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ABSTRACT

Viruses are widely modified and used as gene delivery vectors for various applications
in science and therapeutics. To this end, my thesis focuses on modifying the recombinant
adeno-associated viral (rAAV) vectors that are identified as a safer choice for cargo delivery
compared to other known viral vectors. They are widely used in the scientific communities,
have seen promising outcomes in gene therapy clinical trials, and as of today have three
products approved to use in humans. However, the natural repertoire of rAAVs have broad
tropism when delivered systemically, and there is room for further improvement on the
efficiency and specificity, especially for gene delivery in the central nervous system (CNS).
The prior work done in Dr. Gradinaru lab addresses the issue by using a directed evolution
approach called CREATE, Cre recombination-based AAV targeted evolution, to identify
AAV-PHP.B and AAV-PHP.eB capsids, which broadly transduce the CNS (Deverman et al,
2016; Chan et al, 2017). CREATE selects for functional lox-flipped viral DNA that crosses
the blood-brain barrier (BBB) and successfully transduces a specific nerve cell-type
expressing Cre, thereby applying a strong selection pressure. However, the method is limited
by its ability to identify a handful of enriched variants, and may also be prone to false
positives resulting from experimental biases. The effort to fully understand the selection
landscape, and to select for capsids that are not just efficient towards a cell-type but also
specific towards it, led to the development of Multiplexed-CREATE (M-CREATE). M-
CREATE allows parallel positive selections across different cell-types of interest, enables
post-hoc negative selections across off-targets using a next-generation sequencing (NGS)
based capsid recovery, and retains the principles of Cre-dependent functional recovery from
CREATE. The method has a synthetic library generation approach to minimize biases within
selection rounds, a variant replicate feature to identify the signal versus noise within a
biological system, and an analysis pipeline to group families of enriched variants based on
amino acid motifs, all of which together increases the confidence in the outcome and the
throughput from a single experiment. Selections across brain endothelial cells, neurons, and
astrocytes yielded several AAV-PHP.B-like variants that broadly transduce the CNS, AAV-

PHP.V variants that can efficiently transduce the vascular cells forming the BBB, a AAV-



PHP.N variant that transduces neurons with greater specificity, and AAV-PHP.C variantsIX
that cross the BBB without murine strain specificity across tested strains. The AAV-PHP.C
variants have different amino acid motifs compared to the AAV-PHP.Bs that have been
previously shown to have limited CNS transduction across some mouse strains due to its
interaction with the strain specific host cell surface receptor, ly6a, a homolog of which is not
found in humans. (Hordeaux et al, 2018, Hordeaux et al, 2019; Huang et al, 2019; Batista et
al, 2019) Therefore AAV-PHP.Cs offer some hope towards translation across other species.
In summary, the M-CREATE methodology turns out to be a high-confidence, robust
selection platform to yield several novel viral capsids for use in neuroscience and potential

gene therapy related applications.
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M-CREATE is a high-confidence, multiplexed, in vivo selection platform that yields
vectors (i.e., viral capsids) with desired tropisms. M-CREATE identifies positively
enriched vectors from on-target tissues or cell types that are also negatively enriched across
off-targets through next-generation sequencing (NGS)-based vector recovery. The selected
vector libraries are subjected to clustering based on the shared mutation patterns (or motifs)
to identify distinct families of vectors, thereby generating multiple candidates to address
gene delivery challenges.
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Chapter 1

BACKGROUND AND MOTIVATION

Section 1.5 of this chapter has been adapted from:

Deverman, B.E., Pravdo, P.L., Simpson, B.P., Ravindra Kumar, S., Chan, K.Y,
Banerjee, A., Wu, W.L., Yang, B., Huber, N., Pasca, S.P., Gradinaru, V. Cre-dependent
Capsid Selection Yields AAVs for Global Gene Transfer to the Adult Brain. Nature
Biotechnology 34, 204-209 (2016). https://doi.org/10.1038/nbt.3440

1.1. VECTORS FOR GENE DELIVERY

One of the fundamental needs in biology are tools to study cells or associated
pathologies, and eventually design therapies to treat the impaired cells. Ata cellular level,
all of the above involve an exogenous supply of genes encoding proteins of interest.
Molecular tools than can package a desired gene and deliver it to a cell are called vectors
or vehicles. Vectors can turn out to be the most powerful tool for a biologist if we can
design them to precisely target a cell-type of interest efficiently, and can become a vital
resource across various disciplines, such as in basic and biomedical sciences and in

clinics.

