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ABSTRACT

In this thesis, we lay out the goal, and a broad outline, for a program that takes
quantum mechanics in its minimal form to be the fundamental ontology of the
universe. Everything else, including features like space-time, matter and gravity
associatedwith classical reality, are emergent from theseminimal quantumelements.
We argue that the Hilbert space of quantum gravity is locally finite-dimensional,
in sharp contrast to that of conventional field theory, which could have observable
consequences for gravity. We also treat time and space on an equal footing in
Hilbert space in a reparametrization invariant setting and show how symmetry
transformations, both global and local, can be treated as unitary basis changes.

Motivated by the finite-dimensional context, we use Generalized Pauli Operators
as finite-dimensional conjugate variables and define a purely Hilbert space notion
of locality based on the spread induced by conjugate operators which we call “Op-
erator Collimation.” We study deviations in the spectrum of physical theories,
particularly the quantum harmonic oscillator, induced by finite-dimensional effects,
and show that by including a black hole-based bound in a lattice field theory, the
quantum contribution to the vacuum energy can be suppressed by multiple orders
of magnitude.

We then show how one can recover subsystem structure in Hilbert space which ex-
hibits emergent quasi-classical dynamics. We explicitly connect classical features
(such as pointer states of the system being relatively robust to entanglement produc-
tion under environmental monitoring and the existence of approximately classical
trajectories) with features of the Hamiltonian. We develop an in-principle algorithm
based on extremization of an entropic quantity that can sift through different fac-
torizations of Hilbert space to pick out the one with manifest classical dynamics.
This discussion is then extended to include direct sum decompositions and their
compatibility with Hamiltonian evolution.

Following this, we study quantum coarse-graining and state-reduction maps in a
broad context. In addition to developing a first-principle quantum coarse-graining
algorithm based on principle component analysis, we construct more general state-
reduction maps specified by a restricted set of observables which do not span the
full algebra (as could be the case of limited access in a laboratory or in various
situations in quantum gravity). We also present a general, not inherently numeric,
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algorithm for finding irreducible representations of matrix algebras.

Throughout the thesis, we discuss implications of our work in the broader goal of
understanding quantum gravity from minimal elements in quantum mechanics.
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term for the choice Ô ≡ q̂ and quantifies the scrambling of the de-
composition as discussed in the text. . . . . . . . . . . . . . . . . . . 148

8.7 Plot showing the dependence of Tunneling Spread T
(
|k〉 , �f, �⊕

)
on energy eigenstates (represented by their eigenvalues �=) of the
double-well Hamiltonian expressed in different direct-sum de-
compositions �⊕ (q̂, f, < = ;) ofH�, . There exists a preferred
decomposition into direct sum subspaces (the canonical, ordered
(−;,−; + 1, . . . ,−1) ∪ (0, 1, 2, . . . , ;) one) in which low-lying en-
ergy states have very small tunneling spreads and hence represent
robust, localized states in the direct-sum subspace. Other decom-
positions are near-generic where there is no manifestation of direct-
sum locality. Notice the log scale on the y-axis representing the
tunneling spread. The very-high energy behavior is a consequence
of the three largest energy eigenstates, which are artifacts of finite-
dimensional, cyclic constructions and do not bear any physical sig-
nificance for our results. . . . . . . . . . . . . . . . . . . . . . . . . 149

8.8 Plot showing correlation between �= and (�=)�f for different choices
of scramblings �⊕ = {q̂, f, <} in the double-well toy model. Only
in the canonical, preferred decomposition do the low-lying eigen-
states of �̂ serve as low energy states which can be localized within
a given direct-sum subspace. The very-high energy behavior is a
consequence of the three largest energy eigenstates, which are arti-
facts of finite-dimensional, cyclic constructions and do not bear any
physical significance for our results. . . . . . . . . . . . . . . . . . . 150



xviii

9.1 Plot of von Neumann entanglement entropy of a constituent qubit of
a state as a function of the number of PCA components retained in
reconstructing the state. . . . . . . . . . . . . . . . . . . . . . . . . 178

10.1 Update rules for reflection relations after scattering. The red (dashed)
edges represent unknown reflection relations, black (solid) edges
represent properly-reflecting pairs, absent edges represent orthog-
onal pairs. One-sided edges stand for the reflection relations with
other projections in the rest of the network. (a) In the generic case
where each Π8=1,2 breaks down into

{
Π
(_: )
8

}
, the result is a series

of properly reflecting pairs (for _ = 0 the pair is orthogonal) as
described in Lemma 10.4.4. All the external edges are inherited
by

{
Π
(_: )
8

}
from Π8 with the black (solid) edges being reset to red

(dashed). (b) In the special case where Π1 did not break down un-
der scattering, we know Π1 ≡ Π

(_1)
1 . In this case, Π2 may break

down to at most two projections (if it also did not break down, then
Π1, Π2 should just be relabeled as reflecting) such that Π (_1)

1 , Π (_1)
2

are properly reflecting and Π (0)2 is orthogonal to both. In (b) the up-
date rule of external edges differs from the generic case (a) in that
for unbroken projection Π (_1)

1 , the black (solid) edges are not reset
to red (dashed). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

10.2 Evolution of the reflection network of the toy model during two
scattering iterations. The red (dashed) edges represent unknown re-
flection relations, black (solid) edges represent properly reflecting
pairs, absent edges represent orthogonal pairs. (a) is the initial im-
proper reflection network. (b) is the intermediate network after one
scattering iteration. (c) is the final proper reflection network after
two scatterings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

10.3 Completion of a reflection network lacking an MSMP (a), to the
one that has an MSMP (b). . . . . . . . . . . . . . . . . . . . . . . . 231

10.4 Plot of average entanglement growth rate &BPT over different BPTs
(different row arrangements) for # = 3 spins with the compatible
collective observable "2 =

∑3
`=1 f

(`)
I corresponding to a value of

6 = 0.5 < 6crit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270



xix

10.5 Transition structure of the Hamiltonian in the tensor product basis
of "2 =

∑3
`=1 f

(`)
I for # = 3 spins. It should be noted that this is

not a BPT representation, but only illustrates the transition structure
of the Hamiltonian in the chosen basis. . . . . . . . . . . . . . . . . 271

10.6 (color online) The 6 selected, quasi-classical BPTs which maximize
&BPT as a measure of dynamical coherence for # = 3 spins corre-
sponding to the compatible collective observable "2 =

∑3
`=1 f

(`)
I .

Allowed transitions by the Hamiltonian flip single bits in the {|0〉 , |1〉}
basis. States in the middle two columns not connected by Hamilto-
nian transitions are shown by the same color. . . . . . . . . . . . . . 271

10.7 One instance of the class of selected quasi-classical BPTs for # = 4
spins corresponding to the compatible collective observable "2 =∑3
`=1 f

(`)
I . Allowed transitions by the Hamiltonian flip single bits

in the {|0〉 , |1〉} basis. . . . . . . . . . . . . . . . . . . . . . . . . . 272
10.8 Plot of average entanglement growth rate &BPT over different BPTs

(different row arrangements) for # = 4 spins with the compatible
collective observable "2 =

∑3
`=1 f

(`)
I corresponding to a value of

6 = 0.6 < 6crit. The inset shows the first few classes of BPTs with
lowest values of &BPT. . . . . . . . . . . . . . . . . . . . . . . . . . 272

10.9 The selected, unique quasi-classical BPTs with minimum entangle-
ment growth rate for # = 3 spins corresponding to the compatible
collective observable "2 =

∑3
`=1 f

(`)
G . Allowed transitions by the

Hamiltonian flip two adjacent bits in the {|+〉 , |−〉} basis which in-
duce the superselection sectors. . . . . . . . . . . . . . . . . . . . . 273



xx

LIST OF TABLES

Number Page
9.1 List of Important Notation Used . . . . . . . . . . . . . . . . . . . . 164

10.1 Tensor Product Eigenstates for "2 =
∑3
`=1 f

(`)
I for # = 3 spins,

arranged in columns labeled by distinct eigenvalues. Note that this
is not a BPT, just an enumeration of the eigenstates arranged by the
column structure governed by the compatible "2. . . . . . . . . . . . 269



1

C h a p t e r 1

PROLOGUE

Quantum mechanics, our most fundamental theory of the universe has been tremen-
dously successful in making quantitative predictions for experiments; however we
have not been as successful in understanding what it really means, and how it con-
nects with underlying reality. Part of the disconnect can be attributed to the fact that
we tend to think in terms of classical ideas such as “space,” “particles,” and “fields.”
Such constructions may not have a place in the fundamental ontology of quantum
mechanics which, at its heart, simply describes the evolution of a state vector in an
abstract Hilbert space. We typically start with some classical theory and then “quan-
tize” it. Presumably Nature works the other way around: it is quantum-mechanical
from the start, and a classical limit emerges in the right circumstances.

The situation becomes particularly acute when we think about a quantum theory
of gravity, which should allow for intrinsically quantum-mechanical spacetimes
(characterized by features such as the possibility of superpositions of different
spacetimes, for instance) and which should not rely on any a priori choice of
spacetime background. While background-dependent approaches, such as string
theory and related conjectures such as the AdS/CFT correspondence [1] teach us
a great deal about interesting features of quantum gravity, considerations above
motivate studying quantum gravity from the perspective of finding gravity within
basic quantum mechanics. In other words, one should try “gravitatizing” quantum
mechanics instead of quantizing classical gravity.

In this thesis, we take such a quantum-first approach. Our focus is to explore topics
in quantum mechanics with an eye toward their applicability in broader questions
in quantum gravity. In such an approach, we work in a paradigm involving only
minimal elements in quantum mechanics. We do not rely on, or presuppose any
classical structure and we study its emergence frommore ontologically fundamental
elements in quantum mechanics. The title of this thesis is a reflection on this
approach. It involves giving up our most cherished classical notions, such as space,
subsystems and locality, to mention a few; and while it is a tall order as Figure 1
depicts, we feel it can shed some light on interesting aspects of quantum gravity.

The first part of this thesis titled “On a Quantum Footing” is a collection of papers
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Figure 1.1: A succinct representation of the challenges one might face in a
quantum-first approach to quantum gravity. (Picture credit: Abstruse Goose
https://abstrusegoose.com/111)

which lay out the quantum mechanical framework, the motivation for our work,
and some big picture musings. In Chapter 2, we raise the question how far we can
take the idea that the world is fundamentally quantum, with a minimal plausible
ontology: a Hilbert space,H , a vector |k〉 within it, and a Hamiltonian �̂ governing
the evolution of that vector over time. Such an approach, which we call “Mad-Dog
Everettianism” is characterized by abstract elements in Hilbert space, without a pre-
ferred algebra of observables, and without necessarily representing Hilbert space as
a set of wavefunctions over some classical variables. All of the additional elements
familiar in physical theories, are required to be emergent from the state vector in

https://abstrusegoose.com/111)
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Hilbert space, which by itself, is a rather featureless construct. We outline the broad
goal of the program and discuss a possible road-map to emerge the rich features of
the classical world we live in – including space, matter and gravity – from minimal
elements in quantum mechanics. As we work towards a quantum theory of gravity
from a quantum-first perspective, it is important to understand the structure of its
Hilbert space. In Chapter 3, motivated by the Bekenstein bound, the Holographic
principle, and its applicability to horizons such as the de Sitter patch of the universe
we live in, we argue in a model independent way that the Hilbert space of quantum
gravity is locally finite-dimensional. We discuss ensuing implications, including for
how basic quantummechanical data can get mapped to the richness of quantum field
theory (QFT) on curved backgrounds. Chief among these implications is that on
separable Hilbert spaces (of which finite-dimensional spaces are a special case), the
Stone-von Neumann theorem [2] guarantees us uniqueness of the irreducible repre-
sentation of the algebra of the canonical commutation relations (CCRs), upto unitary
equivalence. This connects back into the heart of the Mad-Dog Everettianism pro-
gram – it implies that all Hilbert spaces of a given finite dimension are isomorphic,
and the algebra of observables is simply that of “all Hermitian operators,” and any
further structure on it must be emergent in an appropriate limit. This is in stark
contrast to the Hilbert space structure of conventional quantum field theory where
one transits from a finite to an infinite number of degrees of freedom and hence
an un-countably infinite-dimensional Hilbert space (which is non-separable). In
this case of QFT, there can be unitarily inequivalent representations of the CCRs1
and one might therefore conclude that specification of additional data (such as the
inequivalent, cyclic representation of the algebra) is also an important ingredient in
defining a quantum theory, over and above the Hamiltonian, weakening the notion
of emergence from minimal quantum elements.

We then go on to focus on another interesting aspect of quantum gravity, the fa-
mous “problem of time;” reconciling how time enters as an independent, absolute,
classical parameter in quantum mechanics, whereas in relativity, time has a rela-
tive connotation depending on the observer and distribution of mass-energy. More
generally, theories with reparametrization invariance such as classical general rela-
tivity, which has general (local) coordinate invariance, have a formulation in terms
of constraints. Physical states in Hilbert space in the theory are the ones that are an-
nihilated by these constraints. In particular, this is reflected in the Wheeler-DeWitt

1In Algebraic Quantum Field Theory, this is described by Haag’s theorem [3].
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equation [4], which represents a Hamiltonian constraint of the form �̂ |k〉 = 0 in
the context of quantizing general relativity. In such a setup, there is no external time
parameter with respect to which states evolve. Rather, time evolution is deemed as
an emergent feature. In this context, the Page-Wootters formulation (and extensions
thereof) [5–8] is one of the most famous constructions of emergent time, where
time is treated as an internal quantum degree of freedom and not as an external
classical parameter. The global quantum state is static and the apparent “flow” of
time is due to the entanglement and correlations between the temporal degree of
freedom with the rest of Hilbert space. We generalize this construction in Chapter
4 by treating space and time on an equal footing in Hilbert space (in the context
of relativistic quantum mechanics of particles). We base our construction on using
both Hamiltonian and momentum constraints which are explicitly linear and first
order in conjugate momenta, and their joint kernel as defining the set of physical
states i.e. the ones annihilated by the constraints. For such physical states, spatial
and temporal translation features emerge as a consequence of entanglement and
correlations between different factors of the global Hilbert space H . By applying
dispersion relations to eigenvalues appearing in these constraints, and not treating
them as operator-valued equations, we show that Klein-Gordon and Dirac equations
in relativistic quantum mechanics can be treated with a uniform approach (unlike
the conventional textbook approach). We show symmetry transformations to be
implemented by unitary basis changes in Hilbert space. Global symmetries, such
as Lorentz transformations, modify the decomposition of Hilbert space; and local
symmetries, such as * (1) gauge symmetry are diagonal in coordinate basis and do
not alter the decomposition of Hilbert space. Such a construction where space and
time are treated as quantum degrees of freedom offers a natural paradigm to study
interaction of spacetime with matter in the context of gravitational back-reaction
which could help us better understand the quantum nature of the universal coupling
of gravity to mass-energy.

Motivated by the argument that the Hilbert space of quantum gravity is locally finite-
dimensional, a common thread in this thesis is the emphasis on finite-dimensional
Hilbert spaces and how it maps onto conventional field theory, which is infinite
dimensional. In Part II of the thesis, we transition to discuss features and im-
plications of finite-dimensional quantum mechanics with an eye towards quantum
gravity. Chapter 5 studies the role of generalized Pauli operators (which derive their
algebraic structure from the generalized Clifford algebra [9]) as a natural paradigm
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for studying finite-dimensional conjugate variables and the role they can play in
modifying a theory’s spectrum from the usual infinite-dimensional case. We define
a purely Hilbert space, pre-geometric notion of “locality” called Operator Collima-
tion, based on the spread induced by finite-dimensional conjugate variables, from
which one can try to understand more conventional notions of geometric and graph
locality. Such ab-initio finite-dimensional effects can also introduce non-trivial
modifications to the structure of canonical commutation relations, Feynman dia-
grams and uncertainty principles and could be important imprints of the quantum
mechanical structure of gravity. We study modifications to the spectrum of the clas-
sic harmonic oscillator Hamiltonian due to effects of a finite-dimensional Hilbert
space. In particular, we show that the zero-point energy of a harmonic oscillator
with frequency l depends both on the Hilbert space dimension and the frequency
l of the oscillator – in sharp deviation from its conventional (infinite-dimensional)
counterpart, �0 = l/2 (in units with ℏ = 1). Chapter 6 puts these finite-dimensional
conjugate operators to use in the context of the quantum contribution to vacuum
energy in quantum field theory. We explore the viewpoint that quantum field theory
may emerge from an underlying theory that is locally finite-dimensional, and we
construct a locally finite-dimensional version of a Klein-Gordon scalar field using
generalized Pauli operators. We model gravitational effects in our theory by de-
manding that the effective field theory should cut off below any excitations that
would collapse into black holes. We therefore impose the condition that the largest
energy eigenvalue for eachKlein-Gordonmode should not exceed the Schwarzschild
energy of the box. Using bounds on the largest eigenvalue of a finite-dimensional
harmonic oscillator, we constrain the Hilbert space dimension of each Klein-Gordon
mode based on our black hole condition, with high energy modes therefore getting
lower dimension of Hilbert space, and vice versa. Due to this energy dependence in
the Hilbert space dimension, we then show that the net zero point energy of these
Klein-Gordon modes which contributes to the quantum contribution to the vacuum
energy undergoes a massive suppression as compared to the conventional textbook
calculation. Thus, taking finite-dimensionality and holography together seriously
can possibly have important predictive consequences for gravity.

We then go on, in Part III, to focus on a central theme of the Mad-Dog Everettian-
ism program: the emergence of structure in an otherwise featureless Hilbert space.
Chapter 7 focuses on understanding what governs the non-trivial subsystem struc-
ture we associate classical reality with. What dictates the split between system and
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environment in the decoherence paradigm? (This question is sometimes referred to
as the “Set Selection” or the “generalized preferred basis” problem in the quantum
foundations literature.) In the presence of gravity, locality and subsystem structure
are more subtle than in traditional laboratory settings, and therefore it is an interest-
ing direction to investigate them as emergent phenomena from first-principles. We
argue that a quasi-classical factorization of Hilbert space has the following features:

1. Robustness: There exist preferred pointer states of the system (and associ-
ated pointer observables) that, if initially unentangled with the environment,
typically remain unentangled under evolution by the Hamiltonian.

2. Predictability: For states with near definite value of the pointer observable,
it will serve as a predictable quasi-classical variable, with minimal spreading
under Hamiltonian evolution.

Based on this, we establish an (in principle) algorithm, based on entanglement and
entropic structures, that distinguishes quasi-classical tensor factorizations of Hilbert
space from arbitrary ones. We explicitly connect these characteristics of classical
factorizations with features of the Hamiltonian such as existence of (approximate)
low entropy eigenstates which are robust to entanglement production, and high
operator collimation (as introduced in our work in Ref. [10]) and locality.
We then go on inChapter 8 to generalize this discussion to direct sumdecompositions
of Hilbert space where, with an eye towards understanding how lattice structures can
emerge in Hilbert space. We point out that the vast majority of finite-dimensional
Hilbert spaces cannot be isomorphic to the tensor product ofHilbert-space subfactors
that describes a lattice theory. A generic Hilbert space can only be split into a direct
sum corresponding to a basis of state vectors spanning the Hilbert space and we
studied a toymodel (the finite-dimensional discretization of the quantum-mechanical
double-well potential) where geometric states evolve locally within each such direct
sum factor. We define a notion of “direct-sum locality” which characterizes states
and decompositions compatible with Hamiltonian time evolution, and show that
such decompositions are highly non-generic.

In addition to emergent classicality and lattice structures, extension of our work
on preferred decompositions of Hilbert space can segue into understanding impor-
tant questions in theories with duals such as AdS/CFT (which represent different
factorizations of the same underlying Hilbert space); horizon complementarity and
the information paradox; and the emergence of spacetime and matter from basic
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quantum elements.

Moving on to Part IV, we study quantum coarse-graining and state-reduction maps
in a broad context which can offer a natural paradigm for emergence of various
phenomenon in quantum gravity. Access to limited information/degrees of freedom
is what makes quantum mechanics so rich and exciting. Important concepts such as
entanglement, decoherence, emergent time in the Page-Wootters construction, and
even localized quantum information in a region of space, all hinge on the existence
of appropriate state-reduction maps. In the words of Landsman [11],

The essence of a “measurement,” “fact” or “event” in quantummechan-
ics lies in the non-observation, or irrelevance, of a certain part of the
system in question. (...) A world without parts declared or forced to be
irrelevant is a world without facts.

In Chapter 9, we describe a coarse-graining technique for a set of specified states
in a finite-dimensional Hilbert space without relying on any preferred structure
of locality or preferred set of observables. We use principle component analysis
(PCA) to define the state reduction map, and the resulting coarse-grained quantum
states live in a lower dimensional Hilbert space whose basis is defined using the
underlying (isometric embedding) transformation of the set of fine-grained states
we wish to coarse-grain. We show that the transformation can be interpreted
an “entanglement coarse-graining” scheme that retains most of the global, useful
entanglement structure of each state, while needing fewer degrees of freedom for its
reconstruction. Such a first-principles coarse-graining technique is motivated from,
and fits well, with the Mad-Dog Everettianism program where we are working with
minimal elements in quantum mechanics and often don’t have any a priori notion of
coarse-graining based on subsystem structure, locality, and the likes.
Themost common state-reductionmap in quantummechanics is the partial tracemap
based on a tensor product factorization of Hilbert space. While it is the keystone
construction on which decoherence is based, and has ubiquitous use in quantum
information, one can notice that most coarse-grainings and state reduction maps
cannot be described with the partial trace map. For example, most observables
do not take the simple form of acting on a single tensor factor, even when such
a factorization of the Hilbert space exists. In particular, the sorts of collective
observables which correspond to the averaged, macroscopic properties featured
in statistical mechanics do not take this form. That is, we do not expect, even
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approximately, a factorization of the form H � Hcollective ⊗ Hother for the sorts of
collective observables we might measure in a laboratory.

A similar situation arises in field theories, in which we often wish to construct some
notion of a state restricted to a finite spatial region. It is well known [12, 13] that
even in the simplest field theories we cannot simply apply the naive partial-trace
map to construct the reduced state as discussed above. When the theory has a
gauge symmetry, the physical Hilbert space is restricted to states which obey global
constraints like a Gauss law, and we cannot consistently restrict to subregions in a
gauge-invariant way. Given that many natural coarse-grainings of quantum systems
cannot be captured by the partial-trace map, it is natural to consider more general
state-reduction maps, which is our focus in Chapter 10. We investigate the general
problem of identifying how the quantum state reduces given a restriction on the
observables which do not span the full algebra of observables. For example, in an
experimental setting, the set of observables that can actually be measured is usually
modest (compared to the set of all possible observables) and their resolution is
limited. We show that in such situations, the appropriate state-reduction map can be
defined via a generalized bipartition, which is associated with the structure of irre-
ducible representations of the algebra generated by the restricted set of observables.
One of our main technical results is a general, not inherently numeric, algorithm
for finding irreducible representations of matrix algebras. The main application of
the algorithm that we will focus on is the idea that operational constraints lead to
state reductions which generalize the prototypical system-environment split in the
context of the decoherence program.
We further define more general ways of decomposing Hilbert space than tensor
products and direct sums which we call partial bipartitions. In particular, such par-
tial bipartitions describe reductions specified by a discrete set of observables which
do not make up a subalgebra either. Using this machinery, we can capture very
general coarse-grainings of Hilbert space, since in most cases, the coarse-grained
space which will preserve some relevant information will not correspond to a tensor
factor of Hilbert space. A particular interesting case which we consider is to look
for coarse-graining of a collection of # underlying degrees of freedom (such as #
particles) based on a collective or average feature of these degrees of freedom while
tracing out the internal features. Using the Ising Model in 1D as an example, we
outline an algorithm that can vary over different partial bipartitions of Hilbert space
to find the one which represents the most quasi-classical dynamics in the reduced
space which preserves the collective information of the degrees of freedom. We
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also discuss the relevance our results might have for quantum information, bulk re-
construction in holography, and quantum gravity. Such partial partitions of Hilbert
space can have consequences for our understanding of questions such as the localiza-
tion of quantum information in spatial regions in the presence of gravity. Partitions
and coarse-graining could also be important in understanding how spacetime, just
as the phases of a thermodynamic system emerges from the underlying quantum
degrees of freedom.

The quantum nature of space and time forms a core question in our understand-
ing of quantum gravity. We propound the viewpoint that re-examining crucial first
principle ideas in quantum mechanics can be an important direction of inquiry to-
ward our understanding of quantum gravity. As part of our program to emerge the
richness of the classical world we live in – including space, matter and gravity –
from minimal elements in quantum mechanics, this thesis is a glimpse into some
interesting results and avenues in this direction.



Part I

On a Quantum Footing

10
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C h a p t e r 2

MAD-DOG EVERETTIANISM: QUANTUMMECHANICS AT
ITS MOST MINIMAL

To the best of our current understanding, quantum mechanics is part of the most
fundamental picture of the universe. It is natural to ask how pure and minimal this
fundamental quantum description can be. The simplest quantum ontology is that of
the Everett or Many-Worlds interpretation, based on a vector in Hilbert space and
a Hamiltonian. Typically one also relies on some classical structure, such as space
and local configuration variables within it, which then gets promoted to an algebra
of preferred observables. We argue that even such an algebra is unnecessary, and the
most basic description of the world is given by the spectrum of the Hamiltonian (a
list of energy eigenvalues) and the components of some particular vector in Hilbert
space. Everything else – including space and fields propagating on it – is emergent
from these minimal elements.

This chapter is based on the following reference:

S. M. Carroll and A. Singh, Mad-Dog Everettianism: Quantum mechanics at its
most minimal, pp. 95–104. Springer International Publishing, 2019. https://
doi.org/10.1007/978-3-030-11301-8_10

2.1 Taking Quantum Mechanics Seriously
The advent of modern quantum mechanics marked a profound shift in how we
view the fundamental laws of nature: it was not just a new theory, but a new kind of
theory, a dramatic shift from the prevailing Newtonian paradigm. Over nine decades
later, physicists have been extremely successful at applying the quantum rules to
make predictions about what happens in experiments, but much less successful at
deciding what quantummechanics actually is – its fundamental ontology and indeed
its relation to underlying reality, if any.

One obstacle is that, notwithstanding the enormous empirical success of quantum
theory, we human beings still tend to think in classical terms. Quantum theory
describes the evolution of a state vector in a complex Hilbert space, but we populate
our theories with ideas like “spacetime,” “particles,” and “fields.” We typically con-

http://dx.doi.org/10.1007/978-3-030-11301-8_10
https://doi.org/10.1007/978-3-030-11301-8_10
https://doi.org/10.1007/978-3-030-11301-8_10
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struct quantum theories by starting with some classical theory and then “quantizing”
it. Presumably Nature works the other way around: it is quantum-mechanical from
the start, and a classical limit emerges in the right circumstances.

In this chapter we ask how far we can take the idea that the world is fundamentally
quantum, with a minimal plausible ontology: a Hilbert spaceH , a vector |k〉 within
it, and a Hamiltonian �̂ governing the evolution of that vector over time. This
is a version of the Everettian (Many-Worlds) approach to quantum mechanics, in
which the quantum state is the only variable and it smoothly evolves according to
the Schrödinger equation with a given Hamiltonian,

�̂ |k(C)〉 = 8mC |k(C)〉. (2.1)

Our approach is distinguished by thinking of that state as a vector in Hilbert space,
without any preferred algebra of observables, and without necessarily representing
Hilbert space as a set of wave functions over some classical variables. All of the
additional elements familiar in physical theories, we will argue, can be emergent
from the state vector (cf. [15]). We call this approach “Mad-Dog Everettianism,” to
emphasize that it is as far as we can imagine taking the program of stripping down
quantum mechanics to its most pure, minimal elements.1

2.2 The Role of Classical Variables
The traditional way to construct a quantum theory is to posit some classical con-
figuration space X (which could be momentum space or some other polarization
of phase space), then considering the space of all complex-valued functions on
that space. With an appropriate inner product 〈·, ·〉, the subset of square-integrable
functions forms a Hilbert space:

H = {k : X→ C
��〈k, k〉 < ∞}. (2.2)

This gives us a representation ofH , but the Hilbert space itself is simply a complete,
normed, complex-valued vector space. That gives us very little structure to work
with: all Hilbert spaces of the same finite dimensionality are isomorphic, as are
infinite-dimensional ones that are separable (possessing a countable dense subset,
which implies a countable orthonormal basis). We may therefore ask, once H is
constructed, is there any remnant of the original classical space X left in the theory?

1The name is inspired by philosopher Owen Flanagan’s description of his colleague Alex
Rosenberg’s philosophy as “Mad-Dog Naturalism.”
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The answer is “not fundamentally, no.” A given representation might be useful
for purposes of intuition or calculational convenience, but it is not necessary for
the fundamental definition of the theory. Representations are very far from unique,
even if we limit our attention to representations corresponding to sensible physical
theories.

One lesson of dualities in quantum field theories is that a single quantum theory can
be thought of as describing completely different classical variables. The fundamental
nature of the “stuff” being described by a theory can change under such dualities, as
in that between the sine-Gordon boson in 1+1 dimensions and the theory of amassive
Thirring fermion [16]. Even the dimensionality of space can change, as is well-
appreciated in the context of the AdS/CFT correspondence, where a single quantum
theory can be interpreted as either a conformal field theory in a fixed 3-dimensional
Minkowski background or a gravitational theory in a dynamical (3+1)-dimensional
spacetime with asymptotically anti-de Sitter boundary conditions [1].

The lesson we draw from this is that Nature at its most fundamental is simply
described by a vector in Hilbert space. Classical concepts must emerge from this
structure in an appropriate limit. The problem is that Hilbert space is relatively
featureless; given that Hilbert spaces of fixed finite or countable dimension � are all
isomorphic, it is a challenge to see precisely how a rich classical world is supposed
to emerge.

Ultimately, all we have to work with is the Hamiltonian and the specific vector
describing the universe. In the absence of any preferred basis, the Hamiltonian is
fixed by its spectrum, the list of energy eigenvalues:

{�0, �1, �2, . . .} , �̂ |=〉 = �= |=〉 , (2.3)

and the state is specified by its componenents in the energy eigenbasis,

{k0, k1, k2, . . .} , |k〉 =
∑
=

k= |=〉. (2.4)

The question becomes: how do we go from such austere lists of numbers to the
fullness of the world around us?

2.3 The Role of Emergence
One might ask why, if the fundamental theory of everything is fixed by the spectrum
of some Hamiltonian, we don’t simply imagine writing the state of the universe in
the energy eigenbasis, where its evolution is trivial? The answer is the one that
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applies to any example of emergence: there might be other descriptions of the same
situation that provide useful insight or computational simplification.

Consider the classical theory of # particles moving under the influence of some
multi-particle potential in 3 dimensions of space. The corresponding phase space
is 6#-dimensional, and we could simply think of the theory as that of one point
moving in a 6#-dimensional structure. But by thinking of it as # particles moving
in a 3-dimensional space of allowed particle positions, we gain enormous intuition;
for example, it could become clear that particles influence each other when they are
nearby in space, which in turn suggests a natural way to coarse-grain the theory.
Similarly, writing an abstract vector in Hilbert space as a wave function over some
classical variables can provide crucial insight into the most efficient and insightful
way to think of what is happening to the system.

2.4 Local Finite-Dimensionality
The Hilbert spaces considered by physicists are often infinite-dimensional, from a
simple harmonic oscillator to quantum field theories. For separable Hilbert spaces
(finite-dimensional or infinite-dimensional countable), the Stone-von Neumann the-
orem guarantees us uniqueness of the irreducible representation of the algebra of
the canonical commutation relations (CCRs), up to unitary equivalence. In non-
separableHilbert spaces, however, there can be unitarily inequivalent representations
of the CCRs, implying that the physical subspaces spanned by eigenstates of oper-
ators in a particular representation will be different. In Algebraic Quantum Field
Theory, this is described by Haag’s theorem [3]. Then different choices of states (a
unit-normed, positive linear functional) on the algebra specify different inequiva-
lent (cyclic) representations. One might therefore conclude that specification of the
algebra state is also an important ingredient in defining a quantum theory, over and
above the Hamiltonian.

However, there are good reasons from quantum gravity to think that the true Hilbert
space of the universe is “locally finite-dimensional” [17]. That is, we can decompose
H into a (possibly infinite) tensor product of finite-dimensional factors,

H =
⊗
U

HU, (2.5)

where for each U we have dim(HU) < ∞. If we have factored the Hilbert space into
the smallest possible pieces, we will call these “micro-factors.” The idea is that if
we specify some region of space and ask how many states could possibly occupy the
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region inside, the answer is finite, since eventually the energy associated with would-
be states becomes large enough to create a black hole the size of the region [18].
Similarly, our universe seems to be evolving toward a de Sitter phase dominated by
vacuum energy; a horizon-sized patch of such a spacetime is a maximum-entropy
thermal state [19] with a finite entropy and a corresponding finite number of degrees
of freedom [20, 21].

There are subtleties involvedwith trying tomap collections of factors in (2.5) directly
to regions of space, including the fact that “a region of space” R might not be well-
defined across different branches of the quantum-gravitational wave function. All
that matters for us, however, is the existence of a decomposition of this form, and
the idea that everything happening in one particular region of space on a particular
branch is described by a finite-dimensional factor of Hilbert space HR that can
be constructed as a finite tensor product of micro-factors HU. Given some overall
pure state |k〉 ∈ H , physics within this region is described by the reduced density
operator

dR = TrR̄ |k〉〈k |. (2.6)

In that case, there is no issue of specifying the correct algebra of observables: the
algebra is simply “all Hermitian operators acting on HR .” Any further structure
must emerge from the spectrum of the Hamiltonian and the quantum state.

2.5 Spacetime from Hilbert Space
Fortunately, we are guided in our quest by the fact that we know a great deal about
what an appropriate emergent description should look like – a local effective field
theory defined on a semiclassical four-dimensional dynamical spacetime. The first
step is to choose a decomposition of theHilbert spaceHR (representing, for example,
the interior of our cosmic horizon) into finite-dimensional micro-factors. We can
say that the Hamiltonian is “local” with respect to such a decomposition if, for some
small integer : , the Hamiltonian connects any specific factor �U∗ to no more than :
other factors; intuitively, this corresponds to the idea that degrees of freedom at one
location only interact with other degrees of freedom nearby.

It turns out that a generic Hamiltonian will not be local with respect to any decom-
position, and for the special Hamiltonians that can be written in a local form, the
decomposition in which that works is essentially unique [22]. In other words, for the
right kind of Hamiltonian, there is a natural decomposition of Hilbert space in which
physics looks local, which is fixed by the spectrum alone. From the empirical suc-
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cess of local quantum field theory, we will henceforth assume that the Hamiltonian
of the world is of this type, at least for low-lying states near the vacuum.

This preferred local decomposition naturally defines a graph structure on the space
of Hilbert-space factors, where each node corresponds to a factor and two nodes
are connected by an edge if they have a nonzero interaction in the Hamiltonian. To
go from this topological structure to a geometric one, we need to look beyond the
Hamiltonian to the specifics of an individual low-lying state. Given any factor of
Hilbert space constructed froma collection of smaller factors,H� = ⊗U∈�HU ⊂ HR ,
and its relative complementH�̄ = HR\H�, we can construct its density matrix and
entropy,

d� = Tr�̄ dR , (� = −Tr d� log d�, (2.7)

and given any two such factorsH� andH�, we can define their mutual information

� (� : �) = (� + (� − (��. (2.8)

Guided again bywhatwe knowabout quantumfield theory, we consider “redundancy-
constrained” states, which capture the notion that nearby degrees of freedom are
highly entangled, while faraway ones are unentangled. In that case, the entropy of
d� can be written as the sum of mutual informations between micro-factors inside
and outsideH�,

(� =
1
2

∑
U∈�,V∈ �̄

� (U : V). (2.9)

The mutual information allows us to assign weights to the various edges in our
Hilbert-space-factor graph. With an appropriate choice of weighting, these weights
can be interpreted as distances, with largemutual information corresponding to short
distances [23]. That gives our graph an emergent spatial geometry, from which we
can find a best-fit smooth manifold using multidimensional scaling. (Alternatively,
the entropy across a surface can be associated with the surface’s area, and the
emergent geometry defined using a Radon transform [24].) As the quantum state
evolves with time according to the Schrödinger equation, the spatial geometry does
as well; interpreting these surfaces as spacelike slices with zero extrinsic curvature
yields an entire spacetime with a well-defined geometry.

2.6 Emergent Classicality
A factorization of Hilbert space into local micro-factors is not quite the entire story.
To make contact with the classical world as part of an emergent description, we need
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to further factorize the degrees of freedom within some region into macroscopic
“systems” and a surrounding “environment,” and define a preferred basis of “pointer
states” for each system. This procedure is crucial to the Everettian program, where
the interaction of systemswith their environment leads to decoherence and branching
of the wave function. To describe quantum measurement, one typically considers a
quantum object H@, an apparatus H0, and an environment H4. Branching occurs
when an initially unentangled state evolves first to entangle the object with the
apparatus (measurement), and then the apparatuswith orthogonal environment states
(decoherence), for example:

|k〉 = (U |+〉@ + V |−〉@) ⊗ |0〉0 ⊗ |0〉4 (2.10)

→ (U |+〉@ |+〉0 + V |−〉@ |−〉0) ⊗ |0〉4 (2.11)

→ U |+〉@ |+〉0 |+〉4 + V |−〉@ |−〉0 |−〉4 . (2.12)

The Born Rule for probabilities, ?(8) = |k8 |2, is not assumed as part of the theory;
it can be derived using techniques such as decision theory [25] or self-locating
uncertainty [26].

Two things do get assumed: an initially unentangled state and a particular fac-
torization into object/apparatus/environment. The former condition is ultimately
cosmological – the universe started in a low-entropy state, which we will not discuss
here. The factorization, on the other hand, should be based on local dynamics.
While this factorization is usually done based on our quasi-classical intuition, there
exists an infinite unitary freedom in the choice of our system and environment.
We seek an algorithm for choosing this factorization that leads to approximately
classical behavior on individual branches of the wave function.

This question remains murky at the present time, but substantial progress is being
made. The essential observation is that, if quantum behavior is distinguished from
classical behavior by the presence of entanglement, classical behavior may be said
to arise when entanglement is relatively unimportant. In the case of pointer states,
this criterion is operationalized by the idea that such states are the ones that remain
robust under being monitored by the environment [27]. For a planet orbiting the Sun
in the solar system, for example, such states are highly localized around classical
trajectories with definite positions and momenta.

A similar criterion may be used to define the system/environment split in the first
place [28, 29]. Consider a fixed Hamiltonian and some Hilbert-space factorization
into subsystems � and �. Generically, if we start with an unentangled (tensor-
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product) state in that factorization, the amount of entanglement will grow very
rapidly. However, we can seek the factorization in which there exist low-entropy
states forwhich entanglement grows at aminimum rate. Thatwill be the factorization
in which it is useful to define robust pointer states in one of the subsystems, while
treating the other as the environment.

This kind of procedure for factorizing Hilbert space is, in large measure, the origin
of our notion of preferred classical variables. Given a quantum system in a finite-
dimensional part of Hilbert space, in principle we are able to treat any Hermitian
operator as representing an observable. But given the overall Hamiltonian, there
will be certain specific interaction terms that define what is being measured when
some other system interacts with our original system. We think of quantum systems
as representing objects with positions and momenta because those are the operators
that are most readily measured by real devices, given the actual Hamiltonian of the
universe. We think of ourselves as living in position space, rather than in momentum
space, because those are the variables in terms of which the Hamiltonian appears
local.

2.7 Gravitation from Entanglement
We have argued that the geometry of spacetime can be thought of as arising from
the entanglement structure of the quantum state in an appropriate factorization. To
match our empirical experience of theworld, this emergent spacetime should respond
to emergent energy-momentum through Einstein’s equation of general relativity.
While we cannot do full justice to this problem in this chapter, we can mention that
there are indications that such behavior is quite natural.

The basic insight is Jacobson’s notion of “entanglement equilibrium” [30], extended
to the case where spacetime itself is emergent rather than postulated [24]. Consider
a subsystem in Hilbert space, in a situation where the overall quantum state is in
the vacuum. It is then reasonable to imagine that the subsystem is in entanglement
equilibrium: a small perturbation leaves the entropy of the region unchanged to
first order. If we divide the entanglement into a small-scale ultraviolet term that
determines the spacetime geometry and a longer-scale infrared term characterizing
matter fields propagating within that geometry, the change in one kind of entropy
must be compensated for by a corresponding change in the other,

X(*+ = −X(�' . (2.13)

Here, the left-hand side represents a change in geometry, and can be related directly
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to the spacetime curvature. The right-hand side represents a matter perturbation,
which can be related to the modular Hamiltonian of an emergent effective field
theory on the background. At the linearized level (the weak-field limit), it can be
shown that this relation turns into the 00 component of Einstein’s equation in the
synchronous gauge,

X�00 = 8c�X)00. (2.14)

If the overall dynamics are approximately Lorentz invariant (which they must be
for this program to work, although it is unclear how to achieve this at this time),
demanding that this equation hold in any frame implies the full linearized Einstein’s
equation, X�`a = 8c�X)`a.

There are a number of assumptions at work here, but it seems plausible that the
spacetime dynamics familiar from general relativity can arise in an emergent space-
time purely from generic features of the entanglement structure of the quantum state.
Following our quantum-first philosophy, this would be an example of finding gravity
within quantum mechanics, rather than quantizing a classical model for gravitation.

2.8 The Problem(s) of Time
Given our ambition to find the most minimal fundamental description of reality, it
is natural to ask whether time as well as space could be emergent from the wave
function. TheWheeler-deWitt equation of canonical quantum gravity takes the form

�̂ |k〉 = 0, (2.15)

for some particular form of �̂ in a particular set of variables. In this case, time
dependence is absent, but one may hope to recover an emergent notion of time by
factorizing Hilbert space into a “clock” subsystem and the rest of the universe,

H = H* ⊗ H� , (2.16)

then constructing an effective Hamiltonian describing evolution of the universe with
respect to the clock.

Given our discussion thus far, the problem with such a procedure should be clear:
what determines the decomposition (2.16)? In the Schrödinger case we can have
data in the form of the spectrum of the Hamiltonian, but in the Wheeler-deWitt case
the universe is in a single eigenstate; no other features of the Hamiltonian, including
its other energy eigenvalues, can be relevant. This problem has been dubbed the
“clock ambiguity” [31].
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One potential escape would be to imagine that the fundamental state of the universe
is described not by a vector in Hilbert space, but by a density operator acting on it.
Then we have an alternative set of data to appeal to: the eigenvalues of that density
matrix. These can be used to compute a modular Hamiltonian (given by the negative
of the logarithm of the density operator), which in turn can yield an effective notion
of time evolution, a proposal known as the “thermal time hypothesis” [32]. Thus it
is conceivable that time as well as space could be emergent, at the cost of positing
a fundamental density operator describing the state of the universe.2

2.9 Prospects and Puzzles
The program outlined here is both ambitious and highly speculative. We find it
attractive as a way of deriving most of the familiar structure of the world from a
minimal set of truly quantum ingredients. In particular, we derive rather than pos-
tulate such notions as space, fields, and particles. The fact that our Hilbert space is
locally finite-dimensional suggests an escape from the famous problems of ultravi-
olet divergences in quantum field theory, and the emergence of spacetime geometry
from quantum entanglement is an interesting angle on the perennial problems of
quantum gravity.

Numerous questions remain; we will highlight just two. One is the emergence
of local Lorentz-invariant dynamics. There are no unitary representations of the
Lorentz group on a finite-dimensional factor of Hilbert space. This might seem
to imply that Lorentz symmetry would be at best approximate, a possibility that is
experimentally intriguing but already highly constrained. It would be interesting to
understand how numerically large any deviations from perfect Lorentz invariance
would have to be in this framework, and indeed if they have to exist at all.

The other issue is the emergence of an effective field theory in curved spacetime
that could describe matter fields in our geometric background. We have posited
that a field theory might be identified with infrared degrees of freedom while the
geometry is determined by ultraviolet degrees of freedom, but there is much to be
done to make this suggestion more concrete. A promising idea is to invoke the
idea of a quantum error-correcting code [24, 34]. Such codes imagine identifying
a “code subspace” within the larger physical Hilbert space, such that the quantum

2If time is fundamental rather than emergent, there is a very good reason to believe that the
entirety of Hilbert space is infinite-dimensional, even if the factor describing our local region is
finite-dimensional; otherwise the dynamics would be subject to recurrences and Boltzmann-brain
fluctuations [33].



21

information in the code can be redundantly stored in the physical Hilbert space.
There is a natural way to associate the code subspace with the infrared degrees of
freedom of the matter fields, with the rest of the physical Hilbert space providing
the ultraviolet entanglement that defines the emergent geometry. Once again, this is
a highly speculative but a promising line of investigation.

We are optimistic that this minimal approach to the ontology of quantum mechanics
is sufficient, given an appropriate Hamiltonian and quantum state, to recover all
of the richness of the world as we know it. It would be a profound realization to
ultimately conclude that what is fundamental does not directly involve spacetime or
propagating quantum fields, but simply a vector moving smoothly through a very
large-dimensional Hilbert space. Further investigation will be needed to determine
whether such optimism is warranted, or whether we have just gone mad.
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C h a p t e r 3

THE HILBERT SPACE OF QUANTUM GRAVITY IS LOCALLY
FINITE-DIMENSIONAL

We argue in a model-independent way that the Hilbert space of quantum gravity
is locally finite-dimensional. In other words, the density operator describing the
state corresponding to a small region of space, when such a notion makes sense, is
defined on a finite-dimensional factor of a larger Hilbert space. Because quantum
gravity potentially describes superpositions of different geometries, it is crucial that
we associate Hilbert-space factors with spatial regions only on individual decohered
branches of the universal wave function. We discuss some implications of this claim,
including the fact that quantum field theory cannot be a fundamental description of
Nature.

This chapter is based on the following reference:

N. Bao, S. M. Carroll, and A. Singh, “The Hilbert space of quantum gravity
is locally finite-dimensional,” Int. J. Mod. Phys. D26 no. 12, (2017) 1743013,
arXiv:1704.00066 [hep-th]

In quantum field theory, the von Neumann entropy of a compact region of space
' is infinite, because an infinite number of degrees of freedom in the region are
entangled with an infinite number outside. In a theory with gravity, however, if
we try to excite these degrees of freedom, many states collapse to black holes with
finite entropy ( = �/4�, where � is the horizon area [18, 35]. It is conceivable
that there are degrees of freedom within a black hole that do not contribute to the
entropy. However, if such states were low-energy, the entropy of the black hole could
increase via entanglement, violating the Bekenstein bound. If they are sufficiently
high-energy that they do not become entangled, exciting them would increase the
size of the black hole, taking it out of the “local region” with which it was associated.

The finiteness of black hole entropy therefore upper bounds the number of degrees
of freedom that can be excited within ', and therefore on the dimensionality of
H', the factor of Hilbert space associated with ' (as the dimensionality of Hilbert
space is roughly the exponential of the number of degrees of freedom). Similarly,
a patch of de Sitter space, which arguably represents an equilibrium configuration

http://dx.doi.org/10.1142/S0218271817430131
http://arxiv.org/abs/1704.00066
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of spacetime, has a finite entropy proportional to its horizon area, indicative of a
finite-dimensional Hilbert space [19, 36–39].

The most straightforward interpretation of this situation is that in the true theory
of nature, which includes gravity, any local region is characterized by a finite-
dimensional factor of Hilbert space. Some take this statement as well-established,
while others find it obviously wrong. Here, we argue that the straightforward
interpretation is most likely correct, even if the current state of the art prevents us
from drawing definitive conclusions.

This discussion begs an important question: what is “the Hilbert space associated
with a region”? Quantum theories describe states in Hilbert space, and notions like
“space” and “locality” should emerge from that fundamental level [22, 23, 40]. Our
burden is therefore to understand what might be meant by the Hilbert space of a
local region, and whether that notion is well-defined in quantum gravity.

We imagine that the fundamental quantum theory of nature describes a density
operator d acting on a Hilbert space HQG. The entanglement structure of near-
vacuum states in spacetime is very specific, so generic states in HQG will not
look like spacetime at all [22, 23]. Rather, in phenomenologically relevant, far-
from-equilibrium states d, there will be macroscopic pointer states representing
semiclassical geometries. To that end, we imagine a decomposition

HQG = Hsys ⊗ Henv, (3.1)

where the system factor Hsys will describe a region of space and its associated
long-wavelength fields, and the environment factorHenv is traced over to obtain our
system density matrix, dsys = Trenv d. The environment might include microscopic
degrees of freedom that are either irrelevant or spatially distant. Then decoherence
approximately diagonalizes the system density matrix in the pointer basis,

|Ψ0〉 ∈ Hsys, dsys =
∑
0

?0 |Ψ0〉〈Ψ0 |. (3.2)

An emergence map Φ associates decohered branches of the quantum-gravity wave
functionwith states of an effective field theory defined on a semiclassical background
spacetime. In a space+time decomposition, the emergent theory describes spatial
manifolds Σ with 3-metric W8 9 and conjugate momentum c8 9 , along with a Hilbert
spaceH (Σ)EFT of quantum fields on Σ,

Φ : |Ψ0〉 →
{
Σ0, 6

(0)
8 9
, c
(0)
8 9
, |q(0)〉

}
, (3.3)
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Σ 1

Σ 2

γ (1)ij , π
(1)
ij , |φ(1)

γ (2)ij , π
(2)
ij , |φ(2)

|Ψ1 sys

|Ψ1 env
|Ψ2 env |Ψ2 sys

envH sysH

Φ

Φ

Figure 3.1: On the left, the Hilbert space of quantum gravity is portrayed as a ten-
sor product,HQG = Hsys ⊗Henv, and two decohered branches |Ψ0〉sys ⊗ |Ψ0〉env are
shown. Under the map Φ, the system factors of these states map to regions Σ0 of a
semiclassical spacetime background, on which are defined a spatial metric and its
conjugate momentum as well as the quantum state of an effective field theory.

where |q(0)〉 ∈ H (Σ0)EFT . We do not insist that Σ0 be a boundaryless surface; it may
simply be a finite region of space (e.g., the interior of a de Sitter horizon). Horizon
complementarity [41] suggests that there could be a limit on the extent ofΣ0, perhaps
in the form of an entropy bound à la Bousso [42].

Now imagine that, in some emergent geometry, we divide Σ into a closed region
' and its exterior '̄. The proposition “a region of space is described by a finite-
dimensional factor of Hilbert space” should be interpreted as the claim that we can
decompose the system Hilbert space in the fundamental theory asHsys = H' ⊗H'̄,
representing factors describing physics inside and outside ', such that dimH' is
finite. (As is standard with emergent theories, the map H' ⊗ H'̄ → H

(Σ)
'
⊗ H (Σ)

'̄

represents an approximation. In particular, our ability to divide space into two sets
of degrees of freedom does not imply that we can continue to subdivide it into many
small regions simultaneously.)

Such a decomposition is familiar in the case of quantum field theories on a fixed
spacetime background. (There may be subtleties due to gauge invariance on the
boundary, e.g. [43, 44].) This is necessitated by the success of locality as an
underlying principle of everyday physics. If a single degree of freedom were
accessible both in ' and '̄, a unitary operator localized within ' could change
the state elsewhere – not in the sense of branching the wave function, but in the
sense of direct superluminal information transfer, as the reduced density matrix
d'̄ = Tr' dsys would change instantly. Indeed, the notion that we can sensibly talk
about the entropy of a black hole implicitly assumes this kind of locality.

A complication could arise due to the fact that gravity is a long-range force coupled
to a conserved charge (mass-energy) that is always positive [15, 45–47]. Any
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operator with nonzero energy or other conserved Poincaré charges is “dressed” by
a gravitational field stretching out to infinity, representing an apparent obstacle to
localization. In particular, diffeomorphism-invariant operators are considered from
the start.

A locally-finite theory, however, need not give rise directly to a diffeomorphism-
invariant description of gravity. The fundamental description could correspond to
a particular gauge, in which the symmetries of the theory were not manifest, even
though they could be restored once the effective theory had emerged. It is dangerous
to start with symmetries of the sought-after continuum theory, defined in the context
of an infinite-dimensional Hilbert space, and demand that they be present at the
discrete level; all that we should require is that crucial physical properties ultimately
emerge (e.g. [48]).

From our perspective, gravitational dressing is not inconsistent with localizing a
finite number of degrees of freedom within a region of space. (Even the notion of
“at infinity” is unlikely to be well-defined as a statement about HQG, but we will
not rely on that loophole.) Rather, there are superselection sectors corresponding to
total gauge charges, including energy, operators that change the total energy connect
one quantum-gravity pointer state to a state with a different energy. Such operators
are not necessary for describing the local dynamics, which can be captured entirely
by operators that commute with global charges; physical changes in the local state
of a system are not instantaneously communicated to infinity. Equivalently, there
is no obstacle to decomposing the Hamiltonian into a term acting only within ',
one acting only within '̄, and an interaction defined by a sum of tensor products of
such local operators. When working in any one such sector, then, we are allowed to
factorize our system Hilbert space asHsys = H' ⊗ H'̄.

Given the validity of this factorization, the finite dimensionality of H' follows
from the black-hole arguments above, with one consideration: when we attempt
to excite degrees of freedom until we reach a black hole, we should not consider
operators that change the Poincaré charges at infinity. This is no problem; it is
easy enough to imagine creating black holes simply by moving around existing
mass/energy within the state (as actually happens in the real world when black holes
are created). The upper bound from black-hole entropy on the number of ways
this could happen implies an upper bound on the effective degrees of freedom, and
therefore on dimHsys.

We therefore conclude that it is sensible to associate factors of Hilbert space with
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regions of space, at the level of individual branches representing semiclassical space-
times, and that such factors have finite dimensionality. There are well-known obsta-
cles to constructing phenomenologically acceptable theories with finite-dimensional
Hilbert spaces, including a lack of exact Lorentz invariance. It is therefore impera-
tive to investigate whether such features can arise in an approximate fashion without
violating experimental bounds [49].

Locally finite-dimensional Hilbert spaces entail a number of consequences. This
perspective suggests new tools for investigating the behavior of quantum spacetime,
such as the quantum-circuit approach [50]. It also implies an attitude toward ultra-
violet divergences in quantum gravity: there are no such divergences, as there are
only finitely many degrees of freedom locally. The cosmological constant problem
becomes the question of why the factor associated with our de Sitter patch has its
particular large, finite dimensionality, exp(10122) [36]; perhaps other fine-tuning
questions, such as the hierarchy problem, can be similarly recast.
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C h a p t e r 4

QUANTUM SPACE, QUANTUM TIME, AND RELATIVISTIC
QUANTUMMECHANICS

We treat space and time as bona fide quantum degrees of freedom on an equal foot-
ing in Hilbert space. Motivated by considerations in quantum gravity, we focus on
a paradigm dealing with linear, first-order Hamiltonian and momentum constraints
that lead to emergent features of temporal and spatial translations. Unlike the con-
ventional treatment, we show that Klein-Gordon and Dirac equations in relativistic
quantum mechanics can be unified in our paradigm by applying relativistic disper-
sion relations to eigenvalues rather than treating them as operator-valued equations.
With time and space being treated on an equal footing in Hilbert space, we show
symmetry transformations to be implemented by unitary basis changes in Hilbert
space, giving them a stronger quantum mechanical footing. Global symmetries,
such as Lorentz transformations, modify the decomposition of Hilbert space; and
local symmetries, such as * (1) gauge symmetry are diagonal in coordinate basis
and do not alter the decomposition of Hilbert space. We briefly discuss extensions
of this paradigm to quantum field theory and quantum gravity.

This chapter is based on the following reference:

A. Singh, “Quantum space, quantum time, and relativistic quantum mechanics,”
arXiv:2004.09139 [quant-ph]

4.1 Introduction
Quantummechanics, in the conventional paradigm, treats time and space on a vastly
different footing. Time enters the Schrödinger equation as an external, classical
parameter that flows independent of the quantum mechanical system. Space, on
the other hand, is often elevated to have a genuine quantum mechanical status with
corresponding position/momentum operators, unitary transformations, eigenstates,
etc. While such an approach works well, both conceptually and mathematically in
non-relativistic physics, one would like to treat time and space on an equal footing
in relativistic quantum mechanics. Attempts to promote time to an operator have
been conventionally argued against, citing the Stone-von Neumann theorem [2] due

http://arxiv.org/abs/2004.09139
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to which the Hamiltonian (with a spectrum bounded from below) and time cannot
be bona fide conjugate observables. One then goes on to work with quantum field
theory, where time and space are treated as mere labels on a background manifold,
and matter is treated quantum mechanically living on this background spacetime.

In relativistic quantummechanics of particles1, while one tries to use relativistic dis-
persion relations to treat time and space symmetrically froman algebraic perspective,
their quantum nature is still treated vastly differently as is evident in the Schrödinger
equation. Efforts to use first order expressions in both the Hamiltonian and momen-
tum lead to rather disparate approaches dealing with Klein-Gordon (spin-0 particles)
and Dirac (spin-1/2 particles) equations. In the case of Klein-Gordon equation, one
typically promotes the relativistic dispersion relation � =

√
| ®? |2 + <2 for a particle

to an operator-valued equation, �̂ =

√
| ®̂? |2 + <2 to use in the Schrödinger equation

�̂ |k(C)〉 = 8mC |k(C)〉. Expanding the “square root” Hamiltonian operator gives
a series in all positive even powers of momentum which makes it far from being
first-order and leads to issues with non-locality, probabilistic interpretation of the
wavefunction, etc., as can be found in detail in many advanced undergraduate level
texts [52–54] dealing with relativistic quantum mechanics. The Dirac equation, on
the other hand, is able to circumvent this issue by explicitly involving the spin of the
particle that makes the Hamiltonian first-order in momentum by using the spinor
gamma matrices of the Clifford algebra. In addition to this, the status of Lorentz
transformations from a Hilbert space perspective is often left somewhat ambiguous
since time and space are treated rather differently, and hence symmetry transforma-
tions are implemented at a classical level. Can these disparities be traced back to,
and remedied, by better understanding the quantum mechanical status of space and
time? In this paper, we answer this question in the affirmative by treating time and
space on an equal footing in Hilbert space.

While quantum theory, in particular its formulation as quantum field theory, has
been spectacularly successful in predicting outcomes for scattering experiments
etc., our primary motivation here is to better understand aspects of quantum gravity
where it is important to examine the status of space and time in the context of quan-
tum mechanics. Approaches to quantum gravity are often plagued by the “problem
of time” [55–58]: reconciling how time enters as an independent, absolute, clas-

1Often referred to as first quantization, though we will refrain from using this terminology in
this paper.
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sical parameter in quantum mechanics; whereas in relativity, time has a relative
connotation depending on the observer and distribution of mass-energy. More gen-
erally, theories with reparametrization invariance [59–61] such as classical general
relativity, which has general (local) coordinate invariance, have a formulation in
terms of constraints [62, 63]. Physical states in the theory are the ones that are
annihilated by these constraints, and therefore represent the kernel of the constraint
operators. In general relativity, Hamiltonian and momentum constraints demand
the total energy and momentum to be zero and this is used to identify the physical
states. In particular, this is reflected in the Wheeler-DeWitt [64] equation, which
represents a Hamiltonian constraint of the form �̂ |Ψ〉 = 0. In this setup, physical
states of the theory do not evolve with respect to an external time. Time evolution,
in such a setup would therefore be an emergent feature.

The author and collaborators have argued for a “quantum-first” approach [65] to
quantum gravity where we begin with minimal elements in quantum mechanics in
Hilbert space and from it, derive higher-level structures such as space, locality, mat-
ter, and eventually, gravity. Similar quantum-first approaches have been advocated
by other authors too [66, 67]. With this motivation in mind, we take a small step in
this paper toward understanding the quantum mechanical status of space and time in
the context of relativistic quantummechanics, in a way to lay out groundwork to treat
quantum field theory and eventually, gravity in a similar paradigm, appropriately
extended. We will treat space and time on an equal footing in Hilbert space, and to
this end, we will work with a Hilbert space decomposition of the form,

H ' HC ⊗ H®G ⊗ Hspin , (4.1)

where we have a factor of Hilbert space, HC for a temporal degree of freedom, a
factor, H®G for a spatial degree of freedom and Hspin corresponding to the spinorial
degree of freedom of the particle. Global states in this Hilbert space will neither
evolve relative to an external time nor will they have a notion of spatial translations
relative to any external coordinate system. With both a Hamiltonian constraint Ĵ�
and momentum constraints Ĵ ®% as central structures in this construction, spatial and
temporal translations will be emergent features for physical states. The constraints
will be explicitly linear and first order in conjugate momenta, and their joint kernel
will define the set of physical states i.e. the ones annihilated by the constraints.
For such physical states, spatial and temporal translation features emerge as a con-
sequence of entanglement and correlations between different factors of the global
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Hilbert space H . Since we are working with a relativistic setup, the compatibil-
ity

[
�̂, %̂

]
= 0 of the Hamiltonian and momentum, two of the generators of the

Poincaré group will restrict the kinds of theories we can write down and we will
discuss this point in some detail. Using these first-order constraints, we will show
that Klein-Gordon and Dirac equations in relativistic quantum mechanics can be
treated with a uniform approach. This will be done by applying dispersion relations
to eigenvalues which appear in constraints, and not treat them as operator-valued
equations. With such an approach, the “square root” Hamiltonian in Klein-Gordon
theory is handled naturally at par with the Dirac equation. Along the way, we will
also discuss differences of our setup compared to the usual constructions and how
one can attempt to bridge the gap. Treating time and space on an equal footing in
Hilbert space, we show symmetry transformations to be implemented by unitary ba-
sis changes in Hilbert space. Global symmetries, such as Lorentz transformations,
modify the decomposition of Hilbert space; and local symmetries, such as * (1)
gauge symmetry are diagonal in coordinate basis and do not alter the decomposition
of Hilbert space.

Our focus in this paper is to simplistically evaluate the quantum mechanical sta-
tus of space and time with an eye toward relativistic quantum mechanics: recasting
the basics of quantum mechanics in a way that can be made amenable to the study
of quantum gravity from first principles. The paper is organized as follows. In
section 4.2, we first introduce the concept of internal time treated as a quantum
degree of freedom (à la Page-Wootters), and then use it as our motivation to lay out
the Hilbert space structure treating space and time on an equal footing. Once we
have our vector spaces in place, we will then go on to talk about Hamiltonian and
momentum constraints in section 4.3 and apply it to Klein-Gordon and the Dirac
equations. In section 4.4, we will use the power of our Hilbert space construction to
identify the status of symmetry transformations in relativistic quantummechanics as
implementing basis changes in Hilbert space. Lorentz transformations will be seen
as global changes of factorization of Hilbert space and* (1) gauge symmetry will be
enacted as a local basis change while treating time and space symmetrically. Wewill
conclude in section 4.5, discussing implications and extensions of our construction
to quantum field theory and quantum gravity.
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4.2 Time, Space, and Spin in Hilbert Space
Inspiration: Time as an Internal Quantum Degree of Freedom
Webegin by reviewing (an extension of) the Page-Wootters construction [5–7]which
is one of the most famous and elegant approaches to emergent time in quantum me-
chanics. We will closely follow the work in Ref. [8] for this quick review. This
will serve as motivation for us to generalize its features to treat space and time
on an equal footing in Hilbert space in the context of the quantum mechanics of a
relativistic particle. The Page-Wootters formulation is one of internal time, where
time is treated as an internal quantum degree of freedom and not as an external
classical parameter. The global quantum state is static and the apparent “flow” of
time is due to the entanglement and correlations between the temporal degree of
freedom with the rest of Hilbert space.

The global Hilbert space H is factorized into a temporal degree of freedom HC ,
often called as the “clock,” and the systemH( (what we typically describe in conven-
tional quantum mechanics) (we have used ' to denote Hilbert space isomorphisms
throughout the paper),

H ' HC ⊗ H( . (4.2)

As we will see, correlations betweenHC andH( will lead to effective time evolution
for states in H( governed by a Hamiltonian. The temporal Hilbert space HC is
taken isomorphic to L2(R) (akin to the Hilbert space of a single particle on a 1D
line in conventional non-relativistic quantum mechanics) and on the space of linear
operators L(HC), we associate conjugate variables: the “time” Ĉ and its conjugate
momentum ?̂C that satisfy Heisenberg canonical commutation relation (CCR), in
units with ℏ = 1, [

Ĉ, ?̂C
]
= 8 . (4.3)

A priori, the conjugate momentum ?̂C to the time operator Ĉ should not be tied in
any way to the Hamiltonian. At this stage, we have just specified a standard pair of
conjugate operators on the Hilbert space HC . Eigenstates of the time operator Ĉ are
defined by Ĉ |C〉 = C |C〉 ∀ C ∈ R and these eigenstates follow Dirac orthonormality
〈C′|C〉 = X(C − C′). The Page-Wootters internal time construction then can be written
in terms of a constraint operator Ĵ in the linear space of operators L(H),

Ĵ = ?̂C ⊗ Î( + ÎC ⊗ �̂( , (4.4)

where ÎC and Î( are identity operators on HC and H(, respectively, and �̂( is the
conventional Hamiltonian for the system. Physical states |Ψ〉

〉
in the global Hilbert
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spaceH are identified to be the ones annihilated by the constraint operator Ĵ,

Ĵ ≈ 0 =⇒ Ĵ |Ψ〉
〉
= 0 . (4.5)

We use the double-ket notation |Ψ〉
〉
to stress the fact that the state is defined on

the global Hilbert space HC ⊗ H(. Such a technique of quantization based on
constraints can be attributed to Dirac [62, 63], and also represents the constraint
feature of theWheeler-DeWitt equation. These physical states, which are eigenstates
of the constraint operator Ĵ with eigenvalue zero, are globally static, but encode an
apparent flow of time from the perspective of H(. Such physical states annihilated
by a global constraint are therefore consistent with the Wheeler-DeWitt equation.
Conventional time-dependent states of the system are obtained by conditioning the
global, physical state |Ψ〉

〉
with the eigenvector |C〉 of the time operator Ĉ,

|k(C)〉 =
〈
C |Ψ〉

〉
∈ H( , (4.6)

which obeys the conventional Schrödinger equation governed by the Hamiltonian
�̂(,

〈C | Ĵ |Ψ〉
〉
= 〈C | ?̂C ⊗ Î( |Ψ〉

〉
+ �̂( |k(C)〉 = 0 . (4.7)

Inserting a complete set of states onHC given by
∫
3C |C〉 〈C | = ÎC , and remembering

that the matrix elements of the conjugate momenta are 〈C | ?̂C |C′〉 = −8 mmC X(C − C
′), we

get the time evolution equation for states |k(C)〉 of the system,

�̂( |k(C)〉 = 8
m

mC
|k(C)〉 , (4.8)

which is indeed the Schrödinger equation for |k(C)〉 ∈ H(. Thus, we see that ef-
fective time evolution for states in the subfactor H( of the global Hilbert space,
governed by a Hamiltonian �̂( can be recovered from a constraint operator.

Such a construction is succinct and elegant since it gives a strong quantum me-
chanical notion of a temporal degree of freedom in Hilbert space. It also overcomes
Dirac’s criticism on treating time as an operator: following the Schrödinger equa-
tion, one might wish to establish a conjugate relationship between the Hamiltonian
and the time operator as canonically conjugate variables, but this is not allowed due
to the Stone-von Neumann theorem. The theorem demands a set of conjugate op-
erators satisfying the Heisenberg CCR to have their eigenvalue spectra unbounded
from below; but for physical theories, the Hamiltonian has a ground state with an
energy bounded from below. In the Page-Wootters construction, the time operator Ĉ
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and the system Hamiltonian �̂( are not conjugates since they act on different Hilbert
spaces. There is a bona fide pair of conjugate operators on HC , the time operator Ĉ
and its conjugate ?̂C which satisfy the Heisenberg CCR. It is only for the physical
states which are annihilated by the constraint Ĵ that leads to a Schrödinger evolution
for these states.

While elegant and succinct, the Page-Wootters formulation of internal time treats
time as a special, distinguished variable on a vastly different footing than space as
is evident from the construction. The nature of the system Hilbert space H( is left
open-ended on purpose and has the potential of representing a variety of degrees
of freedom, or combinations thereof, including but not limited to space and spin.
While one might choose a position or momentum basis forH( in certain examples,
it does not have any explicit and universal connection to a spatial degree of freedom
as is evident by the lack of a corresponding momentum constraint (just like we have
a Hamiltonian constraint associated with the temporal degree of freedom). It there-
fore, in its current form, is not very amenable to understanding relativistic quantum
mechanics and the status of symmetry transformations such as Lorentz transforma-
tions etc. in Hilbert space. In an effort to formulate a quantum-first approach to
quantum gravity, we would like to be able to treat space and time coordinates on an
equal footing in a reparametrization invariant way. Motivated by the Page-Wootters
construction, we now move on to developing the basic framework to treat time and
space on an equal footing in Hilbert space with a corresponding Hamiltonian and
momentum constraints. The interested reader who would like to delve more into the
problem of time in quantum gravity more broadly, the Page-Wootters mechanism,
conditional probability approach to time, and allied topics is referred to [68–72]
(and references therein).

Hilbert Space Structure
Our focus in this paper is the quantum mechanics of a relativistic particle in a 3+1 d
spacetime, i.e. three spatial dimensions and one temporal dimension. Let us begin
by introducing the formal Hilbert space structure of the theory, as a modification
to the Hilbert space decomposition of Eq. (4.2) in the Page-Wootters construction
above. For a similar Hilbert space construction applied to relativistic ideas of time
dilation, please see Ref. [73]. Instead of having a system Hilbert spaceH(, we will
treat space on an equal footing with time by assigning it as a factor in the Hilbert
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space decomposition in addition to accounting for the spin of the particle,

H ' HC ⊗ H®G ⊗ Hspin , (4.9)

where HC is the Hilbert space associated with a temporal degree of freedom, H®G
with a spatial degree of freedom, and Hspin corresponds to the spinorial degree of
freedom. The temporal Hilbert space HC is again taken isomorphic to L2(R) (akin
to the Hilbert space of a single particle on a 1D line in conventional non-relativistic
quantum mechanics) similar to the Page-Wootters case, and on the space of linear
operators L(HC), we associate conjugate variables: the “time” coordinate operator
Ĉ and its conjugate momentum ?̂C , which satisfy Heisenberg canonical commutation
relation (CCR), in units with ℏ = 1, [

Ĉ, ?̂C
]
= 8 . (4.10)

Similar to the Page-Wootters construction, the conjugate momentum ?̂C to the time
operator Ĉ a priori should not be tied to the Hamiltonian in any way. The eigenstates
of the time operators are defined in the usual way Ĉ |C〉 = C |C〉 ∀ C ∈ R satisfying
Dirac orthonormality 〈C |C′〉 = X(C − C′) and the conjugate momentum ?̂C generates
translations of the |C〉 eigenstates, exp (−8 ?̂CΔC) |C〉 = |C + ΔC〉.

