MODE SUPERPOSITION METHODS APPLIED TO LINEAR
MECHANICAL SYSTEMS UNDER EARTHQUAKE TYPE
EXCITATION

Thesis by

Howard Carl Merchant

In Partial Fulfillment of the Requirements
For the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California

1961



ACKNOWLEDGEMENT

The author wishes to express his appreciation to Dr. D. E.
Hudson, Dr. T. K. Caughey and Dr. G. W. Housner for their
many helpful suggestions during the course of this work and to the
National Science Foundation for granting fellowships under which

part of this work was completed,



ABSTRACT

The determination of the maximum dynamic responses of a
multidegree of freedom mechanical system under earthquake type
excitation using mode superposition methods is the general problem
considered. The experimental work was carried out using a special
purpose electronic differential analyzer involving a three degree of
freedom system, or a three mode approximation to a larger systems.

The results indicate that a suitably weighted average of the sum
of the absolute values and the square root of the sum of the squares of
the individual mode contributions gives a practical design criterion for
the base shear forces. For critical designs this weighted average
reduces to the absolute sum of the modes, which will be close to the
true value for a significantly high percentage of the cases. The base
moment may be more accurately approximated than the base shear by

use of the first mode alone.
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NOTATION

a, by a, b Constants

<, Viscous damping coefficients

E(g) Expected value of £

f Frequency {cycles/sec)

g; Generalized force

G, Generalized force coefficient QG& = g;)

Height of ith floor above base

i VL

ki szring constant {shear) of spring below ith mass
“i

Ki m

R Height in lines of a trace on oscilloscope

MB Base moment

m, Mass

n Constant, generally number of degrees of freedom

q Constant

r Height in g's of an accelerogram trace

R Response

t, t Time {true)

ta Time (analog)

T Natural period (sec)

VB Base shear

X s Oscilloscope reading of analog combination (lines)

X, Relative coordinate {real system)

x, Absolute coordinate



)

()
y
a, P

2L, 0 8

First derivative with respect to time
Second derivative with respect to time

Base motion {v {t) assumed equal to earthquake
accelerogram)

Constants

Oscilloscope reading of analog results {lines)
Normal coordinates

Mode response to ¥ {t) {(maximum is spectrum point)

Absolute gsi

Critical damping ratio ("c/cC =c/2VY km)
Variance

Summation on i

Circular frequency {true, radians/sec)

Circular frequency {analog)
Column matrix

Square matrix

Transpose of matrix[ ]
Identity matrix

Mode shape of ith mode
Mass matrix

Damping matrix

Spring matrix



I. INTRODUCTION

An important vibration problem that is frequently encountered
in many different engineering applications is the transient response of
multidegree of freedom systems. The excitation of buildings by earth-
quakes is an example of such a problem. The excitation of a structure
or machine by a bomb-shock, or of a submarine by explosive-generated
water pressures are other examples, The characteristic features of
all of these problems are that the vibrating system has a large number
of degrees of freedom and that the exciting force has no simple
description. In fact, in most cases it is not possible to predict the
exciting force that might act on the structure other than in a proba-
bilistic fashion,

In every actual vibration problem there are, of course, a great
number of degrees of freedom,but it is customary to rule out most of
these on the basis that they have no significant influence on the problem
to be investigated., For the type of problem described in the preceding
paragraph, the physical system and the exciting force are such that a
relatively large number of degrees of freedom cannot be eliminated on
the basis of inspection. The question then becomes one of determining
the degrees of freedom that must be retained in the analysis. The
answer to this question will, of course, be dependent upon the nature
of the physical system and the characteristics of the exciting force. The
essential problem is how to determine the maximum response in the
sense of maximum displacement, maximum strain, maximum strain

energy, etc., to a degree of precision satisfactory for engineering



purposes.

In principle, a theoretical analysis would answer all of these
questions. For example, in the case of a linear system acted upon by
a force that is a random function of the stationary Gaussian type, it is
possible, on the basis of a theoretical analysis, to make statements in
a probabilistic sense about certain average values of system response.
If such an analysis could be extended to transient, non-Gaussian ex-
citations to the extent that meaningful statements could be made about
maximum displacement, maximum stress, etc., the problem would be
solved. The difficulties of such an analysis preclude its use and experi-
mental or computational methods must be employed.

One approach to the problem would be to obtain a complete time
solution by a graphical or numerical method. This, of course, would
give the desired results for specific cases but because of the complicated
inputs and structural configurations, the time required for any general
studies would be prohibitive. Another approach would be to turn to
analog or digital computer methods.

Mechanical analogs in the form of models on shaking platforms
could be used, but this would be a laborious procedure since the
structural parameters could not be easily altered to handle different
problems. A mechanical analog in the form of a torsion pendulum has
been .used, particularly for single degree of freedom systems (1).

Direct electrical analog circuits are also a possibility. The
versatility and speed of the electric analog is far superior to a

mechanical analog (2, 3). Electric analog inputs are in the form of



electrical signals obtained from such devices as photoelectric readers,
magnetic tapes, etc. (4), With the same type of input there is also the
possibility of using a differential analyzer with active electrical elements,
to carry out the mathematical steps given by the equations of motion of
the mechanical systems.

Solution of the equations of motion by numerical integration has
become feasible with the advent of high speed digital computers {5, 6, 7, 8).
The inputs must be converted to a digital numerical form which may be
a major time consuming step in the calculation.

With any of the above computation methods the complete time
response of the system may be obtained by two different approaches.
With one approach the response may be determined by treating the
entire system as one complicated problem. The other method involves
using modal techniques by means of which the single large system may
be broken down into a number of smaller ones and each considered as a
separate relatively simple problem.

The solution of the single large problem has the defect of lack of
generality and does not directly indicate possible design procedure.

The modal approach offers hope of more general conclusions and a
simplified approximate design procedure.

For linear systems with small damping, or damping of a special
type, modal analysis is applicable. An n degree of freedom system may
be broken down into n single degree of freedom systems by this method.
The single degree of freedom time responses modified by the proper

mode participation factors are combined to give the time response of



the complete system. This can be accomplished in mechanical analog
computation using a torsion pendulum, the mode responses being com-
bined graphically (9). A set of torsion pendulums can also be used to
represent a multidegree of freedom system, the mode responses being
combined electrically {10). It is also possible to set up modes on either
the passive analog type computer or the electronic differential analyzer.
A differential analyzer analog type computer using the modal technique
was employed to collect the data for this thesis.

Even the modal approach may be rather complicéted for actual
structures and hence some further simplification would be desirable.
Since the maximum response only, rather than the complete time response,
is ordinarily needed to determine design requirements, the maximum
response becomes the quantity of interest in most cases. This reduces
the required data from a response versus time curve to a single
maximum point.

With a combination of modal methods and a maximum value
limitation, one is able to make a more general statement about the
solution. One way of doing this is by introducing the concept of the
response spectrum (l1). The response spectrum curve for a particular
input is defined as the maximum response occurring in a single degree of
freedom system, plotted versus the undamped natural period of the
system. A family of curves is obtained by varying the damping. The
usual spectrum is a relative velocity curve, but relative displacement
and absolute acceleration spectra are also used., Note that the response
spectrum aléne does not constitute a complete description of system

response since all phase information has been lost.



Spectra may be obtained using a torsion pendulum mechanical
analog (11,12). A special purpose passive electrical analog has been
developed which allows more rapid evaluation of earthquake spectra (4).
Spectra points may also be obtained directly from a reed gauge which is
essentially a group of single degree of freedom mechanical systems with
a provision for recording extreme values (13).

Attempts to define spectra for a system of more than one degree
of freedom have not met with success because of the large number of
parameters involved,.

The use of the single degree of freedom spectrum data when a
particular multidegree of freedom system is to be considered proceeds
through the following steps:

l Calculate or experimentally obtain the normal modes for the
system. The quantities needed are the frequencies, mode
shapes and damping for the n modes.

2, For each mode; obtain from the spectrum curve for the given
input, the maximum response for the appropriate damping and
period as calculated in step 1.

3. Alter each spectrum value by the appropriate participation
factor calculated from the data of step l to obtain the contri-
bution to the total response of the complete system from each
mode.

4, Combine the values of the individual mode contributions from

step 3 to find the total response.



Once the gpectra have been obtained and the first three steps
listed above have been carried out, the question becomes one of
determining the proper method of combination of modal responses.
For an n degree of freedom system there will be n values to combine
with no knowledge of the phase or time relationship. In certain
instances, however, multidegree of freedom systems behave essentially
as single degree of freedom systems and no combination problems
arise, For example, the base moment in a structure undergoing earth-
quakelike excitation may be obtained approximately by considering only
the first mode.

The sum of the absolute values of each modal contribution gives
an upper bound to the total system response (14). Since this would in
general be expected to be overly conservative, a closer approximation
to the actual response would be desirable for design considerations. One
approach which has been suggested is to add a fixed percentage of the
7 higher modes to the first mode or to increase the first mode by a fixed
percentage. This has been investigated by Clough {15) using digital
techniques and actual earthquake inputs. It has been shown that under
certain conditions for a single pulse type shock, the algebraic sum gives
a more accurate representation of the true maximum response (16).
Based on statistical considerations, the square root of the sum of squares
of the mode contributions has also been postulated (17,18,19). The
average of the responses obtained using the absolute values of the mode
contributions and the square root of the sum of the squares has also been

suggested as an empirical rule. This suggestion has been based on data



obtained by making calculations on a particular structure under a
specified earthquake excitation (7).

