is visible for both numerics and experiments at around 450 Hz, and
we claim this to be a feature of the finite structure and not indicative of a bandgap.
From the curves, we define as bandgap the wide peakless region from about 340
Hz for the experiment and 450 Hz for the numerics where the transmission dips
below 10°. This attenuation region, shaded in red for the numerics and in gray for
the experiments, is in the vicinity of the numerical dispersion bandgap, yet slightly

wider, due to the finite nature of the lattice.

As we increase the strain to 5% and 10%, as shown in Figure 4.9(b) and (c),
respectively, anti-resonances and resonance peaks shift towards lower frequencies,
highlighting a global softening of the structure. Both the numerical and experimental
curves show increased resonance peak density and amplitude near the bandgap.
The valley identified as a bandgap in Figure 4.9(a) becomes increasingly narrow
and shallow for both simulation and experiment (see the evolution of the shaded
regions). The experimental bandgap most significantly shallows and narrows by 10%
strain. This confirms that global prestrain indeed causes the bandgap to diminish in

size.

We can also note that, as global prestrain increases, the shift between numerical
and experimental resonances increases (reaching 19 Hz in Figure 4.9(c)). This is
not surprising, as the difference between numerics and experiments is bound to
increase for larger prestrains, for several reasons. First, the material model used in
COMSOL is linear elastic, rather than hyperelastic, which affects the stiffness values
at higher strain levels in the lattice. At these levels, local strains may exceed the
region of negligible deviance from the linear elastic region. Second, buckling of the
structure could affect the response even before any buckling is visually apparent. In
fact, it is likely that buckling affects the structure’s response earlier than expected,
because even small imperfections from the fabrication process could induce out-of-
axis deformation. However, even though these differences exist, the numerical and

experimental results are quite comparable.

Figure .10 shows the full evolution of the dispersion properties from 0% to 20%
strain for numerics and experiments. The bandgap nearly closes, but then opens
again at 20% strain for the numerics. We can see the slope of the lower branch of the
dispersion curve reducing in both cases (shown by the lowering of frequency of the
dark grey regions in the experimental case). This indicates a reduction of the wave

speed. As expected, at the higher strain values of 15% and 20%, the experiments
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Figure 4.10: The longitudinal dispersion plots of both numerics and experiments
for prestrain levels from 0% to 20%. The prestrain levels are given in the lower
right-hand corner of each plot.

deviate most significantly from the numerics. Atthese levels of prestrain, identifying
the bandgap is increasingly difficult. For this reason, we consider the consistency of
numerics and experiments by tracking the evolution of the longitudinal wave speed
with prestrain, as shown in Figure[d.TT{(a). Both numerical and experimental results
show a 16% reduction of wave speed from 0% strain to 10% strain. As compression
is increased, the experimental results again show a stiffer response with respect to the
numerics, resulting in higher wave speeds. From 0% to 20% strain, the numerical
wave speed reduces by 27%, and the experimental wave speed reduces by 19%. The
already very low original wave speed of 42 m/s can be reduced about a quarter,
even before the structure enters its most significant nonlinear region (seen after
0.2 strain in Figure [4.7). Despite the quantitative discrepancies, our experimental
results qualitatively confirm that wave speed and bandgap can be continuously and

significantly tuned with prestrain in these tensegrity-inspired lattices.

Due to difficulties in bandgap identification for finite-size systems, we visualize
the bandgap evolution from only the numerical dispersion curve in Figure B.T1|(b).

Upper and lower bounds of the bandgap width, in Hz, are provided for 0%, 5%,
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Figure 4.11: (a) Experimental and numerical longitudinal wave speeds at varying
levels of global precompression. (b) Evolution of the bandgap width, in Hz, based

on the numerical dispersion curve. The bandgap region is shaded for strains up to
0.2.

10%, 15%, and 20% global strain, with the in-between sections shaded in red to
visualize the progression of the width. At no global precompression, the gap is
relatively large, from 352 to 425 Hz. As precompression is applied, the bandgap
narrows significantly and shifts to lower frequencies. Interestingly, at 15% strain,
the bandgap nearly closes and is only 7 Hz wide, from 323 to 330 Hz. The bandgap
then slightly opens again at 20% strain. This lattice shows that the Bragg scattering
bandgap can be significantly altered, again even before the structure reaches the

plateau of its stress-strain curve (after 0.2 strain in Figure [d.7)).

At this point it is valuable to note how these tunability characteristics can be
applied in a practical application. Acoustic lenses formed with periodic chains like
our 1D lattices have been shown to exhibit dramatic energy focusing effects [77,
[130] due to tunable wave speeds. The focusing effect arises from varying levels of
precompression or prestress in parallel chains of periodic elements and applying an
impacting wave to the strings of chains perpendicularly. Because the chains have

varying levels of precompression or prestress, they have different wave speeds; as
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they are compressed by the impacting wave, waves with different phase velocities
are generated in the chains, and the wave coalesce to a focal point in the adjacent
host medium [77, [130]. An illustration of this is shown for a case of tensegrity
chains with varying prestrain in Figure 4.12] [77]. In our case, these tensegrity-
inspired, 3D-printable lattices could be used to control waves in similar manners by

continuously varying precompression on parallel chains.