For the spatial factors of Hilbert space, since we are working in 3 spatial dimensions,
we associate a factor isomorphic to L2(R) for each orthogonal direction which we
choose to label by Cartesian directions G, H, and I,

H®G ' HG ⊗ HH ⊗ HI , (4.11)

and for each of these factors, we associate conjugate variables satisfying Heisenberg
CCR, [

9̂ , ?̂ 9
]
= 8, for 9 = G, H, I . (4.12)

Throughout the paper, we use Latin index 9 to run over the spatial coordinates
9 = G, H, G and Greek indices `, a = 0, 1, 2, 3 to run over spacetime coordinates.
We also define 4-operators -̂` and %̂` for ` = 0, 1, 2, 3 living in L(H), the set of
linear operators on the full Hilbert space, akin to 4-vectors in special relativity in
anticipation of making the formulation covariant,

-̂` ≡
(
-̂0, -̂1, -̂2, -̂3

)
∈ L(HC ⊗ H®G) , (4.13)

where -̂0 is to be interpreted at -̂0 = Ĉ ⊗ Î®G , -̂1 = ÎC ⊗ Ĝ ⊗ ÎH ⊗ ÎI, etc., and similarly
its conjugate momentum,

%̂` =
(
%̂0, %̂1, %̂2, %̂3

)
∈ L(HC ⊗ H®G) , (4.14)
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where %̂0 = ?̂C ⊗ Î®G , %̂1 = ÎC ⊗ ?̂G ⊗ ÎH ⊗ ÎI, etc. and these conjugate operators satisfy
Heisenberg CCR,

[
-̂`, %̂a

]
= 8X

`
a , where X

`
a is the Kronecker delta function.

The spinorial factor of Hilbert space Hspin will encode information about spin
of the particle, and will typically be spanned by the corresponding spinorial matri-
ces. In particular, a spin-0 particle will have dimHspin = 1 and a spin-1/2 particle
will correspond to dimHspin = 4 (as with the spinor gamma matrices in the Dirac
equation that describes both the particle and its antiparticle).
We would like to emphasize that in this setup, there is no notion of an external,
classical time parameter, and consequently, no Schrödinger evolution for states (or
evolution of operators in the Heisenberg picture). Time is treated on an equal footing
with the spatial degree of freedom of a particle and any notion of spatial or temporal
translations should be emergent features as we will see in the next section.

4.3 Hamiltonian and Momentum Constraints
With our motivation from quantum gravity to deal with theories with reparametriza-
tion invariance such as those with coordinate invariance, we focus on their charac-
teristic signature of being represented in a constraint-based formulation. We too
would like to formulate our construction in terms of linear, first-order constraints
while treating time and space on an equal quantum-mechanical footing. We thus
have a formulation in terms of Hamiltonian andmomentum constraints, which assert
that the total energy and momentum are zero and these constraints identify physical
states to be the ones that are annihilated by them.

At variance with the Page-Wootters construction outlined in section 4.2 that treats
time as a distinguished quantum degree of freedom and hence deals only with a
Hamiltonian constraint, we are attempting to treat both space and time on an equal
footing and this will have us using both Hamiltonian and momentum constraints to
identify physical states. Since we are dealing with relativistic quantum mechanics,
we require the constraints to commute with each other (since the Hamiltonian and
momentum of a relativistic system commute). As a consequence of this setup being
applied to relativistic particles (or as some would say, first quantization), we use a
collection of constraints parametrized by ®: ∈ R3 and the corresponding dispersion
relation of the particle. We discuss extensions of this construction to field theory in
section 4.5 where we can deal with single Hamiltonian and momentum constraints
that commute with each other.
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Klein-Gordon Equation (Spin-0)
We first analyze the case of relativistic quantum mechanics of a spin-0 particle
with rest mass <, which obeys the Klein-Gordon equation. The energy-momentum
dispersion relation for the Klein-Gordon free particle is

� ( ®:) =
√
| ®: |2 + <2 , (4.15)

for a momentum ®: ∈ R3 carried by the particle. In the usual construction dealing
with the Klein-Gordon equation, one typically promotes the relativistic dispersion

relation of the particle to an operator-valued equation, �̂ =

√
| ®̂? |2 + <2 that is then

used in the Schrödinger equation �̂ |Ψ〉 = 8mC |Ψ〉. Expanding the “square-root”
Hamiltonian operator gives a series in all even powers of momentum that is far
from being first-order, and leads to a slew of issues, from non-locality (due to the
higher powers of momentum) in the theory, to not having a consistent probabilistic
interpretation of the wavefunction. These issues are brought to light in a standard
undergraduate-level quantum mechanical text [52–54] and we do not reproduce
these arguments in detail there. Instead, we will recast the physics of the Klein-
Gordon equation in the language of linear, first-order Hamiltonian and momentum
constraints, and see how it can help us deal with some of these issues.

The spinorial Hilbert space in this case will have dimHspin = 1 since the parti-
cle does not have any spin. Hence, each energy/momentum configuration can be
labelled by the spatial momentum ®: of the particle. The Hamiltonian constraint of
the system, for a given ®: , can be written as,

Ĵ� ( ®:) = ?̂C ⊗ Î®G ⊗ Îspin + ÎC ⊗ Î®G ⊗
(
� ( ®:) Îspin

)
, (4.16)

where we have formally written down the energy � ( ®:) in the one-dimensional
spinorial Hilbert space Hspin with the identity element Îspin = 1. The momentum
constraints, one for each orthogonal direction, parametrized by ®: ≡ (:G , :H, :I), is

Ĵ% 9 ( ®:) = ÎC ⊗ ?̂ 9 ⊗ Îspin − ÎC ⊗ Î®G ⊗
(
: 9 Îspin

)
for 9 = G, H, I . (4.17)

Physical states
��k®:〉〉 in Hilbert space H are identified to be the ones that are

annihilated by the constraints,

Ĵ� ( ®:) ≈ 0 =⇒
(
?̂C ⊗ Î®G ⊗ Îspin + ÎC ⊗ Î®G ⊗

(
� ( ®:) Îspin

)) ��k®:〉〉 = 0 , (4.18)

Ĵ% 9 ( ®:) ≈ 0 =⇒
(
ÎC ⊗ ?̂ 9 ⊗ Îspin − ÎC ⊗ Î®G ⊗

(
: 9 Îspin

)) ��k®:〉〉 = 0 for 9 = G, H, I .
(4.19)
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Again, we have used the double-ket notation to explicitly reflect that these states
are defined on the full Hilbert space H . Since the Hamiltonian and momentum
constraint operators commute,

[
Ĵ� , Ĵ% 9

]
= 0 as one would expect for a relativistic

theory (where the generators �̂ and ®̂% of the Poincaré group commute). We can
write down the physical states

��k®:〉〉 as simultaneous eigenstates of Ĵ� and Ĵ% 9 with
zero eigenvalue (from the constraints Eqs. (4.18) and (4.19)),��k®:〉〉 = |?C = −� ( ®:)〉 ⊗ |?G = :G〉 ⊗ |?H = :H〉 ⊗ |?I = :I〉 , (4.20)

where |?C = −� ( ®:)〉 is the eigenstate of ?̂C with eigenvalue
(
−� ( ®:)

)
and similarly

|? 9 = : 9 〉 is an eigenstate of ?̂ 9 with eigenvalue : 9 . The physical eigenstate
��k®:〉〉 of

the constraints have a tensor product form in the momentum basis since each term
in a given constraint operator commutes with each other. Written in the coordinate
basis, these physical eigenstates can be expressed as,��k®:〉〉 = 1

√
2c

∫
3C 4−8� (

®:)C |C〉 ⊗ 1
(2c)3/2

∫
33G 48

®: ·®G | ®G〉 , (4.21)

where | ®G〉 ≡ |G〉 ⊗ |H〉 ⊗ |I〉. We can now obtain the wavefunction of the particle
by conditioning a global physical state |Ψ〉

〉
∈ H on a tensor product basis element

|C〉 ⊗ |®G〉. The conditioned state lives inHspin, the spinorial Hilbert space and since
in this case, the particle is spinless,Hspin is one-dimensional, and hence we get the
wavefunction of the particle,

Ψ(C, ®G) ≡
(
〈C | ⊗ 〈®G |

)
|Ψ〉

〉
. (4.22)

We can similarly condition the constraint equations, Eqs. (4.18) and (4.19) and get
governing evolution equations in space and time for the wavefunction. Let us first
do this for the Hamiltonian constraint,(

〈C | ?̂C ⊗ 〈G |
) ��k®:〉〉 + (√

| ®: |2 + <2
)
k®: (C, ®G) = 0 . (4.23)

Inserting a complete set of states onHC given by
∫
3C |C〉 〈C | = ÎC and remembering

that the matrix elements of the conjugate momenta go as 〈C | ?̂C |C′〉 = −8 mmC X(C − C
′),

we get the time evolution equation for the wavefunction k®: (C, ®G) corresponding to
the physical state

��k®:〉〉,
8
m

mC
k®: (C, ®G) =

(√
| ®: |2 + <2

)
k®: (C, ®G) , (4.24)
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which represents the analogue of Schrödinger equation governing the time evolution
of the wavefunction dictated by the “Hamiltonian,” in this case the energy of the
particular ®: mode.

One can similarly get an equation that governs the spatial translations of the wave-
function from the momentum constraint of Eq. (4.19),

− 8 ®∇k®: (C, ®G) = ®: k®: (C, ®G) . (4.25)

The wavefunction solution corresponding to the physical eigenstate
��k®:〉〉 satisfying

Eqs. (4.18) and (4.19) can be found from Eq. (4.21),

k®: (C, ®G) ∼ exp
(
−8� ( ®:)C + 8®: · ®G

)
, (4.26)

which, as expected, yields planewave solutions (we use a∼, and not an exact equality
here since individual plane wave solutions are non-normalizable). For complete-
ness, we mention that one can also have a negative sign with � ( ®:), interpreted as a
negative frequency, in the Hamiltonian constraint, Ĵ� ( ®:) = ?̂C ⊗ Î®G ⊗ Îspin + ÎC ⊗ Î®G ⊗(
−� ( ®:) Îspin

)
≈ 0, and by including this, one can recover both positive and negative

frequency solutions of the Klein-Gordon equation. Formally, however, we always
keep a positive sign between the ?̂C term and the frequency term in the Hamiltonian
constraint (similar to Eq. 4.4 in the Page-Wootters construction).

We can construct a generic, normalizable state by taking a superposition of these
plane wave solutions obtained from the physical eigenstates, each of which obeys
their corresponding Hamiltonian and momentum constraints,

|Ψ〉
〉
=

∫
33: 2( ®:)

��k®:〉〉 , (4.27)

which, written in the coordinate basis, will be a correlated or entangled state between
the temporal and spatial degrees of freedom2,

|Ψ〉
〉
=

∫
33:

∫
3C 33G 2( ®:) exp

(
−8� ( ®:)C + 8®: · ®G

)
|C〉 ⊗ |®G〉 . (4.28)

Thus, time evolution and spatial translations can be interpreted in terms of entan-
glement between the spatial and temporal degrees of freedom in the global physical
states |Ψ〉

〉
∈ H . The corresponding wavefunction Ψ(C, ®G) of the generic state |Ψ〉

〉
can then be found by conditioning with a coordinate basis element |C〉 ⊗ |®G〉,

Ψ(C, ®G) ≡
(
〈C | ⊗ 〈®G |

)
|Ψ〉

〉
=

∫
33: 2( ®:) exp

(
−8� ( ®:)C + 8®: · ®G

)
, (4.29)

2A similar entangled state |Ψ〉
〉
can be written in the Page-Wootters formulation too with en-

tanglement between states inHC andH( [8].
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which we recognize as the generic solution of the Klein-Gordon equation in the
relativistic quantum mechanics of a particle. Issues regarding normalizability, par-
ticularly with respect to the temporal degree of freedom, and the use of continuous
functional spaces and rigged Hilbert spaces in such a paradigm have been discussed
elsewhere and the interested reader is encouraged to look at Refs. [8, 74] (and
references therein). We would, however, like to point out that normalization in the
temporal coordinate is a subtle issue and is treated rather distinctly from normaliza-
tion over space. We feel this is an interesting point that warrants further investigation
in future work to help understand it better.

Thus, the physical Hilbert space Hphys can be defined to be the span of physical
eigenstates

��k®:〉〉 that satisfy the Hamiltonian and momentum constraint equations,

Hphys ' span
{��k®:〉〉 : Ĵ� ( ®:)

��k®:〉〉 = Ĵ% 9 ( ®:) ��k®:〉〉 = 0 ∀ ®: ∈ R3 , 9 = G, H, I
}
.

(4.30)
We can also recover the Klein-Gordon equation explicitly by combining the Hamil-
tonian and momentum constraints of Eqs. (4.18) and (4.19),[(

?̂C ⊗ Î®G ⊗ Îspin

)2
−

∑
9=G,H,I

(
ÎC ⊗ ?̂ 9 ⊗ Îspin

)2
] ��k®:〉〉 = <2 ��k®:〉〉 . (4.31)

Once we have the Klein-Gordon equation for a single physical eigenstate
��k®:〉〉 in

the form of Eq. (4.31), we can superpose appropriately and write a similar equation
for an arbitrary physical state |Ψ〉

〉
of Eq. (4.28),[(

?̂C ⊗ Î®G ⊗ Îspin

)2
−

∑
9=G,H,I

(
ÎC ⊗ ?̂ 9 ⊗ Îspin

)2
]
|Ψ〉

〉
= <2 |Ψ〉

〉
. (4.32)

We can now use the relativistically covariant notation of Eq. (4.14) and use the
Minkowski flat metric [`a = diag (+1,−1,−1,−1) to give the Klein-Gordon equa-
tion a much more familiar form,(

%̂`%̂` ⊗ Îspin − <2 ÎH

)
≈ 0 =⇒

(
%̂`%̂` ⊗ Îspin − <2 ÎH

)
|Ψ〉

〉
= 0 , (4.33)

where the repeated index ` is summed over. Thus, we see that we can recover
the quantum mechanics of a spinless relativistic particle obeying the Klein-Gordon
equation without having to deal with the “square-root” Hamiltonian operator explic-
itly, but rather by working with a collection of linear, first-order Hamiltonian and
momentum constraints in a setup that deals with time and space on an equal footing
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in Hilbert space. It is important to note that relativistic dispersion relations were ap-
plied to eigenvalues featuring in the constraints, and not be used as operator-values
equations. While we obtain a collection of physical eigenstates

��k®:〉〉 for each spa-
tial momentum ®: from the constraints, we are able to recover the full Klein-Gordon
equation for generic physical states |Ψ〉

〉
∈ H .

While relativistically consistent interactions betweenmultiple particles can be added
in this scheme, interaction of a single particle with a background field are typically
not relativistically compatible since they break either time or space translational
symmetry that leads to the energy and/or momentum of the particle not being con-
served. Hence, we do not add interaction with a background field in the constraint
equations above since they would not be consistent with the commuting compat-
ibility

[
Ĵ� , Ĵ% 9

]
= 0 of the constraints. It is therefore instructive to investigate

the non-relativistic limit of the Klein-Gordon setup and see how one can restore
interactions to recover the non-relativistic Schrödinger equation in the conventional
form. For Eq. (4.18), we can take the non-relativistic limit (| ®: | << <) by expanding
� ( ®:) in powers of | ®: |2 and retaining the leading order ®:-dependent piece along with
dropping the constant rest mass energy < contribution,(

?̂C ⊗ Î®G ⊗ 1 + ÎC ⊗ Î®G ⊗
|®: |2
2<

) ��k®:〉〉NR = 0 , (4.34)

where
��k®:〉〉NR is the non-relativistic physical eigenstate. Combining with the

momentum constraint of Eq. (4.19), this yields the Schrödinger equation for a given
non-relativistic physical eigenstate in the full Hilbert spaceH ,

(
?̂C ⊗ Î®G ⊗ 1

) ��k®:〉〉NR = −


∑
9=G,H,I

(
ÎC ⊗ ?̂ 9

)2

2<


��k®:〉〉NR . (4.35)

We can now construct a general state by superposition of different physical eigen-
states as in Eq. (4.27) that gives us the Schrödinger equation for a non-relativistic
free particle. At this stage, since we are no longer working to keep our constraints
relativistically compatible, we can also add by hand an “interaction term” + (C, ®G) to
model interactions of the non-relativistic particle with a background field,

(
?̂C ⊗ Î®G ⊗ 1

)
|Ψ〉

〉
NR = −


∑
9=G,H,I

(
ÎC ⊗ ?̂ 9

)2

2<
+ +

(
Ĉ ⊗ Î®G , ÎC ⊗ ®̂G

) |Ψ〉
〉

NR ,

(4.36)
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which, when written in terms of the wavefunction, gives us

8
m

mC
ΨNR(C, ®G) =

(
− 1

2<
®∇

2
++ (C, ®G)

)
ΨNR(C, ®G) . (4.37)

We would again like to emphasize here that interactions could only be added in the
non-relativistic limit where the Hamiltonian and momentum need not commute. We
briefly remark on this aspect about interactions and its connection with quantum
field theory in section 4.5.

Dirac Equation (Spin-1/2)
Now that we have showed a constraint-based approach to Klein-Gordon equation of
a single relativistic particle of spin-0, let us focus on the Dirac equation which de-
scribes fermionic particles with spin-1/2. Since one can find an instructive treatment
of the Dirac equation in most advanced undergraduate quantum mechanics texts, we
will not reproduce that discussion here. Instead, we will jump right in to describe
using Hamiltonian and momentum constraints to work out the Dirac equation. One
key thing to remember is that even in the usual textbook construction, the Dirac
equation – at variance with the standard treatment of the Klein-Gordon equation
– is a linear, first-order equation in both energy and momentum (or one may say,
first-order in its treatment of time and space).
For relativistic quantum mechanics of a spin-1/2 particle, we know that the dimen-
sion of the spinorial Hilbert spaceHspin is dimHspin = 4 since it is used to describe
both the particle and its antiparticle (which could be the same as the particle itself, as
in the case of Majorana fermions). Following the usual construction, we use gamma
matrices W` of spinors which satisfy the anti-commutation relations of Clifford alge-
bra, {W`, Wa} = 2[`a Îspin, where {�, �} = ��+�� is the anti-commutator of � and
�, and we have used the metric signature [`a = diag (+1,−1,−1,−1). Depending
on the representation of the gamma matrices, we can describe both Dirac fermions
(particles having distinct antiparticles) and Majorana fermions (particles which are
their own antiparticles) [75]. Let us define,

V ≡ W0 , U 9 ≡ W0W 9 , 9 = G, H, I , (4.38)

which satisfy U2
9
= Îspin ∀ 9 , V2 = Îspin, {U 9 , U 9 ′} = 0 ∀ 9 ≠ 9 ′ and {U 9 , V} = 0 ∀ 9 .

As before, the Hamiltonian and momentum constraints will be parametrized by a
vector ®: ∈ R3. The Hamiltonian constraint is given by,

Ĵ� ( ®:) = ?̂C ⊗ Î®G ⊗ Îspin + ÎC ⊗ Î®G ⊗
( ∑
9=G,H,I

: 9U 9 + <V
)
, (4.39)
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and the momentum constraint by,

Ĵ% 9 ( ®:) = ÎC ⊗ ?̂ 9 ⊗ Îspin − ÎC ⊗ Î®G ⊗
(
: 9 Îspin

)
for 9 = G, H, I . (4.40)

Notice, in the constraint equations above, the values of energy and momentum
eigenvalues are associated explicitly with operators that act on Hspin, just how we
did in theKlein-Gordon case (though iswas a trivial association there). The spinorial
term in the Hamiltonian constraint can be identified as the matrix square root of the
Klein-Gordon energy-momentum dispersion relation,( ∑

9=G,H,I

: 9U 9 + <V
)2

=

(
| ®: |2 + <2

)
Îspin . (4.41)

This is expected, since the Dirac equation, even in the standard construction, is
understood as a “square-root” of theKlein-Gordon equation and doing so necessarily
relies on the spin of the particle. Physical eigenstates

��k®:〉〉 are identified to be the
ones that are annihilated by the constraints,

Ĵ� ( ®:) ≈ 0 =⇒ Ĵ� ( ®:)
��k®:〉〉 = 0 , (4.42)

Ĵ% 9 ( ®:) ≈ 0 =⇒ Ĵ% 9 ( ®:)
��k®:〉〉 = 0 for 9 = G, H, I . (4.43)

One can now combine the Hamiltonian and momentum constraints of Eqs. (4.42)
and (4.43) to eliminate the explicit ®: dependence,

?̂C ⊗ Î®G ⊗ Îspin +
∑
9=G,H,I

(
ÎC ⊗ ?̂ 9 ⊗ U 9

)
+

(
ÎC ⊗ Î®G ⊗ < V

)
≈ 0 , (4.44)

which is precisely the Schrödinger equation for a spin-1/2 particle, which in the
conventional form is written as,

8
m

mC
k =

(
®U · ®̂? + <V

)
k . (4.45)

We can also recover the Dirac equation by pre-multiplying Eq. (4.44) with(
ÎC ⊗ Î®G ⊗ V

)
,

(
?̂C ⊗ Î®G ⊗ V

)
+

∑
9=G,H,I

(
ÎC ⊗ ?̂ 9 ⊗ V U 9

)
+ <

(
ÎC ⊗ Î®G ⊗ Îspin

)
≈ 0 . (4.46)

Switching back to the gamma matrix notation,

W0 ≡ V , W 9 ≡ VU 9 , 9 = G, H, I , (4.47)
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and this gives us the Dirac equation,(
?̂C ⊗ Î®G ⊗ W0

)
+

∑
9=G,H,I

(
ÎC ⊗ ?̂ 9 ⊗ W 9

)
+ < ÎH ≈ 0 . (4.48)

We can now write this equation in the relativistically covariant notation of Eq.
(4.14),

%̂` ⊗ W` + < ÎH ≈ 0 . (4.49)

where the repeated index ` is summed over. One can introduce interactions with
a background electromagnetic field �` (C, ®G) by adding it as an effective term at
the level of the Dirac equation of Eq. (4.49). Adding such an interaction with
a background field directly in the constraint equations of Eqs. (4.39) and (4.40)
will be inconsistent since it will break spatial/temporal translation symmetry for the
relativistic particle whose physics we are focusing on. One can envision assigning
Hilbert spaces to the background field as quantum degrees of freedom and then
adding relativistic compatible interactions with other fields. We will briefly discuss
this point from a field-theoretic point of view in section 4.5.

Thus, we see that we are able to treat both Klein-Gordon and Dirac equations
with a common approach based on linear, first-order constraints by treating space
and time on an equal footing in Hilbert space and applying dispersion relations to
eigenvalues instead of an operator-valued equation inH®G .

4.4 Symmetry transformations as Basis Changes
Treating space and time on an equal footing as quantumdegrees of freedom inHilbert
space can help us analyse symmetry transformations using unitary basis changes
in Hilbert space. This gives a stronger quantum mechanical ground for symmetry
transformations, especially in relativistic quantummechanics where transformations
of temporal degrees of freedom are often handled in an ad-hoc, often classical way
compared to the spatial degrees of freedom. It also lets us tie together global and
local symmetry transformations into one framework and in this section, wewill focus
on two important symmetry transformations: Lorentz transformations and * (1)
gauge symmetry. Global symmetries, such as Lorentz transformations, will affect
decomposition changes in Hilbert space, whereas local symmetries, such as * (1),
will correspond to basis changes in Hilbert space while leaving the decomposition
invariant.
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Lorentz Transformations
Lorentz transformations are global transformations that mix space and time com-
ponents of 4-vectors while preserving the speed of light, the causal structure, and
the form of laws of physics in each inertial reference frame. In Hilbert space, we
will implement a Lorentz transformation as a decomposition change of HC ⊗ H®G .
Thus, it is an overall basis change that alters the factorization between the temporal
and spatial degrees of freedom in Hilbert space. We will implement a Lorentz
transformation Λ by a unitary transformation *̂ (Λ) that changes the decomposition,

*̂ (Λ) : HC ⊗ H®G → HC′ ⊗ H®G′ . (4.50)

Such a decomposition change manifests itself by mixing conjugate operators in HC
andH®G under the following transformation,

-̂`
′
= *̂†(Λ) -̂` *̂ (Λ) = Λ

`
a -̂

a , (4.51)

%̂
′
` = *̂

†(Λ) %̂` *̂ (Λ) = Λa` %̂a . (4.52)

It is important to note that -̂`′ and %̂′` are “separable” operators, i.e., they have
a tensor product structure in the transformed space HC′ ⊗ H®G′. For example, the
components of -̂`′ ∈ L(HC′ ⊗ H®G′) written explicitly are,

-̂0′ ≡ Ĉ′ ⊗ Î′®G , -̂1′ ≡ ÎC ⊗ Ĝ′ ⊗ ÎH
′ ⊗ ÎI

′
, (4.53)

-̂2′ ≡ Î′C ⊗ ÎG
′ ⊗ Ĥ′ ⊗ ÎI

′
, -̂3′ ≡ Î′C ⊗ ÎG

′ ⊗ ÎH
′ ⊗ Î′ , (4.54)

and therefore, each of these transformed operators is a linear combination of sep-
arable operators in HC ⊗ H®G as governed by Eq. (4.51) (and hence, -̂`′ and %̂′`
themselves are not separable inHC ⊗ H®G).

Let us look at this in more detail with an example of the Klein-Gordon equation
as treated in section 4.3 to study how the Hamiltonian and momentum constraints
transform under a Lorentz transformation and its implications. For concreteness
and simplicity, let us focus on a Lorentz boost with a boost parameter E (the relative
speed of the two inertial frames in units with 2 = 1) along the G-direction. We define
Γ =

(
1 − E2)−1/2, and with this, the Lorentz transformation matrix Λ takes the form,

Λ
`
a =


Γ −ΓE 0 0
−ΓE Γ 0 0

0 0 0 0
0 0 0 0


. (4.55)
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In this case, the unitary transform *̂ (Λ) changes the decomposition of HC ⊗ HG to
HC′ ⊗ HG′ and leavesHH ⊗ HI untransformed, such that,

ÎC ⊗ ÎG ⊗ ?̂H ⊗ ÎI ↦−→ ÎC
′ ⊗ ÎG

′ ⊗ ?̂H′ ⊗ ÎI
′
= ÎC ⊗ ÎG ⊗ ?̂H ⊗ ÎI , (4.56)

ÎC ⊗ ÎG ⊗ ÎH ⊗ ?̂I ↦−→ ÎC
′ ⊗ ÎG

′ ⊗ ÎH ⊗ ?̂I′ = ÎC ⊗ ÎG ⊗ ÎH ⊗ ?̂I , (4.57)

?̂C ⊗ Î®G ↦−→ ?̂C
′ ⊗ Î®G

′
= Γ

(
?̂C
′ ⊗ Î®G

′) − ΓE (
ÎC
′ ⊗ ?̂G′ ⊗ ÎH ⊗ ÎI

)
(4.58)

ÎC⊗ ?̂G⊗ÎH⊗ÎI ↦−→ ÎC
′⊗ ?̂G′⊗ÎH⊗ÎI = Γ

(
ÎC
′ ⊗ ?̂G′ ⊗ ÎH ⊗ ÎI

)
−ΓE

(
?̂C
′ ⊗ ÎG

′ ⊗ ÎH ⊗ ÎI
)
.

(4.59)
We can now see from the above equations that a Lorentz transformation changes
the decomposition of Hilbert space. Under this transformation, the Hamiltonian
constraint of Eq. (4.16) transforms as,

Ĵ�
′( ®:) = Γ

(
?̂C
′ ⊗ Î®G

′ ⊗ 1
)
− ΓE

(
ÎC
′ ⊗ ?̂G′ ⊗ ÎH ⊗ ÎI ⊗ 1

)
+

(
ÎC
′ ⊗ Î®G

′ ⊗ � ( ®:)
)
≈ 0 ,

(4.60)
and the G-momentum constraint takes the form,

Ĵ%G
′( ®:) = Γ

(
ÎC
′ ⊗ ?̂G′ ⊗ ÎH ⊗ ÎI ⊗ 1

)
− ΓE

(
?̂C
′ ⊗ ÎG

′ ⊗ ÎH ⊗ ÎI ⊗ 1
)

−
(
ÎC
′ ⊗ Î®G

′ ⊗ :G
)
≈ 0 .

(4.61)

The H and I-momentum constraints remain unchanged since the Lorentz transforma-
tion only mixesHC ⊗HG . As expected, the Hamiltonian and momentum constraints
of Eqs. (4.60) and (4.61) have mixed terms, but we can decouple them by substi-
tution of one equation into the other. The transformed Hamiltonian constraint then
becomes,

Ĵ�
′( ®:) =

(
?̂C
′ ⊗ Î®G

′ ⊗ 1
)
+

(
ÎC
′ ⊗ Î®G

′ ⊗
(
Γ� ( ®:) − ΓE :G

))
≈ 0 , (4.62)

which, as expected, represents a Hamiltonian constraint with the Lorentz trans-
formed energy �′ =

(
Γ� ( ®:) − ΓE :G

)
. The momentum constraint similarly trans-

forms to reflect the Lorentz transformed momentum :′G = (Γ:G − ΓE � (:)),

Ĵ%G
′( ®:) =

(
ÎC
′ ⊗ ?̂G′ ⊗ ÎH ⊗ ÎI ⊗ 1

)
−

(
ÎC
′ ⊗ Î®G

′ ⊗ (Γ:G − ΓE � (:))
)
≈ 0 . (4.63)

Thus, we see that Lorentz transformations that are global symmetry transformations
are implemented as global basis changes in Hilbert space altering the factorization
between the temporal and spatial factors of Hilbert space. One can perform a similar
Lorentz transformation for the Dirac equation as discussed in section 4.3, though
we avoid repeating a similar analysis here.
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U(1) Symmetry
Let us now look at* (1) gauge symmetry through the lens of unitary basis changes
in Hilbert space. The * (1) gauge symmetry is a local transformation that lets the
wavefunction pick up a local phase,

Ψ(C, ®G) ↦−→ Ψ′(C, ®G) = 48_(C,®G)k(C, ®G) , (4.64)

for a gauge function3 _(C, ®G). The usual story of the * (1) transformation is told in
the presence of a gauge field �` (-) to which the particle couples. Under the gauge
transformation of Eq. (4.64), we require the gauge field �` to transform accordingly,

®�(C, ®G) −→ ®�(C, ®G) − ®∇_(C, ®G) , (4.65)

�0(C, ®G) −→ �0(C, ®G) +
m

mC
_(C, ®G) , (4.66)

to keep the Schrödinger equation invariant. One of the outcomes of this transfor-
mation �` is to effectively shift the conjugate momentum operator,

®̂? −→ ®̂? − ®∇_(C, ®G) =⇒ −8 ®∇ −→ −8 ®∇ − ®∇_(C, ®G) . (4.67)

On the other hand, due to lack of a conjugate temporal momentum in the textbook
construction, the time derivative operator 8mC (which equates itself to theHamiltonian
in the Schrödinger equation for physical states) therefore transforms as,

8
m

mC
−→ 8

m

mC
+ m

mC
_(C, ®G) . (4.68)

We now show, that in our construction which treats space and time on an equal
footing in Hilbert space using linear, first-order constraints, * (1) gauge transform
is a local unitary transformation in the spatio-temporal Hilbert space HC ⊗ H®G .
Transformations, both in the temporal and spatial components, emerge naturally as
a consequence of this unitary transformation. While one can couple the particle
to an external/background field �`, reference to this gauge field (which defines
the field strength that is invariant under * (1)) is not explicitly required to affect
the symmetry transformation. Spatial and temporal quantum degrees of freedom
transform under a common mechanism, unlike as done in Eqs. (4.67) and (4.68).
The unitary transformation *̂1 ∈ L(HC⊗H®G) that affects this* (1) symmetry is not a
global decomposition change inHC⊗H®G , but rather a local basis change as onewould
expect from a gauge transformation, and hence does not alter the decomposition of

3The function _(C, ®G) is typically taken to be continuous and sufficiently differentiable in its
variables and dies off rapidly enough as ®G → ±∞.
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Hilbert space. The local nature of the unitary basis change operator is reflected in
being diagonal in the coordinate basis {|C〉 ⊗ |®G〉 ≡ |C, ®G〉

〉
} (we are considering a

spinless particle for this analysis here),

*̂1 =

(∫
3C 33G 4−8_(C,®G) |C, ®G〉

〉 〈〈
C, ®G

��) ⊗ Îspin = exp
(
−8_(Ĉ ⊗ Î®G , ÎC ⊗ ®̂G)

)
⊗ Îspin .

(4.69)
Under this unitary transformation, the state |Ψ〉

〉
∈ HC ⊗ H®G transforms as follows,

|Ψ′〉
〉
= *̂

†
1 |Ψ〉

〉
, (4.70)

which transforms the wavefunction as required for a* (1) transformation by picking
up a local phase,

Ψ′(C, ®G) ≡
(
〈C | ⊗ 〈®G |

)
|Ψ′〉

〉
=

(
〈C | ⊗ 〈®G |

)
*̂
†
1 |Ψ〉

〉
= 48_(C,®G)Ψ(C, ®G) . (4.71)

The *̂1 transformation also transforms operators in a way consistent with a local
gauge transformation. In this case, when time and space are treated on an equal
footing in Hilbert space, we do not need to explicitly rely on the existence of a
gauge field �` since the unitary transformation directly leads to transformation of
the conjugate momenta in both HC and H®G . Whereas in the textbook story, time
is treated as an external parameter and not as a quantum degree of freedom, and
hence there is no momenta conjugate to a time coordinate. Because of this, we have
to impose transformations on the gauge field �` of Eqs. (4.65) and (4.66) to keep
evolution equations invariant. Here, we treat space and time on an equal footing,
and it is reflected in the unitary transformation of the conjugate momenta as follows,

%̂`
′
= *̂

†
1 %̂` *̂1 = exp

(
8_( -̂)

)
%̂` exp

(
−8_( -̂)

)
, (4.72)

where _( -̂) is to denote that the function _ depends on the coordinate operators -̂`

of Eq. (4.13). We can use Baker-Campbell-Hausdorff lemma to further write,

%̂`
′
= %̂` + 8

[
_( -̂), %̂`

]
− 1

2
[
_( -̂),

[
_( -̂), %̂`

] ]
+ . . . . (4.73)

Recalling that
[
_( -̂), %̂`

]
= 8 m`_( -̂), we can further simplify the above equation

to yield,
%̂`
′
= %̂` − m`_( -̂) , (4.74)

since two-point and higher nested commutators in Eq. (4.73) all vanish because
_( -̂) and its derivatives m`_( -̂) are only functions of -̂`. Thus, both spatial and
temporal conjugate momenta get modified, in particular,

?̂C
′ ⊗ Î®G = ?̂C ⊗ Î®G −

m

mC
_

(
Ĉ ⊗ Î®G , ÎC ⊗ ®̂G

)
, (4.75)
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and,
ÎC ⊗ ®̂? ′ = ÎC ⊗ ®̂? − ®∇_

(
Ĉ ⊗ Î®G , ÎC ⊗ ®̂G

)
. (4.76)

The coordinate operators -̂` themselves do not transform since they commute with
the local function _( -̂) and it should also be pointed out that by virtue of *̂1 be-
ing unitary, the CCR between the conjugate operators is left unmodified under the
transformation.

We can see how the Hamiltonian and momentum constraints transform under the
* (1) gauge transformation. Using Eqs. (4.16) and (4.75), the transformed Hamil-
tonian constraint operator looks like,

Ĵ�
′( ®:) = ?̂C ⊗ Î®G ⊗ Îspin +

(
ÎC ⊗ Î®G ⊗

(
� ( ®:) Îspin

)
− m

mC
_

(
Ĉ ⊗ Î®G , ÎC ⊗ ®̂G

))
, (4.77)

which is the equivalent of the transformation of Eq. (4.68), but now arrived at by
directly transforming the temporal conjugate momentum. The transformed momen-
tum constraint operator, using Eqs. (4.17) and (4.75) becomes,

Ĵ% 9
′( ®:) = ÎC⊗ ?̂ 9⊗Îspin−

(
ÎC ⊗ Î®G ⊗

(
: 9 Îspin

)
+ ®∇_

(
Ĉ ⊗ Î®G , ÎC ⊗ ®̂G

))
≈ 0for 9 = G, H, I,

(4.78)
which is the equivalent of the transformation of Eq. (4.67), but now arrived at by
directly transforming the spatial conjugate momentum by a unitary transformation
on an equal footing with its temporal component. Thus, the evolution equations
(both spatial and temporal) are transformed in accordance with a * (1) unitary
transformation on an equal footing. The sign difference between the space and time
components of Eqs. (4.65) and (4.66) are therefore traced back to the difference in
the corresponding sign between the Hamiltonian and momentum constraints and not
in the unitary transformation of the conjugate momenta. The transformed constraint
operators still commute and the constraint equations are satisfied for the transformed
state |Ψ′〉

〉
by the transformed operators, i.e. Ĵ�

′( ®:) |Ψ′〉
〉
= 0 = Ĵ% 9

′( ®:) |Ψ′〉
〉
,

which is the statement that the evolution equations are left invariant under the* (1)
gauge transformation as expected.

4.5 Discussion
The quantum nature of space and time forms a core question in our understanding
of quantum gravity. Motivated by considerations in a quantum-first approach to
quantum gravity, we attempted to treat space and time on an equal footing in Hilbert
space and focus on a paradigm dealingwith linear, first-order constraints. Using both



49

Hamiltonian and momentum constraints that annihilate physical states in Hilbert
space, we can get emergent features like spatial and temporal translations. Using
these constraints, we analysed Klein-Gordon and Dirac equations and showed that
our analysis treats both equations with a uniform approach, arguing that dispersion
relations should apply to eigenvalues and not be used as operator-valued equations.
With such an approach, the “square root” Hamiltonian in the Klein-Gordon theory is
handled naturally on a common footing with the Dirac equation. Treating both time
and space as quantum degrees of freedom in Hilbert space, the quantum mechanical
status of Lorentz transformations and * (1) symmetry is seen as change of basis
or decomposition of Hilbert space. Our construction in this chapter keeps space,
time, and spin on an equal footing in Hilbert space as given by Eq. (4.9), and this
gives a homogeneous use of the same underlying algebra operating in each of the
Hilbert space factors. The Generalized Clifford Algebra [9, 10, 76] can be seen
to provide this common algebraic structure for conjugate operators in HC , H®G and
Hspin. In bothHC andH®G , it provides the conjugate algebra through Weyl’s form of
the CCR [77] that approaches the Heisenberg CCR in the infinite-dimensional limit,
and forHspin, it furnishes the spinor matrices obeying Clifford algebra (for instance,
the Pauli matrices are the algebra obtained by a Generalized Clifford Algebra with
two generators in two-dimensions). In addition, due to the Bekenstein bound [18]
and holographic principle [78, 79], the Hilbert space of quantum gravity may be
locally finite-dimensional [17, 20, 21]. In such a finite-dimensional scenario, the
Generalized Clifford Algebra also offers a finite-dimensional version of conjugate
operators obeying Weyl’s exponential form of the CCR.

Such a program can be extended into various future directions, some of which we
would like to point out here and discuss their implications. One of the most natural
and interesting generalizations of this approach is to formulate quantum field theory
in this language. To this extent, we can imagine a Hilbert space decomposition, as
an extension of Eq. (4.9),

H ' HC ⊗ H®G ⊗ Hmatter , (4.79)

which could describe quantum-mechanical matter Hmatter living on a background
spacetime described by quantum degrees of freedom HC ⊗ H®G . The structure of
the spacetime Hilbert space and its interplay with the matter Hilbert space in the
context of field theorywarrants further investigation. In the conventional field theory
paradigm, one colloquially associates a Hilbert space at each point in space, and
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states in this space evolve unitarily through time. While the analysis in this chapter
focussed on Hamiltonian and momentum constraints parametrized by ®: ∈ R3, as in
Eqs. (4.18) and (4.19), an extension to a field theory-like setup would allow writing
single Hamiltonian and momentum constraints using the generators of the Poincaré
group,

Ĵ� = ?̂C ⊗ Î®G ⊗ Îmatter + ÎC ⊗ Î®G ⊗ �̂ ≈ 0 , (4.80)

Ĵ ®% = ÎC ⊗ ®̂? ⊗ Îmatter − ÎC ⊗ Î®G ⊗ %̂ ≈ 0 , (4.81)

where �̂ and ®̂% are the Hamiltonian and momentum of the matter field, respectively.
In a relativistically covariant theory, these generators commute and physical states
would therefore be simultaneous eigenstates of the constraints. While interactions
with a background field were not possible in the analysis of section 4.3 since they
break time and/or space translation symmetry, we can treat interacting theories
naturally in the context of the field theoretic generalization of Eq. (4.79).
An interesting feature to note in the constraints we have discussed so far is the
exclusive use of operators that do not couple different subfactors ofH . They have a
decoupled form, i.e., they are a collection of terms, each of which acts non-trivially
only on a particular Hilbert space factor. Adding interaction terms that couple the
spacetime Hilbert spaceHC ⊗H®G to matterHmatter could be useful in understanding
effects like gravitational coupling and back-reaction. For example, interactions
between the temporal degree of freedom and the system in the context of the Page-
Wootters internal time (as described in section 4.2) has been explored in Ref. [74].
We saw in section 4.4 how different decompositions of the spacetime Hilbert space
implemented by global basis changes can describe Lorentz transformations. More
generally, we can expect a broad class of unitary basis choices implementing different
decompositions of Hilbert space to correspond to different choices of coordinate
systems. The apparent freedom in the choice of decomposition of Hilbert space
H of Eq. (4.2) to choose a different clock/temporal degree of freedom HC , and
therefore different emergent dynamics for the systemH( (in the context of the Page-
Wootters formulation of section 4.2), is often referred to as the “Clock Ambiguity”
[31, 80, 81]. While the decoupled form of the constraints are rather special in
their own right (such as Ref. [82] where it is argued that a decoupled form of the
constraint can help ease the ClockAmbiguity) and some unitary transformations will
preserve it (for instance, the global basis changes in section 4.4 to implement Lorentz
transformations are such examples), not all unitary transformations will preserve
this decoupled form. Investigating generic unitary basis changes for constraints
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containing interacting terms could shed light upon the nature of coordinates in the
context of a quantum field theoretic setup for spacetime and matter, and will be
taken up in future work. Not all decompositions may be allowed and some may be
preferred over others in determining which degrees of freedom in H make up the
background spacetime and which make up the matter degrees of freedom. While
definitely an interesting question that could have implications for the Hilbert space
structure of quantum gravity, it is beyond the scope of this work and is left for future
investigation. The interested reader is encouraged to look into a rich literature
[83–87] (and references therein) available on quantum frames of reference and its
connections with Hamiltonian constraints.
We would also like to emphasize that while we have attempted to treat space and
time on an equal footing in Hilbert space in the context of relativistic quantum
mechanics, there are important and crucial differences between the nature of time
and space. For instance, relativistic light cone structures demand causal influence
in timelike directions and not spacelike, and the nature of time, more conventionally
interpreted, seems to be inseparably intertwinedwith thermodynamics and the arrow
of time [32, 88]. The interplay between space, time, and quantum mechanics can be
better understood by re-examining crucial first principle ideas, which we believe to
be an important direction of inquiry toward our understanding of quantum gravity.
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C h a p t e r 5

MODELING POSITION AND MOMENTUM IN
FINITE-DIMENSIONAL HILBERT SPACES VIA

GENERALIZED PAULI OPERATORS

The finite entropy of black holes suggests that local regions of spacetime are de-
scribed by finite-dimensional factors of Hilbert space, in contrast with the infinite-
dimensional Hilbert spaces of quantum field theory. With this in mind, we explore
how to cast finite-dimensional quantum mechanics in a form that matches naturally
onto the smooth case, especially the recovery of conjugate position/momentum
variables, in the limit of large Hilbert-space dimension. A natural tool for this
task are the Generalized Pauli operators (GPO). Based on an exponential form of
Heisenberg’s canonical commutation relation, the GPO offers a finite-dimensional
generalization of conjugate variables without relying on any a priori structure on
Hilbert space. We highlight some features of the GPO, its importance in study-
ing concepts such as spread induced by operators, and point out departures from
infinite-dimensional results (possibly with a cutoff) that might play a crucial role
in our understanding of quantum gravity. We introduce the concept of “Operator
Collimation,” which characterizes how the action of an operator spreads a quantum
state along conjugate directions. We illustrate these concepts with a worked example
of a finite-dimensional harmonic oscillator, demonstrating how the energy spectrum
deviates from the familiar infinite-dimensional case.

This chapter is based on the following reference:

A.Singh andS.M.Carroll, “Modeling position andmomentum in finite-dimensional
Hilbert spaces via generalized Pauli operators,” arXiv:1806.10134 [quant-ph]

5.1 Introduction
TheHilbert space of a quantum field theory is infinite-dimensional for three different
reasons: wavelengths can be arbitrarily large, and they can be arbitrarily small, and
at any one wavelength, the occupation number of bosonic modes can be arbitrarily
high. Once we include gravity, however, all of these reasons come into question.

http://arxiv.org/abs/1806.10134
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In the presence of a positive vacuum energy, the de Sitter radius provides a natural
infrared cutoff at long wavelengths; the Planck scale provides a natural ultraviolet
cutoff at shortwavelengths; and theBekenstein bound [18, 35, 89] (ormore generally,
black hole formation and its consequent finite entropy) provides an energy cutoff. It
therefore becomes natural to consider theories where Hilbert space, or at least the
factor of Hilbert space describing our observable region of the cosmos, is finite-
dimensional [17, 19–21, 36–39, 65].

Our interest here is in how structures such as fields and spatial locality emerge in a
locally finite-dimensional context. Hilbert space is featureless: all Hilbert spaces
of a specified finite dimension are isomorphic, and the algebra of observables is
simply “all Hermitian operators.” Higher-level structures must therefore emerge
from whatever additional data we are given, typically eigenstates and eigenvalues
of the Hamiltonian and perhaps the amplitudes of a particular quantum state. (For
work in this direction see [15, 22, 65, 67].) One aspect of this emergence is the
role of conjugate variables, generalizations of position and momentum. To begin
an exploration of how spacetime and locality can emerge from a Hamiltonian acting
on states in a finite-dimensional Hilbert space, in this chapter we consider the role
of conjugate variables in a finite-dimensional context.

In the familiar (countably) infinite-dimensional case, such as non-relativistic quan-
tum mechanics of a single particle, classical conjugate variables such as position
(@) and momentum (?) are promoted to linear operators on Hilbert space obeying
the Heisenberg canonical commutation relations (CCR),

[@̂, ?̂] = 8 , (5.1)

where throughout this chapter, we take ℏ = 1. In field theory, one takes the field and
its conjugate momentum as operators labelled by spacetime points and generalizes
the CCR to take a continuous form labelled by spacetime locations. 1

The Stone-von Neumann theorem guarantees that there is a unique irreducible rep-
resentation (up to unitary equivalence) of the CCR on infinite-dimensional Hilbert

1In making the transition to field theory, one transits from a finite to an infinite number of
degrees of freedom and hence an uncountably infinite-dimensional Hilbert space (which is non-
separable). In this case, there can be unitarily inequivalent representations of the CCRs, implying
that the physical subspaces spanned by eigenstates of operators in a particular representation will
be different. In Algebraic Quantum Field Theory, this is described by Haag’s theorem[3]. Then
different choices of states (a unit-normed, positive linear functional) on the algebra specify differ-
ent inequivalent (cyclic) representations.
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spaces that are separable (possessing a countable dense subset), but also that the
operators @̂, ?̂ must be unbounded. There are therefore no such representations on
finite-dimensional spaces.

There is, however, a tool that works in finite-dimensional Hilbert spaces and maps
onto conjugate variables in the infinite-dimensional limit: the Generalized Pauli
operators (GPO). As we shall see, the GPO is generated by a pair of normalized
operators �̂ and �̂ – sometimes written as “clock” and “shift” matrices – that
commute up to a dimension-dependent phase,

�̂�̂ = l−1�̂ �̂ , (5.2)

where l = exp (2c8/#) is a primitive root of unity. Any linear operator can be
written as a sum of products of these generators. Appropriate logarithms of these
operators reduce, in the infinite-dimensional limit, to conjugate operators obeying
the CCR. The GPO therefore serves as a starting point for analyzing the quantum
mechanics of finite-dimensional Hilbert spaces in a way that matches naturally onto
the infinite-dimensional limit.

We will follow a series of papers by Jagannathan, Santhanam, Tekumalla, and
Vasudevan [76, 90, 91] from the 1970-80’s, which developed the subject of finite-
dimensional quantum mechanics, motivated by the Weyl’s exponential form of the
CCR. These were introduced first by Sylvester [92] and then applied to quantum
mechanics by von Neumann [93], Weyl [77], and Schwinger [94, 95], and since
have been discussed bymany others in various contexts. Some representative papers
include [96, 97, 97–109] (and references therein). This paradigm of the Generalized
Pauli operators has also been referred in the vast literature on this subject as the
discrete Heisenberg group or the finite Weyl-Heisenberg group and also has been
called Schwinger bases, Weyl operators [110], and generalized spin [111], among
others. From an algebraic point of view, this structure corresponds to a generalized
Clifford algebra (GCA) [9] with two generators that follow an ordered commutation
relation.2 The basic mathematical constructions worked out in this chapter are
not new; our goal here is to distill the features of the GPO that are useful in the
study of locally finite-dimensional Hilbert spaces in quantum gravity, especially the
emergence of a classical limit.

2In general, a GCA can be defined with more generators and their braiding relations. For in-
stance, the Clifford algebra of the “gamma” matrices used in spinor QFT and the Dirac equation is
a particular GCA with 4 generators [9].
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The chapter is organized as follows. In Section 5.2, we motivate the need for an
intrinsic finite-dimensional construction by pointing out the incompatibility of con-
ventional textbook quantum mechanics and QFT with a finite-dimensional Hilbert
space, and follow it up by introducing and using the GPO to construct a finite-
dimensional generalization of conjugate variables. In Section 5.3, we introduce
the concept of Operator Collimation as a means to quantify and study the spread
induced by operators along the conjugate variables. Section 5.4 deals with under-
standing equations of motion for conjugate variables in a finite-dimensional context
and how they map to Hamilton’s equations in the large dimension limit, and we
explore features of the finite-dimensional quantum mechanical oscillator.

5.2 Finite-Dimensional Conjugate Variables from the Generalized Pauli Op-
erators

Prelude
Consider the problem of adapting the Heisenberg CCR (5.1) to finite-dimensional
Hilbert spaces. Oneway of noticing an immediate obstacle is to take the trace of both
sides; the left-hand side vanishes, while the right-hand side does not. To remedy
this, Weyl [77] gave an equivalent version of Heisenberg’s CCR in exponential form,

48[ ?̂48Z @̂ = 48[Z48Z @̂48[ ?̂ , (5.3)

for some real parameters [ and Z . This does indeed admit a finite-dimensional
representation (which is unique, up to unitary equivalence, as guaranteed by the
Stone-von Neumann theorem which works for separable Hilbert spaces (hence,
finite-dimensional and countable infinite-dimensional) [2]). One can interpret this
to be a statement of how the conjugate operators @̂ and ?̂ fail to commute, although
the commutation relation [@̂, ?̂] will now no longer have the simple form of a
c-number (5.1).

The GPO offers a natural implementation of Weyl’s relation (5.3) to define a set of
intrinsically finite-dimensional conjugate operators. In this section, we will follow
the construction laid out in references [76, 90, 91] in developing finite-dimensional
quantum mechanics based on Weyl’s exponential form of the CCR.

The Generalized Pauli Operators
Consider a finite-dimensional Hilbert spaceH of dimension

dimH = #, (5.4)



57

with # < ∞. Let us associate Generalized Pauli operators (GPO) by equipping the
spaceL(H) of linear operators acting onH with two unitary operators as generators
of the group, call them �̂ and �̂, which satisfy the following commutation relation,

�̂�̂ = l−1�̂ �̂ , (5.5)

where l = exp (2c8/#) is a primitive root of unity. This is also known as the Weyl
Braiding relation in the physics literature, and is the basic commutation relation
obeyed by the generators. In addition to being unitary, the generators also satisfy
the following toroidal property,

�̂# = �̂# = Î , (5.6)

where Î is the identity operator onH . The spectrum of the operators is identical for
both GPO generators �̂ and �̂,

spec( �̂) = spec(�̂) = {1, l1, · · · , l2, · · · , l#−1} . (5.7)

Thus, in line with our Hilbert-space perspective, specifying just the dimension # of
Hilbert space is sufficient to construct the group, which determines the spectrum of
the generators and the basic commutation relations.

The GPO can be constructed for both even and odd values of # and both cases are
important and useful in different contexts. In this section, let us specialize to the case
of odd # ≡ 2; + 1 for some ; ∈ Z+, which will be useful in constructing conjugate
variables whose eigenvalues can be thought of labelling lattice sites centered around
0. In the case of even dimensions # = 2< for some< ∈ Z+, onewill be able to define
conjugate on a lattice labelled from {0, 1, 2, · · · , # −1} and not on a lattice centered
around 0. For the case of # = 2, we recover the Pauli matrices, corresponding to
� = fG and � = fI. Operators on qubits can be seen as a special # = 2 case of
the GPO. While the subsequent construction can be done in a basis-independent
way, we choose a hybrid route, switching between an explicit representation of the
GPO and abstract vector space relations, to explicitly point out the properties of the
group.

Let us follow the convention that all indices used in this section (for the case of odd
# = 2; + 1) for labelling states or matrix elements of an operator in some basis will
run over

8, 9 , : ∈ −;, (−; + 1), · · · ,−1, 0, 1, · · · , ; − 1, ; . (5.8)
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The eigenspectrum of both GPO generators �̂ and �̂ can be relabelled as,

spec( �̂) = spec(�̂) = {l−; , l−;+1, · · · , l−1, 1, l1, · · · , l;−1, l;} . (5.9)

There exists a unique irreducible representation (up to unitary equivalence) [9] of
the generators of the GPO defined via Eqs. (5.2) and (5.6) in terms of #×# matrices

� =



0 0 0 · · · 1

1 0 0 · · · 0

0 1 0 · · · 0

. . · · · . .

. . · · · . .

0 0 · · · 1 0

#×#
, � =



l−; 0 0 · · · 0

0 l−;+1 0 · · · 0

. . · · · . .

. . · · · . .

0 0 0 · · · l;

#×#
. (5.10)

The .̂ has been removed to stress that these matrices are representations of the
operators �̂ and �̂ in a particular basis, in this case, the eigenbasis of �̂ (so that � is
diagonal). More compactly, the matrix elements of operators �̂ and �̂ in this basis
are,

[�] 9 : ≡ 〈1 9 | �̂|1:〉 = X 9 ,:+1 , [�] 9 : ≡ 〈1 9 |�̂ |1:〉 = l 9X 9 ,: , (5.11)

with the indices 9 and : running from −;, · · · , 0, · · · , ; and X 9 : is the Kronecker
delta function. The generators obey the following trace condition,

Tr
(
�̂ 9

)
= Tr

(
�̂ 9

)
= #X 9 ,0 . (5.12)

Let us now further understand the properties of the eigenvectors of �̂ and �̂ and the
action of the group elements on them. Consider the set {|1 9 〉} of eigenstates of �̂,

�̂ |1 9 〉 = l 9 |1 9 〉 . (5.13)

As can be seen in the matrix representation of �̂ in Eq. (5.10), the operator �̂ acts
to generate cyclic shifts for the eigenstates of �̂, mapping an eigenstate to the next,

�̂ |1 9 〉 = |1 9+1〉 . (5.14)

The unitary nature of these generators implies a cyclic structure in which one
identifies |1;+1〉 ≡ |1−;〉, so that �̂ |1;〉 = |1−;〉.



59

The operators �̂ and �̂ have the same relative action on the eigenstates of one
another, as there is nothing in the group structure which distinguishes between the
two. The operator �̂ generates unit shifts in eigenstates of �̂,

�̂ |0:〉 = |0:+1〉 , (5.15)

with cyclic identification |0;+1〉 ≡ |0−;〉. Hence we have a set of operators that
generate shifts in the eigenstates of the other, which is precisely the way in which
conjugate variables act and which is why the GPO provides a natural structure
to define conjugate variables on Hilbert space. While we should think of these
eigenstates of �̂ and �̂ to be marked by their eigenvalues on a lattice, there is no
notion of a scale or physical distance at this point, just a lattice of states labelled by
their eigenvalues in a finite-dimensional construction along with a pair of operators
which translate each other’s states by unit shifts, respectively. It should bementioned
at this stage that even though this construction lacks the notion of a physical scale,
there still exists a symplectic structure [112, 113] (and references therein). This is
a rich topic with a lot of interesting details which we will not discuss here, and the
interested reader is encouraged to look into the references mentioned above.

To further reinforce this conjugacy relation between �̂ and �̂, we see that they are
connected to each other under a discrete Fourier transformation implemented by
Sylvester’s matrix (, which is an # × # unitary matrix connecting � and � via
(�(−1 = �. Sylvester’s matrix in the {|1 9 〉} basis has the form [(] 9 : = l 9 :/

√
# .

The GPO generators �̂ and �̂ have been studied in various contexts in quantum
mechanics and are often referred to as “clock and shift” matrices. They offer a
higher dimensional, non-hermitian generalization of the Pauli matrices.

The set of #2 linearly independent unitary matrices,
{�1�0 |1, 0 = −;, (−; + 1), · · · , 0, · · · , (; − 1), ;}, which includes the identity for
0 = 1 = 0, form a unitary basis for L(H). Schwinger [94] studied the role of such
unitary basis, hence this operator basis is often called Schwinger unitary basis. Any
operator "̂ ∈ L(H) can be expanded in this basis,

"̂ =

;∑
1,0=−;

<10 �̂
1 �̂0 . (5.16)

Since from the structure of the GPO we have Tr
[(
�̂1
′
�̂0
′
)† (

�̂1 �̂0
)]
= # X1,1′X0,0′,

we can invert Eq. (7.23) to get the coefficients <10 as,

<10 =
1
#

Tr
[
�̂−0 �̂−1"̂

]
. (5.17)
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Thus, in addition to playing the role of conjugate variables in a finite-dimensional
construction, the GPO fits in naturally with the program of minimal quantum me-
chanics in Hilbert space [65, 67]. By being able to define a notion of conjugate
variables, one is able to classify and use any other operator on this space, including
the Hamiltonian that governs the dynamics. This notion will be important to us
when we define the idea of conjugate spread of operators, the so-called “Operator
Collimation,” in Section 5.3.

Finite-Dimensional Conjugate Variables
Weare nowprepared to define a notion of conjugate variables on a finite-dimensional
Hilbert space. The defining notion for a pair of conjugate variables is identifying two
self-adjoint operators that each generate translations in the eigenstates of the other.
For instance, in textbook quantum mechanics, the momentum operator ?̂ generates
translations in the eigenstates of its conjugate variable, the position operator @̂, and
vice-versa. Taking this as our defining criterion, we would like to define a pair of
conjugate operators acting on a finite-dimensional Hilbert space, each of which is
the generator of translations in the eigenstates of its conjugate.

We define a pair q̂ and ĉ to be conjugate operators by making the following identi-
fication,

�̂ ≡ exp (−8Uĉ) , �̂ ≡ exp (8Vq̂) , (5.18)

where U and V are non-zero real parameters which set the scale of the eigenspectrum
of the operators q̂ and ĉ. These are bounded operators onH , and due to the virtue
of the GPO generators �̂ and �̂ being unitary, the conjugate operators q̂ and ĉ
are self-adjoint, satisfying q̂† = q̂ and ĉ† = ĉ. The operator ĉ is the generator
of translations of q̂ and vice-versa. The apparent asymmetry in the sign in the
exponential in Eq. (5.18) when identifying q̂ and ĉ is to ensure that the 9-th column
(with 9 = −;,−; + 1, · · · , 0, · · · ; − 1, ;) of Sylvester’s matrix ( that diagonalizes � is
an eigenstate of ĉ with eigenvalue proportional to 9 , and hence on an ordered lattice.
Of course, q̂ has common eigenstates with those of �̂ and ĉ shares eigenstates with
�̂. Let us label the eigenstates of q̂ as |q 9 〉 and those of ĉ as |c 9 〉 with the index 9
running from −;, · · · , 0, · · · , ;. The corresponding eigenvalue equations for q̂ and
ĉ can be easily deduced using Eqs. (5.18) and (5.7),

q̂ |q 9 〉 = 9
(

2c
(2; + 1)V

)
|q 9 〉 , ĉ |c 9 〉 = 9

(
2c

(2; + 1)U

)
|c 9 〉 . (5.19)

Let us now solve for the conjugate operators q̂ and ĉ explicitly by finding their
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matrix representations in the |q 9 〉 basis. By virtue of being diagonal, the principle
logarithm of � is

log � = (logl) diag (−;,−; + 1, · · · , 0, · · · , ; − 1, ;) . (5.20)

Hence we have the matrix representation of q̂,

〈q 9 |q̂|q 9 ′〉 = 9
(

2c
(2; + 1)V

)
X 9 9 ′ , (5.21)

which is diagonal in the |q 9 〉 basis as expected. To find a representation of ĉ in
this basis, we notice that �̂ is diagonalized by Sylvester’s matrix, hence we can
get its principle logarithm as log � = (−1 (log �) (. In the case of odd dimension
# = 2; + 1, the principle logarithms of � and � are well-defined, and we are able to
find explicit matrix representations for operators q̂ and ĉ as above. The conjugate
operators q̂ and ĉ are connected through Sylvester’s operator,

ĉ =

(
−V
U

)
(̂−1q̂(̂ , q̂ =

(
−U
V

)
(̂ĉ(̂−1 . (5.22)

The following parity relations are obeyed, since (2 is the parity operator, [(2] 9 : =
X 9 ,−: ,

(̂4 = Î , (̂2q̂(̂−2 = −q̂ , (̂2ĉ(̂−2 = −ĉ . (5.23)

These relations have the same form as in infinite-dimensional quantum mechanics.

Using the expression log � = (−1 (log �) (, the matrix representation for ĉ in the
|q 9 〉 basis is,

〈q 9 |ĉ |q 9 ′〉 =
(

2c
(2; + 1)2U

) ;∑
==−;

= exp
(
2c8( 9 − 9 ′)=

2; + 1

)

=


0 , if 9 = 9 ′

(
8c

(2;+1)U

)
cosec

(
2c; ( 9− 9 ′)

2;+1

)
, if 9 ≠ 9 ′ .

(5.24)

The eigenstates of both q̂ and ĉ each individually are orthonormal bases for the
Hilbert spaceH ,

〈q 9 |q 9 ′〉 = X 9 , 9 ′ ,
;∑

9=−;
|q 9 〉 〈q 9 | = Î , 〈c 9 |c 9 ′〉 = X 9 , 9 ′ ,

;∑
9=−;
|c 9 〉 〈c 9 | = Î .

(5.25)
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Thus, using the generators of the GPO, we are able to naturally identify a notion of
conjugate operators, each of which is the generator of translations for the eigenstates
of the other as seen by Eqs. (5.18), (5.14) and (5.15). While the GPO provides
us with a notion of dimensionless conjugate variables that have familiar “position/-
momentum” properties, there is no notion of a physical length scale as yet. The
operators we will ultimately identify as classical position and momentum operators
depend on a non-generic decomposition of Hilbert space into subsystems that makes
emergent classicality manifest. This is the so-called quantum factorization problem
[28, 29, 114], sometimes referred to as the set selection problem [115].

The Commutator
In this section, we will work out the commutation relation between conjugate op-
erators q̂ and ĉ as defined from the GPO in a finite-dimensional Hilbert space, and
understand how they deviate from the usual Heisenberg CCR and converge to it in
the large dimension limit. In the infinite limit, the conjugate operators q̂ and ĉ obey
Heisenberg’s form of the CCR

[
q̂, ĉ

]
= 8, while our conjugate variables based on

Eq. (5.18) satisfy the GPO commutation relation,

exp (−8Uĉ) exp (8Vq̂) = exp
(
− 2c8

2; + 1

)
exp (8Vq̂) exp (−8Uĉ) . (5.26)

On expanding the left-hand side of the GPO braiding relation Eq. (5.26) and using
the Baker-Campbell-Hausdorff Lemma, we obtain,

exp
(
8Vq̂ + [−8Uĉ, 8Vq̂] + 1

2!
[−8Uĉ, [−8Uĉ, 8Vq̂]] + · · ·

)
exp (−8Uĉ)

= exp
(

2c8
2; + 1

)
exp (8Vq̂) exp (−8Uĉ) .

(5.27)

While this holds for arbitrary real, non-zero U and V for any dimension # = 2; + 1,
let us focus on the infinite limit when q̂ and ĉ should satisfy Heisenberg’s CCR of
Eq. (5.1). Substituting this in Eq. (5.27), we obtain,

exp
(
8Vq̂ − 8UV

)
exp (−8Uĉ) = exp

(
− 2c8

2; + 1

)
exp (8Vq̂) exp (−8Uĉ) , (5.28)

which immediately gives us a constraint on the parameters U and V,

UV =
2c

2; + 1
, (5.29)

such that the commutation relation in the infinite-dimensional limit maps onto the
Weyl formof theCCR,Eq. (5.26). Thus, whenEq. (5.29) is satisfied, the commutator
of q̂ and ĉ will obey Heisenberg’s CCR in the infinite-dimensional limit.
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We will show this explicitly later in this section, but before that, let us first compute
the commutator of q̂ and ĉ in finite dimensions. The matrix representation of

[
q̂, ĉ

]
in the {|q 9 〉} basis is,

〈q 9 |
[
q̂, ĉ

]
|q 9 ′〉 =

4c2( 9 − 9 ′)
(2; + 1)3UV

;∑
==−;

= exp
(
2c8( 9 − 9 ′)=

2; + 1

)
=

2c( 9 − 9 ′)
(2; + 1)2

;∑
==−;

= exp
(
2c8( 9 − 9 ′)=

2; + 1

)
.

(5.30)

Imposing UV(2; + 1) = 2c and performing the sum, the commutator becomes

〈q 9 |
[
q̂, ĉ

]
|q 9 ′〉 =


0 , if 9 = 9 ′

8c( 9− 9 ′)
(2;+1) cosec

(
2c; ( 9− 9 ′)

2;+1

)
, if 9 ≠ 9 ′.

(5.31)

Under the constraint of Eq. (5.29), the matrix elements of q̂ and ĉ become

〈q 9 |q̂ |q 9 ′〉 = 9UX 9 , 9 ′ , 〈q 9 |ĉ |q 9 ′〉 =
(

V

2; + 1

) ;∑
==−;

= exp
(
2c8( 9 − 9 ′)=

2; + 1

)
. (5.32)

Whilewe needU and V to satisfy Eq. (5.29) to obtain the correct limit ofHeisenberg’s
CCR in infinite dimensions, there is still freedom to choose one of the two parameters
independently. One possibility is that their values are determined by the eigenvalues
and functional dependence of the Hamiltonian on these conjugate operators. (Since
powers of q̂ and ĉ generate the Schwinger unitary basis of Eq. (7.23), any operator
can be expressed as a function of these conjugate operators.) Alternatively, since
there is no sense of scale at this level of construction and the conjugate operators are
dimensionless and symmetric, one could by fiat impose U = V =

√
2c/(2; + 1) and,

accordingly, change the explicit functional form of the Hamiltonian, which should
have no bearing on the physics.

Themost important feature of the finite-dimensional commutator is its non-centrality,
departing from being a commuting c-number (as it is in infinite dimensions). Many
characteristic features of quantum mechanics and quantum field theory hinge on
this property of a central commutator of conjugate operators. It is expected that the
presence of a non-central commutator will induce characteristic changes in familiar
results, such as computing the zero-point energy. Non-centrality allows for a richer
structure in quantum mechanical models, as we will discuss in Section 5.4. Let
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us write down the finite-dimensional commutator as
[
q̂, ĉ

]
= 8/̂ , where /̂ is a

hermitian operator whose matrix elements in the q̂-basis can be read off from Eq.
(5.31). The matrix / (i.e. the matrix elements of /̂ in the q̂ basis) is a real, traceless
(null entries on the diagonal), symmetric Toeplitz matrix. Such structure can be
exploited to better understand deviations of the commutator in finite dimensions as
compared to the usual infinite-dimensional results.

We now turn to recovering conventional notions associated with conjugate variables
in quantum mechanics based on an infinite-dimensional Hilbert space. In the
infinite-dimensional case of continuum quantum mechanics, we take ; → ∞ and at
the same time make the spectral differences of q̂ and ĉ infinitesimally small so that
they are now labelled by continuous indices on the real lineR, while at the same time
respecting the constraint UV(2; + 1) = 2c. While finite-dimensional Hilbert spaces
in the # → ∞ limit are not isomorphic to infinite-dimensional ones (even with
countably finite dimensions), there is a way in which we can recover Heisenberg’s
CCR as # →∞.

In the expression for the commutator in Eq. (5.30), replace =/(2; + 1) with a
continuous variable G ∈ R and replace the sum with an integral with 3G ≡ 1/(2; +1)
playing the role of the integration measure,

〈q 9 |
[
q̂, ĉ

]
|q 9 ′〉 = 2c( 9 − 9 ′)

∫ ∞

−∞
3G G exp (2c8( 9 − 9 ′)G) . (5.33)

Since the labels 9 and 9 ′ are continuous, we can re-write the integral above as,

〈q 9 |
[
q̂, ĉ

]
|q 9 ′〉 = 2c( 9 − 9 ′) 1

2c8
3

3 ( 9 − 9 ′)

∫ ∞

−∞
3G exp (2c8( 9 − 9 ′)G) , (5.34)

= −8( 9 − 9 ′) 3

3 ( 9 − 9 ′) X( 9 − 9
′) , (5.35)

= 8X( 9 − 9 ′) , (5.36)

wherewe have used HX′ (H) = −X(H). Thus, we are able to recoverHeisenberg’s CCR
as the infinite-dimensional limit of the Weyl braiding relation. It can be shown on
similar lines that in the infinite-dimensional limit, ĉ has the familiar representation
of −83/3q in the q̂ basis. Hence, finite-dimensional quantum mechanics based
on the GPO reduces to known results in the infinite-dimensional limit, while at
the same time offering more flexibility to tackle finite-dimensional problems, as
might be the case for local spatial regions in quantum gravity. As we will discuss
in Sections 5.4 and 5.5, infinite-dimensional quantum mechanics with cutoffs is
very different from an intrinsic finite-dimensional theory; these difference could
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affect our understanding of fine-tuning problems due to radiative corrections, such
as the hierarchy and cosmological-constant problems. Also, finite-dimensional
constructions can offer new features in the spectrum of possible Hamiltonians, as
we discuss in Section (5.4).

5.3 Operator Collimation: The Conjugate Spread of Operators
The concept of locality manifests itself in different ways in conventional physics.
In field theory, commutators of spacelike-separated fields vanish, the Hamiltonian
can be written as a spatial integral of a Hamiltonian density �̂ =

∫
33G Ĥ(®G), and

Lagrangians typically contain local interaction terms and kinetic terms constructed
from low powers of the conjugate momenta. Higher powers of the conjugate mo-
menta are interpreted as non-local effects and are expected to be suppressed. Haag’s
formulation of algebraic QFT [3, 116] is also based on an understanding of locality.3

From a quantum information perspective, when we think about sub-systems in
quantum mechanics as a tensor product structure in Hilbert spaceH =

⊗
9 H 9 , the

interaction Hamiltonian is taking to be :-local on the graph [22], thereby connecting
only :-tensor factors for some small integer : , thus reinforcing the local character
of physical interactions. Typically, given a pair of conjugate variables, a dynamics
worthy of the label “local” should have the feature that a state localized around a
given position should not instantly evolve into a delocalized state. For example,
the Hamiltonian for a single non-relativistic particle typically takes the special form
�̂ ∼ ®̂?2/2 + +̂ ( ®̂G) for classical conjugate variables of position ®G and momentum
®?. Both the quadratic nature of the kinetic term and fact that the Hamiltonian is
additively separable in the conjugate variables serve to enforce this kind of locality
by not allowing arbitrarily large spread of localized position states.

