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ABSTRACT 

        Efficient unassisted solar fuel generation, a pathway to storable renewable energy in the form 

of chemical bonds, requires optimization of a photoelectrochemical device based on photonic 

design and interface study. We first focused on enhancing absorption via nanophotonic design of 

light absorbers. Near-unity, broadband absorption in sparse InP nanowire arrays with multi-radii 

and tapered nanowire array designs are simulated and experimentally demonstrated. Later, a few 

strategies are introduced to achieved high solar-to-fuel efficiency.  

        Optically, photoelectrochemical device would require the catalyst ensembles to be highly 

transparent. We report a record solar-to-hydrogen efficiency by integrating Rh nanoparticle 

catalysts onto photocathodes with minimal parasitic absorption and reflection losses in the visible 

range. The other two light management strategies have been developed and experimentally verified 

to create highly active and effectively transparent catalyst structures: i) arrays of mesophotonic 

dielectric cone structures that serve as tapered waveguide light couplers to efficiently guide 

incident light through apertures in an opaque catalyst into the light absorber, and ii) an effectively 

transparent catalyst consisting of arrays of micron-scale triangular cross-sectional metal grid 

fingers, which are capable of redirecting the incoming light to the open areas of the PEC cell 

without shadow loss. 

        The electronic properties of the surface films exposed to the electrolyte are also critical. The 

anatase TiO2 protection layer on the photocathode creates a favorable internal band alignment for 

hydrogen evolution, promoting the transport of the excess electrons and inhibiting voltage drops. 

The interfacial conduction mechanism between the defected TiO2 and metal catalysts is 

investigated. A combinatorial approach of electrochemistry, X-ray photoelectron spectroscopy, 

and resonant X-ray spectroscopy reveals the correlation between the interfacial quasi-metal phase 

with TiO2 properties. By careful control of gas diffusion electrode assembling to maintain 

appropriate wetted catalyst interface, another record solar-to-CO efficiency with extended stability 

can be realized. 
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CHAPTER 1  
Introduction of Solar Fuels 

1.1 Fundamentals of Photoelectrochemistry 

        To achieve a sustainable future with a carbon neutral environment, the world’s reliance on 

renewable energy has dramatically increased. Solar photovoltaic and wind energy conversion are 

rapidly growing sources of low-carbon electric power due to the size of the resource and its wide 

geographical deployment potential.1 However, intermittency of the solar and wind resources over 

wide time scales ranging from minutes to months means solar electricity is not a dispatchable 

power source. Thus, efficient and inexpensive approaches for energy storage are needed for wide 

penetration of renewable energy into the power grid.2 While electrical energy storage in batteries 

may be important for short-term storage and grid power management, seasonal energy storage is 

unlikely to rely on batteries. Transformation of solar energy into chemical bonds provides a long-

term energy storage strategy that opens a path for the synthesis of fuels and chemicals.3 One 

approach to chemical energy storage is via solar-driven fuels generation, where i) photovoltaics 

supply carbon free electricity to the grid that is used to generate fuels by chemical reaction at high 

current densities;56 ii) photovoltaics are used to directly drive electrolysis at low current densities,4 

or iii) an integrated photoelectrochemical device that performs unassisted direct fuels 

production.5,6 

        Photoelectrochemical (PEC) devices integrate multiple functional materials and couple 

various PEC processes to produce fuels from sunlight and water. Figure 1.1 illustrates key 

photoelectrochemical processes in a typical device. First, the incident sunlight is absorbed by the 

semiconductor materials. Any materials or components in the optical pathway between the sun 

and the semiconductors could potentially modulate and alter the light absorption. Therefore, 

understanding light-matter interaction in the PEC system becomes an important objective. Second, 

the absorbed photons in the semiconductor material generate energetic electrons and holes, which 

then transport to electrocatalysts via interfacial charge transfer. Third, the electrocatalysts perform 

the chemical reaction, in which products are produced simultaneously at the catalytic sites. For 

example, the two half reactions involved in the water splitting process are shown below: 



 
2 

Half reaction at cathode (reduction): 2HF + 2eG → HI (E = 0 V vs RHE) 

Half reaction at anode (oxidation): HIO + 2hF →
K

I
OI + 2HF (E = 1.23 V vs RHE) 

Net Reaction: HIO → HI +
K

I
OI 

Where RHE is the reversible hydrogen electrode potential. Other cathode reactions include but 

not limit to CO2 reduction reaction (CO2RR): 

COI + 2HF + 2eG → CO + HIO (E = -0.11 V vs RHE) 

COI + 2HF + 2eG → HCOOH (E = -0.17 V vs RHE) 

COI + 8H
F + 8eG → CHN + 2HIO (E = 0.17 V vs RHE) 

2COI + 8HF + 8eG → CHOCOOH + 2HIO (E = 0.13 V vs RHE) 

2COI + 12HF + 12eG → CIHN + 4HIO (E = 0.08 V vs RHE) 

2COI + 12H
F + 12eG → CIHQOH + 3HIO (E = 0.08 V vs RHE) 

3COI + 18H
F + 18eG → COHSO + 5HIO (E = 0.1 V vs RHE) 

 

Figure 1.1: Schematic illustrations of the general operating principles for PEC device. 

        In the meantime, ionic transport between the cathode and anode chamber and product 

separation are required to maintain the efficient and safe operation of the cell. Note that all these 

1

1

2

2

3

3
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processes need to be fully coupled to produce a single rate of reaction for cathode and anode 

reaction in the PEC device. To overcome the thermodynamic potential (ΔUrxn) , the difference 

between the anode oxygen evolution (1.23 V vs. RHE) and cathode reduction reaction, the total 

voltage (Fermi level splitting) of cathode and anode needs to be large enough to sustain the full 

reaction. For example, ΔUrxn = 1.23V for H2/O2, 1.34V for CO/O2. As illustrated in Figure 1.1, by 

employing semiconductor/electrolyte junctions, the conduction band edge (ECB) of the cathode 

should be positioned at a higher energy level than the cathode reaction, while the valence band 

edge (EVB) of the anode should be positioned at lower energy level than the anode reaction. 7,8 In 

addition, solid-state, buried junctions using traditional photovoltaic materials, such as Si, GaAs, 

etc., are often used to circumvent the stringent requirements for the band edge positions and to 

achieve high efficiency solar to fuel performances. 5,9,10 

 

1.2 Photoelectrochemical Device 

        Four general types of PEC water-splitting device architectures, as shown in Figure 1.2, have 

been modeled and experimentally demonstrated in the laboratory scale. 11 Type 1 and Type 2 

device indicates a system where the catalyst on a light absorber is in the form of particles 

suspended in the electrolyte. Either a single-chamber device (Type 1), in which hydrogen and 

oxygen co-evolve where product separation would be necessary afterward, or dual-chamber device 

(Type 2), in which a bridge or membrane for ion transport is required in the Z scheme reaction, 

has been proposed and studied for particle-based systems. While the Type 1 and Type 2 device 

architecture shows great promise in many technoeconomic analyses (TEA), the solar-to-fuel (STF) 

conversion efficiency is currently limited to <2%. 12,13 Type 3 and Type 4 devices indicate systems 

where catalyst coated planar semiconductor materials and membrane separators are configured to 

maximize the light absorption and to minimize the transport loss in the device. Even though all 

architectures can operate under un-concentrated sunlight or sunlight with low concentrations, e.g., 

~10x concentration, Type 4 indicates a PEC couple with a solar concentrator specifically. 
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Figure 1.2: Schematic illustrations of device architectures for Type 1 and Type 2 particle based 

PEC device, Tpye 3 and Type 4 planar catalyst coated semiconductor PEC device. 

1.3 Solar-to-Fuel Efficiency 

        Among various performance metrics, the solar-to-fuel (STF) conversion efficiency is one of 

the most important parameters in determining the levelized fuel production cost. 11 In particular, 

high STF conversion efficiency levitates the land requirements for a given capacity of fuel 

production and lowers the balance of system cost. We calculated the solar to fuel efficiency (hSTF) 

using equation below. 
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YZ[\
Y]^

=
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=
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          (Equation 1.1) 

Where Pin is input power, Pout is output power, Iop = Jcatalyst×Acatalyst = JPV×APV , Iop is the operation 

current of the system, Jcatalyst and Acatalyst are the current density and area of the catalyst, JPV and 

APV are the current density and area of PV, ΔUrxn is the thermodynamic potential difference 

between the oxygen evolution half reaction (OER) and the cathode reduction reaction, fFE is the 

reaction Faradaic efficiency, and Plight is the incident light irradiance (mW×cm-2) on the 

photovoltaic. 

The energy efficiency for the cell (hcell) was defined as follows: 

H2/O2

H2O

H2O2

bridge

H2O H2O

H2

membrane

O2

H2O

H2O

H2

membrane

O2
H2O

H2O

membrane

concentrator

Type 1

Type 2

Type 3

Type 4



 

 

5 

!~�ÄÄ =
YÅÇn
Yke

=
abxy^∙rst\tuvw\∙ost\tuvw\∙fgh

bÉÑjj∙rpq∙opq
=
abxy^∙fgh
bÉÑjj

          (Equation 1.2) 

Where Ucell is the total operating voltage of the cell.  

        For the integrated photoelectrochemical device, the catalyst and light absorber are coupled 

together. The solar fuel generator efficiency hSTH is given by: 

!UVÖ =
rÜhá∙abcde∙fgh

ijklmn
          (Equation 1.3) 

Where JPEC is the PEC operating current density at 0 V vs counter electrode potential. 

 

1.4 Thesis Outline 

        This thesis provides the research pathways to achieve a high efficiency solar fuel device from 

a better understanding of light matter interaction to carrier transport dynamic through device level 

integration. Below is the brief overview of each chapter in this thesis: 

Chapter 2 focused on enhancing absorption via nanophotonic design of III-V based light absorber. 

Both multi-radii and tapered nanowire arrays are introduced and experimentally evaluated. 

Chapter 3 realized high solar-to-H2 efficiency in PEC devices, consisting of a III-V based tandem 

light absorber and RuOx/Rh NP catalysts for OER and HER. Minimizing parasitic light absorption 

and reflection losses with favorable band alignment further reduces the efficiency gap to the 

theoretical limit. 

Chapter 4 developed a solar-driven CO2 reduction device using a gas diffusion electrode (GDE) 

with Ag nanoparticle catalyst directly powered by a III-V based triple junction solar cell. Device 

geometry was studied to extend the operation stability. 

Chapter 5 demonstrated light management strategies to create highly active and effectively 

transparent catalyst structures with high index TiO2 nanocones. It allowed incident broadband 

illumination couples to multiple waveguide modes, reducing interactions of the light with the metal 

catalysts. 
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Chapter 6 introduced another approach with an effectively transparent catalyst consisting of 

arrays of micron-scale triangular cross-sectional metal grid fingers. It redirected the incoming light 

to the open areas of the PEC cell to reduce the overall shadow loss.  

Chapter 7 investigated the interfacial conduction mechanism between the TiO2 protection layer 

and metal catalysts with a combinatorial approach of electrochemistry, XPS, resPEX, and RiXS.  

Chapter 8 summarized the main outcome and contribution of this thesis.  
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CHAPTER 2  
Broadband Adsorption InP NW 

2.1 Introduction 

         Design of “perfect” absorbers and emitters is of considerable current interest and research 

in the nanophotonics and metamaterials fields. 14-16 Perfect absorbers and emitters can find 

applications in numerous fields across the electromagnetic spectrum, including light and thermal 

sources, 17-19 sensing, 20,21 and energy conversion. 18,22,23 Two types of near-unity or “perfect” 

absorption are straightforward to achieve: (1) a wavelength-sized resonator can be used for 

selective “perfect” absorption — absorption at a single frequency, polarization and incidence angle, 
24-27 and (2) an optically thick layer of lossy material can be used for unselective, “perfect” 

absorption — absorption over a large range of frequencies, angles, and polarizations. 28 However, 

many applications would benefit from a more comprehensive ability to tailor perfect absorber 

characteristics, such as achieving directional, spectrally broadband thermal emission of infrared 

radiation sources 17,29 and broadband, angle-insensitive thin film perfect absorbers for high 

efficiency, lightweight photovoltaics. 28,30,31 To this end, recent work in the field has focused on 

the realization of selective perfect absorbers that are extremely thin, 14,26,32 actively tunable, 33,34 

and wavelength, angle, or polarization-insensitive, 16,35,36 as well as unselective perfect absorbers 

with small form factors that are insensitive to angle, wavelength, or polarization. 22,23  

        In this work, we focus on the design and fabrication of unselective perfect absorbers with 

small form factors using semiconductor nanowire arrays. Specifically, we examine sparse arrays 

of InP nanowires fabricated using a top-down lithographic pattern and etch procedures, followed 

by embedding in polydimethylsiloxane (PDMS) and mechanical removal from the substrate. These 

sparse arrays of vertically-oriented, semiconductor nanowires represent a promising approach to 

flexible, lightweight, high efficiency, and low-cost optoelectronic devices in sensing and energy 

applications, such as photodetectors, 37-39 bolometers, 40,41 solar cells, 23,42-44 and 

photoelectrochemical devices. 45,46 Currently in the photovoltaics field, the greatest challenge for 

use of III-V absorbers and cells is reducing cost/Watt. 47 Therefore, it is highly desirable to develop 

fabrication methods that reduce or eliminate costs associated with epitaxial growth and 

consumption of III-V compound semiconductor substrates. The wire-array fabrication process 
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described herein holds considerable promise for achieving these goals because many layers can 

be fabricated from a single compound semiconductor substrate. InP is of particular interest for 

wire array photovoltaics, and more broadly, InP has garnered much interest for nanowire-based 

optoelectronic devices due to its direct bandgap and low intrinsic surface recombination velocity, 
48 which is critical to high performance in high surface area devices. 

        In recent years, the optical properties of semiconductor nanowire arrays have been the subject 

of great interest and intensive research. 49-52 Even at very low area fill fractions, semiconductor 

nanowire arrays exhibit strong optical absorption due to robust coupling into the waveguide modes 

of individual nanowires. 23,53 These arrays of essentially independent optical antennas have an 

optical response that is polarization-independent and angle-insensitive. 45 In a standard nanowire 

array with a uniform wire radius, strong absorption is observed over a relatively narrow spectral 

region in which end-mediated coupling into guided modes is favorable. 45,54 Array geometry, 55-57 

nanowire shape, 23,58-60 and order61,62 have previously been shown both experimentally and 

theoretically to control the spectral position of this region by others. In previous work, 23 we 

theoretically studied different nanowire motifs within sparse arrays and, by optical design of the 

waveguide modes, achieved broadband absorption enhancements for constant material usage. 

Specifically, we optimized arrays with multiple nanowire radii and tapered nanowires and 

predicted > 90 % broadband absorption (Vis-NIR) in 150 nm planar equivalence. Herein, we 

validate those predictions and experimentally demonstrate broadband, polarization-independent, 

angle-insensitive, near-unity (> 90 %) absorption in sparse arrays of InP nanowires. 

 

2.2 Experimental and Numerical Method 

        InP nanowire arrays were fabricated top-down from InP wafers (2’’ AXT, n-type, sulfur-

doped, (100) orientation), using inductively coupled plasma reactive ion etching (ICP-RIE). 

Wafers were cleaned via sequential sonication for 10 min in water, IPA, acetone, and water. A 

piranha clean step was omitted because of the existence of the native InPxOy facilitated adhesion 

of the hard mask layers. 

        Two different hard masks were used in this work: SiO2 and Cr. The SiO2 mask was 

approximately 400 nm thick and deposited via RF sputtering (SiO2 target, 3 mTorr Ar atmosphere, 
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200 W forward power). The pattern was defined in the mask via a direct electron beam 

lithography written into negative tone, MaN-2403 resist, followed by a pseudo-Bosch etching step 

(5 mTorr, 1000 W ICP forward power, 25 W RF forward power, 10°C, 26 sccm SF6, 35 sccm C4F8) 

to transfer the pattern from the resist into the SiO2. For the Cr hard mask, the pattern was defined 

via  direct electron beam lithography written into a bilayer of positive tone resist (PMMA495-

A4/PMMA95-A4), followed by electron beam deposition of a 50 nm Cr layer (0.5 A∙s-1,10-6 Torr) 

and lift-off of the resist. 

        A Cl2/H2/CH4 etch (4 mTorr, 2200 W ICP forward power, 200 W RF forward power, 28 sccm 

H2, 32 sccm Cl2) was used to transfer the pattern into the InP for the creation of nanowire arrays. 

The table temperature was set to 60°C and no thermal contact between the sample and the carrier 

wafer was omitted to achieve etch temperatures of ~300°C to ensure sufficient volatility of the In 

etch products. Because CH4 provides sidewall passivation, its flow was varied between 24 and 30 

sccm to control the degree of sidewall taper from normal taper to inverse taper, respectively. 

        To exfoliate the nanowire arrays from the InP substrate, the samples were covered with a 

thick layer of 10:1 PDMS solution, degassed for 20 min, baked overnight at 80°C, and 

mechanically peeled-off the substrate after cooling. All SEM images were taken on wafer, prior to 

embedding in PDMS. All experimental optical spectra were obtained using a Fianium laser as a 

tunable source and a home-built integrating sphere setup with silicon photodiode detectors. 63 

Reflection and transmission spectra (when relevant) are composed of 276 points, spaced linearly 

in wavelength from 450 to 1000 nm. Absorption was calculated from 1-R-T. 

        Full-field, 3D simulations were performed using Lumerical FDTD, a commercial 

electromagnetics software package. At normal incidence, the infinite periodicity of the nanowire 

arrays was rendered using periodic boundary conditions and, at non-normal incidence, Bloch 

boundary conditions to enforce phase continuity. Symmetric boundary conditions were applied 

when relevant to reduce computation time. In the axial direction, perfectly matched layers were 

used to emulate infinite space above and below the array. All nanowire structures were modeled 

using Palik data for InP, Ag, Cr, and SiO2, and ellipsometric data for PDMS. Image analysis of 

SEM images was used to determine the nanowire dimensions for simulation. The top-down 

fabrication process resulted in significant geometric variation within a single array; therefore, in 
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order to capture the optical behavior of the arrays, multiple array geometries were simulated. 

Three representative geometries were chosen for each sample, and results contain each of these 

three spectra as well as their average. Figure 2.1 displays the two geometries that were used to 

render the fabricated nanowires in simulation. 

 

Figure 2.1: Schematic of two different nanowire geometries used in simulation. 

        The remaining SiO2 and Cr masks were modeled as truncated cones with the bottom radius 

matching the top radius of the nanowire and a top radius of 10 nm. A finer mesh was used around 

the nanowire, with a mesh cell width of one tenth the smallest radius. 

        All simulations used a single wavelength, polarized infinite plane wave source, and each 

spectrum is composed of 276n simulations, spaced linearly in wavelength from 450 to 1000 nm, 

where n is the number of polarizations necessary to capture the unpolarized optical response of the 

array. Planar power monitors were used to extract the array absorption and also to distinguish 

between absorption in the InP and the other materials. 

 

2.3 Results and Discussion 

        In this section, we begin with a brief discussion of InP nanowire array design. Next, we 

validate our experimental and theoretical methods via a uniform InP nanowire array. Subsequently, 

we prove that nanowire taper induces peak broadening, and multiple wire radii generate multiple 
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peaks via characterization of very sparse InP nanowire arrays. Finally, we demonstrate near-

unity broadband absorption in sparse arrays of tapered and multi-radii InP nanowire arrays.  

        As previously stated, vertically-oriented semiconductor nanowires act as cylindrical dielectric 

waveguides with high absorption loss. In sparse arrays, the nanowires are essentially non-

interacting and, thus, their optical behavior is well-described by traditional waveguide theory. 64 

The nanowires exhibit a primary absorption peak, which is due to end-mediated coupling into the 

HE11 waveguide mode; the spectral region of strong coupling occurs in the moderately guided 

portion of the HE11 modal dispersion. 53 The dominant role of the waveguide modes in the 

absorption enhancement translates to a strong correlation between nanowire radius and the spectral 

region of absorption enhancement, and is used herein to guide the design of InP nanowire arrays. 

A radius range of 40 to 100 nm is needed to observe absorption enhancement in the visible up to 

the band edge of InP (450-925 nm).  

        Initially, we examine a uniform nanowire array (r = 90 nm, h = 1.2 µm, a = 750 nm) to 

validate our theoretical framework as well as our experimental and simulation methods. The three 

different geometries used are summarized in Table 2.1. The variable labels correspond to Figure 

2.1. The fill fractions, ff, and effective InP thicknesses, teff, are also calculated and included in the 

table. This array, shown as the inset to Figure 2.2(d), has a fill fraction of 4.5% and a planar 

equivalent thickness of ~54 nm. Figure 2.2(a) displays the absorption (blue), reflection (green), 

and transmission (red) spectra for the array, after it was embedded in PDMS and peeled off of the 

substrate; Figure 2.2(b) displays reflection spectra for the array in three different configurations – 

on substrate, embedded in PDMS and on the substrate, and embedded in PDMS and peeled off of 

the substrate. These experimental spectra give the expected results – we observe low reflectivity 

for the array in all cases and a primary absorption peak around 850 nm, corresponding to coupling 

into the HE11 waveguide mode. Figure 2.2(c-d) displays the corresponding simulated spectra, with 

thick solid lines representing the average of three slightly different nanowire dimensions (thin, 

dashed, dotted lines). We found good agreement between experiment and simulation. 
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Table 2.1: Summary of array geometries used in simulation of Figure 2.2(c). UR indicates 

uniform radii. 

 

 

Figure 2.2: Characterization of uniform radius array. (a) Absorption, reflection, and transmission 

spectra for the PDMS-embedded array shown as inset of (d), measured using an integrating sphere; 

(b) Reflection spectra for the array shown as inset of (d) in multiple configurations; (c,d) Simulated 

spectra corresponding to the experimental results in (a,b) with solid thick lines representing an 
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(nm) 
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(µm) 
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(µm) 
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(µm) 

a 
(µm) 

ff 
teff 

(nm) 

UR-1 90 87.5 90 

1.578 1.214 0.122 0.75 

0.044 69 

UR-2 90 90 95 0.046 72 

UR-3 85 85 90 0.041 65 
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average of three slight geometric variations (thin, dashed, dotted); inset of (d) is scanning 

electron micrograph of the uniform radius array; see Table 2.1 for array dimensions used in 

simulation. 

 

        The initial broadband absorber arrays presented herein were designed with the intention of 

demonstrating that tapered nanowires broaden the primary HE11 absorption peak and that multiple 

radii in a single array generate multiple absorption peaks. Therefore, sparse arrays of short 

nanowires were fabricated, and the multi-radii sub-cell consisted of only two different radii. The 

sparseness of these arrays results in more well-defined peak features, which is particularly essential 

to the distinction of multiple peaks in the multi-radii arrays that might otherwise blend into one 

extended peak due to experimental variation in the fabricated dimensions. 

        Figure 2.3(a-c) displays SEM images of the sparse (a = 750nm), uniform, tapered, and multi-

radii arrays, which have fill fractions (planar equivalent thicknesses) of 4.5% (54 nm), 2.7% (29 

nm), and 2.1% (33 nm), respectively. The fill fractions and planar equivalent thicknesses were 

determined from image analysis, and the precise dimensions used in simulation are listed in Table 

2.2. Figure 2.3(d-e) displays the experimental and simulated absorption spectra for these arrays, 

demonstrating good qualitative agreement between simulation and experiment. The absorption 

spectrum of the tapered nanowire array (green) exhibits a broadened absorption peak in 

comparison to that of the uniform array (blue) and the absorption spectrum of the multi-radii 

nanowire array (red) exhibits two peaks, corresponding to the HE11 waveguide modes of the two 

different nanowire radii. It is important to note that while the uniform array may appear to be 

outperforming the tapered and multi-radii array designs in terms of integrated absorption, it is only 

because the uniform array contains nearly twice the amount of InP. 
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Figure 2.3: Comparison of uniform, tapered, and multi-radii arrays. (a,b,c) Scanning electron 

micrographs of the uniform, tapered, and multi-radii array, respectively; (d) Absorption spectra 

for the PDMS-embedded arrays shown in (a,b,c), measured using an integrating sphere; (e) 

Simulated absorption spectra corresponding to the experimental results in (d) with solid thick lines 

representing an average of three slight geometric variations (thin, dashed, dotted); see Table 2.2 

for array dimensions used in simulation. Colors are coordinated throughout the figure. 
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Table 2.2: Summary of array geometries used in simulation of Figure 2.3(e). UR indicates 

uniform radii. T indicates tapered. MR indicates multi-radii. 
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(nm) 
rm 

(nm) 
rt 

(nm) 
h 

(µm) 
hb 

(µm) 
ht 

(µm) 

a 
(µm) 

ff 
teff 

(nm) 

UR-1 90 87.5 90 

1.578 1.214 0.122 0.75 

0.044 69 

UR-2 90 90 95 0.046 72 

UR-3 85 85 90 0.041 65 

T-1 57.5 

- 

75 

1.08 - 0.12 0.75 

0.025 27 

T-2 60 77.5 0.027 29 

T-3 62.5 80 0.029 31 

MR-1 {72.5,37.5} {82.5,50} {92.5,57.5} 

1.587 {1.247, 
1.304} 0.113 0.75 

0.024 38 

MR-2 {75,30} {80,45) {92.5,57.5} 0.022 35 

MR-3 {75,42.5} {80,50} {90,60} 0.024 38 

 

        To achieve near-unity broadband absorption, slightly denser arrays of taller nanowires were 

fabricated for both the tapered nanowire and multi-radii nanowire motifs. Additionally, the multi-

radii array consisted of a 4 wire sub-cell (2x2) to distribute the strong in-coupling region of the 

HE11 mode more evenly across the visible spectrum. 

        Figure 2.4 contains the results for an exemplary tapered nanowire array, with ~1.6 µm tall 

nanowires with radii ranging from 30 to 110 nm, spaced 450 nm apart (SEM image in the inset of 

Figure 2.4(a)). A detailed accounting of array dimensions are listed in Table 2.3. The 

experimentally-measured and simulated absorption spectra for the PDMS-embedded, tapered 



 
16 

nanowire array are displayed in Figure 2.4(a-b), respectively, as a function of incidence angle. 

The experimental data includes incidence angles from 0° to 30°, in 5° increments. The simulated 

data includes 0°, 10°, and 20° for three slight geometric variations (thin, dashed, dotted lines) and 

their averages (thick solid lines); the absorption of the planar equivalence (108 nm) is also overlaid 

for reference (black, dashed line). In all spectra, we find good qualitative agreement between 

simulation and experiment. 

 

Figure 2.4: Characterization of tapered array. (a) Absorption spectra at various incident angles 

for the PDMS-embedded array (SEM image shown as inset), measured using an integrating sphere; 

(b) Simulated spectra corresponding to the experimental results in (a) with solid thick lines 

representing an average of three slight geometric variations (thin, dashed, dotted), overlaid with 

the planar equivalent absorption spectra (108 nm thin film, black dashed); see Table 2.3 for array 

dimensions used in simulation. 
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Table 2.3: Summary of array geometries used in simulation of Figure 2.4(b). T indicates 

tapered. 

 

        The tapered array demonstrates angle-insensitive broadband absorption, approaching 90% 

absorption across the visible. The PDMS front surface results in approximately a 5% broadband 

reflectivity, and the remainder is transmission losses due to incomplete absorption. Compared to 

the planar equivalent thin film of 108 nm (black, dashed line in Figure 2.4(b)), the nanowire array 

exhibits broadband absorption enhancements across the visible spectrum. These absorption 

enhancements occur due to strong coupling into the HE11 waveguide mode, which has been 

engineered to occur over a broad spectral region via wire taper. Absorption drops off beyond 800 

nm because there is insufficient wire length at the larger wire radii to observe significant absorption 

enhancements. Additionally, the noise in both the experimental and simulated spectra is attributed 

to residual pieces of the Cr etch mask. 

        Figure 2.5 displays the results for an exemplary multi-radii nanowire array, with ~ 1.75 µm 

tall nanowires with radii ranging from 35 to 115 nm, spaced 520 nm apart (shown as the inset of 

Figure 2.5(a)). A detailed account of array dimensions can be found in Table 2.4. The 

experimentally-measured and simulated absorption spectra for the PDMS-embedded, multi-radii 

nanowire array are displayed in Figure 2.5(a,c), respectively, as a function of incidence angle. To 

further push the array absorption towards near-unity, a silver back reflector was deposited to 

achieve 2-pass absorption, and the resulting experimental and simulated absorption spectra are 

shown in Figure 2.5(b,d). The experimental data includes incidence angles from 0° to 30°, in 5° 

increments. The simulated data includes 0°, 10°, and 20° for three slight geometric variations (thin, 
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T-4 100 50 32.5 1.55 0.775 

0.05 0.45 

0.057 91 

T-5 107.5 52.5 35 1.6 0.8 0.067 107 

T-6 112.5 57.5 37.5 1.65 0.825 0.078 125 
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dashed, dotted lines) and their averages (thick solid lines); the absorption of the planar 

equivalence (109 nm for single pass, 218 nm for 2-pass) is also overlaid for reference (black, 

dashed line). In all spectra, we find good qualitative agreement between simulation and experiment. 

 

Figure 2.5: Characterization of multi-radii array. (a,b) Absorption spectra at various incident 

angles for the PDMS-embedded array, shown as inset of (b), without and with a silver back 

reflector, respectively, measured using an integrating sphere; (c,d) Simulated spectra 

corresponding to the experimental results in (a,b) with solid thick lines representing an average 

of three slight geometric variations (thin, dashed, dotted), overlaid with the planar equivalent 

absorption spectra (109 and 218 nm thin films, black dashed); see Table 2.4 for array dimensions 

used in simulation.  
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Table 2.4: Summary of array geometries used in simulation of Figure 2.5(c,d). MR indicates 

multi-radii. 

 

        The multi-radii array demonstrates angle-insensitive broadband absorption, approaching 90 

% absorption in a single pass and exceeding 90% with a silver back reflector up to the band edge 

of InP (λ ~ 925 nm). Again, the PDMS front surface results in approximately a 5 % broadband 

reflectivity, which accounts for nearly all of the loss when the array has a back reflector. In the 

single pass case, the remainder is transmission losses due to incomplete absorption. Compared to 

the planar equivalent thin films (109 nm for single pass, 218 nm for double pass; black, dashed 

lines in Figure 2.5(b,d)), the nanowire array exhibits broadband absorption enhancements across 

the visible spectrum. These absorption enhancements occur due to strong coupling into the HE11 

waveguide mode, which has been engineered to occur over a broad spectral region via multiple 

wire radii that span the appropriate range. 

        In the single pass case, absorption is slightly lower in the blue, exhibiting the inverse problem 

to the tapered array (absorption dropped off in the red); this discrepancy occurs for two reasons: 

(1) the radii range of the multi-radii array is slightly larger than the tapered array, resulting in a 

red-shift of the absorption, and (2) the largest wire radius of the sub-cell targets the red region of 

the spectrum, which is more effective than the very edge of the wire taper. In the double pass case, 

the absorption is nearly flat at > 90% absorption, up to the band edge of InP, but does not drop to 

zero beyond the band edge.  
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        Figure 2.6 displays simulated absorption spectra for each material in the median tapered 

array. Note that a broadband source was used for this simulation, which requires a polynomial fit 

to the refractive index. InP absorption beyond the band edge is a result of fitting errors. Up to the 

band edge of InP (λ ~ 925nm), the majority of the absorption occurs in the InP nanowires, and 

absorption contributions from the silver and chromium are negligible. Beyond the band edge, 

significant absorption occurs in the silver layer. At the silver interface, the nanowire radius is at a 

maximum, and because the radius was designed to achieve field enhancements up to the band edge, 

there are still significant field enhancements at slightly longer wavelengths, which, in the absence 

of InP absorption, enhance absorption in the silver in this region. Conversely, the Cr mask absorbs 

minimally because it is adjacent to regions of small nanowire radius, corresponding to field 

enhancements at shorter wavelengths where InP is strongly absorbing. In multi-radii arrays, both 

the Cr and the Ag absorb significantly beyond the band edge because the largest radius nanowire 

enhances the field near both the Cr and the Ag. 

  

Figure 2.6: Simulated absorption vs. wavelength of the median tapered array with a back reflector, 

separated by material. 
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2.5 Conclusion and Outlook 

        In this work, we experimentally demonstrated near-unity, unselective absorption — 

absorption that is broadband, polarization-independent, and angle-insensitive — in sparse arrays 

of InP nanowire arrays, enabled by nanowire motif design. We explored two motifs — tapered 

nanowires and arrays of nanowires with varying radii — that aim to enhance absorption across a 

wide spectral range by optical design of the HE11 waveguide mode dispersion. Initially, we 

demonstrated that wire taper broadens the HE11 mode absorption peak and that incorporation of 

multiple wire radii results in multiple HE11 mode absorption peaks. Subsequently, we designed 

and fabricated sparse InP nanowire arrays using both wire taper and multiple wire radii that 

achieved near-unity, unselective absorption. Specifically, we achieved greater than 90% 

absorption up to the band edge of InP in a multi-radii nanowire array with a back reflector that 

contained approximately 100 nm planar equivalence of InP.  

         The cost of light absorbing material for high efficiency devices still creates big issues for real 

world application. Future direction involves developing large area nanowire arrays fabrication 

through a scalable, epitaxy-free fabrication method, for example, using nanoimprint lithography 

and wet etching. Polymer-embedded wires are removed from the bulk InP substrate by a 

mechanical method that facilitates extensive reuse of a single bulk InP wafer. The repeatable 

process of imprinting, etching, and peeling to obtain many nanowire arrays from one single wafer 

represents an economical manufacturing route for high efficiency III-V solar device. These 

semiconductor-based, spectrally, and angularly-unselective absorbers have great potential for 

flexible, high efficiency, and low-cost optoelectronic devices in energy and sensing applications. 
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CHAPTER 3  
High Efficiency Solar to H2 PEC Device 

3.1 Introduction 

        Electrochemical water splitting was achieved by van Trostwijk and Deiman in 1789 and, 

about a decade later, by Nicholsen and Carlisle 65, whereas light-induced unassisted water splitting 

with rutile as a photoanode was reported in 1972, resulting in a small but measurable efficiency 54. 

Efficient solar water splitting was first achieved using a dual junction tandem photoelectrode 66 

under a light intensity equivalent to 11 suns. 

