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ABSTRACT 

The assembly of colloidal-sized particles into larger structures by the manipulation of inter-

particle forces has been a subject of significant research towards applications in materials 

science, soft matter physics, and synthetic biology. To date, much of this work has utilized 

manipulation of electrostatic or depletion interactions to drive the aggregation of the 

particles. More recently, specific (bio)-chemical interactions have been harnessed, 

particularly the use of deoxyribonucleic acid (DNA) linkers to program particle interactions 

by Watson-Crick base-pairing. In this thesis, we will demonstrate the use of an alternative 

set of biochemical interactions, protein-protein interactions, which have useful properties 

(in particular, their ability to be completely genetically-programmable). 

In Chapter 2, we discuss the development of a model system for the protein-mediated 

assembly of colloidal micro-particles. Associative proteins are grafted onto the surface of 

polystyrene micro-particles, enabling their assembly into aggregates either through 

reversible coiled-coil interactions or by irreversible isopeptide linkages. The sizes of the 

resulting aggregates are tunable and can be controlled by the concentration of the 

immobilized associative proteins on their surface. Further, we show that particles grafted 

with different protein pairs show excellent self-sorting into separate aggregates. Finally, we 

demonstrate that these protein-protein interactions can be used to assemble complex core-

shell aggregates. The principles of protein-mediated colloidal assembly learned in this 

chapter will be instructive as we attempt the more complex assembly of living microbial 

cells. 

In Chapter 3, we discuss the implementation of a protein-driven aggregation system in 

living bacterial cells. Similarly to Chapter 2, we demonstrate that we can drive the 

aggregation of bacteria by the surface display of proteins enabling reversible coiled-coil 

interactions or irreversible isopeptide bonds. The sizes of these aggregates are tunable by 

titration of surface expression levels by standard synthetic biology techniques. Finally, we 

show that this programmable aggregation of bacteria may have physiological consequences 
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for the cells, in particular, the activation of a quorum sensing circuit due to a higher local 

concentration of bacteria. 

In Chapter 4, we further investigate how the properties of the aggregates described in 

Chapter 3 can be controlled and how these relate to the underlying properties of the 

associative proteins and shear field. we demonstrate control of the assembly kinetics and 

equilibrium sizes of the resulting flocs over several orders of magnitude using different 

associating proteins and expression levels. Finally, we show that a single point mutation in 

the associative protein leads to an unexpected ultra-sensitive pH-responsive coil, 

demonstrating the importance of molecular-scale interactions on the macro-scale properties 

of the aggregates.  

In Chapter 5, we discuss the ability of the bacterial aggregates described in Chapters 3 and 

4 to enable substrate channeling between bacterial strains, leading to enhancement of titers 

in multi-step biosynthetic pathways. When biosynthetic pathways are split into separate 

bacterial strains, dilution of the intermediate compound into the bulk media may decrease 

reaction flux. By aggregating the bacteria, the intermediate compound is able to rapidly 

diffuse into the downstream cell without being diluted, enabling higher reaction fluxes. we 

demonstrate through the model flavonoid synthesis pathway that aggregation can lead to 

substantially higher titers of the desired compound without pathway re-engineering, and 

develop a mathematical model by which this result can be understood. 
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C h a p t e r  1  

INTRODUCTION: PROGRAMMABLE COLLOIDAL ASSEMBLY 

AND SPATIAL STRUCTURE IN MICROBIAL COMMUNITIES 

The overall purpose of the work described in this thesis is to develop a new set of 

tools to program and drive assembly of colloidal particles using protein-protein 

interactions, with the major application of enabling the genetically programmable 

assembly of living bacterial cells in order to enable emergent function of multi-cell 

bacterial aggregates. In this chapter, we discuss previous work in programmable 

colloidal assembly, and the importance of spatial structure in microbial consortia.  

 

Colloidal Forces and Flocculation 

A colloid is a substance consisting of a dispersed phase of particles, generally 

between 1 nanometer and several microns in size, suspended in a continuous solvent 

phase.1 In this dispersed state, the repulsive interactions between colloidal particles 

must be greater in magnitude than any attractive forces between particles. In many 

cases, these repulsive forces are dominated by relatively long-range electrostatic 

interactions, which are generally characterized by the ζ-potential (zeta-potential), the 

potential in the electrical double-layer at the interface at the slip plane of the particle 

with respect to the bulk continuous phase. At high absolute values of the zeta-

potential, particle suspensions are stabilized by electrostatic repulsion between 

particles of the same charge.2 Flocculation, the assembly of colloidal particles into 

aggregates, takes place when attractive interactions dominate over the repulsive 

interactions. Flocculation may occur from the dispersed phase when the repulsive 

interactions between particles are decreased, such as by the addition of salt, which 

will screen the electrostatic repulsion between particles,2,3 or by increasing the 
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attractive forces between particles, for example by introducing particles with the 

opposite charge into the solution,4 adding a multi-functional chemical crosslinker that 

bridges particles,5 or by the depletion force which is caused by macromolecules 

creating an entropically-derived osmotic pressure between particles.6,7 

Colloidal Crystals 

When the attractive forces between particles overcome the repulsive interactions, 

flocculation occurs, but does not in general lead to the thermodynamic product, a 

colloidal crystal.8 A colloidal crystal is an ordered structure (analogous to a molecular 

crystal), where colloidal particles are arranged in such a way as to lead to long-range 

order of the assembly. For monodisperse colloidal spheres, the close-packed 

crystalline structure is the face-centered cubic (fcc) crystal lattice, but more complex 

crystalline structures may also be obtained by utilizing electrostatic attractive forces 

between two different types of particles,9 by using bidisperse-sized particles,10 or by 

using non-spherical particles.11 However, in all cases when attractive interactions are 

much stronger than the thermal energy scale kBT, formation of particle aggregates are 

essentially irreversible, and are not able to anneal to the lowest energy, crystalline 

structure, and thus a metastable disordered colloidal aggregate is obtained.12 In this 

case, particle aggregates will generally exhibit a fractal structure characteristic of 

diffusion-limited cluster aggregation (DLCA), so called because associative forces 

are strong enough that only the rate of diffusion limits the size of aggregates.13 Thus, 

in order to form colloidal crystals, which are useful in many applications,8,14 the 

attractive forces must be carefully tuned. In many cases, in order to form structures 

with a high degree of long-range order, complex heating and cooling regimens must 

be performed to push the assemblies out of metastable energetic minima.15 It is 

particularly difficult to obtain colloidal crystals for larger, micron-scale particles 

because association energies are often of larger magnitude, so annealing is much 

more difficult.16,17 
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Programmable Colloidal Assembly 

Because there is a great deal of interest in creating complex colloidal structures with 

long-range order, much effort has gone into programming additional interactions 

between particles that enable the precise control of inter-particle forces. 

Approximately two decades ago, Mirkin and co-workers developed methods for 

DNA-programmable assembly of colloidal particles into colloidal crystals.18 In this 

set of techniques, DNA is grafted onto colloidal particles, which can then program 

inter-particle interactions by Watson-Crick base-pairing between complementary 

DNA strands on different particles (Figure 1.1). Because DNA hybridization is 

highly predictable, large numbers of interactions are able to be programmed into the 

colloids. Additionally, because the association energy of Watson-Crick base pairing 

is well-understood, and is essentially a linear function of the length and composition, 

it is relatively simple to tune the association energies to achieve a desired result.19 A 

large number of studies have resulted, enabling the production of many different 

crystalline architectures,18,20 dynamic colloidal phase transitions based on DNA 

strand displacement,21 and assembly of particles consisting of many different 

polymeric22,23 and metallic materials.24,25 

 

Figure 1.1: DNA Mediated Assembly: by grafting DNA molecules to colloidal particles (often gold 

nanoparticles), specific interactions can be programmed using Watson-Crick base-pairing. Because 

many strands are grafted onto each particle, each particle may bind to several other particles. If the 
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energy is O(kT), then a colloidal crystal with long-range order may form. For this, the pairing region of 

each DNA oligonucleotide is often only 4-6 base-pairs. 

The great deal of work in DNA-coated colloids has led to a large amount of 

conceptual understanding of the mechanisms of crystallization of colloidal particles, 

their thermodynamics, and colloidal physics in general. However, all DNA-

programmable colloidal assemblies share certain properties, including high 

sensitivity to temperature and nucleases and a narrow range of association free 

energies.26 Thus, there is a need to develop alternative programmable elements for 

colloidal assembly. One method is the use of “patchy” Janus colloids where small 

parts of colloidal particles are functionalized with complementary chemical groups 

enabling the specific association of particles.1 Another method is to use anisotropic 

particles whereby the shapes of the particles themselves direct the assembly of the 

desired super-structure through steric interactions.27,28 However, both of these 

methods suffer from the inability to direct many orthogonal interactions in a way 

similar to the promise of DNA-programmable assembly.   

 

Instead, by analogy with DNA-programmable assembly, some groups have begun to 

experiment with protein-programmable assembly.26 Protein-programmable assembly 

enables the use of a large variety of protein-protein interactions that have evolved 

over millions of years to enable assembly of proteins into complexes. In theory, 

because many of these proteins exist in a complex cellular milieu, they are highly 

evolved to be specific, and they span a large set of interaction energies. Much of the 

work with protein-programmable colloidal assembly has utilized the coiled-coil 

protein motif.29,30 Coiled coils (or helical bundles) are a common protein interaction 

domain, in which alpha helices are held together by internal hydrophobic 

interactions, usually leucine residues at their internal positions.31 Due to their simple 

structures and design rules, coiled coils are highly amenable to synthetic design, and 

many examples of coiled coils have been computationally designed and used for 
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various applications.32,33 By grafting coiled-coils onto the surface of nanoparticles,34 

microparticles,30 or by adding soluble coiled-coil linker proteins,35 researchers have 

been able to program the specific assembly of colloidal particles. Other protein-

protein or protein-ligand interactions have also been used to drive assembly of 

nanoparticles including the biotin-streptavidin interaction,36 and the barnase-barnstar 

interaction.37 Multi-step assembly of hierarchically structured inorganic materials 

(nanoflowers) via coiled-coil and electrostatic interactions has also been 

demonstrated.38 Because the structures of proteins vary so widely, interaction 

affinities may vary over many orders of magnitude. In addition, in an analogous way 

for DNA-mediated interactions, dis-assembly can often be programmed by addition 

of soluble competitor proteins (similar to the use of strand displacement reactions for 

DNA).30  

 

 However, to date, protein-mediated colloidal assemblages have not yet achieved the 

same degree of long-range order obtained from DNA-mediated colloidal assemblies. 

This is because even though protein interaction energies span such a large range, they 

are still uniformly stronger than the DNA linkers utilized in DNA-driven assembly. 

In addition, the techniques developed for annealing of DNA-mediated colloids, 

especially temperature-driven melting and annealing, generally do not work with 

protein-mediated interactions, as these interactions are much less strongly influenced 

by temperature.  

 

In Chapter 2 of this thesis, we describe our results for the protein-mediated control 

of colloidal assemblies. We demonstrate the use of a heterodimeric designed coiled 

coil32 and the SpyTag-SpyCatcher39 interaction to drive well-controlled colloidal 

assembly (and dis-assembly) of colloidal micro-particles.  
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Microbial Consortia and Biofilms 

Though the idealized picture of bacteria is of free-living (also called planktonic) 

organisms swimming through liquid media (and much microbiological research has 

centered on this setting), in their natural environment, bacteria much more often live 

in multi-cellular communities, often in biofilms surrounded by a tough polymeric 

extracellular matrix.40,41 Biofilms are assemblages of (often multi-species) microbes 

that live together symbiotically, often with a high degree of spatial organization. 

Biofilms represent a significant medical challenge, particularly in the hospital setting, 

where biofilms may form on many surfaces in the hospital, and assist in spreading 

pathogens to patients.42 Because biofilms consist of bacteria surrounded by a 

mechanically tough extracellular matrix, they are often difficult to remove from 

surfaces, and may require both chemical and mechanical treatment to remove 

effectively.43 Bacterial biofilms are also present in animals (for example, the oral 

microbiome contains biofilms on the enamel of teeth), in soil, in hot springs, and in 

many other natural (and artificial) environments.40 

 Emergent Properties of Bacterial Communities 

The ubiquity of the sorts of multi-organism communities described above implies 

that the organisms must obtain substantial fitness benefits from living in these 

communities. The simplest advantages result simply from multiple species living in 

the same environment, but not necessarily in a biofilm or aggregate (i.e. where 

diffusion of metabolites is not limited by the environment). In this circumstance, the 

different species of bacteria may benefit from the ability to share metabolites that 

they produce/consume in a division of labor-type approach. For example, one 

bacterium may be capable of fixing carbon dioxide into organic compounds, while 

another may be capable of nitrogen fixation. If both bacterial species are grown 

together, the resulting consortium will be able to fix both carbon and nitrogen, 

enabling it to be more metabolically flexible.44 Different species may also compete 
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in such an environment, whether that is passively by competing for limited resources, 

or actively by secreting toxins that actively disrupt the competitor cells.45  

 

However, many of the emergent properties of microbial consortia result from the 

bacteria living in closely packed, highly organized biofilms or aggregates. For 

example, relevant to the hospital context, biofilms are highly resistant to antibiotics 

and antiseptics.46 There are several reasons for this lack of effectiveness which are 

highly instructive for the work described in this thesis. First, due to the tightly packed 

nature of biofilms, the diffusion coefficients of small molecule substrates are 

somewhat decreased in biofilms, which will decrease the diffusive flux of antibiotics 

into the interior of biofilms.47 However, this decrease of diffusion coefficient is not 

sufficient to account for the significantly lower concentrations of antibiotics found in 

biofilms. Instead, researchers have found that antibiotics may bind to biofilm 

extracellular matrix components, which has the effect of decreasing the diffusion 

rates into the biofilm even further.48 In another case, researchers have found that 

chlorine actually appears to be consumed by cells in the biofilm.49 Finally, some 

researchers have suggested that the resistance of biofilms towards antibiotic agents 

may be related to physiological changes of the cells in the biofilms, for example the 

induction of a stress response or slow growth state.46 The restricted diffusion of 

substrates inside aggregates is utilized in Chapter 3 to enhance quorum sensing in 

engineered bacterial aggregates, while the consumption of molecules inside 

aggregates is used to enhance titers of biosynthetic pathways in Chapter 5.  

 

Another property of spatially organized biofilms and aggregates is their ability to 

sense and signal their surroundings, enabling them to act in concert. The most 

common way for bacteria to do this is using the “quorum sensing” system (Figure 

1.2).50 In the canonical quorum sensing pathway, bacteria are able to both secrete and 

sense small molecules called autoinducers. When bacteria sense autoinducer in the 

environment, they will both produce more autoinducer (such that the production of 
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autoinducer is under positive feedback), and, when the concentration is high enough, 

engage in high cell-density specific activities (often production of virulence factors, 

motility genes, biofilm synthesis genes, etc.).50–52 When bacteria are found in a 

biofilm, their ability to quorum sense is enhanced, as the autoinducer is more easily 

retained in the biofilm (compared to a planktonic culture), and thus is more able to 

accumulate. In addition to within-species signaling, many bacteria can also recognize 

a cross-species autoinducer (AI-2), potentially enabling cross-species 

communication, though this is controversial.53,54 In the past several years, bacteria in 

biofilms have also been found to utilize electrical signaling.55 In these studies, 

researchers have found that expression of bacterial ion channels and subsequent 

membrane depolarization enables long-range signaling in an analogous manner to 

eukaryotic neurons.  

 

 

Figure 1.2 Quorum Sensing:  in a canonical quorum sensing system (here the LuxI/LuxR system from 

Vibrio fischeri), the bacteria constitutively make a response regulator protein LuxR and an autoinducer 

synthesis protein LuxI.   When the autoinducer is at high concentration in the cell, it binds to LuxR, 

activating it, leading to activation of the PLuxI promoter and higher expression of LuxI, and subsequently 

activation of other quorum sensing genes. The autoinducer is cell-permeable, so it will diffuse to other 

cells, leading to concerted behavior of a cellular community. 
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Finally, an additional property of biofilms (which is mechanistically related to the 

resistance to antimicrobials), is the ability of biofilms to create gradients of chemicals 

due to consumption or synthesis of substrates.56 This sort of gradient formation is not 

possible in a well-mixed system. A descriptive example of this property (Figure 1.3) 

is the creation of a hypoxic (or anaerobic) zone in the interior of a biofilm or 

aggregate. If aerobic (oxygen-consuming) bacteria are present on the outside of a 

biofilm, they will consume much or all of the oxygen present in the environment, 

creating an anerobic micro-environment in an otherwise normoxic environment. This 

may enable obligate anaerobic microbes to live in the film. Similarly, if bacteria in 

the biofilm are making a metabolite, this metabolite will accumulate in the interior 

of the biofilm such that the inside of the biofilm will have much higher accumulation 

than the surface (from which the metabolite will diffuse into the bulk solution). These 

gradients will accumulate regardless of any gradient in the actual production of the 

metabolite. 

 

Figure 1.3. Biofilm Gradients: in biofilms, gradients of both oxygen and metabolites can form due to 

consumption and/or production of the species by cells in the biofilm. In some cases, this could lead to 

essentially anaerobic conditions in the interior of biofilms. 

Imposing Spatial Structure on Cells 

Because the spatial structure of groups of cells is so important for both natural and 

engineered systems, many groups have attempted to impose spatial structure on both 

prokaryotic and eukaryotic cells. Broadly, these techniques can be separated into two 

approaches, top-down and bottom-up assembly.57 In top-down assembly, smaller 

structures are assembled by starting with a bulk material and then decreasing the size 
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of the structure by various physical techniques. Exemplars of these processing 

technologies are extrusion, milling, and emulsification. By contrast, in bottom-up 

assembly, smaller structures are brought together to form larger structures. This is 

the same colloidal assembly process discussed above. 

Both bottom-up and top-down methods have been used for the synthesis of bacterial 

communities. An exemplar of the latter set of methods is one by Ismagilov and co-

workers where an extrusion process was used to form a core-shell type community, 

in which an interior species was protected from environmental insult by the 

consumption of a toxin by the exterior species.58 In other work, the Ismagilov group 

used microfluidic technology to impose spatial structure on a group of three 

microorganisms to enable them to survive nutrient starvation and antibiotic stress.59 

In both cases, the use of defined spatial structure enabled emergent function that 

would not have been possible in simple mixed culture. 

Bottom-up assembly has also been used to assemble multi-celled aggregates. In one 

exemplary study, Bertozzi and co-workers grafted DNA strands onto azide-modified 

sugars on the surface of mammalian cells using click chemistry.60,61 By grafting 

strands with complementary sequences, the researchers could program cell-cell 

interactions and generate tissues with well-defined cellular connectivity. Although 

the sizes of the resulting clusters were small (generally less than 10 cells) and the 

technique requires in-situ chemical modification of the cells, this still represents an 

important advancement, and one that is highly relevant to our attempts at generating 

multicellular aggregates in Chapters III, IV, and V of this thesis. 

In another more relevant example, Riedel-Kruse and coworkers genetically 

engineered microbes to surface-display associative nanobodies on their surfaces, 

driving specific aggregation of small clusters.62,63 This is similar in approach to our 

efforts in later chapters of this thesis. This approach has the advantage of being purely 

genetically programmable; the programmable interactions are stored entirely in the 
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organisms’ genetic information and can be manipulated using standard molecular 

biology techniques. The techniques we describe in this thesis represent an alternative 

set of protein-protein interactions, including the previously unused SpyTag-

SpyCatcher interaction.39 We will further demonstrate how we can understand the 

properties of the resulting aggregates from the molecular scale interactions of the 

underlying associative proteins, and then how we can use these aggregates to enhance 

the ability of co-cultured strains to produce desired substances in metabolic 

engineering through intermediate channeling between bacteria in aggregates. 

  



 

 

12 

References 

1 F. Li, D. P. Josephson and A. Stein, Colloidal assembly: the road from 

particles to colloidal molecules and crystals., Angew. Chemie, 2011, 50, 360–

88. 

2 D. Hanaor, M. Michelazzi, C. Leonelli and C. C. Sorrell, The effects of 

carboxylic acids on the aqueous dispersion and electrophoretic deposition of 

ZrO2, J. Eur. Ceram. Soc., 2012, 32, 235–244. 

3 Y. Adachi, Dynamic aspects of coagulation and flocculation, Adv. Colloid 

Interface Sci., 1995, 56, 1–31. 

4 M. E. Leunissen, C. G. Christova, A.-P. Hynninen, C. P. Royall, A. I. 

Campbell, A. Imhof, M. Dijkstra, R. van Roij and A. van Blaaderen, Ionic 

colloidal crystals of oppositely charged particles., Nature, 2005, 437, 235–40. 

5 A. K. Boal, F. Ilhan, J. E. Derouchey, T. Thurn-albrecht, T. P. Russell and V. 

M. Rotello, Self-assembly of nanoparticles into structured spherical and 

network aggregates, 2000, 404, 746–748. 

6 G. Dorken, G. P. Ferguson, C. E. French and W. C. K. Poon, Aggregation by 

depletion attraction in cultures of bacteria producing exopolysaccharide, J. R. 

Soc. Interface, 2012, 9, 3490–3502. 

7 S. Asakura and F. Oosawa, On interaction between two bodies immersed in a 

solution of macromolecules, J. Chem. Phys., 1954, 22, 1255. 

8 O. D. Velev and S. Gupta, Materials fabricated by micro- and nanoparticle 

assembly - the challenging path from science to engineering, Adv. Mater., 

2009, 21, 1897–1905. 

9 A. Rugge and S. H. Tolbert, Effect of electrostatic interactions on 



 

 

13 

crystallization in binary colloidal films, Langmuir, 2002, 18, 7057–7065. 

10 Z. Zhou, Q. Yan, Q. Li and X. S. Zhao, Fabrication of binary colloidal crystals 

and non-close-packed structures by a sequential self-assembly method, 

Langmuir, 2007, 23, 1473–1477. 

11 M. Rycenga, J. M. McLellan and Y. Xia, Controlling the assembly of silver 

nanocubes through selective functionalization of their faces, Adv. Mater., 

2008, 20, 2416–2420. 

12 J. Dhont, C. Smits and H. Lekkerkerker, A time resolved static light scattering 

study on nucleation and crystallization in a colloidal system, J. Colloid 

Interface, 1992, 152, 386-401 

13 T. A. Witten, Diffusion-limited aggregation, a kinetic critical phenomenon, 

Phys. Rev. Lett., 1981, 47, 1400–1402. 

14 N. Rosi and C. Mirkin, Nanostructures in biodiagnostics, Chem. Rev., 2005, 

105, 1547–1562. 

15 L. Di Michele, F. Varrato, J. Kotar, S. H. Nathan, G. Foffi and E. Eiser, 

Multistep kinetic self-assembly of DNA-coated colloids., Nat. Commun., 

2013, 4, 2007. 

16 V. Kodali, W. Roos, J. Spatz and J. Curtis, Cell-assisted assembly of colloidal 

crystallites, Soft Matter, 2007, 337–348. 

17 Y. Wang, Y. Wang, X. Zheng, É. Ducrot, J. S. Yodh, M. Weck and D. J. Pine, 

Crystallization of DNA-coated colloids., Nat. Commun., 2015, 6, 7253. 

18 C. Mirkin, R. Letsinger, R. Mucic and J. Storhoff, A DNA-based method for 

rationally assembling nanoparticles into macroscopic materials, Nature, 1996, 



 

 

14 

382, 607-609 

19 J. N. Zadeh, C. D. Steenberg, J. S. Bois, B. R. Wolfe, M. B. Pierce, A. R. 

Khan, R. M. Dirks and N. A. Pierce, Software news and updates NUPACK : 

analysis and design of nucleic acid systems, J. Comput. Chem., 2010. 

20 R. J. Macfarlane, B. Lee, M. R. Jones, N. Harris, G. C. Schatz and C. A. 

Mirkin, Nanoparticle superlattice engineering with DNA, Science, 2011, 334, 

204–209. 

21 W. B. Rogers and V. N. Manoharan, Programming colloidal phase transitions 

with DNA strand displacement, Science, 2015, 347, 639–642. 

22 Y. Wang, Y. Wang, X. Zheng, É. Ducrot, M. G. Lee, G. R. Yi, M. Weck and 

D. J. Pine, Synthetic strategies toward DNA-coated colloids that crystallize, J. 

Am. Chem. Soc., 2015, 137, 10760–10766. 

23 A. J. Kim, P. L. Biancaniello and J. C. Crocker, Engineering DNA-mediated 

colloidal crystallization, Langmuir, 2006, 22, 1991–2001. 

24 Y. Zhang, F. Lu, K. G. Yager, D. Van Der Lelie and O. Gang, A general 

strategy for the DNA-mediated self-assembly of functional nanoparticles into 

heterogeneous systems, Nat. Nanotechnol., 2013, 8, 865–872. 

25 J. S. Lee, A. K. R. Lytton-Jean, S. J. Hurst and C. A. Mirkin, Silver 

nanoparticle - oligonucleotide conjugates based on DNA with triple cyclic 

disulfide moieties, Nano Lett., 2007, 7, 2112–2115. 

26 S. Mann, W. Shenton and M. Li, Biologically programmed nanoparticle 

assembly, Adv. Mater., 2000, 4, 147–150. 

27 P. F. Damasceno, M. Engel and S. C. Glotzer, Crystalline assemblies and 



 

 

15 

densest packings of a family of truncated tetrahedra and the role of directional 

entropic forces, ACS Nano, 2012, 6, 609–614. 

