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ABSTRACT 

Out of a myriad of sensory stimulations, our brain constructs a unified, self-

consistent reality that we consciously experience. Little is known about how or 

where in the brain’s processing stream of physical input a conscious percept 

emerges into awareness. A remarkable property of conscious perception is that 

even though external input is often ambiguous, the perceptual interpretation of the 

world that our brain generates is consistent across multiple layers of 

representation, e.g., figure-ground segmentation and object identity. We thus set 

out to study how the interaction between different nodes in the brain generates and 

propagates new conscious percepts. Since the code of object identity is already 

well-understood, in particular for faces as reviewed in this thesis, we decided to get 

a handle on segmentation signals first. It turned out that consistent segmentation 

signals are hard to find, however, we found functionally defined modules in the 

brain that contained consistent cells from which figure-ground signals can be 

decoded. We next investigated whether face cells in object recognition areas 

actually encode the conscious percept of a face or are just passive filters of visual 

input. To distill conscious perception from other cognitive processes, such as 

decision making, introspection, and reporting of the percept, which often 

accompany new conscious percepts, we developed a no-report binocular rivalry 

paradigm that relies on an active fixation task rather than report, and therefore 

eliminates these confounding factors. We found that face patches in 

inferotemporal cortex indeed encode the conscious percept of a face. Using novel 

high-yield electrodes, we were able to decode what the animal was consciously 

perceiving at a given time. Preliminary and future experiments of population 

recordings from multiple nodes of the cortical hierarchy simultaneously promise to 

go beyond correlates of consciousness and reveal the mechanisms of how and 

where conscious percepts are constructed.  
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NOMENCLATURE 

Binocular rivalry. The phenomenon that if two incompatible inputs are presented 
to the left and right eyes, respectively, rather than seeing a superimposition of the 
two, one’s percept usually switches between the two images. 

Face patch. A cortical region in the macaque brain that responds selectively to 
viewed faces. Besides the six canonical face patches (PL, ML, MF, AL, AF, and AM) 
in each hemisphere that are found in IT cortex, face patches have been reported 
outside of IT, such as the upper bank of the superior temporal sulcus, perirhinal, and 
prefrontal cortex. 

Firing rate. The number of action potentials a neuron fires per second. Action 
potentials or “spikes” are electrical impulses generated by neurons to send 
information to each other. 

Functional magnetic resonance imaging (fMRI). A method to image activation of 
the entire brain over time. Has low temporal and spatial resolution compared to 
invasive electrophysiology. 

Inferotemporal cortex (IT). A cortical region in the inferior convexity of the temporal 
lobe of the macaque brain thought to be homologous to the human ventral temporal 
cortex. IT is part of the ventral visual stream and important for object recognition. 

Local Field potential (LFP). A signal picked up by the electrode that is generated 
by the current flow of several nearby neurons. 

Receptive field. A portion of sensory space that can elicit sensory activation when 
stimulated. For visual neurons, receptive fields are usually defined as the region of 
visual space that can modulate activity of the neuron if a specific stimulus is 
presented in it. 

Retinotopic cortex. A collection of visual areas that each have a retinotopic map of 
visual space. That is, for every position on the retina, there is a corresponding 
location in the visual area that represents it. Neighboring locations in the visual area 
correspond to neighboring areas in visual space. In general, early to mid-level 
regions V1, V2, V3, V3A, V4, and V4A are all considered part of retinotopic cortex, 
whereas the higher-level stages of the visual hierarchy such as inferotemporal 
cortex, where cells exhibit more spatial invariance, are not. 
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C h a p t e r  I  

INTRODUCTION 

Motivation 

Having conscious experience is the most important reason why it matters to us 

whether we are dead or alive. Imagine having a critical car accident, and your doctor 

gives you two options: either you can live your normal life for another year, until the 

resulting brain damage takes your life; or you can be put into a dreamless coma, 

with little robots and artificial intelligence controlling your muscles so that you behave 

the same as before, but you will not have any conscious experience for the rest of 

your life (Revonsuo and Kamppinen, 2013). The question is a no-brainer: if you are 

not able to see, hear, feel, and experience the world, you may as well be dead. 

Given this life-or-death importance of conscious experience, it is not surprising that 

humanity has been trying understand its nature, origin, or function for millennia 

(Parker, 1999; RielSalvatore et al., 2001). Yet, success in these domains has so far 

evaded humanity given that conscious experience is, while on the hand the most 

familiar, first-hand thing we know, at the same time also the most mysterious 

(Chessick, 2008). Although Aristotle claimed that to understand consciousness one 

must study the heart (Hicks, 2015), nowadays it is believed that, for studying 

consciousness, looking at the brain is not a bad idea. Therefore, in this thesis we 

want to describe our modest progress in understanding which signals in the brain 

are correlated with consciousness and give a glimpse into what mechanisms may 

be involved in evoking a change of conscious percept. To have a crack at the 

neuroscience of consciousness, one needs to decide which angle to tackle it from. 

Here, we investigate it through electrophysiological recordings in macaque monkeys 

and take their visual system as an entry point. In particular, two important visual 

processes, object segmentation and object recognition, will come up in this thesis. 
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Figure I-2: Frontal-profile illusion. 
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Bistable phenomena 

The saying is that a picture says more than a thousand words, which is particularly 

true for Fig. I-1. This was the first image my advisor and I looked at in the very 

beginning of my PhD; it weaves throughout like a red thread and sparked the 

inspiration for a fundamental question about consciousness that I am now finally 

close to answering at the end. When looking at the picture, you will either see a 

frontal face looking at you, or the profile of a face looking sideways. After looking for 

it for a few seconds, you percept will switch to the other interpretation, and back, 

and forth, in an endless dance. That is, the physical, visual input is fixed, but your 

conscious percept of the object is changing. This allows distilling the changes in the 

conscious percept from changes of physical input, which usually go hand-in-hand in 

the real world and are thus easily conflated. The stimulus also demonstrates another 

feature of conscious experience, namely its unity and self-consistency: looking at 

the stimulus again, you may notice that it is not just the view of the object that is 

changing, but with it also the figure-ground organization of the scene. If you perceive 

the face as facing you, you will perceive the white region on its right as background, 

with the border between them belonging to the outline of the face object. If you 

perceive the face as facing to the side, you will perceive the white region on its right 

it as a foreground surface occluding the face, with the border between them 

belonging to the outline of the occluder. Importantly, the switch of view always 

coincides with the switch in figure-ground organization, so that your interpretation of 

the scene is always self-consistent. We believe that figure-ground organization is 

represented in earlier, retinotopic visual cortex, whereas features of an object such 

as view are represented in the face patch network which is located in the higher-

level inferotemporal cortex. Thus, the first question we asked during my PhD was: 

how do these two regions coordinate switches so that the interpretation is still 

consistent as a whole? What is the direction of information flow? Does the lower-

level retinototopic region first switch the interpretation of figure-ground segmentation 

and then propagate that information to the higher-level region to switch the object 
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view? Or does the higher-level region switch first, and then update figure-ground 

segmentation in lower-level regions? In broader terms, when your conscious percept 

changes, does that switch originate from feedforward or feedback mechanisms? At 

the end of this thesis, I will show some preliminary experiments that make me 

believe I am now closer than ever to conclusively answering this question. Note that 

Fig. I-1 represents only one of many examples encompassed by the general 

category of bistable phenomena, where the same stimulus has multiple 

interpretations. As an exercise, the reader can try to find the two interpretations for 

each of the stimuli in Fig. I-2 without reading the figure legend. For many of them, 

the figure-ground assignment switches as well. The next chapter outlines how, 

throughout this thesis, we tried to figure out the information flow across different 

brain areas during these perceptual switches. Indeed, understanding how brain 

regions interact during perceptual switches may give us general insights into how 

the brain arrives at an interpretation of the world that makes sense even for non-

reversible stimuli. In everyday life, the world is often ambiguous, with the same input 

capable of having several interpretations. For example, the two processes of 

segmentation and recognition of objects in a visual scene constitute a bit of a 

chicken-egg problem and are hard to solve separately from each other. When trying 

to segment an ambiguous scene, it is helpful to already know the present objects 

and their shapes. However, for recognizing an object in clutter, one would like to 

consider its isolated segment alone to not get confounded by features of other 

objects. Thus, it is possible that corresponding visual regions recurrently interact to 

converge onto a self-consistent interpretation which is then broadcasted as a 

conscious percept into our awareness. 
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Figure I-2: Bistable phenomena. (a) The famous Rubin vase switches perceptually 

between two black faces and a white vase (Rubin, 1980). (b) A female face or two 

horses. (c) An old lady or a young girl facing backwards. (d) A rabbit or a duck (e) A 

native American face or an Inuit facing backwards. (f) One face or two lovers kissing. 

(g) A woman’s face or a horn player. (h) A skull or a woman and a man at a table. 

(i) When two incompatible stimuli such as a face and monkey body are presented 

to the left and right eye, respectively, one’s percept is not a superimposition of the 

two but stochastically alternates between the two every few seconds. 

Outline 

The way to answer the question of which direction information flows during 
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switches of conscious percept seemed straightforward: if we stick an electrode 

into retinotopic regions that represent segmentation signals and at the same time 

stick an electrode into face patches, which represent object view, we should be 

able to find out whether during a perceptual switch segmentation areas or face 

patches change their activity first. As often, the actual path to the holy grail proved 

to be more complicated and full of detours to circumvent obstacles on the way. 

Through previous studies, mostly from our lab, we already had a good handle on 

signals in the face patches encoding face view and identity, which is reviewed in 

Chapter II: The Macaque Face Patch System. Thus, we decided that the first step 

should be to get a good handle on segmentation signals in retinotopic cortex, as 

described in Chapter III: Figure-Ground Segmentation. We surmised that the best 

bet for a reliable segmentation signal may be the so-called border-ownership cells 

discovered by von der Heydt and collaborators, which signal for a border in their 

receptive field on which side the object is that it belongs to. Contrary to our prior 

beliefs, consistent border-ownership cells were hard to find and not as prevalent in 

random locations of retinotopic regions as we thought. Yet, using fMRI we were 

able to find functionally defined clusters of neurons from which we could 

reasonably decode figure-ground segmentation. After obtaining improved 

segmentation signals, we wanted to know whether face patches actually do 

represent if the monkey was conscious of a face or not. Alternatively, face cells 

could just be passive filters of the visual input regardless of percept. One of the 

categories of switchable face stimuli that we considered using to answer this 

question was a type of degraded face image called Mooney faces. This endeavor 

is described in Chapter IV: Mooney Faces. Humans usually very rapidly recognize 

this stimulus as a face if it is presented upside down, concomitantly causing the 

perception of subjective/illusory contours of the face, however, anecdotally most 

monkeys do not. Hence, we asked whether we could make monkeys see the face 

in Mooney face stimuli and study this moment of switch in their perception. It 

turned out that responses to Mooney faces could be improved by animating them 

or adding an outline, but even after this exposure, responses to Mooney faces 
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remained relatively low. Following this interlude, in the second half of this thesis 

we study the neural correlates of conscious perception more directly. In Chapter V: 

A Philosophical Treatise on Consciousness we distinguish between different 

definitions of consciousness, give a review on previous electrophysiological 

studies aiming to distill neural correlates of consciousness, analyze confounding 

factors that can foil these attempts, and dissect what it means for a signal in the 

brain to truly be a neural correlate of consciousness. Using these insights, we 

developed a no-report binocular rivalry paradigm to isolate neural correlates of 

consciousness as rigorously as possible and avoid confounds such as report that 

beset previous studies. We then employed this paradigm in monkeys and asked 

whether neurons in face patches actually do represent the conscious percept of a 

face or are just passive filters of visual input. The main results of this study, which 

are described in Chapter VI: Binocular Rivalry, are that face cells are indeed 

modulated by conscious percept even without report. Moreover, they may 

multiplex both conscious percept and the veridical physical stimulus, and the 

conscious percept can be decoded with high accuracy from a population of single 

neurons. In the last chapter, Chapter VII: Future Directions, we describe 

preliminary studies that finally hone in on answering the first question of this thesis 

– in which direction information flows (feedforward vs. feedback) during conscious 

switches – by recording with ultra-high-yield electrodes from two directly connected 

nodes of a hierarchy, face patches ML and AM. Moreover, we give an outlook on 

future experiments that could further reveal the source of conscious switches and 

the causal role different parts of the brain play in propagating and broadcasting a 

switch across the brain. These investigations hold the promise to go beyond mere 

correlates of consciousness and yield a mechanistic understanding of 

consciousness.
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C h a p t e r  I I  

THE MACAQUE FACE PATCH SYSTEM 

From: Hesse and Tsao (2020). "The macaque face patch system: a turtle’s 
underbelly for the brain". Submitted to: Nature Reviews Neuroscience. 
 

Objects constitute the fundamental currency of our consciousness: they are the 

things that we perceive, remember, and think about.  One of the most important 

objects for a primate is a face. Research on the macaque face patch system in 

recent years has given us a remarkable window into the detailed processes 

underlying object recognition. Here, we review the macaque face patch system, 

including its anatomical organization, coding principles, role in behavior, and 

interactions with other brain regions. We highlight not only how it constitutes an 

archetypal object recognition system, but also how it may provide a key to 

understanding mechanisms for higher cognitive function. 

 

Introduction 

The neural circuits underlying visual perception constitute one of the grand 

mysteries of neuroscience, spawning a huge number of discoveries concerning the 

development, structure, and function of the brain. More than a century ago, 

Sherrington marveled at the miracle of vision:  

The eye sends . . . into the cell-and-fibre forest of the brain throughout the 
waking day continual rhythmic streams of tiny, individually evanescent, 
electrical potentials . . . . A shower of little electrical leaks conjures up for me, 
when I look, the landscape; the castle on the height, or, when I look at him 
approaching, my friend's face (Sherrington, 1940).  
 

How is this possible? We know that after entering the eye, visual information travels 

in the cortex through a sequence of retinotopic visual areas before entering a large 

brain region called inferotemporal (IT) cortex, the site of high-level object 
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representation (Tanaka, 1996). Here, we review our current understanding of one 

particular system within IT cortex, the macaque face patch system, a network of 

regions dedicated to processing faces. 

 

Why study the processing of faces? Wouldn’t it be of greater interest to study 

“general” object recognition? Faces are indisputably a rather peculiar category of 

objects (see Box 1, “Are faces special?”). One thing that makes faces peculiar is 

that we are all experts at face recognition, able to distinguish two people based on 

the subtlest of differences in facial structure. And faces, unlike most objects around 

us, carry enormous social importance. For example, social psychologists have found 

that a split-second judgment of competence based solely on facial appearance could 

predict 69% of Senate races in 2004 (Todorov et al., 2005). 

 

We focus our attention on the face patch system of the macaque monkey because 

we believe it constitutes the currently best understood system for high-level object 

representation. We will review its anatomical organization, coding principles, role in 

behavior, development, and interactions with other brain regions. In his famous book 

for young scientists, Sir Peter Medawar advised that a key to success in science is 

to find the “turtle’s underbelly, the soft spot that makes a hard problem tractable” 

(Medawar, 2008). In this review, we argue that the macaque face patch system 

provides a useful model not only for understanding the neural mechanisms of high-

level object representation, but also the myriad brain systems that operate on the 

output of these mechanisms including memory, thought, and action. 

 

Face cell discovery 

The discovery of face cells seems like one of those remarkable, unaccountable 

accidents of experimental science. How did it happen? As with most historical 

events, it seems that many forces contributed to this singular, serendipitous event. 

Charles Gross, as a young junior faculty member at MIT, was inspired by stories 

that he heard from his colleague Hans Lukas Teuber (Gross, 2006) about how 
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temporal lobe lesions induced object agnosias including prosopagnosia. He was 

also stimulated by work on bug detectors in the frog’s retina and superior colliculus 

by his colleague Jerry Lettvin, as well as the famous work of Hubel and Wiesel 

across the river at Harvard Medical School on complex cells in area V1 and their 

speculation that even more complex cells would lie more anterior in the brain. He 

was also influenced by the Polish psychologist Konorski’s speculations on gnostic 

neurons (“grandmother cells” that encode highly specific concepts) (Konorski, 

1967). And finally, there was a very relatable human element of seeking a new 

beginning after repeated failures. Gross recalls, “Discouraged by my inability to 

understand the frontal lobe, I decided it lay in an inaccessible limbo bearing little 

relationship to anatomy, physiology, and psychology…So I decided to turn my 

attention to the cortex on the inferior convexity of the temporal lobe: inferotemporal 

cortex.” (Gross, 2006) Here, we see the first glimmer of the turtle’s underbelly. 

 

Gross and his colleagues reported the astonishing discovery of cells that responded 

selectively to various complex objects such as hands, faces, and trees, in both the 

upper and lower banks of the superior temporal sulcus (STS) (Gross et al., 1972; 

Bruce et al., 1981; Desimone et al., 1984). This finding was initially greeted with 

great skepticism by the neuroscience community. David Marr even commented, 

“Suppose, for example, that one actually found the apocryphal grandmother cell. 

Would that really tell us anything much at all?” (Marr, 1982). One major reason for 

the skepticism was that the cells seemed more or less randomly scattered across 

the temporal lobe, with some concentration in the STS (Baylis et al., 1985; Baylis et 

al., 1987), and it wasn’t clear how one might go about understanding them at a 

deeper level. 

 

In 1997, Nancy Kanwisher and colleagues published a landmark paper reporting 

discovery of a face-selective area in the human brain using functional magnetic 

resonance imaging (fMRI) (Kanwisher et al., 1997) (this is  the most-cited paper ever 

published in the Journal of Neuroscience). Several previous neuroimaging studies 
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had strongly suggested the existence of such an area (Malach et al., 1995; Puce 

et al., 1995; Clark et al., 1996; Puce et al., 1996; Courtney et al., 1997; Haxby et al., 

1999), including an early PET study by Sergent et al. from 1992(Sergent et al., 

1992). The fMRI response of this area, which Kanwisher dubbed the “fusiform face 

area” (FFA), was about three times as strong to faces as to any other object. This 

area was located in the same place in every single subject. In addition to the FFA, 

several other face-selective regions were also found. The discovery of these face-

selective regions in human ventral temporal cortex was remarkable because it 

suggested that face processing might be localized to specific chunks of cortex. If 

one could only record from these regions, perhaps one could understand how facial 

identity is represented. And this, in turn, could shed light on how other objects are 

represented, since the central computational challenge of face recognition, to 

recognize a face despite myriad “accidental” changes due to changes in lighting, 

viewing angle, partial occlusion, and so on, is the same as that of general object 

recognition (DiCarlo and Cox, 2007). 

 

Various studies tried to deduce coding properties of the human FFA using fMRI. For 

example, in one approach, researchers used a method called fMRI adaptation to 

deduce that face-selective voxels are more invariant to changes in size and position 

than to changes in viewpoint and illumination (Sapountzis et al., 2010). Ultimately, 

however, one cannot sort rice grains using a forklift. The BOLD signal remains only 

an indirect and coarse measure of neural activity, and the response properties of 

single cells within face-selective regions remained unclear from human fMRI 

experiments. 

 

Some studies even questioned the exclusivity of the FFA for face processing and 

suggested that it might actually be a region specialized for processing any category 

at which one is an expert (Gauthier et al., 1999). The key evidence in favor of the 

expertise hypothesis was that within the FFA, experts show higher activation to 

objects of their expertise compared to non-experts. In particular, it was found that 
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bird experts show higher activation to birds, and greeble experts to greebles (a 

“greeble” is an artificial object category). But since both birds and greebles are 

somewhat face-like, this result could also indicate that the FFA codes objects fitting 

a coarse face template, rather than any object of expertise (with attentional 

modulation in experts). A subsequent study supported this viewpoint  (de Beeck et 

al., 2006): expertise in discriminating three artificial categories (spikies, cubies, and 

smoothies) produced changes in distributed response patterns outside the FFA but 

not within the FFA, except in one subject who construed the smoothies as human-

like (“women wearing hats”). 

 

A path out of the confusion concerning what single cells in face-selective areas 

actually represent emerged with the discovery of face-selective regions in the 

macaque monkey using fMRI (Tsao et al., 2003a; Moeller et al., 2008) (see Box 2, 

“Face patches across species”). Comparing fMRI responses to images of faces vs. 

non-face objects revealed activation in several regions of IT cortex. This discovery 

made it possible to record electrophysiologically from single cells in fMRI-identified 

face patches and to systematically study the detailed selectivity of cells within these 

patches. 

Early fMRI experiments found three face-selective regions (Tsao et al., 2003a), and 

later experiments using improved methods revealed approximately six face-

selective regions (Moeller et al., 2008) in each hemisphere of macaque IT cortex 

(Fig. II-1): the posterior lateral (PL), middle lateral (ML), middle fundus (MF), anterior 

lateral (AL), anterior fundus (AF), and anterior medial (AM) patches. The finding of 

face-selective regions in the macaque with fMRI has been replicated by multiple 

groups (Pinsk et al., 2005; Pinsk et al., 2009; Issa and DiCarlo, 2012; Srihasam et 

al., 2012; McMahon et al., 2014; Afraz et al., 2015; McMahon et al., 2015; Aparicio 

et al., 2016; Arcaro and Livingstone, 2017). 

 

Electrophysiological recordings targeted to face patches ML/MF revealed an 

astonishing phenomenon: almost all (97%) of the visually-responsive neurons in 
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these two regions were strongly face selective (Fig. II-1c) (Tsao et al., 2006). 

Interestingly, in addition to a strong response to faces, many ML/MF cells showed a 

strong response to a clock and an apple; this gave a further hint that cells in these 

patches are coding faces and not arbitrary objects of expertise – even non-face 

objects effective in eliciting spikes were face-like. Subsequently, recordings in face 

patches PL (Issa and DiCarlo, 2012), AL (Freiwald and Tsao, 2010), AF(McMahon 

et al., 2014), and AM (Freiwald and Tsao, 2010) showed high concentrations of face 

cells as well (Fig. II-1c). 

 

The discovery of such high concentrations of face cells was not at all expected 

based on previous electrophysiology in IT cortex (Baylis et al., 1985; Baylis et al., 

1987) and suggested that the turtle’s underbelly for object recognition might be at 

hand. A large number of detailed questions about the neural mechanism for object 

recognition suddenly appeared tractable. What are cells in each patch coding? What 

are the functional differences between patches? What is the connectivity of these 

specialized patches to each other and the rest of the brain? How does activity in 

each patch contribute to perception and behavior? Is the invariance problem for 

faces solved by this system of patches and if so, how? Is this system of patches 

unique to faces or does it generalize across all of IT cortex? 

 

Figure II-1: Face-selective patches in macaque cortex. (a) Schematic of patches 

shown on inflated right hemisphere of a macaque. The canonical six in IT cortex are 
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labeled in white, while additional patches are labeled in cyan. (b) Patches shown 

on coronal slices, mm relative to inter-aural canal indicated in upper right corner. (c) 

Top: Response profiles of all visually responsive cells recorded from ML, AL, and 

AM, to 96 pictures, consisting of faces, human headless bodies, fruits, gadgets, 

hands, and scrambled patterns (left to right, 16 images/category). Stimuli were 

presented for 200 ms and separated by 200 ms inter-stimulus intervals. The two 

non-face stimuli with the highest response in ML are shown (clock and apple). 

Bottom: Normalized population response to each image (averaged across all units). 

For each cell, responses were summed from 100 to 300 ms, averaged over all 

presentations, baseline subtracted, and normalized to the maximum average 

response. Panels (a) & (b) adapted from (Moeller et al., 2008) panel (c) (left) from 

(Tsao et al., 2006), and panel (c) (middle, right) from (Freiwald and Tsao, 2010). 

 

Anatomical organization 

 

Spatial organization of face patches. The face patches are located within 

cytoarchitectonic areas TEO (PL) and TE (ML, MF, AL, AF, AM), the posterior and 

anterior part of IT cortex, respectively (Fig. II-1a, II-1b). The six patches are located 

symmetrically in the two hemispheres and in similar locations across different 

monkeys (Tsao et al., 2003a; Tsao et al., 2008a). This provided one of the first hints 

that the patches might constitute a system for face processing, rather than being 

simply random islands of face-selective cortex. There is individual variability both in 

the number and position of patches. Some animals show only a subset of the typical 

pattern of six bilateral patches, while some show even more than the canonical six 

(Tsao et al., 2008a). In many animals, patches PL and ML are confluent, making it 

hard to distinguish the two. In some animals, AL and AM are also confluent. 

 

In addition to this canonical pattern of six patches, several additional patches 

activated by the contrast faces versus objects can be found in the temporal lobe, 

in the upper bank of the STS (middle dorsal patch MD and anterior dorsal patch 
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AD) (Fisher and Freiwald, 2015), perirhinal cortex (PR), and the temporal pole 

(TP) (Landi and Freiwald, 2017) (Fig. II-1a). These patches are more variable 

across animals. Ku et al. reported further additional face patches in entorhinal 

cortex, parahippocampal cortex, amygdala, ventral TE, and hippocampus, using a 

high-field spin-echo sequence (Ku et al., 2011). 

 

Face patches reside not only in the temporal lobe. Within prefrontal cortex, there are 

three regions of face-selective cortex in ventral prefrontal cortex: PO (prefrontal 

orbital), PA (prefrontal pre-arcuate), and PVL (prefrontal ventrolateral) (Tsao et al., 

2008b) (Fig. II-1a). 

 

Anatomical connectivity of face patches. A large number of anatomical studies 

have probed the connectivity of IT cortex. These studies have generally found 

patchy connectivity within IT, hinting at the presence of modular networks (Saleem 

et al., 1993; Borra et al., 2010). However, most of these studies have been 

conducted independently of functional testing in the same animals. It is hard to learn 

about the life of a snake by observing its long abandoned coil. The study of face 

patches has introduced a new paradigm for investigating how functional properties 

and anatomical connectivity relate, leveraging the ability to target tracers to 

anatomical regions defined by functional selectivity. 

 

To map the connectivity of macaque face patches, Moeller et al. electrically 

microstimulated specific face patches while performing simultaneous fMRI (Moeller 

et al., 2008). Stimulation of each of five targeted face patches produced strong 

activation in other face patches. For example, stimulation of ML produced activation 

in PL, ML, AL, AF, and AM (Fig. II-2a). Activation was largely ipsilateral. Within IT 

cortex, activation elicited by face patch stimulation was almost entirely confined 

within other face patches. Another study that directly compared face patch 

stimulation and body patch stimulation found that there was very little overlap 

between functional connectivity patterns of the two, suggesting that the face patch 
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network and body patch network are largely parallel systems (Premereur et al., 

2016). 

 

Stimulation of IT face patches also activated several subcortical regions, including 

the amygdala, claustrum, and pulvinar (Moeller et al., 2008). In particular, stimulation 

of AM elicited activation in the amygdala and claustrum, while stimulation of ML and 

AL both activated the inferior pulvinar (Moeller et al., 2008) (Fig. II-2b). Because the 

pulvinar, claustrum, and amygdala were the only brain structures consistently 

activated by stimulation of the face patches outside the face patch network, these 

structures may constitute three hubs by which face patches communicate with other 

regions of the brain. 

 

More recently, direct injections of retrograde tracers have been made into four face 

patches: PL, ML, AL, and AM (Grimaldi et al., 2016). Grimaldi et al. found strong 

inputs to the most posterior face patch PL from specific regions in area V4 and TEO, 

and V2 and V3 more weakly (Grimaldi et al., 2016). Within IT cortex, anatomical 

tracing experiments largely confirmed electrical microstimulation experiments: the 

IT inputs to a particular face patch largely came from other face patches (Fig. II-2c). 

 

It is generally thought that processing increases in complexity from posterior to 

anterior in the temporal lobe (Tanaka, 1996), raising the question whether there is a 

hierarchy between face patches. Grimaldi et al. did not find anatomical evidence for 

a strict hierarchy (despite functional evidence for this, see “Coding principles” 

below).  For example, a retrograde tracer injection into AM, the most anterior face 

patch, revealed inputs from both AL and ML (Fig. II-2c, right). And in the same 

animal, when ML was injected, inputs were found from both AL and AM (Fig. II-2c, 

left). Thus there is extensive feedback within the system, and each patch talks to 

multiple other patches (Fig. II-2d). Furthermore, the neurons projecting from one 

patch to another were located in both supra and infragranular layers, consistent with 

a bidirectional hierarchical relationship (Felleman and Van Essen, 1991). 
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The major inputs from higher order areas to face patches as revealed by tracers 

came from the medial temporal lobe as well as three subcortical regions, the 

claustrum, pulvinar, and amygdala, largely confirming microstimulation results. 

Claustrum cells were strongly clustered and segregated by their target face patch. 

Projections from prefrontal cortex were extremely weak; this is very surprising in light 

of previous retrograde injections in IT showing strong prefrontal input (Borra et al., 

2010; Saleem et al., 2014), as well as results of electrical microstimulation showing 

that stimulation of AM activates prefrontal face patches PO, PA, and PVL (Moeller 

et al., 2008). This discrepancy between results of electrical stimulation and 

anatomical tracing may indicate that the connection from IT to prefrontal face 

patches is not direct. 

 

Interestingly, one animal in this tracer study showed an extra patch at an unusual 

location, and this patch also showed highly specific anatomical connections with 

other face patches in IT cortex (Fig. II-2e), suggesting it was a full-fledged node of 

this animal’s face processing system (Grimaldi et al., 2016). This underscores that 

individual variability between animals is real and not due to noise, and could explain 

findings of “extra” clusters of face-selective cortex outside the canonical six in 

electrophysiological and imaging experiments.  

 

Overall, the specificity of connections between face patches suggests that they 

constitute a specialized system for face processing, and the small number of 

connected nodes outside the face patch system suggests that the output of the 

system is read out by a small number of downstream nodes. 
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Figure II-2: Anatomical connectivity of face patches. (a) Connectivity of IT face 

patches revealed by microstimulation combined with fMRI. The electrode targeted 

ML in the right hemisphere. Areas significantly activated by microstimulation of ML 

are shown overlaid on a flatmap. (b) Microstimulation of face patch AM (top) and ML 

(bottom) activates the amygdala (LA: lateral amygdala), claustrum, and pulvinar (PI: 

inferior pulvinar; PM: medial pulvinar; PL: lateral pulvinar). (c) Left: Retrograde 

injections into ML revealed labeled cells in PL, AL, and AM; right: retrograde 

injections into AM revealed labeled cells in ML and AL. Blue indicates labeled cells, 

yellow indicates fMRI-identified face patches. (d) Wiring diagram schematic of face 
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patches. Black arrows indicate results from the tracer injections into ML and AM 

in (c). Grey arrows indicate further results from tracer injections into PL and AL not 

shown in (c). (e) Top: Face patch AP in coronal slice. Bottom: Tracer injections in 

ML (red) and AL (green) both revealed labeled cell bodies in AP. Panels (a) and (b) 

adapted from (Moeller et al., 2008), panels (c), (d) and (e) adapted from (Moeller et 

al., 2008; Grimaldi et al., 2016). 

 

Sub-compartmentalization within patches. Do face patches constitute atoms of 

IT cortex, or can they be further subdivided into finer modules? The size of face 

patches is only roughly estimated by fMRI experiments and depends on the 

threshold. We mapped the extent of face patch ML using both fMRI and 

electrophysiology, and found that the size of fMRI-defined ML (at threshold of p<10-

10) was ~4 mm in diameter, while the electrophysiology-defined patch was ~2 mm in 

diameter, with a sharp border going from all to no face-selective cells (Grimaldi and 

Tsao, unpublished). In contrast, Aparicio et al. reported that the maximum diameter 

of face patch ML as mapped with electrophysiological recordings was 6 mm, i.e., 

similar to its fMRI activation, with the fraction of face-selective cells decreasing 

monotonically from its center (Aparicio et al., 2016). 

 

To determine whether there is finer structure within a face patch, Sato et al. 

performed optical imaging to identify face-selective regions in the vicinity of AL and 

then performed single-unit recordings in multiple sites within identified face-selective 

regions (Sato et al., 2013). They found heterogeneity in selectivity for human versus 

monkey faces and scrambled versus intact faces across different sites, but similar 

selectivity within each site, suggesting the existence of finer feature columns (~0.5 

mm in diameter) within face patch AL.  

 

Rajimehr et al. used retinotopic face stimuli to map face patches in an fMRI 

experiment and found heterogeneous retinotopic organization within face patches 

(Rajimehr et al., 2014). For example, ML/MF was subdivided into a posterior-ventral 
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subregion that showed variations in eccentricity and polar angle selectivity and an 

anterior-dorsal subregion with no retinotopic selectivity. Using high-resolution fMRI, 

Janssens et al. mapped retinotopy across IT and found that ML showed a foveal 

bias, while more anterior patches showed no retinotopic organization (Janssens et 

al., 2014). 

 

Further insight into clustering of feature selectivity within face patches comes from 

a multi-voxel pattern analysis (MVPA) study that used activity from fMRI voxels to 

decode specific features of faces that monkeys viewed (Dubois et al., 2015). The 

authors found that within single face patches, different voxels were tuned to different 

viewpoints of a face, and the viewpoint of a face could be decoded from the fMRI 

response pattern in face patches ML/MF. On the other hand, face identity could not 

be decoded from the voxel response pattern. This suggests that viewpoint, but not 

identity, shows clustering of tuning on the coarse scale of fMRI voxels (~1 mm). 

Ultimately, higher resolution techniques for functional mapping, e.g., two-photon 

calcium imaging (Tang et al., 2018b ), will be needed to more clearly understand 

sub-compartmentalization in face patches and to clarify whether the border between 

face patches and neighboring IT regions is gradual or discrete. 

 

Coding principles 

What are cells in face patches coding? In general terms, cells could be detecting 

faces, identifying faces, or recognizing other aspects of faces such as expression, 

dominance, or gender (Bruce and Young, 1986). The simple fact that almost all cells 

within a face patch are face-selective suggests that face detection is one major 

computational goal. But even a cursory glance at responses across a population of 

ML/MF cells to 16 different faces shows that individual cells respond differently to 

different faces (Tsao et al., 2006) (Fig. II-1c). An early study reported that face-

selective cells in IT encode the physical structure of faces while cells in the anterior 

superior temporal polysensory area encode familiarity of faces (Young and Yamane, 

1992). However, lack of access to face patches precluded a detailed understanding. 
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In this section, we summarize the different aspects of faces that are coded by cells 

in face patches. 

 

Figure II-3: Probing feature selectivity of face cells. (a) Mean response time 

course from 66 ML/MF cells to four stimulus categories: faces, gadgets, cartoons, 

and cartoon parts. (b) Top: depiction of cartoon stimuli varied across inter-eye 

distance. Bottom: Two example cells show ramp-shaped tuning. Asterisks mark 

significant modulation (P < 0.001). (c) Population response (110 cells) to images 

containing some or all of the face parts in the context of the face outline. (d) 

Significant contrast feature histogram showing consistency of selectivity for contrast 

relationships across the population. Blue (red) bars indicate the number of cells 

significantly preferring the intensity of part A to be greater (less) than the intensity of 

part B. Triangles indicate feature pairs predicted to elicit significant contrast polarity 

tuning across the population by three different models, together with the predicted 

direction of tuning. Pred monkey: A monkey face was illuminated from different 

directions and the contrast relationships that were robust to changes in illumination 

were identified. Pred human: the same was done for a human face. Pred Sinha: 

similar to Pred human, reported in a different study(Sinha, 2002). Panels (a) and (b) 
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adapted from (Freiwald et al., 2009), panel (c) from (Issa and DiCarlo, 2012), 

panel (d) from (Ohayon et al., 2012). 