        In 2015, several devices with solar-to-hydrogen efficiency (STH) greater than 10 % at 1 sun 

illumination were reported 10, and in 2017 an efficiency of 16.2 % was achieved 5. Overall, 

advances in solar water splitting 65 have led to a number of functional prototypes of 

photoelectrochemical and photoelectrosynthetic cells in recent years 58, featuring improved 

photoelectrode stability through the use of corrosion protection layers 67,68. However, comparison 

of solar-to-hydrogen efficiencies realized so far with theoretical limiting efficiencies 69 shows 

considerable room for further improvement; at present, the highest efficiency systems reach about 

2/3 of the theoretical limiting value for a given photoelectrode. To enable solar-to-hydrogen 

efficiencies approaching theoretical limits, the photovoltage has to be as large as possible, which 

requires a minimized photoelectrode dark current. This in turn dictates that the charge carrier 

recombination at interfaces must be prevented. To maximize the photocurrent, a reduction of the 

photoelectrode surface reflectivity under operating conditions is also required, as is mitigation of 

light absorption in the catalyst layer applied to the photoelectrode surface 70. 

        If one utilizes the band gap combination of a given tandem photoelectrode and the best 

reported exchange current densities for the HER and OER, omitting losses due to ERE and solution 

resistance, the realistic limiting STH efficiencies can be calculated 69. For the tandem 

photoelectrode used here (Ga0.41In0.59P/Ga0.89In0.11As with 1.78 eV and 1.26 eV), this value is 

22.8 %. Approaching such limiting efficiencies provides a clear objective for a renewable fuels 

technology, since inclusion of hydrogen in the existing worldwide fuel generation infrastructure 

could enable direct and widespread application of renewable fuels in the transportation sector and 

for electricity generation 71. 
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        Here, we demonstrate an approach to achieving efficiencies near the theoretical limits for 

the photoelectrode energy bandgaps employed. A key aspect of our approach is (i) the use of a 

crystalline anatase TiO2 photocathode interfacial layer, deposited by atomic layer deposition 

(ALD), to facilitate reduced reflectivity and interface recombination velocity, and (ii) a size 

distribution and spatial arrangement of Rh catalyst nanoparticles tailored to achieve ultralow light 

attenuation. The crystalline anatase TiO2 interlayer shows excellent energy band alignment with 

the tandem window layer and its interfacial ultrathin oxidized surface part and with the electrolyte. 

In addition, it serves as an efficient antireflection coating and as a support for the catalyst 

nanoparticles, with enhanced adhesion relative to III-V compound semiconductor surfaces. 

 

3.2 Experimental Method 

        The dual-junction light absorber (Ga0.41In0.59P/Ga0.89In0.11As with 1.78 eV and 1.26 eV) was 

grown by metal-organic vapor phase epitaxy in an Aixtron 2800-G4-TM reactor 72,73 on a 

4’’ p-GaAs (100) wafer with 6° offcut to [011] using a GaInAs metamorphic step-graded buffer 

layer to overcome the difference in lattice-constant between the substrate and the solar cell layers. 

The threading dislocation density after the metamorphic buffer is below 1x106 cm-2. Further details 

(layer composition and thickness) are given in the reference 72,73. 

        The native oxide on the back of the GaAs substrate was removed prior to metal ohmic contact 

deposition by (1) rinsing in acetone; (2) isopropanol; (3) 30 sec NH4OH (10 %); (4) H2O:N2 and 

(5) drying in N2. Immediately afterwards, 70 nm Pd, 70 nm Ti, and 200 nm Au were deposited by 

electron beam evaporation followed by rapid thermal annealing at 400 °C for 60 s under N2 

atmosphere 66. Prior to the TiO2 layer deposition, the front GaAs/GaInAs cap layer was removed 

in a chemical etch bath. The sample was (1) degreased by 15 s rinsing in 2-propanol, (2) 15 s in 

H2O:N2 followed by (3) a 60 s etch step in 25 % NH4OH:30 % H2O2:H2O (1:1:10), finishing with 

(4) a 20 s rinse in H2O:N2 and (5) drying under N2 (Figure 3.1, step 1). Directly afterwards (a 

desiccator was used for sample transfer between systems), TiO2 was deposited by atomic layer 

deposition (ALD) in an Ultratech Fiji F200/G2 ALD system using a titanium tetraisopropoxide 

(TTiP) precursor (STREM Chemical Inc.) and water as the oxidizer. The deposition temperature 

was set to 250 °C, and a total of 1500 ALD cycles were carried out (Figure 3.1, step 2). No high 
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temperature post annealing was required. Note that the edge of the sample had been carefully 

removed to prevent shunting of the front and back surfaces. Ag paste was applied to attach an 

ohmic contact to a coiled, tin-plated Cu wire which was then threaded through a glass tube. The 

sample was encapsulated and sealed to the glass tube using black epoxy (Electrolube ER2162). 

The exposed electrode surface area was precisely determined using an optical scanner and the open 

source software ImageJ. The steep edge of the high-viscosity epoxy was used as a borderline. 

Hence, the spill-out area (~20 µm, see reference 70) was fully included in the area measurement. 

In this study the electrodes had different areas of 0.1 – 0.3 cm2. 

 

Figure 3.1: Process flow for preparing the PEC device: (I) Chemical etching of the GaAs/GaInAs 

cap layer stopping at the AlInP window layer. (II) Deposition of the TiO2 protection and 

antireflection coating with ALD. (III) Photoelectrochemical deposition of a closed layer of Rh 

nanoparticles onto the tandem. 

        The Rh catalyst was photoeletrodeposited (Figure 3.1, step 3) in an aqueous solution of 

0.5 mM Rh(III) chloride trihydrate (99.98%, Sigma Aldrich) + 0.5 M KCl (99.5%, Alfa Aesar) at 

+0.3 V vs. an SCE reference electrode under pulsed illumination. White light was provided by an 

Oriel Instruments Solar Simulator using a 1000 W Mercury-Xenon arc lamp. The frequency of the 

stroboscopic illumination resulted from the optical chopper frequency and the double structure of 

the chopper wheel.  
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        Counter electrodes were prepared by sputtering ruthenium for 60 min on titanium foil 

(0.125 mm, 98 %, Sigma Aldrich) using an AJA sputtering system with a forward RF power of 

200 W, 5 mTorr Ar atmosphere and a base pressure of 2x10-8 mTorr. Then, prepared electrodes 

were cut into 1 cm2 pieces and attached with Ag paste to a tin-plated Cu wire which was then 

threaded through a glass tube. The counter electrode sample was encapsulated and sealed to the 

glass tube using black epoxy (Electrolube ER2162). 

        All photoelectrochemical measurements were performed using Biologic SP-200 potentiostats. 

1 M HClO4 was used as the electrolyte for pH 0 and 0.5 M KH2PO4/K2HPO4 phosphate buffer for 

pH 7. All electrolytes were purged with N2 (4N) for minimum 1 h before usage. A saturated 

calomel electrode (SCE) was used as the reference electrode for three-electrode measurements. 

Custom-made three-necked cell Glass cells with a quartz window with a volume of 35 mL were 

used as the vessel for the experiments, allowing them to be easily cleaned in Aqua Regia. To avoid 

internal reflections in the cell, a black mask was directly attached in front of the quartz window so 

that only the sample itself was illuminated. The tandem device with areas ranging from 

0.1 – 0.3 cm2 was positioned 10 mm away from the quartz window with the counter electrode of 

a size of 0.6 cm2 being placed in close vicinity to the working electrode. The photograph of the 

custom-built cell is shown in Figure 3.2. The electrolyte was vigorously agitated with a magnetic 

stir bar to minimize the diffusion losses. J-V measurements were performed with a scan velocity 

of 50 mV/s. To prevent the degradation from running at anodic condition where the dark current 

occurred, we only recorded J-V curves until 0 V vs. the counter electrode. Stability and efficiency 

tests were carried out in a two electrode configuration using a calibrated Class AAA AM1.5G solar 

spectrum provide by an ABET Technologies Sun 3000 Solar Simulator (Figure 3.3). The light 

intensity was set to 100 mW/cm2 using a calibrated silicon reference solar cell. 
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Figure 3.2: (a) Cell used for high efficiency benchmarking with WE and CE in close vicinity. The 

distance WE to window is 10 mm and the distance WE to CE is < 10 mm. (b) Front view and (c) 

side view of the double glass cell used for gas collection. The distance WE to window is 10 mm, 

the distance WE to membrane is 40 mm and the distance membrane to CE is 20 mm. The membrane 

has an area of 5 cm2. Each compartment has a gas bubbler for pre-saturation of the electrolyte 

with H2/O2 purging and gas outlets which are connected to inverted water filled burette for gas 

collection. For both cells (a) and (b/c) the quartz window is covered with black tape having an 

opening with Æ 20 mm. 

 

Figure 3.3: (a) Light spectrum of the solar simulator (ABET Sun 3000 Solar Simulator) and 

AM1.5G spectrum. (b) Light spectrum of the solar simulator and AM1.5G with water filter. (c) 

Uniformity map of the solar simulator illumination area. The band gaps of the dual-junction light 

absorber are indicated in (a) and (b). (Yellow color for top cell and orange color for bottom cell.) 
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        External quantum efficiency (EQE) measurements were performed on fully processed 

tandem devices solely to calculate the spectral correction factor to account for the difference 

between artificial and solar illumination. Hence, to avoid hydrogen evolution and H2 bubble 

formation during EQE measurements, a 50 mM methyl viologen hydrate (98%, ACROS Organics), 

dissolved in ultrapure water, was used as the electrolyte. For continuous light biasing of each 

individual tandem sub-cell during EQE measurements of the complementary sub-cell, a 780 nm 

high-power LED (Thorlabs M780L2) was used to bias the bottom cell and a 455 nm high-power 

LED (Thorlabs M455L2) was used to bias the top cell. Monochromatic illumination was delivered 

by an Oriel Solar Simulator with a 150 W Mercury-Xenon arc lamp attached to a Newport 

monochromator (1200 lines/mm). The monochromatic light was chopped at 10 Hz. The modulated 

photocurrent was amplified by an SRS model SR570 low noise current preamplifier. The current 

preamplifier was also used to supply a -1 V bias to the tandem working electrode to ensure 

measurement in the light limiting current regime. A coiled Pt wire was used as the counter 

electrode for this two-electrode measurement. The output from the preamplifier was then measured 

by a SRS model SR830 lock-in amplifier which was phase locked to the frequency of the optical 

chopper yielding the photocurrent for the individual sub-cell Jtop/bottom(l). 

        To measure the absolute light intensity (W×nm-1×cm-2) as delivered by the monochromator, a 

certified calibrated silicon diode (biased at -1 V) was positioned in the light path inside the 

photoelectrochemical cell filled with the electrolyte (to exclude effects of the electrolyte and quartz 

window on the measured light intensity), and the photocurrent density was measured (the LEDs 

for light biasing of the tandem were switched off during this reference scan). The photocurrent 

density could then be converted to the light intensity I(l) by the known spectral response of the 

silicon diode. The EQE for each sub-cell is then given by 
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 (Equation 3.1) 

Jtop/bottom(l) is the photocurrent density of the corresponding sub-cell in A×nm-1×cm-2, I(l) the light 

intensity delivered by the monochromator in W×nm-1×cm-2, λ is the wavelength in nm, h is the 

Planck constant, c is the speed of light in a vacuum, and e is the elementary charge. Rtop/bottom is 

the spectral response for each sub-cell. 
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        To obtain the Faraday efficiency, hydrogen and oxygen gas collection were performed 

using a eudiometric gas collection setup. A SELEMINON ion exchange membrane with an area 

of 5 cm2 in size was utilized to separate the cathode and anode chamber. Electrolytes were purged 

with ultrapure N2 (4N), the cathode side was pre-sutured with H2, and the anode side was pre-

saturated with O2 by means of H2 and O2 gas bubbling through a fine gas dispersion frit for an 

hour. Each side was sealed against the ambient but connected via a short thin tubing to an inverted 

water filled burette (purged and pre-saturated). The change in pressure in each burette upon H2 

and O2 gas collection due to photoelectrochemical water splitting in the PEC cell was monitored 

by pressure transducers (EXTECH HD755). The change in pressure over time was then converted 

to a gas volume under consideration of the reduced pressure in the inverted burette. For constant 

temperature, ∆.ö =
i

iõ
∙ ∆. with ú = (407.2 − ℎ) and úö = 407.2, using inWC (inches of water 

column) as pressure units. i
iõ

 is the volumetric correction factor necessary to account for reduced 

pressure in the inverted burette. The expected produced volume of hydrogen and oxygen gas for 

the cathodic and anodic reaction was calculated by the transferred electrical charge as measured 

by the potentiostat. 

        Optical measurements were performed to obtain reflectivity spectra for different surface layer 

stacks in air. A Cary 5000 UV/vis/NIR with an integrating sphere that includes a diffuse reflectivity 

measurement was used. For surface topography studies, a Bruker Dimension Icon AFM in 

Peakforce mode was used. Scanning electron microscopy images were obtained with a FEI Nova 

NanoSEM 450 microscope. XPS measurements were performed using a Kratos Axis Ultra and 

Surface Science M-Probe system with a base pressure of < 1x10-9 mTorr. A monochromatic AlKa 

(hK = 1486.69 eV) source with a power of 150 W was used for all measurements. He I ultraviolet 

photoelectron spectroscopy (UPS) was performed on the Kratos Axis Ultra system using a Helium 

gas discharge lamp. 

 

3.3 Results and Discussion 

        We employed a dual-junction tandem photoelectrode where the high band gap subcell 

thickness had been increased for better current matching, and the transparency of the tunnel diode 
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was improved 70,72,73. To further increase the STH efficiency, interfacial layers were designed 

to reduce charge carrier recombination and to increase optical light coupling into the 

photoelectrode absorber layers. The surface conditioning sequence resulted in etching of the GaAs 

cap layer by a NH4OH-H2O2-H2O solution, leaving an oxidized surface layer (AlInPOx) on top of 

the n+-doped AlInP window layer. A crystalline anatase TiO2 film with an effective thickness of 

30 nm was deposited to act as a corrosion protection layer and an antireflection coating, as well as 

serving as conducting substrate surface for photoelectrodeposition of Rh nanoparticle (NP) 

electrocatalysts. The Rh NPs exhibited large surface areas and thus high exchange current and, 

simultaneously, particularly low light attenuation. The photocathode device configuration 

employed is generally less prone to photodecomposition than photoanode devices, where charge 

carriers with high oxidation potential are present at the semiconductor surface. 

        Figure 3.4 shows a schematic of the resulting device: the photoelectrode consisting of GaInP 

and GaInAs subcells on a GaAs substrate, an anatase TiO2 protective layer, the Rh NPs catalyst 

layer, and a sputtered RuO2 counter electrode (OER) are depicted. Also depicted on the side of the 

layer structure is an energy band diagram under illumination where the quasi Fermi levels show 

the splitting for electrons, and holes necessary to achieve unassisted water splitting. Measurement 

of band gap, work function, and band bending are included in Figure 3.5 and Figure 3.6. The 

corresponding energy band relations can be inferred from surface characterization using ultraviolet 

and X-ray photoelectron spectroscopy. While the simplest approach to assessment of band 

alignment follows Anderson’s idealized model 67 for planar contacts and does not consider energy 

band shifts due to surface and/or interface dipoles, this approach certainly does not apply here, as 

the junctions formed at the AlInP/oxide, oxide/TiO2 and TiO2/Rh/electrolyte interfaces are 

complex. Thus the energy band diagram of the heterojunction structure was inferred from 

ultraviolet and X-ray photoelectron spectroscopy measurements. It should be noted that 

equilibrium formation between small metallic catalyst nanoparticles and semiconductors appears 

to depend on the substrate doping level 10 and does obviously not follow a Schottky thermionic 

emission model, in particular in contact with an electrolyte 68,69. In addition, metal work functions 

depend on NP size 70, so comparison of the energy levels of NP catalyst layers with planar thin 

films is notably challenging; therefore, only an estimate of the NP catalyst layer energy level can 

be given, supported by the device operating data. The resulting surface band alignment as 
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displayed in Figure 3.7 can be obtained after aligning the Fermi level of the solid state device 

to the hydrogen evolution potential (HER) at 4.6 eV. Due to the higher work function of 4.5 eV 

for TiO2 than 4.1 eV for the tandem, a lower barrier from 0.5 eV to 0.1 eV for hydrogen evolution 

(HER) will be expected. 

 

 

Figure 3.4: Illustration of the photoelectrochemical water splitting device structure after 

functionalization with interfacial films and electrocatalysts. Band alignment at the operation point 

is depicted on the side and zoomed in to gain the visibility. 

 

Figure 3.5: (a) Optical properties (A: absorption, T: transmission, R: reflection) of TiO2 (TTiP 

ALD) in air. (b) Tauc plot of ALD grown TiO2. The intersection with the horizontal axis indicates 

an indirect optical gap around 3.3 eV. 
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Figure 3.6: (a) Work function measurements by UPS for the tandem, for TiO2 on the tandem, and 

for Rh metal. The increase of work function from 4.1 eV to 4.5 eV was observed after applying 

TiO2 protection layer on tandem. The Rh metal spectrum is measured on the foil as a reference 

instead of the photoelectrochemical deposited nanoparticles. (b) Core level shift of Ti 2p3/2 

indicating ~0.3 eV downward band bending at the tandem/TiO2 interface and nearly no band 

bending at the TiO2/Rh interface. The tandem/TiO2 sample was made with 40 ALD cycles TiO2 on 

top of the tandem. The Rh has originally high metal work function of 5.1 eV but does not create 

band bending at the junction with TiO2. This can be explained by the pinch-off effect when the 

metal NPs are small enough that the Fermi level would directly attach to the semiconductor Fermi 

level without creating a barrier 71. 

 

Figure 3.7: Surface band alignment of the electrolyte interface layers (a) without and (b) with 

TiO2. 
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        The surface of the crystalline TiO2 film illustrated in Figure 3.8 indicates a continuous film 

with height variations, seen by AFM, that give it a flake-like appearance. The TiO2 is then 

decorated with a uniformly dense layer of ca. 10 nm Rh nanoparticles. The catalyst distribution of 

the optimized devices is also shown in Figure 3.8. Figure 3.9 illustrates the protocol for pulsed 

photoelectrodeposition of Rh catalyst nanoparticles. The potential choices made are indicated by 

black dots; the best result was obtained for E = +0.3 V vs. SCE. Fine control of particle size smaller 

than 20 nm was achieved by careful adjustment of the electrode potential, enabling considerably 

higher catalyst loading compared to a dense film of equivalent catalyst loading deposited by 

conventional vapor phase or electrochemical reduction. This procedure facilitates photocathodes 

with high transparency catalysts, which maintain the high photocurrent densities and result in 

increased efficiency, which is determined from the relation 

!UVÖ =
rÅî∙abcde∙fgh

ike
 (Equation 3.2). 

The solar fuel generator efficiency hSTH is given by the operating current at the counter electrode 

potential, the thermodynamic value for the reaction (ΔUrxn = 1.23 V for water splitting under 

standard conditions), and by the reaction Faradaic efficiency fFE, determined by gas product 

analysis measurements. 

 

Figure 3.8: SEM images and AFM microtopographs of the dual-junction PEC device with TiO2 

coating with and without Rh catalyst nanoparticles. The scale bar is 500 nm. The AFM images are 
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scaled to the same 50 nm z-axis dynamic range. The surface roughness (RMS) is 3.6 nm without 

Rh and 6.3 nm with Rh. 

 

Figure 3.9: (a) Fine control of particle size d ranging from 10 nm to 100 nm is achievable by 

appropriate adjustment of the potential during catalyst electrochemical deposition. Stroboscopic 

deposition under white light illumination as shown in the upper left insert. The three images on the 

right inset are SEM images with scale bar 2 µm. (b-d) Particle size histograms correspond to each 

SEM image depicted from top to bottom in (a) with the most frequent particle size indicated by d†. 
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        Electronically, the photoelectrode configuration used here facilitates alignment of the 

conduction bands of the AlInP window layer of the tandem photoelectrode to the indium oxide 

and indium phosphate layers (created by the cap layer etching process) and the anatase TiO2 

protection/antireflective layer. We note that photogenerated electrons, which are minority carriers 

in the main part of the tandem subcells, become majority carriers in the AlInP and TiO2 layers, 

reducing recombination losses in carrier transport. In addition, the large valence band offset 

between AlInP and TiO2 blocks interfacial hole transport, resulting in a small overall reverse 

saturation current, improving the photovoltage. This feature is important for achieving high STH 

efficiencies.  

        Amorphous defective TiO2 coatings have been commonly applied using ALD with 

Tetrakis(dimethylamino)titanium (TDMAT) precursors to yield protected photoanodes, a concept 

designed to facilitate transport of holes through a defect band in the TiO2 68,74. However, the 

dominant process that limits the photoelectrochemical performance of high-quality 

semiconductors is not transport but interface recombination. Thus, we instead utilize a defect band 

free, microcrystalline anatase phase TiO2 coating formed by ALD with titanium tetraisopropoxide 

(TTiP) precursors as an electron-selective contact to protect the surface of photocathode from 

photocorrosion (Figure 3.10). 

 

Figure 3.10: (a) X-ray diffraction data of ALD deposited TiO2 from TTiP or TDMAT precursor. 

The TTiP TiO2 shows anatase crystalline phase while the TDMAT TiO2 is amorphous. (b) XPS 

valance band spectra of TTiP and TDMAT TiO2. A defect band in TDMAT TiO2 can be observed 
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at -1 eV which facilitates hole transport in photoanodes 74. Instead, TTiP TiO2 exhibits an XPS 

spectrum without a defect band and would be more suited to prevent recombination in 

photocathodes. 

       To assess the optimal thickness, we performed a series of optical reflectivity measurements 

on TiO2 films deposited by atomic layer deposition (ALD) on the tandem photoelectrodes with 

various thicknesses in the range of interest. The results are shown in Figure 3.11(a). We find the 

30nm thickness TiO2 layer reported in the manuscript has the lowest reflection in the relevant 

spectral range. Figure 3.11(b) shows results of calculations using full wave electromagnetic 

simulations performed using finite-difference time-domain methods (Lumerical FDTD) assessing 

the effect of thickness variations on optical reflectivity similar to the experimental results. For the 

TiO2, we find a very low reflectivity over a wide spectral range for a nominal thickness of 30 nm. 

 

Figure 3.11: (a) Reflectance, measured in air, of the dual-junction tandem solar cell with different 

thicknesses of the TiO2 coating by changing the ALD deposited cycles. (b) Reflectance, simulated 

by Lumerical FDTD, with different thicknesses of TiO2 for correlation with the experimental 

results. 

        To optimize light coupling, we also carefully tailored the optical properties of the Rh 

nanoparticles to work in combination with an optimum TiO2 thickness of 30nm, determining the 

reflectance, absorbance, and transmittance. To determine the influence of the Rh particle size on 
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reflectance, absorbance, and transmittance, we modeled three particle sizes using full wave 

electromagnetic simulations. The optical transmission modeling in Figure 3.12(b) shows that for 

a 10nm Rh particle size, an optimum is reached. We show that the transmittance and 

photoelectrode light coupling for the entire structure consisting of (tandem photoelectrode/30nm 

TiO2/10nm Rh particles) is almost identical to a bare surface without Rh. Although a 40 nm Rh 

particle size shows lower reflectivity in the relevant spectral range in Figure 3.12(a), the Rh particle 

absorption increases substantially, resulting in an overall lowered transmittance into the cell, as 

seen in Figure 3.12(c). The transmittance is therefore reduced and fewer photons reach the 

photoactive part of the cell (see Figure 3.12(b)). 

 

Figure 3.12: FDTD simulated (a) reflectance, (b) transmittance, and (c) absorption defined as 

A = 1 - R - T of different Rh particle sizes on 30nmTiO2/AlInP (window layer of the tandem). 

        A similar trend is observed in the experimental results shown in Figure 3.13. We measured 

the reflectance of samples with different particle size. The blue curve shows the reflectance of the 

tandem with a TiO2 layer, but without Rh catalysts. The red curve shows the system with ~10nm 

Rh particles added, as used in our record device. As can be seen from the simulations in Figure 

3.12(b), we expect the 10nm Rh particles to be effectively transparent. The yellow and purple 

curves show the reflectance with medium and large sized Rh particles, which would lead to a larger 

loss due to parasitic absorption and reflection. 
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Figure 3.13: Reflectance, measured in air, of samples with different Rh NPs size on the dual-

junction tandem solar cell with 1500 ALD cycles TiO2 corresponding to a layer thickness of 30 nm. 

        The influence of the surface modifications on optical properties and on the photocurrent of 

the optimized device is shown in Figure 3.14. A reduction of the reflectivity by ~15 % is achieved 

by use of the TiO2 interlayer (Figure 3.15) whereas the Rh NPs in Figure 3.14(a) show negligible 

additional absorption, which is attributed to the blue-shifted plasmonic resonance of the Rh 

nanoparticles. For particle sizes below 20 nm, a shift from the visible region into the ultraviolet 

one occurs, making the Rh layer almost fully transparent 75,76. The output data shown in Figure 

3.14(b) were obtained in an acidic electrolyte of pH 0. The corresponding photocurrent-voltage 

characteristics in acidic electrolyte demonstrate a pronounced increase in the current and, as 

expected, also a shift of the bend of the photocurrent characteristic towards more anodic potentials, 

thereby additionally increasing the photocurrent at the RuO2 counter electrode (OER) potential. 

The result with incorporation of TiO2 is a relative increase of 28 % of the tandem cell output. An 

STH efficiency of 19.3 % is obtained at 0 V, with an operating current of 15.7 mA/cm2, assuming 

an initial Faradaic efficiency of unity, which is supported by the gas evolution measurements. 

These data represent a 20 % increase in efficiency above the previously reported one sun 

photoelectrosynthetic cell efficiency benchmark 5. The high photocurrent at 0 V vs. RuO2 indicates 

that electron transport is virtually uninhibited from the absorber layer through the indium and 

phosphorus oxide and TiO2 interfacial layers to the electrolyte, matching well with the surface 

band alignment analysis. 
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Figure 3.14: Optoelectronic properties of the surface functionalized electrolyte / Rh / TiO2 / oxide 

/ AlInP - GaInP / GaInAs / GaAs water splitting device. (a) Reflectivity, measured in air, of the 

dual-junction tandem solar cell without ARC (black curve), secondly reflectivity obtained after 

TiO2 coating (blue curve) and after photoelectrochemically deposited Rh NPs (yellow curve). 

Reflectivity is larger than under operation in the electrolyte due to the different refractive indices 

of air and water. (b) Comparison of the output characteristics of the tandem device after cap layer 

etching and of the fully surface functionalized photoelectrode. The orange arrows indicate the 

improvement after incorporation of the TiO2 layer. 

 

Figure 3.15: The enhancement of absorption based on the reduction of the reflectivity for the PEC 

device due to employment of TiO2 layer. (Absorption = 1-Reflection) The 15% average increase 

of absorption can directly contribute to the enhancement of photocurrent. 
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        The observed unassisted water splitting efficiencies critically depend on the experimental 

conditions. In order to consider the influence of the spectral mismatch of the irradiance between 

our solar simulator and the AM1.5G spectrum, a spectral correction factor (SCF) was calculated. 

It is based on the relative EQE of the device, the irradiance of the solar simulator {Imeas(l)} and 

the AM1.5G reference spectrum {IAM1.5G(l)} (Figure 3.3(a)). The influence of the water filter 

{Fwater(l)} on the spectra was considered for the calculations (Figure 3.3(b)). The index j denotes 

to the individual sub cell. 
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= /é�£§ ∙ ∑05 (Equation 3.3). 

For illumination under AM1.5G conditions, the AM1.5G ASTM G-173 reference spectrum was 

taken from the Renewable Resource Data Center (RReDC) of the National Renewable Energy 

Laboratory (NREL). Although the SCF is a simple correction between spectra, we still need to be 

careful to prevent artificial inflation or underestimation of efficiency. We note that the SCF will 

be unsuitable to apply with large deviation from 1 since the current correction will become 

unrealistic due to severe difference of overpotential and bubble formation.  

        To calculate the spectral correction factor (SCF) between solar simulator and the AM1.5G 

spectrum, the EQE measurements were performed in 50 mM methyl viologen where no bubble 

formation would deteriorate the accuracy. The bias light was 780 nm and 455 nm for the bottom 

and top sub-cell, respectively. The result is shown in Figure 3.16. To correct for nonparallel 

illumination in the solar simulator that results in focusing of the light by the quartz window, the 

beam divergence in each axis was experimentally determined, and a concentration ratio (CR) was 

calculated (Figure 3.17). The corrected photocurrent is given by /ö =
rñÑ∞∂
∏ì

. The total correction 

factor for each sample is then given by /o°K.Q¢ = /é�£§ ∙ ∑05/0(, e.g. for the 19.3 % efficient 

cell reported in this study, the values are SCF = 1.024 and CR = 1.028. 
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Figure 3.16: Relative EQE of a fully processed PEC tandem device: the bandgap combination is 

determined to be around 1.78 eV for the top cell and 1.26 eV for the bottom cell.  

 

Figure 3.17: (a) Calculated optical concentration ratio of the non-parallel light-beam of solar 

simulator illumination in PEC cells for plane wavefront and spherical wavefront as a function of 

water path length. (b) Illustration of the spherical wavefront case. The concentration ratio 

(CR = A0/ACR) depends on the exact sample area A0. (c) Illustration of the plane wavefront case. 

An opening aperture in front of the quartz window of the PEC cell with a diameter of 2 cm was 

used in this study. The beam divergence was experimentally determined to be QV = 1.8 ° vertically 

and QH = 2.5 ° horizontally by measuring the size increase of the light beam through a 2 cm 

aperture at specific distances (10 cm to 30 cm). 
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        For an evaluation of the influence of polarization losses including ohmic losses, diffusion 

losses, and kinetic losses 77, we simulated the maximum obtainable efficiencies in the detailed-

balance scheme with the program YaSoFo 70. Since the electrolyte was vigorously agitated and 

buffered, we are able to minimize the diffusion losses. Optical losses were assumed to be the cause 

for the difference in theoretical and practically obtained limiting photocurrents. In the simulation, 

these were taken into account by scaling the AM 1.5G spectrum with a constant factor of 0.89. 

The diode current-voltage curve (ideality factor ni=1) intersected with the characteristics of the 

catalyst following a Tafel behavior described by exchange current density and Tafel slope under 

the assumption of an additional ohmic drop of 2 Ω. Fig. Figure 3.18(a) shows the maximum STH 

efficiency as a function of exchange current density and Tafel slope. We observe that in the regime 

of our OER catalyst (exchange current density of ~10-3 mA·cm-2 for RuO2, Tafel slope for RuO2 

as 83 mV·dec-1 at pH 0 and 100 mV·dec-1 at pH 7, see Figure 3.19), the exchange current density 

and Tafel slope are still in the plateau of the maximum efficiency; the corresponding points are 

indicated in Figure 3.18(a). As our case catalysis is dominated by the OER, it is not an efficiency-

limiting factor of our setup. We also show in Figure 3.18(b) the efficiency as a function of the 

ohmic drop. For this analysis, we fixed exchange current density and Tafel slope to typical values 

of IrO2 and varied the ohmic resistivity. One notices that the efficiency only starts to drop at high 

values beyond 40 Ω, which is why the resistive overpotential is not limiting in our setup, either. 

Combining the ohmic loss that can be induced from the electrolyte (~4 Ω for pH 0 and ~15 Ω for 

pH 7), and interface loss from imperfect surface band alignment (~40 Ω without TiO2 and ~6 Ω 

with TiO2), our record device photocurrent is still located at the linear region which indicates that 

the optical losses are prevailing in our system. However, the system, in principle, reacts sensitively 

to the polarization losses, emphasizing the importance of judiciously combining interface and 

catalyst. 
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Figure 3.18: Calculated maximum STH efficiency as function of (a) Tafel slope A and exchange 

current density J0, (b) ohmic drop. Maximum obtainable efficiencies for the given tandem absorber 

are shown in the detailed-balance scheme as a function of the catalyst parameters and resistivity 

loss. The maximum photocurrent density was scaled to the experimentally determined current 

density under strong cathodic bias. The blue star indicates our device under pH 0 condition and 

the red star indicates our device under pH 7 condition. 

 

Figure 3.19: Tafel plots of (a) Rh and (b) RuO2 catalysts under pH 0 and pH 7 conditions. The 

Tafel slopes are 34, 38, 83, and 100  mV·dec-1 for Rh-pH0, Rh-pH7, RuO2-pH0, and RuO2-pH7 

respectively. 
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        Figure 3.20 summarizes the main performance characteristics. Figure 3.20(a) illustrates the 

photocurrent-voltage characteristics under three conditions: i) at pH 0 with 19.3% STH, ii) at 

neutral pH with 18.5 % STH, and iii) using an anion exchange membrane (AEM) with an STH of 

14.8 %. Figure 3.20(b) gives the unassisted two-electrode photocurrent density vs. time for the 

initial operation regime, showing that while the photocurrent density decreases with time for acidic 

pH, it remains more stable in neutral pH solutions. Chronoamperometric tests (at -0.4 V vs. counter 

electrode as shown in Figure 3.20(c) show that the device photocurrent density decreases in an 

acidic electrolyte to low values within 3 h. However, in neutral pH electrolyte, stability over 20 h 

was demonstrated, with the photocurrent density remaining at 83 % of its initial value. In both 

cases, for pH 0 and pH 7, near unity Faradaic efficiency is confirmed through the agreement 

between the expected (solid line) and measured gas volumes (symbols) in Figure 3.20(d). However, 

whereas the curves for pH 7 stay linear with a constant gas production rate for H2/O2, as expected 

from the stability measurements, the curves for pH 0 show a deviation from linearity due to the 

decreasing photocurrent. 
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Figure 3.20: Output characteristics of the RuO2-Ge/GaInAs/GaInP/AlInP/anatase TiO2/Rh-

electrolyte dual junction tandem structure. (a) Photocurrent-voltage characteristics in acidic (pH 

0), neutral (pH 7) electrolyte, and in neutral electrolyte including an AEM membrane. (b) 

Chronoamperometric data of the initial temporal regime. (c) Stability measurements at -0.4 V vs. 

RuO2 counter electrode for acidic and neutral pH. (d) Hydrogen and oxygen gas collection for 

operation in acidic (open spheres) and neutral (full spheres) electrolyte. The measured gas volume 

for oxygen (blue symbols) and hydrogen (red symbols) is overlaid with the expected produced gas 

volume, as calculated from charge passed through the anode and cathode. 

        Etching of TiO2 is expected to occur at pH 0 but not at pH 7, as can be seen in the TiO2 

Pourbaix diagram in Figure 3.21. Corrosion reactions can degrade the junction photovoltage, as 

well as lead to undercutting and removal of catalyst particles, thus reducing the exchange current 

of the Rh NP arrangement and a slowing of the HER kinetics. The system reacts also sensitively 
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to series resistance changes, as illustrated by characteristics for devices employing an anion 

exchange membrane. The bend of the J-V curve is shifted to cathodic potentials. However, device 

operation at pH 7 still yields a high STH efficiency of 18.5 %, and the device appears to be stable 

for a more extended period in accordance with predictions of TiO2 stability from thermodynamics. 