28 S. Sacanna, M. Korpics, K. Rodriguez, L. Colón-Meléndez, S. H. Kim, D. J. 

Pine and G. R. Yi, Shaping colloids for self-assembly, Nat. Commun.,2013 ,4  

 29 M. M. Stevens, N. T. Flynn, C. Wang, D. A. Tirrell and R. Langer, Coiled-

coil peptide-based assembly of gold nanoparticles, Adv. Mater., 2004, 16, 

915–918. 

30 A. P. Schoen, B. Hommersom, S. C. Heilshorn and M. E. Leunissen, Tuning 

colloidal association with specific peptide interactions, Soft Matter, 2013, 9, 

6781-6785. 

31 J. M. Mason and K. M. Arndt, Coiled coil domains: Stability, specificity, and 

biological implications., Chembiochem, 2004, 5, 170–176. 

32 A. W. Reinke, R. A. Grant and A. E. Keating, A synthetic coiled-coil 

interactome provides heterospecific modules for molecular engineering, J. 

Am. Chem. Soc., 2010, 132, 6025–6031. 

33 D. Woolfson, The design of coiled-coil structures and assemblies, Adv. 

Protein Chem., 2005, 70, 79–112. 

34 M. M. Stevens, N. T. Flynn, C. Wang, D. A. Tirrell and R. Langer, Coiled-

coil peptide-based assembly of gold nanoparticles, Adv. Mater., 2004, 16, 

915–918. 

35 M. G. Ryadnov, B. Ceyhan, C. M. Niemeyer and D. N. Woolfson, “ Belt and 

Braces ”: a peptide-based linker system of de novo design, J. Am. Chem. Soc., 

2003, 125, 9388–9394. 



 

 

16 

36 S. A. Connolly and D. J. Fitzmaurice, Programmed assembly of gold 

nanocrystals in aqueous solution, Adv. Mater.1999, 11, 1202-1215  

37 M. P. Nikitin, T. A. Zdobnova, S. V. Lukash, O. A. Stremovskiy and S. M. 

Deyev, Protein-assisted self-assembly of multifunctional nanoparticles, Proc. 

Natl. Acad. Sci, 2010, 107, 5827–32. 

38 W. M. Park and J. A. Champion, Colloidal assembly of hierarchically 

structured porous supraparticles from flower-shaped protein-inorganic hybrid 

nanoparticles, ACS Nano, 2016, 10, 8271–80. 

39 B. Zakeri, J. Fierer, E. Celik, E. Chittock, U. Schwarz-Linek, V. Moy and M. 

Howarth, Peptide tag forming a rapid covalent bond to a protein, through 

engineering a bacterial adhesin, Proc. Natl. Acad. Sci.,2012 , 109, 12 

40 L. Hall-Stoodley, J. W. Costerton and P. Stoodley, Bacterial biofilms: From 

the natural environment to infectious diseases., Nat. Rev. Microbiol., 2004, 2, 

95–108. 

41 S. Elias and E. Banin, Multi-species biofilms: Living with friendly neighbors., 

FEMS Microbiol. Rev., 2012, 36, 990–1004. 

42 J. D. Bryers, Medical biofilms Biotechnol. Bioeng., 2008, 100, 1–18. 

43 S. L. Percival, L. Suleman, C. Vuotto and G. Donelli, Healthcare-associated 

infections, medical devices and biofilms: Risk, tolerance and control, J. Med. 

Micro. Biol., 2015, 64, 323-334 

44 G. D’Souza, S. Shitut, D. Preussger, G. Yousif, S. Waschina and C. Kost, 

Ecology and evolution of metabolic cross-feeding interactions in bacteria,  

Nat. Prod. Rep., 2018, 35, 455–488. 



 

 

17 

45 C. D. Nadell, K. Drescher and K. R. Foster, Spatial structure, cooperation, and 

competition in biofilms,  Nat. Rev. Microbiol., 2016, 14, 589–600. 

46 T. Mah and G. O’Toole, Mechanisms of biofilm resistance to antimicrobial 

agents, Trends Microbiol., 2001, 9, 34–39. 

47 P. S. Stewart, Diffusion in biofilms, J. Bacteriol., 2003, 185, 1485–1491. 

48 P. A. Suci, M. W. Mittelman, F. P. Yu and G. G. Geesey, Investigation of 

ciprofloxacin penetration into Pseudomonas aeruginosa biofilms, Antimicrob. 

Agents Chemother., 1994, 38, 2125–33. 

49 D. De Beer, R. Srinivasan and P. S. Stewart, Direct measurement of chlorine 

penetration into biofilms during disinfection, Appl. Environ. Microbiol., 1994, 

60, 4339–4344. 

50 M. Miller and B. Bassler, Quorum sensing in bacteria, Annu. Rev. Microbiol, 

2001, 55, 165-199 

51 C. A. Swofford, N. Van Dessel and N. S. Forbes, Quorum-sensing Salmonella 

selectively trigger protein expression within tumors, Proc. Natl. Acad. Sci. U. 

S. A., 2015, 112, 3457–62. 

52 B. K. Hammer and B. L. Bassler, Quorum sensing controls biofilm formation 

in Vibrio cholerae, Mol. Microbiol., 2003, 50, 101–104. 

53 F. Rezzonico and B. Duffy, Lack of genomic evidence of AI-2 receptors 

suggests a non-quorum sensing role for luxS in most bacteria, BMC 

Microbiol., 2008, 8, 154  

54 S. P. Diggle, A. Gardner, S. A. West and A. S. Griffin, Evolutionary theory of 

bacterial quorum sensing: When is a signal not a signal, Philos. Trans. R. Soc. 



 

 

18 

B Biol. Sci., 2007, 362, 1241–1249. 

55 A. Prindle, J. Liu, M. Asally, S. Ly, J. Garcia-Ojalvo and G. M. Süel, Ion 

channels enable electrical communication in bacterial communities, Nature, 

2015, 527, 59–63. 

56 H. C. Flemming, J. Wingender, U. Szewzyk, P. Steinberg, S. A. Rice and S. 

Kjelleberg, Biofilms: An emergent form of bacterial life, Nat. Rev. Microbiol., 

2016, 14, 563–575. 

57 G. W. Crabtree and J. L. Sarrao, Opportunities for mesoscale science, MRS 

Bull., 2012, 37  

58 H. J. Kim, W. Du and R. F. Ismagilov, Complex function by design using 

spatially pre-structured synthetic microbial communities: Degradation of 

pentachlorophenol in the presence of Hg(II), Integr. Biol., 2011, 3, 126–33. 

59 H. J. Kim, J. Q. Boedicker, J. W. Choi and R. F. Ismagilov, Defined spatial 

structure stabilizes a synthetic multispecies bacterial community, Proc Natl. 

Acad. Soc 2008, 105, 18188–18193 

60 R. A. Chandra, E. S. Douglas, R. A. Mathies, C. R. Bertozzi and M. B. Francis, 

Programmable cell adhesion encoded by DNA hybridization, Angew. Chem. 

Int. Ed. Engl., 2006, 45, 896–901. 

61 Z. J. Gartner and C. R. Bertozzi, Programmed assembly of 3-dimensional 

microtissues, Proc. Natl. Acad. Sci., 2009,  

62 D. S. Glass and I. H. Riedel-Kruse, A synthetic bacterial cell-cell adhesion 

toolbox for programming multicellular morphologies and patterns, Cell, 2018, 

174, 649-658 



 

 

19 

63 X. Jin and I. H. Riedel-Kruse, Biofilm lithography enables high-resolution cell 

patterning via optogenetic adhesin expression, Proc. Natl. Acad. Sci., 2018, 

201720676. 

 

  



 

 

20 

C h a p t e r  2  

PROTEIN-PROGRAMMABLE ASSEMBLY OF PASSIVE 

COLLOIDAL PARTICLES 

Abstract 

Programmable colloidal assembly enables the creation of mesoscale materials in a 

bottom-up manner.  Although DNA oligonucleotides have been used extensively as 

the programmable units in this paradigm, proteins, which exhibit more diverse modes 

of association and function, have not been widely used to direct colloidal assembly.  

Here we use protein-protein interactions to drive controlled aggregation of 

polystyrene microparticles, either through reversible coiled-coil interactions or 

through intermolecular isopeptide linkages.  The sizes of the resulting aggregates are 

tunable and can be controlled by the concentration of immobilized surface proteins.  

Moreover, particles coated with different protein pairs undergo orthogonal assembly.  

We demonstrate that aggregates formed by association of coiled-coil proteins, in 

contrast to those linked by isopeptide bonds, are dispersed by treatment with 

chemical denaturants or soluble competing proteins.  Finally, we show that protein-

protein interactions can be used to assemble complex core–shell aggregates.  This 

work illustrates a versatile strategy for engineering colloidal systems for use in 

materials science and biotechnology. 
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Introduction 

Assembly of colloidal particles into mesoscale aggregates has been a topic of 

continuing interest because of its relevance to applications in photonics, drug 

delivery, and synthetic biology.1-4   Many strategies have been used to drive assembly 

of colloidal particles, including evaporation,5,6 depletion,7 and electrostatic 

interactions.8,9  Recently, research on colloidal assembly has focused on the use of 

specific interactions between grafted biomolecules to direct the assembly of particles 

into more complex architectures.10 DNA oligonucleotides have been used 

extensively for this purpose because inter-particle interactions can be programmed 

simply and directly through Watson-Crick base-pairing.11-14  Many researchers have 

used this approach to form colloidal crystals and aggregates.11-14 By tuning the 

relative sizes of the underlying colloidal particles and complementarity of the 

oligonucleotides, researchers have been able to create a striking variety of ordered 

super-lattices.12 

An alternative approach is to use associative proteins or peptides to program colloidal 

assembly.15-17 Stevens and coworkers demonstrated the assembly of gold 

nanoparticles using coiled-coil peptide domains as associative units.17  Coiled-coil 

domains are especially well suited to the task of directing colloidal assembly; they 

form helical bundles of small and predictable aggregation number, they are relatively 

easily engineered through variation in amino acid sequence,18,19 and many examples 

in the natural world can serve as starting points for new designs.20   Self-assembly of 

nanoparticles by homo-oligomeric16 and hetero-dimeric17 coiled-coil peptides 

grafted to particle surfaces, as well as by peptide linkers,21 has been reported.  

Multistep assembly of hierarchically structured inorganic nanoparticles has also been 

shown.22  

Work on protein-mediated assembly of micron-sized colloidal particles has been 

more limited.  Schoen and coworkers used self-associating coiled-coil peptides to 

drive formation of small (~20 particle) clusters.15 They were able to reverse cluster 
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formation by addition of excess soluble peptide. Deyev and coworkers have also used 

the barnase-barstar interaction to form complex structures that span multiple length 

scales.23,24  

Here we examine two systems for protein-mediated assembly of colloidal 

microparticles – one based on a pair of high-affinity coiled-coil proteins,19 the other 

on the SpyTag/SpyCatcher system, which forms covalent isopeptide bonds between 

associative protein domains.25 We show that these interactions can be used to drive 

large-scale aggregation of particles and to determine the conditions that allow 

dispersal of aggregates.  Aggregate size can be controlled by stoichiometry or by 

competition with soluble peptide.  Finally, we show that these interactions can be 

used to create complex architectures such as core-shell aggregates.  The strategies 

described here should enable the assembly of particulate and cellular systems for 

applications in catalysis, drug delivery and tissue engineering.26 

Results and Discussion 

Design of Associative Proteins 

We employed two pairs of associative protein domains, designated 

SYNZIP17/SYNZIP18 (Z17/Z18) and SpyTag/SpyCatcher, in this study (Figure 

2.1b).  Z17 and Z18 are coiled-coil peptides derived from the SYNZIP library 

introduced by Keating and coworkers,19 and are reported to form anti-parallel coiled-

coil dimers with high (<10 nM) affinity.  SpyTag and SpyCatcher were derived from 

the Streptococcus pyogenes fibronectin-binding protein FbaB by Howarth and 

coworkers,25 who showed that association of the two domains leads to formation of 

an isopeptide bond between a lysine residue in SpyCatcher and an aspartic acid 

residue in SpyTag.  The SpyTag/SpyCatcher interaction has been used to prepare 

cross-linked hydrogels,27 to control protein topology,28 to analyze expression and 

localization of proteins,29,30 and to create long, extended proteins by linking together 

multiple polypeptides.31 Each of the associative protein domains was genetically 
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fused at its C-terminus to an elastin-like polypeptide bearing a C-terminal cysteine 

residue for site-specific conjugation to particle surfaces.  Hexahistidine tags were 

added to N- and C-termini of each protein to facilitate purification.  These proteins, 

along with a control protein containing no associative domain (denoted E), were 

expressed in Escherichia coli and purified by affinity chromatography. Yields of 

purified protein were in all cases at least 50 mg/L.   

 

 

Figure 2.1. Schematic of protein-mediated assembly (a) Schematic illustration of polystyrene particles 

functionalized with associative proteins.  (b) Designs of artificial proteins used in this study.  Complete 

amino acid sequences are given in Table S2.1.  Crystal structures of SpyTag and SpyCatcher are adapted 

from PDB (ID: 4MLI). 
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Assembly of Protein-Functionalized Particles 

Carboxylated fluorescent polystyrene particles (d = 2.0 µm) were activated by 

treatment with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride 

(EDC) and N-hydroxysuccinimide (NHS). 2-(2-Pyridinyldithio)ethaneamine 

hydrochloride (PDEA) was added to introduce thiol-reactive pyridyl disulfide 

functionality to the particle surface.32  After removal of excess reagents, proteins 

bearing C-terminal cysteine residues were grafted to the particle surface via thiol 

exchange.  

To initiate colloidal assembly, protein-functionalized particles were mixed in 

phosphate-buffered saline (PBS, pH 7.5) with 0.005% tween 20 (v/v) and 

continuously mixed at 25 ºC.  After 30 min, particle suspensions bearing either the 

Z17/Z18 pair or the SpyTag/SpyCatcher pair contained visible aggregates.  

Suspensions were cast between glass cover slips separated by a 120-µm spacer and 

imaged by fluorescence confocal microscopy.  Mixtures of Z17- and Z18-

functionalized particles formed aggregates, broadly distributed in size with an 

average projected area of 1300 µm2 (Figure 2.2a-b). Aggregates formed from 

mixtures of SpyTag- and SpyCatcher-functionalized particles were larger (average 

projected area 3100 μm2; Figure 2.2d-e). Cross-association of Z17 and Z18 particles, 

and of SpyTag and SpyCatcher particles, was apparent in fluorescence images 

(Figure 2.2j-k) and in the results of colocalization analysis (Figure 2.2l).  In contrast, 

no clustering was observed when particles functionalized with Z17 were mixed with 

those bearing SpyTag (Figure 2.2g-h). Colocalization analysis of Z17/SpyTag 

suspensions revealed negative correlation of green and red fluorescence signals (ρ = 

-0.51) indicating no substantial cross-association (Figure 2.2i). Aggregates formed 

using either protein pair do not grow without bound, probably because larger 

aggregates are fragmented by the constant mixing during the aggregation process. 
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Figure 2.2. Assembly of microparticles functionalized with associative proteins: Assembly of 

microparticles functionalized with (a) Z17 (green) and Z18 (red), (d) SpyCatcher (green) and SpyTag 

(red), and (g) SpyTag (green) and Z17 (red).  (b, e, h) Size distributions of aggregates shown in (a, d, g).  

(c, f, i) Colocalization plots of aggregates shown in (a, d, g).  (j, k) Magnified images of aggregates of (j) 

Z17/Z18 and (k) SpyTag/SpyCatcher.  (l) Pearson correlation coefficients of colocalization plots. 

To investigate the dependence of cluster size on the density of grafting of associative 

proteins, we prepared sets of fluorescent particles functionalized with different ratios 

of Z17 and SpyCatcher; each set was then mixed with particles functionalized with 

SpyTag (Figure S2.1).  In this way, the effective number of protein interactions 

between particles could be varied, although we were unable to determine the absolute 

surface densities of grafted proteins by flow cytometry, bicinchoninic acid (BCA) 

assay, or other means.  When particles were functionalized by treatment with Z17 

and SpyCatcher at a 1:3 ratio (v/v) and mixed with SpyTag-functionalized particles, 

we found aggregates of average projected area 2900 µm2.  When the concentration 
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of SpyCatcher was reduced to half that of Z17, the aggregate size decreased 

substantially (average projected area 310 µm2). 

Dissociation of Particle Aggregates 

The Z17/Z18 pair drives particle association through physical protein-protein 

interactions whereas the SpyTag/SpyCatcher pair is expected to form covalent 

interparticle bonds.  We anticipated that the former pair would be dissociated by 

chemical denaturants and by excess soluble protein competitors, and that the latter 

would be resistant to such treatments.  To test these expectations, we added guanidine 

hydrochloride (GuHCl) or soluble Z17 protein (identical to the protein that was 

conjugated to particles) to suspensions of assembled particles, mixed at 25 ºC, and 

analyzed the resultant aggregates by fluorescence confocal microscopy.  Aggregates 

of Z17- and Z18-coated particles were effectively dispersed both by 5 M GuHCl (3 

h) and by 1.0 mg/mL soluble Z17 (24 h) (Figure 2.3a-d).  Notably, the sizes of the 

aggregates were controlled by the amounts of denaturant and soluble protein 

(Figures S2.2, S2.3).  In contrast, aggregates assembled through interaction of 

grafted SpyTag and SpyCatcher domains remained intact upon addition of GuHCl or 

free SpyTag, indicative of stable covalent bond formation between surface-bound 

proteins (Figure S2.4). 
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Figure 2.3. Dissociation of particle assemblies (a) Dissociation of Z17–Z18 particle aggregates by (a) 

1 mg/mL and (c) 0 mg/mL (control) soluble Z17 mixed at 25 ºC for 24h.  (b, d) Size distributions of 

Z17–Z18 particle aggregates shown in (a, c). 

Orthogonal Assembly and Selective Dissociation 

In light of the specificity of the SYNZIP proteins and the SpyTag/SpyCatcher pair, 

we expected mixtures of particles coated with Z17, Z18, SpyTag, and SpyCatcher to 

undergo orthogonal assembly (Figure 2.4a).  To test this hypothesis, red fluorescent 

particles functionalized with Z17 or Z18 and green particles functionalized with 

SpyTag or Spy-Catcher were mixed in PBS with 0.005% tween 20 for 40 min until 

visible particle aggregates were formed.  The resulting particle suspensions were 

imaged by confocal microscopy.  As shown in Figure 2.4b, aggregates of red 

particles and green particles formed separately, and the colocalization plot revealed 

a strong negative correlation (ρ = -0.6062) between red and green fluorescence 

channels. Notably, aggregates formed by association of Z17 and Z18 were smaller 
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than those formed by SpyTag and SpyCatcher, consistent with the results of 

aggregation experiments with separate particle mixtures (Figure 2.2a-b).  

 

Because the SpyTag/SpyCatcher pair forms aggregates that are stable with respect to 

denaturants and excess competitive protein (Figure 2.3, S2.4), we imagined that 

Z17/Z18 aggregates would be selectively dissociated in mixtures of all four particles. 

We prepared such mixtures, and then added 5 M GuHCl or 1 mg/mL free Z17 to 

investigate their dissociation behavior (Figure 2.4c, S2.5).  After mixing for 24 h in 

1 mg/mL free Z17, significant dissociation of aggregates of Z17- and Z18- 

functionalized particles was observed, whereas no dissociation of SpyTag- and 

SpyCatcher-functionalized particles was noted (Figure 2.4c).  Similarly, selective 

dissociation of aggregates of Z17- and Z18-functionalized particles was observed 

upon treatment with 5 M GuHCl (Figure S2.5). 
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Figure 2.4. Orthogonal assembly of aggregates: (a) Schematic illustration of orthogonal assembly of 

protein-functionalized particles.  Red fluorescent particles are coated with Z17 or Z18, and green 

fluorescent particles are coated with SpyTag or SpyCatcher.  (b) Orthogonal assembly in a 1:1:1:1 

particle mixture of Z17 (red), Z18 (red), SpyCatcher (green), and SpyTag(green) in PBS with 0.005% 

tween 20 mixed at 25 ºC for 40 min.  (c) Selective dissociation of Z17–Z18 aggregates by 1 mg/mL 

soluble Z17 for 24 h. (d) Colocalization plot of red and green particles shown in (b). 

Formation of Core-Shell Architecture 

In drug delivery and tissue engineering applications, it may be useful to form core-

shell aggregates to control diffusion of materials into or out of particle clusters. For 
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example, core-shell structures enable the controlled sequential delivery of multiple 

drugs33 or delivery of hydrophilic drugs.34 Toward this end, we constructed core-shell 

aggregates by exploiting the strong, selective interaction between SpyTag and 

SpyCatcher (Figure 2.5a).  Red fluorescent particles were functionalized with 

SpyTag or SpyCatcher and mixed in PBS with 0.005% tween 20 to form covalent 

core structures.  After 30 min, green fluorescent particles coated with SpyCatcher 

were added, and the suspension was mixed for 1 h to form the shell.  Confocal 

fluorescence microscopy confirmed the formation of core–shell aggregates with 

surface-confined green fluorescent particles surrounding the red core structure, 

although the surface coverage is incomplete (Figure 2.5b).  Z-stacked images 

(Figure 2.5d) show that the cores are formed exclusively by red particles, which 

exclude the green particles added subsequently.  Moreover, radial fluorescence 

intensity profiles reveal decreasing red fluorescence near the aggregate surface, 

where green fluorescence increases (Figure 2.5c).   In contrast, addition of green E-

functionalized particles to red SpyTag/SpyCatcher cores did not yield shell layers 

(Figure 2.5f); assembly of the shell appears to require specific interaction between 

SpyTag and SpyCatcher. Quantitative analysis of core-shell aggregates showed that 

60 ± 8% (n = 9) of the surface was occupied by green particles (Figure S2.7), while 

in the control images, only 7 ± 4% (n = 9) of the surface was green (Figure S2.8). 

 

We were unable to construct core–shell structures by SYNZIP-driven assembly.  In 

the SYNZIP system, the core and shell layers were poorly defined; the reversibility 

of the interaction between Z17 and Z18 appears to enable inter-mixing of the core 

and shell. 
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Figure 2.5. Core-shell assembly of particles (a) Schematic illustration of formation of core–shell 

architecture. (b) Core–shell structure formed by SpyTag- and SpyCatcher-functionalized particles.  

SpyCatcher-coated particles (green) were added to the aggregates of SpyTag- and SpyCatcher-

functionalized particles (red) in PBS with 0.005% tween 20 at 25 ºC.  (c) Fluorescence intensity of core–

shell structure shown in (b), plotted against the distance from center of the aggregates.  (d) Z-stack of 

magnified image of core–shell structure formed by SpyTag and SpyCatcher.  Images are shown with 

3.87 µm slice spacing.  Total thickness: 11.6 µm.  Scale bar: 20 µm.  (e) Orthogonal projection image of 

(d). (f) Control experiment for core–shell formation.  E-functionalized particles (green) were added to 

the aggregates of SpyTag- and SpyCatcher-functionalized particles (red).  

Conclusions 

In this study, we demonstrated programmed assembly of microparticles using two 

associative protein pairs (Z17/Z18 and SpyTag/SpyCatcher), as well as selective 

dissociation of mixed aggregates and the formation of core–shell architectures.  The 

methods developed in this report represent a new strategy for the synthesis of 

mesoscale materials using programmable protein-protein interactions. The strategy 

is general and easily expanded, owing to the diversity of associative protein 

domains.31,35,36 The preparation of complex colloidal aggregates in a scalable, 

programmable manner should find application in catalysis, health technologies and 

environmental remediation.37-39 In addition, the lessons learned in this study are 

important principles in the development of protein-programmable assembly of living 

cells, as will be discussed in the rest of this thesis.  
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Materials and Methods 

General 

Restriction enzymes and ligase were purchased from New England Biolabs (Beverly, 

NJ).  PfuUltraII polymerase was purchased from Agilent Technologies (Santa Clara, 

CA).  Nickel NTA was purchased from Qiagen (Hilden, Germany). N-

Hydroxysuccinimide (NHS) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

hydrochloride (EDC) were purchased from Life Technologies (Carlsbad, CA).  2-(2-

Pyridinyldithio)ethaneamine hydrochloride (PDEA) was purchased from GE 

Healthcare (Piscataway, NJ).  Fluorescent, carboxylated polystyrene particles were 

purchased from Sigma Aldrich (St. Louis, MO).  Fluorescence images were obtained 

with a Zeiss LSM 800 laser scanning confocal microscope, using 20x/0.8 and 

100x/1.46 Plan-Apochromat objectives and acquired with Zeiss’s Zen software.  

Images were taken as 30-80 z-stacks with a spacing of 1.1 µm per slice for 20x 

images and 0.4 µm per slice for 100x images and shown as maximum intensity 

projections unless otherwise stated. 

Image Analysis   

All image analysis code was written in Matlab 2015a.  Images were generally saved 

as 16 bit .czi files.   Czi files were opened using the Bioformats toolbox and custom-

written code.40 

 

Cluster size analysis was performed as follows: for simplicity, confocal z-stack 

images were collapsed into maximum intensity projections.  These projections were 

manually thresholded based on the intensity in each fluorescence channel.  Pixels 

above the threshold in either channel were defined to be "bright."  The projected areas 

of aggregates containing contiguous "bright" pixels were extracted.  The projected 

areas were then converted into area-weighted distributions and area-weighted 

averages according to the equations: 
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where Pw,i is the area-weighted probability of a cluster of projected area i, and Ni is 

the number of clusters of this size.  These probabilities were binned logarithmically 

(base 2), and plotted as histograms.   The height of a bar represents the probability 

that a particle chosen at random is found in an aggregate of projected area between 

the number for that bar and the number for the next bar (e.g., the bar for 128 μm2 

contains aggregates between 128 and 256 μm2). Aggregate “volumes” may be 

extracted in similar fashion, but in our experience, projected areas can be determined 

more accurately because the laser intensity is attenuated in the cores of larger 

aggregates.  

