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ABSTRACT

Tensegrity structures and lattices have been of interest in engineering applications for
decades, with their dynamics becoming a thriving field of study. Tensegrities consist
of structural members under purely axial loading, either tension or compression,
and obtain their stability from prestress. They possess unique characteristics such
as high strength-to-weight ratio, nonlinear behavior, and elastic response under
severe deformation. Tensegrity lattices (or metamaterials) have been shown to
exhibit appealing dynamic attributes such as continuous tunability with prestress,
impact mitigation, energy trapping and lensing, and nonlinear wave propagation, to
name a few. However, their pin-jointed and prestressed nature presents significant
manufacturing limitations, especially in the formation of lattices with large numbers
of tessellated unit cells. Therefore, experimental validation of the dynamics of
tensegrity metamaterials has remained elusive. For lattices with tensegrity-like
characteristics to be manifested for real-world applications, a method for producing
tensegrity-like metamaterials at multiple length scales is needed.

In this thesis, we present a design for a 3D-printable tensegrity-inspired structure
with the equivalent strain energy capacity and stress-strain response as a pin-jointed
tensegrity. Using this structure as a building block for multidimensional lattices,
we subject them to a range of dynamic loading conditions to study their response.
First, we perform experiments and simulations to obtain the dispersion relations for
1D and 3D lattices. We demonstrate the lattices’ ability to continuously tune the
dispersion characteristics (e.g., band gap and wave speed) under precompression.
This trait shows potential for acoustic lensing and dispersive wave propagation. In
3D, we show that the lattice shows the same type of unique properties, such as
faster shear speed than longitudinal speed, as pin-jointed tensegrity lattices. Next,
we study the lattices under impact loading. Long-duration impact experiments on
baseline unit cells and 1D lattices show their resilience to repeated deformation,
elasticity, and load limitation behaviors. Short-duration impulse experiments and
simulations exhibit a wealth of desirable properties, such as high force transmis-
sion reduction, highly dispersive wave propagation, tunable wave speeds, energy
trapping, and redirection of energy. We demonstrate that these tensegrity-inspired
metamaterials not only exhibit and experimentally demonstrate tensegrity-like char-
acteristics, but open a new range of lightweight metamaterials with unprecedented
dynamic properties.
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C h a p t e r 1

INTRODUCTION

This thesis presents the design and dynamic investigation of a new type of lightweight,
3D-printable, periodic lattice, which we term “tensegrity-inspired metamaterials.”
Tensegrity structures are a type of structural system where the structural members
carry pure axial loads and the system derives its stability from member prestress.
They have been shown to be very appealing for both static and dynamic applica-
tions due to their unique properties. The structures’ geometric complexities make
them difficult to manufacture, so using them in a range of real-world applications
has remained either complex or infeasible. In this work, we present the design of
a 3D-printable structure that exhibits the desirable characteristics and mechanical
behaviors of tensegrity structures. Then we examine the dynamics of multidimen-
sional periodic lattices with tensegrity-inspired building blocks, exhibiting their
extraordinary tensegrity-like properties that present themselves, experimentally and
numerically, in both vibration and impact scenarios. In this introduction, we give an
overview of tensegrity structures and their use in dynamic applications, the motiva-
tion to develop 3D-printable lattices with tensegrity characteristics, and an overview
of the goals and organization of this thesis.

1.1 Background and Motivation
1.1.1 Introduction to Tensegrity Structures
The term “tensegrity,” coined by Buckminster Fuller, is acquired from the com-

bination of “tension + integrity.” This indicates that the structural integrity of a
tensegrity structure is derived from the balance of its tensile members [1], which,
under prestress, hold the compressive members stable. Thus, tensegrity structures
have been described as islands of compression among a sea of tension [2]. An
example of a tensegrity structure is shown in Figure 1.1. They consist of two types
of axially-loaded, pin-jointed members: isolated, rigid struts in compression and a
continuous arrangement of cables in tension. Tensegrity structures appear similar
to truss structures, but have the important difference that they must carry prestress
in the members to carry external load [3].

In the 1960’s, Kenneth Snelson created several new art sculptures that employed
the tensegrity concept, and it took off as an art form [4]. New types of civil
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Public Domain

Figure 1.1: An example of a tensegrity structure, held by Buckminster Fuller who
coined the term “tensegrity.”

engineering structures such as bridges began being built with tensegrity members
instead of traditional truss members. It soon became recognized that the tensegrity
concept was a good model of several biological systems, such as bones and tendons
in the body, aswell as biological cellular structures [5–7]. In fact, tensegrity has been
called the “architecture of life,” as its set of structural rules seem to guide the design
of organic structures, ranging from carbon compounds to large scale biological
structural components [8]. Why, then, did nature choose tensegrity structures as
its structural basis for life? Studies of these structures for the last several decades
have continued to show their advantages: they are self-stable, extremely lightweight
(very important for space applications), energy and mass efficient, can store strain
energy for deployment, robust to failure, can undergo multiple loading cycles, and
able to withstand large deformations while remaining elastic [9–22]. It is clear,
then, that tensegrity structures have been very appealing for mechanical structural
applications for several decades.

Tensegrities used as load-bearing structures can achieve high load capacity with
a minimal amount of building materials [8, 11, 23]. Their quasistatic response
naturally exhibits nonlinearity; this is due to rigid rotation of the struts and effects
from prestress [16]. This nonlinearity leads to unusual properties, like extreme
softening/stiffening, high tunability with prestress, and even locomotion [16, 24–
29]. Until the last decade or so, tensegrity structures remained in the realm of
load-bearing and quasistatic mechanical systems. However, in recent years the
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unique characteristics of tensegrities have greatly increased the interest and study
of tensegrity structures for dynamic applications, which we describe next.

1.1.2 Dynamics of Tensegrity Structures and Lattices
In the arena of dynamics, structures and materials are called upon to protect

sensitive objects from damaging loads, be it vibrational or impact loads. Tensegrity
structures have a unique capacity to achieve this end by means of their nonlinear-
ity, low densities, reusability, and other exceptional properties. A straightforward
example of their use in this area is for planetary landers. For the last few years,
significant studies of tensegrity structures as potential landers for extra-terrestrial
applications has been of great interest [23, 30–35]. Tensegrity landers present sig-
nificant advantages over other lander systems (e.g., balloons, parachutes) because
they are robust to failure, carry distributed load throughout the structure (character-
istic of tensegrities), are tunable, can impact at any angle, are lightweight, and are
deployable [36]. For an impact landing, the kinetic energy from impact is stored
as elastic strain energy, instead of inducing plasticity or damage [23]. Thus, if an
object, such as a camera, was suspended in the center of the tensegrity, it could be
protected, as well as being able to “see” out of the tensegrity [36]. An example of
this is seen in Figure 1.2: a tensegrity lander impacts the ground with a protected
payload at the center. Because of the high stored elastic strain energy, the tensegrity
bounces several times before stopping, allowing it to not only withstand impact, but
also traverse terrain passively.

Figure 1.2: A rendering of a tensegrity planetary lander impacting the ground,
suspending a protected payload (e.g., a camera) in the center [32, 36].

Tensegrity structures have been of interest in the dynamic regime not only as single
structures but also as periodic lattices. Lattices are lightweight structural systems
featuring architected assemblies of simple structural elements [37]. Metamaterials
refer to structural systems/materials that exhibit properties not found in natural
materials or structures. Thus, if they exhibit such properties, periodic lattices are
often referred to as metamaterials. Structured metamaterials composed of periodic
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arrays of architected building blocks have been recently explored as alternatives to
stochastic foams in energy absorption and impact mitigation applications [38–41].
Metamaterial building blocks exploit local deformations, like buckling of members,
to convey unique global properties to the bulk lattice. Metamaterials are of interest
for the aim of creating mechanical material-like devices that exhibit tunable acoustic
band gaps, shock protection, energy lensing/focusing, impact mitigation, and energy
trapping for a wide range of applications [42–47]. The selection of appropriate
building block geometries allows tailoring the mechanical properties to achieve
desired characteristics.

Periodic metamaterials also present interesting elastic wave dispersion character-
istics. For example, they can be engineered to propagate elastic waves at desired
direction-dependent wave speeds [48–52], and they can be designed to feature
bandgaps, i.e., frequency ranges of strong wave attenuation [48, 49, 53–55]. In clas-
sical periodic lattices, bandgaps are predominantly of the Bragg scattering type [48]:
when lattices feature additional/auxiliary structural elements located within each
unit cell, they also feature locally-resonant bandgaps at the resonance frequencies
of said auxiliary microstructures [54, 56, 57]. Typically, the wave properties of
lattices are set in stone after fabrication. This limitation can be lifted for specific
lattice structures, typically made of soft materials, that display buckling-induced
phase transitions and therefore can change shape in response to external mechanical
forces [58–62]. These lattices typically feature a discrete degree of tunability, since
they can only transform into a finite number of geometrical configurations. More-
over, their soft nature makes practical realizations challenging [61], since damp-
ing tends to dominate these systems’ wave response [63]. Continuous tunability,
whereby the wave properties can be swept within a geometry-dependent interval, is
usually not attainable in lattice structures, unless they are soft [64], or endowed with
multifunctional capabilities and the tunability is induced by an external stimulus
such as an electric field [65, 66], temperature [67, 68] or a magnetic field [69, 70].

The unique static and dynamic behavior of tensegrity structures make them ap-
pealing as metamaterial building blocks, and so they are gaining increasing attention
in this area [23, 71, 72]. Tensegrity structures can be tessellated into lattices that are
extremely lightweight, featuring unique characteristics such as the ability to support
large global prestrains [17], and to function as effective energy absorbers [73]. They
have also been shown to exhibit load-limiting, non-linear characteristics when the
bars are designed to elastically buckle [23]. This greatly influences the dynamic
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characteristics of lattices formed with these tensegrity unit cells. One-dimensional
chains of tensegrity unit cells have been shown to possess unique nonlinear wave
propagation, such as highly localized solitary waves [74–77]. Under dynamic load-
ing, tensegrity lattices have been shown to be impact tolerant and possess unique
nonlinear responses [23, 78–84].

Tensegrity lattices also display phononic characteristics and Bragg scattering
bandgaps. Most importantly, they present extra-ordinary tunability attributes: their
dispersion characteristics can be altered by varying the degree of pre-tension of the
cables [72, 85–87], or by applying a global prestrain to the whole lattice [86]. With
respect to other lattice architectures that feature mechanically-tunable bandgaps,
tensegrity lattices are particularly appealing for their large degree of tunability,
stemming from the fact that they can sustain large prestrains, and for their continuous
tuning attributes.

Figure 1.3: Load displacement plot for a titanium strut with density of 4480 :6/<3,
Young’s modulus of 91 �%0, external diameter of 19 mm, and thickness of 1 mm.
The results are shown for the elastic continuum solution and the discrete buckling
model developed in [23].

The traditional definition of a tensegrity structure assumes that the struts are rigid,
are not free to buckle, and do not store energy [35, 88–95]. Tensegrity structureswith
elastically buckling struts have been recently studied using physics-based reduced-
order models, and their mechanical response has been characterized under static
and dynamic loads [23]. In this case, the struts undergo large deformation due
to buckling, contributing to the strain energy of the structure. There are many
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advantageous properties associated with this. First, the load is distributed among
all the members in the structure, increasing structural efficiency. Second, the
strain energy capacity of the structure (the area under the stress-strain curve) is
dramatically increased because the stress-strain curve plateaus due to buckling in
the struts. Finally, the structure can undergo severe deformation and recover its
initial configuration upon unloading due to elastic buckling in the struts [23].

Lattices formed by tessellating these buckling tensegrity structures in 1, 2, and
3 dimensions have been shown to possess superior static and dynamic mechanical
properties [71, 87]. Under impact loading, wave propagation is highly dispersive
and asymmetric in these lattices, and show potential for stress-wave management
and energy mitigation [71]. Multidimensional lattices formed with these buckling
tensegrity unit cells also exhibit unique dispersion characteristics, which are con-
tinuously tunable with prestress [87]. Such characteristics include very low wave
speeds, sharp phase transitions, existence of flat bands and zero energy modes, and
faster shear wave speeds than longitudinal speeds.

Despite these sought-after dynamic characteristics, experimental studies on the
dynamic behavior of tensegrity metamaterials are virtually nonexistent. This orig-
inates from the fact that (i) they are difficult to fabricate and assemble due to their
pin-jointed and prestressed nature, (ii) assembled systems can introduce spurious
propagation modes if cables and bars are not properly bonded, (iii) accurately apply-
ing local or global prestrains without affecting the quality of the measurements can
be challenging. A way to manufacture such lattices for applications and experimen-
tally corroborate existing theoretical studies on these structures has thus remained
elusive. Most work has relied on manual prestress and assembly [18, 35, 80, 96].
However, in multidimensional lattices, especially at decreasing length scales and
with potentially thousands of members, this approach quickly becomes impractical.

1.2 Goals and Organization
We recognize the great potential that tensegrity metamaterials hold for dynamic

applications, but, from what we can find in the literature, studies have almost
exclusively remained in the realm of numerical and theoretical studies to this point.
If tensegrity-like characteristics are to be manifested for real-world applications,
and the research has indicated this desire, a method for producing tensegrity-like
structures as multidimensional lattices at multiple lengths scales is required. It
may be possible to mimic pin-jointed behavior and control prestress using multiple
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materials [27], shape memory materials [97], differential thermal expansion from
multiple materials [98], or induced residual stresses from varying laser intensity
[99]. However, all these options require some type of post-processing or a certain
manufacturing method. An ideal solution to this manufacturing issue would rely on
3D-printing with a single material and no post-processing, which would enable the
production of lattices with a variety of fabrication methods at a large range of length
scales.

The goal of this research was to develop a method to obtain an “equivalent” 3D-
printable, fixed-jointed structure as a pin-jointed, buckling tensegrity, tessellate the
structure intomultidimensional lattices, and investigate their dynamic characteristics
under both vibration and impact loads. When we refer to the 3D-printed structure
being “equivalent” to a pin-jointed tensegrity, this means that the two structures
have equivalent strain energy capacity and compressive response. By doing this, we
fill the gap in the literature and provide an experimental manifestation of the unique
characteristics of tensegrity structures and lattices that have been discovered in re-
cent years. We note here that although the 3D-printed lattices we design are inspired
by tensegrity structures and exhibit remarkable tensegrity-like characteristics, our
lattices can best be thought of as a new type of extremely lightweight, nonlinear,
energy absorbing metamaterial in its own right. This is because the structure is fun-
damentally different (bending dominated) and shows desirable characteristics that
tensegrity structures do not. Tensegrities provide the jumping-off point for obtain-
ing a new class of 3D-printable periodic lattices with properties not yet obtained by
traditional designs. In this thesis, we refer to the 3D-printable, tensegrity equivalent
lattices as “tensegrity-inspired” lattices.

This thesis is organized such that it progresses systematically from building block
design and quasistatic response to increasingly complex lattices and their response
to various dynamic loads. To begin, Chapter 2 provides a toolset for understanding
this range of studies we performed on the tensegrity-inspired structures. We give a
detailed description of all numerical and experimental methods we used throughout
the thesis. The majority of studies are performed and validated with both experi-
ments and simulations, except for the most complex dynamic loading case. In that
case, the validated simulations are used to infer the behavior of the lattices.

In Chapter 3, we provide a detailed description of the design methodology we
developed to produce 3D-printable tensegrity-inspired baseline unit cell structures.
We find the equivalent buckling tensegrity response using a reduced-order model
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for these structures, developed by our collaborators at Georgia Tech [23]. ABAQUS
simulations are used to find the quasistatic response of the structure; simulations are
validated with quasistatic compression experiments on the 3D-printed structures.
We give a description of the process used to form representative volume elements
(RVEs) that tessellate the tensegrity-inspired structure into multidimensional lat-
tices, and provide the quasistatic characteristics of each RVE type.

In Chapter 4, we begin the dynamic investigation of these structures by exam-
ining them under frequency excitation. Dispersion curves are obtained for 1D and
3D lattices using both COMSOL frequency simulations and experiments. Since
continuous tunability of metamaterials is a desirable characteristics, we study the
tunability of 1D lattice dispersion characteristics under global precompression. The
band gap and wave speed vary significantly with precompression level. The COM-
SOL simulations provide insight into the evolution of non-longitudinal mode shapes
with precompression for a complete understanding of the dynamics. Finally, we ob-
tain the dispersion characteristics of a 3D lattice in COMSOL. We see the unique
result that diagonal and shear waves travel faster than longitudinal waves, as also
observed for buckling tensegrity lattices [87]. These results give a foundation for
understanding the subsequent behaviors of the lattices under impact loading.

In Chapter 5, we dive into the dynamics of the tensegrity-inspired structures by
studying their response under impact. We begin with experiments and simulations
of long-duration drop weight tests on single baseline unit cells. We demonstrate the
resilience of the structure to repeated loading, its load-limiting ability, slow wave
speed, elastic response, and high energy absorption ability. We increase the structure
size to a 1D lattice and perform drop weight impact tests on these. Since these
long-duration tests are decoupled from the dynamic effects of high-frequency/high-
impulse loading, we can observe how the wave propagation is affected solely by the
nonlinearity in the structure’s response. Next, we perform sample drop tests and
short-duration impulse tests on 1D, 3D1D, and 3D bulk lattices. The lattices are
loaded by a high-frequency pulse that induces a highly dispersive response in the
lattice. We observe significant energy trapping, wave guiding, and force reduction
abilities in the tensegrity-inspired lattices.

Finally, in Chapter 6, we provide a summary of the results of this thesis and give
a perspective outlining potential extensions of this work as well as future directions
for tensegrity-inspired lattices.
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C h a p t e r 2

METHODS

We used several numerical and experimental tools in this thesis to study tensegrity-
inspired 3D-printablemetamaterials. Both types of toolswere vital in different ways.
The numerical methods provided two main outcomes: (i) preliminary estimates to
narrow the range of parameters and variables before experiments were performed,
and (ii) detailed exploration of underlying physics and extrapolation of cases beyond
the results attainable from the experiments. The experiments provided validation
for the simulations, as well as gave insight into how the 3D-printed structures ac-
tually behave under the loading conditions explored. This is important in applying
our structures to real-world applications, where all systems inherently deviate from
nominal conditions. Since a significant contribution of this thesis is the assertion
that tensegrity-like structures with desirable characteristics can be fabricated and
employed in physical systems, experimental tests are paramount. In this chapter,
we explain both the numerical and experimentalmethods used throughout this thesis.

Some content of this chapter has been partially adapted from:

K. Pajunen, P. Celli, and C. Daraio. “Experimental evidence of analog prestrain-
induced bandgap tuning in 3D-printed tensegrity-inspired lattices”. In: Extreme
Mechanics Letters (2020). In Press.

K. Pajunen et al. “Design and impact response of 3D-printable tensegrity-inspired
structures”. In: Materials & Design 182 (2019), p. 107966.

2.1 Numerical Methods
2.1.1 ABAQUS Finite Element Modeling
We used the commercial finite element software ABAQUS for all quasistatic

and impact simulations. For both cases, we employed ABAQUS/Standard, which
uses an implicit integration scheme. ABAQUS/Explicit is well suited for highly
transient dynamic problems, problems at high strain rates, and rapidly evolving
contact problems [100]. Since our simulations do not exhibit these characteristics,
ABAQUS/Standard was the computationally efficient choice and allowed straight-
forward transition from quasistatic to dynamic modeling.
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Material Model

Aswe explain in Chapter 3, we chose to fabricate all our samples with the polyamide
EOS PA2200 material from Shapeways.com©. The manufacturer’s published prop-
erties [101] include only the basic material properties useful for our simulations
(i.e., Young’s modulus, density, and tensile strength). To form a more complete ma-
terial model for our simulations, we characterized the polyamide material via ASTM
D638 tensile tests on ASTM D638 Type IV test specimens. We performed the tests
at various strain rates using an Instron E3000©. The results of three representative
tests are given in Figure 2.1.
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Figure 2.1: Stress-strain response of the EOS PA2200 polyamide material used for
the structures in this thesis. The results at three strain rates (0.2, 1.1, and 5<</<8=)
are shown. The 5 <</<8= test follows ASTM standards for strain rate and was thus
used to obtain the material properties. For this test, the sample ruptures at about
0.19 strain. The hyperelastic Marlow model requires strictly increasing values of
stress and strain, so for the model we input only the region from 0 to 0.13 strain. The
slope of the initial region gives the Young’s Modulus, � . This slope is equivalent
for all three strains rates tested.

Testing the material at three strain rates gives insight into the viscoelasticity of the
material. For a viscoelastic material, the initial slope (Young’s modulus), maximum
strength, and rupture strain can change considerably with strain rate [102, 103].
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We see in Figure 2.1 that for the PA2200 polyamide material, the rupture strain
is lower for the lowest strain rate (0.2 <</<8=), which is observed in viscoelastic
materials [102, 103]. However, the initial slope remains constant for the three strain
rates tested, and themaximum strength varies by only about 2"%0. We observe that
the material does exhibit some viscoelasticity, but it is not significantly prominent
in the material’s stress-strain response.

The 5 <</<8= test follows the ASTM D638 standards, and thus it was used to
determine the material properties. The Young’s modulus (�), given by the initial
slope in Figure 2.1, is 1.29 �%0. The Poisson’s ratio was found to be 0.3 using
a laser extensometer which tracked transverse and axial reflective strips during the
tensile test.

We use the hyperelastic Marlow model to represent the constitutive material in
ABAQUS. The Marlow model strain energy potential is given by [100]:

* = *dev
(
�̄1

)
+*E>; (�4;) (2.1)

where * is the strain energy per unit reference volume, *34E is the deviatoric part,
*E>; is the volumetric part, �̄1 is the first deviatoric strain invariant, and �4; is the
elastic volume ratio. �̄1 is defined as [100]:

�̄1 = _̄
2
1 + _̄

2
2 + _̄

2
3 (2.2)

where _̄8 = �−
1
3_8. � is the total volume ratio, and _8 are the principal stretches. *34E

is defined by providing test data, either uniaxial, biaxial, or planar. *E>; is defined
by the Poisson’s ratio, volumetric test data, or lateral strains coupled with the test
data.

The Marlow model is unlike other hyperelastic models because it has no material
coefficients. Instead of determining coefficients to define the deviatoric part of
the strain energy potential, it must be defined with test data. The strain energy
potential is constructed within ABAQUS to exactly reproduce the test data and
provide reasonable behavior in all deformation modes [100]. For our material, we
provide the uniaxial tensile test data shown in Figure 2.1 for the deviatoric part and
Poisson’s ratio of 0.3 for the volumetric part of the strain energy potential. The
tensile test data provided is from 0 to 0.13 strain because the Marlow model requires
monotonically increasing test data.

In summary, the material properties implemented in ABAQUS are a hyperelastic
Marlow model with the uniaxial stress-strain data, a Poisson’s ratio of 0.3, and a
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density of 930 :6/<3. Simulations using these properties provide well-matching
results with experiments throughout this thesis. In addition, for the purpose of
calculating strut diameters in the elastically buckling range (Chapter 3), we need a
value for yield strength (fH). Since yield strength is not well-defined for hyperelastic
materials, we estimate a value of 29.1 "%0 using the linear elastic 0.5% offset rule.

It is useful to note that we compared the results of this hyperelastic model with
an elastic-plastic model. We found that the elastic-plastic model consistently gave
results with characteristics not seen in the experiments, such as much too low
stiffness and showing permanent plastic deformation when no plasticity was ob-
served in experiments. So, we chose to use the hyperelastic model. A downside
of the hyperelastic model is that it is not able to model hysteresis simultaneously
in ABAQUS with beam elements. Since the material is viscoelastic, hysteresis is a
factor in the dynamic experiments. We see in Chapter 5 that even with awareness of
this assumption, the hyperelastic model still gives the best numerical result for our
studies.

3D Solid Model

Before we arrived at the final design of our tensegrity-inspired baseline structure, we
went through iterations of the design which required full 3D modeling in ABAQUS.
Thus, we developed a model which was then used for both quasistatic and dynamic
analyses of the baseline tensegrity-inspired structure. A 3D rendering was con-
structed in Solidworks, imported into ABAQUS, and meshed using about 100,000
3D stress quadratic tetrahedral elements (element type C3D10) which captured the
response well with minimal runtime. Tetrahedral elements best conformed to the
geometry, while quadratic elements produced better resolution of the bending within
the structure with less elements than linear elements. A rendering of the solid model
and boundary conditions is shown in Figure 2.2. We henceforth refer to this struc-
ture as the baseline unit cell or baseline structure, which is the basic building block
for all subsequent lattice structures.

The baseline structure is 48.3 << from top to bottom nodes with cable diameters
of 1.2 <<, strut diameters of 1.73 <<, and sphere diameters of 5.7 <<. This
choice of design and dimensions will be explained in Chapter 3. Note: The terms
“cables” and “struts” describe the tensile and compressive members of pin-jointed
tensegrity structures, respectively. However, the members in our fixed-jointed struc-
ture undergo bending and are not under pure tension and compression. For sake of
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Figure 2.2: A 3D rendering of the tensegrity-inspired structure in ABAQUS. Bound-
ary conditions are placed on top (displacement only in y-direction) and bottom
(fixed) reference points (blue circles), which are located along the vertical y-axis
and each centered on the plane of the top and bottom face nodes. The top and bottom
face nodes (orange dots) are kinematically coupled to the top and bottom reference
points (orange lines), such that they are vertically constrained like the reference
points, but are able to rotate freely around the vertical axis.

simplicity and easy comparison with the corresponding tensegrity, in this thesis we
also refer to the members of our fixed-jointed structure as cables and struts.

To allow rotation of the top and bottom nodes as the structure is compressed
(like in the experiments), two reference points, each located at the center of the top
and bottom face nodes, are kinematically coupled to their respective face nodes.
The top reference point moves downward only, and the bottom reference point is
fixed. The coupling constrains the vertical displacement of the 4 top face nodes to
the displacement of the reference node, and keeps the 4 bottom face nodes fixed
vertically. At the same time, the face nodes are allowed to rotate around their
reference points, so they rotate freely around the vertical axis like in the experiment.
Nonlinear geometry is used in the full Newton solver to capture the large deformation
buckling response.

For quasistatic simulations, a “Static, general” solution step ramps linearly over a
certain vertical compressive displacement of the top reference point. For dynamic
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drop weight simulations, a “Dynamic, implicit” step is used with “moderate dissi-
pation” activated, which is recommended for impact problems. The top reference
point is assigned a point mass and a predefined negative vertical velocity. It can still
only displace in the vertical direction.

Beam Element Model

A beam element model was also developed in ABAQUS for static and dynamic
analyses of these structures. The deformation of each member in the baseline
structure can be modeled as a beam with constant cross section that undergoes only
simple bending, torsion, and tension/compression. Also, since using beam elements
greatly simplifies the physics problem being solved, the beam element simulations
are computationally much more inexpensive than the full 3D model (20x’s less
runtime for the beam element simulation). We compared the results of the beam
element simulation and the full 3D simulation for quasistatic compression of the
baseline unit cell, as well as for a drop weight impact of the baseline cell. With
the results matching considerably well, and full 3D modeling being unnecessary
and impractical for lattice simulations, the beam element model was used for all
subsequent dynamic analyses. The beam element simulation was thus employed for:
baseline unit cell drop weight, 1D lattice drop weight, 1D lattice sample fall, 3D1D
lattice sample fall, 3D bulk sample fall, 1D lattice short duration impulse, 3D1D
lattice short duration impulse, and 3D bulk short duration impulse simulations.
Renderings of these different lattice types are shown later in this section.

Beam elements in ABAQUS are one-dimensional line elements with a certain
length and an assigned constant cross section. In our case, all cross sections are
circular. It is clear that the cables and struts can thus be modeled simply with
beam elements. They are given a circular cross-section matching the 3D model and
modeled using the Shapeways polyamide material. However, the spheres require
some extra thought to be modeled correctly.

As can be seen in Figure 2.2, each spherical joint at each node connects four
members (3 cables, and 1 strut). The spheres are essentially rigid and deform
insignificantly during deformation of the structure. Because of this trait, we model
each sphere as 4 “edges,” each the length of the radius of the sphere, and each
connecting the end of each member to the node. Each edge is given a single
element, and the material assigned to this element has a Young’s modulus (stiffness)
of 291 �%0 (approximately that of aluminum, and two orders of magnitude larger
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Edge Member Parameters for Beam Model
Young’s Modulus 291 �%0
Poisson’s Ratio 0.3

Density 456.6 :6/<3

Total Moment of Inertia 4.04 x 10−10 :6 · <2

Total Mass 0.096 6
Radius of Each Edge Member 2.4 <<

Table 2.1: The final parameters used in the beam element simulation for the edge
members. Four edge members at each node model a sphere in the full 3D structure,
as seen in Figure 2.2. The total moment of inertia and total mass given in this table
are the combined values for 4 edge members and match that of the real sphere.

than the stiffness of the constitutive material). By doing so, the edges do not deform
during deformation of the structure. Additionally, we must assign a circular cross-
section to the edges, which must be carefully chosen to match the physics of the
spheres. The spheres have a certain mass and moment of inertia, both of which
significantly influence their dynamic response. The mass of each sphere is 0.096
6, and its moment of inertia is 4.04G10−10 :6 · <2 (given by � = 1

2<B?ℎ4A4A
2
B?ℎ4A4

).
Thus, the combined edge members at each node in the beam simulation must have
this mass and moment of inertia. Solidworks was used to calculate the moment
of inertia of the combined edge members: a total mass of 0.096 6 was assigned,
and the member radius was adjusted until the combined moment of inertia matched
that of the sphere. Then, the material density required was calculated by dividing
the total mass by the total volume of the combined edge members. The final edge
member parameters are given in Table 2.1. Also, a rendering of the beam element
model is given in Figure 2.3, where (a) shows the wire rendering and (b) shows the
rendering with the cross-sectional areas shown. The gold members are the struts,
blue members are the cables, and green members are the edges.

The beam element type we use is B32, a 3-node quadratic Timoshenko beam
element. These allow for transverse shear deformation and large strains, so they
are chosen over Euler-Bernoulli elements. Due to the simple nature of the beam
element simulation, only 540 elements are needed (less than 1% of the number of
elements used for the 3D model). We used a mesh refinement study to choose a
number of elements that appropriately weighed the accuracy of the solution with
the computational cost. For the baseline quasistatic and dynamic drop weight sim-
ulations, the same boundary conditions, coupling constraints, and step parameters
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(a) (b)

Figure 2.3: Beam element rendering of the tensegrity-inspired baseline unit cell
with (a) wire elements and (b) beam element cross sections visualized. The struts
are displayed as the gold members, the cables are the blue members, and the edges
(4 of which together simulate a sphere at each node) are the green members.

were used that were employed in the 3D simulation (see Figure 2.2).

Lattice simulations are easily set up inABAQUSusing the beamelementmodeling
method described. The baseline cell is simply tessellated in space appropriately for
each lattice case. However, for lattice simulations, the boundary conditions are
slightly altered. Instead of top and bottom reference points that couple with the top
and bottom face nodes, we model analytical rigid plates that interface with the top
and bottom face nodes. We do this because of two reasons: (i) for short duration
impact, separation of the top rigid surface occurs early in the simulation, and (ii)
as the number of top and bottom face nodes moves beyond 4, as is the case for
higher dimensional lattices, kinematic coupling with a reference point is no longer
physically valid. We set up node-to-surface contact interactions between the top
and bottom plates and the top and bottom face nodes that they interact with. The
interaction property models frictionless tangential behavior and hard contact and
allows separation of the rigid surfaces after contact.