The gene delivery vectors can be broadly classified based on the source as non-

viral and viral vectors.
Non-viral vectors

The non-viral delivery systems comprise chemical and biochemical vectors such as
lipid-based vectors, peptide-based vectors, natural and synthetic polymers, calcium
phosphates, and metal nanoparticlest™''. These non-viral vectors are attractive for their

biosafety aspect given their synthetic nature, and thereby their inability to elicit strong
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immune response in the host. However, these non-viral vectors are limited in their

applications due to lower transfection efficiency, and have been designed only for fewer

target cell population given the time, cost, and labor involved in engineering such vectors?-
15

Viral vectors

Viruses that are known to infect mammalian cells are naturally existing vectors, and
they are subjected to engineering by making them replication deficient, stripping them of
their toxic genome, and replacing it with our gene of interest to serve as a safe gene delivery
vector (alias recombinant viral vector). Some viruses have been recognized and engineered
for this purpose including; retroviruses, lentivirus, adenovirus (AD), adeno-associated virus
(AAV), herpes simplex virus (HSV), rabies, and baculovirus. However, depending on the
viral vectors, they have their own pros and cons including tropisms, transduction
efficiency and specificity, stability of transgene expression, cytotoxicity, and immune
response, all of which influence their potential applications in science and therapies¢-2°,

Some notable vectors are highlighted below.
Retroviruses

Retroviruses are RNA viruses, and were the first to be recognized and engineered as a
viral vector in the 1980s%°, and they eventually entered the first gene therapy clinical trial in
the 1990s for adenosine deaminase deficiency (ADA)?. However, the use of retroviral
vectors observed a major setback due to its innate ability to randomly integrate into host
genome, which may at times lead to insertional oncogenesis®>2°. Hence, the issues associated
with the use of these vectors limit their applications?®-=°,

Lentivirus

Lentivirus is a RNA retrovirus, and the recombinant viral vectors3:-3* stands out for its
ability to transduce both dividing and non-dividing cells*>*". Given its broad tropism, these

recombinant viral vectors have gained a lot of attention in both basic science applications®®-
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42 and in gene therapy* . However, even with the continuous engineering efforts to reduce

the random integration events into host genome, the risk is not eliminated“®.
Adenovirus (AD)

Adenoviruses are non-enveloped, icosahedral, double-stranded DNA viruses that

4749 and also as recombinant viral vaccines®* 2,

are widely used as gene delivery vectors
ADs are attractive for their ability to exist as episomal DNA (extra-chromosomal DNA
that does not integrate with host DNA), to package large genomes® and modified
tropisms through engineering®*. However, one of the major drawbacks for gene therapy
application is their ability to induce strong host innate immune responses®*’, such as the
one seen in the 18-year-old Jesse Gelsinger case, where a fatal inflammatory response in
days after administering AD packaged with ornithine-transcarbamylase led to his

death®8°°,

1.2. ADENO-ASSOCIATED VIRAL VECTORS FOR GENE DELIVERY

Adeno-associated virus (AAV)

AAVs are 25 nm, non-enveloped, icosahedral (formed from 60 monomers), DNA
parvoviruses with a single-stranded 4.7 kb genome®-%°. AAVs are replication incompetent,
and depend on a second virus for infection such as AD or HSV®, The genome carries two
genes: rep and cap, comprising the Rep proteins (Rep78, Rep68, Rep52, Rep40) that
coordinate AAV replication®”, a capsid assembly-activating protein (AAP)® and a
membrane associated accessory protein (MAAP)® from alternate open reading frames, and
capsid proteins (VP1, VP2, VP3) that form the capsid coat’®. These genes are flanked by
inverted terminal repeats (ITRs) which are packaging signals for the genome and are
involved in 2" strand DNA synthesis in the host cell, and also has a terminal resolution site

to enable site specific integration into human chromosome 19 (AAVS1)"*-74,

Advantages of using rAAVs as vectors for gene delivery
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What makes rAAVs appealing for in vivo gene delivery applications is their latent (or

harmless) infection without the helper virus®® > and most of the viral genome can be
stripped off to insert the cargo of interest as the only viral sequences required within the
rAAV genome are the ITRs (145 bases on either end of the genome)’”~"°. The vectors are
non-pathogenic, and have been shown to exhibit low immunogenic response. Their long-
term persistence as episomal DNA in transduced cells lowers the risk of random
chromosomal integration events that are otherwise observed with retroviruses. All of the
above features make them a safer choice of gene delivery vector over other viruses. Above
all their ability to transduce both dividing and non-dividing cells makes them widely usable

for various applications®®78:80-85,

Current AAV vector applications

Vectors can find their applications across various disciplines in science.
Basic Science