Even a slower reduction of the photocurrent is observed, we found that this photocurrent reduction 

could be partially reversed by emersion of the device from the electrolyte solution and applying a 

soft cleansing procedure. The observation that the photocurrent can be partially restored appears 

to rule out loss of Rh catalyst particles, or even partial removal of the anatase interfacial layer, as 

causes of photocurrent reduction. 

 

Figure 3.21: Potential-pH equilibrium diagram for the system titanium-water system at 25 °C, 

adapted from ref. 77. For pH 0, the stable region is small. Upon overpotential to hydrogen evolution, 

corrosion sets in, which ultimately leads to the degradation of the device and its efficiency. 

        Increasing the efficiency of a photoelectrosynthetic device from already high values towards 

theoretical limits is especially challenging. We have used a series of surface conditioning steps 

that have a twofold function: light management was drastically improved, and the electronic 

properties were at least maintained. Compared to our earlier results 10, we see an increase in the 

available cell voltage that is related to the increase in photocurrent at the counter electrode 

operation potential. Junction formation between the etched AlInP layer, TiO2 layer, and Rh NPs 
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suggests that the Fermi level alignment is nearly ideal. Using the parameters shown in Table 

3.1, our photoelectrosynthetic device reaches 0.85 of the theoretical limiting efficiency. It should 

be noted that the theoretical efficiency determined from the data in Table 3.1 is based on the best 

presently known electrocatalysts, a unity photoelectrode radiative efficiency, and an absence of 

absorption losses 69. Figure 3.22 shows a summary to date of selected STH efficiencies realized 

for monolithic integrated photoelectrosynthetic devices capable of unassisted water splitting. (The 

performance of each device are listed in Table 3.2.) 

 

Table 3.1: Approaches to theoretical limitation of light-induced photoelectrochemical water 

splitting; ideal, only exchange current density limited and devices that are optically and 

electrochemically limited are displayed, respectively. For the used band gap combination and only 

catalytic exchange current density (JXC) limitation, htheo = 22.8 % at AM 1.5G irradiation. 

 
J0,cathode 

(mAcm-2) 

J0, anode 

(mAcm-2) 
fabs ERE Rs (W) Rsh (W) 

ideal ∞ ∞ 1 1 0 ∞ 

JXC limited 1 10-3 1 1 0 ∞ 

JXC and optically 
limited 1 10-3 0.9 0.03 0 ∞ 
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Figure 3.22: Comparison of realized limiting STH efficiencies and historic development. The 

analysis refers to a theoretical benchmarking value htheo and takes into account the top and bottom 

cell band gaps for the respective photolysis cells; also shown are the institutions of the contributing 

research teams. Abbreviations: NREL - National Renewable Energy Laboratory, USA; ISE - 

Institute for Solar Energy, Germany; JCAP - Joint Center for Artificial Photosynthesis, Caltech; 

TU-I - Ilmenau University of Technology, Germany; HZB - Helmholtz Zentrum Berlin, Germany. 

The bar chart on the right indicates the achieved efficiency with respect to the respective 

theoretical limit (!theo∗ ). 

  



 
48 

Table 3.2: Reported STH benchmarks from literature with employed bandgaps, achieved STH 

efficiency (!STH), theoretical limit for realistic water splitting (!theo), and ratio of achieved STH to 

!theo as !theo∗ . 

 Bandgaps ∫STH (%) ∫theo (%) ∫theo
∗  (%) Reference 

JCAP/TU-I/ISE 1.78/1.26 19.3 22.8 85 This work 

NREL 1.8/1.2 16.2 24.2 67 5 

TU-I/HZB/JCAP/ISE 1.78/1.26 14 22.8 61 10 

JCAP 1.84/1.42 10.5 19.7 53 78 

NREL 1.83/1.42 10 19.7 51 5,66 

 

        Compared to an earlier reported record photoelectrosynthetic cell with inverted metamorphic 

multi-junction semiconductor architecture 5, the tandem device employed in the present study has 

a less ideal bandgap combination of 1.78 V/1.26 V, compared to 1.8 V/1.2 V, which leads to the 

reduction of theoretical efficiency from 24.2 % to 22.8 %. However, due to better light 

management (antireflection layer, optimized catalyst loading, thinning, and transparency of the 

tunnel junction), a higher current density and higher STH efficiency of 19.3 % are observed. This 

efficiency corresponds to an enhancement from 67 % to 85 % of the ratio of achieved efficiency 

to theoretical efficiency for the employed bandgaps. The stability tests using a two-electrode 

configuration at 0 V vs. RuO2 counter electrode to demonstrate unassisted water splitting for the 

two devices are shown in Figure 3.23(a). The result from ref. 5 was corrected by scaling the initial 

current density (including spectral calibration errors) to 13.17 mA/cm2 calculated from their 

reported highest efficiency of 16.2%. At an acidic pH, our device current density drops from 

15 mA/cm2 to less than 5 mA/cm2 within an hour. By contrast, for pH 7, the photocurrent density 

and device performance are more stable and show similar chronoamperometric performance to 

that reported in ref. 5; our device is stable for the first 20 min, then the photocurrent density slowly 

decreases. The spikes in current density indicate the influence of bubble formation and subsequent 

detachment. The dynamics are different due to the change in the reduction mechanism (proton 
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reduction at pH 0, water reduction at pH 7) and the surface tension of the electrolyte. The surface 

tension of the phosphate buffer is higher than for acidic electrolyte (see Figure 3.24) and exhibits 

more severe bubble accumulation that induces greater photocurrent density fluctuations. 

 

Figure 3.23: (a) Stability measurements at 0 V vs. RuO2 counter electrode for acidic and neutral 

pH. The result from ref. 5 are adapted and included for comparison as the black curve. (b) 

Chronoamperometric measurements at -0.4 V vs. RuO2 counter electrode for acidic and neutral 

pH. The results from ref. 5 at 0.6 V vs. RHE are adapted and included for comparison in black. 

Currents rescaled based on the reported efficiency in ref. 5 are shown in blue. 
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Figure 3.24: Contact angle measurement for pH0 1 M HClO4 (a, c) or pH7 0.5 M phosphate buffer 

(b, d) on the tandem (a, b) or on the TiO2/tandem (c, d) sample. The image was analyzed with 

ImageJ with the help of the “Drop Analysis” plugin developed at the École polytechnique fédérale 

de Lausanne (EPFL) (http://bigwww.epfl.ch/demo/dropanalysis/). The larger contact angle of 

phosphate buffer indicates higher surface tension, which can lead to more severe bubble 

accumulation and larger photocurrent density fluctuations. 

        It is well known that photoelectrochemical devices can be better stabilized in a three-electrode 

configuration at the RHE potential. We were also able to demonstrate long-term stability of 50 hrs 

under these conditions without the existence of a protection layer in an acidic environment (see 

Figure 3.25). However, these conditions are not comparable to operation at 0 V vs. CE in a two-

electrode configuration, as operation at RHE potential diminishes the effect of corrosion. For 

comparison and to understand the intrinsic differences between operation at different pH 

conditions, chronoamperometric tests were conducted at -0.4 V vs. counter electrode (equivalent 

to approximately +1.1 V with respect to RHE (estimated to be 1.23 V plus catalysts overpotential 

minus 0.4 V) as shown in Figure 3.23(b). The stability data of the device reported in ref. 5, which 

was operated at +0.6 V vs. RHE with and without current rescaling, is included for comparison. It 

shows that the device photocurrent density decreases in acidic electrolyte to low values within 3 h. 

In neutral pH electrolyte, stability over 20 h was demonstrated, with the photocurrent density 
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remaining at 83 % of its initial value. At 12 h into the test, a diurnal cycle was simulated by 

emersion of the sample in the dark for a few minutes. This step resulted in a substantial current 

density enhancement. Overall, our device operated in neutral pH conditions shows similar stability 

characteristics compared to that reported in ref. 5, while exhibiting higher efficiency. Our device, 

operated in a biased two-electrode configuration exhibits an extended stability with respect to the 

three-electrode measurements reported in ref. 5. We conducted XPS measurements to further 

understand the degradation mechanism. 

 

Figure 3.25: Chronoamperometric measurements at 0 V vs. RHE for Rh/Tandem device without 

protection layer in acidic environment. 

        X-ray photoelectron spectra of tandem samples after each step in the PEC device production 

process are shown in Figure 3.26. The tandem etched spectra show the exposed AlInPOx window 

layer. Upon deposition of TiO2 with no visible In and P signal, we infer full coverage of the 

protection layer without pinhole formation. Photoelectrochemical deposited Rh with the similar 

intensity to the Rh film indicates a sufficient amount of catalysts. However, the small remaining 

Ti peaks present the existence of the TiO2 exposed area. After photoelectrolysis in an acidic 

environment, the TiO2 peak enhancement indicates more exposed areas upon local detachment of 

catalysts (see Figure 3.27). The maintained prominent Rh peak implies the loss of catalyst is not 

the limiting factor of degradation. Instead, the appearance of underlying In and POx peaks supports 

the scenario of tandem corrosion due to local TiO2 etching. After operation in neutral pH, we 

observed the enhancement of the phosphate peak for the aged sample and reduction again after the 
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recovery as shown in Figure 3.28. Note that no In signal is detected in all samples, which 

indicates the source of phosphate species is the buffer electrolyte rather than tandem corrosion. 

We thus deduce that the current reduction during the stability test is mainly contributed by the 

poisoning of Rh catalysts by the phosphates group. The photoelectrode regeneration procedure 

results in a 50 % recovery of the photocurrent lost during the first 12 hrs, suggesting that the high 

porosity of the Rh NP layer inhibits full recovery by a short intermediate treatment. The residual 

loss remaining after dark recovery can be attributed to the POx groups still remaining on the surface. 

Employing a different electrolyte for pH 7 conditions might therefore benefit longterm activity of 

the device.  

 

Figure 3.26: X-ray photoelectron spectra of tandem samples after each step in the PEC device 

production process: after removing the GaAs/GaInAs cap layer by chemical etching (black curve, 

indicated as Tandem etched), after deposition of the TiO2 layer by ALD (green curves, indicated 

as +TTiP TiO2); and after photoelectrochemical deposition of Rh nanoparticle catalysts (blue 

curve, indicated as +Rh). As a reference, spectra of metallic Rh electrode are included (red curve, 
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indicated as Rh metal). (a) In 3d core levels; (b) P 2p, In 4s and Al 2s core levels, the peak of 

POx is indicated; (c) Ti 2p core level; and (d) Rh 3d core level.  

 

Figure 3.27: X-ray photoelectron spectra of a pristine Rh/TiO2/Tandem sample (black) and after 

degradation in acidic environment (red): (a) In 3d core levels; (b) P 2p and In 4s core levels, the 

peak of POx is indicated; (c) Ti 2p core level; and (d) Rh 3d core level.  
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Figure 3.28: X-ray photoelectron spectra for the study of Rh catalyst poisoning by POx groups in 

pH 7: (a) In 3d core levels; (b) P 2p core levels, the peak of POx is indicated; (c) Ti 2p core level; 

and (d) Rh 3d core level. The black curve indicates the pristine (p) sample before any 

photoelectrochemical measurement. The red curve indicates the aged (a) sample, which was taken 

out from the electrolyte under light illumination after operation. The blue curve indicates the 

recovered (r) sample, which was taken out from the electrolyte under dark condition to simulate 

the diurnal cycle.  

3.4 Conclusion and Outlook 

        Stability appears to remain an issue of this photocathode device configuration, but we have 

demonstrated high efficiency in neutral electrolytes, and that extended operation of photocathode 

devices becomes possible if one can control the Rh surface chemistry. The use of Rh NPs with 

tailored size and shape distributions enables ultralow absorption. The future design of even more 

optimized tandem photoelectrodes appears to be possible, enabling solar fuel generation (water 

splitting, as well as CO2 or N2 reduction) efficiencies to be even higher than reported here, for 
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example with STH champion device efficiencies of >20 % for integrated direct water photolysis 

being a realistic goal. 

        In PEC system, the cost of raw materials and system level deployment are critical issues for 

real world application. As a general guidance, STH efficiency of 15% and extended lifetime of 20 

years would make PEC device a practical solution. Stability is currently the most important 

challenge to overcome. Although many demonstrations show the photoelectrochemical devices 

can be stable for long period of time at 0 V vs RHE potential, the device can barely survive at real 

operation conditions for a short time. New approaches and strategies of the protection scheme 

would need to be developed. 
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CHAPTER 4  
High Efficiency Solar to CO PV-GDE Device 

4.1 Introduction 

        Parallel to solar hydrogen generation approaches, pathways for solar-driven reduction of 

carbon dioxide to fuels have used i) direct electrolysis,79 ii) photovoltaic directly driven 

electrolysis 80, and iii) integrated photoelectrochemical conversion.81,82 Of particular interest is 

solar-driven reduction of carbon dioxide using a high efficiency photovoltaic (PV) device directly 

coupled to an electrochemical cell tailored for reduction of CO2 to CO.83 Mixtures of solar-

generated CO and H2,84 could be used as syngas precursors in a future Fischer-Tropsch chemical 

synthesis process 85 to produce high molecular weight hydrocarbon fuels, or chemicals as 

products.68 Carbon dioxide reduction to CO is generally more energy efficient and kinetically 

easier than direct reduction of CO2 to multicarbon products.83,86 

        Among the most efficient heterogeneous solid state catalysts for CO2 reduction to CO are 

gold,87,88 silver,89 WSe2,90 and MoS2.91 The use of high surface area morphology structures such 

as nanoparticles can improve catalytic activity.92 Other factors that impact catalytic performance 

include catalyst morphology,87 cations present in the electrolyte solution,93 electrolyte 

concentration 94, and local pH.95 The state-of-the-art CO2 to CO conversion using a Au needle 

catalyst 94 showed an operating current of 15 mA×cm-2 and 95 % Faradic efficiency at -0.35 V vs. 

RHE. However, the current record efficiency device for solar conversion of CO2 to CO using a 

solution-based electrochemical cell suffered from low current density (0.33 mA×cm-2 at -0.6 V vs. 

RHE) due to limited catalyst activity. This required the use of large-area electrodes to match the 

photovoltaic device area.80 Table 4.1 shows overpotential and Faradic efficiency data at current 

densities close to 15 mA×cm-2 along with the electrolyte conditions and catalyst loading for 

various Ag and Au electrodes. The catalytic activities of the catalysts indicate that in many cases, 

nanoparticles of Ag have a similar activity to that of Au while costing significantly less. 
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Table 4.1: Comparison of the CO2 reduction performance of our Ag-NP catalyst with 

previously reported Ag and Au electrodes. (U as overpotential vs. E0CO/CO2 (-0.11 V vs. RHE), 

mass activity define as r∙fgh
Ää£µªºΩ

.) 

Catalysts Electrolyte pH U (V) at 
~15 mA×cm-2 

fFE,CO 
(%) 

Loading 
(mg×cm-2) 

Mass 
activity 

(mA×mg-1) 
Ref. 

Nanoporous 
Au 

CO2-sat 
0.2 M KHCO3 

6.8 1.24 N/A 0.39 
(200 nm film) N/A 96 

Nanoporous 
Au 

CO2-sat 
0.1 M KHCO3 

6.8 0.6 60 
0.47 

(eq. 240 nm film) 19.15 87 

OD-Au CO2-sat 
0.5 M NaHCO3 

7.2 0.39 100 193 
(0.1 mm foil) 0.08 88 

Au-NWs CO2-sat 
0.5 M KHCO3 

7.2 0.32 90 4.43 3.05 76 

Au nanoneedle CO2-sat 
0.5 M KHCO3 

7.4 0.24 95 N/A N/A 94 

Bilayer Au/PE 
CO2-sat 

0.5 M KHCO3 
flow cell 

7.2 0.39 85 0.15 85 97 

Au-NPs 2M KOH 
flow cell 

13.
77 0.2 70 0.18 58.33 98 

Polycrystalline 
Ag 

CO2-sat 
0.1 M KHCO3 

6.8 1.4 30 105 
(0.1 mm foil) 0.04 99 

Polycrystalline 
Ag 

CO2-sat 
0.5 M KHCO3 

7.0 1.04 60 N/A 
(foil) N/A 100 

5 nm Ag/C CO2-sat 
0.5 M KHCO3 

7.0 0.84 40 0.09 66.67 100 

Ag-NPs CO2-sat 
0.1 M KHCO3 

6.8 0.84 83 N/A N/A 101 

cysteamine-
capped Ag-

NPs 

CO2-sat 
0.5 M NaHCO3 

7.2 0.69 66 0.08 123.75 102 

Ag 
Nano-coarals 

CO2-sat 
0.1 M KHCO3 

6.8 0.61 95 N/A 
(on foil) N/A 103 



 

 

58 

Nanoporous 
Ag 

CO2-sat 
0.5 M KHCO3 

7.2 0.49 92 40 0.35 104 

Ag/PTFE 1 M KHCO3 
flow cell 8.5 0.64 70 0.52 

(eq. 500 nm film) 20.19 105 

Ag-NPs 1M KOH 
flow cell 14 0.39 95 1 14.25 106 

Ag/PTFE 1M KOH 
flow cell 14 0.34 90 0.52 

(eq. 500 nm film) 25.96 105 

Ag-NPs 0.5M KOH 
flow cell 

13.
23 0.34 95 2 7.125 107 

Ag-NPs 1M KOH 
flow cell 14 0.49 99 0.12 124 This 

work 

        Bulk aqueous electrolyte cells can exhibit high catalyst overpotentials due to the limited 

solubility of CO2 (33.4 mM) in the electrolyte, a limited pH operating range of ~6 - 10, and slow 

ionic transport in the solution. In contrast, gas diffusion electrode (GDE) assemblies do not suffer 

these same restrictions.97,107-111 In a GDE using 1 atm CO2 vapor, CO2 is transported in the vapor 

phase and reacts at a thin (<100 nm) solid-liquid-gas phase interface. In this configuration, liquid-

state concentration and diffusion do not limit the conversion rate, resulting in lower overpotentials 

and higher current densities for CO2 reduction.108 Simulations have also shown that a cell using a 

thin (10 nm) layer of electrolyte on the catalysts (wetted catalyst) outperform cells with either a 

completely dry or a completely flooded catalyst configuration.112 These insights have led to the 

development of gas diffusion electrodes113 and membrane electrode assemblies (MEA) 114 with a 

humidified gas supply to facilitate ion conduction and water balance.  

        Although membrane electrode assemblies systems are more scalable, they often suffer from 

short-term stability due to salt precipitation or membrane dehydration at high current densities.90 

Hence, we chose to work with an aqueous GDE cell configuration. In this work, we employ a triple 

junction photovoltaic (PV) device directly coupled with a gas diffusion electrode (GDE) as the 

first demonstration of an electrolyte flow type PV-GDE reactor that provides both high selectivity 

and long-term stability. For a directly driven PV-GDE system, the power generated by the PV is 

directly supplied to the GDE. In our device, the areas of the PV photo-absorber (APV) and GDE 

(AGDE) were both 0.31 cm2. To match the lower current density of the PV cell with the operating 
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conditions of the anode, a relatively low catalyst loading of GDE was chosen. A Ag nanoparticle 

catalyst was used owing to its relatively high activity and relatively low cost. 

 

4.2 Experimental Method 

        GDEs were prepared with diluted Ag-NPs (Sigma Aldrich 736481, particle diameter ≤50 nm, 

30-35 wt. % in triethylene glycol monoethyl ether) by drop-casting on carbon paper 

(Sigracet 29 BC). 50 μL of Ag-NPs ink was diluted with 15 mL of methanol and sonicated prior 

to use. 200 μL of the diluted Ag-NPs were drop-casted on 25 mm by 25 mm size carbon paper 

(masked to AGDE = 0.31 cm2 later for operation). The GDE was baked at ~100 °C for 10 min on a 

hot plate to remove the remaining solvent and was post annealed at 200 oC for 1 h in a muffle 

furnace in air. Surface chemical analysis was conducted using X-ray photoelectron spectroscopy 

(XPS) with the catalyst primarily in a metallic phase. 

        A PEEK compression cell (Figure 4.1, Figure 4.2) was used as the vessel for the measurement 

with anode and cathode chamber volumes of 2 mL. The anode and cathode electrode working 

areas were 0.31 cm2, and the membrane area was 2.4 cm2 as constrained by the design of the 

compression cell. 1 M potassium hydroxide (KOH) was used as the catholyte for experiments at 

pH 14, while 1 M potassium bicarbonate (KHCO3) buffer was used for pH 8.5. The anolyte was 1 

M KOH. The corresponding anion exchange membrane (AEM) was a Fumasep FAA-3-50 for 

alkaline environments and a Selemion AMV for neutral environments. The anode was a Pt foil 

under three-electrode operation, while for full cell operation in KOH electrolyte we used Ni foam 

to reduce the overpotential for oxygen evolution reaction. A leakless Ag/AgCl reference electrode 

was used for three-electrode measurements and to determine the GDE potential in the two-

electrode measurements. All electrochemical measurements were performed using a Biologic 

VSP-300 potentiostat. Scan rates were set to 50 mV×s-1. A Keithley 2000 multimeter was used to 

record the cell voltage and a Keithley 2182A nanovoltmeter for recording the voltage between the 

cathode and reference electrode. Gas flow rates of the flow controller (Gas inlet) and flow meter 

(Gas outlet) were recorded by the external device inputs of the potentiostat. Gas was delivered to 

the GDE through an interdigitated electrode flow field against which the GDE is compressed to 



 

 

60 

maximize the interaction of CO2 with the catalyst and gas utilization.91 Current to the GDE was 

supplied through the interdigitated electrode to the Ag-NP/carbon paper substrate. 

 

Figure 4.1: Cell configuration composed of 1 NiOx or Pt anode, 2 Ag-NPs on Sigracet 29BC 

carbon paper cathode, 3 anion exchange membrane, 4 CO2 gas inlet and CO/CO2 outlet, 5 Acrylic 

backplate, 6 catholyte chamber, 7 anolyte chamber, 8 reference electrode. Black arrows indicate 

the gas flow, and white arrows indicate the electrolyte flow. Note that the backplate, 5, is designed 

to use an interdigitated wire electrode flow field to enhance the interaction between gas and 

catalysts and improve CO2 utilization (see also Figure 4.2). 

 

Figure 4.2: Backplate as shown in Figure 4.1 item 5 with an interdigitated flow field. 
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        The electrochemical setup was operated in a continuous flow mode. Carbon dioxide was 

provided to the electrochemical cell and its flow rate was controlled with an Alicat flow controller. 

The carbon dioxide stream could be supplied either as dry gas or humidified CO2 with a gas 

bubbler between the cell and flow controller. The exhaust gasses went through a liquid trap than 

an Alicat flow meter, and finally to a gas chromatograph (SRI-8610) using a Hayesep D column 

and a Molsieve 5A column with N2 as the carrier gas. The gaseous products were detected using a 

thermal conductivity detector (TCD) and a flame ionization detector (FID) equipped with a 

methanizer. Quantitative analysis of gaseous products was based on calibration with several gas 

standards over many orders of magnitude in concentration. 

        The GaInP/GaInAs/Ge triple junction cell is commercially available from Spectrolab (C4MJ) 

with a geometric area of 0.31 cm2. For illumination during laboratory tests, an Oriel Instruments 

75 W Solar Simulator was used and matched with AM 1.5G. The response to natural sunlight of 

the triple junction at short circuit was calibrated by measuring the outdoor sunlight irradiance with 

a calibrated Si photodiode. The light intensity of the solar simulator was set to provide the same 

short circuit current from the GaInP/GaInAs/Ge triple junction cell as it would under AM 1.5G 

outdoor sunlight. While this is not expected to yield a simulated solar irradiance of 100 mW×cm-2 

due to the different solar irradiance in the 800–1000 and 1150–1800 nm regions, it does produce 

a response of the triple junction PV that is the same as it would be in actual AM 1.5G sunlight. 

        For outdoor tests, the triple junction solar cell was mounted on a solar tracker, see illustration 

in Figure 4.3. An Arduino microcontroller was used to control the solar tracker and measure the 

sun light intensity through a calibrated (350 to 1100 nm, 1 cm2) NIST traceable Si photodiode 

(Thorlabs FDS1010-CAL).  
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Figure 4.3 (a) Illustration of the solar tracker. (b) With the addition of C = 3.25 Suns solar 

concentrator. The PV element is located in the left with a silicon reference photodiode mounted on 

the right. Above the PV element is the light-dependent resistor sensor array for determining and 

tracking the position of the sun. For concentrator operation, a Fresnel lens with 51 mm focal 

length was placed in front of the solar cell to provide a concentration of 3.25x. 

        Kratos Axis Ultra was used to perform X-ray photoelectron spectroscopy (XPS) 

measurements with base pressure under 1x10-9 Torr. A monochromatic Al Kα (ħω = 1486.69 eV) 

source with a power of 150 W was used for all measurements. A ramé-hart contact angle 

goniometer was used for surface angle measurement. The images were analyzed with ImageJ with 

the help of the Drop Analysis plugin developed at the École polytechnique fédérale de Lausanne 

(EPFL). 

 

4.3 Results and Discussion 

        The gas diffusion electrode catalytic performance was evaluated with the compression flow 

cell. Dilute silver nanoparticles (Ag-NPs) with diameters of ≤50 nm were drop cast onto the 

microporous side of the GDE substrate (Sigracet 29BC). The loading of Ag-NPs in this work was 

measured to be 0.12 mg⋅cm-2. Scanning electron microscopy (SEM) images of the microporous 

layer with and without Ag-NPs are shown in Figure 4.4. 
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Figure 4.4: Scanning electron microscopy images of carbon paper without (top) and with (bottom) 

Ag-NP catalyst, secondary electrons image (left row) backscattered electrons image (right row). 

(b)Illustration of the reverse-assembled GDE cathode cross-section with wetted catalyst and 

operation for CO2 reduction. 

        An issue for aqueous GDEs is flooding or saturation of the porous catalyst layer with 

electrolyte or water during operation. This results in a thick (>1 μm) electrolyte layer and a 

diffusion-limited supply of CO2 to the electrode.115 To maintain the catalyst in a wetted but not 

flooded condition that minimizes losses of CO2 to the electrolyte and extends the operational 

lifetime, we assembled our aqueous GDE in a nontraditional manner with the catalyst coating of 

Ag-NPs facing away from the electrolyte and towards the CO2 gas supply. We denoted this 

configuration as a reverse-assembled GDE. The microporous layer of the GDE was treated with 

polytetrafluoroethylene (PTFE), which helped to prevent flooding. Needle valves in the gas and 

liquid output streams allowed separation of the liquid and gas phases as well as control of the 

pressure difference between the aqueous electrolyte and the CO2 stream. Contact angle analysis 

indicated that the Ag-NP coated surface was significantly less hydrophobic than the surface 

without Ag-NPs. Contact angle and optical microscope images of the GDE are shown in Figure 

4.5.  
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Figure 4.5: Contact angle Q measurement of water on (a) pristine Sigracet 29 BC carbon paper 

and (b) with Ag-NPs on Sigracet 29BC carbon paper after electrolysis. The contact angle is 175° 

for (a) and 105° for (b). Optical micrographs of water pushing through the back of the 

Sigracet 29 BC carbon paper (c) without Ag-NPs and (d) with Ag-NPs. The formation of small 

liquid bubbles is observed in (c) while a thin water layer is shown in (d) indicating the catalyst 

surface is wetted during operation as proposed. 

        With both the gas inlet and outlet on the same side of the GDE, the device operates in a “flow-

by” GDE configuration. The Ag-NP catalyst side of the electrode was facing the CO2 gas channel 

as illustrated in Figure 4.6. This orientation of the Ag-NPs maintained a thin electrolyte layer on 

the catalyst and enhanced the rate of CO2 reduction.112 The turnover frequency of the Ag-NP 

catalyst for the reverse-assembled GDE at -0.6 V vs RHE was calculated as ~9 × 103 h-1. Turnover 

frequency (TOF) was defined as the CO production rate (in moles cm-1 h-1) divided by the number 

of moles of active site catalyst. Consider the 0.26 mmol⋅h-1⋅cm-2 (7.4 mg⋅h-1⋅cm-2) CO production 

rate per catalyst area at -0.6 V vs RHE. The total catalyst loading was 0.001 mmol⋅cm-2 (0.12 

mg⋅cm-2) that gave a TOF based on the total amount of Ag-NPs as 260 h-1. Since only the surface 

atoms of the nanoparticle can contribute to active sites, we estimate the fraction of surface atoms 
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of a 50 nm diameter Ag nanoparticle to be ~3 %, then the moles of active sites are ~3 × 10-5 

mmol cm-2, and the TOF based on the number of surface atoms is ~9 × 103 h-1. 

 

Figure 4.6: Illustration of the reverse-assembled GDE cathode cross-section with wetted catalyst 

and operation for CO2 reduction. 

        The anode was made from either Pt or an electrochemically activated Ni foam for three- and 

two-electrode measurements, respectively. An aqueous catholyte of 1 M aqueous potassium 

bicarbonate (KHCO3) or potassium hydroxide (KOH) was used under near neutral or basic 

conditions, respectively. In all cases, 1M KOH was the anolyte. The anion exchange membrane 

(AEM) was Selemion for neutral environment or Fumasep FAA-3-50 for alkaline environment. 

Electrolyte (500 ml) was continuously pumped through the cathode chamber in a closed loop at a 

rate of 2 mL/min. A change of pH (from 14 to 13.7) was observed for the 1 M KOH catholyte after 

150 h of continuous operation, corresponding to irreversible loss of 0.25 mol KOH (50% of the 

electrolyte). The volume of the catholyte was 0.5 L 1 M KOH (0.5 mol KOH) with an initial pH 

of 14 which changed to 13.7 after 150 h of continuous operation. A pH of 13.7 is 

10KO.øGKNM	KOH = 0.5	M KOH which for 0.5 L is 0.25 mol KOH. The reaction of KOH and CO2 

is given: 

2KOH + CO2 = K2CO3 + H2O (Equation 4.1). 
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A loss of 0.25 mol KOH corresponds to a loss of 0.125 mol CO2 and formation of an equal 

amount of (0.125 mol) K2CO3. The CO2 flowrate during the experiment was 10 sccm, which over 

150 h corresponds to 4.043 mol CO2. The total percentage of CO2 lost to KOH neutralization and 

carbonate formation is then ö.KIQ
N.öNO

= 0.031 ≡ 3.1	%. Further improvement to reduce CO2 loss or 

regenerate the electrolyte would be necessary for fully sustainable operation. The neutralized 

carbonate electrolyte can possibly be utilized in carbonate-to-syngas system to compensate the 

loss of CO2 in a gas-fed MEA cell with bipolar membrane. 116  

        Results from three-electrode measurements for reverse- and standard-assembled GDEs are 

shown in Figure 4.7(a-b), respectively, for 1 M KHCO3 (bulk pH of 8.5) and 1 M KOH (bulk pH 

of 14). Current densities are substantially lower than earlier reported GDE devices due to the low 

catalyst loading used to match the current from the PV (current matching). For the reverse-

assembled GDE, both the Faradaic efficiency (fFE,CO) for CO and current density (JGDE) increased 

with increasing potential with fFE,CO close to 100 % at -0.6 V vs. RHE in 1 M KOH. Similar trends 

of current density and Faradaic efficiency versus applied potential were found for the standard-

assembled GDE.  

 

Figure 4.7: Dark catalysis three-electrode measurement of Ag-NPs GDE. Faradaic efficiency 

versus GDE potential operated in 1 M KHCO3 (left half of graph) or 1 M KOH (right half of graph) 

of (a) the reserve-assembled Ag-NP GDE and (b) a standard-assembled Ag-NP GDE. 
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        To compare the activity of the Ag-NPs in different orientations and pH, overpotential 

analysis for CO2 reduction to CO was preformed, Figure 4.8. The overpotential of the GDE is 

defined as the difference of applied potential to the thermodynamic potential of CO2 to CO on the 

RHE scale (–0.11 V vs RHE). The comparable Tafel slopes (~0.23V/dec) in KHCO3 and KOH for 

either orientation indicate a similar catalytic pathway regardless of the operating conditions. The 

Tafel behavior plotted with potentials vs NHE falls on a rough single line (Figure 4.9) and suggests 

that the rate-determining step for the reduction on our Ag-NP GDE is not proton limited. The 

achievable current density and Faradaic efficiency (fFE,CO) for CO are higher in 1 M KOH than in 

1M KHCO3 at the same overpotential, likely due to a pH independent rate determining step. All 

subsequent measurements were, therefore, performed using 1 M KOH for the PV-GDE integrated 

device.  

 

Figure 4.8: Overpotential versus CO partial current of Ag-NPs GDE for CO2 reduction to CO. 

Overpotential=¡#¢¬±,ìÖ± + 0.11.¡, /∏√ ≡ /¢¬± × 4W±,∏√. 
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Figure 4.9: (a) GDE potential vs. NHE, (b) GDE potential vs. RHE versus CO partial current of 

Ag-NP GDE (rev. indicating reserve-assembled, std. indicating standard-assembled) for CO2 

reduction to CO in 1 M KHCO3 and 1 M KOH. 

        Figure 4.10 shows the Faradic efficiency for CO vs. time at -0.6 V vs. RHE for the two GDE 

orientations in KOH. For the standard configuration, the fFE,CO decreasing to ~75% after 1 h and 

to 50 % after 2 h, while for the reverse configuration, the fFE,CO was ~97% for 3 h. Though similar 

in initial current density and fFE,CO, the standard assembly, with the Ag-NP catalyst facing the 

electrolyte, became flooded during the first hour of operation resulting in a reduction of the Faradic 

efficiency. Surface chemical analysis was conducted using X-ray photoelectron spectroscopy 

(XPS) with the catalyst primarily in a metallic phase, see Figure 4.11. No obvious changes were 

observed other than the absorption of potassium after operation. 
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Figure 4.10: Stability of reserve-assembled and standard-assembled Ag-NPs GDE operated at -

0.6 V vs. RHE in 1 M KOH.  

 

Figure 4.11: Silver 3d (Ag 3d) and carbon 1s (C 1s) X-ray photoelectron spectra of Ag-NP GDE 

before/after electrocatalysis with an electrolyte of (a,c) 1 M KHCO3; (b,d) 1 M KOH. 
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        We performed two-electrode measurements for the GDE using an electrochemically 

activated nickel foam anode coupled to the GaInP/GaInAs/Ge triple junction cell. The solid-state 

J-V characteristic and performance parameters of the solar cell are shown in Figure 4.12. For 

illumination during laboratory tests, an Oriel Instruments 75 W Solar Simulator was used, the lamp 

spectrum matching with AM 1.5G is presented in Figure 4.13. The corresponding sub-cell currents 

with integration of external quantum efficiency and short circuit current over the two illumination 

spectra are shown in Table 4.2. 