Mo
[+

Figure 4.12: F. Fabbrocino and G. Carpentieri demonstrated this example of a
tensegrity focusing lens [[77]]. The acoustic lens (1) consists of an array of tensegrity
and lumped mass chains, each subject to different prestress levels (2). The incident
wave signal (3) creates multiple waves with different phase velocities (4) within
the array. These waves come together at a focal point (5) in the adjacent medium
(6) [77]. A similar concept could be applied to the tensegrity-inspired lattices in
this thesis.

Another observation we made from this analysis was how the remaining mode
shapes, other than longitudinal, changed with increasing global prestrain. This
was observable in the numerical COMSOL simulations. The complete dispersion
curves for all modes and compression levels up to 20% strain are shown in Figure
M.13] Again, red circles are longitudinal modes, purple circles are rotational modes,
green circles are combined rotational and longitudinal modes, and the blue stars are
flexural and all other mode types. Each panel shows the level of compression in the

bottom right-hand corner.

We see several interesting attributes. From 0% strain to 5% strain, the upper
branch of the longitudinal curve becomes fully unambiguous because the rotational
mode distances from it. Also, the initial flexural mode flattens out and does not

increase from zero frequency until £ = 2. The flexural mode continues to flatten
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Figure 4.13: Complete COMSOL dispersion results for each level of compressive
prestrain (shown in bottom right-hand corner of each panel). Again, red circles are
longitudinal modes, purple circles are rotational modes, green circles are combined
rotational and longitudinal modes, and the blue stars are flexural and all other mode
types.

through 20% strain. The rotational mode also flattens starting at 15% strain and
continues flattening through 20% strain. These are zero energy modes, and they
indicate that there exist low frequency wave numbers where it is not possible for
anything but longitudinal waves to propagate at these compression levels. Interest-
ingly, the same kind of behavior has been seen in tensegrity lattices with buckling
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struts [87]. In that case, as prestrain is increased in the cables (analagous to the
application of global prestrain in our case), zero energy flat modes appear. This is
due to the fact that the struts have buckled in the lattice, leading them to become
“floppy” at low frequencies [87]. It is possible that the same concept applies for
our tensegrity-inspired lattices: as the compression level increases, the struts ap-
proach their buckling load and encounter less resistance, becoming “floppy” and

contributing to zero energy modes.

A second observation we make from Figure[d.13is that as compression increases,
the combined modes (green circles) become much more prevalent at the lower
frequency intersection of the rotational and longitudinal branches. The branches
themselves look as if they begin melding together. That is, instead of following a
clear path through the longitudinal branch, as compression is increased, the rota-
tional branch “jumps” from a lower frequency to higher after combining for a few
modes with the longitudinal branch (seen from 5% to 15% strain). Then, at 20%
strain, the pure rotational mode itself undergoes a large jump from about 74 Hz to
127 Hz. The rotational modes in between those frequency values have a significant
longitudinal contribution. It makes sense that there would be such coupling. As
stated previously, as the structure is compressed, the faces rotate, so there is auto-
matically some coupling between longitudinal motion and rotational motion. Then,
as the structure is compressed, this coupling in the frequency regime is increased
because the compression constricts how freely the structure is able to move. The
structure “wants” to move in a certain way, but the prestrain forces it to move dif-
ferently. We have observed in several ways how our tensegrity-inspired structure
is continuously and significantly tunable with compression, making it desirable for

dynamic applications where such tuning is required.

4.4 3D RVE Dispersion Characteristics

So far in this chapter, we have looked at only one-dimensional lattices and their
dispersion characteristics. This information is useful to understand the dynamics
of the tensegrity-inspired structure in a basic periodic arrangement, but in many
applications 3D lattices are required. They are more practical, especially for impact
applications, and they provide room for more heterogeneous wave propagation
attributes to manifest. The dispersion characteristics of 3D RVEs are therefore of

interest.

To find the dispersion curve of a 3D RVE, we build a model in COMSOL as
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described in Chapter 2. Recall that the 3D RVE of the tensegrity-inspired structure
is comprised of 8 baseline unit cells. Periodic Bloch boundary conditions are
applied on all x, y, and z faces (total of 24 faces) of the periodic RVE. Sweeping the

H
wavenumber (now the full wave vector, k) is more complex in the 3D case than the
é
1D case. Next, we give an overview of the general derivation of the wave vector, k .