The above methods may give widely varying results. Part of
what follows is concerned with verifying the applicability, if at all, of

the different methods and the range where they may be used.



II. GENERAL EQUATIONS

The model used is based on the following assumptions:

1, Concentrated masses at the floor levels connected by a

system of weightless springs and damping elements.

2. Linear spring forces.

3, Classical normal modes exist unless otherwise specified.

4, No base compliance. |

5. Deformation in shear only, the floor structure assumed to

undergo no rotation and to be assumed infinitely rigid.
Refer to {fig. 1),

The general method of modal analysis for such a model is well
known (5,20). A brief outline of the method is presented here to
provide a basis for understanding the experimental approach of this
thesis and to indicate how the cases investigated were chosen in order
that they have meaning in an engineering situation.

The equations of motion for the undamped case take the form

b6 + [ 6] - [] 59 w

or for the homogeneous case
b £33+ [ - o 8
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The homogeneous solution for the above takes the form

gX%: q elwt{qbg
where ¢ is a scaler
gcb% a dimensionless vector

t is time

w a scaler
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Upon introducing equation 2, equation la becomes

oo f[x] £93-o% ) (83} o 2
M7 -2 ] 8- o

For equation 3a to possess a solution the following determinate

must vanish:

k -k
L2 .;n_l_ 0 — —— -0
my My |
k k. +k k |
1 1’72 _wz 2 |
AN | =0 (4)
‘,) -k, N Kool
I m3 AN N mn_1
| k k 4k
n-1 n-1 "n 2
0O — — — — — —~ -w
m nm
n n

This is the frequency equation. For each frequency (wi) there
corresponds a mode shape { g(j)lg ) defined to within a constant as
given by equation 3a.

The g(ﬁ ig may also be expressed as the cofactors of any row
of tkhe determinate 4. An example for a three degree of freedom

system using the cofactors of row two, would be:
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Using equation 3a the following conditions may be established,
ggbkz T I:M] %@Jg =0 itk

| (6)
g T[] =0 54k

repeated roots excluded, The superscript T indicates a transposed

[<P1 ¢$% - ¢n} (7)
o] §8 (8)

matrix. Let

g
&3

§

H

where
§,(t)
g ?g = ¢ €,(t)

galt)

Substituting equation 8 into la and noting conditions 6, the result

is a set of uncoupled equations in coordinates g {the normal coordinates).

SACRIE ° 3
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where

TRt A

8-———€

These are the equations for a set of n uncoupled single degree of
freedom undamped oscillators with natural periods (wn)o

The response in the real system coordinates is obtained from
responses of the single degree of freedom systems by a linear
combination given by equation 8.

3 = [o)fg)

For the nonhomogeneous case equation 9 becomes

0 (e [Q] N 0
S |

where

o] favy
BRTIE

For the base acceleration, ;(‘t) assumed in equation 1

b+ B 69

The response in the real system is again given by equation 8

{g = generalized force., (10a)

where the gg% are now obtained from equation 10.
Thus the method consists of breaking the n degree of freedom
system given by equation 1 into n single degree of freedom uncoupled

systems with natural frequencies given by 4 and forcing functions
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given by 10a. The desired answer in the real system is then obtained
by the relationship 8 where the elements of [Q] are obtained from 5.

Turning now to a three degree of freedom system and defining

klzk my; = m
k, = ak m, = am (11)
k3=bk mg = Bfm

the solution of equation 4 will be of the form

‘”iz - Ki?li?
where Ki is a number, the root of a cubic equation depending only on
E bk, a; and B.

Since the mode shape is only defined to within a constant it may

be written as

.
1
foie - 0K (12)
1-K,
al i
8 | ath
-+ &

N\ s
The generalized force equation 10a is of the form
g, = G, vit)
where
aK, -a -1 -b Qg

2 )
Yoy alQ,.)” + b {Q,))

Qij being the elements of the [Q] matrix. This again depends only on

the parameters a, b, a, and B,
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Given a building type, i.e., relationships between the masses
and between the spring constants, the mode shapes and generalized
force coefficients (Gi) are uniquely determined. Only the ratio of k/m
need be selected to calculate a response of the system to a given input.

If viscous damping is present then a third left hand element
appears in equation 1 of the form

)63

The general requirement on the damping and therefore on the [C:I
matrix for classical normal modes is that the same transformation of
coordinates that diagonalizes the [M] and [K} matrices must also diagonal-

ize the [C] matrix;

[Q]T [C] [Q} - [5] a diagonal (14)

matrix

It has been shown (21) that a linear combination of the damping and
mass matrices will produce such a diagonalization. Although this is not
the most general result that can be obtained from the statement 14 {22), it

is convenient for this discussion.

c] =3 [M] + 5 [g] (15)

Setting b = 0 {(damping relative to base)
— 1
C N e
w
Setting a = 0 {damping relative to adjacent mass)

C ~w
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Since neither of the above situations occur alone in practice, by using
both a and b unequal to zero, a more realistic damping arrangement
may be obtained,

Rayleigh (21) states that normal modes are a good approximation,
even if condition 14 is not satisfied, as long as the damping is small,
This is generally the case in structures; in fact, unless the damping is
small the responses would, in general, be reduced to such a point that
it would not be of interest to investigate them as far as failure is con-
cerned.,

The usual situation would generally be one in which the natural
frequency, percent of critical damping, and mode shape would be known
for each mode or at least the first few modes. Hence these values could
be used directly in the mode solution or mode approximation without
being concerned with the original structure. The [QJ matrix would be
obtained from the mode shape. This therefore enables one to find the

response in the real structure when only the mode properties are known.
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III. EFFECT OF DAMPING

In the model considered viscous damping is assumed; i.e., the
damping’ force is proportional to a constant times a velocity.,

The floor responses may be obtained considering only the damping
coefficients as defined above; the actual physical damping arrangement
need not be known. Other quantities of interest such as shear may then
be calculated from this data by making use of the building parameters;
for example, the spring constants for the case of shear. However,
quantities such as base shear and base moment may also be obtained by
considering the inertia forces. The mass distribution would presumably
be known and the absolute acceleration of each floor could be obtained
from a computer solution or approximately from the spectrum data
(discussed in the next section)., The base shear could then be obtained by
calculating the inertia forces (mass times absolute acceleration) at each
floor and summing them down the structure. The base moment would
similarly be obtained by multiplying each force by the appropriate moment
arm and summing. The way in which the damping forces would enter into
these shear moment determinations is not obvious, and will be considered
further below.

The inertia force addition method may be desirable if some
parameters of the structure are known more accurately than others. For
instance, it would be more accurate to calculate base shears Aby this
method if the masses of the building were known more accurately than

the interfloor shearing spring constants.



-17-

For the undamped case (fig. 1) the base shear is defined as

VB = Xnkn (16)

Summing inertia forces would give the same result.
In figure 2 relative interfloor damping is shown and in figure 3,

relative-to-base damping. Summing inertia forces for figure 2 gives

n
oMy “(Xnkn * chn) 1
i=1
and for figure 3
n n
Z x, m, = -(’xnkn +Z k Ci) (18)
i=1 i=1

If the base shear is defined as the sum of all of the lateral forces
on the foundation, then equations 17 and 18 correctly give the base shear
for the two cases., Note that the definitions of base shear in the damped
cases include the extra terms due to damping, given in the right hand
members of equations 17 and 18. The damping in reality does occur
within the walls and columns and therefore would be expected to con-
tribute to the shearing force on the foundation.,

Neglecting the moment caused by the gravity forces of the floors
due to the displacements X, the base moment in both cases is given

correctly by

%1

n
My = Z , mh, (19)
i=1

It may thus be concluded that for any structure of the type

assumed (fig. 1) with only damping internal to the structure, the base
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moment is given by equation 19 and the base shear by

n
Vg = Z x, m, (20)
i=1

Absolute damping is shown in figure 4, between each floor and a

reference point fixed in inertial space. The base shear for this type of

damping is the same as in the undamped case (equation 16), Summing
the inertia forces, one obtains:
n n
Z;i.m.:— x_k +Z§.c. (21)
i n n i1
C1=1 i=1
Therefore the inertia terms in this case will differ from the true shear
by
n n
inci'—'inciwLchi {22)
i=] i=1 i=1
The base moment for this case is
n n
MB = Z X, mihi + Z X, Cihi (23)
i=1 i=1

Therefore moment estimates based on the inertia terms would be in

error by
n n n
Z X, cihi = Z %, Cihi + ¥ Z c;h, (24)
i=1 i=1 i=1

Absolute damping for a building could occur only as air damping
and the error introduced by using inertia forces, to obtain base shear

or base moment, would become important only if air damping is an
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important effect.

The three effects that the air around a building has during
vibration are:

1. Increased effective mass

2, Energy radiation

3. Viscous effects

Only the last two cause dissipation of energy and therefore air
damping. The first causes only a change in the natural frequency of
the system. All the effects can generally be considered negligible for
structures and therefore equations 22 and 24 would not apply. To
demonstrate this a hypothetical one degree of freedom system was used

to compute some typical numerical values as shown in appendix I,
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Iv. METHODS OF MODE COMBINATION

When a modal analysis of a multidegree of freedom system is
used, the n responses of the single degree of freedom modes must be
combined using the appropriate participation factors to obtain the
desired response in the real system. In general these n functions of
time cannot be described by any simple mathematical expression and
hence an analytical combination cannot be made. By analog computer
methods, however, the correct combination of modes can be obtained.