 

Colocalization analysis was performed as follows: confocal z-stack images were 

collapsed into maximum intensity projections. Because individual particles extend 

beyond a single pixel, images were blurred using a mean filter acting on a disc of 

radius five pixels (representing approximately two particle diameters).  In this way, 

adjacent pixels were blurred into each other, while leaving the larger-scale structure 

of the aggregate intact.  Dark pixels (those below threshold) were then excluded from 

the analysis, and the colocalization between fluorescence channels was plotted using 

scatplot.41 Pearson correlation coefficients were calculated to provide a measure of 

colocalization of green and red fluorescence signals.  

 

Core-shell fluorescence intensity profiles were created as follows: In maximum 

intensity projections, large aggregates were identified by thresholding in a manner 

similar to that used for cluster-size analysis.  For each large aggregate, z-stacks with 

high levels of fluorescence were combined using a mean-intensity projection.  Then, 

starting at the centroid of each aggregate, 100 radii representing equally spaced 
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directions were drawn to the edge of the aggregate (determined by thresholding), 

extracting the fluorescence intensities from each channel.  The fluorescence 

intensities were then scaled (with a value of 1 representing the maximum 

fluorescence intensity in each aggregate) and plotted along a “location” axis from 0 

to 1 (with 0 representing the centroid and 1 representing the edge of the aggregate for 

each radius).   

 

Surface coverage of core-shell aggregates was analyzed as follows.  Three-

dimensional z-stacks of core-shell aggregates were obtained at 100x magnification 

and with 0.39 µm z-spacing.  Then, a maximum intensity projection was thresholded, 

and the projected area of the large cluster was identified.  Starting from the top of the 

image, in each z-slice bright pixels in the projected area of the cluster were identified 

and classified as red or green.  Locations of these bright pixels are then preserved for 

successive z-slices of the aggregate such that only pixels that are on the outside of 

the aggregate are counted.  The ratio of “shell” pixels to the total number of bright 

pixels represents the surface coverage.  This process is illustrated in Figures S2.7 

and S2.8. 

 

All image analysis code can be obtained from http://tirrell-lab.caltech.edu/Code.   

Cloning of Recombinant Proteins 

Recombinant fusion proteins were produced by standard recombinant DNA 

technology.  DH10b or Mach1 strains of Escherichia coli were used for all cloning 

steps.  A modified pQE-80L expression vector was used for expression.  The XhoI 

site upstream of the T5 promoter was deleted and a C-terminal in-frame cysteine 

residue was added down-stream of the multiple cloning site by two rounds of site-

directed mutagenesis.  The modified pQE-80L expression vector was denoted pQE-

80X-Cys.   
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The DNA sequence encoding the elastin-like polypeptide segment of each fusion 

protein was synthesized in two 250 bp segments denoted E3 and E3’ (Genscript) with 

5' BamHI and SalI sites and 3' XhoI and HindIII sites.  These segments have identical 

amino acid sequences but different degenerate DNA sequences to decrease sequence 

similarity at the DNA level.  A polyhistidine tag was added between the XhoI and 

HindIII sites.  These DNA fragments were inserted into pQE-80X-Cys between the 

BamHI and HindIII sites to make plasmids pQE-80X-E3-Cys and pQE-80X-E3’-Cys 

and transformed into chemically competent E. coli.  The full-length elastin-like 

polypeptide was synthesized via recursive directional ligation.42  Briefly, pQE-80X-

E3-Cys was digested with XhoI and HindIII to linearize the plasmid, while pQE-80X-

E3’-Cys was digested with SalI and HindIII.  The resulting DNA fragments were 

ligated together to fuse the two elastin-like sequences.  Because SalI and XhoI have 

complementary overhangs, the restriction sites are ablated, leaving a two-amino acid 

scar, but retaining the 5' BamHI and SalI sites and 3' XhoI and HindIII sites in the 

plasmid.  This construct is denoted pQE-80X-E-Cys. 

 

The SYNZIP17 and SYNZIP18 domains were ordered from IDT (Coralville, IA) as 

G-blocks with 5' BamHI and SalI sites, 3' XhoI and HindIII sites, and a polyhistidine 

tag between the 3' restriction sites. These constructs were inserted into pQE-80X-Cys 

by digestion with BamHI and HindIII and ligation as above.  The elastin-like 

polypeptide was then added to the C-termini of these coding sequences by recursive 

directional ligation by the procedure described above.  The resulting constructs are 

denoted pQE-80X-Z17-E-Cys and pQE-80X-Z18-E-Cys. 

 

The coding sequence for SpyCatcher was amplified from pQE-EB,28 with the 

addition of 5' BamHI and SalI sites, 3' XhoI and HindIII sites, and a polyhistidine tag 

between the 3' restriction sites.  This construct was inserted into pQE-80X-Cys by 

digestion with BamHI and HindIII and ligation; recursive directional ligation was 
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used to add the elastin-like polypeptide to the C-terminus to yield pQE-80X-

SpyCatcher-E-Cys. 

 

Single-stranded oligonucleotides encoding SpyTag, 5' BamHI and SalI sites, 3' XhoI 

and HindIII sites, and a polyhistidine tag between the 3' restriction sites were ordered 

from IDT, and annealed by cooling from 95 °C to room temperature.  The annealed 

oligonucleotides were inserted into a digested pQE-80X-Cys vector, and recursive 

directional ligation was used to add the elastin-like polypeptide to the C-terminus to 

yield pQE-80X-SpyTag-E-Cys. 

 

All constructs were confirmed by sequencing; full protein sequences are given in 

Table S2.1. 

 

Protein Expression and Purification 

Constructs were transformed into E. coli strain BL21 for expression.  Expression was 

performed in Terrific Broth (12 g/L casein, 24 g/L yeast extract, 0.4% w/v glycerol, 

0.017 M monobasic potassium phosphate, 0.072 M dibasic potassium phosphate).  

Cultures were induced at an optical density of 0.6-0.9 to a final concentration of 1 

mM isopropyl β-D-1-thiogalactopyranoside (IPTG).  Expression was allowed to 

proceed for 5 h, after which cells were harvested by centrifugation.  For all proteins 

other than SpyCatcher-E-Cys, cultures were resuspended in denaturing lysis buffer 

(8 M urea, 0.1 M Na2HPO4, 10 mM imidazole; pH 8.0), and lysed by sonication.  

Lysates were cleared by centrifugation and incubated with NiNTA resin. The resin 

was washed with lysis buffer and wash buffer (8 M urea, 0.1 M Na2HPO4, 25 mM 

imidazole; pH 6.3).  Protein was eluted with elution buffer (8 M urea, 0.1 M 

Na2HPO4, 250 mM imidazole; pH 3.5).  Purity was confirmed with SDS-PAGE.  

Proteins were then extensively dialyzed against water and lyophilized for storage. 
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SpyCatcher-E-Cys was purified under native conditions.  Cultures were resuspended 

in native lysis buffer (50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, 1 mg/mL 

lysozyme; pH 8.0).  Cells were lysed by sonication, and cleared lysates were 

incubated with NiNTA resin. The resin was washed with native wash buffer (50 mM 

NaH2PO4, 300 mM NaCl, 25 mM imidazole; pH 8.0), and protein was eluted with 

native elution buffer (50 mM NaH2PO4, 300 mM NaCl, 250 mM imidazole; pH 8.0).  

Purity was confirmed with SDS-PAGE, and purified SpyCatcher-E-Cys was 

dialyzed against water and lyophilized. 

Immobilization of Associative Proteins 

Fluorescent carboxylated polystyrene microparticles (d = 2.0 µm; Sigma-Aldrich) 

were dispersed in 50 mM MES buffer (pH 6.8). A solution of 30 mM NHS and 20 

mM EDC in MES buffer was added and mixed at 25 ºC.  After 30 min, particles were 

collected by centrifugation and washed with PBS (pH 7.5).  PDEA was dissolved in 

sodium acetate buffer (100 mM, pH 4.2) and added to particles to a final 

concentration of 25 mM.  After mixing at 25 ºC for 30 min, particles were collected 

and washed with PBS.  Protein solution (1 mg/mL) in PBS with 10 mM sodium azide 

was added to particles and samples were mixed at 25 ºC for 22 h. Particles were 

washed with PBS to remove unreacted proteins, and dispersed in PBS with 10 mM 

sodium azide for use in assembly experiments. 
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Supplemental Tables and Figures 

Table S2.1: Protein Sequences 

Protein: Sequence 

E-Cys MRGSHHHHHHGSVDVPGAGVPGAGVPGEGVPGAGVPGAGV

PGAGVPGAGVPGEGVPGAGVPGAGVPGAGVPGAGVPGEGVP

GAGVPGAGLDVPGAGVPGAGVPGEGVPGAGVPGAGVPGAG

VPGAGVPGEGVPGAGVPGAGVPGAGVPGAGVPGEGVPGAG

VPGAGLEHHHHHHKLC 

Z17-E-Cys MRGSHHHHHHGSVDGSGSGSGSGSGANEKEELKSKKAELRN

RIEQLKQKREQLKQKIANLRKEIEAYKGSGSGSGSGSGALDVP

GAGVPGAGVPGEGVPGAGVPGAGVPGAGVPGAGVPGEGVP

GAGVPGAGVPGAGVPGAGVPGEGVPGAGVPGAGLDVPGAG

VPGAGVPGEGVPGAGVPGAGVPGAGVPGAGVPGEGVPGAG

VPGAGVPGAGVPGAGVPGEGVPGAGVPGAGLEHHHHHHKL

C 

Z18-E-Cys MRGSHHHHHHGSVDGSGSGSGSGSGASIAATLENDLARLENE

NARLEKDIANLERDLAKLEREEAYFGSGSGSGSGSGALDVPGA

GVPGAGVPGEGVPGAGVPGAGVPGAGVPGAGVPGEGVPGAG

VPGAGVPGAGVPGAGVPGEGVPGAGVPGAGLDVPGAGVPGA

GVPGEGVPGAGVPGAGVPGAGVPGAGVPGEGVPGAGVPGAG

VPGAGVPGAGVPGEGVPGAGVPGAGLEHHHHHHKLC 

SpyTag-E-Cys MRGSHHHHHHGSVDGSGSGSGSGSGAAHIVMVDAYKPTKGSGS

GSGSGSGALDVPGAGVPGAGVPGEGVPGAGVPGAGVPGAGV

PGAGVPGEGVPGAGVPGAGVPGAGVPGAGVPGEGVPGAGVP

GAGLDVPGAGVPGAGVPGEGVPGAGVPGAGVPGAGVPGAGV

PGEGVPGAGVPGAGVPGAGVPGAGVPGEGVPGAGVPGAGLE

HHHHHHKLC 

SpyCatcher-E-Cys MRGSHHHHHHGSVDGSGSGSGSGSGAAMVDTLSGLSSEQGQ

SGDMTIEEDSATHIKFSKRDEDGKELAGATMELRDSSGKTIST

WISDGQVKDFYLYPGKYTFVETAAPDGYEVATAITFTVNEQG

QVTVNGKATKGDAHIDGSGSGSGSGSGALDVPGAGVPGAGV

PGEGVPGAGVPGAGVPGAGVPGAGVPGEGVPGAGVPGAGVP

GAGVPGAGVPGEGVPGAGVPGAGLDVPGAGVPGAGVPGEG

VPGAGVPGAGVPGAGVPGAGVPGEGVPGAGVPGAGVPGAG

VPGAGVPGEGVPGAGVPGAGLEHHHHHHKLC 
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Figure S2.1. Control of aggregate size with surface content: assembly of particles functionalized with 

SpyCatcher and Z17 (green) and SpyTag-functionalized particles (red).  For the preparation of green 

particles, 1 mg/mL solutions of SpyCatcher and Z17 were mixed at ratios of (a) 3:1, (b) 2:1, (c) 1:1 and 

(d) 0.5:1 (v/v), and proteins were immobilized via thiol exchange.  Each population of green particles 

was mixed with red particles treated with SpyTag and suspensions were continuously mixed for 30 min 

at 25 ºC in PBS (pH 7.5) with 0.005% tween 20 ([green particle] = [red particle] = 1 × 105 particle/µL).  

(e-h) Size distribution histograms of particle aggregates shown in (a-d). 
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Figure S2.2. Aggregate dissociation with soluble protein: dissociation of the aggregates of Z17- (green) 

and Z18- (red) functionalized particles by addition of soluble Z17.  Particle aggregates were prepared 

by continuously mixing Z17- (green) and Z18- (red) functionalized particles for 40 min at 25 ºC in PBS 

(pH 7.5) with 0.005% tween 20  ([Z17 (green) particle] = [Z18 (red) particle] = 1 × 105 particle/µL).  

Then, (a) 0.2 mg/mL (b) 0.04 mg/mL and (c) 0.008 mg/mL of free Z17 solution was added to the 

particle aggregates and mixed at 25 ºC for 24 h.  (d-f) Size distribution histograms of particle aggregates 

shown in (a-c).   
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Figure S2.3. Aggregate dissociation with GuHCl: dissociation of the aggregates of Z17- (green) and 

Z18- (red) functionalized particles by addition of GuHCl.  Particle aggregates were prepared by mixing 

Z17- (green) and Z18- (red) functionalized particles for 40 min at 25 ºC in PBS (pH 7.5) with 0.005% 

tween 20 ([Z17 (green) particle] = [Z18 (red) particle] = 1 × 105 particle/µL).  Then, (a) 5 M (b) 1 M, 

(c) 0.2 M and (d) 0.04 M of GuHCl was added to the particle aggregates and mixed at 25 ºC for 3 h.  (e-

h) Size distribution histograms of particle aggregates shown in (a-d).   
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Figure S2.4.  SpyTag/SpyCatcher dissociation stability: aggregates of SpyCatcher- (green) and SpyTag- 

(red) functionalized particles are stable in the presence of GuHCl and soluble SpyTag.  Particle 

aggregates were prepared by mixing SpyCatcher- (green) and SpyTag- (red) functionalized particles for 

40 min at 25 ºC in PBS (pH 7.5) with 0.005% tween 20  ([SpyCatcher (green) particle] = [SpyTag (red) 

particle] = 1 × 105 particle/µL).  Then, (a) 5 M GuHCl and (b) 1 mg/mL soluble SpyTag were added 

to the aggregate suspension and mixed at 25 ºC for 3 h and 24 h, respectively.  (c, d) Size distribution 

histograms of (a, b). 
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Figure S2.5. Selective aggregate dissociation (a) A 1:1:1:1 particle mixture of Z17 (red), Z18 (red), 

SpyCatcher (green) and SpyTag(green) in PBS with 0.005% tween 20 at 25 ºC  ([Z17 (red) particle] = 

[Z18 (red) particle] = [SpyCatcher (green) particle] = [SpyTag (green) particle] = 0.5 × 105 particle/µL).  

(b) 0.1% Soluble Z17 or (c) 5 M GuHCl was added to the assembled particle mixture.  Aggregates of 

Z17 and Z18 (red) were selectively dissociated while aggregates of SpyCatcher and SpyTag (green) were 

stable. 
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Figure S2.6 Core-shell Z-stack images:  z-stack images of core–shell structure formed by SpyTag- and 

SpyCatcher-functionalized particles related to Figure 5b.  SpyTag- (red) and SpyCatcher- (red) 

functionalized particles were mixed at 25 ºC for 30 min in PBS (pH 7.5) with 0.005% tween 20 to form 

core structures.  Then, SpyCatcher-coated particles (green) were added to the aggregates and mixed at 

25 ºC for 1 h to form the shell. ([SpyCatcher (red) particle] = [SpyTag (red) particle] = [SpyCatcher 

(green) particle] = 0.7 × 105 particle/µL).  Images were shown with 3.42 µm slice spacing.  Total 

thickness is 13.7 µm.  
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Figure S2.7. Illustration of Surface Projection Algorithm Core-Shell: successive steps of the surface 

projection algorithm of a core–shell structure formed by SpyTag- and SpyCatcher-functionalized 

particles.  SpyTag- (red) and SpyCatcher- (red) functionalized particles were mixed at 25 ºC for 30 min 

in PBS (pH 7.5) with 0.005% tween 20 to form core structures.  Then, SpyCatcher-coated particles 

(green) were added to the aggregates and mixed at 25 ºC for 1 h to form the shell.  ([SpyCatcher (red) 

particle] = [SpyTag (red) particle] = [SpyCatcher (green) particle] = 0.7 × 105 particle/µL).  Successive 

z-slices from each step of the algorithm are shown with 2.34 µm of slice spacing.  Total thickness: 28.1 

µm.  Scale bar: 20 µm. 
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Figure S2.8. Illustration of surface projection algorithm control: successive steps of surface projection 

algorithm for control experiment for core–shell formation.  E-functionalized particles (green) were 

added to the aggregates of SpyTag- (red) and SpyCatcher- (red) functionalized particles and mixed at 25 

ºC for 1 h in PBS (pH 7.5) with 0.005% tween 20 ([SpyCatcher (red) particle] = [SpyTag (red) particle] 

= [E (green) particle] = 0.7 × 105 particle/µL).  Successive z-slice images from each step of the algorithm 

are shown with 2.34 µm of slice spacing.  Total thickness: 18.7 µm. 
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C h a p t e r  3  

GENETICALLY PROGRAMMABLE MICROBIAL ASSEMBLY 

Abstract 

Engineered microbial communities show promise in a wide range of applications, 

including environmental remediation, microbiome engineering, and synthesis of fine 

chemicals. Here we present methods by which bacterial aggregates can be directed 

into several distinct architectures by inducible surface expression of hetero-

associative protein domains (SpyTag/SpyCatcher and SynZip17/18). Programmed 

aggregation can be used to activate a quorum-sensing circuit, and aggregate size can 

be tuned via control of the amount of the associative protein displayed on the cell 

surface. We further demonstrate reversibility of SynZip-mediated assembly by 

addition of soluble competitor peptide. Genetically programmable bacterial assembly 

provides a starting point for the development of new applications of engineered 

microbial communities in environmental technology, agriculture, human health, and 

bioreactor design. 
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Introduction 

Bacteria and other microorganisms form complex, multispecies consortia in a wide 

variety of environments such as marine sediments,1 soils,2 biofilms,3 and the human 

gut.4 Living in a consortium affords important advantages for the member species, 

such as protection from toxins and antibiotics,5 cross-feeding relationships that allow 

more flexible utilization of nutrients,6,7 and efficient division of labor.8 Recently, 

there has been substantial interest in the development of artificial consortia for use in 

environmental remediation,9,10 biofuel production,11 and construction of microbial 

fuel cells.12 By dividing metabolic tasks across multiple organisms, the genetic and 

metabolic stresses placed on individual organisms can be minimized, leading to 

improved yields.13  

 

Imposing spatial organization on microbial consortia has the potential to provide 

further advantages. For example, pentachlorophenol (PCP) is commonly found in 

sites that contain significant amounts of mercury,14,15 and the concentration of 

mercury is often high enough to kill microorganisms tasked with remediation of PCP.  

To remedy this problem, Ismagilov and co-workers used extrusion to construct a 

coaxial consortium in which a central cylinder of Sphingobium chlorophenolicum 

oxidizes PCP and a shell of Ralstonia metallidurans provides protection from toxic 

mercury ions.16 Other techniques for organizing bacterial consortia include inkjet17 

and 3D printing.18 Each of these methods requires “top-down” processing to impose 

structure. An alternative approach would encode the capacity for controlled assembly 

into the genetic material of the consortium, such that aggregation could be triggered 

in response to biochemical or optogenetic stimuli.19-20  

 

Fernandez and co-workers reported that surface display of the complementary Junβ 

and Fosβ leucine zipper pair via fusion to the C-terminal region of the adhesin protein 

EhaA of Escherichia coli could be used to drive bacterial aggregation.21 More 

recently, we demonstrated selective, orthogonal assembly of micro-particles 
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functionalized by covalently-attached associating proteins.22 Here we build on these 

results to direct assembly of Escherichia coli into aggregates of controlled size and 

structure. Furthermore, we demonstrate that genetically-programmed assembly of 

bacterial cells can lead to triggering of a quorum-sensing circuit at a cell density that 

does not ordinarily support quorum sensing, and we present a reaction-diffusion 

model by which this result can be understood.  

 

Results and Discussion 

Design of the bacterial aggregation system 

To prepare bacterial aggregates, we expressed two sets of associating proteins on the 

E. coli cell surface, building on the autodisplay system first reported by Maurer, Jose, 

and Mayer.23 This system has been used to display a wide variety of proteins, 

including hydrolases, esterases, enzyme inhibitors, and epitopes for vaccine 

development on bacterial cell surfaces.24,25 Here we used the autotransporter system 

to display two pairs of cross-associating proteins, SynZip17/18 and 

SpyTag/SpyCatcher (sequences shown in Table S3.2). The SynZip proteins were 

adapted from a library of leucine-zipper peptides reported by the Keating 

laboratory.26 SynZip17 and 18 are reported to form anti-parallel coiled-coil dimers 

with high (< 10 nM) affinity and cross-association specificity. SpyTag and 

SpyCatcher were derived from the fibronectin-binding protein FbaB of 

Staphylococcus pyogenes, as first reported by Howarth and coworkers.27,28 After 

splitting the full length protein into two polypeptide chains, Howarth and coworkers 

showed that the resulting SpyTag and SpyCatcher fragments undergo spontaneous 

coupling via formation of an isopeptide bond between lysine residue K31 in 

SpyCatcher and aspartic acid residue D117 in SpyTag. SpyTag/SpyCatcher 

chemistry has been used to control protein topology,29 crosslink protein hydrogels,30 

engineer novel protein vaccines,31 and cyclize enzymes for enhanced thermal 

stability.32    



 

 

56 

 

The expression constructs are shown in Figure S3.1.  In each construct, the target 

associative domain is fused to a 6xHis tag (for immunostaining) and inserted between 

a PelB secretion sequence and the autotransporter. Expression was controlled either 

by a T5-Lac or by an araBAD promoter, to enable induction by isopropyl-β-D-1-

thiogalactopyranoside (IPTG) or L-arabinose, respectively. Plasmids bearing 

SynZip17, SynZip18, SpyTag, or SpyCatcher, under control of the T5-Lac promoter 

on a pQE80 backbone, are referred to as pAT-17, pAT-18, pAT-ST, and pAT-SC, 

respectively. The same protein constructs under control of an arabinose promoter on 

a pBAD33 backbone are referred to as pBAD-17, pBAD-18, pBAD-ST, and pBAD-

SC, respectively.  Expression plasmids were introduced into E. coli strain DH10B for 

aggregation experiments.  Cells were co-transformed with plasmids encoding 

mWasabi or mCherry to allow the aggregation process to be monitored by 

fluorescence confocal microscopy. 

Procedures for forming bacterial aggregates 

Individual colonies chosen from Luria-Bertani (LB) plates were grown overnight to 

stationary phase in LB medium supplemented with 100 mg/L ampicillin or 35 mg/L 

chloramphenicol, then used to inoculate fresh cultures at 100:1 dilution. When the 

optical density (OD600) reached 0.6-0.8, cultures were induced with 0.1 mM IPTG 

(for pQE-80-based plasmids) or 0.1% L-arabinose (for pBAD-33-based plasmids). 

and allowed to express for 90 min at 37°C and 300 RPM agitation speed (slower 

speeds would often cause settling of the aggregates). The induced cells were then 

mixed and placed in the shaking incubator at 37oC and 300 RPM for an additional 90 

min. Aliquots were spotted on glass cover-slips for confocal imaging. Depending on 

the level of surface protein expression and the nature of the associative protein, we 

observed aggregates ranging from 103 to 105 µm3 in volume (see below). In some 

cases, aggregates were visible to the naked eye. 
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Control of aggregate size by control of expression levels 

For many applications of bacterial clusters, the average size of the clusters is an 

important design parameter. We expected that cluster size would be sensitive to the 

amount of associative protein displayed on the cell surface. To test this idea, we 

reduced the levels of surface display of the SpyTag and SpyCatcher proteins by 

modifying their ribosome-binding sites (RBS).  This approach allowed us to maintain 

inducible control of bacterial assembly while enabling separate control of the 

expression levels of each associative protein.  

 

Starting from the arabinose-inducible constructs pBAD-ST and pBAD-SC, we 

engineered an RBS predicted to be significantly weaker than the wild-type 

sequence.33 Expression levels were quantified by immunostaining and subsequent 

flow cytometry (Figure 3.1A). We found that use of the weaker RBS led to an 

approximately four-fold decrease in surface expression for both SpyTag and 

SpyCatcher. All combinations of the wild-type and attenuated RBS constructs were 

then subjected to aggregation conditions and imaged (Figure 3.1 B-F). Automated 

image analysis showed that aggregate size could be varied by more than an order of 

magnitude in volume by control of expression level (Figure 3.1B).  
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Figure 3.1: Expression levels control size of bacterial aggregates. (A) Flow cytometry analysis enables 

quantification of protein expression levels; mutant RBS’s lead to an approximate 4-fold decrease in 

expression levels. (B) Volume-weighted averages of aggregate sizes. (C) Aggregation of wt-SC 

(magenta) and wt-ST (green). (D) Aggregation of wt-SC (magenta) and low-ST (green). (E) Aggregation 

of low-SC (magenta) and wt-ST (green).  (F) Aggregation of low-SC (magenta) and low-ST (green) 

 

Unless otherwise mentioned, the pQE-80-based plasmids with the wild-type RBS are 

used in the remainder of this work in order to demonstrate principles of 

programmable assembly with the highest expression levels available. 