In a theory with gravity, the role of locality is more subtle. On general grounds,
considering the metric as a quantum operator (or as a field to be summed over in
a path integral) makes it impossible to define local observables, since there is no
uniqueway to associate given coordinate valueswith “the same” points of spacetime.
In the context of the black-hole information puzzle, the principles of holography (the
number of degrees of freedom within a black hole scales as the area of the horizon)

3Localized states and their properties form an interesting set of ideas in quantum field theory
(for example, see [117]) and have been debated on for a long time now. They connect to various
important constructions and theorems such as Newton-Wigner [118, 119] localization and the
Reeh-Schlieder theorem [120, 121] in field theory. Such ideas will not be discussed here since
our motivation is trying to understand emergence of structures such as spacetime, causality, and
classicality from basic quantum mechanics, without presupposing any such structure.
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and horizon complementarity (infalling observers see degrees of freedom spread
out according to principles of local quantum field theory, while external observers
see them as scrambled across the horizon) strongly suggest that the fundamental
degrees of freedom in quantum gravity are not locally distributed in any simple way
[78, 79, 122, 123].

En route to understanding how spacetime emerges from quantum mechanics, we
would like to understand these features better in a finite-dimensional construction
without imposing additional structure or implicit assumptions of a preferred decom-
position of Hilbert space, preferred observables, or conventional locality. With this
motivation in mind, we can consider an even more primitive notion of “locality”.
The following notion of “locality”, which we will call Operator Collimation, is a
purely Hilbert-space construction and does not depend or refer to any underlying
causal structure, relativistic or otherwise. Within our framework of conjugate vari-
ables, this primitive kind of locality can be understood by studying how operators
in general (and the Hamiltonian in particular) act to spread eigenstates of conjugate
variables in Hilbert space.

In this section, we develop a notion of the conjugate spread of an operator. This
quantity helps characterize the support of an operator along the two conjugate
directions. While this notion is not intrinsically tied to any time evolution generated
by a Hamiltonian, and rather discusses the how different operators have support
with respect to the two conjugate variables, it can be adapted to connect with more
conventional notions of locality once relevant structures such as space, preferred
observables, classicality etc. have been emerged under the right conditions.

As discussed in Section 5.2, the Schwinger unitary basis {�1�0 |1, 0 = −;, (−; +
1), · · · , 0, · · · , (; − 1), ;} offers a complete basis for linear operators in L(H). The
GPO generator �̂ corresponds to a unit shift in the eigenstates of q̂, and �̂ generates
unit shifts in the eigenstates of ĉ; hence, a basis element �1�0 generates 0 units of
shift in eigenstates of q̂ and 1 units in eigenstates of ĉ, respectively (up to overall
phase factors).

For more general operators, the shifts implemented by the GPO generators turn into
spreading of the state. Consider a self-adjoint operator "̂ ∈ L(H) expanded in
terms of GPO generators,

"̂ =

;∑
1,0=;

<1,0 �̂
1 �̂0 . (5.37)
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Since "̂ is self-adjoint "̂† = "̂ , we get a constraint on the expansion coefficients,
l−10<∗−1,−0 = <1,0, which implies |<1,0 | = |<−1,−0 | since l = exp (2c8/(2; + 1))
is a primitive root of unity. The coefficients <1,0 are a set of basis-independent
numbers that quantify the spread induced by the operator "̂ along each of the
conjugate variables q̂ and ĉ. To be precise, |<1,0 | represents the amplitude of 1
shifts along ĉ for an eigenstate of ĉ and 0 shifts along q̂ for an eigenstate of q̂ .
The indices of <1,0 run from −;, · · · , 0, · · · , ; along both conjugate variables and
thus, characterize shifts in both increasing (0 or 1 > 0) and decreasing (0 or 1 < 0)
eigenvalues on the cyclic lattice. The action of "̂ on a state depends on details
of the state, and in general will lead to a superposition in the eigenstates of the
chosen conjugate variable as our basis states, but the set of numbers <1,0 quantify
the spread along conjugate directions by the operator "̂ independent of the choice
of state. The coefficient <00 accompanies the identity Î, and hence corresponds to
no shift in either of the conjugate variables.

From <1,0, which encodes amplitudes of shifts in both q̂ and ĉ eigenstates, we
would like to extract profiles which illustrate the spreading features of "̂ in each
conjugate variable separately. Since the coefficients <1,0 depend on details of "̂ ,
in particular its norm, we define normalized amplitudes <̃1,0 for these shifts,

<̃1,0 =
<1,0∑;

1′,0′=−; |<1′,0′ |
. (5.38)

Then we define the q̂-shift profile of "̂ by marginalizing over all possible shifts in
ĉ,

<
(q)
0 =

;∑
1=−;
|<̃1,0 | =

∑;
1=−; |<1,0 |∑;

1′,0′=−; |<1′,0′ |
, (5.39)

which is a set of (2; + 1) positive numbers characterizing the relative importance
of "̂ spreading the q̂ variable by 0 units, 0 = −;, · · · , 0, · · · , ;. Thus, "̂ acting on
an eigenstate of q̂, say |q = 9〉, will, in general, result in a superposition over the
support of the basis of the q̂ eigenstates {|q = 9 + 0 (mod ;)〉} ∀ 0, such that the
relative importance (absolute value of the coefficients in the superposition) of each
such term is upper bounded by < (q)0 .

Let us now quantify this spread by defining operator collimations for each conjugate
variable. Consider the q-shift profile first. Operators with a large < (q)0 for small
|0 | will have small spread in the q̂-direction, while those with larger < (q)0 for larger
|0 | can be thought of connecting states further out on the lattice for each eigenstate.
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Following this motivation, we define the q-collimation �q of the operator "̂ as,

�q ("̂) =
;∑

0=−;
<
(q)
0 exp

(
− |0 |

2; + 1

)
. (5.40)

The exponential function suppresses the contribution of large shifts in our definition
of collimation. There is some freedom in our choice of the decay function in our
definition of operator collimation, and using an exponential function as in Eq. (7.27)
is one such choice. Thus, an operator with a larger �q is highly collimated in the
q̂-direction and does not spread out eigenstates with support on a large number of
basis states on the lattice.

On similar lines, one can define the c-shift profile for "̂ as,

<
(c)
1

=

;∑
0=−;
|<̃1,0 | =

∑;
0=−; |<1,0 |∑;

1′,0′=−; |<1′,0′ |
, (5.41)

and a corresponding c-collimation �c with a similar interpretation as the q̂-case,

�c ("̂) =
;∑

1=−;
<
(c)
1

exp
(
− |1 |

2; + 1

)
. (5.42)

Operators such as "̂ (ĉ) that depend on only one of the conjugate variables will only
induce spread in the q̂ direction since they have <1,0 = <0,0X1,0, hence they possess
maximum c-collimation, �c ("̂) = 1, as they do not spread eigenstates of ĉ at all.
Having a large contribution from terms such as <0,0, <1,0, <0,0 will ensure larger
operator collimation, since there are conjugate direction(s) where the operator has
trivial action and does not spread the relevant eigenstates.

In general, we expect that operators which are additively separable in their ar-
guments, "̂ (q̂, ĉ) = "̂q (ĉ) + "̂c (c), will have higher operator collimation as
compared to a generic non-separable "̂ . Let us focus on operators depending only
on one conjugate variable, say "̂ ≡ "̂ (ĉ). While the maximum value of�c ("̂ (ĉ))
can be at most unity, one can easily see that the hermitian operator,

"̂ (ĉ) = � + �†
2

=
exp (−8Uĉ) + exp (8Uĉ)

2
= cos (Uĉ) = Î− U

2ĉ2

2
+ U

4ĉ4

4
− · · · , ,
(5.43)

has the least non-zero spread along the q̂ direction: it connects only ±1 shifts along
eigenstates of q̂ and hence has highest (non-unity) q-collimation �q ("̂). Thus,
one can expect that operators which are quadratic in conjugate variables are highly
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Figure 5.1: Plot showing q̂-shift profiles of various powers of ĉ. The quadratic
operator ĉ2 is seen to have the most collimated profile, implying that this opera-
tor does the least to spread the state in the conjugate direction. Also plotted is the
profile for a random hermitian operator, for which the spread is approximately uni-
form.

collimated. We see that the fact that real-world Hamiltonians include terms that
are quadratic in the momentum variables (but typically not higher powers) helps
explain the emergence of classicality: it is Hamiltonians of that form that have high
operator collimation, and therefore induce minimal spread in the position variable.

Let us follow this idea further. The quadratic operator ĉ2 has higher q-collimation
than any other integer power ĉ=, = ≥ 1 , = ≠ 2. There is a difference between
odd and even powers of ĉ, with even powers systematically having larger operator
collimation than the odd powers. This is because odd powers of ĉ no have support
on the identity Î term in the Schwinger unitary basis expansion (and hence have
<00 = 0), and having an identity contribution boosts collimation since it contributes
to the highest weight in �q by virtue of causing no shifts. In Figure (7.1), we plot
the q-shift profiles for a few powers of ĉ and it is explicitly seen that quadratic ĉ2

has the least spreading and hence is most q̂-collimated, values which are plotted in
Figure (7.2). Note that due to the symmetry |<1,0 | = |<−1,−0 |, we only needed to
plot the positive half for 0 > 0, which captures all the information about the spread.
Also, for comparison, we also plot the q-spread and its q̂-collimation of a “random”
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Figure 5.2: q-collimation of various powers of ĉ. Even powers are seen to have
systematically larger values of operator collimation. Also plotted for comparison
is a line marking the q-collimation of a random Hermitian operator.

Hermitian operator (one whose matrix elements in the q̂ basis are chosen randomly
from a normal distribution); such operators spread states almost evenly and thus
have low values of operator collimation. These constructions will be used to study
locality properties of Hamiltonians and other observables in our upcoming work on
studying emergent classical structure on Hilbert space [29].

5.4 Finite-Dimensional Quantum Mechanics
Equations of Motion for Conjugate Variables
Wewould next like to understand equations of motion of conjugate variables defined
by the GPO in a finite-dimensional Hilbert space evolving under a given Hamilto-
nian (and a continuous time parameter). In the large-dimension limit, and when
appropriate classical structure has been identified on Hilbert space, conjugate vari-
ables q̂ and ĉ can be identified as position and momenta which satisfy Hamilton’s
equations of motion. As we will see, the structure of Hamilton’s equations of motion
is seen to emerge from basic algebraic constructions of the GPO when accompa-
nied by an evolution by the Hamiltonian. Note that using the GPO, one can work
with finite-dimensional phase space constructions, such as the discreteWigner-Weyl
construction, Gibbons-Hoffman-Wootters construction [124, 125], and further dis-
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cussed by various other authors [107, 126–132] (and references therein). We will
not discuss such finite-dimensional phase space ideas here, but rather focus on un-
derstanding the equations of motion for conjugate variables and how they connect
to Hamilton’s equations.

Consider a Hamiltonian operator �̂† = �̂ on H which acts as the generator of
time translations. We wish to construct operators corresponding to “m�/mq′′ and
“m�/mc,′′ and be able to connect them with time derivatives of q̂ and ĉ. We saw
that the operator �̂ from the GPO generates translations in the eigenstates of q̂, and
�̂ generates translations in eigenstates of ĉ. Notice that one can define a change in
the q variable as a finite central difference (we have used constraint UV = 2c(2; +1)
from Eq. (5.29) which gives the eigenvalues of q̂ from Eq. (5.32)),

Xqq̂ ≡
(
�̂†q̂ �̂ − �̂q̂ �̂†

)
=⇒ 〈q 9 |Xqq̂ |q 9 ′〉 = 2 9UX 9 , 9 ′ , (5.44)

up to “edge” terms in thematrix where the finite-difference schemewill not act in the
usual way as it does on a lattice due to the cyclic structure of the GPO eigenstates.
Following this, we can write the change in �̂ due to a change in the q variable
(translation in q̂) as a central difference given by,

Xq�̂ ≡
(
�̂†�̂ �̂ − �̂�̂ �̂†

)
. (5.45)

This allows us to define an operator corresponding to m�/mq based on these finite
central difference constructions,

ˆ(
m�

mq

)
=

1
2U

(
�̂†�̂ �̂ − �̂�̂ �̂†

)
, (5.46)

and similarly, for the change with respect to the other conjugate variable ĉ,

ˆ(
m�

mc

)
=

1
2V

(
�̂†�̂�̂ − �̂�̂�̂†

)
. (5.47)

The central difference is one possible construction of the finite derivative on a
discrete lattice. One could use other finite difference schemes, but in the large-
dimension limit, as we approach a continuous spectrum, any well-defined choice
will converge to its continuum counterpart.

With this basic construction, let us now make contact with equations of motion
(EOM) for the set of conjugate variables q̂ and ĉ. We will work in the Heisenberg
picture, where operators rather than states are time-dependent, even though we do
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not explicitly label our operators with a time argument. The Heisenberg equation
of motion for an operator Ô that is explicitly time-independent (mC Ô = 0) is,

3

3C
Ô = 8

[
�̂, Ô

]
. (5.48)

In particular, for the time evolution of ĉ, we expand the right hand side of Eq. (5.46)
using the Baker-Campbell-Hausdorff formula, and isolate the commutator 8

[
�̂, ĉ

]
that will be the time rate of change of ĉ. One can easily show that,

3

3C
ĉ = 8

[
�̂, ĉ

]
= −

(
m�

mq

)
>?

+
odd∑
==3

8=

=!
U=−1 [

ĉ, �̂
]
=
, (5.49)

where we have defined
[
ĉ, �̂

]
=
as the =-point nested commutator in ĉ,[

ĉ, �̂
]
=
=

[
ĉ,

[
ĉ,

[
ĉ · · · (n times), �̂

]
· · ·

] ]
. (5.50)

The corresponding equation for q̂ is likewise

3

3C
q̂ = 8

[
�̂, q̂

]
=

(
m�

mc

)
>?

+
odd∑
==3

8=

=!
V=−1

[
q̂, �̂

]
=
. (5.51)

In the infinite-dimensional limit, we take ; → ∞, and U and V are taken to be
infinitesimal but obeying UV(2; + 1) = 2c to recover the Heisenberg CCR. As
expected, the equations of motion simplify to resemble Hamilton’s equations of
motion from classical mechanics,

3

3C
ĉ = 8

[
�̂, ĉ

]
= −

(
m�

mq

)
>?

, (5.52)

and
3

3C
q̂ = 8

[
�̂, q̂

]
=

(
m�

mc

)
>?

. (5.53)

These are intrinsically quantum equations for a set of conjugate variables from the
GPO. They resemble the form of the classical equations of motion, but they do not
necessarily describe quasiclassical dynamics. The emergence of quasiclassicality
and identification of q̂ and ĉ with the classical conjugate variables of position and
momentum is possible only in special cases when the substructure in Hilbert space
allows for decoherence and robustness in the conjugate variables chosen. This is
the concern of the quantum factorization problem of our upcoming work [29].
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The Finite-Dimensional Quantum Harmonic Oscillator
With this technology of conjugate variables from the GPO, we can revisit some
important models in quantum mechanics from a finite-dimensional perspective to
compare the results with the usual infinite-dimensional results on L2(R). All such
results from finite-dimensional models will converge to the conventional infinite-
dimensional ones when we take the limit dimH → ∞.

We will focus on a finite-dimensional version of the harmonic oscillator. Consider
the following Hamiltonian �̂ operator for an oscillator with “frequency” Ω on a
finite-dimensional Hilbert space H with dimH = 2; + 1, and let q̂ and ĉ be
conjugate operators from the GPO,

�̂ =
1
2
ĉ2 + 1

2
Ω2q̂2 = Ω

(
0̂†0̂ + 1

2
[
0̂, 0̂†

] )
. (5.54)

At this stage, q̂ and ĉ are dimensionless operators, and Ω is a dimensionless pa-
rameter, so the Hamiltonian is also dimensionless. One can define a change of
variables,

0̂ =

√
Ω

2
q̂ + 8
√

2Ω
ĉ , 0̂† =

√
Ω

2
q̂ − 8
√

2Ω
ĉ , (5.55)

but as we will see, these will not serve as ladder or annihilation/creation operators in
the finite-dimensional case, since the non-central nature of the commutator carries
through,

[
q̂, ĉ

]
= 8

[
0̂, 0̂†

]
= 8/̂ .

Due to finite-dimensionality of Hilbert space and finite separation between eigenval-
ues of the conjugate variables, standard textbook results such as a uniformly spaced
eigenspectrum will no longer hold. Depending on the interplay of eigenvalues of ĉ
and Ωq̂, there is an effective separation of scales, and correspondingly, the eigen-
value spectrum will have different features to reflect this. In the infinite-dimensional
case, for any finite Ω, the spectra of ĉ and Ωq̂ match, since the conjugate operators
have continuous, unbounded eigenvalues (the reals R). In this sense, there is more
room for non-trivial features in the finite-dimensional oscillator as compared to the
infinite case.

In the eigenbasis of q̂, the matrix elements of the Hamiltonian are,

[
�̂

]
9 9 ′ =


∑
=≠ 9

c
4(2;+1) csc2

(
2c;
2;+1 ( 9 − =)

)
+ Ω2c

2;+1 9
2 , if 9 = 9 ′

∑
=≠ 9 ,=≠ 9 ′

c
4(2;+1) csc

(
2c;
2;+1 ( 9 − =)

)
csc

(
2c;
2;+1 (= − 9

′)
)
, if 9 ≠ 9 ′

(5.56)
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Figure 5.3: Eigenspectrum (normalized by Ω) for a dimH = 401(; = 200) finite-
dimensional oscillator for different values of Ω. Depending on the value of Ω, the
spectrum deviates from the vanilla spectrum of the infinite-dimensional oscillator,
which has also been plotted for comparison.

where we have used the constraint U = V =
√

2c/2; + 1) as described in Section
(5.2), and all sums and indices run from−;, · · · , 0, · · · , ;. In the infinite-dimensional
case, one can solve for the spectrum of the harmonic oscillator and obtain equispaced
eigenvalues, which we refer to as the “vanilla” spectrum,

_
(vanilla)
= =

(
= + 1

2

)
Ω , = = 0, 1, 2, · · · . (5.57)

The finite-dimensional case is more involved and we were unable to find an analytic,
closed form for the spectrum {_: } in terms of ; andΩ. We can solve for the spectrum
numerically for different values of ; and Ω, and here we point out a few important
features.

First, consider the spectra of various oscillators with different Ω and how they
compare with the vanilla, infinite-dimensional spectrum. In Figure (5.3), we plot
the spectrum for a dimH = 401 (; = 200) finite-dimensional oscillator for different
values of Ω. Depending on how much Ω breaks the symmetry between eigenstates
of ĉ and Ωq̂ (corresponding to max(Ω, 1/Ω)), the spectrum of the finite oscillator
deviates from the vanilla, infinite-dimensional case and is no longer uniformly
spaced. For the lower eigenvalues (what constitutes “lower” depends on Ω), both
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Figure 5.4: Plot of the maximum eigenvalue (normalized by Ω) of the finite-
oscillator as a function of dimension dimH = 2; + 1 for different values of Ω.
A linear trend is observed.

spectra match, and for larger eigenvalues, the finite-dimensional oscillator is seen to
have larger values as compared to the vanilla case. On the same figure, we have also
plotted part of the equispaced vanilla spectrum (which holds in infinite dimensions)
for comparison. Another important feature to consider is the maximum eigenvalue
of �̂, _max. While there is no maximum eigenvalue in the infinite-dimensional case,
we find that _max has almost linear behavior in the dimension dimH of Hilbert
space, as plotted in Figure (5.4).

A bound for _max can easily be given,

_max ≤
1
2

(
1 +Ω2

)
(;U)2 = c;2

2; + 1

(
1 +Ω2

)
, (5.58)

where we have used the fact that for Hermitian matrices %,&, and ' such that
% = &+', themaximum eigenvalue of % is at most the sum ofmaximum eigenvalues
of & and '.

At the other end, while the minimum eigenvalue, normalized by Ω, has a constant
1/2 value for the vanilla, infinite-dimensional oscillator, we find a richer structure for
the minimum eigenvalue of the finite oscillator, plotted in Figure (5.5). This is itself
a reflection of the non-centrality of the commutator

[
0̂, 0̂†

]
≠ 1, and we see how the
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lowest eigenvalue normalized by Ω is suppressed for larger values of Ω for a given
Hilbert space. These features of the finite-dimensional oscillator spectrum could
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Figure 5.5: Plot of the minimum eigenvalue (normalized by Ω) of the finite-
oscillator as a function of dimension dimH = 2; + 1 for different values of Ω.
A gradual build-up is noticed, with more suppression for larger Ω for a givenH ,
which saturates to the vanilla, infinite-dimensional result of _min/Ω = 0.5.

play a crucial role in the physics of locally finite-dimensional models of quantum
gravity.

5.5 Discussion
Quantum-mechanical models have been extensively studied in both finite- and
infinite-dimensional Hilbert spaces; the connection between the two contexts is
less well-understood, and has been our focus in this paper. Infinite-dimensional
models are often constructed by quantizing classical systems that have a description
in terms of phase space and conjugate variables. We have therefore studied the Gen-
eralized Pauli operators as a tool for adapting a form of conjugate variables to the
finite-dimensional case, including the appropriate generalization of the Heisenberg
canonical commutation relations.

An advantage of the GPO is that it is completely general, not relying on any pre-
existing structure or preferred algebra of observables. This makes it a useful tool for
investigating situations where we might not know ahead of time what such observ-
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ables should be, such as in quantum gravity. We have investigated the development
of position/momentum variables, and an associated notion of operator collimation,
within this framework. This analysis revealed hints concerning the special nature of
the true Hamiltonian of the world, especially the distinction between position and
momentum and the emergence of local interactions (and therefore of space itself).

As we have seen, features of a theory based on an intrinsic finite-dimensional
Hilbert space can be very different than one based on naive truncation of an infinite-
dimensional one. This is particularly seen in the example of the finite-dimensional
quantum harmonic oscillator discussed in Section 5.4, where the spectrum of the
oscillator differs from a simple truncation of the vanilla spectrum based on the
infinite-dimensional oscillator. A consistent finite-dimensional construction applied
to field theory could have important consequences for issues such as the hierarchy
problem, the cosmological constant problem, and Lorentz violation, and may lead
to corrections in Feynman diagrams for given scattering problems. In addition
to its possible role in field theory, modifications to the commutation relation of
conjugate variables (departure from it being a commuting number) can further
lead to modifications to uncertainty relations. It has been shown [133–136] (and
references therein) that taking into account gravitational effects will lead to modified
commutation relations, and the GPOs can provide a natural way to understand these
in terms of the local dimension of Hilbert space in a theory with gravity. The GPO
can also play an important role in our understanding of emergent classicality in a
finite-dimensional setting, where in some preferred factorization of Hilbert space
into sub-systems, the conjugate variables can be identified as classical conjugates
such as positions and momenta.

Constructions based on the GPO have also been shown to be important in quantum
error correction and fault tolerance [137], where one can further try and quantify
robustness of different operators based on a notion of operator collimation. Once
dynamics is added to the problem, one can study the operator collimation of operators
as a function of time, understanding how their support on Hilbert space evolves,
and this can be connected with ideas in quantum chaos and out-of-time-ordered-
correlators (OTOCs) [138].

In future work, we plan to further explore the emergence of spacetime and quantum
field theory in a locally finite-dimensional context.
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C h a p t e r 6

HOW LOW CAN VACUUM ENERGY GO WHEN YOUR FIELDS
ARE FINITE-DIMENSIONAL

According to the holographic bound, there is only a finite density of degrees of free-
dom in space when gravity is taken into account. Conventional quantum field theory
does not conform to this bound, since in this framework, infinitely many degrees of
freedom may be localized to any given region of space. In this chapter, we explore
the viewpoint that quantum field theory may emerge from an underlying theory that
is locally finite-dimensional, and we construct a locally finite-dimensional version
of a Klein-Gordon scalar field using generalized Clifford algebras. Demanding
that the finite-dimensional field operators obey a suitable version of the canonical
commutation relations makes this construction essentially unique. We then find that
enforcing local finite dimensionality in a holographically consistent way leads to a
huge suppression of the quantum contribution to vacuum energy, to the point that
the theoretical prediction becomes plausibly consistent with observations.

This chapter is based on the following reference:

C. Cao, A. Chatwin-Davies, and A. Singh, “How low can vacuum energy go when
your fields are finite-dimensional?,” Int. J. Mod. Phys. D 28 no. 14, (2019) 1944006,
arXiv:1905.11199 [hep-th]

6.1 Introduction: Gravity and Quantum Field Theory
Aquantumfield theory has infinitelymany degrees of freedom in any given region of
space. In the presence of gravity, when we try to excite such degrees of freedom that
are supported on a compact region, many of the resulting states would collapse the
region into a black hole. Recall that a black hole has a finite amount of entropywhich
scales as the area of its horizon. Therefore, any attempts to increase the region’s
entropy by creating further excitations would only increase the size of the resulting
black hole, and hence also the size of its supporting region. Such considerations
suggest that the amount of entropy that can be localized in a compact region of
space is finite [17, 20, 21, 36–39, 65]. This idea is succinctly expressed through the
holographic bound [78, 79], which says that the amount of entropy in a spacelike

http://dx.doi.org/10.1142/S0218271819440061
http://arxiv.org/abs/1905.11199
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region R is bounded by the area of its boundary in Planck units,

((R) ≤ |mR|
4ℓ2

P;
. (6.1)

If we turn it around, the holographic bound, as well as its covariant generalizations
[42], says that only finitely many degrees of freedom could have been localized to a
compact region of space in the first place. The von Neumann entropy of a maximally
mixed state in a Hilbert space of dimension exp( |mR|/4ℓ2

P;) is enough to saturate
the holographic bound, and so the degrees of freedom localized to R can have at
most this number of orthogonal microstates. In other words, the Hilbert space of a
gravitating system is locally finite-dimensional.

At a first glance, it would therefore seem that quantum field theory is in conflict
with the local finite dimensionality implied by gravity. One way of addressing this
conflict is to work within the framework of quantum field theory and introduce
regulators so that it has effective finite dimension, e.g., through suitable infrared
(IR) and ultraviolet (UV) cutoffs. Another approach is to view the effective low
energy behavior of quantum field theory as something that must emerge from a
theory that is intrinsically locally finite-dimensional.

We will explore the latter stance in this essay and construct a finite-dimensional
version of an effective scalar field theory, in particular for which each mode cannot
carry arbitrarily many excitations. We will see that an automatic consequence of
intrinsic finite dimensionality and the holographic bound is a tremendous suppres-
sion of the quantum contribution to vacuum energy compared to the prediction
of conventional field theory. Many authors before us have argued for observable
consequences of holography in gravity, including corrections to vacuum energy
[140–143]; this chapter offers a fresh perspective on this line of reasoning through
intrinsic finite dimensionality.

6.2 Finite-Dimensional Effective Field Theory
Finite-Dimensional Field Operators
In a conventional infinite-dimensional setting, such as the non-relativistic quantum
mechanics of a single particle, classical conjugate variables q and c are promoted
to linear Hilbert space operators which obey the Heisenberg canonical commutation
relation (CCR)

[q̂, ĉ] = 8, (6.2)
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where we have set ℏ = 1. In a quantum field theory, the field and its conjugate
momentum are operator-valued functions on spacetime which obey a continuous
version of the CCR, labelled by spacetime points.

The Stone-von Neumann theorem guarantees that there is an irreducible represen-
tation of Eq. (6.2), which is unique up to unitary equivalence, on any infinite-
dimensional Hilbert space that is separable (i.e., that possesses a countable dense
subset) [2]. However, in this case, the theorem also implies that the operators q̂
and ĉ must be unbounded. There are therefore no irreducible representations of
Eq. (6.2) on finite-dimensional Hilbert spaces.

Instead, consider the following commutation relation due to Weyl [77] on a finite-
dimensional Hilbert space of dimension 3:

4−8Uĉ48Vq̂ = 4−8UV48Vq̂4−8Uĉ . (6.3)

This is an exponentiated form of Heisenberg’s CCR in the sense that, if the real
parameters U and V are chosen such that UV = 2c/3, then Eq. (6.3) is equivalent to
Eq. (6.2) in the limit as 3 →∞. The operators q̂ and ĉ defined throughWeyl’s CCR
do admit an irreducible representation on a Hilbert space with finite dimension
3. Moreover, the representation is still unique up to unitary equivalence via the
Stone-von Neumann theorem, since a finite-dimensional Hilbert space is separable.

The generalized Clifford algebra (GCA) [9, 10, 76, 90, 91] provides a simple way to
write down the operators q̂ and ĉ. For example, let the dimension of Hilbert space
be 3 = 2; + 1 for some non-negative integer ;. (The construction works when the
dimension is even too, but we focus on odd values to streamline the notation.) The
GCA is generated by two unitary matrices

�̂ =

©«

0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...
...
...
. . .

...
...

0 0 0 · · · 0 0
0 0 0 · · · 1 0

ª®®®®®®®®®®¬
�̂ =

©«
l−; 0 · · · 0
0 l−;+1 · · · 0
...

...
. . .

...

0 0 · · · l;

ª®®®®®¬
, (6.4)

which satisfy the commutation relation �̂�̂ = l−1�̂ �̂ and multiplicative closure
�̂3 = �̂3 = I3 , where l = exp(2c8/3). The identification �̂ ≡ exp(−8Uĉ) and
�̂ ≡ exp(8Vq̂) then realizes Eq. (6.3). These conjugate operators q̂ and ĉ from
the GCA each have a bounded, linearly-spaced, discrete spectrum of dimensionless
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eigenvalues. In the infinite-dimensional limit, they reduce to the usual conjugate
operators with unbounded spectra and obey the Heisenberg CCR.

Vacuum Energy
Let us now use these finite-dimensional conjugate operators to construct a finite-
dimensional version of a scalar field theory. Consider first a scalar field in a
three-dimensional box of side length ! with the usual Klein-Gordon Hamiltonian,
which we can decompose in terms of its Fourier modes,

�̂ =
∑
®:

�̂®: =
1
!

∑
®:

(
1
2
ĉ2
®:
+ 1

2
Ω2
: q̂

2
®:

)
. (6.5)

This Hamiltonian describes a number of decoupled quantum harmonic oscillators,
one for each mode ®: with natural frequency Ω: . We have pulled out a factor of
1/! in the equation above so that the q̂®: ’s and ĉ®: ’s are dimensionless. Similarly,
each Ω: ≡ :! is a dimensionless frequency, where : ≡ |®: |. Since we have
cast the Hamiltonian in terms of dimensionless operators, we can obtain a finite-
dimensional theory by simply replacing the q̂®: ’s and ĉ®: ’s with the (dimensionless)
finite-dimensional operators described above. Letting the Hilbert space dimension
3: of each mode go to infinity restores the original Klein-Gordon theory. For finite
dimension 3: , however, the spectrum of each �̂®: is not linearly spaced and possesses
both maximum and minimum eigenvalues which depend on the values ofΩ: as well
as 3: [10].

Tofix the 3: ’s, we comeback to the question of creating black holes. Agravitationally-
acquainted effective field theory should cut off below any excitations that would
collapse into black holes. Therefore, it is natural to impose that the largest energy
eigenvalue for each mode : should not exceed the Schwarzschild energy of the
box. The largest energy eigenvalue is fixed according to the finite-dimensional con-
struction of conjugate variables introduced in the previous section. As is discussed
in Ref. [10], the largest eigenvalue of each finite-dimensional conjugate operator,
q̂®: and ĉ®: , is ;

√
2c/(2; + 1). Then, from Horn’s inequalities [144, 145], one can

consequently show that the largest eigenvalue of �̂: is tightly bounded by

�max(:) ≤
cΩ2

:
3:

4!
. (6.6)

By demanding that �max(:) be less than ∼ !<2
P;/4, we arrive at

3: .
!2"2

?;

cΩ2
:

. (6.7)
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In particular, this bound suppresses the dimension of high-frequency modes and
defines a smallest mode residing at : = <P;/

√
c, for which 3: = 1. Note that

this construction is inherently different from simply truncating every Klein-Gordon
mode’s usual spectrum, each of which is that of an infinite-dimensional harmonic
oscillator.

Let us now examine the minimum energy eigenvalue of each mode. �min(:)
is always bounded above by :/2, the zero point energy of an infinite dimensional
oscillator, and lowering the value of 3: lowers the value of �min(:); this is illustrated
in Fig. 6.1. Therefore, the bound (6.7) also suppresses �min(:), with the suppression
becoming increasingly severe at higher frequencies.

In summary, we find that imposing a finite dimension that prevents each mode
from exceeding the box’s Schwarzschild energy reduces the ground state energy
of each field mode. The quantum contribution to total vacuum energy density
will consequently be lowered as well, even when summing over modes all the way
to the Planck scale. While our finite-dimensional field-in-a-box is not a precise
cosmological model, we can get a sense for what the size of the effect might be for
our Hubble patch by taking the box size ! to be the current Hubble radius. The
resulting vacuum energy density that we compute is

d���0 =
1
!3

∑
®:

�min(:)

≈ 1
!3

∫ <P;/
√
c

!−1
3: 4c:2

(
!

c

)3
�min(:) . (104 GeV)4.

(6.8)

This is 60 orders of magnitude lower than the naïve counting of vacuum energy
density contribution from a free Klein-Gordon field,

d �0 =
1
!3

∑
®:

:

2

≈ 1
!3

∫ <P;

!−1
3: 4c:2

(
!

c

)3
:

2
∼ (1019 GeV)4.

(6.9)

6.3 Conclusion: Hilbert Space and Holography
While an intrinsically finite-dimensional version of a scalar field results in a vastly
smaller vacuum energy compared to the original infinite-dimensional theory, it
is still many orders of magnitude above the observed value, d0 . (10−11 GeV)4

[146, 147]. However, this is because our simple estimate still counts many more
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Figure 6.1: Minimum energy eigenvalue for a finite-dimensional field mode, nor-
malized by Ω/!, as a function of the dimension 3 and for several values of Ω.

states than allowed by the holographic bound. This can be seen by setting 3: equal
to the bound (6.7) and computing the dimension, �, of the total Hilbert space:

log� =
∑
®:

log 3: ≈
∫ <P;/

√
c

!−1
3: 4c:2

(
!

c

)3
log 3: ∼ (!<P;)3 + O(log(!<P;)) .

(6.10)
According to the holographic bound, this should be no more than ( ∼ (!<P;)2.

Local finite dimension according to Eq. (6.7) alone is therefore not the end of the
story. There will also be a holographic depletion of states, which should be strongest
in the UV [148, 149]. This can be understood heuristically by noting that the density
of field theoretic degrees of freedom is observed to scale extensively in the IR, and
also that many otherwise-valid states would collapse to form black holes in the UV.
For example, exciting every Klein-Gordon mode up to : ∼ 1 meV is already enough
to reach the Schwarzschild energy of our universe-sized box.

In a crude attempt tomodel this holographic depletion of states, we can trymodifying
the density of modes 6(:) 3: = 4c:2 3: by setting

6̃(:) =
{

4c:2 !−1 < : < :∗

2c: :∗ < : < <P;/
√
c
. (6.11)
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Taking the crossover to lie at :∗ ∼ 1 meV, we find that the vacuum energy is
reduced to d���0 . (10−10 GeV)4, which is consistent with the observed value of
vacuum energy to within an order of magnitude. This result should be taken with
a grain of salt, however, due to the delicate interplay between the finite oscillator
dimensions 3: and the density of modes 6̃(:), which we have yet to investigate in
detail. Nevertheless, the calculation discussed here for vacuumenergy illustrates that
taking finite dimensionality and holography together seriously can have important
predictive consequences for gravity.
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C h a p t e r 7

QUANTUMMEREOLOGY: FACTORIZING HILBERT SPACE
INTO SUBSYSTEMS WITH QUASI-CLASSICAL DYNAMICS

We study the question of how to decompose Hilbert space into a preferred tensor-
product factorization without any pre-existing structure other than a Hamiltonian
operator, in particular the case of a bipartite decomposition into “system” and
“environment.” Such a decomposition can be defined by looking for subsystems
that exhibit quasi-classical behavior. The correct decomposition is one in which
pointer states of the system are relatively robust against environmental monitoring
(their entanglement with the environment does not continually and dramatically
increase) and remain localized around approximately-classical trajectories. We
present an in-principle algorithm for finding such a decomposition by minimizing a
combination of entanglement growth and internal spreading of the system. Both of
these properties are related to locality in different ways. This formalism could be
relevant to the emergence of spacetime from quantum entanglement.

This chapter is based on the following reference:

S. M. Carroll and A. Singh, “Quantum Mereology: Factorizing Hilbert Space into
Subsystems with Quasi-Classical Dynamics,” arXiv:2005.12938 [quant-ph]

7.1 Introduction
If someone hands you two qubits � and �, there is a well-understood procedure
for constructing the quantum description of the composite system constructed from
the two of them. If the individual Hilbert spaces are H� ' C2 and H� ' C2,
the composite Hilbert space is given by the tensor product, H ' H� ⊗ H� ' C4,
where ' represents isomorphism. The total Hamiltonian is the sum of the two self-
Hamiltonians, �̂� and �̂�, acting onH� andH�, respectively, plus an appropriate
interaction term, �̂int, coupling the two factors.

What about the other way around? If someone hands you a four-dimensional Hilbert
space and a Hamiltonian, is there a procedure by which we can factorize the system
into the tensor product of two qubits? In general there will be an infinite number of

http://arxiv.org/abs/2005.12938
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possible factorizations, each defined by a bijection of the form

_ : H → H� ⊗ H�. (7.1)

Unitary transformations *̂ can be used to define different bijections,

_̃ = _ ◦ *̂ : H → H� ⊗ H�. (7.2)

While some unitaries will simply induce rotations within the factors H� and H�,
generically the factorization defined by _̃ will not be equivalent to that defined by
_. Is there some notion of the “right” factorization for a given physical situation?

In almost all applications, these questions are begged rather than addressed. When
someone hands us two spin-1/2 particles, it seems obvious how to assign Hilbert
spaces to each and form the relevant tensor product. But there are circumstances,
perhaps including quantum gravity, whenwemight know nothingmore than the total
Hilbert space and the Hamiltonian (and perhaps a specified initial state), and want
to use that information to reverse-engineer a sensible notion of what physical system
is being described, including what its individual parts are [65]. This is the subject
of “Quantum Mereology," where “mereology" is the study of how parts relate to
the whole. It is especially important in the context of finite-dimensional Hilbert
spaces, where any Hermitian operator defines an observable, and there is no notion
of preferred observables that can be used to define a corresponding factorization.

In this paper we seek to address this problem in a systematic way. Given nothing
more than a Hilbert space of some dimensionality, the Hamiltonian, and an initial
state, what is the best way to factorize Hilbert space into subsystems? Since we
are not given a preferred factorization to begin with, there is no preferred basis
other than the eigenstates of the Hamiltonian. The Hamiltonian itself is therefore
specified by its spectrum (the set of energy eigenvalues), and the initial state by its
components in the energy eigenbasis. Our task is to use this meager data to find the
most useful way of decomposing Hilbert space into tensor factors.

The key here is “useful,” andwe interpret this asmeaning “allows for a quasi-classical
description of the dynamics within the subsystems (or one subsystem coupled to an
environment)." A well-understood feature of conventional quantum dynamics is the
selection of pointer states of a system that is being monitored by an environment.
In general the reduced density matrix of the system can always be diagonalized in
some basis, but for systems that can exhibit quasi-classical behavior, the pointer
states define a basis in which the system’s density matrix will rapidly approach
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a diagonal form. These pointer states then obey quasi-classical dynamics. This
implies in particular that a system in a pointer state remains relatively unentangled
with the environment, and that we can define pointer observables that approximately
obey classical equations of motion. This suggests a criterion for determining the
proper system/environment factorization: choose the tensor-product decomposition
in which the system has a pointer basis that most closely adheres to these properties.
As we will see, generic Hamiltonians will have no such decomposition available, so
quasi-classical behavior is non-generic.

In this paper we develop an algorithm for making this criterion precise. For any
given decomposition, we start with an unentangled state, and calculate the growth
of entanglement. Since our interest is in finite-dimensional Hilbert spaces [17,
20, 21], we use Generalized Pauli Operators (which have their algebraic roots in
generalized Clifford algebra) to define conjugate operators @̂ and ?̂; in the infinite-
dimensional limit, these obey the Heisenberg canonical commutation relations. The
position operator @̂ is the one that appears in the interaction Hamiltonian. We
can then calculate the rate of spread of the uncertainty in the position variable.
Both the entanglement between system and environment and the spread of the
system’s position can be characterized by an entropy. Our criterion is that the
correct decomposition minimizes the maximum of these two entropies, for initially
localized and unentangled states.

While this question has not frequently been addressed in the literature on quantum
foundations and emergence of classicality, a few works have highlighted its impor-
tance and made attempts to understand it better. Brun and Hartle [150] studied
the emergence of preferred coarse-grained classical variables in a chain of quantum
harmonic oscillators. Efforts to address the closely related question of identifying
classical set of histories (also known as the “Set Selection" problem) in the Decoher-
ent Histories formalism [115, 151–155] have also been undertaken. Tegmark [28]
has approached the problem from the perspective of information processing ability
of subsystems and Piazza [114] focuses on emergence of spatially local subsystem
structure in a field theoretic context. Hamiltonian induced factorization of Hilbert
space which exhibit :-local dynamics has also been studied by Cotler et al [22]).
The idea that tensor product structures and virtual subsystems can be identified with
algebras of observables was originally introduced by Zanardi et al in [156, 157] and
was further extended in Kabernik, Pollack and Singh [158] to induce more general
structures in Hilbert space. In a series of papers (e.g. [159–162]; see also [163])
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Castagnino, Lombardi, and collaborators have developed the self-induced deco-
herence (SID) program, which conceptualizes decoherence as a dynamical process
which identifies the classical variables by inspection of the Hamiltonian, without the
need to explicitly identify a set of environment degrees of freedom. Similar physical
motivations but different mathematical methods have led Kofler and Brukner [164]
to study the emergence of classicality under restriction to coarse-grained measure-
ments.

The paper is organized as follows. Section 7.2 describes the important features
of a quasi-classical factorization, settling on two important features: “robustness,"
referring to slow growth of entanglement between pointer states and the environ-
ment, and “predictability," meaning that pointer observables approximately obey
classical equations with low variance. We emphasize how these features will not be
manifest in any arbitrary factorization and use a bipartite example to demonstrate
these characteristics. We then examine these two features in turn. Section 7.3
considers robustness, showing that it is non-generic, and investigating what kinds of
decompositions will minimize the growth of entanglement. Section 7.4 we derive
conditions for the existence of classical behavior of the system interacting with its
environment. These include the “collimation” of the self-Hamiltonian, needed to
ensure that initially peaked states remain relatively peaked, and the pointer observ-
ables approximately obeying classical equations of motion. In section 7.5, we will
outline an algorithm to sift through different decompositions of Hilbert space, given
a Hamiltonian to pick out the one with manifest quasi-classicality. We will define an
entropy-based quantity that we call Schwinger Entropywhose minimization ensures
the existence of low entropy states that are both resistant to entanglement production
and have a pointer observable that evolves quasi-classically. We close with a worked
example and some discussion.

7.2 Factorization and Classicality
There is a great deal of freedom in the choice of factorization of Hilbert space
corresponding to different subsystems. In principle any factorization can be used,
or none; for purposes of unitary dynamics, one is free to express the quantum state
however one chooses. For purposes of pinpointing quasi-classical behavior, however,
choosing the right factorization into systemS and environment E is crucial. Similar
considerations will apply to further factorization of the system into subsystems. Let
us therefore review what is meant by “quasi-classical behavior."
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Consider a bipartite split of a finite-dimensional Hilbert space H ≡ (A ⊗ B){\}
into subsystemsA and B in a factorization labeled by {\} relative to some arbitrary
chosen one. (In Appendix 7.7 we establish some notation and fomulae relevant to
factorizations and transformations between them.) The dimension ofA is dimA =

3� and dimB = 3�, with dimH = � = 3�3�. The Hamiltonian �̂ in this
decomposition can be written as a sum of self terms and an interaction term,
following Eq. (7.64),

�̂ = �̂� ⊗ Î� + Î� ⊗ �̂� + �̂int . (7.3)

We only consider traceless Hamiltonians, so there is no need for a trace term
ℎ0 = Tr �̂/�. Under factorization changes, even though Tr �̂ is preserved, there
would be an ambiguity in assigning the trace terms to either of the self-Hamiltonians
ofA orB. Also, sincewe are not considering gravity as an external field, subtracting
off a constant from �̂ is physically trivial.

The form of the Hamiltonian is dependent on the choice of the decomposition {\}.
The interaction term can be expanded in the (* (3�) ⊗ (* (3�) operator basis as
following Eq. (7.66),

�̂int =

32
�
−1∑

0=1

32
�
−1∑

1=1
ℎ01

(
Λ̂
(�)
0 ⊗ Λ̂(�)1

)
. (7.4)

One can rewrite �̂int in a diagonal form,

�̂int =

=8=C∑
U=1

_U

(
�̂U ⊗ �̂U

)
, (7.5)

where �̂U and �̂U are combinations of the Hermitian generators1 in Eq. (7.4) and the
total number of terms will generically be =8=C = (32

�
− 1) (32

�
− 1). The coefficients

_U characterize the strength of each contribution in the interaction Hamiltonian,
which we ensure by absorbing any normalization of operators �̂U and �̂U in _U such
that | | �̂U | | = | |�̂U | | = 1 under a suitable choice of operator norm | |.| |. While there
appear to be a large number of terms in the expansion in Eq. (7.5), we will see later
how in the preferred, quasi-classical decomposition, most of these terms condense
into familiar local operators that serve as pointer observables.

1While in a general diagonal decomposition of the interaction Hamiltonian, the operators �̂U
and �̂U can be unitary but not necessarily Hermitian, but our form of Eq. (7.5) is obtained by re-
labeling/recollecting terms in an expansion with Hermitian terms of Eq. (7.4), hence �̂U and �̂U
will be Hermitian. This will also help us make easy contact with talking about observables being
monitored by subsystems.
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A quasi-classical (QC) factorization of H that we will denote by {\}&� can be
associated with the following features:

1. Robustness: There exist preferred pointer states of the system (and associ-
ated pointer observables) that, if initially unentangled with the environment,
typically remain unentangled under evolution by �̂.

2. Predictability: For states with near definite value of the pointer observable,
it will serve as a predictable quasi-classical variable, with minimal spreading
under Hamiltonian evolution.

Informally, these two criteria correspond to the conventional notions that “wave
function branchings are rare" and “expectation values of observables remain peaked
around classical trajectories in the appropriate regime." We can now examine in
detail how these features can be characterized quantitatively.

7.3 Robustness and Entanglement
It is a feature of the universe (albeit as-yet imperfectly explained) that entropy was
low at early times, and has been subsequently increasing [165, 166]. In the quantum
context, this corresponds to relatively small amounts of initial entanglement between
subsystems, and between macroscopic systems and their environment. Here we are
imagining a bipartite split

H = S ⊗ E (7.6)

into S, which corresponds to “system” degrees of freedom we wish to track, and
an environment E, which is the part we are not interested in or do not have control
over. In Everettian quantum mechanics [167], this feature underlies the fact that the
wave function branches as time moves toward the future, not the past. Our interest
is therefore in initially low-entropy situations, where the system is unentangled with
its environment.

With a generic Hamiltonian in a generic factorization, we would expect any initially-
unentangled system state to quickly become highly entangled with its environ-
ment, on timescales typical of the overall Hamiltonian. By “highly entangled”
we mean that the entropy of the system’s reduced density matrix would approach
log(dim HS). In Everettian language, that would correspond to splitting into a
number of branches of order dim HS . This is not what we expect from robust
quasi-classical behavior; to a good approximation, Schrödinger’s cat splits into two
branches, not into the exponential of Avogadro’s number of branches.
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We will therefore ask, given some Hamiltonian �̂, how we can factorize H into
S ⊗ E such that the entanglement growth rate of certain initially-unentangled states
is minimized. We will explicitly work to O(C2), which we will see is the lowest
non-trivial contribution to the entanglement growth. This will help us quantify
robustness and quasi-classicality for small times. (Factorizations that are not quasi-
classical for small times will not be quasi-classical for later times either.)

Decoherence Is Non-Generic
It is well-known that wave functions tend to “collapse” (or branch) into certain
preferred pointer states, depending on what observable is being measured. The
decoherence paradigm outlines how in an appropriate factorization, we search for
a pointer observable $̂( ∈ L(S) such that eigenstates {|B 9 〉 | 9 = 1, 2, · · · , 3(}
of $̂( serve as pointer states [27], which are robust to entanglement production
with states of the environment. Thus, there exist special product states |B 9 〉 ⊗ |�〉
that do not entangle (or stay approximately unentangled) under the evolution by
the total Hamiltonian �̂. This feature allows suppression of interference between
superpositions of different pointer states, and in the eigenbasis of $̂(, the reduced
density operator for S given by d̂( (C) evolves toward a diagonal form, since the
conditional environmental states corresponding to different pointer states of the
system become dynamically orthogonal 〈� (B 9 ) |� (B: )〉 → X 9 : relatively fast in
time.

In particular in the Quantum Measurement Limit (QML) [168], when the Hamil-
tonian is dominated by interactions �̂int (when the spectral frequencies available
in �̂int are much larger than those of the self term �̂self), the pointer observable
satisfies Zurek’s commutativity criterion [27],[

�̂int, $̂(

]
≈ 0 =⇒

[
�̂int, $̂( ⊗ Î�

]
≈ 0 . (7.7)

This is interpreted as saying that the environment E robustly monitors [169] a
certain observable $̂( of the system (typically a “local” one, such as position) that
is compatible with the interaction Hamiltonian �̂int and selects this to serve as the
pointer observable. This commutativity criterion of Eq. (7.7) further implies that
generically all terms �̂U occurring with _U ≠ 0 will individually satisfy[

�̂U, $̂(

]
≈ 0 ∀ U . (7.8)

The discussion can be extended to the quantum limit of decoherence [168], where
the self term �̂self dominates over �̂int and selects eigenstates of the self-Hamiltonian
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for the system �̂( to be the pointer states. In general, Zurek’s “predictability sieve”
[170] sifts through different states in the system’s Hilbert spaceS to search for states
that are robust to entanglement production under evolution by the full Hamiltonian
�̂. In this paper, we primarily focus on the quantum measurement limit (QML)
since a broad class of physical models exhibit this feature where interactions play a
dominant and crucial role in the emergence of classicality.

Decoherence and the existence of low-entropy states inH that do not get entangled
under the action of �̂ depend sensitively on the Hamiltonian and factorizationH =

A ⊗ B taking a particular, non-generic form. In the quasi-classical factorization,
we will identify subsystem A as the “system" S, and the subsystem B as the
“environment" E. In general, as we saw in Eq. (7.4) and particularly in the diagonal
decomposition Eq. (7.5), the interaction term has a slew of non-commuting terms
�̂U in the summand. Searching for a “pointer observable" is equivalent to finding
an operator compatible with �̂int, and hence satisfying

[
�̂int, $̂

]
≈ 0. Due to the

presence of large number of non-commuting terms in �̂int, the eigenstates of $̂ will
be highly entangled and not be low entropy states that can be resilient to entropy
production.

Said differently, the “pointer observable" $̂ will not be of a separable form $̂ ≠

$̂� ⊗ $̂�, and only specific factorizations for Hamiltonians can allow decoherence,
where many terms of �̂int in Eq. (7.5) conspire together to collect into a few
local and compatible terms allowing for consistent monitoring of the system by the
environment. (To emphasize, by “decoherence” herewemean not simply “becoming
entangled with the environment," but the existence of a preferred set of pointer states
that define a basis in which the reduced density matrix dynamically diagonalizes.)
As we saw, the existence of initial low entropy states d̂(0) = d̂� (0) ⊗ d̂� (0) that
are robust under evolution to entanglement production is highly constrained and
only in particular cases when many of the _U strengths vanish or terms conspire
to condense into a few local terms will they exist to serve as the pointer states
for subsystems being robustly monitored by the environment (other subsystems).
This can be further understood by considering the constraint counting discussed in
Section 7.3 below.

In Appendix 7.10 we detail this behavior more explicitly.
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Minimizing Entropy Growth
In an arbitrary decompositionH ≡ (A ⊗ B){\}, let us begin with an initial (C = 0)
pure state of zero entropy for the factors, which we take to be a product state,

d̂(0) ≡ |k(0)〉 〈k(0) | = d̂� (0) ⊗ d̂� (0) ≡ |k� (0)〉 〈k� (0) | ⊗ |k� (0)〉 〈k� (0) | .
(7.9)

At this stage, the decomposition {\} is completely general and has no notion of
preferred observables or classical behavior. Let usworkwith a tracelessHamiltonian
of Eq. (7.3) even though the calculation below holds for Tr �̂ ≠ 0 since this will
only be an overall phase in the unitary evolution of density matrices and hence,
cancels out. Time evolution of states is implemented using a unitary operator
*̂ (C) ≡ exp

(
−8�̂C

)
, where we are working in units with ℏ = 1, and the time evolved

state is |k(C)〉 = *̂ (C) |k(0)〉. Let us write *̂ (C) in a more suggestive form working
explicitly to order O(C2).

In Appendix 7.8, we compute the linear entanglement entropy2 (;8= ( d̂� (C)) =(
1 − Tr d̂2

�
(C)

)
for the reduced density matrix of A given by Eq. (7.74), which

corresponds to starting with an unentangled (and hence, zero entropy) state d̂(0).
Putting these together in Eq. (7.82), we obtain,

(;8= ( d̂� (C)) = C2
∑
U,V

_U_V

(〈
�̂U �̂V

〉
0
〈
�̂U �̂V

〉
0 +

〈
�̂V �̂U

〉
0
〈
�̂V �̂U

〉
0

−
〈
�̂U

〉
0
〈
�̂V

〉
0

(〈
{�̂U, �̂V}+

〉
0 −

〈
�̂U

〉
0
〈
�̂V

〉
0

)
−

〈
�̂U

〉
0
〈
�̂V

〉
0

(〈
{ �̂U, �̂V}+

〉
0 −

〈
�̂U

〉
0
〈
�̂V

〉
0

))
+ O(C3) .

(7.10)

For condensed notation, let us write (;8= ( d̂� (C)) = ¥(;8= (0) C2 + O(C3). The quantity
¥(;8= will play an important role in quantifying the quasi-classicality of different
factorizations of Hilbert space. In particular, for the important case when the
interaction Hamiltonian takes the simple form �̂int = _

(
�̂ ⊗ �̂

)
, we notice that the

expression for (;8= simplifies to,

(;8= ( d̂� (C)) = 2_2C2
(〈
�̂2〉

0 −
〈
�̂
〉2

0

) (〈
�̂2〉

0 −
〈
�̂
〉2

0

)
. (7.11)

Let us note a few key features of the entropy growth Eq. (7.10). We are working in
the context of unentangled (low entropy) states. As we have seen, the entanglement

2A common entanglement measure used is the von-Neumann entanglement entropy (E# ( d̂) =
−Tr ( d̂ log d̂) for a given density matrix d̂. However, the presence of the logarithm makes the
entropy hard to analytically compute and give expressions for, hence we will focus on its lead-
ing order contribution, the Linear Entropy (which is the Tsallis second order entropy measure),
(;8= ( d̂) =

(
1 − Tr d̂2) .
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growth rate depends on the interaction strengths _U; stronger interactions would
entangle subsystems more quickly. One might be temped to conclude that finding a
decomposition where the interaction Hamiltonian has the minimum strength would
ensure least entanglement production, but we must take note of the important role
played by the initial (unentangled) state in determining the rate of entanglement
generation3. In particular, we notice from Eqs. (7.11) and (7.10) the presence
of variance-like terms of the interaction Hamiltonian in the initial state. States
that are more spread relative to terms in the interaction Hamiltonian (hence more
variance) allow for more ways for the two subsystems to entangle and such features
will play an important role in distinguishing the QC factorization. Interestingly, the
self-Hamiltonian plays no role in entanglement production for initially unentangled
states to O(C2). As we will see later, the self term is nevertheless important in
determining the collimation of pointer observables under evolution, and will serve
as an important feature of the QC factorization.

Not all unentangled states will allow for ¥(;8= (0) = 0, even approximately, and only
a special class of states for a given factorization will be robust to entanglement
production. For an arbitrary factorization, there will not exist such entanglement-
resilient states that do not get entangled (to O(C2)) under evolution. When ¥(;8= (0) =
0, for an arbitrary factorization where all =8=C terms are present in the interaction
Hamiltonian without any constraints or relationship amongst different terms, each
individual summand in Eq. (7.10) will typically have to vanish separately, giving us
(=8=C) (=8=C +1)/2 equations in the variables that make up the initial unentangled state
|k(0)〉� ⊗ |k(0)〉�. A generic unentangled state of this form has (23� − 2) (23� −
2) << (=8=C) (=8=C + 1)/2 real, free parameters (twice the dimension accounting for
real coefficients; reduce two degrees of freedom, one due to normalization and one
for the overall phase), hence forming an overdetermined set of equations. Only in
very special cases, where quasi-classicality will be manifest will we see that many
terms in �̂int will vanish having _U = 0 or will conspire together to reduce/condense
into familiar classical observables being monitored by other subsystems for there to
exist robust, unentangled states that are resilient to entanglement production (and
will serve as the pointer basis of the system). Such states will also be important for
allowing decoherence to be an effectivemechanism to suppress interference between

3This is in line with Tegmark’s [28] “Hamiltonian Diagonality Theorem," which proves that
the Hamiltonian is maximally separable (with minimum norm of the interaction Hamiltonian) in
the energy eigenbasis. Tegmark further argues that this factorization corresponding to the energy
eigenbasis is not the quasi-classical one despite maximum separability due to a crucial role played
by the state.



96

superpositions of such pointer states.

7.4 Predictability and Classical Dynamics
Pointer Observables and Predictable Diagonal-Sliding
The mere existence of a pointer observable consistently monitored by other subsys-
tems is not enough for classical evolution of states starting with a peaked value of
the observable. In addition to slow entanglement growth of initially unentangled
pointer states, we must ensure that such states define a predictable variable that
evolves classically. A possible measure for the predictability of an operator under
evolution is the change in variance of the observable under an initial state with
almost definitive value of the observable. Let us compute the time rate of change in
variance of an observable $̂� ∈ L(A) under the evolution by �̂. Here we will see
how the self-Hamiltonian �̂� becomes important in determining the how quickly
the observable spreads.

The variance of $̂� as a function of time is defined as,

Δ2$̂� (C) = Tr
(
d̂� (C)$̂2

�

)
− Tr2

(
d̂� (C)$̂�

)
. (7.12)

We will use the expression for d̂� (C) to O(C) from Eq. (7.76) since this is the lowest
non-trivial order at which the effect of the Hamiltonian can be seen,

d̂� (C) = f̂� (C) − 8C
∑
U

_U
〈
�̂U

〉
0
[
�̂U, d̂� (0)

]
+ O(C2) , (7.13)

which gives us,

Tr
(
d̂� (C)$̂2

�

)
=

〈
$̂2
�

〉self
C
− 8C

∑
U

_U
〈
�̂U

〉
0 Tr

( [
�̂U, d̂� (0)

]
$̂2
�

)
+ O(C2)

=
〈
$̂2
�

〉self
C
− 8C

∑
U

_U
〈
�̂U

〉
0
〈[
$̂2
�, �̂U

]〉
0 + O(C

2) ,
(7.14)

and similarly,

Tr
(
d̂� (C)$̂�

)
=

〈
$̂2
�

〉self
C
− 8C

∑
U

_U
〈
�̂U

〉
0
〈[
$̂�, �̂U

]〉
0 + O(C

2) , (7.15)

where the self-evolved variance
(
Δ2$̂�

)self
is found similarly, depending on the

self-Hamiltonian �̂�,(
Δ2$̂�

)self
(C) = Tr

(
f̂� (C)$̂2

�

)
− Tr2

(
f̂� (C)$̂�

)
+ O(C2)

=

(
Δ2$̂�

)
0
− 8C

(〈 [
$̂2
�, �̂�

]〉
0 − 2

〈[
$̂�, �̂�

]〉
0
〈
$̂�

〉
0

)
+ O(C2) .

(7.16)
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We can now put everything together to get the variance Δ2$̂� (C) to O(C),

Δ2$̂� (C) =
(
Δ2$̂�

)self

0
−8C

∑
U

_U
〈
�̂U

〉
0

(〈 [
$̂2
�, �̂U

]〉
0−2

〈[
$̂�, �̂U

]〉
0
〈
$̂�

〉
0

)
+O(C2).

(7.17)
We can now obtain the leading order contribution to the time derivative of the
variance that captures the contribution to various terms in the Hamiltonian,

3

3C
Δ2$̂� (C) =

(〈
8
[
�̂�, $̂

2
�

]〉
0 − 2

〈
8
[
�̂�, $̂�

]〉
0
〈
$̂�

〉
0

)
+(〈

8

[∑
U

_U
〈
�̂U

〉
0 �̂U, $̂

2
�

]〉
0

− 2

〈
8

[∑
U

_U
〈
�̂U

〉
0 �̂U, $̂�

]〉
0

〈
$̂�

〉
0

)
+ O(C) .

(7.18)

The spreading of the variance depends on terms which resemble those in the Heisen-
berg equation of motion of the observable $̂� (and its square) under evolution by
both the self-Hamiltonian �̂� and relevant terms in �̂int.

Let us now analyze this variance change for the case where the interaction Hamilto-
nian �̂int in the chosen factorization admits a consistent pointer observable (in the
QML) satisfying Eq. (7.7), in which case

[
5̂ ($̂�), �̂U

]
≈ 0 ∀ U for any function

5̂ ($̂�) depending only on $̂�. For such a pointer observable, the time derivative of
the variance fromEq. (7.18) simplifies and depends only on self-dynamics governed
by �̂�,

3

3C
Δ2$̂� (C) =

〈
8
[
�̂�, $̂

2
�

]〉
0−2

〈
8
[
�̂�, $̂�

]〉
0
〈
$̂�

〉
0+O(C) for

[
$̂�, �̂U

]
≈ 0.

(7.19)
For the pointer observable $̂� to offer a predictable variable, it should obey
3
3C
Δ2$̂� (C) << 1 for initial states that are peaked around some eigenvalue of $̂�.

Having states as peaked superpositions of the pointer states instead of exact eigen-
states fits in well with the idea of “predictability sieve" à la Zurek [170]: while the
pointer observable is chosen using the compatibility criterion with �̂int as seen in
Eq. (7.7), the most robust states (under the full Hamiltonian �̂) will have a small
width instead of being exact eigenstates due to the effects of the (systematically
smaller) self-Hamiltonian (in the QML). Such peaked states, for a predictable $̂�,
will not spread much, and offer candidates for classical states that evolve primarily
under the action of the self-Hamiltonian �̂�.

The reduced density matrix of A in such a pointer basis will be mostly diagonal
(due to decoherence, as discussed in Section 7.3), and a peaked state of $̂� will
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slide along the diagonal under self-dynamics [28]. This “diagonal sliding" feature
can also be seen from the expression for ¤̂d� (C) from Eq. (7.110), where the diagonal
entries of the decoherence termD( d̂� (C)) of Eq. (7.111) in the pointer basis {|B 9 〉}
vanish identically, and the diagonal entries in ¤̂d� (C) in the pointer basis evolve as,[

3

3C
d̂� (C)

]
9 9

=

(
−8

[
�̂� (C), d̂� (C)

]
9 9

)
+ O(C2) , (7.20)

since even the interaction pieces from the effective self-Hamiltonian also van-
ish in the pointer basis (see Appendix 7.10 for details), 〈0 9 |

[
�̂U, d̂� (C)

]
|0 9 〉 ≡[

�̂U, d̂� (C)
]
9 9
= 0. Thus, these diagonal terms evolve under the action of the self-

Hamiltonian and dictate the diagonal sliding of the density matrix in the pointer
basis once it has decohered.

We will now make contact with dimensional conjugate variables, using which we
will connect properties of the self-Hamiltonian with the rate of change of variance
of the pointer observable.

Finite-Dimensional Conjugate Variables
Classical mechanics is formulated in phase space, with conjugate position and mo-
mentum variables. For quantum mechanics in infinite-dimensional Hilbert spaces,
we can define corresponding quantum operators, subject to theHeisenberg canonical
commutation relations (CCR). Sincewe are explicitly focusing on finite-dimensional
Hilbert spaces, we will use the Generalized Pauli Operators (which find their alge-
braic roots in the generalized Clifford algebra) to provide us with finite-dimensional
conjugate variables that obey the CCR in the infinite-dimensional limit. We will
then use these to define the “collimation” of an operator, an important notion that
characterizes how the action of an operator on a state induces a spread in eigenspace.

We explain the basics of generalized Pauli operators (GPOs) in Appendix 7.9. The
essential point is that we can construct Hermitian conjugate operators @̂ and ?̂ that
match onto position- andmomentum-like operators in the infinite-dimensional limit.
To do this we introduce two unitary operators �̂ and �̂ that will generate the GPO
algebra. On a Hilbert space of dimension 3 < ∞, they obey the Weyl braiding
relation,

�̂�̂ = l−1�̂ �̂ , (7.21)

wherel = exp (2c8/3) is the 3-th primitive root of unity, and are sometimes referred
to as “Clock” and “Shift” operators in the literature. Then the conjugate variables
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are defined via
�̂ ≡ exp (−8Uĉ) , �̂ = exp (8Vq̂) , (7.22)

where U and V are non-zero real parameters that set the scale of the eigenspectrum
of the operators q̂ and ĉ with a cyclic structure. For concreteness, we take the
dimension to be an odd integer, 3 = 2; + 1 for some ; ∈ Z+.

The set of #2 linearly independent unitary matrices,
{�1�0 |1, 0 = −;, (−; + 1), · · · , 0, · · · , (; − 1), ;}, which includes the identity for
0 = 1 = 0, form a unitary basis for L(H). Schwinger [94] studied the role of such
unitary basis, hence this operator basis is often called Schwinger’s unitary basis.
Any operator "̂ ∈ L(H) can be expanded in this basis,

"̂ =

;∑
1,0=−;

<10 �̂
1 �̂0 . (7.23)

Since from the structure of the GPO algebra we have Tr
[(
�̂1
′
�̂0
′
)† (

�̂1 �̂0
)]
=

3 X1,1′X0,0′, we can invert Eq. (7.23) to get the coefficients <10 as,

<10 =
1
3

Tr
[
�̂−0 �̂−1"̂

]
. (7.24)

The GPO generator �̂ corresponds to a unit shift in the eigenstates of q̂, and �̂
generates unit shifts in the eigenstates of ĉ; hence, a basis element �1�0 generates
0 units of shift in eigenstates of q̂ and 1 units in eigenstates of ĉ, respectively (up to
overall phase factors).

For an operator "̂ that is Hermitian "̂† = "̂ , we get a constraint on the ex-
pansion coefficients, l−10<∗−1,−0 = <10, which implies |<10 | = |<−1,−0 | since
l = exp (2c8/(2; + 1)) is a primitive root of unity. The coefficients <10 are a set
of basis-independent numbers that quantify the spread induced by the operator "̂
along each of the conjugate variables q̂ and ĉ. To be precise, |<1,0 | represents the
amplitude of 1 shifts along ĉ for an eigenstate of ĉ and 0 shifts along q̂ for an
eigenstate of q̂ . The indices of <10 run from −;, · · · , 0, · · · , ; along both conjugate
variables and thus, characterize shifts in both increasing (0 or 1 > 0) and decreasing
(0 or 1 < 0) eigenvalues on the cyclic lattice. The action of "̂ on a state depends on
details of the state, and in general will lead to a superposition in the eigenstates of the
chosen conjugate variable as our basis states, but the set of numbers <10 quantify
the spread along conjugate directions by the operator "̂ independent of the choice
of state. The coefficient <00 accompanies the identity Î, and hence corresponds to
no shift in either of the conjugate variables.
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From<10, which encodes amplitudes of shifts in both q̂ and ĉ eigenstates, we would
like to extract profiles which illustrate the spreading features of "̂ in each conjugate
variable separately. Since the coefficients <10 depend on details of "̂ , in particular
its norm, we define normalized amplitudes <̃10 for these shifts,

<̃10 =
<10∑;

1′,0′=−; |<1′0′ |
. (7.25)

Then we define the q̂-shift profile of "̂ by marginalizing over all possible shifts in
ĉ,

<
(q)
0 =

;∑
1=−;
|<̃10 | =

∑;
1=−; |<10 |∑;

1′,0′=−; |<1′0′ |
, (7.26)

which is a set of (2; + 1) positive numbers, normalized under
∑;
0=−; <

(q)
0 = 1,

characterizing the relative importance of "̂ spreading the q̂ variable by 0 units,
0 = −;, · · · , 0, · · · , ;. Thus, "̂ acting on an eigenstate of q̂, say |q = 9〉, will in
general, result in a superposition over the support of the basis of the q̂ eigenstates
{|q = 9 + 0 (mod ;)〉} ∀ 0, such that the relative importance (absolute value of the
coefficients in the superposition) of each such term is upper bounded by < (q)0 .

Let us now quantify this spread by defining the collimation for each conjugate
variable. Consider the q-shift profile first. Operators with a large < (q)0 for small
|0 | will have small spread in the q̂-direction, while those with larger < (q)0 for larger
|0 | can be thought of connecting states further out on the lattice for each eigenstate.
Following this motivation, we define the q-collimation �q of the operator "̂ as,

�q ("̂) =
;∑

0=−;
<
(q)
0 exp

(
− |0 |

2; + 1

)
. (7.27)

The exponential function suppresses the contribution of large shifts in our definition
of collimation. There is some freedom in our choice of the decay function in our
definition of collimation, and using an exponential function as in Eq. (7.27) is
one such choice. Thus, an operator with a larger �q is highly collimated in the
q̂-direction and does not spread out eigenstates with support on a large number of
basis states on the lattice.

On similar lines, one can define the c-shift profile for "̂ as,

<
(c)
1

=

;∑
0=−;
|<̃10 | =

∑;
0=−; |<10 |∑;

1′0′=−; |<1′0′ |
, (7.28)
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Figure 7.1: Plot showing q̂-shift profiles of various powers of ĉ. The quadratic
operator ĉ2 has the most collimated profile, implying that this operator does the
least to spread the state in the conjugate direction. Also plotted is the profile for a
random Hermitian operator, for which the spread is approximately uniform.

and a corresponding c-collimation �c with a similar interpretation as the q̂-case,

�c ("̂) =
;∑

1=−;
<
(c)
1

exp
(
− |1 |

2; + 1

)
. (7.29)

Operators such as "̂ ≡ "̂ (ĉ) that depend on only one of the conjugate variables
will only induce spread in the q̂ direction, since they have <1,0 = <0,0X1,0, hence
they possess maximum c-collimation, �c ("̂) = 1, as they do not spread eigenstates
of ĉ at all.

While the maximum value of �c ("̂ (ĉ)) can be at most unity, one can easily see
that the Hermitian operator,

"̂ (ĉ) = � + �†
2

=
exp (−8Uĉ) + exp (8Uĉ)

2
= cos (Uĉ) = Î − U

2ĉ2

2
+ U

4ĉ4

4
− · · · ,
(7.30)

has the least non-zero spread along the q̂ direction: it connects only ±1 shifts along
eigenstates of q̂ and hence has highest (non-unity) q-collimation �q ("̂). Thus,
one can expect operators which are quadratic in conjugate variables are highly
collimated. This will connect to the fact that real-world Hamiltonians include terms
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that are quadratic in the momentum variables (but typically not higher powers) and
will help explain the emergence of classicality: it is Hamiltonians of that form that
have high position collimation, and therefore induce minimal spread in the position
variable.
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Figure 7.2: q-collimation of various powers of ĉ. Even powers are seen to have
systematically larger values of q-collimation. Also plotted for comparison is a line
marking the q-collimation of a random Hermitian operator.