The lattice vector in real space is:
H
R = niaj +noas + n3a3 (4.3)
where @] = a\X, a3 = a»y, and a3 = a3z. The reciprocal lattice vector is given by:
— - — —
G =m1b; +myby + ms3b3 “4.4)
where the basis vectors are shown in Equations {4.5] [4.6] and [4.7]
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Finally, the Bloch wave vector, k , is related to the reciprocal lattice vector by:

— — — —
k =uby+vby +wbs. 4.8)
The periodicity of our 3D RVE is simple cubic. Thus, its first Brillouin zone (the
uniquely defined primitive RVE in reciprocal space) is given in Figure .14 [131]],
and the reciprocal coordinates at each of the symmetry points, I', M, X, and R are

- -
shown. For the simple cubic lattice, the basis vectors for k and b are related by:

- 2 A - 2 ~ - 2 A
by="Tk. by="TRky b3=—"k.. (4.9)
a
Thus, following the path of the first Brillouin zone shown in Figure in COM-
SOL we sweep? as follows for the 7 regions of the first Brillouin zone. We find 20

eigenvalues for each value of the sweep.
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Figure 4.14: The first Brillouin zone of a simple cubic 3D RVE is shown in reciprocal
space. The path is given below the diagram. [[131]
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As done in [87], we normalize the frequencies of the dispersion relation in the
following way. We obtain the longitudinal wave speed in the bulk material by
the relation cg = \/E_/p For our material, E = 1.291GPa and p = 930kg/m?,
giving ¢o = 1178m/s. Then, we obtain a reference frequency, w,, by the relation
wy = co/a, where a is the characteristic length of the RVE. For a = 0.0966m and
co = 1178m/s, this gives w, = 12194.6Hz. Then, the normalized frequency is the
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frequency divided by the reference frequency, or Q = w/w,. This was done in [87]]
for the dispersion relation of a prestressed buckling tensegrity 3D RVE. In that case,
the normalization ensures validity of the dispersion relation for a range of tensegrity
truncated octahedron lattices, with a linear elastic material and the same geometric
cable and bar diameters with respect to the unit cell length, a. We do this here for

the same reason and to compare our results with the results from [87].

The numerical dispersion relation for the 3D RVE is given in Figure #.15] The
red dotted lines denote longitudinal pressure modes, and blue stars denote all other

modes. We see several interesting traits from the dispersion curve. First, the
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Figure 4.15: The 3D RVE dispersion relation is shown for all 7 regions of the first
Brillouin zone. Red dotted lines are longitudinal pressure modes and blue stars
are all other modes, including shear modes. The frequencies are normalized as
described in the text. We see that in the first longitudinal region, I'X, the low
frequency shear mode has a speed of 176 m/s, which is about twice as fast as the
longitudinal speed (89.6 m/s), unlike in natural solid materials. Also, the diagonal
wave speed in region I'R (334 m/s) is about twice that of the shear speed in region
rx.

low frequency shear wave speed in the first region, I'X, is in fact faster than the
longitudinal wave speed. This region is analagous to the direction studied in the

1D RVE analysis in the previous sections of this chapter. A faster shear speed than
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longitudinal speed is very rarely observed in natural materials [132]], but has been
observed in dilational metamaterials [[133] as well as 3D tensegrity lattices [[87]]

analagous to our own lattice.

Second, the steep longitudinal modes in regions M 1" and I'R are diagonal pressure
modes. These branches have a speed twice as fast as the shear speed in region I'X.
They have a speed of 334 m/s, the shear speed in region I'X is 176 m/s and the
longitudinal speed in I'X is 89.6 m/s. The longitudinal I'X speed is about twice the
longitudinal speed in the 1D lattice (41.9 m/s); this was also observed for buckling
tensegrity lattices in [87]. It is possible that the large Poisson’s ratio (initially 2)
contributes to the shear and diagonal speeds being faster than the longitudinal speeds.
A Poisson’s ratio greater than 1 means that the transverse motion essentially is
“stiffer” than the longitudinal motion, leading to faster wave speeds in the transverse
directions. Faster shear and diagonal speeds than longitudinal speeds indicate that
this type of lattice will exhibit unique waveguiding and/or lensing characteristics in

impact applications, even without the application of prestress.

Third, the low frequency rotational modes entirely disappear. This is likely
because rotation of the faces is significantly constrained in the 3D case, due to all

faces of each baseline cell being connected to an adjacent cell face.

For comparison, we show the 3D RVE dispersion relation for a buckling truncated
octahedron tensegrity lattice in Figure 4.16] as given in [87]. In this case, they look
at an RVE with a = 1.26 m, strut and cable diameters of 2.3 ¢m and 1.15 cm,
respectively, and made of titanium (E = 100 GPa and p = 4480 kg/m?>). The
lattice is slightly prestressed, but the struts are not fully buckled.