 

Probing face coding in ML/MF using cartoon faces. Early experiments tried to 

probe mechanisms for face detection, face identification, and holistic processing 

using cartoon faces (Freiwald et al., 2009). The motivation for using cartoons was 

twofold. First, cartoons are able to convey rich information about not only the 

presence of a face, but also individual identity and expression. Second, a much 

smaller set of parameters is required to specify a cartoon face compared to a real 

face. 

 

To address the mechanism for face detection, cartoon faces were constructed using 

composites made of 7 cartoon parts (face outline, irises, mouth, nose, hair, eye, 

eyebrow), resulting in 27 possible combinations of parts being either present or 

absent. Cells in ML/MF responded strongly to the cartoon faces, with the mean 

response to cartoon faces being ~80% that to photographs of real faces (Fig. II-3a). 

Single cells were selective for the presence of specific subsets of parts. Half of the 

response variance (52%) could be explained by linear regression on presence or 

absence of the 7 face features. An additional 18% of the variance could be explained 

by second order effects. This dependence of responses on multiple parts and part 

interactions shows that middle face patch neurons are not just detecting isolated 

features. However, because 70% of the response variance could be explained by 

first and second order effects alone, middle face patch cells are not highly nonlinear 

holistic cells either. 

 

To address the mechanism for face identification, 19 features defining a cartoon 

face (including inter-eye distance, face aspect ratio, iris size, etc.) were 

parametrically varied. Single cells showed ramp-shaped tuning to subsets of face 

features, i.e., a monotonically increasing response from one feature extreme to the 

opposite extreme (Fig. II-3b) (Leopold et al., 2006). 
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To address the mechanism for holistic processing (see Box 1, “Are faces special?”), 

the effect of context on face feature tuning was examined (Freiwald et al., 2009). 

When tuning to a particular feature (e.g., face aspect ratio) was measured while 

other features were present, the gain of tuning was on average twice that when the 

same feature was shown in isolation. This provides a mechanistic explanation for 

the whole-part effect (Tanaka and Farah, 1993). Is the gain increase due to simple 

proximity of other facial features, or does their spatial arrangement also matter? 

Measurement of tuning to features in both upright and inverted faces revealed that 

cells were tuned to 25% fewer features when faces were inverted. Furthermore, 

substantial tuning to mouths appeared. This result suggests that mere proximity of 

other features alone is insufficient: face cells match the incoming feature 

constellation to an upright face template, and interpret features in the context of this 

template (thus, mouths may become interpreted as eyes in some cells). 

 

Issa and DiCarlo selectively unveiled different parts of a natural face to ask which 

parts triggers cells to fire (Issa and DiCarlo, 2012). They targeted their experiments 

to the most posterior face patch PL, reasoning that this should reveal the earliest 

template used by the brain for face detection. They found that the presence of a 

single eye surrounded by a face outline could drive a significant response in nearly 

all PL cells. Indeed, images containing only an eye evoked almost the same 

response as full-face images (Fig. II-3c).  

 

In natural faces, unlike cartoon faces, diagnostic shape elements (eyes, nose, etc.) 

occur with stereotyped contrast relationships (e.g., the eyes are usually darker than 

the nose). Pawan Sinha has suggested that the brain could detect faces by pooling 

contrast features, with the relevant contrast features being ones that are invariant to 

changes in lighting (Sinha, 2002). A similar scheme was used by one of the most 

powerful early algorithms for face detection, the Viola-Jones algorithm (Viola and 

Jones, 2001).   
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To investigate whether face cells exploit contrast features as well, Ohayon et al. 

presented artificial face stimuli consisting of 11 different regions varying in 

brightness (Ohayon et al., 2012). In half the cells, activity could be driven from no 

response to a response greater than that to a real face by changing contrast 

combinations. Cells were highly consistent in their contrast polarity preferences (Fig. 

II-3d). Moreover, these preferences matched features used by a computer vision 

algorithm for face detection. Finally, most cells showed tuning to both contrast 

polarity and geometry of facial features, suggesting single cells contribute to both 

detection and recognition. 

 

Overall, experiments with simplified face stimuli reveal the exquisite precision with 

which face cells measure physical properties of faces, including which features are 

present, their geometry and contrast, and surrounding context. 

 

Cells show increasing view invariance in more anterior patches. One of the 

central computational challenges of object recognition is to recognize an object’s 

identity despite view, partial occlusion, lighting, and other “accidental” changes. 

Freiwald and Tsao presented 25 different identities each at 8 different head 

orientations while recording face cells from multiple patches, and discovered a 

striking functional distinction between patches in terms of their view tuning (Freiwald 

and Tsao, 2010). In ML and MF, neurons respond selectively to specific views. In 

AL, there are two populations of neurons that respond similarly to left and right profile 

views, and to up/down/frontal views, respectively, thereby achieving partial view 

invariance. In AM, the most anterior patch, neurons respond invariantly across all 

views (Fig. II-4a). Some cells in AM responded extremely sparsely to only a small 

subset of face identities, with invariance across changes in view (Fig. II-4b). A major 

purpose of the face patches may thus be to construct a representation of individual 

identity invariant to view direction. Furthermore, cells not only increase in view 

invariance from ML to AM, but also in size and position invariance (Fig. II-4c). 
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The existence of cells showing mirror symmetric identity selectivity in AL is puzzling. 

It makes sense that there should exist a patch where cells have a view-specific 

representation, since the actual visual input is view specific. And it makes sense that 

there should exist a patch where cells have a view-invariant representation, since 

this is the end goal; however, a representation where the responses to left and right 

views are the same is surprising, and various attempts have been made to explain 

this computationally. In one study, Leibo et al. showed that a feedforward network 

trained on sequences of images of faces rotating from left to right using Hebbian 

learning develops a mirror-symmetric representation of faces in an intermediate 

layer and a view-invariant representation in a later layer (Leibo et al., 2017), just as 

observed in the face patch system. In another study, using a model that inverts a 

generative 3D face graphics engine, Yildirim et al. were also able to replicate the 

three stages of increasing view invariance observed in the face patch system 

(Yildirim et al., 2018). A definitive explanation for why Nature has broken up the 

problem of invariant face representation into this particular set of steps (ML/MF -> 

AL -> AM) remains elusive. Furthermore, the actual sequence of steps leading to a 

view-invariant representation in AM may be more complex, given that the anatomical 

connectivity is inconsistent with a strict hierarchy (e.g., there is a direct projection 

from the middle face patch ML to the most anterior face patch AM, Fig. II-2c). 



 

 

26 

 

Figure II-4: Increasing view invariance across the face patch hierarchy. (a) 

Representation similarity matrices computed from responses to the 200 face view 

stimuli for ML/MF, AL, and AM. (b) Top: Mean response time course of an example 

AM cell that responded very sparsely to the 200 face view stimuli. Bottom: Mean 

response to 25 individuals at 8 views. (c) Mean response time courses of an 

example AM cell to a set of faces and objects, each at five different sizes (stimulus 

size indicated in upper right). (Middle) Mean responses to the 40 images, with each 

color indicating one size. (Bottom) Examples images from the 40 image set. Only 3 
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of the 40 images elicited responses from this cell, corresponding to the face of 

one individual regardless of view and size. Adapted from (Freiwald and Tsao, 2010). 

  

Cracking the code for facial identity. Finding robust tuning of neurons along some 

stimulus dimensions (e.g., identity, viewpoint) falls short of fully understanding the 

code of the neurons. If one could reconstruct an arbitrary real face seen by a monkey 

using responses of face cells and predict a neuron’s response to an arbitrary real 

face, then one could claim to truly understand the code for facial identity. 

 

To discover the brain’s code for realistic facial identity, Chang and Tsao 

parameterized a large database of faces using 50 features per face (Chang and 

Tsao, 2017), adopting an approach to generating faces originally developed in 

computer vision called the “active appearance model” (Cootes et al., 1998; Chang 

and Tsao, 2017). Specifically, for each face in the database, they placed a set of 

landmarks on key features by hand. The (𝑥, 𝑦) coordinates of these landmarks 

describe the “shape” of the face. They then morphed these landmarks to match 

those in a standard template. The resulting image describes the “shape-free 

appearance” of the face (Fig. II-5a). Finally, they performed principal components 

analysis independently on the shape vectors and appearance vectors across the 

entire set of faces. By taking the top 25 shape principal components and the top 25 

appearance principal components, they created a 50 dimensional face space (Fig. 

II-5b). 

 

They randomly drew 2000 faces from the 50-d face space and presented them to 

the monkey while recording cells from two face patches, ML/MF and AM. Single 

cells showed ramp-shaped tuning to a subset of the 50 face parameters (Figure II-

5c). ML/MF cells were preferentially tuned to shape parameters while AM cells were 

preferentially tuned to appearance parameters, consistent with the increased 

invariance to view of AM cells found earlier (Freiwald and Tsao, 2010). 
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The finding of ramp-shaped tuning to subsets of face features suggests that the 

response of each cell can be roughly approximated by a linear combination of facial 

features. Conversely, the 50 face features should be a linear transform of the 

population response vector. Importantly, because the experimenters presented the 

same set of 2000 faces to each cell, they could directly test this. Reconstructions of 

faces using linear regression on activity of just 205 face cells from ML/MF and AM 

were strikingly accurate (Fig. II-5d).  

 

If a neuron’s response can be completely explained by linear regression, this implies 

a very simple geometric picture of the underlying computation: the neuron is 

projecting incoming faces onto a specific preferred axis and measuring the value 

along that axis. This has the surprising consequence that the neuron should respond 

exactly the same to all faces in the hyperplane orthogonal to the preferred axis (Fig. 

II-5e). Note that this is not a logical necessity of ramp-shaped tuning (Fig. II-5f). To 

test this prediction, Chang and Tsao generated a series of faces with very different 

identity whose variation was orthogonal to the preferred axis of the cell. All of these 

faces turned out to elicit exactly the same response (Fig. II-5g). 

 

In sum, for faces, the brain’s code fortuitously turns out to coincide with a classic 

approach to parametrizing faces from computer vision: shape-appearance 

coordinates. 
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Figure II-5: The neural code for facial identity. (a) Parameterizing faces: for 200 

face images, 58 landmark points were annotated, as in the example shown (left). 

The positions of these landmarks describe the shape of the face (middle). The 

landmarks were morphed to an average template, resulting in an image describing 

the shape-free appearance of the face (right). (b) The first principal component for 

shape (top) and appearance (bottom). (c) Tuning to first three shape and first three 

appearance dimensions for an example neuron. Asterisks indicate neurons showing 

significant tuning. (d) Facial images reconstructed using facial features decoded by 

linear regression from responses of 205 cells in ML/MF and AM. Predicted faces 
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and the corresponding actual stimuli presented in the experiment are shown. (e) 

Geometric picture of essential computation performed by a face cell: projection of 

incoming faces, formatted as shape appearance coordinates, onto a specific 

preferred axis. (f) Ramp-shaped tuning along a preferred axis does not imply flat 

tuning along orthogonal axes. Different examples of 2D tuning functions are shown. 

While all exhibit ramp-shaped tuning along face axis 1, only the leftmost example 

shows flat tuning along the orthogonal axis. (g) The responses of an AM cell to 144 

faces evenly sampled from the 2D space spanned by the preferred axis and principal 

orthogonal axis, synthesized specifically for this cell, are color coded and plotted. 

(h) Left: responses of a sparse AM cells to 25 identities reveals strong responses to 

three disparate identities. Right: The response of this cell to 2000 faces reveals axis 

tuning. The three effective identities from the left plot are indicated by arrows: their 

difference lies on the null space of this cell. Adapted from (Chang and Tsao, 2017). 

 

From faces to objects. Is the mechanism used by the brain to encode facial 

identity, through a set of patches with increasing view invariance that collectively 

represent faces by projection onto a set of axes spanning face space, unique to 

faces? Bao et al. (Bao et al., 2019) recently explored the overall large-scale 

organization of IT cortex using very similar methods to those used to decipher the 

face patch system: fMRI, fMRI-guided electrophysiology, electrical microstimulation, 

and mapping of response selectivity within a computationally-generated object 

space framework. Using a deep network, they built a parametric object space by 

computing the first 50 principal components of responses of units in a deep neural 

network (AlexNet) to a large set of objects (Fig. II-6a). They then measured 

responses of monkey IT cells to dimensions of this space and found that cells are 

clustered to form a coarse topographic map of the first two dimensions of this space 

(Fig. II-6b). Furthermore, this map is replicated three times, with increasing view 

invariance (Fig. II-6c). In particular, the map consists of four quadrants 

encompassing face patches, body patches, as well as two newly discovered 

networks, one representing “spiky” objects and another representing “stubby” 
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objects. Electrical microstimulation combined with simultaneous fMRI revealed 

that patches within the two newly discovered networks are anatomically connected, 

just like the face (Moeller et al., 2008) and body (Premereur et al., 2016) networks. 

Cells in each network approximately project incoming objects, formatted as vectors 

in object space, onto specific preferred axes, with the sign of the first two 

components of this axis dictated by the cell’s anatomical position in IT cortex.  

 

This work shows that IT cortex contains multiple siblings of the face patch network, 

which each share its hallmark properties of modular connectivity, functional 

hierarchy, and axis coding. Furthermore, the sibling networks are arranged in a way 

that is predicted by the topography of object space (Fig. II-6c). Thus a new general 

principle of IT cortex organization, “mapping object space,” can explain both 

category and non-category selective regions. Furthermore, arbitrary objects could 

be reconstructed using responses of cells from this IT object-topic map (Fig. II-6d), 

suggesting that cells in this map provide a close-to-complete basis for general object 

space. Thus within IT cortex, the original promise of the face patches, to provide a 

turtle’s underbelly for understanding the brain more generally, has been powerfully 

delivered. 
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Figure II-6: The neural code for object identity in general. (a) Schematic showing 

the four quadrants spanned by the first two PCs of object space. The stimuli in each 

of the quadrants were used for mapping four networks (face patches, body patches, 

NML patches, and Stubby patches) using fMRI. (b) Projection of preferred axis of 

each cell (N = 482) onto PC1 versus PC2 for all neurons recorded across four 

networks (NML network: yellow, body network: green, face network: blue, stubby 

network: magenta). (c) Schematic showing the threefold-repeated topographic map 

in IT that is organized according to the four quadrants of object space. (d) Example 

reconstructed images. Random objects were reconstructed using activity of 482 
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cells sampled from the four networks and a generative adversarial network. 

Adapted from (Bao et al., 2019). 

 

Selectivity for dimensions beyond facial identity. Besides shape and 

appearance dimensions, other face-related properties such as expression, 

familiarity, and gaze have been found to be encoded inside and outside the 

canonical face patch system. 

 

Facial expression is an extremely important feature for social interactions, and 

appears to be explicitly extracted by regions outside the canonical IT face patches, 

including the amygdala, orbitofrontal cortex, and motion-selective areas in the STS. 

FMRI experiments comparing expressive vs. neutral faces show only weak 

modulation in canonical IT face patches, but strong modulation in prefrontal face 

patch PO in the lateral orbital sulcus (Tsao et al., 2008b). Consistent with this, single-

unit study targeting face cells in the lateral orbital sulcus, where PO is typically 

located, reveal many cells modulated by facial expression as well as other social 

dimensions such as gender and age (Barat et al., 2018). An fMRI study in monkeys 

(Hadj-Bouziane et al., 2008) reported that both IT and amygdala have maps of 

valence of facial expressions, and these valence maps overlap but don’t coincide 

with the canonical face patches. Further supporting an anatomical dissociation 

between processing of facial expression vs. identity, multivariate pattern analysis 

applied to monkey fMRI data revealed that both dynamic and static facial expression 

can be read out better from motion-selective areas in the STS than from face-

selective areas (Furl et al., 2012). 

 

Gaze is another important feature for inferring intent of other social agents. Using 

fMRI, Marciniak et al. found a patch in TEO that is activated when monkeys follow 

the gaze direction of a presented face (Marciniak et al., 2014). This patch is not 

activated when monkeys are trained to saccade based on identity rather than gaze 

direction. In face patch AD located in the upper bank of the STS, She and Tsao 
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found cells that respond to facial movements, in particular change of gaze (She 

and Tsao, 2017). Behaviorally, Roy et al. found that inactivation of posterior STS 

causes an impairment of gaze following in monkeys (Roy et al., 2012). These results 

suggest the presence of modules separate from the canonical face patches that 

infer the gaze target of other agents.  

One of the most important functions of face recognition is to identify familiar 

individuals. Landi and Freiwald reported that face patches PR and TP in the medial 

temporal lobe show more fMRI activation to faces that a monkey is personally 

familiar with than unfamiliar faces (Landi and Freiwald, 2017). She and Tsao 

recorded from PR and AM and found that in both regions, cells use axis codes for 

representing identity which are modulated by familiarity (She, 2018). 

To study face patches in a more naturalistic setting, researchers have probed 

responses of face patches to natural movies. Park et al. showed natural movies to 

monkeys during both single-unit recordings and while performing fMRI. They found 

that even within a small volume of a few hundred microns in face patch AF, there 

is a large diversity in activity profiles of individual cells, with only a small 

subpopulation (~16%) of cells showing a time course resembling their local voxel 

or LFP signal (Park et al., 2017). In particular, McMahon et al. found that neural 

populations in AF are tuned to the size of a face in a natural movie, which 

correlates with the social variable of how close it is to the observer (McMahon et 

al., 2015). Fisher and Freiwald reported that patch MD in the upper bank of the 

STS is activated by natural movies of moving faces but responds much less to 

static faces or incoherent movies in which frames are presented in random order 

(Fisher and Freiwald, 2015). 

At the other end of the spectrum, selectivity of face cells for low-level feature 

statistics has also been probed. Face cells in IT are tuned to spatial frequency 

invariant to distance of the face, unlike face cells in the amygdala, which are tuned 

to spatial frequency in retinal coordinates (Inagaki and Fujita, 2011).  A study 
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probing selectivity for the orientation content of faces found that ML cells are 

preferentially tuned to horizontally-filtered faces while AL cells are preferentially 

tuned to vertically-filtered faces (Taubert et al., 2016). 

  

Coding of multiple objects. In the real world, primates need to recognize objects 

in the presence of other objects, and this presents a major coding challenge for IT, 

since IT cells have large receptive fields that typically encompass multiple objects. 

Bao and Tsao studied how cells in two category-selective regions of the macaque, 

one of them a face patch, integrate multiple objects. They found that cells in face 

and body patches consistently perform winner-take-all under certain conditions (Bao 

and Tsao, 2018). For example, when a face is presented above a non-face object, 

face cells respond as if only the face is present. They showed that this winner-take-

all behavior could be parsimoniously explained by normalization within a pool of 

clustered face cells.  Indeed, accomplishing winner-take-all, which can be construed 

as a form of hard-wired attention, could be one important evolutionary driving force 

for modularity in IT.  

 

Causal role in behavior 

Face patches have constituted a battlefield for addressing one of the oldest 

questions in neuroscience: whether discrete regions of the brain are specialized for 

discrete tasks. Many of the physiological properties of face cells discussed so far 

suggest that they subserve a particular behavioral function, namely, enabling a 

monkey to detect faces and recognize their identity. For example, the role for face 

patches in face detection is supported by the match between the contrast template 

coded by ML cells and the statistical properties of faces in the real world illuminated 

from different directions (Fig. II-3d). Similarly, the role of face patch cells in 

identification is supported by the finding that facial identity can be linearly 

reconstructed from small numbers of these cells (Fig. II-5d). Yet, these findings do 

not rule out the possibility that the actual cells responsible for face detection and 
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identification are located elsewhere in the brain, interspersed with cells 

responsible for other tasks. Here, we first review behavioral evidence that monkeys 

are adept at detecting and recognizing faces, and then review evidence for the 

causal role of face patches in these functions.  

 

Monkeys are able to detect faces starting in infancy, with baby macaques tending 

to look at pictures of humans and monkeys over non-face objects (Sugita, 2008) 

(this tendency requires prior face experience though, see Box 3, “Development”). 

They share this face detection ability with human infants who, from birth, 

preferentially track faces over non-face objects (Goren et al., 1975; Johnson et al., 

1991; Valenza et al., 1996). As adults, humans are experts at face recognition, 

capable of memorizing large numbers of faces over many years (Bahrick et al., 

1975) and recognizing faces more accurately and quickly than other visual stimuli 

(Yin, 1969). Macaques are also adept at individual face recognition. A 1979 study 

by Rosenfeld and Van Hoesen found that rhesus macaques are able to discriminate 

faces of conspecifics invariant to changes in orientation, posture, size, color, or 

illumination (Rosenfeld and Van Hoesen, 1979). Several studies since confirmed 

that monkeys can recognize faces (Bruce, 1982; Overman Jr and Doty, 1982; Wright 

and Roberts, 1996). More recently, Moeller et al. found that monkeys could readily 

learn to discriminate a large number of new human identities, showing almost 

immediate generalization from delayed match to sample on a set of five faces to a 

new set of 32 different faces (Moeller et al., 2017); the recognition demand in this 

study was especially high: the 32 faces were all synthetic, hairless, and identical in 

complexion, and expressions of the same individual were varied to preclude 

matching based solely on low-level image features. Studies exploring the 

spontaneous, untrained viewing behavior of macaque monkeys also support a 

natural ability of macaques to recognize familiar faces. For example, Gothard et al. 

presented a pair of faces of the same monkey during a familiarization trial, followed 

by a pair of faces consisting of the just seen monkey (with altered gaze/view) and a 

new monkey (Gothard et al., 2009). Monkeys strongly preferred to look at the novel 
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face, indicating that they could distinguish the two faces (see also (Pascalis and 

Bachevalier, 1998)).  

 

Despite this evidence for strong face recognition capabilities in macaques, a recent 

review has argued that monkeys are very poor at individuating faces of conspecifics, 

unlike humans, and hence the macaque face patch system is not relevant for 

understanding the neural basis for human face recognition (Rossion and Taubert, 

2019). The authors cited papers showing that monkeys need many trials to 

discriminate a small number of faces, show poor performance even after long 

training, and generalize poorly to novel images of the same individuals or images of 

new individuals (e.g., (Parr et al., 2008)). We believe the discrepancies in the 

monkey face recognition behavioral literature stem from the fact that monkeys 

cannot be instructed verbally, and hence generalization strategies as well as overall 

motivation of monkeys may differ widely across different labs and different training 

paradigms. Given the existence of studies clearly showing strong face recognition 

ability in macaques, we believe the poor face recognition performance observed in 

some behavioral studies is not due to a fundamental inability of monkeys to 

recognize faces proficiently, but rather to specifics of training procedures in those 

studies (e.g., use of food vs. water reward, use of a free viewing touch screen 

paradigm vs. a fixation paradigm, etc.). Next, we review causal intervention studies 

probing the specific role of the face patch system in face detection and recognition. 

 

An early study aimed to test the necessity of cortex in the upper and lower banks of 

the STS for face perception. Heywood and Cowey bilaterally removed both banks 

and the fundus of the STS, extending from AP +5 mm to +25 mm (Heywood and 

Cowey, 1992). Prior to the lesion, the animals learned various face-related tasks: to 

discriminate between faces and inanimate objects, to select the odd face from a 

group, to inspect a face then select the matching face from a pair of faces, to 

discriminate between novel and familiar faces, and to discriminate between direct 

versus averted gaze in faces. Surprisingly, the only task in which animals were 
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impaired following STS removal was gaze discrimination. The authors concluded 

that the “face-cell area of the brain” is primarily concerned with representation of 

social signals and not facial identification. This conclusion is clearly at odds with 

recordings from IT face patches showing a strong signal related to representation of 

invariant facial identity. The discrepancy can be readily explained: the six IT face 

patches are not confined to the upper and lower banks of the STS. While patches 

ML, MF, and AF are in the STS (with ML on the outer lip), patch PL is on the lateral 

surface, patch AL is typically a few mm ventral of the outer lip on the lateral surface 

(though sometimes it is directly on the outer lip), and patch AM is on the ventral 

surface of the brain, far from the STS. Thus it is possible that PL, AL, and AM were 

all spared in the lesion, and activity in these three patches alone is sufficient to 

support performance of the various face-related tasks tested by Heywood and 

Cowey. 

 

To explore the causal role of face cells in face detection, Afraz et al. electrically 

stimulated face-selective clusters in IT in monkeys trained to judge whether noisy 

visual images depicted faces or not (Afraz et al., 2006). Microstimulation of face-

selective sites biased animals to detect faces, and the magnitude of the effect 

correlated with the degree of face selectivity of the site. This result suggests a causal 

relationship between activity of face cells and face detection. 

 

To explore the causal role of face cells in face identification, Afraz et al. trained 

animals to perform a face gender discrimination task and then applied optogenetics 

to inhibit cells in a face-selective cluster of macaque IT cortex (Afraz et al., 2015). 

Silencing a face cluster decreased performance by 2%, while silencing an adjacent 

region had no significant effect. Due to the tiny effect size, the question of whether 

face patches truly have a privileged role in representing faces remained 

unanswered. Furthermore, the study did not specifically target fMRI-defined face 

patches. 
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In a microstimulation study, Moeller et al. specifically stimulated face patches 

while macaques performed a delayed match-to-sample task (Moeller et al., 2017). 

An earlier electrical microstimulation study in humans found that stimulation of the 

FFA caused human subjects to perceive dramatic distortions of the experimenter’s 

face (“You just turned into somebody else, your face metamorphosed; your nose got 

saggy and went to the left; you almost looked like somebody I’d seen before, but 

somebody different”) (Parvizi et al., 2012; Schalk et al., 2017). However, because 

human subjects are available for only a short period of time, parametric exploration 

of microstimulation effects in humans is challenging. Consistent with the human 

findings, Moeller et al. found that stimulation of macaque face patches had a large 

effect on the percept of face identity. When monkeys saw two identical faces, they 

reported them as identical ~90% of the time; but when a face patch was electrically 

stimulated during presentation of the second face, judgement of “same identity” went 

down to ~10% (Moeller et al., 2017). The effect depended strongly on precise 

targeting to the center of a face patch, underscoring the privileged role of face 

patches in coding facial identity. The same effect was found for stimulation of 

multiple face patches (ML, MF, AL, AF, and AM), supporting the idea that these 

patches work in concert to generate face perception.   

 

Does microstimulating a face patch influence the perception of non-face objects? 

Indeed, given that people can see faces in cars, bread, buildings, and electrical 

outlets, what is a face for a face patch? To address the specificity of face patches 

for representing real faces, Moeller et al. microstimulated face patches while 

monkeys observed a variety of non-face objects. They found that microstimulation 

of face patches does not affect the percept of clearly non-face objects. Surprisingly, 

face patch stimulation does have a significant effect on the percept of face-

compatible non-face objects, including apples, citrus fruits, and cartoon houses. 

Thus it is possible that face patches are used by the brain not only to represent 

faces, but also non-face objects eliciting weak but significant responses (Haxby et 
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al., 2001) (conversely, these responses may be why we can see faces in non-face 

objects).  

 

A study by Sadagopan et al. inactivated face patch ML pharmacologically using the 

GABA agonist muscimol while monkeys performed an object detection task 

(Sadagopan et al., 2017). Monkeys were trained to find an object from one of three 

categories (human faces, macaque bodies, shoes) embedded in a cluttered scene 

on a touch screen and select it by pressing the object. Inactivation of face patch ML 

reduced face detection performance by 11%, whereas detection of the other 

categories was unimpaired. Thus, even inactivation of only one of the 12 IT face 

patches causes a change in behavior specific to faces. When a nearby region 

outside the face patches was pharmacologically inactivated, face detection was not 

significantly reduced.  

 

In sum, evidence is clear that face patches play an important causal role in face 

detection and recognition, and this effect is demonstrably absent for neighboring IT 

regions outside face patches. Zooming out, the space of face-related behaviors that 

have been tested during face patch recordings and stimulation so far has been 

extremely limited. Little is known about the causal role of face patches in judgements 

of expression, gaze, head orientation, and other changeable features. Furthermore, 

the role of face patches during visual search, episodic recall, and other naturalistic 

behaviors remains unknown. 

 

Interaction with other brain areas 

One cannot learn the rules of chess by observing only one chess piece per game. 

The face patches are not a closed system. They provide essential input to 

downstream regions responsible for orchestrating multiple face-dependent 

behaviors. For example, to interpret the state of mind of other agents or judge the 

social context of a situation, multiple aspects of a face need to be read out including 

identity, expression, gender, age, ethnicity, attractiveness, and familiarity. 
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Simultaneously observing activity in face patches and connected functional 

modules offers a paradigm to understand how two brain regions interact to fulfill their 

respective purposes. In this section, we first review what is known about interactions 

between face patches before moving to interactions between face patches and 

downstream brain areas associated with diverse functions including memory, 

emotion, and value computation.  

 

Interactions between IT face patches. The computations performed by the face 

patch system are not a simple feedforward hierarchy from posterior to anterior, 

culminating in a view-invariant representation of facial identity in face patch AM. 

Tracer and microstimulation experiments show that the face patches are densely 

and recurrently connected rather than a unidirectional chain of modules (Moeller et 

al., 2008; Grimaldi et al., 2016). This suggests that recurrent computations occur, 

where the signal takes several iterations through the face patches. The recurrent 

connectivity of the face patch system carries potential to perform more powerful 

computations than the same network with only feedforward connections. One 

possibility is that the feedback connections are used for learning or to deploy 

attention. Another possibility is that for challenging visual scenes that cannot be 

recognized at a glance in a single feedforward sweep, the recurrent computations 

help resolve ambiguities (Tang et al., 2018a; Kar et al., 2019). 

 

An observation by Ohayon et al. provides an entry point to this problem (Ohayon et 

al., 2012). They found that in response to an inverted contrast face, face cells in 

ML/MF show an increase in response latency of about 50 ms, while their response 

magnitude stays the same. Presumably the contrast-inverted features do not match 

the feedforward filters of cells in the middle face patch, so the initial response of 

these cells, which occurs around 100 ms after face onset, is omitted. What signal 

triggers the delayed response? Does AM or another higher-level structure recognize 

the inverted contrast face as a face, or are multiple recurrent iterations within the 

face patches necessary to resolve the contrast-inversion? Currently, we still have 
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very little understanding of detailed network dynamics across the face patch 

system in situations like this, where the face input is degraded. Interestingly, if the 

contrast-inverted image is cropped so that the outline and hair of the face are not 

visible, the response becomes not only delayed but also strongly reduced in 

amplitude (Ohayon et al., 2012), suggesting that even recurrence cannot fully 

restore responses in this situation.  

  

Schwiedrzik and Freiwald (Schwiedrzik and Freiwald, 2017) found evidence that 

feedback from higher- to lower-level face patches may implement predictive coding 

(Rao and Ballard, 1999; Friston, 2009; Huang and Rao, 2011): While monkeys 

passively learned sequences of faces, they observed prediction error signals in face 

patch ML whenever an unexpected face was shown during the sequence. However, 

unlike the face tuning in ML, the tuning of this prediction error was view-invariant 

and identity-specific, as in anterior face patches. The authors argued that the 

prediction error in ML may thus be computed from a top-down prediction from more 

anterior face patches. 

 

Interactions with claustrum and consciousness. Both tracer and stimulation 

studies reveal strong connections between face patches and the ventral part of the 

claustrum (Moeller et al., 2008; Grimaldi et al., 2016). The claustrum is a thin sheet 

of gray matter adjacent to cortex that is remarkable in that it connects reciprocally to 

the entire cortex (Pearson et al., 1982; Tanné‐Gariépy et al., 2002; Fernández-

Miranda et al., 2008). Due to its broad connectivity, it has been speculated to be 

involved in cross-modal integration (Sherk, 1986; Ettlinger and Wilson, 1990; 

Edelstein and Denaro, 2004) and binding of features into a unifying conscious 

experience (Crick and Koch, 2005), although its precise function remains unclear.  

Thus inputs from the face patches may be broadcast via the claustrum throughout 

the brain and inputs from the claustrum to the face patches may provide contextual 

information from other brain areas. This way, the claustrum may serve as a hub 
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between areas that are not directly connected with the face patches but still 

require face-related information or provide important information to the face patches. 

  

Related to the question of whether the claustrum is the seat for consciousness (Crick 

and Koch, 2005) is the question of whether face patches themselves reflect the 

conscious percept of a face or just measure the physical visual input. Both the 

human FFA and 90% of monkey IT cells respond to reported switches of the 

conscious percept in binocular rivalry (Tong et al., 1998). It has been debated 

whether these modulations reflect the conscious percept or just the cognitive factors 

associated with actively reporting the percept (Frässle et al., 2014; Tsuchiya et al., 

2015; Overgaard and Fazekas, 2016). Recently, however, electrophysiological 

recordings targeted to face patches found that in both ML and AM, a majority of cells 

follow perception even in a binocular rivalry paradigm without report (Hesse et al., 

2019). 

 

Interactions with pulvinar and attention. The pulvinar has been implicated in 

selective attention (Desimone et al., 1990; Robinson and Petersen, 1992; 

Olshausen et al., 1993; Shipp, 2004; Saalmann and Kastner, 2011), as deactivation 

leads to attentional impairment (Petersen et al., 1987; Desimone et al., 1990; Wilke 

et al., 2010; Wilke et al., 2013). As a possible mechanism, it has been proposed that 

pulvinar induces synchrony between IT and retinotopic regions to preferentially route 

behaviorally relevant information between the two areas (Saalmann et al., 2012). 

The pulvinar may be especially important when paying attention to objects rather 

than just locations in visual space, as it is preferentially activated when subjects pay 

attention to a region bound by an object compared to an unbound region of space 

(Arrington et al., 2000).  

 

The purpose of the reported connections between face patches and pulvinar may 

thus be twofold. First, faces strongly attract spatial attention, demonstrated by the 

fact that when free-viewing images, subjects rapidly saccade to faces about 16 times 



 

 

44 

more often than to similar regions containing no faces (Cerf et al., 2009). The face 

patch → pulvinar connection may thus entail a mechanism by which detection of a 

face automatically draws spatial attention to that region. Second, during active 

search for a face the reciprocal pulvinar → face patch connection may mediate 

feature-based attention to faces, facilitating their detection in clutter (Maunsell and 

Treue, 2006). Recording from face patches and pulvinar simultaneously while 

monkeys perform various attention tasks may shed more light on these 

mechanisms. 