 

Figure 4.12: J-V characteristic of the GaInP/GaInAs/Ge triple junction cell. Uoc is the open circuit 

voltage, Jsc the short circuit current, Ump/Jmp the current and voltage at the maximum power point, 

and FF the fill factor. 
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Figure 4.13: Intensity (left axis) of AM 1.5G 1 sun reference spectrum (gold) and solar simulator 

spectrum (black), external quantum efficiency (right axis) of the GaInP/GaInAs/Ge (blue, green, 

red) triple junction cell. 

Table 4.2: Currents calculated for the individual sub-cells of the of the GaInP/GaInAs/Ge triple 

junction PV cell under 1.5G 1 sun illumination assuming the standard reference sunlight spectrum 

(AM1.5G ASTM G-173 reference spectrum was taken from the Renewable Resource Data Center 

(RReDC) of the National Renewable Energy Laboratory (NREL)) or the solar simulator spectrum 

and measured short circuit photocurrent Jsc under respective 1 sun conditions. 

Illumination 
Source 

JGaInP 

(mA×cm-2) 

JGaInAs 

(mA×cm-2) 

JGe 

(mA×cm-2) 

Jsc 

(mA×cm-2) 

AM 1.5G 15.56 14.83 18.53 14.6 

Solar 
simulator 15.32 29.73 14.83 14.6 
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        A schematic of the cell is shown in Figure 4.14(a) with 1M KOH as electrolyte using a 

Fumasep FAA-3-50 membrane. Both the cell potential (Ucell) and the cathode to reference 

electrode potential (UGDE) were monitored during the operation. We calculated the solar to fuel 

efficiency (hSTF) for CO2 reduction using equation below. 

!UVW =
YZ[\
Y]^

=
rƒ≈{∙abxy^∙fz{,∆«∙oƒ≈{

iu]|}\∙opq
=
r∙abcde∙fgh,á».

ijklmn
 (Equation 4.2) 

Where ΔUrxn is the thermodynamic potential difference between the oxygen evolution half reaction 

(OER) and the CO2 reduction half reaction of 1.34 V, A is the area of the GDE or PV with 

AGDE = APV = 0.31 cm2, J (= JGDE = JPV) is the operation current density of the system, and Plight is 

the incident light irradiance (mW×cm-2) on the photovoltaic. The energy efficiency for the GDE 

cell (hGDE) was defined as follows: 

!… À =
YÅÇn
Yke

=
abxy^∙rƒ≈{∙oƒ≈{∙fgh,á».

bÉÑjj∙rpq∙opq
=
abxy^∙fgh,á».

bÉÑjj
 (Equation 4.3) 

where JGDE×AGDE = JPV×APV , and Ucell is the total operating voltage of the cell.  
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Figure 4.14: Light driven PV-GDE measurement (APV = AGDE = 0.31 cm2). (a) Illustration of wire 

connection between the triple junction cell and GDE cell. (b) J-U characteristic of Ni anode, solar 

cell with Ni anode, and Ag-NP gas diffusion cathode under 1 Sun. (c) Current, GDE potential vs 

RHE, and cell voltage measurement over 20 h duration. (d) The corresponding CO Faradaic 

efficiency and solar to fuel efficiency over the same 20 h duration. 

        To evaluate efficiency and stability, we measured cell parameters using simulated AM  1.5G 

sun illumination at 1 Sun in the laboratory, as shown in Figure 4.14(b-d). The blue curve in Figure 

4.14(b) represents the performance of the electrochemically activated Ni foam anode alone, while 

the yellow curve indicates the behavior of PV plus anode. The red curve shows the catalytic current 

of the Ag-NPs GDE. The intersection between the red and yellow curves defines the operation 

point, located at -0.6 V vs. RHE and 14.4 mA×cm-2 with a cell voltage of 2.23 V. Figure 4.14(c-d) 

illustrates the cell performance over 20 hours with an average Faradic efficiency for CO of 
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99 ± 2 % and an average CO production rate of 2.3 mg/h. No degradation in performance was 

observed. From the experimental results, we calculated the average solar to CO efficiency for the 

20 h operation as 19.1 ± 0.2 %, with an average energy efficiency hGDE of 59.4 ± 0.6 %. The error 

bars were obtained as the variation within the 20 h of operation.  

        The solar to CO efficiency of 19.1 % represents a new record efficiency. A performance 

comparison with the current state-of-the-art PV-electrolyzer for CO2 reduction to CO is shown in 

Table 4.3. The PV-GDE device had a CO production rate per projected cathode area 50 times 

higher than for the bulk electrolyte device (7.4 mg×h-1×cm-2 versus 0.145 mg×h-1×cm-2) with greatly 

improved stability (20 h with no degradation versus 15 % loss in 5 h).80 A similar PV-GDE device 

operated under 3.25 Suns illumination with AGDE = 1 cm2, APV = 0.31 cm2, (3.25�≈ AGDE/APV) 

showed over 150 hours of stability, with an average Faradic efficiency of 96 ± 2 %, an average 

solar to CO efficiency of 18.9 ± 0.5 %, and an average energy efficiency hGDE of 53.7 ± 1.2 %, as 

in Figure 4.15.  
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Table 4.3: Comparison of the performance of the PV-GDE studied herein with the current state 

of the art PV-electrolyzer for CO2 reduction to CO.80 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15: Efficiency and stability assessment at a solar concentration 3.25 Suns. (C = 3.25, 

AGDE = 1 cm2, APV = 0.31 cm2) (a) J-U characteristic of Ni anode, solar cell with Ni anode, and 

Ag-NP gas diffusion cathode under 3.25 Suns. (b) Current and cell voltage measurement over 

 Current record 80 This work 

Solar-to-CO (%) 13.4 19.1 

PV size (cm2) 0.563 0.31 

Cathode / Anode both SnO2 / CuO Ag GDE / Ni foil 

Cathode & Anode 
size (cm2) 20 0.31 

Catholyte / Membrane / 
Anolyte 

0.25 M CsOH / BPM / 
 CO2-sat 0.1 M 

CsHCO3 

1 M KOH /AEM / 
1 M KOH 

Operation current (mA) 6.6 4.5 

fFE,CO (%) 86 99 

CO production rate 
(mg×h-1×cm-2) 0.145 7.4 

CO production rate 
outdoor (mg/day) - 15  

(50 at 3.25 Suns) 

Stability (h) 5 (with 15% loss) 20  
(150 h at 3.25 Suns) 
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150 h duration. (c) The corresponding CO Faradaic efficiency and solar to fuel efficiency over 

the same 150 h duration. 

        Full day outdoor tests were conducted with online gas product analysis in order to obtain the 

solar to fuel efficiency over the entire day. The triple junction cell and a calibrated silicon 

photodiode were mounted on a solar tracker to maintain optimum orientation toward the Sun. 

Results are shown in Figure 4.16. The dips in sun intensity at 7:00am - 9:00am and 4:00 - 6:00 

p.m. in the data were the result of trees blocking the sunlight. The system operated at a cell voltage 

of 2.20 V and GDE potential of -0.57 V vs. RHE under natural full sun illumination. A Faradaic 

efficiency of 96 ± 8 % and solar to fuel conversion efficiency of 18.7 ± 1.7 % was observed over 

an optimal 6 h period within the day. The diurnal-averaged solar to fuel conversion efficiency was 

5.8 %. The CO production rate for one day under actual outdoor sun conditions was calculated to 

be 15 mg/day of CO. Another outdoor demonstration used a lens to concentrate the sunlight 

producing an irradiance of 3.25 Suns (C = 3.25, AGDE = 1 cm2, APV = 0.31 cm2) with data included 

in Figure 4.17 with a CO generation rate of 50 mg/day. Using this calculated rate, a system scale 

up to 1 m2 would result in a CO production rate of 0.5 kg/day. 
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Figure 4.16: Outdoor assessments of solar driven PV-GDE in Pasadena, CA 

(APV = AGDE = 0.31 cm2). The solar irradiance was monitored with a calibrated silicon photodiode. 

Operation current density J (= JGDE = JPV), cell voltage Ucell, GDE potential UGDE vs. RHE, CO 

Faradaic efficiency fFE,CO, and solar to fuel efficiency hSTF were recorded for a 24h day cycle. 
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Figure 4.17: Outdoor tests of solar-driven PV-GDE in Pasadena, CA. The solar irradiance was 

monitored with a calibrated silicon photodiode. PV operation current JPV, cell voltage Ucell, 

working electrode potential UGDE, CO Faradaic efficiency fFE,CO, and solar to fuel efficiency hSTF 

were recorded for a 24h day cycle with 3.25x solar concentrator (C = 3.25, AGDE = 1 cm2, 

APV = 0.31 cm2). 

        The performance of our directly coupled PV-GDE device was compared to a DC-DC 

converter coupled PV and GDE with power-matching electronics. We simulate DC-DC converter 

output curves with the input of our solid-state PV curve as shown in Figure 4.18. Though the 

DC-DC converter can track the maximum power point (MPP) of the PV, a practical loss of 5-10 % 

is expected.117 The operating point for the directly driven PV-GDE cell is Ucell = 2.23 V, 

J = 14.4 mA×cm-2 with a maximum efficiency of 19.3 %. With a 95 % efficient DC-DC converter, 

the operation point would be Ucell = 2.22 V, J = 13.8 mA×cm-2 with a maximum efficiency of 

18.5 %. For a 90 % efficient DC-DC converter, the operation point would be Ucell = 2.20 V, 

J = 13.2 mA×cm-2 with a maximum efficiency of 17.7 %. The maximum efficiencies are calculated 
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assuming 100 % CO Faradic efficiency. The slightly higher efficiency of our directly driven 

PV-GDE device, compared to the same setup with integrated DC-DC converter and power 

matching electronics, reveals the potential of developing a directly coupled PV-GDE device with 

its reduced complexity. All the experimental results (including simulated/natural sun light, 

with/without concentrator) and calculated systems in this work are summarized in Table 4.4. 

 

Figure 4.18: J-U characteristic of the GaInP/GaInAs/Ge triple junction cell under 1 Sun (yellow 

solid line) with combined load curve of Ni anode and Ag GDE cathode (red dot-dashed line) in 

addition to DC-DC converter output curves (solid PV curve as input) with converter efficiency of 

90 % (black dashed line) and 95 % (black dotted line). The PV curves for lower illumination 

conditions are included on the right figure.  
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Table 4.4: Comparison of the PV-GDE performance studied herein with different measurement 

conditions and calculations. 

Irradiance 
(mW×cm-2) 

Source APV 
(cm2) 

AGDE 
(cm2) 

fFE,CO 
(%) 

hGDE 
(%) 

hSTF 
(%) 

JPV 

(mA×cm-2) 

Ucell 
(V) 

Power 
(mW×cm-2) 

100 Simulated 0.31 0.31 99 59.4 19.1 14.4 2.23 32.1 

325 Simulated 0.31 1 96 53.7 18.9 47.5 2.39 113.5 

91 Natural 0.31 0.31 96 58.5 18.7 13.0 2.20 28.6 

296 Natural 0.31 1 96 55.9 18.9 43.0 2.30 98.9 

100  Calculated 0.31 0.31 100 60.0 19.3 14.4 2.23 32.1 

100  Calculated 0.31 0.31 100 60.4 18.5 13.8 2.22 30.6 

100  Calculated 0.31 0.31 100 60.9 17.7 13.2 2.20 29.0 

 

4.4 Conclusion and Outlook 

        In summary, we have demonstrated a highly efficient solar-driven CO2 reduction device for 

CO generation using a flow-by reverse-assembled gas diffusion electrode cell directly coupled to 

a triple junction solar cell. The reverse-assembled GDE is designed to minimize parasitic CO2 

losses, utilizing a high CO2 concentration and low overpotential catalysts for the CO2 reduction 

reaction. The Ag-NPs based catalysts exhibited near unity Faradic efficiency towards CO 

generation at approximately -0.6 V vs. RHE in 1 M KOH electrolyte. The PV-GDE system was 

evaluated under both laboratory AM 1.5G simulated solar irradiation and outdoor real sun 

conditions. Near-unity Faradic efficiency was observed for CO2-to-CO conversion and an average 

solar-to-CO energy efficiency of 19.1 % was achieved with AM 1.5G illumination at 1 Sun, 

leading to over 50 times higher CO production rate per catalyst area than the current record 
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photovoltaic-driven electrolysis device. The GDE was demonstrated to be stable for over 150 

hours without degradation, supporting our hypothesis that, by using a reverse-assembled GDE 

device configuration with the catalyst layer facing towards the CO2 gas supply, we could extend 

the system operation time without suffering a transition from a wetted to a flooded gas diffusion 

layer. Under outdoor sun conditions, the PV-GDE system exhibited a solar to CO conversion 

efficiency of 18.7 % during noontime, and yielded a CO production rate of 15 mg×cm-2 per day. 

This reverse-assembled PV-GDE establishes a new efficiency record for directly solar-driven CO2 

reduction, and offers an example of a very high efficiency, stable device for solar CO2 conversion. 

        Preventing CO2 neutralization of the basic electrolyte for sustainable operation would be the 

practical direction to pursue. It is proven that by catalyst engineering, near unity Faradaic 

efficiency toward CO production under low overpotential in bicarbonate electrolyte can be 

achieved. Possible strategies involve introducing defects or surface ligand, facet or morphology 

control, oxidation state manipulation, and utilizing co-catalysts or alloy catalysts. Direct reduction 

from bicarbonate electrolyte eliminates the high energy input of normal CO2 capture process, and 

can possibly enhance the CO2 utilization rate. 
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CHAPTER 5  

Broadband Transmission TiO2 Nanocone 

5.1 Introduction 

        High efficiency conversion of solar energy to electricity or fuels using photovoltaic (PV) 118-

122 or photoelectrochemical (PEC) 65,69,123 cells requires optimization of the broadband absorption 

of sunlight. Anti-reflective coatings (ARCs) 124, surface textures, 125-128 and high-index light-

trapping structures129,130 are among the many strategies that have been shown to increase 

broadband absorption relative to unmodified planar light absorbers. PECs and multijunction PVs 

generally require front contacts and/or electrocatalytic films that substantially reflect or absorb 

light, thereby reducing their photocurrent densities. 131 In integrated PECs used to affect solar-

driven water splitting or CO2 reduction, 6,78,82 the front contact is made to an electrolyte, and a 

catalyst located in the optical path increases the efficiency of the cell by reducing the kinetic barrier 

for the electrochemical half-reaction occurring at the top contact. Depending on the orientation of 

the design, as well as the chemical inputs and desired products, the catalyst may be optically 

opaque (such as CoP for water reduction or Cu for CO2 reduction) or may be electrochromic (such 

as NiFeOx for water oxidation). 132 Although an all-back-contact design133,134 can prevent contact 

shading losses in crystalline Si solar cells, such a design is not compatible with all of the 

solid/liquid interfaces either with integrated PECs for highly efficient fuel production or with 

multijunction PV device structures. 135  

        Nanostructuring the semiconductor is one approach that has been developed to 

enhance broadband absorption. Nanowires, 43,56,136 inverted pyramids, 137 nanodomes, 138 

nanoshells, 139 nanopillars, 140,141 and nanocones142 have been explored for use in many 

optoelectronic devices. For example, for wavelengths ranging between 400 – 1100 nm and angles-

of-incidence between 0° – 50°, Si microcone arrays exhibit nearly perfect angularly and spectrally 

averaged reflectivity (< 1 %) as well as high (89.1 %) absorption. 143 In Chapter 2, we also 

demonstrate sparse arrays of InP nanocones exhibiting angle-insensitive, near-unity (>90%), 

broadband (450−900 nm) optical absorption. 144 Cones inherently possess a continuous range of 

radii that provides a range of waveguide modes accessible for coupling with incident light. 23 

Hence, cones are intrinsically favorable structures for enabling enhanced broadband absorption. 
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Moreover, the radius at the base of the cone and the radius of any truncation can be chosen 

specifically to select a spectral range of interest.  

        Alternatively, broadband absorption can be enhanced by decorating the light-facing surface 

of the semiconductor with dielectric nanostructures, such as nanospheres, 145 that serve as 

waveguides. This approach requires a high-index dielectric that can be deposited on planar 

surfaces using scalable methods. For integrated PEC devices, the dielectric also must be stable in 

the chosen aqueous electrochemical environment. TiO2 has been used in waveguides for near-

visible and telecommunication wavelengths, 146-151 and has a higher index of refraction (n~ 2.5) 

than many other dielectric materials commonly used in solar photovoltaic devices, including SiO2 

(n = 1.5) and Al2O3 (n = 1.77). TiO2 is relatively inert electrochemically and has a wide band gap 

that allows transmission of incident solar illumination, and has been utilized extensively as a 

protective coating in efficient PEC devices. 6,74,78,82,152-156 TiO2 is therefore a promising candidate 

material for nanostructured waveguides in PEC devices. 

        Devices that make use of nanostructured surfaces nevertheless require front contacts, either 

to a conductor for PVs or to a catalyst for PECs, but the front contact can block light. In devices 

that require connections between external circuits and nanostructured optical surfaces, front 

contacts typically are formed by coating the surface with a transparent and conductive material, 

such as indium tin oxide (ITO). However, efficient integrated PECs for fuel production 

additionally require catalysts on at least one of the optical surfaces. Very high (> 90%) absorption 

and high front-surface conductivity have been demonstrated using both simulation and experiment 

in a device consisting of SiNx-coated Si nanopillars protruding from a crystalline Si substrate 

coated with an opaque Au front-side contact that covered 65% of the Si surface. 141 Although the 

selective etching process used in this approach limits its applicability to a few specific interfaces 

such as Au/Si, this work shows that nanostructures can direct light around opaque metallic front 

contacts deposited onto the optical surfaces of PV devices, and suggests a strategy for guiding light 

around catalyst layers in PECs. 

        Considered together, the prior work in the areas of antireflective nanostructures and dielectric 

waveguides underscores the potential value and developmental feasibility of modular 

antireflective coatings that promote broadband absorption over a spectral range above the 
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photoelectrode bandgap without requiring modification of the underlying semiconductor or 

contact interfaces. Herein, we combine simulations and proof-of-concept experiments to evaluate 

and demonstrate light management by an array of TiO2 nanocones placed on the surface of a p+n-

Si photoanode with a metallic Ni contact covering the exposed Si surface. 

 

5.2 Numerical and Experimental Method 

        3D full-field electromagnetic wave finite-difference time-domain (FDTD) simulations of 

TiO2 nanocone arrays with or without Ni films, with hexagonal arrays of holes on Si, were 

performed using a commercial software package, Lumerical FDTD. The nanocone arrays on Si 

were constructed using the 3D simulation region with periodic boundary conditions along the x- 

and y-axes, and infinite boundary conditions were rendered as perfectly matched layers along the 

z-axis. Palik materials data were used for Si and Ni. Material data from the Ioffe Institute and 

ellipsometry measurements (J.A. Woollam Co. model VASE) were both used for simulation of the 

optical properties of the TiO2 nanocones. A plane-wave source of illumination was applied to 

simulate the steady-state behavior of TiO2 nanocones with or without Ni arrays on the Si substrate. 

Broadband simulations were performed in the 400 – 1100 nm spectral range for two orthogonal 

polarizations. Transmission spectra for unpolarized light were obtained by averaging the 

transmission spectra for the two orthogonal polarizations. These transmission spectra, along with 

the standard AM 1.5G spectra, were used to calculate the fraction of the spectral photon flux that 

was transmitted into the Si. The expected light-limited photocurrent density (Jph,max) can be 

estimated by integration of the transmitted spectral photon flux with the corresponding wavelength. 

Frequency-domain field and power monitors were applied in the simulation to produce the steady-

state electric-field data for plots of electric-field profiles. 

        Czochralski-grown n-type Si wafers with <100> orientation and a resistivity of 0.1-1 ohm-

cm (Addison Engineering Inc.) were cleaned via a modified RCA standard clean 1 (5:1:1 by 

volume of H2O:NH4OH:H2O2 at 70 °C), then 1 min immersions in 10% (v/v) HF, and followed by 

an RCA standard clean 2 (6:1:1 H2O:HCl:H2O2 (v/v) at 70 °C). The cleaned n-Si samples were 

thermally doped with boron using a BN-975 (Saint-Gobain) wafer at 950 °C for 30 min to produce 

a p+n-Si homojunction. The doped p+n-Si samples were immersed in 10% (v/v) HF(aq) for 2 min, 
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oxidized in a tube furnace at 750 °C for 20 min, and then dipped in 10% (v/v) HF for 2 min to 

remove any defective layers on the Si surface.  

        A layer of SiO2 (5 – 10 nm) was deposited onto the p+n Si wafers via electron-beam 

evaporation, and 2.3 µm of TiO2 was then deposited onto the samples via electron-beam 

evaporation. Electron-beam evaporation depletes the source of oxygen and results in TiO2 with 

higher conductivity than perfectly stoichiometric TiO2, so the deposition was performed in 3-4 

steps, refilling the TiO2 source between steps to maintain higher oxygen content in the film. The 

TiO2-coated p+n-Si samples were spin-coated at 4000 rpm for 60 s with 495 PMMA A4 and baked 

at 80 °C for 5 min, then spin-coated at 4000 rpm for 60 s with 950 PMMA A4 and baked again at 

80 °C for 5 min to form a bilayer of positive tone resist to facilitate lift-off. The samples were 

patterned with a hexagonal array of 100 nm diameter circles on a 700 nm pitch, using direct 

electron-beam lithography (VISTEC electron-beam pattern generator (EBPG) 5000+) with an 

acceleration voltage of 100 keV and a current of 5 nA. After electron-beam writing, the pattern 

was developed in a 1:3 MIBK (methyl isobutyl ketone):isopropanol for 60 s at room temperature, 

resulting in a hexagonal array of 100 nm diameter holes with a 700 nm pitch in the PMMA layers. 

A 200 nm layer of Cr was evaporated over these samples (rate 1 A·s−1 at 10−6 Torr), and lift-off 

was performed in acetone, leaving a hexagonal array of Cr that served as a hard mask for TiO2 dry 

etching. Dry etching was then conducted using an Oxford Instruments Plasma Lab System 100 

ICP-RIE by using SF6 / C4F8 etching chemistry, in which SF6 was the etching gas and C4F8 was 

the passivating gas. Etching was performed at a capacitively coupled power of 150 W, an 

inductively coupled power of 2500 W, a SF6 / C4F8 gas ratio of 23.5 sccm / 40 sccm, a chamber 

pressure of 7 mTorr, and a table temperature of 0 °C for 15 min.  

        Electrodes were prepared from the n+p-Si samples with etched TiO2 cones by first cleaving 

the samples to remove the edges, thus avoiding shorts due to doped layers. In-Ga eutectic was 

applied on the back side of the samples to form an ohmic contact to the p+n-Si homojunction. Ag 

paste (Ted Pella) was used to attach a Sn-plated Cu wire to the In-Ga on the back side of the sample. 

The wire was run through a glass tube, and the samples were sealed to the glass tube using epoxy 

(Loctite 9460) and annealed at 80 °C for ~ 6 h. The active area of the electrodes was determined 

using a high-resolution image taken using a commercial scanner and image-processing software 

(ImageJ). Typical electrode areas were ~ 0.04 cm2.  
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        The samples were then dipped in buffered HF (40% NH4F to 49% HF volume ratio 6:1) 

for 10 s to remove the remaining SiO2 between the TiO2 cones and to fully remove the Cr mask. 

The Ni layer was subsequently electrodeposited on the areas of the surface of the p+n-Si between 

the TiO2 nanocones using a commercially available Ni plating solution (Clean Earth Nickel Mirror, 

Grobet USA) at a potential of -0.956 V vs Ag /AgCl (using a Biologic SP-200 potentiostat) until 

~ 300 mC cm-2 of cathodic charge was passed. An illustration of the process flow for fabrication 

of the desired structures is shown in Figure 5.1. 

 

Figure 5.1: Process flow diagram for fabrication of Si photoanodes with TiO2 nanocones and Ni 

catalysts. 

        An array of holes in a Ni layer on p+n-Si was fabricated as a comparing sample. Electron-

beam evaporation was used to deposit a layer of Ni on p+n-Si samples. The samples were then 

covered with ZEP 520A by spin-coating at 4000 rpm for 60 s and were baked at 180 °C for 3 min. 

A hexagonal array of circles 500 nm in diameter with a 700 nm pitch was written onto the samples 

by direct electron-beam lithography using an acceleration voltage of 100 keV and a current of 50 

nA. The pattern was then developed by immersing the samples in a ZED N50 solution for 90 s. 

The patterned resist was used as a mask for ICP-RIE etching of the Ni film. Etching was performed 

using the following parameters: 4 mTorr, 600 W ICP forward power, 150 W RF forward power, 

20 °C, 30 sccm Ar. The final removal of ZEP 520A was performed using remover PG. 

        A three-necked glass cell with a quartz window was used as a vessel for the 

photoelectrochemical oxygen-evolution reaction (OER). The OER was performed in aqueous 1.0 

M KOH (Sigma-Aldrich) using a three-electrode setup, with a saturated calomel electrode (SCE) 

as the reference electrode, a carbon electrode as the counter electrode, and the p+n-Si sample with 
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TiO2 cones and Ni as the working electrode. Measurements were conducted under simulated 

sunlight (Oriel Instruments Solar Simulator equipped with a 1000 W Mercury Xenon lamp 

calibrated to 100 mW cm-2 (AM1.5) illumination using a Si photodiode). For current-density 

versus voltage (J-V) measurements, the voltage was swept at a scan rate of 50 mV s-1 from -0.5 V 

to 1.5 V vs SCE. 

 

5.3 Results and Discussion 

        Figure 5.2 shows schematics for three device configurations that were compared using 

simulations to understand the optical properties of TiO2 nanocones. In the first configuration, 

Figure 5.2(a), TiO2 nanocones with a height of 2300 nm and a base radius of 250 nm were placed 

on the Si substrate in a 2D hexagonal array with a 700 nm pitch. This arrangement left 54% of the 

Si surface uncovered by TiO2 nanocones. In the second configuration, Figure 5.2(b), 50 nm of Ni 

covered the area of Si that remained exposed in the first configuration. The third configuration, 

Figure 5.2(c) was the same as the second, but the TiO2 nanocones were removed, leaving a 

hexagonal array of circles of exposed Si in the Ni layer. 

 

Figure 5.2: Schematics of the three configurations that were simulated. (a) TiO2 nanocones on Si 

substrate; (b) Ni between the TiO2 nanocones on Si substrate; (c) Ni hole arrays on Si substrate. 

        Figure 5.3 compares the simulated transmission, absorption, and reflection spectra for the 

TiO2 and Ni components of the three structures, either in air (n = 1.0) or in water (n = 1.33). Figure 
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5.3 (a,d) shows that the TiO2 nanocones neither absorb nor reflect substantially in the 400 – 

1100 nm spectral range, with the nanocones allowing transmission of 97.5% of the total incident 

photons in air or 96.9% in water. The planar TiO2 film simulations, with higher reflection losses, 

are shown in Figure 5.4, leading to transmission of 74.7% in air and 84% in water. When 50 nm 

of Ni was added into the spaces between the nanocones, the simulated transmitted photon flux was 

reduced to 86.2% in air or 84.7% in water (Figure 5.3(b,e)). The minima in transmission primarily 

result from absorption by Ni, and the wavelengths of the minima shift depending on the index of 

refraction of the surrounding environment. 

 

Figure 5.3: Simulated transmission (T), absorption (A), and reflection (R) spectra of the three 

configurations of the TiO2 nanocone array and Ni layer in Figure 5.2. (a), (b), and (c) plot the 

spectra in air for an array of TiO2 cones, a TiO2 cone array with Ni, and a Ni hole array, 

respectively. (d), (e), and (f) plot the same structures but in water.  The optical effects of the Si 

substrate are not shown. 
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Figure 5.4: Simulated transmission (T), absorption (A), and reflection (R) spectra of the TiO2 film 

with thickness of 2.3 µm. (a) plot the spectra in air (b) plot the spectra in water. 

        When the TiO2 nanocones were removed from the simulation, leaving just the hexagonal 

array of circular holes in a 50 nm layer of Ni that covered 54% of the optical plane, the transmitted 

photon fluxes were reduced to 23.3% in air or 24.8% in water, with reflection and parasitic 

absorption accounting for ≥ 75% of the optical losses (Figure 5.3(c,f)). The size and pitch of the 

holes in the Ni layer were particularly unfavorable for transmission of light through the Ni layer 

in the absence of the TiO2 cones, because over a large fraction of the incident solar spectrum, the 

diameter of the holes was less than the wavelength of the incident light. In the specific 

configuration shown in Figure 5.2(b), the TiO2 nanocones minimized the interaction between the 

light and the Ni layer, enabling > 3 times the amount of light to be transmitted than for the Ni hole 

array that did not also contain the TiO2 cones. For the TiO2 nanocone array with Ni, the simulated 

transmission at the minima was ≥ 60%, Figure 5.3(b,e), whereas for the Ni hole array without TiO2 

nanocones, the simulated transmission of was 20-30%, Figure 5.3(c,f)). The simulations thus 

indicated that incident light is expected to couple efficiently to the TiO2 nanocones that guide the 

light around the Ni layer. 

        Figure 5.5 plots the transmitted photon flux for each structure along with the Air Mass (AM) 

1.5G solar spectrum. Using the transmitted spectral photon flux, the maximum photocurrent 

densities, Jph,max, in air estimated from the simulations for a Si solar cell covered by either the TiO2 

nanocone array, the TiO2 nanocone array with Ni or the Ni hole array were Jph,max = 42.9 mA cm-

2, 37.9 mA cm-2, and 10.9 mA cm-2 respectively. In water, the corresponding estimated simulated 
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maximum photocurrent densities were Jph,max = 41.8 mA cm-2, 36.5 mA cm-2, and 10.7 mA cm-

2, respectively.  

 

Figure 5.5: Area plot of simulated transmitted spectral photon flux in air and water for the three 

structures in Figure 1. Blue represents the AM 1.5G spectral photon flux. Orange, yellow, and 

purple depict the transmitted spectral photon flux into Si for: nanocones on Si, nanocones with Ni 

on Si, and Ni hole array on Si, respectively. 

        Figure 5.6 shows the simulated profiles of the electric field along the central cross section of 

a nanocone. Figure 5.6(c-f) shows the field profiles for wavelengths of 484 nm, 552 nm, 628 nm, 

and 770 nm, respectively, which correspond to the maxima in the transmission spectra shown in 

Figure 5.3(b). The electric field was predominantly confined to the waveguide modes in the 

nanocone, with strong coupling of incident light occurring at different radii for the different 

wavelengths, as expected for a conical nanostructure. 23,143,144 In the simulation, the light 

propagated through the nanocone and was transmitted into the Si substrate, where the field 

intensity decreased due to absorption by the Si. Figure 5.6(g-j) shows the field profiles for 

wavelengths of 442 nm, 584 nm, 738 nm, and 940 nm, respectively, which correspond to the 

minima in the transmission spectra shown in Figure 5.3(b). Compared to the field profiles shown 

in Figure 5.6(c-f), the profiles in Figure 5.6(g-j) showed an increased intensity of the electric field 

in the space adjacent to the nanocone. The corresponding plots for transmitted light intensities |E|2 
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versus Y(µm) at the interfaces of Si/Ni (indicated as on Si) and Ni/air (indicated as on Ni) are 

shown in Figure 5.7. 

 

Figure 5.6: Simulated electric field profiles along the cross section of a TiO2 nanocone on a Si 

substrate. (a) Cross section and (b) scale for the relative electric field intensity for the profile plots.  

(c-f) Profiles for wavelengths of 484 nm, 552 nm, 628 nm, and 770 nm, respectively, which 

correspond to the maxima in the transmission spectra shown in Figure 5.3(b). (g-j) Profiles for 

wavelengths of 442 nm, 584 nm, 738 nm, and 940 nm, respectively, which correspond to minima 

in the transmission spectrum in Figure 5.3(b). 
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Figure 5.7: Transmitted light intensities |E|2 versus Y(µm) at interfaces of Si/Ni (indicated as on 

Si) and Ni/air (indicated as on Ni). (a-d) Profiles for wavelengths of 484 nm, 552 nm, 628 nm, and 

770 nm, respectively, which correspond to the maxima in the transmission spectra shown in Figure 

5.3(b). (e-h) Profiles for wavelengths of 442 nm, 584 nm, 738 nm, and 940 nm, respectively, which 

correspond to minima in the transmission spectrum in Figure 5.3(b). 

        Depending on the dimensions of the nanocones and the background index of refraction, 

simulations indicated that the electric fields associated with some wavelengths of light were highly 

confined inside the TiO2 nanocone, while the electric fields associated with other wavelengths 

were only partially confined. Simulation results with varying dimensions of cones are presented 

in Figure 5.8. In contrast, the optical absorption in the Ni was enhanced for the wavelengths of 

light that were not completely confined within the nanocones. The wavelength-dependent variation 

in the confinement of the electric field within TiO2 nanocones cannot be explained using effective 

medium theory. Instead, wave-optic simulations showed that the nanocones acted as antennae for 

the incoming radiation, coupling the light to waveguide modes, and providing a route for the light 

to reach the underlying Si substrate even though 54 % of the surface was covered by Ni. 

0		

2		

4		

6		

-0.6	 0	 0.6	
Y	(μm)�

484nm	on	Si	
484nm	on	Ni	

0		

2		

4		

6		

-0.6	 0	 0.6	
Y	(μm)�

552nm	on	Si	
552nm	on	Ni	

0		

2		

4		

6		

-0.6	 0	 0.6	
Y	(μm)�

628nm	on	Si	
628nm	on	Ni	

0		

2		

4		

6		

-0.6	 0	 0.6	
Y	(μm)�

770nm	on	Si	
770nm	on	Ni	

0		

2		

4		

6		

-0.6	 0	 0.6	
Y	(μm)�

442nm	on	Si	
442nm	on	Ni	

0		

2		

4		

6		

-0.6	 0	 0.6	
Y	(μm)�

584nm	on	Si	
584nm	on	Ni	

0		

2		

4		

6		

-0.6	 0	 0.6	
Y	(μm)�

738nm	on	Si	
738nm	on	Ni	

0		

2		

4		

6		

-0.6	 0	 0.6	
Y	(μm)�

940nm	on	Si	
940nm	on	Ni	

(a)� (b)� (c)� (d)�

(e)� (f)� (g)� (h)�

|E
|2
�

|E
|2
�

|E
|2
�

|E
|2
�

|E
|2
�

|E
|2
�

|E
|2
�

|E
|2
�



 

 

93 

 

Figure 5.8: Dimension variation effect of Ni film on transmission to Si through TiO2 nanocone 

waveguides in air. Hexagonal array (variant pitches) of 2.5 μm tall cones with a 200 nm base 

radius and a 50 nm tip with a 200 nm radius Ni hole array. 