There has been more acceptance in using the rAAV viral vectors in laboratories all
over the world to address a myriad of science questions that requires delivery of genes to a
specific target of interest. The scientific needs involve delivering a specific or multiple genes
under-investigation which includes an endogenous gene, an actuator, a sensor, or a reporter,
This could be easily achieved with rAAV viral vectors®’. rAAVs have been used in
applications like cell circuits tracing®, probing cellular activity using techniques like
optogenetics or chemogenetics®, building disease models®, etc. The current alternative
experimental setup using transgenic animals carrying a modified gene has limitations such
as the cost and time involved in generation and maintenance of transgenic lines. The growing
needs to cover the diverse cell populations or pathological conditions under investigation
limits its applications®%3. Compared to transgenics, the gene delivery vectors are easier and
faster to implement; they could be used to deliver broadly across various targets under
investigation, higher tissue or cell-type specificity based on the mode of vector delivery, the
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nature of the cargo, or by the use of engineered vectors; and they allow time-controllable

gene delivery in a host, which is crucial for studying pathologies®”%,
Biomedical Science

The use of AAV viral vectors for drug discovery in vivo can speed up progress in these
areas of research, thereby increasing the potential to identify new therapeutic targets, and

therefore newer therapies® 8,
Gene therapy

Gene therapy is a methodology that uses identified therapeutic genes to be delivered
to the diseased cells to repair the loss of function. rAAVS, in addition to their predominant
use in science, are promising vectors in gene therapies too for treating monogenetic
disorders®1%%, The first long term persistence of gene expression in mammalian brain by
rAAV based gene delivery led to a great start in 1990s2°?, which then quickly followed with
the first human gene therapy trial for cystic fibrosis (CF)'%. In 2008, rAAV was shown to
have promising outcome to treat leber congenital amarosus (LCA)%4-10¢,

Three rAAV based gene therapies have been approved till date to use in clinics. In
2012, the first gene replacement therapy using rAAV based drug named Glybera, was
approved by the European Regulatory Commission (ERC) to treat lipoprotein lipase
deficiency (LPLD). In 2017, Food and Drug Administration (FDA) approved the first
rAAV based gene therapy in US, named Luxturna (voretigene neparvovec-rzyl) to correct
RPE65 mutation-associated inherited retinal dystrophy!®11° In 2019, FDA approved
Zolgensma (onasemnogene abeparvovec) to treat spinal muscular atrophy (SMA)M?LH2, |n
addition to these approved therapies, currently ~14% of the gene therapies that have entered
the clinical trials uses rAAVs, which is at 2" position following ~27% using vaccinia virus.
Other trials comprise ~11% using ADs or retroviruses, ~6% using LVs, ~4% using naked or
plasmid DNA, and ~1% using HSV.

Current limitations of AAVs
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While the properties of AAVs certainly account for their use in research labs and

clinics, their use needs a significant improvement on the transduction efficiency and target
specificity!®®. There are currently 12 known serotypes of AAVs with sequence similarity
between 50 - 99% that are known to exhibit different but overlapping tropisms®. These
tropisms are often attributed to their uptake by specific cell surface receptors. For instance,
AAV?2 binds to heparin sulfate receptor’* and AAV9 binds to galactose receptor'’®. In
addition to these major receptors, several have identified co-receptors which contribute to
their cellular uptake'*®*’. While these receptors contribute to some differences in the tropism
among serotypes, these receptors are broadly expressed across different tissues. In other
words, the AAVs are naturally evolved to have broad tropisms, and this needs to be addressed
if we want to use them as safe vehicles for gene delivery to a specific target. In addition to
the serotype specific receptors and co-receptors, the AAVs are also known to have a

universal receptor AAVR, and this could be crucial for host cell infectivity!8-123,

Given the presence of multiple receptors and incomplete understanding of the biology,
alternate approaches have been taken to tackle the issue on off-target transduction such as by
performing localized injection to deliver the cargo®®, or cargo engineering to restrict
expression to cell populations of interest, or by coupling injection of AAVs carrying
transgene that is controlled by a recombinase enzyme such as Cre into Cre-transgenic
animals to get specificity in transgene expression®®. Having said that, these approaches aren’t
always feasible and are often very invasive. Alternative strategies to achieve highly targeted
gene delivery and protein expression are desired in areas that are anatomically hard to access
for AAV injection, in cell-types with unknown specific regulatory elements, and in cell-types

with lack of availability of cell-type specific transgenic lines.