Dissociation of bacterial aggregates 

Two different mechanisms – the physical association of SynZip leucine zippers and 

the formation of covalent isopeptide bonds between SpyTag and SpyCatcher – drive 

cellular aggregation in the systems introduced here. We expected SynZip-mediated 

aggregation to be reversible in the presence of excess (soluble) competing protein, 

and the SpyTag/SpyCatcher aggregation to be irreversible due to the permanence of 

the isopeptide covalent bonds over the experimental time-scale. To test these 
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expectations, soluble SynZip 17 and SpyCatcher proteins containing just the 

associative domain and an elastin linker as a solubility tag were expressed in E. coli 

and purified via Ni-NTA affinity chromatography using methods described in 

previous work.22 Aggregates mediated by the SynZip system were formed from 

DH10b E. coli containing pAT-17 and pAT-18 plasmids, and then the soluble SynZip 

17 protein was added to a final concentration of 0, 0.001, or 0.1 mg/mL in LB 

medium. Three biological replicates were examined for each disaggregation 

condition. Representative micrographs and aggregate sizes (reported as volume-

weighted averages, see Methods) are shown in Figure 3.2A-D. Titration of soluble 

SynZip17 into SynZip17/18 cultures decreased the size of the aggregates in a dose-

dependent manner, consistent with the hypothesis that aggregated cells are bridged 

by specific biomolecular interactions.   

 

In contrast, when soluble SpyCatcher was added to aggregates mediated by 

SpyTag/SpyCatcher interactions, no significant changes in aggregate size were 

observed, even when 1 mg/mL of protein was added (Figure 3.2E-H). This result 

suggests that the clusters mediated by SpyTag and SpyCatcher are held together by 

covalent bonds that cannot be disrupted by introduction of a competing protein. 

Clusters mediated by SpyTag and SpyCatcher are also substantially larger than those 

mediated by reversible SynZip interactions, as these clusters are more stable to shear-

induced disruption.34 
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Figure 3.2: Dissociation and non-dissociation of bacterial aggregates by the addition of competing 

recombinant protein (A) pAT-Z17 (green) and pAT-Z18 (magenta) cells aggregate when IPTG is 

added. These cells can be disassociated by the addition of (B) 0.01 mg/mL soluble Z17 and (C) 0.01 

mg/mL soluble Z17. (D) Volume-weighted average aggregate sizes of the resulting suspension (* 

p<0.05 by one-sided Student’s T-test). By comparison, SpyTag/SpyCatcher aggregates do not dissociate 

when competitor protein is added. (E) pAT-ST and pAT-SC cells (magenta) aggregate when IPTG is 

added. These cells do not dissociate when (F) 0.1 mg/mL soluble SpyCatcher protein or (G) 1 mg/mL 
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soluble SpyCatcher protein is added. (H) Quantification of average aggregate sizes. Differences are not 

significantly different. 

 

Formation of core-shell architectures 

Many potential applications of bacterial aggregates require protection of a member 

of the consortium from environmental insult. We assembled mCherry-labeled 

cellular “cores” by the SpyTag/SpyCatcher interaction. We then added mWasabi-

labeled cells that either expressed SpyCatcher or contained an empty pQE80 plasmid. 

After 30 min incubation, we found that cells carrying the SpyCatcher plasmid formed 

distinct green shells around magenta cores (Figure 3.3A-B). No core-shell structures 

were observed for control cultures (Figure 3.3C-D). These structures were 

characterized by line profiles drawn through the centroid of each aggregate. Core-

shell aggregates showed increases in mWasabi fluorescence from the centroid to the 

surface of the aggregate, while control samples exhibited no correlation between 

radial location and fluorescence. Line profiles for individual core-shell clusters and 

a 63x image of a core-shell structure are shown in the supporting information (Figure 

S3.3).   
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Figure 3.3: Formation of aggregates with a core-shell architecture (A) Cores of SpyTag and SpyCatcher 

surface-expressing bacteria, along with an mCherry fluorescent marker, were aggregated. Next, cells  

expressing SpyCatcher and mWasabi were added. A green shell can be observed around the magenta 

core (B) When mWasabi expressing cells that did not express surface protein were added to mCherry 

expressing cores, no green shell was observed. (C) Construction of line profiles from the center of the 

cores outward, and averaging over all aggregates in the image demonstrates that core-shell structures 

are formed, where magenta is observed in the middle of aggregates, with the green content increasing 

as the radial coordinate increases (D) If no core-shell structure is formed, there is no correlation 

between radial coordinate and fluorescence values. Scale bars correspond to 100 microns.  

 

Triggering quorum sensing in clusters  

To demonstrate the functional consequences of programmable microbial assembly, 

we investigated whether aggregation could be used to activate the LuxI-LuxR 

quorum-sensing circuit derived from Vibrio harveyi.35-37 The LuxR-LuxI system is 

activated when LuxR binds the autoinducer N-(3-oxohexanoyl)-L-homoserine 
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lactone (HSL), the concentration of which correlates with the density of bacterial 

cells (Figure 3.4A). We expected that aggregation could be used to increase the local 

concentration of HSL and trigger a quorum-sensing response under conditions where 

the average cell density in the system was below the threshold for quorum sensing.  

 

Figure 3.4: Illustration of quorum-sensing circuit (A) In the quorum-sensing circuit, the activator 

protein LuxR and acyl homoserine lactone (AHL) synthetase LuxI are driven by a constitutive 

promoter. When a sufficient concentration of AHL is present, LuxR is activated, binds to the pLuxI 

promoter, and recruits RNA polymerase, leading to expression of mWasabi as well as additional copies 

of LuxI, thus generating a positive-feedback loop. The E. coli strain has an integrated, constitutively-

expressing mCherry cassette for confocal imaging. (B) In our scheme, upon aggregation, quorum 

sensing is activated, leading to the joint expression of mWasabi and mCherry (represented by pink cells). 

However, without induction of aggregation, the cells do not express mWasabi and express only 

mCherry. 

 

We first tested this expectation by developing a reaction-diffusion model of quorum 

sensing. In the model, we consider an isolated aggregate of bacteria that can produce 

the autoinducer with positive feedback. The autoinducer diffuses within and out of 

the aggregate. We found that accumulation of the autoinducer in the aggregate is 

predicted to be much faster than its accumulation in the planktonic case (the 
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unstructured curve) over a large range of parameter values (Figure 3.5A, S3.6-7 ), 

and that it was most strongly controlled by the magnitude of the Thiele modulus, 

which characterizes the length scale of the aggregate with respect to the diffusion and 

production rates (Figure 3.5A).38 A large value of the Thiele modulus implies that 

the aggregate is large compared to the rate of diffusion and reaction, and as such, the 

autoinducer is able to accumulate strongly in the aggregate before being diluted by 

the bulk. By contrast, for small values of the Thiele modulus, the aggregate is small 

compared to the diffusion rate, and as such there is little accumulation in the 

aggregate. In the limit of small Thiele modulus, the model reduces to planktonic 

bacteria, where there is no benefit of the spatial structure. It is likely in this system 

that we are in the φ>1 regime, because the aggregates are closely packed leading to 

significantly restricted diffusion of substrates within the aggregates, and a 

correspondingly high φ. 

 

To prepare the experimental strain, we first integrated a gene encoding mCherry into 

the E. coli DH10B chromosome under control of a T5 promoter to serve as a cell-

marker.39 Our quorum-sensing plasmid was a modification of pLuxRI2, which was 

a generous gift of the laboratory of Frances Arnold.40 The quorum-sensing circuit is 

shown in Figure 3.4. Briefly, genes encoding the acylhomoserine lactone synthase 

(luxI) and the activator protein (luxR) were expressed under control of the 

constitutive pJ23105 promoter. To achieve positive feedback, a second copy of luxI 

was expressed (along with an mWasabi reporter gene) under control of a mutant 

pLuxI promoter to make plasmid pMTK3 (see Supplemental Discussion for details). 

This circuit was co-transformed with the SpyTag/SpyCatcher aggregation system to 

make strains sMTK1 (for the SpyTag-displaying strain) and sMTK2 (for the 

SpyCatcher-displaying strain).  

 

Cultures of mixed sMTK1 and sMTK2 (at a 1:1 strain ratio) in mid-log phase 

(OD≈0.2) were split into three sub-cultures. The first sub-culture was induced with 
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0.2% arabinose, the second was left uninduced, and the third was treated with 2 mM 

HSL as a positive quorum sensing control; the experimental scheme is outlined in 

Figure 3.4. After 1 h, aggregates formed in the induced sub-culture, but not in the 

uninduced sub-culture. Aliquots of the induced and uninduced sub-cultures were 

imaged 75 min after induction; the results are shown in Figure 3.5. 

 

In this experiment, the mCherry signal serves as a cell marker, the mWasabi signal 

as a marker for activation of the quorum sensing circuit. As shown in Figure 3.5, the 

aggregated sample appears to have more cells that are expressing mWasabi. To 

quantify this observation, we determined the Manders overlap coefficients (MOC) 

between mWasabi and mCherry channels, which represents the percentage of cells 

that have strong activation of their quorum-sensing circuits. After 75 min of 

induction, we find the MOC of the induced, aggregated sample to be 0.24 + 0.018 (+ 

SEM), while the uninduced sample MOC is 0.02 + 0.0050. (Figure 3.5H). We 

interpret this to mean that in the aggregated case, approximately 24% of cells display 

quorum-sensing behavior, whereas in the uninduced case, only 2% of the cells are 

quorum-sensing. This suggests that a substantial increase in quorum sensing can be 

observed by aggregating cells. Interestingly, the addition of exogenous HSL in figure 

6H resulted in a MOC of 0.065 + 0.0042, suggesting that aggregation resulted in a 

greater enhancement of quorum sensing than the addition of a large amount of 

exogenous inducer. This may be an artifact of image analysis (cells within aggregates 

are often brighter/easier to threshold) rather than the result of an actual physiological 

change. 
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Figure 3.5: Aggregation leads to more-rapid activation of a quorum-sensing circuit (A) A reaction-

diffusion model predicts that accumulation of AHL within aggregates is much faster than with 

planktonic cells; this effectiveness is a strong function of the Thiele modulus (𝜙 <1 overlaps strongly 

with the planktonic case, as expected). (B-G) sMTK1 and sMTK2 cells were grown for 2 hours, then 

the culture was split into three different conditions. (B,C) Uninduced (D,E) Aggregation was induced 

with 0.1% L-arabinose. (F,G) Quorum sensing was induced by adding AHL. B, D, and E are the 

quorum sensing (mWasabi) signal, while C, E, and G are cell markers (mCherry). (H) Image analysis 

shows that 2% of uninduced cells show a quorum-sensing response, while 24% of cells that have 

aggregated show a quorum-sensing response, a 12-fold difference that is statistically-significant, as 

shown by three stars (***) above the respective bars (p=0.0065, using a two-tailed Student’s t-test). 

Notably, in these experiments only 6.5% of cells induced with 2mM AHL show a quorum-sensing 

response. Three stars (***) indicate statistical significance at p<0.01 level, and two stars (**) indicate 

statistical significance at the p<0.02 level.  

 

Conclusions 

We have successfully demonstrated methods by which the size and architecture of 

bacterial aggregates can be controlled in a genetically-programmable manner. By 

choosing the appropriate associative protein, we can control the 
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reversibility/irreversibility of the aggregates; while by controlling the surface 

expression levels of the associative proteins we can control the resulting size of 

aggregates. We have further demonstrated the construction of a core-shell 

architecture which may be useful in protecting sensitive bacteria from environmental 

insult or for creating complex biocatalysts. This work therefore represents an 

important step towards recapitulating the complex structures exhibited by natural 

microbial consortia, as well as a method by which cellular behavior can be made 

dependent on aggregation state through the use of a quorum sensing circuit.41  

 

Methods developed in this work may enable the production of structured whole-cell 

biocatalysts, whereby multi-step reactions may be performed in series in bacterial 

aggregates, enabling enhanced intermediate channeling between cells in a manner 

complementary to previous work for substrate channeling within cells.42-43 

Particularly where biosynthetic steps may be difficult or impossible to place in the 

same cell, performing these steps in aggregates will enable channeling between 

metabolic steps without dilution into the bulk solution phase. Triggering of quorum 

sensing may play an important role here, as in order to minimize off-target reactivity, 

enzyme expression can be efficiently linked to aggregation.  

 

We believe that the methods developed in this work are broadly applicable to other 

species of microbes and extendible to other types of protein-association domains. All 

that is required is an effective method of cell-surface display of the appropriate 

associative domain in the bacterial species of interest. In this manner, multi-species 

consortia of microbes may be established. Finally, similar techniques have recently 

been used for programmable surface binding19 and may similarly be used for 

immobilization into protein hydrogels to form artificial biofilms. 
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Materials and Methods 

General 

Restriction enzymes, ligase, and Q5 DNA polymerase were purchased from New 

England Biolabs (Beverly, NJ). Nickel NTA was purchased from Qiagen (Hilden, 

Germany). DNA oligos and G-blocks were purchased from Integrated DNA 

Technologies (Coralville, IA).    

Bacterial strains 

All experiments were conducted in E. coli strain DH10B, obtained from Invitrogen 

(Carlsbad, CA). Aggregation for quorum sensing was conducted in E. coli strain 

KY36, a derivative of DH10B which contains a chromosomally-integrated mCherry 

under control of a leaky T5 promoter. 

Plasmid Subcloning  

Recombinant fusion proteins were produced by standard recombinant DNA 

technology.  DH10b or Mach1 Escherichia coli were used for all cloning steps. 

Genes encoding soluble Z17 and SpyCatcher proteins along with elastin 

solubility/stability tags have been previously cloned by our group into modified pQE-

80L plasmids.22  

 

Plasmids pKPY680 and pKPY681, which constitutively express mWasabi and 

mCherry, respectively, were constructed using mWasabi-N1/pmCherry-N1 as the 

template. Primers were ordered to amplify mWasabi/mCherry as well as add NsiI-

J23100 promoter-SpeI-RBS-MRGS-6xHis to the 5’ end of mWasabi/mCherry, and 

to add HindIII to the 3’ end. This fragment was inserted into pBAD33 using NsiI and 

HindII sites. 
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To make the surface-expression constructs, the autotransporter domain downstream 

of the pelB leader sequence was amplified from pHEA by PCR using a PhusionII 

polymerase (NEB) with the addition of a 5’ XhoI and 3’ HindIII site to the 

autotransporter construct, which was then digested and inserted into a modified pQE-

80L plasmid. Another G-block was ordered with EcoRI and XhoI sites that contained 

the T5 promoter, pelB, a 6xHis tag, and the protein of interest (SpyTag, SpyCatcher, 

SynZip17, SynZip18). A schematic of the autotransporter cassette is shown below 

(Figure S3.1).  

 

The autotransporter constructs were also placed under the araBAD promoter to 

enable tighter control of the aggregation systems. The autotransporter-associative 

domain fusions were PCR amplified and inserted into pBAD33 using Gibson 

isothermal assembly. 

 

The RBS mutant constructs were obtained from the pBAD33-based aggregation 

constructs by Quik-Change site-directed mutagenesis.  

 

Plasmid pLuxRI2 was a generous gift from the lab of Prof. Frances Arnold. To make 

plasmid construct pMTK1, we first replaced the pLac/Ara1 promoter in that plasmid 

with a constitutive pJ23105 promoter. A DNA duplex containing the reverse 

complement of the pJ23105 promoter, and EcoRI and XhoI sites on the 5’ and 3’ 

ends, respectively, was ordered from IDT and inserted into pLuxRI2 following 

digestion with EcoRI and XhoI. The second modification required was the insertion 

of the quorum sensing cassette consisting of mWasabi and an additional copy of luxI 

synthetase under the control of the PluxI promoter, as well as a p15a origin. This 

cassette was supplied by a gBlock gene fragment ordered from IDT, and contained 

restriction sites for SacI and AvrII on the 5’ and 3’ ends, respectively. Plasmid 

pLuxRI2 was then digested with SacI and AvrII, allowing for the insertion of the 

gBlock fragment.  
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Fluorescent proteins were chromosomally integrated using the pOSIP clonetegration 

system. Genes encoding mWasabi and mCherry under the control of the T5 promoter 

were PCR amplified and assembled into pOSIP-KO (Addgene).  Z-competent E. 

coli MegaX DH10B T1R cells were mixed with the unpurified assembly reaction and 

spread on 2xYT agar plates supplemented with 35 mg/L kanamycin sulfate. 

Flow cytometry 

Measurement of surface expression levels was done using direct 

immunocytochemistry and flow cytometry. Overnight cultures of autotransporters 

were diluted 100x, and were grown to an optical density of approximately 0.6 prior 

to induction with 0.1% L-Arabinose. Expression was allowed to proceed for 90 

minutes, after which the culture was centrifuged and blocked for 30 minutes with 

agitation (3% BSA in PBS). Cells were then centrifuged and resuspended in staining 

solution (5 µg/mL Anti-His conjugated Alexa-Fluor 488 Antibody (HIS.H8 

Thermofisher), 1% BSA in PBS). This solution was then agitated for 1 hour, after 

which the cells were washed three times in PBS. Cells were strained through a 40 µm 

filter to remove aggregates and run on a MoFlo XDP cell sorter equipped with a 488 

nm laser. Flow cytometry data were analyzed using EasyFlow.44 

Quorum sensing 

N-(B-Ketocaproyl)-DL-Homoserine Lactone (synonymous with N-(3-

Oxohexanoyl)-Homoserine Lactone) was purchased from MilliporeSigma 

(Milwaukee, WI) and used without further modification. 

 

Characterization of quorum sensing in bulk samples was done on a VarioSkan LUX 

instrument (ThermoFisher, San Diego CA).  Cultures containing pMTK1, pMTK2, 

and pMTK3 were grown in LB medium supplemented with 35 mg/L 

chloramphenicol. The overnight cultures were then used to inoculate 150μL cultures 

at a ratio of 100:1 in flat-bottomed, clear 96-well plates with a lid (BD Falcon, 
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Corning Inc, Corning, NY). The cultures then had varying amounts of AHL added 

(0-2mM), and the plate was incubated, with shaking, at 37 degrees for 18 hours. 

OD600 as well as mWasabi fluorescence (ex. 485 em. 515) was measured every 10 

minutes. The results of this characterization are presented in the Supporting 

Discussion and Figures S3.4 and S3.5  

Expression of soluble SynZip and SpyCatcher proteins 

Constructs were transformed into BL21 E. coli for expression.  Expression was 

performed in Terrific Broth (12 g/L casein, 24 g/L yeast extract, 0.4% w/v glycerol, 

0.017 M monobasic potassium phosphate, 0.072 M dibasic potassium phosphate).  

Cultures were induced at an optical density of 0.6-0.9 to a final concentration of 1 

mM isopropyl β-D-1-thiogalactopyranoside (IPTG).  Expression was allowed to 

proceed for 5 h, after which cells were harvested by centrifugation.   

 

For Z17 purification, cultures were resuspended in lysis buffer in denaturing lysis 

buffer (8 M urea, 0.1 M Na2HPO4, 10 mM imidazole; pH 8.0), and lysed by 

sonication.  Lysates were cleared by centrifugation and incubated with NiNTA. The 

resin was washed with lysis buffer followed by wash buffer (8 M urea, 0.1 M 

Na2HPO4, 25 mM imidazole; pH 6.3).  Protein was eluted with elution buffer (8 M 

urea, 0.1 M Na2HPO4, 250 mM imidazole; pH 3.5).  Purity was confirmed with SDS-

PAGE. Proteins were then extensively dialyzed against water and lyophilized for 

storage. 

 

SpyCatcher was purified under native conditions.  Cultures were resuspended in 

native lysis buffer (50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, 1 mg/mL 

lysozyme; pH 8.0)  Cells were lysed by sonication, and cleared lysates were 

incubated with NiNTA. The resin was washed with native wash buffer (50 mM 

NaH2PO4, 300 mM NaCl, 25 mM imidazole; pH 8.0) and eluted with native elution 

buffer (50 mM NaH2PO4, 300 mM NaCl, 250 mM imidazole; pH 8.0).  Purity was 
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confirmed with SDS-PAGE and purified SpyCatcher was dialyzed against water, and 

lyophilized. 

Image Acquisition and Analysis 

Microscopy images were taken on a Zeiss 800 LSM inverted confocal microscope 

(Carl Zeiss AG, Oberkochen, Germany).  

All image analysis was performed using custom Matlab scripts.  

 

Aggregate size analysis was performed similarly to what we described previously.22 

Briefly, confocal z-stacks were manually thresholded based on the intensity in each 

fluorescent channel. Pixels above the threshold were described as “bright.” 

Contiguous “bright” pixels (in 3D) were identified, and the observed volume of each 

aggregate was determined. The volume-weighted average volume of each sample 

was determined using the following equation: 

�̅� =
∑ 𝑉𝑖

2 

∑ 𝑉𝑖  
 

where sums are taken over all of the aggregate volumes. This average represents the 

volume of the aggregate that the average bacterium would be found in, and is more 

appropriate than the number-weighted average, which is dominated by disassociated 

bacteria. 

 

Core-shell fluorescence profiles were created as described previously.22 Maximum 

intensity projections of the images were taken, and large aggregates were identified 

using thresholding. For each large aggregate, z-stacks with high levels of 

fluorescence were combined into a mean intensity projection. Then, starting at the 

centroid of the mean intensity projection, 100 radii representing equally spaced 

direction vectors were drawn to the edge of the aggregate, extracting the fluorescence 

intensities of each channel. Fluorescence intensities were scaled in each channel 

(with the maximum intensity in the aggregate being 1), and plotted along a radial axis 

where 0 represents the centroid and 1 represents the edge of the aggregate. 
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All image analysis code and reaction diffusion models can be downloaded at 

https://tirrell-lab.caltech.edu/code 
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Supplemental Discussion 

Re-engineering of Quorum Sensing System 

In preliminary experiments, we determined that the initial quorum-sensing circuit 

began turning on at an OD600 of approximately 0.4 (Figure S4). In order to emphasize 

the use of aggregation at turning on the circuit, we decided to systematically reduce 

the sensitivity of the quorum-sensing circuit to HSL, using point mutations identified 

in Antunes et al.45 In particular, mutations to the quorum-sensing promoter (Lux box) 

C5A and C16A were made, measured, and noted to effectively reduce the quorum-

sensing response even at high ODs (Figure S3.4). We confirmed that the C16A 

mutant was still responsive to high HSL (Figure S3.5), so this construct was used for 

all further experiments in this work. 

Description and Derivation of Quorum Sensing Model 

A model for the quorum sensing genetic circuit in bacterial aggregates was developed 

from the differential species balance with reaction on the autoinducer. Generically, 

diffusion of molecules in a dilute, non-convective, reacting system can be written as 

(Eq S3.1):46  

𝜕𝐶𝐴

𝜕𝑡
= 𝐷𝐴∇2𝐶𝐴 + 𝑅𝐴 (𝑆3.1) 

where CA is the concentration of the species (here the autoinducer), DA is the effective 

diffusion coefficient of the species in the system, ∇2 is the Laplacian operator, and 

RA is the instantaneous rate of generation (or consumption) of the species. Here, we 

will assume that the rate of generation (production) of the autoinducer can be 

described as a constant term plus a Hill function to represent the positive feedback in 

the system (S3.2). This is a common formalism for transcriptional activation,47 and 

has previously been used to characterize the LuxI promoter.48  

𝑅𝐴 = β1 + β2

𝐶𝐴
𝑛

𝐾𝑛 + 𝐶𝐴
𝑛  (𝑆3.2) 
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where β1 is the zeroth order rate constant for leaky/constitutive expression, β2 is the 

rate constant for the Hill function representing transcriptional activation by the 

autoinducer in positive feedback, and K and n are the Hill Function equilibrium 

constant and coefficient respectively. The full PDE that describes reaction-diffusion 

in the bacterial aggregates is: 

𝜕𝐶𝐴

𝜕𝑡
= 𝐷𝐴∇2𝐶𝐴 + β1 + 𝛽2

𝐶𝐴
𝑛

𝐾𝑛 + 𝐶𝐴
𝑛  (𝑆3.3) 

 

Next, we consider the boundary and initial conditions of the system. Initially, upon 

aggregation, we expect that the concentration of the autoinducer will be uniform 

throughout the aggregate and the bulk, which we will denote as 𝐶𝐴0
𝐵 . For simplicity, 

we assume that the aggregates are spheres, with radius R. Then, in order to retain 

finite concentration, the flux at the center of the sphere (r=0) must be 0. Finally, we 

write an interfacial mass transport equation that applies at the edge of the sphere. The 

boundary/initial conditions are written as S3.4-6 

𝐶𝐴(𝑡 = 0, 𝑟) = 𝐶𝐴0
𝐵  (𝑆3.4) 

𝜕𝐶𝐴(𝑡, 𝑟 = 0)

𝜕𝑟
= 0 (𝑆3.5) 

𝐷𝐴∇CA(𝑡, 𝑟 = 𝑅) = 𝑘𝑐(𝐶𝐴
𝐵(𝑡) − 𝐶𝐴(𝑡, 𝑟 = 𝑅)) (𝑆3.6) 

where ∇ is the gradient operator,  𝑘𝑐 is the interfacial mass transport coefficient, and  

𝐶𝐴
𝐵(𝑡) is the (time-dependent) bulk concentration of autoinducer. To further simplify 

the boundary condition at the surface, we assume that the mass transport coefficient 

is large, such that there is negligible interfacial resistance to mass transport. This is 

reasonable because the aggregates are being vigorously mixed, such that the mass 

transport resistance is likely to be dominated by the dense network of cells in the 

aggregate (this corresponds to Biot number>>1). Equation S3.6 then becomes 

𝐶𝐴(𝑡, 𝑟 = 𝑅) = 𝐶𝐴
𝐵(𝑡) (𝑆3.7) 

Equations S3.3-5 and S3.7 then are a fully defined PDE inside the aggregate. Before 

solution, we nondimensionalize as follows: 
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�̂� =
𝑟

𝑅
 (𝑆3.8) 

𝐶�̂� =
𝐶𝐴

𝐶𝐴0
𝐵  (𝑆3.9) 

�̂� =
𝐶𝐴0

𝐵

𝛽1
 (𝑆3.10) 

If we rewrite the system with nondimensional variables, we obtain the following: 

𝜕𝐶�̂�

𝜕�̂�
=

𝐷𝐴 𝐶𝐴0
𝐵

𝑅2𝛽1
 ∇2𝐶�̂� + 1 +

𝛽2

𝛽1

𝐶�̂�
𝑛

(
𝐾

𝐶𝐴0
𝐵 )

𝑛

+ 𝐶�̂�
𝑛

 (𝑆3.11)
 

We will define the following dimensionless parameters: 

𝜙 = 𝑅√
𝛽1

𝐷𝐴𝐶𝐴0
𝐵  (𝑆3.12) 

�̂� =
𝛽2

𝛽1
 (𝑆3.13) 

�̂� =  
𝐾

𝐶𝐴0
𝐵  (𝑆3.14) 

𝜙 is the 0th order Thiele modulus for a sphere,38 �̂� represents the ratio of the strength 

of the activated promoter to constitutive/leaky expression, and �̂� represents the 

equilibrium constant for the Hill function for the promoter, expressed in units of the 

initial concentration. The PDE becomes: 

𝜕𝐶�̂�

𝜕�̂�
=

1

𝜙2
 ∇2𝐶�̂� + 1 + �̂�

𝐶�̂�
𝑛

�̂�𝑛 + 𝐶�̂�
𝑛  (𝑆3.15) 

 The initial/boundary conditions are now: 

𝐶�̂�(�̂� = 0, �̂�) = 1 (𝑆3.16) 

   

𝜕𝐶�̂�(�̂�, �̂� = 0)

𝜕�̂�
= 0 (𝑆3.17) 
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𝐶�̂�(�̂� = 0, �̂�) = 𝐶𝐴
�̂�(𝑡) (𝑆3.18) 

  

Finally, we consider 𝐶𝐴
�̂�(𝑡), (i.e. the time evolution of the bulk concentration). The 

amount of accumulation in the bulk is the total flux through the aggregate surface. 