The quadratic operator ĉ2 has higher q-collimation than any other integer4 power
ĉ=, = ≥ 1 , = ≠ 2. In Figure (7.1), we plot the q-shift profiles for a few powers
of ĉ and it is explicitly seen that quadratic ĉ2 has the least spreading and hence
is most q̂-collimated, values for which are plotted in Figure (7.2). Note that due
to the symmetry |<1,0 | = |<−1,−0 |, we only needed to plot the positive half for
0 > 0, which captures all the information about the spread. Also, for comparison,
we also plot the q-spread and the q̂-collimation of a random Hermitian operator
(with random matrix elements in the q̂ basis); such operators spread states almost
evenly and thus have low values of collimation.

4There is a difference between odd and even powers of ĉ, with even powers systematically
having larger collimations than the odd powers. This is because odd powers of ĉ no have support
of the identity Î term in the Schwinger unitary basis expansion (and hence have <00 = 0), and
having an identity contribution boosts collimation since it contributes to the highest weight in �q
by virtue of causing no shifts.
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Operator Collimation, Locality, and the Self-Hamiltonian
Typically, one beginswith a notion of classical subsystems, then defines theHamilto-
nian for these systems based on classical energy functions, and proceeds to quantize.
In non-relativistic quantum mechanics, the self terms usually go as ?̂2/2< + +̂ (@̂)
for canonically conjugate operators ?̂ and @̂. Interaction terms usually depend on
one of the conjugate variables, usually the position of each subsystem.

For each subsystem one can associate a set of finite-dimensional conjugate operators
from the Generalized Pauli Operators. For our bipartite split H = A ⊗ B, we
have conjugate operators {q̂�, ĉ�} ∈ L(A) and {q̂�, ĉ�} ∈ L(B). For arbitrary
factorizations, these GPO-based conjugate variables will not correspond to physical
position and momentum variables; only in a quasi-classical decomposition would
the identification ĉ ≡ ?̂ and q̂ ≡ @̂ be appropriate.

The conjugate variables can be used to define the Schwinger Unitary Basis [94],
and hence we can write self terms in the Hamiltonian �̂ from (7.3) in terms of these
conjugates,

�̂� ≡ �̂�

(
ĉ�, q̂�

)
�̂� ≡ �̂�

(
ĉ�, q̂�

)
, (7.31)

and the interaction term can be written as,

�̂int ≡ �̂int
(
ĉ�, q̂�, ĉ�, q̂�

)
=

∑
U

_U

(
�̂U

(
ĉ�, q̂�

)
⊗ �̂U

(
ĉ�, q̂�

) )
. (7.32)

Before we explicitly discuss the idea of collimation and the role it plays in emergent
quasi-classicality, let us comment on the functional form of �̂int for there to exist
a robust pointer observable as described in the previous Section 7.2. Since q̂� and
ĉ� do not commute, for there to exist a compatible pointer observable monitored
consistently by other subsystems, wewould demand that interaction terms �̂U depend
only on one such conjugate variable, say q̂�. In many physical cases, the interaction
term is the position of the subsystem under consideration, as that is the quantity that
is monitored by the environment, since interactions are local in space. Under these
conditions, the pointer observable can be identified as $̂� ≡ $̂� (q̂�), depending
only on one conjugate variable.

Let us see how the idea of predictability connectswith features of the self-Hamiltonian.
From Eq. (7.19), we see that the rate of change of variance of the pointer observable
depends, in addition to the state at C = 0, on the Heisenberg equation of motion for
$̂� (q̂�) under the self-Hamiltonian �̂�. Thus, it can be expected that self terms
�̂� that are collimated in the q̂� variable will spread states less rapidly under time
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evolution and keep the change of variance of $̂� small. They therefore offer a
predictable interpretation to $̂�.

This can be seen in the following example. We keep fixed the pointer observable
$̂� ≡ q̂� and vary the self-Hamiltonian, and for each choice of the self-Hamiltonian
we compute the time derivative of Δ2$̂� from Eq. (7.19) for an initial state that
is a peaked Gaussian profile in q̂� states, representing a peaked wavepacket. In
Figure (7.3), we plot these results and see that high q-collimation �q (�̂�) inversely
correlates with the variance change of the pointer observable. Therefore, evolving
under a highly q-collimated self-Hamiltonian, peaked states in pointer space have a
smaller rate of change of variance of the pointer observable $̂�.
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0

5

10

15

20

25

Figure 7.3: Plot showing correlation between rate of change of variance of the
pointer observable 3

(
Δ2$̂�

)
/3C and collimation �q (�̂�) of the self-Hamiltonian

�̂�. More collimated self terms do not spread states much in the conjugate direc-
tions and correspondingly induce a small change in the variance of the consistent
pointer observable that depends on one of these conjugate variables. In this ex-
ample, we kept $̂� fixed at $̂� ≡ q̂� and changed the self-Hamiltonian �̂� and
computed the correlation for a peaked state in q̂� eigenspace in a Hilbert space of
dimA = 27.

Note the different roles played by collimation and locality. In quantum field theories
or lattice theories, we can factor Hilbert space into sets of degrees of freedom
located in small regions of space. Spatial locality then implies that the interaction
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Hamiltonian takes a :-local form, where each factor interacts directly with only
its neighboring factors; cf. Eq. (7.65). For our purposes we can turn this around,
looking for factorizations in which interactions are :-local, which is a necessary
requirement for the emergence of spatial locality [22]. Collimation, by contrast, is
an important feature of the self-Hamiltonian. In order to recover familiar classical
behavior, we require that pointer observables evolve in relatively predictable ways,
rather than being instantly spread out over a wide range of values.

Classical Dynamics
Besides the existence of predictable pointer observables, the other feature we require
for quasi-classical behavior is that conjugate “position” and “momentum” operators,
or some generalization thereof, approximately obey the corresponding classical
Heisenberg equations of motion.

As was shown in Ref [10], and this argument can be easily extended for multi-partite
systems, the equations of motion for the conjugate operators q̂� and ĉ� for some
subsystem A can be found to be,

3

3C
ĉ = 8

[
�̂, ĉ�

]
= −

�( m�
mq�

)
+
>33∑
==3

8=

=!
U=−1

[
ĉ�, �̂

]
=
, (7.33)

where we have defined
[
ĉ�, �̂

]
=
as the =-point nested commutator in ĉ�,[

ĉ�, �̂

]
=
=

[
ĉ�,

[
ĉ�,

[
ĉ� · · · (= times), �̂

]
· · ·

] ]
. (7.34)

The corresponding equation for q̂� can be found on similar lines,

3

3C
q̂� = 8

[
�̂, q̂�

]
=

�( m�
mc�

)
+
>33∑
==3

8=

=!
V=−1

[
q̂�, �̂

]
=
. (7.35)

In the infinite-dimensional limit we take ; → ∞, and U and V are taken to be
infinitesimal but obeying UV3 = 2c to recover the Heisenberg CCR. In this limit, as
one expects, the equations of motion simplify to resemble Hamilton’s equations,

3

3C
ĉ� = 8

[
�̂, ĉ�

]
= −

�( m�
mq�

)
, (7.36)

and,
3

3C
q̂� = 8

[
�̂, q̂�

]
=

�( m�
mc�

)
, (7.37)
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where �̂ is the Hamiltonian for the entire Hilbert space. Even though in the large-
dimension limit these resemble classical equations of motion, they are inherently
quantum mechanical equations for operators in L(H). Additional features have to
be imposed for the conjugate variables q̂� and ĉ� to serve as classical conjugate
variables.

These equations serve as classical evolution equations when we consider peaked
states of the pointer observable $̂� that would depend on only one of the conjugate
variables, say $̂� ≡ $̂� (q̂�). Peaked states in $̂� eigenspace can be candidates
for classical evolution since they can obey the Ehrenfest theorem when one takes
expectation value of Eqs. (7.36) and (7.37) by pulling in the expectation into the
Hamiltonian, for example,〈 �( m�

mc�

)〉
→

(
m

〈
�̂

〉
mc�

)
for peaked states in pointer observable space. (7.38)

The condition for persistence of such classical states obeying classical equation of
motion will be to have low spreading of the variance of such a peaked state, which
as we saw corresponds to a highly collimated self-Hamiltonian. Thus, under the
criterion of there existing a predictable and consistent pointer observable (from �̂int

in the QuantumMeasurement Limit) that depends on one of the conjugate variables
and a collimated self-Hamiltonian, we would be able to identify the conjugate vari-
ables q̂� and ĉ� (from the GPO algebra) with classical conjugate variables. While
one can always define conjugates, the existence of classical ones corresponding to
our familiar notion of position and momenta are highly non-generic and connect to
predictability features in the Hamiltonian.

7.5 The Quantum Mereology Algorithm
Given a Hilbert space and a Hamiltonian, how does one sift through Hilbert space
factorizations and pick out the one corresponding to the QC decomposition? This
section aims to use the features described in Section 7.2 as pointers to outline an
algorithm that quantifies the quasi-classicality of each factorization and uses this to
pick out the one in which the QC features are most manifestly seen. We will do this
for the bipartite case we have focused on in this paper. As we have seen, features
like existence of low entropy states and robustness against entanglement production,
non-generic decoherence and predictability of pointer observables are highly special
and particular to the QC factorization and will not be seen in other, arbitrary fac-
torizations. Hence, for an algorithm that sifts through Hilbert space factorizations,
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we need to identify a homogeneously defined quantity for each factorization that
would be extremized for the QC factorization. We will use the (;8= computation
from Section 7.3 and predictability of the pointer observable from Section 7.4 to
identify such a quantity.

Candidate Pointer Observables
As we have seen, low entropy states obtained as eigenstates of a consistent pointer
observable that are resilient to entanglement production ( ¥(;8= = 0 to O(C2) in our
calculation) are highly non-generic; they are a special feature of theQC factorization.
To belabor this point a littlemore, consistent pointer observables of the form $̂�⊗$̂�

with
[
�̂int, $̂� ⊗ $̂�

]
≈ 0 do not exist generically exist. Thismotivates us to define a

Candidate PointerObservable (CPO) for an arbitrary factorization {\} that can serve
as a proxy for the pointer observable by being the closest observable consistently
monitored by the environment. Of course, for the QC decomposition {\}&� , the
CPO coincides with the pointer observable, and for other factorizations away from
the QC, the CPO will introduce a “penalty" term in our measure of predictability
and robustness of classical states in the factorization.

Let the CPO $̂�%$ have a particular, consistent form,

$̂�%$ ≡ ˆ̃$� ⊗ ˆ̃$�, (7.39)

for some operators ˆ̃$� ∈ A and ˆ̃$� ∈ B, found by the following extremization,

$̂�%$ =
ˆ̃$� ⊗ ˆ̃$� such that

���� [�̂int, $̂�%$
] ����

2 is minimized . (7.40)

Thus, $̂�%$ serves as the closest (with regards to the norm measure) product
operator to �̂int as can therefore serve as a proxy/best possible notion of a consistent
pointer observable, and in the QC factorization, $̂�%$ will coincide with an actual
pointer observable which is consistently monitored by the environment. In case
more than one such $̂�%$ satisfying criterion of Eq. (7.40), then one can pick the
one corresponding to the minimum norm

����$̂�%$ ����
2 since it would typically lead

to lower entropy production rate. This can be implemented using the Pitsianis-
Van Loan algorithm [171], which computationally finds the nearest tensor product
approximation to a given matrix. The algorithm preserves structure in the sense that
both ˆ̃$� and ˆ̃$� will be hermitian since �̂int is hermitian.

The next thing to focus on is the kind of state we will be using to quantify the
quasi-classicality of a given factorization {\}. As we have seen, peaked states of a
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consistent pointer observable can serve as good candidates for studying predictabil-
ity, and in the correct limit be identified as classically predictable states. Following
this motivation, we can construct states that represent peaked states of the CPO ˆ̃$�

on A,
|k 9 (0)〉�%$ = |k̃(0)〉� ⊗ |k̃(0)〉� . (7.41)

They represents an initially predictable state for our subsystem A having a definite
value of the candidate pointer observable. One possible prescription for the state
{|k̃ 9 (0)〉�} is to construct a peaked state around an eigenstate of ˆ̃$�, and take the
state on B to be a uniform superposition of all eigenstates of ˆ̃$� to represent a ready
state for the candidate environment B.

One can now compute ¥(;8= for the state |k(0)〉�%$ using Eq. (7.10), which will
serve as a measure of the entanglement resilience of low entropy states in the
decomposition {\}. For the particular case of the QC factorization {\}&� , we will
find ¥(;8= for |k(0)〉�%$ to vanish (or even approximately so) since the state will
correspond to one constructed out of a consistent pointer observable that is robust
to entanglement production under evolution. For other factorizations ¥(;8= ≠ 0 will
serve as a penalty quantifier, with higher the value of ¥(;8=, the more non classical
the factorization.

Pointer Entropy
The other part of the story comes from peaked states of a pointer observable being
predictable under evolution. This corresponds to small spread in the variance of
such states by a highly collimated self-Hamiltonian as discussed in Section 7.4. One
can compute 3

(
Δ2$̂�

)
/3C from Eq. (7.19) as a measure of the predictability of the

pointer observable, but such a quantity will not be a good homogeneous measure
on the same footing as a dimensionless entropy like (;8=. This is because from the
point of view of constructing an algorithm, we want to take into account both low
entanglement growth and predictability of pointer observables to determine the QC
factorization.

To discuss an entropy measure that captures essentially the same physics as
3

(
Δ2$̂�

)
/3C, we define a Pointer Entropy as the second order (@ = 2) Tsallis

entropy of the probability distribution given by d̂� (C) in the candidate pointer basis
of the eigenstates of ˆ̃$�,

(?>8=C4A (C) = 1 −
3�∑
9=1

?2
9 (C) , (7.42)
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where ? 9 (C) is the probability distribution defined by,

? 9 (C) = Tr�
(
d̂� (C) |0 9 〉 〈0 9 |

)
≡ Tr�

(
d̂� (C)$̂ 9

)
= 〈0 9 | d̂� (C) |0 9 〉 , (7.43)

where {|0 9 〉} is the set of eigenstates of ˆ̃$�.

(?>8=C4A is an entirely information-theoretic construction and is based on the prob-
ability distribution of d̂� (C) in the basis of ˆ̃$�. It is insensitive to any ordering
structure of eigenvalues and peaked states in this space. (?>8=C4A measures how
far the spread of the probability distribution is from being completely certain, but
does not capture its variance structure pertaining to a certain set of eigenvalues.
Fortunately, as we will now see, for the class of peaked states |k(0)〉�%$ we are con-
sidering, changes in (?>8=C4A correlate with a change in the variance 3

(
Δ2$̂�

)
/3C

of the state itself.

To better understand this connection, let us first compute ¥(?>8=C4A (0) in the pointer
basis selected in theQuantumMeasurement Limit and look for features of theHamil-
tonian that lead to small change in (?>8=C4A and its correlation with 3

(
Δ2$̂�

)
/3C.

Our goal is to be able to compare pointer entropy with linear entanglement entropy
computed in Appendix (7.8). As we saw, a quantifier for entanglement robustness
of unentangled states is ¥(;8= (0), and on similar lines we would like to compute
¥(?>8=C4A (0). Let us compute ¤(?>8=C4A explicitly to help us get to ¥(?>8=C4A (0). Since we
want an expression for ¥(?>8=C4A (0), we will just retain O(C) in the following ¤(?>8=C4A
calculation.

From the definition of (?>8=C4A of Eq. (7.42), we see,

¤(?>8=C4A (C) = −2
3�∑
9=1

? 9 (C) ¤? 9 (C) . (7.44)

Following the construction in Appendix (7.8), we can write d̂� (C) to O(C) as,

d̂� (C) = d̂� (0) − 8C
[
�̂�, d̂� (0)

]
− 8C

∑
U

_U
〈
�̂U

〉
0
[
�̂U, d̂� (0)

]
≡ d̂� (0) − 8C

[
�̂eff
� (0), d̂� (0)

]
+ O(C2) ,

(7.45)

from which we get,

? 9 (C) = Tr
(
d̂� (C)$̂ 9

)
= ? 9 (0) − 8C

〈[
$̂ 9 , �̂

eff
� (0)

]〉
0 + O(C

2) . (7.46)

To O(C) in the above equation, the effective self-Hamiltonian �̂eff
�
(0) contains a

contribution from the interaction terms,

�̂eff
� (0) = �̂� +

∑
U

_U
〈
�̂U

〉
0 �̂U . (7.47)
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In the QML limit, since
[
$̂ 9 , �̂U

]
= 0 ∀ U, 9 , this can be simplified further to depend

only on �̂�,

? 9 (C) = ? 9 (0) − 8C
〈[
$̂ 9 , �̂�

]〉
0 + O(C

2) (QML) , (7.48)

where ? 9 (0) =
〈
$̂ 9

〉
0.

To compute ¤(?>8=C4A (C), we use Eq. (7.110) for 3d̂�/3C to O(C) and notice that, as
remarked in section 7.4, the diagonal entries of the decoherence term D( d̂� (C)) in
the pointer basis vanish identically, giving the diagonal entries of 3d̂�/3C in the
pointer basis as shown in Eq. (7.20),[

3

3C
d̂� (C)

]
9 9

=

(
−8

[
�̂� (C), d̂� (C)

]
9 9

)
+ O(C2) , (7.49)

which gives us,

¤? 9 (C) = Tr
(
$̂ 9

3

3C
d̂� (C)

)
= −8 Tr

( [
�̂�, d̂� (C)

]
$̂ 9

)
+ O(C2) .

(7.50)

Substituting for d̂� (C) to O(C) from Eq. (7.45), we get,

¤? 9 (C) = ¤? 9 (0) − C Tr
( [
�̂�,

[
�̂�, d̂� (0)

] ]
$̂ 9

)
−

C
∑
U

_U
〈
�̂U

〉
0 Tr

( [
�̂�,

[
�̂U, d̂� (0)

] ]
$̂ 9

)
+ O(C2) ,

(7.51)

where ¤? 9 (0) = −8 Tr
( [
�̂�, d̂� (0)

]
$̂ 9

)
= −8

〈[
$̂ 9 , �̂�

]〉
0. We can now further sim-

plify this in the Quantum Measurement Limit when a consistent pointer observable
exists, and after a few lines of trace manipulations we obtain,

¤? 9 (C) = ¤? 9 (0) − C
〈
$̂ 9 �̂

2
� + �̂

2
�$̂ 9 − 2�̂�$̂ 9 �̂�

〉
0 −

C
∑
U

_U
〈
�̂U

〉
0
〈[
$̂ 9 ,

[
�̂�, �̂U

] ]〉
0 + O(C

2) . (7.52)

We can now string everything together to give us an expression for ¥(?>8=C4A (0), by
taking a time derivative of ¤(?>8=C4A (C) constructed out of Eqs. (7.48) and (7.52),

¥(?>8=C4A (0) = 2
3�∑
9=1

〈[
$̂ 9 , �̂�

]〉2
0 + 2

3�∑
9=1

(
? 9 (0)

〈
$̂ 9 �̂

2
� + �̂

2
�$̂ 9 − 2�̂�$̂ 9 �̂�

〉
0

)
+

2
3�∑
9=1

(
? 9 (0)

∑
U

_U
〈
�̂U

〉
0
〈[
$̂ 9 ,

[
�̂�, �̂U

] ]〉
0

)
.

(7.53)
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We see when there exists a consistent pointer observable, its pointer entropy for a
peaked initial state correlates with the rate of change of variance 3

(
Δ2$̂�

)
/3C as

shown in Figure 7.4 (details in caption). One can then interpret the results of Figs.
7.3 and 7.4 together to correlate the pointer entropy growth with the collimation
of the self-Hamiltonian, which will play a crucial role in determining how fast
the pointer entropy spreads out, thus quantifying the predictability of the pointer
observable. Self-Hamiltonians with a higher collimation will induce smaller spread
and hence a slower growth in pointer entropy (and rate of change of variance) for
peaked pointer states.
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Figure 7.4: Plot showing correlation, in the Quantum Measurement Limit (QML),
between pointer entropy ¥(?>8=C4A (0) and the rate of change of variance of the
pointer observable for a peaked state in pointer eigenspace. For peaked states in
pointer eigenspace, low rate of change of variance implies a small spread in the
pointer entropy and is characterized by self-Hamiltonians that are highly colli-
mated in the conjugate direction picked out by the pointer observable. In this ex-
ample, similar to fig. 7.3, we kept $̂� fixed at $̂� ≡ q̂� and changed the self-
Hamiltonian �̂� and computed the correlation for a peaked state in q̂� eigenspace
in a Hilbert space of dimA = 27.

With this connection between pointer entropy and rate of variance change established
for cases that admit a consistent pointer observable in the QML, we can broaden
our computation of ¥(?>8=C4A (0) to a more general situation that will be useful in
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quantifying a predictability measure for the Candidate Pointer Observable (CPO).
Using the general expressions for d̂� (C) and 3d̂�/3C from Eqs. (7.45) and (7.110),
we find,

¥(?>8=C4A (0) = −2
3�∑
9=1

(
¤?2
9 (0) + ? 9 (0) ¥? 9 (0)

)
. (7.54)

We refrain fromwriting the full expression here, but the important thing to remember
is that for an arbitrary factorization, ¥(?>8=C4A (0) for a peaked initial state for the
Candidate Pointer Observable will serve as a quantifier for predictability of the
candidate. As one goes closer to the QC factorization {\}\ , the CPO matches
with a true pointer observable, and it becomes predictable for highly collimated
self-Hamiltonians. In other factorizations, the value of ¥(?>8=C4A (0) will typically be
higher as a penalty for the factorization not admitting a good pointer observable.

The Algorithm
We can now summarize the Quantum Mereology Algorithm which sifts through
various bipartite factorizations of Hilbert space and searches for the QC factoriza-
tion. The algorithm will extremize an entropic quantity built from a combination
of (;8= and (?>8=C4A to pick out the QC factorization which shows both features of
robustness and predictability as outlined in Section 7.2.

For an arbitrary decomposition {\},

1. Find the Candidate Pointer Observable $̂�%$ = ˆ̃$� ⊗ ˆ̃$� from Eq. (7.40),
which is the closest tensor product observable compatible with the interaction
Hamiltonian.

2. Construct a set of states that represent peaked states of the CPO ˆ̃$� on A,
|k 9 (0)〉�%$ = |k̃ 9 (0)〉� ⊗ |k̃(0)〉�. They represent an initially predictable
state for our subsystem under consideration A having a definite value of the
candidate pointer observable. To ensure quasi-classical conditions hold for
all pointer states in the QC factorization, construct 3� number of such states,
labeled by 9 = 1, 2, . . . , 3�. One possible prescription for these 3� states
{|k̃ 9 (0)〉�} is to construct peaked states around each eigenstate of ˆ̃$�, and
take the state on B to be a uniform superposition of all eigenstates of ˆ̃$� in
each case to represent a ready state for the candidate environment B.

3. For each of these states, |k(0)〉�%$ , compute ¥(;8= (0) and ¥(?>8=C4A (0) from Eqs.
(7.10) and (7.54), respectively. These are measures of the quasi-classicality of
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the factorization. Lower ¥(;8= (0) indicates a factorization whose pointer states
(from the CPO) are robust to entanglement production, and lower ¥(?>8=C4A (0)
indicates a factorizationwhich preserves predictability of classical states under
evolution.

4. Define Schwinger Entropy (here, its second derivative) as follows,

¥((2ℎF8=64A = max
(
¥(;8= (0), ¥(?>8=C4A (0)

)
. (7.55)

Average over the 3� states from the eigenstates CPO to obtain the value
of ¥((2ℎF8=64A for the given factorization. We choose to label this quantity as
Schwinger entropy to serve as a reminder thatwe are using Schwinger’s unitary
basis (from the GPOs) to define our construction in a finite-dimensional
context.

5. Find the factorization that minimizes ¥((2ℎF8=64A . This will be the quasi-
classical factorization.

Example
We now demonstrate the algorithm with a simple example where we recover the
quasi-classical factorization by sifting through different factorizations of Hilbert
space and selecting the one which minimizes Schwinger entropy for candidate
classical states.. Let us take our complete quantum system to be described by two
harmonic oscillators, coupled together (interacting) by their positions in the quasi-
classical factorization. We take both these oscillators to have the same mass < and
same frequency l, and thus having their respective self-Hamiltonians,

�̂� =
ĉ2
�

2<
+ 1

2
<l2q̂2

� , (7.56)

�̂� =
ĉ2
�

2<
+ 1

2
<l2q̂2

� . (7.57)

The interaction term is modeled as oscillator �’s position q̂� coupled to the position
q̂� of oscillator � with an interaction strength _,

�̂8=C = _
(
q̂� ⊗ q̂�

)
. (7.58)

This conventional way of writing themodel makes physical sense to us, and implies a
corresponding factorization of Hilbert space. As we now show, this choice matches
our above criteria for a quasi-classical factorization as elaborated in Sections 7.3
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Figure 7.5: Quantum Mereology Algorithm: sifting through different factoriza-
tions of Hilbert space to recover the QC factorization by minimization of the
Schwinger entropy. In the QC factorization, the quantum system is described by
two harmonic oscillators coupled by their positions. The quasi-classical factoriza-
tion (the first factorization we begin with) is marked by a red square. Details in the
text.

and 7.4. The interaction Hamiltonian in the QC factorization takes the simple form
�̂8=C = _( �̂ ⊗ �̂) that is compatible with having low entropy pointer states robust
to entanglement under evolution. The pointer observable of subsystem A under
consideration is the position q̂� of that oscillator. The self-Hamiltonian is highly
collimated with respect to q̂�, as can be seen by the quadratic power of ĉ� in
�̂�. We choose values of the parameters <, l, _ such that we are in the quantum
measurement limit (QML) where the interaction term dominates.

We now demonstrate the Quantum Mereology algorithm by “forgetting" that we
start in the QC factorization, and try to recover it by sifting through factorizations
and select the QC one by minimization of the Schwinger entropy. We change
factorizations by introducing incremental, random perturbations away from the
identity operator (by making the parameters {\} non-zero in Eq. 7.63) to construct
the global unitary transformation *̃ (\). Since we are focusing on the quantum
measurement limit, we make sure perturbations do not get large enough so as to
break down the assumption of applicability of the QML regime (for example, a
factorization change to make the two oscillators completely decoupled would no
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Figure 7.6: Quantum Mereology Algorithm: a run similar to figure 7.5 sifting
through different factorizations of Hilbert space but this time with larger, succes-
sive perturbations away from the identity operator to generate the unitary trans-
formation Λ. In the QC factorization, which minimizes the Schwinger entropy,
the quantum system is described by two harmonic oscillators coupled by their po-
sitions. Factorizations away from QC quickly saturate to generic, large values of
Schwinger entropy. The quasi-classical factorization (the first factorization we be-
gin with) is marked by a red square. Details in the text.

longer be in the QML, and hence we do not focus on such factorizations in this
paper). For each factorization, while the total Hamiltonian is left invariant, the
form of the self and interaction terms are altered. We run the Quantum Mereology
Algorithm as outlined in Section 7.5 with choosing eigenstates of the CPO ˆ̃$� as
our peaked initial, low entropy states (one could construct peaked superpositions
too which does not alter the results).

In figure 7.5, we plot the Schwinger entropy for many factorizations the algorithm
sifts through, beginning with the QC factorization and then scrambling away. Since
we are focusing on small times, we evolve quantum states to a characteristic time of
C0 = 1/| |�̂ | |2 and use the Schwinger entropy (Schwinger at C = C0 as the representative
measure of classicality, instead of explicitly computing the second derivative at
C = 0, ¥(Schwinger(C = 0). This is done purely for convenience, and does not affect
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the interpretation of picking out the QC factorization since for small times, both
the linear entanglement entropy and pointer entropy grow as C2. It is seen that
Schwinger entropy is minimized for the QC factorization, which exhibits features of
both robustness and predictability. In figure 7.6, we plot the results of a similar run
but this time with larger, successive perturbations away from the QC factorization
(while still being in the quantum measurement limit). While in figure 7.5, we see
a more gradual deviation from classicality, in 7.6, there is more rapid growth and
saturation of the Schwinger entropy to larger values which are characteristic of
generic, non-classical factorizations.

7.6 Discussion
In this paper we have developed a set of criteria, and an associated algorithm,
for starting with an initially featureless Hilbert space H and Hamiltonian �̂, and
factorizing H into a system and environment, optimizing the extent to which the
system exhibits quasi-classical behavior. The basic criteria we introduced were that
system pointer states remain relatively robust against increasing entanglement with
the environment, and that pointer observables evolve in relatively predictable ways.
Both notionswere quantified in terms of entropy: the linear entropy for entanglement
robustness, and pointer entropy for predictability. Useful factorizations are those
that minimize the growth of both of these entropies, which we suggested combining
into a single “Schwinger entropy.”

This work suggests a number of open questions and directions for future investiga-
tion. Let us briefly note some of them:

• While promising in principle, it is unclear how feasible our algorithm is in
practice. Given nothing but the spectrum of a finite-dimensional Hamiltonian,
it could take a long time to sift through the space of factorizations to find the
one that minimizes the Schwinger entropy growth rate. It would be interesting
to look for more computational feasible algorithms, even if only approximate.

• We focused on how to factorizeHilbert space into system and environment, but
ultimately we would want to continue to factorize the system into appropriate
subsystems. We believe that the same basic strategy should apply, though
locality and other considerations may come into play.

• We looked exclusively at the Quantum Measurement Limit, in which the
system is continuously monitored by the environment. The other extreme case
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of the Quantum Decoherence Limit is when the self-Hamiltonian dominates,
and the pointer states are energy eigenstates of the self-Hamiltonian. We feel
that the same essential concepts should apply, but it would be interesting to
look at this case more explicitly.

• The stability of the quasi-classical factorization is another interesting ques-
tion to study. Do quasi-classical features stay preserved under infinitesimal
perturbations of the factorizations or is quasi-classicality finely tuned? We
expect classicality to be a robust feature enhanced by the existence of multiple
subsystems each redundantly recording information about the others. This ties
back into the idea of Quantum Darwinism [153] and it would be interesting
to investigate this question further.

As we mentioned at the start, in typical laboratory situations the choice of how to
factorize Hilbert space is fairly evident, and the question of mereology doesn’t arise.
But as we consider more abstract theories, including those of emergent spacetime
in quantum gravity [23, 24], our laboratory intuition may no longer be relevant, and
an algorithm of the sort presented here can become important. The separation into
system and environment that we considered here may be related to how states are
redundantly specified in a quantum error-correcting code [24, 34]. It is certainly a
central concern of the program of reconstructing the quasi-classical world from the
spectrum of the Hamiltonian [22, 65]. Regardless, it is important to understand in
principle why we impose the structures on Hilbert space that we do.

7.7 Appendix: Bases and Factorizations
To factorize a Hilbert space of finite dimension dimH = � < ∞ is to express it as
a tensor product of # smaller factors,

H '
#⊗̀
H` . (7.59)

The factors H` have dimensions 3`. These need not be equal for all `, but their
product must give the overall dimension,

∏#
` 3` = �.

The most straightforward way to specify a factorization is in terms of a tensor-
product basis that is adapted to it. For convenience we take all of our bases to be
orthonormal. In each factorH` we fix a basis,

H` ' span{|4(`)
8
〉} , 8 = 1, 2, . . . , 3` . (7.60)
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We can then define basis vectors for H as a whole by taking the tensor product of
individual basis elements,

H '
#⊗̀
=1

span{|4(`)
8
〉} . (7.61)

Of course such bases are highly non-unique; unitary transformations within each
separate factor will leave the associated factorization itself unchanged.

In practice, one can construct different factorizations of H by starting with some
reference factorization and associated tensor-product basis, then performing a uni-
tary transformation that mixes factors. To implement the change in decomposition,
we pick a special unitary matrix *̃ ∈ (* (�)\

(⊗#

`=1* (3`)
)
that is characterized

by (�2 − 1) real parameters {\0 | 0 = 1, 2, · · · , (�2 − 1)} and has �2 − 1 traceless,
Hermitian generators {Λ0 : | 0 = 1, 2, · · · , (�2 − 1)}, which can be identified
with the Generalized Gell-Mann matrices (GGMM). These GGMMs come in three
groups: symmetric, anti-symmetric and diagonal matrices. In the notation where
� 9 : is the �×� matrix with all zeros, except a 1 in the ( 9 , :) location, the GGMMs
have the following form, each identified with one of the Λ0,

Λ
9 :
BH< = �

: 9 + � 9 : ; 1 ≤ 9 < : ≤ �, (7.62a)

Λ
9 :

0=C8BH<
= −8

(
� 9 : − � : 9

)
; 1 ≤ 9 < : ≤ �, (7.62b)

Λ;3806 =

√
2

; (; + 1)
©«−; � ;+1,;+1 +

;∑
9=1

� 9 9ª®¬ ; 1 ≤ ; ≤ � − 1 . (7.62c)

Wework with special unitary instead of unitary since the global* (1) phase is irrele-
vant to the physics of factorization changes and nowwe can express the factorization
change unitary *̃ (\) as,

*̃ (\) = exp ©«
�2−1∑
0=1

\0Λ0
ª®¬ , (7.63)

and factorization changes can be implemented on the reference decomposition.

In light of this parametrization, let us label decompositions by the set of parameters
{\}, which are used to implement the factorization change relative to the reference
decomposition {0}. This notation will help us succinctly show dependence of
various quantities on the factorization of Hilbert space. Product states in the old
tensor-product basis (such as basis states in this factorization) will now be entangled
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in the new global basis identified with a new tensor product structure. Generally,
operators that are local in their action to a certain sub-factor in a given decomposition
such as $̂a ≡ Î⊗Î⊗· · ·⊗>̂a⊗· · ·⊗Î, which act non-trivially only on the a-th subsystem,
will generically act on more than one sub-factor in a different factorization. Locality
of operators is a highly factorization-dependent statement and it has been shown
[22] that most tensor factorizations of Hilbert space for a given Hamiltonian do not
look local and the existence of dual local descriptions is rare and almost unique.

In a given decomposition, any operator "̂ ∈ L(H), the space of linear operators
onH can then be naturally decomposed as,

"̂ =

(<0

�

)
Î +

#∑̀
=1
"̂self
` + "̂int , (7.64)

where <0 = Tr("̂) is the trace of "̂ , the operator "̂self
` is the (traceless) term

that acts locally only on the H` sub-factor and an interaction term, also traceless,
connecting different sub-factors "̂int. The interaction term can be decomposed
further as a sum of =-point interactions,

"̂int =

#∑
==2

( ∑
`1>`2>···>`=

"̂int(`1, `2, · · · , `=)
)
, (7.65)

where, "̂int(`1, `2, · · · , `=) is a termconnecting sub-factors labeled by `1, `2, · · · , `=.
Any traceless, local term "̂` that acts on a single sub-factor H` can be expanded
out in the basis of Generalize Gell-Mann operators Λ̂`0 with 0 = 1, 2, · · · , (32

` − 1),
which are (32

` − 1) traceless, Hermitian generators of the (* (3`),

"̂` ≡ Î ⊗ Î ⊗ · · · ⊗ "̂` ⊗ · · · ⊗ Î = Î ⊗ Î ⊗ · · · ⊗
32
`−1∑
0=1

<0Λ̂0 ⊗ · · · ⊗ Î . (7.66)

In general, any operator "̂ can also be decomposed in the canonical operator basis
formed from the defining tensor-product basis,

"̂ =

�∑
8, 9=1

<8 9 |48〉)%� 〈4 9 | . (7.67)

Such expansions do not necessarily show the locality and interaction terms explicitly,
but in the preferred, semi-classical decomposition, one would be able to arrange
them in the form of familiar semi-classical terms in which features like robustness,
quasi-separability and decoherence will be manifest.



120

7.8 Appendix: Evolution of the Linear Entropy
In this section we calculate the evolution of the linear entropy (;8= to O(C2), leading
to Eq. (7.10). Using the Zassenhaus expansion, which is a corollary of the Baker-
Campbell-Haursdorff (BCH) lemma, one can separate the sum in the time evolution
exponential *̂ (C) as,

*̂ (C) = exp
(
−8(�̂self + �̂int)C

)
, (7.68)

*̂ (C) = exp
(
−8�̂intC

)
exp

(
−8�̂selfC

)
exp

(
− (−8C)

2

2
[
�̂int, �̂self

] )
exp

(
O(C3)

)
.

(7.69)
We can move the exp

(
− (−8C)

2

2
[
�̂int, �̂self

] )
past the exp

(
−8�̂selfC

)
term to the left

since the commutator we pick up is O(C3) as can be explicitly checked by use of the
Zassenhaus expansion again to get,

*̂ (C) = exp
(
−8�̂intC

)
exp

(
− (−8C)

2

2
[
�̂int, �̂self

] )
exp

(
−8�̂selfC

)
exp

(
O(C3)

)
.

(7.70)
Further one can see that the first two pieces involving �̂int and

[
�̂int, �̂self

]
in the

above equation Eq. (7.70) can be combined into a sum of a single exponential since
the non-commuting pieces will be O(C3), and this gives us a succint expression for
*̂ (C) to O(C2),

* (C) = exp
(
−8�̂ (C)C

)
exp

(
−8�̂selfC

)
+ O(C3) , (7.71)

where,
�̂ (C) ≡ �̂int +

8C

2
[
�̂int, �̂self

]
. (7.72)

Taking *̂ (C) from Eq. (7.71), the time evolved state is d̂(C) = *̂ (C) d̂(0)*̂†(C) to
O(C2).
Let us define self-evolved states f̂� (C) = exp

(
−8�̂�C

)
d̂� (0) exp

(
8�̂�C

)
and

f̂� (C) = exp
(
−8�̂�C

)
d̂� (0) exp

(
8�̂�C

)
and write the state d̂(C) as,

d̂(C) = exp
(
−8�̂ (C)C

)
(f̂� ⊗ f̂�) exp

(
8�̂ (C)C

)
, (7.73)

which can be expanded out to O(C2) as,

d̂(C) = (f̂� ⊗ f̂�)O(C2)−8C
[
�̂ (C), (f̂� ⊗ f̂�)

]
+ (−8C)

2

2
[
�̂ (C),

[
�̂ (C), f̂� ⊗ f̂�

] ]
+O(C3).
(7.74)
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Let us now focus on one subsystem, say A, and look at its reduced dynamics by
computing its reduced density matrix d̂� (C) by tracing out B,

d̂� (C) = Tr� d̂(C) = f̂� (C) − 8CTr�
[
�̂int +

8C

2
[
�̂int, �̂self

]
, (f̂� ⊗ f̂�)

]
− C

2

2
Tr�

[
�̂int,

[
�̂int, d̂(0)

] ]
+ O(C3) .

(7.75)

Written out (almost) explicitly using the diagonal form of �̂int of Eq. (7.5), d̂� (C)
takes the following form,

d̂� (C) = f̂� (C) − 8C
∑
U

_UTr�
(
�̂Uf̂� ⊗ �̂Uf̂� − f̂� �̂U ⊗ f̂� �̂U

)
+ C

2

2

∑
U

_UTr�
[ [
�̂U ⊗ �̂U, �̂self

]
, f̂� (C) ⊗ f̂� (C)

]
− C

2

2

∑
U,V

_U_VTr�
[
�̂U ⊗ �̂V,

[
�̂U ⊗ �̂V, d̂(0)

] ]
+ O(C3) .

(7.76)

The partial trace over B can be used to condense terms into expectation values of
operators that act only on B for a given state d̂� since Tr�

(
$̂� d̂�

)
=

〈
$̂�

〉
. Let us

compactly write, d̂� (C) = f̂� (C)O(C2) + )1 + )2 + )3, which can be simplified as,

)1 = −8C
∑
U

_UTr�
(
�̂Uf̂� ⊗ �̂Uf̂� − f̂� �̂U ⊗ f̂� �̂U

)
+ O(C3)

= −8C
∑
U

_U

( [
�̂U, f̂� (C)

] 〈
�̂U

〉self (C)
)
,

(7.77)

where
〈
�̂U

〉self
C

= Tr�
(
�̂Uf̂� (C)

)
. We can write the other terms )2 and )3 to O(C2)

as,

)2 =
C2

2

∑
U

_U

( [ [
�̂U, �̂�

]
, d̂� (0)

] 〈
�̂U

〉
0 +

[
�̂U, d̂� (0)

] 〈 [
�̂U, �̂�

]〉
0

)
, (7.78)

and,

)3 =
−C2
2

∑
U,V

_U_V

(
�̂U �̂V d̂� (0)

〈
�̂U �̂V

〉
0 − �̂V d̂� (0) �̂U

〈
�̂U �̂V

〉
0

−�̂U d̂� (0) �̂V
〈
�̂V �̂U

〉
0 + d̂� (0) �̂V �̂U

〈
�̂V �̂U

〉
0

)
.

(7.79)

We next consider entanglement between the two subsystems A and B. A common
measure is to use the von-Neumann entanglement entropy (E# ( d̂) = −Tr ( d̂ log d̂)
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for a given density matrix d̂. However, the presence of the logarithm makes the
entropy hard to analytically compute and give expressions for, hence we will focus
on its leading order contribution, the linear entropy (which is the Tsallis second
order entropy measure), (;8= ( d̂) =

(
1 − Tr d̂2) .

We can expand the self-evolved density matrix f̂� (C) to O(C2) as,

f̂� (C) = d̂� (0) − 8C
[
�̂�, d̂� (0)

]
+ (−8C)

2

2
[
�̂�,

[
�̂�, d̂� (0)

] ]
+ O(C3) . (7.80)

It can be explicitly checked that despite truncation upto O(C2), in each order of the
expansion, the self-evolved density operator f̂� (C) is pure and obeys f̂2

�
(C) = f̂� (C)

and Tr f̂� (C) = 1.

Let us now compute the linear entanglement entropy (;8= ( d̂� (C)) =
(
1 − Tr d̂2

�
(C)

)
for the reduced density matrix of A given by Eq. (7.74), which corresponds to
starting with an unentangled (and hence, zero entropy) state d̂(0). Using the cyclic
property of trace, it can be shown that Tr (f̂� (C))1) = Tr (f̂� (C))2) = 0 to O(C2) ,
and hence we get,

(;8= ( d̂� (C)) = 1 − Tr
(
f̂2
� (C)

)
− Tr

(
)2

1

)
− Tr (f̂� (C))3) + O(C3) , (7.81)

which further using Tr f̂� (C) = Tr f̂2
�
(C) = 1 reduces to,

(;8= ( d̂� (C)) = −Tr
(
)2

1

)
− Tr (f̂� (C))3) + O(C3) . (7.82)

As we will do below – since we are working to O(C2) – we will replace f̂� (C) with
d̂� (0) in any terms that have a factor of C2 out-front. The remaining two terms in
Eq. (7.82) can be computed to O(C2) in a straightforward way,

Tr
(
)2

1

)
= (−8C)2

∑
U,V

_U_V
〈
�̂U

〉
0
〈
�̂V

〉
0 Tr

( [
�̂U, d̂� (0)

] [
�̂V, d̂� (0)

] )
, (7.83)

which can be simplified by noting that for pure states d̂� (0) = |k� (0)〉 〈k� (0) |,
certain trace terms simplify into product of expectation values, such as,

Tr
(
�̂U d̂� (0) �̂V d̂� (0)

)
=

〈
�̂U

〉
0
〈
�̂V

〉
0 . (7.84)

Thus, further using such simplifications, we arrive at the following expressions for
Tr

(
)2

1
)
and Tr (f̂� (C))3) to O(C2),

Tr
(
)2

1

)
= −C2

∑
U,V

_U_V
〈
�̂U

〉
0
〈
�̂V

〉
0

(
2
〈
�̂U

〉
0
〈
�̂V

〉
0 −

〈
{ �̂U, �̂V}+

〉
0

)
, (7.85)
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Tr ( d̂� (0))3) = Tr (f̂� (C))3) = −
C2

2

∑
U,V

_U_V

(〈
�̂U �̂V

〉
0
〈
�̂U �̂V

〉
0 −

〈
�̂U �̂V

〉
0
〈
�̂U

〉
0
〈
�̂V

〉
0

−
〈
�̂V �̂U

〉
0
〈
�̂U

〉
0
〈
�̂V

〉
0 +

〈
�̂V �̂U

〉
0
〈
�̂U �̂V

〉
0

)
,

(7.86)

where {$̂1, $̂2}+ =
(
$̂1$̂2 + $̂2$̂1

)
is the anticommutator of $̂1 and $̂2. Putting

these together in Eq. (7.82), we obtain the desired result of Eq. (7.10),

(;8= ( d̂� (C)) = C2
∑
U,V

_U_V

(〈
�̂U �̂V

〉
0
〈
�̂U �̂V

〉
0 +

〈
�̂V �̂U

〉
0
〈
�̂V �̂U

〉
0

−
〈
�̂U

〉
0
〈
�̂V

〉
0

(〈
{�̂U, �̂V}+

〉
0 −

〈
�̂U

〉
0
〈
�̂V

〉
0

)
−

〈
�̂U

〉
0
〈
�̂V

〉
0

(〈
{ �̂U, �̂V}+

〉
0 −

〈
�̂U

〉
0
〈
�̂V

〉
0

))
+ O(C3) .

(7.87)

7.9 Appendix: Generalized Pauli Operators
Here, we provide a brief review of generalized Pauli operators (GPOs) and their use
to define finite-dimensional conjugate variables closely following the exposition of
Ref. [10]. The interested reader is referred to Refs. [10, 76, 91] (and references
therein) for more detail.

Consider a finite-dimensional Hilbert SpaceH of dimension dimH = 3 ∈ Z+ with
3 < ∞. The GPO algebra on the space of linear operatorsL(H) acting onH comes
equipped with two unitary (but not necessarily Hermitian) operators as generators
of the algebra, call them �̂ and �̂, which satisfy the following commutation relation,

�̂�̂ = l−1�̂ �̂ , (7.88)

where l = exp (2c8/3) is the 3-th primitive root of unity. This commutation
relation is also more commonly known as the Weyl braiding relation [77], and any
further notions of commutations between conjugate, self-adjoint operators defined
from �̂ and �̂ will be derived from this relation. In addition to being unitary,
�̂�̂† = �̂† �̂ = Î = �̂�̂† = �̂†�̂, the algebra cyclically closes, giving it a cyclic
structure in eigenspace,

�̂3 = �̂3 = Î , (7.89)

where Î is the identity operator on L(H).

The GPO algebra can be constructed for both even and odd values of 3 and both
cases are important and useful in different contexts. Here, we focus on the case
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of odd 3 ≡ 2; + 1, which will be useful in constructing conjugate variables whose
eigenvalues can be thought of labeling lattice sites, centered around zero. While
the subsequent construction can be done in a basis-independent way, we choose a
hybrid route, switching between an explicit representation of the GPO and abstract
vector space relations. Let us follow the convention that all indices used in this
section(for the case of odd 3 = 2; + 1), for labeling states or matrix elements of an
operator in some basis will run from −;, (−; + 1), . . . ,−1, 0, 1, . . . , ;. The operators
are further specified by their eigenvalue spectrum, and it is identical for both the
GPO generators �̂ and �̂,

spec( �̂) = spec(�̂) = {l−; , l−;+1, . . . , l−1, 1, l1, . . . , l;−1, l;} . (7.90)

There exists a unique irreducible representation (up to unitary equivalences) (see
[9] for details) of the generators of the GPO defined via Eqs. (7.21) and (7.89) in
terms of # × # matrices

� =



0 0 0 . . . 1

1 0 0 . . . 0

0 1 0 . . . 0

. . . . . .

. . . . . .

0 0 . . . 1 0

#×#
. (7.91)

� =



l−; 0 0 . . . 0

0 l−;+1 0 . . . 0

. . . . . .

. . . . . .

0 0 0 . . . l;

#×#
. (7.92)

The .̂ has been removed to stress that these matrices are representations of the
operators �̂ and �̂ in a particular basis, in this case, the eigenbasis �̂ (so that � is
diagonal). More compactly, the matrix elements of operators �̂ and �̂ in the basis
representation of eigenstates of �̂,

[�] 9 : ≡ 〈1 9 | �̂|1:〉 = X 9 ,:+1 , (7.93)

[�] 9 : ≡ 〈1 9 |�̂ |1:〉 = l 9X 9 ,: , (7.94)
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where is the Kronecker Delta function. The operator �̂ acts as a a “cyclic shift”
operator for the eigenstates of �̂, sending an eigenstate to the next,

�̂ |1 9 〉 = |1 9+1〉 . (7.95)

The unitary nature of these generators implies a cyclic structure which identifies
|1;+1〉 ≡ |1−;〉, so that �̂ |1;〉 = |1−;〉. The operators �̂ and �̂ have the same relative
action on the other’s eigenstates, since nothing in the algebra sets the two apart. It
has already been seen in Eq. (7.95) that �̂ generates (unitary, cyclic) unit shifts in
eigenstates of � and the opposite holds too: the operator �̂ generates unit shifts in
eigenstates of �̂ (given by the relation �̂ |0:〉 = l: |0:〉 , : = −;, . . . 0, . . . ;) and
has a similar action with a cyclic correspondence to ensure unitarity,

�̂ |0:〉 = |0:+1〉 , (7.96)

with cyclic identification |0;+1〉 ≡ |0−;〉. Hence we already have a set of operators
that generate shifts in the eigenstates of the other, which is precisely what conjugate
variables do and which is why we see that the GPOs provides a very natural structure
to define conjugate variables on Hilbert Space. The GPO generators �̂ and �̂ have
been extensively studied in various contexts in quantummechanics, and offer a higher
dimensional, non-Hermitian generalization of the Pauli matrices. In particular, for
3 = 2 it will be seen that � = f1 and � = f3, which recovers the Pauli matrices.

The defining notion for a pair of conjugate variables is the identification of two
self-adjoint operators acting on Hilbert space, each of which generates translations
in the eigenstates of the other. For instance, in (conventionally infinite-dimensional)
textbook quantum mechanics, the momentum operator ?̂ generates shifts/transla-
tions in the eigenstates of its conjugate variable, the position @̂ operator, and vice
versa. Taking this as our defining criterion, we define a pair of Hermitian conjugate
operators q̂ and ĉ, acting on a finite-dimensional Hilbert space, each of which is
the generator of translations in the eigenstates of its conjugate, with the following
identification,

�̂ ≡ exp (−8Uĉ) , �̂ = exp (8Vq̂) , (7.97)

where U and V are non-zero real parameters.

To further reinforce this conjugacy relation between operators �̂ and �̂, we see that
they are connected to each under a discrete Fourier transformation implemented by
Sylvester’s Circulant Matrix (, which is a # × # unitary matrix

(
((† = (†( = Î

)
,
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connecting � and �,
(�(−1 = � . (7.98)

Sylvester’s matrix has the following form, which we identify to be in the {|1 9 〉}
basis, with 9 and : running from −;, · · · , 0, · · · , ;:

[(] 9 : =
l 9 :

√
#
. (7.99)

Since � and � are non-singular and diagonalizable, it follows that log � and log �
exist, even though multivalued. In the case of odd dimension 3 = 2; + 1, their
principle logarithms are well defined and we are able to find explicit matrix repre-
sentations for operators q̂ and ĉ. In particular, we can obtain matrix representation
for ĉ in the |q 9 〉 basis,

〈q 9 |ĉ |q 9 ′〉 =
(

2c
(2; + 1)2U

) ;∑
==−;

= exp
(
2c8( 9 − 9 ′)=

2; + 1

)

=


0 , if 9 = 9 ′

(
8c

(2;+1)U

)
cosec

(
2c; ( 9− 9 ′)

2;+1

)
, if 9 ≠ 9 ′ .

,

(7.100)

The matrix elements of ĉ in the eigenbasis of q̂ are non-local, in the sense that they
have power-law-like decay in ( 9 − 9 ′), and hence connect arbitrary “far” eigenstates
of q̂. This is a feature of the finite-dimensional construction and in the infinite-
dimensional limit 3 → ∞, we recover the local form of q̂ as −83/3q as expected.
Of course, q̂ has common eigenstates with those of �̂ and ĉ shares eigenstates with
�̂. The corresponding eigenvalue equations for q̂ and ĉ can be easily deduced using
Eqs. (7.22) and (7.90),

q̂ |q 9 〉 = 9
(

2c
(2; + 1)V

)
|q 9 〉 , 9 = −;, . . . , 0, . . . , ; , (7.101)

ĉ |c 9 〉 = 9
(

2c
(2; + 1)U

)
|c 9 〉 , 9 = −;, . . . , 0, . . . , ; , (7.102)

These conjugate variables defined on a finite-dimensional Hilbert space will not sat-
isfy Heisenberg canonical commutation relation

[
q̂, ĉ

]
= 8 (in units where ℏ = 1),

since by the Stone-von Neumann theorem there are no finite-dimensional repre-
sentations of Heisenberg CCR. However, q̂ and ĉ still serve as a robust notion of
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conjugate variables and their commutation can be derived from the more fundamen-
tal Weyl Braiding Relation of Eq. (7.21). In the large dimension limit 3 → ∞, one
recovers Heisenberg form of the CCR if the parameters U and V are constrained to
obey UV = 2c/3.

7.10 Appendix: Generic Evolution of Reduced Density Operators
We can further illustrate how decoherence is a non-generic feature as discussed in
Section 7.3 by taking the general expression found for the reduced density operator
d̂� (C) to O(C2) in the bipartite case discussed in Eq. (7.76) and studying it further
to find conditions when off-diagonal elements in the pointer basis get suppressed
relatively quickly leading to effective decoherence.

Let us compute the time derivative of the reduced density matrix, ¤̂d� (C) to help
us understand when decoherence is effective and leads to dynamic suppression of
off-diagonal elements in the pointer basis. We will work explicitly to O(C) to keep
a tractable number of terms, enough to help us see decoherence in action,

¤̂d� (C) = ¤̂f� (C) + ¤)1 + ¤)2 + ¤)3 + O(C2) , (7.103)

where we can use the von-Neumann evolution equation for a density operator,
¤̂f� (C) = −8

[
�̂�, f̂� (C)

]
. The time derivatives of )2 and )3 are easy to take from

Eqs. (7.78) and (7.79) since they both have a factor of C2 out-front. The time
derivative of )1 can be computed to O(C) as follows,

¤)1 =

(
−8

∑
U

_U
〈
�̂U

〉self
C

[
�̂U, f̂� (C)

] )
− 8C

∑
U

_U

〈 ¤̂�U〉
0

[
�̂U, d̂� (0)

]
−8C

∑
U

_U
〈
�̂U

〉
0
[
�̂U, ¤̂f� (C)

]
+ O(C2) ,

(7.104)

where to to retain Eq. (7.104) to O(C), we can write ¤̂f� (C)O(C) = −8
[
�̂�, d̂� (0)

]
and from the expression for

〈
�̂U

〉self
C

,〈
�̂U

〉self
C

= Tr
(
f̂� (C)�̂U

)
=

〈
�̂U

〉
0 − 8CTr

( [
�̂�, d̂� (0)

]
�̂U

)
− C

2

2
Tr

( [
�̂�,

[
�̂�, d̂� (0)

] ]
�̂U

)
+ O(C3) ,

(7.105)

we can extract the
〈 ¤̂�U〉

0
which will contribute to Eq. (7.104) to O(C),〈 ¤̂�U〉

0
= 8

〈[
�̂�, �̂U

]〉
0 . (7.106)
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Plugging these in Eq. (7.103), we that find the term with
〈 ¤̂�U〉

0
cancels with one of

the terms in ¤)2 to yield,

¤̂d� (C) = −8
[
�̂eff
� (C), f̂� (C)

]
− C

∑
U

_U
〈
�̂U

〉
0

( [
�̂U,

[
�̂�, d̂� (0)

] ]
−

[ [
�̂U, �̂�

]
, d̂� (0)

] )
+ ¤)3 + O(C2) ,
(7.107)

where we have defined an effective self-Hamiltonian for A, which weighs in a
relevant contribution from the interaction terms �̂U,

�̂eff
� (C) = �̂� +

∑
U

_U
〈
�̂U

〉self
C

�̂U + O(C2) . (7.108)

Let us write this in a more suggestive way such that the evolution equation of ¤̂d� (C)
can be explicitly split into a unitary piece and a piece that will induce decoherence
under the right conditions. To O(C), let us write f̂� (C) = d̂� (C)O(C) − ()1)O(C) and
substitute in Eq. (7.107) while also noticing that the term( [
�̂U,

[
�̂�, d̂� (0)

] ]
−

[ [
�̂U, �̂�

]
, d̂� (0)

] )
condenses to

[
�̂�,

[
�̂U, d̂� (0)

] ]
,

¤̂d� (C) = −8
[
�̂eff
� (C), d̂� (C)

]
+ C

∑
U

_U
〈
�̂U

〉
0
[
�̂�,

[
�̂U, d̂� (0)

] ]
+C

∑
U,V

_U_V
〈
�̂U

〉
0
〈
�̂V

〉
0
[
�̂U,

[
�̂V, d̂� (0)

] ]
−C

∑
U

_U
〈
�̂U

〉
0
[
�̂�,

[
�̂U, d̂� (0)

] ]
+ ¤)3 + O(C2) .

(7.109)

The term containing
[
�̂�,

[
�̂U, d̂� (0)

] ]
cancels away and after substituting for ¤)3

from Eq. (7.79) and collecting terms, we see that the final expression for ¤̂d� (C) to
O(C) is,

¤̂d� (C) = −8
[
�̂eff
� (C), d̂� (C)

]
− C

∑
U,V

_U_V

((
�̂U �̂V d̂� (0) − �̂V d̂� (0) �̂U

) (〈
�̂U �̂V

〉
0 −

〈
�̂U

〉
0
〈
�̂V

〉
0

)
+

(
d̂� (0) �̂V �̂U − �̂U d̂� (0) �̂V

) (〈
�̂V �̂U

〉
0 −

〈
�̂V

〉
0
〈
�̂U

〉
0

))
+ O(C2) .

(7.110)

Thus, we see that the equation for ¤̂d� (C) toO(C) splits into a term
(
−8

[
�̂eff
�
(C), d̂� (C)

] )
,

which corresponds to unitary evolution of d̂� (C) under the effective self-Hamiltonian
�̂eff
�
(C) and a term that will be responsible for decoherence under right conditions.
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Let us focus on this “decoherence” term D( d̂�) and not concern ourselves with the
unitary evolution for the moment (the ⊃ representing that we are focusing only on
the decoherence term),

¤̂d� (C) ⊃ D( d̂�) ≡ −C
∑
U,V

_U_V

((
�̂U �̂V d̂� (0) − �̂V d̂� (0) �̂U

) (〈
�̂U �̂V

〉
0 −

〈
�̂U

〉
0
〈
�̂V

〉
0

)
+

(
d̂� (0) �̂V �̂U − �̂U d̂� (0) �̂V

) (〈
�̂V �̂U

〉
0 −

〈
�̂V

〉
0
〈
�̂U

〉
0

))
+ O(C2) .

(7.111)

In the Quantum Measurement Limit, when there exists a consistent pointer basis
{|0 9 〉 | 9 = 1, 2, · · · , 3�} which will be selected such that it forms simultaneous
eigenstates of all �̂U ∀ U,

�̂U |0 9 〉 = 0U9 |0 9 〉 ∀ U and 9 = 1, 2, · · · , 3� . (7.112)

This is a highly non-generic situation, since an arbitrary Hamiltonian in an arbitrary
factorization will have non-commuting terms in �̂int and hence not admit a complete
basis satisfying Eq. (7.112) to serve as a pointer basis. For decoherence to be
effective, there would be a small number of consistent terms in �̂int being monitored
by the other subsystem as discussed in Section 7.3.

Let us see this explicitly by considering the off-diagonal matrix element,
〈0 9 | ¤̂d� (C) |0:〉 , 9 ≠ : of ¤̂d� (C) in the purported pointer basis {|0 9 〉}. The deco-
herence term D( d̂� (C)) in Eq. (7.111) can be further split into U = V terms and
U ≠ V ones. The cross-terms with U ≠ V are not seen to have a definitive sign that
is needed for decoherence to take place. On the other hand, let us look at the U = V
terms of the matrix element with 9 ≠ : ,[ ¤̂d� (C)] 9 : ⊃ −C∑

U

_2
U

(〈
�̂2
U

〉
0 −

〈
�̂U

〉2
0

)
〈0 9 |

(
�̂2
U d̂� (0) − 2�̂U d̂� (0) �̂U + d̂� (0) �̂2

U

)
|0:〉 ,

(7.113)
which can be further simplified using Eq. (7.112),[

3

3C
d̂� (C)

]
9 :

⊃ −C
∑
U

_2
U

(〈
�̂2
U

〉
0 −

〈
�̂U

〉2
0

) (
0 9 − 0:

)2 [ d̂� (0)] 9 :+O(C2). (7.114)

Now since we are working to O(C) in Eq. (7.114), we can replace [ d̂� (0)] 9 : with
[ d̂� (C)] 9 : since corrections will contribute to O(C2) due to the presence of the factor
of C in the expansion,[

3

3C
d̂� (C)

]
9 :

⊃ −C
(∑
U

_2
U Δ

2 (
�̂U

)
0
(
0 9 − 0:

)2
)
[ d̂� (C)] 9 : + O(C2) . (7.115)
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The term in the parenthesis
(∑

U _
2
U Δ

2 (
�̂U

)
0
(
0 9 − 0:

)2
)
is positive definite since

the term, Δ2 (
�̂U

)
0 ≡

(〈
�̂2
U

〉
0 −

〈
�̂U

〉2
0

)
is the variance of �̂U in the state d̂� (0), and

hence positive by construction. This leads to decoherence since off-diagonal terms
in Eq. (7.115) get suppressed dynamically in the pointer basis selected by �̂int.

Thus, we see that for decoherence to be effective, there should exist a small number
of consistent terms in �̂int being monitored by the other subsystems (B in this
case), which will give us a notion of pointer basis in which off-diagonal elements
of d̂� (C) are dynamically suppressed due to interaction with the environment. Most
of our classic models of decoherence [168] indeed consist of a single term (or a
small number of compatible terms) representing environmental monitoring of the
form �̂int = _

(
�̂ ⊗ �̂

)
and hence there will be decoherence in the eigenbasis of

�̂, which serve as pointer states. From Eq. (7.115), we can give an estimate
for the decoherence time-scale g3 for the ( 9 , :) matrix element, focusing on the
�̂int = _

(
�̂ ⊗ �̂

)
for clarity,

(g3) 9 : ∼
√

2
|_ | |0 9 − 0: |

��Δ (
�̂U

)
0

�� . (7.116)

Thus, as we can see from the above Eq. (7.116), for higher interaction strength, there
is more strongermonitoring ofA byB and hence faster decoherence. More variance
of �̂ in the initial state allows for more support in state space for monitoring and
quicker suppression of interference and also, we see that decoherence time-scales
are inversely proportional to the spectral differences in �̂. This can also be easily
understood since more spacing between eigenvalues of �̂ would lead to inducing
faster orthogonality in conditional states ofB, and hencemore effective decoherence.
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C h a p t e r 8

TOWARDS SPACE FROM HILBERT SPACE: FINDING
LATTICE STRUCTURES IN FINITE-DIMENSIONAL

QUANTUM SYSTEMS

Field theories place one or more degrees of freedom at every point in space. Hilbert
spaces describing quantum field theories, or their finite-dimensional discretizations
on lattices, therefore have large amounts of structure: they are isomorphic to the
tensor product of a smaller Hilbert space for each lattice site or point in space.
Local field theories respecting this structure have interactions which preferentially
couple nearby points. The emergence of classicality through decoherence relies on
this framework of tensor-product decomposition and local interactions. We explore
the emergence of such lattice structure from Hilbert-space considerations alone.
We point out that the vast majority of finite-dimensional Hilbert spaces cannot be
isomorphic to the tensor product of Hilbert-space subfactors that describes a lattice
theory. A generic Hilbert space can only be split into a direct sum corresponding
to a basis of state vectors spanning the Hilbert space; we consider setups in which
the direct sum is naturally decomposed into two pieces. We define a notion of
direct-sum locality which characterizes states and decompositions compatible with
Hamiltonian time evolution. We illustrate these notions for a toy model that is the
finite-dimensional discretization of the quantum-mechanical double-well potential.
We discuss their relevance in cosmology and field theory, especially for theories
which describe a landscape of vacua with different spacetime geometries.

This chapter is based on the following reference:

J. Pollack and A. Singh, “Towards space from Hilbert space: finding lattice structure
in finite-dimensional quantum systems,” Quant. Stud. Math. Found. 6 no. 2, (2019)
181–200, arXiv:1801.10168 [quant-ph]

8.1 Introduction
Mathematically, the basic objects of quantum mechanics are state vectors in an
abstract Hilbert space. Yet the real world is well-described by one such state in
one such space. It is natural to ask what additional features distinguish our state

http://dx.doi.org/10.1007/s40509-018-0176-8
http://dx.doi.org/10.1007/s40509-018-0176-8
http://arxiv.org/abs/1801.10168
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and Hilbert space from generic ones. We know, for example, some details of the
field content of our universe: it contains (at minimum) the fields in the Standard
Model, a spin-two graviton, and potentially additional fields such as dark matter,
an inflaton, etc. In particular, the quantum-mechanical theory which describes our
universe has a description (in the semiclassical limit) as a theory of fields: that
is, it has degrees of freedom which live at each point of some background spatial
manifold (which in turn is a spatial slice of a four-dimensional spacetime geometry
which solves Einstein’s equations). Furthermore, to a very good approximation,
the universe appears classical: we typically observe objects with definite values of
classical variables (such as position and momentum) rather than in superpositions,
and the time evolution of (expectation values of) these quantities obeys classical
equations of motion. When considered as a point in a classical Hamiltonian phase
space, it is also apparent that the current state of the universe is special: it is a
low-entropy state far from equilibrium, with nontrivial evolution that exhibits an
arrow of time.

Understanding the origin of all of these features is a vast research program. In this
chapter we focus on one feature: the fact that the time evolution1 of the state vector
of the universe can be described as the time evolution of field-theoretic degrees
of freedom living on a background space of definite dimension (and geometry).
We are motivated to investigate this feature in particular because it seems to be
a prerequisite for applying our most successful models of the emergence of clas-
sicality. The decoherence program [27, 154, 173, 174] explains how the unitary
evolution of a single quantum-mechanical state is naturally viewed as a process
involving the creation (via entropy production) of distinct classical branches which
evolve independently without interference. The set of branches is selected by the
Hamiltonian governing time evolution: when Hilbert space is decomposed into a
preferred choice of subsystems [29, 114], the branches are the states which remain
robust to the influence of the interactions between subsystems, i.e. in which the state
of a given subsystem is preserved by interactions with the environment. This story
relies crucially on the ability to decompose the Hilbert space into many interacting
subsystems—or, equivalently, to identify local degrees of freedom [22]. Once these

1In canonical quantum gravity, the Wheeler-DeWitt equation [4] implies that the action of the
Hamiltonian is identically zero. Recovering a notion of nontrivial time evolution in quantum grav-
ity can be regarded as one aspect of the problem of emergent time and is thus largely beyond the
scope of our paper. We will assume for the purposes of our paper that we are given (the spectrum
of) a Hamiltonian, either fundamental or emergent, and can use it to evolve state vectors in Hilbert
space.
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local degrees of freedom are identified, it seems plausible that space itself can be
built up from considering the interactions between subsystems (c.f. [23, 40, 65, 153]
and references therein), although this process is still incompletely understood. Or,
more directly, the degrees of freedom can be organized into a spatial lattice or spin
chain.

The goal of this chapter is to provide answers to two questions:

• When does a quantum-mechanical theory describe spatial degrees of freedom?

• When we know a theory does descibe spatial degrees of freedom, to what
extent can we identify them from purely quantum-mechanical data?

In investigating these questions we largely restrict ourselves to finite-dimensional
Hilbert spaces. This is partly for convenience: understanding how such spaces
can be decomposed is much more mathematically tractable (with no need, for
example, to consider type III von Neumann algebras). Nevertheless, a number of
arguments associated with complementarity and black hole entropy [18, 41, 175]
suggest that the set of degrees of freedom accessible to any observer in a local region
of space is actually finite [17]. These arguments are sharpest in an asymptotically
de Sitter spacetime which is dominated by vacuum energy, where a horizon-sized
patch of spacetime is a maximum-entropy thermal state with a finite entropy and a
corresponding finite number of degrees of freedom [20, 21].

Given this restriction, we can answer the first question by checking when a finite-
dimensional quantum-mechanical theory can describe a lattice theory. A simple
number-theoretic argument, which we give in Section 8.2 below, gives a surprising
answer to this question: almost never!That is, for almost all choices of finite positive
integer # , independent of the Hamiltonian, there is noHilbert space of dimension #
which can describe a lattice theorywith spatial dimension� # . We are therefore led
to slightly generalize our setup, to include Hilbert spaces which can be decomposed
into pieces which each describes a spatial lattice. As a toy model, we consider the
finite-dimensional analog of the double-well potential. For a large enough barrier,
low-lying states should decompose into a piece in the left well and a piece in the right
well. We use the tools of generalized Clifford algebras (GCAs) (for a review, see
[9] and references therein) to formalize this intuition. The lessons from this simple
example should be applicable to more general examples of cosmological relevance,
such as landscape potentials in which eachminimumdescribes a different metastable
vacuum solution.
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The remainder of this chapter is organized as follows. In Section 8.2, we give a
simple number-theoretic argument that almost all finite-dimensional Hilbert spaces
are unable to describe lattice theories. In Section 8.3, we therefore move on to
describe Hilbert spaces which are a direct sum of lattice theories. In Section 8.4, we
build on this description to give a definition of direct-sum locality, which measures
when a particular decomposition of a Hilbert space divides it into pieces which
remain separate under the action of the Hamiltonian. In Section 8.5, we apply
these definitions to a worked example: the double-well potential. We show how we
can use the various measures of locality to identify a natural decomposition of the
Hilbert space which successfully describes a spatial lattice theory. In Section 8.6,
we argue that the strategy developed for the double-well potential should be of more
general applicability to (finite-dimensional truncations of) field theory. Finally, we
conclude this chapter in Section 8.7.

8.2 The Non-Genericity of Lattice Hilbert Spaces
Consider a finite-dimensional quantum-mechanical theory that lives on a spatial
lattice, i.e. whose Hilbert space is isomorphic to a tensor product of smaller Hilbert
spaces (we have used ' to denote Hilbert space isomorphism),

Hl0CC824 ' H⊗#s8C4B
s8C4 . (8.1)

If the lattice is embedded in a multidimensional space, we can further write

#s8C4B =

#d8<∏
8=1

#
(8)
s8C4B . (8.2)

Now consider the constraints that the factorization relation (8.1) places on the
dimensionality of Hl0CC824. We have seen that the dimension of the Hilbert spaces
we are considering takes the form

|Hl0CC824 | = |Hs8C4 |#s8C4B . (8.3)

So, just as the Hilbert space has #s8C4B subfactors, its dimension has ∼ #s8C4B prime
factors (where the ∼ covers the fact that |Hs8C4 | might itself have multiple prime
factors). That is,

# of prime factors of |Hl0CC824 | ≡ Ω ( |Hl0CC824 |) ∼ ln |Hl0CC824 | . (8.4)

The functionΩ(=) counts the number of prime factors (includingmultiplicity) of the
natural number =. It is closely related to l(=), the number of distinct prime factors
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Figure 8.1: Histogram of Ω(=) for 264 − 5000 < = < 264 + 5000. The mean is 4.85,
the standard deviation is 2.21.

of =. Famously, the Hardy-Ramanujan theorem [176] says that asymptotically

l (=) ∼ ln ln =, var (l (=)) ∼ ln ln =. (8.5)

The total number of prime factors Ω(=) can be shown to have a similar asymptotic
expansion (e.g. [177]):

Ω (=) ∼ ln ln =, var (Ω (=)) ∼ ln ln =. (8.6)

So, as the size of a Hilbert space gets larger, it becomes vanishingly rare for the
Hilbert space to have a dimension of the right size for it to describe a lattice theory.