        The optimal structures revealed by simulation were fabricated and investigated in detail. To 

experimentally demonstrate the enhancement in photocurrent density obtainable by utilizing TiO2 

nanocone arrays, planar p+n Si homojunction photoanodes were prepared by doping n-type Si with 

boron (B). Briefly, electron-beam evaporation was used to deposit 5 - 10 nm of SiO2 over the Si 

photoanodes, prior to deposition of 2.3 µm of TiO2. Electron-beam evaporation depletes the TiO2 

source of oxygen and thus increases the conductivity of the resulting films, so the 5 – 10 nm thick 

SiO2 was deliberately incorporated to electrically isolate the TiO2 from making an electrical 

contact to the highly doped p+-Si surface, while minimally affecting the optical behavior.  

        Figure 5.9 shows scanning-electron micrographs (SEMs), before and after electrodeposition 

of Ni, for samples of dry-etched TiO2 nancone arrays on planar p+n-Si substrates. The EDS 

mappings are included in Figure 5.10. The TiO2 nanocones were ~ 2.3 µm tall and had base radii 

of ~ 250 nm. Discontinuities in the taper of the nanocones were evident, particularly near the vertex 

of each cone. The radii at the vertices of the nanocones were < 50 nm. Figure 5.9(b,d) show that 

the Ni predominantly deposited onto the Si surface in the spaces between the TiO2 nanocones, as 
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expected because the insulating 5-10 nm layer of SiO2 beneath the base of the cones should 

prevent electrodeposition onto the TiO2. The Ni layer was ~ 70 nm thick as estimated based on the 

charge passed during electrodeposition. The SEM image of a 50 nm thick Ni hole array fabricated 

via electron-beam patterning and dry etching is shown in Figure 5.11. 

 

Figure 5.9: Scanning-electron micrographs of dry-etched TiO2 nanocones on p+n-Si substrates 

before (a,c) and after (b,d) electrodeposition of Ni. 
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Figure 5.10: EDS mappings of elements Ti, O, Ni, Si (a) with top view (b) with 30o tilt view of the 

Ni/TiO2 nanocones/p+n-Si sample. 

 

Figure 5.11: SEM image of the Ni hole array fabricated via electron-beam patterning and dry 

etching of a 50 nm thick Ni layer. The average diameter of the holes was ~ 500 nm. 

        Figure 5.12 compares the real component of the complex refractive index measured by 

ellipsometry for the electron-beam-evaporated amorphous TiO2 used to make nanocones in this 

work relative to the real component of the index of refraction of ideal rutile TiO2 tabulated in 
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standard reference data. 157 The real component of the refractive index for the electron-beam-

evaporated TiO2 was substantially lower (n = 2.05 – 2.3) than for the standard value (n = 2.7 – 

3.3), presumably due to oxygen depletion during evaporation and the amorphous phase of the TiO2 

film.  

 

Figure 5.12: Real component of the refractive index for (a) an ideal rutile TiO2 standard, and (b) 

measured for a sample of electron-beam-evaporated amorphous TiO2. 

        Figure 5.13(a) shows the reflection, transmission, and absorption spectra calculated for TiO2 

nanocones with 50 nm Ni using the experimentally measured refractive index data for electron-

beam-evaporated TiO2, while Figure 5.13(b) shows the simulated transmitted photon flux along 

with the AM 1.5G spectrum. The estimated attainable photocurrent density calculated from these 

revised simulations for a Si solar cell covered with the TiO2 nanocone array and Ni was Jph,max = 

29.8 mA cm-2, after correcting for losses due to reflection at the air/glass/water interfaces that are 

unavoidable in an electrochemical cell configuration. This estimated maximum photocurrent 

density (Jph,max = 29.8 mA cm-2) was substantially lower than the current density that could be 

obtained with ideal TiO2 (Jph,max = 36.5 mA cm-2), but is still larger than the value expected for a 

bare, planar Si surface (Jph,max ~ 28 mA cm-2). 
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Figure 5.13: Transmission (T), absorption (A), and reflection (R) plots for Si with TiO2 nanocones 

and 50 nm thick Ni calculated with evaporated TiO2 refractive index data are shown in (a). (b) 

shows the area plot overlapped over the AM 1.5G spectrum for the three different cases, as shown 

in Figure 5.2, using the refractive index data for amorphous TiO2 deposited by e-beam evaporation. 

        Figure 5.14 compares simulated and experimentally measured reflectance spectra for a TiO2 

nanocone array on Si, a TiO2 nanocone array with Ni on Si, and for a 50 nm layer of Ni with an 

array of holes. The experimental and theoretical spectra are in good mutual agreement, with certain 

differences readily ascribed to technical differences between the simulation and experimental 

conditions. For example, the simulations were performed using a coherent illumination source, 

whereas experimental measurements were not. Moreover, the simulations used smoothly tapering 

nanocones and a flat layer of Ni, whereas the samples did not have either smoothly tapering cones 

or a perfectly flat Ni layer (Figure 5.9). 
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Figure 5.14: Reflection spectra (a) simulated and (b) measured for samples consisting of an array 

of TiO2 nanocones on Si (blue), an array of TiO2 nanocones with Ni on Si (red), an array of holes 

in a Ni layer on Si (yellow). 

        Figure 5.15 shows the current density versus potential behavior, in the dark and under 100 

mW cm-2 of simulated AM1.5 illumination, respectively, while in contact with 1.0 M KOH(aq), 

for a photoanode made from a p+n-Si substrate covered with an array of TiO2 nanocones and a 

layer of Ni (Figure 5.9(b,d)). The light-limited photocurrent density, obtained by subtracting the 

current density measured in the dark at ~ 1 V vs the saturated calomel electrode (SCE) from the 

current density measured in the light at the same potential, was ~ Jph,max = 28 mA cm-2, and 

matched well with the value estimated (Jph,max = 29.8 mA cm-2) from the simulations. The current 

density at the formal potential for water oxidation, E°′(O2/H2O), was 2 - 7 mA cm-2. The observed 

light-limited photocurrent density was comparable to the photocurrent density normally measured 

for a bare planar Si surface, consistent with the TiO2 nanocones serving as antireflective structures 

that can couple to incoming light to enable transmission of light into the Si substrate even when ~ 

54 % of the Si surface was covered with ~70 nm of Ni. 



 

 

99 

 

Figure 5.15: Current-density versus potential behavior, in the dark and under 100 mW cm-2 of 

simulated AM1.5 solar illumination, respectively, for a p+n-Si sample covered by an array of TiO2 

nanocones and 300 mC cm-2 of electrodeposited Ni while in contact with 1.0 M KOH(aq). The scan 

rate was 50 mV s-1. 

        Si photoanodes with a uniform 2 nm layer of Ni have been reported previously to exhibit a 

light-limited photocurrent density of Jph,max ~55 mA cm-2 under ~2.25 Suns equivalent of 

illumination, whereas increasing the Ni thickness to 20 nm reduced Jph,max to ~32 mA cm-2. 158 

These results translate at 1 Sun intensity into Jph,max < 25 mA cm-2 for 2 nm Ni and < 15 mA cm-2 

with 20 nm Ni, whereas for comparison, the p+n-Si photoanodes investigated herein exhibited 

Jph,max ~ 28 mA cm-2. Although thick Ni catalysts are not required to lower the overpotential for 

water oxidation, 159 the use of thick electrocatalyst layers can minimize performance degradation 

associated with catalyst detachment. 

        A wide range of alternate approaches to efficient photoelectrode performance have been 

demonstrated, especially when active catalysts for the desired water-splitting half-reactions are 

used. 132 For example, p+n-Si(111) photoanodes decorated with 15nm thick Ni islands that covered 

18% of the photoelectrode surface have demonstrated a light-limited current density of 20.4 mA 

cm-2. 159 Modeling has shown that the optimal efficiency of a water-splitting system using a light-

facing photocathode patterned with Pt islands covering 5% of the optical plane closely approaches 

that of a system using a photocathode patterned with a hypothetical transparent catalyst with the 
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same activity as Pt. 160 Furthermore, photoanodes do not require reflective metallic catalyst 

coatings; indeed, p+n-Si(100) photoanodes coated with 75 nm of sputtered NiOx have been shown 

to be stable for 1200 h of continuous oxygen evolution in contact with 1.0 M KOH(aq) and exhibit 

a light-limited photocurrent density > 30 mA cm-2. The TiO2 nanocone array structure can 

effectively optimize light transmission and catalysis simultaneously in a variety of possible 

materials systems, and would be especially beneficial for chemical reactions that require very high 

mass loadings of catalysts, such as O2 evolution or CO2 reduction using earth-abundant 

electrocatalyst materials. 

 

5.4 Conclusion and Outlook 

        Dielectric nanocone arrays provide an additional option to a growing toolbox of strategies for 

directing broadband light around opaque top contacts to PV or PEC cells. The approach ought to 

be generally applicable for any combination of semiconductor and metal, and in principle is 

scalable; however, arbitrary combinations of semiconductors and metals may not be compatible 

with electrodeposition of the metal onto the semiconductor as used in the fabrication process 

described herein. Furthermore, the fabrication process developed herein for a proof-of-concept 

experimental demonstration of a device that makes use of a TiO2 nanocone array for light 

management was complex relative to other known options for light management, such as 

antireflective catalyst coatings or deposition of a controlled density and diameter of catalyst islands. 

The value of the dielectric nanocone approach to light management can be increased by developing 

a simplified fabrication process and by developing synthetic methods that yield TiO2 nanocones 

with a refractive index that approaches the index for ideal TiO2. Modeling and simulation efforts 

that compare attainable efficiencies for application-specific devices across relevant light-

management strategies will prove valuable for identifying the strategies that are most promising 

for a given application. 
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CHAPTER 6  
Effectively Transparent Catalysts for PEC Device 

6.1 Introduction 

        Direct solar-to-fuel generation using a photocathode-based PEC cell requires a light absorber 

which can provide the photovoltage necessary to overcome the thermodynamic potential (1.23V 

for H2/O2, 1.33V for CO/O2) as well as the catalyst overpotentials for both cathode and anode 

reactions. To realize high solar-to-fuel efficiency, it is necessary to maintain a catalytic current 

density close to the light limiting photocurrent density for a solar-driven light absorber, which can 

be fulfilled when catalyst ensembles are highly transparent. In Chapter 3, we have successfully 

achieved a record for solar-to-hydrogen PEC conversion efficiency of 19.3% (under simulated 

sunlight) in acid electrolytes by integrating Rh nanoparticle catalysts onto photocathodes with 

minimal parasitic absorption and reflection losses in the visible range. However, for CO2 reduction, 

a different approach is required, given the opaque nature and limited activity of most CO2R 

catalysts. The complexity of the CO2R kinetic landscape makes it harder to control than the 

competing HER at lower overpotentials. A large geometric filling fraction of opaque 

electrocatalysts on the electrode surface and therefore a high active catalyst area will help to 

enhance the catalytic activity and reduce the overpotential. Thus, strategies for design and 

fabrication of front illuminated photocathode PECs need to be developed. 

        Earlier demonstration on Si photocathode using metal catalyst hole arrays as the catalyst still 

block the majority of light96, and it would be even sensitive to apply such approach on tandem or 

triple junction solar cells since the current matching between each subcell is so critical that 

broadband transmission through catalysts layer is necessary. The earlier work with catalysts 

loading on high aspect ratio wire to prevent light blocking effect is promising161,162, nevertheless, 

is only suitable for single junction cells and can’t be applied as a general approach. Here, we 

propose to use light management strategies to create highly active and effectively transparent 

catalyst (ETC) structures for photocathodic CO2 reduction. An effectively transparent catalyst 

consisting of arrays of micron-scale triangular cross-sectional metal grid fingers is capable of 

redirecting the incoming light to the open areas of the PEC cell without shadow loss. Broadband 
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high transmission in the visible range enables the high photocurrent, further realizing 

renewable fuel production from sunlight. 

 

6.2 Numerical and Experimental Method 

        All of the simulation spectra and field distributions are carried out by solving the Maxwell 

equation with the commercial COMSOL Multiphysics software based on the finite element 

method (FEM). The triangular metal grids were constructed using the 2D simulation with periodic 

boundary conditions along the x-axis, and infinite boundary conditions were rendered as perfectly 

matched layers (PMLs) along the y-axis. Figure 6.1 displays the geometry parameters that were 

used in simulation. Coverage is defined as width (w) divided by pitch (p), and height is indicated 

as h. A plane-wave source of illumination in the wavelength range from 350 nm to 1350 nm was 

utilized. Spectra for unpolarized light were obtained by averaging the spectra for the two 

orthogonal polarizations. All materials refractive index were modeled using tabulated data 

provided in the software. 

 

Figure 6.1: Schematic of triangular metal gird geometries used in simulation. 

        The GaInP/GaInAs/Ge triple junction cell from Spectrolab (C4MJ) and GaInP/GaAs/Si triple 

junction cell from ISE are considered in this study. For illumination during laboratory tests, an 

Oriel Instruments 75 W Solar Simulator was used and matched with AM 1.5G. The corresponding 
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sub-cell currents with integration of external quantum efficiency determined the expected short 

circuit current density under AM 1.5G illumination. The light intensity of the solar simulator was 

set to provide the expected short circuit current density from the specific triple junction cell. While 

this is not expected to yield a simulated solar irradiance of 100 mW×cm-2 due to the different solar 

irradiance in the 800–1000 and 1150–1800 nm regions, it does produce a response of the triple 

junction PV that is the same as it would be in actual AM 1.5G sunlight. 

        The fabrication processes of metal triangular grid on glass to be placed onto triple junction 

photocathode is illustrated in Figure 6.2. First, a master was fabricated on Si substrate using a two-

photon lithography technique. Second, a PDMS stamp was formed with the lithography master. 

The PDMS stamp has an inverse structure to the lithography master. Next, the PDMS stamp was 

stamped onto a glass substrate to fill the metal ink where a pre-clean process of the glass substrate 

is preferred. The metal grid structures were printed onto the glass substrate after baking on a hot 

plate at ~100 °C for 10 min to remove the remaining solvent, then the PDMS stamp could be taken 

off. Afterward, the metal triangular grid on glass sample was post annealed at 200 oC for 1 h in a 

muffle furnace in air. Scanning electron microscope (SEM) images show the metal grids with a 

cross section of a triangle structure. Additional metal catalysts could be electrodeposited (Figure 

6.3) in an aqueous solution at 0.1 mA for 2-4 min. A Cary 5000 UV/vis/NIR with integrating 

sphere was used to obtain reflection, transmission, and absorption spectra in air. 
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Figure 6.2: Illustration of the fabrication process for metal catalyst triangles. SEM image shows 

an example of printed Ag metal triangle grid with 35% coverage. 

 

Figure 6.3: Illustration of the metal deposition process on top of metal catalyst triangular grids. 

        A modified PEEK compression cell (Figure 6.4) with lateral off-set between cathode and 

anode to allow illumination on the cathode was used as the vessel for the measurement. Anode 

chamber volumes is 2 mL, and cathode chamber volume is 4 mL. The anode and cathode electrode 

working areas were 6 cm2 and 0.2 cm2, and the membrane area was 2.4 cm2. The activated NiOx 

foam anode size is enlarged to reduce overpotential from OER, and can be folded to reduce the 

Two photon 
lithography master

Metal ink infill/printing
Making PDMS stamp

glass

PDMS

Metal grid

20 μm



 

 

105 

geometric area. 100 mM potassium bicarbonate (KHCO3) saturated with CO2 was used as the 

electrolyte for experiments at pH 6.8. The anion exchange membrane (AEM) was chosen as 

Fumasep FAA-3-50 for lower resistance. A leakless Ag/AgCl reference electrode was used to 

determine the electrode potential versus RHE. All electrochemical measurements were performed 

using a Biologic VSP-300 potentiostat. Scan rates were set to 50 mV×s-1. 

 

Figure 6.4: Cell configuration composed of 1 NiOx anode, 2 ETC-PEC assembled cathode, 3 anion 

exchange membrane, 4 quartz window, 5 reference electrode, 6 catholyte chamber, 7 anolyte 

chamber, 8 CO2 gas inlet, and 9 gas product/CO2 outlet. White arrows indicate the gas flow. 

        The electrochemical setup was operated in a continuous flow mode. Humidified carbon 

dioxide was provided to the electrochemical cell and its flow rate was controlled with an Alicat 

flow controller. The exhaust gasses went through a mixing volumn, then an Alicat flow meter, and 

finally to a gas chromatograph (SRI-8610) using a Hayesep D column and a Molsieve 5A column 

with N2 as the carrier gas. The gaseous products were detected using a thermal conductivity 

detector (TCD) and a flame ionization detector (FID) equipped with a methanizer. The high 

performance liquid chromatography (HPLC) is used to analyze liquid products after 1 h 

accumulation at each operation condition. Both anolyte and catholyte were sampled to capture 
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possible product cross-over. Quantitative analysis of gaseous/liquid products was based on 

calibration with several standards over many orders of magnitude in concentration. 

 

6.3 Results and Discussion 

        PEC device with an effective transparent catalyst (ETC) is illustrated in Figure 6.5. It 

describes a schematic of light management implementing metal triangles on top of a 

semiconductor photoelectrochemical cell. The micro-scale triangle grid arrays can redirect light to 

photoabsorbing surfaces and reduce reflection loss that is normally expected from metal catalysts. 

Once light can be efficiently absorbed, electrons generated from the semiconductor PEC cell 

transfer to the metal triangle and initiate cathode reduction reaction. To catalyze CO2 reduction 

reactions and generate CO and/or higher energy density hydrocarbon product, silver (Ag), gold 

(Au), and copper (Cu) are chosen specifically for the higher activity. Even though the process in 

not limited to the photoabsorbing materials, triple junction cells are required to provide enough 

photovoltage for the thermodynamic potential and overpotential of CO2R. 

 

Figure 6.5: Schematic illustration of light management with metal triangle catalyst on top of a 

semiconductor photoelectrochemical cell. 
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        The metal triangle catalysts are constructed to have heights (h) greater than the base width 

(w) of the triangles for enhancing actual catalytic surface area. The base to height ratio (w/h) of 

the triangle can range from about a 1:1 ratio to about 1:3. The base width of the triangle is supposed 

to be greater than the wavelength of incoming light, preventing coupling with the metal structure 

where optical loss can be introduced. For visible wavelength range, the base width of the triangle 

should be larger than 2 μm. Numerical calculations were used to investigate the optical response 

and determine the optimal geometry. In general, we would need larger geometric filling fraction 

of the metal catalysts on the electrode surface and therefore a high active catalyst area to help 

enhance the catalytic activity and reduce the overpotential. Figure 6.6 presents the simulated 

absorbance, reflectance, and transmittance spectra respectively of metal catalyst triangle coverage 

ranging from 0%, 10%, 25%, 50%, and 83% with base width of about 2.5 μm and a height of about 

7 μm on GaAs substrate. The coverage can be defined as the occluded area by the metal triangle 

to the total surface area of the photoelectrochemical cell (w/p). 

 

Figure 6.6: Simulated (a) absorbance spectra, (b) reflectance spectra, and (c) transmittance 

spectra respectively of different Ag catalyst triangle coverages of 0%, 10%, 25%, 50%, and 85% 

with w = 2.5 μm and h = 7 μm on GaAs substrate. 

(a) (b)

(c)
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        Table 6.1 lists the change of absorbance, reflectance, transmittance, and current of 

different metal catalyst triangle coverage ranging from 10%, 25%, 50%, to 83% as compared to 

0% coverage. The catalyst surface area is defined as the sum of both the metal triangle slope 

surface area. While attaining high catalytic current, it is still required to maintain high transmission 

and high photocurrent. In the simulation, we found that a mesoscale Ag grid array with triangular 

cross-section lines, metal coverage of 50%, and catalyst surface area of 284.4% exhibits negligible 

additional reflection and absorption loss. Figure 6.7 exhibits the simulated field profile of a metal 

catalyst triangle with 50% coverage at λ = 500nm. The plane wave is reflected on the slope of the 

metal triangle and redirected to the wave to the photoelectrochemical cell. Metal catalyst grids 

with coverage ranging from 25% to 50% can be utilized as appropriate solution for balancing light 

management and catalytic current. 

Table 6.1: Change of absorbance, reflectance, and transmittance of of different Ag catalyst 

triangle coverages of 10%, 25%, 50%, and 85% with w = 2.5 μm and h = 7 μm on GaAs substrate 

related to 0% metal coverage. 

 

 

 

 

 

 

 

Metal 
coverage 

Ave ΔR Ave ΔA Ave ΔT 
Catalyst 
surface 

area 

10% 0.027 0.005 -0.032 56.9% 

25% -0.030 0.012 0.018 142.2% 

50% -0.019 0.031 -0.012 284.4% 

83% 0.194 0.098 -0.292 472.2% 
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Figure 6.7: Simulated field profile of a Ag catalyst triangle with w = 2.5 μm, h = 7 μm, and 50% 

coverages on GaAs substrate at λ=500nm. 

        As proof of concept, Ag catalyst triangle catalysts with 2.5 μm width, 5 μm height (w/h = 1:2 ), 

and 35% coverage were fabricated with the printing process described in method section. The 

catalyst surface area of such a structure is calculated to be 144.3%. Additional catalyst layers 

including Au and Cu are selectively electrodeposited on the surface of the printed Ag triangle grids. 

Figure 6.8(a)-(c) shows elementary mapping through EDX (Energy-dispersive X-ray spectroscopy) 

of three types of metal catalyst triangle grid arrays on glass substrate, including Ag triangle, Au 

on Ag triangle, and Cu on Ag triangle. It is observed that after electrodeposition, the Ag catalysts 

are conformally covered by the other metal catalysts where signals from Ag are hindered. We note 

here that the catalysts are printed on an insulating glass substrate and later wire connected to the 

bottom PEC cell instead of directly printed on the PEC cell. It passivates the light absorber surface 

and reduces competing reactions of CO2R reactions, hence improving the solar-to-fuel conversion 

efficiency. 
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Figure 6.8: EDS mappings of elements O, Si, Ag, Au, and Cu of the (a) Ag triangle (b) Au on Ag 

triangle (c) Cu on Ag triangle on glass substrate. 

        Figure 6.9 includes the optical measurements in air with different wavelengths of light for the 

three types of metal catalyst triangle grid arrays on glass substrate with coverages of 35%. Near 

10% reflection loss can be introduced with bare glass substrate. Figure 6.9(b) shows additional 10 

% reflection loss from the 35% Ag triangle grids while the Au on Ag triangle and Cu on Ag triangle 

cases exhibit similar reflection loss at longer wavelengths but lower at shorter wavelengths. The 

overall reflections are higher than expected from the simulation, which can possibly be attributed 

to the non-ideal surface roughness. The morphology of the bare printed Ag triangle and after 

electrodeposition of Au and Cu are shown in SEM images of Figure 6.10. Even though rougher 

surfaces can be observed for both electrodeposited Cu and Au, the two samples do not show higher 

reflection loss due to the contribution of absorption loss, as shown in Figure 6.9(a). In particular, 

the needle structure Au catalysts exhibit the largest absorption loss. Figure 6.9(c) indicates the 

transmission spectra for the three metal catalyst triangle grids, where 35% Ag triangle grids show 

(a)

(b)

(c)

Au on Ag Triangle

Cu on Ag Triangle

Ag Triangle
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the best transparency than the Cu on Ag triangle, with Au on Ag triangle being the worst. 

Although reflection and absorption loss are introduced from non-perfect geometry, the 

transmissions for the three samples are still higher than the calculated transmission spectrum for 

200nm thick Ag film with 35% coverage, shown as the blue dashed line in Figure 6.9(c). While 

35% Ag triangle maintained relatively higher transparency than the 35% Ag film, the catalyst 

surface area of 144.3% is 4 times larger, which is one of the critical benefits of the triangle grid 

design. 

 

Figure 6.9: Experimental measurements of (a) absorption spectra, (b) reflection spectra, and (c) 

transmission spectra respectively for different metal catalyst triangles with coverages of 35% on 
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glass substrate. 0% coverage is shown as glass. Calculated transmission spectrum for 200nm 

thick Ag film with 35% coverage is included for comparison. 

 

Figure 6.10: SEM images of (a) Ag triangle, (b) Au on Ag triangle, and (c) Cu on Ag triangle on 

glass substrate with 35% coverage. 

        To evaluate the catalytic behavior of the three different metal catalyst triangle grids, three-

electrode measurements in CO2 saturated 0.1 M KHCO3 (bulk pH of 6.8) are conducted with 

results shown in Figure 6.11. For Ag triangle grids, both the Faradaic efficiency for CO and current 

density increased with increasing potential vs RHE with fFE,CO close to 90 % at -1.2 V vs. RHE, 

see Figure 6.11(a)(d). Comparable current density can be observed for both Au on Ag triangle 

grids (see Figure 6.11(b)) and Cu on Ag triangle grids (see Figure 6.11(c)) while Au on Ag triangle 

grids show higher current density at lower potential. The Au catalysts also shift the optimized 

faraday efficiency for CO to lower potential at -0.8V vs RHE though with lower fFE,CO of 65 %, 

see Figure 6.11(e). Higher value hydrocarbon products including acetate, ethylene, ethanol, and n-

propanol can be generated with additional Cu catalysts as shown in Figure 6.11(f). At -1.4 V vs 

RHE, a total Faradaic efficiency for CO2R can reach 90% with C2+ product over 50%. The product 

with highest Faradaic efficiency is ethanol with 32%. The selectivity is still a concern that effort 

for product separation would be required for practical application. In the later study, the better 

performing Ag triangle grids and Cu on Ag triangle grids are further evaluated. 

 

(a) (b) (c)

2 μm 2 μm 2 μm
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Figure 6.11: Current density and product distribution at different potentials vs RHE for (a)(d) Ag 

triangle, (b)(e) Au on Ag triangle, and (c)(f) Cu on Ag triangle on glass substrate with 35% 

coverage. 

        Two electrode measurements of metal triangular grid cathode and NiOx mesh anode with a 

range of applying cell potentials were conducted for better understanding of full cell operation, 

and the resulting current density and product distribution are shown in Figure 6.12. For the case 

of Ag triangle grid cathode with NiOx anode, see Figure 6.12(a), optimized faraday efficiency for 

CO can be achieved with cell voltage larger than 2.5 V. The high fFE,CO of 80 % can be extended 

to 2.9 V. For the case of Cu on Ag triangle grids cathode with NiOx anode, see Figure 6.12(b), 

Faradaic efficiency of ethanol ~ 30% was achieved with cell voltage ranging from 2.5 V to 2.9 V. 

Other higher value hydrocarbon products start to generate with cell voltage larger than 2.7 V, 

realizing C2+ product over 50% and a total CO2R Faradaic efficiency > 80%. 
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Figure 6.12: Current density and product distribution at different cell potentials with NiOx anode 

for (a)(c) Ag triangle, and (b)(d) Cu on Ag triangle on glass substrate with 35% coverage. 

        For a fully integrated device with catalysts on the illuminated side of the light absorber, the 

optical response of the catalysts needs to be considered. We calculated the short circuit 

photocurrent of two different triple junction cells; one from Spectrolab with an open circuit voltage 

of 2.6 V and sub-cells of GaInP/GaInAs/Ge, the other from ISE with an open circuit voltage of 

3.125 V and sub-cells of GaInP/GaAs/Si. By applying the transmission spectra of the two different 

metal triangle grids in conjunction with the external quantum efficiency (EQE, see Figure 6.13) of 

the two triple junction cells, the catalysts light blocking effect on each of the sub-cells can be 

evaluated. The short circuit photocurrent Jsc is then obtained from the minimum current density of 

the individual sub-cells. The calculation results are listed in Table 6.2. We found that the current 

limiting cell remains to be the middle cell for the Spectrolab 3J cell, and remains to be the bottom 

cell for ISE 3J cell no matter which catalyst is applied. The light limiting current density of the 
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Spectrolab 3J cell decreases from 14.83 mA/cm2 to 11.46 mA/cm2 for Ag triangle grids, to 

10.93 mA/cm2 for Cu on Ag triangle grids. Similarly, the light limiting current density of ISE 3J 

cell decrease from 11.66 mA/cm2 to 9.15 mA/cm2 for Ag triangle grids, to 8.73 mA/cm2 for Cu on 

Ag triangle grids. 

 

Figure 6.13: External quantum efficiency of (a) Spectrolab GaInP/GaInAs/Ge triple junction cell, 

and (b) ISE GaInP/GaAs/Si triple junction cell. 
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Table 6.2: Current densities calculated for the individual sub-cells of the Spectrolab 

GaInP/GaInAs/Ge triple junction cell and ISE GaInP/GaAs/Si triple junction cell in conjunction 

with optical response of different catalysts under AM1.5G 1 sun illumination assuming the 

standard reference sunlight spectrum (AM1.5G ASTM G-173). The short circuit photocurrent Jsc 

is obtained from the minimum current density of the individual sub-cells. 

Device Catalyst Jtop 
(mA×cm-2) 

Jmiddle 
(mA×cm-2) 

Jbottom 
(mA×cm-2) 

Jsc 
(mA×cm-2) 

Spectrolab 
3J 

none 15.56 14.83 18.53 14.83 

Ag triangle 35% 
on glass 11.57 11.46 14.93 11.46 

Cu on Ag triangle 
35% on glass 11.02 10.93 13.90 10.93 

ISE 3J 

none 12.75 13.13 11.66 11.66 

Ag triangle 35% 
on glass 9.46 10.05 9.15 9.15 

Cu on Ag triangle 
35% on glass 9.00 9.59 8.73 8.73 

 

        Figure 6.14 plots the J-V curves of the two 3J cells after modifying with catalyst transmission 

together with catalyst curve for the two metal triangle grid cathodes plus NiOx anode. The intersect 

of the two curves defines the operation condition for the integrated ETC-PEC device. For Figure 

6.14(a), Spectrolab 3J and Ag triangle/NiOx curves intersect at 2.57 V and 2.7 mA/cm2, so a solar-

to-CO efficiency of 3.1 % can be expected. For Figure 6.14(b), Spectrolab 3J and Cu on Ag 

triangle/NiOx curves intersect at a similar point 2.57 V and 2.7 mA/cm2, and a total solar-to-fuel 

efficiency from CO2R of 2.7 % and solar-to-C2+ efficiency of 1.1 %  can be expected. For Figure 

6.14(c), ISE 3J and Ag triangle/NiOx curves can be interpreted to intersect at 3.0 V and 7.0 mA/cm2, 

a solar-to-CO efficiency of 6.6 % can be estimated. For Figure 6.14(d), ISE 3J and Cu on Ag 

triangle/NiOx curves intersect at 2.86 V and 8.6 mA/cm2, a total solar-to-fuel efficiency from 

CO2R of 8.7 % and solar-to-C2+ efficiency of 5.4 %  can be expected. 



 

 

117 

 

 

Figure 6.14: Current density at different cell potentials of light absorber and cathode/anode 

catalysts defining the operation point for (a) Spectrolab 3J + Ag triangle/NiOx, (b) Spectrolab 3J 

+ Cu on Ag triangle/NiOx, (c) ISE 3J + Ag triangle/NiOx, and (d) ISE 3J + Cu on Ag triangle/NiOx. 

        We also experimentally realized the integrated ETC-PEC device with Spectrolab 3J cell and  

Ag triangle catalysts with 35% coverage. J-V characteristics and product distribution with three-

electrode measurements performing CO2RR in CO2 saturated 0.1 M KHCO3 under 1 Sun 

illuminations are shown in Figure 6.15. As comparison to bare Ag triangle catalysts, the integrated 

device with Ag triangular catalysts stacking on photovoltaic shows a positive shift of the J-V curve 

vs RHE. The trends of product distribution over applying potential are almost identical. No 

external bias operation can be achieved with 20 h stability as shown in Figure 6.16. Starting from 

~3% solar-to-CO efficiency, the integrated device efficiency slowly drops to ~2% possibility due 

to the insufficient adhesion of the Ag triangle grids to the glass substrate during electrolysis. 
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Figure 6.15: (a) Current density and (b) product distribution at different potentials vs RHE for Ag 

triangle, and integrated ETC-PEC device with Spectrolab 3J plus Ag triangle on glass substrate 

with 35% coverage. 
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Figure 6.16: (a) Current density, (b) solar to CO efficiency, and (c) product distribution at 0 V vs 

NiOx counter electrode of the integrated ETC-PEC device with Spectrolab 3J + Ag triangle on 

glass substrate with 35% coverage over 20 h stability test. 

6.4 Conclusion and Outlook 

        A solar-driven photoelectrochemical device capable of reducing CO2 without externally 

applied bias is achieved with ~3% solar-to-CO efficiency using Ag ETC-PEC. Over 6% solar-to-

CO efficiency with Ag triangle catalysts or a total solar-to-fuel efficiency from CO2R > 8 % and 

solar-to-C2+ efficiency > 5 % with Cu on Ag triangle catalysts can be expected with triple junction 

cell providing larger photovoltage. Our designs featuring photonic structures to enable high 

absorption light absorbers and effectively transparent catalyst layers for PEC cell are general 

approaches not limited to single reaction or specific photovoltaic system. Different metal catalysts 

can possibly be applied to reveal different chemical reactions and fuels. Together with the 

capability of scalable processes through ink printing and electroplating, it will be a critical step to 

advances in field of solar fuel generation and all other related optical applications. 
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        Future directions involve extending device stability and new catalyst design for higher 

value product with high selectivity. The solar-to-fuel efficiency can be further increased with 

slightly higher metal coverage, and crossed grid structures with similar triangular cross section can 

also be considered. A new protection scheme allowing efficient passivation of the PEC cell from 

undesired competing reactions would be valuable for simpler integration devices. 
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CHAPTER 7  
Interface Analysis of Catalysts and Protection Layer 

7.1 Introduction 

        Band gap tailored dual junction light absorbers typically utilizing silicon and/or III-V 

semiconductors have the potential to provide the highest efficiency for unassisted water splitting 

in an integrated photoelectrochemical (PEC) device. 69 Depending on the desired product, similar 

devices optimized for CO2 reduction consists of triple junction light absorbers 70,163 combined with 

catalysts needed for the desired reactions. However, these devices employ semiconductors, 

especially the widely used III-V compounds, that are typically unstable in aqueous media and will 

corrode and/or passivate unless protected by transparent, conducting, and chemically robust 

protective layers. 74,164,165 Amorphous defective TiO2 (a-TiO2) coatings have been found to yield 

protective layers that can pass charge from the semiconductor to the catalysts, are stable in highly 

basic solution, and can offer antireflective properties to PEC electrodes. The a-TiO2 can be applied 

using atomic layer deposition (ALD) with tetrakis(dimethylamino)titanium (TDMAT) precursors 

at relatively low temperatures to yield protected photoanodes that facilitate the transport of holes. 