The dispersion relation looks remarkably similar to the dispersion relation for our
lattice (Figure[d.15)). The scaling of frequency varies between the two, but this is due
to the fact that our lattice has different cable and strut diameter ratios with respect to
the RVE length. In both cases, the shear wave speed (steep low frequency branch in
the I'X region of Figure {.16)) is faster than the longitudinal wave speed (shallower
low frequency branch in the I'X region of Figure 4.16). The longitudinal wave
speed also is twice that of the 1D lattice for both our structure and the tensegrity
structure. Also, the overall shapes of the dispersion curves are quite similar for
all 7 regions, with no low frequency modes in the last 3 regions in both cases. It
is intriguing that even for a 3D lattice in the dynamic regime, the response of our
tensegrity-inspired lattice behaves so similarly to a tensegrity lattice. This indicates

that our lattice is a readily fabricatable option (unlike true tensegrity lattices) that
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Figure 4.16: The 3D RVE dispersion relation for a buckling truncated octahedron
tensegrity lattice as given in [87]].

achieves the same desirable and unique characteristics that tensegrity lattices have

thus far only theoretically exhibited.

4.5 Chapter Summary

We have investigated the response of nonlinear tensegrity-inspired lattices subject
to low amplitude frequency excitation. We first examined 1D lattices, both experi-
mentally and numerically. At no precompression, the longitudinal dispersion curve
shows a Bragg scattering bandgap with a width of about 70 Hz and a very low wave
speed of around 40 m/s. This wave speed is compared to other lattices with the
same relative density and constitutive material, and our structure attains the lowest
wave speed by far, making it desirable for dynamic applications. Experiments and
simulations match very well at no precompression, but they stray from each other
increasingly with higher precompression due to global buckling effects, material
property differences, and manufacturing defects. However, both experiments and
simulations show significant and continuous tunability of dispersion properties with
global precompression. Since the deformation remains elastic even at large strains,
repeatable and active tuning of the lattice response is potentially achievable. Wave

speed reduces by about 25% by a strain level of 20%, and the bandgap shifts down
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and its width reduces dramatically. This high level of tunability makes the lattice
a good candidate for energy focusing or waveguiding applications, like in Figure
M.12] due to different wave speeds attainable in the lattice with varying levels of

precompression.

The 3D dispersion characteristics also show unique behaviors. The most signif-
icant finding is that the shear wave speed is twice as fast as the longitudinal wave
speed at low frequencies, which is rarely observed in natural materials. The diagonal
wave speed is twice as fast as the shear speed as well. Faster diagonal and shear
speeds than longitudinal speeds indicate the potential of even the unstrained lattice
to exhibit energy redirection of impact pulses. We will explore this in the next
chapter. Fascinatingly, our tensegrity-inspired lattice exhibits very similar disper-
sion patterns as buckling tensegrity lattices [87]]. Even in this dynamic regime, our
structure, which has fundamentally different deformation modes than a pin-jointed
tensegrity, attains similar desirable behaviors as real tensegrity structures, with the
added advantage of being easily fabricatable and testable. Although we have ex-
plored one geometric configuration in this chapter, we believe these principles can
be extended to other configurations to enhance the attainable dispersion attributes.
Two examples would be: (i) using these RVEs as springs connecting larger masses,
to create phononic systems with richer wave attributes [86]], and (ii) creating alter-
nate RVE configurations, such as those which tessellate in space with spatial gaps,

that can open more unique and extensive bandgap systems [72].
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Chapter 5

DYNAMICS: IMPACT

5.1 Introduction of Impact Studies

In the previous chapter, we studied the response of these tensegrity-inspired
structures under low amplitude wave excitation. We saw that they exhibit unique
dynamic characteristics, such as low wave speeds and tunable wave attenuation
with global compression. In this chapter, we examine the response of tensegrity-
inspired structures under impact loading. Lightweight, reusable materials are often
needed for many engineering impact applications, such as shielding for air and
spacecraft, electronic device protection, and wearables such as helmets. Often, the
mechanism used for energy dissipation in impact is plastic deformation [40, |134~
136]. However, this renders the material largely unusable for subsequent impacts.
We show in this chapter that tensegrity-inspired structures and periodic lattices
exhibit high energy absorption, elastic deformation under impact, and unique wave
propagation characteristics. This also corroborates recent theoretical and numerical

work in the area of tensegrity structures and lattices [16, (17,23, (71} (74} 76].

Three types of impact conditions are studied, each giving unique insight into
the structure’s behavior. In the first scenario, a long-duration pulse is exerted
on the structure by a heavy, falling mass. With drop weight experiments and
simulations, fundamental characteristics of the baseline unit cell and 1D lattices
are observed, such as load limitation, wave speeds, and elastic deformation. In
the second scenario, the specimen is dropped from a height such that it impacts a
rigid surface at an initial impact velocity, vo. In the third scenario, a short-duration,
high energy pulse is exerted on the top of the structure by a small falling mass
and the energy transmission characteristics are studied. In the second and third
scenarios, we study 1D, 3D1D, and 3D lattices. The extension to higher dimension
lattices gives insight into how energy propagates in transverse directions as well
as additional energy dissipation properties that cannot be observed in 1D lattices.
Sample drop experiments are performed on 1D and 3D1D lattices, and numerical

simulations are performed for the remaining studies.