Both analytical rigid surfaces have reference points at their center (corresponding
to the center of the top or bottom face nodes) where boundary conditions are applied.
Again, the bottom reference point is fixed. The top reference point is assigned a point
mass and a predefined negative vertical velocity. It can only displace in the vertical
direction. For sample drop simulations, the lattice itself is assigned a predefined
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(a) (b) (c)

Figure 2.4: Example ABAQUS renderings of (a) 1D, (b) 3D1D, and (c) 3D bulk
lattices with top and bottom analytical rigid surfaces used for impact simulations.

negative vertical velocity, and there is no top analytical rigid surface. In that case,
the bottom rigid surface remains fixed. As explained in Chapter 3, different lattice
types have representative volume elements (RVEs) that have different numbers of
baseline unit cells. A 1D lattice RVE has 2 baseline unit cells and a 3D RVE has 8
baseline unit cells. We define a 3D1D lattice as a lattice that tessellates 3D RVEs
in only one direction. Example renderings of 1D, 3D1D, and 3D bulk lattices with
the analytical rigid surfaces are shown in Figure 2.4.

As the lattices and strain rates become larger, the computational cost of the
simulations greatly increases, but also convergence of the solution steps become
more difficult due to the complexity of the deformation. This manifested most
particularly in the 3D bulk simulations. To overcome this, we had to use hybrid
elements and a quasi-Newton solver for the 3D bulk models. The hybrid formulation
for beam elements overcomes the difficulty of computing axial and shear forces in
geometrically nonlinear analyses by using a more general finite element formulation
that treats these forces as primary variables [100]. Hybrid elements are best used
in cases with very slender beams (�/! < 1/15) and very rigid axial and transverse
shear deformation (bending deformation dominant) [100]. It is true that bending
deformation is dominant in our structures, but axial and transverse shear still play
a role, especially in the cables which have a length-to-diameter ratio of 0.1 (the
struts have an �/! of 0.04). When we compared 1D lattice results with hybrid
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vs. non-hybrid elements, the non-hybrid elements provided better resolution of
complexities in the response at smaller time steps, but the hybrid elements still
captured the overall response well.

The quasi-Newton solver in ABAQUS employs an inexpensive stiffness matrix
update for most solver iterations rather than factorizing a new stiffness matrix for
every iteration, as is done in the full Newton solver. In large models, stiffness matrix
factorization is complex and can dominate the solution time, so the quasi-Newton
solver is recommended for large models, especially for nonlinear dynamic situations
(as is the case for us). We found that without employing hybrid elements or the
quasi-Newton solver, 3D bulk simulations did not converge. But with their addition,
the simulations ran successfully. We believe that the physics are still captured well
for the 3D bulk simulations even with these alterations.

Pin-Jointed Tensegrity Model
As a complement to the ABAQUS simulations and experiments of baseline unit
cells, we also find the response of corresponding pin-jointed tensegrities. To do
this, we use a numerical model developed at Georgia Tech by the Rimoli group to
generate quasistatic and dynamic responses of pin-jointed tensegrity baseline unit
cells [23, 71, 87, 104]. The numerical model is patented [104] and the MATLAB
files are available on the Rimoli group website (as of 3/10/2020) at: http://
rimoli.gatech.edu/docs/pal_rimoli_code.zip.

Although any tensegrity structure configuration can be implemented in this model
for the single unit cell case, the truncated octahedron tensegrity unit cell is the default
(and patented) configuration due to its ability to be tessellated into 3D lattices. The
form-finding for this structure was performed in [23] using the method described
in [105]. We base our tensegrity-inspired structure off of this truncated octahedron
tensegrity configuration.

The model uses a reduced-order approach to modeling the response of tensegrity
structures with buckling struts. The struts are discretized as a set of four masses,
three linear springs, and two angular springs (which capture the buckling of the
strut). The cables are discretized as a set of four masses, three linear springs,
and no angular springs, since the cables undergo pure tension [23]. The dynamic
response is found through an explicit, second order accurate, central-difference
time integration scheme. Contact is modeled through a penalty approach, and
friction forces are neglected [23]. Both the dynamic and quasistatic responses of
a tensegrity structure are captured well with this model. We use this code to find

http://rimoli.gatech.edu/docs/pal_rimoli_code.zip
http://rimoli.gatech.edu/docs/pal_rimoli_code.zip
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a corresponding tensegrity structure to our tensegrity-inspired structure. We then
perform both quasistatic and drop weight simulations on that structure to compare
with our ABAQUS and experimental results in this work.

2.1.2 COMSOL Finite Element Modeling
COMSOL was used to simulate the frequency dynamics of 1D and 3D RVEs,

consisting of 2 and 8 baseline unit cells, respectively. Within its Solid Mechanics
module, COMSOL has readily available tools to find dispersion curves and transmis-
sion characteristics in the frequency domain. ABAQUS does not contain such tools;
calculating dispersion curves can only be found using complex user-defined scripts.
COMSOL contained all that was necessary to perform dispersion and transmission
analyses on our unstressed as well as prestressed (using a quasistatic compression
step before the frequency step) tensegrity-inspired structures. Therefore, we chose
to use COMSOL for this portion of the thesis.

Dispersion

First, we construct a COMSOL model which simulates an infinite lattice to extract
the dispersion curve. We build a 3D model of a 1D RVE in Solidworks, import it
into COMSOL, and mesh it with quadratic tetrahedral volume elements. Although
we know that the polyamide material behaves as a hyperelastic material, only the
linear elastic material model was available to us in COMSOL. For low amplitude
waves, the structure deforms only slightly corresponding to oscillations around a
small area of the stress-strain curve. Thus, for low levels of precompression, the
linear elastic model is a good assumption. Deviance from the linear elastic model
only becomes an issue at higher levels of precompression (10%–20% global strain
levels). We see this deviance in the simulations, but as we will see in Chapter 4, the
simulation captures the experimental response fairly well even with this assumption.
Thus, we use a linear elastic material with Young’s Modulus of 1.29�%0, Poisson’s
ratio of 0.3, and density of 930 :6/<3 for the polyamide material that the samples
are fabricated from.

To calculate the dispersion relation of the 1D lattice, we use an eigenfrequency
step with Bloch periodic boundary conditions, thus simulating the response of an
infinite lattice. The Bloch theorem states that for a travelling wave u(−→r ), there
exists a wave vector

−→
k , such that translating it by the lattice vector

−→
X is the same as
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Periodic Bloch

Boundary Conditions

Figure 2.5: A rendering of the solid model of a 1D RVE in COMSOL. We make a
cut through the top and bottom faces on the horizontal planes that intersect the center
axes of the cables, creating flat surfaces to apply the Bloch boundary conditions.
The RVE has a total height of 96.6 << in the y-direction.

multiplying the wave by a phase factor [106]:

u(−→r + −→X) = 48
−→
k ·−→Xu(−→r ). (2.3)

For our 1D case, tessellating in the vertical (y) direction, this reduces to DC>? =
D1>CC><4

8:0, where : is the wavenumber and 0 is the length of the RVE. To create a
tessellatable unit, we make a cut through the top and bottom faces on the horizontal
planes that intersect the center axes of the cables. In this way, we create flat surfaces
on which to apply the periodic boundary conditions in the vertical direction. The
1D RVE has a total height of two baseline cells (96.6 <<). A rendering of the solid
model in COMSOL is shown in Figure 2.5.

To produce the dispersion curves, we implement a linear eigenfrequency step
where the software solves an eigenvalue problem for the first 20 eigenvalues at
each wavenumber value : in the first Brillouin zone (0, c/0 rad/m), where 0
is the length of the RVE. To calculate the dispersion curves for varying levels of
precompression, we first use a stationary step to solve for the quasistatic compressive
response with geometric nonlinearity taken into account. In this step, a quasistatic
periodic boundary condition is applied to the top and bottom face surfaces. The
bottom surface remains fixed, and the top surface undergoes vertical compression,
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as in the experiment. Then, the final conditions from the stationary step (including
the stresses arising from precompression) are set as the initial conditions for the
subsequent linear eigenfrequency step, and the boundary conditions are switched to
those of the eigenfrequency step. This small-on-large approach is standard procedure
when modeling bandgap tunability due to mechanical forces [58, 62, 66].

Figure 2.6: A rendering of the solid model of a 3D RVE in COMSOL. We make a
cut through the 24 external faces to create flat surfaces on which to apply the Bloch
boundary conditions.

We also perform a dispersion analysis on a 3D RVE, but only for the unstrained
case. In this case, we make a cut through all right and left (x-axis), top and bottom
(y-axis), and front and back (z-axis) faces, for a total of 24 faces, in the same way as
for the 1D case. Bloch boundary conditions in each dimension are applied on these
faces. An eigenvalue problem is solved for the first 20 eigenvalues at each wave
vector combination in the first Brillouin zone for a simple cubic lattice. This wave
vector sweep is described in detail in Chapter 4.

Transmission

Finally, a finite lattice with 3 RVEs (289.8 << height) is simulated in COMSOL
in order to find the longitudinal frequency transmission response to compare with
experiments (see Figure 2.7). Since this simulation takes into account the finite size



22

2
8

9
.8

 m
m

Output

Input

Figure 2.7: A finite 3 RVE 1D lattice ismodeled in COMSOL to find the longitudinal
frequency transmission response. Displacement amplitudes are extracted from
the input and output locations (orange and green circles, respectively) to find the
transmissibility ratio at approximately the same locations as in the experiments.

and boundaries of the experiment, we expect it to capture the experimental response
better than the numerical dispersion curves. In this case, the lattice with 3 RVEs
is modeled with the same element type as the unit cell model. We then perform a
harmonic analysis (from 0 to 500 �I) by applying a base excitation with amplitude
of 1 << to the bottom face surface, while the top face surface is kept fixed as in the
experiment. The input and output vertical displacement amplitudes are extracted
at approximately the same locations as the first and last measurement points in the
experiment. In the simulations with precompression, the nonlinear quasistatic step
is performed before the harmonic analysis.
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2.2 Experimental Methods
2.2.1 Sample Fabrication
We designed several experiments in order to study the response of 3D-printed

tensegrity-inspired structures under both static and dynamic loading. In all experi-
ments, samples were 3D-printed using the EOS PA2200 nylon polyamide material
from Shapeways.com©. The manufacturing process used is Selective Laser Sin-
tering, or SLS. With this method, a high-powered laser selectively fuses small
particles of polymer powder together, layer by layer. The part being constructed is
surrounded by powder at all times, eliminating the need for support structure. This
manufacturing method was chosen for several reasons. With SLS, this structure is
manufacturable with relative ease, having no support structure and no post-curing
processes. The lack of post-curing also produces consistent structures with the
desired constitutive material properties and mechanical responses. The chosen
member diameters and aspect ratios fit well within the manufacturable limits of
the SLS manufacturing method for the chosen material. We note that other 3D
manufacturing approaches may also be suitable for fabrication, e.g. stereolithogra-
phy (SLA), material jetting (MJ), fused deposition modeling (FDM), digital light
processing (DLP), and 2-photon polymerization. We have also successfully printed
this structure with SLA and 2-photon polymerization.

2.2.2 Static Compression Tests
To characterize the mechanical response of the tensegrity-inspired 3D-printed

baseline structure, we performed quasistatic compression experiments using an
Instron E3000© with a 500 N load cell. The chosen structure height of 48.3<< was
a practical size for the compression experiments. The samples were loaded on the
top face and compression was applied using displacement control at 1.1 <</<8=.
The test was stopped when densification (inner struts begin to touch) occurred. The
top and bottom faces were allowed to rotate during compression, which naturally
occurs due to asymmetry of the face nodes. The experimental setup is shown in
Figure 2.8.

2.2.3 Dynamic Impact Testing
Several types of impact experiments were performed on the tensegrity-inspired

structures. All of them used the same basic setup, where a high-speed camera tracks
nodal displacements and a force sensor measures the reaction force on the bottom of
the structure during an impact. The setup and its variations were designed and built



24

Bottom Plate

Fixed

Figure 2.8: Quasistatic compression tests were performed on baseline unit cell
samples using an Instron E3000©. The bottom plate remains fixed, while the top
plate displaces the structure vertically using displacement control. The structure
faces are allowed to rotate during the compression.

for this thesis. It was used to test baseline unit cells, 1D lattices, and 3D1D lattices.

Drop Weight: Baseline Unit Cell

To examine the dynamic response of a baseline unit cell, we designed and built a
drop weight testing system, shown schematically in Figure 2.9(a) and physically in
Figure 2.9(b). A low-friction, stiff vertical rod guides a free-falling striker mass with
a flat bottom surface that impacts the 3D-printed samples. Themass is custom-made
from steel, with the outer diameter chosen to be large enough to impact all top face
nodes of the structure, but narrow enough to minimize the transverse moment of
inertia. We fabricated two different strikers with masses of 100 6 (exact: 109.0 6)
and 200 6 (exact: 197.54 6). The impact velocity of the mass is controlled varying
the height of the striker above the sample. An accelerometer is placed on top of
the mass to record when it first touches the structure as well as the deceleration of
the mass during impact. It is a triaxial ceramic shear ICP© accelerometer with a
sensitivity of 0.47 <+/(</B2). The voltage is recorded with an oscilloscope. Since
the accelerometer has a mass of 1.0 6, a counterweight is placed opposite on the
mass surface. To allow the natural rotation of the sample, the guiding metal rod
runs through the center of the structure.

The structure sits on top of a glass sheet, which serves as a stiff surface extension
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Figure 2.9: Dynamic drop weight test setup for a baseline unit cell. A schematic is
shown in (a), and a picture of the physical setup is shown in (b).

for the force sensor under it. The metal rod is suspended just above the glass plate,
so it does not affect the force, but also does not allow the structure to slip out of its
vertical axis. The force sensor measures the reaction force on the bottom face. It is
an Impact ICP© quartz force sensor with a sensitivity of 11241 <+/:# . To reduce
friction between the structure and the glass sheet, a thin liquid layer of acetone is
dispensed on the glass sheet shortly before the test.

A PHANTOM© high-speed camera with a framerate of 1000 5 ?B is used to
capture the displacement of the falling mass, and thus the top face nodes of the
structure. The camera can be see on the lower left of Figure 2.9(b). A macro
flashlight is used to achieve suitable exposure of light. Sufficient light is needed in
order to track the markers (black markers of a white background) fixed on the weight
during the fall using the Phantom Camera Control (PCC) software. Calibration of
the displacement data in the PCC Software is done using a ruler placed in the
same focal plane as the markers. Finally, to ensure synchronized time measurement
between the camera and oscilloscope data, a switch is triggered when the mass
begins to fall, zeroing the time for the oscilloscope and camera.

We developed a customized MATLAB code to process the data from the oscil-
loscope and camera. Only the first impact is analyzed for each test. Data from the
force sensor has a sampling frequency of 4000 �I and is smoothed using moving



26

average filter with a span of 5. The force on the top spheres is calculated from
the accelerometer data and the impacting mass. Since the accelerometer data was
inherently very noisy, we apply a 3rd order digital lowpass Butterworth filter with
a normalized cutoff frequency of 0.5. A high cutoff frequency of 1000 �I is used
to filter high frequencies while retaining the desired data representing the physical
response. These MATLAB codes are provided in Appendix A.

Drop Weight: 1D Lattice

The drop weight testing system was readily adaptable for 1D lattices. The setup is
shown in Figure 2.10. For drop weight experiments on 1D lattices, we use samples

Force sensor

Ruler

Displacement

tracking

x + x + x + x +

Impacting Mass

Figure 2.10: Dynamic drop weight test setup for a 5 baseline unit cell 1D lattice.

with 5 baseline unit cells, for which we are able to capture the wave propagation
characteristics. A few adjustments had to be made to the test setup. First, the
PHANTOM© camera frame rate needed to be increased to 3000 5 ?B in order to
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sufficiently capture the wave propagation dynamics. To do this, more light was
needed to increase exposure, so we added two LED lights on either side of the
camera and pointing toward the sample. An even higher frame rate was desired but
was not achievable due to lighting constraints.

Also, we track the displacement of not just the impacting mass, but also nodes at
each intersection of the unit cells and the top of the lattice (see Figure 2.10). By doing
this, we obtain displacement data for each unit cell and can readily differentiate this
to obtain the velocity of each unit cell. The accelerometer is, thus, not used for these
tests because the wave speed is easily calculated from just the displacement tracking.
Evenwith a frame rate of 3000 5 ?B, whenwe differentiate the displacement data, the
velocity data is very noisy. So, we employ the same type of Butterworth filter as was
used for the accelerometer to smooth the displacement data before differentiating.
Finally, we note that the rod through the center of the lattice and mass is important
for these tests for another reason: to keep the lattice straight and from buckling
out-of-axis during impact. All other setup details and the data processing are the
same as for the baseline unit cell.

Sample Drop Tests

The final type of impact experiments performed were sample drop tests. For these
tests, the impacting mass is not used, but the lattices themselves are dropped from
a height to achieve a certain impact velocity as it hits the glass plate. We tested
both 1D and 3D1D lattices with 3 RVEs. Because the 3D1D lattice had a bottom
contact face with a significantly larger area than the 1D lattice, a larger glass plate
was obtained from MacMaster Carr. It is a borosilicate glass sheet, 7" x 7" and
3/16" thick with a very smooth finish. As in the 1D drop weight setup, we track
multiple locations on the lattice with the camera. A schematic of the setup and
displacement tracking points are shown for the 3D1D lattice in Figure 2.11. Two
points are tracked at each horizontal section, one inner point and one outer point, and
these two points are averaged to get a good estimate of the displacement and velocity
at each horizontal intersection location. After averaging, 7 “effective” points are
tracked. For the 1D lattice, 7 points are directly tracked: at the top, bottom, and
intersection of each baseline unit cell. Wave propagation information through the
lattice is obtained through these measurements.

As in the drop weight tests, a rod also must be run through the center of the
lattice. As in the drop weight case, it keeps the 1D sample from buckling during
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Figure 2.11: Schematic showing the sample drop test of a 3D1D lattice, with
displacement tracking points shown.

impact (the 3D1D lattice is too thick to have buckling problems). However, it is
also imperative to keep the lattice falling on a straight path during its descent. Since
we drop the samples from up to a height of 12 5 C (i.e., an impact velocity of 8.5
</B), without the rod, the sample would easily topple out-of-axis from drag and
impact velocities would not be consistent. It was difficult to find a rod long enough
and sturdy enough to meet the requirements of the experiment, while still hovering
over the force sensor, but we found one: a 16-foot long tent pole. The tent pole
was heavy enough to not sway much and also stay relatively straight (although some
error unavoidably occurred from these factors). Also, intersections between the tent
pole sections were very smooth, and the tension rope within the pole kept the pole
together very well. A picture of the entire test setup, capturing the height of the
setup as well as a zoomed-in picture is shown in Figure 2.12. Again, all else remains
the same from the previously described drop weight testing setup.
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Figure 2.12: Picture taken of the entire sample drop test setup, with the total height
seen in the left panel and the zoomed-in image of the lights, sample, ruler, etc. in
the right panel.

2.2.4 Frequency Transmission Experiments
The final type of experiments we performed were frequency transmission tests on

1D lattices to reconstruct the dispersion curves, measure wave speeds, and determine
the transmissibility characteristics of the lattice. Tests were performed at varying
levels of compressive longitudinal prestrain to observe the tunability of the lattice
response.

We use two one-dimensional lattice specimens, with 5 and 3 RVEs, fabricated
with the same polyamide material and same baseline unit cell dimensions as all
other experiments. Assessing the dispersion properties of the lattice required us to
measure the response at multiple locations along the direction of wave propagation at
each RVE. A theoretical dispersion curve is a representation of an infinite medium;
thus, when reconstructing a dispersion curve from experimental data, it is desirable
to have as many unit cells as possible to avoid truncation-induced features and to
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minimize the influence of the boundaries. Also, the wavenumber resolution of
the experimental dispersion curve directly relates to the number of RVEs. Due to
fabrication limitations, a lattice with 5 RVEs (10 baseline cells) was the largest we
could produce reliably. We fabricated the lattice with a plate on the bottom face,
intersecting the four spherical nodes, to secure its attachment to the wave source
transducer. The 5 RVE lattice was used for the case with no precompression, and
the 3 RVE lattice was used for the tests where precompression was applied.

To study the dynamic frequency response of the tensegrity-inspired structure, we
use the experimental setup shown in Figure 2.13. To experimentally reconstruct the

Compression 
Mechanism

    Laser 
       Vibrometer

Sample

Oscilloscope

ComputerTransducer
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Signal Generator

Figure 2.13: Schematic of the experimental setup used to study the spectro-spatial
wave characteristics of a tensegrity-inspired 1D lattice.

dispersion characteristics of the lattice, the plate on the bottom of the sample is fixed
to a piezoelectric transducer (Panametrics V1011). We excite the bottom plate of
the specimen with a one-cycle burst having carrier frequency of 200 �I and a wide
frequency bandwidth (to test a large frequency range with a compact signal). Small
strips of retro-reflective tape are placed on top of the nodes at the intersection of each
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baseline cell and on the bottom plate, for a total of 10 strips on the 5-RVE lattice
and 6 strips on the 3-RVE cell lattice. The single-point Laser Doppler Vibrometer
(LDV, Polytec CLV-2534) records the velocity time history at each of the reflective
tape locations, repeating the measurement 128 times at each location and averaging
to improve the signal-to-noise ratio. Note that the vibrometer is reoriented after each
measurement to point it towards another measurement location. We also employ
a high-pass filter to eliminate all ambient noise at frequencies lower than 100 �I.
These filtering steps are required since the waves imparted by the transducer onto
the specimen are weak, owing to the fact that we are operating the transducer very
far from its peak frequency (100 :�I). Once we collect the measured data into
a time-space matrix, we obtain a frequency-wavenumber data matrix by using a
2D Discrete Fourier transform (2D-DFT); we zero-pad the data prior to performing
the 2D-DFT operation, to interpolate along the wavenumber direction and improve
results visualization despite having only few spatial samples.

We devised a compression apparatus to study the effect of global longitudinal
prestrain on the dynamic response of the structure. A 90-degree metal bracket
moves continuously in the vertical direction on a manually-operated linear stage
(Velmex MN10). The flat surface of the bracket compresses the top face of the
structure. We can thus directly control the applied longitudinal strain. Our samples
are long and slender. For example, the 5-RVE lattice has a slenderness ratio of
about 0.1 and a low lateral stiffness of about 58 kPa. When compressing them, we
can expect them to undergo global lateral buckling. An analysis of this is given in
Chapter 4. To prevent this undesired behavior and to compress the structure to high
longitudinal strains, we can only compress 3-RVE-long specimens.

Even with the shorter specimen, global buckling was an issue (see Figure 2.14(a)).
So, we constructed an apparatus that can hold the structure in its axis. We tie
four strings onto four vertical, stiff rods equidistant from each other and from the
structure, as illustrated in Fig. 2.14(b). The other extremity of each string is tied
onto the structure at the nearest node at the intersection between the third and fourth
baseline unit cells (at approximately half the overall length of the structure). The
strings are tensioned so that they are parallel to the top compression plate. Note
that we move the strings vertically along the rod as compression changes, to keep
them horizontal. The four strings hold the center of the structure in-axis, preventing
the first global buckling mode to take place. Four strings are needed so that there
is no direction out-of-axis for the structure to move without being held in place by
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Figure 2.14: (a) Global buckling is apparent in the 3 RVE lattice even at low
compression levels. Thus, we devised an apparatus using strings and rods (b) to
hold the structure in its axis and prevent first mode buckling. The transmissibility
is calculated by dividing the velocity amplitude at the output (green dot) by the
velocity amplitude at the input (orange dot), as in the simulations.

another string. The strings only prevent movement out-of-axis, and do not provide
resistance vertically. Thus, the strings only minimally influence waves propagating
longitudinally along the structure’s axis.

We note that the transmissibility through the structure is readily calculated by
dividing the velocity amplitude at the output location (green dot in Figure 2.14(b))
by the velocity amplitude at the input location (orange dot in Figure 2.14(b)). Also,
dispersion curves (frequency vs. wavenumber), frequency transmission data, and
space-time diagrams are obtained through post-processing of the output velocity
data in MATLAB; these codes are provided in Appendix A.
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C h a p t e r 3

DESIGN OF TENSEGRITY-INSPIRED STRUCTURES

In this chapter, we describe the method we developed to obtain a 3D-printable
tensegrity-inspired structure with the equivalent strain energy capacity and global
longitudinal stress-strain quasistatic response as a buckling pin-jointed tensegrity.
A truncated octahedron tensegrity is used as the baseline, but we infer that the
method can be applied to other types of tensegrity structures as well. We obtain a
structure which possesses several desirable and unique characteristics of buckling
tensegrity structures that make them appealing for dynamic applications. The struc-
ture is 3D-printable with a single material, and its quasistatic nonlinear response is
geometrically-driven, thus allowing it to be manufactured at multiple length scales
with a variety of printing methods. We also show how this structure is tessellated
into three dimensions to form multidimensional architected lattices, creating a new
type of lightweight, energy absorbing metamaterial.

Some content of this chapter has been partially adapted from:

K. Pajunen et al. “Design and impact response of 3D-printable tensegrity-inspired
structures”. In: Materials & Design 182 (2019), p. 107966.

3.1 Design Methodology
3.1.1 Target Baseline Tensegrity and Initial Design Iteration
The tensegrity structure described in [23] was used as the baseline pin-jointed

tensegrity for this work. The structure’s geometry, which is based on a truncated
regular octahedron, was derived using the form-finding method described in [107].
We chose this specific architecture because it has 6 square, orthogonal “faces,”
which, with certain reflections required to accommodate asymmetry of the faces,
allows tessellation in three-dimensional lattices [71]. We initially use the geometry
of the un-prestressed tensegrity, noting that the geometric configuration changes
based on the level of prestress applied to the cables.

The tensegrity structure is shown in Figure 3.1(a). The structure has 12 struts and
36 cables. There are no strut-to-strut connections, defining the structure as a “class
1” tensegrity [108]. In choosing the size of the baseline tensegrity, we kept in mind
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Figure 3.1: (a) Pin-jointed truncated octahedron tensegrity with 6 orthogonal faces,
which we refer to as shown in the image. This is the baseline tensegrity structure
we model after in this thesis. (b) The initial iteration for a 3D-printable structure,
which is fixed-jointed structure overlapping members at the nodes.

the manufacturing and testing constraints of the structure that we would 3D-print
using the tensegrity’s geometry, as described later in this section. We chose a height
of 48.3 << from the “top face” nodes to the “bottom face” nodes, which gives a
cable length of 17.4 << and a strut length of 44.2 <<. We chose the cables to have
a diameter of 1.37 << and the struts a diameter of 3.05 <<, giving a strut-to-cable
diameter ratio (3B/32) of 2.23. We ensure that the chosen strut diameter allows
elastic buckling by using the Euler-Johnson relation [109]:

!

d
≥

√
2c�
fH

(3.1)

where ! is the length of the strut, d is the strut’s radius of gyration, � is the Young’s
modulus of the material, and fH is the yield strength of the material. ! is 44.2 <<,
� is 1.29 �%0, and fH is 29.1 "%0. The material we chose for the structures in
this thesis was described in Chapter 2.

At this point, we note that this initial pin-jointed geometry was chosen due to
manufacturing constraints and to provide elastically buckling struts, not to obtain
a “target” mechanical response. Because of this, the member diameters are altered
throughout the design process as defined by the ratio 3B/32. For clarity, we refer to
this initial member geometry as Geometry #1, which as stated has a 3B/32 of 2.23.

To find an analogous 3D-printable structure, we initially fabricated Geometry
#1 with rigidly overlapped members at the nodes, as shown in Figure 3.1(b). The
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samples were printed with the polyamide PA2200 material from Shapeways.com©

using selective laser sintering (SLS). All experimental samples in this thesis use
this material. As described in Chapter 2, this manufacturing method and material is
appealing for this application because it requires no support structure and no post-
curing, with consistentmechanical properties. Also, the slenderness of the structural
members fit well within manufacturing limits for this method. Before deciding on
this material, we iterated on a few other materials and manufacturing methods, most
notably the “Tough” photopolymer from Formlabs©, which is a stereolithography
(SLA) printing system. This material required both a support structure and post-
curing, which added difficulties such as accidentally cutting a cable and inconsistent
curing. The Shapeways material also was much less viscoelastic compared to the
Formlabs material, which made the Shapeways material more appealing for our
dynamic applications. In Appendix B, we compare these two materials and provide
results of relaxation tests we performed on them to study their viscoelasticity.

To characterize the mechanical response of the fixed-jointed structure, we per-
formed quasistatic longitudinal compression experiments using an Instron E3000©.
The chosen structure height of about 2 incheswas a practical size for the compression
experiments. The samples were loaded on the top face and compression was applied
using displacement control. The top and bottom faces were allowed to rotate during
compression, which naturally occurs (also for the pin-jointed tensegrity structure)
due to asymmetry of the face nodes.

We developed a quasistatic model to simulate the experiment using the finite
element software ABAQUS/STANDARD, which uses full 3D stress tetrahedral ele-
ments. We described this in detail in Chapter 2. We iterated through a few material
models to describe the response of the structure, and found that a hyperelastic Mar-
low model best represented the response of the polyamide material. Since there is
no clear yield stress for elastic polymer materials, it is often defined as the peak
stress [110], which in this case is well past the linear region of the stress-strain curve
(see Chapter 2). An elastic-plastic model in ABAQUS showed too low stresses as
well as nonphysical permanent plastic deformation, which would greatly influence
the wave propagation characteristics in subsequent dynamic analyses. Thus, the
hyperelastic material provided a continuously elastic response that still followed the
stress-strain path of the constitutive polymer material.

Note: Henceforth in this thesis, unless otherwise stated, “stress” and “strain”
refer to the effective longitudinal global stress and strain in the given struc-
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Figure 3.2: Global compressive stress-strain curves showing the 3D stress ABAQUS
simulation and representative experimental responses of the 3D-printable, fixed-
jointed structure, as well as the response of the corresponding pin-jointed structure.
All member diameters correspond to Geometry #1. The pin-jointed structure ex-
hibits a clear buckling point around 0.3 longitudinal strain, whereas the fixed-jointed
structure does not exhibit a buckling point, but ruptures around 0.3 strain. The stiff-
ness of the fixed-jointed structure is much higher than the pin-jointed stiffness. This
fixed-jointed structure is thus inadequate to represent the pin-jointed response.

ture. That is, stress is defined as the applied compressive load divided by the
structure’s projected square cross-sectional area that intersects the face nodes.
Strain is defined as the vertical displacement,Δℎ, divided by the original height,
ℎ, of the structure from the bottom to the top face nodes.

The longitudinal stress-strain results of the ABAQUS simulation, the pin-jointed
model, and a representative experiment are shown in Figure 3.2. The effective
compressive stress-strain responses of the pin-jointed structure was found using a
reduced-order model described in [23] that allows the struts to buckle and captures
its nonlinear quasistatic and dynamic responses. The ABAQUS simulation and
experiment are in good agreement. Both curves show a slightly nonlinear behavior,
due to the relative rotation of the top and bottom faces during compression. The
structures rupture at 0.3 strain, before reaching buckling, because of the high local
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strains at the joints.