  

Interactions with amygdala and emotion processing. The anterior face patches 

form connections with the basal nucleus, accessory basal nucleus, and lateral 

nucleus of the amygdala (Moeller et al., 2008; Grimaldi et al., 2016). The amygdala 

contains large proportions of cells that respond selectively to faces (Sanghera et al., 

1979; Nakamura et al., 1992; Fried et al., 1997; Calder and Nummenmaa, 2007; 

Kuraoka and Nakamura, 2007; Rutishauser et al., 2011). Many of these neurons 

encode the perceived expression of the face (Wang et al., 2014), and damage to 

the amygdala causes impairments in recognizing expressions but not identity 

(Adolphs et al., 1994). Amygdala neurons in both humans and monkeys respond 

more strongly to faces of their own species (Sigala et al., 2011; Minxha et al., 2017). 

Moreover, amygdala cells respond when human subjects saccade to a face (Minxha 

et al., 2017) or when monkeys make eye contact (Mosher et al., 2014). Lesioning 

monkey amygdala eliminates their preference to look at faces (Taubert et al., 2018), 

suggesting that the amygdala may also play a role in establishing the salience or 

value associated with faces. 

  

Compared to other objects, faces are a unique in how much information about the 

emotion and intention of another agent can be inferred from them. It remains an 

open question if and how face patches and amygdala work together to achieve this 

feat. One possibility is that the amygdala builds a code for expression and gaze 

using information about the physical properties of a face relayed from the face 
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patches. Alternatively, the amygdala may only receive information about facial 

identity from IT face patches, and acquire expression/gaze information through an 

independent pathway.  

 

Interactions with medial temporal lobe and memory. Grimaldi et al. found 

connections between face patches and perirhinal cortex as well as parahippocampal 

regions TF/TH and TFO (Grimaldi et al., 2016). These regions have been implicated 

to play a role in memory, recency, and familiarity (Fahy et al., 1993). It is possible 

that the connections between face patches and the medial temporal lobe help to 

recognize a face as familiar and evoke all the memories of the individual associated 

with it. Consistent with this, face patch PR in perirhinal cortex is modulated by the 

familiarity of faces (Landi and Freiwald, 2017). However, it remains unclear whether 

this familiarity coding is inherited from face patches in IT or if it arises initially in PR 

or an ever more downstream area.  

 

The interaction between face patches and the medial temporal lobe may also may 

provide a tractable entry point to studying imagination (Kornblith and Tsao, 2017). 

When a subject is asked to visualize the face of a person, the human FFA is 

activated (O'Craven and Kanwisher, 2000). Is the code used by face patches to 

represent an imagined face the same as the code used to represent a physically 

presented face? If so, how is the memory of a familiar face transformed into the 

perceptual representation of a face during visual imagery? 

  

Interactions with frontal cortex and value-based decision making. Tracer 

studies have found only weak connections between anterior face patches and 

orbitofrontal area 13 as well as ventrolateral prefrontal cortex (Grimaldi et al., 2016). 

However, as mentioned above, a simple face localizer scan reveals three face-

selective patches in prefrontal cortex, within ventrolateral, orbifrontal, and pre-

arcuate regions (Moeller et al., 2008). These regions are activated by electrical 

microstimulation of IT face patches (Moeller et al., 2008), suggesting they may 
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inherit their selectivity through interactions with IT face patches. It is believed that 

orbitofrontal cortex is used for value judgement and lateral prefrontal cortex then 

uses these values to compute decisions on which actions to take (Wallis, 2007). 

Faces can have very different values depending on their gender, age, expression, 

and face cells in both orbitofrontal (Barat et al., 2018) and ventrolateral prefrontal 

cortex (Romanski and Diehl, 2011) show selectivity for these social dimensions. This 

opens an avenue for studying how value is computed from identity information 

encoded in IT face patches and how prefrontal cortex then uses this information to 

inform decisions and behavior. 

 

Conclusion and boxes 

Returning to Marr’s question, whether finding a face cell would tell us anything much 

at all, we think the answer is a resounding yes. The clustering of face cells into 

distinct patches performing different steps of face processing has made it possible 

to identify the sequence of transformations in face representation and decipher the 

code for representation of facial identity used by these patches. This knowledge now 

gives us a powerful key to unlocking not only object recognition in general, but also 

higher-level functions including memory, attention, consciousness, and decision 

making that operate on faces. When trying to decipher an encrypted communication, 

the key step is to identify the meaning of the first word. Using the same approach of 

fMRI and targeted electrophysiology that has been instrumental to dissecting the 

face patch system, several additional networks in IT have now been discovered, 

including color patches (Lafer-Sousa and Conway, 2013; Chang et al., 2017), scene 

patches (Kornblith et al., 2013), and body patches (Tsao et al., 2003a; Popivanov et 

al., 2012; Kumar et al., 2017). Most strikingly, the recent discovery of a set of parallel 

IT networks tiling object space, each harboring the same anatomical organization 

and object coding mechanism as the face patch network, suggests that the face 

patch network is truly a model for all of IT cortex (Bao et al., 2019). For 

understanding higher-level cognition beyond IT, our knowledge of the code for facial 

identity in AM makes it possible to transcend studying shadows of cognitive 
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processes, to directly study the link between a palpable high-level percept and the 

downstream cognitive processes it triggers. The turtle’s underbelly is staring us in 

the face.  
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Boxes 

 

Box 1: Are faces special? 

 

Figure II-B1: The Thatcher illusion. At first glance, neither the left nor the right 

image seem particularly odd since the faces are upside-down. However, if one turns 

the page upside-down, one notices that the local features in one of the faces have 

been inverted. This demonstrates the impairments of face recognition when faces 

are presented upside-down, and simulates the effect of a face patch lesion. Adapted 

from (Thompson, 1980). 

 

Are faces special, in the sense that special neural mechanisms are used to process 

faces that are not used for other object classes? And if so, do monkeys also show 

hallmarks of this special form of processing? Evidence that humans are experts at 

recognizing faces comes from several behavioral effects including the composite 

effect (Young et al., 2013) (combining the top and bottom halves of two different 

faces by aligning them interferes with the percept and identification of the 

constituents), the whole-part effect (Tanaka and Farah, 1993) (a face feature is more 

easily recognized if it is part of a whole face rather than in isolation), and the face 

inversion effect (Yin, 1969; Valentine, 1988) (a face is more easily recognized when 

upright than when upside down). In monkeys, the face inversion effect has been 

controversial, with some studies claiming that monkeys do show recognition 

differences between upright and inverted faces (Parr et al., 1999; Gothard et al., 
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2009), and others claiming that they do not (Rosenfeld and Van Hoesen, 1979; 

Bruce, 1982; Parr et al., 2008). Freiwald et al. found that cells in ML become less 

tuned to facial features of cartoon faces when the faces are inverted (Freiwald et al., 

2009). Taubert et al. reported that face-selective cells in ML and AL but not outside 

of face patches preferentially encode upright faces compared to inverted faces 

(Taubert et al., 2014). This finding suggests functional differences between face-

selective cells inside face patches vs. those scattered across IT outside of face 

patches, and the possibility that specialized processing for faces may be restricted 

to the former. An effect related to the face inversion effect is the Thatcher illusion 

(Thompson, 1980): when a face is presented upside-down and local features such 

as the mouth and the eyes are relatively inverted, the face does not appear unusual 

(see Fig. II-B1); however, if the whole face is reverted back to upright, the inverted 

local face features become strikingly apparent. Monkeys show this configural effect 

behaviorally (Adachi et al., 2009). Taubert et al. found a neural correlate of the 

Thatcher illusion in  face patch ML but not in AL or IT cortex outside of face patches 

(Taubert et al., 2015) (see also (Sugase-Miyamoto et al., 2014)).  

 

Tan and Poggio argued that the three behavioral markers of specialized holistic face 

processing (composite effect, whole-part effect, and inversion effect) can all be 

modeled using the single neural factor of neural tuning size (Tan and Poggio, 2016), 

i.e., there is nothing fundamentally different about face processing compared to 

general object processing. In their HMAX model (Riesenhuber and Poggio, 1999), 

which contains two layers each consisting of simple and complex cells, the neural 

tuning size is defined as the size of the template of simple cells in the second layer, 

which detect parts or features of the face. For small neural tuning sizes, where the 

template covers only one face part such as the eye or nose, the output of the model 

is non-holistic and more like general object recognition, whereas for larger neural 

tuning sizes, where the template covers multiple face parts, the output of the model 

is holistic like face recognition and reproduces the three behavioral markers 

described above. 
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A theoretical study by Leibo et al. offers a computational perspective on why face 

recognition should be separated from recognition of other objects in the brain (Leibo 

et al., 2011). They argue that the transformation of a face image evoked by 3D 

rotation of the face is class-specific and different from the transformations of other 

objects. By training a class of models on 3D rotations of faces, they show that the 

models learn to generalize to other faces and can extract their identity in a view-

invariant way but fail on other object classes. The argument that identity-preserving 

image transformations are class-specific thus suggests the need for specialized 

modules for specific classes such as faces. 

 

These computational studies suggest that processing of faces is not that unique 

after all: classic markers of a supposedly unique “holistic” processing style can be 

boiled down to increased receptive field size of face cells, and modularity can be 

explained by a principle, class compatibility of 3D transformations, that applies to all 

objects. The finding that at least half of IT cortex shares similar anatomical 

organization and coding principles as the face patches (Fig. II-6) further supports 

the idea that processing of faces is not unique. 

  

Box 2:  Face patches across species 

 

Figure II-B2: Face patches across different primate species. Face patches 

mapped in the human, macaque, and marmoset are shown. Human and macaque 

maps adapted from (Tsao et al., 2008a), marmoset map adapted from (Hung et al., 

2015). 
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Face-selective areas have been identified using fMRI in humans (Kanwisher et 

al., 1997), macaques (Tsao et al., 2003a), and marmosets (Hung et al., 2015) (Fig. 

II-B2). In addition, there is a report of a face area in dogs (Cuaya et al., 2016). Face 

cells have been reported not only in humans (Khuvis et al., 2017) and macaque 

monkeys (Gross et al., 1972), but also in sheep (Kendrick and Baldwin, 1987). 

Finally, the behavioral ability to identify faces has been reported in a wide range of 

organisms including cattle (Coulon et al., 2009), pigeons (Stephan et al., 2012), 

archer fish (Newport et al., 2016), wasps (Tibbetts, 2002), and crayfish (Van der 

Velden et al., 2008). 

     

The study of face processing is a wonderful example of the fruitful interplay between 

human and macaque research and underscores the importance of non-human 

primate research. The discovery of face areas in humans was one of the major 

motivations to look for such areas in monkeys. In turn, understanding of face areas 

in monkeys has shed new light on face areas in humans, and even instigated the 

discovery of a new face area in the human anterior temporal lobe (Tsao et al., 2008b; 

Rajimehr et al., 2009). Monkey electrophysiology experiments also reveal the 

limitations of fMRI and the importance of recording from single cells to understand 

what an area is coding: Dubois et al., using MVPA on fMRI data from face patch 

AM, were unable to decode any identity information (Dubois et al., 2015), whereas 

single-unit reconstructions of face identity from AM activity are strikingly accurate 

(Fig. II-5d). Because brain structures supporting face processing exist across 

primate species, experiments can be designed that maximally leverage the 

advantage of each species: deep probing of neuronal mechanisms in non-human 

primates, and use of complex task designs exploiting language and introspection in 

humans. 

What is the homology between human and macaque face areas (Tsao et al., 2008a; 

Yovel and Freiwald, 2013)? Human face areas include the occipital face area (OFA), 

fusiform face area (FFA), several anterior temporal face areas, and a face area in 

the superior temporal sulcus (STS-FA). Evidence has been put forward that these 
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areas have different functional specializations, with the OFA involved in 

processing face parts (Pitcher et al., 2011), the STS-FA in processing changeable 

aspects such as gaze direction (Haxby et al., 2000; Pitcher et al., 2011), and the 

FFA in processing identity (Rotshtein et al., 2005). One might guess based on spatial 

position and functional properties that human OFA, FFA, STS-FA, and anterior face 

patches correspond respectively to macaque PL, ML/MF, upper bank MD, and 

AL/AF/AM. However, fMRI-guided single-unit recordings in humans will be 

necessary to make definitive conclusions concerning homology (Khuvis et al., 2018). 

 

The discovery of face areas in marmosets is an exciting recent development that 

portends even deeper understanding of the development and function of face 

patches (Hung et al., 2015), given the short generation time of marmosets and the 

wide range of tools available for marmoset neural circuit dissection, including large-

scale surface electrode arrays, two-photon imaging, and CRISPR gene editing. So 

far, ECOG recordings from the marmoset confirm existence of multiple face patches 

(Hung et al., 2015), but the detailed single-unit properties of individual fMRI-

identified marmoset face patches remains unknown. 

 

Box 3: Development of face patches 

How do face patches develop? Are the locations of face patches already laid out 

during development by the primate’s genetic program or does their development 

require experience with faces? In humans, Dehaene et al. found that literacy induces 

increased activation to text in a brain region specialized for representing word forms 

from a familiar language called the “visual word form area.” This occurred regardless 

whether literacy was acquired during childhood or adulthood (Dehaene et al., 2010). 

The increased response to text comes with the cost of a slightly smaller face-

selective area compared to illiterates. On the other hand, Deen et al. found that in 

human infants a few months after birth, extrastriate cortex shows modules that 

respond preferentially to faces or scenes with a spatial organization similar to adults, 

which are then refined throughout development (Deen et al., 2017). In monkeys, 
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some functional organization of face-selective regions exists already one month 

after birth, which is then refined and stabilized into the face patch system within two 

years (Arcaro and Livingstone, 2017). Importantly, experience with faces appears to 

be necessary for these modules to acquire their selectivity: Arcaro et al. raised 

monkeys without exposure to faces, and these monkeys did not show any domains 

selective for faces (Arcaro and Livingstone, 2017). Moreover, the face-deprived 

monkeys did not show preference for looking at faces over other objects. 

 

These findings suggest the importance of experience in IT development. 

Nevertheless, it is possible that IT already possesses a proto-organization into 

modules at birth that is then activated by experience with a specific object class. 

Indeed, IT cortex is organized retinotopically, albeit much more coarsely than 

retinotopic cortex (Janssens et al., 2014; Kolster et al., 2014), with face patches lying 

in the foveal zone (Janssens et al., 2014). Unlike selectivity to object categories, this 

retinotopic organization is already present at birth (Arcaro and Livingstone, 2017), 

i.e., before visual experience. Srihasam et al. trained juvenile monkeys to recognize 

three sets of artificial shapes (Srihasam et al., 2014). The three sets consisted of 

“Helvetica” symbols, Tetris shapes, and cartoon face symbols, respectively. 

Following intense exposure to these shapes, monkeys developed patches in IT for 

each set that were selectively activated by shapes in that set. Even though the order 

in which monkeys were introduced to the three sets of shapes was different for each 

monkey, the locations of the patches for each set was similar across monkeys. 

Together, these results suggest that IT has a retinotopic proto-organization inherited 

from inputs from earlier visual areas (Hasson et al., 2003), and exposure to a certain 

class of objects causes the formation of category-selective domains at specific 

locations within this retinotopic map. These retinotopic locations may be influenced 

by where the monkey tends to look (e.g., faces are represented in the foveal zone 

because monkeys tend to foveate them) as well as intrinsic properties of an object 

class (e.g., curvature) that are preferred by locations with a certain eccentricity (Levy 

et al., 2001; Srihasam et al., 2014). Besides coarse retinotopy, topography in the IT 
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map is governed by clustering in object space (Fig. II-6). This additional clustering 

could be enforced by purely self-organizing principles independent of both genetic 

hard-wiring and retinotopic selectivity of inputs (Erickson et al., 2000). 
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C h a p t e r  I I I  

FIGURE-GROUND SEGMENTATION 

Consistency of  border-ownership cells 

From: Hesse and Tsao (2016), "Consistency of border-ownership cells across 
artificial stimuli, natural stimuli, and stimuli with ambiguous contours." In: Journal 
of Neuroscience 36.44 (2016): 11338-11349. 
 
 

Abstract. Segmentation and recognition of objects in a visual scene are two 

problems that are hard to solve separately from each other. When segmenting an 

ambiguous scene, it is helpful to already know the present objects and their 

shapes. However, for recognizing an object in clutter, one would like to consider its 

isolated segment alone to avoid confounds from features of other objects. Border-

ownership cells (Zhou et al., 2000) appear to play an important role in 

segmentation, as they signal the side-of-figure of artificial stimuli. The present work 

explores the role of border-ownership cells in dorsal macaque visual areas V2 and 

V3 in the segmentation of natural object stimuli and locally ambiguous stimuli. We 

report two major results.  First, compared to previous estimates, we found a 

smaller percentage of cells that were consistent across artificial stimuli used 

previously. Second, we found that the average response of those neurons that did 

respond consistently to the side-of-figure of artificial stimuli also consistently 

signaled, as a population, the side-of-figure for borders of single faces, occluding 

faces and, with higher latencies, even  stimuli with illusory contours such as 

Mooney faces and natural faces completely missing local edge information. In 

contrast, the local edge or the outlines of the face alone could not always evoke a 

significant border-ownership signal. Our results underscore that border ownership 

is coded by a population of cells, and indicate that these cells integrate a variety of 
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cues, including low-level features and global object context, to compute the 

segmentation of the scene. 

Significance. In order to distinguish different objects in a natural scene, the brain 

must segment the image into regions corresponding to objects. The so-called 

“border-ownership” cells appear to be dedicated to this task, as they signal for a 

given edge on which side the object is that owns it. Here, we report that individual 

border-ownership cells are unreliable when tested across a battery of artificial 

stimuli used previously but can signal border-ownership consistently as a 

population. We show that these border-ownership population signals are also 

suited for signaling border-ownership for natural objects and at longer latency, 

even for stimuli without local edge information. Our results suggest that border-

ownership cells integrate both local, low-level and global, high-level cues to 

segment the scene. 

Introduction. The two most important tasks of the ventral stream of visual cortex 

are arguably segmentation of the visual scene and object recognition. 

Segmentation tells us which groups of pixels in a scene constitute the fundamental 

units that we can interact with, and recognition gives these units a meaning by 

telling us what they are. Often, vision is considered as a sequence of processing 

steps in a feedforward hierarchy (Marr, 1982),  where recognition of objects 

happens after a series of nonlinear operations on the input image (Riesenhuber 

and Poggio, 2002). Since segmentation, which is thought to happen in retinotopic 

cortex, is earlier in the feedforward hierarchy of visual areas, it is often assumed to 

be a necessary step to be completed before recognition, so that the segmented 

regions corresponding to the object surfaces can be fed to inferotemporal cortex 

(IT) and recognized individually (Rubin, 1958; Nakayama et al., 1995; Driver and 

Baylis, 1996). On the other hand, psychophysical studies (Peterson and Gibson, 

1993, 1994; Peterson and Kim, 2001; Grill-Spector and Kanwisher, 2005)  have 

suggested that object recognition influences or even precedes segmentation. For 
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example, Peterson and Gibson (1993) found that recognition of object shape 

can overwrite depth order defined by disparity.  Moreover, observers asked to 

report their first perceived figure-ground organization are influenced by symmetry 

and orientation-dependent object recognition processes and are more likely to 

perceive regions as figure compared to ground if they match their object memory 

(Peterson and Kim, 2001) 

One of the most insightful neurophysiological findings for understanding how the 

brain segments the visual scene are the remarkable border-ownership cells 

discovered by von der Heydt and colleagues (Zhou et al., 2000). Border-ownership 

cells are thought to be crucial for segmentation, as their responses signal the side-

of-figure for a number of artificial stimuli. However, it is not entirely clear if and how 

the side-of-figure signal observed in border-ownership cells aids recognition of 

objects in natural scenes. Conversely, it is not known whether object recognition in 

IT can influence border-ownership signals in retinotopic cortex.  

Like most cells in early visual cortex a border-ownership cell will respond to an 

edge presented at a given orientation in its receptive field, but it responds 

differentially depending on the side of the figure that the edge belongs too: a 

vertical edge can be the border of a foreground object that is either to the left or to 

the right of it. Zhou et al. showed that for a variety of artificial stimuli, border-

ownership cells respond consistently more strongly if the edge belongs to a figure 

on its preferred side than its non-preferred side, even if the stimuli are locally 

identical within the receptive field of the cell. Artificial stimuli that were previously 

shown to evoke consistent border-ownership responses include single luminance 

squares, occluding luminance rectangles, single and occluding outlines of 

rectangles, C-shapes (Zhou et al., 2000), disparity-defined squares (Qiu and Von 

Der Heydt, 2005), and squares evoking the percept of transparent overlay (Qiu 

and Von Der Heydt, 2007)  (see stimuli used in Fig. III-5a-d). Here, we asked 

whether border-ownership cells can also infer border-ownership for natural objects, 
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with not necessarily straight edges and inhomogeneous, possibly confounding 

textures. In fact, in natural scenes, segmentation can often be ambiguous based 

on only local, low-level cues (McDermott, 2004). Consider for example the famous 

Dalmatian dog display or the camouflaged owl in Fig. III-1. It appears impossible 

for an algorithm that uses only local, low-level cues to infer the correct 

segmentation. Yet, once we recognize the Dalmatian dog, we perceive it as an 

object with a contiguous surface. And we are able to infer the boundary of the owl. 

Bottom-up, purely feedforward algorithms would likely come to the critically 

different, erroneous interpretation that it is a texture. Is this perceived 

segmentation signal for recognizable, natural objects present in the side-of-figure 

signal of border-ownership cells?  

To answer this question, we recorded from border-ownership cells and 

systematically presented a battery of both artificial stimuli and natural face stimuli, 

as well as face stimuli with ambiguous contours, in order to find out how cells that 

respond consistently to the side-of-figure of artificial stimuli would respond to the 

presented natural object stimuli. 

 

Figure III-3: Segmentation can be ambiguous based on low-level cues.  (a) 

While the famous Dalmatian dog display is considerably more difficult to segment 

without knowing that there is a dog present, once one recognizes the dog, one 

also perceives it as a contiguous surface. (b) The camouflaged owl seems 
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impossible to segment based on local cues (red square, inset), but as one 

recognizes the owl one can infer and perceive the boundary.  

Results. We targeted regions in dorsal V2 and V3 that elicited strong fMRI 

activation in response to disparity-defined shapes vs. full-field disparity. Fig. III-2 

shows responses of a border-ownership cell at a representative location (Fig. III- 

2a, functional activation overlaid). Fig. III-2b shows the receptive field of the 

example cell mapped by computing the STA. All analyses below are based on a 

sample of a total of 201 single units (126 Monkey T, 75 Monkey J) for which we 

manually verified correct positioning on the receptive field and orientation tuning. 

This sample is biased, as we were explicitly looking for border-ownership cells and 

skipped cells that were not promising candidates (see Methods). For Monkey J, 

where the fMRI signal was weak and we were just guided by anatomical locations 

where monkey T had shown high functional activation, we found slightly fewer 

border-ownership cells (p=0.04, two-sided unpaired t-test on average modulation 

indices across artificial stimuli). Receptive fields were in the lower left and lower 

right quadrant of the visual field for monkey T and monkey J, respectively and 

eccentricity ranged from 1° to 5°. 

 

Figure III-2: An example border-ownership cell.  
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(a) Electrode targeting V3d; fMRI activation for disparity checkerboard vs. full 

field disparity is overlaid. Green cross: Location of electrode tip. Dotted blue lines: 

Retinotopically defined area boundaries of V2d and V3d. lu: lunate sulcus. (b) 

Receptive field as computed by the spike-triggered average. (c) Orientation tuning 

of the cell. Radius and angle of the polar plot correspond to firing rate and 

presented orientation of moving sine grating, respectively. This example cell had a 

preferred orientation of about 30°. (d) PSTHs of responses to luminance squares 

(presented for 500 ms). Four square stimuli with different contrasts and different 

sides (right panel) with the edge on the receptive field (purple ellipse). This cell’s 

response was increased when the figure was on the top right side. (e) Position test 

of the cell. To test the robustness of the border-ownership signal across positions 

within the receptive field, the stimulus was swept across different positions 

orthogonal to its preferred orientation (x-axis, indicated by the positions 1-11 at the 

top right of (d)). Across all positions within the receptive field, the response (y-axis) 

was consistently higher when the figure was on the preferred side of the receptive 

field. Blue and red conditions are equivalent to the stimuli used in (d). Error bars 

indicate standard error mean. 

Initially, the primary goal of this study was to determine how border-ownership 

cells respond to the side-of-figure of natural stimuli. However, preliminary 

recordings with a variety of artificial stimuli revealed almost no cells that were 

consistent in their border-ownership preference across all artificial stimuli tested, 

leading us to carry out a systematic characterization of the consistency of border-

ownership cells across a large population of cells and a large battery of artificial 

stimuli (See Fig. III-5a-d for the battery of artificial stimuli used). Previous studies 

or border-ownership cells have each focused on specific subsets of artificial 

stimuli. Thus, a major question remains open: whether there exists a significant 

fraction of “true” border-ownership cells that signal the side-of-figure reliably across 

all types of artificial stimuli containing object borders. Moreover, there has been 

considerable variability in the reported proportions of consistent cells across 
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different studies and stimuli.  Zhou et al. (2000) found more than more than half 

of cells in V2 to be selective to the side-of-figure of single luminance squares; 

among those cells, 20/42 cells were tuned significantly and consistent to the side-

of-figure of occluding squares, 1/42 cells was tuned significantly but inconsistent, 

and 21/42 cells were not significantly tuned. For C-shapes, Zhou et al. found 4/16 

cells to be tuned significantly and consistent, 12/16 to be not significantly tuned, 

and no cells to be significantly tuned and inconsistent.  (Qiu and Von Der Heydt, 

2005) found 35% of 174 neurons in V2 to be selective to the side-of-figure of a 

luminance square, 40% to be selective to depth order, and 21% selective to both, 

of which 81% were consistent between luminance-defined and disparity-defined 

side-of-figure. For a transparent overlay stimulus, Qiu and Von Der Heydt (2007) 

found 127 of 244 of cells to be tuned to the side-of-figure of the luminance square 

and 30 of those cells to be significantly tuned to the side-of-figure of the 

transparent bars and consistent with the preferred side-of-figure for the luminance 

square; they did not report the number of significantly tuned, inconsistent cells.  
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Paradigm Significantly 

consistent 

Significantly 

inconsistent 

Not significant 

 All cells Top 

50 

All cells Top 

50 

All cells Top 50 

Standard test 

(Single luminance 

square) 

55% 

(111/201

)  

84% 

(42/50

) 

n/a n/a 44% 

(90/201) 

16% 

(8/50) 

Occluding squares 19% 

(21/110)  

30% 

(13/42

) 

10% 

(11/110) 

2% 

(1/42) 

71% 

(78/110) 

67% 

(28/42) 

Occluding outlines 11% 

(12/111) 

17% 

(7/42) 

16% 

(18/111) 

5% 

(2/42) 

73% 

(81/111) 

79% 

(33/42) 

C-shapes 11% 

(12/108) 

19% 

(8/42) 

22% 

(24/108) 

10% 

(4/42) 

67% 

(72/108) 

71% 

(30/42) 

Transparent 20% 

(21/107) 

26% 

(11/42

) 

5%  

(5/107) 

2% 

(1/42) 

76% 

(81/107) 

71% 

(30/42) 

Four squares 

control 

37% 

(40/107) 

55% 

(23/42

) 

10% 

(11/107) 

0% 

(0/42) 

52% 

(56/107) 

45% 

(19/42) 

Single full faces 41% 

(45/111) 

69% 

(29/42

) 

17% 

(19/111) 

7% 

(3/42) 

42% 

(47/111) 

24% 

(10/42) 
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Occluding full 

faces 

14% 

(16/111) 

29% 

(12/42

) 

5% 

(6/111) 

2% 

(1/42) 

80% 

(89/111) 

69% 

(29/42) 

Single ambiguous 

face 

20% 

(22/111) 

29% 

(12/42

) 

10% 

(11/111) 

0% 

(0/42) 

70% 

(78/111) 

71% 

(30/42) 

 

Table III-1: Consistency of cells for border-ownership stimuli. For different 

stimuli presented during the experiment, we computed the percentage of cells that 

were significantly tuned to the side-of-figure of the stimulus and consistent with the 

preferred side-of-figure for the single luminance square. Significance criterion was 

p<0.01 as in Zhou et al. (2000). For the single luminance square (first row), the 

proportion of significantly tuned cells merely indicates the proportion among all 201 

analyzed cells, and among the 50 cells with highest average modulation index 

across artificial stimuli, respectively, that were significantly tuned the side-of-figure 

of the single luminance square by two-way anova on side-of-figure and contrast 

polarity. For the remaining stimuli, we only considered cells that were significantly 

tuned to the side-of-figure of the single luminance square, which was the case for 

111 out all 201 cells and 42 out of the top 50 cells, and computed the proportions 

of cells from these two populations that were (a) significantly tuned to the side-of-

figure of the stimulus and consistent with the side-of-figure preference for the 

single luminance square, (b) significantly tuned to the side-of-figure but 

inconsistent with the single luminance square, or (c) not significantly tuned to the 

side-of-figure of the given stimulus. Note that 4 of the 111 cells were lost too early 

to present all artificial stimuli. For comparison, Zhou et al. (2000) found that among 

the cells that were significantly tuned the side-of-figure of the single luminance 

square 20/42 cells were tuned significantly and consistent to the side-of-figure of 

occluding squares, 1/42 cells was tuned significantly but inconsistent and 21/42 
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cells were not significantly tuned. For the C-shapes Zhou et al. found 4/16 cells 

to be tuned significantly and consistent, 12/16 to be not significantly tuned, and no 

cells to be significantly tuned and inconsistent. For the transparent stimulus, Qiu 

and Von Der Heydt (2007) found 30/127 cells to be tuned significantly and 

consistent (note that the significance criterion was p<0.05 in Qiu and Von Der 

Heydt (2007) and p<0.01 in Zhou et al. (2000)). 

 

Similar to the findings of Zhou et al. (2000), we found that a little more than half of 

all neurons were significantly selective to the side-of-figure of the single luminance 

squares (two-way anova p<0.01). Compared to Zhou et al. (2000), however, we 

found a substantially higher proportion of cells that showed inconsistent border-

ownership selectivity when comparing tuning for side-of-figure in luminance-

defined figures and another artificial stimulus (Table 1). In particular, for C-shapes 

and overlapping outlines, we found even more cells that significantly preferred a 

side inconsistent with the single luminance square preference than cells that 

preferred a consistent side. For the overlapping luminance squares, the 

transparent stimulus, and its four square control, in turn, there were more cells that 

were consistently significantly selective than cells significantly preferring the 

opposite side, which is more consistent with the findings of Zhou et al. (2000).  

Demonstrating that we were recording from the same general class of cells as von 

der Heydt’s group, we reconstructed their population analysis for the transparent 

stimulus from Qiu and Von Der Heydt (2007) and found qualitatively similar results 

(Fig. III-3). A subtle difference in the stimuli (Fig. III-3, top) leads to the perception 

of either two transparent overlaid bars or four rounded squares, which changes the 

border-ownership at the receptive field location. Although the scale of the marginal 

distributions of border-ownership modulation indices was somewhat different 

between our sample of cells and Qiu and Von Der Heydt (2007), we replicated the 

switching in border-ownership signaled by the cell population. 
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Figure III-3: Comparison of population analysis to Qiu and Von Der Heydt 

(2007).  We reconstructed the population analysis performed in Qiu and Von Der 

Heydt (2007) to compare border-ownership tuning of the recorded cells. (a) shows 

the border-ownership modulation index for the single luminance square on the x-

axis against border-ownership modulation index of the transparent overlay 

stimulus (left) and the four square control (right) on the y-axis for all cells we 

recorded that were significantly tuned to the side-of-figure of the single luminance 

square. (b) shows the original data adapted from Qiu and Von Der Heydt (2007). 

Note that for this figure, we used the same formula for modulation indices as used 

in Qiu and Von Der Heydt (2007), which is slightly more complicated than the one 

in the rest of this article. Thick black lines indicate Standard Model I regression 

lines, i.e., the ordinary least squares fit of the abscissa to the ordinate. P-values 

were computed by comparing a transform of the Pearson correlation coefficient to 

a Student’s t-distribution. Note that this represents a relatively conservative 

measure of correlation. Since the sign of border-ownership for each cell is 
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arbitrary, we also computed correlations after duplicating all points by reflecting 

them over the origin.  This measure yielded the same signs of correlations and 

even higher explained variances (𝑟2 = 22.2% and p = 3.15𝑒 − 13 for transparent 

overlay stimulus, 𝑟2 = 24.7% and p = 9.56𝑒 − 15 for transparent overlay stimulus).  

We next quantified how many cells were significantly tuned to a given number of 

artificial stimuli and consistent with the preferred side-of-figure for the single 

luminance square (Fig. III-4a).  We found that 40% of cells were not significantly 

and consistently tuned for any of the artificial stimuli, and not a single cell was 

significantly and consistently tuned for all artificial stimuli. There were 11 cells that 

were tuned consistently across all artificial stimuli, but not significant for all, i.e., the 

sign of the modulation index, averaged across the two contrast conditions, was the 

same for each artificial stimulus as for the single luminance square (standard test). 

In sum, we failed to find a population of cells that were significantly tuned to the 

side-of-figure across the whole large battery of artificial stimuli in a consistent 

manner; in particular, many ostensible border-ownership cells that were 

significantly tuned to the side-of-figure of luminance squares turned out to be 

inconsistent when tested with a battery of other stimuli.  These results strongly 

suggest that border ownership is encoded by a population of cells, which are each, 

individually, imperfect in their border-ownership selectivity.   
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Figure III-4: Quantification of response consistency across artificial and 

natural stimuli. 
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Histograms show the proportions of cells that are consistent and significant for a 

given number of artificial (a) and natural stimuli (b). The five artificial stimuli and 

nine natural stimuli based on which the consistency of the cell was tested are 

shown at the top of (a) and (b), respectively. A cell is considered consistent for a 

given stimulus if the modulation index for that stimulus has the same sign as for 

the single luminance square (standard test). Significance criterion is p<0.01. Red 

lines show the proportion of cells among all cells that were significantly tuned to 

the side-of-figure of the single luminance square, whereas blue lines only take into 

account the 50 cells with the highest modulation index across artificial stimuli, 

respectively.  

To see whether, despite the inconsistencies of many cells, we could still extract a 

population signal that is consistent across all artificial stimuli, we next computed 

the average population response across the most consistent cells. We evaluated 

each neuron’s consistency by computing the average modulation index across all 

artificial stimuli (shown in Fig. III-5a-d). The average modulation index across 

artificial stimuli had a mean of 0.038 and a standard deviation of 0.081 across all 

201 cells (see also histograms in Fig. III-6, top). We then chose the 50 most 

consistent cells based on this average modulation index. The exact number of 

chosen cells did not qualitatively influence the results. Cells were pooled across V2 

and V3; when comparing consistency to artificial stimuli between V2d and V3d, we 

found slightly but significantly more consistent border-ownership signals in V3d 

than in V2d (p=0.02, unpaired t-test on average modulation indices across artificial 

stimuli based on 137 cells recorded from V2d and 64 cells recorded from V3d). As 

can be seen from the green line in Fig. III-4a, by selecting the 50 top cells with this 

method, the proportion of cells that were consistent across a high number of 

artificial stimuli substantially increased.  Fig. III-5a-d shows the average PSTHs of 

these 50 selected cells to artificial stimuli. By focusing on the most consistent 

border-ownership cells, we obtained a border-ownership signal that was reliable 

across artificial stimuli: the response difference for the standard luminance square 
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test (Fig. III-5a) was strong and consistent, which is expected since we defined 

the preferred side of each cell based on the luminance square responses. The 

responses to the other artificial stimuli (Fig. III-5b-d) were also significantly stronger 

when presented on the preferred side, which is a sanity check that the population 

of 50 cells indeed represented consistent border-ownership cells. The population 

border-ownership signal for occluding outlines and C-shapes was weaker than for 

other artificial stimuli, but was nevertheless consistent (see also Table 1). 