        It has been proposed that a gap states in the TDMAT a-TiO2 protection layer is responsible 

for hole conduction. 74,166,167 Temperature dependent measurements showed a decreasing 

activation energy with decreasing temperature, which indicated that neither valence nor 

conduction band are the primary pathways of conduction. 167 The data was consistent with a 

hopping mechanism between Ti3+ and Ti4+ states and conductivity as well as size of the gap states 

correlated with the Ti3+ concentration. Solid liquid junctions of these protective a-TiO2 coatings 

alone are shown not to be conductive and/or provide the necessary low overpotential for water 

oxidation. 74,166,167 However, in conjunction with the appropriate choice of metal catalyst, high 

catalytic exchange current densities and thus low overpotentials can be observed. Metals with a 

work function less than a-TiO2 generally provided higher conductivities across the a-TiO2/metal 

interface while high work function metals depleted the Ti3+ sites. 167 However, nickel as a high 

work function metal acted similar to low work function metals. It was suggested that properties 

other than the work function itself must contribute to the different conductivities. 
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        This made nickel the material of choice for making TDMAT a-TiO2 conductive 

and enabling water oxidation. However, a minimum thickness of nickel is required to observe 

significant catalytic current for water oxidation or when using a fast redox couple (Fe(CN)6
3−/4−). 

168 It has been shown in the past that ultrathin metal films and nanoparticles on oxide surfaces 

exhibit unique properties for catalytic systems. 169 For example, the deposition of thin reactive 

metal films Cr resulted in strong interaction with the interfacial TiO2, leading to a change of the 

gap states in crystalline TiO2 within the band gap at the metal interface. The ALD a-TiO2 has a 

distorted octahedral symmetry (Oh) with a valence configuration of O 2p6 Ti 3d04s0 which results 

in a pure O 2p derived valence band and pure Ti 3d and 4s derived conduction band. 170 The six 

oxygen ligands in Oh symmetry break the 3d-orbitals (AÃÕ, AŒÕGœÕ, AŒœ, AŒÃ, AœÃ) into eg (pointing 

towards ligands) states and t2g states (pointing between ligands). 170 The gap state in a-TiO2 is a 

partial populated t2g derived band (Ti3+) which was originally unoccupied due to the d0 character 

of TiO2. 171 Successive dd transitions are possible after excitation of electrons from Ti 2p core 

level into eg conduction band states followed by deexcitation from the t2g valence band states into 

the core level hole, effectively creating an intermediate state with an electron in the eg and a hole 

in the t2g band (dd transition). 

        In this study we investigate the properties of an a-TiO2/metal interface that controls the 

transfer of holes through the a-TiO2 to Ni, Au and Ir contacts to understand why the observed 

catalytic currents of these systems differ. Resonant photoemission spectroscopy (resPES) and 

resonant inelastic X-ray scattering (RIXS) at the Ti 2p edge were used to investigate the a-TiO2 

gap state at the buried interface between the metal and the TiO2. In resonance X-ray spectroscopy, 

the ground state is initially excited to an intermediate state, and in our case, this is a conduction 

band (CB) excited state. The lifetime of this CB excited state defines the full width at half 

maximum (FWHM) of the resonance. This intermediate state then decays by either emission of an 

Auger electron for resPES or of an X-Ray for RIXS. The final state is still an excited state (for 

RIXS and some decay channels for resPES) with a hole in the valence band, and its lifetime defines 

the FWHM of the valence band (VB) resonances. 172 Resonant X-ray spectroscopy is a two-

dimensional technique using photoelectron/exciting photon energy in resonant photoelectron 

spectroscopy, resPES, or emitted X-Ray/exciting photon energy in resonant inelastic X-Ray 

scattering, RIXS. By this technique, the X-ray absorption spectrum (XAS) is split into individual 
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X-Ray photoelectron spectra or X-ray emission spectra for each excitation energy value. At 

the energy for a core level absorption of a particular element, the cross section for that element 

increases dramatically. It is several orders of magnitude higher than for any elements that have a 

different core level absorption energy. Due to the increased absorption cross section and the decay 

processes of the resonantly created core hole, the density of states of that element can be 

determined. Hence, valence bands measured by resonant X-ray spectroscopy give evidence of the 

partial density of valence band states (occupied states). For a complete set of VB spectra, the 

excitation energy is scanned over the core level absorption edges energies of the elements of 

interest. Scanning over the absorption edge an XAS spectrum can be recorded allowing to probe 

the CB states in addition, e.g. total electron yield (TEY) or total fluorescence yield (TFY). 

 

7.2 Experimental Method 

        Films of a-TiO2, prepared by atomic-layer deposition (ALD), 74,153,173,174 were deposited on 

degenerately doped p+-type silicon (resistivity ρ < 0.005 Ω×cm) substrates. Si (100) wafers were 

first cleaned via an oxidizing etch by soaking of a 3:1 (volume ratio) “piranha” solution of 

concentrated H2SO4 (98 %) to 30 % H2O2 for 2 min, followed by a 10 s in a 10 % (by volume) 

solution of HF(aq). The wafers were then immediately etched in a 5:1:1 (volume ratio) solution of 

H2O, 36 % hydrochloric acid, and 30 % hydrogen peroxide for 10 min at 75 °C before being 

moved into the ALD chamber. The a-TiO2 was deposited from a tetrakis(dimethylamido)titanium 

(TDMAT) precursor in a Cambridge Nanotech Savannah ALD reactor. A 0.1 s pulse of TDMAT 

was followed by 15 s purge of N2 at 20 sccm, followed by a 0.015 s pulse of H2O before another 

15 s purge with N2. This process was repeated for 1500 cycles to reach ~ 70 nm in thickness. 

Metals were deposited via electron-beam evaporator (System 02520, Angstrom Engineering) with 

base pressure of 1x10-7 Torr at rate of 0.1 to 1 Å/s. Where desired, nickel was deposited at a RF 

sputtering power of 150 W for 20-300 s in an AJA-International sputtering system, at a rate of 

approximately 2 nm/min. 

        Resonant XPS experiments have been performed at BESSY II, Berlin at the soft X-ray 

beamline U49/2-PGM2. 175 The photon energy resolution used was around 30 meV. All spectra 

are corrected for the incoming photon flux. For measuring the resPES valence band spectra at the 
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Ti 2p, O 1s, and Ni 2p edge, the photon energy was varied over a wide range 

(452 eV – 475 eV; 525 eV – 550 eV; 845 eV – 865 eV, respectively) by sweeping the undulator 

gap and the monochromator in parallel. A SPECS Phoibos 150 was used as the electron analyzer 

and a 1D delay-line detector as the electron detector. The resolution of the spectrometer used was 

70 meV. Together with the photon resolution, we have a resolution for XAS (CB) measurements 

of 30 meV and for PES (VB) of around 80 meV. To compensate for polarization dependence of 

the resonances a sample position with a magic incidence angle of 54.7 ° was chosen. 176 RIXS 

experiments were performed at the Advanced Light Source, Berkeley at beamline 8.0.1, using the 

iRIXS endstation equipped with two slit-less variable line-spacing (VLS) grating spectrographs. 
177  

       Laboratory XPS measurements were performed using a Kratos Axis Ultra system with a base 

pressure of < 1x10-9 Torr. A monochromatic AlKα (hν=1486.69 eV) source with a power of 150 W 

was used for all measurements. For ultraviolet photoelectron spectroscopy (UPS) a Helium gas 

discharge lamp was used to provide HeI excitation (hν=21.21 eV) for measurement of the material 

work function. Pure metal samples (99.99%) were sputter cleaned until no contamination or carbon 

was detectable prior to UPS measurement. 

        Electrochemical characterization was performed in a three-electrode configuration with a 

Ag/AgCl reference electrode and carbon counter electrode using a Biologic SP-200 potentiostat. 

To assess the conductivity of the samples, 50/350 mM Fe(CN)6
3-/4- was used as the electrolyte, 

which was vigorously stirred during the experiments. 1 M KOH was used as the electrolyte to 

determine the performance for the oxygen evolution reaction (OER). X-Ray diffraction (XRD) 

data was collected on a Bruker Discover D8 XRD with a micro-focus X-ray source (Cu) and 

VÅNTEC-500 large microgap detector. Scanning electron microscopy images were obtained with 

a FEI Nova NanoSEM 450 microscope. 

 

7.3 Results and Discussion 

        Figure 7.1(a) shows the current voltage curves (J-U) in 1 M KOH for p+-Si/a-TiO2/Ni(20 nm) 

and p+-Si/a-TiO2/Ir(20 nm) samples. Redox peaks are observed prior to the onset to OER for the 
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p+-Si/a-TiO2/Ni sample at U = +1.44 V and +1.35 V vs. RHE corresponding to Ni(II)/Ni(III) 

oxidations and reductions, respectively. No redox peaks are observed for p+-Si/a-TiO2/Ir. Both 

OER catalyst iridium and nickel have comparable overpotentials in basic solution on inert 

conductive glassy carbon. 178 However, Figure 7.1(a) shows that p+-Si/a-TiO2/Ir(20 nm) had an 

overpotential 0.2 – 0.3 V higher than that of p+-Si/a-TiO2/Ni(20 nm) at a current density of 

10 mA/cm2. In contact with a fast one-electron redox couple, ferric ferrocyanide (Fe(CN)6
3-/4-), 

Figure 7.1(b), p+-Si/a-TiO2/Ir(20 nm) showed slower kinetics than p+-Si/a-TiO2/Ni(20 nm). The 

current voltage plot for a p+-Si/a-TiO2/Au(20 nm) electrode also exhibited slow kinetics. It is noted 

that both gold and nickel have similar work functions, while the work function of iridium is larger. 
178,179 Thus, the trend in conductivity observed was Ni>Ir>Au, and does not directly correlate with 

metal nobility or work function differences. 

 

 

Figure 7.1: (a) J-U measurements for p+-Si/a-TiO2/Ni and p+-Si/a-TiO2/Ir sample in 1.0 M 

KOH(aq). (b) J-U measurements for p+-Si/a-TiO2/M (M=nickel, iridium, gold) in 50/350 mM 

Fe(CN)63-/4-(aq) solution. 

        The dependence of the conductivity on metal thickness for p+-Si/a-TiO2/metal was also 

measured, as in Figure 7.2. Samples with thin nickel layers showed very little conductivity. A 

metal thickness of >2 nm was needed to produce significant conductivity. For Iridium, charge 

conduction was observed after a nominal metal thickness of 0.5 nm which gradually increased and 

saturated after 10 nm. For Gold, no hole conduction could be detected up to 5 nm, and only above 
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10 nm the a-TiO2/Au layers were conductive. These results should be compared to the SEM 

images of the TiO2/metal surfaces (Figure 7.3). Both nickel and iridium covered surfaces showed 

no distinctive surface morphology changes, indicating a smooth surface coverage of the thin metal 

layer. However, for gold deposition on TiO2, the formation of nanoparticles could be observed up 

to a thickness of 5 nm. For 10 nm nominal gold layer thickness, these nanoparticles started to 

interconnect and form a continuous but still porous layer. 

 

Figure 7.2: J-U measurements for (a) p+-Si/a-TiO2/Ni, (b) p+-Si/a-TiO2/Ir, and (c) 

p+-Si/a-TiO2/Au in 50/350 mM Fe(CN)63-/4-(aq) solution with different thicknesses of the metal 

layer. 
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Figure 7.3: Scanning electron microscopy images of a-TiO2/M. M= (a) nickel, (b) iridium, and (c) 

gold for different metal thicknesses. The scale bar is 200 nm. 
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        Performance towards OER is a function of the effectiveness of the catalysts and the 

conductivity of the system. The conductivity is strongly dependent of the energetic alignment of 

the conduction and valence bands in the various materials. The energy band alignment between Si 

and-TiO2 has been studied in detail previously 166, and we note that the p+-Si/a-TiO2 interface 

formed an ohmic contact as indicated by the absence of band bending in TiO2 or p+-Si after 

equilibration of the Fermi levels of both materials. Therefore, this interface should not significantly 

affect the conductivity from the Si to the metal catalyst, and thus we have focused on the 

a-TiO2/metal interface. 

Reference samples of TDMAT a-TiO2 with and without metal contacts of nickel, iridium, 

and gold with metal thicknesses ranging from 0.1 Å to 200 Å were prepared. X-ray diffraction 

(XRD) spectra of these samples are shown in Figure 7.4. With increased metal layer thickness, the 

(111) metal diffraction peak becomes more pronounced for all metals with additional (200), (220), 

and (311) peaks for gold. No XRD signal could be observed for TDMAT a-TiO2
 on any of the 

samples. 

 

Figure 7.4: XRD spectra for a-TiO2/M (M=Ni, Ir, Au) for different metal layer thicknesses. 

        Figure 7.5 shows high resolution XPS spectra of a-TiO2/M devices for Ni 2p, Ir 4f, Au 4f, 

Ti 2p, and O 1s core levels with the valence band region. The valence band spectra for the bare 
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a-TiO2 sample showed the characteristic gap state at a binding energy of ~1 eV, which shows 

no difference in intensity for bulk (Figure 7.6, θ = 0°) or surface sensitive (Fig. S4, θ = 70°) XPS. 

Upon deposition of less than one Å of metal, the gap state could not be detected by laboratory XPS 

due to the high intensity of the valence band states of the metal (Figure 7.5(d,l,h)). Thin layers of 

nickel and iridium showed metal oxide peaks for nickel (Figure 7.5(a)) and iridium (Figure 7.5(e)) 

as indicated by solid lines. Metallic peaks (dashed lines) at a lower binding energy were observed 

with increasing nickel and iridium thickness that did not obscure the metal oxide peaks, which 

indicated that the metal oxide was on the metal surface. Depth profiling of-TiO2/Ni samples by 

changing the photon energy and thus the inelastic mean free path (IMFP) of the emitted electrons 

using synchrotron XPS revealed that the valence band nickel oxide peak decreased in intensity 

with decreasing surface sensitivity (increasing photon energy), supporting the conclusion that the 

metal oxide was on the surface of the metal layer. The opposite trend was observed for the metallic 

nickel contributions evident by states at the Fermi energy (EF) (see Figure 7.7). Previous 

investigations using Ambient Pressure XPS also showed the presence of a metallic nickel phase 

for the samples in 1 M KOH under applied potential. 168 While no core level shifts for the metal 

peaks (Ni 2p, Ir 4f, Au 4f) were observed (only changes in oxidation state), binding energy shifts 

for the Ti 2p core level were observed for a-TiO2/Ni and a-TiO2/Ir samples. No shoulder or change 

in peak shape (FWHM) for the Ti 2p core level was evident in Figure 7.5(b,f,j), indicating that 

there was no oxidation state change for the a-TiO2, i.e., and no transition from Ti4+ to Ti3+ or lower 

oxidation states. Thus, the single component for Ti 2p3/2 and Ti 2p1/2 core levels was assigned to 

Ti4+, indicating that the shift in the Ti 2p core level was due to band bending and not to changes in 

oxidation state. 
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Figure 7.5: XPS spectra for a-TiO2/metal systems for (a-d) nickel, (e-h) iridium and (i-l) gold  

showing core level peaks for the metal, (a) Ni 2p, (e) Ir 4f, (i) Au 4f; (b, f, j) Ti 2p; (c, g, k) O 1s, 

and (d, h, l) of the valence band. The metal overlayer thicknesses are shown in the graph. The 

black dashed line shown in the Ti 2p core level plots indicates the position of bulk Ti 2p3/2 core 

level peaks, whereas the dashed and solid lines in (a) and (e) indicate the metallic and oxide peak 

position, respectively. 
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Figure 7.6: XPS spectra for TDMAT ALD a-TiO2 of the (a) Ti 2p and (b) O 1s core levels and (c) 

of the valence band for different emission angles from θ = 0° (bulk sensitive) to θ = 70° (surface 

sensitive) relative to the surface normal. With increased surface sensitivity (increased θ), an 

increase in the oxygen shoulder at 532.5 eV was observed. 

 

Figure 7.7: Valence band spectra of for different nickel thicknesses: (a) 0 nm, (b) 0.3 nm, (c)1.3 

nm, and (d) 10 nm. The spectra were recorded at three different photon energies: 150 eV, 640 eV, 

and 1100 eV corresponding also to the kinetic energy of electron from the upper valence band. 

Hence, the inelastic mean-free path (IMFP) of the photoelectrons corresponds to l = 4.72 Å (Ni) 

to 6.28 Å (a-TiO2) for EK = 150 eV, l = 11.19 Å (Ni) to 14.96 Å (a-TiO2) for EK = 640 eV, and 

l = 16.64 Å (Ni) to 22.39 Å (a-TiO2) for EK = 1100 eV. Inelastic Mean-Free Path for elements 

under investigation for relevant photoelectron energies are calculated by IMFP-TPP2M. 180  
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        For pristine TDMAT a-TiO2 and each metal, the work function (Wf) was determined by 

ultraviolet photoelectron spectroscopy (UPS) using He I excitation (Figure 7.8(a)). The values 

were Wfa-TiO2 = 4.7±0.10 eV, WfAu = 5.05±0.22 eV, WfNi = 5.09±0.19 eV, WfIr = 5.32±0.12 eV. 

The binding energy for the valence band minimum maximum for TDMAT a-TiO2 was 

VBM = 2.94±0.10 eV .The band bending of the a-TiO2 inferred from the changes in Ti 2p3/2 peak 

position shown in Figure 7.8(b) follows the trend of the differences in work functions between the 

a-TiO2 and the metal, ΔWf. Differences between the magnitude of band bending and ΔWf were 

attributed to factors such as the interface dipole and fermi level pinning, and will be discussed later 

on. 

 

Figure 7.8: He I ultraviolet photoelectron spectra (UPS) of TDMAT a-TiO2/metal, with nickel, 

iridium, and gold showing (a) the work function and (b) valence band maximum. The metals were 
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sputter-cleaned until no contamination or carbon was detectable. (c) Energy position of 

Ti 2p3/2 core level depending on contact metal and metal thickness. The values were extracted from 

Figure 7.5. 

        To further investigate the a-TiO2/metal interface, resonant photoemission (resPES) and 

resonant inelastic X-ray scattering (RIXS) measurements were employed, which use an element-

specific probe to look through the relatively thick metal layer and visualize changes in the valence 

band states of a-TiO2. Standard X-ray photoelectron spectroscopy involves the measurement of 

core level (CL, Figure 7.9, process I) and valence band (VB) states (Figure 7.9, process II) of a 

specimen. Due to the distinguishable characteristic binding energies (EB) between elements for 

core levels (binding energy difference is sufficiently large), different element and oxidations states 

can be identified without difficulty. However, for valence band spectroscopy, this is not the case, 

as every element has electronic states close to the fermi energy (EF), making identification of 

different elemental contributions extremely challenging with standard laboratory X-ray 

spectroscopy. Instead, tunable synchrotron radiation makes it possible to excite valence band states 

in resonance and thus gives the possibility to distinguish between valence band states of different 

elements. With titanium as an example, these processes are described by equations below. 

Ti 2p– + ℏ“′′ → Ti 2pQ + ‘’£~G  (Equation 7.1) 

[.◊]º + ℏ“′′ → [.◊]ºGK + ‘’£~G  (Equation 7.2) 

Ti 2p– + [.◊]º + [0◊]ö + ℏ“ → Ti 2pQ + [.◊]º + [0◊]K (Equation 7.3) 

Ti 2pQ + [.◊]º + [0◊]K → Ti 2p– + [.◊]ºGK + [0◊]ö + ‘’£~G  (Equation 7.4) 

Ti 2pQ + [.◊]º + [0◊]K → Ti 2p– + [.◊]ºGK + [0◊]K + ℏ“′ (Equation 7.5) 

For regular XPS with a fixed photon energy (e.g. monochromatic AlKa radiation of 1486.69 eV), 

Equation 7.1 depicts the excitation of a Ti 2p core level electron above the vacuum level (Evac). 

Equation 7.2 shows the excitation of a valence band electron above Evac. Since the photon energy 

is high enough to excite core levels above Evac (ℏw’’>EB,Ti 2p+Wf), two different final states can 

be found. 
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Figure 7.9: Illustration of possible X-ray spectroscopy excitation and decay channels: I. 

Excitation of core level electron above the vacuum level (EVac); II. Excitation of valence band (VB) 

electron above the vacuum level; III. Resonant excitation of a core level electron into unoccupied 

states of the conduction band (CB); IV. After process III, an electron from the valence band refills 

the core hole transferring the energy to the initial excited core level electron thus exciting it above 

EVac (participator decay); V. After process III, an electron from the valence band refills the core 

hole with the emission of a photon. 

        If we consider tunable photon energy with specific value of ℏw that electron in CL can be 

excited into empty states of the conduction band, we will obtain an intermediate state shown in 

Figure 7.9 process III (resonant excitation). It has to be noted that this (optical) process is governed 

by dipole selection rules, indicating that all states (CL, VB and CB) need to be reached within the 

same atom. 175 High elemental sensitivity can thus be realized with this technique. The 

intermediate state can relax into different final states through several routes with only two 

discussed here (Figure 7.9, processes IV and V). Both have commonalities with the core hole 

(created through Figure 7.9 process III) refilled by a valence electron. The energy released can 



 

 

135 

either be transferred to the initial excited core electron in the conduction band so it can be 

excited above Evac (Figure 7.9, process IV, participator Auger decay) or leave the atom as a photon 

with a characteristic energy. (Figure 7.9, process V) 

        It is evident that when the tunable photon energy is high enough (ℏw>EVB+Wf), Figure 7.9 

process II also happens that the same final state for photoelectron spectroscopy channel can be 

reached as shown in Equation 7.2 and Equation 7.4. Though the initial excitation in Equation 7.3 

is performed by resonant excitation, the valence band contribution from the corresponding element 

is thus enhanced. By directly subtracting the off-resonant valence band spectrum as a background 

from the on-resonant excitation, the valence band spectrum from single elemental species can be 

obtained. As comparison, the background subtraction is not necessary for the optical channel in 

Equation 7.5 as the emitted photons have a characteristic energy ℏw’ for each element. 

        Usually, the photon energy is scanned across the respective absorption edge (Ti L2/3 edge for 

excitation from Ti 2p core levels) during X-ray absorption experiments. At each individual photon 

energy, a valence band or X-ray emission spectrum can be recorded, which results in resonant 

Photoelectron spectroscopy (resPES) or resonant inelastic X-ray spectroscopy (RIXS) maps. 

Traditionally, the photoelectron intensity is plotted versus the binding energy (or sometimes 

kinetic energy EK = ℏw-EB), whereas in RIXS spectra, the photon yield is shown versus the loss 

energy (Eloss = ℏw-ℏw’) or emission energy ℏw’. 

        The resPES color contour plot for-a-TiO2 at the titanium L2/3 edge for the a-TiO2/Ni system 

is shown in Figure 7.10. It shows valence band XPS spectra recorded as a function of the exciting 

X-ray energy as scanned across the Ti 2p absorption edge. The ordinate is the binding energy of 

the initially formed excited valence state (-1 eV to 20 eV) and the abscissa reflects the excitation 

energy (452 eV – 475 eV). Off-resonant contributions to the spectra were subtracted using an off-

resonant reference spectrum for the same sample at an excitation energy of 452 eV. 
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Figure 7.10: Resonant photoemission maps at the Ti L3,2 edge of (a) p+-Si/a-TiO2, (b) 

p+-Si/a-TiO2/Ni(0.3 nm), and (c) p+-Si/a-TiO2/Ni(1.3 nm). The insets on the top show the total 

electron yield (TEY) mode XAS spectrum, and the inset on the right the valence band spectrum at 

464 eV. In all spectra, the off-resonant contributions were subtracted using the off-resonant VB 

spectra at 452 eV. The black arrows on the right panel indicate the position of the gap state. 

        Figure 7.10(a) shows the valence band resPES map for TDMAT a-TiO2 at the Ti L3,2 edges. 

The characteristic gap state is clearly evident in the resPES map at a binding energy of 1 eV for 

both the L3 (459.6 eV photon energy) and L2 edges (465.2 eV photon energy), as well as in the 

valence band spectra shown in the righthand side panel. The XPS of the pristine a-TiO2 showed 

no difference between bulk and surface Ti 2p core and valence band levels (Figure 7.6), suggesting 

that the gap staes was the same throughout the bulk of the sample. After deposition of 0.3 nm of 

Nickel, no gap state was observable in the resPES map, Figure 7.10(b). When the nickel thickness 

was further increased to 1.3 nm, two gap states could now be observed with one peak at a slightly 

reduced binding energy of 0.7 eV and a second at 2.6 eV, as in Figure 7.10(c) righthand side panel. 

For this sample, the valence band on the right was measured separately with increased dwell time 

to improve signal to noise ratio of the spectra after recording of the initial map.  

        The resPES maps for the Oxygen K and Ni L3 edges are shown in Figure 7.11and Figure 7.12. 

Figure 7.11(a) represents the Oxygen K edge map for pristine TDMAT a-TiO2. The oxygen 

valence band states observed between binding energies of 5 and 10 eV and photon energies 

between 530 eV and 535 eV for the pristine a-TiO2 were absent in the maps with increased nickel 

thickness. While for nickel layers <0.3 nm thick, the nickel was completely oxidized (Figure 7.5(a), 
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Figure 7.11(b)), and for thicker layers, the nickel was primarily metallic at the TiO2 surface, 

with NiOx at the nickel surface. Because of the limited information depth and element sensitivity 

of resPES, the oxide peaks observed for thicker layers should be attributed to oxygen of NiOx 

rather than to oxygen in a-TiO2. The corresponding Ni L3 edge maps are shown in Figure 7.12. 

The two prominent features at photon energies of 853 and 854.7 eV were attributed to Ni2+ (NiO) 

and Ni3+ (NiOOH) states. 181,182 The valence band maximum shifted toward the Fermi energy with 

increasing nickel thickness from 0.3 nm to 1.3 nm. 

 

Figure 7.11: Resonant photoemission maps at the Oxygen K edge of (a) p+-Si/a-TiO2,  

(b) p+-Si/a-TiO2/Ni(0.3 nm) and (c) p+-Si/a-TiO2/Ni(1.3 nm). The insets on the top show the TEY 

XAS spectrum and the inset on the left the valence band spectrum at 531 eV. In all spectra, the off-

resonant contributions were subtracted using the off-resonant VB spectra at 525 eV. 
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Figure 7.12: Resonant photoemission maps at the Ni L3 edge of (a) p+-Si/a-TiO2/Ni(0.3 nm) and 

(b) p+-Si/a-TiO2/Ni(1.3 nm). The insets on the top show the TEY XAS spectrum, and the insets on 

the left the valence band spectrum at 853 eV. In all spectra, the off-resonant contributions were 

subtracted using the off-resonant VB spectra at 846 eV. 

        Oxygen vacancies in a-TiO2 result in n doping. The localization of the mobile electron 

produces a partially populated t2g band which is visible by XPS in the band gap at 1 eV binding 

energy. In RIXS, this is visible due to resonant excitation into the eg band followed by de-excitation 

from the t2g band resulting in a dd loss feature. 171 To illustrate the correlation between valence 

band gap state (XPS) and dd loss feature in RIXS, both measurements were performed on a sample 

with and without gap state. Figure 7.13 shows the valence band and RIXS spectra for pristine and 

annealed TDMAT a-TiO2. For pristine a-TiO2, the gap state is visible in the XPS valence band, 

and a dd transition peak can be observed in the RIXS spectrum. Upon annealing, the gap state in 

the XPS spectra disappeared and no dd transition in RIXS was visible. 
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Figure 7.13: (a) XPS valence band spectra and (b) RIXS spectra at the Ti L3 eg resonance for 

pristine and annealed a-TiO2. 

        For a-TiO2/Ir and a-TiO2/Au RIXS spectra (Figure 7.14(a-b)) the gap state was visible as a 

characteristic dd transition at an energy loss of 1.6 to 1.8 eV with the elastic X-ray scattering peak 

at 0 eV. To obtain a signal directly proportional to the intensity of the gap state, the intensity of 

the dd transition must be normalized to that of the elastic peak. In Figure 7.14(c), the normalized 

gap state intensity and its position are given as a function of metal coverage for both iridium and 

gold. No clear change was evident, suggesting that the gap state was unaffected by the deposition 

of iridium or gold. 
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Figure 7.14: RIXS spectra of (a) a-TiO2/Ir and (b) a-TiO2/Au at the Ti L3 t2g resonance. The 

position of the characteristic dd transition is indicated. (c) Intensity ratio of dd transition to elastic 

peak. A change in this normalized dd intensity gives evidence of changes in the gap state. 

        The resPES results make it possible to determine the partial density of states for titanium, 

oxygen, and nickel of the valence band of TiO2/Ni layer. Figure 7.15 summarized the density of 

states at valence band for the-TiO2/Ni interface with varying nickel thickness. Pristine TDMAT 

a-TiO2 shows a clear titanium derived gap state in the valence band at 1 eV (Figure 7.15(a)). The 

gap state of the pristine a-TiO2 exhibits no change in intensity between the bulk and surface by 

XPS measurements (Figure 7.6(c)). Thus, the gap state extends throughout the bulk of the a-TiO2. 

The resPES data showed that the gap state was not present at the TiO2/Ni interface after deposition 

of a thin nickel layer (0.3 nm, Figure 7.15(b)), which was shown to be completely oxidized to 

NiOx, as in Figure 7.5(a) and Figure 7.7(b). This change of the gap state upon nickel oxide 

deposition is attributed to a chemical change only at the a-TiO2 surface. We propose that for thin 

layers of nickel, the NiOx layer at the TiO2 surface provides additional oxygen species to oxidize 

Ti interstitials (Ti3+) in the a-TiO2 at the surface and thus creates a thin interface layer of a-TiO2 

without the gap state. NiOx also possesses a different work function than nickel which can be rather 
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large (6.7 eV) but also drops rapidly upon exposure to H2O, O2, and CO2. 183 High work 

function materials can lead to a depletion of Ti3+ states and increase the junction resistance through 

band bending in a-TiO2. 167 In a classical picture – for no reaction between metal and a-TiO2 – a 

high work function of the contact material the Fermi energy would pass through the gap state in 

a-TiO2 resulting in a reduction of charge carrier population of the gap state at the interface and 

reduction or complete blocking of hole conduction. The bulk properties of a-TiO2 would not be 

affected. For thin layers of gold or iridium on a-TiO2, no change in the gap state intensity was 

observed (Figure 7.14). 

 

Figure 7.15: Partial density of valence band states for titanium (red) and nickel (grey) derived 

states at the a-TiO2-Ni interface for pristine (a) a-TiO2, (b) a-TiO2/Ni(0.3 nm), and (c) 

a-TiO2/Ni(1.3 nm). The partial density of states (pDOS) is obtained by calculating the difference 

between on and off-resonance valence band spectra a the Ti 2p and Ni 2p X-ray absorption edge. 

        For nickel thickness greater than 0.3 nm, the nickel at the a-TiO2 interface becomes metallic. 

Depth profiling revealed the presence of this buried metallic nickel phase below the NiOx surface 

layer. For this case, resPES showed the existence of two gap states at the a-TiO2/Ni interface with 

binding energies of 2.6 eV and 0.7 eV (Figure 7.15(c)). We attribute the first gap state to be Ti 
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related and arise from partial reduction of the a-TiO2 surface by Ni. The different binding 

energy can be related to possible change in Ti 3d density or change in local symmetry. Chemical 

reaction and hybridization of Ni with a-TiO2 gives rise to the second gap state at 2.6 eV attributing 

it to Ni-Ti bond formation. Both gap states essentially fill the energy range from VBM to the Fermi 

energy. This effect was only observed for the a-TiO2/metal interface, with the bulk a-TiO2 

unaffected. With the increase in the density of states in the band gap between VBM and Fermi 

energy, the a-TiO2 will exhibit metallic character at the a-TiO2/metal interface and thus enhance 

the conduction across the a-TiO2/M interface. For a-TiO2/Ir and a-TiO2/Au, a similar behavior was 

not detected as the gap state showed no change over the range of metal deposition (Figure 7.14). 

        With the help of XPS and UPS, the band alignment between metal layer and TDMAT a-TiO2 

was also determined. Buried junctions are, in principle, accessible by XPS if they are not too 

remote from the top surface. At heterojunctions of semiconductors, thermodynamic equilibration 

of the electrochemical potentials of electrons in the semiconductors (Fermi level), Ÿ, is established 

by the exchange of delocalized charges, inducing band bending due to non-compensated ionized 

doping atoms in the space charge regions, and/or by formation of an interface dipole ⁄ at the 

interface. In general, the thermodynamic equilibration requires difference in electrochemical 

potential to be equal to the change in energy due to the band bending and surface dipole in the 

materials. The energy band relationships in semiconductor junctions can be determined from core 

level and valence band spectroscopy using X-ray photoelectron and the secondary electron 

emission cut-off (i.e. work function measurements) from ultraviolet photoemission spectroscopy. 
184  

        Because of the relatively small sampling depth of XPS, a general procedure for energy band 

profile determination is to measure the valence band maximum to core level binding energy 

differences 185,186 and then monitor variations of the well-defined substrate and adsorbate core level 

binding energy positions during step-by-step deposition of the contact material with typical 

thicknesses from 5 to 30 Å. 184,186 The individual band bending in a-TiO2/metal was extracted from 

the core level shift of the Ti 2p core level and is summarized in Figure 7.8(b). The exact values 

which were extracted from XPS and UPS measurements (Figure 7.5, Figure 7.8) and resonant X-

Ray spectroscopy (Figure 7.10, Figure 7.14) are consolidated in Table 7.1. Figure 7.16 shows the 

summary of band alignments for a-TiO2/Ni (Figure 7.16(a)), a-TiO2/Ir (Figure 7.16(b)), and 
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a-TiO2/Au (Figure 7.16(c)). A detailed description on the calculation of the band-energy 

diagrams can be found in a previous study. 166 Both a-TiO2/Ni and a-TiO2/Ir show upward band 

bending in the a-TiO2 close to the metal interface while a-TiO2/Au shows no bending. In all three 

cases, the gap state in the a-TiO2 extends to the TiO2/M interface. No change in intensity was 

observed from bulk to surface for pristine a-TiO2 without metal layer. In a previous study, it was 

shown that the band bending in the a-TiO2 at the interface for a a-TiO2/M device is fixed and 

independent from the applied potential in electrolyte. 168 

Table 7.1: Parameters used for band-energy diagrams of a-TiO2/M with M=nickel, M=iridium, 

and M=gold as shown in Figure 7.16. EB is the binding energy. EBB is the band bending at the 

interface. The band gap for TiO2 was taken from previous studies. 74,166 

Unit (eV) a-TiO2/Ni a-TiO2/Ir a-TiO2/Au 

F_TiO2 4.70 4.70 4.70 

F_M 5.09 5.32 5.05 

Eg_TiO2 3.34* 3.34* 3.34* 

EB_Ti 2p, bulk 459.25 459.25 459.25 

EB_M, bulk 852.6 60.9 84 

EBB_TiO2 0.19 0.92 0.05 

d (dipole) 0.20 -0.30 0.30 

EB_defect, bulk 1.0 1.0 1.0 

FWHM_defect, 
bulk 0.88 0.88 0.88 
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EB_defect, 
interface 0.7, 2.6 0.08 0.95 

FWHM_defect, 
interface 1.4, 1.2 0.88 0.88 

 

 

Figure 7.16: Band-energy diagrams for a-TiO2/M with M= (a) nickel, (b) iridium, and (c) gold. 