The information on the individual modes most readily available is
generally in the form of response spectra (velocity spectra in most
cases)., Spectra have been prepared for most strong motion earth-
quakes (23).

The velocity spectrum of a forcing function {earthquake) is the
maximum relative velocity that occurs in a single degree of freedom
oscillator (fig. 5) as a function of the natural period of the system for a
given damping.,

The general response of such a system is

t
Z2TP gt
gs S y(7) e T

sin L,ITT \ 1—}32 ft-7)d7 (25)
2nV1- p°

0

where
T = natural period = 2w\/m/k

damping in system _ ¢

critical damping of = i
system 2y km

f = damping ratio =
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Assuming small damping ( 1~n2 7> 1) and earthquakelike

excitation, and differentiating, one obtains

. . - g—TEEf‘t—‘Z) 27
0
The velocity spectrum (SV(';T) ) is defined as [gsl maxe On this basis

the following approximate relationships may be derived (24):

i

T
85| max = 77 Sy

[%sl max SV (27)

{:és‘ max - —T— SV

X3

where gs is the absolute acceleration { ‘gs = ‘gs + y{t) ).
It is well to point out that [% I is the absolute acceleration
s | max
spectrum for a single degree of freedom system only. The problem of
the use of absolute acceleration spectra for multidegree of freedom
systems may be clarified by returning for a moment to the time

responses and applying equation 8 to accelerations using relative
t} = [o] €81
$5% = [o)f¥81+ (5w} (28)

The gi are the mode responses to the generalized force g;

coordinates:

but

{equation 10a), Therefore
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5= G 5 (29
and .
53 = [o] fo€)+ (5 50)
where
Gl gsl
{Gész = S GZ ?sz ’
L Gn: :g.sn J

Equation 30 indicates that in. multidegree of freedom systems the n
mode contributions obtained from the relative acceleration spectrum
must be combined with the maximum value of the input acceleration to
produce the absolufe acceleration at some point in the structure,

The absolute acceleration spectra for a single degree of freedom
system given by equation 27 may be used as an approximation for the
calculation of a multidegree of freedom system. Returning again to the

Rl 65 B o) o) e

and comparing equation 30 and 31 it will be seen that equation 31

involves the following error:
n
G-l (e
Z Q; Gy-1 |y ()
j=1

Thus one can say that ’é'{.—'i(’c)} can be obtained for the multidegree

max

of freedom system from the single degree of freedom absolute spectrum

n
of equation 27 provided that Z Qij Gj ~1or y(t)is small,
j=1
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Generally the velocity spectrum and hence the displacement and
absolute acceleration spectra would be the starting point for the
calculation. The n maximum values corresponding to the n modes would
thus be known, but all phase and time relationships would be unavailable.
The question of how these values should be combined to provide the best
estimate of the maximum response then becomes one of critical im-~
portance.,

The sum of the absolute values of the individual maximum mode

responses is the upper limit of the system response.

n
Response = R = Z Ai \gi(‘t)
i=1

n

n
[leax = Z Ay 5l = Z A {gi(t)l (32)
: ‘ : max
i i
The Ai's are coefficients depending on the parameters of the desired
structural response. gi(ﬁt) or E(t) may be substituted for E(t) giving
velocities, approximate accelerations, etc., throughout the structure.
The algebraic sum of the maximum values has also been shown
to give good results when the input function is a pulse with the
following relationship to structure parameters (16):
2t
m

——;‘f- >
T

1 (33)

where Tl is the fundamental period {sec) and tm ig the rise time of the

pulse (sec).
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For a typical building ’I‘1 would be one to two seconds, therefore,
for the algebraic sum to apply, tm > —;— second. By inspecting typical
earthquake accelerograms it is obvious that earthquakes do not satisfy
this condition and hence this method of combination would not be
applicable.

A so called 'statistical' combination of the spectrum values has
been suggested {17). It is obtained by taking the square root of the sum
of the squares of the quantities to be combined, If the complete time
responses of the modes couid be considered as independent functions
having Gaussian probability distributions, some conclusions based on a
statistical analysis could be made. The distributions of gi(t) would be

of the form:

: 2 2
sﬁig):____l___ e“(.X-‘a) /20 (34)

v\ 2w

. . . 2, .
where a is the mean (zero in this case) and O is the variance. The

expected value is

(o'e} —xZ/Z(Yz
E(g) = f T (35)
_ g Yaw
E{\g]:zEctg)z v \/z/w (36)

For independent Gaussian functions it is well known that {24)

I (37)

where U’Tz is the variance of the total response made up of the n mode
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. . 2
responses each with variance O’i .

Applying 37 to 36

E [X Itotal - Miil (E [81 l )2 (38)

Also
o2 = E(x)? -(Elx))? (39)

where Eﬁx)z is the mean square. Applying equation 37

11
: 2
RMS, . =" / i,; (RMS); {40)

The above applies only if the input functions are Gaussian since
the output of a linear system in this case is also Gaussian. The extent
to which typical earthquakes will satisfy these conditions is not as yet
completely known. On the basis of an investigation of a group of typical
earthquake accelerograms ({refer to appendix II) the assumption of a
Gaussian model would seem a reasonable one. In the earthquake
situation the responses gi(:t) are generated from the same input
function, which would indicate that the functions are not independent.
However, for systems with well spaced natural frequencies and an input
function with a peaked power spectrum, it can be shown under some
conditions that the mode responses may be considered independent (26).

The actual quantities occurring in practical structural calculations
are not the root mean square values (RMS) or the expected absolute
values, but the maxima of the functions fi(t)o However, equations 38
and 40 may be considered as indications that the application of the

relation
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1

n
A 2
R(maximum - igl (Ri {maximum ) (41)

structure) mode)

might provide a useful form for an ""empirical’ relationship and its
validity checked experimentally, This is the point of view adopted here.

It is of interest to consider the possible error involved in using
the above methods of combination. The absolute value of the true
response could conceivably lie anywhere from zero to the value obtained
by adding the absolute values of each mode. The sum of the absolute
values thus could never err on the nonconservative side but could
approach infinite percentage error on the conservative side.

The square root of the sum of the squares can also approach
infinite percenfage error on the conservative side but it may also err on
the nonconservative side, The maximum nonconservative error would
occur when the true value ié equal to the sum of the absolute values.

Rt=a+b+c (42)

where Rt is the true response and a, b, ¢ are the mode responses for a
three degree of freedom system. This may be seen by noting that for a
given set of values (a, b, c) the square root of the sum of the squares will
be the same regardless of the true value (Rt)n The true value, however,
may range from zero to the absolute sum and hence the largest non-
conservative error occurs when Rt is at the upper bound as given in
equation 42,

Let a be the largest value and

b=aa (43)
c=Pa
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therefore
a and B =1

and

Rt=(1+q.+f5)a

The square root of the sum of the squares (‘Rsrs) is

R = A\/g? + b2 + c2 = -\/az(‘l + CLZ + [ﬁz) (44)

8IS

The nonconservative error (En(‘%) ) is then given by:

‘ R, -R
t SIS
E o= | ——2"2
n Rt

100 {(45)

Substituting

2 2 [ 2 2 '
E = 1-—\/-1—*L9—i@—2— 100 = 1-\/ gl+a2+ﬁ ) 100
o (1+a+B) (1+a“+8") + (2a+2B+2aB)

Since a and B £1 the maximum nonconservative error occurs when all

modes have equal contributions (a=8=1):

1- -1 1100

En max .\/—3‘

Generalizing to n modes in combination:

1 -— 1100 {46)

An average or a weighted average (Ravg) of the sum of absolute

values and the square root of the sum of the squares might also be a

R - Va2+b2+c2 + m{a+b+c)

avg m-+]

useful form:

(47)

where m is a weighting factor.,
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Rt—Ravg 1 m
E_ = -—————-—Rt 100 =1 - m+l-\/r_1' +m+1} 100 {48)

The maximum again occurs when all the modes have equal contributions.
Equation 48 reduces to 46 at m = 0 and a straight average occurs at m=1.

Equation 48 shows that by properly choosing m one can limit the
amount of possible nonconservative error to any desired value at the
expense of increasing the conservative error. It also shows that the
larger the number of degrees of freedom of the system considered, the
larger the possible nonconservative error, and the closer one must
approach the sum of absolute values to insure a specified nonconservative
error,

In the above analysis certain extreme cases have been considered,
which may not always be good approximations to actual situations. As
will be seen in later sections, the upper bound may be closely approached.
The true response Rt may be of the order of ninety five percent of the
sum of the absolute values. The assumption of equal mode contributions
will be shown in some cases to be a poor approximation. A more
realistic relation of the three mode contributions in the case of base shear
for a three degree of freedom system would be in the ratio 5:3:1, the first
mode being the largest contributor. Evaluating equation 48 using the
above modifications, i.e.,

Rt = 0,95(a + b + ¢)
a =3/5

p

1!