The strain rates we study range from approximately 40 s~! for the long pulse

(drop weight) analyses, to 260 s~! for the short duration pulse analyses. This work
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therefore sits in the intermediate strain rate dynamic regime between quasistatic and
high strain rate dynamic situations, according to the table in Figure Inertial
forces are important to consider, as well as the effects of the test setup. In this

region, we study the propagation of elastic waves in the lattice structures.
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Figure 5.1: Classification of mechanical specimen testing according to strain
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rate. [[137]]

Some content of this chapter has been partially adapted from:

K. Pajunen et al. “Design and impact response of 3D-printable tensegrity-inspired

structures”. In: Materials & Design 182 (2019), p. 107966.
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5.2 Drop Weight: Long-Duration Impact

As shown in Chapter 3, tensegrity structures with buckling struts have a nonlinear
compressive response that exhibits load limitation. This characteristic applies to
their dynamic impact response, as shown in [23]. Forces within the structure plateau
as the struts reach their buckling load. Our tensegrity-inspired unit cell corresponds
to an equivalent tensegrity unit cell. Because our structure exhibits this load limiting
attribute as well, we expect the dynamic loads to not exceed that of the buckling
load of the structure (around 18.6 N). Drop weight experiments and simulations
are performed first on the baseline unit cell to demonstrate this and examine the
basic dynamics. We also assess the effect of the test setup and choice of material
in the experimental results and validate our dynamic simulations. Then, we study
1D lattices comprised of 5 baseline unit cells to see how the characteristics translate
beyond single unit cells. The drop weight tests are done with a large falling mass
at a low impact speed. The resulting long duration impact produces low strain
rates, allowing straightforward observation of the basic dynamic deformation of the

structure.

5.2.1 Baseline Unit Cell

Force Response and Observation of Load Limitation

We fabricated multiple baseline unit cell samples with a total height of 54.1 mm,
and a height of 48.3 mm from the top face nodes to the bottom face nodes. Due
to variation in manufacturing, several samples had member diameters significantly
lower or higher than the nominal diameters of 1.2 mm cables and 1.73 mm struts.
So, using a caliper, we took measurements of the cables and strut diameters for
many samples. For testing, we chose 4 samples that had average member diameter
measurements within 4% of the nominal member diameters and had no visible
defects.

Two masses of 100 g and 200 g were manufactured for the drop weight tests.
As explained in Chapter 2, ABAQUS dynamic implicit simulations were performed
to complement the experiments. As a preliminary analysis before validation, we
ran simulations to narrow down a range of velocities that would achieve sufficient
compression of the sample to at least 0.4 strain. Since the 100 g mass would
require very large drop heights to achieve the velocities needed, experiments were
performed with the 200 g mass. The 200 g mass also gave more repeatable impact

velocities for a given height.
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Figure 5.2: Force-time curves for the four baseline unit cell samples at an impact
velocity of 1.15 m/s, corresponding to an impact energy ratio, E;/E,,, of 0.4. This
shows the variance in the sample responses due to manufacturing differences.

The four samples were impacted with a 200 g mass three times at each impact
velocity. The impact velocity corresponds to an impact energy (E;), which is a
fraction of the maximum strain energy of the structure (E,,) before densification

(320 mJ). The impact energy is given by the kinetic energy of the falling mass:

1
E; = Em,~v;Z (5.1)

where m; is the impacting mass and v; is the impacting velocity.

To illustrate the variation in the 4 samples for a given velocity, the force-time
curves for an impact velocity of 1.15 m/s (E;/E,, of 0.4) is shown in Figure
The samples give comparable results, with some variation in peak force and impact
duration. Sample 3 is the stiffest, achieving the highest force during impact. Wave
speed shows a larger variance between samples. There is a short lag time before the
force increases from zero; this is the transmission time for the wave to travel through

the structure, and thus it determines the wave speed.

For the experiments, the lag time is determined by the time between when the
mass touches the structure and when the force sensor reading begins to increase.

The time when the mass touches the structure is a bit ambiguous due to significant
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Impact Speed 0.8 1.05 14

Sample 1 45.1 403 483
Sample 2 48.3 38.6 50.5
Sample 3 40.6 56.4 45.1
Sample 4 429 45.1 435

Average Wave Speed 44.2 444 47.1
Standard Deviation 9.2 9.1 7.2

Table 5.1: Wave speed measurements for each sample from baseline unit cell drop
weight tests. For each sample and impact speed, the average wave speed from 3
tests is given. The wave speeds are averaged for all samples at each impact speed,
and the standard deviation of the values is given. All units are m/s.

noise in the accelerometer data. This noise, combined with the short distance to
travel and short lag time, make the wave speed difficult to accurately report for single
unit cells. Average wave speed measurements for the 4 samples at selected impact
speeds are shown in Table[5.1] The standard deviation of the measurements for each

impact speed is also given. From this, we see that the spread of values is significant.