The pin-jointed response differs significantly from the fixed-jointed structure.
Without member prestress, the pin-jointed structure behaves as a rigid body mecha-
nism until reaching a critical strain (in this case, 0.25), where the members begin to
carry force and deform. We subtracted this onset longitudinal strain from the strain
values in order to obtain the compressive stress-strain curve reported in Figure 3.2.
The pin-jointed response has a much lower stiffness than the printed structure, and
distinctly buckles at around 0.3 strain. One important difference between the fixed-
jointed and the pin-jointed structures is the distribution of load. The fixed-jointed
structure has complex local material stress states that affect the stiffness and prevent
the onset of buckling. On the contrary, the members of the pin-jointed structure
are loaded purely axially and hence buckle more easily. To capture the buckling
response exhibited by the pin-jointed structure, a different design approach for the
3D-printable structures was needed.

3.1.2 Conversion Method Between the Fixed and Pin-jointed Structure
To find a design for a 3D-printable structure with a comparable global compres-

sive stress-strain response as the pin-jointed structure, we took note of a few key
characteristics of tensegrity structures and attempted to maintain those characteris-
tics in our 3D-printable structure design. We noted that in pin-jointed tensegrity
structures, the nodal locations, member lengths, and independence of the members
at the nodes are key characteristics that determine the response. In the initial fixed-
jointed structure design (Figure 3.3(b)), these characteristics are not maintained.
The effective lengths of all the members are shorter than in the pin-jointed coun-
terpart due to the overlap of the members at the nodes. The cables intersect the
struts at different angles, producing varying cable lengths and large stress concen-
trations. The effective buckling length of the struts is thus significantly shorter than
in the pin-jointed counterpart. This greatly increases the buckling load of each strut.
These attributes produce the structure’s high stiffness and non-buckling behavior
compared to the pin-jointed counterpart.

Therefore, we redesigned the 3D-printable structure in the following way. First,
we scale the nodal coordinates up by 1.5 times while still maintaining the cable
lengths (Figure 3.3(c)). Then, at each node we insert spheres that rigidly connect
all of the corresponding members at the node (Figure 3.3(d)). The spheres have
a diameter of 8.7 <<, sized such that the original cable lengths (17.4 <<) are
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Figure 3.3: (a) Pin-jointed truncated octahedron tensegrity with 6 faces. (b) 3D-
printable, fixed-jointed structure with overlapping members. In the updated design,
nodal locations and cable lengths are maintained by (c) scaling up the structure
while keeping cable lengths constant and (d) inserting spheres at the nodes.

maintained and such that the members do not intersect with each other. Note that
the entire structure, including the spheres, is fabricated in a single print with the
same material. With this design, all the cables are the same length and all the struts
are the same length, and each intersects normal to the sphere. With this change,
the compressive response changes dramatically. The structure’s stiffness is greatly
reduced, as are the maximum local strains from stress concentrations.

We performed compression tests on the spherically-jointed structure. Comparing
the deformation of the compressed structure (Figure 3.4(a)) with the results obtained
with ABAQUS 3D simulations (Figure 3.4(b)), we notice that each member in the
structure behaves like a beam: it undergoes bending, axial loading, and torsion
(Figure 3.4(c)). Each has a constant cross section and connects perpendicularly to
the spheres. Because of these characteristics, we developed a simpler finite element
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model using beam elements. A beam element model allows easy modification of
the member diameters for geometric iterations and analysis. Timoshenko beam
elements, which allow for transverse shear deformation and large strains, are used
rather than Euler-Bernoulli elements. The type of element used is B32, which is the
3-node quadratic Timoshenko beam.

M
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(b)(a)
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Figure 3.4: (a) Spherically-jointed structure compressed during an experiment.
(b) ABAQUS rendering of compression of the spherically-jointed structure. (c)
Representation of the mechanical deformation modes exerted on the members of
the spherically-jointed structure. (d) ABAQUS beam element rendering of the
compression of the spherically-jointed structure.

In the spherically-jointed configuration, each node connects four members. To
model the spheres using beam elements, a single element with the length of the
radius of the sphere connects the end of each member to the node. This element is
given a very large stiffness and appropriately sized cross section and density values,
as fully described in Chapter 2. The top and bottom reference points and coupling
with the top and bottom face nodes are the same as in the 3D stress simulation. The
compressed structure with the beam element simulation is shown in Figure 3.4(d).

Recall that a key objective is that the 3D-printable structure is to be used as
a building block for impact absorbing periodic lattices. Although our objective
for this work is not to optimize the structure for energy absorption capacity, we
needed to adjust the member diameters of the spherically-jointed structure to obtain
a longitudinal stress-strain curve and elastic energy capacity that would be useful
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for dynamic analyses. We increased the cable diameter to raise the stiffness of the
structure, and increased the strut diameter to raise the buckling load and reduce the
global buckling strain.

The final 3D-printable, spherically-jointed design has a strut diameter of 2.6
<< and a cable diameter of 1.8 << for the 1.5 scaled structure, giving a 3B/32
of 1.44. We define this 3B/32 as Geometry #2. A complete explanation of the
reasoning behind these final member diameters is given in Appendix B. For the
purposes of 3D-printing, we size the structure as 48.3 << in height again, scaling
the structure back down by 2/3.

The corresponding spherically-jointed structure longitudinal stress-strain curve
(ABAQUS beam element simulation) is seen in Figure 3.5 as the dashed purple line.
The initial stiffness increased to 48 kPa. The structure has no distinct buckling point,
but asymptotically approaches the buckling stress. Thus, the structure exhibits load
limitation at the structure’s buckling load. The strain energy density is the area
under the longitudinal stress-strain curve. By 0.4 strain, this structure absorbs 3.1
times greater strain energy than the original tensegrity structure (dashed-dotted line
in Figure 3.2).

The full ABAQUS 3D stress element simulation response is shown as the purple
dotted line in Figure 3.5. The beam element simulation presents a slightly stiffer
response, with a final stress 5.6% higher than the full 3D stress simulation. This
difference is likely because beam elements present a simplified model of deforma-
tion, not taking into account sources of deformation that the 3D stress model is able
to capture. The beam element simulation also assumes very slender beams and has
sharp transitions connecting the edge elements (representing the spheres) to the ca-
ble/strut members. These assumptions cause the beam element simulation to exhibit
higher stiffness. The beam element simulation has several advantages, however, over
the 3D stress model. The runtime with 8 CPUs for the beam element model is about
6 minutes, where as for the full 3D stress model it is around 20 times longer. It
should be noted that this runtime difference significantly compounds with dynamic
simulations (Section 3) and with forthcoming lattice simulations. Easy member
diameter modification also makes geometry iterations much more straightforward
with the beam element model.

At this point, it is important to observe where areas of high local strain occur
and the levels of local strain within the structure during compression. Local strain
distribution is obtained using theABAQUS3D stress element simulation. Maximum
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Figure 3.5: Global compressive stress-strain curves showing responses of the 3D
stress simulation, beam simulation, corresponding pin-jointed tensegrity simulation,
and representative experiment. All four show comparable behavior, indicating the
spherically-jointed structure’s equivalence to a corresponding pin-jointed tensegrity
structure. This is the final geometry design chosen for the studies in this thesis.

principal elastic strain within the structure at a global compression level of 0.4 is
shown in Figure 3.6. The blue-to-red rainbow colorplot ranges from the lowest
strains in blue to the highest strains in red. The highest local strains occur at the
intersection points between the cables and the spheres for the 8 cables that connect
the top/bottom faces to the side faces. Due to the sharp corner at each intersection
from member to sphere, high stress concentrations are produced at these locations.
Because the 8 cables connecting the top/bottom faces to the side faces undergo the
largest deformation of all the members, the stress concentrations produced at their
cable/sphere intersections produce the highest strains in the entire structure.

Amagnification of one of these locations is shown in the inset image in the red box
in Figure 3.6. We can see that the highest strain is highly localized. The maximum
strain produced here is about 0.2. Although theoretically this strain level could
cause the structure to rupture (the material’s rupture point is around 0.2 strain), this
does not occur in our experiments. There are a few reasons for this. First, in a
3D-printed structure, the corners always will be fabricated with some amount of
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Max local strain: 0.2

Global strain: 

h/h = 0.4

Figure 3.6: Maximum principal elastic strain within the structure at a global strain
level of 0.4. The blue-to-red rainbow colorplot ranges from the lowest strains in
blue to the highest strains in red. A magnification of one of the the highest local
strain locations is shown in the inset red box.

filleting. Even a small fillet introduced at a sharp corner can dramatically reduce the
stress concentration there. Thus, the stress concentrations in the printed structure
are likely lower than in the ABAQUS simulations. Second, the level of local strain
and area of concentration of the highest strain changes significantly with mesh size.
With a very fine mesh, the local strain approaches extremely high values over a very
small area right at the intersection of cable and sphere, approaching the analytical
solution of infinite strain for a sharp transition. This indicates that without the
sharp transition, like in the experiments, the local strains at these points could be
significantly lower than the rupture point for the material.

Overall, most of the structure shows low local strains, largely below 0.05 strain.
In the following chapters, we explore the dynamics of this structure. In those cases,
the structure undergoes high and repeated global strain and remains highly elastic.
This indicates that overall the strains remain low enough in the structure to not
only prevent rupture but also remain elastic (indicating the validity of choosing a
hyperelastic material model). In this thesis we do not set out to optimize the structure
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for low local strains, but this could be an area of interest for furthering this research.

Next, we turn our focus to obtaining a corresponding pin-jointed tensegrity struc-
ture with similar stress-strain response and strain energy capacity as the spherically-
jointed tensegrity-inspired structure. The pin-jointed and spherically-jointed struc-
tures have different deformation modes. In the spherically-jointed geometry, both
the cables and the struts simultaneously affect both the stiffness and buckling load of
the structure because they are both bending-dominated. The pin-jointed structure,
on the other hand, has purely axially-loaded members. However, when the struts
buckle, they undergo pure bending whereas the cables remain at the same axial
stress as they were just before the struts buckled. Thus, in the pin-jointed case, the
structure’s buckling load strictly depends on the strut diameter, whereas the initial
stiffness depends on both the cable and strut diameters. So, to find the pin-jointed
diameters needed to obtain a similar response to our spherically-jointed structure,
we keep the cable diameter the same as that for the spherically-jointed structure, but
solve for the strut diameter using a simple force balance.

Fs

Fc1

Fc2

Fc1

Fext

Figure 3.7: Pin-jointed tensegrity structure, zoomed in at the top face leftmost
node. Here, we show the forces acting on this node. This enables us to solve for
the diameter of the strut needed to achieve a buckling load equal to that of the
spherically-jointed tensegrity-inspired structure.

We do this by taking a free body diagram of one of the top face nodes, as seen
in Figure 3.7. Zooming in on the left-most top face node in the image, we can see
that the node connects three cables and one strut. The top face cables all carry the
same load. So we label the force in the strut as �B, the force in the two face cables
as �21, and the force in the other cable as �22. We apply a total load on the top face
nodes equal to that of the buckling load we observe in the spherically-jointed 48.3
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<< tall structure (about 18.1 N). The force balance at this node is a linear system of
3 equations (forces in x, y, and z) and 3 unknowns (�B, �21, and �22). We solve for
the unknown forces. Then, since we define the applied load (18.1 N) as the buckling
load of the structure, we solve for the diameter of the strut, 3B such that �B is equal
to the buckling load:

�B =
c2��

!2
B

(3.2)

where � = c34
B/64 is the strut’s moment of inertia. We found 3B to be 3.32 <<.

Thus, the pin-jointed tensegrity has a cable diameter of 1.8 << and a strut
diameter of 3.32 <<, for a 3B/32 of 1.84. (We define this as Geometry #3.)
We add just enough prestress (2%) so that the structure is load-bearing and the
struts just begin to bend at the onset of loading. The pin-jointed response for
this structure is shown in Figure 3.5 as the dashed-dotted line. Remarkably, the
pin-jointed tensegrity structure response matches very closely with the spherically-
jointed tensegrity-inspired structure, achieving the same strain energy capacity and
stress-strain curve.

As stated, we add just enough prestress to the pin-jointed structure that the struts
just buckle and begin to bend on the onset of loading. This creates a global response
that qualitatively mirrors that of the fixed-jointed structure, due to the following
reason. If a column is eccentrically loaded or if there is an initial bend in the
column, the transverse deflection will be nonzero. Because of this, the increase in
the load is gradual and asymptotically approaches the critical buckling load at a rate
dependent on the degree of eccentricity/initial bending [111]. In the spherically-
jointed structure, since the joints are fixed and the “faces” rotate, the struts bend
immediately upon loading. The resulting response asymptotically approaches the
critical load of the structure. A similar response occurs with a prestressed pin-
jointed structure with struts dimensioned for elastic buckling. At a certain prestress,
the struts buckle. Thus when an external load is applied, the response of the
structure asymptotically approaches the structure’s critical load instead of having
a sharp buckling point. Thus, both the pin-jointed structure with just-buckled
struts and the fixed-jointed structure immediately undergo bending upon loading
and asymptotically approach their buckling loads. This results in both structures
having the same response.

A representative experimental compressive response of a 3D-printed tensegrity-
inspired structure (with the final Geometry #2) is shown in Figure 3.5 as the purple
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solid line. Several samples were tested, and as can be expected, slight variations in
the response result from differences in manufacturing. We explore these differences
in manufacturing thoroughly in subsequent dynamic studies. In the experiments,
the structures can be compressed to 0.48 strain when the struts begin to touch
(densification). Both experimental and numerical results agree favorably with the
pin-jointed response. With a structure height of 48.3 <<, the spherically-jointed
structure has a mass of 3.75 6, which is less than the pin-jointed structure’s mass of
5.75 6. The normalized strain energy by mass of the spherically-jointed structure is
therefore about 1.5 times greater than the counterpart pin-jointed structure.

3.1.3 Examples of the Design With Alternate Materials and Length Scales
We explored a few examples which indicate that our design method (correlating a

pin-jointed structure with a spherically-jointed tensegrity-inspired structure) applies
for other strut/cable diameters, materials, and length scales.

(a) (b)

Figure 3.8: Microscale samples with a height of 120 `< were fabricated with the
Nanoscribe© printing system. (a) A scanning electron microscope photograph of
a sample is shown. (b) Photograph of a compression test on a sample using the
FemtoToolsTM testing system. The sample on the lower right is being compressed
by the force sensor tip, which is lowered by displacement control.

We successfully printed Geometry #2 (3B/32 of 1.44) with a height of 120 `<
using the Nanoscribe© 3D laser lithography printing system. A standard material
used by this printer, IP-DipTM, has been experimentally studied in [112, 113]. In
those studies, both a long-term and instantaneous elastic modulus were extracted
due to the pronounced viscoelastic behavior of thematerial. Thematerial’s pertinent
properties are a long-term modulus of 2.22 �%0, instantaneous modulus of 2.90
�%0, Poisson’s ratio of 0.49, and yield stress of 60 "%0. Figure 3.8(a) shows a
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scanning electron microscope photograph of the printed structure.
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Figure 3.9: Global compressive stress-strain results of compression tests on mi-
croscale samples with a height of 120 `< and 3B/32 of 1.44. The results of four
samples are shown. The results show behavior similar to the 48.3 << samples
printed with the Shapeways PA2200 material and same 3B/32 value.

We performed quasistatic compression tests on these structures using the com-
mercial FemtoToolsTM setup. A photograph of a compression test is given in Figure
3.8(b). The results of the compression tests for four samples is given in Figure
3.9. We can see that the response is comparable to what we see for the macroscale
samples (Figure 3.5). There is an initial linear region followed by a region of buck-
ling. The buckling produces a plateau in the stress response. The stress levels and
buckling load are higher for this case than for the macroscale samples because this
material has a higher modulus. Also, the onset of buckling occurs distinctly around
0.1 strain, which is sooner than for the macroscale samples.

Next we give an example of a numerical simulation we ran of a macroscale
sample with a different 3B/32 ratio and linear elastic material properties. We ran the
beam element ABAQUS simulation with a linear elastic material (� = 1.291�%0,
a = 0.3, and d = 930:6/<3), a cable diameter of 1.8<<, and a strut diameter of 1.2
<<. This gives 3B/32 = 0.67. The result is shown in Figure 3.10 as the solid blue
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line. Again, the sample buckles distinctly, producing a plateau in the stress-strain
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Figure 3.10: Global compressive stress-strain responses of a linear elastic
spherically-jointed structure and its corresponding pin-jointed tensegrity structure
found using our design method.

response. This indicates that this behavior can occur with our spherically-jointed
design even if the material is linear elastic. Using the force balance method for the
pin-jointed tensegrity as described earlier in this chapter, we find the pin-jointed
strut diameter to be 2.85 <<. We keep the cable diameter at 1.8 <<. The resulting
pin-jointed tensegrity response is shown in Figure 3.10 as the dashed-dotted purple
line. Again, the responses match very well. Thus, we have demonstrated that
our design method to correlate buckling tensegrity structures with a 3D-printable,
fixed-jointed structure can be implemented for a range of geometries, materials, and
length scales.

3.2 Fundamental Comparison of the Fixed and Pin-Jointed Structures
Although the pin-jointed structure and the 3D-printable, spherically-jointed struc-

ture have similar constitutive responses, they are governed by different proper-
ties: the pin-jointed structure is stretch-dominated and prestressed, whereas the
spherically-jointed structure is bending-dominated and not prestressed. Thus, the
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spherically-jointed structure does not have traditional tensegrity traits, such as pre-
stress tunability. However, the pin-jointed and spherically-jointed structures share
some useful similarities: (i) The faces rotate during compression, producing low
local strains. (ii) The slender struts undergo elastic buckling. As a note, the struts
in the final designed spherically-jointed structure also satisfy the elastic buckling
requirement of Equation 3.1. These traits allow the structure to withstand high de-
formations while remaining elastic, like a tensegrity. (iii) Strain energy is distributed
evenly throughout the structural members. (iv) The nonlinear buckling response is
load-limiting. (v) Finally, both types of structures have very low relative density,
allowing formation of extremely lightweight lattices.

Relative density is given by the density of the structure divided by the density of
the constituent material. The density of the structure is the mass located within a
representative volume element (RVE) that is used for tessellating in space, divided
by the volume of the RVE. The RVE for the baseline spherically-jointed structure
is given in Figure 3.11. The RVE is found by slicing the structure through the

4
8

.3
 m

m

48.3 mm

Figure 3.11: Representative volume element of the baseline spherically-jointed,
tensegrity-inspired structure. This is used for calculating the relative density of our
structure and subsequent lattices.

center of the spheres and cables on the top, bottom, right, left, front, and back faces.
The relative density of the final designed structure (Geometry #2) is 2.5%, and the
relative density of the corresponding pin-jointed tensegrity is 4.9%. The structure is,
therefore, very lightweight, even more so than the pin-jointed tensegrity structure.

Although the spherically-jointed structure is not pin-jointed, it remains elastic
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under high deformation (up to 0.48 strain). This is due to a few reasons. First,
it achieves low local strains at the intersections between the spheres and members.
This is because the faces rotate during compression, but also because elastic buckling
occurs. Elastic buckling allows high deformation without plasticity. Second, the
cross section of the members remains constant along their length, keeping stress
concentrations low at the joints. Third, the beams are slender (3/! < 10% for
cables and < 5% for struts), which, for a certain applied deformation, produce lower
stresses than for a thicker beam. Thus, the structure’s elasticity is comparable to a
tensegrity structure while remaining easily fabricatable with standard 3D-printing.

Finally, we demonstrate that the struts in the spherically-jointed structure indeed
undergo axial buckling and not solely bending and torsion. We do this by showing
the axial force along the beam axis of a strut in the spherically-jointed structure.
In Figure 3.12, we show the force in the strut normalized by its buckling load for
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Figure 3.12: The force in a representative strut (�) normalized by its buckling
load (�1) for both the spherically-jointed tensegrity-inspired structure and the cor-
responding pin-jointed structure, as a function of global compressive strain.

both the spherically-jointed tensegrity-inspired structure and the corresponding pin-
jointed structure, as a function of global compressive strain. We show the force
in the strut for the un-prestressed pin-jointed structure to illustrate the onset of
the buckling load in the strut. What we see is that the axial load in both struts
are negative, implying compression. Also, the tensegrity-inspired structure’s strut
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clearly undergoes buckling between 0.2-0.3 strain. The two curves show the same
behavior, indicating that the tensegrity-inspired structure indeed undergoes axial
buckling in the struts. In fact, �1 for the tensegrity-inspired structure’s strut is
extracted as 4.44 N from ABAQUS. Using Euler’s buckling criteria, the buckling
load for a beamwith its dimensions and properties is found to be 3.81 N for perfectly
pinned ends and 7.62N for fixed ends. Interestingly, the strut exhibits a buckling load
much nearer to that of perfectly pinned than perfectly fixed ends. This perhaps also
contributes to our designed structure’s ability to mimic the behavior of a tensegrity.

For the remainder of this thesis, we henceforth call the designed spherically-
jointed structure the “tensegrity-inspired structure.” The un-tessellated designed
structure is referred to as the baseline tensegrity-inspired structure.

3.3 Representative Volume Elements for Tensegrity-Inspired Lattices
Since the baseline tensegrity-inspired structure has six orthogonal faces, it can be

tessellated into 3 dimensions to form tensegrity-inspired lattices. However, a series
of reflection operations must be performed to do this. These operations are per-
formed on the pin-jointed tensegrity structures in [71] to obtain multi-dimensional
lattices, and are fully described there.

The baseline structure cannot be directly tessellated because the faces are initially
rotated along their respective axes. Thus, the baseline structure has two config-
urations: a left-handed and a right-handed configuration. This is seen in Figure
3.13. The left-handed cell has face nodes rotated counterclockwise, whereas the
right-handed cell has face nodes rotated clockwise. Thus, both the right-handed
and left-handed cells must be used to tessellate the structure to achieve periodicity
between faces. The 1D representative volume element (RVE) contains a right- and
left-handed cell. The 2D RVE contains two 1D RVEs, or 4 baseline cells. The 3D
RVE contains two 2D RVEs, or 8 baseline cells. In this thesis, we study 1D lattices
and 3D lattices formed with 1D RVEs and 3D RVEs, respectively. The 3D lattices
we study are what we term 3D1D and 3D bulk lattices. The 3D1D lattices are simply
lattices of 3D RVEs, but only tessellated in one dimension. This is essentially a
1D lattice. The 3D bulk lattices are lattices of 3D RVEs tessellated in all three
dimensions.

Finally, we give the ABAQUS beam element stress-strain responses for the base-
line, 1D RVE, and 3D RVE in Figure 3.14. These are for the final design configu-
ration given by Geometry #2. They differ only slightly, with the baseline structure
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Right-Handed 

Baseline Unit Cell

2D RVE:

4 Baseline Cells

3D RVE:

8 Baseline Cells

1D RVE:

2 Baseline Cells

Figure 3.13: The baseline tensegrity-inspired structure has a left-handed and right-
handed configuration, and both must be used to tessellate the structure into mul-
tidimensional lattices. The representative volume elements and their number of
baseline cells are shown.

being the softest and the 3D RVE being the stiffest. The stiffness increase from base-
line to 3D is intuitive. This is because as the structure is tessellated, faces (spheres
and cables) are “shared” between neighboring baseline cells. This makes the faces
unable to rotate as naturally, so there is an additional component of stiffness.

For completeness, we found the effective Poisson’s ratio for each of the 3 RVEs
shown in Figure 3.14. This is the axial strain (the compressive strain in Figure 3.14)
divided by the transverse strain (how much the RVE expands laterally). The initial
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Figure 3.14: Global compressive stress-strain curves from ABAQUS beam element
simulations of the baseline, 1D, and 3D RVEs.

Poisson’s ratio in the linear region of the stress-strain curves is very close to 2 for
all three RVEs. The Poisson’s ratio increases significantly as the strain increases
to the nonlinear region, reaching almost 5 by densification. A large Poisson’s ratio
such as this implies higher axial deformation than transverse deformation. The
axial deformation greatly exceeds the transverse deformation as the struts buckle.
An effective Poisson’s ratio larger than 1 has also been exhibited for other types
of architected lattices [114, 115]. As we will see, this large Poisson’s ratio has a
significant effect on the dynamics of these tensegrity-inspired structures.

3.4 Chapter Summary
We have presented a method to overcome manufacturing limitations of tenseg-

rity structures by designing a 3D-printable structure with analogous strain energy
capacity and compressive global stress-strain response as a pin-jointed tensegrity
structure. The structure design uses spherical joints to separate structural members
in a way that maintains certain tensegrity characteristics, allowing the compressive
and dynamic responses to behave similarly to a counterpart prestressed buckling
tensegrity. The structure is fabricated with a single material, allowing it to be
printed with a variety of currently available 3D-printing methods. Without the need
for pin-joints or prestress, the structure presented in this paper uses geometry to
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produce tensegrity-like characteristics. Such characteristics include stability post-
buckling, resilience to severe deformation, very low density, and load-limitation.
Simple modification of the member diameters allows straightforward tunability of
the structure’s mechanical response and strain energy capacity, as the design method
is applicable for a range of materials and geometry configurations. Starting with the
baseline structure, we showed the process to form representative volume elements
that tessellate the structure in space. In the following two chapters, we study the
dynamic response of baseline unit cells and tessellated lattices designed with the
final geometry defined in this chapter.
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C h a p t e r 4

DYNAMICS: FREQUENCY RESPONSE

4.1 Introduction to Dynamic Frequency Analysis
In Chapter 3, we presented a method for creating lightweight tensegrity-inspired

structures with unique nonlinear buckling characteristics. These structures behave
similarly to tensegrity structures in which the struts buckle elastically [23, 71]. Our
tensegrity-inspired structure has many advantages, such as low density, high elastic
deformation, minimal local strains, high energy capacity, and load limitation. It is
also printed with a single material, so it can be fabricated with multiple 3D-printing
methods at multiple length scales. This opens the door for creating new types of
tensegrity-inspired materials with unique properties.

The quasistatic characteristics we examined in the previous chapter hold promise
for the dynamic regime. Particularly of interest is the dynamic behavior of the
structure when tessellated into lattices of multiple dimensions. In general, structural
lattices can be engineered to propagate elastic waves at desired direction-dependent
wave speeds [48–52], and they can be designed to feature bandgaps, i.e., frequency
ranges of strong wave attenuation [48, 49, 53–55]. bandgaps are often due to Bragg
scattering in these lattices [48]. However, once the lattices are manufactured, the
wave properties are often set in stone. There are ways to make the wave response
tunable, but it is often a discrete degree of tunability such as arising from bistable
mechanisms [116] or an external stimulus [65, 67, 69]. Also, tunable lattices often
use very soft materials whose dynamic response is dominated by damping, making
practical applications challenging. Tensegrity lattices have been shown to possess
exciting dynamic characteristics for both low amplitude frequency excitation [72,
73, 85–87, 117] and impact loading [71, 74–77, 118]. They also display Bragg
bandgaps, but present continuous tunability by adjusting prestrain in the cables
and/or global compression. This tunability has the potential for creating systems
with wave-guiding/lensing attributes. It is also useful for applications where certain
levels ofwave attenuation, wave speed, or other characteristics are needed at different
times without having to replace the entire lattice. However, fabrication of tensegrity
lattices beyond a few unit cells has remained elusive due to assembly technicalities,
especially at smaller length scales.
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In this chapter, we begin to examine how our tensegrity-inspired structure behaves
in the dynamic regime by looking at its response to low amplitude frequency exci-
tation. Our structure is of interest in this area. It has tensegrity-like characteristics
that produce dynamic attributes such as continuous tunability of bandgaps and wave
speeds and rare properties not found in natural materials (e.g., faster shear wave
speeds than longitudinal). In this chapter, we provide an experimental demonstra-
tion of dynamic properties only previously discovered by numerical and theoretical
studies on tensegrity lattices. This analysis also lays a groundwork for understand-
ing subsequent dynamic impact studies on these lattices (Chapter 5). First, we
examine the frequency response of an unstrained 1D lattice. Then, we apply global
compression to the 1D lattice to study its tunability attributes. Finally, we perform a
dispersion analysis on a 3D unit cell to give insight into the dynamics of 3D lattices
and compare this to the response of buckling tensegrities [87].

Some content of this chapter has been partially adapted from:

K. Pajunen, P. Celli, and C. Daraio. “Experimental evidence of analog prestrain-
induced bandgap tuning in 3D-printed tensegrity-inspired lattices”. In: Extreme
Mechanics Letters (2020). In Press.

4.2 Unstrained Lattice
4.2.1 Dispersion Results
First, we performed numerical COMSOL simulations on a 1D representative

volume element (RVE) with a strut-to-cable diameter ratio of 1.44 using an eigen-
frequency step as described in Chapter 2. This analysis provided an estimate of the
range of frequencies and characteristics of the dispersion curve for our tensegrity-
inspired lattice before performing experiments. Two baseline unit cells comprise a
1D RVE, thus allowing periodic tessellation of the RVE into a 1D lattice. Periodic
Bloch boundary conditions are applied on the top and bottom faces of the RVE, as
shown in Figure 4.1, so an infinite 1D lattice is simulated. The RVE has a total
height of 96.6 <<, which is the height of two baseline unit cells. A linear elastic
model for the PA 2200 nylon is implemented, and the part is meshed with quadratic
tetrahedral elements. A parametric sweep is performed in the eigenfrequency step
which sweeps over values of the wavenumber, : , from 0 to c/0 and calculates 20
eigenfrequencies at each : value.

The resulting dispersion curve is shown in Figure 4.2. The dispersion relation
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Periodic Bloch

Boundary Conditions

Figure 4.1: Setup of the 1D RVE in COMSOL for eigenfrequency analysis of an
infinite 1D lattice. Periodic Bloch boundary conditions are applied on the top and
bottom faces.

is plotted in real space, from : = 0 to 1/(20) <−1, where 0 = 0.0966<. The
wavenumber is converted from A03/< to <−1 with dividing by 2c. Longitudinal
modes are shown as red circles, purple circles are rotational modes, green circles are
combined rotational and longitudinal modes, and blue stars are flexural and all other
combined modes. The output frequency and wavenumber values from COMSOL
do not distinguish between the different mode shapes, so we devised a method
to do this. We extracted the displacement magnitude in the vertical (y) direction
at three locations in the RVE, and the curl magnitude around the y-axis volume
averaged for the whole RVE. These locations are given by the light blue regions
in Figure 4.3(a)-(d). Then we establish quantitative thresholds based on the ratios
of these values to their maximum over all eigenvalues. (The MATLAB code with
the thresholds are given in Appendix A.) These thresholds give the wavenumber
and frequency values where vertical displacement and curl have a large percentage
of the total displacement. Where vertical displacement is dominant, the mode is
longitudinal; where curl is dominant, the mode is rotational; and where curl and
vertical displacement are both significant, the mode is combined longitudinal and
rotational. All other eigenvalues are flexural or other combined modes.

We needed to establish three locations for extracting the vertical displacement.
This is because if we only look at the displacement at the middle of the RVE, wemiss
the cases where the vertical displacement is high, but the middle stays stationary
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Figure 4.2: Numerical dispersion relation for the unstrained 1D lattice response.
The dispersion relation is plotted in real space, from : = 0 to 1/(20) <−1, where
0 = 0.0966<. The red circular markers are longitudinal modes, the green ones are
combined longitudinal and rotational modes, the purple ones are rotational modes,
and the blue stars indicate flexural modes and modes that do not clearly belong to
any of the above categories. The red shaded region indicates a frequency region
where there are no longitudinal modes present; this is a longitudinal bandgap.

(Figure 4.3(e)). Also, if we only look at the displacement at the middle and top of
the RVE, we miss the cases where the displacement of the middle of the baseline
cells is high, but the middle and top of the RVE remain stationary (Figure 4.3(f)).
Finally, we color the eigenvalue markers according to these thresholds in Figure
4.2, as done in [119]. The method is quantitative but slightly arbitrary; however,
it gives very good approximations for the distinction of the different mode shapes.
Examples of the different mode shapes are given in Figure 4.4. For the purposes of
the experiments, we focus on the longitudinal modes.