Alternatively, it can be calculated as the total amount of autoinducer produced in the 

aggregate net of the change in the integrated concentration inside the aggregate. 

Writing this for a discrete time step: 

𝐶𝐴
�̂�(�̂�) =  𝐶𝐴

�̂�(�̂� − Δ𝑡) + 𝜒𝑣(Δ𝑡 ∫ 𝑅�̂�𝑑𝑉 − (∫ 𝐶�̂�(�̂�)𝑑𝑉 − ∫ 𝐶�̂�(�̂� − Δ𝑡)𝑑𝑉)) 

 (S3.19) 

where integrals are taken over the entire aggregate and 𝜒𝑣 is the volume fraction of 

the aggregates in solution. 

 

Equations S3.15-S3.19 constitute a full mathematical description of the system. In 

order to solve them for a given parameter set, S3.15-S3.18 are first numerically 

solved for a constant outer bulk concentration, and then the bulk concentrations as a 

function of time are solved subject to the solution to the PDE (Equation S3.19). The 

PDE is then re-solved, and the two steps are iterated back and forth until convergence 

is reached. Matlab’s pdepe function is used for PDE solution. 

 

An ODE describes time evolution of the quorum sensing signal in the bulk in the 

absence of aggregates. By analogy, we have: 

𝑑𝐶�̂�

𝑑�̂�
= 𝜒𝑣 (1 + �̂�

𝐶�̂�
𝑛

�̂�𝑛 + 𝐶�̂�
𝑛) (𝑆3.20) 

where the volume fraction factor is required to account for dilution into the bulk. 

Matlab’s ode45 function is used for integration. Simulation code can be found at 

https://tirrell-lab.caltech.edu/Code.  

 

  

https://tirrell-lab.caltech.edu/Code
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Supplemental Tables and Figures 

Table S3.1: Plasmids/Strain Designations used in this study  

Name Backbone/origin/promoter Purpose 

pKPY680 pBAD33/p15a/pJ23100 Constitutive expression 

of mWasabi 

pKPY681 pBAD33/p15a/pJ23100 Constitutive expression 

of mCherry 

pAT-17 pQE80/colE1/T5 IPTG-inducible 

expression of SynZip 17 

pAT-18 pQE80/colE1/T5 IPTG-inducible 

expression of SynZip 18 

pAT-ST pQE80/colE1/T5 IPTG-inducible 

expression of SpyTag 

pAT-SC pQE80/colE1/T5 IPTG-inducible 

expression of 

SpyCatcher 

pBAT-17 pQE60/colE1/araBAD Arabinose-inducible 

expression of SynZip 17 

and compatibility with 

pMTK1-3 

pBAT-18 pQE60/colE1/araBAD Arabinose-inducible 

expression of SynZip 18 

and compatibility with 

pMTK1-3 

pBAT-ST pQE60/colE1/araBAD Arabinose-inducible 

expression of SpyTag 

and compatibility with 

pMTK1-3 
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pBAT-SC pQE60/colE1/araBAD Arabinose-inducible 

expression of 

SpyCatcher and 

compatibility with 

pMTK1-3 

pBAD-ST pBAD33/p15a/araBAD Arabinose-inducible 

expression of SpyTag 

pBAD-SC pBAD33/p15a/araBAD Arabinose-inducible 

expression of 

SpyCatcher 

pMTK1 pHTSUB-105/p15a/luxI “wild-type” quorum 

sensing 

pMTK2 pHTSUB-105/p15a/luxI Less-sensitive quorum 

sensing plasmid. 

pMTK3 pHTSUB-105/p15a/luxI Less-sensitive quorum 

sensing plasmid. 

sMTK1 DH10b pMTK3/pAT-ST Strain capable of 

quorum sensing and 

aggregating 

sMTK2 DH10b pmTK3/pAT-SC Strain capable of 

quorum sensing and 

aggregating 
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Table S3.2: Protein Sequences 

Protein: Sequence 

Z17 (soluble) MRGSHHHHHHGSVDGSGSGSGSGSGANEKEELKSKK

AELRNRIEQLKQKREQLKQKIANLRKEIEAYKGSGSGS

GSGSGALDVPGAGVPGAGVPGEGVPGAGVPGAGVPG

AGVPGAGVPGEGVPGAGVPGAGVPGAGVPGAGVPGE

GVPGAGVPGAGLDVPGAGVPGAGVPGEGVPGAGVPG

AGVPGAGVPGAGVPGEGVPGAGVPGAGVPGAGVPGA

GVPGEGVPGAGVPGAGLEHHHHHHKLC 

 

SpyCatcher (soluble) MRGSHHHHHHGSVDGSGSGSGSGSGAAMVDTLSGLS

SEQGQSGDMTIEEDSATHIKFSKRDEDGKELAGATMEL

RDSSGKTISTWISDGQVKDFYLYPGKYTFVETAAPDGY

EVATAITFTVNEQGQVTVNGKATKGDAHIDGSGSGSGS

GSGALDVPGAGVPGAGVPGEGVPGAGVPGAGVPGAG

VPGAGVPGEGVPGAGVPGAGVPGAGVPGAGVPGEGV

PGAGVPGAGLDVPGAGVPGAGVPGEGVPGAGVPGAG

VPGAGVPGAGVPGEGVPGAGVPGAGVPGAGVPGAGV

PGEGVPGAGVPGAGLEHHHHHHKLC 

 

SpyCatcher-Autotransporter MKYLLPTAAAGLLLLAAQPAMAMRGSHHHHHHGSVD

GAMVDTLSGLSSEQGQSGDMTIEEDSATHIKFSKRDED

GKELAGATMELRDSSGKTISTWISDGQVKDFYLYPGK

YTFVETAAPDGYEVATAITFTVNEQGQVTVNGKATKG

DAHIDLETPTPGPDLNVDNDLRPEAGSYIANLAAANT

MFTTRLHERLGNTYYTDMVTGEQKQTTMWMRHEGG

HNKWRDGSGQLKTQSNRYVLQLGGDVAQWSQNGSD
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RWHVGVMAGYGNSDSKTISSRTGYRAKASVNGYSTG

LYATWYADDESRNGAYLDSWAQYSWFDNTVKGDDLQ

SESYKSKGFTASLEAGYKHKLAEFNGSQGTRNEWYVQ

PQAQVTWMGVKADKHRESNGTLVHSNGDGNVQTRL

GVKTWLKSHHKMDDGKSREFQPFVEVNWLHNSKDFS

TSMDGVSVTQDGARNIAEIKTGVEGQLNANLNVWGN

VGVQVADRGYNDTSAMVGIKWQF 

SpyTag-Autotransporter MKYLLPTAAAGLLLLAAQPAMAMRGSHHHHHHGSVD

AHIVMVDAYKPTKLDVPGAGVPGAGVPGEGVPGAGV

PGAGVPGAGVPGAGVPGEGVPGAGVPGAGVPGAGVP

GAGVPGEGVPGAGVPGAGLDVPGAGVPGAGVPGEGV

PGAGVPGAGVPGAGVPGAGVPGEGVPGAGVPGAGVP

GAGVPGAGVPGEGVPGAGVPGAGLETPTPGPDLNVD

NDLRPEAGSYIANLAAANTMFTTRLHERLGNTYYTDM

VTGEQKQTTMWMRHEGGHNKWRDGSGQLKTQSNRY

VLQLGGDVAQWSQNGSDRWHVGVMAGYGNSDSKTIS

SRTGYRAKASVNGYSTGLYATWYADDESRNGAYLDS

WAQYSWFDNTVKGDDLQSESYKSKGFTASLEAGYKH

KLAEFNGSQGTRNEWYVQPQAQVTWMGVKADKHRE

SNGTLVHSNGDGNVQTRLGVKTWLKSHHKMDDGKS

REFQPFVEVNWLHNSKDFSTSMDGVSVTQDGARNIAE

IKTGVEGQLNANLNVWGNVGVQVADRGYNDTSAMV

GIKWQF 

Z17-Autotransporter MKYLLPTAAAGLLLLAAQPAMAMRGSHHHHHHGSVD

GSGSGSGSGSGSNEKEELKSKKAELRNRIEQLKQKREQ

LKQKIANLRKEIEAYKGSGSGSGSGSGSLETPTPGPDLN

VDNDLRPEAGSYIANLAAANTMFTTRLHERLGNTYYT

DMVTGEQKQTTMWMRHEGGHNKWRDGSGQLKTQS

NRYVLQLGGDVAQWSQNGSDRWHVGVMAGYGNSDS
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KTISSRTGYRAKASVNGYSTGLYATWYADDESRNGAY

LDSWAQYSWFDNTVKGDDLQSESYKSKGFTASLEAG

YKHKLAEFNGSQGTRNEWYVQPQAQVTWMGVKADK

HRESNGTLVHSNGDGNVQTRLGVKTWLKSHHKMDD

GKSREFQPFVEVNWLHNSKDFSTSMDGVSVTQDGAR

NIAEIKTGVEGQLNANLNVWGNVGVQVADRGYNDTS

AMVGIKWQF 

Z18-Autotransporter MKYLLPTAAAGLLLLAAQPAMAMRGSHHHHHHGSVD

GSGSGSGSGSGSSIAATLENDLARLENENARLEKDIAN

LERDLAKLEREEAYFGSGSGSGSGSGSLETPTPGPDLN

VDNDLRPEAGSYIANLAAANTMFTTRLHERLGNTYYT

DMVTGEQKQTTMWMRHEGGHNKWRDGSGQLKTQS

NRYVLQLGGDVAQWSQNGSDRWHVGVMAGYGNSDS

KTISSRTGYRAKASVNGYSTGLYATWYADDESRNGAY

LDSWAQYSWFDNTVKGDDLQSESYKSKGFTASLEAG

YKHKLAEFNGSQGTRNEWYVQPQAQVTWMGVKADK

HRESNGTLVHSNGDGNVQTRLGVKTWLKSHHKMDD

GKSREFQPFVEVNWLHNSKDFSTSMDGVSVTQDGAR

NIAEIKTGVEGQLNANLNVWGNVGVQVADRGYNDTS

AMVGIKWQF 
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Figure S3.1: Schematic of aggregation cassette. Under the control of either a T5 promoter (in the pAT-

X plasmids) or the araBAD promoter (in the pBAD-X plasmids), there is a signaling sequence pelB and 

a 6xHistidine tag upstream of the associative protein, followed by the C-terminal region of the EhaA 

adhesion protein of Escherichia coli.  
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Figure S3.2: Schematic of quorum-sensing plasmid. On a plasmid with a p15a origin (to ensure 

compatibility with the aggregation plasmid), luxR activator protein and luxI AHL synthetase are under 

the control of a pJ23105 constitutive promoter. The LuxR protein, in the presence of a sufficient 

concentration of AHL, binds to the pLuxI promoter driving expression of mWasabi and an additional 

copy of luxI AHL synthetase giving rise to positive feedback. 
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Figure S3.3: Individual line plots of core-shell structure (A-C) line profiles generated for individual 

clusters A, B, and C (as outlined in boxes in the main image, and line profiles in the right-hand panel). 

(D) Individual core-shell structure taken at 63x magnification. 
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Figure S3.4: Characterization of Quorum Sensing System. The wild-type quorum sensing system turns 

on at an OD600 of approximately 0.4-0.5, making detecting aggregation differences challenging. By 

making C5A and C16A mutants, the circuits are much less sensitive to HSL.  
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Figure S3.5: Exogenous Addition of HSL. Addition of exogenous HSL to the mutant C16A quorum 

sensing circuit still turns on the circuit, demonstrating that the circuit is still responsive to HSL, though 

at a lower level.  
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Figure S3.6: Effect of �̂� on model. Over a large range of �̂� (including in its absence, representing no 

positive feedback), accumulation of autoinducer is much faster than in the unstructured aggregate, 

which does not accumulate significantly on these time scales. (Other parameters: 𝜙=10, �̂�= 2, n=2) 
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Figure S3.7: Effect of �̂� on model. Over a large range of �̂�, accumulation of autoinducer is much 

faster than in the unstructured aggregate, which does not accumulate significantly on these time scales. 

(Other parameters: 𝜙=10, �̂�=5, n=2) 
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C h a p t e r  4  

CONTROL OF MICROBIAL FLOCS 

Abstract 

Bacterial flocs are a common motif in nature and industrial applications of microbes 

(e.g., in water treatment). Flocculation of bacteria is driven by attractive forces, either 

direct cell-cell interactions or indirect colloidal forces (e.g. depletion or 

electrostatics). Previously, we developed a method to genetically engineer bacteria 

for programmable flocculation via expressing proteins on their surfaces that drive 

programmable assembly into aggregates. Here, using this approach, we investigate 

how properties of the resulting flocs can be controlled and how these relate to the 

underlying properties of the associative proteins and shear field. We demonstrate 

control of the assembly kinetics and equilibrium sizes of the resulting flocs over 

several orders of magnitude using different associating proteins and expression 

levels. This setup allows us to control the association potential between bacterial 

particles and investigate the flocculation of particles in this strong interaction limit. 

The ability to understand and control flocculation of microbes will enable their use 

in engineered biotechnological applications, including water treatment and 

biocatalysis. 
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Introduction 

In nature, many bacteria live in close association with other microbes, in biofilms,1 

aggregates,2 or sludges.3 These structures lend emergent function to these (often 

multi-species) communities, as they are often able to resist environmental insults,4 

cross-feed essential metabolites,5 or communicate through mechanisms such as 

quorum sensing6 or electrical signaling.7 Bacterial flocculation is also used 

extensively in industry to collect bacteria from a suspension, particularly in water 

treatment, usually by the addition of a polymeric flocculant.8 

 

In any suspension of colloidal particles, flocculation occurs when particles collide 

and stick together. These aggregates are stable when the inter-particle attractive 

forces outweigh repulsive interactions. Colloidal attractive forces include depletion 

(excluded volume),9 van der Waals forces,10 electrostatic interactions,11 or, in 

engineered systems, programmable molecular interactions.12,13 Repulsive forces may 

include electrostatic repulsion,14 or when aggregates are mixed, turbulent shear 

stresses.15 When aggregation is reversible and dispersive forces can break the 

aggregates apart, an equilibrium distribution of floc size is established by the relative 

rates of aggregation and disassociation. This equilibrium size distribution is a 

complex function of the shear rate,16 particle concentration in some cases,17,18 and/or 

the composition of the floc.19 This last factor, the nature of the particles making up 

the aggregate, is the least well-understood, in part because it is difficult to precisely 

tune inter-particle forces. 

 

Previously, we have developed methods of programming the assembly of latex 

particles13 and microbes (Chapter 3 of this thesis) by grafting associative proteins 

onto cell surfaces. Promisingly, we could modify the size distribution of the 

aggregates simply by controlling the amount of protein displayed on the surface of 

the colloidal particle. This result is important because the amount of displayed protein 

can easily be programmed using standard genetic engineering techniques. 
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Here, to better understand the impact of inter-particle forces on floc size distribution 

and other properties, we engineer a variety of strains of Escherichia coli that express 

varying concentrations of associative proteins on their surfaces. By measuring the 

equilibrium aggregate sizes and the dynamics of aggregation when the bacteria are 

mixed under shear, we demonstrate that floc size distributions can be understood by 

a set of simple empirical principles. Interestingly, we find that even in the strong 

interaction regime, where interaction energies far exceed kT, aggregate sizes are 

finite, likely due to very strong dispersive shear stresses as a result of turbulent 

mixing. Our results suggest that the mechanism of aggregate disassociation is due to 

fracture of smaller aggregates, rather than single particle dissociation, implying that 

dispersive shear stresses act on the aggregates, and not on single cells. Depending on 

the type of interaction programmed, the size distributions of aggregates may be under 

kinetic or (pseudo-)thermodynamic control. Finally, even within the same class of 

interactions (e.g. leucine zippers), the size and dynamic properties of the resulting 

aggregates may be controlled by tuning the affinity and stimuli-responsive properties 

of displayed proteins.  

 

Results and Discussion 

Associative Proteins 

We have previously shown the ability to drive aggregation of the model bacterium 

E. coli by surface expression of associative proteins (Chapter 3 of this thesis). To do 

this, we fused the associative protein of interest to the N-terminus of an 

autotransporter protein. Upon cellular expression, the autotransporter fusion proteins 

traffic to the outer membrane and display their fusion partners on the surface of the 

cell (See Figure 4.1A for schematic).20 Previously, we displayed the 

SpyTag/SpyCatcher domains, which form an irreversible isopeptide bond between 

the proteins’ associative domains between a lysine residue in SpyCatcher and an 

aspartate residue in SpyTag. This interaction allows the “permanent” linkage of 
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bacteria or particles displaying the cognate proteins, and has also been used to control 

protein topology, form protein hydrogels, enhance enzyme stability, and enable 

analysis of subcellular trafficking.21–24 In this work, we also utilize the “A” designed 

leucine zipper protein with the purpose of accessing a different range of interaction 

strengths.25 Upon association, A coils form anti-parallel tetrameric helical bundles, 

though dimeric interactions may also occur.26,27 We have previously used this protein 

domain primarily for physically crosslinked hydrogels,25,26,28 but we reasoned that it 

may also be useful for programming association of colloidal particles. 

Control of Expression Levels 

In our previous work, we showed that the aggregate sizes may be controlled to some 

extent by manipulating protein expression levels through tuning of the ribosome 

binding site (RBS) responsible for translation initiation. In that work (Chapter 3 of 

this thesis), we rationally designed a mutant RBS (here denoted as Mut2, sequence 

GAGCGA) that reduced the expression level of SpyTag/SpyCatcher constructs by 

approximately 75% as measured by immunocytochemistry against poly-histidine 

epitopes on the displayed proteins, followed by flow cytometry. However, further 

attempts at rational engineering to create more graded expression levels could not 

further decrease SpyTag/SpyCatcher synthesis without completely ablating 

expression of the associative proteins.  

 

Instead, to create a graded set of expression constructs, we created libraries of RBSs 

driving translation of the autotransporter fusions. Separate libraries were created for 

each associative protein, as RBS strength is protein dependent due to mRNA 

secondary structure.29 The entire Shine-Dalgarno (SD) sequence of the RBS was 

randomized using degenerate primers, and the resulting libraries were transformed 

into E. coli. We induced expression of the associative proteins in each strain, then 

iteratively sorted the cells by their expression levels using immunocytochemistry and 

fluorescence-activated cell sorting (FACS). The process was repeated several times 
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in order to enrich the sub-libraries for intermediate expression levels (Figure 4.1B), 

and then individual clones are isolated, sequenced, and expression levels measured 

(Figure 4.1C). Overall, this process identified RBSs that span approximately two 

orders of magnitude in expression level—effectively limited by the dynamic range 

of the flow cytometer. The observed strengths are also well-correlated with the 

predicted expression levels from the RBS Calculator (Figure 4.1D).29 All RBS 

sequences along with their corresponding measured strengths are found in Table 

S4.2. 

 

We generally did not observe any RBSs stronger than the wild-type, consensus SD 

sequence from E. coli (AGGAGG), and many non-consensus sequences similarly 

exhibit “full” expression levels. This is likely because strong RBSs enable sufficient 

expression to saturate the secretion apparatus of the cell, removing the constraint of 

translation rate on the observed expression levels. 

 

Figure 4.1. Programmable microbial assembly using self-associating surface-displayed proteins. (A) E. 

coli are engineered to express an autotransporter protein (AidA) on their surface, fused on its N-terminus 

to one of several target proteins in such a way as to display the target protein on the outer membrane 
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(exterior) of the bacterium. Multivalent expression of target proteins on the surface of bacteria programs 

interactions between bacterial cells. Multivalency leads to the formation of an extended network of 

bacterial interactions, leading to the formation of a bacterial aggregate. Either heterotypic 

(SpyTag/SpyCatcher) or homotypic (Leucine zippers) interactions may be used to drive aggregation. 

(B-C) Expression levels of target proteins can be engineered by mutation of the ribosome-binding site 

(RBS) upstream of the coding sequence of the gene.(B) Synthesis of a library of RBS’s leads to a large 

range of expression levels, of which different parts can be enriched by FACS (C). Picking of single 

clones from the enriched libraries enables a large range of expression levels. (D) Expression levels 

correlate well with expected expression levels from RBS calculators. 

Covalent Interactions between Cells and Kinetic Control of Aggregate Size 

Cell-surface display of SpyTag and SpyCatcher results in the formation of 

irreversible covalent bonds between cells. We have previously found that these 

aggregates are resistant to disruption by soluble competitor peptide (Chapter 3 of this 

thesis), as opposed to dynamic, reversible systems which are disrupted by competitor 

binding,30 and, in the case of polymeric particles displaying SpyTag and SpyCatcher, 

chemical denaturants.13 In this limit of very strong cell-cell interactions, we aimed to 

measure the physical properties of the resulting flocs, using protein expression as a 

proxy for controlling the strength of cell-cell interaction. 

 

We generated RBS libraries of SpyTag and SpyCatcher autotransporter fusions 

spanning approximately two orders of magnitude in expression levels (sequences and 

observed strengths in Table S4.1). These constructs were transformed into DH10b 

E. coli that also constitutively express fluorescent proteins (mWasabi or mCherry) to 

aid in fluorescence microscopy. In a typical experiment, cells were grown to mid-

exponential phase (OD600 = 0.5), after which SpyTag and SpyCatcher expressing 

constructs were mixed, and expression of the surface-displayed proteins was induced. 

We generally observed visible flocculation and clearing of the culture within 30 

minutes post-induction. Samples from the cultures were spotted onto glass cover slips 

and imaged by confocal fluorescence microscopy.  
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Using our library of designed RBSs to generate a smooth continuum of protein 

expression levels, we were able to precisely control the size of the aggregates at early 

time-points (Figure 4.2A-C). At 30 minutes, programmable protein expression level 

can be used to predictably control the floc volume over a range from 500 µm3 to 

3*105 µm3 (Figure 4.2D).   The aggregates, though still irregular in shape, showed 

greater regularity than would be expected from the fractal pattern expected to emerge 

from unregulated inelastic collisions of bacteria with a growing aggregate. In that 

limit, we would expect our aggregates to be reminiscent of “diffusion limited 

aggregation,” which maximizes surface area.31    Instead, we hypothesize that some 

reorganizing activity for regular size and shape emerges at the system scale. This 

force (likely flow-induced shear stresses) penalizes strongly irregular structures, even 

in the covalent (very-strong force) limit.  