We also see in Table[5.I|the interesting result that the wave speed does not clearly
increase or decrease with increasing impact speed. This is explained by considering
the duration of the impact. For these drop weight tests, the impacting mass is very
large (58 times more than the structure), and the impacting velocity subsequently
low. Because of this, the impacting pulse is a long-duration pulse, lasting the entire

time span of the compression of the sample.

To illustrate this, the result of a test on Sample 3 at an impact velocity of 0.8
m/s is shown in Figure[5.3(a). The applied force as derived from the accelerometer
data is shown by the dashed-dotted line, and the transmitted force as measured by
the force sensor on the bottom of the structure is shown by the solid line. We can
see that the impacting pulse lasts for the duration of sample compression. Because
of this, the applied force is approximately the same as the transmitted force, by
conservation of momentum. The Fourier transform of the applied force signal is
shown in Figure [5.3(b). Because of the long-duration, low amplitude pulse, the
pulse contains predominantly a small range of very low frequencies below 100 Hz.
Since the frequency components of the signal are below 100 Hz, they all travel
without dispersion in the linear region of the longitudinal mode of the dispersion
curve. As such, the wave speed remains consistent for a wide range of impacting

velocities due to the long-duration pulse. This is the case for the baseline unit cell
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Figure 5.3: An experimental result for Sample 3 at an impact velocity of 0.8 m/s,
corresponding to an impact energy ratio, E;/E,,, of 0.18. (a) The applied force
on the top of unit cell derived from accelerometer measurements is shown by the
dashed-dotted line, and transmitted force measured by the force sensor on the bottom
of the unit cell is shown by the solid line. (b) The discrete Fourier transform of the
applied force.

experiments as well as the 1D lattice experiments with the long-duration pulse. The
wave speeds found in Table are also consistent with the wave speed of 40 m/s

from the dispersion curve.

ABAQUS dynamic implicit simulations were performed to complement the ex-
periments. Also, validation of the dynamic simulations allows them to be used in
studying the behavior of higher dimensional lattices with different loading cases.
First, we compared the results of the beam element and the 3D stress tetrahedral
element ABAQUS models. Figure [5.4] shows the result of each simulation for a
0.8 m/s impact. The responses differ slightly, most markedly in the amplitude of
oscillation. Inertial effects come into play in the dynamic case. The spherical joints
are modeled as rigid beam elements with the same moment of inertia as the spheres,
but there will be some differences inherent by the contrasting modeling methods.
This likely plays a role in the amplitude of oscillation of the response. Also, the

impact time is shorter for the beam element simulation. As seen in Chapter 3, the
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beam element model is slightly stiffer than the 3D tetrahedral element model, so the

shorter impact time is expected.
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Figure 5.4: Beam element and 3D tetrahedral element ABAQUS dynamic implicit
simulation results, which show the force-time response on the bottom of the structure
for an impact velocity of 0.8 m/s (E;/E,, = 0.18). The lag time, the time for the
wave to pass through the structure initially, is the same for both simulations.

The lag time is the same for both simulations, with a corresponding wave speed
of 78 m/s. During the first wave transmission, the structure has not had time to
deform significantly, and as such, the structure’s density and initial linear elasticity
generate the wave speed. Also, the numerical initial conditions possibly influence
the numerical wave speed; this and dissipation in the experiments likely account for
the higher wave speeds for the numerics. Since these characteristics are the same

for both simulations, it makes sense that the tetrahedral elements and beam element

simulations show the same lag time.

The beam element simulation produces results in significantly less runtime than
the 3D tetrahedral element simulation. Since the results for both simulations, both
quasistatic and dynamic, are comparable, all dynamic simulations are performed
using beam elements moving forward. This allows straightforward and computa-

tionally feasible numerical modeling of multidimensional lattices.
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Next, we examine the evolution of the force-time response with increasing impact

energy. The force-time results (at the bottom of the unit cell) for experiments on
Sample 4 and ABAQUS simulations at four impact energies are shown in Figure
5.5l ABAQUS beam element dynamic implicit simulation results are given by the
dashed lines and the experimental results are given by the solid lines. For the sake

of visual clarity due to differences in lag time, we set ¢ = 0 to when the force begins
to increase for each curve.
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Figure 5.5: The force-time response of the structure (Sample 4) at varying impact
energies, as a ratio of the impact energy to the maximum strain energy of the
structure before densification. Impacting velocities are also shown, corresponding
to the impact energy ratios. The solid lines are experimental curves and the dashed

lines are results of the ABAQUS beam element simulation. The force plateaus to
the structure’s buckling force as the impact energy increases.

There are oscillations in the force response, both during loading and unloading,

but more distinct during loading. These oscillations are due to the stress wave
travelling back and forth within the structure, vibration of the struts, and rotation
of the structure’s faces during compression. Videos of the experiments show that

the structure’s top and bottom faces do not smoothly rotate with time, but rotate in
distinct stages, contributing to oscillations in the reaction force.