Looking again at the dispersion curve in Figure 4.2, we can see that there are
instances of combined rotational and longitudinal modes at the intersection of the
lower longitudinal and rotational branches, as well as above around 425 �I. For our
tensegrity-inspired structure, we expect longitudinal and rotational modes to occur.
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(a) (b) (c) (d)

Figure 4.3: The vertical displacement magnitudes are extracted from locations (a),
(b), and (c), and the curl magnitude around the vertical axis is extracted for the
volume average of the RVE (d). From these magnitudes, we establish quantitative
thresholds of these values to distinguish between mode shapes of the dispersion
curve. We also show two examples of longitudinal modes where (e) the middle of
the RVE stays stationary, but the vertical displacement is large, and (f) the middle
and top of the RVE stay stationary, but the vertical displacement of the baseline
mid-cell locations is large.

This is because as the structure is compressed vertically, vertical deformation is
inherently coupled with rotation of the faces, as described in Chapter 3 and [120].
Thus, it makes sense that the green coupling modes occur at the intersections of
the longitudinal and rotational modes in the dispersion curve. As we apply global
compression to the lattice, we will see how this coupling evolves. The longitudinal
(red) branches follow an unambiguous path, and clearly show a bandgap from 351
to 425 �I, which is shown by the shaded region in Figure 4.2.

Next, we experimentally reconstructed the dispersion characteristics of the un-
strained lattice. To do this, we excited the bottom plate (fabricated through the
four spherical nodes on the bottom face) of the 5-RVE 1D lattice specimen with a
one-cycle burst. The burst has a carrier frequency of 200 �I and a wide frequency
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(a) (b) (c) (d)

Figure 4.4: Mode shapes for the 1DRVE are shown. (a) Longitudinal, (b) rotational,
(c) flexural, (d) combined rotational and longitudinal, where both rotation along the
vertical axis and motion vertically are prevalent.

bandwidth, which tests a large frequency range with a compact signal. The laser
vibrometer recorded the velocity time history at each of the reflective tape locations,
repeating the measurement 128 times at each location and averaging to improve the
signal-to-noise ratio. The reflective tapes were placed at the intersection of each
baseline unit cell, as well as on the bottom plate, for a total of 10measurement points.
We also employed a high-pass filter to eliminate all ambient noise at frequencies
lower than 100 �I. This filtering step was required since the waves imparted by
the transducer onto the specimen are weak, owing to the fact that we are operating
the transducer very far from its peak frequency (100 :�I). Once we collected
the measured data into a time-space matrix, we obtained a frequency-wavenumber
data matrix by using a 2D discrete Fourier transform (2D-DFT). We performed
a zero-padding operation to the data prior to performing the 2D-DFT operation.
This interpolates along the wavenumber direction and improves visualization of the
results despite having only few spatial samples. The experimental dispersion curve
is given by the grayscale colormap of Figure 4.5.

The dispersion branches of the experimental results are expected to connect
the locations of high velocity amplitude; those locations correspond to structural
resonances of the finite specimen [121]. Since we have two measurement points per
RVE, one every 0/2, the plot extends to : = 1/0 instead of 1/(20). Thus, prior to
overlapping the numerical longitudinal dispersion points onto the experimental data,
we “unwrap” the numerical curve about 1/(20) [122], obtaining the red markers
of Figure 4.5. The experimental and numerical results agree, with the numerical
dispersion following the maxima of the colormap (dark grey/black regions). In
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Figure 4.5: The colormap shows the experimentally-reconstructed dispersion plot
for longitudinal wave motion of the 5-RVE 1D lattice. We expect the dispersion
branches to follow the maxima of the colormap [121]. We see a frequency region of
very low amplitude on the colormap from about 350 to 430�I, indicating a bandgap.
The red circles indicate the “unwrapped” longitudinal wave mode locations from
the numerical COMSOL simulations.

particular, the slopes of the lower branch coincide. The bandgap region, highlighted
in the experimental plot by the absence of dark regions for vast frequency ranges,
fall in a similar range of frequencies. Note that the low velocity amplitude region
below 100 �I is affected by high-pass filtering, and thus a clear trend is not seen in
this region.

The morphology of the modes before and after the gap highlight that the bandgap
is due to Bragg scattering effects [123]: (i) the branch below the gap veers to zero
slope near a characteristic point of the Brillouin zone, and (ii) the two branches
delimiting the gap have opposite slopes. Bragg scattering produces bandgaps in
periodic systems when the wavelength approaches multiples of twice the size of
a characteristic repeating unit cell (i.e., RVE) [124]. This occurs due to the fact
that two neighboring RVEs act as two identical scatterers in the lattice at a distance
0 from each other. As an incoming wave with a certain frequency interacts with
two identical scatterers a distance 0, the radiated waves from the scatterers interfere
destructively at certain wavelengths. The Bragg condition indicates when this is the
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case [124]:
=_ = 20. (4.1)

Here, n is an integer. Thus, in our case, the Bragg bandgap appears at a wavelength
the same size as the RVE (_ = 0.0966<, or : = 10.352<−1), where = = 2.

4.2.2 Wave Speed Analysis and Comparison with Other Lattices
The longitudinal low-frequency wave speed of the 1D lattice can be readily

determined from both the experimental and numerical results. The numerical wave
speed is calculated by taking the slope of the dispersion curve in the low frequency
region where the curve is linear. Here, the group velocity is equal to the phase
velocity. The group velocity is the velocity of the wave packet of superimposed
propagating waves with different values of : , and is the slope of the dispersion
curve at any point. The phase velocity is the velocity of the phase of the wave with
the l and : of a point on the dispersion curve, and is calculated as Δl/Δ: . We
calculate the phase velocity, which is the longitudinal wave speed, at : = 2.588<−1

and l = 108.19�I as 41.8 </B.

The experimental (phase) velocity is measured from the velocity time histories
recorded at the first and last measurement locations on the lattice; we divide the
spatial distance between those locations by the difference between time of occurrence
of the same feature of the wave packet (in this case, a peak). Since the packet is
centered at 200 �I, and since Figure 4.2 shows that dispersive features appear
around 300 �I, we expect this speed to be characteristic of the non-dispersive part
of the branch. An illustration of this calculation is shown in the x-t diagram of
the wave propagation in Figure 4.6. In this case, x indicates the spatial location of
the measurement points. The 10 measurement points are given on the horizontal
axis, and time is recorded on the vertical axis. The colormap shows the amplitude
of the laser vibrometer measurements. We zoom in on the first propagated wave
on the inset plot. Next, we find the times at the first and last locations where the
same feature of the wave packet has a maximum (red lines). From this, we calculate
the wave speed as 41.8 </B. Hence, the simulation and experimental wave speeds
are extremely close in value. Considering that the numerical simulation models
an infinite lattice and the experiment uses a finite lattice, both the dispersion and
wave speed results match very well. Effects from the experimental setup are likely
minimal, and viscoelastic effects from the material do not contribute significantly,
which would manifest as observable energy loss in the waves [125].
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Figure 4.6: A position-time (x-t) diagram showing how the velocity amplitude
measurements from the laser vibrometer (given by the grayscale colormap) vary
with measurement location and time. This provides an experimental estimate of the
long-wavelength, low frequency wave speed. The inset plot zooms in on the first
propagated wave through the lattice, where we find the times at the first and last
locations where the same feature of the wave packet has a maximum (red lines).
The physical distance between these locations divided by the time difference gives
the wave speed.

It is useful to compare how this longitudinal wave speed compares with other lat-
tices with the same relative density andmaterial properties as our tensegrity-inspired
lattice. Values for the longitudinal wave speed for a simple cubic, body-centered
cubic, face-centered cubic, octet, and Kelvin lattice with a relative density of 2.5%
and the same material properties as our structure are given in Table 4.1 [126, 127].
All but the Kelvin lattice wave speeds are calculated from dispersion diagrams [127]
in the same way we do in this work. The bulk wave speed in an isotropic, linear
elastic material is given by [128]:

20 =

√
�

d
(4.2)

where � is the modulus of elasticity and d is the density of the material. For
lattice materials, this is a good approximation of the longitudinal wave speed at low
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Lattice Type Longitudinal Wave Speed (</B)
Simple Cubic 943.8

Body-Centered Cubic 736.3
Face-Centered Cubic 654.1

Octet 437.5
Kelvin 195.0

Tensegrity-Inspired Structure 41.8

Table 4.1: Longitudinal low frequency wave speeds for other lattice types with the
same relative density and material properties as our tensegrity-inspired lattice. All
but the Kelvin lattice wave speeds are calculated from dispersion diagrams [127],
and the Kelvin wave speed is calculated from Equation 4.2 [126].

frequencies where dispersive effects are negligible and the material behaves linear
elastically. This is used to calculate the wave speed of the Kelvin lattice in Table
4.1, whose relationship between density and modulus is given in [126]. As a simple
check, the value of the wave speed for our tensegrity-inspired lattice calculated from
Equation 4.2 is 46.4 </B. This is comparable to the value of 41.8 </B we extracted
from the experiment.

As we can see, the wave speed for our tensegrity-inspired structure is considerably
lower than the other lattices identified. It is only 3.5% of the constitutive material
wave speed (around 1180 </B). The first four lattice types in Table 4.1 are stretch-
dominated lattices, in that the members undergo stretch-dominated deformation.
The Kelvin lattice and our lattice are bending-dominated lattices. It is the case that
wave speeds are slower in bending-dominated lattices than stretch-dominated ones
for the same density. This is because the stiffness is higher for stretch-dominated lat-
tices, which is for a few reasons. First, in the stretch-dominated cases, the structural
members are aligned close to parallel to the longitudinal loading direction. In the
bending-dominated cases (Kelvin and ours), all of the members are at a steep angle
to the longitudinal direction. This produces a greater stiffness in the longitudinal di-
rection for the stretch-dominated cases. Second, the stiffness of a stretch dominated
lattice varies linearly with density for small densities (less than 10%); this is because
they can be approximated as trusses with no moments at the joints where Young’s
modulus and density vary linearly [129]. If a structure is bending-dominated, there
are moments at the joints, so Young’s modulus varies with a higher power than 1,
=, with respect to the density. So, when calculating the low frequency wave speed,
Equation 4.2 is a constant for stretch-dominated structures, but is a constant times
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density to the power = for bending dominated structures [129]. This makes the wave
speeds considerably faster in stretch-dominated than in bending-dominated lattices
for the same low density.

The tensegrity-inspired structure wave speed is still lower than for a Kelvin lattice.
This is likely because the tensegrity-inspired structure also exhibits rotation of the
faces as is it compressed longitudinally, which creates a softeningmechanism. It still
maintains stiffness, however, even with this softening, because it has the inclusion
of the struts under compression running through the interior of the unit cell. A
slow wave speed for lattices is desirable for dynamic applications because a slowly
propagating wave allows more time for dissipation to occur in the structure, due to
material and/or nonlinear effects. In impact cases, for example, the slow wave speed
allows more time for impacting accelerations and energy to be mitigated.

4.3 Tunability with Compression
The tensegrity-inspired lattice holds potential for continuous tunability of the

dispersion characteristics with global compression. The baseline structure exhibits
a non-linear, load-limiting response as it is compressed. The baseline unit cell
response varies slightly from the 1D RVE response, so in Figure 4.7 we give the
global compressive stress-strain response of the 1D RVE with 3D stress elements
in ABAQUS. This best indicates how the lattice we are working with in this section
behaves under compression. With increasing compression, the structure deforms
dramatically, the struts buckle, and the stiffness of the structure plateaus to almost
zero. Thus, we expect the dispersion characteristics of the 1D lattice to change with
increasing axial compression.

To perform experiments with varying global compression, we needed to switch
to a 3-RVE lattice and support it with anti-buckling strings as described in Chapter
2. The 1D lattice effectively behaves as a slender beam (!/� = 10) with low
stiffness, corresponding to a low elastic buckling load and buckling strain. We
performed a simple linear perturbation on the 5-RVE lattice with the ABAQUS
beam element model to see this more clearly, as seen in Figure 4.8. With fixed top
and bottom nodes (as in the experiment), the buckling load for the first mode is 6.9
# , corresponding to a buckling strain of 5.3% (Figure 4.8(a)). When attempting
to compress the physical 5-RVE lattice, it visibly buckled before 5% strain. The
3D-printed structure inherently has imperfections, inducing buckling before the
theoretical load. The 2nd buckling mode (i.e., the first possible buckling mode
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Figure 4.7: The global compressive stress-strain curve of the 1D RVE under com-
pression, as outputted from the ABAQUS 3D stress element simulation. This best
indicates how the lattice we are working with in this section behaves under com-
pression. A visual depiction of the deformation in the structure is shown at 0, 0.2,
and 0.4 global compressive strain.

when the support strings are added at the center), has a theoretical buckling load
of 12.1 # , corresponding to a strain of 12% (Figure 4.8(b)). Again, the 3D-printed
structure with support strings would likely enter the 2nd buckling mode before 12%
strain due to manufacturing imperfections. Since our goal was to compress the
structure to 20% strain, we needed to reduce the size of the lattice.

Thus, we use a lattice with 3 RVEs and add strings at the center that connect
to four vertical, rigid rods. Both of these operations prevent the global buckling
of the lattice with compression. The strings prevent out-of-axis deformation, but
do not prevent movement in the longitudinal direction. They only prevent the
first buckling mode; the second buckling mode, the “s-shape” mode, occurs after
significant compression with the strings.

We performed the experiments at 0%, 5%, 10%, 15%, and 20% global com-
pressive prestrains. Above 20%, the structure globally visibly deforms into its
second buckling mode. Note that for future studies, second mode buckling could
be prevented by adding additional support strings. Another valuable metric for the
response of the lattice with tuning is transmissibility. The transmissiblity is the
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Figure 4.8: Linear perturbation buckling analysis of the 5-RVE lattice in ABAQUS
to show the loads and global strains for the (a) first and (b) second buckling modes.

ratio of the velocity amplitude at the output (last) measurement point to the velocity
amplitude at the input (first) measurement point for each frequency. When the input
and output have the same amplitude, the transmissibility is 1. For regions of high
amplitude attenuation, the transmissibility dips significantly below 1. The trans-
missibility plots are a better comparison between simulation and experiment for a
3-RVE lattice; they both compare finite lattices, rather than an infinite and a finite
lattice like for the dispersion plots. The experimental and numerical dispersion
curves and transmissibility plots are shown in Figure 4.9 for (a) 0%, (b) 5%, and
(c) 10% strain. Numerical results are shown in red, and the experimental results in
black.

Looking at the numerical dispersion we clearly see that, with increased com-
pressive strain, the bandgap width reduces and the slope of the acoustic branch
decreases, lowering the onset of the bandgap. The signature of bandgap closure that
can be read from the experimentally-reconstructed dispersion is the narrowing of
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Figure 4.9: Precompression-induced tunability. The left panel of each subfigure
represents the experimentally-reconstructed dispersion curve (gray colormap), with
overlapped circular markers corresponding to the numerical dispersion relation. The
right panel is the transmissibility plot, where the experimental curves are black and
the numerical ones are red. The dashed vertical line indicates a transmissibility of
1. The shaded gray and red regions serve as a guide to the eye and indicate what we
identify as bandgaps for the experimental and numerical curves, respectively. (a)
Lattice compressed to 0% global strain, (b) 5% global strain, and (c) 10% global
strain.

the peakless frequency region that extended from 340 to 440 �I in Figure 4.9(a)
for 0% strain. Keep in mind that a perfect match is not attainable here, owing to the
fact that the numerics represent the response of an infinite lattice. A 3-RVE lattice
particularly produces noise in the experimental response; because of interference
from the close boundaries, multiple wave packets interfere with each other, making
distinguishing between them difficult and affecting the wave attenuation region. It
is clear that the longer, 5-RVE lattice produces a better match with the simulation
for 0% prestrain than the 3-RVE lattice, when comparing Figure 4.9(a) with Figure
4.5.

The transmissibility plots, being representative of a finite-lattice response, show
an even better match between numerics and experiments. We first analyze the 0%
strain case of Figure 4.9(a), where we can see that the structural resonance peaks
between black and red curves almost coincide (with a minimal shift of 8 �I). The
experimental response appears to be stiffer, likely due to differences in manufactur-
ing from the nominal geometry and material properties. The noisy nature of the
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experimental response below 100 �I is again due to high-pass filtering. A strong
anti-resonance is visible for both numerics and experiments at around 450 �I, and
we claim this to be a feature of the finite structure and not indicative of a bandgap.
From the curves, we define as bandgap the wide peakless region from about 340
�I for the experiment and 450 �I for the numerics where the transmission dips
below 100. This attenuation region, shaded in red for the numerics and in gray for
the experiments, is in the vicinity of the numerical dispersion bandgap, yet slightly
wider, due to the finite nature of the lattice.

As we increase the strain to 5% and 10%, as shown in Figure 4.9(b) and (c),
respectively, anti-resonances and resonance peaks shift towards lower frequencies,
highlighting a global softening of the structure. Both the numerical and experimental
curves show increased resonance peak density and amplitude near the bandgap.
The valley identified as a bandgap in Figure 4.9(a) becomes increasingly narrow
and shallow for both simulation and experiment (see the evolution of the shaded
regions). The experimental bandgapmost significantly shallows and narrows by 10%
strain. This confirms that global prestrain indeed causes the bandgap to diminish in
size.

We can also note that, as global prestrain increases, the shift between numerical
and experimental resonances increases (reaching 19 Hz in Figure 4.9(c)). This is
not surprising, as the difference between numerics and experiments is bound to
increase for larger prestrains, for several reasons. First, the material model used in
COMSOL is linear elastic, rather than hyperelastic, which affects the stiffness values
at higher strain levels in the lattice. At these levels, local strains may exceed the
region of negligible deviance from the linear elastic region. Second, buckling of the
structure could affect the response even before any buckling is visually apparent. In
fact, it is likely that buckling affects the structure’s response earlier than expected,
because even small imperfections from the fabrication process could induce out-of-
axis deformation. However, even though these differences exist, the numerical and
experimental results are quite comparable.

Figure 4.10 shows the full evolution of the dispersion properties from 0% to 20%
strain for numerics and experiments. The bandgap nearly closes, but then opens
again at 20% strain for the numerics. We can see the slope of the lower branch of the
dispersion curve reducing in both cases (shown by the lowering of frequency of the
dark grey regions in the experimental case). This indicates a reduction of the wave
speed. As expected, at the higher strain values of 15% and 20%, the experiments
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Figure 4.10: The longitudinal dispersion plots of both numerics and experiments
for prestrain levels from 0% to 20%. The prestrain levels are given in the lower
right-hand corner of each plot.

deviatemost significantly from the numerics. At these levels of prestrain, identifying
the bandgap is increasingly difficult. For this reason, we consider the consistency of
numerics and experiments by tracking the evolution of the longitudinal wave speed
with prestrain, as shown in Figure 4.11(a). Both numerical and experimental results
show a 16% reduction of wave speed from 0% strain to 10% strain. As compression
is increased, the experimental results again show a stiffer response with respect to the
numerics, resulting in higher wave speeds. From 0% to 20% strain, the numerical
wave speed reduces by 27%, and the experimental wave speed reduces by 19%. The
already very low original wave speed of 42 </B can be reduced about a quarter,
even before the structure enters its most significant nonlinear region (seen after
0.2 strain in Figure 4.7). Despite the quantitative discrepancies, our experimental
results qualitatively confirm that wave speed and bandgap can be continuously and
significantly tuned with prestrain in these tensegrity-inspired lattices.

Due to difficulties in bandgap identification for finite-size systems, we visualize
the bandgap evolution from only the numerical dispersion curve in Figure 4.11(b).
Upper and lower bounds of the bandgap width, in �I, are provided for 0%, 5%,
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Figure 4.11: (a) Experimental and numerical longitudinal wave speeds at varying
levels of global precompression. (b) Evolution of the bandgap width, in �I, based
on the numerical dispersion curve. The bandgap region is shaded for strains up to
0.2.

10%, 15%, and 20% global strain, with the in-between sections shaded in red to
visualize the progression of the width. At no global precompression, the gap is
relatively large, from 352 to 425 �I. As precompression is applied, the bandgap
narrows significantly and shifts to lower frequencies. Interestingly, at 15% strain,
the bandgap nearly closes and is only 7 �I wide, from 323 to 330 �I. The bandgap
then slightly opens again at 20% strain. This lattice shows that the Bragg scattering
bandgap can be significantly altered, again even before the structure reaches the
plateau of its stress-strain curve (after 0.2 strain in Figure 4.7).

At this point it is valuable to note how these tunability characteristics can be
applied in a practical application. Acoustic lenses formed with periodic chains like
our 1D lattices have been shown to exhibit dramatic energy focusing effects [77,
130] due to tunable wave speeds. The focusing effect arises from varying levels of
precompression or prestress in parallel chains of periodic elements and applying an
impacting wave to the strings of chains perpendicularly. Because the chains have
varying levels of precompression or prestress, they have different wave speeds; as
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they are compressed by the impacting wave, waves with different phase velocities
are generated in the chains, and the wave coalesce to a focal point in the adjacent
host medium [77, 130]. An illustration of this is shown for a case of tensegrity
chains with varying prestrain in Figure 4.12 [77]. In our case, these tensegrity-
inspired, 3D-printable lattices could be used to control waves in similar manners by
continuously varying precompression on parallel chains.

Figure 4.12: F. Fabbrocino and G. Carpentieri demonstrated this example of a
tensegrity focusing lens [77]. The acoustic lens (1) consists of an array of tensegrity
and lumped mass chains, each subject to different prestress levels (2). The incident
wave signal (3) creates multiple waves with different phase velocities (4) within
the array. These waves come together at a focal point (5) in the adjacent medium
(6) [77]. A similar concept could be applied to the tensegrity-inspired lattices in
this thesis.

Another observation we made from this analysis was how the remaining mode
shapes, other than longitudinal, changed with increasing global prestrain. This
was observable in the numerical COMSOL simulations. The complete dispersion
curves for all modes and compression levels up to 20% strain are shown in Figure
4.13. Again, red circles are longitudinal modes, purple circles are rotational modes,
green circles are combined rotational and longitudinal modes, and the blue stars are
flexural and all other mode types. Each panel shows the level of compression in the
bottom right-hand corner.

We see several interesting attributes. From 0% strain to 5% strain, the upper
branch of the longitudinal curve becomes fully unambiguous because the rotational
mode distances from it. Also, the initial flexural mode flattens out and does not
increase from zero frequency until : = 2. The flexural mode continues to flatten



72

0 2 4

k (1/m)

0

100

200

300

400

500

F
re

q
u

e
n
c
y
 (

H
z
)

0 2 4

k (1/m)

0 2 4

k (1/m)

0 2 4

k (1/m)

0 2 4

k (1/m)

0

100

200

300

400

500

F
re

q
u

e
n
c
y
 (

H
z
)

0% 5% 10%

15% 20%

Figure 4.13: Complete COMSOL dispersion results for each level of compressive
prestrain (shown in bottom right-hand corner of each panel). Again, red circles are
longitudinal modes, purple circles are rotational modes, green circles are combined
rotational and longitudinal modes, and the blue stars are flexural and all other mode
types.

through 20% strain. The rotational mode also flattens starting at 15% strain and
continues flattening through 20% strain. These are zero energy modes, and they
indicate that there exist low frequency wave numbers where it is not possible for
anything but longitudinal waves to propagate at these compression levels. Interest-
ingly, the same kind of behavior has been seen in tensegrity lattices with buckling
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struts [87]. In that case, as prestrain is increased in the cables (analagous to the
application of global prestrain in our case), zero energy flat modes appear. This is
due to the fact that the struts have buckled in the lattice, leading them to become
“floppy” at low frequencies [87]. It is possible that the same concept applies for
our tensegrity-inspired lattices: as the compression level increases, the struts ap-
proach their buckling load and encounter less resistance, becoming “floppy” and
contributing to zero energy modes.

A second observation we make from Figure 4.13 is that as compression increases,
the combined modes (green circles) become much more prevalent at the lower
frequency intersection of the rotational and longitudinal branches. The branches
themselves look as if they begin melding together. That is, instead of following a
clear path through the longitudinal branch, as compression is increased, the rota-
tional branch “jumps” from a lower frequency to higher after combining for a few
modes with the longitudinal branch (seen from 5% to 15% strain). Then, at 20%
strain, the pure rotational mode itself undergoes a large jump from about 74 �I to
127 �I. The rotational modes in between those frequency values have a significant
longitudinal contribution. It makes sense that there would be such coupling. As
stated previously, as the structure is compressed, the faces rotate, so there is auto-
matically some coupling between longitudinal motion and rotational motion. Then,
as the structure is compressed, this coupling in the frequency regime is increased
because the compression constricts how freely the structure is able to move. The
structure “wants” to move in a certain way, but the prestrain forces it to move dif-
ferently. We have observed in several ways how our tensegrity-inspired structure
is continuously and significantly tunable with compression, making it desirable for
dynamic applications where such tuning is required.

4.4 3D RVE Dispersion Characteristics
So far in this chapter, we have looked at only one-dimensional lattices and their

dispersion characteristics. This information is useful to understand the dynamics
of the tensegrity-inspired structure in a basic periodic arrangement, but in many
applications 3D lattices are required. They are more practical, especially for impact
applications, and they provide room for more heterogeneous wave propagation
attributes to manifest. The dispersion characteristics of 3D RVEs are therefore of
interest.

To find the dispersion curve of a 3D RVE, we build a model in COMSOL as
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described in Chapter 2. Recall that the 3D RVE of the tensegrity-inspired structure
is comprised of 8 baseline unit cells. Periodic Bloch boundary conditions are
applied on all x, y, and z faces (total of 24 faces) of the periodic RVE. Sweeping the
wavenumber (now the full wave vector,

−→
k ) is more complex in the 3D case than the

1D case. Next, we give an overview of the general derivation of the wave vector,
−→
k .

The lattice vector in real space is:

−→
X = =1

−→01 + =2
−→02 + =3

−→03 (4.3)

where −→01 = 01Ĝ, −→02 = 02 Ĥ, and −→03 = 03 Î. The reciprocal lattice vector is given by:

−→
M = <1

−→
11 + <2

−→
12 + <3

−→
13 (4.4)

where the basis vectors are shown in Equations 4.5, 4.6, and 4.7.

−→
11 = 2c

−→02 × −→03
−→01 ·

(−→02 × −→03

) (4.5)

−→
12 = 2c

−→03 × −→01
−→02 ·

(−→03 × −→01

) (4.6)

−→
13 = 2c

−→01 × −→02
−→03 ·

(−→01 × −→02

) (4.7)

Finally, the Bloch wave vector,
−→
k , is related to the reciprocal lattice vector by:

−→
k = D

−→
11 + E

−→
12 + F

−→
13. (4.8)

The periodicity of our 3D RVE is simple cubic. Thus, its first Brillouin zone (the
uniquely defined primitive RVE in reciprocal space) is given in Figure 4.14 [131],
and the reciprocal coordinates at each of the symmetry points, Γ, " , - , and ' are
shown. For the simple cubic lattice, the basis vectors for

−→
k and

−→
b are related by:

®11 =
2c
0
:̂G , ®12 =

2c
0
:̂H, ®13 =

2c
0
:̂I . (4.9)

Thus, following the path of the first Brillouin zone shown in Figure 4.14, in COM-
SOL we sweep

−→
k as follows for the 7 regions of the first Brillouin zone. We find 20

eigenvalues for each value of the sweep.
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Figure 4.14: The first Brillouin zone of a simple cubic 3DRVE is shown in reciprocal
space. The path is given below the diagram. [131]
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As done in [87], we normalize the frequencies of the dispersion relation in the
following way. We obtain the longitudinal wave speed in the bulk material by
the relation 20 =

√
�/d. For our material, � = 1.291�%0 and d = 930:6/<3,

giving 20 = 1178</B. Then, we obtain a reference frequency, lA , by the relation
lA = 20/0, where 0 is the characteristic length of the RVE. For 0 = 0.0966< and
20 = 1178</B, this gives lA = 12194.6�I. Then, the normalized frequency is the
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frequency divided by the reference frequency, or Ω = l/lA . This was done in [87]
for the dispersion relation of a prestressed buckling tensegrity 3D RVE. In that case,
the normalization ensures validity of the dispersion relation for a range of tensegrity
truncated octahedron lattices, with a linear elastic material and the same geometric
cable and bar diameters with respect to the unit cell length, 0. We do this here for
the same reason and to compare our results with the results from [87].

The numerical dispersion relation for the 3D RVE is given in Figure 4.15. The
red dotted lines denote longitudinal pressure modes, and blue stars denote all other
modes. We see several interesting traits from the dispersion curve. First, the

Figure 4.15: The 3D RVE dispersion relation is shown for all 7 regions of the first
Brillouin zone. Red dotted lines are longitudinal pressure modes and blue stars
are all other modes, including shear modes. The frequencies are normalized as
described in the text. We see that in the first longitudinal region, Γ- , the low
frequency shear mode has a speed of 176 </B, which is about twice as fast as the
longitudinal speed (89.6 </B), unlike in natural solid materials. Also, the diagonal
wave speed in region Γ' (334 </B) is about twice that of the shear speed in region
Γ- .

low frequency shear wave speed in the first region, Γ- , is in fact faster than the
longitudinal wave speed. This region is analagous to the direction studied in the
1D RVE analysis in the previous sections of this chapter. A faster shear speed than
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longitudinal speed is very rarely observed in natural materials [132], but has been
observed in dilational metamaterials [133] as well as 3D tensegrity lattices [87]
analagous to our own lattice.

Second, the steep longitudinal modes in regions"Γ and Γ' are diagonal pressure
modes. These branches have a speed twice as fast as the shear speed in region Γ- .
They have a speed of 334 </B, the shear speed in region Γ- is 176 </B and the
longitudinal speed in Γ- is 89.6 </B. The longitudinal Γ- speed is about twice the
longitudinal speed in the 1D lattice (41.9 </B); this was also observed for buckling
tensegrity lattices in [87]. It is possible that the large Poisson’s ratio (initially 2)
contributes to the shear and diagonal speeds being faster than the longitudinal speeds.
A Poisson’s ratio greater than 1 means that the transverse motion essentially is
“stiffer” than the longitudinal motion, leading to faster wave speeds in the transverse
directions. Faster shear and diagonal speeds than longitudinal speeds indicate that
this type of lattice will exhibit unique waveguiding and/or lensing characteristics in
impact applications, even without the application of prestress.

Third, the low frequency rotational modes entirely disappear. This is likely
because rotation of the faces is significantly constrained in the 3D case, due to all
faces of each baseline cell being connected to an adjacent cell face.

For comparison, we show the 3D RVE dispersion relation for a buckling truncated
octahedron tensegrity lattice in Figure 4.16, as given in [87]. In this case, they look
at an RVE with 0 = 1.26 <, strut and cable diameters of 2.3 2< and 1.15 2<,
respectively, and made of titanium (� = 100 �%0 and d = 4480 :6/<3). The
lattice is slightly prestressed, but the struts are not fully buckled.