1/5



-29-

would give

nmax T 0.95 | mil )

o [°°658 + m} 100 (49)

The weighting factor m would be chosen to keep the maximum
possible nonconservative error in the desired range. Equation 49
indicates that for a direct average {m=1) the negative error would be
less than 12,8 percent and for the square root of the sum of the squares
(m=0) the negative error would be less than 30.7 percent. Using the
first mode alone, as an approximation to the total response, the maximum
negative error would be less than 41.5 percent, under the above assump-
tions. The average of the first mode and the sum of the absolute values,
which is identical to taking the full value of the first mode plus one half
of the contribution of each higher mode, would have a maximum negative
error less than 18.1 percent. These above ranges are consistent with

experimental results given later in this thesis,
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V. EXPERIMENTAL SETUP

Versatility, reasonable operating speed and accuracy
commensurate with an engineering type problem were the main factors
governing the selection of the computing system. A mechanical analog
would tend to be cumbersome and slow and accuracy could be impaired
by mechanical details for multidegree of freedom systems. A digital
solution has versatility depending on the magnitude of the program and
in turn on the capacity of the machine. The processing of the input data
becomes troublesome and tﬁe accuracy of a digital machine is of no
particular advantage since the input and the parameters of a real
structure are in general not exactly known. A passive analog would
require auxiliary amplifiers to produce the zero damping state and is
laborious to set for different conditions unless specially coupled in-
ductances and resistances are used (4). This increased speed and
complication is not warranted since a complete spectrum entailing a
large number of points is not required.

All of the above methods would, of course, give the desired
results, but for the above reasons and the circumstance of availability
of active elements, a special purpose electronic differential analyzer
was assembled. Three degrees of freedom were used although the
system need not have been limited to this number. The computer can
thus be considered as either a complete three degree of freedom system
or as a three degree of freedom approximation to a larger system.

A photograph of the setup, (fig. III-1), as well as an overall
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diagram and diagrams of individual components are given in appendix
111,

The equation to be solved in each mode of the analog is

e .

2 ey
\gi = -?.Pmiﬁi -0, 8+ Gy (t) (50)
This may also be written in terms of the previously defined nomen-

clature as

Bai= 2P0 5y o By TV 51
‘éi is the ith mode response and gsi the response of the corresponding
single degree of freedom system to ¥ {t). (It is the maximum value of
gsi that is obtained from the response spectrum curve.) By using form
51 all the modes can be excited with the same input and no input
coefficient potentiometers are required (fig. III-2), The response in

the real system is

x =) QG 8, (52)
J

Details of the operation of the computer and a discussion of
experimental accuracy are given in appendix III,
If absolute damping is desired, the equation to be solved takes the

form: - . 2
\gi = -Zpiwi\gi -w, gi + Gi(y(t) +ey) {53)

where
€ = 2 Py in
If the system is such that classical normal modes cannot be
obtained; then the computer method may still be used. A simplification

in the computer may be obtained by first making the same transfor-



-32-

mation as given in the general equation section, The spring and mass
matrices will then be diagonal and there will only be cross coupling in
the velocity {damping) section of each mode because the damping

matrix is no longer diagonal.
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VIi. EXPERIMENTS CONDUCTED

To examine various mode combination possibilities three earth-
quakes were chosen as typical inputs:

1. Short time duration {approximately five seconds)

San Francisco {Golden Gate Park) N1OE, March 22, 1957,
{N = 307)
2. Medium time duration {approximately nineteen seconds)
Taft N21E, July 21, 1952, (N = 341)
3., Long time durationl (approximately twenty-seven seconds)
El Centro EW May 18, 1940, (N = 416)
The ground accelerograms for these earthquakes are shown in figure
Iv-1.

Three building types were chosen to give representative examples
for checking the various methods of combination. In the notation of
equation 11 they are:

1. Uniform

a=b=a=p=1
2. Uniform taper
a=a=2 b=pg=3
3, Step
a=b=a=8=2
The [Q] matrices, Gi“ etc.,, for each case are given in appendix IV,

Three cases of damping were chosen,

1. All modes 0%

2, First mode 2.5%, second and third 5%

3., All modes 5%
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The Alexander building in San Francisco is the only structure for
which complete dynamic properties and a measured response to an
earthquake are available. The Alexander building is a fifteen story
structure 60 feet by 68 feet by 197 feet high with a fundamental period
of 1.27 seconds (27). The computer was used to obtain a three degree
of freedom approximation to this larger system and various responses
in the structure were checked,

A set of results for four, eight, and sixteen story shear structures
has been obtained by Jennings {7) using a digital computer. The damped
cases chosen in these studies were of the absolute type and the para-
meters chosen resulted in systems not having classical normal modes.
In some cases there is uncertainty as to the acceleration inputs used in
this work. It was possible, however, to check the zero damped case for
one earthquake to compare the results directly with those of this thesis.
In this comparison three degrees of freedom were used to approximate
an eight story structure.

The mode shapes, frequencies, etc., required to set up a three
degree of freedom approximation for the Alexander building and the

comparison case of Jennings, are given in appendix IV,
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VII. RESULTS

A complete set of data for the nine cases of building types, earth-
quakes, and dampings was obtained., Not all of the data was required for
the purposes of this thesis but is included for future reference. The un-
reduced data is presented with the method of reduction at the end of
appendix IV,  Oscilloscope photographs of sample responses for the three
modes of displacements (fig. IV-2), velocities (fig. IV-3), and acceler-
ations (fig. IV-4), are given in appendix IV, along with a trace of typical
complete responses (fig. IV-5),

Five values of the fundamental frequency were chosen for each
case, the second and third mode frequencies being related to the
fundamental according to the building type.

Figures 6 through 10 show the base shear obtained from the com-
puter, the absolute sum of the mode contributions, and the square root
of the sum of the squares of the mode contributions. Table 1 gives the
percentage deviation from the computer solution of the latter two methods
of mode combination and of the average of these two methods along with
the percentage deviation for the first mode alone and the average of the
first mode and the sum of the absolute values. It also includes the numeri-
cal values of the computer solution and histograms of the deviations for
the various methods of combination.

It is seen that the sum of the absolute values may be very con-
servative and the square root of the sum of the squares very noncon-
servative. The average of these can be seen to give very good results
as far as eliminating errors on the nonconservative side, as indicated

by equation 49, The base shears have been considered because of their
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special interest for the structural design problem, but any other type of
response could be similarly represented using the data in appendix IV.
Table 2 shows the base moments obtained from a complete
computer solution and those obtained from the first mode contribution
only. The fact that the first mode alone is a good approximation was
suggested by the form of the coefficients of the base moment equation
{(III-12) when evaluated for the three types of structures assuming an

equal distance (h) between floors.

MB =z Constant (“gal +y) (54)

The general applicability of equation 54 would seem likely since
the higher modes have both a positive and negative contribution with the
possibility of a small net moment in comparison to the first mode's
contribution. The three cases cover the types of three story structures
generally encountered and results show equation 54 to be a very good
approximation, For a particular case equation III-12 would be evaluated
to determine the constants and the applicability of 54 could therefore be
determined by inspection. This approximation is a useful one in that it
requires only a knowledge of the absolute acceleration spectrum and
hence the velocity spectrum for a single degree of freedom system (refer
to equation 25).

Figure 11 shows the velocity spectrum points obtained directly
from the computer compared to the same points obtained from the
displacement and acceleration spectrum points. This is, therefore, a
check on equation 25, The results support the validity of these relation-

ships for earthquakelike functions.
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Table 3 gives the results of the check of the Alexander Building.
The computer values (three degree approximations) are seen to check
very well with the measured values and the mode contributions check
well with those computed using the spectrum data from a passive analog
(28). The combinations using these mode results are subject to the
approximations given in equation 31. The direct average of the absolute
sum and square root of the sum of the squares again gives a safe and
usable result. Three modes in this case were ample to give a good
approximation. For most earthquakes the spectrum curves are defined
within the range of periods from 0.1 to 3 seconds and for typical
structures this range will ordinarily not include more than three modes.
In general velocity spectra curves decrease rapidly below a period of
the order of 0.3 seconds.

The one example of an eight story building chosen from Jennings'
work resulted in a base shear value from the three mode approximation
of 2780 Kips. Jennings' value, computed using a digital machine, was
2537.54 Kips. This is a good agreement considering the many possible

differences in input data and types of approximation.
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VIII. CONCLUSIONS

The results of the study of various methods of mode combination

for the assumed structural models and earthquake excitations are:

1. The sum of the absolute values ranged from 0. 7% to 84%
greater than the computer solution. A significant feature is
the distribution of values which is shown in the histogram of
table 1. This indicates that ninety percent of the values were
in the range from 0. 7% to 50% greater and fifty percent of the
values were in the range from 0.7% to 20% greater than the
computer solution. The steep front on the histogram indicates
that a relatively large number of the absolute sums are fairly

close to the true value.

2. The square root of the sum of the squares ranged from 24% less
to 32% greater than the computer solution. The predicted
maximum negative deviation is 30.7%. Refer to the histograms

of table 1 for details on this and the following cases.

3. The average of the sum of the absolute values and the square root
of the sum of the squares ranged from 11% less to 58% greater
than the computer solution., The predicted maximum negative

deviation is 12.8%.

4, The values of the first mode ranged from 37% less to 28%
greater than the computer solution. The predicted maximum

negative deviation is 41,5%.

5. The average of the first mode and the sum of the absolute values
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ranged from 13% less to 54% greater than the computer

solution. The predicted maximum negative deviation is 18.1%.