All numeric values are in eV. d is the interface dipole energy difference between TDMAT a-TiO2 

and the metal. The hashed region between the VBM and CBM in the a-TiO2 indicates the position 

of the gap state with the FWHM taken as its width. The values can also be found in Table 7.1. 

        For a-TiO2/Ni, the gap state is below the Fermi level with the gap between VBM and Fermi 

level completely filled with gap states at the TiO2/Ni interface. This is shown in Figure 7.16(a) by 

extending the gap state (dashed region) to the VBM. For thin layers of nickel where the nickel was 

completely oxidized, no interfacial gap state was detected (Figure 7.15(b)), which results in a thin 

interfacial layer where the transport channel (the gap state) for holes from the substrate to the 

catalyst was not continuous. In agreement with this observation, conductivity measurements 

showed no conduction for a-TiO2/NiOx samples (Figure 7.2(a), up to 0.7 nm). 
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        For the a-TiO2/Ir, no change of the gap state at the interface was detected. Also, the Fermi 

energy passes through the top half of the gap state at the a-TiO2/Ir interface, resulting in a thin 

layer where the gap state has reduced charge carrier population. Without the presence of the quasi-

metallic channel and lower charge carrier density, the lower conducting behavior of a-TiO2/Ir than 

a-TiO2/Ni can be understood. The a-TiO2/Au showed no significant change in binding energy of 

the Ti 2p core levels which signifies that there is no upward band bending. Thus, for a-TiO2/Au, 

the band-energy diagram depicts a flat band condition for hole transport through the gap state to 

the metal (i.e. there is not an electric field that will propel holes through the a-TiO2 toward the Au). 

This leads to the poorer performance of the a-TiO2/Au system compared to the other two. 

Furthermore, it was observed that for thin layers of gold (up to 5 nm) in a-TiO2/Au showed the 

presence of gold nanoparticles and no current was observed in these situations. This can be 

understood if in the a-TiO2/Au system the gold nanoparticles exhibit a nonuniform barrier height 

contact to the electrolyte (“pinch-off”) where the Au/electrolyte interface energetics are not 

determined by the work function of the gold but rather by the a-TiO2. 187 This explanation is 

supported by the fact that for a uniform, but porous thin gold layer, the a-TiO2/Au system then 

conducts current to the electrolyte, as in Figure 7.2. In the presence of gold nanoparticles, the 

contact behavior of the a-TiO2/Au “pinch-off” system will be dominated the a-TiO2/electrolyte 

interface and the observable current is dictated by the energetics imposed by the a-TiO2/electrolyte 

junction. In our previous studies we have shown that for a-TiO2/electrolyte systems an applied bias 

will be compensated by a-TiO2 bend bending close to the electrolyte interface and will lead to the 

gap state getting pushed above the Fermi energy at the interface 168,188 This results in complete 

depopulation of the gap state at the interface and formation of a thin depletion region with hole-

blocking properties. No current was observed under these conditions. 

        Although the difference in work function between a-TiO2 and metal provided a general 

guideline for band alignment and conductivity evaluation for a-TiO2/M interface, e.g. metals with 

a work function less than a TiO2 provided higher conductivities, it cannot describe the difference 

in behavior for metals with similar work function. Here we showed that further effects have to be 

taken in account, i.e. reactivity of the metal and its ability to oxidize or reduce interfacial TiO2 (in 

the presence or absence of additional oxygen sources) and local energy effects of nanoparticles. 
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7.4 Conclusion and Outlook 

We investigated the conduction behavior between a “leaky” a-TiO2 protection layer for 

photoanodes and metal catalysts (iridium, nickel, and gold). Resonant X-ray spectroscopy revealed 

a critical interfacial reaction between a-TiO2 and nickel catalyst which can create either a non-

conductive or a quasi-metallic surface layer on a-TiO2 depending on the chemical state of the 

catalysts (nickel oxide or metallic nickel respectively). For a photoanode protection and catalyst 

layer system of a-TiO2/Ni, it is required to have a minimum thickness of ~2 nm to prevent complete 

oxidation of the a-TiO2 surface. Else a barrier for hole transport through the gap state will be 

created by elimination of the gap state at the surface of a-TiO2. The superior performance of the 

a-TiO2/Ni system over the a-TiO2/Ir system is the result of the intrinsic formation of a quasi-

metallic interface layer by gap steates between a-TiO2 and nickel. It allows holes to conduct 

between the semiconductor through the thick but “leaky” a-TiO2 protection layer to the nickel 

catalyst. This results in an ohmic contact between a-TiO2/Ni. Non-reactive metals which form 

nanoparticles can even lead to complete loss of catalytic current due to “pinch-off” effect and hole 

barrier formation under anodic bias. This study suggests that a “reductive” metal on top of “leaky” 

a-TiO2 is necessary for formation of quasi metallic interface layer between a-TiO2 and catalyst. 

        Future direction involves applying the resPES and RiXS to understand the degradation 

mechanism when regular XPS cannot explain. Operando study is a powerful tool which would 

help to examine the surface chemistry during operation. With resonance, we can also distinguish 

the different valence and conduction band contributions (pDOS), as catalysis involves conduction 

and valence band for reduction and oxidation processes where regular XPS cannot distinguish. It 

would be valuable when a complicated catalyst with more than one kind of atom (for example, 

alloy, bimetallic, MoS2...) or for OER (which involves oxides) that contribution from different 

atomic character can be examined. 
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CHAPTER 8  
Summary 

        This thesis focuses on understanding comprehensive aspects from photonic design, interface 

study, to device integration. We first focused on enhancing absorption via nanophotonic design of 

a light absorber. III-V compound semiconductor nanowire arrays are promising candidates for 

energy harvesting due to their high volumetric absorption. Uniform nanowire arrays exhibit high 

absorption at certain wavelengths due to strong coupling into resonant waveguide modes. We have 

simulated and experimentally demonstrated near-unity, broadband absorption in sparse InP 

nanowire arrays (< 5% fill fraction) with multi-radii and tapered nanowire array designs, where 

incident visible light can be coupled into continuous waveguide modes in taper cone structures. 

For both designs, the polymer-embedded arrays achieved ~ 90% broadband absorption (λ = 400-

900 nm) in less than 100 nm planar equivalence of InP. The addition of a silver back reflector 

increased this broadband absorption to ~ 95%.  

        To realize high solar-to-fuel efficiency in PEC devices, it is necessary to maintain a catalytic 

current density close to the light limiting photocurrent density for a solar-driven light absorber, 

which can be fulfilled when catalyst ensembles are highly transparent. We report a monolithic 

photocathode device architecture that exhibits significantly reduced surface reflectivity, 

minimizing parasitic light absorption and reflection losses. A tailored multifunctional crystalline 

titania interphase layer acts as a corrosion protection layer, with favorable band alignment between 

the semiconductor conduction band and the energy level for water reduction, facilitating electron 

transport at the cathode−electrolyte interface. It also provides a favorable substrate for adhesion of 

high-activity Rh catalyst nanoparticles. Under simulated AM 1.5G irradiation, solar-to-hydrogen 

efficiencies of 19.3 and 18.5% are obtained in acidic and neutral electrolytes, respectively. The 

system reaches a value of 0.85 of the theoretical limit for photoelectrochemical water splitting for 

the energy gap combination employed in the tandem-junction photoelectrode structure. 

        Solar-driven reduction of carbon dioxide represents a carbon neutral pathway for the synthesis 

of fuels and chemicals. We report here results for solar-driven CO2 reduction using a gas diffusion 

electrode (GDE) directly powered by a photovoltaic cell. A GaInP/GaInAs/Ge triple junction 

photovoltaic cell was used to power a reverse-assembled gas diffusion electrode employing a Ag 
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nanoparticle catalyst layer. The device had a solar-to-CO energy conversion efficiency of 19.1 

% under simulated AM 1.5G illumination at 1 Sun. The use of a reverse-assembled GDE prevented 

transition from a wetted to a flooded catalyst bed and allowed the device to operate stably for >150 

h with no loss in efficiency. Outdoor measurements were performed under ambient solar 

illumination in Pasadena, CA, resulting in a peak solar-to-CO efficiency 18.7 % with a CO 

production rate of 47 mg⋅cm-2 per day and a diurnal-averaged solar to fuel conversion efficiency 

of 5.8 %. The high efficiency and stability of the system suggests that reverse-assembled GDEs 

are a promising path to producing chemical fuels from CO2 and sunlight. 

        We further demonstrated light management strategies to create highly active and effectively 

transparent catalyst structures. Covering over 50% of the surface of a light absorber with an array 

of high-refractive-index TiO2 nanocones imparted antireflective behavior (< 5% reflectance) to the 

surface and allowed > 85% transmission of broadband light to the underlying Si, even when thick 

metal contacts or opaque catalyst coatings were deposited on areas of the light-facing surface that 

were not directly beneath a nanocone. Three-dimensional full-field electromagnetic simulations 

for the 400 – 1100 nm spectral range showed that incident broadband illumination couples to 

multiple waveguide modes in the TiO2 nanocones, reducing interactions of the light with the metal 

layer. A proof-of-concept experimental demonstration of light-driven water oxidation was 

performed using a p+n-Si photoanode decorated with an array of TiO2 nanocones additionally 

having a Ni catalyst layer electrodeposited onto the areas of the p+n-Si surface left uncovered by 

the TiO2 nanocones. This photoanode produced a light-limited photocurrent density of ~ 28 mA 

cm-2 under 100 mW cm-2 of simulated Air Mass 1.5 illumination, equivalent to the photocurrent 

density expected for a bare planar Si surface even though 54% of the front surface of the Si was 

covered by an ~ 70 nm thick Ni metal layer. 

         Another approach is developed with effectively transparent catalyst consisting of arrays of 

micron-scale triangular cross-sectional metal grid fingers. The capability of redirecting the 

incoming light to the open areas of the PEC cell reduces the overall shadow loss. Numerical 

calculations using full wave electromagnetic simulations were used to investigate the optical 

response and determine the optimal geometry and length scale. We found that a mesoscale Ag grid 

array with triangular cross-section lines and metal coverage of > 50% exhibits negligible additional 

reflection loss. Our designs feature photonic structures to enable high absorption light absorbers, 
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and effectively transparent catalyst layers for PEC cell are general approaches not limited to 

single reaction or specific photovoltaic system. Together with the capability of scalable processes 

through printing technology for catalysts using conductive inks and electroplating, it will be a 

critical step to advances in the field of solar fuel generation and all other related optical applications. 

It also opens up a new route for photoelectrochemical applications toward large-scale 

manufacturing. 

        Last but not least, the interfacial conduction mechanism between the commonly employed 

semiconductor protection layer titanium dioxide and metal catalysts is investigated. While iridium 

and nickel exhibit similar overpotential for oxygen evolution reaction in alkaline media, a-TiO2/Ir 

requires higher overpotential than a-TiO2/Ni to achieve the same current density. A combinatorial 

approach of electrochemistry, X-ray photoelectron spectroscopy, and resonant X-ray spectroscopy 

reveals the correlation between interfacial metal-TiO2 properties and conduction. While both 

nickel and iridium metals impose band bending upon a-TiO2, only nickel creates an interfacial 

quasi metallic a-TiO2 surface due to creation of additional interface gap states. The use of noble 

metal catalysts (gold, iridium) will result in band bending or formation of a barrier while non-

noble catalysts (nickel) create an ohmic contact after deposition of a minimum metal layer 

thickness. 

        For visualization, Figure 8.1 summarizes the state-of-the-art solar fuel devices with 

contribution from this thesis for both water splitting and CO2 reduction with four main categories 

of PV-Electrolyser, photoanode, photocathode, and PV plus photocathode. 
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Figure 8.1: State-of-the-art solar fuel device for water splitting and CO2 reduction with category 

of PV-Electrolyser, photoanode, photocathode, and PV plus photocathode. 

 

CO2R	catalyst	

photoanode	
OER	catalyst	

CO2R	catalyst	

PV	

OER	catalyst	

PV-Electrolyser

Photoanode

5.6% to 
Ethylene, 
Ethanol and 
Propanol

19% to CO

GaInP/GaInAs/Ge + Ag GDE/Ni III-V/a-Si + CuAg/Ir

4.6% to formate 10% to formate

Ni/InGaP/GaAs + Pd/C/NiIr/3J SiGe + Ru-organic complex

30% to H2

InGaP/GaAs/GaInNAs + Pt/Ir

Catalysts

Catalysts

Ni/InGaP/GaAs + Pt

10% to H2

CO2R	catalyst	
photocathode	

OER	catalyst	

Photocathode

19.3% to H2

Catalysts

Rh/GaInP/GaInAs + Ru

CO2R	catalyst	
photocathode	

OER	catalyst	

PV + Photocathode

catalysts

photocathode

1.5% to hydrocarbons 
and oxygenates 

perovskite + Si/CuAg + Ir

Ag/GaInP/GaInAs/Ge + Ni

3% to CO

Cu/GaInP/GaInAs/Ge + Ni

1.1% to Ethylene, 
Ethanol 

CO2R	catalyst	

PV	

OER	catalyst	



 

 

151 

References 

[1] Davis, S. J.; Lewis, N. S.; Lewis, N. S.; Shaner, M. R.; Shaner, M.; Aggarwal, S.; Arent, D.; 
Azevedo, I. L.; Benson, S. M.; Bradley, T.; et al. Net-Zero Emissions Energy Systems. Science 
2018, 360 (6396), eaas9793. 

[2] Armstrong, R. C.; Wolfram, C.; de Jong, K. P.; Gross, R.; Lewis, N. S.; Lewis, N. S.; 
Boardman, B.; Ragauskas, A. J.; Ehrhardt-Martinez, K.; Crabtree, G.; et al. The Frontiers of 
Energy. Nat. Energy 2016, 1 (1), 15020. 

[3] Lewis, N. S.; Lewis, N. S. Toward Cost-Effective Solar Energy Use. Science 2007, 315 
(5813), 798–801. 

[4] Jia, J.; Seitz, L. C.; Benck, J. D.; Huo, Y.; Chen, Y.; Ng, J. W. D.; Bilir, T.; Harris, J. S.; 
Jaramillo, T. F. Solar Water Splitting by Photovoltaic-Electrolysis with a Solar-to-Hydrogen 
Efficiency Over 30%. Nature Communications 2016, 7, 13237. 

[5] Young, J. L.; Steiner, M. A.; Döscher, H.; France, R. M.; Turner, J. A.; Deutsch, T. G. Direct 
Solar-to-Hydrogen Conversion via Inverted Metamorphic Multi-Junction Semiconductor 
Architectures. Nat. Energy 2017, 2, 17028. 

[6] Cheng, W.-H.; Richter, M. H.; May, M. M.; Ohlmann, J.; Lackner, D.; Dimroth, F.; 
Hannappel, T.; Atwater, H. A.; Lewerenz, H.-J. Monolithic Photoelectrochemical Device for 
Direct Water Splitting with 19% Efficiency. ACS Energy Lett. 2018, 1795–1800. 

[7] Qiu, Y.; Liu, W.; Chen, W.; Zhou, G.; Hsu, P.-C.; Zhang, R.; Liang, Z.; Fan, S.; Zhang, Y.; 
Cui, Y. Efficient Solar-Driven Water Splitting by Nanocone BiVO4-Perovskite Tandem Cells. 
Science Advances 2016, 2 (6), e1501764–e1506473. 

[8] Huang, D.; Wang, K.; Yu, L.; Nguyen, T. H.; Ikeda, S.; Jiang, F. Over 1% Efficient Unbiased 
Stable Solar Water Splitting Based on a Sprayed Cu 2ZnSnS 4Photocathode Protected by a 
HfO 2Photocorrosion-Resistant Film. ACS Energy Lett. 2018, 1875–1881. 

[9] Reece, S. Y.; Hamel, J. A.; Sung, K.; Jarvi, T. D.; Esswein, A. J.; Pijpers, J. J. H.; Nocera, D. 
G. Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant 
Catalysts. Science 2011, 334 (6056), 645–648. 

[10] May, M. M.; Lewerenz, H.-J.; Lackner, D.; Dimroth, F.; Hannappel, T. Efficient Direct Solar-
to-Hydrogen Conversion by in Situ Interface Transformation of a Tandem Structure. Nature 
Communications 2015, 6, 8286. 

[11] Shaner, M. R.; Atwater, H. A.; Lewis, N. S.; McFarland, E. W. A Comparative 
Technoeconomic Analysis of Renewable Hydrogen Production Using Solar Energy. Energy 
Environ. Sci. 2016, 9 (7), 2354–2371. 

[12] Liu, J.; Liu, Y.; Liu, N.; Han, Y.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S.-T.; Zhong, J.; 
Kang, Z. Water Splitting. Metal-Free Efficient Photocatalyst for Stable Visible Water Splitting 
via a Two-Electron Pathway. - PubMed - NCBI. Science 2015, 347 (6225), 970–974. 

[13] Hisatomi, T.; Domen, K. Reaction Systems for Solar Hydrogen Production via Water Splitting 
with Particulate Semiconductor Photocatalysts. Nature Catalysis 2018 1:8 2019, 2 (5), 387–
399. 

[14] Ra’di, Y.; Simovski, C. R.; Tretyakov, S. A. Thin Perfect Absorbers for Electromagnetic 
Waves: Theory, Design, and Realizations. Phys. Rev. Applied 2015, 3 (3), 037001. 

[15] Soukoulis, C. M.; Wegener, M. Past Achievements and Future Challenges in the Development 
of Three-Dimensional Photonic Metamaterials. Nature Photonics 2011, 5 (9), 523–530. 

[16] Landy, N. I.; Sajuyigbe, S.; Mock, J. J.; Smith, D. R.; Padilla, W. J. Perfect Metamaterial 
Absorber. Phys. Rev. Lett. 2008, 100 (20), 207402. 

[17] Sakr, E.; Dhaka, S.; Bermel, P. Asymmetric Angular-Selective Thermal Emission; 2016; Vol. 
9743, pp 97431D–97431D–8. 



 

 

152 

[18] Argyropoulos, C.; Le, K. Q.; Mattiucci, N.; D'Aguanno, G.; Alu, A. Broadband Absorbers 
and Selective Emitters Based on Plasmonic Brewster Metasurfaces. Phys. Rev. B 2013, 87 
(20), 6. 

[19] Liu, X. L.; Tyler, T.; Starr, T.; Starr, A. F.; Jokerst, N. M.; Padilla, W. J. Taming the 
Blackbody with Infrared Metamaterials as Selective Thermal Emitters. Phys. Rev. Lett. 2011, 
107 (4), 4. 

[20] Khanikaev, A. B.; Wu, C. H.; Shvets, G. Fano-Resonant Metamaterials and Their 
Applications. nanoph 2013, 2 (4), 247–264. 

[21] Liu, N.; Mesch, M.; Weiss, T.; Hentschel, M.; Giessen, H. Infrared Perfect Absorber and Its 
Application as Plasmonic Sensor. Nano Lett. 2010, 10 (7), 2342–2348. 

[22] Zhu, J.; Yu, Z. F.; Burkhard, G. F.; Hsu, C. M.; Connor, S. T.; Xu, Y. Q.; Wang, Q.; McGehee, 
M.; Fan, S. H.; Cui, Y. Optical Absorption Enhancement in Amorphous Silicon Nanowire and 
Nanocone Arrays. Nano Lett. 2009, 9 (1), 279–282. 

[23] Fountaine, K. T.; Kendall, C. G.; Atwater, H. A. Near-Unity Broadband Absorption Designs 
for Semiconducting Nanowire Arrays via Localized Radial Mode Excitation. Opt. Express 
2014, 22 (S3), A930–A940. 

[24] Salisbury, W. W. Absorbent Body for Electromagnetic Waves. 1952. 
[25] de Abajo, F. J. G. Colloquium: Light Scattering by Particle and Hole Arrays. Rev. Mod. Phys. 

2007, 79 (4), 1267–1290. 
[26] Kats, M. A.; Capasso, F. Ultra-Thin Optical Interference Coatings on Rough and Flexible 

Substrates. Applied Physics Letters 2014, 105 (13), 3. 
[27] Laroche, M.; Albaladejo, S.; Gomez-Medina, R.; Saenz, J. J. Tuning the Optical Response of 

Nanocylinder Arrays: an Analytical Study. Phys. Rev. B 2006, 74 (24), 5. 
[28] Diedenhofen, S. L.; Grzela, G.; Haverkamp, E.; Bauhuis, G.; Schermer, J. J.; Rivas, J. G. 

Broadband and Omnidirectional Anti-Reflection Layer for III/v Multi-Junction Solar Cells. 
Solar Energy Materials and Solar Cells 2012, 101, 308–314. 

[29] Basu, S.; Zhang, Z. M.; Fu, C. J. Review of Near-Field Thermal Radiation and Its Application 
to Energy Conversion. Int. J. Energy Res. 2009, 33 (13), 1203–1232. 

[30] Atwater, H.; Polman, A.; Kosten, E.; Callahan, D.; Spinelli, P.; Eisler, C.; Escarra, M.; 
Warmann, E.; Flowers, C. Nanophotonic Design Principles for Ultrahigh Efficiency 
Photovoltaics; Linke, H., Borgstrom, M., Pullerits, T., Samuelson, L., Sundstrom, V., Inganas, 
O., Eds.; Amer Inst Physics: Melville, 2013; Vol. 1519, pp 17–21. 

[31] Callahan, D. M.; Munday, J. N.; Atwater, H. A. Solar Cell Light Trapping Beyond the Ray 
Optic Limit. Nano Lett. 2012, 12 (1), 214–218. 

[32] de Abajo, F. J. G. Graphene Plasmonics: Challenges and Opportunities. ACS Photonics 2014, 
1 (3), 135–152. 

[33] Brar, V. W.; Jang, M. S.; Sherrott, M.; Lopez, J. J.; Atwater, H. A. Highly Confined Tunable 
Mid-Infrared Plasmonics in Graphene Nanoresonators. Nano Lett. 2013, 13 (6), 2541–2547. 

[34] Kats, M. A.; Sharma, D.; Lin, J.; Genevet, P.; Blanchard, R.; Yang, Z.; Qazilbash, M. M.; 
Basov, D. N.; Ramanathan, S.; Capasso, F. Ultra-Thin Perfect Absorber Employing a Tunable 
Phase Change Material. Applied Physics Letters 2012, 101 (22), 5. 

[35] Liu, X. L.; Starr, T.; Starr, A. F.; Padilla, W. J. Infrared Spatial and Frequency Selective 
Metamaterial with Near-Unity Absorbance. Phys. Rev. Lett. 2010, 104 (20), 4. 

[36] Chou, J. B.; Yeng, Y. X.; Lenert, A.; Rinnerbauer, V.; Celanovic, I.; Soljacic, M.; Wang, E. 
N.; Kim, S. G. Design of Wide-Angle Selective Absorbers/Emitters with Dielectric Filled 
Metallic Photonic Crystals for Energy Applications. Opt. Express 2014, 22 (1), A144–A154. 

[37] Gudiksen, M. S.; Lauhon, L. J.; Wang, J.; Smith, D. C.; Lieber, C. M. Growth of Nanowire 
Superlattice Structures for Nanoscale Photonics and Electronics. Nature 2002, 415 (6872), 
617–620. 



 

 

153 

[38] Park, H.; Dan, Y.; Seo, K.; Yu, Y. J.; Duane, P. K.; Wober, M.; Crozier, K. B. Filter-Free 
Image Sensor Pixels Comprising Silicon Nanowires with Selective Color Absorption. Nano 
Lett. 2014, 14 (4), 1804–1809. 

[39] Soci, C.; Zhang, A.; Bao, X. Y.; Kim, H.; Lo, Y.; Wang, D. L. Nanowire Photodetectors. J. 
Nanosci. Nanotechnol. 2010, 10 (3), 1430–1449. 

[40] Liu, X. L.; Wang, L. P.; Zhang, Z. M. Wideband Tunable Omnidirectional Infrared Absorbers 
Based on Doped-Silicon Nanowire Arrays. J. Heat Transf.-Trans. ASME 2013, 135 (6), 8. 

[41] Tilke, A. T.; Pescini, L.; Lorenz, H.; Blick, R. H. Fabrication and Transport Characterization 
of a Primary Thermometer Formed by Coulomb Islands in a Suspended Silicon Nanowire. 
Applied Physics Letters 2003, 82 (21), 3773–3775. 

[42] Anttu, N.; Xu, H. Q. Coupling of Light Into Nanowire Arrays and Subsequent Absorption. J. 
Nanosci. Nanotechnol. 2010, 10 (11), 7183–7187. 

[43] Garnett, E.; Yang, P. D. Light Trapping in Silicon Nanowire Solar Cells. Nano Lett. 2010, 10 
(3), 1082–1087. 

[44] Cao, L.; Fan, P.; Vasudev, A. P.; White, J. S.; Yu, Z.; Cai, W.; Schuller, J. A.; Fan, S.; 
Brongersma, M. L. Semiconductor Nanowire Optical Antenna Solar Absorbers. Nano Lett. 
2010, 10 (2), 439–445. 

[45] Hu, S.; Chi, C. Y.; Fountaine, K. T.; Yao, M. Q.; Atwater, H. A.; Dapkus, P. D.; Lewis, N. S.; 
Zhou, C. W. Optical, Electrical, and Solar Energy-Conversion Properties of Gallium Arsenide 
Nanowire-Array Photoanodes. Energy Environ. Sci. 2013, 6 (6), 1879–1890. 

[46] Liu, C.; Tang, J. Y.; Chen, H. M.; Liu, B.; Yang, P. D. A Fully Integrated Nanosystem of 
Semiconductor Nanowires for Direct Solar Water Splitting. Nano Lett. 2013, 13 (6), 2989–
2992. 

[47] Woodhouse, M.; Goodrich, A. Manufacturing Cost Analysis Relevant to Single-and Dual-
Junction Photovoltaic Cells Fabricated with III-vs and III-vs Grown on Czochralski Silicon 
(Presentation); National Renewable Energy Laboratory (NREL), Golden, CO., 2014. 

[48] Rosenwaks, Y.; Shapira, Y.; Huppert, D. Evidence for Low Intrinsic Surface-Recombination 
Velocity on P-Type InP. Phys. Rev. B 1991, 44 (23), 13097–13100. 

[49] Grzela, G.; Paniagua-Domínguez, R.; Barten, T.; Fontana, Y.; Sánchez-Gil, J. A.; Gómez 
Rivas, J. Nanowire Antenna Emission. Nano Lett. 2012, 12 (11), 5481–5486. 

[50] Muskens, O. L.; Rivas, J. G.; Algra, R. E.; Bakkers, E.; Lagendijk, A. Design of Light 
Scattering in Nanowire Materials for Photovoltaic Applications. Nano Lett. 2008, 8 (9), 2638–
2642. 

[51] Fan, Z. Y.; Kapadia, R.; Leu, P. W.; Zhang, X. B.; Chueh, Y. L.; Takei, K.; Yu, K.; Jamshidi, 
A.; Rathore, A. A.; Ruebusch, D. J.; et al. Ordered Arrays of Dual-Diameter Nanopillars for 
Maximized Optical Absorption. Nano Lett. 2010, 10 (10), 3823–3827. 

[52] Lin, C. X.; Povinelli, M. L. Optical Absorption Enhancement in Silicon Nanowire Arrays with 
a Large Lattice Constant for Photovoltaic Applications. Opt. Express 2009, 17 (22), 19371–
19381. 

[53] Abujetas, D. R.; Paniagua-Dominguez, R.; Sanchez-Gil, J. A. Unraveling the Janus Role of 
Mie Resonances and Leaky/Guided Modes in Semiconductor Nanowire Absorption for 
Enhanced Light Harvesting. ACS Photonics 2015, 2 (7), 921–929. 

[54] Seo, K.; Wober, M.; Steinvurzel, P.; Schonbrun, E.; Dan, Y. P.; Ellenbogen, T.; Crozier, K. B. 
Multicolored Vertical Silicon Nanowires. Nano Lett. 2011, 11 (4), 1851–1856. 

[55] Heiss, M.; Russo-Averchi, E.; Dalmau-Mallorqui, A.; Tutuncuoglu, G.; Matteini, F.; Ruffer, 
D.; Conesa-Boj, S.; Demichel, O.; Alarcon-Llado, E.; Morral, A. F. I. III-v Nanowire Arrays: 
Growth and Light Interaction. Nanotechnology 2014, 25 (1), 9. 

[56] Wallentin, J.; Anttu, N.; Asoli, D.; Huffman, M.; Åberg, I.; Magnusson, M. H.; Siefer, G.; 
Fuss-Kailuweit, P.; Dimroth, F.; Witzigmann, B.; et al. InP Nanowire Array Solar Cells 



 

 

154 

Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit. Science 2013, 339 
(6123), 1057–1060. 

[57] Diedenhofen, S. L.; Janssen, O. T. A.; Grzela, G.; Bakkers, E. P. A. M.; Gómez Rivas, J. 
Strong Geometrical Dependence of the Absorption of Light in Arrays of Semiconductor 
Nanowires. ACS Nano 2011, 5 (3), 2316–2323. 

[58] Deinega, A.; John, S. Solar Power Conversion Efficiency in Modulated Silicon Nanowire 
Photonic Crystals. Journal of Applied Physics 2012, 112 (7), 7. 

[59] Hong, L.; Rusli; Wang, X. C.; Zheng, H. Y.; Wang, H.; Yu, H. Y. Design Guidelines for 
Slanting Silicon Nanowire Arrays for Solar Cell Application. Journal of Applied Physics 2013, 
114 (8), 6. 

[60] Cansizoglu, H.; Cansizoglu, M. F.; Finckenor, M.; Karabacak, T. Optical Absorption 
Properties of Semiconducting Nanostructures with Different Shapes. Advanced Optical 
Materials 2013, 1 (2), 158–166. 

[61] Lin, C. X.; Huang, N. F.; Povinelli, M. L. Effect of Aperiodicity on the Broadband Reflection 
of Silicon Nanorod Structures for Photovoltaics. Opt. Express 2012, 20 (1), A125–A132. 

[62] Vynck, K.; Burresi, M.; Riboli, F.; Wiersma, D. S. Photon Management in Two-Dimensional 
Disordered Media. Nat Mater 2012, 11 (12), 1017–1022. 

[63] Kelzenberg, M. Silicon Microwire Photovoltaics; California Institute of Technology, 2010. 
[64] Snyder, A. W.; Love, J. Optical Waveguide Theory; Springer, 1983. 
[65] Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, 

N. S. Solar Water Splitting Cells. Chem. Rev. 2010, 110 (11), 6446–6473. 
[66] Khaselev, O.; Turner, J. A. A Monolithic Photovoltaic-Photoelectrochemical Device for 

Hydrogen Production via Water Splitting. Science 1998, 280 (5362), 425–427. 
[67] Lichterman, M. F.; Sun, K.; Hu, S.; Zhou, X.; McDowell, M. T.; Shaner, M. R.; Richter, M. 

H.; Crumlin, E. J.; Carim, A. I.; Saadi, F. H.; et al. Protection of Inorganic Semiconductors for 
Sustained, Efficient Photoelectrochemical Water Oxidation. Catalysis Today 2016, 262, 11–
23. 

[68] Bae, D.; Pedersen, T.; Seger, B.; Iandolo, B.; Hansen, O.; Vesborg, P. C. K.; Chorkendorff, I. 
Carrier-Selective P- and N-Contacts for Efficient and Stable Photocatalytic Water Reduction. 
Catalysis Today 2017, 290, 59–64. 

[69] Fountaine, K. T.; Lewerenz, H.-J.; Atwater, H. A. Efficiency Limits for Photoelectrochemical 
Water-Splitting. Nature Communications 2016, 7, 13706. 

[70] May, M. M.; Lackner, D.; Ohlmann, J.; Dimroth, F.; van de Krol, R.; Hannappel, T.; 
Schwarzburg, K. On the Benchmarking of Multi-Junction Photoelectrochemical Fuel 
Generating Devices. Sustainable Energy Fuels 2017, 1, 15010. 

[71] Sathre, R.; Scown, C. D.; Morrow, W. R.; Stevens, J. C.; Sharp, I. D.; Ager, J. W., III; 
Walczak, K.; Houle, F. A.; Greenblatt, J. B. Life-Cycle Net Energy Assessment of Large-Scale 
Hydrogen Production via Photoelectrochemical Water Splitting. Energy Environ. Sci. 2014, 7 
(10), 3264–3278. 

[72] Dimroth, F.; Beckert, R.; Meusel, M.; Schubert, U.; Bett, A. W. Metamorphic 
GayIn1−yP/Ga1−xInxAs Tandem Solar Cells for Space and for Terrestrial Concentrator 
Applications at C &Gt; 1000 Suns. Prog. Photovolt: Res. Appl. 2001, 9 (3), 165–178. 

[73] Ohlmann, J.; Sanchez, J. F. M.; Lackner, D.; Förster, P.; Steiner, M.; Fallisch, A.; Dimroth, F. 
Recent Development in Direct Generation of Hydrogen Using Multi-Junction Solar Cells; 
Author(s), 2016; Vol. 1766, p 080004. 

[74] Hu, S.; Shaner, M. R.; Beardslee, J. A.; Lichterman, M. F.; Brunschwig, B. S.; Lewis, N. S. 
Amorphous TiO2 Coatings Stabilize Si, GaAs, and GaP Photoanodes for Efficient Water 
Oxidation. Science 2014, 344 (6187), 1005–1009. 

[75] Porter, J. D.; Heller, A.; Aspnes, D. E. Experiment and Theory of “Transparent” Metal Films. 
Nature 1985, 313 (6004), 664–666. 



 

 

155 

[76] Sanz, J. M.; Ortiz, D.; Alcaraz de la Osa, R.; Saiz, J. M.; González, F.; Brown, A. S.; 
Losurdo, M.; Everitt, H. O.; Moreno, F. UV Plasmonic Behavior of Various Metal 
Nanoparticles in the Near- and Far-Field Regimes: Geometry and Substrate Effects. J. Phys. 
Chem. C 2013, 117 (38), 19606–19615. 