1.3 ENGINEERING AAV CARGOS FOR EFFICIENT AND TARGETED PROTEIN
EXPRESSION

AAVs with improved transduction efficiencies and improved cell-type specificity, i.e.,

with minimal off-target transduction via systemic injection would open up many potential
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applications in science to begin with and may eventually find their purpose in gene therapies

too.

These are currently addressed by various modifications done to the cargo or the rAAV
genome!?®127, To improve transduction efficiency, strong ubiquitous promoters or enhancers
have been engineered to fit into the rAAV genome size limit®™12812 |TRs have also been
mutated to engineer to a self-complementary AAV (scAAV) version which can deliver the
genome as a double stranded DNA (dsDNA\) instead of a ssDNA but at half the genome size
(2.35 kb)'®, This scAAV version alleviates the rate limiting step of the second strand

synthesis in the host cell, thereby shown to improve the transduction efficiency.

To restrict expression of delivered cargo to the cell-types of interest, regulatory
elements are engineered to fit the needs. Cell-type specific promoters or enhancers can
regulate expression in a defined cell population'?®1311%2 Inducible promoters (such as
tetracycline inducible promoter) can control the dose or time of expression®®. Other
regulatory elements such as microRNA targeting signal are identified across cell-types of
interest and can selectively suppress expression in a cell type where the recognized miRNA

can act on it13+137,

While the cargo engineering is a welcome addition to improve the efficiency and
specificity of the vector delivered gene expression, these strategies do not completely
alleviate the problem when a non-invasive systemic delivery is preferred where the vectors
still deliver genes across different organs, thereby turning on the immune response in the
host cell*®, Also, these regulatory elements can have varying degrees of specificity or
efficiency across cell-types. Hence it is only seen as an added advantage to the existing
vectors, and not a definitive solution to the problem of broad tropism.

1.4 ENGINEERING AAV CAPSIDS TO MODIFY THE VECTOR TROPISM

Engineering AAV capsids to overcome the current limitations has been of great

interest to the field. For instance, neuron-specific AAVs will be useful for neural circuit
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mapping studies™®®, and the organ specific ones, say heart, lung and kidney, will find broad

applications to study pathologies and to develop disease models'®®1%2, Broadly, the
availability of these specific variants can facilitate non-invasive delivery of vectors, which

will simplify the whole procedure involved in gene delivery both in science and in clinics.

Several groups have attempted to address this problem using a rational or semi-rational
approach**-148 or directed evolution approach*14%-153 Progress with the rational design has
been slow due to our limited understanding of the capsid structure-function relationship. In
light of this, directed evolution seems to have more promise for vector engineering because
it requires little to no knowledge of a receptor target or mechanism of entry®1%4,

1.5IN VIVO SELECTION OF AAV CAPSIDS USING CREATE

Recombinant AAVs are the preferred vehicles for many in vivo gene transfer
applications across cell populations; however, applications involving gene transfer to the
central nervous system (CNS) are limited due to the lower transduction efficiency and
specificity from natural or engineered vectors via systemic delivery across species, and often
requires invasive routes of delivery or very high doses of vector®1431515€ Thjs is because
for intravenous delivery, the highly selective blood-brain barrier (BBB) poses a serious
challenge, and the cellular heterogeneity of the CNS presents further challenges for gene

transfer applications.
Cre recombination-based AAV targeted evolution method (CREATE)

In 2016, Deverman, B., et al*®” developed an in vivo selection method to provide
selective pressure for capsids that cross the BBB and functionally transduce CNS cell types.
This method, called CREATE (Cre-recombination based AAV targeted evolution) is a Cre
recombination—dependent approach to selectively recover capsids that transduce predefined
Cre-expressing target cell populations. CREATE uses an rAAV capsid genome (rAAV-Cap-
in-cis-lox) that couples a full-length AAV cap gene, controlled by regulatory elements from

the AAV rep gene with a Cre-invertible switch (Figure 1.2). By building capsid libraries
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within the rAAV-Cap-in-cis-lox backbone and delivering the virus libraries to animals with

Cre expression in a defined cell population, the system enables the selective amplification

and recovery of sequences that have transduced the target population (Figure 1.2)%".
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Figure 1.2: Cre-dependent recovery of AAV capsid sequences from transduced target cells.