All of the methods have a similar spread of values; the maximum non-
conservative error is the distinguishing feature. In general, any
reduction in the conservative error of the sum of the absolute values is
made at the expense of increasing the probable magnitude of nonconserva-
tive error.

A weighted average of methods one and two above permits a choice
of the allowable nonconservaiéive error between the extremes. The
weighted average method may be preferable in some design situations to
any simple summation since the values on the average are closer to the
true response and yet are within the limit of maximum nonconservative
error prescribed by the weighting function. The direct average is a
special case of this with the weighting function taken as unity. For
critical designs, where no negative error can be tolerated, this average
reduces to the sum of the absolute values.

The response of the first mode gives a good approximation to the
base moment. This requires only the use of the absolute acceleration

spectrum for a single degree of freedom system.
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TABLE 1
Percentage Comparison of Methods of Combination
Notations used in this table are:

= computer summed result. Numerical values given

Base Shear
First Floor Spring
Constant (‘k3)

are

= deviation of the sum of the absolute values from the
computer solution (%)

= deviation of the value obtained by taking the direct
average of thé square root of the sum of the squares
and the sum of the absolute values from the computer
solution (%)

= deviation of the square root of the sum of the squares
from the computer solution (%)

= deviation of the value of the first mode from the
computer solution (%)

= deviation of the average of the first mode and the sum of
absolute values from the computer value (%)

= fundamental period (sec)

= percent of critical damping in the first (a), second (b),

and third {c) modes
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TABLE 1 (Continued)

T

San Francisco Earthquake

2.5 2,0 1.5

Uniform building

0,0, 0%

comp
sum
avg
STSs
fm
fma

2.5,5, 5%

comp
sum
avg
srs
fm
fma

5,5, 5%

comp
sum
avg
sSTs
fm
fma

0.
11.
4,
-3.
-3,
3.

0.
21,
1i.

1.

0.
10.

0.
26,
14.

2,

0.
13.

Tapered building

0,0, 0%

comp
sum
avg
sSrs
fm
fma

2.5,5,5%

comp
sum
avg
STrs
fm
fma
5,5, 5%
comp
sum
avg
sSrs

fm
fma

21.
13.

12.

33.
22,
11.
10.
21.

50.
36,
Z22.

19.

35.

1325 0.0765 0. 0970
1 5.6 23.7
0 -6.9 15.2
7 -19.5 6.6
8 -23.4 5.1
8 -8.9 14. 4
0765 0.0510 0.0510
0 33.0 10.8
3 22.3 3.3
4 11. 6 4.1
0 10. 0 -4.9
6 21.4 3.0
0612 0.0510 0.0408
3 22.9 7.4
3 12.3 -1.2
3 1.8 -10.8
0 0.0 -12.5
2 11.5 2.4
1795 0.0801 0. 1040
3 16.8 11.5
5 -0.1 1.9
.6 -17.0 -7.7
5 -23.6 -9.3
7 -3.4 0.9
0945 0. 0520 0. 0449
0 16.7 20.9
2 1.5 8.6
3 -13.7 -3.8
1 -18.5 -5.6
5 -0.7 7.6
710 0.0472 0.0331
23.6 38.0
7.2 20.7
-9.3 3.5
-15.0 -0.3
4.3 17.7

1.0

0,0357
9.2
-4.8
~-18.4
-21.5
-6,2

0,0230
36,0
21.5
7.0
4,3
0

20,

0.0209
31.6
18.7

5.8

2.4
17.0

0.0401

3.7
-10.3
-24.2
-29.6
-13.0

0.0265
27.9
13.0
-1.9
-5.7
11.3

0.0236
37.7
21.0

4,3

0.0

18.9

-5.8
-13.3
-14.0

-6.3

0.0128
13.6

5.0
-3.5
-4.3

4.7

0.0236
33.5
12.5
-8.5

-26,2

3.6

0.0166
17.4
0.6
-15.6
-23.5
-3.0

0.0142
23.2
4.9
-13.4
-24.0
-0.4



TABLE 1 (Continued)

T

2.5

Stepped building

0, 0, 0%

comp
sum
avg
srs
fm
fma

2.5,5,5%

comp
sum
avg
srs
fm
fma

5,5, 5%

comp
sum
avg
srs
fm
fma

T

0.1240
14.5

5.2
-4.0
-4.8

4.8

0, 0809
22,5
13.3

4.0

3.0
12.8

0.0674
19.7

8.5
-2.7
-4.3

7.4

2.5

Uniform building

0, 0, 0%
comp
sum
avg
sSrs
fm
fma

2.5,5,5%

comp
sum
avg
STSs
fm
fma

5,5, 5%
comp
sum
avg
Srs
fm
fma

0.3760
54,2
30,2

6.7

-17.0

24,0

0.2290
67.8
52.0
32.3
28.0
48.0

0.2200
66,4
48.2
30.0
25,0
45,5

51 -

2.0

0.0832
16.0

7.0
-2,0
-3.0

6.5

0.0780
11.8

4.5
-2.8
-3.6

4.1

0.0700
13.2

5.1
-3,0
-3.9

4.7

0.0420
21.7
12.5

3.3

2.4
12.1

Taft Earthquake

2,0

0.4850
50.0
26.3

2.7
13.2
18.6

0.3210

5.9
-5.6
17.1
20,2
-7.2

0.2750

7.3
-5.7
18.5
23.3
-8,0

1.5

0.1650
59.4
42,
25,
22,
41.

SR NN

0. 1560
11.5
1.0
-9.6
-11.9
-0.1

0,0431
27,9
14.7

1.9
-0.2
13.9

0.0274
26.6
15.2

3.7

2.2
14,6

0.0264
23,1
11.2
-0.8
-2.3
10.4

1.0

0.1100
30.0
10.9
-8,2

-25.0

2,9

0.1010

6.9
-4, 0
-14.8
~-18.3
-5.8

0.1010
7.9
-3.5
-14.9
-18.3
-5.8

0.
11.
-0,

0226
1
7

~-12,4
-14,2

~-1.

0.
7.

3

0161
5

-3.4

-14.
-16.

3
1

-4.4

0.
8.
-4,
-17.
-20,
-5,

0135
2
4
1
0
9
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TABLE 1 {Continued)

T

2.5 2.0 1.5

Tapered building

0, 0, 0%
comp
sum
avg
STrs
fm
fma

2,5,5,5%

comp
sum
avg
srs
fm
fma

5,5,5%

comp
sum
avg
STrs
fm
fma

Stepped building

0, 0, 0%

comp
sum
avg
srs
fm
fma

2.5,5,5%

comp
sum
avg
sTrs
fm
fma

5,5, 5%

comp
sum
avg
STs
fm
fma

0,2720 0.3900 0,3300
78. 1 24,8 30.6
49.0 8.3 9.3
19.7 -7.2 -12.1

5.9 ~11.0 -35.8
42.0 6.9 -2.6

0.2540 0,2720 0.1870
57.5 32,7 19.8
35,6 16. 4 2.1
13.8 0.0 -15.5

6.4 -3.7 -23,0
32.0 14,7 -1.6

0.2120 0.1950 0,1610
84.4 67.7 33.5
58, 1 45,4 13.4
32.0 23.1 -6.8
23. 6 16,9 -15,5
54,0 42.3 9.3

0.3540 0.5020 0.2760
61.0 26.3 30.2
32.8 10. 6 15,2

4.8 -5,2 0.0
-8.2 -11.8 -3.6
26,4 7.3 13.4

0.3150 0.3150 0.1970
29.5 18. 1 12,7
15,9 6.8 1.0

2.2 -4,5 -10.7

0.0 6.4 -12.2
14,8 5.9 0.3

0.2960 0.1970 0,1820
31.1 59,0 13.7
16, 6 41,3 1.4

2.0 23.8 -11.0
-0.3 19.8 -13.7
15. 4 39.4 0.0

1.0

6.1315
42.4
18.9
~-4,5

-16.4
13.5

0.1100
34.5
17.7

0.9
-3.6
15.5

0.1030
38.8
21,3

3.9
-1.9
18.9

0.1280
36,7
19.5

2.3
-3.1
16.8

0.1230
24,4
14.8

5.3

4.1
14

0.1180
22.9
12.7

2.5

1.7
12.3

WwWoow-Oo

0.
18,
12,

6.
12.