At the lower impact energies, the structure does not compress enough to enter

the buckling region, so the response does not plateau from buckling. At higher
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impact energies, most noticeably at an impact energy ratio of 1, there is a significant
plateau in the force response, as the strain approaches over 40%. The structure’s
dynamic response thus exhibits load-limiting: the maximum forces do not exceed
the buckling load of the structure (about 18.6 N).

In general, the simulation and experiments agree favorably, showing similar be-
haviors, such as impact duration and maximum forces. However, there are differ-
ences between the simulations and experiments in Figure [5.5] The curves match
well during the loading phase, but during unloading the experimental curves drop
quickly while the simulation curves mirror their loading phase. In the experiments,
energy is dissipated due to internal friction (hysteresis). Due to this, the response
is less oscillatory, and the unloading curve loses energy. We examine the loss of
energy in the experiments later in this section. The beam element simulation in
ABAQUS does not consider hysteresis or plasticity in the material, so the loading
and unloading sections do not differ significantly. Thus, the plateau is more readily
observed in the simulation. We do not apply hysteresis in the simulation because
hysteresis is not implementable with beam elements within ABAQUS. Addition of
the hysteresis term would be possible with the full 3D stress simulation. However,
beam elements are required for lattice simulations, where the model size would be-
come significantly larger, and full 3D stress simulations would become impractical.
Although the simulations are a good representation of the response of the structure,
we recognize that experiments are necessary in order to obtain behavior that the
simulation cannot provide. Also, it is valuable to note that experimental samples
can vary significantly, so a comparison of several samples with the numerical results

is important.

Before comparing the results of samples at increasing impact energy, first we
examine how the quasistatically equivalent pin-jointed structure compares in the
dynamic regime. We found the dynamic response of the pin-jointed structure using
the approach developed in [23]]. The results of the pin-jointed tensegrity simulation
for two impact energies are shown in Figure [5.6(a) in dotted lines, along with the
ABAQUS beam element simulation results in dashed lines. We can see that the pin-
jointed response agrees favorably with the spherically-jointed structure response.
They correspond very well at the low impact energy, when the structures’ stiffnesses
are linear. However, at the high impact energy, the pin-jointed response has a slightly
higher force and shorter impact time than the ABAQUS simulation. Overall, the

structures behave similarly with nonlinearity due to buckling in the struts, and they
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both exhibit load limitation.
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Figure 5.6: Dynamic results of the quasistatically equivalent pin-jointed baseline
unit cell and the beam element simulation of the spherically-jointed structure. (a)
Comparison of the pin-jointed structure simulation (dotted lines) and the spherically-
jointed ABAQUS beam element simulation (dashed lines) for two impact energies.
(b) Deformation of the structure from the beam element simulation at maximum
compression during a 1.8 m/s impact. (c¢) Deformation of the structure from the
pin-jointed simulation at maximum compression during a 1.8 m/s impact.

It is fascinating that the pin-jointed and spherically-jointed structures behave sim-
ilarly even in the dynamic regime. Figure [5.6(b) and (c) show the shape of the
deformation at maximum compression during the 1.8 m/s impact for the beam
element and pin-jointed simulations, respectively. It is clear that the struts bend
significantly in both cases, but the entire structure is bending dominated in the beam
element case. Also, the spherically-jointed structure has significant inertia contri-
butions at the nodes due to the spheres, which do not exist in the pin-jointed case.
Aside from the difference in deformation mechanisms, the lower maximum force
(and longer impact time) for the 1.8 m/s impact of the beam element case could be
partly due to the added inertia from the spheres. The similarity of the two struc-
tures again shows that our tensegrity-inspired structure is an easily manufacturable

structure that exhibits the same unique and desirable characteristics of tensegrities.

Now we compare the results of the four experimental samples with increasing
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impact energy. Figure [5.7) shows results of the 4 tested samples along with the
ABAQUS and pin-jointed simulations. Each sample was tested 3 times at most
impact energies, and the maximum force was recorded for each test. Error bars are

shown for impact energies that were tested 3 times. The maximum force increases
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Figure 5.7: The maximum force exhibited by the tensegrity-inspired structure as a
function of both the impact energy ratio and impacting velocity. The experimental
results of 4 samples are shown with error bars. The ABAQUS beam element simu-
lation results and the pin-jointed simulation results are also shown for comparison.
In the inset plot, the force and impact energy ratio are given to the origin in order
to observe the significant plateau of the maximum force. The plateau begins at
energies well below the maximum energy capacity of the structure (E;/E,, = 1).

with the impact energy ratio, but a distinct plateau is observed. The plateau is
markedly seen in the inset plot, which shows the curves to an impact ratio of 0.
This shows that the desired load-limiting characteristic not only is present, but
is exhibited beginning at impact energies significantly lower than the maximum
energy capacity of the structure (E;/E,, = 1). Also, the experimental results for all 4
samples agree favorably with the simulation results. Variation between the samples
is acceptable. This plateau behavior is analogous to the behavior of the maximum
force with impact energy for the pin-jointed buckling tensegrity structure described
in [23]].
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Analysis of Energy Loss During Impact