The dispersion relation looks remarkably similar to the dispersion relation for our
lattice (Figure 4.15). The scaling of frequency varies between the two, but this is due
to the fact that our lattice has different cable and strut diameter ratios with respect to
the RVE length. In both cases, the shear wave speed (steep low frequency branch in
the Γ- region of Figure 4.16) is faster than the longitudinal wave speed (shallower
low frequency branch in the Γ- region of Figure 4.16). The longitudinal wave
speed also is twice that of the 1D lattice for both our structure and the tensegrity
structure. Also, the overall shapes of the dispersion curves are quite similar for
all 7 regions, with no low frequency modes in the last 3 regions in both cases. It
is intriguing that even for a 3D lattice in the dynamic regime, the response of our
tensegrity-inspired lattice behaves so similarly to a tensegrity lattice. This indicates
that our lattice is a readily fabricatable option (unlike true tensegrity lattices) that
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Figure 4.16: The 3D RVE dispersion relation for a buckling truncated octahedron
tensegrity lattice as given in [87].

achieves the same desirable and unique characteristics that tensegrity lattices have
thus far only theoretically exhibited.

4.5 Chapter Summary
We have investigated the response of nonlinear tensegrity-inspired lattices subject

to low amplitude frequency excitation. We first examined 1D lattices, both experi-
mentally and numerically. At no precompression, the longitudinal dispersion curve
shows a Bragg scattering bandgap with a width of about 70 �I and a very low wave
speed of around 40 </B. This wave speed is compared to other lattices with the
same relative density and constitutive material, and our structure attains the lowest
wave speed by far, making it desirable for dynamic applications. Experiments and
simulations match very well at no precompression, but they stray from each other
increasingly with higher precompression due to global buckling effects, material
property differences, and manufacturing defects. However, both experiments and
simulations show significant and continuous tunability of dispersion properties with
global precompression. Since the deformation remains elastic even at large strains,
repeatable and active tuning of the lattice response is potentially achievable. Wave
speed reduces by about 25% by a strain level of 20%, and the bandgap shifts down
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and its width reduces dramatically. This high level of tunability makes the lattice
a good candidate for energy focusing or waveguiding applications, like in Figure
4.12, due to different wave speeds attainable in the lattice with varying levels of
precompression.

The 3D dispersion characteristics also show unique behaviors. The most signif-
icant finding is that the shear wave speed is twice as fast as the longitudinal wave
speed at low frequencies, which is rarely observed in natural materials. The diagonal
wave speed is twice as fast as the shear speed as well. Faster diagonal and shear
speeds than longitudinal speeds indicate the potential of even the unstrained lattice
to exhibit energy redirection of impact pulses. We will explore this in the next
chapter. Fascinatingly, our tensegrity-inspired lattice exhibits very similar disper-
sion patterns as buckling tensegrity lattices [87]. Even in this dynamic regime, our
structure, which has fundamentally different deformation modes than a pin-jointed
tensegrity, attains similar desirable behaviors as real tensegrity structures, with the
added advantage of being easily fabricatable and testable. Although we have ex-
plored one geometric configuration in this chapter, we believe these principles can
be extended to other configurations to enhance the attainable dispersion attributes.
Two examples would be: (i) using these RVEs as springs connecting larger masses,
to create phononic systems with richer wave attributes [86], and (ii) creating alter-
nate RVE configurations, such as those which tessellate in space with spatial gaps,
that can open more unique and extensive bandgap systems [72].
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C h a p t e r 5

DYNAMICS: IMPACT

5.1 Introduction of Impact Studies
In the previous chapter, we studied the response of these tensegrity-inspired

structures under low amplitude wave excitation. We saw that they exhibit unique
dynamic characteristics, such as low wave speeds and tunable wave attenuation
with global compression. In this chapter, we examine the response of tensegrity-
inspired structures under impact loading. Lightweight, reusable materials are often
needed for many engineering impact applications, such as shielding for air and
spacecraft, electronic device protection, and wearables such as helmets. Often, the
mechanism used for energy dissipation in impact is plastic deformation [40, 134–
136]. However, this renders the material largely unusable for subsequent impacts.
We show in this chapter that tensegrity-inspired structures and periodic lattices
exhibit high energy absorption, elastic deformation under impact, and unique wave
propagation characteristics. This also corroborates recent theoretical and numerical
work in the area of tensegrity structures and lattices [16, 17, 23, 71, 74, 76].

Three types of impact conditions are studied, each giving unique insight into
the structure’s behavior. In the first scenario, a long-duration pulse is exerted
on the structure by a heavy, falling mass. With drop weight experiments and
simulations, fundamental characteristics of the baseline unit cell and 1D lattices
are observed, such as load limitation, wave speeds, and elastic deformation. In
the second scenario, the specimen is dropped from a height such that it impacts a
rigid surface at an initial impact velocity, E0. In the third scenario, a short-duration,
high energy pulse is exerted on the top of the structure by a small falling mass
and the energy transmission characteristics are studied. In the second and third
scenarios, we study 1D, 3D1D, and 3D lattices. The extension to higher dimension
lattices gives insight into how energy propagates in transverse directions as well
as additional energy dissipation properties that cannot be observed in 1D lattices.
Sample drop experiments are performed on 1D and 3D1D lattices, and numerical
simulations are performed for the remaining studies.

The strain rates we study range from approximately 40 B−1 for the long pulse
(drop weight) analyses, to 260 B−1 for the short duration pulse analyses. This work
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therefore sits in the intermediate strain rate dynamic regime between quasistatic and
high strain rate dynamic situations, according to the table in Figure 5.1. Inertial
forces are important to consider, as well as the effects of the test setup. In this
region, we study the propagation of elastic waves in the lattice structures.

Figure 5.1: Classification of mechanical specimen testing according to strain
rate. [137]

Some content of this chapter has been partially adapted from:

K. Pajunen et al. “Design and impact response of 3D-printable tensegrity-inspired
structures”. In: Materials & Design 182 (2019), p. 107966.
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5.2 Drop Weight: Long-Duration Impact
As shown in Chapter 3, tensegrity structures with buckling struts have a nonlinear

compressive response that exhibits load limitation. This characteristic applies to
their dynamic impact response, as shown in [23]. Forces within the structure plateau
as the struts reach their buckling load. Our tensegrity-inspired unit cell corresponds
to an equivalent tensegrity unit cell. Because our structure exhibits this load limiting
attribute as well, we expect the dynamic loads to not exceed that of the buckling
load of the structure (around 18.6 N). Drop weight experiments and simulations
are performed first on the baseline unit cell to demonstrate this and examine the
basic dynamics. We also assess the effect of the test setup and choice of material
in the experimental results and validate our dynamic simulations. Then, we study
1D lattices comprised of 5 baseline unit cells to see how the characteristics translate
beyond single unit cells. The drop weight tests are done with a large falling mass
at a low impact speed. The resulting long duration impact produces low strain
rates, allowing straightforward observation of the basic dynamic deformation of the
structure.

5.2.1 Baseline Unit Cell
Force Response and Observation of Load Limitation

We fabricated multiple baseline unit cell samples with a total height of 54.1 <<,
and a height of 48.3 << from the top face nodes to the bottom face nodes. Due
to variation in manufacturing, several samples had member diameters significantly
lower or higher than the nominal diameters of 1.2 << cables and 1.73 << struts.
So, using a caliper, we took measurements of the cables and strut diameters for
many samples. For testing, we chose 4 samples that had average member diameter
measurements within 4% of the nominal member diameters and had no visible
defects.

Two masses of 100 6 and 200 6 were manufactured for the drop weight tests.
As explained in Chapter 2, ABAQUS dynamic implicit simulations were performed
to complement the experiments. As a preliminary analysis before validation, we
ran simulations to narrow down a range of velocities that would achieve sufficient
compression of the sample to at least 0.4 strain. Since the 100 6 mass would
require very large drop heights to achieve the velocities needed, experiments were
performed with the 200 6 mass. The 200 6 mass also gave more repeatable impact
velocities for a given height.
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Figure 5.2: Force-time curves for the four baseline unit cell samples at an impact
velocity of 1.15 </B, corresponding to an impact energy ratio, �8/�<, of 0.4. This
shows the variance in the sample responses due to manufacturing differences.

The four samples were impacted with a 200 6 mass three times at each impact
velocity. The impact velocity corresponds to an impact energy (�8), which is a
fraction of the maximum strain energy of the structure (�<) before densification
(320 mJ). The impact energy is given by the kinetic energy of the falling mass:

�8 =
1
2
<8E

2
8 (5.1)

where <8 is the impacting mass and E8 is the impacting velocity.

To illustrate the variation in the 4 samples for a given velocity, the force-time
curves for an impact velocity of 1.15 </B (�8/�< of 0.4) is shown in Figure 5.2.
The samples give comparable results, with some variation in peak force and impact
duration. Sample 3 is the stiffest, achieving the highest force during impact. Wave
speed shows a larger variance between samples. There is a short lag time before the
force increases from zero; this is the transmission time for the wave to travel through
the structure, and thus it determines the wave speed.

For the experiments, the lag time is determined by the time between when the
mass touches the structure and when the force sensor reading begins to increase.
The time when the mass touches the structure is a bit ambiguous due to significant
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Impact Speed 0.8 1.05 1.4
Sample 1 45.1 40.3 48.3
Sample 2 48.3 38.6 50.5
Sample 3 40.6 56.4 45.1
Sample 4 42.9 45.1 43.5

Average Wave Speed 44.2 44.4 47.1
Standard Deviation 9.2 9.1 7.2

Table 5.1: Wave speed measurements for each sample from baseline unit cell drop
weight tests. For each sample and impact speed, the average wave speed from 3
tests is given. The wave speeds are averaged for all samples at each impact speed,
and the standard deviation of the values is given. All units are </B.

noise in the accelerometer data. This noise, combined with the short distance to
travel and short lag time, make the wave speed difficult to accurately report for single
unit cells. Average wave speed measurements for the 4 samples at selected impact
speeds are shown in Table 5.1. The standard deviation of the measurements for each
impact speed is also given. From this, we see that the spread of values is significant.

We also see in Table 5.1 the interesting result that the wave speed does not clearly
increase or decrease with increasing impact speed. This is explained by considering
the duration of the impact. For these drop weight tests, the impacting mass is very
large (58 times more than the structure), and the impacting velocity subsequently
low. Because of this, the impacting pulse is a long-duration pulse, lasting the entire
time span of the compression of the sample.

To illustrate this, the result of a test on Sample 3 at an impact velocity of 0.8
</B is shown in Figure 5.3(a). The applied force as derived from the accelerometer
data is shown by the dashed-dotted line, and the transmitted force as measured by
the force sensor on the bottom of the structure is shown by the solid line. We can
see that the impacting pulse lasts for the duration of sample compression. Because
of this, the applied force is approximately the same as the transmitted force, by
conservation of momentum. The Fourier transform of the applied force signal is
shown in Figure 5.3(b). Because of the long-duration, low amplitude pulse, the
pulse contains predominantly a small range of very low frequencies below 100 �I.
Since the frequency components of the signal are below 100 �I, they all travel
without dispersion in the linear region of the longitudinal mode of the dispersion
curve. As such, the wave speed remains consistent for a wide range of impacting
velocities due to the long-duration pulse. This is the case for the baseline unit cell
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Figure 5.3: An experimental result for Sample 3 at an impact velocity of 0.8 </B,
corresponding to an impact energy ratio, �8/�<, of 0.18. (a) The applied force
on the top of unit cell derived from accelerometer measurements is shown by the
dashed-dotted line, and transmitted forcemeasured by the force sensor on the bottom
of the unit cell is shown by the solid line. (b) The discrete Fourier transform of the
applied force.

experiments as well as the 1D lattice experiments with the long-duration pulse. The
wave speeds found in Table 5.1 are also consistent with the wave speed of 40 </B
from the dispersion curve.

ABAQUS dynamic implicit simulations were performed to complement the ex-
periments. Also, validation of the dynamic simulations allows them to be used in
studying the behavior of higher dimensional lattices with different loading cases.
First, we compared the results of the beam element and the 3D stress tetrahedral
element ABAQUS models. Figure 5.4 shows the result of each simulation for a
0.8 </B impact. The responses differ slightly, most markedly in the amplitude of
oscillation. Inertial effects come into play in the dynamic case. The spherical joints
are modeled as rigid beam elements with the same moment of inertia as the spheres,
but there will be some differences inherent by the contrasting modeling methods.
This likely plays a role in the amplitude of oscillation of the response. Also, the
impact time is shorter for the beam element simulation. As seen in Chapter 3, the
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beam element model is slightly stiffer than the 3D tetrahedral element model, so the
shorter impact time is expected.
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Figure 5.4: Beam element and 3D tetrahedral element ABAQUS dynamic implicit
simulation results, which show the force-time response on the bottom of the structure
for an impact velocity of 0.8 </B (�8/�< = 0.18). The lag time, the time for the
wave to pass through the structure initially, is the same for both simulations.

The lag time is the same for both simulations, with a corresponding wave speed
of 78 </B. During the first wave transmission, the structure has not had time to
deform significantly, and as such, the structure’s density and initial linear elasticity
generate the wave speed. Also, the numerical initial conditions possibly influence
the numerical wave speed; this and dissipation in the experiments likely account for
the higher wave speeds for the numerics. Since these characteristics are the same
for both simulations, it makes sense that the tetrahedral elements and beam element
simulations show the same lag time.

The beam element simulation produces results in significantly less runtime than
the 3D tetrahedral element simulation. Since the results for both simulations, both
quasistatic and dynamic, are comparable, all dynamic simulations are performed
using beam elements moving forward. This allows straightforward and computa-
tionally feasible numerical modeling of multidimensional lattices.
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Next, we examine the evolution of the force-time response with increasing impact
energy. The force-time results (at the bottom of the unit cell) for experiments on
Sample 4 and ABAQUS simulations at four impact energies are shown in Figure
5.5. ABAQUS beam element dynamic implicit simulation results are given by the
dashed lines and the experimental results are given by the solid lines. For the sake
of visual clarity due to differences in lag time, we set C = 0 to when the force begins
to increase for each curve.
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Figure 5.5: The force-time response of the structure (Sample 4) at varying impact
energies, as a ratio of the impact energy to the maximum strain energy of the
structure before densification. Impacting velocities are also shown, corresponding
to the impact energy ratios. The solid lines are experimental curves and the dashed
lines are results of the ABAQUS beam element simulation. The force plateaus to
the structure’s buckling force as the impact energy increases.

There are oscillations in the force response, both during loading and unloading,
but more distinct during loading. These oscillations are due to the stress wave
travelling back and forth within the structure, vibration of the struts, and rotation
of the structure’s faces during compression. Videos of the experiments show that
the structure’s top and bottom faces do not smoothly rotate with time, but rotate in
distinct stages, contributing to oscillations in the reaction force.

At the lower impact energies, the structure does not compress enough to enter
the buckling region, so the response does not plateau from buckling. At higher
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impact energies, most noticeably at an impact energy ratio of 1, there is a significant
plateau in the force response, as the strain approaches over 40%. The structure’s
dynamic response thus exhibits load-limiting: the maximum forces do not exceed
the buckling load of the structure (about 18.6 N).

In general, the simulation and experiments agree favorably, showing similar be-
haviors, such as impact duration and maximum forces. However, there are differ-
ences between the simulations and experiments in Figure 5.5. The curves match
well during the loading phase, but during unloading the experimental curves drop
quickly while the simulation curves mirror their loading phase. In the experiments,
energy is dissipated due to internal friction (hysteresis). Due to this, the response
is less oscillatory, and the unloading curve loses energy. We examine the loss of
energy in the experiments later in this section. The beam element simulation in
ABAQUS does not consider hysteresis or plasticity in the material, so the loading
and unloading sections do not differ significantly. Thus, the plateau is more readily
observed in the simulation. We do not apply hysteresis in the simulation because
hysteresis is not implementable with beam elements within ABAQUS. Addition of
the hysteresis term would be possible with the full 3D stress simulation. However,
beam elements are required for lattice simulations, where the model size would be-
come significantly larger, and full 3D stress simulations would become impractical.
Although the simulations are a good representation of the response of the structure,
we recognize that experiments are necessary in order to obtain behavior that the
simulation cannot provide. Also, it is valuable to note that experimental samples
can vary significantly, so a comparison of several samples with the numerical results
is important.

Before comparing the results of samples at increasing impact energy, first we
examine how the quasistatically equivalent pin-jointed structure compares in the
dynamic regime. We found the dynamic response of the pin-jointed structure using
the approach developed in [23]. The results of the pin-jointed tensegrity simulation
for two impact energies are shown in Figure 5.6(a) in dotted lines, along with the
ABAQUS beam element simulation results in dashed lines. We can see that the pin-
jointed response agrees favorably with the spherically-jointed structure response.
They correspond very well at the low impact energy, when the structures’ stiffnesses
are linear. However, at the high impact energy, the pin-jointed response has a slightly
higher force and shorter impact time than the ABAQUS simulation. Overall, the
structures behave similarly with nonlinearity due to buckling in the struts, and they
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both exhibit load limitation.
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Figure 5.6: Dynamic results of the quasistatically equivalent pin-jointed baseline
unit cell and the beam element simulation of the spherically-jointed structure. (a)
Comparison of the pin-jointed structure simulation (dotted lines) and the spherically-
jointed ABAQUS beam element simulation (dashed lines) for two impact energies.
(b) Deformation of the structure from the beam element simulation at maximum
compression during a 1.8 </B impact. (c) Deformation of the structure from the
pin-jointed simulation at maximum compression during a 1.8 </B impact.

It is fascinating that the pin-jointed and spherically-jointed structures behave sim-
ilarly even in the dynamic regime. Figure 5.6(b) and (c) show the shape of the
deformation at maximum compression during the 1.8 </B impact for the beam
element and pin-jointed simulations, respectively. It is clear that the struts bend
significantly in both cases, but the entire structure is bending dominated in the beam
element case. Also, the spherically-jointed structure has significant inertia contri-
butions at the nodes due to the spheres, which do not exist in the pin-jointed case.
Aside from the difference in deformation mechanisms, the lower maximum force
(and longer impact time) for the 1.8 </B impact of the beam element case could be
partly due to the added inertia from the spheres. The similarity of the two struc-
tures again shows that our tensegrity-inspired structure is an easily manufacturable
structure that exhibits the same unique and desirable characteristics of tensegrities.

Now we compare the results of the four experimental samples with increasing
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impact energy. Figure 5.7 shows results of the 4 tested samples along with the
ABAQUS and pin-jointed simulations. Each sample was tested 3 times at most
impact energies, and the maximum force was recorded for each test. Error bars are
shown for impact energies that were tested 3 times. The maximum force increases
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Figure 5.7: The maximum force exhibited by the tensegrity-inspired structure as a
function of both the impact energy ratio and impacting velocity. The experimental
results of 4 samples are shown with error bars. The ABAQUS beam element simu-
lation results and the pin-jointed simulation results are also shown for comparison.
In the inset plot, the force and impact energy ratio are given to the origin in order
to observe the significant plateau of the maximum force. The plateau begins at
energies well below the maximum energy capacity of the structure (�8/�< = 1).

with the impact energy ratio, but a distinct plateau is observed. The plateau is
markedly seen in the inset plot, which shows the curves to an impact ratio of 0.
This shows that the desired load-limiting characteristic not only is present, but
is exhibited beginning at impact energies significantly lower than the maximum
energy capacity of the structure (�8/�< = 1). Also, the experimental results for all 4
samples agree favorably with the simulation results. Variation between the samples
is acceptable. This plateau behavior is analogous to the behavior of the maximum
force with impact energy for the pin-jointed buckling tensegrity structure described
in [23].
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Analysis of Energy Loss During Impact

Next, it is important to consider energy loss during impact of the baseline unit
cell. In Figure 5.8, the experimental global longitudinal stress-strain curves for
varying impact energy ratios are shown. �3 is the dissipated energy as a percentage
of the impact energy, and is the area within the stress-strain curve loop. If there
was no dissipation during impact, for example, the loading and unloading curves
would be identical, and the stress-strain loop area would be zero. It is clear that
energy dissipation is substantial even at low impact energies. This dissipation could
be due to factors such as internal friction (hysteresis), plastic deformation, and
friction/damping in the test setup.
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Figure 5.8: Experimental dynamic stress-strain curve during impact of the test
structure (Sample 4). Stress and strain here are the effective global stress and strain
in the direction of vertical impact. The energy dissipated as a percentage of the
impact energy is listed for each impact energy ratio.

By comparing the loss of momentum in experiments with two different impacting
masses, we can evaluate the effect of the test setup in energy loss. The same impact-
ing momentum can be achieved with different impacting masses by appropriately
changing the impacting velocity, as given by the equation:

?8 = <8E8 (5.2)

where <8 is the impacting mass and E8 is the impacting momentum. We ran several
experiments keeping bothmomentum and energy constant for two impactingmasses.
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An example is shown in Figure 5.9. In this case, impacting momentum is held
constant at 0.23#B. The force-time curves for Sample 3 for the 100 6 and 200 6
masses are shown. The area under this curve gives the total momentum absorbed
during impact. For no dissipation, the area under the curve would be 2?8. For
the 100 6 mass, the absorbed momentum is 0.386#B, and for the 200 6 mass, it is
0.376#B, for a percent difference of 2.6%. Both cases dissipate about 17% of the
momentum from the impact. Because two masses are used, forces such as friction
and drag inherently differ between the two tests. However, these forces appear to be
negligible, since momentum absorption is approximately the same for both masses.
We found this behavior to be consistent for other samples and impacting energies as
well. The agreement between the two experiments indicate that the test setup does
not contribute significantly to energy loss during impact.
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Figure 5.9: To evaluate the effect of the test setup on energy loss, the force-time
results of two experiments with a constant impacting momentum of 0.23#B are
given. The area under the curves gives the total momentum absorbed during impact.

Another possible source of energy loss is plastic deformation. For repeated impact
applications, one desirable characteristic of tensegrity structures is that they remain
elastic even under high deformations. Since an objective for our tensegrity-inspired
structure is to be reusable even under high deformation, plastic deformation should
be kept to a minimum. As seen in Figure 5.8, for the lower three impact energies,
strain after unloading is effectively zero. For �8/�< = 0.81, there is about 3%
remaining strain, but this is immediately after the mass separates from the structure.
When the remaining strain is measured one minute later, the remaining strain is
significantly less than 1%. This lag in strain is due to the material’s viscoelasticity.

In Table 5.2, the remaining strain after 24 impacts and after each impact for a wide
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Total After Average After
24 Impacts Each Impact

Sample 1 1.76% 0.06%
Sample 2 1.66% 0.11%
Sample 3 3.18% 0.15%
Sample 4 2.52% 0.11%
Average 2.28% 0.11%

Table 5.2: The total remaining strain after 24 impacts for each sample, and the
average remaining strain after each impact. The structure undergoes little plastic
deformation, even after many impacts, showing the resilience and reusability of the
structure.

variety of impact energies is shown for the four samples. After each impact, the
remaining strain averages less than 0.2%, showing very little plastic deformation.
Even after 24 impacts, the remaining strain is, on average, 2.28%. This shows that
the structure is reusable and quite resilient to repeated loading, even at increasing
impact energies. As an illustration of the elasticity of the structure, a series of
images from a drop weight test with an �8/�< of 1 is shown in Figure 5.10. The
5 images are taken at increasing times up to C8<?, which is the total time of impact.
The structure compresses to about 0.5 strain at the time of maximum compression
(C = 0.5C8<?). At C8<?, when the mass separates from the structure, the structure
very nearly recovers its initial height. As described in Chapter 3, rotation of the
faces with compression, constant cross section in the members, elastic buckling in
the struts, and the slender beams produce low local strains in the structure. We have
shown that this property translates into the dynamic regime, giving our tensegrity-
inspired structure the unique capability of remaining elastic under high and repeated
dynamic deformation.

The structure maintains the tensegrity characteristic of an elastic response under
high deformation. Because there is little plastic deformation, the dissipated energy
during the impact is almost entirely due to hysteresis in the material. This indi-
cates that for materials with different viscoelasticity and hysteric properties, energy
dissipation could be significantly reduced.

Energy Absorption Comparison

Although the designed spherically-jointed structure has not been optimized for
energy absorption performance, a comparison of its energy performancewith several
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Figure 5.10: A series of images from a drop weight test with an �8/�< of 1. The
images are shown at increasing times, from 0 to C8<?, which is the total impact time
of the structure. The initial height of the structure is nearly recovered after impact.

types of manufacturable lattice materials is useful. This comparison is shown in
Figure 5.11. Here, the energy absorption efficiency,,<8=, is defined as [40]:

,<8= = �<8= dA (5.3)

where dA is the relative density and �<8= is the minimum cushion factor. The
minimum cushion factor is given by [40]:

�<8= =
f

&
(5.4)

wheref is the maximum stress of the material’s stress strain-curve until failure (e.g.,
densification, yield, or rupture), and & is the area under the stress-strain curve up to
f. The minimum value of the cushion factor, �<8=, represents the maximum impact
absorption efficiency of the material, and theoretical limit of�<8= for a material is 1.
Cushion factor (or its inverse) is often used to asses the energy absorption of porous
materials, such as lattices [138–141]. ,<8= is also a useful quantity because, like
�<8=, a design with lower,<8= indicates better energy absorption. For instance, if
two materials have the same �<8= and one has a lower,<8=, the material with lower
,<8= absorbs the same energy at a given stress, but uses less material. This means
that it offers the lowest mass for equivalent impact absorption.
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Figure 5.11: Energy absorption efficiency (,<8=) by relative density for the
spherically-jointed structure and counterpart pin-jointed structure, as well as for
several lattice, foam, and solid materials. The energy absorption efficiency is given
by the cushion factor multiplied by the relative density of the material. The target
region is defined by a,<8= less than 0.21 and relative density less than 0.1 (reasons
explained in the text). Solid materials all have a relative density of 1 and their
,<8= extend well beyond the range of this plot, as indicated by the truncated gray
oval. The structures presented in this work lie within the target region, with the
spherically-jointed structure exhibiting the best energy absorption efficiency of all
presented materials, along with a very low relative density. The lattice, foam, and
solid material data was obtained from the following sources: solid materials [40],
CNT Foams [40], porous auxetic microlattices [40], SLS octet truss lattices [142],
highly-stretchable soft lattices [138], SLA octet truss lattices [139], SLMTi-6Al-4V
truss lattices [143].

In Figure 5.11, we plot ,<8= against relative density for several lattices, foams,
and solid materials. We define a target region, which is given by a relative density
lower than 0.1 and a,<8= lower than 0.21. This is chosen for the following reasons.
Often, non-metal lattices require higher relative densities due to manufacturing
constraints and thus commonly have relative densities above 10%. Also, the best
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available lattice foams have �<8= values as low as 2.1 [40]. Multiplying �<8= of 2.1
by a relative density of 0.1 gives a target region limit of,<8= = 0.21. For both our
spherically-jointed structure and the counterpart pin-jointed structure, �<8= = 2.82.
For the spherically-jointed structure,,<8= = 0.07, and for the pin-jointed structure,
,<8= = 0.14. Thus, the structures in this work lie within the target region, exhibiting
remarkable energy efficiency and very low relative densities for polymer structures.
Interestingly, the spherically-jointed structure exhibits the lowest,<8= of all shown
structures and the lowest polymer relative density, even compared to its counterpart
pin-jointed tensegrity structure.

Also, several of the other lattices in Figure 5.11 do not elastically deform under
impact, but plastically deform, making them non-reusable. The structures designed
in this work elastically deform and are reusable under multiple impacts. This
shows that, even without optimization of energy absorption, our design shows novel
characteristics, making it promising for use in ultra-lightweight, energy absorbing
metamaterials.

5.2.2 1D Lattices
Baseline unit cell tests provided insight into the basic dynamic behavior of the

tensegrity-inspired structure. They also showed how variability in 3D-printing and
the chosen material affect the structure’s response in experiments. These studies
showed the promise of the unit cell as a building block for unique energy absorbing
metamaterials with very low mass. Next, we examine the response of 1D lattices
under long-duration drop weight impact. We choose a lattice with 5 baseline cells.
More cells would havemade achieving sufficient compression of the sample difficult,
and 5-cell lattices were readily fabricated. Longer chains of cells would not have
provided significantly more information on the impact characteristics for a long-
duration pulse. For short-duration pulses where force reduction through the lattice
is a consideration, we examine longer strings of unit cells later in this chapter.

This section will demonstrate how the characteristics observed in the baseline cell
translate to 1D lattices. In addition, we will begin to understand how elastic waves
propagate in these lattices.

Force Response

We fabricated 1D lattices using 5 baseline unit cells, each with a height of 48.3 <<,
producing a nominal total height of 24.15 2<. As expected, we found significant
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variation in the samples. Member diameters varied significantly between samples
and within each lattice. Also, because the lattices are larger and have more members
than the baseline unit cells, most samples had visible defects, such as pre-bent
struts, elongated unit cells, and broken members. Again, we chose a sample for
experiments that had member diameter measurements within 4% of the nominal
member diameters. However, every sample showed visible defects; the chosen
sample had the least defects of the printed samples, but still had pre-bent cables and
struts.

Using the same drop weight testing system used for the baseline unit cells, we
performed drop weight tests on the sample with the 200 6 mass at varying impact
velocities, with 3 tests at each velocity to ensure repeatability. To present the
repeatability of the tests, Figure 5.12 shows the results of the three tests performed
on the lattice at an impact velocity of about 0.7 </B. The force given is the force
measured by the force sensor on the bottom of the lattice, and the transmission lag
time is zeroed out. The experiment is extremely repeatable. The impact velocity,
impact time, slopes, oscillations, etc. are strikingly similar between experiments.
This again indicates the reusability of the structure.
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Figure 5.12: The reaction forcemeasured by the force sensor from three experimental
tests on the lattice structure with the impacting mass falling from the same drop
height. The transmission time is zeroed out. The impacting velocity for each test is
shown in the legend. The results agree considerably, showing high repeatability for
the experiments.

Figure 5.13 shows the force-time response at the bottom of the lattice at various
impacting velocities for both simulation and experiment. The transmission time
is zeroed out for visual clarity due to differences in wave speed. A discussion of
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wave speeds will be given later in this section on 1D long-duration impact. For the
current purpose, we look at the behavior of the force response. Figure 5.13(a) shows
the reaction force measured by the force sensor for 4 impacting velocities, Figure
5.13(b) shows the results of the simulation for 5 impacting velocities, and Figure
5.13(c) compares the results of the experiments and simulations for two impacting
velocities.

0 0.03 0.06 0.09

Time (s)

0

5

10

15

20

F
o

rc
e

 (
N

)

0 0.03 0.06 0.09

Time (s)

0

5

10

15

20

F
o

rc
e

 (
N

)

0 0.03 0.06 0.09

Time (s)

0

5

10

15

20

F
o

rc
e

 (
N

)

1.05 m/s

1.4 m/s

1.7 m/s

2.3 m/s

1.05 m/s

1.4 m/s

1.7 m/s

2.3 m/s

2.9 m/s

1.05 m/s

2.3 m/s

(a) (b)

(c)

Figure 5.13: Reaction force of the rigid plate at the bottom of the lattice over time for
several impacting velocities. (a) Experimental response for four impacting veloc-
ities. (b) ABAQUS beam element simulation results for five impacting velocities.
The plateau in the force is seen clearly in the 2.9 </B response. (c) Comparison of
response of the numerical and experimental results for two impacting velocities.