[77] Singh, M. R.; Clark, E. L.; Bell, A. T. Effects of Electrolyte, Catalyst, and Membrane 
Composition and Operating Conditions on the Performance of Solar-Driven Electrochemical 
Reduction of Carbon Dioxide. Phys. Chem. Chem. Phys. 2015, 17 (29), 18924–18936. 

[78] Verlage, E.; Hu, S.; Liu, R.; Jones, R. J. R.; Sun, K.; Xiang, C.; Lewis, N. S.; Atwater, H. A. A 
Monolithically Integrated, Intrinsically Safe, 10% Efficient, Solar-Driven Water-Splitting 
System Based on Active, Stable Earth-Abundant Electrocatalysts in Conjunction with Tandem 
III-v Light Absorbers Protected by Amorphous TiO2 Films. Energy Environ. Sci. 2015, 8 (11), 
3166–3172. 

[79] Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. 
Combining Theory and Experiment in Electrocatalysis: Insights Into Materials Design. Science 
2017, 355 (6321), eaad4998. 

[80] Schreier, M.; Héroguel, F.; Steier, L.; Ahmad, S.; Luterbacher, J. S.; Mayer, M. T.; Luo, J.; 
Grätzel, M. Solar Conversion of CO<Sub>2</Sub> to CO Using Earth-Abundant 
Electrocatalysts Prepared by Atomic Layer Modification of CuO. Nat. Energy 2017, 2, 
nenergy201787. 

[81] Gurudayal; Beeman, J. W.; Bullock, J.; Wang, H.; Eichhorn, J.; Towle, C.; Javey, A.; Toma, F. 
M.; Mathews, N.; Ager, J. W., III. Si Photocathode with Ag-Supported Dendritic Cu Catalyst 
for CO2 Reduction. Energy Environ. Sci. 2019, 12 (3), 1068–1077. 

[82] Zhou, X.; Liu, R.; Sun, K.; Chen, Y.; Verlage, E.; Francis, S. A.; Lewis, N. S.; Xiang, C. 
Solar-Driven Reduction of 1 Atm of CO2 To Formate at 10% Energy-Conversion Efficiency 
by Use of a TiO2-Protected III–v Tandem Photoanode in Conjunction with a Bipolar 
Membrane and a Pd/C Cathode. ACS Energy Lett. 2016, 1 (4), 764–770. 

[83] Zhou, X.; Xiang, C. Comparative Analysis of Solar-to-Fuel Conversion Efficiency: a Direct, 
One-Step Electrochemical CO 2Reduction Reactor Versus a Two-Step, Cascade 
Electrochemical CO 2Reduction Reactor. ACS Energy Lett. 2018, 1892–1897. 

[84] Delacourt, C.; Ridgway, P. L.; Kerr, J. B.; Newman, J. Design of an Electrochemical Cell 
Making Syngas (CO+H[Sub 2]) From CO[Sub 2] and H[Sub 2]O Reduction at Room 
Temperature. J. Electrochem. Soc. 2008, 155 (1), B42–B49. 

[85] Schulz, H. Short History and Present Trends of Fischer–Tropsch Synthesis. Applied Catalysis 
A: General 1999, 186 (1-2), 3–12. 

[86] Lum, Y.; Ager, J. W., III. Sequential Catalysis Controls Selectivity in Electrochemical CO 
2reduction on Cu. Energy Environ. Sci. 2018, 11 (10), 2935–2944. 

[87] Welch, A. J.; DuChene, J. S.; Tagliabue, G.; Davoyan, A.; Cheng, W.-H.; Atwater, H. A.; 
Atwater, H. A. Nanoporous Gold as a Highly Selective and Active Carbon Dioxide Reduction 
Catalyst. ACS Appl. Energy Mater. 2018, 2 (1), 164–170. 

[88] Chen, Y.; Li, C. W.; Kanan, M. W. Aqueous CO2 Reduction at Very Low Overpotential on 
Oxide-Derived Au Nanoparticles. J. Am. Chem. Soc. 2012, 134 (49), 19969–19972. 

[89] Hatsukade, T.; Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. Insights Into the 
Electrocatalytic Reduction of CO2 on Metallic Silver Surfaces. Phys. Chem. Chem. Phys. 
2014, 16 (27), 13814–13819. 

[90] Asadi, M.; Kim, K.; Liu, C.; Addepalli, A. V.; Abbasi, P.; Yasaei, P.; Phillips, P.; Behranginia, 
A.; Cerrato, J. M.; Haasch, R.; et al. Nanostructured Transition Metal Dichalcogenide 
Electrocatalysts for CO2 Reduction in Ionic Liquid. Science 2016, 353 (6298), 467–470. 

[91] Asadi, M.; Kumar, B.; Behranginia, A.; Rosen, B. A.; Baskin, A.; Repnin, N.; Pisasale, D.; 
Phillips, P.; Zhu, W.; Haasch, R.; et al. Robust Carbon Dioxide Reduction on Molybdenum 
Disulphide Edges. Nature Communications 2014, 5 (1), 1330. 



 

 

156 

[92] Cheng, T.; Huang, Y.; Xiao, H.; Goddard, W. A., III. Predicted Structures of the Active 
Sites Responsible for the Improved Reduction of Carbon Dioxide by Gold Nanoparticles. J. 
Phys. Chem. Lett. 2017, 8 (14), 3317–3320. 

[93] Singh, M. R.; Kwon, Y.; Lum, Y.; Ager, J. W., III; Bell, A. T. Hydrolysis of Electrolyte 
Cations Enhances the Electrochemical Reduction of CO 2over Ag and Cu. J. Am. Chem. Soc. 
2016, 138 (39), 13006–13012. 

[94] Liu, M.; Pang, Y.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J.; Zheng, X.; Dinh, C. T.; Fan, F.; 
Cao, C.; et al. Enhanced Electrocatalytic CO<Sub>2</Sub> Reduction via Field-Induced 
Reagent Concentration. Nature 2016, 537 (7620), 382–386. 

[95] Varela, A. S.; Kroschel, M.; Reier, T.; Strasser, P. Controlling the Selectivity of CO2 
Electroreduction on Copper: the Effect of the Electrolyte Concentration and the Importance of 
the Local pH. Catalysis Today 2016, 260, 8–13. 

[96] Song, J. T.; Ryoo, H.; Cho, M.; Kim, J.; Kim, J.-G.; Chung, S.-Y.; Oh, J. Nanoporous Au Thin 
Films on Si Photoelectrodes for Selective and Efficient Photoelectrochemical CO2 Reduction. 
Advanced Energy Materials 2017, 7 (3), 1601103. 

[97] Li, J.; Chen, G.; Zhu, Y.; Liang, Z.; Pei, A.; Wu, C.-L.; Wang, H.; Lee, H. R.; Liu, K.; Chu, S.; 
et al. Efficient Electrocatalytic CO 2 Reduction on a Three-Phase Interface. Nature Catalysis 
2018 1:8 2018, 1 (8), 592–600. 

[98] Verma, S.; Hamasaki, Y.; Kim, C.; Huang, W.; Lu, S.; Jhong, H.-R. M.; Gewirth, A. A.; 
Fujigaya, T.; Nakashima, N.; Kenis, P. J. A. Insights Into the Low Overpotential 
Electroreduction of CO 2to CO on a Supported Gold Catalyst in an Alkaline Flow 
Electrolyzer. ACS Energy Lett. 2017, 3 (1), 193–198. 

[99] Clark, E. L.; Resasco, J.; Landers, A.; Lin, J.; Chung, L.-T.; Walton, A.; Hahn, C.; Jaramillo, 
T. F.; Bell, A. T. Standards and Protocols for Data Acquisition and Reporting for Studies of 
the Electrochemical Reduction of Carbon Dioxide. ACS Catal. 2018, 6560–6570. 

[100] Kim, C.; Jeon, H. S.; Eom, T.; Jee, M. S.; Kim, H.; Friend, C. M.; Min, B. K.; Hwang, Y. J. 
Achieving Selective and Efficient Electrocatalytic Activity for CO2 Reduction Using 
Immobilized Silver Nanoparticles. J. Am. Chem. Soc. 2015, 137 (43), 13844–13850. 

[101] Jiang, K.; Kharel, P.; Peng, Y.; Gangishetty, M. K.; Lin, H.-Y. G.; Stavitski, E.; Attenkofer, 
K.; Wang, H. Silver Nanoparticles with Surface-Bonded Oxygen for Highly Selective CO2 
Reduction. ACS Sustainable Chem. Eng. 2017, 5 (10), 8529–8534. 

[102] Wang, Z.; Wu, L.; Sun, K.; Chen, T.; Jiang, Z.; Cheng, T.; William A Goddard, I. Surface 
Ligand Promotion of Carbon Dioxide Reduction Through Stabilizing Chemisorbed Reactive 
Intermediates. J. Phys. Chem. Lett. 2018, 9 (11), 3057–3061. 

[103] Hsieh, Y.-C.; Senanayake, S. D.; Zhang, Y.; Xu, W.; Polyansky, D. E. Effect of Chloride 
Anions on the Synthesis and Enhanced Catalytic Activity of Silver Nanocoral Electrodes for 
CO 2Electroreduction. ACS Catal. 2015, 5 (9), 5349–5356. 

[104] Lu, Q.; Rosen, J.; Zhou, Y.; Hutchings, G. S.; Kimmel, Y. C.; Chen, J. G.; Jiao, F. A Selective 
and Efficient Electrocatalyst for Carbon Dioxide Reduction. Nature Communications 2014, 5 
(1), 1–6. 

[105] Dinh, C. T.; García de Arquer, F. P.; Sinton, D.; Sargent, E. H. High Rate, Selective, and 
Stable Electroreduction of CO 2to CO in Basic and Neutral Media. ACS Energy Lett. 2018, 3 
(11), 2835–2840. 

[106] Tornow, C. E.; Thorson, M. R.; Ma, S.; Gewirth, A. A.; Kenis, P. J. A. Nitrogen-Based 
Catalysts for the Electrochemical Reduction of CO2 to CO. J. Am. Chem. Soc. 2012, 134 (48), 
19520–19523. 

[107] Verma, S.; Lu, X.; Ma, S.; Masel, R. I.; Kenis, P. J. A. The Effect of Electrolyte Composition 
on the Electroreduction of CO2 to CO on Ag Based Gas Diffusion Electrodes. Phys. Chem. 
Chem. Phys. 2016, 18 (10), 7075–7084. 



 

 

157 

[108] Higgins, D.; Hahn, C.; Xiang, C.; Jaramillo, T. F.; Weber, A. Z. Gas-Diffusion Electrodes 
for Carbon Dioxide Reduction: a New Paradigm. ACS Energy Lett. 2018, 4 (1), 317–324. 

[109] Singh, M. R.; Papadantonakis, K.; Xiang, C.; Lewis, N. S. An Electrochemical Engineering 
Assessment of the Operational Conditions and Constraints for Solar-Driven Water-Splitting 
Systems at Near-Neutral pH. Energy Environ. Sci. 2015, 8 (9), 2760–2767. 

[110] Lobaccaro, P.; Singh, M. R.; Clark, E. L.; Kwon, Y.; Bell, A. T.; Ager, J. W., III. Effects of 
Temperature and Gas–Liquid Mass Transfer on the Operation of Small Electrochemical Cells 
for the Quantitative Evaluation of CO2 Reduction Electrocatalysts. Phys. Chem. Chem. Phys. 
2016, 18 (38), 26777–26785. 

[111] Song, J. T.; Song, H.; Kim, B.; Oh, J. Towards Higher Rate Electrochemical CO2 Conversion: 
From Liquid-Phase to Gas-Phase Systems. Catalysts 2019, Vol. 9, Page 224 2019, 9 (3), 224. 

[112] Weng, L.-C.; Bell, A. T.; Weber, A. Z. Modeling Gas-Diffusion Electrodes for CO 2 
Reduction. Phys. Chem. Chem. Phys. 2018, 20 (25), 16973–16984. 

[113] Cook, R. L.; MacDuff, R. C.; Sammells, A. F. High Rate Gas Phase CO[Sub 2] Reduction to 
Ethylene and Methane Using Gas Diffusion Electrodes. J. Electrochem. Soc. 1990, 137 (2), 
607–608. 

[114] Hori, Y.; Ito, H.; Okano, K.; Nagasu, K.; Sato, S. Silver-Coated Ion Exchange Membrane 
Electrode Applied to Electrochemical Reduction of Carbon Dioxide. Electrochimica Acta 
2003, 48 (18), 2651–2657. 

[115] Dinh, C. T.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; Gabardo, C. M.; de Arquer, F. P. 
G.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S.; et al. CO2electroreduction to 
Ethylene via Hydroxide-Mediated Copper Catalysis at an Abrupt Interface. Science 2018, 360 
(6390), 783–787. 

[116] Li, Y. C.; Lee, G.; Yuan, T.; Wang, Y.; Nam, D.-H.; Wang, Z.; García de Arquer, F. P.; Lum, 
Y.; Dinh, C. T.; Voznyy, O.; et al. CO 2Electroreduction From Carbonate Electrolyte. ACS 
Energy Lett. 2019, 4 (6), 1427–1431. 

[117] Hossain, M. Z.; Rahim, N. A.; Selvaraj, J. A. L. Recent Progress and Development on Power 
DC-DC Converter Topology, Control, Design and Applications: a Review. Renewable and 
Sustainable Energy Reviews 2018, 81, 205–230. 

[118] Holman, Z.; Boccard, M. Light Management in Silicon Solar Cells. In Photovoltaic Solar 
Energy: From Fundamentals to Applications; John Wiley & Sons, Ltd.: Hoboken, New Jersey, 
2016; pp 136–149. 

[119] Manzoor, S.; Yu, Z. J.; Ali, A.; Ali, W.; Bush, K. A.; Palmstrom, A. F.; Bent, S. F.; McGehee, 
M. D.; Holman, Z. C. Improved Light Management in Planar Silicon and Perovskite Solar 
Cells Using PDMS Scattering Layer. Solar Energy Materials and Solar Cells 2017, 173, 59–
65. 

[120] Haug, F. J.; Ballif, C. Light Management in Thin Film Silicon Solar Cells. Energy Environ. 
Sci. 2015, 8 (3), 824–837. 

[121] Schmid, M. Review on Light Management by Nanostructures in Chalcopyrite Solar Cells. 
Semicond. Sci. Technol. 2017, 32 (4), 043003. 

[122] Peer, A.; Biswas, R.; Park, J.-M.; Shinar, R.; Shinar, J. Light Management in Perovskite Solar 
Cells and Organic LEDs with Microlens Arrays. Opt. Express 2017, 25 (9), 10704–10709. 

[123] Hu, S.; Xiang, C.; Haussener, S.; Berger, A. D.; Lewis, N. S. An Analysis of the Optimal Band 
Gaps of Light Absorbers in Integrated Tandem Photoelectrochemical Water-Splitting Systems. 
Energy Environ. Sci. 2013, 6 (10), 2984–2993. 

[124] Raut, H. K.; Ganesh, V. A.; Nair, A. S.; Ramakrishna, S. Anti-Reflective Coatings: a Critical, 
in-Depth Review. Energy Environ. Sci. 2011, 4 (10), 3779–3804. 

[125] Krč, J.; Smole, F.; Topič, M. Potential of Light Trapping in Microcrystalline Silicon Solar 
Cells with Textured Substrates. Prog. Photovoltaics: Res. Appl. 2003, 11 (7), 429–436. 



 

 

158 

[126] Campbell, P.; Green, M. A. Light Trapping Properties of Pyramidally Textured Surfaces. 
J. Appl. Phys. 1987, 62 (1), 243–249. 

[127] Yablonovitch, E.; Cody, G. D. Intensity Enhancement in Textured Optical Sheets for Solar 
Cells. IEEE Trans. Electron Devices 1982, 29 (2), 300–305. 

[128] Cho, S. J.; An, T.; Lim, G. Three-Dimensionally Designed Anti-Reflective Silicon Surfaces for 
Perfect Absorption of Light. Chem. Commun. 2014, 50 (99), 15710–15713. 

[129] Brongersma, M. L.; Cui, Y.; Fan, S. Light Management for Photovoltaics Using High-Index 
Nanostructures. Nat Mater 2014, 13, 451. 

[130] Mokkapati, S.; Catchpole, K. R. Nanophotonic Light Trapping in Solar Cells. J. Appl. Phys. 
2012, 112 (10), 101101. 

[131] Wilson, G. The Multi-TW Scale Future for Photovoltaics. AIP Conf. Proc. 2018, 1924 (1), 
020003. 

[132] Sun, K.; Moreno-Hernandez, I. A.; Schmidt, W. C.; Zhou, X.; Crompton, J. C.; Liu, R.; Saadi, 
F. H.; Chen, Y.; Papadantonakis, K. M.; Lewis, N. S. A Comparison of the Chemical, Optical 
and Electrocatalytic Properties of Water-Oxidation Catalysts for Use in Integrated Solar-Fuel 
Generators. Energy Environ. Sci. 2017, 10 (4), 987–1002. 

[133] Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; Irie, T.; Konishi, K.; Nakano, K.; Uto, T.; Adachi, 
D.; Kanematsu, M.; Uzu, H.; et al. Silicon Heterojunction Solar Cell with Interdigitated Back 
Contacts for a Photoconversion Efficiency Over 26%. Nat. Energy 2017, 2, 17032. 

[134] Lammert, M. D.; Schwartz, R. J. The Interdigitated Back Contact Solar Cell: a Silicon Solar 
Cell for Use in Concentrated Sunlight. IEEE Trans. Electron Devices 1977, 24 (4), 337–342. 

[135] Spitzer, M. B.; Fan, J. C. C. Multijunction Cells for Space Applications. Sol. Cells 1990, 29 
(2), 183–203. 

[136] Tian, B. Z.; Zheng, X. L.; Kempa, T. J.; Fang, Y.; Yu, N. F.; Yu, G. H.; Huang, J. L.; Lieber, 
C. M. Coaxial Silicon Nanowires as Solar Cells and Nanoelectronic Power Sources. Nature 
2007, 449 (7164), 885–U888. 

[137] Mavrokefalos, A.; Han, S. E.; Yerci, S.; Branham, M. S.; Chen, G. Efficient Light Trapping in 
Inverted Nanopyramid Thin Crystalline Silicon Membranes for Solar Cell Applications. Nano 
Lett. 2012, 12 (6), 2792–2796. 

[138] Zhu, J.; Hsu, C. M.; Yu, Z. F.; Fan, S. H.; Cui, Y. Nanodome Solar Cells with Efficient Light 
Management and Self-Cleaning. Nano Lett. 2010, 10 (6), 1979–1984. 

[139] Yao, Y.; Yao, J.; Narasimhan, V. K.; Ruan, Z. C.; Xie, C.; Fan, S. H.; Cui, Y. Broadband Light 
Management Using Low-Q Whispering Gallery Modes in Spherical Nanoshells. Nature 
Communications 2012, 3. 

[140] Kapadia, R.; Fan, Z. Y.; Takei, K.; Javey, A. Nanopillar Photovoltaics: Materials, Processes, 
and Devices. Nano Energy 2012, 1 (1), 132–144. 

[141] Narasimhan, V. K.; Hymel, T. M.; Lai, R. A.; Cui, Y. Hybrid Metal–Semiconductor 
Nanostructure for Ultrahigh Optical Absorption and Low Electrical Resistance at 
Optoelectronic Interfaces. ACS Nano 2015, 9 (11), 10590–10597. 

[142] Jeong, S.; Garnett, E. C.; Wang, S.; Yu, Z. G.; Fan, S. H.; Brongersma, M. L.; McGehee, M. 
D.; Cui, Y. Hybrid Silicon Nanocone-Polymer Solar Cells. Nano Lett. 2012, 12 (6), 2971–
2976. 

[143] Yalamanchili, S.; Emmer, H. S.; Fountaine, K. T.; Chen, C. T.; Lewis, N. S.; Atwater, H. A. 
Enhanced Absorption and <1% Spectrum-and-Angle-Averaged Reflection in Tapered 
Microwire Arrays. ACS Photonics 2016, 3 (10), 1854–1861. 

[144] Fountaine, K. T.; Cheng, W.-H.; Bukowsky, C. R.; Atwater, H. A. Near-Unity Unselective 
Absorption in Sparse InP Nanowire Arrays. ACS Photonics 2016, 3 (10), 1826–1832. 

[145] Grandidier, J.; Callahan, D. M.; Munday, J. N.; Atwater, H. A. Light Absorption Enhancement 
in Thin-Film Solar Cells Using Whispering Gallery Modes in Dielectric Nanospheres. Adv 
Mater 2011, 23 (10), 1272. 



 

 

159 

[146] Choy, J. T.; Bradley, J. D. B.; Deotare, P. B.; Burgess, I. B.; Evans, C. C.; Mazur, E.; 
Lončar, M. Integrated TiO2resonators for Visible Photonics. Opt. Lett. 2012, 37 (4), 539–541. 

[147] Evans, C. C.; Liu, C.; Suntivich, J. Low-Loss Titanium Dioxide Waveguides and Resonators 
Using a Dielectric Lift-Off Fabrication Process. Opt. Express 2015, 23 (9), 11160–11169. 

[148] Evans, C. C.; Shtyrkova, K.; Reshef, O.; Moebius, M.; Bradley, J. D. B.; Griesse-Nascimento, 
S.; Ippen, E.; Mazur, E. Multimode Phase-Matched Third-Harmonic Generation in Sub-
Micrometer-Wide Anatase TiO2waveguides. Opt. Express 2015, 23 (6), 7832–7841. 

[149] Evans, C. C.; Shtyrkova, K.; Bradley, J. D. B.; Reshef, O.; Ippen, E.; Mazur, E. Spectral 
Broadening in Anatase Titanium Dioxide Waveguides at Telecommunication and Near-Visible 
Wavelengths. Opt. Express 2013, 21 (15), 18582–18591. 

[150] Guan, X.; Hu, H.; Oxenløwe, L. K.; Frandsen, L. H. Compact Titanium Dioxide Waveguides 
with High Nonlinearity at Telecommunication Wavelengths. Opt. Express 2018, 26 (2), 1055–
1063. 

[151] Bradley, J. D. B.; Evans, C. C.; Choy, J. T.; Reshef, O.; Deotare, P. B.; Parsy, F.; Phillips, K. 
C.; Lončar, M.; Mazur, E. Submicrometer-Wide Amorphous and Polycrystalline Anatase 
TiO2waveguides for Microphotonic Devices. Opt. Express 2012, 20 (21), 23821–23831. 

[152] Sun, K.; Kuang, Y.; Verlage, E.; Brunschwig, B. S.; Tu, C. W.; Lewis, N. S. Sputtered NiOX 
Films for Stabilization of P+N‐InP Photoanodes for Solar‐Driven Water Oxidation. Advanced 
Energy Materials 2015, 5 (11), 1402276. 

[153] Lichterman, M. F.; Carim, A. I.; McDowell, M. T.; Hu, S.; Gray, H. B.; Brunschwig, B. S.; 
Lewis, N. S. Stabilization of N-Cadmium Telluride Photoanodes for Water Oxidation to O2(G) 
in Aqueous Alkaline Electrolytes Using Amorphous TiO2films Formed by Atomic-Layer 
Deposition. Energy Environ. Sci. 2014, 7 (10), 3334–3337. 

[154] McDowell, M. T.; Lichterman, M. F.; Carim, A. I.; Liu, R.; Hu, S.; Brunschwig, B. S.; Lewis, 
N. S. The Influence of Structure and Processing on the Behavior of TiO2 Protective Layers for 
Stabilization of N-Si/TiO2/Ni Photoanodes for Water Oxidation. ACS Appl. Mater. Interfaces 
2015, 7 (28), 15189–15199. 

[155] McDowell, M. T.; Lichterman, M. F.; Spurgeon, J. M.; Hu, S.; Sharp, I. D.; Brunschwig, B. S.; 
Lewis, N. S. Improved Stability of Polycrystalline Bismuth Vanadate Photoanodes by Use of 
Dual-Layer Thin TiO2/Ni Coatings. J. Phys. Chem. C 2014, 118 (34), 19618–19624. 

[156] Shaner, M. R.; Hu, S.; Sun, K.; Lewis, N. S. Stabilization of Si Microwire Arrays for Solar-
Driven H2O Oxidation to O2(G) in 1.0 M KOH(Aq) Using Conformal Coatings of Amorphous 
TiO2. Energy Environ. Sci. 2015, 8 (1), 203–207. 

[157] Siklitsky, V. New Semiconductor Materials. Characteristics and Properties. Available: 
http://www.ioffe.rssi.ru/SVA/NSM 2001. 

[158] Kenney, M. J.; Gong, M.; Li, Y.; Wu, J. Z.; Feng, J.; Lanza, M.; Dai, H. High-Performance 
Silicon Photoanodes Passivated with Ultrathin Nickel Films for Water Oxidation. Science 
2013, 342 (6160), 836–840. 

[159] Sun, K.; Ritzert, N. L.; John, J.; Tan, H.; Hale, W. G.; Jiang, J.; Moreno-Hernandez, I.; 
Papadantonakis, K. M.; Moffat, T. P.; Brunschwig, B. S.; et al. Performance and Failure 
Modes of Si Anodes Patterned with Thin-Film Ni Catalyst Islands for Water Oxidation. 
Sustainable Energy Fuels 2018, 2 (5), 983–998. 

[160] Chen, Y.; Sun, K.; Audesirk, H.; Xiang, C.; Lewis, N. S. A Quantitative Analysis of the 
Efficiency of Solar-Driven Water-Splitting Device Designs Based on Tandem Photoabsorbers 
Patterned with Islands of Metallic Electrocatalysts. Energy Environ. Sci. 2015, 8 (6), 1736–
1747. 

[161] Choi, S. K.; Kang, U.; Lee, S.; Ham, D. J.; Ji, S. M.; Park, H. Sn‐Coupled P‐Si Nanowire 
Arrays for Solar Formate Production From CO2. Advanced Energy Materials 2014, 4 (11), 
1301614. 



 

 

160 

[162] Kong, Q.; Kim, D.; Liu, C.; Yu, Y.; Su, Y.; Li, Y.; Yang, P. Directed Assembly of 
Nanoparticle Catalysts on Nanowire Photoelectrodes for Photoelectrochemical CO 
2Reduction. Nano Lett. 2016, 16 (9), 5675–5680. 

[163] Fountaine, K. T.; Lewerenz, H.-J. Efficiency Limits for Hydrogen and Formate Production via 
Fully-Integrated Photoelectrochemical Devices. ECS Trans. 2017, 77 (4), 15–23. 

[164] Sun, K.; Saadi, F. H.; Lichterman, M. F.; Hale, W. G.; Wang, H.-P.; Zhou, X.; Plymale, N. T.; 
Omelchenko, S. T.; He, J.-H.; Papadantonakis, K. M.; et al. Stable Solar-Driven Oxidation of 
Water by Semiconducting Photoanodes Protected by Transparent Catalytic Nickel Oxide 
Films. PNAS 2015, 112 (12), 3612–3617. 

[165] Bae, D.; Seger, B.; Vesborg, P. C. K.; Hansen, O.; Chorkendorff, I. Strategies for Stable Water 
Splitting via Protected Photoelectrodes. Chem. Soc. Rev. 2017, 46 (7), 1933–1954. 

[166] Hu, S.; Richter, M. H.; Lichterman, M. F.; Beardslee, J.; Mayer, T.; Brunschwig, B. S.; Lewis, 
N. S. Electrical, Photoelectrochemical, and Photoelectron Spectroscopic Investigation of the 
Interfacial Transport and Energetics of Amorphous TiO2/Si Heterojunctions. J. Phys. Chem. C 
2016, 120 (6), 3117–3129. 

[167] Nunez, P.; Richter, M. H.; Piercy, B. D.; Roske, C. W.; Cabán-Acevedo, M.; Losego, M. D.; 
Konezny, S. J.; Fermin, D. J.; Hu, S.; Brunschwig, B. S.; et al. Characterization of Electronic 
Transport Through Amorphous TiO2 Produced by Atomic Layer Deposition. J. Phys. Chem. C 
2019, 123 (33), 20116–20129. 

[168] Lichterman, M. F.; Richter, M. H.; Hu, S.; Crumlin, E. J.; Axnanda, S.; Favaro, M.; Drisdell, 
W.; Hussain, Z.; Brunschwig, B. S.; Lewis, N. S.; et al. An Electrochemical, 
Microtopographical and Ambient Pressure X-Ray Photoelectron Spectroscopic Investigation of 
Si/TiO2/Ni/Electrolyte Interfaces. J. Electrochem. Soc. 2016, 163 (2), H139–H146. 

[169] Morales, F.; de Groot, F. M. F.; Glatzel, P.; Kleimenov, E.; Bluhm, H.; Hävecker, M.; Knop-
Gericke, A.; Weckhuysen, B. M. In Situ X-Ray Absorption of Co/Mn/TiO 2Catalysts for 
Fischer−Tropsch Synthesis. J. Phys. Chem. B 2004, 108 (41), 16201–16207. 

[170] Diebold, U. The Surface Science of Titanium Dioxide. Surface Science Reports 2003, 48 (5-8), 
53–229. 

[171] Moser, S.; Fatale, S.; Krüger, P.; Berger, H.; Bugnon, P.; Magrez, A.; Niwa, H.; Miyawaki, J.; 
Harada, Y.; Grioni, M. Electron-Phonon Coupling in the Bulk of Anatase <Span Class="Aps-
Inline-Formula"><Math Xmlns="Http://Www.W3.org/1998/Math/MathML" 
Display=“Inline”><Mrow><Msub><Mrow><Mi>TiO</Mi></Mrow><Mrow><Mn>2</Mn>
</Mrow></Msub></Mrow></Math></Span> Measured by Resonant Inelastic X-Ray 
Spectroscopy. Phys. Rev. Lett. 2015, 115 (9), 096404. 

[172] Glatzel, P.; Sikora, M.; Fernández-García, M. Resonant X-Ray Spectroscopy to Study K 
Absorption Pre-Edges in 3d Transition Metal Compounds. Eur. Phys. J. Spec. Top. 2009, 169 
(1), 207–214. 

[173] Lichterman, M. F.; Richter, M. H.; Hu, S.; Crumlin, E. J.; Axnanda, S.; Favaro, M.; Drisdell, 
W.; Hussain, Z.; Mayer, T.; Brunschwig, B.; et al. Investigation of the Si/TiO2/Electrolyte 
Interface Using Operando Tender X-Ray Photoelectron Spectroscopy. ECS Trans. 2015, 66 
(6), 97–103. 

[174] Richter, M. H.; Lichterman, M. F.; Hu, S.; Crumlin, E. J.; Mayer, T.; Axnanda, S.; Favaro, M.; 
Drisdell, W.; Hussain, Z.; Brunschwig, B.; et al. Measurement of the Energy-Band Relations 
of Stabilized Si Photoanodes Using Operando Ambient Pressure X-Ray Photoelectron 
Spectroscopy. ECS Trans. 2015, 66 (6), 105–113. 

[175] Schmeißer, D.; Hoffmann, P.; Beuckert, G. Electronic Properties of the Interface Formed by 
Pr2O3 Growth. In Materials for Information Technology; Springer: London, 2005; pp 449–460. 

[176] Stöhr, J. NEXAFS Spectroscopy, 2nd ed.; Springer: Heidelberg, 2003; Vol. 25. 
[177] Qiao, R.; Li, Q.; Zhuo, Z.; Sallis, S.; Fuchs, O.; Blum, M.; Weinhardt, L.; Heske, C.; Pepper, 

J.; Jones, M.; et al. High-Efficiency in Situ Resonant Inelastic X-Ray Scattering (iRIXS) 



 

 

161 

Endstation at the Advanced Light Source. Review of Scientific Instruments 2017, 88 (3), 
033106. 

[178] McCrory, C. C. L.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. 
Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts 
for Solar Water Splitting Devices. J. Am. Chem. Soc. 2015, 137 (13), 4347–4357. 

[179] Michaelson, H. B. The Work Function of the Elements and Its Periodicity. Journal of Applied 
Physics 2008, 48 (11), 4729–4733. 

[180] Tanuma, S.; Powell, C. J.; Penn, D. R. Calculations of Electron Inelastic Mean Free Paths. v. 
Data for 14 Organic Compounds Over the 50–2000 eV Range. Surface and Interface Analysis 
1994, 21 (3), 165–176. 

[181] Cho, D.-Y.; Song, S. J.; Kim, U. K.; Kim, K. M.; Lee, H.-K.; Hwang, C. S. Spectroscopic 
Investigation of the Hole States in Ni-Deficient NiO Films. J. Mater. Chem. C 2013, 1 (28), 
4334–4338. 

[182] Mossanek, R. J. O.; Domínguez-Cañizares, G.; Gutiérrez, A.; Abbate, M.; Díaz-Fernández, D.; 
Soriano, L. Effects of Ni Vacancies and Crystallite Size on the O 1s and Ni 2p X-Ray 
Absorption Spectra of Nanocrystalline NiO. J. Phys.: Condens. Matter 2013, 25 (49), 495506. 

[183] Greiner, M. T.; Helander, M. G.; Wang, Z.-B.; Tang, W.-M.; Lu, Z.-H. Effects of Processing 
Conditions on the Work Function and Energy-Level Alignment of NiO Thin Films. J. Phys. 
Chem. C 2010, 114 (46), 19777–19781. 

[184] Mankel, E.; Hein, C.; Kühn, M.; Mayer, T. Electric Potential Distributions in Space Charge 
Regions of Molecular Organic Adsorbates Using a Simplified Distributed States Model. 
physica status solidi (a) 2014, 211 (9), 2040–2048. 

[185] Horn, K. Semiconductor Interface Studies Using Core and Valence Level Photoemission. 
Appl. Phys. A 1990, 51 (4), 289–304. 

[186] Franciosi, A.; Van de Walle, C. G. Heterojunction Band Offset Engineering. Surface Science 
Reports 1996, 25 (1-4), 1–140. 

[187] Rossi, R. C.; Lewis, N. S. Investigation of the Size-Scaling Behavior of Spatially Nonuniform 
Barrier Height Contacts to Semiconductor Surfaces Using Ordered Nanometer-Scale Nickel 
Arrays on Silicon Electrodes. J. Phys. Chem. B 2001, 105 (49), 12303–12318. 

[188] Lichterman, M. F.; Hu, S.; Richter, M. H.; Crumlin, E. J.; Axnanda, S.; Favaro, M.; Drisdell, 
W.; Hussain, Z.; Mayer, T.; Brunschwig, B. S.; et al. Direct Observation of the Energetics at a 
Semiconductor/Liquid Junction by Operando X-Ray Photoelectron Spectroscopy. Energy 
Environ. Sci. 2015, 8 (8), 2409–2416. 

 