Next, it is important to consider energy loss during impact of the baseline unit
cell. In Figure [5.8] the experimental global longitudinal stress-strain curves for
varying impact energy ratios are shown. Ej is the dissipated energy as a percentage
of the impact energy, and is the area within the stress-strain curve loop. If there
was no dissipation during impact, for example, the loading and unloading curves
would be identical, and the stress-strain loop area would be zero. It is clear that
energy dissipation is substantial even at low impact energies. This dissipation could
be due to factors such as internal friction (hysteresis), plastic deformation, and

friction/damping in the test setup.
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Figure 5.8: Experimental dynamic stress-strain curve during impact of the test
structure (Sample 4). Stress and strain here are the effective global stress and strain
in the direction of vertical impact. The energy dissipated as a percentage of the
impact energy is listed for each impact energy ratio.

By comparing the loss of momentum in experiments with two different impacting
masses, we can evaluate the effect of the test setup in energy loss. The same impact-
ing momentum can be achieved with different impacting masses by appropriately

changing the impacting velocity, as given by the equation:
Pi =m;v; (5.2)

where m; is the impacting mass and v; is the impacting momentum. We ran several

experiments keeping both momentum and energy constant for two impacting masses.
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An example is shown in Figure [5.9] In this case, impacting momentum is held
constant at 0.23Ns. The force-time curves for Sample 3 for the 100 g and 200 g
masses are shown. The area under this curve gives the total momentum absorbed
during impact. For no dissipation, the area under the curve would be 2p;. For
the 100 g mass, the absorbed momentum is 0.386N's, and for the 200 g mass, it is
0.376N s, for a percent difference of 2.6%. Both cases dissipate about 17% of the
momentum from the impact. Because two masses are used, forces such as friction
and drag inherently differ between the two tests. However, these forces appear to be
negligible, since momentum absorption is approximately the same for both masses.
We found this behavior to be consistent for other samples and impacting energies as
well. The agreement between the two experiments indicate that the test setup does

not contribute significantly to energy loss during impact.
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Figure 5.9: To evaluate the effect of the test setup on energy loss, the force-time
results of two experiments with a constant impacting momentum of 0.23Ns are
given. The area under the curves gives the total momentum absorbed during impact.

Another possible source of energy loss is plastic deformation. For repeated impact
applications, one desirable characteristic of tensegrity structures is that they remain
elastic even under high deformations. Since an objective for our tensegrity-inspired
structure is to be reusable even under high deformation, plastic deformation should
be kept to a minimum. As seen in Figure[5.8] for the lower three impact energies,
strain after unloading is effectively zero. For E;/E,, = 0.81, there is about 3%
remaining strain, but this is immediately after the mass separates from the structure.
When the remaining strain is measured one minute later, the remaining strain is

significantly less than 1%. This lag in strain is due to the material’s viscoelasticity.

In Table[5.2] the remaining strain after 24 impacts and after each impact for a wide
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Total After Average After
24 Impacts Each Impact

Sample 1 1.76% 0.06%
Sample 2 1.66% 0.11%
Sample 3 3.18% 0.15%
Sample 4 2.52% 0.11%
Average 2.28% 0.11%

Table 5.2: The total remaining strain after 24 impacts for each sample, and the
average remaining strain after each impact. The structure undergoes little plastic
deformation, even after many impacts, showing the resilience and reusability of the
structure.

variety of impact energies is shown for the four samples. After each impact, the
remaining strain averages less than 0.2%, showing very little plastic deformation.
Even after 24 impacts, the remaining strain is, on average, 2.28%. This shows that
the structure is reusable and quite resilient to repeated loading, even at increasing
impact energies. As an illustration of the elasticity of the structure, a series of
images from a drop weight test with an E;/E,, of 1 is shown in Figure The
5 images are taken at increasing times up to #;,,, which is the total time of impact.
The structure compresses to about 0.5 strain at the time of maximum compression
(t = 0.5t;p). At t;,, when the mass separates from the structure, the structure
very nearly recovers its initial height. As described in Chapter 3, rotation of the
faces with compression, constant cross section in the members, elastic buckling in
the struts, and the slender beams produce low local strains in the structure. We have
shown that this property translates into the dynamic regime, giving our tensegrity-
inspired structure the unique capability of remaining elastic under high and repeated

dynamic deformation.

The structure maintains the tensegrity characteristic of an elastic response under
high deformation. Because there is little plastic deformation, the dissipated energy
during the impact is almost entirely due to hysteresis in the material. This indi-
cates that for materials with different viscoelasticity and hysteric properties, energy

dissipation could be significantly reduced.

Energy Absorption Comparison

Although the designed spherically-jointed structure has not been optimized for