We observe several key similarities between simulations and experiments. First,
at each velocity, the initial rise in force from the first transmitted wave has the same
slope. This is so consistent because the initial wave is linear and depends only on the
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structure’s initial stiffness and density. These tests are for a long-duration loading
pulsewith the same duration time as the compression of the lattice. Therefore, for the
first wave transmission, there is only slight compression of the structure, which falls
within the linear region of the force-displacement curve. As such, the structure itself
has not deformed enough for variations due to hysteresis, modeling assumptions,
etc. to produce significant differences between numerics and experiments. Second,
there are “stages” apparent in the response, where a significant increase/decrease in
force is followed by a plateau. This occurs several times during compression. By
watching the videos of the experiments and simulations, it is clear why this occurs.
We can see that the structure compresses sequentially, as waves travel back and
forth through the lattice. Qualitatively, the unit cells seem to successively compress
to a relatively constant level, but the large impacting mass then initiates another
compressive pulse, causing the cycle to repeat. This behavior clearly translates into
the force response. The “rise and plateau” behavior appears to be characteristic of
long-duration drop weight experiments on periodic crystals [144].

Since the force capacity of each unit cell is the structure’s buckling load, the forces
are all below this value (around 18.6 #). We see the behavior of load limitation
in the lattice, just like was observed for the unit cell. We begin to see this in the
experiment in the 2.3 </B test; the maximum compression plateau begins to spread
out over time, without a clear peak like in the 1.7 </B test. We see the force plateau
most markedly in the simulation 2.9 </B response. The maximum peak spreads out
over time. The third peak disappears entirely, and instead plateaus to just under the
buckling load for a span of 21.4 <B, which is over 25% of the total impact time.
These results indicate that no matter the size or length of one of these tensegrity-
inspired lattices, the maximum reaction force will always be less than the force
capacity (buckling load) of the bottom unit cells. This property will be important
in reducing transmitted forces and mitigating waves in short-duration impulses.

We show the experimental force response up to 2.3 </B, but show an additional
impact velocity of 2.9 </B for the simulation (Figure 5.13(b)). This is because the
sample had already been tested 36 times at the 2.3 </B impact shown, and in the
37th test, a cable in the sample broke. This cable had been visibly bent before the
first test, so it was a weak location in the lattice. In order to show more clearly the
load limitation characteristic, we ran another simulation at 2.9 </B.

The experiments show the same type of difference between loading and unloading
that was observed in the baseline unit cell in Figure 5.5. In Figure 5.13(a), we can
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see a clear difference between loading and unloading. During unloading, the force
drops at a relatively constant rate until the structure fully decompresses. This is due
to energy loss during impact, which we examined for the baseline unit cell. This is
a material response. In the simulations (Figure 5.13(b)), however, this energy loss
does not occur, as internal friction is not accounted for. The marked difference in
the experiment and simulation is seen in what can be attributed to this energy loss in
the material. The simulated force is significantly more oscillatory. For each of the
compression “rises and plateaus,” the simulation is more of a sequence of “peaks
and valleys.” Without damping, an oscillatory response like this is expected. The
final unloading at the end of the impact is also a sharp decrease, rather than a smooth
slope to zero force. In Figure 5.13(c), we can clearly see these differences between
numerics and experiment. The total impact time is longer for the experiments
because of the smooth unloading characteristic. In general, the behavior agrees well
between the experiments and simulations for various impact velocities.

Deformation Behavior and Wave Characteristics

Next, we investigate the deformation behavior of the lattice during compression.
Recall the global compressive stress-strain behavior of the baseline unit cell from
Chapter 3; the experimental curve is given again here in Figure 5.14. We can approx-
imate two regions: a linear region from 0 to 0.15 strain, and a nonlinear/buckling
region from 0.15 to 0.48 (densification) strain. Load limitation in the baseline unit
cell and also in 1D lattices is due to sufficient deformation of the structure such that
the nonlinear buckling region is reached. Considering the lattice as a chain ofmasses
and springs, each unit cell effectively acts as a nonlinear spring, thus affecting the
dispersion properties, wave speeds, and other wave propagation characteristics.

For long-duration impact, we see some interesting attributes of the deformation
and how this linear to nonlinear/buckling affects the response. In Figure 5.15, we
show the effective longitudinal strain of each unit cell in the lattice over time for
various impacts. Figure 5.15(a) gives a picture of the lattice, with colored numbers
referring to each of the five baseline unit cells. The falling mass impacts cell number
1. In the subsequent plots, the colored curves give the longitudinal strain of each of
those unit cells. The result of a 1.05</B impact is given in (b)-(c), a 2.3</B impact
in (d)-(e), and a 2.9 </B impact in f); (b) and (d) are experimental results, and (c),
(e), and (f) are numerical results. We can see that for all impacts, the compression
of each cell occurs in stages, just as we saw for the force response. During the
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Figure 5.14: The global compressive stress-strain curve of the quasistatic compres-
sion experiment on the baseline unit cell. We identify two regions: a linear region
from 0 to 0.15 strain, and a nonlinear/buckling region from 0.15 to 0.48 strain.
Densification, where contact begins between the struts, occurs at 0.48 strain.

first transmitted wave (from 0 B to around 0.004 B), the cells only compress a small
amount (about a fifth) of their total compression. The cells’ deformations then
increase and decrease in sequence, and are compressed during the entire impact
time. The simulations have a shorter impact time than the experiments, as seen in
the force response.

For the 1.05 </B impact ((b) and (c)), the cells only compress to about 0.1
strain, which is in the linear region of Figure 5.14. As such, both simulation and
experiment are oscillatory through the whole impact. Particularly in the numerical
results, the wave response is very linear: the compression stages occur in equal time
spans, for a total of 10 stages. With no damping, this consistency is expected. The
experimental result has a less oscillatory response during unloading than loading,
which is expected from energy loss in the material. Cell number 1 and cell number
5 compress the most for both simulation and experiment, which is consistent with
the fact that they are the boundary cells. Both interface with a rigid surface, and
when the wave reaches the boundary, the deformation is doubled compared to the
previous cell due to conservation of momentum at the rigid wall. The intermediate
cells have less oscillation.

For the 2.3 </B impact ((d) and (e)), the cells compress much more, to about
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Figure 5.15: (a) The 5 unit cells in the lattice are labeled with colored numbers, with
the color corresponding to its effective longitudinal strain-time curve in (b)-(f). The
longitudinal strain of each unit cell over time for a 1.05 </B impact is shown for
experiment (b) and ABAQUS simulation (c). The strain of each unit cell over time
for a 2.3 </B impact is shown for experiment (d) and ABAQUS simulation (e). (f)
The ABAQUS simulation result of unit cell strain over time for a 2.9 </B impact.

0.3 strain, thus entering the nonlinear region in Figure 5.14. The response begins
mostly linearly, but once the cells reach about 0.15 strain, we start seeing a marked
difference from the 1.05 </B impact. In the simulation, the compression waves
begin to spread out more over time, reducing the slope amplitudes and reducing the
number of stages (now only 9). This is most clearly seen in the intermediate cells.
The boundary cells also show this; the slope of compression in cell number 5 from
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0.04 B to 0.05 B is significantly spread. In the experiment (d), once the compression
reaches about 0.15 strain, we see a total disappearance of the compression stages.
The dispersion from hysteresis as well as the high levels of compression in the
nonlinear region smooth out the response significantly, and all the cells compress
smoothly together. Both experimental curves show slightly higher compression
levels than the numerical curves. Also, cell number 3 compresses the least. Cell
3 had higher member diameters than the other cells, and so it was the stiffest of
the cells. Thus, it does not compress as it would ideally. These differences in
compression from the numerical simulations is due to deviations from the nominal
geometry measurements in manufacturing. Some deviation is unavoidable.

For the 2.9 </B impact numerical result (f), the compression levels go deep
into the nonlinear region up to almost 0.45 strain. We see a drastic change in the
response due to this. Again after 0.15 strain, the compression stages become less
distinct and muddled. The boundary cells attain dramatic levels of compression.
Looking at cell 5, there is a large peak in compression at about 0.035 B followed by
a stark plateau lasting one quarter of the impact time. The intermediate cells also
exhibit these flat plateaus over much of the impact time. The stages of compression
become interwoven and wave speeds significantly affected due to dispersion from
the nonlinear response in the unit cells.

Figure 5.16 shows snippets of the compression during impact for an experiment
at 2.3 </B impacting velocity. The red line was placed at the top nodes of the lattice
at t = 0 and stretched across to C = C8<?. Remarkably, the lattice visibly recovers its
original height entirely immediately at the end of impact. We saw again for these
lattice experiments that the lattice had very low remaining strain (well under 1%)
after each impact. After 24 impacts, the total remaining strain was only 1.1%. We
tested this lattice 36 times. The resilience of the structure over multiple impacts is
thus seen also in lattices as well as baseline unit cells. In each frame, we can see that
the center cell does not compress as much as its neighboring cells, because it is the
stiffest cell. This corroborates Figure 5.15(d). At C = 0.25C8<?, which is about 0.021
B, the top cell is compressed the most, as seen from Figure 5.15(d). After the time
of maximum compression, the lattice smoothly uncompresses to C = 0.25C8<?. It is
important to note that in these long-duration pulse experiments, we see very little
vibration in the individual members of the unit cells. The impacting pulse contains
only low frequencies as previously explained. In turn, higher frequency resonances
within individual members are not excited in this regime. We will see later in this
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Figure 5.16: Frames from an experimental video of the lattice compression for a 2.3
</B impact velocity. The frames are given at various stages of compression up to
total impact time, C = C8<?. The red line is placed on the top nodes of the structure in
the t = 0 image. The red line extends to C = C8<?, showing that the structure visibly
fully recovers its original height after impact.

chapter how short-duration pulses excite vibration in the members. Vibration in the
members is a mechanism to trap energy within the lattice, reducing accelerations,
spreading pulses over time, and mitigating impact forces. This type of behavior is
observed in [134].

Next, we look at the leading wave speeds for these tests. The accelerometer
was not needed for these tests because finding the leading wave speed through the
structure is much more straightforward with a lattice. The transmission time for
the wave to traverse through the structure is longer than with the baseline unit cell.
Also, we measure the displacement of the structure at 5 points: at the top of the
structure, and at the nodes at each intersection point between unit cells. Because of
this, we calculate the transmission time for the wave front as the time from when the
top nodes of the lattice begin to move to when the top nodes of the bottom unit cell
reach a velocity that is 1% of the impact velocity. We call this the “1% rule.” The
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Impact Speed Experiment Average ABAQUS Simulation
0.75 58.0 72.6
1.05 54.7 70.9
1.4 51.1 71.1
1.7 51.7 72.2
2.3 53.1 70.8

Table 5.3: Leading wave speed measurements for 1D lattice long-duration impact
experiments and simulations for multiple impact speeds. All values are in </B.
The experimental values are averaged for multiple tests at each impact speed. We
calculate the transmission time for the wave front as the time from when the top
nodes of the lattice begin to move to when the top nodes of the bottom unit cell
reach a velocity that is 1% of the impact velocity.

wave speed is the length of four baseline unit cells divided by the transmission time.
There are many different methods to define wave speed for impact experiments; this
is a method used in [134]. It will be useful for the sample drop experiments where
there is no reaction force measured at the free end of the structure.

The initial wave speeds from the experiments and simulations are shown in Table
5.3. We again see that the leading wave speeds are quite consistent with varying
impact velocity, as expected for a long-duration impact pulse. The simulations have
a higher wave speed than the experiments, as was seen with the baseline unit cell.
The wave speed is about the same as that of the baseline unit cell (73</B). However,
the experimental wave speeds are slightly higher than for the baseline unit cell, where
the wave speed was about 45 </B. This difference could be due to a few things. The
stiffness of the lattice is slightly higher than a single baseline cell simply because
rotation of the faces at the intersections between cells is somewhat constrained.
This leads to an increase in wave speed. Also, variations in manufacturing could
easily affect the wave speed. We have seen that even in the lattice itself there is
variation in stiffness. Finally, finding the wave speed from unit cell experiments
was difficult due to the short distance traveled by the wave and a short transmission
time. This combined with the noise in the accelerometer created high variance in
wave speed between tests. The lattice wave speed is much more readily calculated
and consistent.

Looking at the velocity propagation through the lattice gives insight into how the
wave propagates and evolves with varying impact velocity. This is shown in Figure
5.17. Figure 5.17(a) shows where the velocity measurements are taken and are given
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Figure 5.17: (a)An image of the lattice is given, with velocitymeasurement locations
labeled by number and by color. The colors correspond to the appropriate curve
in the plots. (b) Experimental velocity results at unit cell intersection points for an
impact of 0.75 </B. Numerical ABAQUS velocity results at unit cell intersection
points for an impact of (c) 0.75 </B, (d) 1.7 </B, and (e) 2.9 </B.

a color and a number. The top of the lattice is also measured, but it follows the
same velocity path as the impacting mass, so it is not shown in the following plots
for clarity. In Figure 5.17(b) and (c), the results for a 0.75 </B impact are given.
For the experiment, the maximum frame rate we could achieve was 3000 frames per
second, so the resolution was not high enough to fully capture some of the peaks
and valleys. The behavior can still be easily seen, however. Comparing (b) and (c),
we can see that the behavior is in agreement between experiment and simulation.
There are 5 clear valleys and 4 clear peaks occurring at approximately the same
points. Again, the simulation is more oscillatory with higher amplitudes, including
after release of the impacting mass (about 0.065 B). The individual cell compression
levels are in the linear region of the displacement curve, so the velocity propagation
is very linear. For both experiment and simulation, the wave speed remains constant
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through the entire impact, as shown by the constant time lag between peaks and
valleys.

To clearly show how the wave propagation changes with dramatically increasing
deformation levels (and thus impacting velocity), we show two more results for the
simulation in Figure 5.17(d) and (e). In (d), the maximum strain reached in the
bottom unit cell is about 0.2. So, this is just entering the nonlinear region of the
displacement curve. The initial wave speed is the same as for other impact velocities,
but as time progresses, the wave speed slows. This is seen by the increasingly longer
distances between successive valleys in the velocity. Other than this, the response
remains mostly linear, with several significant peaks and valleys. However, at a high
level of impacting velocity and thus cell compression (maximum of 0.45 strain),
we see significant influence from the structure’s nonlinearity. In Figure 5.17(e),
the results for a 2.9 </B impact are shown. Again, the initial wave speed is the
same as for other velocities. However, when the cells compress to 0.15 strain and
above (between 0.015 and 0.065 B, as seen in Figure 5.15(f)), the response does not
resemble a linear response at all. The wave front dramatically widens and the sharp
peaks and valleys disappear almost entirely. All the velocities smoothly increase
together. The peak begins to appear again after 0.06 B because the compression levels
are low, but it is significantly widened. The response becomes highly dispersive at
high levels of compression.
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5.3 Sample Drop Tests
In the previous sections, we observed several unique characteristics from long-

duration impact analyses on our tensegrity-inspired structures. Load limitation,
dispersive wave properties, resilience to increasing and repeated deformation, low
wave speeds, high energy absorption for low mass, etc. are all attributes of these
structures. For the subsequent impact studies, we enter a region of higher strain rates
with higher frequency pulses. By doing this, we see how the structure’s dynamic
properties can reduce force transmission/accelerations and affect the transmission
of energy through not only 1D, but also 3D lattices.

In this section, we show results of sample drop tests where a lattice sample is
dropped from a height such that it impacts the ground at a certain velocity. This
type of test is often used to show the ability of a lattice or material to mitigate forces
from impact, such as to protect a fragile payload (e.g., an egg) [71, 145, 146]. Here,
we extend beyond 1D lattices and perform tests on 1D, 3D1D, and bulk 3D lattices.
The 1D and 3D1D lattices have 3 RVEs each, and the 3D bulk lattice is tessellated
in all 3 dimensions such that it is 4x4x4 RVEs (total of 512 baseline unit cells).
Experiments were performed on the 1D and 3D1D lattices, but not the 3D bulk
lattice.
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Figure 5.18: The discrete Fourier transform of the applied force pulse on the lattice’s
bottom nodes in a sample drop test of a 3D1D 3 RVE lattice.

Unlike the long-duration impacts for the drop weight tests, the impacting pulse
for the sample drop experiments lasts for a small percentage of the total impact time
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(less than 7%). Thus, frequencies contained in the impacting pulse varies greatly
fromwhat we saw for the long-duration impact in Figure 5.3(b). For the sample drop
of a 3D1D lattice, a representative sample of the Fourier transform of the applied
force signal is shown in Figure 5.18. Because the force signal is a high-amplitude,
short-duration pulse, the pulse contains a large range of frequencies up to 25 :�I,
and a very high amplitude signal up to around 1400 �I. The non-dispersive region
in the dispersion curve lies below around 200 �I. So, we expect the impacting
pulse to produce frequency components in the dispersive region, creating dispersion
in the response throughout impact. This dispersion produces unique capabilities for
the mitigation of impact forces, as we will see in this and the following section.

5.3.1 Experimental Results
We performed sample drop experiments on 1D and 3D1D lattices, each with 3

RVEs. We varied the impact velocity of the sample onto the rigid plate by adjusting
the drop height. We performed 3 tests at each impact velocity, which varied from 2.8
</B to approximately 6.5 </B. We compared the results with ABAQUS dynamic
implicit simulations at the corresponding impact velocities. Because observing the
wave propagation attributes was the goal for these tests, the variables of interest
were velocity at the intersection of each baseline unit cell, longitudinal strain of
each baseline unit cell, and initial wave speed. For the following figures that discuss
these variables, the curves are colored according to Figure 5.19. Although the
3D1D lattice is shown, the same locations apply for the 1D lattice. The velocity
measurement locations are shown by the colored lines at cell intersections. The
cells within the colored shaded boxes indicate the longitudinal strain measurement
locations. For example, the green curves on the strain plots show the longitudinal
strain of the unit cells at cell location #2. These strains are defined as:

n8 = Δℎ8/ℎ8, (5.5)

where ℎ8 is the original height of cell 8 and Δℎ8 is the change in the height of the
cell with compression.

Figure 5.20 shows the strain development within the 1D lattice for various impact
velocities. A maximum impact velocity of only 6.5 </B was achievable in the
experiments due to drop height limitations. The solid lines are experimental curves
and the dashed lines for locations 1 and 6 are the ABAQUS simulation results. We
make several observations from these results. The simulations and experiments
match fairly well for all impact velocities, but match best for the lower impact
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Figure 5.19: A 3D1D lattice is shown with measurement locations for wave prop-
agation analysis. The colored lines at the cell intersections indicate where velocity
measurements are taken, and the shaded cells are where cell longitudinal strain mea-
surements are taken. The longitudinal strains are defined as indicated by the inset
equations. The colored numbers are a numerical reference to each corresponding
measurement location.

velocities. This is analogous to the behavior we observed for baseline unit cell drop
weight tests in Figure 5.5. At the lower impact energies, the differences due to
hysteresis do not play as significant a role as at the higher impact energies. The total
impact time (ending where location 6 strain goes to 0 strain) is very similar between
experiments and numerics, with them matching best at 3.6 </B and 4.5 </B. The
numerical results have a longer impact time for the higher impact velocities. In the
simulations (although not shown for clarity), the maximum strain in each location
reduces from the previous location. For the experiment, in general the strain reduces
from location 1 to location 6, but we see that locations 2 and 4 particularly do not
follow this pattern. This is observed most clearly in Figure 5.20(b) and (c). Since
this behavior is consistent with varying impact velocity, it is due to manufacturing
defects in the sample. That is, the cells at locations 2 and 4 are less stiff than
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Figure 5.20: Strain development in a 1D lattice drop test for various impact veloc-
ities. The colors of the curves correspond to the cell locations in Figure 5.19. The
dashed lines for locations 1 and 6 are ABAQUS simulation results, and the solid
lines for all locations are the experimental results.

the surrounding cells likely due to member diameters deviating from the nominal
values. Another likely source of error in the experiments is that the guiding rod
was not perfectly rigid. Although we tried to reduce sway, it was unavoidable that
it deviated slightly from vertical during drop and impact.

A key observation made from Figure 5.20 is that the local cell strains in the lattice
reduce significantly from location 1 to location 6. The top unit cell compresses
markedly less than the bottom unit cell. In a lattice with a linear stress-strain
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response, each unit cell would compress approximately the same amount for a
sample drop test such as this. That is, the top cell would compress as much as the
bottom cell. However, for the tensegrity-inspired lattice, we see a very different
response. In every case, even before reaching nonlinear strain levels, the reduction
in strain from location 1 to 6 is significant (at least 60% reduction). This is indicative
of high dispersion in the lattice response created by the short impulse. We will study
the wave propagation characteristics later in this section where we will explore this
more.

Figure 5.21: Snapshots of the experimental (left photo) and numerical ABAQUS
(right snapshot) deformation of the lattice for a 6.5 </B sample drop test. The
bottom unit cell compresses the most, and the top unit cell compresses significantly
less.

Images of the lattice at maximum compression for the 6.5 </B impact are shown
in Figure 5.21. The left panel is a photo of the high speed experiment, and the right
is a snapshot of the deformation in ABAQUS. We can see that the deformation is
similar in both, and that the bottom unit cell compresses the most, and the top unit
cell compresses by far the least. This reduction in unit cell strain levels corresponds
to a reduction in force seen by each unit cell. Thus, forces are reduced significantly
in the lattice by the time the wave reaches the top of the lattices.
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Next, we show the response of the 3D1D lattice for two drop velocities in Figure
5.22. The experimental results are again shown with solid lines, and the simulation
with dashed lines. The strains are shown for a 2.8 </B and 5.4 </B impact in panels
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Figure 5.22: The sample drop results are shown for a 3D1D lattice. The dashed lines
are simulations and the solid lines are experiments. The strains in each cell location
are shown for a 2.8 </B impact in (a) and a 5.4 </B impact in (b). The velocities at
each location are shown for a 2.8 </B impact in (c) and a 5.4 </B impact in (d).

(a) and (b). We see similar behavior to the 1D lattice results. The simulations and
experiments match better for the lower impact speed. Panel (b) clearly shows that
each successive unit cell location compresses less than the previous, like seen in
the simulations. The 3D1D sample thus likely had more uniform fabrication with
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no cell location being significantly less or more stiff than the others. In addition,
since each cell location in the 3D1D case has 4 baseline cells, if one of the cells is
less stiff than the other three, the differences are effectively “averaged out” by all 4
cells. Thus, it is useful to note that with these tensegrity-inspired lattices, higher
dimensional lattices are more robust to manufacturing errors than 1D lattices. In
fact, since only one 3D1D sample was manufactured for our tests, we observed that
one of the cables in cell location 6 (top) was broken before any tests were performed.
However, since the top saw little deformation and defects effectively average out at
each cell location, this had little influence on the response and the sample survived
over 12 tests. In most applications, higher dimensional lattices would need to be
used, so this resilience for higher dimensional lattices is a significant advantage.

The velocity profiles for the 2.8 </B and 5.4 </B impacts are shown in Figure
5.22(c) and (d). The simulation results closely match those of the experiments for
both impact velocities. The main difference is that the simulation shows significant
oscillation in the response at cell location 1 (the bottom of the lattice). This
oscillation reduces dramatically by the time the wave reaches cell location 6, where
the response is smooth. The oscillations are not observed in the experiments. This
is due to the lack of temporal resolution from the high speed camera. The frame rate
is 3000 5 ?B, but the total impact time is less than 0.02 B for all tests (one quarter of
the impact time of the drop weight experiments). This means that a maximum of 60
frames are captured during the impact; thus, the experimental result captures very
little oscillation that occurs in the lattice. The oscillations have an influence on the
lattice response, which we will describe later in this section.

We also see in 5.22(c) and (d) that the rebound velocity is very close to the impact
velocity in both cases. This was seen for both 1D and 3D1D lattices at all speeds.
This indicates that the tensegrity-inspired lattice exhibits a significantly elastic im-
pact response. Conservation of momentum requires that with no dissipation, the
rebound velocity be equal and opposite to the impact velocity. We do have dissipa-
tion in our 3D-printed structure, but the response remains significantly elastic. A
quantitative representation of this was found using the coefficient of restitution (4),
a common measure of the elasticity of objects under impact. It is given by:

4 =

√
ℎA41>D=3

ℎ3A>?
. (5.6)

For the experiments, we took high speed videos, but also took videos from further
away with a phone camera, where we captured the drop and rebound heights using
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a measuring tape. The camera lost resolution for the higher impact speeds, but
for impacts below 4 </B, the coefficient of restitution was found on average to be
0.84. A comparison of this with other objects is given in Table 5.4. Our tensegrity-

Coefficient of Restitution, e
Superball 0.9

Table-tennis ball 0.89
Basketball 0.87
This Work 0.84
Tennis ball 0.79
Baseball 0.55

Foam rubber ball 0.3
Beanbag 0.05

Table 5.4: Coefficients of restitution for common objects under impact. [147, 148]

inspired lattice falls between a basketball and a tennis ball in its restitution ability.
This implies that it preserves a significant portion of energy from impact, thus
allowing it to bounce several times before coming to a stop. Its dissipation is due
to friction, drag, and structural damping, not to plasticity. Tensegrity structures
have been studied as candidates for planetary landers due to this type of elasticity
characteristic [23, 30, 32–35]. Because the kinetic energy from impact is stored as
elastic strain energy, instead of inducing plasticity or damage, a tensegrity with a
high coefficient of restitution is desirable. Our tensegrity-inspired lattices display
this characteristic.

We document the leading wave speeds observed as an average of all tests for
the 1D and 3D1D experiments and simulations in Table 5.5. Again, we calculate
this based on when the velocity in the final cell (location 6) changes by 1% of the
impact velocity. Again, we see that the simulations give higher wave speeds than the
experiments due to numerical initial conditions and dissipation in the experiment.
Both the simulation and experiment show higher wave speeds for the 3D1D lattice
than the 1D lattice. An increase like this is expected due to the 3D RVE dispersion
results given in Chapter 4, where the longitudinal wave speed approximately doubled
from about 45 </B to 88 </B from 1D to 3D. We do not see a doubling of the wave
speed here, but that is because we are not looking at a 3D lattice tessellated in all 3
dimensions like in the dispersion analysis. Essentially, the 3D1D lattice is still a 1D
lattice, as it is periodic in only y. Therefore, its wave speed is slower than in a full
3D bulk lattice. An example of this is how a slender rod made of a solid isotropic
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material has a slower longitudinal wave speed than the bulk material; this is due to
effects from the Poisson’s ratio [149]. Since the Poisson’s ratio is very large in our
case (around 2 initially), it has a large effect on the bulk wave speed.

Lattice Type Experiment Simulation
1D 55.1 64.5

3D1D 62.1 74.2

Table 5.5: Observed leading wave speeds in 1D and 3D1D lattices for both experi-
ments and simulations. The results are averaged for all sample drop tests. All units
are in </B.

Finally, we performed a few experiments with a glass ornament on top of the
lattice to observe its protective capabilities. We cut a hole through the bottom of
the ornament parallel with its top opening such that it could slide through and along
the guiding rod during impact. We performed the ornament drop tests for a 1D
lattice at 3.6 </B impact and the 3D1D lattice at 5.4 </B. The ornament survived
with no fractures in both cases. Images from the 3D1D test at 5.4 </B impact are
shown in Figure 5.23. The sample with the ornament before the test and the sample
at maximum compression during impact are shown on the left. The ornament after
the test is shown on the top right. It shows no fractures of any kind and survived the
test. As a comparison, we performed a drop at 3.3 </B of solely the ornament onto
the rigid surface, and the ornament ruptured (seen in lower right). The lattice drop
of 5.4 </B corresponded to a drop height of 7.3 feet (2.3 meters). The simulation
for a 5.4 </B drop of a 3D1D lattice shows a 76.8% reduction in acceleration (and
thus force) from location 1 to location 6. The ornament survives due to these
greatly reduced accelerations, thus showing the impact mitigating capabilities of
our tensegrity-inspired lattices.

5.3.2 Wave Characteristics
Energy Localization

As we have seen, the tensegrity-inspired structure has the capability of mitigating
energy significantly from the bottom to the top of the structure in a sample drop test.
This is due to two main reasons: (i) nonlinearity in the baseline unit cell stress-strain
response, and (ii) energy trapping in the struts.

In the experimental videos, it is clear that the struts in the first and second cell
locations vibrate extensively through impact, but the upper cells’ struts vibrate very
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Figure 5.23: Images of sample drop test with a glass ornament sitting on top of the
lattice. Sample best for the test with the ornament is shown on the left. A high
speed video image of the sample and ornament at maximum compression during a
5.4 </B impact is shown in the center. The ornament after this test is shown on the
top right, and an ornament after a drop test without a lattice is shown on the bottom
right (broken areas circled in red).

little. This is the case for both 1D and 3D1D impacts. The lower cells’ struts
vibrate at a high frequency induced by the high frequency pulse at the bottom. The
quantitative experimental data does not capture this oscillation because the frame
rate was not high enough (although we can visibly see the vibration in the videos).
However, the simulations provide this, as we have seen already by the velocity
profiles in Figure 5.22(c) and (d). To demonstrate this more clearly, in Figure 5.24
we extract the 3D1D lattice velocity profiles for an 8.5 </B impact, at a single point
at each intersection (instead of averaged over all horizontal points). By looking at
a single point, we can observe more clearly the oscillations from vibration. What
we can see is that the velocity at the first location (bottom) exhibits a highly noisy
and oscillatory response. Going up the lattice, the oscillations begin to die down
very quickly, and by the last two cell locations, the response is mostly smooth. The
majority of the energy from the pulse seems to localize near the impact due to these
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Figure 5.24: ABAQUS velocity profiles for a single point at each cell location in
the 3D1D lattice for an impact speed of 8.5 </B.

vibrations.

Next, we show the results for a 3D bulk lattice which we simulate in ABAQUS,
where we see this localization phenomena, but also observe the dynamics of the
bulk lattice under impact. Bulk lattices are useful to study because in most dynamic
applications, a lattice tessellated in 3D dimensions would need to be used for
practical reasons. Also, if fabricated at very small length scales, a bulk lattice
effectively can be used as a new type of material [40, 150–153]. Also, a 3D bulk
lattice eliminates any global buckling issues.

We ran simulations of a sample drop test for a 3D bulk lattice with 4 RVEs in each
dimension (4x4x4 RVEs, or 8x8x8 baseline unit cells), for a total of 512 baseline
unit cells. The impact velocities studied were 2.8</B, 5</B, 7.5</B, and 8.5</B.
In Figure 5.25, we show the time progression of the 3D bulk lattice for an impact
of 8.5 </B. The colormap shows the vertical component of the velocity, with deep
blue indicating the impact velocity and red indicating the opposite of the impact
velocity. We observe several interesting characteristics. The deformation of the
structure again shows that the unit cells on the bottom of the structure deform the
most and the top unit cells deform the least. The video of this impact shows most
clearly how the structure deformation fluctuates significantly throughout impact; the
gradient in deformation from bottom to top brings about a significant effect from
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0.00264 s 0.00544 s 0.00737 s

0.0144 s 0.0199 s0.0179 s

Figure 5.25: The time evolution of the 8.5 </B impact of a 3D bulk lattice (4x4x4
RVEs). The colormap shows the vertical component of the velocity, with deep blue
indicating the impact velocity and red indicating the opposite of the impact velocity.
We zoom in on the regions in black boxes for the first three timestamps to show
localization within the struts.

the large Poisson’s ratio, contributing to this fluctuation.

We also see that the velocity propagation exhibits unique directionality. At
0.00264 B, the wave is propagating relatively evenly in the vertical direction. At
0.00544 B, the wave begins to form a “U” shapewhich shows faster wave propagation
on the edges. At 0.00737 B, the fastest regions are on the sides in the vertical center
of the structure. As the structure begins moving upward, localized velocity regions
remain in the lower half of the structure, in the bottom center at 0.0144 B and bottom
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edges at 0.0179 B. The entire structure uniformly travels upward after impact (t
= 0.0199 B). What we see from this is that the travelling waves become heavily
directional. Since the structure is tessellated in 3 dimensions, shear and diagonal
waves propagate, rather than just the longitudinal wave. This is consistent with the
results of the 3D dispersion curves obtained in Chapter 4. The heavily directional
waves we observe in Figure 5.25 are due to the shear and diagonal wave speeds
being faster than the longitudinal wave. That is, energy goes much more quickly to
the edges than to the top of the lattice.