-2,
-6,
-6,
-2,
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TABLE 1 {Continued)

El Centro Earthquake

T 2.5 2,0
Uniform building
0, 0, 0%
comp 0.7100 0.8290
sum 21.7 5.1
avg 8.0 -4,7
srs -5.8 ~-14.5
fm -9.6 -16.3
fma 6.1 -5, 6
2.5,5,5%
comp 0.5070 0.5580
sum 20.9 4.3
avg 11.1 -2,2
sTrs 1.4 -8.6
fm -0.2 -9.3
fma 10.3 -2,4
5,5, 5%
comp 0.4900 0.4560
sum 14.9 5.5
avg 5.0 -2.3
STs -4.9 -10.1
fm -6.9 -11.2
fma 3.0 -2.7
Tapered building
0, 0, 0%
comp 0.9830 0.7800
sum 16.5 11.2
avg -3.1 -0.5
8STYS -22.17 -12.2
fm -36.5 -14.1
fma -10.1 -1.4
2.5,5,5%
comp 0.5300 0.5760
sum 26,0 3.5
avg 9.8 -5.6
srs -6.4 -14,8
fm -11.7 -16,0
fma 7.2 -6.2
5,5, 5%
comp 0.4680 0.4680
sum 35.9 10.7
avg “17.8 -0.3
STrs -0.4 -11.3
fm -6, 84 -13.2

5 -1.3

fma 14,

1.5

0.4060

12.5
-2.0
-16.4
-20.9
-4.2

0.1690
49.6
32.5
15.4
10.1
29.9

0.1350
49.5
29.6

9.6

0.0
24,8

0.4360
24,3
2.8
-18.8
-28.4
-2,0

0.1980
30.8
11.9
-7.1

-13.1

8.8

0.1685
40.0
18.4
-3.3

-11.9
14.3

1.0

0.2710
17.7

7.9
-1.8
-3.3

7.2

0. 1440
20.8
14.0

6.2

5.5
13.5

0.1300
20.8
12,7

4.6

3.7
12.2

0.2810
28.4
10.8
-7.1

-13.9

7.3

0.1560
25.0
11.5
-1.9
-6.4

9.3

0. 1465
25.1
10.5
-4,1
-8.2

8.6

0.2880

1.7
-1.9
-5,6
-6.3
~2.2

0.2500
12.8

5.2
~2.4
-3.2

4.8
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TABLE 1 (Continued)

1.5

Stepped building
0, 0, 0%

comp
sum

0.2870

0.3770
0.8

0.4850

3

0.8990

24,4

0.8090

9.7
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San Francisco

5,5,5

Taft

Damping

0,0,0

2.5,5,5

5,5,5

El Centro

T (sec)

Computer
lst Mode

Computer
lst Mode

Computer
1st Mode

T {sec)

Computer
1st Mode

Computer
1st Mode

Computer
1st Mode

T (sec)

Computer
1st Mode

Computer
1st Mode

Computer
1st Mode

27.9
24,6

18.4
20,6 33.5
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TABLE 2

Base Moment

Uniform

2.5

1.5

44,6
44,6

20.6 39
22,3 39

33.5

Uniform

Values are BM/mh

Taper

0.5

53.6
50

Taper

2.5

36.4
36.4

34,6
34.6

36,4
36.4

1.5

63.6
63.6

54,6
50

47.4
46,4

Taper

1.5

990 8

104

60.3
62.3

52
52

2.,

33
33

Step
5 1.5

.6 58.9
. 6 60.5

.9 52.1
50.5

46,2
.9 46,2

Step
1.5

94
101



First
Mode

Second
Mode

Third
Mode

Absolute
Sum

Square Root
Sum of
Squares
Average
Computer
(3 Mode

approx.)

Measured

Alexander Building Check

57~

TABLE 3

Acceleration
16th Floor (g's)

Differential
Analyzer

0.0362

0. 0486

0.0448

0.1296

0.0752

0.1024

0.0819

0.085

Passive
Compute

0,037

0.047

0,050

0.134

0.078

I

(24

)

Acceleration
11th Floor (g's)

Differential
Analyzer

0.0274

0.0251

0.0346

0.0871

0.0508

0.0689

0.0614

0,062

Passive
Compute

0.028

0,024

0.037

0.089

0,052

(2

r

4)
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Appendix I

Air Damping
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A single degree of freedom system was selected as a numerical

example (fig. I-1),

The three effects mentioned in the text were:

1. Increase in effective mass
2. Radiation of energy
3. Viscous effects,

The values assumed for the example are:

a = 5 {ft)

h = 15 (ft)
4000 | 1b s;ecZ
T 32.2 ft

Velocity of Top=V = Uo sin wt

Natural Period of System = T = 0.5 (sec)

Density of Air - 0.0765 1b sec2
(NACA STD Atmosphere, Sea Level) 7~ 32,2 ft
Kinamatic Viscosity v=1.56 % 4 10«4 ft2
(NACA STD Atmosphere, Sea Level) © ~ =27 * %% sec

Speed of Sound
(NACA STD Atmosphere, Sea Level) Cs = 1117 (ft/sec)

The first is not a dissipative effect but will be mentioned here.

The effective mass is approximately equal to (hwa2/¢/+ m) if the entire

building is assumed to vibrate with the same velocity (fig. I-1lc), (29).

2
Meffective ~ hwa /¢5+ m

__ 90 + 4000
~ T3z

% increase = 2.25%
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This would have a negligible effect on the response.

If the wavelength {)) is long compared to the dimension of the
radiating body, then the details of the shape of the body become un-
important. For the representative period 0.5 seconds

A= T CS = 558.5 (ft)
The characteristic dimension in this case would be 2a {10 feet). There-
fore, since the particular shape is unimportant, a cylinder was chosen
and uniform vibration of the entire body was again assumed (fig. I-1b).
Energy radiated per unit time from a cylinder moving with velocity
U _sinwt neglecting end effects is (29)
TrZwB a4UOZh

Eradiation/unit time 4C 2 (I-1)

S

The viscous effect was estimated by considering the energy lost
in the boundary layer on the sides and top of the structure parallel to
the motion. The entire body was again assumed to move at the same
velocity {fig. I-1lc). The velocity profile on a flat plate oscillating with
velocity Uosinm’c3 neglecting edge effects, and assuming a viscous,

incompressible fluid with a laminar boundary layer is (30)

NE

Uly, t) = er 2v sin (wt - \/—2% v {1-2)

where y is measured perpendicular to the plate.

ouU

Shear at wall = v /¢(—8—Y-——

y=0
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(1-3)

2
; U "h
E /unit = __P_ﬂ
time \/ 2w

For a single degree of {reedom system with internal viscous

viscous

damping and vibrating with velocity Uosin wt , the energy dissipated

is (31):
E unit = P *mUOZ (I-4)
viscous / time
dashpot

whereﬁ is the damping rathAC/Ccritical

An effective damping ratio (/oeff) may be calculated by equating

the energy obtained from equations I-1 and I-3 to that from I-4 and

solving for P

_ Trzw3,¢a4h + ha #\/v
fett = 2

4CS w m \/ 2w w m

evaluate at resonance, w = W,

5 7

=5,60x10" " 4+ 2.84x10"
eff

_ . -7
/Deff = 562.8 x 10

In the usual case the damping ratio in a building is of the order

of 0.01 to 0.1 and therefore the above effects would be negligible.
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Appendix II

Distribution of Local Maxima and Minima of Typical

Earthquake Accelerograms
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One significant property of a complicated function such as an
earthquake accelerogram is the probability distribution of the acceler-
ations. To investigate these distributions for actual earthquakes, four
typical accelerograms were chosen.

The earthquake accelerogram has three sections -~ a leading section
of low amplitude and rapid variation, a central section which is the body
of the tremor, and a terminal section of relatively low amplitude and
slow variation. For the purposes of a statistical distribution study the
central section alone is of concern. Values may be obtained by reading
accelerations at equal time intervals or by reading values at random
points along the accelerogram. Since the accelerogram changes so rapid-
ly, resulting in nearly vertical segments, both of these methods lead to
difficulty in obtaining accurate readings. Consequently, readings were
taken at every point of abrupt change in slope. Since this includes all of
the peaks along the accelerogram it is doubtful if this is truly a random
selection and would better be described as the distribution of local
maxima and minima. The readings were converted to the same scale and
plotted together on normal probability paper in figure II-1. A straight line
on such a plot is a Gaussian distribution with slope a function of the
variance,

The sample treated here is not large enough to allow a positive
statement concerning the distribution. The experimental work of the
present thesis does not require hypotheses as to probability distribution,
but the data has been included because of its possible interest for future

extensions of the theory.
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Appendix III

Experimental Setup
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The differential analyzer used for the experimental work was

designed to solve equation 51 for each mode.

Sei = 2P € ‘“iz Eei TV
The equation was solved by integrating the acceleration gsi twice
(fig. III-3), gsi being obtained by summing the proper feedbacks and
inputs (fig. III-4 and III-2). The basic requirements are a velocity
feedback to the mode summer to obtain the positive damping term
(Z/Oiwi ési) and a displacement feedback to obtain the proper natural
frequency Qwizfsi)o The negative damping feedback was included to
obtain the zero damping case, the feedback compensating for any losses
in the system.

The earthquake input y {t) was repeated ten times per second by
means of a circular, variable width film and a photoelectric reader (4).
The residual oscillations in each mode must be damped out after each
repetition to prevent interference. This was the function of the damping
pulse arrangement (fig. III-8). To obtain sufficient damping in all cases
it was found necessary to multiply the feedback to the mode summer by
five in each mode.

The frequency feedback was adjusted by switching the input (fig.
III-2) to a sine wave generator set to the desired frequency and visually
peaking the system response by adjusting the feedback potentiometer.
The response may be observed on the oscilloscope but a RMS voltmeter

was found more convenient. The negative damping was set by applying

a pulse to the system at 10 cps and adjusting the negative damping
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potentiometer, with positive damping on zero, until the envelope was
neither decreasing nor increasing. The pulse was obtained by biasing
the last integrator off zero, with no input, thus allowing the damping
pulse arrangement to give a sharp pulse at 10 cps.

The amplifiers were then all properly biased and the damping set
to the desired value. By proper switching it was possible to obtain any
combination of any of the modes reading either displacement, velocity,
or relative or absolute acceleration, or any mode response individually
{spectrum point}.