To gain some intuition for this phenomenon, consider Hilbert spaces around the
same size as that of a 4 × 4 × 4 lattice of qubits,

|Hl0CC824 | ≈ 264 ≈ 1.8 × 1019. (8.7)

We have
ln |Hl0CC824 | ≈ 64 ln 2 ≈ 44, ln ln |Hl0CC824 | ≈ 3.8. (8.8)

As Figures 8.1, 8.2, and 8.3 show, when we histogram the integers around 264, we
indeed find that typical integers = in this range have Ω(=) ∼ ln ln =. In particular,
the mean number of factors is 4.8 and the standard deviation around the mean is
2.1 − 2.2. 264 itself is then an extreme—30 sigma!—outlier.
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Figure 8.2: Histogram of Ω(=) for 264 − 15000 < = < 264 − 5000. The mean is
4.84, the standard deviation is 2.13.

8.3 Direct-Sum Hilbert Spaces
In the previous section we argued that large Hilbert spaces—like the one which
describes our own universe, whichmust be at least as large as exp((3() ∼ exp(10122)
to describe our Hubble volume—are vanishingly unlikely to decompose in the
manner necessary to describe a lattice quantum field theory. On the other hand,
we can always identify subspaces of a large Hilbert space—for example, those with
dimension equal to the largest power of 2 smaller than the dimensionality of the
Hilbert space—which might themselves be decomposed into a product over lattice
sites:

H = Hlattice⊕Hremainder, |Hlattice | = 2blog2 =c ≡ =lattice =⇒ Ω(=lattice) ∼ ln =lattice ∼ ln |H | .
(8.9)

Could the Hilbert space of our universe be of this form? In such a situation, a
generic state in H would be a superposition of a state in the lattice subspace and a
state in the (typically non-geometric) remainder space. Put another way, an initial
“geometric” state in the lattice Hilbert space is not constrained to remain within it
under the action of the Hamiltonian: part of it can “leak out” into the remainder of
the Hilbert space. This is not a familiar situation in standard quantum field theory,
where the use of a unitary S-matrix is predicated on both initial and final asymptotic
states being the vacuum of a field theory on a fixed background. However, we have
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Figure 8.3: Histogram of Ω(=) for 264 + 5000 < = < 264 + 15000. The mean is
4.84, the standard deviation is 2.13.

used language meant to suggest situations where this does occur: barrier decay
in quantum mechanics or, in quantum field theory in curved space, the decay of
metastable vacua by bubble nucleation.

In the latter case, one typically considers states localized around particular (meta)stable
vacua, which are each given geometric interpretations, but a generic state describes
a superposition of field configurations of different background geometries. That
is, states in such a theory with multiple vacua are necessarily not states in a sin-
gle field theory, but superpositions of states in different field theories, and thus a
finite-dimensional version of such a theory does not have a Hilbert space with the
tensor-product structure of a single lattice theory, but is instead a sum of such tensor-
product spaces. We discuss the field-theoretic interpretations of our results further
in Section 8.6 below. In the remainder of this section, we develop a formalism
for the simplest such system: Hilbert spaces which divide into two pieces, each of
which describes a lattice.

Suppose we have a Hilbert spaceH with a finite dimension dimH = # < ∞. Given
an operator Ô ∈ L(H), we can write the eigenstates of the operator

Ô |>8〉 = $8 |>8〉 (8.10)

(dealing with degeneracies as necessary so that the {|>8〉 , 8 = 1, 2, . . . , #} are an
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orthonormal basis forH ) and decompose a generic state |Ψ〉 ∈ H as

|Ψ〉 =
∑
8

2
(Ô)
8
|>8〉 . (8.11)

We can thus also decompose the Hilbert space as a direct sum of one-dimensional
subspaces,

H =
⊕
8

H (Ô)
8

, (8.12)

with H (Ô)
8
' C the one-dimensional Hilbert space consisting of scalar multiples

of |>8〉. Let us define a choice of scrambling of this direct-sum decomposition
by choosing a permutation f of our set of ordered eigenstates (1, 2, 3, . . . , #)
followed by a division into two mutually exclusive and exhaustive sets �f and �f,
of cardinality |�f | = < and |�f | = # − <,

f (1, . . . , #) = (f1, . . . , f# ) = (f1, . . . , f<)∪(f<+1, . . . , f# ) ≡ �f∪�f , (8.13)

where, of course, viewed as unordered sets, we have �f∪�f = {1, 2, 3, . . . , #} and
�f ∩ �f = ∅. We will denote the canonical, ordered set (1, 2, 3, . . . , #) as the one
corresponding to f = id (i.e. the identity permutation). This allows us to write our
Hilbert space H as a direct sum of two Hilbert spaces of dimension < and # − <,
respectively:

H ' H(Ô)
�f
⊕ H(Ô)

�f
, (8.14)

where
H(Ô)
�f
≡

⊕
9∈�f
H (Ô)
9

and H(Ô)
�f
≡

⊕
9 ′∈�f

H (Ô)
9 ′ . (8.15)

Let us denote this choice of direct-sum decomposition as �⊕ ≡ {Ô, f, <} which
consists of a choice of the operator Ô, the permutation f, and subspace size < as
defined above.

Our formalism thus far has been totally generic: it describes all possible partitions
of a Hilbert space of dimension # into two parts. Wewould like, however, to find the
particular partitions (if there are any) which reflect genuine features of the theory.
In particular, as we discussed above, useful partitions should be approximately
preserved under time evolution, so that geometric states localized in one of the
Hilbert spaces only gradually leak into the other one. We say that partitions where
this is the case exhibit direct-sum locality. To diagnose it, we will need measures
which depend not only on # and Ô, but also on the Hamiltonian �̂.
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First consider the special case Ô = �̂. We can decompose any state |Ψ〉 in terms
of energy eigenstates |48〉, where each H (�̂)

8
is (isomorphic to) the set of vectors

in C# proportional to |48〉. A natural division of the energy eigenstates is the
states below/above the energy �< of the <-th energy eigenstate (with the energy
eigenstates arranged in an ascending order with |41〉 being the ground state):

�0 = {1, 2, . . . , <} (8.16)

H (�̂�0 ) =
⊕
9∈�0

H (�̂)
9

. (8.17)

This decomposition is (unsurprisingly) trivial with respect to the Hamiltonian:
time evolution only evolves states within the subspaces, and there is no interaction
betweenH (�̂�0 ) andH (�̂�0 ) . Every state in this trivial decomposition with support
on a single piece is equally local in the direct-sum sense; time evolution does not
spread any such state across the entire Hilbert space. Such a decomposition thus
does not provide a means of applying the lessons of the decoherence program to
identify classical states, as discussed in the Introduction; since there is no interaction
between subystems, there is no notion of robustness.

Instead, we should consider the action of �̂ on a Hilbert space divided generically
asH = H (Ô)

�f
⊕ H (Ô)

�f
. To belabor the point, we can write

|>8〉 =
∑
9

〈4 9 |>8〉 |4 9 〉 (8.18)

and
|4 9 〉 =

∑
:

〈>: |4 9 〉 |>:〉 . (8.19)

so

4−8�̂C |>8〉 =
∑
9

4−8� 9 C 〈4 9 |>8〉 |4 9 〉

=
∑
9 ,:

4−8� 9 C 〈4 9 |>8〉 〈>: |4 9 〉 |>:〉 =
∑
:

(∑
9

4−8� 9 C 〈4 9 |>8〉 〈>: |4 9 〉
)
|>:〉 , (8.20)

i.e. time evolution evolves an eigenstate of Ô into a superposition of eigenstates. In
particular, for generic Ô, the time evolution of |>8〉 will have support on bothH (Ô)

�f

andH (Ô)
�f

.

Thus, the Hamiltonian �̂ for the system under this direct-sum decomposition
�⊕

(
Ô, f, <

)
of Eq. (8.14) can be decomposed into a term �̂�f which acts non-

trivially only on the part of the state supported on H (Ô)
�f

, a term �̂�f acting only
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on part of states supported on H (Ô)
�f

, and finally a tunneling term �̂tunnel(f) which

swaps support betweenH (Ô)
�f

andH (Ô)
�f

(we have suppressed the superscript (Ô) on
the terms in the Hamiltonian to avoid clutter in our notation),

�̂ = �̂�f + �̂�f + �̂tunnel(f) . (8.21)

One could work in the eigenbasis of Ô to express the Hamiltonian �̂ as a matrix and
under the scrambling permutation {�f, �f}, in which case the terms �̂�f and �̂�f
would represent diagonal blocks while �̂tunnel(f) would be the off-diagonal piece.
In the next section. we seek measures of direct-sum locality which depend on this
decomposition of the Hamiltonian.

8.4 Direct-Sum Locality and Robustness
In the previous sections, we established the rarity of lattice structures in a generic
Hilbert space and motivated the use of direct-sum constructions as tools for finding
lattice-like factorizations where locality can be made manifest. As discussed in
Section 8.3, a finite-dimensional Hilbert space H can be decomposed into a direct
sum of two subspaces labeled by �⊕ (Ô, f, <), which is specified by a choice of the
operator Ô whose eigenstates are used to define the direct-sum decomposition and
a partition of these eigenstates into two sets.

In this section, we tackle the problem of finding a suitable measure to quantify the
direct-sum locality of states in the context of a direct-sum decomposition. Locality
in such a context means that states which begin localized in one subspace in the
decomposition will remain localized under time evolution by the Hamiltonian and
not spread substantially into the other direct-sum subspace(s). Hence, such states
evolve mostly unitarily within that subspace with little or no tunneling into other
direct-sum subspaces. We emphasize that direct-sum locality is a highly non-generic
property, exhibited only by a subset of states in Hilbert space in a particular choice
of direct-sum decomposition.

To make the notion of direct-sum locality concrete, we need to specify what we
mean by “localized in a subspace.” Consider an arbitrary state |q〉 ∈ H , which in
general, has non-trivial support on the full Hilbert space. We would like to define a
super-operator Pr(Ô)

�f
which takes |q〉 and returns a state |q〉�f living inH (Ô)

�f
which

corresponds to the support of |q〉 onH (Ô)
�f

(and a similar super-operator Pr(Ô)
�f

). The
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natural tool to use is the projection operator %̂�f ontoH (Ô)
�f
⊂ H :

%̂
(Ô)
�f
≡

∑
9∈�f
|> 9 〉 〈> 9 | , (8.22)

where, as usual for a projector,
(
%̂
(Ô)
�f

)2
= %̂

(Ô)
�f

. Now %̂
(Ô)
�f
|q〉 is not a state vector,

because it need not have unit norm:

0 ≤ 〈q |%̂(Ô)
�f
|q〉 ≤ 1. (8.23)

When the norm is nonzero, we can recover a normalized state by dividing by the
norm. When the norm is zero, however, there is no unambiguous way to do this.
This is, in fact, desirable: the norm is zero only when a state |q〉 in fact has no
support on H (Ô)

�f
. What this means is that our super-operator Pr(Ô)

�f
does not map

strictly from states in H onto states in H (Ô)
�f

, but onto either states or the null

element2 0
H ( Ô)
�f

∈ H�f . Hence the action of Pr
(Ô)
�f

is defined3 as follows:

Pr(Ô)
�f

: H → H (Ô)
�f
⊂ H , |q〉 ↦→ |q〉�f , (8.24)

with

|q〉�f =


%̂
( Ô)
�f
|q〉

〈q |%̂ ( Ô)
�f
|q〉
, 〈q |%̂(Ô)

�f
|q〉 > 0

0
H ( Ô)
�f

, 〈q |%̂(Ô)
�f
|q〉 = 0.

(8.25)

We can now proceed to quantify the spread of an arbitrary state |k〉 in a given
direct-sum decomposition �⊕ (Ô, f, <) by projecting it ontoH (Ô)�f

using Pr(Ô)
�f

and
checking to what extent time evolution, given by the action of the Hamiltonian �̂
(8.21), evolves the projected state to have non-trivial support on H (Ô)

�f
. For any

state |k〉, let us take our initial state |k(0)〉 to be the projection of |k〉 on H (Ô)
�f

,
|k(0)〉 ≡ |k〉�f , using Eq. (8.25).

For concreteness, we will look at small time evolution of this state. This is physically
justified since we expect that in arbitrary choices of direct-sum decompositions,

2Recall that because Hilbert spaces are vector spaces, they have a null element 0H ∈ H with
| |0H | | = 0. Because state vectors are (equivalence classes of) vectors in the Hilbert space with unit
norm, 0H is not itself a physical state, but it is nonetheless an element of the Hilbert space.

3To avoid clutter, we have neglected a superscript (Ô) on our projected states, e.g. writing
|q〉�f

rather than |q〉 ( Ô)
�f

, but it should be understood that any projected state (in any direct-sum
subspace) is dependent on the choice of Ô.
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generic states |k〉 projected down toH (Ô)
�f

will spread over the entire Hilbert space
on very short time scales, representing their non-locality and lack of robustness in
a direct-sum sense, whereas robust states (whose properties we will discuss below)
would stay localized in the subspace they begin with. The time-evolved state,
explicitly written to O(C2), is

|k(C)〉 = exp
(
−8�̂C

)
|k(0)〉 =

(
Î − 8C�̂ − C

2

2
�̂2 + O(C3)

)
%̂
(Ô)
�f
|k〉

〈k |%̂(Ô)
�f
|k〉

. (8.26)

Substituting the form (8.21) of the Hamiltonian yields

|k(C)〉 =
%̂
(Ô)
�f
|k〉

〈k |%̂(Ô)
�f
|k〉
− 8C

〈k |%̂(Ô)
�f
|k〉

(
�̂�f + �̂tunnel(f)

)
%̂
(Ô)
�f
|k〉

− C2

2 〈k |%̂(Ô)
�f
|k〉

(
�̂2
�f
+ �̂2

tunnel(f) + �̂�f �̂tunnel(f) + �̂tunnel(f)�̂�f

)
%̂
(Ô)
�f
|k〉+O(C3),

(8.27)

where we have simplified the expression using the orthogonality properties of the
projected state,

�̂�f %̂
(Ô)
�f

= �̂�f �̂�f %̂
(Ô)
�f

= �̂�f �̂tunnel(f) %̂
(Ô)
�f

= 0 . (8.28)

Recall that the tunneling term �̂tunnel(f) swaps support of states localized in either
subspace, such that its action on states completely localized inH (Ô)

�f
will transform

them to states with support only inH (Ô)
�f

and vice versa.

Eq. (8.27) makes clear that the time-evolved state |k(C)〉 has support over the full
Hilbert space H , as expected due to the presence of the tunneling term �̂tunnel(f) ,
even though the initial state |k(0)〉 was constructed to be localized only inH (Ô)

�f
. We

would like to quantify how much support |k(C)〉 has inH (Ô)
�f

. This can be achieved

by projecting |k(C)〉 to H (Ô)
�f

using a projection operator %̂(Ô)
�f

(defined in the same

manner as Eq. (8.25) to truncate support of states to H (Ô)
�f

only), but this time,
without normalizing the result of the projection, so that we can explicitly measure
the support inH (Ô)

�f
. We see that

%̂
(Ô)
�f
|k(C)〉 = − 8C

〈k |%̂(Ô)
�f
|k〉

�̂tunnel(f) %̂
(Ô)
�f
|k〉

− C2

2 〈k |%̂(Ô)
�f
|k〉

(
�̂�f �̂tunnel(f) + �̂tunnel(f)�̂�f

)
%̂
(Ô)
�f
|k〉 ∈ H (Ô)

�f
⊂ H . (8.29)
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The support of |k(C)〉 in H (Ô)
�f

is given by the overlap of Eq. (8.29) with the
time-evolved state |k(C)〉 itself, which is, to O(C2),

〈k(C) |%̂(Ô)
�f
|k(C)〉 =

〈k |%̂(Ô)
�f
�̂2

tunnel(f) %̂
(Ô)
�f
|k〉

〈k |%̂(Ô)
�f
|k〉

2 C2. (8.30)

The coefficient of C2 defines the Tunneling Spread T
(
|k〉 , �f, �⊕

)
of the state |k〉

in the subspaceH (Ô)
�f

in the decomposition �⊕ (Ô, f, <):

T( |k〉 , �f, �⊕) ≡
1
2
32

3C2

(
〈k(C) |%̂(Ô)

�f
|k(C)〉

)
=
〈k |%̂(Ô)

�f
�̂2

tunnel(f) %̂
(Ô)
�f
|k〉

〈k |%̂(Ô)
�f
|k〉

2

= 〈k�f |�̂2
tunnel(f) |k�f〉 .

(8.31)

The tunneling spread is a time-independent quantity, but characterizes the robustness
of initially localized states under time evolution in a given direct-sumdecomposition.
It is evident that the tunneling Hamiltonian plays a crucial role in determining the
spread of localized states in the direct-sum. Note also the strong dependence on the
choice of state |k〉 and decomposition �⊕ (and hence, %̂(Ô)�f

), as expected.

Before closing this section, we define two other important quantities which will be
used in our toy model of Section 8.5 below. As noted in Section 8.3, we label the
energy eigenstates of �̂ as {|48〉} , 8 = 1, 2, . . . , # with corresponding energies �8,
respectively. We will be interested in studying the evolution of energy eigenstates
projected down to H (Ô)

�f
using a projection operator %̂(Ô)

�f
(as defined in Eq. 8.25).

Define the normalized, projected energy eigenstates by

|�=〉�f ≡
%̂
(Ô)
�f
|�=〉

〈�= |%̂(Ô)�f
|�=〉

∈ H (�f)
�f

⊂ H . (8.32)

These states have energy expectation values

(�=)�f ≡
〈�= |%̂(Ô)�f

�̂%̂
(Ô)
�f
|�=〉

〈�= |%̂(Ô)�f
|�=〉

2 . (8.33)

We would also like to quantify the degree of scrambling of a direct-sum decomposi-
tion as a whole. The tunneling spread captures the robustness of an individual state
by taking the expectation value of �̂2

tunnel(f) with respect to the projected state. As a
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quantifier of how scrambled our decomposition is, we take the trace Tr
(
�̂2

tunnel(f)

)
in the basis {|> 9 〉} of Ô eigenstates :

Tr
(
�̂2

tunnel(f)

)
=

#∑
9=1
〈> 9 |�̂2

tunnel(f) |> 9 〉 =
#∑
9=1

(
T( |> 9 〉 , �f, �⊕) + T( |> 9 〉 , �f, �⊕)

)
.

(8.34)
The last equality follows because the projectors act trivially on the {|> 9 〉}.

8.5 A Worked Example: The Double-Well Potential
In this section, we apply this construction of direct sums and direct-sum locality to
a simple, concrete example: the quantum-mechanical double-well potential. While
the usual construction of the double-well potential in standard, non-relativistic
quantum mechanics textbooks is based on an infinite-dimensional Hilbert space
L2(R) with position and momentum operators, we will construct an analogous
finite-dimensional version of the same, in line with our motivation for considering
locally finite-dimensional Hilbert spaces of the type relevant for quantum gravity.
As we will see, the double-well potential plays very naturally with the direct-sum
decomposition and can be used to illustrate features of direct-sum locality very
cleanly.

Let us define the Hamiltonian for our double-well system in the standard way,

�̂ =
ĉ2

2
+ +̂ (q̂), (8.35)

where ĉ and q̂ are finite-dimensional analogues of the momentum and position
operators which we will define below. The “potential” +̂ (q̂) is taken to be,

+̂ (q̂) =


+0 q 9 = 0

+edge q 9 = ±;Δq

0 elsewhere ,

(8.36)

where +0 is a positive, real number representing the central barrier potential and
+edge is the positive potential at the edges of our q-lattice. The separation between
eigenvalues of q̂ is denoted by Δq which is defined in Eqs. (8.37) and (8.38) below.
We have numerically implemented this system in MATLAB for a Hilbert space of
dimension # = 301, with+edge = 3+0 = 10| |ĉ2/2| |2 to ensure that the central barrier
is lower than the edge barriers. In Figure 8.4, we plot this double-well potential
and show the lowest two and one of the higher energy eigenstates represented in q-
space. As expected and well-known from quantum mechanics, the low-lying states
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Figure 8.4: The q̂-representation of the double-well potential +̂ (q̂) for a Hilbert
space of dimension # = 301 is plotted. Along with it, we show the lowest two
energy eigenstates and one of the highest ones (= = 298) for a Hilbert space
corresponding to # = 301. We have added +1 by hand to the wave function
of the = = 298 state to cleanly separate it from the low-lying one and demon-
strate how higher energy states are delocalized across the two wells. Eigenstates
= = 299, 300, 301 are very high energy states localized near the barriers of the
potential as a result of the the finite-dimensional, cyclic structure of q̂, as can
be seen in Fig. 8.5. The state = = 299 is peaked around the central barrier, and
= = 300, 301 are peaked at the edges.

represent superpositions of localized states within each well, whereas higher energy
states are delocalized over the full double well.

In addition, we plot the energy eigenvalues (spectrum) of the Hamiltonian in Figure
8.5, where the expected double degeneracy of the lower eigenvalues is demonstrated.
A few of the higher most eigenvalues are exceptionally large; this is a consequence
of working with a Hilbert space of a relatively small size (# = 301 in our case) with
a cyclic structure. Such states of extremely high energy will not be explicitly studied
here, but they will induce stray effects in the results and plots to follow which do
not bear any physical significance on our main results.

There is an obstacle to defining ĉ and q̂ in the same way as in standard one-
dimensional quantum mechanics. It is well known that Heisenberg’s canonical
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Figure 8.5: Energy spectrum of the double-well Hamiltonian of Eq. (8.35). One
can easily notice the (approximate) double degeneracy in the low-lying eigenval-
ues (corresponding to the two symmetric wells). The last three (the highest two
are indistinguishable on the plot) highly-energetic eigenstates are an artifact of
working in a finite-dimensional space with a relatively small # with the algebra
of conjugate variables having a cyclic structure. They cause spurious features in
other plots, but have no bearing on our physical results.

commutation relation (CCR) between pairs of conjugate variables has no finite-
dimensional irreducible representations. However, its exponential form, given by
Weyl [77], does admit finite-dimensional representations, based on the Generalized
Clifford Algebra (GCA) ([9] for a review), and can be used to construct finite-
dimensional conjugate variables which reduce to the usual ones obeying Heisen-
berg’s CCR in the infinite-dimensional limit (see, for example, [76, 91, 94]). We give
a short introduction to the GCA as an appropriate construction of finite-dimensional
conjugate variables in the Appendix. It should be noted that, as explained in the
Appendix, the form of the momentum operator in finite dimensions is non-local
in the sense that matrix elements of ĉ in the eigenbasis of q̂ demonstrate power
law-like decay, connecting arbitrary “far” q̂ eigenstates. While this may seem
counter-intuitive, we note that in the usual infinite-dimensional limit, we recover the
usual local representation of ĉ as −83/3q in the q̂ basis. Our goal in this chapter,
and particulary through this example is to demonstrate that there exists a preferred
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decomposition of Hilbert space in which dynamics is most local as compared to
others, and this decomposition can serve as a starting point for the emergence of
classical behavior, and in particular having a momentum operator with non-local
matrix elements in finite-dimensions is not an obstacle towards this goal.

The appropriate way to define ĉ and q̂ is therefore by using the GCA. We denote
the Hilbert space of our Double-Well (DW) system as H�, , with an odd, finite
dimension # = 2; + 1. (The odd dimension is chosen so that our field variable q
can lie on a one-dimensional lattice centered around 0.) On L(H�, ), we associate
a pair of conjugate variables q̂ and ĉ which form a GCA. From the point of view
of the GCA, q̂ and ĉ are on the same footing, so we need to make a choice of
which operator to assign to position and which to momentum. As already noted,
the operator corresponding to a “lattice” variable is chosen to be q̂, which has
eigenvalues

{q 9 = 9Δq , 9 = −;, (−; + 1), . . . , 0, . . . , (; − 1), ;}, (8.37)

where Δq is a positive real number constrained by the algebra to obey

(2; + 1)ΔqΔc = 2c (8.38)

and Δc is the uniform difference between eigenvalues of ĉ. This constraint en-
sures that Heisenberg’s canonical commutation relation is recovered in the infinite-
dimensional # → ∞ limit. In our numerical implementation, we have taken
Δq = Δc =

√
2c/(2; + 1) and ; = 150.

Thus eigenstates of q̂ can be thought of labeling sites on a 1-D lattice with cyclic
boundary conditions as specified by the GCA. The conjugate variable to q̂ is ĉ
which generates translations in the eigenspace of q̂ (and vice versa). For our
purposes, we will use q̂ and ĉ in analogy to position and momentum operators in
standard textbook quantum mechanics in one spatial dimension on L2(R), but here
representing bounded operators on a finite-dimensional Hilbert space.

Having defined the system, we can proceed to study different choices of scramblings
f. Because the system defines a symmetric double-well potential, we expect that the
only good choices are those which keep the size< of �f fixed at< = ;. In particular,
we start from the ordered, canonical q-lattice (−;,−; + 1, . . . , 0, . . . , ; − 1, ;) and
sequentially build up different scramblings by swapping a pair of randomly chosen
sites from �f and �f separated by the barrier fixed at q = 0. In the canonical,
ordered decomposition, the Hamiltonian is the sum of a local kinetic term and
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Figure 8.6: The trace of the square of the tunneling term in the Hamiltonian
Tr

(
�̂2

tunnel(f)

)
for different decompositions building up from the canonical, or-

dered (−;,−; + 1, . . . ,−1) ∪ (0, 1, 2, . . . , ;) decomposition. This quantity acts as a
measure of the strength of the tunneling term for the choice Ô ≡ q̂ and quantifies
the scrambling of the decomposition as discussed in the text.

a potential (a highly non-generic feature), and as one scrambles away from it and
becomesmore non-local, the tunneling termbecomesmore important. This behavior
is seen in Figure 8.6, where Tr

(
�̂2

tunnel(f)

)
(which we defined in Eq. 8.34 in Section

8.4 as a measure of how scrambled the decomposition is) correlates with the number
of scrambling swaps applied to the canonical, ordered lattice.

As expected, since we are working with a Hilbert space corresponding to ; = 150
and swapping pairs of sites sequentially across the central barrier, the decomposition
becomes more non-local (and hence has higher Tr

(
�̂2

tunnel(f)

)
) until reaching ≈ ;/2

swaps, after which we start approaching the case where the two wells are swapped
entirely (up to internal scramblings within each well which are inconsequential for
our purposes, since the potential energy defined on such well configurations is zero
and the Hamiltonian reduces to just a local kinetic term within each well).

We next study the properties of individual energy eigenstates |�=〉 of the double-well
Hamiltonian of Eq. (8.35) and their projected counterparts |�=〉�f on H (Ô)

�f
. We

compute the tunneling spread for each projected eigenstates in different choices of
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Figure 8.7: Plot showing the dependence of Tunneling Spread T
(
|k〉 , �f, �⊕

)
on

energy eigenstates (represented by their eigenvalues �=) of the double-well Hamil-
tonian expressed in different direct-sum decompositions �⊕ (q̂, f, < = ;) ofH�, .
There exists a preferred decomposition into direct sum subspaces (the canonical,
ordered (−;,−; + 1, . . . ,−1) ∪ (0, 1, 2, . . . , ;) one) in which low-lying energy states
have very small tunneling spreads and hence represent robust, localized states in
the direct-sum subspace. Other decompositions are near-generic where there is no
manifestation of direct-sum locality. Notice the log scale on the y-axis represent-
ing the tunneling spread. The very-high energy behavior is a consequence of the
three largest energy eigenstates, which are artifacts of finite-dimensional, cyclic
constructions and do not bear any physical significance for our results.

direct-sum scramblings, based on the operator q̂, but varying f by swapping sites
in the same way as described above. The results are plotted in Figure 8.7.

We see that there exists a preferred decomposition ofH�, into two subspaces based
on q̂, in which the low-lying energy states offer a very natural set of robust, localized
states within the H (q̂)

�f
direct-sum subspace, acting as semiclassical states which

maintain their support under evolution by theHamiltonian. Changing the scrambling
even slightly destroys the strong correlation we see for the preferred decomposition.
As one goes on further scrambling the canonical decomposition, by continually
swapping lattice sites across the central barrier, the tunneling spread systematically
increases, but occupies a “degenerate band” indicating how generically non-local
arbitrary decompositions are. In addition, as expected, even with the correct choice
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Figure 8.8: Plot showing correlation between �= and (�=)�f for different choices
of scramblings �⊕ = {q̂, f, <} in the double-well toy model. Only in the canoni-
cal, preferred decomposition do the low-lying eigenstates of �̂ serve as low energy
states which can be localized within a given direct-sum subspace. The very-high
energy behavior is a consequence of the three largest energy eigenstates, which are
artifacts of finite-dimensional, cyclic constructions and do not bear any physical
significance for our results.

of decomposition, it is only the low-lying stateswhich exhibit robustness and locality.
Higher-energy states are already delocalized to begin with (as seen in Figure 8.4)
and approach the generic band of states for any choice of scramblings.

Such ideas can be further understood by studying the correlation between �=, the
energy eigenvalues of the Hamiltonian, and the expectation value of the energy of
the projected states, |�=〉�f , defined as (�=)�f in Eq. (8.33) above. As shown in
Figure 8.8, in the canonical, preferred decomposition discussed above, low-lying
eigenstates of the Hamiltonian inherit their low energy features when projected
down to the H (q̂)

�f
subspace and can describe localized states which are robust

under time evolution (as described by Figure 8.7). For decompositions successively
more scrambled from the canonical, the low-lying eigenstates lose their role as
localized states because they are mapped to energetically unfavoured states once
projected onto the direct-sum subspace. This further demonstrates how arbitrary
decompositions place all states on equal footing once projected; only in the preferred
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decomposition, which respects the system’s dynamics, are localization features in
the low-lying states made manifest.

Now that we have discussed ideas of direct-sum locality in a concrete example of the
double-well potential and seen the interesting, non-generic features of the preferred
direct-sum decomposition, let us interpret these ideas in the context of cosmology
and field theory.

8.6 Towards Field Theory
The toy model considered in the previous section demonstrated features that we
expect are generic in situations where a lattice theory on a semiclassical spatial
background can be described on direct-sum sectors of the Hilbert space. In particu-
lar, they illustrate how to select a preferred direct-sum decomposition under which
the low-lying states of the Hamiltonian can represent robust, semiclassical states
which remain localized under time evolution.

It is important to point out, however, that in our construction above there was no
notion of tensor factorization of Hilbert space. Explicitly, the analog of position in
our finite-dimensional toy model was labeled by the eigenvalues of the operator q̂.
As we take the dimension of the Hilbert space to infinity to recover one-dimensional
quantum mechanics, q̂ reduces to the position operator Ĝ. There is thus no real
sense in which degrees of freedom in the Hilbert space of the model are actually
localized at a given position. Contrast this with field-theory, in which the analogous
operators measure the field value at a particular point, q̂G .

In other words, our toy model was a first quantized, not a second quantized theory,
and we should not expect either the left or right Hilbert subspaces to factorize in
the manner required of a lattice field theory. Its goal was to demonstrate, as a proof
of principle, how there can exist a preferred direct-sum decomposition for a given
Hamiltonian for which we can recover robust, semi-classical structure in different
direct-sum subspaces. To extend these ideas to Hilbert spaces where lattice structure
exists, we first require an appropriate number-theoretic division into direct sums in
which each sum allows a tensor factorization, as discussed in Section 8.2 above.
However, even once we have checked that such a tensor factorization can exist, the
success of the decoherence program within each such direct-sum factor requires a
specific, non-generic direct-sum decomposition which is chosen based on locality
characteristics governed by the Hamiltonian. It is this choice of decomposition
which our results on the toy model in the previous section can inform.
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In Section 8.3 above, we suggested that theories in which each term in the direct sum
describes a geometric field theory occur frequently in quantum field theory in curved
space. Whenever we have a theory that describes multiple (meta)stable vacua, such
as those invoked in landscape eternal inflation [178], string-theoretic mechanisms
for producing de Sitter solutions [179], or for anthropic purposes [180], we should
decompose the Hilbert space of the theory into a sum of subspaces which describe
field theory around the geometry corresponding to each individual vacuum in the
theory (see [181, 182] for related ideas). Interactions between the subspaces, which
we have referred to as tunneling terms, play the dual role of describing transitions
between the vacua and determining which states of the field theories remain robust
under time evolution. They also determine what the ultimate ground state of the
theory is, as states initially localized within a particular vacuum eventually relax to
a particular superposition of states across all of the vacua [183].

Let us finally return to the questions we asked in the Introduction if this chaptee.
Given only the Hilbert space data of a theory–that is, its dimension and the spectrum
of its Hamiltonian–how could we deduce that such a theory describes a landscape
of field theories of this sort? And how could we identify the local degrees of
freedom within each field theory? The answer we have presented in the last several
sections is to vary across the operators Ô and choice of decompositions (f, <)
which define a direct-sum decomposition �⊕ (Ô, f, <). (If we are considering
more arbitrary decompositions into more than two pieces, we should replace the
size < with the dimensionalities {<8} of each subspace.) Then we should compare
the measures of direct-sum locality we defined in Section 8.4 above—in particular,
the tunneling spread T

(
|k〉 , �f, �⊕

)
(8.31) and the size of the tunneling term

Tr
(
�̂2

tunnel(f)

)
(8.34)—across different decompositions. Once we have identified a

particular decomposition in which low-lying states in a particular subspace remain
robust under the action of the Hamiltonian, such as the canonical decomposition
into left and right in our toy model above, we can use the familiar methods of
decoherence within the subspaces to identify the local degrees of freedom. That
is, we can write each subspace as a tensor product of smaller factors and identify
the choice of basis in which interactions between the factor act like a monitoring
environment.

8.7 Conclusion
In this chapter we have tried to take some preliminary steps towards understanding
the conditions under which lattice or geometrical structures emerge from Hilbert-
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space dynamics. We have introduced the notion of direct-sum decompositions of
a Hilbert space which partition the Hilbert space into multiple pieces spanned by
subsets of the eigenstates of an operator. We argued that preferred decompositions
which allow the possibility of local degrees of freedom can be identified by the
existence in such decompositions of states with low tunneling spread, which remain
robust under time evolution. We studied the selection of a canonical decomposition
in a simple toy model, the finite-dimensional discretization of the double-well
potential.

Much work remains to be done in order to fill out the entire research program
we mentioned in the Introduction: understanding how the classical, geometric
world we observe emerges from a fundamental Hilbert space. With respect to our
particular problem, it would be interesting to more explicitly understand under what
conditions landscapes of vacua, which seem to be ubiquitous in our models of
quantum gravity, can emerge. In particular nothing in the direct-sum understanding
we have sketched in this paper seems to preclude the different metastable vacua
from differing dramatically, for example in having different numbers of fundamental
fields or even differing numbers of dimensions. In addition, there is some tension
between a description of spacetime with a lattice structure and the existence of
gauge symmetries or diffeomorphism invariance [46, 47, 184–186], which might be
solved by introducing additional “edge modes” in addition to degrees of freedom
located at lattice sites. Describing the Hilbert spaces of such theories as direct-sum
decompositions would require additional generalization.

8.8 Appendix: A Primer on Generalized Clifford Algebra
Consider a finite-dimensional Hilbert SpaceH of dimension dimH = # ∈ Z+ with
# < ∞. A Generalized Clifford Algebra(GCA) on the space of linear operators
L(H) acting on H comes equipped with two unitary (but not necessarily hermi-
tian) operators as generators of the algebra, �̂ and �̂, which satisty the following
commutation relation,

�̂�̂ = l−1�̂ �̂ , (8.39)

where l = exp (2c8/#) is the #-th primitive root of unity. This commutation
relation is also more commonly known as the Weyl braiding relation and any further
notions of commutations between conjugate, self-adjoint operators (which will be
defined from �̂ and �̂) will be derived from this fundamental braiding relation. In
addition to being unitary, �̂�̂† = �̂† �̂ = Î = �̂�̂† = �̂†�̂, the algebra cyclically
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closes, giving it a cyclic structure in eigenspace,

�̂# = �̂# = Î , (8.40)

where Î is the identity operator on L(H). The GCA can be constructed for both
even and odd values of # and both cases are important and useful in different
contexts. Here, we focus on the case of odd # ≡ 2; + 1 which will be useful
in constructing conjugate variables whose eigenvalues can be thought of labelling
lattice sites, centered around 0. While all of the subsequent construction can be
done in a basis-independent way, we choose a hybrid route, routinely switching
between an explicit representation of the GCA and abstract vector space relations.
Let us follow the convention that all indices used in this section (for the case of odd
# = 2; + 1), for labelling states or matrix elements of an operator in some basis etc.
will run from −;, (−; + 1), . . . ,−1, 0, 1, . . . , ;. The operators are further specified
by their eigenvalue spectrum, and it is identical for both the GCA generators �̂ and
�̂,

spec( �̂) = spec(�̂) = {l−; , l−;+1, . . . , l−1, 1, l1, . . . , l;−1, l;} . (8.41)

There exists a unique irreducible representation (up to unitary equivalences) (see
review [9] for details) of the generators of the GCA defined via Eqs. (8.39) and
(8.40) in terms of # × # matrices

� =



0 0 0 . . . 1

1 0 0 . . . 0

0 1 0 . . . 0

. . . . . .

. . . . . .

0 0 . . . 1 0

#×#
, (8.42)

� =



l−; 0 0 . . . 0

0 l−;+1 0 . . . 0

. . . . . .

. . . . . .

0 0 0 . . . l;

#×#
. (8.43)

The .̂ has been removed to stress that these matrices are representations of the
operators �̂ and �̂ in a particular basis, in this case, the eigenbasis �̂ (so that � is
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diagonal). More compactly, the matrix elements of operators �̂ and �̂ in the basis
representation of eigenstates of �̂,

[�] 9 : ≡ 〈1 9 | �̂|1:〉 = X 9 ,:+1 , (8.44)

[�] 9 : ≡ 〈1 9 |�̂ |1:〉 = l 9X 9 ,: , (8.45)

with the indices 9 and : running from −;, . . . , 0, . . . , ; and X 9 : is the Kronecker
Delta function. Consider the set {|1 9 〉}, 9 = −;, . . . , ; of states to be the set of
eigenstates of �̂,

�̂ |1 9 〉 = l 9 |1 9 〉 , 9 = −;, . . . , 0, . . . , ; (8.46)

As can be evidently seen in the matrix representation of �̂ in Eq. (8.42), the operator
�̂ acts as a “cyclic shift” operator for the eigenstates of �̂, sending an eigenstate to
the next,

�̂ |1 9 〉 = |1 9+1〉 . (8.47)

The unitary nature of these generators implies a cyclic structure which identifies
|1;+1〉 ≡ |1−;〉, so that �̂ |1;〉 = |1−;〉. The operators �̂ and �̂ have the same relative
action on one another’s eigenstates, since nothing in the algebra sets the two apart.
It has already been seen in Eq. (8.47) that �̂ generates (unitary, cyclic) unit shifts
in eigenstates of �, and the opposite holds too: the operator �̂ generates unit shifts
in eigenstates of �̂ (given by the relation �̂ |0:〉 = l: |0:〉 , : = −;, . . . 0, . . . ;) and
has a similar action with a cylic correspondence to ensure unitarity,

�̂ |0:〉 = |0:+1〉 , (8.48)

with cyclic identification |0;+1〉 ≡ |0−;〉. Hence, we already have a set of operators
which generate shifts in the eigenstates of the other, which is precisely what con-
jugate variable do and which is why we see that the GCA provides a very natural
structure to define conjugate variables on Hilbert Space. The GCA generators �̂
and �̂ have been extensively studied in various contexts in quantum mechanics, and
are often referred to as “Clock and Shift” matrices in the literature and offer a higher
dimensional, non-Hermitian generalisation of the Pauli matrices. In particular, for
sake of completeness, we mention that for # = 2, it will be seen that � = f1 and
� = f3, which recovers the famous Pauli matrices.

The defining notion for a pair of conjugate variables is the identification of two
self-adjoint operators acting on Hilbert space, each of which generates translations
in the eigenstates of the other. For instance, in (conventionally infinite-dimensional)
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textbook quantum mechanics, the momentum operator ?̂ generates shifts/transla-
tions in the eigenstates of its conjugate variable, the position @̂ operator and vice
versa. Taking this as our defining criterion, we would like to define a pair of conju-
gate operators q̂ and ĉ, acting on a finite-dimensional Hilbert space, each of which
is the generator of translations in the eigenstates of its conjugate, with the following
identification,

�̂ ≡ exp (−8Uĉ) , �̂ = exp (8Vq̂) , (8.49)

whereU and V are non-zero real parameters which set the scale of the eigen-spectrum
of the operators q̂ and ĉ. They are bounded operators on H and, due to the virtue
of the GCA generators �̂ and �̂ being unitary, the conjugate operators q̂ and ĉ
are self-adjoint satisfying q̂† = q̂ and ĉ† = ĉ. The operator ĉ is the generator of
translations of q̂ and vice versa.
To further reinforce this conjugacy relation between operators �̂ and �̂, we see
that they are connected to each other under a discrete Fourier transformation im-
plemented by Sylvester’s Circulant Matrix (, which is a # × # unitary matrix(
((† = (†( = Î

)
, connecting � and �,

(�(−1 = � . (8.50)

The Sylvester’s matrix has the following form, which we identify to be in the {|1 9 〉}
basis,

[(] 9 : =
l 9 :

√
#
, (8.51)

with the indices 9 and : running from −;, · · · , 0, · · · , ;. Let us now solve for the
conjugate operators q̂ and ĉ explicitly by finding their matrix representations in the
|q 9 〉 basis. By virtue of being diagonal, the logarithm of � is taken rather easily,

log � = (logl) diag (−;,−; + 1, · · · , 0, · · · , ; − 1, ;) , (8.52)

and hence, we have the matrix representation of q̂,

〈q 9 |q̂|q 9 ′〉 = 9
(

2c
(2; + 1)V

)
X 9 9 ′ , (8.53)

which is diagonal in the |q 9 〉 basis as expected. To find a representation of ĉ in the
|q 9 〉 basis requires a little extra work to compute log � which is again done with the
help of Sylvester’s matrix,

log � = (−1 (log �) ( . (8.54)
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Since � and � are non-singular and diagonalizable, it follows, as shown, that
log � and log � exist, even though multivalued. In the case of odd dimension
# = 2; + 1, their principle logarithms are well defined and we are able to find
explicit matrix representations for operators q̂ and ĉ as above. We have already
mentioned the conjugate properties of operators q̂ and ĉ which are connected
through the Sylvester’s operator. Using this expression for log � from Eq. (8.54),
we can obtain matrix representation for ĉ in the |q 9 〉 basis rather easily,

〈q 9 |ĉ |q 9 ′〉 =
(

2c
(2; + 1)2U

) ;∑
==−;

= exp
(
2c8( 9 − 9 ′)=

2; + 1

)
, (8.55)

which can be further simplied to give,

〈q 9 |ĉ |q 9 ′〉 =


0 , if 9 = 9 ′

(
8c

(2;+1)U

)
cosec

(
2c; ( 9− 9 ′)

2;+1

)
, if 9 ≠ 9 ′ .

(8.56)

It should be noted at this point that the matrix elements of ĉ in the eigenbasis of q̂
are non-local in the sense that they have power law-like decay in ( 9 − 9 ′) and hence
connect arbitrary “far” eigenstates of q̂. This is a feature of the finite-dimensional
construction and in the infinite-dimensional limit # →∞, we recover the local form
of q̂ as −83/3q as expected. Of course, q̂ has common eigenstates with those of
�̂ and ĉ shares eigenstates with �̂. Let us, for the sake of clarity and convenience,
label the eigenstates of q̂ as |q 9 〉 and those of ĉ as |c 9 〉 with the index 9 running
from −;, . . . , 0, . . . , ;. The corresponding eigenvalue equations for q̂ and ĉ can be
easily deduced using Eqs. (8.49) and (8.41),

q̂ |q 9 〉 = 9
(

2c
(2; + 1)V

)
|q 9 〉 , 9 = −;, . . . , 0, . . . , ; , (8.57)

ĉ |c 9 〉 = 9
(

2c
(2; + 1)U

)
|c 9 〉 , 9 = −;, . . . , 0, . . . , ; . (8.58)

These conjugate variables defined on a finite-dimensional Hilbert space will not
satisfy Heisenberg’s Canonical Commutation relation (CCR)

[
q̂, ĉ

]
= 8 (in units

where ℏ = 1) since it is well known by the Stone-von Neumann theorem, there
are no finite-dimensional representations of Heisenberg’s CCR. However, q̂ and
ĉ still serve as a robust notion of conjugate variables and their commutation can
be derived from the more fundamental Weyl Braiding Relation of Eq. (8.39). In
the large dimension limit # → ∞, one recovers Heisenberg’s form of the CCR if
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the parameters U and V are constrained to obey UV = 2c/# . This completes our
lightning review of GCA and conjugate variables on a finite-dimensional Hilbert
space.
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Quantum State-Reduction
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C h a p t e r 9

QUANTUM DECIMATION IN HILBERT SPACE:
COARSE-GRAINING WITHOUT STRUCTURE

Wepresent a technique to coarse-grain quantum states in a finite-dimensional Hilbert
space. Our method is distinguished from other approaches by not relying on struc-
tures such as a preferred factorization of Hilbert space or a preferred set of operators
(local or otherwise) in an associated algebra. Rather, we use the data corresponding
to a given set of states, either specified independently or constructed from a single
state evolving in time. Our technique is based on principle component analysis
(PCA), and the resulting coarse-grained quantum states live in a lower dimensional
Hilbert space whose basis is defined using the underlying (isometric embedding)
transformation of the set of fine-grained states we wish to coarse-grain. Physi-
cally, the transformation can be interpreted to be an “entanglement coarse-graining”
scheme that retains most of the global, useful entanglement structure of each state,
while needing fewer degrees of freedom for its reconstruction. This scheme could be
useful for efficiently describing collections of states whose number is much smaller
than the dimension of Hilbert space, or a single state evolving over time.

This chapter is based on the following reference:

A. Singh and S. M. Carroll, “Quantum decimation in Hilbert space: Coarse-graining
without structure,” Phys. Rev. A97 no. 3, (2018) 032111, arXiv:1709.01066
[quant-ph]

9.1 Introduction
One of the challenges of doing practical calculations in quantum mechanics is that
Hilbert space is very big: the number of dimensions is exponential in the number
of degrees of freedom. Furthermore, not all degrees of freedom are created equal;
some might be microscopic or high-energy and hard to access, while others may
be irrelevant to certain dynamical questions. It is therefore very often useful to
coarse-grain, modeling quantum systems defined by states on some Hilbert space
H by states in some lower-dimensional Hilbert space H̃ , under conditions where
the coarse-grained dynamics suffices to capture important properties of the system.

http://dx.doi.org/10.1103/PhysRevA.97.032111
http://arxiv.org/abs/1709.01066
http://arxiv.org/abs/1709.01066
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In practice, coarse-graining procedures typically rely on the existence of structure in
Hilbert space that exists as part of the quantum system under consideration, and use
that structure to define a renormalization group (RG) flow [188–193]. For example,
there might be a notion of emergent space [22, 23] and associated locality. We
imagine some decomposition of Hilbert space into local factors,

H =
⊗
8

H8, (9.1)

where the factorsH8 come equipped with some nearest-neighbor structure (specify-
ing whenH8 andH 9 are nearby), typically characterized by the form of interactions
between factors in the Hamiltonian. Then it makes sense to coarse-grain spatially,
grouping together nearby factors, as in the classic block-spin approach to the Ising
model [188, 194]. Alternatively, one might appeal to the energy spectrum of the
Hamiltonian, constructing an effective theory of low-energy states by integrating
out high-energy ones.

In quantum information theory, data compression has received a lot of attention over
the last few decades and a considerable amount of work has been done. A lot ofmoti-
vation for such techniques comes from quantum computation, andmany different ap-
proaches have been suggested, including but not limited to Schumacher’s data com-
pression [195], one-shot compression techniques [196], the Johnson-Lindenstrauss
lemma [197, 198] and its limitations in quantum dimensional reduction [199], by
application of elementary quantum gates [200], and even considering overlapping
qubits [201], amongst others [202, 203] (and references therein).

In this chapter, we pursue a different road to coarse-graining. We imagine that
we are given some particular set of states (or one state as a function of time) in
Hilbert space, but no preferred notion of locality or energy, or a preferred factor-
ization into individual degrees of freedom. Our specific motivation comes from
quantum gravity and quantum cosmology, where notions of locality and energy are
more subtle than in traditional laboratory settings, but the technique might be of
wider applicability. Our method represents another technique in the literature on
compression quantum information and coarse-graining, but with an emphasis on
the fact that the construction is based solely on structure of a set of given quantum
states, without relying on any additional, preferred structure in Hilbert space. In
particular, we use principle component analysis (PCA) [204] to use a set of states
{|k (`)〉} ∈ H to define a vector subspace H̃ ⊂ H , such that a coarse-graining map
onto H̃ captures the most important information about the original states (in a sense
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we make precise below). We refer to this procedure as “quantum decimation in
Hilbert space”: a scheme where we coarse-grain quantum states by decimating or
discarding irrelevant features determined by the structure of the states themselves,
without presuming additional structure on Hilbert space. (Our method is distinct
from past usage of the term “quantum decimation” in the literature [205–207], which
refers to application of RG ideas to spin chains, Hubbard models and the like.) The
idea of the PCA is to express the information contained in the original states in the
most efficient way possible, by identifying the basis vectors along which most of
the variation occurs, and attaching a systematic notion of the relative importance
of different basis vectors. This helps us identify global, important features of the
state (determined by the states themselves) and physically one can relate this to pre-
serving most of the relevant entanglement structure of the states (in any arbitrarily
associated tensor factorization to Hilbert space).

The chapter is organized as follows. In Section (9.2), we construct the principle
component basis for the set of fine-grained states we wish to coarse-grain, and define
a PCA compressionmapwhich removes redundancy in the basis used to describe our
states. In Section (9.3), we develop the details of the coarse-graining isometry based
on decimation of the PCA expansion and discuss the physical question of “what are
we coarse-graining?” and a possible application of the procedure in coarse-graining
time evolution of a system. In section (9.4), we compare it with other conventional
coarse-graining schemes and data compression techniques in quantum information,
and conclude.

9.2 Constructing the Principle Component Basis
Setting the Stage
Consider a finite-dimensional Hilbert spaceH of dimension � = dimH , equipped
with a global basis {|8〉} with 8 = 1, 2, · · · , �. “Global” indicates that the basis
spans all ofH , and this choice of this basis is left arbitrary at this stage. Typically,
this global basis can be identified with a tensor product structure which identifies
degrees of freedom corresponding to subsystems. While in any practical setup such
as many-body theory or quantum computation, one typically assumes a highly non-
generic and preferred tensor factorization of H based on the Hamitonian [28, 29]
where features like locality and classical emergence might be manifest, we do not
assume any such preferred structure. Our technique, at the “data-compression” stage,
works even without associating a tensor product structure to Hilbert space, but its
interpretation (which we offer in section 9.3) relies on the existence of an arbitrary
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factorization H =
⊗

9 H 9 , not necessarily corresponding to a quasi-classical one.
A normalized state |k〉 ∈ H can be expanded in this global basis,

|k〉 =
�∑
8=1

28 |8〉 , (9.2)

with 28 = 〈8 |k〉 and
∑�
8=1 |28 |2 = 1.

Now imagine that we are given" states inH , labeled by {|k (`)〉}, ` = 1, 2, · · · , " ,
which we will call the specifying states. Our goal is to harness the structure of these
specifying states inH to construct a coarse-graining procedure that will allow us to
project them down to a subspace H̃ that preserves as much relevant information as
possible. Each |k (`)〉 be expanded in the chosen global basis,

|k (`)〉 =
�∑
8=1

2
(`)
8
|8〉 , (9.3)

with
∑�
8=1 |2

(`)
8
|2 = 1. It will be convenient to package these components as a (�×1)

column vector, which we call
[
� (`)

]
,

[
� (`)

]
�×1

=



2
(`)
1

2
(`)
2

.

.

.

2
(`)
�


. (9.4)

We now bundle together the coefficients of all of the specifying states into a matrix
[�], of order (� × "), which we call our augmented matrix:

[�]�×" =

[
� (1); � (2); · · · ; � (")

]
≡



2
(1)
1 2

(2)
1 · · · 2

(")
1

2
(1)
2 2

(2)
2 · · · 2

(")
2

. . · · · .

. . · · · .

2
(1)
�

2
(2)
�
· · · 2

(")
�


. (9.5)

The basic idea of coarse-graining is to reduce the effective dimensionality of Hilbert
space, thus giving an effective description of the state, while retaining the global or
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Table 9.1: List of Important Notation Used

H Hilbert space of (fine-grained) dimension � = dimH .
{|8〉} Global basis ofH , 8 = 1, 2, · · · , �.

{|k (`)〉} Set of " specifying states inH , ` = 1, 2, · · · , " .
H̃(3) Hilbert space of (coarse-grained) dimension 3 = dim H̃(3) with

H̃(3) ⊂ H and 3 ≤ (" + 1) < �.[
� (`)

]
Column-vector containing coefficients 2(`)

8
of |k (`)〉 in the

global |8〉 basis.
[�] Augmented Matrix containing all " specifying states as column

vectors.
�̄ (`) Mean value of the coefficients of |k (`)〉 in the global basis.
[$�] Un-normalized, uniform superposition state inH .
[Δ�] Augmented Matrix of deviation of each state from its mean

value.
{4: } Set of non-zero singular values of [Δ�]† [Δ�] and

[Δ�] [Δ�]† , : = 1, 2, · · · , " .[
Φ̂

]
Un-normalized PCA basis vectors organized as a matrix.[

Ŵ
]

Un-normalized PCA weights organized as a matrix.
[Φ] Normalized PCA basis vectors organized as a matrix.
[W] Normalized PCA weights organized as a matrix.
{|q 9 〉} PCA basis vectors in H̃(3) with 9 = 0, 1, · · · , (3 − 1).
Π̂(3) Projection Map from fine-grained states inH to coarse-grained

states in H̃(3) .
[T3] Truncation matrix of order 3 × (" + 1) with [T3]01 = X01
[�3] Net coarse-graining transformation defined as [�3] = [T3] [Φ]†.

large-scale physics of the state. Our current structure does not assume any notion of
space or any associated notion of locality, or indeed any specific Hamiltonian. All
we are working in is Hilbert space and an associated global basis. An idea of coarse-
graining in such a setup would need to be equipped with the understanding of “What
are we coarse-graining?” and “What are we losing under such a transformation?”
since our regular ideas of spatial scales, lattices, and locality are not present in the
current scheme. This allows us to construct amore general prescription usingHilbert
space ideas, which does not assume any preferred decomposition into subsystems
or preferred observables, local or otherwise. These ideas are further discussed in
Sections (9.3) and (9.4).

We propose to perform principle component analysis (PCA) on the specifying states
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as a technique to reduce the dimensionality of our Hilbert space, thus resulting in
a coarse-grained description for the specifying states. The resulting PCA coarse-
graining prescription will be useful to coarse-grain the same set of specifying states
only (unless there is some relationship between a separate state and the specifying
states). The PCA transforms the input into a set of linearly uncorrelated principle
components, thus reducing any redundancy in describing the specifying states. As
is common in any PCA application, the first step is to remove the column-wise
mean of the matrix [�], which helps to isolate the sources of variance in the set
of specifying states. A mean-subtracted input allows the PCA components to have
variance in reconstruction over and above the mean in a systematic way, where
the :th component is more important in adding back variance as compared to the
(: + 1)st component. It is worth pointing out at this stage and as we will see, in our
use of the PCA, that the mean subtraction will be an important step in our physical
interpretation of the coarse-graining transformation.

Let us begin by subtracting the column-wise mean from the structure of our speci-
fying states {|k (`)〉} described by the augmented matrix [�]. Let �̄ (`) be the mean
of the (� × 1) column vector

[
� (`)

]
, which is also the `th column of [�],

�̄
(`)

=
1
�

�∑
9=1
2
(`)
9
. (9.6)

We also define an un-normalized, uniform superposition state whose representation
in the global {|8〉} basis is the (� × 1) column vector [$�] with all entries equal to
unity,

[$�]�×1 ≡



1

1

.

.

.

1


. (9.7)

While this uniform state [$�] is basis-dependent, we will argue in Section (9.3) that
the relative inner product structure between the specifying states will be invariant
under the coarse-graining for any choice of global basis. Each choice of basis lends
its own features which will be taken into account by the coarse-graining prescription,
while at the same time, keeping the relative structure of the states invariant and
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offering a uniform interpretation in terms of entanglement coarse-graining for any
associated tensor product structure to the chosen basis.

Based on this, one can define the mean augmented matrix
[
�̄
]
as the following

(� × ") matrix, [
�̄
]
=

[
�̄1$� ; �̄ (2)$� ; · · · ; �̄ (")$�

]
, (9.8)

and thus, the `th column of
[
�̄
]
is simply,

�̄ (`)$� =
1
�

�∑
9=1
2
(`)
9



1

1

.

.

.

1


. (9.9)

One can nowdefine the deviation of each of the specifying states from their respective
means as,

[Δ�]�×" = [�]�×" −
[
�̄
]
�×" , (9.10)

which will serve as a description of our states {|k (`)〉} based on the deviations of
the coefficients from the mean �̄ (`) of each of the specifying states.

Implementing the Principle Component Analysis
Starting with " specifying states {|k (`)〉} in the �-dimensional Hilbert space
H , we have decomposed them into a set of mean values organized into a matrix[
�̄
]
�×" and a set of deviations [Δ�]�×" . In what follows, we focus on the case

with � > " + 1 (the “+1” to become clear later), i.e. with fewer states than the
dimension of the space they live in. This is usually the relevant case, since state
vectors describing physical systems commonly live in very large Hilbert spaces and
the number of states one might wish to understand is much smaller. In the other
limit with more states than dimensions, one would generically need the full support
of the Hilbert space to describe them and a PCA based coarse-graining technique
may not be very useful. The matrix [Δ�] captures all the information there is in our
set of specifying states in the choice of basis, modulo the mean of each state which
just adds a uniform contribution along each of the basis directions. We can think of
[Δ�] as characterizing the deviation of the state from being a uniform superposition
(in the average sense), which as we will see, will be important in interpreting the
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technique as an entanglement coarse-graining under any associated tensor product
structureH =

⊗
9 H 9 .

We now perform a principle component analysis on the matrix [Δ�], which is
implemented via a singular value decomposition (SVD). While one can directly
perform a PCA on the coefficient matrix [�] and work out the technique on similar
lines as described below, we feel that delineating these different contributions makes
the process rather clear and better physically motivated. We decompose [Δ�] as,

[Δ�]�×" = [A]�×� [D]�×"
[
Ŵ

]
"×"

, (9.11)

where [A] and
[
Ŵ

]
are unitary matrices and [D] is a diagonal matrix with "

non-zero singular values {4: , : = 1, 2, · · · , "} of [Δ�] on the diagonal,

[D]�×" =



41 0 · · · 0

0 42 · · · 0

. . · · · .

. . · · · .

0 0 · · · 4"

0 0 · · · 0

. . · · · .

0 0 · · · 0



. (9.12)

These non-zero singular values are the square roots of the non-zero eigenvalues of
[Δ�]† [Δ�] and [Δ�] [Δ�]†. Following standard PCA procedure, we arrange the
singular values on the diagonal in [D] in descending order, which helps capture the
systematic addition of variance by the PCA,

41 ≥ 42 ≥ · · · ≥ 4" . (9.13)

It is most convenient to write the deviations from the mean as

[Δ�]�×" = ˆ[Φ]�×"
[
Ŵ

]
"×"

, (9.14)

where the � × " matrix

ˆ[Φ]�×" ≡ [A]�×� [D]�×" (9.15)

defines the PCA basis, and the " × " matrix
[
Ŵ

]
defines the (un-normalized)

PCA weights. The hat symbol ( .̂) here is used to stress that the variable is not
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normalized. The use of hat ( .̂) to denote operators, whenever used, will be clear
from context. Written explicitly,

[Δ�] =
[
q̂1; q̂1; · · · ; q̂"

]
�×"



F̂
(1)
1 F̂

(2)
1 · · · F̂

(")
1

F̂
(1)
2 F̂

(2)
2 · · · F̂

(")
2

. . · · · .

. . · · · .

F̂
(1)
�

F̂
(2)
�
· · · F̂

(")
�

"×"
. (9.16)

The columns
[
q̂ 9

]
�×1 ≡ 4 9

[
A 9

]
�×1 9 = 1, 2, · · · , " , are the components of the

" new PCA basis vectors in the original global {|8〉} basis, and F̂ (`)
9

is the 9-th
un-normalized PCA weight for the specifying state |k (`)〉.

Thus, the deviation from the mean of |k (`)〉 can be reconstructed as,[
Δ� (`)

]
�×1

=

"∑
9=1
F̂
(`)
9

[
q̂ 9

]
�×1 . (9.17)

The columns of [A]�×� , which we denote as [A8]�×1 , 8 = 1, 2 · · · , � form an
orthonormal basis for the global Hilbert space H , since [A] is unitary, while
just the first " states in [A]�×� selected by the " non-zero singular values
{4: , : = 1, 2, · · · , "} are needed to form a complete basis for our specifying states
|k (`)〉 we wish to coarse-grain. This step forms the information compression step:
we have chosen a smaller set of linearly independent vectors who span a vector
subspace that includes all of our specifying states |k (`)〉. However, the scaling of
each of these columns with the singular values 4 9 to get

[
q̂ 9

]
renders the basis

vectors un-normalized. Once this compression step is done, we can normalize
our PCA basis states by associating the singular values with the PCA weights, by
defining

F
(`)
9
= 4 9 F̂

(`)
9
, 9 = 1, 2, · · · , " and ∀ ` . (9.18)

This lets us define the normalized PCA basis vectors as simply the first " columns
of the unitary [A],[

q 9
]
�×1 =

[
A 9

]
�×1 , 9 = 1, 2, · · · , " and ∀ ` . (9.19)

Thus, we have mapped the � coefficients of each state
[
� (`)

]
to " coefficients of

the PCA expansion in the PCA basis [Φ] as obtained above, in addition to the mean
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coefficient of each state. To reconstruct the full state |k (`)〉, we add the mean �̄ (`)

multiplied by [$�] to obtain back
[
� (`)

]
,

|k (`)〉 ≡
[
� (`)

]
= �̄ (`) [$�]�×1 +

"∑
8=1

F
(`)
8
[q8]�×1 . (9.20)

In what follows, to avoid clutter in our equations, we drop the explicit use of the
square brackets [.], which we have been using to denote matrices so far.

The `th state |k (`)〉 is normalized, hence we obtain the matrix representation of the
normalization condition 〈k (`) |k (`)〉 = 1 to be the following,

|�̄ (`) |2$†
�
$� +

"∑
8=1

"∑
:=1

F
(`)
8

(
F
(`)
:

)∗
q
†
:
q8+

"∑
:=1

F
(`)
:
$
†
�
q: +

"∑
:=1

(
F
(`)
:

)∗
q
†
:
$� = 1 .

(9.21)
Before we further simplify the normalization condition, consider contracting the
state |k (`)〉 in Eq. (9.20) with [$�],

$
†
�
�` =

�∑
9=1
2
(`)
9

= �̄ (`)$†
�
$� +

"∑
:=1

F
(`)
:
$
†
�
q: . (9.22)

One can now use the fact that $†
�
$� = � and

∑�
9=1 2

(`)
9
= ��̄ (`) to get,

"∑
:=1

F
(`)
:
$
†
�
q: = 0 =

"∑
:=1

(
F
(`)
:

)∗
q
†
:
$� . (9.23)

In addition to this, due to the mean subtraction in each column in Eq. (9.10), each of
the PCA basis vectors

[
q 9

]
, 9 = 1, 2, · · · , " has a zero mean$†

�
q 9 = q

†
9
$� = 0.

Hence, not only is the summand ofEq. (9.23) zero, but each termvanishes separately.
The PCAbasis vectors

[
q 9

]
�×1 are the columns of a unitarymatrix, and are therefore

orthonormal, q†
:
q8 = X8: . We can therefore use Eq. (9.23) to get the normalization

condition for the `th state |k (`)〉 as,

|
√
��̄ (`) |2 +

"∑
:=1
|F (`)

:
|2 = 1 ∀ ` = 1, 2, · · · , " . (9.24)

Thus, we have mapped the � coefficients of each state |k (`)〉 in the global basis to
a mean value �̄ (`) and " coefficients in the PCA basis [Φ], thus needing " + 1
coefficients in this new basis to characterize the state.

At this stage, we have captured the full information of each specifying state |k (`)〉 in
the " + 1 coefficients and the constructed PCA basis. The dimensional reduction is
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not a result of integrating out small scale physics, rather it is simply a smart choice
of basis, which minimizes redundancy in the description of our specifying states
{|k (`)〉}. We also know that $†

�
q 9 = 0, making it orthogonal to all of the other

PCA basis vectors, and is hence a linearly independent vector whose contribution
is needed to reconstruct {|k (`)〉} from the " + 1 coefficients. This motivates us to
identify the “zeroth” component of the PCA basis q0 and the corresponding PCA
weight to be the mean contribution,

q0 ≡
1
√
�
$� , F

(`)
0 ≡

√
��̄ (`) . (9.25)

The PCA basis now has " + 1 basis and each contribution (mean and otherwise) is
treated homogeneously, and one can express the basis set as [Φ] = [q0; q1; · · · ; q"].
Thus we have (notice the sum runs from zero now),

|k (`)〉 ≡
[
� (`)

]
=

"∑
9=0
F
(`)
9

[
q 9

]
�×1 . (9.26)

Notice, we have added a factor of
√
� to keep q0 normalized like the other PCA

basis vectors. Normalization of the state |k (`)〉 is now simply written as, following
Eq. (9.24),

"∑
:=0
|F (`)

:
|2 = 1 ∀ ` = 1, 2, · · · , " . (9.27)

Mapping onto the PCA Subspace
The PCA procedure discussed above provides us with " +1 vectors (the PCA basis)
[Φ], which span and act as a basis in a vector subspace containing our " specifying
states. Let us denote this subspace as H̃("+1) with H̃("+1) ⊂ H . For each of
the PCA basis vector

[
q 9

]
, 9 = 0, 1, · · · , " , we can identify the corresponding

state vector |q 9 〉 ∈ H̃("+1) . This set of PCA vectors {|q 9 〉} forms a complete,
orthonormal basis set for H̃("+1) and our specifying states can be expanded in this
basis for H̃("+1) following Eq. (9.26),

|k (`)〉 =
"∑
9=0
F
(`)
9
|q 9 〉 . (9.28)

The j-th basis state |q 9 〉 ∈ H̃"+1 is embedded in the larger D-dimensional spaceH
and is connected to its representation in the global {|8〉} ∈ H basis via its matrix
representation

[
q 9

]
of Eq. (9.19).
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Once this subspace H̃("+1) has been defined and its basis identified, one can work
with the specifying states exclusively in this subspace by mapping the state |k (`)〉
from the larger spaceH to H̃("+1) by using an operator Π̂("+1) . To understand the
action of Π̂("+1) on the specifying states, we first connect the PCA weights F (`)

9

with the global expansion coefficients 2(`)
8

. For |k (`)〉, by contracting both sides
of

∑�
8=1 2

(`)
8
|8〉 = ∑"

9=0 F
(`)
9
|q 9 〉 by 〈q: | and using the orthonormality of the PCA

basis 〈q: |q 9 〉 = X: 9 , we find

F
(`)
9
=

�∑
8=1

2
(`)
8
〈q 9 |8〉 . (9.29)

Thus, mapping to the H̃("+1) space is achieved by,

Π̂("+1) =
"∑
9=0
|q 9 〉 〈q 9 | . (9.30)

This, of course, keeps the specifying states unaltered, while mapping them onto
the H̃("+1) subspace with their expansion in the PCA basis, thus compressing the
support needed to describe them. Also, any other vector |U〉 ∈ H̃("+1) ⊂ H can be
similarly mapped down from aD-dimensional to an"+1 dimensional space. While
arbitrary states inH not completely supported on H̃("+1) can be mapped to H̃("+1)
using Π̂("+1) , such a map will non-systematically, and perhaps non-desirably, alter
the structure of the state.

Our focus in this chapter is to coarse-grain the specifying states: the PCA map
Π̂("+1) acts as the dimension compression step which can now be coarse-grained as
described in Section (9.3).

9.3 Coarse-Graining via Decimation
Truncation of the PCA Expansion and Coarse-Graining
With this technology in hand, we can now explore how to systematically coarse-
grain our states {|k (`)〉} to further lower-dimensional Hilbert spaces. With the PCA
basis alone, we have already reduced the effective dimensionality of the underlying
vector space from � to " + 1 using the PCA map Π̂("+1) without any loss in the
description of the state, since the PCA simply chooses a smart basis which removes
redundancy in their description. We now discuss the decimation prescription, in
which we truncate the PCA expansion of Eq. (9.28) as a method of coarse-graining,
explicitly reducing the dimensionality of Hilbert space at the expense of throwing
away certain features of the state.
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Currently, a state |k (`)〉 is expanded in the PCA basis [Φ], as done in Eq. (9.26) in
the matrix representation describing its reconstruction in the global D-dimensional
space H . The " non-zero singular values 4: , : = 1, 2, · · · , " are arranged in
descending order in the diagonal matrix [D] in Eq. (9.11). The PCA endows
us with a systematic control of the contribution of different PCA components in
reconstruction of the state. Thus, the 9 = 1 component of the PCA, F (`)1 q1, carries
maximum variance in reconstructing the state

[
� (`)

]
over and above the zeroth

component ( 9 = 0) i.e. the state mean �̄ (`) . The next 9 = 2 orthonormal component
F
(`)
2 q2 has lesser variance than the 9 = 1 component, and so on. The :-th component

is more important than the (: + 1)-st component in adding back variance over and
above the mean to reconstruct the state.

Since the tailing PCA components contribute little to the reconstruction of the state
as compared to the preceding components, one could, depending on the required
accuracy of reconstruction, neglect some of these tailing terms in the series to
obtain an effective, coarse-grained description of the state. To better understand
relative importance of different PCA components in reconstructing the specifying
states, one can look at the fractional contribution/importance (Imp) of the :-th PCA
component,

Imp(q: ) =
4:∑"
9=1 4 9

, : = 1, 2, · · · , " . (9.31)

Thus, in addition to the mean term F
(`)
0 q0 ≡ �̄ (`)$� , one could choose the next

(3 − 1) PCA terms with 1 ≤ (3 − 1) ≤ " in the expansion as a coarse-grained
description of the state,

|k (`)〉�� (3) ≡
[
� (`)

]
�� (3)

=

3−1∑
:=0

F
(`)
:
[q: ] , (9.32)

where the contributions of the : = 3 to " components have been truncated and
neglected. In the above equation and in what follows, “�� (3)” indicates that the
state has been coarse-grained (CG) to a 3-dimensional reconstruction. The choice
of 3 can be made depending on the various fractional contributions (Eq. 9.31) of
the PCA basis and the required accuracy of the coarse-grained description. We have
thus effectively mapped the � coefficients of the state |k (`)〉 in the original (global)
basis to 3 ≤ (" + 1) < � components in the truncated/coarse-grained PCA basis.