We calculated both the longitudinal wave speed and diagonal wave speeds (using
the 1% rule) to compare with the results from the dispersion curve. It is not simple
to calculate the shear wave speed, since the diagonal wave speed is faster than the
shear speed. The vertical component of the diagonal wave speed was found by
taking the vertical distance from the bottom to the center of the lattice and dividing
that distance by the time the wave took to reach the leftmost center point. The
diagonal wave speed is readily calculated from this as 349 </B. The longitudinal
wave speed was found to be 112</B. As seen in the dispersion results from Chapter
4, the longitudinal wave speed in this case is about twice that of the 1D lattice speed
(112 </B vs. 64.5 </B, from Table 5.5). Also, the dispersion results in Chapter 4
gave a diagonal wave speed of 334 </B, which is comparable to what we calculate
here (349 </B). The heavy directionality in the diagonal directions focuses energy
to the side/edge regions and thus slows the energy transfer to the top of the lattice.

At the first three timestamps in Figure 5.25, we zoom in on the regions indicated
by the black boxes to observe how the struts behave. At 0.00264 B, we see that
heavy localization of velocity occurs in the struts in the bottom layer. Cables show
relatively small velocities (green regions) compared to the struts. At 0.00544 B, the
struts in the first two vertical cell layers show heavy oscillation, and slightly less
oscillation is seen in the third layer. At 0.00737 B, the longitudinal wave has traversed
all the way to the top of the lattice, but only the struts in the lowest 3-4 vertical layers
show oscillation. This indicates that energy is “trapped” in the buckled struts, such
that oscillation heavily dies down with increasing vertical distance from the location
of impact.

A quantitative visualization of this trapping is seen in Figure 5.26. Here, we show
the velocity magnitude at the center of two struts, shown by the locations in the
inset image of the lattice. One is at the bottom of the lattice near the impact site,
and the other is 5 cell lengths from the bottom. The velocity of the strut at cell
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Figure 5.26: For an 8.5</B impact, the velocitymagnitude at the center of two struts
is shown. The inset indicates the locations in the lattice where the strut velocities
are measured.

location 1 shows a highly oscillatory response and the velocity at cell location 5 is a
comparatively very smooth response. This shows that the strut at the bottom of the
lattice undergoes dramatic local vibrations for nearly the entire impact time of 0.02
B. The vibrations die out almost entirely by about halfway through the lattice, well
before reaching the top. Sharp, high amplitude accelerations die out by reaching
the top of the lattice due to this energy trapping. This is also observed for the lower
impact speeds and for the 1D and 3D1D lattices.

Dispersive and Asymmetric Wave Propagation

Another indication of the unique characteristics of these lattices is the dispersive
and asymmetric propagation of waves from impact loading. This characteristic was
observed in buckling tensegrity lattices in [71] for the case of a 3D bulk lattice falling
onto a rigid surface. We show the velocity propagation through the lattice by vertical
location for the 3D bulk 8.5 </B impact in Figure 5.27. Instead of a clear, nearly
constant wavefront propagating from left to right like in a linear lattice, we see that
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Figure 5.27: Vertical velocity propagation through the lattice by vertical position
for the 3D bulk 8.5 </B impact. The velocity profiles for 9 timestamps are shown.
The impact begins on the left of the velocity-position plot at 8.5 </B.

the wavefront very early begins spreading significantly. The first three timestamps
show that the wave reaches the top of the lattice without a clear wavefront. This
compressive wavefront is more dispersive than in the case of the pin-jointed 3D
tensegrity lattice [71]. The reflected wave begins forming very slowly and expands
slowly, differing highly from the sharp reflection of waves in non-dispersive media.
This attribute of dispersive wave propagation is yet another appealing characteristic
of our tensegrity-inspired lattices for dynamic applications.
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Comparison Between Lattice Types

Finally, we present a quantitative comparison between the 1D, 3D1D, and 3D bulk
lattices under sample drop impact. As we have seen, all three types exhibit rich
dynamic properties. One significant characteristic is their impact mitigation ability.
This is easily seen by the reduction in unit cell strains from the impact location to
the top of the lattice, where a payload might need to be protected. This reduction
in strain corresponds to a reduction in impact accelerations, which are damaging to
a payload. A simple comparison between lattices, then, is this reduction in strains.
We define the normalized parameter, n6/n1, as the maximum longitudinal strain of
the top cell location divided by the maximum longitudinal strain of the bottom cell
location in the lattice. The values n6 and n1 are defined in Figure 5.19 and Equation
5.5. For example, a value of 0.4 for the parameter n6/n1 means that the top cell
location reaches a 60% lower maximum strain value than the bottom cell. Lower
values mean higher impact mitigation ability of the lattice.

We show a plot of n6/n1 versus impact velocity for the 1D, 3D1D, and bulk 3D
lattice simulations in Figure 5.28. We see that in all cases, the tensegrity-inspired

Figure 5.28: n6/n1 is the maximum strain at the top cell location divided by the
maximum strain at the bottom cell location in a lattice. Here, we show simula-
tion results of n6/n1 as a function of impact velocity for 1D, 3D1D, and bulk 3D
tensegrity-inspired lattices.
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lattices are very good at reducing impact energy. The top location strain is always at
least 60% less than the bottom strain. Also, in all cases n6/n1 reduces with impact
velocity. Interestingly, the 1D and 3D1D lattices show a similar trend and values of
n6/n1. This is likely because both are effectively 1D lattices without the ability to
transfer energy in transverse directions. The 1D lattice actually shows better strain
mitigation by the highest impact velocities than the 3D1D lattice.

In comparison, the 3D bulk lattice far outperforms the 1D and 3D1D lattices.
Even at low impact speeds, the strain mitigation is 88%, and is lower than the other
two lattices for all impact velocities. The bulk lattice performs the best because it
not only shows dispersion and energy trapping in the struts (like the 1D and 3D1D
lattices also do), but also has directionality in its wave propagation. Faster shear and
diagonal wave speeds redirect energy to the lower edges of the lattice before the wave
reaches the top. This is also why n6/n1 only reduces slightly over the entire range of
impact velocity: diagonal and shear speeds are always faster than longitudinal, and
thus the lattice does not need high deformation to exhibit this behavior.

Not only does the bulk lattice perform the best, but it has the lowest maximum
strain value as well. At 8.5 </B, the 1D lattice bottom cell reached 40% strain
(close to maximum before densification) and the bottom of the 3D1D lattice reached
32% strain. However, at 8.5 </B the the bulk lattice bottom cells only reached 24%
strain. This means that the 1D lattice cannot be impacted at higher speeds than 8.5
</B, and the 3D1D lattice would not withstand much higher speeds. But the 3D
bulk lattice would be able to withstand significantly higher impact velocities than
8.5 </B before reaching its maximum strain capacity.
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5.4 Flatten the Curve: Short Duration Impulse by a Falling Mass
Lastly, we provide a brief overview of the last type of impact test: a short duration

pulse exerted on the lattice from a small falling mass. This differs from the previous
impact tests we have examined in the following ways. First, it differs from the
drop weight tests at the beginning of this chapter in that the impact velocity is very
high and the falling mass is very small. This produces a high energy pulse with a
short duration, equivalent to applying a force pulse with a high magnitude over a
short period of time. Second, this contrasts from the sample drop tests in that the
impacting mass separates from the lattice after the pulse has been applied. Because
of this, the unit cell hit by the impacting pulse does not stay compressed during
the entire deformation, like in the sample drop tests, but a bell-shaped travelling
displacement wave traverses through the structure.

Finally, this configuration best represents the type of impacts in typical real-world
applications. That is, instead of the architected lattice material itself falling onto a
rigid surface (like in the sample drop case), the lattice material remains stationary
as an impactor hits the lattice. An example of this is a helmet: the protective
helmet material stays stationary, an impactor hits it, the wave traverses through the
helmet, and the protected object (i.e., the head) remains safe. Essentially, the helmet
material “spreads” the impacting momentum over time, thus reducing the forces and
increasing the reaction pulse duration by conservation of momentum.

This type of impact best indicates the ability of the tensegrity-inspired lattice to
reduce impact forces. It is important to note that this type of impact has several
overlapping features that we observed in the sample drop case (e.g., high frequency
pulse, energy trapping, strut vibration).

Only simulations are performed in this section using the same ABAQUS dynamic
implicit simulation as in the rest of this chapter. Experiments were not able to
be performed due to technical difficulties with accelerating a very small mass to a
high impact velocity onto a 3D-printed lattice. We perform these simulations on
1D, 3D1D, and 3D bulk lattices. For the 1D and 3D1D cases, we simulate 5-RVE
and 10-RVE lattices (10 and 20 baseline cells) to understand how waves propagate
over long distances in these lattices and how force reduction varies between lattice
lengths.
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.0165 .0205 s .0255 s .0285 s

0 s

Figure 5.29: Vertical velocity propagation over time for a 3D1D lattice with 10
RVEs, 18 </B impact. The colormap ranges from 0 (blue) to E8<? (red). The mass
separates at 0.0047s.

5.4.1 Wave Propagation
We ran iterative simulations to find a mass of the impactor such that the impulse

duration was less than one-third of the duration of impact. This allowed us to
observe a reduction of force through the structures. To keep strain rates low enough
(without entering a ballistic range) and deformation levels approximately the same
between each type of lattice, we kept the velocity range constant, but changed the
mass for each type of lattice. The masses for the 1D, 3D1D, and 3D bulk lattices
were 2.5 6, 10 6, and 160 6, respectively. The 3D1D lattice has 4 times the mass of
the 1D lattice because its impacting surface is 4 times larger, and the 3D bulk lattice
has 64 times the mass of the 1D lattice because its impacting surface is 64 times
larger. We found that by choosing these masses, we achieved similar deformation
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levels and impacting pulse durations between lattices for the same impact velocities.
Henceforth, when stating impact conditions for each simulation, we do not refer to
the impacting mass but only the impact velocity. The impacting mass is assumed to
be as stated here.

We ran simulations for each lattice type with impactor velocities of 6 </B, 12
</B, and 18 </B. For the 18 </B case, the 1D and 3D1D lattices achieved baseline
cell deformations close to densification. At 6 </B, the cell deformations were all in
the linear region of Figure 5.14. Thus, we achieved both linear and nonlinear ranges
of deformation levels.

To visualize the propagation of waves for this type of impact, we show the vertical
velocity propagation within the 3D1D lattice with 10 RVEs for an 18 </B impact
over time in Figure 5.29. The colormap ranges from 0 (blue) to E8<? (red). In this
type of impact, we see a distinct travelling wave indicated by a “packet” of color
traveling through the structure. The mass separates at 0.0047 B, well before the wave
reaches the bottom of the structure. The wave begins as a localized high velocity
region, indicated by the red at the top at 0.0015 B. The wave begins traversing and
immediately begins to widen, thus reducing velocities within the wave packet, as
seen at 0.0047 B and 0.0095 B. This is due to high dispersion in the structure. By
0.0095 B, the red impact velocity nearly disappears as the pulse widens to about 3
baseline cell lengths. At 0.0165 B, the velocity is significantly reduced (red is gone),
and by 0.0205 B the pulse has spread to about 5.5 baseline cell lengths. The wave
reaches the bottom of the structure at very low velocity. This type of behavior is
seen for all lattice types and is most pronounced for the highest impact velocities.

To illustrate this behavior more quantitatively, we show space-time (x-t) diagrams
of the kinetic energy through a 1D 10-RVE lattice for the three impact energies
in Figure 5.30. The kinetic energy is normalized by the maximum kinetic energy
at the first cell location (location of impact). In the top three panels, we scale the
colorbar from 0 to 1. At 6</B, the propagating wave is distinct and clearly traverses
the length of the lattice and a clear reflected wave propagates. The highest kinetic
energy (red) is only observed in the first 4 cells, and  �/ �<0G quickly reduces to
0.5 or less. The rate of reduction of kinetic energy is not nearly as great as it is for
12 </B and 18 </B, however. At 12 and 18 </B, the time taken to traverse through
the structure increases (i.e., wave speed decreases), and by 18 </B there is no clear
reflected wave. The response is much more dispersive, induced by high nonlinear
deformations in the first few unit cells and vibration in the struts (energy trapping).
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Figure 5.30: Space-time (x-t) diagrams for a 10 RVE (20 baseline cell locations)
1D lattice. The colorbar plots the normalized Kinetic Energy,  �/ �<0G , where
 �<0G is the maximum kinetic energy at the first cell location (location of impact).
The top three panels show this for a colorbar scale from 0 to 1, and the bottom three
show this for a scale from 0 to 0.5.

In fact, at 18 </B, high kinetic energy regions (red) are only seen at the location of
impact. The kinetic energy immediately reduces to around 0.6 by the second cell
location.

To see this more clearly, we plot the x-t diagram again, but for a colorbar range
of 0 to 0.5, in the lower three panels. The 6 </B case more clearly shows the
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reflected wave and other characteristics stand out more significantly. But for 18
</B, the wave is so dispersive that by cell location 5,  �/ �<0G is less than 0.3,
and almost all kinetic energy is mitigated by the end of the lattice. There is still no
clear reflected wave. This indicates the extreme energy mitigation capability of our
tensegrity-inspired lattices.

In this case, we looked at the kinetic energy distribution within a lattice over time
under a short duration impact. To form a more complete picture of how energy
is distributed in these lattices under impact, we provide in Appendix C an impact
example showing the distribution of strain and kinetic energy in the two member
types. This information is useful for informing future directions of this research, as
we explain there.
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Figure 5.31: Leading wave speeds as a function of impact velocity for 1D and 3D1D
lattices, both 5 and 10 RVEs long.

As we saw in Figure 5.30, the wave speed decreased as impact energy increased.
In Figure 5.31, we show the wave speed as a function of impact velocity for 1D and
3D1D lattices, both 5 and 10 RVEs long. As a reminder, the leading wave speed
is calculated by the distance from the impact to the last cell location divided by
the time it takes for the wave to reach 1% of the impact velocity at that location.
First, we see that the longer lattices have lower wave speeds than the shorter lattices.
This is because in the longer lattices, the wave is able to spread out more from
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dispersion, and more energy is trapped higher in the lattice. This brings the wave
speed down. For all lattices, the wave speed also decreases as impact velocity is
increased. Higher impact velocities increase the deformation of the first unit cell,
thus inducing the nonlinear response of the structure. The structure’s nonlinearity
from buckling is a mechanism that suddenly spreads out the impacting forces, and
along with dispersion and energy trapping, the wave speed is reduced.

Next, we examine the response of a 3D bulk lattice under this short duration
impact. In Figure 5.32, we show the impact response of a 3D bulk (4x4x4 RVE)
lattice under a 12</B impact. The colorbar in all plots indicates the vertical velocity
normalized by the impacting velocity, on a scale of 0 to 0.5 so color gradients can
be more clearly observed. On the left, we show the bulk lattice at three steps in
time, when the wave reaches a peak at the three locations indicated by the black cut
regions. On the right, for each timestamp, we show a plot of the normalized velocity
over the horizontal cut region in the transverse directions (X and Z). At about 0.0015
B, the wave begins to propagate and is localized at the top of the structure. The
propagation looks fairly linear, with the entire top layer uniformly achieving similar
velocities. This is seen on the right-hand plot. There are no localized regions
transversely; all locations have a very high velocity near the impact velocity.

At 0.0037 B, the wave has reached the center of the lattice. The high velocity
regions, instead of propagating uniformly downward, get redirected starkly to the
diagonal edges. This is seen in the right-hand plot most clearly. The diagonal
outermost edges have very high velocity localization, whereas the center has very
low velocity. This produces a sharp gradient in velocity on the X-Z plane. As
seen also in the sample drop tests, the diagonal wave speed is about 4 times as
fast as the longitudinal wave speed. The diagonal wave speed “wins out” over the
longitudinal wave we saw at 0.0015 B. Energy gets redirected to the side regions
instead of moving downwards. This prevents large amounts of energy from reaching
the bottom of the lattice, as seen at 0.0053 B. The plot of the cut plane on the right
shows that the diagonal regions of high velocity at 0.0037 B in the lattice center
do not propagate to the diagonal regions on the bottom of the lattice. The highest
velocities are at the center, but these velocities are very low, with a E/E8<? of less
than 0.2. This shows the bulk lattice’s desirable capability of redirecting energy
away from the bottom surface, which may be an object that needs to be protected
from impact.
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Figure 5.32: The impact response of a 3D bulk (4x4x4 RVE) lattice under a 12
</B impact. The colorbar in all plots indicates the vertical velocity normalized
by the impacting velocity, on a scale of 0 to 0.5. On the left, we show the bulk
lattice at three steps in time, when the wave reaches a peak at the three locations
indicated by the black cut regions. On the right, for each timestamp, we show a plot
of the normalized velocity over the horizontal cut region indicated in the transverse
directions (X and Z).
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Figure 5.33: The force of impact and the transmitted reaction force for various
lattices and impact velocities, as indicated on the plots. �/�2 is the force normalized
by �2, which is the force capacity of the bottom layer unit cells. The black line
indicates where �/�2 = 1.
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5.4.2 Force Transmission Reduction
Finally, we look at the reduction of impact forces through these lattices. The

impact force is the pulse exerted by the impactingmass on the lattice. The transmitted
force is the reaction force measured on the bottom plate under the lattice. For impact
applications, if an object needs to be protected, a material such as a foam or lattice
is desired to “spread” the impacting pulse over time through it, so that by the
time it reaches the object, the forces are lowered and the impulse on the protected
object lasts a longer time. This can be termed “flattening the curve,” and is simply
conservation of momentum. The area under the impacting pulse force-time curve
must be equal to the area under the force-time curve at each subsequent location in
the lattice, so if time increases, force decreases. Note that the reaction force profile
on the bottom plate is twice the area of the impacting pulse, as the wave is not only
transmitted but also reflected at this location.

We plot the force of the impact and the transmitted reaction force for various
lattices and impact velocities in Figure 5.33. �/�2 is the force normalized by �2,
which is the force capacity of the bottom layer unit cells. That is, the reaction force
will never exceed that of the buckling load of the combined bottom unit cells. For
the 1D lattice, �2 is 18.6 # , for 3D1D, it is four times that, and for 3D bulk, it is
64 times that. We choose this normalization to not only show clearly the difference
between impact and transmitted forces, but also to show that the lattices retain the
load limiting property we see in the baseline unit cell.

For all cases, we see that the impact force is a noisy, high amplitude force pulse
with a duration around 0.004 B long. At 18</B impact velocity, the 3D1D and 1D 5-
RVE lattices (two left panels), achieve very high strains in their top unit cells. Thus,
it is not surprising to see that �/�2 reaches nearly 1. We can see that the force profile
is about doubled in time from the impact pulse and the maximum forces are reduced
significantly. However, as the length of the lattices increase to 10 RVEs (right two
panels), the force pulse is spread further over time and the forces are reduced below
�/�2 = 1. Longer lattices have more opportunity for energy trapping and dispersion
to spread out waves. Thus, even though the top cells reach very high strains, the
reaction force can be brought to forces lower than the force capacity. We also show
the response for the 3D bulk lattice at 12 </B. The impacting pulse is similar in
amplitude and length, but the transmitted force reaches only about �/�2 = 0.5.
Although convergence issues did not allow us to find the response of the lattice at
18 </B, we conjecture that the 3D bulk lattice is particularly capable of mitigating
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impact forces due to its added ability to redirect waves.

5.5 Chapter Summary
In this chapter, we have explored the dynamics of our tensegrity-inspired structures

and lattices under impact loading. Baseline unit cell drop weight tests demonstrated
the reusability of the structure for multiple impacts and demonstrated its energy
capacity and load limitation behavior. These tests also showed that our tensegrity-
inspired structure again behaves like its pin-jointed tensegrity counterpart structure.
Compared to other lattice materials, our structure exhibits remarkable energy ab-
sorption efficiency with a very low relative density. Short-duration impacts of these
lattices exhibited their remarkable ability to mitigate impact forces. This mitigation
is due to the nonlinear response of the unit cells, dispersive wave propagation, and
energy trapping in the vibrating struts. Localized non-uniform trapping of kinetic
energy creates the same effect as energy dissipation in lattices with mechanisms
such as plasticity. However, the tensegrity-inspired structures remain highly elastic,
with a coefficient of restitution similar to a tennis ball, making them advantageous
over one-use architected materials for impact protection.
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C h a p t e r 6

CONCLUSIONS AND FUTURE DIRECTIONS

6.1 Summary
In this thesis, we presented a foundational study for a new type of metamaterial,

which we term “tensegrity-inspired” metamaterials. They are extremely lightweight
(dA = 2.5%) periodic lattices of building block structures that exhibit tensegrity-
like characteristics in both the static and dynamic regime, such as load limitation,
resilience to severe deformation, high elastic strain energy absorption, tunability
with precompression, and impact mitigation. We designed this 3D-printable build-
ing block structure in order to overcome manufacturing limitations of pin-jointed
tensegrity structures, while maintaining an equivalent strain energy capacity and
compressive response. As explained in Chapter 3, the structure design uses spheri-
cal joints to separate structural members in a way that maintains certain tensegrity
characteristics, allowing the compressive and dynamic responses to behave simi-
larly to a counterpart prestressed buckling tensegrity. The structure is fabricated
with a single material, allowing it to be printed with a variety of currently available
3D-printing methods. Without the need for pin-joints or prestress, the structure uses
geometry to produce tensegrity-like characteristics. The designed structure provides
a way to exploit many useful characteristics of a tensegrity structure without needing
cumbersome manufacturing.

Using the tensegrity-inspired building block structure, we constructed multidi-
mensional lattices and studied their dynamic behavior. In Chapter 4, we performed
dispersion analyses on 1D and 3D lattices. The nonlinearity of the structure’s
compressive response produces a dramatic evolution of the lattice’s dynamic char-
acteristics. Continuous tunability of the bandgap and wave speeds is obtained by
increasing the level of global precompression, making these lattices a candidate for
acoustic lenses with energy focusing. Since the deformation remains elastic even
at large strains, repeatable and active tuning of the lattice response is potentially
achievable. Results for 3D lattices showed very similar characteristics as for a pin-
jointed tensegrity 3D lattice [87], such as zero energymodes and higher shear speeds
than longitudinal speeds. This chapter provided a foundation for understanding the
subsequent dynamic impact analyses.
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In Chapter 5, we delved into a range of impact studies on these tensegrity-inspired
lattices. Long-duration drop weight tests on baseline unit cells and 1D lattices
showed their high elasticity under impact: they produced only low levels of plastic
strain even after dozens of impacts. These tests showed the structures’ load limi-
tation characteristic; i.e., their maximum loads are governed by the buckling load
of the baseline structure. The structures exhibit extremely good energy absorption
efficiency compared to a range of similar lattice materials. Short duration impulse
tests, including sample drop tests and tests with a small impacting mass, showed re-
markable dynamic traits. Dispersion due to the nonlinearity of the structure rapidly
spreads out impactingmomentum and traveling waves, reducing damaging accelera-
tions and lowering velocities. A sample drop test exhibited the lattices’ capability to
protect a fragile object from breakage (i.e., a glass ornament). In addition to the non-
linear response producing dispersion, we observe significant energy trapping near
the location of impact by high vibration in the struts. The struts oscillate rapidly,
keeping kinetic energy from the impulse localized near the impact site. Finally,
simulations on 3D bulk lattices showed their unique capability of redirecting waves.
Since the diagonal wave speed is faster than the longitudinal wave speed, impact
energy redirects toward the edges and prevents most energy from propagating to-
ward the bottom of the lattice, where a protected object might be located. Although
these lattices were inspired by tensegrity structures, these tensegrity-inspired lattices
are a new type of lightweight, readily 3D-printable metamaterial with remarkable
dynamic properties.

6.2 Future Directions
A range of future directions of 3D-printable tensegrity-inspiredmetamaterials can

be taken beyond the fundamental study presented in this thesis. Even without opti-
mization of energy absorption or dispersion characteristics, the tensegrity-inspired
lattices show remarkable properties that are appealing for a range of dynamic appli-
cations. However, the member diameters can readily be changed, and richer wave
attributes can be achieved by optimizing for energy performance, alternating unit
cells with different member diameters, or placing “holes” in the lattice by periodi-
cally removing unit cells (this has been done in [72]. Material limitations certainly
presented themselves with the polymer used in this thesis (e.g., hysteresis, viscoelas-
ticity, relatively low material strength, etc.). These limitations can be overcome by
using other materials. Metals are likely a desirable choice due to their high strength;
however, a quick preliminary analysis of steel used in this lattice showed that local
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strains at the cable joints would easily enter the plasticity region for a metal. This
could be overcome by redesigning the cable geometry to reduce these strains (e.g.,
a spiral shape).

Another design possibility to achieve better performance would be to pursue
other tensegrity configurations than a truncated octahedron. A disadvantage of the
octahedron is that since the struts run through the interior of the lattice, densification
occurs at strains below 50%. Strain energy could be increased by change to a
configuration where densification occurs much later in the compression, such as if
the struts run mostly near the exterior of the lattice.

Figure 6.1: Tensegrity-inspired 3D lattice printed with the Nanoscribe printer.

Our tensegrity-inspired lattices are good candidates for new types of effective
materials, such as for foam in a helmet or shielding devices for electronics or
space applications. The readily manufacturable nature of our tensegrity-inspired
structures allow them to be printed at multiple length scales with a variety of
printers. We successfully printed a 2x2x2 RVE 3D lattice of our design using the
Nanoscribe system, as shown in Figure 6.1. A static/dynamic analysis of these types
of metamaterials at small length scales would dramatically open up their potential
for a variety of applications.

Finally, when we began this research, we started with the idea of “tensegrity
sands.” That is, printing several unit cells at a very small length scale and combining
them together in a random, granular configuration. The appeal behind this is that
the energy absorption of tensegrity structures might be higher for random than
for periodically arranged combinations of unit cells. Since our tensegrity-inspired
lattices are 3D-printable at a small length scale such as sand, this might be an
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interesting avenue to pursue. The tensegrity-inspiredmetamaterials presented in this
thesis open up a new family of lightweight metamaterials that possess dynamically
rich attributes.
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A p p e n d i x A

APPENDICES FOR CHAPTER 2

A.1 MATLAB Codes for Dispersion Experiments
MATLAB Files to Generate the Burst Signal and Input Signal

1 %% BURST GENERATION FILE

2

3 close all

4 clear all

5 clc

6

7 %% CONTROL PARAMETERS FOR THE BURST ...

==================================== %%

8

9 % CARRIER FREQUENCY OF THE BURST

10 nnu=200; %[Hz]

11

12 % NUMBER OF CYCLES IN THE BURST (5)

13 Nc=1;

14

15 % NUMBER OF SAMPLES IN THE BURST+RELAXATION TIME WINDOW (2500)

16 nsteps=63999;

17

18 % LENGTH OF THE RELAXATION TIME = (ratiotime-1)*(length burst) ...

(70)

19 ratiotime=150;

20

21 % SAVE THE BURST?

22 burstexport='no';

23

24 %% BURST GENERATION ...

==================================================== %%

25

26 % SIGNAL GENERATION

27 [time,TT,tmax,dt,wtot,Wf,fx,pos_fx]=input_signal_generation(nnu,Nc, ...

...

28 nsteps,ratiotime);

29
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30 % EXPORTING THE SIGNAL

31 if isequal(burstexport,'yes')

32 dlmwrite('burst.txt',wtot','precision','%.5f')

33 end

34

35 % PLOTS OF THE SIGNAL

36 figure; subplot(2,1,1); hold all; plot(time*10^3,wtot,'rx-'); ...

box on

37 % title('Generated burst - Time domain')

38 xlabel('Time [ms]')

39 ylabel('Amplitude [-]')

40 set(gca,'FontSize',18,'FontName','Times','fontWeight','normal');

41 set(findall(gcf,'type','text'),'FontSize',18,'FontName','Times', ...

...

42 'fontWeight','normal')

43

44 subplot(2,1,2);

45 plot(fx(pos_fx),abs(Wf(pos_fx))/max(abs(Wf(pos_fx))),'-','LineWidth',2)

46 % title('Generated burst - Frequency spectrum')

47 xlabel('Frequency, f [Hz]')

48 ylabel('Amplitude [-]')

49 set(gca,'FontSize',18,'FontName','Times','fontWeight','normal');

50 set(findall(gcf,'type','text'),'FontSize',18,'FontName','Times', ...

...

51 'fontWeight','normal')

52 hold all; grid on; box on; axis tight

1 function ...

[time,TT,tmax,dt,wtot,Wf,fx,pos_fx]=input_signal_generation( ...

...

2 nnu,Nc,nsteps,ratiotime)

3

4 % function ...

[time,wtot,Wf,fx,pos_fx]=input_signal_generation(nnu,Nc,nsteps)

5 % generates a narrow-band sine burst with prescribed ...

characteristic

6 % frequency and number of cycles by using a sinusoidal ...

function as the

7 % smoothening function and calculates its frequency spectrum

8 %-----INPUT--------------------------------------%

9 % -nnu

10 % (scalar) Frequency in Hz (cycles per second)
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11 % -Nc

12 % (scalar) N. of oscillation cycles in the burst

13 % -nsteps

14 % (scalar) N. of intervals in the burst time window

15 % -ratiotime

16 % (scalar) multiplying it times the length of the ...

sinusoidal burst,

17 % we get the length of the relaxation time interval

18 %-----OUTPUT------------------------------------%

19 % -time

20 % (1 x nsteps+1) Time domain array

21 % -wtot

22 % (1 x nsteps+1) Signal time history

23 % -fx

24 % (1 x nsteps+1) Frequency domain array

25 % -Wf

26 % (1 x nsteps+1) Signal frequency spectrum

27 % -pos_fx

28 % (1 x nsteps/2) Positive frequencies

29

30 %-------------------------------------%

31 %-------------------BEGIN ROUTINE-----------------%

32 %-------------------------------------------------%

33 TT=1/nnu;

34 t1max=Nc/nnu;

35 %ratiotime=1;

36 tmax=t1max*ratiotime;

37 dt=tmax/nsteps;

38 time=0:dt:tmax;

39 t1=0:dt:t1max;

40 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

41 we=2*pi*nnu;

42 %w1=sin(we*t1/(2*Nc)); %w1=ones(1,length(t1));

43 w1=hann(length(t1))'; %Window function

44 w2=sin(we*t1);

45 wtemp=w1.*w2;

46 wtot=zeros(size(time));

47 wtot(1,1:length(t1))=wtemp';

48 % figure (11), hold on, plot(time,wtot,'ro-');

49 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

50

51 %%% PUT ratiotime=5 dt=tmax/1000 for smooth Fourier transform

52 fsamp=1/(time(2)-time(1));
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53 % fsamp=1/(t1(2)-t1(1));

54 fx=fsamp*(-length(time)/2:length(time)/2-1)/length(time);

55 pos_fx=find(fx>=0);

56 % fx=fsamp*(-length(t1)/2:length(t1)/2-1)/length(t1);

57 % pos_fx=find(fx>=0);

58 Wf=fft(wtot); Wf=fftshift(Wf); % Wf=find(Wf>=0); % w2

59 % figure, ...

semilogx(fx(pos_fx),abs(Wf(pos_fx))/max(abs(Wf(pos_fx))), ...