 

Figure III-5: Responses of border-ownership cells to simple and natural 

stimuli. The PSTHs on the left of each plot show the population mean responses 

(±1 standard error mean, shaded region) of 50 selected border-ownership cells to 

stimuli shown on the right outlined with the corresponding color. Both artificial and 

natural stimuli were rotated and positioned such that the central edge (indicated by 
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purple ellipse) was in the preferred orientation and centered on the receptive 

field of each cell. Preferred side of figure of border-ownership cells was determined 

based on the response to simple luminance squares (shown in a) alone. Blue 

colors correspond to conditions where the figure was on the preferred side and red 

are matched conditions, where the stimulus looks identical/similar in the receptive 

field (purple ellipse) but the figure is on the non-preferred side. The 50 cells were 

determined to be consistent border-ownership cells based on their responses to 

simple, artificial stimuli alone. P-values were determined using two-tailed paired t-

tests. (a) Population mean responses to luminance squares. A higher response to 

the preferred side is expected as the preferred side was determined based on the 

response to the luminance square. (b) Population mean responses to occlusion 

stimuli. (c) Population mean responses to occluding outlines and C-shapes.  (d) 

Population mean responses to four squares (top), single squares (middle), and 

transparent overlay (bottom). (e) Population mean responses to single faces. (f) 

Population mean responses to overlapping faces. (g) Responses to isolated edge 

stimulus of faces alone. This stimulus was generated by removing the part outside 

the receptive field for stimuli in (f). (h) Magnified version of stimuli in (g). (i) 

Population mean responses to occluding and single faces with illusory contour, 

where the local stimulus inside the receptive field was removed. (j) Population 

mean responses Mooney faces (top) and to stimulus on bottom of (f) but with low-

contrast border, where the contrast was reduced locally inside the receptive field 

(bottom). (k) Population mean responses to outlines of occluding faces and faces 

occluding an apple.  

Next, we asked how this population of border-ownership cells that responded 

consistently to the side-of-figure of artificial stimuli responded to a variety of natural 

stimuli.  We found that the side-of-figure selectivity to artificial stimuli generalized to 

natural stimuli (Fig. III-5e-k): when presenting the edge of a single face in the 

receptive field, the average response of border-ownership cells was significantly 

higher when the face was on the preferred side compared to when it was 
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presented mirror-symmetrically on the non-preferred side. Interestingly, the 

consistency of responses was even stronger and more significant than for most 

artificial stimuli based on which the cells were selected for. Moreover, the response 

was higher when the foreground face of two overlapping faces was presented on 

the preferred side. We also presented the isolated local part of the overlapping 

face stimulus to determine how much border-ownership information was given in 

the local edge alone. For the first pair of overlapping faces (Fig. III-5f top) we had 

chosen a central edge that was located on the forehead and fairly straight (see Fig. 

III-5g for the isolated stimulus and Fig. III-5h for an enlarged version). For this pair, 

we could find no significant response difference for the isolated local stimulus 

alone. For the second pair, we chose a more convex edge at the chin and the local 

stimulus exhibited a T-junction at the bottom of the stimulus (Fig. III-5f-h bottom). 

This local stimulus by contrast did evoke a significant response difference that was 

consistent with the border-ownership of the cells. We next presented faces with 

illusory contours, namely Mooney faces and the natural faces mentioned above 

with the local edge over the receptive field deleted. For each of these stimuli, we 

ensured that within the receptive field, the stimulus was identical to the background 

presented during the 150 ms OFF time. As can be seen from Fig. III-5i-j, the 

response amplitude was much weaker when deleting the local stimulus, but the 

response difference was still significant and consistent with the border-ownership 

selectivity. When presenting a stimulus with the local edge not completely deleted 

but strongly reduced in contrast (Fig. III-5j bottom), the amplitude was in between 

the amplitudes to the full face and the locally deleted face, and again the response 

difference was consistent with the border-ownership. We tested whether the 

response difference could be evoked by presenting the mere outlines of the 

overlapping faces (Fig. III-5k, top), and found the outlines alone did not evoke a 

significant response difference. The border-ownership selectivity for natural stimuli 

was not limited to faces, as a face occluding an apple also evoked consistent 

border-ownership (Fig. III-5k, bottom). Note, however, that for this stimulus, we 

cannot exclude that the response difference was due to the contrast difference 
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between the two different objects. Fig. III-4b shows the proportions of cells that 

were consistent and significantly tuned to a given number of natural stimuli. 

Interestingly, among the 50 cells that were selected based on consistency for 

artificial stimuli (green line), there was a higher proportion of cells that was 

consistent and significant across many natural stimuli. This shows that the 

consistency across artificial stimuli generalizes to natural stimuli. Note also that for 

the natural stimuli in Table 1, the percentage of inconsistent cells substantially 

decreases when taking into account only the 50 cells with highest modulation 

indices averaged across artificial stimuli. 

We next further examined the relationship between side-of-figure preference for 

artificial stimuli and natural stimuli (Fig. III-6). In general, the modulation indices for 

artificial and natural stimuli showed small but strongly significant correlations, 

indicating that cells signaling the side-of-figure of artificial stimuli correctly also tend 

to correctly signal the side-of-figure of natural stimuli. Yet, there is considerable 

residual variance of natural stimuli modulation indices left, indicating that not every 

cell is consistent for every stimulus, but the correct side-of-figure needs to be 

inferred from the population activity. Both the luminance square modulation index 

and average modulation index across artificial stimuli were positively correlated 

with natural stimulus modulation indices; however, for both single and overlapping 

full faces, the average modulation index across artificial stimuli explained almost 

twice as much variance as the modulation index for luminance squares alone. 

Indeed, we found that for most natural stimuli, the average modulation index 

across artificial stimuli explained more variance than the modulation indices of 

each individual artificial stimulus. This suggests that for these natural stimuli, using 

a battery of artificial stimuli is a better predictor for whether a cell is a border-

ownership cell and will respond consistently to these natural stimuli than just using 

the luminance square standard test alone. In contrast, for the stimuli with 

ambiguous contours, the average modulation index across artificial stimuli was a 

worse predictor than the modulation index for the standard test alone. This could 
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suggest that the populations of border-ownership cells that represent the side-of-

figure of illusory contours might not always carry complete information about the 

correct segmentation of certain artificial stimulus conditions. Note, however, that, 

for the single ambiguous face (Fig. III-5i, bottom) the modulation index averaged 

across artificial stimuli actually explained more variance than the single luminance 

square modulation index. It is noteworthy that the single ambiguous face was the 

stimulus for which none of the top 50 cells was inconsistent (Table 1), whereas for 

artificial stimuli there tended to be many inconsistent cells. For other natural 

stimuli, the number of inconsistent cells was also low compared to artificial stimuli. 

There were three out of 50 cells that were significantly tuned to the single full face 

stimulus but inconsistent with the luminance square stimulus, and no cells that 

were significantly tuned to the single full face stimulus and inconsistent with the 

single ambiguous face. 

Justifying our choice to focus on the most consistent cells, the consistency 

between border-ownership selectivity for artificial and natural stimuli was greatly 

weakened when we analyzed all cells regardless of their consistency across 

artificial stimuli (compare marginal distributions using all cells (gray bars) with the 

distributions using only the top 50 cells (blue bars) in Fig. III-6). When we included 

all cells, the population average could not significantly determine the border-

ownership of occluding faces. For single faces, there was still a consistent border-

ownership signal left even when averaging across all cells but it was less 

significant than when averaging across the top cells (despite larger sample size). 
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Figure III-6: Correlations between modulation indices of artificial stimuli 

and modulation indices of natural stimuli. The six scatter plots show how 

responses to the side-of-figure of artificial stimuli correlate with responses to the 

side-of-figure of natural stimuli. The scatter plots on the left have the modulation 

indices of the single luminance square on the x-axis while the scatter plots on the 

right have the average modulation index across all artificial stimuli on the x-axis. 

Both types of modulation indices are plotted against the average modulation index 

across a class of natural stimuli on the y-axis: The first category (a) includes full 

single faces shown in Fig. III-5e, the second category (b) contains overlapping 

faces (Fig. III-5f) and the third category (c) includes faces with ambiguous contours 

(Fig. III-5i,j). Red lines indicate Standard Model I regression lines, i.e., the ordinary 

least squares fit of the abscissa to the ordinate. P-values were computed by 

comparing a transform of the Pearson correlation coefficient to a Student’s t-

distribution. Using a permutation test on the Pearson correlation coefficient yielded 

qualitatively the same results. The vertical dashed blue line in the right plots 

indicates the average modulation index which was the threshold for being chosen 

for the 50 selected cells used in Fig. III-5. The histograms at the top and on the 

right show the marginal distributions of average modulation indices for luminance 

squares, artificial stimuli and natural stimuli, respectively, across all 201 cells (blue 

histograms show modulation indices for the 50 selected cells).  

We compared latencies of the border-ownership signal for the full face stimulus 

and the ambiguous face stimulus. Fig. III-7a shows raster plots of an example 

cell’s responses to full and ambiguous face stimuli. As can be seen from the 

difference of the PSTHs for the preferred and non-preferred condition, the border-

ownership signal for the stimulus with illusory contour is smaller and delayed. As 

discussed in the previous paragraph, the 50 cells most consistent for artificial 

stimuli formed a population that signaled border-ownership of the ambiguous 

stimulus reliably. Thus, we compared latencies for the single full face stimulus and 

corresponding single ambiguous stimulus for the 17 out of 50 cells that were 
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consistently and significantly border-ownership selective for both stimuli. The 

latency for the full stimulus was on average 65 ms and significantly shorter than 

the latency to the stimulus with illusory contour, which was on average 100 ms. 

 

Figure III-7: Latency differences between full stimuli and stimuli with illusory 

contours.  (a) Raster plots of example cell responses to full faces presented on its 

preferred side (blue) and non-preferred side (red), respectively, and responses to 

the stimulus with locally deleted edge (yellow and purple). The preferred side was 

defined by the cell’s responses to luminance squares. (b) Difference of the PSTHs 

for preferred side and non-preferred side, for the full face (solid line) and the face 
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with locally deleted edge (dashed line). The vertical solid and dashed lines show 

the latencies for full and ambiguous faces, respectively, defined as the time the 

difference reaches half of its peak value. (c) Population scatter plot of latencies of 

border-ownership signal of full face stimulus shown at the x-axis against border-

ownership latency for the stimulus with locally deleted edge shown at the y-axis. P-

value was computed with a paired Wilcoxon rank sum test.  

Discussion. We were interested in how border-ownership cells, which have been 

shown to respond consistently to the side-of-figure of artificial stimuli, respond to 

natural stimuli and stimuli with ambiguous contours. In our study, we probed 

responses of a large number of V2 and V3 cells for border-ownership selectivity 

across a large battery of different stimuli, both artificial and natural, enabling us to 

rigorously assess the extent to which each cell showed consistent tuning across 

different stimulus conditions.  As can be seen from Table III-1, we found many 

cells that were ostensibly border-ownership cells based on selectivity to the side-

of-figure of single luminance squares but responded inconsistently to other artificial 

stimuli. Indeed, there was not a single border-ownership cell (out of 201 tested) 

that was significantly tuned and consistent to every single artificial stimulus. The 

considerable number of partially inconsistent cells in Table III-1 contradicts the 

simplistic concept of the perfect border-ownership cell, despite the intuitive appeal 

of a single cell explaining a variety of perceptual phenomena. Instead, it seems 

that single border-ownership cells carry incomplete information about figure-

ground segmentation for only a subset of conditions. Thus, in order for the brain to 

reliably determine the correct segmentation of the scene, it needs to average the 

activity of multiple border-ownership cells that each carry information about border-

ownership in different situations. Indeed, we found that by averaging across the 

most consistent cells, it was possible to get a population signal which was reliable 

across artificial stimuli.  
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We found that this population signal also consistently signaled the side-of-figure 

of a battery of natural face and object stimuli. This further supports the notion that 

border-ownership cells play a vital role for segmenting the visual scene into 

objects. For rather simple stimuli, such as the single faces, one could argue that 

the consistent response might simply be caused by asymmetric receptive fields 

such that the cells prefer more complex texture on one side of their receptive field 

center. In contrast, the consistent response to overlapping faces, which are 

visually very similar in both conditions, indicates that border-ownership cells are 

indeed inferring the side of the foreground object. For the pair of overlapping faces 

at the bottom of Fig. III-5g, where the local edge is convex and contains a telling T-

junction, even the isolated local stimulus evoked a consistent, though smaller, 

response difference (Fig. III-5h, bottom). This is consistent with psychophysical 

and computational evidence by Fowlkes et al. (2007) that the local bottom-up cues 

of borders in natural scenes are in many situations enough to decide border-

ownership. On the other hand, when the local stimulus is ambiguous and does not 

evoke a significant response difference (Fig. III-5h, top), global context cues can 

help to decide border-ownership (Fig. III-5g, top). To test whether shape of the 

object is sufficient for border-ownership cells to determine the side-of-figure, we 

presented the outlines of the overlapping faces alone. This did not evoke a 

significant response difference, which is consistent with the subjective experience 

that the border-ownership of the outlines alone is ambiguous without the texture 

and other features of the face. These results suggest that border-ownership cells 

integrate a variety of the object’s features, including local cues, as well as shape 

and texture outside the receptive field. 

Illusory contours have been a major subject of study for figure-ground 

segmentation in psychological literature (Heitger et al., 1994), and von der Heydt 

et. al (1984) found neurons in V2 that responded to illusory contours; however, the 

amplitude was smaller and the latency 10 ms longer compared to real contours 

(von der Heydt and Peterhans, 1989). The existence of such cells in V2 and also 
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V1 was confirmed by several other studies (von der Heydt and Peterhans, 1989; 

Grosof et al., 1993; Sheth et al., 1996; Lee and Nguyen, 2001; Ramsden et al., 

2001), and Bakin et al. (2000) found that they also respond to depth-defined 

illusory contours. Yet, up to now, it has not been known whether border-ownership 

cells consistently signal the side-of-figure for illusory contours (Kogo and 

Wagemans, 2013), although there have been several computational models 

(Finkel and Sajda, 1992; Sajda and Finkel, 1992; Kogo et al., 2010) where border-

ownership and illusory contours both emerge from a dynamic network computing 

figure-ground organization.  Recently, there has also been a discussion paper 

(Kogo and Wagemans, 2013) suggesting the intertwinedness of illusory contours 

with border-ownership, which received many commentaries. Among them, von der 

Heydt (2013) argued that illusory contours and border ownership might be 

represented by distinct populations in V2. Here, we have shown that border-

ownership cells do consistently signal the side-of-figure for illusory contours even 

though local edge information is missing. The number of cells significantly 

signaling the correct side-of-figure for illusory contours was slightly lower than for 

full contours (31 out of 50 significant cells for full stimulus vs. 20 out of 50 

significant cells for ambiguous stimulus, unpaired t-test, p<0.05), which may be 

partly due to the reduced amplitude of responses to illusory contours in general. 

Among the 50 cells most consistent for artificial stimuli, there were only 3 cells that 

were significantly tuned for the full face stimulus but inconsistent for the luminance 

square, and no cells that were significantly and inconsistently tuned to the side-of-

figure of the ambiguous stimulus and the luminance square. It is surprising that the 

ambiguous face stimulus turned out to be the stimulus where no cell signaled 

inconsistent border-ownership. A possible explanation is that the local stimulus in 

the classical receptive field causes the transient response, which can lead to errors 

for the unambiguous stimuli, whereas for the ambiguous face stimulus, the border-

ownership signal is evoked entirely by feedback from context (Gilbert and Li, 

2013), which is more reliable. Analogously to the onset responses of illusory 

contours studied by von der Heydt and Peterhans (1989), the response differences 
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signaling border-ownership of illusory contours were also smaller and delayed by 

about 30 ms compared to the full stimuli.  

Previously, the responses of border-ownership cells have been modeled as a 

result of pure feedforward operations (Heitger et al., 1994; Sakai and Nishimura, 

2006; Supèr et al., 2010), of intra-areal dynamics (Baek and Sajda, 2005; 

Zhaoping, 2005), and of feedforward and feedback interactions between areas 

(Craft et al., 2007; Jehee et al., 2007; Kogo et al., 2010), respectively. Our findings 

falsify pure feedforward models as they predict the same latencies of border-

ownership signals irrespective of the stimulus. Instead, recurrent (Lamme and 

Roelfsema, 2000) connections might need to be utilized to resolve ambiguous 

scenes. It is conceivable that the latency of the border-ownership signal is 

increased because intra-areal network dynamics or feedforward-feedback 

interactions between V2 and V4 require more iterations to resolve the border-

ownership. Note, however, that at least for the Mooney face, which evokes a 

significant and consistent border-ownership signal (Fig.  III-5j), it seems unlikely 

that contour completion mechanisms building from low-level cues would be 

sufficient to infer the illusory boundary of the face, but instead knowledge about 

face shape appears to be required. Assuming that the border-ownership signal 

that emerges around 100 ms for the full face originates from feedback from V4, it is 

also possible that the later signal for the border-ownership of the illusory contour 

arises from feedback from an area later in the hierarchy, e.g., posterior IT. Such 

cortico-cortical feedback loop interactions have been shown to exist between V1 

and V4 by (Chen et al., 2014). The most posterior face patch PL has latencies of 

80 ms to distinguish faces from objects (Issa and DiCarlo, 2012) and is thus a 

possible candidate feedback source.  

Previously, there has been a debate (Vecera and Farah, 1997; Vecera and O'reilly, 

1998; Peterson, 1999) on whether segmentation precedes recognition or vice 

versa. Our results (Fig. III-7) suggest the possibility of a third alternative that is 
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consistent with models of Bayesian inference (Rao and Ballard, 1999; Lee and 

Mumford, 2003; Yuille and Kersten, 2006). According to this hypothesis, initially, 

retinotopic areas try to segment the scene into regions corresponding to objects 

based on low-level cues, potentially using a combination of feedforward 

mechanisms utilizing local cues as T-junctions, intra-areal, and inter-areal 

dynamics. However, since segmentation of natural scenes is inherently ambiguous 

based on low-level cues and not every edge is an object border, this initial 

segmentation wave can only make guesses about which regions correspond to 

objects and relay these regions to IT. IT then attempts to recognize objects in the 

hypothesized regions and can accept or falsify the hypotheses by exciting or 

inhibiting border-ownership cells via feedback. In this way, IT would generate a 

representation of object surfaces in retinotopic cortex. Note, however, that the 

found latencies are merely suggestive evidence, and simultaneous recordings and 

perturbations of multiple areas will be necessary to dissect the exact mechanisms. 

Overall, we found that many ostensible border-ownership cells, as determined by 

the single luminance square, turned out to be inconsistent for one or more stimuli 

when presented with a larger battery of artificial stimuli, and not a single cell 

showed consistent border-ownership preference across all stimulus conditions 

tested. This emphasizes the necessity for future studies to present a larger set of 

stimuli in order to identify the most consistent border-ownership cells and the need 

to use a population code for decoding segmentation. Importantly, the population of 

border-ownership cells that was consistent across most artificial stimuli could also 

reliably segment both natural face and object stimuli and, with some delay, even 

ambiguous stimuli where local edge information was completely missing, which 

suggests that border-ownership cells integrate both local, low-level cues and 

global, high-level object cues to segment the visual scene.   By exploiting new 

techniques such as population calcium imaging, optogenetics, and simultaneous 

recordings in retinotopic and IT cortex, future work might be able to reveal how 
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border ownership cell populations are read out across different stimulus 

configurations. 

Materials and Methods. All animal procedures used in this study complied with 

local and NIH guidelines. Two male rhesus macaques were implanted with MR-

compatible head posts and trained to maintain fixation on a dot for a juice reward. 

Targeting. Since the interest of this study lies explicitly in recording from border-

ownership cells rather than an exhaustive analysis of V2/V3, our electrode 

targeting was guided by fMRI. Monkeys were scanned in a 3T TIM (Siemens) 

magnet. Scanning procedures were the same as described in Tsao et al. (2006), 

Freiwald and Tsao (2010), and Ohayon and Tsao (2012). For functional MRI, 

monkeys passively viewed stimuli on a screen. MION contrast agent was injected 

to improve signal to noise ratio. In order to identify V2 and V3, we first mapped 

retinotopy by presenting horizontal and vertical checkerboard wedges and defined 

area boundaries based on horizontal and vertical meridians. Within V2 and V3, we 

targeted areas with high functional activation in response to border-rich disparity-

defined checkerboard stimulus vs. a full field changing disparity stimulus (Tsao et 

al., 2003b) in order to increase the yield of recorded border-ownership cells (Fig. 

III-2a), since Qiu and Von Der Heydt (2005) had previously found that a majority of 

border-ownership cells are also selective to the side-of-figure of stereo-defined 

edges, which were abundant in the former stimulus. In addition, we were guided by 

anatomical landmarks, and targets were confined to the banks and fundus of the 

lunate sulcus. For monkey J, we did not get good signal in the fMRI and therefore 

targeted the same anatomical locations that yielded high activation in monkey T. 

We found slightly less border-ownership cells than in monkey T (see Results). 

Placement of recording chambers and electrode trajectories towards the targeted 

regions were planned with the software Planner (Ohayon and Tsao, 2012). In 

monkey T, we recorded from the right hemisphere and in monkey J from the left 

hemisphere. 
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Fixation. Monkeys were head fixed and passively viewed a screen in a dark 

room. A small fixation spot (0.25° in diameter) was presented in the center of the 

screen and eye position was monitored using an iScan system. Monkeys were 

rewarded with juice for maintaining fixation every 2-3 seconds.  

Electrophysiology. Tungsten electrodes (FHC) with 1 MΩ impedance were used 

for recording. Custom grids were printed and guide tubes were cut to extend 2 mm 

below the dura. Electrodes were advanced using an oil hydraulic microdrive 

(Narishige). Neural signals were recorded using a MAP system (Plexon). Local 

field potentials (LFPs) were filtered at 0.7–300 Hz, and single units and multi-units 

were filtered at 0.15– 8 kHz and recorded at 40 kHz. 

Online Data Analysis. Spikes were isolated and sorted online using the box-

method of the SortClient (Plexon). Initially, approximate receptive field location was 

determined by manually sweeping a small blinking square (0.2 º) across the 

screen. Based on this approximate location, receptive fields were mapped by 

computing the spike-triggered average (STA) in response to a random stimulus of 

size 8º that was centered on the hand-mapped location (Pack et al., 2003). The 

random stimulus was a series of images alternating at 100 ms that consisted of a 

grey background and two squares of size 0.5º appearing at random positions, with 

one of the squares being white and the other square randomly chosen to be either 

black or white. Subsequently, a 2-dimensional Gaussian was fitted to the spike-

triggered average (STA) of the stimulus to determine the position and size of 

subsequent stimuli. Receptive field maps were also computed by considering 

either the only black squares or the white squares alone and yielded similar 

receptive fields. Next, moving sine wave gratings were presented, and the 

preferred orientation of the cell was determined based on the sine grating 

orientation that evoked the highest response. For all subsequent stimuli, the 

central edge (indicated by a purple ellipse in the figures) was adjusted to the 

position and size of the receptive field and rotated to match the preferred 
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orientation. We recorded a total of 545 cells in monkey T and 121 cells in 

monkey J. We subjectively assessed for each recorded site whether it contained 

promising border-ownership cells based on clear receptive fields, clear orientation 

preferences, and consistent responses to the side-of figure of luminance squares 

and for a total of 298 out of 545 recorded cells proceeded to present a battery of 

border-ownership tests consisting of both artificial stimuli and natural stimuli of 

faces (note that some of these cells were included because they were recorded 

simultaneously as ones which passed the subjective assessment, but were not 

themselves subjectively assessed). In the offline analysis, further cells were 

excluded based on unclear STAs or insufficient samples of responses, yielding a 

total of 201 valid cells (see Offline Data Analysis). Artificial stimuli consisted of 

stimuli that had been shown by von der Heydt and colleagues to evoke consistent 

border-ownership signals, including the standard test with single luminance 

squares (Zhou et al. 2000), two occluding squares (Zhou et al. 2000), occluding 

outlines, C-shapes, and squares that evoke the perception of either four single 

squares or a transparent overlay (Qiu et al. 2007). To further verify the correct 

mapping of the receptive field and test position invariance within the receptive field, 

we also performed position tests by sliding the luminance square across 11 

positions orthogonal to its preferred orientation. Natural stimuli consisted of single 

faces, overlapping faces, the isolated local edge of overlapping faces alone, faces 

with local edge deleted, Mooney faces, outlines of overlapping faces, and faces 

occluding apples. The whole battery of artificial and natural stimuli is shown in Fig. 

III-5. We chose to use mostly faces for the natural stimuli as they represent a 

natural, complex, high level object category that is of strong behavioral and social 

relevance and with which monkeys have extensive experience. Also, the existence 

of face-selective regions in IT opens up the possibility to examine interactions 

between object representations in retinotopic and IT cortex (Tsao et al., 2008a). 

Stimuli were presented for 500 ms ON time and 150 ms OFF time. To correct for 

delays of the screen, we used a photodiode that detected the onset and offset of 

the stimuli. The photodiode’s output was fed into the recording system and later 
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used to synchronize the onset of the stimulus and the neurophysiological data 

during offline analysis. 

Offline Data Analysis. Spikes were re-sorted offline using OfflineSorter (Plexon). 

Trials in which monkeys broke fixation were discarded (using a 1° eccentricity 

fixation window). We discarded cells with insufficient number of trials or spikes 

(<500 or <1500 total spikes for standard test and natural stimulus set, 

respectively), and cells that either had an unclear STA were not centered on the 

receptive field or failed the position test (i.e., when shifting the stimulus as in Fig. 

III-2e, the peak response was not inside the receptive field), leaving a total of 201 

cells. Peristimulus time histograms (PSTHs) were smoothed with a Gaussian 

kernel. For Table III-1, which shows the consistency of cells for artificial and 

natural stimuli shown in Fig. III-5, we determined the proportion of side-of-figure 

selective cells for different stimuli using the same method as in (Zhou et al., 2000): 

side-of-figure selectivity of a cell to a given stimulus was computed using a two-

way anova on side-of-figure and contrast polarity on the average firing rate from 0 

to 500 ms during trials of different conditions and using an unpaired t-test in case 

of only one contrast polarity. Unless stated otherwise, a cell was deemed 

significantly selective to the side-of-figure of a stimulus if p<0.01 and consistent if 

the modulation index for the given stimulus had the same sign as for the standard 

test of single luminance squares. Modulation indices for pairs of matched stimuli 

were computed as 𝑀𝑠1,𝑠2 =  
𝑅𝑠1−𝑅𝑠2

𝑅𝑠1+𝑅𝑠2
, where 𝑅𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠 is the firing rate of the cell in 

response to the stimulus averaged over the 500 ms from onset to offset of stimulus 

presentation. We defined the preferred side-of-figure of each cell based on the 

average modulation index for the standard luminance squares shown in Fig III-2. 

Based on this preferred side, we computed the average modulation index across 

all pairs of matched artificial stimuli (blue and red conditions in Fig. III-5a-d).  This 

average modulation index is positive if the border-ownership coding across 

artificial stimuli is consistent with the border-ownership selectivity for the simple 

luminance square and negative if it is inconsistent. We selected the 50 most 
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consistent cells with the highest average modulation indices across artificial 

stimuli to compute the population average responses shown in Fig. III-5. The 

results did not depend qualitatively on the exact number of selected cells. Before 

averaging, each PSTH was normalized by the average response from 0 ms to 500 

ms after stimulus onset across the shown stimuli. The p-values shown on top of 

each PSTH were computed using two-sided paired t-tests on the normalized 

average responses from 0 to 500 ms after stimulus onset across trials of the 50 

neurons for the preferred vs. non-preferred side. For the scatter plots in Fig. III-6, 

we computed the average modulation index across the two local contrast 

conditions of the luminance square and the average modulation index across all 

artificial stimuli, and computed the correlation with modulation indices for natural 

stimuli. Finally, we compared latencies of the border-ownership signal for full face 

stimuli and ambiguous face stimuli with illusory contours. Traditionally, latencies 

have been computed as the time when the signal first significantly exceeds 

baseline fluctuations (Maunsell and Gibson, 1992; Kiani et al., 2005). However, 

since the response amplitudes were much lower for stimuli with illusory contours, 

we were worried that this definition might be biased toward longer latencies for 

stimuli with lower signal-to-noise ratios. Thus, we (1) only included the subset of 

border-ownership cells in the analysis that showed significantly stronger responses 

to the preferred side for both the full stimulus and the stimulus with illusory contour 

(p<0.05, Welch test). The preferred side was determined by responses to the 

luminance squares. (2) We used a half-peak measurement as latency (Zhou et al., 

2000): we computed the difference of smoothed (SD: 9 ms) PSTHs for preferred 

and non-preferred side and defined latency as the first time that the difference 

reached half of the maximum difference across the 500 ms of the stimulus ON 

time. (3) We repeated the analysis with a change point measure (Sugihara et al., 

2011), which fits a piecewise linear function consisting of two lines to the 

cumulative difference PSTH and defines the latency as the point where the first 

leg, which is fixed as 0, transitions to the second leg, which qualitatively confirmed 

our results. All analysis was performed using Matlab (Mathworks). 
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Segmentation patches 

Summarizing the findings of the previous section, individual cells recorded from 

random locations in V2 and V3 were incapable of reliably signaling border-

ownership across different types of stimuli. This was bad news of our original goal 

of recording from clear signals encoding segmentation and recognition and to 

study their interaction during switches of conscious percept. Therefore, we asked 

(1) whether there are specialized modules where neurons do reliably encode the 

figure-ground segmentation of a scene. Perhaps, we could apply an approach 

similar to the one that led to the discovery of face cells (see Chapter II) and employ 

fMRI paradigms to identify functional clusters of cells that encode a larger amount 

of figure-ground information. And (2) we asked whether we can use a decoding 

approach and use responses of a population of neurons recorded while the 

monkey viewed different types of figure-ground stimuli to decode the figure-ground 

segmentation of each image. Methods for fMRI and electrophysiology were the 

same as described in the section above. 

Identification of fMRI-defined segmentation hotspots. We hypothesized that if 

modules involved in figure-ground segmentation exist, then stimuli containing 

figures on a background would trigger these processes and evoke activation in 

those modules, whereas stimuli without figures would not (since there is nothing to 

segment). We thus presented stimuli containing figures on a background as well 

corresponding control stimuli containing only a background while monkeys were 

being functionally scanned (Fig III-8). We used either texture, luminance, motion, 

or disparity to define each of the figures and their respective background stimuli. 

Analyzing the difference in responses, we found hot spots of activation in V2, V3, 

V4, and V4A that were activated more strongly by stimuli containing figures than 

pure background stimuli. Interestingly, these activations by figures were very 

similar for each of the modalities, i.e., the overlap of each of the contrasts – 

whether defined by texture, luminance, motion, or disparity – was remarkably 

strong. This overlap in hot spot activation was not be explained simply by higher 
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signal-to-noise ratio in those regions: as a control, we performed an fMRI 

experiment comparing colored stimuli to greyscale stimuli. This contrast showed 

very little overlap with the segmentation-related hot spots, except for one patch in 

V4v, raising the possibility that segmentation-related modules may be largely 

separated from color-processing machinery. 
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Figure III-8: Segmentation hotspots overlap across modalities. We first 

mapped retinotopy to determine boundaries of visual areas V1-V4 (a) in three 

monkeys (three columns). We then presented texture-defined stimuli and 

compared activations to control stimuli with full-field background texture which 

revealed regions of activations located mostly in V3 and V4 (b). Outlines of these 

patches are shown in orange in the flat maps below. Stimuli containing figures 

defined by luminance (c), motion (d), or disparity (e) caused activations in 

overlapping regions, while activations evoked by color stimuli had little overlap (f). 

Cluster of consistent cells in segmentation hot spots. We targeted these 

segmentation hotspots with electrophysiological recordings to compare figure-

ground information encoded by neurons inside these regions with neurons from 

outside control regions, including those in the patches defined by color, which had 

previously been called globs and were suggested to be responsible for color 

processing (Conway et al., 2007). During electrophysiological recordings, we 

showed stimuli similar to the fMRI stimuli, in that they were defined by either 

texture, luminance, motion, or disparity. For each modality, either the center or 

edge of a single square was presented on the receptive field of a cell, and as a 

control, we also showed background stimuli without a square. While in general, 

consistent segmentation cells were rare, we did find a cluster of cells inside a 

segmentation hot spot where we, reproducibly across days, found cells that were 

consistent across all four modalities. The location of this cluster also overlapped 

with disparity columns that Adams and Zeki (2001) had studied inside the lunate 

fundus. Similarly to their findings, we found that as we advanced our electrode 

along the lunate fundus, cells changed from being tuned to near disparity to being 

tuned to far disparity (Fig. III-9a). An example cell from the cluster of consistent 

cells is shown in Fig. III-9b. Inside this cluster, cells that were consistent across all 

four modalities were much easier to find than anywhere outside the cluster (Fig. III-

10). 
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Figure III-9: A cluster of consistent cells inside of segmentation hot spot / 

disparity columns. We implanted a chamber almost horizontally so we could 



 

 

92 

make long penetrations in the fundus of the lunate sulcus along V3. Shown in 

the center of (a) is a part of a flatmap showing V3 with retinotopy superimposed 

and 8 recording locations that we recorded along the lunate fundus. Shown around 

the flatmaps are PSTHs representing the disparity tuning (from far, blue; to near, 

red). As the electrode was advanced, neurons changed tuning from preferring near 

disparity to preferring far disparity. The cell recorded at site 5, which also 

happened to be inside a segmentation hot spot (not shown), was consistently 

tuned to the side-of-figure of an edge as shown in the PSTHs in (b). This neuron 

fired more strongly when the top edge of a square was presented over its 

receptive field, regardless of whether the square was defined by luminance, 

texture, motion, or disparity. 

 

Figure III-10: Inside the cluster, cells are remarkably consistent. Left: 

Histograms comparing the proportion of cells that were significant and consistent 
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across 1, 2, 3, or 4 modalities inside and outside of the cluster. Right: Location of 

the cluster, with disparity-defined segmentation hot spot fMRI contrast overlaid. 