Following the discussion in subsection (9.2), we now construct a 3-dimensional
vector subspace H̃(3) with H̃(3) ⊂ H̃("+1) ⊂ H , which covers the support of
the �� (3) coarse-grained specifying states. The first 3 PCA vectors

[
q 9

]
, 9 =
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0, 1, 2, · · · , 3 − 1 form an orthonormal basis for H̃(3) and can be identified with
their corresponding set of basis state vectors |q 9 〉 , 9 = 0, 1, 2, · · · , 3 −1. Before we
construct the coarse-graining map, it is important to notice that truncating the PCA
series renders the states un-normalized. Since we would like our coarse-grained
vectors to be good quantum states satisfying probability summing to unity, we
normalize the states by hand. A coarse-graining map Π̂(3) can be constructed which
projects and coarse-grains the state to H̃(3) and normalizes it as well,

Π̂(3) : H → H̃(3) (9.33)

|k (`)〉 ↦−→ |k (`)〉�� (3) =
∑3−1
9=0 F

(`)
9
|q 9 〉

| |∑3−1
:=0 F

(`)
:
|q: 〉| |

. (9.34)

As before, the basis states |q 9 〉 are embedded in the original space H via their
matrix representations (Eq. (9.19)). We see 2 ≤ 3 ≤ (" + 1), and 3 = 2 is the
most coarse-grained description of the specifying states as effective qubits, whereas
the other limit 3 = (" + 1) takes it back to the full non-coarse-grained, albeit
PCA-compressed description, as discussed in subsection 9.2. One can also define a
series of nested subspaces

H̃(2) ⊂ H̃(3) ⊂ · · · ⊂ H̃("+1) ⊂ H , (9.35)

and a corresponding sequence of maps Π̂(3) , 3 = 2, 3, · · · , " + 1, which progres-
sively coarse-grain from just the PCA compression (3 = " + 1) to a maximally
coarse-grained description as an effective qubit (3 = 2).

One can also consider a coarse-graining applicationwhere we admit non-normalized
coarse-grained states, possibly due to inaccuracies in experimental setups or numer-
ical precision. In that case, we can choose the coarse-grained dimension 3 such
that,

3−1∑
:=0
|F (`)

:
|2 = 1 − n, (9.36)

for some n small enough to not be detected experimentally or within numerical
errors.

The Coarse-Graining Isometry and Expectation Values
Let us recap what we have accomplished so far. We have coarse-grained each of
our specifying states from a �-dimensional description in H to a state living in
the 3-dimensional Hilbert space H̃(3)with 3 ≤ " + 1 < �, and identified the 3
expansion coefficients in the (truncated) PCA {|q8〉} , 8 = 0, 2, · · · , (3 − 1) basis
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in H̃(3) . Each of these basis states is connected to the fine-grained �-dimensional
embedding in H via its matrix representation, as found in Section (9.2). In this
section, we aim to package our results and formally define a transformation that
directly relates the 3 coarse-grained coefficients to the � fine-grained coefficients.

The PCA compression of |k (`)〉 lives in H̃("+1) and is described by"+1 coefficients
{F (`)

9
, 9 = 0, 1, · · · , "}. Let us denote this column by

[
, (`)

]
, which is connected

to the fine-grained description of the state |k (`)〉 via the PCA basis [Φ]�×("+1)
following inversion of Eq. (9.26) as,[

, (`)
]
("+1)×1

= [Φ]†("+1)×�
[
� (`)

]
. (9.37)

The PCA basis matrix, whose columns form an orthonormal basis in H̃("+1) ,
defines an isometric embedding, [Φ]† [Φ] = I("+1) , but in general [Φ] [Φ]† ≠ I�
as expected, where I? is the ?-dimensional identity. However, [Φ] [Φ]† acts as the
identity in the subspace where our specifying states reside. This is tantamount to
saying that the PCA projection Π̂("+1) leaves the specifying states invariant,

[Φ] [Φ]†
[
� (`)

]
=

[
� (`)

]
,∀` = 1, 2, · · · , " . (9.38)

Before describing truncation of the PCA series as an effective coarse-grained de-
scription of the state, it is instructive to understand how inner products of states are
related in the two descriptions. Combining Eqs. (9.37) and (9.38), it is easily seen
that the inner product 〈k (a) |k (`)〉 is preserved while transforming from the global
�-dimensional to the PCA (" + 1)-dimensional description,

〈k (a) |k (`)〉 =
[
� (a)

]† [
� (`)

]
=

[
, (a)

]† [
, (`)

]
. (9.39)

At this stage, one might worry about the basis-dependence of the PCA prescription
outlined in Section (9.2), since the uniform, un-normalized state [$�] is a basis-
dependent construction. Under different choices of global basis {|8〉} that lead to
different augmented matrices [�], one would end up with a different set of PCA
basis vectors and weights, with the zeroth vector always identified as the uniform
superposition state. However, this is not an issue since the relative inner product
structure of the specifying states is invariant under change of global basis by a
unitary transformation. This can be easily verified by using Eqs. (9.37) and (9.38)
for two different choices of global basis where the coefficients of the specifying
states are connected by some unitary transformation [Λ]. The PCA compression,
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while preserving overlaps between our set of specifying states in any arbitrary choice
of basis, then also preserves the pairwise distances between states,

| | |k` − ka〉 | |2 = 〈k` − ka |k` − ka〉 = 2 − 2 Re (〈k` |ka〉) , (9.40)

and under truncation of the PCA expansion of Eq. (9.32), we preserve these
overlaps and pairwise distances upto some error scale determined by the choice 3
of the coarse-grained subspace.

The next step of coarse-graining via truncating the PCA expansion to the first 3
coefficients of

[
, (`)

]
as a coarse-grained description of the state |k (`)〉 can be

achieved by a truncation matrix [T3] that is of order 3 × (" + 1) and is a diagonal
matrix with ones on the diagonal, [T3]01 = X01. Using this truncation matrix, the
3 coefficients of the un-normalized coarse-grained state |k (`)〉�� (3) , which we call[
,
(`)
�� (3)

]
, can be obtained as,[

,
(`)
�� (3)

]
3×1

= [T3]
[
, (`)

]
= [T3] [Φ]†

[
� (`)

]
≡ [�3]

[
� (`)

]
, (9.41)

where we have defined the net coarse-graining transformation as [�3] = [T3] [Φ]†,
which satisfies [�3] [�3]† = I3 . This transformation captures both the PCA basis
change and the truncation to retain the first 3 components. Normalization of the
coarse-grained state can be done by hand, as described in subsection (9.3).

Another aspect is the behavior of expectation values ofHermitian operators under our
coarse-graining transformation. Consider a Hermitian operator Ô ∈ L(H), which
in the global basis forH has a matrix representation [O]�×� , whose expectation in
the `th state is 〈

Ô
〉 (`)
��

=

〈
k (`) |Ô |k (`)

〉
≡

[
� (`)

]†
[O]

[
� (`)

]
, (9.42)

where the subscript �� is to emphasize that we compute this expectation in the
fine-grained, global description inH . One can construct the coarse-grained matrix
representation of Ô using our coarse-graining transformation [�] as follows,[

O�� (3)
]
3×3 = [�3] [O] [�3]† , (9.43)

whose expectation value is computed with respect to the coarse-grained state[
,
(`)
�� (3)

]
, 〈

Ô
〉 (`)
�� (3)

=

[
,
(`)
�� (3)

]† [
O�� (3)

] [
,
(`)
�� (3)

]
, (9.44)
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Ô

〉 (`)
�� (3)

=

[
� (`)

]† (
[�3]† [�3] [O] [�3]† [�3]

) [
� (`)

]
. (9.45)

Depending on how well/poorly we decide to coarse-grain by choosing 3, and the
details and correlations in the specifying states, the coarse-grain expectations will

differ from the fine-grained value, though the coarse-grained expectation
〈
Ô

〉 (`)
�� (3)

approaches the fine-grained value as 3 → " +1, and they are equal when 3 = " +1.

Decimation and Entanglement
Having developed a coarse-graining prescription based on a PCA transformation
and further truncation of the expansion, our next task is to better understand what
microscopic information is lost in the course of this transformation. Ours is an
unconventional coarse-graining prescription, since it is solely founded on the details
of the quantum state given in some global basis. Most coarse-graining schemes
assume more structure than this, be it a preferred split of the Hilbert space into
tensor factors, a notion of locality in space, or energy modes beyond a certain cutoff
that are to be integrated out. All we have is Hilbert space, a notion of a basis and
a set of quantum states. A brief comparison of our PCA prescription with other
conventional schemes will be done in Section (9.4).

The basic question we wish to answer in this section is, what are we really losing
when we perform the PCA and truncate the state description to retain the first 3
components? What information are we discarding with the remaining (" + 1 − 3)
components?

To understand this, let us refer to the tensor product structure associated with the
global fine-grained Hilbert space H =

⊗
9 H 9 . In most physical applications,

one has a notion of subsystems, and correspondingly the global Hilbert space
H can be factorized preferentially as a tensor product of Hilbert spaces of each
such subsystem. In what follows, we minimally assume some arbitrary tensor
factorization of H , not necessarily equipped with some preferred decomposition
governed by the Hamiltonian [28, 29, 114] that might have notions of emergent
space, locality, classical equations of motion, and the like. Our interpretation of
the technique as an entanglement coarse-graining just uses the existence of such
a tensor product structure, and not in being special in any particular way, though
since we are working on more general grounds, our method can be adapted to more
physically familiar cases.

For concreteness, let us associate a tensor product structure withH of � = 2= such
that it can be thought of as the Hilbert space of = qubitsH = (H2)⊗=, whereH2 is
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the Hilbert space of a qubit. The argument which follows does not hinge on such
a qubit factorization, but will work for any arbitrary factorization chosen. Let us
write down the reconstruction of the `-th specifying state by explicitly writing out
the mean term, the next (3 − 1) terms being retained, and the " + 1 − 3 truncated
terms, [

� (`)
]
= �̄ (`) [$�] +

3−1∑
:=1

F
(`)
:
[q: ] +

"+1∑
;=3

F
(`)
;
[q;] . (9.46)

The mean term �̄ (`) [$�] has by construction all the same entries. A state of
= qubits ∼ [$�] represents a completely separable (product) state of the qubits,
and thus has no entanglement between the constituent sub-factors. Thus, the mean
state or the q0 contribution sets a baseline state with the property of having no
entanglement amongst its components. One can think of a different tensor structure
toH in terms of qudits, but the mean �̄ (`) [$�] term still represents an unentangled
state of the constituent sub-factors.

The next (3 − 1) terms in the PCA expansion of Eq. (9.46), F (`)
:
[q: ] , : =

1, 2, · · · , (3−1) add most of the variance over and above the mean in reconstructing
the (resultant, un-normalized) state. Thus, this sum of (3 − 1) terms adds most of
the relevant entanglement structure of the state in the chosen tensor factorization
of H . Of course, one may choose a factorization of H under which the `-th
specifying state may be unentangled to begin with and this argument of adding
back relevant entanglement would not be particularly useful. But for a generic
decomposition, this understanding of entanglement coarse-graining would be a
good notion for what our prescription is coarse-graining. The higher-order terms
for F (`)

;
[q;] , ; = 3, 3 +1, · · · , (" +1) have a negligible (up to the coarse-graining

scale set by choice of 3) contribution in adding back variance to reconstruct the
state, and hence also add minimal entanglement to the structure of the state in the
chosen Hilbert space factorization.

As an example, we numerically constructed" = 250 specifying states of dimension
� = 210. Each coefficient of these states was chosen from a pseudo-random dis-
tribution and then normalized. Following this, we performed our PCA-decimation
procedure and reduced the dimensionality of each state to 3 under the map Π̂(3)
(hence our coarse-grained states are normalized). The coarse-graining dimension 3
was varied from 3 = 1, corresponding to retaining only the separable [$�] term, to
3 = " + 1, corresponding to no truncation, only PCA compression. Now one can
think of each state to be composed out of = = 10 qubits, and we can quantify the
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Figure 9.1: Plot of von Neumann entanglement entropy of a constituent qubit of
a state as a function of the number of PCA components retained in reconstructing
the state.

entanglement structure by looking at the von Neumann entanglement entropy for
these qubits in each of the specifying states. For instance, in the `-th specifying state
|k (`)〉, one can compute the entanglement entropy of the @-th qubit, @ = 1, 2, · · · , =
(number of qubits) as

(
(`)
@ = −Tr@

(
d̂
(`)
@ log d̂(`)@

)
, (9.47)

where
d̂
(`)
@ = Tr@̄

(
|k (`)〉 〈k (`) |

)
. (9.48)

Figure (1) plots the cumulative von Neumann entanglement entropy of a chosen,
constituent qubit in one of the constructed " = 250 states (again, chosen as a
representative) as a function of the number of PCA components 3 retained in recon-
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structing the state. The idea of the plot is the saturation of the added entanglement
entropy as one goes to more number of PCA components used to reconstruct the
state. It is seen that only a few components are required to capture most of the entan-
glement structure while the higher orders have smaller contribution. By retaining
the first 3 components in the expansion, we recover the state |k (`)〉 within error
bounds (determined by the choice of 3) in a way that we preserve the global or most
relevant entanglement structure of the constituent sub-factors and lose irrelevant
entanglement by truncating the higher > 3 components.

The amount of correlations between the specifying states will be an important fac-
tor in determining how quickly the entanglement curve (as in Fig. 1) saturates.
In general, for higher correlations amongst the specifying states, fewer PCA com-
ponents would be required for most of the reconstruction, and one will expect a
quick saturation in the entanglement build-up. In this sense, our PCA decimation
coarse-graining prescription is related to entanglement coarse-graining, and is in the
spirit of ignoring microscopic degrees of freedom and retaining large scale/global
features; in this case, throwing away small, irrelevant entanglement while holding
on the basic large scale structure of the state.

Coarse-Grained Time Evolution of a Quantum System
We have based our coarse-graining prescription on very little structure in Hilbert
space: equipped only with a global basis and a set of specifying states, our PCA
decimation procedure maps states from a �-dimensional Hilbert spaceH to 3 < �
dimensional space H̃(3) while retaining most of the global, relevant entanglement
structure in the state (in some associated factorization). It is natural to ask in what
setups can one adapt and put this coarse-graining prescription to use.

One possible application involves coarse-graining the discretized time evolution of
a given initial state |k(C = 0)〉 ≡ |k(0)〉 ∈ H of dimension � = dimH with a
global basis |8〉 , 8 = 1, 2, · · · , �. The dynamics of states in H are governed by
some known and specified Hamiltonian �̂. Consider unitarily evolving the initial
state at (" − 1) time steps governed by some specified/chosen time step ΔC, such
that the state at the 9-th time step C 9 = 9ΔC, 9 = 0, 1, · · · (" − 1), is given by (we
take units in which ℏ = 1),

|k(C 9 )〉 ≡ *̂ (C 9 ) |k(0)〉 = exp
(
−8�̂C 9

)
|k(0)〉 , 9 = 0, 1, 2, · · · , (" − 1) . (9.49)

We thus have a collection of " states living in a �-dimensional Hilbert spaceH . In
the case when the number of time evolved states satisfy � > (" +1), these " states
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can act as our set of specifying states to undergo the PCA decimation prescription
to be coarse-grained to a lower 3 (≤ (" + 1) < �) dimensional Hilbert space,

|k(C 9 )〉�� (3) = Π̂(3) |k(C 9 )〉 , 9 = 0, 1, 2, · · · , (" − 1) . (9.50)

If the Hamiltonian has desirable physical features such as locality, and if the time
step is not too large, one would expect a high amount of correlation amongst the
time evolved states. In this case, only a very few number of PCA basis components
would be required to reconstruct the state. One can also find a coarse-grained
representation of the Hamiltonian in the lower-dimensional H̃(3) space,[

��� (3)
]
3×3 = [�3] [�] [�3]† , (9.51)

where [�] is the matrix representation of �̂ in the global basis in H . Thus, using
our PCA decimation prescription, one can compute a coarse-grained version of the
time evolution of the state and use it as a proxy to study time-dependent features of
the quantum system under consideration.

9.4 Epilogue and Conclusion
Coarse-graining is a very important theme in understanding the behavior of real-
istic quantum systems which live in large Hilbert spaces of very large dimension.
Many quantum coarse coarse-graining schemes [208–215] integrate out or elimi-
nate irrelevant degrees of freedom to produce a coarse-grained description of the
system. Renormalization Group techniques [188–193] have been the cornerstone of
coarse-graining ideas, and have proven to be extremely powerful and useful tools in
physics. In particular, popular quantum coarse-graining schemes include Density
Matrix Renormalization Group (DMRG) [208, 216] and Entanglement Renormal-
ization [209] and their numerical implementations [217–225]. These, and many
other coarse-graining schemes, assume substantial structure on Hilbert space. For
instance, techniques like DMRG define an RG flow on the space of density matrices
and serve as an effective truncation of Hilbert space of strongly correlated quan-
tum many-body systems. Focusing on the low-energy properties of a system with
a known Hamiltonian, one assumes a notion of spatial locality and factorizability
into state spaces on the lattice, and numerical implementations further assume a
preferred split into a system and an environment over which the trace is carried out
to compute the properties at the level of the system. Similarly, in Entanglement
Renormalization and its numerical implementations like MERA [209], one has a
local lattice structure and aims to compute ground state properties for the system
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by defining a real space RG to dispose off small-distance degrees of freedom and
entanglement (by the use of disentangling isometries, followed by block-decimation
prescriptions). All coarse-graining schemes come equipped with an understand-
ing of what global properties of the system one aims to retain, such as optimizing
observable expectation values or correlation functions or entanglement between
sub-systems; and which features are discarded which usually correspond to small
scale entanglement, or high-energy modes, etc.

Techniques in quantum information theory to compress data and allow for dimen-
sional reduction also form an interesting set of ideas to coarse-grain quantum in-
formation. Such schemes depend on the context at hand: for example, focusing
on a typical subspace and ignoring its orthogonal complement, without much loss
of fidelity, such as in Schumacher’s noiseless quantum coding theorem, or com-
pressing quantum information in a collection of qubits using elementary quantum
circuit operations. Each technique has a specific aim and contextual validity, like
the Johnson-Lindenstrauss lemma allows us to preserve pairwise distances up to a
certain specified error tolerance and the dimension of the reduced subspace is then
determined by this specified error and the number of points in the data set, and not
on the dimensionality of the original space. Constructive implementations of the
Johnson-Lindenstrauss lemma can be done via random projection and heavily relies
on the Euclidean norm to measure pairwise distances, while on the other hand,
dimensional reduction using PCA relies on specification of the dimension of the
reduced subspace and projects onto a linear subspace. Thus, each technique has its
range of validity and can be used depending on the physical system at hand.

While such methods are very useful, it is interesting to ask how one might coarse-
grain a set of given quantum states in a Hilbert space which may or may not be
associated with a Hamiltonian or the usual assumed structure on the space. In an
effort in this direction, motivated by questions in quantum spacetime and emergent
classicality, we have developed a coarse-graining prescription which uses Principle
Component Analysis to first compress the dimensionality of Hilbert space by iden-
tifying a non-redundant basis (the PCA basis), followed by truncation of the last few
PCA terms which contribute very little in reconstruction of the state. Physically, one
can interpret this scheme as an entanglement coarse-graining (in some arbitrarily as-
sociated factorization to Hilbert space) where, upon discarding the low importance
terms, one only looses little and irrelevant entanglement structure of the state, while
retaining major features in the reconstruction. One expects similarities between our
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PCA decimation scheme and other conventional coarse-graining prescriptions in the
addition of appropriate structure. We feel this prescription is of a general nature,
developed on a Hilbert space with very little structure, and can serve as a reliable
means of first-principles quantum coarse-graining.
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C h a p t e r 10

QUANTUM STATE REDUCTION: GENERALIZED
BIPARTITIONS FROM ALGEBRAS OF OBSERVABLES

Reduced density matrices are a powerful tool in the analysis of entanglement struc-
ture, approximate or coarse-grained dynamics, decoherence, and the emergence
of classicality. It is straightforward to produce a reduced density matrix with the
partial-trace map by “tracing out” part of the quantum state, but in many natural
situations this reduction may not be achievable. We investigate the general problem
of identifying how the quantum state reduces given a restriction on the observables.
For example, in an experimental setting, the set of observables that can actually
be measured is usually modest (compared to the set of all possible observables)
and their resolution is limited. In such situations, the appropriate state-reduction
map can be defined via a generalized bipartition, which is associated with the
structure of irreducible representations of the algebra generated by the restricted
set of observables. One of our main technical results is a general, not inherently
numeric, algorithm for finding irreducible representations of matrix algebras. We
demonstrate the viability of this approach with two examples of limited–resolution
observables. The definition of quantum state reductions can also be extended be-
yond algebras of observables. To accomplish this task we introduce a more flexible
notion of bipartition, the partial bipartition, which describes coarse-grainings pre-
serving information about a limited set (not necessarily algebra) of observables.
We describe a variational method to choose the coarse-grainings most compatible
with a specified Hamiltonian, which exhibit emergent classicality in the reduced
state space. We apply this construction to the concrete example of the 1-D Ising
model. Our results have relevance for quantum information, bulk reconstruction in
holography, and quantum gravity.

This chapter is based on the following reference:

O. Kabernik, J. Pollack, and A. Singh, “Quantum state reduction: Generalized
bipartitions from algebras of observables,” Phys. Rev. A 101 no. 3, (2020) 032303,
arXiv:1909.12851 [quant-ph]

http://dx.doi.org/10.1103/PhysRevA.101.032303
http://arxiv.org/abs/1909.12851
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10.1 Introduction and Motivation
How do we describe the state of a system about which we have only limited infor-
mation? In the most general form, this is a question for probabilists: the best that
can be done in the Bayesian approach, for example, is to make our best guess in the
form of a distribution over the possible states of the system compatible with what
is already known and update this guess as we learn new information. In physical
applications, however, we typically encounter situations in which we can only make
certain types of measurements on a system. For example, we might only be able to
measure extensive, macroscopic quantities of a gas; or we might be able to probe
only classical observables of a quantum system.

In classical statistical mechanics, one usually proceeds by enumerating the possi-
ble “microstates” of the underlying microphysical system (for example, a gas of #
point particles in a finite volume with positions, momenta, and possible interac-
tions). Then we partition the microstates into “macrostates” by collecting together
the states with approximately the same values of some coarse-grained extensive
property which probes the average behavior of the particles (for example, tempera-
ture, or some hydrodynamic quantity like viscosity). In other words, we choose a
particular statistical ensemble, write the appropriate partition function, and use it as
the generating functional for macroscopic observables. When certain assumptions
are valid, it is then valid to track the values of the macroscopic quantities without
reference to the underlying microscopic physics. These assumptions have to do
with compatibility between the macroscopic observables and the microscopic dy-
namics of the theory. We want the values of the macroscopic variables to evolve
continuously in time, which requires that the time evolution of a macrostate to itself
be a macrostate to some approximation; that is, if two microstates are in the same
macrostate at one time, there should exist another set of macrostates for the system
at a later time such that the time-evolved microstates will usuallly be in the same
new macrostate. Of course, this picture can be generalized in various ways by
relaxing some of the assumptions, or by working with probability distributions over
microstates instead of partititions [226–228].

In quantum mechanics, the story is usually told differently. Given a Hilbert space
H , we can work with pure states |k〉 ∈ H or mixed states d ∈ L(H), which can be
thought of as classical statistical mixtures of the states {|k〉8} in the basis {|k〉8 〈k |8}
in which d is diagonal. When the Hilbert space has a tensor-product structure,
H � H� ⊗ H�̄, there is a natural state-reduction map, the partial-trace map Tr�̄,
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which maps mixed states in L(H) to mixed states in L(H�) via d ↦→ d� ≡ Tr�̄ d.
Then the reduced state d� preserves information about operators acting only onH�,
in the sense that the expectation value of $� ⊗ � �̄, with � �̄ the identity operator on
H�̄, acting on d is the same as the expectation value of $� acting on d�, for all
states d and linear operators $�.

So far this picture seems quite different from the classical one summarized above.
Certainly, if we have a 3#- or 6#-dimensional configuration space or phase space,
we can consider the reduced spaces generated by projection onto some lower-
dimensional subspace. We can then ask the question of what the reduced dynamics
in this subspace look like. In particular, we might find that the new dynamics is
dissipative, if the particles traced out act as a heat bath for the ones kept in the
description, or, in the opposite extreme, that the kept particles only act amongst
themselves and can be described without reference to the remainder. If we did not
actually know which coordinates in the phase space corresponded to the positions
or momenta of individual particles, we might hope to identify them by looking for
subspace projections with particularly simple reduced dynamics.

The quantum analog of this process is known as the decoherence program [27, 154,
173, 174, 229]. In this program, one is given, or looks for, decompositions of H
into a system and environment,H � H( ⊗H� . This induces a decomposition of the
Hamiltonian � = �( ⊗ �� +�i=C + �( ⊗ �� . For certain choices of the Hamiltonian
and sets of initial states—for example, interaction-dominated Hamiltonians and
initial product states—the action of the environment, to a good approximation, is
to take an initial state of the system to a superposition of system states, in some
basis, which evolve without interfering. When this happens, we say that the initial
state has branched, and the set of system states whose evolution is preserved by the
environment are the classical states of the system. (We will review the decoherence
program in more detail below.)

However, it is easy to see that most coarse-grainings cannot be described in the
decoherence picture. Most observables do not take the simple form of acting
on a single tensor factor, even when such a factorization of the Hilbert space
exists. In particular, the sorts of collective observables which correspond to the
averaged, macroscopic properties featured in statistical mechanics do not take this
form1. That is, we do not expect, even approximately, a factorization of the form

1There are more general contexts, such as virtual subsystems [156, 157], in which collective
observables can nevertheless be thought of as acting on a collective Hilbert space. We discuss the
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H � Hcollective ⊗ Hother for the sorts of collective observables we might measure in
a laboratory.

A similar situation arises in field theories, in which we often wish to construct some
notion of a state restricted to a finite spatial region. It is well known [12, 13] that
even in the simplest field theories, we cannot simply apply the naive partial-trace
map to construct the reduced state as discussed above. There is, nevertheless, a good
notion of algebras of observables restricted to a spatial region, which is provided
by modular theory (e.g. [230–232]), and in many cases, we can pass to a (finite-
dimensional) latticization, for example a tensor network, in which these issues do
not arise. When the theory has a gauge symmetry, however, the physical Hilbert
space is restricted to states which obey global constraints like a Gauss law, and we
cannot consistently restrict to subregions in a gauge-invariant way. The approach
of the edge modes program [233–235] is to embed the physical Hilbert space into
a larger, “ungauged” Hilbert space in which the constraints have been removed and
subregions are well-defined.

Given that many natural coarse-grainings of quantum systems cannot be captured
by the partial-trace map, it is natural to consider more general state-reduction maps.
It is only when such a map can be constructed from a physically-motivated coarse-
graining that we are furnished with a true reduced density matrix to which we can
apply the well-developed machinery of decoherence, von Neumann entropy, etc.
The main goal of this paper is to provide such an interpretation for a large class of
general quantum coarse-grainings.

We will provide an algorithm which takes a (finite) set of observables on a (finite-
dimensional) Hilbert space and outputs a decomposition of the Hilbert space into
irreducible representations of the algebra generated by the observables. Such a de-
composition will be called a generalized bipartition. The state-reductionmap is then
defined by tracing out tensor factors of subspaces that appear in this decomposition
which is not equivalent to a partial-trace of any single tensor factor of the original
Hilbert space. However, like the usual partial-trace map, such state reductions pre-
serve the expectation values of all observables in this algebra. Furthermore, unitary
dynamics on H will induce some (typically) non-unitary dynamics on the reduced
state so, as with the usual partial-trace reductions, we can perform a decoherence
analysis to determine what observables behave classically.

relation of our work to the previous literature in Subsection 10.1 below.
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There are many cases in which a coarse-graining is operationally well-described as
having access to all elements in a subalgebra of observables. In some cases, however,
it is more appropriate to consider only a restricted set of observables which need
not comprise an algebra. Classical experimenters, for example, though they might
be able to devise setups to measure the (coarse-grained) position and momentum
of some system in a lab, would have trouble implementing arbitary superpositions
of these operators. We are thus motivated to define partial bipartitions, which
implement more general state-reduction maps. Partial bipartitions are best-suited to
a variational approach, in which one scans over possible coarse-grainings with the
goal of determing which restricted set of observables is “most classical” [29, 172].

Summary of Results
Because of the very general nature of our subject, we have chosen tomake this chapter
as self-contained as possible, often at the expense of brevity. In this subsection, we
summarize the explicit results of the paper for the benefit of the busy reader.

• A generalized bipartition (10.17) is a direct-sum decomposition of a Hilbert
spaceH into a sum of bipartite blocksH@ � H�@ ⊗ H�@ :

H �
⊕
@

H@ �
⊕
@

H�@ ⊗ H�@ , (10.1)

where each sector H@ is spanned by a set of basis elements {|4@
8:
〉} and the

isometry between H@ and H�@ ⊗ H�@ maps the basis element |4@
8:
〉 to the

product state |0@
8
〉 |1@

:
〉, with {0@

8
} and {1@

:
} being the bases forH�@ andH�@ ,

respectively. The index structure of the |4@
8:
〉 can be conveniently represented

as a block-diagonal table, which we refer to as a bipartition table (10.16):

41
11 41

12 · · ·
41

21 41
22 · · ·

...
...

. . .

42
11 · · ·
...

. . .

. . .

(10.2)

The upper index of |4@
8:
〉 labels the block, and the lower indices label the po-

sition within the block.
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• Generalized bipartitions are interesting for (at least) two reasons. First, they
provide a natural way of talking about “the degrees of freedom in B” and “the
set of measurements which can be peformed on B.” In particular, consider the
bipartition operators (10.24):

(
@

:;
:= ��@ ⊗ |1

@

:
〉 〈1@

;
| =

∑
8

|4@
8:
〉 〈4@

8;
| . (10.3)

The linear combinations of the (@
:;

comprise the space of linear operators
that act on a Hilbert space (isomorphic to) H� :=

⊕
@H�@ . The bipartition

operators can therefore be used to define a state-reduction map CA (�) , distinct
from the standard partial-trace map CA�, fromH toH� (10.159):

d� = CA (�) (d) :=
∑
@

∑
:,;

CA

(
(
@

:;
d

) ��1@
;

〉 〈
1
@

:

�� = ∑
@

CA�@
(
d@

)
∈ L(H�),

(10.4)

where d@ is the projection of the state d onto the sector H@. (There is an
analogous state-reduction map onto H� produced from the dual generalized
bipartition, which represents the isometryH �

⊕
@H�@⊗H�@ ; its bipartition

table is constructed by taking the transpose of each block in the original table.)

• Second, generalized bipartitions are interesting because they appear in the
foundational result of the representation theory of operator algebras, theWed-
derburn decomposition theorem (Theorem 10.2.2). In our language, subject
to technical details which we discuss in the main presentation of the theorem
below, the decomposition theorem says that any subalgebra A of L(H) in-
duces a generalized bipartition of H , such that the subalgebra is identical to
the set of operators which are linear combinations of the bipartition opera-
tors (@

:;
which act on H� alone. The generalized bipartition thus provides a

decomposition of H into irreducible representations of A. That is, any sub-
algebra furnishes a generalized bipartition, and any identification of degrees
of freedom given by a bipartition table defines a subalgebra. We emphasize
that the decomposition theorem is not constructive: it says only that given a
subalgebra, such a decomposition must exist.

• The main technical accomplishment of the paper is to provide an explicit
construction of the generalized bipartition (that is, the irrep decomposition)
of the (finitely generated) algebra A. This is accomplished by Algorithm
1, whose correctness is established in Theorem 10.4.10 via a number of
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intermediate lemmas. We refer the reader to Section 10.4 for details. The
main idea of the algorithm is based on the fact that projections whose rank
cannot be reduced within the algebra are the fundamental building blocks of
the algebra. Such minimal projections can be distilled from the initial spectral
projections of the generators by breaking them into projections of smaller
rank with an operation we call scattering:

Π1

Π2

D Ef
E D

Π
(_1)
1 + Π (_2)

1 + ... + Π (0)1

Π
(_1)
2 + Π (_2)

2 + ... + Π (0)2 .

(10.5)

The result on the right-hand side of this operation is given by the spectral
decomposition of the operator Π1Π2Π1. Once all projections have been
scattered into minimal projections, we consider a graph, which we call a
reflection network, that consists of the minimal projections as vertices with
edges defined by their orthogonality relations. Under certain conditions, such
a reflection network naturally corresponds to a bipartition table. We leverage
this correspondence to identify the irrep decomposition with this bipartition
table.

• The main application of the algorithm that we will focus on is the idea that op-
erational constraints lead to state reductions. The prototypical example of that
is the system-environment split in the context of the decoherence program.
There, the operational constraints are defined by the observer’s inability to
control or measure the environment which leads to the state-reduction map
implemented by tracing out the environment. In Section 10.3, we formal-
ize the idea that any operational constraints given by some restricted set of
observables, lead to a state-reduction map; this is what we call operational ap-
proach to decoherence. The correspondence between operational constraints
and state reductions is obtained by constructing the generalized bipartition
associated with the algebra of restricted observables.

• In the context of the operational approach, we will study two, relatively
straightforward, examples of state reductions. One of the examples is con-
cerned with the operational constraints of an observer unable to distinguish
spin and orbital angular momentum components; this leads to superselec-
tion of the total angular momentum sectors. This example is interesting not
because of the conclusion – it can be deduced from the standard formalism
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of angular momentum addition – but because we can reach this conclusion
independently by analytically applying our algorithm. Remarkably, even the
correct Clebsch-Gordan coefficients come out as byproducts of this construc-
tion. The second example finds the state reduction map corresponding to
an observer’s inability to resolve a bound pair of particles on a lattice. This
example also results in superselection, but in this case, the two sectors are the
symmetric and the anti-symmetric configurations of the pair.

• The machinery of bipartition tables can be applied more generally than matrix
algebras or generalized bipartitions. In particular, the state-reduction map
CA (�) still produces a valid reduced state in H� if some of the entries in the
bipartition table are removed. The resulting bipartition table, which defines
a partial bipartition (10.164), is still block-diagonal, but not all of the blocks
are rectangular:

41;1,1 41;1,2 ...

41;2,1
. . .

...

42;1,1 42;1,2 ...

42;2,1
. . .

...

. . .

(10.6)

The bipartition operators still correspond to the spanning set of all linear
operators in this reduced space, but, in general, they no longer span an algebra.
In particular, the last equality in (10.4) does not hold for a non-rectangular
block. Hence the state-reduction map is not related to the usual partial-trace,
since H�@ need not be a tensor factor of H@; we instead say that H�@ is a
partial subsystem ofH@ and write

H@ � H�@ � H�@ . (10.7)
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The same relation holds2 between the collection of all the degrees of freedom
in � and the full Hilbert space: H � H� � H�.

• Using the machinery of partial bipartitions, we can capture very general
coarse-grainings of Hilbert space, since in most cases, the coarse-grained
space which will preserve some relevant information will not correspond to
a factor of Hilbert space. For example, it may be specified by a restricted
set of observables which do not necessarily form an algebra. A particular
interesting case which we consider in detail in this chapter is to look for
coarse-graining of a collection of # underlying degrees of freedom (such
as # particles) based on a collective or average feature of these degrees
of freedom while tracing out the internal features. We focus on obtaining
such a partial bipartition, H � Scollective � Sinternal, where Scollective is the
partial subsystem representing the coarse-graining which exhibits classical
behavior under evolution by the Hamiltonian. This is a variational approach
where we iterate over all possible bipartitions which define the split—that is,
rearrangements of the elements inside the blocks of the bipartition table—
and preferentially choose the one(s) which is (are) most compatible with
the Hamiltonian and demonstrates quasi-classical features. Classicality is
marked by the existence of macroscopic pointer states compatible with the
Hamiltonian, superposition of which exhibit fast dynamical decoherence.

• To define the coarse-grainingScollective, we search for the collective observable
"2, of the form

"2 =

#∑̀
=1
"` , (10.9)

where each "` acts only on the `-th particle, most compatible or stationary
with respect to the Hamiltonian, by minimizing the norm of [�, "2] as in Eq.
(10.178). Similar to the notion of predictability sieve[170] in the decoherence

2Formally, we can embedH into the larger Hilbert space

H� ⊗ H� :=

(⊕
@

H�@

)
⊗

(⊕
@

H�@

)
=

⊕
@,@′
H�@

⊗ H�@′ , (10.8)

so thatH comprises the diagonal entries @ = @′, and then the partial-trace map CA� on this bipar-
tite Hilbert space does indeed map those states inH� ⊗ H� supported onH to states onH�.
Hence, we can obtain the reduced density matrix d� by tracing out degrees of freedom, at the
cost of working with a larger, auxilliary Hilbert space. As we will discuss below, this procedure
is closely related to passing from the physical to the “ungauged” Hilbert space when computing the
entropy of subregions of states in theories with gauge symmetries.
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literature, eigenstates of "2 will define robust, pointer states of the system
since they are most compatible with the Hamiltonian. Given the underlying
# degrees of freedom, the eigenstates of "2 furnish a factorizable basis for
Hilbert space, and eigenstates with distinct eigenvalues will label macroscop-
ically distinct pointer states. These can be used to label and construct different
columns of the bipartition table which specify the coarse-graining. Pointer
states identified in this manner are special low-entropy states which stay ro-
bust to entanglement production under evolution. This is a telltale sign of a
classical variable which does not arbitrarily entangle with all other degrees
of freedom on short timescales. In this sense, eigenstates of the collective
observable chosen by the compatibility condition of Eq. (10.178) are classi-
cal, macroscopic pointer states which capture an average, collective property
of the underlying degrees of freedom which is as robust under evolution as
possible.

• Based on the transition structure of the Hamiltonian written in the factorized
"2 basis, we can split our Hilbert space into superselection sectors which
never interact and hence form disjoint blocks of our bipartition table. To fix
the remaining freedom within each block of the bipartition table, we need to
fix the alignment of the rows for which we return to the question of quasi-
classicality. A defining feature of our coarse-graining should be that dynamics
in the reduced space constructed from the state-reduction map defined by the
bipartition table will reflect features of classicality. After identifying the col-
umn structure of the bipartition table based on compatibility of a collective
observable "2 with the Hamiltonian, we focus on effective dynamical deco-
herence by the Hamiltonian. Hence, we expect the row alignment of the bipar-
tition table to be such that Hamiltonian evolution decoheres superpositions of
macroscopic pointer states by “interaction” with Sinternal. We quantify the en-
tanglement production of a pure state d(C) = |k(C)〉 〈k(C) | ∈ L(H) evolving
under evolution by the Hamiltonian using linear entanglement entropy,

(lin(C) = 1 − Tr(d2
2 (C)) , (10.10)

where
d2 (C) ≡ Tr(Sinternal) d(C) , (10.11)

is the reduced state which d(C) gets mapped to by the state-reduction map
Tr(Sinternal) . We iterate over all finite, discrete permutations of row alignments



193

to select (the class of) bipartition table(s) which maximize entanglement
production. This is done for a set of candidate classical states which are
taken to be natural extensions of the unentangled, initial ready states in the
decoherence literature.

• Using this algorithm to obtain the classical coarse-graining of an underlying #
degrees of freedom based on a collective feature compatible with the Hamil-
tonian, we analyze the Ising model in 1-D. We see the emergence of different
coarse-grainings depending on whether the nearest neighbor spin interaction
or the external magnetic field dominates the Hamiltonian, a phenomenon akin
to a phase transition. Depending on the preferentially selected collective com-
patible observable, either the total spin-z or total spin-x of the Ising chain, the
coarse-graining may or may not exhibit superselection sectors. In both cases,
the dimension of the coarse-grained space is∼ O(#) compared to the original
Hilbert space, which has dimension ∼ O(2# ). The classical coarse-grainings
picked out exhibit fast dynamical decoherence between eigenstates of the
compatible macroscopic variable and lead to emergent quasi-classicality. We
exhibit numerical results for the case of # = 3 and # = 4 spins, where the
results are simple. Often a class of such quasi-classical bipartition tables
(and hence, coarse-grainings) will get selected which reflects a symmetry
between different underlying degrees of freedom from the point of view of
the Hamiltonian. This setup can be generalized to other physical systems to
study classical coarse-grainings determined by the Hamiltonian itself.

Previous Work
Because of the general nature of our subject, there is a vast body of interesting
related work. Here we will only briefly mention some of the previous work directly
related to the core problem of state reduction based on observables.

The idea that tensor product structures and virtual subsystems can be identified with
algebras of observables was originally introduced by Zanardi et al, in [156, 157].
Subsequently, this operator algebraic description has found applications in diverse
settings such as quantum error correction [236, 237], the study of entanglement in
systems of identical particles [238, 239], and Hamiltonian induced factorization of
Hilbert spaces [22, 29]). The picture of bipartition tables that we introduce here is
a complementary perspective on virtual subsystems, tensor products and operator
algebras that clarifies their common structure and its transformations.
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A generalization of the notion of subsystem has been explored in [240, 241] where
entanglement has been identified with respect to a set of preferred observables rather
than a tensor product structure. Our idea of partial bipartition is also a generalization
of the notion of subsystem that arises naturally from the picture of bipartition tables
and it also induces a preferred set of observables. However, it is not currently
clear whether there is a direct correspondence that goes both ways between sets of
observables and partial bipartitions.

As discussed above, one of our major results is an algorithm for directly computing
the irrep decomposition of a Hilbert space with respect to a subalgebraA. Our goal
is to propose a procedure that is not inherently numeric that could be used, at least
in principle, in abstract symbolic derivations of tensor product structures induced
by algebras of observables. We mention two approaches to the same problem that
are known in the literature, but they do not fully satisfy our original goal.

First, a numerical algorithm for the matrix-algebra problem was previously given
by Murota et al, [242] in the context of semidefinite programming (see [243] for its
adaptation in the physics literature). A key step in their algorithm involves sampling
for a random matrix in the algebra, which is inherently numeric and requires the
ability to span the operator space of the algebra. Our approach does not require
sampling from the algebra and it has no prerequisite of being able to span the
algebra. Second, in a more physical context, Holbrook et al, [244] have proposed
an algorithm for computing the noise commutant of an error algebra associated with
a noisy channel. Similarly to our approach, they also propose an inherently non-
numeric algorithm that relies on minimal projections as the fundamental building
blocks of the algebra. However, their algorithm also requires the ability to span
the operator space of the algebra, a prerequisite that is not easy to satisfy without
numerics.

Beyond the specific algorithm, we are concerned with the general phenomenon
wherein we can assign definite classical dynamics to a set of observables, along
the lines of the decoherence program but without a bipartite Hilbert space. In
a series of papers (e.g. [159–162]; see also [163]), Castagnino, Lombardi, and
collaborators have developed the self-induced decoherence (SID) program, which
conceptualizes decoherence as a dynamical process which identifies the classical
variables by inspection of the Hamiltonian, without the need to explicitly identify
a set of environment degrees of freedom. The variational approach we sketch in
Section 10.7 is similarly concerned with the dynamical selection of a preferred set
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of observables.

Finally, similar physical motivations but different mathematical methods have led
Kofler and Brukner [164] to study the emergence of classicality under restriction to
coarse-grained measurements, and Duarte et al, [245] to study state-reduction for
blurred and saturated detectors. We believe that, in principle, the consequence of
such reduced resolution measurements can be studied in a unified way as algebras
of coarse-grained observables.

Organization of the Chapter
Because this chapter is aimed at a broad audience, and mostly uses the tools of
fundamental quantummechanics alongwith linear algebra and representation theory,
we have attempted to keep it self-contained and pedagogical to the extent possible.
In Section 10.2, we accordingly review the technical and conceptual tools we will
use in the remainder of the paper. In particular, we review the concept of generalized
bipartitions and bipartition tables introduced by one of us in [246], as well as results
from the mathematical literature on representations of matrix algebras.

The remainder of the chapter is concerned with the application of these tools to
physical situations. We will mostly be concerned with an operational approach, in
which we assume a lab-like setup in which a set of accessible observables has been
specified, and investigate the decoherences of the resulting states. In Section 10.3, we
set up this general operational problem and its relation to the decoherence program,
which we review. In Section 10.4, we then present the general algorithm for passing
from an operator algebra to a bipartition. Given this mechanism for producing a
reduced state containing the desired coarse-grained information, we can use the
tools of the decoherence program to investigate the dynamics and classicality of the
reduced states. Having specified the general algorithm, we specialize in Section 10.5
to physically relevant examples. In particular, we focus on the common case where
the experimentalist only has access to coarse-grained, collective observables, where
the generalized bipartition table takes a particularly simple form and superselection
sectors are induced by the operator algebra.

In Section 10.6, we return to the general problem of coarse-graining from observ-
ables and discuss the state-reduction maps which arise when the set of observables
need not form an algebra. In Section 10.7 we use the tools of the previous section
and ideas from the decoherence program to initiate a more abstract, variational
approach in which the goal is to determine the “most classical” set of observables
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given only a Hilbert space with a specified Hamiltonian. To build intuition for the
general case, we focus in Section 10.8 on the Ising Model, where numerical calcula-
tions are tractable. In Section 10.9, we conclude by sketching some of the potential
applications of our work for quantum information, holography, and quantum gravity.

10.2 Preliminaries
Setup and Notation
Unless stated otherwise, all Hilbert spaces will be complex and finite-dimensional
and the notions of linear operator and matrix will be used interchangeably. We will
denote with L (H) the space of linear operators on the Hilbert spaceH . Isometric
Hilbert spaces will be identified by the relation H1 � H2 associated with some
isometry+ between the spaces (most of the time, isometric Hilbert spaces will arise
when we relabel or reinterpret the basis elements).

An orthogonal projection Π ∈ L (H) is defined by the property Π = Π† = Π2.
In the following, we will refer to such an operator simply as a projection, implying
an orthogonal projection as defined here. This should not be confused with the
notion of pairwise orthogonal projections which refers to a set of projections {Π: }
such that Π:Π: ′ = X:: ′Π: (we will sometimes omit pairwisewhen referring to such
sets). The eigenspace of a projection Π is the subspace of H on which Π acts as
the identity. Similarly, an eigenbasis of Π refers to a set of orthonormal vectors
that span the eigenspace of Π. The rank of a projection is also the dimension of its
eigenspace; we will often use this relation implicitly.

A partial isometry ( ∈ L (H) is defined by the properties ((† = Πfin and (†( = Πin

where Πin and Πfin are projections. A partial isometry ( acts as an isometry on the
eigenspace of Πin, mapping it to the eigenspace of Πfin (both projections have the
same rank), and it annihilates vectors that are orthogonal to the eigenspace of Πin

(the kernel of ( is the kernel of Πin). Every projection Π is also a partial isometry
(Πin = Πfin = Π), so we will say that ( is a proper partial isometry if it is a partial
isometry, but it is not a projection.

A graph � := {+, �} is defined by a set of vertices + := {E8} and a set of edges
� :=

{(
E8, E 9

)}
. A path ? on the graph is an ordered set of vertices ? =

(
E81 , E82 , ...

)
such that every consecutive pair is connected by an edge

(
E8: , E8:+1

)
∈ � . The path ?

is called simple if every vertex appears at most once in ?. We will say that a pair of
vertices E1, E2 ∈ + is connected by a path if there is a path ? such that E1 is its first
vertex and E2 is its last. A connected component is a subset of vertices � ⊆ + such
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that every pair E1, E2 ∈ � is connected by a path, and every pair E1 ∈ �, E2 ∈ +\�
is not connected by a path.

Generalized Bipartitions and Bipartition Tables
A bipartite system is a system that consists of two distinct subsystems � and �. A
bipartition of a system is an explicit specification of these subsystems. When the
system is bipartite by construction—the system of two qubits, for example—it comes
with a natural bipartite structure H � H� ⊗ H�. The Hilbert space of the whole
system is constructed from the tensor product of two Hilbert spaces and the bases are
naturally constructed from products of local bases. Such a construction, however,
is not necessary and we can always impose a bipartition after the fact by selecting
a bipartite tensor product structure in any (non-prime dimensional) Hilbert space.
Different bipartitions of the Hilbert space identify different subsystems that are not
necessarily physical in the usual sense, but are associated with distinct degrees of
freedom that define a virtual subsystem [156].

Formally, given a 3-dimensional Hilbert space H such that 3 = 3�3�, we can
introduce an auxiliary bipartite Hilbert spaceH� ⊗ H� with dimensions dimH� =

3� and dimH� = 3�. By isometrically mapping the original Hilbert space H into
H� ⊗ H�, we impose a tensor product structure that might not have been explictly
present beforehand. Different choices of the isometry + : H −→ H� ⊗ H�

specify different choices of bipartition, and the isometry + itself is fully described
by some orthonormal basis |48:〉 in H where 8 = 1...3� and : = 1...3� such
that + |48:〉 = |08〉 |1:〉, where the elements |48:〉 and |08〉 |1:〉 are pairs of right
and left singular vectors of + . The choice of bipartition is therefore conveniently
summarized by choosing the elements |48:〉 and arranging them into a rectangular
table such that the 8, : indices correspond to the row and column of the element,
respectively:

11 12 · · · 13�

01 411 412 · · · 413�

02 421 422 · · · 423�
...

...
...

. . .
...

030 43�1 43�2 · · · 43�3�

(10.12)

The rows of this table are associated with the degree of freedom of subsystem �
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and the columns are associated with the degree of freedom of subsystem �. We will
refer to such tables, which one of us first introduced in [246], as bipartition tables
(BPTs). It should be clear that for each bipartition table there is another, trivially
related one derived by swapping the row and column indices, which simply swaps
the first and second systems in the bipartition.

As a simple example, consider a system of two qubits and the product basis
{|00〉,|01〉,|10〉,|11〉}. The BPT

0� 1�
0� 00 01
1� 10 11

(10.13)

represents the natural tensor product structure given by construction, with each of
the elements placed at the row and column that corresponds to the values of the
qubits. The subsystems � and � in this case are the qubits themselves.

A minor rearrangement of the two qubit BPT

even� odd�
0� 00 01
1� 11 10

(10.14)

results in a new tensor product structure where we relabeled the columns to better
match their new meaning. Here, the value of the left qubit still varies with rows, but
what now varies with columns is the overall parity of the two qubits, so subsystem
� is still interpreted as the left qubit, but subsystem � is now associated with the
parity degree of freedom. The isometry defined by this BPT is

+ = |0�〉 |even�〉 〈00| + |0�〉 |odd�〉 〈01| + |1�〉 |odd�〉 〈10| + |1�〉 |even�〉 〈11| ,
(10.15)

so with respect to this bipartition, the entangled Bell state |00〉 + |11〉 maps to
|0�〉 |even�〉 + |1�〉 |even�〉, which is not entangled. From now on, we will not
explicitly label the rows and columns on BPTs, but we will implicitly use the fact
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that the rows and columns represent the individual degrees of freedom of the two
subsystems in the bipartition.

The visual representation of BPTs can also be extended to capture direct-sum de-
compositions of Hilbert spaces. By arranging basis elements into a block-diagonal
table,

41
11 41

12 · · ·
41

21 41
22 · · ·

...
...

. . .

42
11 · · ·
...

. . .

. . .

(10.16)

we can specify Hilbert-space decompositions of the form

H �
⊕
@

H�@ ⊗ H�@ , (10.17)

where the sector @ is spanned by the basis elements |4@
8:
〉 of the block @ and each

sector is further decomposed into a tensor product of two subsystems according
to the arrangement of elements inside the block. We will refer to decompositions
of the form (10.17) as generalized bipartitions, and by BPT we will imply the
generalized form (10.16). In Sections 10.6-10.8, we will further generalize this idea
to non-rectangular BPTs that capture the notion of partial bipartitions, associated
with decompositions that cannot be expressed as in Eq. (10.17).

As an example, consider the 3 spin-1
2 system decomposed into total spin sectors:

H =
1
2
⊗ 1

2
⊗ 1

2
�

3
2
⊕ 1

2
⊕ 1

2
. (10.18)

The bases that correspond to each total spin sector are | 32 , <〉, |
1
2 , <, 1〉, |

1
2 , <, 2〉,

where < varies from 3
2 to −3

2 in integer steps and 1, 2 label the two distinct sectors
of total spin 1

2 . The BPT
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3
2 ,

3
2

3
2 ,

1
2

3
2 ,−

1
2

3
2 ,−

3
2

1
2 ,

1
2 , 1

1
2 ,−

1
2 , 1

1
2 ,

1
2 , 2

1
2 ,−

1
2 , 2

(10.19)

represents the direct-sum decomposition of the Hilbert space into total spin sectors.
By stacking the two rows of total spin 1

2 into a single block,

3
2 ,

3
2

3
2 ,

1
2

3
2 ,−

1
2

3
2 ,−

3
2

1
2 ,

1
2 , 1

1
2 ,−

1
2 , 1

1
2 ,

1
2 , 2

1
2 ,−

1
2 , 2

(10.20)

we specify a different, more subtle decomposition of the Hilbert space. We now
have two sectors, one associated with total spin 3

2 and the other with total spin 1
2

where the 1
2 sector is further decomposed into a tensor product

H � 3
2
⊕

(
N1

2
⊗ 1

2

)
. (10.21)

The virtual subsystem N1
2
is usually referred to as the multiplicity subsystem while

1
2 still represents the total spin-1

2 magnetization degree of freedom. The multiplicity
subsystem N1

2
is also well known as the prototypical example of a noiseless sub-

system [247], which encodes information in the relational degrees of freedom that
are invariant under collective rotations. In general, such bipartitions naturally arise
from the structure of irreducible representations of symmetry groups, as we will see
below.

Matrix Algebras and Their Representation
We will now summarize the relevant results of the representation theory of finite-
dimensional operator algebras and relate them to the BPT picture of the previous
subsection. Our expositionwill emphasize the structural details of the representation
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theory at the expense of mathematical rigor. The mathematically inclined reader is
referred to [248] or [249].

Let us first define what we mean by a matrix algebra.3

Definition 10.2.1. A matrix algebra is a subset A ⊆ L (H) such that for any
"1, "2 ∈ A and 2 ∈ C:

(1) "1 + "2 ∈ A

(2) "1"2 ∈ A

(3) 2"1 ∈ A

(4) "†1 ∈ A

For example, the set L (H) is a full matrix algebra on H . From here on, we will
use the term algebra to mean matrix algebra as defined above.

Any finite (or infinite) set of matrices M := {"1, "2, ..."=} can generate the
algebra A := 〈"1, "2, ..."=〉 (which the angled brackets denote) by taking the
closure ofM with respect to operations in the above definition. It should be clear
then that the algebra 〈"1, "2, ..."=〉 is spanned by linear combinations of products
of elements {"1, "2, ..."=} ∪

{
"
†
1 , "

†
2 , ..."

†
=

}
.

The central result of representation theory of matrix algebras is known as Wedder-
burn decomposition [250], and it can be stated in the following way:

Theorem 10.2.2. (Wedderburn Decomposition) For every algebraA ⊆ L (H), the
Hilbert spaceH decomposes into

H �
[⊕

@

H�@ ⊗ H�@

]
⊕ H0 (10.22)

such that every element " ∈ A is of the form

" =

[⊕
@

��@ ⊗ "�@

]
⊕ 0, (10.23)

where ��@ is the identity onH�@ and "�@ is any matrix onH�@ , and all matrices of
this form are elements of A.

3In the literature, matrix algebras are often referred to as von Neumann algebras or �∗-
algebras, even when only finite-dimensional spaces are involved. We prefer the term “matrix al-
gebra” to emphasize the fact that we are dealing with a simpler, finite-dimensional case where we
need not be concerned with the subtleties of infinite-dimensional spaces.
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(For a contemporary exposition of the proof see Section 2.7 in [248] or Appendix A
of [34].)

In the language of representation theory, Eq. (10.22) is the decomposition of H
into irreducible representations (irreps) of the algebra A. The tensor factors H�@

in the bipartition are associated with distinct irreps of A while the tensor factors
H�@ are associated with the multiplicity of distinct irreps. It is important to note the
significance of the fact that not only all " ∈ A are of the form (10.23), but that any
matrix of this form is necessarily an element of A. Therefore, the decomposition
(10.22) is the defining structure of an algebra that selects the elements of the algebra
to be all the matrices that act nontrivially only on the tensor factors H�@ in the
decomposition. The null space H0 is the space where the algebra is not supported
and its elements act onH0 as the null matrix. From now on, we will ignore the null
space in the decomposition and assume the Hilbert spaceH to excludeH0. 4

As was discussed in Sec. 10.2, decompositions such as (10.22) are generalized
bipartitions that correspond to a BPT of the form (10.16). This correspondence
and the result of Theorem 10.2.2 suggest that the defining structure of an algebra
is explicitly captured by a BPT. We can therefore explicitly specify algebras with
BPTs and vice versa via this correspondence.

In order to see what the BPT tells us about the structure of an algebra, we consider
the basis {|4@

8:
〉} that corresponds to the decomposition (10.22) in the sense that,

for every sector @, there are product bases {|0@
8
〉 |1@

:
〉} of H�@ ⊗ H�@ such that

|4@
8:
〉 = |0@

8
〉 |1@

:
〉 (note that this definition is not unique and any choice of local basis

|0@
8
〉 and |1@

:
〉 can work). According to Eq. (10.23), all matrices in the algebra can

be constructed from linear combinations of the operators

(
@

:;
:= ��@ ⊗ |1

@

:
〉 〈1@

;
| =

∑
8

|4@
8:
〉 〈4@

8;
| . (10.24)

These operators, which we will call bipartition operators (BPOs), are partial isome-
tries, and they form an (unnormalized) operator basis for the algebra.

Now consider the BPT constructed with the basis |4@
8:
〉:

4In the cases that we will consider,H0 does not appear in the decomposition. Even whenH0
does appear, it simply means that that part of the Hilbert space is irrelevant for operators of the
algebra.
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41
11 41

12 · · ·
41

21 41
22 · · ·

...
...

. . .

42
11 · · ·
...

. . .

. . .

(10.25)

and the subspaces selected by the basis elements of the distinct rows and columns.
The BPO (

@

:;
acts by mapping the basis element in column ; of block @ to the

parallel element in column : of the same block; this is a partial isometry between
subspaces of the columns. Since the basis elements inside each row are mapped
to themselves by the BPOs, and since the BPOs span the algebra, distinct rows of
the BPT define invariant subspaces of the algebra. The row subspaces are minimal
invariant subspaces (they do not contain smaller invariant subspaces) because BPOs
act on these subspaces as the full matrix algebra which is irreducible [249].

Column subspaces are also a meaningful part of the matrix algebra structure. The
projection operator on the subspace of column : in block @ is just a special case of
a BPO (projections are the trivial partial isometries from subspaces to themselves):

(
@

::
=

∑
8

|4@
8:
〉 〈4@

8:
| . (10.26)

The adjoint action of the projection (@
::

on any other BPO results in

(
@

::
(
@′

: ′; ′(
@

::
= X@@′X:: ′X:; ′(

@

::
. (10.27)

Since every element of the algebra is a linear combination of BPOs, the adjoint
action of (@

::
on any " ∈ A must result in

(
@

::
"(

@

::
∝ (@

::
. (10.28)

Projections in the algebra for which Eq. (10.28) holds for all elements " ∈ A are
the key building blocks of the algebra:

Definition 10.2.3. A projection Π ∈ A is called a minimal projection if for every
" ∈ A, we have Π"Π ∝ Π. 5

5This property is equivalent to a different, more common defining property: Πmin is minimal if
for all projections Π ∈ A such that ΠΠmin = Π it implies that either Π = 0 or Π = Πmin. We prefer
to define it the other way because this is the only property of minimal projections that we will use.



204

Not only are all (@
::
’s minimal projections, they are also the maximal set of such

projections.

Definition 10.2.4. A set of projections {Π: } ⊆ A is called amaximal set of minimal
projections (MSMP) if every Π: is minimal and all Π: are pairwise orthogonal and
sum to the identity element �A :=

∑
: Π: of the algebra.

The columns of a BPT are therefore a concise summary of a particular choice of
MSMP given by the BPOs

{
(
@

::

}
(the non-uniqueness of this choice traces back to

the freedom to choose the local basis |1@
:
〉 ).

The commutant A′ of an algebra A is the set of all matrices that commute with
every element of A

A′ := {"′ ∈ L (H) | ["′, "] = 0, ∀" ∈ A} , (10.29)

and is itself also an algebra. The irrep decomposition forA′ is essentially the same
as for A with the roles of the tensor factorsH�@ andH�@ reversed. That is, if

H �
⊕
@

H�@ ⊗ H�@ (10.30)

is the irrep decomposition for A, then all "′ ∈ A′ are of the form

"′ =
⊕
@

"′�@ ⊗ ��@ . (10.31)

For the BPTs, this implies a reversal of roles between rows and columns. Given the
BPT of A, we can get the BPT of A′ by rotating rows into columns; we will call
this transformation a transpose. Consequently, BPOs constructed from a transposed
BPT span the commutant of the algebra.

A simple example of an algebra is the full matrix algebra L (H). The BPT of this
algebra is just a single row of all basis elements |4:〉 (the choice of basis is arbitrary).

41 42 · · · 43

(10.32)

The BPOs defined by this table are just the matrix units

(:; = |4:〉 〈4; | (10.33)
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that span all the matrices in the algebra. The transpose of this BPT results in a single
column that corresponds to a single BPO that is the identity matrix �. This means
that the commutant of the full matrix algebra L (H) consists of the span of �, as
expected.

Another important example of an algebra is the algebra 〈"〉 generated by a single
self-adjoint matrix " . By definition, 〈"〉 is the set of all matrices spanned by "=

for all natural =. The key fact about this algebra is that it contains, and therefore can
be spanned by, the spectral projections of ":

Proposition 10.2.5. Let " be a self-adjoint matrix with the spectral decomposition

" =
∑
:

_:Π: (10.34)

where _: are distinct (non-zero) eigenvalues andΠ: are projections on eigenspaces.
Then

〈"〉 = span {Π: } . (10.35)

This fact can be shown by first identifying the identity element �〈"〉 in this algebra
(it does not have to be the full identity matrix). The identity element is constructed
using the minimal polynomial ? (G) of" (that is, the smallest degree polynomial for
which ? (") = 0) and the fact that for self-adjoint matrices the minimal polynomial
is of the form ? (G) = 5 (G) or ? (G) = G 5 (G) where 5 is such that 5 (0) ≠ 0. Then

�〈"〉 :=
5 (") − � 5 (0)
− 5 (0) ∈ 〈"〉 (10.36)

acts as the identity on " , and uniqueness of the identity implies that

�〈"〉 =
∑
:

Π: . (10.37)

With the identity, we can re-express the spectral projections as

Π: =
∏
;≠:

" − _; �〈"〉
_: − _;

∈ 〈"〉 . (10.38)

Since every natural power of " is in the span of spectral projections, Π: ’s span the
whole algebra 〈"〉.

The projections Π: are in fact the MSMP of 〈"〉, since for all powers =, we have

Π:"
=Π: = (_: )= Π: (10.39)
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and clearly they are pairwise orthogonal and sum to the identity. Since the MSMP
{Π: } spans 〈"〉, these are the only BPOs in this algebra. From a complete set
of BPOs, it is easy to build a BPT. In general, we have seen that each minimal
projection defines a column and columns in the same block are related to each other
by a proper partial isometry. In this case, there are no proper partial isometries so
each column is its own block.

Π1

Π2

. . .

(10.40)

The height of each column is the rank of the projection and the arrangement of
basis elements inside the columns is not important in this case. The irrep decom-
position implied by this BPT decomposes the Hilbert space into sectors of distinct
eigenspaces of "

H �
⊕
:

H�: ⊗ ℎ�: (10.41)

where the tensor factors � (associated with the columns in each block) are one
dimensional and the tensor factors � (associated with the rows in each block) are
of dimension equal to the rank of Π: . Eq. (10.23) is then the statement that all
elements of 〈"〉 are given by the span of Π: . Under transpose, each block of the
BPT becomes a row specifying the full matrix algebra on that eigenspace of " . The
commutant is then the direct sum of full matrix algebras on the eigenspaces of " ,
which is also what Eq. (10.31) implies.

As we have seen, the structure of the algebra generated by a single self-adjoint
matrix " is fully characterized by the spectral decomposition of " . Our derivation
of the irrep decomposition by constructing a BPT from BPOs ended up being a
roundabout way of decomposing the Hilbert space into eigenspaces of " . We
will see in Section 10.4 that this approach generalizes to algebras generated by
multiple elements 〈"1, "2...〉. In that case, spectral projections of generators are not
sufficient to characterize the structure of the algebra, but they can be used to produce
a complete set of BPOs that will specify a BPT and so the irrep decomposition.
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The last special case of an algebra that is very useful is the group algebra. A group
algebra is an algebra generated by matrices that form a group. The same matrices
that generate the group generate the group algebra, however, the term “generate” in
the context of matrix algebras means that we also include linear combinations of the
group elements. That is, if G is a (finite or Lie) group generated by !1, !2..., then
the group algebra CG is the span of elements of G

CG := 〈!1, !2...〉 = B?0= {G} . (10.42)

An important fact about group algebras is that their irrep decomposition is the same
as the irrep decomposition for the group.

Proposition 10.2.6. Let G be a finite or Lie unitary group generated by !1, !2...

acting on the Hilbert spaceH . If

H �
⊕
@

H�@ ⊗ H�@ (10.43)

is the irrep decomposition ofH such that all elements* (6) ∈ G are of the form

* (6) =
⊕
@

��@ ⊗ *@ (6) (10.44)

where *@ (6) are irreducible, then (10.43) is the irrep decomposition for the group
algebra

CG = 〈!1, !2...〉 . (10.45)

This fact follows from the observation that if a subspace is invariant under the action
of the group, then it is invariant under the action of the group algebra, since linear
combinations of group elements preserve the same subspaces as the elements them-
selves. The same reasoning establishes that invariant subspaces that are equivalent
representations for group elements are also equivalent for linear combinations of
group elements. This leads to the conclusion that groups and their algebras have the
same minimal invariant subspaces with the same equivalences, which means that
they have the same irrep structure, hence the same irrep decomposition.

Proposition 10.2.6 will allow us to construct the irrep decomposition for group
algebras using the known irreps of groups. For example, going back to the 3 spin-1

2
case, Eq. (10.21) is the irrep decomposition associated with the (* (2) group of
collective rotations on the spins. It is constructed by recognizing the total spin basis
(via the Clebsch-Gordan coefficients) that identify the minimal invariant subspaces
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of total spin 3
2 and 1

2 that decompose the Hilbert space into irreps of (* (2). Since
the group of total rotations is generated by the total spin operators �G , �H ,�I, we can
conclude that the irrep decomposition of the algebra generated by �G , �H, �I is given
by the irrep decomposition (10.21).

10.3 Operational Approach to Decoherence
The Decoherence Program
In this subsection, we review some basic aspects of the decoherence program,
which we will apply below to the reduced states produced by our generalized state-
reduction maps. The decoherence program is a well-established field with an
extensive literature and our treatment here will be terse. The reader already familiar
with its details is invited to proceed to the next subsection. Conversely, more details
can be found, for example, in the review [229] or the textbook [168]. Several
formulations of the decoherence program exist; here we discuss only the “Zurekian”
framework.

The (Zurekian) decoherence program is a formalism for describing the circumstances
under which a system can be classically measured. Recall that the Born rule states
that the possible results of measuring an observable O in a state |k〉 of a system
represented by the Hilbert space H( are the eigenstates |>8〉 of the observables,
with a probability | 〈>8〉 k |2 of obtaining each individual outcome. From the point
of view of the system alone, the (projective) measurement process is non-unitary;
for example, if the |>8〉 are not eigenstates of the system’s Hamiltonian so that
〈>8 (C)〉 > 9 (C) ≠ X8 9 , time evolution will act differently on the initial state and the
post-measurement state. In particular, interference terms will be suppressed in the
post-measurement state, which no longer evolves coherently.

The Zurekian decoherence program implements this “de-coherence” process, which
is effectively non-unitary for the system alone, as a unitary process on a larger Hilbert
space consisting of the tensor product6H ' H( ⊗H� of the original system and an
environmentH� . If the Hamiltonian contains interaction terms between the system
and environment degrees of freedom, then an initial product state can evolve into an
entangled state of the system and environment:

|Ψ (C = 0)〉 = |k〉( |40〉� → |Ψ (C)〉 =
∑
8

28 (C) |B8 (C)〉( |48 (C)〉� . (10.46)

6Although some careful treatments require a tripartite system-apparatus-environment split
(e.g. [183, 229, 251]), here we will only split out the system from the environment; when such
distinctions are important, we have in mind that the system is small and quantum so that a (large,
classical) apparatus is a subsystem of the environment.
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In fact for any choice of initial state and time evolution, this decomposition can be
performed exactly at any moment in time for a particular choice of orthonormal
bases for the system and environment (the Schmidt decomposition). However, as
the time dependence indicates, decompositions at different times are generically
unrelated; in particular, the state |B8 (g)〉( |48 (g)〉� is not the Hamiltonian evolution
of |B8 (C)〉( |48 (C)〉� .

For the particular states and interactions that admit decoherence, however, there
exists, at least approximately, a decomposition of the entangled state into “branches”
which evolve independently of each other; that is, a choice of bases in which
*g−C |B8 (C)〉( |48 (C)〉� ≈ |B8 (g)〉( |48 (g)〉� ∀8, so that the 28 are constant7:

|Ψ (C)〉 ≈
∑
8

28 |B8 (C)〉( |48 (C)〉� . (10.47)

Hence there is a one-to-one association of system states |B8〉( and environment states
|48〉� in the “pointer basis” given by the decomposition. It immediately follows8
from Eq. (10.47) that the reduced density matrix describing the state of the system
is

d( = Tr� |Ψ〉〈Ψ| ≈
∑
8

|28 |2 |B8〉〈B8 |, (10.48)

so the system can be described to good approximation as a statistical mixture of the
states |B8〉(, in agreement with the action of the Born rule on the system alone. If
we only have access to the information in the system, we can check for the presence
of decoherence by looking for a choice of basis in which the reduced density matrix
becomes, and remains, approximately diagonal.

We comment briefly on the physical significance of the conditions (10.47) and
(10.48). The branch label 8 picks out a distinct state of the system and, crucially,

7If the Hamiltonian is time-dependent, as it is, for example, if the interaction only occurs in
a specific period of time, then we should interpret this condition as holding in some finite time
interval. Intuitively this condition says that, after the measurement-causing interaction occurs, the
environment should, at least temporarily, record the state of the system[153, 252].

8Actually Eq. (10.47) is more general: it describes a situation in which the system-
environment product kets are orthonormal, but in which the system or environment kets need not
individually be orthonormal. In particular it is easy to imagine situations (for example, a measure-
ment apparatus that can record the state of a spin in multiple different bases) in which the system
states |B8〉( need not be orthonormal, or even where the sum is over a larger number of terms than
the dimensionality of the system. In this case, we should not expect the reduced density matrix to
be a good record of the actual branches. See Sec. 2 of [183] for further discussion of this point. In
practice, we expect that we can deal with such cases by moving degrees of freedom from the envi-
ronment into the system (in the above example, the choice of which basis to measure in) until the
system states are themselves orthogonal.
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a state of the environment |48〉� which is one-one correlated with the state of the
system. Because each of the environment states |48〉� has zero (or very small)
overlap with the environment state associated with other system states, we say
that the environment is monitoring the state of the system, or keeping a record of
it. Again, this is a dynamical process: the environment starts in a particular initial
ready state which is not entangled with the initial state of the system, but interactions
between the system and environment cause the environment to record the state of
the system. It is often convenient to decompose the Hamiltonian generating time
evolution on the total Hilbert space into pieces denoting evolution in the system
and environment alone, as well as an interaction Hamiltonian connecting the two
factors:

� = �( + �� + �int. (10.49)

In general, a decoherence analysis requires conditions on all of these components,
but when decoherence occurs in the limit that the interaction strength is much larger
than the other two terms (for a suitable choice of norm), the branches are simply
given by the eigenstates of the interaction Hamiltonian.