60 %'LineWidth',2)

61 % axis tight; grid on

62 %--------------------------------------%

63 %----------------END ROUTINE-----------------------%

64 %-----------------------------------%

MATLAB File to Reconstruct Dispersion Curve

1 %% DISPERSION RELATION RECONSTRUCTION FOR SURFACE WAVE EXPERIMENTS

2 % 2018/10 -- Caltech -- Antonio Palmero, Paolo Celli, Lorenzo ...

Affentranger

3

4 clear

5 close all

6 clc

7

8 %% LOAD DATA

9

10 % QUANTITIES TO UPDATE EVERY TIME

11 n_points=10;

12

13

14 % Choose the data file. Email pajunen2010@gmail.com for data ...

files.

15 stringstart='Tensegrity_Frequency_Tests_Data/20191111_TensegrityA_' ...

...

16 '0Pre_Burst1cycle200Hz850mV_Inner_Point'; %10 unit cells,

17 %0 compression

18 %stringstart='Tensegrity_Frequency_Tests_Data/

19 %20191111_Tensegrity6D_'

20 %'0Pre_Burst1cycle200Hz850mV_Inner_Point';

21 %6 Unit Cells, 0 compression

22 %stringstart='Tensegrity_Frequency_Tests_Data/

23 %20191111_Tensegrity6D_'

24 %'0d05Pre_Burst1cycle200Hz850mV_Inner_Point';
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25 %6 unit cells, 0.05 comp.

26 % stringstart='Tensegrity_Frequency_Tests_Data/

27 %20191111_TensegrityA6Cells_'

28 %'0d1Pre_Burst1cycle200Hz850mV_Inner_Point';

29 %6 unit cells, 0.1 comp.

30 % stringstart='Tensegrity_Frequency_Tests_Data/

31 %20191111_TensegrityA6Cells_'

32 %'0d15Pre_Burst1cycle200Hz850mV_Inner_Point';

33 %6 unit cells, 0.15 comp.

34 % stringstart='Tensegrity_Frequency_Tests_Data/

35 %20191111_TensegrityA6Cells'

36 %'_0d2Pre_Burst1cycle200Hz850mV_Inner_Point';

37 %6 unit cells, 0.2 comp.

38

39 for ii=1:n_points

40 load([stringstart num2str(ii) '.mat']);

41 A(:,ii)=Y1;

42 end

43 T=X1;

44 dx=0.0483; %m, spatial distance between measurement points

45 a = 2*dx; %unit cell height

46

47 % USEFUL QUANTITIES

48 T=T-T(1); %shift time vector

49 L=length(T); %number of time instants

50 X=dx*(1:n_points); %vector of measurement locations

51

52 % % SPACE-TIME EVOLUTION PLOT (SEISMOGRAM)

53 figure;

54 imagesc(X,T(1:20:end),A(1:20:end,:));

55 set(gca,'Ydir','reverse')

56 colormap gray; colormap(flipud(colormap));

57 colorbar

58 ylabel('t (s)')

59 xlabel('x (m)')

60 set(gca,'FontSize',18)

61 set(gca, 'FontName', 'Arial')

62 pbaspect([1 0.5 1]) %0.66*.4

63 ylim([0.065 0.085])

64 yticks(0.065:0.01:0.085)

65 %caxis([0 0.0004])

66

67
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68 %% 2DFFT

69

70 % WAVENUMBER VECTOR

71 ZPk=2^(nextpow2(length(X))+2);

72 kx=1/(X(2)-X(1))*(-length(X)/2:length(X)/2-1)/length(X);

73 kxZP=1/(X(2)-X(1))*(-ZPk/2:ZPk/2-1)/ZPk;

74

75 % TIME VECTOR

76 ZPf=2^(nextpow2(length(T))+1);

77 f=1/(T(2)-T(1))*(-length(T)/2:length(T)/2-1)/length(T);

78 fZP=1/(T(2)-T(1))*(-ZPf/2:ZPf/2-1)/ZPf;

79 FF=length(f);

80

81 % DFT OPERATION

82 FA(:,:) = abs(fftshift(fft2(A,ZPf,ZPk)));

83

84 % DISPERSION PLOT

85 figure

86 imagesc(kxZP,fZP,FA/max(max(FA)));

87 % imagesc(k(1:K),f(1:FF)/1000,FA(2:FF,1:K));

88 set(gca,'ydir','normal');

89 set(gca,'FontSize',9)

90 set(gca, 'FontName', 'Arial')

91

92 pbaspect([1 1 1]) %0.66*.4

93 colormap gray; colormap(flipud(colormap));

94 %colorbar

95 %title('6 Cells: 20% Compression')

96 xlabel('k (1/m)')

97 ylabel('Frequency (Hz)')

98 ylim([0 500])

99 yticks([0 100 200 300 400 500])

100 %xlim([0 1/(2*0.0483)])

101 xlim([0 1/a])

102 caxis([0 0.7])

103

104 % Uncomment the following section to add simulation results

105 %to the plot.

106 % Again, email pajunen2010@gmail.com for data files.

107

108 % %Add simulation

109 %

110 % hold on
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111 % load d_0d2

112 % data_ky = d_0d2;

113 % turn_point = 155.1; %171.65; %209.72; %180.6; %191.03; %

114 %

115 % LW = 0.7*1.5;

116 % size_ky = length(data_ky(:,1));

117 % if size_ky < 530

118 % for i = 1:size_ky

119 % if data_ky(i,5) < 0.3 && (data_ky(i,3) > .35 || ...

data_ky(i,4)

120 % > 0.35 || data_ky(i,6) > 0.8)

121 % %plot(data_ky(i,1),data_ky(i,2), 'o', 'color', ...

'red')

122 % if data_ky(i,2) > turn_point

123 % if data_ky(i,2) < 450

124 % data_ky_mirrored=-data_ky(i,1) +

125 %2*max(data_ky(:,1));

126 % ...

plot(data_ky_mirrored./(2*pi),data_ky(i,2), 'o',

127 %'color', 'red','LineWidth',LW)

128 % end

129 % else

130 % plot(data_ky(i,1)./(2*pi),data_ky(i,2), 'o', ...

'color',

131 %'red','LineWidth',LW)

132 % end

133 % end

134 % end

135 % else

136 % for i = 1:(size_ky/2)

137 % if data_ky(i,5) < 0.3 && (data_ky(i,3) > .35 || ...

data_ky(i,4) >

138 %0.35 || data_ky(i,6) > 0.8)

139 % %plot(data_ky(i,1),data_ky(i,2), 'o', 'color', ...

'red')

140 % if data_ky(i,2) > turn_point

141 % if data_ky(i,2) < 470

142 % data_ky_mirrored = -data_ky(i,1)

143 %+ max(data_ky(:,1));

144 % ...

plot(data_ky_mirrored./(2*pi),data_ky(i,2), 'o',

145 %'color', 'red', 'LineWidth',LW)

146 % end
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147 % else

148 % plot(data_ky(i,1)./(2*pi),data_ky(i,2), 'o', ...

'color',

149 %'red', 'LineWidth',LW)

150 % end

151 % end

152 % end

153 % end

154 %

155 %

156

157 %scatter(data_ky_mirrored(:,1)./(2*pi),data_ky_mirrored(:,2))

158 % figure

159 % scatter(data_ky_mirrored(:,1),data_ky_mirrored(:,2))

160

161

162

163 %Calculate wave speed from experiment.

164 [maxxxx, index_start]=max(A(1:17310, 1)); %t = 0.0692s

165 [maxx, index_end]=max(A(1:18922,6)); %t = 0.0757s

166 wave_speed = (.0483-.2898)/(T(index_start)-T(index_end))

MATLAB File to Sort COMSOL Dispersion Data into Mode Shapes

1

2 % Kirsti Pajunen

3

4 % data_ky: First column is the

5 %wave number, ky, second column is frequency in Hz.

6 % Email pajunen2010@gmail.com if you would like data tables.

7

8 %This file sorts the frequency data from COMSOL into longitudinal,

9 %rotational, combined longitudinal and rotational, and other ...

(including

10 %flexural) modes, and indicates this in the plot used ...

differently colored

11 %and shaped markers.

12

13 clear

14 close all

15

16 a = 0.0966; %unit cell length, m

17
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18

19 load d_0d2

20 data_ky = d_0d2;

21 %turn_point = 209.72;

22

23 size_ky = length(data_ky(:,1));

24 figure

25 set(gca,'FontSize',12)

26 set(gca, 'FontName', 'Arial')

27 pbaspect([0.5 1 1]) %0.66

28 box on

29 hold on

30 LW = 0.7;

31 for i = 1:size_ky

32

33 if data_ky(i,1) <= 33 && data_ky(i,2) < 500

34

35 %Longitudinal

36 if data_ky(i,5) < 0.3 && (data_ky(i,3) > .35 || ...

data_ky(i,4) > ...

37 0.35 || data_ky(i,6) > 0.8)

38 % if data_ky(i,3) > .35 || ...

data_ky(i,4)>0.35||data_ky(i,6) > 0.8

39 plot(data_ky(i,1),data_ky(i,2), 'o', 'color', ...

40 'red', 'LineWidth',LW*1.5) %Red./(2*pi)

41 %end

42

43 %Longitudinal and rotational combined

44 elseif data_ky(i,5) > 0.3 && (data_ky(i,3) > .35 || ...

45 data_ky(i,4) > 0.35 || data_ky(i,6) > 0.8)

46 %if data_ky(i,5) > 0.3

47 plot(data_ky(i,1),data_ky(i,2), 'o', 'color', ...

[51/255 ...

48 153/255 0/255], 'LineWidth',LW*1.5)

49 %end

50

51 %Rotational

52 elseif data_ky(i,3) < .35 && data_ky(i,4) < 0.35 && ...

53 ata_ky(i,5) > 0.3 && data_ky(i,6) < 0.8

54 plot(data_ky(i,1),data_ky(i,2), 'o', 'color', ...

[102/255 ...

55 0/255 255/255], 'LineWidth',LW*1.5)

56
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57 %Flexural and other

58 else

59 plot(data_ky(i,1),data_ky(i,2), '*', ...

'MarkerSize',4, ...

60 'color', [0/255 102/255 255/255], ...

'LineWidth',LW/4)

61

62 end

63

64 end

65 end

66

67 xlabel('k (1/m)')

68 ylabel('Frequency (Hz)')

69 xlim([0 2*pi/(2*a)])

70 ylim([0 500])

71 %xticks([0 0.5*(1/(2*a)) 1/(2*a)])

72 %xticklabels({'0', '1/(4*a)', '1/(2*a)'})

73 yticks([0 100 200 300 400 500])

A.2 MATLAB Code for Drop Weight Experiments

1 %This code processes the data from drop weight tests on a ...

single unit cell.

2 %This can be modified to process data from drop weight lattice ...

tests and

3 %also lattice drop tests. Please email pajunen2010@gmail.com ...

for data files

4 %and also code for the lattice drop and fall tests.

5

6 clear all;

7 close all;

8 clc;

9

10

11 Delta_Plate_BottomWeight = 0.3;

12

13 SampleHeightOriginal = 0.0483;

14 SampleHeightInitial = 0.0483;

15 SampleHeightAfter5min = 0.0483;

16

17 DropHeight = Delta_Plate_BottomWeight - SampleHeightInitial;
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18

19 mass = 0.197536 + 0.003; %Weight mass + sample mass

20 SensitivityPCB = 11241; %Force sensor 200B02: 11241 mV/kN

21 SensitivityAcc = 0.47;

22 %Sensitivity of Accelerometer model 356A01: 0.47 mV/(m/ s )

23

24 %% import oscilloscope data

25

26 FilenameOscill = 'force';

27 ColRange = 'A:D';

28 Oscill = xlsread(FilenameOscill,ColRange);

29

30 startOscill = 200;

31 endOscill = 1100;

32 TimePCB = Oscill(startOscill:endOscill,1);

33 VoltageBottom = Oscill(startOscill:endOscill,2);

34 VoltageTop = Oscill(startOscill:endOscill,4);

35

36 %take voltage difference in order to eliminate voltage/force,

37 %that is due to mass of structure and glass plate

38 BottomForce = (VoltageBottom - VoltageBottom(1))*1e6 / ...

SensitivityPCB;

39 BottomForce = smooth(BottomForce);

40

41 TopForce = - mass * (VoltageTop - VoltageTop(1))*1e3 / ...

SensitivityAcc;

42

43 [MaxBottomForce,locs_BottomForce] = max(BottomForce);

44 MaxBottomForce = MaxBottomForce

45

46

47 %% Apply butterworth Filter

48

49 f_cutoff =1000; % cutoff frequency for filter

50 f=1/(TimePCB(2)-TimePCB(1)); % sampling frequency

51 fnorm =f_cutoff/(f/2); % normalized cut off frequency

52

53 [b,a] = butter(3,fnorm,'low'); % Low pass Butterworth filter ...

of order 3

54 LP_TopForce = filtfilt(b,a,TopForce); % filtering

55 LP_MA_TopForce = smooth(LP_TopForce); %moving average

56

57 freqz(b,a,128,f), title('low pass filter characteristics')
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58

59 figure(1)

60 subplot(3,1,1)

61 plot(TopForce), title('Unfiltered Data')

62 subplot(3,1,2)

63 plot(LP_TopForce), title('Lowpass Filtered Data')

64 subplot(3,1,3)

65 plot(LP_MA_TopForce), title('Lowpass Filtered and Smoothed Data')

66

67 [MaxTopForce,locs_TopForce] = max(LP_MA_TopForce);

68

69 %% get position, speed and acceleration

70

71 FilenameCoord = 'disp';

72 ColRange = 'B:D';

73 Coord = xlsread(FilenameCoord,ColRange);

74 Coord = Coord;

75 PCCStartIndex = 5;%20;

76 PCCEndIndex = length(Coord);%130; %or: length(Coord) if weight ...

is caught

77 %after 1 impact

78 TimePCCCoord = Coord(PCCStartIndex:PCCEndIndex,1);

79 Y0 = Coord(PCCStartIndex:PCCEndIndex,3);

80

81 SmoothY0 = smooth(Y0);

82

83 %speed of weight needed later for determination of 1st touch

84 TimePCCSpeed_Smooth = TimePCCCoord(1:end-1);

85 Y0SpeedSmooth = smooth(diff(SmoothY0) ./ diff(TimePCCCoord));

86

87 %Acceleration inaccurate (2 differentiations), not used

88 %TimePCCAcc_Smooth = TimePCCCoord(1:end-2);

89 %Y0AccSmooth = smooth(diff(Y0SpeedSmooth) ./ ...

diff(TimePCCSpeed_Smooth));

90

91 %% find coordinates at maximum compression between sample and ...

weight

92

93 [min_SmoothY0,locs_SmoothY0] = min(SmoothY0);

94 MaxCompressionTime = TimePCCCoord(locs_SmoothY0);

95 MaxCompressionHeight = min_SmoothY0;

96

97 %% find coordinates and time at first touch between sample and ...
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weight

98 %using topforce data and determine velocity at first touch time

99

100 found = 0;

101 index = locs_TopForce;

102 while found == 0

103 if LP_MA_TopForce(index) > 1.5

104 %increase value 0 (f.ex. 1)

105 %if acceleration data does not cross 0 immediately

106 index = index - 1;

107 else

108 if LP_MA_TopForce(index - 1) < LP_MA_TopForce(index) ...

&& ...

109 LP_MA_TopForce(index - 1) > 0

110 index = index - 1;

111 else

112 found = 1;

113 FirstTouchTime = TimePCB(index);

114 ForceStart = index;

115 end

116 end

117 end

118

119 %Find impact speed and sample height @ first impact

120 %index of position data is different from index of ...

oscilloscope data

121 % => find position index i by comparing the times

122 found = 0;

123 i = locs_SmoothY0;

124 while found == 0

125 if TimePCCCoord(i) > TimePCB(index)

126 i = i - 1;

127 else

128 found = 1;

129 RefHeight = SmoothY0(i);

130 SpeedAtImpact = Y0SpeedSmooth(i);

131 end

132 end

133

134 %% find coordinates and time when shock wave reaches bottom nodes

135 %using bottomforce data

136 %often not accurate (due to oscillations in force sensor data),

137 %has to be determined manually
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138

139 found = 0;

140 index = locs_BottomForce;

141 while found == 0

142 if BottomForce(index) > 0.5

143 %value 0.5 should eliminate oscillation issue

144 index = index - 1;

145 else

146 if BottomForce(index - 1) < BottomForce(index) && ...

147 BottomForce(index - 1) > 0

148 index = index - 1;

149 else

150 found = 1;

151 WaveArrivalTime = TimePCB(index);

152 end

153 end

154 end

155

156 %% Only gravity acting / release /no force acting between ...

sample and weight

157

158 found = 0;

159 index = locs_BottomForce;

160 while found == 0

161 if BottomForce(index) > 0.5

162 %increase value 0 (f.ex. 1)

163 %if weight does not release from test sample (broken ...

sample)

164 index = index + 1;

165 else

166 if BottomForce(index + 1) < BottomForce(index) && ...

167 BottomForce(index + 1) > 0

168 index = index + 1;

169 else

170 found = 1;

171 ReleaseTime = TimePCB(index);

172 ForceEnd = index;

173 end

174 end

175 end

176

177 %find height of the sample at release

178 %index of position data is different from index of ...
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oscilloscope data

179 % => find position index i by comparing the times

180 found = 0;

181 i = locs_SmoothY0;

182 while found == 0

183 if TimePCCCoord(i) < TimePCB(index)

184 i = i + 1;

185 else

186 found = 1;

187 ReleaseHeight = SmoothY0(i);

188 end

189 end

190

191 %Duration of impact

192 TotalImpactTime = ReleaseTime - FirstTouchTime;

193

194 %% Maximum strain

195

196 MaxCompressionDelta = abs(MaxCompressionHeight - RefHeight)

197 MaxStrain = MaxCompressionDelta / SampleHeightInitial;

198 MaxStrainOriginal = MaxCompressionDelta / SampleHeightOriginal;

199

200 %% Plotting

201

202 figure(3)

203 subplot(2,1,1)

204

205 yyaxis left

206 hold on

207 plot(TimePCCCoord,SmoothY0)

208 %xlim([TimePCCCoord(1) inf]) %adjusted x-axis range

209

210 ax = gca;

211 ax.XLabel.String = 'Time [s]';

212 ax.XLabel.FontSize = 12;

213 ax = gca;

214 ax.YLabel.String = 'Displacement [m]';

215 ax.YLabel.FontSize = 12;

216

217 yyaxis right

218 plot(TimePCB,BottomForce)

219 plot(TimePCB,LP_MA_TopForce)

220
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221 ax = gca;

222 ax.YLabel.String = 'Force [N]';

223 ax.YLabel.FontSize = 12;

224

225 plot([FirstTouchTime FirstTouchTime],get(gca,'ylim'),'--k')

226

227 plot([MaxCompressionTime MaxCompressionTime],get(gca,'ylim'),':k')

228

229 plot([ReleaseTime ReleaseTime],get(gca,'ylim'),'-.k')

230

231 grid on

232 hold off

233 legend('Y0','Bottom Force','Top Force','FirstTouchTime',...

234 'MaxCompressionTime','ReleaseTime')

235

236 subplot(2,1,2)

237

238 hold on

239 plot(TimePCCSpeed_Smooth,Y0SpeedSmooth,'-')

240

241 plot([FirstTouchTime FirstTouchTime],get(gca,'ylim'),'--k')

242 plot([MaxCompressionTime MaxCompressionTime],get(gca,'ylim'),':k')

243 plot([ReleaseTime ReleaseTime],get(gca,'ylim'),'-.k')

244

245 ax = gca;

246 ax.XLabel.String = 'Time [s]';

247 ax.XLabel.FontSize = 12;

248 ax = gca;

249 ax.YLabel.String = 'Speed [m/s]';

250 ax.YLabel.FontSize = 12;

251 xlim([TimePCCCoord(1) inf]) %adjusted x-axis range

252

253 grid on

254 hold off

255 legend('Y0SpeedSmooth','FirstTouchTime', ...

256 'MaxCompressionTime','ReleaseTime')

257

258 %% Plot stress strain curve and determing energies, max strain ...

etc.

259

260 TimePCBDuringImpact = TimePCB(ForceStart:ForceEnd);

261

262 %Unit of stressPCB: N/m^2 = Pa
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263 stressPCB = BottomForce(ForceStart:ForceEnd)/(pi() * ...

264 (0.0405739 * 2/3)^2);

265

266 %%%Force on bottom plate for energy calculations.

267 forceBottom = BottomForce(ForceStart:ForceEnd);

268 %%%

269

270 %resampling displacement data to sampling rate of pcb output data:

271 ResampledY0 = interp1(TimePCCCoord,SmoothY0,TimePCBDuringImpact)

272

273 %consider strain as positive during compression

274 %shift curve such that stress strain curve starts at 0 strain

275 %This is also the displacement data used to calculate energy.

276 CompressionDelta = -(ResampledY0 - RefHeight);

277

278 strain = CompressionDelta / SampleHeightInitial;

279

280 [max_disp, index_max_disp] = max(CompressionDelta);

281 W_max = ...

trapz(strain(1:index_max_disp),stressPCB(1:index_max_disp))

282 %maximum stored strain energy, unit: Joules

283

284 W_dissipated = abs(W_max) - abs(trapz(CompressionDelta( ...

285 index_max_disp+1:end),forceBottom(index_max_disp+1:end)))

286 %dissipated strain energy, unit: Joules

287

288 Energy_Ratio = W_dissipated/W_max;

289 stressPCB_max = max(stressPCB)

290 strain_max = max(strain);

291 %for comparison: check if this value is very close to ...

MaxStrain value

292 %(small variations may be a consequence of resampling ...

procedure (interp1))

293

294 %Determination of remaining strain

295 RemainingStrainInstantaneous = strain(end)

296

297 RemainingStrain5min = abs((SampleHeightAfter5min - ...

SampleHeightInitial) ...

298 / SampleHeightInitial)

299

300 %remaining strain compared to untested sample

301 TotalRemainingStrain=abs((SampleHeightAfter5min - ...
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SampleHeightOriginal)...

302 / SampleHeightOriginal)

303

304 %plot stress strain hysteresis

305 figure(2)

306 plot(CompressionDelta, forceBottom)

307 %plot(strain,stressPCB); %Unit: N/m^2 = Pa

308 hold on

309 xlim([0 inf]) %adjusted x-axis range

310 ylim([0 inf]) %adjusted y-axis range

311 grid on

312 % plot(strain_m,UnloadingFit(1)*strain_m+UnloadingFit(2),'r')

313 % legend('Cycle1','LinearFit')

314 ax = gca;

315 ax.XLabel.String = 'Displacement [m]';

316 %ax.XLabel.String = 'Strain [-]';

317 ax.XLabel.FontSize = 12;

318 ax = gca;

319 ax.YLabel.String = 'Force [N]';

320 %ax.YLabel.String = 'Stress [Pa]';

321 ax.YLabel.FontSize = 12;

322 hold off

323

324 %% Plot effective stiffness over time

325

326 %compute effective stiffness instead of E-modulus as E_module ...

would be an

327 %approximation (out of stress-strain curve, with approximated

328 %cross-sectional area for stress = Force / Area

329 EffectiveStiffness = ...

BottomForce(ForceStart:ForceEnd)./CompressionDelta;

330 figure(4)

331 plot(TimePCBDuringImpact,EffectiveStiffness)

332 grid on

333 MaxEffStiffness = max(EffectiveStiffness)

334

335 %% Effective Wave Speed & Wave Propagation

336

337 %determine effective wave speed

338 %this speed is the same in the same media

339 %so with deformation of sample, it will change

340 %not accurate because time at wave arrival is usually not correct

341
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342 WavePropTimeFirst = WaveArrivalTime - FirstTouchTime;

343 EffWaveSpeed = SampleHeightInitial / WavePropTimeFirst;

344

345

346 %determine how many times wave propagates through sample ...

during loading

347 %phase -> this is not accurate because effective wave speed ...

could not be

348 %determined correctly

349 Counter = 1;

350 LastBoundaryTime(Counter) = FirstTouchTime;

351 WaveDirection = -1;

352 LastHeight = SampleHeightInitial;

353

354 %Determine Time/Index of max. compression

355 [MaxDisp,EndIndex] = min(ResampledY0);

356

357

358 for i=2:EndIndex

359 VarDisp(i) = SampleHeightInitial - CompressionDelta(i);

360 DeltaTime = TimePCBDuringImpact(i) - ...

LastBoundaryTime(Counter);

361 if WaveDirection < 0

362 WaveFront(Counter) = LastHeight(Counter) - ...

EffWaveSpeed*DeltaTime;

363 if WaveFront(Counter) <= 0

364 Counter = Counter + 1 ;

365 Index(Counter) = i;

366 LastBoundaryTime(Counter) = TimePCBDuringImpact(i);

367 WaveDirection = -1 * WaveDirection;

368 LastHeight(Counter) = 0;

369 end

370 else

371 WaveFront(Counter) = LastHeight(Counter) + ...

372 EffWaveSpeed * DeltaTime;

373 if WaveFront(Counter) >= VarDisp(i)

374 Counter = Counter + 1 ;

375 Index(Counter) = i;

376 LastBoundaryTime(Counter) = TimePCBDuringImpact(i);

377 WaveDirection = -1 * WaveDirection;

378 LastHeight(Counter) = VarDisp(i);

379 end

380 end
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381 end

382

383 WavePropCounter = Counter;

384

385 %% parameters

386 %Output parameters

387 par = ...

[SampleHeightInitial;DropHeight;MaxBottomForce;MaxTopForce;...

388 stressPCB_max;MaxStrain;MaxStrainOriginal;TotalImpactTime; ...

389 SpeedAtImpact;...

390 WavePropTimeFirst;EffWaveSpeed;MaxCompressionDelta;...

391 MaxEffStiffness;W_max;W_dissipated;RemainingStrainInstantaneous;...

392 RemainingStrain5min;TotalRemainingStrain;Energy_Ratio]
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A p p e n d i x B

APPENDICES FOR CHAPTER 3

B.1 Relaxation Tests for Two Materials
We performed relaxation tests on ASTMD638 standard samples using the Instron

machine in order to compare the viscoelastic properties of twomaterials. To perform
the tests, we clamped the dogbones in the tensile fixture and applied a strain rate of
1000 mm/s until the samples reached a tensile strain of 0.03. Then, the strain was
kept constant for 60 minutes, recording the force and displacement with time. A
strain of 0.03 remains in the elastic region for both materials. The results are shown
in Figure B.1.
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Figure B.1: Relaxation tests performed on the Shapeways PA2200 polyamide nylon
material and the Formlabs “Tough” material. ASTM D638 Type IV specimens are
loaded in tension, and the strain is held constant at 0.03. The reduction in stress
is then measured over time. The magnitude of stress reduction is indicated by the
colored arrows next to the vertical axis.

We observe that over the 60minute time period, the stress in the Formlabsmaterial
reduces by over 70%, whereas the stress in the Shapeways material reduces by only
33%. This magnitude of stress reduction is indicated by the colored arrows next to
the vertical axis. Thus, the Shapeways material was found to exhibit significantly
lower viscoelasticity than the Formlabs material. This was one of the reasons we
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chose it for our studies of tensegrity-inspired structures.

B.2 Intermediate Geometry Design Iterations
After obtaining the response of the pin-jointed structure with Geometry #1, it was

clear that this geometry was not appealing in terms of energy absorption capacity.
Keeping in mind the application of this structure being a building block for impact
absorbing periodic lattices, we desired to increase the energy absorption of the
structure and obtain a final design for the dynamic experiments.
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Figure B.2: Experimental stress-strain responses of four member diameter geome-
tries of the spherically-jointed structure. The parameter 3B/32 is the strut-to-cable
diameter ratio. The stress is normalized by the maximum stress of the chosen final
design (3B/32 of 1.44) for comparison.

The stiffness and buckling load of the structure directly affect the energy absorp-
tion, i.e., the area under the stress-strain curve. Changing the member diameters
easily affect these parameters. However, we needed to keep in mind the practical
aspects of changing the diameters, including manufacturing producibility and stress
concentrations at the intersections with the spheres. We desired to keep the stress
concentrations low in order to reduce any plastic deformation within the structure.

In Figure B.2, stress-strain curves of 4 experiments are shown according to
different values of strut-to-cable diameter ratio (3B/32). The stress is normalized
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by the maximum stress of the chosen final design (Geometry #3 with a 3B/32 of
1.44). All 4 designs were easily printable with the chosen manufacturing method,
with both strut and cable diameters large enough for dependable fabrication.

At the lowest 3B/32 values, the buckling load is lower than the higher 3B/32
structures, and the stiffness is also lower. This reduces the energy capacity of
the structure, making these choices unappealing. Looking, then, between 3B/32 =
1.44 and 3B/32 = 1.3, it might appear that 3B/32 = 1.3 would be the best choice
for energy absorption. However, the member diameters play a key role in stress
concentrations. The cable diameters are the same for all 3B/32, except for 3B/32 =
1.44, which has a thinner cable diameter. This is important because with a fixed
amount of deformation (here, 0.4 strain), the structures with thicker cables result in
higher stress concentrations. Plastic deformation from the stress concentrations is
exhibited clearly by the reduction in force for the two lowest 3B/32 values. Plastic
deformation is not readily seen in the 3B/32 = 1.3 plot, but since this has equal strut
and higher cable diameters than the 3B/32 = 1.44 structure, the stress concentrations
are lower in the 3B/32 = 1.44 structure. Therefore, 3B/32 = 1.44 was the design that
we chose.
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A p p e n d i x C

APPENDIX FOR CHAPTER 5

C.1 Distribution of Kinetic and Strain Energy in a Lattice Under Impact
In Chapter 5, we examined how our tensegrity-inspired lattices have unique ca-

pabilities under impact, such as energy redirection, energy trapping, and dispersion.
However, in terms of energy, we only examined the kinetic energy in the lattice.
This is useful, since impact forces (and thus transmitted forces) are directly related
to kinetic energy. However, the energy input into the lattice from the impactor is
transmitted through the lattice via both strain energy and kinetic energy. Here, we
examine the strain and kinetic energy distribution in a 10 RVE 3D1D lattice under
impact by a 10 6 impactor traveling at 18 </B. Figure C.1 shows the kinetic and
strain energy in the cables and the struts for this impact scenario over time.
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Figure C.1: Strain energy (SE) and kinetic energy (KE) in all cables and all struts
in a 10 RVE 3D1D lattice under impact by a 10 6 impactor traveling at 18 </B.

The most striking observation is that the cables carry almost half of the energy
in the lattice via strain energy. This means that the cables absorb a large amount
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of energy purely through their deformation. (In Chapter 3, we saw that the cables
deform the most of all of the members.) The struts carry the second largest amount
of energy through kinetic energy. This supports our observation that the struts
vibrate significantly during impact, thus trapping a large portion of energy in this
vibration mechanism. In this figure, we see that the cables have very low kinetic
energy compared to the struts, as expected. The strain energy in the struts, how-
ever, is quantitatively comparable to the kinetic energy in the struts, meaning that
although the struts trap energy through vibration, they also absorb energy through
deformation. The buckling of the struts produces this significant strain energy.

These observations of energy distribution are key to designing these lattices to
achieve desired characteristics for applications. For example, it might be desirable
to design the structure such that the majority of the energy is partitioned to kinetic
energy of strut vibration. This would reduce the dependence of the lattice’s impact
performance on the material being able to deform significantly while remaining
elastic.
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