Decoding accuracies are higher in segmentation hot spots. We next 

characterized the amount of figure-ground information tuned in population of cells 

from specific structures of the visual cortex, such as segmentation-activated hot 

spots, globs (color modules), and control regions outside of segmentation hot 

spots and globs. To this end, we trained a linear classifier on responses of neurons 

and tried to predict whether a given region of an image was part of a figure, 

background, or a top edge/bottom edge of a figure (chance level thus being 25% 

decoding accuracy). Inside segmentation-activated regions as measured by fMRI 

we found higher percentages of cells tuned to borders compared to outside these 

regions for all modalities and also higher decoding accuracies reaching around 

60% when using 50 neurons for decoding (Fig. III-11). Decoding accuracies in 

control regions were notably lower, and decoding accuracies in globs were 

particularly low.  

 

Figure III-11: Decoding figure-ground information. Decoding accuracy and 

95% confidence intervals (y-axis) against numbers of neurons used (x-axis) for two 
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monkeys. To determine how much information about figure-ground 

segmentation is encoded in different patches of visual cortex, we used a linear 

classifier to extract figure-ground information from responses of either neurons 

from segmentation-activated regions (blue), glob neurons (red), and neurons from 

control regions outside of both segmentation-activated regions and globs. Squares 

defined by different modalities (luminance, texture, motion, disparity) were 

presented at different positions relative to the receptive field (square center, top 

edge, bottom edge, or full background stimulus without the square). A linear 

decoder was trained on a single-trial basis to classify across stimuli whether a 

figure, a top edge, a bottom edge, or background was over the receptive field.   For 

computing confidence intervals, we repeated decoding 100 times, and in each of 

the 100 iterations, a random subset of neurons and trials were selected. 
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C h a p t e r  I V  

MOONEY FACES 

We advise the reader to have a brief glance at Fig. IV-1 and see if he or she 

recognizes the objects in the image. Moreover, he or she should try to infer the 

figure-ground assignment, i.e., determine which regions in the image are 

foreground and which are background. Most subjects will have a hard time doing 

this. Next, turn the page upside-down and try to recognize the object in Fig. IV-1 

again. Now, it should be quite easy to see that the image depicts two faces, 

namely of a woman (my advisor) and of a monkey. Also, it becomes easy to infer 

where foreground and where background is. Importantly, even after turning the 

page back to its normal position (and the faces to their inverted position), the ability 

to recognize and segment the two stimuli persists. Hence, Mooney faces are 

switchable (although the switch can arguably only happen once), and may be 

usable to study whether face patches signal switches in percept. Given the 

previous chapter, another reason that makes the Mooney face an attractive 

potential stimulus for us was that Mooney faces cause the perception of subjective 

contours where the contours of a real, non-degraded face would usually be. 

Experiments described above suggested that border-ownership cells also encode 

to which side these illusory contours belong.
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Figure IV-1: Example Mooney face stimuli. If the reader finds it hard to 

recognize these stimuli after trying for a while, note that the Mooney stimuli have 

been inverted. Putting the page upside-down makes it easy to recognize them for 

most human subjects. 

While humans are very good at recognizing upright Mooney faces from the age of 

18 months (Doi et al., 2009), in most monkeys, Mooney face stimuli activated face 

patches only very weakly (Moeller et al., 2017). Strikingly, one monkey in our 

colony, which anecdotally was also deemed one of the smarter monkeys, showed 

face patch activation to Mooney faces just as strong as to real faces (see Figure 6 

in Moeller et al. (2017)). This raised the possibility that most monkeys may have 

difficulty recognizing Mooney faces as depicting faces in the same way that 

humans have difficulty recognizing upside-down Mooney faces. The outlier 

suggested it may be possible to make monkeys see the Mooney faces in the same 

way that turning the page upside-down helped the reader. Thus, we decided to 

find out why monkeys showed low activation to Mooney faces and if we could 

make them respond strongly to them. Two ideas we pursued for making face 

patches respond to Mooney faces were (1) to figure out what the difference is 

between Mooney faces and cartoon faces (which cause strong face responses) 
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and (2) to animate the Mooney faces. We investigated the two questions with 

electrophysiology and fMRI, respectively, using the same methods as described in 

Chapter III.  

For the first question, we recorded from 85 face-selective cells in face patch MF 

(Fig. IV-2). While face cells in face patch MF responded to Mooney faces slightly 

more than to real objects or Mooney objects, the response was very small, 

confirming results cited above. Indeed, the baseline-subtracted peak response to 

real faces was about four times as large as the response to Mooney faces (Fig. IV-

2a). This could not be simply explained by the fact that Mooney faces were not 

fully realistic faces: even for simplistic cartoon faces, the base-line subtracted peak 

response was almost three times as large as for the Mooney face. Thus, we asked 

what made this big difference between cartoon faces and Mooney faces. For this 

purpose, we created chimeras by exchanging face parts of cartoon and Mooney 

faces (Fig. IV-2b). We found that the outline of the cartoon face had by far the 

strongest influence on responses – cells responded to every second stimulus, 

which corresponds exactly to the stimuli that had the outline of the cartoon face 

present. We confirmed the importance of having an outline through chimeras 

between real faces and Mooney faces (data not shown).  
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Figure IV-2: Responses to Mooney faces can be increased by adding an 

outline. (a) Responses averaged across 85 MF cells (normalized) to real faces, 

Mooney versions of the same faces, real objects, Mooney versions of the same 

objects, and cartoon faces. (b) Top: Schematic illustrating the process of 

generating cartoon – Mooney chimeras by replacing one part (outline, ear, eye left, 

eye right, nose) at a time. Bottom: Response time courses averaged across 85 MF 

cells to each of the 25 = 32 possible combinations of using either cartoon version 

or Mooney version for each part. Diagram on the right indicates for each row which 

parts were Mooney and which parts were cartoon for the respective stimulus. 

For the second experiment, we made a shot-in-the-dark hypothesis that motion 

cues of a naturally moving Mooney face may help to increase face patch 

responses to Mooney faces. Thus, we created movie stimuli of real faces and 

objects moving around in a natural way, and also generated Mooney versions of 

the same stimuli. Mooney versions were created by smoothing the image of each 

frame and thresholding image intensity to create an image made of only two tones. 

We showed these movies, as well as corresponding static images, while monkeys 

were in the scanner to see how animation influences fMRI responses in face 

patches. Consistent with single-unit results described above we found that 

responses to static Mooney faces were significantly weaker than to real faces 

(Fig.IV-3a). Interestingly, animating the Mooney face had a remarkable effect, 

eliciting responses similar in magnitude to real faces. Importantly, this could not be 

explained simply by the motion energy of the stimuli: animating Mooney object 

stimuli did not increase their response. In a second experiment, in the same 

monkey, we additionally showed upside-down static or animated Mooney faces 

(Fig. IV-3b). The animation-induced response increase for upside-down Mooney 

faces was stronger than for Mooney objects but weaker than for upright Mooney 

faces.  We confirmed the main findings across face patches in a total of three 

monkeys (data not shown). 
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Concluding this chapter, we were able to make face patches respond to 

Mooney faces by adding an outline or animating them. One interpretation of these 

results frames them in terms of figure-ground segmentation: perhaps, because 

Mooney faces lack many of their contours (at least physically – they may still be 

perceived subjectively when the Mooney face is recognized), segmentation 

processes fail, and hence the features of a face cannot be grouped together as 

belonging to the same surface. This may impair object recognition processes. 

Adding a physical outline clearly helps the segmentation process, and natural 

motion can also serve as powerful cues to aid segmentation. Further experiments, 

such as using disparity to define the surface of the Mooney face, may gather 

further support for this hypothesis. 

Importantly, unlike the perceptual hysteresis in humans, face patches did not 

appear to “learn” from this experience. For example, for the second day of the 

fMRI experiment, after the monkey had seen both static Mooney faces and their 

animated counterparts for hours, responses to static Mooney faces remained low 

(Fig. IV-3b). Hence, we were not able to exploit Mooney faces as a switchable 

stimulus for our interaction experiments. Different possible hypotheses are 

consistent with these findings: for example, whether the monkey learned that a 

Mooney face represents a face or not, or already knew it from the beginning, it is 

possible that this knowledge is purely semantic and encoded in higher cognitive 

areas, not the face patches. Alternatively, the monkey may have switched from not 

perceiving a face to perceiving a face, but face patches may not represent the 

monkey’s percept but be mere passive filters of the visual input. This underscored 

for us that, before studying the interaction between brain areas, we would first 

need to figure out whether face patches actually represent conscious percept or 

not. We decided to definitely answer this question using binocular rivalry as a 

paradigm, as described in the next half of this thesis. 
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Figure IV-3: Responses to Mooney faces can be increased through 

animation. (a) Response time course, averaged across 14 runs, of the fMRI 

signal. Values above base line mean activation, values below baseline mean 

suppression. Each dot of the line plot corresponds to one functional volume taken 

(repetition time TR = 2 seconds). During each block, consisting of 12 TRs, either 

static real faces, static real objects, static Mooney faces, Mooney face movies, or 

Mooney object movies were presented, interleaved with blank periods (grey). Each 

category consisted of 8 stimuli. (b) Same as (a), but using different blocks on a 

different day. Images presented during blocks were real faces, real objects, static 

upright Mooney faces, static upside-down Mooney faces, upright Mooney face 

movies, and upside-down Mooney face movies. 
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C h a p t e r  V  

A PHILOSOPHICAL TREATISE ON CONSCIOUSNESS 

Definitions of consciousness 

Consciousness is the biggest remaining mystery of nature. While processes 

previously viewed as magical such as life have been elucidated by biology, real 

scientific progress on consciousness is scarce. To date, it remains almost 

completely unclear how consciousness, which can be defined as subjective 

experience or what it feels like to, e.g., see the color the red, maps to the physical 

world. While Aristotle asserted that consciousness must of course reside in the heart 

(Hicks, 2015), these days it is believed that rather the brain has something to do with 

consciousness. Thus, if looking to understand consciousness, one commonly 

glances hopingly at neuroscience and psychology. 

One has to distinguish between generic consciousness and specific contents of 

consciousness. Generic consciousness is the capability of having subjective 

experience at all, i.e., the difference between an awake individual and a deeply 

sleeping or anesthetized person. In neuroscience, the neural correlates of generic 

consciousness are studied by measuring brain states awake vs. asleep or 

anesthetized, or perturbing specific brain regions and see whether this renders the 

patient unconscious. However, we currently have no way of specifically turning off 

consciousness without also turning off a myriad of other processes, such as 

language, planned movement, higher-order thoughts, decision making, etc. Hence, 

it is currently not possible distill the neural correlates of generic consciousness from 

these other processes, which is the reason why I will focus on specific 

consciousness instead. Specific consciousness is about the contents of conscious 

experience, i.e., the subjective perception of the color red vs. the color green. Here, 

we have a greater chance to disentangle the subjective experience of seeing red vs. 
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not from all the other processes that come with it, and can thus hold more hope 

to find the true neural correlates of experience. 

Another distinction one needs to make is between phenomenal and access 

consciousness (Block, 1995). Phenomenal consciousness addresses the 

subjective, first-person view of conscious experience, or what it feels like to 

experience something, which is a private, non-physical sensation that cannot be 

conveyed directly to other entities. On the other hand, access consciousness 

addresses the third-person view of consciousness that can be observed 

behaviorally, i.e., whether a person has access to the perceived information in the 

sense that he can utilize or report it. To make it clear from the beginning, I do not 

believe that neuroscience has a very good shot at the hard problem of fully solving 

phenomenal consciousness, as I do not think that neuroscience will eliminate the 

conceivability of philosophical zombies. Even if we have a complete understanding 

and detailed description of the neural underpinnings of consciousness, it is still 

coherently conceivable for the same physical system to exist but exist in the dark, 

without anyone experiencing what it is like to be in that system. But this 

conceivability shall not demoralize us, as we can still get very close to a full 

understanding of consciousness: in the best-case scenario, we will be able to find 

the states or processes of the brain that empirically coincide exactly with specific 

contents of consciousness and only with consciousness, i.e., the provided 

description of brain processes is not modulated by other, confounding factors. If this 

is the case, we will be able to exactly predict, constrained only by the limits of 

language, what your current phenomenal experience is, and by perturbing exactly 

these processes, you will be able to reproducibly experience any exact conscious 

percept desired. The process description will be sufficient in the sense that if we 

clamp the process and perturb another part of the brain, your conscious percept will 

be unaffected and minimal in the sense that if we miss perturbing a specific aspect 

of the process, we will not be able to provoke the full experience. So even though 

zombies will still be conceivable, the empirically discovered relationship between 
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consciousness and the physical world will be more like a fundamental law, such 

as gravity in physics. After all, we can also conceive of a world with the same 

particles having mass, etc. as in the real world, but gravity happens to be absent. 

This conceivability does not imply that the discovered physical laws of gravitational 

force have not contributed to a deep understanding of gravity. 

Access consciousness seems much easier to solve than phenomenal 

consciousness. We can easily conceive finding the pathway by which, e.g., light is 

picked up by the photoreceptors, processed through several stages, and leading 

eventually to the motor actions of reporting the perceived information. Indeed, 

almost all studies trying to find neural correlates of conscious percepts, discussed 

below, depend on the subjects’ report of what they are perceiving. A critical 

distinction to be made here though is that the subject consciously perceiving 

something is not identical to the subject reporting his conscious percept. Indeed, 

one could decide to never report any experience and would still be conscious (cf. 

dreaming state and locked-in patients). Being conscious of something means 

generally (but not always) that one is capable of reporting it but does not have to. In 

almost all studies in neuroscience, the conscious percept exactly coincides with the 

report of the percept during the experiment, so it is impossible to tell whether the 

neural correlates correlate with consciousness or the report itself. To make things 

worse, there are several other confounding factors, such as attention, decision-

making, and differences in the physical stimulus that need to be controlled besides 

report. Thus, when trying to extract consciousness from the neurophysiological 

soup, one needs to be extra careful not to pick up the things associated with other 

processes that tend to stick to it. 

In the following sections, I will summarize results from the neuroscience literature 

on three major paradigms, flash suppression, backward masking, and binocular 

rivalry, that are being used to distill the neural correlates of a conscious percept. I 

will discuss to which degree the results agree and compare how effective the three 
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paradigms are in dissociating consciousness from other confounding factors. I 

will constrain the scope on results from electrophysiology. A lot of related work has 

been done using psychophysics and functional magnetic resonance imaging (fMRI). 

However, psychophysics tells us comparatively little about the brain, and the results 

from fMRI happen to disagree dramatically with electrophysiology regarding where 

the conscious percept is represented, with fMRI generally overestimating the extent 

to which it is represented in the brain (e.g., Tong and Engel (2001)). Since 

electrophysiology is considered the gold standard as to what neurons represent, I 

choose to focus on electrophysiology here, although the discrepancies between 

fMRI and single-unit electrophysiology are an interesting subject for discussion. In 

the end, I will argue for the main thesis of this paper that no convincing dissociation 

between conscious percept and confounding factors has been performed in hitherto 

experiments and will propose an experiment utilizing a no-report paradigm to distill 

the representation of specific contents of consciousness. 

Review of  previous paradigms for specific consciousness 

How does one find the neural correlates of a conscious percept? A moderate 

correlation is not enough: if one flashes light at a subject, the subject will have the 

subjective experience of brightness and coincidently the retina will be activated with 

each flash. Despite the retina’s firing being correlated with the subjective percept, 

one cannot claim it to be the neural correlate of consciousness, because it is not an 

exact correlate. That is, there is a lot of sensory input that we are not conscious of 

but that is represented in the retina. Thus, we need to dissociate what activations 

correlate exactly with the conscious percept and what activations are just driven by 

the mere physical input. To dissociate the physical input from the conscious percept, 

we want to find paradigms where the physical input is fixed but the conscious 

percept changes over time or is different over repeated presentations. The studies 

discussed below aim to achieve this using three different strategies: 
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In backward masking, a stimulus is presented so briefly that it can only perceived 

on some trials but not on others. One can compare neural activity when the stimulus 

is reported to be seen vs. not seen with the physical input being identical in both 

conditions. Flash suppression shows a target stimulus to one eye, while flashing a 

salient distractor stimulus in the other eye. This way, the target stimulus is 

suppressed by the distractor and is only perceived once it recovers from 

suppression after a variable amount of time. Binocular rivalry is an example of 

bistable stimuli, such as the famous face-vase illusion (Rubin, 1980), where the 

percept spontaneously switches between two percepts. As for flash suppression, 

two different stimuli are presented to the two eyes, but the conscious percept keeps 

stochastically alternating between the images in the two eyes. 

Backward Masking. In the ‘‘backward masking’’ paradigm (Breitmeyer et al., 1984) 

an image of e.g., a face or a tool is briefly presented, shortly followed by a visual 

‘‘mask,’’ a meaningless picture aimed at disrupting the recognition process. This can 

render the target image to be at the threshold of recognition, i.e., even for the same 

stimulus, the subject can only sometimes recognize the image. 

In areas associated with object recognition, firing rates (KovAcs et al., 1995) and 

gamma power (Fisch et al., 2009) were increased if the subject detected an object 

in a backward masking task. In the higher-level medial temporal lobe, which 

transforms percepts into memories, firing rates and gamma power of the local field 

potential (LFP) were also increased if the subject detected the stimulus, but there 

was an even earlier deflection in delta power before the increase in firing rates, and 

the differences in LFP power were more predictive than the changes in firing rate 

(Quiroga et al., 2008; Rey et al., 2014). 

Supèr et al. (2001) did not use a mask but showed a stimulus containing a texture-

defined figure to monkeys that they had to saccade to. Comparing trials where the 

monkey succeeded saccading to the figure with trials where he failed, the early 

response in primary visual cortex (V1) was identical, but the late response (>100 
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ms) was suppressed on miss trials, suggesting an influence of feedback to V1 

on conscious perception.  

Flash suppression. During flash suppression, a target stimulus is presented to one 

eye, while a second distractor stimulus is flashed to the other eye, thereby 

suppressing the target stimulus. In single flash suppression (Wolfe, 1984), the target 

stimulus is first presented to one eye, and subsequently both stimuli are shown 

binocularly. The flashing of the distractor stimulus thereby usually suppresses the 

target stimulus, which has not changed. A second paradigm called continuous flash 

suppression (Tsuchiya and Koch, 2005) keeps flashing the distractor stimulus at 

around 10 Hz, which yields prolonged suppression of the target stimulus up to 

minutes. Unlike binocular rivalry discussed below, where the stimuli are usually 

balanced, in flash suppression the distractor stimulus is usually rich in structure, 

such as Mondrian patterns, to increase strength of suppression. In a third paradigm, 

called generalized flash suppression (Wilke et al., 2003), a monocular target is 

suppressed by a binocular distractor in the surround of the target. 

In V1, generalized flash suppression caused no change in firing rate but modulated 

oscillations of the LFP in the 9-30 Hz and gamma range. In the lateral geniculate 

nucleus (LGN), the thalamic structure providing input to V1, no modulations were 

observed, but firing rates in pulvinar, a higher-level thalamic structure associated 

with attention, did change according to stimulus visibility during generalized flash 

suppression (Wilke et al., 2009). Neural activity in prefrontal cortex has also been 

shown to correlate the with conscious percept during single flash suppression 

(Panagiotaropoulos et al., 2012; Kapoor et al., 2018). 

Bistable stimuli and binocular rivalry. If one stimulus is presented to the left eye, 

and a completely different stimulus is presented to the other eye, rather than seeing 

a superimposition of the two, one will usually perceive only one of them, followed by 

the other, alternating stochastically in an endless dance. Since the physical input is 

fixed throughout, the fluctuations in conscious percept are entirely internally 
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generated, providing a good entry point for isolating the neural correlates of 

specific contents of consciousness (Tong et al., 2006; Blake et al., 2014). Binocular 

rivalry is a special case of bistable stimuli, such as the face-vase illusion or 

ambiguous motion, and has the advantage of increased freedom in choosing the 

two images that the percept oscillates between.  

Logothetis and Schall (1989) trained monkeys to report the perceived motion 

direction while viewing bistable motion patterns, and found that MT was modulated 

by the reported motion direction. During binocular rivalry, it was found that only as 

little as 20% of neurons in V1 represent the reported conscious percept and that the 

percentage increases as one goes up the visual cortex hierarchy to V2 and V4 

(Leopold and Logothetis, 1996), disagreeing with the fMRI literature that did find 

strong correlations with the conscious percept even in V1 (Polonsky et al., 2000a; 

Tong and Engel, 2001). In cat V1, Fries et al. (1997) claimed that binocular rivalry 

increased synchrony and regularity of gamma oscillations but not average firing rate. 

In the lower-level, thalamic lateral geniculate nucleus, which provides input to V1, 

no modulation by binocular rivalry was observed (Lehky and Maunsell, 1996). In the 

higher-level object recognition area inferotemporal (IT) cortex, 90% of cells in 

encoded reported percept (Sheinberg and Logothetis, 1997). Activity in the human 

medial temporal lobe and frontal cortex, which are higher-level than IT, has also 

been shown to reflect the reported conscious percept (Gelbard-Sagiv et al., 2018). 

Confounding factors 

When trying to distill the neural correlates of consciousness, one needs to carefully 

control for several confounding factors that tend to co-occur with changes of the 

conscious percept, such as changes in the physical stimulus, attention, report, and 

memory. Otherwise, one may be measuring the neural correlates of these 

confounding factors rather than of the conscious percept. In the following sections, 

we will discuss why each of these confounding factors is a problem and to which 

degree the three paradigms above avoid them. 
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Physical stimulus differences. As discussed above, even the retina will 

respond to changes in the physical input, but we cannot infer from this that the retina 

is a neural correlate of consciousness. Hence, one should try to keep the stimulus 

fixed and only change the conscious percept of it. In binocular rivalry and backward 

masking, the stimulus is constant, or at least the same across repeated trials, 

respectively. For flash suppression, there are two ways to collect and analyze the 

data. (1) One can keep repeating the same flash suppression experiment and ask 

subjects to report when the suppressed stimulus is released from suppression and 

enters the conscious percept. Since the time of suppression is stochastic, one can 

compare activity when the suppressed stimulus starts being perceived at different 

times. (2) In so-called no-report paradigms, the subject is just passively viewing the 

stimulus, and one compares two stimulus conditions, one where the target is 

suppressed by a flashing distractor, and the other where the target is shown without 

the distractor. Here, the problem arises that the physical input is very different in the 

two cases. Consider for example the results above, that the response to a preferred 

stimulus was decreased if a distractor was flashed in the other eye, compared to 

when the preferred stimulus was presented alone. We know from studies in IT, that 

if a distractor is presented, then the response to the preferred stimulus is decreased 

even if the preferred stimulus is perfectly visible, e.g., when the distractor is shown 

next to or transparently overlaid on the preferred stimulus (Bao and Tsao, 2018). 

Thus, it is expected for the distractor to decrease the response, not because the 

conscious percept of the preferred stimulus is suppressed, but just because of the 

physical stimulus difference. Alternatively, in the single flash paradigm, people 

sometimes compare responses to showing only the preferred stimulus first followed 

by binocular presentation, to responses to showing only the non-preferred stimulus 

first followed by binocular presentation. Upon the binocular presentation, they claim 

that the response is stronger if the preferred stimulus is shown second, in 

accordance with perception. However, this is also expected because of the transient 

responses of neurons: the firing rate of a neuron rapidly adapts to a stationary 
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stimulus, so if the preferred stimulus is shown first, the firing rate has naturally 

already declined by the time the second stimulus is flashed. 

Thus, current no-report paradigms of flash suppression have severe problems with 

differences in physical input, whereas backward masking and binocular rivalry come 

out unharmed. 

Attention. Attention has been suggested to be a separate, in some case even 

opposing, process, to consciousness (Koch and Tsuchiya, 2007). Yet, the two often 

go hand in hand, i.e., one becomes conscious of something when paying attention 

to it, so it is challenging to dissociate activity modulations caused by either of them 

in experimental setups. Indeed, of the confounding factors listed here, attention is 

probably the one most difficult to disentangle from consciousness. The paradigm 

having the most severe issues with attention is arguably backward masking. 

Whether a briefly presented stimulus is perceived or not depends a whole lot on the 

general level of arousal, willingness to succeed, and selective attention to the 

stimulus location. Thus, if we find a neural signature that correlates with whether a 

stimulus was perceived or not, it may just be representing the general arousal level 

of the subject.  

For flash suppression, bottom-up attention is an important issue. For the no-report 

flash suppression paradigms, where one compares activity when a distractor is 

flashed or not, it is clear that the flashing of the salient distractor will evoke bottom-

up attention, leading to the improved processing of the distractor and diminished 

processing of the preferred stimulus. Thus, observed modulations may represent 

the object-based attention to the distractor itself, the impoverished representation of 

the preferred stimulus due to impoverished processing, or suppression of the 

preferred stimulus to enhance the distractor rather than the conscious percept. 

In binocular rivalry, the role of attention has been controversial. Although earlier 

literature claimed that binocular rivalry is not under attentional control, it is quite clear 
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when experiencing a binocular rivalry stimulus that one has some kind of 

voluntary control over which stimulus one perceives (see Ooi and He (1999)). Later, 

it was found that compared to other bistable stimuli such as the Necker cube (Meng 

and Tong, 2004), the attentional control over which a stimulus is perceived is less 

for binocular rivalry, and one cannot hold one of the two percepts in awareness 

indefinitely. However, attention could be used for both types of stimuli to change the 

non-selective speed of switching. Later it was suggested that if attention is diverted 

from the rivalry stimulus by asking the subject to do a challenging different task, 

binocular rivalry modulations measured by EEG frequency tagging disappeared 

(Zhang et al., 2011). It has also been claimed that object-based attention causes 

dominance in binocular rivalry (Mitchell et al., 2004). 

Report. Almost all of the studies mentioned above required active report of the 

subject, e.g., by button press, to determine what the conscious percept at a given 

time was. The exception is no-report flash suppression, which caused problems with 

physical stimulus differences, though. Thus, it is possible that all the observed 

modulations of neural activity represented just the act of reporting itself rather than 

the conscious percept. Reporting one’s conscious percept entails several 

processes, such as introspection about what one is perceiving, making a decision, 

and the motor action of e.g., pressing a button. All these processes are known to be 

able to cause modulations in the brain, and are thus important confounding factors. 

Moreover, pondering and reporting the perception of a face may bring with it 

feedback processes for imagining a face, which is known to activate the visual cortex 

(Khuvis et al., 2018). Indeed, Frässle et al. (2014) found that fMRI modulations in 

many brain regions that were observed when the conscious percept changed in 

binocular rivalry with active report vanished when the subjects did not report their 

percept. This is alarming and indicates that the above studies may indeed have 

confounded the conscious percept with the report thereof. 
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Memory. The three paradigms as stated so far do not have severe issues with 

memory, as the percept is read out immediately, and does not require prolonged 

storage in working or long-term memory. One could consider removing modulations 

caused by the report of the percept by not asking the subject to remember the 

switches immediately but report them later. For example, the subject could be asked 

to count the number of switches and report them only later, either verbally or by 

button press. Note that this would only control the motor action of report, and not the 

introspection and decision-making that would still have to occur during the binocular 

stimulation. However, even if the motor action can be removed from the equation, 

another confound would be added instead: neuronal modulations may just be 

representative of how well the percept was transferred into memory and thus 

reportable later on. 

No-report paradigms 

To summarize the previous section, all three paradigms turn out to be highly 

problematic when trying to isolate consciousness from other perception-associated 

processes: each of the paradigms has problems with either attention, report, or 

physical stimulus differences. To the rescue come novel no-report paradigms 

proposed by Naber et al. (2011): unlike the no-report paradigm mentioned earlier in 

the context of flash suppression, the physical stimulus is fixed. However, to 

dissociate report from conscious percept, the conscious percept is not indicated by 

active report, but instead inferred from other behavioral markers that happen to 

coincide with the percept. The first marker that can be used is the so-called 

optokinetic nystagmus. If a moving grating is presented to a subject, its eyes will 

reflexively follow the movement of the grating. It turns out that if two gratings moving 

in opposite directions are presented in binocular rivalry, the eye movement will follow 

the grating that is reported to be consciously perceived. The second marker they 

proposed is pupil dilation. When presented with a bright stimulus, one’s pupil will 

contract. When presented with a dark stimulus, one’s pupil will dilate. When 

presented with a bright stimulus in one eye, and a dark, incompatible stimulus such 
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as orthogonal gratings, in the other eye, pupil dilation reflexively follows one’s 

percept switching during rivalry. Thus, it is not necessary for the subject to actively 

report its percept anymore: we can infer the current percept of the subject based on 

these reflexes that happen to be correlated with and predictive of the conscious 

percept. As mentioned above, Frässle et al. (2014) used optokinetic nystagmus and 

pupil dilation to infer switches of conscious percept in two conditions: either with the 

subjects actively reporting their percept or without them doing any task. They found 

substantial modulation across the brain during active report, but most of the 

activations, including prefrontal cortex, vanished without active report. Thus, it 

remains to be seen which modulations of neural activity actually reflect the 

conscious percept as opposed to report. 

Optokinetic nystagmus and pupil dilation are not ideal markers either, as they bring 

other potential confounds with them (Overgaard and Fazekas, 2016). Monkeys 

anesthetized with ketamine still show switches in optokinetic nystagmus during 

binocular rivalry (Leopold et al., 2002), even though they should not be conscious of 

the stimulus. This casts doubt on whether it is an exact correlate of the conscious 

percept. Furthermore, the smooth eye movements during nystagmus bring 

problems in physical input differences with them. Assume, stimulus 1 is moving to 

the left and stimulus 2 is moving to the right, and you are currently perceiving 

stimulus 1 and hence experience a nystagmus to the left. This means, that most of 

the time, stimulus 1 will be stationary on your retinas while stimulus 2 will be moving. 

If objects are used instead of gratings, another important confound is that the 

perceived object will always be on the center of your fovea, whereas the suppressed 

object will be moving into the periphery. This is important for foveally biased 

receptive fields and contralateral bias in many higher-level regions. On the other 

hand, pupil dilation is also modulated by arousal, uncertainty, reward prediction, and 

motor preparation, so it brings another stack of confounding factors with it.  
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Thus, I propose a third no-report paradigm for inferring the current percept: unlike 

the previous paradigms that are based on reflexes, in this paradigm the subject is 

asked to actively fixate on a fixation spot, that can appear e.g., either on the left side 

or the right side. In the left eye, stimulus 1, e.g., a face, is presented and in the right 

eye, stimulus 2, e.g., a body, is presented, leading to rivalry between the two objects. 

Now, the critical point is that the fixation spot in the left eye is actually different from 

the fixation spot in the right eye, i.e., when the left eye fixation spot is on the left side, 

the right eye fixation spot is on the right side, and vice versa. Perceptually, because 

of the rivalry, the subject will only perceive one object and one fixation spot at a 

given time, and the two will be linked, i.e., when perceiving the face, it will perceive 

the fixation spot of the left eye. Due to this link, we can predict whether he perceives 

face or body from where he fixates. This link between fixation position and perceived 

object only occurs on a single-trial basis, but as a whole is dissociated: half of the 

trials when perceiving a face, the fixation spot will be on the left, half of the trials it 

will be on the right, and the same is true for perceiving a body. Thus, any 

modulations we observe with changes in the inferred percept cannot be caused by 

the fixation spot location. In the subject’s experience, fixation spot location and 

perceived percept are independent. It just needs to follow the one fixation spot it 

sees and does not need to introspect, report, or make decisions about the perceiving 

face or body; indeed it can just ignore the object for this task. This task thus also 

alleviates the attention confound, because the task directs top-down attention to the 

fixation point, so less object-based attention to the face or body is possible. In my 

subjective experience, viewing this stimulus and tracking the fixation spots does not 

abolish rivalry, though. I tested the paradigm in humans that simultaneously reported 

their percept of face or body through button press, and was able to predict the 

reported percept with 86%-98% accuracy. In sum, the proposed third no-report 

paradigm dissociates consciousness from the physical stimulus, report, memory, 

and, to an improved degree, from attention. 
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Conclusions 

We have discussed to which degree neuroscience has helped or could help us to 

better understand specific contents of consciousness. I argued that in the best-case 

scenario, neuroscience has the capability of making real and meaningful progress 

on phenomenal consciousness. Finding the neural pathways for access 

consciousness is comparatively more tractable, but holds several caveats. When 

viewing consciousness from a third-person view, one can only indirectly infer what 

the subject is perceiving. Thus, one needs to be careful not to conflate the state of 

a stimulus being in one’s consciousness, i.e., accessible by processes such as 

report, with the report of said stimulus itself. One needs to carefully control for 

differences in the physical input, attention, introspection, and report, and I argued 

that none of the previous electrophysiological studies has successfully done so. I 

thus proposed a no-report paradigm, complementary to the two no-report paradigms 

already proposed by Naber et al. (2011) with the goal to dissociate the mentioned 

confounding factors from specific consciousness. Compared to previous report and 

no-report paradigms, I have argued that this paradigm is better at distilling the 

conscious percept from the physical stimulus, report, and attention. As a caveat, I 

do not claim that the paradigm fully controls for attention, although the advantage is 

that it diverts top-down attention away from the changing percept. This paradigm 

can thus be used to find out whether previously reported modulations and brain 

regions actually reflect the conscious percept. Finding the neural correlates of 

specific conscious percepts will be an important step towards solving the problem of 

phenomenal consciousness. 
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C h a p t e r  V I  

BINOCULAR RIVALRY 

Representation of  conscious percept in macaque face patches 

From: Hesse and Tsao (2020), "Representation of conscious percept without 
report in the macaque face patch network". In : bioRxiv. Submitted to eLife. 
 

Abstract. A powerful paradigm to identify the neural correlates of consciousness is 

binocular rivalry, wherein a constant visual stimulus evokes a varying conscious 

percept. It has recently been suggested that activity modulations observed during 

rivalry could represent the act of report rather than the conscious percept itself. Here, 

we performed single-unit recordings from face patches in macaque inferotemporal 

(IT) cortex using a no-report paradigm in which the animal’s conscious percept was 

inferred from eye movements. We found high proportions of IT neurons represented 

the conscious percept even without active report. Population activity in single trials, 

measured using a new 128-site Neuropixels-like electrode, was more weakly 

modulated by rivalry than by physical stimulus transitions, but nevertheless allowed 

decoding of the changing conscious percept. These findings suggest that macaque 

face patches encode both the physical stimulus and the animal’s conscious visual 

percept, and the latter encoding does not require active report. 

Introduction. Having conscious experience is arguably the most important reason 

why it matters to us whether we are alive or dead. The question what signals in the 

brain reflect this conscious experience and what signals reflect obligatory 

processing of input regardless of conscious experience is therefore one of the most 

important puzzles in neuroscience. For example, activations in the retina may 

correlate with the conscious percept of flashing light but are arguably entirely driven 

by physical input, much of which never evolves into a conscious percept. Another 
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driver of neural activity that can be confounded with signals related to conscious 

perception is report. Recently, it has been suggested that brain regions may 

correlate with conscious perception simply because they are driven by the active 

report of it (Aru et al., 2012; Frässle et al., 2014; Safavi et al., 2014; Tsuchiya et al., 

2015; Koch et al., 2016; Overgaard and Fazekas, 2016; Tsuchiya et al., 2016; Boly 

et al., 2017; Block, 2019, 2020; Kapoor et al., 2020). 