Because the overall state starts as a product state but ends as an entangled superpo-
sition of branches, we see that decoherence is associated with entropy production,
visible as the Shannon entropy of the classical probability distribution |28 |2 over
system states. In fact the connection between decoherence, entropy growth, and
the production of records in the environment can be made more precise [153]. In
laboratory settings, for example when the environment includes photons and air
molecules bouncing off an experimental apparatus, we expect that the environment
in fact contains very many highly redundant records of the system state [252].

We emphasize that in most setups the situations which lead to decoherence are non-
generic. The decoherence program requires, in particular, an initial (low-entropy)
product state between the system and the environment, a special initial “ready” state
of the environment which will subsequently be able to record the state of the system,
and dynamics which allow the system to interact with the environment while still
admitting effective non-dissipative evolution in the system alone after branching
has occurred. If, instead of analyzing a particular measurement apparatus, we want
to use the decoherence formalism to determine which states are classical, we need
to vary over some of these initial specifications. In particular, if we do not start
a preferred identification of the system, but instead, like in cosmology, wish to
pick out the natural classical degrees of freedom, we need to vary over possible
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system-environment decompositions [29].

State Reduction from Operational Constraints
In the study of decoherence, we usually start by postulating the system-environment
splitH = H� ⊗H(. The state-reduction map CA� : H −→ H( is then characterized
by demanding

CA (�� ⊗ $( d) = CA ($( CA� (d)) (10.50)

for all d and $(, which leads to the definition of the partial-trace map. The reduced
state CA� (d) is understood as the state of the subsystemH( and unitary evolution of
d (usually) results in a loss of coherence for CA� (d).

The operational justification for the system-environment split H� ⊗ H( comes
from an assertion that only measurements of the form �� ⊗ $( are allowed. In
the language of matrix algebras (see Section 10.2) we can say that the allowed
measurements �� ⊗$( form an algebra and the system-environment splitH� ⊗H(

comes from the irrep decomposition of this algebra. By taking this perspective, we
do not have to postulate the system-environment split; instead we derive it as the
irrep decomposition of the algebra of allowed observables. This suggests a strictly
operational approach to decoherence where the algebra of allowed observables is
the primary object from which the Hilbert-space bipartition and the state-reduction
map are derived.

In this operational approach, we start with a Hilbert space H and an algebra A ⊆
L (H) that reflects our operational constraints. The assumption is that in principle,
all observables$ ∈ A can be measured, but nothing else. This is the generalization
of the earlier assumption that only observables of the form �� ⊗$( are allowed. This
of course may be an overstatement of the practical reality, in which not all $ ∈ A
are in fact measurable, but it is still a useful assumption that outlines what definitely
cannot be measured. (Similarly, when we make the usual system-environment split,
we do not actually consider all �� ⊗ $( to be measurable, but it is still a useful
assumption that outlines the boundary of the inaccessible environment). In Sections
10.6-10.8 below, we will introduce a more flexible notion of bipartition that captures
restrictions to observables that do not have to form an algebra.

With the algebra A ⊆ L (H), the Hilbert space decomposes into the generalized
bipartition (see Theorem 10.2.2)

H �
⊕
@

H�@ ⊗ H(@ (10.51)
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where only subsystems H(@ are accessible with observables restricted to $ ∈ A.
This decomposition generalizes the usual system-environment split in that it can
identify multiple superselection sectors, each of which is split into system and
environment. The superselection sectors are manifestations of the fact that superpo-
sitions between state vectors in different sectors are unobservable and unpreparable
with the given operational constraints. The reduced Hilbert space is therefore given
by

H{(@} :=
⊕
@

H(@ (10.52)

where the observables
⊕

@ ��@ ⊗ $(@ ∈ A reduce to
⊕

@ $(@ . Now the state-
reduction map CA{�@} can be defined in two steps: first, impose the superselection
rules; second, discard the environments:

CA{�@} : d ↦−→
⊕
@

Π@dΠ@ ↦−→
⊕
@

CA�@
(
Π@dΠ@

)
(10.53)

where Π@ are projections on the superselection sectors. Finally, the analog of Eq.
(10.50)

CA

((⊕
@

��@ ⊗ $(@

)
d

)
= CA

((⊕
@

$(@

)
CA{�@} (d)

)
(10.54)

can be shown to hold by considering the trace on each sector @ separately and
applying Eq. (10.50).

We can now see that restriction of observables to an algebra manifests itself in
two ways: superselection and system-environment split. Superselection is respon-
sible for eliminating some of the reduced state’s coherence terms by fiat, since
no observable that could detect such coherences is measurable in principle. The
system-environment split, on the other hand, is responsible for eliminating the co-
herence terms dynamically. That is, even if some superpositions could be detected
in principle, they become entangled with the environment so rapidly that we cannot
actually see them; this is the idea of environment-induced superselection or einse-
lection [253]. In general, both superselection and einselection can play a role in the
appearance of classical reality.

A very simple case of classicality from superselection comes up when we restrict
the measurements to a single observable $. The algebra generated by $ is spanned
by the spectral projections Π: (see Proposition 10.2.5) associated with the distinct
measurement outcomes. The irrep decomposition is then the decomposition of H
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into the eigenspaces of $

H �
⊕
:

H�: ⊗ ℎ(: �
⊕
:

H�: (10.55)

where the system parts ℎ(: are one-dimensional and can be absorbed intoH�: . The
state-reduction map (10.53) then becomes

d ↦−→
⊕
:

CA (Π:d) (10.56)

which is the reduction of d into a classical probability distribution over the outcomes
: . Therefore, when only one observable can be measured, all quantum states
are operationally equivalent to classical probability distributions and no coherence
effects can be observed.

The more interesting cases involve more than one observable. For example, in a
laboratory settings, it is common to have a single readout (measurement) operation$
supplemented by a set of control operations {*U}. Then the allowed measurements
consist of the set

{
$U := *†U$*U

}
for all U. Such sets can be as simple as position

and momentum {-, %} or the angular momentum operators
{
�G , �H, �I

}
. When the

underlying system consists of many particles for which we can only measure the
collective version of these observables, or when there is a single particle but the
observables have limited resolution, we can expect non-trivial manifestations of
superselection and einselection effects.

This leads us to the main technical difficulty of the operational approach: finding
the irrep decomposition of algebras generated by {$U}. In the cases where {$U}
forms a group with a known representation structure, the irrep decomposition is
given by the group’s irreps (see Proposition 10.2.6). In other cases, however, we
need a systematic way of constructing the irrep decomposition from the generating
set of observables {$U}. The solution of this problem is the subject of the next
section, and one of the main technical results of this paper.

10.4 Irrep Decomposition of Matrix Algebras by Scattering of Projections
The problem that we will address here is the following:

Given a finite set of self-adjoint matrices {"1, "2, ..., "=} that generate
the algebraA, find the irrep decomposition ofA as in Theorem 10.2.2.

As was discussed in Section 10.2, the explicit specification of an irrep structure
can be given by a choice of basis arranged into a bipartition table (BPT), with
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the columns specifying a maximal set of minimal projections (MSMP) and the
alignment of rows specifying the partial isometries that map between the columns.
Conversely, given an MSMP and partial isometries that map between them, we can
construct a BPT by following our definitions of the rows and columns. This suggests
that in order to find the irrep structure of an algebra, we need to find an MSMP and
the partial isometries that map between them.

According to its definition (Definition 10.2.4), an MSMP is called maximal because
it resolves the identity element of the algebra, but this does not mean that it alone
can generate the whole algebra. In the BPT picture, the elements of the MSMP
determine the columns, but are oblivious to how the columns are aligned with each
other. In order to construct the BPT, we will only need to supplement the MSMP
with additional minimal projections that will allow it to generate the algebra. These
additional projections define the partial isometries that map between the elements
of the MSMP, which determines the alignment of columns in the BPT. The main
task of the irrep decomposition algorithm is then to find a set of minimal projections
that generates the algebra and contains an MSMP.

Before we go into specifics, let us outline the 4 main steps of the algorithm that we
develop in this section:

1. Construct the initial set of projections from the spectral projections of the
generators {"1, "2, ..., "=}.

2. Keep applying the rank-reducing operation called scattering on the set of
projections until no further reduction is possible; this produces the final set of
projections.

3. Verify that the final set of projections (which generates the algebra by con-
struction) consists of minimal projections and contains an MSMP.

4. Use the final set of projections to construct the BPT.

Step 1 is a conversion of the input from self-adjoint operators to their spectral
projections. Step 2, the heart of the algorithm, uses the scattering operation that we
will define in Section 10.4. Step 3 is necessary because Step 2 is not guaranteed
to produce minimal projections (although this is what happens in practice); we will
explain how to deal with this in Section 10.4. Step 4 is the construction of the basis
elements that populate the rows and columns of the BPT, which we will define in
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Section 10.4. The formal definition of the algorithm and the proof of its correctness
are deferred to Section 10.4.

In the following, it will be beneficial to have a concrete example to consider as we
go over the details of the algorithm. For this purpose, we will now introduce a
toy example that will be used throughout this section to illustrate the steps of the
algorithm.

Toy Example

The example that we will consider here is a quantum system described by an eight-
dimensional Hilbert space. The system itself and the measurements that we will
consider are not motivated by physical considerations, but by their simplicity and
ability to illustrate the key aspects of the algorithm. More physically-motivated
examples will be considered in Section 10.5 below.

The toy example consists of the Hilbert spaceH , spanned by the eight basis elements
{|8〉}8=1,...,8, and two incompatible projective measurements given by the self-adjoint
operators / and - . (This choice of names is only meant to be suggestive of their
non-commutativity; we will remain agnostic to the physical nature of this system.)
The problem is to find the irreps of the algebra 〈/, -〉 which will allow us to
simultaneously block-diagonalize the two non-commuting observables. Once we
have this structure, it will be apparent what information encoded in the quantum
states is accessible with the measurements /, - , and what is not.

The observables / and - have two outcomes associated with the spectral projections{
Π/;1,Π/;2

}
and

{
Π-;1,Π-;2

}
9 that sum to the identity. The spectral projections

are defined as follows:

Π/;1 := |1〉 〈1| + |2〉 〈2| + |3〉 〈3| + |4〉 〈4| (10.57)

Π-;1 := |+37
− 〉 〈+37

− | + |+1256
− 〉 〈+1256

− | , (10.58)

where we have used the shorthand notation

|+81,82,...− 91, 92,...〉 :=
1
√
#
( |81〉 + |82〉 + ... − | 91〉 − | 92〉 − ...) (10.59)

9We do not need to know their eigenvalues, but we will assume that they are nonzero. We can
always shift all eigenvalues of the observable, without changing any physical predictions, so none
of them are zero.



216

(
√
# is the normalization) so

|+37
− 〉 :=

1
√

2
( |3〉 + |7〉) (10.60)

|+1256
− 〉 :=

1
2
( |1〉 + |2〉 + |5〉 + |6〉) . (10.61)

Their complementary projections are given by Π/;2 := � − Π/;1 , Π-;2 := � − Π-;1.

As was discussed in Proposition 10.2.5, the spectral projections of each self-adjoint
operator are part of the algebra that it generates, and the algebra 〈/, -〉 is also
generated by

〈
Π/;1,Π/;2,Π-;1,Π-;2

〉
. This replacement of generators from self-

adjoint matrices to their spectral projections is Step 1 of the algorithm. We will
continue this example after we define and prove some facts about the scattering
algorithm.

Scattering of Projections
Scattering is the basic operation that we will use to break down the spectral projec-
tions of the generators into smaller rank projections.

Definition 10.4.1. Scattering is an operation on a pair of projections Π1, Π2 that
produces a pair of sets of projections

{
Π
(_)
1

}
,
{
Π
(_)
2

}
. The elements in each set come

from the spectral decompositions

Π1Π2Π1 =
∑
_≠0

_Π
(_)
1 (10.62)

Π2Π1Π2 =
∑
_≠0

_Π
(_)
2 (10.63)

(the sums are over unique non-zero eigenvalues _) with the addition of null projec-
tions defined by10

Π
(0)
8=1,2 := Π8 −

∑
_≠0

Π
(_)
8
. (10.64)

It will be very convenient to consider the null projections Π (0)
8

as just the _ = 0
elements of the set of spectral projections

{
Π
(_)
8

}
, evenwhenΠ (0)

8
= 0 in Eq. (10.64).

Also note that, although the definition does not say so explicitly, the spectrum _

in both Eq. (10.62) and (10.63) is the same (we will prove this in Lemma 10.4.4
below).

10Null projections should not be confused with projections on the kernel of Π8Π 9Π8 . The ker-
nel projections are given by � −∑

_ Π
(_)
8

which is not the same as Eq. (10.64).
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From this definition, we see that all the projections in the set
{
Π
(_)
8

}
are pairwise

orthogonal and sum to their predecessor

Π8 = Π
(_1)
8
+ Π (_2)

8
+ ... + Π (0)

8
, (10.65)

so they are of lower rank than their predecessorΠ8. Thus, in analogy with the scatter-
ing of particles, the scattering of projections “breaks” them into smaller constituents
(the “interaction” in this analogy is the adjoint action of Eq. (10.62),(10.63))

Π1

Π2

D Ef
E D

Π
(_1)
1 + Π (_2)

1 + ... + Π (0)1

Π
(_1)
2 + Π (_2)

2 + ... + Π (0)2

(10.66)

This defines scattering in the general case. There is also a special case that is
important enough to have its own definition:

Definition 10.4.2. A pair of projectionsΠ1,Π2 is called reflecting if both projections
remain unbroken by scattering, that is

Π1Π2Π1 = _Π1 (10.67)

Π2Π1Π2 = _Π2 (10.68)

where the coefficient _ is called the reflection coefficient. We will say thatΠ1,Π2 are
properly reflecting if the reflection coefficient is not 0 (i.e. they are not orthogonal,
Π1Π2 ≠ 0).

It should be clear that rank 1 projections are always reflecting (however, reflecting
projections can be of any rank). Another couple of useful facts about reflecting
projections are given by the following proposition:

Proposition 10.4.3. Let Π1, Π2 be a pair of properly reflecting projections with the
reflection coefficient _ ≠ 0, then:

(1) Π1 and Π2 have the same rank.

(2) Π1 = Π2 if _ = 1.

Proof. We take the trace on both sides of Eq. (10.67), (10.68) and use the cyclic
property of the trace to get

CA (Π1Π2) =_CA (Π1) (10.69)

CA (Π1Π2) =_CA (Π2) . (10.70)
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Since the _’s are the same (this will be proven in general in Lemma 10.4.4), then
CA (Π1) = CA (Π1Π2)

_
= CA (Π2) so they must have the same rank.

If, in addition, _ = 1 then

0 =Π1 − Π1Π2Π1 = (Π1 − Π1Π2) (Π1 − Π1Π2)† (10.71)

0 =Π2 − Π2Π1Π2 = (Π2 − Π2Π1) (Π2 − Π2Π1)† (10.72)

so

0 = Π1 − Π1Π2 (10.73)

0 = (Π2 − Π2Π1)† . (10.74)

Thus, Π1 = Π1Π2 = Π2. �

The importance of reflecting projections is that they do not break under scattering
(this choice of terminology is a continuation of our commitment to the analogy with
particles). In Step 2 of the algorithm, we will apply the scattering operation on pairs
of projections until no further reduction is possible. The impossibility of reduction
is then the case of all projections being pairwise reflecting. We are guaranteed
to reach entirely reflecting projections because scattering produces projections of
smaller rank (unless it reflects) and projections of rank 1 are always reflecting.

The most important fact about scattering is that regardless of what the initial projec-
tionsΠ1,Π2 are, the resulting projections are a series of reflecting pairs

{
Π
(_)
1 ,Π

(_)
2

}
with reflection coefficients _, and every pair

{
Π
(_)
1 ,Π

(_)
2

}
is orthogonal to any other

pair
{
Π
(_′)
1 ,Π

(_′)
2

}
.

Lemma 10.4.4. Let Π1, Π2 be the initial projections and
{
Π
(_)
1

}
,
{
Π
(_)
2

}
be the sets

of post scattering projections given by Definition 10.4.1, then:

(1) The spectrum of eigenvalues _ is the same in both sets.

(2) For all _ ≠ _′, the pairs of projections Π (_)1 , Π (_
′)

2 are orthogonal.

(3) For all _, the pairs of projections Π (_)1 , Π (_)2 are reflecting with reflection
coefficient _.

Proof. We begin by taking _ and Π (_)1 to be the eigenvalues and the spectral pro-
jections in the decomposition of Π1Π2Π1 and assume nothing about the spectral
decomposition of Π2Π1Π2.
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First, note that Π (_)1 Π1 = Π1Π
(_)
1 = Π

(_)
1 for all _ as can be seen from Eq. (10.65)

and the fact that all spectral projections (including Π (0)1 ) are pairwise orthogonal.
Then, if we act on both sides of Eq. (10.62) by the adjoint with Π (_)1 and Π (_

′)
1 , we

get
Π
(_)
1 Π2Π

(_′)
1 = X__′_Π

(_)
1 . (10.75)

This equation holds for all _ including _ = 0, and it does not matter whether Π (0)1
vanishes (Π (0)1 = 0) or not. In particular Π (0)1 Π2Π

(0)
1 = 0, so Π (0)1 Π2 = 0 because

otherwise we would reach a contradiction,

0 ≠
(
Π
(0)
1 Π2

) (
Π
(0)
1 Π2

)†
=

(
Π
(0)
1 Π2

) (
Π2Π

(0)
1

)
= Π

(0)
1 Π2Π

(0)
1 = 0. (10.76)

Therefore, Π (0)1 Π2 = Π2Π
(0)
1 = 0. This allows us to write

Π2Π1Π2 = Π2

(
Π1 − Π (0)1

)
Π2 = Π2

(∑
_≠0

Π
(_)
1

)
Π2 =

∑
_≠0

_

(
1
_
Π2Π

(_)
1 Π2

)
.

(10.77)
The last step suggests the definition

Π̃
(_)
2 :=

1
_
Π2Π

(_)
1 Π2. (10.78)

These operators are clearly self-adjoint and, using Eq. (10.75), we can see that

Π̃
(_)
2 Π̃

(_′)
2 =

1
__′

Π2Π
(_)
1 Π2Π

(_′)
1 Π2 = X__′

1
_
Π2Π

(_)
1 Π2 = X__′Π̃

(_)
2 , (10.79)

so they are pairwise orthogonal projections. Since the _’s are distinct and Π̃ (_)2 are
pairwise orthogonal projections, Eq. (10.77) must be the spectral decomposition of
Π2Π1Π2. Thus, Π̃ (_)2 = Π

(_)
2 , and the spectrum is the same for both Π1Π2Π1 and

Π2Π1Π2. This proves claim 1.

Now, if we use Eq. (10.78) as the definition of Π (_
′)

2 and simplify with Eq. (10.75),
we get the identity

Π
(_)
1 Π

(_′)
2 = Π

(_)
1 Π2Π

(_′)
1 Π2

1
_′
= X__′Π

(_)
1 Π2. (10.80)

This proves claim 2. In particular, for _ = _′, if we multiply this identity with its
own adjoint on both sides and again use Eq. (10.75) and (10.78), we get

Π
(_)
1 Π

(_)
2 Π

(_)
1 = Π

(_)
1 Π2Π

(_)
1 = _Π

(_)
1 (10.81)

Π
(_)
2 Π

(_)
1 Π

(_)
2 = Π2Π

(_)
1 Π2 = _Π

(_)
2 (10.82)

which proves claim 3. �



220

Lemma 10.4.4 tells us that almost all projections that come out of scattering are pair-
wise orthogonal. In particular, each of the null projections Π (0)1 , Π (0)2 is orthogonal
to all other projections and only the pairs Π (_)1 , Π (_)2 for _ ≠ 0 are not orthogonal but
properly reflecting. It is also interesting to note that if there is _ = 1 in the spectrum,
then Π (1)1 = Π

(1)
2 (see Proposition 10.4.3), which occurs if the initial projections

project onto intersecting subspaces so Π (1)
8

is the projection on their intersection.
We can avoid scattering these projections twice in future iterations of the algorithm
by eliminating such duplicates. Lastly, note that Eq. (10.78) tells us how to get the
post-scattering projections Π (_≠0)

2 from the post-scattering projections Π (_≠0)
1 (for

Π
(_=0)
8

we use Eq. (10.64)) so we only need to calculate the spectral decomposition
once for Π1Π2Π1.

We now define a graph structure for a set of projections:

Definition 10.4.5. A (proper) reflection network associated with the set of reflect-
ing projections {ΠE} is the graph � = {+, �} where the vertices are the pro-
jections + := {ΠE} and every properly reflecting pair is connected by an edge
� := {(ΠE,ΠD) | ΠEΠD ≠ 0} (only orthogonal reflecting projections do not share
an edge). An improper reflection network is the generalization of the above where
not all projections are known to be reflecting. In that case, there are two kinds of
edges: one kind for properly reflecting pairs (black solid edge) and one for unknowns
(red dashed edge).

In general, reflection networks may have multiple connected components formed by
subsets of projections that are orthogonal to every projection outside the subset. It
does not mean, however, that projections in the same connected component cannot
be orthogonal; as long as there is a sequence of proper reflection (or unknown)
relations connecting the projections, they will be in the same component. Also
note that, according to Proposition 10.4.3, all projections in the same connected
component of a proper reflection network must be of the same rank.

We will now consider how the scattering operation affects the reflection network by
focusing on a pair of projections in the network. According to Lemma 10.4.4, in
general a pair of projections {Π1,Π2} with unknown relations (red edge) scatters
into a series of pairs of reflecting projections {Π (_)1 , Π (_)2 } (black edges unless _ = 0
then no edge), and each pair in the series is orthogonal to all other pairs (no edges);
see Fig 10.1(a). Fig 10.1(b) illustrates the special case whereΠ1 did not break under
scattering so Π1 ≡ Π (_1)

1 . The case where both {Π1,Π2} do not break (not shown)
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(a)

...

...

(b)

Figure 10.1: Update rules for reflection relations after scattering. The red (dashed)
edges represent unknown reflection relations, black (solid) edges represent
properly-reflecting pairs, absent edges represent orthogonal pairs. One-sided edges
stand for the reflection relations with other projections in the rest of the network.
(a) In the generic case where each Π8=1,2 breaks down into

{
Π
(_: )
8

}
, the result is a

series of properly reflecting pairs (for _ = 0 the pair is orthogonal) as described
in Lemma 10.4.4. All the external edges are inherited by

{
Π
(_: )
8

}
from Π8 with the

black (solid) edges being reset to red (dashed). (b) In the special case where Π1
did not break down under scattering, we know Π1 ≡ Π (_1)

1 . In this case, Π2 may
break down to at most two projections (if it also did not break down, then Π1, Π2
should just be relabeled as reflecting) such that Π (_1)

1 , Π (_1)
2 are properly reflect-

ing and Π (0)2 is orthogonal to both. In (b) the update rule of external edges differs
from the generic case (a) in that for unbroken projection Π (_1)

1 , the black (solid)
edges are not reset to red (dashed).

implies that they are reflecting and the red edge between them is set to black or
omitted, depending on whether _ = 0.

Since both projections {Π1,Π2} are part of a larger network, we also have to
specify how the resulting projections

{
Π
(_: )
8

}
inherit the relations with the rest of

the elements in the network. First, we note that orthogonality with other projections
is preserved under scattering so we do not need to add new edges that we did not
already have. Red edges also do not need to be updated since every unknown relation
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that Π8 had is still unknown for Π (_: )
8

. Proper reflection relations, however, do not
survive when one of the projections is broken down into smaller rank projections,
because properly reflecting projections must have the same rank (see Proposition
10.4.3). Therefore, black edges that Π8 had before scattering should be reset to red
when inherited by Π (_: )

8
, unless the projection did not break, like in Fig 10.1(b), in

which case the black edges remain intact.

Procedure

As we mentioned before, Step 1 of the algorithm produces the spectral projections
of the generators. Formally, we will refer to this step of the algorithm as the
procedure GetAllSpectralProjections, but we will not explicitly define it as it
is self-evident.

We now have the definitions and the facts to define the procedure of Step 2 of the
algorithm:

1: procedure ScatterAllProjections((?42%A> 9 B)
2: %A> 9 B← (?42%A> 9 B

3: '4;0C8>=B← InitializeReflectionRelations(%A> 9 B)
4: '4 5 ;42C#4C ← {%A> 9 B, '4;0C8>=B}
5: while IsEverythingReflecting('4 5 ;42C#4C) is false do
6: %08A ← PickNonReflectPair('4 5 ;42C#4C)
7: %>BC(20C%08A ← ScatterProjectionsPair(%08A)
8: '4 5 ;42C#4C ←UpdateReflectionNetwork('4 5 ;42C#4C, %08A, %>BC(20C%08A)
9: end while
10: return '4 5 ;42C#4C
11: end procedure

The procedure starts by constructing the improper reflection network from the initial
spectral projections and initializing all edges to red except the ones that are known
to be reflecting (like rank 1 or orthogonal projections). It then proceeds to iterations
where it picks a pair of projections connected by a red edge,11 scatters it,12 and
updates the relations in the network according to the rules given in Fig. 10.1. The

11For better efficiency, we should prioritize projections of lowest rank. Such projections are less
likely to break down under scattering, which will reduce the number of resets of proper reflection
relations that happen when we update the network after scattering.

12As was discussed after Lemma 10.4.4, the projections in Pair may intersect on a subspace
and the projection on this subspace will appear twice in PostScatPair. Eliminating such duplicate
projections is not necessary for the success of the algorithm, but it will improve efficiency.



223

(a)

(b)

(c)

Figure 10.2: Evolution of the reflection network of the toy model during two scat-
tering iterations. The red (dashed) edges represent unknown reflection relations,
black (solid) edges represent properly reflecting pairs, absent edges represent or-
thogonal pairs. (a) is the initial improper reflection network. (b) is the intermedi-
ate network after one scattering iteration. (c) is the final proper reflection network
after two scatterings.

procedure ScatterAllProjections finishes when the reflection network is proper:
that is, when all projections are reflecting (all edges are black). This procedure is
guaranteed to terminate because every scattering iteration either identifies a pre-
viously unknown reflecting pair or scatters a pair into a series of reflecting pairs
of lower rank. Eventually, all projections will either be reflecting, or they will be
reduced to rank 1 and thus again must be reflecting.

Toy Example (continued)

Before we consider the initial reflection network, we note that one of the four initial
spectral projections

{
Π/;1,Π/;2,Π-;1,Π-;2

}
is redundant in generating the algebra.

That is because Π-;2 = � − Π-;1 = Π/;1 + Π/;2 − Π-;1 so the algebra generated just
by

{
Π/;1,Π/;2,Π-;1

}
is the same as before.
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The initial improper reflection network is show in Fig 10.2(a). Webegin by scattering
the pair

{
Π/;1,Π-;1

}
Π/;1Π-;1Π/;1 =Π/;1 |+37

− 〉 〈+37
− | Π/;1 + Π/;1 |+1256

− 〉 〈+1256
− | Π/;1 (10.83)

=
1
2
|3〉 〈3| + 1

2
|+12
− 〉 〈+12

− | . (10.84)

There is only one eigenvalue _ = 1
2 here which identifies a single spectral projection

Π
(1/2)
/;1 = |3〉 〈3| + |+12

− 〉 〈+12
− | . (10.85)

Thus, the rank 4 projection Π/;1 breaks into two rank 2 projections Π/;1 = Π
(1/2)
/;1 +

Π
(0)
/;1 (see Definition 10.4.1), where

Π
(0)
/;1 = |4〉 〈4| + |

+1
−2〉 〈

+1
−2 | . (10.86)

In principle, the breaking of the second projectionΠ-;1 in the scattering is calculated
using Eq. (10.78) resulting in

Π
(1/2)
-;1 =

1
1/2Π-;1Π

(1/2)
/;1 Π-;1 = |+37

− 〉 〈+37
− | + |+1256

− 〉 〈+1256
− | = Π-;1, (10.87)

which tells us that Π-;1 did not break (when the scattering has only one non-zero
eigenvalue, as in this case, we already know at least one of the projections does not
break). The reflection network after the first scattering is shown in Fig 10.2(b).

Repeating the same for the scattering of Π/;2 with Π-;1, we get

Π/;2Π-;1Π/;2 =
1
2
|7〉 〈7| + 1

2
|+56
− 〉 〈+56

− | (10.88)

so Π/;2 = Π
(1/2)
/;2 + Π

(0)
/;2 and

Π
(1/2)
/;2 = |7〉 〈7| + |+56

− 〉 〈+56
− | (10.89)

Π
(0)
/;2 = |8〉 〈8| + |

+5
−6〉 〈

+5
−6 | . (10.90)

As before, Π-;1 does not break in the scattering.

The final proper reflection network is shown in Fig 10.2(c).

Minimality and Completeness of Reflecting Projections
Now, we will examine the properties of the set of projections that comes out of Step
2 of the algorithm. As we discussed above, this step finishes when all projections are
pairwise reflecting. In order to construct the BPT, we will need at least one MSMP
and any additional minimal projections required to generate the whole algebra.
Thus, we will have to establish whether the final set of reflecting projections meets
the following criteria:
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1. Minimality: All projections in the final set are minimal (Definition 10.2.3).

2. Completeness: The final set contains at least one MSMP (Definition 10.2.4).

We will now introduce correction procedures for when these criteria are not met.

Minimality

Minimality of the reflecting projections can be established by considering the
paths in the reflection network. Each path is given by a sequence of vertices
v = (E1, E2, ..., E=) that specify the projections along the path. By taking the product
of all projections along the path and normalizing with reflection coefficients13, we
define the operator

(v :=
ΠE1ΠE2 ...ΠE=√

_E1E2_E2E3 ..._E=−1E=

. (10.91)

Such an operator will be referred to as a path isometry since it is a partial isometry
from the eigenspace of ΠE= to the eigenspace of ΠE1 along the path v (the oper-
ator (†v is a path isometry in the opposite direction). In order to see that this is
the case, consider the path between two neighboring projections ΠE,ΠD such that
((E,D) =

1√
_ED
ΠEΠD. This is a partial isometry because

((E,D)(
†
(E,D) =

1
_ED

ΠEΠDΠE = ΠE (10.92)

(
†
(E,D)((E,D) =

1
_ED

ΠDΠEΠD = ΠD . (10.93)

The general case follows in the same way by considering (v(†v , (
†
v(v and reducing

the products of projections by applying the reflection relations.

The minimality of reflecting projections can then be established with the help of the
following lemma:

Lemma 10.4.6. Let {ΠE} be a set of projections forming a proper reflection network
and let {(v} be the set of all path isometries in the network as defined by Eq. (10.91).
Then, the following statements are equivalent:

(1) Every ΠE is a minimal projection in the algebra A := 〈{ΠE}〉.

(2) (v ∝ (u for all paths v, u that share the same initial and final vertices.

13In practice, we do not need to remember the reflection coefficients in order to construct these
operators, since at each step the normalization is given by the non-zero singular value (which is
unique, since all projections are reflecting) of ΠE1ΠE2 ...ΠE= .
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Proof. Every element " ∈ A is a linear combination of products of {ΠE} so
A = B?0= {(v}. Then, by Definition 10.2.3 and linearity, the projections {ΠE} are
minimal if and only if ΠE(vΠE ∝ ΠE for all E and v. When ΠE(v = 0 or (vΠE = 0,
the relation ΠE(vΠE = 0 ∝ ΠE holds trivially. Let us then consider ΠE(vΠE ≠ 0 for
some v := (E1, E2, ..., E=), which implies that v′ := (E, E1, E2, ..., E=, E) is a circular
path from ΠE to itself. Recalling the definition in Eq. (10.91), we can use both
ΠE(vΠE ∝ (v′ and (v′ ∝ ΠE(vΠE, since the proportionality factor is not 0. Thus, if
statement 2 holds, then (v′ ∝ ((E,E) and

ΠE(vΠE ∝ (v′ ∝ ((E,E) = ΠE . (10.94)

This proves 2⇒1.

If statement 1 holds, then ΠE(vΠE ∝ ΠE and

(v′ ∝ ΠE(vΠE ∝ ΠE . (10.95)

This proves statement 2 for all circular paths E′ since all (v′ are (properly) propor-
tional to the same initial projection ΠE and thus to each other. For non circular
paths v = (E1, ..., E=), u = (D1, ..., D<) with E1 = D1 and E= = D<, let us assume
that (v 6∝ (u so (v(†u 6∝ (u(†u. Then the path isometry (v′ = (v(†u defined by the
circular path E′ := (E1, ..., E= = D<, ..., D1) is proportional to its initial projection
(v(
†
u ∝ ΠE1 = ΠD1 = (u(

†
u, in contradiction to (v(†u 6∝ (u(†u. Therefore, (v ∝ (u

proving 1⇒2. �

Thus, by checking whether the path isometries in a reflection network depend only
on the initial and final vertices and are independent of the paths taken, we can verify
that the projections are minimal. In practice, it is not necessary to check all paths as
there is usually a lot of order in the reflection network and path independence can
be established based on this order. Things are even simpler when the projections
are of rank 1 (recall all projections in the same connected component of a reflection
network must have the same rank), then there is nothing to check since rank 1
projections are always minimal.

In addition to providing a testable criterion for minimality, Lemma 10.4.6 also
implies a correction for the case where the reflecting projections are not minimal.

Proposition 10.4.7. In the setting of Lemma 10.4.6, let v, u be two paths that share
the same initial E1 = D1 and final E= = D< vertices but (v 6∝ (u. Then, the spectral
projections

{
Π (l)

}
of* := (v(†u have the following properties:
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(1) Each Π (l) is in the algebra A := 〈{ΠE}〉.

(2) Each Π (l) is not reflecting with ΠE1 .

Proof. First note that the operator * is a unitary on the eigenspace of ΠE1 since
**† = *†* = ΠE1 . Since * is in A, and it is a normal operator, all its spectral
projections are also in A [249]. This proves statement 1.

From (v 6∝ (u, we have * = (v(
†
u 6∝ (u(

†
u = ΠE1 . Since * =

∑
l lΠ

(l) and
ΠE1 =

∑
l Π

(l) but * 6∝ ΠE1 then there must be more then one spectral projection
Π (l) . Therefore, ΠE1Π

(l)ΠE1 = Π
(l) 6∝ ΠE1 , proving statement 2. �

So, if the minimality condition of statement 2 in Lemma 10.4.6 does not hold, we
can take * := (v(†u for the two paths that violate it and use its spectral projections{
Π (l)

}
to scatter ΠE1 . By scattering the projections in the connected component

of ΠE1 with the spectral projections
{
Π (l)

}
until everything is reflecting again, we

will break down the connected component into a reflection network of smaller rank
projections. Then we can check the condition of minimality again and repeat until
it is satisfied.

Procedure

As was shown in Lemma 10.4.6, in principle minimality of a reflection network can
be established by checking all path isometries connecting every pair of projections
and verifying that they are proportional to one another. We will formally refer to
this procedure as EstablishMinimality. This, of course, is not a computationally
tractable solution because of the exponentially large number of paths in all but the
most degenerate networks. Nonetheless, when dealing with concrete examples, path
invariance of path isometries can be shown based on the specifics of the problem; this
is what wemean in practice when referring to the EstablishMinimality procedure.

Even though we have not encountered non-minimal reflection networks following
the scattering procedure, we do know that such networks exist.14 Therefore, for the
sake of completeness, we have mentioned that even in such cases there is a way to
proceed, given by Proposition 10.4.7.

14Non-minimal reflection networks can be constructed directly by carefully choosing the re-
flecting projections. It is an open question whether there are conditions that guarantee that the
reflecting projections that come out from the scattering procedure are always minimal. If that is not
the case, a tractable procedure that establishes minimality of the reflection network without relying
on the specifics of the problem would be desirable.
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Toy Example (continued)

In the network shown in Fig 10.2(c), we have three connected components, but only
the component

{
Π
(1/2)
/;1 ,Π-;1,Π

(1/2)
/;2

}
has any paths. For every pair of projections

in this component, there is only one simple path (that is a path that has no repeating
vertices) between them, so paths invariance trivially holds for simple paths.

Every non-simple path is of the form
(
(·) ,Π-;1, (·) ,Π-;1, ..., (·) ,Π-;1, (·) ,Π-;1, (·)

)
where (·) is a placeholder for any of the other two projections in the component, and
it may be empty at the boundaries. Any path isometry of such path is proportional
to the path isometry of the simple path

(
(·) ,Π-;1, (·)

)
, because of the reflection re-

lation Π-;1 (·) Π-;1 ∝ Π-;1. Therefore, in this network all path isometries between
every pair are proportional to one another.

Completeness

Completeness requires the reflection network to contain at least one MSMP as
defined in Definition 10.2.4. That is, assuming that the minimality of projections
has been established, we must identify a set of pairwise orthogonal projections that
sum to the identity of the algebra. Since the initial projections in step 1 of the
algorithm are the spectral projections of observables, they must resolve the identity
(otherwise the probabilities of outcomes will not sum to 1). The scattering at step 2
breaks them down into smaller ranks, but they continue to resolve the identity. This
means that completeness is a given if the initial projections resolve the identity to
begin with. However, in more general applications of the algorithm where we do
not assume the inputs to consist of identity-resolving projections, it turns out that
we can still reconstruct an MSMP.

Given the reflection network of projections {ΠE} and the algebra A := 〈{ΠE}〉, we
will assume that all ΠE are minimal in A (that is, minimality has to be established
before checking completeness). Consider the largest subset of pairwise orthogonal
projections

{
ΠE:

}
⊆ {ΠE}, with ΠE:ΠE; = X:;ΠE: , which is a maximal independent

set of vertices in the network (this set does not have to be unique). The subset
{
ΠE:

}
is an MSMP if the operator

�A :=
∑
:

ΠE: (10.96)

is such that �AΠE = ΠE for all E. If it is not, we can use the result of the following
lemma to complete the subset into an MSMP.



229

Lemma10.4.8. Let
{
ΠE:

}
be the largest subset of pairwise orthogonal projections in

the reflection network of {ΠE} ,where allΠE areminimal in the algebraA := 〈{ΠE}〉.
If there is a E such that �AΠE ≠ ΠE, then, with the appropriate normalization factor
2, the operator (here � is the full identity matrix and �A is given by Eq. (10.96))

Π̃E :=
1
2
(� − �A) ΠE (� − �A) , (10.97)

has all of the following properties:

(1) Π̃E is a minimal projection in A.

(2) Π̃E is orthogonal to all
{
ΠE:

}
.

(3) The operator �̃A := �A + Π̃E is such that �̃AΠE = ΠE.

Proof. If we distribute the terms in Eq. (10.97), we will get 2Π̃E = ΠE − �AΠE −
ΠE �A + �AΠE �A so Π̃E is an operator inA. It is clearly self-adjoint and it squares to

Π̃EΠ̃E =
1
22 (� − �A) ΠE (� − �A) ΠE (� − �A) . (10.98)

Since all ΠE are minimal, ΠE (� − �A) ΠE = ΠE − ΠE �AΠE = (1 − U) ΠE, where U
is the proportionality factor in the minimality relation ΠE �AΠE ∝ ΠE, and U is not 1
because that would contradict �AΠE ≠ ΠE. Thus, for 2 = 1− U, Eq. (10.98) is equal
to Π̃E, so Π̃E is a projection. It is minimal because for any matrix " ∈ A,

Π̃E"Π̃E =
1
22 (� − �A) ΠE"̃ΠE (� − �A) (10.99)

where "̃ := (� − �A) " (� − �A) is also inA, so ΠE"̃ΠE ∝ ΠE and Π̃E"Π̃E ∝ Π̃E.
This proves statement 1. Statement 2 follows from (� − �A) ΠE: = ΠE: − ΠE: = 0
so Π̃EΠE: = 0. Lastly, using the minimality of ΠE and 2 = 1 − U once again, we get

Π̃EΠE =
1
2
(� − �A) ΠE (� − �A) ΠE = (� − �A) ΠE (10.100)

so �̃AΠE = �AΠE + (� − �A) ΠE = ΠE. This proves statement 3. �

Procedure

The procedure to establish completeness is only necessary if the initial projections
are not known to resolve the identity.

1: procedure EstablishCompleteness('4 5 ;42C#4C)
2: "("%← PickMaxIndependentSet('4 5 ;42C#4C)
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3: for all Π ∈ ('4 5 ;42C#4C excluding MSMP) do
4: if SumAll("("%)Π ≠ Π then
5: Π̃ ← ConstructComplementaryProj("("%,Π)
6: "("%← AddProj("("%, Π̃)
7: '4 5 ;42C#4C ← AddProj('4 5 ;42C#4C, Π̃)
8: end if
9: end for
10: return '4 5 ;42C#4C
11: end procedure

Completeness is achieved by choosing a maximal independent set of orthogonal
projections in the network

{
ΠE:

}
,15 and testing whether �A =

∑
: ΠE: acts as the

identity on all projections in the network. If it does, then
{
ΠE:

}
is the MSMP.

If it does not, then for each projection such that �AΠE ≠ ΠE, we construct the
complementary projection Π̃E as defined in Eq. (10.97) and add it to the network16
and the independent set of orthogonal projections

{
ΠE:

}
. Lemma 10.4.8 ensures

that the final set
{
ΠE:

}
always consists of pairwise orthogonal minimal projections

in the algebra that sum to the identity, i.e. an MSMP.

Toy Example (continued)

In our example, the initial projections resolve the identity Π/;1 + Π/;2 = �, so, as
expected, the maximal independent set in the reflection network of Fig. 10.2(c) is
the MSMP since Π (1/2)

/;1 + Π
(0)
/;1 + Π

(1/2)
/;2 + Π

(0)
/;2 = �.

In order to demonstrate how the MSMP can be constructed even if it initially is
missing, we will drop Π/;2 and consider the algebra generated by

〈
Π/;1,Π-;1

〉
.

As we calculated before, after scattering, we have a proper reflection network
consisting of the reflecting pair

{
Π
(1/2)
/;1 ,Π-;1

}
and the projectionΠ (0)

/;1 orthogonal to

both; see Fig 10.3(a). The maximal independent set consists of
{
Π
(1/2)
/;1 ,Π

(0)
/;1

}
, but

�A := Π (1/2)
/;1 + Π

(0)
/;1 = Π/;1 does not act as the identity on Π-;1. Using Eq. (10.97),

15Actually, any subset of pairwise orthogonal projections will do, but a maximal independent
set is what we end up constructing anyway.

16When adding a new minimal projection to the network, we need to establish its reflection
relations with all existing elements. The minimality of projections ensures that it will not trigger
new scattering and breakdowns, but we do need to know which existing projections are orthogonal
to the new element and which are not.
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(a)

(b)

Figure 10.3: Completion of a reflection network lacking an MSMP (a), to the one
that has an MSMP (b).

we construct the complementary projection in this algebra

Π̃-;1 :=
1
2

(
� − Π/;1

)
Π-;1

(
� − Π/;1

)
=

1
2
Π/;2Π-;1Π/;2 =

1
2

(
1
2
|7〉 〈7| + 1

2
|+56
− 〉 〈+56

− |
)
,

(10.101)
choosing 2 = 1

2 for proper normalization, and add it to the network. The new
projection Π̃-;1 is orthogonal to both

{
Π
(1/2)
/;1 ,Π

(0)
/;1

}
, and is reflecting with Π-;1,

which results in the reflection network shown in Fig 10.3(b). Now the maximal
independent set sums to �A := Π (1/2)

/;1 +Π
(0)
/;1 + Π̃-;1 and we can check that it acts as

the identity on Π-;1, so
{
Π
(1/2)
/;1 ,Π

(0)
/;1, Π̃-;1

}
is our MSMP.

Construction of Bipartition Tables from Minimal Projections
As discussed at the start of the section, the structure captured by a reflection network
that meets the criteria of minimality and completeness can be translated into a
bipartition table in the following way: the elements of an MSMP correspond to
columns of the BPT. The isometries between the columns are given by the path
isometries between the elements of theMSMP (minimality ensures that the particular
choice of path is inconsequential). Elements of the MSMP that are not connected
by any path in the network are not related by an isometry, so cannot be in the same
block of the BPT. That is, distinct connected components of the reflection network
correspond to distinct blocks of the BPT.
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The formal construction of the BPT relies on the proof of the following lemma:

Lemma 10.4.9. Let {ΠE} be projections of a reflection network for which minimality
and completeness holds, and let

{
ΠE:

}
⊆ {ΠE} be an MSMP. Then, there is a BPT

with the BPOs
{
(
@

:;

}
such that every (@

:;
is a path isometry in the network and the

set
{
(
@

:;

}
spans the algebra A := 〈{ΠE}〉.

Proof. In order to construct the aforementioned BPT, we will first select a subset
of path isometries in the network to be the BPOs.17 Let

{
ΠE@

:

}
be all the elements

of the MSMP that belong to the connected component @ and let ΠE@1 be a single,
arbitrarily chosen element. We first select the path isometries

{
(
@

:1
}
by arbitrarily

choosing a path from ΠE@1
to each ΠE@

:
for : > 1 and (@11 := ΠE@1 . We then define the

BPOs for all :, ; ≥ 1 to be (@
:;

:= (@
:1(

@†
;1 which are just path isometries from ΠE@

;
to

ΠE@
:
that go through ΠE@1 .

For each connected component @, we now construct the corresponding block of the
BPT. First, we choose an orthonormal basis

{
|4@
81〉

}
8=1..A@

for the eigenspace of ΠE@1 ,
where A@ is the rank of projections in the @the component. Then, we populate the
first column of the block with |4@

81〉, such that 8 is the row index, and each subsequent
column : > 1 is populated by the basis |4@

8:
〉 := (@

:1 |4
@

81〉. As a result,

(
@

:;
= (

@

:1(
@†
;1 = (

@

:1ΠE
@

1
(
@†
;1 =

∑
8=1..A@

(
@

:1 |4
@

81〉 〈4
@

81 | (
@†
;1 =

∑
8=1..A@

|4@
8:
〉 〈4@

8;
| , (10.102)

so
{
(
@

:;

}
are indeed the BPOs of this block of the BPT.

Since A is spanned by products of {ΠE} which are proportional to path isometries
{(v}, it suffices to show that every (v is spanned by

{
(
@

:;

}
in order to show that

{
(
@

:;

}
spans A. If

{
ΠE@

:

}
is a MSMP, then by definition �A =

∑
@,: ΠE@

:
is the identity of

the algebra and
(v = �A(v �A =

∑
:;

ΠE@
:
(vΠE@

;
, (10.103)

where @ is the connected component that contains the path v. Every non-vanishing
term ΠE@

:
(vΠE@

;
is proportional to the path isometry ((E@: ,v,E@; ) from ΠE@

;
to ΠE@

:

along the path v. Furthermore, if minimality holds, then according to Lemma
10.4.6 path isometries are path-independent, so ((E@: ,v,E@; ) ∝ (

@

:;
. Therefore, either

17It should be noted that the selection of BPOs is not unique and depends on the arbitrary selec-
tion of paths between the elements of the MSMP. This freedom, however, only changes the individ-
ual BPOs by a constant factor, which does not affect the generalized bipartition structure captured
by the BPT.
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ΠE@
:
(vΠE@

;
= 0 or ΠE@

:
(vΠE@

;
∝ (@

:;
, so Eq. (10.103) implies that (v is in the span of{

(
@

:;

}
. �

The practical takeaway from this lemma is that in order to construct the BPT of
an algebra generated by a reflection network, we need to (arbitrarily) pick a basis{
|4@
81〉

}
8=1..A@

for the eigenspace of a single MSMP element ΠE@1 in each connected
component @, and map those basis elements to the eigenspaces of the rest of MSMP{
ΠE@

:

}
in @ using (arbitrarily chosen) path isometries

{
(
@

:1
}
. The resulting set

{
|4@
8:
〉
}

are the basis elements that reside in block @, row 8, column : of the BPT.

Procedure

The procedure for constructing the BPT is essentially what we did in the proof of
Lemma 10.4.9

1: procedure ConstructIrrepBasis('4 5 ;42C#4C)
2: �%) ← {}
3: for all �>==�><? ⊆ '4 5 ;42C#4C do
4: �;>2: ← {}
5: "0G�=34?(4C ←PickMaxIndependentSet(�>==�><?)
6: Π1 ←PickAnyElement("0G�=34?(4C)
7: �8ABC�>;D<=�0B8B← ConstructEigenBasis(Π1)
8: �;>2: ← AddColumn(�;>2:, �8ABC�>;D<=�0B8B)
9: for all Π:≠1 ∈ "0G�=34?(4C do
10: (:1 ←ConstructPathIsometry(�>==�><?,Π1,Π: )
11: #4F�>;D<=�0B8B←MapBasis((:1, �8ABC�>;D<=�0B8B)
12: �;>2: ← AddColumn(�;>2:, #4F�>;D<=�0B8B)
13: end for
14: �%) ← AddBlock(�%), �;>2:)
15: end for
16: return �%)
17: end procedure

For each connected component, the procedure chooses a maximal independent set
of orthogonal projections, which is the subset of the MSMP in the component, and
uses it to construct the columns of a single block of the BPT. In order to construct
the block, it arbitrarily picks a single projection Π1 in the MSMP and arbitrarily
constructs the basis that span its eigenspace; these basis become the first column
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of the block. The rest of the columns are constructed by picking each of Π:≠1 in
the MSMP and constructing a path isometry (:1 from the eigenspace of Π1 to Π: .
The path isometry (:1 is then used to map the elements of the first column to the
elements of the :th column. Once each block is constructed, it is added to the BPT.

Toy Example (continued)

In the reflection network of Fig. 10.2(c), there are three connected components, but
two of them,

{
Π
(0)
/;1

}
and

{
Π
(0)
/;2

}
, consist of a single projection which correspond to

blocks with a single column. Arbitrarily choosing to use the same basis as we have

used before, these single column blocks are
4
+1
−2

and
8
+5
−6

.

For the remaining block, we identify
{
Π
(1/2)
/;1 ,Π

(1/2)
/;2

}
to be the block’s maximal

independent set. We pick Π (1/2)
/;1 to be the projection associated with the first

column and we pick its basis to be
3
+12
−

. The path isometry that maps the first

column to the second column associated with Π (1/2)
/;2 is constructed by taking the

only simple path between them (we have fixed the normalization after the fact)

(21 ∝ Π (1/2)/;2 Π-;1Π
(1/2)
/;1 =

1
2
|7〉 〈3| + 1

2
|+56
− 〉 〈+12

− | . (10.104)

Then, by mapping the first column using this isometry, we get the second column
7
+56
−

.18 Combining all the columns into blocks completes the construction of the

BPT,

4
+1
−2

8
+5
−6

3 7
+12
−

+56
−

18Although we already identified this basis when we first wrote the projection Π (1/2)
/ ;2 , we could

not know a priori how the path isometry would map the eigenbasis between projections. It is only
due to the simplicity of this toy example that the basis we used to express the projections after
scattering ended up as the basis in the BPT.
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The above BPT tells us that the Hilbert space decomposes into irreps as

H = H�1 ⊕ H�2 ⊕ H�3 ⊗ H�3 , (10.105)

where �@ are the subsystems associated with the multiplicity of irreps and �@ are
the subsystems on which the algebra acts irreducibly. In this case, blocks 1 and 2
(the single column blocks) specify one-dimensional irreps, so the one-dimensional
subsystems �@=1,2 are absorbed into the two-dimensional multiplicities �@=1,2. The
last block specifies a two dimensional irrep �3, with a two-dimensional multiplicity
�3.

According to Theorem 10.2.2, with respect to this irrep decomposition, all operators
in the algebra are of the form

" = 21��1 + 22��2 + ��3 ⊗ "�3 (10.106)

for any scalars 21, 22, and 2 × 2 matrices "�3 . In particular, the generators {/, -}
can also be presented in this form. To see this explicitly, we change the original
basis into the irrep basis given by the BPT (reading the BPT from left to right, top
to bottom)

{|1〉 , |2〉 , |3〉 , |4〉 , |5〉 , |6〉 , |7〉 , |8〉} ↦−→
{
|4〉 , |+1−2〉 , |8〉 , |

+5
−6〉 , |3〉 , |7〉 , |

+12
− 〉 , |+56

− 〉
}
.

(10.107)
Assuming / = 0Π/;1 + 1Π/;2 and - = 2Π-;1 + 3Π-;2, for some eigenvalues
0, 1, 2, 3, we re-express their matrices using the irrep basis, thus simultaneously
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block-diagonalizing both / and -

/ =

©«

0

0

0

0

1

1

1

1

ª®®®®®®®®®®®®®®®¬

↦−→

©«

0

0

1

1

0

1

0

1

ª®®®®®®®®®®®®®®®¬
(10.108)

- =

©«

2+33
4

2−3
4

2−3
4

2−3
4

2−3
4

2+33
4

2−3
4

2−3
4

2+3
2

2−3
2

3

2−3
4

2−3
4

2+33
4

2−3
4

2−3
4

2−3
4

2−3
4

2+33
4

2−3
2

2+3
2

3

ª®®®®®®®®®®®®®®®¬

↦−→

©«

3

3

3

3

2+3
2

2−3
2

2−3
2

2+3
2

2+3
2

2−3
2

2−3
2

2+3
2

ª®®®®®®®®®®®®®®®¬

.

(10.109)

Now the irrep decomposition (10.105) of the algebra generated by {/, -} can be
easily observed from the block-diagonal form of the generators.

The Algorithm and Its Proof
Following the results of the previous subsections, we are now in the position to
formally present and prove the correctness of the irrep decomposition algorithm.
The input of this algorithm is a finite set of self-adjoint matrices19 M ⊆ L (H)
that generate the algebra A := 〈M〉. The output is a set of basis elements

{
|4@
8:
〉
}

labeled by the irreps ofA where @ specifies the distinct irreps, 8 specifies themultiple
instances of identical irreps, and : specifies the distinct basis elements inside each
irrep. The irrep decomposition

H �
⊕
@

H�@ ⊗ H�@ (10.110)

19It is not necessary to assume self-adjoint generators, but it is convenient. We can always ex-
press non-self-adjoint generators as sums of self-adjoint matrices in the algebra, so this assumption
is not restrictive.
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is then given by reinterpreting the basis |4@
8:
〉 as the product basis |0@

8
〉 |1@

:
〉 of

H�@ ⊗ H�@ (formally, we will define the isometry + :=
∑
@,8,: |0

@

8
〉 |1@

:
〉 〈4@

8:
| that

mapsH into
⊕

@H�@ ⊗ H�@ and thus specifies the decomposition).

With the procedures defined in the previous subsections, the top-level procedure of
the algorithm is as follows:

Algorithm 1 Irrep decomposition of matrix algebra
1: procedure IrrepDecomposition(M)
2: (?42%A> 9 B← GetAllSpectralProjections(M)
3: '4 5 ;42C#4C ← ScatterAllProjections((?42%A> 9 B)
4: '4 5 ;42C#4C ← EstablishMinimality('4 5 ;42C#4C)
5: '4 5 ;42C#4C ← EstablishCompleteness('4 5 ;42C#4C)
6: �%) ← ConstructIrrepBasis('4 5 ;42C#4C)
7: return �%)
8: end procedure

The algorithm returns a BPT since this is the natural data structure to organize the
irrep basis.

The correctness of this algorithm follows from the proof of the following theorem:

Theorem 10.4.10. Let H be a finite-dimensional Hilbert space, M ⊆ L (H) a
finite set of self-adjoint matrices, and A := 〈M〉 the matrix algebra generated by
M. Then, Algorithm 1 produces the basis

{
|4@
8:
〉
}
of H such that the isometry

+ :=
∑
@,8,: |0

@

8
〉 |1@

:
〉 〈4@

8:
| explicitly specifies the irrep decomposition

H �
⊕
@

H�@ ⊗ H�@ (10.111)

defined in Theorem 10.2.2 for the algebra A.

Proof. From Proposition 10.2.5, we know that for each " ∈ M, the spectral
projections of " generate the algebra 〈"〉 so the set of projections produced by
GetAllSpectralProjections generates A.

During the procedure ScatterAllProjections, we break down pairs of projections
{Π1,Π2} by the scattering operation as defined in Definition 10.4.1. The resulting
projections

{
Π
(_)
1 ,Π

(_)
2

}
are in the algebra generated by {Π1,Π2} because – again

using Proposition 10.2.5 – they are the spectral projections of the operators Π8Π 9Π8

that are in the algebra generated by {Π1,Π2} (for null elements Π (0)
8

it is true by the
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definition of Eq. (10.64)). Conversely, the predecessor projections {Π1,Π2} are in
the algebra generated by

{
Π
(_)
1 ,Π

(_)
2

}
because each

{
Π
(_)
8

}
sums to Π8. Therefore,

the elements {Π1,Π2} before, and the elements
{
Π
(_)
1 ,Π

(_)
2

}
after scattering, gener-

ate the same algebra. So, after every iteration of scattering, the resulting reflection
network generates the same algebra A as before.

The procedure ScatterAllProjections keeps track of the known and unknown
reflection relations as the network evolves, so when it stops, all pairs of projec-
tions must be reflecting. This procedure is guaranteed to stop because, according
to Lemma 10.4.4, every scattering iteration either identifies a previously unknown
reflecting pair, or the pair scatters into a series of reflecting pairs of lower rank.
Eventually, all projections will either be reflecting or they will be reduced to rank 1
and then they must again be reflecting. Therefore, the procedure ScatterAllPro-
jections produces, in a finite number of iterations, a proper reflection network that
consists of projections that generate A.

The procedure EstablishMinimality establishes that all elements of a proper re-
flection network are minimal projections of the algebraA by checking the condition
of minimality given by Lemma 10.4.6.

The procedure EstablishCompleteness completes the maximal orthogonal set of
projections in the reflection network to an MSMP as prescribed by Lemma 10.4.8.

At this point, we have a reflection network that generates A and is known to be
minimal and complete, so the conditions of Lemma 10.4.9 hold. The procedure
ConstructIrrepBasis constructs the basis

{
|4@
8:
〉
}
according to the procedure de-

scribed in the proof of Lemma 10.4.9, so the partial isometries

(
@

:;
:=

∑
8

|4@
8:
〉 〈4@

8;
| (10.112)

are the path isometries given by that Lemma that span the algebra A.

With respect to the decomposition (10.111) specified by the isometry+ :=
∑
@,8,: |0

@

8
〉 |1@

:
〉 〈4@

8:
|,

the operators (@
:;
take the form

+(
@

:;
+† =

∑
8

|0@
8
〉 |1@

:
〉 〈0@

8
| 〈1@

;
| = ��@ ⊗ |1

@

:
〉 〈1@

;
| , (10.113)

so they span all matrices of the form

" =
⊕
@

��@ ⊗ "�@ . (10.114)
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Therefore, with respect to the decomposition (10.111), the algebra

A = B?0=
{
(
@

:;
� ��@ ⊗ |1

@

:
〉 〈1@

;
|
}

(10.115)

consists of all, and only, the matrices of the form (10.114), as promised by Theorem
10.2.2. �

10.5 Examples of State Reduction via Irrep Decomposition of Operational
Constraints

Particle with Orbital and Spin Angular Momentum
Here, we consider a single particle with orbital angular momentum ; and spin
1/2. In light of our discussion in Section 10.3, we would like to know how the
quantum state of the particle reduces if operationally we cannot distinguish between
spin and orbital angular momentum and are constrained to measurements of total
angular momentum. This question, of course, can be addressed with the standard
formalism of group representation theory (or “addition of angular momentum” as it
is called in physics textbooks). From this formalism, we know that the total angular
momentum operators are reducible and split the Hilbert space of a spin-orbit particle
into ; + 1/2 and ; − 1/2 sectors of total angular momentum, which are captured by
Clebsch-Gordan coefficients. We will now show that the same conclusion can be
reached, including the particular Clebsch-Gordan coefficients, without relying on
the formalism of angular momentum addition, but by instead using the scattering of
projections as described in Section 10.4.

The Hilbert space of a spin 1/2 particle with orbital angular momentum ; is the
tensor productH! ⊗H( of orbital and spin degrees of freedom of dimensions 2; +1
and 2 respectively. The total angular momentum component along the A axis (where
A can stand for any direction) is given by the operator

�A := !A ⊗ � + � ⊗ (A , (10.116)

where !A and (A are the operators of orbital angular momentum and spin along
A. Given our operational constraints, we should look for the irrep structure of the
algebra 〈{�A}〉 where A assumes all directions.

Wewill denotewith |A;<! , <(〉 the simultaneous eigenstates of !A⊗ � and �⊗(A with
the eigenvalues<! = −;, ..., ; and<( = ±1

2 respectively; we will call these states the
spin-orbit basis. Then, since �A |A;<! , <(〉 = <� |A;<! , <(〉 where <� = <! +<(,
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the spectral decomposition of �A is given by

�A =

;+ 1
2∑

<�=−;− 1
2

<�ΠA;<� (10.117)

and the spectral projections are

ΠA;<� :=

|A;±;,±1

2〉 〈A;±;,±
1
2 | |<� | = ; + 1

2∑
<(=±1/2 |A;<� − <(, <(〉 〈A;<� − <(, <( | |<� | < ; + 1

2 .
(10.118)

Note that two of the spectral projections (with |<� | = ; + 1
2 ) are rank 1 and the rest

are rank 2.

The algebra generated by {�A}, for all A, is also generated by just the two operators
{�I, �G}. This is because the rotations 4−8\�G and 4−8i�I are elements of the algebra
〈�I, �G〉 and every �A can be produced by rotating 4−8i�I4−8\�G �I48\�G48i�I with the
appropriate angles \, i. Therefore, in order to find the irrep structure of the algebra
〈{�A}〉, it is sufficient to consider the algebra generated by the spectral projections{
ΠI;<� ,ΠG;<�

}
of {�I, �G}. In the following, we denote with A the variable that takes

the values of the two axis I, G and similarly for the capitalized version ' = /, - ,
which we will later use to label states.

The initial improper reflection network consists of all projections
{
ΠI;<� ,ΠG;<�

}
for

<� = −; − 1
2 , ..., ; +

1
2 . Our scattering strategy will be to take the rank 1 projection

ΠG;;+ 1
2
and use it to break all the rank 2 projections ΠI;<� , and similarly, take the

rank 1 projection ΠI;−;− 1
2
and use it to break all the rank 2 projections ΠG;<� . 20

These scatterings will result in all projections reducing to rank 1, so the reflection
network becomes proper and minimal. After that, we will only have to identify the
connected components of this network.

The scattering of the pairs ΠI;<� ,ΠG;;+ 1
2
and ΠG;<� ,ΠI;−;− 1

2
comes down to the

spectral decomposition of

ΠI;<�ΠG;;+ 1
2
ΠI;<� = ΠI;<� |G; ;,

1
2
〉 〈G; ;,

1
2
| ΠI;<� (10.119)

ΠG;<�ΠI;−;− 1
2
ΠG;<� = ΠG;<� |I;−;,−

1
2
〉 〈I;−;,−1

2
| ΠG;<� . (10.120)

20The strategy of choosing the scattering pairs is not important from the perspective of the raw
algorithm we presented in the previous section, but it does make a difference in how hard it is to
carry it out analytically, as we are doing here.
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Since ΠA;±;± 1
2
(A = G, I) are rank 1, they do not break, so we only need to figure out

how the remaining ΠA;<� break in these scatterings. For that purpose, we define the
following states and the associated projections

|/; ; + 1
2
, <�〉 :=

1√
#<�

ΠI;<� |G; ;,
1
2
〉 Π

(;+ 1
2 )

I;<� := |/; ; + 1
2
, <�〉 〈/; ; + 1

2
, <� |

(10.121)

|-; ; + 1
2
, <�〉 :=

1√
#<�

ΠG;<� |I;−;,−
1
2
〉 Π

(;+ 1
2 )

G;<� := |-; ; + 1
2
, <�〉 〈-; ; + 1

2
, <� |

(10.122)

with the (unimportant) normalization factor
√
#<� . The capitalized labels /, - of

the axis symbolize the fact that these are the eigenstates of total angular momentum
with eigenvalue ; + 1

2 , as we will see shortly. The scatterings can then be expressed
as

ΠI;<�ΠG;;+ 1
2
ΠI;<� = #<�Π

(;+ 1
2 )

I;<� (10.123)

ΠG;<�ΠI;−;− 1
2
ΠG;<� = #<�Π

(;+ 1
2 )

G;<� , (10.124)

so the rank 1 projections Π(;+
1
2 )

A;<� are one of the spectral projections that come out
of scattering, corresponding to the eigenvalue #<� . For |<� | = ; + 1

2 , there is no
additional spectral projection since the projections ΠA;±;± 1

2
are rank 1 and they do

not break, so ΠA;±;± 1
2
= Π
(;+ 1

2 )
A;±;± 1

2
, or equivalently, |'; ; + 1

2 ,±
(
; + 1

2

)
〉 = |A;±;,±1

2〉.

For |<� | < ; + 1
2 , the second spectral projection is given by ΠA;<� − Π

(;+ 1
2 )

A;<� and it
corresponds to the eigenvalue 0. Since this is just the projection on the orthogonal
complement of |'; ; + 1

2 , <�〉 in the eigenspace of ΠA;<� , we will have to identify
the orthogonal complements of the states |'; ; + 1

2 , <�〉.

Using their definition above, the states |/; ; + 1
2 , <�〉, for |<� | < ; + 1

2 , can be
expressed (without worrying about the normalization) as

|/; ; + 1
2
, <�〉 ∝ ΠI;<� |G; ;,

1
2
〉 (10.125)

=
∑

<(=±1/2
|I;<� − <(, <(〉 〈I;<� − <(, <(〉 G; ;,

1
2

(10.126)

∝ |I;<� −
1
2
,

1
2
〉 3;

<�− 1
2 ,;

(c
2

)
+ |I;<� +

1
2
,−1

2
〉 3;

<�+ 1
2 ,;

(c
2

)
.

(10.127)
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Here, we have used the Wigner’s “small” d-matrix element [254] 3;
<�−<( ,;

(
c
2
)
that

is obtained from the orbital part of the inner product (the spin part gives 1/
√

2 which
we disregard as a normalization factor). In particular, the specific d-matrix elements
we need are given by

3;
<�∓ 1

2 ,;

(c
2

)
=

(
1
√

2

)2;
√(

2;
; − <� ± 1

2

)
(10.128)

so, using this expression and normalizing, we obtain the state

|/; ; + 1
2
, <�〉 = |I;<� −

1
2
,

1
2
〉

√
; − <� − 1

2
2; + 1

+ |I;<� +
1
2
,−1

2
〉

√
; − <� + 1

2
2; + 1

= |I;<� −
1
2
,

1
2
〉 2;+1,<�− + |I;<� +

1
2
,−1

2
〉 2;+1,<�+ .

The coefficients 2;+1,<�± :=
√
;−<�± 1

2
2;+1 are the well-known Clebsch-Gordan coeffi-

cients that arise in spin-orbit coupling, so we know the states |/; ; + 1
2 , <�〉 are

the states of total angular momentum ; + 1/2 with <� component along the I
axis. Its orthogonal complement in the two-dimensional subspace spanned by{
|I;<� − 1

2 ,
1
2〉 , |I;<� + 1

2 ,−
1
2〉

}
is just the antipodal point of |/; ; + 1

2 , <�〉 on the
Bloch sphere:

|/; ; − 1
2
, <�〉 := |I;<� −

1
2
,

1
2
〉 2;+1,<�+ − |I;<� +

1
2
,−1

2
〉 2;+1,<�− . (10.129)

With this arrangement of Clebsch-Gordan coefficients, these states are the states of
total angular momentum ; − 1/2 with <� component along the I axis.

The same characterization for the |-; ; + 1
2 , <�〉 states can be derived from the

observation

|-; ; + 1
2
, <�〉 =

1√
#<�

ΠG;<� |I;−;,−
1
2
〉 (10.130)

=
1√
#<�

4−8
c
2 �HΠI;<� 4

8 c2 �H4−8
c
2 �H |G; ;,

1
2
〉 (10.131)

= 4−8
c
2 �H |/; ; + 1

2
, <�〉 (10.132)

so their orthogonal complements are

|-; ; − 1
2
, <�〉 := 4−8

c
2 �H |/; ; − 1

2
, <�〉 . (10.133)
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With the rank 1 projections Π(;−
1
2 )

A;<� on the states |'; ; − 1
2 , <�〉, we can finally

conclude that for |<� | < ; + 1
2 , the projections ΠI;<� break into Π

(;+ 1
2 )

I;<� +Π
(;− 1

2 )
I;<� and

ΠG;<� break into Π(;+
1
2 )

G;<� + Π
(;− 1

2 )
G;<� . The resulting reflection network consists of the

projections
{
Π
(;+ 1

2 )
I;<� ,Π

(;+ 1
2 )

G;<� ,Π
(;− 1

2 )
I;<� ,Π

(;− 1
2 )

G;<�

}
for <� = −; − 1

2 , ..., ; +
1
2 where the

four projections Π(;+
1
2 )

I;±;± 1
2
,Π(;+

1
2 )

G;±;± 1
2
(for |<� | = ; + 1

2 ) are just relabeled ΠI;±;± 1
2
, ΠG;±;± 1

2

and the rest are the result of scatterings. Since all projections are rank 1, this is a
proper minimal reflection network.

From the fact that |-; ; ± 1
2 , <�〉 = 4−8

c
2 �H |/; ; ± 1

2 , <�〉 and that states of different
total angular momentum are orthogonal to each other, it should be clear that all{
Π
(;+ 1

2 )
I;<� ,Π

(;+ 1
2 )

G;<�

}
are orthogonal to all

{
Π
(;− 1

2 )
I;<� ,Π

(;− 1
2 )

G;<�

}
. At the same time, all{

Π
(;+ 1

2 )
I;<�

}
are properly reflecting with all

{
Π
(;+ 1

2 )
G;<�

}
and similarly for ;− 1

2 . Therefore,

the reflection network has two connected components for ; + 1
2 and ; − 1

2 . We choose

the maximal independent sets in the connected components to be
{
Π
(;+ 1

2 )
I;<�

}
and{

Π
(;− 1

2 )
I;<�

}
. Since all projections are rank 1, there is no freedom in the alignment of

columns in the BPT; it is just two blocks with a single row of eigenbasis of
{
Π
(;+ 1

2 )
I;<�

}
and

{
Π
(;− 1

2 )
I;<�

}
:

; + 1
2 , ; +

1
2 · · · ; + 1

2 ,−; −
1
2

; − 1
2 , ; −

1
2 · · · ; − 1

2 ,−; +
1
2

Each cell corresponds to the state |/; ; ± 1
2 , <�〉, where we have suppressed the /

axis label.

The resulting Hilbert space decomposition

H! ⊗ H( � H(;+
1
2 ) ⊕ H (;− 1

2 ) (10.134)

indicates that the restriction to total angular momentum measurements will result in
a superselection between the two total angular momentum sectors. The accessible
state is therefore obtained, according to Eq. (10.53) of Section 10.3, from the state-
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reduction map
d ↦−→ Π(;+ 1

2 )dΠ(;+ 1
2 ) + Π(;− 1

2 )dΠ(;− 1
2 ) , (10.135)

whereΠ(;± 1
2 ) are projections on the sectorsH(;± 1

2 ) . So the coherence terms between
total angular momentum sectors are unobservable if only total angular momentum
measurements are allowed.