(a) An overview of the CREATE selection process. PCR is used to introduce diversity (full
visual spectrum vertical band) into a capsid gene fragment (yellow). The fragment is cloned
into the rAAV genome harboring the remaining capsid gene (gray) and is used to generate a
library of virus variants. The library is injected into Cre transgenic animals, and PCR is used
to selectively recover capsid sequences from Cre* cells. (b) The rAAV-Cap-in-cis-lox rAAV
genome. Cre inverts the polyadenylation (pA) sequence flanked by the lox71 and lox66 sites.
PCR primers (half arrows) are used to selectively amplify Cre-recombined sequences. (c)
PCR products from Cre recombination—dependent (top) and —independent (bottom)
amplification of capsid library sequences recovered from two Cre* or Cre™ mice are shown.
Schematics (bottom) show the PCR amplification strategies. (d) Schematic shows the AAV
genes within the Rep-AAP AAV helper plasmid and the proteins encoded by the cap gene.
Stop codons inserted in the cap gene eliminate VP1, VP2 and VVP3 capsid protein expression.
(e) DNase-resistant AAV vector genomes (vg) produced with the split AAV2/9 Rep-AAP
and rAAV-Cap-in-cis-lox genome (top) as compared to the vg produced with standard
AAV2/9 Rep-Cap helper and rAAV-UBC-mCherry genome (middle) or with the AAV2/9
Rep-AAP and rAAV-UBC-mCherry genome (bottom). n = 3 independent trials per group;
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mean + s.d.; **P < 0.01, ***P < 0.001; one-way ANOVA and Tukey's multiple-
comparison test. (f) Cloning the 7-mer capsid library into the rAAV-ACap-in-cis vector. ()
The AAV9 surface model shows the location of the 7-mer inserted between amino acids (aa)
588 and 589 (magenta). Sites encoded with the PCR-generated library fragment (aa 450—
592) are shown in yellow™’,

Using CREATE, the natural serotype AAV9 that is known to cross the BBB less
efficiently was chosen to evolve by targeted insertion of a randomized 7-mer (7-amino acid
long peptide) within a surface-exposed site of the capsid (between AA588-589) and then
intravenously injected this large library (a theoretical library size of ~1.28 billion variants)
in a Cre-transgenic mouse where Cre expression was restricted to the CNS cell-type of
interest. GFAP-Cre, an astrocyte specific Cre transgenic line was chosen given the high
prevalence of this cell population in the CNS. Two weeks post in vivo selection, the mice
were sacrificed to collect the brain and spinal cord. The viral DNA was extracted from the
tissue, and selectively amplified the viral DNA from the Cre-positive cells using primers that
can selectively yield a PCR product of lox-flipped viral DNA. This was then pooled together
to make a second viral library for the second round of selection’.

Post two rounds of selection, the recovered variants were cloned back in Escherichia
coli, and the highly enriched variants were identified by sanger sequencing. The outcome
resulted in a handful of enriched variants, each of which had a unique 7-mer motif. A rAAV
capsid variant called AAV-PHP.B expressed the transgene broadly in CNS and the

transduction efficiency was at least 40-fold higher compared to the parent (Figures 1.3)%".

a AAV9 (1 x 10'?vg) AAV-PHP.B (1 x 10" vg) AAV-PHP.B (1 x 10" vg)
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Figure 1.3: AAV-PHP.B mediates efficient gene delivery throughout the CNS after
intravenous injection in adult mice.

(a) sSSAAV9:CAG-GFP or ssPHP.B:CAG-GFP, at 1 x 102 or 1 x 10 vg/mouse (right), was
intravenously injected into adult mice. Images show GFP expression 3 weeks after injection.
Representative images of GFP IHC in the brains of mice given AAV9 (left) or B (middle
and right). Scale bar, 1 mm.

The follow-up work from the Gradinaru lab, by Chan, K., et al** reported additional
AAV variants using CREATE. One new variant AAV-PHP.S provides effici