A paradigm known as binocular rivalry is useful for distinguishing responses related 

to conscious perception from those driven by obligatory processing of physical input 

(Tong et al., 2006; Blake et al., 2014). When two incompatible stimuli such as a face 

and an object are shown to the left and right eyes, respectively, one does not 

perceive a constant superimposition of the two, but instead one’s percept alternates 

between face and object even though the physical input is fixed (Fig. VI-1a). Since 

these alternations are internally generated, they cannot be attributed to pure 

feedforward processing of external input. 

In previous studies, researchers trained monkeys to report their percept during 

binocular rivalry by releasing a lever and found that the proportion of cells modulated 

by the reported percept increases along the visual hierarchy, with as little as 20% of 

cells showing modulations in V1 (Leopold and Logothetis, 1996) compared to 90% 

of cells showing modulations in IT (Sheinberg and Logothetis, 1997). Using fMRI, 

Tong et al. found that the human fusiform face area responds to reported perceptual 

switches (Tong et al., 1998). The reported percept also modulates activity of single 

units in the human medial temporal lobe and frontal cortex (Gelbard-Sagiv et al., 

2018). 

Although binocular rivalry isolates the conscious percept from physical input, an 

important confounding factor remains. In all studies cited above, the monkey or 

human subject always actively reported their percept by a motor response. Thus it 

is possible that the observed neuronal activations were due to the act of report itself, 

including introspection, decision making, and motor action accompanying report, 
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rather than a switch in conscious percept. This concern was emphasized in an 

fMRI experiment by Frässle et al., who compared modulations in the brain with and 

without active report (Frässle et al., 2014). Many of the modulations observed in 

higher-level brain regions such as the frontal lobe disappeared when subjects did 

not actively report perceptual switches. 

To infer the subject’s percept in the absence of report, Frässle et al. used two no-

report paradigms that depended on pupil size and optokinetic nystagmus, 

respectively. If the stimuli in the two eyes have different brightness, the subject’s 

pupil size will vary according to the dominant percept’s brightness and can thus be 

used to infer the percept. As a second method, Frässle et al. exploited optokinetic 

nystagmus. They presented gratings moving in opposite directions in the two eyes, 

causing the subject’s eye position to reflexively follow the direction of the dominant 

grating.  

These no-report paradigms allow accurate prediction of the subject’s percept but are 

not free of confounds themselves (Overgaard and Fazekas, 2016). First, pupil size 

is known to correlate with arousal, surprise, attention, and other confounding factors 

(Hoeks and Levelt, 1993; Bradley et al., 2008; Preuschoff et al., 2011). Second, 

when optokinetic nystagmus is applied to moving non-grating stimuli such as natural 

objects that drive IT cortex, there will be confounding physical stimulus differences. 

For example, the dominant stimulus that is smoothly pursued by the subject’s eyes 

will tend to be stationary on the subject’s fovea and optimally modulate IT areas with 

foveal biases, while the non-dominant stimulus will be more eccentric and have 

increased motion velocity. Moreover, optokinetic nystagmus is still present in 

monkeys where the conscious percept is diminished due to anesthesia with low 

doses of ketamine (Leopold et al., 2002). 

Here, we introduce a new no-report paradigm that relies on active tracking of a 

fixation spot, unlike the reflex-based paradigms mentioned above. In this fixation-

based paradigm, the subject is required to maintain fixation on a jumping spot, a 
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task that many animals in vision research are already trained to perform. While 

following the fixation spot, subjects view either unambiguous, monocular stimuli 

physically switching between a face and an object, or a binocular rivalry stimulus 

that switches only perceptually. For the binocular rivalry stimulus, a fixation spot is 

shown to each eye at different positions on the screen. Thus, when the subject 

perceives a face in the left eye, he/she will generally perceive only the fixation spot 

in the left eye and saccade to it, ignoring the fixation spot in the right eye. In this 

way, the subject’s percept can be inferred from his/her eye movement patterns 

without active report.  

In a second innovation, we performed electrophysiological recordings using a novel 

128-electrode site Neuropixels-like probe that allowed us to measure responses 

from large numbers of cells simultaneously. This allowed us to address for the first 

time the extent to which neural activity is modulated by conscious perception in 

single trials. Sheinberg and Logothetis (1997) found that 90% of IT cells were 

modulated by conscious perception, but the response modulations reported in that 

study during the rivalry condition were clearly smaller than those in the physical 

condition. This decrease could have been due to mixed selectivity of cells for the 

conscious percept and the physical stimulus on single trials. Alternatively, cells could 

have been modulated just as strongly by perceptual as by physical alternations and 

the decrease could have been due to incorrect reporting of the percept on some 

trials. Inter-trial averaging confounds these two possibilities. 

To explore correlates of conscious perception, we targeted recordings to macaque 

face patches ML and AM. The macaque face patch system constitutes an 

anatomically connected network of regions in IT cortex dedicated to face processing 

(Tsao et al., 2006; Grimaldi et al., 2016; Chang and Tsao, 2017). To date, most 

response properties of cells in the face patch network can be explained in a 

feedforward framework without invoking conscious perception. For example, the 

functional hierarchy of this network, with increasing view invariance as one moves 
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anterior from ML to AM (Freiwald and Tsao, 2010), can be explained by simple 

feedforward pooling mechanisms (Leibo et al., 2017). The representation of facial 

identity by cells in face patches through projection onto specific preferred axes can 

also be explained by feedforward mechanisms (Chang and Tsao, 2017). At the 

same time, it has been postulated that the fundamental architecture of the cortex 

may be a predictive loop, in which inference guided by internal priors plays a key 

role in determining what we see (Rao and Ballard, 1999). For example, one 

explanation for binocular rivalry is that it directly reflects our knowledge that two 

objects can’t occupy the same space (Hohwy et al., 2008). The hierarchical 

organization of the face patch network, together with its specialization for a single 

visual form, makes it a promising testbed to examine the neural circuits’ underlying 

construction of conscious visual experience, beyond feedforward filtering of visual 

input. 

Here, we recorded from fMRI-identified face patches ML and AM in two monkeys 

using high-channel electrodes while we inferred the animals’ conscious percept 

through the no-report paradigm described above. We found that high proportions of 

cells in both face patches (61% in ML and 81% in AM) encode the conscious percept 

even without active report. Population activity of perceptually-modulated cells was 

more weakly modulated during rivalry than during physical stimulus transitions in 

single trials. Nevertheless, we could still reliably decode the dynamically changing 

percept. Overall, these findings suggest that cells in macaque face patches encode 

both the physical stimulus and the animal’s conscious visual percept. 

Results. We first confirmed that it is possible to correctly infer a subject’s conscious 

percept using a fixation-based no-report paradigm through a behavioral experiment 

in humans. We presented binocular rivalry stimuli consisting of a face (e.g., Obama) 

in the right eye and a non-face object (e.g., a taco) in the left eye, causing the percept 

to stochastically alternate between the two (Fig. VI-1a). Each of the stimuli contained 

a fixation spot that jumped to one of four possible locations every trial. Trials were 
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800 ms long and contained no blank period, i.e., stimuli were presented 

continuously. If subjects fixated at the fixation spot presented in the right eye on a 

given trial, we inferred that they perceived the face and vice versa for the object. To 

verify that the percept of face or object could be inferred from fixations, we instructed 

6 naïve human subjects to perform the fixation task while simultaneously reporting 

their conscious percept with button presses. On trials where the percept switched, 

subjects also switched the fixation spot they were following (Fig. VI-1b). We were 

able to infer which image the subjects were consciously perceiving with accuracies 

ranging from 86% to 98% across subjects (average: 93%, Fig. VI-1c).  
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Figure VI-1: A novel no-report paradigm. (a) Illustration of binocular rivalry 

stimuli used in the paradigm. Four example trials are shown. Each trial was 

presented continuously for 800 ms each without blank period between trials. The 

first and second row show stimuli in the left and right eyes, respectively. If different 

stimuli are shown to the left and right eye, as in this example, one’s percept will 

spontaneously alternate between the two, as shown in the example perceptual 

trajectory in the third row. Stimuli in each eye contained a fixation spot at one of four 

possible positions that the monkey was trained to fixate on. (b) Example eye traces 

from a human subject. Red and blue traces show the distance of the eye position 

from the fixation spot that is shown in the right and left eye, respectively. Thick lines 

show the average. Traces are aligned to the onset of a trial where the subject 

reported that the percept switched from face to object (left), or object to face (right). 

(c) The bar plot shows the average proportion of those trials where the percept 

inferred matched the percept reported by button press. White circles show 

accuracies of individual subjects. We inferred that a subject was perceiving face or 

object if the subject fixated on the face fixation spot (i.e., fixation spot in the eye of 

the face stimulus) or object fixation spot (i.e., fixation spot in the eye of the object 

stimulus), respectively, for at least half of the trial. 

We next used the same method in monkeys to infer their conscious percept while 

recording from face patches ML and AM in IT. Importantly, the two monkeys in this 

study had never been trained to report their percept. They had previously been 

trained to maintain fixation on a spot (presented binocularly) so they learned to 

perform the task within one or two days, respectively (reaching performance of 

maintaining fixation on a spot on at least 80% of all trials). We presented two types 

of stimuli. In the “physical” condition, unambiguous monocular stimuli were 

physically switched between face and object. In the “perceptual” (binocular rivalry) 

condition, the same face and object were continuously presented to the right and 

left eye, respectively, so any changes in percept were internally generated. To 

account for individuals’ eye dominance, we balanced the contrasts of the stimuli in 
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the two eyes so that the monkey followed both fixation spots equally often in the 

rivalry condition. We inferred switches during rivalry when monkeys behaviorally 

switched from following the fixation spot in one eye to following the fixation spot in 

the other eye, as shown in the example eye traces in Fig. VI-2a, top. Spike rasters 

aligned to onset of trials where the percept switched from an example ML cell 

recorded in the same session are shown in Fig. VI-2a, bottom. Fig. VI-2b compares 

average response time courses to physical switches to face or object with responses 

to perceptual switches in example cells from ML and AM. Both example cells 

responded more strongly to a physically presented face than object, which is 

expected since they were recorded from face patches. Importantly, in the binocular 

rivalry condition, when the monkey perceived a face as inferred by its eye 

movement, the response of both cells was also higher than when the monkey 

perceived an object. Since the physical stimulus was identical in both cases, the 

response reflected its conscious percept of a face rather than just the physical input. 
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Figure VI-2: Example face cells modulated by both physical and perceptual 

switches to face.(a) Top: Example eye traces from a macaque performing the task 

aligned to a trial where the inferred percept switched from face to object (left) and 

from object to face (right), respectively. Red and blue curves indicate distances from 

the face and object fixation spots, respectively (as in Fig. VI-1b). Bottom: Spike 

raster of an example ML cell recorded in the same session as for the top panel. 

Responses are aligned to all trials where the inferred percept switched from face to 

object (left) and from object to face (right), respectively. (b) Left: Coronal slices from 

magnetic resonance imaging scan showing recording locations for the two example 

cells in this figure (top: face patch ML, bottom: face patch AM). Color overlay shows 

functional MRI activation to visually presented faces vs. non-face objects. Middle: 

Peristimulus histograms (PSTHs) show neuronal response time courses aligned to 

trial onsets where the visual stimulus was physically switched from face to object 

(blue) or from object to face (red). Right: PSTHs aligned to trial onsets where the 

inferred percept switched from face to object (blue) or object to face (red). ML cell is 

same cell as in (a). Shaded areas indicate standard error mean across trials. 

We recorded a total of 347 cells in ML and 210 cells in AM that were selective, i.e., 

showed a significant difference between face and object in the physical switch 

condition (p<0.05, two-sided t-test). Population results of all selective cells are 

shown in Fig. VI-3. Since we recorded from face patches, most cells showed 

stronger responses to the physically presented face stimulus. Importantly, most cells 

kept their preference in the perceptual condition. In face patch ML, 61% of cells were 

significantly modulated by the conscious percept in the binocular rivalry condition 

and showed preference consistent with the physical switch condition (p<0.05, two-

sided t-test), while 9% of cells were significantly but inconsistently modulated. In AM, 

a face patch that receives input from ML (Grimaldi et al., 2016) and is the highest 

patch in the face patch hierarchy within IT (Freiwald and Tsao, 2010), the 

percentage of consistent modulation increased to 81%, with only 1% showing 

inconsistent modulation. For both patches, there was a clear correlation between 
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modulation by physical stimuli and modulation by the percept in binocular rivalry 

(𝑟 = 0.72, 𝑝 < 10−31). Thus, in a no-report paradigm, cells in IT exhibit modulations 

by the conscious percept that reflect their response tuning to physically 

unambiguous inputs.  

After eliminating the report confound, two important potential confounds remain. 

First, cells could be selective for the eye-of-origin of the fixation point that the animal 

is following (e.g., a cell could respond selectively to a fixation spot in the fovea of the 

left eye). Second, since we presented binocular stimuli using red-cyan anaglyph 

goggles, a confound could arise if cells were selective for the color of the fixation 

spot that is in the fovea. To control for these two potential confounds, we switched 

the colors and eye-of-origin of the face and object stimuli, i.e., where the face and 

its corresponding fixation spot were previously presented in red in one eye, they 

were now presented in cyan in the other eye and vice versa for the object (Fig. VI-3 

supplement 1). If cells followed color or eye-of-origin, then all the dots in the upper 

right quadrant in Fig. VI-3, Supplement 1a should move to the lower left corner in 

Fig. VI-3, Supplement 1b. Instead, the majority of cells followed the object identity 

rather than color or eye-of-origin for both the physical and perceptual condition (𝑝 <

10−29 for physical condition and 𝑝 < 10−11 for perceptual condition, one-sided t-test, 

alternative hypothesis that modulation indices are greater than 0). This confirms that 

cells in IT cortex indeed represent the conscious percept rather than the color or 

eye-of-origin of the fixation spot. 
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Figure VI-3: High proportions of face cells show modulation by conscious 

percept. Scatter plot shows modulation indices 
𝑅𝑓𝑎𝑐𝑒−𝑅𝑜𝑏𝑗𝑒𝑐𝑡

𝑅𝑓𝑎𝑐𝑒+𝑅𝑜𝑏𝑗𝑒𝑐𝑡
 measuring the 

difference in responses (i.e., average spike count 𝑅) on trials where the inferred 

percept was face or object, respectively, for the physical monocular condition (x-

axis) and perceptual binocular rivalry condition (y-axis). Squares show cells from 

ML, and circles show cells from AM. Open and filled markers indicate cells without 

and with significant difference between perceived face and perceived object 

response in the binocular rivalry condition, respectively. 

To determine if one can decode the percept on a given trial from population activity, 

we performed recordings from multiple neurons simultaneously using S-probes with 

32 electrode sites and passive Neuropixels-like probes with 128 electrode sites (see 

Methods for details). Fig. VI-4 shows recordings from face patch ML in one session 

using the Neuropixels probe. In this session, we recorded 81 cells simultaneously, 
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of which 63 were face-selective (Fig. VI-4a). An example population time course 

snippet of cells recorded simultaneously in the perceptual switch condition showed 

clearly stronger activity across the recorded population during perception of face 

compared to object (Fig. VI-4b). The average population response across cells to 

perceptual switches is shown in Fig. VI-4c. We found above-chance decoding of the 

perceptual condition in all 12 sessions (in all but one session, responses were 

recorded in both ML and AM, and cells were pooled across the two patches). Cross-

validated accuracies of linear classifiers across different sessions are shown in Fig. 

VI-4d (see Methods). Decoding accuracies were 99% for the best session and 95% 

on average for the physical condition. For the perceptual condition, decoding was 

88% on the best session and 78% on average. 
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Figure VI-4: Multi-channel recordings allow decoding of conscious percept 

on single trials. (a) Left: Average responses (baseline-subtracted and normalized) 

of cells (rows) to 96 stimuli (columns) from 6 categories, including faces and other 

objects. Right: Waveforms of cells corresponding to rows on the left. Face-selective 

cells indicated by gray vertical bar on left. (b) Top: Example eye trace across 24 

trials as in Fig. VI-1b in a binocular rivalry session (i.e,. only perceptual, no physical 

switches). The inferred percept across trials according to eye trace is indicated by 

shading (red = face, blue = non-face object). Small black dots on top of eye traces 

indicate time points where our method detected saccades (see Methods), which 

were used in Fig. VI-5 and Fig. VI-5, Supplement 1. Bottom: Response time course 

snippet of a population of 81 neurons recorded with a Neuropixels probe in ML 

simultaneously to the eye trace at top. Each row represents one cell; ordering same 

as in (a). Face-selective cells indicated by gray vertical bar on left. (c) Normalized 

average population response across all significantly face-selective ML cells 

recorded from one Neuropixels session (same session as in (a), (b) to perceptual 

switch from object to face (red) and face to object (blue). Shaded areas indicate 

standard error mean across cells. (d) Cross-validated decoding accuracy of a linear 

classifier trained to discriminate trials of inferred percept face vs. inferred percept 

object for the physical switch condition (x-axis) and perceptual switch condition (y-

axis). Each plus symbol represents a session of neurons recorded simultaneously 

with multi-channel electrodes. 

 

Looking at the population time course, we noticed bursts of activity that appeared to 

be triggered by saccades, which occurred even when an object was perceived (blue 

epochs in Fig. VI-4b; small black dots on top indicate detected saccades). This 

raised the possibility that cells modulated by perception may still carry information 

about the physical stimulus. To investigate this further, we selected cells that (1) 

showed both significant physical and perceptual modulation and (2) consistently 
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preferred the face over the object. We then averaged responses across these 

cells and computed response time courses triggered by individual saccades, 

grouped by whether a saccade occurred during a trial inferred to be face or object, 

respectively (Fig. VI-5). We observed response modulations for both physical and 

perceptual conditions starting around 130 ms after saccade onset (Fig. VI-5a). In 

the physical condition, a saccade during an object epoch led to response 

suppression, while a saccade during a face epoch led to response increase. In 

striking contrast, in the rivalry condition, saccades led to response increase in both 

object and face epochs. As a consequence, during rivalry the response difference 

to a saccade between face and object, though significant (𝑝 = 10−23, two-sample t-

test), was weaker than during the physical condition.  Computing histograms of 

responses averaged across neurons for individual saccades shows that responses 

in the rivalry condition were less bimodal and spanned a smaller range compared to 

the physical condition (Fig. VI-5b). Importantly, this difference in response profiles 

between physical and perceptual conditions was apparent even when pooling 

across both face and object trials (Fig. VI-5b, middle), and hence cannot be 

explained by mistakes in inferring the percept from eye movements. We computed 

the absolute value of these responses and found the difference in response 

distributions to be significant (Figure VI-5b, right, 𝑝 = 6 ∙ 10−35, two-sample t-test on 

absolute value distributions). 
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Figure VI-5: Saccade-triggered responses are less bimodal during rivalry. (a) 

Single-trial responses during saccades averaged across simultaneously recorded 
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ML neurons from the same session as in Fig. VI-4b that were significantly face-

selective for both physical and perceptual condition. Individual neuron responses 

were normalized to make -1 correspond to mean object response, 1 correspond to 

mean face response, and 0 correspond to the average of the two. Rows of each plot 

correspond to response time courses to individual saccades, aligned to saccade 

onset, and sorted by average response during 0 to 400 ms after saccade onset. 

Top: Physical condition. Bottom: Perceptual condition. Left, middle, and right 

columns correspond to saccades during (inferred) object, face, and across both, 

respectively. The difference between perceptual and physical conditions in the third 

column shows that this difference cannot be simply attributed to mislabeling of 

perceptual state by the no-report paradigm. (b) Histograms of saccade-aligned 

responses averaged across a time window of 0 to 400 ms after saccade onset and 

across neurons (after normalizing as in (a)) that were significantly modulated for 

both physical and perceptual condition. Blue, red, and gray responses correspond 

to counts of saccade responses during object, face, and either, respectively. Top: 

Physical condition. Bottom: Perceptual condition. Left: Saccades for face and object 

plotted separately in red and blue, respectively. Responses were normalized to be 

0 if the response was equal to the average of the face and object response, and 1 if 

equal to either the average face or average object response. Middle: Saccades for 

either face or object plotted in grey. Right: Absolute values of normalized responses 

plotted in light grey. 

The observation of different response profiles for physical and perceptual conditions 

was not specific for saccades: histograms were also less bimodal and spanned a 

smaller range for the rivalry condition when triggering responses on trial onsets 

rather than saccades in both ML (Fig. VI-5, Supplement 1a, 𝑝 = 9 ∙ 10−15) and AM 

(Fig. VI-5, Supplement 1b, 𝑝 = 0.0014). Therefore, it appears that throughout rivalry, 

for perceptually-modulated cells, response differences between face and object are 

less pronounced than in the physical condition, and this is true in both ML and AM. 

One tantalizing explanation for this phenomenon is that perceptually-modulated 
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cells may be multiplexing information about both the physical stimulus and the 

perceptual state during single trials, allowing both to be simultaneously represented 

across the face patch hierarchy.  

Discussion. We have shown that face patches ML and AM in macaque IT cortex 

are modulated by conscious perception and do not merely encode the physical 

input. Importantly, monkeys in this study had never been trained to actively report 

their percept. Instead, we were able to infer their percept from eye movements using 

a new no-report paradigm. Thus, activity modulations attributed to switches in 

conscious perception in IT cannot be explained simply by active report.  

Previous single-unit recordings in IT cortex using active report to infer the percept 

found 90% of cells represent the conscious percept (Sheinberg and Logothetis, 

1997). Here, we found proportions of 61% in ML and 81% in the more anterior patch 

AM. The quantitative difference may be due to several factors including different 

recording sites (Sheinberg and Logothetis recorded from both upper and lower 

banks of the superior temporal sulcus in a less specifically targeted manner), 

imperfect accuracy of the no-report paradigm, and differences in stimuli and analysis 

methods. Importantly, our results show that the majority of cells in IT cortex do 

represent conscious perception and not merely active report and its accompanying 

cognitive factors. Furthermore, this new paradigm makes studies of consciousness 

in monkeys more accessible, by replacing the need to train the animal to signal its 

conscious percept (which can be a laborious process) with a simple task that only 

requires animals to follow a fixation spot. 

Our results show that for cells that are modulated by conscious perception, the 

modulation is not “all-or-none.” First, we found that the average response 

modulation during the perceptual condition was weaker than during the physical 

condition (Fig. VI-3). This was also found in a previous study of rivalry (Sheinberg 

and Logothetis, 1997). This could be explained either by incomplete modulation, or 

by imperfect labeling of the animal’s perceptual state. The key question is: what 
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happens during single trials? In the rivalry condition, do responses in single trials 

look like those to either physically-presented faces or objects? By recording from a 

large number of face cells simultaneously using a novel 128-electrode site probe 

specifically designed for use in primates, we could address this question for the first 

time. Surprisingly, we found a dramatically different response profile on single trials 

between the perceptual and physical conditions (Fig. VI-5). Whereas in the physical 

condition responses clustered into two groups, in the rivalry condition, responses 

appeared unimodal, lying in between the two clusters for the physical condition. This 

suggests that single cells are multiplexing both the conscious percept and the 

veridical physical stimulus during single trials, such that information about both the 

perceived and unperceived stimuli remain constantly available in IT cortex. Future 

experiments varying the identity of the unperceived stimulus will be needed to further 

test this hypothesis. An alternative explanation is that cells are not modulated by the 

identity of the suppressed stimulus, and simply encode the dominant stimulus with 

reduced gain when presented in rivalry. 

Compared to previous approaches that attempted to isolate representations of the 

conscious percept, our new no-report binocular rivalry paradigm has several 

advantages: For flash suppression, where a stimulus flashed in one eye suppresses 

the stimulus in the other eye, report is also not required (Wolfe, 1984; Wilke et al., 

2003; Tsuchiya and Koch, 2005). However, in that case, the physical input when the 

target is perceived vs. when it is suppressed is not identical, and thus any 

modulation observed may be driven entirely externally. Indeed, it is known that if a 

distractor stimulus is presented simultaneously with a preferred stimulus, the 

response can be reduced compared to when the preferred stimulus is presented 

alone as a result of simple normalization mechanisms (Bao and Tsao, 2018). 

Another paradigm that has been widely used to study the neural correlates of 

consciousness is backward masking. Here, the stimulus is presented for such a 

short time before being masked that sometimes it enters consciousness and 

sometimes not (Breitmeyer et al., 1984). So far, backward masking has always 
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relied on report. Also, it is more susceptible to modulations arising from bottom-

up withdrawal of attention or low-level (e.g., retinal) noise, whereas in binocular 

rivalry, perceptual switches appear to be internally generated. One potential 

confound described by Block as the “bored monkey problem” is that the monkey 

may still be thinking about whether it is perceiving object or face and internally report 

it even if it is not required to actively report it (Block, 2020). It is methodologically 

very difficult to entirely remove this confound, but the fact that monkeys had to 

simultaneously perform a very challenging unrelated task of saccading to jumping 

fixation points should at least alleviate this concern. Thus, to the best of our 

knowledge, this study shows representations of the conscious percept in IT cortex 

in the most confound-free way to date. Our study complements a study conducted 

in parallel by Kapoor et al. (2020) that found modulations by conscious percept in 

prefrontal cortex using a different no-report paradigm based on optokinetic 

nystagmus.  

The existence of two directly-connected functional modules with a hierarchical 

relationship (ML, AM) that both encode the conscious percept of a particular type of 

object opens up the possibility for future studies to investigate how changes in the 

conscious percept are coordinated across the brain. Recordings and perturbations 

in multiple face patches simultaneously using high-channel population recordings 

may reveal the dynamics of information flow, e.g., whether switches occur in a 

feedforward or feedback wave. This may yield insight into the mechanism for how a 

conscious percept emerges in the brain as an interpretation of the world that is 

consistent across different levels of representation. 

Methods. All animal procedures in this study complied with local and National 

Institute of Health guidelines including the US National Institutes of Health Guide for 

Care and Use of Laboratory Animals. All experiments were performed with the 

approval of the Caltech Institutional Animal Care and Use Committee (IACUC). The 

behavioral experiment with human subjects for the 
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human psychophysics experiment complied with a protocol approved by the 

Caltech Institutional Review Board (IRB). 

Targeting. Two male rhesus macaques were implanted with head posts and trained 

to fixate on a dot for juice reward. We targeted face patches ML and AM in IT cortex 

for electrophysiological recordings. ML and AM were identified using functional 

magnetic resonance imaging (fMRI). Monkeys were scanned in a 3T scanner 

(Siemens), as described previously (Tsao et al., 2006). MION contrast agent was 

injected to increase signal-to-noise ratio. During fMRI, monkeys passively viewed 

blocks of faces and blocks of other objects to identify face-selective patches in the 

brain. Recording chambers (Crist) were implanted over ML and AM. Guide tubes 

were inserted into the brain 4 mm past the dura through custom printed grids placed 

inside the chamber, and electrodes were advanced to the target through the guide 

tube. Both chamber placement and grid design were planned with the software 

Planner (Ohayon and Tsao, 2012). After insertion of tungsten electrodes, correct 

targeting of the desired location was confirmed with anatomical MRI scans. 

Electrophysiology. Recordings were performed using tungsten electrodes (FHC) 

with 1 MΩ impedance and, after correct targeting was confirmed, with 32-channel 

S-probes (Plexon) with 75 µm and 100 µm inter-electrode distance, and with passive 

Neuropixels-like probe prototypes (IMEC) (Jun et al., 2017; Dutta et al., 2019). 

These prototypes were a limited stock of test devices that were developed and used 

for testing as part of the development of primate Neuropixels probes and are not 

available for other labs. Unlike the final product, the prototypes had 128 passive 

electrode sites across 2 mm (arranged in two parallel staggered bands), but used 

the same electrode materials and shank specifications (45 mm total shank length). 

All electrodes were advanced to the target using an oil hydraulic Microdrive 

(Narishige). Neural signals were recorded using an Omniplex system (Plexon). 

Local field potentials were low-pass filtered at 200 Hz and recorded at 1000 Hz, and 

https://www.sciencedirect.com/topics/immunology-and-microbiology/psychophysics


 

 

140 

units were high-pass filtered at 300 Hz and recorded at 40 kHz. Only well-isolated 

units were considered for further analysis. 

Task. Monkeys were head fixed and viewed an LCD screen (Acer) of 47-degree size 

in a dark room. Monkeys viewed stimuli of 5-degree size wearing red-cyan anaglyph 

goggles custom made with filters to match the red and green/blue emission 

spectrum of the screen, respectively, so that inputs to left and right eye could be 

controlled independently. Emission spectra were measured using a PR-650 

SpectraScan colorimeter (Photo Research). Eye position was monitored using an 

eye tracking system (ISCAN). In the first phase of the experiment, monkeys 

passively viewed at least 5 repeats of 61 screening stimuli in pseudorandom order 

(250 ms ON time, 100 ms OFF time) with a fixation spot of 0.25 degree diameter in 

the center of the screen. Screening stimuli consisted of 20 images of faces and 41 

images of non-face objects. During this phase, monkeys received a juice reward for 

maintaining fixation for at least 3 seconds. Subsequently, for the main experiment, 

stimuli contained one or two fixation spots at one of four possible locations (top, 

bottom, left, and right, 1 degree from the center) and were presented for 800 ms ON 

time and 0 ms OFF time. In the case of two fixation spots, stimuli contained one 

fixation spot per eye, and the two spots never appeared at the same location. During 

this phase, the monkey received a juice reward if it maintained fixation within 0.5 

degree of one of the fixation spot for at least half of the trial duration (i.e., 400 ms, 

not required to be contiguous). Stimuli during the main experiment included (1) a 

monocular face/monocular object with one fixation spot, and (2) a binocular stimulus 

composed of a face and a fixation spot in one eye, and an object and a second 

fixation spot in the other eye. To improve rivalry and reduce periods of mixture, face 

and object stimuli were presented on backgrounds consisting of gratings that were 

orthogonal in the two eyes. Moreover, we applied orthogonal orientation filters (with 

concentration 𝜎𝑎𝑛𝑔𝑙𝑒 = 0.5°) to the face and object stimuli, respectively, to increase 

local orientation contrast. 
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Online analysis. Spikes were isolated and sorted online using the PlexControl 

software (Plexon). During the screening phase, the average number of spikes during 

the time window from 100 ms to 300 ms was calculated for each unit and stimulus. 

For each stimulus, the average response across units was determined after 

normalizing the response of each unit by subtracting the mean and dividing by the 

standard deviation for the unit. Subsequently, the face stimulus with the highest 

average response and the object stimulus with the lowest average response were 

chosen to generate stimuli for the main experiment. 

Offline analysis. For human subjects, the inferred percept based on button-presses 

on a given trial was determined according to the last report the subject made before 

the end of the trial. For humans and monkeys, we also determined their inferred 

percept based on eye movements depending on which fixation spot they fixated on 

if they fixated on one of the fixation spots for at least half of the trial duration (i.e., 

400 ms, not required to be contiguous). We computed L-1 norms for computing the 

distance between eye position and a given fixation spot. We accounted for a 

saccade delay of on average 350 ms, by analyzing the eye data 350 ms until 1150 

ms after trial onset.  For Figures VI-3 and supplement, VI-4d and VI-5 supplement, 

in order to exclude trials during which the percept switched back to the opposite 

percept, we also required the following trial to have the same inferred percept as the 

current trial. Spikes were re-sorted using the software OfflineSorter (Plexon). For 

Neuropixels, since the high density of electrodes allowed the same neuron to appear 

on multiple channels, we used Kilosort2 to re-sort spikes (Pachitariu et al., 2016). A 

total of 551 and 408 cells were recorded in monkey A and monkey O, respectively. 

To correct for delays in stimulus presentation, we used a photodiode that detected 

the onset and offset of the stimuli. The output of the photodiode was fed into the 

recording system and later used to synchronize the onset of the stimulus and the 

neurophysiological data during offline analysis. Peristimulus time histograms 

(PSTHs) were smoothed with a box kernel (100 ms width). For computing 

modulation indices, we used the average spike count across trials as response. 
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Decoding analysis was performed with a support vector machine with a linear 

kernel (Matlab fitcsvm) trained to discriminate trials where the inferred percept was 

face or object, respectively. As predictor variables, we used the spike count during 

the 800 ms of each trial for all simultaneously recorded neurons. All decoding 

accuracies were cross-validated (leave-one-out). In more detail, one trial was 

chosen for testing and the rest of the trials for training, and this was repeated for all 

trials to compute decoding accuracies. Criteria for detecting a saccade were as 

follows. A saccade was detected at time t if the distance between the mean eye 

position during t-100,...t-2 ms and the mean eye position during t+2,...t+100 ms was 

greater than 0.5 degree, and the eye position during t-100,...t-2 ms and t+2,...t+100 

ms, respectively, stayed within 0.5 degree of the respective mean for at least 80% 

of the duration of each period.  We also required consecutive saccades to be at least 

100 ms apart from each other. All analysis was performed using Matlab 

(MathWorks). 
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Supplementary material 

 

 

Figure VI-3, Supplement 1: Color and eye-of-origin confound control. 

Left: Scatter plot similar to Fig. VI-3, but modulation indices 
𝑅𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑−𝑅𝑛𝑜𝑛𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑

𝑅𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑+𝑅𝑛𝑜𝑛𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑
 

now show the difference between preferred and non-preferred stimulus. The 

preferred stimulus is face if the response to face is higher and non-face object if the 

response to non-face object is higher in the physical condition. Thus, by definition 

the x-values of all cells are positive. Right: Scatter plot of modulation indices 

𝑅𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑−𝑅𝑛𝑜𝑛𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑

𝑅𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑+𝑅𝑛𝑜𝑛𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑
 for the same preferred and non-preferred object identities of 

stimuli when the colors and eye of origin of the two stimuli were switched; 

importantly, the preference of a given stimulus identity was assigned based on 

responses to stimuli of the original color and eye of origin stimulus responses. N = 

192 for ML and N = 120 for AM for both plots. 
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Figure VI-5, Supplement 1: Lack of bimodality is a general trademark of 

rivalry. (a) Trial responses in ML are less bimodal during rivalry. Histograms have 

same conventions as Fig. VI-5b, but instead of averaging neuron responses for 

individual saccades, responses are averaged across trial duration for individual 

trials. (b) Trial responses in AM are less bimodal during rivalry. Same conventions 

as in (a), but instead of the Neuropixels-like probe in ML, cells were simultaneously 

recorded from AM. Due to technical limitations, the 128-channels Neuropixels-like 

probe did not reach the depth of AM, and cells were recorded using a 32-channel 

S-probe instead. 

 

  



 

 

146 

Recordings in human epilepsy patients 

Besides studying binocular rivalry without report in macaque face patches, we 

have also conducted preliminary experiments in humans. This work was done in 

collaboration with Varun Wadia and Ueli Rutishauser at Cedars Sinai in epilepsy 

patients that had been implanted with depth electrodes for surgical treatment of 

epilepsy. The advantage of this system is that, in humans, we can directly 

compare modulations during active report and without report since humans can be 

easily instructed to report their percept, as compared to a lengthy training process 

in animals. Moreover, the human patients had electrodes implanted across a large 

number of brain areas (including pre-supplementary motor area, amygdala, 

orbitofrontal cortex, anterior cingulate cortex, and hippocampus), in order to 

localize the origin of seizures, allowing us to investigate representations of 

conscious percept across all these areas simultaneously and holding the potential 

to study interactions between them. 