 

Our ability to control the size of the aggregates diminished over time, with many 

distributions reaching the same final equilibrium configurations (Figure 4.2E). This 

result is consistent with classical DLVO theory.32 In this case, assuming covalent 

bonds between cells are essentially irreversible once formed, as additional covalent 

bonds between cells are formed, aggregates will continue to grow with their kinetics 

controlled by the probability of successful colloidal collisions, which is proportional 

to the expression level. 
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Figure 4.2. Aggregation triggered by SpyTag/SpyCatcher expression. (A-C) Surface expression of 

SpyTag(cells in green), SpyCatcher (cells in magenta) triggers aggregation. Aggregate size at short time 

points (30 minutes post-induction) is a function of expression levels (A) WT-SpyTag/WT-SpyCat, (B) 

Mut2-SpyTag/RBS2-SpyCat, (C) RBS2-SpyTag/RBS2-SpyCat. (D) Size of aggregates at short times are 

correlated with the expression levels of the adhesive proteins. Adhesive “Energy” is calculated as the 

product of the expression levels of each expression assuming a mass-action like expression for bridge 

formation. Note that the absolute values of the sizes are overestimates because fluorescence used for 

thresholding will often bleed into adjacent voxels, but the relative values are conserved. (E) Aggregates 

grow at different rates depending on their expression levels, but at long times, approach approximately 

the same aggregate size.  

 

Physical Bridges Between Cells Enable Thermodynamic, Long-Time Control 

Over Aggregate Size 

If the convergence to large aggregate sizes at long times is due to irreversible covalent 

bonds between cells decorated by SpyCatcher-SpyTag, we hypothesized that cell-

cell aggregates formed through reversible, physical protein-protein interactions could 
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enable longer-time control of aggregate size. To test this hypothesis, we chose to 

replace the SpyCatcher-SpyTag proteins with A coiled-coil domains, which form 

predictable and programmable non-covalent bonds. Ideally, by titrating the 

expression level, we could directly tune the intercellular potential, and for a 

sufficiently reversible system, obtain a dynamic equilibrium size distribution. 

 

Similar to above, we generated an RBS library upstream of the A-autotransporter 

fusion protein, and observed expression levels spanning a large range of levels 

(Table S4.2). These constructs were transformed into fluorescent DH10b E. coli, 

grown to mid-log phase, and aggregation was induced. Here, aggregation of the 

noncovalently bound cells was slower, and in most cases was not macroscopically 

observable. 

 

We observed that corresponding to expectations, the size of the resulting aggregates 

is a strong function of the expression level (Figure 4.3A-D). In addition, we observe 

that in general the aggregates formed as a result of these reversible, physical 

interactions are substantially smaller than those formed by the irreversible, covalent 

bonds formed above (at full expression, aggregates are approximately 3*103 µm3 

compared to 105 µm3 in SpyTag/SpyCatcher). We speculate that this results from 

weaker inter-aggregate forces, which causes the shear stresses present in the culture 

to be sufficient to break apart aggregates larger than a critical size dependent on the 

expression level (and thus on the intercellular potential). Similar, or perhaps, even 

more so than SpyTag/SpyCatcher, A-aggregates exhibit regular shapes, further 

supporting the hypothesis that these aggregates are dynamic and may reorganize for 

hydrodynamic stability. 

 

Additionally, if we increase the agitation speed to 350RPM, we observe that as 

expected, at high expression levels, the size of the aggregates is smaller at the higher 

agitation level (at full expression from 3*103 µm3 to 1*103 µm3) due to stronger shear 
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stresses between aggregates and the surrounding fluid. This trend reverses as the 

expression level is decreased. We hypothesize that at these low expression levels, the 

dynamic equilibrium is between the rate of collisions and individual cell dissociation 

(instead of turbulent stresses being responsible for dissociation), and thus the higher 

agitation rate leads to more cell collisions. We note here that though that the E. coli 

used in this report are motile, the primary mechanism of collisions is convective due 

to vigorous mixing (corresponding to Pem>>1). 

 

In line with our hypothesis, the aggregates formed using dynamic protein-protein 

interactions reach distinct long-time equilibria depending on their expression levels 

(Figure 4.3E). The aggregates generally reach their equilibrium distributions at 

approximately 90 minutes post-induction and maintain equilibrium size distributions 

for extended periods of time (at least until 22 hours post-induction). Since the bacteria 

continue to divide during this time (Figure S4.1), it appears that the equilibrium size 

distribution is a result of equilibrium between associative cell-cell forces and 

dispersive shear stresses, and not between collisions and sticking and dispersive 

forces. If instead the equilibrium was between the rate of collisions and dissociation, 

the equilibrium size would increase with particle number. Both of these potential 

equilibrium mechanisms have been observed in colloidal systems.17 
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Figure 4.3: Aggregation triggered by A-coil expression. Surface expression of A triggers aggregation. 

(A-C) Titration of expression levels enables control of aggregate size. Micrographs are from samples 

taken 2 hours post-induction. (A) WT-A, (B) RBS7-A, (C) RBS8-A.  (D) Aggregate size is well-

correlated with expression levels (measured via flow cytometry). (E) By contrast with 

SpyTag/SpyCatcher aggregates, differences in aggregate sizes are maintained even at long times.  

Association/Disassociation Dynamics may be Examined by Mixing 

Experiments 

Above, we observed what appeared to be distinct dynamic properties of 

SpyTag/SpyCatcher and A-mediated aggregation processes. In order to distinguish 

these dynamics further, we carried out cross-color mixing experiments with the two 

different types of aggregates. To do this, we first separately aggregated bacteria 

expressing different fluorescent proteins, but the same associative proteins, such that 

we had single-color mWasabi- and mCherry-expressing SpyTag/SpyCatcher 

aggregates. After two hours (after the cells were expected to be fully aggregated), 

these single-color aggregates were mixed, and samples were then taken at defined 

intervals. The same experiment was also performed with A-expressing aggregates. 

We expect that if aggregates are dynamic, there will be significant reorganization of 
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aggregates over the experimental time-scale of our experiment, and so we will 

observe mixing between the two colors, while if aggregates are more stable, we will 

continue to observe fully color-segregated aggregates. 

 

As expected, the aggregates mediated by surface expression of A are much more 

dynamic than those mediated by SpyTag and SpyCatcher. We find that even after 9 

hours post-mixing, the SpyTag and SpyCatcher aggregates are still very well-

segregated (Figure 4.4A-C,G). By contrast, aggregates formed by bacteria 

expressing A are much more intermixed at moderate times (Figure 4.4D-G). We 

quantified this degree of mixing via a mixing coefficient that represents the fraction 

of adjacent voxels that are of different colors. This analysis confirms that the A 

aggregates become much better mixed with time than the SpyTag/SpyCatcher 

aggregates. In particular, the A aggregate mixing coefficient approaches our estimate 

of full mixing, 0.2 (See Materials and Methods). 

 

The images from these experiments hint at the major mechanism for the 

disassociation dynamics in this system. Color mixing in both the SpyTag/SpyCatcher 

and A system appears to occur at large length scales at early time points, but 

decreases to smaller scales as time passes. This suggests that the major disruptive 

force on aggregates is shear stress from the turbulent flow field. If the disassociation 

was instead due to Brownian-type motion, we would expect to see single cells 

sticking onto aggregates of a different color. Instead we observe what appears to be 

fracture of large aggregates into smaller aggregates, which subsequently reattach to 

other aggregates. As time passes, this random mixing process continues, and the 

segregated domains decrease in size. This is especially clear for dynamic A-

aggregates over the time-scale of this experiment, but also occurs in the 

SpyTag/SpyCatcher system.  
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Figure 4.4. Dynamics of Aggregate Exchange. Mixing aggregates of different colors enables 

examination of aggregate dynamics. Aggregates appear to mix primarily by fracturing into smaller 

clusters followed by agglomeration of clusters. Mixing of colors is more pronounced in aggregates 

mediated by A coils (A-D) than in aggregates mediated by SpyTag/SpyCatcher (E-H). As time passes, 

more mixing takes place: (A and E) 0 hours post mixing (B and F), 2 hours post-mixing, (C and G), 4 

hours post-mixing, (D and H), 7 hours post-mixing. (I) Mixing coefficient represents fraction of 

adjacent (6-valent) voxels that are of different colors. Leucine zipper coils have significantly better 

mixing, and appear to be fully mixed by the end of the experiment. 
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Destabilizing Mutants Exhibit Dynamic Dissociation 

Having shown that we can control the equilibrium distribution of aggregate sizes 

driven by physical interactions by titrating the expression levels of the associating 

proteins, we wondered whether we could likewise change the aggregate distributions 

by modulating the strength of the pairing interaction, for example by modulating the 

effective affinity between coils. Towards this end, we made alanine mutations in the 

A coil at the L18 and L25 positions.  These mutations are at the critical d-position of 

the canonical leucine zipper heptad,33 and are thus expected to significantly change 

the properties of the coiled coil. Although no mutational scanning has previously 

been done with the A-coil, previous work by our group and others has found that 

these types of mutations in other coiled coils are generally destabilizing.28,34  

 

When these mutant coils were surface displayed, we unexpectedly observed that the 

aggregates formed were noticeably larger at the two-hour time point (Figure 4.5A-

D). Expression levels between the different coils did not appear to be significantly 

different (Figure S4.2). In order to determine whether these mutations were 

stabilizing the coiled-coil interactions, we expressed and purified the coils in soluble 

form, and used circular dichroism spectroscopy to determine the melt curves and 

secondary structure of the coils in vitro (Figures S4.3 and S4.4). These experiments 

confirmed that the mutant coils were not thermodynamically stabilized in comparison 

to wild-type. To confirm the specificity of the protein-protein interactions driving 

aggregate assembly, we added soluble wild-type coil to previously formed 

aggregates, which disrupted both wild-type and mutant aggregates (Figure S4.5).  



 

 

111 

 

Figure 4.5. Aggregation of mutant A-coils. Mutation of L18 and L25 to alanine triggers the formation 

of larger aggregates, despite ostensibly being destabilizing mutations. (A-C) Micrographs of aggregates 

mediated by A-coils at 2 hours post-induction:  (A) A-WT, (B) A-L18A, (C) A-L25A. (D) Quantification 

of aggregate sizes shows that mutant aggregates are significantly larger (p<0.01 from t-test) than the 

wild-type aggregates. 

 

One possible hypothesis for the formation of larger aggregates is that the mutant coils 

are less rigid, and therefore could form more, albeit weaker bridges between cells. 

To probe this effect, we added a 150-residue elastin-like-polypeptide (ELP) linker 

between the coil and the autotransporter domain. These did not abolish the change in 

aggregate size; however, we noticed that in contrast to the wild-type coils or 

SpyTag/SpyCatcher, the aggregates mediated by the mutant coils began to dissociate 

around 4-6 hours post-induction. (Figure 4.6). By contrast, both wild-type A (even 

with the long linker) and SpyTag/SpyCatcher aggregates are stable and do not 

substantially dissociate even after 20 hours post-induction (see above). Indeed, upon 

further investigation, we noticed that even in the absence of the linker, the mutant 

coils will disaggregate. 
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Figure 4.6 Mutant coil disassociation. Though mutant coils are initially more stable (larger), at longer 

time points they dissociate unlike the wild-type coils, which are stable at very long time points (See 

Figure 3E).  (A-D) Aggregation time-course of A-L25A, (A) 2 hours post-induction, (B) 4 hours post-

induction, (C) 6 hours post-induction, (D) 8 hours post-induction. When an extended linker is added 

to the mutant A-coil, dissociation still occurs, perhaps somewhat more quickly. (E-H) Aggregation time-

course of A-L25A-ELP, (A) 2 hours post-induction, (B) 4 hours post-induction, (C) 6 hours post-

induction, (D) 8 hours post-induction. 

One possible explanation for the transient dissociation could be exogenous change in 

the properties of the media. LB media is known to become alkaline during bacterial 

growth,35 and we have previously found that  the A-coil is pH sensitive.27 Our 

hypothesis for the onset of dissociation was then that the mutations made in the coil 

cause the coils to be more sensitive to high pH, triggering dissociation as the media 

becomes alkaline. To test this hypothesis, we found that adding base to adjust the pH 

of bacterial aggregates to ~8.5 causes rapid dissociation of mutant-coil aggregates, 

but not that of the wild-type (Figure 4.7 A-C). In long-time experiments of 

aggregation, dissociation was strongly linked to an increase in pH over 7.5 (Figure 

4.7D). Finally, we found that using media buffered to maintain near-constant pH 

showed a sharp decrease in aggregate size as pH increases, but no significant changes 

with time (Figure 4.7E and S4.6). Though the dissociation pH in the two experiments 
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is different (likely due to increased ionic/osmotic strength of the buffered media), 

both show essentially quantitative dissociation of aggregates over less than 0.5 pH 

units. These data demonstrate that the mutant coils act as an ultra-sensitive sensor; at 

neutral or somewhat acidic pH, mutant coils are able to (more) effectively form 

intercellular bridges, whereas as the media becomes even weakly alkaline, these 

bridges weaken and break. These experiments demonstrate that even simple 

molecular-level changes in the programmable elements may have large and complex 

results 

 

Figure 4.7. Mutant coil dissociation is a function of pH. Mutant coils dissociate when the media of the 

pH becomes alkaline (as happens during normal growth). A-C) When the pH of LB media is adjusted 

to ~8.5 by addition of base, aggregates mediated by mutant coils (B-C, A-L18A/A-L25A respectively), 

but not wild-type A-coil (A), dissociate. (D) During long growth, the dissociation of mutant aggregates 

occurs concurrently with the increase of pH above around 7.  Although media containing wild-type 

aggregates also becomes alkaline (dotted lines represent pH), these aggregates do not dissociate (and 

maintain their equilibrium size). A single replicate is plotted due to inconsistency in the time course of 

pH changes, but replicates show similar qualitative results. (E) When the LB media is buffered by the 

addition of 100mM phosphate to different pH’s, the sizes of the mutant aggregates but not the wild-

type are strongly decreased by increases in pH. Sizes shown are after 4 hours aggregation, but trends 

hold over a broad range of times (see S4.6).   
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Conclusion 

We have demonstrated our ability to control the properties of engineered microbial 

flocs using standard techniques in synthetic biology and protein engineering. We find 

that the properties of these flocs are related directly to the underlying intercellular 

interactions moderated by the engineered proteins that program the intercellular 

potentials. By changing the expression levels or identity of the proteins programming 

these interactions, we can generate a large range of floc behaviors including 

aggregation kinetics and equilibrium aggregate sizes. Even single amino acid 

changes may have outsized (and non-obvious) effects, where both aggregate sizes 

and dynamics may be affected. The results are likely fairly general, and may be 

adapted to other microbial systems with the sole requirement being the ability for cell 

surface display, allowing multi-species consortia to be created using this method. The 

work above also serves as a case study on the effects of inter-particle forces on the 

properties of strong colloidal flocs in a shear field which has previously been difficult 

to examine.  

 

The ability to understand biological and abiotic flocs is important in a variety of 

contexts, including water treatment, environmental remediation, and metabolic 

engineering. In particular, in the latter example, the ability to create and control 

engineered microbial flocs may allow the creation of structured whole cell catalysts 

for use in biosynthetic transformations. In this case, precise control over aggregate 

properties (particularly size) is likely to be critical. 
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Materials and Methods 

General 

Restriction enzymes, Q5 DNA polymerase, and Gibson assembly master mix were 

purchased from New England Biolabs (Beverly NJ). Nickel NTA was purchased 

from Qiagen (Hilden, Germany). A Zeiss LSM 800 confocal microscope was used 

for all imaging. 

Bacterial Strains 

SpyTag and SpyCatcher autotransporter fusions with the wild-type and Mut2 RBS 

sequences were reported previously (pBAD-ST, pBAD-SC, low-ST, and low-SC in 

Chapter 3).   

 

pBAD-A was cloned as follows. The gene encoding the A-coil was ordered as a G-

block (IDT, Coralville, IA), and cloned between BamHI and XhoI restriction sites in 

pQE-80-SpyTag-Autotransporter (removing the SpyTag, and replacing it with A). 

The full autotransporter gene was then cloned into an empty pBAD-33 vector using 

Gibson isothermal assembly and transformed into DH10b E. coli. 

 

RBS libraries were made via Gibson assembly. Briefly, the autotransporter fusion 

was PCR amplified while also randomizing the wild-type Shine-Dalgarno sequence. 

These fragments were cloned back into pBAD-33 using Gibson assembly, and 

transformed via electroporation into DH10b E. coli. Generally, >20,000 clones were 

obtained (for a nominal library size of 16384). Different spacings (+/- 2bp) between 

the start codon and randomized sequence were attempted, but libraries exhibited 

similar activities, so only single libraries were sorted. These libraries were stored as 

glycerol stocks until sorting was performed. 
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SpyTag mutant RBS’s were cloned via Gibson assembly using an identical procedure 

as above for the libraries, except that rather than degenerate oligonucleotides, defined 

oligos were used for PCR instead.  

 

Mutant A-coils were cloned via a modified Gibson assembly-based method. The 

entire pBAD-A plasmid was amplified and linearized via PCR, except that the 

nucleotides encoding the base pairs for the mutated residues were changed in the 

PCR overhang, and 25 bp overlaps were included in the overhangs on each end of 

the linearized plasmid. Gibson assembly was then used to re-circularize the plasmid. 

 

Soluble A-coils were cloned by standard restriction enzyme cloning. The coils were 

PCR-amplified from the pBAD33-based plasmids, adding BamHI and HindIII 

restriction sites. The amplified genes were then digested with BamHI and HindIII 

and ligated into a similarly digested pQE-80L vector.  

 

Aggregation experiments used DH10b E. coli constitutively expressing mWasabi or 

mCherry under the control of a leaky T5/Lac promoter as described previously 

(Chapter 3 of this thesis). Flow cytometry experiments used DH10b E. coli without 

the fluorescent cassette.  

Fluorescence Activated Cell Sorting 

For all flow cytometry experiments, DH10b E. coli containing the target plasmid 

were grown overnight in LB media to saturation, diluted 1:100 into fresh LB media, 

and incubated at 37°C with shaking. In mid-log phase (OD600≈0.5), expression was 

induced with 0.1% (wt/vol) L-arabinose, and cells were allowed to express the 

proteins for 90 minutes (this is sufficient for the population to reach steady state in 

terms of expression levels, data not shown). Cells were then harvested by 

centrifugation and blocked with 3% bovine serum albumin (BSA) in phosphate-

buffered saline (PBS) for 30 minutes under agitation. Cells were then again 
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harvested, and resuspended in staining solution (0.5% (v/v) fluorescently labeled 

Anti-His Antibody HIS.H8, 1% BSA in PBS) for 60 minutes. Cells were harvested, 

and then washed three times in PBS. After the last wash, cells were resuspended in 

PBS and strained through a 20 µm strainer to remove aggregates prior to flow 

cytometry.  

 

Flow cytometry and sorting were performed with a Beckman Coulter MoFlo XDP 

instrument equipped with a blue laser (488 nm). Instrument alignment and calibration 

was performed according to manufacturer’s directions. Gates for sorting and data 

analysis were manually set using control samples. If sorting was performed, cells 

were sorted into LB media without antibiotics, and allowed to grow for 1 hour, after 

which they were diluted into LB media with chloramphenicol (25 µg/mL) overnight, 

and/or plated onto LB-Cam plates. Analysis was performed with EasyFlow, a Matlab 

script for flow cytometry analysis written by Dr. Yaron Antebi.36 

Soluble Protein Expression and Circular Dichroism 

For soluble protein expression, BL21 E. coli with the desired plasmid were grown 

overnight to saturation, and then diluted 1:100 into 1L of Terrific Broth Media. Cells 

were grown to mid-log phase (OD=0.6), and induced with 1mM Isopropyl β-D-1-

thiogalactopyranoside (IPTG). After 4 hours, cells were harvested by centrifugation, 

and re-suspended in denaturing lysis buffer (8M Urea, 100 mM NaH2PO4, 10mM 

Tris-Cl, pH 8). Cells were then sonicated to complete lysis, and centrifuged to remove 

insoluble cellular debris. Proteins were then purified using NiNTA affinity 

chromatography according to manufacturer’s directions. Protein purity was 

confirmed by SDS-PAGE, and purified proteins were dialyzed extensively against 

water and lyophilized for storage. 

 

For Circular Dichroism spectroscopy (CD), samples were prepared at 1mg/mL in 

PBS, and then filtered to remove aggregates. Samples were pipetted into 1 mm width 
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cuvettes, and CD was performed on a Model 410 Aviv Circular Dichroism 

Spectrophotometer. Thermal melt curves were performed at 1°C bandwidth and 1 

minute equilibration times. 
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Supplemental Figures and Tables 

Table S4.1. Amino Acid Sequences of all proteins used in this work 

Protein Name Sequence 

SpyTag-Autotransporter  MKYLLPTAAAGLLLLAAQPAMAMRGSHHHHHHGSVD

AHIVMVDAYKPTKLDVPGAGVPGAGVPGEGVPGAGV

PGAGVPGAGVPGAGVPGEGVPGAGVPGAGVPGAGVP

GAGVPGEGVPGAGVPGAGLDVPGAGVPGAGVPGEGV

PGAGVPGAGVPGAGVPGAGVPGEGVPGAGVPGAGVP

GAGVPGAGVPGEGVPGAGVPGAGLETPTPGPDLNVDN

DLRPEAGSYIANLAAANTMFTTRLHERLGNTYYTDMV

TGEQKQTTMWMRHEGGHNKWRDGSGQLKTQSNRYV

LQLGGDVAQWSQNGSDRWHVGVMAGYGNSDSKTISS

RTGYRAKASVNGYSTGLYATWYADDESRNGAYLDSW

AQYSWFDNTVKGDDLQSESYKSKGFTASLEAGYKHKL

AEFNGSQGTRNEWYVQPQAQVTWMGVKADKHRESN

GTLVHSNGDGNVQTRLGVKTWLKSHHKMDDGKSREF

QPFVEVNWLHNSKDFSTSMDGVSVTQDGARNIAEIKT

GVEGQLNANLNVWGNVGVQVADRGYNDTSAMVGIK

WQF 

SpyCatcher-Autotransporter MKYLLPTAAAGLLLLAAQPAMAMRGSHHHHHHGSVD

GAMVDTLSGLSSEQGQSGDMTIEEDSATHIKFSKRDED

GKELAGATMELRDSSGKTISTWISDGQVKDFYLYPGKY

TFVETAAPDGYEVATAITFTVNEQGQVTVNGKATKGDA

HIDLETPTPGPDLNVDNDLRPEAGSYIANLAAANTMFT

TRLHERLGNTYYTDMVTGEQKQTTMWMRHEGGHNK

WRDGSGQLKTQSNRYVLQLGGDVAQWSQNGSDRWH

VGVMAGYGNSDSKTISSRTGYRAKASVNGYSTGLYAT

WYADDESRNGAYLDSWAQYSWFDNTVKGDDLQSESY

KSKGFTASLEAGYKHKLAEFNGSQGTRNEWYVQPQA

QVTWMGVKADKHRESNGTLVHSNGDGNVQTRLGVK

TWLKSHHKMDDGKSREFQPFVEVNWLHNSKDFSTSM

DGVSVTQDGARNIAEIKTGVEGQLNANLNVWGNVGV

QVADRGYNDTSAMVGIKWQF 

A-Autotransporter MKYLLPTAAAGLLLLAAQPAMAMRGSHHHHHHGSVD

GSGSGSGSGSGASGDLENEVAQLEREVRSLEDEAAELE

QKVSRLKNEIEDLKAEGSGSGSGSGSGALETPTPGPDLN

VDNDLRPEAGSYIANLAAANTMFTTRLHERLGNTYYT

DMVTGEQKQTTMWMRHEGGHNKWRDGSGQLKTQSN

RYVLQLGGDVAQWSQNGSDRWHVGVMAGYGNSDSK

TISSRTGYRAKASVNGYSTGLYATWYADDESRNGAYLD

SWAQYSWFDNTVKGDDLQSESYKSKGFTASLEAGYKH

KLAEFNGSQGTRNEWYVQPQAQVTWMGVKADKHRES
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NGTLVHSNGDGNVQTRLGVKTWLKSHHKMDDGKSRE

FQPFVEVNWLHNSKDFSTSMDGVSVTQDGARNIAEIKT

GVEGQLNANLNVWGNVGVQVADRGYNDTSAMVGIK

WQF 

A-L18A-Autotransporter MKYLLPTAAAGLLLLAAQPAMAMRGSHHHHHHGSVD

GSGSGSGSGSGASGDLENEVAQLEREVRSAEDEAAELE

QKVSRLKNEIEDLKAEGSGSGSGSGSGALETPTPGPDLN

VDNDLRPEAGSYIANLAAANTMFTTRLHERLGNTYYT

DMVTGEQKQTTMWMRHEGGHNKWRDGSGQLKTQSN

RYVLQLGGDVAQWSQNGSDRWHVGVMAGYGNSDSK

TISSRTGYRAKASVNGYSTGLYATWYADDESRNGAYLD

SWAQYSWFDNTVKGDDLQSESYKSKGFTASLEAGYKH

KLAEFNGSQGTRNEWYVQPQAQVTWMGVKADKHRES

NGTLVHSNGDGNVQTRLGVKTWLKSHHKMDDGKSRE

FQPFVEVNWLHNSKDFSTSMDGVSVTQDGARNIAEIKT

GVEGQLNANLNVWGNVGVQVADRGYNDTSAMVGIK

WQF 

A-L25A-Autotransporter MKYLLPTAAAGLLLLAAQPAMAMRGSHHHHHHGSVD

GSGSGSGSGSGASGDLENEVAQLEREVRSLEDEAAEAE

QKVSRLKNEIEDLKAEGSGSGSGSGSGALETPTPGPDLN

VDNDLRPEAGSYIANLAAANTMFTTRLHERLGNTYYT

DMVTGEQKQTTMWMRHEGGHNKWRDGSGQLKTQSN

RYVLQLGGDVAQWSQNGSDRWHVGVMAGYGNSDSK

TISSRTGYRAKASVNGYSTGLYATWYADDESRNGAYLD

SWAQYSWFDNTVKGDDLQSESYKSKGFTASLEAGYKH

KLAEFNGSQGTRNEWYVQPQAQVTWMGVKADKHRES

NGTLVHSNGDGNVQTRLGVKTWLKSHHKMDDGKSRE

FQPFVEVNWLHNSKDFSTSMDGVSVTQDGARNIAEIKT

GVEGQLNANLNVWGNVGVQVADRGYNDTSAMVGIK

WQF 

A-ELP-Autotransporter MKYLLPTAAAGLLLLAAQPAMAMRGSHHHHHHGSVD

GSGSGSGSGSGASGDLENEVAQLEREVRSLEDEAAELE

QKVSRLKNEIEDLKAEGSGSGSGSGSGALDVPGAGVPG

AGVPGEGVPGAGVPGAGVPGAGVPGAGVPGEGVPGA

GVPGAGVPGAGVPGAGVPGEGVPGAGVPGAGLETPTP

GPDLNVDNDLRPEAGSYIANLAAANTMFTTRLHERLG

NTYYTDMVTGEQKQTTMWMRHEGGHNKWRDGSGQL

KTQSNRYVLQLGGDVAQWSQNGSDRWHVGVMAGYG

NSDSKTISSRTGYRAKASVNGYSTGLYATWYADDESRN

GAYLDSWAQYSWFDNTVKGDDLQSESYKSKGFTASLE

AGYKHKLAEFNGSQGTRNEWYVQPQAQVTWMGVKA

DKHRESNGTLVHSNGDGNVQTRLGVKTWLKSHHKMD

DGKSREFQPFVEVNWLHNSKDFSTSMDGVSVTQDGAR
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NIAEIKTGVEGQLNANLNVWGNVGVQVADRGYNDTSA