The combining coefficient Qij Gj of equation 52 was set with the
1/10 factor potentiometer of each mode (fig. III-5) and the sign was
entered in the combination summer (fig. III-9).

For stability all the equipment was driven from constant voltage
transformers and a low pass filter (fig. III-7, less than 10 cps for any
attenuator setting of interest) was used in the input to prevent D.C. drift,

If absolute damping is being considered the y(t) can be obtained by
integrating the input once. Since there is no direct feedback for an
integrator used in this way, a small resistive feedback is introduced
for stability (fig. III-6). The coefficient again can be set by means of
a potentiometer.

In all that has been said above it has been assumed that y (t) is
introduced in real time and the multiplicative factors introduced by the
various integrators have been ignored.

The time scale is changed due to the function generator:

t = Nt (III-1)
r a
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where
t = real time
r
ta = analog time
N = (actual time duration of record) sec

number of degrees of disk
required for record
360

degrees |1 |sec
rev 10 | rev

since the variable width film revolves at 10 cps. Also it follows that

w, = pro If a peak on the original record is r g's and the same peak

reproduced by the function generator is ﬁ , divisions of the oscilloscope

face, then

2 r32,2
Zr— N VaT

r32.2

N
I
Z
<.

{1II-2)

where the Zr are real responses in feet and seconds and Va are the
analog responses in lines of the oscilloscope face.

The output of each integrator in the modes is 1/RC times the
integrated input. Letting primes refer to the second integrator in
each mode and taking into account equations III-2 the following equations
are obtained:

Displacement spectrum ith mode (ft)

- 1 X 2 TR
B = (E 32.2N"C.R.C.'R, ) €. (I11-3)

Velocity spectrum (ft/sec)

gsi:

% 32.2NC/'R/' ) gai (I11-4)
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Acceleration spectrum (ft/secz) relative

S .
gsi" (E3Z°Z)§ai
Acceleration spectrum (ft/secz) absolute

e

§ ( 322)g _‘g?):(%?,z,z)lgai

(11I-5)

(I1I-6)

The minus sign of ¥ is due to the convention that correct signs for \?ai

are only obtained when multiplied by the proper eriw

ith floor in actual system (ft)

r 2
R .2N > Q..G.C.R.C.'R.! .
X,Q, 1JJJJJJ§aJ

1

Relative displacement of ith and kth floor (ft)

r 2 .
732 }:GCRCR(qJ%ﬂ%J

Velocity of ith floor (ft/sec)
3

%, =7 32,2N > Q..G.C.'R.' E_.
i f iy737) ) vaj
j=1

Relative velocity of ith and kth floor (ft/sec)

NZGC'R’(Q gaj
j=1

Absolute acceleration (ft/secz)

e p .
== 32,2 Q..G, .+
X =g 32:20) G Bty )

Displacement of

(II1-7)

(I1I-8)

(III-9)

(III-10)

{III-11)
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Base moment {1b ft)

3
Mg = Z m, %, K (I1I-12)

where EJ is given by equation III-11.

In the above equations the gi‘s and Xi's are maxima in the units
stated and the ‘g’ai‘s are the maxima read from the oscilloscope in
equations III-3 to III-5. The combinations given in equations III-6 to
III-12 are made to within a constant factor by the computer and the
maxima of this read from the oscilloscope. These values will be

'S,
i

referred to in the data compilations as X

Errors involved in the analog results are from two sources,
machine inaccuracies and human error.

All the resistors required in the setup had 1% tolerance. By proper
selection and combination the capacitive elements were within less than
1.5% of the desired value. Calibration charts were prepared for all
potentiometers that had to be set to a specific numerical value. As
mentioned before, a means was provided to allow negative feedback to
be introduced and positive damping was then set from the known zero
damped case. A calibration chart was also provided, for the sine wave
oscillator used to set the natural frequency, by using an electronic
counter.

The errors mentioned above may have little or no effect, depend-
ing on the frequency range and the damping involved. Increasing damp-

ing tends to decrease the effect of element errors, which is fortunate

since the damped cases have the most importance for practical problems.
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Phase shift through the mode elements was checked in the range
of interest using a sine wave input and comparing this with voltages at
various points in the system. The Lissajous figures resulting indicated
negligible phase shift,

The major portion of the work was concerned with comparing
various quantities obtained by different methods. The data used for
each comparison was obtained without changing the basic setting of the
analog. Thereforé, the conclusions reached are relatively uneffected
by machine type error.

The major source of error arises in the reading of the amplitude
from the oscilloscope. The error is of the order of 5%, depending on
the size of the trace in relation to the oscilloscope face. Since other
errors are usually negligible by comparison, the total error would be
of the order of 5%.

For checking specific cases such as the Alexander Building,
definite quantities are desired. To check the accuracy of the computer
for this situation, velocity spectrum values were compared to those
obtained from a passive spectrum analyzer. The values are in good
agreement (fig. III-10). The accuracy of the method is further borne
out by a two degree of freedom test case., A resonance curve (4%
damping in each mode) was obtained by a passive analog, by the first
two modes of the analyzer used for this work, and exactly by using a
desk calculator. The results are given in figure III-11. As can be seen,
the differential analyzer gives good results and is not prone to slight

shifts in resonance peaks resulting from element inaccuracies as in the
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passive case since the natural frequencies are set in correctly using
the sine wave oscillator.

From the above it would seem proper to say that the differential
analyzer type of computer used in this work is at least as accurate as
the spectrum data to which any results and conclusions obtained in this

thesis will be applied.
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Symbols used in this appendix are as follows:

lﬂr—wvy—%—mv—'ﬂ——v\a/v

Amplifier

Integrating Network

Summing Network

Ground

Resistance

Variable Resistance

Potentiometer

Capacitance

Switch



Integrator for absolute

damping
Function
generator
[alin ]
4 e -p-
[
Amplifier

-79 -~

Damping pulse
arrangement

1
16 factor

potentiometer 5 position
switch

{>’wr°

b o I

Positive = 3
damping

Negative
damping

Frequency

Sine wave
generator

4
V4

2nd Mode
as above

Oscilloscope

3 position
4 pole switch

—0
oot

~__ 7~ <
) lf/D‘)/L
P ol

y (t)

Figure IlI-2

Overall Diagram
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In O— AN : Out

106\{\, =

1t

0.0004 AFd

S

1]

100,

c, = 0.004 uFd

o1
€out - " RC | eindt

-

Figure III-3
Mode Integrator

R R = 500KJV

out

ey O——WW— R/Z
R/S VW -J-

out ~ —el«ez-e3—5e4%-e5~%e6-+5e7

Figure I1I-4

Mode Summer
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Switch —-—-Ofit
in
a b
1 or ’11'6 100 1
i % a
1 a
10 T o
5100
/g_.__o out
Y
Figure III-5
T% Factor Potentiometer
“1
et —O
C2 aa—C
540
in - o—piin—
R A
out
VAWV
R -
8
R = 106® c, = 0.0004 L Fd
1 .
R_ =120 M{} c, = 0.004 LFd

L1
Cout © T RC J[‘eindt

Figure 1II-6

Integrator for Inertial Damping
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Preamplifier : DC
Amplifier

| U

Lo - - L - =

Coupling capacitor
in preamplifier

Figure III-7
Input Filter

Mercury relay triggered
once per cycle by function
generator turn table

out O (normally closed)

{to summer 5x)

o0~ &

Figure III-8

Damping Arrangement
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R R = 500K
Fo-= -
' '
! 1 R
Ist f——-—-: H. ' \A— R
( pOSltlon‘ R YV VY Y—
2nd $—od A~
: 6 i R
3rd§—-———1' pole Wk
. R ——0
y 5—"———: switch Wi
]
] i R
W R/2
] !
i i R MW l
= L - _ . A =

out

The switch allows any sign relationship of 3 or 4 inputs and

the combination of any one input and y to obtain the absolute

acceleration spectrum points,

ground any unused input to the summer.)

Figure III-9

Combination Summer

{The ground input is provided to
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Appendix 1V

Reference Data
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u d‘ l]‘
i

Top, El Centro
Center, Taft
Bottom, San Francisco

Figure IV-1

Accelerograms
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Building Models

Uniform
1 1 1
&ﬂ = 0.802 -0.555 -2.247
0.445 -1.245 1.800
G, = -1.22 G, = 0.280 G, =
% Y3
“=72.8 " Z.,05
Taper
1 1 1
[cﬂ = 0.7022 -0.3045 -1.5647
0.3420 -0.5606 1.1616
G, = -1.4678 G, = 0.6065 G, =
%293
“172.09 ~ 2.93
Step
( 1 1 1
[Cﬂ = L_O°7446 -0.3554 -1.8892
0.4268 -0.5514  2.1246
G, = -1.3516 G, =0.4373 G =
%293
“ 72,30 " 3.36

-0,0595

-0.1363

|

-0.0857
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Alexander Building

Mode Shapes

ist 2nd 3rd
2,22 -3.48 1.90
2,10 -2.,10 0

2.02 -1.00 -0.95
1.92 0.30 -1.40
1.80 1,08 -1.50
1,68 1.80 -1.40
1.50 2.10 -1.20
1.38 2,35 -0.85
1.20 2.45 -0.30
1.05 2.32 0.55
0.90 2.10 1.05
0.75 1.80 1.40
0.55 1.40 1.50
0.38 1.00 1.35
0.20 0.70 0.90