We used the same paradigm for inferring conscious percept from eye movement 

as in monkeys. Unless stated otherwise below, methods were the same as in the 

previous section of this chapter. In addition to following fixation spots, subjects 

were at one part of the experiment also instructed to report their percept by 

pressing one of two buttons (indicating perceived stimulus 1 and perceived 

stimulus 2, respectively) on a response pad (Cedrus). All four subjects in this 

preliminary study volunteered for the study and gave informed consent. This study 

was approved by the Institutional Review Boards of Cedars-Sinai Medical Center 

and Huntington Memorial Hospital. Instead of ISCAN, we used an EyeLink camera 

(SR Research) to track eye position. We recorded from up to ten surgically 

implanted macroelectrodes, each containing eight 40-μm diameter microwires 

(Rutishauser et al., 2010; Minxha et al., 2018). We recorded broadband (0.1-

9000Hz filter) signal sampled at 32 kHz using a Neuralynx Atlas system 

(Neuralynx). Signals were locally referenced to one of the eight microwires in a 

given brain area. For spike-sorting, we used a semi-automatic template matching 
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algorithm described in (Rutishauser et al., 2006). Only well-isolated units were 

included in further analysis. 

In an initial session, usually in the morning of the same day as the main 

experiment, we let the patient passively view a set of 63 screening stimuli. 

Screening stimuli were grayscale images of faces and objects and were presented 

for 10 repetitions each with an ON time of 500 ms and a blank OFF period varied 

between randomly between 600 and 900 ms. Subjects were instructed to passively 

view the screening stimuli, however, at random times every 20-40 images they 

were presented with a yes/no catch question about the previous image that 

subjects answered by button press, in order to have subjects keep paying attention 

to viewed stimuli. We then selected two stimuli that elicited the strongest 

responses in two (non-overlapping) sets of neurons, and generated binocular 

rivalry stimuli from them. 

After analyzing the results of the screening session and generating stimuli, we 

performed the main experiment for each patient. The main experiment consisted of 

several stages, including a (1) calibration stage to adjust the contrast of the two 

binocular rivalry stimuli until the subject followed the two fixation spots equally 

often, (2) a physical switches stage, where the viewed stimulus switched physically 

between two monocular stimuli, while subjects followed the one fixation spot, (3) a 

binocular rivalry without report stage, where subjects perceived rivalry switches 

following one of the two fixation spots, and (4) a binocular rivalry stage with report 

stage where subjects followed one of the two fixation spots and at the same time 

actively reported perceptual switches by button press. The only difference between 

the stimuli presented to humans and stimuli presented to monkeys was that for 

humans, fixation spots changed position every 2000 ms rather than 800 ms to 

allow for more time to find the fixation spot, given the lack of training compared to 

monkeys. 

Doing the task in humans, we were faced with some challenges, such as getting 
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good eye signals through corrective glasses plus red-cyan filters and finding 

cells responding strongly to one of the stimuli during stimuli that persisted until the 

afternoon session, hence the data presented here is preliminary. Yet, from the 

experiment stage where we both inferred the percept from eye movement and 

instructed subjects to report their percept, we were able to infer that the paradigm 

worked well to predict their button presses from eye movement, with average 

accuracies of 87%. Below are two example cells from left and right pre-SMA 

(Fig.VI-6). The two cells showed responses to a physical switch from stimulus 1 to 

stimulus 2 (red) or from stimulus 2 to stimulus 1 (blue), with a slight preference for 

switches to stimulus 1 (top cell), or switches to stimulus 2 (bottom cell), 

respectively. Importantly, both cells showed responses even in the binocular rivalry 

condition without any physical change, when a switch of percept was inferred from 

eye movements, and appeared to keep their preference. This was true whether the 

patient actively reported their percept or not, showing that this pre-SMA activity 

was not just due to report and its accompanying factors. Given that the selectivity 

was not very strong, it is important to also show that the apparent response to 

perceptual switches was not just due to saccades and accompanying afferent 

copies of motor responses or changes in visual input. The right column thus shows 

activity aligned to saccades where the percept remained constant, e.g., where the 

patient was perceiving stimulus 1, and made a saccade because the fixation spot 

in the left eye changed position but kept following the fixation spot in the left eye 

(blue). Responses aligned to these events were relatively flat. This suggests that 

responses in pre-SMA encode switches in conscious percept rather than 

confounding factors such as report or saccades. Note that this data is still 

preliminary and further experiments with more selective cells are needed to 

confirm these findings and determine coding of conscious percept in the other 

brain areas that were recording targets.  

 



 

 

149 

 



 

 

150 

Figure VI-6: Pre-SMA cells responding to physical and perceptual 

switches. Two example cells recorded in one patient from pre-SMA in the left 

hemisphere (top) and right hemisphere (bottom) respectively. Responses are 

aligned to saccades to a fixation spot when the percept was switching (left column) 

or when a saccade was made without the percept switching, i.e., when the patient 

kept following the same fixation spot (right column). The three rows for each cell 

correspond to three stages of the experiment, where the patient was doing the 

fixation task while physically switching monocular stimuli were presented (first 

row), where the patient was doing the fixation task while perceiving switches 

during binocular rivalry and actively reporting the percept by button press (second 

row), or where the patient was doing the fixation task while perceiving switches 

during binocular rivalry without report (third row). Blue and red lines indicate 

responses when the perceived stimulus was the left eye stimulus or right eye 

stimulus, respectively (as inferred from eye movement). 
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C h a p t e r  V I I  

FUTURE DIRECTIONS 

Are conscious switches feedforward or feedback? 

We have shown that cells in face patches are modulated by conscious percept 

during binocular rivalry, but strictly speaking, that does not prove that face patches 

represent the conscious percept of a face in general. After all, it is possible that 

activity in the face patches could be explained as passive filter from V1 input, if 

one postulates that V1 is fully responsible for switches during binocular rivalry. In 

other words, since in binocular rivalry, the conscious percept appears to switch 

between the two eyes (despite studies claiming otherwise (KOVAcs et al., 1996; 

Logothetis et al., 1996)), it may be completely resolved and explained by 

competition of monocular channels within V1 or LGN (Blake et al., 1980; Blake, 

1989). Thus, it would be not much more than a mechanical, intra-cortical shutting 

of one eye, alternating every few seconds. In this scenario, with face patches 

simply reflecting the shutting and gating of low-level eye information in V1, it would 

be far-fetched to interpret our results in the framework of face patches 

representing consciousness. However, models of competition between monocular 

populations seem to be at odds with electrophysiological experiments that reported 

no or only weak traces of modulation by conscious percept in LGN (Lehky and 

Maunsell, 1996) and V1 (Leopold and Logothetis, 1996; Keliris et al., 2010), 

respectively, and that found no difference between monocular and binocular 

neurons. Alternatively, binocular rivalry may be a special case of a more general 

phenomenon of how the brain constructs a conscious percept.  We put forward the 

hypothesis that this generation of a conscious percept may be tightly linked to the 

process by which the brain resolves ambiguous input and generates an 

interpretation of the world that makes sense and can recreate sensory input. Some 

theories of consciousness in the literature state that the initial feedforward 
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processing is unconscious and automatic, and the signal is required to reach a 

higher-level region to rise into awareness (Dehaene et al., 2003; Baars, 2005; Lau 

and Rosenthal, 2011), with some of the theories claiming that the signal 

additionally needs to be fed back from the higher-level regions to lower-level 

regions (Hochstein and Ahissar, 2002; Lamme, 2006).  Evidence for feedback is 

indirectly suggested by what can be described as one of the biggest discrepancies 

between fMRI and electrophysiology literature: in fMRI experiments, V1 strongly 

reflects the conscious percept during rivalry (Polonsky et al., 2000b; Tong and 

Engel, 2001). However, electrophysiology studies show that actually only a small 

proportion of V1 cells (~18%) is modulated by conscious percept at all (Leopold 

and Logothetis, 1996), and only higher-level regions encode conscious percept 

reliably (~90% of cells in IT) (Sheinberg and Logothetis, 1997). For the 

extracellular local field potential (LFP), it turned out that low-frequency power 

followed conscious perception whereas higher frequency power does not (Gail et 

al., 2004; Wilke et al., 2006; Maier et al., 2008). This discrepancy can be resolved 

with the knowledge that high-frequency LFP power reflects more the spiking of 

neurons, whereas low-frequency power and fMRI signals are more affected by 

input from neuromodulatory systems. Thus, the observed modulation of fMRI 

signal may reflect feedback from higher-order cortices or subcortical targets 

(Belitski et al., 2008; Magri et al., 2012). 

To distinguish these different scenarios, we need to find out where and how 

switches in binocular rivalry are generated. Unfortunately, virtually all studies to 

date have merely investigated which neurons or brain regions correlate with a 

given conscious percept, but this has given us little insight into the mechanisms of 

how a conscious percept is constructed across the brain. Having shown that face 

patches encode the specific conscious percept of a face puts us in a unique 

position to go beyond studying correlates and dissect the neural mechanisms of 

how a new conscious percept is constructed and dynamically propagated across 

the brain. We are in a unique position because the face patch system is comprised 
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of nodes in a functional hierarchy, that are directly anatomically connected and 

all encode the same category of object. This is critical because it allows us to study 

the dynamics of information flow as a new conscious percept is established and 

propagated through the hierarchy. E.g., if new conscious percepts are generated 

through a top-down mechanism, we would be able to tell, as in that case the 

higher-level nodes of the hierarchy should show signatures of the switch before the 

lower-level nodes, and vice-versa for a bottom-up mechanism. By simultaneously 

recording from nodes at two different levels of the hierarchy, we are thus able to 

distinguish between possible mechanisms of conscious percept generation. 

Moreover, we are now equipped with the right tools to study it. While traditionally 

we have been a single tungsten electrode lab, I had a hunch that for my purpose 

we would need to record from large populations of neurons, and I hence 

contributed a handful of high-yield recording techniques to the lab by learning the 

surgery and successfully implanting new types of electrodes such as V-probes, S-

probes, Utah arrays, brush arrays, and Neuropixels electrodes, thereby setting up 

systems with the capacity to record from up to 512 channels simultaneously.  

In Fig. VI-4, we showed an example of the world’s first recording with 128-ch. 

Neuropixels protoype probes designed specifically for primates. We have since 

started to record from multiple face patches simultaneously, inserting a 

Neuropixels probe into face patch ML and an S-probe (for technical reasons 

regarding the length of the probe) into face patch AM. Through this experiment, we 

are hoping to dissect the mechanisms of binocular rivalry and determine whether 

perceptual switches are propagated through a feedforward or feedback 

mechanism. Preliminary data is shown in Fig. VII-1, but please note that this is still 

early stages of the experiment, and results have yet to be confirmed or 

disconfirmed. The rationale is that if conscious percepts are generated and 

propagated through a feedforward mechanism, we should see activity in ML, the 

lower node of the hierarchy first, followed by activity in AM, which receives input 

from ML. In case of a feedback mechanism, we should see the reverse. 



 

 

154 

 



 

 

155 

Figure VII-1: Latencies of switches in ML vs AM. (a) Example population 

time course of face cells recorded simultaneously with Neuropixels probe in ML 

and S-probe in AM for the physical condition (top) and perceptual condition 

(bottom). Cells on top of black horizontal line are from ML, cells below are from 

AM. Magenta vertical lines indicate switches of ML activity from silent to active, 

i.e., putative switches from object to face. (b) Average activity in ML and AM 

aligned to switches inferred by ML activity for physical condition (top) and 

perceptual condition (bottom). Left column shows activity averaged across ML 

switches for each cell, right column also averages across cells. Dashed vertical 

lines in the right plot indicate latencies at which activity in ML (black) or AM (red) 

reached half of the peak value. 

Fig. VII-1a shows example population time course snippets from ML and AM 

recorded simultaneously. We inferred switches from ML activity alone, by finding 

time points where face cells changed from being silent to being active (magenta). 

These are putative time points where the stimulus or percept possibly switched 

from object to face. We then looked at AM activity around these ML-inferred 

switches. In the example, it looks as if for physical switches, AM cells fired slightly 

later than ML cells, whereas for the perceptual switch, AM cells started firing a 

slightly earlier. We averaged activity across all ML-inferred switches of a session to 

compare response latency of ML and AM (Fig. VII-2b). For physical switches, ML 

cells average activity reached its half-peak before AM, as is expected since AM is 

later in the hierarchy of visual processing and receives direct feedforward input 

from ML Intriguingly, for perceptual switches, the converse was true: AM reached 

its half-peak earlier than ML. Thus, this preliminary data is consistent with a top-

down mechanism for switches of conscious percept. Further experiments are 

necessary to see if this result can be reproduced, trace down whether there is a 

source of conscious percept generation in the brain, and determine the causal role 

of different nodes of the network.  
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Future experiments on mechanisms of  consciousness 

The experiment of the previous section, recording from ML and AM simultaneously 

during binocular rivalry, holds the potential of yielding one important puzzle piece of 

the mechanisms of consciousness: whether switches in conscious percept during 

rivalry are generated through a bottom-up or top-down mechanism. E.g., if we find 

that AM does indeed show activity before ML during perceptual switches, that would 

suggest that switches originate from a region higher than ML. Possible candidates 

would include e.g., the prefrontal cortex or hippocampus. Where do we go from 

there, and how can we find this source (assuming there is one region that has 

absolute authority in conscious percept selection, rather than the whole brain acting 

as a recurrent network to converge to a solution)? We can use the same strategy 

that we used for recording from ML and AM to trace down the origin of the signal, 

by recording from ML/AM to detect switches and recording from other brain regions, 

e.g., prefrontal cortex or hippocampus at the same time and comparing latencies. 

This assumes that we can find a stimulus that drives both ML/AM and the new 

region, but there are face patches outside of inferotemporal cortex, including in 

perirhinal, prefrontal, and more (see Chapter II, section Anatomical organization) 

that can be targeted. Assume we find that a given region X has a latency lower than 

ML and AM. Then we can look at the regions that are connected to X, by electrically 

stimulating region X in an fMRI experiment, and see which other regions light up, 

and see if one of those regions has even lower latency. By repeating this process, 

we should eventually arrive at the source of conscious percept construction, if there 

is one. 

Performing simultaneous recordings can show us where a new conscious percept 

first becomes explicit, but that does not prove a causal role of the region. Once the 

putative source of conscious percept generation is identified, it will be fascinating to 

find out what happens if we inactivate it or stimulate it. We hypothesize that after 

inactivation, the animal will fail to show switches of conscious percept or re-

interpretations of the world, both neurally and behaviorally. There may also be other 
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surprising side effects accompanying inactivation of the site, besides lack of 

switches in the binocular rivalry paradigm, if we go as far as conjecturing that we 

create a philosophical zombie monkey.  

Another interesting possible experiment involves stimulation and recording at the 

same time to answer the question of whether a given region can causally bias the 

percept and behavior during binocular rivalry: the idea is to stimulate a higher-level 

association region, such as face patch PR in perirhinal cortex or in hippocampus to 

evoke the memory of a face, while recording from face patches in inferotemporal 

cortex using an ultra-high yield probe such as Neuropixels. Assuming the evoked 

memory causes the perceptual visualization of a face, and this visualization is 

represented in face patches in inferotemporal cortex, we should be able to 

reconstruct the face the monkey was seeing during stimulation from the recorded 

face cell activity, since we have previously cracked the code of face identity in IT 

face patches and can reconstruct the face a monkey was seeing from a hundred 

face cells. Inserting the stimulation electrode into different sub-regions may evoke 

percepts of different faces that we should be able to reconstruct on a single-trial 

basis by recording from hundreds of neurons with Neuropixels probes. Assuming 

we can reconstruct what face is perceived due to stimulation, we can then make 

binocular rivalry stimuli out of exactly that face in one eye, and another face or object 

in another eye. Using the no-report paradigm to infer his percept, we can then find 

out whether stimulation of the higher-level site will bias the animal to perceive the 

face evoked by stimulation, i.e., whether he will follow the fixation spot in the eye of 

that face more often. If so, this would imply that this region has a causal influence 

on conscious percept generation and suggest the possibility that this influence feeds 

back all the way to V1 to select the stimulus from the respective eye, since it also 

enhanced the fixation spot of that eye. Inactivating other regions while stimulating 

may further reveal which regions play a causally necessary role in propagating the 

conscious percept. 
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Summary of  thesis main results 

 In bistable illusions, switches of conscious percept appear to be propagated 

across multiple layers of representation to generate a consistent 

interpretation. 

 The macaque face patch system may provide a key for unlocking the mystery 

of the neural mechanisms of conscious perception. 

 Consistent border-ownership cells are hard to find in random locations of 

retinotopic cortex, but the average population signal encodes segmentation 

for artificial and natural stimuli. For stimuli with subjective contours, border-

ownership signal latencies are longer. 

 Using fMRI, one can identify segmentation-related hot spots. When recording 

in these cells, one can find clusters of cells that do signal segmentation 

consistently across stimuli. The segmentation of an image can be decoded 

from populations of neurons in segmentation hot spots. 

 One can make face patches respond to Mooney faces by adding an outline 

or animating them. 

 When trying to distill representations of conscious percept, one needs to distill 

conscious percept from several confounding factors. 

 Conscious percept is encoded in inferotemporal face patches and can be 

decoded from a population of neurons. 

 Recording or perturbing several nodes of the cortical processing hierarchy 

simultaneously has the potential to dissect the mechanisms of conscious 

percept generation and propagation, e.g., whether the mechanism is top-

down or bottom-up



 

 

159 

BIBLIOGRAPHY 

Adachi I, Chou DP, Hampton RR (2009) Thatcher effect in monkeys demonstrates 

conservation of face perception across primates. Current Biology 19:1270-1273. 

Adolphs R, Tranel D, Damasio H, Damasio A (1994) Impaired recognition of emotion 

in facial expressions following bilateral damage to the human amygdala. Nature 

372:669. 

Afraz A, Boyden ES, DiCarlo JJ (2015) Optogenetic and pharmacological 

suppression of spatial clusters of face neurons reveal their causal role in face gender 

discrimination. Proceedings of the National Academy of Sciences 112:6730-6735. 

Afraz S-R, Kiani R, Esteky H (2006) Microstimulation of inferotemporal cortex 

influences face categorization. Nature 442:692. 

Aparicio PL, Issa EB, DiCarlo JJ (2016) Neurophysiological organization of the 

middle face patch in macaque inferior temporal cortex. Journal of Neuroscience 

36:12729-12745. 

Arcaro MJ, Livingstone MS (2017) A hierarchical, retinotopic proto-organization of 

the primate visual system at birth. Elife 6. 

Arrington CM, Carr TH, Mayer AR, Rao SM (2000) Neural mechanisms of visual 

attention: object-based selection of a region in space. Journal of cognitive 

neuroscience 12:106-117. 

Aru J, Bachmann T, Singer W, Melloni L (2012) Distilling the neural correlates of 

consciousness. Neuroscience & Biobehavioral Reviews 36:737-746. 

Baars BJ (2005) Global workspace theory of consciousness: toward a cognitive 

neuroscience of human experience. Progress in brain research 150:45-53. 



 

 

160 

Baek K, Sajda P (2005) Inferring figure-ground using a recurrent integrate-and-

fire neural circuit. Neural Systems and Rehabilitation Engineering, IEEE 

Transactions on 13:125-130. 

Bahrick HP, Bahrick PO, Wittlinger RP (1975) Fifty years of memory for names and 

faces: A cross-sectional approach. Journal of experimental psychology: General 

104:54. 

Bakin JS, Nakayama K, Gilbert CD (2000) Visual responses in monkey areas V1 

and V2 to three-dimensional surface configurations. The Journal of Neuroscience 

20:8188-8198. 

Bao P, Tsao DY (2018) Representation of multiple objects in macaque category-

selective areas. Nature communications 9:1774. 

Bao P, She L, Mcgill M, Tsao DY (2019) A map of object space in primate 

inferotemporal cortex. In: Society for Neuroscience. Chicago, IL. 

Barat E, Wirth S, Duhamel J-R (2018) Face cells in orbitofrontal cortex represent 

social categories. Proceedings of the National Academy of Sciences 115:E11158-

E11167. 

Baylis G, Rolls ET, Leonard C (1985) Selectivity between faces in the responses of 

a population of neurons in the cortex in the superior temporal sulcus of the monkey. 

Brain research 342:91-102. 

Baylis GC, Rolls ET, Leonard C (1987) Functional subdivisions of the temporal lobe 

neocortex. Journal of Neuroscience 7:330-342. 

Belitski A, Gretton A, Magri C, Murayama Y, Montemurro MA, Logothetis NK, 

Panzeri S (2008) Low-frequency local field potentials and spikes in primary visual 



 

 

161 

cortex convey independent visual information. Journal of Neuroscience 28:5696-

5709. 

Blake R (1989) A neural theory of binocular rivalry. Psychological review 96:145. 

Blake R, Westendorf DH, Overton R (1980) What is suppressed during binocular 

rivalry? Perception 9:223-231. 

Blake R, Brascamp J, Heeger DJ (2014) Can binocular rivalry reveal neural 

correlates of consciousness? Philosophical Transactions of the Royal Society of 

London B: Biological Sciences 369:20130211. 

Block N (1995) On a confusion about a function of consciousness. Behavioral and 

brain sciences 18:227-247. 

Block N (2019) What is wrong with the no-report paradigm and how to fix it. Trends 

in cognitive sciences. 

Block N (2020) Finessing the bored monkey problem. 

Boly M, Massimini M, Tsuchiya N, Postle BR, Koch C, Tononi G (2017) Are the 

neural correlates of consciousness in the front or in the back of the cerebral cortex? 

Clinical and neuroimaging evidence. Journal of Neuroscience 37:9603-9613. 

Borra E, Ichinohe N, Sato T, Tanifuji M, Rockland KS (2010) Cortical connections to 

area TE in monkey: hybrid modular and distributed organization. Cereb Cortex 

20:257-270. 

Bradley MM, Miccoli L, Escrig MA, Lang PJ (2008) The pupil as a measure of 

emotional arousal and autonomic activation. Psychophysiology 45:602-607. 

Breitmeyer BG, Hoar WS, Randall D, Conte FP (1984) Visual masking: An 

integrative approach: Clarendon Press. 



 

 

162 

Bruce C (1982) Face recognition by monkeys: absence of an inversion effect. 

Neuropsychologia 20:515-521. 

Bruce C, Desimone R, Gross CG (1981) Visual properties of neurons in a 

polysensory area in superior temporal sulcus of the macaque. Journal of 

neurophysiology 46:369-384. 

Bruce V, Young A (1986) Understanding face recognition. British journal of 

psychology 77:305-327. 

Calder AJ, Nummenmaa L (2007) Face cells: separate processing of expression 

and gaze in the amygdala. Current biology 17:R371-R372. 

Cerf M, Frady EP, Koch C (2009) Faces and text attract gaze independent of the 

task: Experimental data and computer model. Journal of vision 9:10-10. 

Chang L, Tsao DY (2017) The code for facial identity in the primate brain. Cell 

169:1013-1028. e1014. 

Chang L, Bao P, Tsao DY (2017) The representation of colored objects in macaque 

color patches. Nat Commun 8:2064. 

Chen M, Yan Y, Gong X, Gilbert CD, Liang H, Li W (2014) Incremental integration 

of global contours through interplay between visual cortical areas. Neuron 82:682-

694. 

Chessick R, D (2008) The Blackwell Companion to Consciousness, edited by Max 

Velmans and Susan Schneider, Malden, MA, Blackwell Publishing Ltd., 2007. 

Journal of the American Academy of Psychoanalysis and Dynamic Psychiatry 

36:769-773. 



 

 

163 

Clark V, Keil K, Maisog JM, Courtney S, Ungerleider LG, Haxby JV (1996) 

Functional magnetic resonance imaging of human visual cortex during face 

matching: a comparison with positron emission tomography. Neuroimage 4:1-15. 

Cootes TF, Edwards GJ, Taylor CJ (1998) Active appearance models. In: European 

conference on computer vision, pp 484-498: Springer. 

Coulon M, Deputte BL, Heyman Y, Baudoin C (2009) Individual recognition in 

domestic cattle (Bos taurus): evidence from 2D-images of heads from different 

breeds. PLoS One 4:e4441. 

Courtney SM, Ungerleider LG, Keil K, Haxby JV (1997) Transient and sustained 

activity in a distributed neural system for human working memory. Nature 386:608. 

Craft E, Schütze H, Niebur E, Von Der Heydt R (2007) A neural model of figure–

ground organization. Journal of neurophysiology 97:4310-4326. 

Crick FC, Koch C (2005) What is the function of the claustrum? Philosophical 

Transactions of the Royal Society B: Biological Sciences 360:1271-1279. 

Cuaya LV, Hernández-Pérez R, Concha L (2016) Our faces in the dog's brain: 

Functional imaging reveals temporal cortex activation during perception of human 

faces. PloS one 11:e0149431. 

de Beeck HPO, Baker CI, DiCarlo JJ, Kanwisher NG (2006) Discrimination training 

alters object representations in human extrastriate cortex. Journal of Neuroscience 

26:13025-13036. 

Deen B, Richardson H, Dilks DD, Takahashi A, Keil B, Wald LL, Kanwisher N, Saxe 

R (2017) Organization of high-level visual cortex in human infants. Nature 

communications 8:13995. 



 

 

164 

Dehaene S, Sergent C, Changeux J-P (2003) A neuronal network model linking 

subjective reports and objective physiological data during conscious perception. 

Proceedings of the National Academy of Sciences 100:8520-8525. 

Dehaene S, Pegado F, Braga LW, Ventura P, Nunes Filho G, Jobert A, Dehaene-

Lambertz G, Kolinsky R, Morais J, Cohen L (2010) How learning to read changes 

the cortical networks for vision and language. science 330:1359-1364. 

Desimone R, Albright TD, Gross CG, Bruce C (1984) Stimulus-selective properties 

of inferior temporal neurons in the macaque. Journal of Neuroscience 4:2051-2062. 

Desimone R, Wessinger M, Thomas L, Schneider W (1990) Attentional control of 

visual perception: cortical and subcortical mechanisms. In: Cold Spring Harbor 

symposia on quantitative biology, pp 963-971: Cold Spring Harbor Laboratory Press. 

DiCarlo JJ, Cox DD (2007) Untangling invariant object recognition. Trends in 

cognitive sciences 11:333-341. 

Doi H, Koga T, Shinohara K (2009) 18-Month-olds can perceive Mooney faces. 

Neuroscience Research 64:317-322. 

Driver J, Baylis GC (1996) Edge-assignment and figure–ground segmentation in 

short-term visual matching. Cognitive psychology 31:248-306. 

Dubois J, de Berker AO, Tsao DY (2015) Single-unit recordings in the macaque face 

patch system reveal limitations of fMRI MVPA. Journal of Neuroscience 35:2791-

2802. 

Dutta B, Andrei A, Harris T, Lopez C, O’Callahan J, Putzeys J, Raducanu B, Severi 

S, Stavisky S, Trautmann E (2019) The Neuropixels probe: A CMOS based 

integrated microsystems platform for neuroscience and brain-computer interfaces. 



 

 

165 

In: 2019 IEEE International Electron Devices Meeting (IEDM), pp 10.11. 11-

10.11. 14: IEEE. 

Edelstein L, Denaro F (2004) The claustrum: a historical review of its anatomy, 

physiology, cytochemistry and functional significance. Pathology 

104:368,415,434,556,557. 

Erickson CA, Jagadeesh B, Desimone R (2000) Clustering of perirhinal neurons with 

similar properties following visual experience in adult monkeys. Nature 

neuroscience 3:1143. 

Ettlinger G, Wilson W (1990) Cross-modal performance: behavioural processes, 

phylogenetic considerations and neural mechanisms. Behavioural brain research 

40:169-192. 

Fahy F, Riches I, Brown M (1993) Neuronal activity related to visual recognition 

memory: long-term memory and the encoding of recency and familiarity information 

in the primate anterior and medial inferior temporal and rhinal cortex. Experimental 

Brain Research 96:457-472. 

Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the 

primate cerebral cortex. Cereb Cortex 1:1-47. 

Fernández-Miranda JC, Rhoton Jr AL, Kakizawa Y, Choi C, Álvarez-Linera J (2008) 

The claustrum and its projection system in the human brain: a microsurgical and 

tractographic anatomical study. 

Finkel LH, Sajda P (1992) Object discrimination based on depth-from-occlusion. 

Neural Computation 4:901-921. 



 

 

166 

Fisch L, Privman E, Ramot M, Harel M, Nir Y, Kipervasser S, Andelman F, 

Neufeld MY, Kramer U, Fried I (2009) Neural “ignition”: enhanced activation linked 

to perceptual awareness in human ventral stream visual cortex. Neuron 64:562-574. 

Fisher C, Freiwald WA (2015) Contrasting specializations for facial motion within the 

macaque face-processing system. Current Biology 25:261-266. 

Fowlkes CC, Martin DR, Malik J (2007) Local figure–ground cues are valid for 

natural images. Journal of Vision 7:2-2. 

Frässle S, Sommer J, Jansen A, Naber M, Einhäuser W (2014) Binocular rivalry: 

frontal activity relates to introspection and action but not to perception. Journal of 

Neuroscience 34:1738-1747. 

Freiwald WA, Tsao DY (2010) Functional compartmentalization and viewpoint 

generalization within the macaque face-processing system. Science 330:845-851. 

Freiwald WA, Tsao DY, Livingstone MS (2009) A face feature space in the macaque 

temporal lobe. Nature neuroscience 12:1187. 

Fried I, MacDonald KA, Wilson CL (1997) Single neuron activity in human 

hippocampus and amygdala during recognition of faces and objects. Neuron 

18:753-765. 

Fries P, Roelfsema PR, Engel AK, König P, Singer W (1997) Synchronization of 

oscillatory responses in visual cortex correlates with perception in interocular rivalry. 

Proceedings of the National Academy of Sciences 94:12699-12704. 

Friston K (2009) The free-energy principle: a rough guide to the brain? Trends in 

cognitive sciences 13:293-301. 



 

 

167 

Furl N, Hadj-Bouziane F, Liu N, Averbeck BB, Ungerleider LG (2012) Dynamic 

and static facial expressions decoded from motion-sensitive areas in the macaque 

monkey. Journal of Neuroscience 32:15952-15962. 

Gail A, Brinksmeyer HJ, Eckhorn R (2004) Perception-related modulations of local 

field potential power and coherence in primary visual cortex of awake monkey during 

binocular rivalry. Cerebral Cortex 14:300-313. 

Gauthier I, Tarr MJ, Anderson AW, Skudlarski P, Gore JC (1999) Activation of the 

middle fusiform'face area'increases with expertise in recognizing novel objects. 

Nature neuroscience 2:568. 

Gelbard-Sagiv H, Mudrik L, Hill MR, Koch C, Fried I (2018) Human single neuron 

activity precedes emergence of conscious perception. Nature communications 

9:2057. 

Gilbert CD, Li W (2013) Top-down influences on visual processing. Nature Reviews 

Neuroscience 14:350-363. 

Goren CC, Sarty M, Wu PY (1975) Visual following and pattern discrimination of 

face-like stimuli by newborn infants. Pediatrics 56:544-549. 

Gothard KM, Brooks KN, Peterson MA (2009) Multiple perceptual strategies used 

by macaque monkeys for face recognition. Anim Cogn 12:155-167. 

Grill-Spector K, Kanwisher N (2005) Visual recognition as soon as you know it is 

there, you know what it is. Psychological Science 16:152-160. 

Grimaldi P, Saleem KS, Tsao D (2016) Anatomical connections of the functionally 

defined “face patches” in the macaque monkey. Neuron 90:1325-1342. 

Grosof D, Shapley R, Hawken M (1993) Macaque V1 neurons can signal illusory 

contours. Nature 365:550-552. 



 

 

168 

Gross CG (2006) Charles G. Gross. In: History of Neuroscience in Autobiography 

(Albright T, Squire LR, eds): Oxford University Press. 

Gross CG, Rocha-Miranda Cd, Bender DB (1972) Visual properties of neurons in 

inferotemporal cortex of the Macaque. Journal of neurophysiology 35:96-111. 

Hadj-Bouziane F, Bell AH, Knusten TA, Ungerleider LG, Tootell RB (2008) 

Perception of emotional expressions is independent of face selectivity in monkey 

inferior temporal cortex. Proceedings of the National Academy of Sciences 

105:5591-5596. 

Hasson U, Harel M, Levy I, Malach R (2003) Large-scale mirror-symmetry 

organization of human occipito-temporal object areas. Neuron 37:1027-1041. 

Haxby JV, Hoffman EA, Gobbini MI (2000) The distributed human neural system for 

face perception. Trends in cognitive sciences 4:223-233. 

Haxby JV, Ungerleider LG, Clark VP, Schouten JL, Hoffman EA, Martin A (1999) 

The effect of face inversion on activity in human neural systems for face and object 

perception. Neuron 22:189-199. 

Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P (2001) Distributed 

and overlapping representations of faces and objects in ventral temporal cortex. 

Science 293:2425-2430. 

Heitger F, von der Heydt R, Kübler O (1994) A computational model of neural 

contour processing: Figure-ground segregation and illusory contours. In: From 

Perception to Action Conference, 1994., Proceedings, pp 181-192: IEEE. 

Hesse JK, Tsao DY (2016) Consistency of border-ownership cells across artificial 

stimuli, natural stimuli, and stimuli with ambiguous contours. Journal of 

Neuroscience 36:11338-11349. 



 

 

169 

Hesse JK, Tsao DY (2020) Representation of conscious percept without report 

in the macaque face patch network. bioRxiv. 

Hesse JK, Wadia V, Rutishauser U, Tsao DY (2019) Neural correlates of perceptual 

switches in binocular rivalry without active report. In: Society for Neuroscience. 

Chicago, IL. 

Heywood C, Cowey A (1992) The role of the ‘face-cell’area in the discrimination and 

recognition of faces by monkeys. Phil Trans R Soc Lond B 335:31-38. 

Hicks RD (2015) Aristotle De Anima: Cambridge University Press. 

Hochstein S, Ahissar M (2002) View from the top: Hierarchies and reverse 

hierarchies in the visual system. Neuron 36:791-804. 

Hoeks B, Levelt WJ (1993) Pupillary dilation as a measure of attention: A 

quantitative system analysis. Behavior Research Methods, Instruments, & 

Computers 25:16-26. 

Hohwy J, Roepstorff A, Friston K (2008) Predictive coding explains binocular rivalry: 

An epistemological review. Cognition 108:687-701. 

Huang Y, Rao RP (2011) Predictive coding. Wiley Interdisciplinary Reviews: 

Cognitive Science 2:580-593. 

Hung C-C, Yen CC, Ciuchta JL, Papoti D, Bock NA, Leopold DA, Silva AC (2015) 

Functional mapping of face-selective regions in the extrastriate visual cortex of the 

marmoset. Journal of Neuroscience 35:1160-1172. 