MVGIKWQF 

A-L18A-ELP-Autotransporter MKYLLPTAAAGLLLLAAQPAMAMRGSHHHHHHGSVD

GSGSGSGSGSGASGDLENEVAQLEREVRSAEDEAAELE

QKVSRLKNEIEDLKAEGSGSGSGSGSGALDVPGAGVPG

AGVPGEGVPGAGVPGAGVPGAGVPGAGVPGEGVPGA

GVPGAGVPGAGVPGAGVPGEGVPGAGVPGAGLETPTP

GPDLNVDNDLRPEAGSYIANLAAANTMFTTRLHERLG

NTYYTDMVTGEQKQTTMWMRHEGGHNKWRDGSGQL

KTQSNRYVLQLGGDVAQWSQNGSDRWHVGVMAGYG

NSDSKTISSRTGYRAKASVNGYSTGLYATWYADDESRN

GAYLDSWAQYSWFDNTVKGDDLQSESYKSKGFTASLE

AGYKHKLAEFNGSQGTRNEWYVQPQAQVTWMGVKA

DKHRESNGTLVHSNGDGNVQTRLGVKTWLKSHHKMD

DGKSREFQPFVEVNWLHNSKDFSTSMDGVSVTQDGAR

NIAEIKTGVEGQLNANLNVWGNVGVQVADRGYNDTSA

MVGIKWQF 

A-L25A-ELP-Autotransporter MKYLLPTAAAGLLLLAAQPAMAMRGSHHHHHHGSVD

GSGSGSGSGSGASGDLENEVAQLEREVRSLEDEAAEAE

QKVSRLKNEIEDLKAEGSGSGSGSGSGALDVPGAGVPG

AGVPGEGVPGAGVPGAGVPGAGVPGAGVPGEGVPGA

GVPGAGVPGAGVPGAGVPGEGVPGAGVPGAGLETPTP

GPDLNVDNDLRPEAGSYIANLAAANTMFTTRLHERLG

NTYYTDMVTGEQKQTTMWMRHEGGHNKWRDGSGQL

KTQSNRYVLQLGGDVAQWSQNGSDRWHVGVMAGYG

NSDSKTISSRTGYRAKASVNGYSTGLYATWYADDESRN

GAYLDSWAQYSWFDNTVKGDDLQSESYKSKGFTASLE

AGYKHKLAEFNGSQGTRNEWYVQPQAQVTWMGVKA

DKHRESNGTLVHSNGDGNVQTRLGVKTWLKSHHKMD

DGKSREFQPFVEVNWLHNSKDFSTSMDGVSVTQDGAR

NIAEIKTGVEGQLNANLNVWGNVGVQVADRGYNDTSA

MVGIKWQF 

A (Soluble) MRGSHHHHHHGSVDGSGSGSGSGSGASGDLENEVAQL

EREVRSLEDEAAELEQKVSRLKNEIEDLKAEGSGSGSGS

GSGAKLN 

 

A-L18A (Soluble) MRGSHHHHHHGSVDGSGSGSGSGSGASGDLENEVAQL

EREVRSAEDEAAELEQKVSRLKNEIEDLKAEGSGSGSGS

GSGAKLN 

 

A-L25A (Soluble) MRGSHHHHHHGSVDGSGSGSGSGSGASGDLENEVAQL

EREVRSLEDEAAEAEQKVSRLKNEIEDLKAEGSGSGSGS

GSGAKLN 
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Table S4.2: Sequences and Strengths of all RBS’s used in this work 

RBS-Name RBS Sequence (Putative Shine-Dalgarno 

sequence in red) 

Observed Strength (% of WT) 

WT-SpyTag GAGGAGAAATTAACTATG 100 

Mut2-SpyTag GAGCGAGAAATTAACTATG 25 

RBS2-SpyTag CCACTGCTTAACTATG 6 

RBS3-SpyTag TAATCAGTTAACTATG 13 

RBS4-SpyTag TGCCTTGTTAACTATG 8 

RBS5-SpyTag ACGTGGTAATTAACTATG  75 

WT-SpyCat GAGGAGAAATTAACTATG 100 

Mut2-SpyCat GAGCGAGAAATTAACTATG 28 

RBS2-SpyCat CCACTGCTTAACTATG 8 

RBS3-SpyCat TAATCAGTTAACTATG 13 

RBS4-SpyCat TGCCTTGTTAACTATG 18 

RBS5-SpyCat ACGTGGTAATTAACTATG  75 

WT-A GAGGAGAAATTAACTATG 100 

Mut2-A GAGCGAGAAATTAACTATG    25 

RBS6-A GAGCGAGAAATTAACTATG    9 

RBS7-A GGGAAGCAATTAACTATG 25 

RBS8-A GTTTTAGAATTAACTATG 2 
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Figure S4.1: Growth during aggregation. Even after aggregation, bacterial growth may still occur. The 

average equilibrium size does not change (Figure 3E in main text), but the number of aggregates (and 

thus the total aggregate volume in the sample) increases. (A) 2 hours post-induction, (B)  4 hours post-

induction, (C) 6 hours-post induction. D) Total aggregate volume across a 1.5 µL sample 
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Figure S4.2: Flow cytometry of A coil mutants. Flow cytometry demonstrates that coil mutants do not 

express substantially differently than the wild-type coil. 
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Figure S4.3: Circular dichromism spectroscopy wavelength sweep. Pronounced double peak at 222nm and 

208 nm is characteristic of alpha helical structure. Wild-type exhibits substantially more helical character 

than either L18A or L25A mutants.  
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Figure S4.4: Circular dichromism temperature sweep at 222 nm. Wild-type A coil exhibits more alpha helical 

character at all temperatures under these conditions. 
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Figure S4.5: Soluble A-coil Protein triggers dissociation of Leucine Zipper Aggregates. After aggregation, 

soluble A protein and bovine serum albumin (BSA) were added to A-wt, A-L18A, and A-L25A 

aggregates. In all cases, soluble A protein, but not BSA caused aggregates to dissociate, demonstrating 

that aggregates are held together by specific biomolecular interactions. (A-C) Aggregates without soluble 

A-coil. (A) A-wt, (B) A-L18A, (C) A-L25A. (D-F) Aggregates disrupted by 1mg/mL soluble A coil. (D) 

A-wt, (E) A-L18A, (F) A-L25A. (G) Sizes of aggregates with added soluble A-coil or BSA. 
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Figure S4.6: Buffered LB maintains pH values and aggregate sizes over time. LB that is buffered to different 

pH values maintains its pH over greater than 8 hours of bacterial culture. Aggregate sizes are broadly 

similar at 2 hours (A), 6 hours (B), and 8 hours (C) post-induction. In all cases, wild-type aggregates are 

essentially constant in size regardless of pH, while mutant aggregates rapidly decrease in size at even 

slightly alkaline pH’s. 
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C h a p t e r  5  

GENETICALLY PROGRAMMABLE MICROBIAL ASSEMBLY 

ENHANCES MICROBIAL PRODUCTION OF SPECIALTY 

CHEMICALS 

Abstract 

Genetic engineering of microbes has become a commonly used platform technology 

for the green production of fine and specialty chemicals.  In particular, the over-

expression of heterologous enzymes from other species enables the implementation 

of functional heterologous biochemical pathways for the production of desired 

chemicals. However, in microbes, the expression of many heterologous enzymes in 

a single strain may have significant genetic load on the organism, or different steps 

of the biochemical pathway may be incompatible and require substantial re-

engineering. Many groups have instead opted to use co-culture systems, where steps 

of the biochemical pathway are separated into different strains of microorganisms in 

a division of labor; however, this requires the intermediate species to diffuse into the 

(dilute) bulk culture, decreasing flux through the pathway. In this work, we 

demonstrate that by aggregating several strains of bacteria into closely packed flocs, 

we can enhance fluxes through a model biosynthetic pathway by increasing the local 

concentration of intermediate species inside the aggregates. Further, we demonstrate 

that the size of aggregates is an important factor in the effectiveness of these 

aggregates and demonstrate that our ability to control the size of the resulting 

aggregates enables optimization of pathway yields. We believe that this approach is 

broadly generalizable to many classes of biosynthetic pathways and will enable a 

new tool for metabolic engineering to make specialty chemicals.    
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Introduction 

Metabolic engineering is increasingly used to implement longer and more complex 

biochemical pathways into microorganisms for the production of valuable fine and 

specialty chemicals. Advancements in understanding of the metabolism of these 

organisms,1,2 as well as significant innovations in protein engineering,3 genome 

engineering,4 and synthetic biology,5 have led to a growing capacity for the rational 

engineering of microorganisms to make a broad variety of economically important 

compounds. However, as biochemical pathways become longer, the efficiency of 

these pathways may decrease for several reasons. First, as more heterologous genes 

are added to an organism, metabolic load on the organism’s growth will also increase, 

due to exertion of energy in DNA replication, protein expression, and product 

synthesis.6 In addition to the difficulty of simply expressing many heterologous 

enzymes (especially in bacteria), in some cases enzymes may require different 

intracellular environments7 or compete for similar metabolites.8 Some groups have 

attempted to ameliorate these problems by separating enzymes into different 

intracellular compartments,7 or  by carefully balancing enzyme levels with metabolite 

concentrations through computational modeling or combinatorial 

experimentation.9,10 

 

Other groups have attempted to solve this problem utilizing a division of labor 

approach in which the enzymes are split into multiple strains of engineered 

microorganisms, each of which performs only a part of the entire pathway. Co-

culture of these different strains then enables the reconstitution of the entire pathway 

in the bioreactor.8,11This strategy helps limit the metabolic burden on each strain, as 

they are now responsible for only a part of the final pathway. In addition, this strategy 

enables the independent engineering of each strain to optimize for its function, 

allowing much more flexibility in strain engineering. However, a major disadvantage 

in splitting enzymes between different microbial strains is the requirement for mass 

transfer of pathway intermediates between cells. Because a single cell is no longer 
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able to perform the entire transformation, intermediates must be transported from the 

upstream strain into the bulk media, and then into the downstream strain. Many 

pathway intermediates, particularly CoA-conjugated and phosphorylated species are 

not readily membrane permeant, and are thus not suitable for this kind of 

engineering.11 Suitable choice of the separation of enzymes into the different strains 

helps obviate this problem. However, even if intermediates are cell-permeant, 

pathway intermediates are still heavily diluted by secretion into the bulk media, 

which decreases overall flux through the biosynthetic pathway. 

 

In nature, many microbes are found in highly spatially-organized multi-species 

communities of biofilms or aggregates.12,13 Living in biofilms enables bacteria to 

resist environmental insults,14 sense their environments,15,16 and most importantly for 

our purposes, share metabolites through a process called metabolic cross-feeding.12,17 

In this process, one bacterial strain will synthesize and secrete a metabolite necessary 

for another microbe’s growth. This enables a division of labor, where microbes are 

no longer required to contain all of the biosynthetic enzymes required for their 

growth, and significantly enhances the versatility of bacterial biofilms. Importantly, 

because biofilms are highly spatially packed with bacteria and extracellular matrix, 

the diffusion of metabolites is restricted, so secreted metabolites are not strongly 

diluted by bulk diffusion, and they can accumulate in the biofilms.18  

 

Taking this as our inspiration, we hypothesized that by genetically engineering 

bacteria to form aggregates, we could enable them to shuttle pathway intermediates 

between themselves without diffusion into the bulk solution, enabling higher 

concentrations of intermediates, and correspondingly higher flux through the 

pathway. This strategy enables the advantages of modularity and limited metabolic 

load of co-culture systems, while restricting the slow rate of mass transfer into the 

bulk solution. 
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Our group has previously developed methods to genetically engineer Escherichia 

coli to inducibly aggregate into clusters ranging from ~5µm-100µm in diameter by 

the surface display of associative proteins on their surfaces (described in Chapters 3 

and 4 of this thesis). By the choice of associative protein and its expression level, we 

may modulate the equilibrium size, aggregation kinetics, and dissociation properties 

of the underlying aggregate. Further, we have demonstrated that the aggregation of 

bacteria into aggregates may have physiological implications on the cells making up 

the aggregate, for example the activation of a quorum sensing circuit (Chapter 3). In 

this work, we demonstrate that the aggregates formed by these mechanisms may be 

used to enhance the yield of multi-step biosynthetic transformations compared to 

standard co-culture. Further, we show that the yield of these biosynthetic 

transformations is a function of the aggregate size, and present a mathematical model 

which identifies the relevant parameters for the control and optimization of these 

biocatalysts. 

 

Results and Discussion 

Mathematical Modeling of Biosynthetic Pathways 

In order to understand the key parameters for the optimization of biosynthetic 

pathways in bacterial aggregates, we formulated a simple mathematical model of the 

process. In the model, we consider reactions to take place within aggregates and 

diffuse through aggregates with a characteristic diffusion coefficient (which may be 

distinct from the Brownian molecular diffusion coefficient). We assume that mass 

transport to the surface of the aggregate is not limiting, such that concentrations at 

the surface are equal to bulk concentrations (reasonable for closely packed aggregates 

and vigorous mixing). For a simple pathway where a substrate A is added to the 

culture and is transformed in two (first-order) steps to C, we derive the following 

equations (full derivation in Supplemental Discussion, Figure 5.1A) 

1

𝜙2
∇2𝐶𝐴 − 𝐶𝐴 = 0 (5.1) 
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1

𝜙2
∇2𝐶𝐵 + 𝐶𝐴 − 𝛾𝐵𝐶𝐵 = 0 (5.2) 

1

𝜙2
∇2𝐶𝐶 + 𝛾𝐵𝐶𝐵 = 0 (5.3) 

𝑑𝐶𝐴
𝐵

𝑑𝑡
=  −

∫ 𝐶𝐴𝑑𝑉

∫ 𝑑𝑉
 (5.4) 

𝑑𝐶𝐵
𝐵

𝑑𝑡
=  −

∫ 𝛾𝐵𝐶𝐵 − 𝐶𝐴𝑑𝑉

∫ 𝑑𝑉
 (5.5) 

𝑑𝐶𝐶
𝐵

𝑑𝑡
=  

∫ 𝛾𝐵𝐶𝐵𝑑𝑉

∫ 𝑑𝑉
 (5.6) 

All variables in equations 5.1-6 are dimensionless (transformations shown in 

Supplemental Discussion). CA,CB, and CC represent the concentrations of molecules 

A, B, and C, respectively, φ is the Thiele modulus (which represents the ratio of 

reaction rate to diffusion rate in a catalyst particle, and can be seen as a measure of 

the size of the aggregates),19 γB represents the ratio of the rate constants for the B→C 

transformation, compared to the A→B transformation, ∇2 is the Laplacian operator, 

and 𝐶𝐴
𝐵, 𝐶𝐵

𝐵, and 𝐶𝐶
𝐵are the bulk concentrations of the respective species. Integrals 

are taken over the entire volume of an aggregate. Equations 5.1-3 represent the 

internal reaction-dynamics of the aggregates, while Equations 5.4-6 represent the 

concentration changes in the bulk fluid due to reaction in the aggregates. With 

suitable boundary conditions (shown in Supplemental Discussion), these equations 

may be numerically integrated with different parameter values for the Thiele modulus 

and relative reaction rate γB (Figure 5.1B-D). In this model, we do not consider 

increased metabolic burden or nutrient limitations due to the aggregation process, 

which may be important in many systems.  
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Figure 5.1: Reaction diffusion model for aggregates. A) Aggregates composed of two (or more) strains 

of bacteria are together able to carry out multiple biosynthetic steps, converting substrate A to product 

C with intermediate compound B. B) Reaction diffusion modeling demonstrates that there is an 

optimum Thiele modulus φ (a dimensionless size) near unity where the rates of diffusion and reaction 

are approximately balanced (other parameters γB = 1, t = 0.5). C) Initial A concentration profiles.  When 

aggregates are too small (φ<<1), there is no consumption of A/accumulation of B in aggregates, while 

when aggregates are too large (φ>>1), much of the aggregate volume is inactive. D) Accumulation of 

intermediate B in aggregates is significantly diminished due to superior channeling in aggregates 

compared to in the bulk (other parameters γB = 1, t = 0.5). 

 

We note that the yield of C is a non-monotonic function of the Thiele modulus, 

implying that there is an optimum size for aggregates in this model (Figure 5.1B). 

This can be rationalized by noting the complex interplay between reaction and 

diffusion into aggregates. If an aggregate is too large, then a large portion of the 

interior of the aggregate will not see substrate, and thus will not participate in the 

reactions (this is called a dead-zone in heterogeneous catalysis). If the aggregate is 
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instead too small, the intermediate species B will diffuse quickly out of the interior 

of the aggregate, leading to diffusion into the bulk solution (Figure 5.1C-D). Thus, 

there is some optimum at some intermediate Thiele modulus (generally around unity, 

where the rates of diffusion and reaction are approximately balanced). As expected, 

small aggregates reduce to the planktonic, unstructured state, where intra-aggregate 

diffusion is not limited at all. 

Flavonoid Biosynthesis in Aggregates 

In order to demonstrate the use of aggregates in co-culture engineering, we require a 

pathway in which the intermediate is fully cell-permeant, and ideally where the 

strains must be optimized separately for optimum pathway yields. As an exemplar of 

the method, we chose to test the synthesis of flavonoids from phenylpropanoic acids. 

This pathway has previously been demonstrated and optimized in Escherichia coli 

co-culture by Jones and coworkers,8,20 and so serves as a good test case for our 

method. We obtained the optimized flavonoid biosynthesis plasmids pETM6-

At4CL-PhCHS-CmCHI (which we denote pET-Flav-US) and p168 (which we 

denote pET-Flav-DS). These plasmids encode the genes responsible for the upstream 

and downstream portions of the flavonoid biosynthesis pathway (Figure 5.2A). The 

Koffas group has previously found that the upstream strain is most effective when 

using the strain background BL21star™(DE3)ΔsucCΔfumC due to an increase in 

intracellular malonyl-CoA productivity, so we will likewise use pET-Flav-US in this 

background in the remainder of this manuscript.21 We use the standard BL21(DE3) 

strain with pET-Flav-DS. All strains and plasmids used in this work are described in 

Table S5.1.  

As we have described earlier (Chapters 3 and 4), we are able to drive aggregation of 

E. coli into aggregates by the surface display of associative proteins fused to 

autotransporter membrane proteins. Here, in order to maximize the aggregate sizes, 

we surface display SpyCatcher and SpyTag domains, which upon association form 

an isopeptide bond between a lysine residue in SpyCatcher and an aspartic acid 
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residue in SpyTag. Because these domains form an inter-cellular covalent bond, these 

cause the formation of very stable and relatively large aggregates (Chapter 4). In this 

work, we use SpyTag and SpyCatcher autotransporter fusions under the control of an 

arabinose-inducible PAraBAD promoter (pBAD-ST and pBAD-SC, respectively). 

Because the enzymes are IPTG-inducible, this enables independent temporal control 

of enzyme and surface display expression. Dual plasmid strains containing pET-Flav-

US and pBAD-ST/pBAD-SC are denoted sBRS1 and sBRS2, respectively, while 

strains containing pET-Flav-DS and pBAD-ST/pBAD-SC are denoted sBRS3 and 

sBRS4. 

 

Initially, in order to determine the effect of aggregation on titers of flavonoids, we 

attempted the biosynthesis of catechin from caffeic acid (See Figure 5.2A). Saturated 

cultures of sBRS1, sBRS2, sBRS3, and sBRS4 were grown overnight in LB media 

with antibiotics (100 µg/mL ampicillin, 35µg/mL chloramphenicol). Thirty milliliter 

cultures of Andrew’s Magic Medium22 were inoculated at 1% v/v at an 

Upstream:Downstream strain ratio of 20:1 and a SpyTag:SpyCatcher ratio of 1:1 

(Strain ratios were 20:20:1:1 of sBRS1:sBRS2:sBRS3:sBRS4). The 

Upstream:Downstream strain ratio was chosen based on preliminary experiments 

(Figure S5.1). Note that because the BL21star™(DE3)ΔsucCΔfumC strain grows 

significantly slower than BL21(DE3) (data not shown), the strain ratio in the culture 

changes during the course of the experiment. Cultures were grown in a shaking 

incubator at 37°C 250RPM for 4.5 hours (to OD600 ≈ 0.55), before aggregation was 

induced with 0.1% wt/vol L-arabinose. The temperature was then reduced to 30°C, 

and bacteria were allowed to aggregate for 2 hours prior to addition of 1mM IPTG to 

induce expression of the flavonoid synthesis modules. The enzymes were expressed 

for an additional hour, and then the caffeic acid substrate was added (100 µg/mL). 

Production of flavonoids took place over an additional 5 hours, and then cultures 

were harvested and supernatants were run in LC-MS to quantify titers (Figure 5.2B-

C). 
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Figure 5.2: Catechin production in aggregates. A) The flavonoid synthesis pathways reacts 

phenylpropanoic acids to flavonoids in two modules. In the first module, 3 MalCoA molecules are 

condensed onto the substrate to form Naringenin (from P-Coumaric Acid) or Eriodictyol (from Caffeic 

Acid). In the second, a series of oxidation-reduction reactions results in the rearrangement and net 

reduction of the intermediate to Afzelechin or Catechin. B) Co-aggregation of the bacteria expressing 

the upstream and downstream halves of the flavonoid pathway leads to an enhancement in titer of the 

final product. (N=6, p<0.001, Error bars represent SEM). C) The increase in titer of the final product 

corresponds strongly with a decrease in the titer of the intermediate (N=6, p<0.001) 

 

Upon quantification of catechin titers, we noted that cultures that had been assembled 

into aggregates exhibited substantially higher catechin titers (11.5 ± .5 µg/mL) than 

in planktonic (non-aggregated) cultures (6.2  ± 1.0 µg/mL). We note that these titers 

are lower than previously reported using similar strains,8 but they were performed on 

much shorter time scales (5 hours vs 48 hours), and exhibit similar or better 

volumetric productivities. In order to better investigate the higher yields of the 

aggregated samples, we also quantified the titers of the accumulated intermediate 

species eriodictyol (Figure 5.2C). As expected from the reaction diffusion model 

(Figure 5.1D), eriodictyol is significantly depleted in the aggregated samples due to 
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its enhanced channeling inside the aggregates. We also observe that the enhancement 

of titers due to aggregation is higher than that caused by the metabolic defect from 

over-expression of membrane proteins.  

Effect of Aggregate Size on Flavonoid Titers 

One prediction of the reaction diffusion model described above is that the size of the 

aggregates (through its effect on the Thiele modulus) is an important governing 

parameter on the performance of the biocatalyst. Thus, we resolved to perturb the 

size of the aggregates to analyze the impact on the effectiveness of the aggregates. 

We are not able to efficiently increase the size of the aggregates in this system 

because we are already using strong inter-cellular covalent bonds between cells and 

are expressing the surface proteins at very high levels. Thus, we instead decrease the 

size of the aggregates. We have  previously discussed methods to control the size of 

the aggregates including using different associative proteins and decreasing the 

expression levels of the surface proteins (Chapter 4); however, in preliminary 

experiments we found that weaker associating proteins and/or decreased expression 

levels did not lead to large-scale aggregation in this system. Instead, we hypothesized 

that we could decrease aggregate sizes using different numbers of SpyCatcher and 

SpyTag displaying-cells, in a method analogous to control of polymer molecular 

weights in condensation step growth polymerization.23  

 

First, in order to enable the measurement of the sizes of the aggregates by 

fluorescence confocal microscopy, fluorescent protein expression cassettes were 

added to pET-Flav-US and pET-Flav-DS using Gibson isothermal assembly to make 

plasmids pET-Flav-US-mW and pET-Flav-DS-mC (expressing mWasabi and 

mCherry, respectively under the constitutive J23100 Anderson promoter), which 

were co-transformed with pBAD-ST and pBAD-SC to form sBRS5, sBRS6, sBRS7, 

and sBRS8. Use of these plasmids in place of the pET-Flav-US and pET-Flav-DS 

plasmids may decrease titers somewhat (especially when cells are aggregated, see 
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Figure S5.2), but enables quantification of aggregate size. By titrating the ratio of 

SpyCatcher to SpyTag expressing cells, we are able to control the average (volume-

weighted) sizes of aggregates from 6.4*104 µm3 to 5*103 µm3, and then to 100 µm3 

in the planktonic case (Figure 5.3A-D). We note that the size of aggregates is 

positively correlated with the catechin titers, qualitatively corresponding to the results 

from our reaction-diffusion model (Figure 5.3E). 