This conclusion is of course not surprising if we know the theory of angular mo-
mentum addition. But, the fact that the same result, including the explicit derivation
of the total angular momentum states |/; ; ± 1

2 , <�〉 in the spin-orbit basis, can be
obtained by scattering of projections, is a strong confirmation of the viability of this
approach to derivation of irreps. In the next example, we will consider a case where
the group representation theory is not aswell developed, yet the projection-scattering
method yields the irrep decomposition in a straight forward way.

A Bound Pair of Particles on a Lattice
In this example, we consider a periodic one-dimensional lattice of length � with
two identical particles on it. The two particles are assumed to be bound in the sense
that their relative position and relative momentum cannot exceed 1 lattice site. This
is a simple toy model for a bound pair of particles on a lattice that oscillate around
a common center of mass with limited energy. The operational constraint that we
will consider is the inability to resolve the composite pair as two separate particles,
which is manifested by a restriction to the center of mass measurements {-2<, %2<}
of both position and momentum. Once again, as was discussed in Section 10.3, the
main challenge is to find the irrep structure of the algebra 〈-2<, %2<〉.

The�2 dimensionalHilbert spaceH1⊗H2 is spanned by the position basis |G; =1, =2〉
for =8 = 0, ..., � − 1. The momentum basis states |?;<1, <2〉 are related to the
position basis via the lattice Fourier transform

|?;<1, <2〉 := � |G;<1, <2〉 =
1
�

�−1∑
=1,=2=0

482c(<1=1+<2=2)/� |G; =1, =2〉 . (10.136)

The center of mass operators are given by

-2< :=
1
2
(-1 ⊗ �2 + �1 ⊗ -2) (10.137)

%2< :=
1
2
(%1 ⊗ �2 + �1 ⊗ %2) , (10.138)
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where -8, %8 are the position and momentum operators on each particle. In general,
-2< |G; =1, =2〉 = =2< |G; =1, =2〉 where =2< = (=1 + =2) /2, but, assuming that the
particles cannot occupy the same lattice site simultaneously, 21 in the bound state we
have =2 = =1 ± 1 so =2< = =1 ± 1/2. For a shorter notation, we will use the integer
= instead of the half-integer =2< related by =2< = = + 1/2. Then, for each possible
eigenvalue =2< for bound particles, there are two possible eigenstates |G; =, = + 1〉
and |G; = + 1, =〉. The same notation applies to %2<.

Therefore, the spectral projections of -2< and %2<, when considering bound parti-
cles that cannot occupy the same site, are given by

ΠG;= := |G; =, = + 1〉 〈G; =, = + 1| + |G; = + 1, =〉 〈G; = + 1, =| (10.139)

Π?;< := |?;<, < + 1〉 〈?;<, < + 1| + |?;< + 1, <〉 〈?;< + 1, < | (10.140)

for =, < = 0, ..., � − 1 and the summation is modulo �. The algebra 〈-2<, %2<〉 is
then generated by the improper reflection network of

{
ΠG;=,Π?;<

}
, which we will

now reduce to a proper network by scattering of projections.

The result of scattering of any pair of projections {ΠG;=,Π?;<} depends on the
spectral decomposition of Π=;GΠ<;?Π=;G . For this calculation, we first define the
states

|j= (i)〉 :=
1
√

2

(
|G; =, = + 1〉 + 48i |G; = + 1, =〉

)
(10.141)

|k< (i)〉 :=
1
√

2

(
|?;<, < + 1〉 + 48i |?;< + 1, <〉

)
. (10.142)

Then, using the Fourier transform of Eq. (10.136), we derive

ΠG;=Π?;<ΠG;= = ΠG;= |?;<, < + 1〉 〈?;<, < + 1| ΠG;= + ΠG;= |?;< + 1, <〉 〈?;< + 1, < | ΠG;=

(10.143)

=
2
�2 |j=

(
−2c
�

)
〉 〈j=

(
−2c
�

)
| + 2

�2 |j=
(
2c
�

)
〉 〈j=

(
2c
�

)
| .

(10.144)

The two states |j=
(
±2c
�

)
〉 are not orthogonal to each other, so this is not yet the

spectral decomposition. One can check that the eigenstates of ΠG;=Π?;<ΠG;= are

21We refrain from calling the particles fermions because we have no reason to assume that their
states must be anti-symmetric under particle exchange.
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|j= (0)〉 and |j= (c)〉 with the distinct eigenvalues 2
�2

(
1 ± cos

(
2c
�

))
. (One can also

visualize this fact using the representation of |j=
(
±2c
�

)
〉 as two vectors in the G − H

plane of the Bloch sphere of the qubit spanned by |G; =, = + 1〉 and |G; = + 1, =〉.)
Thus, the projection ΠG;= breaks into Π (0)G;= + Π (c)G;= , where Π

(i)
G;= := |j= (i)〉 〈j= (i) |,

and this result does not depend on the < argument of Π?;<. A similar calculation
for the scattering of Π?;< via the spectral decomposition of Π?;<ΠG;=Π?;<, results
in it breaking into Π (0)?;< + Π (c)?;< where Π (i)?;< := |k< (i)〉 〈k< (i) |.

Therefore, by scattering all (arbitrarily chosen) pairsΠG;=,Π?;<, the initial reflection
network reduces to

{
Π
(0)
G;= ,Π

(c)
G;= ,Π

(0)
?;<,Π

(c)
?;<

}
for =, < = 0, ..., � − 1. Since now all

projections are rank 1, the network is again proper and minimal. In order to see
how it decomposes into connected components, we note that for 0, 1 = 0, 1 we have
(using 4−80c = 480c)

〈j= (0c)〉 k< (1c) =
√

2 cos
(
(1 + 0) c

2

) (
482c/� + 4−80c

)
48(1+0)c/2482c(2=<+<+=)/� .

(10.145)
The cosine term tells us that these states are orthogonal for 0 ≠ 1 and are not
orthogonal for 0 = 1. Then the subsets

{
Π
(0)
G;= ,Π

(0)
?;<

}
and

{
Π
(c)
G;= ,Π

(c)
?;<

}
form two

separate connected components in the network.

We choose the maximal independent sets in the connected components to be
{
Π
(0)
G;=

}
and

{
Π
(c)
G;=

}
. (This choice is arbitrary; we could just as well have chosen the

momentum basis.) Then, similarly to the example of a particle with orbital and spin
angular momentum, the BPT is just two blocks with single rows of eigenbasis of{
Π
(0)
G;=

}
and

{
Π
(c)
G;=

}
:

j0 (0) j1 (0) · · · j�−1 (0)
j0 (c) j1 (c) · · · j�−1 (c)

This BPT indicates the irrep decomposition into two sectors:

H1 ⊗ H2 � H (0) ⊕ H (c) . (10.146)

Thus we learn that, under restriction to the center of mass measurements, the
Hilbert space splits into two superselection sectors with symmetric |j= (0)〉 and
anti-symmetric |j= (c)〉 configurations of the bound pair of particles. We can now
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see that this BPT specifies the commutant algebra of particle exchange symmetry,
and indeed, -2< and %2< commute with exchange of particles so they belong to the
commutant of this symmetry. This, however, does not mean that a priori it was
obvious that {-2<, %2<} generate the whole commutant algebra of this symmetry;
it is possible that they only generate a subalgebra of the commutant. Only by
explicitly finding the irreps with the projection scattering method we can be certain
that 〈-2<, %2<〉 is the commutant algebra of particle exchange.

As discussed in Section 10.3, the bound pair’s state reduces by enforcing the super-
selection with projections on the superselection sectorsH (0) ,H (c):

d ↦−→ Π (0)dΠ (0) + Π (c)dΠ (c) . (10.147)

This state reduction accounts for the operational constraints of an observer that
cannot resolve the individual particles. From such an observer’s perspective, each
sector @c for @ = 0, 1 is effectively a single composite particle with position states
|j= (@c)〉 and momentum states |k= (@c)〉 = � |j= (@c)〉. The distinction between
the two sectors is then associated with some “charge” @ = 0, 1 of the composite
particle. Whether this charge is constant in time depends on the full dynamics of
the system. If the charge is not conserved, meaning the dynamics have tunneling
terms between the symmetric and anti-symmetric states of the pair, the constrained
observer can describe the charge variation as the result of interactions with an
“environment.” The “environment” in this case is the composite particle’s intrinsic
degrees of freedom, which are inaccessible with {-2<, %2<}.

10.6 Beyond Matrix Algebras: Partial Bipartitions
Thus far we have discussed the case of matrix algebras, where Hilbert space is de-
composed into a collection of direct-sum sectors of tensor products. These general-
ized bipartitions, as described by Eq. (10.17), are represented using their bipartition
table (BPT) structure as block-diagonal arrangements of rectangular tables. We will
now extend this construction of generalized bipartitions to include the case where
some or all of the direct-sum sectors are represented by non-rectangular tables. We
will refer to these non-rectangular cases as partial bipartitions. The power of partial
bipartitions will be relevant when, for example, the set of measurements that can be
implemented by an observer in the laboratory does not form an algebra.

As a motivating example, consider two spin-1
2 particles, spanned by the total spin

basis labeled by {|(I, `〉}, where (I is the total spin-z of the two spins and ` labels
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the information about the multiplet nature of the state, with ` = B for singlet and
` = C for triplet. A relevant situation is when an experimenter in the lab only has
access to measurements of the total spin of the two particles, and not the multiplet
information of the quantum state. Written in terms of the computational tensor
product basis {|0〉 , |1〉}⊗2, we have

|1, C〉 = |1, 1〉 (10.148)

|0, B〉 = |01〉 − |10〉
√

2
(10.149)

|0, C〉 = |01〉 + |10〉
√

2
(10.150)

|−1, C〉 = |00〉 . (10.151)

This four-dimensional Hilbert space is not factorizable into a tensor product structure
where one factor describes the total spin-z degree of freedom and the other factor
corresponding to the multiplet information. Partial bipartitions offer a natural
construction to capture such splits of Hilbert space. Partial bipartitions were first
introduced in [246] in the context of quantum coarse-graining and some examples
were discussed. In this paper, we will use the concept of partial bipartitions in
Sections 10.7 and 10.8 below, where we will discuss decoherence and coarse-
graining of Hilbert space using a variational approach based on an underlying
Hamiltonian which governs evolution. Our exposition here of the concept and
construction of partial bipartitions, in particular some of the notation, will be with
an eye towards the variational approach.

Let us first consider the case of a single direct-sum factor, so that the BPT is a
single non-rectangular table describing a partial bipartition. By virtue of being
non-rectangular, the split of the Hilbert space is no longer that of a tensor product
structure between the row and column degrees of freedomof the BPT, aswas the case
for a rectangular BPT, but rather captures a more general partition of the space into
two. Consider a finite-dimensional Hilbert spaceH of dimension dimH = 3 < ∞
spanned by a choice of orthonormal basis,

H � span
{
|48:〉

}
. (10.152)

A partial bipartition of H is specified by an arrangement of the 3 basis elements
into a non-rectangular bipartition table, with #� columns and #' rows such that
3 < #�#'. As suggested by the notation, the basis element |48:〉 is located in the
BPT in the 8-th row with 8 = 1, 2, · · · , #' and :-th column with : = 1, 2, · · · , #� .
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The BPT is then specified by the heights {ℎ: } for each of the #� columns which
is the number of basis elements which go in the :-th column. In what follows,
we will focus on compact non-rectangular BPTs which correspond to the following
conditions on the BPT:

1. The number of rows of the BPT is equal to the height of the largest column
i.e. max{ℎ: } = #'.

2. The ℎ: basis elements which populate the :-th column are stacked together,
starting from the first row without having any breaks in them.

A compact BPT minimizes loss of coherence under the action of the state-reduction
map defined by the BPT. Such loss of coherence under state reduction is akin to
superselection which is different than the dynamical decoherence induced by the
Hamiltonianwewill be interested in in the following sections. In Eq. (10.153) below,
we depict a generic compact non-rectangular BPT specifying a partial bipartition
ofH � H� �H�. Arrows point toward the associated states of partial subsystems.

41,1 ... 41,: ... 41,F8 ... 41,#� � U1
...

...
...

...
...

...
...

...

48,1 ... 48,: ... 48,F8 � U8
...

...
...

...
...

...

4ℎ: ,1 ... 4ℎ: ,: � Uℎ:
...

...
...

4#' ,1 ... � U#'

� � � �
V1 ... V: ... VF8 ... V#�

(10.153)

It should be noted that as long as the compact form condition is met, there is
still some freedom, albeit inconsequential, in the locational arrangement of basis
elements in the BPT which will have no consequence in the state-reduction map
defined by the BPT. For example, in Eq. (10.153), one can swap any two columns,
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which is equivalent to swapping the order of basis in the reduced state space, and
that will still leave the partial bipartition encoded in the BPT.

As we discussed in Section 10.2, since generalized bipartitions describe tensor-
product splits of Hilbert space, and direct-sum sectors thereof, we can immediately
infer that a partial bipartition describes splits of Hilbert space more general than
tensor factorization. The span of the row (column) kets {|U8〉}#'8=1 ({|V:〉}#�:=1) is
defined to be the row (column) Hilbert spaceH� (H�) as illustrated in Eq. (10.153).
These can be identified as partial subsystems of the full underlying Hilbert spaceH
and we represent this partial factorization as,

H � H� � H� . (10.154)

One can always isometrically embed a partial bipartition of a Hilbert space into a
larger tensor product Hilbert space defined byH�� � H� ⊗H�, such that for every
|48:〉 ∈ H , there is a matching |U8〉 |V:〉 ∈ H�� but not vice-versa. The extra pairs
inH�� which do not have a match inH correspond to the missing elements of the
BPT that would complete it to a rectangular, and hence, tensor product form.

Tensor product structures which correspond to generalized bipartitions are thus
a special case of partial bipartitions which have rectangular BPTs, satisfying the
condition 3 = #�#'.

Once the partial subsystem H� is identified, we can define a state-reduction map
which will “trace” outH�, akin to a partial-trace map in the case of tensor products,
but defined appropriately for partial subsystems. We denote this state-reduction map
for the case of partial subsystems as CA (�) which maps the density matrices between
the operator spaces as

CA (�) : L (H) −→ L (H�) , (10.155)

so the reduced state-space is indeed described by the partial subsystem H� as
expected. We use a bracketed subscript (�) in CA (�) to denote the state-reduction
map of a partial system, as opposed to the unbracketed one �, which refers to the
usual partial-trace map for tensor factors.

The action of CA (�) on the matrix elements in the bipartition basis
��48,:〉,

CA (�) :
��48,:〉 〈

4 9 ,;
�� ↦−→ X8 9 |V:〉 〈V; | , (10.156)

thus traces over the row indices 8, 9 as if they label basis elements of a proper tensor
factor of Hilbert space.
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Based on the BPT structure, the original Hilbert space H can be decomposed into
direct-sum sectors, each corresponding to the subspace spanned by basis elements
of a single column,

H �
#�⊕
:=1
H: . (10.157)

Similar to the case of generalized bipartitions, we can define bipartition operators
(BPOs) for partial subsystems,

(:; =

<8=(ℎ: ,ℎ;)∑
8=1

��48,:〉 〈
48,;

�� , :, ; = 1, 2, 3, · · · , #� , (10.158)

that map between columns of the bipartition table by preserving the row index 8
of each element (where it should be understood that the element is skipped in the
sum if the row is not present in the destination column). BPOs of the form (::

correspond to projectors on the column H: subspace and the ones of the form (:;

with : ≠ ; implement partial isometries from (a subspace of) H; to (a subspace
of) H: (depending on which dimension is lower). Written in terms of bipartition
operators, the state-reduction map maps a density matrix d ∈ L(H) to a reduced,
traced out state d� ∈ L(H�) ,

d� = CA (�) (d) =
#�∑
:,;=1

CA ((:;d) |V;〉 〈V: | . (10.159)

As an illustrative example, consider the 6 dimensional Hilbert spaceH spanned by
the orthonormal basis {|B〉} for B = 1, ..., 6. A partial bipartition of H is chosen
such that in the basis {|B〉}, it is specified by the bipartition table,

1 2 3
4 5

6

(10.160)

While one can identify a notational correspondence between states {|B〉} and {|48,:〉}
using their row/column location in the BPT, we will stick with the |B〉 notation since
it will allow ease of representation of matrix elements of operators in this basis, such
as the density matrix. It should be noted that the above BPT is compact. Now, for a
given density matrix d written in the bipartition basis {|B〉} ordered by appearance
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in the bipartition table (read from left to right and top to bottom), the action of the
state-reduction map CA (�) to trace out the partial subsystemH�, is

©«

d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

d41 d42 d43 d44 d45 d46

d51 d52 d53 d54 d55 d56

d61 d62 d63 d64 d65 d66

ª®®®®®®®®®®¬
↓ CA (�)

©«
d11 + d44 d12 + d45 d13

d21 + d54 d22 + d55 + d66 d23

d31 d32 d33

ª®®®¬ .

(10.161)

From this, we can understand the action of state-reduction map from the bipartition
table:

1. Coherences between basis elements
��48,:〉 〈

4 9 ,;
�� in different rows (8 ≠ 9) of

the bipartition table are discarded. Coherences between basis elements in the
same row of the BPT are preserved.

2. For each pair of columns :, ; (including : = ;), the sum of coherences between��48,:〉 〈
48,;

�� over all rows 8 is the new coherence term for the reduced element
|V:〉 〈V; |.

The number of matrix elements of d which also appear in d� after the state-
reduction map is applied depends on the alignment structure of the cells in the BPT.
In particular, some elements do not appear in the reduced density matrix. A natural
question to ask is what information is preserved by the state-reduction map induced
by the partial bipartition. It was shown in [246] that the bipartition operators (:;
span the operator subspace of all (and only) the observables whose information
is preserved under state reduction. Then we can interpret the reduced state d�
as the state that contains all (and only) the information that is accessible with the
observables in the operator space B?0= {(:;}. This naturally reduces to the standard
picture in the familiar case of a tensor-product bipartition H � H� ⊗ H�, where
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the bipartition operators take the form

(:; = �� ⊗ |V:〉 〈V; | . (10.162)

The restricted set of observables B?0= {(:;} = �� ⊗L (H�) imply that the observer
can only measure systemH�.

We can also generalize the partial bipartition structure to include direct-sum sectors
thereof, which corresponds to the following decomposition of Hilbert space,

H �
⊕
@

(
H�@ � H�@

)
, (10.163)

where each sector @ is spanned by the basis elements |4@
8:
〉 of the block @ and each

sector is further decomposed into a partial bipartition according to the arrangement
of elements inside the block. Such a decomposition can be captured as a bipartition
table with a block-diagonal arrangement of non-rectangular tables,

41;1,1 41;1,2 ...

41;2,1
. . .

...

42;1,1 42;1,2 ...

42;2,1
. . .

...

. . .

(10.164)

For each sector @, we can define a set of bipartition operators {(@
:;
} using the basis

elements in that sector. By construction, under the state-reduction map specified
by such a BPT, coherences between different direct-sum sectors are lost, and the
resultant density matrix will be block-diagonal corresponding to different blocks @.

Examples
Let us return to the example of the two spin-1

2 particles we raised at the beginning
of this section. Again, consider the total spin basis labeled by {|(I, `〉}, where (I
is the total spin-z of the two spins and ` labels the information about the multiplet
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nature of the state (with ` = B for singlet and ` = C for triplet), which written in
terms of the computational tensor product basis {|0〉 , |1〉}⊗2,

|1, C〉 = |1, 1〉 (10.165)

|0, B〉 = |01〉 − |10〉
√

2
(10.166)

|0, C〉 = |01〉 + |10〉
√

2
(10.167)

|−1, C〉 = |00〉 , (10.168)

and a partial bipartition of this Hilbert space,

1, C 0, C −1, C � UC

0, B � UB

� � �
V−1 V0 V1 .

(10.169)

The degree of freedom fixed by each column is the total spin-I and what varies
within the columns is the multiplet (singlet-triplet) label. With the non-rectangular
nature of the BPT, the column space H� (spanned by {|V−1〉 , |V0〉 , |V1〉}) forms
a partial subsystem which encodes variation of the total spin-z and the row space
H� (spanned by {|UC〉 , |UB〉}) forms a partial subsystem which encodes variation of
multiplet information. We can now define the BPOs labeled by the value of total
spin-I from the BPT column structure,

(+1,+1 = |1, C〉 〈1, C | (+1,0 = |1, C〉 〈0, C | (+1,−1 = |1, C〉 〈−1, C |

(0,0 = |0, C〉 〈0, C | + |0, B〉 〈0, B | (0,−1 = |0, C〉 〈−1, C |

(−1,−1 = |−1, C〉 〈−1, C | .

(10.170)

The other three BPOs can simply be obtained from (:; = (
†
;:
. The state-reduction

map induced by this BPT,

d ↦−→
∑

:,;=+1,0,−1
CA ((:;d) |;〉 〈: | (10.171)
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can be interpreted as tracing out the multiplet degree of freedom. The resulting state
has the degrees of freedom associated with the total spin-I of the original system:
that is has the Hilbert space of a single composite particle with this spin. The total
spin operators (C>CG , (C>CH , (C>CI on the two particles are in the span of {(:;}

(C>CI = (+1,+1 − (−1,−1

(C>C+ = (+1,0 + (0,−1

(C>C− = (0,+1 + (−1,0 ,

where (C>CG and (C>CH can be constructed from the ladder operators (C>C± . Therefore,
the reduced state preserves information about total spin operators (C>CG , (C>CH , (C>CI . It
should be noted that for such partial bipartitions, the span of {(:;} is not necessarily
an algebra (it may not be closed under products) so even if we know that the reduced
state preserves information about (C>CG , (C>CH , (C>CI , it may not retain information about
their products whichwe usually take for granted. Thus, we see amore general picture
emerging where we can define partitions of Hilbert space based on a restricted set
of observables which need not generate an algebra. Partial bipartitions offer a
construction to account for such cases.

This construction easily extends, for example, to an arbitrary number # of spin 1
2

participles. For even # , the BPT takes the form,

#
2 , +

#
2 · · · #

2 , +2
#
2 , +1

#
2 , 0

#
2 ,−1 #

2 ,−2 · · · #
2 ,−

#
2

...
...

...
...

...

2, +2 2, +1 2, 0 2,−1 2,−2

1, +1 1, 0 1,−1
...

...
...

1, +1 1, 0 1,−1

0, 0
...

0, 0

(10.172)

where, for each value of the total spin 9 , there are multiple equivalent representa-
tions that we have stacked on top of each other (suppressing the label for identical
representations with the same 9). Each row is associated with a specific “copy”
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a of the total spin 9 representation and the pair 9 , a specifies one multiplet (note
the different notation used in this table in contrast to the # = 2 spin case above
for clarity of exposition of the idea). As before, we use the columns to define the
BPO {(:;} and then the map that traces over the multiplets.The resulting state is
associated with a single spin #

2 particle that encodes information about the state of
the total spin of this system.

We will now use these partial bipartitions in the following Sections 10.7 and 10.8
where we will construct a paradigm to find quasi-classical coarse-grainings of
Hilbert space, based on a collective feature of the system compatible with Hamil-
tonian evolution. Such coarse-grainings will typically not correspond to tensor
factorizations of Hilbert space, and hence using this technology of partial biparti-
tions, we will be able to capture more general partitions suited for the purpose.

10.7 Classicality from Coarse-Grainings using Partial Bipartitions: Varia-
tional Approach

As discussed in Section 10.6, partial bipartitions offer a more general way than a
standard tensor product structure to decompose Hilbert space into two parts. One
particular application of partial bipartitions is to coarse-grain Hilbert space, since,
in many situations, the relevant information preserved by the coarse-graining will
not correspond to a tensor factor of Hilbert space. In this section, we outline a
paradigm to find quasi-classical coarse-grainings of Hilbert space based on Hamil-
tonian evolution of the system. We call this the variational approach since we will
iterate/vary over all possible BPTs (in some restricted set) to find the one(s) which
demonstrate quasi-classical behavior.

A natural feature of many coarse-grainings is that they focus on collective or average
properties of the underlying degrees of freedom and ignore its internal structure;
for example, one can, under appropriate circumstances, coarse-grain a rigid-body
system of #-particles into its center of mass coordinate, which is a collective feature,
while discarding information about the relative locations of the particles, then study
how the coarse-grained variable evolves andwhat characteristics the coarse-graining
preserves. We will focus on such coarse-grainings based on a collective property of
the system, and their compatibility with dynamics which demonstrate quasi-classical
behavior.
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Partial Bipartition of Many-body Systems into Collective and Internal Degrees
of Freedom
Consider a finite-dimensional Hilbert space of a collection of # underlying degrees
of freedom (dofs) specified by a tensor-product structure,

H �
#⊗̀
=1
H` , (10.173)

which evolve under Hamiltonian evolution given by�. We consider these # degrees
of freedom to be fixed, specified by the physical system under consideration, e.g.
a collection of # particles, etc. It is assumed that the Hamiltonian in general
admits interactions between all # dofs, and in case there exist any subsets of these
dofs which are decoupled under the action of the Hamiltonian, we consider each
such decoupled subspace individually in this prescription. Our goal is to develop a
coarse-graining algorithm informed by the Hamiltonian � which chooses a partial
bipartition,H � Scollective � Sinternal. The partial subsystem Scollective is the coarse-
grained version ofH we wish to preserve under the coarse-graining/state-reduction
map based on a characteristic collective feature of the system (involving all #
degrees of freedom) compatible with the Hamilltonian which behaves classically
(in a sense we define below) by tracing over the space of internal features Sinternal.
This will correspond to a BPT of a partial bipartition where the columns will define
the coarse-grained subspace Scollective and the rows will define the Sinternal subspace
that will be traced over.

Compatible Collective Observables and Macroscopic Pointer States
Let us define the set of collective observables of the full Hilbert space as those that
can be written as

"2 =

#∑̀
=1
"` , (10.174)

with,
"` = Î1 ⊗ Î2 ⊗ . . . ⊗ Î`−1 ⊗ <` ⊗ Î`+1 ⊗ . . . ⊗ Î# , (10.175)

where each "` acts non-trivially only on H` whose dimension we take to be
dimH` = 3`. The operator <` can be parameterized by

<` =
©«
32
`−1∑
0=1

2
(`)
0 Λ

(`)
0

ª®¬ , (10.176)
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where Λ(`)0 are the 32
` − 1 Generalized Gell-Mann generators (of (* (3`)) which

form a complete basis of non-trivial (i.e. without the identity Î`) operators acting
on H`. To ensure that these operators have a non-trivial action on the degree of
freedom they act on, we impose the restriction that at least one of the 2(`)0 ≠ 0, for
each `. In addition, we will mostly work with normalized operators on L(H), the
space of linear operators on H , to be able to focus on features true to the structure
of different operators, and not explicitly due to difference in overall multiplicative
factors. For concreteness, we choose to use the Frobenius norm22 in this paper,
under which the collective observable will be normalized, i.e., | |"2 | |f = 1.

Our coarse-graining prescription aims for a collective observable as one of the defin-
ing properties of Scollective which is most compatible with—that is, stationary with
respect to—the Hamiltonian � (we will use a normalized version of the Hamilto-
nian under the Frobenius norm too). Thus, one can pick out the most compatible
collective observable relevant to the coarse-graining by minimizing the norm of the
commutator [�, "2] over all choices of collective observables "2,

"2 : min{2 (`)0 }
������[�, "2]

������
5
. (10.178)

This is in close parallel with the ideas of the predictability sieve [170] used in the
decoherence literature, where one sifts through different states in Hilbert space to
determine the setwhich ismost compatiblewith theHamiltonian and is used to define
pointer states of the system which are classical. One defining feature of classical
dynamics is robustness of a set of states (the classical ones) reflected in their effective
deterministic classical character. Said differently, the pointer states are special low-
entropy states which under evolution stay robust to entanglement production: a given
classical degree of freedom in the system does not arbitrarily entangle with all other
degrees of freedom at short time scales. This is intimately linked to the form of and
constraints on the Hamiltonian, such as locality [29]. Beginning with low entropy
states is natural given the second law of thermodynamics, and classicality constrains
the rate of entanglement growth for classical states. In this sense, eigenstates of
the collective observable chosen by the compatibility condition of Eq. (10.178) are
classical, macroscopic pointer states which capture an average, collective property
of the underlying dofs which is as robust under evolution as possible. Take note

22The Frobenius norm of a linear operator � ∈ L(H), also referred to as the Hilbert-Schmidt
norm, is defined as,

| |�| |f =
√

Tr
(
�†�

)
. (10.177)
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that the collective observable cannot be the identity operator (which would trivially
commute with �) since we are only considering non-trivial observables which have
no support on the identity operator. The total freedom in the choice of "2 are
the

∑#
`=1

(
32
` − 1

)
number of parameters {2(`)0 }. Further restrictions on the set

{2(`)0 } can be imposed by looking at the symmetry structure of the Hamiltonian and
the Hilbert space, if any. For example, if H contains a collection of identical but
distinguishable particles on which the Hamiltonian acts symmetrically, then this can
be used to constrain the form of "` to be the same for this collection of particles.

Now, as expected, due to the collective observable containing a slew of identity op-
erators in each term in the sum,"2 will have a high degeneracy in its eigenspectrum;
therefore, the distinct eigenvalues of "2 will be used to label distinct columns of the
BPT which will define the coarse-graining Scollective. The compatibility condition
Eq. (10.178) of the collective observable "2 with the Hamiltonian of Eq. (10.178)
will ensure that transition of an eigenstate of "2 (which corresponds to a determin-
istic value of the collective variable) into other eigenstates will be minimized under
time evolution, and hence that the columns of the BPT correspond to robust col-
lective macrostates. Once the collective observable has been selected, it will give
us a total of #� ≤ dimH distinct eigenvalues and corresponding #� subspaces
H (2)
:

with dimension dimH (2)
:

= ℎ: for : = 1, 2, 3, · · · , #� . Each such subspace
labels a distinct value of the collective observable, specifying a macroscopic pointer
state of the coarse-graining. In addition to the subspace structure determined by
specification of the compatible "2, one can use the tensor product decomposition
of Hilbert space into the underlying # dofs of Eq. (10.173) to resolve each of these
subspaces H (2)

:
by spanning them with the tensor product eigenbasis of "2 which

have the same eigenvalue labeled by : .

Thus, we now have a direct-sum structure toH ,

H �
#�⊕
:=1
H (2)
:
, (10.179)

where each direct-sum subspace is specified by the span of the tensor product
eigenbasis of "2 with a given distinct eigenvalue, and this direct-sum structure
satisfies

∑#2
:=1 ℎ: = dimH .

Now that we have identified the column structure based on the degeneracy structure
of the compatible collective observable "2 and the basis elements which enter the
BPT and represent macroscopic pointer states of Scollective, we are left with the the
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task of assigning the row structure which will fix the BPT. Here, we have a discrete
set of combinatoric choices of row alignments we can do, given the column structure
and the specification of the basis elements of the compatible collective observable.
For this purpose, we now turn to understanding the conditions under which the
coarse-graining is quasi-classical.

Superselection Sectors and Emergent Quasi-Classicality
We can use the transition structure of the Hamiltonian in the tensor product eigenba-
sis of "2 to further split our partial bipartition into direct-sum sectors which will act
as superselection sectors in our coarse-graining scheme. Based on the Hamiltonian
expressed in this tensor product "2 basis, one can identify unions of column sub-
spaces, H̃@ �

⊕
:@
H (2)
:@

for some @ = 1, 2, · · · , #sectors, for which the Hamiltonian
has no tunneling terms connecting these subspace unions, such that for all states
|k@〉 ∈ H̃@ and |k@′〉 ∈ H̃@′,

〈k@ |� |k@′〉 = 0, if @ ≠ @′ . (10.180)

Each such union of sectors represents a superselection sector for our coarse-graining
since these different unions do not interact. Each direct-sum sector will be arranged
as a distinct block in a BPT of a partial bipartition in the compact form with the
row structure yet to be identified based on a criterion of emergent quasi-classicality.
Compact form within each sector will allow minimal loss of coherence under the
state-reduction map induced by the BPT, so the coarse-graining we find will indeed
reflect emergent quasi-classicality from dynamical decoherence and not the mere
discarding of quantum coherences by misalignments between basis states in the
structure of the BPT. This is already a first step towards emergent quasi-classicality
since lack of transitions between sectors of Hilbert space governed by the Hamilto-
nian identify them as classical. Quantum coherences between such sectors cannot
be observed or have any dynamical effect, and this lack of coherence can be enforced
by the block diagonal structure of the BPT.

To fix the row structure within each direct-sum superselection sector, we now turn
back to the question of emergent quasi-classicality. A feature of our coarse-graining
will be that dynamics in the reduced space following the BPT state-reduction map
will reflect features of classicality. We have already identified the column structure
of our BPT which labels our macroscopic pointer states, based on compatibility
of a collective observable with the Hamiltonian. The compact form of our BPTs
ensure that minimal coherence between basis states is lost due to the action of the
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state-reduction map itself so we can now focus on the action of the Hamiltonian to
induce dynamical decoherence. In the usual dynamical decoherence understanding,
coherences between pointer states in an initial low entropy state are suppressed dy-
namically by interactions with the auxiliary degrees of freedom. In quasi-classical
coarse-grainings, we expect the row alignment of the BPT to allow Hamiltonian
evolution to decohere superpositions of our macroscopic pointer states by “interac-
tion” with Sinternal. For such quasi-classical BPTs, we can demand the rate at which
this dynamical decoherence happens to be fastest and hence, most effective.

We will, for concreteness, focus on small time evolution since classical states, as
opposed to non-classical ones, will exhibit decoherence starting at short time scales,
and are expected to stay decohered as time progresses. We thus will quantify entropy
production by studying the growth rate using the linear entanglement entropy23.
While the production of entropy in a partial bipartition is in general an indicator
of more generic quantum correlations, we interpret it as an entanglement entropy
between Sinternal and Scollective. This is because a BPT offers a generalization of
the tensor product structure and interactions between these partial subsystems is
expected to lead to dynamical decoherence starting from an initial low entropy
state just as in the case of the usual system-environment tensor structure in the
standard decoherence literature. Consider a pure state of the full Hilbert space
d(C) = |k(C)〉 〈k(C) | ∈ L(H) evolving under evolution by the Hamiltonian �, and a
BPT which induces a state-reduction map Tr(') by tracing out the partial subsystem
defined by its row subspace. Under this state-reduction map, the pure state d gets
mapped to

d2 (C) ≡ Tr(') d(C) , (10.181)

whose entanglement can be quantified by the linear entropy,

(lin(C) = 1 − Tr(d2
2 (C)) . (10.182)

It can be shown, as was done in [29], that for initially pure, unentangled states,
the linear entanglement entropy grows at O(C2) to leading order and hence one can
quantify the growth rate of entanglement entropy as,

¥(lin(0) = −Tr (d2 (0) ¥d2 (0) + ¥d2 (0)d2 (0) + 2 ¤d2 (0)) , (10.183)

23One could equally well use von Neumann entanglement entropy too, of which the linear en-
tropy forms the leading order contribution. We focus on the linear entropy to get better analytic
tractability.
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where a dot over a quantity represents its time derivative and we have,

¤d2 (0) = Tr(') ( ¤d(0)) = Tr(') (−8 [�, d(0)]) , (10.184)

¥d2 (0) = Tr(') ( ¥d(0)) = Tr(') (− [�, [�, d(0)]]) . (10.185)

We now proceed to use this quantifier ¥(lin(0) of entanglement growth rate to quantify
the classicality of a given BPT. The most natural initial states suited for a decoher-
ence analysis offered by a partial bipartition are the ones supported on basis states
of a single row in the BPT. In the familiar case of a tensor product structure cor-
responding to a rectangular BPT, such a state would correspond to an unentangled
state – a tensor product of a superposition for the state of the column subsystemH�

with a single basis state of the row system H�. For example, in the decoherence
literature, considering a system and environment splitH � H( ⊗H� , one considers
initial states of the form |k(0)〉 = (∑B 2B |B〉) ⊗ |�ready〉 for some ready state on the
environment. Thus states supported on a single row of a BPT of a partial bipartition
are natural extensions of such initial pure states which are unentangled and therefore
are good candidates to measure the dynamical decoherence of. Borrowing intuition
and language from the decoherence paradigm, the state first branches, i.e. the envi-
ronment (the row variable in our BPT) states evolve conditionally depending on the
pointer state |B〉 of the system (corresponding to the columns of the BPT), following
which there is dynamic decoherence where these conditional states of environment
become orthogonal in time and stay so. We expect a similar situation here where an
initial low entropy state, such as the one supported on a single row of the BPT in a
superposition of pointer states ofScollective, undergoes entropy production associated
with dynamical decoherence that suppresses coherences between the pointer states,
leading to classical branches. The branching of such initial states happens at O(C)
following which we expect these conditionally evolved states to decohere, which we
can capture by the entanglement growth rate via Eq. (10.183) which grows O(C2).
Using this understanding, we propose a metric to quantify this dynamic decoherence
as a probe of emergent quasi-classicality of a given BPT: One can construct, for each
row 8 = 1, 2, · · · , #' of the BPT, a uniform superposition state over all basis states
in that row (each labelling a different macroscopic pointer state),

|q8〉 =
1
√
F8

∑
:∈{1...F8}

|48,:〉 , (10.186)

where F8 is the number of basis elements in the 8-th row of the BPT and : iterates
over all such basis elements. For each such uniform superposition state, defined
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on each row, we can compute the entanglement growth rate ¥(lin,i(0) as a measure
of dynamical decoherence and then quantify the emergent classicality of the BPT,
&BPT as the average of these entanglement growth rates over all rows of the BPT,

&BPT =
1
#'

#'∑
8=1

¥(lin,i(0) . (10.187)

The average over all rows can be interpreted as a statistical mixture over different
basis states of the partial system (label by the rows), representing a probabilistic
treatment of not knowing the state of the partial system which will be traced over.
This is one such metric which captures the idea of emergent classicality using
a notion of effective dynamical decoherence. We adopt this as a demonstration
of principle, but emphasize that, depending on the context of the coarse-graining
being constructed, one can come up with more amenable definitions of quantities
which capture the emergent quasi-classical nature of the BPT. Given this metric,
one can now vary over all possible BPT row arrangements, which are discrete and
finite choices of basis element arrangement within each column, and choose the
BPT which maximizes &BPT representing most effective dynamical decoherence
and hence, is the most quasi-classical. It should be noted that this prescription may
not always yield a unique preferred BPT reflecting a preferred underlying classical
partial bipartition H ∼ Scollective � Sinternal, but rather will often select a class
of BPTs which have the same classicality quantification based on the metric above.
One can interpret this residual freedom as gauge choices of coarse-grainings, which,
even though they induce different state-reduction maps based on the BPT, have the
same measure of emergent classicality in the reduced subspace of the macroscopic
variable based on the chosen metric. Often, this will be intimately tied with some
symmetry structure in the Hamiltonian which does not distinguish between the
underlying different degrees of freedom and hence leads to a class of BPTs with the
same emergent quasi-classical behavior.

The above algorithm just described for obtaining such collective, quasi-classical
coarse-grainings can now be summarized as follows:

1. Based on the given microfactorization of Hilbert space into degrees of free-
dom, find a collective observable "2 which is most compatible with the
Hamiltonian as given by Eq. (10.178).

2. Eigenspaces of "2 corresponding to distinct eigenvalues will label different
column subspaces of the BPT as macroscopic, collective pointer states ro-



264

bust under Hamitonian evolution. These will make up the partial subsystem
Scollective which will be the coarse-graining ofH .

3. Eigenspaces of "2 with distinct eigenvalues, along with the microfactoriza-
tion, furnish an orthonormal basis for Hilbert space and resolve the column
subspaces with tensor product basis elements with distinct eigenvalues.

4. Once the column structure of the BPT is fixed, use the transition structure of
the Hamiltonian in this tensor product basis of "2 to identify superselection
sectors as done in Eq. (10.180), each of which will form a disjoint block of
the BPT. Each block will be arranged in the compact form to minimize loss
of coherence due to the action of the state-reduction map induced by the BPT.

5. Now consider dynamical decoherence to fix the remaining freedom in each
such block in the compact form to identify the alignment of the rows in the
BPT. Iterate over the finite, discrete permutations of row arrangements and
select (the class of) BPT(s) which maximize entanglement production as a
measure of effective dynamical decoherence as done in Eq. (10.187).

In the next section, using a concrete example of the Isingmodel, we will demonstrate
this algorithm for constructing a quasi-classical coarse-graining based on a collective
variable compatible with the Hamiltonian.

10.8 Example of the Variational Approach: Coarse-Graining the IsingModel
as a Partial Bipartition

Let us now consider a concrete example where we can apply the coarse-graining
scheme developed above. We will focus on the Ising model in 1-D and see how
we can capture collective features of the model which are effectively classical.
Consider # ≥ 2 spin-1

2 particles described by a tensor-product24 Hilbert space
H �

⊗#

`=1H` on a 1-D lattice evolving under the Ising Hamiltonian,

� ∼ −
#−1∑̀
=1

(
f
(`)
I ⊗ f (`+1)I

)
− 6

#∑̀
=1
f
(`)
G , (10.188)

where 6 > 0 characterizes the strength of the external magnetic field in the G-
direction and the symbol ∼ in the definition of an operator implies that we will

24For completeness, we mention that while one can study several dual pairs of lattice theories
such as the Ising model [22, 255], which differ by global decomposition changes of Hilbert space,
in this paper we focus on a fixed micro-decomposition of the underlying degrees of freedom.
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normalize it under the Frobenius norm. As usual, f (`)I is the Pauli z-operator on
the `-th spin on the lattice and f (`)G is the Pauli x-operator. Note that our Ising
Hamiltonian does not have periodic boundary conditions and corresponds to an open
chain with # sites. We choose this specific boundary condition since the results in
this case are more compact to describe and therefore help in the exposition of the
idea. The same analysis could also be implemented for different boundary conditions
and the results could be interpreted along similar lines. Our goal is now to look for
the collective observable of the # spins most compatible with the Hamiltonian. We
model the operator "` in Eqs. (10.174) and (10.175) as a unit-normed operator
under the Frobenius norm,

"` =

√
2

1 + U2

(
f
(`)
I + Uf (`)G

)
, ∀ ` , (10.189)

characterized by the parameter U ≥ 0 quantifying the mix between Pauli x and
z operators. As a simplifying assumption, since the Hamiltonian only contains
Pauli-x and Pauli-z operators, we do not take support on f (`)H in Eq. (10.189) and
only consider mixing between x and z to determine the most compatible collective
observable. This assumption could be relaxed to perform a more complete analysis.
It should be noted that we take the operator "` characterized by the same parameter
U for each spin `. Under the Hamiltonian, all but the edge spins are treated on an
equal footing and are indistinguishable from the point of view of dynamics. Hence
one should expect a similar parametrization, because in this variational approach,
we only have access to the Hamiltonian, and any structure that emerges should
respect the underlying symmetry of the dynamics. The edge spins, represented by
"1 and "# , should in general be treated differently due to non-periodic boundary
conditions and while this analysis can be carried out in a straightforward way, we
choose to parametrize their contribution to "2 by the same value of U. This can be
justified on two grounds. First, there are only 2 edge spins compared to (# −2) bulk
ones and for moderately sized chains and larger, any difference due to edge spins
will be sub-dominant. Second, choosing the same parametrization for each spin will
allow a more elegant understanding of the collective observable "2 as an average
quantity over the spin chain and a clean interpretation of the coarse-graining scheme
where the macroscopic variable will be labeled by distinct values of this average
quantity.

We can now compute the Frobenius norm of the commutator of "2 and the Ising



266

Hamiltonian � parametrized by U, which gives us������[�, "2]
������
5
=

(# − 1)U2 + 2#62

2#−3 # (4#62 + # − 1) (1 + U2)
. (10.190)

Minimization of this norm above with respect to the parameter U will give us a
collective observable most compatible with the Hamiltonian. To minimize this
norm, we write it in a more suggestive way,������[�, "2]

������
5
=

1
1 + (1/U2)

[(
1

2#−3#

)
(# − 1)

4#62 + # − 1)

]
+ 1

1 + U2

[(
1

2#−3#

)
2#62

4#62 + # − 1)

]
,

(10.191)

where we have factored out the 6 dependence in each term in the sum above, which
we identify as,������[�, "2]

������
5
=

(
1

1 + (1/U2)

)
)1(6) +

(
1

1 + U2

)
)2(6) . (10.192)

We notice a turning point in the 6 dependence of )1(6) and )2(6). We find that
this norm is minimized for the following condition depending on the value of 6
which controls the relative importance of the two different terms in the normalized
Ising Hamiltonian. For 62 < (# − 1)/2# , we see that )1(6) > )2(6) and hence to
minimize the norm in Eq. (10.190), the U dependent prefactor of )1(6) should be
minimized which implies U = 0. On the other hand, when 62 > (# −1)/2# , we see
that)2(6) > )1(6) and hence U = ∞ ensures minimization of the dominant term and
hence the norm itself. One can confirm these results by formally differentiating, and
checking for minima conditions in the relations above. Thus, we find that depending
on the value of 6 in the normalized Hamiltonian, the most compatible collective
observable corresponds to,

U(6) =


0 , 6 < 6crit

∞ , 6 > 6crit ,
(10.193)

where 6crit is the critical value25 of 6 given by

6crit =

√
# − 1

2#
, (10.194)

25We have derived the value of 6crit from the compatibility condition of Eq. (10.178); it should
not be confused with the, in general different, value of 6 where the phase transition in the Ising
model takes place.
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such that for 6 < 6crit when the Pauli z-z interaction term dominates, the most
compatible collective observable "2 is the average spin-z of the Ising chain (which
corresponds to U = 0),

"2 ∼
#∑̀
=1
f
(`)
I , 6 < 6crit , (10.195)

and for 6 > 6crit, when the external magnetic field in the G-direction dominates, the
collective observable which is most compatible with the Hamiltonian is the average
spin-x of the chain (which corresponds to U = ∞),

"2 ∼
#∑̀
=1
f
(`)
G , 6 > 6crit . (10.196)

Thus, we see a phenomenon akin to a phase transition where, depending on the
dominant term in the Hamiltonian, the most compatible "2 is the one which is
commuting with the dominant term.

Once we have obtained the most compatible collective observable "2, we can
immediately use its distinct eigenvalues <: to label the macroscopic states of our
coarse-graining by

<: ∈
{
− #

2
,−# − 2

2
, . . . ,

# − 2
2

,
#

2

}
, (10.197)

and these will be used to label distinct columns of the BPT which will specify the
coarse-graining. Since the # + 1 distinct values of "2 will serve as labels of our
macrostates under the coarse-graining prescription, our coarse-grained space will
have a dimension dimScollective = #� . Already we see a major benefit of our scheme
in dimension reduction: our collective scheme will map our original Hilbert space
of dimH = 2# to a reduced, coarse-grained space with dimScollective = (# + 1).
The dimension of the :-th collective (macroscopic) subspace corresponding to the
"2 eigenvalue

��<:

�� = (# − 2(: − 1))/2 for : = 1, 2, · · · ,
⌈
#�
2

⌉
is then the binomial

coefficient,

dimH (2)
:
=

(
#

: − 1

)
. (10.198)

Given that we are working with # underlying spins specified by the tensor de-
composition of Eq. (10.173), we can use the natural tensor-product basis of "2 to
specify the orthonormal basis which we will be working with to fill the cells of our
BPT. When 6 < 6crit, corresponding to "2 being the average spin-z of the lattice,
we use the {|0〉 , |1〉}⊗# basis where {|0〉 , |1〉} are the eigenstates of fI and in the
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other case when 6 > 6crit so that "2 is the average spin-x of the chain, we can use
the {|+〉 , |−〉}⊗# where {|+〉 , |−〉} are the eigenstates of fG . Thus we now have a
fixed orthornormal basis we will use to construct a BPT for the partial bipartition
for the Ising model and a specification of different columns of the BPT labeled by
distinct eigenvalues of the compatible collective observable "2. The only freedom
we now have is the choice of row alignments in our BPT for which we will turn
to effective dynamical decoherence as a quantifier of quasi-classical behavior of
the coarse-graining. We will take each disjoint block in our BPT corresponding to
superselection sectors in the partial bipartition to be in compact form to make sure
that minimal coherence is lost due to the action of the state reduction itself and any
decoherence will be due to Hamiltonian evolution. As we will see, the two cases of
6 > 6crit and 6 < 6crit will have very different superselection properties based on
the Hamiltonian, hence we will deal with them separately and describe the results
for each case in detail.

6 < 6crit: Average Spin-z as Collective Observable
Let us first focus on the case when 6 < 6crit, so that the I − I interaction term in the
Ising Hamiltonian dominates which sets the most compatible collective observable
"2 ∼

∑#
`=1 f

(`)
I , the average spin-z of the Ising chain. As discussed before, this

choice of "2 offers us an orthonormal basis of {|0〉 , |1〉}⊗# to work with in the
BPT. The action of the Hamiltonian on these tensor product basis furnished from
eigenstates of "2 is to flip single bits in the {|0〉 , |1〉} basis due to the presence of
the external magnetic field in the G-direction (in the case when 6 > 0). Due to this
transition structure of the Hamiltonian in the "2 basis, bit flips can successively
connect each of the #� column subspaces and hence there is no superselection
sector structure in this case.

We illustrate the results for the case of # = 3 spins since there the results are
tractable and easy to follow to demonstrate the physics behind them26. For# = 3, the
compatible collective observable"2 has #2 = 4 distinct eigenvalueswhichwill label
different columns of our BPT. In Table 10.1, we list these eigenstates of"2 arranged
in columns by their distinct eigenvalues. This Table 10.1 is not yet a BPT since
we have not yet considered row alignments, just a listing of eigenstates arranged by
columns labeled by distinct eigenvalues of the compatible"2. Wewill now consider

26While for such small number of spins, one might want to treat the edge spins on a different
footing than the bulk ones since the edge contribution may not be sub-dominant, we take the same
parametrization for each spin as in Eq. (10.189) as a demonstration of principle with the "2 being
an average quantity over the entire chain.
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"2 value: −3
2 −1

2
1
2

3
2

|000〉 |100〉 |011〉 |111〉
|010〉 |101〉
|001〉 |110〉

Table 10.1: Tensor Product Eigenstates for "2 =
∑3
`=1 f

(`)
I for # = 3 spins,

arranged in columns labeled by distinct eigenvalues. Note that this is not a BPT,
just an enumeration of the eigenstates arranged by the column structure governed
by the compatible "2.

different BPTs in compact form by iterating over different row arrangements of the
eigenstates within each of the columns fixed by the collective observable "2. By
this token, there will be a total of

∏#2
:=1 (ℎ: !) number of permutations of row

arrangements which will be the set of BPTs we will consider. There will, of
course, be many redundancies in this way of enumerating different BPTs (such as
inconsequential rearrangements differing by row swaps) compatible with the "2

column structure, but we iterate over them anyway to keep the permutations easy to
track. In the case of # = 3 spins, wewill have a total of 36BPTs to iterate over and for
each such BPT, we compute &BPT, the average entanglement growth rate over pure,
uniform states defined on each row as defined in Eq. (10.187), and choose the class of
BPTs which maximize this quantifier, representing effective dynamical decoherence
as the most classical and compatible coarse-graining given the Hamiltonian. In
Figure 10.4, we plot the average entanglement growth rate &BPT for these 36 BPTs
for the case of # = 3 spins with the collective observable being "2 ∼

∑
` f
(`)
I . We

notice that these BPTs come in three distinct classes differentiated by entanglement
growth rates. The class of BPTs with the maximum entanglement growth rate is
selected as the most quasi-classical one and we find that there are six such distinct
BPTs belonging to this selected quasi-classical equivalence class. (While the plot
in figure 10.4 shows 12 such BPTs with the largest value of &BPT, as mentioned
there are redundancies in our enumeration and only 6 of them are distinct from the
perspective of the state-reduction map they induce.) In Fig. 10.6, we display these
6 selected, quasi-classical BPTs.

These selected BPTs have a common transition structure given by the Hamiltonian,
which we portray in Fig. 10.5 to better understand these results. The arrows depict
transitions between different basis states given by the Hamiltonian. It can be seen
that the selected quasi-classical BPTs are ones which induce transitions under the
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Figure 10.4: Plot of average entanglement growth rate &BPT over different BPTs
(different row arrangements) for # = 3 spins with the compatible collective ob-
servable "2 =

∑3
`=1 f

(`)
I corresponding to a value of 6 = 0.5 < 6crit.

Hamiltonian by spreading maximally across rows of the BPT. This way, maximum
coherence is lost for pure states supported on one row, leading to decoherence of
different macroscopic pointer states.

Similar to the # = 3 case, one can run an analysis on # = 4 spins in which case
there will be #� = 5 columns labeled by distinct eigenvalues of "2. The results
we find are very similar to the # = 3 spin case. The selected BPTs have row
alignments for which the Hamiltonian transitions maximize dynamical decoherence
between different macroscopic pointer states under the state-reduction map induced
by the BPT. In the table in Fig. 10.7, we show one instance of the class of selected
BPTs with the largest &BPT. Given that the Hamiltonian again induces single bit
flips, we see that this BPT has a transition structure to maximize dynamical loss
of coherence. In figure 10.8, we plot the average entanglement growth rate &BPT

for all the different row alignments possible given the column structure fixed by the
collective "2. As with the # = 3 case, we see different classes of BPTs emerge
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Figure 10.5: Transition structure of the Hamiltonian in the tensor product basis
of "2 =

∑3
`=1 f

(`)
I for # = 3 spins. It should be noted that this is not a BPT

representation, but only illustrates the transition structure of the Hamiltonian in
the chosen basis.

Figure 10.6: (color online) The 6 selected, quasi-classical BPTs which maximize
&BPT as a measure of dynamical coherence for # = 3 spins corresponding to
the compatible collective observable "2 =

∑3
`=1 f

(`)
I . Allowed transitions by

the Hamiltonian flip single bits in the {|0〉 , |1〉} basis. States in the middle two
columns not connected by Hamiltonian transitions are shown by the same color.

which correspond to different entanglement growths. It is interesting to note how
distinct the first few classes with the largest entanglement growth rates are which
correspond to quasi-classical behavior (as shown in the inset in figure 10.8), in
contrast with generic permutations where the entanglement growth varies in a more
smooth fashion, representing the generic nature of typical BPTs being away from
quasi-classicality.

6 > 6crit: Average Spin-x as Collective Observable
In the other casewhen 6 > 6crit, the externalmagnetic field term along the G-direction
in the Ising Hamiltonian dominates which sets the most compatible collective ob-
servable to be "2 ∼

∑#
`=1 f

(`)
G , the average spin-x of the Ising chain. As discussed
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Figure 10.7: One instance of the class of selected quasi-classical BPTs for # = 4
spins corresponding to the compatible collective observable "2 =

∑3
`=1 f

(`)
I .

Allowed transitions by the Hamiltonian flip single bits in the {|0〉 , |1〉} basis.
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Figure 10.8: Plot of average entanglement growth rate &BPT over different BPTs
(different row arrangements) for # = 4 spins with the compatible collective ob-
servable "2 =

∑3
`=1 f

(`)
I corresponding to a value of 6 = 0.6 < 6crit. The inset

shows the first few classes of BPTs with lowest values of &BPT.

before, this choice of"2 offers us an orthonormal basis of {|+〉 , |−〉}⊗# to workwith
in the BPT. The action of the Hamiltonian on these tensor product basis furnished
from eigenstates of "2 is to flip two adjacent bits in the {|+〉 , |−〉} basis due to the
presence of the I − I interaction term. Due to this transition structure of the Hamil-
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tonian in the "2 basis, bit flips of two adjacent spins cannot successively connect
each of the #� column subspaces and hence there will be superselection sectors in
this case. Based on this transition structure of the Hamiltonian, we can split the
"2 ∼

∑
` f
(`)
G basis into superselection sectors and iterate over row arrangements

in each sector to maximize dynamical decoherence (by maximizing the average
entanglement growth rate&BPT) to find the most compatible, quasi-classical coarse-
graining. In the table in Fig. 10.9, we show the unique selected quasi-classical BPT.
The selectedBPTs again have the same feature that the transitions by theHamiltonian
are such that there is maximum dynamical decoherence under the state-reduction
map induced by the BPT. A detailed analysis of this case of 6 > 6crit can be done
as was done for the 6 < 6crit case by studying the variation of &BPT for these BPTs
and the Hamiltonian transition structure, but we keep the discussion here brief since
the results follow the same physics as described in the previous subsection. We
see that depending on the nature of the Hamiltonian, different coarse-grained fea-
tures can emerge as the ones which qualify as classical. Underlying symmetries of
the Hamiltonian are reflected in the class of coarse-grainings which get picked out
and reinforce the role played by dynamics in determining the set of quasi-classical
variables of a system.

Figure 10.9: The selected, unique quasi-classical BPTs with minimum entangle-
ment growth rate for # = 3 spins corresponding to the compatible collective
observable "2 =

∑3
`=1 f

(`)
G . Allowed transitions by the Hamiltonian flip two

adjacent bits in the {|+〉 , |−〉} basis which induce the superselection sectors.

Wewould emphasize that a number of assumptions, albeit physicallymotivated, went
into the formulation of this algorithm and for completeness, we enumerate them here
to remind the reader of the context we are focusing on. First, we are working with
a fixed microfactorization of Hilbert space into a collection of degrees of freedom
which we wish to coarse-grain. We further take this access to the microfactorization
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to furnish us a tensor product basis for Hilbert space, in particular for the collective
observable"2. Once we have picked out"2 by the compatibility condition with the
Hamiltonian of Eq. (10.178), we focus only on compact BPTs since they minimize
loss of coherence due to the action of the state-reduction map itself so we can
study the dynamical decoherence which leads to classicality. One could work with
more general bipartitions by allowing unitary change of basis which mixes between
degrees of freedom and it would be interesting to develop an algorithm, akin to the
one of Section 10.4, to construct partial BPTs based on access to a restricted set
of observables which do not span an algebra. Such an algorithm would generalize
considerations to non-compact form as well as allow for superselection sectors
governed by the specifying set of measurements.

To measure the dynamical decoherence induced by the internal subspace Sinternal,
we used linear entanglement entropy for small times to measure how fast deco-
herence happens since non-classical states are expected to not decohere as fast on
short timescales. Our choice of initial states were uniform superposition states
supported on a single row of the BPT, which offered a natural generalization of
initial, unentangled states between the system and a ready state for the environment.
One can imagine relaxing these assumptions to develop a more generic framework
by studying a broader class of initial states, which would reflect more freedom in
the ready state of Sinternal, or the type of superpositions in Scollective best suited
to physical situations where decoherence is expected to be important. While our
choice of linear entanglement entropy was for ease of mathematical manipulation,
different measures of decoherence and entanglement such as von Neumann entropy
could also be used. One can study the long time behavior where it is expected
dynamical decoherence will have picked out the classical pointer basis where the
reduced density matrix becomes diagonal and stays so. While more detailed, we
expect the basic underlying physics to still be similar to the results described in this
paper.

We would also briefly recall some features of the numerics which have gone into
figures 10.4 and 10.8. Recall that we are working with a normalized Hamiltonian
so as to be able to tune the value of the interaction parameter 6 which sets the
strength of the external magnetic field in the G-direction to be able to toggle between
a Hamiltonian with only the I − I interaction (6 = 0) between neighboring spins
to a Hamiltonian with only the external field (6 = ∞). While this normalization
is for us to get a better handle between the interplay of � and "2, it affects the
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rate of entropy production and hence our results here are a proof of principle. Our
measure of quasi-classicality of maximizing &BPT is a suggestive quantifier that
captures the qualitative idea that superpositions of classical macroscopic pointer
states decohere effectively under evolution. We have focused on small time evolution
for concreteness (by probing ¥(lin(0)) since we expect that classical states under the
quasi-classical BPT will start decohering rather quickly, unlike non-classical ones.
The first few classes of BPTswith largest&BPT are themost quasi-classical compared
to generic BPTs. We emphasize that our measure of Eq. (10.187) is a zeroth-order
attempt to capture the broad idea of quasi-classicality and depending on the exact
application one wishes to have, this quantifier can be more suitably chosen to yield
more precise and richer quasi-classical coarse-grainings. The examples illustrated
here were for a small number # of spins for ease of tractability of results and
we expect these results will become sharper as one goes to higher dimensions,
since decoherence is typically aided by having large dimensions of the internal
“environment” being traced over.

10.9 Applications and Future Work
In this section we discuss some of the potential applications of generalized and
partial bipartitions to extant problems in the literature.

Quantum Information Encoding
It has long been recognized that the irreducible representation (irrep) structure of
an operator algebra plays an important role in quantum information. In particular,
in the theory of quantum error correction, the generalized bipartition structure is
recognized as the fundamental structure behind all quantum error correcting codes
[237, 256, 257]. Noiseless subsystems, for example, are identified by the generalized
bipartition associated with the commutant algebra generated by the errors [247].
Subsystem codes [236, 237, 258], which generalize the idea of noiseless subsystems,
are identified by a generalized bipartition usually associatedwith a non-abelian group
(which also generalizes the construction of stabilizer codes that are associated with
abelian groups [259, 260]). Similarly, the idea of quantum state compression with
respect to a preferred set of observables [261] relies on the generalized bipartition
associated with the algebra of preferred observables; it is conceptually equivalent
to the notion of quantum state reductions from a restricted algebra of observables
that we discussed in Section 10.3. In such applications, the problem of identifying
the generalized bipartition associated with the relevant algebra is fundamental. In
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the cases where the relevant algebra is given by a group with a well understood
irrep structure, the generalized bipartition is clear. In all other cases, however, the
algorithm presented in Section 10.4 can be used as an analytical tool to identify the
generalized bipartition.

We may also consider the more general problem of characterizing how the evolution
given by a Hamiltonian or a channel acting on the physical system affects the
logical degrees of freedom. Such problems are traditionally addressed by looking
for symmetries of dynamics that identify the generalized bipartition (i.e. the irrep
decomposition) with respect to which the dynamics are restricted to distinct irrep
sectors [246]. The main difficulty with this approach is of course in identifying
“useful” symmetries. An alternative approach would be to identify an algebra that
contains the operator(s) of dynamics directly, without appealing to symmetries. The
action of quantum channels, for example, can be restricted to the irrep sectors of
the algebra generated by their Kraus operators [262]. Similarly, when dealing with
Hamiltonians, even if we cannot find the irrep structure of the algebra generated by
the Hamiltonian itself (a task that is equivalent to diagonalizing it), we can consider
an irrep structure of some larger algebra that contains the Hamiltonian. This is,
in fact, what we achieve by identifying a symmetry: the commutant algebra of the
symmetry group is an algebra that contains the Hamiltonian which allows us to
restrict its action to the irreps of the group. There are other ways, however, besides
symmetries, to identify an algebra that contains the Hamiltonian. For example, if
the Hamiltonian is a sum of multiple terms, then it belongs to the algebra generated
by those terms. In particular, given a parameterized Hamiltonians as a sum of
“tunable” terms whose strength is set by some natural or experimental constraints,
the dynamics can be restricted to the irreps of the algebra generated by the tunable
terms, independent of the parameters. A prime example of such scenario is the
tunable exchange interaction in the Heisenberg spin-1

2 chain that implements qubit
operations [263]. It would be interesting to see if the algorithm of Section 10.4 can
address such problems, especially when the standard symmetry considerations fall
short.

Bulk Reconstruction
The AdS/CFT correspondence [1, 264–266] equates the partition function, and thus
theHilbert space, of string theory orM-theory on negatively curved backgrounds and
superconformal field theories. In the large # limit, the relation describes a duality
between classical (super)gravity in � + 1 dimensions with fixed small and negative
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cosmological constant and a particular sector of (super)conformal field theories in
� dimensions with fixed large central charge. So, in this limit, the correspondence
becomes a holographic one in which we can use computations in a CFT living on
the boundary of an appropriate spacetime to tell us about gravitational quantities in
the bulk of the spacetime, and vice versa. In many cases, we would prefer to treat
the bulk as a fixed solution to Einstein’s equations sourced by quantum fields—that
is, to consider only energy regimes and sets of observables which do not probe
stringy or quantum-gravitational degrees of freedom in the bulk. In the language
we have used throughout the paper, it is thus natural to think of the classical states
as living in a coarse-grained Hilbert space obtained by tracking only a restricted
set of observables, namely (low-point) correlation functions of light bulk fields.
We can then apply the holographic duality and ask what the coarse-grained Hilbert
space looks like from the perspective of the CFT. In particular, we can ask what the
holographic duals of classical bulk observables are, or how classical information
about the bulk can be “reconstructed” from the CFT state.

In recent years, a holographic error-correcting code approach to bulk reconstruction
has been developed along these lines [34, 267–269]. When the bulk dual of a CFT
state is captured by a single bulk (Lorentzian) geometry, causality dictates that we
should be able to recover all of the information inside a region by considering only its
past domain of dependence. Hencewe do not require knowledge of the entire coarse-
grained CFT boundary state to reconstruct a local correlation function at a particular
point in the bulk, but only some smaller region of the boundary at an earlier time.
(We cannot directly associate a state to this region of the boundary, since the CFT
does not factorize spatially, butwe can instead consider the subalgebra of observables
supported in the region.) Because multiple possible boundary subregions can be
used to redundantly reconstruct the same point in the bulk, the appropriate quantum-
mechanical description of the bulk information contained in a given holographic
CFT state is a complementary error-correcting code, which can be divided into
small code subspaces, each of which can be used to reconstruct the appropriate bulk
observables.

The methods of this paper apply directly to bulk reconstruction, at least when
an appropriate UV cutoff or latticization is provided to render the system finite-
dimensional. It would be very interesting to directly construct the generalized
bipartition for the classical observables in an explicit tensor network model (see
e.g. [270]). To probe the complementary nature of the resulting reduced state, we
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could consider, for example, first restricting to all classical observables, then further
reducing to the state given only by the observables supported inside a particular
lightcone. It would also be interesting to use our state-reductionmethods to explicitly
construct the set of holographic states by considering both a restricted set of classical
bulk observables and a restricted set of boundary observables, which in general we
expect to yield two different state-reduction maps, and enumerating the set of states
for which their action is identical.

Edge Modes and Gauge Symmetries
In perturbative quantum field theory27, we start from the free-field Hilbert space,
which is constructed via a mode expansion in which the degrees of freedom are
oscillators with given frequencies. One basis for the Hilbert space is the field-value
basis, in which each mode has a definite occupation number. However, this picture
runs into difficulties when the theory has (gauge or global) symmetries–that is,
constraints, for example a Gauss law, on the allowed set of states in the “gauged”
or “physical” Hilbert space. On the level of the mode expansion, these constraints
prevent us from treating eachmode as independent, meaning that the physical Hilbert
space may not factorize into modes at all, and in particular that we might not be able
to construct a reduced state by tracing out degrees of freedom in a gauge-invariant
way.

As a toymodel, for example, we can consider a lattice of 3 qubits with aZ2 symmetry,
in which we identify a given state with the reversed state created by flipping the
spin of each qubit simultaneously across some axis of the Bloch sphere. Without
this global symmetry, the Hilbert space is isomorphic to (C2)⊗3, an 8-dimensional
Hilbert space which manifestly factorizes into three pieces. However, imposing
the symmetry reduces the Hilbert space to a 4-dimensional one in which we can
no longer precisely identify individual qubits. On the level of the abstract Hilbert
space, to be sure, there was no need to talk about the larger 8-dimensional space
at all—we could just have started directly with the 4-dimensional physical Hilbert
space.

Although it is not justified from the physical Hilbert space alone, we nevertheless
often have in mind a particular “ungauged” Hilbert space that does have nice fac-

27In this motivational description of quantum field theory, we are ignoring many subtleties such
as normalization, renormalization, unitary inequivalence, convergence of the perturbative expan-
sion, well-definedness of the theory, loop corrections, IR issues, etc., etc. We invite the reader to
consult their favorite QFT textbook and/or keep in mind a lattice regularization which explicitly
fixes the Hilbert space of the theory.
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torization properties. Then we would like to be able to sensibly construct a reduced
state even when the theory has an obstructing symmetry, such as the state of a gauge
theory or conformal field theory on an interval, or the state of a spatial subregion
in a diffeomorphism-invariant theory like general relativity. Such a construction is
provided by the edge modes program [233–235] (see also [271]). On the quantum-
mechanical level, one looks for an embedding of the physical Hilbert space, which
need not factorize, into a larger Hilbert space with some desired factorization prop-
erties, such as the existence of spatial intervals. Given this embedding, we can map
the original state to a state in the larger Hilbert space, and then reduce in the usual
way. The choice of embedding is not unique, but the edge modes program provides
a particularly symmetric choice of embedding which corresponds to summing over
all possible representations of matter charged under the symmetry, the eponymous
edge modes.

From this description it should be clear that our approach is complementary. The
edgemodes approach starts with a “small,” physical Hilbert space, chooses a “large,”
auxilliary Hilbert space to embed into, and then constructs the reduced states by
applying the appropriate partial-trace map on this large Hilbert space. The gen-
eralized bipartition approach starts directly with a choice of operators specifying
the allowed subregions, and provides a state-reduction map, not necessarily the
partial-trace map, which produces the reduced states. If we take the approach of
Footnote 2 above and think of the generalized bipartition as a diagonal embedding
into a larger bipartite Hilbert space, our approach naturally produces the desired
auxilliary, ungauged Hilbert space as well. It would be very interesting to directly
compare the state-reduction maps from generalized bipartitions to the edge-modes
description in discrete systems such as Z= lattice gauge theories. In the context
of holography, we might, for example, compute the entropy of a subinterval of a
CFT, and compare to the Cardy formula, the replica prescription, the edge modes
prescription, and the Ryu-Takayanagi formula, some of which give definite answers
and some of which should depend on the particular choice of embedding.

Quantum Gravity
Any realistic theory of quantum gravity must contain states, like our world, which
look at low energies and large distances like field-theoretic excitations on top of a
fixed spatial background. That is, there should exist some sectors of the quantum
gravity Hilbert space that look like QFTs on curved spacetime. If quantum gravity
is a bona fide quantum-mechanical theory that describes more than a single fixed
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metric, it should contain many more states which look nothing like field theories on
fixed backgrounds. In ascending order of speculation, the theory should certainly
include superpositions of geometries (which can be straightforwardly produced
experimentally by placing test masses in superpositions, e.g. [272]), if its UV
completion still has a good notion of spatial backgrounds, it should contain heavy or
stringy states, and it might contain “spacetime foam”-like states in which the notion
of spacetime breaks down entirely. Hence, we should most likely not expect states
with good spacetime descriptions to be simple factors of the full QG Hilbert space
[273], especially if the UV description of gravity is holographic in the manner of
AdS/CFT or de Sitter complementarity [17, 18, 41, 175].

A “space from Hilbert space” picture [17, 23, 65, 172], in which local spatial
degrees of freedom are emergent rather than fundamental, would require a detailed
picture of exactly how these geometric and field-theoretic degrees of freedom in
fact emerge. In this chapter, we have attacked precisely this problem in a quantum-
mechanical context. Generalized bipartitions and partial bipartitions are tools for
producing reduced states which provide information about degrees of freedom that
are not manifest in the full Hilbert space (c.f. [274], which points out that the
set of approximately-localized operators in a subregion of a gravitational theory
may not comprise an algebra). Interactions between these degrees of freedom
and the rest of the theory drive dynamics which may pick out a certain subset as
classical observables along the lines of the decoherence program. Because quantum
cosmology lacks a fixed separation between system and environment, a variational
approach is required to find the “most classical” bipartitions, or to understand what
dynamics lead these preferred observables to look like spacetime variables.
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