Inagaki M, Fujita I (2011) Reference frames for spatial frequency in face 

representation differ in the temporal visual cortex and amygdala. Journal of 

Neuroscience 31:10371-10379. 



 

 

170 

Issa EB, DiCarlo JJ (2012) Precedence of the eye region in neural processing of 

faces. Journal of Neuroscience 32:16666-16682. 

Janssens T, Zhu Q, Popivanov ID, Vanduffel W (2014) Probabilistic and single-

subject retinotopic maps reveal the topographic organization of face patches in the 

macaque cortex. Journal of Neuroscience 34:10156-10167. 

Jehee JF, Lamme VA, Roelfsema PR (2007) Boundary assignment in a recurrent 

network architecture. Vision research 47:1153-1165. 

Johnson MH, Dziurawiec S, Ellis H, Morton J (1991) Newborns' preferential tracking 

of face-like stimuli and its subsequent decline. Cognition 40:1-19. 

Jun JJ, Steinmetz NA, Siegle JH, Denman DJ, Bauza M, Barbarits B, Lee AK, 

Anastassiou CA, Andrei A, Aydın Ç (2017) Fully integrated silicon probes for high-

density recording of neural activity. Nature 551:232. 

Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in 

human extrastriate cortex specialized for face perception. Journal of neuroscience 

17:4302-4311. 

Kapoor V, Besserve M, Logothetis NK, Panagiotaropoulos TI (2018) Parallel and 

functionally segregated processing of task phase and conscious content in the 

prefrontal cortex. Communications biology 1:215. 

Kapoor V, Dwarakanath A, Safavi S, Werner J, Besserve M, Panagiotaropoulos TI, 

Logothetis NK (2020) Decoding the contents of consciousness from prefrontal 

ensembles. bioRxiv. 

Kar K, Kubilius J, Schmidt K, Issa EB, DiCarlo JJ (2019) Evidence that recurrent 

circuits are critical to the ventral stream’s execution of core object recognition 

behavior. Nature neuroscience 22:974. 



 

 

171 

Keliris GA, Logothetis NK, Tolias AS (2010) The role of the primary visual cortex 

in perceptual suppression of salient visual stimuli. Journal of Neuroscience 

30:12353-12365. 

Kendrick K, Baldwin B (1987) Cells in temporal cortex of conscious sheep can 

respond preferentially to the sight of faces. Science 236:448-450. 

Khuvis S, Yeagle E, Mehta A (2017) Diverse response properties of face-selective 

cells in the human fusiform face area. In: Society for Neuroscience Conference, p 

192.106. Washington DC. 

Khuvis S, Yeagle EM, Norman Y, Grossman S, Malach R, Mehta AD (2018) Face-

selective units in human ventral temporal cortex reactivate during free recall. 

BioRxiv:487686. 

Kiani R, Esteky H, Tanaka K (2005) Differences in onset latency of macaque 

inferotemporal neural responses to primate and non-primate faces. Journal of 

neurophysiology 94:1587-1596. 

Koch C, Tsuchiya N (2007) Attention and consciousness: two distinct brain 

processes. Trends in cognitive sciences 11:16-22. 

Koch C, Massimini M, Boly M, Tononi G (2016) Neural correlates of consciousness: 

progress and problems. Nature Reviews Neuroscience 17:307. 

Kogo N, Wagemans J (2013) The “side” matters: How configurality is reflected in 

completion. Cognitive neuroscience 4:31-45. 

Kogo N, Strecha C, Van Gool L, Wagemans J (2010) Surface construction by a 2-

D differentiation–integration process: A neurocomputational model for perceived 

border ownership, depth, and lightness in Kanizsa figures. Psychological review 

117:406. 



 

 

172 

Kolster H, Janssens T, Orban GA, Vanduffel W (2014) The retinotopic 

organization of macaque occipitotemporal cortex anterior to V4 and caudoventral to 

the middle temporal (MT) cluster. Journal of Neuroscience 34:10168-10191. 

Konorski J (1967) Integrative activity of the brain. 

Kornblith S, Tsao DY (2017) How thoughts arise from sights: inferotemporal and 

prefrontal contributions to vision. Current opinion in neurobiology 46:208-218. 

Kornblith S, Cheng X, Ohayon S, Tsao DY (2013) A network for scene processing 

in the macaque temporal lobe. Neuron 79:766-781. 

KovAcs G, Vogels R, Orban GA (1995) Cortical correlate of pattern backward 

masking. Proceedings of the National Academy of Sciences 92:5587-5591. 

KOVAcs I, Papathomas TV, Yang M, Fehér Á (1996) When the brain changes its 

mind: Interocular grouping during binocular rivalry. Proceedings of the National 

Academy of Sciences 93:15508-15511. 

Ku S-P, Tolias AS, Logothetis NK, Goense J (2011) fMRI of the face-processing 

network in the ventral temporal lobe of awake and anesthetized macaques. Neuron 

70:352-362. 

Kumar S, Popivanov ID, Vogels R (2017) Transformation of Visual Representations 

Across Ventral Stream Body-selective Patches. Cereb Cortex:1-15. 

Kuraoka K, Nakamura K (2007) Responses of single neurons in monkey amygdala 

to facial and vocal emotions. Journal of Neurophysiology 97:1379-1387. 

Lafer-Sousa R, Conway BR (2013) Parallel, multi-stage processing of colors, faces 

and shapes in macaque inferior temporal cortex. Nat Neurosci 16:1870-1878. 



 

 

173 

Lamme VA (2006) Towards a true neural stance on consciousness. Trends in 

cognitive sciences 10:494-501. 

Lamme VA, Roelfsema PR (2000) The distinct modes of vision offered by 

feedforward and recurrent processing. Trends in neurosciences 23:571-579. 

Landi SM, Freiwald WA (2017) Two areas for familiar face recognition in the primate 

brain. Science 357:591-595. 

Lau H, Rosenthal D (2011) Empirical support for higher-order theories of conscious 

awareness. Trends in cognitive sciences 15:365-373. 

Lee TS, Nguyen M (2001) Dynamics of subjective contour formation in the early 

visual cortex. Proceedings of the National Academy of Sciences 98:1907-1911. 

Lee TS, Mumford D (2003) Hierarchical Bayesian inference in the visual cortex. 

JOSA A 20:1434-1448. 

Lehky SR, Maunsell JH (1996) No binocular rivalry in the LGN of alert macaque 

monkeys. Vision research 36:1225-1234. 

Leibo JZ, Mutch J, Poggio T (2011) Why the brain separates face recognition from 

object recognition. In: Advances in neural information processing systems, pp 711-

719. 

Leibo JZ, Liao Q, Anselmi F, Freiwald WA, Poggio T (2017) View-tolerant face 

recognition and Hebbian learning imply mirror-symmetric neural tuning to head 

orientation. Current Biology 27:62-67. 

Leopold DA, Logothetis NK (1996) Activity changes in early visual cortex reflect 

monkeys' percepts during binocular rivalry. Nature 379:549. 



 

 

174 

Leopold DA, Plettenberg HK, Logothetis NK (2002) Visual processing in the 

ketamine-anesthetized monkey. Experimental brain research 143:359-372. 

Leopold DA, Bondar IV, Giese MA (2006) Norm-based face encoding by single 

neurons in the monkey inferotemporal cortex. Nature 442:572. 

Levy I, Hasson U, Avidan G, Hendler T, Malach R (2001) Center–periphery 

organization of human object areas. Nature neuroscience 4:533. 

Logothetis NK, Schall JD (1989) Neuronal correlates of subjective visual perception. 

Science 245:761-763. 

Logothetis NK, Leopold DA, Sheinberg DL (1996) What is rivalling during binocular 

rivalry? Nature 380:621-624. 

Magri C, Schridde U, Murayama Y, Panzeri S, Logothetis NK (2012) The amplitude 

and timing of the BOLD signal reflects the relationship between local field potential 

power at different frequencies. Journal of Neuroscience 32:1395-1407. 

Maier A, Wilke M, Aura C, Zhu C, Frank QY, Leopold DA (2008) Divergence of fMRI 

and neural signals in V1 during perceptual suppression in the awake monkey. 

Nature neuroscience 11:1193. 

Malach R, Reppas J, Benson R, Kwong K, Jiang H, Kennedy W, Ledden P, Brady 

T, Rosen B, Tootell R (1995) Object-related activity revealed by functional magnetic 

resonance imaging in human occipital cortex. Proceedings of the National Academy 

of Sciences 92:8135-8139. 

Marciniak K, Atabaki A, Dicke PW, Thier P (2014) Disparate substrates for head 

gaze following and face perception in the monkey superior temporal sulcus. Elife 3. 



 

 

175 

Marr D (1982) Vision: A computational investigation into the human 

representation and processing of visual information. New York, NY, USA: Henry Holt 

and Co. Inc June. 

Maunsell JH, Gibson JR (1992) Visual response latencies in striate cortex of the 

macaque monkey. Journal of Neurophysiology 68:1332-1344. 

Maunsell JH, Treue S (2006) Feature-based attention in visual cortex. Trends in 

neurosciences 29:317-322. 

McDermott J (2004) Psychophysics with junctions in real images. Perception 

33:1101-1127. 

McMahon DB, Jones AP, Bondar IV, Leopold DA (2014) Face-selective neurons 

maintain consistent visual responses across months. Proceedings of the National 

Academy of Sciences 111:8251-8256. 

McMahon DB, Russ BE, Elnaiem HD, Kurnikova AI, Leopold DA (2015) Single-unit 

activity during natural vision: diversity, consistency, and spatial sensitivity among AF 

face patch neurons. Journal of Neuroscience 35:5537-5548. 

Medawar PB (2008) Advice to a young scientist: Basic Books. 

Meng M, Tong F (2004) Can attention selectively bias bistable perception? 

Differences between binocular rivalry and ambiguous figures. Journal of vision 4:2-

2. 

Minxha J, Mamelak AN, Rutishauser U (2018) Surgical and electrophysiological 

techniques for single-neuron recordings in human epilepsy patients. In: Extracellular 

recording approaches, pp 267-293: Springer. 



 

 

176 

Minxha J, Mosher C, Morrow JK, Mamelak AN, Adolphs R, Gothard KM, 

Rutishauser U (2017) Fixations gate species-specific responses to free viewing of 

faces in the human and macaque amygdala. Cell reports 18:878-891. 

Mitchell JF, Stoner GR, Reynolds JH (2004) Object-based attention determines 

dominance in binocular rivalry. Nature 429:410. 

Moeller S, Freiwald WA, Tsao DY (2008) Patches with links: a unified system for 

processing faces in the macaque temporal lobe. Science 320:1355-1359. 

Moeller S, Crapse T, Chang L, Tsao DY (2017) The effect of face patch 

microstimulation on perception of faces and objects. Nature neuroscience 20:743-

752. 

Mosher CP, Zimmerman PE, Gothard KM (2014) Neurons in the monkey amygdala 

detect eye contact during naturalistic social interactions. Current Biology 24:2459-

2464. 

Naber M, Frässle S, Einhäuser W (2011) Perceptual rivalry: reflexes reveal the 

gradual nature of visual awareness. PLoS One 6:e20910. 

Nakamura K, Mikami A, Kubota K (1992) Activity of single neurons in the monkey 

amygdala during performance of a visual discrimination task. Journal of 

Neurophysiology 67:1447-1463. 

Nakayama K, He ZJ, Shimojo S (1995) Visual surface representation: A critical link 

between lower-level and higher-level vision. Visual cognition: An invitation to 

cognitive science 2:1-70. 

Newport C, Wallis G, Reshitnyk Y, Siebeck UE (2016) Discrimination of human 

faces by archerfish (Toxotes chatareus). Scientific reports 6:27523. 



 

 

177 

O'Craven KM, Kanwisher N (2000) Mental imagery of faces and places activates 

corresponding stimulus-specific brain regions. Journal of cognitive neuroscience 

12:1013-1023. 

Ohayon S, Tsao DY (2012) MR-guided stereotactic navigation. J Neurosci Methods 

204:389-397. 

Ohayon S, Freiwald WA, Tsao DY (2012) What makes a cell face selective? The 

importance of contrast. Neuron 74:567-581. 

Olshausen BA, Anderson CH, Van Essen DC (1993) A neurobiological model of 

visual attention and invariant pattern recognition based on dynamic routing of 

information. Journal of Neuroscience 13:4700-4719. 

Ooi TL, He ZJ (1999) Binocular rivalry and visual awareness: The role of attention. 

Perception 28:551-574. 

Overgaard M, Fazekas P (2016) Can no-report paradigms extract true correlates of 

consciousness? Trends in cognitive sciences 20:241-242. 

Overman Jr WH, Doty RW (1982) Hemispheric specialization displayed by man but 

not macaques for analysis of faces. Neuropsychologia 20:113-128. 

Pachitariu M, Steinmetz NA, Kadir SN, Carandini M, Harris KD (2016) Fast and 

accurate spike sorting of high-channel count probes with KiloSort. In: Advances in 

neural information processing systems, pp 4448-4456. 

Pack CC, Born RT, Livingstone MS (2003) Two-dimensional substructure of stereo 

and motion interactions in macaque visual cortex. Neuron 37:525-535. 

Panagiotaropoulos TI, Deco G, Kapoor V, Logothetis NK (2012) Neuronal 

discharges and gamma oscillations explicitly reflect visual consciousness in the 

lateral prefrontal cortex. Neuron 74:924-935. 



 

 

178 

Park SH, Russ BE, McMahon DB, Koyano KW, Berman RA, Leopold DA (2017) 

Functional subpopulations of neurons in a macaque face patch revealed by single-

unit fMRI mapping. Neuron 95:971-981. e975. 

Parker MP (1999) The archaeology of death and burial: Sutton. 

Parr L, Winslow J, Hopkins W (1999) Is the inversion effect in rhesus monkeys face-

specific? Animal Cognition 2:123-129. 

Parr LA, Heintz M, Pradhan G (2008) Rhesus monkeys (Macaca mulatta) lack 

expertise in face processing. J Comp Psychol 122:390-402. 

Parvizi J, Jacques C, Foster BL, Witthoft N, Rangarajan V, Weiner KS, Grill-Spector 

K (2012) Electrical stimulation of human fusiform face-selective regions distorts face 

perception. J Neurosci 32:14915-14920. 

Pascalis O, Bachevalier J (1998) Face recognition in primates: a cross-species 

study. Behavioural processes 43:87-96. 

Pearson R, Brodal P, Gatter K, Powell T (1982) The organization of the connections 

between the cortex and the claustrum in the monkey. Brain research 234:435-441. 

Petersen SE, Robinson DL, Morris JD (1987) Contributions of the pulvinar to visual 

spatial attention. Neuropsychologia 25:97-105. 

Peterson MA (1999) What's in a stage name? Comment on Vecera and O'Reilly 

(1998). 

Peterson MA, Gibson BS (1993) Shape recognition inputs to figure-ground 

organization in three-dimensional displays. Cognitive Psychology 25:383-429. 

Peterson MA, Gibson BS (1994) Must figure-ground organization precede object 

recognition? An assumption in peril. Psychological Science 5:253-259. 



 

 

179 

Peterson MA, Kim JH (2001) On what is bound in figures and grounds. Visual 

Cognition 8:329-348. 

Pinsk MA, DeSimone K, Moore T, Gross CG, Kastner S (2005) Representations of 

faces and body parts in macaque temporal cortex: a functional MRI study. 

Proceedings of the National Academy of Sciences of the United States of America 

102:6996-7001. 

Pinsk MA, Arcaro M, Weiner KS, Kalkus JF, Inati SJ, Gross CG, Kastner S (2009) 

Neural representations of faces and body parts in macaque and human cortex: a 

comparative FMRI study. Journal of neurophysiology 101:2581-2600. 

Pitcher D, Dilks DD, Saxe RR, Triantafyllou C, Kanwisher N (2011) Differential 

selectivity for dynamic versus static information in face-selective cortical regions. 

Neuroimage 56:2356-2363. 

Polonsky A, Blake R, Braun J, Heeger DJ (2000a) Neuronal activity in human 

primary visual cortex correlates with perception during binocular rivalry. Nature 

neuroscience 3:1153. 

Polonsky A, Blake R, Braun J, Heeger DJ (2000b) Neuronal activity in human 

primary visual cortex correlates with perception during binocular rivalry. Nature 

neuroscience 3:1153-1159. 

Popivanov ID, Jastorff J, Vanduffel W, Vogels R (2012) Stimulus representations in 

body-selective regions of the macaque cortex assessed with event-related fMRI. 

Neuroimage 63:723-741. 

Premereur E, Taubert J, Janssen P, Vogels R, Vanduffel W (2016) Effective 

connectivity reveals largely independent parallel networks of face and body patches. 

Current Biology 26:3269-3279. 



 

 

180 

Preuschoff K, t Hart BM, Einhauser W (2011) Pupil dilation signals surprise: 

Evidence for noradrenaline’s role in decision making. Frontiers in neuroscience 

5:115. 

Puce A, Allison T, Gore JC, McCarthy G (1995) Face-sensitive regions in human 

extrastriate cortex studied by functional MRI. Journal of neurophysiology 74:1192-

1199. 

Puce A, Allison T, Asgari M, Gore JC, McCarthy G (1996) Differential sensitivity of 

human visual cortex to faces, letterstrings, and textures: a functional magnetic 

resonance imaging study. Journal of neuroscience 16:5205-5215. 

Qiu FT, Von Der Heydt R (2005) Figure and ground in the visual cortex: V2 combines 

stereoscopic cues with Gestalt rules. Neuron 47:155-166. 

Qiu FT, Von Der Heydt R (2007) Neural representation of transparent overlay. 

Nature neuroscience 10:283. 

Quiroga RQ, Mukamel R, Isham EA, Malach R, Fried I (2008) Human single-neuron 

responses at the threshold of conscious recognition. Proceedings of the National 

Academy of Sciences 105:3599-3604. 

Rajimehr R, Young JC, Tootell RB (2009) An anterior temporal face patch in human 

cortex, predicted by macaque maps. Proceedings of the National Academy of 

Sciences 106:1995-2000. 

Rajimehr R, Bilenko NY, Vanduffel W, Tootell RB (2014) Retinotopy versus face 

selectivity in macaque visual cortex. Journal of cognitive neuroscience 26:2691-

2700. 

Ramsden BM, Hung CP, Roe AW (2001) Real and illusory contour processing in 

area V1 of the primate: a cortical balancing act. Cerebral Cortex 11:648-665. 



 

 

181 

Rao RP, Ballard DH (1999) Predictive coding in the visual cortex: a functional 

interpretation of some extra-classical receptive-field effects. Nature neuroscience 

2:79. 

Revonsuo A, Kamppinen M (2013) Consciousness in philosophy and cognitive 

neuroscience: Psychology Press. 

Rey HG, Fried I, Quiroga RQ (2014) Timing of single-neuron and local field potential 

responses in the human medial temporal lobe. Current Biology 24:299-304. 

RielSalvatore J, Clark G, Davidson I, Noble W, DErrico F, Vanhaeren M, Gargett 

RH, Hovers E, BelferCohen A, Krantz GS (2001) Grave markers: Middle and Early 

Upper Paleolithic burials and the use of chronotypology in contemporary Paleolithic 

research. Current Anthropology 42:449-479. 

Riesenhuber M, Poggio T (1999) Hierarchical models of object recognition in cortex. 

Nature neuroscience 2:1019. 

Riesenhuber M, Poggio T (2002) Neural mechanisms of object recognition. Current 

opinion in neurobiology 12:162-168. 

Robinson DL, Petersen SE (1992) The pulvinar and visual salience. Trends in 

neurosciences 15:127-132. 

Romanski LM, Diehl MM (2011) Neurons responsive to face-view in the primate 

ventrolateral prefrontal cortex. Neuroscience 189:223-235. 

Rosenfeld SA, Van Hoesen GW (1979) Face recognition in the rhesus monkey. 

Neuropsychologia 17:503-509. 

Rossion B, Taubert J (2019) What can we learn about human individual face 

recognition from experimental studies in monkeys? Vision Res 157:142-158. 



 

 

182 

Rotshtein P, Henson RN, Treves A, Driver J, Dolan RJ (2005) Morphing Marilyn 

into Maggie dissociates physical and identity face representations in the brain. Nat 

Neurosci 8:107-113. 

Roy A, Shepherd SV, Platt ML (2012) Reversible inactivation of pSTS suppresses 

social gaze following in the macaque (Macaca mulatta). Social cognitive and 

affective neuroscience 9:209-217. 

Rubin E (1958) Figure and ground. Readings in perception:194-203. 

Rubin E (1980) Visuell wahrgenommene figuren: Рипол Классик. 

Rutishauser U, Schuman EM, Mamelak AN (2006) Online detection and sorting of 

extracellularly recorded action potentials in human medial temporal lobe recordings, 

in vivo. Journal of neuroscience methods 154:204-224. 

Rutishauser U, Ross IB, Mamelak AN, Schuman EM (2010) Human memory 

strength is predicted by theta-frequency phase-locking of single neurons. Nature 

464:903-907. 

Rutishauser U, Tudusciuc O, Neumann D, Mamelak AN, Heller AC, Ross IB, Philpott 

L, Sutherling WW, Adolphs R (2011) Single-unit responses selective for whole faces 

in the human amygdala. Current Biology 21:1654-1660. 

Saalmann YB, Kastner S (2011) Cognitive and perceptual functions of the visual 

thalamus. Neuron 71:209-223. 

Saalmann YB, Pinsk MA, Wang L, Li X, Kastner S (2012) The pulvinar regulates 

information transmission between cortical areas based on attention demands. 

Science 337:753-756. 

Sadagopan S, Zarco W, Freiwald WA (2017) A causal relationship between face-

patch activity and face-detection behavior. Elife 6. 



 

 

183 

Safavi S, Kapoor V, Logothetis NK, Panagiotaropoulos TI (2014) Is the frontal 

lobe involved in conscious perception? Frontiers in Psychology 5:1063. 

Sajda P, Finkel LH (1992) Simulating biological vision with hybrid neural networks. 

Simulation 59:47-55. 

Sakai K, Nishimura H (2006) Surrounding suppression and facilitation in the 

determination of border ownership. Journal of Cognitive Neuroscience 18:562-579. 

Saleem KS, Tanaka K, Rockland KS (1993) Specific and columnar projection from 

area TEO to TE in the macaque inferotemporal cortex. Cerebral Cortex 3:454-464. 

Saleem KS, Miller B, Price JL (2014) Subdivisions and connectional networks of the 

lateral prefrontal cortex in the macaque monkey. The Journal of comparative 

neurology 522:1641-1690. 

Sanghera M, Rolls E, Roper-Hall A (1979) Visual responses of neurons in the 

dorsolateral amygdala of the alert monkey. Experimental neurology 63:610-626. 

Sapountzis P, Schluppeck D, Bowtell R, Peirce JW (2010) A comparison of fMRI 

adaptation and multivariate pattern classification analysis in visual cortex. 

Neuroimage 49:1632-1640. 

Sato T, Uchida G, Lescroart MD, Kitazono J, Okada M, Tanifuji M (2013) Object 

representation in inferior temporal cortex is organized hierarchically in a mosaic-like 

structure. Journal of Neuroscience 33:16642-16656. 

Schalk G, Kapeller C, Guger C, Ogawa H, Hiroshima S, Lafer-Sousa R, Saygin ZM, 

Kamada K, Kanwisher N (2017) Facephenes and rainbows: Causal evidence for 

functional and anatomical specificity of face and color processing in the human 

brain. Proc Natl Acad Sci U S A 114:12285-12290. 



 

 

184 

Schwiedrzik CM, Freiwald WA (2017) High-level prediction signals in a low-level 

area of the macaque face-processing hierarchy. Neuron 96:89-97. e84. 

Sergent J, Ohta S, MACDONALD B (1992) Functional neuroanatomy of face and 

object processing: a positron emission tomography study. Brain 115:15-36. 

She L, Tsao D (2017) Recordings from macaque face and body patches in the upper 

bank of the superior temporal sulcus reveal strong species selectivity. In: Society for 

Neuroscience Conference, p 192.104. Washington DC. 

She LT, Doris (2018) Face coding in the macaque perirhinal face patch. In: Program 

No. 307.12. Society for Neuroscience, 2018. . 

Sheinberg DL, Logothetis NK (1997) The role of temporal cortical areas in 

perceptual organization. Proceedings of the National Academy of Sciences 

94:3408-3413. 

Sherk H (1986) The claustrum and the cerebral cortex. In: Sensory-motor areas and 

aspects of cortical connectivity, pp 467-499: Springer. 

Sherrington CS (1940) Man on his nature. 

Sheth BR, Sharma J, Rao SC, Sur M (1996) Orientation maps of subjective contours 

in visual cortex. Science 274:2110-2115. 

Shipp S (2004) The brain circuitry of attention. Trends in cognitive sciences 8:223-

230. 

Sigala R, Logothetis NK, Rainer G (2011) Own-species bias in the representations 

of monkey and human face categories in the primate temporal lobe. Journal of 

neurophysiology 105:2740-2752. 

Sinha P (2002) Recognizing complex patterns. nature neuroscience 5:1093. 



 

 

185 

Srihasam K, Vincent JL, Livingstone MS (2014) Novel domain formation reveals 

proto-architecture in inferotemporal cortex. Nature neuroscience 17:1776. 

Srihasam K, Mandeville JB, Morocz IA, Sullivan KJ, Livingstone MS (2012) 

Behavioral and anatomical consequences of early versus late symbol training in 

macaques. Neuron 73:608-619. 

Stephan C, Wilkinson A, Huber L (2012) Have we met before? Pigeons recognise 

familiar human faces. Avian Biology Research 5:75-80. 

Sugase-Miyamoto Y, Matsumoto N, Ohyama K, Kawano K (2014) Face inversion 

decreased information about facial identity and expression in face-responsive 

neurons in macaque area TE. Journal of Neuroscience 34:12457-12469. 

Sugihara T, Qiu FT, von der Heydt R (2011) The speed of context integration in the 

visual cortex. Journal of neurophysiology 106:374-385. 

Sugita Y (2008) Face perception in monkeys reared with no exposure to faces. Proc 

Natl Acad Sci U S A 105:394-398. 

Supèr H, Spekreijse H, Lamme VA (2001) Two distinct modes of sensory processing 

observed in monkey primary visual cortex (V1). Nature neuroscience 4:304. 

Supèr H, Romeo A, Keil M (2010) Feed-forward segmentation of figure-ground and 

assignment of border-ownership. PLoS One 5:e10705. 

Tan C, Poggio T (2016) Neural tuning size in a model of primate visual processing 

accounts for three key markers of holistic face processing. PloS one 11:e0150980. 

Tanaka JW, Farah MJ (1993) Parts and wholes in face recognition. The Quarterly 

journal of experimental psychology 46:225-245. 



 

 

186 

Tanaka K (1996) Inferotemporal cortex and object vision. Annual review of 

neuroscience 19:109-139. 

Tang H, Schrimpf M, Lotter W, Moerman C, Paredes A, Ortega Caro J, Hardesty W, 

Cox D, Kreiman G (2018a) Recurrent computations for visual pattern completion. 

Proc Natl Acad Sci U S A 115:8835-8840. 

Tang S, Lee TS, Li M, Zhang Y, Xu Y, Liu F, Teo B, Jiang H (2018b) Complex 

Pattern Selectivity in Macaque Primary Visual Cortex Revealed by Large-Scale 

Two-Photon Imaging. Curr Biol 28:38-48 e33. 

Tanné‐Gariépy J, Boussaoud D, Rouiller EM (2002) Projections of the claustrum to 

the primary motor, premotor, and prefrontal cortices in the macaque monkey. 

Journal of Comparative Neurology 454:140-157. 

Taubert J, Van Belle G, Vanduffel W, Rossion B, Vogels R (2014) The effect of face 

inversion for neurons inside and outside fMRI-defined face-selective cortical 

regions. Journal of neurophysiology 113:1644-1655. 

Taubert J, Van Belle G, Vanduffel W, Rossion B, Vogels R (2015) Neural correlate 

of the thatcher face illusion in a monkey face-selective patch. Journal of 

Neuroscience 35:9872-9878. 

Taubert J, Goffaux V, Van Belle G, Vanduffel W, Vogels R (2016) The impact of 

orientation filtering on face-selective neurons in monkey inferior temporal cortex. 

Scientific reports 6:21189. 

Taubert J, Flessert M, Wardle SG, Basile BM, Murphy AP, Murray EA, Ungerleider 

LG (2018) Amygdala lesions eliminate viewing preferences for faces in rhesus 

monkeys. Proceedings of the National Academy of Sciences 115:8043-8048. 

Thompson P (1980) Margaret Thatcher: a new illusion. Perception. 



 

 

187 

Tibbetts EA (2002) Visual signals of individual identity in the wasp Polistes 

fuscatus. Proceedings of the Royal Society of London B: Biological Sciences 

269:1423-1428. 

Todorov A, Mandisodza AN, Goren A, Hall CC (2005) Inferences of competence 

from faces predict election outcomes. Science 308:1623-1626. 

Tong F, Engel SA (2001) Interocular rivalry revealed in the human cortical blind-spot 

representation. Nature 411:195. 

Tong F, Meng M, Blake R (2006) Neural bases of binocular rivalry. Trends in 

cognitive sciences 10:502-511. 

Tong F, Nakayama K, Vaughan JT, Kanwisher N (1998) Binocular rivalry and visual 

awareness in human extrastriate cortex. Neuron 21:753-759. 

Tsao DY, Moeller S, Freiwald WA (2008a) Comparing face patch systems in 

macaques and humans. Proceedings of the National Academy of Sciences 

105:19514-19519. 

Tsao DY, Freiwald WA, Tootell RB, Livingstone MS (2006) A cortical region 

consisting entirely of face-selective cells. Science 311:670-674. 

Tsao DY, Schweers N, Moeller S, Freiwald WA (2008b) Patches of face-selective 

cortex in the macaque frontal lobe. Nature neuroscience 11:877. 

Tsao DY, Freiwald WA, Knutsen TA, Mandeville JB, Tootell RB (2003a) Faces and 

objects in macaque cerebral cortex. Nature neuroscience 6:989. 

Tsao DY, Vanduffel W, Sasaki Y, Fize D, Knutsen TA, Mandeville JB, Wald LL, Dale 

AM, Rosen BR, Van Essen DC (2003b) Stereopsis activates V3A and caudal 

intraparietal areas in macaques and humans. Neuron 39:555-568. 



 

 

188 

Tsuchiya N, Koch C (2005) Continuous flash suppression reduces negative 

afterimages. Nature neuroscience 8:1096. 

Tsuchiya N, Wilke M, Frässle S, Lamme VA (2015) No-report paradigms: extracting 

the true neural correlates of consciousness. Trends in cognitive sciences 19:757-

770. 

Tsuchiya N, Frässle S, Wilke M, Lamme V (2016) No-report and report-based 

paradigms jointly unravel the NCC: response to Overgaard and Fazekas. 

Valentine T (1988) Upside‐down faces: A review of the effect of inversion upon face 

recognition. British journal of psychology 79:471-491. 

Valenza E, Simion F, Cassia VM, Umiltà C (1996) Face preference at birth. Journal 

of experimental psychology: Human Perception and Performance 22:892. 

Van der Velden J, Zheng Y, Patullo BW, Macmillan DL (2008) Crayfish recognize 

the faces of fight opponents. PLoS One 3:e1695. 

Vecera SP, Farah MJ (1997) Is visual image segmentation a bottom-up or an 

interactive process? Perception & Psychophysics 59:1280-1296. 

Vecera SP, O'reilly RC (1998) Figure-ground organization and object recognition 

processes: an interactive account. Journal of Experimental Psychology: Human 

Perception and Performance 24:441. 

Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple 

features. In: Computer Vision and Pattern Recognition, 2001. CVPR 2001. 

Proceedings of the 2001 IEEE Computer Society Conference on, pp I-I: IEEE. 

von der Heydt R (2013) Neurophysiological constraints on models of illusory 

contours. Cognitive neuroscience 4:49-50. 



 

 

189 

von der Heydt R, Peterhans E (1989) Mechanisms of contour perception in 

monkey visual cortex. I. Lines of pattern discontinuity. The Journal of neuroscience 

9:1731-1748. 

Von der Heydt R, Peterhans E, Baumgartner G (1984) Illusory contours and cortical 

neuron responses. Science 224:1260-1262. 

Wallis JD (2007) Orbitofrontal cortex and its contribution to decision-making. Annu 

Rev Neurosci 30:31-56. 

Wang S, Tudusciuc O, Mamelak AN, Ross IB, Adolphs R, Rutishauser U (2014) 

Neurons in the human amygdala selective for perceived emotion. Proceedings of 

the National Academy of Sciences 111:E3110-E3119. 

Wilke M, Logothetis NK, Leopold DA (2003) Generalized flash suppression of salient 

visual targets. Neuron 39:1043-1052. 

Wilke M, Logothetis NK, Leopold DA (2006) Local field potential reflects perceptual 

suppression in monkey visual cortex. Proceedings of the National Academy of 

Sciences 103:17507-17512. 

Wilke M, Mueller K-M, Leopold DA (2009) Neural activity in the visual thalamus 

reflects perceptual suppression. Proceedings of the National Academy of Sciences 

106:9465-9470. 

Wilke M, Kagan I, Andersen RA (2013) Effects of pulvinar inactivation on spatial 

decision-making between equal and asymmetric reward options. Journal of 

cognitive neuroscience 25:1270-1283. 

Wilke M, Turchi J, Smith K, Mishkin M, Leopold DA (2010) Pulvinar inactivation 

disrupts selection of movement plans. Journal of Neuroscience 30:8650-8659. 



 

 

190 

Wolfe JM (1984) Reversing ocular dominance and suppression in a single flash. 

Vision research 24:471-478. 

Wright AA, Roberts WA (1996) Monkey and human face perception: Inversion 

effects for human faces but not for monkey faces or scenes. Journal of Cognitive 

Neuroscience 8:278-290. 

Yildirim I, Freiwald W, Tenenbaum J (2018) Efficient inverse graphics in biological 

face processing. bioRxiv:282798. 

Yin RK (1969) Looking at upside-down faces. Journal of experimental psychology 

81:141. 

Young AW, Hellawell D, Hay DC (2013) Configurational information in face 

perception. Perception 42:1166-1178. 

Young MP, Yamane S (1992) Sparse population coding of faces in the 

inferotemporal cortex. Science 256:1327-1331. 

Yovel G, Freiwald WA (2013) Face recognition systems in monkey and human: are 

they the same thing? F1000prime reports 5. 

Yuille A, Kersten D (2006) Vision as Bayesian inference: analysis by synthesis? 

Trends in cognitive sciences 10:301-308. 

Zhang P, Jamison K, Engel S, He B, He S (2011) Binocular rivalry requires visual 

attention. Neuron 71:362-369. 

Zhaoping L (2005) Border Ownership from Intracortical Interactions in Visual Area 

V2. Neuron 47:143-153. 

Zhou H, Friedman HS, Von Der Heydt R (2000) Coding of border ownership in 

monkey visual cortex. The Journal of Neuroscience 20:6594-6611. 