Mode Natural Period (sec) Damping (% critical)

1 1.27 2
2 0.41 : 4
3 0.24 4
Gl: 0.604 GZ = 0,169 G3 = 0,181

Earthquake for which responses were obtained:

San Francisco (Alexander Building) N9 W March 22, 1957

(N = 192)
Jenning 8 Story Building
Mode Shapes
1st. 2nd 3rd
0.53184 0.59442 0.53898
0.49269 0.32228 -0,03810
0,.43386 -0.00171 -0.47513
0.36444 ~-0,26035 -0.39779
0.28982 -0,40139 -0.04409
0.21367 -0,41727 0.28840
0.13868 ~0.32968 0.40107

0. 06692 _0.17635 0.26791
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Natural frequencies (cycles/sec)

Ist 0.94851
Z2nd 2,36546
3rd 3.77090

C'r1 = 2,64878 GZ = -1,048676 G3 = 0,66883

Spring constant of lowest level

2000 Kips/in

Earthquake for which response was obtained:

El Centro EW May 18, 1940 (N = 416)
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General Data Conversion

The coefficients for the conversion of the spectra data in the
following tables are given in equations III-3 to III-6,
For the computer summed data the following apply:

Displacements of ith floor (ft)

X, = (T 32.2 N Q G ClRlcl R1 } (IvV-1)
Velocity (ft/sec) ’

. _|m . :

%, = (T 32,2N QilGlcl'R,l'}Xai (IV-2)

Relative displacement (ft)

m 32.2 |
X27X1 7 0.9 N*G,C R C; 'Ry Q) -0,k 5 -x,))

(IV-3)
= m 2 TRt _ _
X3Xp = 32.2NTGIC RIC IRy (Q5-Qpy)bx,537,5)
Relative velocity (ft/sec)
. . _m 32,2 - e .
%k = oy NGO RMQ,-Qp) 5y
(IV - 4)
° o —_ E‘ ' ' . L -
Ry-kp = o 32.2N GG IR Q-0 (K 3% )
Absolute acceleration
= _m
X = 0 32,2 QHGI Xal
L _m - V-
%, = 32,2 0y Gyx, (IV-5)

|

X

m L
3 —1—32.72 Xa3

In the above equations the xai's are oscilloscope readings in

lines. All the readings have been adjusted (by factors of 10) so that



-94.-

the values for capacitances and resistances are:
Ci = 0.004 uFd
i —
Ci = 0,0004 1 Fd
R, = 10%0

Ri' = 1060,

Note that the spectrum values for the 2.5, 5, 5% case for the

gaz‘s and ‘ga3‘s are obtained from the values of the 5,5, 5% case. _



San Francisco

Uniform

gaz

fgl gaZ §a3 gal éaZ

!

0, 0, 0%

2.6 3.6
1.8 7.8

7.8

42 7.5 4,5
57. 35 6 5.5

115

Wy 0
s o

o~ <t

10
14
17

5.5
7

18
55 18 50

200 50

1.5
1.0
0.5

28

17

28

9.5

4.5

5.7

40

2;‘, 5$ 5, 5(70
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< o oo
a o o
N — N

o0 o0 00 N
° o o o
NeRNaIRTo RN+ o]

o0 0 o0 o0
w0 <t <t H o

5,5,5%

0

o~

e o

1.2

. 6.5

a

30

120 40

2.5

o <t D~

4.5

25
15
24

100 28

2,0

5.8

20
15

70

1.5
1.0

0.5

6.5 13 23

7.5

o

42

17

2,6 7.8 9.8 13

2.2

5.5 4.8 3.2

24

r=0,1936 g's

L =10 1ines



X237%a22 Fa27%51 *a3zfaz F*az a1

a3

K

a3

BY:

*a2

al

Lo

%32 *a3

al

0, 0, 0%

6.4
8.5

140

250

8 8.3

2.5 290 240 260

100

130

7.2

9.6 12

150 6.5

190

130
180

2.0 110
1.5 200

10

120

190

5.8 o

6.5

90
42

9
11.5

7.2 10.2
13

13

70
40

85

160

1.5
1.8

2.8

140 150

2.5 140
2.0 100

60 . 4.9

1i0

100
100
45

100

~96-

4

55
30
14

90
48
26

4,2
6

<0

0o

o e

95 4.5
48
28

90
45

1.5
0
5

80

150

1.6 1.4
1.8
2.6
4,2

1.5

7.5

120 120 4,7

2,5 120

2.0

60 5.2 4.7

100

5.2

95 100 4.9

95

°

4.7

50
27

70
46

207

2.5

4,5

70 80 80
40

105
1.0

0.5

3.8
3.2

41

45

3.6

12

22

5.8

5.6

3.7

3.5

23 25

24



San Francisco

Taper

e ¢

E%Z

o

E%B

Ea3 g;al

?az

gal

gaZ gaB gal l;aZ §a3

gal

T

0, 0, 0%

3.88

2.8

6.4 4,5
705

7.2 6.8

4,2

10

50
50
36
21

70

78

400
130
1.5 200

2.5

6.5

5.2

7.1

5.8

6.4

2.0

5.2

9.5

50
32
40

11.5
16

9
32

16
15

5.6 5.5

4,7
5.3 10

8.6

60
37

2.5,5,5%
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1 o O
e @& @

o
[a B BEAVINAR IR (o]

oo™
® o
B~ 0 H 0

~ g~
O sH O o

5,5, 5%

1.5

6.2

6.8

38
26

50

45

180

o~

3.5

4’2

85
70

°

~N

24
17

26
20
18

1.5
1.0

0.5

4,8
20

12.5
11

4,7

3.8 3.2

3.8

50
23

12

19

2'7

5.8

6.3

r=0,1936 g's

10 lines

L=



a2

%

al

o

) *a3

*al

0, 0, 0%

7.5

11

210
140
130

360

2,3

12,5
10

11
10,5 12

10.5

380

2.5 400 380
2.0 160

o~ O I~

8
12.
7.

57
37

150
200
75

6.5
6.5
13

4,2
7
7

7.5

130 70
1.5 200 200 220 11
70 65 85

1.0
0.5

10

7.8

38

13

20

40 50 8.2 6.4 10

45

2.5,5,5%
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[~ 0
e L]
W) oy O

4,8
4,2

~ 10 B~ 0
<

90
75
43
35
22

200
80
90
47
26

1.3
1.5
2.8
8

o
¢

al

2,6

2
11.5

o0 N

8.2

e o
O 10 i 0

6.5

6

4.5
4.8
5.8

200
110
95
56
35

90
90
50
28

85
88
54
28

.5 200 200
0
5
0
5

®
®
a
o

2
2
1
1
0

55 5, 5%

4.2

160 80

1.2
1.4

1.6
2.4

7.5
6

5.5
4.4 5,1

150

150

2.5 150

2.0

70
40

80

1.5
2.4
3.8

85 100 4,2
5

80

N NO

0 o™

5.2
4,2

32
20

80
42

2.3

3.8

5.2

4.4

70
50

70
47

75
48

1.5
1.0

5.8

4.5

22

7.2

30

25

24

0.5



San Francisco

Step

gaZ gaB gal éaZ §a3 gal gaZ

gal

0, 0, 0%

6.8

5.8

76 40

150 40

220
1.5 200

2.5

4.9

40

2.0

10.5

7.8
11.5 26

30

37

21

4.8

6

80 30 32

1.0
0.5

29 33

8.5

40

27

5.3

12,5

36 20

2,5,5,5%

-99_

n o ~H
e o°o e o
=N N0

0 N Xo]
e o L
OO N0 o0

<~ ©
10 < H o

2,7

20

1.2

6.5

2,6 6.6

a

27

120 50
125

2.5

6.2

4,1

27

33

2.0

4.6
14
15

10
18
14

6.5
10
16

15
20,5

80 25
48

1.5
1.0

0.5

4,4
15,5

2.8

14.5

4.8

8.5

12,6 5.7 3.3 4.5

20

r=0,1936 g's

1

10 lines



a3

oM

a2

o

Xal

%32 Xa3

al

T
0, 0, 0%

160 9.2

260

250 220 230
145

2.5

5.2
8.2

7.2

95
11

125

180

155

170

2.0

180

4,4

10 10 11

180 200

190

1.5
1.0

0.5

90 60 10.5

6.9
15.5

7.6
16

8.5

80
42

80

80

21

42

6.6 16.5

6.5

38

40

25,5, 5%

4.8

80
70
60

1.7 1.1 150

1.7
1.5

7.2

155 150
145

150

2.5

5.2

145

107
2.7 2.2
4,2

140 140

2.0

-100-

O

<H <t

6.5 4.4
4.7
5.7

35
17

90
53
6.5 26

3
4.1
8 9.5

5.2
4.8
4.8

°

5.4
4,1
4,9 3

90 95 4.8
53 51 4,7
28 30

26

0.5

5,5,5%

o0 O
o L4

<+ ™

75
60

140
130

1.6

1.1
2,1

1.5
1.8

2.2

4,8 5.2 6,5 1.6
4.2 5.8 1.4

125 125
130 130

130
120

s 9

4,2

56
33
15

72

4.9

78 4,1
49

75

82

50

3.4
8.7

4,1

50
23

53

1.0
0.5

4,2

24

6.3

7.2

4,1

4,2

25

21
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