 

Figure 5.3: Effect of aggregate size on catechin titers. A-C) Fluorescent micrographs of aggregates at 

A) 1:1 SC:ST ratio, B) 3:1 SC:ST ratio, or C) 5:1 SC:ST ratio. D) Fluorescent micrograph of planktonic 

(unaggregated) cells. Upstream cells are shown in green, and downstream cells are shown in magenta. 

E) There is a positive correlation between catechin yields and the size of the aggregates (N=4, error 

bars represent SEM).  

 

Three-part Synthesis of Afzlechin in Aggregates 

In order to demonstrate the versatility of this method, we next chose to implement a 

longer pathway in which we combine the flavonoid synthesis pathway with an 

upstream p-coumaric acid synthesis module, enabling the synthesis of afzelechin 
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from tyrosine (Figure 5.4A). A plasmid containing a tyrosine ammonia lyase (TAL) 

under the control of the PTrc promoter was a generous gift of Prof. Guillermo 

Gosset.24 pTrc-TAL was co-transformed with pBAD-ST and pBAD-SC in a BL21 

background to form sBRS9 and sBRS10 strains.  

 

We co-cultured strains containing the p-coumaric acid synthesis module, and the two 

halves of the flavonoid synthesis pathway along with the aggregation constructs at a 

strain ratio of 6:12:2 p-coumaric acid synthesis module:upstream flavonoid module: 

downstream flavonoid module (optimum strain ratios obtained by prior optimization, 

Figure S5.3). As before, we induced aggregation, followed by the enzymes, and then 

addition of substrate (here tyrosine). After a five-hour fermentation, we harvested 

samples and ran LC-MS. Upon quantification, we discovered that corresponding to 

our expectations, aggregation enhances yield of afzelechin by a factor of 

approximately 2 compared to planktonic cells (Figure 5.4B).  

 

Figure 5.4: Three-part synthesis of afzelechin from tyrosine. A) Afzelechin is made biosynthetically 

from tyrosine in three parts. First tyrosine is transformed to p-coumaric acid by tyrosine ammonia lyase 

in one module, followed by condensation with 3 MalCoA to narenginin, and finally reorganization and 

reduction to afzelechin in the final module. B) Aggregation significantly enhances the titer of afzelechin 

by approximately 70% in this system (N=3, p<.001).  
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Conclusion 

As metabolic engineers continue to increase the length and complexity of 

biosynthetic pathways, the ability to split these metabolic pathways between multiple 

bacterial strains becomes more important. We have demonstrated that by 

programming bacteria expressing parts of a longer pathway to associate into 

mesoscopic, closely packed, bacterial aggregates, we can enhance titers of the desired 

chemical. The primary mechanism for this increase in yields is due to the 

enhancement in the rate of diffusion of the product of one bacterial strain to the next 

due to accumulation of the intermediate in the aggregate, rather than being diluted 

into the bulk media. In our experience, the ability of aggregation to enhance yields 

takes place in situations where the accumulation of the intermediate in the bulk 

culture is considerable (and where it is decreased by aggregation). 

 

We believe that the strategy that we have developed in this work is fairly general and 

may be applied to a variety of biosynthetic pathways and bacterial strains. The ability 

of this technique to enhance yields depends on several factors. First, the bacterial 

strain(s) of interest must be genetically tractable with the ability to surface-display 

target proteins. The pathway must be capable of being separated into several distinct 

modules, where the intermediate chemical species is cell-permeant and where its 

diffusion must be meaningfully decreased by encapsulation in a bacterial aggregate 

(i.e. φ>1). This rate of diffusion may be meaningfully affected by the properties of 

the bacterial aggregate and the compound of interest; species that appreciably bind 

to cell membranes may be especially effective here.  

 

The techniques developed in this work are likely broadly scalable to larger culture 

volumes, albeit with care to control high shear stresses (bacterial aggregates are much 

more sensitive to high shear stresses than planktonic cultures). The use of these 
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aggregates also allows the facile recovery of whole cell catalysts due to their rapid 

settling in stagnant culture (settling velocity>2mm/s). Further investigation of the 

physiological state of cells in these biological aggregates and the biophysical 

microenvironments inside the aggregates will enable the further modeling and more 

precise engineering of these novel biocatalysts.    
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Materials and Methods 

General 

Restriction enzymes, ligase, and Q5 DNA polymerase were purchased from New 

England Biolabs (Beverly, NJ). DNA oligos were purchased from Integrated DNA 

Technologies (Coralville, IA). Caffeic acid, p-coumaric acid, and naringenin were 

purchased from Indofine Chemical Co (Hillsborough, NJ). Catechin and eriodictyol 

were purchased from Sigma Aldrich (St. Louis, MO) 

Bacterial Strains 

As described in the main text, BL21star™(DE3)ΔsucCΔfumC Escherchia coli was a 

generous gift from Mattheos Koffas and was used for the upstream flavonoid reaction 

steps. BL21(DE3) was used for the downstream flavonoid pathway steps, while 

BL21 was used for p-coumaric acid production. 

 

pET-Flav-US was a gift from Mattheos Koffas (pETM6-At4CL-PhCHS-CmCHI 

(C5 mutant, pFlavo-opt)  Addgene plasmid # 73404 ; http://n2t.net/addgene:73404 ; 

RRID:Addgene_73404). 

 

pET-Flav-DS was a gift from Mattheos Koffas (p168, Addgene plasmid # 62618 ; 

http://n2t.net/addgene:62618 ; RRID:Addgene_62618) 

 

pBAD-ST and pBAD-SC have been previously reported by our group (Chapter 3 of 

this thesis). 

 

pTrc-TAL was a gift from Guillermo Gossett. 

 

pET-Flav-US-mW and pET-Flav-DS-mC were made by Gibson isothermal 

assembly. pET-Flav-US and pET-Flav-DS were linearized via divergent PCR  at the 
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region between the rop and lacI loci. mWasabi and mCherry expression cassettes 

under the control of the constitutive J23100 Anderson promoter were obtained via 

PCR, while also appending overlapping overhangs with the linearized vector. Gibson 

assembly was then performed to re-circularize the pET vectors with the fluorescent 

cassettes. Construct identity was confirmed by Sanger sequencing. 

Fermentation Reactions 

Saturated overnight cultures of bacteria were grown in LB with ampicillin (100 

µg/mL) and chloramphenicol (25 µg/mL) as appropriate. These cultures were mixed 

at the appropriate volume ratios (described in main text), and inoculated at a total 

dilution of 1:100 in 30mL Andrew’s Magic Medium (AMM) with antibiotics in an 

unbaffled 125 mL Erlenmeyer flask.25 These cultures were grown for 4.5 hours at 

37°C with shaking, and then induced with 0.1% (v/v) L-Arabinose. The bacteria were 

allowed to aggregate for 2 hours at 30°C before enzymes were induced with 1mM 

IPTG for 1 hour. Substrate was then added (10 µg/mL caffeic acid or p-coumaric 

acid, 54 µg/mL tyrosine), and incubated for an additional 5 hours with shaking. 

Samples were then taken for LC-MS and microscopy analysis. 

Liquid Chromatography Mass Spectrometry 

Samples from LC-MS were immediately centrifuged and filtered to remove biomass. 

Supernatants were directly injected (10 µL) for LC-MS Analysis. A Waters Acquity 

SDS UPLC equipped with a CORTECS-C18 UPLC column maintained at 30°C was 

used for separation, and a LCT Premier TOF was used for detection in negative 

mode. The mobile phases were water (A) and acetonitrile (B). The following gradient 

was used at a flow rate of 0.4 mL/min: 0 min, 95% A; 0.2 min, 95% A; 7.5 min, 40% 

A; 8 min, 95% A; 10 min, 95% A. Extracted ion chromatograms were extracted from 

LC-MS traces and integrated using a custom Python script. A standard curve of 

catechin dissolved in a “blank” spent fermentation broth was used for absolute 

quantification of catechin titers. 
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Image Acquisition and Analysis 

Microscopy images were taken on a Zeiss 800 LSM inverted confocal microscope 

(Carl Zeiss AG, Oberkochen, Germany). All image analysis was performed using 

custom Matlab scripts. Aggregate size analysis was performed similarly to what we 

described previously.26 Briefly, confocal z-stacks were manually thresholded based 

on the intensity in each fluorescent channel. Pixels above the threshold were 

described as “bright.” Contiguous “bright” pixels (in 3D) were identified, and the 

observed volume of each aggregate was determined. The volume-weighted average 

volume of each aggregate was determined using the following equation: 

�̅� =
∑ 𝑉𝑖

2

∑ 𝑉𝑖
 

where sums are taken over all of the aggregate volumes. This average represents the 

volume of the aggregate that the average bacterium would be found in, and is more 

appropriate than the number-weighted average, which is dominated by disassociated 

bacteria. The volumes determined by this method are over-estimates of the true 

volume due to fluorescence spilling into adjacent voxels. 
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Supplemental Discussion 

Derivation of Reaction-Diffusion Models 

Here, we provide a full derivation of Equations 1-6 in the main text. We have an 

aggregate of radius R, made up of bacteria that can carry out the first-order reactions 

A->B and B->C. Though in experimental conditions, different bacteria will carry out 

these steps, here we assume that the aggregates are sufficiently large that we can 

consider the aggregates to be a continuum of both strains of bacteria. These 

aggregates are found at a cell-volume fraction εc in a culture medium. First, we 

consider the interior of the aggregates by writing mass-conservation equations for 

each of the species. 

𝜕𝐶𝐴

𝜕𝑡
= 𝐷𝐴∇2𝐶𝐴 − 𝑘𝐴𝐶𝐴 (𝑆5.1) 

  (S5.1) 

𝜕𝐶𝐵

𝜕𝑡
= 𝐷𝐵∇2𝐶𝐵 − 𝑘𝐵𝐶𝐵 + 𝑘𝐴𝐶𝐴 (𝑆5.2) 

  (S5.2) 

𝜕𝐶𝐶

𝜕𝑡
= 𝐷𝐶∇2𝐶𝐶 + 𝑘𝐵𝐶𝐵 (𝑆5.3) 

  (S5.3) 

where Ci is the concentrations of species i, Di is the diffusion coefficient of species i 

in the aggregate, ki is the first order reaction rate of species i, and ∇2 is the Laplacian 

operator.  

 

Now, we consider the boundary/initial conditions for these equations. Because the 

PDE’s are 2nd order in space and 1st order in time, we require two spatial boundary 

conditions and an initial condition for each species. Here, we choose to use a no-flux 

(Neuman) boundary condition at the center in order to maintain finite species 

concentrations. At the surface, we have a boundary condition where the flux out of 
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the aggregate is equal to the flux into the aggregate from the bulk. We write these 

boundary conditions below: 

∇𝐶𝐴(𝑡, 𝑟 = 0) = 0 (𝑆5.4) 

∇𝐶𝐵(𝑡, 𝑟 = 0) = 0 (𝑆5.5) 

∇𝐶𝐶(𝑡, 𝑟 = 0) = 0 (𝑆5.6) 

𝐷𝐴∇CA(𝑡, 𝑟 = 𝑅) = 𝑘𝑐(𝐶𝐴
𝐵(𝑡) − 𝐶𝐴(𝑡, 𝑟 = 𝑅)) (𝑆5.7) 

𝐷𝐴∇CA(𝑡, 𝑟 = 𝑅) = 𝑘𝑐(𝐶𝐵
𝐵(𝑡) − 𝐶𝐵(𝑡, 𝑟 = 𝑅) ) (𝑆5.8) 

𝐷𝐴∇CA(𝑡, 𝑟 = 𝑅) = 𝑘𝑐(𝐶𝐶
𝐵(𝑡) − 𝐶𝐶(𝑡, 𝑟 = 𝑅)) (𝑆5.9) 

 

Although, we could use this set of boundary conditions, because we are vigorously 

mixing the aggregates, we expect that most resistance to mass transport takes place 

in the aggregates (formally, that the Biot number kcR/D >> 1), we will instead assume 

that there is no interfacial resistance to mass transfer, and that the concentration at 

the surface of the aggregate is equal to the bulk concentration. Equations S5.7-9 then 

become: 

𝐶𝐴(𝑡, 𝑟 = 𝑅) = 𝐶𝐴
𝐵(𝑡) (𝑆5.10) 

𝐶𝐵(𝑡, 𝑟 = 𝑅) = 𝐶𝐵
𝐵(𝑡) (𝑆5.11) 

𝐶𝐶(𝑡, 𝑟 = 𝑅) = 𝐶𝐶
𝐵(𝑡) (𝑆5.12) 

Now, we consider the bulk concentration. The bulk concentration will be changed 

only by reaction in the aggregates, as shown in the equations below: 

𝑑𝐶𝐴
𝐵

𝑑𝑡
=  −

𝜖𝑐𝑘𝐴 ∫ 𝐶𝐴𝑑𝑉

∫ 𝑑𝑉
 (𝑆5.13) 

𝑑𝐶𝐵
𝐵

𝑑𝑡
=  

𝜖𝑐 ∫ 𝑘𝐴𝐶𝐴 − 𝑘𝐵𝐶𝐵𝑑𝑉

∫ 𝑑𝑉
 (𝑆5.14) 

𝑑𝐶𝐶
𝐵

𝑑𝑡
=  +

𝜖𝑐𝑘𝐵 ∫ 𝐶𝐵𝑑𝑉

∫ 𝑑𝑉
 (𝑆5.15) 

The initial conditions for the PDEs S5.1-S3 and ODEs S5.13-15 are as follows, 

assuming an initial bolus of A: 

𝐶𝐴(𝑡 = 0, 𝑟) = 𝐶𝐴
𝐵(𝑡 = 0) =  𝐶𝐴

0 (𝑆5.16) 
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𝐶𝐵(𝑡 = 0, 𝑟) = 𝐶𝐵
𝐵(𝑡 = 0) =  0 (𝑆5.17) 

𝐶𝐶(𝑡 = 0, 𝑟) = 𝐶𝐶
𝐵(𝑡 = 0) =  0 (𝑆5.18) 

Equations S5.1-6, S5.10-12, and S5.16-S18 represent a fully defined model of the 

system that given parameter values could be solved. However, in order to decrease 

the number of parameters and understand the system more fully, we will 

nondimensionalize the equations. 

 

It is straightforward to see that a natural concentration scale in this system is the initial 

concentration of A and that a natural length scale is the radius of the aggregate R. We 

nondimensionalize using these relations (leaving time for now), and rewrite the 

equations:  

𝐶�̂� =
𝐶𝐴

𝐶𝐴
0  (𝑆5.19) 

𝐶�̂� =
𝐶𝐵

𝐶𝐴
0  (𝑆5.20) 

𝐶�̂� =
𝐶𝐶

𝐶𝐴
0  (𝑆5.21) 

�̂� =
𝑟

𝑅
 (𝑆5.22) 

𝜕𝐶�̂�

𝜕𝑡
=

𝐷𝐴

𝑅2
∇2𝐶�̂� − 𝑘𝐴𝐶�̂� (𝑆5.23) 

𝜕𝐶�̂�

𝜕𝑡
=

𝐷𝐵

𝑅2
∇2𝐶�̂� + 𝑘𝐴𝐶�̂� − 𝑘𝐵𝐶�̂� (𝑆5.24) 

𝜕𝐶�̂�

𝜕𝑡
=

𝐷𝐶

𝑅2
∇2𝐶�̂� + 𝑘𝐵𝐶�̂� (𝑆5.25) 

𝑑𝐶𝐴
�̂�

𝑑𝑡
=  −

𝜖𝑐𝑘𝐴 ∫ 𝐶�̂�𝑑𝑉

∫ 𝑑𝑉
 (𝑆5.26) 

𝑑𝐶𝐵
�̂�

𝑑𝑡
=  

𝜖𝑐 ∫ 𝑘𝐴𝐶�̂� − 𝑘𝐵𝐶�̂�𝑑𝑉

∫ 𝑑𝑉
 (𝑆5.27) 

𝑑𝐶𝐶
�̂�

𝑑𝑡
=  +

𝜖𝑐𝑘𝐵 ∫ 𝐶�̂�𝑑𝑉

∫ 𝑑𝑉
 (𝑆5.28) 
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∇𝐶�̂�(𝑡, �̂� = 0) = 0 (𝑆5.29) 

∇𝐶�̂�(𝑡, �̂� = 0) = 0 (𝑆5.30) 

∇𝐶�̂�(𝑡, �̂� = 0) = 0 (𝑆5.31) 

𝐶�̂�(𝑡, �̂� = 1) = 𝐶𝐴
�̂�(𝑡) (𝑆5.32) 

𝐶�̂�(𝑡, �̂� = 1) = 𝐶𝐵
�̂�(𝑡) (𝑆5.33) 

𝐶�̂�(𝑡, �̂� = 1) = 𝐶𝐶
�̂�(𝑡) (𝑆5.34) 

Now, we consider the nondimensionalization of time. There are two time-scales in 

this problem: one is the time-scale of reaction inside aggregates (kA
-1), and one is the 

time-scale of bulk concentration changes ([εCkA]-1). Because we are interested in the 

accumulation of products in the bulk, the more natural time scale is the latter, so we 

nondimensionalize using that time scale. Doing this implies that the time scale of 

changes in the aggregate are much faster than those outside, so we assume that the 

aggregates are always at a pseudo-steady state, and thus the time derivative terms in 

the PDE’s are eliminated, and obtain the following ODE’s: 

�̂� = 𝜖𝐶𝑘𝐴𝑡 (𝑆5.35) 

0 =
𝐷𝐴

𝑘𝐴𝑅2
∇2𝐶�̂� − 𝐶�̂� (𝑆5.36) 

0 =
𝐷𝐵

𝑘𝐴𝑅2
∇2𝐶�̂� + 𝐶�̂� −

𝑘𝐵

𝑘𝐴
𝐶�̂� (𝑆5.37) 

0 =
𝐷𝐶

𝑘𝐴𝑅2
∇2𝐶�̂� +

𝑘𝐵

𝑘𝐴
𝐶�̂� (𝑆5.38) 

 

Defining dimensionless parameters gives: 

0 =
1

𝜙2
∇2𝐶�̂� − 𝐶�̂� (𝑆5.39) 

0 =
𝐷�̂�

𝜙2
∇2𝐶�̂� + 𝐶�̂� − 𝛾𝐵𝐶�̂� (𝑆5.40) 

0 =
𝐷𝑐

𝜙2

̂
∇2𝐶�̂� +

𝑘𝐵

𝑘𝐴
𝐶�̂� (𝑆5.41) 



 

 

155 

𝜙 = 𝑅√
𝑘𝐴

𝐷𝐴
 (𝑆5.42) 

𝐷�̂� =
𝐷𝐵

𝐷𝐴
 (𝑆5.43) 

𝐷�̂� =
𝐷𝐶

𝐷𝐴

(𝑆5.44) 

𝛾𝐵 =
𝑘𝐵

𝑘𝐴

(𝑆5.45) 

Here, 𝜙 is the Thiele modulus for a 1st order reaction in a sphere,2 𝐷�̂� is the ratio of 

the diffusion coefficient for species i to that of A, and 𝛾𝐵is the ratio of the reaction 

rates of the second reaction to that of the first. For many reaction pathways, diffusion 

coefficients will not differ very much, so 𝐷𝑖 ≈ 1, but we keep it for completeness 

here. The equations for the bulk concentrations become: 

𝑑𝐶𝐴
�̂�

𝑑�̂�
=  −

∫ 𝐶�̂�𝑑𝑉

∫ 𝑑𝑉
  (𝑆5.46) 

𝑑𝐶𝐵
�̂�

𝑑�̂�
=  

∫ 𝐶�̂� − 𝛾𝐵𝐶�̂�𝑑𝑉

∫ 𝑑𝑉
 (𝑆5.47) 

𝑑𝐶𝐶
�̂�

𝑑�̂�
=  

𝛾𝐵 ∫ 𝐶�̂�𝑑𝑉

∫ 𝑑𝑉
 (𝑆5.48) 

Now, finally the boundary/initial conditions for the dimensionless system are: 

𝐶𝐴
�̂�(�̂� = 0) = 1 (𝑆5.49) 

𝐶𝐵
�̂�(�̂� = 0) = 0 (𝑆5.50) 

𝐶𝐶
�̂�(�̂� = 0) = 0 (𝑆5.51) 

𝐶�̂�(�̂� = 1) = 𝐶𝐴
�̂� (𝑆5.52) 

𝐶�̂�(�̂� = 1) = 𝐶𝐵
�̂� (𝑆5.53) 

𝐶�̂�(�̂� = 1) = 𝐶𝐶
�̂� (𝑆5.54) 

∇𝐶�̂�(𝑡, �̂� = 0) = ∇𝐶�̂�(𝑡, �̂� = 0) =  ∇𝐶�̂�(𝑡, �̂� = 0) = 0 (𝑆5.55) 
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Equations S5.39-S55 are a full dimensionless description of the model, and are 

shown in the main text (with accents dropped for brevity). Matlab was used for 

numerical solution of the equations. At each time-point, the concentration profiles in 

the aggregates were solved using Matlab’s boundary value solver bvp4c. Euler’s 

method was used to integrate Equations S5.46-S48 subject to the concentration 

profiles at each time-point. The Matlab scripts used for this numerical solution is 

available at http://tirrell-lab.caltech.edu/code. 

 

In this framework, it is fairly simple to add additional species, different reaction 

kinetics, or terms related to nutrient limitation in the interior of the aggregate. 

However, we believe that this model does capture the essential tradeoffs between 

reaction and diffusion and the non-monotonicity of biosynthetic yield. 

  

http://tirrell-lab.caltech.edu/code
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Supplemental Figures and Table 

Table S5.1: Strains and Plasmids Used in this Work 

Strain/Plasmid Name Description Source 

pBAD-ST SpyTag-Autotransporter Fusion 

under PAraBAD 

Chapter 3 

pBAD-SC SpyCatcher-Autotransporter 

Fusion under PAraBAD 

Chapter 3 

pET-Flav-US Upstream Flavonoid pathway 

module 

(Addgene 

62168)3 

pET-Flav-DS Downstream Flavonoid 

pathway module 

(Addgene 

73404)4 

pET-Flav-US-mWasabi Upstream Flavonoid pathway 

and constitutive mWasabi 

expression 

This work 

pET-Flav-DS-mCherry Downstream Flavonoid 

pathway and constitutive 

mCherry expression 

This work 

BL21star™(DE3)ΔsucCΔfumC Upstream Flavonoid Expression 

Background 

5 

BL21(DE3) Downstream Flavonoid 

Expression Background 

3 

sBRS1 BL21star™(DE3)ΔsucCΔfumC 

with pBAD-ST and pET-Flav-

US plasmids 

This work 

sBRS2 BL21star™(DE3)ΔsucCΔfumC 

with pBAD-SC and pET-Flav-

US plasmids 

This work 
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sBRS3 BL21 (DE3) with pBAD-ST 

and pET-Flav-DS plasmids 

This work 

sBRS4 BL21 (DE3) with pBAD-SC 

and pET-Flav-DS plasmids 

This work 

sBRS5 BL21star™(DE3)ΔsucCΔfumC 

with pBAD-ST and pET-Flav-

US-mWasabi plasmids 

This work 

sBRS6 BL21star™(DE3)ΔsucCΔfumC 

with pBAD-SC and pET-Flav-

US-mWasabi plasmids 

This work 

sBRS7 BL21 (DE3) with pBAD-ST 

and pET-Flav-DS-mCherry 

plasmids 

This work 

sBRS8 BL21 (DE3) with pBAD-SC 

and pET-Flav-DS-mCherry 

plasmids 

This work 

sBRS9 BL21 with pBAD-ST and pTrc-

TAL 

This work 

sBRS10 BL21 with pBAD-SC and pTrc-

TAL 

This work 

  



 

 

159 

 

Figure S5.1: Catechin Synthesis Strain Ratio Scouting. Various ratios of Downstream:Upstream initial 

strain ratios were examined to find an optimum state for further experimentation. We observed that at 

a strain ratio of 1:20, after 16 hours fermentation, there is a strong accumulation of eriodictyol in the 

planktonic cells, but not in the aggregated cells. Thus, we chose this strain ratio for further investigation, 

while also decreasing the fermentation time to five hours.   
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Figure S5.2: Fluorescence Effect on Catechin Titers. Aggregates composed of sBRS1-4, were 

compared to those composed of sBRS5-8 in their ability to synthesize catechin. Due to some amount 

of additional metabolic stress on the cells from the synthesis of mWasabi/mCherry, the titers of 

“Bright” FP expressing cells (sBRS5-8) is somewhat lower than that of the “Dark” cells (sBRS1-4). 
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Figure S5.3: Afzelechin Synthesis Strain Ratio Scouting. Aggregates composed of sBRS1-4 and sBRS9-

10 were combined in co-culture at defined ratios, aggregated as usual, and allowed to transform tyrosine 

to afzelechin for five hours. The amount of the p-coumaric acid synthesis strain is negatively related to 

afzelechin synthesis (as it is fairly efficient). We chose the 6:12:2 strain ratio for further study.  
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